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In coastal and port engineering, wind-generated waves have always been a crucial, fundamental, and important topic. As a result,
various methods for estimating wave parameters, including feld measurement and numerical methods, have been proposed over
time. Tis study evaluates the wave height at Sri-Lanka Hambantota Port using soft computing models such as Artifcial Neural
Networks (ANNs) and the M5 model tree (M5MT). In order to overcome its nonstationarity, the primary wave height time series
were divided into subtime series using the wavelet transform. Te collected subtime series were then utilized as input data for
ANN and M5MT in order to determine the wave height. For the sake of the model performance, the daily wind and wave data
from the Acoustic Wave and Current (AWAC) sensor for Hambantota Port in 2020 and Sanmen Bay in 2017 were used in this
study.Te training state utilizes 80% of the available data, while the test state uses 20%.Te RootMean Square Error (RMSE) of the
ANN, M5, WANN, and Wavelet-M5 models in the Hambantota Port for the test stage are 0.12, 0.11, 0.04, and 0.06, respectively.
While in Sanmen Bay, the RMSE of the ANN,M5,WANN, andWavelet-M5models for the test stage are 0.14, 0.16, 0.06, and 0.08,
respectively. According to the fndings of this study, the accuracy of WANN and Wavelet-M5 hybrid models in evaluating wave
height is superior to that of classic ANN andM5MT, and it is recommended that WANN andWavelet-M5 hybrid models be used
to estimate wave height.

1. Introduction

Water waves are the most obvious, almost permanent
phenomena on the surface of any water basin, such as
wetlands, lakes, rivers, reservoirs behind dams, bays, seas,
and oceans. Tey are usually defned as the surface oscil-
lation of the fuid surface [1]. Wave study is the frst step for
any study and activity in order to identify the factors af-
fecting the behavior and conditions in the sea [2]. In coastal
areas, waves play an important role in determining the
geometry and shape of beaches. Te height of the sea waves,

while creating the frst feeling about the occurrence of the
wave, is the most important parameter in all issues raised in
coastal engineering studies. In designing marine structures
such as platforms, breakwaters, and jetties, the main pa-
rameter in determining their various components’ stability
and design is the wave height in the region [3, 4]. When
waves approach coastal areas, they are deformed due to
various phenomena such as shallow, scattering, refraction,
and refection, which are important in various aspects such
as management, protection, and exploitation of the coast,
environment, fsheries, navigation, and construction of
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structures [5–7]. Te study of sea wave’s ofshore and on-
shore structures develops basic knowledge in the feld of
coastal engineering and the physics of the sea and waves. In
coastal areas, determining the pattern of waves and coastal
currents is the most important; features are proposed to
identify the factors afecting the marine environment,
coastal areas, and coastal structures [8]. Te beach’s ge-
ometry, shape, sedimentation, erosion, and many other
physical and dynamic phenomena are directly afected by
waves and currents. Wind waves are the most important
waves observed at sea and have the greatest impact on
human activities in the marine environment; therefore,
when it comes to forecasting waves for engineering pur-
poses, mainly wind waves are considered [9]. Although feld
measurements are the most accurate way to obtain the wave
parameters of any region, the feld measurement method
alone will not be able to respond when determining waves in
a wide area [10]. Today, using numerical models as an ef-
fcient tool for simulation and then studying complex
natural processes open the way for many technical and
engineering issues, including the state of the sea. Soft
computing methods such as model tree (MT), gene ex-
pression programming (GEP), multivariate adaptive re-
gression spline (MARS), adaptive-neuro fuzzy inference
system (ANFIS), and Bayesian Network (BN) have proven
successful applications for modeling various ocean engi-
neering problems [11–16]. In addition, many studies
demonstrated the combination of properties of diferent soft
computing methods with evolutionary algorithms causing
an improvement in the power prediction of phenomena in
solving ocean environment problems [17–21].

Due to the random and irregular nature of the sea,
estimating the height of the waves is associated with
inherent uncertainty. Uncertainty in estimating the wave
height and the consequent forces acting on the structure
causes uncertainty in the design of the members of the
marine structures. Also, the coefcients used to de-
termine the drag and inertia forces are always uncertain.
Given the capabilities of mathematical models with the
help of numerical simulation, using these methods in
predicting wave properties at sea is appropriate. Since the
forecast wave parameters are essential for the design of
coastal structures and for naval operations, diferent
methods such as semiempirical methods such as Coastal
Engineering Manual (CEM) and Sverdruv Munk
Bretschneider (SMB) and numerical models such as
MIKE21, Wavewatch III, and SWAN were used [22, 23].
Soft computing methods such as Artifcial Neural Net-
works (ANNs), fuzzy inference systems, decision trees,
and genetic algorithms are also used.

Tere are two approaches to modeling sea parameters in
general, namely, conceptual (white-box) and systemic
(black-box). White box models are based on governing
mathematical equations and physical parameters of the
phenomenon. Te purpose of these models is to rely on
scientifc research on how the main components of each sea
parameters cycle work to fully understand the mechanism
and how the components work together. Hence, un-
derstanding and interpreting white-box models are more

straightforward than black-box models. In black-box
models, it is difcult to present equations and mathemati-
cal relations in them, and the physical parameters afecting
them cannot be easily estimated. Black-box models estimate
the desired output by receiving input and performing a se-
ries of mathematical operations. Black box models have
parameters and coefcients that are estimated according to
observational input and output data [24]. Terefore, black-
box models depend on input and output data in terms of
quantity and quality of data.

In this study, an attempt was made to develop an
efcient wave evaluation model based on the innovation
hybrid models. Tis study evaluates wave height at Sri
Lanka Hambantota Port and China Sanmen Bay using
ANNs (surrogate of the nonlinear model) and the M5
model tree (M5MT, surrogate of the multivariate linear
regression model). For this purpose, the wind and wave
data were gathered in Hambantota Port, Sri-Lanka 2020
and Sanmen Bay, China 2017. Primary wave height time
series were divided using the wavelet transform to
overcome nonstationarity.

2. Study Area and Data Processing Methods

Sri Lanka’s Hambantota International Port is a deep
water port in the country’s south and directly faces the
North Indian Ocean (Figure 1). After the Port of
Colombo, it is Sri Lanka’s second-largest port. In its plan
for the Hambantota Port, the Sri Lankan government
thought it would deliver commercial benefts and lo-
gistical feasibility. Te dominant wave directions range
from 157.5° to 225°. Tere are approximately 95% of
waves concentrated between the South and Southern
South West (Hs > 2.2 m), and the predominant wave
direction is southward, with about 60% occurrences [25].

Sanmen County is a coastal county in the eastern part
of China’s Zhejiang Province. Tere are approximately
400,000 people living in the county, which has a total
land area of 1,072 km2. Sanmen Bay is a semienclosed
bay, and the easterly direction of the waves is the most
common one in this region (Hs > 1.5 m). [26]. An
Acoustic Wave and Current (AWAC) meter was used to
measure the waves that were used in this study.

Te smoothed wave spectrum is used to fgure out wave
spectral parameters like the zeroth order spectral moment
(m0), the maximum spectral energy density S (fp), and the
mean wave periods (T01 and T02). Te following are some
defnitions of the wave parameters used in the study:

T01 �
m0

m1
,

T02 �

���
m0

m2

􏽲

,

mn � 􏽚
∞

0
f

n
S(f)df; n � 0, 1, 2, · · · ,

(1)

where S(f ) is the spectral energy density at frequency f and
mn is the nth order spectral moment.
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Te JONSWAP spectra formulation was widely advo-
cated for describing wind-generated waves with durations
below 20 seconds equation (3). As a result, the spectral
density of the input JONSWAP spectrum is minimal at low
frequencies (0.03Hz).

E(f) �
αg

2

f
5 exp −

5
4

fp

f
􏼠 􏼡

4
⎡⎣ ⎤⎦c

exp −

f − fp􏼐 􏼑
2

2σ2f2
p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

,
(2)

fp � 22[g2/(U10 F)]1/3, where F is wind fetch length, U10 is
wind speed at 10meter above the water surface level, g is
gravity acceleration, σ is the shape parameter, and c is the
bandwidth parameter.

Te signifcant wave height, Hs, calculated using in this
study, is obtained from equation (4).

HS � 4
���
m0

√
, m0 �

1
t2 − t1

􏽚
t2

t1

η2dt, (3)

t2 –t1 is the time domain and η is the free-surface elevation.
A flter-pass module is utilized to achieve Hs. Using the

discrete Fourier transform, this module may apply a band-
pass flter to the surface elevation at various frequency
ranges and time steps.Tis is done to avoid the generation of
time-series data about surface elevations at a large number of
places.

Hx(X, Y) � 4
��������

mx(X, Y)

􏽱

,

mx(X, Y) � 􏽚
f+

f
􏽚

t2

t1

η(X, Y) cos (2πf · t)dt􏼠 􏼡

2

+ 􏽚
t2

t1

η(X, Y) sin (2πf · t)dt􏼠 􏼡

2
⎡⎣ ⎤⎦

∆T

2
df.

(4)

3. Materials and Methods

Tis study uses ANN andM5MTmodels and their combination
with wavelet transform decomposition. Terefore, a review of
the theoretical foundations of these methods seems necessary.
Te framework of this study is presented in Figure 2.

Normalization of data is the frst stage in designing
a forecast using machine learning. It can facilitate the
training process [27]. Tis data fall between 0 and 1. Nor-
malization data are presented as follows:

Z �
xi − xmin

xmax − xmin
, (5)

where Z is the normalized data value, xi is the data before
normalization, and xmin and xmax are the prenormalization
minimum and maximum data values, respectively.

3.1. Artifcial Neural Network (ANN). Each ANN model is
typically made up of three layers (Figure 3).Te input layer is
responsible for introducing network input parameters, the
output layer is responsible for network output parameters,
and the hidden layer (layers between the input and output
layers) is responsible for information processing [28–31].

Te main control parameters of artifcial neural network
methods are between neurons, which are called connection
resistors called weights. Each neuron receives the weighted
outputs (Wj,i, xi) of the neurons of the previous layer, and
together they produce a net input to the neuron j (netj)
according to the following equation:

netj � 􏽘 Wj.ixi + bj. (6)

Te multilayer perceptron (MLP) neural networks are
a type of a progressive neural network in which each neuron
in one layer is connected to the neurons in the next layer.

MLP learning, like multilayer networks, employs a variety of
learning algorithms, the most common of which is the error
propagation algorithm. An algorithm was used in the cur-
rent study. Matlab tool was used to simulate ANN structures
and determines the best structure.

Te ANN architecture is critical to the network’s
understanding of variable relationships. Te problem
always dictates a portion of the neural network archi-
tecture [33]. According to the problem, the number of
network inputs equals eight, and the number of output
layer neurons equals one. To obtain this, various ar-
chitectures were created, trained, and tested. Finally, in
a two-layer network with fve neurons in the frst layer
(hidden layer) and one neuron in the second layer
(output layer), the transfer function Tangent Sigmoid for
the frst layer is introduced as the best network archi-
tecture in this prediction. Te network architecture and
the linear transfer functions (purelin) and (tansig) for the
second layer are shown in Figure 3.

3.2. M5 Model Tree. Te decision tree in data mining is
a model used to represent classifers and regressions. Tis
tree consists of a number of nodes and branches [34]. Te
leaves represent the classes in the decision tree that performs
the classifcation operation. In each of the other nodes
(nonleaf nodes), a decision is made according to one or more
specifc attributes.Te decision tree is a popular data mining
technique because of its simplicity and comprehensibility; in
other words, the decision tree alone describes everything and
does not need an expert to interpret the output [35]. In fact,
it is a graphical method, and because of its interpretation, it
may be easier to classify than other techniques. Obviously,
having too many nodes in a tree can make it difcult to
graphically display the decision tree.Te frst step in creating
a tree model is to use a branch criterion performed by one of
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the predictor variables. Te branching criterion for the M5
algorithm is based on the standard deviation function of the
values of each class obtained in each node. Tis method is
the basis of classifcation methods called entropy [36].
Entropy can be interpreted as a measure of the turbulence of
a system.Te branch criterion expresses the amount of error
in that node, and the model calculates the minimum ex-
pected error as a result of testing each attribute in that node.
Model error is generally measured by measuring the ac-
curacy of predicting target values of unseen items [37]. Te
equation for calculating the standard deviation reduction
(SDR) is as follows:

SDR � Sd Ti( 􏼁 − 􏽘
N

i�1

│Ti│
│T│

Sd Ti( 􏼁, (7)

where T is a set of samples that enter each node, Sd indicates
standard deviation, andN displays the data number. Because
of the branching process, the data in the child nodes have
a lower standard deviation than the data in the mother node
and are thus purer. M5 chooses the trait that maximizes the
expected reduction after maximizing all possible branches.

Te formed tree in the M5MTneeds to have its branches
trimmed so that the overftting issue can be resolved. Tis is
accomplished by switching out a subtree for a leaf in the tree.
Terefore, the second step in the process of designing a tree
model is to perform a pruning operation on the mature tree
and then replace the subtrees with linear regression func-
tions. Tis technique for the generation of tree models

divides the space of input parameters into areas that contain
smaller subspaces and then ft a linear regression model in
each of those areas.

3.3. Wavelet Transform. Wavelet transform is one of the
efcient mathematical transformations in the feld of
signal processing. Mathematical transformations are used
to obtain additional information from a signal that is not
available from the signal itself. Wavelet analysis like
Fourier analysis, which is one of the most popular
mathematical transformations, deals with the expansion
of functions, but this expansion is based on wavelets
[38, 39]. Te wavelet is a characteristic function of a hy-
pothesis with a mean of zero and, unlike trigonometric
polynomials, is studied locally in space. In this way,
a closer relationship between some functions and their
coefcients is possible, and more numerical stability is
provided in the reconstruction and calculations [2]. Any
application that is based on fast Fourier transformation
can be formulated using wavelets to obtain more spatial or
temporal information [40]. A wavelet function is a func-
tion that has two important properties, namely, fuctu-
ating and short-lived. In other words, ψ (x) is a wavelet
function if and only if its Fourier transform ψ (ω) satisfes
the following condition:

􏽚
+∞

−∞

│ψ(ω)│

│ω│
2 dω< +∞. (8)
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Figure 1: Study area. (a and b) Hambantota Port, Sri Lanka; (c and d) Sanmen Bay, China.
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Tis condition is known as the wavelet acceptance
condition ψ (x). Te previous relation can be considered
equivalent to the following formula that must be satisfed:

ψ(0) � 􏽚
+∞

−∞
ψ(x)dx � 0. (9)

Tis property of a function with a mean of zero is not
very restrictive, and many functions can be called wavelet
functions based on it. ψ (x) is a mother wavelet function in

which the functions used in the analysis are scaled and
shifted along with the analyzed signal by two mathematical
operations of shifting and scaling. Finally, the wavelet co-
efcients at any point in the signal (b) and for any value on
the scale (a) can be calculated by the following equation:

ψa.b(x) �
1
��
a

√ ψ
x − b

a
􏼠 􏼡. (10)

Wind and Wave
Field Data 

ANN M5 Wavelet
Transform

WANN Wavelet-M5

Train Test Train Test

Train Test Train Test

Figure 2: Data analysis framework.

a

n

a=tansig (n)

a

n

a=purelin (n)

Input

Hidden

Output

Figure 3: ANN structure schemes.
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Te operation of scaling, as a mathematical operator,
expands or compresses the signal for the assumed function
f(t); if (s< 1), the expanded state is f(st), and if (s> 1), the
compressed state is the function f(t). As shown in equation
(3), in the defnition of the wavelet transform, the term of
scale (a) is in the denominator, and therefore, if it is (a< 1),

the signal is compressed, and if it is (a> 1), the signal is
expanded. Also, in the previous equation, parameter (b) is
modeled as a function of delay or precedence [41]. Finally,
the continuous wavelet transform (CWT) can be written as
follows:

CWT(a.b) � Wf(a.b) �
1
��
a

√ 􏽚
+∞

−∞
f(x)ψ

x − b

a
􏼠 􏼡dx � 􏽚

+∞

−∞
f(x)ψa.b(x)dx. (11)

3.4. Hybrid Wavelet-Artifcial Neural Network Model
(WANN). Te WANN model has a structure that is com-
posed of three layers.Te frst layer of the network comprises
wavelet neurons, and their input is a subseries obtained by
applying a wavelet transform to a time series of wave height
evaluations. In order to determine the weight coefcients of
wind speed at the height of 10meters in the network
structure, the WANN model uses the neural network to
perform the necessary calculations [42]. Te time series of
the wave height assessment is initially segmented into
subseries using a variety of scales according to the structure
of this model. For instance, time series can be segmented
into one long-term scale and several short-term scales (in
order to monitor transient properties and fuctuations).

3.5. Hybrid Model Wavelet-M5. Te Wavelet-M5 hybrid
model that has been proposed has a total of four stages [40].
In the frst step, information pertinent to the study area’s
wave height evaluation is compiled from the data collected
[43]. Te preprocessing of data is the second step and is
necessary because there is a possibility that the estimated
height of the waves will change depending on the spatial and
temporal distributions of the data. Efective preprocessing
has the potential to make data-driven methods more pro-
ductive. One of the potential approaches to preprocessing
the data is the use of wavelet analysis. Clustering the data is
done in the third step of the process, not only so that the data
can be organized into similar groups but also so that the
structure of the model can be optimized. Clustering the data
serves the following two purposes: frst, it helps organize the
collected information into meaningful categories; second, it
enables the third step of the process, which is to optimize the
structure of the model. When determining the nature of the
connection between independent and dependent variables,
we use the M5MT, which is an application of the tree
classifcation method. Te repetitive patterns that are
present in the data are identifed and extracted during the
fnal stage of the model that has been proposed. Tis is done
in order to fnally provide tree regression models for each of
the subgroups [8, 44].

4. Results and Discussion

Tewave characteristics at any given time are determined by
the current wind speed and previous wind speeds. As a re-
sult, the height of the waves may be afected by the wind

speed 10 hours earlier. Te following equation is used to
simulate and estimate the height of waves in Hambantota
Port.

Hs � f Ut, Ut−1, Ut−2, Ut−3, Ut−4, Ut−5, Ut−6, Ut−7( 􏼁, (12)

where t is the time in hour, U is wind speed at 10meter above
the sea level in the Buoy location, and Hs is the observed
signifcant wave height in the Buoy location. In order to
evaluate and develop the models, wind data and Acoustic
Waves and Current (AWAC) statistics of the Hambantota
Port, in 2020 have been used. For this purpose, 80% of the
data has been used to train soft computational models, and
the rest of the data have been used to evaluate and validate
the performance of trained models.

To evaluate the performance of models, statistical
measures are utilized. For verifcation and quantitative
evaluation of the performance of the presented models,
statistical indicators such as Nash–Sutclife Model Efciency
Coefcient (NSE), Mean Average Error (MAE), Root Mean
Square Error (RMSE), and correlation coefcient (R) have
been used. In the mentioned relations of N number of
observational data, Xi and Yi indicate observational and
predicted parameter, respectively. X and Y are average
observational and predicted values, respectively. Te per-
formance of models was evaluated using the error indices.

NSE � 1 −
􏽐

N
i�1 Xi − Yi( 􏼁

2

􏽐
N
i�1 Yi − Y( 􏼁

2 ,

MAE �
1
N

􏽘

N

i�1
Xi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

RMSE �

��������������

1
N

􏽘

N

i�1
Xi − Yi( 􏼁

2

􏽶
􏽴

,

R �
􏽐 Xi − X( 􏼁 Yi − Y( 􏼁

��������������������

􏽐 Xi − X( 􏼁
2

􏽐 Yi − Y( 􏼁
2

􏽱 .

(13)

4.1. Development of ANN Model. A simple perceptron net-
work with sigmoid transfer function was used to develop the
model of artifcial neural networks. Determining and
selecting the optimal middle layers and the number of
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neurons in this layer in the ANN model have always been
a contentious issue. However, research has shown that the
use of a middle layer can be useful for modeling complex and
nonlinear problems. Te middle layer was obtained to be 18
through trial and error. It is important to note that a low
number of training repetitions can result in incomplete

training, whereas a high number of repetitions can result in
network retention or disruption during the training phase.
As a result, the optimal number of repetitions should be
considered so that the model’s quality is acceptable for both
training and testing. According to previous research, this is
between 150 and 200 [40]. As a result, an ANN model with
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Figure 4: Times series of test and train normalized signifcant wave height and the corresponding scatter diagram by the classic ANNmodel
(a–c) in the Hambantota Port (2020) and (d–f) in the Sanmen Bay (2017).

Table 1: Results of diferent modeling for the Hambantota Port at daily scales.

Input Output Case study Stage Model
Efciency criteria

P-value
NSE MAE RMSE R

Ut Hst

Hambantota Port Train

ANN

0.74 0.24 0.06 0.37 0.017
Test 0.66 0.27 0.12 0.34 0.021

Sanmen Bay Train 0.70 0.26 0.08 0.34 0.024
Test 0.63 0.31 0.14 0.30 0.037

Hambantota Port Train

WANN

0.93 0.18 0.01 0.43 <0.001
Test 0.90 0.21 0.04 0.40 <0.001

Sanmen Bay Train 0.91 0.20 0.03 0.42 <0.001
Test 0.87 0.22 0.06 0.38 0.001

Hambantota Port Train

M5

0.72 0.23 0.11 0.39 0.011
Test 0.64 0.28 0.13 0.36 0.033

Sanmen Bay Train 0.69 0.26 0.07 0.35 0.021
Test 0.60 0.30 0.16 0.30 0.051

Hambantota Port Train

Wavelet-M5

0.94 0.17 0.03 0.46 <0.001
Test 0.89 0.20 0.06 0.43 0.002

Sanmen Bay Train 0.88 0.18 0.04 0.42 <0.001
Test 0.84 0.22 0.08 0.38 0.002
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an optimal arrangement of 8×17×1 was obtained to esti-
mate wave height. To estimate the number of neurons in the
hidden layer, Nielson’s relationship is defned as follows:

N
H ≤ 2N

I
+ 1, (17)

where NH is the number of neurons in the hidden layer and
NI is the number of input parameters.

In the Hambantota Port, the straightforward ANN
model did not perform particularly well when attempting to
predict the signifcant wave height. It is possible that the
inability of the simple ANNmodel to deal with the instability
of the input time series is the single most important factor
contributing to this result. Meanwhile, in the Sanmen Bay as
well as Hambantota Port, the ANN model’s performance
was not desirable. Figure 4 presents the fndings of a com-
parison between the signifcant wave heights that were
observed and those that were simulated using ANN for the
train and test states. Te scatter plot for the observed and
simulated results in the train and test states is depicted in
Figures 4(c) and 4(f ) for Hambantota Port and Sanmen Bay,
respectively. Te values for the efciency criteria are pre-
sented in Table 1, which compares the train state to the test
state. Te traditional ANN model did not perform very well
in terms of predicting signifcant wave height in both case
studies.

4.2. Development Wavelet-Neural Network Model (WANN).
In this study, the outcomes of the WANN model and the
ANN model were compared with one another. Decom-
posing signifcant wave height data into subseries using
a wavelet neural network (WANN)model is a technique that
can be used to improve the accuracy of ANN models. In
a manner analogous to that of ANN modeling, the WANN
models were created by applying various ANN architectures
to various input combinations. Te results of diferent de-
composition levels for an input are listed in Table 1, along
with the best performance indices. To obtain the best
possible outcomes, various levels of decomposition, ranging
from level 2 to level 5, were scrutinized. Applying the wavelet
transform should result in an increase in the accuracy of the
model in comparison to the traditional ANN model and
should also result in an improvement in the model’s ef-
ciency, as shown in Table 1. A comparison of the simulated
and observed time series of the signifcant wave height for
the test and train states is presented in Figure 5, which is
based on the WANN model. Figures 5(c) and 5(f ) represent
a scatter plot of observed and simulated results in the train
and test states in the HambantotaPort and Sanmen Bay,
respectively. As can be seen, the WANNmodel outperforms
the traditional ANN model in terms of performance in the
both case studies. As a result, the WANN hybrid model is
signifcantly more appropriate for use in the investigation of
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Figure 5: Times series of test and train normalized signifcant wave height and the corresponding scatter diagram by the WANN model
(a–c) in the Hambantota Port (2020) and (d–f) in the Sanmen Bay (2017).
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the process of wave height. It is essential to utilize wavelet
transformation in order to boost the quantity of data that are
input. Although the model improved the accuracy of pre-
diction, in addition, the number of calculations increased
signifcantly, which increased the amount of time required to
perform the calculations.

4.3. Development M5 Model Tree. It is possible to partition
a difcult modeling issue into a number of manageable
subtasks, and the solution is to combine the answers to all of
these problems. In order to obtain an estimate of the height
of the waves in Hambantota Port, the tree structure depicted
in Figure 6 was obtained through the utilization of the
M5MT. In the M5MT, regression relations in the fnal leaves
are used to estimate the wave height. Tis is done so that the
target parameter can be estimated based on the input var-
iables that have been introduced to the model. It can be seen
in the tree structure that the M5MTofers up for inspection.
At the bottom of the tree, the fnal leaf, which contains
ffteen rectangles, is obtained. As a result, ffteen regression
relationships are presented in order to estimate the height of
the waves in Hambantota Port. Moving from the root node
at the top of the tree to the fnal leaves at the bottom of the
tree is sufcient, according to the M5MT, in order to fulfll

the requirements of each rule. Te numbers are displayed on
the various branches, each representing a boundary between
the various relationships shown. In order to categorize
models that are nonlinear by their very nature, the M5MT
divides the nonlinear model into classes that are capable of
being modeled by a straightforward linear regression. Ta-
ble 1 presents the fndings of the M5MT analysis of the
efciency of tree performance. Figure 7 is a comparison of
simulated and observed time series for the signifcant wave
height for the test and train states. Tis comparison is based
on the M5MT. Figures 7(c) and 7(f) illustrate a scatter plot
comparing the observed and simulated results obtained in
the train and test states in the Hambantota Port and Sanmen
Bay, respectively. Te results are summarized in Table 1, and
they demonstrate that the performance of the M5MT is
comparable to that of a traditional ANN model. Te M5MT
did not perform particularly well due to the stochastic nature
of the sea state process. Tis was similar to the problem the
traditional ANN model had.

4.4. Development Wavelet M5 Model Tree (Wavelet-M5).
Wavelet decomposition was used to transform the wave
height time series into subsignals to manage the involved
trend in the main series, which is analogous to the WANN
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Figure 8: Times series of test and train normalized signifcant wave height and the corresponding scatter diagram by the wavelet- M5model
(a–c) in the Hambantota Port (2020) and (d–f) in the Sanmen Bay (2017).
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model. After that, M5MT was constructed with the inputs
from each of the subsignals. Table 1 contains the detailed
fndings regarding the Wavelet-M5 performance regarding
its efectiveness. In Figure 8, a comparison of simulated and
observed time series for signifcant wave height is presented
for the test and train states based on the wavelet-M5 model.
Tis comparison is made for both of these states when they
were in the train state. A scatter plot of the observed and
simulated results in the train and test states in the Ham-
bantota Port and Sanmen Bay is depicted in Figures 8(c) and
8(f), respectively. As seen in Table 1, the application of
wavelet transform improved both the model’s accuracy and
overall efciency, which occurred as a direct consequence of
the unfavorable results produced by the M5MT. As a result,
the Wavelet-M5 hybrid model has a performance that is
signifcantly superior to that of the M5 model in both case
studies.Te fact that the M5MTdoes not perform any sort of
data preprocessing is one of the most straightforward
conclusions that can be drawn from the table. As a result, the
M5NT on its own cannot be considered a tool for
processing data.

4.5.Comparisonof theModels. Te results of theWANN and
wavelet- M5models have less scatter compared to the results
of other models, and the data are closer to the optimal line.
Tis can be seen in the scatter plots, which are shown in
Figures 4, 5, 7, and 8. While the results of the traditional
ANN model and the M5MT are signifcantly scattered from
the optimal line, the results of the M5MT are more con-
sistent. Nevertheless, the results of the comparison indicate
that hybrid models are preferable to the straightforward
computational model in terms of the desired outcomes. As
a result, in the Hambantota Port, the NSE values for ANN
and M5MTare 0.74 and 0.72, respectively, for the train state
and 0.66 and 0.64, respectively, for the test state. On the
other hand, it was discovered that the WANN and wavelet-
M5 models are more accurate than the ANN and M5MT. As
a result, the NSE for the WANN and wavelet- M5 models is
0.93 and 0.94 for the train state, and it is 0.90 and 0.89 for the
test state, respectively.

In the Sanmen Bay, the NSE values for ANN and M5MT
are 0.70 and 0.69, respectively, for the train state and 0.63
and 0.60, respectively, for the test state. On the other hand, it
was discovered that the WANN and wavelet-M5 models are
more accurate than the ANN and M5MT. As a result, the
NSE for the WANN and wavelet-M5 models is 0.91 and 0.84

for the train state, and it is 0.87 and 0.84 for the test state,
respectively. As a result, the performance of the proposed
hybrid model is desirable in both case studies, and it is
comparable to the quality of the WANN hybrid model,
which is known as the model that is considered to be the
optimal model.

According to Table 2, hybrid models’ performance is
better compared to simple models’ performance. As a result,
the performance of the hybrid wavelet- M5 model is im-
proved by 37 percent compared to the M5MTperformance.
In addition, the WANN demonstrated a performance that
was approximately 41% superior to that of the traditional
ANN model.

According to Table 2, hybrid models’ performance is
better compared to simple models’ performance. As a result,
the performance of the hybrid wavelet-M5 model is im-
proved by 37 and 33 percent compared to the M5MT
performance in Hambantota Port and Sanmen Bay, re-
spectively. Furthermore, in Hambantota Port and Sanmen
Bay, theWANNperformed approximately 41 and 38 percent
better than the classic ANN model, respectively.

5. Conclusion

Machine learning is used in a variety of sciences, including
coastal engineering and management. Surveying the wave’s
height nearshore and ports is critical for achieving sus-
tainable development. Te performance of soft computing
models, including the classic ANN andM5MTversus hybrid
models of WANN and Wavelet-M5 models is evaluated in
the Hambantota Port, Sri Lanka, and Sanmen Bay, China. In
this study, the wind and wave daily data from the AWAC
sensor for Hambantota Port in 2020 and Sanmen Bay 2017
were used. Statistical indicators and scatter plots were used
to compare the performance of these models. Wave eval-
uation was used to examine the characteristics of each
model. Approximately 80% of the data was used to train and
evaluate soft computational models, with the remainder
used to validate how well the models performed after
training in both case studies. Te results show that hybrid
methods incorporating wavelet decomposition improve
simulation accuracy. Furthermore, the obtained results in
both case studies demonstrated that the wavelet-M5 and
WANN models outperformed the individual ANN and M5
models. Meanwhile, in the ANN method, problem in-
formation and knowledge are stored in a large set of co-
efcients and weights of connections between neurons,

Table 2: Comparison of the hybrid models with ANN and M5MT (according to efciency criteria average).

Model Case study Train (%) Test (%)

WANN vs. ANN Hambantota Port 39 41
Sanmen Bay 36 38

Wavelet-M5 vs. M5 Hambantota Port 36 37
Sanmen Bay 30 33

WANN vs. M5 Hambantota Port 35 37
Sanmen Bay 32 35

Wavelet-M5 vs. ANN Hambantota Port 33 34
Sanmen Bay 30 32
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making it difcult to determine the relationship between
input variables and the target parameter. Because the values
of the statistical indicators of the models are so similar, it is
suggested that the WANN and Wavelet-M5 hybrid models
should be used to evaluate the wave height in the study area.

When the model is presented with more than two-time
series inputs and when wavelet transformations are per-
formed, the number of inputs signifcantly increases, which
is regarded as a limitation. It should also be noted that this
results in an increased number of inputs. Tis approach
relies on data, which is a limitation. If feld data are not
available, we need simulation results to further realize the
wave characteristic.
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Te data supporting the fndings of this study are available
upon request.
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Pressure �uctuations are a critical phenomenon that can endanger the safety and stability of hydraulic structures, especially stilling
basins. Hence, the accurate estimation of the dimensionless coe�cient of pressure �uctuations (CP′) is critical for hydraulic
engineers. ­is study proposed predictive soft computing models to estimate CP′ on sloping channels. ­erefore, three robust soft
computing methods, including extreme learning machine (ELM), group method data of handling (GMDH), and M5 model tree
(M5MT), were used to estimate CP′. ­e results revealed that ELM was more accurate than GMDH and M5MTmethods when
comparing statistical indices, including correlation coe�cient (CC), root mean square error (RMSE), mean absolute error (MAE),
scatter index (SI), index agreement (Ia), and BIAS values. ­e performance of ELM was found to be more accurate (CC= 0.9183,
RMSE= 0.0067, MAE= 0.0051, SI = 11.88%, Ia = 0.9569) when compared with the results of GMDH (CC= 0.8818, RMSE= 0.0078,
MAE= 0.0058, SI = 13.89%, Ia = 0.9361) and M5MT (CC= 0.6883, RMSE= 0.0120, MAE= 0.0090, SI = 21.28%, Ia = 0.7905) in the
testing stage. In addition, the BIAS values revealed that ELM slightly overestimated the values of CP′, especially at the peak point
compared with GMDH and M5MTresults. Overall, the suggested soft computing techniques worked well for predicting pressure
�uctuation changes in the hydraulic jump.

1. Introduction

Stilling basins are the most widely used dissipation hy-
draulic structures of large dams. Energy dissipation in
stilling basins is related to hydraulic jumps with high
turbulent �ow. Hydraulic jump is the common phe-
nomenon for �ow energy dissipation in the stilling basins.
­is phenomenon transforms the supercritical �ow into a
subcritical �ow at a short distance. ­is is also accom-
panied by large-scale turbulence, surface waves, air en-
trainment into the �ow, an increase in �ow depth, and
considerable energy dissipation in the water �ow [1, 2].

­e turbulent �ow within stilling basins is related to the
movement of large-scale vortices and severe pressure
�uctuations, which may cause signi¢cant damage in
stilling basins through cavitation, erosion, lifting force,
and material fatigue [3]. ­e importance of pressure
�uctuations in hydraulic jumps was revealed after the
destruction of the Karnafoli and Malpaso dams in Ban-
gladesh and Mexico, respectively [4]. ­erefore, pressure
�uctuations in hydraulic structures have included a
considerable volume of hydraulic engineers’ investiga-
tions. Hydraulic models are standard tools for measure-
ments of pressure �uctuations. Experimental studies were
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carried out for the analysis of characteristics of pressure
fluctuations at the flip buckets and stilling basins.

Soft computing methods are alternative tools com-
pared with traditional regression approaches and ana-
lytical solutions for modeling complicated problems and
systems [5]. Moreover, soft computing techniques are
much more cost-effective and have less run time than
experimental studies. It is noteworthy that soft computing
models are newer tools than experimental studies. ,e
capability of different soft computing approaches has been
proven for modeling CP

′ in the hydraulic jump [6–8].
,ese models were developed and assessed using exper-
imental data. ,e suggested soft computing methods were
more accurate than conventional regression schemes for
predicting CP

′ during the hydraulic jump. Moreover,
Samadi et al. [9] modeled dynamic pressure distribution
in flip bucket spillways using a variety of soft computing
approaches and provided simple, high-precision mathe-
matical expressions for estimating it.

According to the literature review’s assessment, there
were few investigations into the performance of soft com-
puting techniques for estimating pressure fluctuations in
hydraulic structures. In addition, the applications of ELM,
GMDH, and M5MTmethods have not yet been reported in
estimating pressure fluctuations. However, the results
mentioned above show that soft computing methods are a
desirable alternative to model pressure fluctuations in hy-
draulic structures.

,e ELM algorithm is an advanced method that is
constructed on a single hidden layer feed-forward neural
network (SFLN) [10]. ,e ELM improves training time
and accuracy by transforming training data into fixed-
length batches and only updating the weight without
retraining the trained samples. ,e ELM approach has
been successfully reported for longitudinal dispersion
coefficients in water pipelines [11], compressive strength
concrete estimation [12], and predicting total dissolved
gas [13].

,e group method of data handling is a set of induction
techniques that can be used to make mathematical modeling
of multi-parametric datasets. GMDH algorithm uses an
inductive approach to sort and order more complex poly-
nomial models, with an external criterion selecting the best
result. ,e application of GMDH has been widely and
successfully carried out in scour depth estimation and water-
related engineering problems [14–16].

M5MT is a common decision tree method that uses
piecewise multiple linear regression equations to approxi-
mate nonlinear functions. ,eM5MTwas applied to predict
drought events [17], scour depth [15, 18], alga growth in
reservoirs [19], the capacity of shallow foundations [20], and
groundwater modeling [21].

,e major goal of this study is to investigate the use-
fulness and capability of ELM, GMDH, and M5MT for
predicting CP

′ is taking place during the hydraulic jump on
sloping channels. ,e author’s knowledge indicated that
ELM, GMDH, and M5MT applications had not been in-
vestigated yet for prediction CP

′. ,erefore, the current

research in the first study evaluates the ability of ELM,
GMDH, and M5MT to predict CP

′ occurring in hydraulic
jumps on sloping channels.

2. Materials and Methods

,e data description and soft computing methods, including
ELM, GMDH, and M5MT, are briefly explained in the
following subsections.

2.1. Data Description. Data were collected from reliable and
published experimental results of Gunal [22]. During the
hydraulic jump phenomenon in the laboratory, pressure
fluctuations occurred on the sloping channel. Gunal’s [22]
experiments were conducted in a 91 cm wide and 320 cm
long rectangular flume. ,e inclined angles of the sloping
channel were set to 10, 20, and 30 degrees. ,e cross-sec-
tional representation of the hydraulic jump downstream of
the sloping channel is displayed in Figure 1.

Guven [7] determined the relationship between
���

P′
2

􏽱

as
root mean square value of the pressure fluctuations with
characteristics of the flow and geometry of channels as
follows:
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where P(x, y) is the mean pressure, P(x, y, n∆t) is the value
instantaneous of pressure, N is the number of data collected
in a discrete-time series, and ∆t is the sampling time step.

In (1), yt is the depth of tail-water downstream of the
stilling basin; y1 is the gate opening of sluice gate; V1 is the
velocity issuing from the gate; x is the distance between the
horizontal and inclined parts’ intersection; g is the accel-
eration of gravity; ρw is water’s mass density; and θ is the
angle of the sloping section of the flume. Finally, the di-
mensional analysis provided the dimensionless functional
form of (1) as follows [7]:

CP
′ � f Fr1,

x

y1
,
yt

y1
, θ􏼠 􏼡, (3)

where CP
′ �

���

P′
2

􏽱

/V2
1/2g � RMS/V2

1/2g and Fr1 � V1/
����
gy1

√

are the dimensionless coefficient of pressure fluctuations and
inflow Froude number, respectively. CP

′ is an important
factor used to describe pressure fluctuations.

2.2. Data Preparation for the Development of the Soft Com-
putingApproaches. Overall, 112 values were obtained for CP

′
under different flow conditions by recording pressure data.
,e statistical indices in the testing and training data sets
should be similar; otherwise, we will be unable to test our
models under certain hydrodynamic conditions that are
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designated for the train set [23]. ­erefore 80% of all data is
randomly chosen for training, and the rest is used to assess
the created models. ­e major statistical parameters of the
testing and training data set are shown in Table 1. As seen in
Table 1, the statistical parameters for testing and training
subsets were close.

2.3. Extreme Learning Machine (ELM) and Model
Development. Although the standard backpropagation
neural network has several advantages, it also has some
limitations, including tuning the parameter settings by
selecting the number of hidden layers, momentum co-
e�cient, and learning rate values. It su¦ers from the it-
erative learning process used to determine the weights,
which takes an extended period. In addition, there is a
possibility of a local minimum. By contrast, ELM provides
it with the advantages of rapid convergence, fewer pa-
rameters to tweak, and a high degree of generalization
[24].

­e ELM comprises a single hidden layer that contains L
nodes. ­e following equation is valid for N arbitrarily
separate samples (xi, ti), with an activation function g(x),
randomly distributed weights (wi), randomly distributed
biases (bi), and output weights (βi).

∑
L

i�1
βig wixj + bi( ) � Oj, j � 1, . . . .N, (4)

where β � [β1, . . . . . . , βI]
T is a vector containing the output

weights of the hidden layer of L nodes and the output node.
It is possible to approximateN samples with zero error using
typical SLFN with L hidden nodes and activation function
g(x). ­is means that

∑
N

j�1
‖Oj − tj‖ � 0. (5)

In other words, there are βi, wi, and bi such that

∑
L

i�1
βig wixj + bi( ) � tj, j � 1, . . . .N. (6)

Let

H �
g wixi + b1( ) · · · g wLxi + bL( )
⋮ ⋱ ⋮
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And

T � tT1 . . . t
T
L]
T
.[ (8)

­en,

Hβ � T. (9)

H is referred to as the neural network’s hidden layer
output matrix. Huang et al. [24] prove L≤N hidden neurons
as necessary for in¢nitely di¦erentiable activation functions.
H remains unchanged once the biases and weights of hidden
nodes are established, and only β needs to be estimated. ­e
least-squares solution with a minimum norm for (9) is as
follows:

min H w1 wL, b1 bL( )β − T
����

����. (10)

H is square if the neurons in the hidden layer equal the
training set (N), and β may be calculated by inverting H.
Nevertheless, to obtain higher generalization, the number of
hidden nodes is modi¢ed, and it may be less than N. ­en,
the Moore–Penrose generalized inverse of H must be uti-
lized in this case.

β̂ � H†T, (11)

whereH† can be used to validate the algorithm because it is
the Moore–Penrose generalized inverse of H. ­e ELM
model that has been constructed has the following simple
general form for the prediction of CP′:

CP′ �
1

(1 + exp (In W × In V + BHI))[ ]
T

× OutW, (12)

where InV is the input variables, InW is the input weight
matrix, BHI is the hidden neuron vector’s bias, and OutW is
the output weight vector.­e following relations were obtained
for the ELM model to calculate CP′.

Water level

V1
y1

yt

θ

Figure 1: ­e cross-sectional representation of a hydraulic jump downstream of a sloping channel.
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. (13)

2.4. Group Method of Data Handling (GMDH) and Model
Development. ,e GMDH polynomial neural network in-
troduced by Ivakhnenko [25] is a feed-forward neural
network. ,is algorithm is a self-organizing system that is
used to search progressively for the optimal solution to
complicated nonlinear problems. ,is algorithm approxi-
mates the relationship between input and output based on
quadratic polynomials. ,erefore, GMDH creates new
neurons in each layer by connecting pairs of neurons with
quadratic polynomials. ,e goal of a mathematical model
problem of GMDH is to discover a function (􏽢f) that can be
used to approximate an original function (f) in order to
estimate the model’s output (􏽢y) for an assumed input vector
X including n input variables [26]. For this, given n data
instances of multi-input single-output data pairs, the fol-
lowing results are obtained:

y
i � f X) � f(xi1, xi2, xi3, . . . , xin( 􏼁; (i � 1, 2, . . . , M).

(14)

A mathematical formulation describes the general
equation between input-output variables. ,e goal now is to

Table 1: ,e main statistical parameters of training and testing data set for developing the proposed soft computing methods.

Dataset Variables Parameter Min Max Avg St. dev.

Training Input

Fr1 4.944 8.662 6.712 1.473
x/y1 0.750 31.875 11.993 7.761
yt/y1 6.750 11.111 8.992 1.721
θ 10 20 20.333 8.670

Output CP
′ 0.027 0.096 0.056 0.017

Testing Input

Fr1 4.944 8.662 6.325 1.357
x/y1 0.750 28.333 12.550 8.731
yt/y1 6.750 11.111 8.509 1.613
θ 10 30 18.636 8.888

Output CP
′ 0.028 0.090 0.057 0.018

,e variables of Fr1, x/y1, yt/y1, and θ are considered as input variables of soft computing methods for the prediction of CP
′.
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design a GMDHnetwork in such a way that the square of the
deviation output and the estimated output is as little as
possible, which means:

􏽘

M

i�1
’ 􏽢f xi1, xi2, xi3, . . . , xin( 􏼁 − yi􏽨 􏽩

2
⟶ min . (15)

,e mathematical expression between input and output
variables can be described by a sophisticated discrete variant
of the Volterra function called the Kolmogorov–Gabor
polynomial. ,is series is presented in the following forms.

yw0 + 􏽘
n

i�1
wixi + 􏽘

n

i�1
􏽘

n

j�1
wijxixj + 􏽘

n

i�1
􏽘

n

j�1
􏽘

n

k�1
wijkxixjxk + · · · . (16)

It is employed in this study to calculate the GMDH
network’s quadratic polynomial, which can be represented
as [27]:

􏽢y � G xi, xj􏼐 􏼑 � w0 + w1xi + w2xj + w3xixj + w4x
2
i + w5x

2
j . (17)

,emathematical expression (18) shows how neurons in
a GMDH network are linked together to create the equation
between input-output variables. Using the least-squares
regression method, the weighting coefficient values of (17)
are determined. ,is means that the deviation output, y, and
the one that is calculated, 􏽢y, for each pair of xi and xj input
variables are as minimal as possible. ,us, the weighting
coefficients values of the quadratic function Gi are deter-
mined in order to optimize the fit of the output throughout
the entire number of sample data pairs, that is [27].

E �
􏽐

M
i�1 ’ yi − Gi( 􏼁

2

M
⟶ min . (18)

In its ordinary form, the GMDH method considers all
possible combinations of two input variables from a total of
n input variables in order to generate the regression poly-
nomial in the form of (17) that fits the dependent data (yi, i �

1, 2, . . . ,M) the best in a least-squares scheme. As a con-
sequence, the initial layer of the GMDH network’s archi-
tecture will be selected with C2

n � n(n − 1)/2 input neurons
for the creation of the quadratic polynomial based on ob-
servations (yi, xip, xiq); (i � 1, 2, . . . , M)􏽮 􏽯 for varied
p, q ∈ 1, 2, . . . , n{ }. To put it another way, it is currently
possible to generate M data triples

(yi, xip, xiq); (i � 1, 2, . . . , M)􏽮 􏽯 from observations by uti-
lizing such p, q ∈ 1, 2, . . . , n{ } in the following way:

x1p x1q y1

x2p x2q y2

xmp xmq ym

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

By replacing the quadratic sub-expression in the shape of
(17) for each row of M data triples, the matrix equation
shown below is simple to construct.

AW � Y, (20)

where W and Y are the vectors of unknown quadratic
polynomial weighting coefficients in (17) and a vector
containing the observed values of outputs, respectively.

W � w0, w1, w2, w3, w4, w5􏼈 􏼉
T
,

Y � y1, y2, y3, . . . , yM􏼈 􏼉
T
.

(21)

,e superscript Tdenotes the matrix’s transposition. It is
self-evident that:

A �

1 x1p x1q x1px1q x
2
1p x

2
1q

1 x2p x2q x2px2q x
2
2p x

2
2q

1 xmp xmq xmpxmq x
2
mp x

2
mq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

To solve regression analysis problems, we employ the
least-squares approach.

W � A
T
A􏼐 􏼑

− 1
A

T
Y. (23)

,is returns the vector with the best quadratic (17)
weighting coefficients for the entire set ofM data triples. It is
worth noting that this technique is replicated for each
neuron in the subsequent hidden layer, depending on the
network’s connectivity structure. Using the GMDH algo-
rithm, the following GMDH network was obtained for the
prediction CP

′ (see Figure 2).
With respect to Figure 2, the following equations were

obtained for the prediction CP
′ using the GMDH approach.

,e first layer output:

(C
′∗
P 􏼓

1

1
� 0.1101 − 0.0110

yt

y1
􏼠 􏼡 + 3.6904(θ) + 6.2904 × 10− 4 yt

y1
􏼠 􏼡

2

+ 8.3932 × 10− 5
(θ)

2
− 3.0321 × 10− 4 yt

y1
􏼠 􏼡(θ),

(C
′∗
P 􏼓

1

3
� 0.1253 − 0.0180 Fr1( 􏼁 − 5.5504 × 10− 4

(θ) + 0.0013 Fr1( 􏼁
2

+ 9.1284 × 10− 5
(θ)

2
− 3.02542 × 10− 4

Fr1( 􏼁(θ),

(C
′∗
P 􏼓

1

4
� 0.0979 − 0.0079 Fr1( 􏼁 + 0.0014

x

y1
􏼠 􏼡 + 8.1446 × 10− 5

Fr1( 􏼁
2

− 6.6223 × 10− 5 x

y1
􏼠 􏼡

2

+ 5.4575 × 10− 5
Fr1( 􏼁

x

y1
􏼠 􏼡,

(C
′∗
P 􏼓

1

6
� 0.0109 + 0.01502

yt

y1
􏼠 􏼡 + 0.0011

x

y1
􏼠 􏼡 − 0.0011

yt

y1
􏼠 􏼡

2

− 6.2790 × 10− 5 x

y1
􏼠 􏼡

2

+ 5.8831 × 10− 5 yt

y1
􏼠 􏼡

x

y1
􏼠 􏼡.

(24)
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­e second layer output:

(C′∗P )
2

1
� 0.1382 − 2.6925(C′∗P )

1

4
− 1.7543(C′∗P )

1

6
− 1.3848 × 103 (C′∗P )

1

4
( )

2

− 1.3189 × 103 (C′∗P )
1

6
( )

2

+ 2.7568 × 103 (C′∗P )
1

4
( ) (C′∗P )

1

6
( ),

(C′∗P )
2

2
0.1671 − 0.7202(C′∗P )

1

1
− 4.8455(C′∗P )

1

6
+ 31.2869 (C′∗P )

1

1
( )

2

+ 70.9947 (C′∗P )
1

6
( )

2

− 41.3749 (C′∗P )
1

1
( ) (C′∗P )

1

6
( ),

(C′∗P )
2

3
0.1845 − 1.1091(C′∗P )

1

3
− 5.1238(C′∗P )

1

6
+ 36.6985 (C′∗P )

1

3
( )

2

+ 75.5852 (C′∗P )
1

6
( )

2

− 45.3275 (C′∗P )
1

3
( ) (C′∗P )

1

6
( ).

(25)

­e output layer:

(C′∗P )
3

1
0.0337 − 0.4779(C′∗P )

2

1
+ 0.1849(C′∗P )

2

2
+ 6.7083 (C′∗P )

2

1
( )

2

+ 5.1880 (C′∗P )
2

2
( )

2

− 0.2282 (C′∗P )
2

1
( ) (C′∗P )

2

2
( ). (26)

Finally, the value of CP′ is calculated from the above
formulations of GMDH. As seen with replacing the input
variables with the GMDH formulation, the (C′∗P )

3
1 approxi-

mate the outcome GMDH network for prediction of CP′.

2.5. M5 Model Tree (M5MT) and Model Development.
M5MT is one of the most widely used decision tree tech-
niques in data-driven modeling. In the M5MT, the entire
input domain is recursively partitioned into subdomains,
with each subdomain being predicted using a multiple linear
regression model. ­e graphical M5MT is constructed from
a root node, the number of binary branches, a group of inner
nodes (splits), and a number of terminal nodes (leaves) [28].
For this reason, the resulting tree model has a clear decision
structure and is understandable for everyone.

­e constructing, pruning, and smoothing of the tree are
the three main components of the M5MT algorithm. ­e
splitting criterion is used to construct the primary tree. ­e

expected reduction in error resulting from evaluating each
attribute at the node is calculated using this splitting cri-
terion. A measure of the error at a node is de¢ned as the
standard deviation of the class values that reach the node.
After that, the attribute with the highest anticipated error
reduction is chosen. ­e following formula is used to get the
standard deviation reduction (SDR) for M5MT:

SDR � s d(T) −∑
i

Ti
∣∣∣∣
∣∣∣∣

|T|
× s d Ti( ), (27)

where Tdenotes the set of instances that reach the node, Ti is
the result of separating the node according to the attribute
chosen, and s d denotes the standard deviation [29]. To stop
splitting, either only a few examples remain, or their class
values are less than 5% of the initial instance set’s standard
deviation. It is possible to encounter an over-¢tting problem
based on training data during the creation tree process.
Pruning is a technique that has been employed in trying to
alleviate this di�culty in the past. It decreases the size of the

Input layer First layer Second layer Output layer

Fr

yt/y1

x/y1

θ

(Cʹ*)P 1
1

(Cʹ*)P 3
1

(Cʹ*)P 4
1

(Cʹ*)P 5
1

(Cʹ*)P 5
1

(Cʹ*)P 5
2

(Cʹ*)P 1
3(Cʹ*)P 2

2

(Cʹ*)P 1
2

(Cʹ )P 2
1

Output

Figure 2: ­e GMDH network for prediction CP′.
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model tree by deleting splits that don’t meaningfully en-
hance prediction.

For the test data, the pruning algorithm uses an estimate
of the predicted error at each node. To begin, the absolute
deviation between the observed and estimated output values
for each of the training cases entering the node is averaged.
Due to the fact that the trees were constructed speci¢cally for
this dataset, the average will underrate the predicted error for
new instances. ­is is compensated for by multiplying the
output value by the factor (n+ v)/(n− v). where n denotes the
size of the training instances received at the node [30]. In
addition, v is the number of model attributes that signify the
output value at that node. ­e leaf node can be omitted if the
estimated error is lower at the parent. As a result, this
multiplication is done to make sure that new data, rather than
training data, don’t get underestimated by the multiplication.

Quinlan [31] describes a smoothing approach that em-
ploys the leaf model to determine the estimated value during
the smoothing phase.­e value is then smoothed bymerging it
with the linear model’s estimated value for each node along the
path back to the root. ­is requires the following calculation:

P′ �
np + kq
n + k

, (28)

P′ is a prediction that exceeds the upper node; p is a pre-
diction from below that is passed to the current node; q is the
model’s predicted value at the node; n represents the number
of training instances that havemade it to the preceding node,
and Wang and Witten [28] constant is denoted by k. Using
the M5MT created, the graphical tree, is shown in Figure 3.

­e decision rules concerned with Figure 3 are as follows:

LM(4) � CP′ � −0.0041 × Fr1 + 0.0792. (29)

As seen, four linear rules were obtained for the pre-
diction CP′. Concerning the values of Fr1, the appropriate
rule was selected then CP′ was calculated.

3. Results and Discussion

Statistical indices such as correlation coe�cient (CC), root
mean square error (RMSE), mean absolute error (MAE),
index of agreement (Ia), scatter index (SI), and BIAS index
was employed to assess the qualitative evaluation of the
developed suggested models.

CC � ∑ni�1 xi − x( ) yi − y( )												
∑ni�1 ’ xi − x( )2
√ 												

∑ni�1 ’ yi − y( )2
√ ,

RMSE �

													
∑Ni�1 ’ xi − yi( )2

N

√

,

MAE �
1
N
∑
N

i�1
xi − yi
∣∣∣∣

∣∣∣∣,

Ia � 1 − ∑ni�1 ’ xi − yi( )2

∑ni�1 ’ xi − x
∣∣∣∣

∣∣∣∣ + yi − y
∣∣∣∣

∣∣∣∣( )
2 ,

SI �
RMSE

x
× 100, BIAS � y − x,

(30)

where xi and yi denote measured and predicted values, x
and y represent the average of measured and predicted
values, andN denotes the number of the dataset. In Table 2,
the statistical index values for the proposed soft computing
methods in the training and testing stages for the prediction
of CP′.

Table 2 shows that the ELM model performed CP′ pre-
diction with the lowest errors (RMSE, MAE, and SI) and
higher coe�cient correlation (CC) and index agreement (Ia)
than the GMDH andM5MTmodels in both the training and
testing stages. As observed in Table 2, the ELMmethod with
CC� 0.9183, RMSE� 0.0067, and MAE� 0.0051 has the best
prediction accuracy compared with GMDH and M5MT. On
the other hand, it can be deduced from Table 2 that GMDH
(CC� 0.8818, RMSE� 0.0078, and MAE� 0.0058) and
M5MT (CC� 0.6883, RMSE� 0.0120, and MAE� 0.0090)
have the second and third level of accuracy for the prediction
CP′ in the testing stage. Furthermore, the scatter index
(SI� 11.88%) for the ELM method is smaller than the SI for
GMDH (SI� 13.89%) and M5MT (SI� 21.28%). It is note-
worthy that the BIAS values of ELM for training and testing
data are 0.0008 and 0.0020, respectively, indicating a slightly
overestimated CP′. However, the BIAS values of GMDH in
training and testing were −0.0005 and 0.0016, and for
M5MT, they were −0.0003 and 0.0014 for the training and
testing stages, respectively. ­erefore, it can be concluded
that, overall, ELM was more conservative for prediction CP′
than GMDH and M5MT.

By comparing two soft computing approaches, including
the ELM (as the best model) and the M5MT (as the worst
model) in the testing stage, it can be shown that the ELM
produced signi¢cantly lower errors in predictionCP′ than the
M5MT. ­e values of RMSE and MAE obtained via ELM
showed that they decreased by about 79.10% and 76.47%
compared with the M5MT in the testing stage, respectively.

Besides, the CC and Ia values for ELM increased by
33.42% and 21.05% compared with M5MT. ­e error values

Fr

Fr

Fr

LM (1) LM (2)

LM (3)

LM (4)

≤ 6.31

≤ 5.65

> 5.18

> 5.65

> 6.31

≤ 5.18

Figure 3: M5MT created the regression tree to predict CP′.
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of RMSE and MAE from GMDH in the testing stage showed
that these values improved by about 53.85% and 55.17%
compared with those obtained from M5MT, respectively.
Moreover, the CC and Ia values of GMDH increased by
about 28.11% and 18.42% compared with M5MT. Based on
error measures, it is clear that the ELM model was better
than the GMDH and M5MT in terms of accuracy.

,e mathematical expressions for the prediction CP
′

were formulated from the proposed soft computing
models. It seems the M5MT result was more transparent
and easier to use than ELM and GMDH. M5MT provided
four multivariate linear models for the prediction of CP

′.
Although the derived rules from M5 had less accuracy than
ELM and GMDH, these rules are more straightforward for
predicting CP

′. On the other hand, GMDH presented
complex mathematical formulations for the prediction of
CP
′. ,e GMDH used two hidden layers of neurons for the

prediction of CP
′. ,e GMDH utilized the quadratic

polynomial of input variables and the combination of the
best neurons in each layer to predict CP

′. ELM generated the
coefficients matrixes for the prediction of CP

′. It seems the
ELM mathematical shapes were simple compared with the
GMDH equations.

M5MT method provided four simple equations for the
prediction of CP

′ based on dividing the domain of the
problem. It is worth mentioning that M5MT selected the
appropriate rule concerning only one input variable (i.e.,
Froude number) and used two variables, including Fr1 and
x/y1 in their rules. However, the ELM and GMDH used all
the independent variables to generate the predictive ex-
pressions for estimating CP

′ values. Although M5MT has led
to the creation of simple rules for predicting CP

′, these simple
formulas cause M5MT to be less accurate than ELM and
GMDH expressions. M5MT divided the domain of input
variables into four subdomains and represented four re-
gression equations to estimate CP

′. In fact, separating the
domain of the problem into the local subdomains and
combining their results caused an improvement in the ac-
curacy compared with the single equation.

Figures 4–9 compare observed values of CP
′ versus es-

timated values obtained from ELM, GMDH, and M5MT
during the training and testing stages. As observed in scatter
plots, the predicted CP

′ values from ELM were more con-
centrated around the ideal line (the 45-degree line).

In addition, the variation of CP
′ values obtained by soft

computing methods versus observed CP
′ demonstrated the

capability of estimating CP
′ by the proposed approaches.

,ese figures graphically confirmed the higher ELM accu-
racy than GMDH and M5MT.

,ese figures indicated that ELM performed better in the
training and testing stages than GMDH and M5MT. As
shown, the ELM reasonably estimated CP

′ in the training and
testing stages (bias� 0.0008 and 0.0020). ,e remarkable
point is that in Figures 4 and 5, the peak values of CP

′ by ELM
were estimated well. In contrast, GMDH and M5MTslightly
underestimated the values of CP

′, especially at the peak CP
′

values. From the comparison between Figures 4–9, it can be
deduced that ELM is more skillful and accurate than GMDH
and M5MT in the prediction of CP

′.
,e present study results were compared with earlier

research conducted by Samadi et al. [8]. ,ey used three
data-driven algorithms, such as MARS, GEP, and CART, for
the prediction of CP

′. Samadi et al. [8] indicated that CART
results for the prediction of CP

′ have three and four non-
terminal and terminal nodes, respectively. ,e CART tree
structure used only the Fr1 variable with threshold values of
6.31, 5.18, and 5.65 for the CART tree structure. ,e present
study used another common decision tree technique, namely
M5MT, to predict CP

′.
It is worth noting that M5MT and CART are two

common decision tree algorithms used for regression
problems. In the present study, M5MT, among the four
input variables included, Fr1, x/y1, yt/y1, and θ, only se-
lected the Fr1 variable for prediction of CP

′. As illustrated in
Figure 3, M5MT’s tree structure uses three nonterminal and
four terminal nodes. In addition, the splitting values for
M5MT were 6.31, 5.18, and 5.65. A comparison of the tree
structures of the decision tree (i.e., M5MT) and the proposed
CART presented by Samadi et al. [8] revealed that the two
models have similar structures. ,ey employed a splitting
variable (Fr1) and the same splitting values for the gener-
ation of regression trees. As a result, the graphical structures
of these two decision tree algorithms for selecting the in-
dependent variable (Fr1) and creating four if-then rules are
similar. However, M5MT provided linear regression func-
tions while CART presented constant values in their ter-
minal nodes. ,is was the main distinctive characteristic of
the differences between M5MT and CART concerning the
nature of CART and M5MT. It should be noted that due to
the nature of theM5MTalgorithm, the Fr1 parameter was an
attribute that caused error reduction for the prediction of CP

′
in the regression tree obtained by M5MT. In addition, the
present study’s findings about selecting the Fr1 parameter is
completely consistent with the results of the CART tree
provided by Samadi et al. [8].

Also, the statistical measures indicated the results of
M5MT and CART were more or less the same. M5MT with
RMSE� 0.0120 and MAE� 0.0090, compared with CART

Table 2: ,e statistical indices for ELM, GMDH, and M5MT for the prediction of CP
′.

Approach Data set CC RMSE MAE Ia SI (%) BIAS
ELM Training 0.9770 0.0046 0.0040 0.9841 8.00 0.0008
ELM Testing 0.9183 0.0067 0.0051 0.9569 11.88 0.0020
GMDH Training 0.9135 0.0074 0.0066 0.9512 12.85 −0.0005
GMDH Testing 0.8818 0.0078 0.0058 0.9361 13.89 0.0016
M5MT Training 0.8309 0.0108 0.0090 0.8467 18.81 −0.0003
M5MT Testing 0.6883 0.0120 0.0090 0.7905 21.28 0.0014
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Figure 4: Scatter plots of measured and estimated values of CP′ for ELM during (a) training stage and (b) testing stage.
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Figure 6: Scatter plots of measured and estimated values of CP′ for GMDH during (a) training stage and (b) testing stage.
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Figure 5: Variation of CP′ with ELM during the training stage (a) and testing stage (b).

10 Advances in Civil Engineering



0.000

0.020

0.040

0.060

0.080

0.100

0.000 0.020 0.040 0.060 0.080 0.100

C'
p 

(P
re

di
ct

ed
) 

C'p (Observed) 

(a)

Figure 8: Continued.
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Figure 7: Variation of CP′ with GMDH during the training stage (a) and testing stage (b).
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Figure 9: Variation of CP′ with M5MT during the training stage (a) and testing stage (b).
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Figure 8: Scatter plots of measured and estimated values of CP′ for M5MT during (a) training stage and (b) testing stage.
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[12] with RMSE� 0.012, MAE� 0.009, was similar results.
However, M5 generated multivariate linear regression
equations while CARTgenerated the constant values for the
prediction of CP

′. ,e linear equations by M5MT caused the
flexibility and generalizability of M5 to improve the pre-
diction of CP

′ compared with the constant values of CP
′ that

was yielded by CART. Compared with GMDH in the present
study with GEP [12], both algorithms provided nonlinear
mathematical expressions for the prediction of CP

′. ,e
accuracy of GMDH with RMSE� 0.0078 and MAE� 0.0058
is slightly better than GEP results with RMSE� 0.008 and
MAE� 0.006. Moreover, compared with the formulas pro-
vided by GEP and GMDH, GEP requires more difficult
calculations related to trigonometric and algebraic func-
tional sets appearing in the computing process, including
exp, ln, sin, and atan functions. In contrast, GMDH used
polynomial quadratic equations. From this perspective as
well, it seems the computational effort was less than GEP.
Finally, the comparison results of ELM with MARS indi-
cated that both algorithms had almost identical results.

4. Summary and Conclusions

Stilling basins are used widely as hydraulic dissipation
structures in large dams. An accurate estimation of CP

′
within stilling basins is a critical issue for hydraulic engi-
neering for the design of stilling basins.,is study employed
three soft computing methods, including ELM, GMDH, and
M5MT, to estimate the CP

′ that occurred during the hy-
draulic jump in the sloping channels.

Different soft computing models were developed to
estimate CP

′ according to the dimensionless parameters and
experimental data. ELM showed the lowest error values of
RMSE, MAE, and SI in the training and testing stages. In
addition, ELM has the highest correlation coefficient and Ia
values than those obtained from GMDH and ELM.
,erefore, the proposed soft computing models provided
sufficiently accurate results due to this problem’s complexity.

ELM formulated the matrices of coefficients for the
prediction of CP

′. In addition, GMDH provided mathe-
matical quadratic polynomials and combined input variables
for the prediction of CP

′. M5MTgenerated four simple rules
for the estimation of CP

′. It seems the application of M5MT
was the most straightforward method for the prediction of
CP
′. It is noteworthy that complexity degree equations were

derived from ELM and GMDH for the prediction CP
′ have

been more than M5MT rules.
In summary, the ELM method provided a weight matrix

for predicting CP
′. GMDH generated second-order poly-

nomial equations for the prediction of CP
′. M5MTdeveloped

piecewise multiple linear regression equations for the cal-
culation of CP

′. GMDH and M5MT methods generated
explicit and clear mathematical expressions to estimate CP

′.
In addition, M5MT divided the problem domain into
subdomains and fitted local linear models to compute CP

′. It
seems that in terms of the degree of complexity of the
developed models in estimating CP

′, the ELM model has the
highest complexity, followed by GMDH and M5MTmodels.
However, in contrast to the complexity degree of the

proposed models, their computational accuracy has in-
creased for the estimation of CP

′ so that the ELM model has
the highest accuracy, followed by GMDH and M5MT.

Finally, the comparisons of the results with previous
research revealed that the proposed applications of soft
computing methods have good performance for prediction
CP
′.
Further works can be considered to use pressure field

data for modeling with soft computing methods. It is also
recommended that hybrid data-driven models with evolu-
tionary algorithms be used instead of stand-alone data-
driven models to figure out the coefficient of pressure
fluctuations.
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