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Adverse weather has been recognized as an important factor to affect travelers’ activity plans in departure time, transport mode, route
taken, or cancellation. In the storm, road waterlogging degrades the capacity of road networks and the service quality of transit systems,
which further may affect the supply and demand for transit. Based on a typical case in Shanghai that commuters have no easy access to
metro service, this paper aims to explore how transit passengers adapt to different situations in the storm and what emergency plans
should be taken accordingly. Derived from the revealed preference (RP) and stated preference (SP) survey results for experienced transit
commuters, a nested logit (NL) model was developed to describe the travel behavior of transit commuters. Six alternatives, Direct Bus,
Bus+Bus, Metro, Bus+Metro, Taxi, and Cancel Trip, and three storm scenarios were set for transit commuters in this case. Estimated
parameters indicate that, in storm weather, crowdedness is less considered by transit commuters, and transfer times, walking time, in-
vehicle time, and waiting time have negative effects on the selection of the corresponding alternative, whereas the impact of taxi fare is
positive since the higher fare is usually accompanied byworseweather and traffic condition. Sensitivity analysis shows that walking time to
metro station, in-vehicle time, andwaiting time at a bus stop are themost critical factors leading to transit ridership reduction in the storm.
According to this, three possible plans for the transit operator, shuttle bus to themetro station (P1), information announcement (P2), and
route adjustment (P3), are simulated and compared. We recommend adopting P2, P2+P3, and P1+P2+P3 in turn with the increase of
road waterlogging..ese findings have important practical implications for developing transit emergencymanagement plans and serve as
references for the transit agencies and operators.

1. Introduction

Weather is recognized as a critical factor in transportation
system operation. Inclement weather can significantly de-
crease traffic speed and road capacity, cause traffic con-
gestion or disruption, and affect traffic safety. Public
transport, a vital component of urban transport systems
serving commuting trips, may also be largely affected by the
inclement weather. It has been proved that inclement
weather can degrade the bus service, affect passengers’ travel
choices, and reduce transit ridership [1]. As reported in the

Intergovernmental Panel on Climate Change (IPCC) [2], a
significant increase in extreme weather and climate events
has been observed since the 1950s on a global scale. Facing
increasing days with inclement weather, transit operators
and government should provide powerful emergency
management plans to guarantee commuting travel.

It is of great importance to understand the impact of
transport system performance in adverse weather and how
travelers adapt to it. .ere exist some studies investigating
the influence of weather on the travel behavior of passengers,
including travel demand, modal shift, departure time, and
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route/destination choices [3–6]. .e most common method
of examining inclement weather’s impact on travel has
involved collecting and analyzing traffic data and ridership
data in conjunction with weather variables, such as tem-
perature, rainfall, and wind speed. Recently, more tempo-
rally and spatially disaggregated analyses are proposed to
increase the explanatory power of results [7–9]. Besides,
some studies pay attention to identify the impact of more
issues in adverse weather, such as setting of infrastructure,
traveler segments, and trip purpose [10–13]. .e results of
studies show the heterogeneous impacts of adverse weather
on travel behavior due to discrepancies in the overall settings
of studies.

According to our understanding, the influence of
adverse weather on travel behavior can be decomposed
into two parts: the negative impacts of extreme weather on
transportation services and the corresponding adjustment
of travel behavior by travelers. In essence, ridership is
directly affected by the performance of the travel services
(e.g., accessibility, reliability, convenience, comfort, and
travel time) rather than weather. Several studies have
investigated the influence of weather on the performance
of transport systems, such as road capacity, vehicle
moving speed, bus dwell time, and transit service reli-
ability [14, 15]. From our point of view, in addition to the
settings of infrastructure and meteorological elements, the
management level is also a decisive factor in the impact of
adverse weather on transport services. We believe that
good measures can reduce the negative impact and im-
prove performance effectively. For transit operators, to
know what measures should be taken, it is necessary to
understand the influence of the transit service perfor-
mance on travel choices under various situations. How-
ever, the limited research on adaptation of travelers to the
change of transit service quality in adverse weather may be
not supportive to conduct effective emergency measures.

To fill this gap, this paper aims to explore the ad-
aptation of transit commuters to different situations and
provide feasible measures for the transit operators ac-
cordingly. Firstly, the revealed preference (RP) and
stated preference (SP) surveys were conducted, and then
the relationship between travel mode choice and transit
service performance in the storm was established. De-
rived from the statistic and sensitivity analysis, three
possible plans, shuttle bus to the metro station, infor-
mation announcement, and routine adjustment, are
simulated and compared. .ese results could have im-
plications for developing bus emergency management
plans and serve as references for the public transit
agency.

.e remainder of this paper is organized as follows.
Section 2 reviews related studies and provides the literature
background for the present study. Section 3 introduces the
data and the study area. Analytical approaches are also
elaborated on in this section. Section 4 presents and dis-
cusses the analysis results and research findings. Section 5
proposes and then simulates some emergency plans for the
transit operator. Section 6 summarizes the research findings
and points out limitations and future work.

2. Literature Review

.e impacts of weather on transportation have received
substantial research attention. Studies can be identified as
twomajor parts: impacts on physical and operational aspects
and impacts on travel demand and traveler behavior. In this
section, we shall review the relevant studies, outline the
major findings, and identify research gaps.

2.1. Impacts on Physical and Operational Aspects.
Weather has a direct impact on the performance of trans-
portation infrastructure [6]. Heavy rainfall, storms, snow,
and fog all can result in deterioration of traffic conditions,
like low visibility, wet roads, and waterlogging. Regarding
different travel modes, previous studies have shown a
negative impact on travel speeds [3, 16–19]. Some studies
indicate that wet roads can reduce the average vehicle speed
by 6-7% in urban areas and even 8–12% when it rains [20].
And the reduction of travel speed can even lead to a 20%
decrease in road capacity in the urban network [21],
resulting in traffic congestion or disruptions [1], the unre-
liability of the transportation system [22], and more traffic
accidents [23]. For transit services, the impact of weather is
more complex than private and nonmotorized transport. In
one aspect, it has negative impacts on bus operation in terms
of service frequency, headway regularity, and travel time
variability [1]; in the other aspect, it increases the difficulty
and time on the way to/from transit stations for passengers
[7].

2.2. Impact on Travel Demand and Traveler Behavior.
Aside from its impact on the physical and operational as-
pects of transport systems, adverse weather may affect
travelers’ decisions. A lot of studies highlighted travel be-
havior changes due to weather conditions, like model shift
[4, 6], changes in destination and route [3], and put-off or
cancel trips [24]. Transit riders are often directly subject to
adverse weather while waiting or walking to/from the sta-
tion, and they are indirectly affected by the deterioration of
in-vehicle transit services [7]. Both direct and indirect effects
influence riders’ behavior as well as transit ridership.

In most previous studies, adverse weather, such as rain,
has been found to exert a negative influence on transit
ridership [1, 25]. Nevertheless, some empirical studies
report different results on the rain-transit ridership rela-
tionship, which shows that it is positively associated with
public transit share [17, 26]. Further studies indicate that
transit ridership has a slight decline during light rainfall,
then increases with rain becomes heavier, and eventually
drops sharply in heavy rain [27]. .e heterogeneous im-
pacts show the complexity of the relationship between
adverse weather and transit ridership. .erefore, some
studies pay attention to identify specific impacts of adverse
weather with more detailed issues. For example, senior
passengers [28], lower-income travelers [29], and occa-
sional users [10] are more sensitive to adverse weather.
Additionally, adverse weather has more impact on recre-
ational travel than commuter travel [12], bus trips than
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metro trips [13], weekend trips than weekday trips [7], and
long commuting trips in winter than that in summer [11].
Besides the adverse weather’s impact on transit, ridership
also varies on the type, location, facilities, and routes of
stations [8] and time of day [9].

In short, most of these studies examined inclement
weather’s impact on ridership in conjunction with amount
variables, weather elements (e.g., temperature, rainfall, andwind
speed), time (day of week, time of day, and seasonality), facility
(e.g., weather protection of palm, accessibility of station, and
connecting bus routes), and individual attributions (e.g., age,
gender, income, experience, and travel purpose). Less attention
was paid to explore how transit passengers adapt to transit
service in storm according to service performance, such as travel
time variability, service frequency, reliability, accessibility, and
comfort. We believe that it helps improve transit management
for infrastructure as well as transit service adjustment for transit
operator and agency.

3. Data and Analytical Methods

In this section, we will introduce a case study, including data
collection and analytical methods, to describe the dynamics
of travel choice behavior in adverse weather.

3.1. Data Collection. As shown in Figure 1, the data adopted
in this study are originated from surveys in a largely resi-
dential area with over 15,000 residents near the middle ring
roads in Shanghai, China. .is residential area covers nearly
10 bus stops, but no metro station. A passenger from the
center of this area needs to walk over 1 km to the nearest
metro station. .ere exist large commuting demands be-
tween the residential area and the central business district
nearly 6 km away. However, road waterlogging and dis-
ruption occur recurrently in storm weather within this area,
causing terrible bus service.

It is a representative case to reflect the dilemmas of transit
commuters without convenient metro service. .ey have to
make a comprise between time, comfort, and economic loss
since there is no convenient and reliable transit service in
adverse weather. Based on this case, later we will have a detailed
analysis of travel behavior in different conditions and propose
some possible measures accordingly.

.e questionnaire, designed for RP and SP survey, was
conducted in the weekdaymorning peak hours in September
2016, targeting passengers leaving their homes to take public
transit. .e RP survey collected sociodemographic infor-
mation, for example, gender, age, occupation, and monthly
income, as well as travel-related information, for example,
travel purpose, travel mode, travel time and transfer time,
and commuting experience in the storm. .e SP survey
asked respondents to make travel choices in hypothetical
scenarios.

.ree hypothetical road waterlogging scenarios
(S1–S3) are assumed to have different impacts on road
conditions and transit operation in storm weather (see
Figure 2):

S1: in the slight storm (beyond 20mm rainfall), the
small-scale ponding occurs, causing walking time in-
crease, vehicle speed decline, and slight bus delay
S2: in the medium storm (around 50mm rainfall),
several parts of roads are waterlogging, leading to in-
convenient walking, traffic congestion, and serious bus
delays
S3: in the heavy storm (over 100mm rainfall), roads
within some regions are waterlogging seriously,
resulting in walking difficulties, partial road closure,
and bus detours

.rough on-the-spot investigation in a storm, we found
that in this case there are six reasonable travel alternatives for
transit commuters, which specifies five possible combina-
tions of travel modes and another option to cancel the trip.
.e performance of services under six travel alternatives is
settled according to the investigation data. .e details are
shown as follows (see Figure 1 and Table 1):

A1: taking a bus with no transfer (Direct Bus Service,
DB)

A2: riding a bus and then transferring to another bus in
a different routine (Bus + Bus, B + B)

A3: walking to a metro station and then taking a metro
(Metro, M)
A4: riding a bus and then transferring to a metro
(Bus +Metro, B +M)
A5: taking a taxi (Taxi, Tx)
A6: cancelling the trip (Cancel Trip, CT)

Based on these, we design the SP survey, which con-
tained twelve different conditions derived from three hy-
pothetical road waterlogging scenarios and four crowded
scenarios. For each case, respondents were offered the above
six travel alternatives and their performances (see Table 1). It
is assumed that the respondents have enough knowledge
from experience and can make choices accordingly.

In our designed scenarios, Direct Bus, the most
convenient way in normal weather, was largely affected by
the storm in walking time, waiting time, and in-vehicle
travel time. Metro operation is less affected by storm,
whereas the need for long time walking to the metro
station may reduce their willingness. Taking a bus and
then transferring to metro or bus, there could be alter-
natives to keep short walking time and relatively low
delay. Traveling by taxi can avoid long walking time, large
travel delay, and possible crowdedness in transit service
effectively, and yet the fare of taxi, increasing with road
waterlogging due to congestion and detouring, is much
higher than that of all alternatives in public trans-
portation in all scenarios.

To ensure that the samples were representative, some
trap questions and logical judgments were used in prelim-
inary selection. 185 questionnaires that have enough
knowledge of commuting by transit in storm weather are
selected, and 162 among them are transit commuters
choosing bus or metro as their major travel mode. Totally,
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1944 valid travel choices gathered from these 162 experi-
enced transit commuters in the SP survey are used to cal-
ibrate the parameters of the model in this study. Table 2
presents the descriptive statistics of these participants. Some
key features of the participants in this study are as follows:

(a) Most of the respondents are working-age adults in
the normal sense, ranging from 16 to 60 years old.
Since the government is trying to create incentives
for people to work longer, the elderly also make up a
large proportion of commuters.

(b) .e monthly income of more than 80% of respon-
dents ranges from 2000 yuan (about 300 US dollars)
to 10,000 yuan (about 1500 US dollars). .e pro-
portion of high-income people is just over 10%,

which is only half of 20.6% in the Shanghai Statistical
Yearbook [30].

(c) More than 90% of respondents who have transit
commuting experience in a storm choose bus or
metro as their major travel mode.

(d) About half of respondents’ travels in the RP survey,
which was carried in the weekday morning peak, are
commuting trips.

(e) .e expected travel time of near 80% of the re-
spondents is over 60 minutes.

(f ) Above 40% of the respondents need transfers.

In sum, the data revealed that the majority of the re-
spondents are transit passengers with long commuting time,

1km

Metro
Bus to metro station
Walking to metro station

250m

Residential area
Central business district
Serious road waterlogging
Bus stop

Direct bus
Bus + Bus

Metro station
Survey point

N N

Figure 1: Shanghai, the study context.

(a) (b) (c)

Figure 2: Hypothetical road waterlogging scenarios in the storm. (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.
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medium income, and working age, which make sure that
they are our targeted group in this study.

3.2. Analytical Methods. Generally, researchers adopt the
discrete choice model (DCM) [31–35] or structural equation
model (SEM) [17] to estimate the travel mode choice using
the RP and SP survey data. .e combination of RP and SP
data covers both the existing absolute attribute levels and a
much wider range of attributes; thus, it is beneficial to build a
more robust model. In this study, the RP data can help us
select our target respondents and decision variables. And the
SP data is used to estimate the critical factors of that in the

storm weather with road waterlogging. Multinomial logit
(MNL) model has been proved to be suitable for modeling
discrete choice outcomes under mixed traffic conditions
[31]. One inherent assumption of the MNL model is the
independence of irrelevant alternatives (IIA), which means
that the alternatives are uncorrelated. Considering the
similarity of A1∼A4, it may lead to the fact that IIA as-
sumption cannot hold; in this case, the nested logit (NL)
models were adopted to link the probabilities of choice for
commuting travelers to explanatory variables.

In this study, we aim to explore the relationship between
the performance of alternatives and the choice probability of
transit commuters in different storm scenarios. It is different

Table 1: Performance of services in scenarios.

Performance of services Scenarios
Alternatives

A1 A2 A3 A4 A5

Walking time (minute)

S0 9 5 15 6 0
S1 10 5 20 7 0
S2 12 6 25 8 0
S3 15 8 30 10 0

Waiting time (minute)

S0 15 12 3 15 5
S1 20 15 3 15 10
S2 30 25 5 20 20
S3 45 40 9 30 30

In-vehicle travel time (minute)

S0 25 25 15 25 15
S1 30 30 15 30 20
S2 40 40 15 35 25
S3 60 60 20 45 30

Overall travel time (minute)

S0 49 42 33 46 20
S1 60 50 38 52 30
S2 82 71 45 63 45
S3 120 108 59 85 60

Fare (yuan)

S0

2 3 4 5

35
S1 40
S2 60
S3 100

Transfer S0–S3 0 1 0 1 0
Note: S0 is the normal weather; S1–S3 are three hypothetical scenarios of the storm.

Table 2: Survey profile.

Respondent characteristic Variables Percentage Trip characteristic Variables Percentage

Gender Male 41.98

Travel purpose

Commute 49.38
Female 58.02 Business 6.17

Age

16– 0.62 Leisure 11.73
16–24 14.20 Hospital 7.41
25–34 33.95 Visiting friend 10.49
35–44 16.05 Others 14.81
45–60 11.73

Travel mode

Bus 51.85
60+ 23.46 Metro 41.36

Monthly income (yuan)

2000– 9.26 Taxi 1.85
2000–5000 38.89 Bike 1.85
5000–10,000 41.36 Walk 3.09

10000+ 10.49

Travel time (minutes)

0–30 9.88

Occupation

Government official 1.23 30–60 12.35
Company staff 37.65 60–90 20.37

Student 4.94 90+ 57.41
Freelancer 8.64 Transfer One or more transfer 43.21
Others 47.53 None transfer 56.79
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from most previous studies, linking weather variables, such
as temperature, rainfall, and wind speed with travel choices.
To achieve it, three main types of effects are considered in
our model. .e first one is the direct impact of weather on
the accessibility of stations, mainly affected by walking time
to/from stations or between transfer stations. .e second
one is the indirect impact of weather, mainly affected by the
degradation of service performance, such as variations of
waiting time, in-vehicle travel time, and crowdedness. .e
third one is the travel cost; travel fare varies with different
transport modes and route choices. Besides, individual at-
tributes, for example, age, gender, income, and travel pur-
pose, may differ in sensitivity to the three effects. Travel
purpose is set as commuting in this study.

Overall, the details of the decision variables are as
follows:

(a) Crowdedness (CD) refers to the crowding level in
terms of transit passenger’s feeling (4 levels: 0, 0.3,
0.6, and 0.9)

(b) Walking time (WT) refers to the time spent by the
transit passenger to walk from the departure point to
the transit station

(c) Transfer times (TT) refers to the times of a passenger
moving from one vehicle to another, which is fixed
in one alternative

(d) Waiting time (OWT) refers to the time spent for the
arrival of the vehicle

(e) In-vehicle travel time (IT) refers to the time from
boarding to alighting

(f) Travel fare (TF) refers to the fare paid for alternatives
(g) Monthly income (MI) refers to the scaled parameter

which reflects the ability to pay (4 levels, 0, 1, 2, and
3)

(h) Gender (GE) refers to the gender of the commuter
(0, male; 1, female)

(i) Age (AG) refers to the age group the commuter
belongs to (6 levels, 0, 1, 2, 3, 4, and 5)

Among these variables in various scenarios, MI is
fixed for a specific commuter, and TT is fixed for a specific
alternative. Travel time, including WT, OWT, and IT,
varies with scenarios and alternatives. Fare in A1 to A4
(public transportation alternatives) is fixed, while fare in
A5 (taxi alternative) varies according to scenarios. CD is
an uncertain variable related to the supply and demand of
transit service; for taxi mode, it usually can be treated as 0.
A1 to A4 belong to public transportation nest (nest 1)
which have low fare cost, A5 is taxi nest (nest 2) with high
fare cost, and A6 which stops traveling is in cancel nest
(nest 3). Suppose that the choice set includes j alternatives
(j � 1, 2, . . ., 6) belonging to nest i (i � 1, 2, 3) and the
utility that individual n (n � 1, 2, . . ., N) gains from al-
ternative j is formulated as

U
k
j,n � αj + βjX

k
n + εjn, (1)

where Uk
j,n is the utility of individual n for choosing alter-

native j in scenario k, Xk
n is the vector of observable attributes

of individual n in scenario k, βj is the coefficient associated
with Xk

n for alternative j, αj is the intercept of utility function
of alternative j, and εjn is the random error term.

.e probability formulation of the NLmodel (a two-level
NL model) can be expressed as follows:

P
k
j,n � P

k
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k
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P
k
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expU
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j′,n/λi

,

V
k
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P
k
i,n �

exp λiV
k
i,n􏼐 􏼑

􏽐i′exp λi′V
k
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,

(2)

where Pk
j,n is the probability that individual n chooses al-

ternative j in a scenario k, Pk
i,n is the probability that indi-

vidual n chooses nest i in a scenario k, Pk
j|i,n is the probability

that individual n chooses alternative j if nest i is chosen, Si is
the set of all alternatives included in nest i in a scenario k,
Vk

i,n is the log sum variable of nest j in scenario k, and λi is the
dissimilarity parameter for nest i.

4. Results Analysis

In this section, to better understand the behavior changes of
transit commuters in adverse weather, we further analyze the
statistical results, estimated parameters, and sensitivity
based on the choice model and collected data in Section 3.

4.1. Statistical Results. According to Table 3, there are three
nests in alternatives: Public transportation, Taxi, and Cancel.
From the SP survey in designed scenarios, one may expect
that the proportion of public transportation mode decreases
sharply from S1 to S3 while choosing probabilities of taxi
and cancel increase significantly. It is obvious that storm
weather has a huge effect on the travel choice of commuters,
and overall, with walking time, waiting time, and in-vehicle
time increasing, the willingness to choose public trans-
portation will diminish. Specifically, the probability of DB
and B+B modes in S1–S3 has fallen sharply, while in-
creasing from S1 to S2 in M mode and S2 to S3 in B +M
mode occurred. It suggests that metro service is less affected
and considered as a good substitution for bus service in the
storm, which is consistent with previous studies [36]. Even if
taxi fare exceeds 20 times of bus fare in S3, the number of
people who choose to commute by public transport was
almost the same as people choosing taxi, which shows that
the travel fare is not decisive for transit commuters in the
storm. Meanwhile, over one-third of commuters decide to

6 Journal of Advanced Transportation



cancel trips and be absent fromwork which may have a great
impact on travel demand and bring huge losses to society.

4.2.EstimatedParameters. .enested logitmodel was used to
test the effects of walking time, waiting time, in-vehicle travel
time, crowdedness, and income on commute choices of transit
passengers in the storm. Walking time (WT), waiting time
(OWT), in-vehicle travel time (IT), fare (TF), and income (MI)
were kept in the final model. .ough slight impacts of
crowdedness (CD), gender (GE), and age (AG) existed in tests,
they are not significant at a 95% confidence level. Adding these
variables will lead to a rise of R-square but the decline of AIC,
BIC, and adjusted R-square. Further, in addition, some in-
teraction items, such as MI ∗ WT, MI ∗ OWT, MI ∗ IT, and
MI ∗ TF, were also tested, but none was significant even at
90% confidence level. We emphasized that the value of time
and cost are treated as the same for a certain individual; the
coefficients of the time and cost variables were set as generic in
our model. .e weights and significances of decision variables
and performance of the final model are shown in Table 4. Next,
we would like to have a detailed analysis of that.

4.2.1. Intercept. Initially, we set different intercepts for all
alternatives (the cancel nest as a fixed item is 0). However, we
found that alternatives in public transportation nest
(A1–A4) have similar estimated values of the intercept.
According to our tests, a universal intercept for alternatives
in public transportation nest, which is adopted in the final
model, can improve the AIC and BIC but will not signifi-
cantly reduce the R-square. A generic intercept for public
transportation nest can improve the AIC and BIC but not
decrease the R-square obviously. It shows that transit
commuters have no obvious preference difference in al-
ternatives in public transportations nest.

4.2.2. Transfer. .e coefficient of transfer for public trans-
portation nest is −1.88; that means the transfer largely re-
duces the choice probability for alternatives. In taxi and
cancel nests, no transfer behavior is considered in the travel
process. We suggest that usually multitransfer travel plans
are not attractive for commuters, and even in an emergency,
transit agency should avoid providing passengers plans more
than one transfer.

4.2.3. Income. .e coefficients of income for A1, A3, and A4
are negative, whereas for A2, A5, and A6 are positive. It is
reasonable that the high-income group has a preference for
A5 and A6. If one chooses taxi (A5), he/she needs to pay
much more on travel fare, and if one chooses to cancel trip
(A6), he/she needs to bear economic loss due to the absence
fromwork. For A2 in our case, the passenger has the shortest
walking distance. .erefore, commuters with higher income
may be more concerned with the performance of walking
time. Overall, it seems that high-income individuals may
care about comfort issues more than economic issues and
travel time.

4.2.4. Waiting Time and In-Vehicle Time. .e coefficients of
waiting time and in-vehicle time are both negative, which
shows that longer travel time will decrease the choice
probability for alternatives. From estimated parameters, in
this case, it seems that in-vehicle time has a greater influence
than waiting time, which may be a little different from
normal weather. It can be explained that, as in storm
weather, wetted travelers’ crowd in vehicles may feel more
uncomfortable than individuals waiting at the station.

4.2.5. Walking Time. Compared with a coefficient of waiting
time (−0.059) and in-vehicle time (−0.042), the coefficient
value of walking time (−0.174) is 3 to 4 times larger, which
shows the huge influence of walking time on travel choice in
storm. It seems that walking difficulty due to the rain and
waterlogging significantly decreases the travel willingness.
When walking time exceeds personal tolerance, passengers
have to change travel options. It is the decisive factor of
commuting in the storm weather.

4.2.6. Fare. .e coefficient of fare is positive; it seems to be
not reasonable since usually higher cost means less attrac-
tiveness to traveler. However, our designed scenario is highly
based on real condition; transit fare is constant in different
scenarios, while taxi fare is based on travel time and distance
which is highly related to storm and road condition. When
the traffic condition and weather get worse, the taxi costs
more, and to reduce the impact of the storm, taxi, in turn,
has a higher attraction. For taxi mode, traffic gets worse, and
fare goes higher. When the negative impacts exceed the
tolerance, commuter becomes more eager to guarantee
commuting even at a higher cost.

4.2.7. Crowdedness. Unexpectedly, there is no obvious effect
of crowdedness on all passengers. One possible explanation
is that transit commuters in a metropolis, like Shanghai, are
used to the crowdedness environment in bus or metro in
daily commuting. Compared with normal days, the obvious
changes, such as heavy rain, road waterlogging, bus delay,
longer walking, and waiting time, are more likely to be
concerned in the storm. .erefore, crowdedness is not the
key factor affecting commuting in storm weather.

Table 3: Selection of transit commuters in the storm.

Scenarios

Alternatives
Public transportation Taxi Cancel

DB
(%)

B+B
(%) M (%) B +M

(%) Tx (%) CT (%)

S1 22.53 31.02 19.29 9.26 11.42 6.4882.10

S2 14.66 16.20 23.92 6.17 22.38 16.6760.96

S3 1.23 4.94 14.97 9.88 30.86 38.1231.02
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4.3. Sensitivity Analysis

4.3.1. Definition of Sensitivity. In the NL model, the esti-
mated coefficients, which are the odds ratio of the specific
travel mode to the reference level, cannot reflect the
overall impact of a particular variable directly since it also
depends on the magnitudes of all other variables.
.erefore, a “strict impact” for a given variable cannot be
determined due to the diversity of combinations with
other variables. .e objective is to anticipate the influence
of value changes of variables on the choice of certain
individual and subsequently on the share of alternatives.
In this case study, sensitivity is defined based on the
elasticity with an infinitesimal change, which is called
point elasticity. Since the variables of operation perfor-
mance are continuous, we assume that the relative change
of one variable is the same for every individual in the
population and the disaggregate direct point elasticity of
the model with respect to the variable xn

m,k is defined as
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where Emjk is the aggregate point elasticity of the model of
travel mode j in choice set A. pi,n is the estimated probability
of individual n choosing travel mode j with variables Xk

n in a
scenario k. A is the set containing all relevant samples. fj(·)

is the probability mass function for evaluating pi,n, which is
obtained from the estimated NL model. 􏽢c is the estimated
coefficients from the NL.

4.3.2. Sensitivity Analysis of Single Variable. Table 5 reports
the sensitivity for each variable according to the estimated
NL model. .e numbers in the tables present the per-
centage change in the probability of an alternative with
respect to the changes in one variable in a certain situation.
As shown in Table 5, red values indicate an increase in the
probability, whereas blue values indicate the opposite. Five
variables, for example, transfer times, walking time, waiting
time, in-vehicle time, and fare, indicate the performance of
transport operation. In storm weather with road water-
logging, the quantitative values of indicators can directly
reflect the bus service quality at that time and indirectly
reflect the severity level of impact by weather. .e sensi-
tivity analysis results were interpreted from the mode share
shift responding to single variable change.

4.3.3. Walking Time. In our case, we assume that passengers
can be taken to their destination by taxi without walking.
.erefore, WT5 is set as 0, and sensitivity is also estimated as
0 here. For WT1 to WT4, with walking time of certain al-
ternative getting longer, the probabilities of this alternative
are expected to decrease while the probabilities of other
alternatives all increase. Specifically, in all scenarios, WT3
has the largest impacts (0.7 to 0.9) on A5 and A6, which
prove the key influence of walking time to metro station.

Table 4: Estimation results.

Explanatory variables
Alternatives

Public transportation nest Taxi nest Cancel nest
Direct Bus Bus + Bus Metro Bus +Metro Taxi Cancel Trip

Intercept 6.48∗ 1.31∗ 0 (fixed)
Transfer −1.88∗ — —
Dissimilarity of nest 0.787∗ 1 (fixed) 1 (fixed)
Income −0.477∗ 1.06∗ −0.501∗ −0.256 0.306∗ 0.58∗
In-vehicle travel time −0.0587∗ —
Walking time −0.174∗ —
Waiting time −0.0418∗∗ —
Fare 0.028∗ —
Sample size 1944
Number of parameters 14
Final log-likelihood −3134
Likelihood ratio 698
R-square 0.201
Adjusted R-square 0.196
AIC 6296
BIC 6374
∗∗Significant at 0.01 level; ∗significant at 0.05 level.
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Besides, in S1, when WT1 increased by 1%, the selection
probability of A5 and A6 increased by 0.417% and 0.410%,
respectively. It also shows that, in slight storm, walking time
to bus stop cannot be ignored. Overall, to reduce ridership
decline of public transportation, WT3 in all scenarios and
WT1 in S1 are of significant importance.

4.3.4. Waiting Time. Similar to walking time, the probability
of one alternative declines as its waiting time becomes
longer. However, compared with walking time, the impact
would be much less. Specifically, for a 1% increase in waiting
time (OWT), the probabilities of A5 and A6 are expected to
increase by 0.197% and 0.39% at most, while for 1% increase
in walking time (WT), the increase can reach 0.97% and
0.95%, respectively. OWT1 in S1, OWT2 in S1 and S2, and
OWT5 in S3 which obviously affect the Cancel Trip should
be of concern.

4.3.5. In-Vehicle Time. Similar to walking time and waiting
time, the rise of in-vehicle time decreases the choice
probability of the respective alternative and increases that of
CT. From the results in Table 5, the choice probability of CT
is sensitive to changes of IT1 and IT2 in S1, IT2 and IT5 in
S2, and IT5 in S3. .ese results showed that transit com-
muters can benefit most from reducing the in-vehicle time of
A1 and A2 before the weather becomes terrific.

4.3.6. Fare. Since fare of A1∼A4 in our designed scenarios is
constant, the sensitivity for them does not make any sense.
.e fare of taxi which is related to travel distance and in-
vehicle time road reflect the severity of road waterlogging,
leading detouring, and congestion. It can be treated as a
variable combination of environment and cost. .e impacts
of fare are opposite to other variables. Specifically, a 1%
increase in taxi fares will increase the selection probability of
taxi by 1.5%, while other alternatives will decrease by nearly
0.7% in S3.

Overall, when we compared the absolute direct elastic
which measures the impact of a change of an attribute of
alternative i on the choice probability of the same alternative,
for OWT and IT, there is the same order from high to low:
A1, A2, A4, A5, and A3, while for WT, the order becomes
A3, A1, A4, A2, and A5. For bus services A1 and A2, the
performance of the waiting time and in-vehicle time is
needed to be improved. For metro service A3, the key point
changes to the walking time.

Since one of our goals is to reduce the choice of Cancel
Trip in storm weather, a comparison of Absolute Cross
Elastics to Cancel Trip (A6) is made. We found that the key
factors (value> 0.15) vary with scenarios. In S1, the main
factors with the order from high to low are WT3, WT1, IT5,
IT2, IT1, OWT5, OWT2, and OWT1, while in S2, it becomes
WT3, IT2, IT5, IT1, IT4, WT2, WT1, and OWT2, and in S3,
it changes to WT3, IT5, BF5, OWT5, IT2, IT4, and IT3. It
shows that WT3 is the most critical issue in all scenarios.
Besides, WT, IT, and OWT impacts are under balance in S1,
but when the condition gets worse, influence of IT of bus

may take the major part, and later when it becomes a terrible
storm, attributes of taxi IT5, BF5, and OWT5 have a great
influence on Cancel Trip.

In summary, increase of attributes of one alternative,
such as walking time, waiting time, and in-vehicle time,
has negative impacts on probability choice but positive
impacts on other alternatives, while fare is the opposite.
Walking time is the key factor for all alternatives. In-
vehicle time is similar to waiting time to some extent,
with a larger value of sensitivity. When the weather is not
so bad, reducing time in all aspects can take effects. When
it gets worse, reducing in-vehicle time may still work. If
the weather becomes terrible, metro and taxi rather than
bus are the preferred choices for most commuters. Re-
ducing the walking time to metro or guaranteeing high-
equality taxi service may be feasible.

5. Simulation

In this section, based on information of the case and data
analysis, we propose possible plans for transit operators
accordingly and simulate the ridership share dynamics in
different scenarios. According to the simulation results, we
recommend suitable measures in this case for transit op-
erators in different conditions.

5.1. Simulation Method. Once the choice model has been
estimated, we hope to use it to simulate the response of
transit commuters to emergency measures and evaluate the
performance of schemes in promoting transit ridership. .e
method of simulation is as follows.

Consider a choice model pn
jk providing the probability

that individual n chooses alternative j within the choice set
Cn in Scenario k, given the explanatory variables Xk

n. To
calculate the ridership share in the population of size N, a
sample of Ns individuals is drawn. As it is rarely possible to
draw from the population with equal sampling probability, it
is assumed that stratified sampling has been used and that
each individual in the sample is associated with a weight wn

correcting for sampling biases. To achieve it, wn can be
presented by a ratio of proportion in sample and target
population for personal attributes of individual n. In this
case, we use monthly income distribution in the population
derived from official demographic information in Shanghai
Statistical Yearbook to correct bias. If MIn � c for individual
n, wn can be estimated as

wn �
ρc
′

ρc

,

MIn � c,

(4)

where ρc
′ and ρc are proportion target population and in

sample, respectively. In this case, ρc
′ came from the official

demographic information in Shanghai Statistical Yearbook
2016.

.e weights are normalized such that
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.e normalized weight of individual n, Wn, is formu-
lated as
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An estimator of the ridership share of alternative j in the
population Rk
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k
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k
n􏼐 􏼑. (7)

5.2. Simulation of Possible Plans. According to the above
analysis, it was found that increase in walking time to metro
station, waiting time at bus stop, and in-vehicle time are the
main obstacles for transit commuters in storm weather. To
cope with the impacts of the storm on transit service, three
feasible emergencies are proposed:

P1: shuttle bus, connecting bus stations and metro
station near the residential area
P2: information announcement, such as real-time ar-
rival and transfer information for bus service
P3: route adjustment, slightly adjusting the bus routine
to avoid serious section with waterlogging and
congestion

Parameters after taking emergence plan are different
from original plan. .erefore, reasonable setting of all al-
ternatives is shown in Table 6 and explained as follows:

P1. Due to shuttle bus between bus stops and metro
station, there exist new choice A7 for commuters which
is taking shuttle bus and then transferring by metro,
noted as S +M. Compared to A3, passenger who
chooses A7 must transfer one time which increases IT
and OWT to gain shorter WT. Compared to the
existing transfer plan A4, since shuttle only services for
connecting nearby bus stops and metro station and can
avoid road waterlogging, choosing A7 can have shorter
OWT and IT and similar WT for commuters. In
emergence plan P1, passengers have alternatives A1 to
A7.
P2. If real-time information for bus service is available
for passengers, according to previous studies, the ex-
pected waiting time can decrease up to 30% [37].
.erefore, OWT in A1, A2, and A4 is settled as 70% of
values after the information announcement is taken.
P3. Temporarily change the route of bus lines to avoid
road sections with serious road waterlogging section,
but lengthen bus line slightly. In this case, according to
investigation and data analysis, nearly 50% of delay
occurs in road waterlogging sections; we may expect
that adjust bus line can reduce 50% delay. .erefore, IT
of A1 and A2 will have a significant decline in P3.

Besides, we combined the changes due to different plans
together to form four combined plans: P1 + P2, P1 + P3,
P2 + P3, and P1 +P2 +P3. .erefore, in the next, 7 plans are
simulated and compared in each scenario.

5.3. Simulation Results Analysis. .e detailed simulation
results of ridership share of alternatives with adoption of
plans are shown in Table 7. .e aggregation of passengers
who choose the main mode as bus (DB, B +B), metro (M,
B +M, S +M), and public transportation, is listed as Bus,
Metro, and PT, respectively. Value of Bus/Metro reflects the
ridership ratio of Bus to Metro in different situations.
Further, Table 8 exhibits the ridership share changes to
normal weather and the benefits of strategies with a com-
bination of plans. Red and green indicate positive values and
negative values, respectively.

Generally, emergency plans will increase the ridership of
public transportation and decrease that of taxi and cancel. In
single plan strategy (1-P), P1 provides S +M mode which
decreases walking time compared to M and waiting time
compared to B +M, while P2 aims to decrease bus waiting
time and P3 tries to reduce in-vehicle time. Obviously, P1
may increase the attraction of Metro, and P2 and P3 can
improve bus ridership, resulting in low Bus/Metro in P1.
Besides, we note that, with the deterioration of weather,
more benefits can be gained for one certain plan, but the
effect varies on plans. Considering a single plan, P1, P2, and
P3 perform best in S3, S1, and S2, respectively. Analysis
indicates that P2 has a general effect on all scenarios, P1 and
P3 are more suitable in a worse situation in the storm.

In 2-Plan strategy, P2 + P3 which is concentrated in bus
service performs better than the balanced solutions P1 + P2
and P1+ P3 in all scenarios.Wemust emphasize that P2 + P3
can greatly increase bus ridership in storm weather, but the
cost of reducing metro passengers needs to be carefully
considered in the final decision. When it comes to multiplan
strategy, as one may expect, the more the plans adopt, the
better the performance is. 3-P strategy adopting all three
plans is more effective than 2-P strategy, which is also better
than 1-P strategy. However, with the adoption of more plans,
the margin benefit that brought by one more plan declines.
Taking S3 as an example, 1-P strategy can bring 11.42%
ridership share rise compared to no plan taking; the margin
benefit of 1-P is 11.42%. If one more plan is adopted, in 2-P
strategy the rise can reach 19.44%which is much higher than
1-P, but the margin benefit of 2-P decreases to 8.02%. In 3-P,
the value further declines to 4.79%. .erefore, considering
the margin benefit of emergency plans, we recommend 1-P
strategy P2 or original plan P0 in scenario S1, 2-P strategy
P2 + P3 in scenario S2, and 3P strategy P1 + P2+ P3 in
scenario S3.

Overall, all emergency plans are effective in increasing
public transportation ridership and decreasing cancel choice
probability. In scenario S1, the impact of the light storm on
public transportation is not serious. .erefore, taking no
measure or just publishing bus arrival information can be
acceptable in this condition. When weather gets worse,
P2 + P3 can guarantee bus service and maintain bus
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ridership share in commuting in S2. If things get worse, in
S3, one way is trying our best to guarantee both metro and
bus service, adopting all three plans at huge cost and difficult
to carry out in practice. Besides, since the metro service is
less affected than bus service in the storm, giving up themain

bus service and providing shuttle buses to connect resi-
dential areas and metro stations to guarantee the accessi-
bility of metro could be another possible choice in S3.
However, it has some limitations, only suitable for areas with
highly developed metro networks.

Table 6: Parameters of emergence plans.

Table 7: Simulation results in different scenarios.

Scenario Plan
Public transportation Taxi Cancel

DB (%) B +B (%) Bus (%) M (%) B+M (%) S +M (%) Metro (%) Bus/
Metro PT (%) TX (%) CT (%)

S1

P0 24.12 28.82 52.94 21.02 7.28 — 28.29 1.871 81.24 12.42 6.34
P1 21.82 26.26 48.08 19.01 6.59 8.88 34.48 1.394 82.56 11.55 5.90
P2 27.74 30.55 58.30 17.59 7.73 — 25.32 2.303 83.61 10.85 5.54
P3 26.15 31.09 57.24 18.92 6.54 — 25.46 2.248 82.70 11.45 5.84

P1 + P2 25.73 28.57 54.30 16.31 7.17 6.69 30.18 1.799 84.48 8.95 4.57
P1 + P3 26.15 29.01 55.16 16.58 5.74 6.81 29.13 1.894 84.29 9.11 4.66
P2 + P3 29.78 32.66 62.44 15.68 6.88 — 22.57 2.767 85.01 8.96 4.57

P1 + P2 +P3 27.84 30.77 58.60 14.66 6.44 6.02 27.11 2.161 85.72 8.23 4.20

S2

P0 10.70 18.58 29.28 22.39 11.03 — 33.43 0.876 62.70 20.89 16.41
P1 8.64 15.20 23.84 18.08 8.92 16.97 43.97 0.542 67.81 18.02 14.18
P2 14.17 22.59 36.75 18.41 12.45 — 30.86 1.191 67.61 18.14 14.24
P3 17.59 25.10 42.69 17.51 8.61 — 26.12 1.634 68.81 17.47 13.71

P1 + P2 12.08 19.59 31.67 15.70 10.64 12.94 39.28 0.806 70.95 16.26 12.79
P1 + P3 12.48 20.20 32.69 16.22 8.00 13.37 37.59 0.870 70.27 16.64 13.09
P2 + P3 22.11 29.01 51.12 13.66 9.23 — 22.89 2.233 74.01 14.56 11.42

P1 + P2 +P3 19.63 26.11 45.74 12.13 8.21 10.00 30.33 1.508 76.07 13.40 10.53

S3

P0 2.94 5.42 8.36 14.91 7.14 — 22.05 0.379 30.42 31.07 38.51
P1 2.14 4.00 6.14 10.82 5.19 19.69 35.70 0.172 41.84 25.94 32.22
P2 5.13 8.69 13.82 12.72 9.81 — 22.53 0.614 36.35 28.42 35.23
P3 8.32 15.03 23.35 11.49 5.49 — 16.98 1.376 40.33 26.66 33.01

P1 + P2 4.02 6.98 11.01 9.97 7.71 15.95 33.64 0.327 44.64 24.69 30.67
P1 + P3 4.18 7.24 11.42 10.36 4.97 16.58 31.91 0.358 43.34 25.27 31.39
P2 + P3 12.94 21.46 34.40 8.74 6.72 — 15.46 2.226 49.86 22.41 27.73

P1 + P2 +P3 11.00 18.62 29.62 7.43 5.72 11.88 25.03 1.183 54.65 20.25 25.11
P0 is the plan without taking any emergency plans.
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6. Discussion and Conclusions

Our paper aims to describe travel behavior dynamics of
transit commuters in the storm and provide possible
emergency plans for transit operator/agency to guarantee
transit trips of commuters. First of all, this study conducted
RP and SP surveys on the impact of storms on travel be-
havior, focusing on the relationship between travel choice
changes of transit commuters and transit service perfor-
mance. To achieve it, we established a choice model by
considering gender, age, income, walking time, waiting time,
in-vehicle time, crowdedness, transfer, and fare. From re-
sults’ analysis, it shows that, in storm weather, walking time,
waiting time, and in-vehicle time have obvious negative
impacts on the choice probability of alternatives; high-income
commuters prefer Bus +Bus, Taxi, and Cancel Trip; age,
gender, and crowdedness have limited impacts on storm
weather. .rough sensitivity analysis, we further found that,
in a light storm, reducing travel time, including walking time,
waiting time, in-vehicle time, can have effects. When it gets
worse, the decline of in-vehicle time may be more sensitive,
and therefore Metro becomes the most popular choice. When
the weather is terrible, walking becomes more difficult, and
thus most commuters give up Metro and choose Taxi or
Cancel Trip. Accordingly, three possible emergency plans,
information announcement, route adjustment, and shuttle
bus to metro station, are simulated in different scenarios.
.e simulation results can provide references for public
transit agencies by suggesting important implications for
future public transport development. A strategic proposal of
transit agency is to work out detailed emergency plans in
conjunction with meteorological departments, road man-
agement bureaus, telecommunications companies, and transit

operators, including information release, operation adjust-
ment, and traffic management. Specifically, real-time infor-
mation should be provided, including weather condition, the
emergency state and duration, temporary route plan and
timetable, and estimated delay or arrival time at stops, to
guide passengers to adjust their travel plans under all sce-
narios in the storm. Further, according to weather data from
the meteorological department and risk analysis of road
congestion by road management department, bus operators
can adjust bus routes in time to avoid high-risk sections.
When weather getting worse and maintenance of normal bus
operation becomes difficult, metro system which is less af-
fected by heavy storms can be a reliable substitute for bus
service..us, it is necessary to put forward a temporary feeder
bus scheme, including temporary route, bus stops, and
schedule, to bridge the residential areas and metro stations.

Despite these promising implications, there are still some
limitations that need to be addressed. Firstly, due to lack of
enough data to assess time reliability of alternatives in storm,
this study does not directly consider the reliability which may
play important roles in making travel decisions. Secondly, to
narrow the scope of the study, recreational travel which is more
likely to be affected than commuter travel is out of consideration
in this study. .irdly, to reduce the complexity of methodology
and focus on transit service, private car, which has some dif-
ferences from the alternative Taxi, was not listed as an alter-
native for transit commuters..us, more issues should be taken
into account to provide a refined profile of how adverse weather
affects travel choice. Finally, this study exhibits the adaptation of
transit commuter to the storm and provides possible coun-
termeasures for transit agency by the case study in a specific
small zone. A general application would require further veri-
fication inmore areas. Further research should be undertaken to

Table 8: Performances of plans in ridership compared with original plan.
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investigate the spatiotemporal heterogeneity of the influence by
adverseweather, simulate transit ridership dynamics in different
areas over time, and evaluate the performance of feasible
emergency plans.
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+is work proposes a framework for the optimization of postdisaster road network restoration strategies from a perspective of
resilience. +e network performance is evaluated by the total system travel time (TSTT). After the implementation of a
postdisaster restoration schedule, the network flows in a certain period of days are on a disequilibrium state; thus, a link-based
day-to-day traffic assignment model is employed to compute TSTT and simulate the traffic evolution. Two indicators are de-
veloped to assess the road network resilience, i.e., the resilience of performance loss and the resilience of recovery rapidity. +e
former is calculated based on TSTT, and the latter is computed according to the restoration makespan. +en, we formulate the
restoration optimization problem as a resilience-based bi-objective mixed integer programming model aiming to maximize the
network resilience. Due to the NP-hardness of the model, a genetic algorithm is developed to solve the model. Finally, a case study
is conducted to demonstrate the effectiveness of the proposedmethod.+e effects of key parameters including the number of work
crews, travelers’ sensitivity to travel time, availability of budget, and decisionmakers’ preference on the values of the two objectives
are investigated as well.

1. Introduction

Road infrastructure forms the backbone of transport ac-
tivities, which plays an important role in boosting economic
development and increasing accessibility. Due to extreme
weather, road networks are inclined to suffer from the
disruptions caused by natural disasters such as floods, ty-
phoons, and landslides. Hence, restoration activities are
needed to recover the networks as soon as possible. How-
ever, the available budget in a short time after the disaster
cannot afford to repair all the disrupted road segments.
+ere is an increasing demand for making a cost-effective
postdisaster road network restoration strategy (RNRS) [1, 2],
which refers to determining the road segments to be repaired
and the restoration time sequence.

In recent years, resilience has attracted growing attention
in the road infrastructure management field [3–6]. How to
keep the infrastructure networks at a high level of resilience

has become a challenge for transportation agencies. +e
concept of road network resilience is defined as the ability to
absorb disruptive events and recover to normal operation
within a reasonable period of time [7, 8]. Based on the
definition, a variety of metrics have been introduced to
assess the resilience of an infrastructure network. +is as-
sessment is indispensable for the optimization of a resilient
infrastructure system. Despite the wide range of studies
focusing on the resilience-based RNRS, there are still two
gaps to be filled. Firstly, it is rare in the literature to in-
vestigate a joint optimization of budget allocation and
restoration scheduling for an effective RNRS. Secondly, most
of the previous studies apply user equilibrium (UE) models
to evaluate the total system travel time (TSTT) during the
restoration process. UE models assume that the network
flow patterns achieve an equilibrium state overnight given
new network conditions, which cannot reflect the day-to-
day traffic dynamics.
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In view of this, this study aims to investigate the optimal
postdisaster restoration problem for road networks from the
perspective of resilience considering the day-to-day network
flow fluctuation. +e main contribution of our work is to
build a resilience-based bi-objective mixed integer pro-
gramming model combined with a link-based day-to-day
traffic assignment model to determine the optimal RNRS
based on the tradeoff between the maximal resilience of
performance loss and the maximal resilience of recovery
rapidity. With our proposedmethod, decisionmakers would
determine a set of prioritized road segments to be restored
and the optimal time sequence of the restoration tasks.

+e remainder of this paper is organized as follows.
Section 2 introduces the literature review. Section 3 presents
two resilience metrics, proposes a link-based day-to-day
dynamics model, and develops a resilience-based optimi-
zationmodel for the postdisaster RNRS. Section 4 proposes a
genetic algorithm to solve the optimization model. In
Section 5, we employ a case study to validate our proposed
method. Conclusions and future work are discussed in
Section 6.

2. Literature Review

Due to the increasing natural hazards, recovering damaged
road networks in a resilient manner has attracted growing
attention in recent years. +e existing studies in this realm
can be classified into two categories, i.e., the
budget allocation problem and the restoration scheduling
problem. +e budget allocation problem aims to determine
the road segments to be repaired from a set of damaged road
segments with budget limits. For instance, Liu et al. [9]
developed a two-stage stochastic programming model to
allocate limited retrofit budget over multiple road bridges to
maximize the resilience and robustness of the entire road
network. In order to mitigate the predisaster risk and im-
prove network resilience, Zhang and Wang [10] proposed a
resilience-based optimization model to identify the road
network retrofit projects. As for the restoration scheduling
problem, it focuses on identifying the time sequence of
restoration activities. Bocchini and Frangopol [11] devel-
oped a multiobjective optimization model aiming at max-
imal resilience, minimal restoration time, and minimal
restoration cost to formulate the restoration scheduling
problem for road-bridge networks after an earthquake. Li
et al. [12] established a resilience-based bilevel programming
model to investigate the optimization of the road network
recovery strategy under uncertainty aiming at the maxi-
mization of network resilience. Generally, traffic dynamics is
an important issue that needs to be considered in the RNRS
problem. Most of the previous studies employ the classic UE
traffic assignment model to estimate TSTT assuming that
the traffic flow patterns across the road network are always in
an equilibrium state [13]. +e only exception is Nogal et al.
[14], where a new dynamic equilibrium-restricted assign-
ment model is presented to simulate the postdisaster day-to-
day flow evolution process. According to the work of De
Palma and Rochat [15], travelers are highly sensitive in their
route choice behaviors to the occurrence of an event in the

road network. Hence, travelers reselect their routes shortly
after the restoration activity of any disrupted road segment is
completed, which makes the network flows evolve con-
stantly to reach a new equilibrium state within a period of
time from the old equilibrium state. Simulation on a 3× 3
grid network with 9 nodes, 12 links, and 6 routes by He et al.
[16] indicated that all links have some flow fluctuations after
a 50% capacity reduction and it takes about 20 days for the
network flow patterns to achieve a new equilibrium state.
+is fluctuating traffic flow pattern is defined as partial UE
(PUE) by Sumalee and Watling [17], namely, the network
flows in a certain period of time are not on an equilibrium
state. +erefore, it is problematic to use the UE model to
evaluate TSTT during the network restoration process. +e
day-to-day model can better capture the PUE [18], which is
appropriate for dealing with TSTT calculation in the road
network restoration context.

Day-to-day traffic assignment models are capable of
predicting day-to-day traffic fluctuations and the evolution
process itself when the traffic network is perturbed by un-
expected events, construction actions, and traffic controls.
As noted by Watling and Hazelton [19], day-to-day traffic
models have great flexibility, which accommodates a wide
range of behavior rules, levels of aggregation, and traffic
modes. +e first effort can be attributed to Horowitz [20],
who proposed a discrete time day-to-day dynamic traffic
model for a two-link network from the perspective of sys-
tem-optimal principle. Generally, two types of day-to-day
models have been studied in the literature, i.e., continuous
time models and discrete time models, and each type can be
subcategorized into two groups, i.e., deterministic models
and stochastic models [21, 22]. +e continuous time models
utilize differential equations to describe traffic evolution
based on the assumption that travelers have a perfect per-
ception of travel cost, which can capture the mathematical
features in traffic transition [23–25]. +e discrete time
models assume that travelers repeat their route choice be-
havior each day following the traffic condition, which is
more suited to the real world as mentioned by Watling and
Hazelton [19]. Since the uncertainty associated with the
random nature exists in the traffic evolution process, sto-
chastic day-to-day traffic models get more attention from
scholars than the deterministic day-to-day models. Most
stochastic day-to-day traffic models follow Markov pro-
cesses, which predict the traffic state by calculating transition
matrices based on the previous traffic flow patterns [26–29].
Due to the advantages claimed above, day-to-day traffic
models recently have been used in combination with other
methods to solve some practical transportation problems.
For example, Liu et al. [30] combined a path-based day-to-
day traffic model with a robust optimization method to
investigate distance-based congestion pricing problems.
Faturechi and Miller-Hooks [18] developed a methodology
framework composed of three-stage stochastic mathematical
programming and a day-to-day traffic model to simulate
postdisaster travel time resilience of roadway networks.
However, most of the previous day-to-day traffic models are
path-based and assume that travelers have infinite
memories.
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3. Formulation of the Problem

3.1. Assumptions and Notations. +is study makes the fol-
lowing assumptions:

(1) +e travel demands between each origin-destination
(OD) pair keep constant during the restoration process.

(2) Each restoration activity is implemented by a single
work crew. Once a restoration activity begins, the
work crew has to finish the restoration activity prior
to conducting the next restoration activity.

(3) Each restoration activity only begins once during the
entire restoration process, i.e., the restoration
strategy is non-preemptive.

(4) +e capacity of each damaged road segment is re-
duced when the disaster occurs, and the capacity is
not restored to the predisaster level until the dam-
aged road segment is completely restored.

(5) Due to sufficient preparations, the decision makers
have a complete understanding of the damage state
information for the road network; thus, the resto-
ration time, the restoration cost, and other parameter
values are known.

+e notations used in this study are presented as follows.

3.1.1. Indices.

(1) d: time period
(2) i: road segment to be restored or restoration activity
(3) r: work crew

3.1.2. Parameters.

(1) I: total number of road segments to be restored or
restoration activities

(2) ei: duration of restoration activity i, i � 1, 2, . . . , I

(3) ci: cost of restoration activity i, i � 1, 2, . . . , I

(4) R: total number of work crews
(5) B: availability of budget
(6) Mmax: maximum acceptable makespan of the

restoration

3.1.3. Variables.

(1) C: total costs of the restoration
(2) M: makespan of the restoration
(3) π(d): network performance on day d,

d � 1, 2, . . . , Mmax

(4) T(d): total system travel time on day d,
d � 1, 2, . . . , Mmax

(5) Rp: resilience of performance loss
(6) Rr: resilience of recovery rapidity

(7) xid: binary variable that represents xid � 1 if road
segment i is to be restored on day d; otherwise,
xid � 0, i � 1, 2, . . . , I, d � 1, 2, . . . , Mmax

(8) yir: binary variable that means yir � 1 if road seg-
ment i is to be restored by work crew r; otherwise,
yir � 0, i � 1, 2, . . . , I, r � 1, 2, . . . , R.

3.2. Resilience Metrics. Consider a road network, denoted as
G � (N, A), whereN is the set of nodes andA is the set of road
segments (or links). A disaster caused by extreme weather
occurs on day d � ds, which damages I road segments in the
network. Hence, the network performance π(d) drops to
π(ds) from the predisaster network performance π(d0).
Figure 1 plots the postdisaster network performance recovery
process. Assume that the restoration is conducted immediately
on day d � ds, which aims to recover π(d) to π(d0). Since the
restoration budget cannot cover all the disrupted road seg-
ments, π(d) is recovered to π(ds + M) when the budget is
exhausted on day d � ds + M.+e restoration activities have to
be completed with Mmax days. π(d) will be further improved if
more investments are available in the future.

Since there is a negative relationship between the road
network performance and TSTT, we define π(d) as the
reciprocal of TSTTon day d divided by the reciprocal of the
predisaster TSTT on day d0, as in equation (1). π(d) is the
ratio of T(d0) to T(d), which reveals efficiencies in the use of
a road network. +e lower TSTT is, the higher π(d) is.

π(d) �
T(d)

− 1

T d0( 􏼁
− 1 �

T d0( 􏼁

T(d)
. (1)

It is clear that π(d) ∈ (0, 1] and the predisaster network
performance π(d0) equals to 1. When all the damaged road
segments are restored, π(d) will be recovered to 1.

+en, we develop two resilience metrics, i.e., the resil-
ience of performance loss and resilience of recovery rapidity
to evaluate the postdisaster network resilience [12, 31].

3.2.1. Resilience of Performance Loss. +e shaded area in
Figure 1 represents the performance loss. Figure 1 shows that
the performance loss still exists after the restoration activities
are completed on day d � ds + M. For simplicity, we calculate
the total performance loss TPL from day d � ds to day
d � ds + Mmax, which is formulated in the following equation:

TPL � 􏽚
ds+Mmax

ds

π d0( 􏼁 − π(x)􏼂 􏼃dx ≈Mmax × π d0( 􏼁

− 􏽘

ds+Mmax

d�ds

π(d).

(2)

+en, we formulate the resilience of performance loss as

Rp � 1 −
Mmax × π d0( 􏼁 − 􏽐

ds+Mmax
d�ds

π(d)

Mmax × π d0( 􏼁
, (3)

where Rp represents the proportion of residual performance
(i.e., overall performance minus lost performance) in overall
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performance within Mmax days and Rp reflects the function of
the road network. +e higher Rp is, the lower the total per-
formance loss is and the less the traffic congestion is.
Rp ∈ [0, 1].

3.2.2. Resilience of Recovery Rapidity. Since recovery ra-
pidity has a great priority during the restoration process, we
employ the resilience of recovery rapidity as another resil-
ience metric. We normalize and formulate the resilience of
recovery rapidity as in the following equation:

Rr �

1 −
M

Mmax
, M≤Mmax,

0, M>Mmax,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where Rr represents the speed of recovery. If M>Mmax, the
recovery rapidity is too low, which is unacceptable. If
M≤Mmax, the higher Rr, the faster the road network can be
repaired. Rr ∈ [0, 1].

3.3. Link-Based Day-to-Day Dynamics Model. Before mod-
eling the optimal RNRS problem, we first propose a link-based
day-to-day dynamics model. For simplicity, we assume that
restoration activities are conducted on day d � ds � 1. +e
restoration activities will result in changes in the travelers’ route
choice behaviors, giving rise to day-to-day flow fluctuations. In
order to estimate TSTT, a mechanism is needed to simulate the
postdisaster network flow evolution trajectory [32]. Since the
initial link flow pattern is easily observed by a well-designed
field survey and each restoration activity is involved with a road
segment, a link-based traffic model is more suitable to predict

the network flow evolution trajectory in the context of the road
network restoration.

In a link-based day-to-day dynamics model, link flows on
any day d, denoted by q(d) � (qi, i ∈ N)T, tend to evolve
towards the “target” link flows 􏽢q(d + 1) � ( 􏽢qi, i ∈ N)T on day
d + 1 at a rate of v [16]. Hence, q(d + 1) can be formulated as a
weighted combination in the following equation:

q(d + 1) � q(d) + v · [􏽢q(d + 1) − q(d)]. (5)

For a given q(d), 􏽢q(d + 1) solves the following mini-
mization problem:

min
Q∈Ωd

λ · h(q, d + 1)
TQ +(1 − λ) · D[q(d),Q], (6)

Ωd � q(d)|q(d) � Δf(d),Λf(d) � Θ, f(d)≥ 0􏼈 􏼉, (7)

whereΩd is a feasibility vector set of link flows on day d. Δ is
the link-path incidence matrix,
Δ � (Δi,k,w, i ∈ N, k ∈ Kw, w ∈W). Δi,k,w � 1 if link i ∈ N

lies on path k ∈ Kw, and Δi,k,w � 0 otherwise. Λ is the OD
pair-path incidence matrix, Λ � (Λk,w, k ∈ Kw, w ∈W).
Λk,w � 1 if path k ∈ Kw connects OD pair w ∈W, andΛk,w �

0 otherwise. f(d) is the vector of path flows on day d.
f(d) � (fk,w(d), k ∈ Kw, w ∈W)T. Θ is the vector of traffic
demands betweenODpairs.Θ � (Θw, w ∈W)T. λ(0≤ λ≤ 1)

is travelers’ sensitivity to travel time. +e larger the pa-
rameter value of λ, the more travelers will change their
routes. h(q, d + 1) is the travel time perceived by the
travelers on day d + 1. Equation (6) is a weighted combi-
nation of minQ∈Ωd

h(q, d + 1)TQ and minQ∈Ωd
D[q(d),Q].

+e former aims to minimize the total travel time of
q(d + 1), and the latter guarantees the minimal distance
between q(d) and Q.

D[q(d),Q] can be calculated by

D[q(d),Q] � 􏽘
i∈N

􏽚
Qi,d+1

qi,d

ti,d(u) − ti,d qi,d􏼐 􏼑􏽨 􏽩du, (8)

where ti,d(u) is the link travel time function.
As for h(q, d + 1) in a link-based day-to-day dynamics

model, it can be formulated as a weighted average between
their perceived travel time on day d and the experienced
travel time on day d [33].

h(q, d + 1) � μ · t(q, d) +(1 − μ) · h(q, d). (9)

+en, we expand equation (9) recursively as follows:

h(q, d + 1) � μ · t(q, d) +(1 − μ) · h(q, d)

� μ · t(q, d) +(1 − μ)[μ · t(q, d − 1) +(1 − μ) · h(q, d − 1)]

� μ · t(q, d) + μ · (1 − μ) · t(q, d − 1) +(1 − μ)
2

· h(q, d − 1)

� μ · t(q, d) + μ · (1 − μ) · t(q, d − 1) +(1 − μ)
2

· [μ · t(q, d − 2) +(1 − μ) · h(q, d − 2)]

. . . . . .

� μ · t(q, d) + μ · 􏽘
d− 1

s�2
(1 − μ)

s− 1
· t(q, d − s + 1) +(1 − μ)

d
· h(q, 1).

(10)

d

π (d0)

π (ds)

π (d)

Performance
loss

ds ds + M ds + Mmaxd0

Figure 1: Postdisaster network performance recovery process.
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where t(q, d) is the travelers’ experienced travel time on day
d. +e initial perceived travel time h(q, 1) can be estimated
by reassigning the traffic flows following the network ca-
pacity reduction on day d � 1. q(1) is an optimal solution to
the following minimization model:

min
q(1)∈Ω1

􏽘
i∈N

􏽚
qi(1)

0
ti u, Ci(1)􏼂 􏼃du, (11)

where Ci(1)is the capacity of link i on day d � 1. Ω1 can be
obtained using equation (7).

Equation (10) reveals that travelers’ perceived travel time
is largely dependent on all of their previous experienced
travel time. Equation (10) assumes that travelers have infinite
memories, which is not realistic. As mentioned by Cascetta
[27], travelers’ perceived travel time is mainly affected by
their finite memory, namely, travelers cannot remember all
of their experiences in the past. +us, we make the following
assumption:

Assumption 1. . Travelers’ perceived travel time on day d is
affected by their most recent m days’ experienced travel time.
m is defined as the travelers’ memory length.

Based on Assumption 1, equation (10) can be rewritten
as follows:

h(q, d + 1) � μ · t(q, d) + μ · 􏽘
m

s�2
(1 − μ)

s− 1

· t(q, d − s + 1) +(1 − μ)
d

· h(q, 1).

(12)

It is easy to know that the sum of the two coefficients, i.e.,
μ and μ · 􏽐

m
s�2 (1 − μ)s− 1 in equation (12) does not equal to 1.

Hence, we employ a scaling factor to make the coefficients
sum to 1. Equation (12) is further transformed to the
following:

h(q, d + 1) �
μ

1 − (1 − μ)
m+1 · t(q, d) +

μ
1 − (1 − μ)

m+1

· 􏽘
m

s�2
(1 − μ)

s− 1
· t(q, d − s + 1)

+(1 − μ)
d

· h(q, 1),

(13)

where (μ/1 − (1 − μ)m+1) + (μ/1 − (1 − μ)m+1)· 􏽐
m
s�2

(1 − μ)s− 1 � 1.
Hence, TSTT on day d in equation (1) can be calculated

as

T(d) � q(d) · t(d). (14)

It is easy to know that the postdisaster road network
capacity will change when every single road segment is
restored, thus giving rise to a new day-to-day flow evolution,
namely, there are multiple “new evolutions” during the
restoration process. +erefore, when a “new evolution”
occurs, i.e., at the end of each restoration activity, the value
of d in the link-based day-to-day dynamics model should be
reset to 1.

3.4. Optimization Model. In this subsection, we formulate
the postdisaster RNRS problem as a resilience-based bi-
objective mixed integer programming model under resource
constraints, which makes a tradeoff between the maximal
resilience of performance loss and the maximal resilience of
recovery rapidity. For simplicity, this model assumes ds � 1.

maxRp � 1 −
Mmax × π d0( 􏼁 − 􏽐

ds+Mmax
d�ds

π(d)

Mmax × π d0( 􏼁
, (15)

maxRr �
1 −

M

Mmax
, M≤Mmax,

0, M>Mmax,

⎧⎪⎪⎨

⎪⎪⎩
(16)

which subject to the following:

max
i

􏽘

Mmax

d�1
d · xi d + ei

⎧⎨

⎩

⎫⎬

⎭ � M≤Mmax, (17)

􏽘

Mmax

d�1
d · xid � 1, i � 1, 2, . . . , I, (18)

􏽘

R

r�1
yir � 1, i � 1, 2, . . . , I, (19)

􏽘

d

τ�max 1,d− ei+1{ }

􏽘

I

i�1
xiτ · yir ≤ 1,

d � 1, 2, . . . , Mmax, r � 1, 2, . . . , R,

(20)

􏽘

d

τ�max 1,d− ei+1{ }

􏽘

I

i�1
xiτ ≤R,

d � 1, 2, . . . , Mmax,

(21)

􏽘

I

i�1
􏽘

Mmax

d�1
xi d · ci � C≤B, (22)

xid � 0, 1{ }, (23)

yir � 0, 1{ }. (24)

Equations (15) and (16) are two objectives, which
maximize the resilience of performance loss and the resil-
ience of recovery rapidity, respectively. Equation (17) defines
the makespan of the restoration schedule, i.e., the finish time
of the last restoration activity, which cannot exceed Mmax.
Equation (18) ensures that each restoration activity is
implemented only once during the restoration period,
namely, the restoration strategy is non-preemptive. Equa-
tion (19) guarantees that each restoration activity is carried
out by a single work crew. Equation (20) ensures that each
work crew can only conduct one restoration activity at most
every single day. Equation (21) makes sure that the number
of ongoing restoration activities every single day cannot
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exceed the number of work crews. Equation (22) is the
budget constraint, i.e., the total restoration costs cannot
exceed the budget. Equations (23) and (24) define the type of
decision variables.

4. Model Solution

Bi-objective models are usually solved to obtain a set of
Pareto optimal solutions [34]. Although all the obtained
Pareto optimal solutions are feasible, the best solution
cannot be determined because of the different scales and
bounds of the two objectives. In order to solve the issue, we
first transform the bi-objective model into a single objective
model using the weighted combination method as follows
[12]. A genetic algorithm (GA) is then adopted to deal with
the single objective model.

F � ω · Rt +(1 − ω) · Rr, (25)

where F is the weighted value and ω is the weighting factor,
which means the decision makers’ preference for the two
resilience metrics.

+e mixed integer programming model has been widely
employed to solve network design and network restoration
problems, which are known to be NP-hard. Due to the NP-
hardness, finding the exact solution is an intractable issue
even for small problems; thus, heuristic algorithms are more
suitable than exact algorithms for solving these problems.
GA has been well recognized as an effective tool to solve the
optimization problem [35–37]. GA searches for the optimal
solution by simulating the natural evolution process; spe-
cifically, it simulates the solution of problems as a process
similar to the crossover and mutation of chromosome genes
in biological evolution [38]. GA is also used in combination
with other algorithms (e.g., simulated annealing algorithms
[39, 40], swarm intelligence algorithms [41], neural network
algorithms [42], and tabu search algorithm [43]) to solve
optimization problems. Compared with the previous algo-
rithms, GA in this study represents the chromosome with
two line sections using the integer codingmethod, which can
reduce the possibility of generating a large number of in-
feasible solutions and avoid unnecessary searches. +e flow
chart of GA is presented in Figure 2.

4.1. Chromosome Encoding and Decoding. +e RNRS
problem in this study consists of two subproblems, i.e., the
selection of work crews for road segments to be restored and
the time sequence of restoration activities. We apply the
integer coding method to represent the chromosome with
two line sections shown in Figure 3. Each line section has I

genes. +e gen value g1
i (i � 1, 2, . . . , I) of line section 1

represents the work crew that will restore the corresponding
link. It is noting that the gen value 0 in line section 1 means
that the corresponding link will not be restored.
g1

i � 0, 1, 2, . . . , R. +e gen value g2
i (i � 1, 2, . . . , I) of line

section 2 indicates the precedence relationship among all
restoration activities. g2

i � 1, 2, . . . , I. +e smaller g2
i , the

higher the priority of the restoration activity. All gen values
in line section 2 are different.

Let MAr(r � 1, 2, . . . , R) be the set of restoration ac-
tivities assigned to work crew r, where restoration activities
are ranked by their priorities from high to low, and the
number of restoration activities in MAr is Numr. It is noting
that these restoration activities with g1

i � 0 are not included
in MAr. We denote EAr as the set of eligible restoration
activities, namely, the unscheduled restoration activities that
have all predecessor restoration activities scheduled, and we
let STrj(j � 1, 2, . . . ,Numr) represent the start time of the
jth restoration activity inMAr.+en, the following decoding
procedure can be used to transform the solution into a
restoration schedule.

(i) Step 1. Set r � 1, MAr � 1{ }, and STr1 � 0.
(ii) Step 2. Update EAr, i.e., remove the scheduled

restoration activities from EAr and put the new
eligible restoration activities into EAr.

(iii) Step 3. Judge whether EAr � ∅ or not. If the answer
is true, output all STrj and go to step 5; otherwise, go
to step 4.

(iv) Step 4. Calculate STrj of all the eligible restoration
activities, STrj � STr,j− 1 + dj, and return to step 2.
(v) Step 5. Judge whether r � R or not. If the answer
is false, let r � r + 1 and return to step 2; otherwise,
terminate the procedure.

4.2. Population Initialization. +e initial population consists
of popSize feasible initial solutions. Each feasible initial
solution can be generated using the following steps:

(i) Step 1. Randomly generate a value for g1
i ,

g1
i � 0, 1, 2, . . . , R, i � 1, 2, . . . , N, namely, select a

work crew for each restoration activity randomly,
generating line section 1.

(ii) Step 2. Randomly generate a value for g2
i ,

g2
i � 1, 2, . . . , N, i � 1, 2, . . . , N, namely, set a pri-

ority value for each restoration activity randomly,
generating line section 2.

(iii) Step 3. Transform the generated g1
i and g2

i into a
restoration schedule using the decoding procedure
presented in Section 4.1. Judge whether
maxi,r STri + di􏼈 􏼉≤Mmax or not. If the answer is
true, a feasible solution has been generated; oth-
erwise, return to step 1 and repeat the procedure
until a feasible solution is generated.

4.3. Selection. We use equation (25) as the fitness function in
this algorithm. +e fitness value of the parent individual
determines the probability that the child individual is se-
lected. Specifically, the higher the fitness value of the parent
individuals, the higher the probability that they will be se-
lected to generate offspring individuals. +e roulette wheel
method is employed to select individuals. Denote Fk(k �

1, 2, . . . , popSize) as the fitness value of the kth individual.
+e total fitness value Ftotal of a population of size popSize
can be calculated as
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Ftotal � 􏽘

popSize

k�1
Fk. (26)

+e selection probability pk for each individual k is
formulated in the following equation [44]:

pk �
Ftotal − Fk

Ftotal · (popSize − 1)
. (27)

+en, a random number φ ∈ (0, 1] is generated. If
pk− 1 <φ<pk, the kth individual is selected.

4.4. Crossover Operator. A crossover operator is used to
generate two new offspring individuals from two parent

chromosomes by exchanging their genetic information [45],
which can maintain population diversity. +e crossover
operator is performed based on a crossover rate that de-
termines the probability that two parent individuals will be
selected to exchange their genetic information. A single
point crossover method is applied in this study. It is noting
that only line section 1 is selected to crossover so as to
change the job sequence of work crews. +e crossover op-
eration is performed by choosing a position i in line section 1
of the chromosome randomly and swapping all the gen
values before that position. +us, the first i gen values in line
section 1 of an offspring chromosome are selected from one
parent chromosome and the remaining gen values inherit
the other parent chromosome. Figure 4 illustrates an ex-
ample of a single point crossover operation.

4.5. Mutation Operator. +e mutation operation is per-
formed to a single chromosome, which can help the algo-
rithm to avoid local optima. Based on a mutation rate, the
mutation operation randomly changes one or more gene
values of a chromosome. +e widely used swap mutation

Start

Input the parameters for the algorithm;
code the chromosome

popsize: population size
Gen: number of generations
Pc: crossover rate
Pm: mutation rate

Generate the initial population Pop0 using the 
solution generator presented in section 4.2; g = 1

Calculate and evaluate the fitness value

Select the next generation

Perform the crossover and mutation to create the 
offspring population Og

g = g + 1

Stop

G ≥ Gen

Figure 2: Flow chart of GA.

1 2 3 4 5 6 i I 1 2 3 4 5 6 i I
1 3 2 2 0 1 … 4 1 2 3 4 5 6 … I

Link ID:

Line section 1 Line section 2

Figure 3: +e chromosome representation.
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strategy [46] that randomly exchanges two gene values of a
chromosome is applied to the two line sections. Figure 5
shows an example of a swap mutation strategy.

5. Numerical Experiment

5.1. Road Network. A road network with 19 nodes and 36
links shown in Figure 6 is applied to validate the proposed
method. +e attributes of all links are presented in Table 1.
+ere are two OD pairs, i.e., 1⟶ 17 and 8⟶ 19, the daily
OD demands of which are 40,000 and 60,000, respectively.
For simplicity, the predisaster link flows are obtained using a
UE model.

+e link travel time is estimated by the Bureau of Public
Roads (BPR) function:

ti qi( 􏼁 � t
0
i · 1 + α ·

qi

Ci

􏼠 􏼡

β
⎡⎣ ⎤⎦, ∀i ∈ N, (28)

where t0i is the free flow travel time on link i, Ci is the
capacity of link i, and α and β are two parameters, where
α � 0.15 and β � 4.

Disasters usually cause two types of damage to the road
infrastructure: (1) complete damage, which means that the
capacity of each damaged road segment drops to zero and
the damaged road segments are out of service, and (2) partial
damage, which indicates that the capacity of each damaged
road segment is reduced to a certain extent and the damaged
road segments have some partial passage. For simplicity, we
assume that a disaster, which occurs on day d � 1, com-
pletely damages 21 road segments (in the dashed-line circle
in Figure 6). It is worth noting that our proposedmethod can
be easily extended to the cases with partially damaged road
segments. +e damaged road segments are marked by red
arrows in the dashed-line circle in Figure 6. +e restoration
duration and cost of each disrupted link are listed in Table 2,
where the unit of ci is fund-unit. +e total budget is 5,000
fund-unit.+e other parameters are valued as in Table 3.+e
procedure is coded in MATLAB R2018b (version 11.4). All
experiments are conducted on a Windows Server 2012 R2
server with an Intel Xeon E5-2640v4 CPU (2.4GHZ) and
64GB DDR4 RAM.

5.2. Results. We define the solution with the highest fitness
value after convergence is the optimal solution. Figure 7
illustrates the optimal RNRS generated by the proposed

method. Figure 7(a) shows the start time and completion
time of the restoration activity for each link, where the
number on each bar is the duration of each restoration
activity. Figure 7(b) presents the restoration activities
assigned to each work crew, where the letter and number on
each bar represent the link ID and restoration duration,
respectively. +is optimal RNRS covers 12 out of 21 dis-
rupted links to be restored by three work crews, given that
the restoration budget is 5,000 fund-unit. +e makespan is

1 3 2 2 0 1 … 4 1 2 3 4 5 6 … IParent 1

Parent 2 2 1 3 1 4 0 … 2 1 2 3 4 5 6 … I

2 1 3 2 0 1 … 4 1 2 3 4 5 6 … IOffspring 1

Offspring 2 1 3 2 1 4 0 … 2 1 2 3 4 5 6 … I

Crossover point

Figure 4: An example of a single point crossover operation.

1 3 2 2 0 1 … 4 1 2 3 4 5 6 … I

0 3 2 2 1 1 … 4 1 2 6 4 5 3 … I

Figure 5: An example of a swap mutation strategy.
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Figure 6: Layout of the testing road network.

Table 1: Link attributes of the road network.

Link t0i (h) Ci (Veh/h) Link t0i (h) Ci (Veh/h)

1–2 3.6 1,600 9–10 2.2 2,000
1–4 1.5 1,700 9–14 2.8 1,600
2–3 2.4 1,700 10–11 1.8 2,200
2–6 2.1 2,200 10–15 2.5 1,700
3–7 1.8 1,900 11–12 1.5 2,400
4–2 3.4 1,600 11–15 1.9 2,000
4–5 2.3 2,000 12–13 1.7 2,200
4–10 2.4 1,500 12–16 1.8 2,200
5–6 1.8 2,200 12–17 2.3 2,400
5–11 2.1 1,600 13–17 1.9 1,600
6–7 2.0 2,400 14–15 1.7 1,700
6–12 2.0 1,400 14–18 1.7 2,200
7–12 2.4 2,200 15–16 1.7 2,000
7–13 1.9 1,600 15–19 2.0 1,600
8–4 3.3 2,000 16–17 1.3 2,000
8–9 1.4 2,100 16–19 1.8 1,700
8–18 4.4 1,700 17–19 2.9 2,000
9–4 2.1 2,200 18–19 2.6 2,200
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26 days. Figure 8 depicts the convergence process of the
fitness values, which converges after 197 iterations. +e best
fitness value in the initial GA population is 0.231, and the
fitness value reaches 0.612 after convergence.

In practice, the empirical restoration strategy, i.e., flow-
first strategy (FFS), is commonly used. FFS determines the
time sequence of restoration activities by link flows from
highest to lowest and covers as many links as possible until
the budget is exhausted. According to the link flows listed in
Table 2, we generate a restoration scheme shown in Figure 9
following the FFS. In order to assess the efficiency of the
optimal RNRS, we compare this optimal RNRS with the FFS.
Table 4 lists the restoration results of the two strategies. Both
strategies exhaust almost the same portion of the budget and
cover 12 disrupted links. However, the optimal RNRS has a
shorter makespan and produces much higher Rp and Rr.
Obviously, the optimal RNRS outperforms the FFS, which
indicates that the proposed method can recover the dis-
rupted road network more quickly and generate fewer traffic
delays.

Figure 10 presents the postdisaster TSTT evolution
trajectories of the two restoration strategies. It is clear that
TSTT has a significant fluctuation following the day-to-day
traffic dynamics. Under the optimal RNRS, the postdisaster
TSTT increases evidently and reaches the maximum equal to
3.12 × 106 on day d � 2. As more links are recovered, TSTT
gradually decreases. It is noting that although all the res-
toration activities are completed on day d � 26, TSTT does
not stop immediately and converges to a stationary (equi-
librium) state on day d � 31. Under the FFS, it takes 7 days
for the network flows to reach the equilibrium state after the

disaster and the equilibrium state continues for 14 days. +is
is because the FFS does not recover a new route till day
d � 20; thus, the network capacity does not increase until
day d � 20.

Since the road network flows cannot reach an equilib-
rium state overnight due to the network capacity variation, it
is problematic to adopt UE models to simulate the traffic
dynamics in this case. TSTT during the restoration make-
span (i.e., 26 days) obtained by a day-to-day dynamics model
and UE model for the two restoration strategies is compared
in Figure 11. From the comparison of results, it is known
that TSTT is less under a UE model than under a day-to-day
dynamics model.

More damage scenarios are generated to verify our
proposed method and analyze the two objectives. We
consider 3 damage scenarios, where 18–20 links in the
dashed-line circle in Figure 6 are randomly selected as the
damaged road segments. For each scenario, there are Ci

21(i �

18, 19, 20) cases when i road segments are selected randomly
to be damaged from the 21 road segments. +e box plot for
Rp andRr of each scenario is presented in Figure 12. It can be
found from Figure 12(a) that the maximum, minimum,
median, upper quartile, and lower quartile of Rp all decrease
as more road segments are damaged. As shown in
Figure 12(b), the maximum and upper quartile of Rr de-
crease as more road segments are damaged. +is phe-
nomenon is in line with the fact that a network with more
damaged road segments has lower resilience. It is also ob-
served from Figure 12(b) that the lower quartile and the
minimum of Rr keep constant in the three damage scenarios,
which reveals that the three damage scenarios have the same
worst-case optimal RNRS.

5.3. Sensitivity Analysis. In this subsection, we discuss the
effects of key parameters including the number of work
crews, travelers’ sensitivity to travel time, availability of
budget, and decision makers’ preference on the restoration
results. +e sensitivity of every single parameter is analyzed
by assuming other parameters are constant [47,48].

5.3.1. Number of Work Crews. Table 5 presents three op-
timal RNRSs for three differentR. It is clear that the variation
in R only affects the restoration time sequence but does not

Table 2: Restoration duration and cost of each disrupted link.

Link ID ei (day) ci qi,0(Veh) Link ID ei (day) ci qi,0 (Veh)

A 6 360 193 L 7 360 206
B 7 440 548 M 6 290 364
C 4 280 304 N 8 600 353
D 6 370 201 O 5 460 458
E 6 360 255 P 6 500 302
F 7 450 280 Q 8 510 268
G 8 640 260 R 8 480 630
H 5 170 175 S 5 450 423
I 9 590 752 T 7 420 515
J 5 240 615 U 5 350 832
K 6 340 478

Table 3: Parameter values used in this study.

Parameters Value
Maximum allowed makespan Mmax � 60
Link flow evolution rate v � 1
Travelers’ sensitivity to travel time λ � 0.5
Travelers’ memory length m � 3
Total number of work crews R � 3
Population size popSize � 50
Number of generations Gen � 300
Crossover probability Pc � 0.9
Mutation probability Pm � 0.6
Decision maker’s preference ω � 0.5
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Figure 7: Optimal restoration strategy: (a) time sequence of maintenance; (b) job sequence of work crews.
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Figure 9: Flow-first restoration strategy: (a) time sequence of maintenance; (b) job sequence of work crews.
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change the damaged links to be restored. +e optimal RNRS
of R � 1 has the minimum Rp and Rr, which indicates this
restoration schedule is the worst. When R � 1, M � 76,
which is more than 60; thus Rr � 0. Obviously, a higher R

can reduce M, but the relationship between R and M is
nonlinear. Generally, the restoration results are gradually
improved with the increase in R. However, the growth rates
of Rp and Rr decrease as R increases, i.e., the marginal
benefits of manpower decrease. Additional experiments
indicate that the marginal benefits of Rp and Rr equal to 0
when R � 12, which reveals that overmuch manpower
cannot improve the restoration results but produces re-
source waste. Additionally, insufficient manpower will delay

the restoration period. +us, our proposed methods can be
employed to evaluate manpower allocation plans in real-life
road network recovery.

5.3.2. Travelers’ Sensitivity to Travel Time. Table 6 shows
three optimal RNRSs for three different λ. λ has a significant
impact on the optimal RNRS including the restoration time
sequence and the damaged links to be restored. As λ in-
creases, the makespan is shortened, and both Rp and Rr

increase. +e larger the parameter value of λ, the more
travelers will change their routes and the faster the link flows
evolve to the new equilibrium state, thus causing less TSTT.
Hence, in the actual RNRS, timely release of restoration
information and effective traffic control strategies should be
applied to help travelers to select the optimal route timely,
which can improve the restoration schedule.

5.3.3. Availability of Budget. Table 7 lists the optimal RNRSs
under three different scenarios of budget constraints. +e
optimal RNRSs of B � 5, 000 and B � 7, 000 differ greatly
both in the restoration time sequence and the damaged links

Table 4: Restoration results of the optimal RNRS and FFS.

Evaluation index Optimal RNRS FFS
Rp 0.472 0.404
Rr 0.567 0.533
M 26 28
C 4,990 4,940
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Figure 10: Total system travel time evolution trajectories of the
optimal RNRS and FFS.
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to be restored. Compared with B �5,000, the optimal RNRS
under B � 7, 000 covers 5 more damaged links, which ex-
tends the makespan by 9 days and has higher Rp but lower
Rr. It is noting that the restoration schedule does not change
when B increases from 7,000 to 8,000.+is is because that the
manpower is insufficient.+us, simply increasing the budget
and keeping the workforce unchanged cannot improve the
restoration schedule. +erefore, the monetary resources and
the manpower should be matched.

5.3.4. Decision Maker’s Preference. Table 8 indicates two
optimal RNRSs for two different ω. Obviously, ω has a
significant effect on the restoration schedule including the
restoration time sequence and the damaged links to be
restored. Compared with ω � 0.5, the optimal RNRS with
ω � 0.3 is involved with 2 less damaged links, thus resulting
in a lower Rp, M, and C but higher Rr, which represents
more traffic delays and a shorter makespan. Hence, decision
makers should make an optimal tradeoff between Rp and Rr.

Table 5: Effect of R on the optimal RNRS.

R 1 3 5
Rp 0.364 0.472 0.519
Rr 0.000 0.567 0.717
M 76 26 17
C 4,990 4,990 4,990
Optimal RNRS Work crew 1: E-M-T-I-R-Q-K-J-P-S-U-O Work crew 1: E-I-J-S Work crew 1: E-Q
— — Work crew 2: M-R-K-U Work crew 2: M-K-U
— — Work crew 3: T-Q-P-O Work crew 3: T-J-O
— — — Work crew 4: I–S
— — — Work crew 5: R–P

Table 6: Effect of λ on the optimal RNRS.

λ 0.3 0.5 0.7
Rp 0.357 0.472 0.505
Rr 0.533 0.567 0.600
M 28 26 24
C 4,940 4,990 4,480
Optimal RNRS Work crew 1: A-K-E-J-U Work crew 1: E-I-J-S Work crew 1: A-I-E
— Work crew 2: D-B-T-L Work crew 3: P–F-M-O Work crew 2: M-R-K-U
— Work crew 3: T-Q-P-O Work crew 2: G-Q-O Work crew 3: P-T-M-U

Table 7: Effect of B on the optimal RNRS.

B 5,000 7,000 8,000
Rp 0.472 0.517 0.517
Rr 0.567 0.383 0.383
M 26 37 37
C 4,990 6,890 6,890
Optimal RNRS Work crew 1: E-I-J-S Work crew 1: E-A-Q-J-H-D Work crew 1: E-A-Q-J-H-D
— Work crew 2: M-R-K-U Work crew 2: M-G-S-I-L Work crew 2: M-G-S-I-L
— Work crew 3: T-Q-P-O Work crew 3: T-P-R-K-O-U Work crew 3: T-P-R-K-O-U

Table 8: Effect of ω on the optimal RNRS.

ω 0.3 0.5
Rp 0.413 0.472
Rr 0.617 0.567
M 23 26
C 4,390 4,990
Optimal RNRS Work crew 1: E-A-B-C Work crew 1: E-I-J-S
— Work crew 2: M-G-I Work crew 2: M-R-K-U
— Work crew 3: T-P-Q Work crew 3: T-Q-P-O
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6. Conclusions

+is paper focuses on the resilience-based optimization of
postdisaster road network restoration strategy. A TSTT-
based function is used as the network performance indicator.
Since the equilibrium-based methods cannot capture partial
user equilibrium, a link-based day-to-day traffic model is
employed to compute TSTT. We develop two resilience
metrics to evaluate the effectiveness of the restoration
strategy, i.e., the resilience of performance loss and the
resilience of recovery rapidity.+e former is calculated based
on the network performance, and the latter is developed
according to the restoration makespan. +e restoration
optimization problem is formulated as a resilience-based bi-
objective mixed integer programming model, which aims to
maximize the network resilience considering resource
constraints.+en, a genetic algorithm is applied as themodel
solution.

+e proposed method is validated through a case study.
+e results show that our method can provide an effective
reference for transportation agencies to schedule post-
disaster restoration activities. Compared with FFS, the
optimal restoration strategy can reduce traffic congestion
and shorten makespan. +e comparison between the
computational results using the day-to-day dynamics
model and UE model explains why a link-based day-to-day
dynamics model is preferred in this study. +e sensitivity
analyses of several key parameters reveal that the increase
in the number of work crew or budget can improve the
restoration schedule, but the marginal benefits of these two
kinds of resources decrease. When either of the two re-
sources exceeds a certain level, the restoration schedule will
not be further improved. Travelers’ sensitivity to travel time
or decision makers’ preference has a significant effect on
the restoration schedule including the restoration time
sequence and the damaged links to be restored. As trav-
elers’ sensitivity to travel time increases, the resilience of
performance loss and the resilience of recovery rapidity will
increase.

Future work should (1) consider some uncertainties, e.g.,
duration of restoration activities, traffic demands, and the
restoration cost during the decision process; (2) develop a
path-based day-to-day traffic model to simulate the PUE
during the restoration process; (3) investigate the joint
optimization of road network restoration and traffic control
strategy; and (4) develop more intelligent algorithms and
compare the efficiency of these algorithms to find a more
suitable model solution.
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UE: User equilibrium
TSTT: Total system travel time
PUE: Partial user equilibrium
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GA: Genetic algorithm
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Inclement winter weather such as snow, sleet, and freezing rain significantly impacts roadway safety. To assess the safety
implications of winter weather, maintenance operations, and traffic operations, various crash frequency models have been
developed. In this study, several datasets, including for weather, snowplow operations, and traffic information, were combined to
develop a robust crash frequency model for winter weather conditions. When developing statistical models using such large-scale
multivariate datasets, one of the challenges is to determine which explanatory variables should be included in the model. ,is
paper presents a feature selection framework using a machine-learning algorithm known as the Boruta algorithm and exhaustive
search to select a list of variables to be included in a negative binomial crash frequency model. ,is paper’s proposed feature
selection framework generates consistent and intuitive results because the feature selection process reduces the complexity of
interactions among different variables in the dataset. ,is enables our crash frequency model to better help agencies identify
effective ways to improve roadway safety via winter maintenance operations. For example, increased plowing operations before
the start of storms are associated with a decrease in crash rates. ,us, pretreatment operations can play a significant role in
mitigating the impact of winter storms.

1. Introduction

Inclement winter weather such as snow, sleet, and freezing
rain significantly impacts roadway safety. Every year, over
118,000 people in the United States are injured or killed due
to winter-weather-related vehicle crashes [1]. Crash fre-
quency models using Bayesian or negative binomial mod-
eling [2–4] have been developed to investigate the safety
implications of winter weather, maintenance operations,
and traffic operations. However, due to inherent correlations
among explanatory variables, conflicting results have been
reported. For example, Qin et al. [5] used Wisconsin
snowstorm and maintenance operation reports to develop a
crash frequency model. ,eir estimated negative binomial
model indicated that deploying more deicing material re-
duces the number of crashes, while deploying more salting
material increases crash rates. ,is finding exemplifies the

complexity and difficulty of using multiple data sources
when analyzing winter maintenance operations.

In this paper, winter weather crashes are aggregated by
storm and city in order to model the impact of winter
weather and maintenance operations on the expected crash
rate for a particular winter event. A feature selection
technique, called the Boruta algorithm [6, 7], is used to select
the most impactful among highly correlated explanatory
variables from a comprehensive dataset containing weather,
maintenance operations, and traffic information.

As agencies continue to move towards data-driven de-
cision-making, innovative data analytics are valuable for
working with large datasets. In particular, when developing
statistical models using large-scale multivariate datasets, one
of the challenges is to determine which explanatory variables
to include in the model. In this study, several datasets are
combined to examine the occurrence of winter-weather-
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related crashes, including weather (e.g., type, rate and du-
ration of precipitation, temperature, and visibility), snow-
plow operations (e.g., plow frequency and material
spreading rate), and traffic information (e.g., traffic volume).
Some variables in these datasets are inherently correlated.
For example, snowplow operations usually depend on the
severity of winter storms and type of precipitation.

,is paper proposes a framework for identifying which
of highly correlated explanatory variables should be selected
to develop a robust winter-weather-related crash frequency
model. In particular, it adopts the Boruta algorithm to
calculate the importance of each variable using a random
forest wrapper. Based on relative importance scores, a set of
variables is selected to be included in the negative binomial
model. ,is feature selection process helps to create a robust
crash frequency model for winter-weather-related crashes.

2. Literature Review

Past studies have shown that winter storm events generally
increase the crash rate while winter maintenance operations
tend to reduce the crash rate. Nixon and Qiu conducted a
meta-analysis of studies that quantified the impact of
weather on traffic crashes and found that the crash rate
increases by 84% and the injury rate increases by 75% with
snow conditions. Nixon and Qiu [8], on the other hand,
showed an average reduction of 78% in crash rate on
freeways and 87% on two-lane undivided highways due to
salting. Earlier studies like these are usually based on hourly
traffic count and weather data, as well as manually main-
tained winter storm records.

However, with the wide adoption of sensing, GPS
tracking, and communication technologies in recent years,
state agencies are now collecting more detailed and granular
data. For example, today most state departments of trans-
portation (DOTs) collect traffic volume and speed data using
in-pavement or roadside sensors at 20-second to 5-minute
aggregation intervals. Many agencies have also deployed
cameras, sensors, and GPS tracking devices on snowplow
trucks to collect location and operational data at subminute
intervals [9, 10]. With these new data sources, researchers
are again attempting to assess the effect of winter mainte-
nance operations on mobility and safety in order to provide
guidance for more effective maintenance operations [11–13].

As researchers begin to face larger and more complex
datasets, the ability to identify meaningful relationships
from such datasets becomes more important. Machine
learning has been commonly applied in the transportation
field when attempting to model and predict crashes, but
usually with only minimal variable filtering [14–16]. While
machine learning for feature selection has been done in
other fields, its use in the transportation sector is nearly
nonexistent. Feature selection, however, has been used with
success when analyzing variables in evacuation behavior
modeling and in determining gully erosion factors [17, 18].
In particular, the Boruta algorithm has been shown as an
effective method for feature selection. For example, Prasad
et al. [19] used the Boruta feature selection algorithm to
provide a trimmed list for their extreme learning machine

(ELM) model to study weekly soil moisture. Similarly, to
select optimal random forest predictive models for seabed
hardness, Li et al. [20] compared five feature selection
methods and recommended the averaged variable impor-
tance and Boruta algorithms as producing the most accurate
predictive models. Various other studies have also found the
Boruta method to produce accurate and stable results
[6, 7, 21]. Based on the success of such past applications, this
paper adopts the Boruta feature selection algorithm to select
variables in a winter-weather-related crash frequency model.

3. Data Description

,is paper analyzes winter weather events in eight major
cities across Iowa. Geographic-based analysis is a commonly
used method for aggregating winter weather data [2, 22]. For
each city, a list of winter storm events was compiled. All
relevant data were then associated with each storm based on
the location and time stamp, as shown in Figure 1.

,e scope of this study encompassed two winter seasons
from November 2016 to May 2017 and fromNovember 2017
to May 2018.

,e Iowa DOT operates and maintains all of the In-
terstates, US highways, and state highways across Iowa. Only
data pertaining to these Iowa DOTmaintenance routes were
analyzed for this study. A list of compiled variables from
across the study’s data sources can be seen in Table 1.

3.1. Roadway Data. ,e Iowa DOTmaintains and provides
roadway information via the Roadway Asset Management
System (RAMS). ,e RAMS provides the geometric and
operational features of the roadway such as the number of
lanes, roadway surface type, and speed limit. In conjunction
with the RAMS database, the Iowa DOT provides a Linear
Reference System (LRS). An LRS is a mile reference system
for each unique route. By selecting any location along the
Iowa DOT maintenance routes; therefore, users can link
their selected location’s LRS mile marker reference to the
RAMS database. Additionally, the LRS provides a means to
combine any other data that can be linked to the roadway
system, such as crashes and snowplow locations.

Each city contains some Iowa DOT maintenance
roadways. ,erefore, the current study’s road miles variable
is the length of the Iowa DOTroadway network within each
city’s boundary (Table 2). ,e lane miles variable accounts
for each Iowa DOT roadway’s number of lanes, thus pro-
viding an indicator of the scale of the Iowa DOT’s roadway
surface area in each city.

3.2. Traffic Data. ,e Iowa DOT has over 900 Wavetronix
sensors placed throughout the state. ,ese sensors collect
traffic speed, occupancy, and volume data that are archived
at 5-minute aggregation intervals. Most of these sensors are
located in urban areas. Using Wavetronix sensor data in lieu
of annual average daily traffic (AADT) provides more ac-
curate traffic counts as roadway volumes can vary greatly
during winter storm events [23].
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Storm start Storm stop

Time

Crashes

Maintenance operations

Figure 1: Associating multiple data sources related to a winter storm.

Table 1: Combined dataset variable descriptions.

Variable Description (units)
AVLRecords ,e number of 5-minute AVL records (count of records)
AVL_Hours Hours of AVL operations (hours)

AfterRecords ,e number of 5-minute AVL records from the end of the snow event to the end of the
plowing event (count of records)

BeforeRecords ,e number of 5-minute AVL records from the start of the plow event to the start of the
storm event (count of records)

Exposure Calculation for vehicle volume (exposure)
FreezingRain ,e amount of freezing rain in the storm event (inches)
HourPrecipitation ,e hourly rate of precipitation (inches/hour)

LaneLaps ,e amount of truck distance traveled divided by the total roadway distance in the city (lane
mile laps)

Laps ,e amount of truck distance traveled divided by the length of roadways in the city (laps)
LnExposure ,e natural log of the exposure variable
PCPN Total precipitation (inches)

RecordsBefore ,e number of 5-minute record counts from before the start of the storm event (count of
records, before)

RoadCondition ,e aggregate road condition for the storm event (1 to 5 categorical, 1� � least severe
conditions, 5� �most severe conditions)

Snow ,e total snow in the storm event (inches)
StormHours ,e number of hours that the storms lasted (hours)
StormRecords ,e number of 5-minute counts that the storm lasted (count of records)
TemperatureFah ,e average temperature of the storm (Fahreneit)
TemperatureFahASOS ,e average temperature of the storm from the ASOS system (Fahreneit)
TemperatureFahRWIS ,e average temperature of the storm from the RWIS system (Fahreneit)
TotalDistLiquid ,e total distance of truck travel while spreading liquid material (miles)

TotalDistLiquidBefore ,e total distance of truck travel while spreading liquid material between the start of the
plow event and storm event (miles)

TotalDistPrewet ,e total distance of truck travel while spreading prewet material (miles)

TotalDistPrewetBefore ,e total distance of truck travel while spreading prewet material between the start of the
plow event and storm event (miles)

TotalDistSolid ,e total distance of truck travel while spreading solid material (miles)

TotalDistSolidBefore ,e total distance of truck travel while spreading solid material between the start of the
plow event and storm event (miles)

TruckDisPerLanMile ,e total distance of truck travel divided by the amount of lane miles in each city (miles per
lane mile)

TruckDisPerLanMileBefore ,e total distance of truck travel divided by the amount of lane miles in each city before the
start of plow operations (miles per lane mile before)

TruckDisPerLanMileMinute ,e total distance of truck travel divided by the amount of lane miles in each city divided by
the number of minutes of the storm (miles per lane mile per minute)

TruckDisPerLanMileMinuteBefore ,e total distance of truck travel divided by the amount of lane miles in each city divided by
the number of minutes of the storm before the start of the storm event

TruckDistMiles ,e total truck distance driven (miles)
TruckDistMilesBefore ,e total truck distance driven before the storm (miles before)

TruckLiquidPerLanMile ,e total amount of liquid spread divided by the amount of lane miles (gal per mile per lane
mile)
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Table 1: Continued.

Variable Description (units)

TruckLiquidPerLanMileBefore ,e total amount of liquid spread divided by the amount of lane miles before the storm
event (gal per lane mile before)

TruckLiquidPerLanMileMinute ,e total amount of liquid spread divided by the amount of lane miles divided by the total
minutes of the storm (gal per lane mile per minute)

TruckLiquidPerLanMileMinuteBefore ,e total amount of liquid spread divided by the amount of lane miles divided by the total
minutes of the storm before (gal per lane mile per minute before)

TruckMaterialLiquid ,e total amount of liquid spread (gal)
TruckMaterialLiquid.Distance ,e total amount of liquid spread divided by the distance traveled (gal/mile)

TruckMaterialLiquid.DistanceBefore ,e total amount of liquid spread divided by the distance traveled before the storm event
(gal/mile)

TruckMaterialLiquidBefore ,e total amount of liquid spread before the storm (gal before)

TruckMaterialLiquidDistance.Distance ,e total amount of liquid material spread divided by the distance traveled only while
spreading occurred (gal/mile, of spreading miles traveled only)

TruckMaterialLiquidDistance.DistanceBefore ,e total amount of liquid material spread divided by the distance traveled only while
spreading occurred before (gal/mile, of spreading miles before traveled only)

TruckMaterialPreLiquid ,e total amount of preliquid spread (gal)
TruckMaterialPreLiquid.Distance ,e total amount of preliquid spread divided by the distance traveled (gal/mile)

TruckMaterialPreLiquid.DistanceBefore ,e total amount of preliquid spread divided by the distance traveled before (gal/mile
before)

TruckMaterialSolid ,e total amount of material solid spread (lbs)

TruckMaterialSolid.Distance ,e total amount of solid material spread divided by the total truck distance traveled (lbs/
mile)

TruckMaterialSolid.DistanceBefore ,e total amount of solid material spread divided by the total truck distance traveled before
(lbs/mile, before)

TruckMaterialSolidBefore ,e total amount of solid material spread before the storm (lbs, before)

TruckMaterialSolidDistance.Distance ,e total amount of solid material spread divided by the truck distance that was traveled
only while spreading occurred (lbs/mile, of mile traveled while spreading)

TruckMaterialSolidDistance.DistanceBefore
,e total amount of solid material spread divided by the truck distance that was traveled
only while spreading occurred before the storm (lbs/mile, of mile traveled while spreading,

before)

TruckPreLiquidPerLanMile ,e total amount of preliquid material spread divided by the length of lane miles (gal/lane
mile)

TruckPreLiquidPerLanMileMinute ,e total amount of preliquid material spread divided by the length of lane miles divided by
the total minutes of the storm (gal/lane mile per minute)

TruckSolidPerLanMile ,e total amount of solid material spread divided by the length of lane miles (lbs/lane mile)

TruckSolidPerLanMileBefore ,e total amount of solid material spread divided by the length of lane miles before the
storm (lbs/lane mile, before)

TruckSolidPerLanMileMinute ,e total amount of solid material spread divided by the length of lane miles divided by the
total minutes of the storm (lbs/lane mile per minute)

TruckSolidPerLanMileMinuteBefore ,e total amount of solid material spread divided by the length of lane miles divided by the
total minutes of the prestorm plow operations (lbs/lane mile per minute, before)

Visibility ,e total visibility (miles)
WindGust ,e max wind recorded (mph)
WindSpeed ,e average wind speed (mph)
WindSpeedKnots ,e average wind speed (knots)
WindSpeedKnotsASOS ,e average wind speed obtained by the ASOS system (knots)
WindSpeedKnotsRWIS ,e average wind speed obtained by the RWIS system (knots)

WorstFreezingRain ,e worst intensity of freezing rain (score of 1–3 categorical variables, 1� � least severe,
3� �most severe)

WorstRoadCondition ,e worst road condition (1 to 5 categorical variables, 1� � least severe conditions,
5� �most severe conditions)

WorstSnow ,e worst snow intensity recorded (score of 1–3 categorical variables, 1� � least severe,
3� �most severe)

WorstVisibility ,e lowest visibility recorded (miles)

City ,e city location of the storm event (Ames, Des Moines, Council Bluffs, Sioux City,
Waterloo, Iowa City, Quad cities, Cedar Falls)

Note: the acronym “PLM” stands for per lane mile.
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,e average vehicle count (AVC) represents the average
count of vehicles present at each Wavetronix sensor. AVC is
calculated as follows:

AVC � 􏽘(vehicle counts for all sensors)÷ number of sensors

÷ number of 5 − minute intervals of the storm.

(1)

In essence, a city’s total count of traffic volume is divided
by its number of sensors (see Table 3) and then divided by
the number of 5-minute intervals throughout the duration of
a storm. Because the sensor data are aggregated over just 5
minutes, this essentially provides the expected count of
vehicles at each portion of the roadway for the entirety of the
storm.

,e resulting average traffic volume based on Wave-
tronix sensor counts and the road miles variable together
provide an “exposure” count:

Exposure � AVC∗RoadMiles. (2)

3.3. Automatic Vehicle Location (AVL)Data. ,e Iowa DOT
has over 900 snowplow trucks spread throughout 101 ga-
rages. Each snowplow’s automatic vehicle location (AVL)
system records the date and time, longitude and latitude,
traveling speed, plow position (up vs. down), and material
spreading rates at approximately a 10-second refresh rate.
,ree types of spreading rates are recorded, namely, solid
rate, prewet rate, and liquid rate. Four types of plow wing
records are available, namely, front plow, left wing, right
wing, and underbelly plow.

A snowplow’s capacity is 12,000 lbs for single-axle trucks
and 24,000 lbs for tandem-axle trucks. Its spreading rate is
approximately 200 lbs per lane mile for solid material and 60
gallons per lane mile for liquids. Its travel speed when
plowing and spreading material is about 30 miles per hour.
Its deadheading speed can be as high as the speed limit.

Earlier works have used ratios such as the total material
spread normalized per precipitation event to examine the
safety implications of snowplow operations [11]. As past
works have had difficulties in showing conclusive results, we
created an extensive list of ratios as candidate predictors for
the impact of maintenance operations on crash rates. Ad-
ditionally, our snowplow variables needed to be normalized
per geographic region to facilitate appropriate comparison.

,is was done by dividing the material spread by the
roadway surface area (i.e., lane miles). Again, Table 1
contains our full list of variables.

3.4. Weather Data. ,is study’s weather data were obtained
from the Iowa Environmental Mesonet system, which
provides highly granular weather data across Iowa. ,is
Multiradar/Multisensor (MRMS) project combines infor-
mation from many sources and radar systems to provide
precise weather information for 1-by-1-mile grid areas. ,e
weather variables for each grid area include air temperature,
wind speed, hourly and minute-based precipitation, daily
snowfall, precipitation type, and so forth. Additionally, we
rated the intensity of the precipitation and weather on a scale
of 0 to 3, with 3 being the worst. When analyzing the data for
winter storm events, such ratings are used to determine the
intensity of a given storm.

4. Crash Data

,is study’s crash data were obtained from the Iowa DOT
crash database. ,e crash data include information such as
the location, time, crash severity, direction of travel, lighting
conditions, and weather conditions that potentially con-
tributed to the crash. In particular, the following data fields
describe what weather conditions may have contributed to
each crash as well as what the road surface conditions were
like at the time of the crash:

(i) Environmental contributing circumstances
(ii) Weather1 (dominant weather condition)
(iii) Weather2 (secondary weather condition)
(iv) Surface conditions

Since this study focuses on winter weather crashes, a
filter was used requiring a winter weather condition present
for any of the four weather-related data fields for a crash to
be considered as a winter weather crash. After filtering based
on weather conditions, there were 5,089 winter-weather-
related crashes along the Iowa DOT maintenance routes
from 2016 to 2018. When counting only crashes that oc-
curred within this study’s geographic analysis regions and
that could be linked to the LRS mile reference system, only
1,372 crashes remained.

Table 2: Roadway miles breakdown by city.

City Road miles Lane miles
Ames 142 285
Cedar Rapids 199 439
Council Bluffs 153 359
Des Moines 624 1380
Iowa City 227 563
Sioux City 218 517
Davenport 279 597
Waterloo 232 482

Table 3: Number of Wavetronix sensors in each city.

City Number of Wavetronix sensors
Ames 82
Cedar Rapids 163
Council Bluffs 151
Des Moines 289
Iowa City 78
Sioux City 92
Davenport 46
Waterloo 61
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5. Methodology

Different from previous safety analyses, this paper presents a
model development process based on the feature selection
method. Figure 2 summarizes this process. First, data from
multiple sources are combined into a single dataset. Next, a
ridge regression test is performed to determine the suit-
ability of the data for analysis. If the test fails, the Boruta
feature selection method is applied to trim the dataset before
retesting. Once the data are determined to be suitable, an
exhaustive search function is performed to produce a final
trimmed list of explanatory variables. At this stage, the user
can select the policy relevant variables to be included in the
final model.

5.1.Data Integration. As the first step in our methodological
framework, data from different sources are integrated based
on the spatial and temporal information associated with
each record. In particular, a geofence was created for each
city to filter its weather, snowplow, crash, and traffic data.
,en, the weather data were analyzed to identify a list of
winter storm events for each city. In particular, any time
period below 41 degrees with precipitation that lasted longer
than 30 minutes was considered a winter storm event. Based
on this geofence and storm event timing, relevant snowplow
and crash data were extracted.

For each winter storm event, the snowplow data were
separated into three time periods, that is, before, during, or
after the storm. Making this distinction is important be-
cause many agencies, including the Iowa DOT, deploy
operations before the start of a storm, and many are unable
to properly clear their roadways within the timeframe of
storms. Using our geofence, therefore, a list of snowplows
in operation during each storm was created. For each
snowplow, its continuous hours of operation were com-
piled. A continuous operation was defined as a snowplow in
operation with a time gap of no more than 2 hours. Each
snowplow’s start- and end-of-continuous-operation
timestamps were then used to distinguish its before-storm,
during-storm, and after-storm plow data. Each storm
event’s before-storm aggregation thus constituted the time
from the beginning of any of its snowplow operations to the
start of the storm. Its during-storm aggregation was from
the start to the end of the winter storm. Its after-storm
aggregation was from the end of the storm to the end of all
plow operations.

5.2. Ridge Regression Test. Ridge regression cross-validation
is employed to determine dataset suitability for analyses such
as exhaustive search. Ridge regression tunes the parameters
of a model to minimize the ordinary least squares [24]. It
outputs an expected coefficient for each variable via differing
model tuning or lambda penalizations. Lambda penaliza-
tions tend to tune variables to a model coefficient value of 0.
When lambda has beenmaximized, all possible variables will
produce a coefficient of 0. ,at is, varying lambda between 0
and 1 will produce a model that removes only a portion of
the input variables. By imposing lambda penalizations, ridge

regression can provide a best-case tradeoff between bias (i.e.,
training set accuracy) and predictive variance (i.e., testing set
accuracy). Ridge regression successively penalizes different
variables’ coefficients down to zero using lambda and
compares the performance of its resulting model variants.
,is process effectively removes unimportant variables from
a model as it helps identify the important variables in the
dataset as well as the expected model outputs. Tracking
expected model outputs as model complexity changes can
provide insight into how data interact.

Normally, all variables in a dataset are presented in one
ridge regression plot. However, to better show how the
variables in our dataset interact, we split our many variables
into groups based on their deviance away from lambda and
plotted them accordingly in six subfigures (Figure 3). Each
curve represents a variable from the dataset. ,e y-axis is the
expected coefficient of each respective variable. Moving from
left to right along the x-axis, the model becomes more
complex as more variables move away from 0.

As more variables interact, it is expected that their es-
timated coefficients will vary. Most variables maintain a
coefficient either above or below the x-axis, indicating a
positive or negative relationship, respectively. Some vari-
ables, however, experience drastic and highly erratic be-
havior where they start with a positive coefficient and then
drop to a negative coefficient as the model becomes more
complex or vice versa. For example, the variable “Road-
Condition” has a positive coefficient that increases as more
variables are added. ,is is an acceptable change in an es-
timated coefficient. On the other hand, the variable
“TruckDisPerLanMileMinute” is the total distance of
snowplow trucks travel divided by the total lane miles in a
given city divided by the number of minutes of a given
storm. On the left-hand side, where the model is the least
complex, the variable has a positive coefficient. As the model
becomes more complex as more variables are added, this
coefficient changes from positive to negative. In other words,
depending on what other variables are included in the

Data integration

Ridge regression test

Pass Fail

Boruta feature
selection method

Exhaustive search
function

Final model creation

Figure 2: Methodological framework.
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model, the coefficient of this variable can be positive or
negative. ,is explains why inconsistent results have been
observed when analyzing similar datasets in the past. In the
ridge regression test, however, having variables that cross
over the x-axis constitutes a failure indicating that feature
selection is required.

5.3.BorutaFeatureSelection. If the ridge regression test fails,
the Boruta feature selection method is applied to trim the
dataset. ,e Boruta method creates an importance score for
each variable [6, 7]. In particular, a random forest wrapper
classification is employed on the variables. In the process, the
variables are shuffled, while random shadow variables are
created. ,e shadow variables are meant to identify inef-
fective input variables. To do so, each variable, as well as the
random shadow variables, is assigned a relative importance
score. Any variable that scores worse than the worst shadow
variable will prove to be ineffective while variables that score
higher than the highest shadow variable will be highly ef-
fective variables.,ese final importance scores are then used
to create a set of noncorrelated data points.

,e Boruta algorithm enables the development of a
hierarchal list of variables ranked in terms of importance.
,ese importance values can then be used to select which

explanatory variables should be included in statistical
models. For better visualization, we split our variables into
two groups, namely, the AVL variables shown in Figure 4
(and whose ranked IDs are matched in Table 4 to the re-
spective variables they represent), and the traffic and weather
variables, as shown in Figure 5. Figure 4 displays all the AVL
variables with their respective ID numbers with variable 1 on
the right moving in descending order to the left to variable
46 on the left.

,e blue star variables represent the random shadow
variables. Any variable that has a higher importance score
resides to the right of these shadow variables and is colored
green or yellow. Any variables between the two blue boxes
are of negligible importance and are either red or yellow.

When creating statistical models, only one variable from
a group of highly correlated variables should be included.
Because large datasets are likely to contain many groups of
highly correlated variables, manual feature selection is
usually inefficient. ,e Boruta importance scores allow the
highest-ranking variable from each correlated group to be
selected, in order to create a trimmed list of noncorrelated
variables. For example, in Figure 4, the highest-ranking
variable was “AVLRecords.” Any variable in the AVL
grouping that contained a high correlation with the
“AVLRecords” variable (i.e., above 0.70) was therefore
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Figure 3: Ridge regression cross-validation.
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dropped from further consideration. ,e next variable was
then considered until all highly correlated variables had been
dropped. ,e resulting remaining list of variables was
neither correlated nor displayed conflicting results from the
ridge regression test. ,at is, as shown in Figure 6, none of
these remaining variables display the erratic or unpredicted
behavior as seen in Figure 3. ,us, our trimmed dataset
listed in Table 5 is appropriate for estimating a negative
binomial model. In other words, no matter which set of
variables from the trimmed dataset are included in the final
model, the results will be robust.

6. Exhaustive Search Function

To determine which of these trimmed variables should be
included in our negative binomial model, an exhaustive
search function was performed. ,e exhaustive search
function calculates the expected outcome of each model

12345678910111213141516171819202122232425262728293031323334353637383940414243444546

Figure 4: ,e importance scores of AVL variables.

Table 4: Boruta ranking of AVl variables.

ID Variable
1 AvlRecords
2 Solid_PLM_Minute
3 Solid.Distance
4 DistMiles
5 Solid_PLM_
6 Solid
7 TotalDistSolid
8 SolidDistance.Distance
9 Dis_PLM_Minute
10 Solid_PLM_MinuteBefore
11 Laps
12 AfterRecords
13 Dis_PLM_
14 LaneLaps
15 BeforeRecords
16 RecordsBefore
17 PreLiquid_PLM_MinuteBefore
18 Liquid_PLM_Minute
19 Dis_PLM_MinuteBefore
20 PreLiquid_PLM_
21 Liquid_PLM_
22 DistMilesBefore
23 LiquidDistance.Distance
24 TotalDistLiquid
25 Solid.DistanceBefore
26 Liquid
27 Shadow Max
28 PreLiquid.Distance
29 TotalDistPrewet
30 Solid_PLM_Before
31 SolidBefore
32 Liquid.Distance
33 TotalDistSolidBefore
34 TotalDistPrewetBefore

Table 4: Continued.

ID Variable
35 SolidDistance.DistanceBefore
36 Dis_PLM_Before
37 TotalDistSolidBefore
38 PreLiquid
39 LiquidBefore
40 Liquid_PLM_MinuteBefore
41 Liquid.DistanceBefore
42 PreLiquid.DistanceBefore
43 Liquid.DistanceBefore
44 Shadow Mean
45 LiquidDistance.DistanceBefore
46 Shadow Min
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based on the input variables and ranks it according to “R-
squared” score or another specified criterion. For this
analysis, our trimmed list of variables was used as the input
for the exhaustive search function.

,e highest criteria scores, that is, the highest adjusted R-
squared scores, are reported in Figure 7.,emaximum score
is represented at the top of the Figure 7 graph along the y-
axis. ,e x-axis resides the final set of variables selected from
the trimmed dataset, or the variables displayed in Table 5.
Each row represents a unique model’s combination of
variable inputs, with the solid black cells indicating which
variables are included for that specific model. When using
the “regsubsets” package, as was used here, the default
setting is that only the highest-ranking model for each
varying number of input variables is displayed. For example,
only 1 model with all 17 variables is displayed, along with
only 1 model with 16 variables, and so on. ,is method
shows how model accuracy changes as the input variables
themselves change.

It can be seen in Figure 7 that the adjusted R-squared
values of the top 7 rows are within 0.03 of each other. In
other words, although the variables included in these models
may differ, any of the top 7 rows of variables will provide
accurate, reliable, and consistent results. ,is accords with
the results from Figure 6 where none of these variables
experienced a large swing in its coefficient based on com-
plexity. Having multiple reliable model options allows re-
searchers to include in their final model whichever set of
variables are most policy relevant. Because this method only
displays the highest scoring model for each number of
variable inputs, there are many existing combinations of
variables that will score approximately in the 0.4 range.

6.1. Final Model Creation. Once our final selection of var-
iables had beenmade, a negative binomial model was used to
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Figure 5: ,e importance scores of weather and traffic variables.
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Figure 6: Ridge regression of trimmed variables.

Table 5: List of the trimmed variables.

ID Variable
1 (Intercept)
2 LnExposure
3 RoadCondition
4 StormHours
5 TemperatureFahASOS
6 WindSpeedKnots
7 WorstFreezingRain
8 WorstSnow
9 WorstVisibility
10 AVLRecords
11 Solid_PLM_Minute
12 SolidDistance.Distance
13 Solid_PLM_MinuteBefore
14 AfterRecords
15 BeforeRecords
16 LiquidDistance.Distance
17 PreLiquid.Distance
18 SolidDistance.DistanceBefore
Note: see Table 1 for the definition of each variable.
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estimate crash frequency [25, 26]. ,e negative binomial
model is written as in equation (1) using a fixed over-
dispersion parameter [27]:

Yi ∼ NB μi, α( 􏼁, (3)

where Yi is the number of crashes during a winter storm
event i, (i � 1, . . . , n), μi stands for the mean crash fre-
quency, and α is the overdispersion parameter.

It is assumed that μi is a function of explanatory variables
such that

μi �exp β0 + β1xi1 + β2xi2 + · · · + βkxik(

+ βik+1Ln Average Exposurei( 􏼁 􏼁,
(4)

where xij represents the jth variable in event i.
β0, β1, . . . , βk+1 is a vector of regression parameters. As
mentioned earlier, since the number of crashes is count data,
to make it comparable across different events, the
Ln(Exposurei) variable was devised as the offset variable in
our negative binomial model.

7. Results and Discussion

Our final negative binomial model, presented in Table 6,
includes variables from the top row of Figure 7. ,e “Pr
(>|t|)” column provides a visual indicator of each variable’s
significance (i.e., “P value” below 0.05). Noted that “Liq-
uidDistance.Distance” and “SolidDistance.DistanceBefore”
variables were dropped in the final model. As seen from the
R-squared score, no significant difference in performance
was observed. Because of the selection process and valida-
tion, such adjustments based on researchers’ judgement will
not impact model integrity as seen in Table 5 and Figure 6.

As expected, with “LnExposure” (i.e., vehicle count) and
“Worst Snow,” the higher the number, meaning more traffic

or worse weather, the higher the expected crash frequency.
,e “AVLRecords” and “AfterRecords” variables signify that
the more time snowplows are operating during and after a
storm event, the higher the crash rate. ,is is probably
because storms only mildly impacting roadway conditions
do not require as much plowing effort as storms that severely
impact roadway conditions. Note that the “RoadCondition”
variable is not significant in the estimated model. ,is is
because the limited number of Road Weather Information
System (RWIS) sensors across the study area resulting in
inadequate measurements of road weather conditions.
,erefore, frequent snowplow operations can be considered
as indicative of rapid degradation of roadway conditions.

,e “Solid_PLM_Minute” variable represents the total
amount of solid material spread divided by the total lane
miles per minute of the storm event, i.e., how much material
was spread on the roadway surface every minute during the
storm.,is variable has a positive coefficient, indicating that
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Figure 7: Adjusted R2 exhaustive search output.

Table 6: Crash frequency model.

Coefficients Estimate Std. Error P

value
Pr

(>|t|)
(Intercept) −17.58 4.36 −4.03 0.00 ∗∗∗
LnExposure 1.42 0.60 2.35 0.02 ∗
RoadCondition 0.59 0.68 0.87 0.39
WorstSnow 5.38 1.33 4.05 0.00 ∗∗∗
WorstVisibility 0.21 0.15 1.36 0.18
AVLRecords 0.04 0.01 4.85 0.00 ∗∗∗
Solid_PLM_Minute 21.87 9.07 2.41 0.02 ∗
Solid_PLM_MinuteBefore −11.90 3.81 −3.12 0.00 ∗∗
AfterRecords 0.03 0.01 1.96 0.05 ·

R-squared 0.4359
F-statistic 18.35 on 8 and 190 DF
Significance codes: 0 “∗∗∗”; 0.001 “∗∗”; 0.01 “∗”; 0.05 “·”.
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the more solid material spread per lane mile per minute
during snow events leads to a higher crash rate. ,is variable
essentially represents the intensity of material spreading
during a storm. In ideal conditions, agencies could plan for
storm events and have the roadways treated with deicing
material before the start of storms to limit degradation in
roadway conditions. However, when storms are more severe,
or they are flash storms that appear before proper pre-
treatment operations can take place, agencies might have to
spread more materials during the storm, leading to a higher
rate of spreading once the storm has begun.,is may explain
why a higher spreading rate per minute is associated with a
higher crash rate.

,e final variable, “Solid_PLM_MinuteBefore” repre-
sents the solid material spread per lane mile per minute
before the storm starts. ,is variable has a negative coeffi-
cient, meaning that the more solid material spread before the
start of the storm, the lower the crash rate. ,is suggests that
proper planning can inhibit the degradation of conditions
on the roadway. In turn, this will lower the amount of
material needed during the storm event. In addition, past
research has shown that a higher proportion of crashes occur
at the beginning of a storm event [5]. ,erefore, by miti-
gating the adverse conditions at the beginning of the storm
event, a greater impact on the crash rate reduction can be
achieved.

8. Conclusion

When working with large datasets including variables with
complex interactions, agencies and researchers must find
ways to perform effective analysis while also being able to
present the results in a way that can be easily understood.
,is paper presents a framework for selecting variables from
a complex and highly correlated dataset to develop a sta-
tistical model describing crash frequency in winter weather
conditions. In particular, a machine-learning algorithm,
known as the Boruta algorithm and exhaustive search are
used to select a list of variables to be included in the final
negative binomial crash frequency model. ,is method
provides consistent and intuitive results because the process
reduces the complexity of interactions amongst different
variables in the dataset.

By following this process, the current paper developed a
crash frequency model for winter-weather-related crashes.
,is model can help agencies identify effective ways to
improve roadway safety via winter maintenance operations.
For example, by increasing the plowing operations before
the start of storms, a decrease in crash rates is observed.
Previous works have shown that the beginning of a winter
storm carries the highest proportion of crash events com-
pared to any other point during the event [5, 13]. ,us,
pretreatment operations could have a significant role in
mitigating the impact of winter storms.
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Origin-destination- (O-D-) based travel time reliability (TTR) is fundamental to next-generation navigation tools aiming to
provide both travel time and reliability information. While previous works are mostly focused on route-based TTR and use either
ad hoc data or simulation in the analyses, this study uses open-source Uber Movement and Weather Underground data to
systematically analyze the impact of rainfall intensity on O-D-based travel time reliability. )e authors classified three years of
travel time data in downtown Boston into one hundred origin-destination pairs and integrated them with the weather data (rain).
A lognormal mixture model was applied to fit travel time distributions and calculate the buffer index.)emedian, trimmedmean,
interquartile range, and one-way analysis of variance were used for quantification of the characteristics. )e study found some
results that tended to agree with the previous findings in the literature, such that, in general, rain reduces the O-D-based travel
time reliability, and some seemed to be unique and worthy of discussion: firstly, although in general the reduction in travel time
reliability gets larger as the intensity of rainfall increases, it appears that the change is more significant when rainfall intensity
changes from light to moderate but becomes fairly marginal when it changes from normal to light or from moderate to extremely
intensive; secondly, regardless of normal or rainy weather, the O-D-based travel time reliability and its consistency in different
O-D pairs with similar average travel time always tend to improve along with the increase of average travel time. In addition to the
technical findings, this study also contributes to the state of the art by promoting the application of real-world and publicly
available data in TTR analyses.

1. Introduction

Travel time reliability (TTR) plays a vital role in various
applications such as evaluation of network performance [1],
measuring the improvement of traffic operations and
management strategies [2], quantification of service quality
[3], enhancing the experience of traveler’s route choice [4],
and determining freeway bottlenecks [5].

Among the route level (microscopic), origin-desti-
nation (O-D) level (mesoscopic), and network level
(macroscopic) studies, the route level TTR analyses have
received much more attention in the past. Besides the
demand from the practical side, route-based data which
are relatively easier to obtain should be another reason.
For instance, using the data from California State Route

91, one research found that traveler’s route choice was
more delicate to TTR than travel time [6]. Chepuri et al.
assessed the performance of various TTR measures with
bus route data collected in Chennai, India. )ey rec-
ommended using 95th percentile travel and buffer time as
reliability indicators for bus routes [7]. Some recent
route-based studies can be found in [8–12]. Because the
focus of route-based studies is usually on one or a few
specific routes, data were usually project-specific and
most were discarded upon completion of a project, which
makes continuous investigation difficult and sometimes
impossible.

It is not uncommon that under certain circumstances
route-based and O-D-based analyses may get similar or the
same results because a route is associated with at least one
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origin and one destination and thus can be viewed as a
particular case of an O-D-based study. Comparison studies
are limited, though. In [13], the authors concluded that there
were no significant differences between O-D-based and
route-based estimates in most part of the studied time pe-
riods. In [14], the researchers found that adding an alter-
native path tends to decrease the O-D-based TTR. Network
level TTR studies are mostly simulation-based in a lack of
real-world data. Some notable studies include but are not
limited to the work of [15–18]. Studies based on traffic
simulation are sometimes subject to serious errors caused by
the underlying problems of the simulation model. A detailed
discussion of simulation-based approaches is beyond the
scope of the study.

Many factors, such as connected vehicles, traffic inci-
dents, weather, work zones, special events, types of traffic
control, and the dynamics of traffic flow, have impacts on
TTR. Accordingly, the study of the impact of these factors
has become one of the prominent topics in the TTR field
[19]. For instance, in the literature [20], the authors
attempted to quantify the contribution of various features on
TTR and found that demand-capacity imbalance and ac-
cidents are the two factors that most affect TTR. In [21],
researchers uncovered that deployment of connected ve-
hicles improves TTR in the work zone environment, and
higher benefits come along with higher market penetration
levels. Additionally, the impact of rain on speed and travel
time and the route level TTR have been well studied, and
some results are conducive. For example, studies have
discovered that speed reduction could vary from 10% to 25%
in general rainy days [22] and an average increase of travel
time by 11% might be expected in peak hours under the
impact of a certain level of precipitation [23]. Adverse
weather exacerbates TTR, especially during peak periods
[24]. However, some findings are controversial and need
further investigation, especially when it relates to TTR.
Chien and Kolluri found that TTR would diminish when
weather condition changes from dry to rain, as indicated by
an expansion of 16% in the buffer index [10], while in
another study [25], the authors suspected that rain and snow
might have caused lower standard deviation and coefficient
of variation of travel time and thus increased TTR.While it is
understandable that different studies may produce contro-
versial results, ad hoc data might have played a role. In a
review of the literature, we found that studies are limited
with respect to the impact of rain on the O-D level TTR;
moreover, most of the data used in previous studies were
project-specific and only covered a short period of time that
was not even sound for a full-scale statistical analysis.

1.1. ResearchObjectives. )e availability of publicly available
open-source data in recent years has made a detailed in-
vestigation of O-D-based TTR possible. A major thrust of
this study is to use Uber Movement data and Underground
Weather data to systematically analyze the impact of rain on
O-D-based TTR. Uber and Underground Weather data
provide an ideal and probably the only opportunity for
applying real-world data in such studies because Uber data

are O-D-specific and cover a lot longer time span while
Underground Weather data provide very detailed weather
data. A significant contribution of using publicly available
data is that the results can be easily verified and compared to
those that use ad hoc data or computer-aided simulation,
studies based on real-world data always have a better value in
the literature. Additionally, O-D-based TTR is fundamental
to next-generation-navigation tools that are aimed at pro-
viding both travel time and reliability information. )is
paper only focuses on the impact of rain, but there are a lot
more deserving further investigations along this line, such as
the impact of other weather events and the combined effects
of weather and work zones.

In this study, the authors investigated the impact of rain
at various levels of intensity on O-D-based TTR, through the
analyses of three-year travel time and weather data and a
hundred O-D pairs collected from downtown Boston. A
general lognormal mixture model was adopted to fit dis-
tributions and calculate the buffer index values. While a
portion of the results was in proper alignment with previous
studies, some turned out to be unique.

)e rest of the paper is organized as follows: Section 2
introduces the data used in this research, which includes the
O-D-based travel time data from Uber Movement and
historical weather data collected from the Weather Un-
derground website; Section 3 depicts the typical TTR
measures and the analytical approach developed based on
the Gaussian mixture model; Section 4 presents the results,
and Section 5 summarizes the findings and conclusions and
concludes the paper by discussions and future research.

2. Data

2.1. Uber Movement and Weather Data. )e O-D-based
travel time data used in this research are from Boston, the
United States, retrieved from the Uber Movement website
(https://movement.uber.com).)e website provides detailed
information on average travel time (ATT), classified by five-
time intervals during a day, including early morning
(00–07 h), AM peak (07–10 h), midday (10–16 h), PM peak
(16–19 h), and evening (19–24 h). To make the results sta-
tistically sound, three-year data were used, which span from
1/1/2016 to 12/31/2018, and a hundred O-D pairs were
selected. Uber already classified ATT ranges by 5-minute
intervals. Considering that lots of data seem to be missing in
the dataset with the ATTrange of 25minutes and beyond, we
selected five categories in the analysis: (a) 0–5mins, (b)
5–10mins, (c) 10–15mins, (d) 15–20mins, and (e)
20–25mins.

Figure 1 shows all the origin and destination nodes
included in this study. Table 1 depicts the O-D pairs clas-
sified into five groups based on the ATT. Note that travel
time in the table is directional and one-way (e.g., 2–16 in-
dicates node 2 to node 16) because of the limited availability
of two-way travel time in-between the O-D pairs. Twenty
origin-destinations were selected in each ATT category.
Table 2 presents descriptive statistics for ATT data from
Uber, including mean and standard deviation (SD) in dif-
ferent periods. )e studied area is in level terrain.
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)e corresponding weather data in the subject area were
collected from the Underground Weather data at https://
www.wunderground.com/history. In this study, weather
conditions with no precipitation, such as clear, cloudy, or
overcast, are classified as normal weather. Meanwhile, fog or
haze conditions were excluded so that the focus could be
placed on the impact of rain. Rain condition was defined as
the rainy weather that caused effective precipitations.

In alignment with the 24-hour travel time data, the sum
of rainfall in each matched period (like 00–07 h) was cal-
culated and converted into a 24-hour value. Table 3 sum-
marizes the definition of the data used in this research.

2.2. Data Screening. )e travel time data have already been
preprocessed and filtered by Uber before uploading to the
Internet. In general, the data were well prepared, and the work

N
0 1000m

Origin or destination zone
Origin or destination ID1

Figure 1: )e origin and destination nodes.

Table 1: O-D pair information in each range of TTR.

ATT range (min) O-D pairs (ID)

0–5 2–16, 6–10, 6–11, 7–18, 8–18, 8–29, 10–11, 11–6, 11–10, 11–26, 13–12, 17–18, 17–24, 18–2, 18-7,
18-26, 22–27, 26–13, 26–18, 27–22

5–10 2–13, 2–26, 6–7, 7–6, 8–24, 10–6, 12–16, 13–2, 13–16, 16–2, 16–13, 18–4, 18–8, 18–24, 24–8, 24–20,
26–2, 26–7, 26–11, 29–18

10–15 2–12, 6–26, 8–20, 10–26, 12–2, 12–13, 13–26, 15–26, 16–26, 18–20, 20–18, 20–29, 24–8, 24–29, 26–6,
26–10, 26–15, 26–16, 29–20, 29–24

15–20 2–9, 2–14, 9–2, 9–18, 9–26, 12–11, 12–17, 12–18, 12–19, 12–26, 14-2, 17-14, 18-12, 22-26, 26–9,
26–12, 26–14, 26–22, 26–27, 27–26

20–25 1–18, 1–26, 3–18, 5–26, 17–23, 18–1, 18–3, 18–21, 18–23, 18–25, 21–18, 23–17, 23–18, 23–26,
25–18, 26–2, 26–5, 26–23, 26–28, 28–26

Table 2: Descriptive statistics for ATT data from Uber (min).

ATT range (min) O-D pair count
Early morning

(00–07 h)
AM peak
(07–10 h)

Midday
(10–16 h)

PM peak
(16–19 h)

Evening
(19–24 h)

Mean SD Mean SD Mean SD Mean SD Mean SD
0–5 20 4.11 1.39 4.53 2.01 4.35 1.35 4.95 2.15 3.88 1.15
5–10 20 7.27 1.70 7.82 1.92 7.33 1.66 8.39 2.62 6.31 1.42
10–15 20 11.96 2.38 13.36 3.06 13.01 2.50 14.83 4.01 10.87 1.95
15–20 20 16.62 3.15 17.90 3.64 18.61 2.83 19.82 4.47 15.81 2.07
20–25 20 23.88 4.24 24.54 4.57 23.86 3.28 25.55 5.49 21.07 3.06
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for outlier removal was rather simple. )ere are a couple of
null cells without any data within the ATT range of
20–25mins, such as from Lincoln Road (ID:1) to Harborwark
(ID: 26); these cells were removed. Additionally, Boston has
considerable snowfalls in winter months, which may cause a
negative impact for a longer period of time even after the
snow. According to the analysis in [26], the impact of snow on
travel time was associated with the severity of snow and road
conditions, and it usually takes at least six hours after the snow
for travel time to become stabilized. In this study, the data
recorded one-day after regular snow (≤ 5.0mm/24 h) and
two-day after heavy snow (> 5.0mm/24 h) were excluded. As
a result, around 540,000 valid records, including nearly 68,000
light rain records, 18,000 moderate rain records, 11,000 heavy
rain records, and 13,000 extreme rain records, were included
in the study.

3. Methods

3.1. Measures of Travel Time Reliability. In addition to the
conventional measures (mean, standard deviation, and co-
efficient of variation, e.g.), there are some other TTR
measures, such as travel time variability (TTV), planning
travel time index (PI), and buffer index (BI). Among these
measures, BI has been widely utilized in existing literature
[7, 8, 13, 27, 28] and as concluded in [29] has a high
consistency with the coefficient of variation and thus is best
suitable for the measure of TTR. )e authors adopted the
idea and took BI as the primary TTRmeasure.)en, we used
interquartile range (IQR), the median, and trimmedmean of
BI-values, as well as the analysis of variance for BI variation
ratio, to quantify the impact from rainfall intensity.

)e buffer index can be generally formulated as follows:

BI �
Tp − Tc

Tc

􏼠 􏼡, (1)

where Tp is the percentile travel time and Tc is the contrastive
travel time (e.g., mean travel time, median travel time, and
free-flow travel time).

Obviously, the higher the BI-value is, the less reliable the
travel time will be. In this study, the 95th percentile travel
time Tp and the mean travel time Tc were adopted as the BI
parameters. )e interquartile range is the distance between
the 75th and 25th percentiles, and the trimmed mean ex-
cludes the 5% highest and the 5% lowest data for reducing
the error caused by the extreme data.

3.2. Lognormal Mixture Model. With respect to the calcu-
lation of the percentile value in BI, in earlier literature [30],
the author directly calculated the percentile value according
to the available data without considering the statistical re-
gression, which was easily subject to statistical errors (e.g.,
regression to the mean). In later studies, various regression
methods were applied, such as multiple linear regression
[20], and continuous probability distribution functions, such
as Weibull distribution [31], lognormal distribution [32],
and generalized Pareto distribution [33]. Multiple regression
was found to bemore suitable for the multiparameter impact
study, while for the single factor (e.g., rainfall intensity)
analysis, the latter seems to be more desirable. However, the
complexity of the problem makes it difficult for the real data
to fit well with traditional prior distribution, such as the
lognormal distribution. Recent studies attempted to use
multistate models, such as the Gaussian mixture model,
lognormal mixture model, and gamma mixture model for
better results [8, 13, 14, 16, 17, 34–36]. Among these
methods, the lognormal mixture model (LMM) is out-
performed and was recommended by many researchers
[8, 34, 36]. When LMM is applied, the best fitting usually
occurs at a low K-value (e.g., K� 2 or 3), which may also help
improve computational efficiency. Accordingly, LMM was
selected for this research.

LMM is essentially a linear combination of multiple
lognormal distributions with a weight sum value of 1. )e
general formula of LMM is as follows:

PLMM
t

ωk, μk, σk

􏼠 􏼡 � 􏽘
K

k�1
ωkL

t

μk, σk

􏼠 􏼡, (2)

where t is the travel time;ωk, μk, σk are the weight, mean, and
standard deviation of the kth lognormal distribution, re-
spectively; and L is the lognormal probability density. )e
equation is subject to 􏽐

K
k�1 ωk � 1.

3.3. Expectation-Maximization Algorithm. Since mixture
models (like LMM) involve latent variables, maximum
likelihood estimate (MLE) cannot be used directly to esti-
mate the parameters. Presently, the expectation-maximi-
zation (EM) algorithm is the most commonly used approach
for multimodal parameter estimates, where an expectation
(E) step calculates the expected log-likelihood by estimating
the current parameters, and a maximization (M) step

Table 3: Summary of data attributions and interpretation.

Attribute Interpretation
Origin-
destination See Table 1

Dates From 1/1/2016 to 12/31/2018
Days of week From Sunday to Saturday
Time periods Early morning (00–07 h), AM peak (07–10 h), midday (10–16 h), PM peak (16–19 h), and evening (19–24 h)
Travel times Average O-D-based travel times (s)
Rainfall Sum of rainfall per time period (mm)
Weather
conditions

Normal, light rain (0.0 and 10mm/24 h), moderate rain (10.0mm/24 h and 25.0mm/24 h), heavy rain (25.0mm/24 h
and 50.0mm/24 h), extreme rain (>50.0mm/24 h), and others (e.g., snow and fog)
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maximizes the expectation of the log-likelihood in the E step.
Algorithm 1 depicts the complete process of the EM
algorithm.

3.4. Supplement Algorithms. Before the application of LMM
and EM, two issues need to be addressed: the optimal
K-value and the inverse function of the cumulative distri-
bution function (CDF) of LMM.)e former can be resolved
by referring to the method in [34], where the K-value was
determined by the minimum Akaike information criterion
(AIC) estimation with the null hypothesis not rejected by the
one-sample Kolmogorov-Smirnov (K-S) test. AIC is defined
as

AIC � 2C − 2 ln(Li), (3)

where C is the number of parameters and Li is the likelihood
function.

For the second issue, since there is no corresponding
original form of the CDF of LMM, it is impossible to obtain
the percentile value by solving the inverse function of the
original function. For this reason, the bisection method was
adopted, with a stop threshold of 0.00001.)e complete TTR
estimation framework is presented in Figure 2.

4. Results and Discussion

)e authors calculated the BI-value of each O-D pair under
six different weather conditions, that is, normal, light rain (0
and 10.0mm/24 h), moderate rain (10.0 and 24.9mm/24 h),
heavy rain (25 and 50.0mm/24 h), extreme rain (>50.0mm/
24 h), and rain (>0mm/24 h). We summarized all calcula-
tions into five groups according to the TTR range, that is,
0–5mins, 5–10mins, 10–15mins, 15–20mins, and
20–25mins, including three location measures (median,
trimmed mean, and interquartile range) and the one-way
analysis of variance. MATLAB was used to run the s, and the
final buffer index is presented in the form of the average
value calculated after 50 fittings.

4.1. Increasing TTR Reduction Impact by Rain. Figure 3
shows an example fitting of LMM from Harrison Ave
(ID: 11) to Huntington Ave (ID: 10) in the ATT range of
0–5mins, which depicts a higher TTR under light rain and
lower TTR under the rest of the rainfall intensity. Moreover,
the impact of the O-D-based TTR increased with the in-
crease of rainfall intensity (the variation of BI-value from
0.3332 to 0.4379). Overall, it shows that rain reduced the
O-D-based TTR (see in Figure 3(f)).

More analyses were conducted for further investigation.
Figure 4 and Table 4 (median of BI-values) interpret the
results in terms of the median value, which shows that rain
reduced the O-D-based TTR in each ATT range. Addi-
tionally, four out of five subfigures in Figure 4 demonstrate
an increasing trend in TTR reduction when the rainfall
intensity increases, with only one exception when being
within the ATT range of 20–25mins (BI-value decrease
under heavy rain (0.3489) compared to that under moderate
rain (0.3588)). )e global mean values of the median under

different rainfall intensity (the 8th row in Table 4) also
revealed the trend.

Likewise, the trimmed mean of BI-values in Table 4
shows that rain has adverse effects on O-D-based TTR and
the increasing reduction effect in terms of the global mean
(the 14th row). In terms of time ranges, three out of five
presented the increasing adverse effect in the range of
0–5mins, 10–15mins, and 20–25mins.

Regarding the O-D-based results (see 8th column in
Table 5), thirty-five out of a hundred O-Ds strictly met the
regularity (an average of seven O-Ds in each range).
Meanwhile, ninety-one out of a hundred O-D pairs (see 7th
column in Table 5) show that the rain reduces the O-D-based
TTR.

By far, not surprisingly, a dominating feature is that rain
reduces O-D-based TTR, which aligns properly with peo-
ple’s perception as well as previous research at route level
[10, 22, 23, 37, 38]. Notably, the low-probability anomalies
(positive effect of rain), though not sufficient to negate the
conclusion, may be a combination of multiple factors in a
real environment, for example, a combination of rain, ac-
cidents, and work zones. )is counterintuitive phenomenon
will be discussed in a subsequent subsection specifically.
More importantly, the results reveal that the negative impact
grows with the increase in rainfall intensity.)is trend seems
doubtful, partly due to the exceptions in Table 4 and partly
due to the fact that solely 35 percent of O-D pairs strictly
conform to this trend. )e reasons are generally twofold: (1)
the interference of the complicated environment; (2) more
seriously, the quite insignificant difference in impact be-
tween moderate, heavy, and extreme rain (this characteristic
will be additionally discussed in subsequent subsection),
resulting in extra challenging to achieve O-D pairs with
satisfying the trend. Nonetheless, the current consequences
can still expose the trend effectively.

4.2. Significant Impact from Light Rain to Moderate Rain.
A unique finding was revealed from the analysis; that is, the
impact is a lot more significant when rainfall intensity
changes from light to moderate, while other changes among
the rainfall intensity categories seemed to cause only
moderate impacts on the O-D-based TTR.

Comparing the variation ratio values in the parentheses
in Table 4, we found that the average increase from light to
moderate is up to 17.2% (median) and 14.6% (trimmed
mean). On the contrary, the average BI variation ratio be-
tween the rest of the conditions is not significant, which is
2.7% (normal to light), 1.1% (moderate to heavy), and 5.8%
(heavy to extreme), respectively, and 3.3%, 3.6%, and 4.0% in
average trimmed mean values, respectively.

)e one-way analysis of variance (ANOVA) was used to
demonstrate the statistical significance of the BI variation
ratio between different rainfall intensity categories. Con-
sidering the trimmed mean in the analysis, we trimmed 10%
values for the test as well. )e analysis was conducted for a
significance level of 0.05. As presented in Table 6, the null
hypothesis is rejected with the P value of 3.5874e-16, far less
than 0.05 in the 2-column source, which indicates significant
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variation between the light and the moderate rain condition.
Notwithstanding, the null hypothesis is true when testing
significance is in the 3-column source (P value > 0.05),
which supports the previous analysis that there is no sig-
nificant difference between moderate rain, heavy rain, and
extreme rain.

)e finding reveals that drivers are more sensitive to the
change from light rain to moderate rain. While further
investigation on driver behavior may be needed to fully
explain this phenomenon fully, this finding is undoubtedly
helpful in conducting more detailed and in-depth O-D-
based TTR analysis.

4.3. Other Findings regarding O-D-Based TTR. Another
notable finding from this research is that the O-D-based
TTR tends to improve when ATT is longer, regardless of

the normal and the rainy weather. It was explicitly rec-
ognized from Table 4 (column 3 to column 8) that four
out of six columns in the median and five out of six
columns in the trimmed mean both illustrate that the
O-D-based TTR increased along with the increase of
average travel time.

Further investigation was conducted against the O-D
pairs with the same ATT. )e authors calculated the
interquartile range of each travel time range, as illustrated
in Table 7 and Figure 4 (the areas of the rectangle). It can
be found that the areas of the rectangle are shrinking from
Figures 4(a)–4(e). Referring to the columns in Table 7,
two out of six columns follow this trend. For the rest of
the columns, there is only one exception in each column
(e.g., the last cell in column 3). )e results demonstrate
that the consistency of the O-D-based TTR in different
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Figure 3: Fitting examples of LMM fromHarrison Ave (ID: 11) to Huntington Ave (ID: 10): Part A: (a) normal and (b) light rain. Part B: (c)
moderate rain and (d) heavy rain. Part C: (e) extreme rain and (f) rain.
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O-D pairs with similar ATT range tends to improve as
ATT gets longer.

Authors speculate that this may be attributable in large part
to travel time fluctuations which have a decreasing effect on the
longer ATT. For instance, the one-minute fluctuation exerts a
greater influence on the O-D pair with a five-minute ATT than
that with a ten-minute ATT. In practice, knowing this trend
may significantly improve the accuracy of TTR prediction.

4.4.ACounterintuitivePhenomenon. Based on the statistics in
Table 5, a so-called counterintuitive phenomenon (e.g., [10, 25])
was also found in this study, which is theO-D-based TTRwhich
was improved under the rainy weather (the global probability is
16%). Although the negative effect of the rain on TTR is still the
dominating conclusion considering the low probability of the
positive effect, this phenomenon remains an issue to be in-
vestigated. According to [20], rain likely affects the effects of
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Figure 4: BI-value boxplots under six conditions within five travel time ranges. (a) Average O-D-based travel times within 0–5mins. (b)
Average O-D-based travel times within 5–10mins. (c) Average O-D-based travel times within 10–15mins. (d) Average O-D-based travel
times within 15–20mins. (e) Average O-D-based travel times within 20–25mins.

8 Journal of Advanced Transportation



Step 1:
Initialize K-value and LMM.

Step 2 (E step):
Calculate the probability cik of each travel time ti (sample size N) belonging to each lognormal distribution according to (i).

(i) cik � (ωkL(ti/μk, σk)/􏽐
K
k�1 ωkL(ti/μk, σk)), i � 1, 2, . . . , N, k � 1, 2, . . . , K.

Step 3 (M step):
Update all parameters in LMM according to (ii)–(iv).

(ii) 􏽢ωk � (􏽐
N
i�1 cik/N), k � 1, 2, . . . , K.

(iii) 􏽢μk � (􏽐
N
i�1 cik ln(ti)/􏽐

N
i�1 cik), k � 1, 2, . . . , K.

(iv) 􏽢σ2k � (􏽐
N
i�1 cik(ln(ti) − 􏽢μk)(ln(ti) − 􏽢μk)T/􏽐

N
i�1 cik), k � 1, 2, . . . , K.

Step 4:
Repeat until convergence.

ALGORITHM 1: EM algorithm for estimating LMM.

Table 4: Summary of median and trimmed mean of BI-values and BI variation ratio under six weather conditions.

Location measure ATT range
(min) Normal

Rainfall intensity (BI variation ratio)

RainLight rain
((L-N)/

N∗ 100%)

Moderate rain
((M-N)/

N∗ 100%)

Heavy rain
((H-N)/

N∗ 100%)

Extreme rain
((E-N)/

N∗ 100%)

Median of BI-values

0–5 0.4219 0.4342 (2.9%) 0.4985 (18.2%) 0.5157 (22.2%) 0.5274 (25.0%) 0.4997
5–10 0.3586 0.3845 (7.2%) 0.4544 (26.7%) 0.4715 (31.5%) 0.4933 (37.6%) 0.4268
10–15 0.3568 0.3586 (5.0%) 0.4573 (28.2%) 0.4598 (28.9%) 0.4823 (35.2%) 0.4080
15–20 0.3399 0.3265 (−3.9%) 0.3956 (16.4%) 0.3962 (16.6%) 0.4113 (21.0%) 0.3604
20–25 0.3287 0.3513 (6.9%) 0.3588 (9.2%) 0.3489 (6.1%) 0.3750 (14.1%) 0.3515
Mean 0.3612 0.3710 (2.7%) 0.4329 (19.9%) 0.4384 (21.4%) 0.4579 (26.8%) 0.4092

Trimmed mean of BI-
values

0–5 0.4413 0.4555 (3.2%) 0.5078 (15.1%) 0.5205 (17.9%) 0.5476 (24.1%) 0.4990
5–10 0.4098 0.4351 (6.2%) 0.5047 (23.2%) 0.5399 (31.7%) 0.5376 (31.2%) 0.4809
10–15 0.3754 0.3793 (1.0%) 0.4644 (23.7%) 0.4866 (29.6%) 0.5030 (34.0%) 0.4429
15–20 0.3580 0.3675 (2.7%) 0.4151 (15.9%) 0.4121 (15.1%) 0.4304 (20.2%) 0.4007
20–25 0.3190 0.3291 (3.2%) 0.3519 (10.3%) 0.3532 (10.7%) 0.3697 (15.9%) 0.3448
Mean 0.3807 0.3933 (3.3%) 0.4488 (17.9%) 0.4625 (21.5%) 0.4777 (25.5%) 0.4337

N, L, M, H, and E indicate normal, light rain, moderate rain, heavy rain, and extreme rain, respectively.

Table 5: Summary of O-D number of higher reliability than normal and increasing reduction impact with rainfall increase.

ATT range
(min)

O-D number of higher reliability than normal
O-D number of increasing negative impact with

rainfall increase
Rainfall intensity

RainLight
rain

Moderate
rain

Heavy
rain

Extreme
rain

Sum/sample
size

0–5 8 1 4 2 15/80 3 7
5–10 3 1 1 1 6/80 2 8
10–15 10 1 1 2 14/80 1 6
15–20 7 0 3 2 12/80 1 7
20–25 8 2 5 2 17/80 2 7
Sum/sample
size 36/100 5/100 14/100 9/100 64/400 9/100 35/100

Rate 36% 5% 14% 9% 16% 9% 35%
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some other substantial contributing factors for some specific
O-D pairs (e.g., O-Dwith bottlenecks).)erefore, future studies
should be focused on data with multiple contributing factors
such as weather and bottlenecks.

5. Conclusions

)is research uses open-source data to study the effects of
varying rainfall intensity on O-D-based travel time reliability.
)e intensity covers light rain (0 and 10.0mm/24h), moderate
rain (10.0 and 24.9mm/24h), heavy rain (25 and 50.0mm/
24h), and extreme rain (>50.0mm/24h). An orithm based on
the lognormal mixture model was adopted for analyzing the
probability distribution functions of the O-D-based travel time
data.)en the buffer index, the three locationmeasures, and the
one-way analysis of variance were used for detailed analysis.

In general, rain lowersO-D-based travel time reliability, and
the negative impact grows with the increase in rainfall intensity.
With respect to the abnormal phenomenon mentioned in [25],
it is restricted in low probability from massive results in the
study, which cannot be a general conclusion but deserve in-
vestigation profoundly. )e study also confirmed the existence
of the so-called counterintuitive phenomenon mentioned in
previous work [25] that, in some cases, TTR may be enhanced
in rainy weather. Particularly, we discovered that O-D-based
TTR was more sensitive when rainfall intensity changes from
light to moderate but less notable when changes are among
other categories such as no rain to light rain and moderate rain
to heavy rain. )e study also demonstrates that the O-D-based
TTR in different O-D pairs with a similar ATT range tends to
improve as ATT gets longer.

)is study contributed to disclose the characteristics
of the O-D-based TTR under the varying rainfall with the
open-access data. )is study is helpful in enhancing
current applications by providing more accurate O-D-
based travel time information under rain conditions; for
example, the trend that consistency of the O-D-based
TTR tends to improve with ATT increase can help to
improve the accuracy of TTR prediction, when missing
enough travel time information. Meanwhile, the research
is conducive to promote the use of publicly available data
in such investigations so that the results are verifiable,
and the studies are sustainable.

)is paper only focuses on the impact of rain, but
there are a lot of more deserving further investigations
along the line of O-D-based TTR analysis. For future
work, the impact of other weather events and the com-
bined effects of weather and other factors such as work
zones will be the focus.

Data Availability
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Table 7: Summary of interquartile range of BI-values under six weather conditions.

Location
measure

ATT
range
(min)

Normal
(75th–25th)

Rainfall intensity (75th–25th) Rain
(75th–25th)Light rain Moderate rain Heavy rain Extreme rain

Interquartile
range (IQR) of
BI-values

0–5 0.1771
(0.5206–0.3635)

0.2043
(0.5543–0.3500)

0.2687
(0.6330–0.3643)

0.3138
(0.6829–0.3691)

0.2188
(0.6511–0.4323)

0.2450
(0.6119–0.3669)

5–10 0.1645
(0.4929–0.3284)

0.1975
(0.5253–0.3278)

0.2278
(0.5847–0.3569)

0.3134
(0.7118–0.3984)

0.2881
(0.6939–0.4058)

0.2987
(0.6441–0.3454)

10–15 0.1606
(0.4600–0.2994)

0.1612
(0.4586–0.2974)

0.2454
(0.5907–0.3453)

0.2342
(0.5910–0.3568)

0.2112
(0.6212–0.4100)

0.2292
(0.5487–0.3195)

15–20 0.0944
(0.4065–0.3121)

0.1222
(0.4354–0.3132)

0.1432
(0.4952–0.3520)

0.1509
(0.4865–0.3356)

0.1698
(0.5195–0.3497)

0.1407
(0.4842–0.3435)

20–25 0.1006
(0.3593–0.2587)

0.1083
(0.3786–0.2703)

0.1157
(0.4168–0.3011)

0.1173
(0.4202–0.3029)

0.1201
(0.4248–0.3047)

0.1056
(0.3941–0.2885)

Table 6: One-way ANOVA test for BI variation ratio between varying rainfall intensities.

Source SS df MS F P value
2 columns (light and moderate) 1.2280 1 1.2280 80.82 3.5874e− 16
Error 2.7047 178
Total 3.93263 179
3 columns (from moderate to extreme) 0.2079 2 0.1040 2.9 0.0568
Error 9.5750 267 0.0359
Total 9.7829 269
4 columns (from light to extreme) 2.9091 3 0.9697 33.37 4.9919e− 19
Error 10.3457 356 0.0291
Total 13.2548 359
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Inclement weather affects traffic safety in various ways. Crashes on rainy days not only cause fatalities and injuries but also
significantly increase travel time. Accurately predicting crash risk under inclement weather conditions is helpful and informative
to both roadway agencies and roadway users. Safety researchers have proposed various analytic methods to predict crashes.
However, most of them require complete roadway inventory, traffic, and crash data. Data incompleteness is a challenge in many
developing countries. It is common that safety researchers only have access to data on sites where a crash has occurred (i.e., zero-
truncated data). *e conventional crash models are not applicable to zero-truncated safety data. *is paper proposes a finite-
mixture zero-truncated negative binomial (FMZTNB) model structure.*e model is applied to three-year wet-road crash data on
395 divided roadway segments (total 586 km), and the parameters are estimated using the Markov chain Monte Carlo (MCMC)
method. Comparison indicates that the proposed FMZTNB model has better fitting performance and is more accurate in
predicting the number of wet-road crashes. *e model is capable of capturing the heterogeneity within the sample crash data. In
addition, lane width showed mixed effects in different components on wet-road crashes, which are not observed in conventional
modeling approaches. Practitioners are encouraged to consider the finite-mixture zero-truncated modeling approach when
complete safety dataset is not available.

1. Introduction

According to the World Health Organization, more than 1.3
million roadway users died each year as a result of traffic
crashes, and the cost of traffic crashes accounted for about
3% of the gross domestic product inmost countries [1]. Road
traffic injuries and deaths are a global problem, and traffic
crashes are a leading cause for nonnatural death. Safety
researchers and practitioners have made continuous efforts
to reduce the number and severity of crashes.

A traffic crash is usually caused by one or several factors,
including humans (i.e., vehicle driver, motorist, bicyclist,
and pedestrians), vehicles, roadway facilities, and environ-
ment. Weather affects traffic safety, demand, selection of
transportation mode, driving capabilities, vehicle

performance (i.e., stability, maneuverability, and traction),
and roadway infrastructure (i.e., pavement friction) through
visibility impairments, precipitation, and temperature. In-
clement weather not only increases crash risk but also
significantly affects users’ travel time. According to crash
statistics, more than 20 percent of crashes and more than 15
percent of traffic fatalities are weather-related [2]. It is
necessary to accurately predict the occurrence of crashes
under inclement weather conditions.

Statistical modeling approach has been extensively used
in recent two to three decades to quantitatively predict
number of crashes. Specifically, safety researchers have
proposed various models for developing crash counts, e.g.,
Poisson, negative binomial (NB), Sichel [3, 4], Con-
way–Maxwell–Poisson [5, 6], zero-inflated Poisson [7],
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Poisson–Tweedie [8], Tobit [9–12], machine learning
techniques [13, 14], etc. For a detailed review of the crash
regression techniques, readers can refer to the article by Lord
and Mannering [15]. In all these models, crash counts are
treated as response variables, and more importantly, all of
these models require complete roadway inventory, traffic,
and crash data. Safety data (e.g., roadway inventory, traffic,
operation, and crash information) play a critical role in crash
prediction model development, hotspot identification, and
safety effectiveness evaluation. Inaccurate or incomplete
crash records with the conventional crash prediction models
may lead to various misleading results. *ese errors not only
result in inefficient use of limited resources for safety im-
provements but also cause additional loss of lives. However,
data incompleteness is a challenge in many developing
countries. For example, only information on segments or
intersections where a crash has occurred is collected. *is
type of data is known as zero-truncated data. Previous
studies have shown that the conventional count models are
not adequate to model zero-truncated crash data [16, 17].
How to develop reliable crash prediction models using zero-
truncated data is an important topic for safety analysts.

*is study is an extension of a recent study on modeling
zero-truncated crash data [16]. *e primary objective is to
develop safety performance functions for wet-road crashes
when zero’s are truncated in the safety data considering the
heterogeneity. Particularly, this paper proposes a finite-
mixture zero-truncated negative binomial (FMZTNB)
model structure and examines if the FMZTNB model
provides better modeling results than the commonly used
models.

*e rest of this paper is organized as follows: Section 2
reviews the literature pertaining to the influence of weather
on safety. Section 3 describes the details of the zero-trun-
cated models. Section 4 briefly documents the zero-trun-
cated data. Section 5 presents the modeling results, and
Section 6 summarizes the study.

2. Literature Review

Because of the great influence of weather on roadway safety,
transportation researchers have made continues efforts in
understanding the relationship between different weather
conditions and traffic crashes.

Shankar et al. [18] conducted one of the earliest studies
on the effect of weather conditions on roadway crashes. *e
researchers developed a negative binomial crash model with
roadway geometrical and environmental factors. *e
modeling results suggest that both maximum rainfall and
number of rainy days play significant and positive role in
number of total crashes.

Maze et al. [19] studied how inclement weather affects
traffic demand, traffic safety, and traffic flow relationships.
*e researchers pointed out that certain types of severe
weather conditions (e.g., winter storms) bring a higher risk
of being involved in a crash by 13 to 25 times. Weather
conditions also impact the crash severity, but it varies
depending on specific weather condition and crash location.

Qiu and Nixon [20] conducted a systemic review on the
effect of adverse weather on the occurrence of roadway
crashes. *e researchers reviewed 112 studies conducted
between 1967 and 2005 that had examined the association
between weather and traffic crashes. Crash rates from each
study were combined through a meta-analysis method. *e
researchers conclude that the crash rate usually increases
during precipitation. Snow has a greater effect than rain does
on crash occurrence. Specifically, snow can increase the
crash rate by 84% and the injury rate by 75%.

Jung et al. [21] analyzed the influence of four weather
factors (i.e., rainfall intensity, water film depth, temperature,
and wind speed and direction) on the injury severity of rainy
day multivehicle crashes. *e study found that wind speed is
associated with the outcome of crashes.

Recently, Das et al. [22] developed safety performance
functions for two types of roadways (i.e., rural two-lane
highway and rural multilane highway) in two states (i.e.,
Ohio and Washington). *e researchers included speed
measures and weather conditions in the models. Modeling
results revealed that precipitation is negatively associated
with number of crashes. *is result is inconsistent with most
previous studies, and the researchers noted that the vehicle
speeds might reduce during the wet-weather conditions,
hence resulting in fewer crashes.

To summarize, extensive studies have been conducted to
analyze the relationship between weather and safety. Overall,
crash rates increase significantly during inclement weather
conditions. In the previous studies, almost all of them in-
clude weather data as factors in the regression models, and
none of them have focused on developing a safety perfor-
mance function for wet-weather crashes specifically. In
addition, previous studies have used the common count
models (e.g., negative binomial), which require complete
safety data. Zero-truncated data are common in developing
countries, and zero-truncated models have been proposed
by researchers to analyze crash data in recent years [16, 17].
To the best of the authors’ knowledge, no efforts have been
made to analyze zero-truncated wet-road crashes. *is study
aims to fill this gap.

3. Methodology

*is section discusses three crash modeling approaches: (1)
the commonly used negative binomial model; (2) zero-
truncated NB model; and (3) finite-mixture zero-truncated
NB model.

3.1. Conventional NB Model. As has been mentioned in
Section 2, various statistical methods have been developed
by safety researchers to predict number of crashes. *e NB
model is still the most commonly used approach and is
recommended by the first edition ofHighway Safety Manual
(HSM) [23]. *is section briefly introduces the structure of
the NB model.

*e commonly used NBmodel assumes that the number
of crashes occurred at a given site (a segment or an
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intersection) during a certain period follows Poisson dis-
tribution as follows:

yi,t λi,t ∼ Poisson λi,t􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌 . (1)

*e probability mass function (PMF) of crash count is
shown as follows:

P yi,t λi,t

􏼌􏼌􏼌􏼌􏼐 􏼑 �
λyi,t

i,t × e
− λi,t

yi,t!
, yi,t � 0, 1, 2, . . . , (2)

where y denotes the crash count. *e subscripts i and t

represent site index and study period, respectively. λi,t is the
Poisson rate for the site during the period. For the ease of
readers, the subscripts i and t are omitted in the rest of this
paper.

Furthermore, assume that the Poisson rate λ follows
gamma distribution:

λ | μ, α ∼ Gamma(μ, α), (3)

where μ is the mean for λ and α is the shape parameter
(positive).

Assuming that the mean μ is associated with roadway
features (e.g., traffic volume, segment length, and geometric
characteristics),

μ � f(traffic volume, roadway features). (4)

Interpreting λ from equation (2), the PMF of the NB
distribution can be obtained as

p(y | μ, α) � 􏽚
∞

0

λy
× exp(− λ)

y!

1
μα ×

λα− 1
× exp(− λ/μ)

Γ(α)
dλ.

(5)

*e PMF of y is shown as follows:

p(y | µ, α) �
Γ(y + α)

Γ(y + 1) × Γ(α)
×

μ/α
1 +(μ/α)

􏼠 􏼡

y

×
1

1 +(μ/α)
􏼠 􏼡

α

,

(6)

where y is the response variable (i.e., crash count), µ indi-
cates the mean response of the observation, and α is the

dispersion parameter (i.e., shape parameter in the Gamma
distribution). For the detailed derivative of the NB model,
readers can refer to [24]. It is important to note that, in the
conventional NB model structure, the response variable y
takes the values of all nonnegative counts (i.e., 0, 1, 2, 3, . . .).
In other words, all the observed crash counts should be
included in the model development. Since the NB model has
closed-form, the parameters can be easily estimated. Many
software packages have been developed to estimate the
unknown parameters, for example, the MASS package of R
[25, 26].

3.2. Zero-Truncated NB Model. *e NB model has been
widely used in analyzing overdispersed count data; however,
it requires completed observed data. When the zero’s are
truncated, the assumption of the NB model cannot be
satisfied, and the estimated parameters are biased. Statisti-
cians proposed truncated models [27]. In the truncated
count model, the response variable, y, is also considered to
follow Poisson distribution. But, it only takes positive
numbers (i.e., conditional on that y> 0) as follows:

P(y | λ, y> 0) �
P(y)

P(y > 0)
�

P(y)

1 − P(y � 0)
, y � 1, 2, 3, . . . .

(7)

From equation (2), it can be derived that

P(y � 0 | λ) �
λ0 × e

− λ

0!
� e

− λ
. (8)

Substituting equation (8) into (7), the zero-truncated
Poisson distribution can be obtained as follows:

P(y | λ, y> 0) �
P(y)

1 − e
− λ, y � 1, 2, 3, . . . , (9)

where y is the response variable (truncated) and λ is the
Poisson rate. Similarly, assuming that the Poisson rate λ
follows Gamma distribution, the zero-truncated NB model
can be obtained as follows:

P(y � 0 | μ, α) �
Γ(y + α)

Γ(α) × Γ(y + 1)
×

μ/α
1 +(μ/α)

􏼠 􏼡

y

×
1

1 +(μ/α)
􏼠 􏼡

α

�
1

1 +(μ/α)
􏼠 􏼡

α

, (10)

P(y | μ, α, y> 0) �
Γ(y + α)

Γ(α) × Γ(y + 1)
×

μ/α
1 +(μ/α)

􏼠 􏼡

y

×
(1/(1 +(μ/α)))

α

1 − (1/(1 +(μ/α)))
α

( 􏼁
, (11)

where µ is the mean response of the observation and α is the
dispersion parameter.

Compared to the conventional NB model, the zero-
truncated NB model can be viewed as a conditional NB
distribution that the response variable takes nonzero
values. *e conditional distribution (i.e., positive NB)
brings complexity in estimating parameters. A few

software packages are available for estimating the ZTNB
model, for example, VGAM with R [28].

3.3. Finite-Mixture Zero-Truncated NB Model. In both the
conventional NB and zero-truncated NB models, the dis-
tribution of the response variable has only one component,
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i.e., there is only one Poisson mean. *e finite-mixture
models assume that the response variables arise from two or
more unobserved components with unknown proportions.
*is provides significant modeling flexibility than the
conventional single component models [29]. As has been
mentioned, statisticians have proposed the K-component
finite mixture of negative binomial regression models (i.e.,
FMNB-K) as follows [29, 30]:

p(y) � 􏽘
K

k�1
wk

Γ y + αk( 􏼁

Γ(y + 1)Γ αk( 􏼁

μk

μk + αk

􏼠 􏼡

y αk

μ k + αk

􏼠 􏼡

αk

􏼢 􏼣,

(12)

where y is the response variable (y � 0, 1, 2, 3, 4, . . .); wk is
the weight factor of component k which sum to 1
(􏽐K

k�1 wk � 1); μ k is the Poisson mean of component k; and
αk is the dispersion parameter of component k.

Analogous to equation (12), the K-component finite
mixture of zero-truncated NB model (FMZTNB-K) can be
constructed as

p(y) � 􏽘
K

k�1
wk

Γ y + αk( 􏼁

Γ αk( 􏼁 × Γ(y + 1)
×

μk/αk

1 + μk/αk

􏼠 􏼡

y

×
1/ 1 + μk/α( 􏼁k( 􏼁( 􏼁

αk

1 − (1/(1 + μ/α))
α

( 􏼁
􏼢 􏼣, (13)

where y is the zero-truncated response variable (i.e., crash
counts; y� 1, 2, 3, 4, . . .); wk is the weight factor of
component k which sum to 1 (􏽐K

k�1 wk � 1); μ k is the
Poisson mean of component k; and αk is the dispersion
parameter of component k.

In both the FMNB-K and FMZTNB-K models, a
function is used to link the Poisson mean and roadway
features; therefore,

μ � 􏽘
K

k�1
fk(traffic volume, roadway features). (14)

It can be seen that when K� 1, the FMNB-K and
FMZTNB-K models reduce to NB and ZTNB models, re-
spectively. *e FMNB models allow for additional hetero-
geneity within components not captured by the independent
variables.

It is important to note that, as the number of com-
ponents K increases, the FMNB model becomes more
flexible. However, it also brings complexity in the pa-
rameter estimation. Previous studies have indicated that a
two-component finite mixture of NB regression models
(FMNB-2) was quite enough to characterize crash data
[31–33]. *us, this study considers the two-component
finite mixture of zero-truncated NB model (FMZTNB-2)
in the analyses.

In terms of parameter estimation, the commonly used
maximum likelihood estimation (MLE) algorithm will
not generate reliable results due to the complicated
likelihood function in the FMZTNB-2 model. An alter-
native is the Gibbs sampling technique, also known as the
Markov chain Monte Carlo (MCMC) method, which has
been frequently used in estimating parameters of finite-
mixture models [29, 34]. Package “rjags” is used to draw
the samplings [35], and the FMNZTB-2 MCMC model is
developed using JAGS (Just Another Gibbs Sampler) [36].
*e truncation is represented using function T(,) in the
JAGS.

4. Data

*is study collected data on 395 rural multilane-divided
roadway segments, including traffic volume, lane width,
average shoulder width, and median width. *ree years of
wet-road crash data were collected. A wet-road crash is
defined as that the weather condition was rain, snow, or hail,
or the surface condition was wet, snowy, ice, or standing
water at the time of the crash occurred. In terms of inde-
pendent variables, this paper mainly considered data
availability and potential effects on the occurrence of crashes
during rainy weather conditions from published literature
[19–21]. Finally, the following six variables were selected
from the dataset: segment length, traffic volume, lane width,
average outside shoulder width, average inside shoulder
width, and median width. Descriptive statistics of the
roadway and crash data are illustrated in Table 1.

It is worth mentioning that the minimum crash count of
the sample segments is 1 (see the last row in Table 1), rather
than 0. *is is because when collecting the roadway data,
only information on segments where at least one crash had
occurred is available to the authors. In other words, the
safety data is zero-truncated.

5. Modeling Results

Previous studies have revealed that the commonly used NB
model is not applicable for modeling zero-truncated crash
data [16, 17]. *e parameters can be heavily biased, and the
results are not reliable. *us, the conventional NB model is
not used to the data collected in this study. *is section
presents the results of the ZTNB model and the FMZTNB-2
model, separately.

5.1. Modeling Result of ZTNB. *e authors developed the
ZTNB model with the data described in Section 4 with the
following functional form.
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μ � exp β0 + β1log(ADT) + β2LW + β3OSH(

+ β4ISH + β5 × MW􏼁,
(15)

where μ is the mean of the observed crash data; ADTis traffic
volume; LW is lane width (m); OSH is average outside
shoulder width; ISH is average inside shoulder width (m);
MW is median width (m); β0, β1, . . . , β5 are unknown pa-
rameters to be estimated. It is important to note that the
length of a segment is considered as an offset variable,
meaning that the number of crashes is proportional to the
segment length.*is assumption is consistent with theHSM.

Although studies have pointed out that varying dispersion
parameter (i.e., α in equations (10) and (11)) benefits the crash
prediction models [37–39], this study assumed that it is fixed
among all the sites to make the computation easier and con-
sistent with the FMZTNB-2 model in Section 5.2 [37, 40–42].

*e modeling results of the ZTNB model is shown in
Table 2. As can be seen, the parameters for traffic volume,
average outside shoulder width, and average inside shoulder
width are all statistically significant at the level of 90 percent
or higher. Specifically, as the traffic volume increase, the
predicted number of wet-road crashes also increases. *e
parameters for the other three roadway features are all
negative, indicating that, with the increase of shoulder width
or median width, the predicted number of wet-road crashes
will decrease. For example, with one meter increase in av-
erage outside shoulder width, the predicted number of wet-
roadway crashes will decrease by 14.6 percent (i.e.,
1 − e− 0.158). *is is expected, as outside shoulders become
wider, it provides additional recovery spaces for vehicles
which slide away from the traveling lane due to the reduced
skid number during rainy days. *e results are in line with
several previous studies [21, 43]. On the other hand, the
parameter for lane width is − 0.1, and the result is not sta-
tistically significant. *e dispersion parameter, α, is esti-
mated as 1.615, which is also insignificant.

*is study used four types of goodness-of-measure
(GOF) to evaluate the model performance: Akaike

information criterion (AIC), Bayesian information criterion
(BIC), mean absolute error (MAE), and root mean square
error (RMSE).*e AIC, BIC, MAE, and RMSE for the ZTNB
model are 1142.29, 1170.14, 0.64, and 2.52, respectively (see
the last four rows in Table 2).

5.2. Modeling Result of FMZTNB-2. As has been mentioned
in Section 3, this study utilized MCMC approach to estimate
the parameters of the FMZTNB-2 model. Noninformative
priors were used for hyperparameters. *is study performed
1,000,000 MCMC iterations with two different chains, and
the first 20,000 samples of each chain were discarded as
burn-in samples from the MCMC outputs. Gelman–Rubin
(G–R) convergence statistics and visual history plots were
used to verify the MCMC process [44, 45]. *e functional
forms linking the Poissonmean and the roadway features are
similar to those of the ZTNB model, except that there are
two forms in the components, as shown in the following
equations.

μc1 � exp β0,c1 + β1,c1log(ADT) + β2,c1LW + β3,c1OSH + β4,c1ISH + β5,c1MW􏼐 􏼑, (16)

μc2 � exp β0,c2 + β1,c2log(ADT) + β2,c2LW + β3,c2OSH + β4,c2ISH + β5,c2MW􏼐 􏼑, (17)

μ � wt × μc1 +(1 − wt) × μc2, (18)

Table 1: Descriptive statistics of data (sample size: 395).

Variable Mean Minimum Maximum Standard deviation
Segment length (km) 1.483 0.172 3.080 0.969
Traffic volume (veh/day) 11569.41 3192 26935 5505.763
Lane width (m) 3.826 2.9 5.0 0.513
Average outside shoulder width (m) 2.515 0.61 3.05 0.758
Average inside shoulder width (m) 1.536 0 3.05 0.705
Median width (m) 6.352 3.05 14.64 3.107
Wet-road crash count 2.42 1 15 2.439

Table 2: Estimating results of the ZTNB model.

Variable Estimate Std. err. P value Significant level
Intercept, β0 − 3.638 1.698 — Not significant
Log (ADT), β1 0.770 0.169 <0.001 99.9%
Lane width, β2 − 0.100 0.159 0.530 Not significant
Ave. out. SHD, β3 − 0.158 0.082 0.054 90.0%
Ave. in. SHD, β4 − 0.310 0.080 <0.001 99.9%
Median width, β5 − 0.373 0.034 <0.001 99.9%
Disp. par., α 1.615 5.465 0.409 Not significant
AIC 1142.29 — — —
BIC 1170.14 — — —
MAE 0.64 — — —
RMSE 2.52 — — —
Note. Std. err.� standard error. Disp. par.� dispersion parameter. Bold and
underline values indicate statistically significant at 90.0% or higher. —
means not applicable.
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where μ is the mean of the observed crash data; μc1 and μc1
are the mean of observations in the two components, re-
spectively; ADTis traffic volume; LW is lane width (m); OSH
is average outside shoulder width; ISH is average inside
shoulder width (m); MW is median width (m); and β′s are
parameters to be estimated.

*e modeling results of the FMZTNB-2 model are
documented in Table 3. First, the estimated weight factor
for component 1 is 0.712, with a standard error of 0.082.
*is result is statistically significant, indicating that the
sample data include two components. Component 1
accounts for about 71.2 percent, and component 2 ac-
counts for about 28.8 percent (i.e., 1 – 0.712). Second,
most of the parameters in both components are statis-
tically significant (except average inside shoulder width
in component 1 and median width in component 2).
Overall, the signs of the parameters in the FMZTNB-2
model are the same as the corresponding parameters in
the ZTNB model. For example, the parameter for average
outside shoulder width is − 0.158 in the ZTNB model.
*ey are − 0.094 and − 0.183 in the two components, re-
spectively, of the FMZTNB-2 model. All of them indicate
that wider outside shoulders are associated with fewer
wet-road crashes. *e parameter for average inside
shoulder in component 1 and that for median width in
component 2 is not significant. Another interesting
finding is that the estimated parameters for lane width in
the two components have different signs, i.e., it is neg-
ative (− 0.080) in component 1 and positive (0.203) in
component 2. In other words, the lane width is negatively
associated with wet-road crashes in the first group of

segments (i.e., component 1); however, it is positively
associated with wet-road crashes in the second group of
segments (i.e., component 2). *is is in line with a few
studies which have reported controversy effects of lane
width on safety [46–48].

Finally, the AIC, BIC, MAE, and RMSE for the
FMZTNB-2 model are 1020.54, 1088.32, 0.22 and 2.14,
respectively (see the last four rows in Table 3). In addition
to model goodness-of-fit, this paper also analyzed the
prediction performance of the two models using three
sites. *e three sites represent relative low, moderate, and
high crash levels, respectively. *e crash mean prediction,
standard deviation, as well as 90 percentile confidence
intervals of the three sites by the two models are tabulated
in Table 4. *e results indicate that, for the three sites, the
predicted crash mean (i.e., number of wet-weather
crashes) between the two models are fairly close (except
for the first site, which has a very small crash mean). For
site 90, the predicted number of crashes of the ZTNB and
FMZTNB-2 models are 0.0645 and 0.0627, respectively.
*eir standard deviation values are 0.2606 and 0.0449,
respectively. *e crash predictions with FMZTNB-2
model have significantly lower standard deviation values
and narrower intervals, indicating that the model has
higher prediction accuracy.

*e FMZTNB-2 model shows superiority in modeling
the wet-weather crash data. First, the FMZTNB-2 model
fits the dataset better than the ZTNB model in terms of
GOF measures (e.g., AIC, BIC, MAE, and RMSE). Sec-
ond, the predictions using FMZTNB-2 model have lower
standard deviations and narrower prediction intervals,

Table 3: Estimating results of the FMZTNB-2 model.

Variable Estimate Std. err. P value Estimate Std. err. P value
Component 1 Component 2

Intercept − 4.047 2.819 0.151 − 4.485 1.190 <0.001
Log (ADT) 0.718 0.018 <0.001 0.993 0.195 <0.001
Lane width − 0.080 0.010 <0.001 0.203 0.012 <0.001
Ave. Out. SHD − 0.094 0.022 <0.001 − 0.183 0.014 <0.001
Ave. In. SHD − 0.241 0.177 0.174 −0.879 0.166 <0.001
Median width − 0.416 0.010 <0.001 − 0.494 0.251 0.049
Disp. par. 1.499 0.142 <0.001 4.619 1.856 0.013
Weight 0.712 0.082 <0.001 0.288 – –
AIC 1020.54 – – – – –
BIC 1088.32 – – – – –
MAE 0.22 – – – – –
RMSE 2.18 – – – – –
Note. Std. err.� standard error. Disp. Par.� dispersion parameter. Bold and italic values indicate statistically significant at level of 90.0 percent or higher. —
means not applicable.

Table 4: Prediction comparison between ZTNB and FMZTNB models (three example sites).

Site number (level)
ZTNB FMZTNB-2

Prediction Std. err. 90% PI Prediction Std. err. 90% PI
138 (low) 0.0040 0.0636 [0.0036–0.0046] 0.0005 0.0007 [0.0005–0.0005]
90 (moderate) 0.0654 0.2608 [0.0392–0.109] 0.0627 0.0449 [0.0574–0.0684]
65 (high) 0.7350 1.0341 [0.0968–5.5788] 0.7625 0.5903 [0.2398–2.425]
Note. Std. err.� standard error. PI� prediction interval.
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indicating that the predictions are more accurate. Finally,
a few interesting relationships between variables and
crashes are observed from the FMZTNB-2 model. For
example, the parameters of lane width are opposite in the
two components, indicating that this factor have mixed
effects at different locations. *ese results indicate that
the FMZTNB-2 model captures the heterogeneity of the
crash data better than the ZTNB model.

6. Conclusions

Inclement weather increases both crash risk and travel
time. Efforts have been made in the past decades to
predict the occurrence of traffic crashes. However, very
few of the previous studies have focused on predicting
wet-road crashes. Most of the commonly used crash
prediction models require complete roadway inventory,
traffic, and crash data. Data missing is relative common
in developing countries. How to analyze zero-truncated
crash data and predict the number of wet-road crashes is
the primary objective of this study. To better capture the
heterogeneity of wet-road crash data, this study devel-
oped the two-component finite-mixture zero-truncated
negative binomial model. *e model is applied to three-
year wet-road crash on 395 rural-divided roadways. *e
model results are compared with those based on zero-
truncated negative binomial model. Comparison indi-
cates that the proposed FMZTNB-2 model fits the wet-
road crash data better than the ZTNB model. It is worth
mentioning that, the wet-weather crash data were not
modeled with the conventional NB model since previous
studies have demonstrated that the application of NB
model on truncated data is not recommended. *ere are
trade-offs of using ZTNB or FMZTNB models in crash
analyses. With zero-truncated data, the sample size is
smaller than that of full data. *e reduced sample size
might increase uncertainty of parameter estimates.

*ere are some limitations with this study. First, only a
number of roadway characteristics (i.e., segment length,
lane width, shoulder width, and median width) and traffic
data are available to the authors. *ere are other factors
affecting the occurrence of wet-roadway crashes (e.g.,
precipitation, number of rainy days per year, and surface
skid number). Unfortunately, they are not accessible to
the authors. Second, previous studies have shown that the
varying forms of dispersion parameter and weight factor
for the components in the finite-mixture models improve
both crash prediction and hotspot identification
[33, 37, 49–51]. In this study, fixed dispersion parameter
and weight factor were used to simplify the parameter
estimation process. In the future, it is necessary to collect
more data, especially those closed related to wet-road
crashes, and to examine if varying forms of dispersion
parameter and weight factor will further improve the
model performance. Finally, the finite-mixture model
provides better results than the previously proposed zero-
truncated model (e.g., goodness-of-fit and prediction).
However, parameter estimates with the FMZTNB-2
model require MCMC, and it increases the computational

time, which may be challenging for practitioners. *e
parameter estimating method in the FMZTNB-2 model
needs to be further simplified in the future.
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Following the research on human decision-making under risk and uncertainty, the purpose of this paper is to analyze evacuees’
risky route decision behavior and its effect on traffic equilibrium. It examines the possibility of applying regret theory to model
travellers’ regret-taking behavior and network equilibrium in emergency context. By means of modifying the utility function in
expected utility theory, a regret-based evacuation traffic equilibrium model is established, accounting for the evacuee’s psy-
chological behavior of regret aversion and risk aversion. Facing two parallel evacuation routes choice situation, the effect of
evacuees’ risk aversion and regret aversion on traffic equilibrium is numerically investigated as well as the road capacity reduction
from natural disaster. ,e findings reveal that evacuees prefer the riskless route with the lower travel time as the increase of the
regret aversion degree. ,e equilibrium tends to be achieved when more evacuees choose the safer route jointly affected by risk
aversion and regret aversion. Moreover, an optimization model for disaster occurring possibility is formulated to assess the traffic
system performance for evacuation management. ,ese findings are helpful for understanding how the regret aversion and risk
aversion influence traffic equilibrium.

1. Introduction

Traffic equilibrium is a key process of transportation de-
mand analysis and planning.,e assumption of the presence
of traffic equilibrium can help to predict route flow patterns
in the network and evaluate the associated measures of
system performance. It is critical to efficiently identify the
potential periodic patterns from massive time-series data
and provide accurate predictions for travel time and freeway
traffic speed based on statistical, Markov chains andmachine
learning prediction models, especially for real evacuation
scenario [1–3]. Previous studies have shown expected utility
theory’s popularity on depicting travel behaviors and solving
traffic equilibrium problem [4–8]. It postulates that each
individual traveler attempts to maximize the utility of the
chosen route as the principle rule.

Travel time is an important indicator for traveller de-
cision-making and traffic assignment. Besides travel time,
other route spatiotemporal factors including intersection
delay, path distance, and path size are also considered in the
route choice process [9]. Current research on route choice
turns tomodel travellers’ responses to uncertainty. However,
the principle assumption of expected utility maximization
lacks behavioral realism in some risky decision-making
occasions, especially the emergency evacuation context
[10–12].

It is widely acknowledged that the notion of regret is
highly relating to individual’s decision-making [13]. ,e
regret theory relaxes the traditional behavioral assumption
and provides an opportunity to account for the regret
aversion psychology, especially when people face risky
choice decision-making [14]. A recent effort in modelling
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individual’s travel choices using the regret theory has been
made, such as route choice, mode choice, and departure
times [15, 16]. A small but growing body of studies has been
performed to analyze traffic equilibrium based on the regret
theory. ,e regret theory has great potential in modelling
traffic equilibrium compared with expected utility theory
and prospect theory [16–18]. ,e outstanding advantage lies
in its parsimonious form to explain the actual behaviors and
being consistent with empirical studies. A regret-based
stochastic user equilibrium model has been proposed in
more general choice sets that can depict the traveller’s route
choice behaviors more flexibly [19]. Considering the trav-
ellers’ way of thinking, a noncompensatory multiobjective
framework has been developed, and conflicts among mul-
tiple objectives can be solved through the model [20]. Since
themonetary cost was also an important factor whenmaking
a decision between alternative routes, a biattribute user
equilibrium model (i.e., travel time and monetary cost) has
been established in which travellers aim to minimise their
regret [21].

In recent years, although the prospect theory is in-
creasingly applied to explain traveler’s risky route choice
behaviors, it is difficult to select a scientific reference point
[22–24]. A unique pure nash equilibrium point has been
achieved under the principles of prospect theory considering
users’ diverse behavioral patterns [25]. Cloud computing
environments, flexible 5G access technology, and clustering
mechanisms may help enhance evacuees’ mobility charac-
teristics [26–28]. ,e regret aversion psychology was con-
formed to affect the traffic equilibrium in the studies
conducted by Chorus [17]. ,e impacts of regret and risk
aversions increase and appear to reinforce one another, both
implying equilibrium shifts towards safer routes. Regret is
weaker in the environment with weaker risk degree, but it is
stronger in the risky environment [29].

,e review of the existing literature reveals that few studies
focus on the traffic equilibrium with regret aversion under
evacuation risky decision-making process. Evacuees’ decision
behaviors when facing the emergency evacuation are different
from that in the regular conditions; thus their regret and risk
aversion should be considered [30, 31]. ,erefore, the appli-
cation of the regret-based model in the field of emergency
transportation needs to be addressed urgently. One motivation
of this study is to analyze the traffic equilibrium under evac-
uation condition based on the regret theory. Meanwhile, the
global optimization model for disaster state is constructed to
assess the performance of traffic system in order to make
feasible evacuation guidance. ,e analysis of the traffic equi-
librium is the premise of assessing the performance of traffic
system. ,e contribution of this study highlights to capture
unobserved risk and regret aversions psychology in the evac-
uation decision-making process.

,e remainder of this paper is organized as follows.
Section 2 presents the regret-based traffic equilibrium
models for emergency evacuation. Section 3 explores how
the risk and regret aversions affect the evacuation traffic
equilibrium, and Section 4 formulates the system perfor-
mance assessment model. ,e Section 5 concludes the study
and discusses future research directions.

2. Regret-Based Traffic Equilibrium Models

Travel behavior has a potential significant impact on the
traffic equilibrium. In contrast to previous studies based on
utility framework, a regret-based traffic equilibrium model
was formulated accounting for risk and regret aversion
decisions. ,e psychological regret/rejoice may occur when
the alternative is worse/better than other alternatives. ,e
decision-makers try to avoid the higher regret, specifically
regret aversion. Facing a risky decision-making situation,
more attentions were paid on regret theory rather than
traditional utility theory.

2.1. Regret-Based Utility Functions. Assume a situation that
evacuees should leave home for a safe destination to avoid
the damage from natural disaster (e.g., flood and storms)
through main evacuation routes a or b with risky travel time
as shown in Figure 1.,e route a is closer to the disaster than
route b, but the route distance is shorter.,e perceived travel
time is uncertain, and its distribution is known to evacuees.
More specifically, the evacuee knows the occurrence
probability of random travel time pr for every disaster state.
,ree different states s of the disaster including “good state,”
“medium state,” and “bad state” may occur with the oc-
currence probability ps.

According to the regret theory, the perceived utility
function consists of two parts: basic utility function and
regret-rejoice function [10, 12]. ,e regret-based utilities for
the two routes are shown as follows:

RU(a) � U tsa( 􏼁 + R[ΔU(a)] � U tsa( 􏼁 + R U tsa( 􏼁 − U tsb( 􏼁􏼂 􏼃,

(1)

RU(b) � U tsb( 􏼁 + R[ΔU(b)] � U tsb( 􏼁 + R U tsb( 􏼁 − U tsa( 􏼁􏼂 􏼃,

(2)

where U(tsa) and U(tsb) represent the basic utility of route a
and b; tsa and tsb are the travel time of routes a and b in the
disaster state s; and R[ΔU(a)] and R[ΔU(b)] represent the
regret-rejoice value of route a and b. When R[ΔU(a)]> 0, it
becomes a rejoice value, indicating that the evacuee per-
ceives the rejoice psychology from choosing route a. When
R[ΔU(b)] < 0, it becomes a regret value, indicating that the
evacuee perceives the regret psychology from choosing route
b. Notably, the part R(ΔU) is a function of the utility dif-
ference between route a and b.

,ere are different forms depending on the risk aversion
level for the utility function U. For a cost-attribute (e.g.,
travel time), U is a monotonically decreasing concave
function, and it satisfies the conditions U′ < 0 and
U″(ΔU)> 0 [32, 33]. For a benefit-attribute (e.g., service), U

is a monotonically increasing concave function, and it
satisfies the conditions U′ > 0 and U″(ΔU)< 0. ,e expo-
nential expression was applied as the utility function for
travel time attribute as follows [10, 12, 17]:

U ts( 􏼁 �
1 − exp α · ts( 􏼁

α
, (3)
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where α represents a nonnegative risk aversion parameter
and it ranges from 0 to 1. Generally, the decision-makers are
risk averse when facing risky choices. ,e influence of risk
aversion on the utility with respect to travel times is shown in
Figure 2. It is found that the risk aversion level of the evacuee
is increasing with risk aversion parameter.

,e regret-rejoice function is highly dependent on the
regret-aversion level. In most situations, the evacuees are
risk aversion when facing disaster. ,e function R(ΔU) is a
monotonically increasing concave function, and it satisfies
the conditions R′(ΔU)> 0, R″(ΔU)< 0 and R(0) � 0
[33, 34]. ,e regret-rejoice utility with regret aversion pa-
rameter is shown as follows [10, 12, 17]:

R(ΔU) � 1 − exp(−β · ΔU), (4)

where β represents a nonnegative regret aversion parameter,
and it ranges from 0 to 1. ,e influence of regret aversion on
the utility difference is shown in Figure 3. When ΔU> 0,
|R(−ΔU)|>R(ΔU) is found with increase in β. It reveals that
the perceived psychology to −ΔU is more sensitive than that
to ΔU for an evacuee. In other words, the evacuees are regret
averse, and the regret aversion level increases with the in-
creases in the risk aversion parameter.

Consequently, considering the risky travel time, the
regret-based utility for route a and b can be written as
follows:

ERU(a) � 􏽘
s

􏽘
r

ps · pr ·
1 − exp α · tsa( 􏼁

α
􏼢 􏼣 − 1 − exp −β ·

exp α · tsb( 􏼁 − exp α · tsa( 􏼁

α
􏼢 􏼣􏼠 􏼡􏼢 􏼣􏼠 􏼡, (5)

ERU(b) � 􏽘
s

􏽘
r

ps · pr ·
1 − exp α · tsb( 􏼁

α
􏼢 􏼣 − 1 − exp −β ·

exp α · tsa( 􏼁 − exp α · tsb( 􏼁

α
􏼢 􏼣􏼠 􏼡􏼢 􏼣􏼠 􏼡. (6)

2.2. Traffic Equilibrium Conditions. From the perspective of
behavior science, individual route choice decisions lead to the
transportation network flow pattern evolving to traffic equi-
librium [29]. More specifically, no user can decrease his utility
by unilaterally switching routes. In this study, traffic equilibrium
condition can be extended into a regret-based decision
framework. ,e equilibrium is achieved when no user can

increase his regret-based utility by unilaterally switching routes.
According to user equilibrium principle proposed by Wardrop
[35], the network is considered in equilibrium state when all
traffic patterns stabilize and no user has any incentive to change
its current route, as shown as follows:
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Figure 2: Influence of risk aversion on the utility with respect to
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f(a) � 0, if ERU(a)<ERU(b),

f(b) � 0, if ERU(a)>ERU(b),

f(a) · f(b)≠ 0, if ERU(a) � ERU(b).

⎧⎪⎪⎨

⎪⎪⎩
(7)

,e disaster has a destructive effect on the road capacity.
In order to capture this influence on network equilibrium in
the real evacuation context, a capacity reduction parameter
is introduced to BPR (Bureau of Public Road, BPR) function
form adopted in Avineri [36] as follows:

tsa � tsaf · 1 + k ·
Qsa

csa · Csa

􏼠 􏼡

λ
⎡⎣ ⎤⎦ + tsar, (8)

where tsaf is free-flow travel time for route a under the state
s; k and λ are the parameters; Qsa is the traffic flow on the
route a under the state s; Csa is the basic capacity of the route
a under the state s; csa is the road capacity reduction pa-
rameter under the state s; the smaller the c value, the greater
the capacity loss; and tsar is the random travel time of the
route a under the state s.

Here, the BPR function is used as a route travel cost function
when the links on one route are homogeneous (i.e., the capacity
and the service level are the same) like Avineri [36]. Substituting
equation (8) in equations (5) and (6), the network travel flow and
user utility can be obtained in traffic equilibrium state.

3. Risk and Regret Aversion Parameter Analysis

One numerical example is conducted in this study to rec-
ognize the different effects of risk aversion level and regret
aversion level on traffic equilibrium. ,e values of assumed
parameters are partly taken from Chorus [17]. In contrast to
the study done by Chorus, the regret-based traffic equilib-
rium is analyzed under emergency evacuation context,
considering the effect of disaster on road capacity. Route a is
closer to the disaster than route b but the route distance is
shorter in Figure 1, it means route a is more likely to be
affected by the disaster and suffer a greater capacity re-
duction in the emergency situation. For detailed information
on the numerical example, the following settings are as-
sumed: tsaf � 10, tsbf � 12, k � λ � 2, and Ca � Cb � 200.
,ere are 200 people that should be evacuated. With regards
to the three states, the random parts of travel time and the
capacity reduction parameters are different due to the
damage degree of the disaster, as shown in Table 1. For the
three states, the occurrence probability of the random parts
of travel time is assumed to 1/3.

3.1. Different Risk Aversion Scenarios. Take the good state as
the example, the parameter settings are assumed: β � 0.05,
ca � 0.85, and cb � 1. When Qa denotes the traffic flows on
the route a, the expected regret-based utility of route a is
captured when α varies from 0 to 0.05, as shown in Figure 4.
It is found that the expected regret-based utility of route a
decreases with the increase in the risk aversion parameter.

When β � 0.05, ca � 0.85, and cb � 1, the traffic flow
achieves different equilibrium when α varies from 0 to 0.05,
as shown in Figure 5. ,e traffic flows on the route a at the

traffic equilibrium state are 104, 101, 99, 96, 92, and 88 when
α equals to 0, 0.01, 0.02, 0.03, 0.04, and 0.05, respectively.
Take the case of α � 0.02 as an example, the traffic flow on
the route a is 99 cars, and the expected travel time is 31.8,
compared with 101 cars on the route b and expected travel
time of 33.1. As a result, the travel flow shifts from route a

towards route b, when the risk aversion parameter increases.

3.2. Different Regret Aversion Scenarios. Take the good state
as the example, the parameter settings are assumed: α � 0.03,
ca � 0.85, and cb � 1. When Qa denotes the traffic flows on
the route a, the expected regret-based utility of route a is
captured when β varies from 0 to 0.1, as shown in Figure 6. It
is found that the expected regret-based utility of route a
decreases as the increase of regret aversion parameter.

When α � 0.03, ca � 0.85, and cb � 1, the traffic flow
achieves different equilibrium when β varies from 0 to 0.1, as
shown in Figure 7. ,e traffic flows on the route a at the
traffic equilibrium state are 96, 96, 95, 95, and 94 when β
equals to 0, 0.025, 0.050, 0.075, and 0.100, respectively. Take
the case of β � 0.075 as an example, the traffic flow on the
route a is 95 cars, and the expected travel time is 31.2,
compared with105 cars on the route b and expected travel
time of 33.6. As a result, the travel flow shifts from route a
towards route b, when the risk aversion parameter increases.

3.3. Different Risk-Regret Aversion Scenarios. ,e traffic
equilibrium without risk and regret aversions is shown in
Figure 8. It can be seen that there are 104 cars on the route a

and 96 cars on the route b at traffic equilibrium state. Ex-
pected travel times on the two routes equal 32.5. ,ese
findings are certain in line with the study conducted by
Chorus [16]. ,e value 104 is smaller than 114 provided by
Chorus; it is due to the fact that the capacity reduction is
considered in this study.

,e traffic equilibrium with different risk and regret
aversions in each state is shown in Table 2. It can be seen that
the traffic flows on the route a at the equilibrium state are the
same when there is no risk aversion (i.e., α � 0) whatever β
varies. ,e traffic flows on route a are 104, 97, and 91 in the
good, medium, and bad states, respectively. As shown in
Table 2, the traffic flow on the route a shifts seriously with the
regret aversion parameter increase when the risk aversion
parameter increases simultaneously. ,is finding is con-
sistent with that of the work done by Chorus [16]. In other
words, the influence of increase in regret aversion on traffic
equilibrium is larger for the traveler with more risk aversion.
,e impacts of increases in regret aversion and risk aversion
appear to reinforce one another, both implying traffic
equilibrium shifts towards safer routes (i.e., route b).

With respect to the capacity reduction parameter, the
disaster damage degree reinforces the impacts from the
regret aversion and risk aversion further. ,e traffic
equilibrium for the route a is 101 when α � 0.04 without
damage. However, the traffic equilibrium is 93 when α �

0.04 with a capacity reduction on route a (i.e., ca � 0.85),
indicating that evacuees are more alike to choose the less
damage routes.
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Table 1: Random travel time and capacity reduction parameters for the three states.

Route Parameters Good state Medium state Bad state

Route a
Random travel time

0 5 10
15 20 25
30 35 40

Capacity reduction parameter 0.85 0.75 0.65

Route b
Random travel time

12.5 15 17.5
15 17.5 20
17.5 20 22.5

Capacity reduction parameter 1.00 0.85 0.75

0 20 40 60 80 100 120 140 160 180 200

–500

–450

–400

–350

–300

–250

–200

–150

–100

–50

0

Qa

ER
U

Alpha = 0
Alpha = 0.01
Alpha = 0.02

Alpha = 0.03
Alpha = 0.04
Alpha = 0.05

Figure 4: Expected regret-based utility of route a based on different
risk aversion scenarios.
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Figure 5: Influence of risk aversion parameter on traffic equilib-
rium. Note: the black line denotes route a, and the blue line denotes
route b.
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Figure 6: Expected regret-based utility of route a based on different
regret aversion scenarios.
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4. Traffic System Performance Assessment

From the viewpoint of decision-making department, it is
helpful to know the global traffic system performance. Because
the occurrence probability of the disaster at different states is
uncertain, the traffic system performance is not a determined
value. ,e global utility of traffic system at equilibrium can be
considered as a performance indicator. To recognize this point,
the interval value is used to present the occurrence probability.
In detail, the interval values for occurrence probabilities of the
good state, medium state, and bad state are assumed to be [0.2,

0.5], [0.4, 0.7], and [0.1, 0.3], respectively.,e best state and the
worst state of the traffic system can be estimated using the
global optimal state model. For every disaster state, based on
the perceived regret-based utility of the routes, the global utility
of the traffic system using an optimization model as follows:

f(s) � 􏽘
s

􏽘
r

ps · ERUsr. (9)

In this study, the utilities for the three states when α �

0.04 and β � 0.1 are used. ,e global optimal occurrence
probability can be obtained using the following model:

Table 2: Influence of risk aversion and regret aversion on traffic equilibrium.

β ca and cb α� 0 α� 0.01 α� 0.02 α� 0.03 α� 0.04 α� 0.05

β� 0

ca � cb � 1.00 114 110 107 104 101 98
ca � 0.85, cb � 1.00 104 101 99 96 93 91
ca � 0.75, cb � 0.85 97 95 93 91 89 87
ca � 0.65, cb � 0.75 91 89 88 86 84 83

β� 0.025

ca � cb � 1.00 114 110 107 104 101 98
ca � 0.85, cb � 1.00 104 101 99 96 93 90
ca � 0.75, cb � 0.85 97 95 93 91 89 86
ca � 0.65, cb � 0.75 91 89 88 86 84 82

β� 0.05

ca � cb � 1.00 114 110 107 104 100 95
ca � 0.85, cb � 1.00 104 101 99 96 92 88
ca � 0.75, cb � 0.85 97 95 93 90 87 84
ca � 0.65, cb � 0.75 91 89 87 85 83 80

β� 0.075

ca � cb � 1.00 114 110 107 103 98 93
ca � 0.85, cb � 1.00 104 101 98 95 91 86
ca � 0.75, cb � 0.85 97 95 92 89 86 83
ca � 0.65, cb � 0.75 91 89 87 85 82 80

β� 0.100

ca � cb � 1.00 114 110 106 101 96 91
ca � 0.85, cb � 1.00 104 101 98 94 89 85
ca � 0.75, cb � 0.85 97 94 92 88 85 82
ca � 0.65, cb � 0.75 91 88 87 84 82 80
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Figure 8: Expected regret-based utility without risk and regret aversion. Note. the black line denotes route a, and the blue line denotes route
b; Qb � 200 − Qa.
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f(s) � −161.12p1 − 169.28p2 − 240.84p3,

0.2≤p1 ≤ 0.5,

0.4≤p2 ≤ 0.7,

0.1≤p3 ≤ 0.3,

p1 + p2 + p3 � 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

At last, the global optimal state probabilities can be
obtained through solving equation (10). ,e best utility of
traffic system at the network equilibrium is −172.356 that
mainly depends on the good state and medium state, that is,
p1 � 0.5, p2 � 0.4, and p3 � 0.1.,e increase of global utility
due to the action on bad state is relatively limited. ,e worst
utility of traffic system at the network equilibrium is
−189.116 that mainly depends on the bad state and medium
state, that is, p1 � 0.2, p2 � 0.5, and p3 � 0.3. ,e interval
value of traffic system utility is between -189.116 and
−172.356. ,e performance of traffic system can obtain a
minimum regret-based disutility at 172.356. According to
the model results, the findings provide useful insights for the
emergency agency that the management department should
pay more attentions on the slight and medium disaster
damage.

5. Conclusions

A regret-based utility function was used to account for the
risk aversion and regret aversion psychology under emer-
gency context. Meanwhile, the traffic equilibrium conditions
were constructed considering the road capacity reduction. It
is found that risk aversion, regret aversion, and capacity
reduction have important effects on traffic equilibrium.

How risk aversion and regret aversion parameters in-
fluence the traffic equilibrium was explored. It is found that
the traffic equilibrium tends to be achieved when safer routes
are the main choice. It reflects that most evacuees are willing
to choose the safer routes in the evacuation text. ,ey are
highly risk and regret aversion, and the outcome of the traffic
equilibrium is dependent on the risk aversion and regret
aversion levels.

,e traffic equilibrium model under regret theory is an
appealing approach compared with traditional utility theory,
especially in the evacuation traffic context. It is reasonable
that aversion psychology is taken into the analysis of
evacuation issues. Different parameters produce different
degree of effects on the travel decision. With the increase of
aversion levels, evacuees prefer the stable routes. Future
research can be found in a few directions. ,e application of
the regret-based traffic equilibrium model can be conducted
in complicated network. For example, in a network with
three evacuation routes a, b, and c, RU(a) can be modified to
equal U(tsa) + R[U(tsa) − max U(tsa), U(tsb), U(tsc)􏼈 􏼉].
Meanwhile, facing a risk situation, evacuees’ psychological
behavior of regret aversion should not be all the same. ,e
heterogeneity of regret-taking behavior should be taken into
consideration in the future study. Real field data also should
be utilized to validate the conclusion, and implementation
cost can be well evaluated for evacuation practice.
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Annual fatal traffic accident data often demonstrate time series characteristics. *e existing traffic safety analysis approaches (e.g.,
negative binomial (NB) model) often cannot accommodate the dynamic impact of factors in fatal traffic accident data and may
result in biased parameter estimation results. *us, a linear Poisson autoregressive (PAR) model is proposed in this study. *e
objective of this study is to apply the PARmodel to analyze the dynamic impact of traffic laws and climate on the frequency of fatal
traffic accidents occurred in a large time span (from 1975 to 2016) in Illinois. Besides, the NB model, NB with a time trend, and
autoregressive integrated moving average model with exogenous input variables (ARIMAX) are also developed to compare their
performances. *e important conclusions from the modelling results can be summarized as follows. (1) *e PAR model is more
appropriate for analyzing the dynamic impacts of traffic laws on annual fatal traffic accidents, especially the instantaneous impacts.
(2) *e law that allows motorcycles and bicycles to proceed on a red light following the rules applicable after a “reasonable period
of time” leads to an increase in the frequency of annual fatal traffic accidents by 14.98% in the short term and 30.69% in the long
term. *e climate factors such as average temperature and precipitation concentration period have insignificant impacts on
annual fatal traffic accidents in Illinois.*us, themodelling results suggest that the PARmodel is more appropriate for annual fatal
traffic accident data and has an advantage in estimating the dynamic impact of traffic laws.

1. Introduction

A report of National Highway Traffic Safety Administration
(NHTSA) reveals that 37,461 people were killed in 34,439
motor vehicle crashes, an average of 102 deaths per day in
year 2016. To reduce the number of people killed in traffic
accidents, it is important to analyze the influential factors
affecting the frequency of fatal traffic accidents. Among
many factors, the traffic law is considered an effective
measure to reduce the severity of injuries and the number of
fatalities as a means of macroeconomic regulation and
control. Some existing studies have analyzed the impact of

certain traffic laws on the number of traffic accidents, such as
the seat belt law [1], driving under the influence (DUI) law
[2, 3], and alcohol control law [4]. However, the dynamic
impacts of these traffic laws on traffic accidents have not
been adequately studied.

So far, numerous traffic safety analysis models have been
developed. Since the frequency of traffic accident is non-
negative and integer, many studies assumed such events
follow a Poisson distribution and modelled the frequency of
traffic accidents using a Poisson regression model [5, 6].
However, the Poissonmodel cannot handle overdispersed or
underdispersed data and may result in biased estimation. In
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order to analyze the overdispersed data, many studies
proposed different mixed Poisson models, such as the
Poisson-gamma model (the negative binomial (NB) model)
[7–13], Poisson-lognormal model [14–16], and Poisson-
inverse gamma model [17]. For the data with many zeros
(i.e., excess zero-count data), the zero-inflated models were
applied, including the zero-inflated Poisson model [18, 19],
zero-inflated negative binomial model [20–22], and their
extension models (i.e., multiple random parameter zero-
inflated negative binomial regression model [20] and zero
expansion Poisson regression model with random param-
eter effect [23]). Although rare, crash data can sometimes be
characterized by underdispersion. *e Con-
way–Maxwell–Poisson model [24] and diagonal inflated
bivariate Poisson regression model [25] were appropriate.

Several recent works about regression models cannot
properly address the time series characteristics of the traffic
accident count data. Noland et al. [26] proposed a time trend
variable as an explanatory variable in the count regression
model to consider the series correlation. However, this
model may not clearly account for the effects of serial
correlation. An alternative approach was modelling possible
dynamics in the traffic accident count data with a lagged
dependent variable in the Poisson or NB models. *ese
models failed to represent adequately the dynamics in
persistent time series because they implied that the growth
rate of the process was the exponentiated coefficient on the
lagged dependent variable. Such a process may potentially
generate time series data rather than dynamic data [27].
*ese two kinds of models were dynamic models with a
trend, but not necessarily a cyclical or dynamic component.
Another approach to handle the time series was the
autoregressive integrated moving average (ARIMA) model
and its extensions including the seasonality autoregressive
integrated moving average (SARIMA) [28] and nonlinear
autoregressive exogenous (NARX) [29]. *ese time series
models may not be applicable to discrete time series vari-
ables (e.g., traffic accident count data). To consider both time
series and discrete characteristics of the response variables,
an integer-valued autoregressive (INAR) Poisson model
[30–34] was developed. However, the dynamic character-
istics of the influential factors were not adequately described
in the INAR model. Few approaches can adequately model
the dynamics and distribution of annual fatal traffic accident
data.

To address the above issues, this study proposed a linear
Poisson autoregressive (PAR) model. *e objective of this
study is to apply the PAR model to analyze the dynamic
impact of traffic laws on annual fatal traffic accident fre-
quency from the macroscopic point of view using the data
collected in Illinois from year 1975 to 2016.*e contribution
is to demonstrate the performance of the PAR model in the
analysis of the dynamic influence of factors on traffic ac-
cident frequency and quantitatively analyze the impacts of
traffic laws.

*e rest of the paper is organized as follows. Section 2
introduces the specification, estimation, and interpretation
of the PAR (p) model. Section 3 describes the dataset used in

this study and the source of our data. In Section 4, the results
of statistical modelling are shown to understand the con-
tribution of different factors to the annual fatal traffic ac-
cidents in Illinois and compare the performances of various
models. A conclusion and future recommendations are
provided in Section 5.

2. Methodology

2.1.5e PARModel. Before presenting the model, the linear
autoregressive (AR) process is firstly introduced. *e AR
model describes the random variables at some time by using
the linear combination of random variables at earlier time as
equation (1). It is a common form of time series.

yt � 􏽘

p

i�1
ρiyt−i + λ, (1)

where yt is the traffic accident count value at time t, yt−i is
the past traffic accident count value at the imoments before
time t, ρi ∈ [−1, 1] is autocorrelation coefficient, and λ is a
random error term.

Because there are explanatory variables in the PAR
model, it is necessary to redefine the variables in the AR
process. *e conditional data Yt−i replace yt−i in the AR (p)
model, which is a vector that included all the observed
values of the dependent and independent variables at
time t.

Yt−1 � y0, y1, · · · , yt−1; X0, X1, · · · , Xt−1( 􏼁, (2)

where Xt−i are the past explanatory variables (factors af-
fecting traffic accidents) at the imoments before time t. Yt−1
can be regarded as all the prior information about the series
of interest at time t. Assume that yt is a realization from a
Markov process with the conditional transition probability
Pr(yt | Yt−1) and E[Y0] � μ. Let the conditional expectation
E[yt | Yt−1] � mt at time t have a finite mean. *en, yt is a
pth order linear autoregressive process as shown in the
following equation:

E yt

􏼌􏼌􏼌􏼌 Yt−1􏽨 􏽩 � 􏽘

p

i�1
ρiYt−i + λ. (3)

*en, we can obtain equations (4) and (5) by using
iterated expectations [35] of equation (3):

E E yt

􏼌􏼌􏼌􏼌 Yt−1􏽨 􏽩􏽨 􏽩 � E 􏽘

ρ

i�1
ρiYt−i + λ⎡⎣ ⎤⎦, (4)

E Yt􏼂 􏼃 � 􏽘

p

i�1
ρiE Yt−i􏼂 􏼃 + λ, (5)

where equation (5) is a geometric series for ρi; then,

lim
t⟶∞

E Yt􏼂 􏼃 �
λ

1 − 􏽘
p

i�1ρi􏼐 􏼑
≡ μ. (6)

Since [Y0] � μ, equation (3) can be written as
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E yt

􏼌􏼌􏼌􏼌 Yt−1􏽨 􏽩 � 􏽘

p

i�1
ρiYt−i + 1 − 􏽘

p

i�1
ρi

⎛⎝ ⎞⎠μ. (7)

*is is a linear AR(p) process, where the distribution of y

is not used. *e only role of distribution of yt is to define the
possible value of ρi.

*e PAR (p) model can be defined as follows. *e as-
sumptions of the model are that the observed traffic accident
counts yt(t � 1, 2, · · · , T) are generated from a Poisson
distribution on the condition of mt. *en, the measurement
equation for the observation value is obtained in the following
equation:

Pr yt

􏼌􏼌􏼌􏼌 mt􏼐 􏼑 �
m

yt

t e
− mt

yt!
. (8)

Assume that mt is the conditional mean of the linear AR
process of E[yt | Yt−1], which defines the state variable for
the model. According to the measurement equation (8), this
state density with its mean mt and variance σt is in the
exponential family. *e mean or state variable of the
marginal Poisson distribution evolves according to a sta-
tionary AR (p) process with autocorrelation parameters ρi,
and its transition equation is expressed as follows:

mt � 􏽘

p

i�1
ρiyt−i + 1 − 􏽘

p

i�1
ρi

⎛⎝ ⎞⎠exp Xtδ( 􏼁, (9)

whereXt areT × k-matrices of explanatory variables composed
of various factors affecting traffic accidents, δ is a k × 1-vector of
regression parameters, and k is the number of factors.

Finally, assume that the density of the state variable has a
gamma-distributed conjugate prior with gamma’s location
parameter at−1 and scale parameter bt−1, so

Pr mt

􏼌􏼌􏼌􏼌 Yt−1􏼐 􏼑 � Γ σt−1mt−1, σt−1( 􏼁, mt−1 > 0, σt−1 > 0,

(10)
where mt � E[yt | Yt−1] and σt−1 � Var[yt | Yt−1]. *e prior
is constructed using the observed traffic accidents data. *e
prior can help to find the conditional mean and variance at
time t based on the previous t − 1 observations.

Since the prior is gamma, using an extended Kalman
filter, the conditional distribution at time t given t − 1 is also
gamma, that is, mt|t−1∼Γ((mt|t−1σt|t−1), σt|t−1). Since the
measurement equation is Poisson and the state equation is
gamma, an estimate of the posterior at time t is equation
(11). *is is a negative binomial distribution.

Pr yt

􏼌􏼌􏼌􏼌 Yt−1􏼐 􏼑 � 􏽚
θ
Pr yt

􏼌􏼌􏼌􏼌 θt􏼐 􏼑Pr θt

􏼌􏼌􏼌􏼌 Yt−1􏼐 􏼑dθ

� 􏽚
θ

θyt

t e
−θt

yt!
·
e

−σt|t−1θθσt|t−1mt|t−1−1
t σσt|t−1mt|t−1

t

Γ σt | t−1mt | t−1􏼐 􏼑

�
Γ σt | t−1mt | t−1 + yt􏼐 􏼑

Γ yt + 1( 􏼁Γ σt | t−1mt | t−1􏼐 􏼑
σt | t− 1􏼐 􏼑

σt|t−1mt|t−1

× 1 + σt | t− 1􏼐 􏼑
− σt | t−1mt | t−1+yt( )

.

(11)

Replace the AR (1) process with mt and obtain the PAR
(1) model with a negative binomial predictive distribution.
*e one-step ahead conditional forecast function for the
PAR (p) model is expressed as follows:

E yt+1
􏼌􏼌􏼌􏼌 Yt􏽨 􏽩 � mt+1|t

� 􏽘

p

i�1
ρimt|t−1 + 1 − 􏽘

p

i�1
ρi

⎛⎝ ⎞⎠μ.
(12)

2.2. 5e Impact Multipliers. Because the PAR (p) model
considers an explanatory variable matrix Xt and
μ � exp(Xtδ), the interpretation differs from the Poisson
and NB models significantly [36]. *ere is a concept of
impact multiplier as in a Gaussian linear autoregressive
model, which is the effect of a change in explanatory variable
Xt. *e instantaneous impact multiplier can be obtained by
calculating the first derivative of the mean function for this
change. *e calculation process is shown in the following
equation:

zmt

zXt

�
z 􏽘

p

i�1ρiYt−i + 1 − 􏽘
p

i�1ρi􏼐 􏼑exp Xtδ( 􏼁􏼐 􏼑

zXt

� 1 − 􏽘

p

i�1
ρi

⎛⎝ ⎞⎠exp Xtδ( 􏼁 · δ,

(13)

where δ is the coefficient of the explanatory variable Xt. *is
is the instantaneous effect of a shock in factors affecting
traffic accidents Xt on the mean of traffic accidents mt. *e
long-run impact multiplier which means the total effect of a
shock to Xt can be calculated by equation (14), as in the
Gaussian time series analysis.*e long-runmultiplier can be
compared with the parameter estimation of other count
regression models, which measures the impact of a shock on
the conditional mean number of events.

zmt/zXt

1 − 􏽘
p

i�1ρi􏼐 􏼑
�

1 − 􏽘
p

i�1ρi􏼐 􏼑exp Xtδ( 􏼁 · δ

1 − 􏽘
p

i�1ρi􏼐 􏼑

� exp Xtδ( 􏼁 · δ.

(14)

*e long-run impact multiplier and the instantaneous
impact multiplier correspond to the concepts of average
impact and marginal impact in economics, respectively. In
economics, the average impact corresponds to the whole
time, while the marginal impact corresponds to the “pres-
ent” in time. *e long-run impact is compared with the
whole of the past, which should consider the impact of the
past. However, the instantaneous impact multiplier or the
marginal impact (the marginal effect is obtained by the
partial derivation of Xt as shown in equation (13)) focuses
on the impact on the future without considering the past.

In the Poisson and NB models, the long-run and in-
stantaneous impact multipliers are the same and they can also
be calculated by equation (14).*e reason for this difference is
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that the PAR (p) model accounts for the influence of ex-
planatory variables on traffic accidents and the dynamic re-
sponses to the changes in explanatory variables over time.

3. Data Description

*e annual fatal traffic accident frequency data for Illinois
from year 1975 to 2016 were obtained from NHTSA’s Fa-
tality Analysis Reporting System (FARS). *e annual fatal
traffic accident was taken as the dependent variable to avoid
underreporting due to various definitions of traffic acci-
dents. Some traffic laws were considered to evaluate the
instantaneous and long-run impact on traffic accidents from
a quantitative perspective. According to WHO [37], five
road safety risk factors (i.e., speeding, drunk-driving, the use
of helmets, seatbelts, and child restraint systems) played an
important role in traffic injuries and deaths. And Senna et al.
[38] concluded that driving under the influence of alcohol is
always a dominant problem. Due to the far-reaching in-
fluence of law on traffic accidents, the research data of law
are basically based on the year [1, 39].*us, the traffic laws in
Table 1 were selected for analysis of annual fatal traffic
accidents. *e variables related to law were set as binary
variables here. For example, the initial effective date of safety
belt law in Illinois was January 1, 1988, and then this traffic
law variable equalled 0 for the first 13 periods and 1
thereafter (every traffic law used in this study and their
effective date are shown in Table 1). If the date of imple-
mentation of the law was in the latter half of the year, the law
was considered to work from the second year.

Besides, various factors identified as related to traffic safety
are composed of our dataset to analyze how the explanatory
variables affect the annual fatal traffic accident. In order to be
consistent with legal factors, we also select some macroscopic
indicators ranging from 1975 to 2016 with an interval of year in
Illinois. *e dataset is assembled from a variety of sources
including theU.S. Energy InformationAdministration, Federal
Highway Administration, and National Institute on Alcohol
Abuse and Alcoholism. *e dataset covers economic, social,
driver, climate, and law factors. Summary statistics of the
dataset are shown in Table 1. Note that the climate factors
mentioned are different from the microscopic weather factor,
which indicates the wet and dry conditions over a large space-
time range. In the dataset, gross domestic product (GDP), total
vehicle miles of travel (VMT), rural VMTas proportion of total
VMT, per capita beer consumption, gasoline price, and safety
belt law are used to analyze the influence of various factors on
traffic accidents [3]. Geedipally et al. [3] demonstrated that
DUI laws, beer consumption, the proportion of rural VMT,
and shocks in the economy had a significant effect in traffic
fatalities. Note that all the economic indicators are converted to
2016 dollars using the consumer price index (CPI) calculator at
the Bureau of Labor Statistics.

4. Modelling Results

Four models (i.e., the ARIMAX, PAR, NB, and NB with a
time trend model) are developed using the Illinois data,
where the ARIMAX, NB, and NB with a time trend model

are considered as benchmark models. All the models con-
structed in this paper are implemented with R. *e main
purpose is to identify the influential traffic laws affecting the
fatal traffic accidents. Figure 1 shows the trend of the fatal
traffic frequency accident and VMT over time. As can be
seen from Figure 1, the frequency of fatal traffic accident
decreases significantly with time and shows sequence cor-
relation, while VMT increases with time.

For the PAR(p) model mentioned in the methodology,
the order p of the PAR (p) model is determined firstly
(Table 2). Based on the PAR (1) model, stepwise regression is
used to select all significant variables as the combination of
explanatory variables of each model. *us, the final models
include only a subset of the original explanatory variables,
which is shown in Tables 2 and 3. *e Akaike information
criterion (AIC) which is an estimator of the relative quality
of statistical models for a given set of data provided another
means for order selection. *e smaller its value is, the better
the fitting effect of the model is. When p> 4, the model
complexity increases but AIC does not decrease signifi-
cantly. As discussed by Eluru et al. [40], different from the
AIC, the Bayesian information criterion (BIC) imposes a
larger penalty on model overfitting with excess parameters.
As can be seen from Table 2, the BIC value for the PAR (4)
and PAR (5) models differ slightly because the PAR (5)
model has more parameters than the PAR (4) model. Be-
sides, the estimated insignificant parameters are shown in
bold in Table 2. *ere are insignificant parameters from
p> 2, which will affect the analysis of the impact multiplier
of explanatory variables. Based on the modelling results in
Table 2, the PAR (2) model is chosen as the final model.

In addition to the PAR (2) model, the ARIMAX, NB, and
NB with a time trend models are also compared as alter-
native models. Because of the time series in the data, the
ARIMAX model considering the explanatory variables is
selected as one of the alternative models. Based on AIC
values, the final model is determined as ARIMAX (1, 1, 0).
Besides, the NB model, which is most commonly used in
traffic accident frequency analysis, is considered as one of the
alternative models. Furthermore, the NB with a time trend
model which can consider the time series and discrete
characteristic of the traffic accident frequency by using a
simple solution is also compared. *e parameter values of
these models are estimated using the maximum likelihood
estimation method.

*e results of these models are shown in Table 3.
According to the AIC and BIC values in Table 3, the PAR (2)
model fits this dataset best, followed by the NB with a time
trend model and ARIMAX (1, 1, 0) model. *e NB model
provides the least fitting performance. *e models with a
time trend structure seem to fit best since the traffic acci-
dents appear to be serially correlated. Taking AIC as ex-
ample, the fitting performance of the PAR model increases
by 12% compared to the NB model, 6% compared to the
ARIMAX model, and 5% compared to the NB with a time
trend model. However, the coefficients of explanatory var-
iables estimated by the ARIMAX model are not significant;
in other words, the ARIMAX model is not able to explain
how these factors affect annual fatal traffic accidents. For the
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NB with a time trend model, most of the explanatory var-
iables are significant and the values of parameter estimates
are similar to those of the NB and PAR (2) models. However,
the belt law and beer consumption variables are insignifi-
cant. *is phenomenon shows that this model may not help
us to explain the impact of various legal factors on the
frequency of traffic accidents completely. Since the PAR (2)
model and NB model have all statistically significant vari-
ables, their fitting performance and parameter estimates are
compared in the following paragraphs.

Except the ARIMAX model, other models belong to the
regression model. During modelling the fatal traffic acci-
dents, total VMT is considered as an offset term because
there is a linear relationship between total VMT and fatal
traffic accidents [3]. From a qualitative point of view, both
the coefficients estimated by the NB and PAR models show
that beer consumption has the greatest impact among these
factors on the frequency of annual fatal traffic accidents
(Table 3). However, the AIC and BIC values of the PAR (2)
model are much smaller than those of the NB model. Note
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Figure 1: Annual fatal traffic accidents and VMT in Illinois.

Table 1: Summary statistics of annual fatal traffic accidents and factors in Illinois.

Variables Min Max Mean St. error
Fatal traffic accidents 832 1877 1316 299.31
Total VMT (million) 60943 109135 89696 16914.83
GDP (in $100,000) 405739 807458 593554 134797
Rural VMT proportion (%) 0.24 0.34 0.30 0.03
Gasoline price ($ per gallon) 1.54 3.71 2.41 0.64
Per capita beer consumption (gallons) 1.12 1.45 1.30 0.10
Average temperature (°F) 49.38 55.78 52.16 1.52
Precipitation concentration period 28.54 51.18 39.68 5.68

Safety belt law January 1988 Before: 0; after: 1
(year 1988: 1)

DUI toughened penalties January 1982 Before: 0; after: 1
(year 1982: 1)

Drivers under age 18 may not use a wireless phone while driving July 2005 Before: 0; after: 1
(year 2005: 0)

Persons under age 18 who obtain a graduated driver’s license may not drive during the first 6 months
of the license, or until the person reaches age 18, with more than one person under age 20 in the
vehicle

January 2004 Before: 0; after: 1
(year 2004: 1)

Disallow parents/guardians to knowingly permit the consumption of alcohol by underage invitees at
their residence August 2007 Before: 0; after: 1

(year 2007: 0)
Motorcycles and bicycles may proceed on a red light following the rules applicable after a “reasonable
period of time” January 2012 Before: 0; after: 1

(year 2012: 1)

Graduated driver’s license provisions strengthened January 2008 Before: 0; after: 1
(year 2008: 1)

Limit the use of mobile phones while operating a motor vehicle January 2010 Before: 0; after: 1
(year 2010: 1)
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that the PAR model can capture dynamics in fatal traffic
accident data and provide better fitting performance. In
addition to the goodness-of-fit statistics, we further compare
the modelling results of the PAR (2) model and the NB
model.

For dynamic models, the results cannot be fully obtained
by displaying coefficients in Table 3, which represented the
average effect of explanatory variables [41]. Besides, the
generalized linear model includes a link function, which
makes it difficult to explain the original coefficients of the
model independently [41]. In other words, the estimated
coefficients in Table 3 cannot directly quantify the impact of
factors per unit change on fatal traffic accident frequency.
*us, in order to compare the effects of explanatory variables
on fatal traffic accidents in different models, the long-run
and instantaneous multipliers are calculated by using
equations (13) and (14). Since this study focuses on the
impact of traffic laws on annual fatal traffic accidents, only
the impact multipliers of law are presented in the first

column of Tables 4 and 5. Because of the dynamic structure
of the PAR (2) model, the value of long-run impact mul-
tiplier is larger than that of instantaneous impact multiplier
(0<􏽐

2
i�1ρi < 1). *e three laws (e.g., belt law, DUI tough-

ened penalties, and alcohol law) lead to a decrease in fatal
traffic accident, among which the DUI toughened penalties
law has the greatest influence. After the implementation of
the DUI toughened penalties, the frequency of fatal traffic
accident decreases by 91 in the short run and 186 in the long
run. However, implementation of the law that allows mo-
torcycles and bicycles to proceed on a red light following the
rules applicable after a “reasonable period of time” (red
running) leads to an increase in the frequency of fatal traffic
accidents. Before this study, Pai and Jou [42] have revealed
the high association between bicyclist red-running and
accidents in Taiwan. *e effect of red running is a total
increase of 201 fatal traffic accidents in the long run and 72
fatal traffic accidents in the short run, which indicates that
this law is not conducive to traffic safety. *is law may be

Table 2: Modelling results for different orders of PAR models.

Model PAR (1) PAR (2) PAR (3) PAR (4) PAR (5)
Intercept −6.216 (0.375) −6.821 (0.328) −6.811 (0.322) −7.028 (0.341) −6.787 (NA)
Gasoline price −0.152 (0.038) −0.074 (0.028) −0.074 (0.029) −0.101 (0.037) −0.124 (0.048)
Beer consumption 2.12 (0.244) 2.37 (0.204) 2.363 (0.197) 2.476 (0.209) 2.491 (0.225)
Belt law −0.196 (0.046) −0.157 (0.037) −0.159 (0.038) −0.118 (0.042) −0.093 (0.049)
DUI toughened penalties −0.379 (0.05) −0.279 (0.043) −0.278 (0.05) −0.206 (0.076) −0.451 (NA)
Red running 0.393 (0.083) 0.301 (0.059) 0.296 (0.065) 0.383 (0.089) 0.434 (0.113)
Alcohol law −0.237 (0.067) −0.219 (0.049) −0.216 (0.052) −0.247 (0.062) −0.276 (0.075)
ρ1 0.628 (0.057) 0.706 (0.093) 0.704 (0.095) 0.754 (0.095) 0.718 (0.098)
ρ2 — −0.194 (0.079) −0.179 (0.119) −0.218 (0.12) −0.157 (0.127)
ρ3 — — −0.015 (0.086) −0.265 (0.118) −0.262 (0.12)
ρ4 — — — 0.287 (0.082) 0.144 (0.12)
ρ5 — — — — 0.147 (0.09)
N1 42 42 42 42 42
Log-likelihood −234.125 −222.116 −217.543 −200.139 −197.746
AIC 482.249 460.232 453.069 420.277 417.492
BIC 494.414 474.133 468.725 437.655 436.606
1N is the number of samples.

Table 3: Fatal traffic accident analysis (standard errors in parentheses).

Model ARIMAX (1, 1, 0) PAR (2) NB NB with a time trend
Intercept — −6.821 (0.328) −5.835 (0.347) 7.118 (0.29)
Gasoline price 3.836 (32.897) −0.074 (0.028) −0.077 (0.028) −0.05 (0.02)
Beer consumption 575.665 (514.852) 2.37 (0.204) 1.805 (0.242) 0.393 (0.211)
Belt law 191.826 (66.103) −0.157 (0.037) −0.225 (0.048) 0.029 (0.039)
DUI toughened penalties −98.515 (77.537) −0.279 (0.043) −0.445 (0.048) −0.227 (0.042)
Red running 58.631 (63.765) 0.301 (0.059) 0.162 (0.059) 0.096 (0.039)
Alcohol law −144.166 (67.999) −0.219 (0.049) −0.221 (0.06) −0.228 (0.041)
Linear trend — — — −0.007 (0.003)
ρ1 — 0.706 (0.093) — —
ρ2 — −0.194 (0.079) — —
α1 — — 0.006 0.002
N2 42 42 42 42
Log-likelihood −237.85 −222.116 −254.633 −232.543
AIC 491.71 460.232 525.27 483.087
BIC 505.61 474.133 539.168 498.726
1*e dispersion parameter in the NB model. 2N is the number of samples.
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designed to increase the traffic efficiency of nonmotorized
vehicles and reduce travel time, but it is not desirable to
improve traffic efficiency at the expense of traffic safety.

Finally, the impact multipliers of the NB and PAR (2)
models are compared (Tables 4 and 5). All signs of pa-
rameters estimated by the NB and PARmodels are the same.
It can be observed that the frequency of fatal traffic accidents
decreases with the increase of gasoline prices, the imple-
mentation of the belt law, and the enforcement of the DUI
penalty law. With beer consumption rising and red running
allowed, the frequency of fatal traffic accident increases.
However, the values of impact multipliers estimated by the
NB and PAR (2) models differ significantly. Taking the
implementation of red running law as an example, which is
the only law variable leading to an increase in the frequency
of traffic accidents in the dataset, the instantaneous impact of
the red running law is about 98 for the PAR (2) model, which
means that the implementation of red running law has
increased the number of accidents by 98 at this point. *e
long-run multiplier of red running law is 201, which means
the frequency of accidents increased by 201 in the long run.
*e NB model estimates the impact of enforcing the red
running law by amultiplier of 113.*ese percentage changes
are shown in Tables 4 and 5. For the PAR (2) model, the total
percentage change due to this intervention in the number of
fatal traffic accidents is an increase of 30.69% while the
instantaneous percentage change is 14.98%. For the NB
model, the total change in the number of fatal traffic acci-
dents is 17.59%. *e instantaneous effect of the PAR (2)
model is smaller than the instantaneous effect of the NB
model, and long-run effects of the PAR (2) model are larger
than the long-run effect of the NB model. *e reason for this
phenomenon is that the estimated coefficients of the PAR (2)
model include dynamic characteristics. *e long-run mul-
tiplier takes into account the impact of the previous stage on
the present, while the instantaneous effect only takes into
account the current impact. Since δ describes an average
effect, the multipliers calculated from exp(Xtδ) · δ can only
describe the average effect. *us, the instantaneous effect of

the NB model actually reflects the average effect, which leads
to overestimation of the short-run effect. *e NB model
cannot properly consider the dynamics of fatal traffic ac-
cident data, which leads to overestimation of the instanta-
neous impact of explanatory variables on fatal traffic
accidents.

For the remaining three variables, both the long-run
and instantaneous impact multipliers estimated by the
PAR model are smaller than those estimated by the NB
model. Taking the belt law as an example, the instanta-
neous and long-run percentage changes due to the in-
tervention estimated by the PAR model are −7.32% and
−15%, respectively, and the estimated multiplier of the NB
model is −20.15%. *is phenomenon indicates again that
the NB model overestimates the impact of explanatory
variables, especially for the instantaneous impacts. *e
dynamic nature of the PAR (p) model makes it more
suitable for estimating the dynamic impact of traffic laws
on annual fatal traffic accidents. *e instantaneous impact
of a safety intervention strategy can inform the trans-
portation management agencies to design more appro-
priate traffic laws, while the NB model cannot provide
such information.

5. Conclusions

Annual fatal traffic accidents are count data with time series
characteristics. *e existing traffic accident analysis models
cannot fully model their dynamic characteristics and analyze
the dynamic influence of explanatory variables on annual
fatal traffic accidents. Among many explanatory variables of
traffic accident analysis, the dynamic effect of the enforce-
ment of traffic laws has not been widely concerned. In this
study, a linear Poisson autoregressive model is proposed to
analyze the long-run and instantaneous impact of traffic laws
on annual fatal traffic accidents. *en, the modelling results
of PAR (p), ARIMAX, NB, and NB with a time trend models
are compared. Several major conclusions are summarized as
follows:

Table 4: Fatal traffic accident analysis (long-run effect).

Variable
PAR (2) NB

Long-run multiplier Percentage change in mean (%) Long-run multiplier Percentage change in mean (%)
Belt law −105.137 −15.00 −155.447 −20.15
DUI toughened penalties −186.371 −25.65 −309.795 −35.92
Red running 201.172 30.69 112.659 17.59
Alcohol law −146.495 −20.63 −153.839 −19.83

Table 5: Fatal traffic accident analysis (instantaneous effect).

Variable
PAR (2) NB

Instantaneous multiplier Percentage change in mean (%) Instantaneous multiplier Percentage change in
mean (%)

Belt law −51.322 −7.32 −155.447 −20.15
DUI toughened penalties −90.975 −12.52 −309.795 −35.92
Red running 98.2 14.98 112.659 17.59
Alcohol law −71.51 −10.07 −153.839 −19.83
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(1) *e PAR model can outperform the ARIMAX,
NB, and NB with a time trend models in terms of
fitting performance and estimation of dynamic
effects. *e PAR (p) model is more suitable for
analyzing the dynamic impact of traffic laws on
annual fatal traffic accidents. Compared with the
ARIMAX model, the PAR (p) model can consider
discrete characteristics in the accident data and
analyze the influence of factors. Compared with
the NB with a time trend model, the PAR (p)
model can accurately analyze the influence of
more explanatory variables on the frequency of
fatal traffic accidents. Compared with the NB
model, the PAR (p) model can capture the time
series in annual fatal traffic accident frequency
and calculate the dynamic effect of traffic laws and
other explanatory variables. *e omission of the
dynamics from the NB model leads to biased
parameter estimates, especially the inability to
estimate the instantaneous multipliers of factors.
However, instantaneous multipliers can indicate
the immediate effects of traffic law interventions
for traffic safety management agencies and help to
make new laws.

(2) Some climate and traffic law factors are considered
to quantitatively evaluate their impact on annual
fatal traffic accidents in Illinois. *e average tem-
perature and precipitation concentration period
have insignificant impacts. *e law of DUI
toughened penalties results in a decrease of annual
fatal traffic accidents by 12.52% in the short run and
25.65% in the long run, which has the greatest
inhibitory effect on fatal traffic accidents among the
analyzed laws. However, the law allowing red
running leads to an increase of annual fatal traffic
accidents by 14.98% in the short term and 30.69% in
the long term. *erefore, controlling the DUI be-
haviors and modifying the red running law may
significantly reduce the frequency of annual fatal
traffic accidents, which provide guidance for future
traffic law development.

*e PAR (p) model can be widely applied to analyze the
time series count data. Besides the traffic laws mentioned in
this paper, the applicable explanatory variables exhibiting a
sudden change can be extended to the factors such as the
emergence of policies and regulations, and the dynamic
impact of these kinds of variables can be well explained by
the PAR (p) model. For future research, the PAR (p) model
can be applied to investigate traffic accident data collected
from other sites. Furthermore, with the development of data
acquisition technology, multisource datasets [43–46] can be
used to analyze traffic accidents.
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