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For a connected graph G � (V(G), E(G)), let v ∈ V(G) be a vertex and e � uw ∈ E(G) be an edge. �e distance between the
vertex v and the edge e is given by dG(e, v) � min dG(u, v), dG(w, v){ }. A vertex w ∈ V(G) distinguishes two edges e1, e2 ∈ E(G) if
dG(w, e1)≠dG(w, e2). A well-known graph invariant related to resolvability of graph edges, namely, the edge resolving set, is
studied for a family of 3-regular graphs. A set S of vertices in a connected graph G is an edge metric generator for G if every two
edges ofG are distinguished by some vertex of S.�e smallest cardinality of an edgemetric generator forG is called the edgemetric
dimension and is denoted by βe(G). As a main result, we investigate the minimum number of vertices which works as the edge
metric generator of double generalized Petersen graphs, DGP(n, 1). We have proved that βe(DGP(n, 1)) � 4 when
n ≡ 0, 1, 3(mod4) and βe(DGP(n, 1)) � 3 when n ≡ 2(mod4).

1. Introduction

�e concept of the resolving set or the locating set was
introduced by Slater [1] and then by Harary andMelter [2]
separately. A resolving set R of a given graph is the subset
of the vertex set of the given graph so that the vertices of
the graph can be located at a unique location by the
distances of them from the vertices of R. �e cardinality of
a such a smallest set R for G is called the metric dimension
of G, denoted by β(G) [1, 2]. Resolvability in graphs has
diverse applications related to the navigation of robots in
networks [3–5], pattern identi�cation, and image pro-
cessing. It has also many applications in pharmaceutical
chemistry and drugs [6–8]. In [9], some interesting
connections of metric generators of graphs with the
mastermind game and coin weighing problem have been
presented. �is concept was used by Slater [1] to deter-
mine the location of an intruder in a network in a unique

way. However, if there is an intruder that cannot be
accessed by its nodes or vertices rather by using the links
between them called edges, then, in this case, the location
of an intruder in a network need not to be identi�ed. �us,
in this situation, there is need to de�ne extra condition to
overcome the problem.

For a simple, undirected, and connected graph G, the
vertex set and edge set of G is denoted by V(G) and E(G),
respectively. �e vertices and the edges of G can be resolved
or determined with the help of distance parameter. �e
distance between a vertex α and an edge β � α1α2 in a graph
G is given by d(β, α) � min d(α1, α), d(α2, α){ }. Any two
edges β1 and β2 are said to be resolved (identi�ed) by a vertex
α ofG if and only if d(β1, α) � d(β2, α) implies β1 � β2. A set
of verticesX⊆V(G) is an edge resolving set for G if and only
if every two distinct edges ofG are resolved by some vertex in
X. �e edge metric dimension of G is the cardinality of such
a smallest set X, denoted by βe(G) [10].
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2. Literature Review

Motivated by this, Kelenc et al. [10] recently defined the
concept of edge resolvability in graphs and studied its dif-
ferent properties. In their work, they extended the study of
the resolving set to the edge resolving set. *ere are several
graphs for which the metric dimension is equal to the edge
metric dimension, the metric dimension is less than the edge
metric dimension, and the metric dimension is greater than
the edge metric dimension [10]. Moreover, exact values for
the edge metric dimension of many classes of graphs were
computed, while the upper and lower bounds of many other
graphs have been given. *e results of the mixed metric
dimensions and the edge metric dimensions for some
families of graphs are given in [11, 12]. Peterin and Yero [13]
computed exact formulae for different products of graphs.
Zubrilina [14] categorized some properties of edge metric
dimension of graphs. Moreover, we refer the reader to the
work [15–19] where some related results on this topic can be
found.

3. Double Generalized Petersen Graph

*e double generalized Petersen graph DGP(n, k) is a cubic
graph, for n≥ 3 and 1≤ k≤ n − 1, with vertex set
V(DGP(n, k)) � xi, ui, vi, yi: 1≤ i≤ n  and edge set
E(DGP) � xixi+1, xiui, uivi+k, viui+k, viyi, yiyi+1: 1≤ i≤ n}.
*e exterior cycle of the DGP(n, k) contains vertices
xi, 1≤ i≤ n, in which every vertex xi is adjacent to the vertex
ui to make spokes of type xiui: 1≤ i≤ n. Similarly, the inner
cycle of the DGP(n, k) contains the vertices yi, 1≤ i≤ n, in
which every vertex yi is adjacent to the vertex vi to make
spokes of type viyi: 1≤ i≤ n [20]. *roughout the study, the
indices will be taken under modulo n. For n � 13 and k � 1,
the double generalized Petersen graph is shown in Figure 1.

4. Edge Metric Dimension of DGP(n, 1)

In this section, we investigate the edge metric dimension of
DGP(n, 1) by proving its upper and lower bounds.

4.1. Upper Bound. For a set W � α1, α2, . . . , αk ⊆V(G), the
code of any edge e ∈ E(G) is the k-vector:

cW(e) � d e, α1( , d e, α2( , . . . , d e, αk( ( . (1)

Equivalently, the set W is an edge resolving set for G if
and only if each edge in G has the unique code with respect
to W. *at is, W is an edge metric for G if and only if two
edges e1, e2 ∈ E(G) and cW(e1) � cW(e2) imply e1 � e2.
Next, first four lemmas provide the upper bound for the edge
metric dimension of DGP(n, 1).

Lemma 1. For n≥ 16 and n ≡ 0(mod4), we have
βe(DGP(n, 1))≤ 4.

Proof. Let W � x1, xn/2− 2, vn/2, yn/2− 2 . Define k1 � n/2 and
l � n/4. Codes of all the edges of DGP(n, 1) with respect to
W are given in Tables 1–10.

From Tables 1–10, it can be seen that each edge of
DGP(n, 1) has the unique code w. r. t. W. So, W is an edge
resolving set for DGP(n, 1) and βe(DGP(n, 1))≤ 4. □

Lemma 2. For n≥ 13 and n ≡ 1(mod4), we have
βe(DGP(n, 1))≤ 4.

Proof. Let W � x1, x⌊n/2⌋− 1, v⌊n/2⌋+1, y⌊n/2⌋− 1 . Define k1 �

⌊n/2⌋ and l � ⌊n/4⌋. Codes of all the edges of DGP(n, 1) with
respect to W are given in Tables 11–20.

From Tables 11–20, it can be observed that each edge of
DGP(n, 1) has unique codes w. r. to W. So, W is an edge
resolving set for DGP(n, 1) and βe(DGP(n, 1))≤ 4. □

Lemma 3. For n≥ 15 and n ≡ 3(mod4), we have
βe(DGP(n, 1))≤ 4.

Proof. Let W � x1, x⌊n/2⌋− 1, v⌊n/2⌋+1, y⌊n/2⌋− 1 . Define k1 �

⌊n/2⌋ and l � ⌈n/2⌉. Codes of all the edges in DGP(n, 1) with
respect to W are given in Tables 21–29.

From Tables 21–29, we observe that each edge of
DGP(n, 1) has unique code w. r. t. W. Hence, W is an edge
resolving set for DGP(n, 1) and βe(DG P(n, 1))≤ 4. □
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Figure 1: *e graph ofDGP(13, 1).

Table 1: Codes of outermost edges, e � xcxc+1.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

1≤ c≤ k1 − 4 c − 1 k1 − c − 3 k1 − c k1 − c − 1
c � k1 − 3 c − 1 0 3 3
c � k1 − 2 c − 1 0 2 3
k1 − 1≤ c≤ k1 c − 1 c + 2 − k1 2 c + 4 − k1
k1 + 1≤ c≤ n − 3 n − c c + 2 − k1 c + 1 − k c + 4 − k1
n − 2≤ c≤ n − 1 n − c n − 3 + k1 − c c + 1 − k1 n − c + k1 − 1
c � n n − c n − 3 + k1 − c k1 n − c + k1 − 1
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Table 2: Codes of edges, e � xcuc, when c is odd.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

1≤ c≤ k1/2 − 1 2c − 2 k1 − 2c − 1 k1 + 1 − 2c k1 − 2c

k1/2≤ c≤ k1/2 + 1 2c − 2 2c + 1 − k1 1 2c + 2 − k1
k1/2 + 2≤ c≤ k1 − 1 n + 2 − 2c 2c + 1 − k1 2c − k1 − 1 2c + 2 − k1
i � k1 2 k1 − 1 k1 − 1 k1

Table 3: Codes of edges, e � xcuc, when c is even.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

1≤ c≤ k1/2 − 2 2c − 1 k1 − 2c − 2 k1 + 1 − 2c k1 − 2c − 1
k1/2 − 1≤ c≤ k1/2 2c − 1 2c + 2 − k 3 3
k1/2 + 1≤ c≤ k1 − 1 n + 1 − 2c 2c + 2 − k1 2c + 1 − k1 2c + 3 − k1
c � k1 1 k1 − 2 k1 + 1 k1 − 1

Table 4: Codes of edges, e � u2c− 1v2c.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

1≤ c≤ l − 2 2c − 1 k1 − 2c − 1 k1 − 2c k1 − 2c − 1
l − 1≤ c≤ l 2c − 1 2 k1 − 2c c − l + 2
l + 1≤ c≤ k1 − 1 n + 2 − 2c 2c + 2 − k1 2c − k1 − 1 2c + 2 − k1
c � k1 2 k1 − 1 k1 − 1 k1 − 1

Table 5: Codes of edges, e � u2cv2c+1.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

1≤ c≤ l − 2 2c k1 − 2c − 2 k1 + 1 − 2c k1 − 2c − 2
l − 1≤ c≤ l 2c 2c + 3 − k1 3 c − l + 3
l + 1≤ c≤ k1 − 2 n + 1 − 2c 2c − k1 + 3 2c − k1 + 2 2c + 3 − k1
c � k1 − 1 k1 + 2 − c n + k1 − 2c − 2 c + 1 n + k1 − 2c − 2
c � k1 k1 + 2 − c n + k1 − 2c − 2 c + 1 n + k1 − 2c − 2

Table 6: Codes of edges, e � u2cv2c− 1.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

c � 1 2 k1 − 2c − 1 k1 + 2 − 2c k1 − 2c − 1
2≤ c≤ l − 2 2c − 1 k1 − 2c − 1 k1 + 2 − 2c k1 − 2c − 1
l − 1≤ c≤ l 2c − 1 c + 2 − l l + 3 − c 2
l + 1≤ c≤ k1 − 1 n + 2 − 2c 2c + 2 − k1 2c + 1 − k1 2c + 2 − k1
c � k1 2 k1 − 1 k1 + 1 k1 − 1
u1vn 1 k1 − 2 k1 − 1 k1 − 2

Table 7: Codes of edges, e � u2c+1v2c.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

1≤ c≤ l − 2 2c k1 − 2c − 2 k1 − 1 − 2c k1 − 2c − 2
l − 1≤ c≤ l 2c c + 3 − l l − c 2c + 3 − k1
l + 1≤ c≤ k1 − 2 n + 1 − 2c 2c + 3 − k1 2c − k1 2c + 3 − k1
c � k1 − 1 2 k1 − 1 k1 + 1 k1 − 1

Table 8: Codes of edges, e � v2c− 1y2c− 1.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

c � 1 3 k1 − 2 k1 k1 − 3
2≤ c≤ k1/2 − 1 2c − 1 k1 − 2c k1 + 2 − 2c k1 − 2c − 1
k1/2≤ c≤ k1/2 + 1 2c − 1 2c + 2 − k 2 2c + 1 − k1
k1/2 + 2≤ c≤ k1 − 1 n + 3 − 2c 2c + 2 − k1 2c − k1 2c + 1 − k1
c � k1 3 k1 k1 k1 − 1
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Table 9: Codes of edges, e � v2cy2c.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

1≤ c≤ k1/2 − 2 2c k1 − 2c − 1 k1 − 2c k1 − 2c − 2
k1/2 − 1≤ c≤ k1/2 2c 3 k1 − 2c 2c + 2 − k1
k1/2 + 1≤ c≤ k1 − 1 n + 2 − 2c 2c + 3 − k1 2c − k1 2c + 2 − k1
c � k1 2 k1 − 1 k1 k1 − 2

Table 10: Codes of edges, e � ycyc+1.

cW(e) x1 xn/2− 2 vn/2 yn/2− 2

c � 1 3 k1 − 2 k1 − 1 k1 − 4
2≤ c≤ k1 − 4 c + 1 k1 − c − 1 k1 − c k1 − c − 3
k1 − 3≤ c≤ k1 − 2 c + 1 3 k1 − c 0
k1 − 1≤ c≤ k1 c + 1 c + 4 − k1 1 c + 2 − k1
k1 + 1≤ c≤ n − 3 n + 2 − c c + 4 − k1 c + 1 − k1 c + 2 − k1
n − 2≤ c≤ n − 1 n + 2 − c n − c + k − 1 c + 1 − k1 k1 + n − c − 3
c � n 3 k1 − 1 k1 k1 − 3

Table 11: Codes of outermost edges, e � xcxc+1.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ k1 − 3 c − 1 k1 − (c + 2) k1 + 1 − c k1 − c

c � k1 − 2 c − 1 0 3 3
k1 − 1≤ c≤ k1 c − 1 c + 1 − k1 2 3
c � k1 + 1 k1 2 2 4
k1 + 2≤ c≤ n − 2 n − c c + 1 − k1 c − k1 c + 3 − k1
n − 1≤ c≤ n n − c n − 2 + k1 − c c − k1 n − c + k1

Table 12: Codes of edges, e � xcuc, when c is odd.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ k1/2 − 1 2c − 2 k1 − 2c k1 + 3 − 2c k1 + 1 − 2c

k1/2≤ c≤ k1/2 + 1 2c − 2 2c − k1 3 3
k1/2 + 2≤ c≤ k1 n + 2 − 2c 2c − k1 2c − k1 − 1 2c + 1 − k1
c � k1 + 1 1 k1 − 1 k1 + 1 k1

Table 13: Codes of edges, e � xcuc, when c is even.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ k1/2 − 1 2c − 1 k1 − 2c − 1 k1 + 1 − 2c k1 − 2c

c � k1/2 2c − 1 1 1 2
k1/2 + 1≤ c≤ k1 − 1 n + 1 − 2c 2c − k1 + 1 2c − k1 − 1 2c + 2 − k1
c � k1 2 k1 k1 − 1 k1 + 1

Table 14: Codes of edges, e � vcyc, when c is odd.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

c � 1 3 k1 + 1 − 2c k1 + 2 − 2c k1 − 2c

2≤ c≤ k1/2 − 1 2c − 1 k1 + 1 − 2c k1 + 2 − 2c k1 − 2c

k1/2≤ c≤ k1/2 + 1 2c − 1 3 k1 + 2 − 2c 2c − k1
k1/2 + 2≤ c≤ k1 n + 3 − 2c 2c + 1 − k1 2c − k1 − 2 2c − k1
c � k1 + 1 2 k1 k1 k1 − 1
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Table 15: Codes of edges, e � vcyc, when c is even.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ k1/2 − 2 2c k1 − 2c k1 + 2 − 2c k1 − 2c − 1
k1/2 − 1≤ c≤ k1/2 2c 2 k1 + 2 − 2c 1
k1/2 + 1≤ c≤ k1 − 1 n + 2 − 2c 2c + 2 − k1 2c − k1 2c + 1 − k1
c � k1 3 k1 + 1 k1 k1

Table 16: Codes of edges, e � ycyc+1.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

c � 1 3 k1 − 1 k1 k1 − 3
2≤ c≤ k1 − 3 c + 1 k1 − i k1 + 1 − c k1 − c − 2
k1 − 2≤ c≤ k1 − 1 c + 1 3 k1 + 1 − c 0
k1 ≤ c≤ k1 + 1 c + 1 c + 3 − k1 1 c + 1 − k1
k1 + 2≤ c≤ n − 2 n + 2 − c c + 3 − k1 c − k1 c − k1 + 1
n − 1≤ c≤ n 3 n − c + k1 c + 1 + k1 − n k1 + n − c − 2

Table 17: Codes of edges, e � u2c− 1v2c.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ l − 2 2c − 1 k1 − 2c k1 + 3 − 2c k1 − 2c

l − 1≤ c≤ l 2c − 1 2c − k1 + 1 3 c − l + 3
l + 1≤ c≤ k1 n + 2 − 2c 2c − k1 + 1 2c − k1 2c + 1 − k1
unv1 2 k1 − 1 k1 k1 − 1

Table 18: Codes of edges, e � u2cv2c+1.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ l − 3 2c k1 − 2c − 1 k1 − 2c k1 − 2c − 1
l − 2≤ c≤ l − 1 2c 2 k1 − 2c c − l + 3
l≤ c≤ k1 − 1 n + 1 − 2c 2c − k1 + 2 2c − k1 − 1 2c + 2 − k1
c � k1 2 k1 k1 − 1 k1

Table 19: Codes of edges, e � u2cv2c− 1.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ l − 3 c + 1 k1 − 2c k1 − 2c + 1 k1 − 2c

l − 2≤ c≤ l − 1 2c − 1 2 k1 − 2c + 1 l − c

l≤ c≤ k1 n + 2 − 2c 2c + k1 + 2 − n 2c + k1 − n − 1 2c + 2 + k1 − n

u1vn 1 k1 − 1 k1 k1 − 1

Table 20: Codes of edges, e � u2c+1v2c.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ l − 3 2c k − 2c − 1 k1 + 2 − 2c k1 − 2c − 1
l − 2≤ c≤ l − 1 2c c − 2 l + 2 − c 2
l≤ c≤ k1 − 1 n + 1 − 2c 2c + 2 − k1 2c + 1 − k1 2c + 2 − k1
c � k1 2 k1 k1 + 1 k1

Table 21: Codes of edges, e � xcuc, when c is odd.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ k1/2 2c − 2 k1 − 2c k1 + 2 − 2c k1 + 1 − 2c

c � k1/2 + 1 k1 − 1 1 1 2
k1/2 + 2≤ c≤ k1 n + 2 − 2c 2c − k1 2c − k1 − 2 2c + 1 − k1
c � k1 + 1 1 k1 − 1 k1 k1
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Table 22: Codes of edges, e � xcuc, when c is even.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ k1/2 − 1 2c − 1 k1 − 2c − 1 k1 + 2 − 2c k1 − 2c

k1/2≤ c≤ k1/2 + 1 2c − 1 2c + 1 − k1 3 3
k1/2 + 2≤ c≤ k1 − 1 n + 1 − 2c 2c − k1 + 1 2c − k1 2c + 2 − k1
c � k1 2 k1 k1 k1 + 1

Table 23: Codes of edges, e � vcyc, when c is odd.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

c � 1 3 k1 + 1 − 2c k1 + 3 − 2c k1 − 2c

2≤ c≤ l − 1 2c − 1 k1 + 1 − 2c k1 + 3 − 2c k1 − 2c

l≤ c≤ l + 1 l + c − 1 2c − k1 + 1 2 2c − k1
l + 2≤ c≤ k1 n + 3 − 2c 2c + 1 − k1 2c − k1 − 1 2c − k1
c � k1 2 k1 k1 + 1 k1 − 1

Table 24: Codes of edges, e � vcyc, when c is even.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ l − 2 2c k1 − 2c k1 + 1 − 2c k1 − 2c − 1
l − 1≤ c≤ l 2c 3 k1 + 1 − 2c 2c + 1 − k1
l + 1≤ c≤ k1 − 1 n + 2 − 2c 2c + 2 − k1 2c − k1 − 1 2c + 1 − k1
c � k1 3 k1 + 1 k1 − 1 k1

Table 25: Codes of edges, e � ycyc+1.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

c � 1 3 k1 − 1 k1 k1 − 2
2≤ c≤ k1 − 3 c + 1 k1 − c k1 + 1 − c k1 − c − 2
k1 − 2≤ c≤ k1 − 1 c + 1 3 k1 + 1 − c 0
k1 ≤ c≤ k1 + 1 c + 1 c + 3 − k1 1 c + 1 − k1
k1 + 2≤ c≤ n − 2 n + 2 − c c + 3 − k1 c − k1 c − k1 + 1
n − 1≤ c≤ n 3 n − c + k1 c + 1 + k1 − n k1 + n − c − 2

Table 26: Codes of edges, e � u2c− 1v2c.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ l − 2 2c − 1 k1 − 2c k1 + 1 − 2c k1 − 2c

l − 1≤ c≤ l 2c − 1 2 k1 + 1 − 2c c − l − 2
l + 1≤ c≤ k1 n + 2 − 2c 2c + 2k1 − n 2c + k1 − n − 1 2c + 2 + k1 − n

unv1: 2 k1 − 1 k1 k1 − 1

Table 27: Codes of edges, e � u2cv2c+1.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

1≤ c≤ l − 2 2c k1 − 2c − 1 k1 + 2 − 2c k1 − 2c − 1
l − 1≤ c≤ l 2c 2c + 3 + k1 − n 3 c − l + 3
l + 1≤ c≤ k1 − 1 n + 1 − 2c 2c − k1 + 2 2c − k1 + 1 2c + 2 − k1
c � k1 n + 1 − 2c k1 k1 + 1 k1
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Lemma 4. For n≥ 14 and n ≡ 2(mod4), we have
βe(DG P(n, 1))≤ 3.

Proof. Let W � x1, xn/2+2, un/2− 3 . Define k1 � ⌊n/2⌋ and
l � ⌈n/4⌉. Codes of outermost edges, inner edges, and spokes
of DGP(n, 1) with respect to W are given in Tables 30–39.

From Tables 30–39, we observe that each edge of
DGP(n, 1) has unique code w. r. t. W. *us, W is an edge
resolving set for DGP(n, 1) and βe(DGP(n, 1))≤ 3. □

4.2. Lower Bound. For all t-regular graphs, the following
lower bound for the edgemetric dimension of any connected
graph was explored in [21].

Lemma 5 (see [21]). If G is a connected t-regular graph, then
βe(G)≥ 1 + log2 t.

As we know that DGP(n, k) are 3-regular graphs and
log23 � 2, so the next result holds consequently.

Table 28: Codes of edges, e � u2cv2c− 1.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

c � l 2 k1 − 2 k1 + 1 k1 − 2
2≤ c≤ l − 2 2c − 1 k1 − 2c k1 + 3 − 2c k1 − 2c

l − 1≤ c≤ l 2c − 1 c + 2 − l 1 + 3 − c 2
l + 1≤ c≤ k1 n + 2 − 2c 2c + 2 + k1 − n 2c + 1 + k1 − n 2c + 2 + k1 − n

u1vn: 1 k1 − 1 k1 k1 − 1

Table 29: Codes of edges, e � u2c+1v2c.

cW(e) x1 x⌊n/2⌋− 1 v⌊n/2⌋+1 y⌊n/2⌋− 1

c � l 2 k1 − 2 k1 + 1 k1 − 2
2≤ c≤ l − 2 2c − 1 k1 − 2c k1 + 3 − 2c k1 − 2c

l − 1≤ c≤ l 2c − 1 c + 2 − l 1 + 3 − c 2
l + 1≤ c≤ k1 n + 2 − 2c 2c + 2 + k1 − n 2c + 1 + k1 − n 2c + 2 + k1 − n

u1vn: 1 k1 − 1 k1 k1 − 1

Table 30: Codes of outermost edges, e � xcxc+1.

cW(e) x1 xn/2+2 un/2− 3

c � 1 c − 1 k1 − 1 k1 − 2c − 2
2≤ c≤ k1 − 4 c − 1 k1 + 1 − c k1 − c − 3
k1 − 3≤ c≤ k1 c − 1 k1 + 1 − c c + 4 − k1
k1 + 1≤ c≤ k1 + 2 n − c 0 c + 4 − k1
k1 + 3≤ c≤ n − 4 n − c c + k1 − n − 2 c + 4 − k1
n − 3≤ c≤ n n − c k1 + c − n − 2 n + k1 − c − 3

Table 31: Codes of edges, e � v2c− 1y2c− 1.

cW(e) x1 xn/2+2 un/2− 3

c � 1 3 k1 k1 − 2c − 2
2≤ c≤ l − 2 2c − 1 k1 + 4 − 2c k1 − 2 − 2c

c � l − 1 2c − 1 k1 + 4 − 2c k1 − 2c

l≤ c≤ l + 1 k1 3 2c + 2 − k1
l + 2≤ c≤ k1 − 1 n + 3 − 2c 2c − k1 − 2 2c + 2 − k1
c � k1 n + 3 − 2c 2c − k1 − 2 k1 − 2

Table 32: Codes of edges, e � v2cy2c.

cW(e) x1 xn/2+2 un/2− 3

1≤ c≤ l − 3 2c k1 − 2c + 3 k1 − 2c − 2
c � l − 2 2c k1 + 3 − 2c 3
l − 1≤ c≤ l 2c k1 + 3 − 2c 2c + 4 − k1
l + 1≤ c≤ k1 − 2 n + 2 − 2c 2c − k1 − 1 2c + 4 − k1
k1 − 1≤ c≤ k1 n + 2 − 2c 2c − k1 − 1 n − 2c + k1 − 2
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Lemma 6. For any double generalized Petersen graph
DGP(n, k), we have βe(DGP(n, k))≥ 3.

The next result provides the lower bound for the edge
metric dimension of DGP(n, 1) whenever n≠ 2 (mod4).

Lemma 7. For n≥ 13 and n ≡ 0, 1, 3(mod4), we have
βe(DGP(n, 1))≥ 4.

Proof. We now prove that the cardinality of any minimum
edge resolving set W is 4. On the contrary, suppose that the
cardinality of W is 3, by Lemma 5. To prove that the ex-
istence of such edge resolving set W is not possible, we have
the following claims. Define k � n/2, and let the vertex set of
DGP(n, 1) be X∪Y∪U∪V, where X � xi; 1≤ i≤ n , Y �

yi; 1≤ i≤ n , U � ui; 1≤ i≤ n , and V � vi; 1≤ i≤ n . □

Table 33: Codes of spokes, e � xcuc, when c is odd.

CW(e) x1 xn/2+2 un/2− 3

c � 1 2c − 2 k1 − 1 k1 − 1 − 2c

2≤ c≤ l − 2 2c − 2 k1 + 3 − 2c k1 − 2c − 1
l − 1≤ c≤ l 2c − 2 k1 + 3 − 2c 2c + 3 − k1
l + 1≤ c≤ k1 − 1 n + 2 − 2c 2c − k1 − 3 2c − k1 + 3
c � k1 n + 2 − 2c 2c − k1 − 3 k1 − 1

Table 34: Codes of spokes, e � xcuc, when c is even.

cW(e) x1 xn/2+2 un/2− 3

1≤ c≤ l − 2 2c − 1 k1 + 2 − 2c k1 − 3 − 2c

l − 1≤ c≤ l 2c − 1 k1 + 2 − 2c 2c + 3 − k1
l + 1≤ c≤ k1 − 2 n + 1 − 2c 2c − k1 − 2 2c + 3 − k1
k1 − 1≤ c≤ k1 n + 1 − 2c 2c − k1 − 2 n + k1 − 2c − 3

Table 35: Codes of edges, e � ycyc+1.

cW(e) x1 xn/2+2 un/2− 3

c � 1 3 k1 + 1 k1 − 2c − 2
2≤ c≤ k1 − 5 c + 1 k1 + 3 − c k1 − c − 3
k1 − 4≤ c≤ k1 − 2 c + 1 k1 + 3 − c 2
k1 − 1≤ c≤ k1 c + 1 k1 + 3 − c c + 4 − k1
k1 + 1≤ c≤ k1 + 2 n + 2 − c 3 c + 4 − k1
k1 + 3≤ c≤ n − 4 n + 2 − c c − k1 c + 4 − k1
n − 3≤ c≤ n − 1 n + 2 − c c + k1 − n n + 4 − c

yny1 3 k1 k1 − 3

Table 36: Codes of edges, e � u2c− 1v2c.

cW(e) x1 xn/2+2 un/2− 3

1≤ c≤ l − 3 2c k1 + 2 − 2c k1 − 2c − 2
c � l − 2 2c k1 + 2 − 2c 3
l − 1≤ c≤ l l + c − 1 k1 + 2 − 2c 2c + 5 − k1
l + 1≤ c≤ k1 − 1 n + 1 − 2c 2c − k1 − 1 2c + 5 − k1
c � k1 3 k1 − 3 k1

Table 37: Codes of edges, e � u2c− 1v2c.

cW(e) x1 xn/2+2 un/2− 3

c � 1 1 k1 k1 + 1 − 4c

2≤ c≤ l − 3 (for n≠ 14) 2c − 1 k1 + 3 − 2c k1 − 2c − 1
l − 2≤ c≤ l − 1 (for n � 14) 2c − 1 k1 + 3 − 2c 3
l − 2≤ c≤ l − 1 2c − 1 k1 + 3 − 2c 3
c � l 2c − 1 k1 + 3 − 2c 5
l + 1≤ c≤ k1 − 2 n + 2 − 2c 2c − k1 − 2 2c + 4 − k1
k1 − 1≤ c≤ k1 n + 2 − 2c 2c − k1 − 2 n + k1 − 1 − 2c
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Claim 1. *e set W can contain at most one vertex from
either Xor Y. On contrary, let x1, xi ∈W, then with out loss
of generality, the third vertex of W is either from X or Y or U

or V . *us, we have following possibilities:

(i) If xj ∈W, when n ≡ 0, 1, 3(mod4), then cW(un− 1
vn) � cW(unvn− 1) when 2≤ i≤ n − 3, 3≤ j≤ n − 2.
For n − 3≤ i≤ n − 1, n − 1≤ j≤ n, we have the fol-
lowing edges with same codes: cW(x1x2) �

cW(x1u1)

(ii) If yj ∈W, when n ≡ 0, 1, 3(mod4), then cW(un− 1
vn) � cW(unvn− 1) when 2≤ i≤ n − 2, 1≤ j≤ n − 2.
For n − 1≤ i≤ n, 1≤ j≤ n − 4, the edges with same
code: cW(un− 3vn− 2) � cW(un− 2vn− 3). Also when
n − 1≤ i≤ n, n − 3≤ j≤ n, we have cW(u2v3) �

cW(u3v2).

(iii) If u2j− 1 ∈W, when n ≡ 0(mod4) and n≥ 16, then
cW(xn− 1xn) � cW(xnun) when 2≤ i≤ k − 1, 1≤
j≤ (k/2). For 2≤ i≤ k − 1, (k/2) + 1≤ j≤ k, cW(xk− 1
uk− 1) � cW(xk− 1xk). When i � k, 1≤ j≤ (k/2),
cW(xkuk) � cW(xkxk+1). cW(x1u1) � cW(xnx1) for
i � k, j � (k/2) + 1. For k≤ i≤ k + 1, (k/2)+

2≤ j≤ k, we have cW(v1y1) � cW(y1y2). For i � k +

1, j � 1 and j � (k/2) + 1, we have cW(x1x2) �

cW(xnx1). When k + 1≤ i≤ n − 1, 2≤ j≤ (k/2),
cW(v1y1) � cW(y1yn). For k + 2≤ i≤ n, (k/2)+

2≤ j≤ k and j � 1, we have cW(xk+2uk+2) �

cW(xk+1xk+2). When i � k + 2, j � (k/2) + 1, the
edges with same codes: cW(uk+1vk) � cW(uk+1vk+2).
Also cW(xk+3uk+3) � cW(xk+2xk+3) when k + 3≤ i≤
n, j � (k/2) + 1.

(iv) If u2j ∈W, when n ≡ 0(mod4) and n≥ 16, then
cW(xnx1) � cW(x1u1) when 2≤ i≤ k, 1≤ j≤ (k/2).
For 2≤ i≤ k − 1, (k/2) + 1≤ j≤ k, cW(xk+1uk+1) �

cW(uk+1vk). When i � k, (k/2) + 1≤ j≤ k, cW(xk

uk) � cW(xk+1xk). If i � k + 1, j � 1, then
cW(ykyk+1) � cW(vk+1yk+1). For i � k + 1, 2≤
j≤ (k/2), the edges with same codes: cW(un

v1) � cW(v2y2). For k + 2≤ i≤ n, 1≤ j≤ (k/2) and
k + 2≤ i≤ n, (k/2) + 1≤ j≤ k, the edges having same
codes: cW(xk+1xk+2) � cW(xk+2uk+2) and cW(x1
x2) � cW(x1u1) respectively.

(v) If v2j− 1 ∈W, when n ≡ 0(mod4) and n≥ 16, then
cW(vk+1yk+1) � cW(ykyk+1) for 2≤ i≤ k − 1,

i � k + 1, 1≤ j≤ (k/2). When 2≤ i≤ k − 2, (k/2)+

1≤ j≤ k, cW(vkyk) � cW(yk− 1yk). If 3≤ i≤ k+

1, 2≤ j≤ (k/2) + 1, then cW(v1y1) � cW(y1y2). For
k + 3≤ i≤ n, (k/2) + 2≤ j≤ k, the following edges
have same codes: cW(vk+1yk+1) � cW(yk+1yk+2). If
k + 2≤ i≤ n, 2≤ j≤ (k/2), then cW(xk+2uk+2) �

cW(xk+1xk+2). When k + 2≤ i≤ n − 1, (k/2)+

1≤ j≤ k, then cW(v1y1) � cW(yny1).
(vi) If v2j ∈W, when n ≡ 0(mod4) and n≥ 16, then

cW(un− 1vn) � cW(vnyn) when 2≤ i≤ k − 1, 1≤
j≤ (k/2) − 1 and j � k. If 2≤ i≤ k − 1, 1≤ j≤ (k/2),
then cW(uk+1vk) � cW(vkyk). For 2≤ i≤ k − 1,

(k/2)≤ j≤ k − 1, we have cW(vn− 1yn− 1) �

cW(yn− 1yn). If 2≤ i≤ k, 1≤ j≤ (k/2) − 1, then
cW(xkuk) � cW(xkxk+1). When i � k, j � (k/2), the
edges have same codes are: cW(uk− 2vk− 1 �

(cxk+2xk+3). If 3≤ i≤ k + 1, (k/2) + 1≤ j≤ k, then
cW(v1y1) � cW(y1y2). When i � k + 1 and
k + 3≤ i≤ n, 1≤ j≤ (k/2), then cW(vk+1yk+1) �

cW(yk+1yk+2). For k + 1≤ i≤ n − 1, 1≤ j≤ (k/2),
cW(v1y1) � cW(y1yn). If i � k + 2, j � (k/2) + 1,
then cW(xk− 1xk) � cW(uk+4vk+3). For k + 2≤
i≤ n, (k/2) + 2≤ j≤ k and k + 3≤ i≤ n, (k/2)+

1≤ j≤ k, the edges with same codes: cW(xk+1xk+2) �

cW(xk+2uk+2) and cW(uk+1vk+2) � cW(vk+2yk+2),
respectively.

Table 38: Codes of edges, e � u2cv2c+1.

cW(e) x1 xn/2+2 un/2− 3

1≤ c≤ l − 3 2c k1 + 2 − 2c k1 − 4 − 2c

l − 2≤ c≤ l − 1 2c k1 + 2 − 2c 2c + 3 − k1
c � l 2c − 1 2 4
l + 1≤ c≤ k1 − 2 n + 1 − 2c 2c − k1 − 1 2c + 3 − k1
c � k1 − 1 n + 2 − k1 − c 2c − k1 − 1 n + k1 − 2c − 4
unv1 n + 2 − k1 − c 2c − k1 − 1 n + k1 − 2c − 4

Table 39: Codes of edges, e � u2cv2c− 1.

cW(e) x1 xn/2+2 un/2− 3

c � 1 2c k1 k1 − 2c − 3
2≤ c≤ l − 2 2c − 1 k1 + 3 − 2c k1 − 2c − 3
l − 1≤ c≤ l 2c − 1 k1 + 3 − 2c 2c + 2 − k1
c � l + 1 k1 − 1 2 5
l + 2≤ c≤ k1 − 2 (for n≠ 14) n + 2 − 2c 2c − k1 − 2 2c + 2 − k1
l + 2≤ c≤ k1 (for n � 14) n + 2 − 2c 2c − k1 − 2 n + k1 − 3 − 2c

k1 − 1≤ c≤ k1 n + 2 − 2c 2c − k1 − 2 n + k1 − 3 − 2c

u1vn 1 k1 − 1 k1 − 2
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Claim 2. *e set W can contain at most one vertex either
from U or V. Due to symmetry, it is enough to show that W

contains at most one vertex from U. On contrary, let
u1, uj ∈W.

(i) If uj ∈W, when n ≡ 0, 1, 3(mod4), then cW

(xn− 1xn) � cW(yn− 1yn) for 2≤ i≤ n − 3, 3≤
j≤ n − 2. If n − 2≤ i≤ n − 1, n − 1≤ j≤ n, then
cW(x2x3) � cW(y2y3).

(ii) If u1, u2i− 1, yj ∈W and , when n ≡ 0(mod4) and
n≥ 16, then cW(ukvk+1) � cW(vk+1yk+1) when
1≤ i≤ (k/2) + 1, 1≤ j≤ k − 1. If 1≤ i≤ (k/2)+

1, 3≤ j≤ k + 1, then cW(u2v1) � cW(v1y1). If
1≤ i≤ (k/2), k + 2≤ j≤ n, then cW(xkuk) � cW

(xkxk+1). When (k/2) + 1≤ i≤ k, k + 1≤ j≤ n − 1,
then cW(unv1) � cW(y1v1). For i � 1, (k/2)+

1≤ i≤ k, j � 1 and k + 3≤ j≤ ncW(uk+2vk+1) � cW

(vk+1yk+1).If (k/2) + 2≤ i≤ k, 2≤ j≤ k, then
cW(xk+2uk+2) � cW(xk+1xk+2).

(iii) If u1, u2i, yj ∈W and ,when n ≡ 0(mod4) and
n≥ 16, then cW(xk+1xk+2) � cW(xk+1uk+1) when
1≤ i≤ (k/2), j � 1 and k + 3≤ j≤ . If 1≤ i≤
(k/2), 2≤ j≤ k, then cW(xk+1uk+2) � cW(xk+2uk+2).
When 1≤ i≤ (k/2) + 1, 4≤ j≤ k + 2, then cW

(v2y2) � cW(u3v2). If (k/2) + 1≤ i≤ k, 1≤ j≤ k − 1,
then edges having same codes: cW(xkxk+1) �

cW(xk+1uk+1). For (k/2) + 1≤ i≤ k, 3≤ j≤ k + 1 and
(k/2) + 1≤ i≤ k, k + 2≤ j≤ n, then edges with same
codes: cW(u2v1) � cW(v1y1) and cW(xkxk+1 �

(cxkuk), respectively.

(iv) If vj ∈W, when n ≡ 0, 1, 3(mod4), then
cW(xn− 1xn) � cW(ynyn− 1) for 2≤ i≤ n − 2, 1≤
j≤ n − 2. If n − 1≤ i≤ n, 1≤ j≤ n − 4, then cW

(xn− 3xn− 2) � cW(yn− 2yn− 3). For n − 2≤ i≤ n, n−

3≤ j≤ n, we have cW(x2x3) � cW(y2y3).

(v) If u1, u2i− 1, xj ∈W and when n ≡ 0(mod4) with
n≥ 16, then cW(xn− 1xn) � cW(xnun) when 2≤
i≤ (k/2), 1≤ j≤ k − 1, j � n. If 2≤ i≤ (k/2), 1≤
j≤ k, then cW(xkuk) � cW(xkxk+1). For 2≤ i≤
(k/2), k + 1≤ j≤ n − 1, we have cW(x1u1) �

cW(u1vn). If (k/2) + 1≤ i≤ k, 2≤ j≤ k + 1, then
edges with same codes: cW(unv1) � cW(v1y1). For
2≤ i≤ (k/2) + 1, k + 2≤ j≤ n and (k/2) + 2≤
i≤ k, j � 1 and k + 2≤ j≤ n, then we have
cW(u2v1) � cW(v1y1) and cW(xk+1xk+2) �

cW(xk+2uk+2).
(vi) If u1, u2i, xj ∈W, when n ≡ 0(mo d4) and n≥ 16,

then cW(uk+2vk+3) � cW(xkxk+1) for i � 1, j � 1 and
j � k + 2. If 1≤ i≤ (k/2), 2≤ j≤ k + 1, then cW

(xk+1uk+1) � cW(xk+1xk+2). If 1≤ i≤ (k/2), k + 2≤
j≤ n, then the following edges have same codes:
cW(xk+2uk+2) � cW(xk+1xk+2). For 2≤ i≤ (k/2)+

1, 1≤ j≤ 2, k + 4≤ j≤ n, then cW(x4u4) � cW(u4v3).
If (k/2) + 1≤ i≤ k, 1≤ j≤ k, then cW(xkuk) �

cW(xkxk+1). When (k/2) + 1≤ i≤ k, k + 1≤ j≤ n,
then cW(xk+1uk+1) � cW(xk+1xk).

Claim 3. If x1, u2i− 1, yj ∈W, when n ≡ 0(mod4) and n≥ 16,
then cW(x1x2) � cW(x1xn) for i � 1, 1≤ j≤ 2. If i � 1 and
(k/2) + 2≤ i≤ k, 2≤ j≤ k, then cW(yk+2vk+2) �

cW(uk+1vk+2). If i � 1 and (k/2) + 3≤ i≤ k, (k/2)≤ j≤ k + 1,
then edges with same codes are: cW(xk+2xk+3)

� cW(uk+4vk+3). When 1≤ i≤ (k/2) and k + 2≤ j≤ n, then
cW(vkyk) � cW(uk+1vk). For 2≤ i≤ (k/2), 1≤ j≤ k, we have
cW(y1v1) � cW(yny1). If 1≤ i≤ (k/2), k≤ j≤ n − 2 and
j � n, then cW(xn− 1xn) � cW(xnun). Moreover, for (k/2) +

1≤ i≤ k, k + 1≤ j≤ n − 1 and j � 1, cW(xnx1) � cW(x1u1),
for 2≤ i≤ (k/2) + 1, 2≤ j≤ k, cW(xk+1uk+1) � cW(uk+1vk+2)

and for (k/2) + 1≤ i≤ k, k + 2≤ j≤ n, cW(xk+1uk+1) �

cW(vkuk+1).

(i) If x1, u2i, yj ∈W, when n ≡ 0(mod4) and n≥ 16,
then cW(xnx1) � cW(x1u1) for 1≤ i≤ (k/2),

k + 1≤ j≤ n − 1 and j � 1. If i � 1, j � 2, the
cW(u2v1) � cW(u2v3). For 1≤ i≤ (k/2) + 1, 3≤ j≤
k + 1, we have following edges having same codes:
cW(xk+2uk+2) � cW(uk+2vk+3). If 1≤ i≤ (k/2) − 1,

k + 2≤ j≤ n, then cW(xk+1uk+1) � cW(uk+1vk). If
2≤ i≤ (k/2) + 1, 4≤ j≤ k + 2 and j � 2, then
cW(x2x3) � cW(x2u2). When (k/2)≤ i≤ k − 1,

k≤ j≤ n − 2 and j � n, then cW(xn− 1xn) � cW

(xnun). For (k/2) + 1≤ i≤ k − 1, 1≤ j≤ k, cW

(v1y1) � cW(yny1). If (k/2) + 1≤ i≤ k, k + 2≤ j≤ n

and j � k, then cW(xkuk) � cW(xkxk+1). For
(k/2) + 1≤ i≤ k, 3≤ j≤ k + 1 and j � 1, cW(x1x2) �

cW(x1u1) and for (k/2) + 2≤ i≤ k, 2≤ j≤ k,
cW(xk+1uk+1) � cW(uk+1vk+2).

(ii) If u1, v2i− 1, yj ∈W, when n ≡ 0(mod4) and n≥ 16,
then cW(u1vn) � cW(u1v2) for i � 1 and j � 1. If i �

1 and (k/2) + 1≤ i≤ k, 2≤ j≤ k, then cW(x1u1) �

cW(u1vn). For i � 1 and (k/2)s + 2≤ i≤ k, 3≤
j≤ k + 1, the edges with same codes are:
cW(u2v1) � cW(v1y1). For 1≤ i≤ (k/2) + 1 and
k + 2≤ j≤ n, cW(x1u1) � cW(u1v2). When
2≤ i≤ (k/2) + 1, k + 3≤ j≤ n and j � 1, then
cW(u2v3) � cW(v3y3). For 2≤ i≤ (k/2)+ 2, 1≤ j≤ 2
and k + 4≤ j≤ , we have cW(x3u3) � cW(u3v4). If
2≤ i≤ (k/2), 3≤ j≤ k, then cW(xk+1xk+2) � cW

(uk+2vk+3). For 1≤ i≤ (k/2), k + 1≤ j≤ n − 1, we
have the following edges with same codes:
cW(unv1) � cW(y1v1). If i � (k/2) + 1, j � k + 1,
then cW(uk+1vk) � cW(vk+2uk+1). For (k/2) + 2≤
i≤ k, k + 2≤ j≤ n, cW(vkyk) � cW(uk+1vk) and for
(k/2) + 1≤ i≤ k, 1≤ j≤ k − 1, cW(ukvk+1) � cW

(yk+1vk+1).
(iii) If u1, v2i, yj ∈W, when n ≡ 0(mod4) and n≥ 16,

then If 1≤ i≤ (k/2) − 1 and i � k, 1≤ j≤ k − 2 and
j � n, then cW(xn− 1un− 1) � cW(un− 1vn− 2). For
1≤ i≤ (k/2) − 1 and i � k, k≤ j≤ n − 2, we have
cW(un− 1vn) � cW(vnyn). When 1≤ i≤ (k/2), k+

2≤ j≤ n, then cW(vkyk) � cW(uk+1vk). If
1≤ i≤ (k/2), 2≤ j≤ k, then cW(x1u1) � cW(u1vn).
*e edges cW(xkxk+1) � cW(xk+1xk+2) have same
codes when (k/2)≤ i≤ (k/2) + 1, j � 1. For
1≤ i≤ (k/2) and i �, k + 1≤ j≤ n − 1, we have
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cW(xkuk) � cW(ukvk− 1). If (k/2) + 1≤ i≤ k,

2≤ j≤ k, then cW(vk+2yk+2) � cW(uk+1vk+2). For
i � (k/2) + 1, j � k + 1, we have cW(xk− 1xk) � cW

(uk+4vk+3). When (k/2) + 1≤ i≤ k, k + 2≤ j≤ n,
then cW(x1u1) � cW(u1v2). For (k/2) + 2≤ i≤ k

and i � 1, 1≤ j≤ 2 and k + 4≤ j≤ n, cW(xk+3uk+3) �

cW(uk+3vk+2) and for (k/2) + 2≤ i≤ k and i �

1, 4≤ j≤ k + 2, cW(u3v2) � cW(y2v2).
(iv) If x1, u2i− 1, v2j− 1 ∈W, when n ≡ 0(mod4) and

n≥ 16, then cW(x2u2) � cW(xnun) when i � j � 1.
If (k/2) + 3≤ i≤ k, i � 1, 2≤ j≤ (k/2), then cW

(uk+1vk+2) � cW(yk+2yk+3). For 1≤ i≤ (k/2),

(k/2) + 1≤ j≤ k − 1, we have cW(un− 1vn) �

cW(vnyn). *e following edges cW(xkuk) �

cW(xkxk+1) and cW(un− 2vn− 1) � cW(vn− 1yn− 1) have
same codes for 1≤ i≤ (k/2), (k/2) + 2≤ j≤ k and
when i � j � k, respectively.

(v) If x1, u2i, v2j ∈W, when n ≡ 0(mod4) and n≥ 16,
then cW(u2v1) � cW(u2v3) for i � j � 1. If (k/2) +

2≤ i≤ k and i � 1, 2≤ j≤ (k/2), then cW

(xk+2xk+3) � cW(xk+3uk+3). When 1≤ i≤ (k/2)+

1, (k/2) + 1≤ j≤ k, then cW(yk+2vk+2) � cW

(uk+1vk+2). For 1≤ i≤ (k/2) − 1 and i � k, (k/2)s +

1≤ j≤ (k/2) + 3 and for 2≤ i≤ (k/2) + 2,

(k/2) + 2≤ j≤ k, these are the edges cW(xk− 1xk) �

cW(xk− 1uk− 1) and cW(uk+3vk+4) � cW(vk+4yk+4).
(vi) If x1, u2i− 1, v2j ∈W, when n ≡ 0(mod4) and n≥ 16,

then cW(ykvk) � cW(uk+1vk) when 1≤ i≤ (k/2),
and 1≤ j≤ (k/2). If (k/2) + 2≤ i≤ k and i � 1,

(k/2) + 1≤ j≤ k, then cW(yk+2vk+2) � cW

(vk+2uk+1). When 2≤ i≤ (k/2) + 1, 2≤ j≤ (k/2) + 1,
then cW(x3u3) � cW(u3v2). For (k/2)≤ i≤ k−

1, (k/2) − 1≤ j≤ k − 2, cW(un− 3vn− 2) � cW

(xn− 3un− 3) and for (k/2) + 2≤ i≤ k and i � 1,

(k/2) + 2≤ j≤ k and j � 1, cW(u3v2) � cW(v2y2).
(vii) If x1, u2i, v2j− 1 ∈W, when n ≡ 0(mod4) and n≥ 16,

then cW(yk− 1vk− 1) � cW(ukvk− 1) for 1≤ i≤ (k/2) −

1 and i � k, 1≤ j≤ (k/2). If 1≤ i≤ (k/2)+

1, 3≤ j≤ (k/2) + 1, then cW(u3v2) � cW(v2y2).
When (k/2) + 2≤ i≤ k and i � 1, (k/2) + 2≤ j≤ k

and j � 1, then we have cW(uk+2vk+3) �

cW(vk+3yk+3). For i � k and 1≤ i≤ (k/2)−

1, 1≤ j≤ (k/2), cW(yk− 1vk− 1) � cW(vk− 1uk) and
when (k/2)≤ i≤ k − 1, (k/2)≤ j≤ k − 1, then
cW(xn− 2un− 2) � cW(vn− 1un− 2).

Now, when n ≡ 1, 3(mod4), the remaining cases are as
follows:

Claim 4. *e set W can contain at most one vertex from
either Xor Y. On contrary, let x1, xi ∈W, then with out loss
of generality, the third vertex of W is either from X or Y or U

or V . *us, we have following possibilities: cW(xn− 1xn) �

cW(xnun) for 2≤ i≤ k, 1≤ j≤ k. If 2≤ i≤ k, j � k + 1
(when n ≡ 1(mod4)), then cW(xk+1xk+2) � cW(xk+1uk+1). If
2≤ i≤ k, j � k + 1 when n ≡ 3(mod4), then cW(xkxk+1) �

cW(xkuk). For i � k + 1, j � 1, j � k + 1, then edges with
same codes are: cW(y1y2) � cW(yn− 1yn). When

i � k + 1, 2≤ j≤ k, then we have cW(u2v1) � cW(un− 1vn). If
k + 3≤ i≤ n, j � 1 when n ≡ 1(mod4), then cW(xk+2xk+3) �

cW(xk+3uk+3) and if k + 2≤ i≤ n, j � 1 when n ≡ 3(mod4),
then cW(xk+1xk+2) � cW(xk+2uk+2). For k + 2≤ i≤ n, 2≤
j≤ k + 1, edges having same codes are: cW(x1x2) �

cW(x1u1).

(i) If u2j ∈W, when n ≡ 1, 3(mo d4) and n≥ 13, then If
2≤ i≤ k + 1, 1≤ j≤ k, then edges with same codes
are: cW(xnx1) � cW(x1u1). For i � k + 2, j � 1,
cW(yny1) � cW(y2y3). *e edges u3v2 and unv1
have same codes when i � k + 2, 2≤ j≤ k. For k +

3≤ i≤ n, j � 1 when n ≡ 1(mod4), cW(xk+1xk+2) �

cW(xk+2uk+2) and for k + 3≤ i≤ n, j �

1when n ≡ 3(mod4), cW(xk+2xk+3) � cW(xk+3uk+3).
Moreover, if k + 3≤ i≤ n, 2≤ j≤ k, the edges having
same codes are x2x3 and x2u2.

(ii) If v2j− 1 ∈W, when n ≡ 1, 3(mod4) and n≥ 13, then
cW(un− 2vn− 1) � cW(vn− 1yn− 1) for 2≤ i≤ k − 1, 1≤
j≤ k − 1. If 2≤ i≤ k − 1, j � k, then cW(xnx1) � cW

(x1u1). When 2≤ i≤ k − 2, j � k + 1, then edges
having same codes are vn− 2yn− 2 and yn− 2yn− 1. If
k − 1≤ i≤ k + 1, j � k + 1, then we have
cW(y1v1) � cW(y1y2). For k + 2≤ i≤ n, 1≤ j≤ 2
when n ≡ 1(mod4), then we have following edges
with same codes cW(xk+1xk+2) � cW(xk+2uk+2) and
for k + 2≤ i≤ n, 1≤ j≤ 2(when n ≡ 3(mod4)), then
ukvk+1 and uk+3vk+2 are the edges having same
codes. If i � k + 2, 3≤ j≤ k, then cW(unv1) � cW

(u3v2). For i � k + 2, j � k + 1 and for k + 3≤
i≤ n, 3≤ j≤ k + 1, it can be seen that, cW(ukvk+1) �

cW(uk+1vk) and cW(u3v2) � cW(v2y2), respectively.

(iii) If v2j ∈W, when n ≡ 1, 3(mod4) and n≥ 13, then
cW(un− 1vn) � cW(vnyn) for 2≤ i≤ k, 1≤ j≤ k − 1. If
2≤ i≤ k − 1 and i � n, j � k, then we have
cW(un− 2vn− 1) � cW(yn− 1vn− 1). When 2≤ i≤ k+

1, j � k, then the edges cW(xk+1xk+2) �

cW(xk+1uk+1) have same codes with respect to W. If
i � k + 1, 2≤ j≤ k − 1, cW(u2v1) � cW(un− 1vn).
When i � k + 1, j � 1 and n ≡ 1(mod4), we have
cW(ukvk+1) � c(uk+3vk+2). When i � k + 1, j � 1
and n ≡ 3(mod4), then cW(xk+1xk+2) �

cW(xk+1uk+1). If k + 2≤ i≤ n, 2≤ j≤ k, then
cW(x1u1) � cW(x1x2). If k + 2≤ i≤ n − 1, 1≤ j≤ k

and i � n, 1≤ j≤ k − 1, then cW(v1y1) � cW(yny1)

and cW(xnun) � cW(xn− 1xn).

Claim 5. *e set W contains at most one vertex either from
Uor V . Due to symmetry, it is enough to show that W

contains at most one vertex from U. On the contrary, let
u1, uj ∈W.

(i) If u1, u2i− 1, yj ∈W and , when n ≡ 1, 3(mod4) and
n≥ 13, then cW(unvn− 1) � cW(vn− 1yn− 1) for
2≤ i≤ k, 1≤ j≤ 2. If i � k + 1, 1≤ j≤ 2 and when
n ≡ 1(mod4), then cW(xk− 1xk) � cW(uk+1vk). For
i � k + 1, 1≤ j≤ 2 and when n ≡ 3(mod4), then we
have cW(xk− 1xk) � cW(ukvk+1). If 2≤ i≤ k+
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1, 3≤ j≤ k + 1, then cW(u2v1) � cW(v1y1). When
2≤ i≤ k + 1, k + 1≤ j≤ n − 2, then edges having
same codes are: cW(un− 1vn) � cW(vnyn). For
2≤ i≤ k − 1, n − 1≤ j≤ n, we have cW(un− 2vn− 3) �

cW(vn− 3yn− 3). If k≤ i≤ k + 1, n − 1≤ j≤ n when
n ≡ 1(mod4) and if k≤ i≤ k + 1, n − 1≤ j≤ n when
n ≡ 3(mod4), then we have cW(ykyk+1) �

cW(uk+2vk+1) and cW(ykyk+1) � cW(uk+1vk+2),
respectively.

(ii) If u1, u2i, yj ∈W and, when n ≡ 1, 3(mod4) and
n≥ 13, then For 1≤ i≤ k, 4≤ j≤ k + 1, we have
cW(u3v2) � cW(v2y2). If 1≤ i≤ k, k + 2≤ j≤ n − 1,
then cW(unv1) � cW(y1v1). When 2≤ i≤ k, j � n,
then cW(x1u1) � cW(u1v2). If 2≤ i≤ k, j � 1,
cW(u2v3) � cW(y3v3). For i � 1, 1≤ j≤ 2 and j � n

when n ≡ 1(mod4), then we have cW

(xk+3xk+4) � cW(uk+2vk+3). If i � 1, 1≤ j≤ 2 and j �

n when n ≡ 3(mod4), then cW(xk+3xk+4) �

cW(uk+3vk+2). When 1≤ i≤ k − 4, 2≤ j≤ 3 when
n ≡ 1(mod4), then cW(uk+1vk+2) � cW(yk+2yk+3).
For 1≤ i≤ k − 4, 2≤ j≤ 3 when n ≡ 3(mod4), then
cW(uk+2vk+1) � cW(yk+2yk+3). Moreover, if
k − 3≤ i≤ k, 2≤ j≤ 3, then cW(u4v5) � cW(v5y5).

(iii) If u1, u2i− 1, xj ∈W and , when n ≡ 1, 3(mod4) and
n≥ 13, then for 2≤ i≤ k, 1≤ j≤ k and j � n, the
edges having same codes are: cW(xnun) �

cW(xn− 1xn). If 2≤ i≤ k, k + 1≤ j≤ n − 1, then
cW(xn− 1xn) � cW(xn− 1un− 1). If i � k + 1, 1≤ j≤ k,
then cW(vnyn) � cW(un− 1vn). When i � k + 1, k +

2≤ j≤ n and i � k + 1, j � k + 1, the edges having
same codes are: cW(v1y1) � cW(u2v1) and
cW(x2u2) � cW(xn− 1un− 1), respectively.

(iv) If u1, u2i, xj ∈W, when n ≡ 1, 3(mod4) and n≥ 13,
then cW(unv1) � cW(v1y1) when i � 1, 2≤ j≤ k + 1.
If i � 1, j � k + 2, then cW(xnun) � cW(x3u3). For
i � 1, k + 3≤ j≤ n and j � 1, then cW(u3v2) �

cW(v2y2). If 2≤ i≤ k, 3≤ j≤ k + 2 and 2≤ i≤ k,

1≤ j≤ 2 and k + 3≤ j≤ n, then we have cW(x2x3) �

cW(x3u3) and cW(x2x3) � cW(x2u2).

Claim 6. If x1, u2i− 1, yj ∈W, when n ≡ 1, 3(mod4) and
n≥ 13, then cW(xn− 1xn) � cW(xnun) for 1≤ i≤ k,

k + 1≤ j≤ n − 2. When k − 1≤ i≤ k + 1, k + 1≤ j≤ n when
n ≡ 1(mod4), then cW(ykyk+1) � cW(yk+1vk+1). If
k − 2≤ i≤ k + 1, k≤ j≤ n − 1 when n ≡ 3(mod4), then
cW(yk− 1yk) � cW(ykvk). For 2≤ i≤ k, 1≤ j≤ k + 1, we have
cW(v1y1) � cW(yny1). If i � 1, 3≤ j≤ k + 1 when n ≡ 1
(mod4), then cW(xk+2xk+3) � cW(uk+3vk+4) and when i �

1, 3≤ j≤ k + 1 when n ≡ 3(mod4), then cW(xk+2xk+3)

� cW(uk+4vk+3). When n ≡ 1(mod4) and 1≤ i≤ k − 3,

n − 1≤ j≤ n, the edges are cW(xk+1xk+2) � cW(ukvk+1).
When n ≡ 3(mod4) and 1≤ i≤ k − 3, n − 1≤ j≤ n, the edges
with same codes are: cW(yk+1vk+1) � cW(uk+2vk+1). If
n ≡ 1(mod4) and i � k − 2, n − 1≤ j≤ n, then cW

(xk+1uk+1) � cW(uk+1vk). When n ≡ 3(mod4) and k − 2≤
i≤ k + 1, n − 1≤ j≤ n, then cW(ukvk+1) � cW(xk+1xk+2). For

i � 1, 1≤ j≤ 2 and i � 1, j � 3, cW(unv1) � cW(u2v1) and
cW(xk+2xk+3) � cW(uk+3vk+4).

(i) If x1, u2i, yj ∈W, when n ≡ 1, 3(mod4) and n≥ 13,
then if 1≤ i≤ k, k + 2≤ j≤ n − 1, then cW(xnx1) �

cW(x1u1). When 1≤ i≤ k − 1, k≤ j≤ k + 1, then
cW(vn− 1yn− 1) � cW(yn− 1yn). For 3≤ i≤ k, 4≤
j≤ k + 1, we have cW(y3y4) � cW(y4v4). If
1≤ i≤ k − 2, 2≤ j≤ k − 1 when n ≡ 1(mod4), then
we have cW(yk+2vk+2) � cW(uk+1vk+2). When
n ≡ 3(mod4) and 1≤ i≤ k − 2, 2≤ j≤ k − 1, then
cW(yk+3vk+3) � cW(uk+2vk+3). If k − 1≤ i≤ k,

3≤ j≤ k − 1, then cW(uk+2vk+3) � cW(yk+3vk+3).
For 2≤ i≤ k, j � 1 and j � n, cW(y1v1) � c(y1y2).
When 2≤ i≤ k, j � 2, then cW(x2u2) � cW(x2x3).
For i � 1, j � n when n ≡ 1(mod4) and i � 1, j � n

when n ≡ 3(mod4), cW(yk+1vk+1) � cW(uk+2vk+1)

and cW(ukvk+1) � cW(xk+1xk+2).
(ii) If u1, v2i− 1, yj ∈W, when n ≡ 1, 3(mod4) and

n≥ 13, then If 1≤ i≤ k + 1, k + 2≤ j≤ n, then
cW(x1u1) � cW(u1v2). If 3≤ i≤ k + 1, 4≤ j≤ k + 1,
then cW(u3v2) � cW(v2y2). For 3≤ i≤ k+

1, 1≤ j≤ 3, we have cW(v3y3) � cW(y3y4). When
n ≡ 1(mod4) and 1≤ i≤ 2, 1≤ j≤ k, then cW

(xk+1xk+2) � cW(xk+2uk+2) and when 1≤ i≤ 3,
1≤ j≤ k − 1 and n ≡ 3(mod4), then cW(uk+1vk+2) �

cW(xkxk+1). If i � 1, k≤ j≤ k + 1 and n ≡ 3(mod4),
then the edges with same codes are: cW(x1u1) �

c(u1vn) and if i � 2, k≤ j≤ k + 1 and n ≡ 3(mod4),
then cW(xk+2xk+3) � cW(uk+4vk+3). For n ≡ 1
(mod4) and i � 1, j � k − 2 and when n ≡ 1(mod4)

and i � 2, j � k + 1, the edges having same codes
are: cW(x1u1) � cW(u1vn) and cW(xk+2xk+3) �

cW(uk+3vk+4).
(iii) If u1, v2i, yj ∈W, when n ≡ 1, 3(mod4) and n≥ 13,

then for 1≤ i≤ k, 2≤ j≤ k + 1, cW(x1u1) � cW

(u1vn). If 1≤ i≤ k − 1, k + 2≤ j≤ n − 2, then
cW(un− 1vn) � cW(vnyn). When i � k, k + 2≤
j≤ n − 1, then cW(ukvk− 1) � cW(xkxk+1). For
1≤ i≤ k − 1, j � 1 and n − 1≤ j≤ n, the edges with
same codes are: cW(vn− 1yn− 1) � cW(yn− 2yn− 1). If
i � k, j � 1, n, then cW(xn− 1un− 1) � cW(un− 1vn− 2).

(iv) If x1, u2i− 1, v2j ∈W, when n ≡ 1, 3(mod4) and
n≥ 13, then cW(u3v2) � cW(v2y2) if 1≤ i≤ k3≤ j≤
k + 1. For i � 1, j � k, cW(xn− 2xn− 1) � cW(v1u2).
For 2≤ i≤ k + 1, j � k, cW(x1u1) � cW(x1x2).

(v) If x1, u2i, v2j− 1 ∈W, when n ≡ 1, 3(mod4) and
n≥ 13, then If 1≤ i≤ k, 3≤ j≤ k + 1, then we have
cW(u3v2) � cW(v2y2). For 1≤ i≤ k, 1≤ j≤ 2,
cW(un− 2vn− 1) � cW(vn− 1yn− 1).

(vi) If x1, u2i− 1, v2j− 1 ∈W, when n ≡ 1, 3(mod4) and
n≥ 13, then cW(vn− 4yn− 4) � cW(un− 5vn− 4) for
1≤ i≤ k − 1, k − 1≤ j≤ k + 1. if n ≡ 1(mod4) and
k − 2≤ i≤ k + 1, 1≤ j≤ k − 2, then cW(vk+1yk+1) �

cW(vk+1uk+2). When n ≡ 3(mod4) and k − 2≤ i≤
k + 1, 1≤ j≤ k − 3, then cW(vkyk) � cW(vkuk+1).
When n ≡ 1(mod4) and i � k + 1, k − 1≤ i≤ k + 1,
then cW(xk+1xk+2) � cW(ukvk+1). If n ≡ 3(mod4)
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and i � k + 1, k − 1≤ i≤ k + 1, then cW(xk+1xk+2)

� cW(uk+1vk).
(vii) If x1, u2i, v2j ∈W and n ≡ 1, 3(mod4) with n≥ 13:

for n ≡ 1(mod4) and 1≤ i≤ k − 2, k − 2≤ j≤ k, we
have cW(vk+3yk+3) � cW(vk+3uk+2). Whenever 1≤ i

≤ k − 2, k − 2≤ j≤ k, and cW(vk+1yk+1) � cW(vk+1
uk+2). Whenever k − 3≤ i≤ k, j≤ k − 3. For
n ≡ 1, 3(mod4) and i � k, k − 2≤ j≤ k, we have
cW(xkxk+1) � cW(uk− 1vk) cW(xkxk+1) � cW(uk

vk− 1), cW(vk+3yk+3) � cW(vk+3uk+2). If k − 3≤ i≤ k,

1≤ j≤ k − 3, then cW(vk+1yk+1) � cW(vk+1uk+2).

For n ≡ 1(mod4) and i � k, k − 2≤ i≤ k and for
n ≡ 3(mod4) and i � k, k − 2≤ i, cW(xkxk+1) � cW(uk− 1vk)

cW(xkxk+1) � cW(ukvk− 1).
From all these claims, it yields that there is no such edge

resolving set W for DGP(n, 1). *erefore βe (DGP(n,

1))≥ 4.

From Lemmas 1–6, we have the following main result:

Theorem 1. For n≥ 13, we have

βe(DGP(n, 1)) �
3, when n ≡ 2(mod4),

4, otherwise .
 (2)

5. Conclusion

In this study, a family of double generalized Petersen graph
DG P(n, 1) has been considered in the context of edge
resolvability. It has been investigated that minimum 4
vertices perform the edge resolvability in DG P(n, 1) when
n ≡ 0, 1, 2 (mod 4) andminimum 3 vertices perform the edge
resolvability in DG P(n, 1) when n ≡ 2 (mod 4).
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In theoretical chemistry, topological indices (TIs) have important role to predict various physical and structural properties of the
study under molecular graphs. Among all topological indices, Zagreb-type indices have been used more effectively in the chemical
literature. In this paper, we have computed first Zagreb, second Zagreb, forgotten, and hyper Zagreb indices of the generalized
Q-sum graph (H1(Qα )

[H2]) in the form of different TIs of its basic graphs, where α≥ 1 is a positive integer. (is family of graphs is
obtained by the lexicographic product of the graph Qα(H1) and H2, where Qα(H1) is constructed with the help of the generalized
line superposition operation Qα on H1. As a conclusion, we also checked the correlation between predefined graph H1[H2] under
the operation of lexicographic product H1 and H2 with newly defined generalized Q-sum graphs (H1(Qα )

[H2]) using linear
regression models of various degree-based TIs.

1. Introduction and Preliminaries

In the computing analysis of chemical compounds, the
chemical structural formulas are usually represented by
graphs. Mathematically, for a graph H, the vertex and edge
sets are denoted by V(H) and E(H)⊆V(H) × V(H), re-
spectively. (e degree of the vertex z ∈ V(H) (denoted by
d(z)) is the number of incident edges on it. (e distance
between any two vertices z and y in V(H) is denoted by
d(z, y) and defined as the number of edges in a shortest path
existing between the vertices z and y. (oroughly, the graph
H is considered as a finite and simple graph.

(e subject of chemical graph theory has many applica-
tions in chemistry. In a chemical graph, a vertex and an edge
correspond to an atom and a chemical bond between them,
respectively. A topological index is a function which presents a
chemical graph in the form of a numerical number that is used
to model the chemical and physical properties of molecules in
quantitative structure property and activity relationships.

For a molecular graph H, the first Zagreb index M1(H)

and second Zagreb index M2(H) are firstly considered by
Gutman and Trinajstic [1] in 1972 to study the total π
electron energy of the molecular graph H which are defined
as follows:

M1(H) � 
z∈V(H)

d
2
(z) � 

zy∈E(H)

[d(z) + d(y)],

M2(H) � 
zy∈E(H)

[d(z) × d(y)].
(1)

In 2015, forgotten index (F index) is defined as follows
[2]:

F(H) � 
z∈V(H)

d
3
(z) � 

zy∈E(H)

d
2
(z) + d

2
(y) .

(2)

In 2005, the first general Zagreb index is defined as
follows [3]:
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M
β+1
1 (H) � 

z∈V(H)

d
β+1

(z) � 
zy∈E(H)

d
β
(z) + d

β
(y) . (3)

(e concept of the general randic index (GRI) is defined
by Bollobas and Erdos as

Rβ(H) � 
zy∈E(H)

[d(z) × d(y)]
β
. (4)

In 2013, hyper Zagreb index is defined by Shirdel et al. as
follows [4]:

HM(H) � 
zy∈E(H)

[d(z) + d(y)]
2
.

(5)

For more studies, we refer to [5]. In particular, we can
find the results of TIs for various families of graphs such as
nanosheets & nanostars dendrimers [6, 7], hex-derived
networks [8], benzene networks [9, 10], and cellulose net-
works [11]. In addition, for the studies of the complex
graphs, operations on graphs play a key role, where the
original graphs are called the factors of the newly con-
structed graph under operations [12].

Yan et al. [13] defined the line superposition operation
Q1 related to the subdivision of H and computed theWiener
index of this derived graph Q1(H), where Q1(H) is obtained
by inserting one new vertex in every edge of H and joining
those pairs of new vertices by edges which have common
adjacent (original) vertices (see Figure 1). Liu et al. extended
this operation for any integral value of α≥ 1 and obtained the
generalized line superposition graph Qα(H) from the graph
H by inserting α vertices in each edge and joining those pairs
of new vertices by edges which have common adjacent
(original) vertices [14] (see Figures 2 and 3).

Taeri et al. [15] constructed the Q1-sum graph by Cartesian
product of Q1(H1) and H2, where Q1(H1) is a line super-
position graph, and H1 and H2 are assumed to be two con-
nected graphs. Also, they computed the Wiener index of
Q1-sum graph. Whereas, Chu et al. [16], Deng et al. [17],
Akhter et al. [18], and Liu et al. [14] calculated the different
indices of Q1-sum graph (H1(Q1)

+ H2) based on the Cartesian
product. Recently, Liu et al. [19] extended this operation for any
integral value of k and obtained the generalized line super-
position graph Qk(H1) of the graph H1. Moreover, they
constructed the generalized Q-sum graph (H1(Qk)

+ H2) and
computed their Zagreb indices. Javaid et al. [20] constructed
the generalized Q-sum graph based on strong product and
computed its first and second Zagreb indices.

(e composition or lexicographic product of two con-
nected graphs H1 and H2, which is denoted by H1[H2], is a
graph such that the set of vertices is V(H1) × V(H2), and
two vertices (z1, y1) and (z2, y2) will be adjacent in H1[H2]

if [z1 = z2, and y1 is adjacent to y2] or [z1 is adjacent to z2,
and y1 is adjacent to y2].

Sarala et al. [21], De [22], Pattabiraman [23], Patta-
biraman and Santhakumar [24], and Suresh and Devi [25]
have computed different degree-related Zagreb indices for
the graphs based online superposition operation and lexi-
cographic product.

(1) Qα-sum: let H1 and H2 be two graphs; first, we apply
generalized line superposition operation on H1 to get
Qα(H1) graph.(en, we take lexicographic product between
Qα(H1) and H2 to get Qα-Sum graph denoted by H1(Qα)

[H2].
Qα-sum graph having vertex-set

V H1 Qα( )
H2   � V Qα H1( (  × V H2( 

� V H1( ∪ α E H1( ( (  × V H2( ,

(6)

such that two vertices (z1, y1) and (z2, y2) of V(H1(Qα)
[H2])

are adjacent if [z1 = z2 in V(H1), and y1 is adjacent to y2 in
E(H2)] or [z1 is adjacent to z2 in E(Qα(H1)), and y1 is
adjacent to y2 in E(H2)], where α≥ 1 is a positive integer
(see Figure 4).

To check the correlation between the predefined lexi-
cographic product of two simple graphs (H1[H2]) and
newly defined Qα-sum graphs (H1(Qα)

[H2]), one may use the
linear regression when having a linear relationship between
the dependent variable (X =H1[H2]) and the independent
variable (Y =H1(Qα)

[H2]). For further studies related to
operations and graph products, the readers are referred to

0 1

a b

G1
G2

Q (G1)

2 x y

0 1 2

Figure 1: Line superposition operation for P3 denoted by Q1(P3).

a

b

c

d

210

Figure 2: Generalized line superposition operation for P3 and α= 2
denoted by Q2(P3).

a

b

d

e

fc

0
1 2

Figure 3: Generalized line superposition operation for P3 for α= 3
denoted by Q3(P3).
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[26–29]. In this paper, we have used the generalized line
superposition operation to construct a new generalized line

superposition graph Qα(H1) from the graph actual graph
H1. (en, we have constructed a Qα-sum graph based on the
lexicographic product of Qα(H1) and H2, denoted by
H1(Qα)

[H2]. Moreover, we have computed the first Zagreb,
second Zagreb, forgotten, and hyper Zagreb indices of
H1(Qα)

[H2] in terms of its factor graphs H1 and H2. We have
extended this work by constructing linear regression models
between (H1[H2]) and Qα-sum graphs (H1(Qα)

[H2]) via
foresaid degree-based TIs.

2. Main Results

(is section covers the main results.

Theorem 1. Let H1 and H2 be two connected graphs such
that |V(H1)|, |V(H2)|≥ 4. For α≥ 1,

M1 H1 Qα( )
H2   � 8 V H2(  E H1( 

����
����E H2( 


 + 3 V H2( 



3
M1 H1(  + V H1( 


M1 H2( 

+ 2(α − 1) V H2( 



2
M1 H1(  +(α) V H2( 



3

M3 H1(  + 2M2 H1(  − 2M1 H1(  .

(7)

Proof.

M1 H1 Qα( )
H2   � 

z1 ,y1( ) z2 ,y2( )∈E H1
Qα( )

H2[ ] 

d z1, y1(  + d z2, y2(  

� 

z∈V H1( )



y1y2∈E H2( )

d z, y1(  + d z, y2(   + 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H2( )( )

d z1, y1(  + d z2, y2(  

� 
A

+ 
B

.

(8)

Now,


A

� 

z∈V H1( )



y1y2∈E H2( )

d z, y1(  + d z, y2(   � 

z∈V H1( )



y1y2∈E H2( )

2 V H2( 


dH1
(z) + dH2

y1(  + dH2
y2(  

� 4 V H2(  E H1( 
����

����E H2( 


 + V H1( 


M1 H2( ,


B

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )

d z1, y1(  + d z2, y2(  

(0,x)

(a,x)

(b,x)

(1,x)

(d,x)

(e,x)

(2,x) (2,y)

(d,y)

(c,y)

(1,y)

(b,y)

(a,y)

(0,y)

Figure 4: Generalized Qα-sum graph H1(Qα )
[H2] for P3(Q3 )

[P2].
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� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )

z2∈V Qα H1( )( )−V H1( )

d z1, y1(  + d z2, y2(   + 

y∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y(  + d z2, y(  

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y1(  + d z2, y1(   � 
B1

+ 
B2

+ 
B3

,


B1

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )

z2∈V Qα H1( )( )−V H1( )

d z1, y1(  + d z2, y2(  

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H2( )( )
z1∈V H1( )

z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(  + dH2
y1(  + V H2( 


dQα H1( ) z2(  

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H2( )( )
z1∈V H1( )

z2∈V Qα H1( )( )−V H1( )

V H2( 


dH1
z1(  + dH2

y1(  

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H2( )( )
z1∈V H1( )

z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z2( (  

� 4 V H2(  E H1( 
����

����E H2( 


 + V H2( 



3
M1 H1( 

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )

z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z2(  . (9)

For z2 ∈ V(Qα(H1)) − V(H1) which is inserted into the
edge uv of (H1), we have dQα(H1)(z2) � dH1

(u) + dH1
(v).

(is gives



z1z2∈E Qα H1( )( )
z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

dQα H1( ) z2(   � 2 

uv∈E H1( )

dH1
(u) + dH1

(v)  � 2M1 H1( 


H2



z1z2∈E Qα H1( )( )
z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

dQα H1( ) z2(   � 2 V H2( 


M1 H1( .

(10)

So, we have


B1

� 4 V H2(  E H1( 
����

����E H2( 


 + 3 V H2( 



3
M1 H1( . (11)

Now, we take


B2

� 

y∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y(  + d z2, y(  
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� 

y∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(  + V H2( 


dQα H1( ) z2(  

� 2(α − 1) V H2( 



2



uv∈E H1( )

dH1
(u) + dH1

(v)  � 2(α − 1) V H2( 


 ∣ 2M1 H1( ,


B3

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

V H2( ( 


dQα H1( ) z1(  + V H2( 


dQα H1( ) z2(  

� V H2( 



3
(α) 

uv∈E H1( )
vw∈E H2( )

dH1
(u) + dH1

(v) + dH1
(v) + dH1

(w) , (12)

where z1 and z2 are the vertices that are inserted into the
edges uv of H1 and vw of H1, respectively.

� (α) V H2( 



3



v∈V H1( )

d
3
H1

(v) − d
2
H1

(v) + 

v∈V H1( )

dH1
(v) − 1  

u∈V H1( )
uv∈E H1( )

dH1
(u)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� (α) V H2( 



3

M3 H1(  + 2M2 H1(  − 2M1 H1(  .

(13)

Consequently, we have obtained our required result. □ Theorem 2. Let H1 and H2 be two connected graphs such
that |V(H1)|, |V(H2)|≥ 4. For α≥ 1,

M2 H1 Qα( )
H2   � 5 E H2( ‖V H2( 



2
M1 H1(  + 2 E H1( ‖V H2( 


M1 H2(  + V H1( 


M2 H2( 

+ V H2( 



4

M3 H1(  + 2M2 H1(   +(α) V H2( 



4

1
2
M4 H1(  −

1
2
M3 H1(  + 

uv∈V H1( )

r d(u)d(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

v∈V H1( )

d
2
(v) 

u∈V H1( )

uv∈E H1( )

d(u) −2M2 H1(  +(α − 1) V H2( 



3 2M2 H1(  + M3 H1(  ,

(14)
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where r is the number of neighbours which are common
between u and v in H1.

Proof.

M2 H1 Qα( )
H2   � 

z1 ,y1( ) z2 ,y2( )∈E H1
Qα( )

H2[ ] 

d z1, y1( d z2, y2(  

� 

z∈V H1( )



y1y2∈E H2( )

d z, y1( d z, y2(   + 

y1∈V H2( )



y2∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )

d z1, y1( d z2, y2(  

� 
A

+ 
B

.

(15)

Now, we take


A

� 

z∈V H1( )



y1y2∈E H2( )

d z, y1( d z, y2(  

� 

z∈V H1( )



y1y2∈E H2( )

V H2( 


dH1
(z) + dH2

y1(   V H2( 


dH1
(z) + dH2

y2(  

� E H2( ‖V H2( 



2
M1 H1(  + 2 E H1( ‖V H2( 


M1 H2(  + V H1( 


M2 H2( ,


B

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )

d z1, y1( d z2, y2(  

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )

z2∈V Qα H1( )( )−V H2( )

d z1, y1( d z2, y2(   

y∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y( d z2, y(  

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y1( d z2, y2(   � 
B1

+ 
B2

+ 
B3

.

(16)

So,


B1

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

d z1, y1( d z2, y2(  

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

V H2( 





dH1
z1(  + dH2

y1(   V H2( 


dQα H1( ) z2(  

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Q H1( )( )
z1∈V H1( )
z2∈V Q H1( )( )−V H1( )

V H2( 


dQα H1( ) z2( d H2( ) y1(  + V H2( 



2
dH1

z1( dQα H1( ) z2(  
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� V H2( 



4



z1z2∈E Q H1( )( )z1

∈V H1( )z2∈V Q H1( )( )−V H1( )

dQα H1( ) z1( dQα H1( ) z2(  + 2 E H2( ‖V H2( 



2



z1z2∈E Q H1( )( )z1

∈V H1( )
z2∈V Q H1( )( )−V H1( )

dQα H1( ) z2( 

� V H2( 



4



z1z2∈E Q H1( )( )z1∈V
H1( )z2∈V Q H1( )( )−V H1( )

dQα H1( ) z1( dQα H1( ) z2(  + 4 E H2( ‖V H2( 



2
M1 H1( , (17)

where z2 is the vertex inserted into the edge z1w1 of H1

� V H2( 



4



z1∈V H1( )



w1∈V NH1 z1( ) 

dQα H1( ) z1(  dQα H1( ) z1(  + dQα H1( ) w1(  

+ 4 E H2( ‖V H2( 



2
M1 H1( ,

(18)

where NH1
(z1) is the set of neighbor vertices of z1 in H1

� V H2( 



4

M3 H1(  + 2M2 H1(   + 4 E H2( ‖V H2( 



2
M1 H1( ,


B2

� 

y∈V H2( )



z1z2∈E Qα H1( )( )

z1z2∈V Qα H1( )( )−V H1( )

d z1, y( d z2, y(  


B2

� 

y∈V H2( )



z1z2∈E Qα H1( )( )

z1z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(   V H2( 


dQα H1( ) z2(  

� (α − 1) V H2( 



3 2M2 H1(  + M3 H1(  ,


B3

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )

z1z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(   V H2( 


dQα H1( ) z2(  

� V H2( 



2
(α) 

y1∈V H2( )



y2∈V H2( )



uv∈E H1( )

vw∈E H2( )

dH1
(u) + dH1

(v)  dH1
(v) + dH1

(w) ,

(19)

where z1 is the added vertex in the edge uv, and z2 is the
added vertex in the edges vw of H1
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� (α) V H2( 



4 1
2



v∈V H1( )

d
4
H1

(v) − d
3
H1

(v)  + 

uv∈V H1( )

rdH1
(u)dH1

(v) + 

v∈V H1( )

d
2
H1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

× 

u∈V H1( )
uv∈E H1( )

dH1
(u) − 2M2 H1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� (α) V H2( 



4 1
2
M4 H1(  −

1
2
M3 H1(  + 

uv∈V H1( )

rdH1
(u)dH1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

v∈V H1( )

d
2
H1

(v) 

u∈V H1( )
uv∈E H1( )(

dH1
(u) − 2M2 H1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(20)

where r is the number of neighbors which are common
vertices of u and v in (H1). Consequently, we have obtained
our required result. □

Theorem 3. Let H1 and H2 be two connected graphs such
that |V(H1)|, |V(H2)|≥ 4. For α≥ 1,

F H1 Qα( )
H2   � 3 V H2( 



4
F H1(  + V H1( 


F H2(  + 6 V H2( 



2

E H2( 


M1 H1(  + 6 V H2( 




× E H1( 


M1 H2(  + 4 V H2( 



4
M2 H1(  +(α) V H2( 



4

M4 H1(  − F H1(  − 4M2 H1( 

+ 

u∈V H1( )


v∈NH1(u)

dH1
(u) dH1

(v) − 1 ⎛⎜⎜⎝ ⎞⎟⎟⎠ + 

uv∈E H1( )

dH1
(u)dH1

(v) dH1
(u)

+ dH1
(v) + 2(α − 1) V H2( 



3
F H1( .

(21)

Proof. Consider

F H1 Qα( )
H2   � 

z1 ,y1( ) z2 ,y2( )∈E H1
Qα( )

H2[ ] 

d z1, y1( 
2

+ d z2, y2( 
2

 

� 

z∈V H1( )



y1y2∈E H2( )

d z, y1( 
2

+ d z, y2( 
2

  + 

y∈V H2( )



z1z2∈E Qα H2( )( )

d z1, y( 
2

+ d z2, y( 
2

 

� 
A

+ 
B

.

(22)

Now,


A

� 

z∈V H1( )



y1y2∈E H2( )

dH1
(z) + dH2

y1(  
2

+ dH1
(z) + dH2

y2(  
2

 

� 

z∈V H1( )



y1y2∈E H2( )

2 V H2( 



2
dH1

(z)
2

+ dH2
y1( 

2
+ dH2

y2( 
2

  + 2dH1
(z) V H1( 


 dH2

y1(  + dH2
y2(   

� 

z∈V H1( )

E H2( ‖V H2( 


 ∣ 2 × 2dH1
(z)

2
+ F H2(  + 2 V H2( 


M1 H2( dH1

(z) 
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� 2 E H2( ‖V H2( 



2
M1 H1(  + V H1( 


F H2(  + 4 V H2( ‖E H1( 


M1 H2( ,


B

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )

d z1, y1( 
2

+ d z2, y2( 
2

 

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )z2∈V Qα H1( )( )−V H1( )

d z1, y1( 
2

+ d z2, y2( 
2

 

+ 

y∈V H2( )



z1z2∈E Qk H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y( 
2

+ d z2, y( 
2

 

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y1( 
2

+ d z2, y2( 
2

  � 
B1

+ 
B2

+ 
B3

. (23)

Now, we take


B1

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(  + dH2
y1(  

2
+ V H2( 



2
dQα H1( ) z2( 

2
 

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

V H2( 



2
dQα H1( ) z1( 

2
 + dH2

y1( 
2

+ 2 V H2( 


dQα H1( ) z1( dH2
y1( 

+ V H2( 



2
dQα H1( ) z2( 

2


� 

y1∈V H2( )



y2∈V H2( )



z1∈V H1( )

V H2( 



2
dQα H1( ) z1( 

2
+ dH2

y1( 
2

+ 2 V H2( 


dQα H1( ) z1( dH2
y1(  

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

V H2( 



2
dQα H1( ) z2( 

2
 

� V H2( 


F H1(  + 2 E H1( 


M1 H2(  + 4 E H2( 


M1 H1(  + V H2( 



2



y∈V H2( )

× 

z1z2∈E Qα H1( )( )z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

dQα H1( ) z2( 
2

 .

(24)

For z2 ∈ V(Qα(H1)) − V(H1) that is introduced into
the edges uv of (H1), we have
dQα(H1)(z2) � dH1

(u) + dH1
(v). (is gives



z1z2∈E Qα H1( )( )z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

dQα H1( ) z2( 
2

  � 2 

uv∈E H1( )

dH1
(u) + dH1

(v) 
2

� 2HM H1( .
(25)

So,
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B1

� V H2( 



4 2HM H1(  + F H1(   + 2 V H2( ‖E H1( 


M1 H2(  + 4 V H2( 



2

E H2( 


M1 H1( ,


B2

� 

y∈V H2( )



z1z2∈E Qα H1( )( )
z1 ,z2∈V Qα H1( )( )−V H1( )

V H2( 



2
d z1, y( 

2
+ V H2( 



2
d z2, y( 

2
 

� 

y∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

V H2( 



2
dQα H1( ) z1( 

2
+ V H2( 



2
dQα H1( ) z2( 

2
 

� 2(α − 1) V H2( 



2



y∈V H2( )



uv∈E H1( )

dH1
(u)

2
+ dH1

(v)
2

  � 2(α − 1) V H2( 



3
F H1( ,


B3

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1 ,z2∈V Qα H1( )( )−V H1( )

V H2( 



2
dQα H1( ) z1( 

2
+ V H2( 



2
dQα H1( ) z2( 

2
 

� (α) V H2( 



4



uv∈E H1( )
vw∈E H2( )

dH1
(u) + dH1

(v) 
2

+ dH1
(v) + dH1

(w)
2

 ,

(26)

where z1 and z2 are the nodes that are introduced into the
edge set of uv and vw of H1

� (α) V H2( 



4



u∈V H1( )

dH1
(v)

4
− dH1

(v)
3

+ 

v∈V H1( )

dH1
(v) − 1  

u∈V H1( )
uv∈E H1( )

dH1
(u)

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 2 

v∈V H1( )

dH1
(v) dH1

(v) − 1  

u∈V H1( )
uv∈E H1( )

dH1
(u)

� (α) V H2( 



4

M4 H1(  − F H1(  − 4M2 H1(  + 

u∈V H1( )


v∈NH1(u)

dH1
(u) dH1

(v) − 1 ⎛⎜⎜⎝ ⎞⎟⎟⎠

+ 

uv∈E H1( )

dH1
(u)dH1

(v) dH1
(u) + dH1

(v) 
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(27)

Consequently, we have obtained our required result. □ Theorem 4. Let H1 and H2 be two connected graphs such
that |V(H1)|, |V(H2)| ≥ 4. For α≥ 1,

HZ H1 Qα( )
H2   � α V H2( 



4

HZ L H1( (  + 8M1 L H1( ( + 8M1 H1(  − 16 E H1( 


 

+ 4(α − 1) V H2( 



3
HZ H1(  + 12 V H2( 



2

E H2( 


M1 H1(  + V H1( 


HZ H2( 

+ 10 ∣ V H2( ‖E H1( 


M1 H2(  + V H2( 



4 2HZ H1(  + 3F H1(  + 4M2 H1(  .

(28)
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Proof.

HZ H1 Qα( )
H2   � 

z1 ,y1( ) z2 ,y2( )∈E H1
Qα( )

H2[ ] 

d z1, y1(  + d z2, y2(  
2



z∈V H1( )



y1y2∈E H2( )

d z, y1(  + d z, y2(  
2

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )

d z1, y1(  + d z2, y2(  
2

� 
A

+ 
B

.

(29)

Now,


A

� 

z∈V H1( )



y1y2∈E H2( )

d z, y1(  + d z, y2(  
2

� 

z∈V H1( )



y1y2∈E H2( )

V H2( 


dQα H1( )(z) + dH2
y1(   + V H2( 


dQα H1( )(z) + dH2

y2(   
2

� 

z∈V H1( )



y1y2∈E H2( )

2 V H2( 


dQα H1( )(z) + dH2
y1(  + dH2

y2(  
2

� 

z∈V H1( )



y1y2∈E H2( )

4 V H2( 



2

dQα H1( )(z) 
2

 + dH2
y1(  

2
+ dH2

y2(  
2

+ 4 V H2( 


dQα H1( )(z)dH2
y1( 

+ 4 V H2( 


dQα H1( )(z)dH2
y2(  +2dH2

y1( dH2
y2( 

� 4 E H2( ‖V H2( 



2
M1 H1(  + V H1( 


HZ H2(  + 

z∈V H1( )



y1y2∈E H2( )

4dH1
(z) dH2

y1(  + dH2
y2(  

� 4 E H2( ‖V H2( 



2
M1 H1(  + V H1( 


HZ H2(  + 8 E H1( ‖V H2( 


M1 H2( ,


B

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )

d z1, y(  + d z2, y(  
2

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )z2∈V Qα H1( )( )−V H1( )

d z1, y1(  + d z2, y2(  
2

+ 

y∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y(  + d z2, y(  
2

+ 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

d z1, y1(  + d z2, y2(  
2

� 
B1

+ 
B2

+ 
B3

.

(30)
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Now, we take


B1

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )z2∈V Qα H1( )( )−V H1( )

d z1, y1(  + d z2, y2(  
2

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(  + dH2
y1(  + V H2( 


dQα H1( ) z2(  

2

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1∈V H1( )z2∈V Qα H1( )( )−V H1( )

V H2( 



2
dQα H1( ) z1( 

2
+ dH2

y1( 
2

 + V H2( 



2
dQα H1( ) z2( 

2

+ 2 V H2( 


dQα H1( ) z1( dH2
y1(  + 2 V H2( 


dH2

y1( dQα H1( ) z2(  +2 V H2( 



2
dQα H1( ) z1( dQα H1( ) z2( 

� V H2( 



4
F H1(  + 2 V H2( ‖E H1( 


M1 H2(  + 4 V H2( 



2

E H2( 


M1 H1(  + 

y1∈V H2( )



y2∈V H2( )

× 

z1z2∈E Qα H1( )( )z1∈V H1( )
z2∈V Qα H1( )( )−V H1( )

V H2( 



2
dQα H1( ) z2( 

2
+ 2 V H2( 



2
dH1

z1(  + 2 V H2( 



2
dQα H1( ) z1(  dQα H1( ) z2(  .

(31)

One can see that for a vertex z2 ∈ V(Qα(H1)) − V(H1),
dQα(H1)(z2) � dH1

(z) + dH1
(w), where z2 � xw ∈ E(H1).

(us,

� V H2( 



4
F H1( (  + 2 V H2( ‖E H1( 


M1 H2(  + 4 V H2( 



2

E H2( 


M1 H1(  + 

y1∈V H2( )



y2∈V H2( )

× 

z1z2∈E Qα H1( )( )z1
∈V H1( )z2∈V Qα H1( )( )−V H1( )

V H2( 



2

dH1
(z) + dH1

(w) 
2

+ 2 V H2( 



2

dH1
z1(  + dQα H1( ) z1(   dH1

(z) + dH1
(w)  

� V H2( 



4
F H1(  + 2 V H2( ‖E H1( 


M1 H2(  + 4 V H2( 



2

E H2( 


M1 H1( 

+ 2 V H2( 



4
HZ H1(  + 2 V H2( 



4

F H1(  + 2M2 H1( (  + 8 V H2( 



2

E H1( 


M1 H2( 

� 2 V H2( 



4
HZ H1(  + 3 V H2( 



4
F H1(  + 12 V H2( 



2

E H2( 


M1 H1( 

+ 2 V H2( ‖E H1( 


M1 H2(  + 4 V H2( 



4
M2 H1( ,


B2

� 

y∈V H2( )



z1z2∈E Qα H1( )( )
z1 ,z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(  + V H2( 


dQα H1( ) z2(  
2

� 4(α − 1) V H2( 



2



y∈V H2( )



uv∈E H1( )

dH1
(u) + dH1

(v) 
2

� 4(α − 1) V H2( 



3
HM H1( ,


B3

� 

y1∈V H2( )



y2∈V H2( )



z1z2∈E Qα H1( )( )
z1z2∈V Qα H1( )( )−V H1( )

V H2( 


dQα H1( ) z1(  + V H2( 


dQα H1( ) z2(  
2

� α V H2( 



4



uv∈E H1( )
vw∈E H2( )

dH1
(u) + dH1

(v) + dH1
(v) + dH1

(w) 
2
.

(32)
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Table 1: Pn[Pm].

[m, n] V E M1 M2 F(H) H(H)

(3,3) 9 24 276 764 1704 3232
(4,4) 16 60 968 3868 8280 16 016
(5,5) 25 120 2460 12 576 26 460 51 612
(6,6) 36 210 5196 32132 66 948 131 212
(7,7) 49 336 9716 70 276 145 488 286 040

Table 2: Pn(Qα )
[Pm].

[m, n, k] V E M1 M2 F(H) H(H)

(3,3,3) 27 189 6366 53 701 114 786 222188
(4,4,4) 64 944 69 024 1256160 2745 760 5258 080
(5,5,5) 125 3175 392 030 1.219 569 2 ×107 2.581 541 ×107 5.020 679 4 ×107
(6,6,6) 216 8424 1561 992 7.308 936 4 ×107 1.522 399 68 ×108 2.984186 96 ×108
(7,7,7) 343 19 061 4939 998 3.229 925 64 ×108 6.663 437 62 ×108 1.312 328 89 ×109

Table 3: Correlation coefficient between Pn(Qα )
[Pm] and Pn[Pm].

TI’s Value of R Relationship between X and Y

First Zagreb index 0.9756 Very strong direct relationship
Second Zagreb index 0.953 Very strong direct relationship
Forgotten Zagreb index 0.9123 Very strong direct relationship
Hyper Zagreb index 0.9736 Very strong direct relationship

Table 4: Square of correlation coefficient between Pn(Qα )
[Pm] and Pn[Pm].

TI’s Value of R2 Variability of Y is explained by X

First Zagreb index 0.9518 95.1 percent
Second Zagreb index 0.908 0 90.8 percent
Forgotten Zagreb index 0.832 3 83.23 percent
Hyper Zagreb index 0.947 8 94.78 percent

Correlation Coefficient

1 2 3 4 5 6

0.9944
0.9823

0.9756

0.953

0.9123

0.9736

Figure 5: Value of R for number of vertices, edges, first, second,
forgotten, and hyper Zagreb indices.

Square of Correlation Coefficient

1 2 3 4 5 6

0.9888
0.965

0.9518

0.9083

0.8323

0.9478

Figure 6: Value of R2 for number of vertices, edges, first, second,
forgotten, and hyper Zagreb indices.

Journal of Mathematics 13



W and X are the nodes of L(H1), so we have

� α V H2( 



4



WX∈E L H1( )( )

dL H1( )(W)
2

+ dL H1( )(X)
2



+16 + 2dL H1( )(W)dL H1( )(X) + 8dL H1( )(W) + 8dL H1( )(X)

� α V H2( 



4

HZ L H1( (  + 8M1 L H1( (  + 16
1
2
M1 H1(  − E H1(   ,


B3

� α V H2( 



4

HZ L H1( (  + 8M1 L H1( (  + 8M1 H1(  − 16E H1(  .

(33)

Consequently, the result is over. □

3. Applications and Conclusion

For any two simple path graphs Pn and Pm with n, m> 3, we
construct their lexicographic product graphs Pn[Pm] and
compute various degree-related TIs, as shown in Table 1
with certain values of m and n. Furthermore, we construct
Qα(Pn) by applying generalized line superposition operation
on Pn and then construct Qα-sum graph (Pn(Qα)

[Pm]) based
on lexicographic product of Qα(Pn) and Pm. Finally, we
compute certain degree-related TIs using (eorem
1–(eorem 4, as given in Table 2. We note that by the
addition of vertices α≥ 1, the values of obtained TIs are
increasing for the newly constructed graphs comparatively
to the graphs obtained by the ordinary lexicographic product
of graphs.

3.1. Linear Regression Model. To check the correlation be-
tween the predefined lexicographic product of two simple
graphs (Pn[Pm]) and newly defined Qα-sum graphs
(Pn(Qα)

[Pm]), we have made the linear regression model for
all the obtained indices as follows:

3.2. First Zagreb Index.

M1 Pn Pm (  � b0 + b1 M1 Pn Qα( )
Pm   , (34)

where Y= M1(Pn[Pm]) index values, b0 is the constant, b1 is
the regression coefficient, and X= M1(Pn(Qα)

[Pm]) index
values (see Tables 1 and 2).

Y � 1207.7339 + 0.001805X. (35)

3.3. Second Zagreb Index.

M2 Pn Pm (  � b0 + b1 M2 Pn Qα( )
Pm   , (36)

where Y= M2(Pn[Pm]) index values, b0 is the constant, b1 is
the regression coefficient, and X= M2(Pn(Qα)

[Pm]) index
values (see Tables 1 and 2).

Y � 1548.9242 + 0.00002654X. (37)

3.4. Forgotten Topological Index.

F Pn Pm (  � b0 + b1 F Pn Qα( )
Pm   , (38)

where Y= F(Pn[Pm]) index values, b0 is the constant, b1 is
the regression coefficient, and X= F(Pn(Qα)

[Pm]) index
values (see Tables 1 and 2).

Y � 11263.1338 + 0.00008912X. (39)

3.5. Hyper Zagreb Index.

HM Pn Pm (  � b0 + b1 HM Pn Qα( )
Pm   , (40)

where Y= HM(Pn[Pm]) index values, b0 is the constant, b1
is the regression coefficient, and X= HM(Pn(Qα)

[Pm]) index
values (see Tables 1 and 2).

Y � 30210.7664 + 0.0002023X. (41)

Now, we represent a tabular representation of the cor-
relation and square of correlation coefficient values related
to the TI’s of certain type of graphs Pn(Qα)

[Pm] and Pn[Pm]

(see Tables 3 and 4). (e highest value of R and R2 are
indicated in bold.

For more explanation, see the graphical representation
of correlation and square of correlation coefficient in Fig-
ures 5 and 6.

Data Availability
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For a graph G, its sum-connectivity index is denoted by χ(G) and is defined as the sum of the numbers (d u( ) + d v( ))
−1/2 over all

edges uv of G, where d(w) denotes the degree of a vertex w ∈ V(G). In this study, we find a sharp lower bound on the sum-
connectivity index of graphs having minimum degree of at least 3 under certain constraints and characterize the corresponding
extremal graphs.

1. Introduction

In chemical graph theory, graph invariants are usually
known as topological indices. Such indices play an impor-
tant role in the study of quantitative structure property
relationship (QSPR) and quantitative structure activity re-
lationship (QSAR). Information about several good studied
topological indices can be found in [1–7] and related ref-
erences listed therein.

-e well-known Randić-connectivity index (also known
as the product-connectivity index), proposed by Randić [8]
in 1975, is the most used topological index in QSPR and
QSAR, which is defined as [8]

R(G) � 
uv∈E(G)

(d u( )d v( ))
−1/2

. (1)

-e sum-connectivity index, a variant of the product-
connectivity index, of a graph G is defined as [9]

χ(G) � 
uv∈E(G)

(d u( ) + d v( ))
−1/2

. (2)

In the previous studies [10–12], the sum-connectivity
index of several graphs of molecules was calculated. In [13],
relation between the sum-connectivity index and average
distance was established. Extremal results concerning
minimum sum-connectivity index and matching number
were obtained in [14] for trees and connected unicyclic
graphs, in [15] for connected bicyclic graphs, and in [16] for
cacti. Results on trees with given matching number and
maximum sum-connectivity index were found in [17]. Some
mathematical aspects of χ index were studied in [9], par-
ticularly for the family of trees, which contains molecular
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trees representing acyclic hydrocarbons. More detail about
the χ index can be found in the recent survey [18] and recent
articles [19, 20]. In the present study, we obtained the
minimum general sum-connectivity index from the family
of all n-vertex (where n≥ 23) graphs having minimum de-
gree of at least 3 under certain constraints.

2. Main Results

Theorem 1. For n≥ 23, let G be an n-vertex graph with
minimum degree of at least 3, such that G satisfies the fol-
lowing two conditions:

(i) If G has a pair of adjacent vertices of degree 3, then
this pair of adjacent vertices has at most one common
neighbor

(ii) If G contains no pair of adjacent vertices of degree 3,
then G has a vertex of degree 3 whose all neighbors
form a triangle

>en, it holds that

χ(G)≥
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 , (3)

with the equality sign if and only if G � K3 + Kn−3.

3. Some Preliminaries Lemmas

In this section, some lemmas are given, which play a vital
role in proving the main result.

Lemma 1 (See [21]). If e ∈ E(G) is of maximal weight, then
χ(G)> χ(G − e).

Lemma 2. If x, y, z, w≥ 3, then the function f defined by

f(x, y, z, w) �
1

�����
x + 3

√ +
1

�����
y + 3

 +
1

�����
z + 3

√ +
1

�����
w + 3

√

−
1

�����
x + 4

√ −
1

�����
y + 4

 −
1

�����
z + 4

√ −
1

�����
w + 4

√ ,

(4)

is strictly decreasing in all x, y, z, and w on the interval
[3,∞).

Proof.

zf

zx
�

−1

2
�������

(x + 3)
3

 +
1

2
�������

(x + 4)
3

 < 0, (5)

shows that the function f is strictly decreasing in x. Because
of the symmetry, we also conclude that f is strictly de-
creasing in y, z, and w. □

Lemma 3. If n is an integer greater than 16, then the function
f defined by

f(n) �
3n − 8

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)

 +
1
�
6

√ ,

(6)

is positive valued.

Proof. Clearly,

3n − 5
�����
n + 1

√ −
3n − 5

�����
n + 2

√ > 0. (7)

Also,
3

�����
2n − 4

√ −
3

�����
2n − 2

√ > 0. (8)

So,
−3
�����
n + 1

√ +
1
�
6

√ > 0, (9)

for all n> 53.
From the above inequalities, we get that f(n)> 0 for all

n> 53.
If 17≤ n≤ 53, then f(n)> 0 by using Mathematica.

Hence, f(n)> 0 for all n≥ 17.
-is completes the proof of the lemma. □

Lemma 4. If n is an integer greater than 22, then the function
f defined by

f(x) �
1

�����
x + 3

√ −
2

�����
x + 4

√ +
x − 1

��������
x + n − 4

√

−
x − 1

��������
x + n − 3

√ ,wherex≥ 3,

(10)

is strictly increasing on the interval [3,∞).

Proof.

df

dx
�

−1

2
�������

(x + 3)
3

 +
1

�������

(x + 4)
3

 +
x + 2n − 7

2
����������

(x + n − 4)
3



−
x + 2n − 5

2
����������

(x + n − 3)
3

 .

(11)

For x≥ 3, it holds that

7
6

 
3/2
<(

�
2

√
)
2
, (12)

which together with inequality 1 + (1/x + 3)≤ 7/6 imply that

1 +
1

x + 3
 

3/2
≤

7
6

 
3/2
< 2, (13)

which further implies that
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2
(x + 4)

3/2 −
1

(x + 3)
3/2 > 0

or
1

(x + 4)
3/2 −

1
2(x + 3)

3/2 > 0.

(14)

Let

g(n) �
x + 2n − 7

2
����������

(x + n − 4)
3

 , (15)

then,

dg

dn
�

−2n + x + 5

4
����������

(x + n − 4)
5

 < 0, (16)

this shows that the function g is decreasing in n.
So,

x + 2n − 7

2
����������

(x + n − 4)
3

 −
x + 2n − 5

2
����������

(x + n − 3)
3

 > 0. (17)

Using these inequalities in the above equation, we get

df

dx
> 0. (18)

Hence, the function f is strictly increasing in x. □

Lemma 5. Let

f(n) �
3(n − 4)

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)

 +
2

�����
n − 1

√

−
2
�
n

√ +
3
�
6

√ −
2
�
7

√ .

(19)

If n is an integer greater than 13, then f(n)> 0.

Proof. Given,

f(n) �
3(n − 4)

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)

 +
2

�����
n − 1

√

−
2
�
n

√ +
3
�
6

√ −
2
�
7

√

>
3(n − 4)

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)



+
2

�����
n − 1

√ −
2
�
n

√ +
1
�
6

√ .

(20)

As

3(n − 3)
�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ > 0,

3
�������
2(n − 2)

 −
3

�������
2(n − 1)

 > 0,

(21)

also
2

�����
n − 1

√ −
2
�
n

√ > 0, (22)

the expression is
−3
�����
n + 1

√ +
1
�
6

√ > 0, (23)

for all n> 53.
From the above inequalities, we get that f(n)> 0 for all

n> 53.
If 14≤ n≤ 53, then f(n)> 0 by using Mathematica.

Hence, f(n)> 0 for all n≥ 14. □

Lemma 6. If n is an integer greater than 22, then the function
f defined by

f(x) �
1

�����
x + 3

√ −
2

�����
x + 4

√ +
x − 1

��������
x + n − 3

√

−
x − 1

��������
x + n − 2

√ ,wherex≥ 3,

(24)

is strictly increasing on the interval [3,∞).

Proof.

df

dx
�

−1

2
�������

(x + 3)
3

 +
1

�������

(x + 4)
3

 +
x + 2n − 5

2
����������

(x + n − 3)
3



−
x + 2n − 3

2
����������

(x + n − 2)
3

 .

(25)

For x≥ 3, it holds that

7
6

 
3/2
<(

�
2

√
)
2
, (26)

which together with inequality 1 + (1/x + 3)≤ 7/6 imply that

1 +
1

x + 3
 

3/2
≤

7
6

 
3/2
< 2, (27)

which further implies that
2

(x + 4)
3/2 −

1
(x + 3)

3/2 > 0

or
1

(x + 4)
3/2 −

1
2(x + 3)

3/2 > 0.

(28)

Let

Journal of Mathematics 3



g(n) �
x + 2n − 5

2
����������

(x + n − 3)
3

 . (29)

-en,

dg

dn
�

x − 2n + 3

4
����������

(x + n − 3)
5

 < 0. (30)

So,
x + 2n − 5

2
����������

(x + n − 3)
3

 −
x + 2n − 3

2
����������

(x + n − 2)
3

 > 0. (31)

Using these inequalities in the above equation, we get

df

dx
> 0. (32)

Hence, the function f is strictly increasing in x. □

Lemma 7. >e function f defined is by

f(n) �
3n − 14

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)



+
2
�
n

√ +
3
�
6

√ −
2
�
7

√ .

(33)

If n is an integer greater than 13, then f(n) is positive
valued.

Proof. Given,

f(n) �
3n − 14

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)



+
2
�
n

√ +
3
�
6

√ −
2
�
7

√

>
3n − 14

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)



+
2
�
n

√ +
1
�
6

√ .

(34)

As

3(n − 3)
�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ > 0,

3
�������
2(n − 2)

 −
3

�������
2(n − 1)

 > 0,

(35)

also
2
�
n

√ −
2

�����
n + 1

√ > 0, (36)

so,

−3
�����
n + 1

√ +
1
�
6

√ > 0, (37)

for all n> 53.
From the above inequalities, we get that f(n)> 0 for all

n> 53.
If 14≤ n≤ 53, then f(n)> 0 by using Mathematica.

Hence, f(n)> 0 for all n≥ 14. □

Lemma 8. If x≥ 3, y≥ 4, then the function f defined by

f(x, y) �
1

�����
x + y

√ −
1

��������
x + y − 1

 +
y − 1
�����
y + 3

 −
y − 2
�����
y + 2

 , (38)

is strictly increasing in x and strictly decreasing in y.

Proof.

zf

zx
�

−1

2
�������

(x + y)
3

 +
1

2
����������

(x + y − 1)
3

 > 0. (39)

Now,

zf

zy
�

y + 7

2
�������

(y + 3)
3

 −
y + 6

2
�������

(y + 2)
3

 +
1

����������

(x + y − 1)
3



−
1

2
�������

(x + y)
3

 ,

z
2
f

zx zy
�

−3

4
�����������

(x + y − 1)
5

 +
3

4
�������

(x + y)
5

 < 0.

(40)

So, we have

zf

zy
≤

zf(3, y)

zy
�

y + 6

2
�������

(y + 3)
3

 −
y + 5

2
�������

(y + 2)
3

 . (41)

Let

g(y) �
y + 6

2
�������

(y + 3)
3

 . (42)

-en,
dg

dy
�

−y − 12

4
�������

(y + 3)
5

 < 0, (43)

which shows that g is strictly decreasing in y.
So,

y + 6

2
�������

(y + 3)
3

 −
y + 5

2
�������

(y + 2)
3

 < 0. (44)

By using this inequality in the above expression, we get
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zf

zy
< 0. (45)

Hence, the function f is strictly decreasing in y. □

Lemma 9. Let

f(n) �
2(n − 5)

�����
n + 1

√ −
2(n − 4)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)

 +
1
�
6

√ .

(46)

If n is an integer greater than 9, then f(n)> 0.

Proof. As

2(n − 4)
�����
n + 1

√ −
2(n − 4)

�����
n + 2

√ > 0,

3
�������
2(n − 2)

 −
3

�������
2(n − 1)

 > 0,

(47)

so,
−2
�����
n + 1

√ +
1
�
6

√ > 0, (48)

for all n> 23.
From the above inequalities, we get that f(n)> 0 for all

n> 23.
If 10≤ n≤ 23, then f(n)> 0 by using Mathematica.
Hence, f(n)> 0 for all n≥ 10. □

Lemma 10. If x≥ 4, then the function f defined by

f(x) �
x

�����
x + 3

√ −
x − 1
�����
x + 2

√ , (49)

is strictly decreasing on the interval [4,∞).

Proof.

df

dx
�

x + 6

2
�������

(x + 3)
3

 −
x + 5

2
�������

(x + 2)
3

 . (50)

Let

g(x) �
x + 6

2
�������

(x + 3)
3

 . (51)

-en,

g′(x) �
−x − 12

4
�������

(x + 3)
5

 < 0. (52)

So,

x + 6

2
�������

(x + 3)
3

 −
x + 5

2
�������

(x + 2)
3

 < 0. (53)

Using this in the above equation, we get

df

dx
< 0. (54)

Hence, the function f is strictly decreasing in x. □

Lemma 11. If n is an integer greater than 9, then the function
f defined by

f(n) �
4n − 14

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 2)

 −
3

�������
2(n − 1)



−
n − 3

�
n

√ +
1
�
6

√ ,

(55)

is positive valued.

Proof. As
3(n − 3)

�����
n + 1

√ −
3(n − 3)

�����
n + 2

√ > 0,

3
�������
2(n − 2)

 −
3

�������
2(n − 1)

 > 0,

(56)

the expression is
n − 2
�����
n + 1

√ −
n − 3

�
n

√

�
�����
n + 1

√
−

�
n

√
+

3
�
n

√ −
3

�����
n + 1

√ > 0.

(57)

So,
−3
�����
n + 1

√ +
1
�
6

√ > 0, (58)

for all n> 53.
From the above inequalities, we get that f(n)> 0 for all

n> 53.
If 10≤ n≤ 53, then f(n)> 0 by using Mathematica.
Hence, f(n)> 0 for all n≥ 10. □

Lemma 12. If x, y, z≥ 4, then the function f defined by

f(x, y, z) �
x − 2
�����
x + 3

√ −
x − 3
�����
x + 2

√ +
1

�����
x + y

√ −
1

��������
x + y − 2



+
y − 2
�����
y + 3

 −
y − 3
�����
y + 2

 +
1

�����
y + z

√ −
1

��������
y + z − 2



+
z − 2
�����
z + 3

√ −
z − 3
�����
z + 2

√ +
1

�����
x + z

√ −
1

��������
x + z − 2

√ ,

(59)
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is decreasing in all x, y and z.

Proof.
zf

zx
�

x + 8

2
�������

(x + 3)
3

 −
x + 7

2
�������

(x + 2)
3

 −
1

2
�������

(x + y)
3

 −
1

2
�������

(x + z)
3



+
1

2
����������

(x + y − 2)
3

 +
1

2
����������

(x + z − 2)
3

 ,

(60)

which implies

z
2
f

zxzy
�

3

4
�������

(x + y)
5

 −
3

4
����������

(x + y − 2)
5

 < 0,

z
2
f

zxzz
�

3

4
�������

(x + z)
5

 −
3

4
����������

(x + z − 2)
5

 < 0.

(61)

Since z2f/zx zy< 0 and z2f/zx zz< 0, it holds that
zf

zx
≤

zf(x, 4, 4)

zx

�
x + 8

2
�������

(x + 3)
5

 −
x + 5

2
�������

(x + 2)
5

 −
1

�������

(x + 4)
3

 .

(62)

Let

F(x) �
x + 8

2
�������

(x + 3)
3

 −
x + 5

2
�������

(x + 2)
3

 −
1

�������

(x + 4)
3

 , (63)

where x≥ 4. We note that

F(x) � h(x + 1) − h(x) + g(x) − g(x + 1), (64)

where

h(x) �
x + 5

2
�������

(x + 2)
3

 ,

g(x) �
1

�������

(x + 3)
3

 .

(65)

-e functions h and g are continuous as well as dif-
ferentiable on the closed interval [xo, xo + 1] for every fixed
number xo ≥ 4.

By virtue of Cauchy’s mean value theorem, we observe
that for every xo, there exists a number cxo ∈ (xo, xo + 1),
such that

h xo + 1(  − h xo( 

g xo + 1(  − g xo( 
�

h′ cxo( 

g′ cxo( 

�
cxo + 3
cxo + 2

 

5/2
cxo + 11

6
 ,

(66)

which is greater than one, and hence,

F xo(  � h xo + 1(  − h xo(  + g xo(  − g xo + 1( < 0, (67)

because the function g is decreasing.
-erefore, for all x≥ 4, the function F(x) is negative

valued. Using F(x)< 0 in the above equation, we get

zf

zx
< 0. (68)

-is shows that the function f is decreasing in x.
By symmetry, it follows that

zf

zy
< 0,

zf

zz
< 0,

(69)

which means that the function f is decreasing in y and z.
Hence, the function f is decreasing in x, y, and z. □

4. Proof of Theorem 1

Proof. We will prove the result by induction on n. For
n � 23, by using the AutoGraphiX system [22], we find that
K3 + Kn−3 has the maximum χ value among all n-vertex
graphs having a minimum degree of at least 3, which implies
that the result is true for n � 23. Now, we suppose that the
theorem holds for all those k-vertex graphs which satisfy all
the constraints of the theorem, where 23≤ k≤ n − 1.

If minimum degree of G is at least 4, then we take
v1v2 ∈ E(G), such that d(v1) + d(v2)≤d(u) + d(v) for all
uv ∈ E(G). Clearly, the graph G − v1v2 has minimum degree
of at least 3, and from Lemma 1, it follows that
χ(G)> χ(G − v1v2). Hence, it is sufficient to assume that the
minimum degree of G is 3. Next, we consider all possible
cases.

Case 1:
G contains at least one pair of adjacent vertices having
degree 3 without common neighbors
Let u1, u2 ∈ V(G) be two adjacent vertices having de-
gree 3 without any common neighbor. Let v1 and v2 be
the neighbors of u1 different from u2, and w1, w2 be the
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neighbors of u2 different from u1. In this case, the
vertex degrees d(v1), d(v2), d(w1), and d(w2) satisfy
the inequality 3≤d(v1), d(v2), d(w1), d(w2)≤ n − 2. By

setting G1 � G − u1  + u2v1, u2v2  and then by using
Lemma 2, the inductive hypothesis, and Lemma 3, we
have

χ(G) � χ G1(  +
1

������������
d u1(  + d u2( 

 +
1

������������
d u1(  + d v1( 

 +
1

������������
d u1(  + d v2( 



+
1

������������
d u2(  + d w1( 

 −
1

���������������
d u2(  + 1 + d w1( 

 +
1

������������
d u2(  + d w2( 



−
1

���������������
d u2(  + 1 + d w2( 

 −
1

���������������
d u2(  + 1 + d v1( 

 −
1

���������������
d u2(  + 1 + d v2( 



� χ G1(  +
1
�
6

√ +
1

��������
3 + d v1( 

 +
1

��������
3 + d v2( 



+
1

���������
3 + d w1( 

 −
1

���������
4 + d w1( 

 +
1

���������
3 + d w2( 



−
1

���������
4 + d w2( 

 −
1

��������
4 + d v1( 

 −
1

��������
4 + d v2( 



≥
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 2)

 +
4

�����
n + 1

√ −
4

�����
n + 2

√ +
1
�
6

√

>
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 .

(70)

Case 2:
G contains at least one pair of adjacent vertices of
degree 3 with a common neighbor
Let u1, u2 ∈ V(G) be two adjacent vertices of degree 3
having a common neighbor v. Let v1 be the neighbor of
u1 different from u2, and v and w1 be the neighbors of
u2 different from u1, v.

Subcase i:
Let d(v) � 3, and there is an edge between v1 and v.
Clearly, it holds that 3≤d(v1)≤ n − 2 and
3≤d(w1)≤ n − 3. If we take G2 � G − u1  + u2v1,

w1v}, then by using Lemma 4, the inductive hy-
pothesis, and Lemma 5, we get

χ(G) � χ G2(  +
1

������������
d u1(  + d u2( 

 +
1

�����������
d u1(  + d(v)

 +
1

������������
d u1(  + d v1( 



−
1

������������
d u2(  + d v1( 

 −
1

��������������
d(v) + d w1(  + 1



+
1

������������
d u2(  + d w1( 

 −
1

���������������
d u2(  + d w1(  + 1
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+ 

z∈N w1( )∖ u2{ }

1
�����������
d(z) + d w1( 

 −
1

��������������
d(z) + d w1(  + 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≥ χ G2(  +
2
�
6

√ −
1

������������
3 + d w1(  + 1

 +
1

���������
3 + d w1( 



−
1

������������
3 + d w1(  + 1

 +
d w1(  − 1

������������
n − 4 + d w1( 

 −
d w1(  − 1

���������������
n − 4 + d w1(  + 1



≥ χ G2(  +
2

�����
n − 1

√ −
2
�
n

√ +
3
�
6

√ −
2
�
7

√

≥
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 2)

 +
2

�����
n − 1

√ −
2
�
n

√ +
3
�
6

√ −
2
�
7

√

>
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 .

(71)

Subcase ii:
Let d(v) � 3, and there is an no edge between v1 and v.
Clearly, it holds that 3≤ d(v1)≤ n − 3. If G3 � G−

u1  + u2v1, v1v , then by using Lemma 6, the in-
duction hypothesis, and Lemma 7, we obtained

χ(G) � χ G3(  +
1

������������
d u1(  + d u2( 

 +
1

�����������
d u1(  + d(v)

 +
1

������������
d u1(  + d v1( 



−
1

���������������
d u2(  + d v1(  + 1

 −
1

��������������
d(v) + d v1(  + 1



+ 

z∈N v1( )∖ u1{ }

1
�����������
d(z) + d v1( 

 −
1

��������������
d(z) + d v1(  + 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≥ χ G3(  +
2
�
6

√ +
1

��������
3 + d v1( 

 −
1

�����������
3 + d v1(  + 1



−
1

�����������
3 + d v1(  + 1

 +
d v1(  − 1

�����������
n − 3 + d v1( 

 −
d v1(  − 1

��������������
n − 3 + d v1(  + 1



≥ χ G3(  +
2
�
n

√ −
2

�����
n + 1

√ +
3
�
6

√ −
2
�
7

√

≥
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 2)

 +
2
�
n

√ −
2

�����
n + 1

√ +
3
�
6

√ −
2
�
7

√

>
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 .

(72)

Subcase iii:
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Let d(v)≥ 4, and there is an edge between v1 and v.
Clearly, it holds that 3≤d(v1)≤ n − 2. If we take

G4 � G − u1 + u2v1, then by using Lemma 8, the in-
ductive hypothesis, and Lemma 9, we have

χ(G) � χ G4(  +
1

������������
d u1(  + d u2( 

 +
1

�����������
d u1(  + d(v)

 +
1

������������
d u1(  + d v1( 

 −
1

������������
d u2(  + d v1( 



+
1

�����������
d u2(  + d(v)

 −
1

��������������
d u2(  + d(v) − 1

 +
1

�����������
d v1(  + d(v)

 −
1

��������������
d v1(  + d(v) − 1



+ 

z∈N(v)\ u1 ,v1 ,v2{ }

1
����������
d(v) + d(z)

 −
1

�������������
d(v) − 1 + d(z)

 

≥ χ G4(  +
1
�
6

√ +
2

�������
3 + d(v)

 −
1

����������
3 + d(v) − 1

 +
1

�����������
d v1(  + d(v)

 −
1

��������������
d v1(  + d(v) − 1



+
d(v) − 3

����������
d(v) + d(z)

 +
d(v) − 3

�������������
d(v) − 1 + d(z)



≥ χ G4(  +
n − 1
�����
n + 2

√ −
n − 2
�����
n + 1

√ +
1
�
6

√

≥
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 2)

 +
n − 1
�����
n + 2

√ −
n − 2
�����
n + 1

√ +
1
�
6

√

>
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 .

(73)

Subcase iv:
Let d(v)≥ 4, and there is no edge between v1 and v.
Clearly, it holds that 3≤d(v1)≤ n − 3. If we take

G5 � G − u1 + u2v1, then by using Lemma 10, the
inductive hypothesis, and Lemma 11, we get

χ(G) � χ G5(  +
1

������������
d u1(  + d u2( 

 +
1

������������
d u1(  + d v1( 

 +
1

�����������
d u1(  + d(v)

 −
1

������������
d u2(  + d v1( 

 +
1

�����������
d u2(  + d(v)

 −
1

��������������
d u2(  + d(v) − 1



+ 

z∈N(v)∖ u1 ,u2{ }

1
����������
d(v) + d(z)

 −
1

�������������
d(v) − 1 + d(z)

 

≥ χ G5(  +
1
�
6

√ +
2

�������
3 + d(v)

 −
1

����������
3 + d(v) − 1

 +
d(v) − 2

����������
d(v) + d(z)

 −
d(v) − 2

�������������
d(v) − 1 + d(z)



≥ χ G5(  +
n − 2
�����
n + 1

√ −
n − 3

�
n

√ +
1
�
6

√ ≥
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 2)

 +
n − 2
�����
n + 1

√ −
n − 3

�
n

√ +
1
�
6

√ .

>
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 .

(74)

Case 3:

Journal of Mathematics 9



G does not contain any pair of adjacent vertices of
degree 3
Let u ∈ V(G) be a vertex of degree 3 having neighbors
u1, u2, and u3, such that u1u2, u1u3, u2u3 ∈ E(G); then
clearly, d(u1), d(u2), d(u3)≥ 4. If we take G6 � G − u{ },

then by induction hypothesis and by using Lemma 12,
we have

χ(G) � χ G6(  +
1

�����������
d(u) + d u1( 

 +
1

�����������
d(u) + d u2( 

 +
1

�����������
d(u) + d u3( 



+
1

������������
d u1(  + d u2( 

 −
1

���������������
d u1(  + d u2(  − 2

 +
1

������������
d u1(  + d u3( 



−
1

���������������
d u1(  + d u3(  − 2

 +
1

������������
d u2(  + d u3( 

 −
1

���������������
d u2(  + d u3(  − 2



+ 

z∈N u1( )∖ u,u2 ,u3{ }

1
�����������
d u1(  + d(z)

 −
1

��������������
d u1(  − 1 + d(z)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ 

z∈N u2( )∖ u,u1 ,u3{ }

1
�����������
d u2(  + d(z)

 −
1

��������������
d u2(  − 1 + d(z)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ 

z∈N u3( )∖ u,u1 ,u2{ }

1
�����������
d u3(  + d(z)

 −
1

��������������
d u3(  − 1 + d(z)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≥ χ G6(  +
1

��������
3 + d u1( 

 +
1

��������
3 + d u2( 

 +
1

��������
3 + d u3( 



+
1

������������
d u1(  + d u2( 

 −
1

���������������
d u1(  + d u2(  − 2

 +
1

������������
d u1(  + d u3( 



−
1

���������������
d u1(  + d u3(  − 2

 +
1

������������
d u2(  + d u3( 

 −
1

���������������
d u2(  + d u3(  − 2



+
d u1(  − 3
��������
d u1(  + 3

 −
d u1(  − 3

�����������
d u1(  + 3 − 1

 +
d u2(  − 3
��������
d u2(  + 3



−
d u2(  − 3

�����������
d u2(  + 3 − 1

 +
d u3(  − 3
��������
d u3(  + 3

 −
d u3(  − 3

�����������
d u3(  + 3 − 1



≥ χ G6(  +
3(n − 3)

�����
n + 2

√ −
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 1)

 −
3

�������
2(n − 2)



≥
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 2)

 +
3(n − 3)

�����
n + 2

√ −
3(n − 4)

�����
n + 1

√ +
3

�������
2(n − 1)

 −
3

�������
2(n − 2)



�
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 .

(75)

We observe that the equation χ(G) �
3(n − 3)

�����
n + 2

√ +
3

�������
2(n − 1)

 , (76)
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holds if and only if

d u1(  � d u2(  � d u3(  � n − 1. (77)

-is completes the proof of -eorem 1. □

5. Concluding Remarks

We have characterized the minimum sum-connectivity
index from the family of all n-vertex graphs having mini-
mum degree at least 3, under certain constraints. More
precisely, we have been able to show that K3 + Kn−3 is the
only graph having minimal sum-connectivity index in the
family of all those n-vertex (where n≥ 23) graphs which have
a minimum degree of at least 3 and satisfy the following two
conditions:

(i) If G has a pair of adjacent vertices of degree 3, then
this pair of adjacent vertices has at most one com-
mon neighbor

(ii) If G contains no pair of adjacent vertices of degree 3,
then G has a vertex of degree 3 whose all neighbors
form a triangle.
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*e edgeH-irregularity strength, ehs(Γ, H), of a graph Γ is the smallest integer k, such that Γ has an H-irregular edge k-labeling. In
this study, we compute the exact value of edge H-irregularity strength of hexagonal and octagonal grid graphs.

1. Introduction

Let Γ be a connected graph. A mapping that assigns numbers
to graph elements (vertices and edges) is called labeling. A
graph labeling is called vertex labeling or edge labeling if its
domain set is the vertex set or the edge set of the graph,
respectively.*e concept of graph labeling plays an important
role to construct models for a wide range of engineering
applications such as coding theory, X-rays crystallography,
astronomy, radar, circuit design, wired communication, and
wireless communications. For further detail related to graph
labeling, refer to [1].

For an edge k-labeling ζ: E(Γ)⟶ 1,2, ... ,k{ }, k ∈Z+, the
corresponding weight of u ∈V(Γ) is wtζ(u) � uv∈E(Γ)ζ(uv).
*e edge k-labeling ζ is called irregular if wtζ(u)≠wtζ(v),
∀u≠v ∈V(Γ). *e irregularity strength of Γ, s(Γ), is the
minimum k ∈Z+, such that there exists an edge irregular
k-labeling of Γ. *e concept of the irregularity strength of a
graph was introduced by Chartrand et al. [2]. *ere has been a
flurry of research work on the irregularity strength in the last
few years [3–12].

A vertex k-labeling ζ∗: V(Γ)⟶ 1, 2, . . . , k{ } of Γ is called
an edge irregular k-labeling if for every two distinct edges uv and
u′v′,wtζ∗(uv)≠wtζ∗(u′v′), wherewtζ∗(uv) � ζ∗(u)+ ζ∗ (v).

*e edge irregularity strength of Γ, es(Γ), is the minimum k,
such that the graph Γ has an edge irregular k-labeling. *e
concept of the edge irregularity strength was given by Ahmad
et al. [13]. Ashraf et al. [14] have introduced two new graph
parameters, i.e., vertex (edge) H-irregularity strength of a graph.
*ese parameters are considered as extensions of the irregularity
strength and the edge irregularity strength of Γ.

A family H � Hi, 1≤ i≤ t  of subgraphs of a graph Γ,
such that each edge of Γ belonging to at least one member of
H is called an edge-covering of Γ. If every member of H is
isomorphic to a graph H, then Γ admits an H-covering. An
edge k-labeling ζ is called an H-irregular edge k-labeling of
the graph Γ that admits H-covering if for every two distinct
subgraphs H1 and H2, which are isomorphic to H,
wtζ(H1)≠wtζ(H2). *e edge H-irregularity strength of a
graph Γ, ehs(Γ, H), is the smallest integer k, such that Γ has
an H-irregular edge k-labeling.

In proving lower bound concerning a graph Γ admitting
H-covering, the following result is useful.

Theorem 1 (see [14]). Let Γ be a graph admitting H-covering
given by t subgraphs isomorphic to H. +en,
ehs(Γ, H)≥ ⌈1 + (t − 1/|E(H)|)⌉.
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In this study, we compute the exact values of the edge
H-irregularity strength of the hexagonal grid graph and
octagonal grid graph.

2. Motivation and Applications of
H-Covering of Graph

*e topic of H-covering of the graph is newly addressed by
Ashraf et al. in [14] and found the H-covering for different
graphs. Still now, the problem of H-covering was addressed
on grids by any author. As the topic is related to the net-
working and communication system, it is needed to work on
some networks. So, we choose these two graphs as these
graphs are related to network. *e H-covering has a wide
range of applications in X-rays, circuit design, and especially
in communication and networks. *e graphs studied in the
present study are hexagonal and octagonal grids. *ese
graphs consist of 6 and 8 vertices in each face of the graph,
and each face made a cycle consisting of 6 and 8 vertices and
edges as well. *ese graphs and their faces could be served as
models for surveillance or security systems, electrical
switchboards, circuit design, and communication networks.
*ese networks can be extended in both horizontal and
vertical directions, so that the extension in the graphs and
networks can be handled and made easy. Moreover, these
networks are used especially in communication networks,
and the efficiency of the networks may be improved as the
weights of the each face have distinct numbers.

3. Hexagonal Grid Graph

For finite r, s≥ 3, the hexagonal grid graph (honeycomb),
Hs

r, is a graph with s rows and r columns of hexagons [15].
*e vertex and the edge sets of this graph are defined as
V(Hs

r) � vi
j, ui

j; 1≤ i≤ s, 1≤ j≤ r ; E(Hs
r) � vi

ju
i
j, vi+1

j ui+1
j ;

1≤ i≤ s − 1, 1≤ j≤ r}∪ vi
ju

i
j+1, ui+1

j vi+1
j+1; 1≤ i≤ s − 1, 1≤ j ≤

r − 1}∪ ui
j vi+1

j ; 1≤ i≤ s − 1, 1≤ j≤ r}. *e face set of F(Hs
r)

consists of |F(Hs
r)| − 1 6-sided faces and one external face

which is infinite. Also, |V(Hs
r)| � 2rs − 2 and |E(Hs

r)| �

|V(Hs
r)| + s(r − 1), while |F(Hs

r)| � 4(r + s) − 9. For r, s≥ 3,
the hexagonal grid graph is shown in Figure 1.

In the following theorem, we determine the edge
H-irregularity strength of Hs

r, where r, s≥ 3 are finite.

Theorem 2. For hexagonal grid graph Hs
r, r, s≥ 3 admitting

an H-covering given by (r − 1)(s − 1) subgraphs isomorphic
to C6, ehs(Hs

r, C6) � ⌈1 + ((r − 1)(s − 1) − 1/6)⌉.

Proof. *e graphHs
r, r, s≥ 3 obviously admits aC6-covering

with exactly (r − 1)(s − 1) subcovers of C6. Set k � ⌈1+

((r − 1) (s − 1) − 1/6)⌉; then, k is the lower bound of
ehs(Hs

r, C6) by *eorem 1. Now, to prove the converse
inequality, we have to describe a C6− irregular edge k-la-
beling ζ: E(C6) ⟶ 1, 2, . . . , k{ } as follows:

Case 1: when s is odd,

ζ v
i
ju

i
j  � ζ v

i+1
j u

i+1
j  �

1, for i � 1; 1≤ j≤ r,

⌈j
2
⌉, for i � 2; 1≤ j≤ 2⌈i(r − 1) + 5

6
⌉,

⌈i(r − 1) + 5
6
⌉, for i � 2; 2⌈i(r − 1) + 5

6
⌉ + 1≤ j≤ r,

⌈(i − 1)(r − 1) + 5
6
⌉, for 3≤ i≤ s − 1; (i is odd), 1≤ j≤ r,

⌈i(r − 1) + 5
6
⌉, for 4≤ i≤ s − 1; (i is even), 1≤ j≤ r,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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i
j+1  � ζ u

i+1
j v

i+1
j+1  �

1, fori � 1; 1≤ j≤ r − 1, (j is odd),

2, fori � 1; 2≤ j≤ r − 1, (j is even),

⌈j
2
⌉, fori � 1; 1≤ j≤ 2⌈i(r − 1) + 5

6
⌉,

⌈(i + 1)(r − 1) + 5
6
⌉, fori � 2; 2⌈i(r − 1) + 5

6
⌉ + 1≤ j≤ r − 1,

⌈(i − 1)(r − 1) + 5
6
⌉, for3≤ i≤ s − 1; (i is odd), 1≤ j≤ r − 1,

j, fori � 4; 1≤ j≤⌈i(r − 1) + 5
6
⌉,

⌈i(r − 1) + 5
6
⌉, fori � 4;⌈i(r − 1) + 5

6
⌉ + 1≤ j≤ r − 1,

⌈i(r − 1) + 5
6
⌉, for6≤ i≤ s − 1; (i is even), 1≤ j≤ r − 1,
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(2)

ζ u
i
jv

i+1
j  �

1, fori � 1; 1≤ j≤ r,

⌊
r + 3 − 2⌈ i(r − 1) + 5/6 ⌉

2
⌋, fori � 2; for1≤ j≤ 2⌈

i(r − 1) + 5
6
⌉ +(j is odd),

⌈
r + 3 − 2⌈ i(r − 1) + 5/6 ⌉

2
⌉, fori � 2; for2≤ j≤ 2⌈

i(r − 1) + 5
6
⌉ +(j is even),

⌈
j − 2⌈ i(r − 1) + 5/6 ⌉

2
⌉ +⌊

r + 3 − 2⌈ i(r − 1) + 5/6 ⌉

2
⌋, fori � 2; for2⌈

i(r − 1) + 5
6
⌉ + 1≤ j≤ r, (j is odd),

⌈r + 3 − 2⌈
i(r − 1) + 5

2
⌉⌉ − ⌈

j − 2⌈i(r − 1) + 5/6⌉

2
⌉, fori � 2; for2⌈

i(r − 1) + 5
6
⌉ + 1≤ j≤ r, (j is even),

⌊
(i − 1)(r − 1) + 5 − 2⌈(i − 1)(r − 1) + 5/6⌉ − ⌈(i + 1)(r − 1) + 5/6⌉

2
⌋, fori � 3; for1≤ j≤ ⌈

(i + 1)(r − 1) + 5
6

⌉ + 1, (j is odd),

⌈
j − 1⌈ (i + 1)(r − 1) + 5/6 ⌉

2
⌉ +⌊

2(r − 1) + 6 − 2⌈(i − 1)(r − 1) + 5/6⌉ − ⌈(i + 1)(r − 1) + 5/6⌉

2
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(i + 1)(r − 1) + 5
6

⌉ + 2≤ j≤ r,

⌈
2(r − 1) + 5 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − ⌈ (i + 1)(r − 1) + 5/6 ⌉

2
⌉, fori � 3; for2≤ j≤ ⌈

(i + 1)(r − 1) + 5
6

⌉ + 1, (j is even),
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Figure 1: Hexagonal grid graph Hs
r.
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⌈
j − 1 − ⌈ (i + 1)(r − 1) + 5/6 ⌉

2
⌉ +⌈

2(r − 1) + 5 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − ⌈ (i + 1)(r − 1) + 5/6 ⌉

2
⌉, fori � 3; ⌈

(i + 1)(r − 1) + 5
6

⌉ + 2≤ j≤ r,

⌊
3(r − 1) + 5 − 3⌈ i(r − 1) + 5/6 ⌉

2
⌋, fori � 4; 1≤ j≤ ⌈

i(r − 1) + 5
6
⌉ + 1, (j is odd),

⌊
3(r − 1) + 5 − 3⌈ i(r − 1) + 5/6 ⌉

2
⌋ +⌈

j − 1 − ⌈ i(r − 1) + 5/6 ⌉

2
⌉, fori � 4; ⌈

i(r − 1) + 5
6
⌉ + 2≤ j≤ r,

⌊
3(r − 1) + 5 − 3⌈ i(r − 1) + 5/6 ⌉

2
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6
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Case 2: when s is even,
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⌈
i(r − 1) + 6 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ +⌈ r/14 ⌉

2
⌉, for(r is odd), i � 2; j � 1, 3,

⌈
i(r − 1) + 4 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − ⌊ r/12 ⌋ + 3⌈ r/13 ⌉

2
⌉, for(r is even), i � 4; j � 1, 3,

⌊
i(r − 1) + 9 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉

2
⌋, for(r � 3, 5), i � 4; j � 2,

⌊
i(r − 1) + 4 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ + 3⌈ r/14 ⌉

2
⌋, for(r is odd); r> 5, i � 4; j � 2,

⌈
i(r − 1) + 5 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ + 2⌈ r/13 ⌉ − ⌈ r/12 ⌉

2
⌉, for(r is even), i � 4; j � 2,

⌊
i(r − 1) + 9 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉

2
⌋ +⌈

j − 3
2

⌉, for(r � 5), i � 4; 4≤ j≤ r,

⌊
i(r − 1) + 4 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ + 3⌈ r/14 ⌉

2
⌋ +⌈

j − 3
2

⌉, for(r is odd); r≠ 5, i � 4; for4≤ j≤ r,

⌈
i(r − 1) + 6 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ +⌈ r/13 ⌉ − ⌈ r/12 ⌉

2
⌉ +⌈

j − 3
2

⌉, for(r is even), i � 4; for4≤ j≤ r, (j is even),

⌈
i(r − 1) + 4 − 3⌈ (i + 1)(r − 1) + 5/6 ⌉ − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ + 3⌈ r/13 ⌉

2
⌉ +⌈

j − 3
2

⌉, for(r is odd), i � 4; for5≤ j≤ r, (j is odd),

(i − 1)(r − 1) + 4 − 4⌈ i(r − 1) + 5/6 ⌉ + 4⌈ r/13 ⌉

2
, fori � 5; 1≤ j≤ 4,

(i − 1)(r − 1) + 4 − 4⌈ i(r − 1) + 5/6 ⌉ + 4⌈ r/13 ⌉ +⌈ j − 4/2 ⌉5

2
, fori � 5; 5≤ j≤ r,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(6)
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ζ u
i
jv

i+1
j  �

⌊
(i − 1)(r − 1) + 6 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 5⌈ r/13 ⌉

2
⌋ +⌈

j

2
⌉ − 1, for6≤ i≤ s − 1; (i is even); for1≤ j≤ r, (j is odd),

⌈
(i − 1)(r − 1) + 6 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 5⌈ r/13 ⌉

2
⌉ +⌈

j

2
⌉ − 1, for6≤ i≤ s − 1; (i is even); for1≤ j≤ r, (j is even),

(i − 1)(r − 1) − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 4⌈ r/13 ⌉

2
+⌈

j

2
⌉ − 1, forr� 3; 1≤ j≤ r; for7≤ i≤ s − 1, (i is odd),

(i − 1)(r − 1) + 6 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉

2
+⌈

j

2
⌉ − 1, for(r is odd), 3< r≤ 13; 1≤ j≤ r; for7≤ i≤ s − 1, (i is odd),

(i − 1)(r − 1) + 6 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 4⌈ r/14 ⌉

2
+⌈

j

2
⌉ − 1, forr� 15 + 6k, k≥ 0; 1≤ j≤ r; for7≤ i≤ s − 1, (i is odd),

(i − 1)(r − 1) + 8 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 4⌈ r/14 ⌉

2
+⌈

j

2
⌉ − 1, for(r is odd), r≥ 17; 1≤ j≤ r; for7≤ i≤ s − 1, (i is odd),

(i − 1)(r − 1) + 2 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 4⌈ r/14 ⌉

2
+⌈

j

2
⌉ − 1, forr � even(0mod 6); 1≤ j≤ r; for7≤ i≤ s − 1, (i is odd),

(i − 1)(r − 1) + 4 − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 4⌈ r/13 ⌉

2
+⌈

j

2
⌉ − 1, forr � even(2mod 6); 1≤ j≤ r; for7≤ i≤ s − 1, (i is odd),

(i − 1)(r − 1) − 2⌈ (i − 1)(r − 1) + 5/6 ⌉ − 2⌈ (i + 1)(r − 1) + 5/6 ⌉ + 4⌈ r/15 ⌉

2
+⌈

j

2
⌉ − 1, forr � even(4mod 6); 1≤ j≤ r; for7≤ i≤ s − 1, (i is odd).
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Figure 2 shows the weights of the edge C6-covering of the
hexagonal grid graph, and the formula for the weights of
the edge C6-covering is given as follows: wtζ

(C
(vi

j
ui

j
)(vi+1

j
ui+1

j
)(vi

j
ui

j+1)(ui+1
j

vi+1
j+1)(ui

j
vi+1

j
)

6 ) � 5 + (i − 1) (r − 1) + j,

1≤ i≤ s; 1≤ j≤ r. Observe that all the weights of subcovers
of C6 are distinct. Hence, ehs(Hs

r, C6) � ⌈1+ ((r − 1)

(s − 1) − 1/6)⌉, which completes the proof of this
theorem. □

4. Octagonal Grid Graph

For finite r, s≥ 3, the octagonal grid graph, Os
r, is a graph

with s rows and r columns of octagons [16]. *e vertex and
the edge sets of this graph are defined as V(Os

r) � vi
j, xi

j; for
1 ≤ i≤ s, 1≤ j≤ r}∪ ui

j, xi
j; 1≤ i≤ s − 1, 1≤ j≤ r ; E(Os

r) �

vi
ju

i
j, xi

j ui
j+1, wi+1

j vi+1
j , xi+1

j wi
j+1; 1≤ i≤ s − 1, 1≤ j ≤

r − 1}∪ ui
jw

i
j; 1≤ i≤ s − 1, 1≤ j≤ r ∪ vi

jx
i
j; for1≤ i≤ s,

≤ j≤ r − 1}. *e face set of F(Os
r) consists of |F(Os

r)| − 1
faces as 8-sided faces and one external face which is infinite.

Also, |V(Os
r)| � 4rs − 2(r + s) and |E(Os

r)| � |V (Os
r)| +

r(2s − 1) − 3s + 2, while |F(Os
r)| � (2r − 1)(2s − 1).

For r, s≥ 3, the octagonal grid graph is shown in Figure 3.
*e following result establishes the edge H-irregularity

strength of Os
r for 3≤ r≠ 12, 14≤ 15 and s≥ 3.

Theorem 3. Let Os
r be an octagonal grid graph admitting

C8-covering given by (r − 1)(s − 1) subgraphs isomorphic to
H; then, ehs(Os

r) � ⌈1 + ((r − 1)(s − 1) − 1/8)⌉.

Proof. It is clear that the graph Os
r for 3≤ r≤ 15 and s≥ 3

and r≠ 12, 14 admits C8-covering with exactly (r − 1)(s − 1)

subcovers of C8. Set k � ⌈1 + ((r − 1)(s − 1) − 1/8)⌉; then, k

is the lower bound of ehs(Os
r, C8) by *eorem 1. Now, to

prove the converse inequality, we have to describe a
C8− irregular edge k-labeling ζ: E(C8)⟶ 1, 2, . . . , k{ }

given as follows:

Case 1: when 3≤ r≤ 7 and s≥ 3, 1≤ i≤ s − 1; 1≤ j

≤ r − 1,

ζ v
i
ju

i
j  � ⌈

(r − 1)(i − 1) + j

8
⌉,

ζ x
i
ju

i
j+1  � ⌈

(r − 1)i − ⌈ r − 2/2 ⌉ + j

8
⌉,

ζ x
i+1
j w

i
j+1  � ⌈

(r − 1)i⌊ 5 − r/2 ⌋ + j

8
⌉,

(8)

ζ w
i
jv

i+1
j  �

⌈
(r − 1)(i − 1) + 1 + j

8
⌉, for(r � 4, 5, 6), 1≤ i≤ s − 1; 1≤ j≤ r − 1,

⌈
(r − 1)(i − 1) + 2 + j

8
⌉, for(r � 3, 7), 1≤ i≤ s − 1; 1≤ j≤ r − 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)
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i
jw

i
j  �

⌈
(r − 1)(i − 1) + 5 + j

8
⌉, for(r � 4, 5, 6, 7), 1≤ i≤ s − 1; 1≤ j≤ r,

⌈
(r − 1)i + 4

8
⌉, for(r � 3), 1≤ i≤ s − 1; 1≤ j≤ r,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)
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Figure 2: Labeling and weights of hexagonal grid graph H6
6.
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Figure 3: Octagonal grid graph Os
r.
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ζ v
i
jx

i
j  � ⌈

(r − 1)(i − 2) + 7 + j

8
⌉, for1≤ i≤ s; 1≤ j≤ r − 1. (11)

Case 2: when 8≤ r≤ 13, r≠ 12, 14 and s≥ 3, 1≤ i≤ s − 1;

1≤ j≤ r − 1,

ζ x
i
ju

i
j+1  � ⌈

(r − 1)(i − 1) + 3 + j

8
⌉,

ζ w
i
jv

i+1
j  � ⌈

(r − 1)(i − 1) + 2 + j

8
⌉,

ζ x
i+1
j w

i
j+1  � ⌈

(r − 1)(i − 1) + 4 + j

8
⌉,

(12)

ζ v
i
ju

i
j  �

⌈
(r − 1)(i − 1) + 1 + j

8
⌉, for(r � 8, 9, 10, 11), 1≤ i≤ s − 1; 1≤ j≤ r − 1,

⌈
(r − 1)(i − 1) + 2 + j

8
⌉, for(r � 13), 1≤ i≤ s − 1; 1≤ j≤ r − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

ζ u
i
jw

i+1
j  � ⌈

(r − 1)(i − 1) + 5 + j

8
⌉, for1≤ i≤ s − 1; 1≤ j≤ r, (14)

ζ v
i
jx

i+1
j  �

⌈
(r − 1)(i − 1) + j

8
⌉, for(r � 8), 1≤ i≤ s; 1≤ j≤ r − 1,

⌈
(r − 1)i − r + j

8
⌉ + 1, for(r � 9), 1≤ i≤ s, (i is odd); j � 1,

⌈
(r − 1)i − r + j

8
⌉, for(r � 9), 1≤ i≤ s, (i is odd); 2≤ j≤ r − 1,

⌈
(r − 1)i − r + j

8
⌉, for(r � 9), 1≤ i≤ s, (i is even); 1≤ j≤ r − 1,

⌈
(r − 1)i − r + j

8
⌉ − (− 1)

i
, for(r � 10, 11), 1≤ i≤ s; j � 1,

⌈
(r − 1)i − r + j

8
⌉, for(r � 10, 11), 1≤ i≤ s; 1≤ j≤ r − 1,

⌈
(r − 1)i − r + j

8
⌉ − (− 1)

i
, for(r � 13), 1≤ i≤ s; 1≤ j≤ 4,

⌈
(r − 1)i − r + j

8
⌉, for(r � 13), 1≤ i≤ s; 5≤ j≤ r − 1.
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Case 3: when r � 15 and s≥ 3, 1≤ i≤ s − 1; 1≤ j≤ r − 1,

ζ v
i
ju

i
j  � ⌈

(r − 1)(i − 1) + 1 + j

8
⌉,

ζ x
i
ju

i
j+1  � ⌈

(r − 1)(i − 1) + 3 + j

8
⌉,

ζ w
i
jv

i+1
j  � ⌈

(r − 1)(i − 1) + 4 + j

8
⌉,

(16)

ζ x
i+1
j w

i
j+1  � ⌈

(r − 1)(i − 1) + 5 + j

8
⌉, (17)

ζ u
i
jw

i
j  � ⌈

(r − 1)(i − 1) + 6 + j

8
⌉, for1≤ i≤ s; 1≤ j≤ r, (18)

ζ v
i
jx

i
j  �

⌈
(r − 1)(i − 1) − 4 + j

8
⌉ − (− 1)

i
, for1≤ i≤ s − 1; 1≤ j≤ 6,

⌈
(r − 1)(i − 1) − 4 + j

8
⌉, for1≤ i≤ s; 1≤ j≤ r − 1.
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(19)

Figure 4 shows the weights of the edge C8-covering of the
octagonal grid graph, and the formula for the weights of the
edge C8-covering is given as follows:

wtζ c
vi

j
ui

j  xi
j
ui

j+1  wi
j
vi+1

j  xi+1
j

wi
j+1  ui

j
wi

j  vi
j
xi

j 
8

⎛⎝ ⎞⎠

� 7 +(i − 1)(r − 1) + j, 1≤ i≤ s; 1≤ j≤ r − 1.

(20)

Observe that all the weights of subcovers of C8 are
distinct. Hence, ehs(Os

r, C8) � ⌈1 + ((r − 1)(s − 1) − 1/8)⌉,
which completes the proof of this theorem. □

5. Conclusion

In this study, we have determined the edge H-irregularity
strength for the hexagonal grid graphs Hs

r for r, s≥ 3 and the
octagonal grid graphs Os

r for r, s≥ 3. We have tried to find
the edge H-irregularity strength of octagonal grid graph Os

r

for r≥ 12 (r is even) and s≥ 17 (s is odd), but so far without
success. Hence, we conclude the study with the following
open problems.

Open Problem 1. Let Os
r be an octagonal grid graph ad-

mitting C8-covering. *en, ehs(Os
r, C8) � ⌈1 + ((r − 1)

(s − 1) − 1/8)⌉ for r> 12(r is even) and for r≥ 17(r is odd).
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Figure 4: Labeling and weights of octagonal grid graph O5
5.
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Open Problem 2. Let Os
r be an octagonal grid graph ad-

mitting C8-covering. *en, ehs(Os
r, C8) � ⌈1 + ((r − 1)

(s − 1) − 1/8)⌉ for r≥ 3, r≥ 3 for any choice of r and s.
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Resolving parameters are a fundamental area of combinatorics with applications not only to many branches of combinatorics but
also to other sciences. In this study, we construct a class of Toeplitz graphs and will be denoted by T2n(W) so that they are Cayley
graphs. First, we review some of the features of this class of graphs. In fact, this class of graphs is vertex transitive, and by
calculating the spectrum of the adjacency matrix related with them, we show that this class of graphs cannot be edge transitive.
Moreover, we show that this class of graphs cannot be distance regular, and because of the difficulty of the computing resolving
parameters of a class of graphs which are not distance regular, we regard this as justification for our focus on some resolving
parameters. In particular, we determine the minimal resolving set, doubly resolving set, and strong metric dimension for this class
of graphs.

1. Introduction

*e graphs in this paper are simple, undirected, and con-
nected. An automorphism of a graph Γ is a permutation φ of
the vertex set of Γ with the property that, for any vertices x

and y, we have x is adjacent to y in Γ if and only if φ(x) is
adjacent to φ(y) in Γ. *e set of all automorphisms of a
graph Γ, with the operation of composition of permutations,
is a permutation group on V(Γ) and a subgroup of the
symmetric group on V(Γ). *is is the automorphism group
of Γ, denoted by Aut(Γ). Suppose Γ1 and Γ2 are two graphs.
If there is a bijection, say φ, from V(Γ1) to V(Γ2) so that x is
adjacent to y in Γ1 if and only if φ(x) is adjacent to φ(y) in
Γ2, then we say that Γ1 is isomorphic to Γ2. If we consider a
graph Γ as a network, then the network stability is very
important to us, and especially, if graph Γ is vertex transitive,
that is, Aut(Γ) acts transitively on V(Γ), then the cost of
studying the network will be very low, and hence, the
network will be more stable. Consider a finite group G, and
suppose Q is a subset of G so that it is closed under taking
inverses and does not contain the identity; then, the Cayley
graph Γ � Cay(G, Q) has vertex set G and edge set
E(Γ) � x, y | x−1y ∈ Q . *us, the studying of Cayley

graphs is very useful because every Cayley graph is vertex
transitive [1]. *e distance between any pair u, v ∈ V(Γ) of
vertices of Γ is the length of geodesic between u and v,
denoted by dΓ(u, v) or simply d(u, v). A vertex x ∈ V(Γ) is
said to resolve a pair u, v ∈ V(Γ) if d(u, x)≠d(v, x). Re-
solving parameters are a fundamental area of combinatorics
with applications not only to many branches of combina-
torics but also to other sciences. For an arranged subset R �

r1, r2, ..., rm  of vertices in a connected graph Γ, the metric
representation of a vertex v in Γ is the m-vector r(v|R) �

(d(v, r1), d(v, r2), ..., d(v, rm)) relative to R. Also, the subset
R is considered as the resolving set for Γ if any pair of vertices
of Γ is distinguished by some vertices of R. A resolving set
with least number of vertices is referred as metric basis for Γ
and the cardinality of such resolving set is known as metric
dimension denoted by β(Γ). *e metric dimension of a
graph Γ is the least number of vertices in a set with the
property that the list of distances from any vertex to those in
the set uniquely identifies that vertex. *e concept of the
metric dimension in algebraic graph theory dates back to the
1970s. It was defined independently by Harary and Melter
[2] and by Slater [3]. In recent years, a considerable literature
has developed [4]. *is concept has different applications in
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the areas of network discovery and verification [5]. For more
details, see [6–9]. An (n x n) matrix T � (tij) is called a
Toeplitz matrix if tij � ti+1,j+1 for each i, j � 1, ..., n − 1, see
[10]. In fact, a Toeplitz matrix is a square matrix so that
entries in every diagonal parallel to the main diagonal are
equal, and hence, a Toeplitz matrix is determined by its first
row and column. A simple undirected graph Γ with vertex
set 1, ..., n{ } and its adjacency matrix T � (tij) is called a
Toeplitz graph if T is the Toeplitz matrix. In this paper, we
consider a class of Toeplitz graphs will be denoted by
T2n(W) so that they are Cayley graphs as follows.

Let n be a fixed even integer is greater than or equal 4;
also, let [2n] � 1, 2, ..., 2n{ } and [x2n] � x1, x2, ..., x2n  be
corresponding sets so that xi � i. Hence, we say that xi <xj if
i< j. Now, let W1 � x1, x3, ..., x2n−1  and W2 � xn  be
subsets of the set [x2n], and let W � W1 ∪W2 �

x1, x3, ..., xn, ..., x2n−1  be a refinement of union of the two
sets W1 and W2 so that 1 � x1 <x3 < ...<xn < ...< x2n−1. We
can see that a graph with 2n vertices so that the vertices are
labelled by the set 1, 2, ..., 2n{ } and the edge set:

ij| i, j ∈ [2n], |j − i| � xt for somext ∈W}, (1)

which is Toeplitz graph T2n(W). For more result of the
Toeplitz graphs, see [11, 12]. Figure 1 shows the Toeplitz
graph T8(1, 3, 4, 5, 7).

In particular, we can verify that the Toeplitz graph
T2n(W) which is defined already is isomorphic to the Cayley
graph Λ � Cay(D2n,Ψ), where

D2n � < a, b | a
n

� b
2

� 1, ba � a
n−1

b> (2)

is the dihedral group of order 2n, and Ψ � ab, a2b,

..., an−1b, b}∪ an/2  is an inverse closed subset of D2n − 1{ }.
*us, the Toeplitz graph T2n(W) is a vertex transitive. Also,
for convenience, we can use the symbols in the Cayley graph
Λ � Cay(D2n,Ψ), instead of the symbols in the Toeplitz
graph T2n(W). Some metrics for a class of distance regular
graphs is computed in [13, 14]. On the contrary, because of
the difficulty of the computing resolving parameters of a
class of graphs which are not distance regular, we regard this
as justification for our focus on some resolving parameters in
the Cayley graph Λ � Cay(D2n,Ψ). *e important results of
this study are presented in Sections 3.1 and 3.2. In Section
3.1, first, we will be determining the automorphism group of
the Cayley graph Λ � Cay(D2n,Ψ); also, we will show that
the Cayley graph Λ � Cay(D2n,Ψ) cannot be distance
regular. In particular, we will prove that the Cayley graph
Λ � Cay(D2n,Ψ) cannot be edge transitive. Moreover, in
Section 3.2, we will be computing some resolving parameters
for this class of Cayley graphs.

2. Definitions and Preliminaries

Definition 1 (see [15]). A graph Γ is edge transitive if its
automorphism group acts transitively on E(Γ).

Definition 2 (see [15]). A graph Γ is 1-transitive or symmetric
if its automorphism group acts transitively on the set of paths
of length 1 or 1-arcs.

Proposition 1 (see [15]). Let Γ be a symmetric graph of
valency k, and let λ be a simple eigenvalue of Γ; then, λ � ± k.

Definition 3 (see [16]). Suppose that Γ is a regular graph of
valency k and for any two vertices u and v in Γ; if d(u, v) � r,
then we have |Γr+1(v)∩ Γ1(u)| � br, and |Γr−1(v)∩ Γ1(u)| �

cr(0≤ r≤d). ;en, we say that Γ is a distance regular graph.

Proposition 2 (see [16]). If Γ is a distance regular graph with
diameter d, then Γ has exactly d + 1 distinct eigenvalues.

Definition 4 (see [17]). Suppose Γ is a graph of order at least
2; vertices x, y ∈ V(Γ) are said to doubly resolve vertices
u, v ∈ V(Γ) if d(u, x) − d(u, y)≠ d(v, x) − d(v, y). A set S �

s1, s2, ..., sl  of vertices of Γ is a doubly resolving set of Γ if
every two distinct vertices of Γ are doubly resolved by some two
vertices of S. A doubly resolving set with minimum cardinality
is called the minimal doubly resolving set. ;is minimum
cardinality is denoted by ψ(Γ).

Definition 5 (see [18]). Let Γ be a graph. A vertex w of Γ
strongly resolves two vertices u and v of Γ if u belongs to a
shortest v − w path or v belongs to a shortest u − w path. A set
S � s1, s2, ..., sm  of vertices of Γ is a strong resolving set of Γ if
every two distinct vertices of Γ are strongly resolved by some
vertex of S. ;e strong metric dimension of a graph Γ is the
cardinality of smallest strong resolving set of Γ and denoted by
s di m(Γ).

3. Main Results

3.1. Some of the Features of the Cayley Graph Cay(D2n,Ψ).
In this section, we review some of the features of the Cayley
graph Cay(D2n,Ψ). It is well known that the spectrum of a
graph is the spectrum of the adjacency matrix related with it,
that is, its set of eigenvalues together with their multiplicities.
If all the eigenvalues of the adjacency matrix of a graph are

4

3

21

8

7

6 5

Figure 1: *e Toeplitz graph T8(1, 3, 4, 5, 7).

2 Journal of Mathematics



integers, in this case, the graph related with it is called an
integral graph, see [19]. As we shall see, the theory of integral
graphs has connections to some parts of graph theory, edge
transitivity, and symmetric graph. In the next theorem, we
obtain the automorphism group of the Cayley graph
Cay(D2n,Ψ) by applications of wreath product in graph
theory; for more details of the wreath product, see [20].

Proposition 3. Let n be an even integer greater than or equal
4, and Λ � Cay(D2n,Ψ) be a Cayley graph on the dihedral
group D2n, where Ψ is defined already. If k � n/2 − 1, then
Aut(Λ) � Z2wrISym(k + 1)wrJSym(2), where
I � 1, ..., k + 1{ } and J � 1, 2{ }.

Proof. We can see that the complement of Λ, denoted by Λ,
is isomorphic to the disjoint union of 2 copies of cocktail
party graph CP(n/2), and we can show that CP(n/2) is
isomorphic to the Cay(Zn, Sk), where Zn is the cyclic group
of order n and Sk � 1, n − 1, 2, n − 2, ..., k, n − k{ }, see
Proposition 3.2 of [21]. Hence, given by the above discussion
and the theorem in [22], we have Aut (Λ) � Aut(CP(n/2))

wrISym(2) � Z2wrISym(k + 1))wrJSym(2). In particular,
we have Aut(Λ) � Aut(Λ) because a simple undirected
graph and its complement have the same automorphism
group. □

Proposition 4. Let n be an even integer greater than or equal
4, and Λ � Cay(D2n,Ψ) be a Cayley graph on the dihedral
group D2n, where Ψ is defined already; then, Λ cannot be a
distance regular graph.

Proof. It is not hard to see that the diameter ofΛ is 2 andΛ is
not a bipartite graph, because an/2 ∈ Ψ. Now, by a similar
way, which is done in proof of Proposition 11 in [23], we can
show that the adjacency matrix spectrum of Λ is
n + 1, 1 − n, 1(n−2), −1(n), where the superscripts give the
multiplicities of eigenvalues with multiplicity greater than
one. Hence, Λ has exactly four distinct eigenvalues.
Moreover, based on Proposition 2, we know that if Λ is a
distance regular graph with diameter d, then Λ has exactly
d + 1 distinct eigenvalues. *us, Λ cannot be a distance
regular graph. □

Proposition 5. Let n be an even integer greater than or equal
4 and Λ � Cay(D2n,Ψ) be a Cayley graph on the dihedral
group D2n, where Ψ is defined already; then, Λ cannot be an
edge transitive graph.

Proof. By contradiction, suppose Λ is an edge transitive
graph. It is well known that a connected graph that is edge
transitive and vertex transitive need not be 1-transitive. In
particular, in p.59, 7.53 of [24], Tutte proved that if a
connected graph, regular of odd valency, is both vertex and
edge transitive, then it is 1-transitive. *us, if Λ is a edge
transitive graph, then it must be Λ is a 1-transitive graph
because it is vertex transitive of odd valency n + 1. On the
contrary, based on Proposition 1, if λ is a simple eigenvalue
of a 1-transitive graph Λ, then λ � ± (n + 1), which is not

the case, see Proposition 4. *is contradiction shows that Λ
cannot be an edge transitive graph. □

3.2. Metric Dimension, Minimal Doubly Resolving set, and
Strong Resolving Set of the Cayley Graph Cay(D2n,Ψ)

Theorem 1. If n is an even integer greater than or equal 4 and
Λ � Cay(D2n,Ψ) is a Cayley graph on the dihedral group
D2n, where Ψ is defined already, then the metric dimension of
Λ is n.

Proof. Let V(Λ) � V1 ∪V2, where V1 � a, a2, ..., an  and
V2 � ab, a2b, ..., anb . For every pair of distinct vertices
x, y ∈ V(Λ), the length of a shortest path from x to y is
d(x, y) � 1 or 2 because the diameter of Λ is 2. In particular,
if R is an arranged subset of V1 or V2 in graph Λ such that
|R|≤ n, then we can show that R is not a resolving set of Λ.
Let R � R1 ∪R2 be an arranged subset of vertices in graph Λ
such that R1 is a subset of V1, R2 is a subset of V2, and
|R1 ∪R2| � n. In the following cases, we can be concluded
that the metric dimension of Λ is n.

Case 1: if |R1|≠ |R2|, then we can assume that
|R1|< |R2|. Hence, there is a pair of distinct vertices
u1, u2 ∈ V(Λ) − R, such that u1, u2 ∈ V1 − R1, and a
shortest path from u1 to u2 is d(u1, u2) � 1. *erefore,
the metric representation of the vertices
u1, u2 ∈ V(Λ) − R is the same as n-vector, relative to R.
*us, R is not a resolving set of Λ.
Case 2: if |R1| � |R2| and there are vertices x, y ∈ R1,
such that x is adjacent to y in Λ, then there are vertices
u, v ∈ V1 − R1 such that u is adjacent to v in Λ.
*erefore, the metric representation of the vertices
u, v ∈ V(Λ) − R is the same as n-vector, relative to R.
*us, R is not a resolving set of Λ.
Case 3: now, let |R1| � |R2|, and suppose that, for all the
vertices x, y inR1, we have x is not adjacent to y inΛ, that
is, d(x, y) � 2. Also, for all the vertices u, v in R2, we have
u is not adjacent to v in Λ, that is, d(u, v) � 2. We may
assume that R1 � a, a2, ..., an/2  and R2 � ab, a2b,

..., an/2b}. So, we can assume that an arranged subset R of
vertices in graph Λ is R � a, a2, ..., an/2; ab,

a2b, ..., an/2b}. Hence, V(Λ) − R � an+2i/2, ..., an; an+2i/2

b, ..., anb}, for 1≤ i≤ n/2.

*erefore, the metric representations of the vertices
a(n+2)/2, a(n+4)/2, ..., an; a(n+2)/2b, a(n+4)/2b, ..., anb ∈ V(Λ) − R

relative to R are the n-vectors:

r a
(n+2)/2

|R  � (1, 2, 2, ..., 2; 1, ..., 1), r a
(n+4)/2

|R 

� (2, 1, 2, ..., 2; 1, ..., 1), . . . , r a
n
|R( 

� (2, 2, ..., 1; 1, 1, ...1)

(3)

and r(a(n+2)/2b|R) � (1, ..., 1; 1, 2, 2, ..., 2), r(a(n+4)/2b|R)

� (1, ..., 1; 2, 1, 2, ..., 2),...,r(anb|R) � (1, 1, ...1; 2, 2, ..., 1).
*us, all the vertices in V(Λ) − R have different represen-
tations relative to R. *is implies that R is a resolving set of
Λ. □
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Theorem 2. If n is an even integer greater than or equal 4 and
Λ � Cay(D2n,Ψ) is a Cayley graph on the dihedral group
D2n, where Ψ is defined already, then the cardinality of
minimum doubly resolving set of Λ is n.

Proof. By the previous theorem, we know that the arranged
subset R � a, a2, ..., ; ab, a2b, ..., an/2b  of vertices in the
graph Λ is a resolving set for Λ. We show that the subset R is
a doubly resolving set of Λ. It is sufficient to show that, for
two vertices u and v in graph Λ, there are vertices x, y ∈ R

such that d(u, x) − d(u, y)≠ d(v, x) − d(v, y). Consider two
vertices u and v of Λ. By the following cases, we can be
concluded that the minimum cardinality of a doubly re-
solving set of Λ is n.

Case 1: consider a pair of distinct vertices u, v ∈ Λ such
that u, v ∈ R. *en, the length of a shortest path from u

to v is d(u, v) � 1 or 2. Let u an d v be two vertices in R

such that a shortest path from u to v in graph Λ is
d(u, v) � 1. We may assume that u � a and v � ab.
Hence, by taking x � a ∈ R and y � an/2 ∈ R, we have
−2 � 0 − 2 � d(u, x) − d(u, y)≠d (v, x) − d(v, y) �

1 − 1 � 0. *erefore, the vertices x and y of R doubly
resolve u, v. Now, let u, v be two vertices in R such that a
shortest path from u to v in graph Λ is d(u, v) � 2. We
may assume that u � a and v � an/2. Hence, by taking
x � a ∈ R and y � ab ∈ R, we have
−1 � 0 − 1 � d(u, x) − d(u, y)≠d(v, x)− d(v, y) � 2 −

1 � 1. *erefore, the vertices x and y of R doubly
resolve u, v.
Case 2: consider a pair of distinct vertices u, v ∈ Λ such
that u ∈ R and v ∉ R. *en, the length of a shortest path
from u to v is d(u, v) � 1 or 2. Suppose a pair of distinct
vertices u ∈ R and v ∉ R are adjacent in graphΛ, that is,
d(u, v) � 1. We may assume that u � a and v � an+2/2.
Hence, by taking x � a ∈ R and y � ab ∈ R, we have
−1 � 0 − 1 � d(u, x) − d(u, y)≠d (v, x) − d(v, y) �

1 − 1 � 0. *erefore, the vertices x and y of R doubly
resolve u, v. Now, suppose a pair of distinct vertices
u ∈ R and v ∉ R are not adjacent in graph Λ, that is,
d(u, v) � 2. We may assume that u � a and v � an.
Hence, by taking x � a ∈ R and y � ab ∈ R, we have
−1 � 0 − 1 � d(u, x) − d(u, y)≠d(v, x) − d

(v, y) � 2 − 1 � 1. *erefore, the vertices x and y of R

doubly resolve u, v.
Case 3: consider a pair of distinct vertices u, v ∈ Λ such
that u ∉ R and v ∉ R. *en, the length of a shortest path
from u to v is d(u, v) � 1 or 2. We can show that the
subset R of vertices in graph Λ is a doubly resolving set
of Λ. Because by *eorem 1, we can be concluded that
V(Λ) − R is also a resolving set of Λ. □

Lemma 1. If n is an even integer greater than or equal 4 and
Λ � Cay(D2n,Ψ) is a Cayley graph on the dihedral group
D2n, where Ψ is defined already, then the subset
R � a, a2, ..., an/2; ab, a2b, ..., an/2b  of vertices in graph Λ is
not a strong resolving set of Λ.

Proof. We know that the arranged subset
R � a, a2, ..., an/2; ab, a2b, ..., an/2b  of vertices in graphΛ is a
resolving set for Λ of size n. Now, let V(Λ) � V1 ∪V2, where
V1 � a, a2, ..., an , V2 � ab, a2b, ..., anb , and R � R1 ∪R2,
where R1 � a, a2, ..., an/2  is a subset of V1 and
R2 � ab, a2b, ..., an/2b  is a subset of V2. Consider two
vertices u, v in Λ such that u, v ∈ V1 − R1 and u is not ad-
jacent to v inΛ, that is, d(u, v) � 2. In the following cases, we
show that there is not w ∈ R such that w is strongly resolve
vertices u and v. For every vertex w ∈ R, we have w ∈ R1 or
w ∈ R2.

Case 1: ifw ∈ R1, then the length of a shortest path from
u to w is d(u, w) � 1 or 2 and length of a shortest path
from v tow is d(v, w) � 1 or 2. Note that, if d(u, w) � 1,
then d(v, w) � 2. *erefore, w is not strongly resolve
vertices u and v. In particular, if d(u, w) � 2, then
d(v, w) � 1 or 2, and hence, w is not strongly resolve
vertices u and v because d(u, v) � 2.
Case 2: ifw ∈ R2, then the length of a shortest path from
u to w is d(u, w) � 1 and length of a shortest path from
v to w is d(v, w) � 1. *erefore, w is not strongly re-
solve vertices u and v. □

Theorem 3. If n is an even integer greater than or equal 4 and
Λ � Cay(D2n,Ψ) is a Cayley graph on the dihedral group
D2n, where Ψ is defined already, then the strong metric di-
mension of Λ is 2n − 2.

Proof. Let V(Λ) � V1 ∪V2, where V1 � a, a2, ..., an  and
V2 � ab, a2b, ..., anb . It is not hard to see that if n≥ 4, then
the size of largest clique in the graph Λ is 4. Moreover, we
know that the subset N � an, an/2; anb, an/2b  of vertices in
Λ is a clique in the graph Λ. Now, let the subset S of vertices
in Λ be S � V(Λ) − N. In the following cases, we show that
the subset S of vertices in Λ is not a strong resolving set of Λ.

Case 1: let u � an and v � an/2. We know that d(u, v) �

1 and u, v ∈ V1, and hence, for every w ∈ S such that
w ∈ V2, we have d(u, w) � 1 and d(v, w) � 1. *us, w

is not strongly resolve vertices u and v.
Case 2: now, let u � an and v � an/2. We know that
d(u, v) � 1 and u, v ∈ V1, and hence, for every w ∈ S

such that w ∈ V1, we have d(u, w) � 2 and d(v, w) � 2.
*us, w is not strongly resolve vertices u and v.

*erefore, the subset S of the vertices in graph Λ is not a
strong resolving set of Λ. From the above cases, we can be
concluded that the minimum cardinality of a strong re-
solving set for Λ must be 2n − 2. □

4. Conclusion

Computing resolving parameters of a graph is an NP-hard
problem. In this study, we considered a class of Toeplitz
graphs and we denoted by T2n(W) so that they are iso-
morphic to the Cayley graph Λ � Cay(D2n,Ψ), which is
defined already. In fact, this class of graphs is vertex tran-
sitive, and by calculating the spectrum of the adjacency

4 Journal of Mathematics



matrix related with them, we showed that this class of graphs
cannot be edge transitive. Also, we proved that this class of
graphs cannot be distance regular, and because of the dif-
ficulty of the computing resolving parameters of a class of
graphs which are not distance regular, we regarded this as
justification for our focus on some resolving parameters. In
particular, we determined the minimal resolving set, doubly
resolving set, and strong metric dimension for this class of
graphs.
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'e first general Zagreb index Mc(G) or zeroth-order general Randić index of a graphG is defined asMc(G) � v∈Vd(v)c where c

is any nonzero real number, d(v) is the degree of the vertex v and c � 2 gives the classical first Zagreb index. 'e researchers
investigated some sharp upper and lower bounds on zeroth-order general Randić index (for c< 0) in terms of connectivity,
minimum degree, and independent number. In this paper, we put sharp upper bounds on the first general Zagreb index in terms of
independent number, minimum degree, and connectivity for c. Furthermore, extremal graphs are also investigated which attained
the upper bounds.

1. Introduction

Let G be a connected, simple, and finite graph with vertex set
V(G) and edge set E(G). 'e total number of elements in
V(G) is the order of the graph, and the number of edges
which are connected with vertex v is said to be the degree
d(v) of the vertex v. A vertex v is isolated if it has zero degree.
For nonadjacent vertices v and w, a vw-vertex cut is a subset
R⊆V(G)\ v, w{ } where v and w are from different compo-
nents of G − R and the smallest cardinality set of vertices
which separates v and w is minimal vertex cut. A subset
H⊆V(G) of nonadjacent vertices is called an independent
set, and the largest cardinality set among all independent sets
of G is the independent number. A set X⊆V is called clique if
all the vertices in X are adjacent. If a smallest set of vertices
V0 exists in a connected graph G whose deletion makes it
disconnect, then |V0| is said to be the vertex connectivity or
simple connectivity of G.

For a subset C⊆V(G), G[C] is an induced subgraph of G

whose vertices are from C and edges are with both ends in C.
A graph G is bipartite with Y1, Y2 ⊂ V(G) such that
Y1 ∩Y2 � Φ, Y1 ∪Y2 � V(G), and every edge connects a

vertex from Y1 to a vertex in Y2. A bipartite graph in which
each vertex of Y1 is connected with each vertex of Y2 by an
edge is called a complete bipartite graph. Let F1 and F2 be
two vertex disjoint graphs; then, F1 + F2 is a graph with the
vertex set V(F1)∪V(F2) and the edge set
E(F1)∪E(F2)∪ xy: x ∈ V(F1), y ∈ V(F2) .

A topological index is a number corresponding to a
molecule obtained from the molecular structure of the
molecule. 'is number helps to predict the chemical or
physical properties of that molecule. Due to strong appli-
cations in chemistry and pharmacy, hundreds of degree-
based topological indices have been introduced.

'efirst Zagreb index of a graphG,M1(G), is defined as [2]
M1(G) � 

v∈V(G)

d(v)
2
. (1)

'is old and useful topological index helped in obtaining
properties of the structure of molecules such as branching,
ZE-isomerism, complexity, heterosystems, π-electron en-
ergy, and many more [3, 4]. 'e concept of the first general
Zagreb index was introduced by Li and Zheng in [5], and it is
defined as
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M
c
(G) � 

v∈V(G)

d(v)
c
, (2)

where c is any nonzero real number. 'e first general
Zagreb index has grabbed attention of many chemists and
mathematicians. Liu and Liu discussed some properties of
Mc(G) in [6] related to different operations on graph such as
edge moving, edge separating, and edge switching. In [7], the
authors presented some inequalities involving different
graph parameters. In [8], the authors calculated the first
general Zagreb index of generalized F-sums graphs.We refer
the readers to [1, 9–14] for further study about this topo-
logical index.

First, we present an auxiliary lemma which is a direct
consequence of the definition of the first general Zagreb
index [15].

Lemma 1. Let x and y be two nonadjacent vertices of G; then,
for c> 0, we have

M
c
(G)<M

c
(G + xy). (3)

2. Graphs with Given Connectivity and
Minimum Degree

In this section, we provide an upper bound on the first
general Zagreb index in terms of order, vertex connectivity,
and minimum degree. Let Θ(n, t, δ) be the set of all graphs
on n vertices, t vertex connectivity, and δ minimum degree,
where 1≤ t≤ δ ≤ n and δ ≥ 2.

Theorem 2. Let G ∈ Θ(n, t, δ) and t≤ δ ≤ n − 1, and for
c> 1, we have

M
c
(G)≤ t(n − 1)

c
+(δ − t + 1)(δ)

c

+(n − δ − 1)(n + t − δ − 2)
c
,

(4)

and the equality holds if and only if
G � Kt + (Kδ− t+1 ∪Kn− δ− 1).

Proof. For n � t + 1, we have t � δ � n − 1; in other words,
Θ(n, t, δ) � Kt+1 . Suppose that n≥ t + 2 and let K be the
graph in Θ(n, t, δ) with the maximum first general Zagreb
index for c> 1. Let C ⊂ V(K) be the vertex cut with car-
dinality t. We will prove our result by proving the following
claims.

Claim I. K − C consists of exactly two components. □

Proof. On the contrary, suppose that K − C consists of at
least three components. S1 and S2 are two components of
K − C; then, there will be x ∈ V(S1) and y ∈ V(S2) such that
K + xy ∈ Θ(n, t, δ) which is against the assumption of K

because of Lemma 1. 'is completes the proof of Claim I.
Now assume that |V(S1)| � n1 and V|(S2)| � n2. Clearly,

δ ≤ d(x)≤ n1 + t − 1 and δ ≤ d(y)≤ n2 + t − 1 where
n1, n2 ≥ δ − t + 1.

Claim II. K[C∪V(S1)] and K[C∪V(S2)] are
cliques. □

Proof. On the contrary, suppose that K[C∪V(S1)] is not a
clique. 'en, we have two cases. □

Case 1. 'ere are nonadjacent vertices u, v ∈ C∪V(S1)

such that K + uv ∈ Θ(n, t, δ), which contradicts the as-
sumption of K because of Lemma 1, and we have
Mc(K)<Mc(K + uv).

Case 2. Otherwise, joining nonadjacent vertices in K will
increase the minimum degree of G. 'en, from the proof of
Claim III, we have

M
c
(K)<M

c
Kδ(  + Kn1

∪Kn2
 ≤M

c
Kt + Kδ− t+1 ∪Kn− t− 1( ( ,

(5)

which again contradicts that K has the maximal first general
Zagreb index because Kt + (Kδ− t+1 ∪Kn− t− 1) ∈ Θ(n, t, δ).
'is completes the proof of Claim II.

From Claim II, for n1, n2 ≥ 1 and n1 + n2, we suppose that
K � Kt + (Kn1

∪Kn2
).

Let ϕ(x) � x(x + t)c − (x + 1)(x + t + 1)c; then,
ϕ′(x) � (x + t)c− 1(x + xc + t) − (x + t + 1)c− 1(xc + x +

c + t + 1)< 0 for c> 1.'is implies that ϕ(x) is a decreasing
function.

Claim III. We have n1 � δ − t + 1 or n2 � δ − t + 1.

Proof. On the contrary, suppose that n1 ≥ n2 > δ − t + 1; then,
we have M

c
(Kt + (Kn1

∪K n2
)) − M

c
(Kt + (Kn1+1

∪Kn2− 1)) � n1 (n1 + t)
c

+ n2(n2 + t)
c
− (n1 + 1)(n1+

t + 1)c − (n2 − 1)(n2 + t − 1)
c < 0. 'e last inequality is due to

the fact that ϕ(x) is a decreasing function for c> 1 and
n1 > n2 − 1. 'is implies that Mc(Kt + (Kn1

∪Kn2
))<

Mc(Kt + (Kδ− t+1 ∪Kn− δ− 1)) if n1, n2 > min δ − t + 1,{

n − t − 1}. 'is completes the proof of Claim III.
From Claims I, II, and III, we deduce that

K � Kt + (Kδ− t+1 ∪Kn− δ− 1), which proves the theorem. □

3. Bipartite Graphs with Given Connectivity

Let Υ(n, t) denote the set of bipartite graphs of order n and
vertex connectivity t. Nowwe introduce a graphKx

n obtained
from the graph Kx,n− x− 1 by joining a new vertex u to t

vertices of degree x of Kx,n− x− 1.

Theorem 3. LetG ∈ Υ(n, t) and 1≤ t≤ n − 1.2en, for c> 1,

M
c
(G)≤max φ(a),φ(b)  (6)

and the equality holds if and only if either G � Ka
n or G � Kb

n,
where

φ(x) � t
c

+ t(x + 1)
c

+(n − x − 1 − t)x
c

+ x(n − x − 1)
c
,

a �
(n − 1)

2
− 2(t + 1)

2n
 ,

b �
(n − 1)

2
− 2(t + 1)

2n
 .

(7)
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Proof. Note that Υ(n, 1) � K1,n− 1 , so we consider
1< t≤ n/2. Let K ∈ Υ(n, t) be the graph with the maximum
first general Zagreb index having a t-vertex cut set C. Let
X, Y ⊂ V(K) such that X∪Y � V(K). Furthermore, we
have CX � C∩X and CY � C∩Y. 'e required result is
obtained by proving the following claims.

Claim I.K[C] and K[C∪C1] are complete bipartite
graphs, where C1 is one of the components in K − C. □

Proof. Suppose on the contrary that K[C] or K[C ∪C1] is
not a complete bipartite graph. 'en, there are two non-
adjacent vertices x, y in K and K + xy ∈ Υ(n, t). From
Lemma 1, we know that Mc(K)<Mc(K + xy) which is
against the maximality of K. Hence, K[C] and K[C∪C1] are
complete bipartite graphs.

Claim II. If CX and CY are nonempty subsets of K, then
K − C has exactly two components. □

Proof. K − C has at least three components and C2 and C3
are two of these components. 'en, there are two vertices
x ∈ V(C2)∩X, y ∈ V(C3)∩Y such that K + xy ∈ Υ(n, t)

withC being a t-vertex cut ofK + xy. By Lemma 1, we have a
contradiction that K has the maximum first general Zagreb
index.

Claim III. Either CX is empty or CY is empty. □

Proof. On the contrary, suppose that SX and SY are non-
empty sets; then, by Claim II, K − C has exactly two com-
ponents named C2 and C3. Let x ∈ V(C2)∩X and
y ∈ V(C3)∩X. Assume that a � d(x)≥ d(y) � b> 0 and
|NC3

(y)| � c> 0.

(i) Now we construct a new graph G∗ from K as
G∗ � K − zy: z ∈ NC2

(y)  + zx: z ∈ NC2
(y) . By

the definition of the first general Zagreb index, we
have Mc(G∗) − Mc(K) � (a + c) c + (b − x)c − ac−

bc > 0, and the last inequality can be seen by con-
sidering the function ϕ(x) � (x + c)c − xc. ϕ(x) is
an increasing function for x> 0 and c> 1, and we
have a> b − c; this implies that ϕ(a)>ϕ(b − c).

(ii) Let |CY| � t and consider arbitrary vertices
z1, z2, . . . , zt− l ∈ Y − C. Now we construct a new
graph G∗∗ from G1 by adding more edges between
the vertices of X − y and Y and adding further edges
yz1, yz2, . . . , yzt− l. Clearly, NG2

(y) is the vertex cut
with cardinality t; in other words, G∗∗ ∈ Υ(n, t).
From Lemma 1 and (i) of Claim III, we have
Mc(G∗∗)>Mc(K), which is a contradiction.

From above claim, we deduce that C ⊂ X is the t-vertex
cut of K.

Claim IV. K − C consists of an isolated vertex. □

Proof. On the contrary, suppose that the components
C2, C3 of K − C are complete bipartite graphs. Also, suppose
that V(C1) � X1 ∪Y1 and V(C2) � X2 ∪Y2, where
Xi ⊂ X, Yi ⊂ Y for i � 1, 2.

Without loss of generality, suppose that C ⊂ X and
y ∈ Y1. Construct a new graph H from K as

H � K − yz: z ∈ X1  + xz: x ∈ X − C, z ∈ B − y,

xz ∉ E(K)}. 'is implies that C is also a t-vertex cut of H

and H ∈ Υ(n, t). Similar to Claim III (i), we have
Mc(H) − Mc(K)> 0, which is against the maximality of the
first general Zagreb index of K.

By definition of the first general Zagreb index, we have

M
c

K
a
n(  � t

c
+ t(a + 1)

c
+(n − a − 1 − t)a

c
+ a(n − a − 1)

c
.

(8)

□

4. Graphs with Given Connectivity and
Independent Number

Let λ(n, t, a) be the set of graphs of order n, vertex con-
nectivity t, and independent number a. In this section, we
investigate the graph which gives the maximum general first
Zagreb index from λ(n, t, a).

Theorem 4. Let G ∈ λ(n, t, a) with a≥ 1 and 1≤ t≤ n − 1.
2en, for c≥ 1, we have

M
c
(G)≤ (n − t − a)(n − 2)

c
+(a − 1)(n − a)

c
+ t(n − 1)

c
+ t

c

(9)

and the equality holds if and only if
G � Kt + (K1 ∪ (Kn− t− a + (a − 1)K1)).

Proof. For a � 2, this result has been discussed in [16]. So,
we assume that 2< a≤ n − 1, and let K be the graph with the
maximum first general Zagreb index in λ(n, t, a) and C, D be
the t-vertex cut and maximum independent sets of K, re-
spectively. 'e following claims will prove our main result.

Claim I. Let C1 be one component of K − C, |V(C1)| �

p, |V(C1) − D| � q and |C − D| � r; then, we have K[C1] �

Kq + (r − pK1), K[C] � Kr + (t − r)K1 and K[C∪V

(C1)] � Kq+r ∪ (t + p − q − r)K1. □

Proof. As K has the maximum first general Zagreb index
and by Lemma 1, we have K � K[C] + K[V(G) − C]. On the
contrary, suppose that K[C1]≠Kq + (r − q)K1; this implies
that we have vertices x, y ∈ V(C1) − D and z ∈ V(C1)∩D

such that xy ∉ E(K) or xz ∉ E(K). Furthermore, one can
notice thatK + xy, K + xz ∈ λ(n, t, a). By Lemma 1, we have
a contradiction of the choice of K, which proves the claim.

Claim II. K − C contains exactly two components. □

Proof. On the contrary, suppose that K − C contains at least
three components, and two of them are named as C2 and C3.
Let x ∈ V(C1) − D, y ∈ V(C2) − D. 'en, K + xy ∈ λ
(n, t, r), and we have a contradiction on the maximality of K

by Lemma 1.
Claim III. If |V(C2)|≥ |V(C3)|, then |V(C3)| � 1. □

Proof. of Claim III. On the contrary, we suppose
|V(C3)|≥ 2. Furthermore, if V(C3) − D � ϕ, then |V(C3)| �

1 as C3 is a connected component. Suppose that
V(C3) − D≠ϕ; then, V(C3) − D≠ϕ. Otherwise,
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V(C3)∩D � ϕ, and choosing x ∈ V(C3), we have that
D∪ x{ } is an independent set which is a contradiction to the
definition of D.

Let w ∈ V(C3)∩D, and we construct a new graph H as
H � K − xw: x ∈ V(C2) − D  + xy: x ∈ V

(C2) − w{ }, y ∈ V(C2)}. Clearly, D is the maximal inde-
pendent set, and C is the minimal vertex cut set of K;
H ∈ λ(n, t, a).

Let x ∈ V(K) − C − w{ } and w ∈ V(C2) − D; then we
have dK(x)<dH(x). By applying the definition of Mc on K

and H, we obtain Mc(K) − Mc(H)<dH(w)c + dH(v)c −

dK(w)c − dK(v)c < 0 which is against the choice of K.
From Claims I, II, and III, we have

K ∈ G∗: G∗ � (Kn− a+

(a − 1)K1)∪ w{ }∪ z − iw: zi ∈ C, i � 1, 2, . . . , t }, where w

is an isolated vertex of K − C. Let |C∩D| � p; then,

M
c

G
∗

(  � p(n − a + 1)
c

+(a − p − 1)(n − a)
c

+(t − p)(n − 1)
c

+(n − a − t + p)(n − 2)
c

+ t
c
,

� (a − 1)(n − a)
c

+(n − a)(n − 2)
c

+ t
c

+ t (n − 1)
c

− (n − 2)
c

  + p (n − a + 1)
c

− (n − a)
c

− (n − 1)
c

+(n − 2)
c

 .

(10)

Let A � [(n − a + 1)c − (n − a)c − (n − 1)c + (n − 2)c].
Consider the function g(x) � (n − x + 1)c − (n − x)c for
x≥ 1. As g′(x)< 0, g(x) is a decreasing function for c> 1.
'is implies that A≤ nc − 2(n − 1)c + (n − 2)c < 0, and the
last inequality is due to Jensen’s inequality. Hence, (1) attains
its maximum value for p � 0; in other words, for
K � Kt + (K1 ∪ (Kn− t− 1 + (a − 1)K1)), the first general
Zagreb index attains its maximum value for c> 1. □
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A radio mean square labeling of a connected graph is motivated by the channel assignment problem for radio transmitters to avoid
interference of signals sent by transmitters. It is an injective map h from the set of vertices of the graph G to the set of positive
integers N, such that for any two distinct vertices x, y, the inequality d(x, y) + (h(x))2 + (h(y))2/2 ≥ dim(G) + 1 holds. For a
particular radio mean square labeling h, the maximum number of h(v) taken over all vertices of G is called its spam, denoted by
rmsn(h), and the minimum value of rmsn(h) taking over all radio mean square labeling h of G is called the radio mean square
number of G, denoted by rmsn(G). In this study, we investigate the radio mean square numbers rmsn(Pn) and rmsn(Cn) for path
and cycle, respectively. #en, we present an approximate algorithm to determine rmsn(G) for graph G. Finally, a new
mathematical model to find the upper bound of rmsn(G) for graph G is introduced. A comparison between the proposed
approximate algorithm and the proposed mathematical model is given. We also show that the computational results and their
analysis prove that the proposed approximate algorithm overcomes the integer linear programming model (ILPM) according to
the radio mean square number. On the other hand, the proposed ILPM outperforms the proposed approximate algorithm
according to the running time.

1. Introduction

In wireless networks, each radio station assigns a number
called frequency. When different transmitters of district
stations send signals, the receiver might get unnecessarily
interference of the signals sent by transmitters in particular
with close frequencies. #is is the channel assignment
problem introduced by Hale [1] in 1980 to minimize such
interference. In 2001, Chartrand et al. [2] proposed con-
verting this problem to graph theoretical problem using
vertex labeling. Many researchers involved with this prob-
lem [3–16] and produced different methods to minimize the
interference of signals [7]. Recently, Ramesh et al. [8]
proposed a new method called radio mean square labeling,
which is defined as follows. A radiomean square labeling of a

connected graph G is an injective function h from its vertex
set V to the set of natural numbers N, such that for any two
distinct vertices x and y, (h(x))2 + (h(y))2/2 ≥ diamG +

1 − d(x, y) holds, where d(x, y) denotes the distance be-
tween the two vertices, and dimG represents the diameter of
the graph [8]. For a radio mean square labeling h, the
maximum number of h(v) taken over all vertices of G is
called its spam, denoted by rsmn(h), and the minimum
value of rmsn(h) taking over all radio mean square labeling
h of G is called the radio mean square number of G, denoted
as rmsn(G). #e radio mean square number of h, denoted by
rmsn(h) is the maximum number assigned to any vertex of
G. Ramesh et al. [8] determined the radio mean square
number for some graphs such as in the centric subdivision of
spoke wheel graph and biwheel graph.
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Due to most of nontrivial coloring models, graph
coloring is an NP-hard problem. #erefore, we take into
consideration a graph coloring algorithm [9–11]. #e
judgment of the performance of the used algorithm does
include its effectiveness and accuracy for a large number of
vertices and the level of complexity regarding suboptimal
solutions [12, 13]. Here, we introduce an approximate
algorithm that leads to an upper bound of the radio mean
square for a large number of vertices. Finally, we turn our
attention to reformulate the radio square labeling as a
linear programming model and then minimize the sug-
gested linear function. We use of transforming the non-
linear constraint to become a linear constraint by using of
some large integers dependably on the coefficient range of
the given problem under path calculating conditions. Some
illustrated examples and comparison between the tech-
niques will be given.

It should be noted that all the considered graphs in this
study are finite, simple, connected, and undirected.

#e organization of the study goes as follows: in Section
2, the radio mean square number of cycles and paths are
given. Section 3 is devoted to present an approximate al-
gorithm that finds the upper bound of the radio mean
square number of a given graph and an illustrative example
is included. Section 4 deals with a new mathematical model
for finding the upper bound of the radio mean square
number of the given graph. Section 5 provides the ex-
perimental results. Analysis and statistical tests between the
mathematical model and the proposed approximate al-
gorithm are provided. #e last section is considered for
conclusion.

2. Results

#e following theorem is about the rmsn for the path Pn, and
next, we will get the rmsn for cycle Cn.

Theorem 1. For the path Pn, n≥ 1, and the radio mean
square number is

rmsn Pn(  � n + k ;

1≤ n≤ 15 and k � 0 ,

16≤ n≤ 22 and k � 1,

23≤ n≤ 32 and k � 2,

33≤ n≤ 44 and k � 3,

45≤ n≤ 58 and k � 4,

59≤ n≤ 73 and k � 5,

74≤ n≤ 92 and k � 6,

⋮

k
2

+ 5k + 9≤ n≤ k
2

+ 7k + 14, k≥ 7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Proof. Clearly, diam (Pn) � n − 1. #en, one can define
h: V(Pn)⟶ N as follows: □

Case a. For

1≤ n≤ 15, k � 0,

16≤ n≤ 22, k � 1,

23≤ n≤ 32, k � 2,

33≤ n≤ 44, k � 3,

45≤ n≤ 58, k � 4,

59≤ n≤ 73, k � 5,

74≤ n≤ 92, k � 6.

(2)

One may label the vertices of Pn as follows:

Subcase a.1: n is even:

h x1(  � 1, h xn(  � k + 2,

h x2+i(  � n + k − 2i, 0≤ i<
n

2
− 1,

h xn−1−i(  � n + k − 1 − 2j, 0≤ j<
n

2
− 1.

(3)

Subcase a.1: n is odd:

h x1(  � 1, h xn(  � k + 2,

h x2+i(  � n + k − 2i, 0≤ i<
n − 1
2

,

h xn−1−i(  � n + k − 1 − 2j, 0≤ j<
n − 1
2

− 1.

(4)

Case 2. bFor n≥ 93 and k2 + 5k + 9≤ n≤ k2 + 7k + 14, k≥ 7,

one may label the vertices of Pn as the following subcases:

Subcase b.1: n is even:

h x1(  � 1, h xn(  � k + 2,

h x2+i(  � n + k − 2i, 0≤ i<
n

2
− 1,

h xn−1−i(  � n + k − 1 − 2j, 0≤ j<
n

2
− 1.

(5)

Subcase b.1: n is odd:

h x1(  � 1, h xn(  � k + 2,

h x2+i(  � n + k − 2i, 0≤ i<
n − 1
2

,

h xn−1−i(  � n + k − 1 − 2j, 0≤ j<
n − 1
2

− 1.

(6)

#erefore, for any pair (xi, xj), i≠ j, 0≤ i, j≤ n, we have
d(xi, xj) + h(xi)

2 + h(xj)
2/2 ≥ 1 + n − 1 � 1 + dim (Pn).
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Hence, h is a valid radio mean square labeling for Pn, and
therefore, rmsn(Pn)≤ rmsn(h) � n + k. Since h is injective,
rmsn(Pn) � n + k, n≥ 1 for all radio mean square labeling h,
and hence, rmsn(Pn) � n + k, n≥ 1. #erefore, the labeling h

defined above satisfies the radio mean square condition.

Example 1. #e radio mean square numbers of P9, P10, P96,
and P115 are shown in Figure 1. It is clear that k � 0 for P9
and P10, but k � 7 for P96, and P115.

Theorem 2. -e radio mean square numbers of the cycles Cn,
n≥ 3, are given by

rmsn Cn(  �

n: 3≤ n≤ 7,

n + k;

8≤ n≤ 15 and k � 0,

16≤ n≤ 27 and k � 1,

28≤ n≤ 43 and k � 2,

⋮

k
2

+ 5k + 9≤ n≤ k
2

+ 7k + 14, k≥ 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Proof. It is clear that the dimension of Cn � x1, x2, · · · , xn is
⌊n/2⌋ since its length is n. #en, one can define
h: V(Cn)⟶ N as follows: □

Case 3. aFor 3≤ n≤ 7, we may label the vertices of Cn by

h xi(  � i; 1≤ i≤ n. (8)

Case 4. bFor n≥ 8, 2k2 + 2k + 4≤ n≤ 2k2 + 6k + 7, k≥ 0. We
may label the vertices of Cn by one of the following subcases:

Subcase b.1: n is even:

h xn/2(  � k + 1,

h xi+1(  � k + 3 + 2i, 0≤ i<
n

2
− 1,

h xn−j  � k + 2 + 2j, 0≤ j<
n

2.
.

(9)

#erefore, for any pair (xi, xj), i≠ j, 1≤ i, j≤ n, we
have d(xi, xj) + h(xi)

2 + h(xj)
2/2 ≥ 1 + ⌊n/2⌋ � 1+

dim(Cn).
Subcase b.2: n is odd:

h xn+1/2(  � k + 1,

h xi+1(  � k + 2 + 2i, 0≤ i<
n + 1
2

− 1,

h xn−j  � k + 3 + 2j, 0≤ j<
n + 1
2

− 1.

(10)

So, for any pair (xi, xj), i≠ j, 1≤ i, j≤ n, the following
inequality holds d(xi, xj) + h(xi)

2 + h(xj)
2/2 ≥ 1+

⌊n/2⌋ � 1 + dim (Cn).
Hence, h is a valid radio mean square labeling for Cn, and

therefore,

rmsn Cn( ≤ rmsn(h) �

n, if 3≤ n≤ 7,

n + k, jf n≥ 8 and
2k

2
+ 2k + 4≤ n≤ 2k

2
+ 6k + 7,

k≥ 0.

⎧⎪⎪⎨

⎪⎪⎩
(11)

Since h is injective,

rmsn Cn( ≥
n, if 3≤ n≤ 7,

n + k, jf n≥ 8, and
2k

2
+ 2k + 4≤ n≤ 2k

2
+ 6k + 7,

k≥ 0.

⎧⎪⎪⎨

⎪⎪⎩
(12)

For all radio mean square labeling h,

rmsn Cn(  �

n, if 3≤ n≤ 7,

n + k, jf n≥ 8, and
2k

2
+ 2k + 4≤ n≤ 2k

2
+ 6k + 7,

k≥ 0.

⎧⎪⎪⎨

⎪⎪⎩
(13)
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#erefore, the labeling hdefined above satisfies the radio
mean square condition.

Example 2. #e radio mean square numbers of cycles
C8, C9, C16, and C17 are shown in Figure 2. It is clear that
k � 1 for C16 and C17, but k � 7 for C95 andC112.

3. ANovelGraphRadioMeanSquareAlgorithm

Here, we introduce an approximated algorithm. #is al-
gorithm finds an upper bound of the radio mean square for
arbitrary graph G. #e main idea is to labeling some vertices
(initial vertices) by floor(

�����
diam

√
). On the other hand, the

algorithm chooses a different vertex as an initial vertex in
each iteration.

#e time complexity of an algorithm is defined as the
number of instructions of this algorithm multiplied by the
running time of each instruction. #e time complexity is
considered as a good metric to evaluate the given algorithm.
#us, Algorithm 1 has nine steps, and both Step 1 and Step 2
have the same instruction. Step 3 has a nested loop that has
O(n2) time complexity. On the other hand, Step 4, Step 5,
and Step 6 have O(n) time complexity. Step 7 has one in-
struction, while Step 8 and Step 9 have O(n3) and O(n4),
respectively. #erefore, Algorithm 1 has the time complexity
O(n4).

In the coming example, we show and explain how to
compute the radio mean square labeling problem for P5.

Example 3. Suppose that xi is the label of the vertex vi,
1≤ i≤ 5. #erefore, 1 explores an upper bound of the radio
mean square labeling problem as follows:

It is known that di am(P5) � 4. We select a vertex x1 and
col(x1) � 2. Let S � x1 , and for all v ∈ V(G) − S, compute

temp x2(  � max
x1

2 + ceil
max (

�������
4 + 1 − 1

√
, 1 

4
   � 3,

temp x3(  � max
x1

2 + ceil
max (

�������
4 + 1 − 2

√
, 1 

4
   � 3,

temp x4(  � max
x1

2 + ceil
max (

�������
4 + 1 − 3

√
, 1 

4
   � 3,

temp x5(  � max
x1

2 + ceil
max (

�������
4 + 1 − 4

√
, 1 

4
   � 3.

(14)

Let min � minv∈V(G)−S temp(v)  � 3; we choose a vertex

x2 ∈ V(G) − S, such that temp(x2) � 3. Give col(x2) � 3
and S � x1, x2 .

temp x3(  � max
x1 ,x2{ }

2 + ceil
max (

�������
4 + 1 − 2

√
, 1 

4
 

3 + ceil
max (

�������
4 + 1 − 1

√
, 1 

4
 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

� 4,

temp x4(  � max
x1 ,x2{ }

2 + ceil
max (

�������
4 + 1 − 3

√
, 1 

4
 

3 + ceil
max (

�������
4 + 1 − 2

√
, 1 

4
 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

� 4,

temp x5(  � max
x1 ,x2{ }

2 + ceil
max (

�������
4 + 1 − 4

√
, 1 

4
 

3 + ceil
max (

�������
4 + 1 − 3

√
, 1 

4
 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

� 4.

(15)

Let min � minv∈V(G)−S temp(v)  � 4; we choose a vertex
x3 ∈ V(G) − S, where temp(x3) � 4. Give col(x3) � 4 and
S � x1, x2, x3 .

temp x4(  � max
x1 ,x2,x3{ }

2 + ceil
max (

�������
4 + 1 − 3

√
, 1 

4
 

3 + ceil
max (

�������
4 + 1 − 2

√
, 1 

4
 

4 + ceil
max (

�������
4 + 1 − 1

√
, 1 

4
 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 5,

temp x5(  � max
x1 ,x2,x3{ }

2 + ceil
max (

�������
4 + 1 − 4

√
, 1 

4
 

3 + ceil
max (

�������
4 + 1 − 3

√
, 1 

4
 

4 + ceil
max (

�������
4 + 1 − 2

√
, 1 

4
 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 5.

(16)

1 9 7 5 3 4 6 8 2

(a)

1 10 9753468 2

(b)

1 103 102 899 97 95 7 94 96 98 100 102 9

(c)

1 122 120 118 116 114 113 115 119 1211178 7 9

(d)

Figure 1: #e radio mean square number of P9, P10, P96, and P115. (a) rmsn(P9)� 9. (b) rmsn(P10)� 10. (c) rmsn(P96)� 103. (d) rmsn
(P115) � 122.
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Let min � minv∈V(G)−S temp(v)  � 5; we choose a vertex
x4 ∈ V(G) − S, where temp(x4) � 5. Give col(x4) � 5 and
S � x1, x2, x3, x4 .

temp x5(  � max
x1

2 + ceil
max (

�������
4 + 1 − 4

√
, 1 

4
 

3 + ceil
max (

�������
4 + 1 − 3

√
, 1 

4
 

4 + ceil
max (

�������
4 + 1 − 2

√
, 1 

4
 

5 + ceil
max (

�������
4 + 1 − 1

√
, 1 

4
 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 6

(17)

Let min � minv∈V(G)−S temp(v)  � 6; we select a vertex
x5 ∈ V(G) − S, where temp(x5) � 6. Give col(x5) � 6 and
S � x1, x2, x3, x4, x5 . Plainly, all vertices are labelled and
rmsn(P5) � 6.

4. Formulation of the Radio Mean Square
Labeling as a Mathematical Model

In this section, we present the integer linear programming
model (ILPM) for the radio mean square labeling problem.

Let G be a connected graph of order n with V(G) �

v1, v2, . . ., vn  and let D � [dij] be the distance matrix of G,
that is, dij � d(vi; vj) for 1≤ i, j≤ n. Suppose that xi is the
label of the vertex vi, 1≤ i≤ n. Now, we can propose the
mathematical model for the radio mean square labeling
problem as the ILPM. Let us suppose the function F is
F � x1 + x2 + . . . + xn.

4.1. Formulation 1. Minimize F subject to the n

2  con-

straints (xi)
2 + (xj)

2/2 ≥ diam + 1 − d(vi, vj) for 1≤

i≤ n − 1, 2≤ j≤ n, and i< j, and as mentioned before, the
following steps will transform nonlinear constraints to be-
come linear which is easy to deal with.

4.2. Formulation 2. Since (xi)
2 + (xj)

2/2 ≤ (xi) + (xj)

/2⌉2, we have the following inequalities:

xi(  + xj 

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

2

≥ diam + 1 − d vi − vj  ,

xi(  + xj 

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
≥

������������������

diam + 1 − d vi − vj 



,

xi(  + xj 

2
≥

������������������

diam + 1 − d vi − vj 



,

xi(  + xj 

2
+ 1≥

������������������

diam + 1 − d vi − vj 



,

M xi − xj 


≥
xi(  + xj 

2
+ 1≥

������������������

diam + 1 − d vi − vj 



.

(18)

M is a large integer number which depends on the
coefficients range of the problem.

#e absolute value notation is used to get distinct values
for xi, where i � 1, 2, . . . , n.

Now, we can reformulate the radiomean square problem
as follows:

minF � x1 + x2 + · · · + xn. (19)

Subject to M|(xi − xj)|≥ ⌊
�����������������
diam + 1 − d(vi − vj)



⌋,
1≤ i≤ n − 1

2≤ j≤ n and i< j.
(20)

Here, the floor function is used because the values of
xi, 1≤ i≤ n, are integers.

Example 4. #e details of the ILPM to compute the radio
mean square labeling forP3. Assume that xi is the label of the
vertex vi, such that 1≤ i≤ 3. #us, the mathematical model
for the radio mean square labeling problem as the ILPM is
prepared as follows:

minf � x1 + x2 + x3. (21)

Subject to

4 6 8 10 16 2 17 9 7 5 3

(a)

4 6 8 10 18 2 17 9 7 5 3

(b)

7 9 11 13 15 99 6 100 16 14 12 10 8

(c)

8 10 12 14 16 116 6 117 115 15 13 11 9 7

(d)

Figure 2: #e radio mean square number of cycles C8, C9, C16, and C17. (a) rmsn(C16) � 17. (b) rmsn(C17)� 18. (c) rmsn(C95) � 100.
(d) rmsn(C112) � 117.
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Input: G be an n-vertex graph, simple connected graph, and the diameter of (diam)

Output: an upper bound of radio mean square number of G

Begin
Step 1: choose a vertex u and col(u) � floor(

�����
diam

√
)

Step 2: S � u{ }

Step 3: for all v ∈ V(G) − S, compute
temp(v) � max

t∈s
col(t) + ceil(max

���������������
(D + 1 − d(u, v), 1


 /diam) 

Step 4: let min � min
v∈V(G)−S

temp(v) 

Step 5: choose a vertex v ∈ V(G) − S, such thattemp(v) � min
Step 6: give col(v) � min
Step 7: S � S∪ v{ }

Step 8: repeat Step 3–Step 6 until all vertices are labelled
Step 9: repeat Step 1–Step 7 for every vertex x ∈ V(G)

End

ALGORITHM 1: Finding an upper bound of the radio mean square number of a graph G.

Table 1: Description of the computing environment.
CPU Intel (R) Core (TM) i5-2430 CPU at 2.40GHz
RAM size 4GB RAM
MATLAB version R2019a (9.6.0.1072779)

Table 2: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of
radio mean square number for the path graph.

Path graph

N Standard RMS
Proposed algorithm Integer linear programming

rmsn (Pn) CPU time rmsn (Pn) CPU time
1 1 — — — —
2 2 2 0.0001565 2 0.0135961
3 3 3 0.0007495 3 0.0137607
4 4 4 0.0009242 4 0.0142838
5 5 6 0.0009259 9 0.0148360
6 6 7 0.0011930 11 0.0149701
7 7 8 0.0028154 13 0.0151607
8 8 9 0.0031659 15 0.0153437
9 9 10 0.0086583 17 0.0153530
10 10 12 0.0092995 28 0.0153602
11 11 13 0.0178153 31 0.0154630
12 12 14 0.0179739 34 0.0158122
13 13 15 0.0195242 37 0.0159264
14 14 16 0.0214671 40 0.0160664
15 15 17 0.0323685 43 0.0165312
16 17 18 0.0397062 46 0.0165756
17 18 20 0.0488390 65 0.0166756
18 19 21 0.0521773 69 0.0168593
19 20 22 0.0635412 73 0.0168673
20 21 23 0.0773853 77 0.0173017
21 22 24 0.0926470 81 0.0173982
22 23 25 0.1082337 85 0.0174649
23 25 26 0.1321028 89 0.0176519
24 26 27 0.1680530 93 0.0178209
25 27 28 0.1819503 97 0.0178319
26 28 30 0.2174177 126 0.0178408
27 29 31 0.2423215 131 0.0178502
28 30 32 0.2838989 135 0.0179323
29 31 33 0.3306090 142 0.0181244
30 32 34 0.3907487 146 0.0182150
50 54 56 3.3044964 344 0.0295531
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x1 − x2


≥ ⌊
�����������������

diam + 1 − d v1, v2( 



⌋,
x1 − x3


≥ ⌊

�����������������

diam + 1 − d v1, v3( 



⌋,
x2 − x3


≥ ⌊

�����������������

diam + 1 − d v2, v3( 



⌋,
x1, x2, x3 ≥ 0.

(22)

Since diam � n − 1 and diam � 2 for P3, M � 1, the
distance matrix of P3 is

D �

0 1 2

1 0 1

2 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (23)

#erefore, the above mathematical model can be written
as follows:

minf � x1 + x2 + x3. (24)

Subject to

x1 − x2


≥ 1; x1 − x3


≥ 1; x2 − x3


≥ 1; x1, x2, x3 ≥ 0. (25)

#e solution of the above model equals to 3.

5. Computational Study

In this article, we propose the analysis of the computational
results that show the superiority of Algorithm 1 on the ILPM
according to the radio mean square number. On the other
hand, the proposed ILPM outperforms Algorithm 1
according to CPU time.

Paths and cycles are used to evaluate the proposed
models. #e computation environment is given in Table 1.
MATLAB solver is used to solve the ILPM. In Tables 2 and 3,
the following symbols standard RMS, rmsn, and CPU times
are used to indicate the exact radio mean square number, the
calculated mean square number, and the running time for
path and cycles, respectively. #e convergence between the
calculated and exact upper bounds of the radio mean square
number of paths is given in Table 2. Figures 3 and 4 show
that the superiority of the proposed Algorithm 1 on the
ILPM according to the radio mean square number. For
example, the standard radio mean square number for P50 is
54, but it is 56 and 344 by Algorithm 1 and the ILPM,
respectively. Figures 5 and show the superiority of the

Table 3: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of
radio mean square number for the cycle graph.

Cycle graph

N Standard RMS
Proposed algorithm Integer linear programming

rmsn (Cn) CPU time rmsn (Cn) CPU time
1 — — — — —
2 — — — — —
3 3 3 0.0002946 3 0.0121703
4 4 4 0.0006198 4 0.0128697
5 5 5 0.0013164 5 0.0130696
6 6 6 0.0017746 6 0.0134300
7 7 7 0.0023419 7 0.0137379
8 8 9 0.0037564 15 0.0137439
9 10 10 0.0050932 17 0.0140673
10 10 11 0.0060342 19 0.0143174
11 11 12 0.0088211 21 0.0143427
12 12 13 0.0148844 23 0.0147269
13 13 14 0.0172248 25 0.0147985
14 14 15 0.0203240 27 0.0149231
15 15 16 0.0251720 29 0.0151018
16 17 17 0.0323380 31 0.0151929
17 18 18 0.0397318 33 0.0155649
18 19 20 0.0492787 52 0.0156036
19 20 21 0.0612156 55 0.0156856
20 21 22 0.0765414 58 0.0157774
21 22 23 0.0898619 61 0.0160212
22 23 24 0.1191102 64 0.0162420
23 24 25 0.1328831 67 0.0163022
24 25 26 0.1583415 70 0.0165312
25 26 27 0.1758159 73 0.0165648
26 27 28 0.2122978 76 0.0165116
27 28 29 0.2491384 79 0.0166234
28 30 30 0.2822584 82 0.0167352
29 31 31 0.3290932 85 0.0168470
30 32 32 0.3655289 88 0.0171844
50 53 54 3.0468593 246 0.0250638
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Figure 3: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of
radio mean square number for the path graph.
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Figure 4: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of
radio mean square number for the cycle graph.
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Figure 5: Comparison between standard radio mean square number, algorithm, and integer linear programming for the upper bound of
radio mean square number for the path graph according to CPU time.
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proposed Algorithm 1 on the ILPM according to CPU time.
Table 3 provides that the gap between the ILPM and the
proposed Algorithm 1 is large according to the radio mean
square number. It is clear that 1 is better than the ILPM
according to the radio mean square number. According to
the CPU time, Tables 2 and 3 explain the superiority of the
proposed ILPM on Algorithm 1.

6. Conclusions

In this work, we determined the radio mean square numbers
rmsn(Pn) and rmsn(Cn) for paths and cycles. #en, the
proposed approximate algorithm is introduced to obtain
rmsn(G) for graph G. In addition, a new mathematical
model is proposed in order to find the upper bound of
rmsn(G) for graph G, and a comparison between the
proposed approximate algorithm and the proposed math-
ematical model is introduced. Finally, the computational
results and their analysis have proved that the proposed
approximate algorithm overcomes the ILPM according to
the radio mean square number.
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1. Introduction and Preliminary Results

)e representation of a graph is expressed by numbers,
polynomials, and matrices. Graphs have their own char-
acteristics that may be calculated by topological indices, and
under graph automorphism, the topology of graphs remains
unchanged. Degree-based topological indices are excep-
tionally important in different classes of indices and take on
a vital role in graphic theory and in particular in science.

Silicate is a chemical compound and has many com-
mercial uses. It is used for the manufacture of different glass
and ceramics organic compounds in large scale due to its
cheapness and availability everywhere in the world. Silicates
can be obtained from the Earth’s crust. In general, solid
silicates are well-characterized and stable. Silicates like so-
dium orthosilicate and metasilicate, which have alkali cat-
ions and tiny or chain-like anions, are water soluble. When
crystallised from a solution, they generate multiple solid
hydrates. Water glass, which is made up of soluble sodium
silicates and combinations, is a significant industrial and
home chemical. For the construction of networks rhombus
oxide and silicate, we refer the readers to 10. Rhombus
silicate network RHSL(t) and rhombus oxide network
RHOX(t) are shown in Figures 1 and 2, respectively.

In this article, G is considered a network with a V(G)

vertex set and an edge set of E(G) and dr is the degree of

vertex r ∈ V(G). Let SG(r) denote the sum of the degrees of
all vertices adjacent to a vertex r. Graovac et al. defined fifth
M-Zagreb indices as polynomials for a molecular graph [1],
and these are characterized as follows.

Let G be a graph. )en,

M1G5(G) � 
rs∈E(G)

SG(r) + SG(s)( , (1)

M2G5(G) � 
rs∈E(G)

SG(r) + SG(s)( . (2)

V. R. Kulli [2], motivated by the above indices, described
some new topological indices, and he named them as the
fifth M-Zagreb indices of first and second type and fifth
hyper-M-Zagreb indices of first and second type of a graph
G. )ey are defined as

M
a
1G5(G) � 

rs∈E(G)

SG(r) + SG(s)( 
a
, (3)

M
a
2G5(G) � 

rs∈E(G)

SG(r) + SG(s)( 
a
, (4)

HM1G5(G) � 
rs∈E(G)

SG(r) + SG(s)( 
2
, (5)
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HM2G5(G) � 
rs∈E(G)

SG(r) + SG(s)( 
2
. (6)

)ey also define a new version of Zagreb index which is
called as the third Zagreb index or fifth M3-Zagreb [3].

M3G5(G) � 
rs∈E(G)

SG(r) − SG(s)


. (7)

Corresponding to the above indices, he defined the
general fifth M1-Zagreb polynomial and the general fifth
M2-Zagreb polynomial of a molecular graph G as

M
a
1G5(G, x) � 

rs∈E(G)

x
SG(r)+SG(s)( )

a

, (8)

M
a
2G5(G, x) � 

rs∈E(G)

x
SG(r)+SG(s)( )

a

. (9)

)efifthM1- and M2- Zagreb polynomials of a graph are
defined as

M1G5(G, x) � 
rs∈E(G)

x
SG(r)+SG(s)( ), (10)

M2G5(G, x) � 
rs∈E(G)

x
SG(r)+SG(s)( ). (11)

)e fifth HM1 and HM2 Zagreb polynomials of the
graph are defined as

HM1G5(G, x) � 
rs∈E(G)

x
SG(r)+SG(s)( )

2

, (12)

HM2G5(G, x) � 
rs∈E(G)

x
SG(r)+SG(s)( )

2

. (13)

Figure 1: Graph of rhombus silicate network (RHSL(t)).

Figure 2: Graph of rhombus oxide network (RHOX(t)).
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2. Main Results

We have studied the topological indices introduced by Kulli
[2, 4] named as fifth M-Zagreb indices, fifth M-Zagreb
polynomials, and M3 − Zagreb index and computed exact
formulae of these indices for rhombus-type silicate and
oxide networks. Ali et al. studied degree-based topological
indices for various networks [5–8]. For the basic notations
and definitions, see [9–11].

2.1. Results for the Rhombus Type of Silicate Networks. In this
section, we calculate degree-based topological indices of the
dimension t for rhombus-type silicate networks. In the

following theorems, we compute M-Zagreb indices and
polynomials.

Theorem 2.1.1. Let G1 � RHSL(t) be the rhombus-type
silicate network; then, the first and second fifth M-Zagreb
indices are equal to

M1G5 G1(  � 36 1 − 10t + 18t
2

 ,

M2G5 G1(  � 18 119 − 490t + 480t
2

 .
(14)

Proof. )e outcome can be obtained by using the edge
partition in Table 1.

By using equation [5],

M1G5 G1(  � 

rs∈E G1( )

SG(r) + SG(s)( ,

M1G5 G1(  � (12 + 12)|E1 G1(t)( | +(12 + 24)|E2 G1(t)( | +(15 + 15)|E3 G1(t)( | +(15 + 24)|E4 G1(t)( |

+(15 + 27)|E5 G1(t)( | +(18 + 24)|E6 G1(t)( | +(18 + 27)|E7 G1(t)( |

+(18 + 30)|E8 G1(t)( | +(24 + 27)|E9 G1(t)( | +(27 + 27)|E10 G1(t)( | +(27 + 30)|E11 G1(t)( |

+(30 + 30)|E12 G1(t)( |,

� (12 + 12)(6) +(12 + 24)(6) +(15 + 15)(4t − 4) +(15 + 24)(8) +(15 + 27)(16t − 24)

+(18 + 24)(2) +(18 + 27)(8t − 12) +(18 + 30) 6t
2

− 20t + 16  +(24 + 27)(8)

+(27 + 27)(8t − 14) +(27 + 30)(8t − 16) +(30 + 30) 6t
2

− 24t + 24 .

(15)

By doing some calculations, we obtain

M1G5 G1(  � 36 1 − 10t + 18t
2

 . (16)

)us, from [6],

M2G5(G) � 

rs∈E G1( )

SG(r) + SG(s)( ,

M2G5 G1(  � (12 × 12)|E1 G1(t)( | +(12 × 24)|E2 G1(t)( | +(15 × 15)|E3 G1(t)( | +(15 × 24)|E4 G1(t)( |

+(15 × 27)|E5 G1(t)( | +(18 × 24)|E6 G1(t)( | +(18 × 27)|E7 G1(t)( |

+(18 × 30)|E8 G1(t)( | +(24 × 27)|E9 G1(t)( | +(27 × 27)|E10 G1(t)( | +(27 × 30)|E11 G1(t)( |

+(30 × 30)|E12 G1(t)( |,

� (12 × 12)(6) +(12 × 24)(6) +(15 × 15)(4t − 4) +(15 × 24)(8) +(15 × 27)(16t − 24)

+(18 × 24)(2) +(18 × 27)(8t − 12) +(18 × 30) 6t
2

− 20t + 16  +(24 × 27)(8)

+(27 × 27)(8t − 14) +(27 × 30)(8t − 16) +(30 × 30) 6t
2

− 24t + 24 .

(17)

By doing some calculations, we obtain

M2G5 G1(  � 18 119 − 490t + 480t
2

 . (18)

Theorem 2.1.2. Consider the rhombus-type silicate network
G1 � RHSL(t) for t ∈ N. 9en, the first and second general
fifth M-Zagreb indices are equal to
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M
a
1G5 G1(  � 21+3a31+a

+ 23+2a31+a5a
− 4 × 31+2a5a

+ 61+2a
− 23+a31+a7a

− 22+a15a
+ 3a161+a

+ 21+a21a


−7 × 21+a27a
+ 8 × 39a

+ 8 × 51a
− 16 × 57a

 + t −5 × 3a41+2a
− 23+2a31+a5a

+ 22+a15a
+ 24+a21a



+23+a27a
+ 8 × 45a

+ 8 × 57a
 + t

2 21+4a3 + 21+2a31+a5a
 ,

M
a
2G5 G1(  � 21+4a31+2a

 + 21+5a31+2a
− 22+a31+5a

− 8 × 31+4a5a
+ 23+2a31+2a25a

+ 21+4a27a
+ 81+a45a

+ 81+a81a


+42+a135a
− 4 × 225a

− 24+a405a
− 14 × 729a

 + t −23+2a31+2a25a
− 201+a27a

+ 4 × 225a
+ 23+a243a



+16 × 405a
+ 23+a405a

+ 8 × 729a
 + t

2 21+2a31+3a5a
+ 61+2a25a

 .

(19)

Proof. LetG1 be the rhombus-type silicate network. Table 1
shows such an edge partition of RHSL(t). )us, from [9], it
follows that

M
a
1G5(G) � 

rs∈E(G)

SG(r) + SG(s)( 
a
. (20)

By using edge partitions in Table 1, we obtain

M
a
1G5 G1(  � (12 + 12)

a
|E1 G1(t)( | +(12 + 24)

a
|E2 G1(t)( | +(15 + 15)

a
|E3 G1(t)( |

+(15 + 24)
a
|E4 G1(t)( | +(15 + 27)

a
|E5 G1(t)( | +(18 + 24)

a
|E6 G1(t)( | +(18 + 27)

a
|E7 G1(t)( |

+(18 + 30)
a
|E8 G1(t)( | +(24 + 27)

a
|E9 G1(t)( | +(27 + 27)

a
|E10 G1(t)( |

+(27 + 30)
a
|E11 G1(t)( | +(30 + 30)

a
|E12 G1(t)( |,

� (12 + 12)
a
(6) +(12 + 24)

a
(6) +(15 + 15)

a
(4t − 4) +(15 + 24)

a
(8) +(15 + 24)

a
(16t − 24)

+(18 + 24)
a
(2) +(18 + 27)

a
(8t − 12) +(18 + 30)

a 6t
2

− 20t + 16  +(24 + 27)
a
(8)

+(27 + 27)
a
(8t − 14) +(27 + 30)

a
(8t − 16) +(30 + 30)

a 6t
2

− 24t + 24 .

(21)

By doing some calculations, we have

M
a
1G5 G1(  � 21+3a31+a

+ 23+2a31+a5a
− 4 × 31+2a5a

+ 61+2a
− 23+a31+a7a

− 22+a15a
+ 3a161+a

+ 21+a21a


−7 × 21+a27a
+ 8 × 39a

+ 8 × 51a
− 16 × 57a

+ t −5 × 3a41+2a
− 23+2a31+a5a

+ 22+a15a


+24+a21a
+ 23+a27a

+ 8 × 45a
+ 8 × 57a

 + t
2 21+4a31+a

+ 21+2a31+a5a
 .

(22)

From [12], we have

Table 1: Edge partition of rhombus-type silicate network (RHSL(t)) based on sum of degrees of end vertices of each edge.

(Sr, Ss) Number of edges

Where rs ∈ E(G1)

(12, 12) 6
(12, 24) 6
(15, 15) 4t − 4
(15, 24) 8
(15, 27) 16t − 24
(18, 24) 2
Where rs ∈ E(G1)

(18, 27) 8t − 2
(18, 30) 6t2 − 20t + 16
(24, 27) 8
(27, 27) 8t − 14
(27, 30) 8t − 16
(30, 30) 6t2 − 24t + 24
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M
a
2G5(G) � 

rs∈E(G)

SG(r) + SG(s)( 
a
. (23)

By using edge partitions in Table 1, we obtain

M
a
2G5 G1(  � (12 × 12)

a
|E1 G1(t)( | +(12 × 24)

a
|E2 G1(t)( | +(15 × 15)

a
|E3 G1(t)( | +(15 × 24)

a
|

E4 G1(t)( | +(15 × 27)
a
|E5 G1(t)( | +(18 × 24)

a
|E6 G1(t)( | +(18 × 27)

a
|E7 G1(t)( |

+(18 × 30)
a
|E8 G1(t)( | +(24 × 27)

a
|E9 G1(t)( | +(27 × 27)

a
|E10 G1(t)( | +(27 × 30)

a

|E11 G1(t)( | +(30 × 30)
a
|E12 G1(t)( |,

� (12 × 12)
a
(6) +(12 × 24)

a
(6) +(15 × 15)

a
(4t − 4) +(15 × 24)

a
(8) +(15 × 24)

a
(16t − 24)

+(18 × 24)
a
(2) +(18 × 27)

a
(8t − 12) +(18 × 30)

a 6t
2

− 20t + 16  +(24 × 27)
a

(8) +(27 × 27)
a
(8t − 14) +(27 × 30)

a
(8t − 16) +(30 × 30)

a 6t
2

− 24t + 24 .

(24)

By doing some calculations, we have

M
a
2G5 G1(  � 21+4a31+2a

+ 21+5a31+2a
− 22+a31+5a

− 8 × 31+4a5a
+ 23+2a31+2a25a

+ 21+4a27a
+ 81+a45a

+ 81+a81a


+42+a135a
− 4 × 225a

− 24+a405a
− 14 × 729a

+ t −23+2a31+2a25a
− 201+a27a

+ 4 × 225a
+ 23+a243a



+16 × 405a
+ 23+a405a

+ 8 × 729a
 + t

2 21+2a31+3a5a
+ 61+2a25a

 .

(25)

Theorem 2.1.3. Consider the rhombus-type silicate network
G1 � RHSL(t) for t ∈ N. 9en, the first and second hyper-
fifth M-Zagreb indices are equal to

HM1G5 G1(  � 36 221 − 976t + 984t
2

 ,

HM2G5 G1(  � 162 28307 − 68242t + 40800t
2

 .
(26)

Proof. Let G1 be the rhombus type of silicate network.
Table 1 shows such an edge partition ofRHSL(t). )us, from
[13], it follows that

HM1G5(G) � 
rs∈E(G)

SG(r) + SG(s)( 
2
. (27)

By using edge partitions in Table 1, we obtain

HM1G5 G1(  � (12 × 12)
2
|E1 G1(t)( | +(12 × 24)

2
|E2 G1(t)( | +(15 × 15)

2
|E3 G1(t)( | +(15 × 24)

2
|

E4 G1(t)( | +(15 × 27)
2
|E5 G1(t)( | +(18 × 24)

2
|E6 G1(t)( | +(18 × 27)

2
|E7 G1(t)( |

+(18 × 30)
2
|E8 G1(t)( | +(24 × 27)

2
|E9 G1(t)( | +(27 × 27)

2
|E10 G1(t)( | +(27 × 30)

2

|E11 G1(t)( | +(30 × 30)
2
|E12 G1(t)( |,

� (12 × 12)
2
(6) +(12 × 24)

2
(6) +(15 × 15)

2
(4t − 4) +(15 × 24)

2
(8) +(15 × 24)

2
(16t − 24)

+(18 × 24)
2
(2) +(18 × 27)

2
(8t − 12) +(18 × 30)

2 6t
2

− 20t + 16  +(24 × 27)
2

(8) +(27 × 27)
2
(8t − 14) +(27 × 30)

2
(8t − 16) +(30 × 30)

2 6t
2

− 24t + 24 .

(28)

By doing some calculations, we have

HM1G5 G1(  � 36 221 − 976t + 984t
2

 . (29)

From [14], we have

HM
2
2G5(G) � 

rs∈E(G)

SG(r) + SG(s)( 
2
. (30)

By using edge partitions in Table 1, we obtain
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HM2G5 G1(  � (12 × 12)
2
|E1 G1(t)( | +(12 × 24)

2
|E2 G1(t)( | +(15 × 15)

2
|E3 G1(t)( |

+(15 × 24)
2
|E4 G1(t)( | +(15 × 27)

2
|E5 G1(t)( | +(18 × 24)

2
|E6 G1(t)( |

+(18 × 27)
2
|E7 G1(t)( | +(18 × 30)

2
|E8 G1(t)( | +(24 × 27)

2
|E9 G1(t)( |

+(27 × 27)
2
|E10 G1(t)( | +(27 × 30)

2
|E11 G1(t)( | +(30 × 30)

2
|E12 G1(t)( |,

� (12 × 12)
2
(6) +(12 × 24)

2
(6) +(15 × 15)

2
(4t − 4) +(15 × 24)

2
(8)

+(15 × 24)
2
(16t − 24) +(18 × 24)

2
(2) +(18 × 27)

2
(8t − 12) +(18 × 30)

2 6t
2

− 20t + 16 

+(24 × 27)
2
(8) +(27 × 27)

2
(8t − 14) +(27 × 30)

2
(8t − 16) +(30 × 30)

2 6t
2

− 24t + 24 .

(31)

By doing some calculations, we have

HM
a
2G5 G1(  � 162 28307 − 68242t + 40800t

2
 . (32)

Theorem 2.1.4. Consider the rhombus-type silicate network
G1 � RHSL(t) for t ∈ N. 9en, the third M-Zagreb index is
equal to

M3G5 G1(  � −232 + 248t + 12t
2

 . (33)

Proof. Let G1 be the rhombus silicate network. Table 1
shows such an edge partition of RHSL(t). )us, from [15], it
follows that

M3G5(G) � 
rs∈E(G)

SG(r) + SG(s)


. (34)

By using edge partitions in Table 1, we obtain

M3G5 G1(  � |12 − 12 E1 G1(t)( 
����

 + |12 − 24 E2 G1(t)( 
����

 + |15 − 15 E3 G1(t)( 
����

 + |15 − 24 E4 G1(t)( 
����



+ |15 − 27 E5 G1(t)( 
����

 + |18 − 24 E6 G1(t)( 
����

 + |18 − 27 E7 G1(t)( 
����

 + |18 − 30 E8 G1(t)( 
����



+ |24 − 27 E9 G1(t)( 
����

 + |27 − 27 E10 G1(t)( 
����

 + |27 − 30 E11 G1(t)( 
����

 + |30 − 30 E12 G1(t)( |,
����

� |12 − 12|(6) + |12 − 24|(6) + |15 − 15|(4t − 4) + |15 − 24|(8) + |15 − 27|(16t − 24) + |18

− 24|(2) + |18 − 27|(8t − 12) + |18 − 30| 6t
2

− 20t + 16  + |24 − 27|(8) + |27 − 27|(8t − 14)

+ |27 − 30|(8t − 16) + |30 − 30| 6t
2

− 24t + 24 .

(35)

By doing some calculations, we have

M3G5 G1(  � −232 + 248t + 12t
2

 . (36)

Corresponding to the above indices, we are going to
compute general fifth M-Zagreb polynomials for rhombus-
type silicate network RHSL(t).

Theorem 2.1.5. Let G1 � RHSL(t) be the first type of
rhombus-type silicate network; then, general fifth M-Zagreb
polynomials of first and second type are equal to

M
a
1G5 G1, x(  � 6x

24a

+(4t − 4)x
30a

+ 6x
36a

+ 8x
39a

+(16t − 22)x
42a

+(8t − 12)x
45a

+ 6t
2

− 20t + 16 x
48a

+ 8x
51a

+(8t − 14)x
54a

+(8t − 16)x
57a

+ 6t
2

− 24t + 24 x
60a

,

M
a
2G5 G1, x(  � 6x

144a

+(4t − 4)x
225a

+ 6x
288a

+ 8x
360a

+ 8(2t − 3)x
405a

+ 2x
432a

+ 4(2t − 3)x
486a

+ 2(t − 2)(3t − 4)x
540a

+ 8x
648a

+ 2(4t − 7)x
729a

+ 8(t − 2)x
810a

+ 6(t − 2)
2
x
900a

.

(37)

Proof. We obtain the outcome with the edge partition in
Table 1. It follows from [1] that
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M
a
1G5 G1, x(  � 

rs∈E G1( )

x
SG(r)+SG(s)( )

a

,

M
a
1G5 G1, x(  � x

(12+12)a

|E1 G1(t)( | + x
(12+24)a

|E2 G1(t)( | + x
(15+15)a

|E3 G1(t)( | + x
(15+24)a

|E4 G1(t)( |

+ x
(15+27)a

|E5 G1(t)( | + x
(18+24)a

|E6 G1(t)( | + x
(18+27)a

|E7 G1(t)( | + x
(18+30)a

|E8 G1(t)( |

+ x
(24+27)a

|E9 G1(t)( | + x
(27+27)a

|E10 G1(t)( | + x
(27+30)a

|E11 G1(t)( | + x
(30+30)a

|E12 G1(t)( |,

M
a
1G5 G1, x(  � x

(12+12)a

(6) + x
(12+24)a

(6) + x
(15+15)a

(4t − 4) + x
(15+24)a

(8)

+ x
(15+27)a

(16t − 24) + x
(18+24)a

(2) + x
(18+27)a

(8t − 12) + x
(18+30)a

6t
2

− 20t + 16 

+ x
(24+27)a

(8) + x
(27+27)a

(8t − 14) + x
(27+30)a

(8t − 16) + x
(30+30)a

6t
2

− 24t + 24 .

(38)

By doing some calculations, we obtain

M
a
1G5 G1, x(  � 6x

24a

+(4t − 4)x
30a

+ 6x
36a

+ 8x
39a

+(16t − 22)x
42a

+(8t − 12)x
45a

+ 6t
2

− 20t + 16 x
48a

+ 8x
51a

+(8t − 14)x
54a

+(8t − 16)x
57a

+ 6t
2

− 24t + 24 x
60a

.
(39)

Also, from [3],

M
a
2G5 G1, x(  � 

rs∈E G1( )

x
SG(r)+SG(s)( )

a

,

M
a
2G5 G1, x(  � x

(12+12)a

|E1 G1(t)( | + x
(12+24)a

|E2 G1(t)( | + x
(15+15)a

|E3 G1(t)( | + x
(15+24)a

|E4 G1(t)( |

+ x
(15+27)a

|E5 G1(t)( | + x
(18+24)a

|E6 G1(t)( | + x
(18+27)a

|E7 G1(t)( | + x
(18+30)a

|E8 G1(t)( |

+ x
(24+27)a

|E9 G1(t)( | + x
(27+27)a

|E10 G1(t)( | + x
(27+30)a

|E11 G1(t)( | + x
(30+30)a

|E12 G1(t)( |,

M
a
2G5 G1, x(  � x

(12+12)a

(6) + x
(12+24)a

(6) + x
(15+15)a

(4t − 4) + x
(15+24)a

(8)

+ x
(15+27)a

(16t − 24) + x
(18+24)a

(2) + x
(18+27)a

(8t − 12) + x
(18+30)a

6t
2

− 20t + 16 

+ x
(24+27)a

(8) + x
(27+27)a

(8t − 14) + x
(27+30)a

(8t − 16) + x
(30+30)a

6t
2

− 24t + 24 .

(40)

By making some calculations, we obtain

M
a
2G5 G1, x(  � 6x

144a

+(4t − 4)x
225a

+ 6x
288a

+ 8x
360a

+ 8(2t − 3)x
405a

+ 2x
432a

+ 4(2t − 3)

x
486a

+ 2(t − 2)(3t − 4)x
540a

+ 8x
648a

+ 2(4t − 7)x
729a

+ 8(t − 2)x
810a

+ 6(t − 2)
2
x
900a

.
(41)

Corresponding to the above indices, we are going to
compute fifth M-Zagreb polynomials for rhombus-type
silicate network RHSL(t).

Theorem 2.1.6. Let G1 � RHSL(t) be the rhombus type of
silicate network; then, fifth M-Zagreb polynomials of first and
second type are equal to
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M1G5 G1, x(  � 6x
24

+(4t − 4)x
30

+ 6x
36

+ 8x
39

+(16t − 22)x
42

+(8t − 12)x
45

+ 6t
2

− 20t + 16 x
48

+ 8x
51

+(8t − 14)x
54

+(8t − 16)x
57

+ 6t
2

− 24t + 24 x
60

,

M2G5 G1, x(  � 6x
144

+(4t − 4)x
225

+ 6x
288

+ 8x
360

+ 8(2t − 3)x
405

+ 2x
432

+ 4(2t − 3)x
486

+ 2(t − 2)(3t − 4)x
540

+ 8x
648

+ 2(4t − 7)x
729

+ 8(t − 2)x
810

+ 6(t − 2)
2
x
900

.

(42)

Proof. We obtain the outcome with the edge partition in
Table 1. It follows from [16] that

M1G5 G1, x(  � 

rs∈E G1( )

x
SG(r)+SG(s)( ),

M1G5 G1, x(  � x
(12+12)

|E1 G1(t)( | + x
(12+24)

|E2 G1(t)( | + x
(15+15)

|E3 G1(t)( | + x
(15+24)

|E4 G1(t)( |

+ x
(15+27)

|E5 G1(t)( | + x
(18+24)

|E6 G1(t)( | + x
(18+27)

|E7 G1(t)( | + x
(18+30)

|E8 G1(t)( |

+ x
(24+27)

|E9 G1(t)( | + x
(27+27)

|E10 G1(t)( | + x
(27+30)

|E11 G1(t)( | + x
(30+30)

|E12 G1(t)( |,

� x
(12+12)

(6) + x
(12+24)

(6) + x
(15+15)

(4t − 4) + x
(15+24)

(8)

+ x
(15+27)

(16t − 24) + x
(18+24)

(2) + x
(18+27)

(8t − 12) + x
(18+30) 6t

2
− 20t + 16 

+ x
(24+27)

(8) + x
(27+27)

(8t − 14) + x
(27+30)

(8t − 16) + x
(30+30) 6t

2
− 24t + 24 .

(43)

By doing some calculations, we obtain

M1G5 G1, x(  � 6x
24

+(4t − 4)x
30

+ 6x
36

+ 8x
39

+(16t − 22)x
42

+(8t − 12)x
45

+ 6t
2

− 20t + 16 x
48

+ 8x
51

+(8t − 14)x
54

+(8t − 16)x
57

+ 6t
2

− 24t + 24 x
60

.
(44)

Also, from [4],

M2G5 G1, x(  � 

rs∈E G1( )

x
SG(r)+SG(s)( ),

M2G5 G1, x(  � x
(6×6)

|E1 G1(t)( | + x
(6×11)

|E2 G1(t)( | + x
(6×12)

|E3 G1(t)( | + x
(6×14)

|E4 G1(t)( |

+ x
(7×9)

|E5 G1(t)( | + x
(7×12)

|E6 G1(t)( | + x
(8×11)

|E7 G1(t)( | + x
(8×13)

|E8 G1(t)( |

+ x
(9×9)

|E9 G1(t)( | + x
(9×14)

|E10 G1(t)( | + x
(11×11)

|E11 G1(t)( | + x
(11×12)

|E12 G1(t)( |

+ x
(11×13)

|E13 G1(t)( | + x
(11×14)

|E14 G1(t)( | + x
(11×16)

|E15 G1(t)( |

+ x
(12×14)

|E16 G1(t)( | + x
(13×14)

|E17 G1(t)( | + x
(13×16)

|E18 G1(t)( |

+ x
(14×14)

|E19 G1(t)( | + x
(14×16)

|E20 G1(t)( |,

� x
(6×6)

(4t) + x
(6×11)

(4t) + x
(6×12)

(4) + x
(6×14)

(4t − 4) + x
(7×9)

(4t − 4) + x
(7×12)

(4t − 4)

+ x
(8×11)

(12t − 8) + x
(8×13)

(4t − 4) + x
(9×9)

(2t − 2) + x
(9×14)

(4t − 4)

+ x
(11×11) 9t

2
− 7t + 3  + x

(11×12)
(4) + x

(11×13)
(4t − 4) + x

(11×14) 36t
2

− 68t + 32 

+ x
(11×16)

(4t − 4) + x
(12×14)

(4t − 4) + x
(13×14)

(4t − 4) + x
(13×16)

(4t − 4)

+ x
(14×14)

(4t − 4) + x
(14×16) 36t

2
− 76t + 40 .

(45)
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By making some calculations, we obtain

M2G5 G1, x(  � 6x
144

+(4t − 4)x
225

+ 6x
288

+ 8x
360

+ 8(2t − 3)x
405

+ 2x
432

+ 4(2t − 3)x
486

+ 2(t − 2)(3t − 4)x
540

+ 8x
648

+ 2(4t − 7)x
729

+ 8(t − 2)x
810

+ 6(t − 2)
2
x
900

.
(46)

Theorem 2.1.7. Let G1 � RHSL(t) be the rhombus-type
silicate network; then, hyper-fifth M-Zagreb polynomials of
first and second type are equal to

HM1G5 G1, x(  � 6x
576

+(4t − 4)x
900

+ 6x
1296

+ 8x
1521

+(16t − 22)x
1764

+(8t − 12)x
2025

+ 6t
2

− 20t + 16 x
2304

+ 8x
2601

+(8t − 14)x
2916

+(8t − 16)x
3249

+ 6t
2

− 24t + 24 x
3600

,

HM2G5 G1, x(  � 6x
20736

+(4t − 4)x
50625

+ 6x
82944

+ 8x
129600

+(16t − 24)x
164025

+ 2x
186624

+(8t − 12)x
236196

+ 6t
2

− 20t + 16 x
291600

+ 8x
419904

+(8t − 14)x
531441

+(8t − 16)x
656100

+ 6t
2

− 24t + 24 x
810000

.

(47)

Proof. We obtain the outcome with the edge partition in
Table 1. It follows from [2] that

HM1G5 G1, x(  � 

rs∈E G1( )

x
SG(r)+SG(s)( )

2

,

HM1G5 G1, x(  � x
(12+12)2

|E1 G1(t)( | + x
(12+24)2

|E2 G1(t)( | + x
(15+15)2

|E3 G1(t)( | + x
(15+24)2

|E4 G1(t)( |

+ x
(15+27)2

|E5 G1(t)( | + x
(18+24)2

|E6 G1(t)( | + x
(18+27)2

|E7 G1(t)( | + x
(18+30)2

|E8 G1(t)( |

+ x
(24+27)2

|E9 G1(t)( | + x
(27+27)2

|E10 G1(t)( | + x
(27+30)2

|E11 G1(t)( | + x
(30+30)2

|E12 G1(t)( |,

� x
(12+12)2

(6) + x
(12+24)2

(6) + x
(15+15)2

(4t − 4) + x
(15+24)2

(8)

+ x
(15+27)2

(16t − 24) + x
(18+24)2

(2) + x
(18+27)2

(8t − 12) + x
(18+30)2 6t

2
− 20t + 16 

+ x
(24+27)2

(8) + x
(27+27)2

(8t − 14) + x
(27+30)2

(8t − 16) + x
(30+30)2 6t

2
− 24t + 24 .

(48)

By doing some calculations, we obtain

HM1G5 G1, x(  � 6x
576

+(4t − 4)x
900

+ 6x
1296

+ 8x
1521

+(16t − 22)x
1764

+(8t − 12)x
2025

+ 6t
2

− 20t + 16 x
2304

+ 8x
2601

+(8t − 14)x
2916

+(8t − 16)x
3249

+ 6t
2

− 24t + 24 x
3600

.
(49)

Also, from [10],
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HM
a
2G5 G1, x(  � 

rs∈E G1( )

x
SG(r)×SG(s)( )

2

,

HM
a
2G5 G1, x(  � x

(12×12)2
|E1 G1(t)( | + x

(12×24)2
|E2 G1(t)( | + x

(15×15)2
|E3 G1(t)( |

+ x
(15×24)2

|E4 G1(t)( | + x
(15×27)2

|E5 G1(t)( | + x
(18×24)2

|E6 G1(t)( |

+ x
(18×27)2

|E7 G1(t)( | + x
(18×30)2

|E8 G1(t)( | + x
(24×27)2

|E9 G1(t)( |

+ x
(27×27)2

|E10 G1(t)( | + x
(27×30)2

|E11 G1(t)( | + x
(30×30)2

|E12 G1(t)( |,

� x
(12×12)2

(6) + x
(12×24)2

(6) + x
(15×15)2

(4t − 4) + x
(15×24)2

(8) + x
(15×27)2

(16t − 24)

+ x
(18×24)2

(2) + x
(18×27)2

(8t − 12) + x
(18×30)2 6t

2
− 20t + 16  + x

(24×27)2
(8)

+ x
(27×27)2

(8t − 14) + x
(27×30)2

(8t − 16) + x
(30×30)2 6t

2
− 24t + 24 .

(50)

By making some calculations, we obtain

HM2G5 G1, x(  � 6x
20736

+(4t − 4)x
50625

+ 6x
82944

+ 8x
129600

+(16t − 24)x
164025

+ 2x
186624

+(8t − 12)x
236196

+ 6t
2

− 20t + 16 x
291600

+ 8x
419904

+(8t − 14)x
531441

+(8t − 16)x
656100

+ 6t
2

− 24t + 24 x
810000

.

(51)

2.2. Results for the Rhombus Type of Oxide Networks.
Now, we are calculating fifth M-Zagreb topological indices
of the rhombus-type oxide network G2 � RHOX(t), where
t ∈ N.

Theorem 2.2.1. Let G2 � RHOX(t) be the rhombus-type
silicate network; then, the first and second fifth M-Zagreb
indices are equal to

M1G5 G2(  � 16 1 − 8t + 12t
2

 ,

M2G5 G2(  � 16(2t − 1)(48t − 35).
(52)

Proof. )e outcome can be obtained by using the edge
partition in Table 2.

By using equation [5],

M1G5 G2(  � 

rs∈E G2( )

SG(r) + SG(s)( ,

M1G5 G2(  � (6 + 6)|E1 G2(t)( | +(6 + 12)|E2 G2(t)( | +(8 + 12)|E3 G2(t)( | +(8 + 14)|E4 G2(t)( |

+(12 + 14)|E5 G2(t)( | +(14 + 14)|E6 G2(t)( | +(14 + 16)|E7 G2(t)( | +(16 + 16)|E8 G2(t)( |,

� (6 + 6)(2) +(6 + 12)(4) +(8 + 12)(4) +(8 + 14)(8t − 12) +(12 + 14)(8) +(14 + 14)

(8t − 14) +(14 + 16)(8t − 16) +(16 + 16) 6(t − 2)
2

 .

(53)
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By doing some calculations, we obtain

M1G5 G2(  � 16 1 − 8t + 12t
2

 . (54)

)us, from [6],

M2G5(G) � 
rs∈E(G)

SG(r) + SG(s)( ,

M2G5 G2(  � (6 + 6)|E1 G2(t)( | +(6 + 12)|E2 G2(t)( | +(8 + 12)|E3 G2(t)( | +(8 + 14)|E4 G2(t)( |

+(12 + 14)|E5 G2(t)( | +(14 + 14)|E6 G2(t)( | +(14 + 16)|E7 G2(t)( | +(16 + 16)|E8 G2(t)( |,

� (6 + 6)(2) +(6 + 12)(4) +(8 + 12)(4) +(8 + 14)(8t − 12) +(12 + 14)(8) +(14 + 14)

(8t − 14) +(14 + 16)(8t − 16) +(16 + 16) 6(t − 2)
2

 ,

(55)

By doing some calculations, we obtain

M2G5 G2(  � 16(2t − 1)(48t − 35). (56)

Theorem 2.2.2. Consider the rhombus-type oxide network
G2 � RHOX(t) for t ∈ N. 9en, the first and second general
fifth M-Zagreb indices are equal to

M
a
1G5 G2(  �

2a 3 × 23+4a
+ 21+a3a

+ 22+a5a
+ 4 × 9a

− 12 × 11a
+ 8 × 13a

− 141+a
− 16 × 15a

 +

2a
t −3 × 23+4a

+ 23+a7a
+ 8 × 11a

+ 8 × 15a
  + 3 × 21+5a

t
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

M
a
2G5 G2(  �

3 × 23+8a
+ 22+5a3a

− 24+5a7a
− 3 × 41+2a7a

+ 21+2a9a
+ 22+3a9a

− 141+2a
+ 81+a21a



+ t −3 × 23+8a
+ 23+4a7a

+ 23+5a7a
+ 23+2a49a

  + 3 × 21+8a
t
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(57)

Proof. Let G2 be the rhombus-type oxide network. Table 2
shows such an edge partition of RHOX(t). )us, from [9], it
follows that

M
a
1G5(G) � 

rs∈E(G)

SG(r) + SG(s)( 
a
. (58)

By using edge partitions in Table 2, we obtain

M
a
1G5 G2(  � (6 + 6)

a
|E1 G2(t)( | +(6 + 12)

a
|E2 G2(t)( | +(8 + 12)

a
|E3 G2(t)( | +(8 + 14)

a
|E4 G2(t)( |

+(12 + 14)
a
|E5 G2(t)( | +(14 + 14)

a
|E6 G2(t)( | +(14 + 16)

a
|E7 G2(t)( | +(16 + 16)

a
|E8 G2(t)( |,

� (6 + 6)
a
(2) +(6 + 12)

a
(4) +(8 + 12)

a
(4) +(8 + 14)

a
(8t − 12) +(12 + 14)

a
(8) +(14 + 14)

a

(8t − 14) +(14 + 16)
a
(8t − 16) +(16 + 16)

a 6(t − 2)
2

 .

(59)

By doing some calculations, we have

Table 2: Edge partition of rhombus-type oxide network (RHOX(t)) based on sum of degrees of end vertices of each edge.

(Sr, Ss) Number of edges

Where rs ∈ E(G2)

(6, 6) 2
(6, 12) 4
(8, 12) 4
(8, 14) 4(2t − 3)

Where rs ∈ E(G2)

(12, 14) 8
(14, 14) 2(4t − 7)

(14, 16) 8(t − 2)

(16, 16) 6(t − 2)2
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M
a
1G5 G2(  �

2a 3 × 23+4a
+ 21+a3a

+ 22+a5a
+ 4 × 9a

− 12 × 11a
+ 8 × 13a

− 141+a
− 16 × 15a

 +

2a
t −3 × 23+4a

+ 23+a7a
+ 8 × 11a

+ 8 × 15a
  + 3 × 21+5a

t
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (60)

From [12], we have

M
a
2G5(G) � 

rs∈E(G)

SG(r) + SG(s)( 
a
. (61)

By using edge partitions in Table 2, we obtain

M
a
2G5 G2(  � (6 + 6)

a
|E1 G2(t)( | +(6 + 12)

a
|E2 G2(t)( | +(8 + 12)

a
|E3 G2(t)( | +(8 + 14)

a
|E4 G2(t)( |

+(12 + 14)
a
|E5 G2(t)( | +(14 + 14)

a
|E6 G2(t)( | +(14 + 16)

a
|E7 G2(t)( | +(16 + 16)

a
|E8 G2(t)( |,

� (6 + 6)
a
(2) +(6 + 12)

a
(4) +(8 + 12)

a
(4) +(8 + 14)

a
(8t − 12) +(12 + 14)

a
(8) +(14 + 14)

a

(8t − 14) +(14 + 16)
a
(8t − 16) +(16 + 16)

a 6(t − 2)
2

 .

(62)

By doing some calculations, we have

M
a
2G5 G2(  �

3 × 23+8a
+ 22+5a3a

− 24+5a7a
− 3 × 41+2a7a

+ 21+2a9a
+ 22+3a9a

− 141+2a
+ 81+a21a

+t −3 × 23+8a
+ 23+4a7a

+ 23+5a7a
+ 23+2a49a

+ 3 × 21+8a
t
2

 
⎛⎝⎡⎢⎢⎣ ⎤⎥⎥⎦. (63)

Theorem 2.2.3. Consider the rhombus-type oxide network
G2 � RHOX(t) for t ∈ N. 9en, the first and second hyper
fifth M-Zagreb indices are equal to

HM
a
1G5 G2(  � 64 31 − 113t + 96t

2
 ,

HM
a
2G5 G2(  � 192 1915 − 3978t + 2048t

2
 .

(64)

Proof. Let G2 be the rhombus-type oxide network. Table 2
shows such an edge partition of RHOX(t). )us, from [13],
it follows that

HM1G5(G) � 
rs∈E(G)

SG(r) + SG(s)( 
2
. (65)

By using edge partitions in Table 2, we obtain

HM1G5 G2(  � (6 + 6)
2
|E1 G2(t)( | +(6 + 12)

2
|E2 G2(t)( | +(8 + 12)

2
|E3 G2(t)( | +(8 + 14)

2
|E4 G2(t)( |

+(12 + 14)
2
|E5 G2(t)( | +(14 + 14)

2
|E6 G2(t)( | +(14 + 16)

2
|E7 G2(t)( | +(16 + 16)

2
|E8 G2(t)( |,

� (6 + 6)
2
(2) +(6 + 12)

2
(4) +(8 + 12)

2
(4) +(8 + 14)

2
(8t − 12) +(12 + 14)

2
(8) +(14 + 14)

2

(8t − 14) +(14 + 16)
2
(8t − 16) +(16 + 16)

2 6(t − 2)
2

 .

(66)

By doing some calculations, we have

HM1G5 G2(  � 64 31 − 113t + 96t
2

 . (67)

From [14], we have

HM2G5(G) � 
rs∈E(G)

SG(r) + SG(s)( 
2
. (68)

By using edge partitions in Table 2, we obtain

HM2G5 G2(  � (6 + 6)
2
|E1 G2(t)( | +(6 + 12)

2
|E2 G2(t)( | +(8 + 12)

2
|E3 G2(t)( | +(8 + 14)

2
|E4 G2(t)( |

+(12 + 14)
2
|E5 G2(t)( | +(14 + 14)

2
|E6 G2(t)( | +(14 + 16)

2
|E7 G2(t)( | +(16 + 16)

2
|E8 G2(t)( |,

� (6 + 6)
2
(2) +(6 + 12)

2
(4) +(8 + 12)

2
(4) +(8 + 14)

2
(8t − 12) +(12 + 14)

2
(8) +(14 + 14)

2

(8t − 14) +(14 + 16)
2
(8t − 16) +(16 + 16)

2 6(t − 2)
2

 .

(69)
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By doing some calculations, we have

HM2G5 G2(  � 192 1915 − 3978t + 2048t
2

 . (70)

Theorem 2.2.4. Consider the rhombus-type silicate network
G2 � RHOX(t) for t ∈ N. 9en, the third M-Zagreb index is
equal to

M3G5 G2(  � (−48 + 64t). (71)

Proof. Let G2 be the rhombus-type oxide network. Table 2
shows such an edge partition of RHOX(t). )us, from [15],
it follows that

M3G5(G) � 
rs∈E(G)

SG(r) − SG(s)


. (72)

By using edge partitions in Table 2, we obtain

M3G5 G2(  � |6 − 6 E1 G2(t)( 
����

 + |6 − 12 E2 G2(t)( 
����

 + |8 − 12 E3 G2(t)( 
����

 + |8 − 14 E4 G2(t)( 
����

+

|12 − 14 E5 G2(t)( 
����

 + |14 − 14 E6 G2(t)( 
����

 + |14 − 16 E7 G2(t)( 
����

 + |16 − 16 E8 G2(t)( 
����

,

� |6 − 6|(2) + |6 − 12|(4) + |8 − 12|(4) + |8 − 14|(8t − 12) + |12 − 14|(8) + |14 − 14|

(8t − 14) + |14 − 16|(8t − 16) + |16 − 16| 6(t − 2)
2

 .

(73)

By doing some calculations, we have

M3G5 G2(  � (−48 + 64t). (74)

Corresponding to the above indices, we are going to
compute general fifth M-Zagreb polynomials for rhombus
type of oxide network RHOX(t).

Theorem 2.2.5. Let G2 � RHOX(t) be the rhombus-type
oxide network; then, general fifth M-Zagreb polynomials of
first and second type are equal to

M
a
1G5 G2, x(  � 2x

12a

+ 4x
18a

+ 4x
20a

+ 4(2t − 3)x
22a

+ 8x
26a

+ 2(4t − 7)x
28a

+ 8(t − 2)x
30a

+ 6(t − 2)
2
x
32a

,

M
a
2G5 G2, x(  � 2x

36a

+ 4x
72a

+ 4x
96a

+ 4(2t − 3)x
112a

+ 8x
168a

+ 2(4t − 7)x
196a

+ 8(t − 2)x
224a

+ 6(t − 2)
2
x
256a

.

(75)

Proof. We obtain the outcome with the edge partition in
Table 1. It follows from [1] that

M
a
1G5 G2, x(  � 

rs∈E G2( )

x
SG(r)+SG(s)( )

a

,

M
a
1G5 G2, x(  � x

(6+6)a

|E1 G2(t)( | + x
(6+12)a

|E2 G2(t)( | + x
(8+12)a

|E3 G2(t)( | + x
(8+14)a

|E4 G2(t)( |

+ x
(12+14)a

|E5 G2(t)( | + x
(14+14)a

|E6 G2(t)( | + x
(14+16)a

|E7 G2(t)( | + x
(16+16)a

|E8 G2(t)( |,

� x
(6+6)a

(2) + x
(6+12)a

(4) + x
(8+12)a

(4) + x
(8+14)a

(8t − 12) + x
(12+14)a

(8) + x
(14+14)a

(8t − 14) + x
(14+16)a

(8t − 16) + x
(16+16)a

6(t − 2)
2

 .

(76)

By doing some calculations, we obtain

M
a
1G5 G2, x(  � 2x

12a

+ 4x
18a

+ 4x
20a

+ 4(2t − 3)x
22a

+ 8x
26a

+ 2(4t − 7)x
28a

+ 8(t − 2)x
30a

+ 6(t − 2)
2
x
32a

. (77)

Also, from [3],

Journal of Mathematics 13



M
a
2G5 G2, x(  � 

rs∈E G2( )

x
SG(r)+SG(s)( )

a

,

M
a
2G5 G2, x(  � x

(6+6)a

|E1 G2(t)( | + x
(6+12)a

|E2 G2(t)( | + x
(8+12)a

|E3 G2(t)( | + x
(8+14)a

|E4 G2(t)( |

+ x
(12+14)a

|E5 G2(t)( | + x
(14+14)a

|E6 G2(t)( | + x
(14+16)a

|E7 G2(t)( | + x
(16+16)a

|E8 G2(t)( |,

� x
(6+6)a

(2) + x
(6+12)a

(4) + x
(8+12)a

(4) + x
(8+14)a

(8t − 12) + x
(12+14)a

(8) + x
(14+14)a

(8t − 14) + x
(14+16)a

(8t − 16) + x
(16+16)a

6(t − 2)
2

 .

(78)

By making some calculations, we obtain

M
a
2G5 G2, x(  � 2x

36a

+ 4x
72a

+ 4x
96a

+ 4(2t − 3)x
112a

+ 8x
168a

+ 2(4t − 7)x
196a

+ 8(t − 2)x
224a

+ 6(t − 2)
2
x
256a

.
(79)

Corresponding to the above indices, we are going to
compute fifth M-Zagreb polynomials for rhombus-type
oxide network RHOX(t).

Theorem 2.2.6. Let G2 � RHOX(t) be the rhombus-type
oxide network; then, fifth M-Zagreb polynomials of first and
second type are equal to

M
a
1G5 G2, x(  � 2x

12
+ 4x

18
+ 4x

20
+ 4(2t − 3)x

22
+ 8x

26
+ 2(4t − 7)x

28
+ 8(t − 2)x

30
+ 6(t − 2)

2
x
32

,

M2G5 G2, x(  � 2x
36

+ 4x
72

+ 4x
96

+ 4(2t − 3)x
112

+ 8x
168

+ 2(4t − 7)x
196

+ 8(t − 2)x
224

+ 6

(t − 2)
2
x
256

.

(80)

Proof. We obtain the outcome with the edge partition in
Table 2. It follows from [16] that

M1G5 G2, x(  � 

rs∈E G2( )

x
SG(r)+SG(s)( ),

M1G5 G2, x(  � x
(6+6)

|E1 G2(t)( | + x
(6+12)

|E2 G2(t)( | + x
(8+12)

|E3 G2(t)( | + x
(8+14)

|E4 G2(t)( |

+ x
(12+14)

|E5 G2(t)( | + x
(14+14)

|E6 G2(t)( | + x
(14+16)

|E7 G2(t)( | + x
(16+16)

|E8 G2(t)( |,

� x
(6+6)

(2) + x
(6+12)

(4) + x
(8+12)

(4) + x
(8+14)

(8t − 12) + x
(12+14)

(8) + x
(14+14)

(8t − 14) + x
(14+16)

(8t − 16) + x
(16+16) 6(t − 2)

2
 .

(81)

By doing some calculations, we obtain

M
a
1G5 G2, x(  � 2x

12
+ 4x

18
+ 4x

20
+ 4(2t − 3)x

22
+ 8x

26
+ 2(4t − 7)x

28
+ 8(t − 2)x

30
+ 6(t − 2)

2
x
32

. (82)

Also, from [4],
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M2G5 G2, x(  � 

rs∈E G2( )

x
SG(r)+SG(s)( ),

M2G5 G2, x(  � x
(6×6)

|E1 G2(t)( | + x
(6×12)

|E2 G2(t)( | + x
(8×12)

|E3 G2(t)( | + x
(8×14)

|E4 G2(t)( |+

x
(12×14)

|E5 G2(t)( | + x
(14×14)

|E6 G2(t)( | + x
(14×16)

|E7 G2(t)( | + x
(16×16)

|E8 G2(t)( |,

� x
(6×6)

(2) + x
(6×12)

(4) + x
(8×12)

(4) + x
(8×14)

(8t − 12) + x
(12×14)

(4) + x
(14×14)

(8t − 14)

+ x
(14×16)

(8t − 16) + x
(16×16) 6(t − 2)

2
 .

(83)

By making some calculations, we obtain

M2G5 G2, x(  � 2x
36

+ 4x
72

+ 4x
96

+ 4(2t − 3)x
112

+ 8x
168

+ 2(4t − 7)x
196

+ 8(t − 2)x
224

+ 6(t − 2)
2
x
256

.
(84)

Theorem 2.2.7. Let G2 � RHOX(t) be the rhombus-type
oxide network; then, hyper-fifthM-Zagreb polynomials of first
and second type are equal to

HM1G5 G2, x(  � 2x
144

+ 4x
324

+ 4x
400

+ 4(2t − 3)x
484

+ 8x
676

+ 2(4t − 7)x
784

+ 8(t − 2)x
900

+ 6(t − 2)
2
x
1024

, HM2G5 G2, x( 

� 2x
1296

+ 4x
5184

+ 4x
9216

+ 4(2t − 3)x
12544

+ 8x
28224

+ 2(4t − 7)x
38416

+ 8(t − 2)x
50176

+ 6(t − 2)
2
x
65536

.

(85)

Proof. We obtain the outcome with the edge partition in
Table 2. It follows from [2] that

HM1G5 G2, x(  � 

rs∈E G2( )

x
SG(r)+SG(s)( )

2

,

HM1G5 G2, x(  � x
(6+6)2

|E1 G2(t)( | + x
(6+12)2

|E2 G2(t)( | + x
(8+12)2

|E3 G2(t)( | + x
(8+14)2

|E4 G2(t)( |

+ x
(12+14)2

|E5 G2(t)( | + x
(14+14)2

|E6 G2(t)( | + x
(14+16)2

|E7 G2(t)( | + x
(16+16)2

|E8 G2(t)( |

� x
(6+6)2

(2) + x
(6+12)2

(4) + x
(8+12)2

(4) + x
(8+14)2

(8t − 12) + x
(12+14)2

(8)

+ x
(14+14)2

(8t − 14) + x
(14+16)2

(8t − 16) + x
(16+16)2 6(t − 2)

2
 .

(86)

By doing some calculations, we obtain

HM1G5 G2, x(  � 2x
144

+ 4x
324

+ 4x
400

+ 4(2t − 3)x
484

+ 8x
676

+ 2(4t − 7)x
784

+ 8(t − 2)x
900

+ 6(t − 2)
2
x
1024

.
(87)

Also, from [10],
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HM
a
2G5 G2, x(  � 

rs∈E G2( )

x
SG(r)+SG(s)( )

2

,

HM2G5 G2, x(  � x
(6×6)2

|E1 G2(t)( | + x
(6×12)2

|E2 G2(t)( | + x
(8×12)2

|E3 G2(t)( | + x
(8×14)2

|E4 G2(t)( |+

x
(12×14)2

|E5 G2(t)( | + x
(14×14)2

|E6 G2(t)( | + x
(14×16)2

|E7 G2(t)( | + x
(16×16)2

|E8 G2(t)( |,

� x
(6×6)2

(2) + x
(6×12)2

(4) + x
(8×12)2

(4) + x
(8×14)2

(8t − 12) + x
(12×14)2

(4) + x
(14×14)2

(8t − 14)

+ x
(14×16)2

(8t − 16) + x
(16×16)2 6(t − 2)

2
 .

(88)

By making some calculations, we obtain

HM2G5 G2, x(  � 2x
1296

+ 4x
5184

+ 4x
9216

+ 4(2t − 3)x
12544

+ 8x
28224

+ 2(4t − 7)x
38416

+ 8(t − 2)x
50176

+ 6(t − 2)
2
x
65536

.
(89)

3. Conclusion

In this study, we computed sum of degree-based indices for
RHSL(t) and RHOX(t) graphs of rhombus oxide and
silicate structures. We also computed certain sum of degree-
based polynomials such as fifth M-Zagreb, fifth hyper
M-Zagreb, and generalized fifth M-Zagreb indices for
RHSL(t) and RHOX(t) graphs of rhombus oxide and
silicate structures. )ese facts may be useful for people
working in computer science and chemistry fields who
encounter chemical networks. )ese results can also play a
vital role in the determination of the significance of silicate
and oxide networks. Like certain other topological indices,
determining the representations of derived graphs like these
is an open question.
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A modular irregular graph is a graph that admits a modular irregular labeling. Amodular irregular labeling of a graph G of order n

is a mapping of the set of edges of the graph to 1, 2, . . . , k{ } such that the weights of all vertices are different.)e vertex weight is the
sum of its incident edge labels, and all vertex weights are calculated with the sum modulo n. )e modular irregularity strength is
the minimum largest edge label such that a modular irregular labeling can be done. In this paper, we construct a modular irregular
labeling of two classes of graphs that are biregular; in this case, the regular double-star graph and friendship graph classes are
chosen. Since the modular irregularity strength of the friendship graph also holds the minimal irregularity strength, then the
labeling is also an irregular labeling with the same strength as the modular case.

1. Introduction

Graph labeling is a mapping of a set of numbers, called the
labels, to the graph elements, usually vertices or edges [1].
Generally, the label is a positive integer. )ere are several
labelings that have been developed; among them are ir-
regular labeling and modular irregular labeling. )e reader
can check the dynamic survey of graph labeling by Gallian to
obtain more information on various labeling [1]. In 1988,
irregular labeling was first introduced by Chartrand et al. [2].
To date, there have been studies on the irregular labelings of
certain graphs. )e terminology not included in this paper
can be found in [3].

An irregular labeling is defined as a labeling
f: E⟶ 1, 2, . . . , k{ } with k as a positive integer, such that
wtf(x) � (y∈N(x))f(xy) is different for all vertices, where
N(x) is a neighbour of vertex x. )e irregularity strength
s(G) of a graph G is the minimum value of k for which G has
irregular labeling with labels at most k. )e irregularity
strength s(G) of a graph G is defined only for graphs
containing at most one isolated vertex and no connected

component of order 2. )e lower bound of the irregularity
strength of a graph G is s(G)≥max1≤i≤△ ni + i − 1/i , where
ni vertices with degree i, as stated in)eorem 1. For a regular
graph G, Przyboylo [4] has proved an upper bound of an
irregularity strength is s(G)< 16n/d + 6. For tree graphs,
Aigner and Triesch [5] proved that the irregularity strength
of any tree with no vertices of degree two is equal to the
number of its leaves. Ferrara et al. [6] later proved that if the
tree T has every two vertices of degree not equal to two at a
distance of at least eight with number of leaves at least three,
then s(T) � n1 + n2/2, where n1 is the number of leaves and
n2 is the number of vertices of degree two. )e survey of
irregular labeling has been done by Bača et al. [7]. After this
survey paper, there are still many results which have been
found. See Gallian’s survey, for the update [1].

Modular irregular labeling of a graph is a mapping
φ: E(G)⟶ 1, 2, . . . , k{ } so that a bijective function
wtφ(x) � (y∈N(x))φ(xy) can be defined and has different
values. )e set of the weights of the vertices is a group of
integers modulo n. )e minimum k such that this kind of
labeling exists is called themodular irregularity strength of G
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and denoted by ms(G). Bača et al. [8] determined the
modular irregularity strength of path, star, triangular graph,
cycle, and gear graphs. Muthugurupackiam et al. [9] proved
the modular irregularity of the tadpole graph and double-
cycle graph. Later, Bača et al. [10] proved the modular ir-
regularity strength of the fan graph. In this paper, we
construct the modular irregular labeling and determine its
modular irregularity strength of regular double-star graph
and friendship graph.

2. Known Results

)ere are some known results that we will use to prove the
modular irregularity strength of the star and friendship
graphs that we gave in this section. A lower bound on the
irregularity strength is already known by Chartrand et al. as
stated in the following theorem.

Theorem 1 (see [2]). Let G be a connected graph with an
ordermore than 2, which has ni vertices with degree i. ,en,

s(G)≥ max
1≤i≤Δ(G)

ni − 1
i

+ 1 . (1)

)e relation between the irregularity strength and
modular irregularity strength has been known and presented
in the following theorem.

Theorem 2 (see [8]). Let G be a graph without a component
of order ≤2. ,en,

s(G)≤ms(G), (2)

Not all graphs can have modular irregular labeling. In the
following theorem, Bača et al. give a requirement of a graph
that cannot have a modular irregular labeling, denoted by
ms(G) �∞.

Theorem 3 (see [8]). If G is a graph of order n,
n ≡ 2(mod 4), then G has no modular irregular k-labeling,
i.e., ms(G) �∞.

3. New Results

)is section gives two results on a modular irregular labeling
on a regular double-star graph and a friendship graph. Aman
and Togni [5] and Ferrara et al. [6] proved the irregularity
strength of trees family. )e modular irregularity strength of
the family of trees which is already known is path and star
[8]. Since we consider biregular graphs in this paper, then
the regular trees family that we choose is regular double-
stars.

A regular double-star graph Sk,k is a graph built from two
copies of a star graph Sk, and then, we connect the two center
vertices of the star. Note that a star Sk has k + 1 vertices.
)us, Sk,k has 2k + 2 vertices and 2k + 1 edges.

Theorem 4. Let Sk,k, k≥ 1 be a regular double-star graph.
,en,

ms Sk,k  �
2k, k is odd.

∞, k is even.
 (3)

Proof. Let x and y be the two centers of the double-star
graph. Let xi, i � 1, . . . , k, be the leaves of the center vertex x

and yi, i � 1, . . . , k, be the leaves of the center vertex y.

For k even, |V(Sk,k)| � 2k + 2 ≡ 2(mod 4). )en, fol-
lowing )eorem 3, the graph does not have a modular ir-
regular labeling.

For k odd, label the edges as follows.
For 1≤ i≤ k,

φ xxi(  �
2i − 1, i odd,

2i, i even,

⎧⎨

⎩

φ yyi(  �
2i, i odd,

2i − 1, i even,

⎧⎨

⎩

(4)

φ(xy) �
3k + 1

2
< 2k. (5)

)e pendant leaves should have the different labels; then,
the minimal number of labels is 2k. )e maximal label is at
φ(yyk) � 2k. )us, φ is a 2k-labeling. Its leaves weight will be
elements of 1, 2, . . . , 2k{ }, wtφ(x) ≡ 2k + 1(mod(2k + 2))

and wtφ(y) ≡ 0(mod(2k + 2)). All vertex weights are dif-
ferent. Thus, ms(Sk,k) � 2k for k odd.

A friendship graph Fn is a graph with the vertex set
m, x1, ..., xn, y1, ..., yn  and the edge set is mx1, . . . ,

mxn, my1, . . . myn, x1y1, . . . , xnyn}. )us, the graph Fn has
2n + 1 vertices and 3n edges. Since the graph has
|V(G)| ≠ 2(mod 4), then based on )eorem 3, we have a
possibility to find the modular irregularity strength of Fn. In
the following lemma, we have a lower bound of ms(Fn). □

Lemma 1. Let Fn be a friendship graph with n≥ 2. ,en,

ms Fn( ≥ n + 1. (6)

Proof. A friendship graph Fn has 2n vertices with degree two
and one vertex with degree 2n. Based on)eorem 1, we have

s Fn( ≥ max
1≤i≤2n

2n − 1
2

+ 1,
1 − 1
2n

+ 1 ,

s Fn( ≥ n +
1
2
,

s Fn( ≥ n + 1 since s Fn( is an integer( .

(7)

)en, based on )eorem 2, we obtain

ms Fn( ≥ s Fn( ≥ n + 1.

ms Fn( ≥ n + 1.
(8)

A modular irregular labeling can be constructed and
ms(Fn) can be determined, and the conclusion is written in
the following theorem. □
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Theorem 5. Let Fn be a friendship graph with n≥ 2. ,en, ms
(Fn) � n + 1.

Proof. We divide the proof in 4 cases. In each case, we define
the edge labeling φ: E(G)⟶ 1, 2, . . . , 3n{ } and show that ϕ
is an (n + 1)-labeling. )en, in the second step, we show that
the vertex weights are all different. □

3.1. Case n ≡ 0(mod 4)

Label the edges as follows.

φ xiyi(  �

2, i � 1,

i + 2, i � 2, 3, . . . ,
n

2
and i>

n

2
, i odd,

i + 1, i>
n

2
, i even,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ xim(  �

1, i � 1,

i − 1, i � 2, 3, . . . ,
n

2
and i>

n

2
, i odd,

i, i>
n

2
, i even,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ yim(  �

2, i � 1,

i, i � 2, 3, . . . ,
n

2
and i>

n

2
, i odd,

i + 1, i>
n

2
, i even.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

(a) Let φ be an edge labeling of the friendship graph Fn

that is defined above; we can obtain
max φ(xiyi),φ(xim), φ(yim): 1≤ i≤ n  � n + 1.

)en, it is proved that the edge labeling φ is an
(n + 1)-labeling.

(b) )e edges adjacent to xi are xiyi and xim so that for
i � 1

wtφ x1(  � φ x1y1(  + φ x1m(  � 2 + 1 � 3, (10)

for i � 2, 3, . . . , n/2 and i> n/2, i odd,

wtφ xi(  � φ xiyi(  + φ xim(  � 2i + 1, (11)

for i> n/2, i even,

wtφ xi(  � φ xiyi(  + φ xim(  � 2i + 1. (12)

)us, we have the vertex weight, wtφ(xi) �

2i + 1, i � 1, 2, . . . , n.

(c) )e edges adjacent to yi is xiyi and yim so that for
i � 1,

wtφ y1(  � φ x1y1(  + φ y1m(  � 2 + 2 � 4. (13)

For i � 2, 3, . . . , n/2 and i> n/2, i odd,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + 2 + i � 2i + 2.
(14)

For i> n/2, i even,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + 1 + i + 1 � 2i + 2.
(15)

)us, we have the vertex weight, wtφ(yi) �

2i + 2, i � 1, 2, . . . , n.

(d) )e edges adjacent to m are xim and yim so that

wtφ(m) � 
n

i�1
φ xim(  + φ yim( ( 

� 1 + 

n

2

i�2
(i − 1) + 

n

4

i�1

n

2
+(2i − 1) − 1  + 

n

4

i�1

n

2
+ 2i 

+ 2 + 

n

2

i�2
i + 

n

4

i�1

n

2
+(2i − 1)  + 

n

4

i�1

n

2
+ 2i + 1 

� n
2

+
n

2
+ 2 �(2n + 1)

n

2
+ 2 ≡ 2(mod(2n + 1)).

(16)

3.2. Case n ≡ 1(mod 4), n> 1

Label the edges as follows.

φ xiyi(  �

i +1, i � 1,2, . . . ,
n +3
2

and i>
n +3
2

, iodd.

i +2, i>
n +3
2

, ieven.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ xim(  �

i, i � 1,2, . . . ,
n +3
2

and i>
n +3
2

, iodd.

i −1, i>
n +3
2

, ieven.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ yim(  �

i +1, i � 1,2, . . . ,
n +3
2

and i>
n +3
2

, iodd.

i, i>
n +3
2

, ieven.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

(a) Let φ be an edge labeling of the friendship graph Fn

that is defined above; we can have max
{φ(xiyi), φ(xim),φ(yim): 1≤ i≤ n � n + 1.
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)en, it is proved that the edge labeling φ is an
(n + 1)-labeling for the graph Fn.

(b) )e edges adjacent to xi is xiyi and xim so that, for
i � 1, 2, . . . , n + 3/2 and i> n + 3/2, i odd,

wtφ xi(  � φ xiyi(  + φ xim( 

� i + 1 + i � 2i + 1.
(18)

For i> n + 3/2, i even,

wtφ xi(  � φ xiyi(  + φ xim( 

� i + 2 + i − 1 � 2i + 1.
(19)

)en, we have the vertex weight, wtφ(xi) �

2i + 1, i � 1, 2, . . . , n.

(c) )e edges adjacent to yi are xiyi and yim so that, for
i � 1, 2, . . . , n + 3/2 and i> n + 3/2, i odd,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + 1 + i + 1 � 2i + 2.
(20)

For i> n + 3/2, i even,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + 2 + i � 2i + 2.
(21)

)en, we obtain the vertex weight wtφ(yi) �

2i + 2, i � 1, 2, . . . , n.

(d) )e edges adjacent to m are xim and yim so that

wtφ(m) � 
n

i�1
φ xim(  + φ yim( ( 

� 

n + 3
2

i�1
i + 

n − 1
4

i�1

n + 3
2

+(2i − 1) 

+ 

n − 5
4

i�1

n + 3
2

+ 2i − 1 

+ 

n + 3
2

i�1
(i + 1) + 

n − 1
4

i�1

n + 3
2

+(2i − 1) + 1 

+ 

n − 5
4

i�1

n + 3
2

+ 2i 

� (2n + 1)
n + 1
2

+ 2 ≡ 2(mod (2n + 1)).

(22)

3.3. Case n ≡ 2(mod 4)

Label the edges as follows:

φ xiyi(  �

i, i � 1, 2, . . . ,
n

2
,

i + 1 i>
n

2
, i even,

i + 2 i>
n

2
, i odd,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ xim(  �

i, i � 1, 2, . . . ,
n

2
,

i − 1 i>
n

2
, i even,

i − 2 i>
n

2
, i odd.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

(a) Let φ be an edge labeling of the friendship graph Fn

that is defined above; we have max
{φ(xiyi), φ(xim),φ(yim): 1≤ i≤ n � n + 1.

)en, it is proved that the edge labeling φ is an
(n + 1)-labeling for the graph Fn.

(b) )e edges adjacent to xi are xiyi and xim so that, for
i � 1, 2, . . . , n/2,

wtφ xi(  � φ xiyi(  + φ xim( 

� i + i � 2i.
(24)

For i> n/2, i even,

wtφ xi(  � φ xiyi(  + φ xim( 

� i + 1 + i − 1 � 2i.
(25)

For i> n/2, i odd,

wtφ xi(  � φ xiyi(  + φ xim( 

� i + 2 + i − 2 � 2i.
(26)

)en, we obtain the vertex weight wtφ(xi) � 2i,

i � 1, 2, . . . , n.

(c) )e edges adjacent to yi are xiyi and yim so that, for
i � 1, 2, . . . , n/2,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + i + 1 � 2i + 1.
(27)

For i> n/2, i even,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + 1 + i � 2i + 1.
(28)

For i> n/2, i odd,
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wtφ yi(  � φ xiyi(  + φ yim( 

� i + 2 + i − 1 � 2i + 1.
(29)

)en, we conclude that the vertex weight
wtφ(yi) � 2i + 1, i � 1, 2, . . . , n.

(d) )e edges adjacent to m are xim and yim so that

wtφ(m) � 

n

i�1
φ xim(  + φ yim( ( 

� 

n

2

i�1
i + 

n+2
4

i�1

n

2
+(2i − 1) − 1  + 

n−2
4

i�1

n

2
+ 2i − 2 

+ 

n

2

i�1
(i + 1) + 

n+2
4

i�1

n

2
+(2i − 1)  + 

n−2
4

i�1

n

2
+ 2i − 1 

wtφ(m) � (2n + 1)
n

2
+ 1 ≡ 1(mod (2n + 1)).

(30)

3.4. Case n ≡ 3 (mod 4), n> 3

Label the edges as follows:

φ xiyi(  �

i, i � 1, 2, . . . ,
n+3
2

and i>
n+3
2

, i even,

i + 1, i>
n+3
2

, i odd,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ xim(  �

i, i � 1, 2, . . . ,
n+3
2

and i>
n+3
2

, i even,

i − 1, i>
n+3
2

, i odd,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ yim(  �

i + 1, i � 1, 2, . . . ,
n+3
2

and i>
n+3
2

, i even,

i, i>
n+3
2

, i odd.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(31)

(a) Let φ be an edge labeling of the friendship graph Fn

that is defined above; we have max
{φ(xiyi),φ(xim), φ(yim): 1≤ i≤ n � n + 1.

)en, it is proved that the edge labeling φ is an
(n + 1)-labeling for the graph Fn.

(b) )e edges adjacent to xi are xiyi and xim so that, for
i � 1, 2, . . . , n + 3/2 and i> n + 3/2, i even,

wtφ xi(  � φ xiyi(  + φ xim( 

� i + i � 2i.
(32)

For i> n + 3/2, i odd,

wtφ xi(  � φ xiyi(  + φ xim( 

� i + 1 + i − 1 � 2i.
(33)

)en, we have the vertex weight wtφ(xi) � 2i,

i � 1, 2, . . . , n.

(c) )e edges adjacent to yi are xiyi and yim so that, for
i � 1, 2, . . . , n + 3/2 and i> n + 3/2, i even,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + i + 1 � 2i + 1.
(34)

For i> n + 3/2, i odd,

wtφ yi(  � φ xiyi(  + φ yim( 

� i + 1 + i � 2i + 1.
(35)

)en, we can conclude that the vertex weight
wtφ(yi) � 2i + 1, i � 1, 2, . . . , n.

(d) )e edges adjacent to m are xim and yim so that

wtφ(m) � 

n

i�1
φ xim(  + φ yim( ( 



n + 3
2

i�1
i + 

n − 3
4

i�1

n + 3
2

+(2i − 1) 

+ 

n − 3
4

i�1

n + 3
2

+ 2i − 1 

+ 

n + 3
2

i�1
(i + 1) + 

n − 3
4

i�1

n + 3
2

+(2i − 1) + 1 

+ 

n − 3
4

i�1

n + 3
2

+ 2i 

wtφ(m) � (2n + 1)
n + 1
2

+ 1 ≡ 1mod (2k(2n + 1)).

(36)

In all cases, we proved that the vertex weights are all
different and the maximum label is n + 1. By combining the
results (ms(Fn)≤ n + 1) and Lemma 1 (ms(Fn)≥ n + 1), we
conclude that ms(Fn) � n + 1, for n≥ 2.

From)eorem 5, we have ms(Fn) � n + 1 is equal to the
lower bound of the irregularity strength from )eorem 1.
We can conclude that the friendship graph has irregular
labeling with s(Fn) � n + 1.

Corollary 1. ,e friendship graph Fn has the irregularity
strength s(Fn) � n + 1 for n≥ 2.
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4. Conclusion

In this paper, we prove the modular irregularity strength of
two graphs, which are the regular double-star graph Sk,k, that
has ms(Sk,k) � 2k, for k≥ 1 and k is odd and for the
friendship graph Fn that has ms(Fn) � n + 1 and
s(Fn) � n + 1, for n≥ 2. )ere are still many families of
graphs that can be explored to determine its modular ir-
regularity strength.
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Feňovčı́ková, “)e irregularity and modular irregularity
strength of fan graphs,” Symmetry, vol. 13, no. 4, p. 605, 2021.

6 Journal of Mathematics



Research Article
Research on Energy Efficiency Management of Forklift Based on
Improved YOLOv5 Algorithm

Zhenyu Li,1 Ke Lu,2 Yanhui Zhang,3 Zongwei Li ,1 and Jia-Bao Liu 4

1School of Economics and Management, Shanghai Institute of Technology, Shanghai 200030, China
2School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China
3Business School, East China University of Science and Technology, Shanghai 200030, China
4School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Correspondence should be addressed to Zongwei Li; lzw0118@163.com

Received 6 September 2021; Revised 28 September 2021; Accepted 6 December 2021; Published 21 December 2021

Academic Editor: Clemente Cesarano

Copyright © 2021 Zhenyu Li et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As an important tool for loading, unloading, and distributing palletized goods, forklifts are widely used in different links of
industrial production process. However, due to the rapid increase in the types and quantities of goods, item statistics have become
a major bottleneck in production. Based on machine vision, the paper proposes a method to count the amount of goods loaded
and unloaded within the working time limit to analyze the efficiency of the forklift. )e proposed method includes the data
preprocessing section and the object detection section. In the data preprocessing section, through operations such as framing and
clustering the collected video data and using the improved image hash algorithm to remove similar images, a new dataset of
forklift goods was built. In the object detection section, the attention mechanism and the replacement network layer were used to
improve the performance of YOLOv5. )e experimented results showed that, compared with the original YOLOv5 model, the
improved model is lighter in size and faster in detection speed without loss of detection precision, which could also meet the
requirements for real-time statistics on the operation efficiency of forklifts.

1. Introduction

With the continuous development of intelligent logistics
centered on industrial production, the demand for machine
vision is increasing. In the industrial logistics system,
forklifts play an important role in transferring and storing
goods. However, in most factories, due to the huge number
of forklifts and the wide variety of goods, the main im-
pediment to the traditional management methods is the
inability to effectively evaluate the efficiency of forklifts.

In recent years, intelligent logistics applying machine
vision and deep learning has become a research hotspot. As a
basic research direction in intelligent logistics, object
detection has a profound impact on energy efficiency
management [1]. Himstedt and Maehle [2] proposed a
forklift detection solution based on 3D camera and SVM
classifier, which could accurately detect the object. However,
the distance range and size range of the object needed to be
preset, and the generalization ability of the model was poor.

Mohamed et al. [3] combined 2D laser rangefinder and
Faster R-CNN model for pallet localisation. Although the
accuracy was high, the efficiency was low. Li et al. [4] used
TITAN X GPU to detect forklift pallets. )e detection speed
was fast, but the hardware cost was expensive and the
embedding effect was poor. Iinuma et al. [5] used single shot
multibox detector (SSD) as a detection model. Although the
model had goodmobility, the detection accuracy was limited
due to the insufficient features. In summary, although a large
number of scholars have done extensive research on forklift
object detection, in real industrial production, data collec-
tion, hardware selection, and model selection have limited
the application of deep learning.

To address the above problems, achieve a balance re-
gardless of speed, accuracy, and model size, and adapt to
complex and diverse operating environments, this research
improves the backbone network structure of YOLOv5 and
uses a lighter feature extraction network to reduce the re-
dundancy features. In this process, the introduction of

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5808221, 9 pages
https://doi.org/10.1155/2021/5808221

mailto:lzw0118@163.com
https://orcid.org/0000-0003-1682-6096
https://orcid.org/0000-0002-9620-7692
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5808221


mechanism module maintains the detection accuracy. )e
experimental results showed that our model performed well
on the self-built complex scene forklift goods dataset. )e
key contributions of this work are as follows:

(i) )e YOLOv5 model is improved by combining the
GhostNet module and squeeze-and-excitation at-
tentionmechanism, and then the improvedmodel is
used to detect forklifts.

(ii) )e improved image hash algorithm based on PCA
is used to remove similar images in image pre-
processing section.

(iii) Compared with the original model, the improved
YOLOv5 model reduces the amount of calculation
by 2/3 while not reducing the precision.

(iv) )e improved YOLOv5 model is more robust and
effective for mobile edge computing devices.

2. Related Work

As one of the core segments in the domain of machine
vision, object detection is a technology which digs the object
potential category and location information from an image.
Since there are many types of objects, the size, position, and
posture of a similar object in the image are often different,
and the interference caused by different imaging conditions
also brings some difficulties, so object detection is full of
challenges.

Before the widespread application of deep learning,
traditional algorithms for object detection determined the
object location and size by traversing the image using sliding
windows of different sizes and simultaneously extracted
artificially defined robust features, for instance, scale-in-
variant feature transform (SIFT) [6] and histogram of ori-
ented gradients (HOG) [7]. )erefore, object detection
combined with deep learning uses convolutional neural
network to extract features to break the limitations of
manual feature extraction.

2.1. Faster R-CNN. Faster R-CNN [8], originated from
R-CNN [9], is widely utilized in object detection work. In
R-CNN, 4 independent steps are used: candidate regions
generation by selective search, feature extraction by CNN,
SVM classification, and bounding box regression, which
consumes a lot of time. Fast R-CNN [10] reduces the time
consumed and improves accuracy through operations such
as mapping candidate regions to features, ROI pooling, and
FC layer. Since Fast R-CNN is not a true end-to-end work,
Faster R-CNN unifies the 4 independent steps into one
neural network. After that, on the basis of Faster R-CNN,
many scholars proposed a variety of object detection al-
gorithms to adapt to different tasks. )e method of in-
creasing the center loss function to reduce the intra-class
variation of the learned features performed well in face
detection [11]. Zhong et al. [12] replaced the bounding box
regression module with the LocNet-based positioning
module, which improved the positioning precision of nat-
ural scene text detection. Although the accuracy of these

models has gradually reached the accuracy limit of machine
vision tasks, the scale of the models has also grown expo-
nentially. An excessive model size leads to higher require-
ments for hardware, which causes great resistance to achieve
real-time detection in embedded devices.

2.2. YOLOv5. Compared with the R-CNN series, the most
significant advantage of the YOLO (You Only Look Once)
series is that they have faster detection speed. Redmon et al.
[13] first proposed YOLOv1, which unified object classifi-
cation and bounding box regression into a regression
problem.)is frame designmakes YOLOv1 extremely fast in
image processing, but compared with R-CNN, YOLOv1 has
a larger coordinate error. )us, Redmon and Farhadi [14]
proposed YOLOv2, which improved the detection accuracy
by improving the network structure and training methods.
Later, on the basis of YOLOv2, Redmon and Farhadi [15]
further proposed YOLOv3 by expanding the network to
Darknet-53, which significantly improved the ability of small
object recognition.

As the detection accuracy of YOLOv3 still has a gap with
Faster R-CNN, Bochkovskiy et al. [16] proposed YOLOv4.
YOLOv4 combines different detection techniques to achieve
the best counterpoise between detection precision and in-
ference speed based on amassive convincing experiments. In
the same year, Ultralytics released YOLOv5. YOLOv5 is a
classic representative of one-stage object detection algo-
rithm, including four parts: Input, Backbone, Neck, and
Prediction. In Input, YOLOv5, like YOLOv4, uses the
mosaic method to enhance data, which is very effective for
small object detection. Compared with YOLOv4, YOLOv5
not only uses Cross Stage Partial Network (CSPNet) [17] for
Backbone but also uses the same for Neck to enhance feature
fusion. It is also worth mentioning that YOLOv5 uses Path
Aggregation Network (PAN) [18] and Feature Pyramid
Network (FPN) [19] operations on Neck. FPN conveys
powerful semantic features through upsampling, and PAN is
used to convey dense positioning features.

YOLOv5 initially provides four object detection network
models: yolov5s, yolov5m, yolov5l, and yolov5x, which
contain different network depths and feature map widths.
From these models, yolov5s shows its character for the
lightest size and the fastest speed. On the contrary, it has the
lowest average precision (AP), but it is ideal for detecting
large objects. For satisfying the demands for real-time object
detection on the basic processor, it is meaningful to further
improve the YOLOv5 model.

3. Method

First, a monocular 2D camera is deployed on the top of the
forklift cab to photograph the goods on the pallet in front of
the forklift. After obtaining the video stream of the actual
scene, we intercept the images at the same number of frames
to form an image resource library. )en, the images are
clustered, and an improved image hash algorithm is used to
filter duplicate images to avoid manual filtering of differ-
ences in subjective judgments and save a lot of time cost.
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)e final obtained images are used as the source files of
the dataset, and the category and location data are obtained
through manual marking. In this paper, YOLOv5 is used as
the machine vision detection algorithm, and the network
framework is improved to achieve real-time and accurate
acquisition of the forklift transportation status. Our object
detection method is demonstrated in Figure 1.

3.1. Data Preprocessing. )is paper constructs a forklift
dataset to detect the status of goods. Video was obtained by
following the driver’s driving process in the field workshop.
Complex samples of different weather conditions, different
time periods, and different locations were collected.)rough
the operations shown in Figure 2, a dataset containing four
different statuses of full tray, half tray, empty, and loading-
unloading was constructed. )e self-built forklift dataset is
close to the complex and changeable industrial reality scene,
which poses greater challenges to the network performance
of object detection.

Since the amount of data after framing is large and there
are many similar images, the workload of direct deletion is
too large. )erefore, a clustering algorithm can be used to
peel off the semantic information of the images. For bal-
ancing the clustering effect and computing time, the number
of clusters in this experiment was set to 9. After clustering, it
is easy to delete images.

After clustering, the images in the same cluster are
relatively similar, and a large-scale comparison is re-
quired to eliminate similar images. Hash algorithm [20],
as a single mapping function, can compress a fixed-size
input into a fixed-length output, which has the advan-
tages of improving storage data utilization and improving
data query efficiency. )e image hash algorithm [21] takes
the human visual system as a reference to extract the
perceptual robust features in the image and map images
with the same visual perception to the same or similar
hash value. For different visual perception images, the
hash algorithm generates completely different hash
values.

Image hash algorithm based on principal component
analysis (PCA) can quickly generate the image hash values
[22]. First, the original image with a size of 608× 304 is
subjected to grayscale processing and a filter is used to
eliminate the noise of image. )en, the image is segmented
into 32 nonoverlapping image fragments with a size of
76× 76. )e pixels of the image fragment are connected in
the order of left to right and top to bottom to construct 32
5776-dimensional vectors. Because the vector dimension is
too high, the calculation speed will be reduced, so PCA is
used to reduce the data dimension to 10 dimensions by the
following equation:

p
k

× v � v
k
, (1)

where pk is the base and v is the high-dimensional vector
representing the image. v is mapped to pk to obtain the
reduced dimensionality target vk.

Finally, a secret key is designed to generate a hash value,
and a 32-dimensional feature vector is output to represent

the original image. Figure 3 typically illustrates the circuit of
the image hash algorithm.

)e correlation coefficient between the hash values of
different images is calculated in the same cluster, and a
threshold is set to filter similar images to solve the problem
of self-built dataset redundancy. )e similarity function is
given by the following equation:

c h1, h2(  �
cov h1, h2( 

�������
var h1( 

 �������
var h2( 

 , (2)

where h1 is the hash value of image 1, h2 is the hash value of
image 2, var(h1) is the variance of h1, var(h2) is the var-
iance of h2, and cov(h1, h2) is the covariance between h1
and h2.

3.2. Improved YOLOv5 Model. Although the accuracy of
the original YOLOv5 model meets our demand for
forklift object detection, the detection speed needs to be
improved for embedded devices and mobile terminal
operations with limited computing power. Based on the
analysis of YOLOv5 network structure, a new lightweight
object detection model is rebuilt in this research. )e
modified model uses GhostBottleneck (GB) module to
replace the original network layers and introduces
Squeeze-and-Excitation (SE) attention mechanism.
While improving the detection speed and making the
model more miniature, this model can ensure the ac-
curacy of the detection.

3.2.1. GhostBottleneck Module. Aiming at settling the
problem of limited computing power of mobile devices,
we adopt the GhostNet [23] structure specially designed
for mobile devices. )e core of GhostNet is to generate
rich feature maps using linear operations. In the con-
volution module of the original YOLOv5 network, feature
extraction produces too many similar redundant feature
maps. )e GB module used in this paper first uses or-
dinary convolution to obtain partial feature maps and
then performs linear convolution operations to amplify
them to the same number of feature maps as the original
network. At the same time, because the calculation
amount of linear convolution is much smaller than that of
ordinary convolution, the calculation amount of the

Data
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Data
Preparation

YOLOv5 Model
Training

YOLOv5 Model
Evaluation

Detection
Model

Best
Weight

Figure 1: Object detection process.

Video Images Clusters Dataset

Framing Clustering Image Hash Filtering

Figure 2: Data preprocessing.
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model is reduced by about half. )e GB module is divided
into a Conv part and a Shortcut part, with the framework
shown in Figure 4.

Figure 4 can be noticed that the featuremap is used as the
input of GB module. In the Conv part, the first GhostConv
layer is used to realize the channel expansion, and then the
second GhostConv layer is executed to match the Shortcut
part. Due to the divergence of the gradient, simply deep-
ening the network can hardly ensure the improvement of
network performance. Actually, Shortcut part and Conv part
are added as the output, which adaptively adjusts the
quantity of network output channels while ensuring the
effect of the model.

GhostConv in the GB module is connected by two
different convolutional layers, cv1 and cv2. First, the cv1
layer uses a 1× 1 convolution kernel to achieve deeper

feature extraction. )en, the cv2 layer uses a 5× 5 convo-
lution kernel to separate multiscale local feature information
through linear transformation. Finally, the results of cv1
layer and cv2 layer are connected and output together. )e
GhostConv network guarantees the convolution effect
through grouped convolution while greatly reducing the
model complexity.

3.2.2. Squeeze-and-Excitation Module. )e forklift pallet
occupies a large area in the image, and all channels are of the
same importance. )ere is still room for improvement of
detection accuracy in this aspect. SE block was proposed by
Hu et al. [24], which adaptively adjusts the feature responses
of different channels by paying attention to the relationship
between channels.

……

Input (608×304×3)
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76×76×32

5776×1×32
10×1×32

Output (32×1)
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Figure 3: Image hash algorithm based on PCA.
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Figure 4: GhostBottleneck module.
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)e SE module includes two parts, Squeeze and Exci-
tation. After the continuous convolution stacking of the GB
layer, problems such as model overfitting may occur. In the
Squeeze part, the global feature is generated by performing
global average pooling operation on the feature map layer.
)en, the entire network is regularized to prevent over-
fitting. )e output of 1× 1×C is given by the following
equation:

zc � Fsq Uc(  �
1

H × W


H

i�1

W

j�1
uc(i, j), (3)

where uc is the result of the previous layer of convolution
and H and W denote the height and width of the feature
map, separately.

Subsequently, the Excitation part obtains the connection
between the channels by connecting the FC layer. )e
equation is as follows:

Fex(z, W) � σ(g(z, W)) � σ W2ReLU W1z( ( , (4)

where W1 is the parameter of dimensionality reduction layer
and W2 is the parameter of dimensionality enhancement
layer. Such an operation balances performance and calcu-
lation. To guarantee that the weight of the output is between
0 and 1, the sigmoid activation function is chosen.

Finally, in the scale layer, the normalized weights are
multiplied with the original features for output. On our self-
built dataset, the SE layer is used to extract more directional
features. Although SE block inevitably increases some pa-
rameters and calculations, the improved network structure
shows better performance.

)e improved YOLOv5 model framework in this paper is
mainly composed of Input, Backbone, Neck, and Prediction.
First, Backbone is utilized to refine fine-grained features of
different input images to obtain rich semantic information and
location information.)en, the design of FPN+PAN occupies
Neck. )e FPN of path combination uses upsampling to fuse
the features extracted by Backbone to convey strong semantic
features. PAN’s feature pyramid structure strengthens the
model to convey strong positioning features, which is con-
ducive to the detection of an object at different scales. Finally,
the Prediction part predicts the bounding box, category, and
other information andmaps them to the corresponding image.
After replacing the network layer with the GhostBottleneck
module and introducing the attention mechanism, we cut the
quantity of parameters sharply and lower the complexity of the
model effectively, while maintaining the precision compared
with the original model. )e overall improved YOLOv5 model
is shown in Figure 5, and the computational complexity is 5.6
GFLOPS.

4. Experiment and Discussion

4.1. Experimental Environment. In this research, two dif-
ferent configurations were used for model training and
testing. Table 1 lists the specific configuration of the training
environment.

After obtaining the weights after training, the model was
deployed on the mobile edge computing device Jetson Nano

for performance testing. )e specific information of the
device is shown in Table 2. )e experimental environment
was close to the actual application scenario.

4.2. Training Result Analysis. For objective evaluation, we
compared the improved yolov5s model with the original
YOLOv5 v3.0 yolov5s model and the YOLOv5 v4.0 yolov5s
model on the self-built dataset. )e only difference was that
YOLOv5 v3.0 used the BottleneckCSPmodule, and YOLOv5
v4.0 used the C3 module, so we called them the former
yolov5s_CSP, the latter yolov5s_C3, and our model
yolov5s_GS. Table 3 gathers and compares layers, param-
eters, and GFLOPS of the three different models.

According to Table 3, our model network was built in a
deeper manner through the improvement of the backbone
network, while themodel parameters were reduced by about 2/
3, thereby reaching the goal of model complexity reduction
effectively.

4.2.1. Indexes and Training Details. )e most commonly
used indexes for quantitatively evaluating the effectiveness of
object detection algorithms are precision and recall, which
are expressed by equations (5) and (6):

precision �
TP

TP + FP
, (5)

recall �
TP

TP + FN
, (6)

where TP refers to the quantity of objects that we judged
correctly, FP refers to the quantity of objects that we judged
incorrectly, and FN refers to the quantity of objects that we
should have judged correctly but missed.

)is paper uses mAP@0.5 and mAP@0.5 : 0.95, which
are related to both precision and recall, as indexes to
quantitatively judge whether the object detection methods
meet accuracy and speed requirements [25].

)e training process was monitored, and in each iteration,
mAP@0.5 and mAP@0.5 : 0.95 were calculated. After spending
0.732h to train yolov5s_C3, 0.758h to train yolov5s_CSP, and
0.849h to train our model yolov5s_GS, we obtained two line
graphs of the three models of mAP, as shown in Figure 6. )e
figure reveals that our model had less fluctuation and faster
convergence, compared with the original YOLOv5 model.

At the same time, the cls_loss (class loss) and obj_loss (object
loss) [26] of each iteration in the training process are shown in
Figure 7, indicating the good convergence of our model.

4.3. Performance Test on Mobile Devices. As a small com-
puter, Jetson Nano has good computing power that can
complete object detection tasks, and its small size can also
meet the needs of embedded development and mobile
terminal operation.)emodel was deployed on Jetson Nano
to simulate the object detection reasoning process in real
industrial scenarios. In Table 4, the performance indexes of
different models are displayed.

On mAP@0.5 : 0.95, it can been found from Table 4 that
ourmodel yolov5s_GS is only about 1.2% lower than the best
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performing model yolov5s_C3, while yolov5s_GS is about
0.85% higher than yolov5s_C3 on mAP@0.5%. In terms of
weight, it can be seen that the size of our model after training
was only 5.4MB. From the perspective of detection time, the
detection time of our model was reduced to 0.118 s/frame
compared with the original network. At the same time,
larger frames per second (FPS) also mean that our model
could detect more images per second.

Combined with actual application scenarios, our model
realized embedded development and met the requirements
of real-time detection. Compared with the original YOLOv5
model, the size of our model is reduced to 1/3, and the
detection speed is significantly expedited without reducing
the detection precision. It can be found from Figure 8 that in
complex industrial scenarios, our improvedmodel was more
robust.
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Figure 5: Improved YOLOv5 network.

Table 1: Configuration of training environment.

Item Item value
Operation system Ubuntu18.04
CPU Intel Core i9-10980XE @ 3.00GHz
GPU GeForce RTX 3070
Hardware acceleration CUDA10.1

Table 2: Configuration of inferencing environment.

Item Items value
Operation system Ubuntu18.04
CPU 4-core ARM A57 @1.43GHz
GPU 128-core Maxwell
Hardware acceleration CUDA10.1

Table 3: Models compared.

Model Layers Parameters GFLOPS
yolov5s_C3 283 7071633 16.4
yolov5s_CSP 283 7263185 16.8
yolov5s_GS 419 2551101 5.6
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5. Conclusions

We present an improved object detection method in this
paper which can be applied to forklifts. First, a complex
scene forklift goods dataset is constructed. )e reason why
YOLOv5 is chosen as the object detection algorithm is that
compared with Faster R-CNN, YOLOv5 has faster detection
speed, smaller model, and lower hardware requirements,
which is suitable for mobile device operation and embedded
development. )en, in the object detection section, specific
modifications are made to the YOLOv5 model, which fur-
ther enhance the detection speed of YOLOv5 and reduce the
model size compared to the original model while main-
taining the detection accuracy. Finally, our proposed
method performs well on forklift object detection tasks. Due
to being lightweight and having extremely fast speed, our
method is also fit for other scenarios restricted by hardware
resources and applications that have high requirements for
real-time detection, such as mobile device QR code posi-
tioning, natural scene text detection, and autonomous
driving. In the future, we will also consider migrating this
method to other fields to orient diverse and complex object
detection tasks.
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Labeling of graphs has defined many variations in the literature, e.g., graceful, harmonious, and radio labeling. Secrecy of data in
data sciences and in information technology is very necessary as well as the accuracy of data transmission and different channel
assignments is maintained. It enhances the graph terminologies for the computer programs. In this paper, we will discuss
multidistance radio labeling used for channel assignment problems over wireless communication. A radio labeling is a one-to-one
mapping ℘: V(G)⟶ Z+ satisfying the condition |℘(μ) − ℘(μ′)|≥ diam(G) + 1 − d(μ, μ′): μ, μ′ ∈ V(G) for any pair of vertices
μ, μ′ in G. &e span of labeling ℘ is the largest number that ℘ assigns to a vertex of a graph. Radio number of G, denoted by rn(G),
is the minimum span taken over all radio labelings of G. In this article, we will find relations for radio number and radio mean
number of a lexicographic product for certain families of graphs.

1. Introduction

&e notion of graph labeling was first introduced in 1966 by
Rosa in [1], and since then, many different graph labelings
have been defined and studied. In the 19th century, for
studying the channel assignment problem, the term graph
labeling was used where the transmitters are used as the
vertices of the graph. Two vertices (transmitters) are said to
be adjacent if they are sufficiently close to each other. A
model of the channel assignment problem was provided by
Hale [2] in 1980. Basic notions and definitions can be found
in [3].

Let G � (V(G), E(G)) be a connected graph with vertex
set V(G) and edge set E(G). For any μ, μ′ ∈ V(G), let
d(μ, μ′) be the shortest length of the path between the
vertices μ and μ′. A distance-two labeling is a function
℘: V(G)⟶ 1, 2, 3, . . . , k{ } with span k having the maxi-
mum value k such that for any μ, μ′ ∈ V(G), μ≠ μ′, the
following relations are satisfied:

|℘(μ) − ℘ μ′( |≥
2, if d μ, μ′(  � 1

1, if d μ, μ′(  � 2
.

⎧⎨

⎩ (1)

In 1992, Griggs and Yeh [4] extensively studied about
distance-two labeling.

An assignment of positive integers to the vertices of G by
℘ of G is said to be a radio k-labeling if
|℘(μ) − ℘(μ′)|≥ k + 1 − d(μ, μ′), where k is an integer, k≥ 1.
&e span of labeling ℘, denoted by sp(℘), is the max
|℘(μ) − ℘(μ′)|: μ, μ′ ∈ V(G) . Radio number of G, denoted
by rn(G), is the minimum span taken over all radio labelings
of G. &e radio k-labeling number of G is the minimum span
among all radio k-labelings of G.

&e study of radio k-labelings was motivated by Char-
trand et al. [5] where they found the radio k-labeling number
for paths. In [5], the lower and upper bounds were given for
the radio k-labeling number for paths which have been
improved lately by Kchikech et al. [6]. &e radio k-labeling
becomes a radio labeling, when k � diam(G). A radio la-
beling is a mapping from the vertices of the graph to some
subsets of positive integers. &e task of radio labeling is to
assign to each station a positive smallest integer such that the
interference in the nearest channel should be minimized. In
2001, multilevel distance labeling problem was introduced
by Chartrand et al. [7].
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A radio labeling is a one-to-one mapping
℘: V(G)⟶ Z+ satisfying the condition

℘(μ) − ℘ μ′( 


≥ diam(G) + 1 − d μ, μ′( : μ, μ′ ∈ V(G) .

(2)

In [8], multilevel distance (or radio) labeling for paths
and cycles are determined by Liu and Zhu. Rahim et al. in [9]
discussed and determined the radio number of Helm graphs.
In [8], Liu et al. calculated the radio number of path graph.
&e radio numbers of hypercube graphs and square cycles
have been computed by Khennoufa [10] and Liu et al. [11],
respectively. In [12], Naseem et al. gave a lower bound for the
radio number of edge-joint graphs. Adefokun and Ajayi [13]
proved that for p≥ 4 and q even rn(Sp × Pq) � pq2/2 + q − 1
and that for q even rn(S3 × Pq) � 3q2/2 + q. Kim et al. [14]
determined the radio numbers of Pq with q≥ 4 and Kp with
p≥ 3. Lower bound has been improved by Bantva [15] for
the radio number of graphs which was earlier given by Das
et al. in [16]. For more results, we have [17–21].

In [22], Ali et al. proposed a formula for finding a lower
bound for rn(G), for graphs with small diameter. It is
sometimes very useful to determine how many pairs
(μs, μ(s+1)) with ℘(μ(s+1)) − ℘(μs) � 1 we can have. If there
can be atmost ‘y’ such pairs in a graph G, then

rn(G)≥y + 2(q − 1 − y) + 1. (3)

In this paper, firstly, we determine the radio number and
then radio mean number for the lexicographic product of
path with path, path with cycle, and cycle with cycle. Finally,
we present computer programs for finding such radio la-
belings of these families of graphs.

2. Applications

Labeling of graphs is one of themost popular parameters due
to its diverse applications in real life. Radio labeling process
proved as an efficient way of determining the time of
communication for sensor networks. For giving valuable
mathematical models, it has a wide scope of applications
such as coding theory, electrical switchboards, circuit design,
communication network addressing, channel assignment
process, social networks, astronomy, demand and supply
scenario, radar, database management, X-ray crystallogra-
phy, and data security.

3. Lexicographic Product of Graphs

&e lexicographic product was first studied by Hausdorff in
1914 [23]. &e lexicographic product of two graphs G1 and
G2 is denoted by G1[G2] which is a graph with (Figure 1)

(1) &e vertex set of the Cartesian product
V(G1) × V(G2), and

(2) Distinct vertices (μ, μ′) and (μ0, μ0′) are adjacent in
G1[G2] iff

(a) μμ0 ∈ E(G1), or
(b) μ � μ0 and μ′μ0′ ∈ E(G2).

4. Main Results

In this section, we discuss the radio labelings and compute
the radio number for the lexicographic product of path with
path Pp[Pq] and path with cycle Pp[Cq] for p � 2, 3.
Moreover, we also presented a computer program for
computing the radio number of these families of graphs.

4.1. Results of Radio Labeling. Let Pq be the path with q

vertices. &e lexicographic product of P1 with Pq is iso-
morphic to graph Pq. &e radio number of paths is inves-
tigated by Liu et al. in [8] as stated in the following result.

Theorem 4.1 (see [8]). For any q≥ 3,

rn P1 Pq   � rn Pq  �
2k(k − 1) + 1, if q � 2k,

2k
2

+ 2, if q � 2k + 1,
 (4)

rn P2 Pq   �

2q, if q � 1, 2,

2q + 2, if q � 3,

2q + 1, if q≥ 4,

⎧⎪⎪⎨

⎪⎪⎩

rn P2 Cq   �

2q, if q � 3,

2q + 3, if q � 4,

2q + 1, if q≥ 5.

⎧⎪⎪⎨

⎪⎪⎩

(5)

We have a result for lower bound of rn(Pp[Pq]) for p �

2, 3 and q≥ 4.

Theorem 4.2. For all q≥ 4, rn(Pp[Pq])≥pq + 1.

Proof. In order to prove that the value stated above is a lower
bound for the radio number, we will use the idea of distance-
two labeling, i.e., expression 1.

&e order of the graph Pp[Pq] is pq for p � 2, 3 and there
exists pq − 2, such pairs with labeling difference equals to 1.
So, 3 implies that

rn Pp Pq  ≥ (pq − 2) + 2[(pq) − 1 − (pq − 2)]

� pq − 2 + 2[pq − 1 − pq + 2] + 1

� pq − 2 + 2pq − 2 − 2pq + 4 + 1

� pq + 1,

rn Pp Pq  ≥pq + 1.

(6)

□

Theorem 4.3. For all q≥ 4, rn(P2[Pq])≤ 2q + 1.

Proof. &e vertex set is partitioned in two disjoint sets Vl

and Vr. Each partition is given asVl � V1
l ∪V2

l and

Vr � V1
r ∪V2

r . For t � l, r, V1
t � v1t , v2t , v3t , . . . , v

q/2⌈ ⌉
t  and

V2
t � v

q/2⌈ ⌉+1
t , v

q/2⌈ ⌉+2
t , v

q/2⌈ ⌉+3
t , . . . , v

q
t . Define a mapping

℘: V(P2[Pq])⟶ N as follows:
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℘ v

q

2
 − s+1

l

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ � q + 2s for s � 1, 2, 3, . . . ,

q
2

 

℘ v
q− s+1
l  � q + 1 + 2s for s � 1, 2, 3, . . . , q −

q
2

  .

℘ v

q

2
 − s+1

c
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ � 2s − 1 for s � 1, 2, 3, . . . ,
q
2

 

℘ v
q− s+1
c  � 2s for s � 1, 2, 3, . . . , q −

q
2

  .

℘ v

q

2
 − s+1

r
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ � 2(q + s) for s � 1, 2, 3, . . . ,
q
2

 

℘ v
q− s+1
r  � 2(q + s) + 1 for s � 1, 2, 3, . . . , q −

q
2

  .

(7)

Claim: the mapping ℘ is a valid radio labeling.Wemust
show that condition 2 for radio labeling holds for all
pair of vertices μ, η ∈ V(P2[Pq]).
Case 1: suppose μ and η are any two vertices in Vl, then
two subcases can be obtained.
Case 1.1: let μ and η be any two distinct vertices in V1

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2 ; therefore,
℘(μ) � q + 2k and. ℘(η) � q + 2l. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 1.2: let μ and η be any two distinct vertices in V2

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2 ; therefore,
℘(μ) � q + 1 + 2k and ℘(η) � q + 1 + 2l. Also, we note
that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 �

3 d(μ, η) + |2(k − l)|≥ 3.
Case 2: suppose μ and η are any two vertices in Vc, then
two subcases can be obtained.
Case 2.1: let μ and η be any two distinct vertices in V1

c ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2 ; therefore,
℘(μ) � 2k − 1 and ℘(η) � 2l − 1. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.

Case 2.2: let μ and η be any two distinct vertices in V2
c ,

then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2 ; therefore,
℘(μ) � 2k and ℘(η) � 2l. Also, we note that d(μ, η)≥ 1;
hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3 d(μ, η) + |

2(k − l)|≥ 3.
Case 3: suppose μ and η are any two vertices in Vr, then
two subcases can be obtained.
Case 3.1: let μ and η be any two distinct vertices in V1

r ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2 . therefore,
℘(μ) � 2(q + k) and ℘(η) � 2(q + l). Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 3.2: let μ and η be any two distinct vertices in V2

r ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2 ; therefore,
℘(μ) � 2(q + k) + 1 and ℘(η) � 2(q + l) + 1. Also, we
note that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ)

− ℘(η)|≥ 1 + 2 � 3 d(μ, η) + |2(k − l)|≥ 3. □

Theorem 4.4

rn P3 Pq   �

4, if q � 1,

3q + 2, if q � 2, 3,

3q + 1, if q≥ 4,

⎧⎪⎪⎨

⎪⎪⎩
(8)

rn P3 Cq   �

3(q + 1), if q � 3,

3q + 2, if q � 4,

3q + 1, if q≥ 5,

⎧⎪⎪⎨

⎪⎪⎩
(9)

Theorem 4.5. For all q≥ 4, rn(P3[Pq])≤ 3q + 1.

Proof. &e vertex set is partitioned in three disjoint sets
Vl, Vc, and Vr. Each partition is further partitioned in two
disjoint sets, i.e., Vl � V1

l ∪V2
l , Vc � V1

c ∪V2
c and

Vr � V1
r ∪V2

r . For t � l, c, r, V1
t � v1t , v2t , v3t , . . . , v

q/2⌈ ⌉
t  and

V2
t � v

q/2⌈ ⌉+1
t , v

q/2⌈ ⌉+2
t , v

q/2⌈ ⌉+3
t , . . . , v

q
t . Define a mapping

℘: V(P3[Pq])⟶ N as follows:

℘ v
q/2⌈ ⌉− s+1

l  � q + 2s for s � 1, 2, 3, . . . , q/2 

℘ v
q− s+1
l  � q + 1 + 2s for s � 1, 2, 3, . . . , q −

q

2
  .

℘ v

q

2
 − s+1

c
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ � 2s − 1 for s � 1, 2, 3, . . . ,
q

2
 

℘ v
q− s+1
c  � 2s for s � 1, 2, 3, . . . , q −

q

2
  .

℘ v
q/2⌈ ⌉− s+1

r  � 2(q + s) for s � 1, 2, 3, . . . ,
q

2
 

℘ v
q− s+1
r  � 2(q + s) + 1 for s � 1, 2, 3, . . . , q −

q

2
  .

(10)

Figure 1: P4[P3].
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Claim: the mapping ℘ is a valid radio labeling.Wemust
show that condition 2 for radio labeling holds for all
pair of vertices μ, η ∈ V(P3[Pq]).
Case 1: suppose μ and η are any two vertices in Vl, then
two subcases can be obtained.
Case 1.1: let μ and η be any two distinct vertices in V1

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2 ; therefore,
℘(μ) � q + 2k and ℘(η) � q + 2l. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 1.2: let μ and η be any two distinct vertices in V2

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2 ; therefore,
℘(μ) � q + 1 + 2k and ℘(η) � q + 1 + 2l. Also, we note
that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥
1 + 2 � 3 d(μ, η) + |2(k − l)|≥ 3.
Case 2: suppose μ and η are any two vertices in Vc, then
two subcases can be obtained.
Case 2.1: let μ and η be any two distinct vertices in V1

c ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2 ; therefore,
℘(μ) � 2k − 1 and ℘(η) � 2l − 1. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 2.2: let μ and η be any two distinct vertices in V2

c ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2 ; therefore,
℘(μ) � 2k and ℘(η) � 2l. Also, we note that d(μ, η)≥ 1;
hence, d(μ, η) +|℘(μ) − ℘(η)|≥ 1 + 2 � 3d(μ, η) + |2
(k − l)|≥ 3.
Case 3: suppose μ and η are any two vertices in Vr, then
two subcases can be obtained.
Case 3.1: let μ and η be any two distinct vertices in V1

r ,
then μ � vk and η �� vl, 1≤ k≠ l≤ q/2 ; therefore,
℘(μ) � 2(q + k) and ℘(η) � 2(q + l). Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 3.2: let μ and η be any two distinct vertices in V2

r ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2 ; therefore,
℘(μ) � 2(q + k) + 1 and ℘(η) � 2(q + l) + 1. Also, we
note that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ)

− ℘(η)|≥ 1 + 2 � 3 d(μ, η) + |2(k − l)|≥ 3. □

4.2. Computing Radio Number of Lexicographic Product of
Graphs by Using Computer Language. &is computer code
has been composed by using Python language.

import numpy as np
import math as mt
def main():
m� int(input(‘m�Enter the number of vertices (either
2 or 3)� ‘))
n� int(input(‘n�Enter the number of vertices (n> �

5) � ‘))
name3� input(‘Type rnPP for lexico of two path
graphs, Type rnPC for radio number of path and cycles,
Type exist to quit the program: ‘)

while name3 !� ‘exit’:
if name3� � ‘rnPP’:
print(‘Executing rnPP’)
rnpp(n, m)
elif name3� � ‘rnPC’:
print(‘Executing rnPC’)
rnpc(n, m)
else:
print(‘Input error: Enter the correct input value.‘)
name3� input(‘Enter rnPP for lexico of two path
graphs, rnPC for radio number of path and cycles, or
exist to quit the program: ‘)
def rnpc(n, m):
if m� � 2:
q1�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
r� np.zeros(n, dtype� int)
for i in range(0, q1, 1):
l[q1-1-i]� 2∗i
r[q1-1-i] � (n+1) + 2∗i
for j in range(1, n-q1+1, 1):
l[n-j]� 2∗j-1
r[n-j]� n+2∗j
for lc, rc in zip(l, r):
print(lc, rc)
elif m� � 3:
q2�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
r� np.zeros(n, dtype� int)
c� np.zeros(n, dtype� int)
for i in range(0, q2, 1):
l[q2-1-i] � (n+1) + 2∗i
r[q2-1-i]� 2∗(n + i) + 1
c[q2-1-i]� 2∗i
for j in range(1, n-q2+1, 1):
l[n-j]� n + 2∗j
r[n-j]� 2 ∗ (n + j)
c[n-j]� 2 ∗ j-1
for lc, cc, rc in zip(l, c, r):
print(lc, cc, rc)
else:
print(‘Try again! Enter either 2 or 3 for the value of m.‘)
exit()
def rnpp(n, m):
if m� � 2:
q1�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
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r� np.zeros(n, dtype� int)
for i in range(0, q1, 1):
l[q1-1-i]� 2∗i + 1
r[q1-1-i] � (n+2) + 2∗i
for j in range(1, n-q1+1, 1):
l[n-j]� 2∗j
r[n-j] � (n+1) + 2∗j
for lc, rc in zip(l, r):
print(lc, rc)
elif m� � 3:
q2�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
r� np.zeros(n, dtype� int)
c� np.zeros(n, dtype� int)
for i in range(0, q2, 1):
l[q2-1-i] � (n+2) + 2∗i
r[q2-1-i]� 2∗(n + i+1)
c[q2-1-i]� 2∗i+1
for j in range(1, n-q2+1, 1):
l[n-j]� n + 2∗j+1
r[n-j]� 2 ∗ (n + j) + 1
c[n-j]� 2 ∗ j
for lc, cc, rc in zip(l, c, r):
print(lc, cc, rc)
else:
print(‘Try again! Enter either 2 or 3 for the value of m.‘)
exit()
main()

5. Results of Radio Mean Labeling

Ponraj et al. [24] discussed the radio mean labeling. In this
section, we discuss the radio mean labeling and compute
the radio mean number for the lexicographic product of
path with path Pp[Pq] and path with cycle Pp[Cq] for
p � 2, 3. Moreover, we also presented a computer program
for computing the radio number of these families of
graphs.

Definition 5.1. Radio mean labeling of a connected graph G

is a one-to-one map ℘ from the vertex set V(G) to the set of
natural numbers N such that for two distinct vertices μ and
μ′ of G,

d μ, μ′(  +
℘(μ) + ℘ μ′( 

2
 ≥ 1 + diam(G). (11)

&e radio mean number of ℘, denoted by rmn(℘), is the
maximum number assigned to any vertex of G. &e radio
mean number of G, rmn(G) is the minimum value of
rmn(℘) taken over all radio mean labeling ℘ of G.

Theorem 5.2. For p � 2, 3 and q≥ 1, rmn(Pp[Pq]) � pq.

Proof. Let V(Pp[Pq]) � ∪ p
t�1V

s
t for p � 2, 3 and 1≤ s≤ q

and E(Pp[Pq]) � vi
tv

s+1
t : 1≤ t≤p; 1≤ s≤ q  ∪ vs

tv
s′
t+1: 1≤ s,

s′ ≤ q}. It is clear that diam(Pp[Pq]) � 2. We define a vertex
labeling ℘: V(Pp[Pq])⟶ N as follows: ℘(vs

t) � ps − p + t

for 1≤ t≤p and 1≤ s≤ q. Now, we check the radio mean
condition.

d μ, μ′(  +
℘(μ) + ℘ μ′( 

2
 ≥ 1 + diam Pp Pq  , (12)

for all μ, μ′ ∈ V(Pp[Pq]).

Case 1: the vertex labeling for the pair (vs
t, vs+1

t ) for a
fixed t, 1≤ t≤p and 1≤ s≤ q − 1, is given as ℘(vs

t) �

ps − p + t and ℘(vs+1
t ) � p(s + 1) − p + t � ps + t.

Here, d(vs
t, vs+1

t ) � 1. So, d(vs
t, vs+1

t )

+ ps − p + t + ps + t/2 

� 1 + 2ps − p + 2j/2 ≥ 1 + 2≥ 3.
Case 2: check the pair (vs

t, vs′
t+1) for a fixed t, 1≤ t≤p − 1

and 1≤ s, s′ ≤ q. ℘(vs
t) � ps − p + t, ℘(vs′

t+1) � ps′ − p +

t + 1, and d(vs
t, vs′

t+1) � 1. So, d(vs
t, vs′

t+1)

+ (ps − p + t) + (ps′ − p + t + 1)/2  � 1 + p(s+ s′ −
2) + 2t +1/2⌉ ≥ 1 + 2≥ 3.
Case 3: check the pair (vs

t, vs′
t ) for a fixed t, 1≤ t≤p and

s′ � s + 2, for 1≤ s≤ q − 2. ℘(vs
t) � ps − p + t,

℘(vs′
t ) � ps′ − p + t, and d(vs

t, vs′
t ) � 2. So, d(vs

t, vs′
t ) +

(ps − p + t) + (ps′ − p + t)/2 

� 1 + p(s + s′) − 2(p − t)/2 ≥ 1 + 2≥ 3. □

5.1. ComputingRadioMeanNumber of Lexicographic Product
of Graphs byUsing Computer Language. &is computer code
has been composed by using Python language.

import numpy as np
print(‘Program to calculate the Radio Mean Labelling’)
m� int(input(‘m�Enter the number of vertices (either
2 or 3)� ‘))
n� int(input(‘n�Enter the number of vertices
(n> � 1)�′))
if m� � 2:
lt� np.zeros(n, dtype� int)
rt� np.zeros(n, dtype� int)
for j in range(1, m+1, 1):
if j� � 1:
for i in range(1, n+1, 1):
lt[i-1]�m∗i - m+ j.
else:
for i in range(1, n+1, 1):
rt[i-1]�m∗i - m+ j.
for lc, rc in zip(lt, rt):
print(lc, rc)
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elif m� � 3:
lt� np.zeros(n, dtype� int)
rt� np.zeros(n, dtype� int)
ct� np.zeros(n, dtype� int)
for j in range(1, m+1, 1):
if j� � 1:
for i in range(1, n+1, 1):
lt[i-1]�m∗i - m+ j
elif j� � 2:
for i in range(1, n+1, 1):
ct[i-1]�m∗i - m+ j
else:
for i in range(1, n+1, 1):
rt[i-1]�m∗i - m+ j
for lc, cc, rc in zip(lt, ct, rt):
print(lc, cc, rc)
else:
print(‘Error! &e input value of m is either 2 or 3. Try
again.‘)

6. Conclusion

In this paper, we have discussed the radio number and radio
mean number of lexicographic product of graphs, namely,
P2[Pq], P3[Pq], P2[Cq], and P3[Cq] for q≥ 5. We also
computed the exact value of radio number and radio mean
number of these families. Moreover, in this paper, we have
presented their computer codes and also two open problems
for future work have been given.

7. Open Problems

(1) Determining the radio number of Pp[Pq] for p≥ 4.
(2) Determining the radio mean number of Pp[Pq] for

p≥ 4.
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Let G be a simple graph with vertex set V(G) and edge set E(G). An edge labeling δ: E(G)⟶ 0, 1, . . . , p − 1 , where p is an
integer, 1≤p≤ |E(G)|, induces a vertex labeling δ∗: V(H)⟶ 0, 1, . . . , p − 1  defined by δ∗(v) � δ(e1)δ(e2) · δ(en)(modp),
where e1, e2, . . . , en are edges incident to v. +e labeling δ is said to be p-total edge product cordial (TEPC) labeling of G if
|eδ(i) + vδ∗(i) − (eδ(j) + vδ∗(j))|≤ 1 for every i, j, 0≤ i≤ j≤p − 1, where eδ(i) and vδ∗(i) are numbers of edges and vertices
labeled with integer i, respectively. In this paper, we have proved that the stellation of square grid graph admits a 3-total edge
product cordial labeling.

1. Introduction and Definitions

Let G be a simple, finite, and connected graph with the vertex
set V(G) and edge set E(G). For basic notions related to
graph theory, we refer the reader to the book by West [1]. A
graph labeling δ is a map that sends one of the graph element
(vertex set or edge set or both) to set of numbers. If the
domain is the vertex set (edge set), then δ is called vertex
(edge) labeling. If the domain is V(G)∪E(G), then δ is
called total labeling. Graph labeling has a wide range of
applications such as X-ray crystallography, coding theory,
radar, astronomy, circuit design, network, and communi-
cation design.

Let δ: V(H)⟶ 0, 1{ } be a vertex labeling which in-
duces edge labeling δ∗: E(H)⟶ 0, 1{ } defined by
δ∗(xy) � |δ(x) − δ(y)|. δ. +e labeling δ is said to be cordial
if |vδ(0) − vδ(1)|≤ 1 and |eδ∗(0) − eδ∗(1)|≤ 1, where vδ(i)

and eδ∗(i) denote the number of vertices and number of
edges labeled with integer i, respectively. +e concept of
cordial labeling was first introduced by Cahit [2]. A

considerable amount of work have been done on cordial
labeling. For latest results, see [3–10]. A vertex labeling
δ: V(G)⟶ 0, 1{ } induces an edge labeling
δ∗: E(G)⟶ 0, 1{ } defined by δ∗(xy) � δ(x)δ(y) which is
called product cordial labeling if |vδ(0) − vδ(1)|≤ 1 and
|eδ∗(0) − eδ∗(1)|≤ 1, where vδ(0) and vδ(1) represent the
number of vertices that are labeled 0 and 1, respectively.
While eδ∗(0) and eδ∗(1) represent the number of edges
labeled with 0 and 1, respectively. +e concept named
product cordial labeling was first presented by Sundaram
et al. [11]. A variation in the cordial theme, namely, edge
product cordial labeling and a TEPC labeling was introduced
by Vaidya and Barasara [12, 13].

Let 2≤p≤ |E(G)| be an integer. An edge labeling
δ: E(G)⟶ 0, 1, . . . , p − 1  induces a vertex labeling
δ∗: V(H)⟶ 0, 1, . . . , p − 1  defined by δ∗(v) � δ(e1)

δ(e2) · δ(en)(modp), where e1, e2, . . . , en are edges incident
to v. +e labeling δ is said to be p-TEPC labeling of G if
|eδ(i) + vδ∗(i) − (eδ(j) + vδ∗(j))|≤ 1 for every i, j,
0≤ i≤ j≤p − 1, where eδ(i) and vδ∗(i) are numbers of edges
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and vertices labeled with integer i, respectively. Azaizeh et al.
[14] introduced the concept of p-TEPC labeling. A graph G

that admits a p-TEPC labeling is called a p-TEPC graph.
Baca et al. [15] investigated the 3-TEPC labeling of carbon
nanotube networks. Ahmad et al. [16] showed that the grid
graph Pm□Pn admits a 3-TEPC labeling. Ahmad et al. [3]
proved that the hexagonal grid Hn

m admits 3-TEPC labeling.
Javed and Jamil [17] proved that the Rhombic grid Rn

m is 3-
TEPC for m, n≥ 1.

Let Pn denote a path graph on n vertices. A rectangular
grid is an m × n lattice graph and is obtained by taking the
Cartesian product of Pm with Pn. +e graph of rectangular
grid is denoted by L(m, n) and has n and m squares in each
row and column respectively. It is easy to observe that
rectangular grid L(m, n) has mn vertices and mn − m − n + 1
edges. +e stellation of L(m, n) is obtained by adding a
vertex in each face of L(m, n) and then joining this vertex to
each vertex of the respective face. We denote the stellation of
L(m, n) by Gm

n , as shown in Figure 1. In this paper, we show
that the graph Gm

n admits 3-TEPC labeling.

2. Main Results

Let m, n≥ 1 and Gm
n be stellation of rectangular grid con-

taining m rows and n columns. Observe that Gm
n has 2mn +

m + n + 1 vertices and 6mn + m + n edges. We use the no-
tations G1 ⊕ vG2 for gluing the graph G1 with G2 vertically.
Similarly, G1 ⊕ hG2 represent gluing G1 with G2 horizontally.
If we have a labeled segment or labeled graph H and we
rotate it by 90 degree in clockwise direction, then we will
denote it by H

→
.

Theorem 1. For m≥ 1, the graph Gm
1 is 3-TEPC.

Proof. +e 3-TEPC labeling of G1
1 and G2

1 is shown in
Figure 2. Similarly, the 3-TEPC labeling of G3

1 and the la-
beled segment S31 are shown in Figure 3. +e segment S31 has
the property that open edges are assigned labeled 1. Hence, if
we glue the segment S31 with itself vertically, then it will not
change the vertex labels in S31 ⊕ vS31: � 2S31. Observe that the
labels 0, 1, and 2 are used 10 times in the segment S31. Table 1
shows the multiplicity of numbers 0, 1, and 2, respectively,
used in the labeled graph Gm

1 for m � 1, 2, 3.

Case (i). m� 3r, r≥ 1.
To construct labeled graph Gm

1 , we will use the labeled
segments S31. First, glue r − 1 copies of labeled segment
S31 vertically that is S31 ⊕ vS31 ⊕ v · · · ⊕ vS31:� (r − 1)S31.
Finally, glue vertically the label segment G3

1 to the open
edges of (r − 1)S31 to get labeled graph Gm

1 , that is,

G
m
1 �

(r − 1)S
3
1

⊕ v

G
3
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

In the labeled graph Gm
1 , the multiplicity of 0, 1, and 2 is

10r + 1 exactly.
Case (ii): m� 3r+ 1, r≥ 1.

Figure 1: Stellation of square grid graph G3
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Figure 2: 3-TEPC labeling G1
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Figure 3: 3-TEPC labeling G3
1 and label segment S31.

Table 1: +e multiplicity of 0, 1, and 2 used in Gm
1 , for m � 1, 2, 3.

Gm
1 eδ(0)+ vδ∗(0) eδ(1)+ vδ∗(1) eδ(2)+ vδ∗(2)

m � 1 5 4 4
m � 2 7 8 8
m � 3 11 11 11
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To construct the labeled graph Gm
1 , we glue r copies of

the labeled segment S31 and then finally glue G1
1 verti-

cally. +at is,

G
m
1 �

rS
3
1

⊕ v

G
1
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

In the labeled graph Gm
1 , the multiplicity of 0 is 10r + 5,

whereas the multiplicity of 1 and 2 is 10r + 4.
Case (iii): m� 3r+ 2, r≥ 1.
We obtain the labeled graph Gm

1 by gluing r times the
labeled segment S31 and finally gluing G2

1 in vertical
direction. +at is,

G
m
1 �

rS
3
1

⊕ v

G
2
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

In the labeled graph Gm
1 , the multiplicity of 0 is 10r + 7,

whereas the multiplicity of 1 and 2 is 10r + 8. □

Theorem 2. For m≥1, the graph Gm
2 is 3-total edge product

cordial.

Proof. Observe that the graphs G2
1 and G1

2 are isomorphic
and the 3-total edge cordial labeling of G2

1 is given in Fig-
ure 2. +erefore, G1

2 is 3-TEPC. +e 3-total edge product
cordial labeling of the graphs G2

2 and G3
2 is given in Figures 4

and 5, respectively. Table 2 shows the multiplicity of
numbers 0, 1, and 2 used in G2

2 and G3
2.

Figure 6 depicts the labeled segment S32, which has the
property that open edges are assigned labeled 1 and each
number 0, 1, and 2 is used 18 times.

Case (i): m� 3r, r≥ 1.
To construct labeled graph Gm

2 , we will use the labeled
segments S32. First, we glue r − 1 copies of labeled
segment S32 vertically, that is, S32 ⊕ vS32 ⊕ v · · · ⊕ vS32 :�

(r − 1)S32. Since the open edges of S32 are labeled with 1,
therefore, this gluing process does not change the label
of other vertices of (r − 1)S32. Finally, we glue vertically
the label segment G3

2 to the open edges of (r − 1)S32 to
get labeled graph Gm

2 . +at is,

G
m
2 �

(r − 1)S
3
2

⊕ v

G
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

In the labeled graph Gm
2 , the multiplicity of 0 is 18r + 1,

whereas the multiplicity of 1 and 2 is 18r + 2.
Case (ii): m� 3r+ 1, r≥ 1.
To construct the labeled graph Gm

2 , we glue r copies of
the labeled segment S32 and then finally glue G1

2 verti-
cally. +at is,

G
m
2 �

rS
3
2

⊕ v

G
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

In the labeled graph Gm
2 , the multiplicity of 0 is 18r + 7

whereas the multiplicity of 1 and 2 is 18r + 8.
Case (iii): m� 3r+ 2, r≥ 1.
+e labeled graph Gm

2 can be obtained by gluing r times
the labeled segment S32 and then gluing G2

2 in vertical
direction. +at is,

G
m
2 �

rS
3
2

⊕ v

G
2
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)
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Figure 4: 3-TEPC labeling of G2
2.
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Figure 5: 3-TEPC labeling of G3
2.

Table 2: +e multiplicity of 0, 1, and 2 in Gm
2 , for m � 2, 3.

Gm
1 eδ(0)+ vδ∗(0) eδ(1)+ vδ∗(1) eδ(2)+ vδ∗(2)

m � 2 13 14 14
m � 3 19 20 20
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In the labeled graph Gm
2 , the multiplicity of 0 is

18r + 13, whereas the multiplicity of 1 and 2 is
18r + 14. □

Theorem 3. 4e graph Gm
3 is 3-TEPC for m≥ 1.

Proof. Observe that the graphs G3
1 and G1

3 are isomorphic.
Similarly, the graphs G3

2 and G2
3 are also isomorphic. +e 3-

TEPC labeling of G3
1 and G3

2 are given in Figures 3 and 5,
respectively.+e 3-TEPC labeling of G3

3 is shown in Figure 7.
In the labeled graph G3

3, the multiplicity of 0 is 29, whereas
the multiplicity of 1 and 2 is 28.

Figure 8 shows the labeled segment S33 which has the
property that open edges are assigned with label 1 and each
number 0, 1, and 2 appears 26 times.

Case (i): m� 3r, r≥ 1.
To construct labeled graph Gm

3 , we use the labeled
segment S33. First, glue r − 1 copies of labeled segment
S33 vertically, that is, S33 ⊕ vS33 ⊕ v · · · ⊕ vS33:� (r − 1)S33.
Since the open edges of S33 are labeled with 1, therefore,
this gluing process does not change the label of other
vertices of (r − 1)S33. Finally, glue vertically the label
segment G3

3 to the open edges of (r − 1)S32 to get labeled
graph Gm

3 . +at is,

G
m
3 �

(r − 1)S
3
3

⊕ v

G
3
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

In the labeled graph Gm
3 , the multiplicity of 0 is 26r + 3,

whereas the multiplicity of 1 and 2 is 26r + 2.
Case (ii): m� 3r+ 1, r≥ 1.
To construct the labeled graph Gm

3 , we glue r copies of
the labeled segment S33 vertically and then finally glue
G1
3 vertically. +at is,

G
m
3 �

rS
3
3

⊕ v

G
1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

In the labeled graph Gm
3 , the multiplicity of 0, 1, and 2 is

26r + 11.
Case (iii): m� 3r+ 2, r≥ 1.
We obtain the labeled graph Gm

3 by gluing r times the
labeled segment S33 vertically and then finally glue G2

3 in
vertical direction. +at is,

G
m
3 �

rS
3
3

⊕ v

G
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

In the labeled graph Gm
3 , the multiplicity of 0 is 26r + 19,

whereas the multiplicity of 1 and 2 is 26r + 20. □
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Figure 8: Label segment S33.

4 Journal of Mathematics



Theorem 4. 4e graph Gm
n is 3-TEPC for m, n≥ 1.

Proof. To construct the labeled graph of Gm
n and to examine

its 3-TEPC labeling, we introduced a new segment R3
3. +is

segment has 17 open edges which are labeled with the
number 1 and multiplicity of 0, 1, and 2 is 24. +e labeled
segment R3

3 is shown in Figure 9.

Case 1: m � 3r, r≥ 1.
First, we glue the segment R3

3 vertically r − 1 times, that
is, R3

3 ⊕ vR3
3 ⊕ v · · · ⊕ vR3

3 � (r − 1)R3
3. Since the open

edges in the segment are labeled with number 1, it
follows that gluing these segments do not change the
vertex labels in the segment (r − 1)R3

3. Finally, we glue
the segment S

3
3

→
in the vertical direction.+is gives a new

segment X and is defined as

X �

(r − 1)R
3
3

⊕ v

S
3
3

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Note that the labels of open edges of X are 1 and
multiplicity of each number 0, 1, and 2 is 24r + 2.
Subcase 1: n � 3s, s≥ 1.
First, we glue s − 1 times the segment X horizontally
and finally glue the labeled segment Gm

3 horizontally to
obtain the labeled graph Gm

n . +at is,

G
m
n � (s − 1)X⊕ hG

m
3 . (11)

Subcase 2: n � 3s + 1, s≥ 1.
First, we glue s times the segment X horizontally and
finally glue the labeled segment Gm

1 horizontally with
sX to obtain the labeled graph Gm

n . +at is,

G
m
n � sX⊕ hG

m
1 . (12)

Subcase 3: n � 3s + 2, s≥ 1.
First, we glue s times the segment X horizontally and
finally glue the labeled segment Gm

2 horizontally with
sX to obtain the labeled graph Gm

n . +at is,

G
m
n � sX⊕ hG

m
2 . (13)

Case 2: when m � 3r + 1, r≥ 1.
First, we glue the segment R3

3 vertically r times, that is,
R3
3 ⊕ vR3

3 ⊕ v · · · ⊕ vR3
3 � rR3

3. +en, we glue the segment
S
3
1

→
in the vertical direction. +is gives us a new segment

Y defined as

Y �

rR
3
3

⊕ v

S
3
1

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

Note that the labels of open edges of Y are 1 and
multiplicity of each number 0, 1, and 2 is 24r + 10.
Subcase 1: n � 3s, s≥ 1.

First, we glue s − 1 times the segment Y horizontally
and finally glue the labeled segment Gm

3 horizon-
tally with (s − 1)Y to obtain the labeled graph Gm

n .
+at is,

G
m
n � (s − 1)Y⊕ hG

m
3 . (15)

Subcase 2: n � 3s + 1, s≥ 1.
First, we glue s times the segment Y horizontally and
finally glue the labeled segmentGm

1 horizontally with sY

to obtain the labeled graph Gm
n . +at is,

G
m
n � sY⊕ hG

m
1 . (16)

Subcase 3: n � 3s + 2, s≥ 1.
First, we glue s times the segment Y horizontally and
finally glue the labeled segmentGm

2 horizontally with sY

to obtain the labeled graph Gm
n . +at is,

G
m
n � sY⊕ hG

m
2 . (17)

Case 3: m � 3r + 2, r≥ 1.
First, we glue the segment R3

3 vertically r times, that is,
R3
3 ⊕ vR3

3 ⊕ v · · · ⊕ vR3
3 � rR3

3.+en, we glue in the vertical
direction of the segment S

3
2

→
. +is gives us a new seg-

ment Z defined as

Z �

rR
3
3

⊕ v

S
3
2

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Note that the labels of open edges of Z are 1 and
multiplicity of each number 0, 1, and 2 is 24r + 18.
Subcase 1: n � 3s, s≥ 1.
First, we glue s − 1 times the segment Y horizontally
and finally glue the labeled segment Gm

3 horizon-
tally with (s − 1)Z to obtain the labeled graph Gm

n .
+at is,
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Figure 9: Label segment R3
3.
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G
m
n � (s − 1)Z⊕ hG

m
3 . (19)

Subcase 2: n � 3s + 1, s≥ 1.
First, we glue s times the segment Y horizontally and
finally glue the labeled segment Gm

1 horizontally with
sZ to obtain the labeled graph Gm

n . +at is,

G
m
n � sZ⊕ hG

m
1 . (20)

Subcase 3: n � 3s + 2, s≥ 1.
First, we glue s times the segment Z horizontally and
finally glue the labeled segment Gm

2 horizontally with
sZ to obtain the labeled graph Gm

n . +at is,

G
m
n � sZ⊕ hG

m
2 . (21)

+emultiplicity of the numbers 0, 1, and 2 in the graph
Gm

n for m, n≥ 1 is shown in Table 3. □

3. Conclusion

In this paper, we constructed 3-TEPC labeling for the
stellation of square grid graph Gm

n . For every m≥ 1 and every
n≥ 1, we proved that Gm

n is 3-TEPC.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

References

[1] D. B. West, Introduction to Graph 4eory, Prentice-Hall,
Hoboken, NJ, USA, 2nd edition, 2003.

[2] I. Cahit, “Cordial graphs: a weaker version of graceful and
harmonious graphs,” Ars Combinatoria, vol. 23, pp. 201–207,
1987.
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Topological index (TI) is a function from the set of graphs to the set of real numbers that associates a unique real number to each
graph, and two graphs necessarily have the same value of the TI if these are structurally isomorphic. In this note, we compute the
HZ − index of the four generalized sum graphs in the form of the various Zagreb indices of their factor graphs. (ese graphs are
obtained by the strong product of the graphs G and Dk(G), where Dk ∈ Sk, Rk, Qk, Tk  represents the four generalized sub-
division-related operations for the integral value of k≥ 1 and Dk(G) is a graph that is obtained by applying Dk on G. At the end, as
an illustration, we compute the HZ − index of the generalized sum graphs for exactly k � 1 and compare the obtained results.

1. Introduction

A structural formula of a chemical compound is represented
by a molecular graph, where atoms and bonds between
atoms are represented by the vertices and edges of the
molecular graphs, respectively. A topological index (TI) is
a mathematical tool which associates a real number to
a graph under certain conditions. For two graphs, a TI
remains constant if the graphs are isomorphic (see [1–3]).
(ese are used to study different physical attributes, bi-
ological activities, and chemical reactivities such as viscosity,
critical temperatures (boiling, freezing, melting, and flash
points) [4, 5], vapor pressure, surface tension, stability,
weight, density, solubility, and connectivity [6–8] in the field
of chemical engineering, pharmaceutical industries, and
drugs discoveries. TIs are also used in the subject of
cheminformatics to study the quantitative structural activity
and property relationships (see [9–11]).

In 1947, the very first TI is introduced byWiner to check
the critical temperature of paraffin [12]. Trinajstic and
Gutman (1972) [13] defined the first and second Zagreb
indices that are used to compute the different structure base
characteristics of the molecular graphs. After that, many
degree, distance, and polynomials based TIs came into
existence but the degree-based indices got more attention of
the researchers (see [14–16]). For various results on TIs of

different graphs, see [17–20]. In 2008, Zhou and Trinajstić
defined the general sum connectivity (GSC) index and
discussed its various properties [21]. Shirdel et al. [22]
studied the concept of hyper-Zagreb index (HZ − index) as
a particular case of the GSC index. In addition, the results for
the index HZ under the operation of Cartesian, composition,
join, and disjunction of graphs can be found in [23–25].

On the other hand, for the studies of the complex graphs,
operations for graphs play a key role. Yan et al. (2007)
defined four types of operations related to the subdivision of
G and computed the Wiener indices of the derived graphs
D1(G), where D1 ∈ S1, R1, Q1, T1  [26]. Taeri et al. (2009)
gave the construction of the D1-sum graphs GD1

+ H

(Cartesian product of F1(G) and H) and computed their
Wiener indices, where H and G are assumed to be two
connected graphs [27]. Furthermore, Deng et al. [28],
Akhter and Imran [29], Chu et al. [30], and Liu et al. [31]
computed the various indices of these graphs with the help
of the Cartesian product.

Liu et al. (2019) [32] extended these operations for any
integral value of k and obtained the generalized derived
graphs Dk(G) of the graph G, where Dk ∈ Sk, Rk, Qk, Tk .
Moreover, using the concept of Cartesian product of graphs,
they constructed the generalized sum graphs or Dk-sum
graphs (denoted by GDk

+ H) and computed their first and
second Zagreb indices.
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Javaid et al. (2021) [33] redefined these graphs using
strong product and computed their Zagreb indices (first and
second). In this development, we compute hyper-Zagreb
indices (HZ − index) for these graphs in terms of various
degree-based TIs of their factor graphs, where these gen-
eralized sum graphs are obtained with the help of strong
product. (e remaining paper is settled as follows. Section 2
contains the notations and key concepts which are utilized in
methodology, Section 3 deals main results, and Section 4
covers examples and conclusion.

2. Preliminaries

(is section explains the basic definitions and terminologies.

Definition 1. Let G � (V(G), E(G)) be a (molecular) graph
with V(G) and E(G) as sets of vertices and edges, re-
spectively. (e degree of a vertex v ∈ V(G) is the number of
edges which are incident on v and denoted by d(v).

Definition 2 (see [13, 34]). For a graph G, the first, second,
and forgotten Zagreb indices are defined as follows: M1(G) �

z∈V(G)d
2(z) � zt∈E(G)[d(z) + d(t)], M2(G) � zt∈E(G)

[d(z) × d(t)], and F(G) � z∈V(G)d
3(z) � zt∈E(G)

[d2(z) + d2(t)].
(ese indices have been used to find the various

properties of molecular graphs such as entropy, π-electron
energy, and heat capacity. (ese are also used in the studies
of the molecular structural relationships such as QSPR and
QSAR [13, 35–37]. However, the hyper-Zagreb index of
a graph (G) (given below) is studied by Shirdel et al. in 2013
[22]:

HZ(G) � 
yz∈E(G)

[d(y) + d(z)]
2
.

(1)

Definition 3 (see [32]). For some integral value of k≥ 1, the
graphs obtained by the generalized subdivision-related
operations are defined as follows:

(i) Sk(G) is a graph that is obtained by inserting k

vertices in each edge of G

(ii) Rk(G) is a graph obtained from Sk(G) by joining the
vertices which are adjacent in G

(iii) Qk(G) is a graph obtained from Sk(G) by joining the
new vertices which are on the incident edges inG for
each of its vertex

(iv) Tk(G) is obtained from Sk(G) after using both Rk

and Qk, respectively

For k � 3, see Figure 1.

Definition 4 (see [33]). Let G1 and G2 be two graphs,
Dk ∈ Sk, Rk, Qk, Tk  be generalized subdivision-related
operations, and Dk(G1) be a graph obtained using Dk on G1
having edge-set E(Dk(G1)) and vertex-set V(Dk(G1)). (e
generalized sum graph G1⊠Dk

G2 under the operation of
strong product is a graph having vertex-set V(G1⊠Dk

G2) �

V(Dk(G1)) × V(G2) � (V(G1)∪ k(E(G1))) × V(G2) such
that two vertices (r1, s1) and (r2, s2) of V(G1Dk

⊠G2) are
adjacent iff [r1 � r2 in V(G1) and s1 is adjacent to s2 in
E(G2)] or [s1 � s2 in V(G2) and s1 is adjacent to s2 in E(G1)]
or [r1 is adjacent to r2 in E(Dk(G1)) and s1 is adjacent to s2
in E(G2)], where k≥ 1 is a positive integer. For more ex-
planation, see Figures 2 and 3.

3. Main Results

(e main developments are covered by this section.

Theorem 1. For k≥ 1, the HZ-index of G1⊠Sk
G2 is

HZ G1⊠Sk
G2  � 8eG1

M1 G2(  + nG1
HZ G2(  + 4eG2

M1 G1(  + 4eG1
HZ G2(  + M1 G1( HZ G2(  + 4M1 G1( M1 G2( 

+ nG2
HZ S1 G1(  + 4eG2

M1S1 G1(  + 2eG1
M1 G2(  + 4eG2

HZ S1 G2(  + 2M1 G2( M1S1 G1( 

+ M1 G2( HZ S1 G1(  + 16(k − 1)eG1
nG2

+ M1 G2(  + 4eG2
  + HZ1G1F G2(  + 2M1 G2( HZ S1 G1( 

+ 2M1 G2( M1 S G1( (  + 2F G2( M1 S G1( (  + 16eG1
eG2

+ 4eG1
F G2(  + 2eG2

M1 G1( 

+ 4(k − 1)eG1
8eG2

+ 2HZ G2(  + 8M1 G2(  .

(2)

Proof. Let the degree of a vertex (r, s) ∈ G1⊠Sk
G2 be denoted

by d(r, s):

HZ G1⊠Sk
G2  � 

r1 ,s1( ) r2 ,s2( )∈E G1⊠Sk
G2 

d r1, s1(  + d r2, s2(  
2

� 

rϵV G1( )



s1s2ϵE G2( )

d r, s1(  + d r, s2(  
2

+ 

r1r2ϵE Sk G1( )( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

+ 

r1r2ϵE Sk G1( )( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 
A

+ 
B

+ 
C

.

(3)
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(1, a)
(2, a)

(3, a)

(1, b)
(2, b)

(3, b)
(e1, b)

(e2, b)
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(e1, a) (f1, a) (f2, b)

(f2, b)

(f2, b)
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(1, c)
(2, c)
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(e2, b)

(e1, b)
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(1, b)

(1, c)
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(3, c)

(b)

Figure 2: (a) P3⊠S2P3 and (b) P3⊠R2
P3.
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Figure 3: (a) P3⊠Q2
P3 and (b) P3⊠T2

P3.
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32e3
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e1 f3
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f1 h3
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Figure 1: (a) G1 � P4, (b) S3(P4), (c) R3(P4), (d) Q3(P4) and (e) T3(P4).
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Consider


A

� 

rϵV G1( )



s1s2ϵE G2( )

d r, s1(  + d r, s2(  
2

� 

rϵV G1( )



s1s2ϵE G2( )

2 d(r) + d s1(  + d s2(  + d(r) d s1(  + d s2( (  
2

� 

rϵV G1( )



s1s2ϵE G2( )

4 d(r) d s1(  + d s2( (  + d
2

s1(  + d s2(  + 2 d s1( d s2(   + 4d
2
(r) + 2 d(r) d

2
s1(  + d

2
s2( 

+2 d s1( d s2(  + d
2
(r) d

2
s1(  + d

2
s2(  + 2 d s1( d s2(   + 4d

2
(r) d s1(  + d s2( ( 

� 8eG1
M1 G2(  + nG1

HZ G2(  + 4eG2
M1 G1(  + 4eG1

HZ G2(  + M1 G1( HZ G2(  + 4M1 G1( M1 G2( ,


B

� 

r1r2ϵE Sk G1( )( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

� 

r1ϵV G1( ),

r2ϵV Sk G1( )−G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

+ 
r1 ,r2ϵ

V Sk G1( )−G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

� 
B1

+ 
B2

,


B1

� 

r1r2ϵE Sk G1( )( )
r1ϵV G1( ),r2ϵV Sk G1( )( )−V G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

� 

r1r2ϵE Sk G1( )( )
r1ϵV G1( ),r2ϵV Sk G1( )( )−V G1( )



sϵV G2( )

d r1(  + d r2( (  + d(s) + d r1(  + d r2( ( d(s) 
2

� 

r1r2ϵE Sk G1( )( )
r1ϵV G1( ),r2ϵV Sk G1( )( )−V G1( )



sϵV G2( )

d
2

r1(  + d
2

r2(  + 2 d r1( d r2(   + 2 d(s) d r1(  + d r2( (  + d
2
(s)

+ 2 d(s) d
2

r1(  + d
2

r2(  + 2 d r1( d r2(   + 2d
2
(s) d r1(  + d r2( (  + d

2
(s) d

2
r1(  + d

2
r2(  

� nG2
HZ S1 G1(  + 4eG2

M1S1 G1(  + 2eG1
M1 G2(  + 4eG2

HZ S1 G1(  + 2M1 G2( M1S1 G1( 

+ M1 G2( HZ S1 G1( ,


B2

� 

r1r2ϵE Sk G1( )( )
r1 ,s2ϵV Sk G1( )( )−V G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

� 

r1r2ϵE Sk G1( )( )
r1 ,r2ϵV Sk G1( )( )−V G1( )



sϵV G2( )

d r1(  + d r1( d(s) + d r2(  + d r2( d(s) 
2

� 

r1r2ϵE Sk G1( )( )
r1 ,r2ϵV Sk G1( )( )−V G1( )



sϵV G2( )

[4 + 4 d(s)]
2

� 

r1r2ϵE Sk G1( )( )
r1 ,r2ϵV Sk G1( )( )−V G1( )



sϵV G2( )

16 + 16d
2
(s) + 32 d(s) .

(4)
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Since in this case |E(Sk(G1))| � (k − 1)|E(G1)|, we have

� 

sϵV G2( )

16(k − 1)eG1
1 + d

2
(s) + 2 d(s) 


C

� 

r1r2ϵE Sk G1( )( )

d r1, s1(  + d r2, s2(  
2

� 

r1r2ϵE Sk G1( )( )
r1ϵV G1( ),r2ϵ Sk G1(( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

+ 

r1r2ϵE Sk G1( )( )
r1 ,r2ϵV Sk G1(( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 
C1

+ 
C2

,


C1

� 

r1r2ϵE Sk G1( )( )
r1ϵV G1( ),r2ϵ Sk G1(( )( )−V G1( )



s1s2ϵV G2( )

d r1, z1(  + d r2, s2(  
2

� 

r1ϵV G1( ),

r2ϵV Sk G1( )( )( )−V G1( )



s1s2ϵV G2( )

d r1(  + d r2( (  + d s1(  + d r1( d s1(  + d r2( d s2(  
2

� HZG1F G2(  + 2M1 G2( HZ S1 G1(  + 2M1 G2( M1 S G1( ( 

+ 2F G2( M1 S G1( (  + 16eG1
eG2

+ 4eG1
F G2(  + 2eG2

M1 G1( ,


C2

� 

r1r2ϵE Sk G1( )( )
r1 ,r2ϵV Sk G1( )( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 

r1r2ϵE Sk G1( )( )
r1 ,r2ϵV Sk G1( )( )( )−V G1( )



s1s2ϵV G2( )

4 + 2 d s1(  + d s2( (  
2

� 

r1r2ϵE Sk G1( )( )
r1 ,r2ϵV Sk G1( )( )( )−V G1( )



s1s2ϵV G2( )

16 + 4 d z1(  + d z2( ( 
2

+ 16 d z1(  + d z2( (  

� 4(k − 1)eG1
8eG2

+ 2HZ G2(  + 8M1 G2(  .

(5)

Hence, we obtained our required result. □ Theorem 2. For k≥ 1, the HZ-index of G1⊠Rk
G2 is

HZ G1⊠Rk
G2  � 8 nG2

+ 6eG2
 F G1(  + nG1

+ 20eG1
 F G2(  + 8F G1( F G2(  + 24eG2

M1 G1(  + 36eG1
M1 G2( 

+ 24M1 G1( M1 G2(  + 24F G1( M1 G2(  + 8nG2
eG1

+ 8(k − 1)eG1
nG2

+ F G2(  + 4eG2
+ 3M1 G2(  

+ 48eG1
eG2

+ 12F G2( M1 G1(  + 2 M2 G2(  4eG1
+ nG1

  + k nG2
+ 6eG2

+ 3M1 G2(  + 2M2 G2(  

×
1
2



vϵV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

vϵV G1( )

rdG1
(u)dG1

(v) + 

vϵV G1( )

d
2
G1

(v) 

uϵV G1( )
uvϵE G1( )

dG1
(u) − 2M2 G1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+M1 G1(  5e2 + 5M1 G2(  + 5M2 G2(   + k M3 G1(  + 2M2 G1(   6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

 

+ 2eG1
M1 G2( .

(6)
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Proof. Let the degree of a vertex (r, s) ∈ G1⊠Rk
G2 be denoted

by d(r, s):

HZ G1⊠Rk
G2  � 

r1 ,s1( ) r2 ,s2( )∈E G1⊠Rk
G2 

d r1, s1(  + d r2, s2(  
2

· 

rϵV G1( )



s1s2ϵE G2( )

d r, s1(  + d r, s2(  
2

+ 

sϵV G2( )



r1r2ϵE Rk G1( )( )

d r1, s(  + d r2, s(  
2

+ 

r1r2ϵE Rk G1( )( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 
A

+ 
B

+ 
C

,


A

� 

rϵV G1( )



s1s2ϵE G2( )

d r, s1(  + d r, s2(  
2

� 

rϵV G1( )



s1s2ϵE G2( )

2 d(r) + d s1(  + 2 d(r)d s1(  + 2 d(r) + d s2(  + 2 d(r)d s2(  
2

� 

rϵV G1( )



s1s2ϵE G2( )

4 d(r) + d s1(  + d s2(  + 2 d(r) d s1(  + d s2( (  
2

� 

rϵV G1( )



s1s2ϵE G2( )

4d
2
(r) + 1 + 4 d(r)  d

2
s1(  + d

2
s2(  + 2 d s1( d s2(   + 8 d(r) + 16d

2
(r) 

× d s1(  + d s2( (  + 16d
2
(r)

� HZG2 4M1 G1(  + nG1
+ 8eG1

  + 16M1 G2(  eG1
+ M1 G1(   + 16M1 G1( eG2

OR

� 8eG2
M1 G1(  + nG1

F G2(  + 4M1 G1( F G2(  + 8eG1
M1 G2(  + 8M1 G1( M1 G2(  + 8eG1

F G2( 

+ 2 4M1 G1(  eG2
+ M1 G2(  + M2 G2(   + 4eG1

M1 G2(  + 2M2 G2(   + M2 G2( nG1
 ,


B

� 

r1r2ϵE Rk G1( )( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

+ 

r1r2ϵE Rk G1( )( )r1ϵV G1( ),

r2ϵV Rk G1( )( )−V G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

+ 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV Rk G1( )( )−V G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

� 
B1

+ 
B2

+ 
B3

,


B1

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



sϵV G2( )

d r1(  + d(s) + d r1( d(s) + d r2(  + d(s) + d r2( d(s) 
2

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



sϵV G2( )

d r1(  + d r2(  + 2 d(s) + d(s) d r1(  + d r2( (  
2

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



sϵV G2( )

4d
2

r1(  + 4d
2
(s) + 4 d 4d

2
r2(  + 8 d r1( d(s) + 8 d r1( d r2(  + 8 d(s)d r2( 

+4d
2
(s) d

2
r1(  + d

2
r2(  + 2 d(s)d

2
r1(   + 8 d s1(  d

2
r1(  + d

2
r2(  + 2 d(s)d

2
r1(   + 8d

2
s1(  d r1(  + d r2( ( 

� 4eG1
M1 G2(  + 4nG2

+ 4M1 G2(  + 16eG2
 HZ G1(  + 16eG2

M1 G1(  + 8M1 G1( M1 G2( .

OR

� 4nG2
F G1(  + 2eG1

M1 G2(  + 4M1 G2( F G1(  + 8eG2
M1 G1(  + 4M1 G1( M1 G2(  + 16eG2

F G1( 

+ 2 4M2 G1(  nG2
+ 4eG2

+ M1 G2(   + 2M1 G1(  M1 G2(  + 2eG2
  + eG1

M1 G2(  ,
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2

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

+ 

r1r2ϵE Rk G1( )( )
r1ϵV G1( ),r2ϵV Rk G1( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

+ 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV Rk G1( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 
C1

+ 
C2

+ 
C3

,


C1

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



s1s2ϵV G2( )

d r1(  + d s1(  + d r1( d s1(  + d r2(  + d s2(  + d r2( d s2(  
2

� 

r1r2ϵE Rk G1( )( )
r1 ,r2ϵV G1( )



s1s2ϵV G2( )

d r1(  + d s1(  + d r1( d s1( ( 
2

+ d r1(  + d s2(  + d r2( d s2( ( 
2

 

+ 2 4 d r1( d r2(  + 2 d r1( d s2(  + d r2( d s1(   + d s1( d s2( 

+4 d r1( d r2( d s1( d s2(  + 4 d r1( d r2(  d s1(  + d s2(   + 2 d r1(  + d r2(  d s1( d s2( 

� 8eG2
F G1(  + 2eG1

F G2(  + 4F G1( F G2(  + 4M1 G1( M1 G2(  + 4M1 G1( F G2(  + 8M1 G2( F G1( 

+ 2 8M2 G1( eG2
+ 2M1 G1( M1 G2(  + 2M2 G2( eG1

+ 8M2 G1(  M2 G2(  + M1 G2(   + 4M1 G1( M2 G2(  ,
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C2

� 

r1r2ϵE Rk G1( )( )
r1ϵV G1( ),r2ϵV Rk G1( )(( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 

r1r2ϵE Rk G1( )( )
r1ϵV G1( ),r2ϵV Rk G1( )(( )−V G1( )



s1s2ϵV G2( )

d r1(  + d s1(  + d r1( d s1(  + d r2(  + d r2( d s2(  
2

� 

r1r2ϵE Rk G1( )( )
r1ϵV G1( ),r2ϵV Rk G1( )(( )−V G1( )



s1s2ϵV G2( )

d r1(  + d s1(  + d r1( d s1( ( 
2

+ d r2(  + d r2( d s2( ( 
2

 

+ 2 d r1(  + d s1(  + d r1( d s1( (  d r2(  + d r2( d s2( (  

� 8eG2
F G1(  + 32eG1

eG2
+ 4F G1( F G2(  + 4M1 G1( M1 G2(  + 8F G1( M1 G2( 

+ 2eG1
F G2(  + 4M1 G1( F G2(  + 8eG1

F G2(  + 16eG1
M1 G2(  + 8eG1

M1 G2(  + M2 G2(  

+ 2 M2 R1 G1( (  − 4M2 G1(   2eG2
+ 2M1 G2(  + 2M2 G2(  ,


C3

� 

r1r2ϵE Rk G1( )(( )
r1 ,r2ϵV Rk G1( )(( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 

r1r2ϵE Rk G1( )( )( )
r1 ,r2ϵV Rk G1( )(( )−V G1( )



s1s2ϵV G2( )

d r1(  + d r2(  + d r1( d s1(  + d r2( d s2(  
2

� 2 + 2 d s1( ( 
2

+ 2 + 2 d s2( ( 
2

+ 2 2 + 2 d s1(   2 + 2 d s2( (  

� 8(k − 1)eG1
2eG2

+ F G2(  + 2M1 G2(   + 16(k − 1)eG1
eG2

+ M1 G2(  + M2 G2(  .

(7)

Hence, we reached at our required result. □ Theorem 3. For k≥ 1, the HZ-index of G1⊠Qk
G2 is

HZ G1⊠Rk
G2  � 2(k − 1) F G1(  + 2M2 G1(   3nG2

+ 5M1 G1(  + 14eG2
+ F G2(  

+ k nG2
+ 6eG2

+ 3M1 G2(  + F G2(  

M4 G1(  − 2F G1(  + 2M2 G1(  − 4M2 G1(  + 

uϵV G1( )

d
2
(u) 

vϵN(u)

d(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + 6eG2
M1 G1( 

+ 10eG2
F G2(  + 3F G1( F G2(  + 6M1 G1( M1 G2(  + F G2(  nG1

+ 3M1 G1(  + 6eG2
+ 4M2 G1(  

+ F G1(  nG2
+ 7M1 G2(   + 6eG2

M2 G1(  + 8M2 G1(  eG2
+ M1 G2(   + 2 k nG2

+ 6eG2
+ 3M1 G2( 

+2M2 G2( ⎡⎣
1
2



uϵV G1( )

d
4
G1

(v) − d
3
G1

(v) + 

uϵV G1( )

tdG1
(u)dG1

(v) + 

uϵV G1( )

d
2
G1

(v) 

uϵV G1( )
uvϵE G1( )

dG1
(u)

−2M2 G1(  + M2 G2(  4eG1
+ nG1

  + 2eG1
M1 G2(  + M1 G1(  5e2 + 5M1 G2(  + 5M2 G2(  

+k M3 G1(  + 2M2 G1(   6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

 .

(8)
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Proof. Let the degree of a vertex (r, s) ∈ G1⊠Qk
G2 be denoted

by d(r, s):

HZ G1⊠Qk
G2  � 

r1 ,s1( ) r2 ,s2( )∈E G1⊠Sk
G2 

d r1, s1(  + d r2, s2(  
2

� 

rϵV G1( )



s1s2ϵE G2( )

d r, s1(  + d r, s2(  
2

+ 

sϵV G2( )



r1r2ϵE Qk G1( )( )

d r1, s(  + d r2, s(  
2

+ 

r1r2ϵE Qk G1( )( )



s1r2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 
A

+ 
B

+ 
C

,


A

� 

rϵV G1( )



s1s2ϵE G2( )

d r, s1(  + d r, s2(  
2

� 8e1M1 G2(  + n1HZ G2(  + 4e2M1 G1(  + 4e1HZ G2(  + M1 G1( HZ G2(  + 4M1 G1( M1 G2( 

OR

� 2 E H2( 


M1 H1(  + V H1( 


F H2(  + M1 H1( F H2( 

+ 4 E H1( 


M1 H2(  + 2M1 H1( M1 H2(  + 4 E H1( 


F H2( 

+ 2 M1 G1( eG2
+ M1 G1(  M1 G2(  + M2 G2(   + 2eG1

M1 G2(  + 2M2 G2(   + M2 G2( nG1
 ,


B

� 

sϵV G2( )



r1r2ϵE Qk G1( )( )

d r1, s(  + d r2, s(  
2

+ 

sϵV G2( )



r1r2ϵE Qk G1( )( )
r1 ,r2ϵV Qk G1( )( )−V G1( )

d r1, s(  + d r2, s(  
2


B1

� 

sϵV G2( )



r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )

d r1, s(  + d r2, s(  
2

� 

sϵV G2( )



r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )

d r1(  + d(s) + d r1( d(r) + d r2(  + d r2( d(s) 
2

� 

r1r2ϵE Qk G1( )( )
s1ϵV H1)( )s2ϵV Qk H1( )−H1( )



sϵV G2( )

d r1(  + d(s) + d r1( d(s)( 
2

d r2(  + d r2( d(s)( 
2



+2 d r1(  + d(s) + d r1( d(s)  d r2(  + d(s) + d r2( d(s) .

(9)

Consider r1ϵV(G1) and d2(r1) occurs d(r1) times. (us,

D1 � 

r1r2ϵE Q G1( )( ),

r1ϵV G1( ),r2ϵV Q G1( )( )−V G1( )

d
3

r1(  � F G1( .
(10)

Let

D2 � 

r1r2ϵE Q G1( )( ),

r1ϵV G1( ),r2ϵV Q G1( )( )−V G1( )

d
2

s2( ,
(11)
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as s2 � uvϵE(G1) and d2(s2) occurs two times. (erefore,

D2 � 2 

s2�uvϵV Q G1( )( )−V G1( )

[d(u) + d(v)]
2

� 2 

uvϵE G1( )

d
2
(u) + d

2
(v) + 2 d(u)d(v)  � 2 F G1(  + 2M2 G1(  ,


B1

� nG2
F G1(  + 2eG1

M1 G2(  + M1 G2( F G1(  + 4eG2
M1 G1(  + F G1(   + 2M1 G1( M1 G2( 

+ 2nG2
F G1(  + 2M2 G1(   + 2M1 G2(  F G1(  + 2M2 G1(   + 8eG2

F G1(  + 2M2 G1(  

+ 2 M3 G1(  + 2M2 G1(   nG2
+ 4eG2

+ M1 G2(   + 2M1 G1(  2eG2
+ M1 G2(   ,


B2

� 

r1r2ϵE Qk G1( )( )
r1r2ϵV Qk G1( )( )−V G1( )



sϵV G2( )

d r1, s(  + d r2, s(  
2
.

(12)

Now, assume ΣB2
� ΣB3

+ ΣB4
as follows:


B3

� 

r1r2ϵE Qk G1( )( )
r1r2ϵV Qk G1( )( )−V G1( )



sϵV G2( )

d r1(  + d r1( d(s)( 
2

+ d r2(  + d r2( d(s)( 
2



+2 d r1(  + d r1( d(s)(  d r2(  + d r2( d(s)(  

� 2(k − 1) F G1(  + 2M2 G1( (  nG2
+ M1 G2(  + 4eG2

  + M3 G1(  + 2M2 G1( (  nG2
+ 4eG2

+ M1 G2(   ,


B4

� 

r1r2ϵE Qk G1( )( )
r1r2ϵV Qk G1( )( )−V G1( )



sϵV G2( )

d r, s1(  + d r, s2(  
2

� 

r1r2ϵE Qk G1( )( )
r1r2ϵV Qk G1( )( )−V G1( )



sϵV G2( )

d r1(  + d r1( d(s) + d r2(  + d r2( d(s) 
2

� 

r1r2ϵE Qk G1( )( )
r1 ,r2ϵV Qk G1( )( )− G1( )



sϵV G2( )

d r1( 
2

+ d r2( 
2

+ d(s)
2

d r1( 
2

+ d r2( 
2

  + 2 d(s) d r1( 
2

+ d r2( 
2

  

+ 2 d r1(  + d r1( d(s)(  d r2(  + d r2( d(s)(  ,

D3 � 

r1r2ϵE Q G1( )( )
r1 ,r2ϵV Q G1( )( )−V G1( )

d
2

r1(  + d
2

r2(  .

(13)

In D3, coefficient of

d
2
(u) � 2

2

dG1
(u)

⎛⎝ ⎞⎠ + 
vϵN(u)

d(v) − d(u) � d
2
(u) − 2 d(u) + 

vϵN(u)

d(v). (14)

(erefore,



uϵV G1( )

d
2
(u) � M4 G1(  − 2F G1(  + 

uϵV G1( )

d
2
(u) 

vϵN(u)

d(v).
(15)
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For coefficient of d(u)d(v), let r1r2ϵE(Q(G1)) with r1 �

uv and r2 � wz. As r1r2 ∈ E(Q(G1)), we have either v � w

or z or u � w or z. So, uv is adjacent to all those vertices inG1

which are adjacent to u and v. Consequently, the number of
such d(u)d(v) is (d(u) + d(v) − 2). (erefore,

2 

uv∈E G1( )

d(u)d(v) � 2 

uvϵE G1( )

(d(u) + d(v) − 2)dudv

� 2 

uv∈E G1( )

(d(u) + d(v))d(u)d(v) − 4 

uv∈E G1( )

d(u)d(v) � 2M2 G1(  − 4M2 G1( ,
(16)

so

D3 � M4 G1(  − 2F G1(  + 

uϵV G1( )

d
2
(u) 

vϵN(u)

d(v) + 2M2 G1(  − 4M2 G1( ,


B4

� (k) nG2
+ 4eG2

+ M1 G2(   M4 G1(  − 2F G1(  + 2M2 G1(  − 4M2 G1(  + 

uϵV H1( )

d
2
(u) 

vϵN(u)

d(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ 2 (k) nG2
+ 4eG2

+ M1 G2(  
1
2



vϵV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

uvϵV G1( )

tdG1
(u)dG1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

vϵV G1( )

d
2
G1

(v) 

vϵV G1( )
uvϵE G1( )

dG1
(u) − 2M2 G1( ⎤⎦⎤⎦,

(17)

where t is the number of neighbors which are common
vertices of u and v in (G1).


C

� 

r1r2ϵE Qk G1( )( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 

r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

+ 

r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 
C1

+ 
C2

,


C1

� 

r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )



s1s2ϵV G2( )

d r1, s1(  + d r2, s2(  
2

� 

r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )



s1s2ϵV G2( )

d r1(  + d s1(  + d r1( d s1(  + d r2(  + d s2(  + d r2s2(  
2

� 

r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )



s1s2ϵV G2( )

d r1(  + d s1(  + d r1( d s1( ( 
2

+ d r2(  + d r2( d s2( ( 
2
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+ 2 d r1, s1( d r2, s2(  

� 6 eG2
+ M1 G2(  F G1(  + 3F G1( F G2(  + 2M1 G1( M1 G2(  + 2 eG1

+ M1 G1(  + 2M2 G1(  F G2(  + 8M2 G1( 

× eG2
+ M1 G2(   + 2 M3 G1(  + 2M2 G1(   2eG2

+ 2M1 G2(  + 2M2 G2(   + 2M1 G1(  2M2 G2(  + M1 G2(   .

(18)

Now, assume ΣC2
� ΣC3

+ ΣC4
as follows:


C3

� 

s1s2ϵV G2( )



r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )

d r1, s1(  + d r2, s2(  
2

� 

s1s2ϵV G2( )



r1r2ϵE Qk G1( )( )
r1ϵV G1( ),r2ϵV Qk G1( )( )−V G1( )

d r1(  + d r1( d s1(  + d r2(  + d r2( d s2(  
2

� 

t1t2ϵE H2( )



s1s2ϵE Qk H1( )( )
s1 ,s2ϵV Qk H1( )−H1( )

d s1(  + d s1( d t1( ( 
2

+ d s2(  + d s2( d t2( ( 
2

 

+ 2 d r1(  + d r1( d(s)(  d r2(  + d r2( d(s)(  

� 2(k − 1) F G1(  + 2M2 G1( (   2eG2
+ F G2(  + 2M1 G2(   + 2(k − 1) 2eG2

+ 2M1 G2(  + 2M2 G2(   M3 G1(  + 2M2 G1(  ,

 C4 � 

s1s2ϵV G2( )



r1r2ϵE Qk G1( )( )
r1 ,r2ϵV Qk G1( )( )−V G1( )

d r1, s1(  + d r2, s2(  
2

� 

s1s2ϵV G2( )



r1r2ϵE Qk G1( )( )
r1 ,r2ϵV Qk G1( )( )−V G1( )

d r1(  + d r2(  + d r1( d s1(  + d r2( d s2(  
2

� 

s1s2ϵE G2( )



r1r2ϵE Qk G1( )( )
r1 ,r2ϵV Qk G1( )( )−V G1( )

d r1(  + d r1( d s1( ( 
2

+ d r2(  + d r2( d s2( ( 
2

 

+ 2 d r1(  + d r1( d(s)(  d r2(  + d r2( d(s)(  

� (k) 2eG2
+ F G2(  + 2M1 G2(   M4 G1(  − 2F G1(  + 2M2 G1(  − 4M2 G1(  + 

uϵV G1( )

d
2
(u) 

vϵN(u)

d(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+(2k) 2eG2
+ 2M1 G2(  + 2M2 G2(  ⎡⎣

1
2



vϵV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

uvϵV G1( )

tdG1
(u)dG1

(v)

+ 

uϵV G1( )

d
2
G1

(v) 

uϵV G1( )
uvϵE G1( )

dG1
(u) − 2M2 G1( ⎤⎦,

(19)
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where t is the number of neighbors which are common
vertices of u and v in (G1).

(us, we arrive at our desired result. □

Theorem 4. For k≥ 1, the HZ-index of G1⊠Tk
G2 is

HZ G1⊠Tk
G2  � 2(k − 1) F G1(  + 2M2 G1(   nG2

+ 3M1 G2(  + 6eG2
+ F G2(   + k nG2



+6eG2
+ 3M1 G2(  + F G2(  M4 G1(  − 2F G1(  + 2M2 G1(  − 4M2 G1( 

+ 

uϵV G1( )

d
2
(u) 

vϵN(u)

dv
⎤⎥⎥⎥⎥⎥⎥⎥⎦ + F G1(  + 2M2 G1(   2nG2

+ 6M1 G2(  + 12eG2
+ 2F G2(  

+ 4F G1(  2nG2
+ 6M1 G2(  + 12eG2

+ 2F G2(   + F G2(  nG1
+ 12M1 G1( 

+12eG2
 + 12eG1

M1 G2(  + 16eG2
M1 G1(  + 20M1 G1( M1 G2( 

+ 2 k nG2
+ 6eG2

+ 3M1 G2( 2M2 G2(  ⎡⎣
1
2



vϵV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

uvϵV G1( )

dG1
(u)dG1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 

vϵV G1( )

d
2
G1

(v) 

uϵV G1( )
uvϵE G1( )

dG1
(u) − 2M2 G1( ⎤⎦ + M2 G1(  4nG2

+ 24eG2
+ 8M2 G2(  + 12M1 G2(  

+ k M3 G1(  + 2M2 G1(   6eG2
+ nG2

+ 3M1 G2(  + 2M2 G2(   + 5M1 G2( eG1

+M2 G2(  10eG1
+ nG1

  + M1 G1(  10eG2
+ 11M1 G2(  + 10M2 G2(  .

(20)

4. Applications and Discussion

Using k � 1, in (eorems 1–4, the results are obtained for
the generalized D1-sum graphs as follows:

(i) S1-sum:

HZ G1⊠S1G2  � nG2
+ 3M1 G2(  + 6eG2

 F G1(  + nG1
+ 3M1 G1(  + 14eG1

 F G2(  + 6eG2
M1 G1(  + 30eG1

M1 G2( 

+ 6M1 G1( M1 G2(  + 48eG1
eG2

+ F G1( F G2(  + 8nG2
eG1

+ 2 M2 G1(  + 4eG1
  5eG2

+ 3M1 G2( 

+2M2 G2(  + nG2
 + 14eG1

M1 G2(  + M2 G2(  12eG1
+ nG1

  + M1 G1(  eG2
+ M1 G2(  + M2 G2(  

+8eG1
eG2

.

(21)
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(ii) R1-sum:

HZ G1⊠R1
G2  � 8 nG2

+ 6eG2
 F G1(  + nG1

+ 20eG1
 F G2(  + 8F G1( F G2(  + 24eG2

M1 G1(  + 36eG1
M1 G2( 

+ 24M1 G1( M1 G2(  + 24F G1( M1 G2(  + 8nG2
eG1

+ 48eG1
eG2

+ 12F G2( M1 G1( 

+ 2 2M1 G1(  4eG2
+ 6M1 G2(  + 2M2 G2(   + 4eG1

3M1 G2(  + 3M2 G2(  + 4eG2
 

+ M2 R1 G1( (  − 4M2G1  6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

  + eG1
M1 G2( 

+ 4M2 G1(  nG2
+ 6eG2

+ 3M1 G2(   + M2 G2(  nG1
+ 2eG1

 .

(22)

(iii) Q1-sum:

HZ G1⊠Q1
G2  � 2 nG2

+ 6eG2
+ 3M1 G2(  + 2M2 G2(  

1
2



vϵV G1( )

d
4
G1

(v) − d
3
G1

(v)  + 

uvϵV G1( )

tdG1
(u)dG1

(v)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

vϵV G1( )

d
2
G1

(v) 

uϵV G1( )
uvϵE G1( )

dG1
(u) − 2M2 G1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ M2 G2(  4eG1

+ nG1
  + 2eG1

M1 G2(  + M1 G1( 

× 5e2 + 5M1 G2(  + 5M2 G2(   + M3 G1(  + 2M2 G1(   6eG2
+ 3M1 G2(  + 2M2 G2(  + nG2

 

+ nG2
+ eG2

+ 3M1 G2(  + F G2(   M4 G1(  − 2F G1(  + 2M2 G1(  − 4M2 G1(  + 

uϵV G1( )

d
2
(u)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

× 
vϵN(u)

d(v)⎤⎥⎥⎦ + 6eG2
M1 G1(  + 10eG2

F G2(  + 3F G1( F G2(  + 6M1 G1( M1 G2(  + F G2(  nG1


+3M1 G1(  + 6eG2
+ 4M2 G1(  + F G1(  nG2

+ 7M1 G2(   + 6eG2
M2 G1(  + 8M2 G1(  eG2

+ M1 G2(  .

(23)

Table 1: Hyper-Zagreb index of F1-sum path graphs.

[n1, n2] HZ(Pn1
⊠S1Pn2

) HZ(Pn1
⊠R1

Pn2
) HZ(Pn1

⊠Q1
Pn2

) HZ(Pn1
⊠T1

Pn2
)

(3, 3) 4144 11870 8834 16168
(4, 4) 11040 30260 24500 47180
(5, 5) 21232 62122 46516 89230
(6, 6) 33696 99344 75416 145204
(7, 7) 51384 147638 110384 212318
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(iv) T1-sum:

HZ G1⊠T1
G2  � nG2

+ 6eG2
+ 3M1 G2(  + F G2(   M4 G1(  − 2F G1(  + 2M2 G1(  − 4M2 G1(  + 

uϵV G1( )

d
2
(u)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

× 
vϵN(u)

d(v)⎤⎥⎥⎦ + F G1(  + 2M2 G1(   2n G2(  + 6M1 G2(  + 12eG2
+ 2F G2(   + 4F G1(  2nG2



+6M1 G2(  + 12eG2
+ 2F G2(  + F G2(  nG1

+ 12M1 G1(  + 12eG2
  + 12eG1

M1 G2(  + 16eG2
M1 G1( 

+ 20M1 G1( M1 G2(  + 2 nG2
+ 6eG2

+ 3M1 G2(  + 2M2 G2(  
1
2



vϵV G1( )

d
4
G1

(v) − d
3
G1

(v) 
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

uvϵV G1( )

tdG1
(u)dG1

(v) + 

vϵV G1( )

d
2
G1

(v) 

uϵV G1( )
uvϵE G1( )

dG1
(u) − 2M2 G1( 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ M3 G1(  + 2M2 G1(  

× 6eG2
+ nG2

+ 3M1 G2(  + 2M2 G2(   + 5M1 G2( eG1
+ M1 G1(  10eG2

+ 11M1 G2(  + 10M2 G2(  

+M2 G2(  10eG1
+ nG1

  + M2 G1(  4nG2
+ 24eG2

+ 8M2 G2(  + 12M1 G2(  .

(24)
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Figure 4: Graphical representation of HZ(Pn1
⊠S1Pm), HZ(Pn1

⊠R1
Pm), HZ(Pn1

⊠Q1
Pm), and HZ(Pn1

⊠T1
Pm) in red, green, orange, and purple

colour, respectively.
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Now, we present tabular form in Table 1 and graphical
representation in Figure 4 of path graphs for k � 1.

Finally, we close this section with the comment that the
problem is still open for other topological indices and
product of graphs, in particular the general randic index of
Fk-sum graphs under corona product.
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Recently, Gutman introduced a class of novel topological invariants named Sombor index which is defined

asSO(G) � uv∈E(G)

�����������

(du)2 + (dv)2


. In this study, the Sombor index of monogenic semigroup graphs, which is an important class
of algebraic structures, is calculated.

1. Introduction and Preliminaries

)e monogenic semigroup graph is inspired by zero divisor
graphs. )erefore, before moving on to the main topic, we
will focus on the studies on zero divisor graphs (see [1–4]).
In relation to the study of zero divisor graphs that has many
authors researching commutative and noncommutative
rings and how it has advanced, DeMeyer et al. [5, 6] have
developed research on commutative and noncommutative
semigroups related to zero divisor graphs. )e authors in [7]
utilised the adjacent rule of vertices while still keeping the
original idea. )e authors determined a finite multiplicative
monogenic semigroup with 0 as follows:

SM � 0, x, x
2
, x

3
, . . . , x

n
 . (1)

By utilizing the idea defined in [5, 6], the authors obtained a
new graph related to monogenic semigroups in [7]. )e ver-
tices of this graph are all nonzero elements in SM and for any
two different verticesxi andxj where (1≤ i, j≤ n) are linked to
each other, if and only if i + j> n. )ere are many studies
concerning monogenic semigroup graphs which were pub-
lished by Akgüneş et al. (see for example [8–10]).

In chemistry, topological indices have been around for
more than half a century [11]. In newer times, they are being
extensively investigated also by mathematicians. )ese

indices are used to model structural properties of molecules
and provide information of value for physical chemistry,
material science, pharmacology, environmental sciences,
and biology [12]. Recently, a new such graph-based topo-
logical index, called Sombor index, was put forward by
Gutman [13]. Initially, the index was applied in chemistry
[14–18] and soon attracted the interest of mathematicians
[19–22]. Eventually, however, the Sombor index found
applications also in network science and was used for
modeling dynamical effects in biology, social, and techno-
logical complex systems [23]. It seems that this index became
interesting also for military purposes [24]. All this happened
within less than one year since the publication of the paper
[13]. In view of this wide research activity on Sombor index,
it may be of interest to seek for its deeper algebraic con-
nections. In this paper, we report some results relating the
Sombor index with an important class of algebraic struc-
tures, namely, with monogenic semigroups.

For a graph G, its edge set and vertex set are denoted by
E(G) and V(G), respectively.

Sombor index discovered by; Gutman [13] is one of the
vertex-degree-based topological indices defined by

SO(G) � 
uv∈E(G)

�����������

du( 
2

+ dv( 
2



, (2)
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because the function F(x, y) �
������
x2 + y2


was not utilised.

Also, as a reminder, for a real number r, we identify by
⌊r⌋ the greatest integer ≤r, and by ⌈r⌉, the least integer ≥r. It
is clear that r − 1< ⌊r⌋ ≤ r and r≤ ⌈r⌉< r + 1. However, for a
natural number n, we have

⌊
n

2
⌋ �

n

2
, if n is even,

n − 1
2

, if n is odd.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

In this paper, we focus on determining the explicit
formula of Sombor index of the monogenic semigroup
graph.

2. An Algorithm

)e authors in [8] to simplify their research gave the al-
gorithm concerning the neighborhood of vertices by uti-
lizing the initial statement of monogenic semigroup graph.
We will use this algorithm in our main theorem in the next
section.

In: the vertex xn is adjoining to every vertex
xi1(1≤ i1 ≤ n − 1) except itself.
In−1: the vertex xn− 1 is adjoining to every vertex
xi2(2≤ i2 ≤ n − 2) except itself and the vertex xn.
In−2: the vertex xn− 2 is adjoining to every vertex
xi3(3≤ i3 ≤ n − 3) except itself and the vertices xn and
xn− 1.

Carrying on the algorithm this way, we get the fol-
lowing result, depending on whether the number n is
odd or even.
If n is even,
I(n/2)+2: the vertex x(n/2)+2 is adjoining not only to the
vertices x(n/2)− 1, x(n/2), and x(n/2)+1 but also to the
vertices xn, xn− 1, xn− 2, . . ., x(n/2)+3.
I(n/2)+1: the vertex x(n/2)+1 is adjoining not only to the
single vertex x(n/2) but also to the vertices xn, xn− 1,
xn− 2, . . ., x(n/2)+2.
If n is odd,
I(n+1)/2: the vertex x(n+1)/2+2 is adjoining not only to the
vertices x(n+1/2)− 2, x(n+1/2)− 1, x(n+1/2), and x(n+1/2)+1 also
adjoining to the vertices xn, xn− 1, xn− 2, . . ., x(n+1/2)+3.
I(n+1)/2+1: the vertex x(n+1)/2+1 is adjoining not only to
the vertices x(n+1/2)− 1 and x(n+1/2) also adjoining to the
vertices xn− 1, xn− 2, . . ., x(n+1)/2+2.

In the lemma given below, the degrees of vertices
x1, x2, . . . , xn ∈ Γ(SM) are denoted by d1, d2, . . . , dn. )ere
are many studies on the degree series. Regarding this, you
can refer to [7, 25] and references cited in these studies. In
fact, in the lemma below, it is mentioned that there is an
ordering between the degrees d1, d2, . . . , dn. You can reach
the proof of this lemma from [7], as well as from the al-
gorithm given above (see [8]).

Lemma 1.

d1 � 1, d2 � 2, . . . , d⌊n/2⌋ � 
n

2
, d⌊n/2⌋+1 � 

n

2
, d⌊n/2⌋+2 � 

n

2
 + 1, . . . , dn � n − 1. (4)

Remark 1. Paying attention to Lemma 1, the repeated terms
are given in the following:

d⌊n/2⌋ � 
n

2
 � d⌊n/2⌋+1. (5)

)erefore, the degree of dn is denoted by n − 1, although
the number of vertices is n.

3. Calculating Sombor Index of Γ(SM)

In this section, we will obtain an exact formula of Sombor
index over monogenic semigroup graph.

Theorem 1. For any monogenic semigroup SM as given in
(1), the Sombor index of the graph Γ(SM) is

SO Γ SM( (  �



(n/2)−1

k�1


n−k−1

i�k

����������

(n − k)
2

+ i
2



+ 
n/2

k�1

�������������

(n − k)
2

+
n

2
 

2


, if n is even,



(n−1)/2

k�1


n−k−1

i�k

����������

(n − k)
2

+ i
2



+ 

(n−1)/2

k�1

�������������

(n − k)
2

+
n

2
 

2


, if n is odd.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Proof. Since our aim is to formulate SO(Γ(SM)) in terms of
the total number of degrees, we need to treat the sum as the

sum of different blocks and then calculate each separately.
During our calculations, we will use the algorithm given in
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Section 2 here, as it offers a very systematic way of calcu-
lating the degrees of vertices. We will also make use of
equations (3) and (4) and Remark 1

If n is odd,

[SO] Γ SM(  �

������

d
2
n + d

2
1



+

������

d
2
n + d

2
2



+

������

d
2
n + d

2
3



+ · · · +

��������

d
2
n + d

2
n−2



+

��������

d
2
n + d

2
n−1



+ +

��������

d
2
n−1 + d

2
2



+

��������

d
2
n−1 + d

2
3





+ · · · +

���������

d
2
n−1 + d

2
n−2



+ + · · · + +

�����������������

d
2
(n+1/2)+2 + d

2
(n+1/2)−2



+

�����������������

d
2
(n+1/2)+2 + d

2
(n+1/2)−1



+

���������������

d
2
(n+1/2)+2 + d

2
(n+1/2)



+

�����������������

d
2
(n+1/2)+2 + d

2
(n+1/2)+1



+

�����������������

d
2
(n+1/2)+1 + d

2
(n+1/2)−1



+

���������������

d
2
(n+1/2)+1 + d

2
(n+1/2)



.

(7)

As a result, the Sombor index of Γ(SM) is written as the
sum below:

[SO] Γ SM(  � 
ij∈E(G)

������

d
2
i + d

2
j



� [SO]n +[SO]n−1 + · · · +[SO](n+1/2)+2 +[SO](n+1/2)+1.
⎛⎝ (8)

When calculating the Sombor index sum, we will write
the smallest degree at the end of the line, so we will get a
second total and this will provide us with ease of operation.

By the way, while making these calculations, we use the
equation ⌊n/2⌋ � ((n − 1)/(2)) given in (2) for the case
where n is odd.

[SO]n �

����������

(n − 1)
2

+ 12


+

����������

(n − 1)
2

+ 22


+

����������

(n − 1)
2

+ 32


+ · · · +

������������

(n − 1)
2

+⌊
n

2
⌋2



+ · · · +

+

���������������

(n − 1)
2

+(n − 2)
2



+

������������

(n − 1)
2

+⌊
n

2
⌋2



� 
n−2

i�1

����������

(n − i)
2

+ i
2



+

����������������

n − 1)
2

+
n − 1
2

 
2
.



(9)

If similar operations applied in [SO]n are applied in
[SO]n−1, we obtain

[SO]n−1 � 
n−3

i�2

����������

(n − i)
2

+ i
2



+

���������������

(n − 2)
2

+
n − 1
2

 
2



,

[SO](n+1)/2+2 �

����������������

n + 3
2

 
2

+
n − 3
2

 
2



+

����������������

n + 3
2

 
2

+
n − 1
2

 
2



+

����������������

n + 3
2

 
2

+
n − 1
2

 
2



+

����������������

n + 3
2

 
2

+
n + 1
2

 
2



,

(10)

and finally,

[SO](n+1)/2+1 �

����������������

n + 1
2

 
2

+
n − 1
2

 
2



+

����������������

n + 1
2

 
2

+
n − 1
2

 
2



. (11)
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Hence,

[SO]n +[SO]n−1 + · · · +[SO](n+1)/2+2 +[SO](n+1)/2+1 � 

(n−1)/2

k�1


n−k−1

i�k

����������

(n − k)
2

+ i
2



+ 

(n−1)/2

k�1

�������������

(n − k)
2

+
n

2
 

2


. (12)

If we follow similar steps as if n is odd, we will get the
following sum if n is even:

[SO]n +[SO]n−1 + · · · +[SO](n/2)+2 +[SO](n/2)+1 � 

(n/2)−1

k�1


n−k−1

i�k

����������

(n − k)
2

+ i
2



+ 

(n/2)

k�1

�������������

(n − k)
2

+
n

2
 

2


. (13)

□
Corollary 1. In [26, 27], the authors exhibited that the
Sombor index can be an integer in several graph structures. In
monogenic semigroup graphs, it is seen that it is not possible
for the Sombor index to take an integer value according to the
formula given in 2eorem 1.

We will give the following examples to reinforce )e-
orem 1.

Example 1. Consider the monogenic semigroup S6M given
below and calculate the Sombor index of Γ(S6M) graph by
applying the rule given in )eorem 1:

S
6
M � x, x

2
, x

3
, x

4
, x

5
, x

6
 ∪ 0{ }. (14)

Monogenic semigroup graphs, which are defined with
inspiration from zero divisor graphs, also contain the 0

x3

x5

x2x

x6

x4

Figure 1: S6M monogenic semigroup graph.

x

x2 x3

x4

Figure 2: S4M monogenic semigroup graph (corresponding hydrogen-suppressed molecular graph).
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element. Because the vertices of xi and xj, which are taken
arbitrarily in the monogenic semigroup, can be connected
with each other, that is, the necessary and sufficient

condition for the condition of xixj � 0 is to be i + j> n. In
line with this information, the S6M graph is given in Figure 1.

SO Γ S
6
M  � 

2

k�1


5−k

i�k

����������

(6 − k)
2

+ i
2



+ 
3

k�1

������������

(6 − k)
2

+(3)
2



�

������

52 + 12


+

������

52 + 22


+

������

52 + 32


+

������

52 + 42


+
������
42 + 22



+

������

42 + 32


+

������

52 + 32


+

������

42 + 32


+

������

32 + 32


.

(15)

In the example below, the Sombor index of the corre-
sponding hydrogen-suppressed molecular graph, which is
equivalent to Γ(S4M) monogenic semigroup graph, is
calculated.

Example 2. )e Sombor index of the monogenic semigroup
S4M given below is calculated by applying )eorem 1.

S
4
M � x, x

2
, x

3
, x

4
 ∪ 0{ }. (16)

)e S4M graph is given in Figure 2.

SO Γ S
4
M  � 

k�1


2

i�1

����������

(4 − k)
2

+ i
2



+ 
2

k�1

������������

(4 − k)
2

+(2)
2


⎛⎝

�

������

32 + 12


+

������

32 + 22


+

������

32 + 22


+

������

22 + 22.


(17)

As can be seen, the Sombor index of a monogenic
semigroup graph can be calculated very easily with the given
formula in )eorem 1.

Data Availability

No data were used to support this study.

Conflicts of Interest

)e author declares no conflicts of interest.

Acknowledgments

)e author wishes to express his appreciation to Professor
Dr. Ivan Gutman for his invaluable support and expertise
during the research phase of this paper.

References

[1] D. D. Anderson and M. Naseer, “Beck’s coloring of a com-
mutative ring,” Journal of Algebra, vol. 159, pp. 500–514, 1991.

[2] D. F. Anderson and P. S. Livingston, “)e zero-divisor graph
of a commutative ring,” Journal of Algebra, vol. 217, no. 2,
pp. 434–447, 1999.

[3] D. F. Anderson and A. Badawi, “On the zero-divisor graph of
a ring,” Communications in Algebra, vol. 36, no. 8,
pp. 3073–3092, 2008.

[4] I. Beck, “Coloring of commutative rings,” Journal of Algebra,
vol. 116, no. 1, pp. 208–226, 1988.

[5] F. DeMeyer and L. DeMeyer, “Zero divisor graphs of semi-
groups,” Journal of Algebra, vol. 283, no. 1, pp. 190–198, 2005.

[6] F. R. DeMeyer, T. McKenzie, and K. Schneider, “)e zero-
divisor graph of a commutative semigroup,” Semigroup Fo-
rum, vol. 65, no. 2, pp. 206–214, 2002.
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Chemical structural formula can be represented by chemical graphs in which atoms are considered as vertices and bonds between
them are considered as edges. A topological index is a real value that is numerically obtained from a chemical graph to predict its
various physical and chemical properties. (orn graphs are obtained by attaching pendant vertices to the different vertices of a
graph under certain conditions. In this paper, a numerical relation between the Gutman connection (GC) index of a graph and its
thorn graph is established. Moreover, the obtained result is also illustrated by computing the GC index for the particular families
of the thorn graphs such as thorn paths, thorn rods, thorn stars, and thorn rings.

1. Introduction

Let Γ � (V(Γ), E(Γ)) be a simple, finite, and connected
graph with vertex set V(Γ) and edge set E(Γ) ⊆ V(Γ) ×V(Γ).
LetΘ be a collection of such graphs; then, a topological index
(TI) is a function from Θ to the set of real numbers defined
under certain conditions on the vertices and edges of the
graphs. Moreover, for Γ1, Γ2 ∈ Θ, if Γ1 � Γ2, then
TI(Γ1) � TI(Γ2). (e TIs are one of the graph-theoretic
techniques which are widely used to study the different
properties of the chemical graphs such as boiling point,
melting point, flash point, temperature, pressure, tension,
heat of evaporation, heat of formation, partition coefficient,
retention times in chromatographic, and density [1, 2].

TIs are also used in chemoinformatics which is com-
bination of the three different subjects such as information
science, chemistry, and mathematics. In chemoinformatics,
on the bases of quantitative structural activity relationship
(QSAR) and the qualitative structural property relationship
(QSPR), the different chemical properties of a chemical
graph are correlated with its structure [3, 4]. Gutman and
Trinajstic [5] evaluated the total π-electron energy of the
molecular structure by using the sum of square of degree
(number of neighborhoods) of vertices of molecular graphs

that is known by first Zagreb index nowadays. In the same
paper, another descriptor appeared that is called as second
Zagreb index. Furtula and Gutman [6] introduced another
TI called third Zagreb index, which is also known as a
forgotten index. After that, many TIs based on the degrees of
vertices were established, see [7]. In 2018, Ali and Trinajstic
[8] established a descriptor known as modified first Zagreb
connection index. In the same paper, they also presented two
more descriptors with the name first and second Zagreb
connection indices. Ali et al. [9] introduced modified second
and third Zagreb connection indices and compared Zagreb
connection indices and modified Zagreb connection indices
for T-sum graphs. Recently, Javaid et al. [10] defined the
Gutman connection (GC) index with the help of connection
numbers of a graph. For the various computational results,
we refer [11–13].

In 1947, Wiener [14] first time applied a distance-based
TI to find the boiling point of paraffin. Now, it is called as the
Wiener index. Gutman [15] introduced Schultz index of the
second kind (Gutman index) as a type of vertex-valency-
weighted sum of the distances between all pairs of vertices in
a graph. In 1998, Gutman [16] introduced the idea of thorn
graph with many applications in chemical graph theory.
Bytautas et al. [17] developed an algorithm to find the mean
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Wiener terminal numbers for some thorny graphs. In 2005,
Zhou [18] worked on modified Wiener indices for thorn
trees. In 2011, Li [19] computed the Zagreb polynomials for
thorny graphs. (e study of thorn graphs provides math-
ematical results that relate numerical values of TIs of
plerograms and kenograms. Plerograms are obtained from a
molecule by expressing each atom with a vertex, but if the
hydrogen atoms are not considered, then corresponding
mathematical representation of a molecule is called as
kenogram.(e relation between the terminalWiener indices
of plerograms and kenograms was discussed in [20]. For
more details about thorn graphs, see [21–23].

In this study, we establish a relationship between the
Gutman connection index of a simple connected graph and its
thorn graph. It is also applied to evaluate the Gutman con-
nection index of thorn paths, thorn rods, thorn rings, and
thorn stars. Rest of the paper is organized as follows. Section 2
contains the definitions and key concepts that are used in the
remaining part of the paper. In Section 3, main and some
related results are proved, and in Section 4, application of the
main result is discussed for some thorn graphs.

2. Preliminaries

Here, Γ is considered as a finite connected graphs without
loops and multiples edges, and let V(Γ) � v1, v2, . . . , vn  be
its vertex set for an n-vertex simple connected graph Γ.
Consider H � (h1, h2, . . . , hn) as an n-tuple of nonnegative
integers. Since distance between any two vertices of Γ is the
same in both Γ and Γh, so we denote distance between
vertices u and v with respect to both Γ and Γh as d(u, v).

2.1. Related Graphs. In this section, we recall the definition
of caterpillar, thorn paths, thorn rods, thorn rings, and thorn
stars.

Definition 1 (see [24]). For i � 1, 2, . . . , n, a thorn graph Γh is
constructed by attaching hi pendant vertices to the vertex vi

of graph Γ, where |V(Γ)| � n. If Vi is the set of hi thorns of
the vertex vi, then V(Γh) � V(Γ)∪ ∪ n

i�1Vi. For more ex-
planation, see Figure 1.

Definition 2 (see [24]). A thorn path Pn,h,k is a graph formed
from a path Pn by attaching k neighbors to its terminal
vertices and h neighbors to its nonterminal vertices. For
more detail, see Figure 2.

Definition 3 (see [24]). A caterpillar (Tm,n
′) is a thorn path

obtained from path Pn such that its thorn vertices (other
than pendant) are of the same degree m> 2. It is clear that
Pn,m− 2,m− 1 � Tm,n

′, see Figure 3.

Definition 4 (see [24]). A thorn rod Pn,m is a graph that is
obtained by adding m − 1 pendant vertices to each terminal
vertex of Pn. It is clear that Pn,2,m � Pn,m, see Figure 4.

Definition 5 (see [24]). (e thorn star Sn,h1 ,h2 ,...,hn
is obtained

from the star Sn by attaching hi pendant neighbors to vertex

vi for i � 1, 2, . . . , n. (orn star Sn,h1 ,h2,...,hn
defined here is

shown in Figure 5.

Definition 6 (see [24]). If for each vertex of a cycle graph Cn

and a thorn of length m − 2 is attached, then it is called thorn
ring (denoted by Cn,m). For more details, see Figure 6.

2.2. Chemical Applicability of GC Index. (is section covers
the definition of Gutman connection (GC) index with its
applicability.

Definition 7 (see [15]). (e Gutman index of a simple
connected graph Γ (denoted by Gut(Γ)) is defined as

Gut(Γ) � 
u,v{ }⊆Γ

dΓ(u)dΓ(v)d(u, v). (1)

In the above definition, Javaid et al. [10] replaced the
vertex degree with the connection number and defined a
new connection-based index known as the Gutman con-
nective (GC) index as follows.

Definition 8. For a simple and connected graph Γ, the
Gutman connection index is

GC(Γ) � 
u,v{ }⊆Γ

τ
u

Γ
 τ

v

Γ
 d(u, v), (2)

where τ(u/Γ) and τ(v/Γ) denote the connection number of
vertices u and v, respectively, of graph Γ and d(u, v) is the
distance between vertices u and v in Γ.

(e correlation coefficients between the values of GCI
and eleven physicochemical properties of octane isomer
boiling point (B. P), heat capacity at constant temperature
(C. T), heat capacity at constant pressure (C. P), entropy (S),
density (D), mean radius (Rm2), change in heat of vapor-
ization (− ΔHv), standard heat of formation (− ΔHf),
accentric factor (A. F), enthalpy of vaporization (HVAP),
and standard enthalpy of vaporization (DHVAP) are shown
in Table 1. It is clear that absolute value of correlation co-
efficient of GCI with S, A. F, HVAP, and DHVAP is above
0.9. Also, the value of its correlation coefficient with ΔHf is
0.8386. Consequently, the GC index may be a very useful
index in the studies of QSPR and QSAR.

Now, before presenting the most frequent used lemma,
we define some important notations as M21(Γ) � 

n
i�1

τ(vi/Γ) and M2,j � 
n
i�1 τ(vi/Γ)d(vi, vj), where j ∈

1, 2, 3, . . . , n{ }.

Lemma 1. Let Γ be a C3, C4 -free simple and connected
graph with vertex set V(Γ) � v1, v2, . . . , vn  and edge set
E(Γ). 6en, M21(Γ) � M1(Γ) − |E(Γ)|, where M1(Γ) is the
first Zagreb index.

Proof. As M21(Γ) � 
n
i�1 τ(vi/Γ) � 

n
i�1 u∈NΓ(vi)

(d(u) − 1),
where NΓ(vi) denotes the neighborhood of vi, where
|NΓ(vi)| � d(vi), for all vi ∈ V(Γ). Now, if u ∈ NΓ(vi), then
vi ∈ NΓ(u). Hence, the number of neighborhoods in which

2 Journal of Mathematics



vi lies is equal to the |NΓ(vi)| � d(vi), and then, the com-
ponent of vi which contribute to τ(u) will be d(vi) − 1, for
any u ∈ NΓ(vi). Consequently, M21(Γ) � 

n
i�1 d (vi) (d

(vi) − 1) � 
n
i�1 d(vi)

2 − 
n
i�1 d(vi) � M1(Γ) − |E(Γ)|.

3. Main Development

(is section covers the main results of the Gutman con-
nection (GC) index of the thorn graphs in its general form.

Γ1

2

3

1

2

1

2
3

3

1

2
3

n

2

3

1

m – 1

m – 2 m – 2

m – 1

Figure 3: Caterpillar, Tm,n
′.

Γ1

2

3

1

2 3 n

2

3

1

m – 1 m – 1

Figure 4: (orn rod, Pn,m.

Γ1

1

2
3 h1 h2 hn

2

1

2
3

n

1

2
4

Figure 1: (orn graph Γh of the path graph Γ � Pn with parameter h � (h1, h2, h3, . . . , hn).

Γ1

2

3

1

k

2

1

2
3 h

3

1

2
3 h

n

2

3

1

k

Figure 2: (orn path, Pn,h,k.
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Theorem 1. Let Γh be a thorn graph of the graph Γ, where
|V(Γ)| � n; then,

GC Γh  � GC
Γ
Γh

  + 
n

i�1
d

vi

Γ
  + hi − 1 

2
hi hi − 1( 

+ 
n

j�1
d

vi

Γ
  + hi − 1 hj M2,j(Γ) + M21(Γ)

+ 
n

i�1


p∈N vi( )

hp d vi, vj  + 1 

+ 

n

1≤ i< j≤ n

d
vi

Γ
  + hi − 1  d

vi

Γ
  + hi − 1 

· d vi, vj  + 2 hihj.

(3)

Proof. Assume that τ(u/Γh) represents the connection
numbers of u in graph Γh and τ(u/Γ) represents the con-
nection number of u in graph Γ. By the definition of the
Gutman connection index, we have

GC Γh  � 

u,v{ }⊆V Γh( )

τ
u

Γh
 τ

v

Γh
 d(u, v). (4)

By the definition of V(Γh), the sum in equation (5) can
be partitioned into four sums as



u,v{ }⊆V Γh( )

τ
u

Γh
 τ

v

Γh
 d(u, v) � S1 + S2 + S3 + S4, (5)

where S1 consists of contributions to GC(Γh) of pair of
vertices from Γ, S2 consists of pair of vertices from Vi, for all
1≤ i≤ n, S3 is the contribution of pair of vertices one from
u ∈ V(Γ) and the other one v is in Vi, for all 1≤ i≤ n, and S4
is taken from all the pair of vertices such that one of them u is
from Vi and other vertex v from Vj.

Now,

S1 � 
u,v{ }⊆V(Γ)

τ
u

Γh
 τ

v

Γh
 d(u, v) � GC

Γ
Γh

  (6)

and

S2 � 
n

i�1


u,v{ }⊆Vi

τ
u

Γh
 τ

v

Γh
 d(u, v)

� 
n

i�1


u,v{ }⊆Vi

d
vi

Γ
  + hi − 1  d

vi

Γ
  + hi − 1 .2

� 
n

i�1
d

vi

Γ
  + hi − 1 

2
.hi hi − 1( .

(7)

Similarly,

n

1
2

1 2
1

2

hn

1
2

1

2

n – 1

hn–1h2h1

Figure 5: (orn star.

Figure 6: (orn ring, C5,3.

Table 1: Comparison of correlation coefficients between TIs and
physicochemical properties of octane isomers.

GCI ZC∗1 M1 M2 ZC1 ZC2

B. P − 0.789 − 0.352 − 0.718 − 0.498 − 0.770 − 0.168
C. T − 0.513 0.0822 − 0.340 − 0.072 − 0.389 0.165
C. P 0.090 0.581 0.294 − 0.492 0.267 0.524
S − 0.910 − 0.891 − 0.954 − 0.942 − 0.920 − 0.836
D 0.616 0.748 0.640 − 0.730 0.564 0.838
Rm2 − 0.723 − 0.790 − 0.789 − 0.814 − 0.759 0.659
− ΔHf 0.839 0.392 0.760 0.541 0.784 0.259
− ΔHv − 0.171 − 0.071 − 0.222 − 0.129 − 0.294 0.145
A. F − 0.901 − 0.949 − 0.973 − 0.986 − 0.951 − 0.862
HVAP − 0.910 − 0.606 − 0.886 − 0.728 − 0.914 − 0.433
DHVAP − 0.941 − 0.705 − 0.936 − 0.812 − 0.955 − 0.551

4 Journal of Mathematics



S3 � 
n

i�1


n

j�1

u�vi


v∈Vj

τ
u

Γh
 τ

v

Γh
 d(u, v)

� 
n

i�1


n

j�1

u�vi


v∈Vj

τ
u

Γh
  d

v

Γ
  + hj − 1  d vi, vj  + 1 

� 
n

i�1
τ

vi

Γh
  

n

j�1
d

vj

Γ
  + hj − 1 hj d vi, vj  + 1 

� 
n

j�1
d

vj

Γ
  + hj − 1 hj 

n

i�1
τ

vi

Γh
  d vi, vj  + 1 

� 
n

j�1
d

vj

Γ
  + hj − 1 hj 

n

i�1

τ
vi

Γ
  + 

k∈N vi( )

hk
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ d vi, vj  + 1 

� 
n

j�1
d

vj

Γ
  + hj − 1 hj

· M2,j(Γ) + M21(Γ) + 
n

i�1


p∈N vi( )

hp d vi, vj  + 1 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(8)

S4 � 
n

1≤ i< j≤ n


u∈Vi


v∈Vj

τ
u

Γh
 τ

v

Γh
 d(u, v)

� 
n

1≤ i< j≤ n


u∈Vi


v∈Vj

d
vi

Γ
  + hi − 1 

· d
vj

Γ
  + hj − 1  d vi, vj  + 2 

� 
n

1≤ i< j≤ n

d
vi

Γ
  + hi − 1  d

vj

Γ
  + hj − 1 

· d vi, vj  + 2  
u∈Vi

1⎛⎝ ⎞⎠ 
v∈Vj

1⎛⎝ ⎞⎠

� 
n

1≤ i< j≤ n

d
vi

Γ
  + hi − 1  d

vj

Γ
  + hj − 1  d vi, vj  + 2 hihj.

(9)

By substituting the values of S1, S2, S3, and S4 in equation
(5), the required result is obtained.

Now, using Lemma 1 and the result of (eorem 1, we
obtain Corollary 1 under the condition on Γ that it is free
from cycles of length three and four. Moreover, Corollary 2
is obtained by attaching the same number of pendant
vertices to each vertex of Γ.

Corollary 1. If Γ is a graph free from cycles of length three
and four, then

GC Γh  � GC
Γ
Γh

  + 
n

i�1
d

vi

Γ
  + hi − 1 

2
.hi hi − 1(  + 

n

j�1
d

vj

Γ
  + hj − 1 hj

· M2,j(Γ) + M1(Γ) − |E(Γ)| + 
n

i�1


p∈N vi( )

hp d vi, vj  + 1 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ 
n

1≤ i< j≤ n

d
vi

Γ
  + hi − 1  d

vj

Γ
  + hj − 1  d vi, vj  + 2 hihj.

(10)

Corollary 2. Let Γh be thorn graph of Γ with parameters
h1 � h2 � · · · � hn � h; then,

GC Γh  � GC
Γ
Γh

  + h(h − 1) M1(Γ) +(h − 1)
2
.(n − 1) + 2(h − 1)|E(Γ)| 

· 
n

j�1
d

vj

Γ
  + h − 1 h M2,j(Γ) + M1(Γ) − |E(Γ)|  + h 

n

i�1


p∈N vi( )

d vi, vj  + 1 

+ 
n

1≤ i< j≤ n

d
vj

Γ
  + h − 1  d

vj

Γ
  + h − 1 d vi, vj  + 2 h

2
.

(11)
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4. Applications

In this section, we find the GC index of the thorn path, thorn
rod, and thorn ring graphs with the help of the main de-
veloped result ((eorem 1).

Theorem 2. Let n≥ 2 and h and k be nonnegative integers
and Pn,h,k be a thorn graph of Pn; then,

GC Pn,h,k  �
1
6
h
4
n
3

−
13
6

h
4
n + 3h

4
+ h

3
n
3

− 2h
3
n
2

− 4h
3
n + 8h

3
+ h

2
k
2
n
2

+ h
2
k
2
n − 6h

2
k
2

+ h
2
kn

2

− 3h
2
kn + 2h

2
k +

13
6

h
2
n
3

− 8h
2
n
2

+
59
6

h
2
n − 7h

2
+ 3hk

2
n
2

− hk
2
n − 10hk

2
+ 3hkn

2
− 13hk + 16kn + 18hk + 2hn

3

− 10hn
2

+ 23hn − 26h + k
4
n + 3k

4
+ 2k

3
n + 2k

2
n
2

− k
2
n − 7k

2
+ 2kn

2
− 10kn +

2
3
n
3

− 4n
2

+
34
3

n − 14.

(12)

Proof. Here, h1 � hn � k and hi � h, for 2≤ i≤ n − 1. Now,
we find S1, S2, S3, and S4 as derived in (eorem 1.

S1 � GC(Γ) � 
u,v{ }⊆Γ

τ
u

Γh
 τ

v

Γh
 d(u, v)

� τ
v1

Γh
  

n− 2

j�3
τ

vj

Γh
 d v1, vj  + τ

v2

Γh
  

n− 2

j�3
τ

vj

Γh
 d v2, vj  + τ

vn− 1

Γh
  

n− 2

j�2
τ

vn

Γh
 d vn− 1, vj 

+ τ
vn

Γh
  

n− 2

j�3
τ

vn

Γh
 d vn, vj  + τ

v1

Γh
 τ

v2

Γh
 d v1, v2(  + τ

v1

Γh
 τ

vn− 1

Γh
 d v1, vn− 1( 

+ τ
v1

Γh
 τ

vn

Γh
 d v1, vn(  + τ

v2

Γh
 τ

vn− 1

Γh
 d v2, vn− 1(  + τ

v2

Γh
 τ

vn

Γh
 d v2, vn( 

+ τ
vn− 1

Γh
 τ

vn

Γh
 d vn− 1, vn(  + 

u,v{ }⊆V Γ/ v1 ,v2 ,vn− 1 ,vn{ }( )

τ
u

Γh
 τ

v

Γh
 d(u, v)

� (h + 1) 
n− 2

j�3
(2h + 2)(j − 1) +(h + k + 1) 

n− 2

j�3
(2h + 2)(j − 2) +(h + k + 1) 

n− 2

j�3
(2h + 2)(n − 1 − j)

+(h + 1) 
n− 2

j�3
(2h + 2)(n − j) +(h + 1)(h + k + 1) +(h + 1)(h + k + 1)(n − 2) +(h + 1)

2
(n − 1) +(h + k + 1)

2
(n − 3)

+(h + 1)(h + k + 1)(n − 2) +(h + 1)(h + k + 1) + 

u,v{ }⊆V Γ/ v1 ,v2 ,vn− 1 ,vn{ }( )

(2h + 2).(2h + 2)d(u, v)

� 
n− 2

j�3
2(h + 1)

2
(n − 1) + 2(h + 1)(h + k + 1)(n − 3)  + 2(h + 1)(h + k + 1)(n − 1) +(h + 1)

2
(n − 1)

+(h + k + 1)
2
(n − 3) + 4(h + 1)

2


u,v{ }⊆V Γ/ v1 ,v2 ,vn− 1 ,vn{ }( )

d(u, v) � 2(h + 1)
2
(n − 1) + 2(h + 1)(h + k + 1)(n − 3)  

n− 2

j�3
1

+ 2(h + 1)(h + k + 1)(n − 1) +(h + 1)
2
(n − 1) +(h + k + 1)

2
(n − 3) + 4(h + 1)

2


n− 5

j�1

j(j + 1)

2

�
2
3
h
2
n
3

− 4h
2
n
2

+
34
3

h
2
n − 14h

2
+ 2hkn

2
− 10hkn + 16hk +

4
3

hn
3

− 8hn
2

+
68
3

hn − 28h + k
2
n − 3k

2

+ 2kn
2

− 10kn + 16k +
2
3
n
3

− 4n
2

+
34
3

n − 14s.

(13)
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and

S2 � 
n

i�1
d

vi

Γ
  + hi − 1 

2
hi hi − 1( 

� d
v1

Γ
  + h1 − 1 

2
h1 h1 − 1(  + 

n− 1

i�2
d

vi

Γ
  + hi − 1 

2
hi hi − 1(  + d

vn

Γ
  + hn − 1 

2
hn hn − 1( 

� (1 + k − 1)
2
k(k − 1) + 

n− 1

i�2
(2 + h − 1)

2
h(h − 1) +(1 + k − 1)

2
k(k − 1)

� 2k
3
(k − 1) + h(h + 1)

2
(h − 1)(n − 2).

(14)

Now, to find S3, M21 and M2,j, j � 1, 2, . . . , n, are
required:

M21(Γ) � 
n

i�1
τ vi(  � 1 + 1 + 

n− 2

i�3
2 + 1 + 1 � 2 + 2(n − 4) + 2 � 2(n − 2) � 2n − 4, (15)

M2,1 � 

n

i�1
τ

vi

Γ
 d vi, v1( 

� 
n− 2

i�3
τ

vi

Γ
 d vi, v1(  + τ

v2

Γ
 d v2, v1(  + τ

vn− 1

Γ
 d vn− 1, v1(  + τ

vn

Γ
 d vn, v1( 

� 2 
n− 2

i�3
d vi, v1(  + 1 +(n − 2) + n − 1 � (n − 2)(n − 1) � n

2
− 3n + 2,

(16)

M2,2 � 
n

i�1
τ

vi

Γ
 d vi, v2( 

� 
n− 2

i�3
τ

vi

Γ
 d vi, v2(  + τ

v1

Γ
 d v1, v2(  + τ

vn− 1

Γ
 d vn− 1, v2(  + τ

vn

Γ
 d vn, v2( 

� 2 
n− 2

i�3
d vi, v2(  + 1 +(n − 3) +(n − 2) � (n − 3)(n − 4) + 2(n − 2) � n

2
− 5n + 8,

(17)

and

M2,(n− 1) � 
n

i�1
τ

vi

Γ
 d vi, vn− 1( 

� 

n− 2

i�3
τ

vi

Γ
 d vi, vn− 1(  + τ

v1

Γ
  d v1, vn− 1(  + τ

v2

Γ
 d v2, vn− 1(  + τ

vn

Γ
 d vn, vn− 1( 

� 2 
n− 2

i�3
d vi, vn− 1(  +(n − 2) +(n − 3) + 1 � (n − 3)(n − 4) + 2(n − 2) � n

2
− 5n + 8.

(18)
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Also,

M2,n � 
n

i�1
τ

vi

Γ
 d vi, vn( 

� 
n− 2

i�3
τ

vi

Γ
 d vi, vn(  + τ

v1

Γ
 d v1, vn(  + τ

v2

Γ
 d v2, vn(  + τ

vn− 1

Γ
 d vn− 1, vn( 

� 2 
n− 2

i�3
d vi, vn(  +(n − 1) +(n − 2) + 1 � (n − 4)(n − 1) + 2(n − 1) � (n − 1)(n − 2).

(19)

For the next result, we will assume 3≤ j≤ n − 2:

M2,j � 
n

i�1
τ

vi

Γ
 d vi, vj 

� τ
v1

Γ
 d v1, vj  + τ

v2

Γ
 d v2, vj  + τ

vn− 1

Γ
 d vn− 1, vj  + τ

vn

Γ
 d vn, vj  + 

n− 2

i�3
τ

vi

Γ
 d vi, vj 

� (j − 1) +(j − 2) +(n − 1 − j) +(n − j) + 2 

j− 1

i�3
(j − i) + 

n− 2

i�j+1
(i − j)⎛⎝ ⎞⎠ � 2j

2
− 2jn − 2j + n

2
− n + 4.

(20)

Now, we take Bj � 
n
i�1 p∈N(vi)

hp(d(vi, vj) + 1), for
j � 1, 2, . . . , n. We will find out B1, B2, andBn− 1 and a
general expression for Bj for j � 3, 4, . . . , n − 2. So,

B1 � 
n

i�1


p∈N vi( )

hp d vi, v1(  + 1( 

� 

p∈N v1( )

hp d v1, v1(  + 1(  + 

p∈N v2( )

hp d v2, v1(  + 1(  + 

p∈N vn− 1( )

hp d vn− 1, v1(  + 1( 

+ 

p∈N vn( )

hp d vn, v1(  + 1(  + 
n− 2

i�3


p∈N vi( )

hp d vi, v1(  + 1( 

� h(1) +(h + k)(2) +(h + k)(n − 1) + h(n) + 2h 
n− 2

i�3
(j − 1 + 1)

� (n + 1)(2h + k) + h(n − 4)(n + 1) � (n + 1)(2h + k + h(n − 4)) � (n + 1)(k +(n − 2)h),
(21)
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B2 � 
n

i�1


p∈N vi( )

hp d vi, v2(  + 1( 

� 

p∈N v1( )

hp d v1, v2(  + 1(  + 

p∈N v2( )

hp d v2, v2(  + 1(  + 

p∈N vn− 1( )

hp d vn− 1, v2(  + 1(  + 

p∈N vn( )

hp d vn, v2(  + 1( 

+ 
n− 2

i�3


p∈N vi( )

hp d vi, v2(  + 1(  � h(2) +(h + k)(1) +(h + k)(n − 2) + h(n − 1) + 2h 
n− 2

i�3
(i − 2 + 1)

� 2nh + k(n − 1) + h(n − 4)(n − 1).

(22)

Bn− 1 � (n + 1)(2h + k) + h(n − 4)(n + 1) and Bn � 2nh

+k(n − 1) + h(n − 4)(n − 1).
For 3≤ j≤ n − 2,

Bj � 
n

i�1


p∈N vi( )

hp d vi, vj  + 1 

� 

p∈N v1( )

hp d v1, vj  + 1  + 

p∈N v2( )

hp d v2, vj  + 1  + 
p∈N(vn− 1)

hp d vn− 1, vj  + 1 

+ 

p∈N vn( )

hp d vi, vj  + 1  + 
n− 2

i�3


p∈N vi( )

hp d vi, vj  + 1 

� h(j − 1 + 1) +(h + k)(j − 2 + 1) +(h + k)(n − 1 − j + 1) + h(n − j + 1) + 

n− 2

i�3
(h + h) d vi, vj  + 1 

� 2nh + k(n − 1) + 2h 

j

i�3
d vi, vj  + 1  + 

n− 2

i�j+1
d vi, vj  + 1 ⎛⎝ ⎞⎠

� 2nh + k(n − 1) + 2h 

j

i�3
(j − i + 1) + 

n− 2

i�j+1
(i − j + 1)⎛⎝ ⎞⎠

� 2nh + k(n − 1) + h((j − 1)(j − 2) +(n − j − 2)(n − j + 1)).

(23)

So,

S3 � 

n

j�1
d

vj

Γ
 hj − 1 hj M2,j(Γ) + M21(Γ) + Bj 

� d
v1

Γ
 h1 − 1 h1 M2,1(Γ) + M21(Γ) + B1  + d v2Γ(  + h2 − 1( h2 M2,2(Γ) + M21(Γ) + B2 

+ d
vn− 1

Γ
 hn− 1 − 1 h1 M2,(n− 1)(Γ) + M21(Γ) + Bn− 1  + d

vn

Γ
 hn − 1 hn M2,n(Γ) + M21(Γ) + Bn 

+ 

n− 2

j�3
d

vj

Γ
 hj − 1 hj M2,j(Γ) + M21(Γ) + Bj 

� (1 + k − 1)k n
2

− 3n + 2 + 2n − 4 +(n + 1)(k +(n − 2)h) +(2 + h − 1)h
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n
2

− 5n + 8 + 2n − 4 + 2nh + k(n − 1) + h(n − 4)(n − 1)  +(2 + h − 1)h n
2

− 5n + 8 + 2n − 4 

+h(n − 4)(n − 1)) +(1 + k − 1)k n
2

− 3n + 2 + 2n − 4 +(n + 1)(k +(n − 2)h)

+ 
n− 2

j�3
(2 + h − 1)h M2,j(Γ) + 2n − 4 + 2nh + k(n − 1)  + h((j − 1)(j − 2) +(n − j − 2)(n − j + 1))

� 2k
2

n
2

− n − 2 +(n + 1)(k +(n − 2)h)  + 2h(h + 1) n
2

− 3n + 4 + 2nh + k(n − 1) + h(n − 4)(n − 1) 

+ h(h + 1) 
n− 2

j�3
2j

2
− 2jn − 2j + n

2
− n + 4 + 2n − 4 + 2nh + k(n − 1) + h((j − 1)(j − 2) +(n − j − 2)(n − j + 1))

� 2k
2

n
2

− n − 2 +(n + 1)(k +(n − 2)h)  + 2h(h + 1) n
2

− 3n + 4 + 2nh + k(n − 1) + h(n − 4)(n − 1) 

+ h(h + 1) 4k − 8h +
22
3

n − 4hn
2

+
2
3

hn
3

+ kn
2

+
22
3

hn − 5kn − 4n
2

+
2
3
n
3

− 8 . (24)

Also,

S4 � 
1≤ i< j≤ n

d
vi

Γ
  + hi − 1  d

vj

Γ
  + hj − 1  d vi, vj  + 2 hihj

� d
v1

Γ
  + h1 − 1  d

vn

Γ
  + hn − 1  d v1, vn(  + 2( h1hn + 

n− 1

j�2
d

v1

Γ
  + h1 − 1  d

vj

Γ
  + hj − 1 

· d v1, vj  + 2 h1hj + 

n− 1

j�2
d

vn

Γ
  + hn − 1  d

vj

Γ
  + hj − 1  d vn, vj  + 2 hnhj

+ 
2≤ i< j≤ n− 1

d
vi

Γ
  + hi − 1  d

vj

Γ
  + hj − 1  d vi, vj  + 2 hihj

� (1 + k − 1)(1 + k − 1)(n + 1)k.k + 
n− 1

j�2
(1 + k − 1)(2 + h − 1)(j − 1 + 2)kh

+ 
n− 1

j�2
(1 + k − 1)(2 + h − 1)(n − j + 2)kh + 

2≤ i< j≤ n− 1
(2 + h − 1)(2 + h − 1)(j − i + 2)hh

� k
4
(n + 1) + k

2
h(h + 1) 

n− 1

j�2
(j + 1) + k

2
h(h + 1) 

n− 1

j�2
(n − j + 2) + h

2
(h + 1)

2


2≤ i< j≤ n− 1
(j − i + 2)

� k
4
(n + 1) + k

2
h(h + 1)(n − 2)(n + 3) +

h
2
(h + 1)

2
(n − 3)(n − 2)(n + 5)

6
.

(25)

By substituting the values in S1, S2, S3, and S4 in equation
(5), we will get the required result.

For k � m − 2 and h � m − 1, thorn path Pn,h,k represents
a caterpillar Tm,n

′. Similarly, a thorn path Pn,h,k will be thorn
rodPn,m if h � 0 and k � m − 1, i.e.,Pn,m � Pn,0,m− 1.(us, the
GI index of the thorn path and thorn rod is defined in the
following corollaries.

Corollary 3. For n, m≥ 2, the GC index of caterpillar is

GC T′m, n(  �
1
6

m
4
n
3

+ m
4
n
2

−
1
6

m
4
n +

1
3

m
3
n
3

− 4m
3
n
2

−
34
3

m
3
n +

1
6

m
2
n
3

− 3m
2
n
2

+
221
6

m
2
n + 34m

2
+ 2mn

2
− 10mn

− 104m + 4n + 36.

(26)
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Corollary 4. For n, m≥ 2, the GC index of thorn rod is

GC Pn,m  � m
4
n + 3m

4
− 2m

3
n − 12m

3

+ 2m
2
n
2

− m
2
n + 11m

2

− 2mn
2

− 6mn + 18m +
2
3
n
3

− 4n
2

+
58
3

n − 34.

(27)

Now, we present the GC index for the thorn star.
Suppose that L is the number of all pendant vertices other
than the pendant vertices attached to nth vertex, i.e.,
L � 

n− 1
p�1hp.

Theorem 3. Let Sn,h1 ,h2 ,...,hn
be a thorn star graph; then,

GC Sn,h1 ,h2 ,...,hn
  � (n − 1) n − 2 + hn(  L +(n − 2) n − 2 + hn( (  + 

n− 1

i�1
h
3
i hi − 1( 

+ n + hn − 2( 
2
hn hn − 1(  + n + hn − 2( hn 2(n − 1) n − 2 + hn(  + L( 

+ (3n − 5) n + hn − 2(  + 2L(  

n− 1

j�1
h
2
j + 3 hn + n − 2( hn 

n− 1

j�1
h
2
j + 4 

1≤ i< j≤ n− 1
h
2
i h

2
j .

(28)

Proof. (e proof is followed by (eorem 1.
Some special cases of (eorem 3 are discussed in the

following corollaries.

Corollary 5. If thorn of length h is attached with all the
vertices other than the root vertex hi � h, for i≤ n − 1, then
L � (hn(n − 1))/2 and

GC Γh  � (n − 1) n − 2 + hn(  L +(n − 2) n − 2 + hn( (  + h
3
(h − 1)(n − 1) + n + hn − 2( 

2
hn hn − 1( 

+ n + hn − 2( hn 2(n − 1) n − 2 + hn(  + L(  + (3n − 5) n + hn − 2(  + hn(n − 1)( 

·
hn(n − 1)

2
+ 3 hn + n − 2( hn

hn(n − 1)

2
+ 2h

4
(n − 1)(n − 2),

(29)

where Γh � Sn,h,...,h,hn
. Corollary 6. If no thorn is attached with root vertex of thorn

star, then

GC Γh  � (n − 1)(n − 2) L +(n − 2)
2

  + 
n− 1

i�1
h
3
i hi − 1(  +((3n − 5)(n − 2) + 2L) 

n− 1

j�1
h
2
j + 4 

1≤ i< j≤ n− 1
h
2
i h

2
j , (30)

where Γh � Sn,h1 ,h2 ···,hn− 1 ,0. Corollary 7. If no thorn is attached with root vertex and with
other vertices a thorn of length h is attached, then

GC Γh  � (n − 1)(n − 2) h(n − 1) +(n − 2)
2

  + h
3
(h − 1)(n − 1)

+((3n − 5)(n − 2) + 2h(n − 1))h
2
(n − 1) + 2h

4
(n − 1)(n − 2),

(31)
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where Γh � Sn,h,...,h,0.

Now, we will discuss the GC index for the thorn ring
graph.

Theorem 4. Let Cm,n be a thorn graph of cycle graph Cn with
n≥ 5; then,

GC Cm,n  �

(m − 1)
2
n n

2
− 1 

2
+(m − 1)

2
(m − 2)(m − 3)n

+(m − 1)(m − 2)n
n
2

− 1
2

+ 2n +
(m − 2) n

2
+ 4n − 1 

2
⎛⎝ ⎞⎠

+
(m − 1)

2
(m − 2)

2
n(n − 1)(n + 9)

8
, if n is odd,

(m − 1)
2
n
3

2
+(m − 1)

2
(m − 2)(m − 3)n

+(m − 1)(m − 2)n
n
2

2
+ 2n +

(m − 2)n(n + 4)

2
 

+
(m − 1)

2
(m − 2)

2
n n

2
+ 8n − 8 

8
, if n is even.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Proof. (e proof is followed by (eorem 1.

5. Conclusion

In this section, we conclude our study as follows:

(i) Chemical applicability of GCI for several octane
isomers is discussed, and it is found that it has high
correlations with entropy, accentric factor, enthalpy
of vaporization, standard enthalpy of vaporization,
and standard heat of formation

(ii) (e GC index of thorn graphs is obtained in its
general form

(iii) (e GC index of thorn paths, caterpillars, thorn
rods, thorn stars, and thorn rings are also computed

(iv) A descriptor M21 (sum of connection numbers of
vertices of a graph) is provided in Lemma 1 that is
called as connection degree sum

Now, we close this discussion that the various investi-
gations are still needed for different (molecular) graphs or
networks with the help of newly defined GC index.
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[5] I. Gutman and N. Trinajstić, “Graph theory and molecular
orbitals. Total φ-electron energy of alternant hydrocarbons,”
Chemical Physics Letters, vol. 17, no. 4, pp. 535–538, 1972.

[6] B. Furtula and I. Gutman, “A forgotten topological index,”
Journal of Mathematical Chemistry, vol. 53, no. 4, pp. 1184–
1190, 2015.

12 Journal of Mathematics



[7] S. Klavzar and I. Gutman, “Selected properties of the Schultz
molecular topological index,” 6e Journal for Chemical In-
formation and Computer Scientists, vol. 36, pp. 1001–1003,
1996.
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Among the inorganic compounds, there are many influential crystalline structures, and magnesium iodide is the most selective. In
the making of medicine and its development, magnesium iodide is considered a multipurpose and rich compound. Chemical
structures and networks can be studied by given tools of molecular graph theory. Given tools of molecular graph theory can be
studied for chemical structures and networks, which are considered economical with simple methodology. Edge weight-based
entropy is a recent advent tool of molecular graph theory to study chemical networks and structures. It provides the structural
information of chemical networks or their related build-up graphs and highlights the molecular properties in the form of a
polynomial function. In this work, we provide the edge weight-based entropy of magnesium iodide structure and compute
different entropies, such as Zagreb and atom bond connectivity entropies.

1. Introduction

Magnesium iodide is a chemical compound and known for
its chemical formula Mgl2. Magnesium iodide is an inor-
ganic compound that is used for synthesis in various organic
substances, as well as it has other commercial uses. (e
major availability measures of Mgl2 are having their high
impurity and volumes as a submicron and nanopowder.
Magnesium iodide is obtained by the combined chemical
mixture of hydro-iodic acid and magnesium carbonate and
also the major chemical compounds magnesium oxide and
magnesium hydroxide can be found. In the major appli-
cations of magnesium iodide, it is a highly valuable asset in
internal medicine. By a unique pattern of C4-graph, the
molecular graph of magnesium iodide can be constructed.
Having each C4-graph inside, multiple heptagons are con-
nected to each other [1]. For the easy readability and better
understanding of the molecular graph of magnesium iodide,
we labeled the parameters as p is the number of C4’s of upper

sides in a row and q denoted for the count of lower side C4 in
heptagons. For all values of q ∈ Z with q≥ 1, magnesium
iodide graph is needed to maintain for even and odd values
of p separately with the relation of p � 2(q + 1) and
p � 2q + 1, respectively.

“(e entropy of a probability distribution known as a
measure of the unpredictability of information content or a
measure of the uncertainty of a system.” (is quotation was
the foundation, described in [2], as a seminal theory for the
idea of entropy. Due to this concept is strongly based on
statistical methodology, it became well-known for chemical
structures and their corresponding graphs. (is parameter
provides a piece of extensive information about graphs,
structures, and chemical topologies. In 1955, the notion and
its idea were used first time for graphs. In sociology, ecology,
biology, chemistry, and in a variety of other technical fields,
graph-based entropy or simply entropy has applications
[3, 4]. Taking into consideration distinct graph elements
associated with probability distributions, two types of
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entropy measurements are determined which are intrinsic
and extrinsic entropies. (e idea named degree-powers is a
mathematical application of applied graph theory towards
network theory to investigate networks as information
functionals [5, 6]. (e physical sound of a network asso-
ciated with the idea of entropy came forward from the
authors in [7].

(e major concern of this study is to determine some
edge weight-based entropies of magnesium iodide structure
for both cases of p. (e methodology of this study of edge
weight-based entropy is defined in Definitions 1–6, with
their other fundamentals.

Definition 1. (e first and second Zagreb index is intro-
duced in 1972 by [8, 9] as

M1(F) � 
uv∈E(F)

λu + λv( , (1)

M2(F) � 
uv∈E(F)

λu × λv( . (2)

Definition 2. (e researcher in [10] introduced the atom
bond connectivity index as

ABC(F) � 
uv∈E(F)

���������
λu + λv − 2
λu × λv



. (3)

Definition 3. (e geometric arithmetic index of a graph is
introduced by [11] as

GA(F) � 
uv∈E(F)

2
������
λu × λv



λu + λv
. (4)

Definition 4. In 2014, entropy for an edge weighted graph F

is introduced in [12]:

Ωψ(F) � − 

u′v′∈E(F)

ψ u′v′( 

uv∈E(F)ψ(uv)
log

ψ u′v′( 

uv∈E(F)ψ(uv)
 ,

(5)

where ψ(uv) is a weight for an edge uv.
By letting the edge of weight equal to the main part of the

topological index, Manzoor et al. [13, 14] introduced the
following entropies for an edge weighted-based graph. (e
following are some important formulas for this research
work and all these are based on equation (5).

Definition 5. (e first and second Zagreb entropies are
defined as follows [14, 15]:

ΩM1
(F) � −

1
M1(F)

log 
uv∈E(F)

λu + λv 
λu+λv[ ]⎡⎢⎢⎣ ⎤⎥⎥⎦ + log M1(F)( , (6)

ΩM2
(F) � −

1
M2(F)

log 
uv∈E(F)

λuλv 
λuλv[ ]⎡⎢⎢⎣ ⎤⎥⎥⎦ + log M2(F)( . (7)

Definition 6. (e atom bond connectivity and geometric
arithmetic entropies are defined as follows [13]:

ΩABC(F) � −
1

ABC(F)
log 

uv∈E(F)

���������
λu + λv − 2

λuλv



⎡⎣ ⎤⎦

���������
λu+λv− 2/λuλv

√
 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + log(ABC(F)), (8)

ΩGA(F) � −
1

GA(F)
log 

uv∈E(F)

2
����
λuλv



λu + λv
 

2
���
λuλv

√
/λu+λv 

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ + log(GA(F)). (9)

(e topic of discussion of this study is closely related to
the numerical descriptors or topological indices, so read the
fundamentals and basics; we refer to see the recent cluster
[16–23]. In the recent decade, this concept has been studied
intensively and numerous literatures are available. We will

discuss only limited recent most articles on this concept and
few are left for the interest of readers [24–28].

To investigate and gain the contents of a network, the
entropy formulas as put forward by [2], along with this, it
helps to know about the structural information of networks
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and chemical structures [29]. (e concept of edge weight-
based entropy of a graph developed the applications and
exploration in biological systems. For example, by creating a
graph of chemical or any biological system, it has been used
to investigate live organisms in the systems. For the bio-
logical and chemical applications of this study, see [30, 31].
In computer science, in structural chemistry, and in even
biology, the entropy can be found by [32]. (is entropy,
which is also explored in this study document, can be found
in [29, 33] in-network heterogeneity work. In more recent
literature about edge weight-based entropy, one can find
[34, 35].

(e edge weight-based entropies of the first and second
Zagreb index, atom bond connectivity index, and geometric
arithmetic index are figured out for the magnesium iodide or
Mgl2 structure, for both even and odd cases of parameter p.
(e topological index of the magnesium iodide or Mgl2
structure, for both even and odd cases of parameter p, are
computed in [1]. We will use the results of theorems from

[1], which are summarized in Tables 1 and 2. Moreover, due
to long expressions of theorems, we reduced the calculations
up to four decimal digits.

2. Results on the EdgeWeight-Based Entropy of
Magnesium Iodide

Given in this section are some important results of this
research work.(e idea is totally dependent on the structural
values of Mgl2 or magnesium iodide graph, which is defined
in Table 3 (for p � odd and Table 4 (for p � even, and the
structure is shown in Figure 1.

Case 1. For the odd values of p with given q≥ 1, let p �

2q + 1 and q ∈ Z.

Theorem 1. Let ΩM1
be the edge weight-based first Zagreb

entropy for the MGp,q magnesium graph, with p � 2q + 1,
q≥ 1, then ΩM1

(MGp,q) is

ΩM1
MGp,q  � −

1
284q + 172

log 2304 · 44 · (25)
5

· (36)
6

· (343)
7

· (64)
8

· 99 × q(q + 4)(q + 5)(27q − 13) . (10)

Proof. (e edge partition of MGp,q magnesium graph for
the parameters p � 2q + 1 and q≥ 1, given in Table 3, which
are used to determine the topological indices of MGp,q, is
summarized in Table 1. Using the value of first Zagreb

topological index from Table 1, along with the edge types
from Table 3, in the formula defined in equation (6), after
simplification, the entropy of first Zagreb resulted in

ΩM1
(F) � −

1
284q + 172

log 2304 · 44 · (25)
5

· (36)
6

· (343)
7

· (64)
8

· 99 × q(q + 4)(q + 5)(27q − 13) . (11)
□

Theorem 2. LetΩM2
be the edge weight-based second Zagreb

entropy for the MGp,q magnesium graph, with p � 2q + 1,
q≥ 1, then ΩM2

(MGp,q) is

ΩM2
MGp,q  � −

1
543q + 190

log 2304 · 33 · 44 · (36)
6

· 88 · 99 · (10)
10

· (144)
12

· (15)
15

· (18)
18

× q(q + 4)(q + 5)(27q − 13) .

(12)

Proof. Using the value of second Zagreb topological index
from Table 1, along with the edge types from Table 3, in the

formula defined in equation (7), after simplification, the
entropy of second Zagreb resulted in

ΩM2
MGp,q  � −

1
543q + 190

log 2304 · 33 · 44 · (36)
6

· 88 · 99 · (10)
10

· (144)
12

· (15)
15

· (18)
18

× q(q + 4)(q + 5)(27q − 13) .

(13)

□
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Theorem 3. Let ΩABC be the edge weight-based atom bond
connectivity entropy for the MGp,q magnesium graph, with
p � 2q + 1, q≥ 1, then ΩABC(MGp,q) is

ΩABC MGp,q  � −
1

21.1645q + 22.8602

log[4778.1804q(q + 4)(q + 5)(27q − 13)].

(14)

Proof. Using the value of atom bond connectivity topo-
logical index from Table 1, along with the edge types from
Table 3, in the formula defined in equation (8), after sim-
plification, the entropy of atom bond connectivity resulted
in

ΩABC MGp,q  � −
1

21.1645q + 22.8602

log[4778.1804q(q + 4)(q + 5)(27q − 13)].

(15)□

Theorem 4. Let ΩGA be the edge weight-based geometric
arithmetic entropy for the MGp,q magnesium graph, with
p � 2q + 1, q≥ 1, then ΩGA(MGp,q) is

ΩGA MGp,q  � −
1

30.8878q + 23.5189

log[949.8757q(q + 4)(q + 5)(27q − 13)].

(16)

Proof. Using the value of geometric arithmetic topological
index from Table 1, along with the edge types from Table 3,
in the formula defined in equation (9), after simplification,
the entropy of geometric arithmetic resulted in

ΩGA MGp,q  � −
1

30.8878q + 23.5189

log[949.8757q(q + 4)(q + 5)(27q − 13)].

(17)
□

Case 2. For the even values of p with given q≥ 1, let p �

2(q + 1) and q ∈ Z.

Theorem 5. Let ΩM1
be the edge weight-based first Zagreb

entropy for the MGp,q magnesium graph, with p � 2(q + 1),
q≥ 1, then ΩM1

(MGp,q) is

Table 1: Topological indices of MGp,q.

I I(MGp,q)

M1 284q + 172
M2 543q + 190
ABC 21.1645q + 22.8602
GA 30.8878q + 23.5189
For p � 2q + 1, q≥ 1.

Table 2: Topological indices of MGp,q.

I I(MGp,q)

M1 284q + 258
M2 543q + 375
ABC 21.1645q + 22.8602
GA 30.8878q + 23.5189
For p � 2(q + 1), q≥ 1.

Table 3: Edge partition of MGp,q for p � 2q + 1, q≥ 1.

(λu, λv) Frequency Set of edges
(1, 3) 1 E1
(1, 4) 1 E2
(1, 6) q + 5 E3
(2, 3) 2 E4
(2, 4) 2 E5
(2, 5) 8 E6
(2, 6) 2q + 8 E7
(3, 3) 3q E8
(3, 4) 1 E9
(3, 5) 12 E10
(3, 6) 27q − 13 E11

Table 4: Edge partition of MGp,q for p � 2(q + 1), q≥ 1.

(λu, λv) Frequency Set of edges
(1, 3) 1 E1
(1, 5) 1 E2
(1, 6) q + 5 E3
(2, 2) 2 E4
(2, 3) 2 E5
(2, 5) 8 E6
(2, 6) 2q + 8 E7
(3, 3) 3q E8
(3, 5) 1 E9
(3, 6) 12 E10

p

q

q

p

Figure 1: Magnesium iodide graph.
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ΩM1
MGp,q  � −

1
284q + 258

log 240 · (16)
4

· 55 · 66 · (49)
7

· (64)
8

· (81)
9

×(q + 4)(q + 5)(3q + 1)(27q + 7) . (18)

Proof. (e edge partition of MGp,q magnesium graph for
the parameters p � 2(q + 1) and q≥ 1, given in Table 4,
which are used to determine the topological indices of
MGp,q, is summarized in Table 2. Using the value of first

Zagreb topological index from Table 2, along with the edge
types from Table 4, in the formula defined in equation (6),
after simplification, the entropy of first Zagreb resulted in

ΩM1
MGp,q  � −

1
284q + 258

log 240 · (16)
4

· 55 · 66 · (49)
7

· (64)
8

· (81)
9

×(q + 4)(q + 5)(3q + 1)(27q + 7) . (19)
□

Theorem 6. LetΩM2
be the edge weight-based second Zagreb

entropy for the MGp,q magnesium graph, with p � 2(q + 1),
q≥ 1, then ΩM2

(MGp,q) is

ΩM2
MGp,q  � −

1
543q + 375

log 240 · 33 · 44 · 55 · (36)
6

· 99 · (10)
10

· (12)
12

· (15)
15

· (18)
18

×(q + 4)(q + 5)(3q + 1)(27q + 7) .

(20)

Proof. Using the value of second Zagreb topological index
from Table 2, along with the edge types from Table 4, in the

formula defined in equation (7), after simplification, the
entropy of second Zagreb resulted in

ΩM2
MGp,q  � −

1
543q + 375

log 240 · 33 · 44 · 55 · (36)
6

· 99 · (10)
10

· (12)
12

· (15)
15

· (18)
18

×(q + 4)(q + 5)(3q + 1)(27q + 7) .

(21)
□

Theorem 7. Let ΩABC be the edge weight-based atom bond
connectivity entropy for the MGp,q magnesium graph, with
p � 2(q + 1), q≥ 1, then ΩABC(MGp,q) is

ΩABC MGp,q  � −
1

21.1645q + 22.8602
log[2165.7809(q + 4)(q + 5)(3q + 1)(27q + 7)]. (22)

Proof. Using the value of atom bond connectivity topo-
logical index from Table 2, along with the edge types from
Table 4, in the formula defined in equation (8), after

simplification, the entropy of atom bond connectivity
resulted in

ΩABC MGp,q  � −
1

21.1645q + 22.8602
log[2165.7809(q + 4)(q + 5)(3q + 1)(27q + 7)]. (23)

□
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Theorem 8. Let ΩGA be the edge weight-based geometric
arithmetic entropy for the MGp,q magnesium graph, with
p � 2(q + 1), q≥ 1, then ΩGA(MGp,q) is

ΩGA MGp,q  � −
1

30.8878q + 23.5189
log[2895.9383(q + 4)(q + 5)(3q + 1)(27q + 7)]. (24)

Proof. Using the value of geometric arithmetic topological
index from Table 2, along with the edge types from Table 4,

in the formula defined in equation (9), after simplification,
the entropy of geometric arithmetic resulted in

ΩGA MGp,q  � −
1

30.8878q + 23.5189
log[2895.9383(q + 4)(q + 5)(3q + 1)(27q + 7)]. (25)

□
3. Conclusion

(e edge weight-based entropy of a network or structure
provides structural information and detailed content in the
form of mathematical equations. To add up some structural
information and properties of magnesium iodide or Mgl2
structure, we determined the edge weight-based entropies of
the first and second Zagreb index, atom bond connectivity
index, and geometric arithmetic index. (e results carried
information for both even and odd cases of parameter p, of
magnesium iodide, or Mgl2 structure.
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(e combination of mathematical sciences, physical chemistry, and information sciences leads to a modern field known as
cheminformatics. It shows a mathematical relationship between a property and structural attributes of different types of chemicals
called quantitative-structures’ activity and qualitative-structures’ property relationships that are utilized to forecast the chemical
sciences and biological properties, in the field of engineering and technology. Graph theory has originated a significant usage in
the field of physical chemistry and mathematics that is famous as chemical graph theory. (e computing of topological indices
(TIs) is a new topic of chemical graphs that associates many physiochemical characteristics of the fundamental organic
compounds. In this paper, we used the M-polynomial-based TIs such as 1st Zagreb, 2nd Zagreb, modified 2nd Zagreb, symmetric
division deg, general Randi c

�
, inverse sum, harmonic, and augmented indices to study the chemical structures of pent-heptagonal

nanosheets of VC5C7 and HC5C7. An estimation among the computed TIs with the help of numerical results is also presented.

1. Introduction

Nanostructures [1, 2] have been studied as new materials
with the size of elementals structures that has been engi-
neered at the nanometers’ scale. Most of the materials in this
size range usually show novel behavior. (erefore, inter-
vention in the characteristics of structures at the nanoscale
allows the formation of devices and nanomaterials with
completely or enhanced novel functionalities and properties.
Understanding the science of nanostructures is curiosity and
important driven not only for the interesting nature of the
topic but also for novel and overwhelming usage of nano-
scale systems in various fields of science and technology.
Nanotechnology can be recognized as a technology of de-
sign, application, and fabrication of nanomaterials, and
nanostructures [3].

(e branch of nanotechnology and nanoscience is being
perused by chemists, physicists, materials scientists,

engineers, biologists, computer scientists, and mathemati-
cians [4]. So, it is also interdisciplinary. Nanostructures may
be divided based onmodulation and dimensionality. Most of
the distinct nanotubes, zeolites, aerogel, core-shell structure,
and nanoporous materials have unique properties. Nu-
merous techniques have been utilized for the synthesis of
nanomaterials with no. of degrees of success, and several
direct as well as indirect methods are used for their prop-
erties [5]. (e motivation to develop the nanomaterials is
that the characteristics become size based in the nanometer
range due to quantum confinement effect and surface effect.
(e chemical bonds, magnetic properties, geometric
structure, electronic properties, ionization potential, me-
chanical strength, optical properties, and thermal properties
are affected due to particle size in nanometers range.
Nanostructures show characteristics mostly higher than the
conventional coarse-grained material. (ese contain hard-
ness/increased strength, toughness/improved ductility,
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enhanced diffusivity, reduced density, higher electrical re-
sistance, reduced elastic modulus, lower thermal conduc-
tivity, increase specific heat, higher thermal expansion
coefficient, increased oscillator and strength luminescence,
blue shift absorption, and superior soft magnetic charac-
teristics in comparison to the conventional bulk material.
Furthermore, these characteristics are being briefly exam-
ined to discover new tools. (e interesting branch of
nanotechnology has a vast range of different types of ap-
plications. (e use of nanomaterials has manufactured
transistors having low speed and laser having low threshold
current. (ese are utilized in satellite receivers having low
noise amplification as a source for fiber optics communi-
cations and compact disk player systems. Constructive tools
of nanostructures contain UV-resistant wood coating and
self-cleaning glass. On the other hand, nanoscale tools are
being utilized in the field of medicine for the prevention and
treatment of diseases, diagnosis, and in magnetic resonance
imaging, drug delivery system, radioactive tracers, etc. [6].
(e importance of nanomaterials is rising nowadays. Many
other types of tools may be possible with the peculiar and
novel characteristics of nanomaterials [7, 8].

(erefore, TIs are useful to define molecular nano-
materials. Nanostructures, that have a scale of less than
100 nm, contain nanosheets, nanotubes, and nanoparticles.
Nanosheets (two-dimensional nanomaterials) have a sharp
edge and large surface area that cause them to play a vital
role in various types of tools such as catalysis, energy storage
bioelectronics, and optoelectronics [9, 10]. Silicone, bor-
ophene, and graphene are specific nanosheets. Due to the
rare optical, electrical, mechanical, and structural charac-
teristics, graphene nanosheets received great recognition
from industrial and academic researchers [11]. (e different
properties of the C5C7 nanosheet have become the most
advanced field in research. A C5C7 structure is developed by
alternating C5 andC7 [7]. In 2009, Graovac et al. studied the
GA index of TUC4C8 (S) nanotubes. In 2011, Graovac et al.
[12] studied the fifth geometric arithmetic index for nanostar
dendrimers, and Asadpour et al. calculated, Zagreb, Randi c

�
,

and ABC indices of TUC4C8 (R) and TUC4C8 (S) V-Phe-
nylenic nanotorus and nanotubes. In 2014, Al-Fozan et al.
solved Szeged index of H-naphthalene nanosheets (2n, 2m)
and C4C8 (S). Loghman and Ashrafi studied the Padma-
kar–Ivan (PI) index of TUC4C8 (S) nanotubes. For further
discussion, see [13–15].

However, the combination of three fields such as
mathematics, physical chemistry, and information sciences
lead to a modern field known as cheminformatics [16–18]. It
develops a mathematical relationship between a property
and structural attributes of different types of chemicals called
by quantitative-structures’ activity and qualitative-struc-
tures’ property relationship that are utilized to forecast the
organic sciences and biological properties in the field of
engineering and technology [19, 20]. Graph theory has
originated a significant usage in the field of mathematical
chemistry that is famous as chemical graph theory.

Polya gave the idea for counting polynomials in the field
of chemistry [21], and Wiener introduced the concept of TI
related to the paraffin’s boiling point [22]. Computing the

TIs is a new field of chemical graphs that associates many
physiochemical characteristics of the fundamental chemical
compounds [23–27].

2. Preliminaries

A molecular structure Γ � (V(Γ), E(Γ)); V(Γ) � s1, s2,

s3, . . . , sn} andE(Γ) are nodes (vertices) and edge set of Γ.
|V(Γ)| � v and |E(Γ)| � e is the order and size of Γ. In a
connected and simple molecular graph, a path is represented
within two vertices and the distance between the two vertices
s and t is mentioned as φ(s, t), in a graph Γ, see [28–30]. In
this paper, a graph is connected and simple, having no
multiple edges or loops.

1st and 2nd Zagreb indices: let Γ be a molecular
structure; then, its 1st and 2nd Zagreb indices [31] are

M1(Γ) � 
s∈V(Γ)

[φ(s)]
2

� 
st∈E(Γ)

[φ(s) + φ(t)],

M2(Γ) � 
st∈E(Γ)

[φ(s) × φ(t)].
(1)

General Randi c
�
index: if R is the real number, α ∈ R,

and Γ is a molecular structure, the general Randi c
�
index

[32] is

Rα(Γ) � 
st∈E(Γ)

[φ(s)φ(t)]
α
. (2)

Symmetric division deg index: for a molecular structure
Γ, the symmetric division deg index [33] is

SDD(Γ) � 
st∈E(Γ)

min(φ(s),φ(t))

max(φ(s),φ(t))
+
max(φ(s),φ(t))

min(φ(s), φ(t))
 .

(3)

Harmonic index: for a molecular structure Γ, the har-
monic index [34] is

H(Γ) � 
st∈E(Γ)

2
φ(s) + φ(t)

. (4)

Inverse sum index: for a molecular structure Γ, the in-
verse sum index [35] is

IS(Γ) � 
st∈E(Γ)

φ(s)φ(t)

φ(s) + φ(t)
. (5)

Augmented Zagreb index: for a molecular structure Γ,
the augmented Zagreb index [13] is

AZI(Γ) � 
st∈E(Γ)

φ(s) × φ(t)

φ(s) + φ(t) − 2
 

3

. (6)

A graph polynomial is a graph invariant whose values
are polynomials. So, all these invariants are discussed in
algebraic graph theory [36]. Among such types of alge-
braic polynomials, the M-polynomial, defined in 2015,
shows the same role in finding the much closed form of
various degree-based TIs that correlate different types of
chemical properties of the various materials under
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investigation. In 2019, Yang et al. [37] find out the
M-polynomial and topological indices of benzene ring
embedded in P-type surface network. In 2020, Khalaf
et al. [38] computed the M-polynomial and topological
indices of book graph and Raza and Sakaiti [2] solved the
M-polynomial and degree-based topological indices of
some nanostructures. In 2021, Mondal et al. [39] find out
the neighborhood M-polynomial of titanium compounds
and Irfan et al. [1] computed the M-polynomials and
topological indices for line graphs of chain silicate net-
work and H-naphtalenic nanotubes.

M-Polynomial: let Γ be a molecular structure and
mi,jΓ, i, j≥ 1, be the number of edges e � st of Γ in such a way
that φ(s)φ(t)  � i, j . (e M-polynomial of Γ is

M(Γ, μ, ]) � 
i≤ j(Γ)

mi,jΓμ
i]j

 .
(7)

Now, we discussed the relationship between the
M-polynomial and some important TIs in the form of
Tables 1 and 2.

3. Pent-Heptagonal Nanosheet

Firstly, we discuss the structure of pent-heptagonal nano-
sheet VC5C7. For nanosheet of VC5C7(a, b), we represent
the number of pentagons in the first row by b, and the first
four rows of nodes as well as edges are repeated. (erefore,
we represent the number of repetitions as a. (e nanosheet
VC5C7(2, 4) has 16ab + 2a + 5b nodes or vertices and
24ab + 4b edges. Additionally, it has 6a + 7b nodes having
degree 2 and 16ab − 4a − 2b nodes having degree 3. (e
degree-based edge partition of nanosheet a � 2 and b � 4 is
shown in Table 3.

From Figure 1, we note that 2 distinct types of vertices in
VC5C7 are 2 and 3. So,

V1 � s ∈ V Γ1( |φ(s) � 2 

V2 � s ∈ V Γ1( |φ(s) � 3 .
(8)

We have 3 different types of edges that is based on the
degree of end nodes in (Γ1) that are

E2,2 � st ∈ Γ1( |φ(s) � 2,φ(t) � 2 

E2,3 � st ∈ Γ1( |φ(s) � 2,φ(t) � 3 

E3,3 � st ∈ Γ1( |φ(s) � 3,φ(t) � 3 ,

(9)

where |E1| � (2a + 2b + 4), |E2| � (8a + 10b − 8),
|E3| � (24ab − 10a − 8b + 4), and a � 2 and b � 4. (en,

E Γ1( 


 � E1


 + E2


 + E3


 � 16 + 48 + 144 � 208. (10)

Now, we discuss the structure of pent-heptagonal
nanosheet HC5C7. For the nanosheet HC5C7(a, b), we
represent the number of pentagons in the first row by b, and
the 1st four rows of nodes and edges are repeated. So, we
represent the number of repetitions as a. (e nanosheets
HC5C7(2, 4) have 16ab + 2a + 4b vertices and 24ab + 3b

edges. Moreover, it has 6a + 6b vertices with degree 2 and
16ab − 4a − 2b vertices with degree 3.(e degree-based edge

partition of nanosheets for a � 2 and b � 4 is shown in
Table 4.

From Figure 2, we note that 2 distinct types of vertices in
HC5C7 are 2 and 3. So,

V1 � s ∈ V Γ2( |φ(u) � 2 ,

V2 � s ∈ V Γ2( |φ(u) � 3 .
(11)

We have 3 different types of edges that is based on the
degree of end nodes in (Γ1):

E2,2 � st ∈ Γ2( |φ(s) � 2,φ(t) � 2 ,

E2,3 � st ∈ Γ2( |φ(s) � 2,φ(t) � 3 ,

E3,3 � st ∈ Γ2( |φ(s) � 3,φ(t) � 3 .

(12)

4. Main Results

(is section deals with the main results consisting of
polynomials and TIs of the nanosheets.

Table 1: Derivation of TIs from M-polynomial.

Indices f(μ, ]) Derivation from M(Γ, μ, ])

M1 μ + ] (Dμ + D])(M(Γ, μ, ]))|μ�1�]
M2 μ] (DμD])(M(Γ, μ, ]))|μ�1�]
MM2 1/μ] (SμS])(M(Γ, μ, ]))|μ�1�]
Rα (μ])α, α ∈ N (Dα

μDα
] )(M(Γ, μ, ]))|μ�1�]

RαRα 1/(μ])α, α ∈ N (SαμSα] )(M(Γ, μ, ]))|μ�1�]
SDD μ2 + ]2/μ] (DμS] + D]Sμ)(M(Γ, μ, ]))|μ�1�]

Table 2: Other TIs from M-polynomial.

Indices f(μ, ]) Derivation from M(Γ, μ, ])

H 2/μ + ] 2SμJ(M(Γ, μ, ]))|μ�1�]
IS μ]/μ + ] SμQ2JDμD](M(Γ, μ, ]))|μ�1�]

AZI (μ]/μ + ] − 2)3 S3μJD3
μD3

](M(Γ, μ, ]))|μ�1�]

Table 3: Partition of edge set, VC5C7.

Edges partitions E1 � E2,2 E2 � E2,3 E3 � E3,3

Cardinality 2a + 2b + 4 8a + 10b − 8 24ab − 10a − 8b + 4

Figure 1: Pent-heptagonal nanosheet VC5C7.
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Theorem 1. Let Γ1 � VC5C7 be the pent-heptagonal nano-
sheet. /en, the M-polynomial of Γ is

M Γ1, μ, ](  � (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(13)

Proof. Now, by using definition of M-polynomial of (Γ1),
we obtain

M Γ1, μ, ](  � 
s≤ t

Es,t Γ1( μs]t
 

� 
2≤ 2

E2,2 Γ1( μ2]2  + 
2≤ 3

E2,3 Γ1( μ2]3 

+ 
3≤ 3

E3,3 Γ1μ
3]3

� E1


μ2]2 + E2


μ2]3 + E3


μ3]3

� (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(14)

(e M-polynomial of (Γ1) is

M Γ1, μ, ](  � (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(15)
□

Theorem 2. Let Γ � VC5C7 be the pent-heptagonal nano-
sheet. /en, the M-polynomial of Γ is

M Γ1, μ, ](  � (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(16)

So, the 1st Zagreb index (M1(Γ1)), 2nd Zagreb index
(M2(Γ1)), 2nd modified Zagreb (MM2(Γ1)), general Randic
(Rc(Γ1)), reciprocal general Randic RRc(Γ1), where c ∈ α,
and the symmetric division deg index (SDD(Γ1)) obtained
from M-polynomial are as follows:

(a) M1(Γ1) � 144ab − 12a + 10b

(b) M2(Γ1) � 216ab − 34a − 4b + 4
(c) MM2(Γ1) � 8/3ab + 13/18a + 23/18b + 1/9
(d) Rc(Γ1) � (4)c(2a + 2b + 4) + (6)c(8a + 10b −

8) + (9)c(24ab − 10a − 8b + 4)

(e) RRc(Γ1) � 2a + 2b + 4/(4)c + 8a + 10b − 8/(6)c +

24ab − 10a − 8b + 4/(9)c

(f) SSD(Γ1) � 48ab + 4/3a + 29/3b − 4/3

Proof. Let f(μ, ]) � M(Γ1, μ, ]) be theM-polynomial of the
pent-heptagonal nanosheet VC5C7; then,

f(μ, ]) � (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(17)

Firstly, we find out the required partial derivatives and
integrals as

Dμf(μ, ]) � 2(2a + 2b + 4)μ]2 + 2(8a + 10b − 8)μ]3 +

3(24ab − 10a − 8b + 4)μ2]3

D]f(μ, ]) � 2(2a + 2b + 4)μ2] + 3(8a + 10b − 8)μ2]2 +

3(24ab − 10a − 8b + 4)μ3]2

Dμ(D]f(μ, ])) � 4(2a + 2b + 4)μ] + 6(8a + 10b − 8)

μ]2 + 9(24ab − 10a − 8b + 4)μ2]2

Tμ(f(μ, ])) � (a + b + c)μ2]2 + (4a + 5b − 4)μ2]3 +

(8ab − 10/3a − 8/3b + 4/3μ3]3)
T](f(μ, ])) � (a + b + c)μ2]2 + (8a + 10b − 8)/3
μ2]3 + (8ab − 10/3a − 8/3b + 4/3)μ3]3
TμT](f(μ, ])) � Tμ(T](f(μ, ]))) � (a + b + 2)/2
μ2]2 + (8a + 10b − 8)/6μ2]3 + (4ab − 5/3a − 4/3b +

2/3)μ3]3
D]Tμ(f(μ, ])) � D](Tμ(f(μ, ]))) � 2(a + b + c)

μ2] + 3(4a + 5b − 4)μ2]2 + 3(8ab − 10/3a − 8/3b +

4/3μ3]2)
DμT](f(μ, ])) � Dμ(T](f(μ, ]))) � 2(a + b + c)

μ]2 + 2/3(8a + 10b − 8)μ]3 + (24ab − 10a − 8b +

4)μ2]3

D
c
μD

c
] � (4)c(2a + 2b + 4)μ] +(6)c(8a + 10b − 8)μ]2 +

(9)c(24ab − 10a − 8b + 4)μ2]2

T
c
μT

c
] � (2a + 2b + 4)/(4)cμ2]2 + (8a + 10b − 8)/(6)

μ2]3 + (24ab − 10a − 8b + 4)/(9)cμ3]3

Now, we obtain μ � ] � 1:

Dμf(μ, ])|μ�]�1 � 72ab − 10a + 4
D]f(μ, ])|μ�]�1 � 72ab − 2a + 10b − 4
Dμ(D]f(μ, ]))|μ�]�1 � 216ab − 34a − 4b + 4
Tμ(f(μ, ]))|μ�]�1 � 8ab + 5/3a + 10/3b − 8/3
T](f(μ, ]))|μ�]�1 � 8ab + 1/3a + 5/3b − 4/3

Figure 2: Pent-heptagonal nanosheet HC5C7.

Table 4: Partition of edge set of HC5C7.

Edges’ partitions E1 � E2,2 E2 � E2,3 E3 � E3,3

Cardinality 2a + 3b + 2 8a + 6b − 4 24ab − 10a − 6b + 10
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Tμ(T](f(μ, ])))|μ�]�1 � 8/3ab + 13/18a + 23/18b − 8/9
D](Tμ(f(μ, ])))|μ�]�1 � 24ab + 4a + 9b − 4
Dμ(T](f(μ, ])))|μ�]�1 � 24ab − 8/3a + 2/3b + 8/3
D

c
μ(D

c
](f(μ, ])))|μ�]�1 � (4)c(2a + 2b + 4) + (6)(8a +

10b − 8) + (9)c(24ab − 10a − 8b + 4)

T
c
μ(T

c
](f(μ, ])))|μ�]�1 � (2a + 2b + 4)/(4)c + (8a +

10b − 8)/(6)c + (24ab − 10a − 8b + 4)/(9)c

Consequently,

(i) First Zagreb index: M1(Γ1) � (Dμ + D]) (f(μ, ]))

|μ�]�1� Dμ(f(μ, ]))|μ�]�1 + D](f(μ, ]))|μ�]�1 � (72
ab − 10a + 4) + (72ab − 2a + 10b − 4) � 144ab −

12a + 10b

(ii) Second Zagreb index: M2(Γ1) � (DμD])

(f(μ, ]))|μ�]�1 � Dμ(D](f(μ, ])))|μ�]�1 � 216ab −

34a − 4b + 4
(iii) Second modified Zagreb index: MM2(Γ1) �

(TμT])(f(μ, ]))|μ�]�1 � Tμ(T](f(μ, ])))|μ�]�1 � 8/
3ab + 13/18a + 23/18b + 1/9

(iv) General Randic index: Rc(Γ1) � (D
c
μD

c
])(f(μ, ]))

|μ�]�1 �(4)c (2a + 2b + 4) + (6)c(8a + 10b − 8) +

(9)c(24ab − 10a − 8b + 4)

(v) Reciprocal general Randic index: RRc(Γ1) � (2a +

2b + 4)/(4)cμ2]2 + (8a + 10b − 8)/(6)cμ2]3 + (24ab

− 10a − 8b + 4)/(9)c

(vi) Symmetric division deg index: SDD(Γ1) � (DμT]+

D]Tμ) (f(μ,]))|μ�]�1 � DμT](f(μ,]))|μ�]�1 + D]
Tμ) (f(μ,]))|μ�]�1 � (24ab − 8/3+2/3b +8/3) + (24
ab +4a +9b − 4) � 48ab+ 4/3a +29/3b− 4/3 □

Theorem 3. Let Γ1 � VC5C7 be the pent-heptagonal nano-
sheets. /en, the M-polynomial of Γ1 is

M(Γ, μ, ]) � (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(18)

/en, harmonic index (H(Γ1)), inverse index (IS(Γ1))
and augmented Zagreb index (AZI(Γ1)) obtained from
M-polynomial are as follows:

(a) H(Γ1) � 13/15a + 7/3b + 8ab + 2/15
(b) IS(Γ1) � 36ab − 17/5a − 44b + 2/5
(c) AZI(Γ1) � 273.375ab − 33.90625a + 4.875b +

13.5625

Proof. Let f(μ, ]) � M(Γ1, μ, ]) be theM-polynomial of the
pent-heptagonal nanosheets VC5C7; then,

f(μ, ]) � (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(19)

Firstly, we find out the required partial derivatives and
integrals are as follows:

J(f(μ, ])) � (2a + 2b + 4)μ4 + (8a + 10b − 8)μ5 +

(24ab − 10a − 8b + 4)μ6

Tμ(J(f(μ, ]))) � (a/2 + b/2 + 1)μ4 + (8/5a + 2b − 8/5)

μ5 + (4ab − 5/3a − 4/3b + 2/3)μ6

J(Dμ(D](f(μ, ])))) � (8a + 8b + 16)μ2 + (48a +

60b − 48)μ3 + (216ab − 90a − 72b + 36)μ4

Q2(J(Dμ(D](f(μ, ]))))) � (8a + 8b + 16)μ4 + (48a +

60b − 48)μ5 + (216ab − 90a − 72b + 36)μ6

Tμ(Q2(J(Dμ(D](f(μ, ])))))) � (2a + 2b + 4)μ4 + 1/5
(48a + 60b − 48)μ5 + (36ab − 15a − 12b + 6)μ6

D3
μ(D3

](f(μ, ]))) � (4)3(2a + 2b + 4)μ] + (6)3(8a +

10b − 8)μ]2 + (9)3(24ab − 10a − 8b + 4)μ2]2

J(D3
μD3

](f(μ, ]))) � (4)3(2a + 2b + 4)μ2 + (6)3(8a +

10b − 8)μ3 + (9)3(24ab − 10a − 8b + 4)μ4

T3
μ(J(D3

μD3
](f(μ,])))) � |(4)3(2a +2b +4)/2μ2 + (6)3

(8a +10b − 8)/3μ3 + (9)3(24ab − 10a − 8b +4)/4μ4

Now, we obtain μ � ] � 1:

Tμ(J(f(μ, ])))|μ�]�1 �
13
30

a +
7
6

b + 4ab +
1
15

Tμ Q2 J Dμ D](f(μ, ]))(    |μ�]�1 � 36ab −
17
5

a + 2b +
2
5

T
3
μ J D

3
μD

3
](f(μ, ]))  |μ�]�1 � 8(2a + 2b + 4) + 8(8a + 10b − 8)

+
729
64

 (24ab − 10a − 8b + 4)

� 273.375ab − 33.90625a + 4.875b + 13.5625.

(20)

Consequently, (i) Harmonic index:
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H Γ1(  � 2Tμ(J(f(μ, ])))|μ�]�1

� 2
13
30

a +
7
6

b + 4ab +
1
15

 

�
13
15

a +
7
3

b + 8ab +
2
15

.

(21)

(ii) Inverse index:

IS Γ1(  � Tμ Q2 J Dμ D](f(μ, ]))(    |μ�]�1

� (2a + 2b + 4) +
1
5

(48a + 60b − 48)

+(36ab − 15a − 12b + 6)

� 36ab −
17
5

a + 2b +
2
5
.

(22)

(iii) Augmented Zagreb index:

AZI Γ1(  � T
3
μ J D

3
μD

3
](f(μ, ]))  |μ�]�1

�
4
2

 
3
(2a + 2b + 4) +

6
3

 
3
(8a + 10b − 8)

+
9
4

 
3
(24ab − 10a − 8b + 4)

� 273.375ab − 33.90625a + 4.875b + 13.5625.

(23)
□

Theorem 4. Let Γ2 � HC5C7 be the second pent-heptagonal
nanosheets; the M-polynomial of (Γ2) is

M Γ2, μ, ](  � (2a + 3b + 2)μ2]2 +(8a + 6b − 4)

μ2]3 +(24ab − 10a − 6b + 10)μ3]3.
(24)

Proof. Now, by using definition of M-polynomial for (Γ2),

M Γ2, μ, ](  � 
s≤ t

Es,t(Γ)μ
s]t

 

� 
2≤ 2

E2,2 Γ2( μ2]2  + 
2≤ 3

E2,3 Γ2( μ2]3 

+ 
3≤ 3

E3,3 Γ2( μ3]3 

� E1


μ2]2 + E2


μ2]3 + E3


μ3]3

� (2a + 3b + 2)μ2]2 +(8a + 6b − 4)μ2]3

+(24ab − 10a − 6b + 10)μ3]3.
(25)

(e M-polynomial of (Γ2) is

M Γ2, μ, ](  � (2a + 3b + 2)μ2]2 +(8a + 6b − 4)μ2]3

+(24ab − 10a − 6b + 10)μ3]3.
(26)

□

Theorem 5. Let Γ2 � HC5C7 be the pent-heptagonal
nanosheets. /en, the M-polynomial of Γ2 is

M Γ2, μ, ](  � (2a + 2b + 4)μ2]2 +(8a + 10b − 8)μ2]3

+(24ab − 10a − 8b + 4)μ3]3.
(27)

So, the 1st Zagreb index (M1(Γ2)), 2nd modified Zagreb
(MM2(Γ2)), general Randic (Rc(Γ2)) where c ∈ α, recip-
rocal general Randic (RRc(Γ2)), where c ∈ α, and the
symmetric division deg index (SDD(Γ2)) obtained from
M-polynomial are as follows:

(a) M1(Γ2) � 144ab − 12a + 6b + 48
(b) M2(Γ2) � 216ab − 34a − 6b + 74
(c) MM2(Γ2) � 8/3ab + 13/18a + 13/12b + 17/18
(d) Rc(Γ2) � (4)c(2a + 3b + 2) + (6)c(8a + 6b − 4) +

(9)c(24ab − 10a − 6b + 10)

(e) RRc(Γ2) � 2a + 3b + 2/(4)c + 8a + 6b − 4/(6)c +

24ab − 10a − 6b + 10/(9)c

(f) SSD(Γ2) � 48ab + 4/3a + 7b + 46/3

Proof. Let f(μ, ]) � M(Γ2, μ, ]) be theM-polynomial of the
pent-heptagonal nanosheets HC5C7; then,

f(μ, ]) � (2a + 3b + 2)μ2]2 +(8a + 6b − 4)μ2]3

+(24ab − 10a − 6b + 10)μ3]3.
(28)

Firstly, we find out the required partial derivatives and
integrals as follows:

Dμf(μ, ]) � 2(2a + 3b + 2)μ]2 + 2(8a + 6b − 4)μ]3 +

3(24ab − 10a − 6b + 10)μ2]3

D]f(μ, ]) � 2(2a + 3b + 2)μ2] + 3(8a + 6b − 4)μ2]2 +

3(24ab − 10a − 6b + 10)μ3]2

Dμ(D]f(μ, ])) � 4(2a + 3b + 2)μ] + 6(8a + 6b − 4)

μ]2 + 9(24ab − 10a − 6b + 10)μ2]2

Tμ(f(μ, ])) � (a + (3/2)b + 1)μ2]2 + (4a + 3b − 2)

μ2]3 + (8ab − (10/3)a − 2b + (10/3)μ3]3)
T](f(μ, ])) � (a + (3/2)b + 1)μ2]2 + ((8/3)a + 2b −

(4/3))μ2]3 + (8ab − (10/3)a − 2b + (10/3))μ3]3

TμT](f(μ, ])) � Tμ(T](f(μ, ]))) � 1/4(2a + 3b + 2)

2μ2]2 + 1/6(8a + 6b − 4)μ2]3 + 1/9(24ab − 10a − 6b +

10)μ3]3

D]Tμ(f(μ, ])) � D](Tμ(f(μ, ]))) � (2a + 3b + 2)

μ2] + 3(4a + 3b − 2)μ2]2 + 3(8ab − 10/3a − 2b +

10/3μ3]2)
DμT](f(μ, ])) � Dμ(T](f(μ, ]))) � (2a + 3b + 2)

μ]2 + 2(8/3a + 2b − 4/3)μ]3 + (24ab − 10a − 6b + 10)

μ2]3
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D
c
μD

c
] � (4)c(2a + 3b + 2)μ] + (6)c(8a + 6b − 4)μ]2 +

(9)c(24ab − 10a − 6b + 10)μ2]2

T
c
μT

c
] � (2a + 3b + 2)/(4)cμ2]2 + (8a + 6b − 4)/(6)c

μ2]3 + (24ab − 10a − 6b + 10)/(9)cμ3]3

Now, we obtain μ � ] � 1:

Dμf(μ, ])|μ�]�1 � 72ab − 10a + 26
D]f(μ, ])|μ�]�1 � 72ab − 2a + 6b + 22
Dμ(D]f(μ, ]))|μ�]�1 � 216ab − 34a − 6b + 74
Tμ(f(μ, ]))|μ�]�1 � 8ab + 5/3a + 5/2b + 7/3
T](f(μ, ]))|μ�]�1 � 8ab + 1/3a + 3/2b + 3
Tμ(T](f(μ, ])))|μ�]�1 � 8/3ab + 13/18a + 13/12b +

17/18
D](Tμ(f(μ, ])))|μ�]�1 � 24ab + 4a + 6b + 6
Dμ(T](f(μ, ])))|μ�]�1 � 24ab − 8/3a + b + 28/3
D

c
μ(D

c
](f(μ, ])))|μ�]�1 � (4)c(2a + 3b + 2)+

(6) c((8a + 6b − 4) + (9)c(24ab − 10a − 6b + 10)

T
c
μ(T

c
](f(μ, ])))|μ�]�1 � (2a + 3b + 2)/(4)c + (8a +

6b − 4)/(6)c + (24ab − 10a − 6b + 10)/(9)c

Consequently,

(i) First Zagreb index: M1(Γ2) � (Dμ + D])(f(μ, ]))

|μ�]�1 � Dμ(f(μ, ]))|μ�]�1 + D] (f(μ, ]))|μ�]�1 �

144ab − 12a + 6b + 48
(ii) Second Zagreb index: M2(Γ2) � (DμD])(f(μ, ]))

|μ�]�1 � Dμ(D](f(μ, ])))|μ�]�1 � 216ab − 34a − 6b

+ 74
(iii) Secondmodified Zagreb index: MM2(Γ2) � (TμT])

(f(μ, ]))|μ�]�1 � Tμ (T](f(μ, ])))|μ�]�1 � 8/3ab +

13/18a + 13/12b + 17/18
(iv) General Randic index: Rc(Γ2) � (D

c
μD

c
])(f(μ, ]))

|μ�]�1 � (4)c(2a + 3b + 2) + (6)c (8a + 6b − 4) +

(9)c(24ab − 10a − 6b + 10)

(v) Reciprocal general Randic index: RRc(Γ2) � (T
c
μT

c
])

(f (μ, ]))|μ�]�1 � (2a + 3b + 2)/(4)c + (8a + 6b −

4)/(6)c + (24ab − 10a − 6b + 10)/(9)c

(vi) Symmetric division deg index: SDD(Γ2) � (DμT] +

D]Tμ)(f(μ, ])) |μ�]�1 � DμT](f(μ, ]))|μ�]�1 + D]
Tμ)(f(μ, ]))|μ�]�1 � (24ab − 8/3a + b + 28/3) + (24
ab + 4a + 6b + 6) � 48ab+ 4/3a + 7b + 46/3 □

Theorem 6. Let Γ2 � HC5C7 be the pent-heptagonal
nanosheets. /en, the M-polynomial of Γ2 is

M Γ2, μ, ](  � (2a + 3b + 2)μ2]2 +(8a + 6b − 4)μ2]3

+(24ab − 10a − 6b + 10)μ3]3.
(29)

(en, harmonic index (H(Γ2)), inverse index (IS(Γ2)),
and augmented Zagreb index (AZI(Γ2)) obtained from
M-polynomial are as follows:

(a) H(Γ2) � 13/15a + 19/10b + 8ab − 11/3
(b) IS(Γ2) � 36ab − 17/5a − 9/5b + 61/5
(c) AZI((Γ2) � 273.3744ab − 33.90625a + 3.6564b +

97.906

Proof. Let f(μ, ]) � M(Γ2, μ, ]) be theM-polynomial of the
pent-heptagonal nanosheet HC5C7; then,

f(μ, ]) � (2a + 3b + 2)μ2]2 +(8a + 6b − 4)μ2]3

+(24ab − 10a − 6b + 10)μ3]3.
(30)

First, we find out the required partial derivatives and
integrals as

J(f(μ, ])) � (2a + 3b + 2)μ4 + (8a + 6b − 4)μ5 +

(24ab − 10a − 6b + 10)μ6

Tμ(J(f(μ, ]))) � 2a + 3b + 2/4μ4 + 8a + 6b − 4/5μ5 +

24ab − 10a − 6b + 10/6μ6

J(Dμ(D](f(μ, ])))) � (8a + 12b + 8)μ2 + (48a +

36b − 24)μ3 + (216ab − 90a − 54b + 90)μ4

Q2(J(Dμ(D](f(μ, ]))))) � (8a + 12b + 8)μ4 + (48a +

36b − 24)μ5 + (216ab − 90a − 54b + 90)μ6

Tμ(Q2(J(Dμ(D](f(μ, ])))))) � (2a + 3b + 2)μ4 +

1/5(48a + 36b − 24)μ5 + (36ab − 15a − 9b + 15)μ6

D3
μ(D3

](f(μ, ]))) � (4)3(2a + 3b + 2)μ] + (6)3(8a +

6b − 4)μ]2 + (9)3(24ab − 10a − 6b + 10)μ2]2

J(D3
μD3

](f(μ, ]))) � (4)3(2a + 3b + 2)μ2 + (6)3(8a +

6b − 4)μ3 + (9)3(24ab − 10a − 6b + 10)μ4

T3
μ(J(D3

μD3
](f(μ, ])))) � 8(2a + 3b + 2)μ2 + 8(8a +

6b − 4)μ3 + (9/4)3(24ab − 10a − 6b + 10/4)μ4

Now, we obtain μ � ] � 1:

Tμ(J(f(μ, ])))|μ�]�1 �
1
4

(2a + 3b + 2) +
1
5

(8a + 6b − 4) +
1
6

(24ab − 10a − 6b + 10)

�
13
30

a +
19
20

+ 4ab +
41
30

,

Tμ Q2 J Dμ D](f(μ, ]))(    |μ�]�1 �
1
4

(8a + 12b + 8) +
1
5

(48a + 36b − 24) +
1
6

(216ab − 90a − 54b + 90)

�
1
5

(180ab − 17a − 6b + 36),
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T
3
μ J D

3
μD

3
](f(μ, ]))  |μ�]�1 � 8(2a + 3b + 2) + 8(8a + 6b − 4) +

9
4

 
3
(24ab − 10a − 6b + 10)

� 8(2a + 3b + 2) + 8(8a + 6b − 4) +(11.3906)(24ab − 10a − 6b + 10)

� 273.3744ab − 33.90625a + 3.6564b + 97.906.

(31)

Consequently, (i) Harmonic index:

Table 5: Comparison between M1(Γ1), M2(Γ1), MM1(Γ1), and SDD(Γ1) of VC5C7.

a, b M1(Γ1) M2(Γ1) MM1(Γ1) SDD(Γ1)

a � 2, b � 4 1168 1648 28.016 423.91
a � 4, b � 6 3468 5028 74.68 1214
a � 6, b � 8 6920 10134 142.69 2390.68
a � 8, b � 10 11524 16972 232.02 3945.99
a � 10, b � 12 17280 25536 343.086 5887.99
a � 12, b � 14 24188 35828 475.248 8214
a � 14, b � 16 32248 47848 628.77 10924.14
a � 16, b � 18 41460 61596 803.652 14018.16
a � 18, b � 20 51824 77072 999.894 17496.18
a � 20, b � 22 63340 94276 1217.496 21358.2
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Figure 3: Graphical comparison between M1(Γ1), M2(Γ1), MM1(Γ1), and SDD(Γ1) of VC5C7 and comparison between M1(Γ2), M2(Γ2),
MM1(Γ2), and SDD(Γ2) of HC5C7.

Table 6: Comparison between M1(Γ2), M2(Γ2), MM1(Γ2), and SDD(Γ2) of HC5C7.

a, b M1(Γ2) M2(Γ2) MM1(Γ2) SDD(Γ2)

a � 2, b � 4 1200 1710 28.07 429.97
a � 4, b � 6 3492 5086 74.33 1214.66
a � 6, b � 8 6936 10190 141.94 2383.33
a � 8, b � 10 11532 17022 231.105 3936.06
a � 10, b � 12 17280 25582 341.505 5872.74
a � 12, b � 14 24180 35870 473.265 8193.42
a � 14, b � 16 32232 47886 626.385 10898.1
a � 16, b � 18 41436 61630 800.865 13986.78
a � 18, b � 20 51792 77102 996.705 17459.46
a � 20, b � 22 63300 94302 1211.745 21316.14
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H Γ2(  � 2Tμ(J(f(μ, ])))|μ�]�1

� 2
1
4

(2a + 3b + 2) +
1
5

(8a + 6b − 4) +
1
6

(24ab − 10a − 6b + 10) 

� 8ab +
13
15

a +
19
10

b −
11
3

.

(32)

(ii) Inverse index:
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Figure 4: Graphical comparison between M1(Γ2), M2(Γ2), MM1(Γ2), and SDD(Γ2) of HC5C7 and comparison between H(Γ1), IS(Γ1),
and AZI(Γ1) of VC5C7.

Table 7: Comparison between H(Γ1), IS(Γ1), and AZI(Γ1) of VC5C7.

a, b H(Γ1) IS(Γ1) AZI(Γ1)

a � 2, b � 4 75.208 105.6 2152.25
a � 4, b � 6 209.68 586 6468.18
a � 6, b � 8 408 1354 12971.12
a � 8, b � 10 670.454 2413.2 21661.1125
a � 10, b � 12 996.864 3758.4 32538.0625
a � 12, b � 14 1387.274 5391.6 45602.0125
a � 14, b � 16 1841.684 7312.8 60852.9625
a � 16, b � 18 2360.094 9522 78290.9125
a � 18, b � 20 2942.504 12019.2 97915.8625
a � 20, b � 22 3588.914 14804.4 119727.8125
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(iii) Augmented Zagreb index:
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Figure 5: Graphical comparison between H(Γ1), IS(Γ1), and AZI(Γ1) of VC5C7 and comparison between H(Γ2), IS(Γ2), and AZI(Γ2) of
HC5C7.

Table 8: Comparison between H(Γ2), IS(Γ2), and AZI(Γ2) of HC5C7.

a, b H(Γ2) IS(Γ2) AZI(Γ2)

a � 2, b � 4 69.66 236.2 2231.7143
a � 4, b � 6 203.20 851.80 6545.22
a � 6, b � 8 400.73 1705.40 13045.69
a � 8, b � 10 662.266 2847 21732.8
a � 10, b � 12 987.8 4276.6 32607.1
a � 12, b � 14 1377.34 599.2 45668.36
a � 14, b � 16 1830.86 8000 60916.58
a � 16, b � 18 2348.402 10293.4 78351.76
a � 18, b � 20 2929.936 12875 97974.1
a � 20, b � 22 3575.47 15744.6 119782.2
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(34)

□
5. Conclusion

In this section, we used the various degree-based TIs and
show the comparison in the form of tables and figures.
Comparison between M1(Γ1), M2(Γ1), MM1(Γ1), and
SDD(Γ1) of VC5C7

(e comparison of 1st Zagreb, 2nd Zagreb, 2nd
modified Zagreb, and symmetric division deg indices of
pent-heptagonal nanosheets (Γ1) is computationally
computed by using these M-polynomials. We calculated
these indices for different values of a and b in Table 5, and
we noted that when we increase the values of a and b, then
all of the TIs of VC5C7 are increasing with the same order,
as shown in Figure 3.

(e comparison of 1st Zagreb, 2nd Zagreb, 2ndmodified
Zagreb, and symmetric division deg indices of pent-hep-
tagonal nanosheets (Γ2) is computationally computed by
using these M-polynomials. We calculated these indices for
different values of a and b in Table 6, and we noted that when
we increase the values of a and b, then all of the TIs of
HC5C7 are increasing with the same order, as shown in
Figure 4.

(e comparison of the harmonic index, the inverse sum
index, and the augmented Zagreb index of pent-heptagonal
nanosheets (Γ1) is computationally computed by these

M-polynomials. We calculated these indices for different
values of a and b in Table 7, and we noted that when we
increase the values of a and b, then all of the TIs of VC5C7
are increasing with the same order, as shown in Figure 5.

(e comparison of the harmonic index, the inverse sum
index, and the augmented Zagreb index of pent-heptagonal
nanosheets (Γ2) is computationally computed by these
M-polynomials. We calculated these indices for different
values of a and b in Table 8, and we noted that when we
increase the values of a and b, then all of the TIs of HC5C7
are increasing with the same order, as shown in Figure 6.

In this paper, the calculated M-polynomials and enu-
merated TIs assist us to recognize the physical characteristic,
chemical sensitivity, and biological animation of the pent-
heptagonal nanosheets (Γ1) and (Γ2). (ese consequences
give us remarkable ascertainment in the field of pharma-
ceutical production.

However, the problem is still open to compute the
different TIs (degree and distance based) for various
nanosheets:

(i) To compute the nanosheet for other topological
indices

(ii) To compute the various nanosheets for different
topological indices
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Figure 6: Graphical comparison between H(Γ2), IS(Γ2), and AZI(Γ2) of HC5C7.
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Let G � (V, E) be a connected graph. -e resistance distance between two vertices u and v in G, denoted by RG(u, v), is the
effective resistance between them if each edge of G is assumed to be a unit resistor.-e degree resistance distance of G is defined as
DR(G) �  u,v{ }⊆V(G)(dG(u) + dG(v))RG(u, v), where dG(u) is the degree of a vertex u in G and RG(u, v) is the resistance distance
between u and v in G. A bicyclic graph is a connected graph G � (V, E) with |E| � |V| + 1.-is paper completely characterizes the
graphs with the second-maximum and third-maximum degree resistance distance among all bicyclic graphs with n≥ 6 vertices.

1. Introduction

All graphs considered in this paper are simple and un-
directed. Let G � (V, E) be a graph with n vertices and m

edges. Let NG(v) be the set of vertices adjacent to v in G.
-e degree of v in G, denoted by dG(v), is equal to |NG(v)|.
Denote the minimum degree of vertices in G by δ(G). A
vertex of degree one is called a pendant vertex, and the
edge incident with a pendant vertex is called a pendant
edge. -e distance between two vertices u and v of G,
denoted by dG(u, v) or d(u, v), is the length of a shortest
path connecting u and v in G. For a subset S of V, denote
by G[S], the subgraph induced by S and G − S the graph
G[V(G)∖S]. We use G − v instead of G − v{ } if S � v{ } for
simplicity. Let Pn and Cn be the path and the cycle graphs
on n vertices, respectively.

A topological index or a graph-theoretic index is a real
number related to a graph. Topological indices of molecular
graphs are one of the oldest and most widely used descriptors
in quantitative structure-activity relationships [1, 2]. One of the
most exhaustively studied [3, 4] topological indices is the
Wiener index. -e Wiener index was introduced in 1947 [5]
and defined as W(G) �  u,v{ }⊆V(G)dG(u, v). It is well

correlated with many physical and chemical properties of
organic molecules and chemical compounds.

Based on the electrical network theory, Klein and Randić
[6] proposed a novel distance function called resistance
distance in 1993. -ey treated a graph G as an electric
network by considering each edge of G as a unit resistor.
-en, the resistance distance between two vertices u and v in
G, denoted by RG(u, v), is defined as the effective resistance
between them. Klein and Randić [6] also proved that
RG(u, v)≤dG(u, v), with equality if and only if there is a
unique path connecting u and v in G. In recent years, this
new type of distance between vertices in a graph has
attracted prominent attention in mathematics and chemistry
[6–11].

Similar to the Wiener index, the Kirchhoff index of a
graph G is defined as

Kf(G) � 
u,v{ }⊆V(G)

RG(u, v).
(1)

-is invariant has wide applications in electric circuit,
physical interpretations, chemistry, and graph theory
[12–16].
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In 2012, Gutman et al. [17] introduced the concept of the
degree resistance distance defined as

DR(G) � 
u,v{ }⊆V(G)

dG(u) + dG(v)( RG(u, v). (2)

Palacios called it as additive degree-Kirchhoff index in
[18]. In [17], Gutman et al. [17] presented some properties of
DR(G) and characterized the unicyclic graphs with the
minimum and second-minimumDR(G). Later, the unicyclic
graphs with the maximum and second-maximum DR-value
were considered in [19, 20]. In [21, 22], the cactus graphs
with the minimum, the second-minimum, and the third-
minimum DR-values were also completely characterized.
Recently, the bicyclic graphs with maximum and minimum
DR-values were determined in [23, 24], respectively.

A bicyclic graph G � (V, E) is a connected graph such
that |E| � |V| + 1. -e kernel of G, denoted by G

∧
, is the

unique bicyclic subgraph of G with no pendant vertices. Any
bicyclic graph G is obtained from its kernel G

∧
by attaching

trees to some vertices in G
∧
. Given a family of graphs G, the

graphs with the maximum and second maximum values of
topological indices among G are examined widely, see in
[25–29]. Motivated by this, in this paper, we determine the
graphs with the second-maximum and third-maximum
degree resistance distance among all bicyclic graphs with
n≥ 6 vertices.

2. Preliminaries

LetBn be the set of bicyclic graphs of order n,B∞n be the set
of bicyclic graphs of order n with exactly two cycles, and
Bθ

n � Bn∖B
∞
n . Let B(p, q) be obtained from two vertex-

disjoint cycles Cp and Cq by identifying a vertex u ∈ V(Cp)

and a vertex v ∈ V(Cq), B(p, l, q) be obtained from two
vertex-disjoint cycles Cp and Cq by connecting a vertex
u ∈ V(Cp) and a vertex v ∈ V(Cq) by a path uv1v2 . . . vl− 1v

of length l(l≥ 1), and B(Pr, Ps, Pt) be the union of three
internally disjoint paths Pr, Ps, and Pt, respectively, with
common end vertices, where r, s, t≥ 2 and at most one of
them is 2.

Let G be a graph and v be a vertex in G. Define Kfv(G) �

u∈V(G)RG(u, v) and Dv(G) � u∈V(G)dG(u)RG(u, v).
We present a few lemmas which will be employed later to

establish our main results.

Lemma 1 (see [13]). Let G be a connected graph with a
pendant vertex v with its unique neighbor w. 7en,
Kfv(G) � Kfw(G − v) + n − 1.

Lemma 2 (see [13]). Let G be a bicyclic graph of order n and
v ∈ V(G). 7en, Kfv(G)≤ n2/2 − n/2 − 15/4. Moreover, if
dG(v)≥ 2, then Kfv(G)≤ n2/2 − 3n/2 + 1/3.

-e following remark can be obtained from the proof of
Lemma 2.

Remark 1. Let G be a graph in B∞n and v ∈ V(G). 7en,
Kfv(G)≤ n2/2 − n/2 − 6.

Lemma 3 (see [17]). Let G be a connected graph with a cut
vertex v such that G1 and G2 are two connected subgraphs of
G having v as the only common vertex and
V(G1)⋃V(G2) � V(G). Let n1 � |V(G1)|, n2 � |V(G2)|,

m1 � |E(G1)|, andm2 � |E(G2)|. 7en, DR(G) � DR(G1) +

DR(G2) + 2m2Kfv(G1) + 2m1Kfv(G2) +(n2 − 1)Dv(G1) +

(n1 − 1)Dv(G2).

Lemma 4 (see [17]). Let Ck be a cycle with length k and
v ∈ Ck. 7en, Kf(Ck) � (k3 − k)/12,DR(Ck) � (k3 − k)/3,
Kfv (Ck) � (k2 − 1)/6, and Dv(Ck) � (k2 − 1)/3.

Lemma 5 (see [23]). Let H be a connected graph of order
h> 2 and Ck be a cycle of order k≥ 4. Let F be the graph of
order k obtained from C3 by attaching one pendant path of
order k − 3 to one vertex of C3. Further suppose G1 is the
graph obtained from H and Ck by identifying one vertex in H

and one vertex in Ck; G2 is the graph obtained from H and F

by identifying one vertex in H and the pendant vertex in F.
7en, we have DR(G1)<DR(G2).

By an argument similar to that of Lemma 5, we easily get
the following result.

Lemma 6. Let G be a connected graph of order n> 2 and Ck

be a cycle of order k≥ 5. Let F be obtained by identifying a
pendant vertex of Pk− 3 with any vertex of C4. Suppose G1is the
graph obtained from G and Ckby identifying one vertex in G

and one vertex in Ck;G2 is obtained from G and F by
identifying one vertex in G and the pendant vertex in F. 7en,
DR(G1)<DR(G2).

In [23], Du and Tu characterized the unique bicyclic
graph with maximum degree resistance distance. -ey also
presented two significant lemmas in [23].

Theorem 1 (see [23]). LetG be a bicyclic graph of order n≥ 6;
then, DR(G)≤ 2n3/3 + n2 − 19n + 88/3, with equality if and
only if G � B(3, n − 5, 3).

Lemma 7 (see [23]). Let G be a bicyclic graph of order n and
v ∈ V(G). 7en, Dv(G)≤ n2 + 2n − 73/4.

Lemma 8 (see [23]). Let G be a bicyclic graph of order n, vbe
a pendant vertex of G, and w be its neighbor. 7en, DR(G) �

DR(G − v) + Dw(G − v) +2Kfw(G − v) + 3n.

3. Bicyclic Graphs with the Second-Maximum
Degree Resistance Distance

In this section, we will determine the bicyclic graphs with the
second-maximum degree resistance distance.

Suppose n≥ 6. Let B(3, n − 5, 3) be obtained from two 3-
cycles v1v2v3v1 and vn− 2vn− 1vnvn− 2 by connecting v3 and vn− 2
by a path v3v4 · · · vn− 3vn− 2. Define G1

n � B(3, n − 5, 3)−

vn− 1vn + vn− 1vn− 3 and G2,i
n � G1

n − vn− 2vn + vivn, where
3≤ i≤ n − 3. Let G3

n(G5
n) be obtained from a 4-cycle C4 �

v1v2v3v4v1 and a path P � v5 . . . vn by adding the edges v1v3
(v2v4, resp.) and v4v5. Let G4

n � B(4, n − 6, 3) be obtained
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from a 4-cycle v1v2v3v4v1 and a 3-cycle vn− 2vn− 1vnvn− 2 by
connecting v4 and vn− 2 by a path v4v5 . . . vn− 3vn− 2 (see
Figure 1). -en, we have the following lemma.

Lemma 9. Let G1
n, G2,i

n , G3
n, G4

n, and G5
n be defined as above.

7en, DR(G1
n) � 2/3n3 + n2 − 79/3n + 56,DR(G2,i

n )

� 2/3n3 + n2 − 17n + 4i2 − 4ni + 88/3, DR(G3
n) � 2/3n3 +

n2 − 293/12n + 117/2, DR(G4
n) � 2/3n3 + n2 − 82/3n +

167/3, and DR(G5
n) � 2/3n3 + n2 − 163/6n + 139/2.

Proof. By Lemma 8 and -eorem 1, we easily obtain

DR G
1
n  � DR G

1
n − vn  + Dvn− 2

G
1
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1
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2
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3
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2
− 19(n − 1) +

88
3

 

+ 2 ·
2
3
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2
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+ 2 ·

2
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2
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2
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2
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4
3

+ n − 6   + 2 ·
2
3

+
2
3
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2
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2
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n + 56,

DR G
2,i
n  � DR G

2,i
n − vn  + Dvi

G
2,i
n − vn  + 2Kfvi

G
2,i
n − vn  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
− 19(n − 1) +

88
3

  +[ 2 · 1 + 2 · 2

+ · · · + 2 · (i − 4) + 3 · (i − 3) + 4 · i − 3 +
2
3

  + 2 · 1 + 2 · 2

+ · · · + 2 · (n − 4 − i) + 3 · (n − 3 − i) + 4 · n − 3 − i +
2
3

  

+ 2 · [ 1 + 2 + · · · +(i − 3) + 2 · i − 3 +
2
3

  + 1 + 2 + · · ·

+(n − 3 − i) + 2 · n − 3 − i +
2
3

   + 3n

�
2
3
n
3

− n
2

− 19n +
146
3

  + n
2

+ 2i
2

− 2ni −
38
3

 

+ 2 ·
3n

2
− 3n + 6i

2
− 6ni − 20

6
+ 3n

�
2
3
n
3

+ n
2

− 17n + 4i
2

− 4ni +
88
3

.

(3)

Let H � G3
n[ v1, v2, v3, v4 ]. By Lemma 3,
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DR G
3
n  � DR(H) + DR Pn− 3(  + 2(n − 4)Kfv4

(H) + 10Kfv4
Pn− 3( 

+(n − 4)Dv4
(H) + 3Dv4

Pn− 3( 

�
39
2

+
2
3
(n − 3)

3
− (n − 3)

2
+
1
3

(n − 3)  + 2 · (n − 4) ·
9
4

+ 10 ·
(n − 3)(n − 4)

2
+(n − 4) ·

23
4

+ 3 · (n − 4)
2

�
2
3
n
3

+ n
2

−
293
12

n +
117
2

.

(4)

Let F � G4
n − vn− 1, vn . By Lemmas 3 and 6,

DR G
4
n  � DR C3(  + DR(F) + 2(n − 2)Kfvn− 2

C3(  + 6Kfvn− 2
(F)

+(n − 3)Dvn− 2
C3(  + 2Dvn− 2

(F)

� 8 +
2
3
(n − 2)

3
−
53
3

(n − 2) + 48  +
8
3

(n − 2) + 6
(n − 2)

2

2

−
n − 2
2

−
7
2
 +

8
3

(n − 3) + 2 (n − 2)
2

− 11 

�
2
3
n
3

+ n
2

−
82
3

n +
167
3

.

(5)

Let S � G5
n[ v1, v2, v3, v4 ]. By Lemma 3,

v1

v1 v1

v2

v2
v2

v3 v4 v4

v3

v3

v4 v4 v5v5

v1

v2

v3

v4 v5

v1

v2 v3 vi

vn

vn

vn

vn

vn-3

vn-1

vn-1

vn-1

vn-1

vn-2 vn-3vn-4

vn-1

vn-2

vn-2

vn

Gn
3 Gn

4

Gn
5

Gn
1 Gn

2,i

Figure 1: Graphs G1
n, G2,i

n , G3
n, G4

n, and G5
n.
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DR G
5
n  � DR(S) + DR Pn− 3(  + 2(n − 4)Kfv4

(S) + 10Kfv4
Pn− 3( 

+(n − 4)Dv4
(S) + 3Dv4

Pn− 3( 

�
39
2

+
2
3
(n − 4)

3
+(n − 4)

2
+
1
3

(n − 4)  + 2(n − 4) ·
7
4

+ 10 ·
(n − 3)(n − 4)

2
+ 4(n − 4) + 3(n − 4)

2

�
2
3
n
3

+ n
2

−
163
6

n +
139
2

.

(6)

□

Theorem 2. Suppose G is a graph in B∞n with G≇B(3, n −

5, 3) and n≥ 6. 7en, DR(G)≤ 2/3n3 + n2 − 79/3n + 56, with
equality if and only ifG � G1

n, whereG1
n is defined as in Lemma 9.

Proof. It is easy to verify that, for any graph G in B∞6 with
G≇B(3, 1, 3), DR(G)≤ 78 � 2/3 · 63 + 62 − 79/3 · 6 + 56, with
equality if and only if G � G1

6.
Now, we assume n≥ 7 and consider the following two cases.

Case 1 δ(G)� 1: let v be a pendant vertex in G. If
G − v � B(3, n − 6, 3), then either G � G1

n, or G � G2,i
n ,

where G1
n and G � G2,i

n are defined as in Lemma 9. By
Lemma 9,

DR G
2,i
n  �

2
3
n
3

+ n
2

− 17n + 4i
2

− 4ni +
88
3

≤
2
3
n
3

+ n
2

− 17n + 4 · 32 − 4n · 3 +
88
3

<
2
3
n
3

+ n
2

−
79
3

n + 56.

(7)

If G − v≇B(3, n − 6, 3), we prove it by induction on n.
Let w be the neighbor of v. By the inductive hypothesis,
Remark 1, and Lemmas 7–9

DR(G) � DR(G − v) + Dw(G − v) + 2Kfw(G − v) + 3n

≤
2
3
(n − 1)

3
+(n − 1)

2
−
79
3

(n − 1)

+ 56 + (n − 1)
2

+ 2(n − 1)

−
73
4

 + 2
(n − 1)

2

2
−

n − 1
2

− 6  + 3n

�
2
3
n
3

+ n
2

−
79
3

n +
641
12

<
2
3
n
3

+ n
2

−
79
3

n + 56.

(8)

Case 2 (δ(G)≥ 2): in this case, G is of the form B(p, q)

or B(p, l, q). By Lemmas 5 and 6, we have
DR(G)≤DR(G4

n), with equality if and only if G � G4
n.

Note that DR(G4
n)<DR(G1

n) by Lemma 9. -erefore,
the proof is complete. □

Theorem 3. Suppose G is a graph of ordern≥ 4 inBθ
n. 7en,

DR(G)≤ 2/3n3 + n2 − 293/12n + 117/2, with equality if and
only if G � G3

n, where G3
n is defined in Lemma 9.

Proof. It is easy to verify that the only graph inBθ
4 is G3

4 and
DR(G3

4) � 2/3 · 43 + 42 − 293/12 · 4 + 117/2. We assume
n≥ 5 next, and consider the following two cases.

Case 1 (δ(G) � 1): let v be a pendant vertex in G and w

be the neighbor of v. We prove it by induction on n. By
the inductive hypothesis, Lemma 2, and Lemmas 7–9,

DR(G) � DR(G − v) + Dw(G − v) + 2Kfw(G − v) + 3n

≤
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1)

+
117
2

+ (n − 1)
2

+ 2(n − 1)

−
73
4

 + 2 ·
(n − 1)

2

2
−

n − 1
2

−
15
4

  + 3n

�
2
3
n
3

+ n
2

−
293
12

n +
117
2

.

(9)

-e equality DR(G − v) � 2/3n3 + n2 − 293/12n +117/2
holds if and only if DR(G − v) � 2/3(n − 1)3 + (n − 1)2

− 293/12(n − 1) +117/2, Dw(G − v) � (n − 1)2 +2·

(n − 1) − 73/4, and Kfw(G − v) � (n − 1)2/2 − (n

− 1)/2 − 15/4� n2/2 − 3/2n − 11/4. By the inductive hy-
pothesis, G − v � G3

n− 1, which is obtained from a 4-cycle
C4 � v1v2v3v4v1 and a path P � v5 . . .vn− 1 by adding the
edges v1v3 and v4v5. We show that w � vn− 1, i.e., G � G3

n.
By direct calculation, we have Kfvn− 1

(G3
n− 1) �

n2/2 − 3/2n − 11/4, Kfv1
(G3

n− 1) � Kfv3
(G3

n− 1) � n2/2 −

31/8n + 69/8< n2/2 − 3/2n − 11/4, and Kfv2
(G3

n− 1) �

n2/2 − 7/2n + 29/4< n2/2 − 3/2n − 11/4. Obviously,
Kfu(G3

n− 1)<Kfvn− 1
(G3

n− 1) if u ∈ V(G3
n− 1)∖ v1, v2,

v3, vn− 1}. -erefore, w � vn− 1, i.e., G � G3
n.
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Case 2 (δ(G)≥ 2): then, G is of the form B(Pk, Pl, Pm).
Suppose x and y are the only two vertices of degree 3.
Since Kf(G)≤ 1/8n3 (see [13]), we have

DR(G) � 
u,v{ }⊆V(G)

(d(u) + d(v))R(u, v)

� 4Kf(G) + Kfx(G) + Kfy(G)

≤ 4 ·
1
8
n
3

+ 2 ·
1
2
n
2

−
3
2

n +
1
3

 (by Lemma 2)

�
1
2
n
3

+ n
2

− 3n +
2
3
.

(10)

If n≥ 10, then 1/2n3 + n2 − 3n + 2/3< 2/3n3 + n2 −

293/12n + 117/2. For any graph G � B(Pk, Pl, Pm)

when n � 5, 6, 7, 8, 9, we have calculated DR(G) and
found that DR(G)< 2/3n3 + n2 − 293/12n + 117/2.

Combining -eorems 1–3, we can obtain the first main
result of our paper. □

Theorem 4. Suppose G is a bicyclic graph of order n≥ 6 with
G≇B(3, n − 5, 3). 7en, DR(G)≤ 2/3n3 + n2 − 293/12n+

117/2, with equality if and only if G � G3
n, where G3

n is defined
as in Lemma 9.

4. Bicyclic Graphs with the Third-Maximum
Degree Resistance Distance

In this section, we will determine the bicyclic graphs with the
third-maximum degree resistance distance.

Lemma 10. Let G3,i
n be obtained from a 4-cycle C4 �

v1v2v3v4v1, a path P � v5 . . . vn− 1 and an isolated vertex vn by
adding the edges v1v3, v4v5, and vivn, where 1≤ i≤ n − 2 and
n≥ 6. 7en, DR(G3,1

n ) � DR(G3,3
n ) � 2/3n3 + n2 − 455/

12n + 493/4, DR(G3,2
n ) � 2/3n3 + n2 − 437/12n + 237/2, DR

(G3,4
n ) � 2/3n3 + n2 − 485/12n + 277/2, and DR(G3,i

n ) �

2/3n3 + n2 − 293/12n − 4ni + 4i2 + 4i + 117/2, for 5≤ i

≤ n − 2.

Proof. By Lemmas 8 and 9, we easily obtain

DR G
3,1
n  � DR G

3,3
n  � DR G

3
n− 1  + Dv1

G
3
n− 1  + 2Kfv1

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ 2 ·
5
8

+ 3 ·
5
8

+ 3 ·
1
2

+ 2 ·
5
8

+ 1  + · · · + 2 ·
5
8

+ n − 6  + n − 5 +
5
8

 

+ 2 ·
5
8

+
5
8

+
1
2

+
5
8

+ 1  + · · · +
5
8

+ n − 5   + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

  + n
2

−
35
4

n +
91
4

 

+ n
2

−
31
4

n +
69
4

  + 3n �
2
3
n
3

+ n
2

−
455
12

n +
493
4

,

DR G
3,2
n  � DR G

3
n− 1  + Dv2

G
3
n− 1  + 2Kfv2

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ 3 ·
5
8

+ 3 ·
5
8

+ 3 · 1 + 2 · 2 + · · · + 2 · (n − 5) +(n − 4) + 2 ·
5
8

+
5
8

+ 1

+ · · · + n − 4) + 3n
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�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ n
2

− 8n +
83
4

 

+ n
2

− 7n +
29
2

  + 3

� 
2
3
n
3

+ n
2

−
437
12

n +
237
2

,

DR G
3,4
n  � DR G

3
n− 1  + Dv4

G
3
n− 1  + 2Kfv4

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

 + 2 · 3 ·
5
8

+ 2 · 1 + 2 · 1 + 2 · 2 + · · · + 2 · (n − 6) +(n − 5) + 2 · 2 ·
5
8

+ 1 + 1

+ · · · + n − 5 + 3n �
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

  + n
2

− 10n +
123
4

 

+ n
2

− 9n +
49
2

  + 3n �
2
3
n
3

+ n
2

−
485
12

n +
277
2

,

(11)

and for 5≤ i≤ n − 2,

DR G
3,i
n  � DR G

3
n− 1  + Dvi

G
3
n− 1  + 2Kfvi

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ 2 · 1 + 2 · 2 + · · ·

+ 2 · (n − 2 − i) +(n − 1 − i) + 2 · 1 + 2 · 2 + · · · + 2 · (i − 5)

+ 3 · (i − 4) + 2 · 3 · i − 4 +
5
8

  + 2 · (i − 3) + 2 · 1 + 2 + · · ·

+(n − 1 − i) + 1 + 2 + · · · + i − 3 + 2 · i − 4 +
5
8

  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ n
2

− 2ni − 2n + 2i
2

+ 4i −
69
4

+ n
2

− 2ni − n + 2i
2

−
15
2

  + 3n

�
2
3
n
3

+ n
2

−
293
12

n − 4ni + 4i
2

+ 4i +
117
2

.

(12)

Proposition 1. Suppose G≇G3
n is a bicyclic graph of

ordern≥ 5 and v ∈ V(G), where G3
n is defined as in Lemma 9.

7en, Kfv(G)≤ n2/2 − n/2 − 17/4.

Proof. It is not hard to verify that, for any bicyclic graph
G≇G3

5 of order 5 and v ∈ V(G), Kfv(G)≤ 52/2 − 5/2 − 17/4.
-us, we assume n≥ 6 in the following cases.
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Case 1 (d(v) � 1): let w be the neighbor of v.
Suppose G − v � G3

n− 1, where G3
n− 1 is obtained from a 4-

cycle C4 � v1v2v3v4v1 and a path P � v5 . . . vn− 1 by
adding the edges v1v3 and v4v5. -en, w≠ vn− 1 since
G≇G3

n. By Lemma 1,

Kfv(G) � Kfw(G − v) + n − 1

≤max Kfvn− 2
G
3
n− 1 , Kfv2

G
3
n− 1   + n − 1

� max
n
2

2
−
5
2

n +
1
4
,
n
2

2
−
7
2

n +
29
4

  + n − 1

� max
n
2

2
−
3
2

n −
3
4
,
n
2

2
−
5
2

n +
25
4

 

<
n
2

2
−

n

2
−
17
4

.

(13)

If G − v≇G3
n− 1, we shall prove it by induction on n.

By the inductive hypothesis, Kfv(G) � Kfw(G − v) +

n − 1≤ (n − 1)2/2 − (n − 1)/2 − 17/4 + n − 1 � n2/2 −

n/2 − 17/4.
Case 2: d(v)≥ 2.

By Lemma 2, Kfv(G)≤ n2/2 − 3n/2 + 1/3< n2/2 −

n/2 − 17/4. □

Lemma 11 (see [23]). Let G be a bicyclic graph of order n, v

be a pendant vertex of G, and w be its neighbor. 7en,
Dv(G) � Dw(G − v) + 2n + 1.

Proposition 2. Let G≇G3
n be a graph inB

θ
n of order n≥ 5 and

v ∈ V(G), where G3
n is defined as in Lemma 9. 7en,

Dv(G)≤ n2 + 2n − 20.

Proof. It is easy to verify that for any graph G ∈Bθ
5 with

G≇G3
5 and v ∈ V(G), Dv(G)≤ 15 � 52 + 2 · 5 − 20. -us, we

assume n≥ 6 in the following cases.

Case 1 (dG(v) � 1): let w be the neighbor of v.
Suppose G − v � G3

n− 1, where G3
n− 1 is obtained from a 4-

cycle C4 � v1v2v3v4v1 and a path P � v5 . . . vn− 1 by
adding the edges v1v3 and v4v5. -en, w≠ vn− 1 since
G≇G3

n. Moreover, Dv(G) � Dw(G3
n− 1) + 2n + 1 by

Lemma 11. By direct calculation, we get Dv1
(G3

n− 1) � Dv3
(G3

n− 1) � n2 − 35/4n + 91/4, Dv2
(G3

n− 1) �

n2 − 8n + 83/4, Dv4
(G3

n− 1) � n2 − 10n + 123/4, and

Dvi
G
3
n− 1  � n

2
− 2n + 2i

2
+(4 − 2n)i −

69
4

≤ n
2

− 2n + 2(n − 2)
2

+(4 − 2n)(n − 2) −
69
4

� n
2

− 2n −
69
4

� Dvn− 2
G
3
n− 1  ,

(14)

if 5≤ i≤ n − 2. -us, Dw(G3
n− 1)≤Dvn− 2

(G3
n− 1) and

Dv(G)≤Dvn− 2
(G3

n− 1) + 2n + 1 � n2 − 65/4< n2+ 2n − 20.
If G − v≇G3

n− 1, we prove it by induction on n. By the
inductive hypothesis, Dv(G) � Dw(G) + 2n + 1≤
(n − 1)2 + 2(n − 1) − 20 + 2n + 1 � n2 + 2n − 20.
Case 2: dG(v)≥ 2.

Subcase 1: v is not contained by any cycle of G.
By the same argument as that of Case 2 of Lemma 2.6
in [23], we can construct a series of bicyclic graphs
G1, G2, . . . , Gk− 1 in Bθ

n such that Dv(G)<Dv

(G1)< · · · <Dv(Gk− 1) and v is a pendant vertex in
Gk− 1, where k � dG(v)≥ 2.
Suppose Gk− 1 � G3

n. -en, Gk− 1 is obtained from a 4-
cycle C4 � v1v2v3v4v1 and a path P � v5 · · · vn− 1v by
adding the edges v1v3 and v4v5. By the transformation
from Gk− 2 to Gk− 1, we can conclude that
Gk− 2 � Gk− 1 − vn− 2vn− 1 + vn− 2v, i.e., Gk− 2 � Gk− 1. Note
that Dv(Gk− 2) � n2 − 73/4. We have Dv(G)≤Dv

(Gk− 2)< n2 + 2n − 20.
If Gk− 1≇G3

n, then, by Case 1, Dv(G)<Dv(Gk− 1)≤
n2 + 2n − 20.
Subcase 2: v is in a cycle of G.

Let G
∧
be the kernel of G. By Claims 1 and 2 of Lemma 2.6

in [23], we can construct a graph G″ in Bθ
n having G

∧
as its

kernel and Dv(G)≤Dv(G″). Moreover, G″ is obtained from
G
∧
by attaching a pendant path to the vertex u, where u is a

vertex of G
∧
such that RG(u, v) � max

w∈V(G
∧

)
RG(w, v).

Suppose G″ has only two vertices of degree three, say w1
and w2. Without loss of generality, we assume that v≠w1,
and v≠w2. -en, by Lemma 2,

Dv G″(  � 3 RG″ w1, v(  + RG″ w2, v( (  + 
w≠w1,w2

2RG″(w, v)

� RG″ w1, v(  + RG″ w2, v(  + 2Kfv G″( 

< dG″ w1, v(  + dG″ w2, v(  + 2Kfv G″( 

≤ n + 2
n
2

2
−
3
2

n +
1
3

 

< n
2

+ 2n − 20.

(15)

Suppose G″ has exactly three vertices of degree three, say
w1, w2, and w3. Let w4 be the pendant vertex of G″. Without
loss of generality, we assume that v≠w1, w2, w3. -en, by
Lemma 2,

Dv G″(  � 3 RG″ w1, v(  + RG″ w2, v(  + RG″ w3, v( (  + RG″ w4, v( 

+ 
w≠w1 ,w2 ,w3 ,w4

2RG″(w, v)

<RG″ w1, v(  + RG″ w2, v(  + RG″ w3, v(  + 2Kfv G″( 

<dG″ w1, v(  + dG″ w2, v(  + dG″ w3, v(  + 2Kfv G″( 
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≤
3(n − 1)

2
+ 2 ·

n
2

2
−
3
2

n +
1
3

 

≤ n
2

+ 2n − 20.

(16)

Suppose G″ has a vertex of degree four, say w1, and a
vertex of degree three, say w2. Let w3 be the pendant vertex
of G″. Without loss of generality, we assume that v≠w1, w2.
-en, by Lemma 2,

Dv G″(  � 4RG″ w1, v(  + 3RG″ w2, v( 

+ RG″ w3, v(  + 
w≠w1 ,w2 ,w3

2RG″(w, v)

< 2RG″ w1, v(  + RG″ w2, v(  + 2Kfv G″( 

< 2dG″ w1, v(  + dG″ w2, v(  + 2Kfv G″( 

≤
3(n − 1)

2
+ 2 ·

n
2

2
−
3
2

n +
1
3

 

≤ n
2

+ 2n − 20,

(17)

which completes the proof. □

Theorem 5. Suppose G is a graph of order n≥ 5 inBθ
n\ G3

n .
7en, DR(G)≤ 2/3n3 + n2 − 163/6n + 139/2, with equality if
and only if G � G5

n, where G3
n and G5

n are defined as in Lemma
9.

Proof. It is not hard to verify that, for any graph G in
Bθ

5\ G3
5 , DR(G)≤ 42 � 2/3 · 53 + 52 − 163/6 · 5 + 139/2,

with equality if and only if G � G5
5.

We assume that n≥ 6, and consider the following two
cases.

Case 1: δ(G) � 1.
Let vn be a pendant vertex of G. Suppose G − vn � G3

n− 1,
where G3

n− 1 is obtained from a 4-cycle C4 � v1v2v3v4v1,
and a path P � v5 · · · vn− 1 by adding the edges v1v3 and
v4v5. -en, G � G3,i

n , where 1≤ i≤ n − 2, and G3,i
n is

defined in the Lemmas 10. By Lemma 10,

DR G
3,1
n  � DR G

3,3
n  �

2
3
n
3

+ n
2

−
455
12

n +
493
4
<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

DR G
3,2
n  �

2
3
n
3

+ n
2

−
437
12

n +
237
2
<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

DR G
3,4
n  �

2
3
n
3

+ n
2

−
485
12

n +
277
2
<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

DR G
3,i
n  �

2
3
n
3

+ n
2

−
293
12

n − 4ni + 4i
2

+ 4i +
117
2

≤
2
3
n
3

+ n
2

−
293
12

n − 4n(n − 2) + 4(n − 2)
2

+ 4(n − 2) +
117
2

�
2
3
n
3

+ n
2

−
341
12

n +
133
2

<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

(18)

for 5≤ i≤ n − 2.
If G − vn≇G3

n− 1, we prove it by induction on n. Let w be
the neighbor of vn. By the inductive hypothesis, Lemma
8, and Propositions 1 and 2,
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DR(G) � DR G − vn(  + Dw G − vn(  + 2Kfw G − vn(  + 3n

≤
2
3
(n − 1)

3
+(n − 1)

2
−
163
6

(n − 1)

+
139
2

 +(n − 1)
2

+ 2(n − 1)

− 20 + 2 ·
(n − 1)

2

2
−

n − 1
2

−
17
4

  + 3n

�
2
3
n
3

+ n
2

−
163
6

n +
139
2

.

(19)

-e equality DR(G) � 2/3n3 + n2 − 163/6n + 139/2
holds if and only ifDR(G − vn) � 2/3(n − 1)3 + (n − 1)2

− 163/6(n − 1) + 139/2, Dw(G − vn) � (n − 1)2 + 2(n −

1) − 20, and Kfw(G − vn) � (n − 1)2/2− (n − 1)/2−

17/4 � n2/2 − 3/2n − 13/4. By the inductive hypothesis,
G − vn � G5

n− 1, where G5
n− 1 is obtained from a 4-cycle

C4 � v1v2v3v4v1 and a path P � v5 . . . vn− 1 by adding
the edges v2v4 and v4v5. We show that w � vn− 1, i.e.,
G � G5

n.
By direct calculation, we have Kfvn− 1

(G5
n− 1) �

n2/2 − 3/2n − 13/4, Kfv2
(G5

n− 1) � n2/2 − 4n + 37/4< n2

/2 − 3/2n − 13/4, and Kfv1
(G5

n− 1) � Kfv3
(G5

n− 1) �

n2/2 − 31/8n + 73/8< n2/2 − 3/2n − 13/4. Obviously,
Kfv(G5

n− 1)<Kfvn− 1
(G5

n− 1) if v ∈ V(G5
n− 1)∖ v1, v2,

v3, vn− 1}. -erefore, w � vn− 1, i.e., G � G5
n.

Case 2: δ(G)≥ 2.

By a similar argument to that of Case 2 in-eorem 3, we
obtain

DR(G)≤
1
2
n
3

+ n
2

− 3n +
2
3
. (20)

If n≥ 11, then 1/2n3 + n2 − 3n + 2/3 < 2/3n3 + n2 −

163/6n + 139/2. For any graph of the form B(Pk, Pl, Pm)

when n � 6, 7, 8, 9, 10, we have calculated DR(G) and found
that DR(G)≤ 2/3n3 + n2 − 163/6n + 139/2.

From -eorems 2 and 4, we obtain the following
result. □

Theorem 6. LetG1
nandG5

nbe defined as in Lemma 9. 7en,
among all bicyclic graphs of order n,

(i) If 6≤ n≤ 16, the graph G5
n is the unique graph with the

third-maximum degree resistance distance of value
2/3n3 + n2 − 163/6n + 139/2

(ii) If n≥ 17, the graph G1
n is the unique graph with the

third-maximum degree resistance distance of value
2/3n3 + n2 − 79/3n + 56

5. Conclusion

As a molecular structure descriptor, the Wiener index is one
of the widely employed topological indices, as it is well
correlated with many physical and chemical properties of a
variety of classes of chemical compounds. A weighted

version of theWiener index is the degree resistance distance.
In this paper, we characterize the graphs with the second-
maximum and third-maximum degree resistance distance
among all bicyclic graphs with fixed order. Furthermore, we
present an open problem.

Problem 1. Characterize the tricyclic graphs of order n with
the maximum and second-maximum degree resistance
distance.
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[7] D. Babić, D. J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić,
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)e use of graph theory can be visualized in nanochemistry, computer networks, Google maps, and molecular graph which are
common areas to elaborate application of this subject. In nanochemistry, a numeric number (topological index) is used to estimate
the biological, physical, and structural properties of chemical compounds that are associated with the chemical graph. In this
paper, we compute the first and secondmultiplicative Zagreb indices (M1(G) and (M1(G))), generalized multiplicative geometric
arithmetic index (GAαII(G)), and multiplicative sum connectivity and multiplicative product connectivity indices (SCII(G) and
PCII(G)) of SiC4 − I[m, n] and SiC4 − II[m, n].

1. Introduction

Chemical graph theory is the branch in which mathe-
matical chemistry is concerned with nontrivial graphs and
its applications in molecular issues. )e major purpose of
chemical graph theory is to employ algebraic invariants to
reduce a molecule’s topological structure to a single
number which characterizes to the molecule’s energy,
orbitals, molecular branching, structural fragments, and
electronic structures, among others. )e topological index
is a numerical value associated with chemical constitutions
that suggest a link between chemical structures and a
variety of physical qualities which measure chemical re-
activity or biological activity. Topological indices are also
called molecular descriptor. )ey are used to investigate
certain physical features of a molecule by analyzing
mathematical values. As a result, it is an effective way to
eliminate costly and time-consuming laboratory trials.
Molecular descriptors play an important role in mathe-
matical chemistry, especially in quantitative structure

relationships (QSAR) and quantitative structure activity
relationship (QSAR) investigation.

)ere are some other valueable structure problems
existing in real life which can be addressed by graphical
representation such as optimal frequency assignments in
Radio (see [1, 2]). )e topological indices are beneficial to
justify the characteristics of chemical compounds such as
melting, boiling, and flash points; other properties such as
heat of formation, heat of vaporization, density, and pressure
can also be estimated by these graph invariants. Due to great
significance, it attracts the interest of many researchers. )e
first topological index was Wiener index given by Harnold
Wiener in 1947 [2]. Some Zagreb indices are very close to the
wiener index [3], Gutman [4] worked on the multiplicative
degree-based TIs for tree graphs, Kwunet et al. studied the
multiplicative degree-based TIs for the silicon carbides [5],
Hayat et al. [6] worked on many degree-based molecular
descriptors for silicates, oxides, hexagonal, and honeycombs,
Darafsheh [7] introduced various suitable ways and tech-
niques to estimate the Wiener index, Padmaker-Ivan index,
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and Szeged index, Kulli [8] wrote on F-indices on chemical
networks, M. Saddiqui defined Zagreb indices for sym-
metrical nanotubes [9], Geo et al. worked for the Zagreb
indices for the nanotubes [10], and Idrees et al. apply
molecular descriptors to the benzenoid system [11]. Ayachye
and Alameri [12] defined the topological indices such as
Wiener index, hyper-Wiener index, Zagreb index, Schultz
index, and modified Schultz index for mk graphs. Geo et al.
[13] defined the eccentricity-based TIs for the class of cyclo-
alkanes. For more studies about the TIs for chemical and
other graphs, see [14–17].

2. Preliminaries

Let G � (V, E) be a graph with V(G) as vertex set and E(G)

as edges’ set. )e degree of vertex V is denoted by d(v) as the
number of edges incident to a vertex V. In this paper, we will
discuss simple (with no loops or multiple edges), undirected
(graph has no distinction between two vertices associated
with each edge), and connected graph is said to be connected
if there is a path between every pair vertex. In [18], Kulli et al.
defined the first and second generalized multiplicative
Zagreb indices:

M1(G) � 
uvεE(G)

(d(u) + d(v))
α
,

M2(G) � 
uvεE(G)

(d(u) × d(v))
α
.

(1)

For the properties of multiplicative Zagreb indices, see
[19–22].

Multiplicative sum connectivity and multiplicative
product connectivity indices are defined as

SCII(G) � 
uvεE(G)

1
����������
d(u) + d(v)

 ,

PCII(G) � 
uvεE(G)

1
�����������
d(u) × d(v)

 .

(2)

For more information, see [23].
In [24], multiplicative atomic bond connectivity index is

defined as

ABCII(G) � 
uvεE(G)

�������������
d(u) + d(v) − 2

d(u) × d(v)



. (3)

Multiplicative geometric arithmetic index [25] and
generalized multiplicative geometric arithmetic index [26]
are defined as

GAII(G) � 
uvεE(G)

2
�����������
d(u) × d(v)



d(u) + d(v)
,

GAαII(G) � 
uvεE(G)

2
�����������
d(u) × d(v)



d(u) + d(v)
 

α

.

(4)

Note: if we put

(i) For α � 1, first and second generalized multiplica-
tive Zagreb indices become first and second mul-
tiplicative Zagreb indices

(ii) For α � 2, first and second generalized multiplica-
tive Zagreb indices become first and second
hypermultiplicative Zagreb indices

(iii) For α � (−1/2), first and second generalized mul-
tiplicative Zagreb indices become multiplicative
sum connectivity and multiplicative product con-
nectivity indices.

(iv) For α � (−1/2), first and second generalized mul-
tiplicative Zagreb indices become multiplicative
sum connectivity and multiplicative product con-
nectivity indices

3. 2D Structure of Silicon Carbide for
SiC4 − I[m, n]

)e construction of 2D structure of silicon carbide for SiC4 −

I[m, n] is shown in Figure 1, where one unit of SiC4 − I[m, n]

is displayed in (a). In this molecular graph, m denotes the
number of cells attached in a single row and n denotes the
number of total rows in which each row contains m cells.
Figures 1(b)–1(d) indicate how unit cells are connected in one
row and then one row to another row and so on. Furthermore,
it is discussed how unit cell connect each other to get more
columns and rows which enhance physical development of the
structure SiC4 − I[m, n] with different orders.

)e simple methodology of constructing chemical
structure above by considering increment in number to
connect the unit cells in m direction increases the length of
row, while increase in unit cell in n style means the number
of row is increasing. Consequently, the total numbers of
vertices, edges, and faces in SiC4 − I[m, n] are

V SiC4 − I[m, n]( 


 � 10mn,

V SiC4 − I[m, n]( 


 � 12mn − m − n,

V SiC4 − I[m, n]( 


 � 2mn − m − n + 2.

(5)

Later on, by changing rows and columns, we discuss the
different properties of carbon and silicon structure.

3.1. Methodology of Silicon Carbide SiC4 − I[m, n] Formulas.
We will make different order structures of SiC4 − I[m, n] by
connecting the unit cells in different sequences, in horizontal
way, and then in vertical way to form new structures. It is a very
easy method to calculate the melting and boiling points and
other properties of chemical structures without costly
experiments.

3.2. Edge Partition for SiC4 − I[m, n]. According to the end
point, degrees of edges SiC4 − I[m, n] are divided into five
categories.

By Table 1, the general form of edges partition with the
frequency is given in Table 2, where m, n≥ 1 and edge parcel
uv contains 2 edges when d(u) � 2 and d(v) � 1; other four
parcels are also shown. In graph G of SiC4 − I[m, n], it is
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calculated that the total number of vertices and edges are
10mn and 12mn − m − n, respectively. )us, the edge set of
SiC4 − I[m, n] with m, n≥ 1 has 5 partitions.

4. Computational Results for Silicon
Carbide SiC4 − I[m, n]

In this partition, we compute ev-degree- and ve-degree-based
topological indices such as the ev-degree Zagreb index, first ve-

degree Zagreb beta index, the second ve-degree Zagreb index,
ev-degree Randic index, ve-degree atom bond connectivity
index, ve-degree geometric index, and ve-degree sun con-
nectivity index of silicon carbide SiC4 − I[m, n].

Theorem 1. Let SiC4 − I[m, n] be the silicon carbide. 1en,

MZ
α
1 SiC4 − I[m, n](  � (2)

α(15mn− 2m− 4n− 3)
×(3)

α(15mn− 10m− 8n+7)
×(5)

α(2m+4n− 2)
,

MZ
α
2 SiC4 − I[m, n](  � (2)

4α(m+2n− 1)
×(3)

3α(10mn− 5m− 4n+2)
,

GAαII SiC4 − I[m, n](  � (
�
2

√
)
α(12n− 4)

×(
�
3

√
)
α(5m+4n− 8)

×(5)
α(− 2m− 4n+2)

.

(6)

Proof

MZ
α
1 SiC4 − I[m, n](  � 

uvεE SiC4−I[m,n]( )

(d(u) + d(v))
α

� (2 + 1)
2α

×(2)
α(6m− 4)

×(2)
α(2m+4n− 4)

×(5)
α(2m+4n− 2)

×(2)
α(15mn− 10m− 8n+5)

×(3)
α(15mn− 10m− 8n+5)

� (2)
α(15mn− 2m− 4n− 3)

×(3)
α(15mn− 10m− 8n+7)

×(5)
α(2m+4n− 2)

,

(a) (b) (c) (d)

Figure 1: Two-dimensional structure of SiC4I[m, n]: chemical unit cell of (a)SiC4 − I[m, n], (b)SiC4 − I[3, 3], (c)SiC4 − I[3, 1], and
(d)SiC4 − I[3, 2], where carbon atoms C are brown and silicon atoms Si are blue.

Table 1: Edge partition of SiC4 − I[m, n].

[m, n] [1, 1] [2, 1] [3, 1] [1, 2] [2, 2] [3, 2] [1, 3] [2, 3] [3, 3]
E12 2 2 2 2 2 2 2 2 2
E13 1 4 7 1 4 7 1 4 7
E22 1 2 3 3 4 5 5 6 7
E23 4 6 8 8 10 12 12 14 16
E33 2 7 12 9 29 49 16 51 86

Table 2: Edges’ partition of SiC4 − I[m, n], for m, n≥ 2.

Edges (d(u),d(v)) Frequency
E1 (2,1) 2
E2 (3,1) 3m-2
E3 (2,2) m+2n-2
E4 (2,3) 2m+4n-2
E5 (3,3) 15mn-10m-8n+5

Journal of Mathematics 3



MZ
α
2 SiC4 − I[m, n](  � 

uvεE SiC4−I[m,n]( )

(d(u) × d(v))
α

� (2)
2α

×(3)
α(3m− 2)

×(2)
α(2m+4n− 4)

×(2)
α(2m+4n− 2)

×(3)
α(2m+4n− 2)

×(3)
α(30mn− 20m− 16n+10)

� (2)
4α(m+2n− 1)

×(3)
3α(10mn− 5m− 4n+2)

,

GAαII SiC4 − I[m, n](  � 

uvεE SiC4−I[m,n]( )

2
����������
d(u) × d(v)



d(u) + d(v)
 

α

�
2

�
2

√

3
 

2α

×
2

�
3

√

4
 

α(3m− 2)

×
2(2)

4
 

α(m+2n− 2)

×
2

�
6

√

5
 

α(2m+4n− 2)

×
2(3)

3 + 3
 

α(15mn− 10m− 8n+5)

� (
�
2

√
)
α(12n+4)

×(
�
3

√
)
α(5m+4n− 8)

×(5)
α(− 2m− 4n+2)

.
(7)

□
Theorem 2. Let (SiC4 − I[m, n]) be the silicon carbide. 1en,

MZ1 SiC4 − I[m, n](  � (2)
(15mn− 2m− 4n− 3)

×(3)
(15mn− 10m− 8n+7)

×(5)
(2m+4n− 2)

,

MZ2 SiC4 − I[m, n](  � (2)
4(m+2n− 1)

×(3)
3(10mn− 5m− 4n+2)

,

GAII SiC4 − I[m, n](  � (
�
2

√
)
(12n− 4)

×(
�
3

√
)
(5m+4n− 8)

×(5)
(− 2m− 4n+2)

.

(8)

Proof. Taking α � 1 in )eorem 1, we get results. □ Theorem 3. Let SiC4 − I[m, n] be the silicon carbide. 1en,

HII1 SiC4 − I[m, n](  � (2)
2(15mn− 2m− 4n− 3)

×(3)
2(15mn− 10m− 8n+7)

×(5)
2(2m+4n− 2)

,

HII2 SiC4 − I[m, n](  � (2)
8(m+2n− 1)

×(3)
6(10mn− 5m− 4n+2)

.
(9)

Proof. Taking α � 2 in )eorem 1, we get results. □ Theorem 4. Let (SiC4 − I[m, n]) be the silicon carbide. 1en,

SCII SiC4 − I[m, n](  �
1
�
2

√ 

(15mn− 2m− 4n− 3)

×
1
�
3

√ 

(15mn− 10m− 8n+7)

×
1
�
5

√ 

(2m+4n− 2)

,

PCII SiC4 − I[m, n](  �
1
�
2

√ 

4(m+2n− 1)

×
1
�
3

√ 

3(10mn− 5m− 4n+2)

.

(10)
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Proof. Taking α � (−1/2) in )eorem 1,

SCII SiC4 − I[m, n](  � (2)
(− 1/2)(15mn− 2m− 4n− 3)

×(3)
(− 1/2)(15mn− 10m− 8n+7)

×(5)
(− 1/2)(2m+4n− 2)

�
1
�
2

√ 

(15mn− 2m− 4n− 3)

×
1
�
3

√ 

(15mn− 10m− 8n+7)

×
1
�
5

√ 

(2m+4n− 2)

,

PCII SiC4 − I[m, n](  � (2)
4(− 1/2)(m+2n− 1)

×(3)
3(− 1/2)(10mn− 5m− 4n+2)

�
1
�
2

√ 

4(m+2n− 1)

×
1
�
3

√ 

3(10mn− 5m− 4n+2)

.

(11)

□
Theorem 5. Let SiC4 − I[m, n] be a graph of silicon carbide.
1en,

ABCII SiC4 − I[m, n](  �
1
�
2

√ 

(3m+6n− 2)

×
2
3

 
(3/2)(15mn− 7m− 8n+3)

. (12)

Proof.

ABCII SiC4 − I[m, n](  � 
uvεESiC4−I[m,n]

�������������
d(u) + d(v) − 2

d(u) × d(v)



�

�
1
2



 

2

×

�
2
3



 

(3m− 2)

×

�
2
4



 

(m+2n− 2)

×

�
3
6



 

(2m+4n− 2)

×

�
4
9



 

(15mn− 10m− 8n+5)

�
1
�
2

√ 

(3m+6n− 2)

×
2
3

 
(3/2)(15mn− 7m− 8n+3)

.

(13)

□

4.1. Discussion and Graphical Representations. In this sec-
tion, we discuss graphs related to multiplicative degree-
based topological indices which notify the variation in the
characteristics of SiC4 − I[m, n].

Figure 2 graphs are panned drawing formed by lines and
points used to express the specific sequence in data and
information. As graphs have different dimensions, accord-
ingly, the used parameter such as in Figure 2 all graphs of
silicon carbide are three dimensional. We have seven graphs
in Figure 2 (say 2(a), 2(b), 2(c), 2(d), 2(e), 2(f ), and 2(g))
representing first multiplicative Zagreb index (MZ1), sec-
ond multiplicative Zagreb index (MZ2), multiplicative
geometric arithmetic index (GAαII(G)), first and second
hyper-Zagreb index, sum connectivity, and product con-
nectivity index (SCII(G) and PCII(G)), respectively. Our
parameters have ranged from zero to one in which most of
the changes in our graphs (including in Figure 2) occur in
constant behavior. For instant, in Figure 2(a), multiplicative
first Zagreb index (MZ1) shows mode straight from 0 to 1
and then increasing uniformly. All the graphs except
Figure 2(c) are derived from generalized Zagreb index.

Zagreb index (ZI) is very useful, old, and effective graph
parameter. It is used in network theory, molecular chem-
istry, and many branches of mathematics, drugs and organic
chemistry. It is also used for the measurement of Skelton of
branching of carbon atoms and π-electron energy in the
organic compounds in chemistry.)ese graphs first decrease
and then increase quickly which means the values of ZI are
changes with respect to our parametersm and n. In graph in
Figure 2(c), by increasing the values of m and n, multipli-
cative geometric arithmetic (GAII (SiC4 − I[m, n])) index
also increases. )e GA index is beneficial to find Kovats
constants and boiling points of molecules.

5. 2DStructureofSiliconCarbideSiC4 − II[m, n]

)e 2D molecular structure of SiC4 − II[m, n] is given in
Figures 3 and 4, respectively. As the unit cell is the basic of
any structure which provides building blocks of the chemical
structures, if we connect the unit cells inm direction, then it
increases the length of row, while if it increases unit cell in n
style, then it enhances the number of rows.
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Figure 2: )e graph of seven multiplicative degree-based topological indices for the silicon carbide SiC4 − I[m, n] described for 0≤m and
n≤ 0.8. (a)MZ1 for SiC4 − I[m, n]. (b)MZ2 for SiC4 − I[m, n]. (c)GAII for SiC4 − I[m, n]. (d)HII1 for SiC4 − I[m, n]. (e)HII2 for
SiC4 − I[m, n]. (f )SCII for SiC4 − I[m, n]. (g)PCII for SiC4 − I[m, n].

(a) (b)

Figure 3: Two-dimensional structure of SiC4 − II[m, n]. (a) A unit cell of SiC4 − II[m, n]. (b)SiC4 − II[m, n] for m� 3 and n� 3.

(a) (b)

Figure 4: SiC4 − II[m, n], two rows connected each other by edges, wherem� 4 and n� 1. (a)SiC4 − II[m, n], one row withm� 4 and n� 1.
(b)SiC4 − II[m, n] for m� 3 and n� 3.
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)e quantity of vertices and edges in SiC4 − II[m, n] are
represented as

V SiC4 − II[m, n]( 


 � 10mn,

E SiC4 − II[m, n]( 


 � 15mn − 4m − 2n.
(14)

5.1. Methodology of Silicon Carbide SiC4 − II[m, n] and
Formula. For the derivation of the formulae, firstly, use unit
cell and then combine it to make different order structures of
SiC4 − II[m, n]. If we connect the unit cells in the horizontal
way up to m unit cells, then we connect these unit cells in a
vertical way up to n, and we obtained various form of
chemical graph of SiC4 − II[m, n], as shown previously in
Figures 3 and 4. For this, MATLAB is basically used for the
generalizing of formulas, where the generalized formula can
be found by the calculations.

5.2. Edge Partition of SiC4 − II[m, n]. In order to find the
other topological indices, we make partition of the edges of
SiC4 − II[m, n]. By using combinatorial counting and
standard edge partition, one can find the generalizing for-
mulae of the edge partition for SiC4 − II[m, n]. )ere are
total four different edge parcels in the case of SiC4 − II[m, n].

)e first parcel contains only 2 edges uv, where d(u) � 1 and
d(v) � 2, while in second parcel, there are 2m+ 2 edges uv,
where d(u) � 2 and d(v) � 2. Furthermore, third parcel
contains 12m+8n-14 edges uv, where d(u) � 2 and d(v) � 3,
and in the final parcel, the number of edges uv are 15mn-
10n-18m+ 10 with both degrees of 3 as given in Table 3.
Consider G as the graph of SiC4 − II[m, n] (see Figures 3 and
4) and note that the total number of vertices, edges, and faces
are 10mn, 15mn − 4m − 2n, and 5mn − 4m − 2n + 2, re-
spectively. )us, the edge set of SiC4 − II[m, n] with m, n≥ 1
has 4 partitions.

6. Computational Results for Silicon
Carbide SiC4 − II[m, n]

In this partition, we compute ev-degree- and ve-degree-based
topological indices such as the ev-degree Zagreb index, first
ve-degree Zagreb beta index, the second ve-degree Zagreb
index, ev-degree Randic index, ve-degree atom bond con-
nectivity index, ve-degree geometric index, and ve-degree
sum connectivity index for silicon carbide SiC4 − II[m, n].

Theorem 6. Let SiC4 − II[m, n] be the silicon carbide. 1en,

MZ
α
1 SiC4 − II[m, n](  � (2)

α(15mn− 14m− 10n+14)
×(3)

α(15mn− 18m− 10n+12)
×(5)

2α(6m+4n− 7)
,

MZ
α
2 SiC4 − II[m, n](  � (2)

8α(2m+n− 1)
×(3)

6α(5mn− 4m− 2n+4)
,

GAαII SiC4 − II[m, n](  � (2)
α(18n+12n− 18)

×(3)
α(6m+4n− 9)

×(5)
α(− 12m− 8n+14)

.

(15)

Proof.

MZ
α
1 SiC4 − II[m, n](  � 

uvεE SiC4−II[m,n]( )

(d(u) + d(v))
α

� (3)
2α

×(2)
2α(2m+2)

×(5)
α(12m+8n− 14)

×(2)
α(15mn− 10n− 18m+10)

×(3)
α(15mn− 10n− 18m+10)

� (2)
α(15mn− 14m− 10n+14)

×(3)
α(15mn− 18m− 10n+12)

×(5)
2α(6m+4n− 7)

,

MZ
α
2 SiC4 − II[m, n](  � 

uvεE SiC4−II[m,n]( )

(d(u) × d(v))
α

� (2)
2α

×(2)
2α(2m+2)

×(2)
α(12m+8n− 14)

×(3)
α(12m+8n− 14)

×(3)
2α(15mn− 10n− 18m+10)

� (2)
8α(2m+n− 1)

×(3)
6α(5mn− 4m− 2n+4)

,

GAαII SiC4 − II[m, n](  � 

uvεE SiC4−II[m,n]( )

2
����������
d(u) × d(v)



d(u) + d(v)
 

α

�
2

�
2

√

3
 

2α

×
2(2)

4
 

α(2m+2)

×
2

�
2

√ �
3

√

5
 

α(12m+8n− 14)

×
2(3)

6
 

α(15mn− 10n− 18m+10)

� (2)
α(18m+12n− 18)

×(3)
α(6m+4n− 9)

×(5)
α(− 12m− 8n+14)

.

(16)

□
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Theorem 7. Let (SiC4 − II[m, n]) be the silicon carbide.
1en,

MZ1 SiC4 − II[m, n](  � (2)
(15mn− 14m− 10n+14)

×(3)
(15mn− 18m− 10n+12)

×(5)
2(6m+4n− 7)

,

MZ2 SiC4 − II[m, n](  � (2)
8(2m+n− 1)

×(3)
6(5mn− 4m− 2n+4)

,

GAII SiC4 − II[m, n](  � (2)
α(18m+12n− 18)

×(3)
α(6m+4n− 9)

×(5)
α(− 12m− 8n+14)

.

(17)

Proof. Taking α � 1 in )eorem 6, we get results. □ Theorem 8. Let SiC4 − II[m, n] be the silicon carbide. 1en,

HII1 SiC4 − II[m, n](  � (2)
2(15mn− 14m− 10n+14)

×(3)
2(15mn− 18m− 10n+12)

×(5)
4(6m+4n− 7)

,

HII2 SiC4 − II[m, n](  � (2)
16(2m+n− 1)

×(3)
12(5mn− 4m− 2n+4)

.
(18)

Proof. Taking α � 2 in )eorem 4.6, we get results. □ Theorem 9. Let SiC4 − II[m, n] be the silicon carbide. 1en,

SCII SiC4 − II[m, n](  �
1
�
2

√ 

(15mn− 14m− 10n+14)

×
1
�
3

√ 

(15mn− 18m− 10n+12)

×
1
�
5

√ 

2(6m+4n− 7)

,

PCII SiC4 − II[m, n](  �
1
�
2

√ 

8(2m+n− 1)

×
1
�
3

√ 

6(5mn− 4m− 2n+4)

.

(19)

Proof. Using α � (−1/2) in )eorem 4.6, we obtain

SCII SiC4 − II[m, n](  � (2)
(− 1/2)(15mn− 14m− 10n+14)

×(3)
(− 1/2)(15mn− 18m− 10n+12)

×(5)
2(− 1/2)(6m+4n− 7)

�
1
�
2

√ 

(15mn− 14m− 10n+14)

×
1
�
3

√ 

(15mn− 18m− 10n+12)

×
1
�
5

√ 

2(6m+4n− 7)

,

PCII SiC4 − II[m, n](  � (2)
8(− 1/2)(2m+n− 1)

×(3)
6(− 1/2)(5mn− 4m− 2n+4)

�
1
�
2

√ 

8(2m+n− 1)

×
1
�
3

√ 

6(5mn− 4m− 2n+4)

.

(20)

□
Theorem 10. Let SiC4 − II[m, n] be the silicon carbide.1en,

ABCII SiC4 − II[m, n](  �
1
�
2

√ 

(−30mn+50m+28n−30)

×
1
�
3

√ 

(30mn−36m−20n+20)

. (21)

Table 3: Edges’ partition of SiC4 − II[m, n].

Edges (d(u), d(v)) Frequency
E1 (1, 2) 2
E2 (2, 2) 2m+ 2
E3 (2, 3) 12m+8n-14
E4 (3, 3) 15mn-10n-18m+ 10
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Proof.

ABCII SiC4 − II[m, n](  � 

uvεE SiC4−II[m,n]( )

�������������
d(u) + d(v) − 2

d(u) × d(v)



�
1
�
2

√ 

2

×

�
1
2



 

(2m+2)

×
1
�
2

√ 

(12m+8n− 14)

×
2
3

 
(15mn− 18m− 10n+10)

�
1
�
2

√ 

(−30mn+50m+28n−30)

×
1
�
3

√ 

(30mn−36m−20n+20)

.

(22)

□

6.1. Discussion and Graphical Representations. )e graphs
given in Figure 5 tell us about the behavior of different
multiplicative degree-based topological indices of silicon
carbide SiC4 − II[m, n]. Silicon carbide is a semiconductor

with many isomers used in almost all electronic gadgets. )e
range of our parameters is from zero to one. Most of the
changes that occur in this range than graphs show constant
behavior. In Figure 5(a), multiplicative first Zagreb index is
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Figure 5: )e graph of seven multiplicative degree-based topological indices for the silicon carbide SiC4 − II[m, n] are described above for
0≤m, n≤ 0.8. (a)MZ1 for SiC4 − II[m, n]. (b)MZ2 for SiC4 − II[m, n]. (c)GAII for SiC4 − II[m, n]. (d)HII1 for SiC4 − II[m, n]. (e)HII2 for
SiC4 − II[m, n]. (f )SCII for SiC4 − II[m, n]. (g)PCII for SiC4 − II[m, n].
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discussed, where graph from 0 to 1 is straight and constantly
uniform and then it eventually increases.)eGA index is the
extended form of the Randic index which gives faster and
better information about the physical and chemical prop-
erties of compounds. By increasing the values ofm and n, the
graph also increase which means the values of boiling points
of SiC4 − II[m, n] also increase. Other graphs describe the
variation in the values of Zagreb indices by increasingm and
n.

7. Conclusion

)e graph is an easy way to describe chemistry of rela-
tionship in data. Graph is used to present numerous or
complicated data in a picture form in less space and has lots
of application in almost every field of science. We have
discussed many graphical invariants (topological indices)
above which considered fixed numbers related to the graphs
of chemical structures. We have studied the behavior of
different multiplicative versions of degree-based topological
indices such as first (MZ1) and (MZ2) second Zagreb in-
dices, first and second hyper-Zagreb indices, geometric
arithmetic index (GAII), atom bond connectivity index
(HII1) and (HII2), and sum (SCII) and product connectivity
(PCII)index of silicon carbide SiC4 − II[m, n].
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Chemical graph theory deals with the basic properties of a molecular graph. In graph theory, we correlate molecular descriptors to
the properties of molecular structures. Here, we compute some Banhatti molecular descriptors for water-soluble dendritic
unimolecular polyether micelle. Our results prove to be very significant to understand the behaviour of water-soluble dendritic
unimolecular polyether micelle as a drug-delivery agent.

1. Introduction

Topological indices are graph invariants associated with
numbers that describe the properties of the graph. In chemical
graph theory, topological indices play a vital role to explore the
structures of different graphs. In 1947, Harold Wiener gave the
idea of topological indices [1]. After that, he published a series of
papers describe the relation between wiener index and physi-
cochemical properties of carbon-based compounds [2, 3] in
1947 and [4, 5] in 1948. /e analysis of topological indices has
great importance in nanotechnology and theoretical chemistry.
/e irregularity of graph was discussed [6] in 1997. In the last
decade of the 20th century, a large number of topological indices
were introduced that were related to the Wiener index. In the
second decade of the 21st century, irregularity topological in-
dices were computed for different chemical structures. In [7], it
was shown that Randic andmodified Zagreb indices are in one-
to-one correspondence for all acyclicmolecules which consist of
no more than 100 atoms. In [8], the new notion of total ir-
regularity was introduced, and the authors determined the

graphs with maximum total irregularity. In [9–11], the total
irregularity of graphs was discussed under the graph operations.
In [12], the total irregularity of graphs was discussed to study
QSPR. An Indian mathematician Kulli in 2016 [13] introduced
some new Banhatti indices such as K Banhatti indices, modified
Banhatti indices and, hyper K Banhatti indices. In the last
decade, irregular, distance- and degree-based topological indices
became hot topics for research in chemical graph theory. Many
researchers computed these indices for different chemical
graphs to study their biochemical properties. In [14], Zheng
et al. computed some eccentricity-based topological indices and
polynomials of Poly(E/ylene Amido Amine) (PETAA) den-
drimers. In [15], Ye et al. worked on the Zagreb connection
number index of nanotubes and regular hexagonal lattice. In
[16], Fahad et al. studied the topological descriptors of Poly
Propyl Ether Imine (PETIM) dendrimers. In [17], Qureshi
studied the Zagreb connection index of drug-related chemical
structures. In [18], Zhang et al. worked on a newly defined
topological index named face index for silicon carbides. In [19],
Luo et al. computed lower bounds on the entire Zagreb indices
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of trees. In [20], Chu et al. studied the irregular indices formetal
organic frameworks and certain 2D lattices. /e Zagreb con-
nection index is computed for silicate, hexagonal, honeycomb,
and oxide networks in [21] in 2021. In [22], Rao et al. studied
some degree-based topological indices of a caboxy-terminated
dendritic macromolecule. In [23], the authors computed the
face index for Boron triangular nanotubes and for quadrilateral
sections cut from a regular hexagonal lattice. In [24], Hussain
et al. computed topological indices for new classes of Benes
network.

Let G(V, E) be a graph where V is a set of vertices and
E is a set of edges. A cardinality of edges associated with a
vertex is called the degree of the vertex. Here, we use a
special term of e � st as an edge of G where the vertex s

and vertex t are linked together by edge e. Let dG(e)

denote the degree of an edge e in G, which is defined by
dG(e) � dG(s) + dG(t) − 2 with e � st. For more details,
refer the work of Kulli [25].

/e first and second K Banhatti indices were introduced
by Kulli in [13] as

B1(G) � 
e�stϵE(G)

dG(s) + dG(e) ,

B2(G) � 
e�stϵE(G)

dG(s)∗ dG(e) .
(1)

/e first and second K hyper Banhatti index of G were
introduced by Kulli in [26] defined as

HB1(G) � 
e�stϵE(G)

dG(s) + dG(e) 
2
,

HB2(G) � 
e�stϵE(G)

dG(s)∗dG(e) 
2
.

(2)

/e first and second modified Banhatti indices of G were
introduced by Kulli in [27] as

mB1(G) � 
e�stϵE(G)

1
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

mB2(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 .

(3)

/e harmonic K-Banhatti index of a graph G was in-
troduced by Kulli in [27] as

Hb(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 .

(4)

Let G be a graph of water-soluble dendritic unimolecular
polyether micelle. It has 38(2n) − 4 number of vertices and
42(2n) − 5 number of edges where n is the number of growth
of the graph. /e graph has 4(2n) number of vertices having
degree 1, 22(2n) − 2 vertices having degree 2 and 12(2n) − 2
vertices having degree 3. /e graph has 4(2n) number of
edges having degree (1, 3), 8(2n) + 2 edges having degree
(2, 2), 28(2n) − 8 edges having degree (2, 3), and (2, 3)

number of edges having degree (3, 3). In Figure 1, the graph
G is given for n � 4. Dendritic unimolecular micelles play an
important role in drug delivery systems. Unimolecular
micelles have a unique property of uniform size and high
stability. Also, they have attracted increasing attention due
to their high functionality in various applications.

In the next section, we will compute the Banhatti indices for
the water-soluble dendritic unimolecular polyether micelle.

2. Main Results

Table 1 shows the partition of the edge set for the molecular
graph G of water-soluble dendritic unimolecular polyether
micelle.

Theorem 1. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the first K

Banhatti index of G is

B1(G) � 432 2n
(  − 58. (5)

Proof. By using Table 1 and the definition of the first K

Banhatti index, we have

B1(G) � 
e�stϵE(G)

dG(s) + dG(e) ,

� 4 2n
( [(1 + 2) +(3 + 2)] + 8 2n

(  + 2( [(2 + 2) +(2 + 2)]

+ 28 2n
(  − 8( [(2 + 3) +(3 + 3)] + 2 2n

(  + 1( [(3 + 4) +(3 + 4)],

� 32 2n
(  + 64 2n

(  + 16 + 308 2n
(  − 88 + 28 2n

(  + 14,

� 432 2n
(  − 58.

(6)

□

2 Journal of Mathematics



O

O

O

O

O
O

O O

OO
O

O
O

O O O O O O O

O O O O
O

O

O

O

O

O

O

O

O

OO

O

O

O

O O

O

O

O

O

O

O

O

O

O
O

O
OO

O
OOOOOOO

O
O

O

O

O

O

O

O
O

OO

O O

OO
OO

O

O OO

O

O O
O

O O

O
O

O

O

O

OO

O

O

O

O

O

O

O

O O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O
O

O

O O

O

Figure 1: Graph of water-soluble unimolecular polyether micelle for growth four.

Table 1: Edge partition of water-soluble dendritic unimolecular polyether micelle.

(dG(s), dG(t)), where stϵE(G) dG(e) Number of edges

(1, 3) 2 4(2n)

(2, 2) 2 8(2n) + 2
(2, 3) 3 28(2n) − 8
(3, 3) 4 2(2n) + 1

Journal of Mathematics 3



Theorem 2. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the second K

Banhatti index of G is

B2(G) � 564 2n
(  − 80. (7)

Proof. To compute the second K Banhatti index, we will use
Table 1.

B2(G) � 
e�stϵE(G)

dG(s)∗dG(e) ,

� 4 2n
( [(1∗ 2) +(3∗ 2)] + 8 2n

(  + 2( [(2∗ 2) +(2∗ 2)]

+ 28 2n
(  − 8( [(2∗ 3) +(3∗ 3)] + 2 2n

(  + 1( [(3∗ 4) +(3∗ 4)],

� 32 2n
(  + 64 2n

(  + 16 + 420 2n
(  − 120 + 48 2n

(  + 24,

� 564 2n
(  − 80.

(8)

□
Theorem 3. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the first K

hyper Banhatti index of G is

HB1(G) � 2296 2n
(  − 326. (9)

Proof. /e edge partition given in Table 1 and the definition
of the first K hyper Banhatti index give

HB1(G) � 
e�stϵE(G)

dG(s) + dG(e) 
2
,

� 4 2n
(  (1 + 2)

2
+(3 + 2)

2
  + 8 2n

(  + 2(  (2 + 2)
2

+(2 + 2)
2

 

+ 28 2n
(  − 8(  (2 + 3)

2
+ 3 + 32   + 2 2n

(  + 1(  (3 + 4)
2

+(3 + 4)
2

 ,

� 136 2n
(  + 256 2n

(  + 64 + 1708 2n
(  − 488 + 196 2n

(  + 98,

� 2296 2n
(  − 326.

(10)

□
Theorem 4. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the second K

hyper Banhatti index of G is

HB2(G) � 4268 2n
(  − 584. (11)

Proof. /e result follows by using the values from Table 1
and the definition of the second K hyper Banhatti index.

HB2(G) � 
e�stϵE(G)

dG(s)∗dG(e) 
2
,

� 4 2n
(  (1∗ 2)

2
+(3∗ 2)

2
  + 8 2n

(  + 2(  (2∗ 2)
2

+(2∗ 2)
2

 

+ 28 2n
(  − 8(  (2∗ 3)

2
+(3∗ 3)

2
  + 2 2n

(  + 1(  (3∗ 4)
2

+(3∗ 4)
2

 ,

� 160 2n
(  + 256 2n

(  + 64 + 3276 2n
(  − 936 + 576 2n

(  + 288,

� 4268 2n
(  − 584.

(12)

□
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Theorem 5. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the first
modified Banhatti index of G is

mB1(G) � 4.1884 2n
(  − 0.4059. (13)

Proof. By using the definition of the first modified Banhatti
index and Table 1, we have

mB1(G) � 
e�stϵE(G)

1
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

� 4 2n
( 

1
(1 + 2) +(3 + 2)

  + 8 2n
(  + 2( 

1
(2 + 2) +(2 + 2)

 +

28 2n
(  − 8( 

1
(2 + 3) +(3 + 3)

  + 2 2n
(  + 1( 

1
(3 + 4) +(3 + 4)

 ,

�
2n

2
+ 2n

+
1
4

+
28 2n

( 

11
−

8
11

+
2n

7
+

1
14

,

� 4.1884 2n
(  − 0.4059.

(14)

□
Theorem 6. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the second
modified Banhatti index of G is

mB2(G) � 3.45 2n
(  − 0.2416. (15)

Proof. /e second modified Banhatti index can be com-
puted by using Table 1 as

mB2(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

� 4 2n
( 

1
(1 × 2) +(3 × 2)

  + 8 2n
(  + 2( 

2
(2 × 2) +(2 × 2)

 +

28 2n
(  − 8( 

2
(2 × 3) +(3 × 3)

  + 2 2n
(  + 1( 

2
(3 × 4) +(3 × 4)

 ,

�
2n

2
+ 2n

+
1
4

+
28 2n

( 

15
−

8
15

+
2n

12
+

1
24

,

� 3.45 2n
(  − 0.2416.

(16)

□

Table 2: Banhatti indices of water-soluble dendritic unimolecular polyether micelle.

Banhatti indices n � 1 n � 2 n � 3 n � 4 n � 5
B1(G) 806 1670 3398 6854 13766
B2(G) 1048 2176 4432 8944 17968
HB1(G) 4266 8858 18042 36410 73146
HB2(G) 7952 16488 33560 67704 135992
mB1(G) 7.9709 16.3477 33.1013 66.6085 133.6229
mB2(G) 6.6584 13.5584 27.3584 54.9584 110.1584
Hb(G) 15.9416 32.6948 66.2012 133.214 267.2396
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Theorem 7. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the harmonic
Banhatti index of G is

Hb(G) � 8.3766 2n
(  − 0.8116. (17)

Proof. /e result can be obtained as follows by using Table 1
and the definition of the harmonic Banhatti index:

Hb(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

� 4 2n
( 

2
(1 + 2) +(3 + 2)

  + 8 2n
(  + 2( 

2
(2 + 2) +(2 + 2)

 +

28 2n
(  − 8( 

2
(2 + 3) +(3 + 3)

  + 2 2n
(  + 1( 

2
(3 + 4) +(3 + 4)

 ,

� 2n
+ 2 2n

(  +
1
2

+
56 2n

( 

11
−
16
11

+
2 2n
( 

7
+

2
14

,

� 8.3766 2n
(  − 0.8116.

(18)

□
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Figure 2: Comparison graph of Banhatti indices of water-soluble unimolecular polyether micelle for growth four.
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3. Graphical Analysis and Conclusions

/is section actually provides the summary of this article.
Table 2 gives the comparison for the said topological indices
of the graph. We can see that mB2(G) gives the least values
for different growths of the graph whereas HB2(G) gives
largest values. In Table 2, we can check the values for some
test values of parameter n. Also, the graphical comparison is
presented in Figure 2.
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(eF-coindex (forgotten topological coindex) for a simple connected graphG is defined as the sum of the terms ζ2G(y) + ζ2G(x)

over all nonadjacent vertex pairs (x, y) ofG, where ζG(y) and ζG(x) are the degrees of the vertices y and x inG, respectively.(e
F-index of a graph is defined as the sum of cubes of the vertex degrees of the graph.(is was introduced in 1972 in the same paper
where the first and second Zagreb indices were introduced to study the structure dependency of total π-electron energy.(erefore,
considering the importance of theF-index andF-coindex, in this paper, we study these indices, and we present new bounds for
the F-index and F-coindex.

1. Introduction

Suppose G be a simple graph with vertex set V � V(G) and
edge set E(G). (e integers ℵ � ℵ(G) � |V(G)| and
ϵ � ϵ(G) � |E(G)| are the order and the size of the graphG,
respectively; we say G is a (ℵ, ϵ)-graph. (e open neigh-
borhood of vertex v is NG(x) � N(x) � yϵV(G)|

xyϵE(G)}, and the degree of v is ζG(x) � |N(x)|. We write
Θ and δ for the maximum and minimum degrees of G,
respectively. A graph G is said to be t-regular if all of its
vertices have degree t. An (r, s)-semiregular graph is a graph
whose each vertex is of degree s or r, and a (k, s, t)-triangular
graph is a graph whose each vertex is of degree k, s, or t. (e
complement G of a graph G is a graph that has the same
vertices as G and in which two vertices are adjacent if and
only if they are not adjacent inG. (e number of vertex pairs
(xi, xj) in G such that xixj ∉ E(G) is ϵ � ℵ(ℵ − 1)/
2 − ϵ(G). A pendant vertex is a vertex of degree one. (e
number of pendant vertices inG is denoted by r � r(G). We
denote by π1 the minimal nonpendant vertex degree.

In [1, 2], the first and second Zagreb indices are defined
as the following:

M1 � M1(G) � 
x∈V(G)

ζ2G(x) � 
xy∈E(G)

ζG(y) + ζG(x)( ,

M2 � M2(G) � 
xy∈E(G)

ζG(y)ζG(x),

(1)

respectively. (e first and second Zagreb coindices are
defined in [3, 4] as

M1(G) � 
xy ∉ E(G)

ζG(y) + ζG(x)( ,

M2(G) � 
xy ∉ E(G)

ζG(y)ζG(x).
(2)

Furtula and Gutman [5] defined the forgotten topo-
logical index (F-index) as the following:

F � F(G) � 
x∈V(G)

ζ3G(x) � 
xy∈E(G)

ζ2G(y) + ζ2G(x) .

(3)

For more information on the F-index, see [6–8].
(e F-coindex introduced in [9] is as follows:
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F(G) � 
xy ∉ E(G)

ζ2G(y) + ζ2G(x) .
(4)

Gutman in [10] introduced the hyper-Zagreb coindex as
follows:

HM(G) � 
xy ∉ E(G)

ζG(y) + ζG(x)( 
2
.

(5)

Usha et al. [11] introduced the redefined first Zagreb
indices as the following:

ReZG1(G) � 
xy∈E(G)

ζG(y) + ζG(x)

ζG(y)ζG(x)
. (6)

Here, we introduce the redefined first Zagreb coindex as
the following:

ReZG1(G) � 
xy ∉ E(G)

ζG(y) + ζG(x)

ζG(y)ζG(x)
. (7)

(e authors introduced the first general Zagreb coindex
in [12], and it is defined as follows:

M
α
1(G) � 

xy ∉ E(G)

ζα− 1
G (y) + ζα− 1

G (x) ,
(8)

where α ∈ R. (e second general Zagreb coindex was in-
troduced in [13] and defined as follows:

M
α
2(G) � 

xy ∉ E(G)

ζG(y)ζG(x)( 
α
.

(9)

Topological indices are numerical quantity derived
from a molecular graph which correlate the physico-
chemical properties of the molecular graph. Recently,
topological indices have been studied by many re-
searchers due to their applications in various sciences
such as chemistry, physics, and electricity; see [14–16].
Among the topological indices, the first Zagreb index is
one of the oldest and most applied topological indices,
and for this reason, it is of great importance and has been
considered by many researchers today. Furtula and
Gutman in [5] recently investigated this index and named
this index as “forgotten topological index” or “F-index”
and showed that the predictive ability of this index is
almost similar to that of the first Zagreb index and for the
entropy and acetic factor; both of them yield correlation
coefficients greater than 0.95. (erefore, due to the im-
portance of the F-index in this paper, we have decided to
study this index.

In [17, 18], some of bounds for the general Zagreb
coindices were obtained. Ranjini et al. [19] presented
some of the bounds for Zagreb indices and the Zagreb
coindices. In [20], some bounds were presented for the
F-index and F-coindex. For more other bounds, see
[21–23].

Given the importance of the forgotten topological index
and the fact that it has recently attracted the attention of
researchers and the interest of many readers, in this paper,
we intend to discuss new bounds for this index.

2. Preliminaries

Here, we recall several published results that we will need for
proof.

(e following result obtained the relationship between the
first Zagreb index and the maximum and minimum degrees.

Theorem 1 (see [24]). Let G be an (ℵ, ϵ)-connected graph
and ℵ≥ 2. 2en,

M1 ≥
4ϵ2

ℵ
+
1
2
(Θ − δ)

2
, (10)

with equality if and only ifG is isomorphic with a regular graph.

(e following result comes from [18].

Theorem 2. Suppose G be a (ℵ, ϵ)-graph and ℵ≥ 2. 2en,

M1 ≤
4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2
, (11)

with equality if and only if G is isomorphic with the t-regular
graph, 1≤ t≤ℵ − 1.

In [19], the authors gave the relation of the second
Zagreb coindex, the maximum degree, and the first Zagreb
index as follows.

Theorem 3. LetG be an (ℵ, ϵ)-graph andmaximal degree be
Θ. 2en,

M2(G)≤ 2Θϵ(ℵ − 1) − ΘM1(G). (12)

Zhou and Trinajstić [25] proved the following result.

Theorem 4. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G)≥
16ϵ3

ℵ2
− 2M2(G), (13)

with equality if and only if G is regular.

Furtula and Gutman [5] showed the following.

Theorem 5. Suppose G be a graph of size ϵ. 2en,

F(G)≥
M1(G)

2

2ϵ
, (14)

with equality if and only if G is regular.

In [26], Elumalai et al. obtained the following two results.

Theorem 6. Suppose G be a simple graph of order ℵ≥ 2.
2en,

F(G)≥Θ3 + Θ32 +Φ, (15)

with equality if and only if G is regular, where
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Φ �
M1(G) − Θ2 + Θ22 

2
+(ℵ − 2) M1(G) − Θ2 + Θ22 

2ϵ − Θ + Θ2( 

− 2ϵ − Θ + Θ2( .

(16)

Theorem 7. Suppose G be a simple graph of order ℵ≥ 2.
2en,

F(G)≥Θ3 + Θ32 + Y, (17)

with equality if and only if G is regular, where

Y �
M1(G) − Θ2 − δ2 

2
+(2ϵ − Θ − δ)(I D(G) − 1/Θ − 1/δ) − (ℵ − 2)

2

(2ϵ − Θ − δ)
. (18)

In [5], Furtula and Gutman mentioned the following
result.

Theorem 8. Suppose G be a connected (ℵ, ϵ)-graph and
second Zagreb index M2(G). 2en,

F(G)≤ 2M2(G) + ϵ(ℵ − 2), (19)

with equality if and only if G is the star graph.

(e following result was first proved in [27].

Theorem 9. Suppose G be a simple graph of order ℵ. 2en,

F(G) + F(G) � (ℵ − 1)M1(G). (20)

3. New Bounds for the F-Coindex

In this section, we will obtain some bounds for the
F-coindex in terms of the maximal degree, minimum de-
gree, order, size, pendant vertex, and the first and the second
Zagreb indices.

Theorem 10. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G) + F(G) � 2(ℵ − 1)
2
(ϵ − 2ϵ) + 3(ℵ − 1)M1(G).

(21)

Proof. By applying the definition of the F-index for
complement graphs, we have

F(G) � 
x∈V(G)

ζ3
G

(x) � 
x∈V(G)

ℵ − 1 − ζG(x)( 
3
,

� 
x∈V(G)

(ℵ − 1)
3

− ζ3G(x) − 3(ℵ − 1)ζ2G(x) + 3(ℵ − 1)
2ζG(x) ,

� 
x∈V(G)

(ℵ − 1)
3

− 
x∈V(G)

ζ3G(x) + 3(ℵ − 1) 
x∈V(G)

ζ2G(x) − 3 
x∈V(G)

(ℵ − 1)
2ζG(x),

� ℵ(ℵ − 1)
3

− F(G) + 3(ℵ − 1)M1(G) − 6ϵ(ℵ − 1)
2
,

� 2(ℵ − 1)
2
(ϵ − 2ϵ) − F(G) + 3(ℵ − 1)M1(G).

(22)

□
Theorem 11. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G) � 2ϵ(ℵ − 1)
2

− 2(ℵ − 1)M1(G) + F(G). (23)

Proof. For any vertex y ∈ V(G), we have
ζ
G

(y) � ℵ − 1 − ζG(y), and by applying the definition of
the F-coindex, we have

F(G) � 

xy ∉ E(G)

ζ2
G

(y) + ζ2
G

(x) ,

� 
xy∈E(G)

ℵ − 1 − ζG(x)( 
2

+ ℵ − 1 − ζG(y)( 
2

 ,

� 
xy∈E(G)

(ℵ − 1)
2

+ ζ2G(x) − 2(ℵ − 1)ζG(x) +(ℵ − 1)
2

+ ζ2G(y) − 2(ℵ − 1)ζG(y) ,
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� 
xy∈E(G)

2(ℵ − 1)
2

− 2(ℵ − 1) ζG(x) + ζG(y)(  + ζ2G(x) + ζ2G(y)  ,

� 2(ℵ − 1)
2ϵ − 2(ℵ − 1)M1(G) + F(G).

(24)

Now, we give a lower bound for theF-coindex in terms
of pendant vertices. □

Theorem 12. SupposeG be a connected graph of orderℵ and
r pendant vertices. 2en,

F(G)≥ 6ℵr − 4r
2

− 7r. (25)

Proof. It is easy to see that our result holds for r � 0. Now,
we assume that r≥ 1. Here, we let that G has exactly one
pendant vertex, called x, and y is the unique neighbor of x.
Hence,

F(G)≥ 

z∈V(G)∖ y,x{ }

ζ2G(z) + 1 ≥ 

w∈V(G)∖ y,x{ }

5,

� 5(ℵ − 2).

(26)

Here, we can let that r≥ 2. Each pair of pendant vertices
contributes 2 to F(G). (e total contribution of pendant

vertex pairs to F(G) is 2 r

2 . Assume that x is a pendant

vertex in G and y is its unique neighbor. (en, for any
nonpendant vertex z such that w ∈ V(G)∖ y, x , the con-
tribution of vertex pairs x, z{ } to F(G) is 1 + ζ2G(z). (e
total contribution of such vertex pairs x, z{ } to F(G) is

(ℵ − r − 1)
r

1 (1 + ζ2G(z)). Note that ζG(z)≥ 2 for any

nonpendant vertex z in G; therefore, we get

F(G)≥ r

2 (1 + 1)+

(ℵ − r − 1)
r

2 (1 + 5) � 6ℵr − 4r2 − 7r, as desired. □ □

Theorem 13. If G is a t-regular graph of order ℵ, then

F(G) � (ℵ − 1)
2
(ℵ(ℵ − 1) − 3tℵ) − ℵt

3
+ 3ℵ(ℵ − 1)t

2
,

F(G) � ℵt
2
(ℵ − t − 1),

F(G) � ℵt (ℵ − 1)
2

− 2t(ℵ − 1) + t
2

 .

(27)

Proof. We know that any t-regular graph of order ℵ has
ℵt/2 edges.

(1) By applying (eorem 10, we have

F(G) � 2(ℵ − 1)
2
(ϵ − 2ϵ) + 3(ℵ − 1)M1(G) − F(G),

� 2(ℵ − 1)
2 ℵ(ℵ − 1)

2
−
3ℵt

2
  + 3(ℵ − 1)nt

2
− ℵt

3
,

� (ℵ − 1)
2
(ℵ(ℵ − 1) − 3tℵ) − ℵt

3
+ 3ℵ(ℵ − 1)t

2
.

(28)

(2) By applying (eorem 9, we can write

F(G) � (ℵ − 1)M1(G) − F(G) � ℵ(ℵ − 1)t
2

− ℵt
3
.

(29)

(3) Similarly, by applying (eorem 11, we obtain

F(G) � 2(ℵ − 1)
2ϵ − 2(ℵ − 1)M1(G) + F(G),

� 2(ℵ − 1)
2ℵt

2
− 2ℵt

2
(ℵ − 1) + ℵt

3
,

� ℵt (ℵ − 1)
2

− 2t(ℵ − 1) + t
2

 .

(30)

Now, we give lower and upper bounds for the
F-coindex. □

Theorem 14. Suppose G be a connected (ℵ, ϵ)-graph,
maximum degree be Θ, and nonpendant minimum degree be
π1 and with s leaves. 2en,

F(G)≤ s(ℵ − s − 1) Θ +
1
Θ

  +
Θ
π1

+
π1

Θ
 

ℵ2

2
+

s
2

2
+
3s

2
−
ℵ
2

− ϵ  + s(s − 1) − ℵs  (ℵ − 2)
2
,

F(G)≥ s(ℵ − s − 1) π1 +
1
π1

  +
π1
Θ

+
Θ
π1

 
ℵ2

2
+

s
2

2
+
3s

2
−
ℵ
2

− ϵ  + s(s − 1) − ℵs  .

(31)
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Proof. It can be easily seen that the number of vertices pairs
(xi, xj) is as follows:

X1 � xi, xj |xixj ∉ E(G) , X1


 �
ℵ(ℵ − 1)

2
− ϵ,

X2 � xi, xj |xixj ∉ E(G) and ζG xi(  � ζG xj  � 1 , X2


 �
s(s − 1)

2
,

X3 � xi, xj |xixj ∉ E(G)ζG xi(  � 1 or ζG xj  � 1 , X3


 � s(ℵ − s − 1),

X4 � xi, xj |xixj ∉ E(G)ζG xi( > 1, and ζG xj > 1 , X4


 �
ℵ(ℵ − 1)

2
− ϵ −

s(s − 1)

2
− s(ℵ − s − 1).

(32)

For any vertex xi, we have π1 ≤ ζG(xi)≤Θ and
π21 ≤ ζG(xi)ζG(xj)≤Θ2 for nonpendant vertices. (erefore,
xixj ∉ E(G).

We continue the proof with the following four cases.
Let xixj ∉ E(G). □

Case 1. If ζG(xi)> 1 and ζG(xj)> 1, we have

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
≤
Θ
π1

+
π1
Θ

 . (33)

Case 2. If ζG(xi)> 1 and ζG(xj) � 1, hence, we get

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
≤ Θ +

1
Θ

 . (34)

It is clear that, for each xixj ∉ E(G),
ζG(xi), ζG(xj)≤ℵ − 2. Hence, by applying the definition of
the F-coindex and above facts, we can write

F

(G)
(ℵ − 2)

2
�

xixj∉E(G) ζ2G xj  + ζ2G xj  

(n − 2)
2 ≤ 

xixj∉E(G)

ζ2G xj  + ζ2G xj 

ζG xi( ζG xj 
,

� 
xixj∉E(G)

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠,

� 
xixj∉E(G),

ζG xi( )�1,

ζG xj( )�1

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠ + 

xixj∉E(G),

ζG xi( )> 1,

ζG xj( )�1

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠ + 

xixj∉E(G),

ζG xi( )> 1,

ζG xj( )> 1

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠

≤ 
xixj∉E(G),

ζG xi( )�1,

ζG xj( )�1

2 + 
xixj∉E(G),

ζG xi( )> 1,

ζG xj( )�1

Θ +
1
Θ

  + 
xixj∉E(G),

ζG xi( )> 1,

ζG xj( ) > 1

Θ
π1

+
π1

Θ
 ,

� s(s − 1) + Θ +
1
Θ

 s(ℵ − s − 1) +
Θ
π1

+
π1

Θ
 

ℵ(ℵ − 1)

2
− ϵ −

s(s − 1)

2
− s(ℵ − s − 1) ,

� s(ℵ − s − 1) Θ +
1
Θ

  +
Θ
π1

+
π1
Θ

 
ℵ2

2
+

s
2

2
+
3s

2
−

n

2
− ϵ  + s(s − 1) − ℵs ,

(35)
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as desired.

Case 3. If ζG(xi)> 1 and ζG(xj)> 1, we get

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
≥

π1
Θ

+
Θ
π1

 . (36)

Case 4. If ζG(xi)> 1 and ζG(xj) � 1, we get that

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
≥ π1 +

1
π1

 . (37)

(us,

F(G) � 
xixj∉E(G)

ζ2G xi(  + ζ2G xj ≥ 
xixj∉E(G)

ζ2G xi(  + ζ2G xj 

ζG xi( ζG xj 
,

� 
xixj∉E(G)

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠,

� 
xixj∉E(G),

ζG xi( )�1,

ζG xj( )�1

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠ + 

xixj∉E(G),

ζG xi( )> 1,

ζG xj( )�1

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠ + 

xixj∉E(G),

ζG xi( )> 1,

ζG xj( )> 1

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠

≥ 
xixj∉E(G),

ζG xi( )�1,

ζG xj( )�1

2 + 
xixj∉E(G),

ζG xi( )> 1,

ζG xj( )�1

π1 +
1
π1

  + 
xixj∉E(G),

ζG xi( )> 1,

ζG xj( )> 1

π1

Θ
+
Θ
π1

 ,

� s(s − 1) + π1 +
1
π1

 s(ℵ − s − 1) +
π1

Θ
+
Θ
π1

 
ℵ(ℵ − 1)

2
− ϵ −

s(s − 1)

2
− s(ℵ − s − 1) ,

� s(ℵ − s − 1) π1 +
1
π1

  +
π1
Θ

+
Θ
π1

 
ℵ2

2
+

s
2

2
+
3s

2
−
ℵ
2

− ϵ  + s(s − 1) − ℵs ,

(38)

and the proof is completed.
By setting s � 0 in (eorem 14, we can obtain the fol-

lowing results.

Corollary 1. Suppose G be a connected (ℵ, ϵ)-graph,
maximum degree be Θ, and nonpendant minimum degree be
π1. 2en,

F(G)≤
Θ
π1

+
π1
Θ

 
ℵ2

2
−
ℵ
2

− ϵ (ℵ − 2)
2
,

F(G)≥
π1
Θ

+
Θ
π1

 
ℵ2

2
−
ℵ
2

− ϵ .

(39)

Here, we give a lower bound for the F-coindex.

Proposition 1. Suppose G be a connected graph of order ℵ
and size ϵ. 2en,

F(G)≥ℵ2 − 2ϵ − ℵ. (40)

Proof. By applying the definition of theF-coindex, we have

F(G) � 
xixj ∉ E(G)

ζ2G xi(  + ζ2G xj  ≥ 
xixj ∉ E(G)

2 � 2
ℵ(ℵ − 1)

2
− ϵ  � ℵ2 − 2ϵ − ℵ. (41)
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In the following result, we obtain the lower bound for the
F-coindex. □

Theorem 15. Suppose G be a connected (ℵ, ϵ)-graph and
ℵ≥ 2. 2en,

F(G)≥
M

5
1(G) + 2M

2
2(G)

2(ℵ − 2)
2 . (42)

Proof. Clearly, for each xixj ∉ E(G), we have
max ζG(xi), ζG(xj) ≤ℵ − 2. It follows that

2(n − 2)
2
F(G) � 2(ℵ − 2)

2


xixj ∉ E(G)

ζ2G xi(  + ζ2G xj  ≥ 
xixj ∉ E(G)

ζ2G xi(  + ζ2G xj  
2
,

� 
xixj ∉ E(G)

ζ4G xi(  + ζ4G xj  + 2ζ2G vi( ζ2G vj  ,

� 
xixj ∉ E(G)

ζ4G xi(  + ζ4G xj   + 2 
xixj ∉ E(G)

ζG xi( ζG xj  
2
,

� M
5
1(G) + 2M

2
2(G),

(43)

and the proof is completed.
Now, we give an upper bound for the F-coindex in

terms of the second Zagreb coindex and the redefined first
Zagreb coindex. □

Theorem 16. Suppose G be a graph of order ℵ. 2en,

F(G)≤ 2(ℵ − 2)
3ReZG1(G) − 2(ℵ − 2)

2
M2(G). (44)

Proof. By applying the definition of theF-coindex, we have

F(G)

(n − 2)
2 �


xixj ∉ E(G)

ζ2G xi(  + ζ2G vj  

(n − 2)
2 ≤ 

vivj ∉ E(G)

ζG xi( 

ζG xj 
+
ζG xj 

ζG xi( 
⎛⎝ ⎞⎠,

� 
xixj ∉ E(G)

1
ζG xi( 

+
1

ζG xj 
⎛⎝ ⎞⎠ ζG xj  + ζG xj   − 2ζG xi( ζG xj ⎛⎝ ⎞⎠,

� 
xixj ∉ E(G)

1
ζG xi( 

+
1

ζG xj 
⎛⎝ ⎞⎠ ζG xj  + ζG xj  ⎛⎝ ⎞⎠ − 2 

xixj ∉ E(G)

ζG xi( ζG xj 

≤ 2(n − 2) 
xixj ∉ E(G)

1
ζG xi( 

+
1

ζG xj 
⎛⎝ ⎞⎠ − 2 

xixj ∉ E(G)

ζG xi( ζG xj ,

� 2(n − 2) 
xixj ∉ E(G)

ζG xi(  + ζG xj 

ζG xi( ζG xj 
⎛⎝ ⎞⎠ − 2M2(G),

� 2(ℵ − 2)ReZG1(G) − 2M2(G),

(45)

which leads to the result.
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In the following results, we obtain upper bounds for the
F-coindex in terms of the first and second Zagreb indices
and hyper-Zagreb coindex. □

Theorem 17. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G) + M2(G)≤ 3ϵ(ℵ − 2)
2
, (46)

F(G) + M1(G)≤ 2ϵ ℵ2 − 3ℵ + 2 , (47)

F(G) + HM(G)≤ 6ϵ(ℵ − 2)
2
. (48)

(e equalities hold if and only if G � Kℵ or G is
(ℵ − 2)-regular or (ℵ − 2,ℵ − 1)-semiregular.

Proof. By applying the definitions of the F-coindex and
second Zagreb coindex, we can write

F(G) + M2(G) � 
xixj ∉ E(G)

ζ2G xi(  + ζ2G xj  + ζG xi( ζG xj  ≤ 
xixj ∉ E(G)

(ℵ − 2)
2

+(ℵ − 2)
2

+(ℵ − 2)
2

 ,

� 3ϵ(ℵ − 2)
2
.

(49)

Likewise, we have

F(G) + M1(G) � 
xixj ∉ E(G)

ζ2G xi(  + ζ2G xj  + ζG xi(  + ζG xj  ≤ 
xixj ∉ E(G)

(ℵ − 2)
2

+(ℵ − 2)
2

+ 2(ℵ − 2) ,

� 2ϵ ℵ2 − 3ℵ + 2 ,

(50)

and

F(G) + HM(G) � 
xixj ∉ E(G)

ζ2G xi(  + ζ2G xj  + ζG xi(  + ζG xj  
2

 ,

� 
xixj ∉ E(G)

ζ2G xi(  + ζ2G xj  + ζ2G xi(  + ζ2G xj  + 2ζG xi( ζG xj  ,

� 
xixj ∉ E(G)

2ζ2G xi(  + 2ζ2G xj  + 2ζG xi( ζG xj  ≤ 
xixj ∉ E(G)

4(ℵ − 2)
2

+ 2(ℵ − 2)
2

 ,

� 6ϵ(ℵ − 2)
2
.

(51)

(e equalities hold in (46)–(48) if and only if
ζG(xi) � ζG(xj) � ℵ − 2, for each xixj ∉ E(G). (is implies
that each vertex of G has degree ℵ − 1 or ℵ − 2; that is, G �

Kℵ or G is (ℵ − 2)-regular or (ℵ − 2,ℵ − 1)-semiregular.

By using (eorems 1, 8, 10, and 9, we get the following
result. □

Theorem 18. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G)≥ 2(ℵ − 1)
2
(ϵ − 2ϵ) + 3(ℵ − 1)

4ϵ2

ℵ
+
1
2
(Θ − δ)

2
  − 2M2(G) + ϵ(ℵ − 2)( ,

F(G)≥ (ℵ − 1)
4ϵ2

ℵ
+
1
2
(Θ − δ)

2
  − 2M2(G) + ϵ(ℵ − 2)( .

(52)
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(e following results were obtained by combining
(eorems 1, 4, 5, 6, and 11.

Theorem 19. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G)≥ 2ϵ(ℵ − 1)
2

− 2(ℵ − 1)
4ϵ2

ℵ
+
1
2
(Θ − δ)

2
   +

16ϵ3

ℵ2
− 2M2(G) ,

F(G)≥ 2ϵ(ℵ − 1)
2

− 2(ℵ − 1)
4ϵ2

ℵ
+
1
2
(Θ − δ)

2
   +

M1(G)
2

2ϵ
 ,

F(G)≥ 2ϵ(ℵ − 1)
2

− 2(ℵ − 1)
4ϵ2

ℵ
+
1
2
(Θ − δ)

2
   + Θ3 +Θ32 +Φ .

(53)

(e following results were obtained by combining
(eorems 2, 4, 10, and 9.

Theorem 20. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G)≤ 2(ℵ − 1)
2
(ϵ − 2ϵ) + 3(ℵ − 1)

4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2

  −
16ϵ3

ℵ2
− 2M2(G) ,

F(G)≤ (ℵ − 1)
4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2

  −
16ϵ3

ℵ2
− 2M2(G) .

(54)

By applying 2eorems 2, 8, and 11, we can obtain the
following theorem.

Theorem 21. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G)≤ 2ϵ(ℵ − 1)
2

− 2(ℵ − 1)
4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2

  

+ 2M2(G) + ϵ(ℵ − 2)( .

(55)

(e following results were obtained by(eorems 2, 5, 10,
and 9.

Theorem 22. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G)≤ 2(ℵ − 1)
2
(ϵ − 2ϵ) + 3(ℵ − 1)

4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2

  −
M1(G)

2

2ϵ
 ,

F(G)≤ (ℵ − 1)
4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2

  −
M1(G)

2

2ϵ
 .

(56)
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(e following results were obtained by combining
(eorems 7, 10, and 9.

Theorem 23. Suppose G be a (ℵ, ϵ)-graph. 2en,

F(G)≤ 2(ℵ − 1)
2
(ϵ − 2ϵ) + 3(ℵ − 1)

4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2

  − Θ3 +Θ32 + Y ,

F(G)≤ (ℵ − 1)
4ϵ2

ℵ
+
ℵ
4

(Θ − δ)
2

  − Θ3 +Θ32 + Y .

(57)

4. Conclusion

In this paper, we investigate the relationship between the
F-coindex and the other topological coindices, such as the
first and second Zagreb coindices, the hyper-Zagreb coin-
dex, and the redefined first Zagreb coindex. However, there
are still open and challenging problems for researchers, for
example, the problem on the relationship among the
F-coindex and GA-coindex, harmonic coindex, Randić
coindex, etc.
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[7] I. Gutman and N. Trinajstić, “Graph theory and molecular
orbitals. Total φ-electron energy of alternant hydrocarbons,”
Chemical Physics Letters, vol. 17, no. 4, pp. 535–538, 1972.

[8] J. Varghese Kureethara, A. Asok, and I. Naci Cangul, “Inverse
problem for the forgotten and the hyper Zagreb indices of
trees,” Communications in Combinatorics and Optimization,
vol. 7, 2021.

[9] N. De, S. M. A. Nayeem, and A. Pal,2eF-Co-Index of Some
Graph Operations, Springer, vol. 5New York, NY, USA, , 2016.

[10] I. Gutman, “On hyper-Zagreb index and co-index,” Bulletin
(Académie serbe des sciences et des arts. Classe des sciences
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“A note on the first Zagreb index and co-index of graphs,”
Communications in Combinatorics and Optimization, vol. 6,
pp. 41–51, 2021.

[18] E. Milovanovic and I. Milovanovic, “Sharp bounds for the first
Zagreb index and first Zagreb coindex,”MiskolcMathematical
Notes, vol. 16, no. 2, pp. 1017–1024, 2015.

[19] P. S. Ranjini, V. Lokesha, A. R. Bindusree, and M. Phani Raju,
“New bounds on Zagreb indices and the Zagreb co-indices,”
Boletim da Sociedade Paranaense de Matemática, vol. 31,
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(e number of conjugate classes of derangements of order n is the same as the number h(n) of the restricted partitions with every
portion greater than 1. It is also equal to the number of isotopy classes of 2 × n Latin rectangles. Sometimes the exact value is
necessary, while sometimes we need the approximation value. In this paper, a recursion formula of h(n) will be obtained and also
will some elementary approximation formulae with high accuracy for h(n) be presented. Although we may obtain the value of
h(n) in some computer algebra system, it is still meaningful to find an efficient way to calculate the approximate value, especially in
engineering, since most people are familiar with neither programming nor CAS software.(is paper is mainly for the readers who
need a simple and practical formula to obtain the approximate value (without writing a program) with more accuracy, such as to
compute the value in a pocket science calculator without programming function. Some methods used here can also be applied to
find the fitting functions for some types of data obtained in experiments.

1. Introduction

Below n is a positive integer greater than 1.
On some occasions, it is necessary to know the number

of conjugate classes of derangements.
When generating the representatives of all the isotopy

classes of Latin rectangles of order n by some method, we
need to know the number of the isotopy classes of 2 × n Latin
rectangles for verification. In some cases, we need the ap-
proximate value in a simple and efficient method. (When
writing a C program to generate the representatives of all the
isotopy classes of Latin rectangles of order n, we need to
prepare some space in the memory module (RAM) to store
the cycle structures of derangements so as to make the
program more efficient; otherwise, we have to allocate
memory dynamically, which will cost more time in memory
addressing when writing and reading data frequently in the
particular position in the memory module. So, we need to
know the number of the isotopy classes of 2 × n Latin
rectangles for verification.)

Let Sn be the symmetry group of the set X � {1, 2, · · ·, n},
i.e., the set (together with the operation of combination) of

the bijections from X to itself. An element σ in the symmetry
group Sn is also called a permutation (of order n). If σ ∈ Sn,
σ(i)≠ i (∀i ∈ X), σ will be called a derangement of order n. If
a permutation σ transforms any element in X to a distinct
element, then the sequence [σ(1), σ(2), . . . , σ(n)] will also
be called a derangement. (e number of derangements of
order n is denoted by Dn (or !n in some literatures). It is
mentioned in nearly every combinatorics textbook that

Dn � (n − 1) Dn− 1 + Dn− 2( 

� n! 
n

i�0

(− 1)
i

i!
≐

n!

e
+
1
2

 , n⩾ 1,

(1)

where ⌊x⌋ is the floor function, which stands for the
maximum integer that is less than or equal to the real x.

For x, y ∈ Sn, if ∃z ∈ Sn, s.t. x � zyz− 1, then x and y

will be called conjugate and y is called the conjugation of
x. Of course the conjugacy relation is an equivalence
relation. So, the set of derangements of order n can be
divided into some conjugate classes. (is paper is mainly
concerned on the number of conjugate classes of
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derangements of order n. (e main method is similar to
that described in reference [1].

Amatrix of size k × n (1≤ k≤ n − 1) with every row being
a reordering of a fixed set of n elements and every column
being a part of a reordering of the same set of n elements is
called a Latin rectangle. Usually, the set of the n elements is
assumed to be {1, 2, 3, · · ·, n}. (In some literatures, the
members in a Latin rectangle is assumed in the set {0, 1, 2,
· · ·, n − 1}.)

A 2 × n Latin rectangle with the first row in increasing
order could be considered as a derangement. An isotopy
class of 2 × n Latin rectangles will correspond to a unique
conjugate class of derangements. So, the number of isotopy
classes of 2 × n Latin rectangles is the same as the number of
conjugate classes of derangements of order n.

All the members in a conjugate class of derangements
in Sn share the same cycle structure. Here, we define the
cycle structure of a derangement as the sequence in
nondecreasing order of the lengths (with duplicate en-
tries) of all the cycles in the cycle decomposition of the
derangement. A cycle structure of a derangement of order
n could be considered as an integer solution of the
equation as follows:

s1 + s2 + · · · + sq � n, 2≤ s1 ≤ s2 ≤ · · · ≤ sq , (2)

where s1, s2, · · ·, sq are unknowns.
For a fixed q, designate the number of integer solutions

of equation (2) as Hq(n) where q is less than n/2⌊ ⌋ + 1
(otherwise, Hq(n) is defined by 0), and denote h(n) the
number of all the integer solutions of equation (1) for all
possible q, i.e.,

h(n) � 

(n/2)

q�1
Hq(n). (3)

So, the number of conjugate classes of derangements of
order n is h(n). Since h(n) is the number of a type of re-
stricted partitions, it is tightly connected with the partition
number p(n).

Following the notation of [2], denote by Pq(n) the
number of integer solutions of equation

s1 + s2 + · · · + sq � n, 1≤ s1 ≤ s2 ≤ · · · ≤ sq , (4)

for a fixed q, where 1≤ q≤ n, and by p(n) the number of all
the (unrestricted) partitions of n. It is clear that (in a lot of
articles, p(n, q) is used instead of Pq(n), but in some other
literatures, p(n, q) stands for some other number.)

p(n) � 
n

q�1
Pq(n). (5)

(ere is a brief introduction of the important results on
the partition number (or partition function) p(n) and Pq(n)

in reference [2], such as the recursion formula of p(n) and
Pq(n). More information about the partition number p(n)

may be found in reference [3]. (ere is a list of some im-
portant papers and book chapters on the partition number
in [4] (including the “LINKS” and “REFERENCES”) and [5].
Reference [1] presented some estimation formulae with high

accuracy for p(n), which are revised from Har-
dy–Ramanujan’s asymptotic formula.

(ere are also a lot of literatures on the number of some
types of restricted partitions of n (such as [6–13]) or on the
congruence properties of (restricted) partition function
(such as [14–21]).

In [22], we can find many cases of restricted partitions
(some of them are introduced in [23, 24] or [25]). One class
is concerned on the restriction of the sizes of portions, such
as portions restricted to Fibonacci numbers, powers (of 2 or
3), unit, primes, nonprimes, composites, or noncomposites;
another class is related to the restriction of the number of
portions, such as the cases that the number of parts will not
exceed k; the third class is about the restrictions for both, for
example, the cases that the number of parts is restricted
while the parts restricted to powers or primes. However, the
author has not found too much information on the number
h(n), especially on the approximate calculation, although we
can find a lot of information on other restricted partition
numbers.

(e basic method of function fitting (curve fitting) could
be found in any textbook of numerical analysis, such as
[26, 27]. Some tricks used here may be found in some books
of data analysis such as [28]. (ey may be helpful for un-
derstanding the methods described in Section 3.

Section 2 will deduce the recursion formula for h(n) and
will show the relation of h(n) and p(n). Subsection 3.1 will
deduce the asymptotic formula of h(n) from Har-
dy–Ramanujan’s asymptotic formula of p(n) (mentioned in
[1]). (is new asymptotic formula Ig(n) coincides with
Ingham’s result (refer [29, 30]). By bringing in two pa-
rameters C1(n) and C2(n) in the new asymptotic formula
Ig(n), we have reached several estimation formulae for h(n)

with high accuracy in Subsection 3.3, using the same ideas
described in [1]. By fitting h(n) − Ig(n), we have another two
estimation formulae for h(n) in Subsection 3.4. When
n< 100, we have a more accurate estimation formula for
h(n) in Subsection 3.5.(e relative errors of these estimation
formulae will be presented to shown the accuracy.

2. Some Formulae for h(n)

In this section, we will derive a recursive formula from the
method mentioned in reference ([2], p. 5355).

By definition, h(k) � 0 when k< 2, but here we assume
that h(k) � 0 when k< 0, h(0) � 1, and h(1) � 0, for
convenience.

It is mentioned in reference ([2], p. 52) that in 1942,
Auluck gave an estimation of Pq(n) by

Pq(n) ≈ (1/q!)
n − 1
q − 1  when n is large enough.

By the same method shown in reference ([2], p. 53, 57),
we can obtain the generation function of h(n):

G(x) � 
∞

n�0
h(n)x

n
� 
∞

i�2
1 − x

i
 

− 1

�
1

1 − x
2

 

1
1 − x

3
 

1
1 − x

4
 

· · ·
1

1 − x
i

 
· · · · · · ,

(6)
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and a formula

h(n) �
1
2πi


C

G(x)

x
n+1 dx , (7)

where h(0) � 1, h(1) � 0, and C is a contour around the
original point.

It is difficult to get a simple formula to count the so-
lutions of equation (2) in general. However, for a fixed
integer q, the number Hq(n) of solutions is 0 (when
q> n/2⌊ ⌋) or



n/q⌊ ⌋

s1�2


n− s1/q− 1⌊ ⌋

s2�s1

· · · 

n− s1− s2 ···− sq− 2( /2 

sq− 1�sq− 2

1

� 

n/q⌊ ⌋

s1�2


n− s1/q− 1⌊ ⌋

s2�s1

· · · 

n− s1− s2 ···− sq− 3( /3 

sq− 2�sq− 3

n − s1 − s2 · · · − sq− 2

2
− sq− 2 + 1 

� Pq(n − q) when q≤
n

2
   .

(8)

It is not difficult to find out that

h(n) � 

n/2⌊ ⌋

q�1
Hq(n) � 

n/2⌊ ⌋

q�1
Pq(n − q). (9)

and there is a recursion for Pq(n) in reference ([2], p. 51) as
follows:

Pq(n) � 
t

j�1
Pj(n − q), (10)

where t � min q, n − q , so there is no difficulty to obtain the
values of Pq(n) and h(n) when n is small.

For the value of p(n), there is a recursion as follows:

p(n) � p(n − 1) + p(n − 2) − p(n − 5)

− p(n − 7) + · · · +(− 1)
k− 1

p n −
3k

2 ± k

2
  + · · · · · · ,

� 

k1

k�1
(− 1)

k− 1
p n −

3k
2

+ k

2
 

+ 

k2

k�1
(− 1)

k− 1
p n −

3k
2

− k

2
 ,

(11)

where

k1 �

������
24n + 1

√
− 1

6
 , k2 �

������
24n + 1

√
+ 1

6
 , (12)

and assume that p(0) � 1 (refer [2], p. 55). Here, we assume
that p(x) � 0 when x< 0.

We can obtain the same recursion for h(n) as follows:

h(n) � h(n − 1) + h(n − 2) − h(n − 5) − h(n − 7)

+ · · · +(− 1)
k− 1

h n −
3k

2 ± k

2
  + · · · · · ·

� 

k1

k�1
(− 1)

k− 1
h n −

3k
2

+ k

2
 

+ 

k2

k�1
(− 1)

k− 1
h n −

3k
2

− k

2
 ,

(13)

where k1 and k2 are determined by equation (12), and as-
sume that h(0) � 1 and h(k) � 0 when k< 0.

(e proof of equation (13) is easy to understand.
By equation (6), we have



∞

n�0
h(n)x

n⎛⎝ ⎞⎠ 

∞

i�2
1 − x

i
 ⎛⎝ ⎞⎠ � 1. (14)

Since F(x) � 
∞
n�0 p(n)xn � 

∞
i�1 (1 − xi)− 1 (where

p(0) � 1), (
∞
n�0 p(n)xn)(

∞
i�1 (1 − xi)) � 1 or



∞

n�0
p(n)x

n⎛⎝ ⎞⎠(1 − x) 
∞

i�2
1 − x

i
 ⎛⎝ ⎞⎠ � 1. (15)

Comparing equations (14) and (15), we have



∞

n�0
h(n)x

n
� 
∞

n�0
p(n)x

n⎛⎝ ⎞⎠(1 − x)

� 
∞

n�0
(p(n) − p(n − 1))x

n
,

(16)

by assumption h(k) � p(k) � 0 when k< 0. Hence,

h(n) � p(n) − p(n − 1), (n � 0, 1, 2, · · ·). (17)

By equation (17),

h(n) � h(n − 1) + h(n − 2) − h(n − 5) − h(n − 7)

+ · · · +(− 1)
k− 1

h n −
3k

2 ± k

2
  + · · · · · ·

� 

k1

k�1
(− 1)

k− 1
h n −

3k
2

+ k

2
 

+ 

k2

k�1
(− 1)

k− 1
h n −

3k
2

− k

2
 .

(18)
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We can easily obtain the solutions of equation (2) by
hand when n< 13. By equation (13), we can obtain the
number h(n) of solutions of equation (2) by writing a small
program in some Computer Algebra System (CAS) software
such as “maple,” “maxima,” and “axiom” or some other
software likewise (be aware of that 0 is not a valid index value
in some software such like maple).

(e value of h(n) when n< 250 is shown in Table 1 (on
page 5) and Table 2 (on page 5). Some values of Hq(n) are
shown on Table 3 (on page 5).

Obviously, h(n)<p(n) holds by definition (when n> 1).
As p(n) grows much more slowly than exponential func-
tions, i.e., for any r> 1, p(n)< rn will hold when n is large
enough, which means we cannot estimate p(n) and h(n) by
an exponential function. As p(n) grows faster than any
power of n, it means we cannot estimate p(n) by a poly-
nomial function (refer [2], p. 53). So, h(n) cannot be esti-
mated by a polynomial function, either.

3. The Estimation of h(n)

(e recursion formula equation (13) for h(n) is not con-
venient in practical for a lot of people who do not want to
write programs. Sometimes we need the approximation
value, such as the cases mentioned in [1], so an estimation
formula is necessary.

(e graph of data (n, ln(h(n))) (n � 60 + 20k, k � 1, 2, · · ·,
397) is shown in Figure 1 on page 5. Here, the data points are
displayed by small hollow circles, and the circles are very
crowded that we may believe that the circles themselves be a
very thick curve if we notice only the right-hand part. In this
figure, the data points in the lower left part are sparse
(compared with the points in the upper right part), and we
may find some hollow circles easily. If there is a curve passes
through these hollow circles, we will notice it (as shown in
Figure 2 on page 14). However, later in Figure 3, the circles
distribute uniformly on a curve, it will be difficult to dis-
tinguish the circles, and the curve passes through the centers
of them.

(e author has not found a practical estimation formula
with high accuracy of the number h(n) before.

Actually, it is very difficult to find directly a simple
function to fit the data on Figure 1 with high accuracy. (e
main reason is that the fitting functions obtained by the
methods used frequently could not reach satisfying accuracy.

We have several accurate estimation formula of p(n)

(refer [1]), such as

Rh2′ (n) �
exp(

���
2/3

√
π

�
n

√
)

4
�
3

√
n + a2

�����
n + c2

√
+ b2( 

+
1
2

 , (n≥ 80), (19)

and

Rh0′ (n) �
exp(

���
2/3

√
π

�
n

√
)

4
�
3

√
n + C2′(n)( 

+
1
2

 , 1≤ n≤ 100, (20)

where a2 � 0.4432884566, b2 � 0.1325096085, c2 �

0.274078, and

C2′(n) �

0.4527092482 ×
����������
n + 4.35278

√
−

0.05498719946, n � 3, 5, 7, . . . , 99;

0.4412187317 ×
����������
n − 2.01699

√
+

0.2102618735, n � 4, 6, 8 · · · , 100.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

By (17), we can obtain h(n) by

h1(n) �
Rh0′ (n) − Rh0′ (n − 1), 2≤ n≤ 80,

Rh2′ (n) − Rh2′ (n − 1), n> 80.

⎧⎨

⎩ (22)

and the error of this formula will not exceed twice of the
error of Rh2′ (n) or Rh0′ (n). Of course, this formula is not as
simple as we want, but the accuracy is very good.

3.1. Asymptotic Formula. As h(n) � p(n) − p(n − 1), by
Hardy–Ramanujan’s asymptotic formula,

p(n) ∼
1

4n
�
3

√ exp
�
2
3



π
�
n

√
 , (23)

(refer [1, 3, 31–35]), we assume that, when n≫ 1, h(n)

∼ exp(
���
2/3

√
π

�
n

√
)/4

�
3

√
n − exp (

���
2/3

√
π

�����
n − 1

√
)/4

�
3

√
(n −

1). So,

Table 1: (e value of h(n) when 1≤ n≤ 100.

n h(n) n h(n) n h(n) n h(n) n h(n)
1 0 21 165 41 7245 61 155038 81 2207851
2 1 22 210 42 8591 62 178651 82 2501928
3 1 23 253 43 10087 63 205343 83 2832214
4 2 24 320 44 11914 64 236131 84 3205191
5 2 25 383 45 13959 65 270928 85 3623697
6 4 26 478 46 16424 66 310962 86 4095605
7 4 27 574 47 19196 67 356169 87 4624711
8 7 28 708 48 22519 68 408046 88 5220436
9 8 29 847 49 26252 69 466610 89 5887816
10 12 30 1039 50 30701 70 533623 90 6638248
11 14 31 1238 51 35717 71 609237 91 7478186
12 21 32 1507 52 41646 72 695578 92 8421448
13 24 33 1794 53 48342 73 792906 93 9476370
14 34 34 2167 54 56224 74 903811 94 10659543
15 41 35 2573 55 65121 75 1028764 95 11981699
16 55 36 3094 56 75547 76 1170827 96 13462885
17 66 37 3660 57 87331 77 1330772 97 15116626
18 88 38 4378 58 101066 78 1512301 98 16967206
19 105 39 5170 59 116600 79 1716486 99 19031739
20 137 40 6153 60 134647 80 1947826 100 21339417
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Table 2: (e value of h(n) when 101≤ n≤ 250.

n h(n) n h(n) n h(n) n h(n)
101 23911834 116 124763797 131 593224104 146 2608194590
102 26784253 117 138801828 132 656291385 147 2871619379
103 29983571 118 154364067 133 725798623 148 3160747519
104 33552415 119 171594522 134 802411183 149 3477935703
105 37524344 120 190680895 135 886795381 150 3825880113
106 41950627 121 211798491 136 979745604 160 9775430911
107 46873053 122 235172861 137 1082063336 170 24329692015
108 52353455 123 261017329 138 1194696815 180 59110637816
109 58443396 124 289602259 139 1318608064 190 140453804468
110 65217506 125 321186852 140 1454928240 200 326926597263
111 72739457 126 356095340 141 1604811073 210 746521272980
112 81098953 127 394641603 142 1769604112 220 1674422848222
113 90374472 128 437214305 143 1950689437 230 3693304861665
114 100674037 129 484193270 144 2149671688 240 8019313019148
115 112093786 130 536043530 145 2368203564 250 17156634544056

Table 3: (e number of solutions of equation (1) for different q.

n h(n) H1 (n) H2 (n) H3 (n) H4 (n) H5 (n) H6 (n) H7 (n)
4 2 1 1
5 2 1 1
6 4 1 2 1
7 4 1 2 1
8 7 1 3 2 1
9 8 1 3 3 1
10 12 1 4 4 2 1
11 14 1 4 5 3 1
12 21 1 5 7 5 2 1
13 24 1 5 8 6 3 1
14 34 1 6 10 9 5 2 1
15 41 1 6 12 11 7 3 1

200
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80

40

2000 4000 6000 8000

n

Figure 1: (e graph of the data (n, ln h(n)).
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Figure 2: (e graph of the data (n, ln h(n)) and the fitting curve
ln(Ig1(n)).
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h(n) ∼
exp(

���
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√
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�����
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√
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∼
exp(

���
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√
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)

4
�
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√
π
���
6n

3
  �

π exp(
���
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√
π

�
n

√
)

12
���
2n

3
 .

(24)

So,

h(n) ∼
π

12
���
2n

3
 exp(

���
2/3

√
π

�
n

√
). (25)

In coincidence, half a year after the main results were
obtained in this paper, the author found an asymptotic
formula as follows:

Pa,b(n) ∼ Γ(b/a)πb/a− 12− (3/2)− (b/2a)3− (b/2a)
a

− (1/2)+(b/2a)
n

− a+b/2a
e
π

����
2n/3a

√

,

(26)

in [30]. When a � 1 and b � 2, we will have

P1,2(n) ∼
π

12
���
2n

3
 exp(π

����
2/3n

√
), (27)

which coincides with the asymptotic formula obtained here.
Formula (25) will be called the Ingham–Meinardus

asymptotic formula in this paper since Daniel mentioned in
[30] that this general asymptotic formula (26) was first given
by A. E. Ingham in [29] and the proof was refined by
G. Meinardus later in another two papers written in
German.

Later in this paper, (π/12
���
2n3

√
) exp(

���
2/3

√
π

�
n

√
) will be

denoted by Ig(n) for short.
It is not satisfying to estimate h(n) by Ig(n) when n

is small. (e relative error of Ig(n) to h(n) is greater than

6% as shown in Table 4 (on page 6). (e round
approximation

Ig
′ (n) � Ig(n) +

1
2

 , (28)

will not change the accuracy distinctly, as shown in Table 5
(on page 6). So, it is necessary to modify the asymptotic
formula for better accuracy.

3.2. Method A: Modifying the Exponent. In this subsection,
we consider fitting h(n) by Iga � (π/12

���
2n3

√
)exp(

���
2/3

√

π
��������
n + C1(n)


) or fitting.(n, (3/2π2)(ln(12

���
2n3

√
h(n)/π))2

− n) (n � 60 + 20k, k � 1, 2, · · ·, 397) by a function

f1(x)≐
a1

x + c1( 
e1

+ b1. (29)

Let C1(n) � (3/2π2)(ln(12
���
2n3

√
h(n)/π))2 − n. (e rea-

son that we fit C1(x) by the function in the form displayed in
(29) is the same as that described in Section 3 of [1] (although
the data differ distinctly). Many other types of functions have
been tested, but they cannot fit these data very well.

However, here it is not valid to obtain the constants in
f1(n) by the iteration method described in reference [1].

(e graph of the data (n, (3/2π2)(ln(12
���
2n3

√
h(n)/π))2

− n) (n � 60 + 20k, k � 1, 2, · · ·, 397) is shown in Figure 4 on
page 7.
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Figure 3: (e graph of the data (n, π exp(π
���
2/3

√ �
n

√
)/12

�����
2h(n)


) and the fitting curve.
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First, we try to fit (n, (3/2π2)(ln(12
���
2n3

√
h(n)/π))2 − n)

(n � 60 + 20k, k � 1, 2, · · ·, 397) by a function in the form as
follows:

f1(x)≐
a1

�����
x + c1

√ + b1. (30)

(at means we have assumed that e1 � 1/2, temporarily.
We will explain the reason in Subsection 3.2.3.

(e average error of f1(x) is

E1 �

��������������������
1

K1

n

C1(n) − f1(n)( 
2



�

��������������������������

1
K1


n

C1(n) −
a1

�����
n + c1

√ − b1 

2



E1 �

��������������������������������������

1
K1



K1

k�1
C1(60 + 20k) −

a1�����������
60 + 20k + c1

 − b1 

2



,

(31)

where K1 � 397 and n ranges from 80 to 8000, by step 20.
Here, only a1, b1, and c1 are unknown, so we can consider E1
as a function of the variables (a1, b1, c1).

We want to find a triple (a1, b1, c1) such that E1 reaches
its minimum or to make E1 as small as possible.

Since a lot of functions have several local minimum points,
it is necessary to find out whether E1 � E1(a1, b1, c1) has more
than one local minimum before we start to calculate the
minimum point by the numeral method. However,
E1 � E1(a1, b1, c1) is too complicate, and it is very difficult to
know all the critical points in the range we are considering.

3.2.1. Preparation Work. For a given pair (a1, c1), by the
property of the arithmetic mean (for some given data xi

(i �1, 2, · · ·, k; xi ∈ R), the function s(t) �����������������

(1/k) 
k
i�1 (xi − t)2



reaches its minimum at t �

(1/k) 
k
i�1 xi), it is clear that E1 reaches its minimum when

b1 �
1

K1

n

C1(n) −
a1

�����
n + c1

√ ,

� C1 −
1

K1


n′

a1������

n′ + c1

 ,

(32)

where C1 � (1/K1)n′C1(n′).

Table 4: (e relative error of Ig(n) to h(n) when n≤ 1000.

n Rel-Err (%) n Rel-Err (%) n Rel-Err (%) n Rel-Err (%) n Rel-Err (%)
1 16 50.30 40 32.10 220 13.10 520 8.39
2 146.24 17 56.82 50 28.60 240 12.50 540 8.23
3 202.89 18 46.69 60 25.90 260 12.00 560 8.08
4 95.59 19 52.75 70 23.90 280 11.50 580 7.93
5 156.43 20 44.94 80 22.30 300 11.10 600 7.79
6 68.62 21 48.48 90 20.90 320 10.80 640 7.54
7 121.38 22 43.47 100 19.80 340 10.40 680 7.31
8 65.43 23 46.00 110 18.80 360 10.10 720 7.10
9 88.38 24 41.09 120 18.00 380 9.86 760 6.91
10 62.58 25 43.68 130 17.20 400 9.60 800 6.73
11 79.47 26 39.93 140 16.60 420 9.36 840 6.56
12 53.29 27 41.27 150 16.00 440 9.14 880 6.41
13 70.98 28 38.50 160 15.40 460 8.93 920 6.27
14 53.12 29 39.70 180 14.50 480 8.74 960 6.13
15 60.35 30 37.00 200 13.70 500 8.56 1000 6.01

Table 5: (e relative error of Ig(n) + 1/2  to h(n) when n≤ 30.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 — 7 125% 13 70.83% 19 52.38% 25 43.60%
2 100% 8 71.43% 14 52.94% 20 45.26% 26 39.96%
3 200% 9 87.50% 15 60.98% 21 48.48% 27 41.29%
4 100% 10 66.67% 16 50.91% 22 43.33% 28 38.56%
5 150% 11 78.57% 17 57.58% 23 45.85% 29 39.67%
6 75% 12 52.38% 18 46.59% 24 40.94% 30 37.05%
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Figure 4: (e graph of the data
(n, (3/2π2)(ln(12

���
2n3

√
h(n)/π))2 − n).
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Let E1 �
���������������������������������������������������

(1/K1)n(C1(n) − a1/
�����
n + c1

√
− C1 + (1/K1)n′a1/

������

n′ + c1



)2


be the average error of the fitting function
f1(x) ≐ a1/

�����
x + c1

√
+ C1 − (1/K1)n′a1/

������

n′ + c1



. (Here, a1

and b1 are undetermined coefficients.)
Let G1 � E2

1 �(1/K1)n(C1(n) − a1/
�����
n + c1

√
− C1 + (1/

K1)n′a1/
������

n′ + c1



)2. Here, only a1 and b1 are unknowns.
G1 could be considered as a function of (a1, c1). In order to
find the minimum point of G1, we can draw the figure of the
function G1 � G1(a1, c1) (in a cube coordinate system with
axis a1, c1, and G1) as shown in Figures 5–7. Figures 8 and 9
are the projection of the graph of (a1, c1, G1) (when
− 100≤ a1 ≤ 100 and − 50≤ c1 ≤ 100, which is a part of a
surface) on the a1 − G1 plane (spanned by the axis a1 andG1)
and c1 − G plane, respectively.

From these figures, we can find out that the influence of
c1 toG1 is much less than that of a1. In Figure 10, we find that
when G1 reaches its minimum, a1 is between 0.50 and 0.53,
but there is not a definite range for c1.

It is possible that for different range of c1, the range of a1
when G1 reaches its minimum will be different. However,
considering that a1/

�����
n + c1

√
+ b1 is a real, c1 should be

greater than − 1 in theory. (For the fitting data used here, c1
should be greater than − 80.) From Figure 8, we can see that
G1 touches its bottom when − 15≤ a1 ≤ 15. Although we
cannot see clearly the exact value of of a1 in the minimum
points, we can draw another figure of (a1, c1, G1) when
− 15≤ a1 ≤ 15 and − 1≤ c1 ≤ 100 to observe more details (the
figure is not presented here), and then we will find that the
more detailed range of a1 for the minimum points is [− 3, 3]

in the new figure (not presented), and next we will draw the
figures of (a1, c1, G1) when − 3 ≤ a1 ≤ 3, 0≤ a1 ≤ 1,
0.2≤ a1 ≤ 0.8, or 0.45≤ a1 ≤ 0.6, respectively, while
− 1≤ c1 ≤ 100, we will find the range of a1 of the minimum
points of G1 is about [0.50, 0.53]. (e projections of Figure 7
of (a1, c1, G1) when 0.45≤ a1 ≤ 0.6 and − 1≤ c1 ≤ 100 are
shown in Figures 11 and 10.

In Figure 9, for the curves on the bottom, G1 decreases
with c1 at first then increases with c1, but it is difficult to find
the critical point in the figure since different curves have
different critical points.

Although we cannot find a satisfying value of a1 or c1
from the figures to construct a fitting function f1, these
pictures show that the figure of G1 � (a1, c1, G1) has only
one bottom in the domain we are considering, unlike the
figure of another function shown in Figure 12, so the ex-
istence of the minimum point is almost confirmed; there-
fore, we are confident to find the value of a1 or c1 in the
minimum point by the numerical method. (is guarantees
the validity of the numerical calculation by loop in the next
step.

3.2.2. Find c1. On the other hand, by the least square
method, to fit the data (xk, yk) (k �1, 2, · · ·, K1) by a linear
function y � a × x + b, the result is that

a �
xn · yn − xn · yn

x
2
n − xn( 

2
, (33)

b �
xn · xn · yn − x

2
n · yn

xn( 
2

− x
2
n

� yn − xn · a, (34)
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Figure 5: (e graph of the data (a1, c1, G1) when − 100≤ a1 ≤ 100
and − 50≤ c1 ≤ 100.
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Figure 6: (e graph of the data (a1, c1, G1) when − 100≤ a1 ≤ 100
and − 50≤ c1 ≤ 100 version 2.
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where xn � (1/K1) 
K1
i�1 xi is the average value of xi, yn � (1/

K1) 
K1
i�1 yi, x2

i � (1/K1) 
K1
i�1 x2

i , and xn · yn � (1/K1) 
K1
i�1 xi·

yi. By definition, (xn)2 � ((1/K1) 
K1
i�1 xi)

2 is the square of

the average value of xn. So, by the least square method, a and
b are uniquely determined by the given data (xk, yk) (k �1,
2, · · ·, K1).
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Figure 7: (e graph of the data (a1, c1, G1) when 0.45≤ a1 ≤ 0.60
and − 1≤ c1 ≤ 100.
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Figure 8:(e projection of the graph of the data (a1, c1, G1) on the
a1 − G1 plane when − 100≤ a1 ≤ 100 and − 50≤ c1 ≤ 100.
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Figure 9: (e projection of the graph of the data (a1, c1, G1) on the
c1 − G1 plane when − 100≤ a1 ≤ 100 and − 50≤ c1 ≤ 100.
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Figure 10: (e projection of the graph of the data (a1, c1, G1) on
the c1 − G1 plane when 0.45≤ a1 ≤ 0.60 and − 1≤ c1 ≤ 100.
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For every given value of c1 (greater than − 80), we can fit
(n, C1(n)) (n � 60 + 20k, k � 1, 2, · · ·, 397) by a function
f1(x)≐ a1/

�����
x + c1

√
+ b1 by the least square method if we

consider 1/
�����������
60 + 20k + c1


and C1(60 + 20k) as xk and yk,

respectively. (en,

xn �
1

K1


K1

k�1
xk �

1
K1



K1

k�1

1
�����������
60 + 20k + c1

 ,

yn �
1

K1


K1

k�1
yk �

1
K1



K1

k�1
C1(60 + 20k),

x
2
n �

1
K1



K1

k�1
x
2
k �

1
K1



K1

k�1

1
60 + 20k + c1

,

xn · yn �
1

K1


K1

k�1
xk · yk �

1
K1



K1

k�1

C1(60 + 20k)
�����������
60 + 20k + c1

 ,

a1 �
xn · yn − xn · yn

x
2
n − xn( 

2
,

b1 � yn − xn · a1.

(35)

So, a1 and b1 could both be considered as functions of c1,
denoted by a1 � a1(c1) and b1 � b1(c1), since they are
uniquely determined by c1 with the given data.

(en, G2 � E2
1 �(1/K1) 

K1
k�1 (C1(60 + 20k) − a1(c1)/�����������

60 + 20k + c1


− b1(c1))
2 is a function of c1.

It will cost some time to plot the figure of the function
G2 � G2(c1) in a CAS software.

If we plot the figure of the function G2 � G2(c1) on the
coordinates (as shown in Figures 13–15), we will find that G2
reaches its minimum when c1 ≈ − 3.2594807. In Figure 15,
we find that the curve of G2 � G2(c1) is not so smooth. (e
reason is that we hold up 18 significant digits in the process.
If we compute more significant digits in the process, the
curve on Figure 15 will be more smooth, at the cost of much
more time. By writing a small program (since the default
function to find the minimum provided by the software
Maple 18 is unable to deal with such a complicated function
G2 � G2(c1) involving so much data), we can obtain a more
accurate value of the critical point as follows:

c1 � − 3.259480684. (36)

When the value of c1 is obtained, we can find the value
of a1 and b1 by the least square method without difficulty,
i.e.,

a1 � 0.5097429624,

b1 � − 1.453552800.
(37)

However, here c1 is less than − 1, so the estimation
formula for h(n) constructed from these coefficients is in-
valid when n< 4.
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Figure 11: (e projection of the graph of the data (a1, c1, G1) on
the a1 − G1 plane when 0.45≤ a1 ≤ 0.60 and − 1≤ c1 ≤ 100.
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3.2.3. Confirm e1. In [1], we fit C1(n) � 3/2· (ln(4n
�
3

√

p(n)))2/π2 − n by a function f1(x)≐ a1/(n + c1)
e1 + b1 when

estimating p(n) and found that e1 ≈ 0.50 by iteration. Here,
the iteration method does not work well, so we fit
C1(n) � (3/2π2)(ln(12

���
2n3

√
h(n)/π))2 − n by a function

f1(x)≐ a1/
�����
n + c1

√
+ b1 directly, which means that we have

assumed that e1 � 1/2. Here, we may doubt that whether
e1 � 0.5 is the best option for us?

Here, we use the same idea described in Subsection 3.2.1.
For every pair (e1, c1), we can obtain corresponding a1

and b1 by the least square method, just like (33) and (34),
except that here xk � 1/(60 + 20k + c1)

e1 .
So, the square of the average error

G3 � E
2
1 �

1
K1


n

C1(n) −
a1 e1, c1( 

n + c1( 
e1

− b1 e1, c1(  

2

, (38)

could be considered as a function of e1 and c1 as both a1 �

a1(e1, c1) and b1 � b1(e1, c1) could be expressed by certain
elementary functions of e1 and c1.

If we draw the figure of the function G3 � G3(e1, c1), we
will find that the surface has only one bottom when 0.1 ≤e1
≤0.9 and − 50≤ c1 ≤ 100, as shown in Figure 16. However, the
process to draw the figure is time-consuming. It costs more
than 5 hours on a notebook ((inkPad E40 Edge, with 6GB
RAM and AMD P360 Dual-Core Processor 2.30GHz) by
Maple 18 in Ubuntu 14.04.1 system.

After that, by writing another program, we can obtain
the approximate value of (e1, c1) where G3 touches the
bottom, i.e., e1 ≈ 0.494 and c1 ≈ − 4.85, when 18 significant
digits are involved in the process, which still costs tens of
minutes. Considering that we have used only a small part of
data, we cannot afford the time for computing more sig-
nificant digits in process, and the computing is so com-
plicated; hence, error accumulation effect is considerable, so
we choose e1 � 0.50 while it differs very little with 0.494.
Another reason is that we prefer simple exponent, as the
time spent on computing a square root is much less than that
to compute a power with exponent 0.494 in general. Here,
the value of c1 ≈ − 4.85 is obviously different from the value
obtained at the end of Subsection 3.2.2 because of the little
difference on e1. (erefore, it will be fine to use the result in
Subsection 3.2.2).

In this figure, the points are shown as small circles which
are very close to each other. (ese crowded circles seem like
a thick curve. A fitting curve passes though the center of
these circles. (e fitting curve might not be found in reduce
printing. (at means the curve fits the points (displayed as
circles) very well.

3.2.4. 1e Result. By the value a1 � 0.5097429624,
b1 � − 1.453552800, and c1 � − 3.259480684 obtained in
Subsection 3.2.2, we will have a fitting function f1(x) ≐
a1/

�����
x + c1

√
+ b1.

(e graph off1(x) (when − 80≤ x≤ 8000) and the graph
of the data (n, (3/2π2)(ln(12

���
2n3

√
h(n)/π))2 − n)

(n � 60 + 20k, k � 1, 2, · · ·, 397) are shown in Figure 17. It
shows that f1(n) fits (3/2π2)(ln(12

���
2n3

√
h(n)/π))2 − n very

well.
(en, we could fit h(n) by

Iga(n) �
π exp

���
2/3

√
π

����������������
n + a1/

�����
x + c1

√
+ b1


( 

12
���
2n

3
 , n≥ 4. (39)

(e graph of the function ln(Iga(x)) and the graph of the
data (n, ln(h(n))) (n � 60 + 20k, k � 1, 2, · · ·, 397) is shown in
Figure 18. It seems that Iga(n) fits h(n) very well.

(e relative error of Iga is shown in Table 6 (when
n≤ 1000) and Figure 19 (when 1000 <n≤ 10000).

When n< 20, the relative error of Iga is still greater than
2%. Although it is much better than the error of Ig, it is not
as good as expected when n< 40. If we take the round
approximation by

Iga
′ (n) �

π exp
���
2/3

√
π

����������������
n + a1/

�����
x + c1

√
+ b1


( 

12
���
2n

3
 +

1
2

 , n≥ 4,

(40)
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Figure 13: (e graph of the function G2 � G2(c1) when − 50≤ c1 ≤
100.
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Figure 14:(e graph of the functionG2 � G2(c1) when − 4≤ c1 ≤ − 2.
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the relative error will be obviously smaller with a few ex-
ceptions, as shown in Table 7.

Later, we will find out that it is obviously greater than the
relative error of Ig1 and Ig2 obtained in the next subsection
by modifying the denominator part; when 4000< n< 10000,
the relative error of Iga is about 1000 times of that of Ig2.

When 30 <n≤ 1000, the relative error of Iga(n) + 1/2 

is close to that of Iga(n).

3.3. Method B: Modifying the Denominator. Since
h(n) ∼ (π/12

���
2n3

√
)exp(

���
2/3

√
π

�
n

√
), we consider estimating

h(n) by(π/12
������
2C3(n)


)exp(

���
2/3

√
π

�
n

√
) (i.e., fit π2 exp

(2π
���
2/3

√ �
n

√
)/288h2(n) by a function C3(n)), where C3(x)

is a cubic function or a function like

ax
3

+ bx
2.5

+ cx
2

+ dx
1.5

+ ex + fx
0.5

+ g. (41)
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Figure 15: (e graph of the function G2 � G2(c1) when − 3.259483≤ c1 ≤ − 3.259478.
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Figure 16: (e graph of the function G3 � G3(e1, c1) when 0.1≤
e1 ≤ 0.9 and − 50≤ c1 ≤ 100.
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Figure 17: (e graph of the data (n, (3/2π2)(ln(12
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√

h(n)/π))2 − n) and the fitting curve.
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Figure 18: (e graph of the data (n, ln(h(n))) and the fitting
curve.
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However, the results are worse as the relative errors are
obviously much greater than the relative error of Ig(n) when
n< 350.

(en, we consider estimating h(n) by (π/12
�
2

√
C4(n))

exp(
���
2/3

√
π

�
n

√
) or fit π exp(π

���
2/3

√ �
n

√
)/12

�
2

√
h(n) by a

function as follows:

C4(n) � a4n
1.5

+ b4n + c4n
0.5

+ d4. (42)

(e result is very good. (e graph of the data
(n, π exp(π

���
2/3

√ �
n

√
)/12

�
2

√
h(n)) and the fitting curve

C4(n) is shown in Figure 3. Here, the fitting curve is
displayed by a thick continuous curve, which lies in the
middle of the area the circles occupied. Since the circles are

too crowded, the circles themselves look like a very thick
curve.

(e values of the coefficients in the expression of C4(n)

are as follows:

a4 � 1.000010809,

b4 � 1.862505234,

c4 � 1.169930087,

d4 � − 0.7005460222.

(43)

(e value of a4 is very close to 1, which means that this
fitting function coincides with the Ingham–Meinardus as-
ymptotic formula very well.

Table 6: (e relative error of Iga(n) to h(n) when n≤ 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 — 16 − 2.16% 40 − 0.18% 220 2.62E − 06 520 − 8.93E − 07
2 — 17 3.29% 50 − 7.12E − 04 240 1.60E − 06 540 − 9.04E − 07
3 — 18 − 2.34% 60 − 3.12E − 04 260 8.76E − 07 560 − 8.75E − 07
4 8.89% 19 2.71% 70 − 1.01E − 04 280 3.54E − 07 580 − 8.50E − 07
5 34.03% 20 − 1.64% 80 − 3.21E − 05 300 3.00E − 09 600 − 8.46E − 07
6 − 10.34% 21 1.64% 90 − 2.28E − 06 320 − 2.87E − 07 640 − 8.04E − 07
7 21.05% 22 − 1.00% 100 1.16E − 05 340 − 4.83E − 07 680 − 7.54E − 07
8 − 6.99% 23 1.51% 110 1.51E − 05 360 − 6.16E − 07 720 − 7.43E − 07
9 8.67% 24 − 1.20% 120 1.51E − 05 380 − 7.26E − 07 760 − 6.98E − 07
10 − 4.02% 25 1.29% 130 1.40E − 05 400 − 8.05E − 07 800 − 6.69E − 07
11 8.17% 26 − 0.72% 140 1.22E − 05 420 − 8.47E − 07 840 − 6.06E − 07
12 − 5.88% 27 0.83% 150 1.04E − 05 440 − 8.98E − 07 880 − 5.64E − 07
13 6.76% 28 − 0.58% 160 8.81E − 06 460 − 8.97E − 07 920 − 5.65E − 07
14 − 2.93% 29 0.80% 180 6.04E − 06 480 − 8.94E − 07 960 − 5.17E − 07
15 3.07% 30 − 0.59% 200 4.02E − 06 500 − 9.00E − 07 1000 − 4.75E − 07

Table 7: (e relative error of Iga(n) + 1/2  to h(n) when n≤ 30.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 — 7 25% 13 8.33% 19 2.86% 25 1.31%
2 — 8 0 14 − 2.94% 20 − 1.46% 26 − 0.63%
3 — 9 12.5% 15 2.44% 21 1.82% 27 0.87%
4 0 10 0 16 − 1.82% 22 − 0.95% 28 − 0.56%
5 50% 11 7.14% 17 3.03% 23 1.58% 29 0.83%
6 0 12 − 4.76% 18 − 2.27% 24 − 1.25% 30 − 0.58%
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Figure 19: (e relative error of Iga(n) when 1000 ≤n≤ 10000, step 300.
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So, we have an estimation formula as follows:

h(n) ∼ Ig1(n) �
π

12
�
2

√
C4(n)

exp
�
2
3



π
�
n

√
 . (44)

We may call it the Ingham–Meinardus revised estimation
formula (1). (e graph of ln(Ig1(n)) is shown in Figure 2,
together with the data points of (n, ln h(n)). (is revised
estimation formula is muchmore accurate than the asymptotic
formula. (e relative error is less than 1 × 10− 6 when n> 2000
(as shown in Figure 20 on page 14) and less than 3 when n≥ 30
(as shown in Table 8 on page 14). (e relative error of the
round approximation Ig1′(n) � Ig1(n) + 1/2  is shown in
Table 9 on page 13.

However, equation (44) is not so satisfying when n< 30,
especially when n< 15 as the relative error is not negligible
for some value of n.

As we already know that h(n) ∼ (π/12
���
2n3

√
)exp

(
���
2/3

√
π

�
n

√
), or n3/2 ∼ (π/12

�
2

√
h(n))exp(

���
2/3

√
π

�
n

√
),

which means that when fitting π exp(π
���
2/3

√ �
n

√
)/12

�
2

√
h(n)

by a function C4(n) shown in equation (42), the coefficient a4
should be exactly 1; hence, we should fit π exp(π

���
2/3

√

�
n

√
)/12

�
2

√
h(n) by a function C4′(n) � n3/2 + b5n + c5n

1/2 +

d5 or fit π exp(π
���
2/3

√ �
n

√
)/12

�
2

√
h(n) − n3/2 by a function

C5(n) � b5n + c5n
1/2

+ d5. (45)

(e graph of the data (n, π exp(π
���
2/3

√ �
n

√
)/

12
�
2

√
h(n) − n3/2) is shown in Figure 21 on page 14 (together

with the figure of the fitting function C5(n) generated by the
least square method).

(e values of the coefficients in equation (45) are as follows:

b5 � 1.864260743,

c5 � 1.084436400,

d5 � 0.4754177757.

(46)

So, we have another estimation formula for h(n) as follows:

h(n) ∼ Ig2(n) �
π exp(

���
2/3

√
π

�
n

√
)

12
�
2

√
n
3/2

+ C5(n) 
. (47)

Wemay call it the Ingham–Meinardus revised estimation
formula (2).(e graph of ln(Ig2(n)) is nearly the same as that
of ln(Ig1(n)) shown in Figure 2. (e second revised esti-
mation formula is much more accurate than the first one.(e
relative error is less than 2 × 10− 9 when n> 3000 (as shown in
Figure 22 on page 14), about 1/500 of the relative error of
Ig1(n). When n< 10, the relative error is also distinctly less
than that of Ig1(n) (as shown in Table 10 on page 15). (e
relative error of the round approximation
Ig2′ (n) � Ig2(n) + 1/2  is shown in Table 11 (on page 15).

It should be mentioned that in Figure 21 on page 14, the
graph of the data points lies in a line, so we might be willing
to fit this line by a first-order equation. (e result is

C5′(n) � 1.873818457 × n + 27.08318017. (48)

If we use this fitting function instead of C5(n) generated
before, the relative error to fit h(n) will be about 10000 times
more, that is, about 20 times more than that of Ig1(n). So, we
did not use linear function to fit the data
(n, π exp(π

���
2/3

√ �
n

√
)/12

�
2

√
h(n) − n3/2) before.

3.4.Method C: Fitting Ig(n) − h(n). We wonder whether we
can fit Ig(n) − h(n) by a function r(n) and then estimate
h(n) by Ig(n) − r(n) which may be believed more accurate
than Ig2(n) at the price of being more complicated.

By the same tricks used at the beginning of this sub-
section, we will have

Ig(n) − Ig(n − t) ∼
tπ2

24
�
3

√
n
2 exp

�
2
3



π
�
n

√
 . (t≪ n),

(49)

So, we may fit Ig(n) − h(n) by (π2/24
�
3

√
C6(n))exp

(
���
2/3

√
π

�
n

√
) where C6(n) is a quadratic function or a

function like

an
2

+ bn
1.5

+ cn + dn
0.5

+ e. (50)

(atmeans, we can fit π2 exp(
���
2/3

√
π

�
n

√
)/24

�
3

√
(Ig(n) −

h(n)) by a function C6(n). However, the result is useless.
Although C6(n) will fit the data π2 exp(

���
2/3

√

π
�
n

√
)/24

�
3

√
(Ig(n) − h(n)) very well, the relative error of

Ig(n) − (π2/24
�
3

√
C6(n))exp(

���
2/3

√
π

�
n

√
) to h(n) is much

greater than that of Ig1(n) or Ig2(n), and the relative error
differs very little with that of Ig(n) when n is small. Besides,
the formula Ig(n) − (π2/24

�
3

√
C6(n))exp(

���
2/3

√
π

�
n

√
) is

much more complicated than Ig1(n) and Ig2(n).
If we fit Ig(n) − h(n) by (π2/24

�
3

√
(n2 + E6(n)))

exp(
���
2/3

√
π

�
n

√
) with the trick described in subsection 3.3,

where E6(n) is a function in the form as follows:

bn
1.5

+ cn + dn
0.5

+ e, (51)

as we already know the coefficient of n2 should be 1 in
theory. (e result will be a little better, but useless too. (e
accuracy is not as good as that of Ig0(n).

(en, we consider fitting π2 exp(
���
2/3

√
π

�
n

√
)/24

�
3

√
n2

(Ig(n) − h(n)) by a function C7(n). If C7(n) is in the form
a/n + b or a/n + b/n2 + c, the result is useless, too. If C7(n) is
in the form a/n0.5 + b, it will be barely satisfactory. If C7(n) is
in the form a/n0.5 + b/n + c/n1.5 + d/n2 + e or a/n0.5 +

b/n + c/n1.5 + e, the result will be much better than the
previous forms, but the accuracy (when estimating h(n)) is
not as good as that of Ig1(n) and Ig2(n).

(e result of C7(n) is

C7a(n) �
0.8782296151

n
0.5 +

0.2567016063
n

−
3.580442785

n
1.5 +

21.28305831
n
2 + 0.6879945549, (52)
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Table 8: (e relative error of Ig1(n) to h(n) when n≤ 1000.

n Rel-Err (%) n Rel-Err (%) n Rel-Err n Rel-Err n Rel-Err
1 — 16 − 1.63 40 − 2.21E − 05 220 7.23E − 05 520 1.04E − 06
2 − 7.23 17 3.82 50 5.35E − 04 240 5.74E − 05 540 3.01E − 07
3 29.97 18 − 1.87 60 6.16E − 04 260 4.59E − 05 560 − 3.53E − 07
4 − 8.44 19 3.18 70 6.15E − 04 280 3.68E − 05 580 − 8.95E − 07
5 27.94 20 − 1.21 80 5.35E − 04 300 2.97E − 05 600 − 1.37E − 06
6 − 11.61 21 2.06 90 4.56E − 04 320 2.40E − 05 640 − 2.10E − 06
7 20.76 22 − 0.61 100 3.89E − 04 340 1.93E − 05 680 − 2.64E − 06
8 − 6.74 23 1.89 110 3.30E − 04 360 1.55E − 05 720 − 2.97E − 06
9 9.21 24 − 0.85 120 2.80E − 04 380 1.24E − 05 760 − 3.20E − 06
10 − 3.44 25 1.63 130 2.40E − 04 400 9.79E − 06 800 − 3.36E − 06
11 8.85 26 − 0.40 140 2.06E − 04 420 7.63E − 06 840 − 3.43E − 06
12 − 5.28 27 1.14 150 1.78E − 04 440 5.82E − 06 880 − 3.51E − 06
13 7.42 28 − 0.29 160 1.55E − 04 460 4.32E − 06 920 − 3.49E − 06
14 − 2.35 29 1.08 180 1.18E − 04 480 3.04E − 06 960 − 3.43E − 06
15 3.66 30 − 0.32 200 9.20E − 05 500 1.97E − 06 1000 − 3.37E − 06

Table 9: (e relative error of Ig1(n) + 1/2  to h(n) when n⩽ 30.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 — 7 25% 13 8.33% 19 2.86% 25 1.57%
2 0 8 0 14 − 2.94% 20 − 1.46% 26 − 0.42%
3 0 9 12.5% 15 4.88% 21 1.82% 27 1.22%
4 0 10 0 16 − 1.82% 22 − 0.48% 28 − 0.28%
5 50% 11 7.14% 17 4.55% 23 1.98% 29 1.06%
6 0 12 − 4.76% 18 − 2.27% 24 − 0.94% 30 − 0.29%
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Figure 20: (e relative error of Ig1(n) when 1000 ≤n≤ 10000, step 300.
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Figure 21: (e graph of the data (n, π exp(π
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√
h(n) − n3/2) and the fitting curve C5(n).
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or

C7b(n) �
0.8861039149

n
0.5 −

0.05719053203
n

+
0.9843423289

n
1.5

+ 0.6879343652.

(53)

(e relative errors of

F7a(n) � Ig(n) −
π2 exp(

���
2/3

√
π

�
n

√
)

24
�
3

√
n
2
C7a(n)

, (54)

and

F7b(n) � Ig(n) −
π2 exp(

���
2/3

√
π

�
n

√
)

24
�
3

√
n
2
C7b(n)

. (55)

to h(n) when 1000 ≤n≤ 10000 are shown in Figures 23 and
24 (page 16), respectively. In this interval (1000, 10000),
F7a(n) is obviously more accurate than F7b(n). When n≤
1000, the relative error of F7a(n) + 1/2  and F7b(n) + 1/2 

is shown in Table 12 (page 15) and Table 13 (page 15). In this
case, F7b(n) is better than F7a(n). However, neither of them
is as good as Ig1(n) or Ig2(n) although they are more
complicated than Ig1(n) and Ig2(n).

3.5. Estimate h(n) When n≤ 100. All the estimation func-
tions for h(n) found now are with very good accuracy when
n is greater than 1000, but they are not so accurate when
n< 50, especially when n< 25. Although Ig1′(n) and Ig2′(n)

are better than others, the relative error is still greater than 1
when n< 40.

When n< 40, it is too difficult to fit
π exp(π

���
2/3

√ �
n

√
)/12

�
2

√
h(n) − n3/2 by a simple smooth

function with high accuracy, as shown in Figure 25 (on page
16). (e points (n, π exp(π

���
2/3

√ �
n

√
)/12

�
2

√
h(n) − n3/2)

(n � 3, 4, · · ·, 100) are not so complicated (as shown in
Figure 25). It seems that we can fit them by a simple
piecewise function with 2 pieces, as the even points (where n

is even) lie roughly on a smooth curve, so do the odd points.
If we try to fit them, respectively, we will have the fitting
function as follows:
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Figure 22: (e relative error of Ig2(n) when 1000 ≤n≤ 10000, step 300.

Table 10: (e relative error of Ig2(n) to h(n) when n≤ 1000.

N Rel-Err (%) n Rel-Err (%) n Rel-Err n Rel-Err n Rel-Err
1 16 − 2.49 40 − 0.21% 220 2.15E − 06 520 1.78E − 07
2 − 18.69 17 2.99 50 − 9.06E − 04 240 1.76E − 06 540 1.83E − 07
3 19.75 18 − 2.59 60 − 4.33E − 04 260 1.46E − 06 560 1.59E − 07
4 − 13.56 19 2.48 70 − 1.80E − 04 280 1.20E − 06 580 1.51E − 07
5 22.51 20 − 1.83 80 − 8.70E − 05 300 9.94E − 07 600 1.32E − 07
6 − 14.58 21 1.46 90 − 4.13E − 05 320 8.51E − 07 640 1.03E − 07
7 17.43 22 − 1.15 100 − 1.68E − 05 340 7.18E − 07 680 5.80E − 08
8 − 8.89 23 1.37 110 − 5.98E − 06 360 6.14E − 07 720 6.80E − 08
9 7.06 24 − 1.32 120 − 7.10E − 07 380 5.23E − 07 760 6.70E − 08
10 − 5.09 25 1.18 130 2.07E − 06 400 4.61E − 07 800 5.10E − 08
11 7.23 26 − 0.82 140 3.17E − 06 420 3.90E − 07 840 5.40E − 08
12 − 6.53 27 0.74 150 3.54E − 06 440 3.34E − 07 880 − 4.30E − 09
13 6.16 28 − 0.66 160 3.59E − 06 460 2.96E − 07 920 7.00E − 09
14 − 3.38 29 0.72 180 3.16E − 06 480 2.50E − 07 960 2.80E − 08
15 2.67 30 − 0.66 200 2.64E − 06 500 2.22E − 07 1000 3.30E − 08
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C8(x) �
1.942141112 × x − 0.4796781366 ×

��
x

√
+ 8.291226268, n � 3, 5, 7, . . . , 99;

1.803056782 × x + 2.356539877 ×
��
x

√
− 6.043824511, n � 4, 6, 8, . . . , 100.

 (56)

Hence, we can calculate h(n) (3≤ n≤ 100) by

h(n) ∼ Ig0(n) �
π exp(

���
2/3

√
π

�
n

√
)

12
�
2

√
n
3/2

+ C8(n) 
, 3≤ n≤ 100. (57)

Considering that h(n) is an integer, we can take the
round approximation of equation (57):

Ig0′ (n) �
π exp(

���
2/3

√
π

�
n

√
)

12
�
2

√
n
3/2

+ C8(n) 
+
1
2

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, 3≤ n≤ 100. (58)

Table 11: (e relative error of Ig2(n) + 1/2  to h(n) when n≤ 30.

n Rel-Err (%) n Rel-Err (%) n Rel-Err (%) n Rel-Err (%) n Rel-Err (%)
1 16 50.30 40 32.10 220 13.10 520 8.39
2 146.24 17 56.82 50 28.60 240 12.50 540 8.23
3 202.89 18 46.69 60 25.90 260 12.00 560 8.08
4 95.59 19 52.75 70 23.90 280 11.50 580 7.93
5 156.43 20 44.94 80 22.30 300 11.10 600 7.79
6 68.62 21 48.48 90 20.90 320 10.80 640 7.54
7 121.38 22 43.47 100 19.80 340 10.40 680 7.31
8 65.43 23 46.00 110 18.80 360 10.10 720 7.10
9 88.38 24 41.09 120 18.00 380 9.86 760 6.91
10 62.58 25 43.68 130 17.20 400 9.60 800 6.73
11 79.47 26 39.93 140 16.60 420 9.36 840 6.56
12 53.29 27 41.27 150 16.00 440 9.14 880 6.41
13 70.98 28 38.50 160 15.40 460 8.93 920 6.27
14 53.12 29 39.70 180 14.50 480 8.74 960 6.13
15 60.35 30 37.00 200 13.70 500 8.56 1000 6.01
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Figure 23: (e relative error of F7a(n) when 1000 ≤n≤ 10000, step 300.
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Figure 24: (e relative error of F7b(n) when 1000 ≤n≤ 10000, step 300.
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Here, n begins from 3, not 1 or 2, because (Ig0′ (1) −

h(1))/h(1) is meaningless since h(1) � 0, and Ig0′ (2) differs
from h(2) a lot. Besides, the value of h(1) and h(2) is clear by
definition, so there is no need to use a complicated formula
to estimate them.

(e relative error of Ig0(n) (or Ig0′ (n)) to h(n) is shown
in Table 14 (or Table 15) on page 17. Compared them
with Table 11 on page 15, we will find that when n≥ 80,
Ig2′ (n) is more accurate than Ig0′ (n); when n< 80, Ig0′ (n) is
better.

Table 12: (e relative error of F7a(n) + 1/2  to h(n) when n≤ 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 — 16 0 40 − 8.13E − 04 220 − 1.74E − 06 520 3.10E − 07
2 100% 17 4.55% 50 − 3.26E − 04 240 − 1.51E − 06 540 3.29E − 07
3 100% 18 − 1.14% 60 − 1.49E − 04 260 − 1.25E − 06 560 3.42E − 07
4 50% 19 3.81% 70 − 2.81E − 05 280 − 9.91E − 07 580 3.51E − 07
5 50% 20 − 0.73% 80 − 4.62E − 06 300 − 7.56E − 07 600 3.56E − 07
6 0 21 2.42% 90 3.46E − 06 320 − 5.49E − 07 640 3.57E − 07
7 50% 22 − 0.48% 100 6.70E − 06 340 − 3.72E − 07 680 3.49E − 07
8 0 23 1.98% 110 5.27E − 06 360 − 2.23E − 07 720 3.36E − 07
9 12.5% 24 − 0.63% 120 3.37E − 06 380 − 9.87E − 08 760 3.19E − 07
10 0 25 1.83% 130 1.93E − 06 400 3.54E − 09 800 3.00E − 07
11 14.29% 26 − 0.21% 140 5.77E − 07 420 8.70E − 08 840 2.80E − 07
12 0 27 1.22% 150 − 4.01E − 07 440 1.55E − 07 880 2.59E − 07
13 8.33% 28 − 0.28% 160 − 1.04E − 06 460 2.09E − 07 920 2.39E − 07
14 0 29 1.06% 180 − 1.72E − 06 480 2.51E − 07 960 2.19E − 07
15 4.88% 30 − 0.29% 200 − 1.86E − 06 500 2.85E − 07 1000 1.99E − 07

Table 13: (e relative error of F7b(n) + (1/2)  to h(n) when n⩽1000.

n Rel-Err n Rel-Err (%) n Rel-Err n Rel-Err n Rel-Err
1 — 16 − 1.82 40 − 0.16% 220 − 1.21E − 06 520 − 1.11E − 06
2 0 17 3.03 50 − 6.19E − 04 240 − 1.77E − 06 540 − 1.01E − 06
3 0 18 − 2.27 60 − 2.60E − 04 260 − 2.08E − 06 560 − 9.24E − 07
4 0 19 2.86 70 − 7.50E − 05 280 − 2.21E − 06 580 − 8.41E − 07
5 50% 20 − 1.46 80 − 1.85E − 05 300 − 2.24E − 06 600 − 7.64E − 07
6 0 21 1.82 90 3.62E − 06 320 − 2.20E − 06 640 − 6.25E − 07
7 25% 22 − 0.95 100 1.30E − 05 340 − 2.12E − 06 680 − 5.05E − 07
8 0 23 1.58 110 1.37E − 05 360 − 2.02E − 06 720 − 4.00E − 07
9 12.5% 24 − 1.25 120 1.21E − 05 380 − 1.90E − 06 760 − 3.10E − 07
10 0 25 1.31 130 1.01E − 05 400 − 1.78E − 06 800 − 2.31E − 07
11 7.14% 26 − 0.63 140 7.74E − 06 420 − 1.66E − 06 840 − 1.63E − 07
12 − 4.76% 27 0.87 150 5.68E − 06 440 − 1.54E − 06 880 − 1.04E − 07
13 8.33% 28 − 0.56 160 3.97E − 06 460 − 1.42E − 06 920 − 5.24E − 08
14 − 2.94% 29 0.83 180 1.40E − 06 480 − 1.31E − 06 960 − 7.83E − 09
15 2.44% 30 − 0.58 200 − 2.22E − 07 500 − 1.21E − 06 1000 3.08E − 08

180
160
140
120
100

80
60
40
20

10 20 30 40 50 60 70 80 90 100
n

1
24 n32

1
3πe 6 n π

h (n)
–

Figure 25: (e graph of the data (n, C8(n)).
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4. Conclusion

We have presented a recursion formula and several
practical estimation formulae with high accuracy to cal-
culate the number h(n) of conjugate classes of derange-
ments of order n or the number of isotopy classes of 2 × n

Latin rectangles.
If we want to obtain the accurate value of h(n), we can

use the recursion formula (13) and write a program based on
it, while sometimes we need to know the estimation value in
a program for technique reason especially when we use a
general programming language.

If we want to obtain the approximation value of h(n) with
high accuracy, we can use formulae (29), (31), (36), and so on.

When 2≤ n≤ 80, we can use Ig0′ (n) (equation (58)), with
a relative error less than 0.11% (while 32≤ n≤ 80) or mainly
0 with very few exceptions (while 2≤ n≤ 31); when n> 80, we
can use Ig2′ (n) (equation (47)).

When n≥ 100, formulae Iga
′ (n) (equation (40)), Ig1′ (n)

(equation (44), F7a(n) (equation (54)), and F7b(n) (equation
(55)) are also very accurate although they are not as good as
equation (47).

With the asymptotic formula (26) described in [30], we
can obtain some estimation formulae with high accuracy
for some other types of restricted partition numbers by the

methods mentioned in this paper or in [1]. (e updated
version of this paper is shown on https://arxiv.org/abs/
1612.08186.

Data Availability

(efigures and tables used to support this study are included
within the article. (e other data used to support this study
are obtained from a program made by the first author.

Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

(is work was supported in part by the Fund of Research Team
of Anhui International Studies University, No. awkytd1909.

References

[1] W.-W. Li, “Estimation of the partition number: after hardy
and ramanujan,” 2016, https://arxiv.org/abs/1612.05526.

[2] M. Hall Jr., “A survey of combinatorial analysis,” in Some
Aspects of Analysis and Probability, Volume IV of Surveys in

Table 14: (e relative error of Ig0(n) to h(n) when n≤ 100.

n Rel-Err (%) n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 — 21 − 0.16% 41 − 5.72E − 04 61 − 1.04E − 04 81 7.19E − 05
2 — 22 0.12% 42 3.75E − 04 62 1.43E − 04 82 − 5.18E − 05
3 − 14.85 23 0.05% 43 − 4.68E − 04 63 − 1.04E − 04 83 8.12E − 05
4 12.72 24 − 0.28% 44 4.91E − 04 64 1.18E − 04 84 − 6.50E − 05
5 1.99 25 8.37E − 04 45 − 6.29E − 04 65 − 5.63E − 05 85 8.69E − 05
6 − 1.83 26 4.75E − 04 46 5.45E − 04 66 7.10E − 05 86 − 6.90E − 05
7 4.76 27 − 0.17% 47 − 4.45E − 04 67 − 2.40E − 05 87 8.65E − 05
8 − 0.64 28 6.69E − 04 48 3.17E − 04 68 5.74E − 05 88 − 7.40E − 05
9 − 0.92 29 − 3.78E − 04 49 − 3.42E − 04 69 − 1.67E − 05 89 9.01E − 05
10 0.69 30 − 4.43E − 04 50 3.79E − 04 70 4.05E − 05 90 − 8.07E − 05
11 1.44 31 − 1.98E − 04 51 − 3.98E − 04 71 1.30E − 05 91 9.09E − 05
12 − 2.46 32 4.21E − 04 52 3.55E − 04 72 6.81E − 06 92 − 8.24E − 05
13 1.86 33 − 0.12% 53 − 2.81E − 04 73 3.41E − 05 93 8.80E − 05
14 − 0.24 34 9.27E − 04 54 2.47E − 04 74 − 1.74E − 06 94 − 8.37E − 05
15 − 0.54 35 − 7.86E − 04 55 − 2.21E − 04 75 3.84E − 05 95 8.70E − 05
16 − 0.04 36 1.82E − 04 56 2.44E − 04 76 − 1.56E − 05 96 − 8.65E − 05
17 0.46 37 − 4.80E − 04 57 − 2.25E − 04 77 5.70E − 05 97 8.44E − 05
18 − 0.67 38 6.53E − 04 58 2.29E − 04 78 − 3.58E − 05 98 − 8.56E − 05
19 0.47 39 − 9.11E − 04 59 − 1.55E − 04 79 6.90E − 05 99 7.92E − 05
20 − 0.28 40 6.34E − 04 60 1.44E − 04 80 − 4.41E − 05 100 − 8.48E − 05

Table 15: (e relative error of Ig0′ (n) to h(n) when n≤ 100.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 — 9 0 17 0 25 0 33 − 0.11%
2 — 10 0 18 − 1.14% 26 0 34 9.23E-04
3 0 11 0 19 0 27 − 0.17% 35 − 7.77E-04
4 0 12 − 4.76% 20 0 28 0 36 3.23E-04
5 0 13 0 21 0 29 0 37 − 5.46E-04
6 0 14 0 22 0 30 0 38 6.85E-04
7 0 15 0 23 0 31 0 39 − 9.67E-04
8 0 16 0 24 − 0.31% 32 0.07% 40 6.50E-04

Journal of Mathematics 19

https://arxiv.org/abs/1612.08186
https://arxiv.org/abs/1612.08186
https://arxiv.org/abs/1612.05526


Applied Mathematics, I. Kaplansky, Ed., pp. 35–104, John
Wiley & Sons, New York, NY, USA, 1958.

[3] E. W. Weisstein: “Partition function P.” from MathWorld–a
wolfram web resource,” 2015, Internet: http://mathworld.
wolfram.com/PartitionFunctionP.html.

[4] N. J. A. Sloane: A000041, number of partitions of n (the
partition numbers). (Formerly M0663 N0244) , in “(e On-
Line Encyclopedia of Integer Sequences (OEIS
\circledR)”.2015.

[5] Anonymous, “Bibliography on Partitions” in “Mathematical
BBS”, 2007, http://felix.unife.it/Root/d-Mathematics/d-
Number-theory/b-Partitions.

[6] M. Newman, “Weighted restricted partitions,” Acta Arith-
metica, vol. 5, no. 4, pp. 371 – 380, 1959.

[7] D. B. Lahiri, “Some restricted partition functions: congru-
ences modulo 3,” Pacific Journal of Mathematics, vol. 28, no. 3,
pp. 575 – 581, Article ID 05602, 1969.

[8] D. B. Lahiri, “Some restricted partition functions: congru-
ences modulo 5,” Journal of the Australian Mathematical
Society, vol. 9, pp. 424 – 432, 1969.

[9] D. B. Lahiri, “Some restricted partition functions: congru-
ences modulo 7,” Transactions of the American Mathematical
Society, vol. 140, pp. 475 – 484, Article ID 0242784, 1969.

[10] R. Jakimczuk, “Restricted partitions: elementary methods,”
International Journal of ContemporaryMathematical Sciences,
vol. 4, no. 2, pp. 93–103, 2009.

[11] B. Kronholm, “A result on ramanujan-like congruence
properties of the restricted partition function P (n, m) across
both variables,” INTEGERS: 1e Electronic Journal of Com-
binatorial Number 1eory, vol. 12, p. A63, 2012.

[12] A. Folsom, Z. A. Kent, and K. Ono, “ℓ-adic properties of the
partition function,” Advances in Mathematics, vol. 229,
pp. 1586 –1609, 2012.

[13] E. Belmont, H. Lee, A. Musat, and S. Trebat-Leder, “ℓ-adic
properties of the partition function,” Monatshefte für
Mathematik, vol. 173, pp. 1–34, 2014.

[14] K.(anigasalam, “Congruence properties of certain restricted
partitions,” Mathematics Magazine, vol. 47, pp. 154 –156,
1974.

[15] D. R. Hickerson, “A note on congruence properties of certain
restricted partitions,” Mathematics Magazine, vol. 48, no. 2,
p. 102, 1975.

[16] M. Culek and A. Knecht: Congruences of restricted partition
functions.”, 2002, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=%2010.1.1.509.2649&rep=rep1&type=pdf.

[17] B. Kronholm, “On congruence properties of p(n,m),” Pro-
ceedings of the American Mathematical Society, vol. 133,
pp. 2891–2895, 2005.

[18] B. Kronholm, “On congruence properties of consecutive
values of p(n, m),” INTEGERS: 1e Electronic Journal of
Combinatorial Number 1eory, vol. 7, 2007.

[19] B. C. Berndt, “Ramanujan’s congruences for the partition
function, modulo 5, 7, and 11,” International Journal of
Number 1eory, vol. 3, pp. 349 – 354, 2007.

[20] G. E. Andrews and B. C. Berndt, “Ramanujan’s unpublished
manuscript on the partition and tau functions,” in Ram-
anujan’s Lost Notebook: Part III, pp. 89–180, Springer Sci-
ence+Business Media, New York, NY, USA, 2012.

[21] B. Kronholm, “Generalized congruence properties of the
restricted partition function p(n, m),” 1e Ramanujan
Journal, vol. 30, pp. 425 – 436, 2013.

[22] N. J. A. Sloane: “Restricted partitions,” in OEIS wiki, 2011,
http://oeis.org/wiki/Restricted_partitions.

[23] D. M. Bressoud, “Integer partitions: restricted number and
part size,” in NIST Digital Library of Mathematical Functions
(DLMF), F. W. J. Olver, D. W. Lozier, and R. F. Boisvert, Eds.,
NIST, Gaithersburg, MD, USA, 2015.

[24] F. W. J. Olver, D. W. Lozier, and R. F. Boisvert, “Integer
partitions: other restrictions,” in NIST Digital Library of
Mathematical Functions (DLMF), F. W. J. Olver, D.W. Lozier,
and R. F. Boisvert, Eds., National Institute of Standards and
Technology (NIST), Gaithersburg, MD, USA, 2015.

[25] F. W. J. Olver, D. W. Lozier, and R. F. Boisvert, NIST
Handbook of Mathematical Functions, Cambridge University
Press, New York, NY, USA, 2010.

[26] A. Greenbaum and T. P. Chartier,Numerical Methods: Design,
Analysis, and Computer Implementation of Algorithms,
Princeton University Press, New Jersey, NJ, USA, 2012.

[27] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics
of Scientific Computing, 3rd Edition, vol. 2 of Pure and Applied
Undergraduate Texts, American Mathematical Society,
Providence, Rhode Island, USA, 2002.

[28] W. Lichten, Data and Error Analysis, Prentice Hall, Hoboken,
NJ, USA, Oct 1998.

[29] A. E. Ingham, “A tauberian(eorem for partitions,”Annals of
Mathematics, vol. 42, no. 5, pp. 1075 –1090, 1941.

[30] D. M. Kane, “An elementary derivation of the asymptotics of
partition functions,” 1e Ramanujan Journal, vol. 11,
pp. 49 – 66, 2006.

[31] G. H. Hardy and S. R. Ramanujan, “Asymptotic formulae in
combinatory analysis,” Proceedings of the London Mathe-
matical Society, vol. s2–17, no. 1, pp. 75–115, 1918.

[32] P. Erdős, “(e evaluation of the constant in the formula for
the number of partitions of n,” Annals of Mathematics. Second
Series, vol. 43, pp. 437 – 450, 1942.

[33] D. J. Newman, “(e evaluation of the constant in the formula
for the number of partitions of n,” American Journal of
Mathematics, vol. 73, pp. 599 – 601, 1951.

[34] D. J. Newman, “A simplified proof of the partition formula,”
1e Michigan Mathematical Journal, vol. 9, pp. 283 – 287,
1962.

[35] T. M. Apostol, “Functions of number theory, additive number
theory: unrestricted partitions,” in NIST Digital Library of
Mathematical Functions (DLMF), F. W. J. Olver, D.W. Lozier,
and R. F. Boisvert, Eds., NIST, Gaithersburg, MD, USA, 2015.

20 Journal of Mathematics

http://mathworld.wolfram.com/PartitionFunctionP.html
http://mathworld.wolfram.com/PartitionFunctionP.html
http://felix.unife.it/Root/d-Mathematics/d-Number-theory/b-Partitions
http://felix.unife.it/Root/d-Mathematics/d-Number-theory/b-Partitions
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.509.2649&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=%2010.1.1.509.2649&rep=rep1&type=pdf
http://oeis.org/wiki/Restricted_partitions


Research Article
Characterization of the Congestion Lemma on
Layout Computation

Jia-Bao Liu ,1 Arul Jeya Shalini ,2 Micheal Arockiaraj,3 and J. Nancy Delaila3

1School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
2Department of Mathematics, Women’s Christian College, Chennai 600006, India
3Department of Mathematics, Loyola College, Chennai 600034, India

Correspondence should be addressed to Arul Jeya Shalini; aruljeyashalini@gmail.com

Received 8 June 2021; Accepted 15 October 2021; Published 27 October 2021

Academic Editor: Firdous Shah

Copyright © 2021 Jia-Bao Liu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An embedding of a guest network GN into a host network HN is to find a suitable bijective function between the vertices of the
guest and the host such that each link of GN is stretched to a path in HN. *e layout measure is attained by counting the length of
paths in HN corresponding to the links in GN and with a complexity of finding the best possible function overall graph
embedding. *is measure can be computed by summing the minimum congestions on each link of HN, called the congestion
lemma. In the current study, we discuss and characterize the congestion lemma by considering the regularity and optimality of the
guest network. *e exact values of the layout are generally hard to find and were known for very restricted combinations of guest
and host networks. In this series, we derive the correct layout measures of circulant networks by embedding them into the path-
and cycle-of-complete graphs.

1. Introduction

Nowadays, there is an emerging demand for high-per-
formance concurrent functional in different fields which
can be successfully achieved through parallel processing
techniques. *e core of a parallel processing system is the
interconnected network by which the system processors
are connected. One of the important challenges in parallel
processing techniques is how to allocate the subprocesses
to the processors within the system in such a way that the
total communication cost is minimized. *is issue in
parallel processing can be reduced to a graph embedding
problem [1, 2]. For this purpose, the network topology is
formulated as a simple graph, in which the vertex set
denotes the system processors and the edge set denotes
the links connecting them.

In this paper, the collection of vertices and edges of a simple
graph network GN are, respectively, represented by V(GN)

and E(GN). A graph embedding of a guest network GN into a
host network HN is a kind of vertex and edge labeling denoted
by a 1 − 1 and ontomapping μ: V(GN)⟶ V(HN) together
with 1 − 1 mappingR: E(GN)⟶R(HN) such thatR(e) is

a μ(x) to μ(y) path in HN, where e � (x, y) and R(HN)

contains the collection of routes or paths in HN [2, 3]. *e
congestion of an edge s of HN is measured by counting the
routes in R(e){ }e∈E(GN) such that s is in the route R(e) and
denoted by ECμ(s). In other words,
ECμ(s) � | e ∈ E(GN): s ∈ E(R(e)){ }|.*e layout/wire length
[4, 5] of GN by embedding μ in HN is defined as

Lμ(GN, HN) � 
e∈E(GN)

|E(R(e))| � 
s∈E(HN)

ECμ(s). (1)

Let D be any subset of E(HN). If we represent
ECμ(D) � e∈DECμ(e), then Lμ(GN, HN) � 

p
i�1 ECf(Fi),

where E(HN) � F1, F2, . . . , Fp  is a partition. For λ≥ 1,
construct a set based on the edges of HN such that each
edge in HN is duplicated λ-times. Such a set is denoted by
Eλ(HN). *en,

Lμ(GN, HN) �
1
λ


s∈E(HN)

ECμ(s). (2)

Furthermore, if Eλ(HN) � D1, D2, . . . , Dm , then
Lμ(GN, HN) � (1/λ) 

m
i�1 ECμ(Di). *e correct layout of

GN by embedding in HN is measured by
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L(GN, HN) � min
μ

Lμ(GN, HN). (3)

*e main objective of parallel computing is to execute
embeddings with the correct layout, and we certainly fix the
accompanying function R such that each edge e of GN is to a
shortest R(e) path under μ, see Figure 1. Apart from that, the
important topological descriptor, Wiener index [6], which is
used in the characterization of chemical compounds can be
obtained through L(Kq, MS), where Kq is the complete
graph and MS is the considered molecular structure.

*eminimum layout problem plays an important role in
finding an optimal solution for very large-scale integration
(VLSI) chips physical layout [2], minimizing time delay of
simulations in parallel computer systems, computer aided
designs, structural engineering, cloning and visual stimuli
models, and parallel architecture [7, 8]. *e computation of
layout measure has been already studied in a variety of
papers, see [9, 10] and the references cited therein, for more
details. *e present study continues the layout computation
of circulant graphs into path- and cycle-of-complete graphs.

2. Congestion Lemma

*e combinatorial isoperimetric problems have emerged
with important applications in the fields of communication
systems and computer and physical sciences related disci-
plines. Harper [11, 12] has discovered the primary signifi-
cance of edge isoperimetric problem (EIP), and it has been
categorized into two types as follows [13].

Definition 1 (EIP(1)). For a graph network GN, if
F⊆V(GN), then ΘGN(F) � (v, w){ ∈ E(GN): v

∈ F&w ∉ F}. Given a positive integer k,
ΘGN(k) � min

F⊆V(GN), |F|�k
|ΘGN(F)|. *en, EIP(1) finds

F⊆V(GN) and |F| � k such that ΘGN(k) � |ΘGN(F)|.

Definition 2 (EIP(2)). For a graph network GN, if
F⊆V(GN), then IGN(F) � (v, w) ∈ E(GN): v, w ∈ F{ }.
Given a positive integer k, IGN(k) � max

F⊆V(GN), |F|�k
|IGN(F)|.

*en, EIP(2) finds F⊆V(GN) and |F| � k such that
IGN(k) � |IGN(F)|.

In such a case, F is identified as optimal set corre-
sponding to the EIP.

Lemma 1 (see [11]). (i) For a graph network GN,
ΘGN(V(GN) − F) � ΘGN(F) for all F⊆V(GN). (ii) IfGN is
an r-regular graph, |ΘGN(F)| + 2|IGN(F)| � r|F| and, for
any positive integer k, ΘGN(k) � rk − 2IGN(k).

*e minimum layout of the hypercube network by
embedding in a grid structure is derived using congestion
lemma [14]. *e generalized version of the congestion
lemma appeared in [15] and the modified version in [16].
Here, we present a more general result that exemplifies the
regularity and the optimality on the guest network.

In what follows, let GN and HN be two given networks
and F⊆E(HN). Suppose the removal of F from HN splits
the network into m components, namely,
HN1, HN2, . . . , HNm. A graph embedding μ of GN into
HN is F-repulsive if, when we let GNj � GN[μ− 1(HNj)],
1≤ j≤m, the following conditions hold:

(i) If e ∈ E(GNj), 1≤ j≤m, then |E(R(e))∩F| � 0
(ii) If e � (v, w), such that v ∈ V(GNj) and

w ∈ V(GNk), for j< k, then |E(R(e)) ∩F| � 1

Lemma 2. Let F⊆E(HN) and μ be an F-repulsive graph
embedding of GN into HN. We have ECμ(F) �

|E(GN)| − 
m
j�1 |E(GNj)|. Moreover, among all the graph

embeddings of GN into HN, ECμ(F) is minimum if and only
if the value 

m
j�1|E(GNj)| is maximum among all partitions

of V(GN) � ∪ m
j�1Wj with |Wj| � |V(GNj)|, j � 1, 2, . . . , m.

Proof. Let X � (x, y) ∈ E(GN): x ∈ V(GNj), y ∈

V(GNk) for j< k}. Since any edge (x, y) in GN either be-
longs to one of GNj or x in GNj and y in GNk for some j

and k, we obtain

|E(GN)| � 

m

j�1
E GNj 



 +|X|. (4)

We now easily compute ECμ(F) bearing the conditions of
the F-repulsive embedding. By assumption (i), the contribution
to ECμ(F) from the edges of GNj, 1≤ j≤m, is zero. By as-
sumption (ii), every edge (x, y) of X increases ECμ(F) by 1.
*us, ECμ(F) � |X| � |E(GN)| − 

m
j�1 |E(GNj)|.

Assume that ECμ(F) is minimum. Suppose we had a
partition giving a larger value than 

m
j�1 |E(GNj)|, and we

could define an embedding β using this partition such that
ECβ(F)<ECμ(F), a contradiction. Conversely, let ECμ(F)

be not minimum. Suppose there exists a graph embedding c

such that ECc(F)<ECμ(F), and consequently, we can find a
partition with a larger value than 

m
j�1 |E(GNj)|, which is

not possible because of the F-repulsive embedding under
μ. □

Lemma 3. Let F⊆E(HN) and μ be an F-repulsive graph
embedding of GN into HN. Among all the graph embeddings
of GN into HN, (a) ECμ(F) is minimum if GNjs are optimal
with respect to EIP(1) and ECμ(F) � (1/2) 

m
j�1ΘGN(mj),

mj � |V(GNj)|, and (b) when GN is an r-regular network,
ECμ(F) is minimum if GNjs are optimal with respect to
EIP(2) and ECμ(F) � (r/2)|V(GN)| − 

m
j�1 |E(GNj)|.

Proof. We assume that GNjs are optimal sets with respect
to EIP(1). Such a case results in 

m
j�1ΘGN(mj) is mini-

mum. Hence, ECμ(F) � (1/2) 
m
j�1ΘGN(mj) is minimum

[15]. By extending the idea to EIP(2), we can easily derive
the case of r-regular network by applying the simple fact
2|E(GN)| � r|V(GN)|. □

It is interesting as well as crucial to note that all GNjs are
not optimal, yet imply that ECμ(F) is minimum. Further-
more, when m � 2, the above lemma is reduced to the
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modified congestion lemma [16], as in Case (a), and the
congestion lemma [14], as in Case (b).

3. Layout Computation

*e purpose of the section is to derive the layout of circulant
networks into a few graph structures generated from the
path and the cycle. We begin with the basic results on
circulant networks [2, 17, 18].

Definition 3 (see [2]). A circulant network, denoted by
CN(q; ± D), D⊆ 1, 2, . . . , q/2 , q≥ 3, is constructed
from V(CN) � 0, 1, . . . , q − 1  such that E(CN) � { (i, j):

|j − i| ≡ d(mod q), d ∈ ± D}.

With the optimum fault tolerance and best routing
functionality, the circulant network is considered an ex-
cellent network over the years on account of its applications
in the areas of computer binary code designs and

telecommunication network systems. Particularly, circulant
network is a natural generalized form of the double loop
network, and in addition, a matrix representation generates
the circulant if all its rows are periodic rotations of the first
one. From the construction of circulant networks, one can
easily see that CN(q; ± 1) and CN(q; ± 1, 2, . . . , q/2 )

are, respectively, the cycle Cq and the complete graph Kq. In
our study, we denote the cycle CN(q; ± 1) as a peripheral
cycle. From the symmetry of circulant network, we have that
CN(q; ± 1, 2, . . . , l{ }), 1≤ l< q/2, is a regular network of
degree 2l.

Lemma 4 (see [19]). A set of m consecutive vertices of
CN(q; ± 1), 1≤m≤ q, is an optimal set with respect to
EIP(2) in G(q; ± D), D � 1, 2, . . . , l{ }, 1≤ l< q/2.

Lemma 5 (see [19]). For a circulant network CN(q; ± D),
D � 1, 2, . . . , l{ } and 1≤ l< q/2, 1≤m≤ q, we have

ICN(m) �

m
(m − 1)

2
; m≤ l + 1

ml −
l(l + 1)

2
; l + 1<m≤ q − l

1
2

(q − m)
2

+(4l + 1)m − (2l + 1)q ; q − l<m≤ q

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Definition 4. A path-of-complete graph is obtained by
unifying a bone path v1, v2, . . . , vm and m − 1 complete
graphs Kq1

, Kq2
, . . . , Kq(m− 1)

such that the edge (vi, vi+1),
1≤ i≤m − 1, of the bone path shares an edge of the complete
graph Kqi

. We denote it by PC(m; q1, q2, . . . , qm− 1). In an
analogous way, we can define a cycle-of-complete graph by
combining a bone cycle of length m and Kq1

, Kq2
, . . . , Kqm

complete graphs. *is graph is denoted by
CC(m; q1, q2, . . . , qm).

Clearly, the number of vertices in PC(m; q1, q2, . . . , qm− 1)

and CC(m; q1, q2, . . . , qm) are q1 + q2 + · · · + qm− 1 − (m − 2)

and q1 + q2 + · · · + qm − m, respectively. *e different cases of
path- and cycle-of-complete graphs are shown in Figure 2. In
the literature, these structures are sometimes called necklace
graphs and also sharing between graphs by vertices, see [20, 21].

In what follows, q0 � 0 and qα � qα− m, α>m.

Theorem 1. :e minimum layout of circulant network
GN � CN(q; ± 1, 2, . . . , l{ }), 1≤ l< q/2, into path-of-
complete graph HN � PC(m; q1, q2, . . . , qm− 1) such that q �

q1 + q2 + · · · + qm− 1 − (m − 2) is given by
L(GN, HN) � m|E(G)| − 

m
i�1[IG(q1 + q2 + · · · + qi− 1 − i +

2) + IG(q − (q1+ q2 + · · · + qi − i))].

0

1

2

3

4

5

6

7
0 1 2 3

4567

Figure 1: *e correct layout of the embedding circulant network into path by μ(x) � x.
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Proof. We begin with the embedding method of GN and
HN. Label the peripheral cycle vertices ofGN as 0, 1, . . . , q −

1 and the bone path vertices vi, 1≤ i≤m, of HN as q1 +

q2 + · · · + qi− 1 − i + 1 in such a way that label the vertices
(except on the path) of ith complete graph Kqi

, 1≤ i≤m − 1,
from q1 + q2 + · · · + qi− 1 − i + 2 to q1 + q2 + · · · + qi − i − 1.
We prove that the graph embedding μ of GN into HN

defined by μ(w) � w yields the minimum layout. For
1≤ i≤m − 1, let Si be the set of edges in the complete graph
Kqi

. *en, HN − Si reduced to qi components
HN1, HN2, . . . , HNqi

with V(HN1) � 0, 1, . . . , q1 + q2

+ · · · + qi− 1 − i + 1}, 2≤ j≤ qi − 1, V(HNj) � q1 + q2+

· · · + qi− 1 − i + j}, and V(HNqi
) � q1 + q2+ · · · + qi − i, q1 +

q2 + · · · + qi − i + 1, . . . , q − 1}. By Lemma 4, the induced
subgraph by μ− 1(v): v ∈ V(HNi)  on GN is an optimal set.
We now conclude that μ is Si-repulsive embedding of GN

into HN. By Lemma 3, ECμ(Si) is minimum and ECμ(Si) �

|E(GN)| − [IGN(q1+ q2 + · · · + qi− 1 − i + 2) + IGN(q − (q1 +

q2+ · · · + qi − i))]. *erefore, L(GN, HN) � 
m
i�1 ECμ(Si) �

m|E(GN)| − 
m
i�1[IGN(q1 + q2 + · · · + qi− 1 − i + 2) +IGN(q −

(q1 + q2 + · · · + qi − i))]. □

Theorem 2. :e minimum layout of circulant network
GN � CN(q; ± 1, 2, . . . , l{ }), 1≤ l< q/2, into cycle-of-
complete graph HN � CC(m; q1, q2, . . . , qm) such that q �

q1 + q2 + · · · + qm− 1 − (m − 1) is given by

L(GN, HN) �
m

2
|E(GN)| −



m/2

i�1
IGN qi+1 + · · · + qm/2+i− 1 − m/2 + 1( 

+IGN qm/2+i+1 + · · · + qi− 1 − m/2 + 1(  : m even

1
2



m

i�1
IGN qi+1 + · · · + q(m− 1)/2+i− 1 − (m − 3)/2 + 1 

+IGN q(m− 1)/2+i+1 + · · · + qi− 1 − (m − 1)/2 + 1  : m odd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Proof. We first give the labeling of GN into HN and
followed by embedding algorithm. Label the peripheral cycle
vertices of GN as 0, 1, . . . , q − 1 and the bone cycle vertices
vi, 1≤ i≤m, of HN as q1 + q2 + · · · + qi− 1 − i + 1 along the
vertices (except on the cycle) of ith complete graph Kqi

,
1≤ i≤m, from q1 + q2 + · · · + qi− 1 − i + 2 to
q1 + q2 + · · · + qi − i − 1. Let μ be an embedding from GN

into HN defined by μ(w) � w.

Case 1 (m even): for 1≤ i≤m/2, let Si be the set of edges
in the complete graphs Kqi

and Kqm/2+i
. *en, HN − Si

reduced to qi + qm/2+i − 2 number of components HNis
in which qi + qm/2+i − 4 components have cardinalities
one each and the remaining components with qi+1 +

· · · + qm/2+i− 1 − m/2 + 1 and qm/2+i+1 + · · · + qi− 1 − m/2 +

1 vertices. By Lemma 4, the induced subgraph by
μ− 1(v): v ∈ V(HNj)  on GN is an optimal set.
*erefore, μ is Si-repulsive embedding of GN into HN.

By Lemma 3, ECμ(Si) is minimum and
ECμ(Si) � |E(GN)| − [IGN(qi+1 + · · · + qm/2+ i − 1 − m

/2 + 1) + IGN(qm/2+i+1 + · · · + qi− 1 − m/2 + 1)]. By the
construction of the edge cuts, we infer that
Si: 1≤ i≤m/2  is a partition of E(HN), and hence,

L(GN, HN) � 
m/2
i�1 ECμ(Si) � (m/2)|E(GN)| − 

m/2
i�1

[IGN(qi+1 + · · · + qm/2+i− 1 − m/2 + 1) + IGN (qm/2+i+1 +

· · · + qi− 1 − m/2 + 1)].
Case 2 (m odd): for 1≤ i≤m, let Si be the set of edges in
the complete graphs Kqi

and Kq(m− 1)/2+i
. *en, HN − Si

reduced to qi + q(m− 1)/2+i − 2 number of components
HNjs in which qi + q(m− 1)/2+i − 4 components have
cardinalities one each and the remaining components
with qi+1 + · · · + q(m− 1)/2+i− 1 − (m − 3)/2 + 1 and
q(m− 1)/2+i+1 + · · · + qi− 1 − (m − 1)/2 + 1 vertices. By
Lemma 4, the induced subgraph by
μ− 1(v): v ∈ V(HNj)  is an optimal set. *erefore, μ is

(a) (b) (c)

Figure 2: Path-of-complete graphs. (a) PC(7; 3(6 − times)). (b) PC(7; 4(6 − times)). (c) Cycle-of-complete graph CC(6; 4(6 − times)).
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Si-repulsive embedding of GN into HN. By Lemma 3,
ECμ(Si) is minimum and ECμ(Si) � |E(GN)| −

[IGN(qi+1 + · · · + q(m− 1)/2+i− 1 − (m − 3)/2 + 1) + IGN

(q(m− 1)/2+i+1 + · · · + qi− 1− (m − 1)/2 + 1)]. We note that
Si: 1≤ i≤m  is a partition of E2(HN), and hence,

L(GN, HN) � (1/2) 
m
i�1 ECμ(Si) � (m/2)|E(GN)| −

(1/2) 
m
i�1[IGN(qi+1 + · · · + q(m− 1)/2+i− 1 − (m − 3)/2 + 1)

+ IGN(q(m− 1)/2+i+1 + · · · + qi− 1 − (m − 1)/2 + 1)]. □

4. Conclusion

In analyzing the structural properties of a connected net-
work, the measure such as graph embedding is of greater
interest. As we know that the path, cycle, complete, and
circulant graphs are important interconnection networks
due to their simplicity, in this article, we successfully em-
bedded circulant graphs into path- and cycle-of-complete
graphs with minimum layout by the way of characterizing
the congestion lemma with respect to regularity and opti-
mality on the guest network.
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For a connected simple graphG, a nonempty subsetS of V(G) is a connected safe set if the induced subgraphG[S] is connected
and the inequality |S|≥ |D| satisfies for each connected componentD ofG∖S whenever an edge ofG exists betweenS andD. A
connected safe set of a connected graphGwith minimum cardinality is called the minimum connected safe set and that minimum
cardinality is called the connected safe numbers. We study connected safe sets with minimal cardinality of the ladder, sunlet, and
wheel graphs.

1. Introduction

A facility location problem (FLP) means to place and
manage a certain facility in such a way as to get or achieve the
maximum objective with minimizing cost. For further study
of FLPs, we refer to the literature of combinatorial opti-
mization [1]. Fujita et al. [2] studied the FLP and proposed a
notion of a safe set of graphs.

We refer to [3] for terminology and notation not
explained here. *roughout the paper, we will consider only
simple and connected graphs. Let G be a graph with V(G)

and E(G) as its vertex and edge set, respectively. *e
number of vertices in a graph G is the order of G. For
v ∈ V(G), N(v) � u ∈ V(G): u is adjacent to v  and
N[v] � N(v)∪ v{ } is called open and closed neighborhood
of v inG, respectively. For v ∈ V(G), the degree of vertex v is
defined as deg(v) � |N(v)|. For subset S ⊂ V(G), G[S]

denotes the subgraph induced byS. For subset X ⊂ V(G), if
G∖X is disconnected, then X is known as vertex cut. *e
vertex connectivity denoted by κ(G) is defined as
min |X|: X is vertex cut{ }. Let C(G) denote the set of all
connected components of G.

Suppose A and B are disjoint subgraphs of G; then, the
set of edges of E(G) that joins some vertices of A and B is

denoted by E(A, B). A nonempty subset S of V(G) is a
safe set if, for each X ∈ C(G∖S) and each Y ∈ C(G[S]),
the inequality |Y|≥ |X| holds whenever E(X, Y)≠∅. If
G[S] is connected, then S is known as a connected safe
set. For any graph G, s(G) � min |S|: S is a safe set of G{ }

and cs(G) � min |S|: S is a connected safe set of G{ } are
known as the safe number and connected safe number,
respectively. It is clear from the definition that s(Pn) �

cs(Pn) � ⌈n/3⌉ and s(Cn) � cs(Cn) � ⌈n/2⌉, where Pn and
Cn are the path and cycle of order n, respectively. Fujita
et al. [2] proved that for any graph G, s(G)≤
cs(G)≤ 2s(G) − 1.

In general, there is no algorithm available to compute a
safe number and a connected safe number of a graph G. It
was shown in [2] that the computation of safe number and
connected safe number is an NP-complete problem. But, on
the contrary, Fujita et al. [2] show that cs(G) can be
computed in linear time in case of trees. Also, Árueda et al.
[4] show that s(G) can be computed in O(n5) time on trees.
Any tree T with one vertex of degree not more than 3 holds
that s(T) � cs(T). Motivated by this equality, for the Car-
tesian product of two complete graphs, sayG, Kang et al. [5]
proved that the safe number s(G) and connected safe
number cs(G) are also the same.
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For a vertex-weighted graph, Bapat et al. [6] presented
the weighted safe set problem by considering the graph as a
community network. For further study about the weighted
safe set, we refer to [7–9]. Furthermore, the study on safe set
and weighted safe set was conducted by several authors. *e
parameterized complexity of safe set problems was inves-
tigated by Belmonte et al. [10]. Macambiraa et al. [11]
presented a mixed integer linear programming formulation
and an algorithm for both the weighted safe set and the safe
set problems. Fujita and Furuya [12] investigated the
comparison between integrity and the safe number of
graphs.

In this paper, we describe the connected safe set and
compute the connected safe number of ladder, wheel, and
sunlet graphs, respectively. *e paper is concluded in Sec-
tion 5.

2. Safe Set of the Ladder Graph

For convenience, we consider the ladder graph G of order
n≥ 4 with vertex set V(G) � v1, v2, . . . , vn  labeled as shown
in Figure 1 [13].

Theorem 1. LetG be a ladder graph; then, the connected safe
set is

S �
v⌊n/8⌋+2, v⌊n/8⌋+3, . . . , v⌊n/8⌋+⌊n/4⌋+1, vn− ⌊n/8⌋− ⌊n/4⌋, vn− ⌊n/8⌋− 1 , if n ≡ 0, 2, 6(mod8),

v⌊n/8⌋+2, v⌊n/8⌋+3, . . . , v⌊n/8⌋+⌊n/4⌋, vn− ⌊n/8⌋− ⌊n/4⌋+1, vn− ⌊n/8⌋− 1 , otherwise.

⎧⎪⎨

⎪⎩
(1)

Proof 1. *e proof is divided into two cases:

Case 1: assume that n ≡ 0, 2, 6(mod8). Let
S � v⌊n/8⌋+2, v⌊n/8⌋+3 , . . . , v⌊n/8⌋+⌊n/4⌋+1 , vn− ⌊n/8⌋− ⌊n/4⌋,

vn− ⌊n/8⌋− 1} be a subset of V(G). Clearly, v1vn,

v2vn− 1, . . . , vn/2v(n/2)− 1 ∈ E(G). Hence, v⌊n/8⌋+2 and
vn− ⌊n/8⌋− 1 as well as v⌊n/8⌋+⌊n/4⌋+1 and vn− ⌊n/8⌋− ⌊n/4⌋ are
adjacent. *erefore, G[S] is connected. Now,
C(G∖S) � D1,D2,D3 , where D1 � vn− ⌊n/8⌋− ⌊n/4⌋+1,

vn− ⌊n/8⌋− ⌊n/4⌋+2, . . . , vn− ⌊n/8⌋− 2}, D2 v⌊n/8⌋+⌊n/4⌋+2,

v⌊n/8⌋+⌊n/4⌋+3, . . . , vn− ⌊n/8⌋− ⌊n/4⌋− 1}, and D3 � v1, v2, . . . ,

v⌊n/8⌋+1, vn− ⌊n/8⌋, . . . , vn− 1, vn}. It is easy to see that
|S| � ⌊n/4⌋ + 2, |D1| � ⌊n/4⌋ − 2, |D2| � n − 2⌊n/8⌋

− 2⌊n/4⌋ − 2, and |D3| � 2⌊n/8⌋ + 2. *is implies
|Di|≤ |S| and E(Di,S)≠∅ for 1≤ i≤ 3. Hence, both
the conditions of connected safe set are satisfied.
Case 2: the similar arguments might work for the other
case. □

Theorem 2. For a ladder graph G of order n, the following
holds:

cs(G) �

⌈
n

3
⌉, if 4≤ n≤ 8,

⌊
n

4
⌋ + 2, if n≥ 10 and n ≡ 0, 2, 6(mod8),

⌊
n

4
⌋ + 1, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Proof 2. Assume that S is a connected safe set of cardinality
cs(G) and C(G∖S) � D1,D2, . . . ,Dt , ordered so that
|D1|≤ |D2|≤ · · · ≤ |Dt|.

If t � 1, then either v1, vn ∈ S or vn/2, vn/2+1 ∈ S. We
assume that v1, vn ∈ S. Let u ∈ D1 such that E( u{ },S)≠∅.
*en, by removing vertex v1 from S and adding vertex u in

S, we get a connected safe set S∗ and for S∗,
|D1|<max |D||D ∈ C(G∖S∗){ }, which is a contradiction.
Hence, t≥ 2.

Consider that n≥ 10 and n ≡ 0, 2, 6(mod8).
We want to show that |S| � ⌊n/4⌋ + 2. Suppose on the

contrary |S| � ⌊n/4⌋ + 1 since κ(G) � 2.
Let X � vi, vj |vi, vj ∈ V(G) and i + j � n + 1  be the

vertex cut sets, where 1< i< n/2 and n/2< j< n and clearly
|X| � n/2 − 2. We assume that S contains Xl, where l≥ 2.
Suppose, for contradictions l � 1, clearly t � 2. Let w be a
vertex of D2 such that E(X1, w{ }) � ∅ and E(S, w{ })≠∅.
*en, there exists a vertex x of S such that we have the
following:

(i) S − x{ } is connected
(ii) X1 ∩ x{ } � ∅
(iii) E( w{ }, x{ }) � ∅

*en, by removing vertex x from S and adding vertex w

in S, we get a connected safe set S∗ and for S∗, we have
|D1|<max |D||D ∈ C(G∖S∗){ }, which is a contradiction.
Hence, l≥ 2. It is sufficient to show for X1 and X2 that
|S| � cs(G). Note that if E(X1, X2)≠∅, then t � 2. Hence,
we assume that E(X1, X2) � ∅. Suppose that vi1

, vi2
∈ S

such that E( vi1
 , X1)≠∅ and E( vi2

 , X2)≠∅ since S is
connected. *erefore, half vertices between X1 and X2
belong to S and the other half belongs to a component of
G∖S (sayD1). *is implies |D1|≤ |S| − 4 � ⌊n/4⌋ − 3. Note
that |D2|≤ |D3|. *us, |D3|≥ (n − |S| − |D1|)/2 � (n − 2
⌊n/4⌋ + 2)/2≥ |S|, a contradiction. Hence, |S| � ⌊n/4⌋ + 2.

*e similar arguments might work for other cases. □

3. Safe Set of the Wheel Graph

For convenience, we consider the wheel graph G of order
n≥ 4 with vertex set V(G) � v1, v2, . . . , vn  labeled as shown
in Figure 2 [14].
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Theorem 3. Let G be a wheel graph. 3en,

S � v1, v1+k, v1+2k, . . . , v1+(k− 3)k, v1+(k− 4)k, vj, vn , (3)

where

vj �
vn− 1, if 2 +(k − 3)k≥ n,

v1+(k− 3)k, otherwise,
⎧⎨

⎩ (4)

where k � 
�
n

√
 + 1 and 1 + (k − 4)k< j< n.

Proof 3. Let S � v1, v1+k, v1+2k, . . . , v1+(k− 3)k, v1+(k− 4)k,

vj, vn} be a subset of V(G). Since deg(vn) � n − 1, this
implies G[S] is connected. *erefore, C(G∖S) � D1,

D2, . . . ,Dl}, where D1 � v2, v3, . . . , vk , D2 � v2+k, v3+k,

. . . , v2k}, . . ., Dl− 2 � v2+(k− 5)k, v3+(k− 5)k, . . . , v(k− 4)k , Dl− 1 �

v2+(k− 4)k, v3+(k− 4)k, . . . , vj− 1 , andDl � vj+1, vj+2, . . . , vn− 1}.
Now, |Di| � k − 1 � 

�
n

√
 � |S| for all 1≤ i≤ l − 2. Hence,

we have two cases:

Case 1: let 2 + (k − 3)k≥ n; then, vj � vn− 1; this implies
Dl � ∅. Hence, Dl− 1 � v2+(k− 4)k, v3+(k− 4)k, . . . , vn− 2 

and |Dl− 1| � n − (k − 4)k − 3 � n − (
�
n

√


2
+

2(
�
n

√
 − 3.

Case 2: let 2 + (k − 3)k< n; then, vj � v1+(k− 3)k; this
implies Dl− 1 �, v2+(k− 4)k, v3+(k− 4)k, . . . , v(k− 3)k  and
Dl � v2+(k− 3)k, v3+(k− 3)k, . . . , vn− 1 . *erefore, |Dl− 1| �

k − 1 and |Dl| � n − (k − 3)k − 2 � n − (
�
n

√


2
+

(
�
n

√
.

It is clear from both the cases that |Di|≤ |S| for all
i � 1, 2, . . . , l. *us, S is a connected safe set. □

Theorem 4. For a wheel graph G, the following holds:

cs(G) � ⌈
�
n

√
⌉, (5)

where n is the order of G.

Proof 4. Let S be the connected safe set of size cs(G); then,
C(G∖S) � D1,D2, . . . ,Dt , ordered so that |D1|≤
|D2|≤ . . . ≤ |Dt|.

Note that vn ∈ V(G) is a vertex such that deg(v) � n − 1.
If t � 1, then we have the following two cases:

Case 1: if vn ∉ S, then S ⊂ (V(G) − vn . Since S is
connected, V(G) − vn  is the cycle. *en, clearlyG[S]

is a path. Let u ∈ S such that deg(u) � 2 inG[S].*en,
by removing vertex u fromS and adding vertex vn inS,
we get a connected safe set S∗ for S∗|D1|<
max |D||D ∈ C(G∖S∗){ }.
Case 2: if vn ∈ S, then a vertex u exists in S for which
E( u{ },D1) � ∅. Let y be a vertex of D1 such that
E( y ,S)≠∅. *en, by removing vertex u from S and
adding vertex y inS, we get a connected safe setS∗ and
for S∗ and we have |D1|<max |D||D ∈ C(G∖S∗){ }.

Both cases show contradiction. Hence, t≥ 2.
If we choose S in such a way that for all x′, y′ ∈ S,

x′y′ ∉ E(G[S] − vn ), then t � |S| − 2. Note that this is the
most possible case of choosing the connected safe set S for
whichG∖S has maximum components. As a result, we have
2≤ t≤ |S| − 2.

We want to prove that cs(G) � 
�
n

√
. On the contrary,

assume that cs(G) � 
�
n

√
 − 1. Note that t � 

�
n

√
 − 2. We

assume that |Di| � |S| for all 1≤ i≤ t, so |V(G)| �


t
i�1 |Di| + |S| � (

�
n

√
 − 2)(

�
n

√
−

1) + 
�
n

√
 − 1 � (

�
n

√
 − 1)2 < n, a contradiction, and con-

sequently, the cardinality of at least one component of G∖S
must be greater than |S|, which is impossible. Hence,
cs(G) � 

�
n

√
. □

4. Safe Set of the Sunlet Graph

For convenience, we considered the sunlet graph G of order
n≥ 6 with vertex set V(G) � v1, v2, . . . , vn  labeled as shown
in Figure 3 [15].

Theorem 5. Let G be a sunlet graph of order n≥ 6 and S be
the connected safe set; then,

S � v2, v4, . . . , v2⌊n/3⌋ . (6)

Proof 5. Suppose that S � v2, v4, . . . , v2⌊n/3⌋  is a subset of
V(G) such that G[S] is its induced subgraph. For
vi, vi+2 ∈ S, N[vi]∩N[vi+2] � vi, vi+2 , where i � 2, 4, . . . ,

2⌊n/3⌋ − 2. Hence G[S] is connected.
We want to show that S is a connected safe set. *us,

C(G∖S) � D1,D2, . . . ,Dt , where D1 � v1 ,D2 � v3 ,

. . . ,Dt− 1 � v2⌊n/3⌋− 1  and Dt � v2⌊n/3⌋+1, v2⌊n/3⌋+2, . . . , vn .
Note that |Dj|< |S| for all 1≤ j≤ t − 1. Now,
|Dt| � n − 2⌊n/3⌋≤ |S|. Hence, S is a connected safe
set. □

Theorem 6. For a sunlet graphG of order n≥ 6, the following
holds:

υ1

υn υn–1

υ2 υ ((n/2)–1)

υ ((n/2)+2) υ ((n/2)+1)

υ (n/2)

Figure 1: *e ladder graph G.

υ1

υ2

υ3

υn

υn–1

υn–2

Figure 2: *e wheel graph G.
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cs(G) � ⌊
n

3
⌋. (7)

Proof 6. Assume that S is a connected safe set of cardinality
cs(G); then, C(G∖S) � D1,D2, . . . ,Dt , ordered such
that |D1|≤ |D2|≤ . . . ≤ |Dk|.

If t � 1, then S � X∪Y, where X � v|v ∈ S and deg

(v) � 3} and Y � u|u ∈ S and deg(v) � 1 . Note that S −

v{ } is disconnected for all v ∈ X. Let u ∈ Y and w ∈ D1 such
that E( w{ },S)≠∅; then, S∗ � (S − u{ })∪ w{ } is a con-
nected safe set and for S∗, |D1|<max |D||D ∈ C(G∖S∗){ },
a contradiction. *us, t≥ 2.

Let Z ⊂ V(G) such that Z∩S � ∅, E(S, Z)≠∅, and
G[Z] is a path. Note that S′ � (S − Y)∪Z is a connected
safe set; then, obviouslyG[S] is the path, and for that choice
of the connected safe set, we have |C(G∖S′)| � Max
|C(G∖S)||S is a connected safe set{ }. As a result, 2≤

t≤ |S| + 1.
Suppose on the contrary that cs(G) � ⌊n/3⌋ − 1. Since

2≤ t≤ |S| + 1, d � 
k− 1
i�1 |Di|≤ |S| and n − 2⌊n/3⌋ + 2≥

|V(G) − S − d| � |Dk|> |S|, a contradiction. Hence,
cs(G) � ⌊n/3⌋. □

5. Conclusion

In this article, the connected safe set and connected safe
number of ladder, wheel, and sunlet graphs are studied. *e
computation of connected safe number is an NP-complete
problem and is known for few classes of graphs. A nontrivial
graph of order n whose degree set consists of n − 1 elements
is called an antiregular graph. Hence, in the future, it is
interesting to study the safe set number for some other
standard classes of graphs such as regular graphs, antiregular
graphs, and well-known computer networks.
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In chemistry, graphs are commonly used to show the structure of chemical compounds, with nodes and edges representing the
atom and bond types, respectively. Edge resolving set λe is an ordered subset of nodes of a graph C, in which each edge of C is
distinctively determined by its distance vector to the nodes in λ. %e cardinality of a minimum edge resolving set is called the edge
metric dimension of C. An edge resolving set Le,f of C is fault-tolerant if λe,f∖b is also an edge resolving set, for every b in λe,f.
Resolving set allows obtaining a unique representation for chemical structures. In particular, they were used in pharmaceutical
research for discovering patterns common to a variety of drugs. In this paper, we determine the exact edge metric and fault-
tolerant edge metric dimension of benzenoid tripod structure and proved that both parameters are constant.

1. Introduction

Mathematical chemistry has recently presented a wide range
of approaches to understanding the chemical structures that
underpin existing chemical theories and developing and
exploring new mathematical models of chemical phenom-
ena and applying mathematical concepts and processes to
chemistry. Only a few scientists have been convinced to
exploit linkages betweenmathematics and chemistry and the
possibility of using arithmetic to deduce known and an-
ticipate new chemical characteristics, throughout the history
of science. In many areas of physical chemistry, such as
thermodynamics and compound energy, extensive use of
mathematical approaches is commonplace. After physicists
revealed in the first few years of the twentieth century that
the key features of chemical compounds can be predicted
using quantum theory approaches, a significant need for
mathematics in chemistry arose. %e main driving force that
drove the mathematics and its concepts into chemistry
laboratories was the realization that chemistry cannot be
comprehended without knowledge of quantum physics,
including its complicated mathematical instruments. For the

different study of mathematical chemistry in terms of graph
theory, we suggest some literature here [1].

Chemical graph theory is a branch of mathematical
science that is used to characterise the structural properties
of molecules, processes, crystals, polymers, clusters, and
other objects.%e vertex of a chemical graph theory might be
an electron, an atom, a molecule, a collection of atoms,
intermediates, orbitals, and many other things. Intermo-
lecular bonding, bonded and nonbonded connections, basic
reactions, and other forces such as van der Waals forces,
Keesom forces, and Debye forces can all be used to illustrate
the relationships between vertices of a structure.

%e general convex polytope structures are discussed in
[2, 3], in which authors consider the problem of edge metric
resolvability. In the reply to aroused question from seminal
work of edge resolvability, Raza and Bataineh [4] answered
some questions and provided interesting results as well as
analysis between vertex and edge resolvability. %e detailed
discussion of identifying edges and vertices of general graph
is studied in [5]. Necklace graph’s edge resolvability is
discussed in [6]. Polycyclic aromatic hydrocarbons in terms
of edge and fault-tolerant edge resolvability are deeply
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investigated in [7]. %e generalized version of edge
resolvability is introduced in [8]. Few efficient techniques of
finding edge resolving set are found in [9]. %e graph having
larger edge resolvability rather than vertex resolvability is
generally studied in [10]. %e generalized Peterson graph’s
edge resolvability is found in [11]. %e k-multiwheel graph
point of discussion with its edge resolvability is found in
[12].

Slater [13] presented the idea of resolving sets, which was
later discussed by Harary andMelter [14]. Metric generators,
as detailed in [15, 16], allow for alternative representations of
chemical substances. Precisely, they were used in pharma-
ceutical research for determining patterns similar to a variety
of drugs [17]. Metric dimension has various other appli-
cations, such as robot navigation [18], weighing problems
[19], computer networks [20], combinatorial optimization
[21], image processing, facility location problems, and sonar
and coastguard loran [13]; for further detail, see [22, 23].
Due to its variety of applications, the concept of metric
dimension is widely used to solve many difficult problems.
Hussain et al. [24], Krishnan et al. [25], and Siddiqui et al.
[26] have computed the resolvability parameter for alpha-
boron nanotube, certain crystal structures, and certain
nanotube lattices, respectively. For the NP-harness of these
topics, for example, and for the metric dimension [27, 28]
and application along with its NP-hardness, see [29]. Rather
than separating two unique vertices of a graph based on a
subset of vertices, two edges might be distinguished based on
the same subset of vertices. Kelenc et al. [30] created a new
parameter called the edge metric dimension to represent this
idea. %ey employed graph metric to identify each pair of
edges based on the graph’s distance from a selection of
vertices.

%e following are basic preliminaries for the concepts
studied here.

Definition 1 (see [31]). Assume that C is an associated graph
of chemical structure/network, whose vertex/node set are
denoted by symbol N(C) or simply N, while B(C) or B is the
edge/bond set, and the shortest distance between two bonds
b1, b2 ∈ N(C) is denoted by Sb1 ,b2

and calculated by counting
the number of bonds while moving through the b1 − b2 path.

Definition 2 (see [32]). %e distance between an edge e �

b1b2 ∈ B(C) and a node b ∈ N(C) is counted by the relation
Se, b � min Sb1, b, Sb2, b . Assuming a subset of selected
nodes λe, if the position p(e|λe) of each edge e is unique of a
graph, then λe is called as edge metric resolving set and
dime(C) is the minimum count of members of λe, called as
edge metric dimension.

Definition 3. Assuming that any of the member of edge
metric resolving set λe is not working or any of the node
from κ members is spoiled, then one cannot get the unique
position of the entire edge set. To tackle this issue, the
definition is known as fault-tolerant edge resolving set which
is dealt with by eliminating any of the member from λe and
still obtains the unique position of the entire edge set of a
graph, symbolized as λe,f, and the minimummembers in the
set denoted as dime,f(C) and named as fault-tolerant edge
metric dimension.

Theorem 1 (see [30]). If dime(C) is the edge metric di-
mension, then dime(C) � 1, iff C is a path Pn.

2. Construction of Tripod Structure

Because it is significant in theoretical chemistry, benzenoid
systems are natural graph representations of benzenoid
hydrocarbons. It is a well-known fact that hydrocarbons
generated from benzenoids are important and beneficial in
the chemical, food, and environmental industries, according
to [33]. %e authors in [34] describe the benzenoid system
we mentioned above in our work. Polynomial types were
discussed in relation to various catacondensed and peri-
condensed benzenoid structures. %is is a pericondensed
benzenoid tripod construction. It has 4(δ1 + δ2 + δ3) − 8
nodes and 5(δ1 + δ2 + δ3) − 11 bonds, with all the running
parameters δ1, δ2, δ3 ≥ 2. Furthermore, Jamil et al. [35]
provide a comprehensive topological investigation of ben-
zenoid structures, and metric-based study of benzenoid
networks is available in [36]. %e node and bond or vertex
and edge set for the benzenoid structure T(δ1, δ2, δ3) is
shown as follows. In our primary results, we apply the la-
belling of nodes and edges specified in Figure 1.

N T δ1, δ2, δ3( (  � aκ: 1≤ κ≤ 2δ3 ∪ bκ: 1≤ κ≤ 2δ1 ∪ cκ, cκ′: 1≤ κ≤ 2δ2 − 1 

∪ aκ′: 1≤ κ≤ 2δ3 − 3 ∪ bκ′: 1≤ κ≤ 2δ1 − 3 ,

B T δ1, δ2, δ3( (  � aκaκ+1: 1≤ κ≤ 2δ3 − 1 ∪ bκbκ+1: 1≤ κ≤ 2δ1 − 1 

∪ cκcκ+1, cκ′cκ+1′ : 1≤ κ≤ 2δ2 − 2 ∪ aκ′aκ+1′ : 1≤ κ≤ 2δ3 − 4 

∪ bκ′bκ+1′ : 1≤ κ≤ 2δ1 − 4 ∪ aκaκ′: 1≤ κ(odd)≤ 2δ3 − 3 

∪ bκ+3bκ′: 1≤ κ(odd)≤ 2δ1 − 3 ∪ cκcκ′: 1≤ κ(odd)≤ 2δ2 − 1 

∪ a2δ3b1, a2δ3−1c1′, b2c1, a2δ3−3′c2′, b1′c2, .

(1)
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Lemma 1. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then the minimum members in its edge
resolving set are two.

Proof. %e total number of nodes in the corresponding
graph of benzenoid tripod with δ1, δ2, δ3 ≥ 2 is 4(δ1 + δ2 +

δ3) − 8 and to check the possibilities of edge resolving set
with cardinality two is C(4(δ1 + δ2 + δ3) − 8, 2) �

((4(δ1 + δ2 + δ3) − 8)!/(2 × (4(δ1 + δ2 + δ3) − 10)!)). Here,
we are checking with cardinality two because by %eorem 1,
the edge resolving set with cardinality one is reserved for
path graph only. Now due to the NP-hardness of choosing
edge resolving set, we cannot find the exact number of edge
resolving sets for a graph, but from
((4(δ1 + δ2 + δ3) − 8)!/(2 × (4(δ1 + δ2 + δ3) − 10)!))-possi-
bilities, we choose a subset λe and defined as λe � a1, b1 .
Now to prove this claim that λe is actually one of the
candidates for the edge resolving set of benzenoid tripod
graph or T(δ1, δ2, δ3), we will follow Definition 2. To fulfill
the requirements of definition, we will check the unique
positions or locations of each edge and the methodology is
defined above in Definition 2.

Positions p(aκaκ+1|λe) with respect to λe, for the edges
aκaκ+1 with κ � 1, 2, . . . , 2δ3 − 1, are given as

p aκaκ+1|λe(  � κ − 1, 2δ3 − κ( . (2)

Positions p(bκbκ+1|λe) with respect to λe, for the edges
bκbκ+1 with κ � 1, 2, . . . , 2δ1 − 1, are given as

p bκbκ+1|λe(  � 2δ3 + κ − 1, κ − 1( . (3)

Positions p(cκcκ+1|λe) with respect to λe, for the edges
cκcκ+1 with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκcκ+1|λe(  �
2δ3, κ + 1( , if κ � 1, 2,

2δ3 + κ − 3, κ + 1( , if κ � 3, 4, . . . , 2δ2 − 1.


(4)

Positions p(aκ′aκ+1′ |λe) with respect to λe, for the edges
aκ′aκ+1′ with κ � 1, 2, . . . , 2δ3 − 4, are given as

p aκ′aκ+1′ |λe(  � κ, 2δ3 + 1 − κ( . (5)

Positions p(bκ′bκ+1′ |λe) with respect to λe, for the edges
bκ′bκ+1′ with κ � 1, 2, . . . , 2δ1 − 4, are given as

p bκ′bκ+1′ |λe(  � 2δ3 + κ + 1, κ + 3( . (6)

Positions p(cκ′cκ+1′ |λe) with respect to λe, for the edges
cκ′cκ+1′ with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκ′cκ+1′|λe(  �
2 δ3 − 1( , κ + 2( , if κ � 1,

2 δ3 − 2(  + κ, κ + 2( , if κ � 2, 3, . . . , 2δ2 − 1.


(7)

Positions p(aκaκ′|λe)with respect to λe, for the edges aκaκ′
with κ � 1, 3, . . . , 2δ3 − 3, are given as

p aκaκ′|λe(  � κ − 1, 2δ3 − κ + 1( . (8)

Positions p(bκ+3bκ′|λe) with respect to λe, for the edges
bκ+3bκ′ with κ � 1, 3, . . . , 2δ1 − 3, are given as

p bκ+3bκ′|λe(  � 2δ3 + κ + 1, κ + 2( . (9)

Positions p(cκaκ′|λe) with respect to λe, for the edges cκcκ′
with κ � 1, 3, . . . , 2ml − 3, are given as

p cκcκ′|λe(  �
2δ3 − 1, κ + 1( , if κ � 1,

2 δ3 − 2(  + κ, κ + 1( , if κ � 2, 3, . . . , 2δ2 − 1.


(10)

Positions of the joint edges are given as

p a2δ3b1|λe  � 2δ3 − 1, 0( ,

p a2δ3c1
′|λe  � 2δ3 − 2, 2( ,

p b2c1|λe(  � 2δ3, 1( ,

p a2δ3−3′c2′|λe  � 2δ3 − 3, 4( ,

p b1′c2|λe(  � 2δ3 + 1, 3( .

(11)

%e given positions p(.|λe) of all
5(δ1 + δ2 + δ3) − 11-bonds of T(δ1, δ2, δ3) graph of benze-
noid tripod with δ1, δ2, δ3 ≥ 2, with respect to λe, are unique
and no two bonds have the same position p. So we can
conclude that we resolve the bonds of T(δ1, δ2, δ3) with two
nodes. It is implied that the minimum members in the edge
resolving set of T(δ1, δ2, δ3) are two. □

Remark 1. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then

dime T δ1, δ2, δ3( (  � 2. (12)

Proof. From the definition of edge metric dimension, the
concept is solemnly based on the selected subset (λe) chosen
in such a way that the entire edge set has unique position
with respect to the selected nodes or subset. In Lemma 1, we
already discussed the possibility of selected subset (edge
resolving set) and, according to the definition, its minimum
possible cardinality. In that lemma, we choose λe � a1, b1 

as an edge resolving set for the graph of benzenoid tripod or
T(δ1, δ2, δ3) for all the possible combinatorial values of
δ1, δ2, δ3 ≥ 2. We also proved in such lemma that |λe| � 2 is
the least possible cardinality of edge resolving set for the
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Figure 1: Benzenoid tripod with δ1, δ2, δ3  � 3, 3, 4{ }.
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benzenoid tripod T(δ1, δ2, δ3). It is enough for the proof of
what we claim in the statement that edge metric dimension
of benzenoid tripod is two, which completes the proof. □

Lemma 2. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then the minimum members in its fault-
tolerant edge resolving set are four.

Proof. %e total number of nodes in the corresponding
graph of benzenoid tripod with δ1, δ2, δ3 ≥ 2, are 4(δ1 + δ2 +

δ3) − 8 and to check the possibilities of fault-tolerant edge
resolving set with cardinality four are C(4(δ1 + δ2 + δ3) −

8, 4) � ((4(δ1 + δ2 + δ3) − 8)!/(2 × (4(δ1 + δ2+ δ3) − 12)!)).
Here we are checking with cardinality four, and later, we will

also check cardinality three. Now due to the NP-hardness of
choosing fault-tolerant edge resolving set, we cannot find the
exact number of fault-tolerant edge resolving sets for a
graph, but from ((4(δ1 + δ2+ δ3) − 8)!/(2 × (4(δ1 + δ2+
δ3) − 12)!))-possibilities, we choose a subset λe,f and defined
as λe,f � a1, b1, a2δ3, b2δ1 . Now to prove this claim that λe,f

is actually one of the candidates for the fault-tolerant edge
resolving set of benzenoid tripod graph or T(δ1, δ2, δ3), we
will follow Definition 3. To fulfill the requirements of def-
inition, we will check the unique positions or locations of
each node and the methodology is defined above in Defi-
nition 3.

Positions p(aκaκ+1|λe,f)with respect to λe,f, for the edges
aκaκ+1 with κ � 1, 2, . . . , 2δ3 − 1, are given as

p aκaκ+1|λe,f  �
κ − 1, 2δ3 − κ, 2δ3 − 1 − κ, 2 δ3 + δ1(  − 1 − κ( , if κ � 1, 2, . . . , 2δ3 − 2,

κ − 1, 2δ3 − κ, 2δ3 − 1 − κ, 2δ3( , if κ � 2δ3 − 1.
 (13)

Positions p(bκbκ+1|λe,f) with respect to λe,f, for the edges
bκbκ+1 with κ � 1, 2, . . . , 2δ1 − 1, are given as

p bκbκ+1|λe,f  � 2δ3 + κ − 1, κ − 1, κ, 2δ1 − 1 − κ( . (14)

Positions p(cκcκ+1|λe,f) with respect to λe,f, for the edges
cκcκ+1 with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκcκ+1|λe,f  �

2δ3, κ + 1, κ + 2, 2δ1 − 2( , if κ � 1,

2δ3, κ + 1, κ + 2, 2 δ1 − 2(  + κ( , if κ � 2,

2δ3 + κ − 3, κ + 1, κ + 2, 2 δ1 − 2(  + κ( , if κ � 3, 4, . . . , 2δ2 − 1.

⎧⎪⎪⎨

⎪⎪⎩
(15)

Positions p(aκ′aκ+1′ |λe,f) with respect to λe,f, for the edges
aκ′aκ+1′ with κ � 1, 2, . . . , 2δ3 − 4, are given as

p aκ′aκ+1′|λe,f  � κ, 2δ3 + 1 − κ, 2δ3 − κ, 2 δ3 + δ1 − 1(  − κ( .

(16)

Positions p(bκ′bκ+1′|λe,f) with respect to λe,f, for the edges
bκ′bκ+1′ with κ � 1, 2, . . . , 2δ1 − 4, are given as

p bκ′bκ+1′ |λe,f  � 2δ3 + κ + 1, κ + 3, κ + 4, 2δ1 − 3 − κ( .

(17)

Positions p(cκ′cκ+1′ |λe,f) with respect to λe,f, for the edges
cκ′cκ+1′ with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκ′cκ+1′ |λe,f  �

2 δ3 − 1( , κ + 2, κ + 1, 2δ1( , if κ � 1,

2 δ3 − 1( , κ + 2, κ + 1, 2δ1( , if κ � 2,

2 δ3 − 2(  + κ, κ + 2, κ + 1, 2δ1 − 3 + κ( , if κ � 3, 4, . . . , 2δ2 − 1.

⎧⎪⎪⎨

⎪⎪⎩
(18)

Positions p(aκaκ′|λe,f) with respect to λe,f, for the edges
aκaκ′ with κ � 1, 3, . . . , 2δ3 − 3, are given as:

p aκaκ′|λe,f  � κ − 1, 2δ3 − κ + 1, 2δ3 − κ, 2 δ3 + δ1(  − 1 − κ( .

(19)

Positions p(bκ+3bκ′|λe,f) with respect to λe,f, for the edges
bκ+3bκ′ with κ � 1, 3, . . . , 2δ1 − 3, are given as

p bκ+3bκ′|λe,f  � 2δ3 + κ + 1, κ + 2, κ + 3, 2δ1 − 3 − κ( .

(20)
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Positions p(cκaκ′|λe,f) with respect to λe,f, for the edges
cκcκ′ with κ � 1, 3, . . . , 2ml − 3, are given as

p cκcκ′|λe,f  �
2δ3 − 1, κ + 1, κ + 1, 2δ1 − 1( , if κ � 1,

2 δ3 − 2(  + κ, κ + 1, κ + 1, 2 δ1 − 2(  + κ( , if κ � 2, 3, . . . , 2δ2 − 1.
 (21)

Positions of the joint edges with respect to λe,f are given as

p a2δ3b1|λe,f  � 2δ3 − 1, 0, 0, 2δ1 − 1( ,

p a2δ3c1
′|λe,f  � 2δ3 − 2, 2, 1, 2δ1( ,

p b2c1|λe,f  � 2δ3, 1, 2, 2δ1 − 2( ,

p a2δ3−3′ c2′|λe,f  � 2δ3 − 3, 4, 3, 2δ1 + 1( ,

p b1′c2|λe,f  � 2δ3 + 1, 3, 4, 2δ1 − 3( .

(22)

On the behalf of given fact for the fulfillment of defi-
nition of fault-tolerant edge resolving set, we can say that λe,f

with cardinality four is possible, but when it comes to op-
timized value of |λe,f|, we still need to investigate about the
minimum value of |λe,f|. Following are some possible cases
to check that whether |λe,f| � 3 is possible or not. However,
we find the fault-tolerant edge resolving set with the help of
algorithm satisfying that |λe,f|≠ 3, but for the proving
purpose we build some general cases and try to conclude that
only |λe,f|> 3 is possible.

Case 1: assume that λe,f
′ ⊂ aκ: κ � 1, 2, . . . , 2δ3 , with a

condition according to our requirement of theorem
that |λe,f

′| � 3, and removal of any vertex from λe,f
′ to

fulfill the definition. %e result is implied in the same
edge’s position and contradicts our assumption with
the fact that p(arar+1|λe,f

′) � p(asas
′|λe,f
′), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 2: assume that λe,f

′ ⊂ bκ: κ � 1, 2, . . . , 2δ1 , with a
condition according to our requirement of theorem
that |λe,f

′| � 3, and removal of any vertex from λe,f
′ to

fulfill the definition. %e result is implied in the same
edge’s position and contradicts our assumption with
the fact that p(arar+1|λe,f

′) � p(as
′as+1′|λe,f

′), where
1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 3: assume that λe,f

′ ⊂ cκ: κ � 1, 2, . . . , 2δ2 − 1 ,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(br+3br

′|λe,f
′) � p(asas+1|λe,f

′), where
1≤ r(odd)≤ 2δ1 − 3 and 1≤ s≤ 2δ3 − 1.
Case 4: assume that λe,f

′ ⊂ aκ′ : κ � 1, 2, . . . , 2δ3 − 3 ,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′) � p(cscs
′|λe,f
′), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ2 − 1.

Case 5: assume that λe,f
′ ⊂ bκ′ : κ � 1, 2, . . . , 2δ1 − 3 ,

with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(as
′as+1′ |λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 6: assume that λe,f

′ ⊂ cκ′ : κ � 1, 2, . . . , 2δ2 − 1 ,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas+1|λe,f
′ ), where

1≤ r, s≤ 2δ3 − 1.
Case 7: assume that λe,f

′ ⊂ aκ, bj: κ �

1, 2, . . . , 2δ3, j � 1, 2, . . . , 2δ1}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1

and 1≤ s≤ 2δ1 − 4.
Case 8: assume that λe,f

′ ⊂ aκ, cj: κ �

1, 2, . . . , 2δ3, j � 1, 2, . . . , 2δ2 − 1}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(br+3br

′|λe,f
′) � p(bs

′bs+1′|λe,f
′), where

1≤ r(odd)≤ 2δ1 − 3 and 1≤ s≤ 2δ1 − 4.
Case 9: assume that λe,f

′ ⊂ aκ, aj
′: κ � 1, 2,

. . . , 2δ3, j � 1, 2, . . . , 2δ3 − 3}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′) � p(bs+3|br
′λe,f
′), where 1≤ r≤ 2δ1 − 1

and 1≤ s(odd)≤ 2δ1 − 3.
Case 10: assume that λe,f

′ ⊂ aκ, bj
′: κ �

1, 2, . . . , 2δ3, j � 1, 2, . . . , 2δ1 − 3}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(arar+1|λe,f

′) � p(asas
′|λe,f
′), where 1≤ r≤ 2δ3 − 1 and

1≤ s(odd)≤ 2δ3 − 3.
Case 11: assume that λe,f

′ ⊂ aκ, cj
′: κ � 1, 2,

. . . , 2δ3, j � 1, 2, . . . , 2δ2 − 1}, with a condition
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according to our requirement of theorem that |λe,f
′| � 3,

and removal of any vertex from λe,f
′ to fulfill the def-

inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1

and 1≤ s≤ 2δ1 − 4.
Case 12: assume that
λe,f
′ ⊂ bκ, cj: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ2 − 1 ,

with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas
′|λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 13: assume that
λe,f
′ ⊂ bκ, aj

′: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ3 − 3 ,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas
′|λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 14: assume that
λe,f
′ ⊂ bκ, bj

′: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ3 − 3 ,
with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas
′|λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 15: assume that
λe,f
′ ⊂ bκ, cj

′: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ2 − 1 ,
with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(as
′as+1′ |λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 16: assume that λe,f

′ ⊂ cκ, aj
′: κ � 1, 2, . . . , 2δ2−

1, j � 1, 2, . . . , 2δ3 − 3}, with a condition according to
our requirement of theorem that |λe,f

′| � 3, and removal
of any vertex from λe,f

′ to fulfill the definition.%e result
is implied in the same edge’s position and contradicts
our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1

and 1≤ s≤ 2δ1 − 4.
Case 17: assume that
λe,f
′ ⊂ cκ, bj

′: κ � 1, 2, . . . , 2δ2 − 1, j � 1, 2, . . . , 2δ1−

3}, with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(as
′as+1′ |λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 18: assume that
λe,f
′ ⊂ cκ, cj

′: κ, j � 1, 2, . . . , 2δ2 − 1 , with a condition
according to our requirement of theorem that |λe,f

′ | � 3,

and removal of any vertex from λe,f
′ to fulfill the def-

inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bsbs+1|λe,f
′ ), where 1≤ r, s≤ 2δ1 − 1.

Case 19: assume that
λe,f
′ ⊂ aκ′, bj

′: κ � 1, 2, . . . , 2δ3 − 3, j � 1, 2, . . . , 2δ1−

3}, with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(brbr+1|λe,f

′ ) � p(bs
′bs+1′|λe,f
′ ), where

1≤ r≤ 2δ1 − 1, 1≤ s≤ 2δ1 − 4.
Case 20: assume that
λe,f
′ ⊂ aκ′, cj

′: κ � 1, 2, . . . , 2δ3 − 3, j � 1, 2, . . . ,

2δ2 − 1}, with a condition according to our requirement
of theorem that |λe,f

′ | � 3, and removal of any vertex
from λe,f
′ to fulfill the definition.%e result is implied in

the same edge’s position and contradicts our as-
sumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1,

1≤ s≤ 2δ1 − 4.
Case 21: assume that λe,f

′ ⊂ bκ′,

cj
′: κ � 1, 2, . . . , 2δ1 − 3, j � 1, 2, . . . , 2δ2 − 1}, with a
condition according to our requirement of theorem
that |λe,f

′| � 3, and removal of any vertex from λe,f
′ to

fulfill the definition. %e result is implied in the same
edge’s position and contradicts our assumption with
the fact that p(arar+1|λe,f

′) � p(as
′as+1′|λe,f

′), where
1≤ r, s≤ 2δ1.

%e given positions p(.|λe,f) of all
5(δ1 + δ2 + δ3) − 11-bonds of T(δ1, δ2, δ3) graph of benze-
noid tripod with δ1, δ2, δ3 ≥ 2, with respect to λe,f, having
|λe,f| � 4, are unique and no two bonds have the same
position p. It can also be accessed that eliminating any of
arbitrary nodes from λe,f will not affect the definition of edge
resolving set. We also checked that the fault-tolerant edge
resolving set λe,f with |λe,f| � 3 resulted in two edges having
the same position p. So we can conclude that we resolve the
bonds of T(δ1, δ2, δ3) with four nodes. It is implied that the
minimum members in the fault-tolerant edge resolving set
of T(δ1, δ2, δ3) are four. □

Remark 2. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then

dime,f T δ1, δ2, δ3( (  � 4. (23)

Proof. From the definition of fault-tolerant edge metric
dimension (same as in parent concept), the concept is
solemnly based on the selected subset (λe,f) chosen in such a
way that the entire edge set has unique position with respect
to the selected nodes or subset. Addition or removal of any
arbitrary single member of λe,f does not affect the resolv-
ability of edges or position of the entire edge set of graph
remains unique. In Lemma 2, we already discussed the
possibility of selected subset (fault-tolerant edge resolving
set) and, according to the definition, its minimum possible
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cardinality. In that lemma, we choose
λe,f � a1, b1, a2δ3, b2δ1  as a fault-tolerant edge resolving set
for the graph of benzenoid tripod or T(δ1, δ2, δ3) for all the
possible combinatorial values of δ1, δ2, δ3 ≥ 2. We also
proved in such lemma that |λe,f| � 4 is the least possible
cardinality of fault-tolerant edge resolving set for the ben-
zenoid tripod T(δ1, δ2, δ3). It is enough for the proof of what
we claim in the statement that fault-tolerant edge metric
dimension of benzenoid tripod is four, which completes the
proof. □

3. Conclusion

Mathematical chemistry, particularly graphical chemistry,
has made it simpler to examine complicated networks and
chemical structures in their simplest forms. Similarly,
resolvability is a parameter in which the complete node or
edge set, and occasionally both, reconfigure themselves into
unique outfits in order to call or access them. Edge metric
dimension is also a parameter with this property to gain each
edge into a unique form. In this work, we consider ben-
zenoid tripod structure to achieve its resolvability and found
its minimum edge-resolving set. We concluded that edge
metric and fault-tolerant edge metric resolving set are with
constant and exact number of members for this structure.
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[19] S. Söderberg and H. S. Shapiro, “A combinatory detection
problem,” 5e American Mathematical Monthly, vol. 70,
no. 10, pp. 1066–1070, 1963.

[20] P. Manuel, R. Bharati, I. Rajasingh, and C. Monica M, “On
minimum metric dimension of honeycomb networks,”
Journal of Discrete Algorithms, vol. 6, no. 1, pp. 20–27, 2008.
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In chemical graph theory, graph invariants are usually referred to as topological indices. For a graph G, its vertex-degree-based
topological indices of the form BID(G) � uv∈E(G)β(du, dv) are known as bond incident degree indices, whereE(G) is the edge set of
G, dw denotes degree of an arbitrary vertex w of G, and β is a real-valued-symmetric function. ,ose BID indices for which β can be
rewritten as a function of du + dv − 2 (that is degree of the edge uv) are known as edge-degree-based BID indices. A connected graph
G is said to be r-apex tree if r is the smallest nonnegative integer for which there is a subset R of V(G) such that |R| � r and G − R is a
tree. In this paper, we address the problem of determining graphs attaining the maximum or minimum value of an arbitrary BID
index from the class of all r-apex trees of order n, where r and n are fixed integers satisfying the inequalities n − r≥ 2 and r≥ 1.

1. Introduction

All the graphs discussed in the present paper are finite. ,e
vertex set and edge set of a graph G are denoted by V(G) and
E(G), respectively. Denote by du(G) (or simply by du if there
is no confusion about the graph under consideration) the
degree of a vertex u ∈ V(G). ,ose graph-theoretical no-
tation and terminology that are used in this paper without
defining here can be found in some standard graph-theo-
retical books, such as [1, 2].

For a graph G, its graph invariant I is a numerical
quantity calculated from G by using any rule in such a way
that the equation I(G) � I(G′) holds for every graph G′
isomorphic to G. In chemical graph theory, graph invariants
are usually referred to as topological indices [3–10]. A to-
pological index of a graph G that depends on the degrees of
the vertices of G is known as a vertex-degree-based topo-
logical index; similarly, edge-degree-based topological

indices are defined. To the best of the present authors’
knowledge, the Platt index [11, 12] is the oldest vertex-
degree-based topological index; for a graph G, its Platt index
is defined as

Pl(G) � 
uv∈E(G)

du + dv − 2( . (1)

Since du + dv − 2 is degree of the edge uv, the Platt index
is also an edge-degree-based topological index.

In the present paper, we are concerned with the fol-
lowing type of vertex-degree-based topological indices:

BID(G) � 
uv∈E(G)

β du, dv( , (2)

which are known as bond incident degree (BID) indices (see,
for example, [13]), where β is a real-valued-symmetric
function.,ose BID indices for which β can be rewritten as a
function of du + dv − 2 are known as edge-degree-based BID
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indices. Note that the Platt index defined in equation (1) is a
vertex/edge-degree-based BID index. Other examples of BID
indices include the first Zagreb index [14], second Zagreb
index [15], general Randić index [16, 17], general zeroth-
order Randić index [17, 18], general sum-connectivity index
[19], natural logarithm of the multiplicative second Zagreb
index [20], variable sum exdeg index [21], sum lordeg index
[21], augmented Zagreb index [22], general Platt index [23],
and Sombor index [24]. ,e choices of the function β that
correspond to the aforementioned BID indices are specified
in Table 1.

In order to solve an extremal problem concerning the
topological index R1 (which is same as the second Zagreb
index, see Table 1), Bollobás et al. [25] considered following
generalization of the general Randić index of a graph G:


uv∈E(G)

du + l(  dv + l(  
α
, (3)

by taking α as any real number and l as any nonnegative
integer. We note that the graph invariant (3)

(i) Remains well-defined if l is any real number greater
than −1

(ii) Gives the reduced second Zagreb index [11] when
one takes α � 1 and l � −1

(iii) Coincides with the variable connectivity index
[26–28] if α � −1/2 and l is any nonnegative real
number

,us, in what follows, we assume that
(l, α) ∈ (A × R)∪ (B × R+) and call the graph invariant (3)
as the Bollobás—Erdős—Sarkar index and denote it by
BES(l,α), where A is the set of all real numbers greater than
−1,R is the set of all real numbers,R+ is the set of all positive
real numbers, and B � −1{ }. ,us, the Bol-
lobás—Erdős—Sarkar index of a graph G is defined as

BES(l,α)(G) � 
uv∈E(G)

du + l(  dv + l(  
α
, (4)

with (l, α) ∈ (A × R)∪ (B × R+). Certainly, the Bollobás
—Erdős—Sarkar index is a BID index (here, it needs to be
mentioned that the graph invariant BES(l,1) was defined in
[29] for any real number l).

A connected graph G is said to be r-apex tree if r is the
smallest nonnegative integer for which there is a subset R of
V(G) such that |R| � r and G − R is a tree. (Unfortunately,
the terminology of apex trees and r-apex trees, being used by
many researchers particularly in chemical graph theory, may
arise confusion with the terminology of apex graphs and
r-apex graphs, respectively. According to Mohar [30], a
graph G is an apex graph if it contains a vertex w such that
G − w is planar. Also, according to ,ilikos and Bodlaender
[31], a graph is an r-apex graph if it can be made planar by
removing at most r vertices.),e setR is known as r-apex set
and its members are known as apex vertices. Every tree is a 0-
apex tree. (,roughout this paper, whenever we consider a
class of graphs of the same order, we assume that all the
graphs of the considered class are pairwise nonisomorphic.)
In this paper, we address the problem of determining graphs

attaining the maximum or minimum value of an arbitrary
BID index from the class of all r-apex trees of order n, where
r and n are fixed integers satisfying the inequalities n − r≥ 2
and r≥ 1.

2. Main Results

,e join G1 + G2 of two graphs G1 and G2 is the graph with
the vertex set V(G1)∪V(G2) and the edge set
E(G1)∪E(G2)∪ uv: u ∈ V(G1), v ∈ V(G2) . If e � uv is
not an edge in a graph G, then G + e denotes the graph
formed by adding the edge e in G. ,e complete graph and
the star graph of order n are denoted by Kn and Sn, re-
spectively. To state and prove the first main result, we need
the following known result.

Lemma 1 (see [32]). Let I be a topological index.

(i) If for every connected noncomplete graph G, the in-
equality I(G + e)> I(G) holds for every e ∉ E(G);
then, the graph attaining the maximum value of the
topological index I among all r-apex trees of order n is
isomorphic to the join Kr + T, where r and n are fixed
integers satisfying the inequalities r≥ 1 and n − r≥ 2
and T is a tree of order n − r.

(ii) If for every connected noncomplete graph G, the in-
equality I(G + e)< I(G) holds for every e ∉ E(G);
then, the graph attaining the minimum value of the
topological index I among all r-apex trees of order n is
isomorphic to the join Kr + T, where r and n are fixed
integers satisfying the inequalities r≥ 1 and n − r≥ 2
and T is a tree of order n − r.

For a graph G and a vertex u ∈ V(G), denote by NG(u)

the set of all those vertices of G that are adjacent to u. Now,
we state and prove our first main result.

Theorem 1. Let R be the set of all real numbers. Let β: R ×

R⟶ R be a real-valued-symmetric function such that

(i) Be inequality β(x + s, y − s) − β(x, y)≥ 0 holds for
x≥y> s≥ 1 and y≥ 3

(ii) Both β and βx are increasing in x, where βx denotes
the partial derivative of β with respect to x

(iii) Be function β satisfies at least one the following
additional conditions: β is strictly increasing;
β(x + s, y − s) − β(x, y)> 0

If BID(G) � uv∈E(G)β(du, dv) is a bond incident degree
index such that, for every connected noncomplete graph H,
the inequality BID(H + e)>BID(H) holds for every
e ∉ E(H); then, Kr + Sn−r uniquely attains the maximum
BID index among all r-apex trees of order n, where r and n are
fixed integers satisfying the inequalities r≥ 1 and n − r≥ 2.

Proof. Let G⋆ be a graph attaining the maximum BID index
in the given class of graphs. From Lemma 1, it follows that
G⋆ is the join of the complete graph Kr and a tree T of order
n − r. It remains to prove that T � Sn−r. Suppose to the
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contrary that T≇Sn−r. Let v ∈ V(T) be a vertex of maximum
degree in T. ,en, there exist vertices u and u1 ∈ V(T) such
that vuu1 is a path in T. Take NT(u) � v, u1, u2, . . . , ut . Let
G′ be the graph deduced from G⋆ by deleting the edges
u1u, u2u, . . . , utu and adding the edges u1v, u2v, . . . , utv.
Observe that the graph G′ remains an r-apex tree of order n.
In the remaining proof, by the vertex degree ds, we mean
degree of the vertex s in the graph G⋆. Now, by using the
definition of the BID index and the constraints on the
function β, we get

BID G′(  − BID G
⋆

(  � 
w∈NT(v),w≠u

β dv + t, dw(  − β dv, dw( ( 

+ 

z∈V Kr( )

β dv + t, dz(  − β dv, dz( ( 

+ 

z∈V Kr( )

β du − t, dz(  − β du, dz( ( 

+ 
t

i�1
β dv + t, dui

  − β du, dui
  

+ β dv + t, du − t(  − β dv, du( 

> r β dv + s, n − 1(  − β dv, n − 1( ( 

+ r β du − s, n − 1(  − β du, n − 1( ( .

(5)

Since βx is increasing, the right hand side of (5) is
nonnegative, which contradicts our assumption that G⋆

attains the maximum BID index among all r-apex trees of
order n.

Since every function β(x, y) ∈ (x + y)α, (x + y − 2)α,������
x2 + y2


, ax + ay} satisfies all the conditions of ,eorem 1,

with α≥ 1 and a> 1, the next result is an immediate con-
sequence of ,eorem 1. □

Corollary 1. Among all r-apex trees of order n, the join Kr +

Sn−r uniquely attains the maximum values of the Sombor
index, general sum-connectivity index χα, general Platt index
Plα, and variable sum exdeg index SEIa, where α≥ 1, a> 1,
and r and n are fixed integers satisfying the inequalities r≥ 1
and n − r≥ 2.

Be extremal result concerning the general sum-connec-
tivity index χα mentioned in Corollary 1 was proven by using
some other way: in [33], for α � 1 and r � 1; in [34, 35], for
α � 1 and r≥ 1; in [36], for α> 1 and r≥ 1. Also, the result

concerning SEIa mentioned in Corollary 1 was proven in [37]
for r � 1 by other means. Moreover, the result concerning the
topological index Pl2 mentioned in Corollary 2 was proven by
using some other way in [38] for r≥ 1.

Since the proof of the next result is fully analogous to that
of Beorem 1, we omit it.

Theorem 2. Let R be the set of all real numbers. Let β: R ×

R⟶ R be a real-valued-symmetric function such that

(i) Be inequality β(x + s, y − s) − β(x, y)≤ 0 holds for
x≥y> s≥ 1 and y≥ 3

(ii) Both β and βx are decreasing in x, where βx denotes
the partial derivative of β with respect to x

(iii) Be function β satisfies at least one the following
additional conditions: β is strictly decreasing;
β(x + s, y − s) − β(x, y)≤ 0

If BID(G) � uv∈E(G)β(du, dv) is a bond incident degree
index such that, for every connected noncomplete graph H,
the inequality BID(H + e)<BID(H) holds for every
e ∉ E(H); then, Kr + Sn−r uniquely attains the minimum
BID index among all r-apex trees of order n, where r and n

are fixed integers satisfying the inequalities r≥ 1 and
n − r≥ 2.

Beorems 1 and 2 can be improved if one considers the
BID indices of the following form:

BIDi(G) � 
uv∈E(G)

βi du( 

du

+
βi dv( 

dv

  � 
u∈V(G)

βi du( , (6)

where i ∈ 1, 2{ }, β1′ is a strictly increasing function, and β2′ is a
strictly decreasing function (where βi

′ denotes the derivative
of βi ).

Theorem 3. Let R be the set of all real numbers. For
i � 1 and 2, let βi: R⟶ R be a real-valued symmetric
function. Also, let β1′ be strictly increasing and β2′ be strictly
decreasing, where βi

′ denotes the derivative of βi. Let
BIDi(G) � uv∈E(G)[βi(du)/du + βi(dv)/dv] �

v∈V(G)βi(dv) such that, for every connected noncomplete
graph H, the inequality

(i) BID1(H + e)>BID1(H) holds for every e ∉ E(H);
then, Kr + Sn−r uniquely attains the maximum value

Table 1: Some of the existing bond incident degree indices.

Function β(du, dv) Equation (2) gives Notation

du + dv First Zagreb index [14] M1
dudv Second Zagreb index [15] M2
(dudv)α General Randić index [16,17] Rα
(du)α− 1 + (dv)α− 1 General zeroth–order Randić index [17,18] 0Rα
(du + dv)α General sum–connectivity index [19] χα
ln(dudv) Natural logarithm of the multiplicative second Zagreb index [20] ln(Π2)
adu + adv Variable sum exdeg index [21] SEIa����
ln du


+

����
ln dv


Sum lordeg index [21] SL

(dudv/(du + dv − 2))3 Augmented Zagreb index [22] AZI
(du + dv − 2)α General Platt index [23] Plα������

d2
u + d2

v


Sombor index [24] SO
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of the BID1 index among all r-apex trees of order n,
where r and n are fixed integers satisfying the in-
equalities r≥ 1 and n − r≥ 2

(ii) BID2(H + e)<BID2(H) holds for every e ∉ E(H);
then, Kr + Sn−r uniquely attains the minimum value
of the BID2 index among all r-apex trees of order n,
where r and n are fixed integers satisfying the in-
equalities r≥ 1 and n − r≥ 2

Proof. We prove part (i) of the theorem. Part (ii) can be
proved in a fully analogous way. Let G⋆ be a graph attaining
the maximum value of the BID1 index in the given class of
r-apex trees. From Lemma 1, it follows that G⋆ is the join of
the complete graph Kr and a tree T of order n − r. It remains
to prove that T � Sn−r. Suppose to the contrary that T≇Sn−r.
Let v ∈ V(T) be a vertex of maximum degree in T. ,en,
there exist vertices u and u1 ∈ V(T) such that vuu1 is a path
in T. Take NT(u) � v, u1, u2, . . . , ut . Let G′ be the graph
deduced from G⋆ by deleting the edges u1u, u2u, . . . , utu and
adding the edges u1v, u2v, . . . , utv. Observe that the graph G′
remains an r-apex tree. In the remaining proof, by the vertex
degree ds, we mean degree of the vertex s in the graph G⋆.
Here, we have

BID1 G
⋆

(  − BID1 G′(  � β1 dv(  − β1 dv + t(  + β1 du( 

&9; −β1 du − t( .

(7)

By Lagrange’s mean value theorem, there exist real
numbers a1 and a2 such that

a1 ∈ du − t, du( ,

a2 ∈ dv, dv + t( ,
(8)

and

BID1 G
⋆

(  − BID1 G′(  � t β1′ a1(  − β1′ a2(  . (9)

,e inequality du ≤ dv gives a1 < a2, which implies that
the right hand side of equation (9) is negative, because β1′ is
strictly increasing. ,us, we have BID1(G⋆) − BID1(G′)< 0,
which contradicts our assumption that G⋆ attains the
maximum value of the BID1 index among all r-apex trees of
order n.

,e next result follows directly from the first part of
,eorem 3. □

Corollary 2. Among all r-apex trees of order n, the join Kr +

Sn−r uniquely attains the maximum values of the general
zeroth-order Randić index 0Rα for α> 1, multiplicative second
Zagreb index Π2, and sum lordeg index, where r and n are
fixed integers satisfying the inequalities r≥ 1 and n − r≥ 2.

Proof. It is clear that any graph G has the maximum Π2
value in a given graph class if and only if G has the maximum
lnΠ2 value in the considered graph class. Define the func-
tions ϕ1(x) � xα with x≥ 1 and α> 1, ϕ2(x) � x lnx with
x≥ 1, and ϕ3(x) � x

����
lnx

√
with x≥ 2 (see [39]). Observe

that, for every i ∈ 1, 2, 3{ }, the derivative function ϕi
′ of ϕi is

strictly increasing. Hence, the desired result now follows
from ,eorem 3. □

Remark 1. ,e result concerning the general zeroth-order
Randić index mentioned in Corollary 3 was proven by using
some other way: in [40] for α> 1 and r � 1; in [41] for α � 3
and r≥ 1; in [42] for α> 1 and r≥ 1.

For proving our next result, we need the following
known result.

Lemma 2 (see [32]). Let I be a topological index.

(i) If for every connected noncomplete graph, the in-
equality I(G + e)> I(G) holds for every e ∉ E(G);
then, the graph attaining the minimum value of the
topological index I among all 1-apex trees of a fixed
order is a unicyclic graph, and its unique cycle has a
vertex of degree 2.

(ii) If for every connected noncomplete graph, the in-
equality I(G + e)< I(G) holds for every e ∉ E(G);
then, the graph attaining the maximum value of the
topological index I among all 1-apex trees of a fixed
order is a unicyclic graph, and its unique cycle has a
vertex of degree 2.

Note that, for the general zeroth-order Randić index 0Rα,
it holds that, for every connected noncomplete graph G, one
has

0
Rα(G + e)

> 0Rα(G), if α> 0,

< 0Rα(G), if α< 0,

⎧⎨

⎩ (10)

for every e ∉ E(G). Also, note that the class of all (connected)
unicyclic graphs forms a subclass of the class of all 1-apex trees.
Moreover, in [43], it was proven that among all unicyclic
graphs of a fixed order n≥ 4, the graph S+

n formed by adding an
edge in the star Sn attains the maximum general zeroth-order
Randić index 0Rα for α< 0, S+

n attains the minimum general
zeroth-order Randić index 0Rα for 0< α< 1, and the cycle
graph Cn attains the minimum general zeroth-order Randić
index 0Rα for α> 1. ,us, keeping in mind these observations
and Lemma 5, one gets the next result.

Corollary 3. Among all 1-apex trees of a fixed order n≥ 4, the
graph S+

n formed by adding an edge in the star Sn attains the
maximum general zeroth-order Randić index 0Rα for α< 0, S+

n

attains the minimum general zeroth-order Randić index 0Rα
for 0< α< 1, and the cycle graph Cn attains the minimum
general zeroth-order Randić index 0Rα for α> 1.

We remark here that Corollary 3 We remark here that
Corollary 6was proven in [40] by using some other way.

Next, we derive a result about the augmented Zagreb index
of 1-apex trees. For this, we need the following lemma first.

Lemma 3 (see [44]). For every fixed integer n≥ 4, the graph
formed by adding an edge in the star Sn uniquely attains the
minimum AZI in the class of all unicyclic graphs with n

vertices, and the minimum value is
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(n − 3)(n − 1)
3

(n − 2)
3 + 24. (11)

Since for every connected noncomplete graph G, it holds
that AZI(G + e)>AZI(G) for every e ∈ E(G) (see [44]), and
the next result follows from Lemmas 5 and 7.

Theorem 4. For every fixed integer n≥ 6, the graph formed
by adding an edge in the star Sn uniquely attains the mini-
mum AZI in the class of all 1-apex trees of order n, and the
minimum value is

(n − 3)(n − 1)
3

(n − 2)
3 + 24. (12)

Beorem 4 was proven in [45] by using some other way.
Finally, we determine the unique graph attaining the

maximum value of BES(l,1). For this, we need the following
two results concerning the Zagreb indices of r-apex trees.

Lemma 4 (see [34, 35]). If G is an r-apex tree of order n, then
it holds that

M1(G)≤ (r + 1) (n − 1)
2

+(n − r − 1)(r + 1) , (13)

with equality if and only if G � Sn−r + Kr, where n − r≥ 2 and
r≥ 1.

Lemma 5 (see [34, 35]). If G is an r-apex tree of order n, then
it holds that

M2(G)≤
(r + 1)(n − 1) 3nr + 2n − 2r

2
− 5r − 2 

2
, (14)

with equality if and only ifG � Sn−r + Kr, where n − r≥ 2 and
r≥ 1.

From the following identity,

BES(l,1) � M2(G) + l · M1(G) + l
2
, (15)

Lemmas 4 and 5, the next result follows.

Theorem 5. In the class of all r-apex trees of order n, the join
Sn−r + Kr uniquely attains the maximum BES(l,1)-value,
where n and r are fixed integers satisfying the inequalities
n − r≥ 2 and r≥ 1 and l is any nonnegative real number. In
other words, if G is an r-apex tree of order n, then it holds that

BES(l,1)(G)≤ (r + 1)

·
r(n − 1 + l)

2
+(r + 1 + l)(n − 1 + l)(n − r − 1) ,

(16)

with equality if and only if G � Sn−r + Kr.

,eorem 5 remains true if one replace the condition “l is
any nonnegative real number” with “l is any real number
greater than or equal to −1.” To prove this modified
statement of ,eorem 5, we cannot use identity (15) because
of the negative values of l. In what follows, we prove the
aforementioned statement (,eorem 6) by using some other
way. For this, we need some additional lemmas first.

Lemma 6. Let u1 and u2 be two nonadjacent vertices of a
graph G. Be inequality BES(l,1)(G + u1u2)>BES(l,1)(G)

holds for every real number l greater than −1. Also, it holds
that

BES(−1,1) G + u1u2( 
� BES(−1,1)(G),

if one of u1 and u2 is isolated and the other has

either no neighbor or pendent neighbors only,

>BES(−1,1)(G), otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

Proof. ,e result immediately follows from the definition of
BES(l,1). □

Lemma 7 (see [46, 47]). If T is a tree of order n≥ 4, then it
holds that

M1(T)≤ n(n − 1), (18)

with equality if and only if T � Sn.

Lemma 8 (see [48]). If T is a tree of order n≥ 4, then it holds
that

M2(T)≤ (n − 1)
2
, (19)

with equality if and only if T � Sn.

Now, we are able to state and prove our final result.

Theorem 6. In the class of all r-apex trees of order n, the join
Sn−r + Kr uniquely attains the maximum BES(l,1)-value,
where n and r are fixed integers satisfying the inequalities
n − r≥ 2 and r≥ 1 and l is any real number greater than or
equal to −1. In other words, if G is an r-apex tree of order n,
then it holds that

BES(l,1)(G)≤ (r + 1)(n − 1 + l)

·
r(n − 1 + l)

2
+(r + 1 + l)(n − r − 1) ,

(20)

with equality if and only if G � Sn−r + Kr.
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Proof. Suppose that G∗ is a graph attaining the maximum
BES(l,1)-value in the given class of graphs. From Lemmas 1
and 6, it follows that the graph G∗ is isomorphic to the join
Kr + T, where T is a tree of order n − r. Let u ∈ V(G∗) be a
vertex of degree n − 1. Note that the size of the graph Kr + T

is

r(r − 1)

2
+ r(n − r) + n − r − 1 �

r(2n − r − 3)

2
+ n − 1.

(21)

,us, the size of G∗ − u is

r(2n − r − 3)

2
. (22)

Also, one has

BES(l,1) G
∗

(  � du G
∗

(  + l(  
x∈V G∗−u( )

dx G
∗

(  + l(  + 
yz∈E G∗−u( )

dy G
∗

(  + l  dz G
∗

(  + l( 

� (n + l − 1) 
x∈V G∗−u( )

dx G
∗

− u(  + l + 1( 

+ 
yz∈E G∗−u( )

dy G
∗

− u(  + l + 1  dz G
∗

− u(  + l + 1( 

� (n + l − 1)[r(2n − r − 3) +(n − 1)(l + 1)]

+ M2 G
∗

− u(  +(l + 1) · M1 G
∗

− u(  +
r(2n − r − 3)(l + 1)

2

2
.

(23)

We note that the vertex u is an apex vertex and the graph
G∗ − u is an (r − 1)-apex tree of order n − 1. If r � 1, then
one gets the desired result by using Lemmas 7 and 8 in
equation (23). If r≥ 2, then one gets the desired result by
using Lemmas 4 and 5 in equation (23).

,e next result about the reduced second Zagreb index
RM2 is a special but notable case of ,eorem 6. □

Corollary 4. If G is an r-apex tree of order n, then it holds
that

RM2(G)≤ (r + 1)(n − 2)
r(n − 2)

2
+ r(n − r − 1) ,

(24)

with equality if and only if G � Sn−r + Kr, where n − r≥ 2 and
r≥ 1.
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[27] M. Randić, “On computation of optimal parameters for
multivariate analysis of structure-property relationship,”
Journal of Computational Chemistry, vol. 12, no. 8, pp. 970–980,
1992.

[28] S. Yousaf, A. A. Bhatti, and A. Ali, “Minimum variable
connectivity index of trees of a fixed order,” Discrete Dy-
namics in Nature and Society, vol. 2020, Article ID 3976274,
2020.

[29] B. Horoldagva, L. Buyantogtokh, K. C. Das, and S. G. Lee, “On
general reduced second Zagreb index of graphs,” Hacettepe
Journal of Mathematics and Statistics, vol. 48, no. 4,
pp. 1046–1056, 2019.

[30] B. Mohar, “Face covers and the genus problem for apex
graphs,” Journal of Combinatorial Beory—Series B, vol. 82,
no. 1, pp. 102–117, 2001.

[31] D. M.,ilikos and H. L. Bodlaender, “Fast partitioning l-apex
graphs with applications to approximating maximum in-
duced-subgraph problems,” Information Processing Letters,
vol. 61, no. 5, pp. 227–232, 1997.

[32] M. Knor, M. Imran, M. K. Jamil, and R. S̆krekovski, “Remarks
on distance based topological indices for l-apex trees,”
Symmetry, vol. 12, no. 5, p. 802, 2020.

[33] S. N. Qiao, “On the Zagreb index of quasi-tree graphs,”
Applied Mathematics E-Notes, vol. 10, pp. 147–150, 2010.

[34] N. Akhter, M. K. Jamil, and I. Tomescu, “Extremal first and
second Zagreb indices of apex trees,” UPB Scientific Bulletin,
Series A: Applied Mathematics and Physics, vol. 78, no. 4,
pp. 221–230, 2016.

[35] T. Selenge and B. Horoldagva, “Maximum Zagreb indices in
the class of k-apex trees,” Korean Journal of Mathematics,
vol. 23, no. 3, pp. 401–408, 2015.

[36] M. K. Jamil, I. Tomescu, and M. Imran, “Extremal k-gener-
alized quasi trees for general sum-connectivity index,” UPB
Scientific Bulletin, Series A: Applied Mathematics and Physics,
vol. 82, pp. 101–106, 2020.

[37] X. Sun and J. Du, “On variable sum exdeg indices of quasi-tree
graphs and unicyclic graphs,” Discrete Dynamics in Nature
and Society, vol. 2020, Article ID 1317295, 2020.

[38] N. Akhter, S. Naz, and M. K. Jamil, “Extremal first refor-
mulated Zagreb index of k-apex trees,” International Journal
of Applied Graph Beory, vol. 2, pp. 29–41, 2018.

[39] I. Tomescu, “Properties of connected (n, m)-graphs
extremal relatively to vertex degree function index for
convex functions,” MATCH Communications in Mathe-
matical and in Computer Chemistry, vol. 85, pp. 285–294,
2021.

[40] S. Qiao, “On zeroth order general Randić index of quasi tree
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index of k-generalized quasi trees,” arXiv:1801.03885,
2018.

[43] S. Zhang and H. Zhang, “Unicyclic graphs with the first three
smallest and largest first general Zagreb index,” MATCH
Communications in Mathematical and in Computer Chem-
istry, vol. 55, no. 2, pp. 427–438, 2006.

[44] Y. Huang, B. Liu, and L. Gan, “Augmented Zagreb index of
connected graphs,” MATCH Communications in Mathe-
matical and in Computer Chemistry, vol. 67, no. 2, pp. 483–
494, 2012.

[45] K. Cheng, M. Liu, and F. Belardo, “,e minimal augmented
Zagreb index of k-apex trees for k ∈ 1, 2, 3{ },” Applied
Mathematics and Computation, vol. 402, Article ID 126139,
2021.

[46] D. De Caen, “An upper bound on the sum of squares of
degrees in a graph,” Discrete Mathematics, vol. 185, no. 1-3,
pp. 245–248, 1998.

Journal of Mathematics 7



[47] K. C. Das, “Sharp bounds for the sum of the squares of the
degrees of a graph,” Kragujevac Journal of Mathematics,
vol. 25, pp. 31–49, 2003.

[48] K. C. Das, K. Das, and I. Gutman, “Some properties of second
Zagreb index,” MATCH Communications in Mathematical
and in Computer Chemistry, vol. 52, no. 1, pp. 103–112, 2004.

8 Journal of Mathematics



Research Article
Connectivity of Semicartesian Products

Metrose Metsidik 1 and Helin Gong2

1College of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, China
2Department of Mathematics, Shaoxing University, Shaoxing 312000, China

Correspondence should be addressed to Metrose Metsidik; metrose@163.com

Received 11 July 2021; Revised 10 September 2021; Accepted 24 September 2021; Published 20 October 2021

Academic Editor: R. Vadivel

Copyright © 2021 Metrose Metsidik and Helin Gong. *is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Semicartesian product is defined on the basis of two special bipartite graphs and labeling of their vertices, and it has a pleasing
property that it is composed of hexagonal structures. In this study, we give two formulae to calculate separately the connectivity
and edge connectivity of a semicartesian product graph.

1. Introduction

*e notion of the graph products is a central topic in the
graph theory since many structural models such as physical
networks, electrical circuits, roadways, and organic mole-
cules can be viewed as the graph products of two or more
graphs. Many properties of such structural models can be
obtained by considering the properties of the factors of their
corresponding product graphs. *is not only facilities cer-
tain combinatorial optimization problems such as ordering
and partitioning for parallel computing but also makes it
possible to find the topological properties of the models in a
much easier manner employing the topological properties of
their factors, refer [1, 2] for details and examples.

Hexagonal structures are everywhere, for instance, the
honeycomb cells are composed of hexagons, and they are
commonly believed as an example of geometric efficiency.
*e carbon nanotubes are the superfibers with light weight
and a perfectly connected hexagonal cylindrical structure;
they are also viewed as one of the most valuable objects for
nanotechnology, electronics, optics, and other fields of
material science and technology. Since the structures of most
familiar graph products constructed by the product oper-
ation are triangles or quadrangles, it is somewhat difficult to
see the hexagonal system as the product of two graphs. For
this purpose, a semicartesian product graph was defined in

[3], such that zigzag/armchair polyhex nanotube, polyhex
nanotorus, and polyhex lattice are the semicartesian prod-
ucts of cycles and paths.

Since connectivity measures reliability and efficiency of a
graph, computing the connectivity is a fundamental problem
in combinatorial optimization. *e connectivity of product
graphs is well studied. *e authors consider the connectivity
mainly in [4–6] for the Cartesian products, in [7–10] for the
direct products, in [11] for the strong products, and in [12]
for the lexicographic products. In almost all cases, more
explicit formulae expressed in terms of corresponding graph
invariants of factors are obtained; the following result is an
example about Cartesian products.

Theorem 1 (see [5]). Let κ(G) be the connectivity of a graph
G and G□H, the cartesian product of two connected graphs G

and H. -en,

κ(G□H) � min κ(G)|V(H)|, κ(H)|V(G)|, δ(G) + δ(H){ },

(1)

where δ(G) denotes the minimum degree of G.

In this study, we obtain two such formulae to determine
the connectivity and edge connectivity of a semicartesian
product graph separately.
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2. Preliminaries

Every graph G � (V(G), E(G)) considered in this study is
simple and finite. *e set G′|G′ � G  is called the iso-
morphic class of G. A subgraph S of G is induced if it
contains exactly all edges with both ends in V(S). *e
connectivity κ(G) of a connected graph G is the fewest
number of vertices whose removal from G results in a
disconnected or trivial graph, and the edge connectivity
λ(G) equals the smallest cardinality of an edge subset whose
removal leads to disconnection. *e neighborhood of a
vertex u in G is the set NG(u) � x ∈ V(G)|xu ∈ E(G){ } and
the degree degG(u) of u in G equals the cardinality of NG(u).
*en, δ(G) � min degG(u)|u ∈ V(G)  is the minimum
degree of G. It is well-known that κ(G)≤ λ(G)≤ δ(G) for
any graph G.

A bipartite graph (2-colorable graph) is a graph whose
vertex set can be partitioned into two sets A and B, such that
every edge connects a vertex in A to one in B, and it is
symmetric if it has a symmetric drawing with respect to a
straight line that passes through the middle point of each

edge, or equivalently, there is a numeration of the vertices of
the bipartition sets as A � a1, . . . , an  and B � b1, . . . , bn ,
such that both the two edges aibj and ajbi appear
simultaneously.

An orientation of a graph G means directing every edge
of G from one of its ends to the other; it is connected if there
is a directed path (a sequence of vertices in which there is a
directed edge pointing from each vertex in the sequence to
its successor in the sequence) between any two vertices of G,
and it is cycle preserving if any induced cycle of G is a
directed cycle (a directed path whose first and last vertices
are the same), and reversing the direction of any induced
cycle does not change the isomorphic class of the oriented
graph G.

Definition 1 (see [3]). Let G and H be two connected bi-
partite graphs with proper 2-coloring and G symmetric and
H connected cycle preserving oriented. *en, the semi-
cartesian product (semisum) of the graphs G and H, denoted
by G⊔H, is defined as the follows:

V(G⊔H) � V(G) × V(H),

E(G⊔H) � (u, v) u′, v′( : v � v′ and uu′ ∈ E(G) or u � u′ and v⟶ v′ and u, v coloredwith same color ,
(2)

where the symbol v⟶ v′ denotes that the edge vv′ of H

directed from v to v′ in the connected cycle preserving
orientation of H.

*e vertex set and the edge set of the Cartesian product
G□H of two graphs G and H are listed as follows:

V(G□H) � V(G) × V(H),

E(G□H) � (u, v) u′, v′( : v � v′ and uu′ ∈ E(G) or u � u′ and vv′ ∈ E(H) .
(3)

Hence, the semicartesian product G⊔H is a spanning
subgraph of the corresponding Cartesian product G□H,
where G is a connected symmetric bipartite graph and H is a
connected cycle preserving orientable bipartite graph, and
that is why we call the product graph G⊔H semicartesian
product.

Since G and H are the connected bipartite graphs and G

is symmetric, the vertex set of the disjoint union G∪H has a
unique bipartition up to isomorphism. *is implies that the
semicartesian product of such two graphs is not changed
under switching the colors of any factor. It is clear from the
following lemma that the semicartesian product G⊔H is
independent of the choice of a connected cycle preserving
orientation of H.

Lemma 1. If a connected bipartite graph H is a connected
cycle preserving orientable, then H has exactly two such
orientations up to isomorphism.

Proof. Any induced even cycle C has a clockwise or an
anticlockwise direction in a cycle preserving orientation of

H. By the definition of the cycle preserving orientation,
reversing the direction of C does not change the connected
cycle preserving orientation of H.

So, it remains to consider the case for the paths not on a
cycle. *ere are only two kinds of such paths in H: a path
hanging on a cycle and a bridge path connecting two cycles.
Since the orientation of H is connected, H contains at most
two hanging paths and some bridge paths, and moreover, if
the orientation of one of them is chosen, then the orientation
of all others are fixed. □

A G-layer of a semicartesian product G⊔H is the set
Gv � (u, v)|u ∈ V(G){ }, and analogously, an H-layer is
Hu � (u, v)|v ∈ V(H){ }, where v ∈ V(H) and u ∈ V(G).
Notice that a subgraph of G⊔H induced by a G-layer is
isomorphic to G, but a subgraph induced by an H-layer
possibly consists of some stars, independent edges, and
isolated vertices. If we contract each edge of the set
(u, vi)(u′, vi)|vi ∈ V(H)  in the induced subgraph on

Hu ∪Hu′ , then we obtain an isomorphic copy of H, where
uu′ ∈ E(G).
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By a G-layer Gv or an H-layer Hu, we again denote the
subgraph of G⊔H induced on Gv or Hu, respectively. An
ambiguity could not arise since it is clear in the text whether
Gv (or Hu) denotes a vertex set or a graph.

In Figure 1, G is a symmetric bipartite graph with black
and white coloring, and H is a connected cycle preserving
orientable bipartite graph. Since H has two 2-coloring and
two connected cycle preserving orientations, there are four
connected cycle preserving orientations together with 2-
coloring of H, see graphs H1, H2, H3, H4 in Figure 1. It is
easy to check that G⊔H1 � G⊔H2 � G⊔H3 � G⊔H4. Notice
that black and white colors in G⊔Hi comes from G, nothing
but identify H-layers of the product.

3. Connectivity of Semicartesian Products

Let ⌊x⌋ be the greatest integer not bigger than x and ⌈x⌉ be
the smallest integer not less than x. *en, we observe that
degG(u) + ⌊degH(v)/2⌋≤ degG⊔H(u, v)≤ degG(u) +

degH(v)/2 for any (u, v) ∈ V(G⊔H). More precisely, if
degG(u1) + ⌊degH(v)/2⌋ � degG⊔H(u1, v), then
degG⊔H(u2, v) � degG(u2) + degH(v)/2 and vice versa,
where u1 is symmetric to u2 in G. So we have.

Lemma 2. Let G be a connected symmetric bipartite graph
and H be a connected cycle preserving the orientable bipartite
graph. -en,

δ(G⊔H) � δ(G) +⌊
δ(H)

2
⌋. (4)

A k-set is a set consisted of k elements. A cut set, an edge
cut set, or a mixed cut set of a graph is a subset of the vertex
set, the edge set or the union of the vertex set, and edge set of
the graph, respectively, such that its deletion creates at least
one more component. A subset S′ of a cut set S is replaceable
if (S\S′)∪ ev|v ∈ S′  is a mixed cut set, where ev is an edge
incident with v. A maximal k-replaceable set S∗ of a graph is
a replaceable set of a k-cut set of the graph, such that
|S∗| � max |S′||S′ is a replaceable set of a k − cut set . Now,
we are ready to state a main result of this study.

Theorem 2. Let G be a connected symmetric bipartite graph
and H be a connected cycle preserving the orientable bipartite
graph. -en,

κ(G⊔H) � min κ(G)|V(H)|, κ(H)|V(G)| − S
∗

|V(G)|

2
, δ(G) +⌊

δ(H)

2
⌋ , (5)

where S∗ is a maximal κ(H)-replaceable set of H.

Proof. Clearly, κ(G⊔H)≤ δ(G⊔H) � δ(G) + ⌊δ(H)/2⌋. Let
S1 be a κ(G)-cut set of G. *en, S1 × V(H) is a
κ(G)|V(H)|-cut set of G⊔H. Let S2 be a κ(H)-cut set of H

with S∗ ⊆ S2. *en,
(V(G) × (S2∖S∗))∪ (∪ u∈S∗(eitherA × u{ } orB × u{ })) is a
(κ(H) − |S∗|)|V(G)| + |S∗|(|V(G)|/2)-cut set of G⊔H,
where A and B are the bipartitions of V(G). *us,

κ(G⊔H)≤min κ(G)|V(H)|, κ(H)|V(G)| − S
∗

|V(G)|

2
, δ(G) +⌊

δ(H)

2
⌋ . (6)

In the following, we show the inverse inequality; spe-
cifically, we prove that |S|≥ δ(G) + ⌊δ(H)/2⌋ for any cut set
S of G⊔H with the following property:

|S|<min κ(G)|V(H)|, κ(H)|V(G)| − S
∗

|V(G)|

2
 . (7)

Notice that |Gv| � |V(G)|≥ 2δ(G), |Hu| � |V(H)|

≥ 2δ(H), and |Gv ∩Hu| � 1. If both a G-layer Gv and an
H-layer Hu are contained in S, then |S|≥ 2(δ(G) + δ(H)) −

1 and the result follows. Hence, if S contains a G-layer, then
it contains no H-layer and vice versa .

Case A: there is no G-layer contained in S

Let Gv
′: � Gv∖S and SG

v : � Gv ∩ S, and similarly,
Hu
′: � Hu∖S and SH

u : � Hu ∩ S, where v ∈ V(H) and
u ∈ V(G). *en, Gv � Gv

′ ∪ SG
v and Hu � Hu

′ ∪ SH
u , and

Gv
′ ≠∅ for all v ∈ V(H). Since |S|< κ(G)|V(H)|, there

is h ∈ V(H), such that Gh
′ is connected.

Let C1 denote the component of (G⊔H) − S, including
Gh
′ and V: � v ∈ V(H)|Gv

′ ⊆C1 . Obviously, V≠∅
since h ∈ V. And V≠V(H); otherwise, (G⊔H) − S �

C1 contradicts to the choice of S. Since H is connected,
there are adjacent vertices v1, v2 ∈ V(H), such that
v2 ∈ V(H)∖V and v1 ∈ V. Since v2 ∈ V(H)∖V, we have
Gv2
′⊈C1.*erefore, there is an another componentC2 of

(G⊔H) − S, such that G∗v2 : � C2 ∩Gv2
′ ≠∅, as shown in

Figure 2. And what is more, if (g, v1)(g, v2) is an edge
with (g, v2) ∈ G∗v2 , then (g, v1) ∈ SG

v1
. Hence,

X: � (g, v1)|(g, v1) (g, v2) ∈ E(G⊔H) and (g, v2)

∈ G∗v2} ⊆ SG
v1
.

*ere is an edge (g, v1)(g, v2) ∈ E(G∗v2); otherwise,
NGv2

(g, v2)⊆ SG
v2

for all (g, v2) ∈ G∗v2 ; therefore,
|SG

v2
|≥ degGv2

(g, v2)≥ δ(G), and we have a desired re-
sult. Since Gv2

� G and G is bipartite, we have
NGv2

(g1, v2)∩NGv2
(g2, v2) � ∅. Obviously,
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NGv2
(g1, v2)∪NGv2

(g2, v2)⊆ SG
v2
∪G∗v2 . By the definition

of the semicartesian product, if (g1′, v1)

(g1′, v2) ∉ E(G⊔H); then (g2′, v1)(g2′, v2) ∈ E(G⊔H),
where (gi

′, v2) ∈ NG∗v2
(gi, v2) for i � 1, 2. *us,

S
G
v1
∪ S

G
v2



 � S
G
v1



 + S
G
v2



≥ |X| + S
G
v2





≥ NG∗v2
gi, v2( 



 + NSG
v2

gi, v2( 





� degGv2
gi, v2( ≥ δ Gv2

  � δ(G),

(8)

Where i � 1 or i � 2.
Suppose that there is a u ∈ V(G), such that SH

u � Hu.
Since |SH

u ∩ (X∪ SG
v2

)|≤ 1 and |SH
u |≥ 2δ(H), we have

|S|≥ |SG
v2

| + |X| + |SH
u | − 1≥ δ(G) + 2δ(H) − 1.

Case B: there is no H-layer contained in S

Although Hu possibly consists of some stars, inde-
pendent edges, and vertices, we can also proceed
analogously to Case A. Let F1 be a component of
(G⊔H) − S, such that Hg

′ ⊆F1 (possibly F1 � C1) and

let U � u ∈ V(G)|Hu
′ ⊆F1 . Since |S|< κ(H)|V (G)| −

|S∗| (|V(G)|/2), there are two adjacent vertices u and u′
of G with the following property: the induced subgraph
Hu
′ ∪Hu′′ of G⊔H is connected. *us, U≠∅. Obvi-

ously, U≠V(G), and therefore, there are two adjacent
vertices u1 ∈ U and u2 ∈ V(G)∖U. By a similar reason
as in Case A, we obtain a set Y: � (u1, h)|

(u2, h) ∈ H∗u2
}⊆ SH

u1
with |Y| + |SH

u2
|≥ ⌊δ(H)/2⌋ + 1,

where H∗u2
: � F2 ∩Hu2

′ and F2 is an another compo-
nent of (G⊔H) − S with F2 ∩Hu2

′ ≠∅. If the cut set S

contains a G-layer, i.e., SG
v � Gv for a v ∈ V(H), then we

have again |S|≥ |SG
v | + |Y| +|SH

u2
| − 1≥ 2δ(G)

+⌊δ(H)/2⌋, since |SG
v |≥ 2δ(G) and |SG

v ∩ (Y∪ SH
u2

)|≤ 1.
Case C: neither a G-layer nor an H-layer is contained in
S

Obviously, |(X∪ SG
v2

)∩ (Y∪ SH
u2

)|≤ 2.*e following three
statements cannot be simultaneously true; otherwise, it is
easy to drive a contradiction to the choice of S.

(1) S � SG
v1
∪ SG

v2
∪ SH

u1
∪ SH

u2
� X∪ SG

v2
∪Y∪ SH

u2

G H H1

H3 H4H2

H1G H2G

H3G H4G

Figure 1: An example of a semicartesian product.

Gv1 C1

C1 C2Gv2 SGv2 G*
v2

SGv1 X

Figure 2: Situation from the case that no G-layer is contained in S.
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(2) |(X∪ SG
v2

)∩ (Y∪ SH
u2

)| � 2
(3) |X∪ SG

v2
| � δ(G) and |Y∪ SH

u2
| � ⌊δ(H)/2⌋ + 1

Hence, it follows that |S|≥ |X∪ SG
v2
∪Y ∪ SH

u2
|

≥ δ(G) + ⌊δ(H)/2⌋. □

4. Edge Connectivity of Semicartesian Products

Let V1 and V2 be two disjoint vertex subsets of a graph. We
use the symbol [V1, V2] for the number of edges whose one
end is V1 and another is V2. In this section, we show another
main result of this study.

Theorem 3. Let G be a connected symmetric bipartite graph
and H be a connected cycle preserving orientable bipartite
graph. -en,

λ(G⊔H) � min λ(G)|V(H)|, λ(H)
|V(G)|

2
, δ(G) +⌊

δ(H)

2
⌋ .

(9)

Proof. Let X be an arbitrary edge cut of G⊔H and C a
component of (G⊔H) − X. *en, |X|≥ [V(C), V

(G⊔H)∖V(C)]. If |V(C)|: � i≤ δ(G) + ⌊δ(H)/2⌋, then
|X|≥ i(δ(G) + ⌊δ(H)/2⌋ − (i − 1))≥ δ(G) + ⌊δ(H)/2⌋. So,
in the following, we suppose that i> δ(G) + ⌊δ(H)/2⌋.

Case 1. C⊆Hu.

|X|≥ i × δ(G)> δ(G) +⌊
δ(H)

2
⌋. (10)

Case 2. C⊆Gv.

|X|> V(C), V(G⊔H)∖V Gv(  ≥ i ×⌊
δ(H)

2
⌋ > δ(G) +⌊

δ(H)

2
⌋, for δ(H)≥ 2. (11)

Now, we handle the subcase δ(H) � 1. If every vertex of
C has a neighbor in other G-layer except for Gv itself,
then

|X|> V(C), V(G⊔H)∖V Gv(  ≥ |V(C)|> δ(G) +⌊
δ(H)

2
⌋.

(12)

So, we suppose that there is a vertex (u, v) ∈ V(C), such
that NG⊔H(u, v)⊆Gv. Since H is connected, there is
v′ ∈ V(H), such that vv′ ∈ E(H). *en, by the defi-
nition of the semicartesian product of graphs, we have
(u′, v)(u′, v′) ∈ E(G⊔H) for all u′ ∈ NGu

(u). *us,

|X|≥ V(C), V Gv( ∖V(C)  + V(C), V(G⊔H)∖V Gv(  

≥ NGv − C(u, v)


 + NC(u, v)




� degGv
(u)≥ δ(G) � δ(G) +⌊

δ(H)

2
⌋.

(13)
In the following three cases, we set analogous to the
proof of *eorem 2 that
CG

v : � V(C)∩Gv, CH
u : � V(C)∩Hu and

Gv
′: � Gv∖V(C), Hu

′: � Hu∖V(C), where v ∈ V(H)

and u ∈ V(G).
Case 3. An H-layer is contained in C and C contains no
G-layer.
Since [CG

v , Gv
′]≥ λ(G) for all v ∈ V(H), we have

|X|≥ 
v∈V(H)

C
G
v , Gv
′ ≥ λ(G)|V(H)|. (14)

Case 4. A G-layer is contained in C and C contains no
H-layer.

By the definition of the semicartesian product, either
(u, v)(u, v′) ∈ E(G⊔H) or (u′, v)(u′, v′) ∈ E(G⊔H)

for all vv′ ∈ E(H), where u is symmetric to u′ inG. And
therefore, [CH

u , Hu
′] + [CH

u′ , Hu′′]≥ λ(H). *us,

|X|≥ 
u∈V(G)

C
H
u , Hu
′ ≥ λ(H)

|V(G)|

2
. (15)

If C contains both an H-layer and a G-layer, then there
exists another component of (G⊔H) − X, such that it
contains neither an H-layer nor a G-layer.
Case 5. C contains neither a G-layer nor an H-layer,
and also, C is contained neither in a G-layer nor in an
H-layer.

Notice that CG
v ≠∅, CH

u ≠∅, and Gv
′ ≠∅, Hu

′ ≠∅ for all
(u, v) ∈ V(C). We call a vertex (u′, v) ∈ NGv

(u, v) as a
G-layer neighbor of (u, v) and a vertex (u, v′) ∈ NHu

(u, v) as
an H-layer neighbor. In the following, we find an H-layer
neighbor in Hu′′ for every (u′, v) ∈ NCG

v
(u, v) and a G-layer

neighbor in Gv′′ for all (u, v′) ∈ NCH
u

(u, v)∪ (u, v){ }.
If all H-layer neighbors of (u′, v) belong to C, then we

find a substitute (u′, v∗) ∈ CH
u′ for (u′, v), such that an

H-layer neighbor of (u′, v∗) is in Hu′′. Indeed, since no
H-layer is contained in C and a subgraph of G⊔H induced
by Hu ∪Hu′ is connected for uu′ ∈ E(G), if we fail to find a
substitute (u′, v∗) in CH

u′ for (u′, v), then, for each vertex
(u″, v) ∈ NCG

v
(u′, v), there exists a substitute (u″, v∗) ∈ CH

u′′
of (u″, v), such that (u″, v∗) has a neighbor in Hu′′′. In this
case, we consider the vertex (u′, v) instead of (u, v).

Since the subgraph induced by a G-layer is isomorphic to
G and G is connected, (u, v) and each of its neighbors in CH

u

have at least δ(G)G-layer neighbors. Using analogous ar-
gument for (u, v) and its neighbors in CH

u as the above, we
can easily find desired substitutes (u°, v) ∈ CG

v for (u, v) and
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(u∗, v′) ∈ CG
v′ for (u, v′), such that (u°, v) has a G-layer

neighbor in Gv
′ and (u∗, v′) has a G-layer neighbor in Gv′′.

Note that (u′, v∗) has at least one H-layer neighbor and one
G-layer neighbor in V(G⊔H)∖V(C) if (u′, v∗) � (u∗, v′).
Hence,

|X|≥ [V(C), V(G⊔H)∖V(C)]

≥ degGv
′(u, v) + degCG

u
(u, v)

+⌊
degHu

′(u, v) + degCH
u

(u, v)

2
⌋ + 1

> δ(G) +⌊
δ(H)

2
⌋,

(16)

and then, it follows that

λ(G⊔H)≥min λ(G)|V(H)|, λ(H)
|V(G)|

2
, δ(G) +⌊

δ(H)

2
⌋ .

(17)

*e proof of the inverse inequality is somewhat obvious.
Since each G-layer is isomorphic to G and there are |V(H)|

disjoint G-layers in G⊔H, if we choose same λ(G)-edge cut
for each G-layer, then we get an edge cut of G⊔H with
cardinality λ(G)|V(H)|. Let S be a λ(H)-edge cut of H and
H1, H2 be the two components of H − S. *en,
V(G) × V(H1) and V(G) × V(H2) are partitions of
V(G⊔H) with

V(G) × V H1( , V(G) × V H2(   � λ(H)
|V(G)|

2
. (18)
□

5. Conclusion

In this study, we have studied the connectivity and edge
connectivity of semicartesian product graphs, and we gave
two formulae to calculate separately these two parameters of
a semicartesian product graph.
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An m-Ł(℘,℘ − 1, . . . , 1) labeling of a simple graph G is a mapping τ from the vertex set ∨(G) to 0, 1, . . . , m{ } such that
|τ(u) − τ(v)|≥℘ + 1 − d(u, v), ∀u, v ∈∨(G), where length of the shortest route connecting u and v is represented by d(u, v). (e
smallest m for which there exists a m-Ł(℘,℘ − 1, . . . , 1) labeling ofG is known as the Ł(℘,℘ − 1, . . . , 1) labeling number ofG, and
it is described by λ℘(G). We define m-Ł′(℘,℘ − 1, . . . , 1) as the same as the m-Ł(℘,℘ − 1, . . . , 1) labeling if τ is one to one. (e
Ł′(℘,℘ − 1, . . . , 1) labeling number of G represented by λ(℘,℘ − 1, . . . , 1)

′
(G) and is called minimum span. In this paper, we

prove that the circulant graphs with specified generating sets admit m-Ł(℘,℘ − 1, . . . , 1) and m-Ł′(℘,℘ − 1, . . . , 1) labeling and
also find λ℘(G) and λ(℘,℘ − 1, . . . , 1)′(G). Moreover, we find the Ł(℘,℘ − 1, . . . , 1) labeling number of any simple graph with
diameter less than ℘.

1. Introduction

Let G be a simple connected graph with finite whose vertex
set ∨(G) and edge set ε(G) with |∨(G)| � α and |ε(G)| � β.
(e open neighbouring of v ∈∨(G) is N(v) � u ∈ ∨{ (G)|d

(v, u) � 1}. Assigning integer values to the vertices or edges
or both subject to the certain rules is called labeling of the
graph G. For more about graph labeling, refer the survey
[1]. Specially, for graph distance labeling, we refer to [2–5],
and we follow [6] for graph theoretic terminology. (e
frequency assignment problem (FAP) is a process to al-
locate frequencies to the set of transmitters under the
condition that there is no interference between the different
transmitters. (e aim of the problem is to reduce the span
(the variation among lower and higher frequencies) of the
allocated frequencies. A good number of graph theoretic
methods are used for analyzing FAP and majority of them
are NP-hard [7]. Especially, FAP can be modeled as mobile
communication, satellite communication, and radio/TV
broadcasting. In [8, 9], authors studied the results based on
(h, k)-distance labeling of the graph. Also, Nandi et al. [10]

originated and explored the idea of m-Ł(℘,℘ − 1, . . . , 1)

labeling of graphs.
(roughout this paper, let n, r ∈ Z+ such that 1≤ r≤

⌊n − 1/2⌋,Λ � 1, 2, . . . , r, n − 1, n − 2, . . . , n − r{ } is the gen-
erating set of Zn. (e circulant graph with vertex set ∨(G) �

v0, v1, . . . , vn − 1  and edge set ε(G) � vivi+j: 0≤ i≤ n − 1,

j ∈ Λ}, the indices i + j being taken as modulo n. (is graph
is represented by Cir(n,Λ).

2. m-Ł(℘,℘− 1, . . . , 1) Labeling of
Circulant Graphs

We use the following lemma to obtain the minimum span of
a m-Ł(℘,℘ − 1, . . . , 1) labeling of a graph. Fact: if τ is
m-Ł(℘,℘ − 1, . . . , 1) labeling function with λ℘(G) � m, then
at least one vertex v such that τ(v) � 0.

Lemma 1. LetG be a simple graph which allows m-Ł(℘, ℘ −

1, . . . , 1) labeling by the function τ with each vertex u ∈∨;
there exists some v ∈∨ such that d(u, v) � t and |τ(u) − τ(v)|

� ℘ + 1 − t; then, λ℘(G) � m.
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Proof. Suppose λ℘(G)<m; then, there exists a m′-Ł(℘, ℘ −

1, . . . , 1) labeling function τ′ such that m′ <m. Without lack
of generalization, m′ � m − 1, there exist u, v ∈∨ such that
τ(u) � m and τ′(v) � m′. By the assumption, there exists
u′, v′ ∈∨; we obtain d(u, u′) � t and d(v, v′) � t with
|τ(u) − τ(u′)| � ℘ + 1 − t≤ |τ′(v) − τ′(v′)|, since, by the
definition,

τ(u) − τ u′( 


≤ τ′(v) − τ′ v′( 




m − τ u′( 


≤ m′ − τ′ v′( 




m − τ u′( 


≤ m − 1 + τ′ v′( ( 


.

(1)

Clearly, τ′(v′)≤ τ(u′) − 1 if there exist u″ ≠ u and
v″ ≠ v ∈∨ such that d(u′, u″) � t and d(v′, v″) � t with
|τ(u′) − τ(u″)| � ℘ + 1 − t≤ |τ′(v′) − τ′(v″)|⇒τ′(v″)≤
τ(u″) − 1. Otherwise, we choose u″ ∈∨, such that τ(u″)
� max τ(∨)/τ(u), τ(u′) . Continue this process up to the
last vertex; this gives the contradiction to the fact that the
distance labeling function is τ′. □

Lemma 2. Let ℘, n, r ∈ Z+ such that ℘ is even and 1≤
r≤ ⌊n − 1/2⌋. LetG � Cir(n,Λ), Λ � 1, 2, . . . , r, n − 1, n − 2,{

. . . , n − r}, and ∨(G) � v0, v1, . . . , vn− 1 . Let H be the in-
duced subgraph of G whose vertex set is any set of r(℘/2 +

1) + 1 consecutive vertices of ∨(G); if G admits the
m-Ł(℘,℘ − 1, . . . , 1) labeling, then λ(H) � [(r((℘/2)+

1) − 1)]℘.

Proof. Let we assume that ∨(H) � v0, v1, . . . , vr((℘/2)+1) A;
clearly, at most, the distance between any pair vertices of H

is (℘/2) + 1. Let τ be Ł(℘,℘ − 1, . . . , 2, 1) labeling function
of G. In general, we assume that τ(v0) � x and τ(vr((℘/2)+1))

� x + ℘/2 because of the distance between d(v0, vr((℘/2)+1))

� (℘/2) + 1. Suppose vh ∈ H with τ(vh) � x + t ∈ [x, x + ℘).

Case 1: if t<℘/2,

τ v0(  − τ vh( 


 � |t|<
℘
2
<
℘
2

+ 1≤℘ + 1 − d v0, vh( .

(2)

Case 2: if t>℘/2,

τ vh(  − τ vr((℘/2)+1) 


 � t −
℘
2



<
℘
2
<
℘
2

+ 1≤℘ + 1 − d vh, vr((℘/2)+1) . (3)

Case 3: if t � ℘/2, since τ is Ł(℘,℘ − 1, . . . , 2, 1) labeling
of G, then the following one of the subcase holds.

Subcase (i): if d(v0, vh) � ℘/2 + 1, then the vertices vh

and vr((℘/2)+1) are adjacent:

τ vh(  − τ vr((℘/2)+1) 


 � 0<℘ � ℘ + 1 − d vh, vr((℘/2)+1) .

(4)

Subcase (ii): if d(vr((℘/2)+1), vh) � ℘/2 + 1], then the
vertices v0 and vh are adjacent:

τ v0(  − τ vh( 


 �
℘
2
<℘ � ℘ + 1 − d v0, vh( . (5)

(is gives the contradiction; clearly, no such vh exists. (is
argument leads to any other vertex in H which is labeled with
multiple ℘ under the minimum required condition of this la-
beling.(en,we are startingwith 0; we get theminimum span [r

((℘/2) + 1) − 1]℘. Hence, λ(H) � [(r((℘/ 2) + 1) − 1)] ℘. □

Similarly, we can derive the succeeding lemma.

Lemma 3. Let ℘, n, r ∈ Z+ such that ℘ is odd and 1≤ r≤
⌊(n − 1)/2⌋. Let G � Cir(n,Λ), Λ � 1, 2, . . . , r, n − 1, n − 2,{

. . . , n − r}, and ∨(G) � v0, v1, . . . , vn− 1 . Let H be the in-
duced subgraph of G whose vertex set is any set of r⌊℘/2⌋

+⌊r/2⌋ + 1, consecutive vertices of ∨(G); if G admits the
m-Ł(℘,℘ − 1, . . . , 1) labeling, then λ(H) � [(r⌊℘/2⌋+ ⌊r/2⌋−

1)]℘.

Lemma 4. LetG be any simple finite graph with n vertices; if
℘> diam(G) � d, then λ℘(G) � (n − 1)℘ − 

n
s�1(d (vs− 1, vs)

− 1), where vs � y ∈∨(G) such that d(vs− 1, y) � max
d(vs− 1, x): ∀x≠ vi<s ∈∨(G) , s ∈ N, and v0 is an any arbi-
trary vertex of G.

Proof. Let us describe the condition:

τ vi(  � i℘ − 
n

s�1
d vs− 1, vs(  − 1( . (6)

Here, we have to prove that the function is Ł(℘,℘ −

1, . . . , 2, 1) labeling and take any arbitrary vertex vi and vj:

τ vi(  − τ vj 


≥ i℘ − 
i

s�1
d vs− 1, vs(  − 1( 



− j℘ − 

j

s�1
d vs− 1, vs(  − 1( ⎛⎝ ⎞⎠



≥ (i − j)℘ − 
i

s�j

d vs− 1, vs(  − 1( 





≥ |(i − j)℘ − (i − j)(d − 1)|

≥ |(i − j)(℘ − d) +(i − j)|

≥℘ − d + 1

τ vi(  − τ vj 


≥℘ + 1 − d vi, vj .

(7)

(is shows that the function τ is Ł(℘,℘ − 1, . . . , 1) la-
beling. We have to prove that the minimum span of this
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function; let us consider the vertices in the order
v0, v1, . . . , vn such that

τ vs− 1, vs( 


 � ℘ + 1 − d vs− 1, vs( . (8)

(is sequence of the vertices shows the minimum span
of Ł(℘,℘ − 1, . . . , 2, 1) labeling of the graph G. Hence,
λ℘(G) � (n − 1)℘ − 

n
s�1(d(vs− 1, vs) − 1). □

Theorem 1. Let ℘, n ∈ Z+ with n as even andG � Cir(n,Λ),
where Λ � 1, 2, . . . , n/2 − 1, n − 1, n − 2, . . . , n − ((n/2){

− 1)}. �en,

λ℘(G) � (n − 1)℘ −
n

2
. (9)

Proof. Let G � Cir(n,Λ), with Λ � 1, 2, . . . , (n/2) − 1,{ n −

1, n − 2, . . . , n − ((n/2) − 1)}. Let ∨(G) � v0, v1, v2, . . . ,

vn− 1} and τ: ∨⟶ [0,∞] be given by

τ vi(  �

2i℘ − i, if i<
n

2
,

(2℘ − 1) i −
n

2
  + ℘ − 1, if i≥

n

2
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

Let vi, vj ∈∨(G) with i, j< n/2; then, d(vi, vj) � 1 and
|τ(vi) − τ(vj)| � |(2℘ − 1)i − (2℘ − 1)j|≥ 2℘ − 1≥℘≥℘+ 1
− d(vi, vj).

Let vi, vj ∈∨(G) with i, j< n/2; then, d(vi, vj) � 1 and
|τ(vi) − τ(vj)| � |(2℘ − 1)(i − j)|≥2℘ − 1≥℘≥℘+ 1 − d(vi,vj).

Let vi, vj ∈∨(G) with i< n/2 and j≥ n/2; then, d(vi, vj) �

1 or 2 and |τ(vi) − τ(vj)| � |(2℘ − 1)(i − n/2)+ ℘ − 1 − 2i℘
+i|≥℘(1 − n) + n/2 − 1≥℘≥℘ + 1 − d(vi, vj). (us, τ is
Ł(℘,℘ − 1, . . . , 2, 1) labeling function, and Lemma 1 holds
the theorem. □

Example 1. If ℘ � 4 and n � 6, then the circulant graph
G � Cir(6, 1, 2, 4, 5{ }) has Ł(℘,℘ − 1, . . . , 2, 1) labeling
number λ4(G) � 17. Figure 1 illustrates that the span is
sharp.

Theorem 2. Let ℘, n, r ∈ Z+ such that ℘ is even and
1≤ r≤ ⌊(n − 1)/2⌋. Let G � Cir(n,Λ) with Λ � 1, 2, . . . ,{

r, n − 1, n − 2, . . . , n − r}. If 2r((℘/2) + 1)|n, then

λ℘(G) � r
℘
2

+ 1  − 1 ℘ +
℘
2

. (11)

Proof. Let G � Cir(n,Λ), where Λ � 1, 2, . . . , r, n − 1,{

n − 2, . . . , n − r}. Let ℓ � n/r(℘/2 + 1), ∨(G) � v0, v1, v2,

. . . , vn− 1}, and τ: ∨⟶ [0,∞] by

τ vi(  �

imod r
℘
2

+ 1  ℘, if⌊
i

r((℘/2) + 1)
⌋ � 02, . . . , ℓ,

imod r
℘
2

+ 1  ℘ +
℘
2

, if⌊
i

r((℘/2) + 1)
⌋ � 1, 3, . . . , ℓ − 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

(edistance between arbitrary vertices vi and vj in ∨(G) is

d vi, vj  �

⌊
|i − j|

r
⌋, if |i − j|≤

n

2
,

⌊
n − |i − j|

r
⌋, if |i − j|>

n

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Case (i): if ⌊i/r((℘/2) + 1)⌋ � ⌊j/r((℘/2) + 1)⌋,

τ vi(  − τ vj 


 � (i − j)mod r
℘
2

+ 1  ℘



. (14)

Here, [(i − j)mod r((℘/2) + 1)]≠ 0 since i and j are
distinct, so 0< i − j< r((℘/2) + 1) because ⌊i/r((℘/2)+

1)⌋ � ⌊j/(℘/2) + 1⌋.

τ vi(  − τ vj 


 � (i − j)mod r
℘
2

+ 1  ℘




≥℘≥℘ + 1 − d vi, vj .

(15)

(is satisfied the L(℘,℘ − 1, . . . , 2, 1) labeling
condition.
Case (ii): if ⌊i/r((℘/2) + 1)⌋≠ ⌊j/r((℘/2) + 1)⌋.

Subcase (a): if |τ(vi) − τ(vj)| � |[(i − j)mod r((℘/
2) + 1)]℘ − ℘/2|.
(ere exist a, b ∈ Z+ such that (i − j)mod r((℘/2) +

1) � a⇒i − j � b[r((℘/2) + 1)] + a with 1≤ b< ℓ.
Hence,

d vi, vj  � ⌊
b[r((℘/2) + 1)] + a

r
⌋ ≥
℘
2

+ 1, or

⌊
ℓ[r((℘/2) + 1)] − b[r((℘/2) + 1)] + a 

r
⌋ ≥
℘
2

+ 1.

(16)
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(erefore, this implies that d(vi, vj)≥℘/2 + 1:

τ vi(  − τ vj 


≥
℘
2

� ℘ −
℘
2

+ 1 − 1≥℘ + 1 − d vi, vj .

(17)

Subcase (b): if |τ(vi) − τ(vj)| � |[(i − j)mod r ((℘/2)+

1)]℘|.

(ere exist a, b ∈ Z+ such that (i − j)mod r((℘/2)+ 1) �

a⇒i − j � b[((℘/2) + 1)] + a with 2≤ b< ℓ − 1. Hence, by
equation (13),

d vi, vj ≥ 2
℘
2

+ 1  � ℘ + 2, or,

⌊
ℓ[r((℘/2) + 1)] − b[r((℘/2) + 1)] + a 

r
⌋ ≥℘ + 2.

(18)

(erefore, d(vi, vj)≥℘ + 2 implies that

(i − j)mod r
℘
2

+ 1  ℘



≥ 0≥℘ − ℘ + 1 − 1≥℘ + 1

− (℘ + 1)≥℘ + 1 − d vi, vj .

(19)

Now, each vertex has some vertex with distance (℘/2) +

1 and absolute difference between those vertices is ℘/2.
Hence, by Lemma 1, τ is minimum span function of G; this
proves the theorem. □

Example 2. If ℘ � 4 and r � 2, then the circulant graph G �

Cir(24, 1, 2, 22, 23{ }) has Ł(℘,℘ − 1, . . . , 2, 1) labeling

number λ4(G) � 22. Figure 2 illustrates that the span is
sharp.

Theorem 3. Let ℘, n, r ∈ Z+ such that ℘ is odd and
1≤ r≤ ⌊(n − 1)/2⌋. Let G � Cir(n,Λ), where Λ � 1, 2, . . . ,{

r, n − 1, n − 2, . . . , n − r}. If 2(r⌊℘/2⌋ + ⌊r/2⌋)|n, then

λ℘(G) � r⌊
℘
2
⌋ +⌊

r

2
⌋ − 1 ℘ +⌊

℘
2
⌋. (20)

Proof. Let G � Cir(n,Λ) with Λ � 1, 2, . . . , r, n − 1, n − 2,{

. . . , n − r}. Let ℓ � n/r⌊℘/2⌋ + ⌊r/2⌋, ∨(G) � v0, v1, v2, . . . ,

vn− 1}, and τ: ∨⟶ [0,∞] by

τ(i) �

imod r⌊
℘
2
⌋ +⌊

r

2
⌋ ℘, if⌊

i

r⌊℘/2⌋ +⌊r/2⌋
⌋ � 0, 2, . . . , ℓ,

imod r⌊
℘
2
⌋ +⌊

r

2
⌋ ℘ +⌊
℘
2
⌋, if⌊

i

r⌊℘/2⌋ +⌊r/2⌋
⌋ � 1, 3, . . . , ℓ − 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(21)

0

7

1410

3

17

v0

v1

v2

v3

v4

v5

Figure 1: λ4(G) � 17.
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(e distance between arbitrary vertices vi and vj in ∨(G)

is

d vi, vj  �

⌊
|i − j|

r
⌋, if |i − j|≤

n

2
,

⌊
n − |i − j|

r
⌋, if |i − j|>

n

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

Case (i): if ⌊i/r⌊℘/2⌋ + ⌊r/2⌋⌋ � ⌊j/⌊℘/2⌋ + ⌊r/2⌋⌋,

τ vi(  − τ vj 


 � (i − j)mod r⌊
℘
2
⌋ +⌊

r

2
⌋ ℘




. (23)

Here, (i − j)mod(r⌊℘/2⌋ + ⌊r/2⌋)≠ 0, since i and j are
distinct, so 0< i − j< r⌊℘/2⌋ + ⌊r/2⌋ because ⌊i/r⌊℘/
2⌋ + ⌊r/2⌋⌋ � ⌊j/r⌊℘/2⌋ + ⌊r/2⌋⌋:

τ vi(  − τ vj 


 � (i − j)mod r⌊
℘
2
⌋ +⌊

r

2
⌋ ℘





≥℘≥℘ + 1 − d vi, vj .

(24)

(is satisfied the L(℘,℘ − 1, . . . , 2, 1) labeling
condition.
Case (ii): if ⌊i/r⌊℘/2⌋ + ⌊r/2⌋⌋ � ⌊j/r⌊℘/2⌋ + ⌊r/2⌋⌋.

Subcase (a): if |τ(vi) − τ(vj)| � |[(i − j)mod r⌊℘/2⌋+

⌊r/2⌋]℘ − ⌊℘/2⌋|.
(ere exist a, b ∈ Z+ such that (i − j)mod r⌊℘/2⌋ +

⌊r/ 2⌋ � a⇒i − j � b[r⌊℘/2⌋ + ⌊r/2⌋] + awith 1≤ b<
ℓ. Hence, by equation (22), we have

d vi, vj  � ⌊
b[r⌊℘/2⌋ +⌊r/2⌋] + a

r
⌋ ≥ ⌊℘/2⌋ +⌊r/2⌋, or,

⌊
ℓ(r⌊℘/2⌋ +⌊r/2⌋) − b[r⌊℘/2⌋ +⌊r/2⌋] + a 

r
⌋ ≥ ⌊
℘
2
⌋ +⌊

r

2
⌋.

(25)

(erefore, d(vi, vj)≥ ⌊℘/2⌋ + ⌊r/2⌋:

τ vi(  − τ vj 


≥ ⌊
℘
2
⌋ ≥ ℘ − ⌊

℘
2
⌋ ≥ ℘ + 1 − d vi, vj .

(26)

Subcase (b): if |τ(vi) − τ(vj)| � |[(i − j)mod r ⌊℘/2⌋+

r/2]℘|.
Let (i − j)mod r⌊℘/2⌋ + ⌊r/2⌋ � a⇒i − j � b[r⌊℘/2⌋

+⌊r/2⌋] + awith 2≤ b< ℓ − 1. Hence, by equation (22),

d vi, vj  � ⌊
b[r⌊℘/2⌋ +⌊r/2⌋] + a

r
⌋ ≥ 2 ⌊
℘
2
⌋ +⌊

r

2
⌋ , or

⌊
ℓ(r⌊℘/2⌋ +⌊r/2⌋) − b[r⌊℘/2⌋ +⌊r/2⌋] + a 

r
⌋ ≥ 2 ⌊
℘
2
⌋ +⌊

r

2
⌋ .

(27)
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Figure 2: λ4(G) � 22.
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(erefore, d(vi, vj)≥ 2(⌊℘/2⌋ + ⌊r/2⌋)>℘.

(us, τ is Ł(℘,℘ − 1, . . . , 2, 1) labeling and λ℘(G) �

[r⌊℘/2⌋ +⌊r/2⌋) − 1]℘. Now, each vertex has some vertex
with distance ⌊℘/2⌋ + ⌊r/2⌋ and absolute difference be-
tween those vertices is ⌊℘/2⌋. Hence, by Lemma 1, τ is
minimum span function of G; this proves the
theorem. □

Example 3. If k � 3 and r � 3, then the circulant graph
G � Cir(14, 1, 2, 3, 11, 12, 13{ }) has Ł(℘,℘ − 1, . . . , 2, 1)

labeling number λ3(G) � 19. Figure 3 illustrates that the
span is sharp.

3. Ł9(℘,℘− 1, . . . , 2, 1) Labeling of
Circulant Graphs

We prove the following theorems for the circulant graph
Cir(n,Λ), Λ � 1, 2, . . . , r, n − 1, n − 2, . . . , n − r{ }, and 1≤ r

< ⌊n/ 2⌋ admits L′(℘,℘ − 1, . . . , 2, 1) labeling with
λ(℘,℘− 1,...,1)

′(G) � n − 1.

Theorem 4. Let n, r ∈ Z+ with 1≤ r< ⌊n/2⌋. If n≥ 2(r + 1) +

1 and (r + 1)|n, then the circulant graph Cir(n,Λ), Λ � 1, 2,{

. . . , r, n − 1, n − 2, . . . , n − r} admits L′(2, 1) labeling with
λ(2,1)
′(G) � n − 1.

Proof. Let n, ℓ ∈ Z+,G � Cir(n,Λ) be the circulant graph
with n≥ 2(r + 1) + 1 where 1≤ r< ⌊n/2⌋ and ℓ � n/(r + 1).
By the division algorithm, for every vertex v ∈∨(G), we can
write v � vi(r+1)+j, where 0≤ i≤ ℓ − 1, 0≤ j≤ r. By using
τ: ∨(G)⟶ 0, 1, . . . , n − 1{ },

τ vi(r+1)+j  � i + ℓj. (28)

For i � 0, 0≤ j≤ r − 1, and 1≤d≤ ℓ/2 we have

N
d

vj  � v(d− 1)(r+1)+j+1, v(d− 1)(r+1)+j+2, . . . ,

· v(d− 1)(r+1)+j+r, v((ℓ− 1)+(d− 1))(r+1)+j+1,

· v((ℓ− 1)+(d− 1))(r+1)+j+2, . . . , v((ℓ− 1)+(d− 1))(r+1)+j+r.

(29)

Also, for 1≤ i≤ ℓ − 1, 0≤ j≤ r − 1, and 1≤d≤ ℓ/2, we
have

N
d

vi(r+1)+j  � v(i+d− 1)(r+1)+j+1, v(i+d− 1)(r+1)+j+2, . . . ,

· v(i+d− 1)(r+1)+j+r, v((i− 1)+(d− 1))(r+1)+j+1,

· v((i− 1)+(d− 1))(r+1)+j+2, . . . ,

· v((i− 1)+(d− 1))(r+1)+j+r.

(30)

(e function τ is injective, and the values assigned to
∨(G is from 0, 1, 2, . . . , n − 1{ }. So, for every e � uv ∈ ε(G),
the difference of the labels |τ(u) − τ(v)| gets one of the
values in the set 1, 2, . . . , n − 1{ }. By the function τ, for every
u ∈∨(G) and v ∈ Nd(u), we get the difference values |τ(u) −

τ(v)| in the set ℓ + d − 1, 2ℓ + d − 1, . . . , rℓ + d − 1,{ ℓ − 1 +

rℓ + d − 1, ℓ − 1 + (r − 1)

ℓ + d − 1, ℓ − 1 + (r − 2)ℓ + d − 1, . . . , ℓ − 1 + ℓ + d − 1}.
Since n≥ 2(r + 1) + 1, n/(r + 1) � ℓ which implies ℓ ≥ 2. For
℘ � 1 and ℘ � 2, the difference |τ(u) − τ(v)|≥℘ + 1−

d(u, v), for all u, v ∈∨(G). Hence, the function τ is a
Ł′(2, 1)-labeling with λ(2, 1)

′
(G) � n − 1. □

Theorem 5. Let n, r ∈ Z+ with 1≤ r< ⌊n/2⌋. If n≥ 2(r + 1) +

1 and (r + 1)∤n with gcd(n, r + 1) � 1, then the circulant
graph Cir(n,Λ), Λ � 1, 2, . . . , r, n − 1, n − 2, . . . , n − r{ }, ad-
mits Ł′(2, 1) labeling with λ(2,1)

′(G) � n − 1.

Proof. Let n, ℓ ∈ Z+ and Cir(n,Λ) be the circulant graph
with n≥ 2(r + 1) + 1, where 1≤ r< ⌊n/2⌋ and ℓ � ⌊n/(r +1)⌋.
By the division algorithm, for every vertex v ∈∨(G), we can
write v � vi(r+1)mod n, where 0≤ i≤ ℓ − 1, 0≤ j≤ r. Let
τ: ∨(G)⟶ 0, 1, . . . , n − 1{ } by

τ vi(r+1)mod n  � i for i � 0, 1, . . . , n − 1. (31)

For 0≤ i≤ n − 1, we have

N vi(r+1)mod n  � v(i(r+1)mod n)+1, v(i(r+1)mod n)+2, . . . ,

· v(i(r+1)mod n)+r, v(i(r+1)mod n)+n− 1,

· v(i(r+1)mod n)+n− 2, . . . , v(i(r+1)mod n)+n− r.

(32)

Since gcd(n, r + 1) � 1, then the function τ is injective,
and the values assigned to ∨(G is from 0, 1, 2, . . . , n − 1{ }. So,
for every e � uv ∈ ε(G), the difference of the labels |τ(u) −

τ(v)| gets one of the values in the set 1, 2, . . . , n − 1{ }. By the
function τ, for every u ∈∨(G), v ∈ Nd(u), and 1≤ d≤ ℓ/2, we
get the difference values |τ(u) − τ(v)| in the set ℓ + d−{

1, 2ℓ + d − 1, . . . , rℓ + d − 1, ℓ − 1 + rℓ + d − 1, ℓ − 1+ (r − 1)

ℓ + d − 1, ℓ − 1 + (r − 2) ℓ + d − 1, . . . , ℓ − 1 + ℓ + d − 1}.
Since n≥ 2(r + 1) + 1, n/(r + 1) � ℓ which implies ℓ ≥ 2. For
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Figure 3: λ3(G) � 19.
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℘ � 1 and ℘ � 2, the difference |τ(u) − τ(v)|≥℘ + 1− d(u, v)

for all u, v ∈∨(G). Hence, the function τ is a Ł(2, 1)-labeling
with λ(2, 1)

′
(G) � n − 1. □

Theorem 6. Let n, ℘, r ∈ Z+ with 1≤ r< ⌊n/2⌋. If n≥℘((℘
− 1)r + 1) − r(℘ − 3), for ℘(≥ 3) and ((℘ − 1)r + 1)|n, then
the circulant graph Cir(n,Λ), Λ � 1, 2, . . . , r, n − 1, n − 2,{

. . . , n − r}, admits Ł′(℘,℘ − 1, . . . , 2, 1) labeling with λ(℘,
℘ − 1, . . . , 2, 1)

′
(G) � n − 1.

Proof. Let n, ℘, ℓ ∈ Z+ and G � Cir(n,Λ) with n≥℘((℘−
1)r + 1) − r(℘ − 3), where 1≤ r< ⌊n/2⌋. (℘ − 1)r + 1 divides
n.

Take ℓ � n/(℘ − 1)r + 1. By the division algorithm, for
every vertex v ∈∨(G), we can write v � vi((℘− 1)r+1)+j, where
0≤ i≤ ℓ − 1, 0≤ j≤ r. Let τ: ∨(G)⟶ 0, 1, . . . , n − 1{ } by

τ vi((℘− 1)r+1)+j  � i + ℓj. (33)

For i � 0, 0≤ j≤ r − 1, and 1≤d≤ ℓ/2, we have

N
d

vj  � v(d− 1)((℘− 1)r+1)+j+1, v(d− 1)((℘− 1)r+1)+j+2, . . . ,

· v(d− 1)((℘− 1)r+1)+j+r, v((ℓ− 1)+(d− 1))((℘− 1)r+1)+j+1,

· v((ℓ− 1)+(d− 1))((℘− 1)r+1)+j+2, . . . ,

· v((ℓ− 1)+(d− 1))((℘− 1)r+1)+j+r.

(34)

Also, for 1≤ i≤ ℓ − 1, 0≤ j≤ r − 1, and 1≤d≤ ℓ/2, we
have

N
d

vi((℘− 1)r+1)+j  � v(i+d− 1)((℘− 1)r+1)+j+1,

· v(i+d− 1)((℘− 1)r+1)+j+2, . . . ,

· v(i+d− 1)((℘− 1)r+1)+j+r

· v((i− 1)+(d− 1))((℘− 1)r+1)+j+1,

· v((i− 1)+(d− 1))((℘− 1)r+1)+j+2, . . . ,

· v((i− 1)+(d− 1))((℘− 1)r+1)+j+r.

(35)

(e function τ is injective, and the values assigned to
∨(G is from 0, 1, 2, . . . , n − 1{ }. So, for every e � uv ∈ ε(G),
the difference of the labels |τ(u) − τ(v)| gets one of the
values in the set 1, 2, . . . , n − 1{ }. By the function τ, for every
u ∈∨(G) and v ∈ Nd(u), we get the difference values |τ(u) −

τ(v)| in the set ℓ + d − 1, 2ℓ + d − 1, . . . , rℓ + d − 1,{ ℓ − 1 +

rℓ + d − 1, ℓ − 1 + (r − 1)ℓ + d − 1, ℓ − 1 + (r − 2)ℓ + d − 1
. . . , ℓ − 1 + ℓ + d − 1}. Since n≥℘((℘ − 1)r + 1) − r(℘ − 3),
n/(℘ − 1)r + 1 � ℓ which implies ℓ ≥℘. For ℘≥ 3, the dif-
ference |τ(u) − τ(v)|≥℘ + 1 − d(u, v), for all u, v ∈∨(G).
Hence, the function τ is a Ł′(℘,℘ − 1, . . . , 1)-labeling for
℘≥ 3 with λ(℘,℘ − 1, . . . , 2, 1)

′
(G) � n − 1. □

4. Conclusion

We show in this study that the circulant graphs with specific
generating sets are allowed m-Ł(℘,℘ − 1, . . . , 2, 1) labeling
and Ł(℘,℘ − 1, . . . , 2, 1)-labeling. Also, we identified the

minimum span of m-Ł(℘,℘ − 1, . . . , 2, 1) labeling. However,
a major challenge of the problems m-Ł(℘,℘ − 1, . . . , 2, 1)

labeling and Ł′(℘,℘ − 1, . . . , 1) labeling withminimum span
for the arbitrary circulant graphs remains under investi-
gation. Another future work is addressed to find
m-Ł(℘,℘ − 1, . . . , 1) and Ł′(℘,℘ − 1, . . . , 2, 1) labeling with
minimum span for the Cayley graphs.
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/e normalized Laplacian plays an indispensable role in exploring the structural properties of irregular graphs. Let L8,4
n represent

a linear octagonal-quadrilateral network. /en, by identifying the opposite lateral edges of L8,4
n , we get the corresponding Möbius

graph MQn(8, 4). In this paper, starting from the decomposition theorem of polynomials, we infer that the normalized Laplacian
spectrum of MQn(8, 4) can be determined by the eigenvalues of two symmetric quasi-triangular matricesLA andLS of order 4n.
Next, owing to the relationship between the two matrix roots and the coefficients mentioned above, we derive the explicit
expressions of the degree-Kirchhoff indices and the complexity of MQn(8, 4).

1. Introduction

It is well established that networks can be represented by
graphs. /e graphs we consider in this paper are simple,
undirected, and connected. Let us first recall some defini-
tions commonly used in graph theory. Suppose G represents
a simple undirected graph with |VG| � n and |EG| � m. For
more notations, the readers are referred to [1].

Note that D(G) � diag d1, d2, . . . , dn  represents a de-
gree matrix, where dp is the degree of vp. A(G) is the ad-
jacency matrix of G. /e Laplacian matrix of G is
L(G) � D(G) − A(G). /e (p, q)-entry of the normalized
Laplacian matrix is given by

(L(G))pq �

1, p � q,

−
1

����
dpdq

 , p≠ q and vp ∽ vq,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

As a matter of fact, there are many parameters that can be
used to describe the structure and properties of molecular
graphs in graph networks. One of the parameters based on
resistance distance is defined as theWiener index [2, 3], which is

W(G) � 
i<j

dij, (2)

where dij � dG(vi, vj) represents the length of the shortest
path between two vertices vi and vj in G./eWiener index is
widely used in chemical and mathematical research. For
details, see [4–7].

/e parameter of resistance distance was first proposed
by Klein and Randic [8] in 1993. It means that if every edge
of a graphG is regarded as a unit resistance, then the distance
between any two vertices i and j in G is called resistance
distance, which is denoted as rij. Similar to the Wiener
index, we give the expression of the Kirchhoff index [9, 10]
according to the resistance distance, namely,

Kf(G) � 
i<j

rij � n 
n

i�2

1
μi

. (3)
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In 2007, Chen and Zhang [11] proposed that the ei-
genvalues and eigenvectors of normalized Laplacian spec-
trum can be used to describe the resistance distance, and the
concept of Kirchhoff index is put forward. However, it is
very difficult to calculate the degree-Kirchhoff index from
the complexity division of graphs, so it is important to find
the explicit expression of degree-Kirchhoff index. In recent
years, many scholars have devoted themselves to the study of
Kirchhoff index of various graphs. Huang et al. [12, 13]
proved the Kirchhoff index of linear hexagonal chains and
linear polyomino chains successively. Ma and Bian [14]
determined the normalized Laplacians and degree-Kirchhoff
index of cylinder phenylene chain. Liu et al. [15] described
the normalized Laplacian and degree-Kirchhoff index of
linear octagonal-quadrilateral networks. For more excellent
results, refer to [16–21]. After learning the excellent works of
scholars, in this paper, we use the correlation properties of
Laplace matrix to calculate the degree-Kirchhoff index and
the complexity of Möbius graph of linear octagonal-quad-
rilateral networks. /e investigation of complex graph and
network has gone through a spectacular development in the
past decades. Especially in organic chemistry, more and
more attention has been paid to the application of poly-
omino in polycyclic aromatic compounds. Many scholars
are interested in the study of linear octagonal networks and
related molecular graphs. We all know that linear octagonal
network is an octagonal system without branch compres-
sion. It is constructed by regularly inserting some new points
on the straight line of the linear polyomino network. /e
research on the structure and properties of this kind of
natural graph network lays a solid foundation for the ad-
vancement of theoretical chemistry, as well as for the de-
velopment of applied mathematics.

Let L8,4
n be the linear octagonal-quadrilateral networks,

and octagons and quadrilaterals are connected by a common
edge, which are depicted in Figure 1. /en, the corre-
sponding Möbius graph MQ3(8, 4) of octagonal-quadri-
lateral networks is obtained by the reverse identification of
the opposite edge by L8,4

n (see Figure 2). Obviously, we can
obtain that |VMQn

(8, 4)| � 8n, |EMQn
(8, 4)| � 10n.

/e rest of the paper will be divided into the following
sections. In Section 2, we put forward some basic notations
and related lemmas. In Section 3, we determine the nor-
malized Laplacian spectrum of MQn(8, 4). In Section 4, we
present Kemeny’s constant, the degree-Kirchhoff index, and
the complexity of MQn(8, 4).

2. Preliminary

In this section, we introduce some common symbols and
related calculation methods [1], which are applied to the rest
of the article.

/e characteristic polynomial of matrix R of order n is
defined as PR(x) � det(xI − R). It is not difficult to find that

π is an automorphism of G, and we can write the product of
disjoint 1-cycles and transposition, namely,

π � (1)(2), . . . , (m) 1, 1′(  2, 2′( , . . . , k, k′( . (4)

/en, one has |V(G)| � m + 2k, and let v0 � 1, 2,

. . . , m}, v1 � 1, 2, . . . , k{ }, v2 � 1′, 2′, . . . , k′ . /us, the
Laplacian matrix can be expressed in the form of block
matrix, that is,

L(G) �

LV0V0
LV0V1

LV0V2

LV1V0
LV1V1

LV1V2

LV2V0
LV2V1

LV2V2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

where

LV0V1
� LV0V2

,

LV1V2
� LV2V1

,

LV1V1
� LV2V2

.

(6)

Let

P �

Im 0 0

0
1
�
2

√ Ik

1
�
2

√ Ik

0
1
�
2

√ Ik −
1
�
2

√ Ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

and then

P′L(G)P �
LA(G) 0

0 LS(G)
 . (8)

Note that P′ is the transposition of P, where

LA �
LV0V0

�
2

√
LV0V1

�
2

√
LV1V0

LV1V1
+ LV1V2

⎛⎝ ⎞⎠,

LS � LV1V1
− LV1V2

.

(9)

Lemma 1 (see [12]). Let L(Ln)(G), LA(G), LS(G) be
determined as above; then,

PL Ln( )(G) � PLA
(G)PLS

(G). (10)

Lemma 2. Let G be a graph with |VG| � n and |EG| � m, and
0 � μ1 < μ2 ≤ · · · ≤ μn(n≥ 2) are the eigenvalues of L(G).
2en, we can quickly confirm that the following formulas
hold.
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(a) (see [22]). Kemeny’s constant of G can be denoted as

Kc(G) � 
n

i�2

1
μi

. (11)

(b) (see [11]). 2e degree-Kirchhoff index of G is defined
as

Kf
∗
(G) � 2m 

n

k�2

1
μk

. (12)

(c) (see [1]). 2e number of spanning trees of G can also
be called the complexity of G. 2en, the complexity of
G is



n

i�1
di 

n

k�2
λk � 2mτ(G). (13)

3. The Normalized Laplacian
Spectrum of MQn(8, 4)

In this section, we focus on obtaining the normalized
Laplacian spectrum of MQn(8, 4) by Lemma 1.

Given a square matrix T of order n. We will use
T[ p1, p2, . . . , pk ] to denote the submatrix obtained by
deleting the p1th, p2th, . . ., pkth rows and corresponding
columns of T. With a suitable labeling, the vertices of
MQn(8, 4) are shown in Figure 2. Apparently,
π � (1, 1′)(2, 2′), . . . , (4n, (4n)′) is an automorphism of
MQn(8, 4). /en, v0 � ∅, v1 � 1, 2, 3,{ . . . , 4n} and v2
� 1′, 2′, 3′, . . . , (4n)′ . Besides, we expressLA(MQn(8, 4))

and LS(MQn(8, 4)) as LA and LS. /en, one can get

LA � LV1V1
+ LV1V2

,

LS � LV1V1
− LV1V2

.
(14)

In view of equation (1), we have

MQ3 (8,4)

Figure 2: Graph MQ3(8, 4).
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Figure 1: Linear octagonal-quadrilateral networks.
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LV1V1
�

1
− 1

�
6

√

− 1
�
6

√ 1
− 1
2

− 1
2

1
− 1

�
6

√

− 1
�
6

√ 1
− 1
3

− 1
3

1
− 1

�
6

√

− 1
�
6

√ 1
− 1
2

⋱

− 1
3

1
− 1

�
6

√

− 1
�
6

√ 1
− 1
2

− 1
2

1
− 1

�
6

√

− 1
�
6

√ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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Assume that 0 � η1 < η2 ≤ η3 ≤ · · · ≤ η4n are the roots of
PLA

(x) � 0 and 0<φ1 ≤φ2 ≤φ3 ≤ · · · ≤φ4n are the roots of
PLS

(x) � 0, respectively. /en, according to Lemma 1, we
can get that the spectrum of MQn is just
η1, η2, . . . , η4n, φ1,φ2, . . . ,φ4n, and it is easy to check that
η1 � 0, ηp > 0(p � 2, 3, . . . , 4n), and φq > 0, (q � 1, 2, . . . ,

4n).
Next, we calculate some main results of MQn related to

the normalized Laplacian spectrum.

4. The Degree-Kirchhoff Index and the
Complexity of MQn(8, 4)

In this section, we first introduce some theorems, which are
obtained by describing the eigenvalues and eigenvectors of
normalized Laplacian matrix. /en, we obtain Kemeny’s
constant, the degree-Kirchhoff index, and the complexity of
MQn(8, 4) based on these theorems. where ϱ(n)
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Proof. Let
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(x) � det xI − LA(  � x
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� x x
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+ · · · + a4n− 2x + a4n− 1 , a4n− 1 ≠ 0.

(18)

/en, we can exactly get that η1, η2, . . . , η4n are the roots
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(4n)×(4n)

. (21)

In this way, we can get four facts.

Fact 1. For 1≤p≤ 4n,

r
0
p �

(p + 1)
1
36

 
(p/4)

, if p ≡ 0(mod4),

1
3

(p + 1)
1
36

 
((p− 1)/4)

, if p ≡ 1(mod4),

1
6

(p + 1)
1
36

 
((p− 2)/4)

, if p ≡ 2(mod4),

1
12

(p + 1)
1
36

 
((p− 3)/4)

, if p ≡ 3(mod4).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Fact 2. For 1≤p≤ 4n,

r
1
p �

(p + 1)
1
36

 
(p/4)

, if p ≡ 0(mod4),

1
2

(p + 1)
1
36

 
((p− 1)/4)

, if p ≡ 1(mod4),

1
4

(p + 1)
1
36

 
((p− 2)/4)

, if p ≡ 2(mod4),

1
12

(p + 1)
1
36

 
((p− 3)/4)

, if p ≡ 3(mod4).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Fact 3. For 1≤p≤ 4n,

r
2
p �

1
2
r
0
p− 2 −

1
9
r
1
p− 3. (24)

Fact 4. For 1≤p≤ 4n,
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r
3
p �

2
3
r
0
p− 1 −

1
9
r
1
p− 2. (25)

Proof. of Fact 1. Take r0p � detR0
p, r1p � detR1

p, r2p � detR2
p,

and r3p � detR3
p. By a straightforward calculation, one can get

the following values (see Table 1).
For 4≤p≤ 4n − 1, we can get expansion formula of det

R0
p with respect to its last row:

r
0
p �

2
3
r
0
p− 1 −

1
6
r
0
p− 2, if p ≡ 0(mod4),

2
3
r
0
p− 1 −

1
9
r
0
p− 2, if p ≡ 1(mod4),

r
0
p− 1 −

1
6
r
0
p− 2, if p ≡ 2(mod4),

r
0
p− 1 −

1
4
r
0
p− 2, if p ≡ 3(mod4).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

For 1≤p≤ n − 1, let ap � r04p; for 0≤p≤ n − 1, let
bp � r04p+1, cp � r04p+2, dp � r04p+3. /en, we can get a1 � (5
/36), b0 � (2/3), c0 � (1 /2), d0 � (5/36), b1 � (3/54), c1 �

(7/216), d1 � (1/54), and for p≥ 2, we have

ap �
2
3
dp− 1 −

1
6
cp− 1,

bp �
2
3
ap −

1
9
dp− 1,

cp � bp −
1
6
ap,

dp � cp −
1
4
bp.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

/en, it is not difficult to obtain that

ap � 18cp − 24dp,

bp � 4cp − 4dp,

cp �
1
18

cp− 1 −
1

1296
cp− 2,

dp �
1
18

dp− 1 −
1

1296
dp− 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

According to the equation of dp in (28), it is evident to
see that x2 − (1/18)x + (1/1296) � 0, and its two roots are
(1/36) and (1/36). /erefore, dp � (xp + y)(1/36)p is the
general solution. /en, we can get

y �
1
3
,

1
36

(x + y) �
1
54

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x �
1
3
,

y �
1
3
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(29)

/us, we can obtain dp � (1/3)(p + 1)(1/36)p(p≥ 1).
Similarly, we have cp � ((2p/3) + (1/2))(1 /36)p(p≥ 1);

ap � (4p + 1)(1/36)p(p≥ 1); and bp � (2/3)(2p + 1)

(1/36)p(p≥ 1).
/e result is obtained as desired. □

By similar consideration, Fact 2 is available. /en, based on
the conclusion of Facts 1 and 2, we quickly get Facts 3 and 4.

Now, we will further calculate (− 1)4n− 1a4n− 1 and
(− 1)4n− 2a4n− 2 in equation (20). For the sake of discussion, it
is assumed that r0 � 1.
Claim 1. (− 1)4n− 1a4n− 1 � 40n2(1/36)n.
Proof. of Claim 1. Since (− 1)4n− 1a4n− 1 is the total of all the
principal minors of order 4n − 1 of LA, we have

(− 1)
4n− 1

a4n− 1 � 
4n

p�1
detLA[p] � 

4n

p�4,p≡0(mod4)

detLA[p] + 
4n− 3

p�1,p≡1(mod4)

detLA[p]

+ 
4n− 2

p�2,p≡2(mod4)

detLA[p] + 
4n− 1

p�3,p≡3(mod4)

detLA[p],

(30)

where

Journal of Mathematics 9





4n

p�4,p≡0(mod4)

detLA[p] � 
4n

p�4,p≡0(mod4)

r
0
p− 1r

0
4n− p −

1
9
r
1
p− 2r

0
4n− p− 1 ,



4n− 3

p�1,p≡1(mod4)

detLA[p] � 

4n− 3

p�1,p≡1(mod4)

r
0
p− 1r

1
4n− p −

1
9
r
1
p− 2r

1
4n− p− 1 ,



4n− 2

p�2,p≡2(mod4)

detLA[p] � 
4n− 2

p�2,p≡2(mod4)

r
0
p− 1r

2
4n− p −

1
9
r
1
p− 2r

2
4n− p− 1 ,



4n− 1

p�3,p≡3(mod4)

detLA[p] � 
4n− 1

p�3,p≡3(mod4)

r
0
p− 1r

3
4n− p −

1
9
r
1
p− 2r

3
4n− p− 1 .

(31)

By Facts 1 and 2, we have



4n

p�4,p≡0(mod4)

r
0
p− 1r

0
4n− p −

1
9
r
1
p− 2r

0
4n− p− 1  � 

4n

p�4,p≡0(mod4)

p

12
1
36

 
((p− 4)/4)

(4n − p + 1)
1
12

1
36

 
((4n− p)/4)



−
1
9

(p − 1)
1
4

1
36

 
((p− 4)/4) 1

12
(4n − p)

1
36

 
((4n− p− 4)/4)

� 
4n

p�4,p≡0(mod4)

12n
1
36

 
n

� 12n
2 1
36

 
n

.

(32)

Similarly, by Facts 1–4, we can get



4n− 3

p�1,p≡1(mod4)

r
0
p− 1r

1
4n− p −

1
9
r
1
p− 2r

1
4n− p− 1  � 12n

2 1
36

 
n

,



4n− 2

p�2,p≡2(mod4)

r
0
p− 1r

2
4n− p −

1
9
r
1
p− 2r

2
4n− p− 1  � 8n

2 1
36

 
n

,



4n− 1

p�3,p≡3(mod4)

r
0
p− 1r

3
4n− p −

1
9
r
1
p− 2r

3
4n− p− 1  � 8n

2 1
36

 
n

.

(33)

Hence, according to the above results, we have

Table 1: Initial value.

r0p Value r0p Value r0p Value r0p Value

r01 (2/3) r02 (1/2) r03 (1/3) r04 (5/36)

r05 (3/54) r06 (7/216) r07 (1/54) r08 (1/144)
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(− 1)
4n− 1

a4n− 1 � 
4n

p�1
detLA[p] � 40n

2 1
36

 
n

. (34)

/e proof of Claim 1 is completed. □

Claim 2. (− 1)4n− 2a4n− 2 � (2/3)(200n4 − 11n2)(1/36)n.

Proof. of Claim 2. It is not hard to see that (− 1)4n− 2a4n− 2 is
the total of those principal minors LA, which have (4n − 2)
rows and columns. /us, we have

(− 1)
4n− 2

a4n− 2 � 
1≤i<j≤4n

detLA[p, q]. (35)

By equation (35), it can be seen that the change of i and j

values will lead to different detLA[p, q] results. /erefore,
we will choose different p and q to list the following
equations:


1≤p<q≤4n

detLA[p, q] � 
4n− 4

p≡0(mod4)



4n

q≡0(mod4)

detLA[p, q] + 
4n− 4

p≡0(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 
4n− 4

p≡0(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 
4n− 4

p≡0(mod4)



4n− 1

q≡3(mod4)

detLA[p, q]

+ 

4n− 3

p≡1(mod4)



4n

q≡0(mod4)

detLA[p, q] + 

4n− 3

p≡1(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 
4n− 3

p≡1(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 
4n− 3

p≡1(mod4)



4n− 1

q≡3(mod4)

detLA[p, q]

+ 
4n− 2

p≡2(mod4)



4n

q≡0(mod4)

detLA[p, q] + 
4n− 2

p≡2(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 
4n− 2

p≡2(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 
4n− 2

p≡2(mod4)



4n− 1

q≡3(mod4)

detLA[p, q]

+ 
4n− 1

p≡3(mod4)



4n

q≡0(mod4)

detLA[p, q] + 
4n− 2

p≡3(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 
4n− 1

p≡3(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 
4n− 1

p≡3(mod4)



4n− 1

q≡3(mod4)

detLA[p, q].

(36)

By Facts 1–4, we can compute the following results. Case 1.



4n− 4

p≡0(mod4)



4n

q≡0(mod4)

detLA[p, q] � 
4n− 4

p≡0(mod4)



4n

q≡0(mod4)

r
0
p− 1r

0
q− p− 1r

0
4n− q −

1
9
r
1
p− 2r

0
q− p− 1r

0
4n− q− 1 

� 
4n− 4

p≡0(mod4)



4n

q≡0(mod4)

9(q − p)(4n − q + p)
1
36

 
n

� 12 n
4

− n
2

 
1
36

 
n

.

(37)
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Case 2.



4n− 4

p≡0(mod4)



4n− 3

q≡1(mod4)

detLA[p, q] � 
4n− 4

p≡0(mod4)



4n− 3

q≡1(mod4)

r
0
p− 1r

0
q− p− 1r

1
4n− q −

1
9
r
1
p− 2r

0
q− p− 1r

1
4n− q− 1 

� 
4n− 4

p≡0(mod4)



4n− 3

q≡1(mod4)

9(q − p)(4n − q + p)
1
36

 
n

�
3
2

8n
4

− 12n
3

+ n
2

+ 3n 
1
36

 
n

.

(38)

Case 3.



4n− 4

p≡0(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] � 
4n− 4

p≡0(mod4)



4n− 2

q≡2(mod4)

r
0
p− 1r

0
q− p− 1r

2
4n− q −

1
9
r
1
p− 2r

0
q− p− 1r

2
4n− q− 1 

� 
4n− 4

p≡0(mod4)



4n− 2

q≡2(mod4)

6(q − p)(4n − q + p)
1
36

 
n

� 8n
4

+ 8n
3

+ 4n
2

+ 4n 
1
36

 
n

.

(39)

Case 4.



4n− 4

p≡0(mod4)



4n− 1

q≡3(mod4)

detLA[p, q] � 
4n− 4

p≡0(mod4)



4n− 1

q≡3(mod4)

r
0
p− 1r

0
q− p− 1r

3
4n− q −

1
9
r
1
p− 2r

0
q− p− 1r

3
4n− q− 1 

� 
4n− 4

p≡0(mod4)



4n− 1

q≡3(mod4)

6(q − p)(4n − q + p)
1
36

 
n

� 8n
4

− 4n
3

+ n
2

− 5n 
1
36

 
n

.

(40)

Case 5.



4n− 3

p≡1(mod4)



4n

q≡0(mod4)

detLA[p, q] � 
4n− 3

p≡1(mod4)



4n

q≡0(mod4)

r
0
p− 1r

1
q− p− 1r

0
4n− q −

1
9
r
1
p− 2r

1
q− p− 1r

0
4n− q− 1 

� 
4n− 3

p≡1(mod4)



4n

q≡0(mod4)

9(q − p)(4n − q + p)
1
36

 
n

�
3
2

8n
4

+ 12n
3

+ n
2

− 3n 
1
36

 
n

.

(41)
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Case 6.



4n− 3

p≡1(mod4)



4n− 3

q≡1(mod4)

detLA[p, q] � 
4n− 3

p≡1(mod4)



4n− 3

q≡1(mod4)

r
0
p− 1r

1
q− p− 1r

1
4n− q −

1
9
r
1
p− 2r

1
q− p− 1r

1
4n− q− 1 

� 
4n− 3

p≡1(mod4)



4n− 3

q≡1(mod4)

9(q − p)(4n − q + p)
1
36

 
n

� 12 n
4

− n
2

 
1
36

 
n

.

(42)

Case 7.



4n− 3

p≡1(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] � 
4n− 3

p≡1(mod4)



4n− 2

q≡2(mod4)

r
0
p− 1r

1
q− p− 1r

2
4n− q −

1
9
r
1
p− 2r

1
q− p− 1r

2
4n− q− 1 

� 
4n− 3

p≡1(mod4)



4n− 2

q≡2(mod4)

9(q − p)(4n − q + p)
1
36

 
n

� 8n
4

+ 4n
3

+ n
2

+ 5n 
1
36

 
n

.

(43)

Case 8.



4n− 3

p≡1(mod4)



4n− 1

q≡3(mod4)

detLA[p, q] � 
4n− 3

p≡1(mod4)



4n− 1

q≡3(mod4)

r
0
p− 1r

1
q− p− 1r

3
4n− q −

1
9
r
1
p− 2r

1
q− p− 1r

3
4n− q− 1 

� 

4n− 3

p≡1(mod4)



4n− 1

q≡3(mod4)

6(q − p)(4n − q + p)
1
36

 
n

� 8n
4

− 8n
3

+ 4n
2

− 4n 
1
36

 
n

.

(44)

Case 9.



4n− 2

p≡2(mod4)



4n

q≡0(mod4)

detLA[p, q] � 
4n− 2

p≡2(mod4)



4n

q≡0(mod4)

r
0
p− 1r

2
q− p− 1r

0
4n− q −

1
9
r
1
p− 2r

2
q− p− 1r

0
4n− q− 1 

� 
4n− 2

p≡2(mod4)



4n

q≡0(mod4)

6(q − p)(4n − q + p)
1
36

 
n

� 8n
4

+ 8n
3

+ 4n
2

+ 4n 
1
36

 
n

.

(45)
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Case 10.



4n− 2

p≡2(mod4)



4n− 3

q≡1(mod4)

detLA[p, q] � 
4n− 2

p≡2(mod4)



4n− 3

q≡1(mod4)

r
0
p− 1r

2
q− p− 1r

1
4n− q −

1
9
r
1
p− 2r

2
q− p− 1r

1
4n− q− 1 

� 
4n− 2

p≡2(mod4)



4n− 3

q≡1(mod4)

6(q − p)(4n − q + p)
1
36

 
n

� 8n
4

− 4n
3

+ n
2

− 5n 
1
36

 
n

.

(46)

Case 11.



4n− 2

p≡2(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] � 
4n− 2

p≡2(mod4)



4n− 2

q≡2(mod4)

r
0
p− 1r

2
q− p− 1r

2
4n− q −

1
9
r
1
p− 2r

2
q− p− 1r

2
4n− q− 1 

� 
4n− 2

p≡2(mod4)



4n− 2

q≡2(mod4)

4(q − p)(4n − q + p)
1
36

 
n

�
16
3

n
4

− n
2

 
1
36

 
n

.

(47)

Case 12.



4n− 2

p≡2(mod4)



4n− 1

q≡3(mod4)

detLA[p, q] � 
4n− 2

p≡2(mod4)



4n− 1

q≡3(mod4)

r
0
p− 1r

2
q− p− 1r

3
4n− q −

1
9
r
1
p− 2r

2
q− p− 1r

3
4n− q− 1 

� 

4n− 2

p≡2(mod4)



4n− 1

q≡3(mod4)

4(q − p)(4n − q + p)
1
36

 
n

�
2
3

8n
4

+ 4n
3

+ n
2

+ 5n 
1
36

 
n

.

(48)

Case 13.



4n− 1

p≡3(mod4)



4n

q≡0(mod4)

detLA[p, q] � 
4n− 1

p≡3(mod4)



4n

q≡0(mod4)

r
0
p− 1r

3
q− p− 1r

0
4n− q −

1
9
r
1
p− 2r

3
q− p− 1r

0
4n− q− 1 

� 
4n− 1

p≡3(mod4)



4n

q≡0(mod4)

6(q − p)(4n − q + p)
1
36

 
n

� 8n
4

+ 4n
3

+ n
2

+ 5n 
1
36

 
n

.

(49)
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Case 14.



4n− 1

p≡3(mod4)



4n− 3

q≡1(mod4)

detLA[p, q] � 
4n− 1

p≡3(mod4)



4n− 3

q≡1(mod4)

r
0
p− 1r

3
q− p− 1r

1
4n− q −

1
9
r
1
p− 2r

3
q− p− 1r

1
4n− q− 1 

� 
4n− 1

p≡3(mod4)



4n− 3

q≡1(mod4)

6(q − p)(4n − q + p)
1
36

 
n

� 8n
4

− 8n
3

+ 4n
2

− 4n 
1
36

 
n

.

(50)

Case 15.



4n− 1

p≡3(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] � 
4n− 1

p≡3(mod4)



4n− 2

q≡2(mod4)

r
0
p− 1r

3
q− p− 1r

2
4n− q −

1
9
r
1
p− 2r

3
q− p− 1r

2
4n− q− 1 

� 
4n− 1

p≡3(mod4)



4n− 2

q≡2(mod4)

4(q − p)(4n − q + p)
1
36

 
n

�
2
3

8n
4

− 4n
3

+ n
2

− 5n 
1
36

 
n

.

(51)

Case 16.



4n− 1

p≡3(mod4)



4n− 1

q≡3(mod4)

detLA[p, q] � 
4n− 1

p≡3(mod4)



4n− 1

q≡3(mod4)

r
0
p− 1r

3
q− p− 1r

3
4n− q −

1
9
r
1
p− 2r

3
q− p− 1r

3
4n− q− 1 

� 
4n− 1

p≡3(mod4)



4n− 1

q≡3(mod4)

4(q − p)(4n − q + p)
1
36

 
n

�
16
3

n
4

− n
2

 
1
36

 
n

.

(52)

/en, according to the value of p, the above sixteen cases
can be divided into the following four categories:

F0 � 
4n− 4

p≡0(mod4)



4n

q≡0(mod4)

detLA[p, q] + 
4n− 4

p≡0(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 

4n− 4

p≡0(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 

4n− 4

p≡0(mod4)



4n− 1

q≡3(mod4)

detLA[p, q]

�
1
2

80n
4

− 28n
3

− 11n
2

+ 7n 
1
36

 
n

,
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F1 � 

4n− 3

p≡1(mod4)



4n

q≡0(mod4)

detLA[p, q] + 

4n− 3

p≡1(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 
4n− 3

p≡1(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 
4n− 3

p≡1(mod4)



4n− 1

q≡3(mod4)

detLA[p, q]

�
1
2

80n
4

+ 28n
3

− 11n
2

− 7n 
1
36

 
n

.

F2 � 
4n− 2

p≡2(mod4)



4n

q≡0(mod4)

detLA[p, q] + 
4n− 2

p≡2(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 
4n− 2

p≡2(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 
4n− 2

p≡2(mod4)



4n− 1

q≡3(mod4)

detLA[p, q]

�
1
3

80n
4

+ 20n
3

+ n
2

+ 7n 
1
36

 
n

,

F3 � 
4n− 1

p≡3(mod4)



4n

q≡0(mod4)

detLA[p, q] + 
4n− 2

p≡3(mod4)



4n− 3

q≡1(mod4)

detLA[p, q]

+ 
4n− 1

p≡3(mod4)



4n− 2

q≡2(mod4)

detLA[p, q] + 
4n− 1

p≡3(mod4)



4n− 1

q≡3(mod4)

detLA[p, q]

�
1
3

80n
4

− 20n
3

+ 10n
2

− 7n 
1
36

 
n

.

(53)

Substituting F0, F1, F2, and F3 into equation (35), one
has

(− 1)
4n− 2

a4n− 2 � F0 + F1 + F2 + F3 �
2
3

200n
4

− 11n
2

 
1
36

 
n

. (54)

/is completes the proof. □

So, substituting the results of Claims 1 and 2 into
equation (20) yields



4n

p�2

1
ηp

�
(− 1)

4n− 2
a4n− 2

(− 1)
4n− 1

a4n− 1

�
(2/3) 200n

4
− 11n

2
 (1/36)

n

40n
2
(1/36)

n

�
200n

2
− 11

60
.

(55)

Theorem 2.



4n

q�1

1
φq

�
41n

��
14

√

28
(15 + 4

��
14

√
)
n

− (15 − 4
��
14

√
)
n

( 

(15 + 4
��
14

√
)
n

+(15 − 4
��
14

√
)
n

(  + 2
 .

(56)

Proof. Let

PLS
(x) � det xI − LS(  � x

4n
+ b1x

4n− 1
+ · · · + b4n− 1x + b4n

� x x
4n− 1

+ b1x
4n− 2

+ · · · + b4n− 2x + b4n− 1 , b4n− 1 ≠ 0.

(57)

/en, we can exactly get that φ1,φ2, . . . ,φ4n are the roots
of the following equation:

x
4n− 1

+ b1x
4n− 2

+ · · · + b4n− 2x + b4n− 1 � 0. (58)

Based on Vieta’s theorem of PLS
(x), one has



4n

q�1

1
φq

�
(− 1)

4n− 1
b4n− 1

(− 1)
4n

b4n

�
(− 1)

4n− 1
b4n− 1

detLS

. (59)

Before calculating (− 1)4n− 1b4n− 1 and detLS, we must
determine ith order principal submatrices S0q, S1q, S2q, and S3q,
which consist of the first q rows and columns of the matrices
L0

S,L1
S,L2

S, and L3
S, respectively, q � 1, 2, . . . , 4n. Let
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(60)
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n this way, let us start with the following facts. Fact 5. For 1≤ q≤ 4n,
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Fact 6. For 1≤ q≤ 4n,
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Fact 7. For 1≤ q≤ 4n,
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Fact 8. For 1≤ q≤ 4n,
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Proof. of Fact 5. Take s0q � detS0q, s1q � detS1q, s2q � detS2q, and
s3q � detS3q. By direct calculation, it is not difficult to get the
following values (see Table 2).

For 4≤ q≤ 4n, we have detS0q
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(65)

For 1≤ q≤ n, let Aq � s4q; for 0≤ q≤ n − 1, let
Bq � s4q+1, Cq � s4q+2, Dq � s4q+3. /en, we may obtain that
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From the first three equations in (66), one can get
Aq � (12/13)Cq + (1/78)Cq− 1. Next, substituting Aq into the
third equation, one has Bq � (15/13)Cq + (1/468)Cq− 1.
/en, substituting Bq into the fourth equation, we have
Dq � (37/52)Cq − (1/1872)Cq− 1. Finally, substituting Aq

and dq into the first equation, one has cq − 30cq− 1 + cq�2 � 0.
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In view of C0 � (7/6), C1 � (211/216), we have
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/us, it is routine to deduce that
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In the same way, we can quickly prove the result of Fact 6.
/en, we expand dets2q and dets3q according to the

properties of determinant, and we can get Facts 7 and 8.
Now by exploiting the property of determinant, we can

get

Table 2: Initial value.

s0q Value s0q Value s0q Value s0q Value

s01 (4/3) s02 (7/6) s03 (5/6) s04 (33/36)

s05 (61/54) s06 (211/216) s07 (25/36) s08 (989/1296)
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With Facts 1 and 2, we can obtain one interesting claim.

Claim 3. detLS � ((5 /12) + (
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/9))n + 2(1/36)n.

/en, we are going to concentrate on calculating
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Proof. Since (− 1)4n− 1b4n− 1 is the total of all the principal
minors of order 4n − 1 of LS, we have
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(71)
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where
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For q ≡ 0 (mod4) and 4≤ q≤ 4n − 4, in view of (72) and
Facts 5–8, one gets
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Similarly, for q ≡ 1 (mod4) and 1≤ q≤ 4n − 3, we have
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1
4n− q− 1

�
15n

��
14

√

56
5
12

+

��
14

√

9
 

n

−
5
12

+

��
14

√

9
 

n

 .

(74)

For q ≡ 2(mod4) and 2≤ q≤ 4n − 2, we have



4n− 2

q�2,q≡2(mod4)

detLS[q] � s
0
q− 1s

2
4n− q −

1
9
s
1
q− 2s

2
4n− q− 1

�
13n

��
14

√

28
5
12

+

��
14

√

9
 

n

−
5
12

+

��
14

√

9
 

n

 .

(75)
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For q ≡ 3(mod4) and 3≤ q≤ 4n − 1, we have



4n− 1

q�3,q≡3(mod4)

detLS[q] � s
0
q− 1s

3
4n− q −

1
9
s
1
q− 2s

3
4n− q− 1

�
13n

��
14

√

28
5
12

+

��
14

√

9
 

n



−
5
12

+

��
14

√

9
 

n

.

(76)

/us, one has the following equation:

(− 1)
4n− 1

b4n− 1 �
41n

��
14

√

28
5
12

+

��
14

√

9
 

n

−
5
12

+

��
14

√

9
 

n

 .

(77)

/erefore, substituting the results of Claims 3 and 4 into
(59) yields



4n

q�1

1
φq

�
41n

��
14

√

28
(15 + 4

��
14

√
)
n

− (15 − 4
��
14

√
)
n

( 

(15 + 4
��
14

√
)
n

+(15 − 4
��
14

√
)
n

(  + 2
 ,

(78)

as desired. □

Note that |EMQn
(8, 4)| � 10n. Taking the results of

/eorems 1 and 2 to (a) and (b) of Lemma 2, we can im-
mediately get the following two theorems.

Theorem 3. Let MQn(8, 4) be a Möbius graph with n oc-
tagons and n quadrilaterals. 2en,

Kc MQn(8, 4)(  � 
4n

p�2

1
ηp

+ 
4n

q�1

1
φq

�
200n

2
− 11

60
+
41n

��
14

√

28
(15 + 4

��
14

√
)
n

− (15 − 4
��
14

√
)
n

( 

(15 + 4
��
14

√
)
n

+(15 − 4
��
14

√
)
n

(  + 2
 .

(79)

Theorem 4. Let MQn(8, 4) be a Möbius graph with n oc-
tagons and n quadrilaterals. 2en,

Kf
∗

MQn(8, 4)(  � 20n 
4n

p�2

1
ηp

+ 
4n

q�1

1
φq

⎛⎝ ⎞⎠

� 20n
200n

2
− 11

60
+
41n

��
14

√

28
(15 + 4

��
14

√
)
n

− (15 − 4
��
14

√
)
n

( 

(15 + 4
��
14

√
)
n

+(15 − 4
��
14

√
)
n

(  + 2
  

�
200n

3
− 11n

3
+ 20nϱ(n),

(80)

Table 3 shows the degree-Kirchhoff indices of Möbius
graph of linear octagonal-quadrilateral networks.

Finally, we will concentrate on calculating the com-
plexity of MQn(8, 4).

Theorem 5. Let MQn(8, 4) denote a Möbius graph of linear
octagonal-quadrilateral networks of length n≥ 2. 2en,

τ MQn(8, 4)(  � 4n (15 + 4
��
14

√
)
n

+(15 −
��
14

√
)
n

+ 2( .

(81)

Proof. By Claim 1, one can get



4n

p�2
ηp � (− 1)

4n− 1
a4n− 1 � 40n

2 1
36

 
n

. (82)

Similarly, according to Claim 3, we have
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q�1
φq � detLS �

5
12
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��
14

√
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n

+
5
12
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��
14

√
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n
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1
36

 
n

.

(83)

Note that 
8n
i�1di(MQn) � 24n34n and

|EMQn
(8, 4)| � 10n. By Lemma 2(c), one gets

τ Qn(8, 4)(  �
1
10n



4n

p�2
ηp · 

4n

q�1
φq � 4n (15 + 4

��
14

√
)
n

+(15 −
��
14

√
)
n

+ 2( . (84)
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/is completes the proof. □

/us, we can get the complexity of MQn(8, 4), which is
listed in Table 4.
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index of hexagonal systems,” Acta Applicandae Mathema-
tucae, vol. 72, pp. 94–247, 2002.

[6] I. Gutman, S. Li, and W. Wei, “Cacti with n-vertices and t
cycles having extremal Wiener index n vertices and tycles
having extremal Wiener index,” Discrete Applied Mathe-
matics, vol. 232, pp. 189–200, 2017.
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Tetrahedral network is considered as an effective tool to create the finite element network model of simulation, and many research
studies have been investigated. ,e aim of this paper is to calculate several topological indices of the linear and circle tetrahedral
networks. Firstly, the resistance distances of the linear tetrahedral network under different classifications have been calculated.
Secondly, according to the above results, two kinds of degree-Kirchhoff indices of the linear tetrahedral network have been
achieved. Finally, the exact expressions of Kemeny’s constant, Randic index, and Zagreb index of the linear tetrahedral network
have been deduced. By using the same method, the topological indices of circle tetrahedral network have also been obtained.

1. Introduction

In actual life, many problems can be described using graph
models. ,e graph model as a tool to describe network has
been widely studied. Each network can be considered as
graph. ,e problems of the vertices in the graph correspond
to the points in the network, and the edges in the graph
correspond to the network connection relationship between
the points. In this paper, only simple, undirected, and
connected graphs are considered. Suppose
G � (V(G), E(G)) is a graph, and it satisfies |V(G)| � n and
|E(G)| � m. ,e degree of vertex p in the graph G is denoted
by dp. Connecting the two vertices p, q ∈ V(G), the distance
dG(p, q) [1] is defined as the length of the shortest path. And
the resistance distance between vertex p and vertex q is
delimited as the effective resistance, which is denoted as
rG(p, q) [2]. For more terminologies, one can refer to ref-
erence [3].

,e sum of the resistance distance between each pair of
vertices in the graph G is defined as the Kirchhoff index [2],
as follows:

Kf(G) � 
p,q∈V(G)

rG(p, q).
(1)

Similarly, Chen and Zhang [4] put forward the following
definition of the multiplicative degree-Kirchhoff index, that
is, as follows:

Kf
∗
(G) � 

p,q∈V(G)

dpdqrG(p, q).
(2)

Subsequently, Gutman et al. [5] proposed the following
definition of the additive degree-Kirchhoff index, that is, as
follows:

Kf
+
(G) � 

p,q∈V(G)

dp + dq rG(p, q).
(3)

For a random walk [6, 7] in a network, the expectation of
the average first arrival time [8, 9] from a vertex p to another
vertex q selected according to the stable distribution of
Markov process [10–13] is called Kemeny’s constant of the
network. Kemeny’s constant is given by

K(G) �
1
4a


p,q∈V(G)

dpdqrG(p, q), (4)

where a is the number of edges in the graph G.
In previous studies, several topological indices based on

vertex-degree have been applied in research. ,e following
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three topological indices (Kemeny’s constant, Randic index,
and Zagreb index) are the most widely used:

M1 � M1(G) � 
p∈V(G)

dp 
2
, (5)

M2 � M2(G) � 
pq∈E(G)

dpdq,
(6)

R � R(G) � 
pq∈E(G)

1
����
dpdq

 . (7)

By the definition of the multiplicative (the additive)
degree-Kirchhoff index, the main job is to calculate rG(p, q).
From the perspective of practical application, the resistance
distance considers all the paths between any two vertices, not
just the short path, so the resistance distance can reflect the
relationship between any two vertices better than the dis-
tance. ,is paper applies the expressions of the resistance
distance between any two vertices of the linear and circle
tetrahedral networks to derive the multiplicative (the ad-
ditive) degree-Kirchhoff index of them, respectively. ,is
kind of linear tetrahedral network is a one-dimensional
infinitely extended network which is linked by a series of
tetrahedrons. Its structure is morphologically manifested as
elongation in one direction (see Figure 1), and n is the
number of the tetrahedron in the network. ,e structure of
this kind of circle tetrahedral network is a combination of
tetrahedrons and octahedrons whose form is a two-di-
mensional wireless extension. And the octahedrons are
connected by common edge (see Figure 2).

,e structure of this paper is shown as follows: we in-
troduce several fundamental definitions of the electrical
network and give two important lemmas in Section 2. We
present some proofs of our main results, namely, the
multiplicative (the additive) degree-Kirchhoff index,
Kemeny’s constant [14–16], Randic index [17–20], and
Zagreb index [21, 22] of the linear and circle tetrahedral
networks in Section 3. We summarize this article in Section
4.

2. Preliminaries

In the following section, we will give two important lemmas
that will make a tremendous effect on our conclusions.

Lemma 1 (see [23]). Suppose the distance between vertex p

and vertex q is t and p, q ∈ L(n), (n≥ 3).

rG(p, q) �
t

2
. (8)

Lemma 2 (see [23]). Suppose the distance between vertex p

and vertex q is t and p, q ∈ C(n), (n≥ 3).

(1) rG(p, q) � (t(n − t)/2n) when dp � dq � 6 and
1≤ t≤ ⌊n/2⌋

(2) rG(p, q) � ((2t − 1)(2n − 2t + 1)/8n) + (1/4) when
dp � 3, dq � 6, and 1≤ t≤ ⌊(n + 1)/2⌋

(3) rG(p, q) � ((t − 1)(n − t + 1)/2n) + (1/2)when dp �

dq � 3 and 1< t≤ ⌊(n/2) + 1⌋

(4) rG(p, q) � (1/2) when dp � dq � 3 and t � 1

3. Main Results

In this section, the main purpose is to derive the multi-
plicative (the additive) degree-Kirchhoff index, Kemeny’s
constant, Randic index, and Zagreb index of the linear (the
circle) network (see Figures 3 and 4).

3.1. +e Linear Tetrahedral Network

3.1.1. +e Additive Degree-Kirchhoff Index

Theorem 1. Let L(n), (n≥ 3) be a linear tetrahedral
network.

Kf
+
(L(n)) �

12n
3

+ 27n
2

− 3n

2
. (9)

Proof. ,e linear tetrahedral network L(n) is shown in
Figure 3. ,e number of vertices in L(n) is 3n + 1, and the
number of edges in L(n) is 6n. When the distance between
any two vertices is 1, the number of pairs of degree three and

p

q

321 nn–1

Figure 1: A kind of linear tetrahedron L(n).

p11 p12

p22

p21
p31

p32

pn,1

pn2 qn

q1

q2
q3 q4

pn–1,1

pn–1,2

qn–1

Figure 2: A kind of circle tetrahedron C(n).
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degree three is n + 4, the number of pairs of degree three and
degree six is 4n − 2, and the number of pairs of degree six

and degree six is n − 2. Besides, the maximum distance
between the vertices of degree three and degree three in L(n)

is n. ,e maximum distance between the vertices of degree
three and degree six in L(n) is n − 1. ,e maximum distance
between the vertices of degree six and degree six in L(n) is
n − 2. When the distance between any two vertices is t, there
are 4[n − (t + 1)] + 12 pairs of degree three and degree three
and 4[n − (t + 1)] + 6 pairs of degree three and degree six,
where t � 2, 3, . . . , n − 1. And when the distance between
any two vertices is t, the number of pairs of degree six and
degree six is n − (t + 1), where t � 2, 3, . . . , n − 2. Specially,
when t � n, there are 9 pairs of vertices between degree three
and degree three. ,e above contents are shown in Table 1.

By using equation (3) and Lemma 1, we calculate the
following result:

Kf
+
(L(n)) �

(3 + 3)(n + 4) +(3 + 6)(4n − 2) +(6 + 6)(n − 2)

2
 

+ 
n− 2

t�2

[n − (t + 1)]t

2
×(6 + 6) + 

n− 1

t�2

t[4(n − (t + 1)) + 12]

2
×(3 + 3)⎡⎣

+
9n

2
×(3 + 3) + 

n− 1

t�2

t[4(n − (t + 1)) + 6]

2
×(3 + 6)⎤⎦

� (54n − 9) + − 36 
n− 1

t�2
t
2

+(36n + 27) 
n− 1

t�2
t⎡⎣ ⎤⎦

� (54n − 9) + − 36
(n − 1)(n − 1 + 1)[2(n − 1) + 1]

6
+ 36  +(36n + 27)

[2 +(n − 1)](n − 2)

2
 

�
12n

3
+ 27n

2
− 3n

2
.

(10)

3 3 33 3

3

3

3

33 3 3

6 66 66

Figure 3: ,e linear tetrahedral network L(n).
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Figure 4: ,e circle tetrahedral network C(n).
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,en, we obtain our desired consequence. □

3.1.2. +e Multiplicative Degree-Kirchhoff Index. As shown
above, we can find the multiplicative degree-Kirchhoff index
of the linear network.

Theorem 2. . Let L(n), (n≥ 3) be a linear tetrahedral network.

Kf
∗
(L(n)) � 12n

3
+ 18n

2
− 3n. (11)

Proof. By using equation (2) and Lemma 1, we calculate the
following result:

Kf
∗
(L(n)) �

(3 + 3)(n + 4) +(3 + 6)(4n − 2) +(6 + 6)(n − 2)

2
 

+ 
n− 2

t�2

(n − (t + 1))t

2
×(6 × 6) + 

n− 1

t�2

t[4(n − (t + 1)) + 12]

2
×(3 × 3)⎡⎣

+
9n

2
×(3 × 3) + 

n− 1

t�2

t[4(n − (t + 1)) + 6]

2
×(3 × 6)⎤⎦

� (99n − 36) + 2 − 36 
n− 1

t�2
t
2

+(36n + 18) 
n− 1

t�2
t⎡⎣ ⎤⎦

� (99n − 36) + 2 − 36
(n − 1)(n − 1 + 1)[2(n − 1) + 1]

6
+ 36  + 2(36n + 18)

[2 +(n − 1)](n − 2)

2
 

� 12n
3

+ 18n
2

− 3n.

(12)

□

3.1.3. Kemeny’s Constant, Randic Index, and Zagreb Index.
,e relationship between vertices and edges of L(n) based on
degree is shown in Tables 2 and 3.

By utilizing equations (4)–(7) and Tables 2 and 3,
the following three indices can be achieved easily:

Table 1: ,e classification of edge-pairs of C(n).

(dp, dq) (3, 3) (6, 6) (3, 6)

Number of the edges (d� 1) n + 4 n − 2 4n − 2
Number of the edges (d� t) 4[n − (t + 1)] + 12 n − (t + 1) 4[n − (t + 1)] + 6
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M1(L(n)) � (2n + 2)32 +(n − 1)62 � 54n − 17,

M2(L(n)) � (n + 4)(3 × 3) +(n − 2)(6 × 6) +(4n − 2)(3 × 6) � 117n − 72,

R(L(n)) � (n + 4)
1

����
3 × 3

√ +(n − 2)
1

����
6 × 6

√ +(4n − 2)
1

����
3 × 6

√

�
(3 + 4

�
2

√
)n + 6 − 2

�
2

√

6
,

K(L(n)) �
1

4 × 6n

(3 + 3)(n + 4) +(3 + 6)(4n − 2) +(6 + 6)(n − 2)

2


+ 
n− 2

t�2

[n − (t + 1)]t

2
×(6 × 6) + 

n− 1

t�2

t[4(n − (t + 1)) + 12]

2
×(3 × 3)

+
9n

2
×(3 × 3) + 

n− 1

t�2

t[4(n − (t + 1)) + 6]

2
×(3 × 6)⎤⎦

�
4n

2
+ 6n − 1
8

.

(13)

3.2. +e Circle Tetrahedral Network

3.2.1. +e Additive Degree-Kirchhoff Index

Theorem 3. Let C(n), (n≥ 3) be a circle tetrahedral network.

Kf
+
(C(n)) �

12n
3

+ 42n
2

− 15n

4
. (14)

Proof. ,e labels for all vertices are shown in Figure 2. In
order to calculate conveniently, allow pm � pn if
m ≡ n(mods) and pmk � pnk if m ≡ n(mods)(s � 1, 2). Set p

and q as different vertices in C(n). Results can be divided
into the following six cases:

Case 1.  p, q ⊂V(G)
dp � dq � 3

r(p, q) for even n.

When t � 1, the number of vertices of degree three in
L(n) is n. For every p ∈ pm1, pm2 (m � 1, 2, . . . , n), if
2≤ t≤ (n/2), then p must be a member of the set
pm+t− 1,1, pm+t− 1,2, pm− (t− 1),1, pm− (t− 1),2 , so when the
distance between any two vertices is p, there are ((2 ×

4 × n)/2) � 4n pairs of them. For every
p ∈ pm1, pm2 (m � 1, 2, . . . , n), if t � (n/2) + 1, then
m must be a member of the set pm+(n/2),1, pm+(n/2),2 

and thus when distance between any two vertices is
(n/2) + 1, there are ((2 × 2 × n)/2) � 2n pairs. ,en,
through Lemma 2, we gain



p,q{ } ⊂ V(G)

dp�dq�3

dp + dq r(p, q) �
3n

2
+ 18n

2
+ 12 

(n/2)

t�2
[t(n − t + 2) − 1]

�
3n

2
+ 18n

2
+ 12 

(n/2)

t�2
nt − t

2
+ 2t − 1 .

(15)

Table 2: ,e classification of vertex-pairs of L(n).

Degrees 3 6
Number of vertices 2n + 2 n − 1

Table 3: ,e classification of edge-pairs of L(n).

(dp, dq) (3, 3) (6, 6) (3, 6)

Number of edges n + 4 n − 2 4n − 2
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Case 2.  p, q ⊂V(G)
dp � dq � 3

r(p, q) for odd n.

When t � 1, the number of vertices of degree three in
L(n) is n. For each p ∈ pm1, pm2 (m � 1, 2, . . . , n), if
2≤ t≤ ((n + 1)/2), then n ∈ pm+t− 1,1, pm+t− 1,2,

pm− (t− 1),1, pm+(t− 1),2}, so when dpq � t, the number of
the pairs of the vertex p and q is 4n. ,rough Lemma 2,
we gain



p,q{ } ⊂ V(G)

dp�dq�3

dp + dq r(p, q) � 3n + 12 

((n+1)/2)

t�2
nt − t

2
+ 2t − 1 .

(16)

Case 3.  p, q ⊂V(G)
dp � dq � 6

r(p, q) for even n.

For each p � qm(m � 1, 2, . . . , n), if 1≤ t≤ (n/2), then
p ∈ pm+t, pm− t , and thus when dpq � t, the number of
the pairs of the vertex p and q is n. For every
p � qm(m � 1, 2, . . . , n), if t � (n/2), then
p ∈ pm+(n/2) , and thus when dpq � (n/2), there are
(n/2) pairs. ,en, by using Lemma 2, we infer



p,q{ } ⊂ V(G)

dp�dq�6

dp + dq r(p, q) �
3n

2

4
+ 6 

(n/2)− 1

t�1
[t(n − t)]

�
3n

2

4
+ 6 

(n/2)− 1

t�1
nt − t

2
 .

(17)

Case 4.  p, q ⊂V(G)
dp � dq � 6

r(p, q) for odd n.

When p � qm(m � 1, 2, . . . , n), if 1≤ t≤ (n/2), then
p ∈ pm+t, pm− t , and thus when dpq � t, there are n

pairs. ,en, by using Lemma 2, we deduce



p,q{ } ⊂ V(G)

dp�dq�6

dp + dq r(p, q) � 6 

((n− 1)/2)

t�1
nt − t

2
 .

(18)

Case 5.  p, q ⊂V(G)
dp � 3, dq � 6

r(p, q) for even n.

For each pm1, pm2(m � 1, 2, . . . , n), if 1≤ t≤ (n/2), then
p ∈ pm+t, pm+1− t , and thus when dpq � t, there are 4n

pairs. ,en, by using Lemma 2, we gain



p,q{ } ⊂ V(G)

dp�3,dq�6

dp + dq r(p, q) � 9 

(n/2)

t�1

(2t − 1)(2n − 2t + 1)

2
+ n 

� 9 

(n/2)

t�1
2nt − 2t

2
+ 2t −

1
2

 .

(19)

Case 6.  p, q ⊂V(G)
dp � 3, dq � 6

r(p, q) for odd n.

For every pm1, pm2(m � 1, 2, . . . , n), if
1≤ t≤ ((n − 1)/2), then p ∈ pm+t, pm+1− t , so when dpq � t,
the number of the pairs of the vertex p and q is 4n. For each
pm1, pm2(m � 1, 2, . . . , n), if t � ((n + 1)/2), then p must be
pm+(n+1/2), and thus when dpq � ((n + 1)/2), there are 2n

pairs. ,en, by using Lemma 2, we attain



p,q{ } ⊂ V(G)

dp�3,dq�6

dp + dq r(p, q) �
9n

2
+ 18n

4
+ 9 

((n− 1)/2)

t�1

· 2nt − 2t
2

+ 2t −
1
2

 .

(20)

If n is even, by applying equations (15), (17), and (19) and
Lemma 2, then

Kf
+
(C(n)) �

3n
2

− 12n

4
+ 

(n/2)

t�1
36nt − 36t

2
+ 42t −

33
2

 

�
3n

2
− 12n

4
+ − 36 

(n/2)

t�1
t
2

+ 36n 

(n/2)

t�1
t + 

(n/2)

t�1
42t −

33
2

 ⎡⎣ ⎤⎦

�
3n

2
− 12n

4
+ − 36

(n/2)((n/2) + 1)(n + 1)

6
+ 36n

(n/2)((n/2) + 1)

2
+

(n/2)(21n + 9)

2
 

�
12n

3
+ 42n

2
− 15n

4
.

(21)
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If n is odd, by applying equations (16), (18), and (20) and
Lemma 2, then

Kf
+
(C(n)) �

21n
2

+ 30n − 12
4

+ 

((n− 1)/2)

t�1
36nt − 36t

2
+ 42t −

33
2

 

�
21n

2
+ 30n − 12
4

+ − 36 

((n− 1)/2)

t�1
t
2

+ 36n 

((n− 1)/2)

t�1
t + 

((n− 1)/2)

t�1
42t −

33
2

 ⎡⎣ ⎤⎦

�
21n

2
+ 30n − 12
4

+  − 36
((n − 1)/2)(((n − 1)/2) + 1)(n − 1 + 1)

6
+ 36n

((n − 1)/2)(((n − 1)/2) + 1)

2

+
((n − 1)/2)(21n − 12)

2


�
12n

3
+ 42n

2
− 15n

4
.

(22)

Consequently, the proof is completed. □

3.2.2. +e Multiplicative Degree-Kirchhoff Index. As shown
above, the multiplicative degree-Kirchhoff index of the circle
network can be derived by classification.

Theorem 4. Let C(n), (n≥ 3) be a circle tetrahedral network.

Kf
∗
(C(n)) � 6n

3
+ 18n

2
− 6n. (23)

Proof. ,e results in six cases are given as follows:

Case 1.  p, q ⊂V(G)
dp � dq � 3

r(p, q) for even n.



p,q{ } ⊂ V

dp�dq�3

dpdqr(p, q) �
9n

2
+ 54n

4
+ 18 

(n/2)

t�2
nt − t

2
+ 2t − 1 .

(24)

Case 2.  p, q ⊂V(G)
dp � dq � 3

r(p, q) for odd n.



p,q{ } ⊂ V

dp�dq�3

dpdqr(p, q) �
9n

2
+ 18 

((n+1)/2)

t�2
nt − t

2
+ 2t − 1 .

(25)
Case 3.  p, q ⊂V(G)

dp � dq � 6
r(p, q) for even n.



p,q{ } ⊂ V

dp�dq�6

dpdqr(p, q) �
9n

2

4
+ 18 

(n/2)− 1

t�1
nt − t

2
 .

(26)

Case 4.  p, q ⊂V(G)
dp � dq � 6

r(p, q) for odd n.



p,q{ } ⊂ V

dp�dq�6

dpdqr(p, q) � 18 

((n− 1)/2)

t�1
nt − t

2
 .

(27)

Case 5.  p, q ⊂V(G)
dp � 3, dq � 6

r(p, q) for even n.



p,q{ } ⊂ V

dp�3,dq�6

dpdqr(p, q) � 18 

(n/2)

t�1
2nt − 2t

2
+ 2t −

1
2

 .

(28)

Case 6.  p, q ⊂V(G)
dp � 3, dq � 6

r(p, q) for odd n.



p,q{ } ⊂ V

dp�3,dq�6

dpdqr(p, q) �
9n

2
+ 18n

2
+ 18 

((n− 1)/2)

t�1
2nt − 2t

2
+ 2t −

1
2

 .

(29)
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If n is even, through equations (24), (26), and (28) and
Lemma 2, then

Kf
∗
(C(n)) � −

9
2

n + 9 

(n/2)

t�1
8nt − 8t

2
+ 8t − 3 

� −
9
2

n + 9 − 8 

(n/2)

t�1
t
2

+ 8n 

(n/2)

t�1
t + 

(n/2)

t�1
(8t − 3)⎡⎣ ⎤⎦

� −
9
2

n + 9 − 8
(n/2)((n/2) + 1)(n + 1)

6
+ 8n

(n/2)((n/2) + 1)

2
+

(n/2)(4n + 2)

2
 

� 6n
3

+ 18n
2

− 6n.

(30)

If n is odd, through equations (25), (27), and (29) and
Lemma 2, then

Kf
∗
(C(n)) �

18n
2

+ 27n − 9
2

+ 9 

((n− 1)/2)

t�1
8nt − 8t

2
+ 8t − 3 

�
18n

2
+ 27n − 9
2

+ 9 − 8 

((n− 1)/2)

t�1
t
2

+ 8n 

((n− 1)/2)

t�1
t + 

((n− 1)/2)

t�1
(8t − 3)⎡⎣ ⎤⎦

�
18n

2
+ 27n − 9
2

+ 9 − 8
((n − 1)/2)(((n − 1)/2) + 1)(n − 1 + 1)

6
+ 8n

((n − 1)/2)(((n − 1)/2) + 1)

2
+

((n − 1)/2)(4n − 2)

2
 

� 6n
3

+ 18n
2

− 6n.

(31)

,is completes the proof. □

3.2.3. Kemeny’s Constant, Randic Index, and Zagreb Index.
,e relationship between vertices and edges of C(n) based
on degree is shown in Tables 4 and 5.

By utilizing equations (4)–(7) and Tables 4 and 5, the
following three indices can be obtained easily:

M1(C(n)) � 2n × 32 + n × 62 � 54n,

M2(C(n)) � n ×(3 × 3) + n ×(6 × 6) + 4n ×(3 × 6) � 117n,

R(C(n)) � n ×
1

����
3 × 3

√ + n ×
1

����
6 × 6

√ + 4n ×
1

����
3 × 6

√

�
(3 + 4

�
2

√
)n

6
.

(32)

If n is even, then

K(C(n)) �
1

4 × 6n
−
9
2

n + 9 

(n/2)

t�1
8nt − 8t

2
+ 8t − 3 ⎡⎣ ⎤⎦

�
n
2

+ 3n − 1
4

.

(33)

If n is odd, then

K(C(n)) �
1

4 × 6n

18n
2

+ 27n − 9
2

+ 9 

((n− 1)/2)

t�1
8nt − 8t

2
+ 8t − 3 ⎡⎣ ⎤⎦

�
n
2

+ 3n − 1
4

.

(34)
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And the comparisons of the five topological indices
obtained above are shown in Figures 5 and 6.

According to Figures 5 and 6, it is clear that the mul-
tiplicative degree-Kirchhoff index of both the linear and
circle graph is the fast growing, and the additive degree-
Kirchhoff index is the second growing. Other than that, in
the circle graph, whenever n is odd or even, the Zagreb index
is growing faster than Randic index and Kemeny’s constant.
And in the linear graph, the Zagreb index is also growing
faster than Kemeny’s constant and Randic index.

4. Conclusion

In this paper, two types of tetrahedral networks have been
discussed and the resistance distance in different cases has
been computed, respectively. Above all, the multiplicative
(the additive) degree-Kirchhoff index of the networks has
been calculated. ,en, Kemeny’s constant, Randic index,
and Zagreb index have also been derived. Furthermore, the
comparisons of the topological indices for the linear and
circle networks have been studied. In future, we will devote
ourselves to research more properties for types of stereo-
chemical networks.
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Let G be a simple, connected, and finite graph. For every vertex v ∈ V(G), we denote by NG(v) the set of neighbours of v in G. +e
locating-dominating number of a graph G is defined as the minimum cardinality of W⊆V(G) such that every two distinct vertices
u, v ∈ V(G)\W satisfies∅≠NG(u)∩W≠NG(v)∩W≠∅. A graph G is called k-regular graph if every vertex of G is adjacent to k

other vertices of G. In this paper, we determine the locating-dominating number of k-regular graph of order n, where k � n − 2
or k � n − 3.

1. Introduction

Given a simple, connected, and finite graph G. +e neigh-
bours of a vertex v of G are defined as the vertex set
NG(v) � u ∈ V(G)|uv ∈ E(G){ }. A set of vertices W⊆V(G)

is called a locating-dominating set of a graph G if every two
distinct vertices u, v ∈ V(G)\W satisfies ∅≠NG(u)∩
W≠NG(v)∩W≠∅. +e minimum cardinality of locating-
dominating sets of G is called the locating-dominating
number of G, denoted by λ(G). +is concept was introduced
by Slater [1, 2].

Let us model a building floor as a graph. Locating-
dominating set can be used to determine an exact location of
a fire alarm which sends a signal when detecting a fire in any
of its adjacent vertices. +e activated signals will univocally
determine the place of the fire.

Charon et al. [3] have proved that determining locating-
dominating number of a graph is NP-complete problem
which is reduced from 3-SAT. However, some results for
certain classes of graphs have been obtained, such as paths
[2], cycles [4], stars [5], complete graphs [6], bipartite graphs
[7, 8], complete multipartite graphs [5], wheels [7], twin-free
graphs [9, 10], and hypergraphs [11]. In [12], Balbuena et al.
investigated a locating-dominating set of graphs with girth at
least 5. In the other hand, Rajasekar and Nagarajan [13]

studied the locating-dominating number of a graph con-
taining a bridge.

Furthermore, some authors have been characterized all
graphs with a given locating-dominating number. Henning
and Oellermann [6] have proved that for a connected graph G

of order n≥ 2, λ(G) � n − 1 if and only if G is either complete
graphs Kn or star graphs K1,n−1. +ey also characterized all
graphs G of order n≥ 4 with locating-dominating number
n − 2. Meanwhile, Caceres et al. [7] have proved that there are
16 nonisomorphic graphs G satisfying λ(G) � 2.

Some authors also have determined the locating-dom-
inating number of graphs obtained from a product graphs.
Canoy and Malacas [14] provided the lower and upper
bounds for the locating-dominating number of corona
product graphs. +ey also determined an exact value of the
locating-dominating number of a composition of graphs
between G and H where G is a connected totally point
determining graph and H is a nontrivial connected graph.
An exact value of the locating-dominating number of comb
product of any two connected graphs of order at least two
has been determined by Pribadi and Saputro [15]. Murtaza
et al. [16] studied the locating-domination number of
functigraphs of complete graphs. A study of a locating-
dominating set of a graph by adding a universal vertex can be
seen in [17].
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In this paper, we consider a regular graph. A graph G is
called k-regular graph if every vertex in G is adjacent to k

other vertices. Since every vertex of G is adjacent to the same
number of vertices of G, every vertex of G has the same
probability to distinguish some distinct vertices of G. Let
G � (V, E) be a model of the multiprocessor system, such
that V(G) is the set of processors and E(G) is the set of links
between processors. Assume that at most one processor is
malfunctioning and we want to test the system and find the
faulty processor. Some processors can be chosen and
assigned to check their neighbours. In case a selected pro-
cessor detects a fault, it sends an alarm signal. Since we need
an exact location of a faulty processor, we must choose some
processors such that the chosen processors can uniquely tell
the location of the malfunctioning processor. +en, a lo-
cating-dominating set of G can be used to choose those
processors.

Bertrand et al. [4] have initiated the study of the locating-
dominating number on regular graph. +ey determined the
locating-dominating number of 2-regular connected graphs
(cycles).+e locating-dominating number of (n − 1)-regular
graph of order n can be seen in [7]. In this paper, we de-
termine the locating-dominating number of k-regular graph
of order n where k � n − 2 or k � n − 3.

+e purpose of this paper is to further investigate the
locating-dominating number of certain family of graphs,
namely, to determine the locating-dominating number of
certain regular graphs. We obtain two main results, one of
them is the following result related with an (n − 2)-regular
graph.

Theorem 1. For n≥ 4, let G be an (n − 2)-regular graph.
&en, λ(G) � n/2.

Our second result is related with an (n − 3)-regular
graph. In preparing the proof for the second result, we are
able to obtain the intermediate result as follows.

Theorem 2. For m≥ 7, let H � Km\E(Cm). &en,
λ(H) � ⌈(2m − 2)/5⌉.

For n≥ 5, we consider certain cycles contained in a
complete graph Kn. In this paper, we assume that a cycle
contains at least three vertices. For r ∈ 1, 2, . . . , ⌊n/3⌋{ }, let
R1, R2, . . . , Rr be r disjoint cycles contained in Kn such that
V(R1)∪V(R2)∪ · · · ∪V(Rr) � V(Kn). Note that an
(n − 3)-regular graph is isomorphic to Kn(E(R1)∪
E(R2)∪ · · · ∪E(Rr)). In case r � 1, the locating-dominating
number of an (n − 3)-regular graph of order at least 7 has
been determined in +eorem 2. In +eorem 3, we provide
the locating-dominating number of an (n − 3)-regular graph
of order n≥ 5 with 1≤ r≤ ⌊n/3⌋.

Theorem 3. For n≥ 5 and 1≤ r≤ ⌊n/3⌋, let R1, R2, . . . , Rr be
r disjoint cycles contained in Kn such that
V(R1)∪V(R2)∪ · · · ∪V(Rr) � V(Kn). For i ∈ 1, 2, . . . , r{ },
let G � Kn\(E(R1)∪E(R2)∪ · · · ∪E(Rr)), mi � |V(Ri)|,
and Gi � Kmi

\E(Ri). If k is the number of cycles Ri of order
mi ≥ 7 and mi ≡ 1 or 3 (mod 5), then

λ(G) �



r

i�1
λ Gi( , if k≤ 1,

k − 1 + 

r

i�1
λ Gi( , if k≥ 2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

2. (n− 2)-RegularGraphandProofofTheorem1

+eorem 1 is a direct consequence of Lemmas 1 and 2 in this
section.

In this section, we define G as an (n − 2)-regular graph of
order n≥ 4. Note that if we count the sum of degree of all
vertices, then every edge will be counted twice.+erefore, we
have 2|E(G)| � n(n − 2). It implies that n must be even.

Now, we can define V(G) � xi, yi| 1≤ i≤ (n/2)  and
E(G) � uv| u, v ∈ V(G){ }\ xiyi| 1≤ i≤ (n/2) .

Lemma 1. Let W be a locating-dominating set of G. &en, for
1≤ i≤ (n/2), xi ∈W or yi ∈W.

Proof. Suppose that there exists i ∈ 1, 2, . . . , (n/2){ } such
that xi, yi ∉W. Note that every vertex in V(G) xi, yi  is
adjacent to both xi and yi. So, we will obtain that
NG(xi)∩W � NG(yi)∩W, a contradiction. □

Lemma 2. A vertex set xi| 1≤ i≤ (n/2)  is a locating-
dominating set of G.

Proof. Let S � xi| 1≤ i≤ (n/2) . +en, V(G)\S � yi| 1≤ i

≤ (n/2)}. Let us consider yi and yj for 1≤ i< j≤ (n/2). Since
xi ∈ NG(yj) but xi ∉ NG(yi), we obtain ∅≠NG(yi)∩
S≠NG(yj)∩ S≠∅. +erefore, S is a locating-dominating set
of G. □

3. (n− 3)-RegularGraphandProofofTheorem2

In this section, we defineG as an (n − 3)-regular graph of order
n≥ 5. Note that G contains a subgraph which is isomorphic to
Km\E(Cm) where m ∈ 3, 4, . . . , n{ }. Let G′ ⊆G and
G′ � Km\E(Cm) wherem ∈ 3, 4, . . . , n{ }.+en, every vertex in
G′ is adjacent to all vertices of G\G′. In Lemma 3, we show that
every subgraph is contributed to a locating-dominating set ofG,
which is a direct consequence of Observation 1 which has been
proved by Henning and Oellermann [6].

Observation 1 (see [6]). Let W be a locating-dominating set
of a connected graph G. If there exists two distinct vertices
u, v ∈ V(G) such that dG(u, z) � dG(v, z) for all z ∈ V(G)\

u, v{ }, then u ∈W or v ∈W.

Lemma 3. For n≥ 5, let G′ ⊆G and G′ � Km\E(Cm) where
m ∈ 3, 4, . . . , n{ }. If W is a locating-dominating set of G, then
W∩V(G′)≠∅.

From Lemma 3, we have Lemma 4.

Lemma 4. For n≥ 5, let G′ ⊆G and G′ � Km\E(Cm) where
m ∈ 3, 4, . . . , n{ }. Let W be a locating-dominating set of G and
W′ � V(G′)∩W. &en, every two distinct vertices
u, v ∈ V(G′)\W′ satisfies NG′(u)∩W′ ≠NG′(v)∩W′.
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Proof. Suppose that there exists two distinct vertices
u, v ∈ V(G′)\W′ such that NG′(u)∩W′ � NG′(v)∩W′.
Note that NG′(u)∩W′ � NG(u)∩W′. Let G∗ � G\G′ and
W∗ � W\W′. Since NG(u)∩V(G∗) � V(G∗) � NG(v)∩
V(G∗), we obtain NG(u)∩W � (NG(u)∩W∗)∪ (NG

(u)∩W′) � (NG(v)∩W∗)∪ (NG(v)∩W′) � NG(v)∩W,
a contradiction. □

By Lemma 4, if W is a locating-dominating set of G, then
we can say that V(G′)∩W is a locating-dominating set of a
subgraph G′ of G. Note that, in this case, for u ∈ V(G′),
NG′(u)∩V(G′)∩W can be an empty set. In Lemma 5, we
provide a locating-dominating set of a subgraph
G′ � Km\E(Cm) of G where m ∈ 3, 4, 5, 6{ }.

Lemma 5. For n≥ 5, let G′ ⊆G and G′ � Km\E(Cm) where
m ∈ 3, 4, 5, 6{ }. Let W be a locating-dominating set of G.
&en,

W∩V G′( 


≥
3, if m � n � 6,

2, otherwise.
 (2)

&e lower bounds are sharp.

Proof. Let V(G′) � x1, x2, . . . , xm  and E(Cm) �

x1x2, x2x3, . . . , xm−1xm, xmx1  where m ∈ 3, 4, 5, 6{ }. We
distinguish two cases.

(1) |W∩V(G′)|≥ 3 for m � n � 6.

In this case, G′ � G. Suppose that |W∩V(G′)|≤ 2.
Let W′ be a locating-dominating set of G′. +en,
there exists u, v ∈ V(G′)\W′ such that either u≠ v

and NG′(u)∩W′ � NG′(v)∩W′, or
NG′(u)∩W′ � ∅, a contradiction.
Now, we define S � x1, x3, x5 . Since NG′(x2)

∩ S � x5 , NG′(x4)∩ S � x1 , and NG′(x6)∩
S � x3 , the vertex set S is a locating-dominating
set of G′.

(2) |W∩V(G′)|≥ 2 for m≠ 6 or n≠ 6.

Suppose that |W∩V(G′)|≤ 1. If |W∩V(G′)| � 0,
then for two distinct vertices u, v ∈ V(G′)\W,
NG(u)∩W � W � NG(v)∩W, a contradiction.
So, we assume that |W∩V(G′)| � 1. Let
W∩V(G′) � xi  with i ∈ 1, 2, . . . , m{ }. Let xj and
xk be two different vertices in G′ such that
xjxi, xkxi ∉ E(G′). So, NG′(xj)∩W � ∅ � NG′
(xk)∩W. Since every vertex in G\G′ is adjacent to
both xj and xk, we have NG(xj)∩W �

W � NG(xk)∩W, a contradiction.
For the sharpness, we define a vertex set Sm as
follows:

Sm �
x1, x2 , if m ∈ 3, 4, 5{ },

x1, x3 , if m � 6.
 (3)

We will show that Sm is a locating-dominating set of a
subgraph G′ of G. Let us consider vertices in V(G′)\Sm.

(a) m � 3: we obtain that |V(G′)\Sm| � 1. So, it is clear
that Sm is a locating-dominating set of G′.

(b) m � 4: we obtain that V(G′)\Sm � x3, x4 . Note
that NG′(x3)∩ Sm � x1 ≠ x2  � NG′(x4)∩ Sm.
+erefore, Sm is a locating-dominating set of G′.

(c) m � 5: we obtain that V(G′)\Sm � x3, x4, x5 . It is
easy to see that NG′(x3)∩ Sm � x1 , NG′(x4)

∩ Sm � x1, x2 , and NG′(x5)∩ Sm � x2 . +ere-
fore, it is clear that Sm is a locating-dominating set
of G′.

(d) m � 6: we obtain that V(G′)\Sm � x2, x4, x5, x6 .
It is easy to see that NG′(x2)∩ Sm � ∅, NG′(x4)∩
Sm � x1 , NG′(x5)∩ Sm � x1, x3 , and NG′(x6)∩
Sm � x3 . +erefore, it is clear that Sm is a locating-
dominating set of G′. □

Remark 1. We can say that the locating-dominating number
of G′ in Lemma 5 is given by

λ G′(  �
2, if m ∈ 3, 4, 5, 6{ } and n>m,

3, if n � m � 6.

⎧⎨

⎩ (4)

Now, let us consider G′ ⊆G and G′ � Km\E(Cm) for
m≥ 7. +us, the order of G must be n≥ 7. For n≥ 7, in order
to determine a locating-dominating set of G′ � Km\E(Cm)

for 7≤m≤ n, we define some definitions. For u, v ∈ V(G), let
P(u, v) be a shortest (u, v)-path in Cm. So, all edges in
P(u, v) are not element of E(G′). Let W⊆V(G′). For
u, v ∈W, let us consider the set of vertices of P(u, v)\ u, v{ }. If
all vertices of P(u, v)\ u, v{ } are not in W, then the set of
vertices in P(u, v)\ u, v{ } is called a gap between u and v.
+en, we called vertices u and v as the end points of gap. +e
two gaps are called neighbouring gaps if they have common
end point. +ese definitions were firstly introduced by
Buczkowski et al. [18]. +ey used this gap technique to
determine the metric dimension of wheel graphs. In lemma
6, we provide the necessary and sufficient conditions for a
locating-dominating set of G′ which is related to gap
definition.

Lemma 6. For n≥ 7, let G′ � Km\E(Cm) where m ∈ 7, 8,{

. . . , n}. &e vertex set W⊆V(G′) is a locating-dominating set
of G′ if and only if W satisfies all conditions as follows:

(1) Every gap with respect to W contains at most 3 vertices
(2) W contains at most one gap of 3 vertices
(3) If A is a gap with respect to W, containing 2 or 3

vertices, then any neighbouring gaps of A have at most
one vertex

Proof. (⇒) We will prove all three conditions by
contradiction.

(1) Suppose that there exists a gap with respect to W

containing at least 4 vertices.
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Let a1, a2, a3, a4 ∈ V(G′) where aiai+1 ∈ E(Cm) with
1≤ i≤ 3 and all those vertices are not in W. +en, we
have NG′(a2)∩W � W � NG′(a3)∩W, a
contradiction.

(2) Suppose that there exists two gaps containing 3
vertices.
Let a1, a2, a3  and b1, b2, b3  be two different gaps
where aiai+1, bibi+1 ∈ E(Cm) with 1≤ i≤ 2. +en, we
have NG′(a2)∩W � W � NG′(b2)∩W, a
contradiction.

(3) Suppose that there exists a neighbouring gap of A

containing at least 2 vertices.
Let a1, a2, a3, a4, a5 ∈ V(G′) where aiai+1 ∈ E(Cm)

with 1≤ i≤ 4 and a3 is the only element of W among
them. +en, we have NG′(a2)∩W � W\ a3 

� NG′(a4)∩W, a contradiction.

(⇐) Let S⊆V(G′) satisfying all three conditions above.
Since m≥ 7, we obtain |S|≥ 3. Now, we consider a vertex
u ∈ V(G′)\S.

(i) u belongs to a gap containing one vertex.
Let a and b be two end points of this gap. So, u is the
only vertex which is not adjacent to a and b. Since
|S|≥ 3 and for every vertex x ∈ V(G′)\(S∪ u{ }),
a ∈ NG′(x) or b ∈ NG′(x), we obtain ∅≠NG′
(u)∩ S≠NG′(x)∩ S≠∅.

(ii) u belongs to a gap containing two vertices.
Let a and b be two end points of this gap. Without
loss of generality, let au ∈ E(Cm). So, NG′(u)

∩ S � S\ a{ }. For x ∈ V(G′)\(S∪ u){ }, if a ∈ NG′(x),
then ∅≠NG′(u)∩ S≠NG′(x)∩ S≠∅; otherwise, x

belongs to a gap containing one vertex. From (i)
above, we obtain that ∅≠NG′(u)∩ S≠NG′
(x)∩ S≠∅.

(iii) u belongs to a gap containing three vertices.
Let c1, c2, and c3 be a gap of three vertices where
cici+1 ∈ E(Cm) with 1≤ i≤ 2 and a and b be end
points of this gap. Let ac1, bc3 ∈ E(Cm). If u � c2,
then NG′(u)∩ S � S. Since u is the only vertex
having this property, we obtain that for every vertex
x ∈ V(G′)\(S∪ u){ } and ∅≠NG′(u)∩ S≠NG′
(x)∩ S≠∅. If u � c1, then NG′(u)∩ S � S\ a{ }. For
x ∈ V(G′)\(S∪ u){ }, if a ∈ NG′(x), then ∅≠
NG′(u)∩ S≠NG′(x)∩ S≠∅; otherwise, x belongs
to a gap containing one vertex. From (i) above, we
obtain that ∅≠NG′(u)∩ S≠NG′(x)∩ S≠∅. □

Now, we are ready to prove +eorem 2.

Proof of +eorem 2.
For m≥ 7, let H � Km\E(Cm) where V(H) � x1,

x2, . . . , xm} and E(Cm) � x1x2, x2x3, . . . , xm−1xm, xmx1}.
We distinguish two cases as follows:

(1) λ(H)≤ ⌈(2m − 2)/5⌉: we distinguish five cases of m

as follows:

(a) m ≡ 0(mod5): let m � 5k for an integer k≥ 2.
+en, ⌈(2m − 2)/5⌉ � ⌈(10k − 2)/5⌉ � 2k. We
define W � x2, x6 ∪ x5i+3, x5i+6| 1≤ i≤
k − 2}∪ x5k−2, x5k . Since |W| � 2k and sat-
isfies all conditions in Lemma 6, then W is a
locating-dominating set of H.

(b) m ≡ 1(mod5): let m � 5k + 1 for an integer
k≥ 2. +en, ⌈(2m − 2)/5⌉ � ⌈10k/5⌉ � 2k. We
define W � x2, x6 ∪ x5i+3, x5i+6| 1≤ i≤
k − 2}∪ x5k−2, x5k+1 . Since |W| � 2k and
satisfies all conditions in Lemma 6, then W is a
locating-dominating set of H.

(c) m ≡ 2(mod5): let m � 5k + 2 for an integer
k≥ 1. +en, ⌈(2m − 2)/5⌉ � ⌈(10k + 2)/5⌉

� 2k + 1. We define W � x2, x6 ∪ x5i+3,

x5i+6| 1≤ i≤ k − 1}∪ x5k+2 . Since |W| � 2k +

1 and satisfies all conditions in Lemma 6, then
W is a locating-dominating set of H.

(d) m ≡ 3(mod5): let m � 5k + 3 for an integer
k≥ 1. +en, ⌈(2m − 2)/5⌉ � ⌈(10k + 4)/5⌉ � 2
k + 1. We define W � x2, x6 ∪ x5i+3, x5i+6|

1≤ i≤ k − 1}∪ x5k+3 . Since |W| � 2k + 1 and
satisfies all conditions in Lemma 6, then W is a
locating-dominating set of H.

(e) m ≡ 4(mod5): let m � 5k + 4 for an integer
k≥ 1. +en, ⌈(2m − 2)/5⌉ � ⌈(10k + 6)/5⌉ �

2k + 2. We define W � x2, x6 ∪ x5i+3,

x5i+6| 1 ≤ i≤ k − 1}∪ x5k+3, x5k+4 . Since
|W| � 2k + 2 and satisfies all conditions in
Lemma 6, then W is a locating-dominating set
of H.

(2) λ(H)≥ ⌈(2m − 2)/5⌉: let S be a locating-dominat-
ing set of H with minimum cardinality. We con-
sider two following cases:

(a) |S| is even.
Let |S| � 2k for a positive integer k. So, the
number of gap of H with respect to S is 2k.
Since S must be satisfy all conditions in
Lemma 6, the number of gap containing at
least 2 vertices is at most k. It follows that the
number of vertex which is not in S is at most
3k + 1. So, we obtain that k≥ ((m − 1)/5).
+erefore,

λ(H) � |S| � 2k≥ 2 ·
m − 1
5

 

�
2m − 2

5
 .

(5)

(b) |S| is odd.
Let |S| � 2k + 1 for a positive integer k. So, the
number of gap of H with respect to S is 2k + 1.
Since S must be satisfy all conditions in Lemma
6, the number of gap containing at least 2
vertices is at most k. It follows that the number
of vertex which is not in S is at most 3k + 2. So,
we obtain that k≥ ((m − 3)/5). +erefore,

4 Journal of Mathematics



λ(H) � |S| � 2k + 1≥ 2 ·
m − 3
5

  + 1

�
2m − 1

5
 ≥

2m − 2
5

 .

(6)

4. (n− 3)-Regular Graph and Proof of
Theorem 3

For n≥ 5, we consider certain cycles contained in a complete
graph Kn. For 1≤ r≤ ⌊n/3⌋, let R1, R2, . . . , Rr be r disjoint
cycles contained in Kn such that V(R1)∪ V(R2)∪ · · · ∪V

(Rr) � V(Kn). Note that an (n − 3)-regular graph is iso-
morphic toKn\(E(R1)∪ E(R2)∪ · · · ∪E(Rr)). In case r � 1,
the locating-dominating number of an (n − 3)-regular graph of
order at least 7 has been determined in+eorem 2. Now, wewill
determine the locating-dominating number of an
(n − 3)-regular graph of order n≥ 5 with 1≤ r≤ ⌊n/3⌋.

Let G � Kn\(E(R1)∪E(R2)∪ · · · ∪E(Rr)) and
mi � |V(Ri)| where 1≤ i≤ r. Let Gi be a subgraph of G where
Gi � Kmi

\E(Ri). Considering Lemma 4, a locating-domi-
nating set of G consists of a locating-dominating set of Gi

with 1≤ i≤ r. +erefore, we obtain that

λ(G)≥ λ G1(  + λ G2(  + · · · + λ Gr( . (7)

Note that a locating-dominating of G also must satisfy all
three conditions in Lemma 6. Let W � ∪ r

i�1Wi where Wi is a
locating-dominating set of Gi where |Wi| � λ(Gi). If there
exists distinct i, j ∈ 1, 2, . . . , r{ } such that both locating-
dominating setsGi andGj contain a gap of three vertices, then
we must add at least one more vertex on W. So, we need to
know the gap properties of a locating-dominating set of Gi.

Lemma 7. For n≥ 5, let G be an (n − 3)-regular graph. Let
G′⊆G such that G′ � Km\E(Cm) with m ∈ 3, 4, . . . , n{ }.

(1) If m � 3, n>m � 5, or m ≡ 0, 2, 4(mod5), then there
exists a locating-dominating set of G′ where every gap
contains at most two vertices.

(2) If m � n � 5 or m ≡ 1, 3(mod5) with m≠ 3, then a
locating-dominating set of G′ has a gap containing
three vertices.

Proof. First, let m � 3, n>m � 5, or m ≡ 0, 2, 4(mod5).
Note that, in this case of m, we have G′ ⊂ G. Let V(G′) �

x1, x2, . . . , xm  and E(Cm) � x1x2, x2x3, . . . , xm−1xm,

xmx1}. We distinguish five cases as follows:

(1) m � 3 or m � 5: by Remark 1, λ(G′) � 2. We define
W′ � x1, x3 .

(2) m � 4: by Remark 1, λ(G′) � 2. We define W′
� x1, x4 .

(3) m ≡ 0(mod5): let m � 5k for integer k≥ 2. By
+eorem 2, λ(G′) � 2k. We define W′ � x1, x4,

x6, x9}∪ x5i+6, x5i+9| 1≤ i≤ k − 2 .
(4) m ≡ 2(mod5):let m � 5k + 2 for integer k≥ 1. By

+eorem 2, λ(G′) � 2k + 1. We define W′ � x1,

x4, x6}∪ x5i+4, x5i+6| 1≤ i≤ k − 1 .

(5) m≠ 4 and m ≡ 4(mod5): let m � 5k + 4 for integer
k≥ 1. By +eorem 2, λ(G′) � 2k + 2. We define
W′ � x1, x4, x6, x9 ∪ x5i+6, x5i+9| 1≤ i≤ k − 1 .

Note that every gap with respect to W′ above contains at
most two vertices. Since W′ satisfies Lemma 6, then W′ is a
locating-dominating set of G′.

Now, let m � n � 5 or m ≡ 1, 3(mod5) with m≠ 3.
Suppose that every gap in G′ contains at most two vertices.
We distinguish three cases as follows:

(1) m ≡ 1(mod5): let m � 5k + 1 for integer k≥ 1. By
+eorem 2, λ(G′) � 2k. Let W be a locating-
dominating set of G′ with 2k vertices. By Lemma 6,
k gaps with respect to W, containing one vertex,
and k other gaps with respect to W, containing two
vertices. +us, the total number of vertices of G′
which are not element of W is 3k. It follows that
m � |V(G′)\W| + |W| � 3k + 2k � 5k, a
contradiction.

(2) m≠ 3 and m ≡ 3(mod5): let m � 5k + 3 for integer
k≥ 1. By +eorem 2, λ(G′) � 2k + 1. Let W be a
locating-dominating set of G′ with 2k + 1 vertices.
By Lemma 6, k + 1 gaps with respect to W, con-
taining one vertex, and k other gaps with respect to
W, containing two vertices. +us, the total number
of vertices of G′ which are not element of W is
3k + 1. It follows that m � |V(G′)\W| + |W| �

(3k + 1) + 2k � 5k + 1, a contradiction.
(3) m � n � 5: thus, G � G′. Let V(G′) � x1, x2, . . . ,

x5} and E(C5) � x1x2, x2x3, . . . , x4x5, x5x1 . By
Remark 1, λ(G′) � 2. Since every gap in G′ contains
at most two vertices, without loss of generality, let
W be a locating-dominating set of G′ where
W � x1, x3 . Since NG(x2) � x4, x5 , we obtain
that NG(x2)∩W � ∅, a contradiction. □

Now, we are ready to prove +eorem 3.

Proof of +eorem 3.
+e first case for λ(G) is a direct consequence of +e-

orem 2, Lemmas 6 and 7, and Remark 1.
For the last case, let Hm1

, Hm2
, . . . , Hmk

be disjoint k

subgraphs of G such that Hmi
� Kmi

\E(Cmi
) where 1≤ i≤ k,

mi ≠ 3, and mi ≡ 1 or 3(mod5). Let Bi be a locating-dom-
inating set of Hmi

with λ(Hmi
) vertices. By Lemma 7, Bi has a

gap containing three vertices, say ai
1, ai

2, and ai
3 where

ai
ja

i
j+1 ∉ E(Hmi

) with 1≤ j≤ 2. We define Bi
′ � Bi ∪ ai

2 . It is
easy to see that Bi

′ is a locating-dominating set of Hmi
which

all the gaps contain at most two vertices. So, by using this
property to subgraphs Hm1

, Hm2
, . . . , Hmk−1

of G, +eorem 2,
Lemmas 6 and 7, and Remark 1, we prove the last case.
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For the study and valuation of social graphs, which affect an extensive range of applications such as community decision-making
support and recommender systems, it is highly recommended to sustain the resistance of a social graph G to active attacks. In this
regard, a novel privacy measure, called the (k, l)-anonymity, is used since the last few years on the base of k-metric antidimension
of G in which l is the maximum number of attacker nodes defining the k-metric antidimension of G for the smallest positive
integer k. )e k-metric antidimension of G is the smallest number of attacker nodes less than or equal to l such that other k nodes
in G cannot be uniquely identified by the attacker nodes. In this paper, we consider four families of wheel-related social graphs,
namely, Jahangir graphs, helm graphs, flower graphs, and sunflower graphs. By determining their k-metric antidimension, we
prove that each social graph of these families is the maximum degree metric antidimensional, where the degree of a vertex is the
number of vertices linked with that vertex.

1. Introduction

Since 2016, a novel privacy measure, “the (k, l) anonymity,”
is defined and used, for the sake of a social graph con-
frontation from various active attacks, in connection with
the concept of k-metric antidimension. Trujillo-Rasua and
Yero defined, studied in detail, and promoted the idea of
k-metric antidimension, which provides a basis for the
privacy measure (k, l)–anonymity [7]. )ey defined this
privacy measure as follows:

“#e (k, l)-anonymity for a social graph G will be preserved
according to active attacks if the k-metric antidimension of G

is bounded above by l for the least positive integer k, where l is
an upper bound on the expected number of attacker nodes.”

Accordingly, it can be seen that having a k-antimetric
generator (a set defining the k-metric antidimension) as the

set of attacker nodes, the probability of unique identification
of other nodes by an adversary in a social graph is less than
or equal to (1/k).

Besides, providing many significant theoretical
properties of the k-metric antidimension of graphs,
Trujillo-Rasua and Yero also supplied the k-metric
antidimension of complete graphs, paths, cycles, complete
bipartite graphs, and trees [7]. )is significant work of
Trujillo-Rasua and Yero attracted many researchers to
work on this idea, and therefore, the literature has been
updated with the following remarkable contributions up
till now:

(i) Trujillo-Rasua and Yero further contributed by
characterizing 1-metric antidimensional trees and
unicyclic graphs [8]

(ii) Mauw et al. contributed by providing a privacy-
preserving graph transformation, which improves
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privacy in social network graphs by contracting
active attacks [6]

(iii) Čangalović et al. contributed by considering wheels
and grid graphs in the context of the k− metric
antidimension [1]

(iv) DasGupta et al. contributed by analyzing and
evaluating privacy-violation properties of eight
social network graphs [4]

(v) Kratica et al. contributed by investigating the
k− metric antidimension of two families of gener-
alized Petersen graphs GP(n, 1) (also called prism
graphs) and GP(n, 2) [5]

(vi) Zhang and Gao and, later on, Chatterjee et al.
contributed by proving that the problem of finding
the k-metric antidimension of a graph is, generally,
an NP-complete problem [3, 9]

Inspired by all these contributions and, particularly,
motivated by the work done by Čangalović et al. on wheel
graphs, we place our contribution by extending the study of
(k, l)-anonymity privacy measure based on k-metric anti-
dimension towards four families of wheel-related social
graphs.

2. Basic Works

Let G � (V(G), E(G)) be a simple and connected graph. We
denote two adjacent vertices x and y by x ∼ y and non-
adjacent by x≁y in G. Two vertices of G are said to be
neighbors of each other if there is an edge between them.)e
(open) neighborhood of a vertex x in G is N(x) � y

∈ V(G) : y ∼ x ∈ E(G)}. )e neighborhood N(x) is closed
if it includes x and is denoted by N[x]. )e number of
vertices adjacent with a vertex x is called its degree and is
denoted by d(x). )e maximum degree in G is
Δ � maxx∈V(G)d(x). )e metric on G is a mapping
d : V(G) × V(G)⟶ Z+ ∪ 0{ } defined by d(x, y) � l,
where l is the length of the number of edges in the shortest
path between vertices x and y in G. A vertex u of G identifies
a pair (x, y) of vertices in G if d(x, u)≠ d(y, u). )e sum
G + H of two graphs G and H is obtained by joining each
vertex of G with every vertex of H. We refer the book in [2]
for nonmentioned graphical notations and terminologies
used in this paper.

Let S � s1, s2, . . . , st ⊆V(G) be an ordered set. )en,
the metric code, or simply code, of a vertex u ∈ V(G) with
respect to S is the t-vector cS(u) � (d(u, s1), d(u, s2), . . . , d
(u, st)). A chosen set S of vertices of G unique identifies each
pair (x, y) of vertices in G if cS(x)≠ cS(y). )e following
concepts are defined by Trujillo-Rasua and Yero in [7]:

(i) A set S of vertices of G is called a k− antimetric
generator (k-antiresolving set) for G if k is the
largest positive integer such that k vertices of G,
other than the vertices in S, are not uniquely

identified by S; i.e., for every vertex w ∈ V(G) − S,
there exist at least k − 1 different vertices u1,

. . . , uk− 1 ∈ V(G) − S such that cS(w) � cS(u1) �

. . . � cS(uk− 1)

(ii) )e cardinality of the smallest k-antimetric gener-
ator for G is called the k-metric antidimension of G,
denoted by adimk(G), and such a smallest generator
is known as k-antimetric basis of G

(iii) If k is the largest positive integer such that G has a
k-antimetric generator, then G is said to be k-metric
antidimensional graph

If S is a set of vertices of a graph G, then it has been
defined as a relation on V(G) − S according to the vertices
having equal metric codes with respect to S as follows.

2.1. Equivalence Relation and Classes [5, 7]. Let S ⊂ V(G) be
a set of vertices of a connected graph G and let ρS be a
relation on V(G) − S defined by

for all x, y ∈ V(G) − S,

x ρS y⇔ cS(a) � cS(b).
(1)

)is relation is an equivalence relation and partitioned
V(G) − S into classes, say S1, . . . , Sm, called the equivalence
classes corresponds to the relation ρS.

Accordingly, we get the following useful property from
[5].

Remark 1 (see [5]). For a fixed integer k≥ 1, a set S is a
k-antimetric generator for G if and only if minm

i�1|Si| � k,
where each Si, 1≤ i≤m, is an equivalence class defined by the
relation ρS.

3. Wheel-Related Social Graphs

In this section, we consider five wheel-related social graphs.
)e (k, l)-anonymity of one of them, called a wheel graph,
has been measured previously in [1], by investigating its
k-metric antidimension. Here, we focus to investigate the
k-metric antidimension of other four graphs. For n≥ 3, a
wheel graph is W1,n � K1 + Cn, where K1 is the trivial graph
having only one vertex ], and Cn is a cycle graph with
vertices in V � V(Cn) � v1, v2, . . . , vn . Accordingly, the
vertex set of this graph is V(W1,n) � ]{ }∪V and edge set is
E(W1,n) � ] ∼ vi, vi ∼ vi+1 ; 1≤ i≤ n , where the indices
greater than n or less than 1 will be taken modulo n. Each
edge ] ∼ vi is called a spoke in a wheel graph. One such graph
is depicted in Figure 1.

In 2018, Čangalović et al. supplied the following
investigations.

Observation 1 (see [1])
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adimk W1,3  �

1, for k � 3,

2, for k � 2,

3, for k � 1,

⎧⎪⎪⎨

⎪⎪⎩
(2)

adimk W1,4  �

1, for k � 1, 4,

2, for k � 3,

3, for k � 2,

⎧⎪⎪⎨

⎪⎪⎩
(3)

adimk W1,5  �
1, for k � 2, 5,

2, for k � 1.
 (4)

Theorem 1 (see [1]). For all n≥ 6,

adimk W1,n  �
1, for k � 3, n,

2, for k � 1, 2.
 (5)

)e rest of the section is aimed to investigate the
k-metric antidimensions of Jahangir graphs, helm graphs,
flower graphs, and sunflower graphs.

3.1. Jahangir Graphs. For n≥ 2, a Jahangir (Gear) graph, J2n,
is obtained from a wheel graph W1,2n � K1 + C2n by deleting
alternating spokes from the wheel. Let V(C2n) � V∪U,
where V � v1, v2, . . . , vn  and U � u1, u2, . . . , un . )en,
the vertex set of a Jahangir graph is V(J2n) � ]{ }∪V∪U and
its edge set is E(J2n) � ] ∼ vi, vi ∼ ui, vi ∼ ui− 1 ; 1≤ i≤ n ,
where the indices greater than n or less than 1 will be taken
modulo n. Figure 2 depicts graphical view of one Jahangir
graph.

)e following observation is easy to verify for n � 2, 3,
and 4.

Observation 2

adimk J4(  �
1, for k � 1, 2,

2, for k � 3,
 (6)

adimk J6(  �
1, for k � 1, 3,

3, for k � 2,
 (7)

and adimk(J8) � 1 for each k ∈ 1, 2, 4{ }.

For all values of n≥ 5, the following result provides the
k-metric antidimension of Jahangir graphs.

Theorem 2. For n≥ 5, let J2n be a Jahangir graph. #en,

adimk J2n(  �
1, for k � 2, 3, n,

2, for k � 1.
 (8)

Proof. First of all, it is worthy to note that N(]) � V(C2n)

and N(vi) � ], ui, ui− 1 , for any vi ∈ V, and
N(ui) � vi, vi+1 , for any ui ∈ U. Now, we need to discuss
the following seven claims.

Claim 1: the set S � ]{ } is an n-antimetric generator for
J2n.
Note that cS(x) � (1), for all x ∈ V, and cS(y) � (2),
for all y ∈ U. According to the relation ρS, there are
only two equivalence classes each has cardinality n. So,
the result followed by Remark 1.
Claim 2: every singleton subset of V is a 3-antimetric
generator for J2n.
Let S � vi  ⊂ V for any fixed 1≤ i≤ n. )en,
cS(x) � (1), for all x ∈ N(vi), cS(y) � (2), for all
y ∈ V − vi , and cS(z) � (3), for all z ∈ U − ui, ui− 1 .
Hence, the relation ρS supplies three equivalence classes
S1 � N(vi), S2 � V − vi , and S3 � U − ui, ui− 1 . )us,

v

v3

v5
v4

v6

v7

v8
v1

v2

Figure 1: One wheel graph W1,8.

v4

v3

v2

v1

u3

u2

u1

u4

ν

Figure 2: One Jahangir graph J8.
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min3i�1|Si| � 3, and hence, S is 3-antimetric generator,
by Remark 1.
Claim 3: every singleton subset of U is a 2-antimetric
generator for J2n.
Let S � ui  ⊂ U; then, metric codes of the vertices are

cS(x) � (1)∀x ∈ N ui( ; cS ui+1( 

� (2) � cS ui− 1(  � cS(]),
(9)

cS(y) � (3) ∀y ∈ V − N ui( ; cS(z)

� (4) ∀ z ∈ U − ui− 1, ui, ui+1 .
(10)

Clearly, we receive four equivalence classes according
to the relation ρS, S1 � N(ui), S2 � N(vi),
S3 � V − N(ui), and S4 � U − ui− 1, ui, ui+1 . Hence,
min4i�1|Si| � 2, and S is a 2− antimetric generator, by
Remark 1.
Claim 4: every 2 element subset of V(J2n) is either
1-antimetric generator or 2-antimetric generator for
J2n.
Let S be a 2-element subset of V(J2n). )en, we have the
following two cases to discuss.

Case 1 (S contains ]): here, we have two subcases.
Subcase 1.1: let S � ], x{ } with x ∈ V; then,

cS(p) � (2, 1) � cS(q), for distinct p, q ∈ N(x) − ]{ }:

cS(y) � (1, 2)∀y ∈ V − x{ }; cS(z)

� (2, 3) ∀ z ∈ U − N(x).
(11)

So, the equivalence classes corresponds to the re-
lation ρS are S1 � N(x) − ]{ }, S2 � V − x{ }, and
S3 � U − N(x). Here, min3i�1|Si| � 2, which implies
that S is a 2-antimetric generator, by Remark 1.
Subcase 1.2: let S � ], x{ } with x ∈ U; then,

cS(t) � (1, 1), for t ∈ N(x):

cS(p) � (2, 2) � cS p′(  forp, p′ ∈ U such thatd(p, x)

� d p′, x(  � 2,

(12)

cS(y) � (1, 3)∀y ∈ V − N(x); cS(z)

� (2, 4)∀z ∈ U − p, x, p′ .

(13)

Due to the above metric coding, it is clear that we
find four equivalence classes according to the relation
ρS, which are S1 � N(x), S2 � p, p′ , S3 � V − N(x),
and S4 � U − p, x, p′ . )us, min4i�1|Si| � 2, which
implies that S is a 2− antimetric generator, by Remark
1.
Case 2 (S does not contain ]): again, we have three
subcases to discuss.
Subcase 2.1: let S ⊂ V and S � v, v′ . )en,

d(v, v′) � 2. If N(v)∩N(v′) � x{ } ⊂ U, then a vertex

y ∈ U, such that d(y, x) � 2, has the unique metric
code from the set (1, 3), (3, 1){ } with respect to S. If no
vertex from U is a common neighbor of v and v′, then
the vertex ] has the unique metric code (1, 1) with
respect to S.

Subcase 2.2: let S ⊂ U and S � u, u′ . )en, either
d(u, u′) � 2 or d(u, u′) � 4. In the former case, a
vertex v ∈ V, such that v ∈ N(u)∩N(u′), has the
unique metric code (1, 1). In the later case, we have
two possibilities. If there is a vertex x ∈ U such that
d(x, u) � 2 � d(x, u′′), then a vertex y ∈ U, with
d(y, u) � 2 and d(y, u′) � 4, has the unique metric
code (2, 4) with respect to S. If there is no such x in U,
then the vertex ] has the unique metric code (2, 2)

with respect to S.
Subcase 2.3: let S � u, v{ } for u ∈ U and v ∈ V.)en,

either d(u, v) � 1 or d(u, v) � 3. For the later case, let
N(v) � ], x, y , where x, y ∈ U are distinct vertices.
Here, we have two possibilities. If one of the neighbors
x and y of v, say x, has the property that d(x, u) � 2,
then the neighbor y of v has the unique metric code
(4, 1) with respect to S. If d(x, u) � 4 � d(y, u), then
the vertex ] has the unique metric code (2, 1) with
respect to S. In the former case, v is a one neighbor of u

from V, and the other neighbor of u from V has the
unique metric code (1, 2) with respect to S.

In each possibility of these subcases, the relation ρS

proposes at least one singleton equivalence class,
which follows that mini|Si| � 1. Hence, S is an
1− antimetric generator, by Remark 1.
Claim 5: for n≥ 7, the set A′ � vi, ], x ⊆V(J2n) is a
2− antimetric generator whenever x ∈ (V∪U)

− ui− 2, vi− 1, ui− 1, vi, ui, vi+1, ui+1 . Otherwise, A′ is
1− antimetric generator for J2n.
If x ∈ (V∪U) − ui− 2, vi− 1, ui− 1, vi, ui, vi+1, ui+1 , the
following two cases are need to be discussed for x.

Case 1: whenever x ∈ U − ui− 2, ui− 1, ui, ui+1 , metric
codes with respect to A′ are

cA′(t) � (1, 2, 4)∀t ∈ N vi(  − ]{ },

cA′(p) � (2, 1, 1)∀p ∈ N(x),
(14)

cA′(q) � (2, 1, 3)∀ q ∈ V − N(x),

cA′ ui+1(  � (3, 2, 2) � cA′ ui+3(  for 1≤ i≤ n,

(15)

cA′(y) � (3, 2, 4)∀y ∈ U

− ui− 1, ui, x, ui+2, ui+3 .

(16)
So, the equivalence classes corresponds to the relation ρA′
are S1 � N(vi) − ]{ }, S2 � N(x), S3 � V − N(x), S4
� ui+1, ui+3 , and S5 � U − ui− 1, ui, x, ui+1, ui+2, ui+3 .
Note that min5i�1|Si| � 2, so Remark 1 yields the required
result.

4 Journal of Mathematics



Case 2: whenever x ∈ V − vi− 1, vi, vi+1 , metric codes
with respect to A′ are

cA′(f) � (1, 2, 3)∀f ∈ N vi(  − ]{ };

cA′(g) � (3, 2, 1)∀g ∈ N(x) − ]{ },
(17)

cA′(h) � (2, 1, 2)∀ h ∈ V − vi, x ;

cA′(m) � (3, 2, 3)∀m ∈ U − N vi( ∪N(x)( .

(18)

Hence, the equivalence classes corresponds to re-
lation ρA′ are S1 � N(vi) − ]{ }, S2 � N(x) − ]{ },
S3 � V − vi, x , and S4 � U − (N(vi)∪N(x)).
It follows that min4i�1|Si| � 2 because n≥ 7. )us,
Remark 1 proves that A′ is a 2-antimetric
generator.

Now, if x ∈ ui− 2, vi− 1, ui− 1, ui, vi+1, ui+1 , then again we
have two cases.

Case 1: whenever x ∈ vi− 1, vi+1 , we have a vertex
t ∈ N(x) − ]{ } such that cA′(t)≠ cA′(t′), for all
t′ ∈ V(C2n) − t{ }

Case 2: whenever x ∈ ui− 2, ui− 1, ui, ui+1 , we have a
vertex t ∈ U with d(t, x) � 2 and cA′(t)≠ cA′(t′), for
all t′ ∈ V(C2n) − t{ }

In both the cases, we get at least one singleton
equivalence class t{ } with respect to the relation ρA′ ,
which implies that mini|Si| � 1. Hence, A′ is a
1− antimetric generator, by Remark 1.
Claim 6: except n � 5, 7, the set B � ui, ], u ⊆V(J2n) is
a 2-antimetric generator whenever
u ∈ U − ui− 2, ui− 1, ui, ui+1, ui+2 . Otherwise, B is a
1− antimetric generator for J2n.
Whenever u ∈ U − ui− 2, ui− 1, ui, ui+1, ui+2 , then the
metric coding with respect to B is

cB(p) � (1, 1, 3)∀p ∈ N ui( , cB ui− 1(  � (2, 2, 4)

� cS ui+1( , cB(q) � (3, 1, 1)∀ q ∈ N(u),

(19)

cB x′(  � (4, 2, 2) � cS y′( ,wherex′, y′

∈ U such that d x′, u(  � d y′, u(  � 2,
(20)

cB(x) � (3, 1, 3)∀x ∈ V − N ui( ∪N(u)( , cB(z)

� (4, 2, 4)∀ z ∈ U − ui− 1, ui, ui+1, x′, u, y′ .

(21)

Hence, we have the equivalence classes S1 � N(ui),
S2 � ui− 1, ui+1 , S3 � N(u), S4 � x′, y′ , S5 � V−

(N(ui)∪N(u)), and S6 � U − ui− 1, ui, ui+1, x′, u, y′ 

in accordance with the relation ρB. )us, min6i�1|Si| � 2,
o B is a 2-antimetric generator, by Remark 1.
Next, whenever u ∈ ui− 2, ui− 1, ui+1, ui+2 , then

cB vi(  � (1, 1, 1)when u � ui− 1,

cB vi+1(  � (1, 1, 1)when u � ui+1,
(22)

cB vi− 1(  � (2, 2, 2)when u � ui− 2,

cB vi+1(  � (2, 2, 2)when u � ui+2.
(23)

In each possibility, the given metric code is unique,
which provides a singleton equivalence class according
to the relation ρB. Hence, min

i
|Si| � 1, and B is a

1− antimetric generator, by Remark 1.
Claim 7: every set S⊆V(J2n) of cardinality t≥ 3 is a
1− antimetric generator for J2n, except the sets A′ and B

discussed in Claims 5 and 6, respectively.

If S contains the vertex ], then there exists a vertex g ∈ U

(or g ∈ V) such that g is a neighbor of some element in S,
and cS(g)≠ cS(g′), for any g′ ∈ V(J2n) − g . If S does not
contain the vertex ], then ] has the unique metric code with
respect to S. In both the cases, we get a singleton equivalence
class according to the relation ρS. Hence, min

i
|Si| � 1, and

Remark 1 implies that S is a 1-antimetric generator.
All these claims conclude the proof with the following

points:

(i) For k ∈ 4, 5 . . . , n − 1{ }, there does not exist a
k-antimetric generator for J2n.

(ii) Claims 1, 2, and 3 provide that adim1(J2n)≥ 2.
Furthermore, there exist 1-antimetric generators for
J2n of cardinality at least 2, by Claims 4 to 7. It
follows that adim1(J2n) � 2.

(iii) Claim 3 provides the existence of a 2-antimetric
generator for J2n of cardinality 1, which yields that
adim2(J2n) � 1.

(iv) Claim 2 provides the existence of a 3-antimetric
generator for J2n of cardinality 1, which implies that
adim3(J2n) � 1.

(v) An n-antimetric generator for J2n of cardinality 1
exists due to Claim 1, and hence,
adimn(J2n) � 1. □

3.2. Helm Graphs. For n≥ 3, a helm graph, Hn, is obtained
from a wheel graph W1,n � K1 + Cn by attaching one leaf (a
vertex of degree one) with each vertex of the cycle Cn. Let
U � u1, u2, . . . , un  be the set of leaves; then, the vertex set
of a helm graph is V(Hn) � V(W1,n)∪U, and its edge set is
E(Hn) � E(W1,n)∪ vi ∼ ui ; 1≤ i≤ n , where the indices
greater than n or less than 1 will be taken modulo n. One
helm graph is shown in Figure 3.
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It is an easy task to verify the following observation.

Observation 3. When n ∈ 3, 5{ }, adimk(Hn) � 1, for
k � 1, 2, . . . , n. While

adimk H4(  �
1, for k � 1, 4,

5, for k � 2,
 (24)

adimk H6(  �
1, for k � 1, 3, 6,

3, for k � 2.
 (25)

Theorem 3. For n≥ 7, let Hn be a helm graph. #en,

adimk Hn(  �

1, for k � 1, 4, n,

2, for k � 3,

3, for k � 2.

⎧⎪⎪⎨

⎪⎪⎩
(26)

Proof. It is significant to keep in hand the neighborhoods
N(]) � V and N(vi) � ], vi+1, vi− 1, ui , for any vi ∈ V, and
N(ui) � vi , for any leaf ui ∈ U. Now, we have to discuss the
following eight claims.

Claim 1: the set S � ]{ } is an n− antimetric generator for
Hn.
Note that cS(x) � (1), for all x ∈ V, and cS(y) � (2),
for all y ∈ U. )ere are only two equivalence classes
S1 � V and S2 � U, both of cardinality n, according to
the relation ρS. Hence, min2i�1|Si| � n, which implies
that S is an n-antimetric generator, by Remark 1.
Claim 2: every single leaf form a 1-antimetric generator
for Hn.
Let S � ui  be a set of one leaf ui ∈ U. )en,
cS(vi) � (1), where vi ∈ N(ui), and no other vertex of
Hn has the code similar to vi. It follows that there exists
a singleton equivalence class due to the relation ρS.
Accordingly, Remark 1 refers that S is an 1− antimetric
generator.

Claim 3: every singleton subset of V is a 4-antimetric
generator for Hn.
Let S � vi  ⊂ V, for any fixed 1≤ i≤ n; then,
cS(x) � (1), for all x ∈ N(vi), cS(y) � (2), for all
y ∈ ui− 1, ui+1 ∪ (V − vi− 1, vi, vi+1 ), and cS(z) � (3),
for all z ∈ U − ui− 1, ui, ui+1 . )us, the relation ρS

produces three equivalence classes S1 � N(vi),
S2 � ui− 1, ui+1 ∪ (V − vi− 1, vi, vi+1 ), and S3 � U−

ui− 1, ui, ui+1 . Hence, min3i�1|Si| � 4, and S is a 4-
antimetric generator for Hn, by Remark 1.
Claim 4: the set S′ � ui, w  is a 3-antimetric generator
for Hn whenever w ∈ N(ui). Otherwise, S′ is a
1-antimetric generator.
Whenever w ∈ N(ui), we have w � vi, and the metric
codes with respect to S′ are

cS′(x) � (2, 1)∀x ∈ N vi(  − ui ;

cS′(y) � (4, 3)∀y ∈ U − ui− 1, ui, ui+1 ,
(27)

cS′(z) � (3, 2)∀ z ∈ ui− 1, ui+1 ∪ V − vi− 1, vi, vi+1 ( .

(28)

)e equivalence classes corresponds to the relation ρS′
are S1 � N(vi) − ui , S2 � U − ui− 1, ui, ui+1 , and
S3 � ui− 1, ui+1 ∪ (V − vi− 1, vi, vi+1 ). It follows, by
Remark 1, that S′ is a 3-antimetric generator since
min3i�1|Si| � 3.
When w ∈N(ui), then the vertex vi ∈ N(ui) has the
metric code which is not similar to the metric code of
any other vertex of Hn. )is creates at least one sin-
gleton equivalence class vi  in accordance with the
relation ρS′ , which implies that S′ is a 1-antimetric
generator for Hn, by Remark 1.
Claim 5: every 2− element subset of V(Hn), except the
set S′ of Claim 4, is a 1-antimetric generator for Hn.
Let S be a 2− element subset of V(Hn) and S≠ S′. )en,
we discuss the following two cases:

Case 1 (S does not contain ]): let S ⊂ U. When
S � ui, ui+2 , the vertex ui+1 has the unique metric
code (3, 3) with respect to S. When S � ui, ui− 2 , the
vertex ui− 1 has the unique metric code (3, 3) with
respect to S. Otherwise, the vertex ] has the unique
metric code (2, 2) with respect to S. Next, we let S ⊂ V.
When S � vi, vi+2 , the vertex vi− 1 has the unique
metric code (1, 2) with respect to S. Otherwise, the
vertex ] has the unique metric code (1, 1) with respect
to S.
Case 2 (S contains ]): let S � vi, ] ; then, the leaf
ui ∈ N(vi) has the unique metric code (1, 2) with
respect to S.

Each possibility in both the cases yields at least one
singleton equivalence class according to the relation ρS,
which implies that S is a 1-antimetric generator, by
Remark 1.
Claim 6: the setE � ui, vi, ]  ⊂ V(Hn) is a 2-antimetric
generator for Hn.
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Figure 3: One helm graph H8.
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Note that cE(ui− 1) � (3, 2, 2) � cS(ui+1), cE(vi− 1) �

(2, 1, 1) � cS(vi+1),

cE(x) � (3, 2, 1) ,∀x ∈ V − vi− 1, vi, vi+1 ,

cE(y) � (4, 3, 2)∀y ∈ U − ui− 1, ui, ui+1 .
(29)

So, there are four equivalence classes S1 � ui− 1, ui+1 ,
S2 � vi− 1, vi+1 , S3 � V − vi− 1, vi, vi+1 , and S4 � U−

ui− 1, ui, ui+1  with respect to the relation ρE. )at is,
min4i�1|Si| � 2, and Remark 1 assists that E is a 2-
antimetric generator.
Claim 7: for even values of n≥ 8, the set S �

], vi, ui, vi+(n/2), ui+(n/2)  ⊂ V(Hn) is a 2-antimetric
generator for Hn.
Note the metric coding of the vertices with respect to S

is as follows:
cS vi− 1(  � (2, 1, 1, 2, 3) � cS vi+1( ,

cS ui− 1(  � (3, 2, 2, 3, 4) � cS ui+1( ,
(30)

cS(x) � (3, 2, 1, 2, 3)∀x ∈ V

− vi− 1, vi, vi+1, vi+(n/2)− 1, vi+(n/2)+1 ,

(31)

cS(y) � (4, 3, 2, 3, 4) ∀y ∈ U

− ui− 1, ui, ui+1, ui+(n/2)− 1, ui+(n/2)+1 ,

(32)

cS vi+(n/2)− 1  � (3, 2, 1, 1, 2) � cS vi+(n/2)+1 ,

cS ui+(n/2)− 1  � (4, 3, 2, 2, 3) � cS ui+(n/2)+1 .
(33)

Hence, the classes according to the relation ρS are
S1 � vi− 1, vi+1 , S2 � ui− 1, ui+1 , S3 � vi+(n/2)− 1,

vi+(n//)2+1}, S4 � ui+(n/2)− 1, ui+(n/2)+1 , S5 � V − vi− 1, vi,

vi+1, vi+(n/2)− 1, vi+(n/2)+1}, and S6 � U − ui− 1, ui, ui+1,

ui+(n/2)− 1, ui+(n/2)+1}. Here, min6i�1|Si| � 2, which implies
that S is a 2-antimetric generator, by Remark 1.
Claim 8: any subset of V(Hn) of cardinality t≥ 3 is a 1-
antimetric generator for Hn, except the sets E and S

considered in Claims 6 and 7, respectively.

Let W be a subset of V(Hn) with |W| � t≥ 3 and
W≠E, S. )en, note the following two possibilities:

(1) W contains ]: if |W| � 3 and W � u, v, ]{ } with
u ∈ U, v ∈ V but v∈N(u) (because this case is already
discussed in Claim 6). )en, the vertex x ∈ N(u) has
the unique metric code from the set
(1, 1, 1), (1, 1, 2){ } with respect to W. If |W|≥ 4, then
a neighbor of some w ∈W − ]{ } receives the unique
metric code with respect to W.

(2) W does not contain ]: the vertex ] has the unique
metric code with respect to W.

In both the possibilities, we get at least one singleton
equivalence class according to the relation ρW. )us,
min

i
|Si| � 1, and Remark 1 provides that S is a 1-antimetric

generator.

)e proof will reach to its end by discussing the fol-
lowing points on the base of formerly discussed claims:

(i) For k ∈ 5, 6, . . . , n − 1{ }, there does not exist a
k-antimetric generator for Hn.

(ii) We find a 1-antimetric generator for Hn of (1)
cardinality 1 due to Claim 2, (2) cardinality 2 due to
Claims 4 and 5, and (3) cardinality t≥ 3 due to
Claim 8. Since a 1-antimetric generator for Hn of
cardinality 1 is the smallest one, so adim1(Hn) � 1.

(iii) Claim 6 assures the existence of a 2-antimetric
generator for Hn of cardinality 3 for all values of n,
while Claim 7 assures the existence of a 2-antimetric
generator for Hn of cardinality 5 just for even values
of n. Moreover, no singleton set or 2-element set of
vertices in Hn is a 2-antimetric generator for Hn due
to Claims 1 to 5. It follows that adim2(Hn) � 3.

(iv) We receive a 3− antimetric generator of cardinality 2
from Claim 4, and no singleton set is a 3-antimetric
generator for Hn due to Claims 1 to 3, which implies
that adim3(Hn) � 2.

(v) Claim 3 assists that adim4(Hn) � 1 because of the
existence of a 4-antimetric generator for Hn of
cardinality 1.

(vi) Finally, adimn(Hn) � 1 due to an n-antimetric
generator for Hn of cardinality 1 exists by Claim
1. □

3.3. FlowerGraphs. For n≥ 3, a flower graph, Fn, is obtained
from a helm graph Hn by joining its each leaf ui to the vertex
] of K1. Accordingly, the vertex set of a flower graph is
V(Fn) � V(Hn), and its edge set is
E(Fn) � E(Hn)∪ ] ∼ ui ; 1≤ i≤ n , where the indices
greater than n or less than 1 will be taken modulo n. Figure 4
provides graphical appearance of one flower graph.

)e following observation is easy to understand for the
flower graph F3.

Observation 4

adimk F3(  �
1, for k � 2, 6,

2, for k � 1.
 (34)

Theorem 4. For all n≥ 4, let Fn be a flower graph. #en,

adimk Fn(  �
1, for k � 2, 4, 2n,

2, for k � 1, 3.
 (35)

Proof. )e following listed neighborhoods of the vertices of
Fn will be used in the proof: N(]) � V∪U and
N(vi) � ], vi+1, vi− 1, ui , for any vi ∈ V, and N(ui) � ], vi ,
for any ui ∈ U. We have to discuss the following nine claims
to prove the required result.

Claim 1: the set S � ]{ } is a 2n-antimetric generator for
Fn.
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Note that cS(x) � (1), for all x ∈ V(Fn). So, the only
one equivalence class of cardinality 2n is produced by
the relation ρS. Hence, S is a 2n-antimetric generator.
Claim 2: every singleton subset of U is a 2− antimetric
generator for Fn.
Let S � ui  ⊂ U for any fixed 1≤ i≤ n; then,
cS(x) � (1), for all x ∈ N(ui), and cS(y) � (2), for all
y ∈ V(Fn) − N[ui]. )e relation ρS creates two
equivalence classes S1 � N(ui) and
S2 � V(Fn) − N[ui]. It follows that min2i�1|Si| � 2, and
Remark 1 proposes that S is a 2-antimetric generator.
Claim 3: every singleton subset of V is a 4-antimetric
generator for Fn.
Let S � vi  ⊂ V for any fixed 1≤ i≤ n; then,
cS(x) � (1), for all x ∈ N(vi), and cS(y) � (2), for all
y ∈ V(Fn) − N[vi]. )us, we get two equivalence
classes S1 � N(vi) and S2 � V(Fn) − N[vi] by the re-
lation ρS with min2i�1|Si| � 4. Hence, S is a 4-antimetric
generator, by Remark 1.
Claim 4: the set W � vi, ]  ⊂ V(Fn) is a 3-antimetric
generator for Fn.
Note the metric codes with respect to W is as follows:
cW(x) � (1, 1), for all x ∈ N(vi) − ]{ }, and
cW(y) � (2, 1), for all y ∈ V(Fn) − N[vi]. Here, the
equivalence classes obtained through the relation ρW

are S1 � N(vi) − ]{ } and S2 � V(Fn) − N[vi]. Hence,
min2i�1|Si| � 3, and Remark 1 implies that W is a
3-antimetric generator.
Claim 5: the set W′ � vi, u  ⊂ V(Fn) is a 2-antimetric
generator for Fn, where u ∈ ui− 1, ui+1 .
)e metric codes with respect W′ are cW′(x) � (1, 1),
for all x ∈ N(u), cW′(y) � (1, 2), for all
y ∈ N(vi) − N(u), and cW′(z) � (2, 2), for all
z ∈ V(Fn) − (N[vi]∪N[u]). Accordingly, three
equivalence classes S1 � N(u), S2 � N(vi) − N(u), and
S3 � V(Fn) − (N[vi]∪N[u]) are generated by the re-
lation ρW′ with min3i�1|Si| � 2. )erefore, Remark 1
provides that W′ is a 2− antimetric generator.

Claim 6: any 2-element set, S⊆V(Fn), is a 1-antimetric
generator for Fn, except the sets W and W′ discussed in
Claims 4 and 5, respectively. We discuss the following
two possibilities:

(1) Either S ⊂ V or S ⊂ U or S � vi, uj  with S≠W′.
)en, cS(]) � (1, 1) is the unique metric code in Fn.

(2) If S � ui, ] , then cS(vi) � (1, 1) is the unique
metric code in Fn.

In both the possibilities, we receive at least one sin-
gleton equivalence class, in accordance with the rela-
tion ρS, which implies that min

i
|Si| � 1. Hence, Remark

1 yields that S is a 1-antimetric generator.
Claim 7: the set M � ui, vi, ]  ⊂ V(Fn) is a 2-anti-
metric generator for Fn.
)e metric coding with respect to M is

cM(x) � (2, 1, 1)∀x ∈ N vi(  − ui, ] ;

cM(y) � (2, 2, 1)∀y ∈ V Fn(  − vi− 1, vi+1 .
(36)

It follows that S1 � N(vi) − ui, ]  and S2 � V(Fn) −

N[vi] are the equivalence classes produced by the re-
lation ρM. Here, min2i�1|Si| � 2, which implies that M is
a 2-antimetric generator, by Remark 1.
Claim 8: the set M′ � vi, ], f  ⊂ V(Fn) is a 3-anti-
metric generator for Fn whenever
f ∈ V − vi− 2, vi− 1, vi, vi+1, vi+2 . Otherwise, M′ is a
1− antimetric generator for Fn.
f ∈ V − vi− 2, vi− 1, vi, vi+1, vi+2 , and we have the metric
codes of the vertices with respect to M′ as follows:

cM′(x) � (1, 1, 2)∀ x ∈ N vi(  − ]{ };

cM′(y) � (2, 1, 1)∀y ∈ N(f) − ]{ },
(37)

cM′(z) � (2, 1, 2)∀ z ∈ V Fn(  − N vi ∪N[f]( . (38)

)us, the relation ρM′ partitioned V(Fn) − M′ into
three equivalence classes S1 � N(vi) − ]{ },
S2 � N(f) − ]{ }, and S3 � V(Fn) − (N[vi]∪N[f]),
with min3i�1|Si| � 3. It follows, by Remark 1, that M′ is a
3-antimetric generator.
Whenever f ∈ vi− 2, vi− 1, vi+1, vi+2 , if f � vi+1 or vi− 1,
then a neighbor of f lying in U has the unique metric
code (2, 1, 1) with respect to M′. If f � vi+2 or vi− 2, then
vi+1 or vi− 1, respectively, has the unique metric code
(1, 1, 1) with respect to M′. In either cases, we obtain at
least one singleton equivalence class according to the
relation ρM′ , which implies that M′ is a 1-antimetric
generator, by Remark 1.
Claim 9: any set S⊆V(Fn) of cardinality t≥ 3 is a
1− antimetric generator for Fn, except the sets M and
M′ discussed in Claims 7 and 8, respectively.
We discuss the following two cases:

Case 1 (S does not contain ]): in this case, the vertex ]
has the unique metric code with respect to S
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Figure 4: One flower graph F8.
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Case 2 (S contains ]): since S≠M, M′, there exists a
vertex x ∈ N(s) for at least one s ∈ S − ]{ } such that x

has the unique metric code with respect to S

In both the cases, we get at least one singleton equiva-
lence class according to the relation ρS, which implies that S

is a 1− antimetric generator, by Remark 1.
We conclude the proof by discussing the following

points using preceding claims:

(i) For k ∈ 5, 6, . . . , 2n − 1{ }, there does not exist a
k-antimetric generator for Fn.

(ii) We get an 1-antimetric generator for Fn of (1)
cardinality 2 by Claim 6 and (2) cardinality t≥ 3 by
Claims 8 and 9. Furthermore, no singleton set
possesses the property of 1− antimetric generator in
Fn, by Claims 1 to 3. It follows that adim1(Fn) � 2.

(iii) For Fn, Claim 2 promises the existence of a
2-antimetric generator of cardinality 1, Claim 5
promises the existence of a 2-antimetric generator
of cardinality 2, and Claim 7 promises the existence
of a 2-antimetric generator of cardinality 3. All these
promises conclude that adim2(Fn) � 1.

(iv) )ere exists a 3-antimetric generator for Fn of
cardinality 2 due to Claim 4, and a 3-antimetric
generator of cardinality 3 due to Claim 8. )us,
Claims 1 to 3 conclude that adim3(Fn) � 2.

(v) Claim 3 declares the existence of a 4-antimetric
generator for Fn of cardinality 1, which implies that
adim4(Fn) � 1.

(vi) A 2n-antimetric generator for Fn exists due to Claim
1, so adim2n(Fn) � 1. □

3.4. Sunflower Graphs. For n≥ 3, a sunflower graph, SFn, is
obtained from a wheel graph W1,n � K1 + Cn by attaching
one vertex ui to every two consecutive vertices of the cycle
Cn. Let U � u1, u2, . . . , un ; then, the vertex set of a sun
flower graph is V(SFn) � V(W1,n)∪U and its edge set is
E(SFn) � E(W1,n)∪ ui ∼ vi, ui ∼ vi+1 ; 1≤ i≤ n , where the
indices greater than n or less than 1 will be taken modulo n.
A graphical preview of this graph is displayed in Figure 5.

)e following observation is an easy exercise to
understand.

Observation 5. When n ∈ 3, 5, 6{ }, adimk(SFn) � 1, for
k � 1, 2, . . . , n. While

adimk SF4(  �
1, for k � 1, 3, 4,

3, for k � 2,
 (39)

adimk SF7(  �
1, for k � 2, 3, 7,

2, for k � 1,
 (40)

adimk SF8(  �
1, for k � 2, 4, 8,

2, for k � 1.
 (41)

Theorem 5. For n≥ 9, let SFn be a sunflower graph. #en,

adimk SFn(  �
1, for k � 2, 5, n,

2, for k � 1.
 (42)

Proof. )e neighborhoods, N(]) � V and N(vi) � ], vi+1,

vi− 1, ui, ui− 1} for any vi ∈ V, and N(ui) � vi, vi+1 , for any
ui ∈ U, of the vertices in SFn are useful to discuss the fol-
lowing nine claims.

Claim 1: the set S � ]{ } is an n-antimetric generator for
SFn.
Note that cS(x) � (1), for all x ∈ V, and cS(y) � (2),
for all y ∈ U. )us, there are two equivalence classes V

and U according to the relation ρS, and each class has n

elements. Hence, Remark 1 yields that S is an n-anti-
metric generator.
Claim 2: every singleton subset S of V is a 5− antimetric
generator for SFn.
Let S � vi  ⊂ V for any fixed 1≤ i≤ n. )en,
cS(x) � (1), for all x ∈ N(vi):

cS(y) � (3)∀y ∈ U − ui− 2, ui− 1, ui, ui+1 ;

cS(z) � (2)∀ z ∈ ui− 2, ui+1 ∪ V − vi− 1, vi, vi+1 ( .

(43)

)erefore, the equivalence classes, corresponding to the
relation ρS, are S1 � N(v), S2 � ui− 2, ui+1 ∪
(V − vi− 1, vi, vi+1 ), and S3 � U − ui− 2, ui− 1, ui, ui+1 . It
follows that min3i�1|Si| � 5, and S is a 5-antimetric
generator, by Remark 1.
Claim 3: every singleton subset S of U is a 2− antimetric
generator for SFn.
Let S � ui  ⊂ U, for any fixed 1≤ i≤ n. )en,
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Figure 5: One sunflower graph SF8.
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cS(q) � (1)∀ q ∈ N ui( ;

cS(x) � (2)∀x ∈ ]{ }∪ vi− 1, ui− 1, ui+1, vi+2 ,
(44)

cS(y) � (3)∀y ∈ ui− 2, ui+2 ∪ V − vi− 1, vi, vi+1, vi+2 ( ,

(45)

cS(z) � (4), ∀ z ∈ U − ui− 2, ui− 1, ui, ui+1, ui+2 . (46)

We have four equivalence classes S1 � N(ui),
S2 � ]{ }∪ vi− 1, ui− 1, ui+1, vi+2 , S3 � ui− 2, ui+2 ∪
(V − vi− 1, vi, vi+1, vi+2 ), and S4 � U − ui− 2, ui− 1,

ui, ui+1, ui+2}, in accordance with the relation ρS. )us,
min4i�1|Si| � 2, which implies that S is a 2-antimetric
generator, by Remark 1.
Claim 4: the set S � vi, ]  ⊂ V(SFn) is a 2-antimetric
generator for SFn.
)e metric coding with respect to S is listed as follows:

cS ui− 1(  � (1, 2) � cS ui( ; cS vi− 1(  � (1, 1)

� cS vi+1( ; cS ui− 2(  � (2, 2) � cS ui+1( ,

(47)

cS(x) � (2, 1)∀x ∈ V − vi− 1, vi, vi+1 ;

cS(y) � (3, 2)∀y ∈ U − ui− 2, ui− 1, ui, ui+1 .
(48)

So, the relation ρS supplies five equivalence classes
S1 � ui− 1, ui , S2 � vi− 1, vi+1 , S3 � ui− 2, ui+1 ,
S4 � V − vi− 1, vi, vi+1 , and
S5 � U − ui− 2, ui− 1, ui, ui+1 . Hence, min5i�1|Si| � 2, and
S is a 2-antimetric generator, by Remark 1.
Claim 5: the set S � ui, ]  ⊂ V(SFn) is a 2-antimetric
generator for SFn.
We have the following metric coding with respect to S:
cS(t) � (1, 1), for all t ∈ N(ui):

cS ui− 1(  � (2, 2) � cS ui+1( ; cS vi− 1(  � (2, 1)

� cS vi+2( ; cS ui− 2(  � (3, 2) � cS ui+2( ,
(49)

cS(x) � (3, 1), for all x ∈ V − (N(ui)∪ vi− 1, vi+2 ), and
cS(y) � (4, 2), for all y ∈ U − ui− 2, ui− 1, ui, ui+1, ui+2 .
So, the equivalence classes, in accordance with the
relation ρS, are S1 � N(ui), S2 � ui− 1, ui+1 ,
S3 � vi− 1, vi+2 , s4 � ui− 2, ui+2 , S5 � V − (N(ui)∪
vi− 1, vi+2 ), and S6 � U − ui− 2, ui− 1, ui, ui+1, ui+2 .
Here, min6i�1|Si| � 2, which implies that S is a 2-anti-
metric generator, by Remark 1.
Claim 6: each 2-element set S ⊂ V(SFn) − ]{ } is a
1− antimetric generator for SFn.
We discuss the following three possibilities:

(1) Let S � u, v{ } for u ∈ U and v ∈ V. If either d(u, v) �

1 or d(u, v) � 2, then there is a vertex p in V such
that p ∈ N(u)∩N(v), and cS(p) � (1, 1)≠ cS(p′),
for any p′ ∈ V(SFn) − p . If d(u, v) � 3, then there
is a neighbor q of v from U such that
cS(q) � (4, 1)≠ cS(q′), for any q′ ∈ V(SFn) − q . If

d(u, v)≥ 4, then the vertex ] has the unique metric
code (2, 1) with respect to S.

(2) Let S ⊂ V and S � v, v′ . )en, either d(v, v′) � 1
or d(v, v′) � 2. In the former case, a vertex u ∈ U,
for which d(u, v) � 2 and d(u, v′) � 3, has the
unique metric code (2, 3) with respect to S. In the
later case, we have two discussions: If
N(v)∩N(v′) � v′′  ⊂ V, then a vertex u ∈ U,
such that d(u, v′′) � 2, has the unique metric code
from the set (1, 3), (3, 1){ } with respect to S. If no
vertex in V is a common neighbor of v and v′, then
the vertex ] has the unique metric code (1, 1) with
respect to S.

(3) Let S ⊂ U; then, cS(]) � (2, 2) is the unique metric
code in SFn. In all these possibilities, we get at least
one singleton equivalence class according to the
relation ρS, which implies that min

i
|Si| � 1. Hence,

S is a 1-antimetric generator, by Remark 1.

Claim 7: the set E � vi, ], x  ⊂ V(SFn) is a 2-antimetric
generator of SFn whenever x ∈ V− vi− 3, vi− 2, vi− 1, vi,

vi+1, vi+2, vi+3}. Otherwise, E is a 1-antimetric generator.
Whenever x ∈ V − vi− 3, vi− 2, vi− 1, vi, vi+1, vi+2, vi+3 ,
note that cE(ui− 2) � (2, 2, 3) � cE(ui+1) and

cE ui− 1(  � (1, 2, 3) � cE ui( , where ui− 1, ui ∈ N vi( 

− vi− 1, ], vi+1 ,
(50)

cE vi− 1(  � (1, 1, 2) � cE vi+1( , where vi− 1, vi+1 ∈ N vi( 

− ], ui− 1, ui ,

(51)

cE(h) � (3, 2, 2) � cE h′( ,where h, h′ ∈ Uwith d(h, x)

� d h′, x(  � 2,

(52)

cE(g) � (2, 1, 1) � cE g′( ,where g, g′ ∈ Vwith d(g, x)

� d g′, x(  � 1,

(53)

cE(l) � (3, 2, 1) � cE l′( ,where l, l′ ∈ Uwith d(l, x)

� d l′, x(  � 1,

(54)

cE(y) � (2, 1, 2)∀y ∈ V − vi− 1, vi, vi+1, g, x, g′ , (55)

cE(z) � (3, 2, 3)∀ z ∈ U − ui− 2, ui− 1, ui, ui+1, h, h′, l, l′ .

(56)

Hence, we have eight equivalence classes S1 � ui− 1, ui ,
S2 � vi− 1, vi+1 , S3 � ui− 2, ui+1 , S4 � h, h′ ,
S5 � l, l′ , S6 � g, g′ , s7 � V − (S2 ∪ S6), and
S8 � U − (S1 ∪ S3 ∪ S4 ∪ S5) in accordance with the re-
lation ρE. It can be seen that min8i�1|Si| � 2, which yields
that E is a 2-antimetric generator, by Remark 1.
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Whenever x ∈ vi− 3, vi− 2, vi− 1, vi+1, vi+2, vi+3 , we have a
vertex u ∈ U such that cE(u)≠ cE(u′) for any
u′ ∈ V(SFn) − u{ }. Hence, we receive at least one sin-
gleton equivalence class due to the relation ρE, which
implies that E is a 1-antimetric generator, by Remark 1.
Claim 8: the set E′ � ui, ], a  ⊂ V(SFn) is a 2-anti-
metric generator for SFn whenever a ∈ U − ui− 4, ui− 3,

ui− 2, ui− 1, ui, ui+1, ui+2, ui+3, ui+4}. Otherwise, E′ is a 1-
antimetric generator.
Whenever a ∈ U − ui− 4, ui− 3, ui− 2, ui− 1, ui, ui+1, ui+2,

ui+3, ui+4}, we have the metric codes with respect to E′
as follows:

cE′(t) � (1, 1, 3)∀ t ∈ N ui( ;

cE′ ui− 2(  � (3, 2, 4) � cE′ ui+2( ,
(57)

cE′ ui− 1(  � (2, 2, 4) � cE′ ui+1( ;

cE′ vi− 1(  � (2, 1, 3) � cE′ vi+2( ,
(58)

cE′(p) � (3, 1, 1) � cE′ p′( ,where p, p′ ∈ N(a),

(59)

cE′(q) � (4, 2, 2) � cE′ q′( , where q, q′ ∈ U

such that d(q, a) � d q′, a(  � 2,
(60)

cE′(r) � (3, 1, 2) � cE′ r′( ,where r, r′ ∈ V

such that d(r, a) � d r′, a(  � 2,
(61)

cE′(x) � (4, 2, 3) � cE′ x′( ,where x, x′ ∈ U

such that d(x, a) � d x′, a(  � 3,
(62)

cE′(y) � (3, 1, 3)∀y ∈ V

− N ui( ∪N(a) ∪ vi− 1, vi+2, r, r′ ( ,
(63)

cE′(z) � (4, 2, 4)∀z ∈ U

− ui− 2, ui− 1, ui, ui+1, ui+2, x, q, l, q′, x′ .
(64)

)erefore, we get 10 equivalence classes S1 � N(ui),
S2 � ui− 1, ui+1 , S3 � vi− 1, vi+2 , S4 � ui− 2, ui+2 ,
S5 � N(a), S6 � q, q′ , S7 � r, r′ , S8 � x, x′ ,
S9 � V − (S1 ∪ S3 ∪ S5 ∪ S7), and S10 � U − (S2 ∪ S4
∪ S6 ∪ S8) in accordance with the relation ρE′ . It has
been observed that min10i�1|Si| � 2, so E′ is a
2− antimetric generator, by Remark 1.
Whenever a ∈ ui− 4, ui− 3, ui− 2, ui− 1, ui+1, ui+2, ui+3, ui+4 ,
we have a vertex u ∈ U such that cE′(u)≠ cE′(u′), for any
u′ ∈ V(SFn) − u{ }. Hence, we receive at least one sin-
gleton equivalence class by the relation ρE′ , which implies
that mini|Si| � 1. Hence, E′ is a 1− antimetric generator,
by Remark 1.
Claim 9: except the sets E, E′ ⊂ V(SFn) discussed
in Claims 7 and 8, respectively, each set S⊆V(SFn)

of cardinality k≥ 3 is a 1− antimetric generator for
SFn.

We have to discuss the following two cases:

Case 1 (S contains ]): let |S|≥ 4 (because the case,
when |S| � 3, has been discussed in Claims 7 and 8).
)en, there a vertex x ∈ V such that x is a neighbor
of some s ∈ S whenever S∩V � ∅, or there a
vertex x ∈ U such that x is a neighbor of some
s ∈ S whenever either S∩U � ∅ or S∩V≠∅≠ S∩U,
and we get the unique metric code of x with respect
to S.
Case 2 (S does not contain ]): whenever S⊆V or S⊆U,
the vertex ] has the unique metric code of x with
respect to S. Whenever S∩U≠∅≠ S∩V, there is a
vertex x ∈ U (or x ∈ V) such that d(x, s) � 1 for some
element s ∈ S, and cS(x)≠ cS(x′), for any
x′ ∈ V(SFn) − x{ }.

In both the cases, the relation ρS supplies at least one
singleton equivalence class, which yields that min

i
|Si| � 1.

Hence, S is a 1-antimetric generator, by Remark 1.
)ese claims complete the proof with the following

deductions:

(i) )ere does not exist a k− antimetric generator for
SFn when k ∈ 3, 4, 6, 7, . . . , n − 1{ }.

(ii) Claim 6 supplies a 1− antimetric generator for SFn of
cardinality 2, and Claims 7 to 9 supply a
1− antimetric generator for SFn of cardinality t≥ 3.
Claims 1 to 3 provide the guaranty of nonexistence
of singleton 1− antimetric generator for SFn. It
follows that adim1(SFn) � 2.

(iii) )e existence of a 2− antimetric generator for SFn of
cardinalities 1, 2, and 3 is assured by Claim 3, by
Claims 4 and 5, and by Claims 7 and 8, respectively.
Accordingly, adim2(SFn) � 1.

(iv) adim5(SFn) � 1 because of the existence of a
5− antimetric generator for SFn of cardinality 1 in
Claim 2.

(v) Claim 1 provides an n− antimetric generator for SFn

of cardinality 1, which yields that
adimn(SFn) � 1. □

4. Concluding Remarks

For a connected graph G, the number
rad(G) � min ecc(x) � maxy∈V(G)d(x, y) ; x ∈ V(G)  is
called the radius of G, where ecc(x) is the eccentricity of x.
)e center of G is a subgraph G[X] induced by the set
X � x ∈ V(G) : ecc(x) � rad(G){ }. It has been observed the
following useful properties about a k− antimetric dimen-
sional graph in [7].

Remarks 2 (see [7])

(a) If a connected graph is k− metric antidimensional,
then 1≤ k≤Δ

(b) If the center of a connected graph is trivial, then it is
k− metric antidimensional for some k≥ 2
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It can be easily seen that each wheel-related social graph,
considered in this paper, has the trivial center. Remark 2 (a)
insures that each of these graphs has k− metric anti-
dimension, for some k≥ 1, and it must be k− metric anti-
dimensional for some k≥ 2. So, naturally, it raises the
following two questions:

Q1. For how many and for which values of k≥ 1 a
wheel-related social graph admits k− metric
antidimension?
Q2. For which maximum value of k, 2≤ k≤Δ, a wheel-
related social graph is k− metric antidimensional?

)e results of Čangalović et al., proved in [1] and listed in
Observation 1 and )eorem 1, were the pioneers to address
the answers of questions Q1 and Q2. )ese results revealed
that (1) when n � 3, 5, a wheel graph W1,n admits k− metric
antidimension for three values of k ∈ 1, 2, n{ } and (2) when
n � 4 and for all n≥ 6, W1,n admits k− metric antidimension
for four values of k ∈ 1, 2, 3, n{ }. It follows that W1,n is
Δ− metric antidimensional.

To extend the study of (k, l)− anonymity based on the
k− metric antidimension, we considered four graphs related
to wheel graphs in this article. By investigating their
k− metric antidimension, we addressed the answers of
questions Q1 and Q2 as follows:

(i) For a Jahangir graph J2n, Observation 2 and )e-
orem 2 revealed that (1) J4 admits k− metric anti-
dimension for three values of k ∈ 1, 2, 3{ }, (2) when
n � 3, 4, J2n admits k− metric antidimension for
three values of k ∈ 1, 2, n{ }, and (3) for all n≥ 5, J2n

admits k− metric antidimension for four values of
k ∈ 1, 2, 3, n{ }

(ii) For a helm graph Hn, Observation 3 and)eorem 3
revealed that (1) when n � 3, 4, 5, Hn admits
k− metric antidimension for three values of
k ∈ 1, 2, n{ }, (2) H6 admits k− metric antidimension
for four values of k ∈ 1, 2, 3, 6{ }, and (3) for all n≥ 7,
Hn admits k− metric antidimension for five values of
k ∈ 1, 2, 3, 4, n{ }

(iii) For a flower graph Fn, Observation 4 and)eorem 4
revealed that (1) F3 admits k− metric antidimension
for three values of k ∈ 1, 2, 6{ } and (2) for all n≥ 4,
Fn admits k− metric antidimension for five values of
k ∈ 1, 2, 3, 4, 2n{ }.

(iv) For a sunflower graph SFn, Observation 5 and
)eorem 5 revealed that (1) when n � 3, 5, 6, SFn

admits k− metric antidimension for three values of
k ∈ 1, 2, n{ }, (2) when n � 4, 7, SFn admits k− metric
antidimension for four values of k ∈ 1, 2, 3, n{ }, (3)
SF8 admits k− metric antidimension for four values
of k ∈ 1, 2, 4, 8{ }, and (4) for all n≥ 9, SFn admits
k− metric antidimension for four values of
k ∈ 1, 2, 5, n{ }.

From all these results, it can be concluded that each
considered wheel-related social graph is Δ− metric
antidimensional.

Furthermore, according to the computed k− metric
antidimension of wheel-related social graphs, we investi-
gated that each of them meets the (k, l)− anonymity in the
following ways (skipping particular cases which can be
observed straightforwardly).

Wheel graph: for n≥ 6 and Δ � n and by)eorem 1, we
have
k : 1 2 3 Δ

k − metric antidimension : 2 2 1 1

(k, l) − anonymity : (1, 2) (2, 2) (3, 1) (Δ, 1)

.

(65)

Jahangir graph: for n≥ 5 and Δ � n and by )eorem 2,
we have
k : 1 2 3 Δ

k − metric antidimension : 2 1 1 1

(k, l) − anonymity : (1, 2) (2, 1) (3, 1) (Δ, 1)

.

(66)

Helm graph: for n≥ 7 and Δ � n and by )eorem 3, we
have

k : 1 2 3 4 Δ

k − metric antidimension : 1 3 2 1 1

(k, l) − anonymity : (1, 1) (2, 3) (3, 2) (4, 1) (Δ, 1)

. (67)

Flower graph: for n≥ 4 and Δ � 2n and by )eorem 4,
we have

k : 1 2 3 4 Δ

k − metric antidimension : 2 1 2 1 1

(k, l) − anonymity : (1, 2) (2, 1) (3, 2) (4, 1) (Δ, 1)

. (68)
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Sunflower graph: for n≥ 9 and Δ � n and by)eorem 5,
we have
k : 1 2 5 Δ

k − metric antidimension : 2 1 1 1

(k, l) − anonymity : (1, 2) (2, 1) (3, 1) (Δ, 1)

.

(69)

)e (k, l)− anonymity, measured on the base of k− metric
antidimension for the maximum value of k � Δ, assures that
a user can be reidentified with the probability less than or
equal (1/Δ) by a rival controlling only single attacker node ]
in every considered wheel-related social graph. It is re-
markably interesting to leave the following conjecture for the
readers.

Conjecture 1. Each wheel-related social graph and gener-
alizations of wheels are Δ− metric antidimensional and meet
(Δ, 1)− anonymity.
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*is work presents the new cubic trigonometric Bézier-type functions with shape parameter. Basis functions and the curve satisfy all
properties of classical Bézier curve-like partition of unity, symmetric property, linear independent, geometric invariance, and convex hull
property and have been proved.*eC3 andG3 continuity conditions between two curve segments have also been achieved. To check the
applicability of proposed functions, different types of open and closed curves have been constructed. *e effect of shape parameter and
control points has been observed. It is observed that, by decreasing the value of shape parameter, the curve moves toward the control
polygon and vice versa. *e CT-Bézier curve is closer to the cubic Bézier curve for a fixed value of shape parameter. *e proposed CT-
Bézier curve can be used to represent ellipse. Using proposed basis functions, we have constructed the spiral segment which is very useful
to construct fair curves and desirable to design trajectories of mobile robots, highway, and railway routes’ designing.

1. Introduction

Spline curves have been considered a major tool for the
geometric modelling in computer aided geometric design. In
recent past, trigonometric Bézier-like functions and curves
have also attained the attention in computer aided geometric
design, computer aided design, and bio-modelling [1, 2].*e
concept of trigonometric B-spline (TBS) was introduced by
[3], and the scheme of trigonometric B-spline with recur-
rence relation of the arbitrary order has been presented in
[4]. A technique based on cubic Bézier curves (CBC) with
the association of a shape parameter is proposed by [5]. *is
technique is useful for the construction of planer curves and
the shape parameter is used to control the curve. Han et al.
[6] proposed the trigonometric cubic Bézier curves with two
shape parameters. Spiral segments are considered useful to
construct fair curves and desirable to design trajectories of
mobile robots, highway, and railway routes’ designing. *e
scheme proposed in [7] is suitable for the “S″ shaped curves.

Spiral and transition curves have been constructed using
CTB with appropriate conditions in [8]. And, this work has
been extended to cubic Bézier curve and Bézier-like curves
with exponential functions in [9].

A technique, based on quadratic trigonometric Bézier
(QTB) basis functions using one shape parameter, has been
introduced in [10]. Generalized trigonometric Bézier curves
with one shape parameter is introduced in [11]. For corner
cutting algorithm, Bosner and Rogina [12] have proposed
the cycloidal splines. Wen andWang [13] have proposed the
uniform trigonometric B-spline of order nth with shape
parameters. *ese basis functions are very suitable for de-
signing the circular and elliptic type objects. Class of
nonuniform B-spline basis functions with local shape pa-
rameter is presented in [14]. Using these nonuniform basis
functions, one can attain the C2 continuity for single knot
and C3 and C5 continuity can be attained for unique shape
parameters. Han [15] demonstrated the trigonometric cubic
B-spline with exponential shape parameter. Cubic B-spline
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basis functions on uniform knot with one shape parameter
are proposed in [16]. Chouby and Ojha [17] proposed the
trigonometric spline curve. In this scheme, the shape pa-
rameter is a variable which is helpful in adjusting and
controlling the curve and surface locally. Denominator
trigonometric DT-B-spline basis function i proposed in [18]
is similar to trigonometric B-spline functions. *ese func-
tions have denominator shape parameter. Troll [19] intro-
duced the trigonometric cubic Bézier curve with constrained
and two shape parameters. Trigonometric B-spline basis
functions of degree 2 and the quadratic NUAT-B-spline
curve of many shape parameters are proposed in [20, 21].
Cubic trigonometric B-spline curve has been proposed in
[22, 23]. Xie and Li [24] proposed the cubic trigonometric
B-spline basis and curve with real shape parameter called
alpha-B-spline curve. Hang et al. [25] proposed the cubic
B-spline curve with shape parameter and mainly focus on
the quasi-uniform B-spline curve. *e authors used the
proposed the curve for generating the fractal curves. Hu et al.
[26] proposed the generalized developable surface shape
parameters. *e generalized developable H-Bézier surfaces
are designed by using control planes with generalized
H-Bézier basis functions, and their shapes can be adjusted by
altering the values of shape parameters. Kovcs and Vrady
[27] introduced P-Bézier and P-B-spline curve. Cubic
B-spline collocation method has been used in [28] for the
numerical solution of time fractional advection diffusion
equation. Crank–Nicolson with cubic B-spline has been used
in [29] for the solution parabolic partial differential
equation.

In this work, new trigonometric Bézier basis functions
with a shape parameter are constructed. *e proposed
bases are more efficient as the degree of proposed bases is
two but it works with four control points. We have also
constructed the spiral segment using the proposed bases
which is not common in literature, using trigonometric
functions. *e proposed basis functions and the curve
satisfy all basic properties such as partition of unity, linear
independency, symmetric property, convex hull property,
and geometric invariance. Different curve segments are
constructed using proposed basis functions. *e C3 and
G3 continuity conditions are also discussed. *e shape of
the curve can be rearranged by varying values of the shape
parameter. *e proposed CT-Bézier curve behaves like
cubic Bézier curve for a specific value of the shape pa-
rameter. By decreasing the value of the shape parameter,
the curve gets closer to the control polygon. *e ellipse
can be represented exactly using proposed cubic trigo-
nometric Bézier curve. To illustrate the application of
proposed cubic Bézier curves, different open and closed
curves are designed; the constructed curves are very
flexible and easy to handle.

*e present work is organized as follows. In Section 2,
new proposed cubic trigonometric bases functions and their
properties are described. Cubic trigonometric Bézier curves,
their properties, effect of shape parameter, and parametric
and geometric continuity are part of Section 3. In Section 4,
application of the proposed curve is discussed. In Sections 5
and 6, representation of ellipse and approximation of cubic

trigonometric Bézier curve to the ordinary cubic Bézier
curve is presented. In Section 7, curvature and spiral curves
are discussed, and Section 8 is all about conclusions.

2. Cubic Trigonometric Bézier Functions

For a shape parameter mε[0, 1], the proposed trigonometric
Bézier-like functions bi(u), i � 0, . . . , 3, are defined as

b0(u) � 1 − sin
π
2

u  1 − sin
π
2

u  + m sin
π
2

u ,

b1(u) � sin
π
2

u 1 − sin
π
2

u (2 − m),

b2(u) � cos
π
2

u 1 − cos
π
2

u (2 − m),

b3(u) � 1 − cos
π
2

u  1 − cos
π
2

u  + m cos
π
2

u .

(1)

*e graphical behavior of proposed basis functions
defined in equation (1) can be observed in Figure 1. *e
effect of shape parameter m can also be observed in this
figure.

2.1. Properties of the Basis Functions

Theorem 1. Proposed trigonometric basis functions defined
in equation (1) satisfy the following properties:

Positivity: all trigonometric functions are positive, i.e.,
bj(u)≥ 0, for j � 0, . . . , 3
Partition of unity: sum of all trigonometric functions is
one, mathematically, 

3
i�0 bi � 1

Symmetry: proposed functions are symmetric means; b0
becomes b3 and vice versa by replacing u by u − 1;
mathematically, bi(u; m) � b3− i(1 − u; m), for
i � 0, . . . , 3
Linearly independent: the basic functions are linearly
independent, as they cannot be written as a linear
combination of each other for any nonzero constant
p0, . . . p3

Proof. (a) For u ∈ [0, 1] and m ∈ [0, 1], then

0≤ (1 − sin(π/2)u)2 ≤ 1
0≤ (1 − sin(π/2)u)(m sin(π/2)u)≤ 1
0≤ (1 − cos(π/2)u)2 ≤ 1
0≤(1 − cos(π/2)u))(m cos(π/2)u)≤ 1

It is observed that bi ≥ 0, i� 0, 1, 2, 3.
(b) 

3
i�0 bi(u) � (1 − sin(π/2)u)[((1 − sin(π/2)u) + m

sin (π/2)u)] + ((sin (π/2)u)(1 − sin(π/2)u)(2 − m) +(cos
(π /2)u)(1 − cos(π/2)u))(2 − m) +(1 − cos(π /2)u)[((1
− cos(π /2)u) + m cos(π/2)u)] � 1.

*e remaining cases follow obviously. □
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3. Trigonometric Cubic Bézier Curve

For given control points pi (i � 0, 1, 2, 3) in R2 or R3, the
cubic trigonometric Bézier curve with a shape parameter m

is defined as

r(u) � 
3

i�0
bipi, u ∈ [0, 1], m ∈ [0, 1]. (2)

3.1. Properties of CT-Bézier Curve

Theorem 2. 8e CT-Bézier curve defined in equation (2)
satisfies the following properties:

Endpoint interpolation:

Cubic trigonometric curve always passes through the
first and last control point:

r(0) � p0,

r(1) � p3.
(3)

Geometric invariance:

8e shape of a cubic trigonometric Bézier curve is
independent of the choice of coordinates; i.e., equation
(2) satisfies the following two equations:

r u; m; p0 + q, p1 + q, p2 + q, p3 + q(  � r u; m; p0, p1, p2, p3(  + q,

r u; m; p0 + T, p1 + T, p2 + T, p3 + T(  � r u; m; p0, p1, p2, p3(  + T,
t ∈ [0, 1], m ∈ [0, 1], (4)

where q is arbitrary vector in R2 or R3 and T is an
arbitrary d × d matrix, d � 2 or 3.

Convex hull property:

8e cubic curve always lies within the convex hull of
control polygon.

Coordinate system independence:

8e proposed curve is independent of the coordinate
system means by changing the coordinated curve re-
mains unchanged.

3.2. Continuity Conditions between Two Curve Segments.
In this section, we will derive the different parametric and
geometric continuity conditions between two curve segments.

3.2.1. Parametric Continuity. (i) C0 Continuity (p3 � q0). It
is obvious, which means C0 continuity holds.

(ii) C1 Continuity.

r′(1) �
π
2

(2 − m) p3 − p2( ,

r1′(1) �
π
2

(2 − m) q1 − q0( ,

(5)

as p3 � q0 and r′(1) � r1′(0), so C1 continuity holds.
(iii) C2 Continuity.

r″(1) �
π
2

 
2

mp0 +(2 − m)p1 − 2(2 − m)p2 +(2 − 2m)p3 ,

r1″(1) �
π
2

 
2

(2 − 2m)q0 + 2(2 − m)q1 +(2 − m)q2 + mq3 ,

(6)

as p3 � q0, r′(1) � r1′(0), and r″(1) � r1″(0), so C2 conti-
nuity holds.

(iv) C3 Continuity.
r‴(1) � (π/2)3(2 − m)(p2 − p3) and r′

″
1(0) � (π/2)3(2 −

m)(p0 − p1) as r′(1) � r1′(0), r″(1) � r1″(0), and
r‴(1) � r′

″
1(0), so C3 continuity holds.

3.2.2. Geometric Continuity. (i) G0 Continuity (p3 � q0). It is
obvious, which means G0 continuity holds.

(ii) G1 Continuity.

r′(1) �
π
2

(2 − m) p3 − p2( ,

r1′(1) �
π
2

(2 − m) q1 − q0( ,

π
2

(2 − m) q1 − q0(  � λ
π
2

(2 − m) p3 − p2(   , i.e.,

r1′(0) � λr′(1).

(7)

All conditions are satisfied. So, G1 continuity holds.
(iii) G2 Continuity.

u

b i
 (u

)

b0 (u)

b1 (u) b2 (u)

b2 (u)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 1: Cubic trigonometric functions with different shape
parameters.
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r″(1) �
π
2

 
2

mp0 +(2 − m)p1 − 2(2 − m)p2 +(2 − 2m)p3 ,

r1″(1) �
π
2

 
2

(2 − 2m)q0 + 2(2 − m)q1 +(2 − m)q2 + mq3 ,

(8)

p3 � q0, and r1′(0) � λr′(1); also,

π
2

 
2

(2 − 2m)q0 + 2(2 − m)q1 +(2 − m)q2 + mq3  � λ2
π
2

 
2

mp0 +(2 − m)p1 − 2(2 − m)p2 +(2 − 2m)p3 

+ c
π
2

(2 − m) p3 − p2( ,

(9)

i.e., r1″(0) � λ2r″(1) + cr′(1). So, G2 continuity holds. (iv) G3 Continuity. r‴(1) � (π/2)3(2 − m)(p2 − p3), and
r′
″
1(0) � (π/2)3(2 − m)(p0 − p1) as r′(1) � r1′(0) p3 � q0,
and r1″(0) � λ2r″(1) + cr′(1); also,

π
2

 
3
(2 − m) p0 − p1(  � λ3

π
2

 
3
(2 − m) p2 − p3(  + c

2 π
2

 
2

mp0 +(2 − m)p1 − 2(2 − m)p2 +(2 − 2m)p3 

+ β
π
2

 (2 − m) p3 − p2( , i.e.,

r‴1 (0) � λ3r‴(1) + c
2
r″(1) + βr′(1).

(10)

All conditions are satisfied. So, G3 continuity holds.

4. Application of Proposed Curves

In this section, different open and closed curves have been
constructed using proposed functions. *e effect of shape
parameter m and control points will also be observed in
detail as in Figure 2; the open curve has been constructed
using different values of m as m � 0.1 (green dashed dotted),
m � 0.3 (blue dotted), and m � 0.5 (red solid), m � 0.7
(black dotted), and m � 0.9 (magenta dash dotted).

*e effect of control point can be observed in Figures 3
and 4. In Figure 3, we constructed the two segment curve
using seven control points. *e effect of first and last control
point is observed in this figure. *e curve follows the di-
rection of control point as the control point moves toward
outside curve move in the same direction, as shown in
Figure 3(b). Similarly, in Figure 3(d), the curve moves to-
ward inside. Figure 4 represents the effect of second and
second-last control point.

Another way to control the curve is the shape parameter.
In this case, there is no need to change the control points, as
shown in Figure 5. In this figure, the four-segment curve has
been constructed using different values of m such as m � 0.1
(green dashed), m � 0.3 (black dash dotted), m � 0.5 (red
solid), m � 0.7 (blue dash dotted), and m � 0.9 (magenta
dashed). For m � 0, the curve becomes a straight line.

In Figure 6, different values of m are m � 0.1 (magenta
dotted), m � 0.3 (black dash dotted), m � 0.5 (red solid),
m � 0.7 (blue dash dotted), and m � 1 (red dotted). *e

curves become the straight line when m � 0. It is observed
that, by increasing the value of m, the curve moves toward
the control polygon, and by decreasing, it moves away from
the control polygon.

To check the applicability of the proposed scheme,
different closed curves using different shape parameters have
also been designed in this paper, as shown in Figures 7 and 8.
In Figure 7, m � 0.1 (magenta dashed), m � 0.3 (red dash
dotted), m � 0.5 (black solid), m � 0.7 (blue dashed), and
m � 0.8 (magenta dash dotted), and in Figure 8, m � 0.1
(green dashed), m � 0.3 (black dash dotted), m � 0.5 (red
solid), m � 0.7 (blue dash dotted), and m � 0.9 (magenta
dashed) have been used for designing.

5. Representation of Ellipse

Theorem 3. Let pi be control points for ellipse with semiaxes
“k” and “n;” for suitable coordinates, coordinates of ellipse can
be written in the following form:

p0 �
2k

0
 ,

p1 �
2k

n
 ,

p2 �
k

2n
 ,

p3 �
0

2n
 .

(11)
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Figure 2: Open curve using CT-Bézier basis functions.
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Figure 3: Continued.
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Figure 3: Effect of control points on open curve (a–d).
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Figure 4: Continued.
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*en, the corresponding CT-Bézier curve with shape
parameter m � 0 and local domain u ∈ [0, 1] represents an
arc of a`n ellipse with

rx(u) � 2k cos
π
2

u,

ry(u) � 2n sin
π
2

u.

(12)

Proof. If we put the given points in equation (2), coordi-
nates of CT-Bézier curve becomes

x(u) � 2k cos
π
2

u,

y(u) � 2k sin
π
2

u.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

*is gives the intrinsic equation:

x

2k
 

2
+

y

2n
 

2
� 1. (14)

It is equation of ellipse, and Figure 9 represents the
graphical behavior of ellipse. □
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Figure 4: Effect of control points (a–d).
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Figure 5: *e effect of the shape parameter.
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6. Approximability

For curve construction, the control polygon plays a vital role.
In this section, we will develop the relation between the
classic and trigonometric Bézier curve corresponding to
their control polygons by adjusting the control point and
shape parameter.

Theorem 4. For noncollinear control points p0, p1, p2, and
p3, the relation between classical and trigonometric Bézier

curve B(u) � 
3
i�0 pi

3
1 (1 − u)3− iui, u ∈ [0, 1], with con-

trol points pi (i � 0, . . . , 3) are as follows:

r(0) � B(0),

r(1) � B(1),

⎧⎪⎨

⎪⎩

r
1
2

  − P′ � 4(√2 − 1)(√2 − 1 + m) B
1
2

  − P′ ,

(15)
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Figure 6: *e effect of different values of m.
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Figure 7: Closed curve using CT-Bézier.
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where P′ � (1/2)(P1 + P2).

Proof. After some computation, r(0) � P0 � B(0) and
r(1) � P3 � B(1).

Since

B(u) � (1 − u)
3
P0 + 3(1 − u)

2
tP1 + 3(1 − u)u

2
P2 + u

3
P3,

(16)
so

B
1
2

  − P′ �
1
8

P0 − P1 − P2 + P3( 

r
1
2

  − P′ �
1
4

(√2 − 1)(√2 − 1 + m) P0 + P3(  − (√2 − 1)(√2 − 1 + m) P1 + P3( (

�
1
2

(√2 − 1)(√2 − 1 + m) P0 − P1 − P2 + P3( 

� 4(√2 − 1)(√2 − 1 + m) B
1
2

  − P′ .

(17)

Hence, it is proved. □

Corollary 1. 8e CT-Bézier curve approaches to control
polygon more than the Bézier curve for

0≤m≤
(5 − 3√2)

4
. (18)

Corollary 2. CT-Bézier curve will be closer to classical Bézier
curve when m � (5 − 3√2)/4, i.e., r(1/2) � B(1/2).

8e relation between the classic and trigonometric Bézier
curve is given in Figure 10.

7. Curvature and Spiral Curve

A planer curve is defined by the set of points
r(u) � (Y(u), X(u)) for real u. *e tangent vector of r(u) is
given by r′(u) � (Y′(u), X′(u)). If r′(u)≠ 0 � (0, 0), then
the signed curvature of r(t) is defined as [11]

k(t) �
r′(u)
�����→

× r″(u)
�����→

r′(u)
�����→������

������

3 , (19)

where r′(u)
�����→

× f″(u)
������→

� rx
′ry
″ − rx
″ry
′.

Differentiate equation (19):

k′(t) �
E(u)

r′(u)
�����→������

������

5, (20)

where E(u) � r′(u)
�����→

· r″(u)
�����→

  r′(u)
�����→

× r″(u)
�����→

 } − 3 r′(u)
�����→



×f″(u)
������→

}f′(u)
�����→

· f″(u)
������→

.

7.1. Planer Cubic Trigonometric Bézier Spiral Segment.
Given a starting point p0 at origin, i.e., p0 � (0, 0), the other
points are

p1 � p0 + at0,

p2 � p1 + bt0,

p3 � p2 + d cos θt0 + d sin θn0,

(21)

where |p1 − p0| � a, |p2 − p1| � b, and |p3 − p2| � d. Here, θ
is a positive angle from |p2 − p1| to |p3 − p2|. *e tangent
unit vectors and the unit normal vector at the beginning
points of the Bézier curve, see Figure 11, from [4] are

r(u) � 1 − sin
π
2

u  1 − sin
π
2

u  + m sin
π
2

u p0 + sin
π
2

u 1 − sin
π
2

u (2 − m)p1

+ cos
π
2

u 1 − cos
π
2

u (2 − m)p2 + 1 − cos
π
2

u  1 − cos
π
2

u  + m cos
π
2

u p3.

(22)
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Now, equation (22) can be written as

r(t) � (X(t), Y(t)), (23)

where

X(u) � sin
π
2

u 1 − sin
π
2

u (2 − m)a + cos
π
2

u 1 − cos
π
2

u (2 − m)(a + b)

+ 1 − cos
π
2

u  1 − cos
π
2

u  + m cos
π
2

u (a + b + d cos θ),

Y(t) � 1 − cos
π
2

u  1 − cos
π
2

u  + m cos
π
2

u (d sin θ).

(24)

*e more general form for spiral segment is now ob-
tained by taking the derivatives of the curvature of (12). *e
first three derivatives of equations (23) and (24) are

X′(u) �
π
2

  (2 − m)a cos
π
2

u − 2 cos
π
2

u sin
π
2

u  +(2 − m)(a + b) 2 cos
π
2

u sin
π
2

u − sin
π
2

u 

+ sin
π
2

u  2 − m − 2 cos
π
2

u(1 − m) (a + b + d cos θ),

(25)

X″(u) �
π
2

 
2

(2 − m) cos
π
2

u 2b cos
π
2

u − a − b  − sin
π
2

u a + 2b sin
π
2

u  

+ cos
π
2

u  2 − m − 2 cos
π
2

u(1 − m)  + sin2
π
2

u (2 − 2m) (a + b + d cos θ),

(26)

X
‴

(u) �
π
2

 
3

(2 − m) sin
π
2

u a + b − 8b cos
π
2

u  − a cos
π
2

u 

+ 5 sin
π
2

u cos
π
2

u(1 − m) + sin
π
2

u + cos
π
2

u (m − 1) + 1 (a + b + d cos θ),

(27)

Y′(u) �
π
2

  sin
π
2

u  2 − m − 2 cos
π
2

u(1 − m) (d sin θ), (28)

Y″(u) �
π
2

 
2
cos

π
2

u 2 − m − 2 cos
π
2

u(1 − m)  + sin2
π
2

u (2 − 2m) (d sin θ), (29)

Y
‴

(u) �
π
2

 
3
5 sin

π
2

u cos
π
2

u(1 − m) + sin
π
2

u + cos
π
2

u (m − 1) + 1 (d sin θ). (30)

It follows from equations (19), (25), (26), (28), and (29)
that the curvature of equation (23) at u � 0 and u � 1 are,
respectively,

k(0) �
m d sin θ

((2 − m)a)
2, (31)

k(1) �
sin θ[(2 − 2m)d cos θ − ((2 − 2m)(a + b + d cos θ − (2 − m)(a + 2b)))]

((2 − m)d)
2 , (32)
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and by using equation (20), we obtain

k′(0) �
− 3md

2sin2 θ
((2 − m)a)

3 , (33)

k(1) �
− 3 sin2 θ ((2 − 2m)d cos θ)

2
− ((2 − 2m)(a + b + d cos θ − (2 − m)(a + 2b)))

2
 

((2 − m)d)
3 . (34)

From equations (32) and (33), we conclude that the
curve given in equation (22) is not a Bloss curve because it
does not satisfy the conditions. However, if we put θ � 0,
then curvature and its derivative values drop to zero; r(u) is
not a curve, it is a line. *us, a cubic trigonometric Bézier
Bloss curve is nothing but just a straight line.

8. Conclusions

New trigonometric cubic Bézier-like functions have been
proposed in this work. Proposed bases’ functions and curves
satisfy the basic properties and have been proved. Open and
closed curves with different control points and shape pa-
rameters have been constructed using proposed basis to
check its applicability and flexibility. Furthermore, cubic
trigonometric Bézier curve behave like a classical Bézier
curve and have been proved. In the end, trigonometric spiral
curve segment has also been constructed using cubic trig-
onometric functions, which indicate that proposed basis
functions can be used in CAD/CAM modelling especially
road and railway track designing.

8.1. Limitations and Future Work. *e proposed bases’
functions work well for all type of curves such as open and
closed and are a good addition in literature; however,
functions can be improved by increasing the interval of the
free-shape parameter. In our future work, we will use the
proposed work for the construction of craniofacial fracture
and will develop the surface.
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Bézier curve with two shape parameters,” Applied Mathe-
matics Letters, vol. 22, no. 2, pp. 226–231, 2009.

[7] D. J. Walton and D. S. Meek, “A further generalisation of the
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Topological indices are the numbers associated with the graphs of chemical compounds/networks that help us to understand their
properties.-e aim of this paper is to compute topological indices for the hierarchical hypercube networks. We computed Hosoya
polynomials, Harary polynomials, Wiener index, modified Wiener index, hyper-Wiener index, Harary index, generalized Harary
index, and multiplicative Wiener index for hierarchical hypercube networks. Our results can help to understand topology of
hierarchical hypercube networks and are useful to enhance the ability of these networks. Our results can also be used to solve
integral equations.

1. Introduction

-e field of mathematics which deals with the problems of
chemistry mathematically is mathematical chemistry. -e
topology of chemical structures, for example, topological
labels or indices, is investigated in chemical graph theory.
Actually, topological indices are real numbers associated
with graph of chemical compounds and are useful in
quantitative structure-property relationships and quantita-
tive structure-activity relationships. Topological indices
predict some important properties of chemical structures
even without using lab, for example, boiling point, viscosity,
radius of gyration, and so on [1–3] can be obtained from the
indices.

Just like topological indices, polynomials also have
significant applications in chemistry, for example, Hosoya
polynomial [4] plays a vital role in calculation of distance-
based topological indices. Like Hosoya polynomial,
M-polynomial [5] plays the same role in calculation of many
degree-based TIs [6–12].

Wiener defined the first topological index when he was
examining boiling point of paraffins [13]. Consequently,
Wiener set up the skeleton of topological indices [14–18].

-is paper concerns with the topological indices of hi-
erarchical hypercube networks. Interconnection networks
have a pivotal role in the execution of parallel systems. -is
paper studies the interconnection topology that is called the
hierarchical hypercube (HHC) [19].-is topology is suitable
for extensively parallel systems with many number of
processors. An appealing property of this network is the low
number of connections per processor, which enhances the
VLSI design and fabrication of the system [20, 21]. Other
alluring features include symmetry and logarithmic diam-
eter, which imply easy and fast algorithms for communi-
cation [22]. Moreover, the HHC is scalable, that is, it can
embed HHCs of lower dimensions. Malluhi and Bayoumi
[21] introduced the hierarchical hypercube network of order
n (n − HHC). -e structure of an n − HHC consists of three
levels of hierarchy. At the lowest level of hierarchy, there is a
pool of 2n nodes. -ese nodes are grouped into clusters of
2m nodes each, and the nodes in each cluster are inter-
connected to form an m − cube called the Son-cube or the
S-cube. -e set of the S-cubes constitutes the second level of
hierarchy [23].

Being a hierarchical structure, the HHC bears the ad-
vantages usually gained by hierarchy [24]. In general,
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hierarchy is a useful means for modular design. In addition,
hierarchical structures are capable of exploiting the locality
of reference (communication), and they are fault tolerant
[25]. Other attractive properties of the HHC structure are
logarithmic diameter and a topology inherited from, and
closely related to, the hypercube topology. -e former
property implies fast communication, and the latter implies
easy mapping of operations fromHC to HHC.-eHHC can
emulate the hypercube for a large class of problems (divide
and conquer), without a significant increase in processing
time. -e HHC can embed rings and HHCs of lower di-
mension. In addition, the HHC embeds the cube connected
cycle (CCC) [26–28]. As a result, the performance of HHC is
in the worst case equivalent to the performance of the CCC
[29–34]. -e number of vertices and edges in (HHC − 1) is
16a + 16 and 24a + 20, respectively, where a is a natural
number. -e number of vertices and edges in (HHC − 2) is
16a + 16 and 32a + 28, respectively. (HHC − 1) and
(HHC − 2) are shown in Figures 1 and 2, respectively.

In this paper, we computed Hosoya polynomials, Harary
polynomials, Wiener index, modified Wiener index, hyper-
Wiener index, Harary index, generalized Harary index, and
multiplicative Wiener index for hierarchical hypercube
networks.

2. Preliminaries

In this section, we give the definitions and known results that
are used in proving main results of this paper. A graph G is
simple if it has no loop or multiple edges and is connected if
there is a path between every two vertices of it. -e distance
between any two vertices u and v is denoted by d(u, v) and is
the length of the shortest path between u and v. -e diameter
of a graph is themaximum distance between any two vertices
of G. -e notions that are used in this paper but not defined
can be found in [35, 36].

Definition 1 (Hosoya polynomial [16]).
For a simple connected graph G, the Hosoya polynomial

is defined as

H(G, x) �
1
2


y∈V(G)


z∈V(G)

x
d(y,z)

, (1)

where d(y, z) represents the distance between the vertices y

and z.

Definition 2 (Wiener index [37]). -e Wiener index for a
simple connected graph G is denoted by W(G) and is de-
fined as the sum of distances between all pairs of vertices in
G, i.e.,

W(G) �
1
2


y∈V(G)


z∈V(G)

d(y, z). (2)

It can be observed that theWiener index is the first-order
derivative of the Hosoya polynomial at x � 1.

W(G) �
dH(G)

dx
|x�1. (3)

Definition 3 (modified Wiener index). For a simple con-
nected graph G, the modified Wiener index is denoted by
Wλ(G) and is defined as

W(λG) �
1
2


y∈V(G)


z∈V(G)

d(y, z)
λ
, (4)

where λ is any positive integer.

Definition 4 (hyper-Wiener index). For a simple connected
graph G, the hyper-Wiener index is denoted byWW(G) and
is defined as

WW(G) �
1
2


y∈V(G)


z∈V(G)

d(y, z) + d(y, z)
2

 . (5)

-e hyper-Wiener index (HWI) was introduced by
Randić [38] and is used to forecast physical chemistry
characteristics of organic compounds.

Definition 5 (modified hyper-Wiener index). Another
variant of Wiener index is hyper-Wiener index (MHWI)
which is denoted byWWλ(G). For a simple connected graph
G, the modified Wiener index is defined as

WWλ(G) �
1
2


y∈V(G)


z∈V(G)

d(y, z)
λ

+ d(y, z)
2λ

 , (6)

where λ is any positive integer.

Definition 6 (Harary polynomial). -e Harary polynomial
for a simple connected graph G is denoted by h(G) and is
defined as

h(G) � 
y∈V(G)


z∈V(G)

1
d(y, z)

x
d(y,z)

. (7)

Figure 1: -e hierarchical hypercube network (HHC − 1)2×2.

Figure 2: -e hierarchical hypercube network (HHC − 2)2×2.
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Definition 7 (generalized Harary index). -e generalized
Harary index for a simple connected graph G is denoted by
ht(G) and is defined as

ht(G) � 
y∈V(G)


z∈V(G)

1
d(y, z) + t

, (8)

where t � 1, 2, 3, 4, . . ..

For detailed study on Harary polynomial and Harary
index, we refer to the readers [39, 40] and references therein.

Definition 8 (multiplicative Wiener index). -e multipli-
cative Wiener index for a simple connected graph G is
denoted by π(G) and is defined as

π(G) � 

y,z{ }⊆V(G)

d(y, z).
(9)

3. Methodology

With the aid of distance matrix of a graph G, we can evaluate
Hosoya polynomial. To calculate the Hosoya polynomial, we

must calculate the number of pairs of vertices at distance
1, 2, 3, . . . , dia(G), where dia(G) � max d(u, v); u, v ∈{

V(G)}. Mathematical induction will be used for the above
cause.-e usual vision of Hosoya polynomial is given below,
where d represents the maximum distance in graph.

H(G; x) � a0(n)x
0

+ a1(n)x
1

+ a2(n)x
2

+ · · · + ad(n)x
d
.

(10)

4. Distance-Based Polynomials and Indices for
Hierarchical Hypercube Networks

-is section consists of two subsections. In Section 4.1, we
present results about HHC-1, and in Section 4.2, we present
results about HHC-2.

4.1. Distance-Based Polynomials and Indices for Hierarchical
Hypercube Network HHC-1. In -eorem 1, we give Hosoya
polynomial of HHC-1.

Theorem 1. For n≥ 3, the Hosoya polynomial of HHC − 1 is

H(HHC − 1; x) � (20 + 24n)x +(24 + 40n)x
2

+(24 + 64n)x
3

+(4 + 100n)x
4

+(−28 + 124n)x
5

+(−80 + 132n)x
6

+(−152 + 132n)x
7

+ 
8≤m≤2n+2

((8(37 − 8m + 16n)))x
m

+ 108x
2n+3

+ 60x
2n+4

+ 20x
2n+5

.

(11)

Proof. To prove this result, we need to calculate
|am(n)| � number of pair of vertices at distance m, where
m � 1, 2, 3, . . . , 2n + 5. Using Figure 1, the number of pair of
vertices at different distances is computed and is listed in
Tables 1 and 2.

Now, by using Table 1, we have

a1(n)


 � 20 + 24n,

a2(n)


 � 24 + 40n,

a3(n)


 � 24 + 64n,

a4(n)


 � 4 + 100n,

a5(n)


 � −28 + 124n,

a6(n)


 � −80 + 132n,

a7(n)


 � −152 + 132n.

(12)

-e remaining proof is divided into the following two
main cases.

Case 1. When m ≡ 0(mod2) and 8<m≤ 2n + 2.

It can be observed from Table 2 that

a8(3)


 � 168,

a8(4)


 � 296,

a8(5)


 � 424,

a8(6)


 � 552,

a8(7)


 � 680,

a8(8)


 � 808.

(13)

Now, we can deduce that

a8(n)


 � 40 + 128(n − 2). (14)

In a similar fashion, we have

a10(4)


 � 168,

a10(5)


 � 296,

a10(6)


 � 424,

a10(7)


 � 552,

a10(8)


 � 680,

a10(9)


 � 808.

(15)
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It implies that

a10(n)


 � 40 + 128(n − 3). (16)

In a similar fashion, we infer

a12(n)


 � 40 + 128(n − 4),

a14(n)


 � 40 + 128(n − 5),

a16(n)


 � 40 + 128(n − 6),

· · · .

(17)

Now, we have

am(n)


 � 40 + 128 n −
(m − 4)

2
  � 8(37 − 8m + 16n).

(18)

Case 2. When m≡1(mod2) and 9<m≤ 2n + 1.

It can be observed from Table 2 that

a9(4)


 � 232,

a9(5)


 � 360,

a9(6)


 � 488,

a9(7)


 � 616,

a9(8)


 � 744,

a9(9)


 � 872.

(19)

Now, we can deduce that

a9(n)


 � 104 + 128(n − 3). (20)

By means of the same trick, we obtain
a11(5)


 � 232,

a11(6)


 � 360,

a11(7)


 � 488,

a11(8)


 � 616,

a11(9)


 � 744,

a11(10)


 � 872,

(21)

which reveal that
a11(n)


 � 104 + 128(n − 4). (22)

With a similar approach, we get
a13(n)


 � 104 + 128(n − 5),

a15(n)


 � 104 + 128(n − 6),

a17(n)


 � 104 + 128(n − 7),

· · · .

(23)

Hence, we have

am(n)


 � 104 + 128 n −
(m − 3)

2
  am(n)




� 8(37 − 8m + 16n).

(24)

Table 1: Pair of vertices in HHC-1 at different distances.

m
n

3 4 5 6 7 8 . . .
1 92 116 140 164 188 212 . . .
2 144 184 224 264 304 344 . . .
3 216 280 344 408 472 536 . . .
4 304 404 504 604 704 804 . . .
5 344 468 592 716 840 964 . . .
6 316 448 580 712 844 976 . . .
7 244 376 508 640 772 904 . . .

Table 2: Pair of vertices in HHC-1 at different distances.

m
n

3 4 5 6 7 8 . . .
8 168 296 424 552 680 808 . . .
9 — 232 360 488 616 744 . . .
10 — 168 296 424 552 680 . . .
11 — — 232 360 488 616 . . .
12 — — 168 296 424 552 . . .
13 — — — 232 360 488 . . .
14 — — — 168 296 424 . . .
15 — — — — 232 360 . . .
16 — — — — 168 296 . . .
17 — — — — — 232 . . .
18 — — — — — 168 . . .
19 — — — — — — . . .
20 — — — — — — — . .
21 — — — — — — — — .
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One can see that in both cases, we get the same result,
so we can write for 8<m≤ 2n + 1 as

am(n)


 � 8(37 − 8m + 16n), (25)

and the remaining last three distances having fixed
values are

a2n+3(n)


 � 108,

a2n+4(n)


 � 60,

a2n+5(n)


 � 20.

(26)

By what have been mentioned above and using def-
inition of Hosoya polynomial, we arrive at our desired
result. □

In -eorem 2, we give Harary polynomial for HHC-1.

Theorem 2. For n≥ 3, the Harary polynomial of HHC − 1 is

h(HHC − 1; x) � (20 + 24n)x +
(24 + 40n)

2
x
2

+
(24 + 64n)

3
x
3

+
(4 + 100n)

4
x
4

+
(−28 + 124n)

5
x
5

+
(−80 + 132n)

6
x
6

+
(−152 + 132n)

7
x
7

+ 
8≤m≤2n+2

(8(37 − 8m + 16n))

m
x

m
+

108
2n + 3

x
2n+3

+
60

2n + 4
x
2n+4

+
20

2n + 5
x
2n+5

.

(27)

Proof. -e proof of this result is easy to follow by using
information given in -eorem 1 and definition of Harary
polynomial.

In -eorem 3, we give modified Wiener index, modified
hyper-Wiener index, generalized Harary index, and multi-
plicative Wiener index of HHC-1. □

Theorem 3. For HHC − 1, we have

(1) 9e modified Wiener index:

Wλ(HHC − 1) � (20 + 24n)1λ +(24 + 40n)2λ +(24 + 64n)3λ +(4 + 100n)4λ +(−28 + 124n)5λ

+(−80 + 132n)6λ +(−152 + 132n)7λ

+ 
8≤m≤2n+2

(8(37 − 8m + 16n)) m
λ

  +(108)(2n + 3)
λ

+(60)(2n + 4)
λ

+(20)(2n + 5)
λ
.

(28)

(2) 9e modified hyper-Wiener index:

WWλ(HHC − 1) � (20 + 24n) 1λ + 12λ 

+(24 + 40n) 2λ + 22λ  +(24 + 64n) 3λ + 32λ 

+(4 + 100n) 4λ + 42λ  +(−28 + 124n) 5λ + 52λ  +(−80 + 132n) 6λ + 62λ  +(−152 + 132n) 7λ + 72λ 

+ 
8≤m≤2n+2

(8(37 − 8m + 16n)) m
λ

+ m
2λ

  +(108) (2n + 3)
λ

+(2n + 3)
2λ

 

+(60) (2n + 4)
λ

+(2n + 4)
2λ

  +(20) (2n + 5)
λ

+(2n + 5)
2λ

 .

(29)

Journal of Mathematics 5



(3) 9e generalized Harary index:

ht(HHC − 1) �
(20 + 24n)

1 + t
+

(24 + 40n)

2 + t
+

(24 + 64n)

3 + t
+

(4 + 100n)

4 + t
+

(−28 + 124n)

5 + t

+
(−80 + 132n)

6 + t
+

(−152 + 132n)

7 + t

+ 
8≤m≤2n+2

(8(37 − 8m + 16n))
1

m + t
+

108
2n + 3 + t

+
60

2n + 4 + t
+

20
2n + 5 + t

.

(30)

(4) 9e multiplicative Wiener index:

π(HHC − 1) � 1(20+24n)
× 2(24+40n)

× 3(24+64n)
× 4(4+100n)

× 5(− 28+124n)
× 6(− 80+132n)

× 7(− 152+132n)

× 
8<m≤2n+2

m
(8(37− 8m+16n))

×(2n + 3)
108

×(2n + 4)
60

×(2n + 5)
20

.
(31)

From -eorem 3, we get the following results
immediately.

Corollary 1. For HHC − 1, we have

W(HHC − 1) �
256n

3

3
+ 592n

2
+
2696n

3
+ 376. (32)

Proof. -is result can be easily established by taking λ � 1 in
(1) of -eorem 3. □

Corollary 2. For HHC − 1, we have

WW(HHC − 1) �
256n

4

3
+
2624n

3

3
+
10544n

2

3

+
14056n

3
+ 1816.

(33)

Proof. -is result can be easily established by taking λ � 1 in
(2) of -eorem 3. □

Corollary 3. For HHC − 1, we have

H(HHC − 1) �
15599n

100
+

6347931761169771
18014398509481984

+ 
8≤m≤2n+2

(8(37 − 8m + 16n))

m
+

108
2n + 3

+
20

2n + 5
+

30
n + 2

.

(34)
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Proof. -is result can be easily established by taking t � 1 in
(3) of -eorem 3. □

4.2. Distance-Based Polynomials and Indices for Hierarchical
Hypercube Network HHC-2. In -eorem 4, we give Hosoya
polynomial for HHC-2.

Theorem 4. For HHC − 2, the Hosoya polynomial is

H(HHC − 2; x) � (28 + 32n)x +(24 + 48n)x
2

+(36 + 96n)x
3

+(−4 + 124n)x
4

+(−60 + 128n)x
5

+(−120 + 132n)x
6

+ 
m≡0(mod2),8≤m≤2n+2

(8(33 − 8m + 16n))x
m

+ 
m≡1(mod2),7≤m≤2n+1

(−64(m − 2(2 + n)))x
m

+ 68x
2n+3

+ 32x
2n+4

+ 4x
2n+5

.

(35)

Proof. To prove this result, we have to calculate |am(n)|

where m � 1, 2, 3, . . . , 2n + 5. Here |am(n)| is the same as in
-eorem 1. From Figure 2, we can compute the number of
pair of vertices in HHC-2 at different distances, which is
given in Tables 3 and 4.

Now from Table 3, we have

a1(n)


 � 28 + 32n,

a2(n)


 � 24 + 48n,

a3(n)


 � 36 + 96n,

a4(n)


 � −4 + 124n,

a5(n)


 � −60 + 128n,

a6(n)


 � −120 + 132n.

(36)

-e remaining proof is divided into the following two
main cases.

Case 1. When m ≡ 0(mod2) and 8<m≤ 2n + 2.

It can be observed from Table 4 that

a8(3)


 � 136,

a8(4)


 � 264,

a8(5)


 � 392,

a8(6)


 � 520,

a8(7)


 � 648,

a8(8)


 � 776.

(37)

Now, we can deduce that

a8(n)


 � 8 + 128(n − 2). (38)

In a similar fashion, we have

a10(4)


 � 136,

a10(5)


 � 264,

a10(6)


 � 392,

a10(7)


 � 520,

a10(8)


 � 648,

a10(9)


 � 776.

(39)

It implies that

a10(n)


 � 8 + 128(n − 3). (40)

In a similar fashion, we infer

a12(n)


 � 8 + 128(n − 4),

a14(n)


 � 8 + 128(n − 5),

a16(n)


 � 8 + 128(n − 6),

· · · ,

(41)

which yield

am(n)


 � 8 + 128 n −
(m − 4)

2
  � 8(33 − 8m + 16n).

(42)

Case 2. When m≡1(mod2) and 7<m≤ 2n + 1.

It can be observed from Table 4 that

a7(3)


 � 192,

a7(4)


 � 320,

a7(5)


 � 448,

a7(6)


 � 576,

a7(7)


 � 704,

a7(8)


 � 832.

(43)

Now, we can deduce that

Journal of Mathematics 7



a7(n)


 � 64 + 128(n − 2). (44)

So, we obtain

a9(4)


 � 192,

a9(5)


 � 320,

a9(6)


 � 448,

a9(7)


 � 576,

a9(8)


 � 704,

a9(9)


 � 832,

(45)

which reveal that

a9(n)


 � 64 + 128(n − 3). (46)

Also, we get

a13(n)


 � 64 + 128(n − 4),

a15(n)


 � 64 + 128(n − 5),

a17(n)


 � 64 + 128(n − 6),

· · · .

(47)

Hence, we have

am(n)


 � 64 + 128 n −
(m − 3)

2
 

� −64(m − 2(2 + n)),

(48)

and the remaining last three distances having fixed
values are

a2n+3(n)


 � 68,

a2n+4(n)


 � 32,

a2n+5(n)


 � 4.

(49)

By what have been mentioned above and using the
definition of Hosoya polynomial, we arrive at our
desired result. □

In -eorem 5, we give Harary polynomial for HHC-2.

Theorem 5. For HHC − 2, the Harary polynomial is

Table 3: Number of pair of vertices in HHC-2 at different distances.

m
n

2 3 4 5 6 7 . . .
1 92 124 156 188 220 252 . . .
2 120 168 216 264 312 360 . . .
3 228 324 420 516 612 708 . . .
4 244 368 492 616 740 864 . . .
5 196 324 452 580 708 836 . . .
6 144 276 408 540 672 804 . . .

Table 4: Number of pair of vertices of HHC-2 at different distances.

m
n

3 4 5 6 7 8 . . .
7 192 320 448 576 704 832 . . .
8 136 264 392 520 648 776 . . .
9 — 192 320 448 576 704 . . .
10 — 136 264 392 520 648 . . .
11 — — 192 320 448 576 . . .
12 — — 136 264 392 520 . . .
13 — — — 192 320 448 . . .
14 — — — 136 264 392 . . .
15 — — — — 192 320 . . .
16 — — — — 136 264 . . .
17 — — — — — 192 . . .
18 — — — — — 136 . . .
19 — — — — — — . . .
20 — — — — — — — . .
21 — — — — — — — — .

8 Journal of Mathematics



h(HHC − 2; x) � (28 + 32n)x +
(24 + 48n)

2
x
2

+
(36 + 96n)

3
x
3

+
(36 + 96n)

4
x
4

+
(−60 + 128n)

5
x
5

+
(−120 + 132n)

6
x
6

+ 
8≤m≤2n+2

(8(33 − 8m + 16n))

m
x

m

+ 
7≤m≤2n+1

(−64(m − 2(2 + n)))

m
x

m
+

68
2n + 3

x
2n+3

+
32

2n + 4
x
2n+4

+
4

2n + 5
x
2n+5

.

(50)

Proof. -eproof of this theorem is straightforward from the
facts specified in -eorem 4 and by definition of Harary
polynomial. □

In -eorem 6, we give modified Wiener index, modified
hyper-Wiener index, generalized Harary index, and multi-
plicative Wiener index for HHC-2.

Theorem 6. For HHC − 2, we have

(1) 9e modified Wiener index:

Wλ(HHC − 2) � (28 + 32n)1λ +(24 + 48n)2λ +(36 + 96n)3λ +(36 + 96n)4λ +(−60 + 128n)5λ

+(−120 + 132n)6λ + 
m≡0(mod2),8≤m≤2n+2

(8(33 − 8m + 16n)) m
λ

 

+ 
m≡1(mod2),7≤m≤2n+1

(−64(m − 2(2 + n))) m
λ

  +(68)(2n + 3)
λ

+(32)(2n + 4)
λ

+(4)(2n + 5)
λ
.

(51)

(2) 9e modified hyper-Wiener index:

WWλ(HHC − 2) � (28 + 32n) 1λ + 12λ  +(24 + 48n) 2λ + 22λ  +(36 + 96n) 3λ + 32λ 

+(36 + 96n) 4λ + 42λ  +(−60 + 128n) 5λ + 52λ  +(−120 + 132n) 6λ + 62λ 

+ 
m≡0(mod2),8≤m≤2n+2

(8(33 − 8m + 16n)) m
λ

+ m
2λ

 

+ 
m≡1(mod2),7≤m≤2n+1

(−64(m − 2(2 + n))) m
λ

+ m
2λ

 

+(68) (2n + 3)
λ

+(2n + 3)
2λ

  +(32) (2n + 4)
λ

+(2n + 4)
2λ

  + (4) (2n + 5)
λ

+(2n + 5)
2λ

 
.

(52)

(3) 9e generalized Harary index:

ht(HHC − 2) �
(28 + 32n)

1 + t
+

(24 + 48n)

2 + t
+

(36 + 96n)

3 + t
+

(36 + 96n)

4 + t
+

(−60 + 128n)

5 + t
+

(−120 + 132n)

6 + t

+ 
m≡0(mod2),8≤m≤2n+2

(8(33 − 8m + 16n))
1

m + t

+ 
m≡1(mod2),7≤m≤2n+1

(−64(m − 2(2 + n)))
1

m + t
+

108
2n + 3 + t

+
60

2n + 4 + t
+

20
2n + 5 + t

.

(53)
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(4) 9e multiplicative Wiener index:

π(HHC − 2) � 1(28+32n)
× 2(24+48n)

× 3(36+96n)
× 4(36+96n)

× 5(− 60+128n)
× 6(− 120+132n)

× 
m≡0(mod2),8<m≤2n+2

m
(8(33− 8m+16n))

× 
m≡1(mod2),7<m≤2n+1

m
(− 64(m− 2(2+n)))

(2n + 3)
68

×(2n + 4)
32

×(2n + 5)
4
.

(54)

From -eorem 6, we get the following results
immediately.

Corollary 4. For HHC − 2, we have

W(HHC − 2) �
256n

3

3
+ 520n

2
+
2288n

3
+ 316. (55)

Proof. -is result can be easily established by taking λ � 1 in
(1) of -eorem 6. □

Corollary 5. For HHC − 2, we have

WW(HHC − 2) �
256n

4

3
+
2336n

3

3
+
8264n

2

3

+
10480n

3
+ 1320.

(56)

Proof. -is result can be easily established by taking λ � 1 in
(2) of -eorem 6. □

Corollary 6. For HHC − 2, we have

H(HHC − 2) �
798n

5
+ 29 + 

m≡0(mod2),8≤m≤2n+2
(8(33 − 8m + 16n))

1
m

+ 
m≡1(mod2),7≤m≤2n+1

(−64(m − 2(2 + n)))
1
m

+
108

2n + 3
+

20
2n + 5

+
30

n + 2
.

(57)

Proof. -is result can be easily established by taking t � 1 in
(3) of -eorem 6. □

5. Conclusion

Topological indices can be applied in different fields of
science, such as material science, arithmetic, informatics,
biology, and so on. However, the most critical use of to-
pological indices to date is in the nonexact quantitative
structure-property relationships and quantitative structure-
activity relationships. In this paper, we studied hierarchical
hypercube networks. We computed distance-based poly-
nomials and distance-based indices for these networks. In
fact, we computed Hosoya polynomials, Harary polyno-
mials,Wiener index, and different variants ofWiener indices
for the studied networks. Our results can help in under-
standing the topology of hierarchical hypercube networks
and can be used to solve integral equations.
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%e idea of super (a, 0)-edge-antimagic labeling of graphs had been introduced by Enomoto et al. in the late nineties. %is article
addresses super (a, 0)-edge-antimagic labeling of a biparametric family of pancyclic graphs. We also present the aforesaid labeling
on the disjoint union of graphs comprising upon copies of C4 and different trees. Several problems shall also be addressed in
this article.

1. Introduction

A graph Γ(V, E) is a combination of two different sets, one
is the set of vertices V(Γ) and the other is the set of
connections between these vertices, termed as set of edges
E(Γ). A graph Γ can either be connected or comprises upon
connected parts known as graphs’ components. %e non-
empty and simple graphs shall be considered here only all
the way, consisting of V(Γ), the set of vertices, and E(Γ),
the set of edges, having |V(Γ)| � p and |E(Γ)| � q. In this
case, the graph Γ is called a (p, q)-graph. Additionally, [1]
can be cited for the comprehension of the graph theoretic
terminologies.

A labeling is a function from the set of integers onto the
components of a graph under certain constraints. %e la-
beling is said to be total if it covers all components of the
graph. If the labeling covers V(Γ) or E(Γ) only in the do-
main, then it is termed to be the vertex or edge labeling,
respectively. %e two important categories of labeling are
magic and antimagic. %e equal or unequal edge/vertex
weights point towards, respectively, the magic and antimagic
types of labeling.

%roughout the article, the abbreviations given in Table 1
are used.

Definition 1. On a (σ, ς)-graph Γ � (V(Γ), E(Γ)), a bijection
c from V(Γ)∪E(Γ) onto����→ 1, 2, . . . , σ + ς{ } is the notion of
(a, d) − EAMT labeling if we keep the restriction upon the
edge weights c(u) + c(uv) + c(v), ∀ uv ∈ E(G), which
generates a consecutive integer sequence, with a being the
minimum edge weight and d being the common difference.
Γ is notioned as an (a, d) − EAMT graph, with the existence
of such labeling.

Definition 2. If the smallest labels 1, 2, . . . , σ are allocated to
the points (vertices) of the (σ, ς)-graph Γ in an (a, d) −

EAMT labeling, then this labeling is addressed as S − (a, d) −

EAMT labeling. And, Γ, in his scenario, is referred to be an
S − (a, d) − EAMT graph.

%e edge weight (minimum) a (Definitions 1 and 2)
becomes a constant at d � 0, ∀ uv ∈ E(Γ), and is calledmagic
constant or magic sum of Γ.

Definition 3. A pancyclic graph Γ(V, E) is a graph that
contains the cycles of all orders up to |V(Γ)|.

%e notion of magic labeling was highlighted by Sedlacek
in the early sixties [2]. Later, Ringel and Hartsfield capit-
ulated the idea of antimagic labeling with respect to vertex-
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sums of graphs in [3].%e idea of magic valuations of graphs
had been brought by Kotzig and Rosa [4] which was indeed
the graphs’ (a, 0) − EAMT labeling (introduced by Ringel et.
al. in the nineties [5]). Enomoto and Llado introduced the
idea of S − (a, 0) − EAMT labeling of graphs using the term
super edge-magic labeling in [6]. In the early 21st century,
Bertault and Simanjuntak brought out the graphs’ (a, d) −

EAMT labeling [7]. %e following notable and handy
conjectures are included in the vicinity of graphs’ (a, 0) −

EAMT labeling.

Conjecture 1 (see [4]). Every tree admits an (a, 0) − EAMT
labeling.

Conjecture 2 (see [6]). Every tree admits an S − (a, 0) −

EAMT labeling.

In the support of Conjecture 2, certain classes of trees have
been sorted out by scientists. For trees having maximum of
seventeen vertices, in [8], this conjecture has been verified.
For instance, the S − (a, 0) − EAMT labeling on a class of
trees termed as w-trees can be observed in [9]. Similarly, S −

(a, 0) − EAMT labeling on various classes consisting of
subdivisions of trees can be seen in [10, 11]. Some derivations
on vertex-antimagicness of regular graphs have been dis-
cussed in [12]. In [13], the same labeling for the union of
unicyclic graphs and isolated vertices has been provided.
Enomoto et al. proved [6] that if a (p, q)-graph Γ (simple) is
S − (a, 0) − EAMT, it implies q≤ 2p − 3. In addition, they
derived that Km,n is S − (a, 0) − EAMT only if either m or n is
equal to 1. It is derived in [14] that the combination of graphs
in the form of union of K1,θ and K1,η is S − (a, 0) − EAMT if
θ � χ(η + 1) or η � χ(θ + 1). For only odd values of n, Cn is
concreted to be S − (a, 0) − EAMT [6]. %e cycle of order 3
and cycle of order n≥ 6 are proven to be S − (a, 0) − EAMT
for even values of n. %e generalized prism Dξ is proven to be
S − (a, 0) − EAMT for all odd values of ξ in [15]. In [16, 17],
S − (a, 0) − EAMT labeling of maximum symmetric gener-
alization of prism and special networks with magic constant
3p has been exhibited, respectively. An extremely important
result on S − (a, 0) − EAMT graphs is as follows.

Lemma 1 (see [15]). A (p, q)-graph G is S − (a, 0) − EAMT
if and only if there exists a bijective function λ: V(G)

⟶ 1, 2, . . . , p  such that the set S � λ(u) + λ(u)|{

uv ∈ E(G)} consists of q consecutive integers. In such a case, λ

extends to an S − (a, 0) − EAMT labeling of G with magic
constant t � p + q + s, where s � min(S) and
S � t − (p + 1), t − (p + 2), . . . , t − (p+ q)}.

In Lemma 1, the sum ζ(u) + ζ(v) is defined as edge sum
for each edge uv ∈ E(Γ). %is lemma shall be used frequently
in our findings, while it keeps this enough to allot the labels
to merely the vertices of the network to capacitate the graph
to be S − (a, 0) − EAMT, where the edge-sums (consecutive)
belong to N. %e given result is extremely relevant with
regard to S − (a, 0) − EAMT.

Lemma 2 (see [18]). A simple graph Γ possesses an
S − (a, 0) − EAMT labeling ⇔ Γ possesses an S − (a − |E

(G)| + 1, 2) − EAMT labeling.

2. Main Results

In this section, we shall address our main findings. In Section
2.1, we define an S − (a, 0) − EAMT labeling on a pancyclic
family of graphs, namely, Usmanian pancyclic graph UPt

n. In
Section 2.2, we design S − (a, 0) − EAMT labeling on various
disjoint unions of graphs comprising upon copies of C4 and
various trees/forests. %roughout, i ∈ [a, b] represents
a≤ i≤ b, for i, a, b ∈ N, whereas Nodd and Neven are the rep-
resentations of odd and even natural numbers, respectively.

2.1. Usmanian Pancyclic Graph UPt
n. In computer science,

there is a similar importance of the networks having no
cycles and networks having a range of cycles. %e impor-
tance is similar for a network containing cycles of all lengths
from one to the number of systems connected within. In this
situation, the role of programmers becomes prominent to
avoid hackers halting of data as there is a closed path be-
tween any two arbitrary computers corresponding to such
networks. %e first kind of network is termed as a tree
(connected and acyclic) and later is known as pancyclic
network (connected and containing every order’s cycle).
%is section deals with a family of pancyclic graphs denoted
by UPt

n, which is biparametric, and reveals that such
complex structures are S − (a, 0) − EAMT. We shall first
introduce this structure as Definition 4.

Definition 4. We are defining the Usmanian pancyclic
graph, denoted by UPt

n, being a graph with |V(UPt
n)| � tn

and |E(UPt
n)| � 2tn − 3, having the construction as follows

(n≥ 3 being the order of the cycle Cn and t≥ 2 being the
number of cycles):

(1) For even n:
For n ≡ 0 (mod 4):

(i) For n � 4,

V UPt
4  � yi, zi: i ∈ [1, t] ∪ xi: i ∈ [1, 2t] ,

E UPt
4  � zizi+1, yiyi+1: i ∈ [1, t − 1] ∪ yix2i, zix2i: i ∈ [1, t] ∪ zix2i− 1, yix2i− 1: i ∈ [1, t] ∪ xixi+1: i ∈ [1, 2t − 1] .

(1)

Table 1: Abbreviations being used onwards.

Terminology Abbreviation
(a, d)-edge-antimagic total (a, d) − EAMT
Super (a, d)-edge-antimagic total S − (a, d) − EAMT
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(ii) For n � 8,

V UPt
8  � xi, vi: i ∈ [1, t] ∪ wi, yi, zi: i ∈ [1, 2t] 

E UPt
8  � wiwi+1, yiyi+1, zizi+1: i ∈ [2, 2t − 2], i ∈ Neven

 ∪ ziwi, yizi: i ∈ [1, 2t] 

∪ xiy2i− 1, xiy2i, viw2i− 1, viw2i: i ∈ [1, t] 

∪ yiwi: i ∈ [1, 2t] ∪ xivi: i ∈ [1, t] ∪ ziwi+1, yizi+1: i ∈ [1, 2t − 1], i ∈ Nodd
 .

(2)

(iii) For n � 12,

V UP
t
12  � x

j
i : i ∈ [1, 2t], 2≤ j≤ 6 ∪ x

j
i : i ∈ [1, t], j � 1, 7 ,

E UPt
12  � x

j
i x

j
i+1: i ∈ [2, 2(t − 1)], i ∈ Neven

, 3≤ j≤ 5 ∪ x
j
i x

j+1
i : i ∈ [1, 2t], 2≤ j≤ 5 

∪ x
1
i x

2
2i− 1, x

1
i x

2
2i, x

7
i x

6
2i− 1, x

7
i x

6
2i: i ∈ [1, t] ∪ x

1
i x

7
i : i ∈ [1, t] ∪ x

j
i x

8− j
i : i ∈ [1, 2t], 2≤ j≤ 6 

∪ x
4
i x

7
i : i ∈ [1, 2t − 1], i ∈ Nodd

 ∪ x
2
i x

5
i+1, x

3
i x

6
i+1: i ∈ [1, 2t − 1], i ∈ Nodd

 ∪ x
1
i x

4
2i: i ∈ [1, t] .

(3)

(iv) For n≥ 16,

V UPt
n  � x

j

i : i ∈ [1, 2t], 2≤ j≤
n

2
 ∪ x

j

i : i ∈ [1, t], j � 1,
n + 2
2

 ,

E UPt
n  � x

j
i x

j
i+1: i ∈ [2, 2(t − 1)], i ∈ Neven

,
n

4
≤ j≤

n + 8
4

 ∪ x
j
i x

j+1
i : i ∈ [1, 2t], 2≤ j≤

n − 2
2

 

∪ x
1
i x

2
2i− 1, x

1
i x

2
2i, x

(n+2)/2
i x

n/2
2i− 1, x

(n+2)/2
i x

n/2
2i : i ∈ [1, t] ∪ x

1
i x

(n+2)/2
i : i ∈ [1, t] ∪ x

j
i x

(n/2)+2− j
i : i ∈ [1, 2t], 2≤ j≤

n

2
 

∪ x
j
i x

(n/2)+5− j
i : i ∈ [1, 2t − 1], i ∈ Nodd

, 4≤ j≤
n + 4
4

 ∪ x
2
i x

(n− 2)/2
i+1 , x

3
i x

n/2
i+1: i ∈ [1, 2t − 1], i ∈ Nodd

 

∪ x
1
i x

n− 4/2
2i : i ∈ [1, t] ∪ x

j

i x
((n− 2)/2)− j

i : i ∈ [2, 2t], i ∈ Neven
, 2≤ j≤

n − 8
4

 .

(4)

For n ≡ 2 (mod4): (i) For n � 6,

V UPt
6  � xi, yi, zi: i ∈ [1, 2t] ,

E UPt
6  � zizi+1, xixi+1: i ∈ [1, 2t − 1] ∪ yizi, xiyi: i ∈ [1, 2t] ∪ yiyi+1: i ∈ [1, 2t − 1] ∪ xizi: i ∈ [1, 2t] .

(5)
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(ii) For n � 10,

V UPt
10  � x

j
i : i ∈ [1, 2t], j ∈ [1, 5] 

E UPt
10  � x

j

i x
j+1
i : i ∈ [1, 2t], 1≤ j≤ 4 ∪ x

1
i x

1
i+1, x

5
i x

5
i+1: i ∈ [1, 2t − 1], i ∈ Nodd

 

∪ x
j
i x

j
i+1: i ∈ [2, 2(t − 1)], i ∈ Neven

, 2≤ j≤ 4 

∪ x
1
i x

5
i , x

2
i x

4
i : i ∈ [1, 2t] ∪ x

j
i x

2+j
i+1 : i ∈ [1, 2t − 1], i ∈ Nodd

, 1≤ j≤ 3 .

(6)

(iii) For n≥ 14,

V UPt
n  � x

j

i : i ∈ [1, 2t], 1≤ j≤
n

2
 ,

E UPt
n  � x

j
i x

j+1
i : i ∈ [1, 2t], 1≤ j≤

n − 2
2

 ∪ x
1
i x

1
i+1, x

n/2
i x

n/2
i+1: i ∈ [1, 2t − 1], i ∈ Nodd

 

∪ x
j

i x
j

i+1: i ∈ [2, 2(t − 1)], i ∈ Neven
,
n − 2
4
≤ j≤

n + 6
4

 ∪ x
j

i x
(n+2/2)− j

i : i ∈ [1, 2t], 1≤ j≤
n − 2
4

 

∪ x
j
i x

(n− 6/2)+j
i+1 : i ∈ [1, 2t − 1], i ∈ Nodd

, 1≤ j≤ 3 ∪ x
j
i x

(n+8/2)− j
i : i ∈ [1, 2t − 1], i ∈ Nodd

, 4≤ j≤
n + 2
4

 

∪ x
j
i x

(n− 4/2)− j
i : i ∈ [2, 2t], i ∈ Neven

, 1≤ j≤
n − 10

4
 .

(7)

(2) For odd n:
For n ≡ 1 (mod4):

(i) For n � 5,

V UPt
5  � zi, yi: i ∈ [1, 2t] ∪ xi: i ∈ [1, t] ,

E UPt
5  � zizi+1: i ∈ [1, 2t − 1], i ∈ Nodd

 ∪ yizi: i ∈ [1, 2t] ∪ xiy2i− 1, xiy2i: i ∈ [1, t] 

∪ yiyi+1: i ∈ [2, 2t − 2], i ∈ Neven
 ∪ xiz2i+1: i ∈ [1, t − 1] ∪ xiz2i− 2: i ∈ [2, t] 

∪ xiz2i− 1, xiz2i: i ∈ [1, t] .

(8)

(ii) For n � 9,

V UP
t
9  � wi, vi, yi, zi: i ∈ [1, 2t] ∪ xi: i ∈ [1, t] ,

E UPt
9  � vivi+1: i ∈ [1, 2t − 1], i ∈ Nodd

 ∪ yizi, ziwi, wivi: i ∈ [1, 2t] ∪ xiy2i− 1, xiy2i: i ∈ [1, t] 

∪ yiwi+1, zizi+1, wiyi+1: i ∈ [2, 2t − 2], i ∈ Neven
 ∪ yiwi, yivi: i ∈ [1, 2t] ∪ xiv2i− 1, xiv2i: i ∈ [1, t] .

(9)
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(iii) For n≥ 13,

V UPt
n  � x

j

i : i ∈ [1, 2t], j ∈ 2,
n + 1
2

  ∪ x
1
i : i ∈ [1, t] ,

E UPt
n  � x

j
i x

j+1
i : i ∈ [1, 2t], 2≤ j≤

n − 1
2

 ∪ x
1
i x

2
2i− 1, x

1
i x

2
2i: i ∈ [1, t] 

∪ x
n+1/2
i x

n+1/2
i+1 : 1≤ i≤ 2t − 1, i ∈ Nodd

 

∪ x
(n− 1)/4
i x

(n+7)/4
i+1 , x

(n+7)/4
i x

(n− 1)/4
i+1 , x

(n+3)/4
i x

(n+3)/4
i+1 : 2≤ i≤ 2(t − 1), i ∈ Neven

 

∪ x
j
i x

((n+3)/2)− j
i : i ∈ [1, 2t], 2≤ j≤

n − 1
4

 

∪ x
j
i x

(n+5/2)− j
i : i ∈ [1, 2t], 2≤ j≤

n − 1
4

 ∪ x
1
i x

(n+1)/2
2i− 1 , x

1
i x

(n+1)/2
2i : i ∈ [1, t] .

(10)

For n ≡ 3(mod4):

(i) For n � 3:

Define UPt
3 � Pt × C3 as follows:

V UPt
3  � zi, xi, yi: i ∈ [1, t] ,

E UPt
3  � zizi+1, xixi+1, yiyi+1: i ∈ [1, t − 1] ∪ xizi, xiyi, yizi: i ∈ [1, t] .

(11)

(ii) For n � 7,

V UPt
7  � zi, wi, yi: i ∈ [1, 2t] ∪ xi: i ∈ [1, t] ,

E UPt
7  � wiwi+1: i ∈ [1, 2t − 1], i ∈ Nodd

 ∪ ziwi, yizi: i ∈ [1, 2t] ∪ xiy2i− 1, xiy2i: i ∈ [1, t] 

∪ zizi+1, yiwi+1, wiyi+1: i ∈ [2, 2t − 2], i ∈ Neven
 ∪ yiwi: i ∈ [1, 2t] ∪ xiw2i− 1, xiw2i: i ∈ [1, 2t] .

(12)

(iii) For n≥ 11,

V UPt
n  � x

j
i : i ∈ [1, 2t], 2≤ j≤

n + 1
2

 ∪ x
1
i : i ∈ [1, t] ,

E UPt
n  � x

j
i x

j+1
i : i ∈ [1, 2t], 2≤ j≤

n − 1
2

 ∪ x
1
i x

2
2i− 1, x

1
i x

2
2i: i ∈ [1, t] ∪ x

(n+1)/2
i x

(n+1)/2
i+1 : i ∈ [1, 2t − 1], i ∈ Nodd

 

∪ x
(n+1)/4
i x

(n+9)/4
i+1 , x

(n+5)/4
i x

(n+5)/4
i+1 , x

(n+9)/4
i x

(n+1)/4
i+1 : i ∈ [2, 2(t − 1)], i ∈ Neven

 

∪ x
j

i x
((n+5)/2)− j

i : i ∈ [1, 2t], 2≤ j≤
n + 1
4

 ∪ x
j

i x
((n+3)/2)− j

i : i ∈ [1, 2t], 2≤ j≤
n − 3
4

 

∪ x
1
i x

(n+1)/2
2i− 1 , x

1
i x

(n+1)/2
2i : i ∈ [1, t] .

(13)

Theorem 1. :e pancyclic graph UPt
n is S − (a, 0) − EAMT

admitting a � 3tn, ∀ t and n ≡ 0(mod2).
Proof. We discuss here two cases as per Definition 4.

For n ≡ 0 (mod4):
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(i) For n � 4:
We define a labeling ψ1′: V(UPt

4)⟶ 1, 2, . . . , 4t{ }

as follows:

ψ1′ xi(  �
2i − 1: i ∈ [1, 2t − 1], i ∈ Nodd

;

2i: 2≤ i≤ 2t, i ∈ Neven
;

⎧⎪⎨

⎪⎩

ψ1′ yi(  � 4i − 2: i ∈ [1, t],

ψ1′ zi(  � 4i − 1: i ∈ [1, t].

(14)

%e edge-sums’ set generated as per the labeling
design constitutes a consecutive sequence of
positive integers 3, 4, . . . , 8t − 1. As per Lemma 1,
ψ1′ is extendable to an S − (a, 0) − EAMT labeling
of UPt

4 with magic constant a � 12t.
(ii) For n � 8:

We define a labeling ψ1″: V(UPt
8)⟶ 1, 2, . . . ,{

8t} as follows:

ψ1″ xi(  � 8i − 3: 1≤ i≤ t,

ψ1″ yi(  � 4i − 1: 1≤ i≤ 2t,

ψ1″ zi(  �
4i − 3: i ∈ [1, 2t − 1], i ∈ Nodd

;

4i: 2≤ i≤ 2t, i ∈ Neven
;

⎧⎨

⎩

ψ1″ wi(  � 4i − 2: i ∈ [1, 2t],

ψ1″ vi(  � 8i − 4: i ∈ [1, t].

(15)

%e edge-sums’ set generated as per the labeling
design constitutes a consecutive sequence of
positive integers 3, 4, . . . , 16t − 1. In the light of
Lemma 1, ψ′′1 constitutes an S − (a, 0) − EAMT
labeling of UPt

8 admitting a � 24t.
(iii) For n≥ 12:

We define a labeling ψ1: V(UPt
n)⟶ 1, 2, . . . , tn{ }

as follows:

ψ1 x
j
i  �

2ni − n + 2
2

: i ∈ [1, t] and j � 1;

ni − 4j + 6
2

: i ∈ [1, 2t − 1], j ∈ 2,
n + 4
4

 , i ∈ Nodd
;

ni + 4j − n − 2
2

: i ∈ [2, 2t], j ∈ 2,
n

4
 , i ∈ Neven

;

ni + 4j − n − 4
2

: i ∈ [2, 2t], j �
n + 4
4

, i ∈ Neven
;

ni + 4j − 2n − 4
2

: i ∈ [1, 2t − 1], j ∈
n + 8
4

,
n

2
 , i ∈ Nodd

;

ni − 4j + n + 4
2

: i ∈ [2, 2t], j ∈
n + 8
4

,
n

2
 , i ∈ Neven

;

2ni + 4j − 3n − 4
2

: i ∈ [1, t] and j �
n + 2
2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

With the abovementioned scheme, the edge-sums being
generated form a consecutive integer sequence set
Δ � 3, 4, . . . , 2tn − 1{ }. ψ1 is extendible to
S − (a, 0) − EAMT labeling of UPt

n, n≥ 12, according to
Lemma 1, with a � 3tn.

For n ≡ 2 (mod4):

(i) For n � 6:
%e labeling ψ2′: V(UPt

6)⟶ 1, 2, . . . , 6t{ } is being
defined as follows:

ψ2′ xi(  �
3i: 1≤ i≤ 2t − 1, i ∈ Nodd

;

3i − 1: 2≤ i≤ 2t, i ∈ Neven
;

⎧⎪⎨

⎪⎩

ψ2′ yi(  �
3i − 2: 1≤ i≤ 2t − 1, i ∈ Nodd

;

3i: 2≤ i≤ 2t, i ∈ Neven
;

⎧⎪⎨

⎪⎩

ψ2′ zi(  �
3i − 1: 1≤ i≤ 2t − 1, i ∈ Nodd

;

3i − 2: 2≤ i≤ 2t, i ∈ Neven
.

⎧⎪⎨

⎪⎩

(17)
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%e edge-sums’ set generated as per the labeling
design constitutes a consecutive natural numbers’
sequence 3, 4, . . . , 12t − 1. As per Lemma 1, ψ2′ is
extendable towards S − (a, 0) − EAMT labeling of
UPt

6 with a � 18t.

(ii) For n≥ 10:
Define a labeling ψ2: V(UPt

n)⟶ 1, 2, . . . , tn{ } as
the following function:

ψ2 x
j
i  �

ni − 4j + 4
2

: i ∈ [1, 2t − 1], j ∈ 1,
n + 2
4

 , i ∈ Nodd
;

ni + 4j − n

2
: i ∈ [2, 2t], j ∈ 1,

n − 2
4

 , i ∈ Neven
;

ni + 4j − 2n − 2
2

: i ∈ [1, 2t − 1], j ∈
n + 6
4

,
n

2
 , i ∈ Nodd

;

ni − 4j + n + 2
2

: i ∈ [2, 2t], j ∈
n + 2
4

,
n

2
 , i ∈ Neven

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

With the abovementioned scheme, the edge-sums being
generated form a consecutive integer sequence set
3, 4, . . . , 2tn − 1{ }. ψ2 constitutes S − (a, 0) − EAMT labeling
of UPt

n, n≥ 10, according to Lemma 1, admitting
a � 3tn. □

Theorem 2. :e pancyclic graph UPt
n is S − (a, 0) − EAMT

with magic sum a � 3tn, for all t and n ≡ 1(mod2).

Proof. We discuss here two cases.

For n ≡ 1(mod4):

(i) For n � 5:
Define a labeling ψ3′: V(UPt

5)⟶ 1, 2, . . . , 5t{ } as
follows:

ψ3′ xi(  � 5i − 2: i ∈ [1, t],

ψ3′ yi(  �

1
2

(5i − 3): i ∈ [1, 2t − 1], i ∈ Nodd
;

1
2

(5i): i ∈ [2, 2t], i ∈ Neven
;

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ3′ zi(  �

1
2

(5i − 1): i ∈ [1, 2t − 1], i ∈ Nodd
;

1
2

(5i − 2): i ∈ [2, 2t], i ∈ Neven
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

%e edge-sums’ set generated as per the labeling
design constitutes a consecutive natural numbers’
sequence 3, 4, . . . , 10t − 1. ψ3′ is extendable to S −

(a, 0) − EAMT labeling of UPt
5 having a � 15t (as

per Lemma 1).
(ii) For n � 9:

We construct a labeling ψ3′: V(UPt
9)⟶

1, 2, . . . , 9t{ } as follows:

ψ3″ xi(  � 9i − 4: 1≤ i≤ t,

ψ3″ yi(  �

1
2

(9i − 3): i ∈ [1, 2t − 1], i ∈ Nodd
;

1
2

(9i − 4): i ∈ [2, 2t], i ∈ Neven
;

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ3′ zi(  �

1
2

(9i − 7): i ∈ [1, 2t − 1], i ∈ Nodd
;

1
2

(9i): i ∈ [2, 2t], i ∈ Neven
;

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ3″ wi(  �

1
2

(9i − 5): i ∈ [1, 2t − 1], i ∈ Nodd
;

1
2

(9i − 2): i ∈ [2, 2t], i ∈ Neven
;

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ3″ vi(  �

1
2

(9i − 1): i ∈ [1, 2t − 1], i ∈ Nodd
;

1
2

(9i − 6): i ∈ [2, 2t], i ∈ Neven
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

%e edge-sums’ set generated as per the labeling
design constitutes a natural numbers’ sequence
3, 4, . . . , 18t − 1. ψ′′3 is extendable to S − (a, 0) −

EAMT labeling of UPt
9, by Lemma 1, with the

admittance of a � 27t.
(iii) For n≥ 13:

We are going to construct a labeling
ψ3: V(UPt

n)⟶ 1, 2, . . . , tn{ } as follows:
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ψ3 x
j
i  �

2ni − n + 1
2

: i ∈ [1, t], j � 1,

ni − 4j + 5
2

: i ∈ [1, 2t − 1], j ∈ 2,
n + 3
4

 , i ∈ Nodd
,

ni + 4j − n − 3
2

: i ∈ [2, 2t], j ∈ 2,
n + 3
4

 , i ∈ Neven
,

ni + 4j − 2n − 3
2

: i ∈ [1, 2t − 1], j ∈
n + 7
4

,
n + 1
2

 , i ∈ Nodd
,

ni − 4j + n + 5
2

: i ∈ [2, 2t], j ∈
n + 7
4

,
n + 1
2

 , i ∈ Neven
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

With the abovementioned scheme, the edge-sums
being generated forms a consecutive integer se-
quence set 3, 4, . . . , 2tn − 1{ }. Once again, ψ3 ex-
tends to a S − (a, 0) − EAMT labeling of
UPt

n, n≥ 13 having a � 3tn by Lemma 1.

For n ≡ 3 (mod4):

(i) For n � 3:
We define a labeling ψ4′: V(UPt

3)⟶ 1, 2, . . . , 3t{ }

as follows:

ψ4′ xi(  �
3i − 2: 1≤ i≤ t − 1, i ∈ Nodd

,

3i − 1: 2≤ i≤ t, i ∈ Neven
,

⎧⎨

⎩

ψ4′ yi(  �
3i: 1≤ i≤ t − 1, i ∈ Nodd

,

3i − 2: 2≤ i≤ t, i ∈ Neven
,

⎧⎨

⎩

ψ4′ zi(  �
3i − 1: 1≤ i≤ t − 1, i ∈ Nodd

,

3i: 2≤ i≤ t, i ∈ Neven
.

⎧⎨

⎩

(22)

%e edge-sums’ set generated as per the labeling
design constitutes a consecutive sequence of
positive integers 3, 4, . . . , 6t − 1. Now, ψ4′ is ex-
tendable to S − (a, 0) − EAMT labeling of UPt

3 �

Pt × C3 [15] with a � 9t according to Lemma 1.
(ii) For n � 7:

A labeling ψ4″: V(UPt
7)⟶ 1, 2, . . . , 7t{ } is being

defined as follows:

ψ4″ xi(  � 7i − 3: 1≤ i≤ t,

ψ4″ yi(  �

1
2

(7i − 3): i ∈ [1, 2t − 1], i ∈ Nodd
,

1
2

(7i − 2): i ∈ [2, 2t], i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ4″ zi(  �

1
2

(7i − 5): i ∈ [1, 2t − 1], i ∈ Nodd
,

1
2

(7i): i ∈ [2, 2t], i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ4″ wi(  �

1
2

(7i − 1): i ∈ [1, 2t − 1], i ∈ Nodd
,

1
2

(7i − 4): i ∈ [2, 2t], i ∈ Neven
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

%e edge-sums’ set generated as per the labeling
design constitutes a consecutive natural numbers’
sequence 3, 4, . . . , 14t − 1. Now, ψ′′4 is extendable to
S − (a, 0) − EAMT labeling of UPt

7, according to
Lemma 1 having a � 21t.

(iii) For n≥ 11:
%e labeling ψ4: V(UPt

n)⟶ 1, 2, . . . , tn{ } is
constructed as follows:

ψ4 x
j

i  �

2ni − n + 1
2

: i ∈ [1, t], j � 1,

ni − 4j + 5
2

: i ∈ [1, 2t − 1], j ∈ 2,
n + 1
4

 , i ∈ Nodd
,

ni + 4j − n − 3
2

: i ∈ [2, 2t], j ∈ 2,
n + 1
4

 , i ∈ Neven
,

ni + 4j − 2n − 3
2

: i ∈ [1, 2t − 1], j ∈
n + 5
4

,
n + 1
2

 , i ∈ Nodd
,

ni − 4j + n + 5
2

: i ∈ [2, 2t], j ∈
n + 5
4

,
n + 1
2

 , i ∈ Neven
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

8 Journal of Mathematics



With the abovementioned scheme, the edge-sums
being generated form a consecutive integer se-
quence set 3, 4, . . . , 2tn − 1{ }. ψ4 is extendable to
an S − (a, 0) − EAMT labeling of UPt

n, n≥ 11,
under the light of Lemma 1, admitting a � 3tn.

A direct outcome of Lemma 2 is as follows. □

Theorem 3. :e pancyclic graph UPt
n is

S − (tn + 4, 2) − EAMT, for all t and n.

2.2. S − (a, 0) − EAMT Labeling of Disjoint Union of C4 with
Trees. It is a well-known fact that the graph C4 is not S −

(a, 0) − EAMT [6], and work is still in progress in order to
determine if its disjoint copies are S − (a, 0) − EAMT. In this
section, we shall provide an S − (a, 0) − EAMT labeling of
disjoint copies of C4 with various trees in the form of several
results. %is will give a support to researchers to carry out
their work to determine the aforesaid labeling of the disjoint
copies of C4. %roughout this section, the union will rep-
resent a disjoint union of graphs only.

Theorem 4. For odd m, the graph mC4 ∪ 2K1,m ∪ ((7m −

3)/2)K1 acquires an S − (a, 0) − EAMT labeling admitting
a � 21m + 2.

Proof. Consider a graph mC4 ∪ 2K1,m ∪ ((7m − 3)/2)K1
with vertex and edge sets:

V Λ1(  � x
i
1, x

i
2: i ∈ [1, m] ∪ yi, zi: i ∈ [1, m] 

∪ ki: 1≤ i≤ 2m ∪ li: 1≤ i≤
7m − 3

2
 ∪ c1, c2 ,

E Λ1(  � yix
i
1, yix

i
2: 1≤ i≤m ∪ zix

i
1, zix

i
2: 1≤ i≤m 

∪ c1ki: 1≤ i≤m ∪ c2ki: m + 1≤ i≤ 2m .

(25)

If p � |V(Λ1)| � (19m + 1)/2 and q � |E(Λ1)| � 6m, we
sketch a labeling f1: V(Λ1)⟶ 1, 2, . . . , (19m + 1)/2{ } as
follows:

f1 x
i
1  �

1
2

(7m + i), 1≤ i≤m; i ≡ 1, (mod 2),

1
2

(6m + i), 2≤ i≤m − 1; i ≡ 0, (mod 2),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1 x
i
2  � 5m − (i − 1): 1≤ i≤m,

f1 yi(  �

i + 4m + 1
2

, 1≤ i≤m; i ≡ 1, (mod 2),

i + 5m + 1
2

, 2≤ i≤m − 1; i ≡ 0, (mod 2),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1 zi(  �

1
2

(i + 10m + 1), i ∈ [1, m]; i ∈ Nodd
,

1
2

(i + 11m + 1), i ∈ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 ki(  � i: i ∈ [1, 2m],

f1 c1(  �
15m + 1

2
,

f1 c2(  �
19m + 1

2
,

f1 li(  �

6m + i, 1≤ i≤
3m − 1

2
,

i + 6m + 1, i ∈
3m + 1

2
,
7m − 3

2
 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

%e edge-sums’ sets constituted by the abovementioned
design generates a consecutive sequence of integer
(11m + 3/2), (11m + 5/2), . . . , 23m + 1/2. Under the
shadow of Lemma 1, f1 accredits an S − (a, 0) − EAMT
labeling of Λ1 having a � 21m + 2. □

Theorem 5. For odd m, the graph mC4 ∪ 2mK2 ∪ 2mK1
acquires an S − (a, 0) − EAMT labeling having
a � (43m + 3)/2.

Proof. Consider the graph Λ2 � mC4 ∪ 2mK2 ∪ 2mK1, for
odd m, with the following vertex-edge connections:

V Λ2(  � x
i
1, x

i
2: i ∈ [1, m] ∪ zi, yi: 1≤ i≤m 

∪ qi, pi: i ∈ [1, 2m] ∪ li: i ∈ [1, 2m] ,

E Λ2(  � yix
i
1, yix

i
2: 1≤ i≤m ∪ zix

i
1, zix

i
2: 1≤ i≤m 

∪ qipi: i ∈ [1, 2m] .

(27)

Here, order is p � 10m and size is q � 6m. Now, we
design a labeling f2: V(Λ2)⟶ 1, 2, . . . , 10m{ } as follows:

f2 x
i
1  �

1
2

(7m + i), i ∈ [1, m]; i ∈ Nodd
,

1
2

(6m + i), i≤ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f2 x
i
2  � 5m − (i − 1): i ∈ [1, m],

f2 yi(  �

1
2

(i + 4m + 1), i ∈ 1, . . . , m{ }; i ∈ Nodd
,

1
2

(i + 5m + 1), i ∈ 2, . . . , m − 1{ }; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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f2 zi(  �

1
2

(i + 10m + 1), i ∈ [1, m]; i ∈ Nodd
,

1
2

(i + 11m + 1), i ∈ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f2 pi(  � i: i ∈ [1, 2m],

f2 qi(  �

1
2

(15m − i + 2): i ∈ [1, m]; i ∈ Nodd
,

1
2

(16m − i + 2): i ∈ [2, m − 1]; i ∈ Neven
,

1
2

(21m − i + 2): i ∈ [m + 2, 2m − 1]; i ∈ Nodd
,

1
2

(20m − i + 2): i ∈ [m + 1, 2m]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2 li(  �
i + 6m: i ∈ [1, m],

i + 7m: i ∈ [m + 1, 2m].


(28)

%e edge-sums’ set constituted by the scheme f2 gen-
erates a sequence consisting of consecutive integer
(11m + 3)/2, (11m + 5)/2, . . . , (23m + 1)/2. Under the
shadow of Lemma 1, f2 constitutes an S − (a, 0) − EAMT
labeling of Λ2 with magic sum a � (43m + 3)/2. □

Theorem 6. For odd m, the graph mC4 ∪ 2Pm+1 ∪ ((5m −

1)/2)K1 acquires an S − (a, 0) − EAMT labeling having
a � 18m + 5.

Proof. Let Λ3 � mC4 ∪ 2Pm+1 ∪ ((5m − 1)/2)K1, where m is
odd, having vertex and edge sets interlinked:

V Λ3(  � x
i
1, x

i
2: i ∈ [1, m] ∪ zi, yi: i ∈ [1, m] ∪ pi: i ∈ [1, m + 1] 

∪ qi: i ∈ [1, m + 1] ∪ li: i ∈ 1,
5m − 1

2
  ,

E Λ3(  � yix
i
1, yix

i
2: i ∈ [1, m] ∪ zix

i
1, zix

i
2: i ∈ [1, m] 

∪ pipi+1: i ∈ [1, m] ∪ qiqi+1: i ∈ [1, m] .

(29)

We have p � (17m + 3)/2 and q � 6m. A labeling
f3: V(Λ3)⟶ 1, 2, . . . , (17m + 3)/2{ } is being defined as
follows:

f3 x
i
1  �

1
2

(5m + i + 2), i ∈ [1, m]; i ∈ Nodd
,

1
2

(4m + i + 2), i ∈ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f3 x
i
2  � 4m − i + 2: 1≤ i≤m,

f3 yi(  �

2m + i + 3
2

, i ∈ [1, m]; i ∈ Nodd
,

3m + i + 3
2

, i ∈ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f3 zi(  �

8m + i + 3
2

, i ∈ 1, . . . , m{ }; i ∈ Nodd
,

9m + i + 3
2

, i ∈ 2, . . . , m − 1{ }; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f3 pi(  �

i + 1
2

, i ∈ [1, m]; i ∈ Nodd
,

11m + i + 3
2

, i ∈ [2, m + 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f3 qi(  �

1
2

(i + m + 2), i ∈ [1, m]; i ∈ Nodd
,

1
2

(16m + i + 2), i ∈ [2, m + 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f3 li(  �

i + 5m + 1: 1≤ i≤
m + 1
2

,

2i + 11m + 3
2

:
m + 3
2
≤ i≤

5m − 1
2

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(30)

%e edge-sums’ set constituted by the scheme f3 gen-
erates a sequence consisting of consecutive integer
(7m + 7)/2, (7m + 9)/2, . . . , (19m + 5)/2. Under the shadow
of Lemma 1, f3 constitutes an S − (a, 0) − EAMT of the
graph Λ3 with magic constant a � 18m + 5. □
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Theorem 7. For odd m, mC4 ∪ (2m − 2)K2 ∪P4 ∪ 2mK1
possesses S − (a, 0) − EAMT labeling having
a � (43m + 5)/2.

Proof. With m taken odd, consider
Λ4 � mC4 ∪ (2m − 2)K2 ∪P4 ∪ 2mK1, having vertex-edge
connections:

V Λ4(  � x
i
1, x

i
2: i ∈ [1, m] ∪ yi, zi: i ∈ [1, m] ∪ li: 1≤ i≤ 2m 

∪ qi, pi: i ∈ [1, 2(m − 1)] ∪ ti: i ∈ [1, 4] ,

E Λ4(  � yix
i
1, yix

i
2: 1≤ i≤m ∪ zix

i
1, zix

i
2: i ∈ [1, m] 

∪ piqi: i ∈ [1, 2(m − 1)] ∪ titi+1: 1≤ i≤ 3 .

(31)

Here, we have p � 10m and q � 6m + 1. A labeling
function f: V(Λ4)⟶ 1, 2, . . . , 10m{ } is being defined as
follows:

f4 x
i
1  �

1
2

(7m + i): i ∈ [1, m]; i ∈ Nodd
,

1
2

(6m + i): i ∈ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f4 x
i
2  � 5m − (i − 1): 1≤ i≤m,

f4 yi(  �

i + 4m + 1
2

: i ∈ 1, . . . , m{ }; i ∈ Nodd
,

i + 5m + 1
2

: i ∈ 2, . . . , m − 1{ }; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f4 zi(  �

i + 10m + 1
2

: i ∈ 1, . . . , m{ }; i ∈ Nodd
,

i + 11m + 1
2

: i ∈ 2, . . . , m − 1{ }; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f4 pi(  � i: i ∈ [1, 2(m − 1)],

f4 qi(  �

15m − i + 2
2

: i ∈ [1, m]; i ∈ Nodd
;

16m − i + 2
2

: i ∈ [2, m − 1]; i ∈ Neven
;

21m − i + 2
2

: i ∈ [m + 2, 2m − 3]; i ∈ Nodd
;

20m − i + 2
2

:
i

i m + 1, . . . , 2(m − 1){ }
; i ∈ Neven

;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f4 ti(  �

2m − 1: i � 1;

19m + 3
2

: i � 2;

2m: i � 3;

9m + 1: i � 4;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f4 li(  �
i + 6m: 1≤ i≤m;

i + 7m: i ∈ [m + 1, 2m].


(32)

%e edge-sums’ set constituted by the scheme f4 gen-
erates a sequence consisting of consecutive integer
(11m + 3)/2, (11m + 5)/2, . . . , (23m + 3)/2. Lemma 1 im-
plies that f4 extends to an S − (a, 0) − EAMT labeling of Λ4
with a � (43m + 5)/2. □

Theorem 8. For odd m, mC4 ∪ Sm− 1,m ∪ ((5m − 1)/2)K1
possesses an S − (a, 0) − EAMT labeling with a � 2(9m + 1).

Proof. Consider the graph Λ5 � mC4 ∪ ∪ Sm− 1,m ∪ ((5m −

1)/2)K1 with vertex-edge connections as follows:

V Λ5(  � x
i
1, x

i
2: i ∈ [1, m] ∪ zi, yi: i ∈ [1, m] 

∪ si, ti: i ∈ [1, m] ∪ li: i ∈ 1,
5m − 1

2
  ∪ c{ },

E Λ5(  � yix
i
1, yix

i
2: i ∈ [1, m] ∪ zix

i
1, zix

i
2: i ∈ [1, m] 

∪ cti: i ∈ [1, m] ∪ tmsi: i ∈ [1, m] .

(33)

%en, p � (17m + 1)/2 and q � 6m. Again, a labeling
f5: V(Λ5)⟶ 1, 2, . . . , (17m + 1)/2{ } is being defined as
follows:

f5 x
i
1  �

1
2

(5m + i): i ∈ 1, . . . , m{ }; i ∈ Nodd
;

1
2

(4m + i): i ∈ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f5 x
i
2  � 4m − (i − 1): i ∈ [1, m],

f5 yi(  �

i + 2m + 1
2

: i ∈ 1, . . . , m{ }; i ∈ Nodd
;

i + 3m + 1
2

: i ∈ 2, . . . , m − 1{ }; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f5 zi(  �

i + 8m + 1
2

: i ∈ [1, m]; i ∈ Nodd
;

i + 9m + 1
2

: i ∈ [2, m − 1]; i ∈ Neven
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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Figure 1: An S − (126, 0) − EAMT and S − (96, 0) − EAMT labeling of the pancyclic graphs (a)UP314 and (b)UP48.
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Figure 2: An S − (117, 0) − EAMT and S − (84, 0) − EAMT labeling of the pancyclic graphs (a)UP313 and (b)UP47.
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Figure 3: An S − (107, 0) − EAMT labeling of the graph 5C4 ∪ 2K1,5 ∪ 16K1.

12 Journal of Mathematics



18 25
16

24 23
19 17

22
20

21

11 1214 15 13

26 27 2829 30

4

32
31

34
33

41
35

43
42

45
44

39

5 36

3 37

2 40

1 38

9 49

10 46

8 47

7 50

6 48

Figure 4: An S − (109, 0) − EAMT labeling of the graph 5C4 ∪ 10K2 ∪ 10K1.
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Figure 5: An S − (95, 0) − EAMT labeling of the graph 5C4 ∪ 2P6 ∪ 12K1.
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Figure 6: An S − (109, 0) − EAMT labeling of the graph 5C4 ∪ 8K2 ∪P4 ∪ 10K1.
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Figure 7: An S − (92, 0) − EAMT labeling of the graph 5C4 ∪ S4,5 ∪ 12K1.
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f5 ti(  � i: 1≤ i≤m;

f5 si(  �
2i + 15m + 1

2
: 1≤ i≤m;

f(c) �
11m + 1

2
,

f5 li(  �

i + 5m: i ∈ 1,
m − 1
2

 ;

i + 5m + 1: i ∈
m + 1
2

,
5m − 1

2
 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)

%e edge-sums’ set constituted by the scheme f2 gen-
erates a sequence consisting of consecutive integer
(7m + 3)/2, (7m + 5)/2, . . . , (19m + 1)/2. Under the shadow
of Lemma 1, f5 constitutes to an S − (a, 0) − EAMT labeling
of Λ1 admitting a � 2(9m + 1).

%e following results are direct consequences of Lemma
2, from %eorems 4–8. □

Theorem 9. For odd m, the graph mC4 ∪ 2K1,m ∪ ((7m −

3)/2)K1 admits an S − (15m + 3, 2) − EAMT labeling.

Theorem 10. For odd m, the graph mC4 ∪ 2mP2 ∪ 2mK1
admits an S − ((31m + 5)/2, 2) − EAMT labeling.

Theorem 11. For odd m, the graph mC4 ∪ 2Pm+1 ∪ ((5m −

1)/2)K1 admits an S − (12m + 6, 2) − EAMT labeling.

Theorem 12. For odd m, mC4 ∪ (2m − 2)P2 ∪P4 ∪ 2mK1
admits an S − ((31m + 5)/2, 2) − EAMT labeling.

Theorem 13. For odd m, mC4 ∪ Sm− 1,m ∪ ((5m − 1)/2)K1
admits an S − (12m + 3, 2) − EAMT labeling.

2.3. Examples and Proposed Open Problems. An
S − (126, 0) − EAMT labeling of the graph UPt

n is being
presented in Figure 1(a), corresponding to the parameters
t � 3 and n � 14. Furthermore, Figure 1(b) presents an S −

(96, 0) − EAMT labeling of UPt
n corresponding to t � 4 and

n � 8. Here, it can be observed that the value of the magic
constant is perfect as per our depiction in %eorem 1.

Figures 2(a) and 2(b) illustrate %eorem 2 by providing
S − (117, 0) − EAMT and S − (84, 0) − EAMT labeling of the
graph UPt

n.
Figures 3–7 are the illustrations of %eorems 4–8, re-

spectively, for particular values of the parameters involved.
%e open problems related to Section 2.2 are as follows:

(i) For even m, determine any S − (a, 0) − EAMT la-
beling of mC4 ∪ 2K1,m ∪ (7m − 3/2)K1

(ii) For even m, determine any S − (a, 0) − EAMT la-
beling of mC4 ∪ 2mK2 ∪ 2mK1

(iii) For even m, determine any S − (a, 0) − EAMT la-
beling of mC4 ∪ 2Pm+1 ∪ ((5m − 1)/2)K1

(iv) For even m, determine any S − (a, 0) − EAMT la-
beling of mC4 ∪ (2m − 2)K2 ∪P4 ∪ 2mK1

(v) For even m, determine any S − (a, 0) − EAMT la-
beling of mC4 ∪ Sm− 1,m ∪ ((5m − 1)/2)K1

3. Conclusion

In this article,

(i) We have obtained S − (a, 0) − EAMT and
S − (a′, 2) − EAMT labeling of a pancyclic class of
graphs, namely, Usmanian pancyclic graph, deno-
ted by UPt

n.
(ii) We have exhibited the existence of

S − (a, 0) − EAMT and S − (a′, 2) − EAMT labeling
on disjoint copies of C4 with various trees. Spe-
cifically, mC4 ∪ 2K1,m ∪ (7m − 3/2)K1, mC4 ∪ 2m

K2 ∪ 2mK1, mC4 ∪ 2Pm+1 ∪ (5m − 1/2) K1, mC4
∪ (2m − 2)K2 ∪P4 ∪ 2mK1 and mC4 ∪ Sm− 1,m

∪ (5m − 1/2)K1, whereas C4 itself is not
S − (a, 0) − EAMT. %ese obtained results open a
new direction for researchers to derive S − (a, 0) −

EAMT labeling of disjoint copies of C4.
(iii) A few open problems have also been proposed for

future work in this area.
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#e sum-connectivity index of a graph G is defined as the sum of weights 1/
������
du + dv


over all edges uv of G, where du and dv are

the degrees of the vertices u and v in graph G, respectively. In this paper, we give a sharp lower bound on the sum-connectivity
index unicyclic graphs of order n≥ 7 and diameter D(G)≥ 5.

1. Introduction and Preliminaries

Let G be a simple graph with a vertex set V � V(G) and edge
set E(G). #e integers n � n(G) � |V(G)| and m � m(G) �

|E(G)| are the order and the size of the graph G, respectively.
#e open neighborhood of vertex v is NG(v) � N(v) �

u ∈ V(G)|uv ∈ E(G){ }, and the degree of v is dG(v) � dv �

|N(v)|. A pendant vertex is a vertex of degree one. #e
distance between two vertices is the number of edges in the
shortest path connecting them, and the diameter D(G) of G

is the distance between any two furthest vertices in G. A
diametral path is the shortest path in G connecting two
vertices whose distance is D(G). A unicyclic graph is a
connected graph containing exactly one cycle. A subgraph
G′ of a graph G is a graph whose set of vertices is a subset of
V(G), and set of edges is a subset of E(G).

A topological index is a numeric number associated with
a molecular graph that correlates certain physicochemical
properties of chemical compounds. #e topological indices
are useful in the prediction of physicochemical properties
and the bioactivity of the chemical compounds [1–3]. Also,
topological indices invariants are used for Quantitative
Structure-Activity Relationship (QSAR) and Quantitative
Structure-Property Relationship (QSPR) studies. It was
demonstrated that the sum-connectivity index is well cor-
related with a variety of physicochemical properties of

alkanes, such as boiling point and enthalpy of formation.#e
sum-connectivity index is certainly the most widely applied
in chemistry and pharmacology, in particular for designing
quantitative structure-property and structure-activity rela-
tions. #e sum-connectivity index is proposed to quanti-
tatively characterize the degree of molecular branching.

Topological indices have been used and have been shown
to give a high degree of predictability of pharmaceutical
properties. #e sum-connectivity index of a graph G was
proposed in [4] defined as follows:

SCI(G) � 
uv∈E(G)

1
������
du + dv

 . (1)

#e applications of the sum-connectivity index have
been investigated in [5, 6]. Some basic mathematical
properties of the sum-connectivity index have been estab-
lished in [4–8].

In [4], it was shown that for a graph G with n≥ 5 vertices
and without isolated vertices, SCI(G)≥ n − 1/

�
n

√
with

equality if and only if G is the star. For n � 4, this is not true
since, for the union of two copies of the path on two vertices,
its sum-connectivity index is

�
2

√
, less than 3/2. In [7],

minimum sum-connectivity indices of trees and unicyclic
graphs of a given matching number are characterized; in [8],
sum-connectivity index of molecular trees are characterized;
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and in [4], some of the lower and upper bounds for the sum-
connectivity index of trees are obtained (see recent bounds
[9–13]). We all know that the sum-connectivity index is one
of the most important and practical indices and therefore
has been considered by many researchers. In this paper, we
will address one of the unresolved issues for the sum-
connectivity index. In fact, we investigate the relationship
between the sum-connectivity index and diameter of the
graph, which is one of the important parameters in graph
theory and we get new results. In other words, in this paper,
we solve the problem of the relationship between the di-
ameter of a graph and the sum-connectivity index for the
unicyclic graph.

2. Main Results

We begin with the following lemma that we will need for
obtaining our main results.

We denote t(G) as the number of pendant vertices in a
graph G.

Lemma 1. Let G be any unicyclic graph andU be a diametral
path of G. If G contains a pendant vertex v not inU, then there
is a unicyclic graph G′ ⊂ G not containing v, such that
D(G) � D(G′), t(G′) � t(G) − 1, and SCI(G′)< SCI(G).

Proof. Let U be a diametral path of G and v ∈ V(G) be a
pendant vertex not inU. We denote by u the closest vertex to
v which is not of degree 2. Let G′ be a subgraph of G obtained
by the removal of the path connecting u and v from G. Let u′
be the neighbor of u on the u − v path (if the path has only
one edge, then u′ � v). Clearly, G′ is a unicyclic graph,
D(G′) � D(G), and t(G′) � t(G) − 1. Furthermore,

SCI(G) − SCI G′( ≥
1

�������
d(u) + 1

 + 

w∈N(u)\ u′{ }

1
�����������
d(u) + d(w)

 −
1

��������������
d(u) + d(w) − 1

 . (2)

We know that the sum-connectivity index of the path uv

is at least 1/
�������
d(u) + 1


. Note that

1
�����������
d(u) + d(w)

 −
1

��������������
d(u) + d(w) − 1

 ≥
1

�������
d(u) + 1

 −
1

����
d(u)

 ,

(3)

for every w ∈ N(u) u′ ; hence, we have

SCI(G) − SCI G′( ≥
1

�������
d(u) + 1

 +(d(u) − 1)
1

�������
d(u) + 1

 −
1

����
d(u)

 .

(4)

#erefore, we get SCI(G)> SCI(G′). □

By Lemma 1, it follows that for any unicyclic graph G, if
U is a diametral path of G, then there is a unicyclic graph
G′ ⊂ G containing only pendant vertices of U, where
D(G′) � D(G) and SCI(G′)< SCI(G).

Here, we obtain a sharp bound on the sum-connectivity
index of any unicyclic graph of diameter at least 5.

Theorem 2. Let G be any unicyclic graph of diameter
D(G)≥ 5. +en,

SCI(G)≥
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2. (5)

Proof. We will complete the proof by considering the
following four cases.

Case 1. If G does not contain any pendant vertex, then
G is the cycle either with 2 D(G) or 2 D(G) + 1 ver-
tices, which implies that

SCI(G)≥ 2D(G)
1
�
4

√  � D(G)>
D(G)

2

+
5
�
5

√ +
1
�
3

√ − 2.

(6)

Case 2. If G contains one pendant vertex, then G

consists of the cycle Cr of length r≥ 3 and the path P

having s≥ 1 edges, where Cr ∩P consists of one vertex
which has degree 3 in G. #is degree will be included in
the computation of SCI(Cr) and SCI(P). We have
SCI(G) � SCI(Cr) + SCI(P), where

SCI Cr(  � 

uv∈E Cr( )

1
����������
d(u) + d(v)

 � (r − 2)
1
�
4

√ + 2
1
�
5

√  �
r

2
+
2

�
5

√

5
− 1,

SCI(P) � 
uv∈E(P)

1
����������
d(u) + d(v)

 � (s − 2)
1
�
4

√ +
1
�
3

√ +
1
�
5

√ �
s

2
+

�
3

√

3
+

�
5

√

5
− 1.

(7)
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If s≥ 2 and SCI(P) � 1/2 if s � 1. So, SCI(P)≥ s/2 for
every s≥ 1, and the equality holds if s � 1.
If r≥ 4, then D(G)≤ (r/2) + s and

SCI(G)≥
r

2
+
2

�
5

√

5
+

s

2
− 1

≥
r

2
+
2

�
5

√

5
+

D(G)

2
−

r

4
− 1

�
D(G)

2
+

r

4
+
2

�
5

√

5
− 1

≥
D(G)

2
+
2

�
5

√

5

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(8)

If r � 3, then D(G) � s + 1 and

SCI(G)≥
3
2

+
2

�
5

√

5
+

s

2
− 1,

≥
3
2

+
2

�
5

√

5
+

D(G)

2
−
1
2

− 1

�
D(G)

2
+
2

�
5

√

5

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(9)

Case 3. If G contains 2 pendant vertices, then G consists
of the cycle Cr of length r≥ 3 and two paths X1 and X2
having s1 ≥ 1 and s2 ≥ 1 edges, respectively. We can
assume that Cr ∩X1 consists of one vertex and X2 is
attached either to an internal vertex of X1 or to a vertex
of Cr.
Case 3.1. If X1 ∩X2 � ∅, then we have
SCI(G) � SCI(Cr) + SCI(X1) + SCI(X2). For i � 1, 2,

SCI Xi(  � 

uv∈E Xi( )

1
����������
d(u) + d(v)



� si − 2( 
1
�
4

√ +
1
�
3

√ +
1
�
5

√ �
si

2
+

�
3

√

3
+

�
5

√

5
− 1.

(10)

When si ≥ 2 and SCI(Xi) � 1/2 if si � 1. If X1 and X2
are attached to nonadjacent vertices of Cr, then

SCI Cr(  � 

uv∈E Cr( )

1
����������
d(u) + d(v)



� (r − 4)
1
�
4

√ + 4
1
�
5

√  �
r

2
+
4

�
5

√

5
− 2.

(11)

If X1 and X2 are attached to adjacent vertices of Cr,
then

SCI Cr(  � 

uv∈E Cr( )

1
����������
d(u) + d(v)

 ,

� (r − 3)
1
�
4

√ + 2
1
�
5

√  +
1
�
6

√

�
r

2
+
2

�
5

√

5
+

�
6

√

6
−
3
2

>
r

2
+
4

�
5

√

5
− 2.

(12)

If s1 � s2 � 1, then D(G)≤ (r/2) + 2 and

SCI(G)≥
r

2
+
4

�
5

√

5
− 2 +

1
2

+
1
2
,

≥D(G) +
4

�
5

√

5
− 3

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(13)

So, we can assume that s1 or s2 is at least 2. We have
SCI(X1) + SCI(X2)≥ (s1/2) + (s2/2) + (

�
3

√
/3) + (

�
5

√

/5) − 1 (the equality holds if s1 or s2 is 1).
If r≥ 4, then D(G)≤ (r/2) + s1 + s2 and

SCI(G)≥
r

2
+
4

�
5

√

5
− 2 +

s1

2
+

s2

2
+

�
3

√

3
+

�
5

√

5
− 1,

≥
D(G)

2
+

r

4
+

�
5

√
+

�
3

√

3
− 3

≥
D(G)

2
+

�
5

√
+

�
3

√

3
− 2.

(14)

If r � 3, then D(G)≤ s1 + s2 + 1 and

SCI(G)≥
3
2

+
4

�
5

√

5
− 2 +

s1

2
+

s2

2
+

�
3

√

3
+

�
5

√

5
− 1,

≥
D(G)

2
+
4

�
5

√

5
+

�
3

√

3
+

�
5

√

5
− 2

�
D(G)

2
+

�
5

√
+

�
3

√

3
− 2.

(15)

Case 3.2. X1 ∩X2 is nonempty, and there is a diametral
path containing both pendant vertices of G.
Let U be the diametral path containing both pendant
vertices of G. #en, U⊆X1 ∪X2. One of the internal
vertices, say x, of U is of degree 3 or 4 in graph G. If x is
adjacent to a pendant vertex of U, then
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SCI(U) � 
uv∈E(U)

1
����������
d(u) + d(v)



� (D(G) − 3)
1
�
4

√ +
1
�
3

√ +
1
�
5

√ +
1
�
6

√

�
D(G)

2
+

�
3

√

3
+

�
5

√

5
+

�
6

√

6
−
3
2
.

(16)

If x is not adjacent to a pendant vertex of U, then

SCI(U)≥
D(G) − 4

2
+
2

�
3

√

3
+
2

�
6

√

6

�
D(G)

2
+
2

�
3

√

3
+
2

�
6

√

6
− 2.

(17)

Note that G contains also the cycleCr, where one of the
vertices is of degree 3 or 4 in G. We have

SCI Cr(  � 

uv∈E Cr( )

1
����������
d(u) + d(v)



� (r − 2)
1
�
4

√ + 2
1
�
6

√ ≥
3
2

+
2

�
6

√

6
− 1

�
1
2

+
2

�
6

√

6
,

(18)

which implies that

SCI(G)≥ SCI(U) + SCI Cr( 

≥
D(G)

2
+

�
3

√

3
+

�
5

√

5
+

�
6

√

6
−
3
2

+
1
2

+
2

�
6

√

6
,

�
D(G)

2
+

�
3

√

3
+

�
5

√

5
+

�
6

√

2
− 1

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(19)

Case 3.3. X1 ∩X2 is nonempty and there is a diametral
path containing only one pendant vertex of G. #en, we
denote this diametral path with U containing only one
pendant vertex of G. Since the other pendant vertex is
not in U, by Lemma 1, there is a unicyclic graph G′
having one pendant vertex, such that D(G′) � D(G)

and SCI(G)> SCI(G′), and we know that SCI(G′)>
(D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2.

Case 4. If G contains at least 3 pendant vertices.

LetU be a diametral path of G. Clearly, this path contains
at most 2 pendant vertices of G. Since G contains m≥ 3
pendant vertices, we have at least m − 2 pendant vertices not
in U. By Lemma 1, there is a unicyclic graph G′ ⊆G having
only the pendant vertices of U (at most 2 vertices), such that
D(G′) � D(G), t(G′) � t(G) − 1 and SCI(G)> SCI(G′).

From the previous cases, it follows that SCI(G′)>
(D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2.

It is easy to show that the bound SCI(G)≥ (D(G)/2) +

(5/
�
5

√
) + (1/

�
3

√
) − 2 is best possible because of the graph

H, where V(H) � u, v0, v1, v2, . . . , vD(H)  and E(H) �

v0v1, v1v2, . . . , vD(H)−1vD(H), uv1, uv3  has the sum-con-
nectivity index

SCI(H) � (D(H) − 4)
1
�
4

√ + 5
1
�
5

√  +
1
�
3

√ ,

�
D(H)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(20)

#e proof is completed. □

Now, we obtain lower bounds on the sum-connectivity
index for unicyclic graphs of small diameter.

Theorem 3. Let G be an unicyclic graph of diameter D(G).
+en,

(i) If D(G) � 2, then SCI(G)≥ 1 + 2
�
5

√
/5

(ii) If D(G) � 3, then SCI(G)≥ 2
�
5

√
/5 +

�
6

√
/6 + 1

(iii) If D(G) � 4, then SCI(G)≥ 1 + 4
�
5

√
/5

Proof. We can see that the proof of #eorem 2 holds for
D(G) � 3 and D(G) � 4 except for Case 3.1, where
s1 � s2 � 1.

Let D(G) � 4.We have SCI(G)≥D(G) + (1 + 4
�
5

√
/5) −

3 (as presented in the proof of #eorem 2), which is
(1 + 4

�
5

√
/5). From the other cases, we obtain SCI(G)≥ ((D

(G)/2) + (5/
�
5

√
) + (1/

�
3

√
) − 2) � (

�
5

√
+ (1/

�
3

√
))> (1 + 4�

5
√

/5), which implies that SCI(G)≥ (1 + 4
�
5

√
/5).

Let D(G) � 3. We have SCI(G)≥D(G) + 4
�
5

√
/5 − 3

(obtained in the proof of #eorem 2); Case 3.1 (if
s1 � s2 � 1) is not sufficient now, so we give a better bound
in this case. Since s1 � s2 � 1 and D(G) � 3, then P1 and P2
must be attached to adjacent vertices ofCr, whichmeans that
SCI(Cr) � r/2 + 2

�
5

√
/5 +

�
6

√
/6 − 3/2 in the proof of #eo-

rem 2. Since r≥ 3, we obtain

SCI(G) � SCI Cr(  + SCI X1(  + SCI X2( 

�
r

2
+
2

�
5

√

5
+

�
6

√

6
−
3
2

+
1
2

+
1
2
≥
2

�
5

√

5
+

�
6

√

6
+ 1.

(21)

Let D(G) � 2. Except for C5 and C4, the only unicyclic
graphs H of diameter 2 are formed by the cycle C3, where
s≥ 1 pendant vertices are adjacent to one of the vertices of
C3. Let V(C3) � v1, v2, v3 . We can assume that the pendant
vertices u1, u2, . . . , up are adjacent to v1. #en, U � v2v1u1 is
a diametral path of H, and from Lemma 1, it follows that
there is a unicyclic graph H′ ⊆H, which contains only one
pendant vertex u1 (the pendant vertex (the pendant vertex in
U)), where SCI(H)≥ SCI(H′). Since
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SCI H′(  � 2
1
�
5

√  + 2
1
�
4

√  � 1 +
2

�
5

√

5
, (22)

SCI(C4) � 2 and SCI(C5) � 5/2, we obtain the bound
SCI(G)≥ 1 + 2

�
5

√
/5. □

Corollary 4. Let G be any unicyclic graph of order at least 7
and diameter D(G)≥ 2. +en,

SCI(G)≥
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2. (23)

Proof. By #eorem 2, for D(G)≥ 5 and any n, we have
SCI(G)≥ ((D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2). By #eorem

3, for D(G) � 2 and any n, we have SCI(G)≥ 1 + 2
�
5

√
/5,

which is greater than ((D(G)/2) + (5/
�
5

√
) + (1/

�
3

√
) − 2). It

remains to prove Corollary 4 for n≥ 7 and 3≤D(G)≤ 4. #e
proof of #eorem 2 holds also for D(G) � 3 and D(G) � 4
except for Case 3.1 where s1 � s2 � 1. We show that if n≥ 7,
then SCI(G)≥ ((D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2) also in

that case. If n≥ 7 and p1 � p2 � 1, then G contains the cycle
Ck for r≥ 5 and SCI(Cr)≥ r/2 + 4

�
5

√
/5 − 2 (given in Case 3.1

in the proof of#eorem 2). Since SCI(X1) � SCI(X2) � 1/2,
we obtain

SCI(G) � SCI Cr(  + SCI X1(  + SCI X2( ≥
3
2

+
4

�
5

√

5
,

(24)

which is greater than SCI(G)≥ ((D(G)/2) + (5/
�
5

√
) + (1/�

3
√

) − 2) for D(G) � 3 and D(G) � 4. □

Corollary 5. Let G be any unicyclic graph of order at least 7
and diameter D(G)≥ 2. +en,

SCI(G)

D(G)
≥

(
�
3

√
/3) +

�
5

√

n − 2
−
1
2
,

SCI(G) − D(G)≥
�
3

√

3
+

�
5

√
−

n

2
− 1.

(25)

Proof. By #eorem 2, we have
SCI(G)≥ (D(G)/2) + (5/

�
5

√
) + 1/

�
3

√
− 2 and since

D(G)≤ n − 2 for any graph G except for the path, hence, by
the definition of sum-connectivity index, we have

SCI(G)

D(G)
≥
1
2

+
5

�
5

√
D(G)

+
1

�
3

√
D(G)

−
2

D(G)
,

≥
1
2

+
5

�
5

√
(n − 2)

+
1

�
3

√
(n − 2)

−
2

D(G)

≥
1
2

+
5

�
5

√
(n − 2)

+
1

�
3

√
(n − 2)

− 1

�
(

�
3

√
/3) +

�
5

√

n − 2
−
1
2
.

(26)

Similarly, we obtain

SCI(G) − D(G)≥
�
3

√

3
+

�
5

√
−

D(G)

2
− 2≥

�
3

√

3
+

�
5

√
−

n

2
− 1.

(27)

□

3. Open Problem and Conclusion

In this paper, we investigate the relationship between the
sum-connectivity index and the diameter of a graph and
obtained a new lower bound for the sum-connectivity
index of unicyclic graphs. However, there are still open
and challenging problems for researchers, for example,
the problem on the relationship between the sum-con-
nectivity index and the diameter of bicyclic and tricyclic
graphs. Moreover, the relationship between other topo-
logical indices such as F-index and GA-index with the
diameter of unicyclic, bicyclic, and tricyclic graphs is still
open.
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In this study, we used grids and wheel graphs G � (V, E, F), which are simple, finite, plane, and undirected graphs with V as the
vertex set, E as the edge set, and F as the face set. )e article addresses the problem to find the face irregularity strength of some
families of generalized plane graphs under k-labeling of type (α, β, c). In this labeling, a graph is assigning positive integers to
graph vertices, graph edges, or graph faces. A minimum integer k for which a total label of all verteices and edges of a plane graph
has distinct face weights is called k-labeling of a graph. )e integer k is named as total face irregularity strength of the graph and
denoted as tfs(G). We also discussed a special case of total face irregularity strength of plane graphs under k-labeling of type (1, 1,
0). )e results will be verified by using figures and examples.

1. Introduction

)is article is based on simple, plane, finite, and undirected
graphs G � (V, E, F). Graph labeling is a mapping that maps
graph elements (V, E, F) into positive integers, and we name
these positive integers as labels. Suppose that α, β, c ∈ 0, 1{ }

and k is a positive integer, then a branch of labeling, named
as, k-labeling of type (α, β, c), is a mapping ϕ from the set of
graph elements (V, E, F) into the set of positive integers
1, 2, 3, . . . , k{ }. A labeling of type (1, 1, 0) of grid graph Gm

n

means that vertices and edges are labeled but face is not
labeled. We will work on labeling of type (1, 1, 0) for the grid
graphs Gm

n , in which the vertices and edges will be labeled
but our ultimate focus will be on calculating distinct face
weights. A detailed review of graph labeling can be seen
in [1].

If the domain of k-labeling of type (α, β, c) is vertex set,
edge set, face set, or vertex-edge set, then we name this as
vertex k-labeling of type (1, 0, 0), edge k-labeling of type
(0, 1, 0), face k-labeling of type (0, 0, 1), or total k-labeling of
type (1, 1, 0), respectively. )e other possible cases are
vertex-face set, edge-face set, and vertex-edge-face set which
we call as vertex-face k-labeling of type (1, 0, 1), edge-face

k-labeling of type (0, 1, 1), and entire k-labeling of type
(1, 1, 1), respectively. )e trivial case (α, β, c) � (0, 0, 0) is
not accepted. )e weight of any vertex in a graph is the sum
of labels of that particular vertex and its adjacent edges. )e
weight of any edge of a graph is the sum of lables of its
adjacent vertices.)e weight of any face in a graph is the sum
of labels of that particular face and its surrounding vertices
and edges. For a deep survey on weights of graph elements,
reader can go through [2–4].)eweight of a facef of a plane
graph G under k-labeling ϕ of type (α, β, c) can be defined as
follows:

Wtϕ(α,β,c)
(f) � α 

v∼f

ϕ(v) + β 
e∼f

ϕ(e) + cϕ(f).
(1)

A k-labeling ϕ of type (α, β, c) of the plane graph G is
called face irregular k-labeling of type (α, β, c) of the plane
graph G if every two different faces have distinct weights;
that is, for graph faces f, g ∈ G and f≠g, we have

Wtϕ(α,β,c)
(f)≠Wtϕ(α,β,c)

(g). (2)

Face irregularity strength of type (α, β, c) of any plane
graph G is the minimum integer k for which the graph G
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admits a face irregular k-labeling of type (α, β, c). For
a vertex-edge labeled graph G, the minimum integer k for
which the graph G admits a face irregular k-labeling of type
(α, β, c) is called the total face irregularity strength of type
(α, β, c) of the plane graph G, and it is denoted by
tfs(α,β,c)(G). A detailed work on irregularity strength of
graphs can be seen in [4–12].

Gary Ebert et al. worked on the irregularity strength of
2 × n grid in their research “Irregularity Strength for Certain
Graphs,” [13]. Baca et al. determined total irregularity
strength of graphs and calculated bounds and exact values
for different families of graphs [14]. Baca et al. investigated
face irregular evaluations of plane graphs and calculated face
irregularity strength of type (α, β, c) for ladder graphs [15].

By motivating from all abovementioned, we are working
on grid graphs Gm

n with n rows and m columns. Labeling of
a grid graph has many stages, depending on the size of graph,
on the selection of rows and columns, and sometimes on the
smaller and larger values of labeling. We will calculate the
total face irregularity strength of grid graphs under labeling ϕ
of type (α, β, c), and this work is a modification of above-
mentioned articles. Grid graphs are constructed by the graph
Cartesian products of path graphs, that is, Gm

n � Pn+1□Pm+1.
We will prove the exact value for the total face irregu-

larity strength under k-labeling ϕ of type (α, β, c) of grid
graphs with the property ⌊(m + 1)/3⌋ � m − 2⌊(m + 1)/3⌋

where 1<m< n.
We will prove the exact value for the total face irregu-

larity strength under k-labeling ϕ of type (α, β, c) of wheel
graph Wn.

Baca et al. determined a lower bound for the face ir-
regularity strength of type (α, β, c) when a 2-connected
plane graph G has more than one faces of the largest sizes
[14, 16]. )ey presented the following theorem.

Theorem 1 (see [14, 16]). Let G � (V, E, F) be a 2-connected
plane graph with nii-sided faces, i≥ 3. Let α, β, c ∈ 0, 1{ },
a � min i: ni ≠ 0 , and b � max i: ni ≠ 0 . #en, the face
irregularity strength of type (α, β, c) of the plane graph G is

fs(α,β,c)(G)≥
(α + β)a + c +|F(G)| − 1

(α + β)b + c
 . (3)

Proof. Suppose that face irregularity strength under a k-
labeling ϕ of type α, β, c of the plane graph G is k.

)e smallest face weight under the face irregular k-la-
beling ϕ admits the value at least (α + β)a + c. Since
|F(G)| � 

b
i�3 ni, it follows that the largest face weight attains

the value at least (α + β)a + c + |F(G)| − 1 and at most
((α + β)b + c)k. Hence,

(α + β)a + c +|F(G)| − 1≤ ((α + β)b + c)k,

k≥
(α + β)a + c +|F(G)| − 1

(α + β)b + c
 .

(4)
□

)is lower bound can be improved when a 2-connected
plane graph G contains only one face of the largest size, that
is, nb � 1 and c � max i: ni ≠ 0, i< b . So, we present the
following theorem to calculate the lower bounds for grid
graphs Gm

n .

2. Main Results

In this research, we will demonstrate the tight lower bound
for the total face irregular strength of type (1; 1; 0) for the
plan graph particularly grid and wheel graphs. It is sufficient
to prove tight lower bound of grid graph that the exact value
of tfs(Gmn) exists and differences in weights of the hori-
zontal faces must be 1 and the differences in weights of the
vertical faces is m.

Theorem 2. Let G � (V, E, F) be a 2-connected plane graph
with nii-sided faces, i≥ 3. Let α, β, c ∈ 0, 1{ }, a � min i: ni ≠

0} and b � max i: ni ≠ 0 , nb � 1, and c � max i: ni ≠ 0, i

≤ b}. #en, the total face irregularity strength of type (α, β, c)

of the plane graph G is

fs(α,β,c)(G)≥
(α + β)a + c +|F(G)| − 2

(α + β)c + c
 . (5)

Proof. We suppose that total face irregularity strength of
any 2-connected plane graph G under k-labeling ϕ of type
α, β, c is equal to k, that is,

tfs(α,β,c)(G) � k. (6)

Given that the lagest face nb � 1 for i< b. So, the smallest
face weight under the face irregular k-labeling ϕ of type
(α, β, c) will have the minimum value (α + β)c + c. )e total
number of faces of the graph can be obtained by adding all
the number of i-sided faces where i≥ 3. Hence, the largest
face weight can have the minimum value (α + β)a + c +

|F(G)| − 2 and maximum value ((α + β)c + c)k. So, we can
construct the following results:

(α + β)a + c +|F(G)| − 2≤ ((α + β)b + c)k

⇒k≥
(α + β)a + c +|F(G)| − 2

(α + β)c + c
 .

(7)

Hence,

tfs(α,β,c)(G)≥
(α + β)a + c +|F(G)| − 2

(α + β)c + c
 . (8)

□

From the above result, we see that if a 2-connected plane
graph G contains only one largest face, then the lower bound
for the face irregularity strength of type (1, 1, 0) can be
calculated as

tfs(1,1,0)(G)≥
2a +|F(G)| − 2

2c
 . (9)
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In this research, we will prove the tight lower bound for
the total face irregularity strength of type (1, 1, 0) for the grid
graph Gm

n and wheel graph Wn. To prove the tight lower
bound of the grid graph, it will be sufficient to show that the
exact value of tfs(Gm

n ) exists. )e exact value of tfs(Gm
n ), that

is, calculated from grid graph Gm
n under a graph k-labeling of

type (1, 1, 0), exists if the differences in weights of the
horizontal faces are 1 and the differences in weights of the
vertical faces are m. Generalized grid graphs can be written
as Gm

n � Pn+1 □Pm+1.
)e vertex set and the edge set of the grid graph can be

defined as follows:

V Pn+1 □Pm+1(  � v
j
i : i � 1, 2, . . . , n + 1, j � 1, 2, . . . , m + 1 ,

E Pn+1 □Pm+1(  � v
j
i v

j
i+1: i � 1, 2, . . . , n, j � 1, 2, . . . , m + 1 ∪ v

j
i v

j+1
i : i � 1, 2, . . . , n + 1, j � 1, 2, . . . , m .

(10)

Theorem 3. Let n, m≥ 2 be positive integers and
Gm

n � Pn+1 □Pm+1 be generalized grid graph, then

tfs(1,1,0) Pn+1 □Pm+1(  �
mn + 7

8
 . (11)

In order to prove this, it will be sufficient to show that the
exact value of tfs(Gm

n ) exists.
)e vertices for the generalized graph Gm

n under a k-
labeling ϕ of type (1, 1, 0) in different intervals of i and j can
be defined as follows:

ϕ v
j

i  �

1 +
m + 1
3

 
i − 1
2

 , for i � 1, 2, 3, . . . , 2
k

(m + 1)/3⌊ ⌋
  and j � 1, 2, . . . , m + 1,

k, for i � 2
k

(m + 1)/3⌊ ⌋
  + 1, . . . , n + 1 and j � 1, 2, . . . , m + 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

)e horizontal edges for the generalized graph Gm
n under

a k-labeling ϕ of type (1, 1, 0) in different intervals of i and j

can be defined as follows:

ϕ v
j

i v
j+1
i  �

1 +
m + 1
3

 
i − 1
2

 , for i � 1, 2, 3, . . . , 2
k

(m + 1)/3⌊ ⌋
  and j � 1, 2, . . . , m,

k, for i � 2
k

(m + 1)/3⌊ ⌋
  + 1, . . . , n + 1 and j � 1, 2, . . . , m.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

)e vertical edges for the generalized graph Gm
n under

a k-labeling ϕ of type (1, 1, 0) in different intervals of i and j

can be defined as follows:
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ϕ v
j
i v

j
i+1  �

j

2
 , for i � 1, 2, . . . , 2

k

(m + 1)/3⌊ ⌋
  − 1 and j � 1, 2, . . . , m + 1,

ϕ v
j

i v
j

i+1  �

j

2
  +

1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

for i � 2
k

(m + 1)/3⌊ ⌋
 , 2

k

(m + 1)/3⌊ ⌋
  + 1 and j � 1, 3, . . . , m; m ≡ 1(mod 2)

or j � 1, 3, . . . , m + 1; m ≡ 0(mod 2),

j

2
  +

1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

+
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

for i � 2
k

(m + 1)/3⌊ ⌋
 , 2

k

(m + 1)/3⌊ ⌋
  + 1 and j � 2, 4, . . . , m + 1; m ≡ 1(mod 2)

or j � 2, 4, . . . , m; m ≡ 0(mod 2),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ v
j
i v

j
i+1  �

j

2
  + m − 3k + 3 + 3

m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

+
m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1   +

m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  ,

for i � 2
k

(m + 1)/3⌊ ⌋
  + 2, . . . , n and j � 1, 3, . . . , m; m ≡ 1(mod 2)

or j � 1, 3, . . . , m + 1; m ≡ 0(mod 2),

j

2
  + m − 3k + 3 + 3

m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

+
m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1   +

m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  ,

for i � 2
k

(m + 1)/3⌊ ⌋
  + 2, . . . , n and j � 2, 4, . . . , m + 1; m ≡ 1(mod 2)

or j � 2, 4, . . . , m; m ≡ 0(mod 2).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Figure 1 represents the generalized formula for face
weights. )e generalization of weights over the face f under

a k-labeling ϕ of type (1, 1, 0) for the graph Gm
n can be

defined as follows:

Wt(1,1,0) f
j
i  � 

v∼f
j

i

f(v) + 

e∼f
j

i

f(e) � ϕ v
j
i  + ϕ v

j+1
i  + ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i v

j+1
i 

+ ϕ v
j
i v

j
i+1  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j+1
i v

j+1
i+1 .

(15)

Horizontal differences in weights among different in-
tervals of i and j can be calculated as follows:

For i � 1, 2, 3, . . . , 2
k

(m + 1)/3⌊ ⌋
  − 2 and j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � ϕ v

j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 

� 1 +
m + 1
3

 
i − 1
2

  + 1 +
m + 1
3

 
i

2
  + 1 +

m + 1
3

 
i − 1
2

  + 1 +
m + 1
3

 
i

2
  +

j + 2
2

  − 1

−
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i

2
  − 1 −

m + 1
3

 
i − 1
2

  −
j

2
  − 1 −

m + 1
3

 
i

2
 

�
j + 2
2

  −
j

2
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� 1, for every value of j,

For i � 2
k

(m + 1)/3⌊ ⌋
  − 1 and j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j

i  � ϕ v
j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j

i+1v
j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 

� 1 +
m + 1
3

 
i − 1
2

  + 1 +
m + 1
3

 
i

2
  + 1 +

m + 1
3

 
i − 1
2

  + 1 +
m + 1
3

 
i

2
  +

j + 2
2

  − 1

−
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i

2
  − 1 −

m + 1
3

 
i − 1
2

  −
j

2
  − 1 −

m + 1
3

 
i

2
 

�
j + 2
2

  −
j

2
 

� 1, for all values of j,

For i � 2
k

(m + 1)/3⌊ ⌋
  and j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � ϕ v

j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j

i  − ϕ v
j+1
i  − ϕ v

j

i+1  − ϕ v
j+1
i+1  − ϕ v

j

i v
j+1
i  − ϕ v

j

i v
j

i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � 1 +

m + 1
3

 
i − 1
2

  + k + 1 +
m + 1
3

 
i − 1
2

  + k +
j + 2
2

 

+
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  + 1  

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  + 1  

− 1 −
m + 1
3

 
i − 1
2

  − k − 1 −
m + 1
3

 
i − 1
2

  −
j

2
 

−
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

vij vij

fi
j

vij+1

vi+1
jvi+1

j vi+1
j+1

vij+1 vi+1
j+1vij vi+1

j

vi+1
j+1

vij+1

Figure 1: Construction of weights over the face f under k-labeling of type (1, 1, 0).
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−
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1   − k

�
j + 2
2

  +
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  (1) + 0 −

j

2
 

−
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  (1) − 0

�
j + 2
2

  −
j

2
 

� 1, for all j � 1, 2, . . . , m + 1,

For i � 2
k

(m + 1)/3⌊ ⌋
  + 1 and j � 1, 3, . . . , m; m ≡ 1(mod 2) or j � 1, 3, . . . , m + 1; m ≡ 0(mod 2),

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j

i  � ϕ v
j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j

i+1v
j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � k + k + k + k +

j + 2
2

 

+
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

− k − k − k − k −
j

2
 

−
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

−
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

�
j + 2
2

  −
j

2
 

� 1, for every odd value of j,

For i � 2
k

(m + 1)/3⌊ ⌋
  + 1 and j � 2, 4, . . . , m + 1; m ≡ 1(mod 2) or j � 2, 4, . . . , m; m ≡ 0(mod 2),

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j

i  � ϕ v
j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j

i+1v
j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � k + k + k + k +

j + 2
2
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+
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

+
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

− k − k − k − k −
j

2
 

−
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

−
1
2

m − 3k + 3 + 3
m + 1
3

  
k

(m + 1)/3⌊ ⌋
  − 1  

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

�
j + 2
2

  −
j

2
 

� 1, for every even value of j,

For i � 2
k

(m + 1)/3⌊ ⌋
  + 2, . . . , n; j � 1, 3, . . . , m; m ≡ 1 (mod 2)OR j � 1, 3, . . . , m + 1; m ≡ 0 (mod 2),

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j

i  � ϕ v
j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � k + k + k + k +

j + 2
2

  + m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

+
m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1   +

m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1   − k − k − k − k −

j

2
 

− m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   −

m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

−
m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

�
j + 2
2

  −
j

2
 

� 1, for all odd values of j,

For i � 2
k

(m + 1)/3⌊ ⌋
  + 2, . . . , n; j � 2, 4, . . . , m + 1; m ≡ 1 (mod 2)OR j � 2, 4, . . . , m; m ≡ 0(mod 2),

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � ϕ v

j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � k + k + k + k +

j + 2
2

  + m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  
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+
m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1   +

m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1   − k − k − k − k −

j

2
 

− m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   −

m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

−
m

2
 

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

�
j + 2
2

  −
j

2
 

� 1, for all even values of j.
(16)

Vertical differences in weights among different intervals
of i and j can be calculated as follows:

For i � 1, 2, . . . , 2
k

(m + 1)/3⌊ ⌋
  − 2 and j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i+2  + ϕ v

j+1
i+2  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j
i+1v

j
i+2 

+ ϕ v
j
i+2v

j+1
i+2  + ϕ v

j+1
i+1 v

j+1
i+2  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � 1 +

m + 1
3

 
i + 1
2

  + 1 +
m + 1
3

 
i + 1
2

  +
j

2
  +

j + 1
2

  + 1

+
m + 1
3

 
i + 1
2

  − 1 −
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i − 1
2

 

−
j

2
  −

j + 1
2

 

� 3
m + 1
3

 
i + 1
2

  − 3
m + 1
3

 
i − 1
2

 

� 3
m + 1
3

 
i + 1
2

  −
i − 1
2

  

� 3
m + 1
3

 (1)

� m,

For i � 2
k

(m + 1)/3⌊ ⌋
  − 1; j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i+2  + ϕ v

j+1
i+2  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j
i+1v

j
i+2 

+ ϕ v
j
i+2v

j+1
i+2  + ϕ v

j+1
i+1 v

j+1
i+2  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 
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− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � k + k + k +

j

2
  +

j + 1
2

 

+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

− 1 −
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i − 1
2

  −
j

2
  −

j + 1
2

 

� 3k +
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  + 1  ,

·
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋)( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1)

2
 

+
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1))

2
 

+
1
2

(i + 1 − 2 k/ (m + 1)/3⌊ ⌋⌈ ⌉ + 1) 

·
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1))

2
 

+
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1))

2
 

− 3 − 3
m + 1
3

 
i − 1
2

 

� 3k +(1) m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   + 0 − 3 − 3

m + 1
3

 
i − 1
2

 

� 3k + m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 3

m + 1
3

  − 3 − 3
m + 1
3

 
i − 1
2

 

� m + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1 −

i − 1
2
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� m + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1 −

k

(m + 1)/3⌊ ⌋
  − 1  

� m,

For i � 2
k

(m + 1)/3⌊ ⌋
 ; j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i+2  + ϕ v

j+1
i+2  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j
i+1v

j
i+2 

+ ϕ v
j
i+2v

j+1
i+2  + ϕ v

j+1
i+1 v

j+1
i+2  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � k + k + k +

j

2
  +

j + 1
2

 

+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

− 1 −
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i − 1
2

  − 1 −
m + 1
3

 
i − 1
2

  −
j

2
  −

j + 1
2

 

−
1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   ,

−
1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   
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� 3k

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

− 3 − 3
m + 1
3

 
i − 1
2

 

−
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

+
1
2

m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1   

� 3k +
(m − 3k + 3 + 3 m + 1/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1))

2
 

+
(m − 3k + 3 + 3 m + 1/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1))

2
 

− 3 − 3
m + 1
3

 
i − 1
2

 

� 3k + m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  − 3 − 3

m + 1
3

 
i − 1
2

 

� m + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1 −

i − 1
2

  

� m + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1 −

i − 1
2

  

� m,

For i � 2
k

(m + 1)/3⌊ ⌋
  + 1; j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i+2  + ϕ v

j+1
i+2  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j
i+1v

j
i+2 

+ ϕ v
j
i+2v

j+1
i+2  + ϕ v

j+1
i+1 v

j+1
i+2  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � k + k + k +

j

2
  +

j + 1
2

  + 2 m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  
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+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1  

m

2
  +

m

2
  

+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1  

m

2
  +

m

2
  

− k − k − k −
j

2
  −

j + 1
2

  −
1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1))

2
 

+
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉) − 1)

2
 

−
1
2

i − 2
k

(m + 1)/3⌊ ⌋
  + 1  

·
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1))

2
 

+
(m − 3k + 3 + 3 (m + 1)/3⌊ ⌋( k/ (m + 1)/3⌊ ⌋⌈ ⌉) − 1)

2
 

� 2 m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

+(1)(m) − (1) m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

− (1) m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

� m,

For i � 2
k

(m + 1)/3⌊ ⌋
  + 2, . . . , n; j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i+2  + ϕ v

j+1
i+2  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j
i+1v

j
i+2 

+ ϕ v
j
i+2v

j+1
i+2  + ϕ v

j+1
i+1 v

j+1
i+2  − ϕ v

j
i  − ϕ v

j+1
i 

− ϕ v
j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 ,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � k + k + k +

j

2
  +

j + 1
2

  + 2 m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1  

m

2
  +

m

2
  

+
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1  

m

2
  +

m

2
   − k − k
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− k −
j

2
  −

j + 1
2

  − 2 m − 3k + 3 + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1  

−
1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

m

2
  +

m

2
   −

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

m

2
  +

m

2
  

� m
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1  

+ m
1
2

i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1   − m

1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

− m
1
2

i − 2
k

(m + 1)/3⌊ ⌋
  − 1  

� m
(i + 1 − 2 k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1)

2
  +

(i + 1 − 2 k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1)

2
  

− m
(i − 2 k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1)

2
  +

(i − 2 k/ (m + 1)/3⌊ ⌋⌈ ⌉ − 1)

2
  

� m i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1  − m i − 2

k

(m + 1)/3⌊ ⌋
  − 1 

� m i + 1 − 2
k

(m + 1)/3⌊ ⌋
  − 1 − i + 2

k

(m + 1)/3⌊ ⌋
  + 1 

� m.
(17)

Example 1. )e total face irregularity strength of grid graph
G3
6, under a k-labeling of type (1, 1, 0) is 4.

Proof. )e graph under consideration is G3
6 � P7 □P4.

Figure 2 is a 4-labeling of type (1, 1, 0) for the grid graph G3
6,

and it will help us in calculating total face irregularity
strength in different intervals of the grid graph.

Here, k � ⌈(18 + 7)/8⌉ � 4, ⌊(m + 1)/3⌋ � 1, ⌈k/⌊(m +

1)/3⌋⌉ � 4, and m − 2⌊(m + 1)/3⌋ � 1
In order to show that tfs(1,1,0)(G3

6) � 4, it is sufficient to
prove that all the horizontal differences in face weights are 1
and all the vertical differences in face weights are 3. Now, we
prove these results.

Horizontal differences in face weights can be calculated
as follows:

For i � 1, 2, 3, 4, 5, 6 and j � 1, 2, 3, 4,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � ϕ v

j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 

�
j + 2
2

  −
j

2
 

� 1, for every value of j,

Journal of Mathematics 13



For i � 7 and j � 1, 2, . . . , m + 1,

Wt(1,1,0) f
j+1
i  − Wt(1,1,0) f

j
i  � ϕ v

j+1
i  + ϕ v

j+2
i  + ϕ v

j+1
i+1  + ϕ v

j+2
i+1  + ϕ v

j+1
i v

j+2
i  + ϕ v

j+1
i v

j+1
i+1 

+ ϕ v
j+1
i+1 v

j+2
i+1  + ϕ v

j+2
i v

j+2
i+1  − ϕ v

j

i  − ϕ v
j+1
i  − ϕ v

j

i+1  − ϕ v
j+1
i+1  − ϕ v

j

i v
j+1
i  − ϕ v

j

i v
j

i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 

�
j + 2
2

  −
j

2
 

� 1, for all values of j.

(18)

Vertical differences in face weights can be calculated as
follows:

For i � 1, 2, 3, 4, 5, 6 and j � 1, 2, 3, 4,

Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i+2  + ϕ v

j+1
i+2  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j
i+1v

j
i+2 

+ ϕ v
j
i+2v

j+1
i+2  + ϕ v

j+1
i+1 v

j+1
i+2  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 

� 3
m + 1
3

 

� 3,

For i � 7; j � 1, 2, 3, 4,

1

1 1

1
1

1

1
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23 24 25

11 12 13

14 15 16

8 9 10

1 1 1 1

111 1 1

2

222

2
222
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4 4 4 4

2 21
33
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2

2
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2

2
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2

444
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1

1

1 1

1

1

Figure 2: Total face irregular 4-labeling of the (1, 1, 0) of grid graph G3
6.
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Wt(1,1,0) f
j
i+1  − Wt(1,1,0) f

j
i  � ϕ v

j
i+1  + ϕ v

j+1
i+1  + ϕ v

j
i+2  + ϕ v

j+1
i+2  + ϕ v

j
i+1v

j+1
i+1  + ϕ v

j
i+1v

j
i+2 

+ ϕ v
j
i+2v

j+1
i+2  + ϕ v

j+1
i+1 v

j+1
i+2  − ϕ v

j
i  − ϕ v

j+1
i  − ϕ v

j
i+1  − ϕ v

j+1
i+1  − ϕ v

j
i v

j+1
i  − ϕ v

j
i v

j
i+1 

− ϕ v
j
i+1v

j+1
i+1  − ϕ v

j+1
i v

j+1
i+1 

� m + 3
m + 1
3

 
k

(m + 1)/3⌊ ⌋
  − 1 −

k

(m + 1)/3⌊ ⌋
  − 1  

� 3.

(19)

It shows that all the differences of horizontal faces are
equal to one and all the differences of vertical faces are equal
to m. Hence, total face irregularity strength of grid graph G3

6
is 4. □

Theorem 4. . Let Wn be a wheel graph with n + 1 vertices,
where n≥ 3. #en, under a total k-labeling of type (1, 1, 0), we
have

tfs Wn(  �
n + 4
5

 . (20)

Proof. Let Wn be a wheel graph with n + 1 vertices, then by
the definition of wheel graph, the total number of edges will
be 2n and the total number of faces will be n + 1, that is,

E Wn( 


 � 2n,

F Wn( 


 � n + 1.
(21)

As we see that a wheel graph has 3− sided internal faces
and external face, so by using )eorem 2, we have

tfs Wn( ≥
n + 4
5

 . (22)

In Figure 3, v is the vertex in the center of wheel graph
Wn which is connecting to all the vertices vi for 1≤ i≤ n.
Similarly, for 1≤ i≤ n − 1, the edges of the wheel graph can

be constructed as E(Wn) � vvi, vivi+1, vvn, v1vn . Also for
1≤ i≤ n − 1, there will be exterior face, the nth interior face
can be written as f(Wn) � vv1vnv , and other all 3-sided
interior faces can be written as f(Wn) � vvivi+1v . Let us
define a total k-labeling ϕ: V∪E⟶ 1, 2, 3, . . . , ⌈(n +{

4)/5⌉}.
In Figure 4, we consider a finite wheel graph W3 which is

labeled under a 2-labeling of type (1, 1, 0). So, for 1≤ i≤ 3,
we have

ϕ(v) � ϕ v2(  � ϕ vvi(  � ϕ v1v2(  � 1,

ϕ v1(  � ϕ v3(  � ϕ v1v3(  � ϕ v2v3(  � 2.
(23)

Weight of exterior face will be

Wt fexterior(  � 10. (24)

Weight of interior faces will be

Wt fi(  � i + 6. (25)

Now, let us talk about the graphs except W3 for which we
define the labeling as ϕ(v) � 1:

(i) For 1≤ i≤ ⌈n/2⌉ + 1, we have ϕ(vi) � ⌈2i/5⌉

(ii) For ⌈n/2⌉ + 2≤ i≤ n, we have ϕ(vi) � ⌈2(n − i +

1)/5⌉ + 1
(iii) For 1≤ i≤ ⌈n/2⌉ + 1, we have ϕ(vvi) � ⌈(2i − 1)/5⌉

vn

vn-1

v5

v4

v3v2

v1

v

Figure 3: Wheel graph Wn.

Journal of Mathematics 15



(iv) For ⌈n/2⌉ + 2≤ i≤ n, we have ϕ(vvi) � ⌈(2(n −

i) + 1)/5⌉ + 1
(v) For i � 1, we have ϕ(v1vn) � 1
(vi) For 2≤ i≤ ⌈n/2⌉, we have ϕ(vivi+1) � ⌈(2i − 2)/5⌉

(vii) For i � ⌈n/2⌉ + 1, where n ≡ m(mod6) in which
m � 2, 3, 4, 5{ }, we have ϕ(vivi+1) � ⌈(2i − 2)/5⌉

(viii) For i � ⌈n/2⌉ + 1 where n ≡ m(mod6) in which
m ∈ 0, 1{ }, we have ϕ(vivi+1) � ⌈(n + 4)/5⌉

(xi) For i � ⌈n/2⌉ +2≤ i≤n − 1, we have ϕ(vivi+1) � ⌈(2
(n − i) − 2)/5⌉ +1

For weights of the wheel graph Wn, we proceed as
follows:

(i) For i � 1, we have Wt(fi) � 6
(ii) For 2≤ i≤ ⌈(n + 1)/2⌉, we have Wt(fi) � 2i + 3
(iii) For ⌈(n + 1)/2⌉ + 1≤ i≤ n, we have Wt(fi) � 2(n −

i) + 8
(iv) For external weight, we will use Wt(fexterior)≥

2n + 8

We can easily observe that under the k-labeling ϕ of type
(1, 1, 0), the minimum k for which the wheel graph admits
total face irregular strength is ⌈(n + 4)/5⌉. Hence,

tfs Wn(  �
n + 4
5

 . (26)
□

3. Conclusion

We investigated total face irregularity strength of general-
ized plane grid graphs Gm

n and wheel graphs Wn under
a graph k-labeling of type (α, β, c) where α, β ∈ 0, 1{ }. )is
work was based on the bright idea of finding face irregularity
strength of ladder graphs by Martin Baca et al. [14]. In this
article, we worked on the total face irregularity strength of
grid and wheel graphs. We labeled graph vertices and graph
edges but focussed on estimating face weights of graphs to
prove the sharpness of k-labeling. We derived generalized
formulas by considering graphs with different values of n, m,
⌊(m + 1)/3⌋, and m − 2⌊(m + 1)/3⌋. Also, we verified the
final results with example. In future, total and entire face

irregular strength of some more products of different plane
graphs can be investigated under k-labeling of type (α, β, c).
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Graph partitioning has been studied in the discipline between computer science and applied mathematics. It is a technique to
distribute the whole graph data as a disjoint subset to a different device. )e minimum graph partition problem with respect to an
independence system of a graph has been studied in this paper. )e considered independence system consists of one of the
independent sets defined by Boutin. We solve the minimum partition problem in path graphs, cycle graphs, and wheel graphs. We
supply a relation of twin vertices of a graph with its independence system. We see that a maximal independent set is not always a
minimal set in some situations. We also provide realizations about the maximum cardinality of a minimum partition of the
independence system. Furthermore, we study the comparison of the metric dimension problem of a graph with the minimum
partition problem of that graph.

1. Introduction

An abstract idea of representing any objects which are
connected to each other in a form of relation is a graph. In
this representation, the object is called as a vertex and their
relation denotes as an edge. Partition of a graph is the
distribution of the whole graph data into disjoint subsets to
different devices. )e need of distributing huge graph data
set is to process data efficiently and faster process of any
graph related applications. Where graph partitioning is
essential and applicable are given as follows:

(1) Complex networks which include biological net-
works (in solving biological interaction problem in a
huge a biological network), social networks (Face-
book, Twitter, and LinkedIn etc., and graph parti-
tioning technology is used to process user query
efficiently, as replying a query in a distributed
manner is very handy and effective) [1], and
transportation networks (graph partitioning can

speed up and could be effective in planning a route
by using a GPS (global positioning system) tool in
the digital era).

(2) PageRank, which is an application used to compute
the rank of web rank from web network.

(3) VLSI design: Very large-scale integration (VLSI)
system is one of the graph partitioning problems in
order to reduce the connection between circuits in
designing VLSI. )e main objective of this parti-
tioning is to reduce the VLSI design complexity by
splitting them into a smaller component.

(4) Image processing: Graph partitioning is one of the
most attractive tools to split into several components
of a picture, where pixels are denoted by vertices and
if there are similarities between pixels are repre-
sented as edges [2].

Inspired by these interesting applications of graph
partition, we consider a graph partition in the context of
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resolving set of a graph, which is a well-known parameter in
graph theory and having remarkable application in network
discovery and verification.

A set system is a finite set S together with a family F of
subsets of S and is denoted by the pair (S,F). A set system
(S,P) is said to be an independence system if for every
subset X of S possessing propertyP, each proper subset of X

also possesses the property P, i.e., for each X ⊂ S such that
X ∈ P, Y ∈ P for all Y ⊂ X. Actually, in an independence
system (S,P), P identified with the family of subsets of S

possessing the propertyP. A subset X of S which possess the
propertyP is said to be an independent set and dependent set
otherwise. )e chromatic number of (S,P) is the smallest
natural number n such that S can be partitioned into n

independent sets and is denoted by χ(S,P). Clearly, a
partition of S into n independent sets of (S,P) can be
identified by a coloring λ: S⟶ 1, 2, . . . , n{ } of S such that
for each color c ∈ 1, 2, . . . , n{ }, the color class
s ∈ S, λ(s) � c{ } has the property P, and vice versa. )e
coloring λ of S is called a P−coloring of S. )us, χ(S,P) is
the least number of colors required by aP−coloring of S and
is also called the P−chromatic number of S [3].

)e P−chromatic number χ(S,P) has been extensively
studied by various graph theorists. Remarkable work has
been done when S is V or E for a graph G having vertex set V

and edge set E, andP is a hereditary graphical property. For
example, if P is the property I of being a vertex inde-
pendent set, then χ(V,I) is the ordinary chromatic number
of G; ifP is the propertyE of being an edge independent set,
then χ(E,E) is the edge chromatic number of G; if P is the
propertyF of being a forest, then χ(E,F) is the arboricity of
G. In the next section, we consider P as the property R of
being a resolving set for G and define the R−chromatic
number of G associated with an r−independence system
(V,R).

2. r− Independence System

Hereafter, we consider nontrivial, simple, and connected
graph G with vertex set V and edge set E. We denote two
adjacent vertices u and v in G by u ∼ v and nonadjacent
vertices by u≁v. )e distance d: V × V⟶ Z+ ∪ 0{ } is the
length of a shortest path between two vertices in the pair
(u, v) ∈ V × V and is denoted by d(u, v). )e maximum
distance between the vertices of G is called the diameter of G,
denoted by diam(G). Two vertices u and v in G are antipodal
or diametral if d(u, v) � diam(G); otherwise, they are
nonantipodal.

Let G be a graph. For any vertex v of G, themetric code or
code of v with respect to an ordered k−subset
W � w1, w2, . . . , wk  of V is defined as

cW(v) � d v, w1( , d v, w2( , . . . , d v, wk( ( . (1)

An ordered k−subset W of V is a resolving set for G if
cW(u)≠ cW(v) for every pair of vertices (u, v) ∈ V × V. )e
cardinality of a minimum resolving set for G is called the
metric dimension of G, denoted by dim(G) or β(G). A re-
solving set for G of cardinality dim(G) is called ametric basis

or a basis of G [4–8]. In [9], it was found and, in [6], an
explicit construction was given that finding the metric di-
mension of a graph is NP-hard. )e concept of a resolving
set, other than graph theory, is applied in many other areas
such as coin-weighing problems [10], network discovery and
verification [2], strategies for mastermind games [11],
pharmaceutical chemistry [12], robot navigation [6], con-
nected joins in graphs and combinatorial optimization [13],
and sonar and coast guard Loran [8].

A subset S of the vertex set V of a graph G is an
r−independent set if no proper subset of S is a resolving set
for G. We denote R as the property of being an
r−independent set. )at is, a subset S of V possesses the
property R if and only if S is an r−independent set. )is
concept was firstly introduced by Boutin and used the term
res-independent set [14]. For simplicity, we use the term
r−independent set rather than res-independent set. A family
of subsets of V possessing the property R is defined as

(V,R) � S ⊂ V | S possesses the propertyR . (2)

)us, we have a set system (V,R) consisting of those
subsets of V which are possessing the property R and is
called the r−independence system. All the subsets possessing
the property R may or may not be resolving. )is was an
error made by Boutin in [14], and we rectified it in [15].

Remark 1. For a set S ⊂ V, the following assertions are
equivalent:

(1) S ∈ (V,R)

(2) S possesses the property R

(3) S is an r−independent set

Remark 2. Let G be a graph with vertex set V of order n.
)en,

(1) v{ } ∈ (V,R) for each v ∈ V obviously
(2) V ∉ (V,R), because every (n − 1)−subset of V is a

resolving set for G

(3) a minimal resolving set for G is a maximal
r−independent set, but converse is not always true
[15]

2.1.MinimumPartitionProblem. For a connected graph G �

(V, E) and the r-independence system (V,R), the mini-
mum partition problem is to make a partition of V into the
minimum number of subsets possessing the property R.

)e least natural number k, such that V can be parti-
tioned into k subsets possessing the propertyR, is called the
resolving chromatic number of G associated with (V,R),
denoted by χr(V,R). A coloring λ: V⟶ 1, 2, . . . , k{ } of V

such that for each color c ∈ 1, 2, . . . , k{ }, the color class
v ∈ V, λ(v) � c{ } possesses the property R is called an
R−coloring of V. )us, χr(V,R) is the least number of
colors required by anR−coloring of V and is also called the
R−chromatic number of G.
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Example 1. Let G be a graph with V � v1, v2, v3, v4  and
E � v1 ∼ v2, v2 ∼ v3, v3 ∼ v4, v4 ∼ v1 . )en only two colors
are needed to properly color V, and it follows that the or-
dinary chromatic number χ(G) � 2 with color classes

v1, v3  and v2, v4 . )e metric dimension of G is 2 and two
nonantipodal vertices of G form a basis of G [4]. Accord-
ingly, no 3−element subset of V possess the propertyR and
so the r−independence system is

(V,R) � vi , v1, v2 , v2, v3 , v3, v4 , v4, v1 , v1, v3 , v2, v4 ; 1≤ i≤ 4 . (3)

)eminimum partition of V according toR−coloring of
V consists of two 2−element subsets of V from (V,R), and
hence, χr(V,R) � 2.

In the above example, we obtained that the chromatic
number and R−chromatic number of a graph G are same.
But, it is not necessary that these numbers are always same.

Example 2. Let G be a graph with V � v1, v2, v3, v4  and
E � v1 ∼ v2, v2 ∼ v3, v3 ∼ v4 . )en only two colors are
needed to properly color V, and it follows that the ordinary
chromatic number χ(G) � 2 with color classes v1, v3  and
v2, v4 . )emetric dimension of G is 1, and v1 , v4  are the
only two bases of G [4, 6]. Accordingly, each 2−element
subset of V is a resolving set for G, and so no 3−element
subset of V possess the property R. )us, the
r−independence system is

(V,R) � vi , v2, v3 ; 1≤ i≤ 4 . (4)

)eminimum partition of V according toR−coloring of
V consists of two bases sets and the set v2, v3  from (V,R).
Hence, χr(V,R) � 3.

It is observed, from Examples 1 and 2, that
χ(G)≤ χr(V,R). But, it is not true generally as, in the next

example, we have a have a graph G such that
χ(G)> χr(V,R).

Example 3. Let G be a graph with V � v1, v2, v3  and
E � v1 ∼ v2, v2 ∼ v3, v3 ∼ v1 . )en, three colors are re-
quired to properly color V, and it follows that the ordinary
chromatic number χ(G) � 3 with color classes v1 , v2  and
v3 . )e metric dimension of G is 2 and any two vertices of

G can form a basis ofG [4]. Accordingly, the 3−element set V

does not possess the propertyR and so the r−independence
system is

(V,R) � vi , v1, v2 , v2, v3 , v3, v1  ; 1≤ i≤ 3. (5)

)eminimum partition ofV according toR−coloring of
V consists of one singleton set v{ } and one 2−element set
V − v{ } from (V,R), and hence χr(V,R) � 2.

Example 4. Let G be a graph with V � v1, v2, v3, v4, v5  and
E � v1 ∼ v2, v2 ∼ v3, v3 ∼ v4, v3 ∼ v5 . )en two colors are
required to properly color V, and it follows that the ordinary
chromatic number χ(G) � 2 with color classes
v2 , v4 , v5  and v1 , v3 . )e metric dimension of G is 2
and v4, v5  is a set of basis of G [4]. But the set of three
elements v1, v2, v3  which is not resolving set of G possess
the property R and so the r−independence system is

(V,R) � vi , v1, v2 , v1, v3 , v1, v4 , v1, v5 , v2, v3 , v2, v4 , v2, v5 , v1, v2, v3  ; 1≤ i≤ 5. (6)

)eminimum partition of V according toR−coloring of
V consists of one 2−element set and one 3−element set V −

v{ } from (V,R), and hence χr(V,R) � 2.

3. Three Well-Known Families

In this section, we consider families of path graphs, cycle
graphs, and wheel graphs and solve the minimum partition
problem for each family.

3.1. Path Graphs. A path graph Pn, for n≥ 2, has vertex set
V � v1, v2, . . . , vn  and edge set E � vi ∼vi+1; 1≤ i≤ n − 1 .
)e following result describes which subset of the vertex set
of a path graph possesses the property R.

Lemma 1. No 3−element subset of the vertex set V of a path
graph G possess the property R.

Proof. As dim(G) � 1 and only each end vertex of G forms a
basis of G [6], every 2−element subset of V is a resolving set
for G. Consequently, no 3−element subset of V possess the
property R. □

)e next result investigates the number of subsets of the
vertex set of a path graph possessing the property R.

Lemma 2. For all n≥ 2, if G is a path graph with vertex set V,
then |(V,R)| � (1/2)(n2 − 3n + 6).

Proof. According to Lemma 1, each singleton subset of V as
well as each 2−element subset of V − v1, vn  possesses the
property R. It follows that for n � 2, 3,
(V,R) � vi ; 1≤ i≤ n , and for all n> 3,

(V,R) � vi ; 1≤ i≤ n ∪V2, (7)
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where V2 denotes the collection of all the n − 2
2  and

2−element subsets of V − v1, vn . Hence,

|(V,R)| � n +

n − 2

2
⎛⎝ ⎞⎠ �

1
2

n
2

− 3n + 6 . (8)

□

)e following result solves the minimum partition
problem for a path graph.

Theorem 1. For all n≥ 2, the vertex set V of a path graph can
be partitioned into ⌊(n + 3)/2⌋ minimum number of subsets
possessing the property R.

Proof. Let the color classes, due to a coloring
λ: V⟶ 1, 2, . . . , ⌊(n + 3)/2⌋{ } of V, are

When n is even, then C1 � v1 , C2 � vn  and
Ci+1 � vi, vn−i+1 ; 2≤ i≤ ((n − 2)/2)

When n is odd, then C1 � v1 , C2 � v((n+1)/2) , C3 �

vn  and Ci+2 � vi, vn−i+1 ; 2≤ i≤ ((n − 3)/2)

In both cases, all these color classes are lying in (V,R),
by Lemma 2. It follows that λ is an R−coloring of V, and
these color classes define a partition of V into the sets
possessing the property R. Further, any partition of V of
cardinality less than ⌊(n + 3)/2⌋ contains at least one
2−element or 3−element subset S of V such that S∈(V,R).
)us, a minimum partition of V has ⌊(n + 3)/2⌋ subsets of V

possessing the property R. □

3.2. Cycle Graphs. A cycle graph Cn, for n≥ 3, has vertex set
V � v1, v2, . . . , vn  and edge set E � vi ∼vi+1, vn ∼v1;

1≤ i≤ n − 1}. In the next result, we investigate which subset
of the vertex set of a cycle graph possesses the propertyR is.

Lemma 3. A subset of the vertex set V of a cycle graph G

which possess the propertyR is a singleton set or a 2−element
set.

Proof. In [4, 5], it was shown that dim(G) � 2 and any two
nonantipodal vertices of G form a basis of G. Further note
that, a 3−element subset S of V, whether containing two
antipodal vertices or not, is not an r−independent set. It
completes the proof. □

)e number of subsets of the vertex set of a cycle graph
possessing the propertyR is counted in the following result.

Lemma 4. For all n≥ 3, if G is a cycle graph with vertex set V,
then |(V,R)| � (1/2)(n2 + n).

Proof. Lemma 3 yields that each singleton subset of V as
well as each 2−element subset of V possesses the propertyR.
It follows that for all n≥ 3,

(V,R) � vi ; 1≤ i≤ n ∪V2, (9)

where V2 denotes the collection of all the n

2 , 2−element
subsets of V. Hence,

|(V,R)| � n +

n

2
⎛⎝ ⎞⎠ �

1
2

  n
2

+ n . (10)

□

)e minimum partition problem for a cycle graph is
solved in the following result.

Theorem 2. For all n≥ 3, the vertex set V of a cycle graph can
be partitioned into ⌈n/2⌉ minimum number of subsets pos-
sessing the property R.

Proof. Let the color classes, due to a coloring
λ: V⟶ 1, 2, . . . , ⌈n/2⌉{ } of V, are as follows:

When n is even, then Ci � vi, vn−i+1 ; 1≤ i≤ (n/2).
When n is odd, then C1 � v1  and Ci � vi, vn−i+2 ;
2≤ i≤ ((n + 1)/2).

In both the cases, all these color classes are lying in
(V,R), by Lemma 4. It follows that λ is anR−coloring of V,
and these color classes define a partition of V into the sets
possessing the property R. Further, any partition of V of
cardinality less than ⌈n/2⌉ contains at least one 3−element
subset S of V such that S∈(V,R). )us, a minimum par-
tition of V has ⌈n/2⌉ subsets of V possessing the property
R. □

3.3.Wheel Graphs. For n≥ 3, let Cn: v1 ∼ v2 ∼ · · · ∼ vn ∼ v1
be a cycle and K1 be the trivial graph with vertex v. )en a
wheel graph is the sum Wn � K1 + Cn with vertex set V �

v, vi; 1≤ i≤ n  and edge set E � v ∼ vi; 1≤ i≤ n ∪E(Cn).
For fixed i; 1≤ i≤ n, let a path P: vi ∼ vi+1 ∼ · · · ∼ vi+n−5 of
order n − 4 on the cycle Cn of Wn, where the indices greater
than n or less than zero will be take modulo n. )e following
result describes the sets in Wn possessing the propertyR for
n≥ 8.

Remark 3. For n≥ 8, let Wn be a wheel graph with vertex set
u. Let V be set of any vi, i � 1, . . . , n − 4  consecutive
vertices of wheel graph, then V is a maximal independent set
which is not a minimal resolving set.

Lemma 5. For n≥ 8, let Wn be a wheel graph with vertex set
V. &en,

(1) every k−element subset of the set S � V(P)∪ v{ } be-
longs to (V,R) for 1≤ k≤ n − 3

(2) every k−element subset of the set V − S belongs to
(V,R) for 1≤ k≤ 4

Proof

(1) For fixed i; 1≤ i≤ n, S � v, vj; i≤ j≤ i + n − 5 . Since
d(vi+n−2, v) � 1 � d(vi+n−3, v) and d(vi+n−2, u) � 1 �

d(vi+n−3, u) for each u ∈ V(P), cW(vi+n−2) � cW

(vi+n−3) for any W⊆S. It follows the required result.
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(2) Note that V − S � vi+n−1, vi+n−2, vi+n−3, vi+n−4 . For
any x, y ∈ S − v, vi, vi+n−5  and d(x, w) � 2 � d(y,

w) for each w ∈ V − S. )is implies that cW(x) �

cW(y) for any W⊆V − S. Hence, the required result
followed. □

For wheel graphs, the following result solves the mini-
mum partition problem.

Theorem 3. For n≥ 3, let Wn be a wheel graph with vertex set
V. &en,

χr(V,R) �
2, when n≠ 5, 6, 7,

3, when n � 5, 6, 7.
 (11)

Proof. It can be easily seen that a partition

(i) v1, v2 , v3, v   is a minimum partition of V having
sets possessing the property R in W3,

(ii) v1, v3, v , v2, v4   is a minimum partition of V

having sets possessing the property R in W4,
(iii) v1, v2 , v3, v4 , v5, v   is a minimum partition of

V having sets possessing the property R in W5,
(iv) v{ }, v1, v2, v3 , v4, v5, v6   is a minimum partition

of V having sets possessing the property R in W6,
and

(v) v1, v2, v3 , v4, v5, v6 , v7, v   is a minimum par-
tition of V having sets possessing the propertyR in
W7.

It follows that χr(V,R) is 2 when n � 3, 4 and is 3 when
n � 5, 6, 7.

For all n≥ 8, let λ: V⟶ 1, 2{ } be a coloring of V and let
the corresponding color classes are C1 � V(P)∪ v{ }, where
P: vi ∼ vi+1 ∼ · · · ∼ vi+n−5 for any fixed 1≤ i≤ n, and
C2 � V − C1. )en C1 and C2 define a partition of V. Also,
Lemma 5 yields that both C1 and C2 possess the propertyR.
)erefore, λ is an R−coloring of V, and hence
χr(V,R) � 2. □

4. Twins and r− Independence

Let v be a vertex of a graph G having vertex set V. )en the
open neighborhood of v is N(v) � u ∈ V: u ∼ v inG{ } and
the closed neighborhood of v is N[v] � N(v)∪ v{ }. Two
distinct vertices u and v of G are adjacent twins if N[u] �

N[v] and nonadjacent twins if N(u) � N(v). Observe that if
u, v are adjacent twins, then u ∼ v in G and if u, v are
nonadjacent twins, then u ∼ v inG. Adjacent twins are called
true twins and nonadjacent twins are called false twins.
Either u, v are adjacent or nonadjacent twins, they are called
twins. A vertex v is called self twin if neither N(u) � N(v)

nor N[v] � N[u], for all u ∈ V. Each self twin in a graph
makes a set of singleton twins. A setT⊆V is called a twin set in
G if u, v are twins in G for every pair of distinct vertices
u, v ∈ T. )e next lemma follows from the above definitions
[16].

Lemma 6 (see [16]). If u and v are twins in a graph G, then
d(u, x) � d(v, x) for every vertex x ∈ V − u, v{ }.

Due to Lemma 6, we have the following remark.

Remark 4

(1) If u and v are twins in a graph G and W is a resolving
set for G. )en either u ∈W or v ∈W.

(2) If T is a twin set in a graphG of order t≥ 2, then every
resolving set for G contains at least t − 1 elements of
T.

Removal of two twins from the vertex set makes it
r−independent as given in the next result.

Lemma 7. Let T be a twin set of order t≥ 2 in a graph G

having the vertex set V. &en, for any two elements u, v ∈ T,
the set V − u, v{ } possesses the property R.

Proof. Since d(u, x) � d(v, x) for all x ∈ V − u, v{ }, by
Lemma 6, so no subset of V − u, v{ } is a resolving set for G. It
follows the result. □

Remarks 2 and 4 yield the following two results.

Lemma 8. Let T be a twin set of order t≥ 2 in a graph G.
&en, for each 1≤ k≤ t − 1, any k−element subset S of T and
the set T − S both possess the property R.

Proof. If t � 2, then each subset S of T of order less that |T|

as well as the setT − S both are singleton, and so Remark 2(1)
yields the result. If t≥ 3, then as t − 1 vertices of T must
belong to any resolving set for G, by Remark 4(2), so no
subset of T of order ≤t − 2 is not a resolving set, because
there are at least two twins are remained in T form that one
of themmust belong to a resolving set for G, by Remark 4(1).
It follows that any k−element subset S of T possesses the
propertyR for each 1≤ k≤ t − 1. Further, since the set T − S

is either singleton or contains at least more than one twins
from T, no subset of T − S is a resolving set for G. )us, it
must possess the property R. □

Lemma 8 can be generalized with the similar proof when
a graph G has more than one twin sets of order at least two,
and this generalization is stated in the following result.

Theorem 4. For l≥ 2, let T1, T2, . . . , Tl are twin sets in a
graph G of orders t1, t2, . . . , tl, respectively, where each ti ≥ 2.
If Si is a ki−element subset of Ti for 1≤ ki ≤ ti − 1, then

(1) each Si possesses the property R,
(2) ∪ l

i�1Si possesses the property R, and
(3) ∪ l

i�1Ti − ∪ l
i�1Si possesses the property R.
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Remark 5. Let G be a family of graph and G ∈ G. For l≥ 2,
let T1, T2, . . . , Tl are twin sets in a graph G of orders
t1, t2, . . . , tl, respectively, where each ti ≥ 2. Let a nonempty
set S is union of singleton twin sets in G, and let v1, v2 

belong to any one of T1, T2, . . . , Tl, then S∪Ti − v1, v2  is a
maximal independent set which is not minimal resolving set.

)e following result states the relationship between twins
and r−independence.

Theorem 5. &e R−chromatic number of a graph G (except
P3) of order n≥ 3 having a nonsingleton twin set is two.

Proof. Let G be a graph of order n≥ 4 with vertex set V, and
let T be a twin set in G. Let λ: V⟶ 1, 2{ } be a coloring of V,
and let the corresponding color classes are C1 � V − u, v{ }

for any u, v ∈ T and C2 � u, v{ }. )en C1 and C2 define a
partition of V. Also, Lemma 7 implies that C1 ∈ (V,R).
Further, since no path graph of order more than three has a
twin set, so G is not a path graph. It follows that no singleton
subset of C2 is resolving, because a path graph only has a
singleton resolving set [4]. )us, C2 ∈ (V,R). Hence, λ is an
R−coloring of V, and so χr(V,R) � 2. □

Remark 6

(1) )e converse of )eorem 5 is not true generally.
)eorem 3 describes that the R−chromatic number
of a wheel graph Wn is two, but Wn has no twin class
for any n≥ 8.

(2) In )eorem 5, if G is P3, then G has one twin set
containing two end vertices. But, the R−chromatic
number of G is three, by )eorem 1.

Next, we provide two well-known families of graphs as in
the favor of )eorem 5.

4.1. Complete Multipartite Graphs. Let G be a complete
multipartite graph with k≥ 2 partite sets V1, V2, . . . , Vk of
cardinality m1, m2, . . . , mk, respectively, where each mi ≥ 1.

(i) If mi � 1 for all 1≤ i≤ k, then G is a complete graph
Kk having vertex as the twin set.

(ii) If some of mi is not equal to one. Let us suppose,
without loss of generality, that mi � 1 for 1≤ i≤ l

and 2≤ l< k. )en, G has k − l + 1 twin sets
Vl+1, Vl+2, . . . , Vk and ∪l

i�1Vi.
(iii) If k � 2, m1 � 1 and m2 � 2, then G is K1,2 � P3.

As, the R−chromatic number of P3 is 3, by )eorem 1,
so we receive the following consequence from )eorem 5.

Corollary 1. &e R−chromatic number of a complete
multipartite graph (which is not K1,2) is two.

Example 5 (Circulant networks).

)e family of circulant networks is an important family of
graphs, which is useful in the design of local area networks [17].

)ese networks are the special case of Cayley graphs Cay(G; S)

when the group G is Zn (an additive group of integers modulo
n) and S⊆Zn\ 0{ } [18]. )ese graphs are defined as follows: let
n, m and a1, a2, . . . , am be positive integers, 1≤ ai ≤ ⌊n/2⌋ and
ai ≠ aj for all 1≤ i< j≤m. An undirected graph with the set of
vertices vi+1; i ∈ Zn , and the set of edges vj ∼ vj+al

: 1≤

j≤ n, 1≤ l≤m} is called a circulant graph, denoted by
Cn(a1, a2, . . . , am). )e numbers a1, a2, . . . , am are called the
generators, and we say that the edge vj ∼ vj+al

is of type al.)e
indices after n will be taken modulo n. )e cycle v1 ∼ v2 ∼ . . .

∼ vn ∼ v1 in Cn(a1, a2, . . . , am) is called the principal cycle.
Consider a class of circulant networks C2n+2(1, n), for n≥ 1.
)en there are n + 1 twin sets Ti � vi, vi+n+1  for 1≤ i≤ n + 1.
)us, as a consequence of )eorem 5, the R−chromatic
number of C2n+2(1, n) is two.

5. Some Realizations

Remark 2(3) describes that there is no n−element
r−independent set in a connected graph of order n≥ 2.
Lemma 7 illustrates that a connected graph G of order n≥ 3
having twins (other than self twins) can have an
(n − 2)−element set as an r−independent set. In the result to
follow, we characterize all the connected graphs of order
n≥ 2 in which every (n − 1)−element subset of the vertex set
is r−independent.

Theorem 6. Let G be a connected graph of order n≥ 2 with
vertex set V. &en any (n − 1)−element subset of V possesses
the property R if and only if G is a complete graph.

Proof. Suppose that G is a complete graph. )en every two
vertices of G are twins and V itself is the twin set in G. So
Lemma 8 yields the required result.

Conversely, suppose that any (n − 1)−element subset,
say S � s1, s1, . . . , sn−1 , ofV possesses the propertyR.)en
S is a resolving set for G, because for any si ∈ S, 0 lies at the
ith position in the code cS(si), whereas the code cS(v) of the
element v ∈ V − S has all nonzero coordinates. Further, S is a
minimum resolving set for G, because no k−element subset
of S is a resolving set for any 1≤ k≤ n − 2, by our suppo-
sition. )us, dim(G) � n − 1. In [4, 6], it was shown that a
graph G of order n has dim(G) � n − 1 if and only if G is a
complete graph. It completes the proof. □

Since any singleton set is an r−independent, so we have
the following consequences for a complete graphs.

Corollary 2. &e R−chromatic number of a complete graph
is two.

If G is a connected graph of order n≥ 2 with vertex set V,
then 2≤ χr(V, (R))≤ n, by Remark 2(3). )e next result
characterizes all the connected graphs of order n≥ 2 having
R−chromatic number n.

Theorem 7. Let G be a connected graph of order n≥ 2 with
vertex set V. &en, χr(V,R) � n if and only if G is either
K2(� P2) or P3(� K1,2).
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Proof. If G � K2(� P2), then χr(V,R) � 2, by Corollary 2.
If G � P3(� K1,2), then χr(V,R) � 3, by )eorem 1.
Conversely, suppose that for a connected graph G of

order n≥ 2 with vertex set V, we have χr(V,R) � n. )en,

(i) for n � 2, the only connected graph is K2(� P2) such
that χr(V,R) � 2 � n, by Corollary 2,

(ii) for n � 3, G is either C3(� K3) or P3(� K1,2). Since
the R−chromatic number of C3 is 2 � n − 1, by
)eorem 2, and the R−chromatic number of P3 is
3 � n, by )eorem 1, so G � P3 in this case.

(ii) for n≥ 4, either G has a twin set or no twin set exists
in G. In the former case, χr(V,R) � 2≠ n, by
)eorem 5. In the latter case, let V � v1, v2, . . . , vn .
)en, χr(V,R) � n implies that the minimum
partition of the r−independence system (V,R) is

v1 , v2 , . . . , vn  . It follows that no k−element
subset of V belongs to (V,R) for k≥ 2. Otherwise,
χr(V,R)≤ n − 1. But, in every connected graph of
order n≥ 4, at least one 2−element subset of V must
possess the property R, because singleton resolving
sets exist in a path graph only (and in the case of path
graph Pn, (n≥ 4), we have 2−element subsets of V in
(V,R), by Lemma 2). )erefore, no connected
graph G of order n≥ 4 exists such that χr(V,R) � n.

From the above three cases, we conclude that G is either
K2(� P2) or P3(� K1,2). □

From )eorem 7, it concludes that if G is a connected
graph of order n≥ 3 with vertex set V and G � P3(� K1,2),
then 2≤ χr(V,R)≤ n − 1. All the connected graphs of order
n≥ 3 having R−chromatic number n − 1 are characterized
in the following result.

Theorem 8. Let G be a connected graph of order n≥ 3 with
vertex set V. &en, χr(V,R) � n − 1 if and only if G is either
C3(� K3) or P4 or P5.

Proof. If G � C3(� K3), then )eorem 2 yields that
χr(V,R) � n − 1.

If G � P4 or P5, then χr(V,R) � n − 1, by )eorem 1.
Conversely, suppose that for a connected graph G of

order n≥ 3 with vertex set V, we have χr(V,R) � n − 1.
)en,

(i) for n � 3, G is either P3(� K1,2) or C3(� K3). G �

P3 is not true, by)eorem 7. So G � C3, by)eorem
2,

(ii) for n � 4, G � P4, K1,3, K4(� W3), K4 − e,

K4 − 2e(� P4 andC4), C4(� K2,2)}, where K4 − e

and K4 − 2e can be obtained by deleting one and
two edges from K4, respectively. In this case, except
P4, all the graphs has a twin set and so
χr(V,R) � 2≠ n − 1, by )eorem 5. )us G � P4,
by )eorem 1.

(iii) for n≥ 5, either G has no twin set or G has a twin set.
χr(V,R) � 2≠ n − 1 in the latter case, by )eorem
5. In the former case, except G � Pn, a minimum

resolving set for G is of at least two order, which
implies that every 2−element subset of V belongs to
(V,R). It follows that a minimum partition of V

according to the r−independence system contains at
least two 2−element subsets of V, which implies that
χr(V,R)≤ n − 2, a contradiction. However, when
G � Pn, then χr(V,R) � 4 � n − 1 only for n � 5
and χr(V,R)≤ n − 2 for n≥ 6, by )eorem 1.

From the above three case, we conclude that G is either
C3(� K3) or P4 or P5. □

)eorem 8 concludes that if G is a connected graph of
order n≥ 4 with vertex set V and G � P4, P5 , then
2≤ χr(V,R)≤ n − 2.

6. Metric Dimension and r− Independence

In this section, we develop a relationship between the metric
dimension andR−chromatic number of a connected graph
by providing three existing type results.

)ere exists a connected graph whose metric dimension
is different from its R−chromatic number by one.

Theorem 9. For even n≥ 4, there exists a connected graph G

with vertex set V such that dim(G) − χr(V,R) � 1.

Proof. Let Cn be a cycle graph on even n≥ 4 vertices and a
path P2. )en G is a graph obtained by taking the product of
Cn and P2. Let the vertex set of G be V � vi, ui; 1≤ i≤ n ,
and the edge set is E � vi ∼ vi+1, ui ∼ ui+1,

uj ∼ vj; 1≤ i≤ n − 1∧ 1≤ j≤ n}. )e resultant graph G

consists of two n cycles: one is outer cycle
v1 ∼ v2 ∼ · · · ∼ vn ∼ v1, and the other one is inner cycle
u1 ∼ u2 ∼ · · · ∼ un ∼ u1. It is shown, in [19], that
dim(G) � 3. Next, we investigate theR−chromatic number
of G with the help of the following five claims:

Claim 1. Every singleton, 2−element and 3−element
subset of V possesses the propertyR. Based on
Remark 2(1) and due to dim(G) � 3 [19], this
claim is true, because a minimum resolving set
for G is of cardinality 3, and so no singleton and
2−element subset of V is a resolving set for G.

Claim 2. For fixed 1≤ i≤ n, the sets X � vi, vi+(n/2), v 

and Y � ui, ui+(n/2), v  are minimum resolving
sets for G only when v ∈ V − vi, vi+(n/2),

ui, ui+(n/2)}. Otherwise, cX(vi−1) � cX(vi+1) and
cY(vi−1) � cY(vi+1).

Claim 3. For fixed 1≤ i≤ n, the set
Z � vi, vi+(n/2), ui, ui+(n/2)  ⊂ V possesses the
property R. By Claim 2, no subset of Z is a
resolving set for G. It follows the required
claim.

Claim 4. No r−independent set (other than Z) in G of
cardinality greater than 3 contains any of the
pairs (vi, vi+(n/2)) and (ui, ui+(n/2)).
Let S be an r−independent set in G of cardi-
nality greater than 3. Suppose, without loss of
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generality, S contains the pair (vi, vi+(n/2)).
)en a subset vi, vi+(n/2), v  of S for v ∈ S −

vi, vi+(n/2)  is a resolving set for G, by Claim 2,
which contradicts the r−independence of S.
)us, S cannot contain the pair (vi, vi+(n/2)).
Similarly, the pair (ui, ui+(n/2)) will not con-
tained in S.

Claim 5. For each 1≤ k≤ n, there is a k−element subset
of V possessing the propertyR. Claim 1 yields
the result of k � 1, 2, 3. For k � 4, we have a set
in (V,R), by Claim 3. Next, keeping Claim 4
in mind, let us consider two subset of V of
cardinality n as follows: for fixed 1≤ i≤ n,

S1i � uj, vl; j � i + 1, i + 2, . . . , i +
n

2
∧ l � i, i − 1, . . . , i −

n

2
+ 1 ,

S2i � vj, ul; j � i + 1, i + 2, . . . , i +
n

2
∧ l � i, i − 1, . . . , i −

n

2
+ 1 ,

(12)

where the indices greater than n or less than or
equal to zero will be taken modulo n. )en
d(ui, x) � d(vi+1, x) for all x ∈ S1i and
d(vi, y) � d(ui+1, y) for all y ∈ S2i.
It follows that cW(ui) � cW(vi+1) for any
W⊆ S1i and cW(vi) � cW(ui+1) for any W⊆ S2i.
Hence, both the S1i, S2i and each subset of any
cardinality all are the subsets of V possessing
the property R, and of course, they are
k−element subsets of V for 1≤ k≤ n.
Now, let λ: V⟶ 1, 2{ } be a coloring of V, and
let the corresponding color classes are, for fixed
1≤ i≤ n,

C1 � uj, vl; j � i + 1, i + 2, . . . , i +
n

2
∧ l � i, i − 1, . . . , i −

n

2
+ 1 ,

C2 � vj, ul; j � i + 1, i + 2, . . . , i +
n

2
∧ l � i, i − 1, . . . , i −

n

2
+ 1 ,

(13)

where the indices greater than n or less than or
equal to zero will be taken modulo n. )en C1
and C2 define a partition of V. Also, Claim 5
yields that C1, C2 ∈ (V,R). Hence, λ is an
R−coloring of V, and so χr(V,R) � 2.
)erefore, dim(G) − χr(V,R) � 1 for every
even value of n≥ 4. □

Remark 7. It is not necessary that the difference dim(G) −

χr(V,R) is constant (fixed) always. It can arbitrarily large
depending upon the order of the graph. For instance, let G be
a wheel graph of order n≥ 8, then dim(G) � ⌊(2/5)(n + 1)⌋

[20], and χr(V,R) � 2, by)eorem 3. So, it can be seen that
the difference dim(G) − χr(V,R) � ⌊(2/5)(n − 4)⌋, which
is depending upon n and is not fixed.

)e next result shows that there exists a connected graph
whose R−chromatic number is different from its metric
dimension by one.

Theorem 10. For odd n≥ 3, there exists a connected graph G

with vertex set V such that χr(V,R) − dim(G) � 1.

Proof. Let a cycle graph Cn on odd n≥ 3 vertices and a path
P2. )en G is a graph obtained by taking the product of Cn

and P2. Let the vertex set ofG be V � vi, ui; 1≤ i≤ n  and the
edge set is E � vi ∼ vi+1, ui ∼ ui+1, uj ∼ vj; 1≤ i≤ n − 1∧1≤

j≤ n}. )e resultant graph G consists of two n−cycles: one is
outer cycle v1 ∼ v2 ∼ · · · ∼ vn ∼ v1, and the other one is
inner cycle u1 ∼ u2 ∼ · · · ∼ un ∼ u1. Note that diam(G) �

((n + 1)/2), and it was show, in [19], that dim(G) � 2, so a
minimum resolving set for G consists of two vertices of G.
Next, we investigate the R−chromatic number of G on the
base of the following six claims:

Claim 1. Every singleton and 2−element subset of V

possesses the property R. Based on Remark
2(1) and due to dim(G) � 2 [19], this claim is
true, because a minimum resolving set for G is
of cardinality 2, and so no singleton subset of V

is a resolving set for G.
Claim 2. A minimum resolving set for G contains both

the vertices either from the outer cycle or from
the inner cycle of G.
Let W be a minimum resolving set for G. For
fixed 1≤ i≤ n, let W � vi, uj , where 1≤ j≤ n.
)en,
cW(vi+1) � cW(vi−1) when j � i,
cW(vi+1) � cW(ui) when j � i + 1, i + 2, . . . , i +

((n − 1)/2), and
cW(vj) � cW(uj+1) when j � i + ((n − 1)/2) +

1, . . . , i + n,
where the indices greater than n or less than
zero will be taken modulo n. It follows that W

is not a resolving set for G, a contradiction.
Claim 3. For fixed 1≤ i≤ n, a minimum resolving set for

G contains both the vertices:

x, y ∈ vi, vi+((n−1)/2), vi+((n−1)/2)+1, ui, ui+((n−1)/2), ui+((n−1)/2)+1 ,

(14)

such that d(x, y) � diam(G) − 1.
LetW be aminimum resolving set for G, then W

must contain both the vertices from the same
cycle of G, by Claim 2. Let W � vi, v  and
d(vi, v)< diam(G) − 1 (inG, no two vertices u, v

belonging to a same cycle have d(u, v)

� diam(G)). )en, v≠ vi+((n−1)/2), vi+((n−1)/2)+1
and
cW(ui+((n−1)/2)−1) � cW(vi+((n−1)/2)) if v ∈ vi+1,

. . . , vi+((n−1)/2)−1}, and
cW(vi+((n−1)/2)+1) � cW(ui+((n−1)/2)+2) if
v ∈ vi+((n−1)/2)+2, . . . , vi+n ,
where the indices greater than n or less than or
equal to zero will be taken modulo n. A
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contradiction to the fact that W is a resolving
set for G.

Claim 4. No r−independent set in G of cardinality
greater than 2 contains two vertices x, y from a
same cycle (outer or inner) of G such that
d(x, y) � diam(G) − 1. Otherwise, the set
x, y  is such a subset of that r−independent
set which is resolving for G, by Claim 3.

Claim 5. For each 1≤ k≤ n − 1, there is a k−element
subset of V possessing the property R.
Claim 1 follows the claim for k � 1, 2. Next,
keeping Claim 4 in mind, let us consider two
subset of V of cardinality n − 1 as follows: for
fixed 1≤ i≤ n,

S1i � uj, vl; j � i + 1, i + 2, . . . , i +
n − 1
2
∧ l � i, i − 1, . . . , i −

n − 1
2

+ 1 ,

S2i � vj, ul; j � i + 1, i + 2, . . . , i +
n − 1
2
∧ l � i, i − 1, . . . , i −

n − 1
2

+ 1 ,

(15)

where the indices greater than n or less than or
equal to zero will be taken modulo n. )en,
d(ui, x) � d(vi+1, x) for all x ∈ S1i and
d(vi, y) � d(ui+1, y) for all y ∈ S2i.
It follows that cW(ui) � cW(vi+1) for any
W⊆S1i and cW(vi) � cW(ui+1) for any W⊆ S2i.
Hence, both the set S1i, S2i and each subset of
any cardinality all are the subsets of V

possessing the propertyR, and of course, they
are k−element subsets of V for 1≤ k≤ n − 1.

Claim 6. No r−independent set of cardinality greater
than n − 1 exists in G. Otherwise, Claim 4 will
be contradicted.
Now, let λ: V⟶ 1, 2, 3{ } be a coloring of V,
and let the corresponding color classes are: for
fixed 1≤ i≤ n, C1 � vi+diam(G), ui+diam(G) ,

C2 � uj, vl; j � i + 1, i + 2, . . . , i +
n − 1
2
∧ l � i, i − 1, . . . , i −

n − 1
2

+ 1 ,

C3 � vj, ul; j � i + 1, i + 2, . . . , i +
n − 1
2
∧ l � i, i − 1, . . . , i −

n − 1
2

+ 1 ,

(16)

where the indices greater than n or less than or
equal to zero will be taken modulo n. )en
C1, C2, and C3 define a partition of V. Also,
Claims 1 and 5 yield that C1, C2, C3 ∈ (V,R).
Hence, λ is an R−coloring of V, and so
χr(V,R) � 3. )erefore, χr(V,R) − dim
(G) � 1 for every odd value of n≥ 3. □

Remark 8. It is not necessary that the difference
χr(V,R) − dim(G) is constant (fixed) always. It can ar-
bitrarily large by depending upon the order of the graph.
For instance, let G be a cycle graph of order n≥ 3, then
dim(G) � 2 [4] and χr(V,R) � ⌈n/2⌉, by)eorem 2. It can
be seen that the difference χr(V,R) − dim
(G) � ⌊(n − 3)/2⌋, which is depending upon n and is not
fixed.

)e following result provides the existence of a con-
nected graph whose metric dimension is equal to its
R−chromatic number.

Theorem 11. For odd n≥ 3, there exists a connected graph G

with vertex set V such that χr(V,R) � dim(G).

Proof. Let G be a circulant network C2n+1(1, n) for odd n≥ 3
with vertex set V � vi+1; i ∈ Zn  (defined in Example 5),
where the indices will be taken modulo n. )e distance
between vi and vj, (j≠ i) on the principal is denoted by
d∗(ui, vj) (for instance, in a circulant network Cn(1, 3),
d(vi, vi+3) � 1 where as d∗(vi, vi+3) � 3 for any 1≤ i≤ n). )e
metric dimension, dim(G), of G is 3 as shown in [21]. On the
basis of the following three claims, we investigate the
R−chromatic number of G.

Claim 1. Every k−element subset of V possesses the
property R for 1≤ k≤ 3.
As a minimum resolving set for G is of car-
dinality three, so no singleton and 2−element
subset of V resolves G. It follows the claim.

Claim 2. No r−independent set in G of cardinality
greater than three contains two vertices u and v

such that d∗(u, v) � n.
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If S is an r−independent set in G containing
two vertices u and v such that d∗(u, v) � n,
then the set u, v, w{ } ⊂ S, for any w ∈ S − u, v{ },
is a resolving set for G, a contradiction.

Claim 3. A maximum r−independent set in G consists
of n consecutive vertices form the principal
cycle.
Firstly, for fixed 1≤ i≤ n, we show that a set
S � vi, vi+1, . . . , vi+n−1  ⊂ V of n consecutive
vertices form the principal cycle possesses the
property R. Note that, d(vi+n, s) � d(vi−1, s)

for all s ∈ S. It follows that cW(vi+n) � cW(vi−1)

for each W⊆ S. Hence, no subset of S is a
resolving set for G. Secondly, if an
r−independent set S either contains n non-
consecutive vertices or contains more than n

vertices (consecutive or nonconsecutive) form
the principal cycle, then S must contradict
Claim 2.
Now, let λ: V⟶ 1, 2, 3{ } be a coloring of V,
and let the corresponding color classes are: for
fixed 1≤ i≤ n, C1 � vi+2n , C2 � vi, vi+1, . . . ,

vi+n−1}, and C3 � vi+n, vi+n+1, . . . , vi+2n−1 ,
where the indices will be taken modulo n. )en
C1, C2 and C3 define a partition of V. Also,
Claims 1 and 3 yield that C1, C2, C3 ∈ (V,R).
Hence, λ is an R−coloring of V, and so
χr(V,R) � 3. )erefore, χr(V,R) � dim(G)

for every odd value of n≥ 3. □
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Metric dimension is the extraction of the affine dimension (obtained from Euclidean space Ed) to the arbitrary metric space. A
family F � (Gn) of connected graphs with n≥ 3 is a family of constant metric dimension if dim(G) � k (some constant) for all
graphs in the family. FamilyF has bounded metric dimension if dim(Gn)≤M, for all graphs inF. Metric dimension is used to
locate the position in the Global Positioning System (GPS), optimization, network theory, and image processing. It is also used for
the location of hospitals and other places in big cities to trace these places. In this paper, we analyzed the features and metric
dimension of generalized convex polytopes and showed that this family belongs to the family of bounded metric dimension.

1. Introduction

Let G ∈ F be a finite, simple, and undirected connected
graph with vertex set V � V(G) � v1, v2, . . . , vn  and edge
set E � E(G). )e distance between two vertices is denoted
by d(vs, vj) � dsj where dsj is the length of the shortest path
between these vertices in G. Moreover, the distance dsj � djs

because all graphs are undirected. An ordered subset W �

w1, w2, . . . , wk  of V is called a resolving set or locating set
for G if for any two distinct vertices vs and vj, their codes are
distinct with respect to Z, where code(vs) �

(d(vs, z1), d(vs, z2), . . . , d(vs, zk)) ∈Wk is a vector [1].
min : |W|: W is a resolving set of G  � dim(G) � β(G) is
called the metric dimension or locating number of G, and
such a resolving set Z is called a basis set for G. To investigate
Z is a basis set for G, it suffices to show that, for all different
vertices x, y ∈ V∖W, their codes are also different because
for any wj ∈W, 1≤ j≤ k, the jth component of the code is
zero, while all other components are nonzero. For more
details about β(G) and resolving sets, one can read [1–4].

Lemma 1 (see [3]). For a connected graph G with resolving
set W, if d(xs, w) � d(xj, w) for all w ∈ V∖ xs, xj , then
W∩ xs, xj ≠∅.

)e join of two graphs G and H represented as G + H is
a graph with V(G + H) � V(G)∪V(H) and
E(G + H) � E(G)∪E(H)∪ gh: g ∈ V(G) and h ∈ V(H) .
Wn � Cn + K1 is a wheel graph of order n + 1 for n≥ 3. fn �

Pn + K1 is a fan graph obtained from the amalgamation of
the path on n vertices with a single vertex graph Kn.
Jahangir or gear graph J2n is obtained from the wheel
graph W2n by deleting n-cycle edges alternatively; see in
[4]. )e following results appear in [5–7] for the graphs
defined above.

Theorem 1. For wheel graph Wn, fan graph fn, and Jahangir
graph J2n, we have the following:

(i) β(Wn) � ⌊(2n + 2)/5⌋, for every n≥ 7
(ii) β(fn) � [(2n + 2)/5], for every n≥ 7
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(iii) β(J2n) � ⌊2n/3⌋, for every n≥ 4

All the above three families of graphs are planar, and
their metric dimension depends on the number of vertices
in the graph, which shows that the metric dimension of
these graphs is unbounded [8, 9]. Khuller et al. [10] clarified
the properties of those graphs whose metric dimension is
two.

Theorem 2 (see [10]). Let β(G) � 2 � |W|, where
W � x, y  ⊂ V(G); then, the following holds:

(i) 7ere is a unique shortest path P between x and y

(ii) deg(x)≤ 3 or deg(y)≤ 3
(iii) For every other vertex z except x and y on P,

deg(z)≤ 5

Definition 1 (see [11]). A set K ⊂ Rd is said to be convex if
the line segment xy: λx + (1 − λ)y, 0≤ λ≤ 1, lies inside K

for all distinct pairs of point x, y ∈ K.

Definition 2 (see [11]). )e smallest convex set containing K

(the intersection of the family of all convex sets that contain
K) is called the convex hull of K, denoted by
Conv(K) � ∩ K⊂Ss

Ss, where Ss is a convex set.

Definition 3 (see [11]). A convex polytope is a bounded
convex linear combination of convex sets.

)ere are some families of graphs with constant metric
dimension (see [2]); these families are generated by convex
polytopes. )e problem of finding β(G) is NP-complete (see
[2]).

Theorem 3 (see [12]). Let S
p
n be a convex polytope with

p-pendent vertices; then, dim(S
p
n ) � 3 for all n≥ 6.

Theorem 4 (see [12]). 7e metric dimension of convex
polytope T

p
n with p-pendent edges is 3 for every n≥ 6.

Theorem 5 (see [12]). β(U
p
n ) � 3 for n≥ 6, where U

p
n is a

convex polytope graph with p-pendents.

For more details about the metric dimension of certain
families of graphs, see [13, 14]. Here, we will investigate

generalized convex polytopes with pendent edges for their
metric dimensions.

2. Main Results

)is section is devoted to the main results which we proved
for the newly introduced generalized convex polytopes. )e
convex polytopes Sn, Tn, and Un were examined by
Muhammad et al. for their metric dimensions in [2] and
proved that these families belong to the family of constant
metric dimension.

Generalized convex polytope Sn,m is the generalization of
Sn, with one n-sided and infinite face each, 3-sided faces being
2n, and 4-sided faces being n(m − 2), so the total number of
faces is nm + 2. )e convex polytope S

p
n,m is obtained from the

generalized convex polytope graph by attached p-pendent
vertices at the outer cycle of Sn,m, shown in Figure 1. )e
generalized convex polytope S

p
n.m with p-pendents is a graph

consisting of m cycles, with vertex and edge sets

V S
p
n,m  � X

j
s : 1≤ s≤ n, 1≤ j≤m ,

E S
p
n,m  � X

j
sX

j
s+1: 1≤ s≤ n, 1≤ j≤m 

∪ X
j
sX

j+1
s : 1≤ s≤ n, 1≤ j≤m 

∪ X
1
s+1X

2
s : 1≤ s≤ n .

(1)

In the set of edges, indices are taken as modulo n and m.
In [2], it was shown that β(Sn) � 3, for n≥ 6. In the result

below, we proved that the metric dimension for the gen-
eralized convex polytope of Sn is still 3, which implies that Sn,
S

p
n , and S

p
n,m belong to the same family of constant metric

dimension.

Theorem 6. Let G � S
p
n,m be the generalized convex polytope

graph defined above; then, β(G) � 3 for n≥ 6 and m≥ 5.

Proof. Validating the mentioned theorem with the help of
double inequalities, two cases are present:

Case (i): for n is even.
Let n � 2α′ where α′ ≥ 3 is an integer. As |N2(x)|≥ 6 for
all x ∈ Sn,m, it is guaranteed by [15] that β(G)≥ 3.
Consider Z � X1

1, X1
2, X1

l+1  to be an ordered subset of
V(S

p
n,m); to show that Z is a basis set for G, codes of the

elements of V(S
p
n,m)∖Z with respect to Z are given in

the following scheme:

r X
1
s |Z  �

s − 1, s − 2, α′ − s + 1( , α′ ≥ s≥ 3,

2α′ − s + 1, 2α′ − s + 2, s − α′ − 1( , 2α′ ≥ s≥ α′ + 2,

⎧⎨

⎩

r X
2
s |Z  �

1, 1, α′( , s � 1,

s, s − α′, α′ − s + 1( , α′ ≥ s≥ 2,

α′, α′, 1( , s � α′ + 1,

2α′ − s + 1, 2α′ − s + 2, s − l( , 2α′ ≥ s≥ α′ + 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)
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Codes for the vertices Xm
s for 1≤ s≤ n and m≥ 3 are

given in the following:

r X
m
s |Z(  � (m − 2, m − 2, m − 2) + r X

2
s |Z . (3)

It proves that β(G)≤ 3 implies that the metric di-
mension of G � S

p
n,m is 3.

Case (ii): for n is an odd integer.

Let n � 2α′ + 1, where α′ ≥ 3, and by [15], β(G)≥ 3; for
reaching the conclusion, it remains to show that
β(G)≤ 3.
Let Z � X1

1, X1
2, X1

l+1  be an ordered subset of S
p
n,m; the

formulation for the representation of nodes for
V(S

p
n,m)∖Z with respect to Z is given in the following:

r X
1
s |Z  �

s − 1, s − 2, α′ − s + 1( , α′ ≥ s≥ 3,

α′, α′, 1( , s � α′ + 2,

2α′ − s + 2, 2α′ − s + 3, s − α′ − 1( , 2α′ + 1≥ s≥ α′ + 3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

r X
2
s |Z  �

1, 1, α′( , s � 1,

s, s − α′, α′ − s, l − s + 1( , α′ ≥ s≥ 2,

α′ + 1, α′, 1( , s � α′ + 1,

2α′ − s + 2, 2α′ − s + 3, s − α′( , n≥ s≥ α′ + 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

)e representation of the vertices Xm
s , 1≤ s≤ n and

m≥ 3, is as follows:

r X
m
s |Z(  � (m − 2, m − 2, m − 2) + r X

2
s |Z . (5)

It shows that, for any two distinct vertices x, y ∈ S
p
n,m for

odd n≥ 7, r(x|Z)≠ r(y|Z) implying that β(G)≤ 3; this
completes the proof. □

3. Generalized Convex Polytope Graph T
p
n,m

In [16], Imran et al. proved the metric dimension of convex
polytope Tn. )e general form of Tn is denoted by Tn,m

known as the generalized convex polytope (for short, GCP);
this graph consists of one each n-sided and infinite face,
respectively, and the number of 3-sided faces is 4n and 4-
sided faces is n(m − 3). )e GCP graph T

p
n,m is a graph with

p-pendent edges. Vertex and edge sets for G � T
p
n,m are given

in the following:

V T
p
n,m  � X

j
s : 1≤ s≤ n, 1≤ j≤m ,

E T
p
n,m  � X

j
sX

j
s+1: 1≤ s≤ n, 1≤ j≤m 

∪ X
j
sX

j+1
s : 1≤ s≤ n, 1≤ j≤m − 3 

∪ X
m−2
s+1 X

m−1
s : 1≤ s≤ n ∪ X

m−1
s X

m
s : 1≤ s≤ n .

(6)

In the set of edges, indices are taken as modulo n and m.
In Figure 2, the graph G � T

p
n,m is shown.

)e result given below shows that T
p
n,m belongs to the

family of constant metric dimension.

Theorem 7. Let T
p
n,m be a GCP graph with p-pendents for all

n≥ 6; then, β(T
p
n,m) � 3.

Proof. As |N2(v)|≥ 6 for all nonpendent vertices of T
p
n,m,

β(T
p
n,m)≥ 3 for all n≥ 6 by [15]. To complete the proof, it

suffices to show that any ordered subset of the vertices of this
graph is a resolving set.

Xn-1

Xn
X3

X2

X

X

Xn-1X3

Xn

X2

X3 X3

Xn-1
Xn-1

XnX2

Xn-1X4

X1

Xn

X3

X2

X1

X2

Xn
X1

Xn-1

X1

X3

11

1
11

12
2

2

2
2

3

3

3
3

4

4

4
4

m-1

m-1

3
4

m-1

m-1

m-1

m

m

m

m

m

X3

Xn

1
1

Figure 1: )e generalized convex polytope graph S
p
n,m.
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Case (i): for n is an even integer.
Let n � 2α′ with α′ ≥ 3; consider an ordered subset Z �

X1
1, X1

2, X1
l+1  of vertices of T

p
n,m. )e representation of

vertices of V(T
p
n,m)∖Z with respect to Z is formulated

as follows:

r X
1
s |Z  �

s − 1, s − 2, α′ − s + 1( , α′ ≥ s≥ 3,

2α′ − s + α′, 2α′ − s + 2, s − α′ − 1( , 2α′ ≥ s≥ α′ + 2,

⎧⎨

⎩

r X
2
s |Z  �

1, 1, α′( , s � 1,

s, s − α′, α′ − s + 1( , α′ ≥ s≥ 2,

α′, α′, 1( , s � α′ + 1,

2α′ − s + 1, 2α′ − s + 2, s − α′( , 2≥ s≥ α′ + 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

For 3≤ j≤m − 2,

r X
j
s |Z  � (j − 2, j − 2, j − 2) + s X

2
s |Z . (8)

r X
m−1
s |Z  �

2 + 1, 2 + 1, α′ + 1( , s � 1,

s + 2, s + 1, α′ − s + 2( , α′ − 1≥ s≥ 2,

α′ + 2, α′ + 1, 3( , s � α′,
α′ + 1, α′ + 2, 3( , s � α′ + 1,

2α′ − s + 2, 2α′ − s + 3, s − α′ + 2( ,

α′ + 2≤ s≤ n − 1,

3, 3, α′ + 2( , s � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Codes of the pendent vertices are given as follows:

r X
m
s |Z(  � (1, 1, 1) + r X

m−1
s |Z . (10)

From the above formulation, it is obvious that no two
distinct vertices of the GCP with pendents p have the
same code with respect to Z, which implies that
β(T

p
n,m) � 3.

Case (ii): for n is an odd integer.
Let n � 2α′ + 1 for α′ ≥ 3; suppose an ordered subset
Z � x1

1, X1
2, X1

l+1  of vertices V(T
p
n,m); to show that Z is

a basis set for T
p
n,m, the formulation codes are given as

follows:

r X
1
s |Z  �

s − 1, s − 2, α′ − s + 1( , α′ ≥ s≥ 3,

α′, α′, 1( , s � α′ + 2,

2α′ − s + 2, 2α′ − s + 3, s − α′ − 1( , n≥ s≥ α′ + 3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

r X
2
s |Z  �

1, 1, α′( , s � 1,

s, s − 1, α′ − s + 1( , α′ ≥ s≥ 2,

α′ + 1, α′, 1( , s � α′ + 1,

2α′ − s + 2, 2α′ − 3, s − α′ − 1( , n≥ s≥ α′ + 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)
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Codes given to the vertices of other interior cycles are

r X
j
s |Z  � (j − 2, j − 2, j − 2) + r X

2
s |Z , for 1≤ j≤m − 2. (12)

Representation given to the second last cycle Xm−1
s is

r X
m−1
s |Z  �

2 + 1, 2 + 1, α′ + 1( , s � 1,

s + 2, s + 1, α′ − s + 2( , α′ − 1≥ s≥ 2,

α′ + 2, α′ + 1, 3( , s � α′,
α′ + 2, α′ + 2, 3( , s � α′ + 1,

2α′ − s + 3, 2α′ − s + 4, s − α′ + 2( ,

n − 1≥ s≥ α′ + 2( ,

3, 3, α′ + 2( , s � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

)e same representation is given to the pendent vertices:

r X
m
s |Z(  � (1, 1, 1) + r X

m−1
s |Z . (14)

It shows that Z is a resolving set for T
p
n,m for n-odd and

p-pendents, β(T
p
n,m) � 3, and this completes the proof. □

4. Generalized Convex Polytope Graph U
p
n,m

In [2], the graph Un is given, and a generalized graph U
p
n,m of

Un is shown in Figure 3. )e vertex and edge sets for this
graph are given as follows:

V U
p
n,m  � X

j
s : 1≤ s≤ n, s≤ j≤m ,

E U
p
n,m  � X

j
sX

j
s+1: 1≤ s≤ n, 1≤ j≤m − 1 

∪ X
j
sX

j+1
s : 1≤ s≤ n, 1≤ j≤m − 4 

∪ X
m−3
s X

m−2
s : 1≤ s≤ n 

∪ X
m−2
s X

m−3
s+1 : 1≤ s≤ n 

∪ X
m−2
s X

m−1
s : 1≤ s≤ n 

∪ X
m−1
s X

m
s : 1≤ s≤ n .

(15)

We will show that GCP graph U
p
n,m with n≥ 6 along with

p-pendent vertices belongs to the family of constant metric
dimension and its locating number is 3.

Theorem 8. Let U
p
n,m be a GCP graph for n≥ 6; then,

dim(U
p
n,m) � 3.

Proof. According to [15], dim(G)≥ 3 if and only if
|N2(x)|≥ 6 or |N3(x)|≥ 8 for all x ∈ V(G) as |N2(x)|≥ 6 for
every nonpendent vertex x of U

p
n,m implying that

dim(U
p
n,m)≥ 3. To reach the conclusion, it remains to show

that there exists a resolving set for U
p
n,m with exactly three

elements. For this, consider the following two cases:
Case (i): for an integer n is even. Let n � 2α′, where

α′ ≥ 3; take Z � X1
1, X1

2, X1
l+1  to be an ordered subset of

V(U
p
n,m); to show that Z resolves vertices of the GCP, the

representation of vertices of the GCP is shown as follows:

r X
1
s |Z  �

s − 1, s − 2, s − α′ + 1( , α′ ≥ s≥ 3,

2α′ − s + 1, 2α′ − s + 2, s − α′ − 1( , 2α′ ≥ s≥ α′ + 2.

⎧⎨

⎩ (16)
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For 2≤ j≤m − 3,

r X
j
s |Z  � (j − 1, j − 1, j − 1) + r X

1
s |Z . (17)

□

Representation given to the Xm−2
i cycle is

r X
m−2
s |Z  �

3, 3, α′ + 2( , s � 1

s + 2, s + 1, α′ − s + 3( , α′ ≥ s≥ 2,

α′ + 2, α′ + 2, 3( , s � α′ + 1,

2α′ − s + 3, 2α′ − s + 4, s − α′ + 2( , 2α′ ≥ s≥ α′ + 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

Representation of the vertices of the outer cycle is

r X
m−1
s |Z  � (1, 1, 1) + r X

m−2
s |Z , 1≤ s≤ n. (19)

Representation of pendent vertices is

r X
m
s |Z(  � (2, 2, 2) + r X

m−2
s |Z , 1≤ s≤ n. (20)

It shows that Z is a resolving set for GCP U
p
n,m implying

that dim(U
p
n,m) � 3.

Case (ii): when n is an odd integer. Let n � 2α′ + 1 for
α′ ≥ 3; let Z � X1

1, X1
2, X1

l+1  be an ordered subset of the
vertices of the GCP. To show that Z is a locating set for U

p
n,m,

consider the codes’ formulation of the vertices of the GCP
with respect to Z as

r X
1
1|Z  �

s − 1, s − 2, α′ − s + 1( , α′ ≥ s≥ 3,

α′, α′, 1( , s � α′ + 2,

2α′ − s + 2, 2α′ − s + 3, s − α′ − 1( , 2α′ + 1≥ s≥ α′ + 3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)
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Figure 2: GCP graph T
p
n,m.
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Figure 3: )e generalized convex polytope graph U
p
n,m.
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For 2≤ j≤m − 2,

r X
j
s |Z  � (j − 1, j − 1, j − 1) + r X

1
s . (22)

Representation given to the vertices of the interior cycle
is

r X
m−2
s |Z  �

3, 3, α′ + 2( , s � 1,

s + 2, s + 1, α′ − s + 3( , α′ ≥ s≥ 2,

α′ + 3, α′ + 2, 3( , s � α′ + 1,

α′ + 2, α′ + 1, 4( , s � α′ + 2,

α′ + 1, α′, 5( , s � α′ + 3,

2α′ − s + 4, 2α′ − s + 5, s − α′ + 2( ,

2α′ + 1≥ s≥ α′ + 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Representation given to the nodes of the outer cycle is

r X
m−1
s |Z  � (1, 1, 1) + r X

m−2
s |Z , 1≤ s≤ n. (24)

Also, representation given to the nodes hanging is

X
m
s |Z(  � (2, 2, 2) + r X

m−2
s |Z , 1≤ s≤ n. (25)

It gives us that Z is a resolving set for GCP U
p
n,m, im-

plying that the metric dimension of GCP U
p
n,m is 3. □

5. Concluding Remarks

In this paper, we focus to study those graphs obtained from
convex polytopes and examine that generalized convex
polytopes (GCPs) also belong to the family of constant
metric dimension such as their parent graphs Sn, Tn, and Un.
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Graph product plays a key role in many applications of graph theory because many large graphs can be constructed from small
graphs by using graph products. Here, we discuss two of the most frequent graph-theoretical products. Let G1 and G2 be two
graphs. &e Cartesian product G1□G2 of any two graphs G1 and G2 is a graph whose vertex set is V(G1□G2) � V(G1) × V(G2)

and (a1, a2)(b1, b2) ∈ E(G1□G2) if either a1 � b1 and a2b2 ∈ E(G2) or a1b1 ∈ E(G1) and a2 � b2. &e tensor productG1 × G2 of
G1 and G2 is a graph whose vertex set is V(G1 × G2) � V(G1) × V(G2) and (a1, a2)(b1, b2) ∈ E(G1 × G2) if a1b1 ∈ E(G1) and
a2b2 ∈ E(G2). &e strong product G1⊠G2 of any two graphs G1 and G2 is a graph whose vertex set is defined by V(G1⊠G2) �

V(G1) × V(G2) and edge set is defined by E(G1⊠G2) � E(G1□G2)∪E(G1 × G2). &e resistance distance among two vertices u

and v of a graphG is determined as the effective resistance among the two vertices when a unit resistor replaces each edge ofG. Let
Pn and Cn denote a path and a cycle of order n, respectively. In this paper, the generalized inverse of Laplacian matrix for the
graphs Pn1

× Cn2
and Pn1
⊠Pn2

was procured, based on which the resistance distances of any two vertices in Pn1
× Cn2

and Pn1
⊠Pn2

can be acquired. Also, we give some examples as applications, which elucidated the effectiveness of the suggested method.

1. Introduction

Graph products [1] became an interesting area of research,
and different types of products have been worked out in
graph theory and other fields.&e Cartesian productG1□G2
of any two graphs G1 and G2 is a graph whose vertex set is
V(G1) × V(G2) and two vertices (a1, a2) and (b1, b2) are
adjacent in G1□G2 if and only if either a1 � b1 and a2 is
adjacent to b2 inG2, or a2 � b2 and a1 is adjacent to b1 inG1.
&e tensor product G1 × G2 of G1 and G2 is a graph whose
vertex set is the Cartesian product of V(G1) × V(G2) and
distinct vertices (a1, a2) and (b1, b2) are adjacent inG1 × G2
if a1 is adjacent to b1 and a2 is adjacent to b2. &e strong
product G1⊠G2 of graph G1 and G2 is a graph whose vertex
set is V(G1□G2) and distinct vertices (a1, a2) and (b1, b2)

are adjacent in G1⊠G2 if either a1 � b1 and a2 is adjacent to

b2, or a2 � b2 and a1 is adjacent to b1, or a1 is adjacent to b1
and a2 is adjacent to b2. It is the union of Cartesian product
and tensor product. Sabidussi first proposed it in 1960 [2].
Let Pn and Cn be the path and the cycle graphs of order n,
respectively. From the definition of tensor and strong
product of graphs, the graphs P4 × C4 and P4⊠P4 are
depicted in Figure 1. &e graph depicted in Figure 1(b) is
also called a King’s graph which is a strong product of two
path graphs.

&e resistance distance is a function of the distance in
graphs, as suggested by Klein and Randic

�
[3]. &e resistance

distance between any two vertices of a simple connected
graph, G, is equal to the resistance between two equivalent
points on an electrical network, constructed in such a way as
(G), of each of the edge to replace a load resistance of 1 ohm.
It is symbolized by rij, where i, j ∈ V. &e computation of
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resistance is relevant to a wide range of applications ranging
from random walks [4], opinion formation [5], classical
transport in disordered media [6], robustness of coupled
oscillators network [7–9], first-passage processes [10],
identifying the influential spreader node in a network [11],
lattice Greens functions [12, 13], and resistance distance
[3, 14] to graph theory [13, 15, 16]. At present, the resistance
distance is a very suitable tool and internal graphic mea-
surement to express the wave-like or fluid-like communi-
cation between two vertices [17]. It is also well studied in
chemical and mathematical literature [3, 18–23].

Many kinds of formulae were attained for calculating the
resistance distance, i.e., probabilistic formulae [4, 24], al-
gebraic formulae [25–31], combinatorial formula [28], and
so forth. Resistance distances have been procured for certain
types of graphs, i.e., wheels and fans [18], cyclic graphs [32],
some fullerene graphs [33], Cayley graphs [34], regular
graphs [35, 36], pseudodistance regular graphs [37], and so
forth. In recent years, the resistance distance of some graphic
operations has been calculated (see [20, 38–41]).

In the present paper, we investigated the generalized
inverse of Laplacian matrix for the graphs Pn1

× Cn2
and

Pn1
⊠Pn2

, based on which two-vertex resistances in Pn1
× Cn2

and Pn1
⊠Pn2

can be procured.
We ordered the paper in the following way. Section 2

covers some preliminary knowledge, i.e., basic definitions
and necessary lemmas. In Section 3, we prove our main
results, i.e., the generalized inverse of Laplacian matrix for
tensor and strong product networks Pn1

× Pn2
and Pn1
⊠Pn2

.
In Section 4, as an application, we present a few examples.
&e final remarks are given in Section 5.

2. Preliminaries and Lemmas

LetG be a simple graph, and the vertex and edge sets ofG are
symbolized by V(G) � v1, v2, . . . , vn  and E(G) � e1, e2,

. . . , em}, respectively. &e adjacency matrix A(G) of a graph
G is an n × n matrix, whose element auv is one when there is

an edge among vertex u and vertex v and zero when there is
no edge between vertex u and vertex v. Let D(G) be diagonal
matrix with diagonal entries dG(v1), dG(v2), . . . , dG(vn).
For a graph G, let L(G) � D(G) − A(G) be a Laplacian
matrix of order n × n. &e incidence matrix B(G) of a graph
G is an n × m matrix, where n and m are numbers of vertices
and edges, respectively, such that (B)ij is 1 if the vertex vi

and edge ej are incident and 0 otherwise.&e identity matrix
In is an n × n square matrix with 1s on main diagonal and 0s
elsewhere.

Let M � (muv)i×j and N � (nuv)l×m be the two matrices.
&e Kronecker product M⊗N is the il × jm matrix acquired
from M by replacing each element muv by muvN [42]. Let
M(1, 1)(G) be the matrix acquired by removing the 1st row
and 1st column of a matrix M(G) of a graph G, and matrix
B(1)(G) is equal to the 1st row of an incidence matrix B(G)

of a graph G. For example, considering a path graph P3, the

Laplacian matrix L(P3) is
1 − 1 0

− 1 2 − 1
0 − 1 1

⎛⎜⎝ ⎞⎟⎠; then,

L(1, 1)(P3) �
2 − 1

− 1 1 . &e incidence matrix B(P3) is

1 0
1 1
0 1

⎛⎜⎝ ⎞⎟⎠; then, B(1)(P3) � 1 0( .

Let M be a square matrix. A matrix Z is called a
1{ }-inverse of M if it satisfies MZM � M. 1{ }-inverse of M

is represented as M 1{ }. A matrix Z is a group inverse of a
matrix M if it meets the following conditions [38]:

(i) MZM � M

(ii) ZMZ � Z

(iii) ZM � MZ

Let M# symbolize a group inverse of M. If M is real
symmetric, then M# exists and M# is a symmetric 1{ }-in-
verse of M. Actually, M# is equal to the Moore–Penrose
inverse of M since M is symmetric [38].

C4
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9 12

13 15

10 11
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14 16
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2 3

13 1514 16

(b)

Figure 1: (a)P4 × C4. (b)P4⊠P4.
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&e following lemma is used for computing the resis-
tance distance.

Lemma 1 (see [38]). Let L be a Laplacian matrix of a simple
graph G with vertex set 1, 2, . . . , n{ }. 1en,

rxy � L
#
xx + L

#
yy − 2L

#
xy. (1)

Lemma 2 (see [38]). For a nonsingular matrix

M �
Q N

R P
 , if Q and P are nonsingular and

S � P − RQ− 1N, then

M
− 1

�
Q

− 1
+ Q

− 1
NS

− 1
RQ

− 1
− Q

− 1
NS

− 1

− S
− 1

RA
− 1

S
− 1

⎛⎝ ⎞⎠ (2)

is the Schur complement of Q in M.

C. Bu, in [38], stated the following expression.

Lemma 3 (see [38]). Let L �
L1 L2

L
T
2 L3

  be a Laplacian

matrix of a graphG and suppose each a column vector of L2
is a zero vector or − 1; then, the following matrix is a
symmetric 1{ }-inverse of L:

X �
L

− 1
1 0

0 S
#

⎛⎝ ⎞⎠, (3)

where S � L3 − LT
2 L− 1

1 L2.

&e following expression, similar to Lemma 3, also holds
for the Laplacian matrix of a simple graph. For more details,
see [22, 39, 43].

Lemma 4. If the Laplacian matrix of a simple graph G is

partitioned as L �
L1 L2

L
T
2 L3

  and L1 is nonsingular, then the

following matrix is a symmetric 1{ }-inverse of L:

X �
L

− 1
1 + L

− 1
1 L2S

#
L

T
2 L

− 1
1 − L

− 1
1 L2S

#

− S
#

L
T
2 L

− 1
1 S

#
⎛⎝ ⎞⎠, (4)

where S � L3 − LT
2 L− 1

1 L2.

3. Main Results

3.1. 1e Laplacian Generalized Inverse for Graph Pn1
× Cn1

Theorem 1 LetG1 andG2 be a path graph and a cycle graph
with vertices n1 and n2, respectively. 1en, the symmetric
1{ }-inverse of L(G1 × G1) is

L
− 1
1 + L

− 1
1 L2S

#
L

T
2 L

− 1
1 − L

− 1
1 L2S

#

− S
#

L
T
2 L

− 1
1 S

#
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (5)

where

L1 � D G2( ,

L2 � − B(1) G1( ⊗A G2( ,

L3 � 2 D(1, 1) G1( ⊗ In2
− A(1, 1) G1( ⊗A G2( ,

S � L3 − B(1) G1( 
T
B(1) G1(  ⊗ A G2(  D G2( ( 

− 1
A G2(  .

(6)

Proof. Let V(G1) � a1, a2, . . . , an1
  and V(G2) � b1, b2,

. . . , bn2
}. &en,

a1, a2, . . . , an1
  × b1, b2, . . . , bn2

  (7)

is a partition of V(G1 × G2), where (a1, b1) and (a2, b2) are
adjacent whenever (a1, a2) is an edge inG1 and (b1, b2) is an

edge in G2. In (G1 × G2), 2n2 vertices are of degree 2 and
n2(n1 − 2) vertices are of degree 4. Label the vertices of
(G1 × G2) like in Figure 1(a). According to partition (7), the
Laplacian matrix of G1 × G2 can be written as

D G2(  − B(1) G1( ⊗A G2( 

− B(1) G1( 
T ⊗A G2(  2 D(1, 1) G1( ⊗ In2

− A(1, 1) G1( ⊗A G2( 
⎡⎢⎣ ⎤⎥⎦. (8)
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We start with the calculation of S. For simplicity, let

L1 � D G2( ,

L2 � − B(1) G1( ⊗A G2( ,

L
T
2 � − B(1) G1( ( 

T ⊗A G2( ,

L3 � 2 D(1, 1) G1( ⊗ In2
− A(1, 1) G1( ⊗A G2( .

(9)

Due to Lemma 4, we have

S � 2 D(1, 1) G1( ⊗ In2
− A(1, 1) G1( ⊗A G2(  

− − B(1) G1( ⊗A G2(  
T

D G2(  
− 1

− B(1) G1( ⊗A G2(  

� L3 − B(1) G1( 
T ⊗A G2(   D G2(  

− 1
B(1) G1( ⊗A G2(  

� L3 − B(1) G1( 
T
B(1) G1(  ⊗ A G2(  D G2(  

− 1
A G2(  .

(10)

By using Lemma 4, the symmetric 1{ }-inverse of L(G1 ×

G2) is

L
− 1
1 + L

− 1
1 L2S

#
L

T
2 L

− 1
1 − L

− 1
1 L2S

#

− S
#

L
T
2 L

− 1
1 S

#
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (11)

where

L1 � D G2( ,

L2 � − B(1) G1( ⊗A G2( ,

L3 � 2 D(1, 1) G1( ⊗ In2
− A(1, 1) G1( ⊗A G2( ,

S � L3 − B(1) G1( 
T
B(1) G1(  ⊗ A G2(  D G2( ( 

− 1
A G2(  .

(12)□

3.2. 1e Laplacian Generalized Inverse for Graph Pn1
⊠Pn2

Theorem 2. Let G1 and G2 be two paths with n1 and n2
vertices, respectively, and let

D �

5 0 . . . 0

0 8

⋮ ⋱

8

5

5

8

⋱

8

5

3

5

⋱

5

0 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n1− 1( ) n2( )× n1− 1( ) n2( )

. (13)

&en, the symmetric 1{ }-inverse of L(G1 × G2) is

L
− 1
1 + L

− 1
1 L2S

#
L

T
2 L

− 1
1 − L

− 1
1 L2S

#

− S
#

L
T
2 L

− 1
1 S

#
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (14)

where

L1 � 2 D G2(  + In2
− A G2( ,

L2 � − B(1) G1( ⊗ A G2(  + In2
 ,

L3 � D − In1− 1⊗A G2(  + A(1, 1) G1( ⊗ A G2(  + In2
  ,

S � L3 − B(1) G1( 
T
B(1) G1(  ⊗ A G2(  + In2

 L
− 1
1 A G2(  + In2

  .

(15)
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Proof. Let V(G1) � a1, a2, . . . , an1
  and V(G2) � b1, b2,

. . . , bn2
}. &en,

V G1⊠G2(  � (a, b)|a ∈ V G1( , b ∈ V G2(   (16)

and E(G1⊠G2) � E(G1□G2)∪E(G1 × G2). &e degree of
vertices of G1⊠G2 is

dG1⊠G2
(a, b) � dG1

(a) + dG2
(b)

+ dG1
(a) · dG2

(b), (a, b) ∈ E G1⊠G2( .

(17)

Label the vertices of (G1⊠G2) like in Figure 1(b).
According to partition (16), the Laplacian matrix of G1⊠G2
can be written as

2 D G2(  + In2
− A G2(  − B(1) G1( ⊗ A G2(  + In2

 

− B(1) G1( ( 
T ⊗ A G2(  + In2

  D − In1− 1⊗A G2(  + A(1, 1) G1( ⊗ A G2(  + In2
  

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (18)

We start with the calculation of S. For simplicity, let

L1 � 2 D G2(  + In2
− A G2( ,

L2 � − B(1) G1( ⊗ A G2(  + In2
 ,

L
T
2 � − B(1) G1( ( 

T ⊗ A G2(  + In2
 ,

L3 � D − In1− 1⊗A G2(  + A(1, 1) G1( ⊗ A G2(  + In2
  .

(19)

Due to Lemma 4, we have

S � L3 − B(1) G1( 
T ⊗ A G2(  + In2

  L
− 1
1 B(1) G1( ⊗ A G2(  + In2

  

� L3 − B(1) G1( 
T
B(1) G1(  ⊗ A G2(  + In2

 L
− 1
1 A G2(  + In2

  .
(20)

By using Lemma 4, the symmetric 1{ }-inverse of
L(G1⊠G2) is

L
− 1
1 + L

− 1
1 L2S

#
L

T
2 L

− 1
1 − L

− 1
1 L2S

#

− S
#

L
T
2 L

− 1
1 S

#
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (21)

where

L1 � 2 D G2(  + In2
− A G2( ,

L2 � − B(1) G1( ⊗ A G2(  + In2
 ,

L3 � D − In1− 1⊗A G2(  + A(1, 1) G1( ⊗ A G2(  + In2
  ,

S � L3 − B(1) G1( 
T
B(1) G1(  ⊗ A G2(  + In2

 L
− 1
1 A G2(  + In2

  .

(22)

□
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4. Examples to Summarize the Main Results

Here, we discuss few examples to show that two-vertex
resistances in graphs Pn1

× Cn2
and Pn1

× Pn2
can be procured

by the proposed method.

Example 1. &e resistance distance matrix for the graph
P3 × C3 (see Figure 2(a)).

&e Laplacian matrix of (P3 × C3) is

D C3(  − B(1) P3( ( ⊗A C3( 

− B(1) P3( ( 
T ⊗A C3(  2 D(1, 1) P3( ⊗ I3 − A(1, 1) P3( ⊗A C3( 

⎡⎣ ⎤⎦. (23)

From &eorem 1, we obtain

L
#

P3 × C3(  �

43
72

1
72

1
72

−
5
72

7
72

7
72

1
72

−
5
72

−
5
72

1
72

43
72

1
72

7
72

−
5
72

7
72

−
5
72

1
72

−
5
72

1
72

1
72

43
72

7
72

7
72

−
5
72

−
5
72

−
5
72

1
72

−
5
72

7
72

7
72

19
72

−
5
72

−
5
72

−
11
72

1
72

1
72

7
72

−
5
72

7
72

−
5
72

19
72

−
5
72

1
72

−
11
72

1
72

7
72

7
72

−
5
72

−
5
72

−
5
72

19
72

1
72

1
72

−
11
72

1
72

−
5
72

−
5
72

−
11
72

1
72

1
72

31
72

−
11
72

−
11
72

−
5
72

1
72

−
5
72

1
72

−
11
72

1
72

−
11
72

31
72

−
11
72

−
5
72

−
5
72

1
72

1
72

1
72

−
11
72

−
11
72

−
11
72

31
72
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. (24)
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By using Lemma 1 and L#(P3 × C3), the resistance
distance matrix of P3 × C3 is

R
#

P3 × C3(  �

0
7
6

7
6

1
2
3

2
3

1
7
6

7
6

7
6

0
7
6

2
3

1
2
3

7
6

1
7
6

7
6

7
6

0
2
3

2
3

1
7
6

7
6

1

1
2
3

2
3

0
2
3

2
3

1
2
3

2
3

2
3

1
2
3

2
3

0
2
3

2
3

1
2
3

2
3

2
3

1
2
3

2
3

0
2
3

2
3

1

1
7
6

7
6

1
2
3

2
3

0
7
6

7
6

7
6

1
7
6

2
3

1
2
3

7
6

0
7
6

7
6

7
6

1
2
3

2
3

1
7
6

7
6

0
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where rij denotes the two-vertex resistance between vertices
i and j.

Example 2. &e resistance distance matrix for the graph
P3 ⊠P3 (see Figure 2(b)).

&e Laplacian matrix of P3⊠P3 is

2 D P3(  + I3 − A P3(  − B(1) P3(  × A P3(  + I3 

− B(1) P3( ( 
T

× A P3(  + I3  D − I2 ⊗A P3(  + A(1, 1) P3( ⊗ A P3(  + I3(  

⎡⎣ ⎤⎦, (26)

where D �

5 0 0 0 0 0
0 8 0 0 0 0
0 0 5 0 0 0
0 0 0 3 0 0
0 0 0 0 5 0
0 0 0 0 0 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. Based on &eorem 2, we obtain that
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L
#

P3 ⊠P3(  �

728
1779

53
468

72
1433

227
3276

212
4699

−
25
3276

−
437
16380

−
1
36

−
857
16380

53
468

125
468

53
468

17
468

17
468

17
468

−
19
468

−
1
36

−
19
468

72
1433

53
468

728
1779

−
25
3276

212
4699

227
3276

−
857
16380

−
1
36

−
437
16380

227
3276

17
468

−
25
3276

346
1931

−
25
3276

−
13
252

−
25
3276

−
1
36

−
277
3276

212
4699

17
468

212
4699

−
25
3276

117
1097

−
25
3276

−
91
2861

−
1
36

−
91
2861

−
25
3276

17
468

227
3276

−
13
252

−
25
3276

587
3276

−
277
3276

−
1
36

−
25
3276

−
437
16380

−
19
468

−
857
16380

−
25
3276

−
91
2861

−
277
3276

511
2001

−
1
36

−
279
2693

−
1
36

−
1
36

−
1
36

−
1
36

−
1
36

−
1
36

−
1
36

5
36

−
1
36

−
857
16380

−
19
468

−
437
16380

−
277
3276

−
91
2861

−
25
3276

−
279
2693

−
1
36

511
2001
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Figure 2: (a) P3 × C3. (b) P3⊠P3.
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By using Lemma 1 and L#(P3⊠P3), the resistance dis-
tance matrix of P3 ⊠P3
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, (28)

where r
ij denotes the two-vertex resistance between vertices

i and j.

5. Conclusion

In this paper, we investigated the resistance distance in the
tensor product of a path and a cycle as well as the strong
product of two paths. First, we obtained the Laplacianmatrix of
these two kinds of product graphs. After calculation, we acquire
the generalized inverse representations of the Laplacian ma-
trices, and then, applying the generalized inverse theory of
block matrices, we obtained the two-vertex resistances. Finally,
we applied the above method to compute the resistance dis-
tance in graphsP3 × C3 andP3⊠P3.We obtained the resistance
distance between two pair of vertices in tensor and strong
product of two classes of graphs. However, the resistance
distance for some other graph products has not been solved yet.
We recommend the readers to compute the resistance distance
for other classes of graphs by using different graph products,
i.e., zig zag product, modular product, co-normal product and
lexicographical product.
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Let G be a graph and H⊆G be subgraph of G. 'e graph G is said to be (a, d)-H antimagic total graph if there exists a bijective
function f: V(H)∪E(H)⟶ 1, 2, 3, . . . , |V(H)| + |E(H)|{ } such that, for all subgraphs isomorphic to H, the total H weights
W(H) � W(H) � x∈V(H)f(x) + y∈E(H)f(y) forms an arithmetic sequence a, a + d, a + 2d, . . . , a + (n − 1)d, where a and d

are positive integers and n is the number of subgraphs isomorphic toH. An (a, d)-H antimagic total labelingf is said to be super if
the vertex labels are from the set 1, 2, . . . , |V(G){ }. In this paper, we discuss super (a, d)-C3-antimagic total labeling for generalized
antiprism and a super (a, d)-C8-antimagic total labeling for toroidal octagonal map.

1. Introduction

All the graphs that we consider in this works are finite,
simple, and connected. Let G be a graph with vertex set and
edge set denoted by V(G) and E(G), respectively. For the
cardinality of vertex set and edge set, we use the notation
|V(G)| and |E(G)|, respectively. For basic definitions and
terminology related to graph theory, the readers can see the
book by Gross et al. [1].

A graph labeling is a map f that sends some of the graph
elements (vertices or edges or both) to the set of positive
integers. If the domain set of f is the set of vertices (edges),
then f is called vertex (edge) labeling. If the domain set is
V(G)∪E(G), then f is called total labeling. Let G be a graph
and H1, H2, . . . , Hk be subgraphs of G. We say that the
graph G has an H1, H2, . . . , Hk covering if each edge of G

belongs to at least one of the subgraph Hi, where 1≤ i≤ k. If
all Hi, i � 1, 2, . . . , k, are isomorphic to a graph H, then such
a covering is called H covering of G. Suppose that a graph G

admits an H covering. 'e graph G is called (a, d)H

antimagic if there exists a bijective function
f: V(H)∪E(H)⟶ 1, 2, 3, . . . , |V(H)| + |E(H)|{ } such
that, for all subgraphs isomorphic to H, the total H weights,

W(H) � W(K) � 
x∈V(K)

f(x) + 
y∈E(K)

f(y),
(1)

form an arithmetic sequence a, a + d, a + 2d, . . . ,

a + (n − 1)d, where a and d are positive integers and n is the
number of subgraphs isomorphic to H. An (a, d)-H anti-
magic total labeling f is said to be super if the vertex labels
are from the set 1, 2, . . . , |V(G){ }. If d � 0, then H is called
(a, d)-H antimagic.

Kotzig and Rosa [2] and Enomoto et al. [3] introduced
the concept of edge-magic and super edge-magic labeling.
Gutierrez and Llado [4] first studied the H (super) magic
coverings of a graph G. 'ey proved that the cycle Cn and
path Pn are Pm super magic for some m. 'e cycle (super)
magic behavior of some classes of connected graphs is
studied in Llado et al. [5]. 'ey proved that prisms,
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windmills, wheels, and books are Cm-magic for some m.
Maryati et al. [6] investigated the G-supermagicness of a
disjoint union of c copies of a graph G and showed that the
disjoint union of any paths is cPm-supermagic for some c

and m. Maryati et al. [7] and Salman et al. [8] proved that
certain families of trees are path-supermagic. Ngurah et al.
[9] proved that triangles, chains, ladders, wheels, and grids
are cycle-supermagic.

Inaya et al. [10] firstly introduced the concept of
H-magic decomposition and H-antimagic decomposition.
'ey showed that, for any graceful tree T with n edges, the
complete graph K2n+1 admits (a, d) − T antimagic decom-
position for some a and all even differences 0≤ d≤ n + 1.
'ey also proved that if any tree T with n edges admits α
labeling, then the complete bipartite graph Kn,n admits an
(a, d) − T antimagic decomposition for some a and d having
same parity as n. 'e condition on the existence of C2k super
magic decomposition of complete n partite graph and its
copies were given by Lian [11]. 'e H-supermagic de-
composition of antiprisms is described by Hendy in [12] and
the H-supermagic decompositions of the lexicographic
product of graphs are discussed by Hendy et al. in [13]. In
[14], Hendy et al. examined the existence of super (a, d) − H

magic labeling for toroidal grids and toroidal triangulations.
Recently, Fenovcikova et al. [15] proved that wheels are cycle
antimagic.

In this paper, we discuss the Super (a, d)-C3-antimagic
total labeling for generalized antiprism and a Super
(a, d)-C8-antimagic total labeling for toroidal octagonal
map. We proved that the generalized antiprism As

r admits
(a, d)-C3-antimagic total labeling for d � 0, 1 and the to-
roidal octagonal map Or

s admits a Super (a, d)-C8-antimagic
total labeling, for d � 1, 2, . . . , 7.

2. Results on Super (a, d)-C3-Antimagic Total
Covering of Generalized Antiprism As

r

An r-sided generalized antiprism As
r is defined as a poly-

hedron which is composed of s parallel copies of some
particular r-sided polygon and connected by an alternating
band of triangles. Figure 1 represents the labeled graph of
generalized antiprism As

r. We denote its vertex set and edge
set by V(As

r) and E(As
r), respectively. 'e vertex set and the

edge set of the generalized antiprism As
r can be defined as

follows:

V A
s
r(  � x

j
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 1 ,

E A
s
r(  � x

j
i x

j
i+1, for 0≤ i≤ r − 1, 0≤ j≤ s − 1 

∪ x
j
i x

j+1
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 2 

∪ x
j

i x
j+1
i+1 , for 0≤ i≤ r − 1, 0≤ j≤ s − 2 .

(2)

'e generalized antiprism As
r admits a C3 covering. Let

z
j
i and f

j
i be the C3 cycles which coverAs

r, where 0≤ i≤ r − 1
and 0≤ j≤ s − 2. 'e cycles z

j
i and f

j
i can be defined as

z
j
i � x

j
i x

j
i+1x

j+1
i+1 x

j
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 2,

f
j
i � x

j
i x

j+1
i+1 x

j+1
i x

j
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 2.

(3)

It is easy to observe that |V(As
r)| � rs and

|E(As
r)| � 3rs − 2r. We first give an upper bound for d such

that As
r admits a super (a, d)-C3-antimagic covering.

Theorem 1. Let r, s≥ 3 and As
r be generalized antiprism

graph. 6en, there is no super (a, d)-C3-antimagic covering
with d≥ 6.

Proof. Suppose that As
r has a super (a, d)-C3-antimagic

covering. Let f: V(As
r)∪E(As

r)⟶ 1, 2, 3, . . . , 4rs − 2r{ }

be a super (a, d)-C3-antimagic covering and a3, a3 + d, a3 +

2d, . . . , a3 + (2rs − 2r − 1)d} be the set of C3 weights. 'e
minimum weight on cycle C3 is at least 12 + 3rs which is the
sum of the smallest vertex labels (1, 2, 3) and sum of smallest
edge labels (rs + 1, rs + 2, rs + 3). 'us,

a3 ≥ 12 + 3rs. (4)

On the contrary, the maximum possible C3-weight is the
sum of three largest possible vertex labels, namely,
rs − 2, rs − 1, rs, and three the largest possible edge labels
from the set, 4rs − 2r − 2, 4rs − 2r − 1, 4rs − 2r{ }. Hence, we
have

a3 +(2rs − 2r − 1)d≤ 15rs − 6r − 6. (5)

From (4) and (5), an upper bound for the parameter d

can be obtained as

d≤
12rs − 16r − 18
2rs − 2r − 1

,

d≤ 6 −
4r + 6

2rs − 2r − 1
,

d≤ 6.

(6)

'us, we have arrived at the desired result. □

Theorem 2. Let r, s≥ 3; then, the generalized antiprism As
r

admits a super (9rs − 3r + 4, o)-C3-antimagic total covering.

Proof. Let ϕ: V(As
r)∪E(As

r)⟶ 1, 2, 3, . . . , 4rs − 2r{ } be a
total labeling of generalized antiprism As

r defined as follows:

ϕ x
j
i  � jr + 1 + i, for 0≤ i≤ r − 1, 0≤ j≤ s − 1 ,

ϕ x
j

i x
j

i+1  � (2s − j)r − i, for 0≤ i≤ r − 1, 0≤ j≤ s − 1 ,

ϕ x
j

i x
j+1
i  � (3s − 2 − j)r + r − i, for 0≤ i≤ r − 1, 0≤ j≤ s − 2 ,

ϕ x
j
i x

j+1
i+1  �

(4s − 3 − j)r + r − i, for 0≤ i≤ r − 2, 0≤ j≤ s − 2,

(4s − 3 − j)r + 1, for i � r − 1, 0≤ j≤ s − 2.


(7)

Under the labeling ϕ, the weights of 3- cycles z
j
i are
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W z
j
i  � ϕ x

j
i  + ϕ x

j
i+1  + ϕ x

j+1
i+1  + ϕ x

j
i x

j
i+1  + ϕ x

j
i+1x

j+1
i+1  + ϕ x

j
i x

j+1
i+1 ,

W z
j
i  � 9rs − 3r + 4, for 0≤ i≤ r − 1, 0≤ j≤ s − 2

(8)

And, the weights of 3-cycles f
j

i are

W f
j
i  � ϕ x

j
i  + ϕ x

j+1
i+1  + ϕ x

j+1
i  + ϕ x

j
i x

j+1
i+1  + ϕ x

j+1
i+1 x

j+1
i  + ϕ x

j+1
i x

j
i ,

W f
j
i  � 9rs − 3r + 4, for 0≤ i≤ r − 1, 0≤ j≤ s − 2.

(9)

Xi

X1
j

X2
j

X0
j

X0
1

X3
0 X2

0

X3
1

X2
1

X3
s–2

X2
s–2

Xj
r–1
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j
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0
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0X0
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zj
3
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s–2

z0
j

z2
j

z1
j

f1
s–2

f2
s–2

f1
j

f0
j

f3
1

f2
j
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s–2f0

s–2

f0
1
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1
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0

f3
0
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0

f1
1

f0
0
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0
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3

z0
2

X0
s–1
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0
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1
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2
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3
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1
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Figure 1: Generalized antiprism As
r.
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Observe that the weights W(z
j
i ) and W(f

j
i ) of all cycles

z
j
i and f

j
i are equal, and therefore, the resulting labeling is

super (9rs − 3r + 4, 0)-C3 total labeling. □

Theorem 3. Let r, s≥ 3; then, the generalized antiprism As
r

admits a super (7rs + 4, 2)-antimagic total covering.

Proof. Let χ: V(As
r)∪E(As

r)⟶ 1, 2, 3, . . . , 4rs − 2r{ } be a
total labeling of generalized antiprism As

r defined as follows.
For j � even, the label on vertices x

j

i is defined as

χ x
j
i  �

1 + i, for 0≤ i≤ r − 1, j � 0,

(j + 1)r, for i � 0, 2≤ j≤ s − 1,

jr + i, for 1≤ i≤ r − 1, 2≤ j≤ s − 1.

⎧⎪⎪⎨

⎪⎪⎩
(10)

For j � odd, the label on vertices x
j
i is defined as

χ x
j
i  �

jr + 1, for i � 0, 1≤ j≤ s − 1,

(j + 1)r + 1 − i, for 1≤ i≤ r − 1, 1≤ j≤ s − 1.


(11)

For j � even, the label on edges (x
j
i x

j
i+1) is defined as

χ x
j
i x

j
i+1  �

rs + 1 + i, for 0≤ i≤ r − 1, j � 0,

rs +(j + 1)r, for i � 0, 2≤ j≤ s − 1,

rs + jr + i, for 1≤ i≤ r − 1, 2≤ j≤ s − 1.

⎧⎪⎪⎨

⎪⎪⎩

(12)

For j � odd, the label on edges (x
j
i x

j
i+1) is defined as

χ x
j

i x
j

i+1  �
rs + jr + 1, for i � 0, 1≤ j≤ s − 1,

rs +(j + 1)r + 1 − i, for 1≤ i≤ r − 1, 1≤ j≤ s − 1.


(13)

'e label on edges (x
j
i x

j+1
i ) is defined as

χ x
j
i x

j+1
i  �

(3s − 2)r + 1 + i, for 0≤ i≤ r − 1, j � 0,

(3s − 1 − j)r, for i � 0, 1≤ j≤ s − 1,

(3s − 2 − j)r + i, for 1≤ i≤ r − 1, 1≤ j≤ s − 1.

⎧⎪⎪⎨

⎪⎪⎩

(14)

And, the label on edges (x
j
i x

j+1
i+1 ) is defined as

χ x
j
i x

j+1
i+1  � 3rs + jr − i, for 0≤ i≤ r − 1, 0≤ j≤ s − 2.

(15)

Under the labeling χ, the weights of 3-cycle z
j
i are

W z
j
i  � χ x

j
i  + χ x

j
i+1  + χ x

j+1
i+1  + χ x

j
i x

j
i+1 

+ χ x
j
i+1x

j+1
i+1  + χ x

j
i x

j+1
i+1 .

(16)

For j � even, we have

W z
j

i  �

7rs + 8 + 2i, for 0≤ i≤ r − 2, j � 0,

7rs + 4, for i � r − 1, j � 0,

7rs + 4jr + 2r + 2, for i � 0, 2≤ j≤ s − 2,

7rs + 4jr + 2 + 2i, for 1≤ i≤ r − 1, 2≤ j≤ s − 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

For j � odd, we have

W z
j
i  �

7rs + 4jr + 4, for i � 0, 1≤ j≤ s − 2,

7rs + 4jr + 2r + 4 − 2i, for 1≤ i≤ r − 1, 1≤ j≤ s − 2.


(18)

'e weight of 3-cycle f
j
i are

W f
j

i  � χ x
j

i  + χ x
j+1
i+1  + χ x

j+1
i  + χ x

j

i x
j+1
i+1 

+ χ x
j+1
i+1 x

j+1
i  + χ x

j+1
i x

j
i .

(19)

For j � even, we have

W f
j

i  �

7rs + 2r + 4, for i � 0, j � 0,

7rs + 4r + 4 − 2i, for 1≤ i≤ r − 1, j � 0,

7rs + 4jr + 4r + 2 − 2i, for 0≤ i≤ r − 1, 2≤ j≤ s − 2.

⎧⎪⎪⎨

⎪⎪⎩

(20)

For j � odd, we have

W f
j
i  �

7rs + 4jr + 4r + 2, for i � 0, 1≤ j≤ s − 2,

7rs + 4jr + 2r + 2 + 2i, for 1≤ i≤ r − 1, 1≤ j≤ s − 2.


(21)

Observe that the weights W(z
j
i ) and W(f

j
i ) form an

arithmetic progressionwith commondifference 2 starting from
7rs + 4, 7rs + 6 and ending at 11rs − 4r + 2. 'is implies that
the defined labeling is a super (7rs + 4, 2)-C3-antimagic total
covering. □

3. Results on Super (a, d)-C8-Antimagic Total
Covering of Toroidal Octagonal Planner
Map Or

s

A planar octagonal map is a graph obtained by joining
octagons and squares in such a way that they cover the plane.
To obtain the toroidal octagonal map, we apply torus
identification on octagonal planner map. We denote the
toroidal octagonal map with r rows and s column of oc-
tagons by Or

s , where s, r≥ 2. 'e planar representation of Or
s

is depicted in Figure 2. 'e vertex set V(Or
s) and the edge set

E(Or
s) of octagonal planner map Or

s can be defined as
follows:

V O
r
s(  � u

j
i , v

j
i , w

j
i , x

j
i ; 0≤ i≤ r − 1 and 0≤ j≤ s − 1 ,

E O
r
s(  � u

j
i v

j
i , w

j
i x

j
i ; 0≤ i≤ r − 1 and 0≤ j≤ s − 1 

∪ w
j

i u
j−1
i ; 1≤ i≤ s − 1 and 0≤ j≤ r − 1 

∪ w
0
i u

s−1
i ; 0≤ i≤ r − 1 

∪ v
j

i w
j+1
i+1 ; 0≤ i≤ r − 1 and 0≤ j≤ s − 2 

∪ v
n−1
i w

0
i+1; 0≤ i≤ r − 1 

∪ v
j

i x
j

i+1; 0≤ i≤ r − 1 and 0≤ j≤ s − 1 

∪ u
j
i x

j
i ; 0≤ i≤ r − 1 and 0≤ j≤ s − 1 .

(22)
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From the above sets, we have |V(Or
s)| � 4rs and

|E(Or
s)| � 6rs. We can cover the toroidal octagonal map Or

s

by the 8-sided cycles C
j
8,i. For 0≤ j≤ s − 1 and 0≤ i≤ r − 1,

the vertex set and edge set of 8-sided cycles C
j
8,i can be

defined as

V C
j
8,i  � w

j
i , u

j−1
i , v

j−1
i , w

j
i+1, x

j
i+1, v

j
i , u

j
i , x

j
i ; 0≤ i≤ r − 1, 1≤ j≤ s − 1 ,

E C
j
8,i  � w

j
i u

j−1
i , u

j−1
i v

j−1
i , v

j−1
i w

j
i+1, w

j
i+1x

j
i+1, v

j
i x

j
i+1, u

j
i v

j
i , x

j
i u

j
i , x

j
i w

j
i ; 0≤ i≤ r − 1, 1≤ j≤ s − 1 ,

V C
0
8,i  � w

0
i , u

s−1
i , v

s−1
i , w

0
i+1, x

0
i+1, v

0
i , u

0
i , x

0
i ; 0≤ i≤ r − 1, ,

E C
0
8,i  � w

0
i u

s−1
i , u

s−1
i v

s−1
i , v

s−1
i w

0
i+1, w

0
i+1x

0
i+1, v

0
i x

0
i+1, u

0
i v

0
i , x

0
i u

0
i , x

0
i w

0
i ; 0≤ i≤ s − 1 .

(23)

We start by giving an upper bound for d such that Or
s

admits a super (a, d)-C8-antimagic covering.

Theorem 4. Suppose Or
s admits a super (a, d)-C8-antimagic

covering; then, d≤ 80.

Proof. Suppose Or
s admits a super (a, d)-C8-antimagic

covering. 'en, the weight on cycle C8 is atleast



8

i�1
i + 

8

i�1
(4rs + i) � 32rs + 72, (24)

and the largest weight of C8 is atmost



8

i�1
(4rs + 1 − i) + 

8

i�1
(10rs + 1 − i) � 112rs − 56. (25)

'us, we have

a +(rs − 1)d≤ 112rs − 56,

(rs − 1)d≤ 112rs − 56 − 32rs − 72,

d≤
80rs − 128

rs − 1
,

d≤ 80.

(26)

□

In the next two theorems, we show that toroidal oc-
tagonal map Or

s admits a super (a, d)-C8-antimagic covering
for d � 1, 2, . . . 7.

Theorem 5. Let r, s≥ 2; then, the toroidal octagonal map Or
s

is super (a, d)-C8-antimagic for d ∈ 1, 3, 5, 7{ }.

u0
s–1

u0
s–2
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s–1 v0

s–1
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0
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0
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0
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0
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0
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0
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0
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Figure 2: Toroidal octagonal map identification Or
s
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Proof. Define a total labeling φd: V(Or
s)∪E(Or

s)⟶
1, 2, 3, . . . , |V(Or

s)| + |E(Or
s)|  , where d ∈ 1, 3, 5, 7{ } as

follows:

φd u
j

i  � jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd v
j

i  � rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd x
j
i  � 3rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd w
j
i  � 2rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd u
j
i v

j
i  � 4rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ x
j
i w

j
i  � 5mn + +2jm + 1 + 2i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ1 v
j
i x

j
i+1  � φ3 v

j
i x

j
i+1  � 8rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ5 v
j

i x
j

i+1  � φ7 v
j

i x
j

i+1  � 8rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd u
j

i w
j+1
i  � 5rs + 2(s − 1 − j)r + 2r − 2i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ1 v
j
i w

j+1
i  � 7rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ3 v
j
i w

j+1
i  � φ5 v

j
i w

j+1
i  � φ7 v

j
i w

j+1
i  � 7rs + rj + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ1 x
j
i u

j
i  � φ3 x

j
i u

j
i  � φ5 x

j
i u

j
i  � 9rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ7 x
j
i u

j
i  � 9rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1.

(27)

'e total labeling φd labels the vertices u
j

i , v
j

i , w
j

i , x
j

i from
the set 1, 2, . . . , 4rs{ } and the edges from the set

4rs + 1, 4rs + 2, . . . , 10rs{ }. For 0≥ i≥ r − 1 and 0≥ j≥ s − 1,
the weight of cycles C

j
8,i under φd is

Wd C
j
8,i  � φd u

j−1
i  + φd v

j−1
i  + φd u

j−1
i v

j−1
i  + φd w

j
i+1  + φd w

j
i  + φd w

j
i+1v

j−1
i 

+ φd x
j
i+1  + φd x

j
i+1w

j
i+1  + φd v

j
i  + φd v

j
i x

j
i+1  + φd u

j
i 

+ φd u
j
i v

j
i  + φd x

j
i  + φd x

j
i u

j
i  + φd x

j
i w

j
i  + φd w

j
i u

j−1
i ,

Wd C
j
8,i  �

68rs + 2r + 10 + jr + i, for d � 1,

67rs + r + 11 + 3jr + 3i, for d � 3,

66rs + r + 12 + 5jr + 5i, for d � 5,

65rs + 13 + 7jr + 7i, for d � 7.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

For the case d � 1, we have weights’ set
68rs + 2r + 10, 68rs + 2r + 11, . . . , 69rs + 2r + 9{ }; similarly,
for cases d � 3, 5, 7, we get the weights from the sets
67rs + r + 11, 67rs + 2r + 12, . . . , 70rs + r + 8{ }, 66rs + r +{

12, 66rs + r + 17, . . . , 71rs + r + 7}, and 65rs + r +{

13, 65rs + r + 20, . . . , 72rs + r + 5}, respectively. Hence, the
weights of cycles C

j
8,i form an arithmetic sequence with

difference 1, 3, 5, and 7. □
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Theorem 6. Let r, s≥ 2; then, the toroidal map Or
s is super

(a, d)-C8-antimagic for d ∈ 2, 4, 6{ }.
Proof. Let d ∈ 2, 4, 6{ } and 0≤ i≤ r − 1, 0≤ j≤ s − 1. We
define a total labeling ϕd of Or

s as follows:

ϕd u
j
i  � jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd v
j
i  � rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd x
j
i  � 3rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd w
j

i  � 2rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd u
j
i v

j
i  � 8rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ2 x
j

i w
j

i  � φ4 x
j

i w
j

i  � 9rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ6 x
j
i w

j
i  � 9rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ2 v
j
i x

j
i+1  � φ4 v

j
i x

j
i+1  � 6rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ6 v
j
i x

j
i+1  � 6rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd u
j
i w

j+1
i  � 4rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd v
j

i w
j+1
i  � 5rs + rj + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ2 x
j
i u

j
i  � 7rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ4 x
j
i u

j
i  � ϕ6 x

j
i u

j
i  � 7rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1.

(29)

'e total labeling ϕd labels the vertices u
j
i , v

j
i , w

j
i , x

j
i from

the set 1, 2, . . . , 4rs{ } and edges from the set
4rs + 1, 4rs + 2, . . . , 10rs{ }. 'is show that φd is a bijection

from set V(Or
s)∪E(Or

s) to set 1, 2, . . . , 10rs{ }. For 1≥ i≥ l

and i≥ j≥ k, the weights of C
j
8,i under the labeling ϕd are

Wd C
j

8,i  � ϕd u
j−1
i  + ϕd v

j−1
i  + ϕd u

j−1
i v

j−1
i  + ϕd w

j

i+1  + ϕd w
j

i  + ϕd w
j

i+1v
j−1
i 

+ ϕd x
j

i+1  + ϕd x
j

i+1w
j

i+1  + ϕd v
j

i  + ϕd v
j

i x
j

i+1  + ϕd u
j

i 

+ ϕd u
j
i v

j
i  + ϕd x

j
i  + ϕd x

j
i u

j
i  + ϕd x

j
i w

j
i  + ϕd w

j
i u

j−1
i ,

Wd C
j

8,i  �

75rs − 4r + 8 + 2jr + 2i, for d � 2,

74rs − 4r + 9 + 4jr + 4i, for d � 4,

73rs − 4r + 12 + 6jr + 6i, for d � 6.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

For the case d � 2, we have weights from the set
75rs − 4r + 8, 75rs − 4r + 10, . . . , 77rs − 4r + 6{ }. Similarly,
for cases d � 4, 6, we get weights from the sets
74rs − 4r + 9, 74rs − 4r + 13, . . . , 78rs − 4r + 5{ } and 73rs −{

4r + 12, 73rs − 4r + 18, . . . , 79rs − 4r + 6}, respectively. 'is
showed that weights of the cycles C

j
8,i form an arithmetic

sequence with difference 2, 4, and 6. □

4. Conclusion

In the present paper first, we constructed an upper bound for
the parameter d for super (a, d)-C3-antimagic covering.
Secondly, we examined the existence of super
(a, d)-C3-antimagic labeling of generalized antiprism As

r.
We showed that, for r, s≥ 3 the generalized antiprism As

r had
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(a, d)-C3-antimagic covering for d ∈ 0, 2{ }. 'irdly, we
constructed an upper bound for the parameter d for super
(a, d)-C8-antimagic covering. Finally, we examined the
existence of super (a, d)-C8-antimagic labeling of torodial
map Or

s . We showed that, for m, n≥ 2, the torodial octagonal
map Or

s had (a, d)-C8-antimagic covering for
d ∈ 1, 2, 3, 4, 5, 6, 7{ }. We conclude the paper with the fol-
lowing open problems.

Open problem 1: find other possible bound for pa-
rameter d under (a, d)-C3-antimagic total covering and
the corresponding remaining labeling of d for gener-
alized antiprism As

r

Open problem 2: find other possible bound for pa-
rameter d under (a, d)-C8-antimagic total covering and
the corresponding remaining labeling of d for torodial
octagonal map Or

s
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Let G be a graph with vertex set V(G) and edge set E(G). Let du denote the degree of vertex u ∈ V(G). $e geometric-arithmetic
index ofG is defined as GA(G) � uv∈E(G)(2

����
dudv


/(du + dv)). In this paper, we obtain some new lower and upper bounds for the

geometric-arithmetic index and improve some known bounds. Moreover, we investigate the relationships between geometric-
arithmetic index and several other topological indices.

1. Introduction

Let G be a simple graph (i.e., graph without loops and
multiple edges) with vertex set V(G) and edge set E(G). $e
integers n � |V(G)| and m � |E(G)| are the order and the
size of the graph G, respectively. For u ∈ V(G), we denote by
du the degree of vertex u in G. $e minimum and maximum
degrees of a graph are denoted by δ and Δ, respectively.

Graph theory has provided chemists with a variety of
useful tools, such as topological indices. A topological index
Top(G) of a graph G is a number with the property that, for
every graph H isomorphic to G, Top(H) � Top(G).

Molecular descriptors play a significant role in mathe-
matical chemistry, especially in QSPR/QSAR investigations.
Among them, special place is reserved for so-called topo-
logical descriptors. A topological index is a numeric quantity
from the structural graph of a molecule.

Usage of topological indices in chemistry began in 1947
when Wiener [1] developed the most widely known topo-
logical descriptor, namely, the Wiener index, and used it to
determine physical properties of types of alkanes known as
paraffin (see, for instance, [2, 3]). $e interest of topological
indices lies in the fact that they synthesize some of the

properties of a molecule into a single number. With this in
mind, hundreds of topological indices have been introduced
and studied. Topological indices based on the vertex degree
play a vital role in mathematical chemistry, and some of
them are recognized as tools in chemical research.

Authors are studying various topological descriptors,
such as Zagreb indices [4–6], general sum-connectivity
index [7, 8], hyper-Zagreb index [9], and harmonic index
[10, 11]. Besides the abovementioned ones, there are other
topological descriptors based on end vertex degrees of edges
of graphs that have found some applications in QSPR/QSAR
research [2, 12, 13].

$e geometric-arithmetic index of a graph is defined in
[13] as

GA(G) � 
uv∈E(G)

2
����
dudv



du + dv

. (1)

$e geometric-arithmetic index has a number of in-
teresting properties, e.g., see [13]. $e lower and upper
bounds of the geometric-arithmetic index of connected
graphs and the characterizations of graphs for which these
bounds are best possible can be found in [13–16].
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$e aim of this paper is to investigate new relationships
between the geometric-arithmetic index and other topo-
logical indices. In particular, we obtain some lower and
upper bounds for the geometric-arithmetic index.Moreover,
we improve some known bounds.

2. Preliminaries

Let us recall some remarkable lemmas which will be used in
this paper.

$e first one is a very straightforward observation.

Lemma 1 (see [17]). Let x and y be two positive numbers.
3en,

2xy

x + y
≤ ���

xy
√ ≤

((x + y)/2) +
���
xy

√

2
≤

x + y

2
≤

������

x
2

+ y
2

2



. (2)

$e following is the well-known inequality of arithmetic
and geometric means.

Lemma 2 (inequality of arithmetic and geometric means, see
[18]). Let x1, . . . , xn be positive numbers. 3en,

n

1/x1(  + 1/x2(  + · · · + 1/xn( 
≤

��������������������������������������



n

i�1
xi ≤

x1 + x2 + · · · + xn

n
≤

��������������

x
2
1 + x

2
2 + · · · + x

2
n

n



.
n




(3)

Lemma 3 (see [19]). Let a � (ai)
n
i�1 and (bi)

n
i�1 be two se-

quences of positive numbers. For any r≥ 0,



n

i�1

a
r+1
i

b
r ≥


n
i�1 ai( 

r+1


n
i�1 bi( 

r . (4)

Lemma 4 (see [20]). Let r≤ ai ≤R for 1≤ i≤m and r andR

be some positive constants. 3en,



m

i�1
ai 

m

i�1

1
ai

≤m
2 1 +

1
4

1 −
1 +(− 1)

m+1

2m
2

��
R

r



−

��
r

R



 

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(5)

Lemma 5 (see [21]). If a1, a2, . . . , an and b1, b2, . . . , bn are
positive numbers, where m1 ≤ ai ≤N1 and m2 ≤ bi ≤N2 for
each 1≤ i≤ n, then



n

i�1
a
2
i 

n

i�1
b
2
i − 

n

i�1
aibi

⎛⎝ ⎞⎠

2

≤
n
2

4
N1N2 + m1m2( . (6)

Lemma 6 (the Pólya–Szegö inequality, see p. 62 in [22]). Let
a � (ai)

n
i�1 and (bi)

n
i�1 be two sequences of positive numbers,

where 0<m1 ≤ ai ≤M1 and 0<m2 ≤ bi ≤M2, for
i � 1, 2, . . . , n. 3en,



n

i�1
a
2
i 

n

i�1
b
2
i ≤

1
4

������
M1M2

m1m2



+

������
m1m2

M1M2


⎛⎝ ⎞⎠

2



n

i�1
aibi

⎛⎝ ⎞⎠

2

. (7)

3. Upper Bounds for the Geometric-
Arithmetic Index

In this section, we investigate the relationships between
geometric-arithmetic index and some topological indices.
Moreover, we obtain some upper bounds for the geometric-
arithmetic index in terms of order, size, maximum degree,
minimum degree, domination number, girth, number of cut
edges, and number of pendent vertices.

$e first and second Zagreb indices are vertex-degree-
based graph invariants defined as

M1(G) � 
uv∈E(G)

du + dv( ,

M2(G) � 
uv∈E(G)

dudv.
(8)

$e quantity M1 was first considered in 1972 [6],
whereas M2 in 1975 [5]. $e general Randić index is defined
as follows [23]:

Rα(G) � 
uv∈E(G)

dudv( 
α
, (9)

where α is a real number.
We begin with the establishment of an upper bound for

the geometric-arithmetic index in terms of the first Zagreb
index and the general Randić index.

Theorem 1. Let G be a graph. 3en,

GA(G)≤
M1(G) + 2R1/2(G)

4
. (10)

Proof. By Lemma 1, we have

GA(G) � 
uv∈E(G)

2
����
dudv



du + dv

≤ 
uv∈E(G)

2dudv

du + dv

≤ 
uv∈E(G)

du + dv( /2(  +
����
dudv



2

� 
uv∈E(G)

du + dv + 2
����

dudv



4

�
M1(G) + 2R1/2(G)

4
,

(11)

as desired.
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Using Lemma 1 and an argument similar to the proof of
$eorem 1, we can obtain the next result. □

Corollary 1. Let G be a graph. 3en,

GA(G)≤R1/2(G). (12)

From Lemma 1, we get

R1/2(G) � 
uv∈E(G)

����

dudv



≤ 
uv∈E(G)

du + dv

2
�

M1(G)

2
.

(13)

Again by Lemma 1, we have

M1(G) + 2R1/2(G)

4
� 

uv∈E(G)

du + dv + 2
����

dudv



4

� 
uv∈E(G)

du + dv( /2(  +
����
dudv



2

≤ 
uv∈E(G)

du + dv

2
�

M1(G)

2
.

(14)

Hence, we can see that the bounds in $eorem 1 and
Corollary 1 improve the bound:

GA(G)≤
M1(G)

2
, (15)

established in [15].
$e proof of the following result can be found in [23].

Lemma 7 (see [23]). Let G be a graph of size m. 3en,

Rα(G)≤m

������
8m + 1

√
− 1

2
 

2α

, (16)

for 0< α≤ 1.

Using Corollary 1 and Lemma 7, we can drive the next
result.

Corollary 2. Let G be a graph of size m. 3en,

GA(G)≤
m(

������
8m + 1

√
− 1)

2
. (17)

Lemma 8. Let x and y be two positive numbers. 3en,

2 ���
xy

√

x + y
≤ 1,

x + y
���
xy

√ ≥ 2.

(18)

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the first Zagreb index.

Theorem 2. Let G be a graph of order n≥ 2, size m, and
minimum degree δ. 3en,

GA(G)≤m − n +
M1(G)

δ2
. (19)

Proof. Notice that


uv∈E(G)

du + dv

dudv

� 
uv∈E(G)

1
du

+
1
dv

  � n. (20)

By Lemma 8, we have

GA(G) + n � 
uv∈E(G)

2
����
dudv



du + dv

+
du + dv

dudv

 

≤ 
uv∈E(G)

1 +
du + dv

dudv

 

� 
uv∈E(G)

1 + 
uv∈E(G)

du + dv

dudv

≤m +
M1(G)

δ2
,

(21)

and this implies the desired bound.
A dominating set of a graph is a vertex subset whose

closed neighborhood includes all vertices of the graph. $e
domination number of a graph G is the size of a minimum
dominating set. □

Theorem 3 (see [24]). Let T be a tree of order n with
domination number c. 3en,

M1(T)≤ (n − c)(n − c + 1) + 4(c − 1). (22)

By $eorems 2 and 3, we have the following result for
trees with the given domination number.

Corollary 3. Let T be a tree of order n≥ 2 with domination
number c. 3en,

GA(T)≤ (n − c)(n − c + 1) + 4(c − 1) − 1. (23)

Since for every two real numbers x, y, and
xy≤ ((x + y)2/4), we have the next observation.

Lemma 9. Let x and y be two real numbers, where x + y≠ 0.
3en, (xy/(x + y)2)≤ (1/4).

Next, we establish an upper bound for the geometric-
arithmetic index in terms of the second Zagreb index.

Theorem 4. Let G be a graph of size m with maximum degree
Δ. 3en,

GA(G)≤
5m

4
−

M2(G)

4Δ2
. (24)
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Proof. By Lemmas 8 and 9, we have

GA(G) +
M2(G)

4Δ2
≤ 

uv∈E(G)

2
����
dudv



du + dv

+
dudv

du + dv( 
2

⎛⎝ ⎞⎠

≤ 
uv∈E(G)

2
����
dudv



du + dv

+
1
4

 

≤ 
uv∈E(G)

1 +
1
4

 

�
5m

4
,

(25)

and this implies the desired bound. □

In [25], it is proved that, for any tree T of order n,
M2(T)≥ 4n − 8. Using this and $eorem 4, we obtain the
next result.

Corollary 4. Let T be a tree of order n with maximum degree
Δ. 3en,

GA(T)≤
5(n − 1)

4
−

n − 2
Δ2

. (26)

Here, we establish an upper bound for the geometric-
arithmetic index in terms of the hyper-Zagreb index.

$e hyper-Zagreb index is defined as follows [9]:

HM(G) � 
uv∈E(G)

du + dv( 
2
. (27)

Theorem 5. Let G be a graph of order n, size m, and
minimum degree δ. 3en,

GA(G)≤m − n +
HM(G)

2δ2
. (28)

Proof. By Inequality (21), we have

GA(G) + n≤ 
uv∈E(G)

1 + 
uv∈E(G)

du + dv

dudv

≤ 
uv∈E(G)

1 + 
uv∈E(G)

du + dv

2dudv/ du + dv( ( 

� 
uv∈E(G)

1 + 
uv∈E(G)

du + dv( 
2

2dudv

≤m +
HM(G)

2δ2
.

(29)

It leads to the desired bound.
$e next result is proven in [26]. □

Theorem 6 (see [26]). Let G be a graph with n vertices and m

edges. 3en,

HM(G)≤
m

3
(n + 1)

6

16n
2
(n − 1)

2. (30)

3eorems 5 and 6 lead to the desired result.

Corollary 5. Let G be a graph of order n, size m, and
minimum degree δ. 3en,

GA(G)≤m − n +
m

3
(n + 1)

6

32δ2n2
(n − 1)

2. (31)

$e redefined third Zagreb index is defined as follows
[27]:

ReZ3(G) � 
un∈E(G)

dudv(  du + dv( . (32)

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the second Zagreb index, the
general Randić index, and the redefined third Zagreb index.

Theorem 7. Let G be a graph with maximum degree Δ and
minimum degree δ. 3en,

GA(G)≤M2(G) +
R1/2(G)

δ
−
ReZ3(G)

2Δ
. (33)

Proof. It is easy to obtain

M2(G) − GA(G) � 
uv∈E(G)

dudv −
2

����
dudv



du + dv

 

� 
uv∈E(G)

du + dv( dudv − 2
����

dudv



du + dv

⎛⎜⎜⎝ ⎞⎟⎟⎠

� 
uv∈E(G)

du + dv( dudv

du + dv

− 
uv∈E(G)

2
����
dudv



du + dv

≥
ReZ3(G)

2Δ
−

R1/2(G)

δ
.

(34)

$e desired bound follows. □

Theorem 8. Let G be a graph of order n, size m, maximum
degree Δ, and minimum degree δ. 3en,

GA(G)≤
2m

2

n
1 +

1
4

1 −
1 +(− 1)

m+1

2m
2
Δ
δ

−
δ
Δ

 

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(35)

Proof. Now, putting auv � (2
����
dudv


/du + dv) for each edge

uv ∈ E(G), R � (Δ/δ), and r � (δ/Δ) in Lemma 4, we have
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uv∈E(G)

2
����
dudv



du + dv


uv∈E(G)

du + dv

2
����
dudv

 ≤m
2 1 +

1
4

1 −
1 +(− 1)

m+1

2m
2
Δ
δ

−
δ
Δ

 

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (36)

On the contrary, we have

n

2
� 

uv∈E(G)

du + dv

2dudv

≤ 
uv∈E(G)

du + dv

2
����
dudv

 . (37)

Finally, we get the bound by using Inequalities (36) and
(37).

$e sigma index of G is defined in [28] as

σ(G) � 
uv∈E(G)

du − dv( 
2
. (38)

Here, we obtain an upper bound for the geometric-
arithmetic index in terms of the first Zagreb index and the
sigma index. □

Theorem 9. Let G be a nontrivial graph with maximum
degree Δ. 3en,

GA(G)≤
M1(G)

2
−
σ(G)

4Δ
. (39)

Proof. For two real numbers x and y, we have that

xy �
1
4

(x + y)
2

− (x − y)
2

 . (40)

By (40), we obtain

GA(G) � 
uv∈E(G)

2
����
dudv



du + dv

≤ 
uv∈E(G)

2dudv

du + dv

� 
uv∈E(G)

du + dv( 
2

− du − dv( 
2

2 du + dv( 

�
1
2


uv∈E(G)

du + dv(  − 
uv∈E(G)

du − dv( 
2

2 du + dv( 

≤
1
2


uv∈E(G)

du + dv(  − 
uv∈E(G)

du − dv( 
2

4Δ

�
M1(G)

2
−
σ(G)

4Δ
,

(41)

and this implies the desired bound.
$e general first F-index of a graphG is defined in [29] as

F
a
1(G) � 

uv∈E(G)

d
2
u + d

2
v 

a
, (42)

where a is a real number. In particular, F1
1(G) � F(G).

Since for every two real numbers x and y, (x − y)2 ≥ 0,
and we deduce that, for any graph G,

F(G)≥ 2M2(G),

σ(G) � F(G) − 2M2(G).
(43)

Using these and $eorem 9, we obtain the next
result. □

Corollary 6. Let G be a nontrivial graph with maximum
degree Δ. 3en,

GA(G)≤
M1(G)

2
−

F(G) − 2M2(G)

4Δ
. (44)

From F(G)≥ 2M2(G), we would like to indicate that the
above new bound improves the known bound:

GA(G)≤
M1(G)

2
, (45)

which was established in [15].
Now, by using the following result, we want to obtain an

upper bound for trees.

Theorem 10 (see [30]). Let T be a tree of order n with
independence number α. 3en,

M1(T)≤ α2 − 3α + 4n − 4. (46)

Here, by $eorems 9 and 10, we obtain the next result.

Corollary 7. Let T be a tree of order n with independence
number α and maximum degree Δ. 3en,

GA(T)≤
α2 − 3α + 4n − 4

2
−
σ(G)

4Δ
. (47)

4. Lower Bounds for the Geometric-
Arithmetic Index

In this section, we first investigate the relationships between the
geometric-arithmetic index and some other topological indices,
and then, we obtain some lower bounds for the geometric-
arithmetic index which improve some well-known bounds.

Theorem 11. Let G be a graph of size m with minimum
degree δ. 3en,

GA(G)≥
4δ2m2

HM(G)
. (48)

Proof. By Lemmas 1 and 2, we have
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m
2

GA(G)
�

m
2

uv∈E(G) 2
����

dudv



/ du + dv(  

≤ 
uv∈E(G)

du + dv

2
����
dudv



≤ 
uv∈E(G)

du + dv

4dudv/ du + dv( ( 

� 
uv∈E(G)

du + dv( 
2

4dudv

≤
1
4δ2


uv∈E(G)

du + dv( 
2

�
HM(G)

4δ2
.

(49)

$e result follows. □

Here, by $eorems 11 and 6, we have the next result.

Corollary 8. Let G be a graph of order n and size m, with
minimum degree δ. 3en,

GA(G)≥
64n

2δ2(n − 1)
2

m(n + 1)
6 . (50)

Since for any real numbers x and y, it holds that
((x + y)2/4)≤ ((x2 + y2)/2); hence, by this fact and In-
equality (49), we can obtain the following result.

Corollary 9. LetG be a graph of size m with minimum degree
δ. 3en,

GA(G)≥
2δ2m2

F(G)
. (51)

We start with a lower bound for the geometric-arith-
metic index in terms of the general F-index.

Theorem 12. Let G be a nontrivial graph of size m with
minimum degree δ. 3en,

GA(G)≥
�
2

√
δm

2

F
1/2
1 (G)

. (52)

Proof. Set r � 1, auv �
�����
2dudv

4


, and buv �
������
d2

u + d2
v


for each

uv ∈ E(G). By Lemmas 1 and 3, we have

GA(G) � 
uv∈E(G)

2
����
dudv



du + dv

≥ 
uv∈E(G)

2
����
dudv



2
����������
d
2
u + d

2
v/2 



� 
uv∈E(G)

�����
2dudv



������

d
2
u + d

2
v



� 
uv∈E(G)

�����

2dudv
4



 
2

������

d
2
u + d

2
v



≥
uv∈E(G)

�����

2dudv
4



 
2

uv∈E(G)

������

d
2
u + d

2
v



≥
�
2

√
δm

2

F
1/2
1 (G)

.

(53)

$e proof is completed. □

$e harmonic index is defined as follows [11]:

H(G) � 
uv∈E(G)

2
du + dv

. (54)

Theorem 13. Let G be a nontrivial graph of order n, size m,
and minimum degree δ. 3en,

GA(G)≥ δ(H(G) + n) − 2m. (55)

Proof. Notice that

GA(G) + 2m � 
uv∈E(G)

2
����
dudv



du + dv

+ 
u∈V(G)

du

≤ 
uv∈E(G)

2
����
dudv



du + dv

+ 
u∈V(G)

δ

� 
uv∈E(G)

2
����
dudv



du + dv

+ nδ

≤ δH(G) + nδ.

(56)

$e result follows.
Applying (56), we obtain the next results. □

Corollary 10. Let G be a nontrivial graph of order n, size m,
and minimum degree δ. 3en,

6 Journal of Mathematics



GA(G)≥
R1/2(G)

Δ
+ δn − 2m. (57)

Corollary 11. Let G be a nontrivial graph of order n, size m,
and minimum degree δ. 3en,

GA(G)≥
δm

Δ
+ δn − 2m. (58)

Theorem 14 (see [31]). Let G be a connected graph of order
n≥ 3. 3en,

H(G)≥
2(n − 1)

n
. (59)

A cut edge of a graph is an edge whose removal increases
the number of connected components of the graph.

Lemma 10 (see [32]). Let G be a connected graph of order n

and k′ cut edges. 3en,

m≤
n − k′(  n − k′ − 1( 

2
+ k′. (60)

Now, by $eorems 13 and 14, and Lemma 10, we can
obtain the next result.

Corollary 12. Let G be a connected graph of order n, k′ cut
edges, and minimum degree δ. 3en,

GA(G)≥ δ
2(n − 1)

n
+ n  − 2

n − k′(  n − k′ − 1( 

2
+ k′ .

(61)

Here, we will use the following particular case of Jensen’s
inequality.

Lemma 11. Let f(x) be a convex function defined in x> 0.
For x1, x2, . . . , xm > 0,

f
x1 + x2 + · · · + xm

m
 ≤

1
m

f x1(  + f x2(  + · · · + f xm( ( .

(62)

$e general sum-connectivity index is defined as follows
[8]:

χα(G) � 
uv∈E(G)

du + dv( 
α
. (63)

Now, we obtain a lower bound for the geometric-arith-
metic index in terms of the general sum connectivity index.

Theorem 15. Let G be a graph of size m and minimum
degree δ. 3en,

GA(G)≥
4δ2

���

m
3



�����
χ4(G)

 . (64)

Proof. Since f(x) � (1/x2) is a convex function for x> 0,
from Lemmas 1 and 11, we have

m

GA(G)
 

2

�
m

uv∈E(G) 2
����
dudv


/ du + dv( ( 

 

2

≤
1
m


uv∈E(G)

du + dv

2
����
dudv

 

2

≤
1
m


uv∈E(G)

du + dv

4dudv/ du + dv( ( 
 

2

�
1
m


uv∈E(G)

du + dv( 
2

4dudv

 

2

≤
1

16mδ4


uv∈E(G)

du + dv( 
4

�
χ4(G)

16mδ4
,

(65)

as desired. □

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the sigma index.

Theorem 16. Let G be a simple connected graph of size m

with maximum degree Δ, p pendent vertices, and minimum
nonpendent vertex degree δ1. 3en,

GA(G)≥
2p

��
Δ

√

1 + Δ
+

������������������������������������

4(m − p)
2

− m − p/δ21  σ(G) − p δ1 − 1( 
2

 



��������������

Δ + δ1/2
����

Δδ1


 



+

��������������

2
����
Δδ1


/Δ + δ1( 

 .

(66)

Proof. We partition all the edges into two parts: pendent
edges and nonpendent edges, so

GA(G) � 
uv∈E(G)

du�1

2
��
dv



1 + dv

+ 
uv∈E(G)
du,dv ≠ 1

2
����
dudv



du + dv

.
(67)

On one hand, for the pendent edges, it is not hard to
check that (2

��
dv


/1 + dv) decreases in 2≤dv ≤Δ; thus,


uv∈E(G)

du�1

2
��
dv



1 + dv

≥
2p

��
Δ

√

1 + Δ
.

(68)

Now, we consider the nonpendent edges. It is easy to see
that the function x + (1/x) gets its maximum value when x

attains the maximum or minimum value. From
(Δ/δ)≥ (du/dv)≥ (δ/Δ) for all u and v ∈ V(G), we have

��
du

dv



+

��
dv

du



≤
��
Δ
δ



+

��
δ
Δ



, (69)
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which is equivalent to

2
����
Δδ1



Δ + δ1
≤
2

����
dudv



du + dv

≤ 1. (70)

Set auv � 1 and buv � (2
����
dudv


/du + dv) for each edge

uv ∈ E(G), M1 � m1 � M2 � 1, and m2 � (2
����
Δδ1


/Δ + δ1)

in Lemma 6, and we have



uv∈E(G)du,

dv ≠ 1

12 

uv∈E(G)du,

dv ≠ 1

2
����
dudv



du + dv

 

2

� (m − p) 

uv∈E(G)du,

dv ≠ 1

1 −
du − dv

du + dv

 

2
⎛⎝ ⎞⎠

≤
1
4

��������������
1

2
����
Δδ1


/Δ + δ1( 



+

������
2

����
Δδ1



Δ + δ1



⎛⎝ ⎞⎠

2


uv ∈ E(G)du,

dv ≠ 1

2
����
dudv



du + dv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

,

(71)

which implies that


uv∈E(G)du,

dv ≠ 1

2
����
dudv



du + dv

≥

������������������������������������
4(m − p) uv∈E(G)du,

dv≠1
1 − du − dv/du + dv( 

2
 



��������������

Δ + δ1/2
����

Δδ1


 



+

��������������

2
����
Δδ1


/Δ + δ1( 



≥

�������������������������������������
4(m − p)

2
− m − p/δ21  uv∈E(G)du,

dv≠1
du − dv( 

2


��������������

Δ + δ1/2
����

Δδ1


 



+

��������������

2
����
Δδ1


/Δ + δ1( 



�

��������������������������������������������

4(m − p)
2

− m − p/δ21  σ(G) − uv∈E(G)du�1 dv − 1( 
2

 



��������������

Δ + δ1/2
����

Δδ1


 



+

��������������

2
����
Δδ1


/Δ + δ1( 



≥

������������������������������������

4(m − p)
2

− m − p/δ21  σ(G) − p δ1 − 1( 
2

 



��������������

Δ + δ1/2
����

Δδ1


 



+

��������������

2
����
Δδ1


/Δ + δ1( 

 .

(72)

Finally, the result follows from (67), (68), and (72).
Next, results are immediate consequences of$eorem 16

with the setting p � 0. □

Corollary 13. For a graph G of size m with maximum degree
Δ and minimum degree δ ≥ 2,

GA(G)≥

���������������
4m

2
− m/δ2 σ(G)



������������
(Δ + δ/2

���
Δδ

√
)


+

������������
(2

���
Δδ

√
/Δ + δ)

 . (73)

Now, we obtain a lower bound for the geometric-
arithmetic index in terms of the second Zagreb index and the
general sum connectivity index.

Theorem 17. Let G be a graph of size m, maximum degree Δ,
and minimum degree δ. 3en,

GA(G)≥

������������������������

4M2(G)χ− 2(G) −
m

2

4
·
Δ2 + δ2

Δδ



. (74)
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Proof. By Lemma 5 and putting auv � 2
����
dudv


,

buv � (1/du + dv), m1 � 2δ, N1 � 2Δ, m2 � (1/2Δ), and
N2 � (1/2δ), we have



n

i�1
4dudv 

n

i�1

1
du + dv( 

2 − 
n

i�1

2
����
dudv



du + dv

⎛⎝ ⎞⎠

2

≤
m

2

4
·
Δ2 + δ2

Δδ
.

(75)

$is implies that

GA(G)
2 ≥ 4M2(G)χ− 2(G) −

m
2

4
·
Δ2 + δ2

Δδ
. (76)

$e result follows.
Now, we obtain a lower bound for the geometric-

arithmetic index in terms of the harmonic index. □

Theorem 18. Let G be a graph without isolated edges. 3en,

GA(G)≥
�
2

√
H(G). (77)

Proof. Since for each uv ∈ E(G), dudv ≥ 2, we obtain

GA(G) � 
uv∈E(G)

2
����
dudv



du + dv

≥ 
uv∈E(G)

2
�
2

√

du + dv

�
�
2

√
H(G),

(78)

as desired.
$e proof of next results can be found in [33]. □

Theorem 19 (see [33]). Let G be a triangle-free graph of
order n and the minimum degree δ ≥ k(k≤ (n/2)). 3en,

H(G)≥
2k(n − k)

n
. (79)

Theorem 20 (see [33]). Let G be a triangle-free graph of
order n and size m. 3en,

H(G)≥
2m

n
. (80)

Applying $eorems 18–20, it leads to the next results.

Corollary 14. Let G be a triangle-free graph of order n

without isolated edges, and the minimum degree
δ ≥ k(k≤ (n/2)). 3en,

GA(G)≥
2

�
2

√
k(n − k)

n
, (81)

GA(G)≥
2

�
2

√
m

n
. (82)

We can see that Inequality (82) improves the next well-
known result for triangle-free graphs [13]. Let G be a graph
of order n and size m without isolated vertex. $en,

GA(G)≥
2m

n
. (83)

$e eccentricity ε(v) of v is defined as

ε(v) � max d(v, w) : w ∈ V(G){ }, (84)

where d(v, w) is the length of a shortest path connecting v

and w. $e radius r and diameter D are defined as the
minimum and maximum values among ε(v) over all vertices
v ∈ V(G), respectively.

Xu [34] showed that, for any nontrivial connected graph
G of order n, size m, and radius r, H(G)≥ (m/n − r). Using
this and $eorem 18, we obtain the next result.

Corollary 15. Let G be a nontrivial connected graph of order
n, size m, and radius r. 3en,

GA(G)≥
�
2

√
m

n − r
. (85)

Theorem 21. Let G be a nontrivial connected graph of size m

and radius r. 3en,

GA(G)≥
R1/2(G)

n − r
. (86)

Proof. Note that, for each vertex u ∈ V(G), we have
du ≤ n − ε(u). $us, for each edge uv ∈ E(G),

GA(G) � 
uv∈E(G)

2
����
dudv



du + dv

≥ 
uv∈E(G)

2
����
dudv



2n − ε(u) − ε(v)

≥ 
uv∈E(G)

2
����
dudv



2n − 2r
�

R1/2(G)

n − r
,

(87)

as desired. □

Theorem 22. Let G be a nontrivial graph of order n, size m,
and p pendent edges without isolated vertex. 3en,

GA(G)≥
p

�����
n − 1

√ +
m − p

n − 1 − (p/2)
. (88)

Proof. Since 0< (1/du) and (1/dv)≤ 1, therefore we deduce
that

GA(G) � 
uv∈E(G)

2
����
dudv



du + dv

≥ 
uv∈E(G)

1/du(  + 1/dv( ( 
����
dudv



du + dv

� 
uv∈E(G)

1
����
dudv

 .

(89)
For each pendent edge e � uv, we clearly have (1/����

dudv


)≥ (1/

�����
n − 1

√
). If e � uv is a nonpendent edge, then

du + dv ≤ 2(n − 1) − p, as any pendent vertex is adjacent to at
most one of u and v. So,

����
dudv


≤ (du +dv/2)≤ n − 1 − (p/2);

hence,
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1
����
dudv

 ≥
1

n − 1 − (p/2)
. (90)

$us,

GA(G)≥
p

�����
n − 1

√ +
m − p

n − 1 − (p/2)
. (91)

$e desired result follows.
In [35], Kulli et al. defined the first and second gener-

alized multiplicative Zagreb indices:

MZ
a
1(G) � 

uv∈E(G)

du + dv( 
a
,

MZ
a
2(G) � 

uv∈E(G)

dudv( 
a
.

(92)

Here, we obtain a lower bound in terms of the first and
second generalized multiplicative Zagreb indices. □

Theorem 23. Let G be a nontrivial graph of size m. 3en,

GA(G)≥ 2m

���������

MZ
1/2
2 (G)

MZ
1
1(G)

m




. (93)

Proof. By Lemma 2, we obtain

GA(G)

2m
�

1
m


uv∈E(G)

����
dudv



du + dv

≥

������������


uv∈E(G)

����
dudv



du + dv

m




�

����������������������������
uv∈E(G)

����
dudv



uv∈E(G) du + dv(  �

���������
MZ

1/2
2 (G)

MZ
1
1(G)

m



,

m





(94)

as desired. □

Theorem 24. Let G be a graph of size m and minimum
degree δ. 3en,

GA(G)≥
4δ2m2

HM(G)
. (95)

Proof. By Lemma 1, we get

GA(G)

2m
�

1
m


uv∈E(G)

����
dudv



du + dv

≥
1
m


uv∈E(G)

2dudv/ du + dv( ( 

du + dv

�
1
m


uv∈E(G)

2dudv

du + dv( 
2

≥
m

uv∈E(G) du + dv( 
2/2dudv 

≥
m

1/2δ2 uv∈E(G) du + dv( 
2

�
2δ2m

HM(G)
,

(96)

as desired.
In the sequel, we obtain a lower bound in terms of the

first Zagreb index. □

Theorem 25. Let G be a graph of size m, maximum degree Δ,
and minimum degree δ. 3en,

GA(G)≥
δm

Δ
+ 2m −

M1(G)

δ
. (97)

Proof. By Lemma 8, we have

GA(G) +
M1(G)

δ
≥ 

uv∈E(G)

2
����
dudv



du + dv

+
du + dv����

dudv

 

≥ 
uv∈E(G)

2
����
dudv



du + dv

+ 2 

� 
uv∈E(G)

2
����
dudv



du + dv

+ 
uv∈E(G)

2

≥
δm

Δ
+ 2m,

(98)

and this implies the desired bound. □

Zhou [36] proved that, for any triangle-free graph of
order n and size m, M1(G)≤mn. Together with$eorem 25,
we get the next result.

Corollary 16. Let G be a triangle-free graph of order n, size
m, maximum degree Δ, and minimum degree δ. 3en,

GA(G)≥m
δ
Δ

+ 2 −
n

δ
 . (99)

Inequality (98) leads to the following results.
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Corollary 17. Let G be a graph of size m, maximum degreeΔ,
and minimum degree δ. 3en,

GA(G)≥ δH(G) + 2m −
M1(G)

δ
,

GA(G)≥
R1/2(G)

Δ
+ 2m −

M1(G)

δ
.

(100)

Note that, for every two real numbers x and y,
((x + y)2/xy)≥ 4. Applying this, we obtain a lower bound
for the geometric-arithmetic index in terms of the hyper-
Zagreb index.

Theorem 26. Let G be a graph of size m, maximum degree Δ,
and minimum degree δ. 3en,

GA(G)≥
δm

Δ
+ 4m −

HM(G)

δ2
. (101)

Proof. From the above inequality, we have

GA(G) +
HM(G)

δ2
≥ 

uv∈E(G)

2
����
dudv



du + dv

+
du + dv( 

2

dudv

 

≥ 
uv∈E(G)

2
����
dudv



du + dv

+ 4 

� 
uv∈E(G)

2
����
dudv



du + dv

+ 
uv∈E(G)

4

≥
δm

Δ
+ 4m,

(102)
and this implies the desired bound.

Here, we obtain a lower bound for the geometric-
arithmetic index in terms of the first Zagreb index. □

Theorem 27. Let G be a graph of size m and minimum
degree δ. 3en,

GA(G)≥ 2m −
M1(G)

2δ
. (103)

Proof. From the fact that x + (1/x)≥ 2 for any x> 0, we
have

GA(G) +
M1(G)

2δ
≥ 

uv∈E(G)

2
����
dudv



du + dv

+
du + dv

2
����
dudv

 

≥ 
uv∈E(G)

2 � 2m,

(104)

and this implies the desired bound. □

Theorem 28 (see [37]). Let G be a graph of size m and
diameter D> 1. 3en,

M1(G)≤m
2

− m(D − 3) +(D − 2). (105)

Now, by $eorems 27 and 28, we have the following
result.

Corollary 18. Let G be a graph of size m, minimum degree δ,
and diameter D> 1. 3en,

GA(G)≥ 2m −
m

2
− m(D − 3) +(D − 2)

2δ
. (106)

Theorem 29 (see [38]). Let G be a graph of size m, with t

triangles and pendent vertex p. 3en,

M1(G)≤m(p + 2) + 3t. (107)

Again, by $eorems 27 and 29, we have the following
result.

Corollary 19. Let G be a graph of size m, with t triangles, leaf
number L, and minimum degree δ. 3en,

GA(G)≥ 2m −
m(p + 2) + 3t

2δ
. (108)

Theorem 30 (see [39]). Let G be a triangle- and quadrangle-
free graph with n> 1 vertices. 3en,

M1(G)≤ n(n − 1). (109)

Also, by3eorems 27 and 30, we have the following result.

Corollary 20. Let G be a triangle- and quadrangle-free graph
of order n, size m, and minimum degree δ. 3en,

GA(G)≥ 2m −
n(n − 1)

2δ
. (110)
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A vertex w ∈ V(H) distinguishes (or resolves) two elements (edges or vertices) a, z ∈ V(H)∪E(H) if d(w, a)≠ d(w, z). A set Wm

of vertices in a nontrivial connected graph H is said to be a mixed resolving set for H if every two different elements (edges and
vertices) of H are distinguished by at least one vertex of Wm. +e mixed resolving set with minimum cardinality in H is called the
mixed metric dimension (vertex-edge resolvability) of H and denoted by m dim(H). +e aim of this research is to determine the
mixed metric dimension of some wheel graph subdivisions. We specifically analyze and compare the mixed metric, edge metric,
and metric dimensions of the graphs obtained after the wheel graphs’ spoke, cycle, and barycentric subdivisions. We also prove
that the mixed resolving sets for some of these graphs are independent.

1. Introduction

Suppose H � (V, E) is a nontrivial, simple, and connected
graph, where E represents a set of edges and V represents a
set of vertices. +e distance between two vertices a and w in
an undirected graph H, denoted by d(a, w), is the length of a
shortest a − w path in H. In [1], Kelenc et al. introduced the
concept of mixed metric dimension in graphs. +is di-
mension of graph H is the mixture of metric and edge metric
dimensions.

A vertex w ∈ V is said to resolve two vertices v1 and v2 in
H if d(w, v1)≠d(w, v2). Let w be a vertex and
W � v1, v2, v3, . . . , vp  be an ordered subset of vertices in
H. +emetric coordinate (or metric representation) r(w|W)

of w with respect to W is the p-tuple
(d(w, v1), d(w, v2), d(w, v3), . . . , d(w, vp)). +en, W is said
to be a resolving set (or metric generator) for H if for every
pair of vertices v1, v2 ∈ V with v1 ≠ v2, we have
r(v1|W)≠ r(v2|W). A resolving set with minimum cardi-
nality is called the metric basis of H, and the cardinality of
the metric basis set is the metric dimension dim(H) of H.

Slater introduced the idea of metric dimension in [2],
where the metric generators were referred to as locating sets
due to some relation with the problem of uniquely recog-
nizing the location of intruders in networks. Harary and
Melter, on the contrary, independently proposed the same
concept of the metric dimension of a graph in [3], where
metric generators were referred to as resolving sets. Several
works on the applications and theoretical properties of this
invariant have also been published. Metric dimension has
various significant applications in computer science,
mathematics, social sciences, chemical sciences, etc. [4–14].
+ere also exist some other variations of metric dimension
in the literature: independent resolving sets [15], local metric
dimension [16], solid metric dimension [11], fault-tolerant
metric dimension [17], and so on.

+e distance between an edge e � ax and a vertex w is
defined as d(e, w) � d(ax, w) � min d(a, w), d(x, w){ }. A
vertex w ∈ V is said to resolve two edges e1 and e2 in H if
d(w, e1)≠d(w, e2). Let e be an edge and WE �

v1, v2, v3, . . . , vp  be an ordered subset of vertices in H. +e
edge metric codes rE(e|WE) of e with respect to WE are the
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p-tuple (d(e, v1), d(e, v2), d(e, v3), . . . , d(e, vp)). +en, WE

is said to be an edge resolving set for H if for every pair of
edges e1, e2 ∈ E with e1 ≠ e2, we have rE(e1|WE)

≠ rE(e2|WE). An edge resolving set with minimum cardi-
nality is called an edge metric basis for H, and the cardinality
of this edge metric basis set is the edge metric dimension
edim(H) of H.

For a connected graph H, we see that every vertex of H is
uniquely recognized by a resolving set W of H, and every
edge ofH is uniquely recognized by an edge resolving setWE

of H; the natural question is as follows: whether every re-
solving set W is also an edge resolving set WE for H and vice
versa? Kelenc et al. in [18] proved that there exist some
families of graphs for which the resolving set W is also an
edge resolving set WE, but in general, this is not true for
every graph H. Similarly, for every graph H, the edge re-
solving set is not necessarily a resolving set for H.

Let us define a set of elements as V∪E, i.e., each element
is an edge or a vertex. A vertex w ∈ V is said to resolve two
elements a and z from V∪E if d(w, a)≠ d(w, z). Let a be an
element and Wm � v1, v2, v3, . . . , vp  be an ordered subset
of vertices in H. +emixedmetric codes rm(a|Wm) of a with
respect to Wm are the p-tuple (d(a, v1), d(a, v2),

d(a, v3), . . . , d(a, vp)). +en, Wm is said to be a mixed re-
solving set for H if for every pair of distinct elements
a1, a2 ∈ V∪E, we have rm(a1|Wm)≠ rm(a2|Wm). A mixed
resolving set with minimum cardinality is called a mixed
metric basis for H, and the cardinality of this mixed metric
basis set is the mixed metric dimension mdim(H) of H. By
the definition of themixedmetric dimension, it is clear that a
mixed resolving set is both edge resolving set and a resolving
set, so we have

mdim(H)≥max edim(H), dim(H){ }. (1)

+ere are several studies [1, 19, 20] related to the mixed
metric dimension of various graphs, for instance, cycle
graphs, antiprism graphs, prism graphs, and convex poly-
topes, but there are many graphs for which the mixed metric
dimension has not been found yet, such as the graphs ob-
tained by some subdivisions of the wheel graph Wn,1. So, in
this paper, we will compute the mixed metric dimension of
the graphs obtained after the barycentric, spoke, and cycle
subdivisions of the wheel graph Wn,1.

2. Preliminaries

In this section, we give the definition of a wheel and its
related graphs, as well as recall some existing results on the
edge metric dimension, and the metric dimension of wheel-
related graphs.

2.1. Wheel Graph. A vertex u in an undirected graph G is
said to be the universal vertex if it is adjacent to all other
vertices of G. A wheel graph Wn,1 (n≥ 3) is a graph with n + 1
vertices obtained by joining a single universal vertex to all of
the vertices of a cycle graph Cn. Wn,1 has a vertex set V �

v, k1, k2, k3, . . . , kn  and an edge set E � vkj, kjkj+1

|1≤ j≤ n}, where all of the indices are taken to be modulo n.
+e edges kjkj+1 are called the cycle edges of Wn,1, and the
edges vkj are called as the spokes of the wheel graph.

We state that a family 5 of nontrivial connected graphs
has bounded mixed metric dimension if there exists a
constant L> 0 for every graph H of 5 such that
mdim(H)≤L; otherwise, 5 has an unbounded mixed metric
dimension. If all of the graphs in 5 have the same mixed
metric dimension, then 5 is referred to as a family with a
constant mixed metric dimension. Cycles Cn and paths Pn

for n≥ 3 are the graph families with a constant mixed metric
dimension.

2.2. Independent Mixed Resolving Set. A set Wm of vertices
from H is said to be an independent mixed resolving set for
H if Wm is an independent as well as mixed resolving set.

Let WSSn,1, WCSn,1, and WBSn,1 be the graphs obtained
from the wheel graphWn,1 after spoke, cycle, and barycentric
subdivisions of Wn,1, respectively. Recently, the metric and
edge metric dimension for these three wheel-related graphs
have been computed, and in [21], Raza and Bataineh made a
comparison between the metric dimension and the edge
metric dimension for these wheel-related graphs. +e edge
metric dimension and the metric dimension for these three
graphs are as follows.

Proposition 1 (see [21]). edim(WSSn,1) � n − 1, for n≥ 6.

Proposition 2 (see [21]). For n≥ 6, we have

edim WCSn,1  � edim WBSn,1 

�

4h if n � 6h or n � 6h + 1,

4h + 1 if n � 6h + 2,

4h + 2 if n � 6h + 3 or n � 6h + 4,

4h + 3 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

Proposition 3 (see [22]). dim(WSSn,1) � ⌊2n + 2/5⌋, for
n≥ 6.

Proposition 4 (see [23, 22]). For n≥ 6, we have

dim WCSn,1  � dim WBSn,1  �

4h if n � 6h or n � 6h + 1,

4h + 1 if n � 6h + 2,

4h + 2 if n � 6h + 3 or n � 6h + 4,

4h + 3 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)
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+is article is organized as follows: in Section 3, we will
study the mixed metric dimension of the spoke subdivision of
the wheel graph WSSn,1. In Sections 4 and 5, we will study the
mixed metric dimension of the cycle and barycentric subdi-
vision of thewheel graph, i.e.,WCSn,1 andWBSn,1, respectively.
We also give the comparative analysis for the mixed metric,
edge metric, andmetric dimension of the graphs obtained after
the spoke, cycle, and barycentric subdivisions of the wheel
graph. In Section 6, we conclude the obtained results.

3. Mixed Metric Dimension of the Spoke
Subdivision of Wn,1

In this section, we determine the mixed metric dimension of
the spoke subdivision of a wheel graph.

3.1. Spoke SubdivisionofWn,1. Suppose Wn,1 is a wheel graph
with the vertex set V(Wn,1) � k1, k2, k3, . . . , kn, v  having a
single universal vertex v. Now, each central spoke vkj of Wn,1

is subdivided with a new vertex lj. +e resulting graph so
obtained is known as the spoke subdivision wheel graph
(SSWG) and is denoted by WSSn,1. SSWG has 3n edges,
E(Wn,1) � vlj, ljkj, kjkj+1|1≤ j≤ n , and 2n + 1 vertices,
V(Wn,1) � v, lj, kj|1≤ j≤ n , where all indices are taken to
be modulo n (see Figure 1). In this section, we obtain the
mixed metric dimension of SSWG WSSn,1.

Theorem 1. mdim(WSSn,1) � n, for n≥ 6.

Proof. To prove that mdim(WSSn,1)≤ n, we construct a
mixed resolving set for WSSn,1. Suppose
Wm � k1, k2, k3, . . . , kn ⊆V(WSSn,1) having n cycle vertices
from WSSn,1. We claim that Wm is a mixed resolving set for
WSSn,1. Now, we can give mixed codes to each of the vertex
and edge of WSSn,1 with respect to Wm.

+e sets of mixed metric codes for the vertices
v, lj, kj|1≤ j≤ n  of WSSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
n−times

⎧⎨

⎩

⎫⎬

⎭,

B � rm lj|Wm  � 3, 3, . . . , 3, 2, 1
jth

, 2, 3, . . . , 3, 3⎛⎝ ⎞⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

C � rm kj|Wm  � 4, 4, . . . , 4, 3, 2, 1, 0
jth

, 1, 2, 3, 4, . . . , 4, 4⎛⎜⎝ ⎞⎟⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(4)

Next, the sets of mixed metric codes for the edges
vlj, ljkj, kjkj+1|1≤ j≤ n  of WSSn,1 are as follows:

D � rm vlj|Wm  � 2, 2, . . . , 2, 1
jth

, 2, . . . , 2, 2⎛⎝ ⎞⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E � rm ljkj|Wm  � 3, 3, . . . , 3, 2, 1, 0
jth

, 1, 2, 3, . . . , 3, 3⎛⎜⎝ ⎞⎟⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

F � rm kjkj+1|Wm  � 4, 4, . . . , 4, 3, 2, 1, 0
jth

, 0, 1, 2, 3, 4, . . . , 4, 4⎛⎜⎝ ⎞⎟⎠|1≤ j≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(5)

From these sets of mixed codes for WSSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and A∩B∩
C∩D∩E∩F � ∅, implying Wm to be a mixed resolving set
for WSSn,1, i.e., mdim(WSSn,1)≤ n. Conversely, suppose, on
the contrary, that there exists a mixed resolving set
Wm⊆WSSn,1 such that |Wm|< n. +en, we have the following
cases to be considered:

Case (i): v ∉Wm. In this case, we further have two
subcases:

Subcase (i): if Wm ⊂ k1, k2, k3, . . . , kn , then there
exists at least one vertex kj such that kj ∉Wm. +en,
for an edge vlj and the vertex v, we have
rm(vlj|Wm) � rm(v|Wm) � (2, 2, 2, . . . , 2), a contra-
diction.+erefore, the set Wm is not a mixed resolving
set for WSSn,1.
Subcase (ii): if Wm⊈ k1, k2, k3, . . . , kn , then at least
one vertex li belongs to the set Wm. +en, there exists
one kj ∉Wm, and the corresponding vertex lj ∉Wm.
+en, for an edge vlj and the vertex v, we have
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rm(vlj|Wm) � rm(v|Wm), a contradiction. +erefore,
again, in this case, the set Wm is not a mixed resolving
set for WSSn,1.

Case (ii): v ∈Wm. In this case, we have two subcases:

Subcase (i): if Wm ⊂ k1, k2, k3, . . . , kn ∪ v{ }, then
there exists at least one vertex kj such that kj ∉Wm.
+en, clearly, for an edge vlj and the vertex v, we have
rm(vlj|Wm) � rm(v|Wm), a contradiction. +erefore,
the set Wm is not a mixed resolving set for WSSn,1.
Subcase (ii): if at least one lj must belong to the set
Wm, then there exists at least one vertex kj ∉Wm, and
the corresponding vertex lj ∉Wm. +en, for an edge
vlj and a vertex v, we have rm(vlj|Wm) � rm(v|Wm), a
contradiction. +erefore, again, in this case, the set
Wm is not a mixed resolving set forWSSn,1.+us, in all
the cases, we have |Wm|≥ n, implying mdim(WSSn,1)

� n, which completes the proof of the theorem. □ □

Remark 1. For the spoke subdivision wheel graph
H � WSSn,1, we find that dim(WSSn,1)< edim(WSSn,1)<
mdim(WSSn,1) (using Propositions 1 and 3 and+eorem 1).
+e comparison between these three dimensions ofWSSn,1 is
clearly shown in Figure 2, and the value of each dimension
depends on the number of vertices n in WSSn,1.

4. Mixed Metric Dimension of the Cycle
Subdivision of Wn,1

In this section, we determine the mixed metric dimension of
the cycle subdivision of a wheel graph.

4.1. Cycle Subdivision ofWn,1. Suppose Wn,1 is a wheel graph
with the vertex set V(Wn,1) � k1, k2, k3, . . . , kn, v  having a
single universal vertex v. Now, each cycle edge kjkj+1 of Wn,1
is subdivided with a new vertex lj. +e resulting graph so
obtained is known as the cycle subdivision wheel graph
(CSWG) and is denoted by WCSn,1. CSWG has 3n edges,
E(WCSn,1) � vkj, kjlj, ljkj+1|1≤ j≤ n , and 2n + 1 vertices,
V(WCSn,1) � v, lj, kj|1≤ j≤ n , where all indices are taken
to be modulo n (see Figure 3). In this section, we obtain the
mixed metric dimension of CSWG WCSn,1.

Theorem 2. For n≥ 6, we have

mdim WCSn,1  �

4h if n � 6h,

4h + 1 if n � 6h + 1,

4h + 2 if n � 6h + 2,

4h + 2 if n � 6h + 3,

4h + 3 if n � 6h + 4,

4h + 4 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Proof. To prove this, we first generate the mixed resolving
sets for all the cases, obtaining the upper bounds depending
on the positive integer n. +en, in the end, we show that the
lower bound (or reverse inequality) is the same as the upper
bound to conclude the theorem.

Case (I): n ≡ 0(mod6). In this case, we have n � 6h,
where h≥ 2 and h ∈ N. Suppose an ordered subset
Wm � l1, l2, l4, l5, . . . , ln−2, ln−1  � l3i+1, l3i+2|0≤ i ≤ 2h

−1} of vertices in WCSn,1 with |Wm| � 4h. Next, we
claim that Wm is the mixed resolving set for WCSn,1.
Now, we can give mixed codes to every vertex and edge
of WCSn,1 with respect to Wm. +e sets of mixed metric
codes for the vertices u � v, lj, kj|1≤ j≤ n  of WCSn,1
are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
4h−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

k3

v

l2

k2

l1
k1

ln

kn

ln–1
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Figure 1: WSSn,1.
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rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 2, d l3i+1, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (7)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D � rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h − 1 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h − 1 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h − 1 ;

E � rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h − 1 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h − 1 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h − 1 ;

F � rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h − 1 

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h − 1 

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h − 1 .

(8)
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Figure 2: Comparison between dim(H), edim(H), and mdim(H).
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From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h.
Next, using equation (1) and Proposition 2, we find that
mdim(WCSn,1) � 4h, in this case.
Case (II): n ≡ 1(mod6). In this case, we have
n � 6h + 1, where h≥ 2 and h ∈ N. Suppose an ordered

subset Wm � l1, l2, l4, l5, . . . , ln−3, ln−2, ln  � l3i+1, l3i+2

|0≤ i≤ 2h − 1}∪ ln  of vertices in WCSn,1 with
|Wm| � 4h + 1. Next, we claim that Wm is the mixed
resolving set for WCSn,1. Now, we can give mixed codes
to every vertex and edge of WCSn,1 with respect to Wm.
+e sets of mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+1)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
;

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪
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v
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Figure 3: WCSn,1.
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rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h−2)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 2, d l3i+1, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (9)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(10)
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From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 1.
Case (III): n ≡ 2(mod6). In this case, we have
n � 6h + 2, where h≥ 2 and h ∈ N. Suppose an ordered
subset Wm � l1, l2, l4, l5, l7 . . . , ln−1, ln  � l3i+1, l3i+2|0

≤ i≤ 2h} of vertices in WCSn,1 with |Wm| � 4h + 2.
Next, we claim that Wm is the mixed resolving set for
WCSn,1. Now, we can give mixed codes to every vertex
and edge of WCSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+2)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h−1)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+2(  � 2, d l3i+2, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭.

(11)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪
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rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h
 ,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1
 ∪

rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h
 ∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h
 ,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1
 ∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h−1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h
 ∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h
 . (12)

From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 2.
Case (IV): n ≡ 3(mod6). In this case, we have
n � 6h + 3, where h≥ 2 and h ∈ N. Suppose an ordered
subset Wm � l1, l2, l4, l5, l7 . . . , ln−2, ln−1  � l3i+1, l3i+2|

0≤ i≤ 2h} of vertices in WCSn,1 with |Wm| � 4h + 2.
Next, we claim that Wm is the mixed resolving set for
WCSn,1. Now, we can give mixed codes to every vertex
and edge of WCSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+2)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+2(  � 2, d l3i+2, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭.

(13)
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Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D � rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h 

∪ rm vkj ∣Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h ;

E � rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h 

∪ rm kjlj ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h ;

F � rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3(  ∣ j ≡ 0(mod3)&0≤ i≤ 2h 

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3(  ∣ j ≡ 1(mod3)&0≤ i≤ 2h .

∪ rm ljkj+1 ∣Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3(  ∣ j ≡ 2(mod3)&0≤ i≤ 2h ;

(14)

From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 2.
Next, using equation (1) and Proposition 2, we find that
mdim(WCSn,1) � 4h + 2, in this case.
Case (V): n ≡ 4(mod6). In this case, we have
n � 6h + 4, where h≥ 2 and h ∈ N. Suppose an ordered

subset Wm � l1, l2, l4, l5, . . . , ln−3, ln−2, ln  � l3i+1, l3i+2|

0≤ i≤ 2h}∪ ln  of vertices in WCSn,1 with
|Wm| � 4h + 3. Next, we claim that Wm is the mixed
resolving set for WCSn,1. Now, we can give mixed codes
to every vertex and edge of WCSn,1 with respect to Wm.
+e sets of mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+3)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h+1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |j ≡ 1(mod3)1≤ i≤ 2h + 1 ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,
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C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭

∪ rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 2, d l3i+1, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭.

(15)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h+1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭.

(16)
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From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩ C∩D ∩E∩F � ∅, implying Wm to be a
mixed resolving set for WCSn,1, i.e.,
mdim(WCSn,1)≤ 4h + 3.
Case (VI): n ≡ 5(mod6). In this case, we have
n � 6h + 5, where h≥ 1 and h ∈ N. Suppose an ordered

subset Wm � l1, l2, l4, l5, . . . , ln−1, ln  � l3i+1, l3i+2|

0≤ i≤ 2h + 1} of vertices inWCSn,1 with |Wm| � 4h + 4.
Next, we claim that Wm is the mixed resolving set for
WCSn,1. Now, we can give mixed codes to every vertex
and edge of WCSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices
u � v, lj, kj|1≤ j≤ n  of WCSn,1 are as follows:

A � rm v|Wm(  � (2, 2, 2, . . . , 2)√√√√√√√√√√
(4h+4)−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm k1|Wm(  � 1, 3, 3, . . . , 3√√√√√√√√
(4h+2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2(  � 1, d l3i+2, k3i+2(  � 1, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d l3i+2, l3i+3(  � 2, d l3i+4, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1|Wm(  � 0, 2, 4, 4, 4, . . . , 4√√√√√√√√√√
(4h+1)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+1(  � 0, d l3i+1, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d l3i+1, l3i+2(  � 2, d l3i+2, l3i+2(  � 0, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭.

(17)

Next, the sets of mixed metric codes for the edges
vkj, kjlj, ljkj+1|1≤ j≤ n  of WCSn,1 are as follows:

D �
rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+2, vk3i+3(  � 1, 2, . . . , 2( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vk1|Wm(  � 1, 2, 2, 2, . . . , 2√√√√√√√√√√
(4h+2)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+1(  � 1, 2, . . . , 2( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vkj|Wm  � 2, 2, 2, . . . , 2, d l3i+1, vk3i+2(  � 1, d l3i+2, vk3i+2(  � 1, 2, . . . , 2( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

E �
rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+2, k3i+3l3i+3(  � 1, d l3i+4, k3i+3l3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪
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rm k1l1|Wm(  � 0, 2, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h+1)−times

, 1⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+1l3i+1(  � 0, d l3i+2, k3i+1l3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm kjlj|Wm  � 3, 3, 3, . . . , 3, d l3i+1, k3i+2l3i+2(  � 1, d l3i+2, k3i+2l3i+2(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭,

F �
rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+2, l3i+3k3i+4(  � 2, d l3i+4, l3i+3k3i+4(  � 1, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h

⎧⎨

⎩

⎫⎬

⎭ ∪

rm l1k2|Wm(  � 0, 1, 3, 3, 3, . . . , 3√√√√√√√√√√
(4h+1)−times

, 2⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+1k3i+2(  � 0, d l3i+2, l3i+1k3i+2(  � 1, 3, . . . , 3( |

j ≡ 1(mod3)1≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm ljkj+1|Wm  � 3, 3, 3, . . . , 3, d l3i+1, l3i+2k3i+3(  � 2, d l3i+2, l3i+2k3i+3(  � 0, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h + 1

⎧⎨

⎩

⎫⎬

⎭. (18)

From these sets of mixed codes for WCSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � n, and
A∩B∩C∩D∩E∩F � ∅, implying Wm to be a mixed
resolving set for WCSn,1, i.e., mdim(WCSn,1)≤ 4h + 4.
Now, for the second, third, fifth, and sixth case, we
obtain their lower bounds as follows.

For the second case, suppose that Wm ⊂ V(WCSn,1)

with |Wm|< 4h + 1 is a mixed resolving set for WCSn,1.
We have the following two cases to be considered:

Subcase (i): if Wm⊈ k1, k2, k3, . . . , kn , then there must
exist a vertex lj such that lj ∈Wm. +en, there exists at
least one vertex li ∈Wm such that ki−1, ki+1 ∉Wm.
+en, for the corresponding edges vki−1 and vki+1, we
have rm(vki+1|Wm) � rm(vki−1|Wm), a contradiction.
+erefore, Wm is not a mixed resolving set for WCSn,1
in this case.

Subcase (ii): if Wm ⊂ k1, k2, k3, . . . , kn , then there
exist at least two vertices ki and kj such that
ki, kj ∉Wm. +en, for the edges vki and vkj, we have
rm(vki|Wm) � rm(vkj|Wm), a contradiction. +ere-
fore, Wm is not a mixed resolving set for WCSn,1 in this
case as well. +us, |Wm|≥ 4h + 1. +is completes the
proof for the second case.

For rest of the cases, the pattern is the same as that in
Case (II). □

5. Mixed Metric Dimension of the Barycentric
Subdivision of Wn,1

In this section, we determine the mixed metric dimension of
the barycentric subdivision of a wheel graph.

5.1. Barycentric Subdivision ofWn,1. Suppose Wn,1 is a wheel
graph with the vertex set V(Wn,1) � k1, k2, k3, . . . , kn, v 

having a single universal vertex v. Now, each of the edges
kjkj+1 and vkj (1≤ j≤ n) of Wn,1 is subdivided with a new
vertex. +e resulting graph so obtained is known as the
barycentric subdivision wheel graph (BSWG) and is denoted
by WBSn,1. BSWG has 4n edges, E(WBSn,1) � vlj, ljkj,

kjmj, mjkj+1|1≤ j≤ n}, and 3n + 1 vertices, V(WBSn,1) �

v, lj, kj, mj|1≤ j≤ n , where all indices are taken to be
modulo n (see Figure 4). In this section, we obtain the mixed
metric dimension of BSWG WBSn,1.

Theorem 3. For n≥ 6, we have

mdim WBSn,1  �

4h if n � 6h,

4h + 1 if n � 6h + 1,

4h + 2 if n � 6h + 2,

4h + 2 if n � 6h + 3,

4h + 3 if n � 6h + 4,

4h + 4 if n � 6h + 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Proof. To prove this, we first generate the mixed resolving
sets for all the cases, obtaining the upper bounds depending
on the positive integer n. +en, in the end, we show that the
lower bound (or reverse inequality) is the same as the upper
bound to conclude the theorem.

Case (I): n ≡ 0(mod6). In this case, we have n � 6h,
where h≥ 2 and h ∈ N. Suppose an ordered subset
Wm � m1, m2, m4, m5, . . . , mn−2, mn−1  � m3i+1, m3i+2

|0≤ i≤ 2h − 1} of vertices in WBSn,1 with |Wm| � 4h.
Next, we claim that Wm is the mixed resolving set for
WBSn,1. Now, we can give mixed codes to every vertex

Journal of Mathematics 13



and edge of WBSn,1 with respect to Wm. +e sets of
mixed metric codes for the vertices u � v, kj, lj,

mj|1≤ j≤ n} of WBSn,1 are as follows:

A � rm v|Wm(  � (3, 3, 3, . . . , 3)√√√√√√√√√√
4h−times

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

B �
rm kj|Wm  �

5, 5, 5, . . . , 5, d m3i+1, k3i+3(  � 3, d m3i+2, k3i+3(  � 1,

d m3i+4, k3i+3(  � 5, 5, . . . , 5
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm k1|Wm(  � 1, 3, 5, . . . , 5√√√√√√
(4h−3)−times

, 3⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kj|Wm  �
5, 5, 5, . . . , 5, d m3i+2, k3i+1(  � 3, d m3i+4, k3i+1(  � 1,

d m3i+5, k3i+1(  � 3, 5, . . . , 5
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm kj|Wm  � 5, 5, 5, . . . , 5, d m3i+1, k3i+2(  � 1, d m3i+2, k3i+2(  � 1, 5, . . . , 5( |

j ≡ 2(mod3)0≤ i≤ 2h − 1
 ,

C �
rm lj|Wm  � 4, , 4, . . . , 4, d m3i+2, l3i+3(  � 2, 4, . . . , 4( |

j ≡ 0(mod3)0≤ i≤ 2h − 1
 ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d m3i+1, l3i+1(  � 2, 4, . . . , 4( |

j ≡ 1(mod3)0≤ i≤ 2h − 1
 ∪

rm lj|Wm  � 4, 4, 4, . . . , 4, d m3i+1, l3i+2(  � 2, d m3i+2, l3i+2(  � 2, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1
 ,

D �
rm mj|Wm  �

6, , 6, . . . , 6, d m3i+1, m3i+3(  � 4, d m3i+2, m3i+3(  � 2,

d m3i+4, m3i+3(  � 2, d m3i+5, m3i+3(  � 4, 6, . . . , 6
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm m1|Wm(  � 0, 2, 6, 6, . . . , 6√√√√√√√√
(4h−3)−times

, 4⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm mj|Wm  �
6, 6, 6, . . . , 6, d m3i+2, m3i+1(  � 4, d m3i+4, m3i+1(  � 0,

d m3i+5, m3i+1(  � 2, 6, . . . , 6
 |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm lj|Wm  �
6, 6, 6, . . . , 6, d m3i+1, m3i+2(  � 2, d m3i+2, m3i+2(  � 0,

d m3i+4, m3i+2(  � 4, 6, . . . , 6
 |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.
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Next, the sets of mixed metric codes for the edges
vlj, ljkj, kjmj, mjkj+1|1≤ j≤ n  of WBSn,1 are as
follows:

E �
rm vlj|Wm  � 3, 3, 3, . . . , 3, d m3i+2, vl3i+3(  � 2, 3, . . . , 3( |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vlj|Wm  � 3, 3, 3, . . . , 3, d m3i+1, vl3i+1(  � 2, 3, . . . , 3( |

j ≡ 1(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭ ∪

rm vlj|Wm  � 3, 3, 3, . . . , 3, d m3i+1, vl3i+2(  � 2, d m3i+2, vl3i+2(  � 2, 3, . . . , 3( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭,

F �
rm ljkj|Wm  �

4, 4, 4, . . . , 4, d m3i+1, l3i+3k3i+3(  � 3, d m3i+2, l3i+3k3i+3(  � 1,

d m3i+4, l3i+3k3i+3(  � 3, 4, . . . , 4
 |

j ≡ 0(mod3) 0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm l1k1|Wm(  � 1, 3, 4, 4, . . . , 4√√√√√√√√
(4h−3)−times

, 3⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm ljkj|Wm  �
4, 4, 4, . . . , 4, d m3i+2, l3i+1k3i+1(  � 3, d m3i+4, l3i+1k3i+1(  � 1,

d m3i+5, l3i+1k3i+1(  � 3, 4, . . . , 4
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm ljkj|Wm  � 4, 4, 4, . . . , 4, d m3i+1, l3i+2k3i+2(  � 1, d m3i+2, l3i+2l3i+2(  � 1, 4, . . . , 4( |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎨

⎩

⎫⎬

⎭,

G �
rm kjmj|Wm  �

5, 5, 5, . . . , 5, d m3i+1, k3i+3m3i+3(  � 3, d m3i+2, k3i+3m3i+3(  � 1,

d m3i+4, k3i+3m3i+3(  � 2, d m3i+5, k3i+3m3i+3(  � 4, 5, . . . , 5
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm k1m1|Wm(  � 0, 2, 5, 5, . . . , 5√√√√√√√√
(4h−3)−times

, 3⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm kjmj|Wm  �
5, 5, 5, . . . , 5, d m3i+2, k3i+1m3i+1(  � 3, d m3i+4, k3i+1m3i+1(  � 0,

d m3i+5, k3i+1m3i+1(  � 2, 5, . . . , 5
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm kjmj|Wm  �
5, 5, 5, . . . , 5, d m3i+1, k3i+2m3i+2(  � 1, d m3i+2, k3i+2m3i+2(  � 0,

d m3i+4, k3i+2m3i+2(  � 4, 5, . . . , 5
 |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

H �
rm mjkj+1|Wm  �

5, 5, 5, . . . , 5, d m3i+1, m3i+3k3i+4(  � 4, d m3i+2, m3i+3k3i+4(  � 2,

d m3i+4, m3i+3k3i+4(  � 1, d m3i+5, m3i+3k3i+4(  � 3, 5, . . . , 5
 |

j ≡ 0(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm m1k2|Wm(  � 0, 1, 5, 5, . . . , 5√√√√√√√√
(4h−3)−times

, 4⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪

rm mjkj+1|Wm  �
5, 5, 5, . . . , 5, d m3i+2, m3i+1k3i+2(  � 4, d m3i+4, m3i+1k3i+2(  � 0,

d m3i+5, m3i+1k3i+2(  � 1, 5, . . . , 5
 |

j ≡ 1(mod3)1≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

rm mjkj+1|Wm  �
5, 5, 5, . . . , 5, d m3i+1, m3i+2k3i+3(  � 2, d m3i+2, m3i+2k3i+3(  � 0,

d m3i+4, m3i+2k3i+3(  � 3, 5, . . . , 5
 |

j ≡ 2(mod3)0≤ i≤ 2h − 1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.
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From these sets of mixed codes for WBSn,1, we obtain
that |A| � 1, |B| � |C| � |D| � |E| � |F| � |G| � |H| � n,
and A∩B∩C∩D∩E∩F∩G∩H � ∅, implying Wm

to be a mixed resolving set for WBSn,1, i.e., mdim
(WBSn,1)≤ 4h. Next, using equation (1) and Proposi-
tion 2, we find that mdim(WBSn,1) � 4h, in this case.

Like the first case, the rest of the proof is similar to that of
+eorem 2. □

Remark 2. For the cycle and barycentric subdivision wheel
graph, i.e., H � WCSn,1 and H � WBSn,1, we find that
dim(H) � edim(H) � mdim(H) when n � 6h and
n � 6h + 3. For the rest of the values of the positive integer n,
we have dim(H) � edim(H)<mdim(H) (using Proposi-
tions 2 and 4 and +eorems 2 and 3).

6. Conclusion

In this article, we have computed the mixed metric di-
mension for three families of graphs, namely, WBSn,1,
WCSn,1, and WSSn,1, obtained after the barycentric, cycle,
and spoke subdivisions of the wheel graphWn,1, respectively.
We also observed that the mixed resolving sets for WBSn,1
and WCSn,1 are independent. For WSSn,1, we found that
dim(WSSn,1)< edim(WSSn,1)<mdim(WSSn,1), and for H �

WBSn,1 and H � WCSn,1, we obtained the following relation:
dim(H) � edim(H)≤mdim(H) (partial answers to the
questions raised in [1, 18]).
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ematical Problems in Engineering, vol. 2021, Article ID
6623208, 9 pages, 2021.

[8] S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in
graphs,” Discrete Applied Mathematics, vol. 70, no. 3,
pp. 217–229, 1996.

[9] P. Singh, S. Sharma, S. K. Sharma, and V. K. Bhat, “Metric
dimension and edge metric dimension of windmill graphs,”
AIMS Mathematics, vol. 6, no. 9, pp. 9138–9153, 2021.

[10] H. Raza and Y. Ji, “Computing the mixed metric dimension of
a generalized petersen graph P(n, 2),” Frontiers of Physics,
vol. 8211 pages, 2020.

[11] A. Sebo and E. Tannier, “On metric generators of graphs,”
Mathematics of Operations Research, vol. 29, no. 2, pp. 383–
393, 2004.

[12] S. K. Sharma and V. K. Bhat, “Metric Dimension of hep-
tagonal circular ladder,” Discrete Mathematics, Algorithms
and Applications, vol. 13, no. 1, Article ID 2050095, 2021.

[13] S. K. Sharma and V. K. Bhat, “Fault-tolerant metric dimension
of two-fold heptagonal-nonagonal circular ladder,” Discrete
Mathematics, Algorithms and Applications, Article ID
2150132, 2021.

[14] M. F. Nadeem, M. Azeem, and A. Khalil, “+e locating
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For any given graph G, we say W⊆V(G) is a resolving set or resolves the graph G if every vertex of G is uniquely determined by its
vector of distances to the vertices inW.)emetric dimension ofG is theminimum cardinality of all the resolving sets.)e study of
metric dimension of chemical structures is increasing in recent times and it has application about the topology of such structures.
)e carbon atoms can bond together in various ways, called allotropes of carbon, one of which is crystal cubic carbon structure
CCC(n). )e aim of this article is to find the metric dimension of CCC(n).

1. Introduction

Let G be a simple connected graph and let
W � w1, w2, . . . , wk  be an ordered subset of the set of vertices
V(G) of G. )e distance d(u, v) of two vertices of G is the
length of shortest path between u and v.)e representation of a
vertex u of G with respect to W is the k-vector
(d(u, w1), d(u, w2), . . . , d(u, wk)) and it is denoted as
r(u|W). )e set W is called the resolving set or to resolve G if
the representation of distinct vertices is distinct.)at is, if u and
v are two distinct vertices, then r(u|W)≠ (v|W). )e metric
dimension of a graph is the cardinality of the minimal resolving
set and it is denoted as β(G). As there may be many different
resolving subsets in V(G) of different sizes, the study of the
minimal one is important and it has been studied over the years.
Some authors also use the term basis for G which is a resolving
set withminimum cardinal number (see [1]).)is work is about
a study of resolving sets in chemical structural graphs.

)e metric dimension of a general metric space was in-
troduced in 1953 in [2], but at that time, it attracted little at-
tention. )en, about twenty years later, it was applied to the
distances between vertices of a graph [3–5]. Since then, it has
been frequently used in graph theory, chemistry, biology, ro-
botics, and many other disciplines. For some literature studies,
see [6–9].

From many parameters for the study of graphs, the
metric dimension is one of those that has many applications,
and these applications are diverse like in pharmaceutical
chemistry [10, 11], robot navigation [12], and combinatorial
optimization [13]. A chemical compound or material can be
represented by many graph structures, but only one of them
may express its topological properties. )e chemists require
mathematical forms for a set of chemical compounds to give
distinct representations to distinct compound structures.
)e structure of chemical compounds or materials can be
represented by a labeled graph whose vertex and edge labels
specify the atom and bond types, respectively. )us, a graph
theoretic interpretation of this problem is to provide rep-
resentations for the vertices of a graph in such a way that
distinct vertices have distinct representations.

At very high pressures of above 1000GPa (gigapascal),
one of the forms of carbon, namely, diamond, is predicted to
transform into the so-called C8 structure, a body-centered
cubic structure with 8 atoms in the unit cell. )is cubic
carbon phase might have importance in astrophysics. Its
structure is known in one of the metastable phases of silicon
and is similar to cubane. )e structure of this phase was
proposed in 2012 as carbon sodalite [14]. In 2017, Baig et al.
[15] modified and extended this structure and named it
crystal cubic carbon CCC(n). We are taking all the notations
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as they were in [15]. )e structure of crystal cubic carbon
consists of cubes.

)e molecular graph of crystal cubic carbon CCC(n) for
the second level is depicted in Figure 1. Its structure starts
from one unit cube and then by attaching cubes at each
vertex of the unit cube by an edge. For the third level, the
CCC(3) is constructed by attaching cube to each vertex of
cubes of CCC(2) having degree 3 or you can say by attaching
cubes by an edge to all the white vertices of CCC(2). So, at
each level, a new set of cubes is attached by edges to the white
vertices of cubes of the preceding level. )e third level of
CCC(n) is displayed in Figure 2 which is constructed and

presented in a most suitable manner to explain the structure
of CCC(n).

All the new attached cubes, at each level, will be called
the outermost layer of cubes or outermost level of cubes, or
you can say at each level, the cubes with white vertices will be
called the outermost layer. As in CCC(2), the outermost
layer of cubes consists of 8 cubes. Because there are 7 × 8
vertices of degree 3, so in CCC(3), the outermost layer of
cubes will consist of 7 × 8 cubes. Similarly, this procedure is
repeated to get the next level. )e cardinality of vertices and
edges in CCC(n) is given below, respectively.

|V(CCC(n))| � 2 24
n

r�3
23 − 1 

r−3
+ 31 23 − 1 

n−2
+ 2 

n−2

r�0
23 − 1 

r
+ 3

⎧⎨

⎩

⎫⎬

⎭,

|E(CCC(n))| � 4 24
n

r�3
23 − 1 

r−3
+ 24 23 − 1 

n−2
+ 2 

n−2

r�0
23 − 1 

r
+ 3

⎧⎨

⎩

⎫⎬

⎭.

(1)

)ere are some articles that describe the different to-
pological properties of CCC(n) structure, the famous of
those topological indices are Randic, ABC, and Zagreb in-
dices and other degree-based indices of CCC(n) which are
computed in [15–18]. In the articles [19, 20], theauthors
calculated eccentricity and Szeged-type topological indices
of CCC(n). )e aim of this article is to compute the metric
dimension of CCC(n). Note that if W � w1, w2, . . . , wk  is
the ordered set of vertices of a graph G, then ξth component
of r(c|W) is 0⟺ c � wξ . )us, in order to show that W is a
resolving set, it suffices to verify that r(a|W)≠ r(b|W) for
each pair of distinct vertices a, b ∈ V(G)\W.

2. Main Result

In this section, we will present the main result about the
β(CCC(n)). But before going further, let us discuss the very
simple case of CCC(1) which is just a cube. We claim that
β(CCC(1)) � 3 indeed is true, let us see how.

Assume that β(CCC(1)) � 1, and because of symmetry,
we can take any vertex of cube to be the resolving set as in
Figure 3(a), say W � a{ }, then r(b|W) � r(c|W), which is a
contradiction. So, β(CCC(1))> 1. Assume that
β(CCC(1)) � 2. )en, there are two possibilities for the
elements of the resolving set W of CCC(1) because of its
symmetric shape. )e possible cases are as follows:

(I) )e two elements of W are the vertices on the main
diagonal of CCC(1).

(II) )e two elements of W are on the same face of the
cube. In this case, the both elements are either on the
main diagonal of a face or on the same edge of a face.

Without loss of generality, we can assume that W �

a, f  for case (I). For case (II) without loss of generality, we
can assume W � a, c{ } and W � b, c{ }, respectively. )en,
Figures 3(b)–3(d) show that β(CCC(1))≠ 2; the ordered
pairs in these Figures denote the representations of the

vertices. )us, from Figure 3(e), it is proved that
β(CCC(1)) � 3.

Now, we will prove the main result of this article.

Theorem 1. %e metric dimension of crystal cubic carbon
structure CCC(n) is 7n−2 × 16, for all n≥ 2, that is,
β(CCC(n)) � 7n−2 × 16,∀n≥ 2.

Proof. Let G � CCC(n) be the crystal cubic carbon structure
and n≥ 2. To show that the β(CCC(n)) � 7n−2 × 16 firstly,
we will show that β(CCC(n))≥ 7n−2 × 16. Let Qn be a cube
on the outermost layer of CCC(n), as depicted in Figure 4
(note that there are no cubes attached to the vertices
b1, b2, b3, c1, c2, c3, and u). In other words, all these vertices
are of degree 3 and they belong to only one cube which is Qn.
Observe that the red vertex of cube Qn is attached with red
edge to a cube Qn−1 of the preceding level at its blue vertex.
Also, note that d(b1, a) � 1 � d(b2, a) � d(b3, a) and
d(c1, a) � 2 � d(c2, a) � d(c3, a) and d(u, a) � 3.

Let W � w1, w2, . . . , wk  be a resolving set of CCC(n).
We claim that at least two vertices of Qn belong to W.
Suppose on contrary that no vertex of Qn belongs to W and
let r(a|W) be a representation of vertex a ∈ V(Qn). Note
that all the shortest paths from any vertex of Qn to any vertex
of W contain the vertex a of Qn. So, we can say that all such
paths pass through vertex a (path may end at it). )en,

r b1|W(  � d b1, w1( , d b1, w2( , . . . , d b1, wk( ( 

� d a, w1(  + 1, d a, w2(  + 1, . . . , d a, wk(  + 1( 

� d b2, w1( , d b2, w2( , . . . , d b2, wk( ( 

� r b2|W( ;

(2)

this is a contradiction. Now, assume that exactly one vertex
from the set V(Qn) belongs to W. Without loss of generality,
we can assume that this common vertex is w1.
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Case 1. If w1 � a, then

r b1|W(  � 1, d b1, w2( , . . . , d b1, wk( ( 

� 1, d b2, w2( , . . . , d b2, wk( ( 

� r b2|W( , a contradiction.

(3)

Case 2. If w1 � b1, then d(c1, w1) � 1 � d(c2, w1)

r c1|W(  � 1, d c1, w2( , . . . , d c1, wk( ( 

� 1, d c2, w2( , . . . , d c2, wk( ( 

� r c2|W( , again a contradiction.

(4)

Figure 1: Crystal cubic carbon structure CCC(2).

Central cube

Figure 2: Crystal cubic carbon structure CCC(3), with CCC(1) as the central cube.
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Similar contradictions appear for w1 � b2 and w1 � b3,
let us look at it.
Case 3. If w1 � b2, then d(c1, w1) � 1 � d(c3, w1)

r c1|W(  � 1, d c1, w2( , . . . , d c1, wk( ( 

� 1, d c3, w2( , . . . , d c3, wk( ( 

� r c3|W( , a contradiction.

(5)

Case 4. If w1 � b3, then d(c2, w1) � 1 � d(c3, w1)

r c2|W(  � 1, d c2, w2( , . . . , d c2, wk( ( 

� 1, d c3, w2( , . . . , d c3, wk( ( 

� r c3|W( , a contradiction.

(6)

Case 5. If w1 � c1, then d(b1, w1) � 1 � d(b2, w1)

r b1|W(  � 1, d b1, w2( , . . . , d b1, wk( ( 

� 1, d b2, w2( , . . . , d b2, wk( ( 

� r b2|W( , a contradiction.

(7)

Case 6. If w1 � c2, then d(b1, w1) � 1 � d(b3, w1)

r b1|W(  � 1, d b1, w2( , . . . , d b1, wk( ( 

� 1, d b3, w2( , . . . , d b3, wk( ( 

� r b3|W( , a contradiction.

(8)

Case 7. If w1 � c3, then d(b2, w1) � 1 � d(b3, w1)

r b2|W(  � 1, d b2, w2( , . . . , d b2, wk( ( 

� 1, d b3, w2( , . . . , d b3, wk( ( 

� r b3|W( , a contradiction.

(9)

Case 8. If w1 � u, then d(b1, w1) � 1 � d(b3, w1)

r b1|W(  � 1, d b1, w2( , . . . , d b1, wk( ( 

� 1, d b3, w2( , . . . , d b3, wk( ( 

� r b3|W( , a contradiction.

(10)

)e contradiction in all the cases proved our claim. So, at
least two vertices from the vertex set of Qn are in the re-
solving set W of CCC(n). Since Qn was taken arbitrary, so W

contains at least two vertices from each of the cube in the
outermost layer of cubes of CCC(n). By the construction of
CCC(n), we can see that at each step or at each level, the
cubes in CCC(n) are increased by a number equal to 7
multiplied by the number of cubes in the outermost layer of
the previous level. For example, in CCC(2), we have 8 cubes
in the outer layer, and in CCC(3), we have 7 × 8 cubes in the
outermost layer. )us, there are exactly 7n−2 × 8 cubes in the
outermost layer of CCC(n). Since from each such cube there
are at least two vertices in W, so β(CCC(n))≥ 7n−2 × 16. □

a

f

c, (c|W) = (1)

b, r(b|W) = (1)

dg

h

e

(a)

a

f

(1, 2)

(1, 2)

(1, 2)(2, 1)

(2, 1)

(2, 1)

(b)

(2, 2)

c

b

(2, 2)(3, 1)

(1, 3)

(1, 1)

(1, 1)

(c)

a

(3, 2)

c

(1, 2)

(1, 2)(2, 1)

(2, 3)

(2, 1)

(d)

(2, 2, 3)

w1

(2, 2, 1)(1, 3, 2)

(1, 1, 2)

w3

w2

(3, 1, 2)

(e)

Figure 3: )e graph of CCC(1) with all options of possible resolving sets.

a

u

b2

b1

b3c3

c2

c1

Figure 4: An arbitrary cube Qn in the outermost layer of cubes of
CCC(n).
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2.1. Second Part of Proof. In this part, we will show that
β(CCC(n))≤ 7n−2 × 16. Let W � w1, w2, . . . , wk  be the
collection of all the vertices of type b1 and b2 just like we have
discussed in part one of the proof and depicted in Figure 4.
)en, k � 7n−2 × 16. We claim that W is a resolving set of
CCC(n). )e representations of the two arbitrary vertices of
CCC(n) can be compared in five different cases and they are
discussed as follows:

(1) )e two arbitrary selected vertices are on the same
cube in the outermost level of CCC(n) (see Figure 4).

(2) )e two arbitrary selected vertices are on the same
cube, but this cube is not the outer most cube and
neither the central cube (i.e., CCC(1)), as depicted in
Figure 5.

(3) )e two arbitrary selected vertices are on the central
cube, as displayed in Figure 6.

(4) )e two arbitrary selected vertices are on a chain of
cubes with one end being the cube of the outermost
level (see Figure 7).

(5) )e two arbitrary selected vertices are on distinct
chains of cubes and those chains are connecting at a
cube which we can call a branching cube. As
explained in Figure 8, in which B cube is the
branching cube, S-cube and T-cube are on different
chains each containing one of the selected vertices.

Case (1).)is can be proved by a direct computation for
the representation of all the vertices in this cube
(Figure 4). Without loss of generality, we can assume
that w1 � b1, w2 � b2 ∈W, then r(a|W) � (1, 1,

d(a, w3), . . . , d(a, wk)) and

r b3|W(  � 2, 2, d a, w3(  + 1, . . . , d a, wk(  + 1( ,

r c1|W(  � 1, 1, d a, w3(  + 2, . . . , d a, wk(  + 2( ,

r c2|W(  � 1, 3, d a, w3(  + 2, . . . , d a, wk(  + 2( ,

r c3|W(  � 3, 1, d a, w3(  + 2, . . . , d a, wk(  + 2( ,

r(u|W) � 2, 2, d a, w3(  + 3, . . . , d a, wk(  + 3( .

(11)

We can see from the above that these representations
are all distinct in this case.
Case (2). Let the two arbitrary selected vertices be on
the same cube and this cube is not on the outermost
cube and neither is it the central cube. A visualization of
such cube is given in Figure 5. We can label the vertices
of this cube QA, as shown in Figure 5. Without loss of
generality, we can assume that w1, w2 are on the cube in
the outermost layer of cubes and that cube is connected
to cube QA at vertex u1 by a chain of cubes. Similarly,
we can assume that w2i−1, w2i are on the cube in the
outermost layer of cubes and those cubes are connected
to cube QA at vertices ui, i � 2, . . . , 7, by a chain of
cubes, respectively.

d u1, w1( ≠d ui, w1( , i � 1, . . . , 7 and i≠ 1,

d u2, w3( ≠d ui, w3( , i � 1, . . . , 7 and i≠ 2,

d u3, w5( ≠d ui, w5(  i � 1, . . . , 7 and i≠ 3,

d u4, w7( ≠d ui, w7( , i � 1, . . . , 7 and i≠ 4,

d u5, w9( ≠d ui, w9( , i � 1, . . . , 7 and i≠ 5,

d u6, w11( ≠d ui, w11( , i � 1, . . . , 7 and i≠ 6,

d u7, w13( ≠d ui, w13( , i � 1, . . . , 7 and i≠ 7.

(12)

Also,

d a, w1(  � d u1, w1(  + 1,

d a, w3(  � d u2, w3(  + 1,

d a, w5(  � d u3, w5(  + 1,

d a, w7(  � d u4, w7(  + 2,

d a, w9(  � d u5, w9(  + 2,

d a, w11(  � d u6, w11(  + 2,

(13)

and d(a, w13) � d(u7, w13) + 3. All these computations
show that r(ui|W)≠ r(uj|W) for i≠ j and
r(a|W) ≠ r(ui|W) for i � 1, . . . , 7. )is completes the
proof in this case.
Case (3).Assume that the two arbitrary selected vertices
are on the central cube, as displayed in Figure 6, where
just like in the previous case (2), we have labeled all 8
vertices with u1, u2, . . . , u8. Again, without loss of
generality, we assume that w2i−1, w2i, i � 1, . . . , 8, are on
the cube in the outermost layer of cubes and those
outermost cubes containing w2i−1, w2i are connected to
the central cube CCC(1) at vertices ui, i � 1, 2, . . . , 8, by
a chain of cubes, respectively. )ese assumptions imply
that

a

u7

u2

u1

u3
u6

u4

u5

w1, w2

w7, w8w9, w10

w13,
w14

w11, w12 w3, w4
w5, w6

Figure 5: Arbitrary cube QA not in the outermost layer of cubes of
CCC(n) and nor the central cube. )is cube is connected to the
central cube by a chain of cubes at vertex a.

Journal of Mathematics 5



Branching cube 

wj+1

wj

wi

wi+1

Central cube

S cube 
B cube 

T cube 

Figure 8: Branching cube and chain of cubes in CCC(n).

w15, w16

u8

u7

u2

u1

u3
u6

u4

u5

w1, w2

w7, w8w9, w10

w13,
w14

w11, w12 w3, w4
w5, w6

Figure 6: Central cube of CCC(n), that is, the cube CCC(1).

wi

wi+1

Qs cube

Qt cube

The cube on the outer most level from which
we choose our element of resolving set

Figure 7: A chain of cubes with one end being the cube of the outermost level; Qs and Qt are arbitrary cubes on the chain but not the
outermost cubes.
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d u1, w1( ≠d ui, w1( , 1≤ i≤ 8 and i≠ 1,

d u2, w3( ≠d ui, w3( , 1≤ i≤ 8 and i≠ 2,

d u3, w5( ≠d ui, w5( , 1≤ i≤ 8 and i≠ 3,

d u4, w7( ≠d ui, w7( , 1≤ i≤ 8 and i≠ 4,

d u5, w9( ≠d ui, w9( , 1≤ i≤ 8 and i≠ 5,

d u6, w11( ≠d ui, w11( , 1≤ i≤ 8 and i≠ 6,

d u7, w13( ≠d ui, w13( , 1≤ i≤ 8 and i≠ 7,

d u8, w15( ≠d ui, w15( , 1≤ i≤ 8 and i≠ 8.

(14)

So, we get the conclusion that, in this case, again
r(ui|W)≠ r(ui|W) for i≠ j and 1≤ i≤ 8, 1≤ j≤ 8.
Case (4).Now, we are going to discuss case (4). Assume
that the two arbitrary selected vertices s, t are on two
distinct cubes and those cubes are on a chain of cubes,
see Figure 7. Assume that one end of this chain is the
outermost cube containing two arbitrary resolving
elements, say w1, w2 (without loss of generality, we can
assume that those vertices are w1, w2), and the other
end is the central cube.
As depicted in Figure 7, let t be a vertex of cube Qt and s

be a vertex of cube Qs, then d(s, w1)< d(t, w1), and
therefore, r(s|W)≠ r(t|W). )is completes the proof in
this case.
Case (5). Finally, suppose that the two arbitrary selected
vertices s, t are on distinct chains of cubes and those
chains are connecting at a cube which we can call a
branching cube; this branching cube can also be the
central cube. As explained in Figure 8, in which B cube
is the branching cube, S cube and T cube are on dif-
ferent chains each containing one of the selected
vertices, that is, s ∈ V(S) and t ∈ V(T). Both of the two
cubes S and T or any one of these cube can also be the
cubes in the outermost level of cubes.

Note: in the idea of case (4), we can say that someone can
select two vertices on different cubes such that there is chain of
cube connecting them and both ends of this chain are the cubes
on the outermost level of cubes. But then, there must be a cube
(whichwe call branching cube) in this chain that connects to the
central cube by the chain of cubes.) Without loss of generality,
we can assume that wi � w1, wi+1 � w2 and wj � w3, wj+1
� w4.We can see that the length of the shortest path fromvertex
w1 to vertex t of cubeT is greater than the length of the shortest
path from vertex w1 to vertex s of cube S. )us,
d(s, w1)≠ d(t, w1), so this implies that r(s|W)≠ r(t|W).

All these five cases prove that W � w1, w2, . . . , wk  is a
resolving set. Since there are 7n− 2 × 16 number of elements
in W, therefore the proof of theorem concludes.

3. Conclusion

In this article, we have studied the metric dimension of the
crystal cubic carbon structure and we gave a formula for its
metric dimension.We have found that the metric dimension
of CCC(n) is not constant and find its closed form.
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