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Alex Eĺıas-Zúñga, Mexico
Anders Eriksson, Sweden
Vedat S. Erturk, Turkey
Moez Feki, Tunisia
Ricardo Femat, Mexico
Robertt Fontes Valente, Portugal
Claudio Fuerte-Esquivel, Mexico
Zoran Gajic, USA
Ugo Galvanetto, Italy
Xin-Lin Gao, USA
Furong Gao, Hong Kong
Behrouz Gatmiri, Iran
Oleg V. Gendelman, Israel
Paulo Batista Gonçalves, Brazil
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Robust control is an important branch of control theory
that explicitly deals with uncertainty in its approach to
controller design. Over the past several decades, there has
been an increasing interest in robust control. On one hand,
uncertain parameters or disturbances exist inherently in the
aeronautics and astronautics, advanced manufacturing, and
other complex engineering systems. On the other hand,
uncertain parameters or disturbances seriously affect the sta-
bility, accuracy, and reliability of underlying control systems.
Therefore, robust control has become a challenging problem
in international control filed, for example, 𝐻

∞
control, 𝐻

2

control, guaranteed cost control (GCC), adaptive control
(AC), variable structure control (VSC), antidisturbance con-
trol (ADC), fault-tolerant control (FTC), and so forth.

This special issue contain sixty-seven papers, which
covers currently hot topics on robust control from theoret-
ical methods to practical applications. Figure 1 shows their
distribution about the topics. Moreover, we will summarize
the typical papers about every topic.

𝐻
∞

Control. “𝐻
∞

control theory using in the air pollu-
tion control systems” by T. Yang et al. shows 𝐻

∞
control

theory for the air pollution control systems. “𝐻
∞

filter
design for large-scale systems with missing measurements”
by Y. Zhou et al. deals with the 𝐻

∞
filter design problem

for large-scale systems with missing measurements, where
the occurrence of missing measurements is assumed to be
a Bernoulli distributed sequence with known probability.
“Delay-probability-distribution-dependent 𝐻

∞
FIR filtering

design with envelope constraints” by C. Peng et al. employs
the information of the delay size and delay probability

distribution and gives a novel delay-probability-distribution-
dependent filter design method.

𝐻
2
Control. “𝐻

2
control for continuous-time Markovian jump

linear uncertain systems with partly known transition rates
and quantization” by X.-G. Zhao et al. proposes sufficient
conditions in terms of linear matrix inequalities for 𝐻

2

control of Markov jump linear uncertain systems. “A novel
approach to 𝑙

2
-𝑙
∞

filtering design for T-S fuzzy systems with
multiple time-varying delays” by X. Zhang et al. proposes the
full-order and reduced-order filter design schemes for T-S
fuzzy systems with multiple time-varying delays by using the
free-weighting matrices method.

Guaranteed Cost Control. “Switching fuzzy guaranteed cost
control for nonlinear networked control systems” by L. Cai
et al. introduces a switching mechanism to handle the
uncertainties of networked control systems and presents
guaranteed cost controller design method. “Convergence
guaranteed nonlinear constraint model predictive control via
I/O linearization” byX.Kong et al. presents iterative quadratic
program routine on the continuous-time system to guarantee
its convergence.

Adaptive Control. “Characteristic modeling and control of
servo systems with backlash and friction” by Y. Wu et al.
investigates an approach for modeling and adaptive control
of servo systems with backlash and friction based on the
characteristic model. “Robust adaptive PID control of robot
manipulator with bounded disturbances” by J. Xu and L. Qiao
gives two novel robust adaptive PID control schemes for
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robot manipulator with bounded disturbances and larger
external disturbances can be tolerated by comparing with
the existing adaptive PD control. “Global harmonic current
rejection of nonlinear backstepping control with multivariable
adaptive internal model principle for grid-connected inverter
under distorted grid voltage” by Y. Yu et al. investigates the
global harmonic current rejection problemof grid-connected
inverter under distorted grid voltage and a multivariable
adaptive state feedback control method is designed to guar-
antee the global stability of the closed-loop system.

Variable Structure Control. “Sliding sector-based variable
structure control of continuous-time Markov jump linear sys-
tems subject to unknown transition rates” by Y.-M. Xue et al.
presents a sufficient condition for variable structure control
design based on sliding sector technique for a class ofMarkov
jump systems with unknown transition rates.

Anti-Disturbance Control. “Active disturbance rejection with
slidingmode control based course and path following for under-
actuated ships” by R. Li at el. investigates the path following
problem of underactuated surface ship with uncertainties
and external disturbances and active-disturbance-rejection
control with sliding mode is provided to improve the per-
formance of the closed-loop system. “Robust coordinated
control algorithm for multiple marine vessels with external
disturbances” by W. X. Liu et al. considers the coordinated
control problem for multiple marine vessels with external
disturbances and a robust coordinated control algorithm is
given based on dynamic surface control method.

Fault-Tolerant Control. “Fault-tolerant control for civil struc-
tures based on LMI approach” by C. Qu et al. designs a
filter to perform the fault detection and isolation and then
forms a control strategy to achieve the fault-tolerant control.
“Robust adaptive switching fault-tolerant control of a class of
uncertain systems against actuator faults” by X.-Z. Jin deals
with the fault-tolerant control problem for a class of linear
time-invariant systems with time-varying actuator faults and
uncertainties. “Fault-tolerant control in redundant inertial
navigation system” by X. Dai studies the robust fault-tolerant
control problem for the redundant inertial navigation system
and an improved control algorithm which considers the
unknown noise characteristics, model inaccuracies, and the
drift factor to improve the control performance.

This special issue also includes riches of collections of
engineering applications related to robust control theory,
such as spacecraft and flight control, robots, power systems,
networked systems, servo systems, autonomous underwater
vehicles, and energy systems.

Of course, the selected topics and papers are not a
comprehensive representation of the area of this special
issue. Nonetheless, they represent the rich and much faceted
knowledge that we have the pleasure of sharing with the
readers.

Publish number

9

3

8

12

1

12

8

14

control control
GSC AC VSC ADC FTC OthersH∞ H2
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This paper studies the problem of guaranteed cost control for spacecraft evacuation.The relative dynamicmodel is established based
on Clohessy-Wiltshire (C-W) equations.The paper has taken parameter uncertainty, output tracking, disturbance attenuation, and
fuel cost into consideration. The paper introduces a new Lyapunov approach, so the controller design problem can be transferred
into a convex optimization problem subject to linear matrix inequality (LMI) constraints. By using the controller, the spacecraft
evacuation can be completed in a safe extent. Meanwhile, the fuel cost also has an upper bound. Then the paper analyzes the
approach of evacuation and discusses possible initial states of the spacecraft for the controller design. An illustrative example is
applied to show the effectiveness of the proposed control design method, and different performances caused by different initial
states of spacecraft (-V-bar, -R-bar, and +H-bar) are simulated.

1. Introduction

With the development of aerospace science, the research
of space exploration is deepening gradually. Among them,
manned space technology has been in the limelight of the
aerospace around the world. In addition, most tracking
spacecrafts need to be evacuated safely after completing
autonomous spacecrafts rendezvouz. Furthermore, evacua-
tion segment can be divided into three stages: unlocking,
separation, and orbital transformation. In the study of evacu-
ation, Fehse has introduced the process and the bounds of the
evacuation [1]. Besides, he has also compared the evacuation
from V-bar and R-bar and has discussed the security of the
two means. Yin et al. also review most popular data-driven
PM-FD methods with recent developments [2, 3]. Hablani
et al. has studied the target spacecraft by using a kind of
multiplepulse linear guidance control method applicable to
arbitrary direction approach and evacuation [4]. Bergez et al.
has reached the conclusion which is based on an assumption,
where the safe evacuation theory is happening in the failure

of capture lock while the ATV is docking with the Russian
Mir space station [5]. However, some correlative issues have
not yet been fully explained because of their complexity and
uncertainty, and many existing studies have left considerable
room for improvement. This leads us to look for a new
method to control the evacuation phase of spacecraft.

Moreover, spacecraft relative motion problems are often
took over based on Clohssey and Wiltshire (C-W) equa-
tions in 1960 [6, 7]. Generally speaking, the equations are
transformed into a state function based on ̇x(𝑡) = 𝐴x(𝑡) +
𝐵u(𝑡), where x(𝑡) is the relative position and velocity states
vector and u(𝑡) is the control input vector. This description
has been used widely to study the spacecraft rendezvous
problems [8–11]. But due to many uncertain factors, the state
matrix 𝐴 and the control input matrix 𝐵 are not easy to
be determined accurately. Besides, the elements of matrix
𝐴 are related to the angle velocity of the target spacecraft
which is susceptible to many inevitable factors such as
errors of detection. Besides, the conceivable mass variation
of fuel causes the input of thrusters inaccuracy, which can be
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regarded as the uncertainty of the input matrix 𝐵 [12]. These
uncertainties may lessen stability of spacecraft evacuation
phase. In the past decades, many researches about uncertain
system papers [13–18]. Petersen presents an algorithm for
the stabilization of a class of uncertain linear systems. The
uncertain systems under consideration are described by state
equations which depend on time-varying unknown-but-
bounded uncertain parameters [19]. Singla et al. has devel-
oped an output feedback structuredmodel reference adaptive
control law for spacecraft rendezvous and docking problems
[20]. However, the parameter uncertainties have not attracted
enough attention to the research of spacecraft evacuation
phase control problems.This leads to our desire to think over
uncertainties and find a proper method to handle them.

The evacuation phase and short-range phase all belong
to the relative navigation phase, both of them based on the
relative phase. Evacuation phase is an opposite movement
process to short-range phase with the final approach phase.
Spacecraft rendezvous and docking are unusual complex
fields of aerospace work, which must be measured accurately
to the relative position and relative attitude of the two
spacecrafts. Rendezvous and docking phases ask for a very
high requirement of accuracy, reliability, and control system
robustness of the independent measurement system. The
slightest mistake could result in docking failure. However,
the researches of the spacecraft evacuation seem too few
compared with the researches of spacecraft rendezvous and
docking. That is because spacecraft evacuation needs less
automaticity than rendezvous, which is primarily based on
orbit control to ensure the security of the process. In that
case, the chaser will not collide with the target spacecraft even
when the thrust equipment is out of control. So the study of
spacecraft rendezvous and docking has a significant reference
for the control of evacuation phase.

Besides, rendezvous and docking not only need the
orbital maneuvering control, but also are based on the
advanced attitude control. Nevertheless, the evacuation phase
is mainly based on the orbital maneuvering control. To sum
up, research of orbital maneuvering control for the ren-
dezvous has a very important significance of the evacuation
phase. In recent 50 years, related researchers have done in-
depth research for spacecraft rendezvous and docking and
made a lot of research achievements in the orbital maneu-
vering control problem. In addition, spacecraft autonomous
rendezvous (RVD) has been recognized as a crucial issue for
many progressive astronautic missions. Besides, spacecraft
autonomous rendezvous is also very important in the field of
the manned space flight project. Manned space flight project
generally requires the technique of spacecraft autonomous
rendezvous, such as the spacecraft orbit service, space rescue,
repair, and the space station supplies. Nowadays, United
States, Russia, Europe, Japan, and other countries are involv-
ing to the area of spacecraft autonomous rendezvous and
have experiment successfully for hundreds of times. As
manned space technology develops, the theory of spacecraft
autonomous rendezvous will be more mature than the past
[8–11, 20, 21].

The paper provides a systematic research of the control
problem aiming at the orbit of the spacecraft autonomous

Y

X

Z

Target
Chaser

Earth center

Figure 1: Spacecraft rendezvous and the utilized coordinate.

evacuation and gives a newmethod to control the evacuation
phase of spacecraft. Based on the two-body problem, the
paper has constructed the relative motion equation for the
process of evacuation, which is the C-W equation, andmakes
a brief introduction about the bound that the spacecraft has
to comply with. Then it gives the new controller calculated
by the bound of guaranteed cost output [22–27]. Firstly,
the paper analyzes the characteristic of the holding point.
Then it uses the state error variables to replace the state
vector. Transform the tracking problem of constant reference
signal into the problem of asymptotically stability under the
feedback control [28]. However, the spacecraft has to receive
many disturbances during the flight, such as solar radiation
pressure perturbation and electromagnetic radiation. Thus
the paper takes the uncertainty into consideration when
it designs the controller. Besides, the paper considers the
limited constraint condition and the quadratic performance
index, transforms the problem into convex optimization of
the LMI by the method of Lyapunov, and then receives
the guaranteed cost output with the minimal upper bound.
Verify the solution by simulation with MATLAB. In the end
of the paper, we compare the fuel consumers under the
different levels of the disturbance and simulate the output
tracking of the chaser spacecraft by three cases (-V-bar, -R-
bar, and +H-bar). The result proves that the model has good
dynamic response, reliability, and self-adaptability.Therefore,
the model can be applied to control system of spacecraft.

2. Problem Formulation

A right-handed Cartesian coordinate can be established
based on the structure of the target. As shown in Figure 1,
the origin attaches to the mass center of the target, the 𝑥-axis
is along the vector from earth center to the origin, the 𝑦-axis
is along the target orbit circumference, and the 𝑧-axis sets up
the right-handed frame [29].

In this coordinate system, the evacuation phase described
in this paper can be depicted in Figure 2.

Define 𝑅
0
as the radius of the target circular orbit and 𝑛

as the angular velocity of the target equals (𝜇
𝑒
/𝑅
3

0
)
1/2, where

𝜇
𝑒
is the gravitational parameter of the earth. Considering the

C-W equations and proposing the mathematical description
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Figure 2: Evacuation phases of rendezvous in the target frame
coordinate.

of the relativemotion for two adjacent spacecrafts, the relative
dynamic model can be described by C-W’s equations as

̈𝑥 − 2𝑛 ̇𝑦 − 3𝑛
2

𝑥 =

1

𝑚

𝑇
𝑥
,

̈𝑦 + 2𝑛 ̇𝑥 =

1

𝑚

𝑇
𝑦
,

̈𝑧 + 𝑛
2

𝑧 =

1

𝑚

𝑇
𝑧
,

(1)

where 𝑥, 𝑦, and 𝑧 are the components of the relative position
in corresponding axes,𝑚 is the mass of the chaser, and𝑇

𝑖
(𝑖 =

𝑥, 𝑦, 𝑧) is the 𝑖th component of the control thrust applied on
the spacecraft [30].

2.1. Transfer of Evacuation Phase. By defining the state vector
𝑥(𝑡) = [𝑥, 𝑦, 𝑧, ̇𝑥, ̇𝑦, ̇𝑧]

𝑇, control input vector 𝑢(𝑡) =

[𝑇
𝑥
, 𝑇
𝑦
, 𝑇
𝑧
]
𝑇, and output vector 𝑦(𝑡) = [𝑥, 𝑦, 𝑧]𝑇, we have

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(2)

where

𝐴 =

[

[

[

[

[

[

[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3𝑛
2

0 0 0 2𝑛 0

0 0 0 −2𝑛 0 0

0 0 −𝑛
2

0 0 0

]

]

]

]

]

]

]

]

,

𝐵 =

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0

0 0 0

0 0 0

1

𝑚

0 0

0

1

𝑚

0

0 0

1

𝑚

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐶 =

[

[

[

[

[

[

[

[

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

]

]

]

]

]

]

]

]

𝑇

.

(3)

Thus, the specific relative motion of chaser and target can
be realized by designing proper control input thrust 𝑢(𝑡).

2.2. Uncertainty. Due to the measure the complex external
perturbations among the objects in space, the target angle
velocity 𝑛 can be described accurately. Besides, inevitable
input uncertainties still exist because of the error of the
thrust and fuel. Having taken these modeling uncertainties
into consideration, the system functions can be expressed as
follows:

̇𝑥 (𝑡) = (𝐴 + Δ𝐴) 𝑥 (𝑡) + (𝐵 + Δ𝐵) 𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) .

(4)

The two norm-bounded uncertain matrices Δ𝐴 and Δ𝐵
have proper dimensions and are in the form of [Δ𝐴 Δ𝐵] =

𝜆𝜑(𝑡)[𝜎
1
𝜎
2
], where 𝜆, 𝜎

1
, and 𝜎

2
are the constant matrices

with proper dimensions, which can reflect the uncertainty
structure; 𝜑(𝑡) is an unknown real-time varying matrix with
Lebesgue measurable elements bounded by 𝜑𝑇(𝑡)𝜑(𝑡) ≤ 𝐼.
The introduced matrices can be regarded as the following
patterns because of the structures of 𝐴 and 𝐵:

𝜆 = Υ ×
[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]

]

,

𝜎
1
= Ξ ×

[

[

0 0 0 1 1 0

1 0 0 1 0 0

0 0 0 0 0 0

]

]

,

𝜎
2
= Ω ×

[

[

0 0 0

0 0 0

1 1 1

]

]

.

(5)

Define 𝜑(𝑡) = diag[𝜑
1
(𝑡), 𝜑
2
(𝑡), 𝜑
3
(𝑡)], where 𝜑

1
(𝑡), 𝜑
2
(𝑡),

and 𝜑
3
(𝑡) are three varying scalars within the boundary of

[0, 1]. And Υ, Ξ, and Ω signify magnitudes of the uncertain-
ties.

Then, the system state functions with modeling uncer-
tainty can be rewritten as

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(6)

where 𝐴 = 𝐴 + 𝜆𝜑(𝑡)𝜎
1
and 𝐵 = 𝐵 + 𝜆𝜑(𝑡)𝜎

2
. It can be seen

that matrices 𝜆, 𝜎
1
, and 𝜎

2
reflect the structural information

of uncertainties.

2.3. Output Tracking. Considering the evacuation phase of
spacecraft rendezvous, the terminal position of the chaser is
a certain point that can be defined as a fixed reference output
signal 𝑥

𝑟
= (𝑥
𝑟
, 𝑦
𝑟
, 𝑧
𝑟
, 0, 0, 0)

𝑇. Therefore, the evacuation
phase orbital control problem can be solved by designing an
output tracking controller.The output 𝑥(𝑡) of the closed-loop
system tracks the reference signal 𝑥

𝑟
, which means that

lim
𝑡→∞

[𝑥 (𝑡) − 𝑥
𝑟
] = 0. (7)
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We introduce the error integral action in the controller for
eliminating the steady-state tracking error. Then we define

𝑒 (𝑡) = ∫

𝑡

0

[𝑥 (𝜏) − 𝑥
𝑟
] 𝑑𝜏 (8)

and then we have ̇𝑒(𝑡) = 𝑥(𝑡) − 𝑥
𝑟
.

Therefore, we obtain the augmented system

̇
𝜉 (𝑡) = Λ̃𝜉 (𝑡) + Γ̃𝑢 (𝑡) + Ψ̃𝜉

𝑟
,

𝑓 (𝑡) = Φ̃𝜉 (𝑡) + Φ̃𝜉
𝑟
,

(9)

where

Λ̃ = [
𝐴 0

𝐶 0

] , Γ̃ = [
𝐵

0

] , Ψ̃ = [

0

−𝐼
] ,

Φ̃ = [𝐶 0] , 𝜉 (𝑡) = [

𝑞 (𝑡)

𝑒 (𝑡)
] .

(10)

Considering the uncertainties described in (4), the aug-
mented matrices Λ̃ and Γ̃ can be further transformed into
Λ̃ = Λ + ΔΛ, Γ̃ = Γ + ΔΓ, where

Λ = [

𝐴 0

𝐶 0
] , Γ = [

𝐵

0
] , ΔΛ = Π𝜑 (𝑡) 𝜎

1𝐴
,

ΔΓ = Π𝜑 (𝑡) 𝜎
2
, Π = [

𝐷

0
] , 𝜎

1𝐴
= [𝐸
1
0] .

(11)

Use the state feedback control law, and define 𝐾 =

[𝐾
𝑞
𝐾
𝑑
], then we obtain 𝑢(𝑡) = 𝐾𝜉(𝑡) = 𝐾

𝑞
𝑞(𝑡) + 𝐾

𝑑
𝑑(𝑡).

Then the augmented closed-loop system can be described
as

̇
𝜉 (𝑡) = [Λ̃ + Γ̃𝐾] 𝜉 (𝑡) + Ψ̃𝑓

𝑟
. (12)

The output tracking requirement in (7) can be satisfied
if the closed-loop system in (12) is stable. Thus, the output
tracking control problem studied in this paper can be trans-
formed into the stabilization problem of the system in (9). If
there has a controller 𝐾 guarantee the system stable in (9),
then the output 𝜑(𝑡) of (6) can track the reference signal 𝑓

𝑟
.

2.4. Control Performance. Primarily, we take the rendezvous
control performances into consideration. Because of the
weight boundary of spacecraft, the minimal fuel cost has to
be chosen as one control performance index for evacuation.
Then, by defining a control weighting matrix 𝑅

3×3
, the

fuel cost performance index can be expressed as 𝐽
1
=

∫

∞

0

𝑢
𝑇

(𝑡)𝑅𝑢(𝑡)𝑑𝑡.
Secondly, there should not be violent shake during the

orbital transfer for the security. Define a control weighting
matrix 𝑄, and then the smooth transfer trajectory control
performance index can be written as 𝐽

2
= ∫

∞

0

𝜉
𝑇

(𝑡)𝑄𝜉(𝑡)𝑑𝑡.
Then, consider the two performance indexes together.

The comprehensive control performance cost can be
described as

𝐽 = 𝐽
1
+ 𝐽
2
= ∫

∞

0

[𝑢
𝑇

(𝑡) 𝑅𝑢 (𝑡) + 𝜉
𝑇

(𝑡) 𝑄𝜉 (𝑡)] 𝑑𝑡. (13)

For 𝑢(𝑡) = 𝐾𝜁(𝑡), the equality (13) can be redescribed as

𝐽 = ∫

∞

0

[𝜁
𝑇

(𝑡) 𝐾
𝑇

𝑅𝐾𝜁 (𝑡) + 𝜁
𝑇

(𝑡) 𝑄𝜁 (𝑡)] 𝑑𝑡. (14)

Then, the guaranteed cost control design problem can be
depicted as follows: to find an admissible controller𝐾, which
makes the system performance cost 𝐽meets a minimal upper
bound 𝜇.

Besides, the dynamic performance of a system is cor-
related to the location of its poles, and the satisfactory
transient responses can be ensured by constraining the poles
to position in a prescribed region. In this paper, we consider
the disk regional poles constraint, which has been proved
efficient in both theory and practice. Consider the uncertain
rendezvous dynamic model (9); design a guaranteed cost
output tracking controller 𝐾, such that the closed-loop
system in (12) is asymptotically stable (meaning that the
output tracking requirement in (7) is satisfied); meanwhile,
the performance cost in (14) is below a prescribed upper
bound for all admissible uncertainties.

2.5. Description of the Control Law

Lemma 1. To the given symmetric matrix A = [ 𝐴11 𝐴12
𝐴21 𝐴22

], the
following conditions are equivalent:

(i) 𝐴 < 0;
(ii) 𝐴

11
< 0, 𝐴

22
− 𝐴
𝑇

12
𝐴
−1

11
𝐴
12
< 0;

(iii) 𝐴
22
< 0, 𝐴

11
− 𝐴
12
𝐴
−1

11
𝐴
𝑇

12
< 0.

Lemma 2. 𝑢(𝑡) = 𝐾𝑥(𝑡) is a guaranteed cost controller if there
exist symmetric positive-definite matrices 𝑃, 𝑆 ∈ 𝑅3×3 such that
for all uncertain matrices 𝜑 satisfying 𝜑𝑇(𝑡)𝜑(𝑡) ⩽ 𝐼,

[

Σ 𝑃 [𝐴 + 𝜆𝜑 (𝜎
1
+ 𝜎
2
)]

[𝐴 + 𝜆𝜑 (𝜎
1
+ 𝜎
2
)]

𝑇

𝑃 −𝑆

] < 0, (15)

where Σ = 𝑄 + 𝐾𝑇𝑅𝐾 + 𝑆 + sym{P[ 0A + 0BK + 𝜆𝜑(𝜎1 + 𝜎2)]}
[31].

Based on Lyapunov stable theory, the controller design
requirements such as input constraint and the guaranteed
cost are formulated as some LMI conditions, and the con-
troller design problem is cast into a convex optimization
problem subject to the LMI constraints.

Presume 𝑥
𝑟
= 0. Define the Lyapunov function 𝑉(𝜉(𝑡)) =

𝜉(𝑡)
𝑇

𝑃𝜉(𝑡), where 𝑃 is a positive symmetry matrix. Then,

𝑉 (𝜉 (𝑡)) = 𝜉(𝑡)
𝑇sym {𝑃 (Λ̃ + Γ̃𝐾)} 𝜉 (𝑡) . (16)

If a controller𝐾 can satisfy the following equation,

sym {𝑃 (Λ̃ + Γ̃𝐾)} < 0, (17)

then the system begins to stabilize.
Besides, the target function should satisfy some con-

straints like Lemma 2 as follows:

𝑉 (𝜉 (𝑡)) < −𝜉
𝑇

(𝑡) (𝑄 + 𝐾
𝑇

𝑅𝐾) 𝜉 (𝑡) < 0. (18)
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Then the system not only begins to stabilize, but also has
a certain upper constraint.

Consider the following:

𝐽 = ∫

∞

0

[𝜉
𝑇

(𝑡) 𝑄𝜉 (𝑡) + 𝑢
𝑇

(𝑡) 𝑅𝑢 (𝑡)] 𝑑𝑡

< V (𝜉 (0)) = 𝜉𝑇 (0) 𝑃𝜉 (0) ,

(19)

where 𝜉(0)means the error in the system.
The quadratic performance index is restrained by

𝑉(𝜉(𝑒)) = 𝜉(𝑡)
𝑇

𝑃𝜉(𝑡).This upper bound form of the perform-
ance index can qualitatively describe the consumption of fuel
and concussion of trace.

The function can be transferred as based on Lemma 2.
Consider the following:

sym {𝑃 (Λ̃ + Γ̃𝐾)} + 𝑄 + 𝐾𝑇𝑅𝐾 < 0. (20)

However 𝑃 and 𝐾 are not independent. Therefore the
function above is not a LMI. But based onLemma 1 anddefine
𝜒 = sym{𝑃(Λ̃ + Γ̃𝐾)},  = diag(𝑅−1, 𝑄−1), and 𝜛 = [𝐾𝑇, 𝐼], it
equals

[

𝜒 𝜛

∗ 
] < 0. (21)

Define 𝑋 = 𝑃
−1, 𝑌 = 𝐾𝑃

−1, ð = sym{Λ̃𝑋 + Γ̃𝑌}, and
�̂� = [𝑌

𝑇

, 𝐼]. We obtain the function

[
ð �̂�

∗ 

] < 0. (22)

The function is a LMI about𝑋 and𝑌 to the certain system
matrix Λ̃ and the input matrix Γ̃. Using the LMI box in the
Matlab can readily solve the function.

First, introduce the matrix 𝑈
𝑥
= [1, 0, 0]

𝑇

[1, 0, 0]; 𝑈
𝑦
=

[0, 1, 0]
𝑇

[0, 1, 0]; 𝑈
𝑧
= [0, 0, 1]

𝑇

[0, 0, 1].
Then, we obtain

𝑢
2

𝑥
(𝑡) = [𝑈

𝑥
𝑢 (𝑡)]
𝑇

[𝑈
𝑥
𝑢 (𝑡)] ⩽ 𝑢

2

𝑥,max,

𝑢
2

𝑦
(𝑡) = [𝑈

𝑦
𝑢 (𝑡)]

𝑇

[𝑈
𝑦
𝑢 (𝑡)] ⩽ 𝑢

2

𝑦,max,

𝑢
2

𝑧
(𝑡) = [𝑈

𝑧
𝑢 (𝑡)]
𝑇

[𝑈
𝑧
𝑢 (𝑡)] ⩽ 𝑢

2

𝑧,max,

(23)

where 𝑢
𝑥,max, 𝑢𝑦,max, and 𝑢𝑧,max are the maximum inputs of

the system.
According to 𝑢(𝑡) = 𝐾𝜉(𝑡), we have the constraint of the

system

𝑢
2

𝑖
(𝑡) = [𝑈

𝑖
𝐾𝜉 (𝑡)]

𝑇

[𝑈
𝑖
𝐾𝜉 (𝑡)]

= 𝜉
𝑇

(𝑡) 𝐾
𝑇

𝑈
𝑇

𝑖
𝑈
𝑖
𝐾𝜉 (𝑡) ⩽ 𝑢

2

𝑖,max,
(24)

where 𝑖 = 𝑥, 𝑦, 𝑧.

Because the LMI has already guaranteed that the closed
system has the upper bound, then

𝑉 (𝜉 (𝑡)) = 𝜉(𝑡)
𝑇

𝑃𝜉 (𝑡) < 𝑉 (𝜉 (0)) . (25)

Thus, when the 𝑥
𝑟
has been given, the function𝑉(𝜉(0)) =

𝜉(0)
𝑇

𝑃𝜉(0) has the constraint 𝑉(𝜉(0)) < 𝜇.
Then, we have

𝑢
−2

𝑖,max𝜉
𝑇

(𝑡) 𝐾
𝑇

𝑈
𝑇

𝑖
𝑈
𝑖
𝐾𝜉 (𝑡) < 𝜇

−1

𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) . (26)

Because we know if the target constraint is less than the
Lyapunov function, the controller can satisfy the require-
ment. Then, we obtain

𝑢
−2

𝑖,max𝐾
𝑇

𝑈
𝑇

𝑖
𝑈
𝑖
𝐾 < 𝜇

−1

𝑃. (27)

However, the function above is not the LMI. According to
Lemma 1, we have

[

−𝜇
−1

𝑃 (𝑈
𝑖
𝐾)
𝑇

∗ −𝑢
2

𝑖,max
] < 0. (28)

Take the left and right by matrix diag{𝑃−1, 𝐼}, then the
LMI can be described as follows:

[

−𝜇
−1

𝑋 (𝑈
𝑖
𝑌)
𝑇

∗ −𝑢
2

𝑖,max
] < 0. (29)

Besides, we can alter the function above:

[
−𝜇 𝜉(0)

𝑇

∗ −𝑋

] < 0. (30)

By solving the LMI above and using the (𝑋, 𝑌), we can
obtain the matrix 𝐾, then we can design the controller 𝑢(𝑡),
in which 𝐾 = 𝑌𝑋−1.

Meanwhile, we can also obtain the upper bound of the
system

𝐽max = 𝜉 (0)𝑋
−1

𝜉 (0) . (31)

Next, we consider the obtained performance cost upper
bound. Apart from the obtainable upper bounds of the
performance consumers, it is also hopeful to make the
bounds as low as possible to the practical engineering. We
introduce another matrix Θ satisfying

[

−Θ 𝐼

∗ −𝑋
] < 0 (32)

whichmeansΘ > 𝑋−1 > 0.Then, the lower performance cost
bound can be obtained by solving the following optimization
problem:

min 𝜉(0)
𝑇

Θ𝜉 (0)

s.t. LMIs (22) , (29) , (30) and (32) .
(33)
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According to the results shown above, we can find that the
solution of the optimization problem does not totally depend
on the exact value of the uncertain matrix 𝜑(𝑡), and the
magnitudes of the uncertainties can be adjusted by changing
the values of Υ, Ξ, and Ω. Thus, the effects of the parameter
errors can be analyzed according to these three parameters.
Particularly, when we assume Υ = Ξ = Ω = 0, which means
that there is no parameter error in the model, the uncertain
matrices 𝜆, 𝜎

1
, and 𝜎

2
will be transformed into zero matrices.

At the same time, the system takes exactly the form of the
nominal system of no uncertainty. Correspondingly, the LMI
constraints will alter, and the relative optimization problem
can also be solved readily. The conditions are all formulated
in the form of linear matrix inequalities, and the controller
design is transformed into a convex optimization problem
subject to LMI constraints that can be solved by Matlab.
However, the conditions we obtained here are sufficient
conditions for the existence of a proper controller.Thus, even
if there is no parameter error, the result is not the unique
solution of the controller design problem. This is because
the guaranteed cost and the poles constraint of the closed-
loop system are considered simultaneously. It is still hard
to solve this kind of multiobjective optimization problem,
and finding a necessary and sufficient condition for the
existence of the proper controller is difficult. However, the
correlative problems are significant and worth investigating
in our further studies. For the orbital control system, there
are many other performances that can be adopted for the
controller design. The orbital controller design problems

with these kinds of performance measures for spacecraft
rendezvous are worth studying in the future.

3. Illustrative Example

Because the target spacecraft has 3 methods to evacuation
(-V-bar, -R-bar, and +H-bar), this chapter discussed and
simulated the guaranteed cost control low based on these
methods separately. In this section, we provide an example
to illustrate the usefulness and advantage of the controller
design method proposed in the above sections. We consider
a couple of adjacent spacecrafts, where the chaser is being
transferred towards the target along the homing phase orbit.
Assume the mass of the chaser is 600 kg, and the target is
moving in a geosynchronous orbit of radius 𝑟 = 42241 km
with an orbital period of 24 hours. Thus, we have the angle
velocity 𝑛 = 1.117 × 10−3 rad/s. Assume that the maximum
input control force is 130N.

3.1. -V-bar. According to the coordinate based on target
frame, we presume that the chaser transfers to position
(135, 0, 0). Therefore, the initial error state can be expressed
as (−135, 0, 0, 0, 0, 0, 0, 0, 0)𝑇.

For simplicity, we presume the thrust can vary continu-
ously. First, we analyze the situation with Υ = Ξ = Ω =

0.03. In the coordinate based on target frame, assume the
initial state of homing phase is [0, 0, 0, 0, 0, 0, 0, 0, 0]. And by
considering the construction of uncertainties in the form of
(9), we make the following assumptions:

𝑋 =

[

[

[

[

[

[

[

[

[

[

[

[

[

0.0001 0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0020 −0.0001 −0.0001

0.0000 0.0001 0.0000 −0.0000 −0.0000 −0.0000 −0.0003 −0.0020 −0.0005

0.0000 0.0000 0.0001 −0.0000 −0.0000 −0.0000 −0.0002 −0.0005 −0.0021

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0020 −0.0003 −0.0002 0.0000 0.0000 0.0000 0.0626 0.0029 0.0015

−0.0001 −0.0020 −0.0005 0.0000 0.0000 0.0000 0.0029 0.0604 0.0076

−0.0001 −0.0005 −0.0021 0.0000 0.0000 0.0000 0.0015 0.0076 0.0621

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑌 = 10
−3

×
[

[

[

−0.0198 −0.0002 −0.0001 −0.0002 0.0000 0.0000 0.3065 −0.0200 −0.0097

0.0053 −0.0063 −0.0058 −0.0002 −0.0005 −0.0003 −0.1446 0.0986 0.0035

0.0075 −0.0050 −0.0061 −0.0002 −0.0003 −0.0006 −0.1492 −0.0014 0.0904

]

]

]

.

(34)

Therefore, the gain matrix for the augmented feedback
controller is given by

𝐾 = 𝑌 × 𝑋
−1

=
[

[

[

−0.8725 0.0156 −0.0023 −19.6879 −0.0475 −0.0355 −0.0156 −0.0000 −0.0002

−0.1172 −0.7895 −0.2242 −1.8656 −21.4237 −1.1423 −0.0032 −0.0140 −0.0073

0.0174 −0.1945 −0.7776 −0.5884 −0.2998 −20.7360 −0.0010 −0.0066 −0.0142

]

]

]

. (35)
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Figure 3: Chaser’s positional output of closed-loop control.

The output of the system which means the relative
position of the two spacecrafts is depicted in Figure 3.

It can be seen that the output of the system is asymptot-
ically convergent to the reference signal, which means that
the chaser keeps at the terminal point. We can also obtain
the relevant control thrusts needed for these methods in
Figure 4.

Besides the nonzero initial velocity, the coupling action
brought by parameter uncertainties is another source for the
fluctuation in 𝑧-axis. It can be seen that the fluctuation finally
restrained and the positional output in 𝑧-axis asymptotically
converged to the reference signal. We can see that the
controller can effectively stabilize the system in spite of the
existence of parameter uncertainties.
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Figure 4: Chaser’s input thrust of closed-loop control.

Next, we change the magnitudes of uncertainties by
considering the following four conditions:

Case A: Υ = Ξ = Ω = 0;
Case B: Υ = 0.03, Ξ = Ω = 0.015;

Case C: Υ = 0.06, Ξ = Ω = 0.03;

Case D: Υ = Ξ = Ω = 0.0652.

(36)

The proper controllers for these conditions can be
obtained by solving the convex optimization problems as
follows:

𝐾Case A =
[

[

−0.8726 0.0168 −0.0012 −19.6631 −0.0165 −0.0238 −0.0156 0.0001 −0.0001

−0.0510 −0.8183 −0.1570 −0.7472 −22.4896 −0.5307 −0.0021 −0.0140 −0.0052

−0.0232 −0.1522 −0.8247 −1.0570 −0.5274 −22.3842 −0.0012 −0.0052 −0.0144

]

]

,

𝐾Case B =
[

[

−0.8728 0.0137 −0.0035 −19.6836 −0.0418 −0.0430 −0.0157 −0.0001 −0.0003

−0.0886 −0.7852 −0.2359 −1.5512 −21.3489 −1.2784 −0.0029 −0.0140 −0.0074

−0.0103 −0.2165 −0.7832 −1.1239 −0.8532 −20.8999 −0.0015 −0.0071 −0.0143

]

]

,

KCase C =
[

[

−0.8723 0.0153 −0.0014 −19.7047 −0.0793 −0.0305 −0.0156 −0.0001 −0.0002

−0.1809 −0.7652 −0.2506 −2.9144 −20.5827 −1.3472 −0.0042 −0.0138 −0.0083

0.0635 −0.2401 −0.7132 −0.0714 −0.5607 −19.1985 −0.0007 −0.0075 −0.0132

]

]

,

𝐾Case D =
[

[

−0.8702 0.0296 0.0013 −19.6788 −0.0089 0.0016 −0.0154 0.0004 0.0000

−0.3263 −0.7475 −0.1084 −2.9313 −22.6185 −0.2819 −0.0036 −0.0106 −0.0041

0.2335 0.0512 −0.7417 3.9454 4.0154 −19.6471 0.0032 −0.0009 −0.0129

]

]

,

(37)

and the positional outputs of the closed-loop systems with
these controllers in three axes are depicted in Figures

5, 7, and 9 separately. We can also obtain the four rel-
evant control thrusts needed for these two methods in
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Figure 5:𝑋-axis positional output of closed-loop system for the four
different uncertainty cases.

Figures 6, 8, and 10 separately. We can see that the closed-
loop systems with the controllers 𝐾 are all stable and
the output tracking requirement can be guaranteed. From
these figures and the data, we can also find that the
larger uncertainties will extend the stabilizing time and
bring larger fluctuations in 𝑧-axis input thrust, and the
performance cost bound will also be elevated by larger
uncertainties.

Finally, the terminal segment close to the target is
depicted clearly in Figure 11. It can be seen that the chaser
will asymptotically move to the evacuation point eventually,
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Figure 6: 𝑋-axis input of closed-loop system for the four different
uncertainty cases.

which means that the output tracking requirements can be
satisfied by the designed controller𝐾.

3.2. -R-bar. According to the coordinate based on target
frame, we presume that the chaser transfers to position
(0, −135, 0). Therefore, the initial error state can be expressed
as (0, 135, 0, 0, 0, 0, 0, 0, 0)𝑇.

For simplicity, we presume the thrust can vary continu-
ously. First, we analyze the situation with Υ = Ξ = Ω =

0.03. In the coordinate based on target frame, assume the
initial state of homing phase is [0, 0, 0, 0, 0, 0, 0, 0, 0]. And by
considering the construction of uncertainties in the form of
(9), we make the following assumptions:

𝑋 =

[

[

[

[

[

[

[

[

[

[

[

[

[

0.0001 0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0019 −0.0002 −0.0005

0.0000 0.0001 0.0000 −0.0000 −0.0000 −0.0000 −0.0003 −0.0020 −0.0002

0.0000 0.0000 0.0001 −0.0000 −0.0000 −0.0000 −0.0005 −0.0002 −0.0021

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0019 −0.0003 −0.0005 0.0000 0.0000 0.0000 0.0590 0.0035 0.0086

−0.0002 −0.0020 −0.0002 0.0000 0.0000 0.0000 0.0035 0.0630 0.0028

−0.0005 −0.0002 −0.0021 0.0000 0.0000 0.0000 0.0086 0.0028 0.0618

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑌 = 10
−3

×
[

[

−0.0068 0.0065 −0.0062 −0.0005 −0.0002 −0.0003 0.0595 −0.1188 −0.0113

−0.0004 −0.0194 −0.0005 −0.0000 −0.0002 −0.0000 −0.0014 0.2965 −0.0121

−0.0051 0.0077 −0.0059 −0.0003 −0.0002 −0.0006 0.0089 −0.1633 0.1018

]

]

.

(38)

Therefore, the gain matrix for the augmented feedback
controller is given by

𝐾 = 𝑌 × 𝑋
−1

=
[

[

−0.8013 −0.0073 −0.2275 −20.7499 −2.1876 −1.2217 −0.0148 −0.0009 −0.0077

−0.0521 −0.8723 −0.0134 −0.1245 −19.6957 −0.0528 −0.0009 −0.0157 −0.0007

−0.2448 0.0160 −0.7531 −0.8687 −0.3932 −20.6737 −0.0075 −0.0008 −0.0134

]

]

. (39)
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Figure 7:𝑌-axis positional output of closed-loop system for the four
different uncertainty cases.
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Figure 8: 𝑌-axis input of closed-loop system for the four different
uncertainty cases.

The output of the system which means the relative
position of the two spacecraft is depicted in Figure 12.

It can be seen that the output of the system is asymptot-
ically convergent to the reference signal, which means that
the chaser keeps at the terminal point. We can also obtain
the relevant control thrusts needed for these methods in
Figure 13.

Besides the nonzero initial velocity, the coupling action
brought by parameter uncertainties is another source for
the fluctuation in 𝑧-axis. It can be seen that the fluc-
tuation is finally restrained and the positional output
in 𝑧-axis asymptotically converged to the reference sig-
nal. We can see that the controller can effectively sta-
bilize the system in spite of the existence of parameter
uncertainties.
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Figure 9:𝑍-axis positional output of closed-loop system for the four
different uncertainty cases.
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Figure 10: 𝑍-axis input of closed-loop system for the four different
uncertainty cases.

Next, we change the magnitudes of uncertainties by
considering the following four conditions:

Case A: Υ = Ξ = Ω = 0;
Case B: Υ = 0.03, Ξ = Ω = 0.015;

Case C: Υ = 0.06, Ξ = Ω = 0.03;

Case D: Υ = Ξ = Ω = 0.0652.

(40)

The proper controllers for these conditions can be
obtained by solving the convex optimization problems as
follows:
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𝐾Case A =
[

[

−0.8255 0.0128 −0.1707 −22.1674 −1.1565 −0.6244 −0.0146 −0.0002 −0.0058

−0.0275 −0.8714 −0.0092 −0.0469 −19.6785 −0.0279 −0.0007 −0.0156 −0.0005

−0.1763 −0.0132 −0.8192 −0.6430 −0.7610 −22.3625 −0.0058 −0.0010 −0.0143

]

]

,

𝐾Case B =
[

[

−0.7953 −0.0035 −0.2394 −20.8135 −1.9250 −1.3488 −0.0147 −0.0009 −0.0078

−0.0425 −0.8720 −0.0144 −0.1018 −19.6821 −0.0528 −0.0010 −0.0157 −0.0007

−0.2562 −0.0016 −0.7652 −1.2303 −0.7713 −20.9066 −0.0078 −0.0011 −0.0137

]

]

,

𝐾Case C =
[

[

−0.8103 −0.0211 −0.2089 −20.2798 −2.8811 −1.0569 −0.0151 −0.0013 −0.0076

−0.0766 −0.8730 −0.0122 −0.2170 −19.7221 −0.0484 −0.0011 −0.0158 −0.0007

−0.2670 0.0462 −0.6986 −1.1317 0.1392 −19.6532 −0.0075 −0.0003 −0.0122

]

]

,

𝐾Case D =
[

[

−0.8509 −0.0492 −0.1465 −20.3975 −4.1579 −0.5316 −0.0154 −0.0016 −0.0062

−0.1433 −0.8744 −0.0109 −0.5140 −19.7942 −0.0420 −0.0014 −0.0159 −0.0007

−0.1512 0.1218 −0.6620 0.6308 2.0097 −18.6886 −0.0048 −0.0013 −0.0108

]

]

,

(41)

and the positional outputs of the closed-loop systems with
these controllers in three axes are depicted in Figures 14,
16, and 18 separately. We can also obtain the four relevant
control thrusts needed for these two methods in Figures 15,
17, and 19 separately. We can see that the closed-loop systems
with the controllers 𝐾 are all stable and the output tracking
requirement can be guaranteed. From these figures and the
table, we can also find that larger uncertainties will extend the
stabilizing time and bring larger fluctuations in z-axis input
thrust, and the performance cost bound will also be elevated
by larger uncertainties.

Finally, the terminal segment close to the target is
depicted clearly in Figure 20. It can be seen that the chaser
will asymptotically move to the evacuation point eventually,
which means that the output tracking requirements can be
satisfied by the designed controller𝐾.

3.3. +H-bar. Due to the poor security and the accident of
collision, the application of the H-bar is less than those of the
methods discussed above. However, H-bar evacuation is easy
to accomplish because the 𝑧-axis is uncorrelated with 𝑥-axis
and 𝑦-axis. Besides, H-bar evacuation consumers less fuel
and can move along the H-bar automatically. So, we consider
H-bar evacuation as a kind of illustrative example.

According to the coordinate based on target frame, we
presume that the chaser transfers to position (0, 0, 135).
Therefore, the initial error state can be expressed as
(0, 0, −135, 0, 0, 0, 0, 0, 0)

𝑇.
For simplicity, we presume the thrust can vary continu-

ously. First, we analyze the situation with Υ = Ξ = Ω =

0.03. In the coordinate based on target frame, assume the
initial state of homing phase is [0, 0, 0, 0, 0, 0, 0, 0, 0]. And by
considering the construction of uncertainties in the form of
(9), we make the following assumptions:

𝑋 =

[

[

[

[

[

[

[

[

[

[

[

[

[

0.0001 0.0001 0.0000 −0.0000 −0.0000 −0.0000 −0.0017 −0.0008 −0.0004

0.0001 0.0001 0.0000 −0.0000 −0.0000 −0.0000 −0.0010 −0.0018 −0.0004

0.0000 0.0000 0.0001 −0.0000 −0.0000 −0.0000 −0.0003 −0.0003 −0.0021

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.0017 −0.0010 −0.0003 0.0000 0.0000 0.0000 0.0541 0.0169 0.0056

−0.0008 −0.0018 −0.0003 0.0000 0.0000 0.0000 0.0169 0.0559 0.0057

−0.0004 −0.0004 −0.0021 0.0000 0.0000 0.0000 0.0056 0.0057 0.0638

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑌 = 10
−3

×
[

[

−0.0070 −0.0068 0.0019 −0.0005 −0.0004 −0.0004 0.0599 0.0242 −0.0729

−0.0070 −0.0070 0.0017 −0.0004 −0.0004 −0.0004 0.0306 0.0444 −0.0716

−0.0024 −0.0023 −0.0180 −0.0001 −0.0001 −0.0003 −0.0459 −0.0436 0.2483

]

]

.

(42)

Therefore, the gain matrix for the augmented feedback
controller is given by

𝐾 = 𝑌 × 𝑋
−1

=
[

[

−0.6798 −0.3389 −0.1329 −18.4530 −3.9755 −2.1891 −0.0130 −0.0093 −0.0044

−0.4350 −0.6511 −0.1324 −4.1696 −18.1157 −2.1782 −0.0106 −0.0123 −0.0044

−0.0448 −0.0400 −0.8411 0.3381 0.3693 −18.7812 −0.0029 −0.0026 −0.0158

]

]

. (43)
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Figure 12: Chaser’s positional output of closed-loop control.

The output of the system which means the relative
position of the two spacecrafts is depicted in Figure 21.

It can be seen that the output of the system is asymptot-
ically convergent to the reference signal, which means that
the chaser keeps at the terminal point. We can also obtain
the relevant control thrusts needed for these methods in
Figure 22.

Besides the nonzero initial velocity, the coupling action
brought by parameter uncertainties is another source for the
fluctuation in 𝑧-axis. It can be seen that the fluctuation finally
restrained and the positional output in 𝑧-axis asymptotically
converged to the reference signal. We can see that the
controller can effectively stabilize the system in spite of the
existence of parameter uncertainties.

0 200 400 600 800 1000

0

20

40

60

80

100

120

Force (N)

Po
sit

io
na

l i
np

ut
 al

on
g 

ax
is 

(m
)

−80

−60

−40

−20

X-axis
Y-axis
Z-axis

Figure 13: Chaser’s input thrust of closed-loop control.
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Figure 14: 𝑋-axis positional output of closed-loop system for the
four different uncertainty cases.

Next, we change the magnitudes of uncertainties by
considering the following four conditions:

Case A: Υ = Ξ = Ω = 0;

Case B: Υ = 0.03, Ξ = Ω = 0.015;

Case C: Υ = 0.06, Ξ = Ω = 0.03;

Case D: Υ = Ξ = Ω = 0.0652.

(44)

The proper controllers for these conditions can be
obtained by solving the convex optimization problems as
follows:
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Figure 15: 𝑋-axis input of closed-loop system for the four different
uncertainty cases.
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Figure 16: 𝑌-axis positional output of closed-loop system for the
four different uncertainty cases.
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Figure 17: 𝑌-axis input of closed-loop system for the four different
uncertainty cases.

0 200 400 600 800 1000

0

2

4

6

Time (s)

−6

−4

−2

Case A
Case B

Case C
Case D

Z
-a

xi
s p

os
iti

on
al

 o
ut

pu
t a

lo
ng

 ax
is 

(m
)

Figure 18: 𝑍-axis positional output of closed-loop system for the
four different uncertainty cases.
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Figure 19: 𝑍-axis input of closed-loop system for the four different
uncertainty cases.
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Figure 21: Chaser’s positional output of closed-loop control.

0 200 400 600 800 1000

0

20

40

60

80

Force (N)

Po
sit

io
na

l i
np

ut
 al

on
g 

ax
is 

(m
)

−120

−100

−80

−60

−40

−20

X-axis
Y-axis
Z-axis

Figure 22: Chaser’s input thrust of closed-loop control.
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Figure 23: 𝑋-axis positional output of closed-loop system for the
four different uncertainty cases.
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Figure 24:𝑋-axis input of closed-loop system for the four different
uncertainty cases.
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Figure 25: 𝑌-axis positional output of closed-loop system for the
four different uncertainty cases.
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Figure 26: 𝑌-axis input of closed-loop system for the four different
uncertainty cases.
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Figure 27: 𝑍-axis positional output of closed-loop system for the
four different uncertainty cases.
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Figure 28: 𝑍-axis input of closed-loop system for the four different
uncertainty cases.

𝐾Case A =
[

[

[

−0.8726 0.0168 −0.0012 −19.6631 −0.0165 −0.0238 −0.0156 0.0001 −0.0001

−0.0510 −0.8183 −0.1570 −0.7472 −22.4896 −0.5307 −0.0021 −0.0140 −0.0052

−0.0232 −0.1522 −0.8247 −1.0570 −0.5274 −22.3842 −0.0012 −0.0052 −0.0144

]

]

]

,

𝐾Case B =
[

[

[

−0.8728 0.0137 −0.0035 −19.6836 −0.0418 −0.0430 −0.0157 −0.0001 −0.0003

−0.0886 −0.7852 −0.2359 −1.5512 −21.3489 −1.2784 −0.0029 −0.0140 −0.0074

−0.0103 −0.2165 −0.7832 −1.1239 −0.8532 −20.8999 −0.0015 −0.0071 −0.0143

]

]

]

,

𝐾Case C =
[

[

[

−0.8723 0.0153 −0.0014 −19.7047 −0.0793 −0.0305 −0.0156 −0.0001 −0.0002

−0.1809 −0.7652 −0.2506 −2.9144 −20.5827 −1.3472 −0.0042 −0.0138 −0.0083

0.0635 −0.2401 −0.7132 −0.0714 −0.5607 −19.1985 −0.0007 −0.0075 −0.0132

]

]

]

,

𝐾Case D =
[

[

−0.8702 0.0296 0.0013 −19.6788 −0.0089 0.0016 −0.0154 0.0004 0.0000

−0.3263 −0.7475 −0.1084 −2.9313 −22.6185 −0.2819 −0.0036 −0.0106 −0.0041

0.2335 0.0512 −0.7417 3.9454 4.0154 −19.6471 0.0032 −0.0009 −0.0129

]

]

,

(45)

and the positional outputs of the closed-loop systems with
these controllers in three axes are depicted in Figures 23,
25, and 27 separately. We can also obtain the four relevant
control thrusts needed for these two methods in Figures 24,
26, and 28 separately.We can see that the closed-loop systems
with the controllers 𝐾 are all stable and the output tracking
requirement can be guaranteed. From these figures and the
table, we can also find that larger uncertainties will extend
the stabilizing time and bring smaller fluctuations in 𝑧-axis
input thrust, and the performance cost bound will also be
diminished by larger uncertainties.

Finally, the terminal segment close to the target is
depicted clearly in Figure 20. It can be seen that the chaser
will asymptotically move to the evacuation point eventually,
which means that the output tracking requirements can be
satisfied by the designed controller𝐾 (Figure 29).

4. Conclusions

The paper has demonstrated a robust guaranteed cost output
tracking control design method for the evacuation phase of
spacecraft rendezvous with parameter uncertainties. Track-
ing control problem has been altered into a stabilization
problem of an augmented system by taking the reference
signal of the output into consideration. By using Lyapunov
method, the controller 𝐾 design problem has progressively
been transformed into a convex optimization problem with
linear matrix inequality constraints. The output tracking
requirement can be satisfied with performance cost upper
bound, and the poles of the augmented closed-loop sys-
tem lie in the desired region. An illustrative example has
shown the effectiveness of the proposed controller design
method.
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This paper presents a robust feedback control solution for systemswithmultiplemanipulated inputs and a singlemeasurable output.
A structure of parallel controllers achieves robust stability and robust disturbance rejection. Each controller uses the least possible
amount of feedback at each frequency. The controller design is carried out in the Quantitative Feedback Theory framework. The
method pursues a smart load sharing along the frequency spectrum, where each branch must either collaborate in the control task
or be inhibited at each frequency. This reduces useless fatigue and saturation risk of actuators. Different examples illustrate the
ability to deal with complex control problems that current MISOmethodologies cannot solve. Main control challenges arise due to
the uncertainty of plant and disturbance models and when a fast-slow hierarchy of plants cannot be uniquely established.

1. Introduction

This paper deals with systems where multiple inputs are
used to govern a single output. Although scientific literature
refers to them with diverse names, here they will simply be
called MISO systems. In some cases, each individual output
is accessible, as in distributed energy generation systems [1],
decentralised production systems [2], or unmanned fleets [3].
Usually, this leads to complex multiloop control structures
[4]. However, a lot of engineeringMISO systems lack physical
individual outputs or sensors to measure them. Such systems
are common in process industry [5], where theMISO control
sometimes pursues themanagement of the global production
system [6], whereas other times it governs low-level process
variables (typical examples are two pumps or a pump and a
valve, used as actuators in pressure or flow control [7–9]).
In other cases the MISO control attends certain subsystems
in a process, such as chemical reactors [10–12] or biological
reactors [13–15]. More specific usages can be found in drying
sections of paper machines [7, 16] or in aerobic digesters
of waste water treatment plants [17]. Heat exchangers [18–
20], chemical reactors in polymerization processes [9, 18],
or distillation columns [9, 20–23] are repeated references in

the scientific literature as MISO control applications. The
automotive industry has also adopted these principles, firstly
for the government of internal combustion engines [24–27]
and recently for HCCI (Homogeneous Charge Compression
Ignition) engines [28–30]. Another area devoted to MISO
control is the consumer electronics, and particularly the
massive data storage devices [31–33]. And finally, biological
engineering applications can be found in [18, 34].

Within those MISO systems with nonindividual mea-
surable outputs, the control strategies can be divided into
noncollaborative and collaborative ones. Noncollaborative
control selects a plant inside a battery of them, which covers
a wide range of operating points for the output.The selection
criterion is based on the stationary capacity of each plant.
Thus, the control law is designed for an equivalent SISO
system. A selector splits online the control action to the
plant or plants with capacity to regulate the output in the
actual operating point. The split-range control [35, 36] is the
most representative of this methodology. A simpler method
reduces to a pure SISO control system, which closes a single
feedback loop around a plant. The inputs to the other plants
are manipulated manually or are left constant [37].
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On the other hand, collaborative strategies benefit from
the dynamic strengths of each plant to improve the con-
trolled output performance considering the restrictions of
manipulated variables and individual outputs. In the sci-
entific literature collaborative MISO systems appear under
diverse designations: VPC (Valve Position Control) [8, 9, 21–
23], habituating control [10–12, 17, 18, 34, 38], main-vernier
control [39–42], cooperative-feedback control [20, 43, 44], load
sharing control [2, 45–47], or PQ design method [27, 48, 49].
Midranging control [7, 13, 15, 16, 35, 50–54] is frequently found
in process control literature.

The controlled collaboration of parallel plants can be per-
formed by serial (Figure 1(a)) or parallel (Figure 1(b)) struc-
tures of controllers. Serial collaboration is based on a qualita-
tive organization of plants: the main loop 𝑐

𝑛
𝑝
𝑛
corresponds

to the fastest plant 𝑝
𝑛
, the first one to react to output

deviations. The vernier loops are arranged to produce a
chained intervention of gradually slower plants. The last
loop, which incorporates the slowest plant, is in charge of
the steady state. In this way, each system collaborates to
the extent it provides benefits, avoiding useless actuator
fatigue and risk of saturation. This is also the goal of
parallel structures. However, the involvement of each plant
is determined by its preceding controller, instead of by its
position in the overall scheme.Thus, the design of each open-
loop transfer function 𝑐

𝑚
𝑐
𝑖
𝑝
𝑖
becomes more complex, since

it has to define both the actuation domain and the action
itself. However, unlike serial structures, parallel designs can
cope with systems where the fast-slow hierarchy cannot be
uniquely established.

In addition to all this, a proper design must pay some
attention to the pervasive presence of uncertainty. In this
sense, some solutions for the MISO control problem come
from the Quantitative Feedback Theory (QFT). Horowitz
[4, 55] did not pay much attention to the MISO problem
with no individualmeasurable outputs. His work suggests the
reduction of the MISO system to a SISO equivalent by plant
summation. Then, a master controller (𝑐

𝑚
in Figure 1(b))

is designed for the equivalent plant, and no individual
controller is used (𝑐

𝑖
= 1, 𝑖 = 1, . . . , 𝑛). The master control

strategy can extract the maximum dynamic potential of each
plant under certain restrictions for their phases. Nevertheless,
its main drawback is that the same control action reaches
all plant actuators. This entails using more feedback than
necessary at certain frequencies on each branch, which leads
to different negative effects in real-life actuators. In particular,
an excess of noise amplification arises in the control actions to
the slowest plants and steady-state offsets reduce the available
actuation range for the fastest ones. Another drawback of
plant summation strategy is that feedback is allocated by the
plant instead of by the designer, losing some flexibility. This
might have some importance in certain systems [7] whose
high operation expenses suggest to arrange plant interven-
tions according to monetary criteria rather than dynamic
ones. Further QFT developments include the approaches
in [25, 56], which detail a collaborative control of paral-
lel plants with uncertainties and restrictions for particular
applications, and the approach in [3], which adds feedback

loops of actuations inside a parallel structure as described in
[57].

However, a general robust methodology to deal with
MISO collaborative systems through QFT tools has not been
presented yet. Such is the goal of this paper. In particular, it
focuses on the disturbance rejection or regulation problem.
The new technique is fitted to the parallel structure. This is
the most versatile one since other arrangements can always
be transformed into it while the inverse transformation is not
always feasible. Besides, some examples will show that main-
vernier design philosophy cannot cope with certain types
of MISO plants. The new methodology seeks a quantitative
division of feedback amongst parallel loops in the frequency
domain. In absence of restrictions, this distribution leads
to the accomplishment of the specifications with minimum
use of feedback, that is, each loop only contributes at those
frequencies where its plant favours the output performance.

2. MISO QFT Design Methodology

2.1. Robust MISO Regulation Problem. Consider Figure 1(b)
with 𝑐

𝑚
= 1. Each parallel plant 𝑝

𝑖
, 𝑖 = 1, . . . , 𝑛, defines

the effect of each manipulated variable 𝑢
𝑖
over the sin-

gle measurable output 𝑦. The plant 𝑝
𝑑
defines the way in

which the nonmeasurable disturbance 𝑑 deviates the single
output 𝑦 from its desired constant set-point 𝑟. A set of
parallel controllers 𝑐

𝑖
, 𝑖 = 1, . . . , 𝑛 are designed to minimize

such deviation. Each 𝑐
𝑖
fixes its corresponding 𝑢

𝑖
based on a

common output measurement 𝑦, which is corrupted by the
noise signal 𝑛. For this regulation problem, the closed loop
functions are

𝑦 =

𝑝
𝑑

1 + 𝑙
𝑡

𝑑 −

𝑙
𝑡

1 + 𝑙
𝑡

𝑛,

𝑦
𝑖
= −

𝑙
𝑖
𝑝
𝑑

1 + 𝑙
𝑡

𝑑 −

𝑙
𝑖

1 + 𝑙
𝑡

𝑛,

𝑢
𝑖
= −

𝑐
𝑖
𝑝
𝑑

1 + 𝑙
𝑡

𝑑 −

𝑐
𝑖

1 + 𝑙
𝑡

𝑛,

(1)

where 𝑙
𝑖
= 𝑝
𝑖
𝑐
𝑖
are the individual open-loop transfer func-

tions and

𝑙
𝑡
=

𝑛

∑

𝑖=1

𝑙
𝑖

(2)

is the global open-loop transfer function.
All plants are assumed to present parametric uncertainty.

Let us define q = [𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑚
] as the vector of all param-

eters appearing in the transfer functions 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
, 𝑝
𝑑
.

Each 𝑞
𝑖
varies within certain lower and upper limits. There-

fore, the uncertainty vector q belongs to a hyperrectangle
in R𝑚 called the uncertainty space Q; that is,

q ∈ Q ≜ {q ∈ R
𝑚

| 𝑞
−

𝑖
≤ 𝑞
𝑖
≤ 𝑞
+

𝑖
, 𝑖 = 1, . . . , 𝑚} . (3)

The purpose of QFT control is to enforce the specifica-
tions for all elements in the uncertainty space. In this case,
the specifications include robust stability,










𝑙
𝑡

1 + 𝑙
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≤ 𝑊
𝑠

∀q ∈ Q, (4)
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Figure 1: Control structures for MISO plant.

and robust disturbance rejection,









𝑝
𝑑

1 + 𝑙
𝑡










≤ 𝑊
𝑑

∀q ∈ Q, (5)

where 𝑊
𝑠
and 𝑊

𝑑
are upper tolerances for each closed-loop

frequency response.
As long as feedback control guarantees expected speci-

fications at a certain price, QFT advocates for that control
solution with the minimum amount of feedback, which
will be denoted as the QFT optimum. In SISO control,
the bounds express the minimal gain requirements on the
nominal open-loop transfer function for the accomplishment
of the specifications. Consequently, an QFT optimal loop-
shaping tries first a narrow fulfilment of the bounds, and then
an abrupt roll-off to minimize the presence of noise in the
control signals [58].

In the MISO case, the search for the QFT optimum is not
so obvious.There is aminimal gain of the nominal open-loop
global function 𝑙

𝑡𝑜
that meets (4) and (5). However, it can be

achieved by several combinations of 𝑙
𝑖𝑜
in (2). That combi-

nation of minimum gains of each 𝑐
𝑖
at each frequency is the

solution that demands the minimum amount of feedback.
Then, one option is splitting the global problem in several
designs 𝑙

𝑖𝑜
in such a way that each bound arrangement shows

the minimum amount of feedback solution. If so, each loop-
shaping reduces to a narrow fulfilment of the bounds and
a maximal reduction of gain in the frequencies where no
restrictions are imposed.

In practice, the new methodology looks for a wise
distribution of feedback, which exploits the power of each
plant frequency response to achieve controllers of minimum
gain. This minimizes the presence of noise in the control
signals to the slowest plants, which usually exhibit the most
powerful actuators and provide the bias action. In this way,
faster plant actuators preserve their full range of operation
for output regulation in response to disturbances.

2.2. Parallel Plants and the Amount of Feedback. The core
of the method is to quantify the amount of feedback,
which is evaluated with the controller gain. For a better
understanding, let us take a single frequency, exclude the
uncertainty, and consider solely the specification of robust

disturbance rejection. Then, certain 𝑙
𝑡
will be a solution to

(5). Two parallel structures from Figure 1(b) will be studied:
a master control, which sintonizes 𝑐

𝑚
, and does each 𝑐

𝑖
= 1,

and a strictly parallel control, which sintonizes each 𝑐
𝑖
and

does 𝑐
𝑚
= 1.

To achieve 𝑙
𝑡
, we are firstly comparing the controller

gain necessities for plants of similar characteristics. For
simplification purposes, let us take two plants 𝑝. As expected,
if the system power to regulate the output was increased
from 𝑝 to 2𝑝, feedback necessities would reduce in the same
proportion from |𝑙

𝑡
/𝑝| to |𝑙

𝑡
/2𝑝|, independently if a master

controller or two parallel controllers were used.
Secondly, control necessities to achieve 𝑙

𝑡
are being eval-

uated for plants with very different gains at the same phase.
Let us take two plants as |𝑝

1
| ≫ |𝑝

2
|. Note that, if 𝑝

1
plant

worked alone, the feedback demand would be considerably
inferior to the case of 𝑝

2
working alone: |𝑙

𝑡
/𝑝
1
| ≪ |𝑙

𝑡
/𝑝
2
|.

Therefore, there is no sense in using the 𝑝
2
actuation

unless you consider other criteria different from meeting
the performance with the minimum feedback. In the case
of a master controller, its control demand is |𝑙

𝑡
/(𝑝
1
+ 𝑝
2
)|,

which approaches to |𝑙
𝑡
/𝑝
1
|. Thus, 𝑝

1
is the only plant con-

tributing to the performance and 𝑝
2
actuator is being excited

unnecessarily. A parallel controller structure can overcome
this drawback as follows. Basing on the formulation, 𝑙

𝑡
=

𝑐
1
𝑝
1
+ 𝑐
2
𝑝
2
can be achieved by different combinations

of 𝑐
1
, 𝑐
2
. However, as long as 𝑝

2
powerfulness is negligible,

any attempt of collaboration with 𝑝
1
to the performance will

require a huge control demand in the second branch. Then,
the best option is to achieve the performance with the 𝑝

1
-

branch, whose control demand will be |𝑙
𝑡
/𝑝
1
|. Simultane-

ously, tuning 𝑐
2
≈ 0 avoids that useless signals reach the

𝑝
2
actuators.
One of the above two situations (plants that should

collaborate or not) arises in the loop-shaping of controllers at
each frequency. In a first stage of the proposed methodology,
specialQFTbounds guide the designer to definewhen several
plants are similar enough to collaborate at certain frequency
or when they are different enough such that some must
take the whole responsibility and others must be inhibited.
Model uncertainty and the whole set of specifications are
included in the method. In a second stage, the feedback is
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shared accordingly through the sequential loop-shaping of
controllers in the parallel structure.

2.3. First Stage: Load Sharing Planning at Each Frequency of
Design. Theproposedmethod firstly evaluates the amount of
controller gain |𝑐

𝑖
| that each plant 𝑝

𝑖
would demand to fulfil

the specifications (4), and (5) by itself, that is, assuming 𝑐
𝑗 ̸= 𝑖

=

0. The required gain is expressed graphically by a QFT bound
at each frequency 𝜔, denoted by 𝛽

𝑐𝑖
(𝜔). Note that, unlike

common QFT bounds, these are bounds on the controller
gain, not on the nominal open-loop gain |𝑙

𝑖𝑜
|, in the vertical

axis. This is so, because their purpose is not to serve as
design guidelines, but to allow a graphical comparison among
the controller gains that are being demanded at subsequent
design phase ∠𝑙

𝑖𝑜
by each plant. Once all the bounds for a

single frequency 𝜔 are computed and a design phase Θ
𝑑
is

selected for comparisons, a conclusion is reached according
to the following criteria.

(a) If one of the bounds, say 𝛽
𝑐𝑘
(𝜔), is sensibly lower

than the others at Θ
𝑑
, then regulation at that fre-

quency must be accomplished through the open-
loop function 𝑙

𝑘
, and the other branches must be

inhibited by decreasing the gain of 𝑐
𝑖 ̸= 𝑘
(𝑗𝜔) as much

as possible. The quantity of 20 log 𝑛 dB is a practical
guideline to establish the bound height difference.
It is funded on the ideal collaboration of 𝑛 equal
plants, which would reduce 𝑛 times the amount of
feedback, as Section 2.2 details. Figure 2 shows the
analysis for a 2-branch structure, which suggests that
the controller 𝑐

2
should carry the burden of control

at 𝜔
1
whatever the chosen Θ

𝑑
is.

(b) If several bounds are located at the bottom and
their heights do not differ too much from each
other at Θ

𝑑
, then their associated controllers must

share the regulating task.The branches whose bounds
locate above this bound group must be inhibited.
In this case, the practical rule of thumb is that any
set of 𝑚 bounds within a range of ±20 log𝑚 dB are
suitable for cooperation. According to this, Figure 2
suggests that controllers 𝑐

1
and 𝑐
2
should collaborate

at 𝜔
2
whatever the chosen Θ

𝑑
is to fulfil the specifi-

cation.

Remark 1. The first stage of the new methodology arranges
the best load sharing amongst parallel plants at each fre-
quency for minimum amount of feedback in each branch to
meet the control specifications. This approach is completely
new inside the MISO control literature.

2.4. Second Stage: Feedback Sharing in Parallel Structure of
Controllers. Once it is decided which plants or plants must
deal with the specifications at each frequency, the 𝑛 parallel
controllers are designed sequentially. The procedure pre-
sented here aims to minimize the number of iterations
required to reach a feasible solution. At each step, one of
the controllers is tuned by QFT loop-shaping, while the
remaining ones are considered constant components of the
overall uncertain system. This rotating nature of the tunable

controller is enabled by the genbnds command of the Terasoft
QFT Toolbox [59], which admits general specifications in the
form









𝐴 + 𝐵𝐺

𝐶 + 𝐷𝐺









≤ 𝑊. (6)

Thus, if at some point the controller 𝑐
𝑘
is to be adjusted,

the robust stability (4) bounds can be computed by
choosing 𝐴 = ∑

𝑖 ̸= 𝑘
𝑙
𝑖
,𝐵 = 𝑝

𝑘
,𝐶 = 1+∑

𝑖 ̸= 𝑘
𝑙
𝑖
,𝐷 = 𝑝

𝑘
, 𝐺 = 𝑐

𝑘
,

and 𝑊 = 𝑊
𝑠
, while the robust disturbance rejection (5)

bounds require the choice 𝐴 = 𝑝
𝑑
, 𝐵 = 0, 𝐶 = 1 + ∑

𝑖 ̸= 𝑘
𝑙
𝑖
,

𝐷 = 𝑝
𝑘
, 𝐺 = 𝑐

𝑘
, and 𝑊 = 𝑊

𝑑
. Note that these are

common QFT bounds, since they are imposed on the open-
loop transfer function 𝑙

𝑘𝑜
, and consequently denoted 𝛽

𝑙𝑘
(𝜔),

which represent all the specifications to meet at 𝜔.
The design procedure begins with all controllers set to

zero. Subsequently, in the first step of design, the loop-
shaping of the branch/branches that should work at the
lowest frequency is performed fully. In an increasing order
of frequencies, the last step corresponds with the design of
branch/branches working at the highest frequency. During
any loop-shaping design, the course of action at certain
frequency depends on the result of the load sharing plan-
ning stage. As common in QFT for each loop-shaping, the
design begins satisfying the bounds in an increasing order
of frequencies, and finally, a fast roll-off of the open-loop
gain is shaped in the high frequency range. A novelty of
MISO control is that the open-loop gain must also be cut
or reduced in the frequencies where the branch should be
noncollaborating. Following, there are some hints of guide
for both goals of design: when the branch must achieve the
performance at 𝜔 and when the branch must be inhibited
at 𝜔 because other branches do the work or because 𝜔 is the
roll-off frequency for the branch.

At the frequencies where the branch/branches must per-
form the regulation task, two different cases are detailed next.
Figures 3 and 4 show examples of both cases. Superscripts in
bound designation indicate the step in the sequential design.

(a) A single plant 𝑝
𝑘
will be responsible for the regulating

task at 𝜔 (see the two-branch example in Figure 3).
Thus, 𝑙

𝑘𝑜
is placed above the bound 𝛽

𝑙𝑘
(𝜔) (see 𝑙

1𝑜
and

𝛽
0

𝑙1

). After this, the 𝑘 bound arrangement does not
change (see 𝛽I

𝑙1

). However, since the accomplishment
of the specifications has just been secured by 𝑐

𝑘
,

the bounds 𝛽
𝑙𝑖 ̸=𝑘
(𝜔) delimit now closed forbidden

regions, which will allow a reduction of the 𝑙
𝑖𝑜 ̸=𝑘𝑜

gains for feedback saving at 𝜔 when these designs
are faced (compare 𝛽I

𝑙2

with 𝛽0
𝑙2

). Note also that, an
excess of 𝑙

𝑘𝑜
gain to meet 𝛽

𝑙𝑘
would imply a major

contraction of 𝛽
𝑙𝑖 ̸=𝑘

if this was necessary in the design
of the other loops.

(b) A group of 𝑚 plants will share the control task
at 𝜔 (see the four-branch example in Figure 4,
where 𝑚 = 3). Their loop shaping is carried out
jointly as follows. For convenience, let us denote the
group 𝑝

𝑘1
, 𝑝
𝑘2
, . . . , 𝑝

𝑘𝑚
. Let us assume as well that 𝑐

𝑘1

is tuned first. The purpose of the designer is to place
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Figure 2: Feedback demand comparisons in a 2 × 1 system.
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Figure 3: Single brach achieves the specifications at 𝜔 in a 2 × 1 system.

𝑙
𝑘1𝑜

around 20 log𝑚 decibels below the bound 𝛽
𝑙𝑘1

(𝜔)

at the design phase of interest Θ
𝑑
(see 𝑙
1𝑜

and 𝛽0
𝑙1

).
The consequences are that 𝛽

𝑙𝑘1

(𝜔) bound does not
change (see𝛽I

𝑙1

) and that a dip appears atΘ
𝑑
in bounds

𝛽
𝑙𝑘𝑗

(𝜔), 𝑗 = 2, . . . , 𝑚 (see 𝛽I
𝑙2

and 𝛽I
𝑙3

). Then, tuning
of 𝑙
𝑘2𝑜

takes place, and the goal is to place 𝑙
𝑘2𝑜

around
20 log(𝑚 − 𝑗 + 1), 𝑗 = 2, decibels below the bound
𝛽
𝑙𝑘2

(𝜔); (see 𝑙
2𝑜

and 𝛽I
𝑙2

). Once achieved, the 𝛽
𝑙𝑘2

(𝜔)

bound does not change (see 𝛽II
𝑙2

), but it extends the
depth of the dip in 𝛽

𝑙𝑘𝑗

(𝜔), 𝑗 ̸= 2 (see 𝛽II
𝑙1

and 𝛽II
𝑙3

). The
process goes on in this manner, temporarily violating
their bo-unds, until the tuning of 𝑙

𝑘𝑚𝑜

is reached. In
this case, the purpose is simply to meet the bound
𝛽
𝑙𝑘𝑚

(𝜔), whose dip has been repeatedly enlarged by
each one of the controllers 𝑐

𝑗
, 𝑗 = 1, . . . , 𝑚 − 1 (see

𝑙
3𝑜
and 𝛽II

𝑙3

). Once this step is completed, all previously
violated bounds are now met (see 𝛽III

𝑙1

, 𝛽III
𝑙2

, and 𝛽III
𝑙3

).

If the 𝑚 plants were identical at 𝜔 and Θ
𝑑
, the gain

of each controller 𝑐
𝑘1,...,𝑚

would be 20 log𝑚 dB lower.
Nevertheless, differences between plant gains up to
±20 log𝑚 dB are acceptable for successful coopera-
tion and controller gain reduction, as Section 2.3(b)
reports. In consequence, some extra adjustments
are usually necessary to meet each 𝛽

𝑙𝑘𝑗

. After the
design of the 𝑚 controllers with control responsibil-
ities at 𝜔, the bounds of the remaining loops will
delimit closed forbidden regions (see 𝛽III

𝑙4

).

At the frequencies where the branch/branches has/have
no regulation responsibilities, a great deal of different sit-
uations may arise, specially when there are more than two
inputs in the MISO system. Some of the most frequent ones
are being described. In any case, the bound recalculation
after any design step contributes to value the tradeoffs,
which are inherent to any design with multiple degrees of
freedom.
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Figure 4: Three plants collaborate to achieve the specifications at 𝜔 in a 4 × 1 system.

(i) Design hints for the roll-off frequencies 𝜔 of the
𝑘 loop. The 𝑙

𝑘𝑜
gain reduction is usually a tradeoff

between a maximum noise amplification and a min-
imum controller order. One case is that the bounds
𝛽
𝑙𝑘
demand certain feedback at 𝜔. This happens if

there are other loops with control responsibilities at𝜔
that have not been designed yet. In this circumstance,
the 𝑙
𝑘𝑜

design is performed temporarily violating
its bounds at the roll-off frequencies 𝜔. After the
design of the loops with control responsibilities at
𝜔, the bounds 𝛽

𝑙𝑘
are automatically reshaped and

now demarcate forbidden closed regions. In the new
picture, 𝑙

𝑘𝑜
will usually meet its bounds. Nevertheless,

further iterations may be required to optimize the
gain reduction at these roll-off frequencies.Other case
is if the 𝑘 loop is the last one to be designed. In
this circumstance, 𝛽

𝑙𝑘
bounds, which already delimit

forbidden closed regions, are the definitive restric-
tions to be met in the 𝑙

𝑘𝑜
gain reduction at its roll-off

frequencies.

(ii) Design hints for the frequencies 𝜔 where the
𝑘 plant participation must be inhibited. The
bounds 𝛽

𝑙𝑘
currently demarcate fobidden closed

regions at 𝜔, since other loops have already achieved
the prescribed specifications. The restrictions for
the 𝑙
𝑘𝑜

gain reduction at frequencies𝜔 are the bounds
𝛽
𝑙𝑘
at frequencies higher than 𝜔, where the 𝑘 plant

will have to achieve or collaborate in the regulation
task. The controller complexity is another reason to
take into account in the gain saving procedure.

Remark 2. The second stage of quantitative MISO control
details the QFT framework and procedure for the sequential
loopshaping of parallel controllers in order to meet the
predefined load-sharing arrangement. A set of branches
collaborate in the control tasks or are inhibited for feedback
saving. A standard method is given to deal with 𝑛-input
single-output systems from a quantitative feedback control
point of view, which remained unsolved till now.
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Figure 5: Feedback demands for single plant intervention.

3. Design Examples

3.1. Example 1. A simple MISO system illustrates the new
methodology and its potential benefits. The uncertainty-free
plant models are

𝑝
1
=

1

10𝑠 + 1

, 𝑝
2
=

0.1

0.1𝑠 + 1

, 𝑝
𝑑
= 1. (7)

Inside a parallel disposition (Figure 1(b) with 𝑐
𝑚

=

1), the regulatory problem aims to design 𝑐
𝑖=1,2

to meet
certain stability (4) and performance (5) specifications with
minimum controller gains at each frequency. For aminimum
stability phase margin of 45∘, the tolerance choice is

𝑊
𝑠
=










0.5

cos (𝜋 (180 − 𝑃𝑀) /360)










, 𝑃𝑀 = 45. (8)

And for disturbance rejection, the performance upper model
is

𝑊
𝑑
=










1.4167𝑠 (𝑠 + 30)

(𝑠 + 10) (𝑠 + 42.5)










. (9)

For bound computation and loop-shaping guide, a suit-
able vector of discrete frequencies is chosen:

Ω = {0.1, 0.5, 1, 5, 10, 100} [

rad
s
] . (10)

3.1.1. First Stage: Load Sharing Planning at Each Frequency.
According to explanations in Section 2.3, the required
amount of feedback at Ω is computed in case that a single
system regulated the output: 𝑝

1
or 𝑝
2
, in Figure 5(a) and

Figure 5(b), respectively (only three frequencies in Ω are
drawn to illustrate the three potential outcomes). Compare
controller bounds of both systems as follow.

(i) At low frequencies (𝜔 < 0.5), the bounds 𝛽
𝑐1

are over 20 log 2 dB lower than the bounds 𝛽
𝑐2
; see

𝜔 = 0.1. Thus, 𝑝
1
branch should assume 𝑦 regulation

and 𝑝
2
branch should be switched off. Subsequent

loop-shaping goals are 𝑙
𝑡
≈ 𝑙
1
, 𝑙
2
≈ 0 at 𝜔 < 0.5.

Table 1: Load-sharing planning for minimum amount of feedback.

𝜔 0.1 0.5 1 5 10 100
𝑝1 × × ×

𝑝2 × × × × ×

(ii) At medium frequencies (0.5 ≤ 𝜔 < 2), the bound
heights differ less than 20 log 2; see 𝜔 = 1. Thus, the
collaboration of both plants is suggested. Subsequent
loop-shaping goals are 𝑙

1
≈ 𝑙
2
at 0.5 ≤ 𝜔 < 2.

(iii) At high frequencies (𝜔 ≥ 2), the bounds 𝛽
𝑐2
are

over 20 log 2 dB lower than the bounds 𝛽
𝑐1
; see 𝜔 =

10. Subsequent loop-shaping goals are 𝑙
𝑡
≈ 𝑙
2
, 𝑙
1
≈

0 at 𝜔 ≥ 2.

Accordingly, Table 1 summarises the load sharing plan-
ning at design frequencies Ω.

3.1.2. Second Stage: Design of Parallel Controllers. Sequential
loop-shaping of 𝑐

1
and 𝑐
2
is performed with Table 1 aims.

Figure 6 illustrates the procedure in detailed steps. Steps 0,
I, and II belong to the same first iteration, which explains
the design of 𝑐

1
and 𝑐
2
(marked with superscripts). Further

iterations (step III) are required to optimize both designs
looking for the strictly minimum amount of feedback at
each frequency, which usually trades off with a reasonable
order of the controllers. General guidelines were described
in Section 2.4.

(0) Initial bound computation is drawn with 𝑐0
2
= 0 for

the loop 1 (Figure 6(a)) and with 𝑐0
1
= 0 for the loop 2

(Figure 6(b)).
(I) Loop-shaping of 𝑙

1
(see Figure 6(c)). To achieve 𝑙

𝑡
≈ 𝑙
1

at 𝜔 < 0.5, 𝑙
1
is located onto bound 𝛽

𝑙1
(0.1). For plant

collaboration at 0.5 ≤ 𝜔 < 2, 𝑙
1
is shaped 20 log 2 dB

below 𝛽
𝑙1
(0.5) and 𝛽

𝑙1
(1). At 𝜔 ≥ 2, the goal becomes

𝑙
𝑡
≈ 𝑙
2
. Then, 𝜔 ≥ 2 are the roll-off frequencies for 𝑙

1
.

Its gain is reduced as much as possible, even momen-
tary violating bounds 𝛽

𝑙1
(5), 𝛽

𝑙1
(10), and 𝛽

𝑙1
(100),
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Figure 6: Sequential loop-shaping.
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since control requirements will be achieved by 𝑙
2
. As

this reduction is not bound guided, it could require
later a 𝑙

1
reshaping at these high frequencies. After

step I, the controllers are

𝑐
I
1
=

417 (𝑠 + 0.1)

𝑠(𝑠 + 2)
2
, 𝑐

I
2
= 𝑐
0

2
= 0. (11)

As a consequence, suitable bounds 𝛽
𝑙2
arise for the

subsequent loop-shaping of 𝑙
2
. Let us compare new

bounds in Figure 6(d) with initial bounds in Fig-
ure 6(b): closed exclusion regions appear in 𝛽

𝑙2
(0.1)

for 𝑙
2
feedback saving at 𝜔 < 0.5, since 𝑙

1
has

already achieved the feedback requirements; dips
arise in𝛽

𝑙2
(0.5) and𝛽

𝑙2
(1), where 𝑙

2
has to collaborate

with previous 𝑙
1
contribution; the bounds at 𝜔 =

{5, 10, 100} are not modified since 𝑙
2
must assume the

whole control tasks.

(II) Loop-shaping of 𝑙
2
(see Figure 6(f)). Firstly, reduce

𝑙
2
gain at 𝜔 < 0.5 to meet |𝑙

2
| ≪ |𝑙

𝑚
|, since

𝑙
𝑡
≈ 𝑙
1
was achieved. This example does not need

adding a lag network, which favours a lower order
of controller 𝑐

2
. Secondly, locate 𝑙

2
onto its bounds

𝛽
𝑙2
at 𝜔 = {0.5, 1, 5, 10}; note that the purpose of

an excess of feedback at 𝜔 = 1 is the illustration
of subsequent optimization iterations. Finally, reduce
the high frequency gain of 𝑙

2
at 𝜔 ≥ 100 (roll-off

frequencies) as much as possible as in any classical
QFT design. After step II, the controllers are

𝑐
II
2
=

193.2 (𝑠 + 0.4) (𝑠 + 6.3)

(𝑠 + 11) (𝑠
2
+ 1.2𝑠 + 0.51)

, 𝑐
II
1
= 𝑐

I
1
. (12)

As a consequence, let us compare new bounds 𝛽
𝑙1
in

Figure 6(e) with bounds of the previous step in
Figure 6(c). Note that 𝑙

1
now meets all its bounds.

Pay special attention to collaboration frequencies in
Figures 6(e) and 6(f): the feedback sharing is close
to the optimum at 𝜔 = 0.5 (𝑙

1
and 𝑙
2
lie on their

respective bounds), but it is not the case at 𝜔 = 1.
Thus, small adjustments are required to economize
feedback.

(III) Both loops are iteratively redesigned in Figures 6(g)
and 6(h). Thanks to the help of software tools, this is
usually a simple procedure. The final controllers are

𝑐
1
= 𝑐

III
1
=

329.7 (𝑠 + 0.088)

𝑠 (𝑠 + 1.5) (𝑠 + 2)

, (13)

𝑐
2
= 𝑐

III
2
=

225.13 (𝑠 + 1.1) (𝑠 + 6.95)

(𝑠 + 14.81) (𝑠
2
+ 1.77𝑠 + 1.22)

. (14)

Note that 𝑙
1
achieves by itself the control require-

ments at 𝜔 = 0.1 and shares this task with 𝑙
2
at 𝜔 =

{0.5, 1}. Thus, 𝑙
1
lies on 𝛽

𝑙1
at 𝜔 = {0.1, 0.5, 1}.

Alongside, 𝑙
2

achieves by itself the performance
load at 𝜔 = {5, 10}. Thus, 𝑙

2
lies on 𝛽

𝑙2
at 𝜔 =

{0.5, 1, 5, 10}. It’s also necessary to remark how the
bound disposition eases the reduction of the open-
loop gains, in particular at𝜔 > 1 for 𝑙

1
and at𝜔 < 0.5,

𝜔 > 10 for 𝑙
2
. Nevertheless, the feedback saving at

these frequencies trades off with a minimum order of
controllers.

3.1.3. Analysis and Comparisons. Parallel control, 𝑐
𝑖=1,2

(13)
and (14), is being compared with master control, 𝑐

𝑚
, which

is designed for the equivalent plant 𝑝
𝑒
= 𝑝
1
+ 𝑝
2
in order

to satisfy the same performance and stability specifications.
QFT design yields the single controller

𝑐
𝑚
=

192.6 (𝑠 + 0.1) (𝑠 + 4.4)

𝑠 (𝑠 + 1) (𝑠 + 8.9)

. (15)

For a fairer comparison, 𝑙
𝑚
= 𝑐
𝑚
𝑝
𝑒
lies exactly on its

bounds and reduces its high frequency gain as much as
possible. Thus, it is the solution of minimum amount of
feedback at each frequency if the system was single input;
Figure 7(a) depicts the minimum |𝑐

𝑚
|. This QFT optimal

loop-shaping is easily achievable as there is no uncertainty
and there is a single controller. For the MISO solution,
the exact meeting of bounds with controllers (13) and (14)
required a second iteration to reshape the former controllers
(11) and (12). Nevertheless, the main feedback saving is not
so much to lie exactly on the bounds but to share conve-
niently the feedback between branches. Note that |𝑐

2
| ≪

|𝑐
𝑚
| at low frequencies, where 𝑝

1
regulates the output, and

|𝑐
1
| ≪ |𝑐

𝑚
| at high frequencies, where 𝑝

2
works. In this

way, 𝑐
2
filters low frequencies, which avoids unnecessary off-

sets of 𝑝
2
actuation. And 𝑐

1
filters high frequencies, which

reduces the amplification of high frequency signals (sensor
noise) in 𝑝

1
actuator (usually labelled as cost of feedback in

SISO QFT [58]).
Figure 8 clearly demonstrates these benefits in the time

domain. External inputs are a unity step disturbance 𝑑(𝑡)
at 𝑡 = 0.5 s and the sensor noise 𝑛(𝑡) built with a white-
noise source (noise power = 0.001, sample time = 0.01).
All response signals are depicted with and without noise
intervention in blue and green lines, respectively. As long
as 𝑙
1
+ 𝑙
2
≈ 𝑙
𝑚
(a better agreement could be achieved

with higher order of controllers), the closed-loop transfer
functions 𝑦/𝑛 and 𝑦/𝑑 are similar for both control strate-
gies. Accordingly, the 𝑦(𝑡) performance coincides for master
and parallel control (only one is depicted in Figure 8), in
presence (blue line) or absence (green line) of noise.However,
the control effort strikes the differences as setting forward by
closed-loop frequency responses in Figure 7(b). Let us com-
pare the pair 𝑢

1
(𝑡)-𝑢
2
(𝑡) with the signal 𝑢

𝑚
(𝑡) in Figure 8.

Actuation 𝑢
1
(𝑡) is hardly affected by sensor noise ampli-

fications, which avoids unnecessary fatigue of 𝑝
1
actuator;

the exact quantification of this benefit is on the distance
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Figure 7: (a) Amount of feedback. (b) Closed-loop feedback cost.
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Figure 8: Time domain behaviour.

between |𝑢
1
/𝑛| and |𝑢

𝑚
/𝑛|, which mainly depends on the

affordable bandwidth saving during the 𝑙
1
shaping. On the

other hand, the noise 𝑛(𝑡) affects similarly to both 𝑢
2
(𝑡)

and 𝑢
𝑚
(𝑡). However, 𝑢

2
(𝑡) recovers the initial stationary state

and 𝑢
𝑚
(𝑡) does not: see 𝑢

2
(𝑡 = ∞) ≈ 0, 𝑢

𝑚
(𝑡 = ∞) = 𝑢

1
(𝑡 =

∞) in time-domain, and |𝑢
2
/𝑑|
𝜔=0

≈ −∞, |𝑢
𝑚
/𝑑|
𝜔=0

≈

|𝑢
1
/𝑑|
𝜔=0

in the frequency domain. Thus, for accumulative
disturbances, the fast time actuation of 𝑢

2
(𝑡) starts out always

from zero, and consequently, the full range of 𝑢
2
signal is

available to speed up the transient response with a less satura-
tion risk. Both improvements (the noise release of 𝑢

1
(𝑡) and

the zero steady state of 𝑢
2
(𝑡)) are more valuable in practice,

where real-life plants, actuators, and sensors have physical
limitations.

As some final comparisons, once 𝑐
1
and 𝑐
2
are achieved,

there are equivalences in other MISO control topologies
(Eitelberg’s master-slaves [46] and Lurie’s serial structure
[39]) for this particular example. Designs according to those
other structures and methodologies can always be trans-
formed into the strictly parallel structure, while the inverse

transformation is not always feasible. In any case, the same
QFT optimal solutions (13) and (14) would not probably be
attainable since those other design methodologies do not
quantify neither the amount of feedbacknor the collaboration
degree. Besides, some MISO plants or design-condition
arrangements are only affordable with the new parallel design
methodology; as following examples are discussing.

Remark 3. Firstly, this example details the two stages of
the proposed MISO control methodology. Then analysis
and comparisons show the expected benefits of a parallel
structure of controllers in comparison with a single master
controller: the reduction of useless fatigue and saturation
risk of actuators. In comparison with other MISO control
strategies (master-slaves or serial structures), the new one
offers the minimum amount of feedback to govern each plant
for prescribed specifications.

3.2. Example 2. Heat exchangers are common engineering
applications of MISO control [18–20]. Figure 9 outlines
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Figure 9: Thermal process control.

a heat-exchanger where the output temperature 𝑇(𝑡), can
be regulated through two manipulated variables: the hot
flow 𝑚

ℎ
(𝑡) and the heating power control 𝛿(𝑡) (which con-

ditions the input temperature of the hot flow). The cold
flow 𝑚

𝑐
(𝑡) acts as a disturbance since the production rate

changes ondemand.A laboratory-scale plant commercialised
by Feedback Systems Inc. agrees with this arrangement [60].

Around certain operating conditions, linear plant models
of the form

𝑝 (𝑠) =

𝑏
3
𝑠
3

+ 𝑏
2
𝑠
2

+ 𝑏
1
𝑠 + 𝑏
0

𝑠
4
+ 𝑎
3
𝑠
3
+ 𝑎
2
𝑠
2
+ 𝑎
1
𝑠 + 𝑎
0

(16)

are identified [61]. They express the relationships from the
two manipulated variables to the output (𝑝

1
= 𝑇/𝛿 and 𝑝

2
=

𝑇/𝑚
ℎ
) and from the disturbance to the output (𝑝

𝑑
=

𝑇/𝑚
𝑐
). A total amount of 112 cases are defined for each

output/input relation, which generate the uncertainty of
numerator and denominator coefficients in (16). Figure 10
depicts the envelopes of the plant frequency responses. As
long as all the 𝑝-models areminimumphase, onlymagnitude
Bode diagrams are included.

The robust stability control specification is (4) with
tolerance (8) for a minimum phase margin of 45∘. The
specification for robust disturbance rejection is (5)with upper
tolerance model

𝑊
𝑑
=











1.2𝑠 (𝑠 + 1.6) (𝑠 + 5)

(𝑠 + 6) (𝑠
2
+ 1.6𝑠 + 1.778)











. (17)

After computing the demand of feedback
if 𝑝
1
or 𝑝
2
worked alone, Table 2 resumes the load-sharing

planning at discrete frequencies to meet the robust control
specifications with the minimum amount of feedback.

Consequently, the loop-shaping of 𝑙
1𝑜
and 𝑙

2𝑜
are per-

formed (see Figure 11) and yield

𝑐
1
=

69.5 (𝑠 + 0.0044) (𝑠 + 0.058)

𝑠 (𝑠 + 0.018) (𝑠 + 0.49) (𝑠 + 2.94)

, (18)

𝑐
2
=

278.2 (𝑠 + 0.003) (𝑠 + 0.052) (𝑠 + 0.54)

(𝑠 + 0.0027) (𝑠 + 0.016) (𝑠 + 4) (𝑠 + 20)

. (19)
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Figure 10: Frequency response magnitude plots of plants.

Table 2: Load-sharing planning along the frequency band.

Ω 0.005 0.02 0.05 0.2 0.5 1 10
𝑝1 × ×

𝑝2 × × × × × ×

In Figure 12, closed-loop frequency responses illustrate
the achievement of control specifications and the control
effort that is used for it. Only the envelopes of a set of 112
frequency responses are depicted for each plant. In summary,
the originality of this example relapses in the engineering
character of the MISO plant, the robustness of the new
methodology (model uncertainty consideration), and the
challenge of disturbance incorporation through a dynamical
model with uncertainty.

For comparison purposes, a master controller is firstly
designed for the summation of plants 𝑝

𝑒
= 𝑝
1
+ 𝑝
2
in order

to meet the same robust control specifications

𝑐
𝑚
=

280 (𝑠 + 0.0044) (𝑠 + 0.058) (𝑠 + 0.38) (𝑠 + 0.58)

𝑠 (𝑠 + 0.018) (𝑠 + 0.49) (𝑠 + 4) (𝑠 + 20)

. (20)

The parallel arrangement and the master controller
behave equally attending to the prescribed stability and
performance. However, the parallel one is superior in terms
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Figure 11: Loop-shaping of controllers.

of the actuation signals. The same reasoning and benefits of
example 1 can be extended to this example.

Secondly, comparisons of the parallel arrangement and
the master-slaves structures are shown. The master-slaves
structure (Figure 1(b) with 𝑐

𝑚
̸= 1, 𝑐
1
̸= 1, and 𝑐

2
̸= 1) can be

considered a particular case of the parallel structure (𝑐
𝑚
=

1), since this last one will be demonstrated more versa-
tile. Attending their functionality as filters, let us rename
slave 𝑐

1
as filter 𝑓

1
and slave 𝑐

2
as filter 𝑓

2
. Let us suppose

that 𝑐
1
(18) and 𝑐

2
(19) have already been designed for a

parallel control structure. Then, there would not be a single
equivalence for them in the master-slaves structure. Equiv-
alents should meet: 𝑐

𝑚
𝑓
1
= 𝑐
1
and 𝑐
𝑚
𝑓
2
= 𝑐
2
. A practical

solution would be firstly to assume the master 𝑐
𝑚
of (20), as

long as its output performance matches that of the set 𝑐
1
(18)

and 𝑐
2
(19). And secondly, to overcome the drawbacks of

master control for parallel plants, filters are computed as 𝑓
1
=

𝑐
1
/𝑐
𝑚
and 𝑓

1
= 𝑐
1
/𝑐
𝑚
with 𝑐

1
(18) and 𝑐

2
(19). This equiv-

alence procedure is also reliable in example 1. The inverse
procedure, that is, the direct design of 𝑓

1
, 𝑓
2
, and 𝑐

𝑚
can be

successfully done in example 1; however, it would become
extremely difficult in example 2 for the following reasons.
The master-slaves method firstly addresses the design of the
filters and then the master. As a first difficulty, the filters
have to perform the load sharing in frequency terms, but
their manual open-loop design would not meet quantitative
closed-loop criteria. Besides, the uncertainty in parallel plant
models (𝑝

1
, 𝑝
2
) hinders the choice of the cut-off frequency

and the roll-off of the filters. Another difficulty is that the
disturbance participation through dynamical models (𝑝

𝑑
)

makes impossible to guess the best load sharing along the
frequencies between the parallel plants (𝑝

1
, 𝑝
2
), and then it

hinders a suitable parametrization of filters. At a second step
of the master-slave method of design, the master would be

designed, taking into account the initial MISO plant and the
branch filters. In this stage, filter roll-offs may add serious
problems: a high roll-off improves the filtering power but
the branch phase deviates far from the original plant phase.
Thus, branches can reach counter-phase conditions at certain
frequencies. In such a case, a master controller spoils plant
collaborations, since the vectorial sum 𝑙

𝑡
= 𝑙
1
+ 𝑙
2
yields a

smaller modulus than 𝑙
1
and 𝑙
2
.

Remark 4. A common engineering problem is solved: the
robust regulation of output-flow temperature in a heat
exchanger manipulating the input-flow heating power and
the input heating flow itself, for different production rates
(output-flows). Model uncertainty is fully considered to
obtain the minimum amount of feedback controllers, whose
benefits are detailed in previous examples. Additionally,
the difficulties exhibited by the master-slaves strategy are
overcome. The challenge is due to plant uncertainty and to
the dynamical incorporation of disturbances.

3.3. Example 3. Despite the large number of engineering
systems that have more than two manipulated inputs and
single regulated output, few applications of this kind have
been solved [40] so far. In fact, only a few scientific works
incorporate a control theory for 𝑛 inputs [25, 26, 45, 48, 56]
because of its complexity. In this sense, the following example
tries to demonstrate the potential of the new methodology.
Consider a systemwith threemanipulated inputs and a single
regulated output, whose transfer function models are

𝑝
𝑖
=

𝑘
𝑖
(𝑎
𝑖
𝑠 + 1)

(𝑏
𝑖
𝑠 + 1) (𝑐

𝑖
𝑠 + 1)

, 𝑖 = 1, 2, 3, (21)
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Figure 12: Closed-loop frequency response magnitude plots.

which are particularised for each 𝑖 input by 𝑘
1
= 100, 𝑘

2
=

10, 𝑘
3
= 1, 𝑎

1
= 10, 𝑎

2
= 𝑎
3
= 0, 𝑏

1
= 1000, 𝑏

2
= 𝑏
3
=

0.01, and 𝑐
1
= 0.1, 𝑐

2
= 𝑐
3
= 0. Disturbances come into

the single output straightforward, 𝑝
𝑑
= 1. As the difficulty

of this example relapses on dealing with three actuators,
parameter uncertainty has been intentionally omitted in the
𝑝
𝑖
plant models. Stability and disturbance rejection have to

be attended meeting (4), (8) and (5), (9), respectively.
Upper section of Table 3 shows the amount of

feedback |𝑐
𝑖
| that a single branch 𝑐

𝑖
𝑝
𝑖
would demand at

the design phase Θ
𝑑
≈ −90

∘ to meet the specifications
by itself. Note that the selection of design phase is part
of the designer tasks. Previous examples depicted control
necessities on the Nichols chart, that is, for all possible
design phases [−360∘, 0∘]. Consequently with the upper part,
the bottom of Table 3 shows the planning on load sharing
along the frequencies; revise the criteria in Section 2.3 to
decide plant collaborations or not as a function of feedback
demand |𝑐

𝑖
|.

Accordingly to results and choices on Table 3, the
loop-shaping of each 𝑙

𝑖
, 𝑖 = 1, 2, 3 is sequentially performed

Table 3: (Up) Feedback demand; (down) load-sharing planning.

Ω 0.001 0.01 0.05 0.1 0.5 1 5 10 100




𝑐
1






43 40 39 37 26 20 6 −3 20




𝑐
2






60 40 27 23 20 20 19 13 40




𝑐
3






80 60 46 40 26 20 5 −6 3
Ω 0.001 0.01 0.05 0.1 0.5 1 5 10 100
𝑝1 × × × × × ×

𝑝2 × × × × ×

𝑝3 × × × × ×

(see the final arrangements in Figure 13). The achieved con-
trollers are

𝑐
1

=

584.7(𝑠 + 0.0007)(𝑠 + 0.39) (𝑠 + 7.68)(𝑠
2

+ 0.132𝑠 + 0.009)

𝑠 (𝑠 + 0.0068) (𝑠 + 0.08) (𝑠 + 9) (𝑠 + 86) (𝑠
2
+ 0.98𝑠 + 0.33)

,

(22)
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Figure 13: Loop-shaping of three parallel controllers.

𝑐
2
=

32.4 (𝑠 + 0.1)

(𝑠 + 0.0087) (𝑠 + 0.63) (𝑠 + 5.27)

, (23)

𝑐
3
=

6.155 (𝑠 + 0.01)

(𝑠 + 0.007355) (𝑠 + 0.7128)

. (24)

Figure 14 depicts the expected feedback sharing along
the frequency band (Table 3) in terms of branch open-loop
functions |𝑙

𝑖
| and their contribution to the global open-loop

function |𝑙
𝑡
| = |𝑙
1
+ 𝑙
2
+ 𝑙
3
| in dB units.

The originality of this theoretical example relapsesmainly
in two challenges: facing regulatory problems withmore than

twomanipulated inputs and dealingwith parallel plants when
some of them must work in disjoint bands of frequencies.
Note that 𝑝

1
joins first at 𝜔 ∈ [0.001, 0.01] and later on

at 𝜔 ∈ [0.5, 10]. This causes that there is not an equivalent
for 𝑐
1
(22), 𝑐

2
(23), and 𝑐

3
(24) in a serial structure (Fig-

ure 1(a)). Let us rename serial controllers as 𝑐𝑠
1
, 𝑐𝑠
2
, and 𝑐𝑠

3
.The

equivalents can be computed as 𝑐𝑠
1
= 𝑐
1
, and 𝑐

𝑠

2
= −𝑐
2
/𝑐
1
, 𝑐𝑠
3
=

−𝑐
3
/𝑐
2
, which would yield a nonproper controller 𝑐𝑠

3
. On the

other hand, it is not feasible either a straight away design of
the serial controllers 𝑐𝑠

𝑖
using a main-vernier strategy, since

the load sharing planning (Table 3) does not allow sorting the
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Figure 14: Open-loop responses on magnitude Bode diagram.

plants from faster to slower (𝑝
1
joins at discontinuous inter-

vals of frequencies).That is, the serial strategy is conceived for
that each plant works in one and only one frequency interval.

Remark 5. This example tries to illustrate the new method-
ology ability (i) to solve regulatory problems of more than
two manipulated inputs, which are frequent in engineering
applications but are not so common in the scientific literature
and (ii) to deal with parallel plants when some of them must
work in disjoint bands of frequencies. For this last case, a
serial structure of controllers (main-vernier) fails.

4. Conclusions

In attention to engineering application demands, a parallel
structure of controllers has been proposed to solve MISO
regulatory problems, which concern robust stability and
robust disturbance rejection. MISO plant models included
parametric uncertainty. Inside a QFT framework, a new
methodology of design was proposed with the aim of tuning
a set of controllers that met the robust specifications, and
simultaneously, each controller used the least possible gain
at each frequency. The keypoint was to quantify the feedback
demanded by each plant at each frequency to meet the
specifications by itself. This allowed a planning of the best
load sharing along the frequency band. At each frequency,
either one or several plants in collaboration must assume
feedback responsibilities to meet the specifications or the
plant/s participation must be inhibited for feedback saving.
To accomplish it, a sequential design of the parallel con-
trollers was fully detailed, using current QFT software tools
for bound computations and for loop-shapings.

The abilities and engineering interest of the newmethod-
ology were demonstrated through several examples. The first
one illustrated the methodology and detailed the benefits of
a parallel structure of robust controllers in comparison with
a single robust master controller. The main advantages are (i)
to reduce the sensor noise amplification in the actuators of
the slowest plants, which are conceived to work in the band
of lower frequencies and provide the stationary and (ii) to
avoid unnecessary offsets in the actuators of the faster plants,

and consequently, that their full range of actuation is available
to speed up the response with less risk of saturation. Nev-
ertheless, these are also the aims of current MISO method-
ologies, whose weak points have been also overcome by the
new technique. In particular, a second engineering example
exhibited the difficulties of tuning a parallel control using
themaster-slave philosophy.The challenge is mainly the filter
(slaves) design due to plant uncertainties and the dynamic
incorporation of disturbances, which are common in real-
life plants. A third example illustrated the weak points of a
chained serial structure of controllers (main-vernier), which
fails when plants must work in disjoint bands of frequencies.
In any case, the proposed parallel structure can always be
converted to both master-slaves or main-vernier structures.
The inverse procedure was demonstrated as not always being
possible. In addition, the third example showed the difficulty
of facing aMISO problemwith three manipulabled variables,
which are not common in the scientific literature but are
frequent in engineering applications.
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TheCarrier Phase Shifted (CPS) strategy is conventional for cascadedmultilevel inverter, because it can naturally ensure all cascaded
cells to output balanced power. However, in point of spectra of the output line voltage, CPS is suboptimal to Phase Disposition (PD)
strategy, because the latter can not naturally ensure power balance. This paper presents an improved PD strategy, inspiration from
the disposition of CPS strategy triangle carriers. Just reconstructing the triangle carriers of PD strategy, it can not only reserve the
waveform quality of the line voltage to be optimal, but also naturally ensure the output power of each cascaded cells to be balanced.

1. Introductions

The cascaded multilevel inverters are widely implemented in
the high power AC drivers and power management systems
with a medium or high voltage level [1–5]. The structure of
the cascaded multilevel inverters is shown in Figure 1. It is
constructed with several full bridge inverters with the same
topology.The advantages of the cascaded multilevel inverters
include being simple to control, being easy in output voltage
level extension, modular design and implementation, and the
fault tolerance control realization [6–10].

The Carriers Phase Shift (CPS) control is one of the
conventional control schemes employed in the cascaded
multilevel inverters. The control signals for each cascaded
unit are generated by comparison between N (N is the
number of cascaded units) triangle carrier and themodulated
signal. The carrier waveform is chosen with a phase shift
of 360/N degree. The fundamental component amplitude of
each unit driving signal is the same. So the output power of
each unit is balanced [11–14].

Except for the CPS control method, Phase Disposition
(PD), Phase Opposite Disposition (POD), and Alternative
Phase Opposite Disposition (APOD) are three other carry
deposition control strategies used in multilevel inverters [15].
In [10], under the condition of same switching frequency,
the output line voltage waveforms with both the CPS and

PD control methods are compared. It is indicated that the
experiment result with the PD control method is better than
that with the CPS control.However, PD cannot achieve power
balance spontaneously. According to [16], each cascaded unit
outputs the PWM under the previous setting cycle and the
output power will be balanced after N/2 output periods. This
balance strategy is easy, but the power balance time increases
with the cascade units increasing.

To shorten the time of power balance, this paper proposes
an improved PD control strategy. By improving the carrier
wave for modulation, the output power of each cascaded
unit can be balanced in an output cycle, and the switching
frequency of each switch tube is equal to each other at
the same time. The output line voltage waveform quality
is maintained to be optimized as that of the PD control.
An experimental prototype of a 5 kW three-phase cascaded
multilevel inverter is designed to verify the validity of this
improved PD control.

2. CPS and PD Control Strategy

2.1. Principle. The principle of the CPS control strategy
based on a two-unit cascaded multilevel inverter is shown in
Figure 2(a). The triangular carrier of tri.1∼tri.4 and the
reference signal Vref are combined to generate the control
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Figure 1: Cascaded five-level inverter.

signal for the bridges.The triangular carrier signal is arranged
with 90 degree phase shift between the adjacent ones. The
control signal modulation is performed with the following
principle.

The drive signal for Ha1 is generated by comparing Vref
with tri.1 and tri.3. And the drive signal forHa2 is generated by
comparing Vref with tri.2 and tri.4. As is shown in Figure 2(a),
the uHa1 and uHa2 are the output voltage of the full bridges,
respectively. And the 𝑢

𝐴𝑁
is the output voltage of phase A.

In Figure 2(b), themodulation principle of the PD control
strategy is illustrated. Like that of CPS, a combination of
four triangular carrier signals is implemented with the same
phase but different amplitude range. The amplitude of the
carrier is distributed evenly in the whole carrier amplitude.
Themodulation of PD strategy is comparing the Vref with tri.1
and tri.4 to obtain the drive signal of Ha1 and with tri.2 and
tri.3 to obtain the drive signal of Ha2. In Figure 2(b), the full
bridge output voltage of each inverter unit is shown as uHa1
and uHa2. And the output voltage of phase A is shown as 𝑢

𝐴𝑁
.

It is obvious that the switching frequencies of the two
units are identical in the CPS strategy. But with the PD
strategy, the drive signal shows much difference between
the two units. The switching frequencies of the two bridges
are different. And at the same time, when the PD strategy
is employed, the amplitudes of fundamental component in
the output voltage of the two units are different. This means
that the output power of the two units is not balanced. So
when the PD strategy is directly implemented in the cascaded
multilevel inverter, the output power and the switching
frequency of the cascaded units are not the sameThis brings
a lot of practical design problems. The rated power and the
cooling design of the power units is hard to determine.

2.2. VoltageHarmonics Comparison. With the different trian-
gular carrier waveform used in the twomodulation strategies
of PD and CPS, the output voltage of phase A, uAN produced
is different. The voltage harmonic is analyzed to reveal the
difference and the Flourier transformation is implemented
to illustrate the spectral characteristics of the two voltage
waveforms.

The modulation of the SPWM control is performed by
comparison between the reference signal and the triangular
carrier. The Flourier expression of the phase voltage can be
divided into three parts: The first part is the integer order
harmonics of the reference signal; the second part is the
integer order harmonics of the triangular carrier signal; the
third part is the sideband harmonics which are centralized to
integer order harmonics of the carrier signal.

The extended Flourier expression of the voltagewaveform
is shown in

𝑢
𝐴𝑁

(𝑡) =

𝐴
00

2

+

∞

∑

𝑛=1

[𝐴
0𝑛
cos (𝑛𝜔

𝑜
𝑡) + 𝐵

0𝑛
sin (𝑛𝜔

𝑜
𝑡)]

+

∞

∑

𝑚=1

∞

∑

𝑛=−∞

[𝐴
𝑚𝑛

cos (𝑛𝜔
𝑜
𝑡 + 𝑚𝜔

𝑐
𝑡)

+ 𝐵
𝑚𝑛

sin (𝑛𝜔
𝑜
𝑡 + 𝑚𝜔

𝑐
𝑡)] ,

(1)

in which 𝜔
𝑜
and 𝜔

𝑐
are the frequency of the sinusoidal

reference signal and the triangular carrier, m and n are
integer, and𝐴

00
is the dc component, while𝐴

𝑚𝑛
and 𝐵

𝑚𝑛
are

the harmonic coefficient of the integer order harmonics and
the sideband harmonics.

Then the output voltage of PD modulation is analyzed
with Double Fourier series expansion as follows:

𝑢PD 𝐴𝑁 (𝑡) =𝑁𝑀𝑟𝑈in sin (𝜔𝑜𝑡)

+

∞

∑

𝑚=1
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𝑛=−∞

{𝐵
𝑝1
(𝑚, 𝑛)

× sin [(2𝑚 − 1) 𝜔
𝑐
𝑡 + 2𝑛𝜔

𝑜
𝑡]}

+

∞

∑

𝑚=1

∞

∑

𝑛=−∞

{𝐶
𝑝1
(𝑚, 𝑛)

× sin [2𝑚𝜔
𝑐
𝑡 + (2𝑛 − 1) 𝜔

𝑜
𝑡]} ,

(2)

in which N is the cascaded unit number and 𝑈in is the
input voltage. Assuming that 𝑈

𝑜𝑚
is the amplitude of the

fundamental component in the output voltage of each unit,
the voltage transfer ratio of each unit𝑀

𝑟
can be calculated as

𝑀
𝑟
=

𝑈
𝑜𝑚

𝑈in
. (3)

The Bp1(m, n) and Cp1(m, n) in (2) are the ampli-
tude of the odd harmonics and the even harmonics
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Figure 2: Modulation of CPS and PD control strategy.

of the reference signal. The value can be expressed as
follows:

𝐵
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(4)

In accordance with the phase voltage, the line voltage
𝑢PD 𝐴𝐵 can be expressed as follows:

𝑢PD 𝐴𝐵 (𝑡) =√3𝑁𝑀𝑟𝑈in sin(𝜔𝑜𝑡 +
𝜋
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+
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(5)

In which, 𝐵
𝑙1
(𝑚, 𝑛) and𝐶

𝑙1
(𝑚, 𝑛) are the amplitude of the

line voltage harmonics. The value can be express in (6) and
(7)

𝐵
𝑙1
(𝑚, 𝑛) = 2 sin(2𝑛𝜋

3

) ⋅ 𝐵
𝑝1
(𝑚, 𝑛) , (6)

𝐶
𝑙1
(𝑚, 𝑛) = 2 sin [(2𝑛 − 1) 𝜋

3

] ⋅ 𝐶
𝑝1
(𝑚, 𝑛) . (7)
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With the same principle, the phase voltage of CPS control
strategy 𝑢CPS 𝐴𝑁 can be expanded as follows:

𝑢CPS 𝐴𝑁 (𝑡)

= 𝑁𝑀
𝑟
𝑈in sin (𝜔𝑜𝑡)

+
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∑
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∞
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{𝐵
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𝑐
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𝑜
𝑡]} ,

(8)

in which, 𝐵
𝑝2
(𝑚, 𝑛) is the amplitude of the integer mul-

tiple harmonics with carrier frequency. The value can be
expressed:
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𝑟
) . (9)

And the output line voltage 𝑢CPS 𝐴𝐵 can be expressed as
follows:

𝑢CPS 𝐴𝐵 (𝑡)

= 𝑁𝑀
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𝑈in sin (𝜔𝑜𝑡)

+

∞

∑

𝑚=1

∞

∑

𝑛=−∞

{𝐵
𝑙2
(𝑚, 𝑛)

× sin [2𝑚𝑁𝜔
𝑐
𝑡 + (2𝑛 − 1) (𝜔

𝑜
𝑡 −

𝜋

3

)]} ,

(10)

in which

𝐵
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(𝑚, 𝑛) = 2 sin [(2𝑛 − 1) 𝜋

3

] ⋅ 𝐵
𝑝2
(𝑚, 𝑛) . (11)

It is shown, through the comparison of (5) and (8),
that when the following situation is satisfied, the major
harmonics of the two control methods will appear with the
same frequency

𝜔
𝑐
= 2𝑁𝜔



𝑐
. (12)

When 𝑚 is 1, the harmonics of PD and CPS control with
the highest amplitude are around the carrier frequency 𝜔

𝑐
.

The high frequency filter design can be directly determined
by the amplitude of the harmonic at this frequency. So
the carrier frequency harmonics are compared. And for

convenience, the amplitudewith the carrier frequency of both
two control strategies is defined as follows:
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(13)

Taking two unit cascaded inverters as an example (𝑁 =

2), (13) is calculated to obtain the relationship between the
amplitude of the carrier harmonic and the voltage transfer
ratio𝑀

𝑟
in the range of [0, 1].The result is shown in Figure 3.

Figure 3(a) shows that the phase voltage harmonics
produced by the two control strategies are with the same
amplitude. And in Figure 3(b), it is indicated that with both
the two control schemes, the line voltage of is better than
the phase voltage. This can be verified by (6) and (11). For
that when 𝑛 is an integral multiple of 3 in (6), the harmonic
amplitude is 0, the harmonics with these frequencies are
naturally eliminated in the line voltage. The same situation
can be observed in (11), assuming that (2𝑛 − 1) is an integral
multiple of 3.

And in Figure 3(b), the line voltage of the PD control
method contains fewer harmonic than that of the CPS con-
trol. For amultilevel cascaded inverter implementation in the
three-phase-three-wire system, the quality of the line voltage
is an important performance requirement. And PD control
method shows obvious advantages with this consideration.

3. Improved PD Control

As is analyzed above, although the line voltage quality of PD
control is better than that of a CPS control, the PD control
cannot be directly implemented. Because the disadvantages
of the PD control method are unbalanced output power and
different switching frequencies of the cascaded units.The PD
control method has to be improved to be implemented in the
multi-level cascaded inverter.

The improvement of the PD control can be done by
changing the carrier signal waveform with observation of the
difference between the PD and CPS modulation. The carrier
signal of the CPS control in a carrier period is shown in
Figure 4 for comparison.

As is shown in Figures 4(a) and 4(b), the waveform of
the carrier signals in both CPS and PD control is equally
divided into 8 parts, which is shown in dash grid in Figures
4(a) and 4(b).Through comparison of the carrier signal in the
corresponding parts of the period, the following pattern can
be discovered.



Mathematical Problems in Engineering 5

0 0.2 0.4 0.6 0.8
0

0.3

0.6

0.9

1.2

1.5

1.0

CPS
PD

Mr

Ph
as

e v
ol

ta
ge

 h
ar

m
on

ic

(a) Amplitude of 𝜔
𝑐
voltage harmonic in phase voltage

0 0.2 0.4 0.6 0.8
0

0.3

0.6

0.9

1.2

1.5

1.0

CPS
PD

Mr

Li
ne

 v
ol

ta
ge

 h
ar

m
on

ic
(b) Amplitude of 𝜔

𝑐
voltage harmonic in line voltage
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voltage harmonic comparison of PD and CPS control.
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Figure 4: Carrier signal comparison of CPS and PD control.

(1) In the parts of𝜔𝑡 ∈ [0, 𝜋/4]∪[3𝜋/4, 𝜋]∪[5𝜋/4, 7𝜋/4],
the slope of the CPS and PD carrier signal is the same.

(2) In the part of𝜔𝑡 ∈ [𝜋/4, 3𝜋/4]∪[𝜋, 5𝜋/4]∪[7𝜋/4, 2𝜋],
the slope of the CPS and PD carrier signal is the
opposite.

The shadow part of Figure 4(b) carrier waveform is
separately arranged as a set of carriers, which is shown in
Figure 5(a). Defined as Ca.1, compared with tri.1 in CPS
control, the carrier signal set is no longer a triangular carrier.
And the frequency of this carrier signal is the same as that
of the CPS triangular carrier. The same separation can be
done in the other parts of the PD carrier signal with the same
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Figure 5: Carrier signal sets of the improved PD control method.

principle.The results are shown in Figures 5(b), 5(c), and 5(d),
which are defined as Ca.2, Ca.3, and Ca.4. It is obvious that
the phase shift of 90 degrees is the same pattern of that in the
CPS control.

Then, the modulation of the improved PD control is
designed to be similar to that of CPD control. The reference
signal Vref is compared with Ca.1 and Ca.3 to generate the
drive signal for full bridge unitHa1.The reference signal Vref is
compared with Ca.2 and Ca.4 to generate the drive signal for
full bridge unitHa2. The uHa1 and uHa2 are the output voltage
of the full bridge unit, and 𝑢

𝐴𝑁
is the output phase voltage of

the cascaded inverter, which has been shown in Figure 6.
It can be observed in Figure 6 that the switching frequen-

cies of the two bridge units are the same. This is important

for heat dissipation design of the power unit. At the same
time, the fundamental component of the output voltage for
each unit can be measured to be the same. The reason
is that the four sets of carrier signals are developed from
CPS control, only with different sequence. It means that the
output power of each unit is balanced. These two factors
are essential for practical implementation of this modulation
method. Because only with the balanced output power and
equal switching frequency, the practical consideration of
rated power and heat cooling design of the power unit can
be determined. So this improved PD control method can be
used in cascaded multilevel inverter. In the following section,
the experimental prototype and measured results will verify
the theory.
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Figure 6: Modulation of improved PD control.

4. Experiment Results and Analysis

To verify the conclusion above, a five-level three phase
cascaded inverter is built with two cascaded units, which is
shown in Figure 7.Themicrocontroller is the TMS320LF2812
from Taxes Instruments. The rated power is 5 kW and the
switching frequency is 5 kHz. The input dc voltage for each
bridge unit is 180V. The rated output phase voltage is 220V,
with the frequency of 50Hz. The output filter inductor is
400 𝜇H, and the output filter capacitor is 15 𝜇F.

The experiment result is shown is Figure 8 withmeasured
output voltage, output current, and the instantaneous power
waveform. In Figure 8(a), the 𝑢

𝐴𝑁
represents the phase

voltage in the inverter side, while the filtered output line
voltage is defined as 𝑢

𝑜
. The load current 𝑖

𝑜
is shown in

the brown color. The inverter output line voltage 𝑢
𝐴𝐵

is also
shown in Figure 8(a). The spectrum analysis of the phase
voltage shows that the highest amplitude of phase voltage
harmonic is at the switching frequency. But in the line voltage,
this harmonic is naturally eliminated. It means that the
improved PD control method remains the advantage of PD
control. The harmonic of output line voltage is optimized. In
Figure 8(b), the output instantaneous power waveform under
rated power condition is measured and shown. The driving
signals of both units are shown in Figure 8(b). The output
inductor current is also shown in Figure 8(b). The average
output power of bridge units is measured using a power
analyzer and shown inTable 1. It is clear that the improved PD
control method can balance the output power of each unit.

Figure 9 shows the spectrum analysis results of the phase
voltage and line voltage with the improved PD method. In
Figure 9(a), major harmonics below 50 kHz are shown for
the phase voltage and line voltage separately. The highest
amplitude harmonics around the 4 times of the switching
frequency (20 kHz) are magnified in Figure 9(b) for a clearer
view. The analysis result for phase voltage is shown in the

Figure 7: Three phase cascaded multilevel inverter experimental
prototype.

Table 1: Output power measure in different situations.

Output power Output power of unit 1 Output power of unit 2
1.5 kW 750w 751 w
2 kW 999w 1001 w

up side and line voltage in the low side. It can be observed
that, in the situation of phase voltage, the highest amplitude
voltage harmonic appearswith the frequency of 20 kHz,while
in the situation of line voltage, the voltage harmonic at 20 kHz
is naturally eliminated with inconsiderable amplitude. The
analysis result shows clearly that the improved PD control
method retains the PD control’s advantage of optimized line
voltage harmonic.

5. Conclusions

In this paper, a Fourier series expansion method is used
to analyze the output phase voltage and line voltage of the
PD and CPS control. The spectrum character of the two
control methods is analyzed to come to the conclusion that
in the range of the whole modulation ratio, the line voltage
quality of PD control is better than that of CPS control. The
carrier signals of CPS and PD control are compared and an
improved PD control method is discussed in this paper. The
new method can be practically implemented in the cascaded
multilevel invert. With the improved PD control method, the
output power of each full bridge unit is balanced and the
switching frequencies of the units are kept the same. At the
same time, the improved PD method retains the advantage
of PD control, the optimized line voltage harmonic. To verify
the theory, a 5 kW three phase cascaded multilevel inverter
prototype is built in the laboratory. The experiment results
show the feasibility of the improved PD control method and
the advantages of this novel control method.
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A novel approach for modeling and control of servo systems with backlash and friction is proposed based on the characteristic
model. Firstly, to deal with friction-induced nonlinearities, a smooth Stribeck frictionmodel is introduced.The backlash ismodeled
by a continuous and derivable mathematical function. Secondly, a characteristic model in the form of a second-order slowly time-
varying difference equation is established and verified by simulations. Thirdly, a composite controller including the golden-section
adaptive control law and the integral control law is designed and the stability of the closed-loop system is analyzed. The simulation
and experimental results show that the proposed control scheme is effective and can improve the steady-state precision and the
dynamic performance of the servo system with backlash and friction.

1. Introduction

Servo systems have been widely used in various applications,
such as machine tools, robots, semiconductor manufactur-
ing manipulators, radars, and satellite antennas. With the
development of technology, there is an increasing demand
for high precision position controllers, which should have
fast tracking behavior, disturbance rejection ability, and
robustness to uncertainties. However, the nonsmooth non-
linearities including backlash and friction are often present
in servo systems, which can lead to steady-state tracking
errors, undesired stick-slip motion, and limit cycles [1, 2].
Although some control approaches [1, 2], such as PD control,
fuzzy control, adaptive control, robust adaptive control,
neural networks control, and slidingmode control, have been
given to reduce the backlash and friction effect, it is still a
challenging problem because of the nondifferentiable nature
of the backlash and friction. In addition, backlash and friction
have previously been studied separately [1, 2], more rarely
together. In many servo systems, a controller designed to
compensate only for friction may perform poor performance
in the presence of backlash, and vice versa, because they
coexist in these systems. Thus, both of them should be taken
into consideration in the controller design.

Backlash is present in servo systems with gear transmis-
sions, where the motor temporarily loses direct contact with
the load when the backlash gap opens. It may often cause
delays, oscillations, and steady-state errors. Since backlash
is characterized by nondifferentiable nonlinearity, which is
poorly known, the control system with unknown backlash
is a difficult problem. Therefore, a number of different
approaches to model and compensate for backlash have
been investigated for several decades. A recent survey paper
[2] summarizes the backlash models and the compensa-
tion methods. Different mathematical models have been
developed to describe the backlash phenomenon, such as
dead-zone model and hysteresis model [2]. The dead-zone
model is a static, scalar nonlinear function, which means
that it is relatively easy to be analyzed. In this paper, we
will adopt it as the backlash model. Many papers deal with
the compensation for the backlash. An adaptive control
scheme developed by Tao and Kokotović for the systems with
unknown backlash is given in [3]. The scheme of Selmic
and Lewis [4] implements a dynamic inversion compensation
for backlash using the backstepping technique with neural
networks. In [5], an optimal control scheme is employed
for backlash compensation and a feedback linearization is
designed to decouple the multivariable nonlinear dynamics
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so that backlash compensation and tracking control can be
both achieved. In [6], a novel adaptive control design is
achieved by introducing a smooth inverse function of the
dead zone and using it in the controller design with the
backstepping technique. A hybrid model based on model
predictive control (MPC) scheme for backlash compensation
is introduced in [7]. A second-order sliding mode observer
ensuring the finite time convergence of estimated state values
towards real state values in a nonlinear mechanical system
with backlash is given in [8]. A linear estimator for the
fast and accurate estimation of the position and velocity
in the presence of backlash in automotive power trains is
described in [9]. In [10], an adaptive dynamic surface control
scheme combined with sliding mode control to compensate
for backlash nonlinearities in a linear stage motion system is
present. In [11], an extended state observer (ESO) combined
with the adaptive sliding mode control theory is proposed to
deal with a nonlinear pneumatic servo system characterized
with input backlash.

Friction is one of the most important limitations in high
precision position systems. It can cause tracking errors, self-
excited vibration, and limit cycles [1]. Friction modeling
and compensation have been studied extensively in the past
few decades but is still full of interesting problems due
to their practical significance and the complex behavior of
friction. Satisfactory friction compensation can be obtained
if a good friction model is available. However, friction
is a highly nonlinear phenomenon, which is difficult to
be described by a simple model [1]. Some models, which
include both static and dynamic, have been proposed by
researchers. A classical static friction model contains the
property such as Coulomb friction, stiction, Stribeck effect,
and viscous friction [1]. Dynamic friction models, mainly
including theDahlmodel [12] and the LuGremodel [13], have
been proposed and shown to be more beneficial. However,
experimental measurements have proved that a good static
friction model can approximate the real friction force with a
degree of 90% fidelity [14]. The dynamic friction behaviour
can be introduced in the static model as a bounded additive
model uncertainty [1]. Therefore, the static friction model
with Stribeck effect has a great significance for practical
applications. The control methods for friction compensation
are divided into three categories [1, 15]: the model-oriented
friction compensation scheme, the adaptive compensation
scheme, and the soft computing approach. In [16], a nonlinear
proportional-integral-derivative (NPID) control has been
designed to improve compensation for friction by applying
a state feedback NPID control law with time-varying state
feedback gains. In [17–19], a fuzzy system is utilized to
adaptively learn unknown friction behavior and compensate
for it. In [20], an adaptive friction compensator structure is
proposed in which the Stribeck friction term is approximated
by RBF-type neural network. To handle model uncertainties,
robust adaptive control techniques [21, 22] are also very
popular for friction compensation.

From the preceding discussion, it can be found that the
majority of previous studies have addressed either the fric-
tion compensation problem or the backlash compensation
problem. Very few papers deal with the control of systems in

the presence of backlash and friction [23, 24]. This motivates
us to carry out present work. In this paper, we adopt a new
adaptive control method based on a characteristic model
to handle both friction and backlash. The characteristic
modeling theory and methods, proposed byWu in the 1990s,
are an integrated and practical modeling and control theory
based on the control-oriented design thought, and improved
gradually in the recent 20 years, which has already been
applied successfully in more than 400 systems belonging to
nine kinds of engineering plants in the field of astronautics
and industry [25–27]. The characteristic modeling is based
on the dynamics characteristics and control performance
requirements of the plants, rather than being only based on
accurate plant dynamics analysis. This method provides a
feasible low-order intelligent controller design method for
various complicated plants with nonlinearities and uncer-
tainties, and whose output variables cannot be measured
online continuously. Currently, it has not been applied in
servo systems with backlash and friction. Therefore, we will
attempt to use a characteristic model to describe the servo
system with backlash and friction and design the controller.

The remainder of this paper is organized as follows.
In Section 2, we describe the original dynamic model and
the characteristic model of the servo system with backlash
and friction. In Section 3, the composite controller including
the golden-section adaptive control law and the integral
control law is designed, and the stability of the closed-loop
system is analyzed. Sections 4 and 5 present consecutively the
simulation and experimental results. Finally, the conclusion is
given in Section 6.

2. Characteristic Modeling

The characteristicmodeling is based on the dynamics charac-
teristics and control performance requirements of the plants,
rather than being only based on accurate plant dynamics
analysis.Thismethod provides a feasible low-order intelligent
controller designmethod for various complicated plants with
nonlinearities and uncertainties.

A characteristic model has the following features [25].

(1) For the same input, a plant characteristic model
is equivalent to its practical plant in output. In a
dynamic process, the output error can be maintained
within a permitted range. In the steady state, their
outputs are equal.

(2) Besides plant characteristics, the form and order
of a characteristic model mainly rely on control
performance requirements.

(3) The structure of a characteristic model should be
simpler, than an original dynamic equation, easier,
and more convenient to be realized in engineering.

(4) A characteristic model is different from the reduced-
order model of a high-order system. It compresses all
the information of the high-order model into several
characteristic parameters. In the bandwidth of the
control system, no information is lost. In general,
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Figure 1: Structure of a typical electromechanical system driven by gears.

a characteristicmodel is represented by a slowly time-
varying difference equation.

Characteristic modeling mainly considers the character-
istic relation between control input and output. There are
two approaches to establish characteristic model. One is
to establish the characteristic model directly according to
the dynamic features of the practical plant and the control
performance requirements. And the other is to establish the
characteristic model based on the original dynamic model.
The latter one is applied in this paper; that is, the original
dynamicmodel containing backlash and friction seems as the
standard plant model of the system. Then the characteristic
model is established based on it.

2.1. Dynamic Model. The structure of a typical electrome-
chanical system driven by gears is shown in Figure 1. 𝜃

𝑚

and ̇
𝜃
𝑚

denote the angular displacement and the angular
velocity of the motor, respectively. 𝜃

𝑑
and ̇

𝜃
𝑑
denote the

angular displacement and the angular velocity of the load,
respectively, 𝐽

𝑚
and 𝐽

𝑑
denote the rotational inertia of the

motor and the load, respectively,𝑇
𝑚
and𝑇
𝑑
denote the torque

of the motor and the load, respectively, 𝑏
𝑚

and 𝑏
𝑑
denote

the viscous friction coefficient of the motor and the load,
respectively, and 𝑖 denotes the gear ratio.

The dead-zone model is used to model the backlash in
Figure 1, and 𝜏

1
can be expressed as

𝜏
1
= 𝑘
𝑏
𝑓 (𝑧) (1)

𝑓 (𝑧) =

{
{

{
{

{

𝑧 + 𝛼 𝑧 < 𝛼

0 |𝑧| ≤ 𝛼

𝑧 − 𝛼 𝑧 > 𝛼,

(2)

where 𝜏
1
denotes the elastic torque between the motor and

the load, 𝑘
𝑏
denotes the stiffness, 𝑓(𝑧) denotes the dead-

zone function, 𝑧 (𝑧 = 𝜃
𝑚

− 𝑖𝜃
𝑑
) denotes the relative angular

displacement between the motor and the load, and 𝛼 denotes
half of the backlash width.

Besides the backlash nonlinearity, the friction nonlinear-
ity should be also considered in the system. The Stribeck
model is used to describe the friction in this paper. So the
friction torque 𝜏

2
can be expressed as

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(
̇
𝜃𝑚/
̇
𝜃𝑠)

𝛿

] sgn (
̇

𝜃
𝑚
) + 𝐵

̇
𝜃
𝑚
, (3)

where 𝐹
𝑐
, 𝐹
𝑠
, 𝐵, ̇

𝜃
𝑚
, and ̇

𝜃
𝑠
represent the Coulomb friction,

themaximum static friction, the viscous damping coefficient,
the angular velocity of the motor, and the Stribeck speed,
respectively, and sgn(⋅) represents the sign function. ̇

𝜃
𝑠
and

𝛿 are empirical constants, which are usually assumed to be
0.05 and 2, respectively.

The dynamic equations of a typical electromechanical
system driven by gears can be expressed as

𝑈 (𝑡) = 𝑘
𝑒

̇
𝜃
𝑚
(𝑡) + 𝑅𝐼 (𝑡) + 𝐿

𝑑𝐼 (𝑡)

𝑑𝑡

𝐽
𝑚

̈
𝜃
𝑚
(𝑡) + 𝑏

𝑚

̇
𝜃
𝑚
(𝑡) = 𝑇

𝑚
− 𝜏
1
− 𝜏
2

𝐽
𝑑

̈
𝜃
𝑑
(𝑡) + 𝑏

𝑑

̇
𝜃
𝑑
(𝑡) = 𝑖𝜏

1

𝑇
𝑚

= 𝑘
𝑑
𝐼 (𝑡)

𝜏
1
= 𝑘
𝑏
𝑓 (𝑧)
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Figure 2: Structure diagram of the electromechanical system.

𝑓 (𝑧) =

{
{

{
{

{

𝑧 + 𝛼 𝑧 < −𝛼

0 |𝑧| ≤ 𝛼

𝑧 − 𝛼 𝑧 > 𝛼

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(
̇
𝜃𝑚/
̇
𝜃𝑠)

𝛿

] sgn (
̇

𝜃
𝑚
) + 𝐵

̇
𝜃
𝑚
,

(4)

where 𝑈(𝑡) denotes the armature voltage, 𝐼(𝑡) denotes the
armature current, 𝑅 and 𝐿 denote the resistance and the
inductance, respectively, 𝑘

𝑒
denotes the back electromotive

force coefficient of the motor, and 𝑘
𝑑
denotes the torque

coefficient of the motor.
The system (2.1) can also be represented by the structure

diagram as shown in Figure 2.

2.2. Characteristic Model. The nonlinear system is expressed
as

̇𝑥 (𝑡) = 𝑓 (𝑥, ̇𝑥, . . . , 𝑥
(𝑛)

, 𝑢, ̇𝑢, . . . , 𝑢
(𝑚)

) . (5)

Let 𝑥 = 𝑥
1
, ̇𝑥 = 𝑥

2
, . . . , 𝑥

(𝑛)

= 𝑥
𝑛+1

and 𝑢 = 𝑢
1
, ̇𝑢 =

𝑢
2
, . . . , 𝑢

(𝑚)

= 𝑢
𝑚+1

; then (5) can be rewritten as

̇𝑥 (𝑡) = 𝑓 (𝑥
1
, . . . , 𝑥

𝑛+1
, 𝑢
1
, . . . , 𝑢

𝑚+1
) . (6)

This nonlinear system (6) is assumed as follows (see [28]).

Assumption 1. The system is a SISO system.

Assumption 2. The order of control input 𝑢 is 1.

Assumption 3. If all the variables 𝑥
𝑖
and 𝑢

𝑖
in 𝑓(⋅) are zero,

𝑓(⋅) = 0.

Assumption 4. 𝑓(⋅) is continuous differentiable to all the
variables, and all partial derivatives are bounded.

Assumption 5. |𝑓(𝑥(𝑡+Δ𝑡), 𝑢(𝑡+Δ𝑡))|−|𝑓(𝑥(𝑡), 𝑢(𝑡))| < 𝑀Δ𝑡,
where𝑀 is positive constant and Δ𝑡 is sample period.

Assumption 6. All the variables 𝑥
𝑖
and 𝑢

𝑖
are bounded. This

assumption can be satisfied easily in practical engineering.

Lemma 7 (see [28]). If the system (5) satisfies the above
Assumptions 1–4 and sample timeΔ𝑡 satisfies some certain con-
ditions, the characteristicmodel of the system can be established

in the form of a second-order time-varying difference equation
as

𝑥 (𝑘 + 1) = 𝛼
1
(𝑘) 𝑥 (𝑘) + 𝛼

2
(𝑘) 𝑥 (𝑘 − 1)

+ 𝛽
0
(𝑘) 𝑢 (𝑘) + 𝛽

1
(𝑘) 𝑢 (𝑘 − 1) ,

(7)

where 𝛼
1
(𝑘), 𝛼
2
(𝑘), 𝛽
0
(𝑘), and 𝛽

1
(𝑘) are coefficients.

When the controlled system is stable and satisfies Assump-
tions 5 and 6, the following conclusions can be drawn.

(1) In a dynamic process, under the same input, the output
of the characteristic model is equal to that of the
practical plant (suitably selected sampling period Δ𝑡

can make sure that the output error is kept within a
permitted range). In the steady state, both outputs are
equal.

(2) The coefficients 𝛼
1
(𝑘), 𝛼

2
(𝑘), 𝛽

0
(𝑘), and 𝛽

1
(𝑘) are

slowly time-varying.
(3) The range of these coefficients can be determined

beforehand.
If the system is a minimum phase system, 𝛽

1
(𝑘)𝑢(𝑘 − 1) in

(7) can be left out.

According to Lemma 7, the characteristic model only can
be applied to the system which is continuous differentiable to
all the variables andwhere all partial derivatives are bounded.
But in the system dynamic equations (2.1), the dead-zone
function of the backlashmodel and the sign function sgn(⋅) in
the frictionmodel are both indifferentiable.Thus, to establish
the characteristic model of the system, the backlash model
and the friction model should be smoothed.

According to themodelingmethod of backlash (see [29]),
a continuous approximate dead-zone function is introduced
as

𝑓
∗

(𝑧) = 𝑧 − 𝑎𝛼 (

2

1 + 𝑒
−𝑟𝑧

− 1) , (8)

where 𝑎 > 0 and 𝑟 > 0 are undetermined parameters
in the backlash model. For analysing the degree of the
approximation of the function (8) to (2), Δ𝑓(𝑧) is defined to
be the difference between the two functions:

Δ𝑓 (𝑧) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

−𝑎𝛼(

2

1 + 𝑒
−𝑟𝑧

− 1) − 𝛼, 𝑧 < −𝛼,

𝑧 − 𝑎𝛼 (

2

1 + 𝑒
−𝑟𝑧

− 1) , |𝑧| ≤ 𝛼,

−𝑎𝛼 (

2

1 + 𝑒
−𝑟𝑧

− 1) + 𝛼, 𝑧 > 𝛼.

(9)
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Lemma 8 (see [29]). When 𝑎 = 1 and 𝑟 = 2/𝛼, the following
conclusions can be obtained:

(1) lim
𝑧→∞

Δ𝑓(𝑧) = 0;
(2) 𝑓∗(𝑧) is a monotonous increasing function;
(3) the area enclosed by 𝑓

∗

(𝑧) and 𝑓(𝑧) is the minimum;
(4) |Δ𝑓(𝑧)| ≤ 2𝛼𝑒

−𝑟𝛼

/(1 + 𝑒
−𝑟𝛼

).

Thus, the approximate dead-zone function 𝑓
∗

(𝑧) can be
used to replace the dead-zone function in the system dynamic
equations (2.1), and 𝜏

1
can be rewritten as

𝜏
1
= 𝑘
𝑏
[𝑧 − 𝛼 (

2

1 + 𝑒
−𝑟𝑧

− 1)] . (10)

To make the friction model smooth, the function
(2/𝜋) arctan(𝑘V) is used to replace the sign function sgn(⋅) in
the friction model. Δg2(𝑘, ̇

𝜃
𝑚
) is defined as

Δg (𝑘, ̇
𝜃
𝑚
) = sgn (

̇
𝜃
𝑚
) −

2

𝜋

arctan (𝑘
̇

𝜃
𝑚
) . (11)

As shown in Figure 3, the function Δg(𝑘, ̇
𝜃
𝑚
) is smaller

and smaller with 𝑘 increasing.
Thus, the friction torque 𝜏

2
can be rewritten as

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(
̇
𝜃𝑚/
̇
𝜃𝑠)
𝛿

]

2

𝜋

arctan (𝑘𝜃
𝑚
) + 𝐵

̇
𝜃
𝑚
.

(12)

Define 𝑥
1
= 𝜃
𝑚
(𝑡), 𝑥
2
=

̇
𝜃
𝑚
(𝑡), 𝑥
3
= 𝜃
𝑑
(𝑡), 𝑥
4
=

̇
𝜃
𝑑
(𝑡), and

𝑥
5
= 𝐼(𝑡); then

𝜏
1
= 𝑘
𝑏
[(𝑥
1
− 𝑖𝑥
3
) − 𝛼 (

2

1 + 𝑒
−𝑟(𝑥1−𝑖𝑥3)

− 1)]

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(𝑥2/
̇
𝜃𝑠)

𝛿

]

2

𝜋

arctan (𝑘𝑥
2
) + 𝐵𝑥

2
.

(13)

u

+

− e

Characteristic
parameters RLS

identification

�̂�d

Characteristic
model

Dynamic model
𝜃d

Figure 4: Scheme of verifying the characteristic model.

The system (2.1) can be expressed by state

̇𝑥
1
= 𝑥
2

̇𝑥
2
=

1

𝐽
𝑚

(𝑘
𝑑
𝑥
5
− 𝜏
1
− 𝜏
2
− 𝑏
𝑚
𝑥
2
)

̇𝑥
3
= 𝑥
4

̇𝑥
4
=

1

𝐽
𝑑

(𝑖𝜏
1
− 𝑏
𝑑
𝑥
4
)

̇𝑥
5
=

1

𝐿

(𝑈 − 𝑘
𝑒
𝑥
2
− 𝑅𝑥
5
)

𝑦 = 𝑥
3
.

(14)

The characteristic model of the system can be obtained based
on Lemma 7 as

𝑦 (𝑘) = 𝛼
1
(𝑘) 𝑦 (𝑘 − 1) + 𝛼

2
(𝑘) 𝑦 (𝑘 − 2)

+ 𝛽
0
(𝑘) 𝑢 (𝑘 − 1) = 𝜙

𝑇

(𝑘 − 1) 𝜃 (𝑘) ,

(15)

where

𝜙
𝑇

(𝑘 − 1) = [𝑦 (𝑘 − 1) 𝑦 (𝑘 − 2) 𝑢 (𝑘 − 1)]

𝜃
𝑇

(𝑘) = [𝛼
1
(𝑘) 𝛼

2
(𝑘) 𝛽

0
(𝑘)] ,

(16)

where the parameters 𝛼
1
(𝑘), 𝛼
2
(𝑘), and 𝛽

0
(𝑘) are all bounded

and the bound can be determined beforehand according to
Lemma 7. These coefficients are time-varying and need to be
estimated online, so the recursive least squares (RLS)method
with forgetting factor 𝑓 is applied. The recursive formula is
shown as

𝐾 (𝑘) =

𝑃 (𝑘 − 1) 𝜙 (𝑘 − 1)

𝑓 + 𝜙
𝑇
(𝑘 − 1) 𝑃 (𝑘 − 1) 𝜙 (𝑘 − 1)

̂
𝜃 (𝑘) =

̂
𝜃 (𝑘 − 1) + 𝐾 (𝑘) [𝑦 (𝑘) − 𝜙

𝑇

(𝑘 − 1)
̂
𝜃 (𝑘 − 1)]

𝑃 (𝑘) =

1

𝑓

[𝐼 − 𝐾 (𝑘) 𝜙
𝑇

(𝑘)] 𝑃 (𝑘 − 1) .

(17)

To verify the effectiveness of the proposed characteristic
model, the simulations of verifying the characteristic model
are performed based onMATLAB.Theoutput of the dynamic
model is as the standard output. The scheme of verifying the
characteristic model is shown in Figure 4.
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Figure 5: Verification results when 𝑢(𝑡) = 10V.

The system parameters are as 𝐿 = 0.0375H, 𝑅 =

1.3Ω, 𝑘
𝑒

= 67.2V/krpm, 𝑘
𝑑

= 1.11N ⋅m/A, 𝑘
𝑏

= 7 ×

10
4N ⋅m/rad, 𝐽

𝑚
= 0.00259 kg ⋅m2, 𝐽

𝑑
= 23.12 kg ⋅m2, 𝑏

𝑚
=

0.015N⋅m/krpm, 𝑏
𝑑
= 0.024N⋅m/krpm, 𝑖 = 238, 𝛼 = 0.18

∘,
and 𝑟 = 1.7/𝛼, 𝑘 = 10.

The sampling period Δ𝑡 is 5ms. Define the error 𝑒(𝑘)

between the output of the characteristic model 𝜃
𝑑
and the

standard output ̂𝜃
𝑑
as

𝑒 (𝑘) = 𝜃
𝑑
(𝑘) −

̂
𝜃
𝑑
(𝑘) = 𝜃

𝑑
(𝑘) − 𝜙

𝑇

(𝑘 − 1)
̂
𝜃 (𝑘) . (18)

The RLS method expressed in (17) is used to estimate
the characteristic parameters; the initial values are selected as
̂𝜃(0) = 10

−3

×[1 1 1]

𝑇, P(0) = 10
6

× I
3×3

, and the forgetting
factor 𝑓 is 0.99.

The results of verifying the characteristic model are
shown in Figures 5–7.

(1) When 𝑢(𝑡) = 10V, the results are shown in Figure 5.

(2) When 𝑢(𝑡) = 10𝑡V, the results are shown in Figure 6.

(3) When 𝑢(𝑡) = 30 sin(𝑡)V, the results are shown in
Figure 7.

According to Figures 5–7, the error between the char-
acteristic model and the dynamic model is very small. The
results indicate that the characteristicmodel canwell describe
the electromechanical system.

3. Controller Design and Stability Analysis

According to [25], the system error characteristic equation
can be expressed as a second-order slowly time-varying
difference equation:

𝑦
𝑒
(𝑘 + 1) = 𝛼

1
(𝑘) 𝑦
𝑒
(𝑘) + 𝛼

2
(𝑘) 𝑦
𝑒
(𝑘 − 1) + 𝛽

0
(𝑘) 𝑢 (𝑘) ,

(19)
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Figure 6: Verification results when 𝑢(𝑡) = 10𝑡V.

where 𝑦
𝑒
(𝑘) (𝑦

𝑒
(𝑘) = 𝑦(𝑘) − 𝑦

𝑟
(𝑘)) is the error output, 𝑦(𝑘)

is the system input, and 𝑢(𝑘) is the controller input which is
designed as

𝑢 (𝑘) = 𝑢
1
(𝑘) + 𝑢

2
(𝑘) , (20)

where 𝑢
1
(𝑘) and 𝑢

2
(𝑘) are the golden-section adaptive con-

trol law, and the integral control law, respectively, which
satisfy

𝑢
1
(𝑘) = −

[𝑙
1
�̂�
1
(𝑘) 𝑦
𝑒
(𝑘) + 𝑙

2
�̂�
2
(𝑘) 𝑦
𝑒
(𝑘 − 1)]

̂
𝛽
0
(𝑘)

,

𝑢
2
(𝑘) = 𝑢

2
(𝑘 − 1) + 𝛼

0
(𝑘) 𝑦
𝑒
(𝑘)

= 𝑢
2
(𝑘 − 2) + 𝛼

0
(𝑘 − 1) 𝑦

𝑒
(𝑘 − 1) + 𝛼

0
(𝑘) 𝑦
𝑒
(𝑘) ,

(21)

where 𝑙
1

= 0.382 and 𝑙
2

= 0.618 are the golden-section
feedback coefficients, �̂�

1
(𝑘), �̂�
2
(𝑘), and ̂

𝛽
0
(𝑘) are the estimates

of 𝛼
1
(𝑘), 𝛼

2
(𝑘), and 𝛽

0
(𝑘), and −1 < 𝛼

0
(𝑘) < 0 is a variable

integral coefficient. Take (20) and (21) into (19) to obtain

𝑦
𝑒
(𝑘 + 1) = −𝑓

1
(𝑘) 𝑦
𝑒
(𝑘) − 𝑓

2
(𝑘) 𝑦
𝑒
(𝑘 − 1)

− 𝑓
3
(𝑘) 𝑢
2
(𝑘 − 2) ,

(22)

where

𝑓
1
(𝑘) = 𝑙

1

𝛽
0
(𝑘) �̂�
1
(𝑘)

̂
𝛽
0
(𝑘)

− 𝛼
1
(𝑘) − 𝛼

0
(𝑘) 𝛽
0
(𝑘) ,
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Figure 7: Verification results when 𝑢(𝑡) = 30 sin(𝑡)V.

𝑓
2
(𝑘) = 𝑙

2

𝛽
0
(𝑘) �̂�
2
(𝑘)

̂
𝛽
0
(𝑘)

− 𝛼
2
(𝑘) − 𝛼

0
(𝑘 − 1) 𝛽

0
(𝑘) ,

𝑓
3
(𝑘) = −𝛽

0
(𝑘) .

(23)

Define 𝑌(𝑘) = [𝑦
0
(𝑘 − 1) 𝑦

𝑒
(𝑘) 𝑦

𝑒
(𝑘 + 1)]

𝑇, where
𝑦
0
(𝑘 − 1) = 𝑢

2
(𝑘 − 1) so that the system (22) can be expressed

as

𝑌 (𝑘 + 1) = 𝐴 (𝑘 + 1) 𝑌 (𝑘) , (24)

where

𝐴 (𝑘 + 1) =
[

[

1 𝛼
0

0

0 0 1

−𝑓
3
(𝑘 + 1) −𝑓

2
(𝑘 + 1) −𝑓

1
(𝑘 + 1)

]

]

.

(25)

In order to analyze the uniform asymptotic stability of
system (22), the following three lemmas are introduced.

Lemma 9 (see [30]). Assume that a linear time-varying
discrete system can be written as

𝑌 (𝑘 + 1) = 𝐴 (𝑘 + 1) 𝑌 (𝑘) , (26)
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where 𝐴(𝑘 + 1) ∈ 𝑅
𝑛×𝑛, 𝑌(𝑘) ∈ 𝑅

𝑛×1, and the origin is the
equilibrium state of the system. For a given uniformly bounded,
positive definite symmetric matrix 𝑃(𝑘), if 𝑄(𝑘) which can be
obtained by

𝐴
𝑇

(𝑘 + 1) 𝑃 (𝑘 + 1)𝐴 (𝑘 + 1) − 𝑃 (𝑘) = −𝑄 (𝑘) (27)

is a uniformly bounded, positive definite symmetric matrix,
then the equilibrium state of the system (26) is uniformly
asymptotically stable according to Lyapunov theory.

Lemma 10 (see [30]). Assume that 𝐵(𝑘) = (𝑏
𝑖𝑗
(𝑘)) is a

symmetric matrix which satisfies

(1) every element and principal minor of 𝐵(𝑘) can be
expressed as a continuous function about 𝑓

𝑖
(𝑘) or a

constant;
(2) 𝑓
𝑖
(𝑘) (𝑖 = 1, 2, . . . , 𝑁) belongs to a finite closed

interval, where𝑁 is a finite positive integer;
(3) all principal minors of 𝐵(𝑘) are greater than zero.

Then 𝐵(𝑘) is a uniformly bounded, positive definite sym-
metric matrix.

Lemma 11 (see [30]). Assume that𝑀(𝑘) ∈ 𝑅 and 0 < 𝑀(𝑘) <

𝑀, where𝑀 is a positive constant. Assume that 𝐵(𝑘+1),𝐶(𝑘+

1),𝐷(𝑘), 𝐸
0
(𝑘), 𝐸

1
(𝑘), and 𝐹(𝑘) satisfy

𝐸
0
(𝑘) = 𝑀 (𝑘) 𝐵

2

(𝑘 + 1) + 𝐸
1
(𝑘) 𝐵 (𝑘 + 1)

− 𝑀 (𝑘) 𝐶
2

(𝑘 + 1) + 𝐹 (𝑘) 𝐶 (𝑘 + 1) + 𝐷 (𝑘) ,

(28)

𝐸
1
(𝑘) = −2𝑀 (𝑘) 𝐵 (𝑘 + 1) − 2𝑀 (𝑘) 𝐶 (𝑘 + 1) + 𝐹 (𝑘) .

(29)

The quadratic trinomial about 𝑍(𝑘) is

−𝑀(𝑘)𝑍
2

(𝑘) + 𝐸
1
(𝑘) 𝑍 (𝑘) + 𝐸

0
(𝑘) (30)

whose discriminant root is Δ(𝑘) = 𝐸
2

1
(𝑘) + 4𝑀(𝑘)𝐸

0
(𝑘) =

𝐹
2

(𝑘) + 4𝑀(𝑘)𝐷(𝑘). When

Δ (𝑘) > 0

𝐸
1
(𝑘) − √Δ (𝑘)

2𝑀 (𝑘)

< 𝑍 (𝑘) <

𝐸
1
(𝑘) + √Δ (𝑘)

2𝑀 (𝑘)

,

(31)

the quadratic trinomial (30) is greater than zero.
Design the symmetric matrix 𝑃(𝑘) as

𝑝
𝑖𝑖
(𝑘) = 𝑝

𝑖𝑖
(𝑖 = 1, 2, 3) , (32)

where𝑝
11
, 𝑝
22
, and 𝑝

33
are all positive constants and 0 < 𝑝

11
<

𝑝
22

< 𝑝
33
:

𝑝
12

(𝑘) = 𝑝
21

(𝑘) = 𝜀
3
𝑓
3
(𝑘) ,

𝑝
13

(𝑘) = 𝑝
31

(𝑘) = 𝜀
2
𝑓
2
(𝑘) ,

𝑝
23

(𝑘) = 𝑝
32

(𝑘) = 𝜀
1
𝑓
1
(𝑘) ,

(33)

where 𝜀
1
, 𝜀
2
, and 𝜀

3
are positive constants and 0 < 𝜀

𝑖
≤

(𝑝
11
/𝑀
𝑖
√5) (𝑖 = 1, 2, 3), where 𝑀

𝑖
is the bound of 𝑓

𝑖
(𝑘); that

is, |𝑓
𝑖
(𝑘)| < 𝑀

𝑖
.

Then the 𝑄(𝑘) can be calculated as

(𝑄
𝑖𝑗
(𝑘))
3×3

≜ 𝑄 (𝑘)

= −𝐴
𝑇

(𝑘 + 1) 𝑃 (𝑘 + 1)𝐴 (𝑘 + 1) + 𝑃 (𝑘) ,

(34)

where

𝑄
11

(𝑘) = 2𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1) − 𝑝

33
𝑓
2

3
(𝑘 + 1) ,

𝑄
12

(𝑘) = 𝑄
21

(𝑘)

= 𝑝
12

(𝑘) − 𝛼
0
𝑝
11

+ 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1) − 𝑝

33
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1) ,

𝑄
13

(𝑘) = 𝑄
31

(𝑘)

= 𝑝
13

(𝑘) − 𝑝
12

(𝑘 + 1) + 𝑝
23

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1) − 𝑝

33
𝑓
1
(𝑘 + 1) 𝑓

3
(𝑘 + 1) ,

𝑄
22

(𝑘) = 𝑝
22

− 𝛼
2

0
𝑝
11

+ 2𝛼
2

0
𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

− 𝑝
33
𝑓
2

2
(𝑘 + 1) ,

𝑄
23

(𝑘) = 𝑄
32

(𝑘)

= 𝑝
23

(𝑘) − 𝛼
0
𝑝
12

(𝑘 + 1) + 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

+ 𝑝
23

(𝑘 + 1) 𝑓
2
(𝑘 + 1) − 𝑝

33
𝑓
1
(𝑘 + 1) 𝑓

2
(𝑘 + 1) ,

𝑄
33

(𝑘) = 𝑝
33

− 𝑝
22

+ 2𝑝
23

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

− 𝑝
33
𝑓
2

1
(𝑘 + 1) .

(35)

Theorem 12. The sufficient conditions which guarantee the
uniform asymptotic stability of the time-varying discrete system
(15) are

(1) 𝑓
1
(𝑘), 𝑓
2
(𝑘), and 𝑓

3
(𝑘) satisfy





𝑓
1
(𝑘)





< √

𝑝
33

− 𝑝
22

𝑝
33

= 𝑀
1

(36)





𝑓
2
(𝑘)





< √

𝑝
22

− 𝛼
2

0
𝑝
11

𝑝
33

, 𝑓
2
(𝑘) ̸=0 (37)

𝜀
2

𝑝
33

(𝑓
2
(𝑘 + 1) −





𝑓
2
(𝑘 + 1)





)

< 𝑓
3
(𝑘) <

𝜀
2

𝑝
33

(𝑓
2
(𝑘 + 1) +





𝑓
2
(𝑘 + 1)





) .

(38)
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(2) The change rate of 𝑓
1
(𝑘), 𝑓
2
(𝑘), and 𝑓

3
(𝑘) satisfy

(𝑆
23
/2) − √𝑀

𝑄2
(𝑘) (𝑄

11
(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘))

𝑄
11

(𝑘)

< −𝜀
1
Δ𝑓
1
(𝑘)

<

(𝑆
23
/2) + √𝑀

𝑄2
(𝑘) (𝑄

11
(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘))

𝑄
11

(𝑘)

(39)

𝑆
13

2

− √𝑄
11

(𝑘) 𝑄
33

(𝑘)

< −𝜀
2
Δ𝑓
2
(𝑘) <

𝑆
13

2

+ √𝑄
11

(𝑘) 𝑄
33

(𝑘)

(40)

𝑆
12

2

− √𝑄
11

(𝑘) 𝑄
22

(𝑘)

< −𝜀
3
Δ𝑓
3
(𝑘) <

𝑆
12

2

+ √𝑄
11

(𝑘) 𝑄
22

(𝑘),

(41)

where
𝑆
23

= − 2𝑄
11

(𝑘) 𝑝
23

(𝑘 + 1) − 2𝑄
11

(𝑘)

× (−𝛼
0
𝑝
12

(𝑘 + 1) + 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

+ 𝑝
23

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

−𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

2
(𝑘 + 1)) + 2𝑄

12
(𝑘) 𝑄
13

(𝑘) ,

𝑆
13

= − 2𝑝
13

(𝑘 + 1)

− 2 (−𝑝
12

(𝑘 + 1) + 𝑝
23

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

−𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

3
(𝑘 + 1)) ,

𝑆
12

= − 2𝑝
12

(𝑘 + 1)

− 2 (−𝛼
0
𝑝
11

+ 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

−𝑝
33
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1))

(42)

𝑀
𝑄2

(𝑘) = 𝑄
11

(𝑘) 𝑄
22

(𝑘) − 𝑄
2

12
(𝑘) (43)

Δ𝑓
𝑖
(𝑘) = 𝑓

𝑖
(𝑘 + 1) − 𝑓

𝑖
(𝑘) (𝑖 = 1, 2, 3) . (44)

Remark 13. Due to −1 < 𝛼
0
(𝑘) < 0, we obtain |𝑓

2
(𝑘)| <

√(𝑝
22

− 𝛼
2

0
𝑝
11
)/𝑝
33

< √𝑝
22
/𝑝
33

= 𝑀
2
by (37). According

to (38), we get

0 < 𝑓
3
(𝑘) <

2𝜀
2

𝑝
33

𝑓
2
(𝑘 + 1) 𝑓

2
(𝑘 + 1) > 0

2𝜀
2

𝑝
33

𝑓
2
(𝑘 + 1) < 𝑓

3
(𝑘) < 0 𝑓

2
(𝑘 + 1) < 0.

(45)

So |𝑓
3
(𝑘)| < (2𝜀

2
/𝑝
33
)|𝑓
2
(𝑘 + 1)| < (2/𝑝

33
)(𝑝
11
/𝑀
2
√5)𝑀

2
=

2√5𝑝
11
/5𝑝
33

= 𝑀
3
.

Remark 14. The bound of 𝑓
2
(𝑘) and 𝑓

3
(𝑘) is related to 𝛼

0
(𝑘)

and 𝑓
2
(𝑘 + 1), respectively, in (37) and (38). In order to make

the conditions (37) and (38) possible to be satisfied in the
operation of the system, we reduce the range for

𝛿 <




𝑓
2
(𝑘)





< √

𝑝
22

− 𝑝
11

𝑝
33

0 < 𝑓
3
(𝑘) <

2𝜀
2

𝑝
33

𝛿 𝑓
2
(𝑘 + 1) > 0

−

2𝜀
2

𝑝
33

𝛿 < 𝑓
3
(𝑘) < 0 𝑓

2
(𝑘 + 1) < 0,

(46)

where 𝛿 is a positive constant. In this way, the upper bound
and lower bound of 𝑓

2
(𝑘) and 𝑓

3
(𝑘) are constant and they are

possible to implement in real system.

Proof of Theorem 12. The first-order principal minor of 𝑃(𝑘)
satisfies

𝑀
𝑝1

(𝑘) = 𝑝
11
, 𝑝
11

> 0. (47)

The second-order principal minor of 𝑃(𝑘) satisfies

𝑀
𝑝2

(𝑘) = 𝑝
11
𝑝
22

− 𝑝
2

12
(𝑘) = 𝑝

11
𝑝
22

− 𝜀
2

3
𝑓
2

3
(𝑘)

> 𝑝
11
𝑝
22

−

𝑝
2

11

5𝑀
2

3

𝑀
2

3
> 𝑝
2

11
−

𝑝
2

11

5

> 0.

(48)

The third-order principal minor of 𝑃(𝑘) satisfies

𝑀
𝑝3

(𝑘) = 𝑝
11
𝑝
22
𝑝
33

+ 2𝜀
1
𝜀
2
𝜀
3
𝑓
1
(𝑘) 𝑓
2
(𝑘) 𝑓
3
(𝑘)

− 𝑝
11
𝜀
2

1
𝑓
2

1
(𝑘) − 𝑝

22
𝜀
2

2
𝑓
2

2
(𝑘) − 𝑝

33
𝜀
2

3
𝑓
2

3
(𝑘)

> 𝑝
11
𝑝
22
𝑝
33

− 2

𝑝
11

𝑀
1
√5

𝑝
11

𝑀
2
√5

𝑝
11

𝑀
3
√5

𝑀
1
𝑀
2
𝑀
3

− 𝑝
11

𝑝
2

11

5𝑀
2

1

𝑀
2

1
− 𝑝
22

𝑝
2

11

5𝑀
2

2

𝑀
2

2
− 𝑝
33

𝑝
2

11

5𝑀
2

3

𝑀
2

3

>

2

5

𝑝
3

11
+

1

5

𝑝
3

11
+

1

5

𝑝
22
𝑝
2

11
+

1

5

𝑝
33
𝑝
2

11
−

2

5√5

𝑝
3

11

−

1

5

𝑝
3

11
−

1

5

𝑝
22
𝑝
2

11
−

1

5

𝑝
33
𝑝
2

11
> 0.

(49)

As a result, 𝑃(𝑘) is a uniformly bounded, positive definite
symmetric matrix by Lemma 10.

The first-order principal minor of 𝑄(𝑘) is

𝑀
𝑄1

(𝑘) = 𝑄
11

(𝑘) = 2𝜀
2
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1) − 𝑝

33
𝑓
2

3
(𝑘 + 1)

= −𝑝
33

[𝑓
3
(𝑘 + 1) −

𝜀
2
𝑓
2
(𝑘 + 1) + 𝜀

2





𝑓
2
(𝑘 + 1)






𝑝
33

]

× [𝑓
3
(𝑘 + 1) −

𝜀
2
𝑓
2
(𝑘 + 1) − 𝜀

2





𝑓
2
(𝑘 + 1)






𝑝
33

] .

(50)
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According to (38) and 𝑓
2
(𝑘) ̸=0 in (37), we can obtain

𝑀
𝑄1

(𝑘) = 𝑄
11
(𝑘) > 0.

Define

𝑎
12

(𝑘 + 1) = 𝑄
12

(𝑘) − 𝑝
12

(𝑘)

= −𝛼
0
𝑝
11

+ 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

− 𝑝
33
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1) .

(51)

According to (43), the second-order principal minor of 𝑄(𝑘)

is

𝑀
𝑄2

(𝑘) = −[𝑝
12

(𝑘) + 𝑎
12

(𝑘 + 1)]
2

+ 𝑄
11

(𝑘) 𝑄
22

(𝑘)

= −[𝑝
12

(𝑘) − 𝑝
12

(𝑘 + 1)]
2

+ 𝑆
12

[𝑝
12

(𝑘) − 𝑝
12

(𝑘 + 1)] + 𝑇
12
,

(52)

where

𝑆
12

= − 2𝑝
12

(𝑘 + 1) − 2𝑎
12

(𝑘 + 1) ,

𝑇
12

= 𝑝
2

12
(𝑘 + 1) + 𝑆

12
𝑝
12

(𝑘 + 1)

− 𝑎
2

12
(𝑘 + 1) + 𝑄

11
(𝑘) 𝑄
22

(𝑘) .

(53)

𝑆
12
and 𝑇

12
can be expressed in the form of (29) and (28):

𝐵 (𝑘 + 1) = 𝑝
12

(𝑘 + 1) , 𝐶 (𝑘 + 1) = 𝑎
12

(𝑘 + 1) ,

𝐷 (𝑘) = 𝑄
11

(𝑘) 𝑄
22

(𝑘) , 𝐹 (𝑘) = 0, 𝑀 (𝑘) = 1.

(54)

Then the discriminant root of the quadratic trinomial (52)
about [𝑝

12
(𝑘) − 𝑝

12
(𝑘 + 1)] is

Δ
12

(𝑘) = 𝐹
2

(𝑘) + 4𝑀 (𝑘)𝐷 (𝑘) = 4𝑄
11

(𝑘) 𝑄
22

(𝑘)

= 4𝑀
𝑄1

(𝑘) 𝑄
22

(𝑘) ,

(55)

where

𝑄
22

(𝑘) = 𝑝
22

− 𝛼
2

0
𝑝
11

+ 2𝛼
2

0
𝜀
2
𝑓
2

2
(𝑘 + 1) − 𝑝

33
𝑓
2

2
(𝑘 + 1) .

(56)

We can get 𝑄
22
(𝑘) > 0 by (37), so Δ

12
(𝑘) > 0. Then we have

𝑀
𝑄2

(𝑘) > 0 according to (41) and Lemma 11.
The third-order principal minor of 𝑃(𝑘) is

𝑀
𝑄3

(𝑘) = −𝑄
11

(𝑘) 𝑄
2

23
(𝑘) + 2𝑄

12
(𝑘) 𝑄
13

(𝑘) 𝑄
23

(𝑘)

− 𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘) .

(57)

Define

𝑎
23

(𝑘 + 1) = 𝑄
23

(𝑘) − 𝑝
23

(𝑘)

= −𝛼
0
𝑝
12

(𝑘 + 1) + 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

+ 𝑝
23

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

− 𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

2
(𝑘 + 1) .

(58)

We get

𝑀
𝑄3

(𝑘) = −𝑄
11

(𝑘) [𝑝
23

(𝑘) + 𝑎
23

(𝑘 + 1)]
2

+ 2𝑄
12

(𝑘) 𝑄
13

(𝑘) 𝑎
23

(𝑘 + 1) − 𝑄
22

(𝑘) 𝑄
2

13
(𝑘)

+ 𝑄
33

(𝑘)𝑀
𝑄2

(𝑘)

= −𝑄
11

(𝑘) [𝑝
23

(𝑘) − 𝑝
23

(𝑘 + 1)]
2

+ 𝑆
23

[𝑝
23

(𝑘) − 𝑝
23

(𝑘 + 1)] + 𝑇
23
,

(59)

where

𝑆
23

= −2𝑄
11

(𝑘) 𝑝
23

(𝑘 + 1) − 2𝑄
11

(𝑘) 𝑎
23

(𝑘 + 1)

+ 2𝑄
12

(𝑘) 𝑄
13

(𝑘) ,

𝑇
23

= 𝑄
11

(𝑘) 𝑝
2

23
(𝑘 + 1) + 𝑆

23
𝑝
23

(𝑘 + 1)

− 𝑄
11

(𝑘) 𝑎
2

23
(𝑘 + 1) + 2𝑄

12
(𝑘) 𝑄
13

(𝑘) 𝑎
23

(𝑘 + 1)

− 𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘) .

(60)

𝑆
23
and 𝑇

23
can be expressed in the form of (29) and (28):

𝑀(𝑘) = 𝑄
11

(𝑘) , 𝐵 (𝑘 + 1) = 𝑝
23

(𝑘 + 1) ,

𝐶 (𝑘 + 1) = 𝑎
23

(𝑘 + 1) ,

𝐷 (𝑘) = −𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘) ,

𝐹 (𝑘) = 2𝑄
12

(𝑘) 𝑄
13

(𝑘) .

(61)

Then the discriminant root of the quadratic trinomial (59)
about [𝑝

23
(𝑘) − 𝑝

23
(𝑘 + 1)] is

Δ
23

(𝑘) = 𝐹
2

(𝑘) + 4𝑀 (𝑘)𝐷 (𝑘) = 4𝑄
2

12
(𝑘) 𝑄
2

13
(𝑘)

+ 4𝑄
11

(𝑘) [−𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘)]

= 4𝑄
2

13
(𝑘) [𝑄

2

12
(𝑘) − 𝑄

11
(𝑘) 𝑄
22

(𝑘)]

+ 4𝑄
11

(𝑘) 𝑄
33

(𝑘)𝑀
𝑄2

(𝑘)

= 4𝑀
𝑄2

(𝑘) [𝑄
11

(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘)] .

(62)

Define

𝑎
13

(𝑘 + 1) = 𝑄
13

(𝑘) − 𝑝
13

(𝑘)

= −𝑝
12

(𝑘 + 1) + 𝑝
23

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

− 𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

3
(𝑘 + 1) .

(63)
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Figure 8: Structure of the closed-loop system.
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Figure 9: Simulation results for the step signal input.
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Figure 10: Simulation results for the 0.6∘/s slope signal input.
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Figure 11: Simulation results for the 30∘/s slope signal input.
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Figure 12: Simulation results for the 0.6∘/s and 0.6∘/s2 sine signal input.

We get

𝑄
11

(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘)

= −[𝑝
13

(𝑘) + 𝑎
13

(𝑘 + 1)]
2

+ 𝑄
11

(𝑘) 𝑄
33

(𝑘)

= −[𝑝
13

(𝑘) − 𝑝
13

(𝑘 + 1)]
2

+ 𝑆
13

[𝑝
13

(𝑘) − 𝑝
13

(𝑘 + 1)] + 𝑇
13
,

(64)

where

𝑆
13

= −2𝑝
13

(𝑘 + 1) − 2𝑎
13

(𝑘 + 1) ,

𝑇
13

= 𝑝
2

13
(𝑘 + 1) + 𝑆

13
𝑝
13

(𝑘 + 1)

− 𝑎
2

13
(𝑘 + 1) + 𝑄

11
(𝑘) 𝑄
33

(𝑘) .

(65)
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Figure 13: Simulation results for the 30∘/s and 30∘/s2 sine signal input.
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Figure 14: Experimental system.

𝑆
13
and 𝑇

13
can be expressed in the form of (29) and (28):

𝐵 (𝑘 + 1) = 𝑝
13

(𝑘 + 1) , 𝐶 (𝑘 + 1) = 𝑎
13

(𝑘 + 1) ,

𝐷 (𝑘) = 𝑄
11

(𝑘) 𝑄
33

(𝑘) , 𝐹 (𝑘) = 0, 𝑀 (𝑘) = 1.

(66)

Then the discriminant root of the quadratic trinomial (64)
about [𝑝

13
(𝑘) − 𝑝

13
(𝑘 + 1)] is

Δ
13

(𝑘) = 𝐹
2

(𝑘) + 4𝑀 (𝑘)𝐷 (𝑘)

= 4𝑄
11

(𝑘) 𝑄
33

(𝑘) = 4𝑀
𝑄1

(𝑘) 𝑄
33

(𝑘) ,

(67)

where

𝑄
33

(𝑘) = 𝑝
33

− 𝑝
22

+ 2𝜀
1
𝑓
2

1
(𝑘 + 1) − 𝑝

33
𝑓
2

1
(𝑘 + 1) .

(68)

We can get 𝑄
33
(𝑘) > 0 by (44), so Δ

13
(𝑘) > 0. According to

(40) and Lemma 11, we obtain

𝑄
11

(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘) > 0. (69)

So we get Δ
23
(𝑘) > 0 by (62). Then we have 𝑀

𝑄3
(𝑘) > 0,

according to (39) and Lemma 11.
Thus, 𝑄(𝑘) is a uniformly bounded, positive definite

symmetric matrix by Lemma 10. Furthermore, the time-
varying discrete system (22) is uniformly asymptotically
stable by Lemma 9. The proof is completed.

4. Simulation Results

Considering the characters of the servo system, a composite
controller which is composed of golden-section adaptive
control law, integral control law, and feed-forward control
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Figure 15: 30∘ step response.

law is applied in the system simulation. The structure of the
closed-loop system is shown in Figure 8.

The golden-section adaptive control law 𝑢
𝑙
(𝑘) is given as

𝑢
𝑙
(𝑘) =

1

̂
𝛽
0
(𝑘) + 𝜆

[𝑙
1
�̂�
1
(𝑘) 𝑒 (𝑘) + 𝑙

2
�̂�
2
(𝑘) 𝑒 (𝑘 − 1)] , (70)

where 𝑒(𝑘) = 𝑦
𝑟
(𝑘) − 𝑦(𝑘), 𝑙

1
= 0.382, 𝑙

2
= 0.618, and 𝜆 is a

small positive constant which ensures that the golden-section
adaptive control law is bounded when 𝛽

0
(𝑘) = 0.

The integral control law is given as

𝑢
𝑖
(𝑘) = 𝑢

𝑖
(𝑘 − 1) + 𝑘

𝑖
𝑒 (𝑘) . (71)

The feed-forward control law is given as
𝑢
𝑓
(𝑘) = 𝑘

𝑓
(𝑦
𝑟
(𝑘) − 𝑦

𝑟
(𝑘 − 1)) , (72)

where 𝑘
𝑓
is the feed-forward coefficient.

In summary, the composite controller is

𝑢 (𝑘) = 𝑢
𝑎
(𝑘) + 𝑢

𝑓
(𝑘) = 𝑢

𝑙
(𝑘) + 𝑢

𝑖
(𝑘) + 𝑢

𝑓
(𝑘) . (73)

The values of the controller parameters are 𝜆 = 2 ×

10
−3, 𝑘
𝑖
= 0.6, and 𝑘

𝑓
= 50.

In order to verify the effectiveness of the servo system,
step signal, slope signal, and sine signal, which are often
used in the performance test of servo systems, are used as
input signals in this paper. In the simulations, the system
responses under 30

∘ step signal input, 0.6
∘

/s slope signal
input, 30∘/s slope signal input, 0.6∘/s, 0.6∘/s2 sine signal input,
and 30

∘

/s, 30∘/s2 sine signal input are tested, respectively.

(1) When the input signal is 𝑦
𝑟
(𝑡) = 30

∘, the results are
shown in Figure 9.
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Figure 16: 0.6∘/s slope response.

(2) When the input signal is 𝑦
𝑟
(𝑡) = 0.6

∘

/s, the results are
shown in Figure 10.

(3) When the input signal is 𝑦
𝑟
(𝑡) = 30

∘

/s, the results are
shown in Figure 11.

(4) When the input signal is 𝑦
𝑟
(𝑡) = 0.6

∘ sin(𝑡), the results
are shown in Figure 12.

(5) When the input signal is 𝑦
𝑟
(𝑡) = 30

∘ sin(𝑡), the results
are shown in Figure 13.

5. Experimental Results

To verify the effectiveness of the proposed control scheme,
the experiments are conducted on the experimental system as
shown in Figure 14. The experimental system consisted of an
upper computer, a servo drive, a servo motor, a reducer, and
a load. The PC104 (SCM/SPT4) module is used as the upper
computer, and it is mainly used for sending instructions
and monitoring the status of the system. The servo drive is
designed by us based on the DSP TMS320F28335, which has
a CAN communication interface and can receive the position
instruction from the upper computer in real time. In the
running process, the drive implements the control of current,
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Figure 17: 30∘/s slope response.

speed, and position of the motor. The PMSM (M-403-B)
produced by Kollmorgen Company is selected as the servo
motor in the experiment. The parameters of the motor are
listed in Table 1. The high speed and high rigidity planetary
gear reducer (FIC-A35-119) produced by Sumitomo Heavy
Machinery Company is utilized in the experiment, whose
reduction ratio is 1 : 119, and the reduction ratio of the final
gears is 1 : 2.

The backlash between the motor and the load is 0.36∘. PI
control scheme is used in the speed controller and current
controller of the motor drive; the proportion and integral
gains of the speed controller and current controller are 1.2,
0.02, 1.5, and 0.02, respectively, after adjustment. For the
sake of comparison, the position controller based on PI con-
trol scheme with feed-forward compensation (PIF) and the
composite position controller including the golden-section

Table 1: Parameters of the servo motor (M-403-B).

Name Units Value
Rated power kW 2.5
Rated speed rpm 3000
Torque coefficient N⋅m/A 1.11
EMF V/krpm 67.2
Line resistance ohms 2.6
Line induction mH 50
Inertia Kg⋅m2 0.00259
Static friction N⋅m 0.24
Viscous friction N⋅m/krpm 0.015

adaptive control law, the integral control law, and feed
forward compensation (GSAIF) are tested, respectively, in the
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Figure 18: 0.6∘/s and 0.6∘/s2 sine response.

experiment. In the PIF scheme, the proportion and integral
gains are 4.2 and 0.23, respectively, and the feed-forward
gain is 0.25. In the GSAIF scheme, 𝑓 = 0.995, and 𝜆 =

0.01, the coefficients of integral gain and feed forward gain
are 0.29 and 0.25. Position step, slope, and sine signals are
used in the experiments to test the system performance. The
experimental results are shown in Figures 15–19.
(1) Tracking the 30∘ Step Signal. From Figure 15 it can be
obtained that the system overshoot is 1.8∘ using PIF control
scheme; after 1.5 s the system is in a stable state and the
tracking error is zero. When using GSAIF control scheme,
the overshoot does not appear, and after 0.8 s the system is

in a stable state and the stable tracking error is zero too. The
comparison results show that the GSAIF scheme has a better
dynamic performance and the response speed is much better
than the PIF scheme.
(2) Tracking the 0.6∘/s and the 30∘/s Slope Signal. As shown
in Figures 16 and 17, the system is tested for tracking
0.6∘/s and 30∘/s position slope signal. In the 0.6∘/s tracking
experiment, the maximum stable error is 0.023∘ using PIF
scheme. When the system tracks the command signal using
GSAIF, the maximum tracking error is only 0.01∘. In the
30∘/s tracking test, the stable error increases using both of
the control schemes. The maximum stable tracking error
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Figure 19: 30∘/s and 30∘/s2 sine response.

using PIF scheme is 0.12∘. When using GSAIF scheme, the
maximum tracking error is 0.08∘. The comparison results
show that the GSAIF scheme has better smoothness and
higher precision tracking performance compared with PIF
scheme when tracking the position slope signals.

(3) Tracking the 0.6∘/s, 0.6∘/𝑠2 and 30
∘/s, 30∘/𝑠2 Sine Signal. As

shown in Figures 18 and 19, the system is tested for tracking
position sine signal; the maximum speed and acceleration
of the command signals are 0.6∘/s, 0.6∘/s2 and 30∘/s, 30∘/s2,
respectively. In the 0.6∘/s, 0.6∘/s2 sine signal tracking test, the
maximum tracking error is 0.06∘ when using PIF scheme.
However, using GSAIF scheme, the maximum tracking error
is 0.04∘. In the 30∘/s, 30∘/s2 sine signal tracking test, the
tracking error vibrates severely using the PIF scheme and

the maximum tracking error reaches 0.42∘. Using GSAIF
scheme, there is no obvious vibrations and the maximum
tracking error is only 0.26∘.The comparison results show that
the GSAIF scheme possesses a better suppression ability of
nonlinear uncertainties such as backlash and friction when
tracking sine signals, and it improves the system tracking
precision.

6. Conclusions

In this paper, the characteristicmodeling technique is applied
for modeling and control of the servo system with backlash
and friction. Tomeet the demands of characteristicmodeling,
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a continuous approximation of dead-zone function is intro-
duced to describe the backlashmodel, and the sgn(⋅) function
is replaced by (2/𝜋) arctan(𝑘V) to make the Stribeck friction
model smooth. The characteristic model of the system is
established based on a second-order slowly time-varying
difference equation and verified by simulations. The com-
posite controller based on golden-section adaptive law, feed-
forward compensation, and integral law is proposed, and the
stability of the closed-loop system is analyzed by Lyapunov
theory. It is shown by both simulation and experimental
results that it is feasible to establish the characteristic model
of the servo system with backlash and friction. The GSAIF
controller is also effective, and it can reduce the effect of
backlash and friction and improve the steady-state precision
and the dynamic performance of the servo system.
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This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs) with
time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on
the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov
functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented.
Simulation results show that the proposedmethod is effective to guarantee system’s global asymptotic stability and quality of service
(QoS).

1. Introduction

As network technology advanced in the last decade, net-
worked control system (NCS) has increasingly become a
research focus. Considerable attention on the modeling and
controller design of NCSs has been paid in [1–5]. There are
many advantages to NCSs, such as reduced system wiring,
facilitated system maintenance, and increased systems flex-
ibility.

However, due to the insertion of communication chan-
nels, this bringsmany challenging problems such as network-
induced delay and data packet dropout. Regardless of the
type of network used, these special issues degrade the system
dynamic performance and are a source of potential instability.
There are a number of design methods that have been
proposed to deal with these problems. One of the most
general methods is to model the NCS as a system with time-
varying delays. So the stability of an NCS is equivalent to the
stability of a system with time-varying delays [2]. Moreover,
the sampling behavior has also an important impact on
the design of the NCS controller because the states of the
feedback controller are not continuous as a result of the
existence of zeroth-order hold (ZOH). In [1], a model of
NCS was provided considering network-induced delay and

packet dropout in the transmission. In [3], an observer-based
stabilizing controller was designed for the NCSs involving
both random measurement and actuation delays. Robust
controllers for uncertain NCSs were also obtained in [4, 5].
However, how to analyze the stability of nonlinear NCSs has
increasingly become a challenging topic. Some results about
the stability of nonlinear NCSs were obtained in [6, 7]. In
[8], a stochastic optimal controller design for nonlinear NCSs
with uncertain dynamics via neurodynamic programming
was proposed. The closed-loop stability of the nonlinear
NCSs was demonstrated by selecting neural network (NN)
update laws. However, these methods often require some
strict assumptions for a system model, so it is difficult for
practical applications.

In the last few years, the fuzzy control is a useful approach
to solve the control problems of nonlinear systems. The
Takagi-Sugeno (T-S) fuzzy system proposed in [9] is widely
applied to industrial control fields because of its simple
structure with local dynamics. In the T-S fuzzy model, local
dynamics in different state-space regions are represented by
many linear models so that linear system theory can conve-
niently be employed to analyze the stability of overall closed-
loop system and to design the feedback controller.The typical
design approaches are carried out based on fuzzy model
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via the so-called parallel distributed compensation (PDC)
method [10]. Considering the time-delay characteristic of
nonlinear systems, many results about the T-S fuzzy model
with a time-delay term are obtained to deal with stability and
stabilization problems of nonlinear systems with time delays
[2, 11–13]. The guaranteed cost control for a T-S fuzzy system
with time delays was presented in [2, 11, 12]. In [13], robust
control problem was studied for a class of large-scale NCSs,
and the decentralized design was presented using T-S fuzzy
approach.

Nevertheless, an inherent drawback remains since the
number of fuzzy rules of a T-S model increases exponentially
with the number of nonlinearities constituting the matched
nonlinear system [14].Thismakes fuzzy controller design and
implementation difficult as the complexity of the nonlinear
system to be controlled increases [15]. To outline the problem
of rules explosion in fuzzy T-S modeling, some authors have
proposed to combine the merit of switched systems with T-S
ones to deal with nonlinear control problems [16–18]. To do
so, partitioning the state space of a nonlinear system allows
defining a switched nonlinear system. Then, inside each
partition, a T-S model can be obtained. As stated in [18], the
resulting switched T-S system inherits some essential features
of hybrid systems and maintains all the information and
knowledge representation capacity of fuzzy systems. How-
ever, few papers have studied stabilization issues of switched
fuzzy systems based on switching Lyapunov functions [16] or
quadratic approaches [17]. In [19], based on barrier Lyapunov
functions (BLFs), a new control design for constrained non-
linear switched systems was investigated to achieve output
tracking. By ensuring the boundedness of the BLFs in the
closed loop, the proposed approaches can guarantee that all
states in the switched systems do not violate the desired
constraints and that all closed-loop signals are bounded. For
many nonlinear systems, some of the premise variables of the
corresponding T-S fuzzy models are measurable when they
aremodeled as T-S fuzzymodels, while the partswith unmea-
surable premise variables can be modeled as uncertainties.
Thus, the overall systems can be described by T-S fuzzy parts
with measurable premise variables and uncertainty parts. In
[20], a switching stabilizing controller is designed for a non-
linear system with unknown parameters or unmeasurable
premise variables. However, the uncertainties cannot be well
handled. In [21], a switching fuzzy dynamic output feedback
control scheme is proposed, where the switching mechanism
is introduced to handle the unknown parameters.

In designing a controller for a real plant, it is invariably
necessary to design a control system which not only is stable
but also possesses a strong robust performance. One way
to deal with this is the so-called guaranteed cost control
approach [2].This addresses the robust performance problem
andhas the advantage of providing anupper boundon a given
performance index guaranteeing that system performance
degradation incurred by uncertainty is less than this bound.
For the NCSs, the quality of service (QoS) is one of the most
important performance indexes.Therefore, it is vital to design
a guaranteed cost controller such that the NCSs are stable as
well as satisfactory with the required QoS.

Actuators

Random delay
and/or

packet loss
Network

Plant Sensors

Controller

Random delay
and/or

packet loss

u(t) x(t)

y(t)

Figure 1: A general NCS.

In this paper, we aim at the problem of guaranteed
cost control for a class of uncertain nonlinear NCSs with
time delays. Considering the QoS of NCSs, we propose a
guaranteed cost control scheme to achieve the desired control
performance based on switched T-S fuzzy control method,
where the switching mechanism is introduced to handle
the uncertainties. Moreover, the sufficient condition for the
existence of the robust guaranteed cost controller and the
design method of the corresponding switching control law
are obtained via Lyapunov functions. Comparing with [2,
11, 12], the proposed switching fuzzy approach inherits some
essential features of hybrid systems to deal with the uncertain
nonlinear NCSs and avoids the inherent drawback of rules
explosion in modeling a fuzzy T-S model. In addition, we
consider the stabilization problem of the switched fuzzy T-S
system with time delays in NCSs.

The innovations of this paper are as follows: (1) the
guaranteed cost controller is proposed for nonlinear NCSs
with time-varying delay to achieve the desired control
performance based on the switched T-S fuzzy model with
uncertain parameters, and (2) the sufficient condition for the
robust guaranteed cost control law is presented to uncertain
nonlinear NCSs.

The paper is organized as follows. The basic problem for-
mulation of the nonlinear networked control system is given
in Section 2.The switching fuzzy controller via state feedback
is analyzed in Section 3. In Section 4, the sufficient stability
conditions and guaranteed cost control law are discussed
by Lyapunov functions. Section 5 provides simulation results
to demonstrate the effectiveness of the proposed method.
Finally, concluding remarks are given in Section 6.

2. Problem Formulation

A general NCS configuration is illustrated in Figure 1, which
is composed of a controller and a remote system containing
a physical plant, sensors, and actuators. The controller and
the plant are physically located at different locations and are
directly linked by a data network in order to perform remote
closed-loop control.

In Figure 1, the nonlinear networked control system can
be described as follows:

̇𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

(1)
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where 𝑥(𝑡) ∈ 𝑅𝑛 is the state variation, 𝑢(𝑡) ∈ 𝑅𝑚 is the control
input, 𝑦(𝑡) ∈ 𝑅

𝑠 is the regulated output, 𝑓(𝑥, 𝑢) and 𝑔(𝑥, 𝑢)
are the nonlinear functions. Currently, it has been proved
that the T-S fuzzy models are universal approximations of
many nonlinear dynamic systems. So we introduce a T-S
fuzzy system to model a class of nonlinear NCSs. Without
considering the disturbance input, we use the following T-S
fuzzy model to approximate 𝑓(𝑥(𝑡), 𝑢(𝑡)) and 𝑔(𝑥(𝑡), 𝑢(𝑡)):

𝑅
𝑖
: IF 𝜃
1
(𝑡) is 𝑁

𝑖1
, . . . , and 𝜃

𝑔
(𝑡) is 𝑁

𝑖𝑔
,

THEN{

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) ,

(2)

where 𝑖 = 1, 2, . . . , 𝑟 is the index number of fuzzy rules,
𝜃
1
(𝑡), 𝜃
2
(𝑡), . . . , 𝜃

𝑔
(𝑡) are the known premise variables, 𝑁

𝑖𝑘
is

the fuzzy sets (𝑘 = 1, 2, . . . , 𝑔), 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector,

𝑦(𝑡) ∈ 𝑅
𝑠 is the output vector, 𝑢(𝑡) ∈ 𝑅𝑚 is the control input,

𝐴
𝑖
∈ 𝑅
𝑛×𝑛 is known system matrices, 𝐵

𝑖
∈ 𝑅
𝑛×𝑚 is the input

matrix, and 𝐶
𝑖
∈ 𝑅
𝑛×𝑠 is the output matrix.

Before designing the controller, we make the following
reasonable assumptions.

Assumption 1. The sensor is clock-driven. The controller
and actuator are event-driven. The clocks among them are
synchronized.

Assumption 2. Time-varying network-induced delay is less
than one sampling period.

Assumption 3. The computational delay is negligible.

Assumption 4. The signal is single-packet transmission with-
out packet drop.

Assuming the node sampling period is𝑇, sowe can obtain
the discrete T-S fuzzy model of nonlinear networked control
systems with time-varying delay:

𝑅
𝑖
: IF 𝜃
1
(𝑘) is 𝑁

𝑖1
, . . . , and 𝜃

𝑔
(𝑘) is 𝑁

𝑖𝑔
,

THEN
{
{
{
{

{
{
{
{

{

𝑥 (𝑘 + 1)

= Φ
𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏
𝑘
) 𝑢 (𝑘)

+Γ
𝑖1
(𝜏
𝑘
) 𝑢 (𝑘 − 1) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) ,

(3)

where Φ
𝑖
= 𝑒
𝐴𝑖𝑇, Γ

𝑖0
(𝜏
𝑘
) = ∫

𝑇−𝜏𝑘

0

𝑒
𝐴𝑖𝑇

𝑑𝑡 ⋅ 𝐵
𝑖
, Γ
𝑖1
(𝜏
𝑘
) =

∫

𝑇

𝑇−𝜏𝑘

𝑒
𝐴𝑖𝑇

𝑑𝑡 ⋅ 𝐵
𝑖
, and 𝜏

𝑘
is the network-induced delay, 𝑖 =

0, 1, 2, . . . , 𝑟.
Furthermore, (3) can be transformed into the following

form with uncertain parameters:

𝑥 (𝑘 + 1) = Φ
𝑖
𝑥 (𝑘) + (Γ

𝑖0
+ 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
) 𝑢 (𝑘)

+ (Γ
𝑖1
− 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
) 𝑢 (𝑘 − 1) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) ,

(4)

where 𝐷
𝑖
, 𝐸
𝑖
are known constant matrices of appropriate

dimensions and 𝐹
𝑖
is an unknown matrix function satisfying

𝐹
𝑇

𝐹 ≤ 𝐼,

Γ
𝑖0
(𝜏
𝑘
) = Γ
𝑖0
+ 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
,

Γ
𝑖1
(𝜏
𝑘
) = Γ
𝑖1
− 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
.

(5)

For any given 𝑥(𝑘) and 𝑢(𝑘), by using a weighted-average
defuzzifier, product inference, and singleton fuzzifier, the
local models can be integrated into a global nonlinear model:

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝜃 (𝑘)) [Φ

𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏
𝑘
) 𝑢 (𝑘)

+ Γ
𝑖1
(𝜏
𝑘
) 𝑢 (𝑘 − 1)] ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) ,

(6)

where

𝜃 (𝑘) = [𝜃
𝑇

1
(𝑘), 𝜃
𝑇

2
(𝑘), . . . , 𝜃

𝑇

𝑔
(𝑘)]

𝑇

,

𝜇
𝑖
(𝜃 (𝑘)) =

∏
𝑔

𝑙=1
𝑁
𝑖𝑙
(𝑞
𝑙
(𝑘))

∑
𝑟

𝑖=1
∏
𝑔

𝑙=1
𝑁
𝑖𝑙
(𝜃
𝑙
(𝑘))

.

(7)

𝑁
𝑖𝑙
(𝜃
𝑙
(𝑘)) is the grade of membership of 𝜃

𝑙
(𝑘) in the fuzzy set

𝑁
𝑖𝑙
. Notice the following facts:

𝜇
𝑖
(𝜃 (𝑘)) ≥ 0,

𝑟

∑

𝑖=1

𝜇
𝑖
(𝜃 (𝑘)) = 1. (8)

The guaranteed cost function associated with system (3)
is given by

𝐽 =

∞

∑

𝑘=0

[𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢
𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘)] . (9)

Definition 5. Consider the uncertain system (3) and cost
function (9). If there exists a control law 𝑢

∗

𝜎
(𝑘) and a positive

scalar 𝐽∗ such that for all admissible uncertainties, the closed-
loop system is asymptotically stable and the value of the cost
function (9) satisfies 𝐽 ≤ 𝐽

∗, then 𝐽∗ is said to be a guaranteed
cost and 𝑢∗

𝜎
(𝑘) is said to be a guaranteed cost control law.

3. Controller Design

We assume that switched fuzzy controller is constituted with
𝑁 switching rules. The 𝜎th subfuzzy controller is

𝑅
𝜎

𝑖
: IF 𝜃

1
(𝑡) is 𝑁

𝑖1
, . . . , and 𝜃

𝑔
(𝑡) is 𝑁

𝑖𝑔
,

THEN 𝑢
𝜎
(𝑘) = 𝐾

𝜎𝑖
𝑥 (𝑘) ,

(10)

where 𝜎 = 1, 2, . . . , 𝑁 is a piecewise constant function
representing the switching signal and 𝑅𝜎

𝑖
represents 𝑖th fuzzy
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rule of the 𝜎th subfuzzy controller.The switching control law
is constituted by the following fuzzy controller:

𝑢
1
(𝑘) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝜃 (𝑘))𝐾

1𝑖
𝑥 (𝑘) ,

𝑢
2
(𝑘) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝜃 (𝑘))𝐾

2𝑖
𝑥 (𝑘) ,

...

𝑢
𝑁
(𝑘) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝜃 (𝑘))𝐾

𝑁𝑖
𝑥 (𝑘) .

(11)

When the controlled system is in 𝜎th switching subsys-
tem, the global fuzzy equation is as follows

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

𝜇
𝑖
[Φ
𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏
𝑘
) 𝑢 (𝑘) + Γ

𝑖1
(𝜏
𝑘
) 𝑢 (𝑘 − 1)]

=

𝑟

∑

𝑖=1

𝜇
𝑖
Φ
𝑖
𝑥 (𝑘)

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
𝜇
𝑗
[Γ
𝑖0
(𝜏
𝑘
)𝐾
𝜎𝑗
𝑥 (𝑘) + Γ

𝑖1
(𝜏
𝑘
)𝐾
𝜎𝑗
𝑥 (𝑘 − 1)]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
𝜇
𝑗

× [Φ
𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏
𝑘
)𝐾
𝜎𝑗
𝑥 (𝑘)

+ Γ
𝑖1
(𝜏
𝑘
)𝐾
𝜎𝑗
𝑥 (𝑘 − 1)]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
𝜇
𝑗

× {[Φ
𝑖
+ Γ
𝑖0
(𝜏
𝑘
)𝐾
𝜎𝑗
] 𝑥 (𝑘)

+ Γ
𝑖1
(𝜏
𝑘
)𝐾
𝜎𝑗
𝑥 (𝑘 − 1)}

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
𝜇
𝑗
{[Φ
𝑖
+ (Γ
𝑖1
− 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
)𝐾
𝜎𝑗
] 𝑥 (𝑘)

+ (Γ
𝑖1
− 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
)𝐾
𝜎𝑗
𝑥 (𝑘 − 1)} .

(12)

LetΩ
1
, Ω
2
, . . . , Ω

𝑁
be a partition of the set𝑅𝑛; then⋃𝑁

𝑖=1
Ω
𝑖
=

𝑅
𝑛

\ {0}, Ω
𝑖
⋂Ω
𝑗
= Φ, 𝑖 = 𝑗. The switching law that is

determined by Ω
1
, Ω
2
, . . ., and Ω

𝑁
is 𝜎 = 𝜎(𝑥(𝑡)) = 𝑖, when

𝑥(𝑡) ∈ Ω
𝑖
. This switching law can be completely described by

the following function:

V
𝜎
(𝑥 (𝑡)) = {

1, 𝑥 (𝑡) ∈ Ω
𝜎
,

0, 𝑥 (𝑡) ∉ Ω
𝜎
,

𝜎 = 1, 2, . . . , 𝑁. (13)

Thus, we have

𝑥 (𝑘 + 1) =

𝑁

∑

𝜎=1

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

V
𝜎
𝜇
𝑖
𝜇
𝑗

× {[Φ
𝑖
+ (Γ
𝑖1
− 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
)𝐾
𝜎𝑗
] 𝑥 (𝑘)

+ (Γ
𝑖1
− 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
)𝐾
𝜎𝑗
𝑥 (𝑘 − 1)} ,

(14)

where 𝜏
𝑘
is the network-induced delay.

4. Sufficient Condition for
Guaranteed Cost Control

Lemma 6 (see [22] (Schur complement)). For a given sym-
metric matrix,

𝑆 = [

𝑆
11

𝑆
12

𝑆
21

𝑆
22

] . (15)

Then, the following three conditions are mutually equivalent:

(1) 𝑆 < 0,
(2) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 7 (see [23]). Given matrices 𝑌, 𝐷, 𝐸, and 𝐼 of appro-
priate dimensions and with 𝑌 and 𝐼 symmetrical and 𝐼 > 0,
then

𝑌 + 𝐷𝐹𝐸 + 𝐸
𝑇

𝐹
𝑇

𝐷
𝑇

< 0 (16)

for all 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼, if and only if there exists some
𝜀 > 0 such that

𝑌 + 𝜀
2

𝐷𝐷
𝑇

+ 𝜀
−2

𝐸
𝑇

𝐸 < 0. (17)

Theorem 8. Consider the uncertain nonlinear networked
control systems (3) and the cost function (9). If there exist
some constants 𝜆

𝜎
∈ [0, 1], ∑𝑙

𝜎=1
𝜆
𝜎
= 1, a group of positive

constants 𝜀
𝜎
> 0, and positive definite matrices 𝑋, 𝑍, 𝑌

𝜎𝑖
,

𝜎 = 1, . . . , 𝑙, 𝑖 = 1, . . . , 𝑟, such that the following matrix
inequalities (18) hold:

𝑙

∑

𝜎=1

𝜆
𝜎

[

[

[

[

[

[

[

[

[

[

[

𝐿 𝑈 𝑉 0 0 0 0

∗ −2𝑋 + 2𝑍 0 2𝑋 (𝑌
𝜎𝑖
+ 𝑌
𝜎𝑗
)

𝑇

(𝐸
𝑖
𝑌
𝜎𝑗
)

𝑇

(𝐸
𝑗
𝑌
𝜎𝑖
)

𝑇

∗ ∗ −2𝑍 0 0 −(𝐸
𝑖
𝑌
𝜎𝑗
)

𝑇

−(𝐸
𝑗
𝑌
𝜎𝑖
)

𝑇

∗ ∗ ∗ −2𝑄
−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅
−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟,

(18)
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where

𝑋 = 𝑃
−1

, 𝑌
𝜎𝑖
= 𝑘
𝜎𝑖
𝑋,

𝑍 = 𝑋𝑆𝑋,

𝐿 = −2𝑋 + 𝜀
𝜎
(𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝐷
𝑗
𝐷
𝑇

𝑗
) ,

𝑈 = Φ
𝑖
+ Φ
𝑗
+ Γ
𝑖0
𝑌
𝜎𝑗
+ Γ
𝑗0
𝑌
𝜎𝑖
,

𝑉 = Γ
𝑖1
𝑌
𝜎𝑗
+ Γ
𝑗1
𝑌
𝜎𝑖
,

(19)

then close-loop system (14) with the guaranteed cost controller
(11) and the switching law 𝜎 = 𝜎(𝑥(𝑘)) is globally asymp-
totically stable. The guaranteed cost function (9) satisfies the
following bound:

𝐽 ≤ 𝑥
𝑇

(0) 𝑃𝑥 (0) + 𝑥
𝑇

(−1) 𝑆𝑥 (−1) . (20)

Proof. For the networked control system (3), we lead the
performance index as follows:

𝐽 =

∞

∑

𝑘=0

[𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢
𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘)]

=

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑗
) 𝑥 (𝑘)

]

]

=

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝜇
2

𝑖
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖
) 𝑥 (𝑘)

+2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑗
) 𝑥 (𝑘)

]

]

=

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝜇
2

𝑖
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘)

×(𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

)𝑥 (𝑘)
]

]

.

(21)

Consider the Lyapunov function as

𝑉 (𝑥 (𝑘)) = 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘 − 1) 𝑆𝑥 (𝑘 − 1) .

(22)

Let

Θ = [

𝐺
𝑇

𝜎𝑖𝑗
𝑃𝐺
𝜎𝑛𝑚

− 𝑃 + 𝑆 𝐺
𝑇

𝜎𝑖𝑗
𝑃𝐻
𝜎𝑛𝑚

𝐻
𝑇

𝜎𝑖𝑗
𝑃𝐺
𝜎𝑛𝑚

𝐻
𝑇

𝜎𝑖𝑗
𝑃𝐻
𝜎𝑛𝑚

− 𝑆

] ,

𝐺
𝜎𝑖𝑗

= Φ
𝑖
+ Γ
𝑖0
𝐾
𝜎𝑗
+ 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
𝐾
𝜎𝑗
,

𝛼
𝜎𝑖𝑗

= 𝐺
𝜎𝑖𝑗

+ 𝐺
𝜎𝑗𝑖
,

𝐻
𝜎𝑖𝑗

= Γ
𝑖1
𝐾
𝜎𝑗
− 𝐷
𝑖
𝐹
𝑖
(𝜏
𝑘
) 𝐸
𝑖
𝐾
𝜎𝑗
,

𝛽
𝜎𝑖𝑗

= 𝐻
𝜎𝑖𝑗

+ 𝐻
𝜎𝑗𝑖
.

(23)

Along any trajectory of the closed-loop system (14), the
forward difference of 𝑉(𝑘) is

Δ𝑉 (𝑥 (𝑘)) = 𝑉 (𝑥 (𝑘 + 1)) − 𝑉 (𝑥 (𝑘))

= 𝑥
𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) + 𝑥
𝑇

(𝑘) 𝑆𝑥 (𝑘) − 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘) − 𝑥
𝑇

(𝑘 − 1) 𝑆𝑥 (𝑘 − 1)

=

𝑁

∑

𝜎=1

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑟

∑

𝑛=1

𝑟

∑

𝑚=1

V
𝜎
𝜇
𝑖
𝜇
𝑗
𝜇
𝑛
𝜇
𝑚
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇

Θ[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

≤

𝑁

∑

𝜎=1

V
𝜎

{

{

{

1

4

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
𝜇
𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇

[

𝛼
𝑇

𝜎𝑖𝑗
𝑃𝛼
𝜎𝑖𝑗

− 4𝑃 + 4𝑆 𝛼
𝑇

𝜎𝑖𝑗
𝑃𝛽
𝜎𝑖𝑗

𝛽
𝑇

𝜎𝑖𝑗
𝑃𝛼
𝜎𝑖𝑗

𝛽
𝑇

𝜎𝑖𝑗
𝑃𝛽
𝜎𝑖𝑗

− 4𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

}

}

}

=

𝑁

∑

𝜎=1

V
𝜎

{
{
{
{

{
{
{
{

{

𝑟

∑

𝑖=1

𝜇
2

𝑖
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇

[

𝐺
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖
− 𝑃 + 𝑆 𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖
− 𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

+2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇[

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

− 𝑃 + 𝑆 [

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

}
}
}
}

}
}
}
}

}

.

(24)
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Thus

Δ𝑉 (𝑥 (𝑘)) + 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢
𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘)

≤

𝑁

∑

𝜎=1

V
𝜎

{

{

{

𝑟

∑

𝑖=1

𝜇
2

𝑖
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇

× [

𝐺
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖
− 𝑃 + 𝑆 𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖
− 𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇 [

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

− 𝑃 + 𝑆 [

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

+

𝑟

∑

𝑖=1

𝜇
2

𝑖
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖
) 𝑥 (𝑘)

+2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘)(𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)
𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

)𝑥 (𝑘)

}

}

}

=

𝑁

∑

𝜎=1

V
𝜎
{

𝑟

∑

𝑖=1

𝜇
2

𝑖
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇

× [

𝐺
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖
− 𝑃 + 𝑆 + 𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖

𝐺
𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖
− 𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇

×

[

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

− 𝑃 + 𝑆 + 𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)
𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

×[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]} .

(25)

Thus, if the matrix inequalities (26) and (27) hold

[

𝐺
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖
− 𝑃 + 𝑆 + 𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖

𝐺
𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐺
𝜎𝑖𝑖

𝐻
𝑇

𝜎𝑖𝑖
𝑃𝐻
𝜎𝑖𝑖
− 𝑆

] < 0, 1 ≤ 𝑖 ≤ 𝑟, (26)

[

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

− 𝑃 + 𝑆 + 𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)
𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟, (27)
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then, the following inequality can hold:

Δ𝑉 (𝑥 (𝑘)) + 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢
𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘) < 0, (28)

and (26) is the special case of (27) when 𝑖 = 𝑗. Thus, when
(27) holds, the inequality (28) can hold. Consider

𝜃
𝜎𝑖𝑗

=

[

[

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

− 𝑃 + 𝑆 + 𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽
𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

]

< 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟.

(29)

Let

Ω
𝜎𝑖𝑗

= −4𝑃 + 4𝑆 + 4𝑄 + (𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

𝑇

𝑅 (𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
) ,

𝜃
𝜎𝑖𝑗

= [

Ω
𝜎𝑖𝑗

+ 𝛼
𝑇

𝜎𝑖𝑖
𝑃𝛼
𝜎𝑖𝑗

𝛼
𝑇

𝜎𝑖𝑖
𝑃𝛽
𝜎𝑖𝑗

𝛽
𝑇

𝜎𝑖𝑖
𝑃𝛼
𝜎𝑖𝑗

𝛽
𝑇

𝜎𝑖𝑖
𝑃𝛽
𝜎𝑖𝑗

− 4𝑆

] < 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟.

(30)

Therefore, according to the fact of 𝜇
𝑖
(𝜃(𝑘)) ≥ 0 in (8), the

inequality (30) and the equality (24), we can obtain Δ𝑉 < 0.

Define sets Ω
𝜎

= {𝑦 ∈ 𝑅
2𝑛

: 𝑦
𝑇

𝜃
𝜎𝑖𝑗
𝑦 < 0}; thus

∪Ω
𝑖
= 𝑅
2𝑛

\ {0}. Construct the sets Ω̃
1
= Ω
1
, . . . , Ω̃

𝜎
=

Ω
𝜎
− ⋃
𝜎−1

𝑖=1
Ω̃
𝑖
, . . ..

Obviously, we have⋃𝑙
𝑖=1

Ω̃
𝑖
= 𝑅
2𝑛

\ {0}, Ω̃
𝑖
∩Ω̃
𝑗
= Φ, 𝑖 ̸=𝑗.

Construct a switching law as follows:
𝜎 (𝑥 (𝑘)) = 𝑖, when 𝑥 (𝑘) ∈ Ω̃

𝑖
, 𝜎 ∈ 𝑀. (31)

Thus, Δ𝑉(𝑥(𝑘)) + 𝑥𝑇(𝑘)𝑄𝑥(𝑘) + 𝑢𝑇
𝜎
(𝑘)𝑅𝑢

𝜎
(𝑘) ≤ 𝜉

𝑇

(𝑘)𝜃
𝜎𝑖𝑗
𝜉(𝑘)

< 0, ∀𝜉(𝑘) ̸=0, where 𝜉(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 1)]

𝑇.
Notice that 𝐹𝑇𝐹 ≤ 𝐼. Applying Lemmas 6 and 7 to the

inequality (29), we have

[

[

[

[

[

[

[

[

[

[

[

Ψ Λ Π 0 0 0 0

∗ −2𝑃 + 2𝑆 0 2𝐼 (𝑘
𝜎𝑖
+ 𝑘
𝜎𝑗
)
𝑇

(𝐸
𝑖
𝑘
𝜎𝑗
)
𝑇

(𝐸
𝑗
𝑘
𝜎𝑖
)
𝑇

∗ ∗ −2𝑆 0 0 −(𝐸
𝑖
𝑘
𝜎𝑗
)
𝑇

(𝐸
𝑗
𝑘
𝜎𝑖
)
𝑇

∗ ∗ ∗ −2𝑄
−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅
−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0, (32)

where
Ψ = −2𝑃

−1

+ 𝜀
𝜎
(𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝐷
𝑗
𝐷
𝑇

𝑗
) ,

Λ = Φ
𝑖
+ Φ
𝑗
+ Γ
𝑖0
𝑘
𝜎𝑗
+ Γ
𝑗0
𝑘
𝜎𝑖
,

Π = Γ
𝑖1
𝑘
𝜎𝑗
+ Γ
𝑗1
𝑘
𝜎𝑖
.

(33)

By inequality (32) left-multiplied and right-multiplied by
diag(𝐼 𝑃

−1

𝑃
−1

𝐼 𝐼 𝐼 𝐼) and defining new variables 𝑋 =

𝑃
−1, 𝑌
𝜎𝑖
= 𝑘
𝜎𝑖
𝑋, and 𝑍 = 𝑋𝑆𝑋, we have

[

[

[

[

[

[

[

[

[

[

[

𝐿 𝑈 𝑉 0 0 0 0

∗ −2𝑋 + 2𝑍 0 2𝑋 (𝑌
𝜎𝑖
+ 𝑌
𝜎𝑗
)

𝑇

(𝐸
𝑖
𝑌
𝜎𝑗
)

𝑇

(𝐸
𝑗
𝑌
𝜎𝑖
)

𝑇

∗ ∗ −2𝑍 0 0 −(𝐸
𝑖
𝑌
𝜎𝑗
)

𝑇

(𝐸
𝑗
𝑌
𝜎𝑖
)

𝑇

∗ ∗ ∗ −2𝑄
−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅
−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0, (34)
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where

𝐿 = −2𝑋 + 𝜀
𝜎
(𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝐷
𝑗
𝐷
𝑇

𝑗
) ,

𝑈 = Φ
𝑖
+ Φ
𝑗
+ Γ
𝑖0
𝑌
𝜎𝑗
+ Γ
𝑗0
𝑌
𝜎𝑖
,

𝑉 = Γ
𝑖1
𝑌
𝜎𝑗
+ Γ
𝑗1
𝑌
𝜎𝑖
.

(35)

Taking (28) into account, for all admissible uncertainties, we
can infer that as follows:

Δ𝑉 (𝑥 (𝑘)) ≤ −𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) − 𝑢
𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘) . (36)

According to (18), we can infer that there exists at least one
𝜎 such that (29) is established. Therefore, the closed-loop
system (14) is asymptotically stable under the controller (11)
and the switching law (31). Moreover, we have

Δ𝑉 <

𝑟

∑

𝑖=1

𝜇
2

𝑖
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘)

× (𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)
𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

)𝑥 (𝑘) ,

(37)

thus
𝑟

∑

𝑖=1

𝜇
2

𝑖
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘)

× (𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)
𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

)𝑥 (𝑘) < −Δ𝑉.

(38)

The inequalities (38) are added up together in the case that 𝑘
is 0, 1, 2, . . . ,∞; we have

𝐽 =

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝜇
2

𝑖
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘)

×(𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

)𝑥 (𝑘)
]

]

≤ 𝑥
𝑇

(0) 𝑃𝑥 (0) + 𝑥
𝑇

(−1) 𝑆𝑥 (−1) .

(39)

Therefore, Theorem 8 is proved.
Theorem 9. Consider the uncertain nonlinear networked
control systems (3) and the cost function (9). If there exist some
nonpositive or nonnegative constants 𝛿

𝜎𝜆
(𝜎, 𝜆 = 1, 2, . . . , 𝑙),

a group of positive constants 𝜀
𝜎

> 0, and positive-definite
matrices 𝑋

𝜎
, 𝑍
𝜎
, matrix 𝑌

𝜎𝑖
, 𝜎 = 1, . . . , 𝑙, 𝑖 = 1, . . . , 𝑟, such

that the following matrix inequalities:

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐿 𝑈 𝑉 0 0 0 0

∗ Ξ +

𝑙

∑

𝜆=1, 𝜆 ̸=𝜎

𝛿
𝜎𝜆
(𝑋
𝜆
− 𝑋
𝜎
) 0 2𝑋 (𝑌

𝜎𝑖
+ 𝑌
𝜎𝑗
)
𝑇

(𝐸
𝑖
𝑌
𝜎𝑗
)
𝑇

(𝐸
𝑗
𝑌
𝜎𝑖
)
𝑇

∗ ∗ −2𝑍 0 0 −(𝐸
𝑖
𝑌
𝜎𝑗
)
𝑇

−(𝐸
𝑗
𝑌
𝜎𝑖
)
𝑇

∗ ∗ ∗ −2𝑄
−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅
−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟, (40)

hold, where

Ξ = −2𝑋
𝜎
+ 2𝑍
𝜎
, 𝑋

𝜎
= 𝑃
−1

𝜎
,

𝑌
𝜎𝑖
= 𝑘
𝜎𝑖
𝑋
𝜎
, 𝑍

𝜎
= 𝑋
𝜎
𝑆
𝜎
𝑋
𝜎
,

𝐿 = −2𝑋
𝜎
+ 𝜀
𝜎
(𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝐷
𝑗
𝐷
𝑇

𝑗
) ,

𝑈 = Φ
𝑖
+ Φ
𝑗
+ Γ
𝑖0
𝑌
𝜎𝑗
+ Γ
𝑗0
𝑌
𝜎𝑖
,

𝑉 = Γ
𝑖1
𝑌
𝜎𝑗
+ Γ
𝑗1
𝑌
𝜎𝑖
,

(41)

then system (14) with the guaranteed cost controller (11) and
the switching law 𝜎 = 𝜎(𝑥(𝑘)) is globally asymptotically stable.
The guaranteed cost function (9) satisfies the following bound:

𝐽 ≤ 𝑥
𝑇

(0) 𝑃
𝜎
𝑥 (0) + 𝑥

𝑇

(−1) 𝑆
𝜎
𝑥 (−1) . (42)

Proof. By the Lemmas 6 and 7, and 𝑋
𝜎
= 𝑃
𝜎

−1, 𝑌
𝜎𝑖
= 𝑘
𝜎𝑖
𝑋
𝜎
,

𝑍
𝜎
= 𝑋
𝜎
𝑆
𝜎
𝑋
𝜎
, from (40), we have
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[

[

[

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛼
𝜎𝑖𝑗

2

− 𝑃
𝜎
+ 𝑆
𝜎
+ 𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)
𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

+

𝑙

∑

𝜆=1,𝜆 ̸=𝜎

𝛿
𝜎𝜆
(𝑃
𝜆
− 𝑃
𝜎
) [

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛽
𝜎𝑖𝑗

2

− 𝑆
𝜎

]

]

]

]

]

]

]

< 0.

(43)

Without loss of generality, we assume that 𝛿
𝜎𝜆
≥ 0.

Obviously, there exists at least one 𝜎 ∈ 𝑀 when 𝑥(𝑘) ∈

𝑅
𝑛

\ {0}, such that 𝑥𝑇(𝑘)(𝑃
𝜆
− 𝑃
𝜎
)𝑥(𝑘) ≥ 0, ∀𝜆 ∈ 𝑀.

Let Ω
𝜎
= {𝑥(𝑘) ∈ 𝑅

𝑛

| 𝑥
𝑇

(𝑘)(𝑃
𝜆
− 𝑃
𝜎
)𝑥(𝑘) ≥ 0, ∀𝜆 ∈

𝑀, 𝜆 ̸=𝜎, 𝑥(𝑘) ̸=0}; thus ∪Ω
𝑖
= 𝑅
𝑛

\ {0}.
Construct the sets Ω̃

1
= Ω
1
, . . . , Ω̃

𝜎
= Ω
𝜎
− ⋃
𝜎−1

𝑖=1
Ω̃
𝑖
, . . ..

Obviously, we have⋃𝑙
𝑖=1

Ω̃
𝑖
= 𝑅
𝑛

\ {0}, Ω̃
𝑖
∩ Ω̃
𝑗
= Φ, 𝑖 ̸=𝑗.

Construct a switched law by

𝜎 (𝑥 (𝑘)) = 𝑖, when 𝑥 (𝑘) ∈ Ω̃
𝑖
, 𝜎 ∈ 𝑀. (44)

Thus, from (43), we have

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
]

𝑇
[

[

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛼
𝜎𝑖𝑗

2

− 𝑃
𝜎
+ 𝑆
𝜎
+ 𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛽
𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

]

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)
] < 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟.

(45)

Following the similar lines as in the proof of Theorem 8, we
have

𝜃
𝜎𝑖𝑗

=

[

[

[

[

[

[

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛼
𝜎𝑖𝑗

2

− 𝑃
𝜎
+ 𝑆
𝜎
+ 𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

[

𝛼
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛽
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛼
𝜎𝑖𝑗

2

[

𝛽
𝜎𝑖𝑗

2

]

𝑇

𝑃
𝜎

𝛽
𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

]

< 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟,

(46)

then, Δ𝑉
𝜎
(𝑥(𝑘)) + 𝑥

𝑇

(𝑘)𝑄𝑥(𝑘) + 𝑢
𝑇

𝜎
(𝑘)𝑅𝑢

𝜎
(𝑘) < 0. Thus,

𝑟

∑

𝑖=1

𝜇
2

𝑖
𝑥
𝑇

(𝑘) (𝑄 + 𝐾
𝑇

𝜎𝑖
𝑅𝐾
𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇
𝑖
𝜇
𝑗
𝑥
𝑇

(𝑘)(𝑄 +

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

𝑇

2

𝑅

(𝐾
𝜎𝑖
+ 𝐾
𝜎𝑗
)

2

)𝑥 (𝑘)

< −Δ𝑉
𝜎
.

(47)
The above inequality (47) is added up together in the case that
𝑘 is 0, 1, 2, . . . ,∞, according to the stability of the system,
then

𝐽 ≤ 𝑥
𝑇

(0) 𝑃
𝜎
𝑥 (0) + 𝑥

𝑇

(−1) 𝑆
𝜎
𝑥 (−1) . (48)

Theorem 9 is proved.

5. Simulation Example

Consider the nonlinear system with the following differential
equation [24]:

̈𝑠(𝑡) + 𝑓 (𝑠 (𝑡) , ̇𝑠 (𝑡)) − 0.1𝑠 (𝑡) = 𝐹 (𝑡) , (49)

where 𝑓(𝑠(𝑡), ̇𝑠(𝑡)) = 0.5𝑠(𝑡) + 0.75 sin( ̇𝑠(𝑡)/0.5).
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Choose the state variable and the input variable as 𝑥(𝑡) =
[𝑠(𝑡), ̇𝑠(𝑡)]

𝑇, 𝑢(𝑡) = 𝐹(𝑡), respectively. It can be represented by
the following fuzzy model consisting of two rules:

𝑅
1: IF 𝑥

2
(𝑡) is 𝑀

1
,

THEN ̇𝑥 (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) ,

𝑅
2: IF 𝑥

2
(𝑡) is 𝑀

2
,

THEN ̇𝑥 (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

(50)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡)]
𝑇

𝐴
1
= [

0 1

0.1 −2
] , 𝐴

2
= [

0 1

0.1 −0.5 − 1.5𝛽
] ,

𝐵
1
= 𝐵
2
= [−0.1 − 0.2]

𝑇

, 𝛽 =

0.01

𝜋

,

(51)

and 𝛽 is used to avoid system matrices being singular.
The sampling period 𝑇 = 0.3 s, then the discrete model of

the system is as follows:

𝑅
1: IF 𝑥2 (𝑡)

0.5

is about 0,

THEN 𝑥 (𝑘 + 1) = Φ
1
𝑥 (𝑘) + (Γ

10
+ 𝐷
1
𝐹
1
(𝜏
𝑘
) 𝐸
1
) 𝑢 (𝑘)

+ (Γ
11
− 𝐷
1
𝐹
1
(𝜏
𝑘
) 𝐸
1
) 𝑢 (𝑘 − 1) ,

𝑅
2: IF 𝑥2 (𝑡)

0.5

is about 𝜋 or − 𝜋,

THEN 𝑥 (𝑘 + 1) = Φ
2
𝑥 (𝑘) + (Γ

20
+ 𝐷
2
𝐹
2
(𝜏
𝑘
) 𝐸
2
) 𝑢 (𝑘)

+ (Γ
21
− 𝐷
2
𝐹
2
(𝜏
𝑘
) 𝐸
2
) 𝑢 (𝑘 − 1) ,

(52)

where

Φ
1
= [

1.0037 0.2259

0.0226 0.5519
] , Φ

2
= [

1.0043 0.2788

0.0279 0.8635
] ,

Γ
10
= [

−10.0018

−0.0001
] , Γ

11
= [

−10.0390

−0.2260
] ,

Γ
20
= [

−10

0
] , Γ

21
= [

−10.0432

−0.2788
] ,

𝐷
1
= [

20.7693 0.2141

1.0137 −0.4386
] ,

𝐷
2
= [

6.8691 0.6676

0.3353 −1.3678
] ,

𝐸
1
= [

0.4773

1.0869
] , 𝐸

2
= [

1.2500

1.4786
] ,

𝐹
1
(𝜏
𝑘
) = [

𝑒
−0.0488𝜏𝑘

0

0 𝑒
−2.0488(0.3−𝜏𝑘)

] ,

𝐹
2
(𝜏
𝑘
) = [

𝑒
−0.1522𝜏𝑘

0

0 𝑒
−0.6570(0.3−𝜏𝑘)

] .

(53)
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Figure 2: The membership function of input 𝑥
2
.

Obviously, 𝐹
1
(𝜏
𝑘
) and 𝐹

2
(𝜏
𝑘
) satisfy the uncertain matching

conditions:

𝐹
𝑇

1
(𝜏
𝑘
) 𝐹
1
(𝜏
𝑘
) ≤ 𝐼, 𝐹

𝑇

2
(𝜏
𝑘
) 𝐹
2
(𝜏
𝑘
) ≤ 𝐼. (54)

The membership functions of “about 0” and “about 𝜋 or −𝜋”
are selected as in Figure 2.

Suppose the switched fuzzy feed-back controllers are the
following fuzzy controllers:

𝑢
1
(𝑘) =

2

∑

𝑖=1

𝜇
𝑖
(𝑥
2
(𝑘)) 𝑘

1𝑖
𝑥
𝑖
(𝑘) ,

𝑢
2
(𝑘) =

2

∑

𝑖=1

𝜇
𝑖
(𝑥
2
(𝑘)) 𝑘

2𝑖
𝑥
𝑖
(𝑘) .

(55)

Choose 𝑄 = 0.1𝐼
2 × 2

, 𝑅 = 1. Carrying out computations
for matrices inequality (40), we obtain

𝑃
1
= [

8.0177 5.2362

5.2362 8.5369
] ,

𝑃
2
= [

7.8926 5.4026

5.4026 9.1487
] .

(56)

The controller gain:

𝑘
11
= [−0.6138 −0.4204] ,

𝑘
12
= [−0.2936, −0.3036] ,

𝑘
21
= [−0.4156 −0.3852] ,

𝑘
22
= [−0.0893, −0.1025] .

(57)

Let

Ω
1
= {𝑥 (𝑘) ∈ 𝑅

2

| 𝑥
𝑇

(𝑘) (𝑃
2
− 𝑃
1
) 𝑥 (𝑘) ≥ 0, 𝑥 (𝑘) ̸=0} ,

Ω
2
= {𝑥 (𝑘) ∈ 𝑅

2

| 𝑥
𝑇

(𝑘) (𝑃
1
− 𝑃
2
) 𝑥 (𝑘) ≥ 0, 𝑥 (𝑘) ̸=0} .

(58)
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Figure 3: The state trajectory using fuzzy controller 1.

ThenΩ
1
∪Ω
2
= 𝑅
2

\ {0}. We design a switched law as follows:

𝜎 (𝑥 (𝑘)) = {

1, 𝑥 (𝑘) ∈ Ω
1
,

2, 𝑥 (𝑘) ∈ Ω
2
\ Ω
1
.

(59)

The initial condition is [1.8 0.5]
𝑇, guaranteed cost bound

𝐽
∗

= 36.53.
Figures 3 and 4 show the system state trajectories that use

fuzzy controller 1 and fuzzy controller 2, respectively. Figure 5
shows the simulating results for the proposed switched fuzzy
controller method. In Figure 5, the system state trajecto-
ries indicate that nonlinear networked control system is
asymptotically stable and satisfies the performance index via
the designed guaranteed cost controller and the switching
law. From the simulating results, we can confirm that the
guaranteed cost controller in the switched fuzzy model is
able to stabilize the nonlinear delay system via switching T-
S fuzzy method. In addition, the performance of switching
fuzzy controller is better than that of the fuzzy controllers.

6. Conclusions

In this paper, we have presented a novel controller design
methodology for a class of nonlinearNCSs based on switched
T-S fuzzy model. By introducing the switching mechanism
into the fuzzy T-S systems, the proposed methods can deal
with the uncertainties of nonlinear NCSs with time delays
and furthermore avoid the inherent drawback of a fuzzy T-S
model in controller design and implementation of nonlinear
systems. In addition, considering QoS of nonlinear NCSs,
some sufficient conditions for the existence of the robust
guaranteed cost control law have been built via Lyapunov
functional approach. Simulation results have verified and
confirmed the effectiveness of the guaranteed cost controller
based on the switched T-S fuzzy model for nonlinear NCSs.

At present, this paper only presents a numerical example
to show the validity of our control scheme on the nonlinear
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Figure 4: The state trajectory using fuzzy controller 2.
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Figure 5: The state trajectory using switched fuzzy controller.

NCS with time delays. In next step, we plan to further verify
this control scheme via practical NCSs and investigate the
stability analysis and controller design with multiple-packet
transmission in nonlinear NCSs. Moreover, the boundedness
of the parameter constraints for NCSs will be studied. The
switched dynamics of nonlinear NCSs will also be considered
in future investigation.
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Based on the basic physical meaning of error 𝐸 and error variety 𝐸𝐶, this paper analyzes the logical relationship between them
and uses Universal Combinatorial Operation Model in Universal Logic to describe it. Accordingly, a flexible logic control method
is put forward to realize effective control on multivariable nonlinear system. In order to implement fusion control with artificial
neural network, this paper proposes a new neuron model of Zero-level Universal Combinatorial Operation in Universal Logic. And
the artificial neural network of flexible logic control model is implemented based on the proposed neuron model. Finally, stability
control, anti-interference control of double inverted-pendulum system, and free walking of cart pendulum system on a level track
are realized, showing experimentally the feasibility and validity of this method.

1. Introduction

In recent years, fuzzy control has made a rapid develop-
ment, and it has found a considerable number of successful
industrial applications [1–3]. But fuzzy control has two
shortcomings in the process of controlling some practical
complex systems. One is that the number of control rules
increases exponentially with the increase of the number of
inputs, and the other one is that the precision of control
system is low [4].

To reduce the dimension of control model, hierarchical
fuzzy logic control divides the collection of control rules
into several collections based on different functions [5,
6]. Compound control combines fuzzy control and other
relatively mature control methods to realize the effective
control [7], such as Fuzzy-PID Compound Control [8], fuzzy
predication control [9], adaptive fuzzy 𝐻

∞
control [10], and

so forth. The basic idea of adaptive fuzzy control based on
variable universe [11, 12] is to keep the form of rules and
varies universe of discourse according to the control error.
Though a great deal of research has been done to improve
the performance of fuzzy control, most of these methods are
based on the basic idea that fuzzy controller is a piecewise
approximator. However, to date, there has been relatively little
research conducted on the internal relations among input
variables of fuzzy controllers.

Based on analysis of the logical relationship between the
system’s error 𝐸 and error variety 𝐸𝐶, this paper indicates
that the relationship is just universal combinatorial relation in
Universal Logic [13], and the simple Universal Combinatorial
Operation can be used instead of complex fuzzy rule-based
reasoning process. As a result, a flexible logic control method
is proposed to realize effective control on multivariable
nonlinear system.

Artificial neural network is widely used in modelling
and controlling thanks to its properties of self-learning, self-
organizing, and self-adapting [14]. In order to realize fusion
control with artificial neural network, this paper attempts to
study the neuronmodel ofZero-level Universal Combinatorial
Operation inUniversal Logic andpropose a newneuralmodel.
Based on this neuron model, the artificial neural network
of flexible logic control model is implemented. Finally,
stability control, anti-interference control of double inverted-
pendulum system, and free walking of cart pendulum system
on a level track are realized to prove the feasibility and validity
of this method.

The rest of the paper is organized as follows. Section 2
introduces necessary background on Universal Combinato-
rial Operation Model and flexible logic control method and
gives and proves some important theorems ofUniversal Com-
binatorial Operation Model in the interval [𝑎, 𝑏]. Section 3
puts forward a new neuron model of Zero-level Universal
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Combinatorial Operation. Based on this neuron model, the
artificial neural network of flexible logic control model is
implemented in Section 4.The designed flexible logic control
model is applied to treat the double inverted-pendulum
system in Section 5. Finally, concluding remarks are given in
Section 6.

2. Universal Combinatorial Operation Model

2.1. Universal Combinatorial Operation Model. In order to
deal reasonably with the complex relation between factors
in complex system, T-norm, S-norm or Mean operators are
taken as Aggregation Operators.

However, T-norm result is not bigger than the minimum
value, and S-norm result is not less than the maximum value.
As a result, T-norm, or S-norm can only handle mutually
conflictive relation. In contrast,Mean operators can vary only
between the minimum and maximum values based on its
“tradeoff” concept, so it can only handle mutually consistent
relation [13].

Universal Logic [13], proposed by Professor He et al., is a
kind of flexible logic. It considers the continuous change of
not only the truth value of propositions, which is called truth
value flexibility, but also the relation between propositions,
which is called relation flexibility. Based on fuzzy logic, it puts
forward two important coefficients: generalized correlation
coefficient “h” and generalized self-correlation coefficient “k”.
The flexible change of universal logic operations is based on
“h” and “k”. So Universal Logic provides a new theoretical
foundation to realize more effective control for complex
systems.

Universal Combinatorial Operation Model is the combi-
natorial connective of Universal Logic. In this paper, we will
only consider generalized correlation coefficient h. So Zero-
level Universal Combinatorial Operation Model is defined as
follows.

Definition 1 (see [13]). Set mapping 𝐶𝑒 : [0, 1] × [0, 1] →

[0, 1] and
𝐶
𝑒

(𝑥, 𝑦, ℎ)

= ite { Γ𝑒 [(𝑥𝑚 + 𝑦𝑚 − 𝑒𝑚)1/𝑚] | 𝑥 + 𝑦 < 2𝑒;

1 − (Γ
1−𝑒

[(1 − 𝑥)
𝑚

+ (1 − 𝑦)
𝑚

− (1 − 𝑒)
𝑚

])

1/𝑚

| 𝑥

+ 𝑦 > 2𝑒; 𝑒} .

(1)
So 𝐶
𝑒 is Zero-level Universal Combinatorial Operation

Model, denoted by 𝐶𝑒
ℎ
, where 𝑚 = (3 − 4ℎ)/(4ℎ(1 − ℎ)), ℎ ∈

[0, 1], 𝑚 ∈ 𝑅, 𝑒 ∈ [0, 1].

Note 1. Conditional expression ite{𝛽 | 𝛼; 𝛾} means if 𝛼 is
true, then 𝛽; otherwise 𝛾. ite{𝛽

1
| 𝛼
1
; 𝛽
2
| 𝛼
2
; 𝛾} = ite{𝛽

1
|

𝛼
1
; ite{𝛽

2
| 𝛼
2
; 𝛾}}. Amplitude limiting function Γ

1

[𝑥] =

ite{1 | 𝑥 > 1; 0 | 𝑥 < 0 or imaginary number; 𝑥}.

Universal Combinatorial Operation Model is a cluster of
combinatorial operators, which is determined by general
correlation coefficient ℎ between propositions. In practical
application, according to general correlation between propo-
sitions, we can take the corresponding one from the cluster.
As generalized correlation coefficient ℎ is equal to some special
values, the corresponding combinatorial operators are given
as follows.

(1) When ℎ = 1, it means two propositions attract each
other to the maximum extent. And 𝐶

𝑒

(𝑥, 𝑦, 1) =

ite{min(𝑥, 𝑦) | 𝑥 + 𝑦 < 2𝑒;max(𝑥, 𝑦) | 𝑥 + 𝑦 > 2𝑒; 𝑒}

is Zadeh combination C𝑒
3
.

(2) When ℎ = 0.75, it means two propositions are inde-
pendently correlated. And 𝐶𝑒(𝑥, 𝑦, 0.75) = ite{𝑥𝑦/𝑒 |
𝑥 + 𝑦 < 2𝑒; (𝑥 + 𝑦 − 𝑥𝑦 − 𝑒)/(1 − 𝑒) | 𝑥 + 𝑦 > 2𝑒; 𝑒} is
probability combination C𝑒

2
.

(3) When ℎ = 0.5, it means two propositions reject each
other to themaximum extent or restrain each other to
theminimum extent. And𝐶𝑒(𝑥, 𝑦, 0.5) = Γ

1

[𝑥+𝑦−𝑒]

is bounded combination C𝑒
1
.

(4) When ℎ = 0, it means two propositions restrain
each other to the maximum extent. And 𝐶𝑒(𝑥, 𝑦, 0) =
ite{0 | 𝑥, 𝑦 < 𝑒; 1 | 𝑥, 𝑦 > 𝑒; 𝑒} is drastic combination
C𝑒
0
.

2.2. Universal Combinatorial OperationModel in Any Interval
[𝑎, 𝑏]. In practical control application, fuzzy domain of
fuzzy variables, 𝐸 and 𝐸𝐶, is mostly symmetrical, such as
[−6, 6]. However, the conventional Universal Combinatorial
OperationModel has been limited in the interval [0, 1]. To this
end, Chen, based on the basic idea of Universal Logic, sets up
Fractal Logic in his doctoral dissertation [15], which canmake
inference in any interval [𝑎, 𝑏].

The combinatorial operation model in Fractal Logic is
described below.

Definition 2 (see [15]). Set mapping𝐺𝑁 : [𝑎, 𝑏] → [𝑎, 𝑏] and

𝐺𝑁 (𝑥) = 𝑏 + 𝑎 − 𝑥. (2)

Then 𝐺𝑁 is normal universal Not operation model in any
interval [𝑎, 𝑏], denoted by 𝐺𝑁.

For the above definition, normal universal Not operation
model has the following characters.

(1) Closure:

𝐺𝑁 (𝑥) ∈ [𝑎, 𝑏] . (3)

(2) Two polar law:

𝐺𝑁 (𝑎) = 𝑏, 𝐺𝑁 (𝑏) = 𝑎. (4)

(3) Symmetric involution:

𝐺𝑁 (𝐺𝑁 (𝑥)) = 𝑥. (5)
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Definition 3 (see [15]). Set mapping 𝐺𝐶𝑒 : [𝑎, 𝑏] × [𝑎, 𝑏] →

[𝑎, 𝑏] and
𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ)

= ite {min(𝑒, (𝑏 − 𝑎)

× [max (0, ((𝑥 − 𝑎)𝑚 + (𝑦 − 𝑎)𝑚

− (𝑒 − 𝑎)
𝑚

)

× ((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎) |

𝑥 + 𝑦 < 2𝑒; 𝑏 + 𝑎

−min(𝑒, (𝑏 − 𝑎)

× [max (0, ((𝑏 − 𝑥)𝑚 + (𝑏 − 𝑦)𝑚

−(𝑏 − 𝑒)
𝑚

)

×((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎) |

𝑥 + 𝑦 > 2𝑒; 𝑒} .

(6)

Then𝐺𝐶𝑒 isZero-level Universal Combinatorial Operation
Model in any interval [𝑎, 𝑏], denoted by 𝐺𝐶𝑒

ℎ
, where𝑚 = (3 −

4ℎ)/(4ℎ(1 − ℎ)), ℎ ∈ [0, 1], 𝑚 ∈ 𝑅, 𝑒, 𝑒 ∈ [𝑎, 𝑏], and 𝑒


=

𝐺𝑁(𝑒).

2.3. Demonstration of Attributes of Universal Combinatorial
OperationModel in Any Interval. According to the definition
of Universal Combinatorial Operation Model in any interval,
the following characters [15] are attained.

(1) 𝐺𝐶𝑒(𝑥, 𝑦, ℎ) conforms to the combination axiom:

(i) Boundary condition 𝐺𝐶1:
If 𝑥, 𝑦 < 𝑒, then 𝐺𝐶𝑒(𝑥, 𝑦, ℎ) ≤ min(𝑥, 𝑦).
If 𝑥, 𝑦 > 𝑒, then 𝐺𝐶𝑒(𝑥, 𝑦, ℎ) ≥ max(𝑥, 𝑦).
If 𝑥 + 𝑦 = 2𝑒, then 𝐺𝐶𝑒(𝑥, 𝑦, ℎ) = 𝑒.
Otherwise, min(𝑥, 𝑦) ≤ 𝐺𝐶

𝑒

(𝑥, 𝑦, ℎ) ≤

max(𝑥, 𝑦).
(ii) Monotonicity 𝐺𝐶2:

𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ) increasesmonotonously alongwith
𝑥 and 𝑦.

(iii) Continuity 𝐺𝐶3:
When ℎ ∈ (0, 1), 𝐺𝐶𝑒(𝑥, 𝑦, ℎ) is continuous for
all 𝑥 and 𝑦.

(iv) Commutative law 𝐺𝐶4:
𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ) = 𝐺𝐶
𝑒

(𝑦, 𝑥, ℎ) . (7)

(v) Law of identical element 𝐺𝐶5:
𝐺𝐶
𝑒

(𝑥, 𝑒, ℎ) = 𝑥. (8)

(2) Closure:

𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ) ∈ [𝑎, 𝑏] . (9)

(3) Inverse law:

𝐺𝐶
𝑒

(𝑥, 2𝑒 − 𝑥, ℎ) = 𝑒. (10)

(4) Renunciation law

𝐺𝐶
𝑒

(𝑒, 𝑒, ℎ) = 𝑒. (11)

Theorem 4. 𝐺𝑁(𝐺𝐶𝐺𝑁(𝑒)(𝐺𝑁(𝑥), 𝐺𝑁(𝑦), ℎ)) = 𝐺𝐶
𝑒

(𝑥, 𝑦,
ℎ), 𝑥, 𝑦 ∈ [𝑎, 𝑏], 𝑒 ∈ [𝑎, 𝑏].

Proof. 𝑥, 𝑦 ∈ [𝑎, 𝑏], 𝑒 ∈ [𝑎, 𝑏], according to the closure of
normal universal Not operation and universal combinatorial
operation: 𝐺𝑁(𝑥), 𝐺𝑁(𝑦) ∈ [𝑎, 𝑏], 𝐺𝑁(𝑒) ∈ [𝑎, 𝑏] and
𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁(𝑥), 𝐺𝑁(𝑦), ℎ) ∈ [𝑎, 𝑏] and according to the
definition of universal combinatorial operation:

(1) when 𝑥 + 𝑦 < 2𝑒

𝐺𝑁 (𝑥) + 𝐺𝑁 (𝑦) = (𝑏 + 𝑎 − 𝑥) + (𝑏 + 𝑎 − 𝑦)

= 2 (𝑏 + 𝑎) − (𝑥 + 𝑦)

> 2 (𝑏 + 𝑎 − 𝑒) = 2𝐺𝑁 (𝑒) .

(12)

Then, according to the definition of 𝐺𝐶𝑒(𝑥, 𝑦, ℎ):

𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ)

= 𝑏 + 𝑎

−min(𝑎𝑏 + 𝑎 − 𝐺𝑁 (𝑒) , (𝑏 − 𝑎)

× [max (0, ((𝑏 − 𝐺𝑁 (𝑥))
𝑚

+ (𝑏 − 𝐺𝑁 (𝑦))
𝑚

− (𝑏 − 𝐺𝑁 (𝑒))
𝑚

)

× ((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎) .

(13)

According to the definition of central generalized
negation operation:

𝐺𝑁 (𝑥) = 𝑏 + 𝑎 − 𝑥, (14)

𝐺𝑁(𝑦) = 𝑏 + 𝑎 − 𝑦, (15)

𝐺𝑁 (𝑒) = 𝑏 + 𝑎 − 𝑒. (16)
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Substituting (14), (15), and (16) separately into (13):

𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ)

= 𝑏 + 𝑎

−min(𝑒, (𝑏 − 𝑎)

× [max (0, ((𝑥 − 𝑎)𝑚 + (𝑦 − 𝑎)𝑚

−(𝑒 − 𝑎)
𝑚

)

×((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎) .

(17)

And then

𝐺𝑁(𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ))

= 𝑏 + 𝑎 − (𝑏 + 𝑎

−min(𝑒, (𝑏 − 𝑎)

× [max (0, ((𝑥 − 𝑎)𝑚 + (𝑦 − 𝑎)𝑚

−(𝑒 − 𝑎)
𝑚

)

× ((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎))

= min(𝑒, (𝑏 − 𝑎)

× [max (0, ((𝑥 − 𝑎)𝑚 + (𝑦 − 𝑎)𝑚

−(𝑒 − 𝑎)
𝑚

) × ((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎)

= 𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ)

(18)

(2) when 𝑥 + 𝑦 > 2𝑒

𝐺𝑁 (𝑥) + 𝐺𝑁 (𝑦)

= (𝑏 + 𝑎 − 𝑥) + (𝑏 + 𝑎 − 𝑦)

= 2 (𝑏 + 𝑎) − (𝑥 + 𝑦)

< 2 (𝑏 + 𝑎 − 𝑒) = 2𝐺𝑁 (𝑒) .

(19)

So, according to the definition of 𝐺𝐶𝑒(𝑥, 𝑦, ℎ):

𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ)

= min(𝐺𝑁 (𝑒) , (𝑏 − 𝑎)

× [max (0, ((𝐺𝑁 (𝑥) − 𝑎)
𝑚

+ (𝐺𝑁 (𝑦) − 𝑎)
𝑚

−(𝐺𝑁 (𝑒) − 𝑎)
𝑚

)

×((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎) .

(20)

Substituting (14), (15), and (16) separately into (20):

𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ)

= min(𝑏 + 𝑎 − 𝑒, (𝑏 − 𝑎)

× [max (0, ((𝑏 − 𝑥)𝑚 + (𝑏 − 𝑦)𝑚

−(𝑏 − 𝑒)
𝑚

) × ((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎) .

(21)

And then

𝐺𝑁(𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ))

= 𝑏 + 𝑎

−min(𝑏 + 𝑎 − 𝑒, (𝑏 − 𝑎)

× [max (0, ((𝑏 − 𝑥)𝑚 + (𝑏 − 𝑦)𝑚

−(𝑏 − 𝑒)
𝑚

) × ((𝑏 − 𝑎)
𝑚

)
−1

)]

1/𝑚

+ 𝑎)

= 𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ)

(22)

(3) when 𝑥 + 𝑦 = 2𝑒

𝐺𝑁 (𝑥) + 𝐺𝑁 (𝑦)

= (𝑏 + 𝑎 − 𝑥) + (𝑏 + 𝑎 − 𝑦)

= 2 (𝑏 + 𝑎) − (𝑥 + 𝑦)

= 2 (𝑏 + 𝑎 − 𝑒)

= 2𝐺𝑁 (𝑒) .

(23)

According to the definition of 𝐺𝐶𝑒(𝑥, 𝑦, ℎ):

𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ) = 𝐺𝑁 (𝑒) . (24)

Then:

𝐺𝑁(𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ)) = 𝐺𝑁 (𝐺𝑁 (𝑒)) = 𝑒.

(25)

From the above, the theorem is true.

Lemma 5. 𝐺𝐶𝐺𝑁(𝑒)(𝐺𝑁(𝑥), 𝐺𝑁(𝑦), ℎ) = 𝐺𝑁(𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ)).
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Table 1: Fuzzy rules defining the fuzzy composed variable 𝐺𝐸
𝜃
.

Error of pendulum rod Angle speed of pendulum rod
NB NM NS ZE PS PM PB

Angle of pendulum rod
NB NB NB NB NM NM NS ZE
NM NB NB NM NM NS ZE PS
NS NB NM NM NS ZE PS PM
ZE NM NM NS ZE PS PM PM
PS NM NS ZE PS PM PM PB
PM NS ZE PS PM PM PB PB
PB ZE PS PM PM PB PB PB

Proof. According toTheorem 4 and involution law of normal
universalNot operation in any interval [𝑎, 𝑏], the theorem can
be proved simply.

Lemma 6. 𝐶𝑒(𝑥, 𝑦, ℎ) = 1 − 𝐶
1−𝑒

(1 − 𝑥, 1 − 𝑦, ℎ).

Proof. Setting the interval [𝑎, 𝑏] of 𝑥, 𝑦 as [0, 1], the lemma
can be proved simply.

Lemma 7. If the interval [𝑎, 𝑏] is symmetrical about 𝑒, then
𝐺𝐶
𝑒

(𝑥
∗

, 𝑦
∗

, ℎ) = (𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ))
∗, where 𝑥

∗ and 𝑥 are
symmetrical about 𝑒, namely, 𝑥∗ = 2𝑒 − 𝑥, 𝑦∗, 𝑒∗, and
(𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ))
∗ are similar, 𝑒 ∈ [𝑎, 𝑏], ℎ ∈ [0, 1].

Proof. Since the interval [𝑎, 𝑏] is symmetrical about 𝑒, then
𝑎 + 𝑏 = 2𝑒 and 𝐺𝑁(𝑥) = 𝑎 + 𝑏 − 𝑥 = 2𝑒 − 𝑥; thus

𝐺𝑁 (𝑥) = 𝑥
∗

. (26)

Similarly

𝐺𝑁(𝑦) = 𝑦
∗

,

𝐺𝑁 (𝑒) = 𝑎 + 𝑏 − 𝑒 = 2𝑒 − 𝑒 = 𝑒.

(27)

From (26) and (27) the following could be obtained:

𝐺𝐶
𝐺𝑁(𝑒)

(𝐺𝑁 (𝑥) , 𝐺𝑁 (𝑦) , ℎ) = 𝐺𝐶
𝑒

(𝑥
∗

, 𝑦
∗

, ℎ) ,

𝐺𝑁 (𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ)) = (𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ))
∗

.

(28)

And then from Lemma 5

𝐺𝐶
𝑒

(𝑥
∗

, 𝑦
∗

, ℎ) = (𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ))
∗

. (29)

So the theorem is true.

Lemma 8. 𝐶0.5(1 − 𝑥, 1 − 𝑦, ℎ) = 1 − 𝐶
0.5

(𝑥, 𝑦, ℎ), where ℎ ∈
[0, 1].

Lemma 9. If the interval [𝑎, 𝑏] is symmetrical about the
original point, then 𝐺𝐶

0

(−𝑥, −𝑦, ℎ) = −𝐺𝐶
0

(𝑥, 𝑦, ℎ), ℎ ∈

[0, 1].

This lemma indicates that, when the interval [𝑎, 𝑏] is
symmetrical about the origin and identity element 𝑒 is

0, Universal Combinatorial Operation 𝐺𝐶
𝑒

(𝑥, 𝑦, ℎ) is also
symmetrical about the origin.

As pointed out in the literature [4], the logical relationship
between input variables, error E and error variety EC of nor-
mal two-dimensional fuzzy controller, is universal combina-
torial relation in Universal Logic. Consequently, the complex
reasoning process based on fuzzy rule can be replaced by the
simple universal combinatorial operation, and a flexible logic
control model is presented accordingly. In fuzzy control, the
domains of input variables and output variable are generally
symmetric to the origin, such as [−5, 5]. Obviously, it is the
prerequisite of control model that the operation model be
symmetric to the origin.Therefore, Lemma 9 provides a basis
for the Universal Combinatorial Operation’s application in
control.

2.4. Flexible Logic Control Method. Xiao et al. have put
forward a concept of fuzzy composed variable to reduce
effectively fuzzy control rules in multivariable nonlinear
system [16]. According to the characteristics of controlled
system and the internal relationship between input variables,
the core is to construct a fuzzy composed variable by the fuzzy
logic system to synthetically reflect the deviation between
reference and the process output.

Four output variables in single inverted pendulum are
considered, which are the displacement and speed of cart,
𝑥 and 𝑥

, and the angle and angle speed between pendu-
lum bar and vertical line, 𝜃 and 𝜃

. Four input variables
are involved for the fuzzy controller. In the input vari-
ables of control system, the angle and angle speed, 𝜃 and
𝜃
, directly reflected the motion of pendulum. Therefore,
according to the angle and angle speed of pendulum and
the language rules shown in Table 1, a fuzzy composed
variable, the error 𝐺𝐸

𝜃
of pendulum, can be defined to

synthetically describe the motion of pendulum with the
fuzzy logic system. Similarly, a fuzzy composed variable,
the error 𝐺𝐸

𝑥
of cart, can be defined according to the

displacement and speed of cart, 𝑥 and 𝑥
, so as to syn-

thetically describe the motion of cart. For multivariable
system, it need not define, respectively, fuzzy logic system
for every fuzzy composed variable. We can use a uniform
fuzzy rule table, such as Table 1, and just select different
quantization factors to obtain different fuzzy composed
variables.
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Note 2. In the paper, the fuzzy controller discussed has
inputs, such as error 𝑒 and error variety 𝑒𝑐, and output
variable 𝑢 is the control signal. The variables, 𝑒,𝑒𝑐, and 𝑢, are
crisp values from the practical process. The fuzzy language
variables,𝐸,𝐸𝐶, and𝑈, are the corresponding fuzzy ones, and
the fuzzy domains are unified as [−1, 1] with fuzzy subsets,
such as negative big (NB), negative middle (NM), negative
small (NS), zero (ZE), positive small (PS), positive middle
(PM), and positive big (PB).

Obviously, the language rules shown in Table 1 actually
reflect the essential relationship between error 𝐸 and error
variety 𝐸𝐶. The contents in Table 1 can be approximately
divided into four parts, which separately give the language
rules used to define composed variables under four condi-
tions, such as error 𝐸 and error variety 𝐸𝐶 are both negative,
error 𝐸 is negative but error variety 𝐸𝐶 is positive, error 𝐸
is positive but error variety 𝐸𝐶 is negative, and error 𝐸 and
error variety 𝐸𝐶 are both positive.

Both error 𝐸 and error variety 𝐸𝐶 reflect the deviation
between the reference and the output; and then a composed
variable𝐸 can be defined to synthetically describe the control
deviation of system, based on the essential relationship
between them.

According to the physical meanings of error 𝐸 and error
variety 𝐸𝐶, we can get the following conclusions.

(1) When error 𝐸 and error variety 𝐸𝐶 are both positive,
the control deviation of system is positive and tends to
further increase positively. So the value of composed
variable𝐸 should not be smaller than theirmaximum
value and the direction is positive. The combination
rules are shown by the lower right bold corner of
Table 1.

(2) When error 𝐸 is positive but error variety 𝐸𝐶 is
negative, the control deviation of system is positive
but tends to decrease. So the value of composed
variable 𝐸 should be between 𝐸 and 𝐸𝐶 in this case.
The combination rules are shown by the lower left
bold corner of Table 1.

(3) Similarly, the value of composed variable 𝐸 under
two other conditions can also be obtained.

Through above analysis, it is easy to know that the
essential relationship among error𝐸, error variety𝐸𝐶 and the
composed variable𝐸 is just a kind of universal combinatorial
one in Universal Logic. As a result, we have

𝐸


= 𝐺𝐶
𝑒

(𝐸, 𝐸𝐶, ℎ) . (30)

Obviously, now the identity element 𝑒 is zero.
Moreover, according to the concept of negative feedback

control, there is only a difference of a single sign between
composed variable 𝐸 describing control deviation and the
output variable 𝑈 of controller, namely;

𝑈 = −𝐸


. (31)

Therefore, the relationship among error 𝐸, error variety
𝐸𝐶, and the output variable 𝑈 is

𝑈 = −𝐺𝐶
𝑒

(𝐸, 𝐸𝐶, ℎ) , (32)

x

y

e

f1

f2

f3

f

f
−1 f4 f5 zf

f

1

2

3

4

5

6

7
8 9

−1

net

Figure 1: The neuron model of zero-level universal combinatorial
operation.

where 𝐸, 𝐸𝐶,𝑈 ∈ [−1, 1], 𝑒 = 0, and ℎ ∈ [0, 1]. The control
method is called Flexible Logic Control Method [4].

At the same time, a weighted factor 𝛼, 𝛼 ∈ [0, 1] is
introduced to meet the requirements of different controlled
objects. By adjusting the value of 𝛼, it is possible to change the
weighting degrees for error𝐸 and error variety𝐸𝐶. When the
general correlation coefficient ℎ is 0.5, there is

𝑈 = −𝐺𝐶
𝑒

(𝛼𝐸, (1 − 𝛼) 𝐸𝐶, 0.5)

= Γ
1

−1
[𝛼𝐸 + (1 − 𝛼) 𝐸𝐶 − 𝑒]

= 𝛼𝐸 + (1 − 𝛼) 𝐸𝐶.

(33)

And the formula (33) is just the fuzzy controlmethod pro-
posed by Long andWang [17]. He used a linear equation, such
as (33), to describe fuzzy control rules. But the relationship
among 𝐸, 𝐸𝐶, and 𝑈 is not only linear. So (32) is a cluster of
operators determined by general correlation coefficient ℎ, and
(33) is only a special operator in the cluster as ℎ is equal to
0.5. As a result, flexible logic control method can realize the
effective control for complex system.

3. Neuron Model of Zero-Level Universal
Combinatorial Operation

The uniform neuron model of generalized logic operators
in any intervals [𝑎, 𝑏] is established in the literature [18].
Seven neuron models of logic operation are given separately,
such as Not, And, Or, Implication, Equation, Average, and
Combination.

But the neuron model of combination logic operation is
too complicated for practical applications.

In this section, a new neuron model of zero-level univer-
sal combinatorial operation is constructed based onLemma 6
in Section 2.3.

It is learnt from Lemma 6 in Section 2.3 that

𝐶
𝑒

(𝑥, 𝑦, ℎ) = 1 − 𝐶
1−𝑒

(1 − 𝑥, 1 − 𝑦, ℎ) . (34)

Therefore, the model of zero-level universal combinato-
rial operation can be represented by the neuron shown in
Figure 1.

The neuron model is composed of several subneurons
which are interconnected. In the model, there are three input
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Figure 2: The neuron model of zero-level universal combinatorial operation in the interval [−1, 1].

parameters: 𝑥, 𝑦, and 𝑒. And the output 𝑧, net denotes the
weighted sum of all inputs, and all unmarked weights are 1.
The transfer functions of the subneuronsmarkedD,E,F are
𝑓(𝑥) = 𝑥

𝑚 with the parameter𝑚 and𝑚 = (3−4ℎ)/(4ℎ(1−ℎ)).
And the transfer function of the sub-neuron marked G is
𝑓
−1

(𝑥). The sub-neurons marked A, B, C, H, and 0 have
the following transfer functions, respectively:

𝑓
1
(𝑢, V, 𝑒) =

{
{

{
{

{

𝑢 𝑢 + V < 2𝑒

1 − 𝑢 𝑢 + V > 2𝑒

𝑒 otherwise,

𝑓
2
(𝑢, V, 𝑒) =

{
{

{
{

{

V 𝑢 + V < 2𝑒

1 − V 𝑢 + V > 2𝑒

𝑒 otherwise,

𝑓
3
(𝑢, V, 𝑒) =

{
{

{
{

{

𝑒 𝑢 + V < 2𝑒

1 − 𝑒 𝑢 + V > 2𝑒

𝑒 otherwise,

𝑓
4
(𝑢, V) = Γ

V
[𝑢] ,

𝑓
5
(𝑢, V, 𝑤, 𝑒) =

{
{

{
{

{

𝑤 𝑢 + V < 2𝑒

1 − 𝑤 𝑢 + V > 2𝑒

𝑤 otherwise.

(35)

Wewill discuss if the neuronmodel shown in Figure 1 has
realized zero-level universal combinatorial operation.

(1) 𝑥 + 𝑦 < 2𝑒. According to the definition of transfer
functions 𝑓

1
, 𝑓
2
, and 𝑓

3
, it is easy to find that the outputs of

the sub-neurons marked A, B, C separately are 𝑥, 𝑦, and
𝑒. According to the definition of transfer function 𝑓, it is
found that the outputs of the sub-neuron marked D, E, F
separately are 𝑥𝑚, 𝑦𝑚, and 𝑒

𝑚. Therefore, the output of the
sub-neuron marked G is (𝑥𝑚 + 𝑦

𝑚

− 𝑒
𝑚

)
1/𝑚. According to

the definition of transfer function 𝑓
4
, the output of the sub-

neuron marked H is Γ𝑒[(𝑥𝑚 + 𝑦
𝑚

− 𝑒
𝑚

)
1/𝑚

]. According to
the definition of transfer function 𝑓

5
, the output of the sub-

neuronmarked0 is Γ𝑒[(𝑥𝑚+𝑦𝑚−𝑒𝑚)1/𝑚].When 𝑥+𝑦 < 2𝑒,
the output of the neuron is

Γ
𝑒

[(𝑥
𝑚

+ 𝑦
𝑚

− 𝑒
𝑚

)
1/𝑚

] (36)

(2) 𝑥+𝑦 > 2𝑒. It is similarly learnt that the output of the sub-
neuron markedG is ((1 − 𝑥)𝑚 + (1 − 𝑦)𝑚 − (1 − 𝑒)𝑚)1/𝑚, the
output of the sub-neuron markedH is Γ1−𝑒[((1 − 𝑥)𝑚 + (1 −
𝑦)
𝑚

−(1−𝑒)
𝑚

)
1/𝑚

], and the output of the sub-neuronmarked
0 is 1 − Γ

1−𝑒

[((1 − 𝑥)
𝑚

+ (1 − 𝑦)
𝑚

− (1 − 𝑒)
𝑚

)
1/𝑚

]. When
𝑥 + 𝑦 > 2𝑒, the output of the neuron is

1 − Γ
1−𝑒

[((1 − 𝑥)
𝑚

+ (1 − 𝑦)
𝑚

− (1 − 𝑒)
𝑚

)

1/𝑚

] . (37)

(3) 𝑥+𝑦 = 2𝑒. It is similarly learnt that the output of the sub-
neuron markedG is 𝑒, the output of the sub-neuron marked
H is 𝑒, and the output of the sub-neuronmarked0 is 𝑒.When
𝑥 + 𝑦 = 2𝑒, the output of neuron is 𝑒.

In summary, the neuron model shown in Figure 1 has
fully realized the model of zero-level universal combinatorial
operation.

In practical control application, the fuzzy domains of
system variables are generally expressed as [−𝑛, 𝑛], for exam-
ple, [−6, 6]. To simplify the neuron model, we can unify
the fuzzy domains of system variables as [−1, 1]. Obviously,
the identity element 𝑒 is 0. Therefore, the model of zero-
level universal combinatorial operation in the interval [−1, 1]
can be obtained by the definition of universal combinatorial
operation model in any intervals [𝑎, 𝑏] in Section 2.2,

𝐺𝐶
0

(𝑥, 𝑦, ℎ)

= ite
{

{

{

min(0, 2[max(0,
(𝑥 + 1)

𝑚

+ (𝑦 + 1)
𝑚

− 1

2
𝑚

)]

1/𝑚

−1) | 𝑥 + 𝑦 < 0;

−min(0, 2[max(0,
(1 − 𝑥)

𝑚

+ (1 − 𝑦)
𝑚

− 1

2
𝑚

)]

1/𝑚

−1) | 𝑥 + 𝑦 > 0; 0

}

}

}

.

(38)

Therefore, it is easy to obtain the neuron model of zero-
level universal combinatorial operation in the interval [−1, 1]
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2

∑

i=1

k𝜃𝑖
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−

−
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Figure 3: The flexible logic control model of double inverted-pendulum.

according to the neuron model given in Figure 1, as shown in
Figure 2.

The neuron model is composed of interconnected multi-
ple sub-neurons, and its internal structure is a small artificial
neural network. In the model, 𝑥 and 𝑦 are the inputs, 𝑧 is
the output, net

1
, net
2
, net
3
, and net

4
are the weighted sum of

all inputs, the values of connecting weights without specific
marking are 1, and A, B,. . ., H are marks of some sub-
neurons for convenient discussion. The sub-neurons marked
C and D have the transfer function 𝑓(𝑥) = 𝑥

𝑚 with the
parameter m. And the sub-neuron marked E also has the
transfer function 𝑓

3
(𝑥) = max(0, 𝑥/(2𝑚)) with the parameter

𝑚, where𝑚 = (3 − 4ℎ)/(4ℎ(1 − ℎ)). The sub-neuron marked
F also has the transfer function 𝑓

−1

(𝑥) with the parameter
𝑚, and the sub-neurons marked A, B, G, and H have the
following transfer functions, respectively:

𝑓
1
(𝑢, V) =

{
{

{
{

{

𝑢 𝑢 + V < 0

−𝑢 𝑢 + V > 0

0 otherwise,

𝑓
2
(𝑢, V) =

{
{

{
{

{

V 𝑢 + V < 0

−V 𝑢 + V > 0

0 otherwise,

𝑓
4
(𝑢) = min (0, 𝑢) ,

𝑓
5
(𝑢, V, 𝑤) =

{
{

{
{

{

𝑤 𝑢 + V < 0

−𝑤 𝑢 + V > 0

𝑤 otherwise.

(39)

4. Realization of Artificial Neural Network of
Flexible Logic Control Model

In the practical complex system, the control objects are
always not less than one, so multiple system variables are

selected for feedback control. The basic idea of flexible logic
control model presented in Section 2.4 is to design sub-goal
controller based on the control object, and each subgoal
controller is designed with the flexible logic control method.
Then the output variable of control system is the weighted
sum of the outputs of these sub-goal controllers.

Obviously, most of the operators involved in this model
are universal combinatorial operation. Therefore, it is easy
to implement the artificial neural network of the flexible
logic control model by using the neuron model of zero-
level universal combinatorial operation in Section 3. In this
section, the artificial neural network structure of flexible
logic control model is presented using the double inverted-
pendulum system as the control object.

The objective is to maintain the rods in an upright
position and the cart in an appointed position in the rail.
There are six output variables and one input variable in double
inverted-pendulum, which are 𝑥, 𝑥, 𝜃

1
, 𝜃
1

, 𝜃
2
, 𝜃
2

, and 𝑢.
The variables, 𝐸

𝑥
, 𝐸𝐶
𝑥
, 𝐸
𝜃1
, 𝐸𝐶
𝜃1
, 𝐸
𝜃2
, 𝐸𝐶
𝜃2
, and 𝑈, are the

corresponding fuzzy ones, and the fuzzy domains are unified
as [−1, 1].

We can design three subcontrollers with the flexible logic
control method. One is to maintain the cart in an appointed
positionwith two input variables,𝐸

𝑥
and𝐸𝐶

𝑥
.The other ones

are to maintain, respectively, the rods in an upright position
with two input variables 𝐸

𝜃𝑖
and 𝐸𝐶

𝜃𝑖
(𝑖 = 1, 2). And we lead

into weighted factors, such as 𝛼
𝑥
, 𝛼
𝜃1
, and 𝛼

𝜃2
. The three sub-

controllers are designed as follows:

𝑈
𝑥
= −𝐺𝐶

0

(𝛼
𝑥
𝐸
𝑥
, (1 − 𝛼

𝑥
) 𝐸𝐶
𝑥
, ℎ
𝑥
) , (40)

𝛼
𝑥
= (𝛼
𝑠 𝑥

− 𝛼
0 𝑥
)




𝐸
𝑥





+ 𝛼
0 𝑥
, (41)

𝑈
𝜃𝑖
= −𝐺𝐶

0

(𝛼
𝜃𝑖
𝐸
𝜃𝑖
, (1 − 𝛼

𝜃𝑖
) 𝐸𝐶
𝜃𝑖
, ℎ
𝜃𝑖
) , (42)

𝛼
𝜃𝑖
= (𝛼
𝑠 𝜃𝑖

− 𝛼
0 𝜃𝑖

)






𝐸
𝜃𝑖






+ 𝛼
0 𝜃𝑖

. (43)
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Figure 4: The neural network structure of flexible logic control
model.

When the control signal𝑈 is combined, we lead into three
weighted factors, such as 𝑘

𝑥
, 𝑘
𝜃1
, and 𝑘

𝜃2
, for the three sub-

controllers. According to (40) and (42), we can get the output
of the controller as follows:

𝑈 = 𝑘
𝑥
𝑈
𝑥
+ 𝑘
𝜃1
𝑈
𝜃1
+ 𝑘
𝜃2
𝑈
𝜃2

= 𝑘
𝑥
(−𝐺𝐶

0

(𝛼
𝑥
𝐸
𝑥
, (1 − 𝛼

𝑥
) 𝐸𝐶
𝑥
, ℎ
𝑥
))

+

2

∑

𝑖=1

𝑘
𝜃𝑖
(−𝐺𝐶

0

(𝛼
𝜃𝑖
𝐸
𝜃𝑖
, (1 − 𝛼

𝜃𝑖
) 𝐸𝐶
𝜃𝑖
, ℎ
𝜃𝑖
)) ,

(44)

where 𝐸
𝑥
, 𝐸𝐶
𝑥
, 𝐸
𝜃𝑖
, 𝐸𝐶
𝜃𝑖
, and 𝑈 ∈ [−1, 1], 𝐺𝐶0(𝑥, 𝑦, ℎ) is

(38), ℎ
𝑥
, ℎ
𝜃1
, and ℎ

𝜃2
are general correlation coefficients, ℎ

𝑥
,

ℎ
𝜃1
, and ℎ

𝜃2
∈ [0, 1], 𝛼

𝑥
, 𝛼
𝜃1
, and 𝛼

𝜃2
∈ [0, 1], 𝑘

𝑥
, 𝑘
𝜃1
, and

𝑘
𝜃2
∈ [−1, 1], 0 ≤ 𝛼

0 𝑥
≤ 𝛼
𝑠 𝑥

≤ 1, 0 ≤ 𝛼
0 𝜃1

≤ 𝛼
𝑠 𝜃1

≤ 1, and
0 ≤ 𝛼
0 𝜃2

≤ 𝛼
𝑠 𝜃2

≤ 1.
By the above analysis, we can obtain the control model

of double inverted-pendulum, as shown in Figure 3. Based
on the neuron model of zero-level universal combinatorial
operation, the artificial neural network structure of the
control model could be obtained, as shown in Figure 4.

The displacement and speed of cart, 𝑥 and 𝑥, the angle
and angle speed between the lower pendulumbar and vertical
line, 𝜃

1
and 𝜃

1

, and the angle and angle speed between the
upper pendulum bar and vertical line, 𝜃

2
and 𝜃

2

, are the
input variables of the artificial neural network. The output
variable is the control signal.A,B,. . .,F are marks of some
sub-neurons for convenient discussion. Net is the weighted
sum of these inputs of the corresponding sub-neurons. The
connection weight values of the unmarked sub-neurons are 1.
The sub-neurons markedA,B, andC are the neuronmodel
of zero-level universal combinatorial operation in the interval

Table 2:The physical parameters of the double inverted-pendulum.

Symbol Value
𝑚
0

0.924 kg
𝑚
1

0.185 kg
𝑚
2

0.2 kg
𝑙
1

0.283m
𝑙
2

0.245m
𝐿
1

0.483m
𝑓
0

0.1 N⋅s/m
𝐽
1

0.00547 kg⋅m2

𝐽
2

0.00549 kg⋅m2

[−1, 1], as given in Section 3.The other sub-neurons have the
following transfer functions, respectively:

𝑓
1
(𝑢) = (𝛼

𝑠
− 𝛼
0
) |𝑢| + 𝛼

0
,

𝑓
2
(𝑢) = 1 − 𝑢, 𝑓

3
(𝑢, V) = 𝑢V,

(45)

where the transfer function 𝑓
1
has the parameters such as

𝛼
0
and 𝛼

𝑠
, and the transfer functions of the sub-neurons

marked D, E, and F separately have the parameters
𝛼
0 𝑥

, 𝛼
𝑠 𝑥
, 𝛼
0 𝜃1

, 𝛼
𝑠 𝜃1

, 𝛼
0 𝜃2

, and 𝛼
𝑠 𝜃2

.
From the Figure 4, we can see that the artificial neural

network structure of the control model is a feed forward
neural network. Genetic algorithms (GAs) are a robust and
efficient optimization technique based on the mechanism
of natural selection and natural genetics [19]. One of the
important features of GAs is that they are a population-
based search technique. Instead of moving from one single
point to another like traditional mathematical programming
techniques, GAs always maintain and manipulate a solution
set. Therefore, GAs are used to train the artificial neural
network.

5. Results of Experiments

This section takes a double inverted-pendulum physical
system, for example, to show the feasibility and validity of
the flexible logic control method based on artificial neural
network.

Owing to the rapidity and the absolute instability of
the inverted-pendulum system, it requires a high real-time
processing frequency.Therefore, the sampling interval of this
system is set as 5ms.When the system is running for 20 s, the
control effect comparison could be conducted. The physical
parameters of the system are given in Table 2.

The flexible logic control method based on artificial
neural network is applied into the above double inverted-
pendulum physical system. The network parameters are
optimized by genetic algorithms.The definition of the fitness
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Figure 5: The car displacement and speed curve when the system is steady.

Table 3: The control parameters of the control model.

Symbol Value Description
𝐾
𝑒 𝑥

29.4118 Quantification factor for 𝐸
𝑥

𝐾
𝑐 𝑥

16.3529 Quantification factor for 𝐸𝐶
𝑥

ℎ
𝑥

0.2902 General correlation coefficient
between 𝐸

𝑥
and 𝐸𝐶

𝑥

𝑎
0 𝑥

0.2157 Minimum value of 𝑎
𝑥

𝑎
𝑠 𝑥

0.5258 Maximum value of 𝑎
𝑥

𝐾
𝑒 𝜃1

73.3333 Quantification factor for 𝐸
𝜃1

𝐾
𝑐 𝜃1

8.0000 Quantification factor for 𝐸𝐶
𝜃1

ℎ
𝜃1

0.8275 General correlation coefficient
between 𝐸

𝜃1
and 𝐸𝐶

𝜃1

𝑎
0 𝜃1

0.7569 Minimum value of 𝑎
𝜃1

𝑎
𝑠 𝜃1

0.7701 Maximum value of 𝑎
𝜃1

𝐾
𝑒 𝜃2

47.4510 Quantification factor for 𝐸
𝜃1

𝐾
𝑐 𝜃2

14.9412 Quantification factor for 𝐸𝐶
𝜃1

ℎ
𝜃2

0.5674 General correlation coefficient
between 𝐸

𝜃2
and 𝐸𝐶

𝜃2

𝑎
0 𝜃2

0.6745 Minimum value of 𝑎
𝜃2

𝑎
𝑠 𝜃2

0.7530 Maximum value of 𝑎
𝜃2

𝐾
𝑥

0.4902 Weighted factor of the
subcontroller for cart

𝐾
𝜃1

−0.3645 Weighted factor of the
subcontroller for rod1

𝐾
𝜃2

0.9686 Weighted factor of the
subcontroller for rod2

𝐾
𝑢

8.7843 Proportion factor for 𝑈

function is shown as (46) and the control parameters of the
system are shown in Table 3. Consider

Dis =
𝑁

∑

𝑖=0

(((

𝑥
2

(𝑖)

25

) + (

𝑥
2

(𝑖)

50

) + (

𝜃
2

1
(𝑖)

5

)

+(

𝜃
2

1
(𝑖)

10

) + 𝜃
2

2
(𝑖) + 𝜃

2

2
(𝑖)) × (𝑁)

−1

) ,

fitness = 1

(Dis/10)
.

(46)

Three experiments as the stability control, anti-
interference control, and the free movement in a level
track of cart pendulum system for the above double inverted-
pendulum physical system are carried out by using the
controller made of these control parameters.

5.1. Stability Control Experiment. Under the same initial state
such as 𝑥(0) = 0m, 𝜃

1
(0) = 0.05 rad and 𝜃

2
(0) = 0.05 rad, the

stability control of the double inverted-pendulum physical
system has been realized.The experimental results are shown
in Figures 5, 6, 7, and 8 (running time: 20 s).
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Figure 6: The lower rod angle curve and angular velocity curve when the system is steady.

2 4 6 8 10 12 14 16 18 20

t (s)
0

𝜃
2

(r
ad

)

0.05

0.04

0.03

0.02

0.01

0

−0.01

−0.02

(a) The upper rod angle curve

2 4 6 8 10 12 14 16 18 20

t (s)
0

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

𝜃
 2

(r
ad

/s
)

(b) The upper rod angular velocity curve

Figure 7: The upper rod angle curve and angular velocity curve when the system is steady.
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Figure 8: The controlled quantity curve when the system is steady.

From the experimental results, we can find when the sys-
tem is in a stable state, the deviation of the cart displacement
could be about 0.01m with a good stability control effect.

5.2. Anti-Interference Control Experiment. After knocking
the upper pendulum twice when the system reaches a

steady state, it shows strong anti-interference ability. The
experimental results are shown in Figures 9, 10, 11, and
12.

From the experimental results, we can find the system
becomes stable again after 1.9 s.

5.3. Free Movement Control Experiment of Cart Pendulum
System. When the system reaches a steady state, the target
position 𝑥

𝑑
is changed on-line, such as from 0m to −0.2m.

So the free movement control of cart pendulum on a level
track could be realized. The experimental results are shown
in Figures 13, 14, 15, and 16.

From the experimental results, we can see the cart moves
to the new target location after 2.7 s and the system remains
stable.

5.4. Self-Adaptive Experiment of Control Model. Some phys-
ical parameters have been changed in another double
inverted-pendulum physical system.The physical parameters
of the system are shown in Table 4. The control model
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Figure 9: The car displacement and speed curve when the system is interfered.
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Figure 10: The lower rod angle curve and angular velocity curve when the system is interfered.
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Figure 11: The upper rod angle curve and angular velocity curve when the system is interfered.

also can realize the stability control of the new double
inverted-pendulum after changing some parameters. The
experimental results are shown in Figures 17, 18, 19, and 20.
The experimental results show that the control model based
on artificial neural network has excellent self-adaptability and
portability.

5.5. Comparison of the Experimental Results. Cheng et al. [20]
put forward a parameter fuzzy control method in 1996. The
core idea of this method is to find the synthetical relationship
among state variables by using modern control theory and
form composed error and composed variety of error so as to
construct a fuzzy controller.
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Figure 12: The controlled quantity curve when the system is interfered.
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Figure 13: The car displacement and speed curve when the cart is moving in a level track.
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Figure 14: The lower rod angle curve and angular velocity curve when the cart is moving in a level track.

The parameter fuzzy control method is used to sta-
bilize the above double inverted-pendulum physical sys-
tem. The control parameters of this system are shown in
Table 5.

Real-time control is carried out in the above double
inverted-pendulum physical system. When the initial state

of the system is 𝑥(0) = 0m, 𝜃
1
(0) = 0.05 rad, and 𝜃

2
(0) =

0.05 rad, the running time is 20 s. The comparison of the
experimental results for two control methods is shown in
Table 6.

From Table 6, the adjusting time and the steady-state
errors of the displacement and the angle are compared with
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Figure 15: The upper rod angle curve and angular velocity curve when the cart is moving in a level track.
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Figure 16: The controlled quantity curve when the cart is moving in a level track.

Table 4: The physical parameters of another double inverted-
pendulum.

Symbol Value
𝑚
0

0.595 kg
𝑚
1

0.158 kg
𝑚
2

0.142 kg
𝑙
1

0.1237m
𝑙
2

0.2265m
𝐿
1

0.151m
𝑓
0

0.1 N⋅s/m
𝐽
1

0.0028394 kg⋅m2

𝐽
2

0.0024329 kg⋅m2

parameter fuzzy control method about the stability control in
double inverted-pendulum physical system.

In summary, the flexible logic control model based on
artificial neural networks has good control effects. And the
controlling system has good stability and anti-interference
ability.

Table 5: The control parameters of the parameter fuzzy controller.

Symbol Value
𝑘
1

8.3089
𝑘
2

33.4311
𝑘
3

−114.1740
𝑘
4

0.0978
𝑘
5

26.8817
𝑘
6

−22.1896
𝑎
0

0.3333
𝑎
𝑠

0.7518

6. Conclusion

Based on the basic physicalmeaning of error𝐸 and error vari-
ety 𝐸𝐶, this paper analyzes the logical relationship between
them and uses universal combinational operation model to
describe it. And a flexible logic control method is put forward
to realize effective control onmultivariable nonlinear system.

In order to implement the fusion control of Universal
Logic and artificial neural networks, this paper puts forward
a new neuron model of zero-level universal combinational



Mathematical Problems in Engineering 15

2 4 6 8 10 12 14 16 18 20

t (s)
0

x
(m

)

0.01

0

−0.01

−0.02

−0.03

−0.04

−0.05

−0.06

−0.07

(a) The cart displacement curve

2 4 6 8 10 12 14 16 18 20

t (s)
0

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

−0.2

−0.25

x


(m
/s

)

(b) The cart speed curve

Figure 17: The car displacement and speed curve when the system is steady.
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Figure 18: The lower rod angle curve and angular velocity curve when the system is steady.
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Figure 19: The upper rod angle curve and angular velocity curve when the system is steady.
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Table 6: The comparison of the control effects for two control methods.

Control method

Control effects
Evaluation indexes

Steady state deviation Adjusting time (s)
The cart displacement (m) The angle of the

lower rod (rod)
The angle of the
upper rod (rod)

Fuzzy control parameter method 0.125 0.01 0.004 2.37
Flexible logic control method 0.01 0.004 0.002 1.7
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Figure 20:The controlled quantity curve when the system is steady.

operation. Based on this neuron model, artificial neural net-
work is designed for flexible logic control model. Meanwhile,
the stability control of the double inverted-pendulum phys-
ical system, anti-interference control, and free movement of
the cart pendulum have been realized in a level track by using
the proposed control model.
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This paper is concerned with the problem of exponential stability and 𝐻
∞

model reduction of a class of switched discrete-time
systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-
Krasovskii functional (LKF) approach, sufficient conditions for exponential stability with 𝐻

∞
performance of such systems are

derived in terms of linear matrix inequalities (LMIs). For the high-order systems, sufficient conditions for the existence of reduced-
order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an 𝐻

∞
error

performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the
obtained results.

1. Introduction

Switched systems belong to a special class of hybrid con-
trol systems, which comprises a collection of subsystems
described by dynamics differential or difference equations,
together with a switching law that specifies the switching rule
among the subsystems. Due to the theoretical development
as well as practical applications, analysis and synthesis of
switched systems have recently gained considerable attention
[1–4].

Furthermore, the time-delay phenomenon is frequently
encountered in a variety of industrial and engineering sys-
tems [5–7], for instance, chemical process, long distance
transmission line, communication networks, and so forth.
Moreover, time-delay is a predominant source of the poor
performance and instability. In the last two decades, there
has been increasing interest in the stability analysis for the
systems; see, for example, [8, 9] and the references cited there
in. For switched delay systems, due to the impact of time-
delays, the behavior of switched delay systems is usuallymuch
more complicated than that of switched systems or delay
systems [10, 11].

The average dwell time (ADT) technique [12] and multi-
ple Lyapunov function approach [13] are two powerful and

effective tools for studying the problems of stability for
switched systems under controlled switching. By applying
ADT scheme, the disturbance attenuation properties of time-
controlled switched systems are investigated in [14]. In [15],
the exponential stability and 𝐿

2
-gain of switched delay

systems are studied by using ADT approach. Furthermore,
based on ADT method, in [16–18] the stability of switched
systems with stable and unstable subsystems co existing
was considered. Using the ADT scheme, switching design
for exponential stability was proposed in [19] for a class
of switched discrete-time constant time-delay systems. By
using the multiple Lyapunov function approach and ADT
technique, the literature [20] studied the problem of state
feedback stabilization of a class of discrete-time switched
singular systems with time-varying state delay under asyn-
chronous switching. However, many free weighing matrices
were introduced, whichmade the stability result complicated.
In [11], the problem of stabilization and robust 𝐻

∞
control

via ADTmethod switching for discrete switched system with
time-delay was considered. However, the procedures given
in [11] could not be applied to the case of asynchronous
switching or the case of switching delay systems with stable
and unstable subsystems co existing. This motivates the
present study.
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On another research front line, it is well known that
mathematical modeling of physical systems often results
in complex high-order models. However, this causes the
great difficulties in analysis and synthesis of the systems.
Therefore, in practical applications it is desirable to replace
high-order models with reduced-order ones for reducing the
computational complexities in some given criteria without
incurring much loss of performance or information. The
purpose of model reduction is to obtain a lower-order
systemwhich approximates a high-order system according to
certain criterion. Recently, much attention has been focused
on the model reduction problem [21–25]. Many important
results have been reported, which involve various efficient
approaches, such as the balanced truncation method [24],
the optimal Hanker norm reduction method [25], the cone
complementarily linearization method [26], and sequential
linear programming matrix method [27]. In terms of LMIs
with inverse constraints or other non convex conditions,
the model reduction of the discrete-time context has been
investigated in [28, 29]. However, it is difficult to obtain the
numerical solutions. In [30], the existence conditions for
𝐻
∞

model reduction for discrete-time uncertain switched
systems are derived in terms of strict LMIs by using switched
Lyapunov function method. However, time delays are not
taken into account. In the literature [31], a novel idea to
approximate the original time-delay system by a reduced
time-delay model has been proposed recently. However, the
unstable subsystems are not taken into account.

Motivated by the preceding discussion, the main contri-
butions of this paper are highlighted as follows. The problem
of exponential stability and 𝐻

∞
model reduction for a class

of switched linear discrete-time systems with time-varying
delay have been investigated. To lessen the computation
complexity and to reduce the conservatism, new discrete LKF
are constructed and the delay interval is divided into two
unequal subintervals by the delay decomposition method.
The switching law is given by ADT scheme, such that even
if one or more subsystem is unstable the overall switched
system still can be stable. For the high-order systems, suf-
ficient conditions for the existence of the desired reduced-
order model are derived in terms of strict LMIs, which can be
easily solved by usingMATLAB LMI control toolbox. Finally,
numerical examples are given to show the effectiveness of the
proposed methods.

The remainder of this paper is structured as follows. In
Section 2, the problem formulation and some preliminaries
are introduced. In Section 3, the main results are presented
on the exponential stability of switched discrete-time systems
with time-varying delay. In Section 4, the main results on
the 𝐻

∞
model reduction for the high-order systems are

presented. Numerical examples are given in Section 5. The
last section concludes the work.

Notations. We use standard notations throughout the paper.
𝜆min(𝑀) (𝜆max(𝑀)) stands for the minimal (maximum)
eigenvalue of 𝑀. 𝑀

𝑇 is the transpose of the matrix 𝑀. The
relation 𝑀 > 𝑁 (𝑀 < 𝑁) means that the matrix 𝑀 − 𝑁 is
positive (negative) definite. ‖𝑥‖ denotes the Euclidian-norm
of the vector 𝑥 ∈ 𝑅

𝑛. 𝑅
𝑛 represents the 𝑛-dimensional real

Euclidean space. 𝑅
𝑛×𝑚 is the set of all real 𝑛 × 𝑚 matrices.

diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. In symmetric
block matrices or long matrix expressions, we use an asterisk
“∗” to represent a term that is induced by symmetry. 𝐼denotes
the identity matrix.

2. Problem Description and Preliminaries

Consider a class of switched linear discrete-time systemswith
time-varying state delay of the form

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵

𝑖
𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐶

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑖
𝑢 (𝑘) ,

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 = −ℎ, −ℎ + 1, . . . , 1,

(1)

where 𝑥(𝑘) ∈ 𝑅
𝑛 denotes the system state, 𝑦(𝑘) ∈ 𝑅

𝑚 is
the measured output, 𝑢(𝑘) ∈ 𝑅

𝑝 is the disturbance input
vector which belongs to 𝑙

2
[0, ∞). 𝜙(𝜃) ∈ 𝑅

𝑛 is a vector-valued
initial function. The switching signal 𝜎 (denoting 𝜎(𝑘) for
simplicity) : [0, ∞) → 𝑁 = {1, 2, . . . , 𝑇} is a piecewise
constant function and depends on time. 𝜎 = 𝑖 means that the
𝑖th subsystem is activated.𝑇 is the number of subsystems.The
systemmatrices 𝐴

𝑖
, 𝐴
𝑑𝑖

, 𝐵
𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, and 𝐷

𝑖
are a set of known

real matrices with appropriate dimensions.
For a given finite positive integer ℎ > 0, 𝑑(𝑘) is time-

varying delay and satisfies the following condition

0 ≤ 𝑑 (𝑘) ≤ ℎ, ∀𝑘 ∈ 𝑁
+

. (2)

To facilitate theoretical development, we introduce the fol-
lowing definitions and lemmas.

Definition 1 (see [19]). The system (1) with disturbance input
𝑢(𝑘) = 0 is said to be exponentially stable if there exist a
switching function 𝜎(⋅) and positive number 𝑐 such that every
solution 𝑥(𝑘, 𝜙) of the system satisfies

‖𝑥 (𝑘)‖ ≤ 𝑐𝜆
𝑘−𝑘0





𝜙




𝑠

, ∀𝑘 ≥ 𝑘
0
, (3)

for any initial conditions (𝑘
0
, 𝜙) ∈ 𝑅

+

× 𝐶
𝑛. 𝑐 > 0 is the decay

coefficient, 0 < 𝜆 ≤ 1 is the decay rate, and ‖𝜙‖
𝑠

= sup{‖𝜙(𝑙)‖,

𝑙 = 𝑘
0

− ℎ, 𝑘
0

− ℎ + 1, . . . , 𝑘
0
}.

Definition 2 (see [11]). Consider the system (1) with the fol-
lowing conditions.

(1) With 𝑢(𝑘) = 0, the system (1) is exponentially stable
with convergence rate 𝜆 > 0.

(2) The 𝐻
∞

performance ‖𝑦(𝑘)‖
2

< 𝛾‖𝑢(𝑘)‖
2
is guaran-

teed for all nonzero 𝑢(𝑘) ∈ 𝐿
2
[0, ∞) and a prescribed

𝜅 > 0 under the zero condition.

In the above conditions, the system (1) is exponentially
stabilizable with 𝐻

∞
performance 𝛾 and convergence rate 𝜆.

Here 𝛾 characterizes the disturbance attenuation perfor-
mance. The smaller the 𝛾 is, the better the performance is.

Definition 3 (see [12]). For a switching signal 𝜎(𝑘) and any
𝑇
2

> 𝑘 > 𝑇
1

≥ 0, let 𝑁
𝜎
(𝑇
1
, 𝑇
2
) denote the number of
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switching of 𝜎(𝑘) over (𝑇
1
, 𝑇
2
). If for any given 𝑁

0
≥ 1 and

𝑇
𝑎

> 0, we have 𝑁
𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+ (𝑇
2

− 𝑇
1
)/𝑇
𝑎
, then 𝑇

𝑎
and

𝑁
0
are called the ADT and the chatter bound, respectively.

Lemma 4 (see [9]). For any matrix 𝑅 = 𝑅
𝑇

> 0, integers 𝑎 ≤

𝑏, vector function 𝜉(𝑘) : {−𝑏, −𝑏 + 1, . . . , −𝑎} → 𝑅
𝑛, then

(𝑎 − 𝑏)

𝑘−𝑎−1

∑

𝑠=𝑘−𝑏

𝑧
𝑇

(𝑠) 𝑅𝑧 (𝑠) ≤ 𝜉
𝑇

(𝑘) [

−𝑅 𝑅

−𝑅
] 𝜉 (𝑘) . (4)

Here

𝑧 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,

𝜉
𝑇

(𝑘) = [𝑥
𝑇

(𝑘 − 𝑎) 𝑥
𝑇

(𝑘 − 𝑏)] .

(5)

Lemma 5 (Schur complement [32]). Let 𝑀, 𝑃, 𝑄 be given
matrices such that 𝑄 > 0. Then

[

𝑃 𝑀

∗ −𝑄
] < 0 ⇐⇒ 𝑃 + 𝑀𝑄

−1

𝑀
𝑇

< 0. (6)

The aim of this paper is to find a class of time-based
switching signals for the discrete-time switched time-delay
systems (1), whose subsystem is not necessarily stable, to
guarantee the system to be exponentially stable. For a high-
order system, we are interested in constructing a reduced-
order switched system to approximate the system.

3. Stability Analysis

With the preliminaries given in the previous section we are
ready to state the exponential stability and 𝐻

∞
performance

of switched systems (1). To obtain the exponential stability of
switched systems (1), we construct following discrete LKF:

𝑉
𝑖
(𝑘) = 𝑉

𝑖1
(𝑘) + 𝑉

𝑖2
(𝑘) + 𝑉

𝑖3
(𝑘) , ∀𝑖 ∈ 𝑁. (7)

Here

𝑉
𝑖1

(𝑘) = 𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘) ,

𝑉
𝑖2

(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖1

𝑥 (𝑠)

+

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖2

𝑥 (𝑠)

+

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖3

𝑥 (𝑠) ,

𝑉
𝑖3

(𝑘) =

−1

∑

𝜃=−𝜗

𝑘−1

∑

𝑠=𝑘+𝜃

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

+

−𝜗−1

∑

𝜃=−ℎ

𝑘−1

∑

𝑠=𝑘+𝜃

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

+

−1

∑

𝜃=−𝑑(𝑘)

𝑘−1

∑

𝑠=𝑘+𝜃

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠) ,

(8)

where 𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 = 1, 2, 3) are symmetric pos-
itive definite matrices with appropriate dimensions, 𝑧(𝑘) =

𝑥(𝑘 + 1) − 𝑥(𝑘), and integer 𝜗 ∈ (0, ℎ) and 𝛼
𝑖
are given

constants.

Remark 6. In order to derive less conservative criteria than
the existing ones, the delay interval [0, ℎ] is divided into two
unequal subintervals: [0, 𝜗] and [𝜗, ℎ], where 𝜗 ∈ (0, ℎ) is
a tuning parameter. The information about 𝑥(𝑡 − 𝜗) can be
taken into account. This plays a vital role in deriving less
conservative results. Thus, for any 𝑘 ∈ 𝑍

+, we have 𝑑(𝑘) ∈

[0, 𝜗] or 𝑑(𝑘) ∈ [𝜗, ℎ].
Firstly, we will provide a decay estimation of the system

LKF in (7) along the state trajectory of switched system (1)
without disturbance input (i.e., 𝑢(𝑘) = 0).

Lemma 7. Given constants −1 < 𝛼
𝑖

≤ 0, ℎ > 0 and 𝜗 ∈

(0, ℎ), if there exist some symmetric positive definite matrices
𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 = 1, 2, 3) such that the following LMIs
hold:

[

Ψ
𝑖11

Ψ
𝑖12

Ψ
𝑖22

] < 0, (9)

[

Φ
𝑖11

Φ
𝑖12

Φ
𝑖22

] < 0, (10)

where

Ψ
𝑖11

=

[

[

[

[

𝜓
𝑖

11
𝜓
𝑖

12
0 0

𝜓
𝑖

22
𝜓
𝑖

23
0

∗ 𝜓
𝑖

33
𝜓
𝑖

34

∗ ∗ 𝜓
𝑖

44

]

]

]

]

,

Φ
𝑖11

=

[

[

[

[

𝜓
𝑖

11
0 𝜙
𝑖

13
0

𝜙
𝑖

22
𝜙
𝑖

23
𝜙
𝑖

24

∗ 𝜙
𝑖

33
0

∗ ∗ 𝜓
𝑖

44

]

]

]

]

,

Ψ
𝑖12

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

1𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

1𝑖

0 0

0 0

]

]

]

]

,

Φ
𝑖12

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

2𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

2𝑖

0 0

0 0

]

]

]

]

,

Ψ
𝑖22

= diag {−𝑃
𝑖

−𝑊
1𝑖

} , Φ
𝑖22

= diag {−𝑃
𝑖

−𝑊
2𝑖

} ,

𝜓
𝑖

11
= − (1 + 𝛼

𝑖
) 𝑃
𝑖
−

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

) + 𝑄
𝑖1

+ 𝑄
𝑖3

,

𝜓
𝑖

12
=

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

) ,

𝜓
𝑖

22
= −(1 + 𝛼

𝑖
)
𝜗

𝑄
𝑖3

−

(1 + 𝛼
𝑖
)
𝜗

𝜗

(2𝑅
𝑖1

+ 𝑅
𝑖3

) ,
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𝜓
𝑖

23
=

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝑅
𝑖1

,

𝜓
𝑖

33
= (1 + 𝛼

𝑖
)
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

)

−

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

−

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝑅
𝑖1

,

𝜓
𝑖

34
=

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

,

𝜓
𝑖

44
= −(1 + 𝛼

𝑖
)
ℎ

𝑄
𝑖2

−

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

,

𝜙
𝑖

13
=

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

) ,

𝜙
𝑖

22
= −(1 + 𝛼

𝑖
)
ℎ

𝑄
𝑖3

−

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

(2𝑅
𝑖2

+ 𝑅
𝑖3

) ,

𝜙
𝑖

23
=

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

(𝑅
𝑖2

+ 𝑅
𝑖3

) ,

𝜙
𝑖

24
=

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

,

𝜙
33

= −

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

(𝑅
𝑖2

+ 𝑅
𝑖3

)

−

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

)

− (1 + 𝛼
𝑖
)
𝜗

(𝑄
𝑖1

− 𝑄
𝑖2

) ,

𝑊
1𝑖

= (ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ 𝜗𝑅
𝑖3

,

𝑊
2𝑖

= (ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ ℎ𝑅
𝑖3

.

(11)

Then, by means of LKF (7), along the trajectory of the systems
(1) without disturbance input, one has

Δ𝑉
𝑖
(𝑘) = 𝑉

𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘) ≤ 𝛼

𝑖
𝑉
𝑖
(𝑘) . (12)

Proof. Let us choose the system LKF (7). Define

𝑉
𝑖
(𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑉
𝑖
(𝑘) =

3

∑

𝑚=1

Δ̃𝑉
𝑖𝑚

(𝑘) , (13)

where

Δ̃𝑉
𝑖𝑚

(𝑘) = 𝑉
𝑖𝑚

(𝑘 + 1) − (1 + 𝛼
𝑖
) 𝑉
𝑖𝑚

(𝑘) . (14)

Therefore, the following equality holds along the solution of
(1):

Δ̃𝑉
𝑖1

(𝑘) = 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘) ,

(15)

Δ̃𝑉
𝑖2

(𝑘) = 𝑥
𝑇

(𝑘) (𝑄
𝑖1

+ 𝑄
𝑖3

) 𝑥 (𝑘)

− (1 + 𝛼
𝑖
)
ℎ

𝑥
𝑇

(𝑘 − ℎ) 𝑄
𝑖2

𝑥 (𝑘 − ℎ)

− (1 + 𝛼
𝑖
)
𝑑(𝑘)

𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄
𝑖3

𝑥 (𝑘 − 𝑑 (𝑘))

− (1 + 𝛼
𝑖
)
𝜗

𝑥
𝑇

(𝑘 − 𝜗) (𝑄
𝑖1

− 𝑄
𝑖2

) 𝑥 (𝑘 − 𝜗) ,

(16)

Δ̃𝑉
𝑖3

(𝑘) = 𝑧
𝑇

(𝑘) ((ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ 𝑑 (𝑘) 𝑅
𝑖3

) 𝑧 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

−

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠) .

(17)

For any 𝑘 ∈ 𝑍
+, we have 𝑑(𝑘) ∈ [0, 𝜗] or 𝑑(𝑘) ∈ [𝜗, ℎ].

(1) If 𝑑(𝑘) ∈ [0, 𝜗], it gets

−

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

= −

𝑘−1−𝑑(𝑘)

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠) .

(18)

So (17) could be

Δ̃𝑉
𝑖3

(𝑘) ≤ 𝑧
𝑇

(𝑘) ((ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ 𝜗𝑅
𝑖3

) 𝑧 (𝑘)

−

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝜏(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖1

+ 𝑅
𝑖3

) 𝑧 (𝑠)

−

𝑘−1−𝜏(𝑘)

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠) .

(19)
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From Lemma 4, we have

−

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

≤

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝜉
𝑇

1
(𝑡) [

−𝑅
𝑖2

𝑅
𝑖2

−𝑅
𝑖2

] 𝜉
1

(𝑡) ,

(20)

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖1

+ 𝑅
𝑖3

) 𝑧 (𝑠)

≤

(1 + 𝛼
𝑖
)
𝜏(𝑘)

𝜏 (𝑘)

𝜉
𝑇

2
(𝑘) [

−𝑅
𝑖1

− 𝑅
𝑖3

𝑅
𝑖1

+ 𝑅
𝑖3

−𝑅
𝑖1

− 𝑅
𝑖3

] 𝜉
2

(𝑘)

≤

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝜉
𝑇

2
(𝑘) [

−𝑅
𝑖1

− 𝑅
𝑖3

𝑅
𝑖1

+ 𝑅
𝑖3

−𝑅
𝑖1

− 𝑅
𝑖3

] 𝜉
2

(𝑘) ,

(21)

−

𝑘−1−𝑑(𝑘)

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

≤

(1 + 𝛼
𝑖
)
𝜗

𝜗 − 𝜏 (𝑘)

𝜉
𝑇

3
(𝑘) [

−𝑅
𝑖1

𝑅
𝑖1

−𝑅
𝑖1

] 𝜉
3

(𝑘)

≤

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝜉
𝑇

3
(𝑘) [

−𝑅
𝑖1

𝑅
𝑖1

−𝑅
𝑖1

] 𝜉
3

(𝑘) ,

(22)

where

𝜉
𝑇

1
(𝑘) = [𝑥

𝑇

(𝑘 − 𝜗) 𝑥
𝑇

(𝑘 − ℎ)] ,

𝜉
𝑇

2
(𝑘) = [𝑥

𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘))] ,

𝜉
𝑇

3
(𝑘) = [𝑥

𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝜗)] .

(23)

Combining (13)–(22), it yields

𝑉
𝑖
(𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑉
𝑖
(𝑘)

≤ 𝜉
𝑇

(𝑘) Ψ
𝑖11

𝜉 (𝑘)

+ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) + 𝑧

𝑇

(𝑘) 𝑊
1𝑖

𝑧 (𝑘) ,

(24)

where

𝜉
𝑇

(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝜗) 𝑥
𝑇

(𝑘 − ℎ)] .

(25)

Multiplying (9) both from left and right by diag
{0 0 0 0 𝑃

−1

𝑖
𝑊
−𝑇

𝑖
}, by Schur Complement, further, con-

sidering (24), one can infer that (12) holds.

(2) If 𝑑(𝑘) ∈ [𝜗, ℎ], it gets

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠)

= −

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠)

−

𝑘−𝜗−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠) .

(26)

One obtains

Δ̃𝑉
𝑖3

(𝑘) ≤ 𝑧
𝑇

(𝑘) ((ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ ℎ𝑅
𝑖3

) 𝑧 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖1

+ 𝑅
𝑖3

) 𝑧 (𝑠)

−

𝑘−𝜗−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖2

+ 𝑅
𝑖3

) 𝑧 (𝑠)

−

𝑘−𝑑(𝑘)−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠) .

(27)

Similarly, it is easy to get that

𝑉
𝑖
(𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑉
𝑖
(𝑘)

≤ 𝜉
𝑇

(𝑘) Φ
𝑖11

𝜉 (𝑘)

+ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) + 𝑧

𝑇

(𝑘) 𝑊
2𝑖

𝑧 (𝑘) .

(28)

If (10) holds, by Schur Complement, then we have (12). This
completes the proof.

Remark 8. Our LKF does not include free-weighing matrices
as in previous investigations, and this may lead to reduce the
computational complexity and get less conservation results.

Remark 9. In order to get less conservative results, the delay
interval [0, ℎ] can be divided into much more subintervals.
However, when the number of dipartite numbers increases,
thematrix formulation becomesmore complex and the time-
consuming grows bigger.

Now we have the following theorem.

Theorem 10. If there exist some constants −1 < 𝛼
𝑖

< 0 and
positive definite symmetric matrices 𝑃

𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 =

1, 2, 3) and 𝜇 ≥ 1 such that (9), (10), and the following
inequalities hold:

𝑃
𝑖
≤ 𝜇𝑃
𝑗
, 𝑄
𝑖𝑚

≤ 𝜇𝑄
𝑗𝑚

, 𝑅
𝑖𝑚

≤ 𝜇𝑅
𝑗𝑚

,

∀𝑖, 𝑗 ∈ 𝑁.

(29)

Then, the switched system (1) with 𝑢(𝑘) = 0 and ADT satisfies
𝜏
𝑎

> − ln 𝜇/ ln𝛼 which is exponentially stable.

Proof. By Lemma 7, we have

Δ𝑉
𝑖
(𝑘) = 𝑉

𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘) ≤ 𝛼

𝑖
𝑉
𝑖
(𝑘) , ∀𝑖 ∈ 𝑁. (30)
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Therefore,

𝑉
𝑖
(𝑘
0

+ 𝑛) ≤ (𝛼
𝑖
+ 1)
𝑛

𝑉
𝑖
(𝑘
0
) . (31)

There exists 𝜇
𝑖
≥ 1 (𝑖 ∈ 𝑁), such that

𝑉
𝑖
(𝑘) ≤ 𝜇

𝑖
𝑉
𝑗
(𝑘) , ∀𝑖, 𝑗 ∈ 𝑁. (32)

We let 𝜏
1
, . . . , 𝜏

𝑁𝜎(𝑘0,𝑘0+𝑘)
denote the switching times of 𝜎 in

(𝑘
0
, 𝑘
0

+ 𝑘), and let 𝑁
𝜎(𝑘0 ,𝑘+𝑘0)

be the switching number of 𝜎

in (𝑘
0
, 𝑘 + 𝑘

0
), by (31) and (32), one obtains

𝑉
𝜎(𝑘+𝑘0)

(𝑘 + 𝑘
0
) ≤ 𝜇
𝜎(𝜏1)

⋅ ⋅ ⋅ 𝜇
𝜎(𝜏𝑁
𝜎(𝑘0,𝑘0+𝑘)

)
(𝛼
𝜎(𝑘+𝑘0)

+ 1)

𝑚1

⋅ ⋅ ⋅

(𝛼
𝜎(𝑘0)

+ 1)

𝑚𝑁
𝜎(𝑘0,𝑘+𝑘0)𝑉

𝜎(𝑘0)
(𝑘
0
) ,

(33)

where 𝑚
1

+ ⋅ ⋅ ⋅ + 𝑚
𝑁𝜎(𝑘0,𝑘+𝑘0)

= 𝑘.
By −1 < 𝛼

𝑖
< 0, for all 𝑖 ∈ 𝑁, we know that there exists

𝛼 ≜ max
𝑖∈𝑁

{𝛼
𝑖
+ 1} ∈ (0, 1). Let 𝜇 = max

𝑖∈𝑁
{𝜇
𝑖
}; from (33),

one obtains

𝑉
𝑖
(𝑘 + 𝑘

0
) ≤ 𝛼
𝑘

𝜇
𝑁𝜎

𝑉
𝑗
(𝑘
0
) = 𝛼
𝑘+𝑁𝜎(ln 𝜇/ ln𝛼)

𝑉
𝑗
(𝑘
0
) . (34)

By Definition 2, for any 𝑘
0

< 𝑘, it follows that

𝑉
𝑖
(𝑘) ≤ 𝛼

𝑘+𝑁𝜎(ln 𝜇/ ln𝛼)
𝑉
𝑗
(𝑘
0
) ≤ 𝛼
𝑘(1+(ln 𝜇/𝑇𝑎 ln𝛼))

𝑉
𝑗
(𝑘
0
) .

(35)

By the system LKF (7), there always exist two positive con-
stants 𝑐

1
, 𝑐
2
such that

𝑐
1
‖𝑥(𝑘)‖

2

≤ 𝑉
𝑖
(𝑘) , 𝑉

𝑖
(𝑘
0
) ≤ 𝑐
2





𝑥(𝑘
0
)





2

𝑠
, (36)

where

𝑐
1

= min
𝑖∈𝑁

{𝜆min (𝑃
𝑖
)} ,

𝑐
2

= max
𝑖∈𝑁

{𝜆max (𝑃
𝑖
) +

3

∑

𝑚=1

(𝜆max (𝑄
𝑖𝑚

) + 𝜆max (𝑅
𝑖𝑚

))} .

(37)

Therefore,

‖𝑥(𝑘)‖
2

≤

𝑐
2

𝑐
1

𝛼
𝑘(1+(ln 𝜇/𝑇𝑎 ln𝛼))



𝑥(𝑘
0
)





2

𝑠
. (38)

If the average dwell time 𝜏
𝑎
satisfies 𝜏

𝑎
> − ln 𝜇/ ln𝛼 for𝜇 ≥ 1,

then the switched system (1) with 𝑢(𝑘) = 0 is exponentially
stable with 𝜆 = 𝛼

1/2

= max
𝑖∈𝑁

{(𝛼
𝑖
+ 1)
1/2

} ∈ (0, 1) stability
degree.

Remark 11. The case 𝛼 = 0 implies the asymptotic stability.

The following theorem provides exponential stability
analysis with 𝐻

∞
performance of the system (1).

Theorem 12. For given constants 𝛾 > 0, 𝜆 > 0 and −1 <

𝛼
𝑖

< 0, if there exist positive definite symmetric matrices

𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 = 1, 2, 3) and 𝜇 ≥ 1 such that (29)
and the following LMIs hold:

[

[

Ψ
𝑖11

0 Ψ
𝑖13

−𝛾
2

𝐼 Ψ
𝑖23

∗ Ψ
𝑖33

]

]

< 0, (39)

[

[

Φ
𝑖11

0 Φ
𝑖13

−𝛾
2

𝐼 Φ
𝑖23

∗ Φ
𝑖33

]

]

< 0, (40)

where

Ψ
𝑖13

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

1𝑖
𝐶
𝑇

𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

1𝑖
𝐶
𝑇

𝑑𝑖

0 0 0

0 0 0

]

]

]

]

,

Φ
𝑖13

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

2𝑖
𝐶
𝑇

𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

2𝑖
𝐶
𝑇

𝑑𝑖

0 0 0

0 0 0

]

]

]

]

,

Ψ
𝑖33

= diag {−𝑃
𝑖

−𝑊
1𝑖

−𝐼} ,

Φ
𝑖33

= diag {−𝑃
𝑖

−𝑊
2𝑖

−𝐼} ,

Ψ
𝑖23

= [𝐵
𝑇

𝑖
𝑃
𝑖

𝐵
𝑇

𝑖
𝑊
𝑇

1𝑖
𝐷
𝑇

𝑖
] , Φ

𝑖23
= [𝐵
𝑇

𝑖
𝑃
𝑖

𝐵
𝑇

𝑖
𝑊
𝑇

2𝑖
𝐷
𝑇

𝑖
] .

(41)

Then, the system (1) with average dwell time satisfies 𝜏
𝑎

>

− ln 𝜇/ ln𝛼 which is globally exponentially stable with conver-
gence rate 𝜆 and 𝐻

∞
performance 𝛾.

Proof. Choose the LKF (7); the result is carried out by
using the techniques employed for proving Lemma 7 and
Theorem 10. If 𝑑(𝑘) ∈ [0, 𝜗], by (24), we have

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)

≤ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1)

+ 𝑧
𝑇

(𝑘) 𝑊
𝑖
𝑧 (𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘)

+ 𝜁
𝑇

1
(𝑘) [

Ψ
𝑖11

0

0 −𝛾
2] 𝜁
1

(𝑘) ,

(42)

where

𝜁
𝑇

1
(𝑘) = [𝜉

𝑇

(𝑘) 𝑢
𝑇

(𝑘)] . (43)

If 𝑑(𝑘) ∈ [𝜗, ℎ], by (28), we have

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)

≤ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) + 𝑧

𝑇

(𝑘) 𝑊
𝑖
𝑧 (𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘)

+ 𝜁
𝑇

1
(𝑘) [

Φ
𝑖11

0

0 −𝛾
2] 𝜁
1

(𝑘) .

(44)
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Combining (39) and (40), by Schur Complement, one can
obtain

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) ≤ 0.

(45)

Let

𝐽 (𝑘) = 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) ; (46)

we have

𝑉
𝑖
(𝑘 + 1) ≤ 𝛼𝑉

𝑖
(𝑘) − 𝐽 (𝑘) . (47)

By Definition 2 and Theorem 10, it is sufficient to show that
∑
∞

𝑘=0
𝐽(𝑘) < 0 for any nonzero 𝑢(𝑘). Combining (35) and

(47), it can be shown that

𝑉
𝜎

(𝑘) ≤ 𝛼
𝑘

𝜇
𝑁𝜎(0,𝑘)

𝑉
𝜎

(0) −

𝑘−1

∑

𝑠=0

𝛼
𝑘−𝑠−1

𝜇
𝑁𝜎(𝑠,𝑘)

𝐽 (𝑠) . (48)

Under the zero initial condition, we have

𝑉 (0) = 0, 𝑉 (∞) ≥ 0. (49)

Combining (48), we have

𝑘−1

∑

𝑠=0

𝛼
𝑘−𝑠−1

𝜇
𝑁𝜎(𝑠,𝑘)

𝐽 (𝑠) =

𝑘−1

∑

𝑠=0

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝐽 (𝑠) ≤ 0. (50)

Now, we consider
∞

∑

𝑘=1

𝑘−1

∑

𝑠=0

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝐽 (𝑠) . (51)

Exchanging the double-sum region, by 𝜏
𝑎

> − ln 𝜇/ ln𝛼 and
𝛼 ∈ (0, 1), one can easily get

∞

∑

𝑘=1

𝑘−1

∑

𝑠=0

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝐽 (𝑠)

=

∞

∑

𝑠=0

𝐽 (𝑠)

∞

∑

𝑘=𝑠+1

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

=

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝛼
−1

1 − 𝑒
ln𝛼+ln 𝜇/𝜏𝑎

∞

∑

𝑠=1

𝐽 (𝑠) ≤ 0,

(52)

which means that ∑
∞

𝑠=1
𝐽(𝑠) ≤ 0. Then, by Definition 2, the

system (1) with average dwell time satisfies 𝜏
𝑎

> − ln 𝜇/ ln𝛼

which is globally exponentially stable with convergence rate
𝜆 and 𝐻

∞
performance 𝛾. This completes the proof.

If there exist some unstable subsystems in the switched
system (1) with 𝑢(𝑘) = 0, in this case, we need to estimate the
growth rate of the system LKF in (7) along the state trajectory
of switched system (1). And the corresponding 𝛼

𝑗
> 0 (𝑗 ∈

𝑁). By using the techniques employed for proving Lemma 7,
one can easily obtain the following Lemma.

Lemma 13. Given constants 𝛼
𝑗

> 0, ℎ > 0 and 𝜗 ∈

(0, ℎ), if there exist some symmetric positive definite matrices

𝑃
𝑗
, 𝑄
𝑗𝑚

, 𝑅
𝑗𝑚

(𝑗 ∈ 𝑁, 𝑚 = 1, 2, 3) such that the following LMIs
hold:

[

Ψ
𝑗11

Ψ
𝑗12

Ψ
𝑗22

] < 0,

[

Φ
𝑗11

Φ
𝑗12

Φ
𝑗22

] < 0,

(53)

where

Ψ
𝑗11

=

[

[

[

[

[

𝜓
𝑗

11
𝜓
𝑗

12
0 0

𝜓
𝑗

22
𝜓
𝑗

23
0

∗ 𝜓
𝑗

33
𝜓
𝑗

34

∗ ∗ 𝜓
𝑗

44

]

]

]

]

]

,

Φ
𝑗11

=

[

[

[

[

[

[

𝜓
𝑗

11
0 𝜙

𝑗

13
0

𝜙

𝑗

22
𝜙

𝑗

23
𝜙

𝑗

24

∗ 𝜙

𝑗

33
0

∗ ∗ 𝜓
𝑗

44

]

]

]

]

]

]

,

𝜓
𝑗

11
= − (1 + 𝛼

𝑗
) 𝑃
𝑗

+ 𝑄
𝑗1

+ 𝑄
𝑗3

−

1

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) ,

𝜓
𝑗

12
=

1

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) , 𝜓
𝑗

22
= −𝑄
𝑗3

−

1

𝜗

(2𝑅
𝑗1

+ 𝑅
𝑗3

) ,

𝜓
𝑗

23
=

1

𝜗

𝑅
𝑗1

, 𝜓
𝑗

34
=

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑗2

,

𝜓
𝑗

33
= (1 + 𝛼

𝑗
)

𝜗

(𝑄
𝑗2

− 𝑄
𝑗1

) −

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑗2

−

1

𝜗

𝑅
𝑗1

,

𝜓
𝑗

44
= −(1 + 𝛼

𝑗
)

ℎ

𝑄
𝑗2

−

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑖2

, 𝜙

𝑗

11
= 𝜓
𝑗

11
,

𝜙

𝑗

13
=

(1 + 𝛼
𝑗
)

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) ,

𝜙

𝑗

22
= −(1 + 𝛼

𝑗
)

𝜗

𝑄
𝑗3

−

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

(2𝑅
𝑗2

+ 𝑅
𝑗3

) ,

𝜙

𝑗

23
=

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

(𝑅
𝑗2

+ 𝑅
𝑗3

) , 𝜙

𝑗

24
=

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑗2

,

𝜙

𝑗

33
= −

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

(𝑅
𝑗2

+ 𝑅
𝑗3

)

−

(1 + 𝛼
𝑗
)

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) − (1 + 𝛼
𝑗
)

𝜗

(𝑄
𝑗1

− 𝑄
𝑗2

) .

(54)

Then, by means of LKF (7), along the trajectory of the systems
(1) without disturbance input, one has

Δ𝑉
𝑗
(𝑘) = 𝑉

𝑗
(𝑘 + 1) − 𝑉

𝑗
(𝑘) ≤ 𝛼

𝑗
𝑉
𝑗
(𝑘) . (55)
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Remark 14. The proof of Lemma 13 is similar to that of
Lemma 7 and is thus omitted here. Based on Lemmas 7 and
13, one can easily design the stabilizing switching law to
guarantee the system (1) with 𝑢(𝑘) = 0 to be exponentially
stable, although some subsystems are unstable.

Without loss of generality, we can assume that 𝑁
𝑢

=

{𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑠
} is the set of all unstable subsystems and 𝑁

𝑠
=

{𝑖
𝑠+1

, 𝑖
𝑠+2

, . . . , 𝑖
𝑝
} is the set of all stable subsystems. For

simplicity, the LKF (7) is defined as 𝑉
𝑖
(𝛼
𝑖
, 𝑘) ≜ 𝑉

𝑖
(𝑘). Choose

the LKF 𝑉
𝑖
(𝛼
𝑖
, 𝑘) (−1 < 𝛼

𝑖
< 0, 𝑖 ∈ 𝑁

𝑠
) for the stable

subsystem and choose the LKF 𝑉
𝑗
(𝛼
𝑗
, 𝑘) (𝛼

𝑗
> 0, 𝑗 ∈ 𝑁

𝑢
)

for the unstable subsystem. Then, we have the following
conclusion.

Theorem 15. If there exist some constants −1 < 𝛼
𝑖

< 0,
𝛼
𝑗

> 0 (𝑗 ̸= 𝑖, 𝑖 ∈ 𝑁
𝑠
, 𝑗 ∈ 𝑁

𝑢
) and positive definite symmetric

matrices 𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

, 𝑃
𝑗
, 𝑄
𝑗𝑚

, 𝑅
𝑗𝑚

(𝑚 = 1, 2, 3) and 𝜇 ≥ 1

such that Lemmas 7 and 13 and the following LMIs hold:

𝑃
𝑙
≤ 𝜇𝑃
𝑠
, 𝑄
𝑙𝑚

≤ 𝜇𝑄
𝑠𝑚

, 𝑅
𝑙𝑚

≤ 𝜇𝑅
𝑠𝑚

, ∀𝑙, 𝑠 ∈ 𝑁.

(56)

Then, the switched system (1) with 𝑢(𝑘) = 0 and the average
dwell time satisfies 𝜏

𝑎
> ln 𝜇/−𝜅, 𝑇

𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽 −

𝜅)/(− ln𝛼 + 𝜅), 𝜅 ∈ (ln𝛼, 0) which is exponentially stable.

Proof. Consider the following LKF candidate:

𝑉
𝜎(𝑘)

(𝑘) = {

𝑉
𝑖
(𝛼
𝑖
, 𝑘) , 𝜎 (𝑘) = 𝑖 ∈ 𝑁

𝑠
,

𝑉
𝑗
(𝛼
𝑗
, 𝑘) , 𝜎 (𝑘) = 𝑗 ∈ 𝑁

𝑢
.

(57)

By Lemmas 7 and 13, we have

𝑉
𝜎(𝑘+1)

(𝑘 + 1) ≤ (𝛼
𝜎(𝑘+1)

+ 1) 𝑉
𝜎(𝑘+1)

(𝑘) . (58)

Let 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

be the total activity time in which all subsystems
satisfied 0 > 𝛼

𝑖
> −1 on the interval (𝑘

0
, 𝑛 + 𝑘

0
) and

𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≜ 𝑛 − 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

the total activity time in which all
subsystems satisfied 𝛼

𝑗
> 0 on the interval (𝑘

0
, 𝑛 + 𝑘

0
).

By using the techniques employed for proving Theorem 10,
combining (56) and (58), we derive that

𝑉
𝜎(𝑛+𝑘0)

(𝑛 + 𝑘
0
)

≤ 𝜇
𝑁𝜎(𝑛+𝑘0)𝛼

𝑇
𝛼

𝑘0,𝑛+𝑘0𝛽
𝑇
𝛽

𝑘0,𝑛+𝑘0𝑉
𝜎(𝑘0)

(𝑘
0
)

= 𝑒
𝑇
𝛼

𝑘0,𝑛+𝑘0
ln𝛼+𝑇𝛽

𝑘0,𝑛+𝑘0
ln𝛽+𝑁𝜎(𝑘0,𝑛+𝑘0) ln 𝜇𝑉

𝜎(𝑘0)
(𝑘
0
) ,

(59)

where

𝛼 ≜ max
𝑖∈𝑁𝑠

{𝛼
𝑖
+ 1} ∈ (0, 1) , 𝛽 ≜ max

𝑗∈𝑁𝑢

{𝛼
𝑗

+ 1} > 1.

(60)

By 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽−𝜅)/(− ln𝛼+𝜅), 𝜅 ∈ (ln𝛼, 0), one
obtains

𝑇
𝛼

𝑘0 ,𝑛+𝑘0

ln𝛼 + 𝑇
𝛽

𝑘0 ,𝑛+𝑘0

ln𝛽 ≤ 𝜅𝑛. (61)

So we have

𝑉
𝜎(𝑛+𝑘0)

(𝑛 + 𝑘
0
) ≤ 𝑒
𝜅𝑛+𝑁𝜎(𝑘0,𝑛+𝑘0)

ln 𝜇
𝑉
𝜎(𝑘0)

(𝑘
0
) . (62)

By Definition 2, for any 𝑛 + 𝑘
0

> 𝑘
0
, it follows that

𝑉
𝜎(𝑛+𝑘0)

(𝑛 + 𝑘
0
) ≤ 𝑒
𝜅𝑛+𝑁𝜎(𝑘0,𝑛+𝑘0)

ln 𝜇
𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ 𝑒
𝑛(𝜅+(ln 𝜇/𝜏𝑎))

𝑉
𝜎(𝑘0)

(𝑘
0
) .

(63)

By 𝜏
𝑎

> ln 𝜇/ − 𝜅, we have lim
𝑘→∞

𝑉
𝜎
(𝑘) = 0. Moreover,

the overall system is exponentially stable. This completes the
proof.

Remark 16. From the proof of Theorem 15, one can see that
the obtained exponential stability for the switched system (1)
with 𝑢(𝑘) = 0 is exponential stable with 𝑒

−1/2 stability degree.
In order to get a free decay rate, we can replace the condition
𝜏
𝑎

> ln 𝜇/ − 𝜅, 𝑇𝛼
𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽 − 𝜅)/(− ln𝛼 + 𝜅), 𝜅 ∈

(ln𝛼, 0) by 𝜏
𝑎

> log𝜇
𝜖
/−𝜅,𝑇𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (log𝛽
𝜖
−𝜅)/(−log𝛼

𝜖
+

𝜅), 𝜅 ∈ (log𝛼
𝜖
, 0), 𝜖 > 1; then the switched system (1) with

𝑢(𝑘) = 0 is exponentially stable with 𝜖
−1/2 stability degree.

Theorem 17. For given constants 𝛾 > 0, −1 < 𝛼
𝑖

< 0,
𝛼
𝑗

> 0 (𝑗 ̸= 𝑖, 𝑖 ∈ 𝑁
𝑠
, 𝑗 ∈ 𝑁

𝑢
), if there exist positive definite

symmetric matrices 𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

, 𝑃
𝑗
, 𝑄
𝑗𝑚

, 𝑅
𝑗𝑚

(𝑚 = 1, 2, 3)

and 𝜇 ≥ 1 such that (56), (39), (40), and the following LMIs
hold:

[

[

[

Ψ
𝑗11

0 Ψ
𝑗13

−𝛾
2

𝐼 Ψ
𝑗23

∗ Ψ
𝑗33

]

]

]

0,

[

[

[

Φ
𝑗11

0 Φ
𝑗13

−𝛾
2

𝐼 Φ
𝑗23

∗ Φ
𝑗33

]

]

]

< 0,

(64)

and𝑇
𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽−𝜅)/(− ln𝛼+𝜅), 𝜅 ∈ (ln𝛼, 0), and
the average dwell time satisfies 𝜏

𝑎
> ln 𝜇/−𝜅; then the switched

system (1) is exponentially stable and with 𝐻
∞
performance 𝛾.

Remark 18. The proof of Theorem 17 is similar to that of
Theorems 12 and 15 and is thus omitted here.

4. 𝐻
∞

Model Reduction

In this section, we will approximate system (1) by a reduced-
order switched system described by

𝑥 (𝑘 + 1) = 𝐴
𝑟𝑖

𝑥 (𝑘) + 𝐴
𝑟𝑑𝑖

𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵
𝑟𝑖

𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑟𝑖

𝑥 (𝑘) + 𝐶
𝑟𝑑𝑖

𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷
𝑟𝑖

𝑢 (𝑘) ,

(65)

where 𝑥(𝑘) ∈ 𝑅
𝑞 is the state vector of the reduced-order

system with 𝑞 < 𝑛 and 𝑦(𝑘) ∈ 𝑅
𝑚 is the output of reduced-

order system. 𝐴
𝑟𝑖

, 𝐴
𝑟𝑑𝑖

, 𝐶
𝑟𝑖

, 𝐶
𝑟𝑑𝑖

, 𝐵
𝑟𝑖
, and 𝐷

𝑟𝑖
are the matrices

with compatible dimensions to be determined. The system
(65) is assumed to be switched synchronously by switching
signal 𝜎(𝑘) in system (1).
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Augmenting the model of system (1) to include the states
of (65), we can obtain the error system as follows:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵

𝑖
𝑢 (𝑘) ,

𝑒 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐶

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑖
𝑢 (𝑘) .

(66)

Here

𝐴
𝑖
= [

𝐴
𝑖

0

0 𝐴
𝑟𝑖

] , 𝐴
𝑑𝑖

= [

𝐴
𝑑𝑖

0

0 𝐴
𝑟𝑑𝑖

] ,

𝐵
𝑖
= [

𝐵
𝑖

𝐵
𝑟𝑖

] , 𝑥 (𝑘) = [

𝑥 (𝑘)

𝑥 (𝑘)
] ,

𝐶
𝑖
= [𝐶
𝑖

−𝐶
𝑟𝑖

] , 𝐶
𝑑𝑖

= [𝐶
𝑑𝑖

−𝐶
𝑟𝑑𝑖

] ,

𝐷
𝑖
= 𝐷
𝑖
− 𝐷
𝑟𝑑𝑖

, 𝑒 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) .

(67)

The following theorem gives a sufficient condition for the
existence of an admissible 𝐻

∞
reduced-order model (65) for

system (1).

Theorem 19. Given constants 0 < 𝛼 < 1, 𝛾 > 0, 𝜇 ≥ 1, ℎ >

0, and 𝜗 (0 < 𝜗 < ℎ), if there exist some symmetric positive
definite matrices �̃�

𝑖
, 𝑄
𝑖𝑚

, �̃�
𝑖𝑚

(𝑚 = 1, 2, 3) and matrices 𝑋
𝑖
,

𝑌
𝑖
, 𝐿
𝑖
, 𝐻
𝑖
, 𝐹
𝑖

(𝑖 ∈ 𝑁) such that the following LMIs hold

[

Π
𝑖1

Π
𝑖2

Π
𝑖3

] < 0, (68)

[

Π
𝑖1

Π
𝑖2

Π
𝑖3

] < 0, (69)

�̃�
𝑖
≤ 𝜇�̃�
𝑗
, 𝑄
𝑖𝑚

≤ 𝜇𝑄
𝑗𝑚

, �̃�
𝑖𝑚

≤ 𝜇�̃�
𝑗𝑚

, ∀𝑖, 𝑗 ∈ 𝑁.

(70)

Then system (66) with the average dwell time 𝜏
𝑎
satisfies 𝜏

𝑎
>

− ln 𝜇/ ln𝛼 which is exponentially stable with an 𝐻
∞

norm
bound 𝛾.

Here

Π
𝑖1

=

[

[

[

[

[

[

𝜑
𝑖

11
𝜑
𝑖

12
0 0 0

𝜑
𝑖

22
𝜑
𝑖

23
0 0

∗ 𝜑
𝑖

33
𝜑
𝑖

34
0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

,

Π
𝑖1

=

[

[

[

[

[

[

[

𝜑
𝑖

11
0 𝜑
𝑖

13
0 0

𝜑
𝑖

22
𝜑
𝑖

23
𝜑
𝑖

24
0

∗ 𝜑
𝑖

33
0 0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

]

,

Π
𝑖2

=

[

[

[

[

[

[

𝜑
𝑇

𝑖16
𝜑
𝑇

𝑖17
𝜑
𝑇

𝑖18

𝜑
𝑇

𝑖26
𝜑
𝑇

𝑖27
𝜑
𝑇

𝑖28

0 0 0

0 0 0

𝜑
𝑇

𝑖56
𝜑
𝑇

𝑖57
𝜑
𝑇

𝑖58

]

]

]

]

]

]

,

Π
𝑖3

= diag {�̃�
𝑖
− 2�̃�
𝑖

�̃�
𝑖
− 2�̃�
𝑖

−𝐼} ,

Π
𝑖3

= diag {�̃�
𝑖
− 2�̃�
𝑖

�̂� − 2�̃�
𝑖

−𝐼} ,

𝜑
𝑖

11
= 𝑄
𝑖1

+ 𝑄
𝑖3

− 𝛼�̃� −

𝛼
𝜗

𝜗

(�̃�
𝑖1

+ �̃�
𝑖3

) ,

𝜑
𝑖

12
=

𝛼
𝜗

𝜗

(�̃�
𝑖1

+ �̃�
𝑖3

) , 𝜑
𝑖

22
= −𝛼
𝜗

𝑄
𝑖3

−

𝛼
𝜗

𝜗

(2�̃�
𝑖1

+ �̃�
𝑖3

) ,

𝜑
𝑖

23
=

𝛼
𝜗

𝜗

�̃�
𝑖1

, 𝜑
𝑖

34
=

𝛼
ℎ

ℎ − 𝜗

�̃�
𝑖2

,

𝜑
𝑖

33
= 𝛼
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛼
ℎ

ℎ − 𝜗

�̃�
𝑖2

−

𝛼
𝜗

𝜗

�̃�
𝑖1

,

𝜑
𝑖

44
= −𝛼
ℎ

𝑄
𝑖2

−

𝛼
ℎ

ℎ − 𝜗

�̃�
𝑖2

,

𝜑
𝑖

55
= −𝛾
2

𝐼, 𝜑
𝑖

13
= 𝜑
𝑖

12
,

𝜑
𝑖

22
= −𝛼
ℎ

𝑄
𝑖3

−

𝛼
ℎ

ℎ − 𝜗

(2�̃�
𝑖2

+ �̃�
𝑖3

) ,

𝜑
𝑖

23
=

𝛼
ℎ

ℎ − 𝜗

(�̃�
𝑖2

+ �̃�
𝑖3

) , 𝜑
𝑖

24
= 𝜑
𝑖

34
,

𝜑
33

= 𝛼
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛼
𝜗

𝜗

(�̃�
𝑖1

+ �̃�
𝑖3

) −

𝛼
ℎ

ℎ − 𝜗

(�̃�
𝑖2

+ �̃�
𝑖3

) ,

�̃�
𝑖
= (ℎ − 𝜗) �̃�

𝑖2
+ 𝜗�̃�
𝑖1

+ 𝜗�̃�
𝑖3

,

�̂�
𝑖
= (ℎ − 𝜗) �̃�

𝑖2
+ 𝜗�̃�
𝑖1

+ ℎ�̃�
𝑖3

,

𝜑
𝑇

𝑖16
= [

𝐴
𝑇

𝑖
𝑋
𝑇

𝑖
𝐴
𝑇

𝑖
𝐸
𝑇

𝑌
𝑖

0 𝐿
𝑇

𝑖

] ,

𝜑
𝑇

𝑖17
= [

𝐴
𝑇

𝑖
𝑋
𝑇

𝑖
− 𝑋
𝑇

𝑖
𝐴
𝑇

𝑖
𝐸
𝑇

𝑌
𝑖
− 𝐸
𝑇

𝑌

0 𝐿
𝑇

𝑖
− 𝑌
𝑇

𝑖

] ,

𝜑
𝑇

𝑖18
= [

𝐶
𝑇

𝑖

−𝐶
𝑇

𝑟𝑖

] ,

𝜑
𝑇

𝑖26
= 𝜑
𝑇

𝑖27
= [

𝐴
𝑇

𝑖𝑑
𝑋
𝑇

𝑖
𝐴
𝑇

𝑖𝑑
𝐸
𝑇

𝑌
𝑖

0 𝐻
𝑇

𝑖

] ,

𝜑
𝑇

𝑖28
= [

𝐶
𝑇

𝑑𝑖

−𝐶
𝑇

𝑟𝑑𝑖

] ,

𝜑
𝑖56

= 𝜑
𝑖57

= [

𝑋
𝑖
𝐵
𝑖

𝐹
𝑖
+ 𝑌
𝑇

𝑖
𝐸𝐵
𝑖

] ,

𝜑
𝑖58

= 𝐷
𝑖
− 𝐷
𝑟𝑑𝑖

.

(71)

Furthermore, if a feasible solution to the above LMIs (68), (69),
and (70) exists, then the system matrices of an admissible 𝐻

∞

reduced-order model in the form of (65) are given by

𝐴
𝑟𝑖

= 𝑌
−1

𝑖
𝐿
𝑖
, 𝐴

𝑟𝑑𝑖
= 𝑌
−1

𝑖
𝐻
𝑖
, 𝐵

𝑟𝑖
= 𝑌
−1

𝑖
𝐹
𝑖
. (72)
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Proof. Consider the following LKF for the switched system
(66):

𝑉
𝑖
(𝑘) = 𝑉

𝑖1
(𝑘) + 𝑉

𝑖2
(𝑘) + 𝑉

𝑖3
(𝑘) . (73)

Here

𝑉
𝑖1

(𝑘) = 𝑥
𝑇

(𝑘) �̃�
𝑖
𝑥 (𝑘) ,

𝑉
𝑖2

(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝜗

𝛼
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖1

𝑥 (𝑠)

+

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

𝛼
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖2

𝑥 (𝑠)

+

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛼
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖3

𝑥 (𝑠) ,

𝑉
𝑖3

(𝑘) =

−1

∑

𝜃=−𝜗

𝑘−1

∑

𝑠=𝑘+𝜃

𝛼
𝑘−1−𝑠

�̃�
𝑇

(𝑠) �̃�
𝑖1

�̃� (𝑠)

+

−𝜗−1

∑

𝜃=−ℎ

𝑘−1

∑

𝑠=𝑘+𝜃

𝛼
𝑘−1−𝑠

�̃�
𝑇

(𝑠) �̃�
𝑖2

�̃� (𝑠)

+

−1

∑

𝜃=−𝑑(𝑘)

𝑘−1

∑

𝑠=𝑘+𝜃

𝛼
𝑘−1−𝑠

�̃�
𝑇

(𝑠) �̃�
𝑖3

�̃� (𝑠) ,

(74)

where �̃�(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘) and �̃�
𝑖
, 𝑄
𝑖𝑚

, �̃�
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 =

1, 2, 3) are symmetric positive definite matrices with appro-
priate dimensions; integer 𝜗 and 𝛼 are given constants.

By using the techniques employed for proving Lemma 7,
one can easily obtain the result. Calculate the difference of
𝑉
𝑖
(𝑘) in (73) along the state trajectory of system (66).

(1) If 𝑑(𝑘) ∈ [0, 𝜗], it gets

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑒

𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)

≤
̃
𝜉
𝑇

(𝑘) Π
𝑖1

̃
𝜉 (𝑘)

+ 𝑥
𝑇

(𝑘 + 1) �̃�
𝑖
𝑥 (𝑘 + 1)

+ 𝑧
𝑇

(𝑘) �̃�
𝑖
𝑧 (𝑘) + 𝑒

𝑇

(𝑘) 𝑒 (𝑘) ,

(75)

where

̃
𝜉
𝑇

(𝑘)

= [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝜗) 𝑥
𝑇

(𝑘 − ℎ) 𝑢
𝑇

(𝑘)] .

(76)

For any appropriately dimensioned matrices �̃�
𝑖
> 0 and non-

singular matrices �̃�
𝑖
, we have

(�̃�
𝑖
− �̃�
𝑖
)

𝑇

�̃�
−1

𝑖
(�̃�
𝑖
− �̃�
𝑖
) ≥ 0. (77)

Thus

−�̃�
𝑇

𝑖
�̃�
−1

𝑖
�̃�
𝑖
≤ �̃�
𝑖
− 2�̃�
𝑖
. (78)

If (68) holds, we have

[

Π
𝑖1

Π
𝑖2

Θ
𝑖3

] < 0, (79)

where

Θ
𝑖3

= diag {−�̃�
𝑇

𝑖
�̃�
−1

𝑖
�̃�
𝑖

�̃�
𝑇

𝑖
�̃�
−1

𝑖
�̃�
𝑖

−𝐼} . (80)

Let

�̃�
𝑖
= [

𝑋
𝑖

0

𝑌
𝑇

𝑖
𝐸 𝑌
𝑖

] , 𝐸 = [𝐼 0] ,

𝑌
𝑖
𝐴
𝑟𝑖

= 𝐿
𝑖
, 𝑌

𝑖
𝐴
𝑟𝑑𝑖

= 𝐻
𝑖
, 𝑌

𝑖
𝐵
𝑟𝑖

= 𝐹
𝑖
.

(81)

Multiplying (79) both from left and right by
diag {0 0 0 0 0 �̃�

−𝑇

𝑖
�̃�
−𝑇

𝑖
−𝐼}, by Schur Complement,

further, considering (75), one can infer

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑒

𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) ≤ 0.

(82)

Similarly, for the case of 𝑑(𝑘) ∈ [𝜗, ℎ], the fact that (69) holds
means that (82) is true. Set

Γ (𝑘) = 𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) , (83)

we have
𝑉
𝑖
(𝑘 + 1) ≤ 𝛼𝑉

𝑖
(𝑘) − Γ (𝑘) . (84)

Let 𝑁
𝜎(𝑘0 ,𝑘)

be the number of switching times in (𝑘
0
, 𝑘). From

(84) and (70), we can obtain

𝑉
𝑖
(𝑘 + 𝑘

0
) ≤ 𝛼
𝑘

𝜇
𝑁𝜎(𝑘0,𝑘)𝑉

𝑖
(𝑘
0
)

−

𝑘−1

∑

𝑠=𝑘0

𝛼
𝑘−𝑠−1

𝜇
𝑁𝜎(𝑠,𝑘)

Γ (𝑠)

≤ 𝛼
𝑘+𝑁𝜎(𝑘0,𝑘)

(ln 𝜇/ ln𝛼)
𝑉
𝑗
(𝑘
0
)

−

𝑘−1

∑

𝑠=𝑘0

𝛼
𝑘−𝑠−1+𝑁𝜎(𝑠,𝑘)(ln 𝜇/ ln𝛼)

𝜇
𝑁𝜎(𝑠,𝑘)

Γ (𝑠) .

(85)

Assume the zero disturbances input 𝑢(𝑘) = 0 to the state
equation of system (66). By Definition 2, for any 𝑘

0
< 𝑘, it

follows that

𝑉
𝑖
(𝑘) ≤ 𝛼

𝑘+𝑁𝜎(ln 𝜇/ ln𝛼)
𝑉
𝑗
(𝑘
0
) ≤ 𝛼
𝑘(1+(ln 𝜇/𝜏𝑎 ln𝛼))

𝑉
𝑗
(𝑘
0
) .

(86)

From 𝜏
𝑎

> − ln 𝜇/ ln𝛼, one obtains lim
𝑘→∞

𝑉
𝑖
(𝑘) = 0. There

exist 𝑐
𝑛

> 0, 𝑛 = 1, 2, such that

𝑐
1
‖𝑥 (𝑘)‖

2

≤ 𝑉
𝑖
(𝑘) , 𝑉

𝑖
(𝑘
0
) ≤ 𝑐
2





𝑥 (𝑘
0
)





2

𝑠
. (87)

Here
‖𝑥 (𝑘)‖

𝑠
= max
𝜃=−h,...,0

‖𝑥 (𝑘 + 𝜃)‖ , 𝑐
1

= 𝜆min (𝑃
𝑖
) ,

𝑐
2

= 𝜆max (𝑃
𝑖
) +

3

∑

𝑘=1

(𝜆max (𝑄
𝑖𝑘

) + 𝜆max (𝑅
𝑖𝑘

)) .

(88)

Therefore

‖𝑥 (𝑘)‖
2

≤

𝑐
2

𝑐
1

𝛼
𝑘(1+(ln 𝜇/𝜏𝑎 ln𝛼))



𝑥 (𝑘
0
)





2

𝑠
. (89)
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If the average dwell time 𝜏
𝑎
satisfies 𝜏

𝑎
> − ln 𝜇/ ln𝛼, then the

switched system (66) is exponentially stable with 𝜆 = 𝛼
1/2

stability degree. For any nonzero 𝑢(𝑘) ∈ 𝑙
2
[0, ∞), under zero

initial condition, combining (68), (69), (70), (85), and (89),
one can easily obtain

𝐽 =

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)] ≤ 0. (90)

Therefore ‖𝑒(𝑘)‖
2

≤ 𝛾‖𝑢(𝑘)‖
2
. This completes the proof.

Remark 20. Recently, authors in [30, 31] have studied the
problem of model reduction for discrete-time switched sys-
tems. In those papers, time delays are not taken into account.
However, in most of the cases in engineering problems, there
always exist unknown time-varying delays; moreover, the
case of stable and unstable subsystems co exists. Motivated
by this, in this paper, we discussed the problem of 𝐻

∞

model reduction for switched linear discrete-time systems
with time-varying delays via delay decomposition approach
[10–12]. Accordingly, numerical results are given for time-
varying delay cases.

If there exist some unstable subsystems in the switched
system (1), we have the following conclusion.

Theorem 21. Given constants 0 < 𝛼 < 1, 𝛽 > 1, 𝛾 > 0, 𝜇 ≥ 1,
ℎ > 0, and 𝜗 (0 < 𝜗 < ℎ), if there exist some symmetric positive
definite matrices �̃�

𝑖
, 𝑄
𝑖𝑚

, �̃�
𝑖𝑚

(𝑚 = 1, 2, 3) and matrices 𝑋
𝑖
, 𝑌
𝑖
,

𝐿
𝑖
, 𝐻
𝑖
, 𝐹
𝑖

(𝑖 ∈ 𝑁) such that (68), (69), (70), and the following
LMIs hold:

[
Π̃
𝑖1

Π
𝑖2

Π
𝑖3

] < 0,

[

Π̂
𝑖1

Π
𝑖2

Π
𝑖3

] < 0.

(91)

And 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽 − 𝜅)/(− ln𝛼 + 𝜅), 𝜅 ∈ (ln𝛼, 0);
then system (66) with the average dwell time 𝜏

𝑎
satisfies 𝜏

𝑎
>

− ln 𝜇/ ln𝛼 which is exponentially stable with an 𝐻
∞

norm
bound 𝛾. Furthermore, if a feasible solution to the above LMIs
(68), (69), (70), and (91) exists, then the system matrices of an
admissible 𝐻

∞
reduced-order model in the form of (65) are

given by (72).
Here,

Π̃
𝑖1

=

[

[

[

[

[

[

𝜑
𝑖

11
𝜑
𝑖

12
0 0 0

𝜑
𝑖

22
𝜑
𝑖

23
0 0

∗ 𝜑
𝑖

33
𝜑
𝑖

34
0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

,

Π̂
𝑖1

=

[

[

[

[

[

[

𝜑
𝑖

11
0 𝜑
𝑖

13
0 0

𝜑
𝑖

22
𝜑
𝑖

23
𝜑
𝑖

24
0

∗ 𝜑
𝑖

33
0 0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

,

𝜑
𝑖

11
= 𝑄
𝑖1

+ 𝑄
𝑖3

− 𝛽�̃� −

1

𝜗

(�̃�
𝑖1

+ �̃�
𝑖3

) ,

𝜑
𝑖

12
=

1

𝜗

(�̃�
𝑖1

+ �̃�
𝑖3

) , 𝜑
𝑖

22
= −𝑄
𝑖3

−

1

𝜗

(2�̃�
𝑖1

+ �̃�
𝑖3

) ,

𝜑
𝑖

23
=

1

𝜗

�̃�
𝑖1

, 𝜑
𝑖

33
= 𝛽
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛽
𝜗

ℎ − 𝜗

�̃�
𝑖2

−

1

𝜗

�̃�
𝑖1

,

𝜑
𝑖

34
=

𝛽
𝜗

ℎ − 𝜗

�̃�
𝑖2

, 𝜑
𝑖

44
= −𝛽
ℎ

𝑄
𝑖2

−

𝛽
𝜗

ℎ − 𝜗

�̃�
𝑖2

,

𝜑
𝑖

55
= −𝛾
2

𝐼, 𝜑
𝑖

13
=

𝛽

𝜗

(�̃�
𝑖1

+ �̃�
𝑖3

) ,

𝜑
𝑖

22
= −𝛽
𝜗

𝑄
𝑖3

−

𝛽
𝜗

ℎ − 𝜗

(2�̃�
𝑖2

+ �̃�
𝑖3

) ,

𝜑
𝑖

23
=

𝛽
𝜗

ℎ − 𝜗

(�̃�
𝑖2

+ �̃�
𝑖3

) , 𝜑
𝑖

24
=

𝛽
𝜗

ℎ − 𝜗

(�̃�
𝑖2

) ,

𝜑
𝑖

33
= 𝛽
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛽

𝜗

(�̃�
𝑖1

+ �̃�
𝑖3

) −

𝛽
𝜗

ℎ − 𝜗

(�̃�
𝑖2

+ �̃�
𝑖3

) .

(92)

Remark 22. The proof of Theorem 21 is carried out by using
the techniques employed in the previous section and is thus
omitted here.

5. Examples

In this section, we consider somenumerical examples to illus-
trate the benefits of our results.

Example 1 (see [20]). Consider the discrete-time switched
system (1) with 𝑢(𝑘) = 0 and the following parameters:

𝐴
1

= [

0 0.3

−0.2 0.1
] , 𝐴

𝑑1
= [

0 0.1

0 0.2
] ,

𝐴
2

= [

0 0.3

−0.2 −0.1
] , 𝐴

𝑑2
= [

0 0.1

0 0
] .

(93)

For this system, we choose 𝜇 = 1.1 and 𝜆 = 0.931. Applying
Theorem 10, by solving the LMIs (9) and (10) and (29), we can
obtain the allowable delay upper bound ℎ = 20. It is reported,
with decay rate 𝜆 = 0.931, that the upper bound ℎ can be
obtained as 14 in [19] and 16 in [20]. Therefore, the result
in this brief can indeed provide larger delay bounds than
the results in [19, 20]. This supports the effectiveness of the
proposed idea in Theorem 10 in reducing the conservatism
of stability criteria.

Example 2. Consider the discrete-time switched system (1)
with 𝑢(𝑘) = 0 and parameters as follows:

𝐴
1

= [

0 0.3

−0.2 0.1
] , 𝐴

𝑑1
= [

0 0.1

0 0.2
] ,

𝐴
2

= [

0 0.3

−0.2 −0.1
] , 𝐴

𝑑2
= [

1.3 0.1

0 0.9
] .

(94)

It is easy to check that the 𝐴
2

+ 𝐴
𝑑2

is unstable. In this
case, we need to find a class of switching signals to guarantee
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Figure 1: The state response.
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Figure 2: Switching law.

the overall switched system to be exponentially stable. Set
𝑑(𝑘) = [|3 sin(𝑘𝜋/6)|] and 𝛼 = 0.5329, according to
Theorem 15 and by solving the LMIs (9), (10), (53), and (29),
set 𝜗 = 1; we have 𝜇 = 2.4 and𝛽 = 2.01. Choosing 𝛾



= −0.18,
we have𝑇

𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽−𝛾


)/(− ln𝛼+𝛾


) = 1.953 and
𝜏
𝑎

> ln 𝜇/ − 𝛾


= 4.9. The simulation result of the switched
system is shown in Figure 1, where the initial condition𝜙(𝜃) =

[1.1 −0.8]

𝑇 and the switching law is shown in Figure 2. It can
be seen from Figure 1 that the designed switching signals are
effective although one subsystem is unstable. However, the
results in [20] cannot find any feasible solution to guarantee
the exponential stability of system (1).

Example 3 (see [31]). Consider the system (1) with parame-
ters as follows:

𝐴
1

=

[

[

[

[

0.13 0.22 −0.13 0.08

0.05 −0.03 0.19 0.06

−0.07 −0.05 −0.04 −0.12

−0.17 0.21 0.03 0.28

]

]

]

]

,

𝐴
2

=

[

[

[

[

0.11 0.22 −0.13 0.08

0.05 −0.03 0.15 0.06

−0.07 −0.03 −0.04 −0.12

−0.17 0.21 0.03 0.2

]

]

]

]

,

𝐴
𝑑1

= 𝐴
𝑑2

=

[

[

[

[

0.02 0.01 0 0

0 0.02 0 0

0 0 0.02 0.01

0 0 0 0.02

]

]

]

]

,

𝐵
1

= [0.19 −0.18 0.16 −0.08]

𝑇

,

𝐵
2

= [0.23 −0.13 0.16 −0.04]

𝑇

,

𝐶
1

= 𝐶
2

= [1.2 0.5 0.03 0.28] ,

𝐶
𝑑1

= 𝐶
𝑑2

= [0.02 0.05 0.01 0.09] ,

𝐷
1

= 𝐷
2

= 0.1.

(95)

When the decay rate 𝛼 is fixed, the maximum value of the
time-delay ℎ and the minimum value of the performance
index 𝛾 can computed by solving the LMIs (68)–(70) pro-
cedure in Theorem 19, which is listed in Table 1 via different
methods. Here, we choose 𝜇 = 1.001. Assume that decay rate
𝛼 = 0.9; we can compute themaximumvalue of allowed delay
ℎ = 42 and the minimum value of the performance index
𝛾 = 1.67. From ADT 𝜏

𝑎
> − ln 𝜇/ ln𝛼, we have 𝜏

𝑎
> 0.0095.

When ℎ = 2 and𝛼 = 0.9, we can compute theminimumvalue
of performance index 𝛾 = 0.53. On the other hand, assume
that maximum allowed delay ℎ = 2 and performance index
𝛾 = 2; we can compute the minimum value of the decay rate
𝛼 = 0.59 and 𝜏

𝑎
> 0.0019.

Let 𝛼 = 0.9; here, we are interested in designing a q-
order (𝑞 < 4) system (65) and choose the ADT 𝜏

𝑎
= 2

switching signals such that the model error system (66) is
exponentially stable with 𝐻

∞
norm bound 𝛾 = 2. By solving

the corresponding LMIs (68)–(70) procedure inTheorem 19.
For comparison with [31], we set the delay 𝑑(𝑘) = 2, and the
following reduced-order models can be given.

Third Order Model

𝐴
𝑟1

=
[

[

0.2753 0.0282 −0.0033

0.0097 0.2507 −0.0033

−0.0045 −0.0124 0.2569

]

]

,

𝐴
𝑟2

=
[

[

0.2799 0.0259 −0.0058

0.0074 0.2581 −0.0025

−0.0051 −0.01 0.2611

]

]

,

𝐴
𝑟𝑑1

=
[

[

−0.005 0.0069 −0.0023

0.0037 −0.0046 0.003

−0.0011 0.0002 −0.0006

]

]

,

𝐴
𝑟𝑑2

=
[

[

−0.001 0.0066 −0.0025

0.0039 −0.0044 0.0033

−0.0018 0.001 −0.0024

]

]

,
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Table 1: Comparison of parameters via different methods.

𝛼 𝛾 ℎ 𝜏
𝑎

[31] 0.9 2 2 >1.7305
Theorem 19 0.9 1.67 42 >0.0095
Theorem 19 0.9 0.53 2 >0.0095
Theorem 19 0.59 2 2 >0.0019
Theorem 19 0.6 1.8 2 >0.002

𝐵
𝑟1

= [−0.171 0.1795 −0.111]

𝑇

,

𝐵
𝑟2

= [−0.191 0.148 −0.1285]

𝑇

,

𝐶
𝑟1

= [−0.3016 −0.1328 −0.0149] ,

𝐶
𝑟2

= [−0.2987 −0.1265 −0.0173] ,

𝐷
𝑟1

= −0.1754,

𝐶
𝑟𝑑1

= [−0.0314 −0.0047 −0.0182] ,

𝐶
𝑟𝑑2

= [−0.0361 −0.0011 −0.0199] ,

𝐷
𝑟2

= −0.2396.

(96)

Second Order Model

𝐴
𝑟1

= [

0.2419 0.0355

0.015 0.2141
] , 𝐴

𝑟𝑑1
= [

−0.0028 0.0088

0.0052 −0.007
] ,

𝐵
𝑟1

= [

−0.1528

0.1617
] , 𝐶

𝑟1
= [

−0.3109

−0.1453
]

𝑇

,

𝐴
𝑟2

= [

0.2382 0.0324

0.0147 0.2183
] , 𝐴

𝑟𝑑2
= [

−0.0023 0.0076

0.0046 −0.006
] ,

𝐵
𝑟2

= [

−0.1667

0.1203
] , 𝐶

𝑟2
= [

−0.3076

−0.1362
]

𝑇

,

𝐶
𝑟𝑑1

= [−0.0488 0.0034] , 𝐷
𝑟1

= −0.2422,

𝐶
𝑟𝑑2

= [−0.05 0.0057] , 𝐷
𝑟2

= −0.3605.

(97)

First Order Model

𝐴
𝑟1

= 0.2528, 𝐴
𝑟𝑑1

= −0.0057, 𝐵
𝑟1

= −0.1498,

𝐶
𝑟1

= −0.2769, 𝐶
𝑟𝑑1

= 0.0301, 𝐷
𝑟1

= −0.1792,

𝐴
𝑟2

= 0.2606, 𝐴
𝑟𝑑2

= −0.005, 𝐵
𝑟2

= −0.1787,

𝐶
𝑟2

= −0.2851, 𝐶
𝑟𝑑2

= −0.04, 𝐷
𝑟2

= −0.2624.

(98)

To illustrate the model reduction performances of the
obtained reduced-order models, let the initial condition be
zero; the exogenous input is given as 𝑢(𝑘) = 1.8 exp(−0.4𝑘).
The output errors between the original system and the
corresponding three reduced models obtained in this paper
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Figure 3: Output errors between the original system and the 3rd
model.
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Figure 4: Output errors between the original system and the 2nd
model.

(shown by the blue line) and the literature [31] (shown by the
red line) are displayed in Figures 3, 4, and 5. The switching
signal is shown in Figure 6. The simulation result of the
switched system is shown in Figures 3–5. It can be seen from
Figures 3–5 that the output errors between the original system
and the reduced-order models obtained in this paper are
smaller than that in [31].

6. Conclusions

The problem of exponential stability with 𝐻
∞

performance
and 𝐻

∞
model reduction for a class of switched linear

discrete-time systems with time-varying delay have been
investigated in this paper. The switching law is given by
ADT technique, such that even if one or more subsystem is
unstable the overall switched system can still be exponentially
stable. Sufficient conditions for the existence of the desired
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Figure 5: Output errors between the original system and the 1st
model.
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Figure 6: Switching law.

reduced-order model are derived and formulated in terms
of strict LMIs. By solving the LMIs, the system of reduced-
order model can be obtained, which also provides an 𝐻

∞

gain for the error system between the original system and the
reduced-order model. Finally, numerical examples are pro-
vided to illustrate the effectiveness and less conservativeness
of the proposedmethod. A potential extension of thismethod
to nonlinear case deserves further research.
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Considering the load frequency control (LFC) of large-scale power system, a robust distributedmodel predictive control (RDMPC)
is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints
(GRC) is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem
is formulated as convex optimization problem with linear matrix inequalities (LMI) that can be solved efficiently. It minimizes an
upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness
in the presence of power system dynamic uncertainties.

1. Introduction

The load frequency control (LFC) has long been a much
concerned research interest for power system engineers over
the past forty years [1]. In modern power system, undesirable
frequency and scheduled tie-line power changes in multiarea
power system are a direct result of the imbalance between
generated power and system demand plus associated system
losses. The main objectives of the LFC are to keep the system
frequency at the scheduled value and regulate the generator
units to make the area control error tend to zero under the
continuous adjustment of active power, so that the generation
of the entire system and the load power well match.

In a practical power system, there exist different kinds
of uncertainties, such as changes in parameter. And each
control area contains various disturbances due to increased
complexity, system modeling errors, and changing power
system structure. Thus the robustness must be taken into
theoretical consideration in the LFC design procedure to
promise high power quality. A fixed controller based on
classical theory is not very suitable for the LFC problem. It
is necessary that a flexible controller should be developed
[2–4]. Robust LFC was early designed based on the Riccati

equation approach [5], which is simple and effective and can
ensure the overall system to be asymptotically stable for all
admissible uncertainties. Motivated by the large uncertainty
in dynamic models of power system components and their
interconnections, paper [6] proposes a physically motivated
passivity objective as a means to achieve effective closed-loop
control. Recently, robust LFC can be realized using linear
matrix inequalities [7], fuzzy logic [8], neural networks [9],
and genetic algorithms [10].

Model predictive control (MPC) has been an attracting
method for power systemLFC,which can perform an optimi-
zation procedure to calculate optimal control actions within
the realistic power system constrains. In LFC research, there
is the practical limit on the rate of change in the generating
power, called the generation rate constraints (GRC), which
can result in the LFC to be a constraint optimal problem.
Traditional MPC is unable to explicitly incorporate plant
uncertainty. Thus, robust MPC has been well developed
recently [11, 12].

Most existing MPCs assume that all subsystems are
identical, which is not the case of actual power systems. Sub-
sequently, a number of decentralized/distributed load fre-
quency controllers were developed to eliminate the above
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drawback. In [13], the distributed model predictive control
(DMPC) is used in LFC, which offers an effective means
of achieving the desired controller coordination and per-
formance improvements. A decentralized MPC framework
for multiarea power system has been presented in [14].
Accordingly, the robustness of DMPC strategies to model
errors has been identified as a key factor for the successful
application of DMPC [15].

In this paper, a robust distributed MPC (RDMPC)
strategy for load frequency control in interconnected power
system is presented. The entire power system is composed
of several subareas and the problem is formulated as convex
optimization problem with linear matrix inequalities (LMI)
that can be solved efficiently using the algorithm.Themethod
shows good dynamic response and robustness in the presence
of power system model dynamic uncertainties.

2. Mathematical Model of Power System

The interconnected power system consists of at least two
control areas connected by tie lines. Usually the subsystem
contains thermal power system, hydro power system, nuclear
power system, and renewable power system, inwhich thermal
power system and hydro power system generally participate
in load frequency control. Figures 1 and 2 show, respectively,
the structures of thermal power plant and hydro power plant
in power system LFC. The original model has been given in
[16]. Comparing to [16], the model in this article contains
the reheater part, which is quite common in modern thermal
power plant. Each control area has its own controller. The
variables and parameters are given in Table 1.

When load change happens in one area, all the intercon-
nected areas will be affected, and the controllers act to adjust
the frequency deviation and tie-line active power to return
to steady state. The LFC using RDMPC will be applied to the
whole control areas.

The time-varying linearized mathematical model of ther-
mal andhydro plant used in interconnected power systemcan
be described as

̇x
𝑖
(𝑡) = A

𝑖𝑖
(𝑡) x

𝑖
(𝑡)

+ ∑

𝑗

A
𝑖𝑗
(𝑡) x

𝑗
(𝑡) + B

𝑖𝑖
(𝑡) u

𝑖
(𝑡) + F

𝑖𝑖
(𝑡) d

𝑖
(𝑡) ,

(1)

where 𝑖 represents the control area; x
𝑖
∈ R𝑛𝑖 , u

𝑖
∈ R𝑚𝑖 , and

d
𝑖
∈ R𝑧𝑖 represent the state, input, and disturbance vector in

the 𝑖’s subsystem, respectively. x
𝑗
∈ R𝑛𝑗 is a state vector of the

neighbor system.
Define the area control error (ACE) to be

ACE
𝑖
= y
𝑖
(𝑡) = C

𝑖𝑖
x
𝑖
(𝑡) = 𝐵

𝑖
Δ𝑓
𝑖
(𝑡) + Δ𝑃tie𝑖 (𝑡) , (2)

where y
𝑖
∈ RV𝑖 represents system output signal. Matrices in

(1) and (2) have dimensions

A
𝑖𝑖
∈ R

𝑛𝑖×𝑛𝑖
, A

𝑖𝑗
∈ R

𝑛𝑖×𝑛𝑗
, B

𝑖𝑖
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𝑛𝑖×𝑚𝑖
,

F
𝑖𝑖
∈ R

𝑛𝑖×𝑧𝑖
, C

𝑖𝑖
∈ R

V𝑖×𝑛𝑖
.

(3)

In Figure 1, the state variable in the thermal power system
is

x
𝑖
(𝑡) = [Δ𝑓𝑖 (

𝑡) Δ𝑃tie𝑖 (𝑡) Δ𝑃𝑔𝑖 (𝑡) Δ𝑋𝑔𝑖 (𝑡) Δ𝑃𝑟𝑖 (𝑡)]
𝑇

;

(4)

while the state variable in the hydro power system is

x
𝑖
(𝑡) = [Δ𝑓𝑖 (

𝑡) Δ𝑃tie𝑖 (𝑡) Δ𝑃𝑔𝑖 (𝑡) Δ𝑋𝑔𝑖 (𝑡) Δ𝑋𝑔ℎ𝑖 (𝑡)]
𝑇

.

(5)

The control signal and disturbance in both the thermal
power system and the hydro power system are as follows:

u
𝑖
(𝑡) = Δ𝑃

𝑐𝑖
(𝑡) , d

𝑖
(𝑡) = Δ𝑃

𝑑𝑖
(𝑡) . (6)

The state, control, and disturbance matrix in thermal
power system are
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(7)

while the state, control, and disturbance matrix in hydro
power system are
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(8)



Mathematical Problems in Engineering 3

Kpi

1 + sTpi

Bi

1

Ri

+

+ +
+

MPC
ui

−

−

−
1

1 + sTGi

ΔXgi

Δf
i

1

1 + sTTi

ΔPdi

ΔPgiΔPri
Tri1 + sKri

Tri1 + s

ACEi

ΔPtie i

Tsij

s

Figure 1: The block diagram of thermal power plant in area 𝑖.
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where 𝛼 = 𝑇
𝑅𝑖
/𝑇
1𝑖
𝑇
2𝑖
𝑅
𝑖
, 𝛽 = (𝑇
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Here 𝐴
𝑖𝑗
have 5 × 5 dimensions. All their elements are

equal to zero, except for the element at position (1, 2), which
is equal to −𝑇

𝑠𝑖𝑗
.

For the whole power system, the state-space equation is
as follows:

̇x (𝑡) = A (𝑡) 𝑥 (𝑡) + B (𝑡) 𝑢 (𝑡) + F (𝑡) 𝑑 (𝑡) ,

y (𝑡) = C (𝑡) 𝑥 (𝑡) ,
(9)

where
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This is a general continuous-time linear system with
added disturbance. 𝑀 is the number of control areas of the
interconnected power system.After using the zero-order hold
(ZOH) discretization method, each control area’s distributed
discrete-time linear model is expressed as follows:

𝑥
𝑖
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(11)

From (11), the polytopic model of each control area is

[𝐴
𝑖𝑖
(𝑘) 𝐵

𝑖𝑖
(𝑘) ⋅ ⋅ ⋅ 𝐴

𝑖𝑗
(𝑘) 𝐵

𝑖𝑗
(𝑘) ⋅ ⋅ ⋅ ]

=

𝐿

∑

ℓ=1

𝛽
ℓ
[𝐴
(ℓ)

𝑖𝑖
𝐵
(ℓ)

𝑖𝑖
⋅ ⋅ ⋅ 𝐴

(ℓ)

𝑖𝑗
𝐵
(ℓ)

𝑖𝑗
⋅ ⋅ ⋅ ] ∈ Ω

∀𝑗 ∈ {1, . . . ,𝑀} , 𝑗 ̸= 𝑖.

(12)
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Table 1: Variables and parameters used in thermal and hydro power plant.

Parameter/variable Description Unit
Δ𝑓 (𝑡) Frequency deviation Hz
Δ𝑃
𝑔
(𝑡) Generator output power deviation p.u.MW

Δ𝑋
𝑔
(𝑡) Governor valve position deviation p.u.

Δ𝑃
𝑟
(𝑡) Reheater output deviation p.u.

Δ𝑋
𝑔ℎ
(𝑡) Governor valve servomotor position deviation p.u.

Δ𝑃tie (𝑡) Tie-line active power deviation p.u.MW
Δ𝑃
𝑑
(𝑡) Load disturbance p.u.MW

Δ𝛿 (𝑡) Rotor angle deviation rad
𝐾
𝑃

Power system gain Hz/p.u.MW
𝐾
𝑟

Reheater gain p.u.
𝑇
𝑃

Power system time constant s
𝑇
𝑊

Water starting time s
𝑇
1
, 𝑇
2
, 𝑇
𝑅

Hydrogovernor time constants s
𝑇
𝐺

Thermal governor time constant s
𝑇
𝑇

Turbine time constant s
𝑇
𝑟

Reheater time constant s
𝑇
𝑠

Interconnection gain between CAs p.u.MW
𝐵 Frequency bias factor p.u.MW/Hz
𝑅 Speed droop due to governor action Hz/p.u.MW
ACE Area control error p.u.MW

𝐴
𝑖𝑖
(𝑘), 𝐵

𝑖𝑖
(𝑘), 𝐴

𝑖𝑗
(𝑘), 𝐵

𝑖𝑗
(𝑘), and 𝐶

𝑖𝑖
are the relative

matrices in the discrete-time model (11). Ω is the model
parameter uncertainty set. 𝛽

ℓ
’s are used to represent a convex

combination of the model vertices since the convex hull
(the polytope) is the extreme model vertices. Each vertex ℓ
corresponds to a linear model. The states are assumed to be
available.

3. Robust Distributed Model Predictive
Control Algorithm

Considering the distributed discrete-time power system
model (11), the min-max problem to be solved for each
subsystem is expressed as

min
𝑢𝑖(𝑘+𝑙|𝑘)

max
[
̃
𝐴𝑖𝑖(𝑘+𝑙)𝐵𝑖𝑖(𝑘+𝑙)⋅⋅⋅

̃
𝐴𝑖𝑗(𝑘+𝑙)𝐵𝑖𝑗(𝑘+𝑙)⋅⋅⋅ ], 𝑙≥0

𝐽
𝑖
(𝑘) (13)

s.t. 

𝑢
𝑖
(𝑘 + 𝑙 | 𝑘)





≤ 𝑢

max
𝑖
, 𝑙 ≥ 0, (14)

where 𝐽
𝑖
(𝑘) is an object function for subsystem 𝑖 to guarantee

the cooperation of subsystem controllers, defined as

𝐽
𝑖
(𝑘) =

∞

∑

𝑙=0

[𝑥


𝑖
(𝑘 + 𝑙 | 𝑘) 𝑆

𝑖
𝑥
𝑖
(𝑘 + 𝑙 | 𝑘)

+ 𝑢


𝑖
(𝑘 + 𝑙 | 𝑘) 𝑅

𝑖
𝑢
𝑖
(𝑘 + 𝑙 | 𝑘)]

+

𝑀

∑

𝑗 ̸= 𝑖

∞

∑

𝑙=0

[𝑥


𝑗
(𝑘 + 𝑙 | 𝑘) 𝑆

𝑗
𝑥
𝑗
(𝑘 + 𝑙 | 𝑘)

+ 𝑢


𝑗
(𝑘 + 𝑙 | 𝑘) 𝑅

𝑗
𝑢
𝑗
(𝑘 + 𝑙 | 𝑘)] ,

(15)

where 𝑥
𝑖
(𝑘 + 𝑙 | 𝑘) and 𝑢

𝑖
(𝑘 + 𝑙 | 𝑘) are the predicted state and

input variables for the 𝑖th subsystem at time instant 𝑘+𝑙, 𝑙 ≥ 0,
based on data at time 𝑘. 𝑆

𝑖
, 𝑅
𝑖
, 𝑆
𝑗
, and 𝑅

𝑗
are the weighting

matrices.
The maximization is to choose time-varying model

[𝐴
𝑖𝑖
(𝑘+𝑙)𝐵

𝑖𝑖
(𝑘+𝑙) ⋅ ⋅ ⋅ 𝐴

𝑖𝑗
(𝑘+𝑙)𝐵

𝑖𝑗
(𝑘+𝑙) ⋅ ⋅ ⋅ ] in the uncertainty

set Ω to get the worst situation of 𝐽
𝑖
(𝑘), and this worst

situation will be minimized on the current and the future
horizons.

To solve the optimal problem (13), it is necessary to find
an upper bound of the object function (15). Considering the
quadratic function

𝑉
𝑖
(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥, 𝑃

𝑖
> 0, (16)

where 𝑥 = [𝑥
1
𝑥


2
⋅ ⋅ ⋅ 𝑥



𝑀
]

. For all the subsystem 𝑖, 𝑉
𝑖
(𝑥)

should satisfy the following stability constraint:

𝑉
𝑖
(𝑥 (𝑘 + 𝑙 + 1 | 𝑘)) − 𝑉

𝑖
(𝑥 (𝑘 + 𝑙 | 𝑘))

≤ − [𝑥


𝑖
(𝑘 + 𝑙 | 𝑘) 𝑆

𝑖
𝑥
𝑖
(𝑘 + 𝑙 | 𝑘)

+ 𝑢


𝑖
(𝑘 + 𝑙 | 𝑘) 𝑅

𝑖
𝑢
𝑖
(𝑘 + 𝑙 | 𝑘)

+

𝑀

∑

𝑗 ̸= 𝑖

(𝑥


𝑗
(𝑘 + 𝑙 | 𝑘) 𝑆

𝑗
𝑥
𝑗
(𝑘 + 𝑙 | 𝑘)

+𝑢


𝑗
(𝑘 + 𝑙 | 𝑘) 𝑅

𝑗
𝑢
𝑗
(𝑘 + 𝑙 | 𝑘))] .

(17)

For 𝑙 = 0, 1, . . . ,∞, the accumulation of (17) is

𝑉
𝑖
(𝑥 (𝑘 | 𝑘)) ≥ 𝐽

𝑖
(𝑘) . (18)
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So the upper bound of object function can be proved to
be

max
[
̃
𝐴𝑖𝑖(𝑘+𝑙)𝐵𝑖𝑖(𝑘+𝑙)⋅⋅⋅

̃
𝐴𝑖𝑗(𝑘+𝑙)𝐵𝑖𝑗(𝑘+𝑙)⋅⋅⋅ ], 𝑙≥0

𝐽
𝑖
(𝑘) ≤ 𝑉

𝑖
(𝑥 (𝑘 | 𝑘)) . (19)

A state-feedback law is sought for each subsystem 𝑖 as
follows:

𝑢
𝑖
(𝑘 + 𝑙 | 𝑘) = 𝑓

𝑖𝑖
𝑥
𝑖
(𝑘 + 𝑙 | 𝑘) +

𝑀

∑

𝑗 ̸= 𝑖

𝑓
𝑖𝑗
𝑥
𝑗
(𝑘 + 𝑙 | 𝑘)

= 𝑓
𝑖
𝑥 (𝑘 + 𝑙 | 𝑘) ,

(20)

where 𝑓
𝑖
= [𝑓

𝑖1
𝑓
𝑖2
⋅ ⋅ ⋅ 𝑓

𝑖𝑀
].

When solving optimization problem of the subsystem 𝑖,
the state-feedback law of the neighboring subsystem 𝑗 (𝑗 ̸= 𝑖)

is expressed as

𝑢
𝑗
(𝑘 + 𝑙 | 𝑘) = 𝑓

∗

𝑗𝑗
𝑥
𝑗
(𝑘 + 𝑙 | 𝑘) +

𝑀

∑

𝑗 ̸= 𝑠

𝑓
∗

𝑗𝑠
𝑥
𝑠
(𝑘 + 𝑙 | 𝑘)

= 𝑓
∗

𝑗
𝑥 (𝑘 + 𝑙 | 𝑘) ,

(21)

where 𝑓∗
𝑗
= [𝑓

∗

𝑗1
𝑓
∗

𝑗2
⋅ ⋅ ⋅ 𝑓

∗

𝑗𝑀
].

The RDMPC algorithm will be redefined using state-
feedback law (20) to minimize the upper bound

min
𝑢𝑖(𝑘+𝑙|𝑘)

𝑉
𝑖
(𝑥 (𝑘 | 𝑘)) = min

𝑓𝑖

𝑥


(𝑘 | 𝑘) 𝑃
𝑖
𝑥 (𝑘 | 𝑘) , 𝑃

𝑖
> 0.

(22)

For the whole power system, the expression of 𝑥 is

𝑥 (𝑘 + 1) =

[

[

[

[

[

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

...
𝑥
𝑀
(𝑘 + 1)

]

]

]

]

]

=

[

[

[

[

[

𝐴
11
(𝑘) 𝐴

12
(𝑘) ⋅ ⋅ ⋅ 𝐴

1𝑀
(𝑘)

𝐴
21
(𝑘) 𝐴

22
(𝑘) ⋅ ⋅ ⋅ 𝐴

2𝑀
(𝑘)

...
...

...
𝐴
𝑀1
(𝑘) 𝐴

𝑀2
(𝑘) ⋅ ⋅ ⋅ 𝐴

𝑀𝑀
(𝑘)

]

]

]

]

]

[

[

[

[

[

𝑥
1
(𝑘)

𝑥
2
(𝑘)

...
𝑥
𝑀
(𝑘)

]

]

]

]

]

+

[

[

[

[

[

𝐵
11
(𝑘)

𝐵
21
(𝑘)

...
𝐵
𝑀1
(𝑘)

]

]

]

]

]

𝑢
1
(𝑘) +

[

[

[

[

[

𝐵
12
(𝑘)

𝐵
22
(𝑘)

...
𝐵
𝑀2
(𝑘)

]

]

]

]

]

𝑢
2
(𝑘)

+ ⋅ ⋅ ⋅ +

[

[

[

[

[

𝐵
1𝑀
(𝑘)

𝐵
2𝑀
(𝑘)

...
𝐵
𝑀𝑀

(𝑘)

]

]

]

]

]

𝑢
𝑀
(𝑘) .

(23)

Define

𝐴 (𝑘) =

[

[

[

[

[

𝐴
11
(𝑘) 𝐴

12
(𝑘) ⋅ ⋅ ⋅ 𝐴

1𝑀
(𝑘)

𝐴
21
(𝑘) 𝐴

22
(𝑘) ⋅ ⋅ ⋅ 𝐴

2𝑀
(𝑘)

...
...

...
𝐴
𝑀1
(𝑘) 𝐴

𝑀2
(𝑘) ⋅ ⋅ ⋅ 𝐴

𝑀𝑀
(𝑘)

]

]

]

]

]

, (24)

𝐵
𝑖
(𝑘) =

[

[

[

[

[

𝐵
1𝑖
(𝑘)

𝐵
2𝑖
(𝑘)

...
𝐵
𝑀𝑖
(𝑘)

]

]

]

]

]

. (25)

Using (20) and (21), the state (23) can be simplified as

𝑥 (𝑘 + 1) = [𝐴 (𝑘) + 𝐵
𝑖
(𝑘) 𝑓

𝑖
] 𝑥 (𝑘) (26)

in which 𝐴(𝑘) = 𝐴(𝑘) + ∑𝑀
𝑗 ̸= 𝑖

𝐵
𝑗
(𝑘)𝑓

∗

𝑗
.

The robust stability constraint in (17) becomes

[𝐴

(ℓ)

(𝑘 + 𝑙) + 𝐵
(ℓ)

𝑖
(𝑘 + 𝑙) 𝑓

𝑖
]



× 𝑃
𝑖
[𝐴

(ℓ)

(𝑘 + 𝑙) + 𝐵
(ℓ)

𝑖
(𝑘 + 𝑙) 𝑓

𝑖
] − 𝑃

𝑖

≤ −(𝑆
𝑖
+

𝑀

∑

𝑗 ̸= 𝑖

𝑓
∗

𝑗
𝑅
𝑗
𝑓
∗

𝑗
+ 𝑓


𝑖
𝑅
𝑖
𝑓
𝑖
) ,

(27)

where

𝑆
𝑖
=

[

[

[

[

𝑆
1

𝑆
2

d
𝑆
𝑀

]

]

]

]

. (28)

By defining an upper bound,

𝐽
𝑖
(𝑘) ≤ 𝑉

𝑖
(𝑥 (𝑘 | 𝑘)) ≤ 𝛾

𝑖
. (29)

The optimal problem (22) is equivalent to

min
𝛾𝑖 ,𝑃𝑖

𝛾
𝑖

s.t. 𝑥


(𝑘 | 𝑘) 𝑃
𝑖
𝑥 (𝑘 | 𝑘) ≤ 𝛾

𝑖
.

(30)

Substituting 𝑃
𝑖
= 𝛾

𝑖
𝑄
−1

𝑖
> 0, 𝑌

𝑖
= 𝑓

𝑖
𝑄
𝑖
, with the input

constraints given in (13) and the stability constraint (27),
followed by a Schur complement decomposition, the min-
imization of 𝐽

𝑖
(𝑘) can be replaced by the minimization
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problem (30) as in the following linearminimization problem
with LMI constraints:

min
𝛾𝑖,𝑃𝑖 ,𝑄𝑖

𝛾
𝑖

s.t. [
1 𝑥



(𝑘 | 𝑘)

𝑥 (𝑘 | 𝑘) 𝑄
𝑖

] ≥ 0,

[

[

[

[

[

[

[

𝑄
𝑖

𝑄
𝑖
𝐴

(ℓ)

+ 𝑌


𝑖
𝐵
(ℓ)

𝑖
𝑄
𝑖
𝑆

1/2

𝑖
𝑌
𝑖
𝑅
1/2

𝑖

𝐴

(ℓ)

𝑄
𝑖
+ 𝐵
(ℓ)

𝑖
𝑌
𝑖

𝑄
𝑖

0 0

𝑆

1/2

𝑖
𝑄
𝑖

0 𝛾
𝑖
𝐼 0

𝑅
1/2

𝑖
𝑌
𝑖

0 0 𝛾
𝑖
𝐼

]

]

]

]

]

]

]

≥ 0

ℓ = 1, 2, . . . , 𝐿,

[

(𝑢
max
𝑖
)
2

𝐼 𝑌
𝑖

𝑌


𝑖
𝑄
𝑖

] ≥ 0.

(31)

For the constraints on power system state

max
[
̃
𝐴𝑖𝑖(𝑘+𝑙)𝐵𝑖𝑖(𝑘+𝑙)⋅⋅⋅

̃
𝐴𝑖𝑗(𝑘+𝑙)𝐵𝑖𝑗(𝑘+𝑙)⋅⋅⋅ ]∈Ω, 𝑙≥0





𝑦
𝑖
(𝑘 + 𝑙 | 𝑘)




2
≤ 𝑦
𝑖,max.

(32)

Transform it to LMI form as

[

[

𝑄
𝑖

(𝐴

(ℓ)

𝑄
𝑖
+ 𝐵
(ℓ)

𝑖
𝑌
𝑖
)



𝐶


𝑖𝑖

𝐶
𝑖𝑖
(𝐴

(ℓ)

𝑄
𝑖
+ 𝐵
(ℓ)

𝑖
𝑌
𝑖
) 𝑦

2

𝑖,max𝐼

]

]

≥ 0

ℓ = 1, 2, . . . , 𝐿.

(33)

4. The Simulation

Two examples are considered to demonstrate the effective-
ness of the proposed RDMPC. In the first one, the RDMPC
is utilized in a two-control area thermal power system, while
in the second one, a three-area thermal-hydro power system
is considered.

Case 1 (a two-control area thermal power system). A two-
control area thermal power system is shown in Figure 3. The
parameters used in the simulation is as follows:

𝐾
𝑃1
= 120Hz/p.u.MW; 𝐾

𝑃2
= 75Hz/p.u.MW;

𝑇
𝑃1
= 20 s; 𝑇

𝑃2
= 15 s; 𝐾

𝑟1
= 𝐾

𝑟2
= 0.5Hz/p.u.MW;

𝑅
1
= 2.4Hz/p.u.MW; 𝑅

2
= 3Hz/p.u.MW;

𝐵
1
= 0.425 p.u.MW/Hz; 𝐵

2
= 0.347 p.u.MW/Hz;

𝑇
𝐺1
= 0.08 s; 𝑇

𝐺2
= 0.2 s; 𝑇

𝑇1
= 𝑇
𝑇2
= 0.3 s;

𝑇
𝑠12
= 0.545 p.u.MW; 𝑇

𝑟1
= 𝑇
𝑟2
= 10 s.

(34)

The power system model in Figure 1 with included GRC
is shown in Figure 4. In simulations, GRC was set to |Δ ̇𝑃

𝑔𝑖
| ≤

𝑟 = 0.0017 p.u.MW/s.

Thermal
power
system

Thermal
power
system

Figure 3: The two-control area interconnected thermal power
system.

ΔXgi
ΔPgi1

TTi−+

GRC

1

s

Figure 4: GRC in power system LFC.

In real time power system LFC, the power system time
constant 𝑇

𝑃
and turbine time constant 𝑇

𝑇
can change fre-

quently. Thus the robustness study is performed by applying
intentional changes in these two parameters. The maximum
range of parameter variation is chosen to be 40%. The poly-
topic of uncertain LFC system has four vertices, which are

𝐴
(1)

𝑖
(0.6𝑇

𝑃𝑖
, 0.6𝑇

𝑇𝑖
) ; 𝐴

(2)

𝑖
(1.4𝑇

𝑃𝑖
, 1.4𝑇

𝑇𝑖
) ;

𝐴
(3)

𝑖
(0.6𝑇

𝑃𝑖
, 1.4𝑇

𝑇𝑖
) ; 𝐴

(4)

𝑖
(1.4𝑇

𝑃𝑖
, 0.6𝑇

𝑇𝑖
) .

(35)

Under the parameter changes, the performance of the
RDMPC is assessed by applying load disturbance. At 𝑡 = 2 s,
a step load disturbance on control area is added to be Δ𝑃

𝑑1
=

0.01 p.u. Choose the sample time to be 𝑇
𝑠
= 0.1 s, 𝑆

𝑖
= 1, and

𝑅
𝑖
= 0.05.
The proposed RDMPC is compared with two other

schemes, for example, the conventional robust centralized
MPC, which solves themin-max optimization problem using
the centralized model by the formulation of a linear matrix
inequality and also with the communicated-based MPC,
which utilizes the objective function for local subsystem only.
Figures 5, 6, and 7 show the comparison results of the ACE
signals, the frequency deviations, and the tie-line power flow,
respectively. It is clear that the proposed RDMPC has the best
performance, since the MPC controllers cooperate with each
other in achieving system-wide objectives. The performance
of the robust centralized MPC is quite close to that of the
RDMPC, since it is also robust to parameter changes. The
only shortcoming of the centralized MPC is its high compu-
tation burden. The performance of the communicated-based
MPC is the worst, since it can neither realize the cooperation
of the subsystems nor adapt to parameter changes.

Case 2 (a three-area thermal-hydro power system). The
three-control area interconnected power system containing
thermal and hydro power plant is showed in Figure 8.

The power systemmodel in Figures 1 and 2 with included
GRC in hydro power plant is shown in Figure 9, where
|Δ ̇𝑃
𝑔𝑖
| ≤ 𝑟 = 0.045 p.u.MW/s.
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Figure 11: The frequency deviation in the three-area thermal-hydro power system.

The parameters used in the simulation are as follows:
𝐾
𝑃1
= 120Hz/p.u.MW; 𝐾

𝑃3
= 115Hz/p.u.MW;

𝐾
𝑃3
= 75Hz/p.u.MW; 𝑇

𝑃1
= 20 s; 𝑇

𝑃2
= 20 s;

𝑇
𝑃3
= 15 s; 𝐾

𝑟1
= 𝐾

𝑟3
= 0.5Hz/p.u.MW;

𝑅
1
= 2.4Hz/p.u.MW; 𝑅

2
= 2.5Hz/p.u.MW;

𝑅
3
= 3Hz/p.u.MW; 𝐵

1
= 0.425 p.u.MW/Hz;

𝐵
2
= 0.494 p.u.MW/Hz; 𝐵

3
= 0.347 p.u.MW/Hz;

𝑇
𝑅2
= 0.6 s; 𝑇

1(2)
= 48.7 s; 𝑇

2(2)
= 5 s;

𝑇
𝑊2

= 1 s; 𝑇
𝐺1
= 0.08 s; 𝑇

𝐺3
= 0.2 s;

𝑇
𝑇1
= 𝑇
𝑇3
= 0.3 s; 𝑇

𝑟1
= 𝑇
𝑟3
= 10 s;

𝑇
𝑠12
= 0.545 p.u.MW; 𝑇

𝑠23
= 0.545 p.u.MW.

(36)
Since the maximum range of parameter variation is also

chosen to be 40% for hydro power system, the polytope is

𝐴
(1)

2
(0.6𝑇

𝑃2
) ; 𝐴

(2)

2
(1.4𝑇

𝑃2
) . (37)

At 𝑡 = 1 s, a step load disturbance on control area 1 is
added as Δ𝑃

𝑑1
= 0.01 p.u., and at 𝑡 = 10 s, a step load

disturbance on control area 3 is added as Δ𝑃
𝑑3
= −0.01 p.u.

Figures 10 and 11 show the comparison results of the ACE
signals and the frequency deviations, demonstrating clearly
the advantage of the proposed RDMPC.

5. Conclusion

In this paper, a robust distributed MPC scheme for load
frequency control of interconnected power system is pre-
sented. The overall system consisted of at least two control
areas, which either can be thermal-thermal power system
or thermal-hydro power system. Each control area has its
own polytopic distributed model in order to consider the
uncertainty because of parameter variation. A min-max cost
function is used for the optimization problem, and the LMI
method is involved to solve this problem. The simulation
results illustrate the advantage of the proposed RDMPC, due
to its cooperative function.Thus it is suitable for LFCof power
system, which is large-scale complex system and subject to
parameter uncertainty.
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In order to improve the dynamic performance of high precision interferometer fiber optic gyroscope (IFOG), the influencing factors
of the fast response characteristics are analyzed based on a proposed assistant design setup, and a high dynamic detection method
is proposed to suppress the adverse effects of the key influencing factors. The assistant design platform is built by using the virtual
instrument technology for IFOG, which can monitor the closed-loop state variables in real time for analyzing the influence of both
the optical components and detection circuit on the dynamic performance of IFOG.The analysis results indicate that nonlinearity of
optical Sagnac effect, optical parameter uncertainty, dynamic characteristics of internal modules and time delay of signal detection
circuit are themajor causes of dynamic performance deterioration, which can induce potential system instability in practical control
systems. By taking all these factors into consideration, we design a robust control algorithm to realize the high dynamic closed-
loop detection of IFOG. Finally, experiments show that the improved 0.01 deg/h high precision IFOG with the proposed control
algorithm can achieve fast tracking and good dynamic measurement precision.

1. Introduction

Interferometer fiber optic gyroscope (IFOG) has become
a new and highly stable angular velocity sensor with the
development of optical fiber sensing technology [1, 2]. IFOG
is very competitive in the field of inertial device, owing to
its advantages over traditional inertial devices, such as no
moving parts, simpler structure, higher detection accuracy,
and better reliability [3, 4].

As digital closed-loop detection scheme becomes the
mainstream of current high precision IFOG scheme, opti-
mization of closed-loop control algorithm is of great signif-
icance for improving performance in temperature and vibra-
tion environment [5, 6]. In [7], Spammer and Swart analyzed
the influence of loop gain on the dynamic characteristic
of system and investigated a control algorithm to eliminate
steady-state error. Japan Aviation Electronics Industry Lim-
ited (JEA) corporation from Japan focused on the winding
method of optical fiber coil and closed-loop control technol-
ogy to improve the temperature and vibration characteristics
[8]. An implemented signal processing scheme was proposed

to promote the reduction of the source intensity noise around
the proper frequency of birefringent IFOG for a better signal-
to-noise ratio [9]. Thus, the importance of optimization of
closed-loop control algorithm is apparent in order to further
enhance the system performance.

However, the closed-loop control period of IFOG is in
a time scale of several microseconds, while the refresh time
of the system output is in a time scale of milliseconds [10,
11]. Hence, it is difficult to analyze the working process
of IFOG only by the test data of IFOG, especially in the
environment of high frequency vibration and shock. By
taking the environmental factors into consideration, Litef
GmbH established a simulation system for IFOG and opti-
mized the optical components and design of closed-loop
control [11, 12]. To realize the environmentally insensitive
IFOG, Honeywell International proposed a compensating
error component by testing the frequency responses of optical
path and closed-loop circuit [13]. However, if the inner
state variables of closed-loop detection system cannot be
monitored in real time, the influence of optical parameters
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Figure 1:The signal detection flowchart of the designed high precision IFOG,which includes a high pass filter to eliminate theDC component
in the interference intensity, demodulation, and a low-pass filter (LPF) to extract the modulated nonlinear closed-loop error precisely; a
closed-loop controller is needed to obtain the feedback of IFOG and to generate digital phase ramp.

and circuit parameters on the performance of high precision
IFOG cannot be analyzed accurately.

In addition, the optical parameters and circuit parameters
varying with time and environment can also cause the dete-
rioration of dynamic performance of high precision IFOG.
For improving the performance of IFOG, Honeywell Inter-
national proposed an apparatus for eliminating or reducing
vibration-induced errors by applying a variable weighting
function at the demodulator or analog-to-digital converter
to change the size of the demodulator reference signal or the
converter gain, respectively [14]. In respect of the temperature
dependency, a precision calibration procedure was described
for reducing the resulting errors [15]. In [16], a method
based on a radial basis function (RBF) neural network was
presented for dynamic angular velocity modeling and error
compensation. However, most of the above methods adopted
are to compensate error of IFOG according to the built model
based on closed-loop output of IFOG. And few works have
considered the optical parameters and circuit parameters
uncertainty in the dynamic model of the closed-loop system,
so that performance of IFOG may not be able to be con-
trolled precisely due to parameter variance with time and
environment in engineering practice. With this background,
we study the high dynamic model of IFOG with parameters
uncertainty and design robust control algorithm to suppress
the influence of parameters uncertainty for improving the
dynamic characteristics of high precision IFOG.

In this paper, we establish an assistant design platform
for high precision IFOG by using the virtual instrument
technology, which can monitor the real-time closed-loop
state variables and test the dynamic performance of closed-
loop system. With the assistant design platform, we analyze
the influence of optical sensing and detection circuit on the
dynamic performance of high precision IFOG. Furthermore,
with the consideration of these factors, the high dynamic
mathematic model of IFOG with parameters uncertainty is
derived and a robust controller is designed to enhance the
dynamic measurement performance of high precision IFOG
for applications in navigation and aerospace fields.

2. Analysis Setup of Dynamic Performance
of IFOG

Theoptical path scheme for high precision IFOG is illustrated
in Figure 1. The light from the light source is split by the
coupler into two beams, one of which is propagating into
integrated optical modulator (IOPM). The light polarized by
the IOPM is divided into two light beams that pass through
the fiber coil clockwise and anticlockwise, respectively. With
the induced Sagnac phase Δ𝜑

𝑠
, the two beams of light

interfere coherently at the IOPM. The time of the light
propagating through the fiber coil is 𝜏, which restricts the
minimum closed-loop period.

To achieve higher accuracy in angular velocity measure-
ment, we design a signal detection scheme, and the working
diagram of the closed-loop detection for IFOG is shown in
Figure 1. With the square wave modulation and the phase
ramp feedback, the interference intensity can be given by

𝐼 = 𝛼𝐼
0
{1 + 𝑓

𝑏
(𝑡) ⋅ sin [Δ𝜑

𝑠
(𝑡) − Δ𝜑

𝑓
(𝑡)]} , (1)

where 𝛼 is the total loss of the full optical path, 𝐼
0
is the output

power of the light source,Δ𝜑
𝑓
(𝑡) is the feedback phase stair of

the digital phase ramp used to counteractΔ𝜑
𝑠
(𝑡),Δ𝜑

𝑠
(𝑡) is the

Sagnac phase, and 𝑓
𝑏
(𝑡) is the modulating square wave with

amplitude ±1 and period 2𝜏. We here introduce a quantity
Δ𝜑 that represents the closed-loop error of the IFOG, which
is defined by Δ𝜑(𝑡) = Δ𝜑

𝑠
(𝑡) − Δ𝜑

𝑓
(𝑡).

To further improve the dynamic measurement precision
of IFOG, the influence of optical parameters and signal
detection circuits on dynamic performance should be ana-
lyzed. However, by the traditional analysis that is only
based on the output data of IFOG, the complex closed-
loop process of IFOG cannot be manifested. And it is also
difficult to assess and verify the influence of inner elements’
parameters of closed-loop system on the performance of
IFOG. In fact, it is difficult to experimentally analyze the
dynamic variation of error signal between input and output
signals, especially when the system is in high frequency
vibration and shock environment. In order to assess the
main factors that influence the dynamic characteristics and
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design setup of IFOG,which is composed of four parts: optical setup,
signal detection circuit, computer, and NI7852R with an embedded
high-speed FPGA.

to optimize the dynamic measurement performance of high
precision IFOG, we develop an assistant design setup based
on virtual instrument technology as illustrated in Figure 2.
The assistant design setup can achieve the high-speed closed-
loop control with microsecond closed-loop period to detect
interference intensity signal and exert the modulating square
wave and feedback phase ramp on IOPM. Besides, the
proposed detection setup can monitor the output signal of
detector and the closed-loop state variables in real time
through the digital communication between the embedded
high-speed field programmable gate array (FPGA) and the
personal computer.

The dynamic performance tests also can be conducted
based on this platform. The embedded high-speed FPGA
of national instruments (NI) 7852R is utilized to generate a
frequency adjustable and phase steerable excitation signal,
which is added to the stair ramp to substitute input angular
speed in considering the fact that stair ramp imposed on
IOPM can introduce phase shift with the same effect as
Sagnac phase.We can evaluate the dynamic characteristics by
comparing the excitation and output signals since the signal
processing unit can generate the excitation signal and process
the output data of IFOG simultaneously.

3. Analysis of Influencing Factors on
Dynamic Performance

3.1. Influence of Optical Characteristics on the Dynamic Perfor-
mance of High Precision IFOG. The output of photoelectric
detector, also served as the input of signal detection unit, is of
great importance to the stability and dynamic performance
of IFOG. From (1), it is noted that the optical characteristics
contain the interference intensity and the physical intrinsic
nonlinearity of interference link.

Due to the varying external environment factors, the
changing optical parameters result in the fluctuation of
interference intensity, such as the unavoidable light power
drift with temperature and the attenuation of light power
after long-termworking.We analyze the relationship between
the power variation of light source and the environmental
temperature, and the obtained experiment results are shown
in Figure 3. Together with the loss of light power in other
optical devices, the range of light power variation can reach
±10% under the condition of temperature varying from
−45∘C to +70∘C. As verified by the conducted experiments
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Figure 3:The results of experiment tests on the relationship between
the light power variation and temperature.

A

B
C

a

b
c

A(a) B(b) C(c)

Angular velocity
induced Sagnac phase

Modulating square wave

Figure 4: The principle of nonlinearity that influences the dynamic
performance of the IFOG that adopts the closed-loop scheme of
square wave modulation and feedback phase ramp.

based on the assistant design setup, we know that the
detection sensitivity of IFOG is not determined by the light
power, because the light power is translated into one factor
of the gain of forward chain, while the dynamic performance
of high precision IFOG is apparently different from the gain
variation of forward chain.

The interference link generates a nonlinear sine function,
which confines the IFOG’s dynamic measurement range.
Although the closed-loop scheme of square wavemodulation
and feedback phase ramp is adopted to suppress the closed-
loop error near the zero point and to improve the linear
characteristic, the IFOG system is a nonlinear system as
determined by (1). According to the working principle of our
scheme, the linear model used to approximate the nonlinear
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Figure 5: The testing principle of the frequency characteristic of the whole forward chain; (a) the signal observed at A point; (b) the signal
observed at C point.

system is effective only when the IFOG works near a balance
point, such as point A, as denoted in Figure 4. However,
when it works at the state of point B or point C due to
high frequency or high impulse angular velocity input, the
nonlinear characteristic of optical interference link can cause
the deterioration of dynamic performance and the potential
system instability. In engineering practice, IFOG is not able to
preciselymeasure the high frequency or high impulse angular
velocity signal due to the nonlinearity, whichmight also cause
system instability.

3.2. Influence of the Hardware Detection on the Dynamic Per-
formance of theHigh Precision IFOG. Theproposed detection
equipment for signal processing can be divided into three
parts: the forward chain, the feedback chain, andmodulation-
demodulation component. To improve the bandwidth of
the forward chain and eliminate the DC component of the
interference intensity signal, we design a high pass filter in the
forward chain. The dynamic characteristics and bandwidth
of the forward chain can significantly affect the dynamic
performance of the high precision IFOG. However, besides
the high pass filter and an A/D converter, the forward chain
also includes an optical device—photoelectric detector. It is
difficult to analyze the dynamic characteristics of forward
chain by using frequency characteristic analyzer.

To solve this problem, we use the assistant design setup to
measure the model of the whole forward chain. As illustrated
in Figure 5, the assistant design setup is utilized to generate
ramp signals at point A. The ramp signal is 𝑢(𝑡) = 2𝜋𝑓𝑡,

where 𝑓 is the frequency of target excitation signal. Then,
we make the ingenious application of the nonlinear char-
acteristic of interference link in translating the ramp signal
into a sinusoidal signal sin(2𝜋𝑓𝑡) at point B. The ramp
signal has to be reset periodically at the level of 2𝜋 when it
reaches the full scale of DA converter, and the digital signal
processor receives the interference signal synchronously at
point C. Moreover, the frequency of the sinusoidal signal is
controlled by the commercial software Laboratory Virtual
Instrument EngineeringWorkbench (LabVIEW) installed in
the computer.Thus the frequency characteristics of the whole
forward chain can be calculated based on the assistant design
setup.Theobtained results demonstrate that the bandwidth of
forward chain can reach 10MHz and satisfy the requirement
for high-frequency angular velocity measurement.

To accurately extract the closed-loop error, the output
of A/D converter is demodulated by multiplying a digital
square wave that has the same frequency and phase as that
of 𝑓
𝑏
(𝑡), and it also needs a low-pass filter to remove the high

frequency components and noise. The response function of
the designed low-pass filter is 𝐻(𝑧) = 1 + 𝛽

1
𝑧
−1

+ 𝛽
2
𝑧
−2

+

⋅ ⋅ ⋅ + 𝛽
𝑑
𝑧
−𝑑, where 𝑧−1 represents the time of one closed-loop

period and 𝛽
1
, . . . , 𝛽

𝑑
are the coefficients of filter. The higher

order of filter can arouse better signal to noise ratio. However,
the higher-order items of filter introduce larger time-delay
at the same time. The time-delay can intrinsically influence
the dynamic performance of the closed-loop system. The
feedback chain contains a D/A converter, a D/A drive circuit,
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and the previously mentioned IOPM. A 16 bit D/A converter
is adopted and its theoretical bandwidth is up to 50MHz.
The D/A drive circuit is essentially a translation circuit with
bandwidth designed as wide as possible and its practically
measured bandwidth is up to 4.547MHz. The IOPM is
a conversion circuit that can convert modulation voltage
into modulation phase shift and its modulation bandwidth
can reach as high as 1 GHz. So the feedback chain can be
considered as a linear module.

4. Mathematic Model Establishment and
Robust Control Algorithm Design

The analysis results about the dynamic performance of the
optical components and signal detection circuits of high pre-
cision IFOG are important for guiding the design of closed-
loop control algorithm. Prior to the question on how to
design an optimized control algorithm, we need to establish
themathematicmodel of the dynamic performance of closed-
loop system by taking the influencing factors into consid-
eration, which are obtained from the results of dynamic
performance analysis based on the assistant design setup.

Firstly, we analyze the forward chain where the influence
of optical parameter uncertainty works. Its bandwidth is
much larger than the required bandwidth of high precision
IFOG. Therefore the forward chain can be considered as
a proportional component with uncertain parameters. The
proportional factor of the forward chain, denoted as 𝑘

1
,

is determined not only by the parameters of detection
circuit but also by the interference intensity. We define the
variation of proportional factor 𝑘

1
as Δ𝑘
1
, which reflects the

effect of temperature drift on the forward channel. Because
the variation range of the gain of the forward channel is
bounded, we can denote Δ𝑘 = 𝐻𝐹𝐸, where 𝐻 and 𝐸 are
constant matrices with appropriate dimensions describing
the parameters’ variation of the optical path and detection
circuit caused by temperature drift in the forward channel,
respectively, and 𝐹 is an uncertain matrix with appropriate
dimension that satisfies 𝐹𝑇𝐹 ≤ 𝐼. As for the interference
intensity 𝐼

0
, the gain of high pass filter 𝑘

𝐻
, and the gain of

A/D converter 𝑘AD, respectively, we can derive 𝑘
1
= 𝐼
0
⋅

𝑘
𝐻
⋅ 𝑘AD. In the feedback chain, due to the limited range

of D/A converter, the digital phase is reset periodically at
the digital level of 2𝑛DA corresponding to 2𝜋, where 𝑛DA is
the conversion bit of the D/A converter. The proportional
factor of the feedback chain 𝑘

𝑚
is a constant value satisfying

𝑘
𝑚
= 2𝜋/2

𝑛DA
= 𝐾D/A ⋅ 𝐾dri ⋅ 𝐾IOPM, where 𝐾D/A, 𝐾dri,

and 𝐾IOPM are the proportional factors of D/A converter,
D/A drive circuit, and IOPM, respectively.Then, the feedback
phase can be described asΔ𝜑

𝑓
(𝑘) = 𝑘

𝑚
𝑢(𝑘), where 𝑢(𝑘) is the

linear controller described by 𝑢(𝑘) = −𝑘
𝑚
𝐾
𝑐
𝑥(𝑘). 𝐾

𝑐
∈ 𝑅
1×𝑛

is the feedback-gain matrix. The time-delay of the low-pass
filter is confined by the closed-loop period, and the nonlinear
characteristic of optical interference link deteriorates the high
precision IFOG’s dynamic performance.

Based on the proposed detection equipment, in con-
sideration of the influence of optical nonlinearity, optical
parameter uncertainty, and time-delay of low-pass filter,

the mathematic model of high precision IFOG can be
described by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵 (𝑘
1
+ Δ𝑘
1
) sin (−𝑘

𝑚
𝐾
𝑐
𝑥 (𝑘))

+ 𝐵 (𝑘
1
+ Δ𝑘
1
)

𝑑

∑

𝑖=1

𝛽
𝑖
sin (−𝑘

𝑚
𝐾
𝑐
𝑥 (𝑘 − 𝑖)) ,

(2)

where 𝑥 ∈ 𝑅𝑛 is the state vector with the initial condition
𝑥(𝑘
0
) for the zero sampling time,

𝐴 =

[

[

[

[

1 1 0 ⋅ ⋅ ⋅

0 1 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ 0 1

]

]

]

]

, 𝐵 =

[

[

[

[

0

0

⋅ ⋅ ⋅

1

]

]

]

]

. (3)

To extract the closed-loop error quickly and optimize the
dynamic response characteristic, we assume that the order of
low-pass filter is 𝑑 = 1.

Now, we investigate the method of designing feedback-
gain matrix 𝐾

𝑐
for improving the dynamic performance

of system (2) with the initial condition 𝑥(𝑘
0
). Before the

discussion of the main theorem for the design of feedback-
gain matrix, some useful definition and lemmas are first
elucidated.

Definition 1 (see [17]). System (2) is said to be exponentially
stable, if there exist some scalars 𝜅 ≥ 0 and 0 < 𝛼 < 1,
such that the solution 𝑥(𝑘) of system (2) satisfies ‖𝑥(𝑘)‖2 <
𝜅(1 − 𝛼)

𝑘−𝑘0
‖𝑥(𝑘
0
)‖
2, for all 𝑘 ≥ 𝑘

0
.

Lemma 2 (see [18] (the Schur complement)). For a given
symmetric matrix 𝑆 with the form 𝑆 = [𝑆

𝑖𝑗
], 𝑆
11
∈ 𝑅
𝑟×𝑟,

𝑆
12
∈ 𝑅
𝑟×(𝑛−𝑟), and 𝑆

22
∈ 𝑅
(𝑛−𝑟)×(𝑛−𝑟), 𝑆 < 0 if and only

if 𝑆
11
< 0, 𝑆

22
− 𝑆
21
𝑆
−1

11
𝑆
12
< 0 or 𝑆

22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
21
< 0.

Lemma 3 (see [18]). Suppose that 𝑥 ∈ 𝑅𝑝, 𝑦 ∈ 𝑅𝑞, and𝐻 and
𝐸 are constant matrices with appropriate dimensions. For any
appropriate dimension matrix 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼, one has
that 2𝑥𝑇𝐷𝐹𝐸𝑦 ≤ 𝜀𝑥𝑇𝐷𝐷𝑇𝑥 + (1/𝜀)𝑦𝑇𝐸𝑇𝐸𝑦 for any 𝜀 > 0.

In the following discussions, we are interested in analyz-
ing the stability of the IFOG and finding the design rules
of the feedback-gain matrix 𝐾

𝑐
to guarantee that the high

precision IFOG achieves exponentially dynamic response
characteristic.

Theorem 4. System (2) locally solves the exponential stability
problem, if there exist positive definite matrices 𝑃,𝑄, 𝑅 ∈ 𝑅𝑛×𝑛,
the feedback-gain matrix 𝐾

𝑐
∈ 𝑅
1×𝑛, and positive scalars 𝛼, 𝜀

1
,

𝜀
2
such that

𝜓 =

[

[

[

[

𝜑 𝜍
𝑇

1
𝑅 𝜍
𝑇

2
𝑅 0

∗ −𝑃 0 𝑃𝐻

∗ ∗ −𝑅 𝑅𝐻

∗ ∗ ∗ −𝜀
3
𝐼

]

]

]

]

< 0, (4)
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where

𝜍
1
= [ 𝐴 0 𝐵𝑘

1
𝐵𝑘
1
] ,

𝜍
2
= [ 𝐴 − 𝐼 0 𝐵𝑘

1
𝐵𝑘
1
] ,

𝜑 =

[

[

[

[

[

[

[

− (1 − 𝛼) 𝑃 + 𝑄 − (1 − 𝛼) 𝑅 (1 − 𝛼) 𝑅

1

2

𝜀
1
𝑘
𝑚
𝐾
𝑇

𝑐
0

∗ − (1 − 𝛼) (𝑄 + 𝑅) 0

1

2

𝜀
2
𝑘
𝑚
𝐾
𝑇

𝑐

∗ ∗ −𝜀
1
𝐼 + 𝜀
3
𝐸
𝑇

𝐸 𝜀
3
𝐸
𝑇

𝐸

∗ ∗ ∗ −𝜀
2
𝐼

]

]

]

]

]

]

]

.

(5)

Proof. See the Appendix.

We use a Lyapunov-based approach to analyze the con-
vergence and the dynamic performance analysis of the high
precision IFOG.Theorem 4 provides a sufficient condition to
design the controlmatrix𝐾

𝑐
for the high precision IFOGwith

time-delay, nonlinearity, and uncertainty, which guarantees
that the system can achieve exponential stabilization. It also
should be pointed out that, as deduced from the theoretical
analysis on the stability of IFOG, the designed controller can
make the dynamic errors of nonlinear IFOG within (−𝜋, 𝜋)
exponentially converge to zeros, which are only dependent
on the uncertain intensity of light power and the range of
time-delay of the low-pass filter. At the same time, the results
reveal that the proposed controller has strong robustness,
so that the interference intensity is tolerant of temperature
shift in a certain range. The theoretical result is of significant
importance to the design of good dynamic detection method
for the high precision IFOG under complex conditions of
engineering application.

5. Experiment Results

Experiments are conducted to demonstrate the effectiveness
of the previously obtained theoretical results and the dynamic
measurement precision of the 0.01 deg/h IFOG using the
optimized control algorithm. In the experiments, the light
power is placed in a temperature control chamber where
the temperature varies 5∘C per minute to force the light
power changeable in a certain range. We monitor the closed-
loop state variables in real time to verify the ability of the
designed high precision IFOG in suppressing the influence
of parameter uncertainty, nonlinearity and time-delay on
dynamic performance.

To validate the dynamic response characteristics of IFOG,
the experiments are conducted to test the 50Hz and 2 kHz
frequency response, respectively. The excitation signal is
generated by adding digital sinusoidal signal to the feedback
phase ramp. We can control the applying time of excitation

signal through the detection equipment. The digital signal
processor synchronously receives the excitation signal and
the output of IFOG so that the precise amplitude attenuation
and phase delay can be measured. For the result of 50Hz
frequency response tests, the deterioration of amplitude is
0.3% and the phase delay is 0.4∘ as shown in Figure 6. In
the 2 kHz frequency response tests with the results shown
in Figure 7, the relative measurement error is 0.77% in
amplitude and 3∘ in phase.

Then, to further validate the dynamic performance of
IFOG with the proposed controller, the ramp response of
the new high precision IFOG is compared with that of
the previous high precision IFOG based on the assistant
design setup. The results shown in Figure 8 demonstrate that
there exists a dynamic tracking error in the previous high
precision IFOG, which explains that the previous scheme of
high precision detection reduces the dynamic performance of
optical sensing. In contrast, the optimized detection scheme
of the high precision IFOG can track the ramp signal
rapidly without dynamic tracking error and better tracking
performance is achieved as shown in Figure 9.

Furthermore, we conduct the experiments of tracking
angular acceleration with 0.01 deg/h high precision IFOG
utilizing the angular rotating platform. Angular rotating
platform oscillates at frequency of 28Hz so that the output of
IFOG forms a sinusoidal trace at various oscillating points.
The sinusoidal curve near the zero point can approximate
to ramp response, and amplitude of angular acceleration
can be controlled by the oscillating amplitude of angular
rotating platform. On adopting previous control algorithm
and our optimized control algorithm, the results are shown in
Figures 10 and 11, respectively.We can see that the experiment
results based on the angular rotating platform agree well
with the results utilizing the assistant design setup, both of
which verify that the optimized robust control algorithm
can track the angular acceleration better than the previous
control algorithm. All the above experiments demonstrate
that the high precision IFOG system with our optimized
control algorithm can effectively suppress the influence of
parameter uncertainty, nonlinearity, and time-delay, so that a
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Figure 6: The result of the 50Hz frequency response test of the
optimized IFOG.
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Figure 7: The result of the 2 kHz frequency response test of the
optimized IFOG.
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Figure 8: The result of the ramp response test of the previous
0.01 deg/h IFOG.
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Figure 9: The result of the ramp response test of the optimized
0.01 deg/h IFOG.
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Figure 10:The output of 0.01 deg/h IFOG adopting previous control
algorithm when the angular acceleration is 7470 deg/s2.
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Figure 11: The output of 0.01 deg/h IFOG adopting our optimized
control algorithm, when the angular acceleration is 10000 deg/s2.

better dynamicmeasurement performance is achieved.These
strategies could be applied in the engineering systems of high
precision IFOGs to improve their dynamic measurement
precision meeting the demand of inertial navigation systems.
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6. Conclusion

In engineering practice, the closed-loop detection scheme
can improve the measurement precision of IFOG. In this
work, the influence of optical sensing and closed-loop signal
detection on the dynamic performance of high precision
IFOG is analyzed based on the established assistant design
platform.We find that the several important facts that restrict
the high dynamic property of IFOG include that (1) the
interference link introduces the nonlinearity, (2) the optical
parameter variation causes the light power fluctuation, and
(3) the time of the light propagating through the fiber coil
limits the closed-loop period and the time-delay of the low-
pass filter. By taking these influencing factors into consid-
eration, we propose a robust control algorithm to improve
the dynamic characteristics of high precision IFOG. The
obtained experiment results demonstrate the effectiveness
of the proposed closed-loop design method. The improved
dynamic measurement precision is of great significance in
expanding the scope of application of IFOG.

Appendix

Proof of Theorem 4. Weconsider themain influencing factors
to obtain the exponential stability condition of the high
precision IFOG system. The following Lyapunov function is
chosen for system (2):

𝑉 (𝑘) = 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑

𝑥
𝑇

(𝑠) (1 − 𝛼)
𝑘−𝑠−1

𝑄𝑥 (𝑠)

+ 𝑑

−1

∑

𝑠=−𝑑

𝑏−1

∑

𝑚=𝑘+𝑠

𝜂
𝑇

(𝑘) (1 − 𝛼)
𝑘−𝑚−1

𝑅𝜂 (𝑘) ,

(A.1)

where 𝜂(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘) and 𝑃, 𝑄, and 𝑅 are defined as
those inTheorem 4.

Calculating Δ𝑉(𝑘) = 𝑉(𝑘 + 1) − 𝑉(𝑘) along the solution
of system (2), we have that

Δ𝑉 (𝑘) + 𝛼Δ𝑉 (𝑘)

= 𝑥
𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − (1 − 𝛼) 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) − (1 − 𝛼)
𝑑

𝑥
𝑇

(𝑘 − 𝑑)𝑄𝑥 (𝑘 − 𝑑)

+ 𝑑
2

𝜂
𝑇

(𝑘) 𝑅𝜂 (𝑘) − 𝑑(1 − 𝛼)
𝑑

𝑘−1

∑

𝑚=𝑘−𝑑

𝜂
𝑇

(𝑚) 𝑅𝜂 (𝑚) .

(A.2)

As 𝑑 = 1 in the digital filter of the high precision IFOG, we
have

− 𝑑

𝑘−1

∑

𝑚=𝑘−𝑑

𝜂
𝑇

(𝑚) 𝑅𝜂 (𝑚)

= −(𝑥 (𝑘) − 𝑥 (𝑘 − 1))
𝑇

𝑅 (𝑥 (𝑘) − 𝑥 (𝑘 − 1)) .

(A.3)

We find that sin(𝑥) satisfies the Lipschitz condition and is
a monotonically ascending function for 𝑥 ∈ (−𝜋, 𝜋). That
is, there exists a function 𝑀(𝑘), such that sin(Δ𝜑

𝑓
(𝑘)) =

𝑀(𝑘)Δ𝜑
𝑓
(𝑘) for Δ𝜑

𝑓
(𝑘) ∈ (−𝜋, 𝜋), where ‖𝑀(𝑘)‖ ≤ 𝑙

𝑓
with

𝑙
𝑓
= 1. Then, the following inequality holds:

sin (Δ𝜑
𝑓
(𝑘))

𝑇

(sin (Δ𝜑
𝑓
(𝑘)) − 𝑙

𝑓
Δ𝜑
𝑓
(𝑘)) ≤ 0, (A.4)

where Δ𝜑
𝑓
(𝑘) ∈ (−𝜋, 𝜋).

For any two scalars 𝜀
1
> 0 and 𝜀

2
> 0, we have that

Δ𝑉 (𝑘) + 𝛼Δ𝑉 (𝑘)

≤ Δ𝑉 (𝑘) + 𝛼Δ𝑉 (𝑘)

− 𝜀
1
sin (Δ𝜑

𝑓
(𝑘))

𝑇

(sin (Δ𝜑
𝑓
(𝑘)) − 𝑙

𝑓
Δ𝜑
𝑓
(𝑘))

− 𝜀
2
sin (Δ𝜑

𝑓
(𝑘 − 1))

𝑇

(sin (Δ𝜑
𝑓
(𝑘 − 1))

−𝑙
𝑓
Δ𝜑
𝑓
(𝑘 − 1))

≤ 𝜉
𝑇

(𝑘) (𝜑 + 𝜍
𝑇

1
𝑃𝜍
1
+ 𝜍
𝑇

2
𝑃𝜍
2
) 𝜉 (𝑘) ,

(A.5)

where

𝜍
1
= [𝐴 0 𝐵 (𝑘 + Δ𝑘

1
) 𝐵 (𝑘 + Δ𝑘

1
)] ,

𝜍
2
= [𝐴 − 𝐼 0 𝐵 (𝑘 + Δ𝑘

1
) 𝐵 (𝑘 + Δ𝑘

1
)] ,

𝜉 (𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 1) sin𝑇 (Δ𝜑
𝑓
(𝑘)) sin𝑇 (Δ𝜑

𝑓
(𝑘 − 1))]

𝑇

,

𝜑 =

[

[

[

[

[

[

[

− (1 − 𝛼) 𝑃 + 𝑄 − (1 − 𝛼) 𝑅 (1 − 𝛼) 𝑅

1

2

𝜀
1
𝑘
𝑚
𝐾
𝑇

𝑐
0

∗ − (1 − 𝛼) (𝑄 + 𝑅) 0

1

2

𝜀
2
𝑘
𝑚
𝐾
𝑇

𝑐

∗ ∗ −𝜀
1
𝐼 0

∗ ∗ ∗ −𝜀
2
𝐼

]

]

]

]

]

]

]

.

(A.6)
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By Lemma 2, we can see that 𝜑+𝜍𝑇
1
𝑃𝜍
1
+𝜍
𝑇

2
𝑃𝜍
2
< 0, if and

only if

[

[

𝜑 𝜍
𝑇

1
𝑃 𝜍
𝑇

2
𝑅

∗ −𝑃 0

∗ ∗ −𝑅

]

]

< 0. (A.7)

Because Δ𝑘 = 𝐻𝐹𝐸, (A.7) can be rewritten as

[

[

𝜑 𝜍
𝑇

1
𝑃 𝜍
𝑇

2
𝑅

∗ −𝑃 0

∗ ∗ −𝑅

]

]

+𝑀
𝑇

𝐹 (𝑘)𝑁 + 𝑁
𝑇

𝐹
𝑇

(𝑘)𝑀 < 0, (A.8)

where 𝜍
1
and 𝜍

2
are defined as that in Theorem 4, 𝑁 =

[0 0 𝐸 𝐸 0 0], and𝑀 = [0 0 0 0 𝐻𝑇𝑃 𝐻𝑇𝑅].
By Lemma 3, (A.8) holds if and only if there exists a

positive constant 𝜀
3
such that

[

[

𝜑 𝜍
𝑇

1
𝑃 𝜍
𝑇

2
𝑅

∗ −𝑃 0

∗ ∗ −𝑄

]

]

+ 𝜀
−1

3
𝑀
𝑇

𝑀+ 𝜀
3
𝑁
𝑇

𝑁 < 0. (A.9)

Thus a sufficient condition for Δ𝑉(𝑘) + 𝛼𝑉(𝑘) < 0 is
equivalent to 𝜓 < 0 by the Schur complement lemma. If
Δ𝑉(𝑘) + 𝛼𝑉(𝑘) < 0, we have that 𝑉(𝑘) ≤ (1 − 𝛼)𝑘−𝑘0𝑉(𝑘

0
)

along any trajectory of system (2).Then, IFOG can obtain the
exponential stability.

Furthermore, we have that

𝜆
1
𝑥
𝑇

(𝑘) 𝑥 (𝑘) ≤ 𝑉 (𝑘)

≤ (1 − 𝛼)
𝑘−𝑘0
𝑉 (𝑘)

≤ 𝜆
2
(1 − 𝛼)

𝑘−𝑘0
𝑥
𝑇

(𝑘
0
) 𝑥 (𝑘
0
) ,

(A.10)

where 𝜆
1
= min 𝜆(𝑃) is the minimum eigenvalue of 𝑃, 𝜆

2
=

max 𝜆(𝑃) + 𝑑max 𝜆(𝑄) + 2𝑑2(𝑑 + 1)max 𝜆(𝑅), and max 𝜆(⋅)
is the maximum eigenvalue of the matrix.

That means that ‖𝑥(𝑘)‖ ≤ √𝜆
1
/𝜆
2
(1 − 𝛼)

𝑘−𝑘0
‖𝑥(𝑘
0
)‖ by

(A.10) and we can conclude that system (2) is locally and
exponentially stable. This completes the proof.
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We propose a new robust optimal control strategy for flexible spacecraft attitude tracking maneuvers in the presence of external
disturbances. An inverse optimal control law is designed based on a Sontag-type formula and a control Lyapunov function. An
adapted extended state observer is used to compensate for the total disturbances. The proposed controller can be expressed as the
sum of an inverse optimal control and an adapted extended state observer. It is shown that the developed controller can minimize a
cost functional and ensure the finite-time stability of a closed-loop systemwithout solving the associated Hamilton-Jacobi-Bellman
equation directly. For an adapted extended state observer, the finite-time convergence of estimation error dynamics is proven using
a strict Lyapunov function. An example of multiaxial attitude tracking maneuvers is presented and simulation results are included
to show the performance of the developed controller.

1. Introduction

Optimal control for spacecraft rotational problems has
attracted a great deal of interest. The problem of optimal
attitude control has been studied by many researchers (see,
e.g., [1–4]). The main objective of optimal attitude control
is to design a controller that stabilizes the attitude of a
spacecraft system to an equilibrium state and minimizes
some performance criterion for the stabilization process.
Generally for linear systems, the linear quadratic regulator
(LQR) is able to ensure an optimal and asymptotically stable
solution. In [5] the LQRmethod was extended to a nonlinear
control problem but more constraints were required to meet
the optimality and stability conditions. Various nonlinear
optimal control methods have been proposed for solving the
attitude control problem. Sharma and Tewari [6] devised a
Hamilton-Jacobi formulation for tracking attitudemaneuvers
of spacecraft to derive a nonlinear optimal control law.
In [7] optimal controllers for a programmed motion of a
rigid spacecraft were designed using the optimal Lyapunov
approach. In [8, 9] state-dependent Riccati equation (SDRE)
techniques were successfully applied to spacecraft attitude

control. In [10] a class of globally asymptotically stabilizing
controllers was developed for the complete attitude motion
of a nonsymmetric rigid body. An inverse optimal control
approach was presented in [11] to construct the optimal
controller for regulation of the rigid body. Recently, attitude
controller designs for rigid spacecraft using inverse optimal
control schemes have been developed [12]. The inverse
optimal control method incorporates the task of solving
a Hamilton-Jacobi-Bellman equation and offers a globally
asymptotically stabilizing control law which is optimal with
respect to a performance index. Sontag’s formula [13] uses
the directional information supplied by a control Lyapunov
function (CLF). Freeman and Kokotovic [14] have shown
that every CLF solves the Hamilton-Jacobi-Bellman (HJB)
equation associated with a meaningful cost. In other words,
if we have a CLF for a nonlinear system, we can compute
the resulting optimal control law without solving the HJB
equation.

As extensions of the above studies, optimal control and
robust control have been merged to obtain robust optimal
control laws. Various methods for developing robust optimal
controllers for the attitude control of a rigid spacecraft have
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been proposed in the literature. Kang [15] used nonlinear
𝐻
∞

control to design a stabilizing feedback control for the
spacecraft tracking problem. Luo et al. [16] developed an
𝐻
∞

inverse optimal adaptive controller for attitude tracking
of spacecraft. Adaptive control and nonlinear 𝐻

∞
control

have also been merged to design robust optimal controllers.
Park [17] proposed a robust optimal control scheme for
attitude stabilization and used a minimax approach and
inverse optimal approach to examine the optimality prop-
erty of this control law. Due to its lower dependence on
model information and its strong capability for estimating
disturbance and simple structure, an extended state observer
(ESO) [18] has been widely used to deal with various kinds
of engineering control problems such as flight control and
chemical process control. In [19] the ESO based disturbance
rejection control approach has been addressed for attitude
tracking of a rigid spacecraft. The vibration effect of flexible
appendages was not considered in the attitude control design.
An alternative way to design a robust optimal controller is
to use an optimal sliding mode controller design scheme.
Sliding mode control (SMC) is a very effective approach
when applied to a system with disturbances which satisfy the
matched uncertainty condition [20]. Pukdeboon andZinober
[21, 22] have developed robust optimal control laws based
on the optimal sliding mode control technique for attitude
tracking of spacecraft. However, since the attitude control
system of flexible spacecraft is quite complicated, optimal
sliding mode control has rarely been studied for attitude
control design. SDRE-based optimal sliding mode (SM)
control and optimal Lyapunov-based SM control approaches
have been used in [23] to design optimal controllers for
attitude stabilization of flexible spacecraft. However, the
optimal controllers developed in that paper contain some
drawbacks. The SDRE approach usually provides only local
asymptotic stability while for the optimal Lyapunov approach
it is a formidable task to choose a Lyapunov function to satisfy
the partial differential equation derived from the Krasovskii
theorem [24].

In this paper, a novel control methodology for flexible
spacecraft attitude maneuvers is proposed in the presence
of external disturbances. First, an inverse optimal controller
for stabilizing systems is designed based on a Sontag-type
formula [25, 26] and a finite-time control Lyapunov function
(FTCLF) [27, 28]. Then, the total disturbance is estimated by
an adapted ESOwhich is amodified version of the traditional
ESO in [18, 29]. The stability of the traditional ESO [18] has
been proved using the self-stable region (SSR) approach [30],
but this approach takes many steps and is rather complicated.
In this paper the finite-time convergence of an adapted ESO
is proved by using a strict Lyapunov function. The proposed
new attitude controller for flexible spacecraft enforces track-
ing motion, robustness, and optimality with respect to a
family of cost functionals and achieves disturbance rejection.

The main contributions of this paper are as follows.

(i) An inverse optimal control method for flexible space-
craft attitude tracking maneuvers is proposed for the
first time in this paper.

(ii) A second-order slidingmode based disturbance com-
pensator is developed and combined with the pro-
posed attitude controller. The necessity of a compen-
sator is also discussed.

(iii) The hybrid control method is used to develop a
controller with complete robustness under the system
uncertainty and external disturbances.

This paper is organized as follows. Section 2 introduces
some preliminary results which are required for the following
discussion. In Section 3 the dynamic equations of a flexible
spacecraft and the attitude kinematics [31, 32] are described.
Section 4 provides the problem statement and control objec-
tive. Section 5 proposes a finite-time inverse optimal control
design with the FTCLF concepts. We design an inverse
optimal controller that provides the convergence of system
states to the desired attitude motion. In Section 6, an adapted
ESOmethod is used to develop an anti-disturbance feedback
controller. The finite-time convergence of estimation error
dynamics is proved using a strict Lyapunov function. In
Section 7, an example of spacecraft attitude maneuvers is
presented to illustrate the performance of the developed
control law. In Section 8, we present conclusions.

2. Mathematical Preliminaries

2.1. Finite-Time Stability. Wenow restate the concepts related
to finite-time stability [33, 34].

Definition 1 (see [33]). Consider a time invariant system in
the form of

̇𝑥 = 𝑓 (𝑥) , 𝑓 (0) = 0 𝑥 ∈R
𝑛

, (1)

where𝑓 : �̂�
0
→ R𝑛 is continuous on an open neighborhood

�̂�
0
of the origin. The equilibrium 𝑥 = 0 of the system is

(locally) finite-time stable if (i) it is asymptotically stable, in
�̂�, an openneighborhood of the origin, with �̂� ⊂ �̂�

0
and (ii) it

is finite-time convergent in �̂�; that is, for any initial condition
𝑥
0
∈ �̂� \ {0}, there is a settling time 𝑇 > 0 such that every

solution 𝑥(𝑡, 𝑥
0
) of system (1) is defined with 𝑥(𝑡, 𝑥

0
) ∈ �̂�\{0}

for 𝑡 ∈ [0, 𝑇] and satisfies

lim
𝑡→𝑇(𝑥0)

𝑥 (𝑡, 𝑥
0
) = 0 (2)

and 𝑥(𝑡, 𝑥
0
) = 0, if 𝑡 ≥ 𝑇. Moreover, if �̂� = R𝑛, the origin is

globally finite-time stable.

Definition 2. Consider a controlled system

̇𝑥 = 𝑓 (𝑥) + 𝑏 (𝑥) 𝑢, 𝑥 ∈R
𝑛

, 𝑢 ∈R
𝑚

, (3)

with 𝑏(𝑥) ̸= 0. It is finite-time stabilizable if there is a feedback
law 𝑢(𝑥) such that 𝑥 = 0 is a (locally) finite-time stable
equilibrium of the closed-loop system.

Lemma 3 (see [34]). Consider the nonlinear system described
in (1). Suppose there is a 𝐶

1 function 𝑉(𝑥) defined on a
neighborhood �̂� ⊂ 𝑈

0
⊂ R𝑛 of the origin such that the
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following conditions hold: (i)𝑉(𝑥) is positive definite on �̂� and
(ii) there are real numbers  > 0 and 0 < 𝜄 < 1, such that

𝑉 (𝑥) + (𝑉 (𝑥))
𝜄

≤ 0, 𝑥 ∈ �̂� \ {0} . (4)

Then, the origin of system (1) is locally finite-time stable, with
its settling time

𝑇 ≤

𝑉(𝑥
0
)
1−𝜄

 (1 − 𝜄)

. (5)

If �̂� = R𝑛 and 𝑉(𝑥) is radially unbounded, then the origin of
system (1) is globally finite-time stable.

2.2. Finite-Time Control Lyapunov Function. Based on
the definition of a finite-time control Lyapunov function
(FTCLF) in [27, 28], we provide the following definitions.

Definition 4 (see [27, 28]). Let 𝑈
0
be a neighborhood of the

origin. A positive-definite and 𝐶1 function 𝑉 : 𝑈
0
→ 𝑅

+

is called a finite-time control Lyapunov function (FTCLF) of
system (3) if there exist real numbers 𝑐

1
> 0 and 𝛼 ∈ (0, 1)

such that for all 𝑥 ∈ 𝑈
0
\ {0},

inf
𝑢

{𝐿
𝑓
𝑉 (𝑥) + 𝐿

𝑏
𝑉 (𝑥) 𝑢} ≤ −𝑐

1
(𝑉 (𝑥))

𝛼

, (6)

where 𝐿
𝑓
𝑉(𝑥) and 𝐿

𝑏
𝑉(𝑥) are the Lie derivatives of 𝑉 along

the solution of system (3).

Note that the Lie derivative of𝑉with respect to ℎ : 𝑅𝑛 →
𝑅
𝑛 is defined as the inner product of ℎ and the gradient of 𝑉;

that is, 𝐿
ℎ
𝑉(𝑥) = (𝜕𝑉/𝜕𝑥)ℎ.

Obviously, if (6) holds, then for all∈ 𝑈
0
\{0}, the condition

that 𝑉(𝑥) is a FTCLF of (3) is precisely the statement

𝐿
𝑏
𝑉 = 0 ⇒ 𝐿

𝑓
𝑉 < −𝑐

1
(𝑉 (𝑥))

𝛼

. (7)

In fact, if there exists a positive-definite and 𝐶1 function
𝑉 : 𝑈

0
→ 𝑅

+ such that (7) holds, then 𝑉 is a FTCLF
of system (3). Note that if 𝑉(𝑥) is a continuous positive-
definite function, then 𝐿

𝑓
𝑉(𝑥) and 𝐿

𝑏
𝑉(𝑥) can be seen as

Dini derivatives.

Definition 5 (see [27]). 𝑉(𝑥) is said to satisfy the extended
small control property with respect to system (3) if, for all 𝜖 >
0, there exists 𝜀 > 0 such that if 𝑥 ̸= 0 and ‖𝑥‖ < 𝜀, then there
exists a certain 𝑢with ‖𝑢‖ < 𝜖, such that 𝐿

𝑓
𝑉(𝑥)+𝐿

𝑏
𝑉(𝑥)𝑢 ≤

−𝑐
1
(𝑉(𝑥))

𝛼, where 𝑐
1
> 0 and 𝛼 ∈ (0, 1).

2.3. The Inverse Optimal Control Problem. This subsection
considers the design of finite-time inverse optimal control. A
feedback control law 𝑢(𝑥) for the system (3) will be designed
such that the closed-loop system is finite-time stable at the
equilibrium 𝑥 = 0 and minimizes the cost functional

𝐼 (𝑢, 𝑥, 𝑥
0
) = ∫

𝑇(𝑥)

0

(𝑙 (𝑥) + 𝑢
𝑇

𝑅𝑢) 𝑑𝑡, (8)

where 𝑙(𝑥) ≥ 0 and 𝑅(𝑥) > 0 for all 𝑥 and 𝑇(𝑥) is the settling
time function.

According to the theorem in [11, 27], if 𝑉(𝑥) is a FTCLF
for the system (3), then a stabilizing control law

𝑢 (𝑥) = 𝛼
∗

(𝑥) = −

1

2

𝑅
−1

(𝑥) (𝐿
𝑏
𝑉 (𝑥))

𝑇 (9)

solves an inverse optimal control problem for the system (3)
with respect to the cost functional (8).

Moreover, if we choose

𝑙 (𝑥) = −𝐿
𝑓
𝑉 (𝑥) −

1

2

𝐿
𝑏
𝑉 (𝑥) 𝛼

∗

(𝑥) ,
(10)

then 𝑙(𝑥) ≥ 0 is achieved with the control law 𝑢 = (1/2)𝛼
∗.

Next, substituting 𝑢 = (1/2)𝛼
∗ into (10), we obtain the HJB

equation

𝑙 (𝑥) = −𝐿
𝑓
𝑉 (𝑥) +

1

4

𝐿
𝑏
𝑉 (𝑥) 𝑅

−1

(𝑥) (𝐿
𝑏
𝑉 (𝑥))

𝑇

≥ 0.
(11)

Then, using the concept in [27], we have that 𝑉(𝑥) is the
solution of the HJB equation (11).

Remark 6. In the inverse optimal approach, a finite-time
stabilizing feedback control law𝑢(𝑥) is designedfirst and then
it is shown that the feedback law is to find 𝑙(𝑥) ≥ 0 and
𝑅(𝑥) > 0 such that 𝑢 optimizes (8). The problem is inverse
because the functions 𝑙(𝑥) and 𝑅(𝑥) are a posteriori found by
the stabilizing feedback law, rather than a priori selected by
the designer.

3. Mathematical Model of Flexible Spacecraft

We now briefly explain the use of quaternions for descrip-
tion of the attitude error. We define the quaternion 𝑄 =

[𝑞
𝑇

𝑞
4
]

𝑇

∈R3 ×R with 𝑞 = [𝑞
1
𝑞
2
𝑞
3
]

𝑇

∈R3 and

𝑄
𝑑
= [𝑞
𝑇

𝑑
𝑞
4𝑑
]

𝑇

, (12)

where 𝑞
𝑑
= [𝑞
1𝑑

𝑞
2𝑑

𝑞
3𝑑
]
𝑇

∈ R3 is the desired reference
attitude. The quaternion for the attitude error is 𝑄

𝑒
=

[𝑞
𝑇

𝑒
𝑞
4𝑒
]

𝑇

∈ R3 ×R with 𝑞
𝑒
= [𝑞
1𝑒

𝑞
2𝑒

𝑞
3𝑒
]
𝑇

∈ R3. Using
the multiplication law for quaternions, we then obtain

𝑄
𝑒
= [

𝑞
4𝑑
𝑞 − 𝑞
4
𝑞
𝑑
− 𝑞
×

𝑑
𝑞

𝑞
4
𝑞
4𝑑
+ 𝑞
𝑇

𝑞
𝑑

] (13)

subject to the constraint

𝑄
𝑇

𝑒
𝑄
𝑒
= (𝑞
𝑇

𝑞 + 𝑞
2

4
) (𝑞
𝑇

𝑑
𝑞
𝑑
+ 𝑞
2

4𝑑
) = 1. (14)

In (13) 𝑞×
𝑑
is given by

𝑞
×

𝑑
=
[

[

0 −𝑞
3𝑑

𝑞
2𝑑

𝑞
3𝑑

0 −𝑞
1𝑑

−𝑞
2𝑑

𝑞
1𝑑

0

]

]

. (15)
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Remark 7. A quaternion consists of the scalar 𝑞
4
and the

three-dimensional vector 𝑞, so it has four components. The
scalar term is used for avoidance of singular points in
the attitude representation [35]. The quaternion kinematics
equation is required to be solved for all four components.
However, to indicate the maneuver of the spacecraft, it is
sufficient to use only the vector 𝑞 because this vector properly
represents both Euler axis and Euler angle. Furthermore, the
scalar 𝑞

4
can be calculated easily using the vector 𝑞 and the

condition ‖𝑄‖ = 1. For more details of quaternion and other
attitude representation see [31, 35].

The kinematic equation for the attitude error can then be
expressed as (see, [31, 36])

̇𝑄
𝑒
=

1

2

[

𝑇 (𝑄
𝑒
)

−𝑞
𝑇

𝑒

]𝜔
𝑒
, (16)

where 𝑇(𝑄
𝑒
) = 𝑞

×

𝑒
+ 𝑞
4𝑒
𝐼
3
with 𝐼

3
being the 3 × 3 identity

matrix.
The equation governing a flexible spacecraft is expressed

as [32]
𝐽 ̇𝜔 + 𝛿

𝑇

̈𝜂 = −𝜔
×

(𝐽𝜔 + 𝛿
𝑇

̇𝜂) + 𝑢 + 𝑑, (17a)

̈𝜂 + 𝐶 ̇𝜂 + 𝐾𝜂 = −𝛿 ̇𝜔, (17b)

where 𝐽 = 𝐽𝑇 is the total inertia matrix of the spacecraft, 𝜂 is
themodal displacement, and𝛿 is the couplingmatrix between
the central rigid body and the flexible attachments. 𝑢 ∈ R3

denotes the control input, 𝑑 ∈ R3 represents the external
disturbances, and 𝐾 and 𝐶 denote the stiffness and damping
matrices, respectively, which are defined as

𝐾 = diag (𝜔2
𝑛𝑖
, 𝑖 = 1, 2, . . . , 𝑁) , (18)

𝐶 = diag (2𝜁
𝑖
𝜔
𝑛𝑖
, 𝑖 = 1, 2, . . . , 𝑁) (19)

with damping 𝜁
𝑖
and natural frequency 𝜔

𝑛𝑖
.

We denote by 𝜔
𝑑
= [𝜔
1𝑑

𝜔
2𝑑

𝜔
3𝑑
]
𝑇 the desired angular

velocity and by 𝜔
𝑒
= 𝜔 − 𝜔

𝑑
as the angular velocity error. Let

𝜗 = [

𝜂

𝜓
] , (20)

where 𝜓 = ̇𝜂 + 𝛿𝜔
𝑒
. The relative dynamic equation can be

written as [36]

̇𝜔
𝑒
= 𝐽
−1

𝑚𝑏
[− (𝜔
×

𝑒
+ 𝜔
×

𝑑
) (𝐽
𝑚𝑏
𝜔
𝑒
+ 𝛿
𝑇

𝜓 + 𝐽𝜔
𝑑
)

+𝛿
𝑇

(𝐶𝜓 + 𝐾𝜂 − 𝐶𝛿𝜔
𝑒
) + 𝑢 + 𝑑] − ̇𝜔

𝑑
,

̇
𝜗 = 𝐴𝜗 + 𝐵𝜔

𝑒
+ 𝐷 ̇𝜔
𝑑
,

(21)

where ̇𝜔
𝑑
is the first time derivative of 𝜔

𝑑
. The matrices 𝐽

𝑚𝑏
,

𝐴𝐵, and𝐷 are given as

𝐽
𝑚𝑏
= 𝐽 − 𝛿

𝑇

𝛿,

𝐴 = [

0
4×4

𝐼
4

−𝐾 −𝐶
] , 𝐵 = [

−𝛿

𝐶𝛿
] , 𝐷 = [

0
4×3

−𝛿
] .

(22)

Clearly, 𝐴 is a Hurwitz matrix.

If we let

𝑥 (𝑡) = [𝜔
𝑇

𝑒
𝑞
4𝑒

𝑞
𝑇

𝑒
𝜗
𝑇

]

𝑇

, (23)

then the spacecraft systems (16), (17a), and (17b) can be
expressed in the state space form as

̇𝑥 = 𝑓 (𝑥) + 𝑏 (𝑥) 𝑢 + 𝑏 (𝑥) 𝑑, 𝑥 (0) = 𝑥
0
, (24)

𝑓 (𝑥) =

[

[

[

[

𝐽
−1

𝑚𝑏
Ξ (𝜔
𝑒
, 𝜔
𝑑
, ̇𝜔
𝑑
)

−0.5𝑞
𝑇

𝑒
𝜔
𝑒

0.5 (𝑞
×

𝑒
+ 𝑞
4𝑒
𝐼
3
) 𝜔
𝑒

𝐴𝜗 + 𝐵𝜔
𝑒
+ 𝐷 ̇𝜔
𝑑

]

]

]

]

, 𝑏 (𝑥) =

[

[

[

[

𝐽
−1

𝑚𝑏

0
1×3

0
3×3

0
8×3

]

]

]

]

,

(25)

where

Ξ (𝜔
𝑒
, 𝜔
𝑑
, ̇𝜔
𝑑
) = −𝜔

×

𝑒
𝐽
𝑚𝑏
𝜔
𝑒
− 𝜔
×

𝑒
𝛿
𝑇

𝜓 − 𝜔
×

𝑒
𝐽𝜔
𝑑
− 𝜔
×

𝑑
𝐽
𝑚𝑏
𝜔
𝑒

− 𝜔
×

𝑑
𝛿
𝑇

𝜓 − 𝜔
×

𝑑
𝐽𝜔
𝑑
+ 𝛿
𝑇

(𝐶𝜓 + 𝐾𝜂 − 𝐶𝛿𝜔
𝑒
)

− 𝐽
𝑚𝑏

̇𝜔
𝑑
.

(26)

4. Problem Statement

In this work we consider tracking maneuvers. The control
objective is to realize desired rotations of flexible spacecraft
in the presence of external disturbances and minimize a cost
functional. In other words, we shall find a controller 𝑢 subject
to (24) such that for all initial conditions the desired rotations
are achieved

lim
𝑡→𝑇

𝑞
𝑒
= 0, lim

𝑡→𝑇

𝑞
4𝑒
= 1, lim

𝑡→𝑇

𝜔
𝑒
= 0 (27)

and the cost functional (8) is minimized. Note that, when
𝑞
𝑒
→ 0, we have 𝑞

4𝑒
→ 1, due to the constraint relation

𝑞
𝑇

𝑒
𝑞
𝑒
+ 𝑞
2

4𝑒
= 1.

5. Inverse Optimal Controller Design for
Flexible Spacecraft

In this section, we first propose a finite-time inverse optimal
controller for stabilizing the complete attitude motion of
flexible spacecraft in the presence of external disturbances.

In order to design this controller for solving the finite-
time inverse optimal problem we first choose a FTCLF for
the system (24) as the following candidate positive-definite
function:

𝑉 (𝑥) =

1

2

𝜔
𝑇

𝑒
𝐽
𝑚𝑏
𝜔
𝑒
+ 𝛽(𝑞

4𝑒
− 1)
2

+ 𝛽𝑞
𝑇

𝑒
𝑞
𝑒

+

1

2

𝜗
𝑇

𝑃𝜗 + 𝛾𝑞
𝑇

𝑒
𝐽
𝑚𝑏
𝜔
𝑒
,

(28)

where 𝛽 and 𝛾 are nonnegative constants and 𝑃 is a positive-
definite matrix that is a solution of the Lyapunov equation
𝐴
𝑇

𝑃 + 𝑃𝐴 = −𝑄
𝐴
with a positive-definite matrix 𝑄

𝐴
.
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Assumption 8. The desired angular velocity vector and its
first time derivative are bounded and satisfy the following
conditions:





𝜔
𝑑





≤ 𝑊
1
,





̇𝜔
𝑑





≤ 𝑊
2
, (29)

where𝑊
1
and𝑊

2
are positive constants.

We next show that the function 𝑉(𝑥) defined in (28) is a
FTCLF for the system (24) by using the following lemma.

Lemma 9. In the absence of disturbance vector, under
Assumption 8, the positive definite𝑉 defined in (28) is a FTCLF
for the spacecraft tracking system (24).

Proof. Since 𝐽
𝑚𝑏

is symmetric positive definite, we can write
𝑉(𝑥) as

𝑉 = 𝑥
𝑇

Ω𝑥 + 𝛽(𝑞
4𝑒
− 1)
2

, (30)

where 𝑥(𝑡) = [𝜔𝑇
𝑒
𝑞
𝑇

𝑒
𝜗
𝑇

]

𝑇

, and

Ω =

1

2

[

[

𝐽
𝑚𝑏

𝛾𝐽
𝑚𝑏

0
3×8

𝛾𝐽
𝑚𝑏

2𝛽𝐼
3
0
3×8

0
8×3

0
8×3

𝑃

]

]

. (31)

The conditions for 𝑉(𝑥) to be positive definite are

𝛽 > 0, 2𝛽𝐽
𝑚𝑏
> 𝛾
2

𝐽
2

𝑚𝑏
. (32)

Also, using (28) we can obtain the following inequalities:

𝜎min (Ω) ‖𝑥‖
2

+ 𝛽(𝑞
4𝑒
− 1)
2

≤ 𝑉 ≤ 𝜎max (Ω) ‖𝑥‖
2

+ 𝛽(𝑞
4𝑒
− 1)
2

,

(33)

where ‖𝑥‖ denotes the Euclidean norm of 𝑥 and 𝜎min(Ω) and
𝜎max(Ω) denote the minimum and maximum singular values
of the matrixΩ.

The first time derivative of 𝑉 can be obtained as

𝜕𝑉 (𝑥)

𝜕𝑥

=

[

[

[

[

𝐽
𝑚𝑏
𝜔
𝑒
+ 𝛾𝐽
𝑚𝑏
𝑞
𝑒

2𝛽 (𝑞
4𝑒
− 1)

2𝛽𝐽
𝑚𝑏
𝜔
𝑒
+ 𝛾𝑞
𝑒

𝜗
𝑇

𝑃

]

]

]

]

, (34)

[

𝜕𝑉(𝑥)

𝜕𝑥

]

𝑇

= [𝜔
𝑇

𝑒
𝐽
𝑚𝑏
+ 𝛾𝑞
𝑇

𝑒
𝐽
𝑚𝑏

2𝛽 (𝑞
4𝑒
− 1) 𝜔

𝑇

𝑒
𝐽
𝑚𝑏
𝛽 + 𝑞
𝑇

𝑒
𝛾 𝜗
𝑇

𝑃] .

(35)

Thus, we have
𝐿
𝑏
𝑉

= [𝜔
𝑇

𝑒
𝐽
𝑚𝑏
+ 𝛾𝑞
𝑇

𝑒
𝐽
𝑚𝑏

2𝛽 (𝑞
4𝑒
− 1) 𝜔

𝑇

𝑒
𝛽𝐽
𝑚𝑏
+ 𝑞
𝑇

𝑒
𝛾 𝜗
𝑇

𝑃]

×

[

[

[

[

𝐽
−1

𝑚𝑏

0
1×3

0
3×3

0
8×3

]

]

]

]

= 𝜔
𝑇

𝑒
+ 𝑞
𝑇

𝑒
𝛾.

(36)

Therefore, if 𝐿
𝑏
𝑉 = 0, we have

𝜔
𝑇

𝑒
= −𝛾𝑞

𝑇

𝑒
. (37)

Next, we show that for all 𝑥 ̸= 0, if 𝐿
𝑏
𝑉 = 0, then 𝐿

𝑓
𝑉 <

−𝑐
2
𝑉
1/2 with 𝑐

2
being a positive constant. Here, 𝐿

𝑓
𝑉 can be

expressed as

𝐿
𝑓
𝑉 = (𝜔

𝑇

𝑒
𝐽
𝑚𝑏
+ 𝛾𝑞
𝑇

𝑒
𝐽
𝑚𝑏
) (𝐽
−1

𝑚𝑏
Ξ (𝜔
𝑒
, 𝜔
𝑑
, ̇𝜔
𝑑
))

+ 2𝛽 (𝑞
4𝑒
− 1) (−

1

2

𝑞
𝑇

𝑒
𝜔
𝑒
) + 𝛽𝑞

𝑒
(𝑞
×

𝑒
+ 𝑞
4𝑒
𝐼
3
) 𝜔
𝑒

+ 𝜗
𝑇

𝑃 (𝐴𝜗 + 𝐵𝜔
𝑒
+ 𝐷 ̇𝜔
𝑑
) .

(38)
Substituting (37) in (38), we obtain

𝐿
𝑓
𝑉 = 𝛽 (𝑞

4𝑒
− 1) 𝛾𝑞

𝑇

𝑒
𝑞
𝑒
+ 𝛽𝑞
𝑒
(𝑞
×

𝑒
+ 𝑞
4𝑒
𝐼
3
) (−𝛾𝑞

𝑒
)

+ 𝜗
𝑇

𝑃𝐴𝜗 + 𝜗
𝑇

𝑃𝐵 (−𝛾𝑞) + 𝜗
𝑇

𝑃𝐷 ̇𝜔
𝑑
.

(39)

Since 𝑞×
𝑒
𝑞
𝑒
= 0, (39) becomes

𝐿
𝑓
𝑉 ≤ −𝛽𝛾𝑞

𝑇

𝑒
𝑞
𝑒
−

1

2

𝜗
𝑇

𝑄
𝐴
𝜗 − 𝛾𝜗

𝑇

𝑃𝐵𝑞
𝑒
+ ‖𝜗‖ ‖𝑃𝐷‖𝑊

2

≤ −𝜛
𝑇

Π
1
𝜛 + ‖𝜗‖ ‖𝑃𝐷‖𝑊

2
,

(40)
where

𝜛 = [

𝑞
𝑒

𝜗
] , Π

1
=
[

[

[

𝛽𝛾

𝛾

2

𝑃𝐵

𝛾

2

𝑃𝐵

1

2

𝑄
𝐴

]

]

]

. (41)

With proper parameters 𝛽 and 𝛾, one can obtain that Π
1
is

positive definite

𝐿
𝑓
𝑉 ≤ −𝜎min (Π1) ‖𝜛‖

2

+ ‖𝜛‖ ‖𝑃𝐷‖𝑊
2

≤ − (𝜎min (Π1) ‖𝜛‖ − ‖𝑃𝐷‖𝑊2) ‖𝜛‖ .
(42)

From (33) we have 𝜎min(Ω)‖𝑥‖
2

≤ 𝑉. Using ‖𝜛‖ ≤ ‖𝑥‖,
one has 𝜎min(Ω)‖𝜛‖

2

≤ 𝑉 and it follows that ‖𝜛‖ ≤

𝑉
1/2

/√𝜎min(Ω). Thus, (42) becomes

𝐿
𝑓
𝑉 ≤ − (𝜎min (Π1) ‖𝜛‖ − ‖𝑃𝐷‖𝑊2)

𝑉
1/2

√𝜎min (Ω)
≤ −𝑐
2
𝑉
1/2

,

(43)

where 𝑐
2
= (𝜎min(Π1)‖𝜛‖ − ‖𝑃𝐷‖𝑊2)/√𝜎min(Ω).

We know that there exist proper parameters 𝛽 and 𝛾 such
that Π

1
is positive definite and ‖𝜛‖ > ‖𝑃𝐷‖𝑊

2
/𝜎min(Π1) can

be achieved with these parameters. So, if 𝐿
𝑏
𝑉 = 0, then for

all 𝑥 ̸= 0 we can obtain 𝐿
𝑓
𝑉 ≤ −𝑐

2
𝑉
1/2. This guarantees that

the candidate 𝑉(𝑥) is a FTCLF for system (24).

Next, the main results of our proposed anti-disturbance
inverse optimal control for the spacecraft model are pre-
sented.

Theorem 10. Let Assumption 8 hold. The following dynamic
feedback control law

𝑢 = 𝑢
∗

−
̂
𝑑 (44)

with
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𝑢
∗

=

{
{
{
{

{
{
{
{

{

−𝜑
𝑇

(𝑥)

𝜓 (𝑥) + 𝑐
3
(𝑉 (𝑥))

1/2

+ √(𝜓 (x) + 𝑐
3
(𝑉 (𝑥))

1/2

)

2

+




𝜑(𝑥)






4





𝜑(𝑥)






2
, 𝑖𝑓





𝜑 (𝑥)






̸= 0

0, 𝑖𝑓




𝜑 (𝑥)





= 0,

(45)

where 𝑐
3
is a positive constant, ̂𝑑 is an estimated value of 𝑑

which will be defined later, 𝜓(𝑥) = 𝐿
𝑓
𝑉, and 𝜑(𝑥) = 𝐿

𝑏
𝑉,

finite-time stabilizes the spacecraft system (24).

Proof. We show that the control law 𝑢 in (44) is a stabilizing
controller for attitude control system in (24). Consider the
smooth positive-definite radially unbounded function 𝑉(𝑥)
in (28) as the Lyapunov function. The time derivative of the
𝑉(𝑥) is

𝑉 =

𝜕𝑉

𝜕𝑥

(𝑓 (𝑥) + 𝑏 (𝑥) 𝑢 + 𝑏 (𝑥) 𝑑)

= 𝐿
𝑓
𝑉 + 𝐿

𝑏
𝑉(𝑢
∗
−
̂
𝑑) + 𝜑 (𝑥) 𝑑

= 𝜓 (𝑥) − 𝜑
𝑇
(𝑥) 𝜑 (𝑥)

×

𝜓 (𝑥) + 𝑐
3(
𝑉 (𝑥))

1/2
+ √(𝜓 (𝑥) + 𝑐3(

𝑉 (𝑥))
1/2
)

2

+




𝜑(𝑥)






4





𝜑(𝑥)






2

= −√(𝜓 (𝑥) − 𝑐3(
𝑉 (𝑥))

1/2
)

2

+




𝜑(𝑥)






4

−𝑐
3(
𝑉 (𝑥))

1/2
− 𝜑
𝑇
(𝑥) (

̂
𝑑 − 𝑑)

≤ −𝑐
3(
𝑉 (𝑥))

1/2
− 𝜑
𝑇
(𝑥) (

̂
𝑑 − 𝑑) .

(46)

It has been shown that if ̂
𝑑 converges to 𝑑, then 𝑒

2
=

̂
𝑑 − 𝑑 converges to zero in finite time. This means that an
appropriate 𝑐

3
can be selected such that 𝑉 ≤ −𝑐

3
(𝑉(𝑥))

1/2is
achieved. By Lemma 3, the finite-time stability of closed-loop
system is ensured. This completes the proof.

Next, we show that if the disturbance estimate ̂𝑑 in (44)
and disturbance term 𝑑 in (24) are ignored, then the feedback
stabilizing controller 𝑢 in (44) solves the inverse optimal
control problem.

Theorem 11. Consider the system (24) for which Assumption 8
holds. Then the following dynamic feedback control law

𝑢
∗

= −𝑅(𝑒, 𝑒
0
, 𝜔
𝑒
)
−1

𝜑 (𝑥)

=

{
{
{
{

{
{
{
{

{

−𝜑
𝑇

(𝑥)

𝜓 (𝑥) + 𝑐
3
(𝑉 (𝑥))

1/2

+ √(𝜓 (𝑥) + 𝑐
3
(𝑉 (𝑥))

1/2

)

2

+




𝜑(x)



4





𝜑(𝑥)






2
, 𝑖𝑓





𝜑 (𝑥)






̸= 0

0, 𝑖𝑓




𝜑 (𝑥)





= 0

(47)

solves the inverse optimal assignment problem for the attitude
tracking system (24) by minimizing the cost functional (8).

Proof. With ̃
𝑑 = 0, using the control law 𝑢 one obtains

𝑉 ≤ −𝑐
3
(𝑉(𝑥))

1/2. Letting 𝑢
1
= (1/2)𝑢

∗ we also obtain
𝑉 ≤ −𝑐

3
(𝑉(𝑥))

1/2

≤ 0. Next, choosing

𝑙 (𝑥) = −𝜓 (𝑥) − 𝜑 (𝑥) 𝑢
1
, (48)

it can be ensured that 𝑙(𝑥) ≥ 0. This shows that 𝑙(𝑥) is
positive semidefinite in 𝑞

𝑒
, 𝑞
4𝑒
, and 𝜔

𝑒
. Therefore this 𝑙(𝑥) is

a meaningful cost function for the attitude control problem,
penalizing on 𝑞

𝑒
, 𝑞
4𝑒
, and 𝜔

𝑒
, as well as the control effort 𝑢.

Substituting 𝑙(𝑥) into the cost functional (8), we obtain the
optimal cost

𝐼 (𝑢
∗

, 𝑥, 𝑥
0
) = 𝑉 (𝑥

0
) (49)

for every 𝑥
0
∈ 𝐷.

Remark 12. It should be noted that most existing inverse
optimal attitude control approaches have been developed for
attitude motions of a rigid spacecraft [16, 17]. For a flexible
spacecraft the vibration of flexible appendages induced by an
orbiting attitude slewing operation may degrade the attitude
pointing accuracy. In this paper, we develop an inverse
optimal attitude maneuver controller for a flexible spacecraft
system which is significantly different from the controllers in
[16, 17], where the effects of vibration of flexible appendages
were not considered.

6. Anti-Disturbance Inverse Optimal Control
with Extended State Observer

Due to the great advances in nonlinear control theory, the
observer-based controller is now one of the most com-
mon schemes in industrial applications. The extended state
observer (ESO) mentioned in [18, 28] has high efficiency
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in accomplishing nonlinear dynamic estimation. We know
that use of the ESO dynamics of the observer error gives
convergence into a residual set of zero.The convergence proof
has been shown using the SSR approach [30]. However, this
method takes many steps and is quite complicated. In this
paper an adapted ESO which is a modified version of the
traditional ESO is presented and the finite-time stability of the
adapted ESO system is investigated using the strict Lyapunov
function.

We now consider the coordinate transformation of the
spacecraft model into the following form:

𝑧 = 𝜔
𝑒
+ 𝜆𝑞
𝑒
, (50)

where 𝜆 is a positive constant. The time derivative of 𝑧 is
̇𝑧 = ̇𝜔
𝑒
+ 𝜆 ̇𝑞
𝑒
. (51)

Substituting (14) and (17a) into (51), we obtain the auxiliary
dynamics

̇𝑧 = 𝐽
−1

𝑚𝑏
Ξ (𝜔
𝑒
, 𝜔
𝑒
, ̇𝜔
𝑑
) + 𝐽
−1

𝑚𝑏
𝑢 + 𝐽
−1

𝑚𝑏
𝑑 +

𝜆

2

(𝑞
×

𝑒
+ 𝑞
4𝑒
𝐼
3
) 𝜔
𝑒
,

(52)
which can be rewritten as

̇𝑧 = 𝐹 + 𝐵𝑢 + 𝑑, (53)
where

𝐹 = 𝐽
−1

𝑚𝑏
Ξ (𝜔
𝑒
, 𝜔
𝑑
, ̇𝜔
𝑑
) +

𝜆

2

(𝑞
×

𝑒
+ 𝑞
4𝑒
𝐼
3
) 𝜔
𝑒
,

𝐵 = 𝐽
−1

𝑚𝑏
, 𝑑 = 𝐽

−1

𝑚𝑏
𝑑.

(54)

Here, the new disturbance variable 𝑑 is introduced. Although
we need to estimate 𝑑 in (24), it is simpler to first estimate 𝑑
and then use the results to estimate 𝑑. Thus, we now consider
the estimate for 𝑑 in the ESO design.

We next consider the auxiliary system (53) with the
adapted ESO technique. The ESO views the system model
uncertainties and external disturbances as an added state
to be estimated. Using this idea, a nonlinear ESO can be
designed for estimating the disturbances 𝑑(𝑡). We add an
extended state 𝜒 to the state equations to represent the total
disturbances 𝑑. The system (53) then becomes

̇𝑧 = 𝐹 + 𝐵𝑢 + 𝜒,

̇𝜒 = 𝑔 (𝑡) ,

(55)

where the function 𝑔(𝑡) is the estimated derivative of the
disturbances 𝑑(𝑡).

Assumption 13. The 𝑖th component of 𝑔(𝑡) is bounded; that
is, 𝑔
𝑖
(𝑡) ≤ 𝑔

1
, 𝑖 = 1, 2, 3.

Then the adapted ESO for the system (53) is proposed to
be as follows:

𝐸
1
= 𝑍
1
− 𝜂,

̇
𝑍
1
= 𝑍
2
+ 𝐹 + 𝐵𝑢 − 𝜆

2
𝐸
1
,

̇
𝑍
2
= −𝜆
1
𝐸
1
− 𝜇 sign𝑟 (𝐸

1
) ,

(56)

where 𝐸
1
is the estimation error of the ESO, 𝑍

1
and 𝑍

2
are

the observer output, 𝜆
1
= diag(𝜆

11
, 𝜆
12
, 𝜆
13
), and 𝜆

2
=

diag(𝜆
21
, 𝜆
22
, 𝜆
23
)with𝜆

1𝑖
> 0 and𝜆

2𝑖
> 0 being the observer

gains. Here, the function sign𝑟(𝐸
1
) is defined as

sign𝑟 (𝐸
1
)

= [




𝐸
11






𝑟 sign (𝐸
11
)




𝐸
12






𝑟 sign (𝐸
12
)




𝐸
13






𝑟

𝑠𝑖𝑔𝑛 (𝐸
13
)]

𝑇

(57)

with 𝑟 ∈ (0, 1).

Theorem 14. Let Assumption 13 hold. Consider the system
(55) with the adaptive ESO (56). Then there exist positive
observer gains 𝜆

1𝑖
, 𝜆
2𝑖
, and 𝜇

𝑖
(𝑖 = 1, 2, 3) and 𝑟 ∈ (0, 1) such

that the estimated states 𝑍
1
and 𝑍

2
finite-time converge into a

residual set of actual states 𝑧 and 𝑑, respectively.

Proof. To investigate the stability of the ESO system, onemust
consider an expression for the observer dynamics. We first
define the observer errors 𝐸

1
= 𝑍
1
− 𝜂 and 𝐸

2
= 𝑍
2
− 𝑥
2
=

𝑍
2
− 𝑑. The observer error dynamics are also expressed as

̇𝐸
1
= 𝐸
2
− 𝜆
2
𝐸
1
,

̇𝐸
2
= −𝑔 (𝑡) − 𝜆

1
𝐸
1
− 𝜇 sign𝑟 (𝐸

1
) .

(58)

Letting 𝐸
1
= 𝑒
1
and 𝐸

2
= 𝑒
2
+ 𝜆
2
𝑒
1
the observer error

dynamics (58) can be transformed to the scalar form (𝑖 =

1, 2, 3) as

̇𝑒
1𝑖
= 𝑒
2𝑖
,

̇𝑒
2𝑖
= −𝑔
𝑖
(𝑡) − 𝜆

1𝑖
𝑒
1𝑖
− 𝜆
2𝑖
𝑒
2𝑖
− 𝜇
𝑖





𝑒
1𝑖






𝑟 sign (𝑒
1𝑖
) .

(59)

We define ] = [|𝑒
1𝑖
|
(𝑟+1)/2 sign(𝑒

1𝑖
) 𝑒
1𝑖
𝑒
2𝑖
]

𝑇

. To prove the
stability, we select the Lyapunov function

𝑉 =

1

2

]𝑇Λ], (60)

where

Λ =

[

[

[

[

[

[

𝜇
𝑖

𝑟 + 1

0 0

0 𝜆
1𝑖

𝜆
2𝑖

2

0

𝜆
2𝑖

2

1

]

]

]

]

]

]

. (61)

The matrix Λ is positive definite if 𝜆
2𝑖
and 𝜆

1𝑖
are chosen to

satisfy the condition

𝜆
1𝑖
>

1

4

𝜆
2

2𝑖
. (62)

Taking the time derivative of 𝑉 and using (60), we obtain

̇
𝑉 = [𝑒

1𝑖
𝑒
2𝑖
]
[

[

[

𝜆
1𝑖

𝜆
2𝑖

2

𝜆
2𝑖

2

1

]

]

]

[

̇𝑒
1𝑖

̇𝑒
2𝑖

] + 𝜇
𝑖





𝑒
1𝑖






𝑟 sign (𝑒
1
) ̇𝑒
1𝑖
,

(63)
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which can be further written as
̇
𝑉 = [𝑒

1𝑖
𝑒
2𝑖
] [

𝜆
1𝑖

0.5𝜆
2𝑖

0.5𝜆
2𝑖

1
]

× [

𝑒
2𝑖

−𝑔
𝑖
(𝑡) − 𝜆

1𝑖
𝑒
1𝑖
− 𝜆
2𝑖
𝑒
2𝑖
− 𝜇
𝑖





𝑒
1𝑖






𝑟 sign (𝑒
1
)

]

+ 𝜇
𝑖





𝑒
1𝑖






𝑟 sign (𝑒
1
) ̇𝑒
1𝑖
.

(64)

After some manipulation, the derivative of 𝑉 can be written
as follows:

̇
𝑉 = −

𝜆
2𝑖

2

]𝑇Π
2
] + ], (65)

where

Π
2
=

[

[

[

[

[

𝜇
𝑖

0 0

0 𝜆
1𝑖

𝜆
2𝑖

2

0

𝜆
2𝑖

2

1

]

]

]

]

]

,  = [0 −

𝜆
2𝑖

2

𝑔
𝑖
(𝑡) −𝑔

𝑖
(𝑡)] .

(66)

Letting 𝐿 = [0 (𝜆
2𝑖
/2)𝑔
1
𝑔
1
], one obtains

̇
𝑉 ≤ −

𝜆
2𝑖

2

𝜎min (Π2) ‖]‖
2

+ ‖𝐿‖ ‖𝜗‖

= − (0.5𝜆
2𝑖
𝜎min (Π2) ‖]‖ − ‖𝐿‖) ‖]‖ .

(67)

Using (60) we know that𝑉/𝜎max(Λ) ≤ ‖]‖
2

≤ 𝑉/𝜎min(Λ). We
obtain

̇
𝑉 ≤ − (𝜎min (Π2) ‖]‖ − ‖𝐿‖)

𝑉

1/2

√𝜎max (Λ)
. (68)

If 𝜎min(Π2)‖]‖ > ‖𝐿‖, the error system (59) will finite-time
converge to the region

‖]‖ ≤ (
‖𝐿‖

𝜎min (Λ)
) . (69)

It is obvious that the estimation errors are determined by
the parameters 𝜆

2𝑖
, 𝜆
1𝑖
, and 𝜇

𝑖
. Basically, these parameters

can be chosen such that (62) is satisfied.This makes the error
states converge to region (69) in finite time.

Remark 15. It should be noticed that conditions for the
stability of the adapted ESO (56) have been obtained in terms
of positive gains 𝜆

2𝑖
,𝜆
1𝑖
, and 𝜇

𝑖
and 𝑟 ∈ (0, 1) in (59) for the

estimation errors. When suitable gains are chosen, 𝑍
2
will

be a precise estimate of 𝑑 and the estimation error 𝐸
2
will

converge to region (69) in finite time.

Using the results from the ESO system, the estimated
disturbance ̂

𝑑 is determined by ̂
𝑑 = 𝐵

−1

𝑍
2
. Thus, the

proposed anti-disturbance inverse optimal control can be
obtained as

𝑢 = 𝑢
∗

− 𝐵

−1

𝑍
2
. (70)

With suitable control gains defined by the inverse optimal
control approach based on FTCLF concept, the optimal feed-
back controller (70) contains both optimality and robustness
performance to attenuate external disturbances.

7. Simulation Results

An example of attitude control of flexible spacecraft is pre-
sented with numerical simulations. The performance of our
proposed controller (70) is compared with the performances
of the optimal Lyapunov sliding mode (SM) controller (4.3)
in [23] and robust finite-time controller (23) in [37]. The
spacecraft is assumed to have the nominal inertia matrix [38]

𝐽 =
[

[

350 3 4

3 270 10

4 10 190

]

]

kg ⋅m2 (71)

and coupling matrices

𝛿 =

[

[

[

[

6.45637 1.27814 2.15629

−1.25619 0.91756 −1.67264

1.11678 2.48901 −0.83674

1.23637 −2.6581 −1.12503

]

]

]

]

kg1/2 ⋅m/s2, (72)

respectively. The first four elastic modes that have been
considered in the model used for simulating a spacecraft are
𝜔
𝑛1

= 0.7681, 𝜔
𝑛2

= 1.1038, 𝜔
𝑛3

= 1.8733, and 𝜔
𝑛4

=

2.5496 rad/sec with damping 𝜉
1
= 0.0056, 𝜉

2
= 0.0086, 𝜉

3
=

0.013, and 𝜉
1
= 0.025.The initial states of the rotationmotion

are given by 𝑄(0) = [0.3 − 0.1 0.2 0.9274]
𝑇

, 𝜔(0) =

[0 0 0]
𝑇 rad/sec, and 𝜗(0) = [0 0 0 0 0 0 0]

𝑇. For the
FTCLF (29), the parameters 𝛽 and 𝛾 are set as 𝛽 = 10 and
𝛾 = 2.5. The adapted ESO parameters are selected as 𝜆 = 0.5,
𝜆
1𝑖
= 2.0, 𝜆

2𝑖
= 1.5, and 𝜇

𝑖
= 5.0(𝑖 = 1, 2, 3). The attitude

control problem is considered in the presence of external
disturbance 𝑑(𝑡). The external disturbances are described as

𝑑 (𝑡) =
[

[

0.3 cos (0.1𝑡) + 0.1
0.15 sin (0.1𝑡) + 0.3 cos (0.1𝑡)

0.3 sin (0.1𝑡) + 0.1
]

]

Nm (73)

and the desired angular velocity tracking is given by

𝜔
𝑑
(𝑡) =

[

[

−0.04 cos (0.2𝑡)
−0.04 sin (0.2𝑡)

0.05 sin (0.2𝑡) + cos (0.2𝑡)
]

]

rad/sec (74)

together with

𝑞
𝑑
(0) = [0 0 0]

𝑇

. (75)

Note that the optimal Lyapunov SM controller (4.3) in
[23] was designed for optimal attitude stabilization. To apply
this controller to the tracking problem, we define the total
disturbance as

𝜏
𝑑
(𝑡) = −𝜔

×

𝑒
𝐽𝜔
𝑑
− 𝜔
×

𝑑
𝐽
𝑚𝑏
𝜔
𝑒
− 𝜔
×

𝑑
𝐽𝜔
𝑑
− 𝜔
×

𝑑
𝛿
𝑇

𝜓

− 𝐽
𝑚𝑏

̇𝜔
𝑑
+ 𝑑 (𝑡)

(76)

and use it as the disturbance in the spacecraft model (24).
Also, the corresponding parameters in the optimal Lyapunov
SM controller (4.3) in [23] are selected. In this paper, to apply
controller (23) in [37] to the attitude control problem we use
quaternions instead of Euler angles to describe the attitude of
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Figure 1: Quaternion tracking errors—controller (4.3) in [23].
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Figure 3: Control torques—controller (4.3) in [23].

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

−0.8

−0.1

1
st 

an
d
2

nd
 co

m
po

ne
nt

s o
f m

od
al

 d
isp

la
ce

m
en

ts

0 20 40 60 80 100 120 140 160 180 200

Time (s)

𝜂
1

𝜂
2

Figure 4: Modal displacements—controller (4.3) in [23].
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Figure 5: Modal displacements—controller (4.3) in [23].
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Figure 6: Quaternion tracking errors—controller (70).
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Figure 7: Angular velocity tracking errors—controller (70).
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Figure 8: Control torques—controller (70).

the flexible spacecraft. For controller (23) in [37], the control
parameters were selected as 𝜆 = 0.5, 𝛽 = 1, 𝑎 = 5, 𝑏 = 7, and
𝑘
∗

= 10𝐼
3
.

Simulation studies have been performed to test all con-
trollers. Figures 1 and 2 show the performance of controller
(4.3) in [23].The responses of quaternion and angular velocity
tracking errors reach zero after 40 seconds. The components
of angular velocity tracking error vector are smooth. From
Figure 3 it can be seen that the optimal Lyapunov SM
controller (4.3) in [23] stabilizes the closed-loop system of
flexible spacecraft. As shown in Figures 4 and 5 the modal
displacements (𝜂

1
−𝜂
4
) converge to the neighborhood of zero.

On the other hand Figure 6 shows that controller (70)
provides good trajectories of the quaternion error and they
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Figure 9: Modal displacements—controller (70).
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Figure 10: Modal displacements—controller (70).

Q
ua

te
rn

io
n 

er
ro

rs

q1e

q2e

q3e

0.5

0.4

0.3

0.2

0.1

0.0

−0.1

−0.2

−0.3

−0.4

−0.5

0 20 40 60 80 100 120 140 160 180 200

Time (s)

Figure 11: Quaternion tracking errors—controller (23) in [37].
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Figure 13: Control torques—controller (23) in [37].

reach zero in about 50 seconds. Similarly, from Figure 7 it can
be seen that the angular velocity tracking errors reach zero
after 80 seconds. The responses of angular velocity tracking
errors at the first 20 seconds are smoother when compared
with those obtained from controller (4.3) in [23]. As shown
in Figure 8 the control torques obtained by controller (70) are
quite smooth even though the external disturbances are taken
into account. The responses of modal displacements shown
in Figures 9 and 10 converge to a smaller region around the
zero when compared to controller (4.3) in [23]. Figures 11–
15 show the simulation results of controller (23) in [37]. As
shown in Figures 11 and 12 quaternion and angular velocity
tracking errors converge to zero in about 10 seconds. Figure 13
depicts the control torques which approximate the harmonic
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Figure 14: Modal displacements—controller (23) in [37].
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Figure 15: Modal displacements—controller (23) in [37].

curves. The responses of modal displacements for controller
(23) in [37] are shown in Figures 14 and 15.

A comparison of the simulation results obtained by
control law (4.3) in [23], our proposed controller (70), and
controller (23) in [37] shows the following. It can be seen that
our proposed control law (70) provides smoother attitude
velocity tracking error responses and control input responses
than those of controller (4.3) in [23]. It can be seen that the
vibration of flexible appendages of the spacecraft is obviously
reduced by applying the proposed controller (70) rather than
through the use of (4.3) in [23]. Next, we compare the
performance of (70) and controller (23) in [37]. Although
tracking responses obtained by our proposed control law
(70) converge more slowly to zero than (23) in [37], smaller
values of control torques are required in (70) than in (29).
Our proposed control law is based on the inverse optimal
control concept that minimizes the performance index, so
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it usually requires smaller values of control torques. In
addition, the proposed controller gives smoother control
torque signals. This shows that our controller (70) achieves
better disturbance rejection performance than (23) in [37]. In
view of these simulation results, controller (70) seems to give
the best overall control for practical inverse optimal attitude
tracking control of a flexible spacecraft.

8. Conclusion

We have studied a finite-time anti-disturbance inverse opti-
mal controller design of attitude tracking of a flexible space-
craft in the presence of external disturbances.The concepts of
inverse optimal control and the FTCLF have been employed
to develop a novel finite-time inverse optimal attitude track-
ing control law. An adapted ESO has been designed by
modifying the structure of the traditional ESO. The finite-
time convergence of an adapted ESO has been proven using
the strict Lyapunov function. A finite-time anti-disturbance
inverse optimal controller can be expressed as the sum of a
finite-time inverse optimal control and adapted ESO. It has
been shown that the developed controller solves the inverse
optimal control problem and converges to the reference
attitude states in finite time. An example ofmultiaxial attitude
maneuver is presented and simulation results are given and
compared with the results from controller (4.3) in [23]
and controller (23) in [37] to verify the usefulness of the
developed controller.
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[11] M.Krstić and P. Tsiotras, “Inverse optimal stabilization of a rigid
spacecraft,” IEEETransactions onAutomatic Control, vol. 44, no.
5, pp. 1042–1049, 1999.

[12] Y. Park, “Inverse optimal and robust nonlinear attitude control
of rigid spacecraft,” Aerospace Science and Technology, vol. 28,
no. 1, pp. 257–265, 2013.

[13] E. D. Sontag, “A “universal” construction of Artstein’s theorem
on nonlinear stabilization,” Systems and Control Letters, vol. 13,
no. 2, pp. 117–123, 1989.

[14] R. A. Freeman and P. V. Kokotovic, “Inverse optimality in robust
stabilization,” SIAM Journal on Control and Optimization, vol.
34, no. 4, pp. 1365–1391, 1996.

[15] W. Kang, “Nonlinear H
∞

control and its application to rigid
spacecraft,” IEEETransactions onAutomatic Control, vol. 40, no.
7, pp. 1281–1285, 1995.

[16] W. Luo, Y.-C. Chu, and K.-V. Ling, “Inverse optimal adaptive
control for attitude tracking of spacecraft,” IEEE Transactions
on Automatic Control, vol. 50, no. 11, pp. 1639–1654, 2005.

[17] Y. Park, “Robust and optimal attitude stabilization of spacecraft
with external disturbances,” Aerospace Science and Technology,
vol. 9, no. 3, pp. 253–259, 2005.

[18] J. Han, “FromPID to active disturbance rejection control,” IEEE
Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–
906, 2009.

[19] Y. Xia, Z. Zhu, M. Fu, and S. Wang, “Attitude tracking of rigid
spacecraft with bounded disturbances,” IEEE Transactions on
Industrial Electronics, vol. 58, no. 2, pp. 647–659, 2011.

[20] V. I. Utkin, SlidingModes in Control andOptimization, Springer,
Berlin, Germany, 1992.

[21] C. Pukdeboon andA. S. I. Zinober, “Optimal slidingmode cont-
rollers for attitude tracking of spacecraft,” in Proceedings of the
IEEE International Conference on Control Applications, pp.
1708–1713, Saint Petersburg, Russia, July 2009.

[22] C. Pukdeboon andA. S. I. Zinober, “Control Lyapunov function
optimal sliding mode controllers for attitude tracking of space-
craft,” Journal of the Franklin Institute, vol. 349, no. 2, pp. 456–
475, 2012.

[23] C. Pukdeboon, “Optimal sliding mode controllers for attitude
stabilization of flexible spacecraft,” Mathematical Problems in
Engineering, vol. 2011, Article ID 863092, 20 pages, 2011.

[24] N. N. Krasovskii, “On the stabilization of unstable motions by
additional forces when the feedback loop is incomplete,” Journal
of Applied Mathematics and Mechanics, vol. 27, no. 4, pp. 971–
1004, 1963.

[25] E.D. Sontag, “Mathematical control theory,” inDeterministic Fi-
nite Dimensional Systems, vol. 6 ofTexts in AppliedMathematics,
Springer, New York, NY, USA, 2nd edition, 1998.
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We design an improved logic threshold approach of energy management for a power-split HEV assisted by an integrated starter
generator (ISG). By combining the efficiencymap and the optimum torque curve of internal combustion engine (ICE) with the state
of charge (SOC) of batteries, the improved logic threshold controller manages the ICEwithin its peak efficiency region at first.Then
the electrical power demand is established based on the ICE energy output. On that premise, a variable logic threshold value 𝐾 is
defined to achieve the power distribution between the ISG and the electric motor/generator (EMG). Finally, simulation models for
the power-split HEV with improved logic threshold controller are established in ADVISOR. Compared to the equally power-split
HEV with the logic threshold controller, when using the improved logic threshold controller, the battery power consumption, the
ICE efficiency, the fuel consumption, and the motor driving system efficiency are improved.

1. Introduction

To improve the efficiency and fuel economy of hybrid
electric vehicle (HEV), many researchers focus on power-
split HEVs [1–5] as they can achieve a potential of higher fuel
economy and reduce the electrical system loss. The power-
split hybrid system,which usually uses an ICEwith integrated
starter generator (ISG) [6, 7] and an electric motor/generator
(EMG), combines the benefits of both the parallel- and series-
type hybrid systems without the cost effectiveness of this
hybrid system.

Since the structure of power-split HEV is more compli-
cated [5, 8], traditional control methods (such as optimal
control [9] and robust control [10]) cannot deal with this
kind of system efficiently. So it needs a sophisticated control
system to manage the power-split HEV power trains. Such
control system requires a reasonable control strategy at first to
improve the fuel-saving capability of the ICE, (see [11, 12]). To
solve this problem, studies such as logic threshold approach
applied to the design of the control strategy for HEV have

been used to achieve the power or torque distribution [2, 13].
However, due to the individual characters of the power-
split HEVs [5] and even different driving performance under
different driving cycles to the same power-split HEV [14, 15],
it is necessary to consider the individual ICE, structure, and
other driving conditions like SOC and vehicles’ speed of the
HEV when designing the control strategy [16].

In this case, by analyzing the structure of a power-split
HEV and its operation, we have designed an improved logic
threshold controller to achieve the power distribution in
the ICE and electrical system. Furthermore, to obtain the
actual torque distributed in electrical system, a variable logic
threshold value𝐾 is defined to achieve the power distribution
between the ISG and the EMG.The improved logic threshold
controller behaviors in simulation under different driving
conditions are compared with the performances of logic
threshold controller system. Results clearly demonstrate that
the improved logic threshold approach can significantly
improve the efficiency of the ICE and electrical system
behavior.
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2. Power-Split HEV Structure and Its
Operation with Logic Threshold Approach

The structure of power-split HEV studied [5] is shown in
Figure 1. To reduce inefficiencies of a single motor driving
system, the power-split HEV adopts two motors in its
electrical system, and that is, the ISG and the EMG. The
former is integrated with the ICE by a gear set and the latter
is downsized and integrated with the ISG and the ICE. Both
of them can work as driving motor and generator. Since this
structure increases the complexity of the electrical system, an
electric power splitter and a central power splitter are used in
it. To insure the independences of the ICE, the ISG, and the
EMG, it adds the clutches 1–4.

To meet the power demand, the central power splitter
distributes the power between the ICE and the electrical
system and the electrical power splitter distributes the power
between the ISG and the EMG. How to distribute the power
among the ICE, the ISG, and the EMG is very important,
so the main objective is to obtain the highest efficiency of
the ICE. Figure 2 shows the efficiency map of an ICE, of
which the maximum torque curve represents the highest ICE
torque achievable for any speed. The contours show constant
efficiencies, whose value will increase toward inner contours,
so the points in dashed line are the highest efficiency
operating points of the ICE at any corresponding speed. The
dashed line can be called the ICE optimum torque curve.
Notice that the ICE optimum torque curve must be limited

within its peak efficiency region (𝜂ICE ≥ 0.35), or else the
optimal ICE output torque will change suddenly.

When driving the power-split HEV, ICE optimum torque
curve can be used as a logic threshold value and ICE is
operating at the optimum torque curve. By neglecting energy
losses, the relationship among the ICE, the ISG, and the EMG
can be expressed as

𝑘
1
𝑇isg = 𝑇ele = 𝑇

req
ice − 𝑇

opt
ice , 𝑇

opt
ice > 𝑇

req
ice > 0,

𝑘
1
𝑇isg + 𝑘2𝑇emg = 𝑇ele = 𝑇

req
ice − 𝑇

opt
ice , else,

(1)

𝜔isg = 𝑘1𝜔ice, 𝜔emg = 𝑘2𝜔ice, 𝑇
opt
ice ̸= 0,

𝑘
2
𝜔isg = 𝑘1𝜔emg, 𝑇

opt
ice = 0,

(2)

where𝑇isg is the output torque from the ISG;𝑇ele is the output
torque of the electrical system; 𝑇reqice is the torque demand
on the ICE; 𝑇optice is the optimum output torque of the ICE,
when the ICE is stopped; 𝑇optice = 0; 𝑇emg is the output torque
from the EMG; 𝑘

1
and 𝑘
2
are the gear ratios; 𝜔isg is the speed

demand on the ISG; 𝜔ice is the actual speed of the ICE, which
depends on the power-split HEV speed and the gear ratios;
𝜔emg is the speed demand on the EMG.

Equations (1) and (2) reflect the relationship between the
ICE, the ISG, and the EMG when driving the power-split
HEV. It is easy to calculate the power distribution of every
component on the basis of obtaining the torque and speed.
For instance, the optimum output power 𝑃optice from the ICE
can be calculated by using 𝑇optice and optimum output speed
𝜔
opt
ice of the ICE as follows:

𝑇
opt
ice 𝜔

opt
ice = 𝑃

opt
ice . (3)

By combining (1) and (3), the output power of the ICE can
be controlled at the highest efficiency by changing the output
torque of the ISG or the EMG. Since 𝑃optice is known, the power
demand on electrical system can be obtained by

𝑃ele = 𝑃
req
ice − 𝑃

opt
ice ,

𝑃
req
ice = 𝑇

req
ice 𝜔ice,

(4)

where 𝑃ele denotes the power demand on electrical system
and 𝑃reqice is the power demand to the ICE.

It can distribute the power between the ISG and the EMG
in the electrical system by the known parameter 𝑃ele. At a
certain speed, when𝑃ele is less than the peak power of the ISG,
the electrical power is supplied by the ISG.While 𝑃ele is up to
the peak power of the ISG and less than the peak power of the
EMG, the electrical power is supplied by the EMG.While 𝑃ele
is up to the peak power of the EMG, the electrical power is
supplied by the ISG and the EMG.

It can be seen that the power distribution among the ICE,
the ISG, and the EMG is very easy when using simple logic
threshold approach. However, the ICEmay fail to achieve the
best efficiency on account of the complex nature of power-
split HEV. For example, the inertial additional torque of
the running/stopping of the ICE, the SOC of batteries, and



Mathematical Problems in Engineering 3

Determine the torque demand on ICET
req
ice , Preq

ice = T
req
ice 𝜔ice

Determine the controlled state variables of the ICE e(t)

Calculate the optimum torque of the ICE: when e(t) = 1,

T
opt
ice is determined by the ICE optimum torque curve;

when e(t) = 0, Topt
ice = 0

Central power splitter: send the optimum power demand

to the ICE and the electric power splitter

P
opt
ice = T

opt
ice 𝜔

opt
ice , Pele = Preq

ice − P
act
ice

Electric power splitter: send the power demand to the ISG and the
EMG according to theTele :Tele = T

req
ice − T

act
ice

(1) If |Tele | < k1|T
max
isg |, k1Tisg = Tele , Temg = 0, Pele = Pisg

(2) If k1|T
max
isg | < |Tele | < k2|T

max
emg |, k2Temg = Tele , Pele = Pemg

(3) If |Tele | > k2|T
max
emg |, Temg = T

max
emg , k1Tisg = Tele − k2T

max
emg ,

Pele = P
max
emg + Pisg

Figure 3: The control flow chart of the logic threshold approach.

the driving cycles are usually important factors affecting the
ICE output. In this condition, the ICE is operating at region
near the optimum torque curve. The relationship among the
ICE, the ISG, and the EMG can be described as

𝑘
1
𝑇isg = 𝑇ele = 𝑇

req
ice − 𝑇

act
ice , 𝑇

opt
ice > 𝑇

req
ice > 0,

𝑘
1
𝑇isg + 𝑘2𝑇emg = 𝑇ele = 𝑇

req
ice − 𝑇

act
ice , else,

(5)

where 𝑇actice is the actual output torque of the ICE and 𝑇actice ≥ 0.
The power demand on electrical system 𝑃ele in (4) should be
changed into 𝑃ele = 𝑃

req
ice − 𝑃

act
ice , 𝑃

act
ice = 𝑇

act
ice𝜔ice.

In order to give a detailed introduction of the logic
threshold approach, the control flow chart is shown in
Figure 3. We can see that the power distribution between the
ISG and the EMG is also determined by some logic control
conditions.

Equation (5) and Figure 3 reflect the actual torque dis-
tribution among the ICE, the ISG, and the EMG. One can
see the logic threshold value 𝑇optice is very important to design
the highest efficiency of the ICE. Because the threshold value
𝑇
opt
ice is changed into the actual output torque 𝑇actice , the control

strategy fails to achieve the best efficiency of the ICE. On the
other hand, the electric power splitter distributes the power
on the basis of the output torque of the electrical system 𝑇ele,
but it does not consider the efficiency of the overall electrical
system. In this way, the control strategy fails to achieve the
best efficiency of the system. Since simple logic threshold
approach is not available to achieve the best efficiency of the
system, we propose an improved logic threshold approach of

energy management by taking into account the factors such
as the character of ICE, the SOC, and the speed of the power-
split HEV.

3. Design of the Improved Logic
Threshold Approach

The control system uses an ICE logic threshold controller
with three inputs and one output, where the first input is
the torque demand on the ICE, the second input is the
SOC, and the third input is the current ICE speed. The
schematic of control system is shown in Figure 4. To design
the improved logic threshold approach, we analyze the main
effects of the traditional logic threshold approach. Combined
with Figure 3, the main controlling parameters are the state
variables of the ICE 𝑒(𝑡), the actual output torque and the
power of the ICE 𝑇actice and 𝑃actice , and the electrical power
distribution 𝑃ele between the ISG and EMG. To sum up, the
basic idea of the improved logic threshold approach should
consider the influenced factors about the main effects and
then correct the main controlling parameters to improve the
efficiency of the components.

The ICE logic threshold controller calculates the torque
distribution to the ICE and the first objective is the pre-
judgment for running/stopping of the ICE. The state run-
ning/stopping of the ICE is determined by three logic thresh-
old values: the minimum speed demand on the ICE, the
minimum torque demand on the ICE, and the current SOC,
respectively. When the ICE is operating, the output speed
and torque must be controlled in the peak efficiency region
(𝜂ICE ≥ 0.35). To ensure the efficiency, the minimum speed
demand on the ICE is designed as 800 rpm and themaximum
speed to the ICE is designed as 4100 rpm. On the other hand,
the lowest and highest output torque of the ICE are designed
as 𝑇
𝐿(𝜔)

and 𝑇
𝐻(𝜔)

, respectively, as shown in Figure 2.
Next, the second objective is the calculation of 𝑇actice . To

calculate𝑇actice , it is very important to consider SOCof batteries
firstly because SOC is related to the ICE output torque. The
resistance curves and the voltage curve corresponding to SOC
of the single NI-MH battery used in this study are shown
in Figure 5. To ensure the batteries charging/discharging
efficiency, we define that, when SOC is over 0.8, the ICEmust
be stopped to avoid the overcharging the batteries. When
SOC is lower than 0.2, the ICE must be started to avoid the
over discharge of batteries.

When SOC is in the region [0.2, 0.8], the
running/stopping of the ICE is determined by a binary
variable, which is expressed as follows:

𝑒 (𝑡 − 1) = 0, 𝑒 (𝑡) = {

1, 0.2 ≤ SOC ≤ 0.5
0, else,

𝑒 (𝑡 − 1) = 1, 𝑒 (𝑡) = {

0, 0.5 ≤ SOC ≤ 0.8
1, else,

(6)

where 𝑒(𝑡) is the binary variable, 𝑒(𝑡) = 0 indicates that the
ICE stops, the actual output torque is 0, and 𝑒(𝑡) = 1 indicates
that the ICE runs.
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We can see that 0.5 can be used as a logic threshold value
of SOC to change the state of ICE. However, the state of ICE
may be changed quite frequently when SOC is changed in
regions around SOC = 0.5. So the single logic threshold value
of SOC is improved and the single value SOC = 0.5 is changed
to the region [0.45, 0.55]. In this region, the state of the ICE
is maintained, and the binary variable 𝑒(𝑡) is expressed as
follows:

𝑒 (𝑡 − 1) = 0, 𝑒 (𝑡) = {

1, 0.2 ≤ SOC ≤ 0.45
0, else,

𝑒 (𝑡 − 1) = 1, 𝑒 (𝑡) = {

0, 0.55 ≤ SOC ≤ 0.8
1, else.

(7)

From (7), we can see that the batteries should be charged
when SOC is lower than 0.45 and be discharged when SOC
is more than 0.55. The ICE provides the charge or discharge
power, so the actual output torque of the ICE 𝑇actice must be
related to the value of SOC and the modes of the vehicle.

When 𝑒(𝑡) = 0, it can be known that 𝑇actice = 0 because the
ICE is turned off. When 𝑒(𝑡) = 1, 𝑇actice > 0, the calculation of
𝑇
act
ice should be determined by the modes of the vehicle. The

modes of the vehicle are determined by Δ𝑇 as follows:

Δ𝑇 = 𝑇
act
ice − 𝑇

req
ice . (8)

(a) When Δ𝑇 > 0 and 𝑇reqice < 𝑇𝐿(𝜔), operating the ICE
within the low torque region is uneconomical. It is
avoidable by activating the recharging mode so that
the ICE can operate in its peak efficiency, 𝑇actice can be
calculated as

𝑇
act
ice = 𝑇𝐿(𝜔) +

0.45 − SOC
0.45 − 0.2

(𝑇
opt
ice − 𝑇𝐿(𝜔)) , SOC ≤ 0.45,

𝑇
act
ice = 𝑇𝐿(𝜔), 0.45 < SOC < 0.55.

(9)

(b) When Δ𝑇 < 0 and 𝑇reqice > 𝑇𝐻(𝜔), the ICE is operated
at the highest output torque by activating the hybrid
mode. 𝑇actice is limited as

𝑇
act
ice = 𝑇𝐻(𝜔). (10)

(c) When Δ𝑇 = 0 and 𝑇
𝐿(𝜔)
< 𝑇

req
ice < 𝑇𝐻(𝜔), since

operating the ICE alone within the peak efficiency
region is economical, the pure ICE mode is activated.
𝑇
act
ice can be calculated as

𝑇
act
ice = 𝑇

opt
ice , 0.45 < SOC < 0.5,

𝑇
act
ice = 𝑇

req
ice +
0.45 − SOC
0.45 − 0.2

(𝑇
𝐻(𝜔)
− 𝑇

req
ice ) , SOC ≤ 0.45.

(11)

When we get 𝑇actice , we should consider the inertia torque
of ICE to calculate the electrical system power demand 𝑃ele.
The relation of the power between the ICE and the electrical
system can be expressed by rewriting (4) as follows:

𝑃ele = 𝑃
req
ice − 𝑃

act
ice ,

𝑃
act
ice = (𝑇

act
ice + 𝑇inertia) 𝜔ice,

(12)

where 𝑇inertia is the inertia torque of ICE, 𝑇inertia =
𝑚𝑟
2

(𝑑𝜔)/(𝑑𝑡), 𝑚 is the mass of ICE flywheel, 𝑟 is the radius
of ICE flywheel, and 𝜔 is the angular speed of ICE flywheel.

To distribute the torque or power between the ISG and the
EMG, we define a variable logic threshold value𝐾 to achieve
the distribution; it is shown as follows:

𝐾 =

𝑃isg

𝑃ele
, (13)
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where𝐾 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and 𝑃isg
is the power contribution of the ISG to the electrical power
demand 𝑃ele. The power contribution of the EMG can be
calculated as

𝑃emg = (1 − 𝐾) 𝑃ele, (14)

where 𝑃emg is the power contribution of the EMG.
The efficiency of electrical system can be calculated as

𝜂ele = {
𝑇isg𝜔isg𝜂

𝑖

isg + 𝑇emg𝜔emg𝜂
𝑖

emg

𝑃isg + 𝑃emg
}

𝑖

= {

𝑃isg𝜂
𝑖

isg + 𝑃emg𝜂
𝑖

emg

𝑃ele
}

𝑖

,

(15)

where 𝜂𝑖isg is the efficiency of the ISG; 𝜂𝑖emg is the efficiency of
the EMG; 𝑖 = 1 when the ISG and the EMG work in recharge
state; and 𝑖 = −1 when they work in discharge state.

By combining (13)–(15), the best efficiency 𝜂ele max of
electrical system can be calculated as

𝜂ele = {𝐾𝜂
𝑖

isg + (1 − 𝐾)𝜂
𝑖

emg}
𝑖

,

𝜂ele max = arg max
𝐾∈(𝐾min ,𝐾max)

{𝐾𝜂
𝑖

isg + (1 − 𝐾) 𝜂
𝑖

emg}
𝑖

.

(16)

For a particular𝐾, 𝑃isg and 𝑃emg can be calculated by (13)
and (14). On the other hand, 𝜔isg and 𝜔emg can be obtained
by knowing the wheel speed corresponding to driving cycles,
𝜂
𝑖

isg and 𝜂
𝑖

emg, by the calculation

𝜂
𝑖

isg = 𝑓 (𝑇isg, 𝜔isg) , 𝑇isg =
𝑃isg

𝜔isg
,

𝜂
𝑖

emg = 𝑓 (𝑇emg, 𝜔emg) , 𝑇emg =
𝑃emg

𝜔emg
.

(17)

From (16) and (17), we can get the efficiency of electrical
system to any specific 𝐾. At the same time, we can get the
maximumefficiency 𝜂ele max by searching themaximumvalue
of 𝜂ele, then the value 𝐾 corresponding to 𝜂ele max is used to
calculate 𝑃isg and 𝑃emg.

From (6)∼(17), the underlying reasons of the improve-
ments can be summarized as follows: (1) the corrected 𝑒(𝑡) can
reduce the running/stopping times and improve the output
stability of the ICE; (2) the designed 𝑇actice combined the peak
region of the ICE, the modes of the vehicle, and the SOC of
the batteries; it can improve the efficiency of overall vehicle
control and energy management system in any modes; (3)
the variable logic threshold value 𝐾 can achieve the best
efficiency of the electrical system.

4. Simulation and Comparative Analysis

TheUrban Dynamometer Driving Schedule (UDDS) and the
New European Driving Cycle (NEDC) are chosen to demon-
strate the improved logic threshold approach. The important

Table 1: Parameters of vehicles.

Component Parameter Power-split
HEV value

ICE
(Honda-Insight)

Peak power 50 kw
Optimum torque 60Nm
Peak efficiency 0.4

EMG (Insight) Peak power 30 kw
Peak torque ±220Nm

ISG (Insight) Peak power 10 kw
Peak torque ±100Nm

NIHM battery Voltage 288V
Capacity 6.5 Ah

Power-split
HEV data

Radius of wheel 0.275m
Frontal area 1.92m2

Total mass 1350Kg

parameters of power-split HEV are listed in Table 1. The
selected driving cycles are shown in Figure 6.

The ICE performance of the power-split HEV is shown
in Figure 7. We can see that the ICE can operate in its peak
efficiency region and near its optimum curve with both the
logic threshold controller and the improved logic threshold
controller. From Figure 7(b), the operating points of them
not only behave in peak efficiency region, but also behave
closer to the ICE optimum torque curve than to the ICE
operating points with logic threshold controller. When the
ICE is starting or running in the low speed area, some output
torque points of the ICE with logic threshold controller are
higher than those expected, some points even present beyond
the peak efficiency region. So the operating points of the ICE
with logic threshold are of less efficiency than the operating
points of the ICE with improved logic threshold control.

The performances of the EMG are shown in Figures
8(a) and 8(b). It is apparent that the ICE is less efficient
in two regions: (1) higher output torque in low speed and
(2) lower braking torque in low speed. From Figure 8, the
EMG with improved logic threshold controller behaves with
higher efficiency than the ICE with logic threshold controller
because it avoids the higher output torque and lower braking
torque in low speed. On the other hand, the operating points
of the EMG are closer to the red curve which presents the
highest efficiency. So the improved logic threshold controller
can improve the efficiency of the EMG. The performance of
the ISG is shown in Figures 8(c) and 8(d). It should be noticed
that the ISG efficiency is different from the EMG in different
speed. The efficiency is higher when the ISG is operating in
low output torque and low braking torque. However, the ISG
is of low efficiency in high output or braking torque when
it is operating at about 500 rpm. We can see that the ISG
with improved logic threshold controller is operating in low
output torque or braking torque region when the speed of the
ISG is operating at about 500 rpm. So it avoids low efficiency
in operating and higher efficiency than the ISG with logic
threshold controller.
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Table 2: Comparison of simulation results.

Driving cycle

ICE efficiency The variation of the SOC
(initial SOC∼final SOC)

Motor driving system
efficiency Fuel consumption

Logic
threshold

Improved
logic

threshold

Logic
threshold

Improved
logic

threshold

Logic
threshold

Improved
logic

threshold

Logic
threshold

Improved
logic

threshold
NEDC 35.8% 37.6% 0.70∼0.51 0.70∼0.59 81.0% 87.1% 3.41 L 3.36 L
UDDS 34.7% 36.4% 0.70∼0.47 0.70∼0.56 79.5% 85.7% 3.73 L 3.64 L
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Figure 6: Driving cycles.

Figure 9 shows the comprehensive results of the power-
split HEV in NEDC. The torque outputs of the ICE, the ISG,
and the EMG reflect that the ICE controlled by both logic
threshold controller and improved logic threshold controller
can work in the peak efficiency region. When the electrical
system responds to high regenerative braking torque, the
ISG and the EMG controlled by improved logic threshold
controller can work more harmonically than logic threshold
controller since the logic threshold variable 𝐾 is used to
achieve the torque distribution between the ISG and the
EMG. In other words, it reflects the change of SOC; the initial
value of SOC is set to 0.7. The final value is 0.51 when the
logic threshold controller is used, but the final value is up to
0.59 when the improved logic threshold controller is used. So
the improved logic threshold controller reduces the energy
consumption of batteries up to 8%.

To have more specific comparative analysis, we list
the ICE efficiency, the variation of SOC, and the motor
driving system efficiency calculated from ADVISOR in the
two driving cycles. They are shown in Table 2. We can
see that the improved logic threshold controller improves
the ICE efficiency and reduces the variation of SOC. The
motor driving system efficiency is improved apparently. The
ICE efficiency is increased by 1.7%, the fuel consumption
is reduced down to 1.4%, and the motor driving system
efficiency is increased by 6.1% when using the improved logic
threshold controller when compared to the power-split HEV
with the logic threshold controller.

5. Conclusions

This paper designs an improved logic threshold approach
of energy management for a power-split HEV assisted by
an ISG. By analyzing the power-split HEV structure and
its operation with logic threshold approach, combining the
ICE characters and the demand torque with the value of
SOC to manage the ICE within its peak efficiency region,
the logic threshold controller is improved. Furthermore, a
variable logic threshold value 𝐾 is defined to achieve the
best efficiency of electrical system and achieve the power
distribution between the ISG and the EMG.

Results have shown that the ICE efficiency and the
efficiency of battery charging and discharging with improved
logic threshold controller are improved when compared
to the equally power-split HEV with the logic threshold
controller. The comprehensive results show that battery
power consumption reduces down to 8%, the ICE efficiency
improves up to 1.7%, the fuel consumption is reduced down to
1.4%, and the motor driving system efficiency improves up to
6.1% of a power-split HEV with the improved logic threshold
approach when compared with one with the logic threshold
approach. The comprehensive results show the effectiveness
and the validity of the improved logic threshold approach.
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This work proposes an active disturbance rejection approach for the establishment of a sliding mode control strategy in fault-
tolerant operations. The core of the proposed active disturbance rejection assistance is a Generalized Proportional Integral (GPI)
observer which is in charge of the active estimation of lumped nonlinear endogenous and exogenous disturbance inputs related to
the creation of local sliding regimes with limited control authority. Possibilities are explored for the GPI observer assisted sliding
mode control in fault-tolerant schemes. Convincing improvements are presented with respect to classical sliding mode control
strategies. As a collateral advantage, the observer-based control architecture offers the possibility of chattering reduction given that
a significant part of the control signal is of the continuous type. The case study considers a classical DC motor control affected by
actuator faults, parametric failures, and perturbations. Experimental results and comparisons with other established sliding mode
controller design methodologies, which validate the proposed approach, are provided.

1. Introduction

Themain challenge of the Fault-TolerantControl is to guaran-
tee high performance and reliability in themost adverse oper-
ations such as the presence of perturbations, disturbances,
dynamic miss-modeling, and actuator faults among others.
In general, the techniques employed on the Fault-tolerant
Control (FTC) can be classified into active and passive.
Active FTC is characterized by the controller reconfiguration
assisted by fault detection and isolation (FDI) schemes [1]. On
the other hand, passive techniques exploit the robustness of
some types of controllers without requiring changes in their
structure and can operate satisfactorily without information
about system failures. These techniques are usually simple

in implementation but are not usually suitable for severe cases
of failures [1].

The robust characteristics of the sliding mode technique
provide a natural environment for the use of such techniques
on passive FTC schemes. This technique has been properly
used in different control schemes and assisted by other effec-
tive control strategies which have shown proper performance
under fault-tolerant operations (see [1–4] as representative
examples). Over the past years, considerable attention has
been paid to the design of linear/nonlinear disturbance
observers for sliding mode controller assistance in order to
overcome several issues like chattering [5–8], disturbances
and system uncertainties [8–10], coupling of MIMO systems
[11], or uncertainties, disturbances, and actuator faults [12].
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Even though the performance of the aforementioned
control proposals is accurate, there are still complexities in
the design that are a consequence of dealing with the system
faults and disturbances separately, on the one hand, and, on
the other hand, the need for precise knowledge of the system
model.

In the active disturbance rejection control (ADRC) phi-
losophy, system fault and disturbances can be dealt with
unitedly rendering a simplified linear control structure based
on a simplified model like the classical passive fault-tolerant
scheme. From the ADRC point of view, the disturbances
must be rejected in an active manner, so the control system
actively produces accurate estimates and reduces the causes
of the output errors. ADRC as a potential solution has been
explored in several domains of control engineering (see [13–
15]). In accordance with this field, Generalized Proportional
Integral (GPI) observers were introduced in [16]. Despite
of grand ADRC applications reported in the literature, the
potential of this technique for fault-tolerant performance has
been scarcely considered. Under the ADRC setup, a GPI dis-
turbance observer assisted slidingmode control approach can
be used to deal with fault-tolerant operation. In this paper, the
linear GPI observers are used as a part of an active distur-
bance rejection scheme for the slidingmode creation problem
on nonlinear systems with low switching authority.

We are interested in a proper local sliding mode creation
with the aid of a GPI disturbance observer. In the establish-
ment of the slide surface, unknown inputs (state dependent
or external) impact the correct evolution of the sliding
regime demanding greater bound of the control input; when
the sliding surface dynamics include an active disturbance
cancellation of the influence of that kind of unknown inputs,
the required switching input amplitude can be decreased.
Furthermore, risk for deviations from the sliding surface,
due to unexpected control input saturations, is practically
avoided. The proposed GPI observer can be related to either
the system dynamics or sliding surface dynamics disturbance
inputs; in both cases, it is possible to correctly design a
suitable assisted sliding mode control law with fault-tolerant
capabilities.

It is assumed that the effect of additive state-dependent
and exogenous nonlinearities, that affect the sliding mode
regime, may be approximately but accurately canceled from
the nonlinear system behavior via the injection of a precise
and exogenously generated time-varying signal.

In this work we propose an approach of passive fault-
tolerant control based on a classic sliding mode controller
assisted by a GPI observer under the context of the active
disturbance rejection. This scheme has been validated with
the control of a DCmotor subject to perturbations in the load
torque, actuator faults, and parametric failures.

This paper is organized as follows. Section 2 explores
the possibilities of the ADRC in GPI based observer sliding
mode control for fault-tolerant operation and two related
useful cases are presented. Section 3 describes the study
case, states the formulation of the problem, and presents its
corresponding proposed design. Section 4 is devoted to the
presentation of the experimental results describing experi-
mental platform and the experiments that were carried out

to enhance the advantages of using the linear estimation of
the disturbance functions during the sliding mode creation
problem. Finally, Section 5 contains the conclusions.

2. Possibilities of ADRC for Sliding Mode
Control Assistance

It is possible to assist the creation of a slidingmode regime for
a wide variety of sliding mode control strategies. The idea is
to inject a continuous term via a suitably defined observer, in
an active fashion, at the controller stage to ensure the correct
establishment or continuation of the sliding mode regime.

The objective of the proposed fault-tolerant control
design is to accurately track a desired reference trajectory,
even in the presence of the unknown disturbances caused
by actuator faults, parameter uncertainty, the presence of
unmodeled state-dependent nonlinearities, or the combina-
tion of these previous cases with the presence of uncertain
exogenous time-varying signals.

This is explained in this section by using a GPI observer-
based sliding mode controller. From this point of view, all
those terms are considered as a single, lumped, unstructured,
time-varying disturbance term. In the establishment of the
slidingmode control law, it is necessary to have an estimation
of the related disturbance term. Two main benefits of using
this strategy can be highlighted: (1) GPI observers allow the
estimation of the state of the system, the related disturbance
function, and a certain number of its time derivatives; (2)
the control law is composed of a discontinuous term plus
a continuous injection provided by the GPI observer. The
amplitude of the switching part (𝑊) acts as a weighting factor
allowing the chattering reduction.

In the following section, two approaches for the creation
of the sliding mode regimes assisted by GPI observers,
suitable for fault-tolerant operation, are explained.

It should be noted that our approach is not the only
possibility; it is merely a preferred approach with ease of
analysis, (e.g., it is possible to propose a GPI observer assisted
strategy of high-order sliding mode).

2.1. On Observer Assisted First Order Sliding Mode Creation.
In this subsection a conventional first order sliding mode
control is appropriately adapted by a GPI observer. Consider
the following 𝑛-dimensional, nonlinear, single-input single-
output system:

̇𝑥 = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢, 𝜎 = ℎ (𝑥) , (1)

where the drift vector field 𝑓(𝑥) is a smooth but uncertain
vector field on 𝑇R𝑛, 𝑔(𝑥) is known and a smooth vector
field on 𝑇R𝑛, and 𝑢 is the control input taking values on the
closed interval [−𝑈,𝑈],𝑈 > 0. The function ℎ(𝑥) is a smooth
function ℎ : R𝑛 → R. The zero level set for the scalar output
𝜎,

𝑆 = {𝑥 ∈ R
𝑛

| 𝜎 = ℎ (𝑥) = 0} , (2)

represents a smooth, 𝑛 − 1 dimensional manifold acting as
a sliding surface, where 𝜎 is the sliding surface coordinate
function.
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The state-dependent unperturbed sliding surface dynam-
ics are characterized by

̇𝜎 = 𝐿
𝑓
ℎ (𝑥) + 𝐿

𝑔
ℎ (𝑥) 𝑢, (3)

where 𝐿
𝑓
and 𝐿

𝑔
are the Lie derivatives or the directional

derivatives of ℎ, along the directions of the vectors 𝑓 and 𝑔,
respectively.

Actuator faults, exogenous disturbances, modeled and
non modeled internal dynamics, and possible parameter
variation can be treated as an equivalent additive lumped dis-
turbance function, 𝜉

𝜎
, affecting the sliding surface dynamic𝜎:

̇𝜎 = 𝜉
𝜎
+ 𝐿
𝑔
ℎ (𝑥) 𝑢. (4)

2.1.1. Assumptions

Assumption 1. The amplitude,𝑊, of the switching part of the
control input 𝑢 satisfies𝑊 < 𝑈.

Assumption 2. The disturbance function, 𝜉
𝜎
, and a finite

number of its time derivatives, 𝜉(𝑘)
𝜎
, 𝑘 = 0, 1, 2, . . . , 𝑚, for a

sufficiently large 𝑚, are assumed to be uniformly and abso-
lutely bounded; that is, 0 ≤ |𝜉(𝑘)

𝜎
| ≤ 𝛿
𝑘
< ∞ for any feedback

control input stabilizing the sliding surface coordinate
dynamics.

Assumption 3. Weassume that𝐿
𝑔
ℎ(𝑥) > 0 is perfectly known

and locally strictly positive.
The key observation for the robust operation of the

proposed sliding regimes is based on the accurate, yet
approximate, on-line estimation of the scalar uncertain dis-
turbance function 𝜉

𝜎
in the form ̂

𝜉
𝜎
. The incorporation of

that estimation in the slidingmode control lawmay result in a
substantially enhanced possibility for the creation of a sliding
motion via the active disturbance cancelation strategy:

𝑢 =

1

𝐿
𝑔
ℎ (𝑥)

[−
̂
𝜉
𝜎
−𝑊 sign (𝜎)] . (5)

An extended state representation can be proposed to
cope with the disturbance function estimation ̂𝜉

𝜎
. The aug-

mented representation is based on the internal model of
the disturbance function 𝜉

𝜎
. When there is no previous

knowledge about the disturbance term 𝜉
𝜎
, a general signal

oriented approach can be quite effective for on-line estima-
tion purposes. Associated with ADRC and specialized byGPI
approaches, unknown input signals can be approximated by
𝑑
𝑚

𝜉
𝜎
/𝑑𝑡
𝑚

≈ 0. For that realization, the extended state vector
𝑥
𝜎
= [𝜎 𝜉

𝜎
𝜉
(1)

𝜎
⋅ ⋅ ⋅ 𝜉
(𝑚−1)

𝜎
]

𝑇

is considered. Therefore, the
extended state space representation is given by

̇𝑥
𝜎
= 𝐴
1
𝑥
𝜎
+ 𝐵
𝜎
𝐿
𝑔
ℎ (𝑥) 𝑢 + 𝐸

𝜎
𝜉
(𝑚)

, (6)

where

𝐴
1
=

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 0

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

, 𝐵
𝜎
=

[

[

[

[

[

[

[

1

0

...
0

0

]

]

]

]

]

]

]

, 𝐸
𝜎
=

[

[

[

[

[

[

[

0

0

...
0

1

]

]

]

]

]

]

]

.

(7)

The disturbance function estimation is given by the
following GPI observer.

Theorem 1. Letting 𝑧 = [𝑧
1
𝑧
2
⋅ ⋅ ⋅ 𝑧
𝑚+1
]
𝑇 and Γ =

[𝛾
𝑚
𝛾
𝑚−1

⋅ ⋅ ⋅ 𝛾
0
]
𝑇, with Assumptions 1–3, the following

observer for system (4):
̇𝑧 = 𝐴
1
𝑧 + 𝐵
𝜎
𝐿
𝑔
ℎ (𝑥) 𝑢 + Γ𝑒

𝜎
(8)

with𝑚 being a sufficiently large integer, produces exponentially
asymptotic estimation of 𝜎, 𝜉

𝜎
, . . . , 𝜉

(𝑚−1)

𝜎
given by the observer

variables 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
, respectively. The estimation errors (𝜎−

𝑧
1
), (𝜉
𝜎
− 𝑧
2
), . . . , (𝜉

(𝑚−1)

𝜎
− 𝑧
𝑚+1
) are ultimately uniformly

bounded given the design parameters 𝛾
0
, . . . , 𝛾

𝑚
that are chosen

so that the following characteristic polynomial is Hurwitz:

𝑝
𝑒𝜎
(𝑠) = 𝑠

𝑚+1

+ 𝛾
𝑚
𝑠
𝑚

+ ⋅ ⋅ ⋅ + 𝛾
1
𝑠 + 𝛾
0
. (9)

Proof. The corresponding estimation error vector is defined
as 𝑒
𝜎
= 𝑥
𝜎
− 𝑧 and satisfies

̇
�̃�
𝜎
= (𝐴
1
− 𝐿𝐶) 𝑒

𝜎
+ 𝐸
𝜎
𝜉
(𝑚)

= 𝐴
𝜎
𝑒
𝜎
+ 𝐸
𝜎
𝜉
(𝑚)

, (10)

with

𝐴
𝜎
=

[

[

[

[

[

[

[

−𝛾
𝑚

1 0 ⋅ ⋅ ⋅ 0

−𝛾
𝑚−1

0 1 0

... d
−𝛾
1

0 0 ⋅ ⋅ ⋅ 1

−𝛾
0

0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

∈ R
(1+𝑚)×(1+𝑚)

, (11)

and its characteristic polynomial in the complex variable 𝑠 is
given by

𝑝
𝑒𝜎
(𝑠) = det (𝑠𝐼 − 𝐴

𝜎
) = 𝑠
𝑚+1

+ 𝛾
𝑚
𝑠
𝑚

+ ⋅ ⋅ ⋅ + 𝛾
1
𝑠 + 𝛾
0
, (12)

where the eigenvalues of 𝐴
𝜎
can be placed as desired by

selecting the gain vector Γ. The Hurwitzian character of 𝐴
𝜎

implies that, for every constant, (1+𝑚)× (𝑛+𝑚), symmetric,
positive definitematrix𝑄 = 𝑄𝑇 > 0, there exists a symmetric,
positive definite (1 +𝑚) × (1 +𝑚)matrix 𝑃 = 𝑃𝑇 > 0, so that
𝐴
𝑇

𝜎
𝑃 + 𝑃𝐴

𝜎
= −𝑄. The Lyapunov function candidate 𝑉(𝑥) =

(1/2)𝑒
𝑇

𝜎
𝑃𝑒
𝜎
exhibits a time derivative, alongwith the solutions

of the closed loop system given by

𝑉 (𝑒
𝜎
, 𝑡) =

1

2

𝑒
𝑇

𝜎
(𝐴
𝑇

𝜎
𝑃 + 𝑃𝐴

𝜎
) 𝑒
𝜎
+ 𝑒
𝑇

𝜎
𝑃𝐸
𝜎
𝜉
(𝑚)

𝜎
(𝑡) . (13)

For 𝑄 = 𝐼, that is, an (1 + 𝑚) × (1 + 𝑚) identity matrix, this
function satisfies

𝑉 (𝑥
𝜎
, 𝑡) =

1

2

𝑒
𝑇

𝜎
(−𝑄) 𝑒

𝜎
+ 𝑒
𝑇

𝜎
𝑃𝐸
𝜎
𝜉
(𝑚)

𝜎
(𝑡)

≤

1

2





𝑒
𝜎






2

2
+




𝑒
𝜎




2
‖𝑃‖
2
‖𝐸‖
2
𝛿
𝑚
.

(14)
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Given that ‖𝐸‖
2
= 1 and according to Assumption 2, this

function is strictly negative everywhere outside the sphere 𝑆
𝜎
,

given by

𝑆
𝜎
= {𝑒
𝜎
∈ 𝑅
1+𝑚

|




𝑒
𝜎




2
≤ 2𝛿
𝑚
‖𝑃‖
2
} . (15)

Hence, all trajectories 𝑒
𝜎
(𝑡) starting outside this sphere

converge towards its interior, and all those trajectories start-
ing inside 𝑆

𝜎
will never abandon it.

Corollary 2. Under all the previous assumptions, the discon-
tinuous active disturbance rejection feedback controller

𝑢 =

1

𝐿
𝑔
ℎ (𝑥)

[−𝑧
1
−𝑊 sign (𝜎)] (16)

locally creates a sliding regime for any amplitude,𝑊, satisfying:
𝑊 > 𝛿

0
, with 𝛿

0
as the ultimate bound for the disturbance

estimation error 𝑒
𝜎
.

Proof. The observer-based control law renders the following
closed loop sliding surface dynamics:

̇𝜎 = (𝜉
𝜎
−
̂
𝜉
𝜎
) −𝑊 sign (𝜎) (17)

with ̂𝜉
𝜎
= 𝑧
1
, which would require a smaller control input

switching amplitude𝑊 than in the case where the observer is
not used. According toTheorem 1, the disturbance estimation
error, 𝑒

𝜎
, is bounded by 𝛿

1
, and the local existence of a sliding

regime 𝜎 = 0 is guaranteed even if𝑊 is rather small.
Consider the following Lyapunov function candidate:

𝑉 =

1

2

𝜎
2

. (18)

Differentiating the Lyapunov function (18) with respect to
time and using (17) yield

𝑉 = 𝜎 ̇𝜎,

𝑉 = 𝜎 (𝜉
𝜎
−
̂
𝜉
𝜎
−𝑊 sign (𝜎)) ,

𝑉 = 𝜎 (𝜉
𝜎
−
̂
𝜉
𝜎
) −𝑊 |𝜎| ,

𝑉 ≤ |𝜎| 𝛿
0
−𝑊 |𝜎| .

(19)

𝑉 is strictly negative if𝑊 > 𝛿
0
. Therefore, if𝑊 > 𝛿

0
, locally

it creates a sliding regime (see [17]).

2.2. Observer Assisted Nonlinear Controlled Systems in Input-
Output Representation. In the previous subsection, the power
of the GPI observer injections for a proper establishment
and development of a first order sliding mode regimen was
demonstrated. In this subsection, the GPI observer is used in
a wider perspective allowing both sliding surface coordinate
function (𝜎) and disturbance function (𝜉

𝜎
) constructions.

These constructions are conducted by means of the system
state estimation and disturbance function estimation related
to system dynamics; all are supplied by the GPI observer.

Consider the nonlinear, scalar, differentially flat system

𝑦
(𝑛)

= 𝜓 (𝑡, 𝑦) 𝑢 + 𝜙 (𝑡, 𝑦, ̇𝑦, . . . , 𝑦
(𝑛−1)

) (20)

with the following set of initial conditions: 𝑌
0
= {𝑦(𝑡

0
),

̇𝑦(𝑡
0
), . . . , 𝑦

(𝑛−1)

(𝑡
0
)}. We refer to the function 𝜓(𝑡, 𝑦) as the

control input gain of the system. The term 𝜙(𝑡, 𝑦, ̇𝑦, . . . ,

𝑦
(𝑛−1)

) will be addressed as the drift function.
For a given smooth control input function, 𝑢(𝑡), let 𝑦(𝑡) =

Θ(𝑡, 𝑡
0
, 𝑌
0
, 𝑢(𝑡)) denote the solution trajectory of system (20)

from the set of initial conditions, 𝑌
0
. We denote by the time

function 𝜉(𝑡) the additive disturbance function, regardless of
any particular internal structure.

It is desired to drive the flat output 𝑦 of the system

𝑦
(𝑛)

= 𝜓 (𝑡, 𝑦) 𝑢 + 𝜉 (𝑡) (21)

to track a given smooth reference trajectory 𝑦∗(𝑡), regardless
of the unknown but uniformly bounded nature of the
disturbance function 𝜉(𝑡). As in the previous case, 𝜉 takes
into account, in a lumped way, faults and exogenous and
endogenous disturbances affecting the system dynamics. It
is important to note that the disturbance functions 𝜉 and 𝜉

𝜎

are defined in different dynamics but catch the same essential
disturbance behavior. Indeed, it will be showed that it is
possible to form an estimate of 𝜉

𝜎
from an estimate of 𝜉 and

some others estimates provided by the GPI observer.
Regarding controlled system (21), we make the following

assumptions.

Assumption 4. The disturbance function 𝜉(𝑡) is completely
unknown, while the control input gain 𝜓(𝑡, 𝑦) is perfectly
known. Let 𝜖 be a strictly positive real number. The control
input gain 𝜓(𝑡, 𝑦) is assumed to be uniformly bounded away
from zero; that is, inf

𝑡
|𝜓(𝑡, 𝑦)| ≥ 𝜖 > 0 for any solution 𝑦(𝑡) of

the controlled system. In particular, it is bounded away from
zero for the given output reference trajectory 𝑦∗(𝑡).

Assumption 5. It is assumed that a solution 𝑦(𝑡) exists,
uniformly in 𝑡 for every given set of initial conditions 𝑌

0
,

specified at time 𝑡 = 𝑡
0
and for a given, sufficiently smooth

control input function 𝑢(𝑡). Given a desired flat output
reference trajectory 𝑦∗(𝑡), the flatness of the system, and the
previous assumption, a straightforward calculation of the cor-
responding (unique) open loop control input 𝑢∗(𝑡) is possible
(see [18]).

Assumption 6. Let 𝑚 be a given integer. As a time function,
the 𝑚th, time derivative of 𝜉(𝑡), is uniformly absolutely
bounded. In other words, there exists a constant𝐾

𝑚
so that

sup
𝑡






𝜉
(𝑚)

(𝑡)






≤ 𝐾
𝑚
. (22)

Remark 3. Assumption 6 cannot be verified a priori when
𝜉(𝑡) is completely unknown. However, in cases where the
nonlinearity is known except for some of its parameters, its
validity can be assessed with some work. Also, if 𝜉(𝑚)(𝑡) is
not uniformly absolutely bounded almost everywhere, then
solutions 𝑦(𝑡) for (21) do not exist for any finite 𝑢(𝑡) (see [19]).
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2.2.1. Observer-Based Approach. With reference to simplified
system (21), in order to propose a GPI observer for a related
state and disturbance function estimation, it is considered
that the internal model of the disturbance function, 𝜉, is
approximated by 𝑑𝑚𝜉(𝑡)/𝑑𝑡𝑚 ≈ 0 at the observer stage.This
model is embedded into the augmentedmodel which is char-
acterized by an extended state composed of the phase vari-
ables𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, associatedwith the flat output𝑥

1
= 𝑦, and

augmented by the𝑚 output estimation error iterated integral
injections 𝑥

𝑛+1
, . . . , 𝑥

𝑛+𝑚
. As a result, setting the state vector

𝑥 = [𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥

𝑛+𝑚
] with 𝑥

1
= 𝑦, 𝑥

2
= ̇𝑦, . . . , 𝑥

𝑛
= 𝑦
(𝑛−1),

𝑥
𝑛+1

= 𝜉, . . . , 𝑥
𝑛+𝑚

= 𝜉
(𝑚−1), the augmented state spacemodel

is given by

̇𝑥 = 𝐴𝑥 + 𝐵𝜓 (𝑡, 𝑦) 𝑢 + 𝐸𝜉
(𝑚)

,

𝑦 = 𝐶𝑥

(23)

with

𝐴 =

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 0

... d
0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

∈ R
(𝑛+𝑚)×(𝑛+𝑚)

,

𝐵 =

[

[

[

[

[

[

[

[

0

...
1
(𝑛th position)

...
0

]

]

]

]

]

]

]

]

∈ R
(𝑛+𝑚)×1

,

𝐶 = [1 0 ⋅ ⋅ ⋅ 0] ∈ R
1×(𝑛+𝑚)

, 𝐸 =

[

[

[

[

[

[

[

0

0

...
0

1

]

]

]

]

]

]

]

∈ R
(𝑛+𝑚)×1

.

(24)

Now, the GPI observer for the state, 𝑥, is proposed:

̇
�̂� = 𝐴𝑥 + 𝐵𝜓 (𝑡, 𝑦) 𝑢 + 𝐿 (𝑦 − 𝑦) ,

𝑦 = 𝐶𝑥,

(25)

where 𝑥 = [𝑥
1
𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛+𝑚
]
𝑇 is the estimation

state vector and the observer gain vector is 𝐿 =

[𝑙
𝑛+𝑚−1

⋅ ⋅ ⋅ 𝑙
1
𝑙
0
]
𝑇.

The estimation error vector, 𝑒
𝑥
= [𝑒
𝑥1
𝑒
𝑥2
⋅ ⋅ ⋅ 𝑒
𝑥(𝑛+𝑚)

]

𝑇,
defined as 𝑒

𝑥
= 𝑥 − 𝑥, satisfies

̇
�̃�
𝑥
= (𝐴 − 𝐿𝐶) 𝑒

𝑥
+ 𝐸𝜉
(𝑚)

,

̇
�̃�
𝑥
= 𝐴
𝑒
𝑒
𝑥
+ 𝐸𝜉
(𝑚)

,

(26)

where

𝐴
𝑒
=

[

[

[

[

[

[

[

−𝑙
𝑛+𝑚−1

1 0 ⋅ ⋅ ⋅ 0

−𝑙
𝑛+𝑚−2

0 1 0

... d
−𝑙
1

0 0 ⋅ ⋅ ⋅ 1

−𝑙
0

0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

, (27)

with 𝐴
𝑒
∈ R(𝑛+𝑚)×(𝑛+𝑚), and its characteristic polynomial in

the complex variable 𝑠 is given by

𝑝
𝑒𝑥
(𝑠) = det (𝑠𝐼 − 𝐴

𝑒
)

= 𝑠
𝑛+𝑚

+ 𝑙
𝑛+𝑚−1

𝑠
𝑛+𝑚−1

+ ⋅ ⋅ ⋅ + 𝑙
1
𝑠 + 𝑙
0
.

(28)

Theorem 4. Suppose that all previous assumptions are valid.
Let the coefficients, 𝑙

𝑗
, with 𝑗 = 0, 1, . . . , 𝑛 + 𝑚 − 1, of the

polynomial 𝑝
𝑒𝑥
(𝑠) be chosen so that all their roots are exhibited

to the left of the complex plane C. Then, the trajectories of the
estimation error vector 𝑒

𝑥
(𝑡) globally converge towards a small

as-desired sphere of radius 𝜌, denoted by 𝑆(0, 𝜌), centered at the
origin of the estimation error phase space {𝑒

𝑥1
, 𝑒
𝑥2
, . . . , 𝑒

𝑥(𝑛+𝑚)
},

where they remain ultimately bounded.

Proof. This problem has already been proposed with slightly
different notation in [20]. In a recent work [21], it is shown
that the estimation error vector is uniformly ultimately
bounded.

Remark 5. Consequently with Theorem 4, the variables
𝑥
𝑛+1
, 𝑥
𝑛+2
, . . . , 𝑥

𝑛+𝑚
track arbitrarily and closely the unknown

time functions 𝜉(𝑡) and their time derivatives 𝜉(𝑗)(𝑡), 𝑗 =

1, . . . , 𝑚 − 1.

2.2.2. Sliding Surface Design. Regarding controlled systems
(21), a conventional sliding surface can be chosen as (in order
to decrease the stable error, an integral term of the tracking
error 𝑒

𝑦
can be introduced (see [12]), but it is preferred to

maintain a conventional surface to enhance the GPI observer
capabilities)

𝜎 = 𝑒
(𝑛−1)

𝑦
+ 𝜆
𝑛−2
𝑒
(𝑛−2)

𝑦
+ ⋅ ⋅ ⋅ + 𝜆

0
𝑒
𝑦

(29)

with 𝑒
𝑦
= 𝑦 − 𝑦

∗ being flat output tracking error. The design
parameters 𝜆

0
, . . . , 𝜆

𝑛−2
are chosen so that the characteristic

polynomial 𝑝
𝜎
(𝑠) = 𝑠

(𝑛−1)

+ 𝜆
𝑛−2
𝑠
(𝑛−2)

+ ⋅ ⋅ ⋅ + 𝜆
0
is Hurwitz.

An estimated version of the previous surface can be given
by

�̂� = 𝑥
𝑛
− [𝑦
∗

]
(𝑛−1)

+ 𝜆
𝑛−2
(𝑥
𝑛−1
− [𝑦
∗

]
(𝑛−2)

)

+ ⋅ ⋅ ⋅ + 𝜆
0
(𝑥
1
− 𝑦
∗

) ,

(30)

where 𝑦 = 𝑥
1
, . . . ,

̂
𝑦
(𝑛−1)

= 𝑥
𝑛
are estimates provided by

GPI observer (8). The use of 𝑥
1
instead of 𝑥

1
is preferred for

chattering reduction purposes (see [17]).
The sliding surface dynamics of �̂� is given by

̇
�̂� =

̇
�̂�
𝑛
− [𝑦
∗

]
(𝑛)

+ 𝜆
𝑛−2
(
̇
�̂�
𝑛−1
− [𝑦
∗

]
(𝑛−1)

)

+ ⋅ ⋅ ⋅ + 𝜆
0
(
̇
�̂�
1
− ̇𝑦
∗

) .

(31)
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Figure 1: General scheme of the experimental setup.

On the other hand from the GPI Observer we have

̇
�̂�
𝑛
= 𝜓 (𝑡, 𝑦) 𝑢 + 𝑥

𝑛+1
+ 𝑙
𝑚
(𝑥
1
− 𝑥
1
) , (32)

therefore,

̇
�̂� = 𝜓 (𝑡, 𝑦) 𝑢 +

̂
𝜉
𝜎

(33)

with

̂
𝜉
𝜎
= 𝑥
𝑛+1
+ 𝑙
𝑚
(𝑥
1
− 𝑥
1
) − [𝑦

∗

]
(𝑛)

+ 𝜆
𝑛−2
(
̇
�̂�
𝑛−1
− [𝑦
∗

]
(𝑛−1)

) + ⋅ ⋅ ⋅ + 𝜆
0
(
̇
�̂�
1
− [𝑦
∗

]
(1)

) ,

(34)

where the estimates ̇
�̂�
𝑛−1
, . . . ,

̇
�̂�
1
are also provided by the GPI

observer. Remember that as stated by the GPI observer state
notation 𝑥

𝑛+1
=
̂
𝜉 as announced at the beginning of this

subsection, the disturbance function estimation related to
sliding regime (33) ̂𝜉

𝜎
is given in terms of ̂𝜉, which is related

to system dynamics (21).
According to (5) the control law is

𝑢 =

1

𝜓 (𝑡, 𝑦)

[−
̂
𝜉
𝜎
−𝑊 sign (�̂�)] . (35)

Now, consider the following Lyapunov function candi-
date:

𝑉
1
=

1

2

�̂�
2

. (36)

Differentiating the Lyapunov function (36) with respect
to time and using (33) and (35), we obtained

𝑉
1
= �̂�

̇
�̂� = �̂� (𝜓 (𝑡, 𝑦) 𝑢 +

̂
𝜉
𝜎
) = −𝑊 |�̂�| (37)

which assures the sliding mode regime provided that𝑊 > 0.

3. Case Study

The system used for the experimental comparison of the pro-
posed control strategies is a mechatronic system composed
of two directly coupled DC motors. The first motor (also
called the main-motor) acts as the system to be controlled.
The second motor (also called the load-motor) generates
perturbation loads to the main-motor. Hence, the proposed
control strategies are applied to control the angular speed of
themain-motor, while the load-motor acts as the load-torque
perturbation generator by means of a current control loop.
Figure 1 shows a detailed scheme of the mechatronic system,
control loops, and the experimental setup. This figure also
shows the implementation scheme of two faults: armature
resistance fault (fault 1) and DC-bus level shift fault (fault 2).
These faults are typical in systems as the one under study (as
it will be explained later), and all controllers will be assessed
under these faults.

3.1. Fault-Tolerant Control for DCMotors. Themost common
faults in DC-motor drives can be classified as actuator,
parametric, and sensor faults [22]. The actuator faults are
mainly due to the reduction in the performance of amplifiers,
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malfunction of power semiconductors and failures in regu-
latory stages in the power supply [23, 24]. Parametric faults
are caused by degradation of brushes, inertia and friction
changes, and variations in resistance or inductance of the
armature [22]. This paper will consider two faults in the
mechatronic system:

(1) parametric fault due to a change in the resistance of
DC-motor armature and

(2) actuator fault due to level shift of the DC-bus voltage
that feeds the full-bridge drive of the main-motor.

3.2. Problem Formulation. Consider the following dynamic
model describing aDC-motor controlled by armature voltage
𝑢(𝑡), with state variables given by 𝜔(𝑡) describing the rotor
angular speed and 𝑖(𝑡) representing the armature current:

𝐿
𝑎

𝑑𝑖 (𝑡)

𝑑𝑡

= 𝑘pwm𝑢 (𝑡) − 𝑅𝑎𝑖 (𝑡) − 𝐾𝑏𝜔 (𝑡) ,

𝐽
𝑚

𝑑𝜔 (𝑡)

𝑑𝑡

= 𝐾
𝑇
𝑖 (𝑡) − 𝜏

𝐿
(𝑡) − 𝐵𝜔 (𝑡) − 𝛿 (𝜔 (𝑡)) .

(38)

The parameters 𝐿
𝑎
and 𝑅

𝑎
represent the armature induc-

tance and armature resistance, 𝐽
𝑚
is the moment of inertia,

𝐾
𝑏
is the back-emf constant, 𝐾

𝑇
is the torque constant, 𝐵 is

the viscous friction coefficient, 𝑘pwm is the conversion gain of
PWM, 𝜏

𝐿
represents the unknown load-torque perturbation

input, 𝑢(𝑡) is the control signal, and 𝛿(𝜔(𝑡)) represents a
nonlinear model of dry friction, where𝑇

𝑐
,𝑇
𝑠
, and 𝛼 are terms

associated with coulomb friction (see [25]). Consider

𝛿 (𝜔) = 𝜔 [> 𝑇
𝑐
{sign (𝜔) + (𝑇

𝑠
− 𝑇
𝑐
) 𝑒
−𝛼|𝜔| sign (𝜔)}] .

(39)

By rewriting and lumping together some terms of (38),
the following representation of the system (typical of the
ADRC paradigm) is obtained:

̈𝜔(𝑡) = 𝜅𝑢 (𝑡) + 𝜉 (𝑡) , (40)

where

𝜅 =

𝐾
𝑇
𝑘pwm

𝐽
𝑚
𝐿
𝑎

,

𝜉 (𝑡) =

𝐾
𝑇

𝐽
𝑚
𝐿
𝑎

[−𝑅
𝑎
𝑖 (𝑡) − 𝐾

𝑏
𝜔 (𝑡)]

−

1

𝐽
𝑚

𝑑𝜏
𝐿

𝑑𝑡

−

𝐵

𝐽
𝑚

𝑑𝜔 (𝑡)

𝑑𝑡

−

1

𝐽
𝑚

𝑑𝛿 (𝜔 (𝑡))

𝑑𝑡

.

(41)

The problem is as follows. Consider a DC-motor
described by the dynamics presented in (40), where the rotor
angular speed 𝜔(𝑡) is available for measurement. Given a
smooth reference trajectory, 𝜔∗(𝑡), for the angular velocity
of the motor shaft, find a control law 𝑢(𝑡) such that 𝜔(𝑡)
is forced to track the given reference trajectory 𝜔∗(𝑡). This
objective must be achieved even in the presence of unknown
disturbances represented by the load input torque 𝜏

𝐿
, and the

effect of parametric and actuator faults.

3.3. Disturbance GPI Observer Design. The following approx-
imation concerning the internal model of the distur-
bance function 𝑑

2

𝜉(𝑡)/𝑑𝑡
2

≈ 0 is considered. According to
this approximation, the extended state vector is given by
[𝜔 ̇𝜔 𝜉

̇
𝜉]
𝑇 thus we obtain the following augmented plant

model:

[

[

[

[

̇𝜔

̈𝜔

̇
𝜉

̈
𝜉

]

]

]

]

=

[

[

[

[

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

]

]

]

]

[

[

[

[

𝜔

̇𝜔

𝜉

̇
𝜉

]

]

]

]

+ 𝜅

[

[

[

[

0

1

0

0

]

]

]

]

𝑢 +

[

[

[

[

0

0

0

1

]

]

]

]

𝜉
(2)

. (42)

It is defined as an estimation error: 𝑒
𝜔
= 𝜔 − �̂�. In order

to observe the augmented state, a GPI observer is proposed:

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑑�̂�

𝑑𝑡

𝑑
̂
𝜔

𝑑𝑡

𝑑
̂
𝜉

𝑑𝑡

𝑑
̂̇
𝜉

𝑑𝑡

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

]

]

]

]

[

[

[

[

[

�̂�

̂
𝜔

̂
𝜉

̂̇
𝜉

]

]

]

]

]

+ 𝜅

[

[

[

[

0

1

0

0

]

]

]

]

𝑢 +

[

[

[

[

𝑙
3

𝑙
2

𝑙
1

𝑙
0

]

]

]

]

𝑒
𝜔
, (43)

where [𝑙
3
𝑙
2
𝑙
1
𝑙
0
]
𝑇 is the observer gains vector. The char-

acteristic polynomial which describes the estimation error
dynamics is defined as

𝑝
𝑒𝑥
(𝑠) = 𝑠

4

+ 𝑙
3
𝑠
3

+ 𝑙
2
𝑠
2

+ 𝑙
1
𝑠 + 𝑙
0
. (44)

Given the previously described uncertain model (42),
linear GPI observer (43) estimates the augmented state:
[𝜔 ̇𝜔 𝜉

̇
𝜉]
𝑇 with an arbitrary small phase space estimation

error, provided that the set of observer design coefficients
{𝑙
3
, 𝑙
2
, 𝑙
1
, 𝑙
0
} is chosen in such a manner that the roots of the

characteristic polynomial 𝑝
𝑒𝜔
(𝑠), on the complex variable 𝑠,

are located sufficiently far from the imaginary axis, in the left
half side of the complex plane.

3.4. Sliding Control Law Design. By defining the tracking
error as 𝑒

𝜔
(𝑡) = 𝜔(𝑡) − 𝜔

∗

(𝑡), the following sliding surface
in terms of the tracking error 𝑒

𝜔
are proposed:

𝜎 = ̇𝑒
𝜔
+ 𝜆𝑒
𝜔
. (45)

A modified version of the sliding surface that uses
estimates of 𝜔 and ̇𝜔 is proposed:

�̂� =
̂
𝜔 − [𝜔

∗

]
(1)

+ 𝜆
0
(�̂� − 𝜔

∗

) , (46)

where ̂𝜔(𝑡) and �̂�(𝑡) are estimations provided by a GPI
observer (43).

Applying time derivative to (46), the following dynamics
is obtained:

̇
�̂� = 𝜅𝑢 +

̂
𝜉
𝜎

(47)

with

̂
𝜉
𝜎
=
̂
𝜉 + 𝑙
2
(𝜔 − �̂�) − [𝜔

∗

]
(2)

+ 𝜆
0
(

𝑑�̂�

𝑑𝑡

− [𝜔
∗

]
(1)

) , (48)
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Figure 2: Time response of the control systems under the load-torque perturbations. From top to bottom: speed control response, control
signal, and load-torque perturbation.

where the estimates �̂�, ̂𝜉, and 𝑑�̂�/𝑑𝑡 are also provided by GPI
observer (43).

Finally, the following discontinuous feedback control law
is considered:

𝑢 =

1

𝜅

[−
̂
𝜉
𝜎
−𝑊 sign (𝜎)] . (49)

4. Experimental Results

In this section, we describe the experiments that were carried
out to assess the performance of the proposed GPI observer
assisted sliding mode control (SMC+GPIobs) against the
classic sliding mode control (SMC) applied to a mechatronic
system affected by perturbations and faults. First, the experi-
mental setup is described; then two different operation cases

are exposed and analyzed under a tracking problem: system
with perturbations and system with faults.

4.1. Experimental Setup. The designed controllers were
implemented in a MATLAB xPC Target environment using
a sampling period of 0.1ms on a computer equipped with a
Pentium D processor. The connection between the mecha-
tronic system and each controller was performed by two
National Instruments PCI-6024E data acquisition cards. A
PWM output at 8000Hz and a digital output were both used
to command each DC-motor full-bridge driver, one PWM
input was used to read the main-motor encoder frequency,
two digital outputs were used for enabling/disabling the
faults, and an analog input was used to read the load-motor
current sensor output.
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Figure 3: Time response of the control systems under faults 1 and 2. Fault 1 is applied at 𝑡 = 30 and fault 2 is applied at 𝑡 = 40.

Fault 1 consists of increasing the armature resistance of
the main-motor; when this fault is enabled, the armature
resistance of themotor is increased by 80% (𝑅af = 4.7 ohms).
This fault is enabled (when applicable) at 𝑡 = 30 sec.
Fault 2 consists of changing the DC-level of the main-motor
full-bridge driver power supply. When this fault goes from
disabled to enabled, theDC-level of the power supply changes
from 30Vdc to 20Vdc.This fault is enabled (when applicable)
at 𝑡 = 40 sec.

The parameters of the controller are defined as follows:
𝜅 = 155.6, 𝜆

0
= 100, 𝑊 = 50, 𝑙

3
= 320, 𝑙

2
= 26400, 𝑙

1
=

128000, and 𝑙
0
= 160000.

4.2. Experimental Results under Perturbations. Figure 2
shows the experimental results of the control systems
under evaluation using a setpoint defined as 𝜔∗

𝑟
(𝑡) =

0.3 sin(0.25𝜋𝑡) + 1.3. In this case, the control systems are
affected by load torque disturbances. The perturbations
applied to the main-motor are showed in Figures 2(e) and
2(f). Notice that the same perturbation profile is applied to
all control schemes in evaluation.

The plots of (a), (c), and (e) in the first column of
Figure 2 depict the experiments of the control systems using
𝑊 = 3000 for SMC and 𝑊 = 50 for SMC+GPIobs. The
plots (b), (d), and (f) of Figure 2 in the last column depict
the experiments using𝑊 = 5000 for SMC and𝑊 = 50 for
SMC+GPIobs. Figure 2(a) shows that the classic SMC (in
blue) is highly affected by the perturbations. Although the
switching gain was fixed in 𝑊 = 3000, the control system

gets out of the slidingmodemany times and the tracking per-
formance is reduced. Notice that the tracking performance
and disturbance rejection may be improved by increasing the
switching gain𝑊; however, under this condition the chatter-
ing phenomenon will be more problematic (see Figure 2(b)).

On the other hand, the proposed GPI observer assisted
SMC was capable of rejecting the perturbations and the
tracking performance was maintained. In this case, the
switching gain𝑊was reduced to𝑊 = 50, which was allowed
by the use of the GPI observer that assists the sliding mode
controller. Figures 2(c) and 2(d) show that the control signal
for SMC+GPIobs (in green) has less control effort than the
classic SMC scheme. The chattering in the controlled speed
was attenuated even in the presence of unknown perturba-
tions as seen in Figures 2(a) and 2(b) (in green).

4.3. Experimental Results under Faults. Figure 3(a) shows
that in presence of fault 1 at 𝑡 = 30, the tracking per-
formance of the classic SMC (in blue) is degraded. The
selection of 𝑊 = 3000 in the classic SMC allows set-
point tracking with no faults; however, it is not possible
to maintain the sliding mode for the tracking trajectory
when the fault is enabled. Meanwhile, the GPI observer
assisted SMC (in green) is capable of tolerating the first fault
and even of keeping the tracking performance almost with
no change. Note that the switching gain of the proposed
strategy is very low (𝑊 = 50), which is beneficial for
chattering reduction. It is important to observe that, at
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Figure 4: Time response of the control systems (no faults and no perturbations) under variations in the switching gain𝑊. In the first column:
sliding mode control; in the second column: GPI observer assisted sliding mode control.

the time of the fault (𝑡 = 30), there is a tiny transient
response in the controlled speed to recover the sliding regime
again.

Figure 3(a) also shows the effect of fault 2 in the controlled
speed at 𝑡 = 40. At this point, it is noticed that after the fault
is applied, the classic SMC (in blue) is not capable of main-
taining the sliding regime and its tracking performance is
highly degraded. Moreover, the GPI observer assisted SMC

(in green) tolerates the fault and quickly restores its tracking
performance without increasing the chattering.

Figures 3(b) and 3(d) show the experimental results using
𝑊 = 5000 for the classic SMC compared to the proposed GPI
observer assisted SMC. In this case, the classic SMC can toler-
ate fault 1 at 𝑡 = 30; however, a notable increasing in the chat-
tering is observed. On the other hand, when fault 2 is applied
at 𝑡 = 40, the classic SMC cannot tolerate it.
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4.4. Chattering Reduction. Figure 4 shows that both control
systems in evaluation track the setpoint when no faults
and no perturbations are applied. However, the classic SMC
requires larger switching gains to track the given setpoint.
This issue notably increases the chattering phenomenon in
the main-motor controlled speed compared to the proposed
GPI observer assisted SMC. In the proposed assisted SMC
scheme, the chattering is alleviated by reducing the switching
gain down to 𝑊 = 10 without loss of the sliding mode.
Figure 4 shows that the use of the GPI observer to assist
the SMC allows reducing the switching gain 𝑊; thus the
chattering problem is alleviated.

5. Conclusions

In this paper, an extension of Generalized Proportional Inte-
gral observer-based control has been proposed to the prob-
lem of robust creation of sliding regimes for nonlinear single-
input single-output systems, with limited switching control
input authority for fault-tolerant operation. The approach
considers the use of a GPI observer for the accurate (linear)
estimation of nonlinear endogenous, as well as exogenous,
disturbance inputs affecting the existence of local sliding
regimes on a given smooth sliding manifold. Active, on-line
disturbance estimation and subsequent cancellation of state-
dependent and time-dependent disturbances, significantly
contribute to reducing the required switching control ampli-
tude needed to sustain a sliding regime. As an additional
bonus it experimented a chattering reduction.

It was shown through the experimental tests that the
proposedGPI observer assisted slidingmode control strategy
is capable of maintaining the sliding regime even under hard
operating conditions such as system uncertainties, perturba-
tions, actuator faults, parametric failures, and small switching
control input authority. This demonstrates the robustness of
the proposed strategy accomplished by a simple linear GPI
observer-based control working on an ADRC paradigm.

It was experimentally probed that (a) the proposed GPI
observer-based SMC strategy allows reducing the chattering
in the controlled variable (limited by the lumped perturba-
tion estimation error) and (b) the proposed strategy forces
the system to approximately keep its nominal performance
in the presence of perturbations, faults, and uncertainties.
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This paper presents and validates a new proposal for effective speed vector control of inductionmotors based on linear Generalized
Predictive Control (GPC) law.The presented GPC-PI cascade configuration simplifies the design with regard to GPC-GPC cascade
configuration, maintaining the advantages of the predictive control algorithm. The robust stability of the closed loop system is
demonstrated by the poles placement method for several typical cases of uncertainties in inductionmotors.The controller has been
tested using several simulations and experiments and has been compared with Proportional Integral Derivative (PID) and Sliding
Mode (SM) control schemes, obtaining outstanding results in speed tracking even in the presence of parameter uncertainties,
unknown load disturbance, and measurement noise in the loop signals, suggesting its use in industrial applications.

1. Introduction

The Model Predictive Control (MPC) groups a set of con-
trollers which are based on the model of the system and the
known future reference for optimal control signal calculation.
The operational principle of predictive control is to calculate
in advance the control signal required by the system, when
the future input reference that will be applied is known
beforehand [1]. In this sense, the system is able to react to
the input reference, anticipating its changes and avoiding the
effects of delay in system response [2]. There are countless
applications in industry where the input reference is known
beforehand, such as robotic systems, and machine tools.
Therefore, in all these systems predictive control algorithms
can be implemented. Since Clarke et al. proposed the design
principles of Generalized Predictive Control [3, 4], many

authors have used this advanced technique for induction
motor control in the last two decades. There is extensive
research related to the application of predictive controllers
in electric drives, and, for this reason, predictive algorithms
compete with other advanced control techniques such as
fuzzy control [5], sliding mode control [6, 7], and nonlinear
𝐻

inf control [8].
Predictive algorithms are often implemented using two or

more GPC blocks to control several loops of the electrical
machine, and usually they are connected in cascade form
[9–11]. Frequently, only one predictive regulator for the
control of the main variable of the machine is implemented,
such as speed [12–15] or position [16], while the rest of
the variables are controlled with classical algorithms, usually
PI/PID and hysteresis comparators. Some authors use more
complex formulations in order to control several variables of
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the engine, such as the multivariable GPC [17], and others
implement a predictive algorithm in the current loops [18, 19],
using the classic PI regulators for the main variables such as
speed and rotor flux.

All predictive control schemes are based on the mini-
mization of a cost function. In the GPC this implies solv-
ing a quadratic programming problem in the case where
physical constraints are introduced in the optimization. If
no constraints are considered, an analytical solution can be
obtained. In this sense, it is known that all real systems have
constraints, such as saturation values, frequencies, and time
limits of the actuators [13, 16, 20]. Hence, a numerical method
is required to solve the quadratic programming problem,
which implies a high computation cost for the processor
where the controller is implemented. For this reason, the
sample period of a predictive controller is usually greater than
other types of controllers [9], which limit its applicability to
quick response systems. Due to this issue, some works do not
consider constraints, implementing the analytical solution
with acceptable results [15, 17]. Moreover, constraints can be
considered after the predictive control law is obtained [15].

In addition, even if the delay time of the electric motor
systems is usually small, sometimes it can be long enough
so that its compensation improves significantly the system
behaviour [21], and in this way it can be used in precision
applications. In this sense, the predictive algorithms allow to
compensate easily the delay time of the controlled system,
because this aspect is included in the implementation of these
algorithms.

Finally, the robustness of the GPC regulator is another
aspect included by some authors in the controller design
[16, 20], obtaining relevant results, but with an arduous
controller design process. In this sense, it is known that all
closed loop controlled systems have inherent robustness [22]
that in the presented GPC speed controller is enough to
overcome the typical uncertainty cases of induction motor,
without having to design an explicit robust controller nor
to include any method for the adaptive identification of the
motor parameters.

After all these considerations and taking into account
the complexity in the design of predictive controllers and
their important computational costs, this paper presents an
induction motor speed indirect vector control that combines
the GPC algorithm with PI regulators, proposing a simple,
robust, and effective design which provides better dynamical
behaviour than other speed regulators such as other GPC,
PID, and Sliding Mode (SM). The rest of the paper is
organized as follows. In Section 2 the design of the proposed
GPC speed regulator is presented, detailing the objectives, the
dynamics of the induction motor, the design of the controller
and its tuning, and finally its robust stability. Section 3
contains a brief description of the used experimental platform
and the simulation and experimental tests carried out by
implementing the proposed regulator. Comparative results
are given of the presented speed GPC regulator with other
GPC, PI/PID, and SM speed controllers. Finally, Section 4
summarizes the most important ideas.

2. Linear GPC Speed Controller for
Induction Motor

2.1. Objective and Description. The objective of this paper is
to demonstrate experimentally that theGPCalgorithmcan be
used in speed regulation of induction motors in an effective
way with a simple, robust, and stable design, offering faster
speed tracking than other algorithms such as PID or SM,
allowing being implemented in industrial applications.

The proposed speed regulator combines a GPC scheme
with twoPI current regulators.Thedynamics of the induction
motor is regulated using a distributed control in cascade
form: the stator, (1), (2), is regulated with the PI current
regulators and the rotor, (4), (5), with a GPC speed controller.
The PI current regulators are very effective, simple, and
provide fast response, offering similar results to the ones
obtained by implementing a GPC-based current regulator.
These are combined with a Space Vector Pulse Width Mod-
ulation (SVPWM), which is a standard modulator that is
implemented in many commercial Digital Signal Process
(DSP) processors, even in many low-cost processors. The
proposed GPC controller is designed taking into account
the first order transfer function (mechanical equation, (4),
(5)) of the induction motor, considering the delay time, but
without considering the constraints. Therefore, it is a simpler
approach to GPC-based controllers than previous works.

2.2. Induction Motor Dynamics. The dynamics of the motor
can be described by the stator voltage equations and the
rotor flux equation, expressed all in the 𝑑-𝑞 synchronous
rotating reference frame [23], assuming that the quadrature
component of rotor flux is null,𝜓

𝑟𝑞
≈ 0, and consequently the

rotor flux is formed only by its direct component, 𝜓
𝑟
≈ 𝜓
𝑟𝑑
:

V
𝑠𝑑

= 𝑅
𝑠
𝑖
𝑠𝑑

+ 𝜎𝐿
𝑠
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+

𝐿
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𝐿
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+ 𝐵V𝜔𝑚, (4)
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=
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𝑖
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. (5)

The employed symbols are described as follows:

𝐵V: viscous friction coefficient,
𝐽: moment of inertia,
𝐿
𝑚
: magnetizing inductance,

𝐿
𝑠
: stator inductance,

𝐿
𝑟
: rotor inductance,

𝑅
𝑟
: rotor resistance,

𝑅
𝑠
: stator resistance,
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Figure 1: Diagram of GPC speed control of induction motor with the PI current control and SVPWM.

𝑝: number of poles,
𝜎: leakage factor,
𝑇
𝑒
: electromagnetic torque,

𝑇
𝐿
: load or disturbance torque,

𝜔
𝑒
: synchronous rotating speed,

𝜔
𝑚
: mechanical rotor speed,

𝜔
𝑟
: electrical rotor speed,

𝜓
𝑟
: rotor flux vector,

𝜓
𝑟𝑑
, 𝜓
𝑟𝑞
: direct and quadrature components of the

rotor flux vector,
𝑖
𝑠
: stator current vector,

𝑖
𝑠𝑑
, 𝑖
𝑠𝑞
: direct and quadrature components of the stator

current vector,
V
𝑠
: stator voltage vector,

V
𝑠𝑑
, V
𝑠𝑞
: direct and quadrature components of the

stator voltage vector.

2.3. GPC Speed Controller Design. Figure 1 shows the speed
vector control diagram of an induction motor, where the
GPC
𝜔
block is the proposed GPC controller for the speed

loop whose algorithmwill be detailed later.The two PI blocks
are a pair of PI controllers for the two current loops. Their
function is to convert the 𝑖

𝑠𝑑
and 𝑖
𝑠𝑞

current commands
in their respective V

𝑠𝑑
and V

𝑠𝑞
voltage commands. This

conversion is necessary because the inverter needs voltage
commands, instead of current commands. The VSI block
is the three-phase Voltage Sourced Inverter, 𝐴𝐵𝐶 → 𝑑𝑞

block gets the 𝑖
𝑠
space vector in the 𝑑-𝑞 synchronous rotating

reference frame from the 𝑖
𝐴
, 𝑖
𝐵
, and 𝑖

𝐶
motor stator three-

phase currentsmeasuredwithHall effect sensors, using Park’s
transformation [23, 24], while the 𝑑𝑞 → 𝐴𝐵𝐶 block makes
the reverse Park’s transformation. It should be noted that this
transformation uses the rotor flux angular position, 𝜃

𝑒
, and

therefore this angle is calculated using the indirect method,
obtained by integrating the 𝜔

𝑒
synchronous speed.

Next, the dynamics of the inductionmotor system will be
calculated in order to design the GPC.

As it is known that the synchronous speed can be
expressed as follows:

𝜔
𝑒
= 𝜔
𝑠
+ 𝜔
𝑟
, (6)

where 𝜔
𝑠
is the slip speed, and 𝜔

𝑟
is the rotor speed. As it is

assumed that the 𝑑 direct and 𝑞 quadrature components of
the rotor flux are decoupled, then 𝜓

𝑟𝑞
≈ 0, and 𝑑𝜓

𝑟𝑞
/𝑑𝑡 ≈ 0,

and consequently the rotor flux is formed only by the direct
component [23, 24]. In this context, the slip speed is obtained
from the following:

𝜔
𝑠
=

𝐿
𝑚

𝜓
𝑟

𝑅
𝑟

𝐿
𝑟

𝑖
𝑠𝑞
, (7)

where the rotor flux is calculated by (3),

𝑅
𝑟

𝐿
𝑟

𝑑𝜓
𝑟

𝑑𝑡

+ 𝜓
𝑟
= 𝐿
𝑚
𝑖
𝑠𝑑
, (8)

while the rotor speed is proportional to the 𝜔
𝑚
mechanical

rotor speed, which is measured using a incremental encoder:

𝜔
𝑟
= 𝜔
𝑚

𝑝

2

. (9)

From diagram of Figure 1 it is possible to obtain the external
representation of the induction motor (Figure 2).

Usually the rotor flux is held constant, fixing the rotor flux
current command (𝑖∗

𝑠𝑞
) to a constant value, that is, 𝐼

𝑠𝑑
; see

Figures 1 and 2.Then the pole associated to the electrical time
constant can be neglected and consequently (3) in a steady
state takes the following expression:

𝜓
𝑟
= 𝐿
𝑚
𝐼
𝑠𝑑
. (10)
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Figure 2: External representation of the induction motor with the PI current control and SVPWM.

The electromagnetic torque of the induction motor in
steady state, taking into account that torque and rotor
flux current components are decoupled in the 𝑑-𝑞 rotating
reference frame, (5), also can be expressed as follows [24]:

𝑇
𝑒
=

3𝑝

4

𝐿
𝑚

𝐿
𝑟

𝜓
𝑟𝑑
𝑖
𝑠𝑞

= 𝐾
𝑇
𝑖
𝑠𝑞
, (11)

where𝐾
𝑇
is the torque constant (12) and 𝜓

𝑟𝑑
is the rotor flux:

𝐾
𝑇
=

3𝑝

4

𝐿
𝑚

𝐿
𝑟

𝜓
𝑟𝑑
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𝑇
𝜓
𝑟𝑑

= 𝐾


𝑇
𝐿
𝑚
𝐼
𝑠𝑑
. (12)

Considering that the SVPWM and the VSI modules have
neither dynamics nor gain in diagramof Figure 1, it is possible
to obtain the following transfer function:

𝜔
𝑚
(𝑠)

𝐼
∗

𝑠𝑞
(𝑠)

=

𝐾


𝑇
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(13)

where the mechanical time constant and the rotor electrical
time constant are, respectively,

𝜏
𝑚

=

𝐽

𝐵V

, 𝜏
𝑟
=

𝐿
𝑟

𝑅
𝑟

. (14)

Now, if the dynamics associated to the two current loops
are neglected, because they are much faster than the rest,
the following second order transfer function of the induction
motor is obtained as follows:

𝜔
𝑚
(𝑠)

𝐼
∗
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=

𝐾
𝑇
/𝐵V

(1 + 𝑠𝜏
𝑚
) (1 + 𝑠𝜏

𝑟
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𝑒
−𝜏𝑑

, (15)

where 𝜏
𝑑
is the delay time of the induction motor.

Taking into account the consideration to obtain (10)
from (3), Figure 2, and also considering that the dynamics
associated to the rotor electrical time constant is much faster
than the mechanical time constant, then the electrical pole is
neglected. Thus, the following first order transfer function of
the induction motor is obtained

𝜔
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−𝜏𝑑

. (16)

The design of the GPC controller is carried out using
the first order transfer function of the motor. As the GPC
controller is defined in discrete time, the transfer function
must be transformed into a discrete time transfer function.
Then, using the ZOH (Zero-Order Hold) discretization
method, it is obtained that

𝜔
𝑚
(𝑧
−1

)

𝐼
∗

𝑠𝑞
(𝑧
−1
)

=

𝐵 (𝑧
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𝑏
0
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)

𝑧
−𝑑

. (17)

Taking into account GPC theory and employing the
CARIMA model [1], it is possible to obtain the following
equation of the system, in which the output 𝜔

𝑚
is replaced by

𝑦, the input 𝑖∗
𝑠𝑞
is replaced by 𝑢, and white noise is included

in the previous transfer function (17):

𝐴(𝑧
−1

) 𝑦 (𝑡) = 𝐵 (𝑧
−1

) 𝑧
−𝑑

𝑢 (𝑡 − 1) + 𝐶 (𝑧
−1

)

𝜀 (𝑡)

Δ

, (18)

where 𝑑 is the delay time of the system and it ismultiple of the
sample time chosen, 𝜀 is the white noise with null average,
Δ = 1 − 𝑧

−1, and the 𝐶(𝑧
−1

) is the noise polynomial that is
chosen to be 1 for simplicity in this design [1].

The GPC algorithm involves applying a control sequence
that minimizes a multistage cost function of the form:

𝐽
𝑐
=

𝑁2

∑

𝑗=𝑁1

𝛿 (𝑗) [𝑦 (𝑡 + 𝑗 | 𝑡) − 𝑤 (𝑡 + 𝑗)]
2

+

𝑁𝑢

∑

𝑗=1

𝜆 (𝑗) [Δ𝑢 (𝑡 + 𝑗 − 1)]
2

,

(19)

where 𝑦(𝑡 + 𝑗 | 𝑡) is the predicted output 𝑗 step ahead of
actual time 𝑡, 𝑁

1
is the minimum cost horizon, 𝑁

2
is the

maximum cost horizon, 𝑁
𝑢
is the control horizon, 𝛿(𝑡) and

𝜆(𝑡) are the weighting sequences, and 𝑤(𝑡 + 𝑗) is the future
reference trajectory. The GPC regulator design requires tun-
ing the prediction horizons and the two weighting factors.
If one takes into account the possibility that the plant has a
delay time, then the minimum and maximum horizons are,
respectively, 𝑁

1
= 1 + 𝑑 and 𝑁

2
= 𝑁 + 𝑑 [1], where 𝑁

is the prediction horizon. Since a high value for the control
horizon produces an undesirable oscillation in the control
signal [3, 4], which could cause the chattering phenomenon
in the induction motor, then it is assumed that𝑁

𝑢
= 1.
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The prediction of the future output is as follows:

𝑦 (𝑡 + 𝑗 + 𝑑 | 𝑡) = 𝐹
𝑗+𝑑
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) Δ𝑢 (𝑡 + 𝑗 − 1) ,

(20)

where 𝐹(𝑧
−1

) and 𝐸(𝑧
−1

) polynomials are calculated by
operating 1/𝐴(𝑧

−1

)𝑁
2
times, where 𝐴(𝑧

−1

) = 𝐴(𝑧
−1

)Δ,
according to the following Diophantine identity:
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𝑗
(𝑧
−1
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𝑗
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) . (21)

Taking into account that

𝐺
𝑗
(𝑧
−1

) = 𝐸
𝑗
(𝑧
−1

) 𝐵 (𝑧
−1

) (22)

the following set of 𝑗 ahead optimal predictions for the system
expressed in matrix form (23) can be obtained:

𝑦 = 𝐺u + 𝐹 (𝑧
−1

) 𝑦 (𝑡)

+ 𝐺


(𝑧
−1

) Δ𝑢 (𝑡 + 𝑗 − 1) = 𝐺u + f ,
(23)

where, for an𝑁 prediction horizon, one obtains the𝐺matrix,
which contains values of the step sequence of the plant
(induction motor), with𝑁 × 𝑁 dimension:

𝐺 =

[

[

[

[

[

[

𝑔
𝑁1

0 ⋅ ⋅ ⋅ 0

𝑔
𝑁1+1

𝑔
𝑁1

d
...

... 𝑔
𝑁1+1

d 0

𝑔
𝑁2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑔
𝑁1

]

]

]

]

]

]

=

[

[

[

[

[

[

[

𝐺
𝑁1

(𝑧
−1

)

...

...
𝐺
𝑁2

(𝑧
−1

)

]

]

]

]

]

]

]

. (24)

Thus, from (22) and (24) we can see that the 𝐺 matrix
depends only on the process parameters, while the f term is
the free response of the system, and it is easy to deduce that
it is a vector of𝑁 elements:

f =
[

[

[

𝐹
𝑁1,0

+ 𝐹
𝑁1 ,1

𝑧
−1

...
𝐹
𝑁2,0

+ 𝐹
𝑁2 ,1

𝑧
−1

]

]

]

𝑦 (𝑡)

+

[

[

[

[

𝑔
𝑁1+1

+ 𝑔
𝑁1+2

𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑔
𝑁1+𝑑

𝑧
−(𝑑−1)

...
𝑔
𝑁2+1

+ 𝑔
𝑁2+2

𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑔
𝑁2+𝑑

𝑧
−(𝑑−1)

]

]

]

]

Δ𝑢 (𝑡 − 1) ,

f =

[

[

[

[

𝐹
𝑁1

(𝑧
−1

)

...
𝐹
𝑁2

(𝑧
−1

)

]

]

]

]

𝑦 (𝑡) +

[

[

[

[

𝐺


𝑁1

(𝑧
−1

)

...
𝐺


𝑁1

(𝑧
−1

)

]

]

]

]

Δ𝑢 (𝑡 − 1) .

(25)

Assuming that the 𝛿(𝑡) control weighting sequence is
constant and equal to 1, then the cost function (19) can be
written in the following form:

𝐽
𝑐
= (𝐺u + f − w)

𝑇

(𝐺u + f − w) + 𝜆u𝑇u. (26)

−

+

K

𝜔m

GPC𝜔

Free
response
calculation

b0

1 − az−1
z
−di

∗

sq
𝜔
∗

m

𝒇

Figure 3: Diagram of the induction motor speed control scheme
using GPC linear regulator.

The minimum of the cost function (26) when no con-
straints are considered can be calculated by equalling 0 the
gradient of 𝐽

𝑐
, obtaining the following analytical expression:

u = (𝐺
𝑇

𝐺 + 𝜆𝐼)

−1

𝐺
𝑇

(w − f) , (27)

where u and w are two vectors of𝑁 elements:

u =
[

[

[

Δ𝑢 (𝑡)

...
Δ𝑢 (𝑡 + 𝑁 − 1)

]

]

]

, w =
[

[

[

𝑤 (𝑡 + 𝑁
1
)

...
𝑤 (𝑡 + 𝑁

2
)

]

]

]

. (28)

As the receding horizon strategy is used, the control signal
applied to the process is obtained from the first element of u,
where the following expression must be employed:

Δ𝑢 (𝑡) = 𝐾 (w − f) , (29)

where 𝐾 = [𝐾
1
𝐾
2
⋅ ⋅ ⋅ 𝐾
𝑁
], that is, the first row of the

(𝐺
𝑇

𝐺 + 𝜆𝐼)

−1

𝐺
𝑇 matrix in (27).

Now replacing the variables 𝑦(𝑡) and 𝑢(𝑡), by 𝜔
∗

𝑚
and 𝑖
∗

𝑠𝑞
,

respectively, it is obtained that

Δ𝑖
∗

𝑠𝑞
(𝑡) = 𝐾 (𝜔

∗

𝑚
− f) , (30)

where finally the control law for the induction motor GPC
speed regulation (31) is obtained, Figure 3 as follows:

𝑖
∗

𝑠𝑞
(𝑡) = 𝐾 (𝜔

∗

𝑚
− f) + 𝑖

∗

𝑠𝑞
(𝑡 − 1) . (31)

The analytical solution of the cost function minimization
is possible only if the control signal (31) is not restricted
or limited [1]. As induction motors can support stator
overcurrents up to 2.5 times the rated value in short periods,
this GPC design does not need to limit the stator currents.
That is, the 𝑖

∗

𝑠𝑞
control signal is not limited, allowing the

implementation of the more simple, low computational cost
analytical solution. With regard to the 𝑖

∗

𝑠𝑑
current, it is fixed

to a value to produce the nominal rotor flux, 𝐼
𝑠𝑑
. Finally, the

calculation of the 𝐾, 𝐺, 𝐹, and 𝐺
 parameters is carried out

off-line, without using any identification algorithm, because
the usual variation of the main parameters of the motor
should be overcome in an effective form by the inherent
robustness of any closed loop controller [22].
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Table 1: Induction motor parameters (manufacturer).

Parameter Symbol Value
Stator resistance 𝑅

𝑠
0.81Ω

Rotor resistance 𝑅
𝑟

0.57Ω
Magnetizing inductance 𝐿

𝑚
0.117774H

Stator inductance 𝐿
𝑠

0.120416H
Rotor inductance 𝐿

𝑟
0.121498H

Nominal rotor flux 𝜓
𝑟

1.01Wb
Number of poles 𝑝 4
Nominal torque 𝑇

𝑁
49.3Nm

Moment of inertia 𝐽 0.057 kgm2

Viscous friction coefficient 𝐵V 0.015Nm/(rad/s)
Temperature coeff. Al/Cu 𝛼 0.0039K−1

2.4. Regulator Tuning

2.4.1. PID and PI Controllers. The two current PI regulators
use the same tuning values.The higher the bandwidth chosen
for these controllers, the faster the current loops dynamics
are. However, in practice, any real system’s bandwidth is
limited physically. In the employed experimental platform
(Section 3.1), which uses the induction motor described in
Table 1, this limit is located at 4000 rad/s; up to this value, the
platform produces the undesirable chattering phenomenon
and dangerous mechanical vibrations that can damage the
machine.

As to the speed regulation, in the first case, a PID speed
controller has been used to measure the delay time of the
system. This PID speed regulator has also been designed in
the frequency domain, using a bandwidth which is 10 times
smaller than the PI current loop regulators [24]. Then, the
optimal tuning of the PID speed regulator has been obtained
taking into account this ratio of bandwidths and the physical
limit of the experiment platform. Thus, the most efficient
PID-PI (speed currents) controller system has been designed
with the following parameter values: 𝜔

𝑐𝜔
= 300 rad/s with a

margin phase of PM
𝜔
= 1.4311 rad (82∘) and𝜔

𝑐𝑖
= 3000 rad/s

with a margin phase of PM
𝑖
= 1.5707 rad (90∘). The D action

of the speed loop is added after PI is tuned, and a small value
is enough to do faster the response but without any overshot,
where 𝐾

𝑑
= 0.02 and the PID-PI controller is obtained. The

delay time measured in the experiment platform using this
PID-PI speed regulator tuning is 700𝜇s, using the sample
time of 100 𝜇s, (Section 3.2).

2.4.2. SM Controller. A sliding-mode speed regulator for
inductionmotor is also implemented in order to be compared
with the proposed GPC regulator. This advanced speed
regulator was presented by the authors in [7], where the
parameters used in its design for the induction motor
(Table 1) are obtained considering an uncertainty around 50%
in the system parameters: 𝑎 = 0.3947, 𝑏 = 77.601, 𝑓 =

17.544 ∗𝑇
𝐿
, 𝑘 = 400, 𝛾 = 1.3, and 𝜁 = 2.5. This speed scheme

Table 2: Several stable cases of GPC speed regulator designs.

GPC speed regulator design
D1 (efficient 1)

Nominal mech. parameters
𝜏
𝑚
= 3.8 s

𝑇
𝑠
= 100𝜇s, N = 5, d = 7,

N1 = 8, N2 = 12,𝑁
𝑢
= 1,

𝜆 = 0.17

GM
𝜔
= 15 dB, PM

𝜔
= 8∘

D2 (efficient 2)
Nominal mech. parameters
𝜏
𝑚
= 1.9 s (𝐽 = 0.0285 kgm2)

𝑇
𝑠
= 700𝜇s, N = 5, d= 1,

N1 = 2, N2 = 6,𝑁
𝑢
= 1, 𝜆 = 1

GM
𝜔
= 12 dB, PM

𝜔
= 35∘

U1
IM: 𝜏
𝑚
higher

𝜏
𝑚
= 7.6 s (J = 0.114 kgm2)

GM
𝜔
= 25 dB, PM

𝜔
= 5∘

U1
IM: 𝜏
𝑚
higher

𝜏
𝑚
= 3.8 s (J = 0.057 kgm2)

GM
𝜔
= 25 dB, PM

𝜔
= 25∘

U2
IM: 𝜏
𝑚
smaller

𝜏
𝑚
= 0.38 s (𝐵V = 0.15Nms)

GM
𝜔
= 15 dB, PM

𝜔
= 9∘

U2
IM: 𝜏
𝑚
smaller

𝜏
𝑚
= 0.19 s (𝐵V = 0.15Nms)

GM
𝜔
= 12 dB, PM

𝜔
= 35∘

PI currents regulators design
Stator nominal electr. parameters 𝜏

𝑠
= 0.1487 s (𝑇 = 20∘C)

𝑇
𝑠
= 100𝜇s, 𝜔

𝑐𝑖
= 3000 rad/s PM

𝑖
= 1.5707 (90∘)

Us1: 𝜏
𝑠
higher 𝜏

𝑠
= 0.1612 s (𝑇 = 0∘C)

PM
𝑖
= 90∘

Us2: 𝜏
𝑠
smaller 𝜏

𝑠
= 0.1040 s (T = 130∘C)

PM
𝑖
= 90∘

uses the same two current PI regulators employed inGPC and
PI speed schemes and detailed in the previous subsection.

2.4.3. GPC Controller. The tuning of the GPC regulator
requires choosing the values of two horizons and two weight-
ing factors. The control horizon, 𝑁

𝑢
, and the output error

weighting factor, 𝛿, both have been fixed to 1 (Section 2.1).
The prediction horizon, 𝑁, determines the size of the 𝐺

matrix and the f vector, and, as a consequence, the number
of the GPC controller’s coefficients. A larger value for 𝑁

increases the anticipative effect, involving a better control
and performance of the system. However, this increases the
number of the coefficients and the computational cost of the
control law, which requires increasing the sample time. So
𝑁 should be selected to ensure proper dynamic behaviour
and low computational cost. In this design it has been set
to 5. From Section 2.1, it is known that the minimum and
maximum horizons take into account the delay time of the
system, 𝑁

1
= 1 + 𝑑 and 𝑁

2
= 𝑁 + 𝑑. Considering two GPC

speed regulator designs, D1 and D2, using sample times of
100 𝜇s and 700𝜇s, respectively, and taking into account that
the measured experimental delay time is 700 𝜇s (Section 3.2),
then the delay values are 𝑑 = 7 for D1 and 𝑑 = 1 for D2
(Table 2).

The control weighting factor, 𝜆, has a direct impact on
the response of the controlled system. Hence, the higher its
value, the slower the resulting controlled system. On the
other hand, if its value is too small, it can produce the
chattering phenomenon that can damage the motor in a real
case. Then, it is desirable to find a value for 𝜆 to provide
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Figure 4: Nichols diagram of the GPC and PID speed loops.

an effective response of the controlled system. Taking into
account the recommendation in [15], an easy way to obtain an
effective and stable value for 𝜆 factor is applying the following
empirical expression:

𝜆opt = 𝑚 trace (𝐺𝑇𝐺) , (32)

where 𝑚 takes a value inversely proportional to the sample
time. For D1 design the 𝑚 parameter results in a value of 60,
and for D2,𝑚 equals 2 (tens for 100 𝜇s, units for 700 𝜇s).

2.5. Robust Stability Analysis. The closed loop stability of the
motor 𝑑-𝑞 currents with the PI controllers is guaranteed if the
PM
𝑖
phasemargins are positive and sufficiently high.As to the

speed loop, the stability of the controlled system is analysed
using the classic RST poles placement scheme [25], where the
control law is obtained as

𝑖
∗

𝑠𝑞
(𝑡) =

1

𝑟
0

[𝑇 (𝑧
−1

) 𝜔
∗

𝑚
(𝑡) 𝑇

−𝑆 (𝑧
−1

) 𝜔
𝑚
(𝑡) − 𝑖

∗

𝑠𝑞
(𝑡 − 1) 𝑅



(𝑧
−1

)] .

(33)

−180 −135 −90 −45 0
−20

−15

−10

−5

0

5
6dB

−6

−12

−20

Open-loop phase (deg)

O
pe

n-
lo

op
 g

ai
n 

(d
B)

PI
PI Us1
PI Us2

(d
B)

Figure 5: Nichols diagram of the PI current loops.

In this sense, it is necessary to translate the GPC con-
trolled system parameters to its equivalent RST controlled
system parameters [1], to check the stability of the system.
Identifying the terms between (31) and (33), we can obtain
the general expression of equivalence in both RST and GPC
algorithms for any first order plant with delay time:

𝑅 (𝑧
−1

) = 𝑟
0
+ 𝑟
1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑟
𝑑+1

𝑧
−(𝑑+1)

= 𝑟
0
+ 𝑧
−1

𝑅


(𝑧
−1

) ,

𝑆 (𝑧
−1

) = 𝑠
0
+ 𝑠
1
𝑧
−1

,

𝑇 (𝑧
−1

) = 𝑡
0
𝑧
−𝑁1

+ 𝑡
1
𝑧
−(𝑁1+1)

+ ⋅ ⋅ ⋅ + 𝑡
𝑁−1

𝑧
−𝑁2

,

(34)

𝑟
0
= 1,

𝑟
1
= 𝐾[𝑔

𝑁1+1
⋅ ⋅ ⋅ 𝑔
𝑁2+1

]

𝑇

− 1,

𝑟
2
= 𝐾([𝑔

𝑁1+2
⋅ ⋅ ⋅ 𝑔
𝑁2+2

]

𝑇

−[𝑔
𝑁1+1

⋅ ⋅ ⋅ 𝑔
𝑁2+1

]

𝑇

) ,

𝑟
𝑑
= 𝐾([𝑔

𝑁1+𝑑
⋅ ⋅ ⋅ 𝑔
𝑁2+𝑑

]

𝑇

−[𝑔
𝑁1+𝑑−1

⋅ ⋅ ⋅ 𝑔
𝑁2+𝑑−1

]

𝑇

) ,

𝑟
𝑑+1

= −𝐾[𝑔
𝑁1+𝑑

⋅ ⋅ ⋅ 𝑔
𝑁2+𝑑

]

𝑇

,

𝑠
0
= 𝐾[𝐹

𝑁1 ,0
⋅ ⋅ ⋅ 𝐹
𝑁2 ,0

]

𝑇

,

𝑠
1
= 𝐾[𝐹

𝑁1 ,1
⋅ ⋅ ⋅ 𝐹
𝑁2 ,1

]

𝑇

,
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𝑡
0
= 𝐾
1
,

𝑡
1
= 𝐾
2
,

...

𝑡
𝑁−1

= 𝐾
𝑁
,

(35)

where it should be noted that the polynomial𝑇multiplies the
future references vector (33). Thus, the controller should be
designed so that the controlled system presents all the poles
inside the unit circle. In order to achieve this a graphical
representation (Nichols chart) of the open loop system is
more appropriate as GM

𝜔
gain margin and PM

𝜔
phase

margin can be observed.
The robust stability is analysed taking into account the

parametric uncertainties of the induction motor in two limit
real cases of each control loop detailed in Table 2.These limits
are used to determine the robustness of the speed and current
regulators, as these limits are both critical in real cases.Hence,
as the controller is lineal, any uncertainty case located into the
defined limits has the stability guaranteed.

First, the following two uncertainty cases for the limits
of robustness, related with the mechanical parameters of the
inductionmotor, are considered in the proposedGPC.TheU1
takes 𝐽 a 100% higher, and the U2 that considers 𝐵V 10 times
higher, increasing 2 times and reducing 10 times, respectively,
the 𝜏
𝑚
mechanical time constant of the machine. The D1 and

D2 designs are presented for the speed GPC regulator.TheD1
uses a sample time of 100𝜇s andnominal 𝐽of 0.057 kgm2, and
D2, a sample time of 700 𝜇s and a nominal 𝐽 of 0.0285 kgm2.
On the other hand, another two limit cases are considered for
the PI current controllers, which are related with the stator
windings resistances (𝑅

𝑠
) modified by their temperature. Us1

determines the uncertainty when the temperature of the
windings is 0∘C (before starting in a cold place), and Us2
considers the heating case of the stator windings when the
induction motor is working at rating power for half an hour
or more, where the stator windings are around 130∘C. As it is
known, the temperature variation produces the proportional
increase of the stator windings resistance:

𝑅
𝑓
= 𝑅
0
(1 + 𝛼 (𝑇

𝑓
− 𝑇
0
)) (36)

and the proportional decrease of the 𝜏
𝑠
stator electrical time

constant:

𝜏
𝑠
=

𝐿
𝑠

𝑅
𝑠

. (37)

Table 2 shows the two efficient designs for the GPC speed
regulator, D1 and D2, taking into account different nominal
moments of inertia of the induction motor and sample times
in each case. The two uncertainties cases, U1 and U2, have
been based in the D1 andD2 designs, but even so, the stability
of the controlled system is guaranteed observing the gain
and phase margins obtained from Figure 4. In Table 2, the
efficient design for the two PI current controllers is detailed,

with Us1 and Us2 uncertainties cases. Figure 5 shows that the
temperature variations in the stator windings practically have
not any effect.

3. Simulation and Experimental Results

3.1. Experiment Platform. The employed platform is com-
posed by a PC with MatLab7/Simulink R2007a, dsControl
3.2.1, and the DS1103 Controller Board real time interface
of dSpace, with a floating point PowerPC processor to
1 GHz; and a set of electric machines that includes a M2AA
132M4ABB commercial inductionmotor of 7.5 kWof die-cast
aluminium squirrel-cage type (1445 rpm), Table 1, connected
to a DC bus of 540V by VSI inverter, and a 190U2 Unimotor
synchronous AC servo in motor of 10.6 kW to generate the
load torque (controlled in torque), presented in [15]. An
incremental encoder of 4096 pulses is employed to measure
the mechanical speed of the induction motor. The rotor flux
of the induction motor has been set to its nominal value of
1.01Wb, keeping the flux current command 𝑖

∗

𝑠𝑞
, that is, 𝐼

𝑠𝑑
, to

a constant value of 8.61 A. Finally, as the SVPWMmodulator
frequency is fixed at 10 kHz, then the sample time employed
for the PI current controllers is 100 𝜇s.

3.2. Speed Tracking. Using D1 design for the GPC controller,
simulation and experimental tests are carried out with a
trapezoidal speed reference of 1445 rpm and 0.33Hz, adding
an square form load torque of 30Nm (starting from the
second period of the speed reference).

Results are shown in Figure 6, where very satisfactory
speed tracking can be observed, obtaining a stationary speed
error of about 2 rpm (0.138%) in the experimental case,
both without and with load torque. In addition, the electro-
magnetic torque does not present any aggressiveness, and
consequently it will not generate the undesirable chattering
phenomenon, as seen in the third graph. Moreover, around
𝑡 = 4 s and 𝑡 = 5.5 s, the motor is working at nominal speed
and torque (Table 2), obtaining an excellent speed tracking.
Considering the electromagnetic torque reference current,
𝑖
∗

𝑠𝑞
, it should be noted that it is not limited, which justifies the

employed analytical. Moreover, it can be seen that the rotor
flux current, 𝑖

𝑠𝑑
, takes the value imposed by its reference in

accordance with the previous assumption of the theoretical
section (see Section 2.3), and consequently that the rotor flux
remains constant at its nominal value for a short time after it
is requested, verifying the decoupling of its components. The
great similarity between the simulation and the experimental
tests validates the presented GPC speed regulator, and they
show that the choice of the first ordermodel for the induction
motor is correct.

Figure 7 shows the speed response and the electromag-
netic torque reference current for D1 of GPC speed controller
and PID speed regulator cases. It can be observed that the
PI regulator has a delay of 700𝜇s (𝑑 = 7) and that the GPC
controller generates the control signal 12 sample times (𝑁

2
)

before the speed reference, compensating for the delay time
of the system and anticipating 5 steps (𝑁) the reaction of the
speed response.
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Figure 6: Simulation and real tests of the GPC-PI model with D1 design with unknown load torque.

In Figure 8 the performance comparison between the
regulator proposed in this paper, GPC1, and a previously
proposed GPC one [15] based on a second order transfer
function (15), GPC2, can be observed. The tests are based on
a 1200 rpm and 0.75Hz a saw-toothed speed reference and
an unknown load torque of 25Nm starting from 1.65 s. Com-
paring the two speed responses, it is possible to appreciate
that the proposed GPC speed regulator (GPC1) is better than

the previous version (GPC2), because the speed response is
similar but is less oscillatory.

Figure 9 compares the GPC1, SM, PI, and PID speed
regulators, in the same test conditions as in the previous case.
Comparing the responses of the GPC1 and SM regulators, it
can be observed that the predictive response is a little faster
than sliding modes’ response. Moreover, the effect of the load
torque in the GPC1 case is minor than the SM case, which
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Figure 7: Comparative experimental tests: speed responses (a) and torque reference currents (b) of GPC D1 controller versus PI regulator.
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D1, SM, PI, and PID speed regulators.

demonstrates the robustness of the approach when varying
load torques are applied. In addition, it can be seen that the
PID is faster than PI due to derivative effect. Also, it can be
observed that the GPC1 regulator’s response is considerably
faster than PID’s response.

Figures 10 and 11 show the comparative experimental tests
of the GPC1, SM, and PID speed regulators using constant
acceleration and variable acceleration cases, respectively.
Figure 10 shows that the speed tracking without any load
torque (between 0 and 2.25 s) is very similar for the three
regulators though it can be observed that the speed error
is about 2 rpm for GPC while its magnitude is increased
to 4 and 5 rpm in the SM and PID cases. When the load
torque is considered, the speed tracking is considerably worse
for SM and PID cases, while the GPC maintains a good
speed tracking (fourth graph (a)). Moreover, GPC regulator
supports better than the SM and PID controllers the load
torque changes (fourth graph on the right (b)). Figure 11
shows that the speed tracking without any load torque
(between 0 and 2.25 s) is similar for the three regulators
although the speed error is 2 rpm for GPC while it increases
to 4 an 5 rpm in the SM cases, and about 8 rpm in the PID
case. Moreover, the GPC regulator provides a faster response
in the initial half period (fourth graph on the left (a)). When
the load torque appears, the speed tracking is considerably
worse for PID case, while the GPC and SM maintain a good
speed tracking (fourth graph on the right (b)), though the
GPC response is a little faster than sliding mode’s response.

Therefore, the use of the first order transfer function
model is justified because the first order model simplifies the
computational cost and the controlled performance contains
less oscillations than the second order case.

3.3. Load Disturbance, Uncertainties, and Measurement Noise
Rejection. One of the issues that usually exists in real appli-
cations is load disturbance, and, in the previous tests, the
proposed GPC speed controller has demonstrated its perfor-
mance even in presence of this effect. Moreover, parametric
uncertainties that is, the change of values in the induction
motor parameters can arise. These have been considered as
U1 and U2 in Table 2. Finally, the measurement noise in the
two loop signals, in the rotor speed, and in the stator current
has a negative impact on the controllers.

In this sense, the graphs of Figure 12 show the simulation
and real tests, using a 1200 rpm and 0.33Hz trapezoidal speed
reference and an unknown square form load disturbance
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Figure 10: Comparative experimental tests: speed responses of GPC1 D1, SM, PI, and PID speed regulators for constant acceleration case.

of 30Nm. The GPC speed regulator is designed taking into
account the nominal parameters of the motor, D2 design
(Table 2). In the simulation case the induction motor has
the nominal values in its parameters, and the unknown load
disturbance in its shaftonly is considered. In the experimental
case, an additional, software based, measurement white noise

is induced in the two feedback signals, 𝜔
𝑚
and 𝑖
𝐴
(usingMat-

Lab/dSControl). In this way, robustness againstmeasurement
noises is demonstrated. Additionally, in this case parameter
uncertainties and load disturbances are introduced, this is,
a greater stator (Cu) resistance, at 130∘C and a 100% greater
moment of inertia, Us2 andU2 cases for D2 design in Table 2.
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Figure 11: Comparative experimental tests: speed responses of GPC1 D1, SM, PI, and PID speed regulators for variable acceleration case.

Observing the graphs of Figure 10, it can be seen that the
motor response is very good in spite of all the adversities, and
a satisfactory speed tracking is achieved.The electromagnetic
torque manifests some activity due to the sensor noises, but
not due to the controller action, as observed in the simulation
test in the second graph. As to real computational cost of the
GPC-PI controller, as the calculation of the parameters𝐾, 𝐺,

𝐹, and 𝐺
 is realized offline, its value is the same as the PI-PI

controller: 10𝜇s employing a PowerPC processor at 1 GHz.

4. Conclusions

The contribution of this work consists of the combination of
the GPC algorithm in the speed loop with a PI based control
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Figure 12: Simulation and real tests of the proposed GPC (D2 design) speed regulator with high-level noise in the two feedback loops and
unknown load torque.

in the current loops, using an easy and effective design, where
the robust stability is demonstrated for typical induction
motors’ parametric uncertainties. The GPC speed controller
design is based on the first order model of the induction
motor with a delay time, which is compensated. This regu-
lator design is simpler to implement than other predictive
proposed schemes, as neither constraints nor robustness
terms have been taken into account.

The proposed controller has been tested using various
simulation and experimental tests in the presence of the
parametric uncertainties, unknown load disturbance, and
measurement noise in the loop signals: the rotor speed
and the stator current. The experiment demonstrates the
effectiveness of the approach. Moreover, the presented results
also show that the GPC speed regulator is considerably faster
than the classic PID and slightly faster than the advanced
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SM speed controller, using the same computational cost.This
work demonstrates that the GPC-PI controller is an effective
speed control algorithm, in both adverse and acceptable
conditions, its robustness is clearly shown, the proposed
control scheme is also easy to tune and to implement in a real
system, and therefore it can be used in industrial applications.
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The hydraulic transformer is used in the hydraulic system to enhance the efficiency. However, how to control the angle displacement
of the port plate is becoming a critical issue because of the new structure of the hydraulic transformer. This paper presents a new
method for the angle displacement control system. Firstly, the basic principle of the system is presented.Then, the disturbancewhich
is mainly the friction torque between the port plate and the cylinder block is calculated to estimate the range. Furthermore, the
guaranteed cost control (GCC) is analyzed and combined with the disturbance and the characteristics of parameter uncertainties.
Finally, the proposed control method is compared with the traditional PI control and the simulation result shows the effectiveness
of the proposed design method.

1. Introduction

Energy saving research in the field of hydraulic system is
becoming a hot point [1–6]. Common pressure rail (CPR)
is one promising hydraulic architecture because of its many
advantages, for instance, not only that it eliminates the throt-
tling loss in the theoretical aspect, but also has the module
characteristic [7, 8]. In CPR, the constant pressure variable
pump and hydraulic accumulator constitute the high pressure
oil sources, and multiple different loads connect in parallel
between the high pressure and the low pressure oil pipe [9–
12]. Basically, there are two kinds of actuators in CPR. They
are hydraulic variable displacementmotors and cylinders. For
the rotating load, the control target such as position, velocity,
or power can be reached by regulating the displacement
of hydraulic pump/motor. However, because it is hard to
change the displacement of the hydraulic cylinder, hydraulic
transformer (HT) is introduced to control the hydraulic
cylinder for adapting to load change without throttling loss
from the theoretical aspect. The detailed information about
HT can be found in [13]. Hence, HT is used to control
the hydraulic cylinder by regulating the angle of the port
plate. However, because the structure of the port plate is

different from the traditional axial piston type component,
how to control the angle of port plate is a new challenge.
For the traditional axial piston pump, the port plate is fixed
with the case and it cannot be moved. Hence, the force
applied on the swash plate from the cylinder block and
some other components of the pump is balanced by the
case. However, the torque applied on the port plate of HT
should be considered because of the rotation motion during
controlling its angle. Figure 1 shows the structure of the HT
[14]. The external load torque, which is mainly the friction
torque between the cylinder block and the port plate, is also
changing during the regulating process.This can be explained
by introducing the working principle of HT.

Figure 1(b) shows the structure of the port plate which has
three ports [13]. They are connected with the high pressure
pipe of CPR, the load, and the low pressure pipe of CPR,
respectively. The cylinder block of the HT is driven by the
sum of torque generated by the three ports of the SHT. The
sum of torque among three ports is

Δ𝑇 = 𝐽HT ̇𝜔HT = 𝑇𝐴 + 𝑇𝐵 + 𝑇𝑇, (1)
where 𝐽HT is the moment of inertia of HT and 𝜔HT is the
angular speed of the cylinder block of HT.
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Figure 1: Structure of HT. (1) Case of original pump. (2) Cylinder block. (3) New port plate. (4) Case of swing motor. (5) Rotor of swing
motor. (6) Stator of swing motor. (7) Rear cover of swing motor.

The torque applied on the port plate should be changing
because of the changing load and then the difficulty for a good
control performance is increased. Until now, there are already
many paperswhich are focusing on the robust control [15–21];
for instance, in [22], the authors deal with the robust control
problem with parametric uncertainties for delayed singular
systems. In [23], the paper describes robust force sensorless
control system in motion control. In addition, the robust
control theory is applied on diesel engine selective catalytic
reduction (SCR) systems to enhance the performance [24].
Because the guaranteed cost control (GCC) not only stabilizes
the uncertain system robustly but also ensures an adequate
level of performance, in which an upper bound on the closed-
loop value of a quadratic cost function can be guaranteed by
using a fixed Lyapunov function [25], the GCC becomes an
effective method for enhancing the system performance [26–
30]. However, there is no method that focuses on the angle
displacement control of the port plate. In general, the critical
problems can be described by how to resist the interference
which was applied on the port plate and eliminated the
influence of the uncertain model. In this paper, the GCC
is introduced to the field of the angle displacement control
for the port plate. Firstly, the mathematical model of the
angle displacement system is constructed. Secondly, the range
of the disturbance and the uncertain parameter must be
estimated in order to apply the GCC theory. Moreover, the
simulation about the GCC control and the PI control is
conducted by using Matlab. Finally, the simulation result is
explained.

2. Modeling

The basic schematic is shown in Figure 2. The main compo-
nents of the system are (1) pump and (2) servovalve, and both
(3-1) swing motor and (3-2) HT main part are one piece in
practical applications. However, this paper is focused on the
valve controlling the motor, and the information about other
parts can be found in [31].

A

B

T

Load

High
pressure
source

Tank1

2

3-1

3-2

Figure 2: Hydraulic schematic of the system.

2.1. Servovalve Flow Rate Equation. The linearized servovalve
flow equation is

𝑄
𝐿
= 𝐾
𝑞
𝐾
𝑖
𝐾
𝑠
𝑢
𝑖
− 𝐾
𝑐
𝑝, (2)

where 𝑄
𝐿
and 𝑢

𝑖
are, respectively, cylinder flow and input

control voltage, 𝐾
𝑖
, 𝐾
𝑠
, 𝐾
𝑞
, and 𝐾

𝑐
are different kinds of

gain listed as gain of the amplifier, servovalve coefficient, ser-
vovalve flow gain, and servovalve flow-pressure coefficient,
respectively, and 𝑝 represents cylinder pressure difference.

2.2. Continuity Equation in the Motor. Applying the continu-
ity equation to each chamber of motor,

̇𝑝
1
=

𝛽
𝑒

𝑉
0

(𝑄
1
− 𝐷
𝑚

̇
𝜃 − 𝐶ic (𝑝1 − 𝑝2) − 𝐶ec𝑝1) ,

̇𝑝
2
=

𝛽
𝑒

𝑉
0

(−𝑄
2
+ 𝐷
𝑚

̇
𝜃 + 𝐶ic (𝑝1 − 𝑝2) − 𝐶ec𝑝2) ,

(3)

where 𝐷
𝑚
represents the displacement volume of motor, 𝜃

is the angle displacement of the valve plate, and 𝛽
𝑒
, 𝐶ic, 𝐶ec,

and 𝑉
0
are coefficients defined as effective bulk modulus of

system, internal or cross-port leakage coefficient of motor,
external leakage coefficient ofmotor, and total volume of fluid
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under compression in both chambers, respectively.We define
that 𝑝

𝐿
= 𝑝
1
− 𝑝
2
and 𝑄

𝐿
= 𝑄
1
= 𝑄
2
; thus,

̇𝑝
𝐿
= 𝑄
𝐿
− 𝐷
𝑚
𝜔 − 𝑄

𝑙
(𝑝
1
, 𝑝
2
, 𝜔) , (4)

where 𝐶tc means total leakage coefficient of variables in
cylinder:

𝑄
𝐿
= 𝐶
𝑑
𝑙V
√
1

2

(𝑝
𝑠
− 𝑝
𝐿
), (5)

where𝐶
𝑑
is the flow coefficient and 𝑙V represents the displace-

ment of the valve.

2.3. Torque Motion Equation at the Load. The torque balance
equation for the valve plate is expressed as

𝐽V𝑝
𝑑
2

𝜃

𝑑𝑡
2
= 𝐷
𝑚
𝑝
𝐿
− 𝑑
𝑟
⋅

𝑑𝜃

𝑑𝑡

− 𝑇
𝑓
− 𝑇
𝑒
, (6)

where 𝜃 denotes angular position of the secondary com-
ponent, 𝐽V𝑝 represents equivalent moment of inertia of the
port plate, besides, 𝑇

𝑓
is the total friction torque, 𝑇

𝑒
is the

disturbance torque, and 𝑑
𝑟
is the kinematic coefficient of

viscosity.

2.4. System State-Space Model. State variables are selected as
𝑋 = [𝑥

1
𝑥
2
𝑥
3
]
𝑇

= [𝜃
̇
𝜃 𝑝
𝐿
]

𝑇, where 𝑥
1
is the angular

displacement of valve plate, 𝑥
2
is the rotating velocity of

valve plate, and 𝑥
3
is the differential pressure of the two

chambers. Thus, a state-space equation of the system under
consideration can be given by
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,

𝑦 = [1 0 0]

𝑇

𝑥.

(7)

About the equation, there exist parameter uncertainty and
external disturbance in the system. In detail, 𝛽

𝑒
can change

from 0.8𝛽
𝑒
to 1.2𝛽

𝑒
, and 𝐶

𝑒𝑖
can also change from 0.5𝐶

𝑒𝑖
to

2𝐶
𝑒𝑖
. For the disturbance 𝑇

𝑓
and 𝑇

𝑒
, it is noted that 𝑇

𝑓
is

the friction torque between the cylinder block and the port
plate which should be calculated in the following section to
estimate the range; then, 𝑇

𝑒
is the small disturbance caused

by other factors. The main external disturbance torque is
the friction torque, and the following part will focus on
calculating the range of the disturbance torque.
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Figure 3: Structure of the triangular groove.
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Figure 4: The position relationship between the plunger hole and
the kidney slot.

2.5. Range Estimation of the Disturbance Torque

2.5.1. Calculation of TriangularGroove. Thetriangular groove
is one common kind of dampening groove in practical
engineering, which is depicted in Figure 3. It can be found
that the flow area is changing with the relative location.

The flow area can be defined as the minimum area which
is vertical with the flow direction; hence the flow area 𝐴

3

should be the area ofΔ𝐸𝐹𝐼 through the geometric calculation:

𝐴
3
= 𝑆
Δ𝐸𝐹𝐼
= 𝑆
Δ𝐸𝐹𝐺

cos 𝜃 = 𝑠
𝑠
0

√3

4

𝑎
2 cos 𝜃, (8)

where Δ𝐵𝐶𝐷 is the equilateral triangle and the side length is
𝑎, Δ𝐴𝐵𝐶 is the isosceles triangle, and in addition, the plane
𝐴𝐵𝐶 is vertical with the plane 𝐵𝐶𝐷. 𝑠

0
is the total length of

the triangular groove and 𝑠 is the effective length. Δ𝐸𝐹𝐺 is
through the𝐻 point and parallel Δ𝐵𝐶𝐷.

2.5.2. Flow Area Calculation of the Waist Type Groove. The
profile and dimensions of the three waist type grooves are
all the same except for the different location. Defining the
radius of the distribution circle of the waist type groove and
the plunger hole is 𝑟. All of the three flow area calculation
methods are similar. The position relationship between the
hole of the plunger hole and the waist type groove during the
piston is rotating as shown in Figure 4.A,C, andE are the
critical positions in Figure 4 and the corresponding angles are
𝜑
0
, 𝜑
1
, and 𝜑

2
, respectively.
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(a) When 𝜑
0
< 𝜑 < 𝜑

1
, the flow area is overlying through

two arches. And the area of the single arch can be obtained by
subtracting the area of Δ𝑂𝑀𝑁 from the area of 𝑂𝑀𝑁.

The flow area can be obtained from

𝐴 = 2 (𝐴


− 𝐴


) = 𝑅
2arccos(

(𝜑 − 𝜑
0
) 𝑟

2𝑅

)

− (𝜑 − 𝜑
0
) 𝑟√𝑅

2
− (

(𝜑 − 𝜑
0
) 𝑟

2

)

2

,

(9)

where the central angle is

∠𝑀𝑂𝑁 = 2arccos(
(𝜑 − 𝜑

0
) 𝑟

2𝑅

) . (10)

And the sector can be calculated as

𝐴


=

𝑅
2

2

arccos(
(𝜑 − 𝜑

0
) 𝑟

2𝑅

) . (11)

The area of the triangle is

𝐴


=

(𝜑 − 𝜑
0
) 𝑟

2

√𝑅
2
− (

(𝜑 − 𝜑
0
) 𝑟

2

)

2

. (12)

(b) When 𝜑
1
< 𝜑 < 𝜑

2
, the flow area is equal to the

difference of the entire circle area and the two sector areas;
hence the flow area is

𝐴 = 𝜋𝑅
2

+

𝜑 − 𝜑
1

2

((𝑟 +

𝑅

2

)

2

− (𝑟 −

𝑅

2

)

2

) . (13)

(c) When 𝜑
2
< 𝜑 < 𝜑

3
, the entire plunger hole is

contained in the waist type groove; hence the flow area is the
area of the plunger hole:

𝐴 = 𝜋𝑅
2

+

𝜑con
2

((𝑟 +

𝑅

2

)

2

− (𝑟 −

𝑅

2

)

2

) , (14)

where 𝜑con is the central angle of the sector of the plunger
hole.

(d) When 𝜑 > 𝜑
3
the method is the same as above; hence

the period is omitted.

2.5.3. Flow Continuity Equation. Figure 5 shows the motion
analysis of the axial piston pump which has piston shoes.

There are nine plungers which are doing the alternative
liner motion.The radius of the distribution circle is 𝑟, and the
plane 𝑂𝑥𝑦 is vertical with the axis of the cylinder. The plane
𝑂


𝑥


𝑦
 is the same plane with the swash plate and the angle

between the twoplanes is𝜑, which is the tilt angle of the swash
plate. During theworking period, the plungers not only rotate
around the 𝑧-axis, but also do the liner alternating motion
with the 𝑧-axis. Points 𝐴 and 𝐵 are the top and bottom dead
points, respectively, during the plungers moving, and point
𝐶 is the position while the plungers at the 𝑡 time. Hence, the
position of the plunger is

𝑥 = 𝑟 sin𝛼, 𝑦 = 𝑟 cos𝛼,

𝑧 = −𝑟 tan𝜑 cos𝛼.
(15)
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Figure 5: The motion analysis of the plunger.

We can also get the velocity of the plunger relative to the
cylinder as follows:

V =
𝑑𝑧

𝑑𝑡

=

𝑑 (−𝑟 tan𝜑 cos𝛼)
𝑑𝑡

= 𝜔𝑟 tan𝜑 sin𝛼, (16)

where 𝜔 is the angular velocity of the cylinder (rad/s).
Then, the flow rate of the plunger hole caused by the

motion of the plunger is calculated by

𝑄V = V𝐴𝑧 =
𝜔𝜋𝑟𝑑
2

4

tan𝜑 sin𝛼, (17)

where𝐴
𝑧
is the area of the plunger (m2) and 𝑑 is the diameter

of the plunger (m).
The compression flow rate inside the plunger hole can be

obtained by

𝑄
𝐸
=

𝑑Δ𝑉

𝑑𝑡

=

𝑉
0

𝐸

𝑑𝑃

𝑑𝑡

, (18)

where𝑉
0
is the oil volume corresponding to the time of 𝑡 (m3)

and 𝐸 is the volumetric modulus of elasticity (MPa).
The equation for calculating the flow rate through the

throttle valve is below:

𝑄
𝑇
= 𝐶
𝑑
𝐴√

2Δ𝑃

𝜌

, (19)

where 𝐴 is the flow area and 𝜌 is the density of the oil and
then Δ𝑃 is the pressure difference.

Then, the flow continuity equations are

𝑄V = 𝑄𝐸 + 𝑄𝑇,

𝜔𝜋𝑟𝑑
2

4

tan𝜑 sin𝛼 =
𝑉
0

𝐸

𝑑𝑃

𝑑𝑡

+ 𝐶
𝑑
𝐴√

2 (𝑝 − 𝑝
𝐴
)

𝜌

,

𝜔𝜋𝑟𝑑
2

4

tan𝜑 sin𝛼 =
𝑉
0

𝐸

𝑑𝑃

𝑑𝑡

+ 𝐶
𝑑
𝐴√

2 (𝑝 − 𝑝
𝐵
)

𝜌

,

𝜔𝜋𝑟𝑑
2

4

tan𝜑 sin𝛼 =
𝑉
0

𝐸

𝑑𝑃

𝑑𝑡

+ 𝐶
𝑑
𝐴√

2 (𝑝 − 𝑝
𝑇
)

𝜌

.

(20)

The pressure inside the plunger can be got by solving the
equations above. Then, the friction torque can be obtained
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by introducing the friction coefficient between the two kinds
of materials. It should be noticed that the value of the friction
torque maybe less than the value above because the oil film
could be generated. However, it is reasonable to use this big
value to design the robust controller because on one side
the exact value with the influence of the oil film is difficult
to calculate and the other side is that if the controller can
be adaptive to the worst working condition, the controller
should also work for other situations.

3. The Main Results

Consider the state-space model of the system with parameter
uncertainties as follows:

̇x (𝑡) = (A+ΔA) x (𝑡) + (B+ΔB) u (𝑡) +w (𝑡) ,

z
0
(𝑡) =C

0
x (𝑡) +D

0
u (𝑡) ,

z
1
(𝑡) =C

1
x (𝑡) +D

1
u (𝑡) ,

(21)

where x(𝑡) is the state vector, u(𝑡) is the control input, w(𝑡) is
the disturbance input, z

0
(𝑡), z
1
(𝑡) are the controlled outputs,

A, B, C
0
, D
0
, C
1
, D
1
are known constant matrices of appro-

priate dimensions, and ΔA, ΔB are matrices of appropriate
dimensions representing parameter uncertainties, which are
supposed to be in the following form:

[ΔA ΔB] = DF (𝑡) [E
1
E
2
] , (22)

where D, E
1
, E
2
are known real constant matrices and

F(𝑡) is an unknown real time-varying matrix with Lebesgue
measurable elements satisfying

F (𝑡) ∈ Ω
𝐹
:= {F (𝑡) : ‖F (𝑡)‖ ≤ I} . (23)

Assume that the desired trajectory is y
𝑑
(𝑡) and the error

vector is defined as

e (𝑡) = y (𝑡) − y
𝑑
(𝑡) = x (𝑡) − y

𝑑
(𝑡) , (24)

and we can obtain x(𝑡) = e(𝑡) + y
𝑑
(𝑡). Generalized error

feedback control is used to be a control input:

u (𝑡) = Ke (𝑡) + 𝜐 (𝑡) , (25)

where 𝜐(𝑡) = B+(−Ay
𝑑
(𝑡)+ ̇y
𝑑
(𝑡)) and B+ is the pseudoinverse

of matrix B. According to above equations, the following
equation can be obtained:

̇e (𝑡) = (A+BK) e (𝑡) +w (𝑡) . (26)

Define u
𝑒
= u(𝑡) − 𝜐(𝑡); the cost function associated with

the system (21) is

J
𝑒
= ∫

∞

0

e𝑇 (𝑡)Qe (𝑡) + u𝑇
𝑒
(𝑡)Ru

𝑒
(𝑡) 𝑑𝑡, (27)

whereQ and R are the weighing positive matrices.

The purpose of this paper is to study an H
2
/H
∞

guaran-
teed cost control for all admissible uncertainties such that

(1) the closed-loop system is asymptotically stable;
(2) under zero initial condition, the closed-loop system

guarantees that ‖z‖
2
< 𝛾‖w‖

2
for all nonzero w ∈

L
2
[0,∞) and a prescribed scalar 𝛾 > 0;

(3) the input constraint (7) is satisfied.

For obtaining the main conclusions of this paper, the
following lemma will be adopted to handle the parameter
uncertainties in the system.

Lemma 1. Given matrices with appropriate dimensions Y, C,
and D and that Y is the symmetric matrix, then

Y+CFD+D𝑇F𝑇C𝑇 < 0. (28)

For all F satisfying F𝑇F ≤ I, if and only if there exists a
scalar 𝜀 > 0 such that

Y + 𝜀CC𝑇 + 𝜀−1D𝑇D < 0. (29)

Theorem 2. Given constant 𝛾 > 0, if there exist scalars 𝛼 > 0,
𝛽 > 0, P = P𝑇 > 0 satisfying the following inequality:

(A+BK)𝑇P+P (A+BK) +P (𝛼DD𝑇 + 𝛽𝛾−2BwB
𝑇

w)P

+ 𝛼
−1

(E
1
+ E
2
K)𝑇 (E

1
+ E
2
K)

+ 𝛽
−1

(C
1
+D
1
K)𝑇 (C

1
+D
1
K)

+ (C
0
+D
0
K)𝑇 (C

0
+D
0
K) < 0,

(30)

then the controller in the form of (25) exists, such that

(1) the closed-loop system (21) with w(𝑡) = 0 is asymptoti-
cally stable;

(2) under zero initial condition, the closed-loop system
guarantees that ‖z‖

2
< 𝛾‖w‖

2
for all nonzero w ∈

L
2
[0,∞) and a prescribed scalar 𝛾 > 0;

(3) if (30) has a symmetric positive definite solutionP, then
for all admissible parameter uncertainties, 0 ≤ P ≤ P,
where P = P𝑇 ≥ 0 is a solution to Lyapunov equation:

P (A+DF (𝑡) (E
1
+E
2
K)) +(A+DF (𝑡) (E

1
+E
2
K))𝑇

+ (C
0
+D
0
K)𝑇 (C

0
+D
0
K) = 0.

(31)

Proof. From [23], it follows that system (21) with w(𝑡) = 0
is asymptotically stable and ‖z‖

2
< 𝛾‖w‖

2
if there exists a

symmetric positive definite matrix P such that

(A+BK+DF (𝑡) (E
1
+ E
2
K))𝑇P

+ P (A+BK+DF (𝑡) (E
1
+ E
2
K)) + 𝛾−2PBwB

𝑇

wP

+ (C
1
+D
1
K)𝑇 (C

1
+D
1
K) < 0.

(32)



6 Mathematical Problems in Engineering

The above inequality is equivalent to the fact that there exists
a scalar 𝛽 > 0 such that

(A+BK+DF (𝑡) (E
1
+ E
2
K))𝑇P

+ P (A+BK+DF (𝑡) (E
1
+ E
2
K))

+ 𝛾
−2PBwB

𝑇

wP + (C1 +D1K)
𝑇

(C
1
+D
1
K)

+ 𝛽(C
0
+D
0
K)𝑇 (C

0
+D
0
K) < 0.

(33)

Define P = 𝛽−1P; the above inequality can be described
as

(A+BK)𝑇P + P (A+BK)

+ 𝛽𝛾
−2PBwB

𝑇

wP + 𝛽
−1

(C
1
+D
1
K)𝑇 (C

1
+D
1
K)

+ (C
0
+D
0
K)𝑇 (C

0
+D
0
K) + PDF (E

1
+ E
2
K)

+ (E
1
+ E
2
K)𝑇F𝑇D𝑇P < 0.

(34)

According to Lemma 1, the above inequality holds for all
F satisfying F𝑇F ≤ I if and only if there exists 𝛼 > 0 such that

(A+BK)𝑇P+P (A+BK) + 𝛽𝛾−2PBwB
𝑇

wP

+ 𝛽
−1

(C
1
+D
1
K)𝑇 (C

1
+D
1
K)

+ (C
0
+D
0
K)𝑇 (C

0
+D
0
K)

+ 𝛼PDD𝑇P + 𝛼−1(E
1
+ E
2
K)𝑇 (E

1
+ E
2
K) < 0.

(35)

So, we obtain (30). Suppose that (30) has a symmetric
positive definite solution P, define

Δ = 𝛼PDD𝑇P + 𝛼−1(E
1
+ E
2
K)𝑇 (E

1
+ E
2
K)

− PDF (E
1
+ E
2
K) − (E

1
+ E
2
K)𝑇F𝑇D𝑇P.

(36)

According to [24] and considering ‖F(𝑡)‖ ≤ I, it follows that
Δ ≥ 0; then subtracting

P (A+DF (𝑡) (E
1
+ E
2
K)) + (A +DF (𝑡) (E

1
+ E
2
K))𝑇

+ (C
0
+D
0
K)𝑇 (C

0
+D
0
K) = 0

(37)

from (30), we can get

(A+BK+DF (𝑡) (E
1
+ E
2
K))𝑇 (P−P)

+ (P−P) (A+BK+DF (𝑡) (E
1
+E
2
K))

+ 𝛽𝛾
−2PBwB

𝑇

wP + 𝛽
−1

(C
1
+D
1
K)𝑇 (C

1
+D
1
K)

+ Δ < 0.

(38)

Since 𝛽𝛾−2PBwB𝑇wP + 𝛽
−1

(C
1
+D
1
K)𝑇(C

1
+D
1
K) +Δ ≥ 0 and

system (21)withw(𝑡) = 0 is asymptotically stable according to
the Lyapunov stability theory, we can get P−P ≥ 0 or P ≤ P;
then the proof is completed.

If there exist two scalars 𝛼 > 0, 𝛽 > 0 such that the matrix
inequality (30) has a symmetric positive definite solution
P, then the closed-loop system is asymptotically stable for
all admissible parameter uncertainties and satisfies an H

∞

disturbance attenuation constraint. In addition, this solution
Pwill guarantee theworstH

2
performance index that satisfies

J
0
(K) ≤ J(K,P) = tr(B𝑇wPBw). J(K,P) is considered as an

H
2
/H
∞

guaranteed cost bound of the closed-loop
system.

Theorem 3. Given a constant 𝛾 > 0, the system (21) is
asymptotically stable and satisfies ‖z‖

2
< 𝛾‖w‖

2
for any

nonzero w ∈ L
2
[0,∞), and the input constraint is guaranteed

if there exist scalars 𝛼 > 0, 𝛽 > 0, a symmetric positive definite
matrix X, and a matrixW satisfying

[

[

[

[

[

[

[

V (E
1
X + E

2
W)𝑇 (C

1
X +D

1
W)𝑇 (C

0
X +D

0
W)𝑇

E
1
X + E

2
W −𝛼I 0 0

C
1
X +D

1
W 0 −𝛽I 0

C
0
X +D

0
W 0 0 −I

]

]

]

]

]

]

]

< 0, (39)

e𝑇
0
Pe
0
≤ 𝜌, (40)

[

−I √𝜌W
∗ −u2maxX

] < 0, (41)

where V = (AX+BW)𝑇 + AX+BW+𝛼DD𝑇 + 𝛽𝛾−2BwB𝑇w.
In addition, if the above inequalities have a feasible solution
(𝛼,𝛽,X,W), the state feedback controller can be given byu(𝑡) =
WX−1e(𝑡)+𝜐(𝑡), and theH

2
/H
∞
guaranteed cost bound of the

closed-loop system is described by J(K,X−1) = tr(B𝑇wX
−1Bw).

Proof. It follows fromTheorem 2 that there exists a controller
u(𝑡) = Ke(𝑡)+𝜐(𝑡) such that the design criteria (1) and (2) are
satisfied if and only if there exist two scalars 𝛼 > 0, 𝛽 > 0 and
a symmetric positive definite matrix P which guarantees that
the matrix inequality (30) holds. Pre- and postmultiplying
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both sides of (30) by P−1 and using Schur’s complement yield
that (30) is equivalent to

[

[

[

[

[

V P−1(E
1
X+E
2
W)𝑇 P−1(C

1
X +D

1
W)𝑇 P−1(C

0
X +D

0
W)𝑇

(E
1
X+E
2
W)P−1 −𝛼I 0 0

(C
1
X+D

1
W)P−1 0 −𝛽I 0

(C
0
X+D

0
W)P−1 0 0 −I

]

]

]

]

]

< 0, (42)

whereV = P−1(A+BK)𝑇+(A+BK)P−1+𝛼DD𝑇+𝛽𝛾−2BwB𝑇w.
Defining X = P−1,W = KP−1, the matrix inequality (39) can
be easily obtained from (42).

In addition, we will show that the input constraint is
satisfied. Define V = e𝑇Pe; we can easily know ̇V < 0 and
thus e𝑇Pe ≤ e𝑇

0
Pe
0
; we can also obtain

max
𝑡>0

|u(𝑡)|2 < max
𝑡>𝑑(𝑡)






e𝑇(𝑡)K𝑇Ke(𝑡)

2

= max
𝑡>𝑑(𝑡)






e𝑇(𝑡)P1/2P−1/2K𝑇KP−1/2P1/2e(𝑡)

2

< 𝜌 ⋅ 𝜃max (P
−1/2K𝑇KP−1/2) ,

(43)

where 𝜃max(⋅) shows the maximal eigenvalue. From the
above inequality, the input constraint is established if
𝜌P−1/2K𝑇KP−1/2 < u2maxI. By Schur complements, the above
inequality is equivalent to (41).This completes the proof.

Theorem 3 provides a characterization of all controllers
that guarantee the design criteria (1) and (2) to be achieved,
and the controller u(𝑡) =WX−1e(𝑡) + 𝜐(𝑡) provides aH

2
/H
∞

guaranteed cost bound tr(B𝑇wX
−1Bw).

4. Simulation Results

According to (7) combined with the uncertain parameter,
consider the system with the following state-space matrices:

̇𝑥 (𝑡) = (

0 1 0

0 0 0.0085

0 −1.68𝑒8 −1.7

)𝑥 (𝑡)

+ (

0 0 0

0 0 0

0 −0.85𝑒8 −0.856

)𝑥 (𝑡)

+
[

[

[

0

0

3.41𝑒12

]

]

]

𝑢 (𝑡) +
[

[

[

0

0

1.71𝑒12

]

]

]

𝑢 (𝑡) +
[

[

[

0

−𝑇
𝑒
− 𝑇
𝑓

0

]

]

]

𝑧
0
(𝑡) = [1 1 1] 𝑥 (𝑡) + 𝑢 (𝑡)

𝑧
1
(𝑡) = [1 0 0] 𝑥 (𝑡) ,

(44)
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Figure 6: Step response of the PI control.

with

D = [
[

0 0 0

0 0 0

1 1 1

]

]

, E
1
=
[

[

0 0 0

0 0 0

0 −0.85𝑒8 −0.856

]

]

,

E
2
=
[

[

0

0

1.71𝑒12

]

]

,

F = [
[

𝑟
1

𝑟
2

𝑠
1

]

]

, −1 ≤ 𝑟
1
, 𝑟
2
, 𝑠
1
≤ 1.

(45)

The angle displacement control system of the port plate is
simulated according to the result above and the comparison
with the traditional PI control is conducted.During thework-
ing condition of HT, the port plate angle should change to
meet the requirement of the servosystem. Hence, the extreme
working condition is the period that the port plate angle is
varying because the disturbance, which is the friction torque
mainly, is varying greatly. The other working conditions are
chosen as the step response to reveal the dynamic response.
The model is constructed in Simulink and Figures 6–9 show
the simulation result.

According to Figures 6 and 7, it can be found that the step
responses of both the two controlmethods are fast tomeet the
practical requirement. PI control can get a faster response;
however, the overshot is larger. The GCC does not show
the obvious advantage to the PI control. This is because the
friction torque disturbance acts the least influence compared
with the changing working condition. Hence, the good
performance can be got by adjusting PI coefficients. However,
the coefficients should be changed corresponding to different



8 Mathematical Problems in Engineering

0 0.1 0.2 0.3 0.4 0.5
−20

0

20

40

60

80

100

Time (s)

A
ng

le
 (d

eg
)

Figure 7: Step response of the GCC.
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Figure 8: Sinusoidal signal response of the PI control.

loads, which is difficult in practice. This phenomenon can
be explained by using sinusoidal response simulation. The
sinusoidal signal responses are depicted by Figures 8 and 9.
The black curve is the command signal and the red curve is
the response. The GCC follows the command much better
than the traditional PI control. The results can be shown
clearly through Figures 10 and 11 which show the tracking
error of the two control methods.The reason is mainly about
the better robustness of the GCC.The improvement over the
traditional PI control is dramatic.

5. Conclusion

This paper is focused on the robust control for the port
plate angle displacement control system with parameter
uncertainties and load disturbance. The critical problem
about the angle displacement control is analyzed and the
main disturbance range is calculated by studying the stress
relationship between the port plate and the cylinder. The
analysis result shows that the friction torque is changing
with different port plate angles, differential pressures, and the
rotating speed. Furthermore, the guaranteed cost control for
the system is designed. Simulation results show that both the
GCC and PI control can get a good response under running
the step response simulation. Especially, the GCC achieves
much better robustness than PI control during the sinusoidal
signal response simulation which is because the disturbance
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Figure 9: Sinusoidal signal response of the GCC.
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Figure 11: Tracking error of the GCC.

changes greatly is while the port plate is moving all the time.
In order to prove the effectiveness of the proposed control
method, the next step for this project is to construct the test
rig.
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The passive fuzzy control for discrete-time uncertain Takagi-Sugeno (T-S) fuzzy models with multiplicative noises and time delay
is investigated subject to robust asymptotical stability. Applying Jensen’s inequality and free-weighting matrix technique, less
conservative sufficient conditions are derived via choosing Lyapunov function to analyze and synthesize the robust asymptotical
stability and passivity of closed-loop system. The derived conditions are not strictly linear matrix inequality (LMI) problems,
thus the cone complementarity technique is employed to propose a suboptimal technique to solve the proposed nonstrictly LMI
problems. An algorithm is developed in this paper to design the fuzzy controller which can be accomplished by state-feedback
scheme or output-feedback scheme. Finally, numerical examples are provided to demonstrate the feasibility and applicability of the
proposed fuzzy controller design technique.

1. Introduction
The delay-dependent stability analysis and synthesis of T-S
fuzzymodel with time delay has been extensively discussed in
[1–4].The time delay is an inherent and unavoidable effect on
many practical dynamic nonlinear systems. In literature, the
stability conditions of T-S fuzzy model with time delay were
derived in terms of LMI problem [5] that can be solved by
convex optimization technique. Furthermore, many relaxed
techniques have been proposed to extend the maximum
allowable delay range. For example, the piecewise Lyapunov
function technique, fuzzy Lyapunov function approach, and
free-weighting matrix approach have been used in [6–10] to
reduce the conservatism of stability and stabilization prob-
lems for T-S fuzzy model with time delay. Although the con-
servatism of concerned problems can be decreased by such
approaches, too many variables are needed to be found for
satisfying their stability conditions. It is known that the com-
plications of control synthesis and computational demands
are increasing when the number of free variables is increased.
Hence, the less conservative stability criteria with few free

variables for dealing with T-S fuzzy model with time delay
are worth to be discussed and investigated.

As well known, the performance requirement is the most
important issue in the stability analysis and synthesis of con-
trol systems. For attenuating the effect of the external disturb-
ance on systems, many efforts [11–17] proposed useful tech-
niques such that the attenuation performance of system can
be achieved. From [17], it can be found that the dissipa-
tivity and its particular case of passivity can be defined as
𝐻

∞
performance constraint, positive real performance con-

straint, strictly input passive performance constraint, strictly
output passive performance constraint, and strictly vary
passive performance constraint by setting different power
supply function [18]. Based on the power supply function, the
passivity theory proposes a general and elastic tool for dealing
with the effect of disturbance on the systems. On the other
hand, uncertainty is often an existing phenomenon which is
caused by modeling errors and internal perturbations. Gen-
erally, the parameter uncertainties of system are considered as
norm-bounded time-varying function [1, 2, 12]. Considering
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external disturbances and uncertainties, the robust stability
and passivity become important performances of control sys-
tems.

Recently, the stochastic systems have received much
attention based on the stochastic modeling approach [19].
Therefore, many efforts have been devoted to expand the sta-
bility criteria [20, 21] fromdeterministic systems to stochastic
ones. Applying the fuzzy modeling approach, the nonlinear
stochastic systems can be approximated by blending lin-
ear stochastic subsystems with corresponding membership
functions. In literature [22–27], the nonlinear stochastic sys-
tems were represented by T-S fuzzy models in which the
consequent part is structured by Itô stochastic differential
equations. Since the consequent part of stochastic fuzzymode
belongs to linear stochastic systems, the Itô formula can also
be employed to analyze the stability of stochastic T-S fuzzy
systems. And then, the parallel distributed compensation
(PDC) technique [17] was employed to design the fuzzy con-
troller such that stability of nonlinear stochastic system is
achieved. In case of continuous-time T-S fuzzy model, the
delay-dependent stability and stabilization problems were
studied in [23], robust fuzzy controller problems were dis-
cussed in [24–26], and robust fuzzy filtering design problem
was addressed in [27, 28]. However, only few efforts [29–32]
have been proposed for solving the stability and stabilization
problems of discrete-time stochastic nonlinear systems.

From the above motivations, the fuzzy controller design
of discrete uncertain T-S fuzzy model with multiplicative
noise and time delay is investigated in this paper subject to
passivity and robust asymptotical stability. The time delay
effect is concerned as an interval time-varying delay [9] in this
paper. Based on the discrete type Jensen inequality [33] and
free-weighting matrix technique, the less conservative suffi-
cient conditions are derived via Lyapunov function to achieve
the robust asymptotical stability. In addition, the passivity
theory is applied to discuss the external disturbance effect on
the system.While deriving the conditions, none of the model
transportation is used to avoid the potential conservatism of
stability criteria in time delay systems. Since the proposed
sufficient conditions belong to nonstrictly LMI problems, an
algorithm based on cone complementarity technique [34] is
developed in this paper. With the proposed algorithm, the
feasible solutions of the conditions and allowable maximum
upper bound of interval time-varying delay can be found by
LMI technique. The main contributions of this paper can be
summarized as follows. (1) Achieving passivity performance
constraint, a robust fuzzy controller is developed in this paper
for discrete uncertain T-S fuzzy model with multiplicative
noise and time delay. (2) Comparing previous researches, the
proposed fuzzy control method provides less conservatism
because it can find bigger allowable maximum upper bound
of time delay and its less desired unknown variables reduce
the mathematical complexity. At last, two numerical exam-
ples are employed to demonstrate the effectiveness and appli-
cation of the proposed design method.

Notation. The following notations are applied throughout
this paper. The tr(A) denotes the trace of matrix A. The I
is identity matrix with appropriate dimension.The diag{⋅ ⋅ ⋅ }

means block-diagonal matrix. The ∗ denotes the transposed
elements of matrices for symmetric position. The 𝐸{𝑄(⋅)}
denotes the expected value of function 𝑄(⋅). Moreover, let
(Ω,F, {F

𝑡
}
𝑡≥0

,P) be a complete probability space with fil-
tration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., the filtra-
tion contains all P-null sets and is right continuous).

2. System Description and Problem Statement

Applying the fuzzy modeling approach, the nonlinear sto-
chastic systems can be represented by the T-S fuzzy model
with multiplicative noise. Hence, the uncertain T-S fuzzy
model with interval time-varying delay and multiplicative
noise can be structured as follows:

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) {𝑓

𝑖
(𝑘) + 𝑓

𝑖
(𝑘) 𝛽 (𝑘)} , (1a)

𝑧 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) {C

1𝑖
𝑥 (𝑘) + C

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)) +D

𝑖
V (𝑘)} ,

𝑖 = 1, 2, . . . , 𝑟,

(1b)

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑘)) {C

2𝑖
𝑥 (𝑘)} , (1c)

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = 0, −1, . . . , −𝜏 (𝑘) , (1d)

where

𝑓
𝑖
(𝑘) = (A

𝑖
+ ΔA

𝑖
) 𝑥 (𝑘) + (A

𝑑𝑖
+ ΔA

𝑑𝑖
) 𝑥 (𝑘 − 𝜏 (𝑘))

+ (B
𝑖
+ ΔB

𝑖
) 𝑢 (𝑘) + (E

𝑖
+ ΔE

𝑖
) V (𝑘) ,

(2a)

𝑓
𝑖
(𝑘) = (A

𝑖
+ ΔA

𝑖
) 𝑥 (𝑘) + (A

𝑑𝑖
+ ΔA

𝑑𝑖
) 𝑥 (𝑘 − 𝜏 (𝑘))

+ (B
𝑖
+ ΔB

𝑖
) 𝑢 (𝑘) + (E

𝑖
+ ΔE

𝑖
) V (𝑘) .

(2b)

Besides, ∑𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑘)) = 1, ℎ

𝑖
(𝜃(𝑘)) ≥ 0 is the grade of mem-

bership function, 𝜃(𝑘) is the set of premise variables, 𝑟 is the
number of fuzzy rules, and A

𝑖
, A

𝑑𝑖
, B

𝑖
, E

𝑖
, A

𝑖
, A

𝑑𝑖
, B

𝑖
, E

𝑖
,

C
1𝑖
, C

2𝑖
, C

𝑑𝑖
and D

𝑖
are known constant matrices with

appropriate dimensions. 𝑥(𝑘) ∈ R𝑛𝑥 , 𝑥(𝑘 − 𝜏(𝑘)) ∈

R𝑛𝑥 , 𝑢(𝑘) ∈ R𝑛𝑢 , 𝑧(𝑘) ∈ R𝑛𝑧 , 𝑦(𝑘) ∈ R𝑛𝑧 , V(𝑘) ∈ R𝑛𝑧 , and
𝜑(𝑘) are state vector, state delay vector, controller input vector,
controlled output vector, measurable output vector, external
disturbance input vector, and initial condition, respectively.
In addition, the 𝛽(𝑘) denotes standard scalar discreteWiener
process (Brownian motion) [19] on (Ω,F,P) with
𝐸{𝛽(𝑘)} = 0 and 𝐸{𝛽

2

(𝑘)} = 1. The time-varying delay 𝜏(𝑘)

is a positive integer and satisfies 𝜏min ≤ 𝜏(𝑘) ≤ 𝜏max. Here,
𝜏min and 𝜏max are known lower and upper bounds of delay,
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respectively. Moreover, ΔA
𝑖
, ΔA

𝑑𝑖
, ΔB

𝑖
, ΔE

𝑖
, ΔA

𝑖
, ΔA

𝑑𝑖
,

ΔB
𝑖
, and ΔE

𝑖
are defined as follows:

[

ΔA
𝑖
ΔA

𝑑𝑖
ΔB

𝑖
ΔE

𝑖

ΔA
𝑖
ΔA

𝑑𝑖
ΔB

𝑖
ΔE

𝑖

]

= [

H
𝑖

0

0 H
𝑖

] [

Δ (𝑘) 0

0 Δ (𝑘)

] [

R
𝑖
R

𝑑𝑖
R

𝐵𝑖
R

𝐸𝑖

R
𝑖
R

𝑑𝑖
R

𝐵𝑖
R

𝐸𝑖

] ,

(3)

where H
𝑖
, H

𝑖
, R

𝑖
, R

𝑑𝑖
, R

𝐵𝑖
, R

𝐸𝑖
, R

𝑖
, R

𝑑𝑖
, R

𝐵𝑖
, and R

𝐸𝑖
are

known constant matrices and Δ(𝑘) and Δ(𝑘) are unknown
time-varying function with Δ(𝑘)Δ(𝑘) ≤ I and Δ(𝑘)Δ(𝑘) ≤ I.
In the following statements, the ℎ

𝑖
(𝜃(𝑘)), Δ(𝑘), and Δ(𝑘) are

denoted as ̂
ℎ
𝑖
, Δ, and Δ, respectively, for simplifying the

context of this paper.
With state-feedback control scheme, the PDC-based

fuzzy controller can be designed as follows:

𝑢 (𝑘) =

𝑟

∑

𝑖=1

̂
ℎ
𝑖
(F

𝑖
𝑥 (𝑘)) . (4)

Substituting (4) into (1a), the closed-loop uncertain T-S fuzzy
model with interval time-varying delay and multiplicative
noise can be inferred as follows:

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1,𝑗=1

̂
ℎ
𝑖

̂
ℎ
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{(f
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𝑖
Δf

𝑅𝑖𝑗
+ (f

𝑖𝑗
+H

𝑖
Δ f

𝑅𝑖𝑗
) 𝛽 (𝑘)) 𝜉 (𝑘)}

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗
{

1

2

(f
𝑖𝑗
+H

𝑖
Δf

𝑅𝑖𝑗
+ f

𝑗𝑖
+H

𝑗
Δf

𝑅𝑗𝑖

+ (f
𝑖𝑗
+H

𝑖
Δ f

𝑅𝑖𝑗
+f

𝑗𝑖
+H

𝑗
Δ f

𝑅𝑗𝑖
)𝛽(𝑘))𝜉(𝑘) } ,

(5)

where
𝜉 (𝑘)

= [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) V𝑇(𝑘) 𝑥
𝑇

(𝑘 − 𝜏max) 𝑥
𝑇

(𝑘 − 𝜏min) 𝜂(𝑘)] ,

f
𝑖𝑗
= [G

𝑖𝑗
A

𝑑𝑖
E

𝑖
0
1×3

] ,

f
𝑖𝑗
= [G

𝑖𝑗
A

𝑑𝑖
E

𝑖
0
1×3

] ,

f
𝑅𝑖𝑗

= [R
𝑖𝑗

R
𝑑𝑖

R
𝐸𝑖

0
1×3

] ,

f
𝑅𝑖𝑗

= [R
𝑖𝑗

R
𝑑𝑖

R
𝐸𝑖

0
1×3

] ,

G
𝑖𝑗
= A

𝑖
+ B

𝑖
F

𝑗
, G

𝑖𝑗
= A

𝑖
+ B

𝑖
F

𝑗
,

R
𝑖𝑗
= R

𝑖
+ R

𝐵𝑖
F

𝑗
, R

𝑖𝑗
= R

𝑖
+ R

𝐵𝑖
F

𝑗
,

𝜂 (𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏 (𝑘)) .

(6)

For deriving the stability criteria of this paper, the follow-
ing definitions and lemmas are necessary to be introduced.
Based on the energy concept, the passivity theory provides

a useful tool to discuss the effect of external disturbance for
achieving attenuation performance. Here, the passivity prop-
erty is introduced in the following definition.

Definition 1 (see [18]). If there exist constant matrices S
1
,

S
2
, and S

3
for satisfying the following inequality, then the

closed-loop system (5) is called passive with the disturb-
ance V(𝑘) and controlled output 𝑧(𝑘) for all terminal time
𝑘
𝑞
> 0:

𝐸

{

{

{

2

𝑘𝑞

∑

𝑘=0

𝑧
𝑇

(𝑘) S
1
V (𝑘)

}

}

}

> 𝐸

{

{

{

𝑘𝑞

∑

𝑘=0

𝑧
𝑇

(𝑘) S
2
𝑧 (𝑘) +

𝑘𝑞

∑

𝑘=0

V𝑇 (𝑘) S
3
V (𝑘)

}

}

}

.

(7)

Via the well-known mathematical definition of power supply
function [18], the passivity theory includes several perfor-
mance constraints with setting matrices S

1
, S

2
, and S

3
. In this

paper, the generalized power supply function (7) is proposed
to be the constraint index. Besides, for illustrating the con-
cerned stability concept clearly, the following definition is
introduced.

Definition 2 (see [19]). For the closed-loop system (5)without
external disturbance input, that is, V(𝑘) = 0, the solution
with admissible uncertainties is robustly asymptotically stable
in the mean square if 𝐸{𝑥(𝑘)} and state correlation matrix
𝐸{𝑥

𝑇

(𝑘)𝑥(𝑘)} converge to zero as 𝑡 → ∞.

For analyzing the uncertainties of systems, the following
lemma is proposed to convert the uncertain matrices into
deterministic matrices.

Lemma 3 (see [26]). Given real compatible dimension matri-
cesA,H, and R for anymatrixX > 0, 𝜀 > 0, Δ with Δ

𝑇

Δ ≤ I,
one can find the following results:

(A +HΔR)𝑇X (A +HΔR)

≤ A𝑇

(X−1

− 𝜀HH𝑇

)

−1

A + 𝜀
−1R𝑇R,

(8)

where X−1

− 𝜀HH𝑇

> 0.

In this paper, the following discrete type Jensen inequality
is employed to derive the less conservative sufficient condi-
tions.

Lemma 4 (see [33]). For any compatible constant matrices
Q = Q𝑇

> 0, scalars 𝜏min > 0 and 𝜏max > 0 satisfying 𝜏min <

𝜏max and vector function 𝜛 : [𝜏min, 𝜏min + 1, . . . , 𝜏max] →

R𝑛𝑥 such that the following sums are well defined, it holds that

− (𝜏max − 𝜏min + 1)

𝜏max

∑

𝑘=𝜏min

𝜛
𝑇

(𝑘)Q𝜛 (𝑘)

≤ −(

𝜏max

∑

𝑘=𝜏min

𝜛 (𝑘))

𝑇

Q
𝜏max

∑

𝑘=𝜏min

𝜛 (𝑘) .

(9)
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From the above definitions and lemmas, the sufficient
conditions are derived in the following section for guarantee-
ing the robust asymptotical stability and passivity of closed-
loop system (5).

3. Stabilization Criteria and Robust Fuzzy
Controller Design

In this section, the stability criteria for closed-loop system (5)
are derived with both of state-feedback control scheme and
output-feedback control scheme. The sufficient conditions
derived in this paper are nonstrictly LMI problems. In order
to solve the proposed nonstrictly LMI problems, an algorithm
is also developed in this section.

Theorem 5. Given performance parameters S
1
, S

2
≥ 0,

and S
3
; positive scalars 𝜏min > 0 and 𝜏max > 0, if there exist

positive definite matrices P
1
> 0, P

2
> 0, P

3
> 0, P

4
>

0, and P
5
> 0, any matrices N

1
, N

2
, and N

3
, scalars 𝜀

𝑖𝑗
>

0 and 𝜀
𝑖𝑗
> 0, and state-feedback gains F

𝑖
for satisfying the

following conditions, then the closed-loop system (5) is passive
and robustly asymptotically stable in the mean square:

Φ < 0 for 𝑖, 𝑗 ≤ 𝑟, (10)

where

Φ =

[

[

[

[

[

[

Φ
11𝑖𝑗
Φ

12
Φ

13
Φ

14
Φ

15

∗ Φ
22

0 0 0

∗ ∗ Φ
33

0 0

∗ ∗ ∗ Φ
44

0

∗ ∗ ∗ ∗ Φ
55

]

]

]

]

]

]

, (11)

Φ
11𝑖𝑗

= Φ +
1

2

(W
𝑖𝑗
+W

𝑗𝑖
) ,

Φ
12
=

1

2

[Φ
12𝑖𝑗
Φ

12𝑗𝑖
] , Φ

13
= √𝜏maxΦ12

,

Φ
14
=

1

2

[Φ
14𝑖𝑗
Φ

14𝑗𝑖
] , Φ

15
= √𝜏maxΦ14

,

Φ
22
= diag {Φ

22𝑖𝑗
,Φ

22𝑗𝑖
} , Φ

33
= diag {Φ

33𝑖𝑗
,Φ

33𝑗𝑖
} ,

Φ
44
= diag {Φ

44𝑖𝑗
,Φ

44𝑗𝑖
} , Φ

55
= diag {Φ

55𝑖𝑗
,Φ

55𝑗𝑖
} ,

(12a)

Φ

=

[

[

[

[

[

[

[

Φ
11

𝜏
−1

maxP5
−N

1
+ N𝑇

2
0 0 0 −N

1
+ N𝑇

3

∗ −𝜏
−1

maxP5
− P

4
− N𝑇

2
− N

2
0 0 0 −N

2
− N𝑇

3

∗ ∗ 0 0 0 0

∗ ∗ ∗ −P
2

0 0

∗ ∗ ∗ ∗ −P
3

0

∗ ∗ ∗ ∗ ∗ −N𝑇

3
− N

3

]

]

]

]

]

]

]

,

W
𝑖𝑗

=

[
[
[
[
[
[
[

[

C𝑇

1𝑖
S
2
C

1𝑗
C𝑇

1𝑖
S
2
C

𝑑𝑗
C𝑇

1𝑖
S
2
D

𝑗
− C𝑇

1𝑖
S
1

0 0 0

∗ C𝑇

𝑑𝑖
S
2
C

𝑑𝑗
C𝑇

𝑑𝑖
S
2
D

𝑗
− C𝑇

𝑑𝑖
S
1

0 0 0

∗ ∗ S
3
− D𝑇

𝑖
S
1
− S𝑇

1
D

𝑖
+ D𝑇

𝑖
S
2
D

𝑗
0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

]
]
]
]
]
]
]

]

,

Φ
11
= P

2
+ P

3
+ (𝜏max − 𝜏min + 1)P

4
− P

1
− 𝜏

−1

maxP5

+ N𝑇

1
+ N

1
,

Φ
12𝑖𝑗

= [f𝑇
𝑖𝑗

f𝑇
𝑅𝑖𝑗
] , Φ

14𝑖𝑗
= [f

𝑇

𝑖𝑗
f
𝑇

𝑅𝑖𝑗
] ,

Φ
22𝑖𝑗

= diag {𝜀
𝑖𝑗
H

𝑖
H𝑇

𝑖
− P−1

1
, −𝜀

𝑖𝑗
I} ,

Φ
33𝑖𝑗

= diag {𝜀
𝑖𝑗
H

𝑖
H𝑇

𝑖
− P−1

5
, −𝜀

𝑖𝑗
I} ,

Φ
44𝑖𝑗

= diag {𝜀
𝑖𝑗
H

𝑖
H𝑇

𝑖
− P−1

1
, −𝜀

𝑖𝑗
I} ,

Φ
55𝑖𝑗

= diag {𝜀
𝑖𝑗
H

𝑖
H𝑇

𝑖
− P−1

5
, −𝜀

𝑖𝑗
I} .

(12b)

Proof . Choose the following Lyapunov function:

𝑉 (𝑥 (𝑘)) = 𝑉
1
(𝑥 (𝑘)) + 𝑉

2
(𝑥 (𝑘)) + 𝑉

3
(𝑥 (𝑘)) + 𝑉

4
(𝑥 (𝑘)) ,

(13)

where

𝑉
1
(𝑥 (𝑘)) = 𝑥

𝑇

(𝑘)P
1
𝑥 (𝑘) , (14a)

𝑉
2
(𝑥 (𝑘)) =

𝑘−1

∑

ℓ=𝑘−𝜏max

𝑥
𝑇

(ℓ)P
2
𝑥 (ℓ) +

𝑘−1

∑

ℓ=𝑘−𝜏min

𝑥
𝑇

(ℓ)P
3
𝑥 (ℓ)

+

𝑘−1

∑

ℓ=𝑘−𝜏(𝑘)

𝑥
𝑇

(ℓ)P
4
𝑥 (ℓ) ,

(14b)

𝑉
3
(𝑥 (𝑘)) =

−𝜏min

∑

𝑠=−𝜏max+1

𝑘−1

∑

ℓ=𝑘+𝑠

𝑥
𝑇

(ℓ)P
4
𝑥 (ℓ) , (14c)

𝑉
4
(𝑥 (𝑘)) =

−1

∑

𝑠=−𝜏max+1

𝑘−1

∑

ℓ=𝑘+𝑠

Δ𝑥
𝑇

(ℓ)P
5
Δ𝑥 (ℓ) , (14d)

where Δ𝑥(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘). Firstly, calculating the
difference of 𝑉

1
(𝑥(𝑘)) in (14a) along the trajectory of closed-

loop system (5) and taking the mathematical expectation,
the following inequality can be obtained with relations
̂
ℎ
𝑖

̂
ℎ
𝑗

̂
ℎ
𝑚

̂
ℎ
𝑛
≤
̂
ℎ
𝑖

̂
ℎ
𝑗
and 0 ≤

̂
ℎ
𝑖
≤ 1:

𝐸 {Δ𝑉
1
(𝑥 (𝑘))}

≤ 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗

× {𝜉
𝑇

(𝑘) ((f +HΔ̃f
𝑅
)

𝑇

P̃
1
(f +HΔ̃f

𝑅
)

+(f +H ̃
Δ f

𝑅
)

𝑇

× P̃
1
(f +H ̃

Δf
𝑅
))

× 𝜉 (𝑘) − 𝑥
𝑇

(𝑘)P
1
𝑥 (𝑘) }

}

}

}

,

(15)
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where f = (1/2)[f𝑇
𝑖𝑗

f𝑇
𝑗𝑖
]

𝑇

, f
𝑅

= (1/2)[f𝑇
𝑅𝑖𝑗

f𝑇
𝑅𝑗𝑖
]

𝑇

, f =

(1/2)[f
𝑇

𝑖𝑗
f
𝑇

𝑗𝑖
]

𝑇

, f
𝑅
= (1/2)[f

𝑇

𝑅𝑖𝑗
f
𝑇

𝑅𝑗𝑖
]

𝑇

, H = diag{H
𝑖
,H

𝑗
},

H = diag{H
𝑖
,H

𝑗
}, Δ̃ = diag{Δ, Δ}, ̃Δ = diag{Δ, Δ}, and P̃

1
=

diag{P
1
,P

1
}. According to Lemma 3, the following inequali-

ties always hold:

(f +HΔ̃f
𝑅
)

𝑇

̃P
1
(f +HΔ̃f

𝑅
)

≤ f𝑇(P̃−1

1
− 𝜀HH)

−1

f + 𝜀
−1f𝑇

𝑅
f
𝑅
,

(16a)

(f +H ̃
Δ f

𝑅
)

𝑇

̃P
1
(f +H ̃

Δ f
𝑅
)

≤ f
𝑇

(
̃P−1

1
−
̃
𝜀HH)

−1

f + ̃𝜀
−1

f
𝑇

𝑅
f
𝑅
,

(16b)

where 𝜀 = diag{𝜀
𝑖𝑗
, 𝜀

𝑗𝑖
} and ̃

𝜀 = diag{𝜀
𝑖𝑗
, 𝜀

𝑗𝑖
}. According to

(16a) and (16b), one can obtain the following inequality from
(15):

𝐸 {Δ𝑉
1
(𝑥 (𝑘))}

≤ 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗

× {𝜉
𝑇

(𝑘) (f𝑇(̃P−1

1
− 𝜀HH)

−1

f

+ 𝜀
−1f𝑇

𝑅
f
𝑅
+ f

𝑇

(
̃P−1

1
−
̃
𝜀HH)

−1

f

+
̃
𝜀

−1

f
𝑇

𝑅
f
𝑅
) 𝜉 (𝑘)−𝑥

𝑇

(𝑘)P
1
𝑥 (𝑘)}

}

}

}

.

(17)

Furthermore, the difference of other Lyapunov functions,
that is, 𝑉

2
(𝑥(𝑘)), 𝑉

3
(𝑥(𝑘)), and 𝑉

4
(𝑥(𝑘)), can be obtained as

follows:
𝐸 {Δ𝑉

2
(𝑥 (𝑘))}

≤ 𝐸

{

{

{

𝑥
𝑇

(𝑘) (P
2
+ P

3
+ P

4
) 𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝜏max)P2
𝑥 (𝑘 − 𝜏max) − 𝑥

𝑇

(𝑘 − 𝜏min)

× P
3
𝑥 (𝑘 − 𝜏min) − 𝑥

𝑇

(𝑘 − 𝜏 (𝑘))P
4
𝑥 (𝑘 − 𝜏 (𝑘))

+

𝑘−𝜏min

∑

𝑠=𝑘−𝜏max+1

𝑥
𝑇

(𝑠)P
4
𝑥 (𝑠)

}

}

}

,

(18)

𝐸 {Δ𝑉
3
(𝑥 (𝑘))}

= 𝐸

{

{

{

(𝜏max − 𝜏min) 𝑥
𝑇

(𝑘)P
4
𝑥 (𝑘)−

𝑘−𝜏min

∑

𝑠=𝑘−𝜏max+1

𝑥
𝑇

(𝑠)P
4
𝑥 (𝑠)

}

}

}

,

(19)

𝐸 {Δ𝑉
4
(𝑥 (𝑘))}

= 𝐸{𝜏max(𝑥 (𝑘 + 1) − 𝑥 (𝑘))
𝑇P

5
(𝑥 (𝑘 + 1) − 𝑥 (𝑘))

−

−1

∑

𝑠=−𝜏max+1

Δ𝑥
𝑇

(𝑠)P
5
Δ𝑥 (𝑠)} .

(20)

Substituting (5) into the first term of the right-hand side of
(20) and using the relation ℎ

𝑖
ℎ
𝑗
ℎ
𝑚
ℎ
𝑛
≤ ℎ

𝑖
ℎ
𝑗
, one has

𝐸 {𝜏max(𝑥 (𝑘 + 1) − 𝑥 (𝑘))
𝑇P

5
(𝑥 (𝑘 + 1) − 𝑥 (𝑘))}

≤ 𝐸
{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗
𝜏max

× {𝜉
𝑇

(𝑘) (((f − I
2
) +HΔ̃f

𝑅
)

𝑇

̃P
5

×((f − I
2
)+HΔ̃f

𝑅
)+(f +H ̃

Δ f
𝑅
)

𝑇

×P̃
5
(f +H ̃

Δ f
𝑅
)) 𝜉 (𝑘) }

}

}

}

,

(21)

where ̃P
5
=diag{P

5
,P

5
}, I

2
=[

I1
I1 ], and I

1
= [I 0 0 0 0 0].

With the similar relations from (15) to (17), one can also
obtain the following inequality:

𝐸 {𝜏max(𝑥 (𝑘 + 1) − 𝑥 (𝑘))
𝑇P

5
(𝑥 (𝑘 + 1) − 𝑥 (𝑘))}

≤ 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗
𝜏max

× {𝜉
𝑇

(𝑘) ((f − I
2
)
𝑇

× (
̃P−1

5
− 𝜀HH)

−1

(f − I
2
) + 𝜀

−1f𝑇
𝑅
f
𝑅

+ f
𝑇

(P̃−1

5
−
̃
𝜀HH)

−1

f

+
̃
𝜀

−1

f
𝑇

𝑅
f
𝑅
) 𝜉 (𝑘)}

}

}

}

.

(22)

On the other hand, using Lemma 4, one has the following
relation from the second term of the right-hand side of (20):

−

−1

∑

𝑠=−𝜏max+1

Δ𝑥
𝑇

(𝑠)P
5
Δ𝑥 (𝑠)

≤ −𝜏
−1

max(
−1

∑

𝑠=−𝜏(𝑘)+1

Δ𝑥 (𝑠))

𝑇

P
5
(

−1

∑

𝑠=−𝜏(𝑘)+1

Δ𝑥 (𝑠))

= −𝜏
−1

max(𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏 (𝑘)))
𝑇P

5
(𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏 (𝑘))) .

(23)
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Thus, the following inequality can be obtained due to (22) and
(23):

𝐸 {Δ𝑉
4
(𝑥 (𝑘))}

≤ 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗
𝜏max

× {𝜉
𝑇

(𝑘) ((f − I
2
)
𝑇

(
̃P−1

5
− 𝜀HH)

−1

(f − I
2
)

+ 𝜀
−1f𝑇

𝑅
f
𝑅
+ f

𝑇

(
̃P−1

5
−
̃
𝜀HH)

−1

f

+
̃
𝜀

−1

f
𝑇

𝑅
f
𝑅
) 𝜉 (𝑘)}

}

}

}

− 𝜏
−1

max(𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏 (𝑘)))
𝑇

× P
5
(𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏 (𝑘))) .

(24)

For reducing the conservatism, the following equation is
introduced with the concept of free-weighting matrices tech-
nique [10]. For any matrices with approximate dimensions,
the following equation always holds:

2 (𝑥
𝑇

(𝑘)N
1
+ 𝑥

𝑇

(𝑘 − 𝜏 (𝑘))N
2
+ 𝜂

𝑇

(𝑘)N
3
)

× (𝑥 (𝑘) − 𝑥 (𝑘 − 𝜏 (𝑘)) − 𝜂 (𝑘)) = 0.

(25)

From (17), (18), (19), (24), and (25), one has

𝐸 {Δ𝑉 (𝑥 (𝑘))}

= 𝐸 {Δ𝑉
1
(𝑥 (𝑘)) + Δ𝑉

2
(𝑥 (𝑘)) + Δ𝑉

3
(𝑥 (𝑘)) + Δ𝑉

4
(𝑥 (𝑘))}

≤ 𝐸

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗
{𝜉

𝑇

(𝑘)Π
𝑖𝑗
𝜉 (𝑘)}

}

}

}

,

(26)

where

Π
𝑖𝑗
= Φ − (Φ

12
Φ

−1

22
Φ

𝑇

12
+Φ

13
Φ

−1

33
Φ

𝑇

13
+Φ

14
Φ

−1

44
Φ

𝑇

14

+Φ
15
Φ

−1

55
Φ

𝑇

15
) .

(27)

Let us consider the following performance function to
achieve the attenuation performance of system for all 𝑤(𝑘) ̸=

0 with zero initial condition:
𝐽 (𝑥 (𝑘))

= 𝐸

{

{

{

𝑘𝑞

∑

𝑘=0

(𝑧
𝑇

(𝑘) S
2
𝑧 (𝑘) + V𝑇 (𝑘) S

3
V (𝑘) − 2𝑧

𝑇

(𝑘) S
1
V (𝑘))

}

}

}

≤ 𝐸

{

{

{

𝑘𝑞

∑

𝑘=0

(𝑧
𝑇

(𝑘) S
2
𝑧 (𝑘) + V𝑇 (𝑘) S

3
V (𝑘)

−2𝑧
𝑇

(𝑘) S
1
V (𝑘) + Δ𝑉 (𝑥 (𝑘)))

}

}

}

.

(28)

According to (26), the following inequality can be obtained
via (28):

𝐽 (𝑥 (𝑘))

< 𝐸

𝑘𝑞

∑

𝑘=0

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

̂
ℎ
𝑖

̂
ℎ
𝑗
{𝜉

𝑇

(𝑘) (Π
𝑖𝑗
+

1

2

(W
𝑖𝑗
+W

𝑗𝑖
)) 𝜉 (𝑘)}

}

}

}

.

(29)

Using the Schur complement, one can find the following ine-
quality from (10):

Π
𝑖𝑗
+

1

2

(W
𝑖𝑗
+W

𝑗𝑖
) < 0. (30)

Obviously, if condition (10) is held then (29) is strictly neg-
ative that is, 𝐽(𝑥(𝑘)) < 0, due to (30). And the following
relation can be obtained from (28) according to 𝐽(𝑥(𝑘)) < 0:

𝐸

{

{

{

𝑘𝑞

∑

𝑘=0

(𝑧
𝑇

(𝑘) S
2
𝑧 (𝑘) + V𝑇 (𝑘) S

3
V (𝑘) − 2𝑧

𝑇

(𝑘) S
1
V (𝑘))

}

}

}

< 0

(31)

or

𝐸

{

{

{

2

𝑘𝑞

∑

𝑘=0

(𝑧
𝑇

(𝑘) S
1
V (𝑘))

}

}

}

> 𝐸

{

{

{

𝑘𝑞

∑

𝑘=0

(𝑧
𝑇

(𝑘) S
2
𝑧 (𝑘) + V𝑇 (𝑘) S

3
V (𝑘))

}

}

}

.

(32)

Since (32) is equivalent to (7) defined in Definition 1, the
closed-loop system is passive for all nonzero external distur-
bance; that is, V(𝑡) ̸=0.

Next, we will show that the closed-loop system (5) with
all admissible uncertainties is robustly asymptotically stable
in the mean square. By assuming V(𝑡) = 0, the following
inequality can be obtained from (30):

Π
𝑖𝑗
<

−1

2

{(C
1𝑖
𝑥 (𝑘) + C

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)))

𝑇

× S
2
(C

1𝑗
𝑥 (𝑘) + C

𝑑𝑗
𝑥 (𝑘 − 𝜏 (𝑘)))

+ (C
1𝑗
𝑥 (𝑘) + C

𝑑𝑗
𝑥 (𝑘 − 𝜏 (𝑘)))

𝑇

×S
2
(C

1𝑖
𝑥 (𝑘) + C

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘))) } .

(33)

Obviously, if S
2
≥ 0 is held, then Π

𝑖𝑗
< 0. Hence, from (26),

the 𝐸{Δ𝑉(𝑥(𝑘))} < 0 can be obtained due to Π
𝑖𝑗

< 0. In
this case, the closed-loop system is robustly asymptotically
stable in the mean square fromDefinition 2.The proof of this
theorem is completed.

In Theorem 5, condition (10) simultaneously includes
variables P

1
, P−1

1
, P

5
, and P−1

5
such that (10) is not a strictly
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LMI problem. For applying the LMI technique, let us intro-
duce two new variables, that is, X

1
and X

5
, such that

P
1
X

1
= I, P

5
X

5
= I, (34)

and use X
1
and X

5
to substitute P−1

1
and P−1

5
in condition

(10), respectively. Based on the cone complementarity tech-
nique [34], the following nonlinear minimization problem is
proposed instead of the original nonconvex condition (10):

Minimize tr (P
1
X

1
+ P

5
X

5
)

Subject to (10) (P−1

1
and P−1

5
are replaced

by X
1
and X

5
, resp.) ,

[

P
1

I
I X

1

] ≥ 0, [

P
5

I
I X

5

] ≥ 0.

(35)

Although the above minimization problem gives suboptimal
solutions for original problem (10), it is much easier to solve
(35) than the original nonconvex problem. In order to find the
feasible solutions of (35), the following algorithm is proposed.

Algorithm 6.
Step 1. Choose the time delay values 𝜏min, 𝜏max and per-
formance matrices S

1
, S

2
≥ 0, and S

3
. Set 𝑡 = 0, and

find the initial feasible solution set {P
1
,P

5
,X

1
,X

5
}
𝑡 to satisfy

condition (10) with P−1

1
≜ X

1
and P−1

5
≜ X

5
.

Step 2. Solve the following LMI problem:

Minimize tr (P
1
X𝑡

1
+ X

1
P𝑡

1
+ P

5
X𝑡

5
+ X

5
P𝑡

5
)

Subject to (10) (P−1

1
and P−1

5
are replaced

by X
1
and X

5
, resp.) ,

[

P
1

I
I X

1

] ≥ 0, [

P
5

I
I X

5

] ≥ 0.

(36)

Step 3. Substitute the feasible solutions obtained from Step 2

into (10). If condition (10) is satisfied, then go back to Step 2

after increasing the 𝜏max until (10) is not satisfied with spec-
ified 𝜏max. In this case, the feasible solutions are obtained and
the algorithm can be stopped. Otherwise, go to the next step.
Step 4. Set 𝑡 = 𝑡 + 1 and {P

1
,P

5
,X

1
,X

5
}
𝑡

= {P
1
,P

5
,X

1
,X

5
};

then go to Step 2.

Remark 7. In order to apply the LMI technique, Algorithm 6
is a useful tool to find the feasible solutions of conditions of
Theorem 5. In Algorithm 6, the number of desired unknown
variables in fuzzy controller design process is 2𝑟2 + 𝑟 + 8.
From Theorem 3 of [9], one can find that the number of
desired unknown variables is 72𝑟3 +7𝑟2 +11𝑟+ 6. Obviously,
the number of desired unknown variables of the proposed
method is less than that developed in [9].

Remark 8. In [9], the quadratic transformation inequality
“W + W + P ≥ WP−1W” is often applied for converting
the bilinearmatrix inequalities into linearmatrix inequalities.
During the transformation process, the conservatisms arise to

find the solutions of sufficient conditions of Theorems 2 and
3 in [9]. Oppositely, the similar bilinear matrix inequalities
are solved via the cone complement technique in this paper.
Applying the cone complement technique, the bilinearmatrix
inequalities are converted into nonstrictly linear matrix
inequalities that can be solved by a suboptimal algorithm, that
is, Algorithm 6.

Remark 9. In Theorem 5, the free-weighting matrix tech-
nique is applied to reduce the conservatism of considered
fuzzy controller design problems. By applying the free-
weighting matrix technique, more free matrices are added
to reduce the conservatism of derived sufficient conditions.
However, adding free matrices also increases the computa-
tional complexity. In order to balance the incompatible case,
it is recommended to use the free-weightingmatrix technique
as less as possible.

Theorem 5 provides the sufficient conditions (10) to
design state-feedback fuzzy controller for guaranteeing
robust asymptotical stability and passivity of closed-loop sys-
tem (5) in mean square. In the following, with the few modi-
fications, Theorem 5 can also be applied to find the output-
feedback gains for structuring the fuzzy controller. Based
on (1c), the output-feedback fuzzy controller can also be
structured via PDC technique such as

𝑢 (𝑘) =

𝑟

∑

𝑖=1

̂
ℎ
𝑖
(K

𝑖
𝑦 (𝑘)) . (37)

Introducing (37) into (1a), the closed-loop system can be
obtained as follows:

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1,𝑗=1,𝑝=1

̂
ℎ
𝑖

̂
ℎ
𝑗

̂
ℎ
𝑝

× {(g
𝑖𝑗𝑝
+H

𝑖
Δg

𝑅𝑖𝑗𝑝
+(g

𝑖𝑗𝑝
+H

𝑖
Δg

𝑅𝑖𝑗𝑝
) 𝛽 (𝑘))𝜉 (𝑘)}

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑟

∑

𝑝=1

̂
ℎ
𝑖

̂
ℎ
𝑗

̂
ℎ
𝑝

× {

1

3

(g
𝑖𝑗𝑝

+H
𝑖
Δg

𝑅𝑖𝑗𝑝
+ g

𝑗𝑝𝑖

+H
𝑗
Δg

𝑅𝑗𝑝𝑖
+ g

𝑝𝑖𝑗
+H

𝑝
Δg

𝑅𝑝𝑖𝑗

+ (g
𝑖𝑗𝑝

+H
𝑖
Δg

𝑅𝑖𝑗𝑝
+ g

𝑗𝑝𝑖
+H

𝑗
Δg

𝑅𝑗𝑝𝑖

+g
𝑝𝑖𝑗

+H
𝑝
Δg

𝑅𝑝𝑖𝑗
) 𝛽 (𝑘)) 𝜉 (𝑘) } ,

(38)

where g
𝑖𝑗𝑝

= [G
𝑖𝑗𝑝

A
𝑑𝑖

E
𝑖
0
1×3

], g
𝑖𝑗𝑝

= [G
𝑖𝑗𝑝

A
𝑑𝑖

E
𝑖
0
1×3

],
g
𝑅𝑖𝑗𝑝

= [R
𝑖𝑗𝑝

R
𝑑𝑖

R
𝐸𝑖

0
1×3

], g
𝑅𝑖𝑗𝑝

= [R
𝑖𝑗𝑝

R
𝑑𝑖

R
𝐸𝑖

0
1×3

],
G

𝑖𝑗𝑝
= A

𝑖
+ B

𝑖
K

𝑗
C

2𝑝
, G

𝑖𝑗𝑝
= A

𝑖
+ B

𝑖
K

𝑗
C

2𝑝
, R

𝑖𝑗𝑝
= R

𝑖
+

R
𝐵𝑖
K

𝑗
C

2𝑝
, and R

𝑖𝑗𝑝
= R

𝑖
+ R

𝐵𝑖
K

𝑗
C

2𝑝
.
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Theorem 10. Given performance parameters S
1
, S

2
≥ 0,

and S
3
and values 𝜏min > 0 and 𝜏max > 0, the closed-loop

system (38) is robustly asymptotically stable and passive in
the sense of mean square, if there exist positive definite matri-
ces P

1
> 0, P

2
> 0, P

3
> 0, P

4
> 0 and P

5
> 0, any matri-

ces N
1
, N

2
and N

3
, scalars 𝜀

𝑖𝑗𝑝
> 0 and 𝜀

𝑖𝑗𝑝
> 0, and output-

feedback gains K
𝑖
such that

Ω < 0 for 𝑖, 𝑗, 𝑝 ≤ 𝑟, (39)

where

Ω =

[

[

[

[

[

[

Ω
11
Ω

12
Ω

13
Ω

14
Ω

15

∗ Ω
22

0 0 0

∗ ∗ Ω
33

0 0

∗ ∗ ∗ Ω
44

0

∗ ∗ ∗ ∗ Ω
55

]

]

]

]

]

]

, (40)

Ω
11
= Φ +

1

3

(W
𝑖𝑖
+W

𝑗𝑗
+W

𝑖𝑗
) ,

Ω
12
=

1

3

[Ω
12𝑖𝑗𝑝
Ω

12𝑗𝑝𝑖
Ω

12𝑝𝑖𝑗
] ,

Ω
13
= √𝜏maxΩ12

,

Ω
14
=

1

3

[Ω
14𝑖𝑗𝑝
Ω

14𝑗𝑝𝑖
Ω

14𝑝𝑖𝑗
] , Ω

15
= √𝜏maxΩ14

,

Ω
22
= diag {Ω

22𝑖𝑗𝑝
,Ω

22𝑗𝑝𝑖
,Ω

22𝑝𝑖𝑗
} ,

Ω
33
= diag {Ω

33𝑖𝑗𝑝
,Ω

33𝑗𝑝𝑖
,Ω

33𝑝𝑖𝑗
} ,

Ω
44
= diag {Ω

44𝑖𝑗𝑝
,Ω

44𝑗𝑝𝑖
,Ω

44𝑝𝑖𝑗
} ,

Ω
55
= diag {Ω

55𝑖𝑗𝑝
,Ω

55𝑗𝑝𝑖
,Ω

55𝑝𝑖𝑗
} ,

(41)

Ω
12𝑖𝑗𝑝

= [f𝑇
𝑖𝑗𝑝

f𝑇
𝑅𝑖𝑗𝑝

] , Ω
14𝑖𝑗𝑝

= [f
𝑇

𝑖𝑗𝑝
f
𝑇

𝑅𝑖𝑗𝑝
] ,

Ω
33𝑖𝑗𝑝

= diag {𝜀
𝑖𝑗𝑝
H

𝑖
H𝑇

𝑖
− P−1

5
, −𝜀

𝑖𝑗𝑝
I} ,

Ω
22𝑖𝑗𝑝

= diag {𝜀
𝑖𝑗𝑝
H

𝑖
H𝑇

𝑖
− P−1

1
, −𝜀

𝑖𝑗𝑝
I} ,

Ω
44𝑖𝑗𝑝

= diag {𝜀
𝑖𝑗𝑝
H

𝑖
H𝑇

𝑖
− P−1

1
, −𝜀

𝑖𝑗𝑝
I} ,

Ω
55𝑖𝑗𝑝

= diag {𝜀
𝑖𝑗𝑝
H

𝑖
H𝑇

𝑖
− P−1

5
, −𝜀

𝑖𝑗𝑝
I} .

(42)

With the same Lyapunov function (13), the proof of
Theorem 10 can be obtained with similar procedure of proof
ofTheorem 5.Hence, the proof ofTheorem 10 is omitted here.
Although the feasible solutions condition (39) ofTheorem 10
cannot be directly obtained by using LMI technique, one
can also apply Algorithm 6 by substituting sufficient con-
dition (39) for (10). And then, the feasible solutions can be
obtained for satisfying condition (39) and hence themodified
algorithm is omitted here.

In the following section, the two numerical examples are
provided to apply the proposed fuzzy controller design tech-
nique in this paper.

4. Numerical Examples

In this section, two numerical examples apply the proposed
fuzzy controller design method in this paper. In the first
example, the less conservatism of stability criteria in this
paper can be shown and demonstrated. On the other hand,
in Example 2, both of Theorems 5 and 10 are applied
to design the state-feedback fuzzy controller and output-
feedback fuzzy controller, respectively.

Example 1. Referring to [9], the following T-S fuzzy model
without multiplicative noise term is proposed to apply the
proposed design technique inTheorem 5:

𝑥 (𝑘 + 1) =

2

∑

𝑖=1

̂
ℎ
𝑖
{(A

𝑖
+ ΔA

𝑖
) 𝑥 (𝑘)

+ (A
𝑑𝑖
+ ΔA

𝑑𝑖
) 𝑥 (𝑘 − 𝜏 (𝑘))

+ (B
𝑖
+ ΔB

𝑖
) 𝑢 (𝑘) + (E

𝑖
+ ΔE

𝑖
) V (𝑘)} ,

(43a)

𝑧 (𝑘) =

2

∑

𝑖=1

̂
ℎ
𝑖
{C

1𝑖
𝑥 (𝑘) + C

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)) +D

𝑖
V (𝑘)} ,

(43b)

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = 0, −1, . . . , −𝜏 (𝑘) , (43c)

where A
1
= [

0.5 0.3

0.1 1
], A

2
= [

−0.5 0.3

0.1 1
], A

𝑑1
= [

−0.05 0.1

0 0.05
],

B
1
= [

1 0

0 0.5
], E

1
= [

−0.5

0
], A

𝑑2
= −A

𝑑1
, B

2
= B

1
, E

2
=

−E
1
, C

11
= [−0.05 0], C

12
= −C

11
, H

𝑖
= [

−0.05 0.1

0.1 0
], R

𝑖
=

[
0 0.2

0 0
], R

𝑑𝑖
= [

0 0

0 0.1
], R

𝐵𝑖
= R

𝐸𝑖
= 0, C

𝑑𝑖
= [0 0.2],

and D
𝑖
= 0.1 for 𝑖 = 1, 2.

And the membership function of (43a), (43b), and (43c)
is chosen as ̂ℎ

1
= (1 − 2𝑥

1
(𝑘))/2 and ̂

ℎ
2

= 1 −
̂
ℎ
1
. For

comparing the proposed method with that developed in
[9], the passivity performance is chosen as 𝐻

∞
performance

constraint by setting S
1
≜ 0, S

2
≜ I, and S

3
≜ −𝛾

2I. For
finding maximum allowable 𝜏max, let us study different cases
with 𝜏min = 2, 𝜏min = 5, and 𝜏min = 10. FromTable 1, one can
find that the allowed upper bound of delay 𝜏max controlled
by the proposed design method is bigger than that of [9]. It
means that the proposed design method can provide bigger
maximum delay bound than the approach developed in [9].
Besides, the smaller 𝐻

∞
performance level 𝛾 can be found

by using the proposed designmethod. It should be noted that
the stability criterion of this paper possesses less conservatism
than that proposed in [9].

Next, we apply the proposed design techniques to find
both of state-feedback fuzzy controller and output-feedback
fuzzy controller for nonlinear delay Hénon system.

Example 2. In this example, the nonlinear delay Hénon sys-
tem is proposed to apply the proposed fuzzy controller design
techniques. Referring to [10], the nonlinear delay Hénon sys-
tem with external disturbance can be proposed as follows:

𝑥
1
(𝑘 + 1) = (0.8𝑥

1
(𝑘) + 0.2𝑥

1
(𝑘 − 𝜏 (𝑘)))

2

+ 0.3𝑥
2
(𝑘) + 1.4 + �̃� (𝑘) ,

(44a)
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Table 1: Comparisons between proposed method and [9].

𝜏min Design method 𝜏max = 12 𝜏max = 13 𝜏max = 14 𝜏max = 15 𝜏max = 16

10 𝛾 in [9] 0.3408 0.4085 0.4897 0.5909 Infeasible
𝛾 in Theorem 5 0.3351 0.338 0.3481 0.3515 0.3595

5 𝛾 in [9] 0.4882 0.806 0.6963 0.8468 Infeasible
𝛾 in Theorem 5 0.3691 0.3712 0.383 0.394 0.4012

2 𝛾 in [9] 0.5818 0.6932 0.8369 Infeasible Infeasible
𝛾 in Theorem 5 0.4124 0.4087 0.5124 0.598 0.612

𝑥
2
(𝑘 + 1) = 0.8𝑥

1
(𝑘) + 0.2𝑥

1
(𝑘 − 𝜏 (𝑘)) + 0.1V (𝑘) ,

(44b)

𝑧 (𝑘) = 0.8𝑥
1
(𝑘) + 0.2𝑥

1
(𝑘 − 𝜏 (𝑘)) + V, (44c)

𝑦 (𝑘) = 𝑥
1
, (44d)

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = 0, −1, . . . , −𝜏 (𝑘) , (44e)

where V(𝑘) is chosen as a zero-mean white noise with vari-
ance 0.5. Based on the fuzzy modeling in [10], the considered
discrete uncertain stochastic T-S fuzzymodel of (44a), (44b),
(44c), (44d), and (44e) can be obtained by adding the
uncertainties and stochastic behaviors

𝑥 (𝑘 + 1)

=

2

∑

𝑖=1

̂
ℎ
𝑖
{ (A

𝑖
+ ΔA

𝑖
) 𝑥 (𝑘)

+ (A
𝑑𝑖
+ ΔA

𝑑𝑖
) 𝑥 (𝑘 − 𝜏 (𝑘))

+ (B
𝑖
+ ΔB

𝑖
) 𝑢 (𝑘) + E

𝑖
V (𝑘)

+ (A
𝑖
𝑥 (𝑘) + A

𝑑𝑖
𝑥 (𝑘 − 𝜏 (𝑘)) + B

𝑖
𝑢 (𝑘)) 𝛽 (𝑘)} ,

(45a)

𝑧 (𝑘) =

2

∑

𝑖=1

̂
ℎ
𝑖
{C

1𝑖
𝑥 (𝑘) +D

𝑖
V (𝑘)} , (45b)

𝑦 (𝑘) =

2

∑

𝑖=1

̂
ℎ
𝑖
{C

2𝑖
𝑥 (𝑘)} , (45c)

where 𝑢(𝑘) = 1.4 + �̃�(𝑘), premise variable 𝜃(𝑘) = 0.8𝑥
1
(𝑘)+

0.2𝑥
1
(𝑘 − 𝜏(𝑘)), membership function ̂

ℎ
1
= (1/2)(1 − (𝜃(𝑘)/

2)) and ̂
ℎ
2
= 1 −

̂
ℎ
1
, A

1
= [

1.6 0.3

0.8 0
], A

2
= [

−1.8 0.3

0.8 0
], A

𝑑1
=

[
0.4 0

0.2 0
], A

𝑑1
= [

−0.4 0

0.2 0
], B

𝑖
= [

1

0
], E

𝑖
= [

0

0.1
], C

1𝑖
= [0.8 0],

C
𝑑𝑖

= [0.2 0], C
2𝑖

= [1 0], D
𝑖
= 1, A

𝑖
= 0.1A

𝑖
, A

𝑑𝑖
=

0.1A
𝑑𝑖
, B

𝑖
= 0.1B

𝑖
, E

𝑖
= 0 and [

ΔA𝑖 ΔA𝑑𝑖 ΔB𝑖 ΔE𝑖
ΔA𝑖 ΔA𝑑𝑖 ΔB𝑖 ΔE𝑖

] =

[
H𝑖 0
0 0

] [
sin(𝑘) 0

0 0
] [

R𝑖 R𝑑𝑖 R𝐵𝑖 0
0 0 0 0

] with H
𝑖
= 0.1 × I, R

𝑖
= 0.01A

𝑖
,

and R
𝑑𝑖
= 0.01A

𝑑𝑖
and R

𝐵𝑖
= 0.01B

𝑖
, for 𝑖 = 1, 2.

In the following, both design methods inTheorems 5 and
10 will be applied to design the PDC-based fuzzy controller in
the terms of (4) and (37), respectively, such that closed-loop
system is robustly asymptotically stable and passive in mean
square.

Case A: State-Feedback.ThroughTheorem 5 andAlgorithm 6
of this paper, the following feasible solutions can be found
with the range of time-varying delay between 𝜏max =

5 and 𝜏min = 1 and chosen passivity (7) with S
1
≜ I, S

2
≜

0.8, and S
3
≜ 0.8:

P
1
= [

30.3351 −0.3962

−0.3962 0.9253
] , P

2
= [

0.008 0.0001

0.0001 0.0029
] ,

P
3
= [

0.008 0.0001

0.0001 0.0029
] , P

4
= [

5.6071 −0.0167

−0.0167 0.0003
] ,

P
5
= [

0.2488 0.0858

0.0858 0.1773
] ,

N
1
= [

−3.2735 −0.011

−0.0111 −3.3647
] × 10

3

,

N
2
= [

3.2735 0.0111

0.0111 3.3647
] × 10

3

,

N
3
= [

3.2735 0.0111

0.0111 3.3647
] × 10

3

,

𝜀
11
= 0.0127, 𝜀

22
= 0.0246,

F
1
= [−1.5878 −0.2669] , F

2
= [1.6623 −0.306] .

(46)

From PDC concept, the fuzzy controller can be established
with sublinear state-feedback gains in (46) and the member-
ship function, such as

𝑢 (𝑘) =

3

∑

𝑖=1

̂
ℎ
𝑖
(F

𝑖
𝑥 (𝑘)) . (47)

With (47), the responses of system (44a), (44b), (44c),
(44d), and (44e) by adding the uncertainties and stochastic
behaviors are stated in Figure 1 with initial condition 𝑥(0) =

[1 0]

𝑇. And the time delay effect is chosen by random block
in Simulink of MATLAB and bounded as 1 ≤ 𝜏(𝑘) ≤ 5 in
this case. Based on the simulation results in this case, the
attenuation performance can be checked by the following
equation:

0.8𝐸 {∑

𝑘𝑞

𝑘=0
𝑧
𝑇

(𝑘) 𝑧 (𝑘) + ∑

𝑘𝑞

𝑘=0
V𝑇 (𝑘) V (𝑘)}

𝐸 {2∑

𝑘𝑞

𝑘=0
𝑧
𝑇
(𝑘) V (𝑘)}

= 0.8637.

(48)
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Figure 1: State responses driven by fuzzy controller (47): Case A of
Example 2.

Obviously, because the radio value of (48) is smaller than
one, the chosen passivity inequality can be satisfied with the
simulation results of this case. Hence, from (48) and Figure 1,
the robust asymptotical stability and passivity of system (45a),
(45b), and (45c) by adding the uncertainties and stochastic
behaviors can be achieved by design fuzzy controller (47).
Next, the case of output-feedback controller design for the
same considered system will be shown.

Case B: Output-Feedback. Considering the system (45a),
(45b), and (45c) with 𝜏max = 2 and 𝜏min = 1, the following
feasible solutions are found to satisfying the Theorem 10 by
using modified Algorithm 6:

P
1
= [

6.8827 −1.2065

−1.2065 2.0775
] ,

P
2
= [

0.2406 −0.0869

−0.0869 0.1647
] × 10

−3

,

P
3
= [

0.2406 −0.0869

−0.0869 0.1647
] × 10

−3

,

P
4
= [

1.9831 −0.3483

−0.3483 0.0614
] , P

5
= [

1.4313 0.7436

0.7436 0.6632
] ,

N
1
= [

−3.2772 1.1479

1.016 −4.2002
] × 10

3

,

N
2
= [

3.2776 −1.1483

−1.0161 4.2003
] × 10

3

,

N
3
= [

3.2777 −1.1483

−1.0156 4.1998
] × 10

3

,

0 2 4 6 8 10
Time (s)

x1(k)

x2(k)
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0.4
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0

−0.2

Figure 2: State responses driven by fuzzy controller (50): Case B of
Example 2.

𝜀
11
= 0.0302, 𝜀

22
= 0.0573,

K
1
= −2.0142, K

2
= 2.4929.

(49)

With the sublinear output-feedback gains, the PDC-based
fuzzy controller can be obtained as follows:

𝑢 (𝑘) =

𝑟

∑

𝑖=1

̂
ℎ
𝑖
(K

𝑖
𝑦 (𝑘)) . (50)

In Figure 2, the responses of considered system with fuzzy
controller (50) are shown with initial condition 𝑥(0) =

[1 0]

𝑇 and random time-varying delay which bounded
as 1 ≤ 𝜏(𝑘) ≤ 2. And the attenuation performance of the
system can be checked by the following equation:

0.8𝐸 {∑

𝑘𝑞

𝑘=0
𝑧
𝑇

(𝑘) 𝑧 (𝑘) + ∑

𝑘𝑞

𝑘=0
V𝑇 (𝑘) V (𝑘)}

𝐸 {2∑

𝑘𝑞

𝑘=0
𝑧
𝑇
(𝑘) V (𝑘)}

= 0.9383. (51)

Since the value of (51) is smaller than one, the passivity of
system can be achieved by the fuzzy controller (50). From
(51) and Figure 2, (45a), (45b), and (45c) with design fuzzy
controller are robustly asymptotically stable and passive in
the mean square.

5. Conclusion

The fuzzy controller design problems of discrete uncertain T-
S fuzzy systems with interval time-varying delay and multi-
plicative noise were discussed and investigated in this paper.
With the free-weighting matrices technique and discrete
type Jensen inequality, the less conservative stability criterion
was derived by applying Lyapunov function. Although the
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derived conditions were not strictly convex problems, the
cone complementarity method provided a suboptimal tech-
nique to solve it with the LMI technique. Through the pro-
posed design method, the PDC-based fuzzy controller can
be established by both of state-feedback and output-feedback
schemes for guaranteeing the robust asymptotical stability
and passivity constraints. Finally, two numerical examples
have been provided to demonstrate the effectiveness and use-
fulness of the proposed design methods.
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Theproblemof robust 𝑙
2
-𝑙

∞
filtering for discrete-time systemwith interval time-varying delay and uncertainty is investigated, where

the time delay and uncertainty considered are varying in a given interval and norm-bounded, respectively. The filtering problem
based on the 𝑙

2
-𝑙

∞
performance is to design a filter such that the filtering error system is asymptotically stable with minimizing

the peak value of the estimation error for all possible bounded energy disturbances. Firstly, sufficient 𝑙
2
-𝑙

∞
performance analysis

condition is established in terms of linearmatrix inequalities (LMIs) for discrete-time delay systems by utilizing reciprocally convex
approach. Then a less conservative result is obtained by introducing some variables to decouple the Lyapunov matrices and the
filtering error system matrices. Moreover, the robust 𝑙

2
-𝑙

∞
filter is designed for systems with time-varying delay and uncertainty.

Finally, a numerical example is given to demonstrate the effectiveness of the filter design method.

1. Introduction

The uncertainty is unavoidable in practical engineering due
to the parameter drafting, modeling error, and component
aging.The controllers or filtering obtained based on nominal
systems cannot be employed to get the desired performance.
Therefore, more and more researchers are devoted to robust
control or robust filtering problems; see, for instance, [1–4].
On the other hand, time-delay often exists in the practical
engineering systems and is the main reason of the instability
and poor performance of the systems. Time-delay systems
have been widely studied during the past two decades [5–7].
In order to get less conservative results, more and more
approaches have been proposed to develop delay-dependent
conditions for discrete-time system with time-varying delay.
For examples, Jensen’s inequality is proposed in [8]; delay-
partitioning method is utilized in [9]; improved results are
obtained by using convex combination approach in [10].

In some practical applications, the peak value of the esti-
mation error is required to be within a certain range and

the aim of the 𝑙
2
-𝑙

∞
(energy-to-peak) filtering is to minimize

the peak values of the filtering error for any bounded
energy disturbance, which has received many attention. By
using a parameter-dependent approach, the robust energy-
to-peak filtering problem is considered in [11]. An improved
robust energy-to-peak filtering condition is proposed by
increasing the flexible dimensions in the solution space in
[12]. The robust 𝐿

2
-𝐿

∞
filtering for stochastic systems and

the exponential 𝐿
2
-𝐿

∞
filtering for Markovian jump sys-

tems are investigated in [13, 14], respectively. Compared
with the corresponding continuous-time systems, discrete-
time systems with time-varying delay have more stronger
application background [15]. For discrete-time Markovian
jumping systems, the reduced-order filter is designed in [16]
such that the filtering error system satisfies an energy-to-peak
performance. When time-delay appears, the robust energy-
to-peak filtering problem for networked systems is tackled in
[17]. For discrete-time switched systems with time-varying
delay, an improved robust energy-to-peak filtering design
method is proposed in [18].
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In this paper we consider the problem of robust 𝑙
2
-𝑙

∞
fil-

tering for uncertain discrete-time systems with time-varying
delay. The filter is designed by employing the reciprocally
convex approach proposed in [19] such that the filtering error
system is asymptotically stable with an 𝑙

2
-𝑙

∞
performance.

Firstly, a sufficient condition of the 𝑙
2
-𝑙

∞
performance anal-

ysis for nominal systems is obtained in terms of LMIs for
systems with time-varying delay and uncertainty. Based on
this criterion, by introducing some slack matrices, a less con-
servative result is obtained. Moreover, the desired filter for
nominal systems with time-varying delay is obtained by solv-
ing a set of LMIs.Then the result is extended to the uncertain
systems. A numerical example is given to illustrate the
effectiveness of the presented results.
Notation. The notation used throughout the paper is given
as follows. R𝑛 is the 𝑛-dimensional Euclidean space and
𝑃 > 0 (≥0) denotes that matrix 𝑃 is real symmetric and
positive definite (semidefinite); 𝐼 and 0 present the iden-
tity matrix and zero matrix with compatible dimensions,
respectively; ⋆ means the symmetric terms in a symmetric
matrix and sym(𝐴) stands for 𝐴 + 𝐴

𝑇; 𝑙
2
means the space

of square summable infinite vector sequences; for any real
function 𝑥 ∈ 𝑙

2
, we define ‖𝑥‖

∞
= sup

𝑘
√𝑥

𝑇
(𝑘)𝑥(𝑘) and

‖𝑥‖
2

= √∑
∞

𝑘=0
𝑥

𝑇
(𝑘)𝑥(𝑘); ‖ ⋅ ‖ refer to the Euclidean vector

norm. Matrices are assumed to be compatible for algebraic
operations if their dimensions are not explicitly stated.

2. Problem Statement

Consider a class of uncertain discrete-time systems with
time-varying delay described by

𝑥 (𝑘 + 1) = 𝐴 (𝜎) 𝑥 (𝑘) + 𝐴
𝑑
(𝜎) 𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵 (𝜎)𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶 (𝜎) 𝑥 (𝑘) + 𝐶
𝑑
(𝜎) 𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷 (𝜎)𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐿 (𝜎) 𝑥 (𝑘) + 𝐿
𝑑
(𝜎) 𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐺 (𝜎)𝑤 (𝑘) ,

𝑥 (𝑘) = 𝜙 (𝑘) , 𝑘 = −𝑑
2
, −𝑑

2
+ 1, . . . , 0,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector; 𝑦(𝑘) ∈ R𝑚 is the
measured output; 𝑧(𝑘) ∈ R𝑝 represents the signal to be
estimated; 𝑤(𝑘) ∈ R𝑙 is assumed to be an arbitrary noise
belonging to 𝑙

2
and 𝜙(𝑘) is a given initial condition sequence;

𝑑(𝑘) is a time-varying delay satisfying

1 ≤ 𝑑
1
≤ 𝑑 (𝑘) ≤ 𝑑

2
< ∞, 𝑘 = 1, 2, . . . (2)

𝐴(𝜎), 𝐴
𝑑
(𝜎), 𝐵(𝜎), 𝐶(𝜎), 𝐶

𝑑
(𝜎), 𝐷(𝜎), 𝐿(𝜎), 𝐿

𝑑
(𝜎), and 𝐺(𝜎)

are system matrices and satisfy

𝐴 (𝜎) = 𝐴 + Δ𝐴 (𝜎) , 𝐴
𝑑
(𝜎) = 𝐴

𝑑
+ Δ𝐴

𝑑
(𝜎) ,

𝐵 (𝜎) = 𝐵 + Δ𝐵 (𝜎) ,

𝐶 (𝜎) = 𝐶 + Δ𝐶 (𝜎) , 𝐶
𝑑
(𝜎) = 𝐶

𝑑
+ Δ𝐶

𝑑
(𝜎) ,

𝐷 (𝜎) = 𝐷 + Δ𝐷 (𝜎) ,

𝐿 (𝜎) = 𝐿 + Δ𝐿 (𝜎) , 𝐿
𝑑
(𝜎) = 𝐿

𝑑
+ Δ𝐿

𝑑
(𝜎) ,

𝐺 (𝜎) = 𝐺 + Δ𝐺 (𝜎) .

(3)

Matrices Δ𝐴(𝜎), Δ𝐴
𝑑
(𝜎), Δ𝐵(𝜎), Δ𝐶(𝜎), Δ𝐶

𝑑
(𝜎), Δ𝐷(𝜎),

Δ𝐿(𝜎), Δ𝐿
𝑑
(𝜎), and Δ𝐺(𝜎) are unknown time-invariant

matrix representing the uncertainty of the system satisfying
the following conditions:

[Δ𝐴 (𝜎) Δ𝐴
𝑑
(𝜎) Δ𝐵 (𝜎)] = 𝑀

1
Δ

1
(𝜎) [𝑁

𝐴
𝑁

𝐴𝑑
𝑁

𝐵
] ,

Δ
𝑇

1
(𝜎) Δ

1
(𝜎) ≤ 𝐼,

[Δ𝐶 (𝜎) Δ𝐶
𝑑
(𝜎) Δ𝐷 (𝜎)] = 𝑀

2
Δ

2
(𝜎) [𝑁

𝐶
𝑁

𝐶𝑑
𝑁

𝐷
] ,

Δ
𝑇

2
(𝜎) Δ

2
(𝜎) ≤ 𝐼,

[Δ𝐿 (𝜎) Δ𝐿
𝑑
(𝜎) Δ𝐺 (𝜎)] = 𝑀

3
Δ

3
(𝜎) [𝑁

𝐿
𝑁

𝐿𝑑
𝑁

𝐺
] ,

Δ
𝑇

3
(𝜎) Δ

3
(𝜎) ≤ 𝐼,

(4)

where 𝜎 ∈ Θ andΘ is a compact set inR. The system in (1) is
assumed to be asymptotically stable. Our purpose is to design
a full order linear filter for the estimate of 𝑧(𝑘):

𝑥 (𝑘 + 1) = 𝐴
𝑓
𝑥 (𝑘) + 𝐵

𝑓
𝑦 (𝑘) , 𝑥 (0) = 0,

�̂� (𝑘) = 𝐶
𝑓
𝑥 (𝑘) + 𝐷

𝑓
𝑦 (𝑘) ,

(5)

where 𝐴
𝑓
, 𝐵

𝑓
, 𝐶

𝑓
, and 𝐷

𝑓
are filter gains to be determined.

Let the augmented state vector 𝑥(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘)]

𝑇

and �̃�(𝑘) = 𝑧(𝑘) − �̂�(𝑘). Then the filtering error system is
described as

𝑥 (𝑘 + 1) = 𝐴 (𝜎) 𝑥 (𝑘) + 𝐴
𝑑
(𝜎)Φ𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵 (𝜎)𝑤 (𝑘)

�̃� (𝑘) = �̃� (𝜎) 𝑥 (𝑘) + �̃�
𝑑
(𝜎)Φ𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐺 (𝜎)𝑤 (𝑘)

𝑥 (𝑘) = [𝜙
𝑇

(𝑘) 0]

𝑇

, 𝑘 = −𝑑
2
, −𝑑

2
+ 1, . . . , 0,

(6)

where Φ = [𝐼 0] and

𝐴 (𝜎) = [

𝐴 (𝜎) 0

𝐵
𝑓
𝐶 (𝜎) 𝐴

𝑓

] , 𝐴
𝑑
(𝜎) = [

𝐴
𝑑
(𝜎)

𝐵
𝑓
𝐶

𝑑
(𝜎)

] ,

𝐵 = [

𝐵 (𝜎)

𝐵
𝑓
𝐷(𝜎)

] ,

�̃� (𝑘) = [𝐿 (𝜎) − 𝐷
𝑓
𝐶 (𝜎) −𝐶

𝑓
] ,

�̃�
𝑑
(𝜎) = 𝐿

𝑑
(𝜎) − 𝐷

𝑓
𝐶

𝑑
(𝜎) , 𝐺 (𝜎) = 𝐺 (𝜎) − 𝐷

𝑓
𝐷 (𝜎) .

(7)
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The nominal system of (6) is system (6) without uncer-
tainty; that is, Δ𝐴(𝜎) = 0, Δ𝐴

𝑑
(𝜎) = 0, Δ𝐵(𝜎) = 0, Δ𝐶(𝜎) =

0, Δ𝐶
𝑑
(𝜎) = 0, Δ𝐷(𝜎) = 0, Δ𝐿(𝜎) = 0, Δ𝐿

𝑑
(𝜎) = 0, and

Δ𝐺(𝜎) = 0.
The following lemmas and definition will be utilized in

the derivation of the main results.

Lemma 1 (see [20]). For any matrices 𝑈 and 𝑉 > 0, the
following inequality holds:

𝑈𝑉
−1

𝑈
𝑇

≥ 𝑈 + 𝑈
𝑇

− 𝑉. (8)

Lemma 2 (see [19]). Let 𝑓
1
, 𝑓

2
, . . . , 𝑓

𝑁
: R𝑚

→ R have pos-
itive values in a subset 𝐷 of R𝑚. Then, the reciprocally convex
combination of 𝑓

𝑖
over 𝐷 satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑

𝑖
𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑘) = ∑

𝑖

𝑓
𝑖
(𝑘) + max

𝑔𝑖,𝑗(𝑘)

∑

𝑖 ̸=𝑗

𝑔
𝑖,𝑗

(𝑘) (9)

subject to

{𝑔
𝑖,𝑗

: R
𝑚

→ R, 𝑔
𝑗,𝑖

(𝑘) = 𝑔
𝑖,𝑗

(𝑘) , [

𝑓
𝑖
(𝑘) 𝑔

𝑖,𝑗
(𝑘)

𝑔
𝑗,𝑖

(𝑘) 𝑓
𝑗
(𝑘)

] ≥ 0} .

(10)

Lemma 3. For any constant matrix 𝑀 > 0, integers 𝑎 ≤ 𝑏,
vector function 𝑤: {𝑎, 𝑎 + 1, . . . , 𝑏} → R𝑛, then

− (𝑏 − 𝑎 + 1)

𝑏

∑

𝑖=𝑎

𝑤
𝑇

(𝑖)𝑀𝑤 (𝑖) ≤ −(

𝑏

∑

𝑖=𝑎

𝑤(𝑖))

𝑇

𝑀(

𝑏

∑

𝑖=𝑎

𝑤 (𝑖)) .

(11)

Lemma 4. Given a symmetric matrix 𝑄 and matrices 𝐻, 𝐸
with appropriate dimensions, then

𝑄 + sym (𝐻𝐹𝐸) < 0, (12)

for all 𝐹𝑇

𝐹 ≤ 𝐼, if and only if there exists a scalar 𝜀 > 0 such
that

𝑄 + 𝜀𝐸
𝑇

𝐸 + 𝜀
−1

𝐻𝐻
𝑇

< 0. (13)

Definition 5. Given a scalar 𝛾 > 0, the filtering error �̃�(𝑘) in
(6) is said to satisfy the 𝑙

2
-𝑙

∞
disturbance attenuation level 𝛾

under zero initial state, and the following condition is sat-
isfied:

‖�̃�‖
∞

< 𝛾‖𝑤‖
2
. (14)

Our aim is to design a filter in the form of (5) such that
the filtering error system in (6) is asymptotically stable and
satisfies the 𝑙

2
-𝑙

∞
performance defined in Definition 5.

3. Main Results

In this section, the sufficient 𝑙
2
-𝑙

∞
performance analysis

condition is first derived for nominal filtering error system
of (6). Then an equivalent result is obtained by introducing
three slack matrices. Based on these results, a desired filter is
designed to render the nominal system of (6) asymptotically
stable with an 𝑙

2
-𝑙

∞
performance.Then the result is extended

to the uncertain system in (6).

3.1. 𝑙
2
-𝑙

∞
Performance Analysis. In this subsection, we first

give the result of 𝑙
2
-𝑙

∞
performance analysis for nominal

system of (6).

Theorem 6. Given a scalar 𝛾 > 0, the nominal system of (6)
is asymptotically stable with an 𝑙

2
-𝑙

∞
performance if there exist

matrices 𝑃 > 0, 𝑄
3
> 0, 𝑄

𝑖
> 0, 𝑖 = 1, 2, 𝑆

𝑗
> 0, 𝑗 = 1, 2,

and 𝑀 such that the following LMIs hold:

[

𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0, (15)

[

[

[

[

[

[

𝑃 0 0 �̃�
𝑇

⋆ 𝑄
3

0 �̃�
𝑇

𝑑

⋆ ⋆ 𝐼 𝐺
𝑇

⋆ ⋆ ⋆ 𝛾
2

𝐼

]

]

]

]

]

]

> 0, (16)

Π̃ =

[

[

[

[

[

[

[

[

[

[

[

[

[

Π̃
11

Φ
𝑇

𝑆
1

0 0 0 Π̃
16
𝑆
1

Π̃
17
𝑆
2

𝐴
𝑇

𝑃

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0 0 0 0

⋆ ⋆ Π̃
33

Π̃
34

0 𝑑
1
𝐴

𝑇

𝑑
𝑆
1

̃
𝑑𝐴

𝑇

𝑑
𝑆
2

𝐴
𝑇

𝑑
𝑃

⋆ ⋆ ⋆ Π̃
44

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 𝑑
1
𝐵

𝑇

𝑆
1

̃
𝑑𝐵

𝑇

𝑆
2

𝐵
𝑇

𝑃

⋆ ⋆ ⋆ ⋆ ⋆ −𝑆
1

0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑆
2

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑃

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(17)

where

Π̃
11

= −𝑃 + 𝑄
1
+ 𝑄

2
+ (

̃
𝑑 + 1)Φ

𝑇

𝑄
3
Φ − Φ

𝑇

𝑆
1
Φ,

Π̃
22

= −𝑆
2
− 𝑄

1
− 𝑆

1
, Π̃

23
= 𝑆

2
− 𝑀

𝑇

,

Π̃
33

= −𝑄
3
− 2𝑆

2
+ sym(𝑀) , Π̃

34
= 𝑆

2
− 𝑀

𝑇

,

Π̃
44

= −𝑄
2
− 𝑆

2
,

Π̃
16

= 𝑑
1
Φ

𝑇

(𝐴 − 𝐼)
𝑇

, Π̃
17

=
̃
𝑑Φ

𝑇

(𝐴 − 𝐼)
𝑇

,

𝑄
𝑖
= diag {𝑄

𝑖
, 𝑄

𝑖
} , 𝑖 = 1, 2,

̃
𝑑 = 𝑑

2
− 𝑑

1
.

(18)

Proof. First, the asymptotic stability of the nominal system
of (6) is proved. We denote 𝜂(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘) and the
following Lyapunov functional is chosen:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) + 𝑉

5
(𝑘) , (19)

where

𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘) 𝑃𝑥 (𝑘) ,

𝑉
2
(𝑘) =

2

∑

𝑗=1

𝑘−1

∑

𝑖=𝑘−𝑑𝑗

𝑥
𝑇

(𝑖) 𝑄
𝑖
𝑥 (𝑖) ,
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𝑉
3
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

+

−𝑑1

∑

𝑗=−𝑑2+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖) ,

𝑉
4
(𝑘) =

−1

∑

𝑗=−𝑑1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑑
1
𝜂
𝑇

(𝑖) Φ
𝑇

𝑆
1
Φ𝜂 (𝑖) ,

𝑉
5
(𝑘) =

−𝑑1−1

∑

𝑗=−𝑑2

𝑘−1

∑

𝑖=𝑘+𝑗

̃
𝑑𝜂

𝑇

(𝑖) Φ
𝑇

𝑆
2
Φ𝜂 (𝑖) .

(20)

Calculating the forward difference of𝑉(𝑘) along the trajecto-
ries of filtering error system (6) with 𝑤(𝑘) = 0 yields

Δ𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘)

= (𝐴𝑥(𝑘) + 𝐴
𝑑
Φ𝑥(𝑘 − 𝑑(𝑘)))

𝑇

× 𝑃 (𝐴𝑥 (𝑘) + 𝐴
𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

− 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘) ,

(21)

Δ𝑉
2
(𝑘) =

2

∑

𝑗=1

𝑥
𝑇

(𝑘) 𝑄
𝑗
𝑥 (𝑘)

−

2

∑

𝑗=1

𝑥 (𝑘 − 𝑑
𝑗
)𝑄

𝑗
𝑥 (𝑘 − 𝑑

𝑗
)

≤

2

∑

𝑗=1

𝑥
𝑇

(𝑘) 𝑄
𝑗
𝑥 (𝑘)

−

2

∑

𝑗=1

𝑥 (𝑘 − 𝑑
𝑗
)Φ

𝑇

𝑄
𝑗
Φ𝑥 (𝑘 − 𝑑

𝑗
) ,

(22)

Δ𝑉
3
(𝑘) = (

̃
𝑑 + 1) 𝑥

𝑇

(𝑘)Φ
𝑇

𝑄
3
Φ𝑥 (𝑘)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑(𝑘+1)

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

−

𝑘−1

∑

𝑖=𝑘+1−𝑑(𝑘)

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

− 𝑥
𝑇

(𝑘 − 𝑑 (𝑘))Φ
𝑇

𝑄
3
Φ𝑥 (𝑘 − 𝑑 (𝑘))

−

𝑘−𝑑1

∑

𝑖=𝑘−𝑑2+1

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

= (
̃
𝑑 + 1) 𝑥

𝑇

(𝑘)Φ
𝑇

𝑄
3
Φ𝑥 (𝑘)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑1

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

+

𝑘−𝑑1

∑

𝑖=𝑘+1−𝑑(𝑘+1)

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

− 𝑥
𝑇

(𝑘 − 𝑑 (𝑘))Φ
𝑇

𝑄
3
Φ𝑥 (𝑘 − 𝑑 (𝑘))

−

𝑘−1

∑

𝑖=𝑘+1−𝑑(𝑘)

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

−

𝑘−𝑑1

∑

𝑖=𝑘−𝑑2+1

𝑥
𝑇

(𝑖) Φ
𝑇

𝑄
3
Φ𝑥 (𝑖)

≤ (
̃
𝑑 + 1) 𝑥

𝑇

(𝑘)Φ
𝑇

𝑄
3
Φ𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝑑 (𝑘))Φ
𝑇

𝑄
3
Φ𝑥 (𝑘 − 𝑑 (𝑘)) .

(23)

By using Lemma 3, we have

Δ𝑉
4
(𝑘) = 𝑑

2

1
𝜂
𝑇

(𝑘)Φ
𝑇

𝑆
1
Φ𝜂 (𝑘)

− 𝑑
1

𝑘−1

∑

𝑖=𝑘−𝑑1

𝜂
𝑇

(𝑖) Φ
𝑇

𝑆
1
Φ𝜂 (𝑖)

≤ 𝑑
2

1
((𝐴 − 𝐼)Φ𝑥 (𝑘) + 𝐴

𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

𝑇

× 𝑆
1
((𝐴 − 𝐼)Φ𝑥 (𝑘) + 𝐴

𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

− (Φ𝑥 (𝑘) − Φ𝑥 (𝑘 − 𝑑
1
))

𝑇

× 𝑆
1
(Φ𝑥 (𝑘) − Φ𝑥 (𝑘 − 𝑑

1
)) .

(24)

Since [
𝑆2 𝑀

⋆ 𝑆2

] ≥ 0, the following inequality holds:

[

[

[

[

[

√

𝛼
1

𝛼
2

(𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
2
))

−√

𝛼
2

𝛼
1

(𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘)))

]

]

]

]

]

𝑇

× [

𝑆
2

𝑀

⋆ 𝑆
2

]

×

[

[

[

[

[

√

𝛼
1

𝛼
2

(𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
2
))

−√

𝛼
2

𝛼
1

(𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘)))

]

]

]

]

]

≥ 0,

(25)
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where 𝛼
1

= (𝑑
2
− 𝑑(𝑘))/

̃
𝑑 and 𝛼

2
= (𝑑(𝑘) − 𝑑

1
)/

̃
𝑑. Then

employing Lemma 2, for 𝑑
1
< 𝑑(𝑘) < 𝑑

2
, we have

Δ𝑉
5
(𝑘) =

̃
𝑑
2

𝜂
𝑇

(𝑘)Φ
𝑇

𝑆
2
Φ𝜂 (𝑘)

−
̃
𝑑

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

𝜂
𝑇

(𝑖) Φ
𝑇

𝑆
2
Φ𝜂 (𝑖)

−
̃
𝑑

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

𝜂
𝑇

(𝑖) Φ
𝑇

𝑆
2
Φ𝜂 (𝑖)

≤
̃
𝑑
2

𝜂
𝑇

(𝑘)Φ
𝑇

𝑆
2
Φ𝜂 (𝑘)

−

̃
𝑑

𝑑
2
− 𝑑 (𝑘)

(

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

Φ𝜂(𝑖))

𝑇

𝑆
2
(

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

Φ𝜂 (𝑖))

−

̃
𝑑

𝑑 (𝑘) − 𝑑
1

(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

Φ𝜂(𝑖))

𝑇

𝑆
2
(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

Φ𝜂 (𝑖))

≤
̃
𝑑
2

((𝐴 − 𝐼)Φ𝑥(𝑘) + 𝐴
𝑑
Φ𝑥(𝑘 − 𝑑(𝑘)))

𝑇

× 𝑆
2
((𝐴 − 𝐼)Φ𝑥 (𝑘) + 𝐴

𝑑
Φ𝑥 (𝑘 − 𝑑 (𝑘)))

− [

𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
2
)

𝑥(𝑘 − 𝑑
1
) − 𝑥(𝑘 − 𝑑(𝑘))

]

𝑇

[

𝑆
2

𝑀

⋆ 𝑆
2

]

× [

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
2
)

𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘))

] .

(26)

Note that when 𝑑(𝑘) = 𝑑
1
or 𝑑(𝑘) = 𝑑

2
, it yields 𝑥(𝑘 − 𝑑

1
) −

𝑥(𝑘 − 𝑑(𝑘)) = 0 or 𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
2
) = 0. Hence, the

inequality in (24) still holds. Combining the conditions from
(21) to (24), we have

Δ𝑉 (𝑘) = 𝜁
𝑇

(𝑘)Π
𝑠
𝜁 (𝑘) , (27)

where

𝜁 (𝑘)

= [𝑥
𝑇
(𝑘) 𝑥

𝑇
(𝑘 − 𝑑

1
)Φ
𝑇

𝑥
𝑇
(𝑘 − 𝑑 (𝑘))Φ

𝑇
𝑥
𝑇
(𝑘 − 𝑑

2
)Φ
𝑇
]
𝑇

,

Π
𝑠
=

[

[

[

[

Π̃
11

Φ
𝑇

𝑆
1

0 0

⋆ Π̃
22

Π̃
23

𝑀
𝑇

⋆ ⋆ Π̃
33

Π̃
34

⋆ ⋆ ⋆ Π̃
44

]

]

]

]

+

[

[

[

[

Π̃
16

0

𝑑
1
𝐴

𝑇

𝑑

0

]

]

]

]

𝑆
1

[

[

[

[

Π̃
16

0

𝑑
1
𝐴

𝑇

𝑑

0

]

]

]

]

𝑇

+

[

[

[

[

Π̃
17

0

̃
𝑑𝐴

𝑇

𝑑

0

]

]

]

]

𝑆
2

[

[

[

[

Π̃
17

0

̃
𝑑𝐴

𝑇

𝑑

0

]

]

]

]

𝑇

+

[

[

[

[

𝐴
𝑇

0

𝐴
𝑇

𝑑

0

]

]

]

]

𝑃

[

[

[

[

𝐴
𝑇

0

𝐴
𝑇

𝑑

0

]

]

]

]

𝑇

.

(28)

On the other hand, the following inequality can be obtained
from (17):

Π
𝑠1

=

[

[

[

[

[

[

[

[

[

[

Π̃
11

Φ
𝑇

𝑆
1

0 0 Π̃
16
𝑆
1

Π̃
17
𝑆
2

𝐴
𝑇

𝑃

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0 0 0

⋆ ⋆ Π̃
33

Π̃
34

𝑑
1
𝐴

𝑇

𝑑
𝑆
1

̃
𝑑𝐴

𝑇

𝑑
𝑆
2

𝐴
𝑇

𝑑
𝑃

⋆ ⋆ ⋆ Π̃
44

0 0 0

⋆ ⋆ ⋆ ⋆ −𝑆
1

0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑆
2

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑃

]

]

]

]

]

]

]

]

]

]

< 0

(29)

which is equivalent to Π
𝑠

< 0. Hence, Δ𝑉(𝑘) < 0 which
implies that the filtering error system in (6) with 𝑤(𝑘) = 0

is asymptotically stable.
Next, we show the 𝑙

2
-𝑙

∞
performance of system (6). To

this end, we define

𝐽 (𝑘) = 𝑉 (𝑘) −

𝑘−1

∑

𝑖=0

𝑤
𝑇

(𝑖) 𝑤 (𝑖) . (30)

Then under the zero initial condition, that is, 𝑥(𝑘) = 0,
𝑘 = −𝑑

2
, −𝑑

2
+ 1, . . . , 0, it can be shown that for any nonzero

𝑤(𝑘) ∈ 𝑙
2
[0,∞)

𝐽 (𝑘) =

𝑘−1

∑

𝑖=0

[Δ𝑉 (𝑖) − 𝑤
𝑇

(𝑖) 𝑤 (𝑖)]

=

𝑘−1

∑

𝑖=0

𝜉
𝑇

(𝑖) (Π + Π

𝑇

1
𝑃Π

1
+ 𝑑

2

1
Π

𝑇

2
𝑆
1
Π

2

+𝑑
2

12
Π

𝑇

2
𝑆
2
Π

2
) 𝜉 (𝑖) ,

(31)

where
𝜉 (𝑖)

= [𝑥
𝑇

(𝑖) 𝑥
𝑇

(𝑖 − 𝑑
1
)Φ

𝑇

𝑥
𝑇

(𝑖 − 𝑑 (𝑖))Φ
𝑇

𝑥
𝑇

(𝑖 − 𝑑
2
)Φ

𝑇

𝑤 (𝑖)]
𝑇

,

Π =

[

[

[

[

[

[

[

Π̃
11

Φ
𝑇

𝑆
1

0 0 Π̃
15

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0

⋆ ⋆ Π̃
33

Π̃
34

−�̃�
𝑇

𝑑
𝑆

⋆ ⋆ ⋆ Π̃
44

0

⋆ ⋆ ⋆ ⋆ Π̃
55

]

]

]

]

]

]

]

,

Π
1
= [𝐴 0 𝐴

𝑑
0 𝐵] ,

Π
2
= [(𝐴 − 𝐼)Φ 0 𝐴

𝑑
0 𝐵] ,

Π
3
= [�̃� 0 �̃�

𝑑
0 𝐺] .

(32)
By using Schur complement equivalence, the inequality in
(17) is equivalent toΠ+Π

𝑇

1
𝑃Π

1
+𝑑

2

1
Π

𝑇

2
𝑆
1
Π

2
+𝑑

2

12
Π

𝑇

2
𝑆
2
Π

2
< 0.

Then we have 𝐽(𝑘) < 0; that is,

𝑉 (𝑘) <

𝑘−1

∑

𝑖=0

𝑤
𝑇

(𝑖) 𝑤 (𝑖) . (33)
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On the other hand, it yields from (16) and (33) that

�̃�
𝑇

(𝑘) �̃� (𝑘) = 𝜂
𝑇

(𝑘) [�̃� �̃�
𝑑

𝐺]

𝑇

[�̃� �̃�
𝑑

𝐺] 𝜂 (𝑘)

≤ 𝛾
2

𝜂
𝑇

(𝑘)
[

[

𝑃 0 0

⋆ 𝑄
3

0

⋆ ⋆ 𝐼

]

]

𝜂 (𝑘)

≤ 𝛾
2

(𝑉 (𝑘) + 𝑤
𝑇

(𝑘) 𝑤 (𝑘))

≤ 𝛾
2

𝑘

∑

𝑖=0

𝑤
𝑇

(𝑖) 𝑤 (𝑖) ≤ 𝛾
2

∞

∑

𝑖=0

𝑤
𝑇

(𝑖) 𝑤 (𝑖) ,

(34)

where

𝜂 (𝑘) =
[

[

𝑥 (𝑘)

Φ𝑥 (𝑘 − 𝑑 (𝑘))

𝑤 (𝑘)

]

]

. (35)

Then, we have ‖�̃�‖
∞

< 𝛾‖𝑤‖
2
by taking the supremum over

time 𝑘 > 0. By Definition 5, the filtering error �̃�(𝑘) satisfies a
given 𝑙

2
-𝑙

∞
disturbance attenuation level. This completes the

proof.

Remark 7. Theadvantage of the results benefits from utilizing
the reciprocally convex combination approach proposed in
[19]. For the extensively used Jensen inequality [8], the inte-
gral term

−

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

(𝑑
2
− 𝑑

1
) 𝜂

𝑇

(𝑖) 𝑆𝜂 (𝑖)

= −

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑2

(𝑑
2
− 𝑑

1
) 𝜂

𝑇

(𝑖) 𝑆𝜂 (𝑖)

−

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑(𝑘)

(𝑑
2
− 𝑑

1
) 𝜂

𝑇

(𝑖) 𝑆𝜂 (𝑖)

(36)

with 𝑑
1
≤ 𝑑(𝑘) ≤ 𝑑

2
, 𝜂(𝑖) = 𝑥(𝑖 + 1) − 𝑥(𝑖) by the term

− [𝑥(𝑘 − 𝑑
1
) − 𝑥(𝑘 − 𝑑(𝑘))]

𝑇

𝑆 [𝑥 (𝑘 − 𝑑
1
) − 𝑥 (𝑘 − 𝑑 (𝑘))]

− [𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
2
)]

𝑇

𝑆 [𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
2
)]

(37)

which is a special case of the following term with 𝑀 = 0

− [

𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
1
)

𝑥(𝑘 − 𝑑(𝑘)) − 𝑥(𝑘 − 𝑑
2
)
]

𝑇

× [

𝑆 𝑀

⋆ 𝑆
] [

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
1
)

𝑥 (𝑘 − 𝑑 (𝑡)) − 𝑥 (𝑘 − 𝑑
2
)
]

(38)

with [
𝑆 𝑀

⋆ 𝑆
] ≥ 0, which is one of the advantages of recip-

rocally convex combination approach. On the other hand,
the delay partitioning method is widely applied to reduce
the conservatism of the results [9, 21, 22]. Also, the method
can be extended to the problem considered in this paper.
However, it will rise significant computation cost with the
partitioning number increasing. Therefore, the reciprocally
convex method needs less decision variables and can be seen
as a tradeoff between the conservatism and the computation
cost.

Then, an equivalent condition of LMI (17) is obtained
by introducing three slack matrices 𝐻

1
, 𝐻

2
, and 𝑇, which is

presented in the following theorem.

Theorem 8. Given a scalar 𝛾 > 0, the nominal system of (6)
is asymptotically stable with an 𝑙

2
-𝑙

∞
performance if there exist

matrices 𝑃 > 0, 𝑄
𝑖
> 0, 𝑖 = 1, 2, 3, 𝑆

𝑗
> 0, 𝐻

𝑗
, 𝑗 = 1, 2, 𝑇,

and 𝑀, such that the following LMIs hold:

[

𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0, (39)

[

[

[

[

[

[

𝑃 0 0 �̃�
𝑇

⋆ 𝑄
3

0 �̃�
𝑇

𝑑

⋆ ⋆ 𝐼 𝐺
𝑇

⋆ ⋆ ⋆ 𝛾
2

𝐼

]

]

]

]

]

]

> 0, (40)

Ω̃ =

[

[

[

[

[

[

[

[

[

[

[

[

[

Π̃
11

Φ
𝑇

𝑆
1

0 0 0 Π̃
16
𝐻

𝑇

1
Π̃

17
𝐻

𝑇

2
𝐴

𝑇

𝑇
𝑇

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0 0 0 0

⋆ ⋆ Π̃
33

Π̃
34

0 𝑑
1
𝐴

𝑇

𝑑
𝐻

𝑇

1

̃
𝑑𝐴

𝑇

𝑑
𝐻

𝑇

2
𝐴

𝑇

𝑑
𝑇

𝑇

⋆ ⋆ ⋆ Π̃
44

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 𝑑
1
𝐵

𝑇

𝐻
𝑇

1

̃
𝑑𝐵

𝑇

𝐻
𝑇

2
𝐵

𝑇

𝑇
𝑇

⋆ ⋆ ⋆ ⋆ ⋆ 𝑆
1
− 𝐻

𝑇

1
− 𝐻

1
0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑆
2
− 𝐻

𝑇

2
− 𝐻

2
0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑃 − 𝑇
𝑇

− 𝑇

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0 , (41)



Mathematical Problems in Engineering 7

where Π̃
𝑖𝑖
, 𝑖 = 1, . . . , 4, Π̃

16
, Π̃

17
, Π̃

23
, and Π̃

34
are defined in

(17).

Proof. On one hand, if (17) holds, then there exist𝐻
𝑗
= 𝐻

𝑇

𝑗
=

𝑆
𝑗
, 𝑗 = 1, 2, and 𝑇 = 𝑇

𝑇

= 𝑃 such that (41) holds. On the
other hand, if (41) holds, we have the following inequality
based on Lemma 1:

[

[

[

[

[

[

[

[

[

Π̃
11

Φ
𝑇
𝑆
1

0 0 0 Π̃
16
𝐻
𝑇

1
Π̃
17
𝐻
𝑇

2
̃
𝐴
𝑇
𝑇
𝑇

⋆ Π̃
22

Π̃
23

𝑀
𝑇

0 0 0 0

⋆ ⋆ Π̃
33

Π̃
34

0 𝑑
1
𝐴
𝑇

𝑑
𝐻
𝑇

1
̃
𝑑𝐴
𝑇

𝑑
𝐻
𝑇

2
̃
𝐴
𝑇

𝑑
𝑇
𝑇

⋆ ⋆ ⋆ Π̃
44

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 𝑑
1
𝐵
𝑇
𝐻
𝑇

1
̃
𝑑𝐵
𝑇
𝐻
𝑇

2
𝐵
𝑇
𝑇
𝑇

⋆ ⋆ ⋆ ⋆ ⋆ −𝐻
1
𝑆
−1

1
𝐻
𝑇

1
0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐻
2
𝑆
−1

2
𝐻
𝑇

2
0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑇𝑃
−1

𝑇
𝑇

]

]

]

]

]

]

]

]

]

< 0.

(42)

In addition, matrices 𝐻
𝑗
, 𝑗 = 1, 2, and 𝑇 are nonsingular due

to 𝑆
𝑗
−𝐻

𝑇

𝑗
−𝐻

𝑗
< 0, 𝑗 = 1, 2, and𝑃−𝑇

𝑇

−𝑇 < 0.Then, pre- and
promultiplying (42) by diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑆

1
𝐻

−1

1
, 𝑆

2
𝐻

−1

2
, 𝑃𝑇

−1

}

and its transpose yields (17). Therefore, the equivalence
between (41) and (17) is proved.

3.2. Robust Filter Design. In this subsection, the filter in the
form of (5) is firstly designed such that the nominal filtering
error system of (6) is asymptotically stable with an 𝑙

2
-𝑙

∞

performance. Then the robust filtering problem is solved.
Based on the result ofTheorem 8, the filter designmethod for
nominal system of (1) is presented in the following theorem.

Theorem 9. Given a scalar 𝛾 > 0, the nominal system of (6)
is asymptotically stable with an 𝑙

2
-𝑙

∞
performance if there exist

matrices [ 𝑃1 𝑃2

⋆ 𝑃3

] > 0, 𝑄
3
> 0, 𝑄

𝑙
> 0, 𝑄

𝑙
> 0, 𝑙 = 1, 2, 𝑆

𝑗
> 0,

𝐻
𝑗
, 𝐹

𝑗
, 𝑗 = 1, 2, diagonal matrix 𝑁 > 0, 𝑇

1
, and 𝑀 such that

the following set of LMIs hold:

[

𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0 (43)

Ω = [

Ξ Γ

⋆ Λ
] < 0 (44)

Υ =

[

[

[

[

[

[

[

[

[

[

[

𝑃
1

𝑃
2

0 0 (𝐿 − 𝐷
𝑓
𝐶)

𝑇

⋆ 𝑃
3

0 0 −𝐶

𝑇

𝑓

⋆ ⋆ 𝑄
3

0 (𝐿
𝑑
− 𝐷

𝑓
𝐶

𝑑
)

𝑇

⋆ ⋆ ⋆ 𝐼 (𝐺 − 𝐷
𝑓
𝐶

𝑑
)

𝑇

⋆ ⋆ ⋆ ⋆ 𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

> 0, (45)

where

Ξ =

[

[

[

[

[

[

[

[

Ξ
11

−𝑃
2

𝑆
1

𝐶
𝑇

𝑁𝐶
𝑑

0 0

⋆ Ξ
22

0 0 0 0

⋆ ⋆ Ξ
33

𝑆
2
− 𝑀

𝑇

𝑀
𝑇

0

⋆ ⋆ ⋆ Ξ
44

𝑆
2
− 𝑀

𝑇

0

⋆ ⋆ ⋆ ⋆ Ξ
55

0

⋆ ⋆ ⋆ ⋆ ⋆ −𝐼

]

]

]

]

]

]

]

]

,

Γ=

[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

Γ
12

𝐴
𝑇

𝑇
𝑇

1
+ 𝐶

𝑇A
𝑠0
𝐵

𝑇

𝑓
𝐴

𝑇

𝐹
𝑇

1
+ 𝐶

𝑇A
𝑠0
𝐵

𝑇

𝑓

0 0 𝐴

𝑇

𝑓
𝐴

𝑇

𝑓

0 0 0 0

𝑑
1
𝐴

𝑇

𝑑
𝐻

𝑇

1

̃
𝑑𝐴

𝑇

𝑑
𝐻

𝑇

2
𝐴

𝑇

𝑑
𝑇

𝑇

1
+ 𝐶

𝑇

𝑑
A

𝑠0
𝐵

𝑇

𝑓
𝐴

𝑇

𝑑
𝐹

𝑇

1
+ 𝐶

𝑇

𝑑𝑖
A

𝑠0
𝐵

𝑇

𝑓

0 0 0 0

𝑑
1
𝐵

𝑇

𝐻
𝑇

1

̃
𝑑𝐵

𝑇

𝐻
𝑇

2
𝐵

𝑇

𝑇
𝑇

1
+ 𝐷

𝑇A
𝑠0
𝐵

𝑇

𝑓
𝐵

𝑇

𝐹
𝑇

1
+ 𝐷

𝑇A
𝑠0
𝐵

𝑇

𝑓

]
]
]
]
]
]
]
]
]
]
]

]

,

Λ=

[

[

[

[

𝑆
1
− 𝐻

1
− 𝐻

𝑇

1
0 0 0

⋆ 𝑆
2
− 𝐻

2
− 𝐻

𝑇

2
0 0

⋆ ⋆ 𝑃
1
− 𝑇

1
− 𝑇

𝑇

1
𝑃
2
− 𝐹

2
− 𝐹

𝑇

1

⋆ ⋆ ⋆ 𝑃
3
− 𝐹

2
− 𝐹

𝑇

2

]

]

]

]

,

Ξ
11

= − (𝑃
1
+ 𝑆

1
) + 𝑄

1
+ 𝑄

2
+ (

̃
𝑑 + 1)𝑄

3
,

Ξ
22

= −𝑃
3
+ 𝑄

1
+ 𝑄

2
,

Ξ
33

= −𝑆
2
− 𝑄

1
− 𝑆

1
,

Ξ
44

= −𝑄
3
+ sym (𝑀

𝑖
− 𝑆

2𝑖
) ,

Ξ
55

= −𝑄
2
− 𝑆

2
,

Γ
11

= 𝑑
1
(𝐴 − 𝐼)

𝑇

𝐻
𝑇

1
, Γ

12
=

̃
𝑑(𝐴 − 𝐼)

𝑇

𝐻
𝑇

2
.

(46)

Moreover, a suitable 𝑙
2
-𝑙

∞
filter is given by

𝐴
𝑓

= 𝐴
𝑓
𝐹

−1

2
, 𝐵

𝑓
= 𝐵

𝑓
, 𝐶

𝑓
= 𝐶

𝑓
𝐹

−1

2
,

𝐷
𝑓

= 𝐷
𝑓
.

(47)

Proof. Firstly, we introduce four matrices 𝑇
1
, 𝑇

2
, 𝑇

3
, and 𝑇

4

with 𝑇
4
invertible and define

𝐽
1
= [

𝐼 0

0 𝑇
2
𝑇

−1

4

] , 𝐹
1
= 𝑇

2
𝑇

−1

4
𝑇
3
, 𝐹

2
= 𝑇

2
𝑇

−𝑇

4
𝑇

𝑇

2
,

𝑄
𝑙
= 𝑇

2
𝑇

−1

4
𝑄

𝑙
𝑇

−𝑇

4
𝑇

𝑇

2
, 𝐽 = diag {𝐽

1
, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐽

1
} ,

[

𝑃
1

𝑃
2

⋆ 𝑃
3

] = 𝐽
1
𝑃𝐽

𝑇

1
, 𝑇 = [

𝑇
1

𝑇
2

𝑇
3

𝑇
4

] ,

𝐽
2
= diag {𝐽

1
, 𝐼, 𝐼, 𝐼} ,

[

𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

] = [

𝑇
2

0

0 𝐼
] [

𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

] [
𝑇

−𝑇

4
𝑇

𝑇

2
0

0 𝐼

] .

(48)

From (44), we have 𝐹
2
+ 𝐹

𝑇

2
= 𝑇

2
𝑇

−𝑇

4
𝑇

𝑇

2
+ 𝑇

2
𝑇

−1

4
𝑇

𝑇

2
> 0

which implies that 𝑇
2
is nonsingular. Hence, 𝐽 and 𝐽

2
are
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nonsingular. The inequality in (45) can be obtained by pre-
an promultiplying (33) with 𝐽

2
and 𝐽

𝑇

2
, respectively. Noting

that

Ω = 𝐽Ω̃𝐽
𝑇 (49)

we have Ω̃ < 0. On the other hand, because 𝑇
2
and 𝑇

4
cannot

be obtained from (44), we cannot determine the filters from
(48). However, we can construct an equivalent filter transfer
function from 𝑦(𝑘) to �̃�(𝑘):

𝑇
�̃�𝑦

= 𝐶
𝑓
(𝑧𝐼 − 𝐴

𝑓
)

−1

𝐵
𝑓
+ 𝐷

𝑓

= 𝐶
𝑓
𝑇

−𝑇

2
𝑇

𝑇

4
(𝑧𝐼 − 𝑇

−1

2
𝐴

𝑓
𝑇

−𝑇

2
𝑇

𝑇

4
)

−1

𝑇
−1

2
𝐵

𝑓
+ 𝐷

𝑓

= 𝐶
𝑓
(𝑧𝐹

2
− 𝐴

𝑓
)

−1

𝐵
𝑓
+ 𝐷

𝑓

= 𝐶
𝑓
𝐹

−1

2
(𝑧𝐼 − 𝐴

𝑓
𝐹

−1

2
)

−1

𝐵
𝑓
+ 𝐷

𝑓
.

(50)

Therefore, the desired filter can be obtained from (47). This
completes the proof.

Then the filter design result for uncertain system (6) is
presented in the following theorem.

Theorem 10. Given a scalar 𝛾 > 0, the system in (6) with
uncertainty is asymptotically stable with an 𝑙

2
-𝑙

∞
performance

if there exist matrices [
𝑃1 𝑃2

⋆ 𝑃3

] > 0, 𝑄
3

> 0, 𝑄
𝑙

> 0,
𝑄

𝑙
> 0, 𝑙 = 1, 2, 𝑆

𝑗
> 0, 𝐻

𝑗
, 𝐹

𝑗
, 𝑗 = 1, 2, diagonal matrix

𝑁 > 0, 𝑇
1
, 𝑀, and scalars 𝜀

𝑖
> 0, 𝑖 = 1, . . . , 4 such that the

following set of LMIs hold:

[

𝑆
2

𝑀

⋆ 𝑆
2

] ≥ 0, (51)

[

[

Ω + 𝜀
3
Ω

𝑇

1
Ω

1
+ 𝜀

4
Ω

𝑇

2
Ω

2
Ω

3
Ω

4

⋆ −𝜀
3
𝐼 0

⋆ ⋆ −𝜀
4
𝐼

]

]

< 0, (52)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Υ
11

𝑃
2

Υ
13

Υ
14

(𝐿 − 𝐷
𝑓
𝐶)

𝑇

0 0

⋆ 𝑃
3

0 0 −𝐶

𝑇

𝑓
0 0

⋆ ⋆ Υ
33

Υ
34

(𝐿
𝑑
− 𝐷

𝑓
𝐶

𝑑
)

𝑇

0 0

⋆ ⋆ ⋆ Υ
44

(𝐺 − 𝐷
𝑓
𝐶

𝑑
)

𝑇

0 0

⋆ ⋆ ⋆ ⋆ 𝛾
2

𝐼 𝑀
3

0

⋆ ⋆ ⋆ ⋆ ⋆ 𝜀
1
𝐼 𝐷

𝑓
𝑀

2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝜀
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

> 0,

(53)

where Ω is defined in (44) and

Ω
1
= [𝑁

𝐴
0 0 𝑁

𝐴𝑑
0 𝑁

𝐵
0 0 0 0] ,

Ω
2
= [𝑁

𝐶
0 0 𝑁

𝐶𝑑
0 𝑁

𝐷
0 0 0 0] ,

Ω
3

= [0 0 0 0 0 0 𝑑
1
𝑀

𝑇

1
𝐻

𝑇

1

̃
𝑑𝑀

𝑇

1
𝐻

𝑇

2
𝑀

𝑇

1
𝑇

𝑇

1
𝑀

𝑇

1
𝐹

𝑇

1
]

𝑇

,

Ω
4
= [0 0 0 0 0 0 0 0 𝑀

𝑇

2
𝐵

𝑇

𝑓
𝑀

𝑇

2
𝐵

𝑇

𝑓
]

𝑇

,

Υ
11

= 𝑃
1
− 𝜀

1
𝑁

𝑇

𝐿
𝑁

𝐿
− 𝜀

2
𝑁

𝑇

𝐶
𝑁

𝐶
,

Υ
13

= −𝜀
1
𝑁

𝑇

𝐿
𝑁

𝐿𝑑
− 𝜀

2
𝑁

𝑇

𝐶
𝑁

𝐶𝑑
,

Υ
14

= −𝜀
1
𝑁

𝑇

𝐿
𝑁

𝐺
− 𝜀

2
𝑁

𝑇

𝐶
𝑁

𝐷
,

Υ
33

= 𝑄
3
− 𝜀

1
𝑁

𝑇

𝐿𝑑
𝑁

𝐿𝑑
− 𝜀

2
𝑁

𝑇

𝐶𝑑
𝑁

𝐶𝑑
,

Υ
34

= −𝜀
1
𝑁

𝑇

𝐿𝑑
𝑁

𝐺
− 𝜀

2
𝑁

𝑇

𝐶𝑑
𝑁

𝐷
,

Υ
44

= 𝐼 − 𝜀
1
𝑁

𝑇

𝐺
𝑁

𝐺
− 𝜀

2
𝑁

𝑇

𝐷
𝑁

𝐷
.

(54)

Moreover, a suitable 𝑙
2
-𝑙

∞
filter is given by

𝐴
𝑓

= 𝐴
𝑓
𝐹

−1

2
, 𝐵

𝑓
= 𝐵

𝑓
, 𝐶

𝑓
= 𝐶

𝑓
𝐹

−1

2
,

𝐷
𝑓

= 𝐷
𝑓
.

(55)

Proof. Firstly, replace matrices𝐴,𝐴
𝑑
, 𝐵,𝐶,𝐶

𝑑
, and𝐷 in (44)

with𝐴+Δ𝐴,𝐴
𝑑
+Δ𝐴

𝑑
,𝐵+Δ𝐵, 𝐶+Δ𝐶,𝐶

𝑑
+Δ𝐶

𝑑
, and𝐷+Δ𝐷,

respectively, and the following inequality is obtained:

Ω + sym (Ω
𝑇

1
Δ

𝑇

1
Ω

𝑇

3
) + sym (Ω

𝑇

2
Δ

𝑇

2
Ω

𝑇

4
) < 0, (56)

where Ω
𝑖
, 𝑖 = 1, . . . , 4 are defined in (52). Then by using

Lemma 4, the above inequality holds if and only if

Ω + 𝜀
3
Ω

𝑇

1
Ω

1
+ 𝜀

−1

3
Ω

3
Ω

𝑇

3
+ 𝜀

4
Ω

𝑇

2
Ω

2
+ 𝜀

−1

4
Ω

4
Ω

𝑇

4
< 0. (57)

Then by using Schur complement equivalence, the inequality
in (57) is equivalent to (44). Substituting 𝐿, 𝐿

𝑑
, and 𝐺 in (45)

with 𝐿 + Δ𝐿, 𝐿
𝑑
+ Δ𝐿

𝑑
, and 𝐺 + Δ𝐺, respectively, we can get

Υ + sym (Υ
𝑇

1
Δ

𝑇

3
Υ

𝑇

3
) + sym (Υ

𝑇

2
Δ

𝑇

2
Υ

𝑇

4
) > 0, (58)

where

Υ
1
= [𝑁

𝐿
𝑁

𝐿𝑑
𝑁

𝐺
0] , Υ

2
= [𝑁

𝐶
𝑁

𝐶𝑑
𝑁

𝐷
0]

Υ
3
= [0 0 0 𝑀

𝑇

3
] , Υ

4
= [0 0 0 𝑀

𝑇

2
𝐷

𝑇

𝑓
] .

(59)
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By following the similar line, the equivalence between (58)
and (53) can be proved.

4. Illustrative Example

In this section, the following example is given to demonstrate
the effectiveness of the proposed approach.

Example 1. Firstly, consider a nominal discrete-time delay
system in (1) with the following parameters:

𝐴 = [

0.1 −0.5

0.2 0.5
] , 𝐴

𝑑
= [

0.1 0

0 0.2
] ,

𝐵 = [

−1

1
] , 𝐶 = [−0.1 −1] , 𝐶

𝑑
= [−0.1 0.6] ,

𝐿 = [1 0.2] , 𝐿
𝑑
= [0.5 0.6] , 𝐷 = 0.1,

𝐺 = −0.5.

(60)
For different delay cases, the different minima of 𝛾 can be
calculated by solving the LMIs inTheorem 9.When the upper
bound of the time-varying delay is 5, that is, 𝑑

2
= 5, the

minima of 𝛾 for a given 𝑑
1
are listed in Table 1.

Moreover, when 𝑑
1
= 2, 𝑑

2
= 5, the corresponding 𝑙

2
-𝑙

∞

filter is given as follows:

𝐴
𝑓

= [

2.6553 −1.9535

2.2783 −1.5631
] , 𝐵

𝑓
= [

−1.5405

−1.9024
] ,

𝐶
𝑓

= [−1.3230 1.0479] , 𝐷
𝑓

= 0.2378.

(61)

When uncertainty appears in the system, Theorem 10 will be
used for the desired filter design. The following uncertainty
parameters are considered:

𝑀
1
= [

0.35 0

−0.2 0.1
] , 𝑁

𝐴
= [

0.2 0.4

0 0.5
] ,

𝑁
𝐴𝑑

= [

0.1 0

0 0.2
] , 𝑁

𝐵
= [

0.3

0.1
] ,

𝑀
2
= 0.2, 𝑁

𝐶
= [0.15 −0.22] ,

𝑁
𝐶𝑑

= [−0.3 0.2] , 𝑁
𝐷

= −0.5,

𝑀
3
= −0.4, 𝑁

𝐿
= [−0.25 −0.2] ,

𝑁
𝐿𝑑

= [0.13 0.32] , 𝑁
𝐷

= 0.2.

(62)

Similarly, the allowed minimal values of 𝛾 can be obtained
by solving the LMIs in Theorem 10. For 𝑑

2
= 5, the different

minimum allowed 𝛾 are listed in Table 2 for the uncertain
system with different 𝑑

1
.

Moreover, when 𝑑
1
= 2, 𝑑

2
= 5, the desired filter is given

as follows:

𝐴
𝑓

= [

−0.1261 0.2147

−0.3333 0.5671
] , 𝐵

𝑓
= [

−0.1725

−0.2622
] ,

𝐶
𝑓

= [−0.0076 0.0125] , 𝐷
𝑓

= 0.1106.

(63)

Table 1: Minimum allowed 𝛾 for 𝑑
2
= 5.

Methods 𝑑
1

1 2 3 4
Theorem 9 1.8371 1.5652 1.3585 1.1861

Table 2: Minimum allowed 𝛾 for 𝑑
2
= 5.

Methods 𝑑
1

1 2 3 4
Theorem 10 3.4157 2.6514 2.1568 1.8405

5. Conclusions

The robust 𝑙
2
-𝑙

∞
filtering has been studied for uncertain

discrete-time systems with time-varying delay in this paper.
Based on reciprocally convex approach, the sufficient 𝑙

2
-𝑙

∞

performance analysis conditions in terms of LMIs have been
proposed to render the filtering error systems asymptotically
stable with an 𝑙

2
-𝑙

∞
performance. Then the desired filter has

been designed for the filtering error systemwith time-varying
delay.The results presented in this paper are in terms of strict
LMIs which make the conditions more tractable. Finally, a
numerical example is given to demonstrate the effectiveness
of our methods. For future research topic, the results can be
extended to the system with actuator/sensor failures which
may lead to unsatisfactory performance and has attracted
many researchers’ attention such as faulty diagnosis [23, 24]
and fault tolerant control [25].
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The problem of designing an adaptive backstepping controller for nonlinear static var compensator (SVC) system is addressed
adopting two perspectives. First, instead of artificially assuming an upper bound or inequality scaling, the minimax theory is used
to treat the external unknown disturbances. The system is insensitive to effects of large disturbances due to taking into account
the worst case disturbance. Second, a parameter projection mechanism is introduced in adaptive control to force the parameter
estimate within a prior specified interval. The proposed controller handles the nonlinear parameterization without compromising
control smoothness and at the same time the parameter estimate speed is improved and the robustness of system is strengthened.
Considering the short-circuit ground fault and mechanical power perturbation, a simulation study is carried out. The results show
the effectiveness of the proposed control method.

1. Introduction

With the expansion of the scale of electric network, static
var compensators (SVCs) have been employed in power
systems for several years in a cost-effective manner [1].
SVCs play important roles in voltage regulation and stability
improvement due to simple structures and reactive power
compensation [2]. Numerous control techniques with vary-
ing levels of success for SVC have been used to enhance
power system stability [3, 4]. The fixed-gain PID controllers
are designed for improving the dynamic impact of SVCs
based on the linearization model without taking nonlinear
characteristic into consideration [5]. The exact feedback
linearization design depends on the basis of nonlinear SVC
model [6]; however, such a solution requires a completely
accurate model, which is rarely satisfying from the practical
point of view.TheHamiltonian functionmethod cannot only
develop nonlinear control for the SVC, but also solve the
problem of 𝐿

2
disturbance attenuation [7], whereas it is hard

work to express the nonlinear system into a Hamiltonian
system. Adaptive backstepping technique has received a
considerable attention in recent robust control literatures of
power systems [8, 9].

Several papers have studied the adaptive backstepping
SVC control strategies and gave insights into the effect of
external disturbance. There are many causes of variations
in a power system’s operating conditions, such as continual
changes in power consumption and changes in the generation
and transmission device structure. Significant progress has
been made in disturbance treatment linking with backstep-
ping method; the 𝐻

∞
control problem can be solved by

inequality-scaling the item including disturbance in energy
function [10, 11], while the scaling way may have brought
conservativeness. Although many works successfully deal
with the disturbances, the disturbances are always restricted
with a certain bound or a certain expression [12–14]. The
upper bound is difficult to be selected because of the difficulty
of exact measurement in some practical applications [15].
It is the objective of this paper to provide an effective
way in unknown disturbance treatment to overcome the
above disadvantages. The minimax method is an efficient
approach to deal with large disturbance attenuation problem
by estimating the degree of damage [16, 17]; an in-depth
study on the large disturbance attenuation problems of the
nonlinear TCSC and STATCOM is conducted via adaptive
backstepping and minimax method [18, 19].
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References [18, 19] also play a key role in uncertain
parameter estimation. However, conventional adaptive con-
trols always ignore the available prior information of the
uncertainties, which may lead to poor and slow convergence,
because the parameter search process possibly takes place
outside the region of true value. It is often reasonable to obtain
the knowledge on bounds of unknown parameter of the
SVC model. To absorb the prior information, the projection
technique can be adopted [20, 21]. A novel adaptive control
solution is provided; this approach enforces prior known
upper and lower bounds of the uncertain parameters always
on their corresponding estimates, without compromising
control smoothness or global stability guarantees for the
closed-loop dynamics [22].

This paper addresses the nonlinear robust control prob-
lem for the SVC system with unknown external distur-
bances and parameter uncertainties using modified adaptive
backstepping and minimax approach. In order to avoid
the conservativeness brought by conventional disturbance
treatment, a test function related to the performance index
is constructed to maximize the impact of the disturbances,
and the feedback control is investigated by taking account of
the worst case. Moreover, the class-𝜅 functions are used in
the design procedure to keep the balance between transient
response and controller gain. For the uncertainties, a projec-
tionmechanism is applied depending on the available bounds
on the plant parameters, which can promote the efficiency
of parameter search process. Compared with traditional
adaptive backstepping method, numerical simulations of
two kinds of disturbances to the SVC system demonstrate
that the proposed control gives superiorities on transient
performance.

2. Dynamic Model and Problem Statements

Consider the following dynamic model of single-machine
infinite-bus (SMIB) power system with SVC as shown in
Figure 1 [11].

The mathematical dynamics of SVC control system can
be expressed by the following nonlinear differential equations
[11]

̇
𝛿 = 𝜔 − 𝜔

0
,

̇𝜔 =

𝜔
0

𝐻

(𝑃
𝑚

− 𝐸


𝑞
𝑉
𝑠
𝑦svc sin 𝛿) −

𝐷

𝐻

(𝜔 − 𝜔
0
) ,

̇𝑦svc =

1

𝑇svc
(−𝑦svc + 𝑦svc0 + 𝑢) .

(1)

In the above equations, 𝛿 is the rotor angle; 𝜔 is the
angular speed; 𝐻 and 𝐷 are the inertia constant and damping
coefficient; 𝑃

𝑚
is the mechanical power; 𝐸



𝑞
and 𝑉

𝑠
are the 𝑞

axis transient reactance and infinite bus voltage; 𝑦svc is the
susceptance of the overall system, 𝑦svc = 1/(𝑋

1
+ 𝑋
2

+

𝑋
1
𝑋
2
(𝐵
𝐿

+ 𝐵
𝐶

)), 𝑋
1

= 𝑋


𝑑
+ 𝑋
𝑇

+ 𝑋
𝐿
, 𝑋
2

= 𝑋
𝐿
, 𝑋


𝑑
, 𝑋
𝑇

and 𝑋
𝐿
are, respectively, the direct axis transient reactance of

the generator, the reactance of the transformer, and the line
reactance, and 𝐵

𝐿
and 𝐵

𝐶
are the susceptance of the inductor
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Figure 1: Single machine infinite bus system with SVC.

and the capacitor in SVC; 𝑇svc is the time constant of SVC; 𝑢

is the equivalence input of SVC regulator.
Denote 𝑥

1
= 𝛿 − 𝛿

0
, 𝑥
2

= 𝜔 − 𝜔
0
, and 𝑥

3
= 𝑦svc − 𝑦svc0,

where (𝛿
0
, 𝜔
0
, 𝑦svc0) represent an operating point of the

power system. Consider the external disturbance vector 𝜀 =

[𝜀
1

𝜀
2
]
𝑇; 𝜀
1
and 𝜀
2
are unknown functions that belong to 𝐿

2

space.Then, system (1) can be transformed into the following
form:

̇𝑥
1

= 𝑥
2
, (2a)

̇𝑥
2

= 𝜃𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 𝑏
0

(𝑥
3

+ 𝑦svc0) sin (𝑥
1

+ 𝛿
0
) + 𝜀
1
, (2b)

̇𝑥
3

= −𝑚
0
𝑥
3

+ 𝑚
0
𝑢 + 𝜀
2
, (2c)

where 𝑎
0

= 𝜔
0
/𝐻, 𝑏

0
= −𝜔

0
𝐸


𝑞
𝑉
𝑠
/𝐻, 𝑚

0
= 1/𝑇svc. Let

𝜃 = −𝐷/𝐻 be an uncertain constant parameter in view of the
damping coefficient 𝐷 that cannot be measured accurately.
However, it is reasonable to obtain a prior knowledge on its
bound, both from literatures and practice [23–25]. Hence, the
upper and lower bounds of 𝜃 can also be acquired; we assume
𝜃 ∈ (𝜃min, 𝜃max).

3. Adaptive Disturbance Attenuation Design
for SVC Control System

In the control of large scale power system, one usually faces
limited knowledge on plant parameters and the appearance of
sudden large disturbances. A well-designed controller should
have the ability to perform its desired function in the presence
of changes and uncertainties in the system. The proposed
approach is aiming to attenuate the external disturbance and
estimate the uncertainty. We adopt the minimax method
and parameter projection mechanism based on backstepping
technique to deal with the problems.
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Step 1. Start with (2a); we define 𝑒
1

= 𝑥
1
and view 𝑥

2
as a

control variable. Design a virtual control law𝑥
∗

2
as𝑥
∗

2
= −[𝑐
1
+

𝜑
1
(|𝑒
1
|)]𝑒
1
, where 𝑐

1
> 0, and 𝜑

1
(⋅) is a class-𝜅 function; we

select 𝜑
1
(|𝑒
1
|) = 𝑘

1
𝑒
2

1
, 𝑘
1

> 0. Define an error variable 𝑒
2

=

𝑥
2

− 𝑥
∗

2
representing the difference between the actual and

virtual controls.Then, we can derive the dynamics of the new
coordinate

̇𝑒
1

= − [𝑐
1

+ 𝜑
1

(




𝑒
1





)] 𝑒
1

+ 𝑒
2
. (3)

The objective of this step is to make 𝑒
1

→ 0, by
considering the Lyapunov function as

𝑉
1

=

𝜎

2

𝑒
2

1
, (4)

where 𝜎 > 0; then the time derivative of 𝑉
1
becomes

𝑉
1

= −𝜎𝑐
1
𝑒
2

1
− 𝜎𝜑
1

(




𝑒
1





) 𝑒
2

1
+ 𝜎𝑒
1
𝑒
2
. (5)

Apparently, if 𝑒
2

= 0, then 𝑉
1

= −𝜎𝑐
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
≤ 0,

and 𝑒
1
is guaranteed to converge to zero asymptotically. The

coupling term 𝜎𝑒
1
𝑒
2
will be canceled in the next step.

Step 2. Consider (2b) by viewing 𝑥
3
as a virtual control

variable. Define a virtual control law 𝑥
∗

3
and the error variable

𝑒
3

= 𝑥
3

− 𝑥
∗

3
. Our objective in this step is to make 𝑒

2
→ 0,

and then choose a Lyapunov function by augmenting (4):

𝑉
2

= 𝑉
1

+

1

2

𝑒
2

2
. (6)

Before virtual control law design, we plot out a regulated
output 𝑧 = [𝑞

1
𝑒
1

𝑞
2
𝑒
2
]
𝑇 into system (2a), (2b), and (2c),

where 𝑞
1
and 𝑞

2
are nonnegative weighted coefficients rep-

resenting weighting proportion of 𝑒
1
and 𝑒
2
. Then, construct

a performance index based on minimax theory as

𝐽
1

= ∫

∞

0

(‖𝑧‖
2

− 𝛾
2



𝜀
1






2

) 𝑑𝑡, (7)

where 𝛾 > 0, and 𝛾 is disturbance attenuation constant.
Further, construct a test function related to the performance
index to estimate the worst case disturbance, which means
the highest degree of critical disturbance that can be endured
by the system:

𝐻
1

= 𝑉
2

+

1

2

(‖𝑧‖
2

− 𝛾
2



𝜀
1






2

) . (8)

Substituting 𝑉
2

= 𝑉
1

+ 𝑒
2

̇𝑒
2
into (8) yields

𝐻
1

= − 𝜎𝑐
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
+ 𝜎𝑒
1
𝑒
2

+ 𝑒
2

(𝜃𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 𝑏
0

(𝑥
3

+ 𝑦svc0) sin (𝑥
1

+ 𝛿
0
)

+ 𝜀
1

+ 𝑐
1
𝑥
2

+ 3𝑘
1
𝑥
2

1
𝑥
2
)

+

1

2

𝑞
2

1
𝑒
2

1
+

1

2

𝑞
2

2
𝑒
2

2
−

1

2

𝛾
2

𝜀
2

1
.

(9)

We assume that the upper value of (7) is 𝐽
∗

1
. If a

disturbance exists and makes 𝐽
1
no larger than 𝐽

∗

1
, then the

degree of damage is greatest on the system performance.
Thus, our task here is to maximize 𝐽

1
by making the first-

order derivative of 𝐻
1
with respect to 𝜀

1
equal to zero, which

is equivalent to 𝑒
2

− 𝛾
2

𝜀
1

= 0; then we derive

𝜀
∗

1
=

𝑒
2

𝛾
2

. (10)

Furthermore, we compute the second-order derivative;
that is, 𝜕

2

𝐻
1
/𝜕𝜀
2

1
= −𝛾
2

< 0. Therefore, the maximum value
of 𝐻
1
about 𝜀

1
exists, and

max𝐻
1

= max [𝑉
2

+

1

2

(‖𝑧‖
2

− 𝛾
2



𝜀
1






2

)] . (11)

Integrating both sides of (11) yields

max∫

∞

0

𝐻
1
𝑑𝑡

= max [∫

∞

0

𝑉
2
𝑑𝑡 +

1

2

∫

∞

0

(‖𝑧‖
2

− 𝛾
2



𝜀
1






2

) 𝑑𝑡] .

(12)

Let 𝐻
1

= ∫

∞

0

𝐻
1
𝑑𝑡; then (12) becomes max𝐻

1
=

max[𝑉
2
(∞) − 𝑉

2
(0) + (1/2)𝐽

1
], and then

max (

1

2

𝐽
1
) = max (𝐻

1
− Δ𝑉
2
) ≤ max (𝐻

1
) − min (Δ𝑉

2
) .

(13)

When the system suffers sufficiently large disturbances,
𝑉
2
will not be reduced, in other words, the disturbance 𝜀

1
is

assumed to reduce 𝑉
2
to 0; that is, min(Δ𝑉

2
) = 0. Thus, it

proves that max((1/2)𝐽
1
) = max(𝐻

1
), and 𝜀

∗

1
is the worst case

disturbance for the subsystem.

Remark 1. From the equivalent analysis of max(𝐻
1
) and

max((1/2)𝐽
1
), it is obvious that if 𝜀

1
allows 𝐻

1
to obtain the

maximum value, 𝜀
1
also allows 𝐽

1
to obtain the maximum

value. That is, system performance damage via 𝜀
1
is the

largest.

The stabilizing function 𝑥
∗

3
needs to be designed by

undertaking the disturbances with such damage degree into
system; our approach is to replace 𝜀

1
in (9) with (10):

𝐻
1
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1
𝑒
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1
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0
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+
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.

(14)
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Figure 2: Transient response of closed-loop system under the short circuit ground fault.
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2

+ 𝜎𝑒
1

+
̂
𝜃𝑥
2

+𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
] − 𝑦svc0,

(15)

where 𝜑
2
(⋅) is a class-𝜅 function; we choose 𝜑

2
(|𝑒
2
|) = 𝑘

2
𝑒
2

2
,

𝑘
2

> 0; ̂
𝜃 is an estimate of 𝜃, and ̃

𝜃 = 𝜃 −
̂
𝜃. If the rotor angle

𝛿 = 𝑘𝜋, 𝑘 = 0, 1, . . ., synchronism of the power system will
be lost. Fortunately, under the normal operating conditions
in the system 0 < 𝛿 < 𝜋 holds, and therefore, the condition
sin(𝑥
1

+ 𝛿
0
) ̸= 0 can be guaranteed.

Then,𝐻
1

= −ℎ
1
𝑒
2

1
−𝜎𝑘
1
𝑒
4

1
−𝑐
2
𝑒
2

2
−𝑘
2
𝑒
4

2
+𝑒
2

̃
𝜃𝑥
2

+𝑏
0
𝑒
2
𝑒
3
𝑓sin.

In the final step, the coupling term 𝑏
0
𝑒
2
𝑒
3
𝑓sin will be canceled,

and the uncertainty item 𝑒
2

̃
𝜃𝑥
2
will be dealt with.

Step 3. For the uncertainty, as mentioned in Section 2, it
is reasonable to expect availability of a prior knowledge in
terms of lower and upper bounds of 𝜃 in (2a), (2b), and (2c).
Thereby, we reparameterize the uncertain parameter 𝜃 in an
associated uncertain variable 𝜙 as follows [22]:

𝜃 =

1

2

(𝜃max − 𝜃min) (1 − tanh𝜙) + 𝜃min. (16)
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Figure 3: Control input curves under the short circuit ground fault.

It is clear that is for all values of 𝜙 ∈ 𝑅, tanh𝜙 ∈

(−1, 1), hence, 𝜃 is restricted to lie within the region of
(𝜃min, 𝜃max). Consequently, the system governing equation in
(2b), which is linear in terms of 𝜃, immediately becomes
nonlinear in terms of 𝜙. We are in the position to develop a
smooth adaptive controller in order to handle the nonlinear
parameterization of (16). We define 𝑧 =

̂
𝜙 − 𝜙, wherein ̂

𝜙 is
the estimate of 𝜙; then choose the following nonnegative, and
therefore, lower-bounded function of 𝑧 and 𝜙 as

𝑉
𝑧

=

1

2

(𝜃max − 𝜃min) [ln cosh (𝑧 + 𝜙) − 𝑧 tanh𝜙] . (17)

Consider the candidate Lyapunov function as

𝑉
3

= 𝑉
2

+

1

2

𝑒
2

3
+

1

𝜌

𝑉
𝑧
. (18)

The time derivative of 𝑉
3
becomes

𝑉
3

= 𝑉
2

+ 𝑒
3

̇𝑒
3

+

1

2𝜌

(𝜃max − 𝜃min) [tanh (𝑧 + 𝜙) − tanh𝜙] ̇𝑧.

(19)

The performance index is expressed as

𝐽
2

= ∫

∞

0

(‖𝑧‖
2

− 𝛾
2

‖𝜀‖
2

) 𝑑𝑡. (20)

The test function is

𝐻
2

= 𝑉
3

+

1

2

(‖𝑧‖
2

− 𝛾
2

‖𝜀‖
2

) . (21)

Substituting (19) into (21) yields

𝐻
2

= − ℎ
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
− 𝑐
2
𝑒
2

2
− 𝑘
2
𝑒
4

2
+ 𝑒
2

̃
𝜃𝑥
2

+ 𝑏
0
𝑒
2
𝑒
3
𝑓sin

+ 𝑒
3

{−𝑚
0
𝑥
3

+ 𝑚
0
𝑢 + 𝜀
2

+

1

𝑏
0
𝑓sin

× [ (𝜎 +
̇

̂
𝜃) 𝑥
2

+ 6𝑘
1
𝑥
1
𝑥
2

2

+ (ℎ
2

+ 3𝑘
2
𝑒
2

2
) (𝑐
1
𝑥
2

+ 3𝑘
1
𝑒
2

1
𝑥
2
)

+ (
̂
𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
)

× (𝜃𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 𝑏
0

(𝑥
3

+ 𝑦svc0) 𝑓sin +

𝑒
2

𝛾
2

)]

−

𝑓cos𝑥2
𝑏
0
𝑓
2

sin
(ℎ
2
𝑒
2

+ 𝑘
2
𝑒
3

2
+ 𝜎𝑒
1

+
̂
𝜃𝑥
2

+𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
) }

−

1

2

𝛾
2

𝜀
2

2
+

1

2𝜌

(𝜃max − 𝜃min)

× [tanh (𝑧 + 𝜙) − tanh𝜙] ̇𝑧,

(22)

where 𝑓cos = cos(𝑥
1

+𝛿
0
). A similar procedure is employed to

make 𝜕𝐻
2
/𝜕𝜀
2

= 0; we can obtain the worst case disturbance
(𝜕2𝐻
2
/𝜕𝜀
2

2
= −𝛾
2

< 0)

𝜀
∗

2
=

𝑒
3

𝛾
2

. (23)

Taking (23) into account, (22) is rewritten as

𝐻
2

= − ℎ
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
− 𝑐
2
𝑒
2

2
− 𝑘
2
𝑒
4

2

+ 𝑒
3

{𝑏
0
𝑒
2
𝑓sin − 𝑚

0
𝑥
3

+ 𝑚
0
𝑢 +

𝑒
3

2𝛾
2

+

1

𝑏
0
𝑓sin

[ (𝜎 +
̇

̂
𝜃) 𝑥
2

+ 6𝑘
1
𝑥
1
𝑥
2

2

+ (ℎ
2

+ 3𝑘
2
𝑒
2

2
) (𝑐
1
𝑥
2

+ 3𝑘
1
𝑒
2

1
𝑥
2
)

+ (
̂
𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
)

× (
̂
𝜃𝑥
2
+𝑎
0
𝑃
𝑚

+𝑏
0
(𝑥
3
+𝑦svc0)𝑓sin+

𝑒
2

𝛾
2

)]

−

𝑓cos𝑥2
𝑏
0
𝑓
2

sin
(ℎ
2
𝑒
2

+ 𝑘
2
𝑒
3

2
+ 𝜎𝑒
1

+
̂
𝜃𝑥
2

+ 𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
) }
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+ [𝑒
2
𝑥
2

+

𝑒
3
𝑥
2

𝑏
0
𝑓sin

(
̂
𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2
)]

̃
𝜃

+

1

2𝜌

(𝜃max − 𝜃min) [tanh (𝑧 + 𝜙) − tanh𝜙] ̇𝑧,

(24)

in which ̂
𝜃 = (1/2)(𝜃max − 𝜃min)(1 − tanh ̂

𝜙) + 𝜃min, and then
̃
𝜃 = (1/2)(𝜃max − 𝜃min)(tanh ̂

𝜙 − tanh𝜙).
For the purpose of making 𝐻

2
≤ 0, we select an adaptive

controller consisting of an actual control input 𝑢 and a
reparameter estimator, which provides the estimate of 𝜙:

𝑢 = −

1

𝑚
0

×

{

{

{

(𝑐
3

+

1

2𝛾
2

+ 𝜑
3

(




𝑒
3





)) 𝑒
3

+

1

𝑏
0
𝑓sin

[

[

(𝜎 −

1

2

(𝜃max − 𝜃min)

̇
̂
𝜙

cosh2 ̂𝜙
) 𝑥
2

+ 6𝑘
1
𝑥
1
𝑥
2

2
+ (ℎ
2

+ 3𝑘
2
𝑒
2

2
) (𝑐
1
𝑥
2

+ 3𝑘
1
𝑒
2

1
𝑥
2
)

+ (
̂
𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
)

× (
̂
𝜃𝑥
2

+ 𝑏
0

(𝑥
3

+ 𝑦svc0) 𝑓sin + 𝑎
0
𝑃
𝑚

+

𝑒
2

𝛾
2

)
]

]

−

𝑓cos𝑥2
𝑏
0
𝑓
2

sin
(ℎ
2
𝑒
2

+ 𝑘
2
𝑒
3

2
+ 𝜎𝑒
1

+
̂
𝜃𝑥
2

+ 𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
)

+𝑏
0
𝑒
2
𝑓sin − 𝑚

0
𝑥
3

}

}

}

,

(25)

̇
̂
𝜙 = −𝜌[𝑒

2
𝑥
2

+

𝑒
3
𝑥
2

𝑏
0
𝑓sin

(

1

2

(𝜃max − 𝜃min) (1 − tanh ̂
𝜙)

+𝜃min + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
) ] ,

(26)

where 𝜑
3
(⋅) is a class-𝜅 function. We choose 𝜑

3
(|𝑒
3
|) = 𝑘

3
𝑒
2

3
,

𝑘
3

> 0, and then ̂
𝜙 is generated through the solution of the

differential equations governed by (26). And ̂
𝜃, the estimate

of 𝜃, is indirectly obtained by ̂
𝜙:

̂
𝜃 =

1

2

(𝜃max − 𝜃min) (1 − tanh ̂
𝜙) + 𝜃min. (27)

Then, we can obtain

𝐻
2

= −ℎ
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
− 𝑐
2
𝑒
2

2
− 𝑘
2
𝑒
4

2
− 𝑐
3
𝑒
2

3
− 𝑘
3
𝑒
4

3
≤ 0. (28)

If we define 𝑉(𝑥) = 2𝑉
3
(𝑥) as the overall Lyapunov

function, then it follows readily that

𝑉 ≤ 𝛾
2

‖𝜀‖
2

− ‖𝑧‖
2

. (29)

Equation (29) indicates that all increased energy of SVC
system from 𝑡 = 0 to any final time is always smaller than or
equal to the ones from outside; that is, the system energy is
decreasing.

Theorem 2. For the given disturbance attenuation constant
𝛾 > 0, the 𝐿

2
disturbance attenuation problem of system (1)

can be solved by adaptive controller (25) to (27), and a positive
storage function𝑉(𝑥) exists such that the dissipation inequality

𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥 (0)) ≤ ∫

𝑇

0

(𝛾
2

‖𝜀‖
2

− ‖𝑧‖
2

) 𝑑𝑡 (30)

holds for any final time 𝑇, and the closed-loop system is char-
acteristic with disturbance rejection.

When 𝜀
1

= 0, 𝜀
2

= 0, the closed-loop system is
asymptotically stable. When 𝜀

1
̸= 0, 𝜀
2

̸= 0, the 𝐿
2
gain from

the disturbance to the output of the system is smaller than or
equal to 𝛾. According to the definition of virtual control, the
𝑥
1
, 𝑥
2
, and 𝑥

3
are bounded convergences.

Remark 3. The class-𝜅 function 𝜑
𝑖
(⋅) is introduced into the

selection of stabilizing function 𝑥
∗

𝑖
, 𝑖 = 1, 2, 3, during

the recursive design procedure, in order to keep the bal-
ance between transient response and controller gain. This
approach promotes convergent speed remarkably without
increasing the controller gain.

Remark 4. Exist disturbance treatment usually assumes the
plant with bounded disturbance or zooms the items of
the energy function about the disturbance, which probably
increase the conservativeness.This paper adopts theminimax
method to maximize the effects of disturbances. The control
law is designed by undertaking the worst case disturbance
to ensure the stability of the closed-loop system. Thus, the
system is theoretically not sensitive to disturbance effects.

Remark 5. Different from the previous adaptive method in
power systems, we fully and properly utilize all the available
prior information on the bound of unknown parameter
by adopting parameter projection technique. We select a
specific uncertain parameter structure to force the parameter
estimate to staywithin the valid region and generate a smooth
adaptive control law. Accordingly, the transient performance
is significantly improved.

4. Results and Discussion

We will consider two kinds of disturbances in the digital
simulation for the single-machine infinite-bus system with
SVC. The physical parameters are selected as follows: 𝐻 =

5.9 s, 𝐷 = 1.0, 𝐸


𝑞
= 1.123 pu, 𝑉

𝑠
= 1.0 pu, 𝑇svs = 0.02 s,

𝑋
1

= 0.84 pu, 𝑋
2

= 0.52 pu, and 𝐵
𝐿

+ 𝐵
𝐶

= 0.3 pu. The
operating point is 𝛿

0
= 0.9 rad, 𝜔

0
= 314.159 rad/s, and
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Figure 4: Transient response of closed-loop system under the mechanical power perturbation.

𝑦svc0 = 0.4 pu.The control parameters are selected as follows:
𝑞
1

= 0.4, 𝑞
2

= 0.6, 𝑐
1

= 2, 𝑐
2

= 2, 𝑐
3

= 2, 𝑘
1

= 1, 𝑘
2

= 1, 𝑘
3

= 1,
𝛾 = 0.2, and 𝜌 = 1. The upper and lower bound of uncertain
parameter are 𝜃max = 0 and 𝜃min = −0.5.

In order to show the effectiveness of the proposed mod-
ified parameter projection adaptive backstepping minimax
(PBMK) controller, we will make comparisons with the
adaptive backstepping minimax (ABM) controller [18] and
the conventional adaptive backstepping (AB) controller [10]
under the same nonzero initial condition. Note that the
control parameters for ABM controller and AB controller are
selected as 𝑐

1
= 3, 𝑐
2

= 3, and 𝑐
3

= 3.

4.1. Short Circuit Ground Fault. In 4 s, a transient three-phase
short-circuit fault occurred on the transmission line. In 4.5 s,
the fault disappears, and the system restores to the normal
structure.The reactance of the transformer varies in different
stages after a short circuit ground fault as follows:

the period of pre-fault 𝑋
𝐿

= 0.52 pu;

the period of fault procedure 𝑋
𝐿

= ∞;

the period of after-fault 𝑋
𝐿

= 0.52 pu;

the transient response curves of the system are shown
in Figures 2 and 3.
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Figure 5: Control input curves under the mechanical power
perturbation.

Figures 2(a)–2(c) show that, under the proposed con-
troller PBMK, the response is improved without remarkably
increasing the controller gain; the convergent speed is faster;
the system reaches the stable state more rapidly than the ones
under ABM and AB controller. Moreover, PBMK and ABM
controllers, which are both designed by minimax method,
have advantages in the ability of disturbance attenuation.
Figure 2(d) shows that the proposed adaptive control in this
paper ensures that the estimates of the uncertain parameter
are always within the prior bounds, while for the ABM and
AB controllers, the parameter search process takes place
outside the feasible region where the corresponding “true”
parameters lie.

Figure 3 shows that, under PBMK controller, the control
input requires bigger energy in the initial period, but it
reaches the stable state in short time, and the amplitude of
oscillation is relatively smaller. The selected class-𝜅 functions
converge to zero along with the convergence to zero of the
errors. Then the control energy also coincides with that of
ABM controller.

4.2.Mechanical Power Perturbation. Unrecoverablemechan-
ical power perturbation occurs at 4 s, and the mechanical
power 𝑃

𝑚
changes to another value; that is,

𝑃
𝑚

= {

0.9, 0 ≤ 𝑡 < 4.0 s
0.9 + Δ𝑃

𝑚
, 4.0 s < 𝑡, Δ𝑃

𝑚
(𝑡) = 30%𝑃

𝑚
.

(31)

The dynamic responses of closed-loop system are shown
in Figures 4 and 5.

Figures 4 and 5 show that, after the presence of mechan-
ical power perturbation, the states are stable in a new
equilibrium point. And the proposed PBMK controller on

the convergence time and the amplitude of oscillation still
has advantages compared with ABM and AB controllers.The
dynamic response of the system does not change significantly
with the variety of disturbance form.Therefore, the controller
is insensitive to the change in disturbance.

5. Conclusions

In this paper, we present an improved robust disturbance
attenuation scheme for the nonlinear uncertain SVC sys-
tem based on improved adaptive backstepping and min-
imax method. The proposed control strategy gives some
advantages, such as the following. (a) The nonlinearities
of the SVC system model are completely retained for no
linearization process is put on the original system. (b) Our
disturbance treatment does not inquire artificially imposing
an upper bound on the disturbance or unequally scaling
the disturbance items existing in the energy function; then
the conservativeness is greatly reduced. (c) The closed-loop
system is insensitive to the disturbances because of taking
account of the maximum effect of the damage. (d) The
class-𝜅 functions introduced into the backstepping procedure
are helpful to speed up the response without significantly
increasing the control gain. (e) We develop a nonlinear
smooth function to map the uncertain parameter 𝜃 into 𝜙

in order to restrict 𝜃 to be lying within the prior specified
interval, and guarantee that the parameter estimate has a
higher convergence rate. Simulation research is under two
disturbances that; the results indicate that the proposed con-
trol strategy has advantages in terms of the convergence time
and oscillation amplitude in comparison with traditional
adaptive backstepping approach.
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Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback
linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear
input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an
iterative quadratic program (IQP) routine on the continuous-time system. To guarantee its convergence, another iterative approach
is incorporated.The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both
a numerical example and the continuous stirred tank reactors (CSTR) demonstrate the effectiveness of the proposed method.

1. Introduction

Model predictive control (MPC) is a popular algorithm in
process control which online solves an optimization problem
at each time step [1]. MPC considers process input, output,
and state constraints directly in the control variable calcu-
lation. Under the linear model, with a quadratic objective
function, MPC utilizes the convex quadratic program (QP),
which can easily find the optimal solution [2].

Industrial processes are generally nonlinear, due to the
frequent changes of the operating point right across the
whole operation range. In general, the nonlinear model
predictive control (NMPC) also online solves an optimization
problem, by using the sequential quadratic program (SQP).
The resulting nonlinear programming problems are usually
nonconvex, and the online computational burden is generally
large for most complex systems. A general way to solve this
nonlinear optimal problem is to use approximate approach.
For example, the first control move is calculated exactly, since
it is actually implemented. The rest control moves can be
approximated, since they are not implemented [3]. Thus the
number of decision variables in the online optimization prob-
lem is equal to the number of inputs, instead of the number
of inputs multiplied by the control horizon for a conventional

NMPC algorithm. Paper [4] extended the first prediction of
the linear constraints to the whole control horizon. Paper
[5] studies the stability and region of attraction properties
of a family of nonlinear MPC systems. Paper [6] presents
nonlinear multivariable predictive control using neurofuzzy
networks.

“Jacobian linearization” and “the input-output feedback
linearization (IOFL)” are the two popular approaches in
nonlinear control area. While the former can reflect the
nonlinear model only at some certain point, the later rep-
resents the nonlinear system over a much wider operating
range. Thus, IOFL is utilized in this paper for constitut-
ing nonlinear MPC, since the IOFL can offer a linear
dynamic system so that the total optimal problem can be
solved using the QP routine. Nevertheless, this can make
the constraints to be nonlinear and state dependent. The
approximate method developed in paper [7] can guarantee
a feasible solution over the entire prediction horizon. The
neural network is utilized to model the nonlinear discrete-
time system. Paper [8] also introduces a technique with an
affine transformation of the feasible region using feedback
linearization scheme for handling input constraints. The
neural network is also utilized to model the nonlinear
system.
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For digital MPC controller design, since the real-time
control systems are in discrete-time forms, most NMPC
research adopts the discrete-time feedback linearization. It
should be noticed that the IOFL in differential geome-
try has been well developed for continuous-time system.
Some famous methods in continuous-time system [9], for
example, the extended system method, are not suitable to
feedback linearise a general discrete-time system. Direct
application of feedback linearization for a general discrete-
time system may either be impossible or involve the time-
consuming search algorithm. In [10], the authors proposed
a linear model predictive control strategy via input/output
linearization to the nonlinear process, by using one-step
constraint algorithm. This paper aims to make full use of
the advantage of continuous-time system IOFL and then
try to reach the convergence to a feasible solution over
the entire prediction horizon within the available time.
Since the input constraints are transferred into nonlinear
constraints from initial linear constraints, the convergent
algorithm is constituted to guarantee a feasible solution
without constraints violation. Simulation results on both a
numerical example and the continuous stirred tank reac-
tors (CSTR) demonstrate the effectiveness of the NMPC
method.

2. The Linear Control Structure via
Input-Output Feedback Linearization

The IOFL is to transform the original nonlinear system into
linear input-output relationship, generally by using a static
state feedback control law [11]. Consider the SISO affine state-
space model as follows:

̇
𝑥 = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢,

𝑦 = ℎ (𝑥) ,

(1)

where 𝑥 ∈ 𝑅
𝑛 is state variables, 𝑢 is the manipulated input

variable, 𝑦 is the controlled output variable, and 𝑓, 𝑔, and ℎ
are smooth functions in a domain𝐷 ⊂ 𝑅

𝑛.

Definition 1 (relative degree). The nonlinear system (1) is said
to have relative degree 𝛾, 1 ≤ 𝛾 ≤ 𝑛, in a region𝐷

0
⊂ 𝐷 if

𝐿
𝑔
𝐿
𝑖

𝑓
ℎ (𝑥) ≡ 0, 𝑖 = 0, . . . , 𝛾 − 2;

𝐿
𝑔
𝐿
𝛾−1

𝑓
ℎ (𝑥) ̸= 0, ∀𝑥 ∈ 𝐷

0
.

(2)

If the relative degree 𝛾 = 𝑛, then for every 𝑥
0
∈ 𝐷, a

neighborhood𝑁 of 𝑥
0
exists such that the mapΦ : 𝑥 → 𝑥 =

[ℎ 𝐿
𝑓
ℎ ⋅ ⋅ ⋅ 𝐿

𝑛−1

𝑓
ℎ]

𝑇 restricted to𝑁 is a diffeomorphism
on𝑁.

The mapping Φ transfers the system (1) to a new system
as follows:

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= 𝑥
3
,

...

̇𝑥
𝑛
= 𝑏 (𝑥) + 𝑎 (𝑥) 𝑢,

𝑦 = 𝑥
1
,

(3)

where 𝑎(𝑥) = 𝐿
𝑔
𝐿
𝑛−1

𝑓
ℎ(𝑥), 𝑏(𝑥) = 𝐿𝑛

𝑓
ℎ(𝑥), which can also be

expressed as 𝑎(𝑥), 𝑏(𝑥) in the new coordinates.
The feedback law is

𝑢 =

1

𝑎 (𝑥)

[−𝑏 (𝑥) + V] , (4)

where V is the transformed input variable. The new linear
system is

̇𝑥 = 𝐴𝑥 + 𝐵V,

𝑦 = 𝐶𝑥,

(5)

where

𝐴 =

[

[

[

[

0 1 0

d d
d 1

0 0

]

]

]

]

, 𝐵 =

[

[

[

[

[

0

0

...
1

]

]

]

]

]

, 𝐶 = [1 0 ⋅ ⋅ ⋅ 0] .

(6)

The resulting linear state-space system (5) could be used
for constituting “standard” linear MPC [1]. Discretization (5)
can result in

𝑥 (𝑘 + 1) = 𝐴
𝑑
𝑥 (𝑘) + 𝐵

𝑑
V (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑑
𝑥 (𝑘) .

(7)

Thematrices𝐴
𝑑
, 𝐵
𝑑
, and 𝐶

𝑑
are expressed as𝐴

𝑑
= 𝑒
𝐴𝑇, 𝐵
𝑑
=

∫

𝑇

0

𝑒
𝐴𝑡

𝑑𝑡 ⋅ 𝐵, 𝐶
𝑑
= 𝐶, where 𝑇 is sampling time.

DefineΔ𝑥(𝑘+1) = 𝑥(𝑘+1)−𝑥(𝑘);Δ𝑥(𝑘) = 𝑥(𝑘)−𝑥(𝑘−1);
ΔV(𝑘) = V(𝑘)−V(𝑘−1). Choose a new group of state variables
𝑥
𝑢
(𝑘) = [Δ𝑥(𝑘)

𝑇

𝑦(𝑘)]

𝑇

; the augmented system is

𝑥𝑢(𝑘+1)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[

Δ𝑥 (𝑘 + 1)

𝑦 (𝑘 + 1)
]=

𝐴𝑢

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
𝐴
𝑑

0
𝑇

𝑑

𝐶
𝑑
𝐴
𝑑
1

]

𝑥𝑢(𝑘)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[

Δ𝑥 (𝑘)

𝑦 (𝑘)
] +

𝐵𝑢

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[

𝐵
𝑑

𝐶
𝑑
𝐵
𝑑

] ΔV (𝑘) ,

𝑦 (𝑘) =

𝐶𝑢

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[0
𝑑
1] [

Δ𝑥 (𝑘)

𝑦 (𝑘)
] ,

(8)
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where 0
𝑑
=

𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[0 0 ⋅ ⋅ ⋅ 0]. Based on the state-space model
(𝐴
𝑢
, 𝐵
𝑢
, 𝐶
𝑢
), the future outputs along the predictive horizon

𝑁
𝑝
are calculated sequentially as

𝑦 (𝑘 + 1 | 𝑘) = 𝐶
𝑢
𝐴
𝑢
𝑥
𝑢
(𝑘) + 𝐶

𝑢
𝐵
𝑢
ΔV (𝑘) ,

𝑦 (𝑘 + 2 | 𝑘) = 𝐶
𝑢
𝐴
2

𝑢
𝑥
𝑢
(𝑘) + 𝐶

𝑢
𝐴
𝑢
𝐵
𝑢
ΔV (𝑘)

+ 𝐶
𝑢
𝐵
𝑢
ΔV (𝑘 + 1)

...

(9)

𝑦 (𝑘 + 𝑁
𝑝
| 𝑘) = 𝐶

𝑢
𝐴

𝑁𝑝

𝑢
𝑥
𝑢
(𝑘) + 𝐶

𝑢
𝐴

𝑁𝑝−1

𝑢
𝐵
𝑢
ΔV (𝑘)

+ 𝐶
𝑢
𝐴

𝑁𝑝−2

𝑢
𝐵
𝑢
ΔV (𝑘 + 1) + ⋅ ⋅ ⋅

+ 𝐶
𝑢
𝐴
𝑢

𝑁𝑝−𝑁𝑐
𝐵
𝑢
ΔV (𝑘 + 𝑁

𝑐
− 1) .

(10)

Define vectors

𝑌 = [𝑦 (𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ 𝑦 (𝑘 + 𝑁
𝑝
| 𝑘)]

𝑇

,

Δ𝑉 = [ΔV (𝑘) ΔV (𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ ΔV (𝑘 + 𝑁
𝑐
− 1 | 𝑘)]

𝑇

,

(11)

where𝑁
𝑐
is the control horizon.

Collect (9) and (10) together in a compact matrix form as

𝑌 = 𝐹𝑥
𝑢
(𝑘) + ΨΔ𝑉, (12)

where

𝐹 =

[

[

[

[

[

[

[

𝐶
𝑢
𝐴
𝑢

𝐶
𝑢
𝐴
𝑢

2

𝐶
𝑢
𝐴
𝑢

3

...
𝐶
𝑢
𝐴
𝑢

𝑁𝑝

]

]

]

]

]

]

]

, Ψ =

[

[

[

[

[

[

[

𝐶
𝑢
𝐵
𝑢

0 0 ⋅ ⋅ ⋅ 0

𝐶
𝑢
𝐴
𝑢
𝐵
𝑢

𝐶
𝑢
𝐵
𝑢

0 ⋅ ⋅ ⋅ 0

𝐶
𝑢
𝐴
𝑢

2

𝐵
𝑢

𝐶
𝑢
𝐴
𝑢
𝐵
𝑢

𝐶
𝑢
𝐵
𝑢

⋅ ⋅ ⋅ 0

...
𝐶
𝑢
𝐴
𝑢

𝑁𝑝−1

𝐵
𝑢
𝐶
𝑢
𝐴
𝑢

𝑁𝑝−2

𝐵
𝑢
𝐶
𝑢
𝐴
𝑢

𝑁𝑝−3

𝐵
𝑢
⋅ ⋅ ⋅ 𝐶

𝑢
𝐴
𝑢

𝑁𝑝−𝑁𝑐
𝐵
𝑢

]

]

]

]

]

]

]

. (13)

Similarly, we can have the future state variables along the
predictive horizon𝑁

𝑐
based on the model of (𝐴

𝑑
, 𝐵
𝑑
, 𝐶
𝑑
)

𝑋 = 𝐴Δ𝑉 + 𝛾, (14)

where

𝑋 = [𝑥 (𝑘) 𝑥 (𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ 𝑥 (𝑘 + 𝑁
𝑐
− 1 | 𝑘)]

𝑇

,

̃A =

[

[

[

[

[

[

[

[

[

[

0 0 ⋅ ⋅ ⋅ 0

𝐵
𝑑

0 ⋅ ⋅ ⋅ 0

(𝐴
𝑑
+ 𝐼) 𝐵

𝑑
𝐵
𝑑

⋅ ⋅ ⋅ 0

...
...

...
...

(

𝑁𝑐−1

∑

𝑖=1

𝐴
𝑑

𝑖−1

)𝐵
𝑑
(

𝑁𝑐−2

∑

𝑖=1

𝐴
𝑑

𝑖−1

)𝐵
𝑑
⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]

]

]

,

𝛾 =

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑥 (𝑘)

𝑥 (𝑘) + 𝐴
𝑑
Δ𝑥 (𝑘)

𝑥 (𝑘) + (

2

∑

𝑖=1

𝐴
𝑑

𝑖

)Δ𝑥 (𝑘)

...

𝑥 (𝑘) + (

𝑁𝑐−1

∑

𝑖=1

𝐴
𝑑

𝑖

)Δ𝑥 (𝑘)

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(15)

The object function to be minimised is a quadratic criterion
on Δ𝑉 as

𝐽 = (𝑅
𝑠
− 𝑌)
𝑇

(𝑅
𝑠
− 𝑌) + Δ𝑉

𝑇

𝑅Δ𝑉. (16)

By using (12), the optimization problem can be attributed to

𝐽min = min
Δ𝑉

{

1

2

Δ𝑉
𝑇

𝐻Δ𝑉 + Γ
𝑇

Δ𝑉}

subject to Δ𝑉 ≤ Δ𝑉 ≤ Δ𝑉,

(17)

where 𝐻 = Ψ
𝑇

Ψ + 𝑅, Γ = Ψ
𝑇

(−𝑅
𝑠
+ 𝐹𝑥
𝑢
(𝑘)), Δ𝑉 and Δ𝑉

indicates the minimal and maximum value of Δ𝑉.

3. Convergence Algorithm for
Constraint Optimal MPC

3.1. The Nonlinear Constraint Handling. In practice, the pro-
cess inputs are frequently subjected to the following level
inequality constraints:

𝑈 ≤ 𝑈 ≤ 𝑈, (18)

where 𝑈 = [𝑢
𝑘

⋅ ⋅ ⋅ 𝑢
𝑘+𝑁𝑐−1

]
𝑇 represents the control

inputs, and 𝑈 and 𝑈 indicate the minimal and maximum
value of 𝑈.

After the realization of the IOFL, the input vector 𝑈
is transformed into a new one 𝑉. With this nonlinear and
state dependent input constraint, traditional QP cannot be
used to calculate the optimal control sequence. Though
the sequential quadratic programming (SQP) technique is
generally used on nonlinear constraint MPC, it is often
nonconvex and can cause large computation burden. This
propertywill be demonstrated later in the simulation example
of CSTR.
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In order to solve this nonlinear constraints problem, an
iterative QP is first used to try to get the optimal solution.The
key issue is to establish the nonlinear relationship between
vectors𝑉 and𝑈 and then get the explicit expression of𝑈 from
𝑉.

To establish the nonlinear relationship between vectors𝑉
and 𝑈, expand the feedback law (4) over the control horizon
𝑁
𝑐
,

V (𝑘) = 𝑎 (𝑥 (𝑘)) 𝑢 (𝑘) + 𝑏 (𝑥 (𝑘)) ,

V (𝑘 + 1) = 𝑎 (𝑥 (𝑘 + 1)) 𝑢 (𝑘 + 1) + 𝑏 (𝑥 (𝑘 + 1)) ,

...

V (𝑘 + 𝑁
𝑐
− 1)

= 𝑎 (𝑥 (𝑘 + 𝑁
𝑐
− 1)) 𝑢 (𝑘 + 𝑁

𝑐
− 1) + 𝑏 (𝑥 (𝑘 + 𝑁

𝑐
− 1)) .

(19)

Considering the expression (14), (19) can be rearranged in
the matrix form

𝑉 = 𝐺
𝑢
[𝑈, Δ𝑉] . (20)

The above inequality can be rewritten in the following form:

𝐺 [𝑈, Δ𝑉] = 0 (21)

due to

𝑉 =

[

[

[

[

[

V (𝑘)
V (𝑘 + 1)

...
V (𝑘 + 𝑁

𝑐
− 1)

]

]

]

]

]

=

[

[

[

[

[

[

[

1 0

1 1

1 1 1

... d d d
1 1 ⋅ ⋅ ⋅ 1 1

]

]

]

]

]

]

]

⋅

[

[

[

[

[

ΔV (𝑘)
ΔV (𝑘 + 1)

...
ΔV (𝑘 + 𝑁

𝑐
− 1)

]

]

]

]

]

+ V (𝑘 − 1) .

(22)

In general, V(𝑘 + 𝑖 − 1) can be rewritten as

V (𝑘 + 𝑖 − 1)

= V (𝑘 − 1) +
𝑖

∑

𝑗=1

ΔV (𝑘 + 𝑗 − 1) (𝑖 = 1, . . . , 𝑁
𝑐
) ,

(23)

with the constraints

V ≤ V ≤ V, (24)

where V, V indicate the minimal and maximum value of V,
which are state dependent.

Thus

V
𝑘+𝑖−1

(𝑥 (𝑘 + 𝑖 − 1)) − V (𝑘 − 1)

≤

𝑖

∑

𝑗=1

ΔV (𝑘 + 𝑗 − 1)

≤ V
𝑘+𝑖−1

(𝑥 (𝑘 + 𝑖 − 1)) − V (𝑘 − 1) .

(25)

The above inequality can be rewritten over the entire horizon,

Λ
𝑇

Δ𝑉 (𝑘) ≤ 𝑐(𝑋 (Δ𝑉 (𝑘)))
𝑇

, (26)

where

Λ = [𝐿
𝑇

−𝐿
𝑇

] , 𝐿 =

[

[

[

[

[

[

[

1 0

1 1

...
1 1 ⋅ ⋅ ⋅ 1

]

]

]

]

]

]

]

,

𝑐 = [V𝑘 − V (𝑘 − 1) ⋅ ⋅ ⋅ V
𝑘+𝑁𝑐−1

− V (𝑘 − 1) V (𝑘 − 1) − V
𝑘
⋅ ⋅ ⋅ V (𝑘 − 1) − V

𝑘+𝑁𝑐−1
] .

(27)

From (26), the above equation can be rewritten as

Λ
𝑇

Δ𝑉 (𝑘) ≤ 𝑐(𝑋 (Δ𝑉 (𝑈 (𝑘))))
𝑇

. (28)

This iterative QP algorithm is presented below:

Step 1: Initializing 𝑐(𝑋(Δ𝑉(𝑈0(𝑘)))) within the input
constraint.
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Step 2: Solve QP for Δ𝑉𝑖(𝑘) subject to Λ𝑇Δ𝑉𝑖(𝑘) ≤
𝑐(𝑋(Δ𝑉(𝑈

𝑖−1

(𝑘))))

𝑇

Step 3: Calculate 𝑐(𝑋(Δ𝑉(𝑈𝑖(𝑘))))

Step 4: Test if Λ𝑇Δ𝑉𝑖(𝑘) ≤ 𝑐(𝑋(Δ𝑉(𝑈
𝑖

(𝑘))))

𝑇, end;
otherwise, 𝑖 = 𝑖 + 1, go to Step 2.

The above iterative QP is effective for solving the problem
if the initial condition is properly chosen. Nevertheless, it
has no guaranteed convergence to a feasible solution. To
overcome this problem, another iterative algorithm is needed
to guarantee a feasible solution over the entire prediction
horizon is incorporated. This idea is previously presented by
paper [7] on a input/output model. Extending it to the state-
space equation is straightforward.

In order to solve the convergence problem, linear approx-
imation is necessary. Now consider the approximation by
linearization through Taylor’s expansion about 𝑈

0
of the

nonlinear constraints (21) as

Δ𝑉 = Δ𝑉
0
+ 𝑔 [𝑈

0
] (
̃
ℎ) + 𝑟 (

̃
ℎ) , (29)

where 𝑈
0
is the chosen initial operating trajectory, Δ𝑉

0
is

obtained from (21) when 𝑈 = 𝑈
0
, the (𝑁

𝑐
× 𝑁
𝑐
) dimensional

matrix 𝑔[𝑈
0
] represents the Jacobian matrix 𝜕Δ𝑉/𝜕𝑈 in (21)

at the operating trajectory, and 𝑟(̃ℎ) corresponds to the higher
order terms of the approximation given by

𝑟 (
̃
ℎ) =

1

2

̃
ℎ
𝑇

𝑔 [𝑈
0
+ 𝜃
̃
ℎ]
̃
ℎ, (30)

where 𝜃 ∈ [0, 1], ̃ℎ = 𝑈 − 𝑈
0
.

Neglect the higher order terms as

Δ𝑉 = Δ𝑉
0
+ 𝑔 [𝑈

0
] (𝑈 − 𝑈

0
) . (31)

Equation (31) can lead to an explicitly linear function rela-
tionship between the control sequence 𝑈 and Δ𝑉:

𝑈 = 𝑔
−1

[𝑈
0
] Δ𝑉 + 𝑈

0
− 𝑔
−1

[𝑈
0
] Δ𝑉
0
. (32)

Now the optimization problem is defined as

𝐽min = min
Δ𝑉

{

1

2

Δ𝑉
𝑇

𝐻Δ𝑉 + Γ
𝑇

Δ𝑉} . (33)

subject to the convex set of approximate linear constraints

𝑈 ≤ 𝑀Δ𝑉 + 𝑚
0
≤ 𝑈, (34)

with𝑀 = 𝑔
−1

[𝑈
0
],𝑚
0
= 𝑈
0
− 𝑔
−1

[𝑈
0
] × Δ𝑉

0
.

In order for the algorithm to reach the convergence to a
feasible solution, the optimal problem can be rewritten as

Δ𝑉
∗

= arg min
Δ𝑉

{

1

2

Δ𝑉
𝑇

𝐻Δ𝑉 + Γ
𝑇

Δ𝑉} (35)

subject to 𝑈 ≤ 𝑀
𝛼

Δ𝑉 + 𝑚
0

𝛼

≤ 𝑈, (36)

where 0 < 𝛼 < 1 is decreasing parameter with initial value
𝛼 = 1. Define𝑀𝛼 and𝑚𝛼

0
, respectively, by

𝑀
𝛼

= (𝑔
−1

[𝑈
0
])

𝛼

(𝐼 − (𝑔
−1

[𝑈
0
])

𝛼

)

−1

,

𝑚
𝛼

0
= 𝑈
0
− (𝑔
−1

[𝑈
0
])

𝛼

(𝐼 − (𝑔
−1

[𝑈
0
])

𝛼

)

−1

Δ𝑉
0
.

(37)

Define 𝑈∗
𝑙
= 𝑀
𝛼

Δ𝑉
∗

+ 𝑚
𝛼

0
to be the linear control sequence

and 𝑈∗
𝑛𝑙
to be the nonlinear control sequence obtained from

𝐺[𝑈, Δ𝑉
∗

] = 0. Then the major goal is to keep

𝑈 ≤ 𝑈
∗

𝑛𝑙
≤ 𝑈. (38)

Thus the optimization problem with the approximate con-
straints Δ𝑉∗ is a feasible solution, which can be solved
iteratively using QP.

This approximate constraints algorithm is presented fol-
lows.

Step 1: assure feasibility of the new operating trajec-
tory: 𝑈 ≤ 𝑈

𝑖
≤ 𝑈. Solve for Δ𝑉

0
,𝑀,𝑚

0

Step 2: 𝛼
𝑖−1
= 1

Step 3: actualize the squeezing factor 𝛼:

𝛼 = 𝛼 × 𝜆. (39)

Step 4: new linearized constraints at𝑈
0
:𝑈 ≤ 𝑀𝛼Δ𝑉+

𝑚
𝛼

0
≤ 𝑈.

Step 5: Solve QP for the new linearized constraints:

Δ𝑉
∗

𝑖+1
= arg min
Δ𝑉

𝐽 (Δ𝑉) . (40)

Step 6: test if𝑈∗
𝑛𝑙
violate the original constraint. If:𝑈 ≤

𝑈
∗

𝑛𝑙
≤ 𝑈 ⇒ 𝐸𝑛𝑑.

Step 7: let 𝑖 = 𝑖 + 1, go to 3.

3.2.The Convergence Property. With the object function (35),
assume the practical input sequence constraints

|𝑈| ≤ 1. (41)

Assume a given initial vector representing the operating
trajectory, 𝑈

0
, verifying the conditions





𝑈
0





≤ 1 − 𝜀

1
, (42)

where 𝜀
1
is small positive scalar values, 𝜀

1
> 0.

For any given scalar 0 < 𝛼 < 1, the solution of the
optimization problem (35) is subjected to







𝑈
0
+ (𝑔
−1

[𝑈
0
])

𝛼

(𝐼 − (𝑔
−1

[𝑈
0
])

𝛼

) (Δ𝑉
∗

− Δ𝑉
0
)








≤ 1.

(43)

which can be further written as




Δ𝑉
∗



≤ [𝐼 − (𝑔

−1

[𝑈
0
])

−𝛼

] (𝑔 [𝑈
0
])
𝛼

(1 − 𝑈
0
) + Δ𝑉

0
.

(44)

In the limit, as 𝛼 → 0, (𝑔−1[𝑈
0
])

−𝛼

→ 𝐼, (𝑔[𝑈
0
])
𝛼

→ 𝐼, the
solution of the optimization problem is given by

lim
𝛼→0





Δ𝑉
∗



≤ Δ𝑉
0
. (45)

Due to the smooth function 𝐺[𝑈, Δ𝑉] = 0 and definition
(42), this last result leads to





𝑈
∗



=




𝑈
0





≤ 1 − 𝜀

1
, (46)

signifying that the resulting practical nonlinear control
sequence is always within the bounds, and so a feasible
solution is always guaranteed.
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3.3. The Algorithm for Constraint Optimal MPC. The MPC
algorithm, which can guarantee convergence to a feasible
solution, has to deal with the constraints as the following
steps:

Step 1: 𝑖 = 0.
Step 2: if (𝑁 − 𝑖 < 0), go to 8.
Step 3: assure feasibility of the new operating trajec-
tory: 𝑈 ≤ 𝑈

𝑖
≤ 𝑈.

Step 4: solve QP at 𝑈
𝑖
:

Δ𝑉
∗

𝑖+1
= arg min
Δ𝑉

𝐽 (Δ𝑉) (47)

subject to Λ𝑇Δ𝑉∗
𝑖+1
≤ 𝑐(𝑋 (Δ𝑉 (𝑈

𝑖
)))
𝑇

. (48)

Step 5: test if Δ𝑉∗
𝑛𝑙
violates the constraints: if Λ𝑇Δ𝑉 ≤

𝑐(𝑋(Δ𝑉(𝑈
𝑖+1
)))
𝑇

⇒ 𝐸𝑁𝐷

where 𝑈
𝑖+1
= 𝑈
∗

𝑛𝑙
is nonlinear control sequence,

obtained from 𝐺[𝑈
∗

𝑛𝑙
, Δ𝑉
∗

𝑖+1
] = 0.

Step 6: 𝑖 = 𝑖 + 1. Go to 2
Step 7: 𝑈

0
= 𝑈
𝑖
, Δ𝑉
0
= Δ𝑉
∗

𝑁
. Solve for𝑀,𝑚

0
.

Step 8: 𝛼 = 1.
Step 9: actualize the squeezing factor 𝛼:

𝛼 = 𝛼 × 𝜆. (49)

Step 10: new linearized constraints at 𝑈
0
: 𝑈 ≤

𝑀
𝛼

Δ𝑉 + 𝑚
0

𝛼

≤ 𝑈

Step 11: Solve QP for the new linearized constraints:

Δ𝑉
∗

𝑖+1
= arg min
Δ𝑉

𝐽 (Δ𝑉) . (50)

Step 12: test if 𝑈∗
𝑛𝑙
violate the original constraint. If:

𝑈 ≤ 𝑈
∗

𝑛𝑙
≤ 𝑈 ⇒ 𝐸𝑛𝑑

Step 13: let 𝑖 = 𝑖 + 1. Go to 9.

The total algorithm performance is quite related to the
tuning of two parameters:

𝑁: the number of iterations of the QP algorithm;
𝜆: the squeezing parameter of the convergence guar-
anteed algorithm.

The convergence speed of this iterative algorithm can
be set using the decreasing rate 𝛼, defined here through
parameter 0 < 𝜆 < 1.

Choosing the initial value 𝑈
0

is a key issue in
solving the optimal problem, since it is quite related
to the resulting computation burden. Suppose that
the final input sequence at instant 𝑘 can be expressed
as 𝑈
∗

𝑛𝑙
= [𝑢(0) 𝑢(1) ⋅ ⋅ ⋅ 𝑢(𝑁

𝑐
− 2)]
𝑇. Then, the

initial value 𝑈
0

at instant 𝑘 + 1 should be chosen
as 𝑈
0

= [𝑢(1) ⋅ ⋅ ⋅ 𝑢(𝑁
𝑐
− 2) 0]

𝑇; for example, the
first 𝑁

𝑐
− 1 factors are taken directly from the prediction of

𝑈
∗

𝑛𝑙
.
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Figure 1: The closed-loop response for a step signal under the
proposed IOFL MPC.

4. Case Studies

Two examples are presented to illustrate the implementation
and the performance of the proposed nonlinear MPC. In
example 1, a numerical state-space equation is used, and in
example 2, the control problem of CSTR is considered.

4.1. Numerical Example. Assume the state-space equations to
be

̇
𝑥
1
= 𝑥
2
,

̇
𝑥
2
= −3𝑥

2

1
𝑥
2
− 𝑥
3

1
sin (𝑥

2
) + 𝑢,

𝑦 = 𝑥
1
.

(51)

The input constraint is −0.5 ≤ 𝑢 ≤ 0.5.
Using (4), the static feedback law: V = 𝑢 + (−3𝑥

2

1
𝑥
2
−

𝑥
3

1
sin𝑥
2
)

The resulting feedback linearization linear system is

[

̇𝑥
1

̇𝑥
2

] = [

0 1

0 0
] [

𝑥
1

𝑥
2

] + [

0

1
] V,

𝑦 = 𝑥
1
𝑦 = 𝑥

1
.

(52)

Choose the predictive horizon 𝑁
𝑝

= 8, the con-
trol horizon 𝑁

𝑐
= 5, and the sampling time 𝜏 =

1 s. Figure 1 shows the system response for a step sig-
nal using the proposed IOFL MPC method. The algo-
rithm guarantee’s that the process input does not vio-
late the constraints. The system reaches stability in 3
seconds without overshoot. Figure 2 shows the number
of iterations at each optimization step. From Figure 2,
the process needs 65 iterations at the beginning but soon
reduces the iteration and finally reaches the convergence
using only one iteration.

Simulationswere then repeated under different predictive
horizons. Table 1 lists the comparison of the control perfor-
mance. From Table 1, the computing burden increases when
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Figure 2: The number of iterations at each optimization step.

Table 1: The comparison of control performance at different
prediction horizon.

Prediction horizon Computing burden
(CPU time)

Sum squared
error

8 1.0469 11.4042
10 1.1875 11.4036
12 1.2813 11.4032

the prediction horizon increases, meanwhile the tracking
property improves with the increment of the prediction
horizon.

4.2. The Control of a First-Order CSTR. CSTRs are typical
chemical processes representing a variety of complex indus-
try systems. The CSTR problem discussed here represents a
first-order, irreversible, exothermic kinetics reaction, which
can be described by the following equation [12]:

𝑑𝑥
1

𝑑𝑡

= −𝑥
1
+ 𝐷
𝛼
⋅ exp( 𝑥

2

1 + 𝑥
2
/𝛾

) ,

𝑑𝑥
2

𝑑𝑡

= − 𝑥
2
(1 + 𝛽) + 𝐻 ⋅ 𝐷

𝛼
⋅ (1 − 𝑥

1
) ⋅ exp( 𝑥

2

1 + 𝑥
2
/𝛾

)

+ 𝛽𝑢,

𝑦 = 𝑥
1
,

(53)

where the two state variables𝑥
1
and𝑥
2
are the reactor temper-

ature and the normalized reactant concentration.The control
variable 𝑢 is the normalized cooling water temperature. 𝐷

𝛼
,

𝛽, and 𝛾 are the constants of the system.
The CSTR control objectives contain two aspects: set

point tracking and regulation of reactant concentration under
the perturbation of feed water temperature.

With the static feedback law,

V = 𝑎𝑢 + 𝑏, (54)

Step
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Figure 3: The system output and the control under step changes in
the reference signal.

where

𝑎 = 𝛽 (𝜉
1
+ 𝜉
2
) ⋅ (1 − (

1

𝑟

) ln(
(𝜉
1
+ 𝜉
2
)

𝐷
𝛼

))

2

,

𝑏 = 𝜉
1
− (𝜉
1
+ 𝜉
2
) + (𝜉
1
+ 𝜉
2
)

⋅ [

ln ((𝜉
1
+ 𝜉
2
) /𝐷
𝛼
)

1 − (1/𝑟) ln ((𝜉
1
+ 𝜉
2
) /𝐷
𝛼
)

(1 + 𝛽)

+𝐻 ⋅ (1 − 𝜉
1
) (𝜉
1
+ 𝜉
2
) ] .

(55)

The resulting feedback linearization linear system is

[

̇
𝜉
1

̇
𝜉
2

] = [

0 1

0 0
] [

𝜉
1

𝜉
2

] + [

0

1
] V,

𝑦 = [1 0] [

𝜉
1

𝜉
2

] .

(56)

Suppose the constraint to be−3 ≤ 𝑢 ≤ 3. Let 𝑟, 𝐷
𝛼
, 𝐻 = 1,

𝛽 = 0.01, the predictive horizon𝑁
𝑝
= 10, the control horizon

𝑁
𝑐
= 5, and the sampling time 𝜏 = 1 s. Figure 3 shows

the system output and the control under step changes in the
reference signal.

From the simulation result, the manipulated variable 𝑢
does not violate the defined constraint. The system reaches
stability in 30 steps without obvious overshoot.

As mentioned before, there exist two general approaches
for NMPC. One is to use the SQP method. Another is
to approximate the first constraints as the constraints over
the entire control horizon. The proposed method is then
compared with these two methods, considering this CSTR
plant. The simulation results using the three predictive
control schemes for 𝑁

𝑐
= 5 are given in Figure 4, adopting

the best𝑁 and 𝜆 for each𝑁
𝑝
in the proposed IOFL NMPC.

Computation burden is one of the most concerning
problems in CSTR real-time control. In using MPC, though
choosing larger predictive horizon can improve system
performance, it can, meantime, result in the increment of
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Table 2: Left: CPU time of the entire simulation. Right: sum squared output error (SSE) in the simulation.

Predictive
horizon

CPU time SSE
One-step
constraints IOFL MPC SQP One-step

constraints IOFL MPC SQP

10 0.1563 0.2011 0.3054 11.4181 11.4045 11.4042
12 0.1719 0.2407 0.3602 11.4180 11.4034 11.4031
14 0.2031 0.2795 0.4415 11.4177 11.4026 11.4018
16 0.2614 0.3306 0.5728 11.4130 11.4019 11.4003

y
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Figure 4: The comparison of the three responses.

computation burden, especially in nonlinear system. For
further comparison, the controller performance is analysed
with respect to two variables, for example, sum squared
output error (SSE) and the relative optimization time for the
simulation. Table 2 shows the performance of each controller
configuration for various prediction horizons. The three
methods, namely, the one-step constraints, the MPC with
IOFL and the nonlinear MPC, can all guarantee a feasible
control solution over the complete prediction horizon. The
comparison of the three shows a similar trend performance
in terms of the system tracking error, although the one-step
constraint is less computational time demanding, as shown in
Figure 5.With the increase of the prediction horizon, the time
increase in nonlinearMPC is obvious, while the time increase
in one-step constraints and MPC with IOFL optimization is
quite minor. This is due to the efficient iterative process of
the proposed IOFL MPC. The reduced computing burden
for the one-step constraints method is obvious, since only
the first time-step-ahead inputs are constrained, leaving the
other 𝑁

𝑝
− 1 inputs unconstrained. The shortcoming is that

the resulting optimum may not be feasible. From Figure 5,
the total trade-off between the computational demands and
the gain in optimality is obviously favourable to the proposed
MPC with IOFL.

5. Conclusions

MPC has been widely used in industrial process. One limi-
tation of MPC is that it is mostly based on a linear model.

One-step constraints
IOFL MPC

Nonlinear MPC

SS
E

11.42

11.415

11.41

11.405

11.4
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Np = 14

Np = 14

Np = 16

Np = 16

Np = 16

CPU time

Figure 5: The comparison of control performance.

The performance will deteriorate when the current output
is relatively far away from the operating point at which the
linear controlmodel was generated, especially in the presence
of constrains. The approach presented in this paper aims
at combining the nonlinear differential geometry technique
with existingMPC technique to avoid nonlinear optimization
when using a nonlinear model of the process. Considering
the continuous-time system, the detailed routine for reaching
a feasible solution through iterative QP optimization is
presented in this paper. The initial value is properly chosen
to greatly reduce the computation burden. Comparing results
on the CSTR considering, both the SSE and the relative
optimization time needed for completing the simulation have
also been addressed in detail. The advantage is that it avoids
a direct nonlinear optimization on a nonlinear model of the
process and incorporates the linear optimization technique in
the controller design.
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We deal with the design problem of minimum entropy H
∞

filter in terms of linear matrix inequality (LMI) approach for linear
continuous-time systems with a state-space model subject to parameter uncertainty that belongs to a given convex bounded
polyhedral domain. Given a stable uncertain linear system, our attention is focused on the design of full-order and reduced-order
robust minimum entropy H

∞
filters, which guarantee the filtering error system to be asymptotically stable and are required to

minimize the filtering error system entropy (at 𝑠
0
= ∞) and to satisfy a prescribed H

∞
disturbance attenuation performance.

Sufficient conditions for the existence of desired full-order and reduced-order filters are established in terms of LMIs, respectively,
and the corresponding filter synthesis is cast into a convex optimization problemwhich can be efficiently handled by using standard
numerical software. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design
method.

1. Introduction

Estimation is the process of inferring the value of a quantity
of interests from indirect, inaccurate, and uncertain obser-
vations [1]. State estimation of dynamic systems with both
process and measurement noise inputs is a very important
and challenging problem in engineering applications. In
the past decades, quite a few attention has been devoted
to estimation methods that are based on the minimization
of the variance of the estimation error, that is, the well-
known Kalman filtering approach [2, 3]. Unfortunately, it
is recognized soon that the performance of Kalman filter
can deteriorate significantly when the process parameters
are subjected to relatively small modeling errors. In order to
cope with this problem, over the past few years interest has
been devoted to the design of robust estimators. There are
essentially two approaches to the robust estimation problem.
The first is robust H

2
filtering, which minimizes the upper

bound of the estimation error variance for all possible
parametric uncertainties under the assumption that the noise

processes have knownpower spectral densities [4, 5]. Inmany
practical situations, however, we may not be able to have
exactly known information on the spectral densities of the
noise processes. In such cases, an alternative is to reformulate
the estimation problem in anH

∞
filtering framework, which

has been well recognized to be most appropriate for systems
with noise input whose stochastic information is not precisely
known. It minimizes the worst-case energy gain from the
noise inputs to the estimation error [6–8]. There are many
results reported on the problem ofH

∞
filtering; for example,

it has been addressed for linear systems [9], linear systems
with uncertain parameters [10, 11], delay systems [6, 12], and
stochastic systems [8]. Although theH

∞
filter is known to be

less sensitive to modeling errors thanH
2
filter, it is generally

so conservative as to lead to a large intolerable estimation
error variance when the system is driven by white noise
signals.

Similar to H
∞

control problem, in the H
∞

filtering
problem [13–17], the family of filters that satisfy a filtering
error system with an H

∞
-norm bound is characterized by
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a linear fractional transformation of a “ball inH
∞
,” and then

a natural question is which element of this ball to choose.
One choice that has been considered in a closely related
problem in mathematics is to choose that which minimizes
an entropy integral; that is, the filter is well selected such that
not only the filtering error system is asymptotically stable and
the H

∞
-norm of its transfer function is below a prescribed

level, but also the entropy of the filtering error system at
infinity is minimized. This kind of optimal filters is referred
to as minimum entropy H

∞
filters in the present paper. In

fact, minimum entropy H
∞

filtering provides a means of
trading off some of the features of other filtering problems,
namely, H

2
filtering and H

∞
filtering. As for the minimum

entropy H
∞

control problem, there are many important
results that have been reported in the literature; for example,
controllers which minimize the entropy of the closed-loop
transfer function have been studied extensively for linear
time-invariant (LTI) systems, both in the continuous and
discrete-time cases [18–20]. Minimum entropy control for
time-varying systems has been investigated in [21]. To the
best of our knowledge, however, there is not any result
reported on minimum entropy H

∞
filtering problem in the

literature; research in this area should be important and
challenging; this motivates us to carry out the present study.

In this paper, we make an attempt to investigate the
design of minimum entropy H

∞
filters by using linear

matrix inequality (LMI) approach for linear continuous-
time systems with a state-space model subject to param-
eter uncertainty that belongs to a given convex bounded
polyhedral domain. Given a stable uncertain linear system,
our attention is focused on the design of full-order and
reduced-order robust minimum entropy H

∞
filters, which

guarantee the filtering error system to be asymptotically
stable and are required to minimize the filtering error system
entropy (at 𝑠

0
= ∞) as well as to satisfy a prescribed H

∞

disturbance attenuation performance. Sufficient conditions
for the existence of desired full-order and reduced-order
filters are established in terms of LMIs, respectively, and
the corresponding filter synthesis is cast into a convex opti-
mization problem which can be efficiently handled by using
the well-known interior-point algorithms [22]. A numerical
simulation example is provided to show the usefulness and
effectiveness of the proposed design method.

The rest of this paper is organized as follows. In Section 2,
the minimum entropy H

∞
filtering problem is formu-

lated. Section 3 presents our main results of the full-order
and reduced-order minimum entropy H

∞
filters design.

Section 4 provides an illustrative example. Finally, conclu-
sions are drawn in Section 5.

Notations. The notation used here is fairly standard except
where otherwise stated. 𝐴𝑇 represents the transpose of𝐴;R𝑛
and R𝑛×𝑚 denote, respectively, the 𝑛 dimensional Euclidean
space and the set of all 𝑛 × 𝑚 real matrices. the notation
𝑃 > 0 means that 𝑃 is a real symmetric and positive definite
matrix; trace(𝑃) represents the trace of 𝑃; diag{𝐹

1
, 𝐹
2
, . . .}

stands for a block-diagonal matrix whose diagonal blocks are
given by 𝐹

1
, 𝐹
2
, . . .. 𝐼 and 0 represent identity matrix and zero

matrix; | ⋅ | refers to the Euclidean vector norm and ‖ ⋅ ‖
2

denotes theL
2
norm of a differential signal; The signals that

are square integrable over [0,∞) are denoted by L
2
[0,∞)

with the norm ‖ ⋅ ‖
2
; the symbol ∗ in a matrix means that

the corresponding term of the matrix can be obtained by
symmetric property.

2. Problem Formulation

Consider the following linear time-invariant (LTI) system
(Σ):

(Σ) :

{

{

{

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐿𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝑦(𝑡) ∈ R𝑚 is the
measured output; 𝑧(𝑡) ∈ R𝑞 is a linear combination of the
state variables to be estimated; 𝜔(𝑡) ∈ R𝑙 is the disturbance
input which belongs to L

2
[0,∞); 𝐴, 𝐵, 𝐶, 𝐷, and 𝐿 are

constant real matrices of appropriate dimensions, where 𝐿 is
a known matrix and 𝐴, 𝐵, 𝐶, 𝐷 are unknown matrices such
that the system matrix

G ≜ [
𝐴 𝐵

𝐶 𝐷
] (2)

belongs to a given polytopeD described by

D ≜ {G | G =

𝑛𝑠

∑

𝑖=1

𝜆
𝑗
G
𝑗
;

𝑛𝑠

∑

𝑖=1

𝜆
𝑗
= 1, 𝜆

𝑗
≥ 0} ; (3)

that is, any admissible system matrix G can be written as
an unknown convex combination of 𝑛

𝑠
vertices G

𝑗
, 𝑗 =

1, 2, . . . , 𝑛
𝑠
, given by

G
𝑗
≜ [

𝐴
𝑗
𝐵
𝑗

𝐶
𝑗
𝐷
𝑗

] , (4)

where 𝐴
𝑗
, 𝐵
𝑗
, 𝐶
𝑗
, and 𝐷

𝑗
, 𝑗 = 1, 2, . . . , 𝑛

𝑠
, are given matrices.

Clearly, 𝑛
𝑠
= 1 corresponds to the case where the system (Σ)

is perfectly known.
Before formulating the problem of this paper, we first give

some definitions and existing results of theminimumentropy
problem. Consider the following LTI system (Π):

(Π) : {

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐿𝑥 (𝑡) ,
(5)

where 𝑦(𝑡) is the output; the other notations are defined as in
(1), and let G denote its transfer function.

Definition 1 (entropy at 𝑠
0
∈ (0,∞)). Let G ∈ RL

∞
and

𝛾 > 0 be a real scalar such that ‖G‖
∞
< 𝛾. Then the entropy

of G at 𝑠
0
is defined by

I (G; 𝛾; 𝑠
0
) ≜ −

𝛾
2

2𝜋

∫

∞

−∞

ln 

det (𝐼 − 𝛾−2G∗ (𝑗𝜛)G (𝑗𝜛))



× [

𝑠
2

0

𝑠
2

0
+ 𝜛
2
]𝑑𝜛.

(6)
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When 𝑠
0
→ ∞, we obtain the entropy at infinity of the

system, which has the following definition.

Definition 2 (entropy at infinity). Let G ∈ RL
∞

and 𝛾 > 0
be a real scalar such that ‖G‖

∞
< 𝛾. Then the entropy of G at

infinity is defined by

I (G; 𝛾;∞)

≜ −

𝛾
2

2𝜋

∫

∞

−∞

ln 

det (𝐼 − 𝛾−2G∗ (𝑗𝜛)G (𝑗𝜛))


𝑑𝜛.

(7)

It is well known that for LTI system (Π) in (5), we have
the following results for theH

2
optimization problem:

‖G‖
2

2
= trace (𝐵𝑇𝑄𝐵) , (8)

where 𝑄 = 𝑄𝑇 ≥ 0 is the solution to the Lyapunov equation

𝐴
𝑇

𝑄 + 𝑄𝐴 + 𝐿
𝑇

𝐿 = 0. (9)

In fact, 𝑄 is just the controllability Gramian.
Now, considering the H

∞
optimization problem of LTI

system, we knew that ‖G‖
∞
< 𝛾 if there exists a stabilizing

solution 𝑃 = 𝑃𝑇 ≥ 0 to the algebraic Riccati equation

𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝛾
−2

𝑃𝐵𝐵
𝑇

𝑃 + 𝐿
𝑇

𝐿 = 0, (10)

and it is easy to prove that any 𝑃 solving (10) overbounds the
controllability Gramian 𝑄; that is, 𝑃 ≥ 𝑄. To evaluate the
entropy cost, we define the following auxiliary cost.

Definition 3 (auxiliary cost). Let G ∈ RL
∞

and 𝛾 > 0 be a
real scalar such that ‖G‖

∞
< 𝛾. Then the auxiliary cost with

G is defined by

J (G; 𝛾) ≜ trace (𝐵𝑇𝑃𝐵) , (11)

where 𝑃 is a positive symmetric matrix with the smallest
possible maximum singular value among all solutions of the
algebraic Riccati equality (10).

The following lemma gives the equivalence between
the auxiliary cost and the entropy defined in (7) and (11),
respectively, which plays a key role in deriving our main
results subsequently.

Lemma4 (see [20]). LetG ∈RL
∞
and 𝛾 > 0 be a real scalar

such that ‖G‖
∞
< 𝛾.Then the entropy equals the auxiliary cost;

that is,

I (G; 𝛾;∞) = J (G; 𝛾) . (12)

Moreover, according to the result in [22], the minimum
entropy H

∞
optimization problem for the LTI system (Π)

can be formulated as follows:

min
𝑃>0, 𝑅>0

trace (𝑅) , (13)

subject to

[

[

𝐴
𝑇

𝑃 + 𝑃𝐴 𝑃𝐵 𝐿
𝑇

⋆ −𝛾
2

𝐼 0

⋆ ⋆ −𝐼

]

]

< 0,

[
−𝑅 𝐵

𝑇

𝑃

⋆ −𝑃

] ≤ 0.

(14)

The objective of this paper is to design a full-order (or
reduced-order) minimum entropy H

∞
filter the system (Σ)

in (1) of the following form:

(Σ̂) : {

̇
�̂� (𝑡) = 𝐴

𝑓
𝑥 (𝑡) + 𝐵

𝑓
𝑦 (𝑡) , 𝑥 (0) = 0,

�̂� (𝑡) = 𝐿
𝑓
𝑥 (𝑡) ,

(15)

where 𝑥(𝑡) ∈ R𝑘 is the filter state vector, 𝐴
𝑓
∈ R𝑘×𝑘, 𝐵

𝑓
∈

R𝑘×𝑚, and 𝐶
𝑓
∈ R𝑞×𝑘 are filter parameters to be determined

later. In the case where 𝑘 = 𝑛, the filter will be referred to as a
full-order filter and as a reduced-order filter when 𝑘 < 𝑛.

Augmenting the model of (1) to include the state of the
filter (Σ̂), we obtain the filtering error system as

(Σ̃) : {

̇
𝜉 (𝑡) = 𝐴𝜉 (𝑡) + 𝐵𝜔 (𝑡) ,

𝑒 (𝑡) = �̃�𝜉 (𝑡) ,

(16)

where 𝜉(𝑡) ≜ [𝑥𝑇(𝑡)𝑥𝑇(𝑡)]𝑇, 𝑒(𝑡) ≜ 𝑧(𝑡) − �̂�(𝑡) and

𝐴 ≜ [

𝐴 0

𝐵
𝑓
𝐶 𝐴
𝑓

] , 𝐵 ≜ [

𝐵

𝐵
𝑓
𝐷
] , �̃� ≜ [𝐿 −𝐿

𝑓
] .

(17)

Our aim in this paper is to determine the matrices 𝐴
𝑓
,

𝐵
𝑓
, and 𝐿

𝑓
of the full-order (or reduced-order) minimum

entropy H
∞

filter (Σ̂) in (15) such that the filtering error
system (Σ̃) in (16) is asymptotically stable with a prescribed
H
∞

disturbance attenuation level 𝛾 > 0 and a guaranteed
minimum entropy at infinity; that is, I(E; 𝛾;∞) is mini-
mized for a given scalar 𝛾 > 0 (where E is defined as the
transfer function of the filtering error system (Σ̃) in (16)).

3. Main Results

3.1. Full-Order Robust Filter Design. In this section, we will
first study the design of a full-order filter. In order to pave the
way for deriving the robust filter, initially we consider the case
where the systemmatrixG is perfectly known; that is, 𝑛

𝑠
= 1.

We first give the following result which will play a key role in
deriving our subsequent results. Since the result can be easily
obtained according to the analysis in Section 2, we omit the
proof.
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Theorem 5. The filtering error system (Σ̃) in (16) is asymptoti-
cally stable with an H

∞
disturbance attenuation level 𝛾 > 0

and a guaranteed minimum entropy, if there exist matrices
𝑃 > 0 and 𝑅 > 0 such that the following optimization problem
has feasible solution:

min
𝑃>0, 𝑅>0, 𝐴𝑓, 𝐵𝑓, 𝐿𝑓

𝑡𝑟𝑎𝑐𝑒 (𝑅) , (18)

subject to

[

[

𝐴
𝑇

𝑃 + 𝑃𝐴 𝑃𝐵 �̃�
𝑇

⋆ −𝛾
2

𝐼 0

⋆ ⋆ −𝐼

]

]

< 0, (19)

[
−𝑅 𝐵

𝑇

𝑃

⋆ −𝑃

] ≤ 0. (20)

Notice that the inequalities constraints of (19)-(20) are
not convex on the decision variables 𝑃, 𝐴

𝑓
, 𝐵
𝑓
, and 𝐿

𝑓
.

In what follows, we will present the design method of
the minimum entropy H

∞
filter, and give the following

result.

Theorem 6. Consider the system (Σ) with perfectly known
system matrix G. There exists a full-order minimum entropy
H
∞

filter of the form of (15) such that the filtering error system
(Σ̃) in (16) is asymptotically stable with an H

∞
disturbance

attenuation level 𝛾 > 0 and a guaranteed minimum entropy,
if there exist matrices U > 0 and V > 0 and matrices A

𝑓
,

B
𝑓
, andL

𝑓
such that the following optimization problem has

feasible solution:

min
U>0,V>0,A𝑓,B𝑓,L𝑓

𝑡𝑟𝑎𝑐𝑒 (𝑅) , (21)

subject to

[
[
[

[

U𝐴+ 𝐴𝑇U +B
𝑓
𝐶+ 𝐶

𝑇B𝑇
𝑓

A
𝑓
+ 𝐴
𝑇V + 𝐶𝑇B𝑇

𝑓
U𝐵 +B

𝑓
𝐷 𝐿

𝑇

⋆ A
𝑓
+A𝑇
𝑓

V𝐵 +B
𝑓
𝐷 −L𝑇

𝑓

⋆ ⋆ −𝛾
2
𝐼 0

⋆ ⋆ ⋆ −𝐼

]
]
]

]

< 0,

(22)

[

[

−𝑅 𝐵
𝑇U + 𝐷𝑇B𝑇

𝑓
𝐵
𝑇V + 𝐷𝑇B𝑇

𝑓

⋆ −U −V
⋆ ⋆ −V

]

]

≤ 0. (23)

Moreover, a desired full-orderminimum entropyH
∞

filter can
be computed from

[

𝐴
𝑓
𝐵
𝑓

𝐿
𝑓
0
] ≜ [

V−1 0
0 𝐼

] [

A
𝑓

B
𝑓

L
𝑓
0
] . (24)

Proof. According to Theorem 5, 𝑃 is nonsingular if the
optimization problemof (18)–(20) has feasible solutions since
𝑃 > 0. Now, partition 𝑃 as

𝑃 ≜ [

𝑃
1
𝑃
3

⋆ 𝑃
2

] , (25)

where 𝑃
1
and 𝑃
2
are 𝑛 × 𝑛 symmetric positive definite matri-

ces. Without loss of generality, we assume that 𝑃
3
is nonsin-

gular. To see this, let the matrix 𝑄 ≜ 𝑃 + 𝛼𝑊, where 𝛼 is a
positive scalar and

𝑊 ≜ [

0 𝐼

⋆ 0
] , 𝑄 ≜ [

𝑄
1
𝑄
3

⋆ 𝑄
2

] . (26)

Observe that, since 𝑃 > 0, we have 𝑄 > 0 for 𝛼 > 0 in
a neighborhood of the origin. Thus, it can be easily verified
that there exists an arbitrarily small 𝛼 > 0 such that 𝑄

3

is nonsingular and inequalities (19)-(20) are feasible with 𝑃
replaced by 𝑄 and such that the objective function of (18)
will be increased only by an arbitrarily small quantity. Since
𝑄
3
is nonsingular, we thus conclude that there is no loss of

generality to assume the matrix 𝑃
3
to be nonsingular.

Define the following matrices which are all nonsingular:

Γ ≜ [

𝐼 0

0 𝑃
−1

2
𝑃
𝑇

3

] , U ≜ 𝑃
1
, V ≜ 𝑃

3
𝑃
−1

2
𝑃
𝑇

3
, (27)

[

A
𝑓

B
𝑓

L
𝑓
0
] ≜ [

𝑃
3
0

0 𝐼
] [

𝐴
𝑓
𝐵
𝑓

𝐿
𝑓
0
] [
𝑃
−1

2
𝑃
𝑇

3
0

0 𝐼

] . (28)

Performing congruence transformations to (19)-(20) by
diag(Γ, 𝐼, 𝐼) and diag(𝐼, Γ), respectively, we have

[

[

Γ
𝑇

𝐴
𝑇

𝑃Γ + Γ
𝑇

𝑃𝐴Γ Γ
𝑇

𝑃𝐵 Γ
𝑇

�̃�
𝑇

⋆ −𝛾
2

𝐼 0

⋆ ⋆ −𝐼

]

]

< 0, (29)

[

−𝑅 𝐵
𝑇

𝑃Γ

⋆ −Γ
𝑇

𝑃Γ

] ≤ 0. (30)

Considering (17) and (25)–(28), we have

Γ
𝑇

𝑃𝐴Γ ≜ [

U𝐴 +B
𝑓
𝐶 A
𝑓

V𝐴 +B
𝑓
𝐶 A
𝑓

] , Γ
𝑇

𝑃𝐵 ≜ [

U𝐵 +B
𝑓
𝐷

V𝐵 +B
𝑓
𝐷
] ,

Γ
𝑇

𝑃Γ ≜ [

U V
⋆ V

] , �̃�Γ ≜ [𝐿 −L
𝑓
] .

(31)

Substituting (31) into (29)-(30) yields (22)-(23), respectively.
On the other hand, (28) is equivalent to

[

𝐴
𝑓
𝐵
𝑓

𝐿
𝑓
0
] = [

𝑃
−1

3
0

0 𝐼

] [

A
𝑓

B
𝑓

L
𝑓
0
] [
𝑃
−𝑇

3
𝑃
2
0

0 𝐼

]

= [
(𝑃
−𝑇

3
𝑃
2
)

−1

V−1 0

0 𝐼

] [

A
𝑓

B
𝑓

L
𝑓
0
] [
𝑃
−𝑇

3
𝑃
2
0

0 𝐼

] .

(32)

Note that the filter matrices of (15) can be written as (32),
which implies that 𝑃−𝑇

3
𝑃
2
can be viewed as a similarity

transformation on the state-space realization of the filter and,
as such, has no effect on the filter mapping from 𝑦 to �̂�.
Without loss of generality, we can set 𝑃−𝑇

3
𝑃
2
= 𝐼 and thus

obtain (24). This completes the proof.
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Now, we will consider the design of a full-order robust
filter. To this end, consider the system (Σ) in (1) and the
uncertainty domain D in (3). According to the previous
arguments, we have the following result.

Theorem 7. Consider the system (Σ) with system matrix G ∈
D. There exists a full-order minimum entropy H

∞
filter of

the form of (15) such that the filtering error system (Σ̃) in (16)
is asymptotically stable with an H

∞
disturbance attenuation

level 𝛾 > 0 and a guaranteed minimum entropy, if there exist
matrices U > 0 and V > 0 and matrices A

𝑓
, B
𝑓
, and

L
𝑓
such that, for 𝑗 = 1, 2, . . . , 𝑛

𝑠
, the following optimization

problem has a feasible solution:

min
U>0,V>0,A𝑓 ,B𝑓 ,L𝑓

𝑡𝑟𝑎𝑐𝑒 (𝑅) , (33)

subject to

[

[

[

[

[

U𝐴
𝑗
+ 𝐴
𝑇

𝑗
U +B

𝑓
𝐶
𝑗
+ 𝐶
𝑇

𝑗
B𝑇
𝑓

A
𝑓
+ 𝐴
𝑇

𝑗
V + 𝐶𝑇

𝑗
B𝑇
𝑓

U𝐵
𝑗
+B
𝑓
𝐷
𝑗
𝐿
𝑇

⋆ A
𝑓
+A𝑇
𝑓

V𝐵
𝑗
+B
𝑓
𝐷
𝑗
−L𝑇
𝑓

⋆ ⋆ −𝛾
2

𝐼 0

⋆ ⋆ ⋆ −𝐼

]

]

]

]

]

< 0,

[

[

−𝑅 𝐵
𝑇

𝑗
U + 𝐷𝑇

𝑗
B𝑇
𝑓
𝐵
𝑇

𝑗
V + 𝐷𝑇

𝑗
B𝑇
𝑓

⋆ −U −V
⋆ ⋆ −V

]

]

≤ 0.

(34)

Moreover, a desired full-orderminimum entropyH
∞

filter can
be computed from (24).

Proof. Employing the same arguments as in the proof of
Theorem 6, it follows that the optimization problem of (33)-
(34) is equivalent to

min
𝑃>0, 𝑅>0, 𝐴𝑓, 𝐵𝑓, 𝐿𝑓

trace (𝑅) , (35)

subject to 𝑗 = 1, 2, . . . , 𝑛
𝑠
,

[

[

𝐴
𝑇

𝑗
𝑃 + 𝑃𝐴

𝑗
𝑃𝐵
𝑗
�̃�
𝑇

⋆ −𝛾
2

𝐼 0

⋆ ⋆ −𝐼

]

]

< 0,

[

−𝑅 𝐵
𝑇

𝑗
𝑃

⋆ −𝑃

] ≤ 0,

(36)

where 𝐴
𝑗
and 𝐵

𝑗
are as in (17) with 𝐴, 𝐵, 𝐶, and 𝐷 replaced

by 𝐴
𝑗
, 𝐵
𝑗
, 𝐶
𝑗
, and𝐷

𝑗
, respectively.

Now, in view of the convexity of the uncertainty domain
and considering that the inequalities (36) are affine in the
matrices 𝐴

𝑗
, 𝐵
𝑗
, 𝐶
𝑗
, and 𝐷

𝑗
, we have the result that the

optimization problem of (35)–(36) is equivalent to that of
(18)–(20) with system matrix G ∈ D. This completes the
proof.

3.2. Reduced-Order Robust Filter Design. In this section, we
will consider the design of reduced-order robust filter, that
is, the case where the order of the filter 𝑘 is smaller than
the order 𝑛 of the original system model. As the former, we
first consider the case where the system matrixG is perfectly
known, that is, 𝑛

𝑠
= 1, which have the following result.

Theorem 8. Consider system (Σ) with perfectly known system
matrixG. There exists a reduced-order minimum entropyH

∞

filter of the form of (15) such that the filtering error system

(Σ̃) in (16) is asymptotically stable with an H
∞

disturbance
attenuation level 𝛾 > 0 and a guaranteed minimum entropy,
if there exist matrices M > 0 and N > 0 and matrices A

𝑓
,

B
𝑓
, andL

𝑓
such that the following optimization problem has

feasible solution:

min
M>0,N>0,A𝑓,B𝑓,L𝑓

𝑡𝑟𝑎𝑐𝑒 (𝑅) , (37)

subject to

[
[
[
[

[

Π
11

KA
𝑓
+ 𝐴
𝑇KN + 𝐶𝑇B𝑇

𝑓
M𝐵 +KB

𝑓
𝐷 𝐿

𝑇

⋆ A
𝑓
+A𝑇
𝑓

N𝑇K𝑇𝐵 +B
𝑓
𝐷 −L𝑇

𝑓

⋆ ⋆ −𝛾
2

𝐼 0

⋆ ⋆ ⋆ −𝐼

]
]
]
]

]

< 0,

(38)

[

[

[

−𝑅 𝐵
𝑇M + 𝐷𝑇B𝑇

𝑓
𝐵
𝑇KN + 𝐷𝑇B𝑇

𝑓

⋆ −M −KN
⋆ ⋆ −N

]

]

]

≤ 0, (39)

where K ≜ [
𝐼𝑘×𝑘

0(𝑛−𝑘)×𝑘
] and Π

11
≜ M𝐴 + 𝐴𝑇M +

KB
𝑓
𝐶 + 𝐶

𝑇B𝑇
𝑓
K𝑇. Moreover, a desired reduced-order

minimum entropyH
∞

filter can be computed from

[

𝐴
𝑓
𝐵
𝑓

𝐿
𝑓
0
] ≜ [

N−1 0
0 𝐼

] [

A
𝑓

B
𝑓

L
𝑓
0
] . (40)

Proof. The proof is along the same lines as in the proof of
Theorem 6. According to Theorem 5, 𝑃 is nonsingular if the
optimization problemof (18)–(20) has feasible solutions since
𝑃 > 0. Now, partition 𝑃 as

𝑃 ≜ [

𝑃
1
𝑃
3

⋆ 𝑃
2

] , 𝑃
3
≜ [

𝑃
4

0
(𝑛−𝑘)×𝑘

] , (41)

where 𝑃
1
∈ R𝑛×𝑛 and 𝑃

2
∈ R𝑘×𝑘 are symmetric positive

definite matrices and 𝑃
4
∈ R𝑘×𝑘. Without loss of generality,
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we assume that 𝑃
4
is nonsingular; to see this, let the matrix

Q ≜ 𝑃 + 𝛼W, where 𝛼 is a positive scalar and

W ≜ [
0
𝑛×𝑛

K

⋆ 0
𝑘×𝑘

] , Q ≜ [
Q
1
Q
3

⋆ Q
2

] ,

Q
3
≜ [

Q
4

0
(𝑛−𝑘)×𝑘

] .

(42)

With the same principle as in the proof of Theorem 6, it can
be seen that there exists an arbitrarily small 𝛼 > 0 such that
Q
4
is nonsingular and (18)–(20) have feasible solutions with

𝑃 replaced byQ; thus, we can conclude that there is no loss of
generality to assume the matrix 𝑃

4
to be nonsingular.

Define the following matrices:

Γ̃ ≜ [

𝐼 0

0 𝑃
−1

2
𝑃
𝑇

4

] , M ≜ 𝑃
1
, N ≜ 𝑃

4
𝑃
−1

2
𝑃
𝑇

4
, (43)

[

A
𝑓

B
𝑓

L
𝑓
0
] ≜ [

𝑃
4
0

0 𝐼
] [

𝐴
𝑓
𝐵
𝑓

𝐿
𝑓
0
] [
𝑃
−1

2
𝑃
𝑇

4
0

0 𝐼

] . (44)

Performing congruence transformations to (19) and (20) by
diag(Γ̃, 𝐼, 𝐼) and diag(𝐼, Γ̃), respectively, we have

[

[

Γ̃
𝑇

𝐴
𝑇

𝑃Γ̃ + Γ̃
𝑇

𝑃𝐴Γ Γ̃
𝑇

𝑃𝐵 Γ̃
𝑇

�̃�
𝑇

⋆ −𝛾
2

𝐼 0

⋆ ⋆ −𝐼

]

]

< 0, (45)

[

−𝑅 𝐵
𝑇

𝑃Γ̃

⋆ −Γ̃
𝑇

𝑃Γ̃

] ≤ 0. (46)

Considering (17) and (41)–(44), we have

Γ̃
𝑇

𝑃𝐴 Γ̃ ≜ [

M𝐴 +KB
𝑓
𝐶 KA

𝑓

N𝑇K𝑇𝐴 +B
𝑓
𝐶 A

𝑓

] ,

Γ̃
𝑇

𝑃𝐵 ≜ [

M𝐵 +KB
𝑓
𝐷

N𝑇K𝑇𝐵 +B
𝑓
𝐷

] ,

Γ̃
𝑇

𝑃Γ̃ ≜ [

M KN
⋆ N

] , �̃�Γ̃ ≜ [𝐿 −L
𝑓
] .

(47)

Substituting (47) into (45)-(46), we obtain (38)-(39), respec-
tively.

The remainder of the proof follows along the same lines
as in the proof of Theorem 6.

Now, considering the design of reduced-order robust
filter, we give the following result without proof, which can
be obtained by employing the same techniques used as those
inTheorems 7 and 8.

Theorem 9. Consider the system (Σ) with system matrix G ∈
D.There exists a reduced-orderminimumentropyH

∞
filter of

the form of (15) such that the filtering error system (Σ̃) in (16)
is asymptotically stable with an H

∞
disturbance attenuation

level 𝛾 > 0 and a guaranteed minimum entropy, if there exist
matrices M > 0 and N > 0 and matrices A

𝑓
, B
𝑓
, and

L
𝑓
such that, for 𝑗 = 1, 2, . . . , 𝑛

𝑠
, the following optimization

problem has feasible solution:

min
M>0,N>0,A𝑓,B𝑓,L𝑓

𝑡𝑟𝑎𝑐𝑒 (𝑅) , (48)

subject to

[
[
[
[

[

Π
11𝑗

KA
𝑓
+ 𝐴
𝑇

𝑗
KN + 𝐶𝑇

𝑗
B𝑇
𝑓

M𝐵
𝑗
+KB

𝑓
𝐷
𝑗
𝐿
𝑇

⋆ A
𝑓
+A𝑇
𝑓

N𝑇K𝑇𝐵
𝑗
+B
𝑓
𝐷
𝑗
−L𝑇
𝑓

⋆ ⋆ −𝛾
2

𝐼 0

⋆ ⋆ ⋆ −𝐼

]
]
]
]

]

≤ 0,

[

[

[

−𝑅 𝐵
𝑇

𝑗
M + 𝐷𝑇

𝑗
B𝑇
𝑓
K𝑇 𝐵𝑇

𝑗
KN + 𝐷𝑇

𝑗
B𝑇
𝑓

⋆ −M −KN
⋆ ⋆ −N

]

]

]

< 0,

(49)

where Π
11𝑗
≜ M𝐴

𝑗
+ 𝐴
𝑇

𝑗
M +KB

𝑓
𝐶
𝑗
+ 𝐶
𝑇

𝑗
B𝑇
𝑓
K𝑇 and K

is defined in (38). Moreover, a desired reduced-order minimum
entropyH

∞
filter can be computed from (40).

4. Numerical Example

In this section, we present an illustrative example to demon-
strate the effectiveness of the proposed algorithm. Consider
the linear continuous-time system (Σ) in (1) with parameter
matrix G belonging to polyhedral domain D, and assume
𝑛
𝑠
= 3, then the system data G

𝑗
, (𝑗 = 1, 2, 3) are given as

follows:

𝐴
1
=
[

[

−2.3 0.2 −0.3

−0.4 −0.6 0.0

0.0 0.5 −1.3

]

]

, 𝐵
1
=
[

[

0.6

0.3

−0.9

]

]

,

𝐶
1
= [1.0 0.3 1.0] , 𝐷

1
= 0.2,

𝐴
2
=
[

[

−2.5 0.0 0.6

0.0 −1.3 −0.2

−0.2 0.5 −1.6

]

]

, 𝐵
2
=
[

[

−0.4

0.6

−0.3

]

]

,

𝐶
2
= [0.4 1.2 −0.7] , 𝐷

2
= 0.8,

𝐴
3
=
[

[

−1.6 0.5 −0.2

0.3 −1.6 0.2

0.2 0.0 −0.6

]

]

, 𝐵
3
=
[

[

−0.1

−0.3

0.6

]

]

,

𝐶
3
= [0.3 −1.5 0.8] , 𝐷

3
= −0.5,

𝐿 = [0.3 0.5 0.8] .

(50)

First, we consider the full-order filter design; solving the LMIs
condition in Theorem 7 by applying the well-developed LMI
Toolbox in theMATLABenvironment directly, we obtain that
the minimum 𝛾 is 𝛾∗ = 0.4666, the minimum entropy of



Mathematical Problems in Engineering 7

0 5 10 15 20 25 30
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

St
at

e r
es

po
ns

es
 o

f fi
lte

r

t (s)

Figure 1: States of the designed full-order filter.
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Figure 2: Filtering error of the full-order filtering.

the filtering error system is I(E; 𝛾∗;∞) = 0.3618 (where E
denotes the transfer function of filtering error system), and

𝐴
𝑓
=
[

[

−0.3015 −0.0948 −0.0196

−0.3450 −1.0629 −0.6874

−0.2279 −0.4217 −0.4166

]

]

,

𝐵
𝑓
=
[

[

0.0125

−0.5696

−0.2754

]

]

,

𝐿
𝑓
= [−0.3007 −0.5002 −0.8002] .

(51)

With 𝜆
1
= 0.7, 𝜆

2
= 0.1, and 𝜆

3
= 0.2 in (3), the states

of the full-order designed filter are given in Figure 1, where
the initial condition is [1.0 −0.5 −1.0]𝑇, and the exogenous
disturbance input 𝜔(𝑡) is given as 𝜔(𝑡) = 1/(0.5 + 1.8𝑡), 𝑡 ≥ 0.
Figure 2 shows the error response of 𝑒(𝑡).

Now,we consider the reduced-order filter design, and two
cases of such filters are considered.
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Figure 3: States of the designed reduced-order filter (with the order
of 𝑘 = 2).
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Figure 4: Filtering error of the reduced-order filtering (with the
order of 𝑘 = 2).

Case 1. Set 𝑘 = 2; that is, the order of the reduced filter is
𝑘 = 2; solving the LMIs condition in Theorem 9, we obtain
that the minimum 𝛾 is 𝛾∗ = 0.5069, the minimum entropy of
the filtering error system isI(E; 𝛾∗;∞) = 0.9401, and

𝐴
𝑓
= [

−1.9483 0.5354

0.5302 −0.1546
] , 𝐵

𝑓
= [

0.6662

−0.1850
] ,

𝐿
𝑓
= [1.1058 −0.3003] .

(52)

Under the same conditions as in the full-order filter design,
the states of the designed reduced-order filter are given in
Figure 3. Figure 4 shows the error response of 𝑒(𝑡).

Case 2. Set 𝑘 = 1; that is, the order of the reduced filter is
𝑘 = 1; by solving the LMIs condition inTheorem 9, we obtain
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Figure 5: States of the designed reduced-order filter (with the order
of 𝑘 = 1).
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Figure 6: Filtering error of the reduced-order filtering (with the
order of 𝑘 = 1).

that the minimum 𝛾 is 𝛾∗ = 0.5148, the minimum entropy of
the filtering error system isI(E; 𝛾∗;∞) = 0.8677, and

𝐴
𝑓
= −1.8368, 𝐵

𝑓
= 0.4853, 𝐿

𝑓
= 1.2617. (53)

The states and the filtering error of the designed reduced-
order filter are given in Figures 5 and 6, respectively.

5. Conclusion

In this paper, the robust minimum entropy H
∞

filter has
been designed for linear continuous-time systems with poly-
topic parameter uncertainty. Sufficient conditions have been
established for the existence of general full- and reduced-
order minimum entropyH

∞
filters in terms of LMIs, which

guarantee the filtering error system to be robustly asymptoti-
cally stable and to have a prescribedH

∞
performance as well

as a guaranteed minimum entropy. The filler design could

be cast into a convex optimization problem and a numerical
example has been provided to demonstrate the effectiveness
of the proposed design method.
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The dynamics and stability of passive bipedal robot have an important impact on the mass distribution, leg length, and the angle of
inclination. Lyapunov’s secondmethod is difficult to be used in highly nonlinear multibody systems, due to the lack of constructive
methods for deriving Lyapunov fuction.The dynamics equation is established by Kane method, the relationship between the mass,
length of leg, angle of inclination, and stability of passive bipedal robot by the largest Lyapunov exponent. And the Lyapunov
exponents of continuous dynamical systems are estimated by numerical methods, which are simple and easy to be applied to the
system stability simulation analysis, provide the design basis for passive bipedal robot prototype, and improve design efficiency.

1. Introduction

Thewalking gait of active bipedal robot is achieved by control
and drive system tracking the joint angle trajectories. The
huge energy constrains the development of bipedal robot [1].
The passive bipedal robot can walk naturally under the drive
of gravity without the outside force. It is important to study
the bipedal robot walking in low energy from the bionics
[2, 3]; some research by the universities of Cornell, Mit, and
Delft was published in the Science [4].

However, the stability of the passive bipedal robot has
high sensitivity to its structure parameters; any change of
structure parameter will lead to its gait characteristics being
fluctuated evidently [5]. Therefore, it is very important to
optimize the configuration for the stability of the system
[6, 7]. The effect of structure parameters to the stable fixed
point and speed of periodic motion was analyzed under the
given initial conditions in literature [5]. Asymptotical stability
of passive bipedal robot in three dimensional space was
researched by the method that combined extended virtual
constraints and hybrid zero dynamics [8].

The dynamics equation of passive bipedal robot is mod-
eled using the Kane method in this paper, and the method
of Lyapunov exponent is applied to analyze the relationship

between the stability of the system and mass, length of leg,
and slope angle. This method is simple and reliable for the
optimization design of passive bipedal robot prototype and is
easy to program.

2. Lyapunov Exponents

Consider the two following equations

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
) ,

𝑦
𝑛+1

= 𝑓 (𝑦
𝑛
) .

(1)

Suppose that the error of initial value is |𝑥
0
−𝑦
0
|, through

the first iteration by
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After the second iteration, we have
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And through the 𝑛 time iteration
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From the above, the sensitivity of two systems to initial
disturbance is effected by the value of derivative |𝑑𝑓/𝑑𝑥| at
𝑥
0
.
The sensitivity of overall system mapping to initial value

is achieved depending on the average of all initial conditions
that needs the 𝑛th time iteration; the value of every deviation
is

(
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If there are small deviations from the initial value in
the two systems, the result will be divergent along with the
time (or times of iteration). The deviation is measured by
Lyapunov exponent, the logarithmic of geometric average in
following form:
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where 𝑥
𝑛
is the value of 𝑛 times iteration. The computational

formula of Lyapunov exponent (8) is received with 𝑛 tending
to infinity
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The stability of system state is related to the divergence
or convergence of two adjacent trajectories through the time
evolution, which can be measured by Lyapunov exponent.

In phase space, the initial conditions of the system are
defined as an infinitesimal 𝑚 dimensional ball. The ball
will naturally deform as a super circle ellipsoid due to the
dynamics effects. All the main axes of ellipsoid are arranged
according to their length, and the Lyapunov exponent 𝜆

𝑖
can

be achieved by the following form:

𝜆
𝑖
= lim
𝑛→∞

1

𝑛

𝜀
𝑖
(𝑛)

𝜀
0
(𝑛)

, (𝑖 = 1, 2, . . .) . (9)

The Lyapunov exponent is related to the divergence or
convergence of system. The trajectory is convergent in the
direction of the value of Lyapunov exponent of less than

x0 + u0

u0

x0

f
t(x0 + u0)

ut

x ≡ f
t(x0)

Figure 1: Distance evolution of the adjacent trajectory.

0, and the system is stable with no sensitivity to the initial
conditions [9]. The trajectory is divergent in the direction
of the value of positive Lyapunov exponent, and the system
is unstable with sensitivity to the initial conditions. Usually,
Lyapunov exponent is arranged according to 𝜆

1
≥ 𝜆
2
≥ 𝜆
3
≥

⋅ ⋅ ⋅ ≥ 𝜆
𝑚
.

Where the convergence and divergence of two adjacent
trajectories in phase space are quantitative description by
maximum Lyapunov exponent; the motion is stable when the
maximum Lyapunov exponent of system is less than zero.

3. Lyapunov Exponent of Continuous System

An 𝑛-dimensional differential equation of continuous
smooth dynamics system is defined as the following form:

̇𝑥 = 𝐹 (𝑥) , (10)

where ̇𝑥 = 𝑑𝑥/𝑑𝑡, 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector. Usually,

suppose two close points 𝑥
0
, 𝑥
0
+ 𝑢
0
, and the initial point

𝑥
0
located in the basin of attraction; 𝑢

0
is the disturbance of

initial 𝑥
0
(Figure 1). After a period of time t, the disturbance
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where𝑢
𝑡
is tangent vector in (11), which satisfies vary equation

in following form [10]:
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where Φ
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, that is, Φ
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). In order to calculate the trajectory, (13) needs to

be integrated. Consider the following:
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Then, the average exponent of two trajectories’ divergence
or convergence is defined as
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where ‖𝑢
𝑡
‖ is the vector of length. If 𝜆 > 0, the exponent

will be divergent nearby track. For 𝑥
0
∈ 𝑀, (14) can calculate

themaximumLyapunov exponent in a veryweak smoothness
conditions.
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Figure 2: The simplified biped model.

4. Dynamics Model of Passive Bipedal Robot

The simplified biped model is showed in Figure 2. The mass,
length, moment of inertia are, respectively, represented with
𝑚, 𝐿, and 𝐼. The two legs are connect with a passive joint.
The distance between the center of mass and hip joint is
𝐿
0
= 𝐿/2. The body of leg is rigid. The collision between foot

and ground is completely inelastic contact with no friction
and slippage. The ground is also rigid. The robot will walk
along the slope face automatically under its own gravity and
inertia with the leg given an initial speed.

The process of robot’s motion is divided into parts. (1)
The leg 1 will swing around the hip joint after it left off the
ground. The total procedure is only in gravity acting, so the
total mechanical energy is conserved. (2) When the swing
leg contacts with the ground, it will exchange role with the
supporting leg.The collision between the foot and the ground
is instantaneous, and there is no sliding during the process of
collision. The angular momentum of system is conservation.

The dynamics equations are modeled by Kane method in
following form:

[
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5. Simulation

Supposing 𝐿 = 0.62m, 𝜃 = 31
∘, and𝑚 = 14 kg, the Lyapunov

exponent spectrum will be received by (14) (showed in
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Figure 3: Lyapunov exponent spectrum.
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Figure 4: Time series of the variable.

Figure 3). The whole calculation is used by software Math-
ematica. From the Lyapunov exponent spectrum of Figure 3,
we can find one of the values of Lyapunov exponent above
0, so the passive biped robot system is unstable. It is greatly
important for optimization of the structure parameter and
stability of control to analyze the dynamic characteristic of
the passive biped robot.

The time series of all variables is showed in Figure 4.
The dynamics characteristic of system can be observed by
changing one of the structure parameters. From lots of results
of simulation, it is concluded that small changes in mass
cannot affect the dynamic characteristics of thewhole system,
but the length of leg and slope angle’s effect are obvious.

6. Conclusion

It is significant to optimize 𝑡 mass distribution, leg length,
slope angle, and other parameters of passive bipedal robot for
improving the stability of the system.The dynamics equation
of passive bipedal robot is modeled by Kane method in this
paper, and the method of Lyapunov exponent is applied to
analyze the relationship between the stability of the system
and mass, length of leg, and slope angle. This method is
simple and reliable for the optimization design of passive
bipedal robot prototype.
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Design problem of the fault detection filter for a class of uncertain feedback systems is discussed in this paper. The system under
consideration is the model with the nonstandard parameter uncertain regions. The fault detection filter design problem is reduced
to an optimized filter design problem, which maximizes the sensitivity of the fault in the fault cases and meets the disturbance
attenuation performance in both fault-free cases and fault cases, simultaneously. A numerical example is used to demonstrate the
effectiveness of the proposed design method.

1. Introduction

In recent years, fault detection technique is given more
and more attentions for the higher demands of safety and
reliability of the control systems. A considerable sum of
results on fault detection, both in the light of the data-
driven and the model-based detection techniques, have been
achieved (see [1–3]). Among the model-based techniques,
a number of results which depend on the linear matrix
inequality (LMI) techniques have appeared to deal with the
fault detection problem. References [4–6] investigate the
estimation problem of the fault by designing a filter. Recently,
a so-called 𝐻

∞
/𝐻
−
design approach for the fault detection

problem has received considerable attentions. Further, the
fault detection problem associated with some certain𝐻

∞
/𝐻
−

performance indices is discussed in [7–10]. The fault models
considered in the above papers are classical and can describe
a large class of the fault types. However, it should be pointed
out that the actuator stuck fault also needs to be investigated
when the amplitude of the faults are not larger enough to be
detected.

At the same time, most of the models are obtained by the
identification experiments with some limited input/output
data. Identification experiment in the prediction error (PE)
framework delivers an uncertain region which contains the
true system at some (user-chosen) probability level [11].
The uncertain region can result in an identified parametric

ellipsoid set which is regarded as a nonstandard parame-
ter uncertain structure in the related classical papers. The
ellipsoidal uncertain structure is studied by some results; see
[12–15] which reduce the uncertain region by employing the
robust tools. Comparedwith the stability and the stabilization
problems for this particular uncertainty, there are no results
that to pay attention to deal with the fault detection problem
with the models which have the ellipsoidal uncertainty.
Moreover, since the existing approaches about fault detection
(FD) are not appropriate for FD problem for this kind of
uncertainty, the new FD technique should solve this case.

Motivated by the above reasons, the optimization design
problem of the FD filter for uncertain linear feedback
system is studied. The design objective is to maximize the
sensitivity of the fault in the fault cases, which subjects to
the disturbances attenuation performance in both fault-free
cases and the fault cases. In practical, the frequency of the
disturbance signals and the fault signals are usually in bound.
Thus, a notion of the finite-frequency performance indices is
introduced to describe the performance indices; LMIs-based
sufficient conditions are provided using the finite-frequency
approach proposed in [16, 17]. The optimal solution of gain
matrices of the FD filter can be obtained.

The main contribution of this paper that the direct
design approach of the FD filter proposed to the linear
model with elliptical uncertain structure. Unlike other fault
detection approaches for the uncertain model, in which the
FD filter is achieved not only depending on the known



2 Mathematical Problems in Engineering

lower and known upper bounds of the uncertainty but also
extracting convex polygons of the uncertain region, a general
parametrization for the set of multipliers is introduced to
decrease the conservatism. To the best of our knowledge,
such a framework for the fault detection with the elliptical
parameter uncertainty structure has not been reported in the
literature.

The paper is organized as follows. Section 2 introduces
the problem under consideration and presents the design
objectives. Section 3 illustrates a FD filter design approach
in detail. The algorithm is given in Section 4. An illustrative
example is given in Section 5 to demonstrate the proposed
method. Conclusions to this work are given in the last section.

Notation. For a matrix 𝐴, 𝐴𝑇 denotes its transpose. For a
symmetric matrix, 𝐴 > 0 (𝐴 ≥ 0) and 𝐴 < 0 (𝐴 ≤

0) denote positive-definiteness (positive semidefinite matrix)
and negative-definiteness (negative semi-definite matrix),
respectively. The Hermitian part of a square matrix 𝑀 is
denoted by He(𝑀) := 𝑀+𝑀

𝑇.The symbol ∗within amatrix
represents the symmetric entries. 𝜎min(𝐺) denotes minimum
singular values of the transfermatrix𝐺.The symbol⊗denotes
the Kronecker product, and 0 denotes zero matrix with
appropriate dimension. Both 𝐼 andI denote identity matrix
with appropriate dimension.I

0
andI

1
denote the matrices

[1 0; 0 0] and [1; 0] of appropriate dimensions, respectively.

2. Problem Formulation

2.1. System Model. Consider the following uncertain linear
systems:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
1
𝑑 (𝑡) + 𝐵

2
𝑓 (𝑡) + 𝐿

1
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷
1
𝑑 (𝑡) + 𝐷

2
𝑓 (𝑡) + 𝐿

2
𝑤 (𝑡) ,

𝑤 (𝑡) = Δ𝑧 (𝑡) ,

𝑧 (𝑡) = 𝐻𝑥 (𝑡) Δ ∈ Δ,

(1)

where 𝑥(𝑡) is the state 𝑦(𝑡) is the output, 𝑢(𝑡) is the input,
and 𝑑(𝑡) is an energy-bounded disturbance; 𝑟

0
is the reference

input, 𝑥(𝑡) is the state; 𝐴, 𝐵
1
, 𝐵
𝑢
, 𝐶, 𝐷, 𝐿

1
, 𝐿
2
, and 𝐻

are known constant matrices of appropriate dimensions.
Consider that Δ ∈ Δ, where Δ is defined as

Δ = diag(𝜃, . . . , 𝜃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛0

) , 𝜃 = [𝜃
𝑇

1
, . . . , 𝜃

𝑇

𝑛𝜃

]

𝑇

∈ 𝑅
𝑛𝜃
, (2)

where 𝑛
0
is the number of 𝜃 in Δ, then the dimension of the

Δ is 𝑛
𝜃
𝑛
0
× 𝑛
0
, and Δ is the parameter set of Δ. The uncertain

parameter 𝜃 with a certain use-chosen probability (X) is at
the uncertain setU. The uncertain setU is an ellipsoid in the
parameter space:

U = {𝜃 | 𝜃
𝑇

R𝜃 < X} , (3)

where R describes the form of the ellipsoid and X is
a constant computed by the desired probability in model
identification.

Remark 1. The parameter uncertainty region in (1) is ellip-
soidal. This kind of particular uncertainty is derived from
classical prediction error identification, and it is a typical
parameter uncertainty of the model which is identified.
Although the parameter uncertainty can turn into the
polytopic uncertainty by extracting convex polygons of the
ellipsoidal region, this transformation method enlarges the
the uncertain region and increases the conservatism. In this
paper, the ellipsoidal uncertainty is disposed directly.

To detect the actuator stuck faults, the FD filter is
designed such that the residual 𝑟(𝑡) can be obtained as

̇𝑥
𝑓
(𝑡) = 𝐴

𝑓
𝑥
𝑓
(𝑡) + 𝐵

𝑓
𝑦 (𝑡) ,

𝑟 (𝑡) = 𝐶
𝑓
𝑥
𝑓
(𝑡) + 𝐷

𝑓
𝑦 (𝑡) ,

(4)

where 𝑥
𝑓
is the state of the FD filter. Consider that 𝐴

𝑓
∈

𝑅
𝑛𝑓×𝑛𝑓 , 𝐵

𝑓
∈ 𝑅
𝑛𝑓×𝑛𝑚 , 𝐶

𝑓
∈ 𝑅
𝑛𝑓 ,𝐷
𝑓
∈ 𝑅
𝑚.

By combining (1) and (4), we have the following aug-
mented systems:

𝜉 (𝑡) = 𝐴𝜉 (𝑡) + 𝐵
𝑑
𝑑 (𝑡) + 𝐿

1
𝑤 (𝑘) + 𝐵

𝑓
𝑓 (𝑡) ,

𝑟 (𝑡) = 𝐶𝜉 (𝑡) + 𝐷
𝑑
𝑑 (𝑡) + 𝐷

𝑓
𝑓 (𝑡) + 𝐿

2
𝑤 (𝑡) ,

𝑤 (𝑡) = Δ𝑧 (𝑡)

𝑧 (𝑡) = 𝐻𝜉 (𝑡) Δ ∈ Δ,

(5)

where 𝜉(𝑡) = [𝑥(𝑡)𝑇, 𝑥
𝑓
(𝑡)
𝑇

]

𝑇

,

[

[

𝐴 𝐵
𝑑

𝐵
𝑓
𝐿
1

𝐶 𝐷
𝑑
𝐷
𝑓
𝐿
2

]

]

=

[

[

[

[

[

𝐴 0 𝐵
1

𝐵
2

𝐿
1

𝐵
𝑓
𝐶 𝐴
𝑓

𝐵
𝑓
𝐷
1
𝐵
𝑓
𝐷
2
𝐵
𝑓
𝐿
2

𝐷
𝑓
𝐶 𝐶
𝑓
𝐷
𝑓
𝐷
1
𝐷
𝑓
𝐷
2
𝐷
𝑓
𝐿
2

]

]

]

]

]

𝐻 = [𝐻 0] .

(6)

2.2. Problem Formulation. The design problem of the FD
filter to be addressed in this paper can be expressed as follows.

The design objective: consider a class of uncertain linear
systems (1); the FD filter (4) is designed such that the
augmented model (5) is stable; the disturbance effects on
the residual are minimized in both the fault-free case and
the fault cases, while the fault effects on the residual are
maximized in the fault cases. To detect actuator faults, our
design objective of the FD filter can now be formulated as the
following optimization problem:

max𝛽 (7)

s.t. 𝛿max (𝐺𝑟𝑑 (𝑗𝜔)) < 𝛾, 𝛾 > 0, ∀ |𝜔| ≤ 𝜔
1
, Δ ∈ Δ

(8)

𝛿min (𝐺𝑟𝑓 (𝑗𝜔)) > 𝛽 𝛽 > 0, ∀ |𝜔| ≤ 𝜔
2
, Δ ∈ Δ,

(9)
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where 𝜔
1
is the upper bounds on the frequency for the

disturbance and 𝜔
2
is the upper bounds on the frequency for

the fault. 𝐺
𝑟𝑑
is the transfer function from the disturbance 𝑑

to the residual signal 𝑟with fault-free case and fault cases.𝐺
𝑟𝑓

is the transfer function from the fault 𝑓 to the residual signal
𝑟 with fault cases.

Remark 2. Condition (8) describes the disturbance attenu-
ation condition in both the fault-free case and fault cases.
Condition (9) is formulated as the sensitiveness performance
in the fault cases.

Before ending this section, the following lemmas and
proposition shall be recalled to prove our main results for the
FD filter design.

Lemma 3 (see [18]). Given a symmetric matrixΘ ∈ 𝑅
𝑛×𝑛 and

two matrices M and H of column dimension 𝑛, there exists
matrix F that satisfies Θ +M𝑇FH +H𝑇F𝑇M < 0 if and
only if the following two conditions hold:

N
𝑇

MΘNM < 0 NHΘN
𝑇

H < 0, (10)

whereNM andNH denote arbitrarily bases of null space ofM
andH, respectively.

Lemma 4 (see [19]). Let 𝜉 ∈ 𝑅
𝑛, N ∈ 𝑅

𝑛×𝑛, and M ∈

𝑅
𝑛×𝑚 such that rank (N) < 𝑛. The following statements are

equivalent:

(1) 𝜉𝑇M𝜉 < 0, for ∀ 𝜉 ̸= 0, subject toN𝜉 = 0;

(2) N⊥𝑇MN⊥ < 0, whereN⊥ is the kernel ofN;

(3) M − 𝜀N𝑇N < 0, for some scalar 𝜀 ∈ 𝑅;

(4) M + 𝑋
𝑇N +N𝑇𝑋 < 0, for some matrix 𝑋 ∈ 𝑅

𝑛×𝑚.

Proposition 5 (see [11]). Consider the uncertainty Δ with 𝜃 ∈
U defined in (3), Γ ∈ Γ is defined as

Γ := {Γ = [
Δ

𝐼
] | Δ ∈ Δ} . (11)

Restrict the parametrization of matrices Λ defined as

Λ :=
{

{

{

Λ | Λ =
[

[

Λ
11

Λ
12

Λ
𝑇

12
Λ
22

]

]

}

}

}

(12)

withΛ
22
as a positive complex Hermitian matrix of dimension

𝑛 × 𝑛. Consider that Λ
11
= −(Λ

22
⊗ (𝑅/X) + Λ

1
) ∈ 𝑅
𝑛𝜃𝑛×𝑛𝜃𝑛

and

Λ
12
= (

0 𝑝
12

⋅ ⋅ ⋅ 𝑝
1𝑛

−𝑝
12

0 ⋅ ⋅ ⋅ 𝑝
2𝑛

... d d
...

−𝑝
1𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

) ∈ 𝑅
𝑛𝜃𝑛×𝑛

, (13)

where R describes the form of the ellipsoid for uncertainty in
(3), and the elements of this parametrization (Λ

𝑎
, 𝑝
𝑖𝑗
) can take

any values provided. Consider that Λ
𝑎
∈ 𝑅
𝑛𝜃𝑛×𝑛𝜃𝑛 has the

following structure that:

Λ
1
∈ Λ1 :

{
{
{
{
{

{
{
{
{
{

{

[

[

[

[

[

[

0 𝑘
12

⋅ ⋅ ⋅ 𝑘
1𝑛

−𝑘
12

0 ⋅ ⋅ ⋅

...
... d d 𝑘

(𝑛−1)𝑛

−𝑘
1𝑛

⋅ ⋅ ⋅ −𝑘
(𝑛−1𝑛)

0

]

]

]

]

]

]

|

𝑘
𝑖𝑗
= −𝑘
𝑇

𝑖𝑗
∈ 𝑅
𝑛𝜃×𝑛𝜃

}
}
}
}
}

}
}
}
}
}

}

(14)

and 𝑝
𝑖𝑗
∈ 𝑅
𝑛, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛. For Λ ∈ Λ, Γ𝑇ΛΓ > 0,

∀Γ ∈ Γ.

3. Fault Detection Design

In this section, Lemma 6 and Proposition 7 are first given,
and inequality conditions for performance indices (8) and (9)
are also given. Based on these conditions, an algorithm based
on LMIs is presented.

Lemma 6 (see [16]). Consider the following uncertain system:

̇𝑥 (𝑡) = (𝐴 + 𝐵
1
Δ(𝐼 − 𝐷

11
Δ)
−1

𝐶
1
) 𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

𝑦 (𝑡) = (𝐶
2
+ 𝐷
21
Δ(𝐼 − 𝐷

11
Δ)
−1

𝐶
1
) 𝑥 (𝑡) + 𝐷

22
𝑢 (𝑡) ,

(15)

withΔ ∈ Δ. Let a real symmetric matrixΠ and a positive scalar
𝜛 be given. The following robust finite-frequency condition

[𝐺
1
(𝑗𝜔)
𝑇

𝐼]Π[𝐺
1
(𝑗𝜔)
𝑇

𝐼]

𝑇

< 0 |𝜔| ≤ 𝜛, Δ ∈ Δ (16)

holds if there exist real symmetric matricesP, Q, Φ ∈ Φ, and
Λ ∈ Λ such that

[

A B
I 0

]

𝑇

[

−Q P

P 𝜛
2Q
] [

A B
I 0

] < [

C𝑇

D𝑇
]Φ [C D] , (17)

Q ≥ C
𝑇

1
ΛC
1
, (18)

where

Φ := {[
Ψ 0

0 Π
] : [

Γ 0

0 Γ
]

𝑇

Ψ[

Γ 0

0 Γ
] ≤ 0, ∀Γ ∈ Γ} ,

[

[

A B
C
1
D
1

C
2
D
2

]

]

:=

[

[

[

[

[

[

[

[

𝐴 𝐵
1

𝐵
2

0

0 0 0 𝐼

0 𝐼 0 0

𝐶
1
𝐷
11

0 0

𝐶
2
𝐷
21

𝐷
22

0

0 0 𝐼 0

]

]

]

]

]

]

]

]

[C D] := [
C
11

D
11

C
2

D
2

] =
[

[

C
1

0

C
1
A C

1
B

C
2

D
2

]

]

.

(19)
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Proposition7. Consider the uncertaintyΔwith 𝜃 ∈ U defined
in (3) and Γ ∈ Γ defined in (11). Restrict the parametrization of
matrices Ψ defined as

Ψ =
[

[

Ψ
11

Ψ
12

Ψ
𝑇

12
Ψ
22

]

]

=

[

[

[

[

[

[

[

[

Ψ
111

Ψ
112

Ψ
121

Ψ
122

Ψ
𝑇

112
Ψ
113

Ψ
𝑇

122
Ψ
123

Ψ
𝑇

121
Ψ
122

Ψ
221

Ψ
222

Ψ
𝑇

122
Ψ
𝑇

123
Ψ
𝑇

222
Ψ
223

]

]

]

]

]

]

]

]

, (20)

where [ Ψ113 Ψ123
∗ Ψ223

] are positive complex Hermitian matrices of
dimension 2𝑛×2𝑛;Ψ

111
,Ψ
121

, andΨ
221

of the dimension 𝑛
𝜃
𝑛×

𝑛
𝜃
𝑛 have the structure with −(Ψ

113
⊗ (𝑅/X) + Ψ

1
), −(Ψ

123
⊗

(𝑅/X)+Ψ
2
), and −(Ψ

223
⊗(𝑅/X)+Ψ

3
), respectively. Moreover

Ψ
𝑝2
= (

0 𝑝
𝑝2

⋅ ⋅ ⋅ 𝑝
𝑝𝑛

−𝑝
𝑝2

0 ⋅ ⋅ ⋅ 𝑝
𝑝𝑛

... d d
...

−𝑝
𝑝𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

) ∈ 𝑅
𝑛𝜃𝑛×𝑛

, 𝑝 = 11, 12, 22,

(21)

where R describes the form of the ellipsoid for uncertainty
in (3), and the elements of this parametrization (Ψ

1
, Ψ
2
, Ψ
3
,

𝑝
1𝑖𝑗
, 𝑝
2𝑖𝑗
,𝑝
3𝑖𝑗
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛) can take any values

provided. For 𝑡 = 1, 2, 3, 𝑖 = 1, . . . , 𝑛, and 𝑗 = 1, . . . , 𝑛,
Ψ
𝑡
∈ 𝑅
𝑛𝜃𝑛×𝑛𝜃𝑛 has the following structure:

Ψ
𝑡
∈ Ψt :

{
{
{
{
{

{
{
{
{
{

{

[

[

[

[

[

[

0 𝑘
𝑡12

⋅ ⋅ ⋅ 𝑘
𝑡1𝑛

−𝑘
𝑡12

0 ⋅ ⋅ ⋅

...
... d d 𝑘

𝑡(𝑛−1)𝑛

−𝑘
𝑡1𝑛

⋅ ⋅ ⋅ −𝑘
𝑡(𝑛−1)𝑛

0

]

]

]

]

]

]

|

𝑘
𝑡𝑖𝑗
= −𝑘
𝑇

𝑡𝑖𝑗
∈ 𝑅
𝑛𝜃×𝑛𝜃

}
}
}
}
}

}
}
}
}
}

}

,

(22)

and 𝑝
𝑡𝑖𝑗
∈ 𝑅
𝑛. Then, for Ψ ∈ Ψ, it has

[

Γ 0

0 Γ
]

𝑇

Ψ[

Γ 0

0 Γ
] > 0, ∀Γ ∈ Γ, (23)

where Γ is defined in (11).

Proof. Let all Ψ
𝑝2
, Ψ
𝑡
, 𝑝 ∈ {11, 12, 22}, 𝑡 ∈ {1, 2, 3} have the

structure in the statement of the proposition:

Ψ
𝑇

𝑝2
Δ + Δ

𝑇

Ψ
𝑝2
= 0, Δ

𝑇

Ψ
𝑡
Δ = 0. (24)

Therefore, for every Ψ ∈ Ψ, we can have

[

Γ 0

0 Γ
]

𝑇

Ψ[

Γ 0

0 Γ
] =

[

[

[

[

Δ 0

0 𝐼

Δ 0

0 𝐼

]

]

]

]

𝑇

Ψ

[

[

[

[

Δ 0

0 𝐼

Δ 0

0 𝐼

]

]

]

]

=
[

[

Δ
𝑇

Ψ
111
Δ
𝑇

+ Ψ
𝑇

112
Δ + Δ

𝑇

Ψ
112

+ Ψ
113

Δ
𝑇

Ψ
121
Δ
𝑇

+ Ψ
𝑇

122
Δ + Δ

𝑇

Ψ
122

+ Ψ
123

∗ Δ
𝑇

Ψ
221
Δ
𝑇

+ Ψ
𝑇

222
Δ + Δ

𝑇

Ψ
222

+ Ψ
223

]

]

=

[

[

[

[

(1 − 𝜃
𝑇
𝑅

X
𝜃)Ψ
111

(1 − 𝜃
𝑇
𝑅

X
𝜃)Ψ
121

∗ (1 − 𝜃
𝑇
𝑅

X
𝜃)Ψ
221

]

]

]

]

.

(25)

When 𝜃 ∈ U and [ Ψ113 Ψ123
∗ Ψ223

] > 0, we can have

[

Γ 0

0 Γ
]

𝑇

Ψ[

Γ 0

0 Γ
] > 0, ∀Γ ∈ Γ. (26)

3.1. The Disturbance Attenuation Condition

Theorem 8. Consider the system in (5) with Δ ∈ Δ. A real
symmetric matrix Π

𝑎
= [
1 0

0 −𝛾
2
𝐼
] is given. Condition

𝛿max (𝐺𝑟𝑑 (𝑗𝜔)) < 𝛾, |𝜔| < 𝜔
2
, Δ ∈ Δ (27)

holds if there exist matrix variables 𝐴, 𝐵, 𝐶, 𝐷,𝑀, 𝑅, 𝑌
𝑎
, 𝐸
𝑎
,

𝐿
𝑎
,𝑁
𝑎
,𝑊
𝑎
, 𝑆
𝑎
,

𝑃
𝑎
=
[

[

𝑃
𝑎11

𝑃
𝑎12

𝑃
𝑎13

𝑃
𝑎21

𝑃
𝑎22

𝑃
𝑎23

𝑃
𝑎31

𝑃
𝑎32

𝑃
𝑎33

]

]

,

𝑄
𝑎
=
[

[

𝑄
𝑎11

𝑄
𝑎12

𝑄
𝑎13

𝑄
𝑎21

𝑄
𝑎22

𝑄
𝑎23

𝑄
𝑎31

𝑄
𝑎32

𝑄
𝑎33

]

]

,
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Ψ
𝑎
=

[

[

[

[

[

[

[

[

Ψ
𝑎111

Ψ
𝑎112

Ψ
𝑎121

Ψ
𝑎122

Ψ
𝑇

𝑎112
Ψ
𝑎113

Ψ
𝑎122
𝑇 Ψ
𝑎123

Ψ
𝑇

𝑎121
Ψ
𝑎122

Ψ
𝑎221

Ψ
𝑎222

Ψ
𝑇

𝑎122
Ψ
𝑇

𝑎123
Ψ
𝑇

𝑎222
Ψ
𝑎223

]

]

]

]

]

]

]

]

,

Λ
𝑎
= [

Λ
𝑎11

Λ
𝑎12

Λ
𝑇

𝑎12
Λ
𝑎22

]

(28)

of appropriate dimensions satisfying 𝑄
𝑎
> 0, Ψ

𝑎
∈ Ψ, and

Λ
𝑎
∈ Λ such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑄
𝑎11

−𝑄
𝑎12

−𝑄
𝑎13

𝑃
𝑎11

− 𝑌
𝑇

𝑎
𝑃
𝑎12

+ 𝐸
𝑇

𝑎
𝑃
𝑎13

− 𝐿
𝑇

𝑎
𝑎
17

𝑎
28

0

∗ −𝑄
𝑎22

−𝑄
𝑎23

𝑃
𝑎21

−𝑀
𝑇

𝑃
𝑎22

−𝑀
𝑇

𝑃
𝑎23

𝑎
27

𝑎
28

0

∗ ∗ −𝑄
𝑎33

𝑄
𝑎31

−𝑊
𝑇

𝑎
𝑃
𝑎32

− 𝑆
𝑇

𝑎
𝑃
𝑎33

− 𝑁
𝑇

𝑎
𝑎
37

𝑎
38

0

∗ ∗ ∗ 𝑎
44

𝑎
45

𝑎
46

𝑎
47

𝑎
48

(𝐷𝐶)

𝑇

∗ ∗ ∗ ∗ 𝑎
55

𝑎
56

𝑎
57

𝑎
58

𝐶
𝑇

∗ ∗ ∗ ∗ ∗ 𝑎
66

𝑎
67

𝑎
68

(𝐷𝐿
2
)

𝑇

∗ ∗ ∗ ∗ ∗ ∗ 𝑎
77

𝑎
78

(𝐷𝐷
1
)

𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑎
88

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝐼 − He (𝑅)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0 (29)

[

[

𝑄
𝑎11

− 𝐻
𝑇

Λ
𝑎22
𝐻 𝑄
𝑎12

𝑄
𝑎13

− 𝐻
𝑇

Λ
𝑇

𝑎12

∗ 𝑄
𝑎22

𝑄
𝑎23

∗ ∗ 𝑄
𝑎33

− Λ
𝑎11

]

]

> 0, (30)

where

𝑎
17
= −𝑌
𝑇

𝑎
V
1
, 𝑎

27
= −𝑀

𝑇V
1
, 𝑎

37
= −𝑊

𝑇

𝑎
V
1
,

𝑎
18
= −𝑌
𝑇

𝑎
V
2
, 𝑎

28
= −𝑀

𝑇V
2
, 𝑎

38
= −𝑊

𝑇

𝑎
V
2
,

𝑎
44
= 𝜔
2

1
𝑄
𝑎11

+ 𝐻
𝑇

Ψ
𝑎113

𝐻 + 𝐴
𝑇

𝐻
𝑇

Ψ
𝑎223

𝐻𝐴

+ He (𝑌
𝑎
𝐴 + 𝐵𝐶 + 𝐻

𝑇

Ψ
𝑎123

𝐻𝐴) ,

𝑎
45
= 𝜔
2

1
𝑄
𝑎12

+ 𝐴 − 𝐴
𝑇

𝐸
𝑇

𝑎
+ 𝐶
𝑇

𝐵
𝑇

,

𝑎
46
= 𝜔
2

1
𝑄
𝑎13

+ 𝐻
𝑇

Ψ
𝑇

𝑎112
+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑇

𝑎122
+ 𝐻
𝑇

Ψ
𝑎123

𝐻𝐿
1

+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑎223

𝐻𝐿
1
+ 𝑌
𝑎
𝐿
1
+ 𝐵𝐿
2
+ 𝐴
𝑇

𝐿
𝑇

𝑎
,

𝑎
55
= 𝜔
2

1
𝑄
𝑎22

+ He (𝐴) 𝑎
56
= 𝜔
2

1
𝑄
𝑎23

− 𝐸
𝑎
𝐿
1
+ 𝐵𝐿
2

𝑎
66
= 𝜔
2

1
𝑄
𝑎33

+ Ψ
𝑎111

+ 𝐿
𝑇

1
𝐻
𝑇

Ψ
𝑎223

𝐻𝐿
1

+ He (Ψ
𝑎122

𝐻𝐿
1
+ 𝐿
𝑎
𝐿
1
) ,

𝑎
47
= 𝐻
𝑇

Ψ
𝑎123

𝐻𝐵
1
+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑎223

𝐻𝐵
1
+ 𝑌
𝑎
𝐵
1

+ 𝐵𝐷
1
+ (𝐴
𝑇

𝑌
𝑇

𝑎
+ 𝐶
𝑇

𝐵
𝑇

) V
1
,

𝑎
48
= 𝐻
𝑇

Ψ
𝑇

𝑎122
+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑇

𝑎222
+𝑊
𝑎
+ (𝐴
𝑇

𝑌
𝑇

𝑎
+ 𝐶
𝑇

𝐵
𝑇

) V
2
,

𝑎
57
= −𝐸
𝑎
𝐵
1
+ 𝐵𝐷
1
+ 𝐴
𝑇V
1
,

𝑎
58
= 𝑆
𝑎
+ 𝐴
𝑇V
2
,

𝑎
67
= Ψ
𝑎122

𝐻𝐵
1
+ 𝐿
𝑇

1
𝐻
𝑇

Ψ
𝑎223

𝐻𝐵
1
+ 𝐿
𝑎
𝐵
1

+ (𝐿
𝑇

1
𝑌
𝑇

+ 𝐿
𝑇

2
𝐵
𝑇

) V
1
,

𝑎
68
= Ψ
𝑎121

+ 𝐿
𝑇

1
𝐻
𝑇

Ψ
𝑇

𝑎222
+ 𝑁 + (𝐿

𝑇

1
𝑌
𝑇

𝑎
+ 𝐿
𝑇

2
𝐵
𝑇

) V
2
,

𝑎
77
= − 𝛾

2

𝐼 + 𝐵
𝑇

1
𝐻
𝑇

Ψ
𝑎223

𝐻𝐵
1

+ He ((𝐵𝑇
1
𝑌
𝑇

𝑎
+ 𝐷
𝑇

1
𝐵
𝑇

) V
1
) ,

𝑎
78
= 𝐵
𝑇

1
𝐻
𝑇

Ψ
𝑇

𝑎222
+ V𝑇
1
𝑊
𝑎
+ (𝐵
𝑇

1
𝑌
𝑇

𝑎
+ 𝐷
𝑇

1
𝐵
𝑇

) V
2
,

𝑎
88
= Ψ
𝑎221

+ He (V𝑇
2
𝑊
𝑎
) ,

Λ := {Λ
𝑎
: satisfy (12) in Proposition 5} ,

Ψ := {Ψ
𝑎
: satisfy (20) in Proposition 7} ,

(31)

Proof. Substituting Π
𝑎
into (17), 𝐺

𝑟𝑑
(𝑗𝜔)
𝑇

𝐺
𝑟𝑑
(𝑗𝜔) < 𝛾

2

which is equivalent to (27). By applying Lemma 6, (27) holds
if

[

A B
𝑎

I 0
]

𝑇

[

−Q
𝑎

P
𝑎

P
𝑎
𝜔
2Q
𝑎

] [

A B
𝑎

I 0
]
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< [

C𝑇

D𝑇
] [

Ψ
𝑎

0

0 Π
𝑎

] [C D]

(32)

Q
𝑎
> C
𝑇

1
Λ
𝑎
C
1
, (33)

where

[

[

A B
𝑎

C
1

D
1

C
2

D
2

]

]

:=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴 𝐿
1
𝐵
𝑑
0

0 0 0 𝐼

0 𝐼 0 0

𝐻 0 0 0

𝐶 𝐿
2
𝐷
𝑑
0

0 0 𝐼 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

[C D] := [
C
11

D
11

C
2

D
2

] =
[

[

C
1

0

C
1
A C

1
B
𝑎

C
2

D
2

]

]

.

(34)

Let

Υ
𝑎
=
[

[

−Q
𝑎

P
𝑎

0

P
𝑎
𝜔
2
Q
𝑎
+C𝑇
11
Ψ
𝑎
C
11
+C𝑇
2
Π
𝑎
C
2

C𝑇
11
Ψ
𝑎
D
11
+C𝑇
2
Π
𝑎
D
2

0 D𝑇
11
Ψ
𝑎
C
11
+D𝑇
2
Π
𝑎
C
2

D𝑇
11
Ψ
𝑎
D
11
+D𝑇
2
Π
𝑎
D
2

]

]

(35)

(32) is equivalent to

[

[

A B
𝑎

𝐼 0

0 𝐼

]

]

𝑇

Υ
𝑎

[

[

A B
𝑎

𝐼 0

0 𝐼

]

]

< 0. (36)

And on the other hand,

[𝐼 0 0] Υ
𝑎
[𝐼 0 0]

𝑇

= −Q
𝑎
< 0. (37)

By combining (36) with (37), and applying Lemma 3, (32)
holds if and only if

Υ
𝑎
+
[

[

−𝐼

A𝑇

B𝑇
𝑎

]

]

X
𝑎
[

0 𝐼 0

0 0 𝐼
] + [

0 𝐼 0

0 0 𝐼
]

𝑇

X
𝑇

𝑎

[

[

−𝐼

A𝑇

B𝑇
𝑎

]

]

𝑇

< 0,

(38)

where X
𝑎
introduced by Lemma 3 is the variable matrix

of appropriate dimensions. Here, X
𝑎
is defined as X

𝑎
=

[X
𝑎1

X
𝑎1
𝑉
1
] and partition X

𝑎1
into [

𝑥𝑎11 −𝑥𝑎12 𝑥𝑎13

𝑥21 𝑥22 0

𝑥𝑎31 𝑥𝑎32 𝑥𝑎33

] where
𝑥
21

and 𝑥
22

are nonsingular matrices variable. 𝑉
1
is a given

matrix, defined as 𝑉
1
= [

V𝑇
1
0 0

V𝑇
2
0 0

]

𝑇

.
Let 𝐽 = diag{𝐼, 𝑥−1

22
𝑥
21
, 𝐼}, and define the linearizing

change of the control variables as follows:

𝑄
𝑎
= 𝐽
𝑇

Q
𝑎
𝐽,

𝑋
𝑎1
=
[

[

𝑌
𝑇

𝑎
−𝐸
𝑇

𝑎
𝐿
𝑇

𝑎

𝑀
𝑇

𝑀
𝑇

0

𝑊
𝑇

𝑎
𝑆
𝑇

𝑎
𝑁
𝑇

𝑎

]

]

=
[

[

𝑥
11

−𝑥
12
𝑥
−1

22
𝑥
21

𝑥
13

𝑥
𝑇

21
𝑥
−𝑇

22
𝑥
21

𝑥
𝑇

21
𝑥
−𝑇

22
𝑥
21

0

𝑥
31

𝑥
32
𝑥
−1

22
𝑥
21

𝑥
33

]

]

,

𝑃
𝑎
= 𝐽
𝑇

P
𝑎
𝐽,

[

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0

] = [
𝑥
𝑇

21
𝑥
22

0

0 𝐼

] [

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0
] [

𝑥
𝑇

22
𝑥
21

0

0 𝐼

]

(39)

By Pre- and postmultiplying (38) by diag{𝐽𝑇, 𝐽𝑇, 𝐼} and
diag{𝐽, 𝐽, 𝐼} and choos Ψ

𝑎
satisfying Proposition 5, (38) is

equivalent to

[

[

[

−𝑄
𝑎

𝑃
𝑎
− 𝑋
𝑎1

−𝑋
𝑎1
𝑉
1

∗ 𝜔
2
𝑄
𝑎
+C𝑇
11
Ψ
𝑎
C
11
+C𝑇
2
Π
𝑎
C
2
+He (A𝑇𝑋

𝑎1
) C𝑇
11
Ψ
𝑎
D
11
+C𝑇
2
Π
𝑎
D
2
+A𝑇𝑋

𝑎1
𝑉
1
+ 𝑋
𝑇

𝑎1
B
𝑎

∗ ∗ D𝑇
11
Ψ
𝑎
D
11
+D𝑇
2
Π
𝑎
D
2
+He (B𝑇

𝑎
𝑋
𝑎1
𝑉
1
)

]

]

]

< 0, (40)

where A, B
𝑎
, C
11
, C
2
are the matrices which use the new

defined variables𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
in the matricesA,B

𝑎
,C
11
,C
2
.

By simple calculation, we can obtain that

[

C𝑇
2
Π
𝑎
C
2

C𝑇
2
Π
𝑎
D
2

∗ D𝑇
2
Π
𝑎
D
2

] =

[

[

[

[

0 0 0 0

0 0 0 0

0 0 −𝛾
2

𝐼 0

0 0 0 0

]

]

]

]

+

[

[

[

[

[

C𝑇

𝐿

𝑇

2

𝐷

𝑇

2

0

]

]

]

]

]

[ C 𝐿
2
𝐷
2
0 ]

= [

0 0

0 −𝛾
2I
0

]

+ [

C𝑇
1

D𝑇
2

] [ C
1

D
2
] ,

(41)
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where C = [𝐷
𝑓
𝐶 𝐶
𝑓
], C
1
= [C 𝐿

2
], D
2
= [𝐷

2
0]. By

applying the Schur complement formula, the following can
be obtained:

[

[

[

[

−𝑄
𝑎

𝑃
𝑎
− 𝑋
𝑎1

−𝑋
𝑎1
𝑉
1

0

∗ 𝜔
2
𝑄
𝑎
+C𝑇
11
Ψ
𝑎
C
11
+He (A𝑇𝑋

𝑎1
) C𝑇

11
Ψ
𝑎
D
11
+A𝑇𝑋

𝑎1
𝑉
1
+ 𝑋
𝑇

𝑎1
B
𝑎

C𝑇
1

∗ ∗ D𝑇
11
Ψ
𝑎
D
11
+He (B𝑇

𝑎
𝑋
𝑎1
𝑉
1
) − 𝛾
2I
0
D𝑇
2

∗ ∗ ∗ −𝐼

]

]

]

]

< 0. (42)

Then, pre-and postmultiply diag{𝐼, 𝐼, 𝐼, 𝑅𝑇} to (42). Due to
−𝑅
𝑇

𝑅 ≤ 𝐼 − He(𝑅) and defineing 𝐴 = 𝑀𝐴
𝑓
, 𝐵 = 𝑀𝐵,

𝐶 = 𝑅
𝑇

𝐶
𝑓
, 𝐷 = 𝑅

𝑇

𝐷
𝑓
, (29) hold. In addition, and pre- and

postmultiplying (33) by 𝐽𝑇
1
and 𝐽
1
, respectively, (33) becomes

(30).
Hence, if conditions (29) and (30) holds, the augmented

uncertain system (5) is stable and guarantees the𝐻
∞

perfor-
mance (27), which completes the proof.

3.2. The Fault Sensitiveness Condition for Faulty Case

Theorem 9. Consider the system in (5) with Δ ∈ Δ. A real
symmetric matrix Π

𝑏
= [
−1 0

0 𝛽
2
𝐼
]. The following condition

𝛿min (𝐺𝑟𝑓 (𝑗𝜔)) > 𝛽, |𝜔| < 𝜔
2
, Δ ∈ Δ (43)

holds if there exist matrix variables 𝐴, 𝐵, 𝐶, 𝐷,𝑀, 𝑅, 𝑌
𝑏
, 𝐸
𝑏
,

𝐿
𝑏
,𝑁
𝑏
,𝑊
𝑏
, 𝑆
𝑏
,

𝑃
𝑏
=
[

[

𝑃
𝑏11

𝑃
𝑏12

𝑃
𝑏13

𝑃
𝑏21

𝑃
𝑏22

𝑃
𝑏23

𝑃
𝑏31

𝑃
𝑏32

𝑃
𝑏33

]

]

,

𝑄
𝑏
=
[

[

𝑄
𝑏11

𝑄
𝑏12

𝑄
𝑏13

𝑄
𝑏21

𝑄
𝑏22

𝑄
𝑏23

𝑄
𝑏31

𝑄
𝑏32

𝑄
𝑏33

]

]

Ψ
𝑏
=

[

[

[

[

[

[

[

[

Ψ
𝑏111

Ψ
𝑏112

Ψ
𝑏121

Ψ
𝑏122

Ψ
𝑇

𝑏112
Ψ
𝑏113

Ψ
𝑏122
𝑇 Ψ
𝑏123

Ψ
𝑇

𝑏121
Ψ
𝑏122

Ψ
𝑏221

Ψ
𝑏222

Ψ
𝑇

𝑏122
Ψ
𝑇

𝑏123
Ψ
𝑇

𝑏222
Ψ
𝑏223

]

]

]

]

]

]

]

]

,

Λ
𝑏
=
[

[

Λ
𝑏11

Λ
𝑏12

Λ
𝑇

𝑏12
Λ
𝑏22

]

]

(44)

of appropriate dimensions satisfying 𝑄
𝑏
> 0, Ψ

𝑏
∈ Ψ, and

Λ
𝑏
∈ Λ such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑄
𝑏11

−𝑄
𝑏12

−𝑄
𝑏13

𝑃
𝑏11

− 𝑌
𝑇

𝑏
𝑃
𝑏12

− 𝐸
𝑇

𝑏
𝑃
𝑏13

− 𝐿
𝑇

𝑏
−𝑌
𝑇

𝑏
V
3

−𝑌
𝑇

𝑏
V
4

0

∗ −𝑄
𝑏22

−𝑄
𝑏23

𝑃
𝑏21

−𝑀
𝑇

𝑃
𝑏22

−𝑀
𝑇

𝑃
𝑏23

−𝑀
𝑇V
3
−𝑀
𝑇V
4

0

∗ ∗ −𝑄
𝑏33

𝑃
𝑏31

−𝑊
𝑇

𝑏
𝑃
𝑏32

− 𝑆
𝑇

𝑏
𝑃
𝑏33

− 𝑁
𝑇

𝑏
−𝑊
𝑇

𝑏
V
3
−𝑊
𝑇

𝑏
V
4

0

∗ ∗ ∗ 𝑐
44

𝑏
45

𝑏
46

𝑏
47

𝑏
48

−I
1
𝑅
𝑇

∗ ∗ ∗ ∗ 𝑏
55

𝐵
56

𝑏
57

𝑏
58

−I
1
𝑅
𝑇

∗ ∗ ∗ ∗ ∗ 𝑏
66

𝑏
67

𝑏
69

−I
1
𝑅
𝑇

∗ ∗ ∗ ∗ ∗ ∗ 𝑏
77

𝑏
78

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑏
88

0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (45)

[

[

𝑄
𝑏11

− 𝐻
𝑇

Λ
𝑏22
𝐻 𝑄
𝑏12

𝑄
𝑏13

− 𝐻
𝑇

Λ
𝑇

𝑏12

∗ 𝑄
𝑏22

𝑄
𝑏23

∗ ∗ 𝑄
𝑏33

− Λ
𝑏11

]

]

> 0, (46)

where

𝑏
44
= 𝜔
2

2
𝑄
𝑏11

+ 𝐻
𝑇

Ψ
113
𝐻 + 𝐴

𝑇

𝐻
𝑇

Ψ
𝑏223

𝐻𝐴

+ He (𝑌
𝑏
𝐴 + 𝐵𝐶 +I

1
𝐷𝐶 +𝐻

𝑇

Ψ
𝑏123

𝐻𝐴) ,

𝑏
45
= 𝜔
2

2
𝑄
𝑏12

+ 𝐴 + 𝐴
𝑇

𝐸
𝑇

𝑏
+ 𝐶
𝑇

𝐵
𝑇

+ 𝐶
𝑇

𝐵
𝑇

+ (I
1
𝐷𝐶)

𝑇

+I
1
𝐶,

𝑏
46
= 𝜔
2

2
𝑄
𝑏13

+ 𝐻
𝑇

Ψ
𝑇

𝑏112
+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑇

𝑏122
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+ 𝐻
𝑇

Ψ
𝑏123

𝐻𝐿
1
+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑏223

𝐻𝐿
1

+ 𝐵𝐿
2
+ 𝐴
𝑇

𝐿
𝑇

𝑏
+I
1
𝐷𝐿
2
+ 𝐶
𝑇

𝐷
𝑇

I
𝑇

1
,

𝑏
55
= 𝜔
2

2
𝑄
𝑏22

+ He (𝐴 +I
1
𝐶) ,

𝑏
56
= 𝜔
2

2
𝑄
𝑏23

+ 𝐸𝐿
1
+ 𝐵𝐿
2
+I
1
𝐷𝐿
2
+ 𝐶
𝑇

I
𝑇

1
,

𝑏
66
= 𝜔
2

2
𝑄
𝑏33

+ Ψ
𝑏111

+ 𝐿
𝑇

1
𝐻
𝑇

Ψ
𝑏223

𝐻𝐿
1

+ He (Ψ
𝑏122

𝐻𝐿
1
+ 𝐿
𝑏
𝐿
1
+I
1
𝐷𝐿
2
) ,

𝑏
47
= 𝐻
𝑇

Ψ
𝑏123

𝐻𝐵
2
+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑏223

𝐻𝐵
2
+ 𝑌
𝑏
𝐵
2

+ 𝐵𝐷
2
+ (𝑌
𝑏
𝐴 + 𝐵𝐶)

𝑇

V
3
+I
1
𝐷𝐷
2
,

𝑏
48
= 𝐻
𝑇

Ψ
𝑇

𝑏122
+ 𝐴
𝑇

𝐻
𝑇

Ψ
𝑇

𝑏222
+𝑊
𝑏
+ (𝑌
𝑏
𝐴 + 𝐵𝐶)

𝑇

V
4
,

𝑏
57
= 𝐸
𝑏
𝐵
2
+ 𝐵𝐷
2
+ 𝐴
𝑇V
3
+I
1
𝐷𝐷
2
,

𝑏
58
= 𝑆
𝑏
+ 𝐴
𝑇V
4
,

𝑏
67
= Ψ
𝑏122

𝐻𝐵
2
+ 𝐿
𝑇

1
𝐻
𝑇

Ψ
𝑏223

𝐻𝐵
2
+ 𝐿
𝑏
𝐵
2

+ (𝑌𝐿
1
+ 𝐵𝐿
2
)

𝑇

V
3
+I
1
𝐷𝐷
2
,

𝑏
68
= Ψ
𝑏121

+ 𝐿
𝑇

1
𝐻
𝑇

Ψ
𝑇

𝑏222
+ 𝑁
𝑏
+ (𝑌
𝑏
𝐿
1
+ 𝐵𝐿
2
)

𝑇

V
4
,

𝑏
77
= 𝛽
2

𝐼 + 𝐵
𝑇

2
𝐻
𝑇

Ψ
𝑎223

𝐻𝐵
2
+ He ((𝑌

𝑏
𝐵
2
+ 𝐵𝐷
2
)

𝑇

V
3
) ,

𝑏
78
= 𝐵
𝑇

2
𝐻
𝑇

Ψ
𝑇

𝑏222
+ V𝑇
3
𝑊
𝑏
+ (𝑌
𝑏
𝐵
2
+ 𝐵𝐷
2
)

𝑇

V
4
,

𝑏
88
= Ψ
𝑏221

+ He (V𝑇
4
𝑊
𝑏
) ,

Λ := {Λ
𝑏
: satisfy (12) in Proposition 5} ,

Ψ := {Ψ
𝑏
: satisfy (20) in Proposition 7} ,

(47)

Proof. Substituting Π
𝑏
into (17), 𝐺

𝑟𝑟0𝑖
(𝑗𝜔)
𝑇

𝐺
𝑟𝑟0𝑖
(𝑗𝜔) < 𝛽

2

𝐼

which is equivalent to (43). Applying Lemma 6, (43) holds if

[

A B
𝑏

I 0
]

𝑇

[

−Q
𝑏

P
𝑏

P
𝑏
𝜔
2Q
𝑏

] [

A B
𝑏

I 0
]

< [

C𝑇

D𝑇
] [

Ψ
𝑏

0

0 Π
𝑏

] [C D]

(48)

Q
𝑏
> C
𝑇

1
Λ
𝑏
C
1

(49)

hold.

Where

[

[

A B
𝑏

C
1

D
1

C
2

D
2

]

]

:=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴 𝐿
1
𝐵
𝑓
0

0 0 0 𝐼

0 𝐼 0 0

𝐻 0 0 0

𝐶 𝐿
2
𝐷
𝑓
0

0 0 𝐼 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[C D] := [

[

C
11

D
11

C
2

D
2

]

]

=

[

[

[

[

[

C
1

0

C
1
A C

1
B
𝑏

C
2

D
2

]

]

]

]

]

.

(50)

Let

Υ
𝑏
=
[

[

[

−Q
𝑏

P
𝑏

0

P
𝑏
𝜔
2
Q
𝑏
+C𝑇
11
Ψ
𝑏
C
11
+C𝑇
2
Π
𝑏
C
2

C𝑇
11
Ψ
𝑏
D
11
+C𝑇
2
Π
𝑏
D
2

0 D𝑇
11
Ψ
𝑏
C
11
+D𝑇
2
Π
𝑏
C
2

D𝑇
11
Ψ
𝑏
D
11
+D𝑇
2
Π
𝑏
D
2

]

]

]

(51)

(48) is equivalent to

[

[

A B
𝑏

𝐼 0

0 𝐼

]

]

𝑇

Υ
𝑏

[

[

A B
𝑏

𝐼 0

0 𝐼

]

]

< 0, (52)

and on the other hand,

[𝐼 0 0] Υ
𝑏
[𝐼 0 0]

𝑇

= −Q
𝑏
< 0. (53)

Combining (52) with (53) and applying Lemma 3, (48)
holds if and only if

Υ
𝑏
+
[

[

−𝐼

A𝑇

B𝑇
𝑏

]

]

X
𝑏
[

0 𝐼 0

0 0 𝐼
] + [

0 𝐼 0

0 0 𝐼
]

𝑇

X
𝑇

𝑏

[

[

−𝐼

A𝑇

B𝑇
𝑏

]

]

𝑇

< 0,

(54)

where X
𝑏
introduced by Lemma 3 is the variable matrix

of appropriate dimensions. Here, X
𝑏
is defined as X

𝑏
=

[X
𝑏1

X
𝑏1
𝑉
2
], where X

𝑏1
= [

𝑥𝑏11 −𝑥𝑏12 𝑥𝑏13

𝑥21 𝑥22 0

𝑥𝑏31 𝑥𝑏32 𝑥𝑏33

], where 𝑥
21

and
𝑥
22

are the same as in Theorem 8. 𝑉
2
is an given matrix,

defined as 𝑉
2

= [
V𝑇
3
0 0

V𝑇
4
0 0

]

𝑇

. Pre- and postmultiply (54)
by diag{𝐽𝑇, 𝐽𝑇, 𝐼} and diag{𝐽, 𝐽, 𝐼}, where 𝐽 is defined as
Theorem 8 and choose Ψ

𝑏
satisfying Proposition 5, (54) is

equivalent to

[

[

−𝑄
𝑏

𝑃
𝑏
− 𝑋
𝑏1

−𝑋
𝑏1
𝑉
2

∗ 𝜔
2
𝑄
𝑏
−C𝑇
𝑏2
C
𝑏2
+C𝑇
11
Ψ
𝑏
C
11
+He (𝑋𝑇

𝑏1
A
𝑏
) −C𝑇

𝑏2
D
𝑏2
+C𝑇
11
Ψ
𝑏
D
11
+ 𝑋
𝑇

𝑏1
B
𝑏
+A
𝑏
𝑋
𝑏1
𝑉
2

∗ ∗ −D𝑇
𝑏2
D
𝑏2
+D𝑇
11
Ψ
𝑏
D
11
+ 𝛽
2I
0
+He (B

𝑇

𝑏
𝑋
𝑏1
𝑉
2
)

]

]

< 0, (55)
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where

[

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0

] = [
𝑥
𝑇

21
𝑥
22

0

0 𝐼

] [

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0
] [

𝑥
𝑇

22
𝑥
21

0

0 𝐼

] ,

X
𝑏1
= 𝐽
𝑇

𝑋
1
𝐽 =

[

[

[

[

[

𝑌
𝑇

𝑏
𝐸
𝑇

𝑏
𝐿
𝑇

𝑏

𝑀
𝑇

𝑀
𝑇

0

𝑊
𝑇

𝑏
𝑆
𝑇

𝑏
𝑁
𝑇

𝑏

]

]

]

]

]

,

A
𝑏
= 𝐽
−1

A𝐽 = [

[

𝐴 0 𝐿
1

𝐵
𝑓
𝐶 𝐴
𝑓
𝐵
𝑓
𝐿
2

0 0 0

]

]

,

B
𝑏
= 𝐽
−1

B
𝑏
=
[

[

𝐵
2

0

𝐵
𝑓
𝐷
2
0

0 𝐼

]

]

,

C
𝑏2
= [𝐷
𝑓
𝐶 𝐶
𝑓
𝐷
𝑓
𝐿
2
] , D

𝑏2
= [𝐷
𝑓
𝐷
2
0] ,

(56)

Condition (55) is nonlinear owing to the product terms
−𝐶
𝑇

𝑏2
𝐶
𝑏2
. To solve this problem, condition (55) is equivalent

to

Ξ
𝑇

𝑏2
ΘΞ
𝑏2
< 0, (57)

where

Ξ
𝑏2
=

[

[

[

[

𝐼 0 0

0 𝐼 0

0 0 𝐼

0 C
𝑏2

D
𝑏2

]

]

]

]

,

Θ =

[

[

[

[

[

−𝑄
𝑏

𝑃
𝑏
− 𝑋
1

−𝑋
1
𝑉
2

0

∗ C𝑇
11
Ψ
𝑏
C
11
+He (𝑋𝑇

1
A
𝑏𝑖
) 𝑋

𝑇

1
B
𝑏
+A
𝑏𝑖
𝑋
1
𝑉
2
+C𝑇
11
Ψ
𝑏
D
11

0

∗ ∗ D𝑇
11
Ψ
𝑏
D
11
+ 𝛽
2I
0
+He (B

𝑇

𝑏
𝑋
𝑏1
𝑉
2
) 0

0 0 0 −𝐼

]

]

]

]

]

.

(58)

Defining 𝐺 = [0 C
𝑏2

D
𝑏2

−𝐼] satisfies 𝐺Ξ
𝑏2

= 0. Using
Lemma 4, and given a matrix 𝑇, (57) is equivalent to

Θ + 𝑇𝐺 + (𝑇𝐺)
𝑇

< 0, (59)

where one notes 𝑇 as

𝑇 = [0 R 0 0]

𝑇

, R = [𝑅I𝑇
1
𝑅I𝑇
1
𝑅I𝑇
1
] . (60)

Defining 𝐴 = 𝑀𝐴
𝑓
, 𝐵 = 𝑀𝐵, 𝐶 = 𝑅

𝑇

𝐶
𝑓
, and 𝐷 = 𝑅

𝑇

𝐷
𝑓

and after some matrix manipulation, (59) becomes (45). By
pre- and postmultiplying (49) by 𝐽𝑇 and 𝐽, respectively, (49)
becomes (46).

Remark 10. Theorem 8 considers the attenuation perfor-
mance for the disturbance 𝑑(𝑡), and the conservatism comes
from the special structure of X

𝑎1
and the same one in X

𝑎
.

Theorem 9 considers the sensitiveness performance for the
fault𝑓(𝑡), and the conservatism comes from the special struc-
ture ofX

𝑏1
and the same one inX

𝑏
. Then, the conservatism

for Theorem 9 comes as the same as Theorem 8. However, in
order to obtain the better detection performance, the sensi-
tiveness performance is considered over the conservatism.

3.3. Stability Condition for the Filter. Due to the fault tolerant
controller, the closed-loop system is stable both in the fault-
free cases and in the fault cases. Then, the condition that
the augmented systems (1) is stable can translate into the
condition that the FD filter is stable.

Lemma 11 (see [20]). By considering the FD filter (4), the FD
filter is stable, if there exist matrix variables𝑀, 𝐴 and 𝑃

𝑠
> 0

satisfying

[

[

− (𝑀 +𝑀
𝑇

) 𝐴 + 𝑃
𝑠
𝑀

∗ −𝑃
𝑠

0

∗ ∗ −𝑃
𝑠

]

]

< 0. (61)

3.4. Algorithm. In the precious sections, Theorems 8 and 9
and Lemma 11 have formulated the inequality conditions for
the performance indexes (8) and (9) and the stable condition,
respectively. Summarily, we have the following theorem.

Theorem 12. By considering the uncertain system model (1),
there exists a FD filter (4) such that the augmented system
model (5) is stable and satisfies the performance indices (8) and
(9) if inequality conditions (29), (30), (45), (46), and (61) hold.

Proof. Combining Theorems 8–9 and Lemma 11, it is obvi-
ously that the theorem holds.

Remark 13. InTheorems 8–9, if the matrices V
𝑖
, 𝑖 ∈ {1, . . . , 4}

are given, all conditions (29), (30), (45), and (46) are the
LMI conditions. Specially, if the disturbance and the fault
are a scalar, respectively, V

𝑖
is vector, and it can be easily

chosen, which has been further confirmed in the simulink. In
addition, Propositions 5 and 7 are used to directly deal with
the ellipsoidal uncertainty; the variable structure is complex.
However, all the variables in Propositions 5 and 7 is composed
of linear matrices, and can be used for LMI conditions.
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The gain matrices 𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and 𝐷

𝑓
defining the FD

filter can be derived by the means of a standard procedure.
Denote 𝐴, 𝐵, 𝐶,𝐷, and𝑀 is the optimal solution of (7) with
condition (29), (30), (45), (46), and (61):

(1) compute the 𝑥
21
, 𝑥
22
by solving the following factor-

ization problem𝑀 = 𝑥
𝑇

21
𝑥
−1

22
𝑥
21
;

(2) compute 𝐴
𝑓
, 𝐵
𝑓
by 𝐴, 𝐵 and𝑀. Compute 𝐶

𝑓
,𝐷
𝑓
by

𝐶,𝐷 and 𝑅;

(3) finally, obtain the gain matrices of the FD filter

[

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0

] = [
𝑥
𝑇

21
𝑥
22

0

0 𝐼

] [

𝐴
𝑓
𝐵
𝑓

𝐶
𝑓

0
] [

𝑥
𝑇

22
𝑥
21

0

0 𝐼

] . (62)

4. Thresholds Computation

After the parameter matrices of the FD filter 𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and

𝐷
𝑓
are designed, similar to that proposed in [21], the residual

evaluation function 𝐽
𝑟
(𝑡) can be selected as

𝐽
𝑟
(𝑡) = √

1

𝑡

∫

𝑡

0

𝑟
𝑇
(𝜏) 𝑟 (𝜏) 𝑑𝜏. (63)

Under fault-free condition, the residual 𝑟(𝑡) becomes

𝑟 (𝑡) = 𝐺
𝑟𝑑
(𝑗𝜔) 𝑑 (𝑡) , (64)

and namely, the Parseval Theorem (see [22]), one has that

𝐽
𝑟
(𝑡) ≤






𝐺
𝑟𝑑0





∞
‖𝑑‖rms ≤






𝐺
𝑟𝑑0





∞
𝑑, (65)

where 𝑑 is the upper bound on the disturbance. It is
assumed that 𝑑 is the known. As a consequence, the following
threshold results:

𝐽th =





𝐺
𝑟𝑑0





∞
𝑑. (66)

Based on this, the occurrence of faults can be detected by
the following logic rule.





𝐽
𝑟





≤ 𝐽th, no alarm,





𝐽
𝑟





> 𝐽th, with alarm.

(67)

1

0.5

−0.5

0

−1

𝜃1

𝜃
2

+

0 0.5−0.5

Figure 1: Ellipsoidal uncertainty.

5. Example

In this section, an example is given to illustrate the effec-
tiveness of our design method. Consider the uncertain linear
system by

𝐴 = [

0.5 1

−3 −3
] , 𝐵

1
= [

0.4

−0.5
] , 𝐵

2
= [

0.5

−1
] ,

𝐿
1
= [

0.2 0 0.1 0

0 0 0 0.2
] , 𝐶 = [1 1] ,

𝐷
1
= 0.5, 𝐷

2
= 0.5,

𝐿
2
= [0 0 0 0] , 𝐻 = [

1 0

0 1
] ,

Δ = [

𝜃 0

0 𝜃
] , 𝜃 = [

𝜃
1

𝜃
2

] ,

(68)

and the uncertain parameters [ 𝜃
𝑇

1

𝜃
𝑇

2

] ∈ U satisfy {𝜃 | 𝜃𝑇R𝜃 <

1}, as shown in Figure 1, where R = [
1.25 0.25

0.25 1.25
]. It is worth

pointing out that if the method in this paper is adopted,
the uncertain region is only in the ellipsoid (solid lines).
Otherwise, the ellipsoid has to translate into the convex
bounded polyhedral domain (dashed line) for the existing
method to deal with the uncertainty, which enlarges the
uncertain region and results in increasing the conservatism.

Given the matrices

V
1
= [

0

−0.2
] , V

2
= [

0 0 0 0

0 0 0 0
] ,

V
3
= [

−0.5

−0.5
] , V

4
= [

1.5 1.5 1.5 −1.5

1 1 −1 −1
] ,

(69)

the disturbance is 𝑑(𝑡) = 0.8 sin(0.1𝑡) exp(−0.05𝑡). Then, the
upper bounds on the frequency for the disturbance and the
reference input can choose 𝜔

1
= 0.5 and 𝜔

2
= 0, respectively.
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Figure 2: The residual signal and the residual evaluation function 𝐽
𝑟
.

Given 𝛾 = 1, for the practical needs, we obtain the sensitivity
performance𝛽 = 0.4234 by solving the optimization problem
(16) with the conditions inTheorem 12 and the FD filter with
gain matrices as

𝐴
𝑓
= [

−3.5304 0.0850

−6.0843 −0.2812
] , 𝐵

𝑓
= [

0.0696

2.5117
] ,

𝐶
𝑓
= [−0.0539 −0.2526] , 𝐷

𝑓
= −1.3339.

(70)

Choose 𝜃
1
= 0.2 and 𝜃

1
= −0.6. Considering the case that the

fault occurs between 70 sec and 150 sec, the residual signal
and the residual evaluation function 𝐽

𝑟
(𝑡) and the threshold

𝐽th(𝑡) are shown in Figure 2. Consider that 𝐽
𝑟
(𝑡) > 𝐽th(𝑡) at

92.5 sec, which means that the fault alarms when the outage
fault occurs. Hence, the fault can be detected.

6. Conclusions

In this paper, the design problemof the FDfilter for uncertain
linear systems has been addressed. A method for the design
problem is given in terms of the linear matrix inequality
(LMI) optimization techniques. The new proposed method
has two main advantages. The first one is to resolve the
problem of designing FD filters subjected to the model with
ellipsoidal parametric uncertainty region, while this problem
cannot be directly resolved using the existing method. The
second one is that the finite-frequency performances of the
fault and the disturbance have been detected.

References

[1] J. Chen and P. R. Patton, Robust Model-Based Fault Diagnosis
For Dynamic Systems, Kluwer Academic Publishers, Boston,
Mass, USA.

[2] T. Li, L. Guo, and L. Y.Wu, “Observer-based optimal fault detec-
tion using PDFs for time-delay stochastic systems,” Nonlinear
Analysis: Real World Applications, vol. 9, no. 5, pp. 2337–2349,
2008.

[3] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of
fault detection, isolation, and reconfiguration methods,” IEEE
Transactions on Control Systems Technology, vol. 18, no. 3, pp.
636–653, 2010.

[4] E. G. Nobrega,, M. O. Abdalla, and K. M. Grigoriadis, “LMI-
based filter design for fault detection and isolation,” in Proceed-
ings of the 39th IEEE Confernce on Decision and Control (CDC
’00), pp. 4329–4334, Sydney, Australia, December 2000.

[5] T. Li and L. Guo, “Optimal fault-detection filtering for non-
Gaussian systems via output PDFs,” IEEE Transactions on
Systems, Man, and Cybernetics A, vol. 39, no. 2, pp. 476–481,
2009.

[6] W. Li, F. Jiang, Z. Wang, G. Zhou, and Z. Zhu, “Fault detection
of Markov jumping linear systems,” Mathematical Problems in
Engineering, vol. 2012, Article ID 141867, 27 pages, 2012.

[7] M. Hou and R. J. Patton, “A LMI approach to 𝐻
−
/𝐻∞ fault

detection observers,” in Proceedings of the UKACC International
Conference on Control, pp. 305–310, London, UK, September
1996.

[8] I. M. Jaimoukha, Z. Li, and V. Papakos, “A matrix factorization
solution to the 𝐻

−
/𝐻∞ fault detection problem,” Automatica,

vol. 42, no. 11, pp. 1907–1912, 2006.
[9] X. Li and H. H. T. Liu, “Minimum system sensitivity study of

linear discrete time systems for fault detection,” Mathematical
Problems in Engineering, vol. 2013, Article ID 276987, 13 pages,
2013.

[10] X. J. Cai and F. Wu, “Robust fault detection and isolation for
parameter-dependent LFT systems,” International Journal of
Robust and Nonlinear Control, vol. 20, no. 7, pp. 764–776, 2010.

[11] M. Barenthin, X. Bombois, H. Hjalmarsson, and G. Scorletti,
“Identification for control of multivariable systems: controller
validation and experiment design via LMIs,” Automatica, vol.
44, no. 12, pp. 3070–3078, 2008.

[12] R. D. Braatz andO. D. Crisalle, “Robustness analysis for systems
with ellipsoidal uncertainty,” International Journal of Robust and
Nonlinear Control, vol. 8, no. 13, pp. 1113–1117, 1998.

[13] X. Bombois, M. Gevers, G. Scorletti, and B. D. O. Anderson,
“Robustness analysis tools for an uncertainty set obtained by
prediction error identification,” Automatica, vol. 37, no. 10, pp.
1629–1636, 2001.



12 Mathematical Problems in Engineering

[14] X. Bombois, H. Hjalmarsson, and G. Scorletti, “Identification
for robust𝐻

2
deconvolution filtering,” Automatica, vol. 46, no.

3, pp. 577–584, 2010.
[15] A. Sadeghzadeh and H. Momeni, “Fixed-order robust𝐻

∞
con-

trol and control-oriented uncertainty set shaping for systems
with ellipsoidal parametric uncertainty,” International Journal of
Robust and Nonlinear Control, vol. 21, no. 6, pp. 648–665, 2011.

[16] G.-H. Yang and H. Wang, “Fault detection for a class of
uncertain state-feedback control systems,” IEEETransactions on
Control Systems Technology, vol. 18, no. 1, pp. 201–212, 2010.

[17] T. Iwasaki, S. Hara, and H. Yamauchi, “Dynamical system
design from a control perspective: finite frequency positive-
realness approach,” IEEE Transactions on Automatic Control,
vol. 48, no. 8, pp. 1337–1354, 2003.

[18] X. J. Li and G. H. Yang, “Fault detection filter design for
stochastic time-delay systems with sensor faults,” International
Journal of Systems Science, vol. 43, no. 8, 2012.

[19] K. Hu and J. Yuan, “Improved robust𝐻
∞
filtering for uncertain

discrete-time switched systems,” IET ControlTheory & Applica-
tions, vol. 3, no. 3, pp. 315–324, 2009.

[20] X. J. Li, Research on robust adaptive fault detection and isolation
approaches [Ph.D. thesis], Northeastern University, Liaoning,
China.

[21] P. M. Frank and X. Ding, “Frequency domain approach to
optimally robust residual generation and evaluation for model-
based fault diagnosis,” Automatica, vol. 30, no. 5, pp. 789–804,
1994.

[22] S. Boyd and C. Barratt, Linear Controller Design: Limites of
Performance, Prentice Hall, Englewood Cliffs, NJ, USA, 1991.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 696058, 12 pages
http://dx.doi.org/10.1155/2013/696058

Research Article
Delay-Dependent Robust𝐻

∞
Filtering of the Takagi-Sugeno

Fuzzy Stochastic Systems

Ze Li1 and Xin-Hao Yang2

1 College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
2 School of Mechanical and Electric Engineering, Soochow University, Suzhou 215006, China

Correspondence should be addressed to Ze Li; lizeing@163.com

Received 1 August 2013; Accepted 22 September 2013

Academic Editor: Baoyong Zhang

Copyright © 2013 Z. Li and X.-H. Yang.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the problem of the robust 𝐻
∞

filtering for the Takagi-Sugeno (T-S) fuzzy stochastic systems with
bounded parameter uncertainties. For a given T-S fuzzy stochastic system, this paper focuses on the stochastically mean-square
stability of the filtering error system and the𝐻

∞
performance level of the output error and the disturbance input.Thedesignmethod

for delay-dependent filter is developed based on linear matrix inequalities. Finally, the effectiveness of the proposed methods is
substantiated with an illustrative example.

1. Introduction

As an efficient technique to linearize the nonlinear differential
equations, the T-S fuzzymodel [1] has been an active research
area over the past three decades. This model is capable
of representing linear input-output relations of nonlinear
systems by appropriate fuzzy sets, such as the stirred tank
reactor system [2] and the truck trailer system [3]. And it
has been proved that this model can accurate to a compact
set by a family of IF-THEN rules. This way, the stability
analysis and synthesis of the nonlinear system turn into the
analysis of linear systems, where the linear system theory can
be conveniently applied. In recent years, the researches of T-S
fuzzy have grown into a great number. To mention a few, the
stability and control problem of T-S fuzzy systems have been
investigated in [4–14] and the references therein.

Moreover, as a branch of state estimation theory, the
filtering problem has become an important research field for
many kinds of systems. The𝐻

∞
filtering problems for the T-

S fuzzy systems have been addressed in [15–19]; references
[20, 21] have considered the 𝐿

2
− 𝐿
∞

filtering problem for
delayed T-S fuzzy systems with different methods.

On the other hand, stochastic system has received con-
siderable attention because uncertain factors are unavoidable
in most of the physical systems, for example, signal process-
ing, engineering, finance, economics; biological movement

systems, and so forth. Stochastic modeling has become
important inmany branches of engineering applications [22].
And many results on the study of stochastic systems can be
found in the literature. References [23, 24] study the problem
of designing delay-dependent controllers and 𝐻

∞
output

feedback controller for nonlinear stochastic time-delay sys-
tem with method, respectively. The sliding mode control for
the time-delay nonlinear Itô stochastic systems was proposed
in [25, 26]. References [26, 27] have investigated the stability
of the time-delay stochastic neutral networks.The problem of
filtering is considered in [29–31]. Fault detection problem of
the stochastic system has been addressed in [32, 33]. And the
problem of 𝐻

∞
model reduction in stochastic framework is

investigated in [34].
Through the above analysis, T-S fuzzy model could be

used to represent the nonlinear stochastic systemwith several
subsystems that could easily be analyzed. There have been
a few works in this manner; [35] deals with the robust fault
detection problem for T-S fuzzy stochastic systems. And [36]
considers the stabilization for the stochastic fuzzy systems
with delays. However, to the best of the authors knowledge,
few results on filtering problem for TCS fuzzy stochastic
systems are available which still remains challenging.

Inspired by the above discussions, this paper will focus
on the robust fuzzy delay-dependent 𝐻

∞
filter design for

a T-S fuzzy stochastic system with time-varying delays and
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norm-bounded parameter uncertainties. The problem we
consider here is to make sure that the fuzzy filters we design
could ensure both the robust stochastic mean-square stability
and a prescribed𝐻

∞
performance level of the filtering error

system. During the proof of the theorems, some useful free-
weighting matrices are introduced to reduce the potential
conservatism as much as we can. By using the Lyapunov-
Krasovskii functional technique, a linear matrix inequality
(LMI) approach is proposed to solve the problem.

The remainder of the paper is organized as follows.
Section 2 formulates the filter design problem. Section 3 gives
the delay-dependent conditions for the stochastic stability
problem of the T-S fuzzy stochastic systems. And the solv-
ability of the filtering design problem is obtained in terms
of LMIs, which are presented in Section 4. In Section 5, a
numerical example is shown to illustrate the effectiveness
of the proposed methods. Finally, we conclude the paper in
Section 6.
Notation. The notation used in this paper is fairly stan-
dard. The superscript “𝑇” stands for matrix transposition.
Throughout this paper, for real symmetric matrices 𝑋 and
𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the
matrix𝑋−𝑌 is positive semidefinite (resp., positive definite).
R𝑛 denotes the 𝑛-dimensional Euclidean space, and R𝑚×𝑛
denotes the set of all 𝑚 × 𝑛 real matrices. 𝐼 stands for an
identity matrix of appropriate dimension, while 𝐼

𝑛
∈ R𝑛

denotes a vector of ones. The notation ∗ is used as an
ellipsis for terms that are induced by symmetry. diag(⋅ ⋅ ⋅ )
stands for a block-diagonal matrix. | ⋅ | denotes the Euclidean
norm for vectors, and ‖ ⋅ ‖ denotes the spectral norm for
matrices. L

2
[0,∞) represents the space of square-integrable

vector functions over [0,∞).E(⋅) stands for themathematical
expectation operator. Matrix dimensions, if not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider a T-S fuzzy stochastic time-delay system with time-
varying parameter uncertainties.

Plant rule 𝑖: IF 𝑠
1
(𝑡) is 𝜇

𝑖1
, and 𝑠

2
(𝑡) is 𝜇

𝑖2
, and ⋅ ⋅ ⋅ and 𝑠

𝑔
(𝑡)

is 𝜇
𝑖𝑔
, THEN

𝑑𝑥 (𝑡) = [(𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐴
𝑑1𝑖
+ Δ𝐴
𝑑1𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

1
(𝑡))

+ (𝐴
𝑑2𝑖
+ Δ𝐴
𝑑2𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

2
(𝑡)) + 𝐵

𝑖
V (𝑡)] 𝑑𝑡

+ [ (𝐻
𝑖
+ Δ𝐻
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐻
𝑑1𝑖
+ Δ𝐻
𝑑1𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

1
(𝑡))

+ (𝐻
𝑑2𝑖
+ Δ𝐻
𝑑2𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

2
(𝑡))] 𝑑𝜔 (𝑡) ,

(1)

𝑑𝑦 (𝑡) = [𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝑑1𝑖
𝑥 (𝑡 − 𝜏

1
(𝑡))

+𝐶
𝑑2𝑖
𝑥 (𝑡 − 𝜏

2
(𝑡)) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡,

(2)

𝑧 (𝑡) = 𝐿
𝑖
𝑥 (𝑡) + 𝐿

𝑑1𝑖
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝐿

𝑑2𝑖
𝑥 (𝑡 − 𝜏

2
(𝑡)) , (3)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−max (ℎ
1
, ℎ
2
) , 0] , 𝑖 = 1, 2, . . . , 𝑟, (4)

where 𝑠(𝑡) = [𝑠
1
(𝑡) 𝑠
2
(𝑡) ⋅ ⋅ ⋅ 𝑠

𝑔
(𝑡)] are the premise variables,

𝜇
𝑖𝑗
is the fuzzy set, and 𝑟 is the number of IF-THEN rules;

𝑥(𝑡) ∈ R𝑛 is the system state; 𝜑(𝑡) is a given differential
initial function on [−𝑢

2
, 0], and 𝑦(𝑡) ∈ R𝑚 is the measured

output; 𝑧(𝑡) ∈ R𝑙 is a signal to be estimated; V(𝑡) ∈ R𝑠 is
the noise signal which belongs to L

2
[0,∞); 𝜏

1
(𝑡) and 𝜏

2
(𝑡)

are continuous differentiable functions representing the time-
varying delays, which are assumed to satisfy for all 𝑡 ≥ 0,

0 ≤ 𝜏
1
(𝑡) < ℎ

1
, 0 ≤ 𝜏

2
(𝑡) < ℎ

2
. (5)

In the considered system, 𝐴
𝑖
, 𝐴
𝑑1𝑖
, 𝐴
𝑑2𝑖
, 𝐵
𝑖
, 𝐻
𝑖
, 𝐻
𝑑1𝑖
, 𝐻
𝑑2𝑖
,

𝐶
𝑖
, 𝐶
𝑑1𝑖
, 𝐶
𝑑2𝑖
, 𝐷
𝑖
, 𝐿
𝑖
, 𝐿
𝑑1𝑖
, and 𝐿

𝑑2𝑖
are known constant

matrices with appropriate dimensions. Δ𝐴
𝑖
(𝑡), Δ𝐴

𝑑1𝑖
(𝑡),

Δ𝐴
𝑑2𝑖
(𝑡), Δ𝐻

𝑖
(𝑡), Δ𝐻

𝑑1𝑖
(𝑡), and Δ𝐻

𝑑2𝑖
(𝑡) represent the

unknown time-varying parameter uncertainties and are
assumed to satisfy

[

Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑1𝑖
(𝑡) Δ𝐴

𝑑2𝑖
(𝑡)

Δ𝐻
𝑖
(𝑡) Δ𝐻

𝑑1𝑖
(𝑡) Δ𝐻

𝑑2𝑖
(𝑡)
]

= [

𝐾
1𝑖

𝐾
2𝑖

]𝐹
𝑖
(𝑡) [𝑇
1𝑖
𝑇
2𝑖
𝑇
3𝑖
] ,

(6)

where 𝐾
1𝑖
, 𝐾
2𝑖
, 𝑇
1𝑖
, 𝑇
2𝑖
, and 𝑇

3𝑖
are known real constant

matrices and the unknown time-varying matrix function
satisfying

𝐹
𝑖
(𝑡)
𝑇

𝐹
𝑖
(𝑡) ≤ 𝐼 ∀𝑡. (7)

Now, the defuzzied output of the dynamic fuzzy stochas-
tic model in (1)–(4) can be represented as follows:

(Σ): 𝑑𝑥 (𝑡) =
𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))

× [(𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐴
𝑑1𝑖
+ Δ𝐴
𝑑1𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

1
(𝑡))

+ (𝐴
𝑑2𝑖
+ Δ𝐴
𝑑2𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

2
(𝑡))

+ 𝐵
𝑖
V (𝑡)] 𝑑𝑡

+ [(𝐻
𝑖
+ Δ𝐻
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐻
𝑑1𝑖
+ Δ𝐻
𝑑1𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

1
(𝑡))

+ (𝐻
𝑑2𝑖
+ Δ𝐻
𝑑2𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏

2
(𝑡))] 𝑑𝜔 (𝑡) ,
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𝑑𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))

× [𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝑑1𝑖
𝑥 (𝑡 − 𝜏

1
(𝑡))

+ 𝐶
𝑑2𝑖
𝑥 (𝑡 − 𝜏

2
(𝑡)) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))

× [𝐿
𝑖
𝑥 (𝑡) + 𝐿

𝑑1𝑖
𝑥 (𝑡 − 𝜏

1
(𝑡))

+ 𝐿
𝑑2𝑖
𝑥 (𝑡 − 𝜏

2
(𝑡))] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−max (ℎ
1
, ℎ
2
) , 0] ,

(8)

where

𝜌
𝑖
(𝑠 (𝑡)) =

𝜔
𝑖
(𝑠 (𝑡))

∑
𝑟

𝑗=1
𝜔
𝑗
(𝑠 (𝑡))

,

𝜔
𝑖
(𝑠 (𝑡)) =

𝑔

∏

𝑗=1

𝜇
𝑖𝑗
(𝑠
𝑗
(𝑡)) ;

(9)

using the fuzzy theory, it is easy to see that, for all 𝑡,

𝜌
𝑖
(𝑠 (𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟,

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) = 1.

(10)

Then, we consider the following fuzzy filters:

𝑑𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐴

𝑓𝑖
𝑥 (𝑡) 𝑑𝑡 + 𝐵

𝑓𝑖
𝑑𝑦 (𝑡)] ,

�̂� (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐿

𝑓𝑖
𝑥 (𝑡)] ,

(11)

in which, the fuzzy rule has the same representation as in (1)–
(4). Now we consider 𝑥(𝑡) ∈ R𝑛 and �̂�(𝑡) ∈ R𝑙. The matrixes
𝐴
𝑓𝑖
, 𝐵
𝑓𝑖
, and 𝐿

𝑓𝑖
are the filters need to be determined.

Let 𝜉(𝑡) = [𝑥(𝑡)𝑇 𝑥(𝑡)𝑇]𝑇, �̃�(𝑡) = 𝑧(𝑡) − �̂�(𝑡).
For convenience, the filtering error dynamic system can

be written as

(Σ̃) : 𝑑𝜉 (𝑡)

= [(𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡)

+ (𝐴
𝑑1
+ Δ𝐴
𝑑1
(𝑡)) 𝐺𝜉 (𝑡 − 𝜏

1
(𝑡))

+ (𝐴
𝑑2
+ Δ𝐴
𝑑2
(𝑡)) 𝐺𝜉 (𝑡 − 𝜏

2
(𝑡)) +𝐵V (𝑡)] 𝑑𝑡

+ [(�̃� + Δ�̃� (𝑡)) 𝜉 (𝑡) + (�̃�
𝑑1
+ Δ�̃�
𝑑1
(𝑡))

× 𝐺𝜉 (𝑡 − 𝜏
1
(𝑡))

+ (�̃�
𝑑2
+ Δ�̃�
𝑑2
(𝑡)) 𝐺𝜉 (𝑡 − 𝜏

2
(𝑡))] 𝑑𝜔 (𝑡) ,

�̃� (𝑡) = �̃�𝜉 (𝑡) + 𝐿
𝑑1
𝐺𝜉 (𝑡 − 𝜏

1
(𝑡))

+ 𝐿
𝑑2
𝐺𝜉 (𝑡 − 𝜏

2
(𝑡)) ,

(12)

where

𝐴 = [

𝐴 0

𝐵
𝑓
𝐶 𝐴
𝑓

] , 𝐴
𝑑1
= [

𝐴
𝑑1

𝐵
𝑓
𝐶
𝑑1

] ,

𝐴
𝑑2
= [

𝐴
𝑑2

𝐵
𝑓
𝐶
𝑑2

] , �̃� = [
𝐻 0

0 0

] ,

�̃�
𝑑1
= [

𝐻
𝑑1

0

] , �̃�
𝑑2
= [

𝐻
𝑑2

0

] ,

𝐵 = [

𝐵

𝐵
𝑓
𝐷

] , Δ𝐴 (𝑡) = [
Δ𝐴 (𝑡) 0

0 0

] ,

Δ𝐴
𝑑1
(𝑡) = [

Δ𝐴
𝑑1
(𝑡)

0

] , Δ𝐴
𝑑2
(𝑡) = [

Δ𝐴
𝑑2
(𝑡)

0

] ,

Δ�̃� (𝑡) = [
Δ𝐻 (𝑡) 0

0 0

] , Δ�̃�
𝑑1
(𝑡) = [

Δ𝐻
𝑑1
(𝑡)

0

] ,

Δ�̃�
𝑑2
(𝑡) = [

Δ𝐻
𝑑2
(𝑡)

0

] , 𝐴 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑖
,

𝐴
𝑑1
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑑1𝑖
, 𝐴

𝑑2
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑑2𝑖
,

𝐻 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))𝐻

𝑖
, 𝐻

𝑑1
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))𝐻

𝑑1𝑖
,

𝐻
𝑑2
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))𝐻

𝑑2𝑖
, 𝐶 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐶

𝑖
,

𝐶
𝑑1
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐶

𝑑1𝑖
, 𝐶

𝑑2
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐶

𝑑2𝑖
,

𝐵 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐵

𝑖
, 𝐷 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐷

𝑖
,

�̃� = [𝐿 −𝐿
𝑓
] , 𝐺 = [𝐼 0] ,

𝐴
𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑓𝑖
, 𝐵

𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐵

𝑓𝑖
,

𝐿
𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑓𝑖
,

𝐿 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑖
, 𝐿

𝑑1
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑑1𝑖
,
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𝐿
𝑑2
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑑2𝑖
,

Δ𝐴 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑖
(𝑡) ,

Δ𝐴
𝑑1
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑑1𝑖
(𝑡) ,

Δ𝐻 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑖
(𝑡) ,

Δ𝐻
𝑑1
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑑1𝑖
(𝑡) ,

Δ𝐴
𝑑2
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑑2𝑖
(𝑡) ,

Δ𝐻
𝑑2
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑑2𝑖
(𝑡) .

(13)

The purpose of this work is to design a sets of fuzzy filters
in the form of (11) such that for any scalar 0 ≤ ℎ

1
, 0 ≤ ℎ

2

and a prescribed level of noise attenuation 𝛾 > 0, the filtering
error system (Σ̃) is mean-square stable, and the error system
(Σ̃) satisfies𝐻

∞
performance.

Now, we introduce the following definitions and lemmas,
which help to complete the proof of the main results.

Definition 1. The system (Σ) is said to be robust stochastic
mean-square stable if there exists 𝛿(𝜀) > 0 for any 𝜀 > 0 such
that

E (‖𝑥 (𝑡)‖
2

) < 𝜀, 𝑡 > 0, (14)

when sup
−ℎ≤𝑠≤0

E(‖𝜑(𝑠)‖
2

) < 𝛿(𝜀), for any uncertain variables.
In addition,

lim
𝑡→∞

E (‖𝑥 (𝑡)‖
2

) = 0, (15)

for any initial conditions.

Definition 2. The robust stochastic mean-square stable sys-
tem (Σ̃) is said to satisfy the 𝐻

∞
performance; for the given

scalar 𝛾 > 0 and any nonzero V(𝑡) ∈ 𝐿
2
[0,∞), the system (Σ̃)

satisfies

‖𝑧 (𝑡)‖
𝐸2
< 𝛾‖V(𝑡)‖

2
, (16)

for any uncertain variables, where

‖𝑧 (𝑡)‖
𝐸2
= (E{∫

∞

0

|𝑧 (𝑡)|
2

𝑑𝑡})

1/2

. (17)

Lemma 3. For the given matrices 𝐷, 𝐸, and 𝐹 with 𝐹𝑇𝐹 ≤ 𝐼
and positive scalar 𝜀 > 0, the following inequality holds:

𝐷𝐹𝐸 + (𝐷𝐹𝐸)
𝑇

≤ 𝜀𝐷𝐷
𝑇

+ 𝜀
−1

𝐸
𝑇

𝐸. (18)

3. Robust Stochastic Stabile

First, we derive the robust stochastic mean-square stochastic
conditions and the 𝐻

∞
conditions for system (Σ̃). Defining

the following variables for convenience:

Φ (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡)

+ (𝐴
𝑑1
+ Δ𝐴
𝑑1
(𝑡)) 𝐺𝜉 (𝑡 − 𝜏

1
(𝑡))

+ (𝐴
𝑑2
+ Δ𝐴
𝑑2
(𝑡)) 𝐺𝜉 (𝑡 − 𝜏

2
(𝑡)) + 𝐵V (𝑡) ,

𝑔 (𝑡) = (𝐻 + Δ𝐻 (𝑡)) 𝜉 (𝑡)

+ (𝐻
𝑑1
+ Δ𝐻

𝑑1
(𝑡)) 𝐺𝜉 (𝑡 − 𝜏

1
(𝑡))

+ (𝐻
𝑑2
+ Δ𝐻

𝑑2
(𝑡)) 𝐺𝜉 (𝑡 − 𝜏

2
(𝑡)) .

(19)

Theorem4. For given scalars 0 ≤ ℎ
1
, 0 ≤ ℎ

2
, the filtering error

system (Σ̃) is robust stochastic mean-square stables and (16) is
satisfied if there exist matrices 𝑃 = 𝑃𝑇 > 0, 𝑄

𝑖
= 𝑄
𝑇

𝑖
> 0, 𝑅

𝑖
=

𝑅
𝑇

𝑖
> 0, 𝑁

𝑖
,𝑀
𝑖
, 𝑖 = 1, 2, and 𝑍

𝑗
= 𝑍
𝑇

𝑗
> 0, 𝑗 = 1, . . . , 4, such

that the following matrix inequalities hold:

Ψ =
[

[

Ω Ψ
12
Ψ
13

∗ Ψ
22

0
∗ ∗ Ψ

33

]

]

< 0, (20)

where

Ω =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11

0 0 Ω
14
Ω
15

0 0 𝑃𝐵

∗ Ω
22

0 𝑁
2
𝑀
2

0 0 0

∗ ∗ Ω
33

0 0 0 0 0

∗ ∗ ∗ Ω
44

0 0 0 0

∗ ∗ ∗ ∗ Ω
55

0 0 0

∗ ∗ ∗ ∗ ∗ −

𝑅
1

ℎ
1

0 0

∗ ∗ ∗ ∗ ∗ ∗ −

𝑅
2

ℎ
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,
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Ψ
12
= [�̃�
1
�̃�
2
ℎ
1
�̃�
1
ℎ
1
�̃�
2
�̃�
1
�̃�
2
ℎ
2
�̃�
1
ℎ
2
�̃�
2
] ,

Ψ
22
= diag {−𝑍

3
, −𝑍
3
, −ℎ
1
𝑍
1
, −ℎ
1
𝑍
1
, −𝑍
4
, −𝑍
4
, −ℎ
2
𝑍
2
, −ℎ
2
𝑍
2
} ,

Ψ
13
= [ ̆𝐴𝐺

𝑇

𝑈
1
𝐻𝐺
𝑇

𝑈
2
𝐻𝑃 ̆𝐿] , Ψ

33
= diag {−𝑈

1
, −𝑈
2
, −𝑃, −𝐼} ,

Ω
11
= 𝑃 (𝐴 + Δ𝐴 (𝑡)) + (𝐴 + Δ𝐴 (𝑡))

𝑇

𝑃 + 𝐺
𝑇

(𝑄
1
+ 𝑄
2
+ ℎ
1
𝑅
1
+ ℎ
2
𝑅
2
) 𝐺,

Ω
14
= 𝑃 (𝐴

𝑑1
+ Δ𝐴
𝑑1
(𝑡)) + 𝐺

𝑇

𝑁
𝑇

1
, Ω

15
= 𝑃 (𝐴

𝑑2
+ Δ𝐴
𝑑2
(𝑡)) + 𝐺

𝑇

𝑀
𝑇

1
,

Ω
22
= −𝑄
2
− 𝑁
2
− 𝑁
𝑇

2
, Ω

33
= −𝑄
2
−𝑀
2
−𝑀
𝑇

2
, Ω

44
= −𝑁
1
− 𝑁
𝑇

1
, Ω

55
= −𝑀

1
−𝑀
𝑇

1
,

�̃�
1
= [0 0 0 𝑁

𝑇

1
0 0 0 0]

𝑇

, �̃�
1
= [0 0 0 0 𝑀

𝑇

1
0 0 0]

𝑇

,

�̃�
2
= [0 𝑁

𝑇

2
0 0 0 0 0 0]

𝑇

, �̃�
2
= [0 0 𝑀

𝑇

2
0 0 0 0 0]

𝑇

,

̆𝐴 = [𝐴
𝑇

+ Δ𝐴
𝑇

(𝑡) 0 0 𝐴
𝑇

𝑑1
+ Δ𝐴
𝑇

𝑑1
(𝑡) 𝐴

𝑇

𝑑2
+ Δ𝐴
𝑇

𝑑2
(𝑡) 0 0 𝐵

𝑇

]

𝑇

,

𝐻 = [�̃�
𝑇

+ Δ�̃�
𝑇

(𝑡) 0 0 �̃�
𝑇

𝑑1
+ Δ�̃�

𝑇

𝑑1
(𝑡) �̃�

𝑇

𝑑2
+ Δ�̃�

𝑇

𝑑2
(𝑡) 0 0 0]

𝑇

,

̆𝐿 = [�̃�
𝑇

0 0 𝐿

𝑇

𝑑1
𝐿

𝑇

𝑑2
0 0 0]

𝑇

, 𝑈
1
= ℎ
1
𝑍
1
+ ℎ
2
𝑍
2
, 𝑈

2
= ℎ
1
𝑍
3
+ 𝐻
2
𝑍
4
.

(21)

Proof. Define the following Lyapunov-Krasovskii candidate
for system (Σ̃):

𝑉 (𝜉 (𝑡) , 𝑡)

= 𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) + ∫

𝑡

𝑡−ℎ1

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ2

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑄
2
𝐺𝜉 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ1

∫

𝑡

𝑡+𝜃

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑅
1
𝐺𝜉 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ2

∫

𝑡

𝑡+𝜃

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑅
2
𝐺𝜉 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ1

∫

𝑡

𝑡+𝛽

Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
1
𝐺Φ (𝑠) 𝑑𝑠 𝑑𝛽

+ ∫

0

−ℎ2

∫

𝑡

𝑡+𝛽

Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
2
𝐺Φ (𝑠) 𝑑𝑠 𝑑𝛽

+ ∫

0

−ℎ1

∫

𝑡

𝑡+𝛽

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
3
𝐺𝑔 (𝑠) 𝑑𝑠 𝑑𝛽

+ ∫

0

−ℎ2

∫

𝑡

𝑡+𝛽

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
4
𝐺𝑔 (𝑠) 𝑑𝑠 𝑑𝛽.

(22)

When V(𝑡) = 0,

𝑑𝑉 (𝜉 (𝑡) , 𝑡) = L𝑉 (𝜉 (𝑡) , 𝑡) + 2𝜉𝑇 (𝑡) 𝑃𝑔 (𝑡) 𝑑𝜔 (𝑡) . (23)

By theNewton-Leibnitz formula, we can get the following
equations for any matrices 𝑁

𝑖
,𝑀
𝑖
, 𝑖 = 1, 2 with any

appropriate dimensions:

2𝜂
𝑇

(𝑡)𝑁
1
𝐺[𝜉 (𝑡) − 𝜉 (𝑡 − 𝜏

1
(𝑡)) − ∫

𝑡

𝑡−𝜏1(𝑡)

Φ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏1(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,

2𝜂
𝑇

(𝑡)𝑁
2
𝐺[𝜉 (𝑡 − 𝜏

1
(𝑡)) − 𝜉 (𝑡 − ℎ

1
)

− ∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

Φ (𝑠) 𝑑𝑠 − ∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,

2𝜂
𝑇

(𝑡)𝑀
1
𝐺[𝜉 (𝑡) − 𝜉 (𝑡 − 𝜏

2
(𝑡)) − ∫

𝑡

𝑡−𝜏2(𝑡)

Φ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏2(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,
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2𝜂
𝑇

(𝑡)𝑀
2
𝐺[𝜉 (𝑡 − 𝜏

2
(𝑡)) − 𝜉 (𝑡 − ℎ

2
)

− ∫

𝑡−𝜏2(𝑡)

𝑡−ℎ2

Φ (𝑠) 𝑑𝑠 − ∫

𝑡−𝜏2(𝑡)

𝑡−ℎ2

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,

𝜏
1
(𝑡) 𝜂
𝑇

(𝑡)𝑁
1
𝑍
−1

1
𝑁

𝑇

1
𝜂 (𝑡)

− ∫

𝑡

𝑡−𝜏1(𝑡)

𝜂
𝑇

(𝑡)𝑁
1
𝑍
−1

1
𝑁

𝑇

1
𝜂 (𝑡) 𝑑𝑠 = 0,

𝜏
2
(𝑡) 𝜂
𝑇

(𝑡)𝑀
1
𝑍
−1

2
𝑀

𝑇

1
𝜂 (𝑡)

− ∫

𝑡

𝑡−𝜏2(𝑡)

𝜂
𝑇

(𝑡)𝑀
1
𝑍
−1

2
𝑀

𝑇

1
𝜂 (𝑡) 𝑑𝑠 = 0,

(ℎ
1
− 𝜏
1
(𝑡)) 𝜂
𝑇

(𝑡)𝑁
2
𝑍
−1

1
𝑁

𝑇

1
𝜂 (𝑡)

− ∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝜂
𝑇

(𝑡)𝑁
1
𝑍
−1

1
𝑁

𝑇

1
𝜂 (𝑡) 𝑑𝑠 = 0,

(ℎ
2
− 𝜏
2
(𝑡)) 𝜂
𝑇

(𝑡)𝑀
2
𝑍
−1

2
𝑀

𝑇

1
𝜂 (𝑡)

− ∫

𝑡−𝜏2(𝑡)

𝑡−ℎ2

𝜂
𝑇

(𝑡)𝑀
2
𝑍
−1

2
𝑀

𝑇

1
𝜂 (𝑡) 𝑑𝑠 = 0,

(24)

where

𝑁
1
= [0 0 0 𝑁

𝑇

1
0 0 0]

𝑇

,

𝑁
2
= [0 𝑁

𝑇

2
0 0 0 0 0]

𝑇

,

𝑀
1
= [0 0 0 0 𝑀

𝑇

1
0 0]

𝑇

,

𝑀
2
= [0 0 𝑀

𝑇

2
0 0 0 0]

𝑇

,

(25)

and 𝜂(𝑡) is a new vector defined as follows:

𝜂
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − ℎ
1
) 𝐺
𝑇

𝜉
𝑇

(𝑡 − ℎ
2
) 𝐺
𝑇

𝜉
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝐺

𝑇

𝜉
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝐺

𝑇

(∫

𝑡

𝑡−ℎ1

𝑇

𝜉 (𝑠) 𝑑𝑠)𝐺
𝑇

(∫

𝑡

𝑡−ℎ2

𝑇

𝜉 (𝑠) 𝑑𝑠)𝐺
𝑇

] . (26)

Using the above formulas (24) and Lemma 3, it can be seen
that

L𝑉 (𝜉 (𝑡) , 𝑡)

= 2𝜉
𝑇

(𝑡) 𝑃Φ (𝑡) + 𝑔
𝑇

(𝑡) 𝑃𝑔 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡) + 𝜉

𝑇

(𝑡) 𝐺
𝑇

𝑄
2
𝐺𝜉 (𝑡)

− 𝜉
𝑇

(𝑡 − ℎ
1
) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡 − ℎ

1
)

− 𝜉
𝑇

(𝑡 − ℎ
2
) 𝐺
𝑇

𝑄
2
𝐺𝜉 (𝑡 − ℎ

2
) + ℎ
1
Φ
𝑇

(𝑡) 𝐺
𝑇

𝑍
1
𝐺Φ (𝑡)

+ ℎ
1
𝜉
𝑇

(𝑡) 𝐺
𝑇

𝑅
1
𝐺𝜉 (𝑡) + ℎ

2
𝜉
𝑇

(𝑡) 𝐺
𝑇

𝑅
2
𝐺𝜉 (𝑡)

+ ℎ
2
Φ
𝑇

(𝑡) 𝐺
𝑇

𝑍
2
𝐺Φ (𝑡) − ∫

𝑡

𝑡−ℎ1

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑅
1
𝐺𝜉 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ2

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑅
2
𝐺𝜉 (𝑠) 𝑑𝑠 + ℎ

1
𝑔
𝑇

(𝑡) 𝐺
𝑇

𝑍
3
𝐺𝑔 (𝑡)

− ∫

𝑡

𝑡−ℎ1

Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
1
𝐺Φ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ2

Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
2
𝐺Φ (𝑠) 𝑑𝑠 + ℎ

2
𝑔
𝑇

(𝑡) 𝐺
𝑇

𝑍
4
𝐺𝑔 (𝑡)

− ∫

𝑡

𝑡−ℎ1

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
3
𝐺𝑔 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ2

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
4
𝐺𝑔 (𝑠) 𝑑𝑠

≤ 𝜂
𝑇

(𝑡) [Ω + 𝑁
1
𝑍
−1

3
𝑁

𝑇

1

+ �̂� (𝐺
𝑇

ℎ
1
𝑍
3
𝐺 + 𝐺

𝑇

ℎ
2
𝑍
4
𝐺 + 𝑃) �̂�

+ 𝐴𝐺
𝑇

(ℎ
1
𝑍
1
+ ℎ
2
𝑍
2
) 𝐺𝐴
𝑇

+ 𝑁
2
𝑍
−1

3
𝑁

𝑇

2

+ ℎ
1
𝑁
1
𝑍
−1

1
𝑁

𝑇

1
+ ℎ
1
𝑁
2
𝑍
−1

1
𝑁

𝑇

2
+ ℎ
2
𝑀
1
𝑍
−1

2
𝑀

𝑇

1

+ℎ
2
𝑀
2
𝑍
−1

2
𝑀

𝑇

2
+𝑀
1
𝑍
−1

4
𝑀

𝑇

1
+𝑀
2
𝑍
−1

4
𝑀

𝑇

2
] 𝜂 (𝑡)

− ∫

𝑡

𝑡−𝜏1(𝑡)

[𝜂
𝑇

(𝑡)𝑁
1
+ Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐺Φ (𝑠) + 𝑁

𝑇

1
𝜂 (𝑡)] 𝑑𝑠

− ∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

[𝜂
𝑇

(𝑡)𝑁
2
+ Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐺Φ (𝑠) + 𝑁

𝑇

2
𝜂 (𝑡)] 𝑑𝑠

− ∫

𝑡

𝑡−𝜏2(𝑡)

[𝜂
𝑇

(𝑡)𝑀
1
+ Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
2
] 𝑍
−1

2

× [𝑍
2
𝐺Φ (𝑠) + 𝑀

𝑇

1
𝜂 (𝑡)] 𝑑𝑠

− ∫

𝑡−𝜏2(𝑡)

𝑡−ℎ2

[𝜂
𝑇

(𝑡)𝑀
2
+ Φ
𝑇

(𝑠) 𝐺
𝑇

𝑍
2
] 𝑍
−1

2

× [𝑍
2
𝐺Φ (𝑠) + 𝑀

𝑇

2
𝜂 (𝑡)] 𝑑𝑠
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+ (∫

𝑡

𝑡−𝜏1(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

𝑇

𝐺
𝑇

𝑍
3
𝐺(∫

𝑡

𝑡−𝜏1(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡

𝑡−𝜏1(𝑡)

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
3
𝐺𝑔 (𝑠) 𝑑𝑠

+ (∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝑔 (𝑠) 𝑑𝜔 (𝑠))

𝑇

𝐺
𝑇

𝑍
3
𝐺(∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
3
𝐺𝑔 (𝑠) 𝑑𝑠

+ (∫

𝑡

𝑡−𝜏2(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

𝑇

𝐺
𝑇

𝑍
4
𝐺(∫

𝑡

𝑡−𝜏2(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡

𝑡−𝜏2(𝑡)

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
4
𝐺𝑔 (𝑠) 𝑑𝑠

+ (∫

𝑡−𝜏2(𝑡)

𝑡−ℎ2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

𝑇

𝐺
𝑇

𝑍
4
𝐺(∫

𝑡−𝜏1(𝑡)

𝑡−ℎ2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡−𝜏1(𝑡)

𝑡−ℎ2

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
4
𝐺𝑔 (𝑠) 𝑑𝑠,

(27)

where

Ω =

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11

0 0 Ω
14
Ω
15

0 0

∗ Ω
22

0 0 𝑁
2

𝑀
2

0

∗ ∗ Ω
33

0 0 0 0

∗ ∗ ∗ Ω
44

0 0 0

∗ ∗ ∗ ∗ Ω
55

0 0

∗ ∗ ∗ ∗ ∗ −

𝑅
1

ℎ
1

0

∗ ∗ ∗ ∗ ∗ ∗ −

𝑅
2

ℎ
2

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐴 = [(𝐴 + Δ𝐴 (𝑡))

𝑇

0 0 (𝐴
𝑑1
+ Δ𝐴
𝑑1
(𝑡))

𝑇

(𝐴
𝑑2
+ Δ𝐴
𝑑2
(𝑡))

𝑇

0 0 ]

𝑇

,

�̂� = [(�̃� + Δ�̃� (𝑡))

𝑇

0 0 (�̃�
𝑑1
+ Δ�̃�
𝑑1
(𝑡))

𝑇

(�̃�
𝑑2
+ Δ�̃�
𝑑2
(𝑡))

𝑇

0 0 ]

𝑇

.

(28)

Note that

E(∫
𝑡

𝑡−𝜏1(𝑡)

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
3
𝐺𝑔 (𝑠) 𝑑𝑠)

= E((∫
𝑡

𝑡−𝜏1(𝑡)

𝑇

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))

×𝐺
𝑇

𝑍
3
𝐺(∫

𝑡

𝑡−𝜏1(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))) ,

E(∫
𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
3
𝐺𝑔 (𝑠) 𝑑𝑠)

= E((∫
𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝑇

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))

× 𝐺
𝑇

𝑍
3
𝐺(∫

𝑡−𝜏1(𝑡)

𝑡−ℎ1

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))) ,

E(∫
𝑡

𝑡−𝜏2(𝑡)

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
4
𝐺𝑔 (𝑠) 𝑑𝑠)

= E((∫
𝑡

𝑡−𝜏2(𝑡)

𝑇

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))

× 𝐺
𝑇

𝑍
4
𝐺(∫

𝑡

𝑡−𝜏2(𝑡)

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))) ,

E(∫
𝑡−𝜏2(𝑡)

𝑡−ℎ2

𝑔
𝑇

(𝑠) 𝐺
𝑇

𝑍
4
𝐺𝑔 (𝑠) 𝑑𝑠)

= E((∫
𝑡−𝜏2(𝑡)

𝑡−ℎ2

𝑇

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))

×𝐺
𝑇

𝑍
4
𝐺(∫

𝑡−𝜏2(𝑡)

𝑡−ℎ2

𝑔
𝑇

(𝑠) 𝑑𝜔 (𝑠))) .

(29)

So, themathematical expectation of the last eight parts of (27)
equals 0. And applying the Schur complement to (3), we can
derive the following inequality with V(𝑡) = 0:

Ω +𝑁
1
𝑍
−1

3
𝑁

𝑇

1
+ �̂� (𝐺

𝑇

ℎ
1
𝑍
3
𝐺 + 𝐺

𝑇

ℎ
2
𝑍
4
𝐺 + 𝑃) �̂�

+ 𝐴𝐺
𝑇

(ℎ
1
𝑍
1
+ 𝐻
2
𝑍
2
) 𝐺𝐴
𝑇

+ 𝑁
2
𝑍
−1

3
𝑁

𝑇

2

+ ℎ
1
𝑁
1
𝑍
−1

1
𝑁

𝑇

1
+ ℎ
1
𝑁
2
𝑍
−1

1
𝑁

𝑇

2
+ ℎ
2
𝑀
1
𝑍
−1

2
𝑀

𝑇

1

+ ℎ
2
𝑀
2
𝑍
−1

2
𝑀

𝑇

2
+𝑀
1
𝑍
−1

4
𝑀

𝑇

1
+𝑀
2
𝑍
−1

4
𝑀

𝑇

2
< 0.

(30)
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From (27), (29), and (30), we can see that

L𝑉 (𝜉 (𝑡) , 𝑡) < 0, (31)

which, by Definition 2.1 [37, 38], ensures that system (Σ̃) with
V(𝑡) = 0 is robustly stochastically stable. By Itô’s formula, we
can derive

E (𝑉 (𝜉 (𝑡) , 𝑡)) = E(∫
𝑡

0

L𝑉 (𝜉 (𝑠) , 𝑠) 𝑑𝑠) . (32)

Now, set a functional 𝐽
𝑇
as

𝐽
𝑇
= E(∫

𝑇

0

[𝑧(𝑡)
𝑇

𝑧 (𝑡) − 𝛾
2V(𝑡)𝑇V (𝑡)] 𝑑𝑠) , (33)

where 𝑡 > 0. From (32) and (33), it is easy to show that

𝐽
𝑇
= E(∫

𝑇

0

[𝑧(𝑡)
𝑇

𝑧 (𝑡) − 𝛾
2V (𝑡)𝑇V (𝑡) + L𝑉 (𝜉 (𝑠) , 𝑠)] 𝑑𝑠)

− E (𝑉 (𝜉 (𝑡) , 𝑡))

≤ E(∫
𝑇

0

[𝑧(𝑡)
𝑇

𝑧 (𝑡) − 𝛾
2V (𝑡)𝑇V (𝑡) + L𝑉 (𝜉 (𝑠) , 𝑠)] 𝑑𝑠) ,

(34)

for all 𝑡 > 0. By using the Schur complement to (3), there is

𝑧(𝑡)
𝑇

𝑧 (𝑡) − 𝛾
2V(𝑡)𝑇V (𝑡) + L𝑉 (𝜉 (𝑠) , 𝑠) ≤ 𝜂 (𝑡) Ψ𝜂 (𝑡) < 0,

(35)

where

𝜂
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − ℎ
1
) 𝐺
𝑇

𝜉
𝑇

(𝑡 − ℎ
2
) 𝐺
𝑇

𝜉
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝐺

𝑇

𝜉
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝐺

𝑇

(∫

𝑡

𝑡−ℎ1

𝑇

𝜉 (𝑠) 𝑑𝑠)𝐺
𝑇

(∫

𝑡

𝑡−ℎ2

𝑇

𝜉 (𝑠) 𝑑𝑠)𝐺
𝑇 V (𝑡) ] .

(36)

It follows from (33) and (34) that

𝐽 (𝑡) < 0, (37)

for all 𝑡 > 0, which implies that (10) is satisfied.This completes
the proof.

Remark 5. The Lyapunov functional (22) contains the infor-
mation of the uppers bound of the delays; by such a choice,
delay-dependent results are obtained.

4. Robust 𝐻
∞

Filter Design

In this section, a sufficient condition for the solvability of
robust 𝐻

∞
filter problem for uncertain T-S fuzzy stochastic

time-delay system is investigated. The main result is given in
the following theorem by LMI form.

Theorem 6. Consider the uncertain T-S fuzzy stochastic time-
delay system (Σ). The robust 𝐻

∞
filtering problem is solvable

with disturbance attenuation 𝛾 > 0 if there exist scalars 𝜀
𝑖
> 0

and matrices 𝑊 > 0, 𝑋 > 0, 𝑄
𝑖
> 0, 𝑅

𝑖
> 0, 𝑖 = 1, 2;

𝑍
𝑗
> 0, 𝑗 = 1, 2, 3, 4; 𝑁

1𝑖
, 𝑁
2𝑖
, 𝑀
1𝑖
, 𝑀
2𝑖
, 𝑖 = 1, 2, 3, 4;

{Γ
𝑖
= Γ
𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑟}, {Π

𝑖𝑗
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟}, such that the

following LMIs hold:

[
Θ
𝑖𝑖
− Γ
𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖

𝑖

∗ −𝜀
𝑖

] < 0, (1 ≤ 𝑖 ≤ 𝑟) , (38)

[

[

[

Θ
𝑖𝑗
+ Θ
𝑗𝑖
− Π
𝑖𝑗
− Π
𝑇

𝑖𝑗
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
+ 𝜀
𝑗
Ξ
𝑗
Ξ
𝑇

𝑗

𝑖


𝑗

∗ −𝜀
𝑖
0

∗ ∗ −𝜀
𝑗

]

]

]

< 0,

(1 ≤ 𝑖 < 𝑗 ≤ 𝑟) ,

(39)

[

[

[

[

[

[

Γ
1
Π
12
⋅ ⋅ ⋅ Π

1𝑟

∗ Γ
2
⋅ ⋅ ⋅ Π

2𝑟

...
... d

...
∗ ∗ ⋅ ⋅ ⋅ Γ

𝑟

]

]

]

]

]

]

< 0, (40)

𝑋 −𝑊 > 0, (41)

where


𝑇

𝑖
= [𝐾
𝑇

1𝑖
𝑊 𝐾

𝑇

1𝑖
𝑋 0
1∗15

𝐾
𝑇

1𝑖
𝑈
1
𝐾
𝑇

2𝑖
𝑈
2
𝐾
𝑇

2𝑖
𝑋 𝐾
𝑇

2𝑖
] ,

Ξ
𝑇

𝑖
= [𝑇
𝑇

1𝑖
𝑇
𝑇

1𝑖
0 0 𝑇

𝑇

2𝑖
𝑇
𝑇

3𝑖
0
15∗1

] , Θ
𝑖𝑗
=
[

[

[

Θ
11
Θ
12

Θ
13

∗ Θ
22

0
8∗8

∗ ∗ Θ
33

]

]

]

,
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Θ
11
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Λ
11
Λ
12

0 0 Λ
15

Λ
16

0 0 Λ
19

∗ Λ
22

0 0 Λ
25

Λ
26

0 0 Λ
29

∗ ∗ Λ
33

0 Λ
35

Λ
36

0 0 0

∗ ∗ ∗ Λ
44

0 0 0 0 0

∗ ∗ ∗ ∗ −𝑁
1
− 𝑁
𝑇

1
0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑀
1
−𝑀
𝑇

1
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −

𝑅
1

ℎ
1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −

𝑅
2

ℎ
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Λ
11
= 𝑊𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑊+𝑄

1
+ 𝑄
2
+ ℎ
1
𝑅
1
+ ℎ
2
𝑅
2
,

Λ
12
= 𝑊𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑋 + 𝐶

𝑇

𝑗
Φ
𝑇

1𝑖
+ Φ
𝑇

2𝑖
+ 𝑄
1
+ 𝑄
2
+ ℎ
1
𝑅
1
+ ℎ
2
𝑅
2
,

Λ
15
= 𝑁
𝑇

1
+𝑊𝐴

𝑑1𝑖
, Λ

16
= 𝑀
𝑇

1
+𝑊𝐴

𝑑2𝑖
, Λ

19
= 𝑊𝐵

𝑖
, Λ

29
= 𝑋𝐵
𝑖
+ Φ
1𝑖
𝐷
𝑗
,

Λ
22
= 𝑋
𝑇

𝐴
𝑖
+ Φ
1𝑖
𝐶
𝑗
+ 𝐶
𝑇

𝑗
Φ
𝑇

1𝑖
+ 𝐴
𝑇

𝑖
𝑋 + 𝑄

1
+ 𝑄
2
+ ℎ
1
𝑅
1
+ ℎ
2
𝑅
2
,

Λ
25
= 𝑁
𝑇

1
+ 𝑋
𝑇

𝐴
𝑑1𝑖
+ Φ
1𝑖
𝐶
𝑑1𝑗
, Λ

26
= 𝑀
𝑇

1
+ 𝑋
𝑇

𝐴
𝑑2𝑖
+ Φ
1𝑖
𝐶
𝑑2𝑗
,

Λ
33
= −𝑄
1
− 𝑁
2
− 𝑁
𝑇

2
, Λ

35
= 𝑁
2
, Λ

36
= 𝑀
2
, Λ

44
= −𝑄
2
−𝑀
2
−𝑀
𝑇

2
,

Θ
12
=

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 0 0 0 0 0

0 𝑁
2

0 ℎ
2
𝑁
2

0 0 0 0

0 0 0 0 0 𝑀
2

0 ℎ
2
𝑀
2

𝑁
1
0 ℎ
1
𝑁
1

0 0 0 0 0

0 0 0 0 𝑀
1

0 ℎ
2
𝑀
1

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Θ
22
= diag {−𝑍

3
, −𝑍
3
, −ℎ
1
𝑍
1
, −ℎ
1
𝑍
1
, −𝑍
4
, −𝑍
4
, −ℎ
2
𝑍
2
, −ℎ
2
𝑍
2
} ,

Θ
13
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ℎ
1
𝐴
𝑇

𝑖
𝑍
1
+ 𝐻
2
𝐴
𝑇

𝑖
𝑍
2

ℎ
1
𝐻
𝑖
𝑍
3
+ ℎ
2
𝐻
𝑖
𝑍
4

𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖
𝐿
𝑇

𝑖
− Φ
𝑇

3𝑖

ℎ
1
𝐴
𝑇

𝑖
𝑍
1
+ 𝐻
2
𝐴
𝑇

𝑖
𝑍
2

ℎ
1
𝐻
𝑖
𝑍
3
+ ℎ
2
𝐻
𝑖
𝑍
4

𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖
𝐿
𝑇

𝑖

0 0 0 0 0

0 0 0 0 0

ℎ
1
𝐴
𝑇

𝑑1𝑖
𝑍
1
+ 𝐻
2
𝐴
𝑇

𝑑1𝑖
𝑍
2
ℎ
1
𝐻
𝑑1𝑖
𝑍
3
+ ℎ
2
𝐻
𝑑1𝑖
𝑍
4
𝐻
𝑇

𝑑1𝑖
𝑋 𝐻
𝑇

𝑑1𝑖
0

ℎ
1
𝐴
𝑇

𝑑2𝑖
𝑍
1
+ 𝐻
2
𝐴
𝑇

𝑑2𝑖
𝑍
2
ℎ
1
𝐻
𝑑2𝑖
𝑍
3
+ ℎ
2
𝐻
𝑑2𝑖
𝑍
4
𝐻
𝑇

𝑑2𝑖
𝑋 𝐻
𝑇

𝑑2𝑖
0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Θ
33
= diag{−ℎ

1
𝑍
1
− ℎ
2
𝑍
2
, −ℎ
1
𝑍
3
− ℎ
2
𝑍
4
, [

−𝑋 −𝐼

∗ −Φ
4

] , −𝐼} .

(42)

When the LMIs (38)–(41) are feasible, there exist nonsin-
gular matrices 𝜎 and 𝛽 satisfying 𝜎𝛽𝑇 = 𝐼−𝑋𝑊−1. Under this
condition, a desired time-dependent filter can be chosen as

𝐿
𝑓𝑖
= Φ
3𝑖
𝑊
−1

𝛽
−𝑇

, 𝑖 = 1, . . . , 𝑟.

(43)

Proof. From the demonstration in [21], we know that 𝐼 −
𝑋𝑊
𝑇

− 1 is nonsingular. Therefore, there always exist
nonsingular matrices 𝜎 and 𝛽 such that 𝜎𝛽𝑇 = 𝐼 − 𝑋𝑊

−1

holds. Then, we define the nonsingular matrices 𝜒
1
and 𝜒

2
as

follows:

𝜒
1
= [

𝑊
−1

𝐼

𝛽
𝑇

𝑜

] ; 𝜒
2
= [

𝐼 𝑋

0 𝜎
𝑇] . (44)

Let 𝑃 = 𝜒
2
𝜒
−1

1
; there is

𝑃 = [

𝑋 𝜎

𝜎
𝑇

𝛽
−1

𝑊
−1

(𝑋
𝑊
)𝑊
−1

𝛽
−𝑇] , (45)

which means that 𝑃 > 0.
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Now, using Lemma 3 and recalling (40), we can deduce
that

𝜅 =

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) [Θ

𝑖𝑖
+ 
𝑖
𝐹
𝑖
(𝑡) Ξ
𝑇

𝑖
+ Ξ
𝑖
𝐹
𝑖
(𝑡) 
𝑇

𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡))

× [Θ
𝑖𝑗
+ 
𝑖
𝐹
𝑖
(𝑡) Ξ
𝑇

𝑖
+ Ξ
𝑖
𝐹
𝑖
(𝑡) 
𝑇

𝑖

+ Θ
𝑗𝑖
+ 
𝑖
𝐹
𝑗
(𝑡) Ξ
𝑇

𝑗
+ Ξ
𝑗
𝐹
𝑗
(𝑡) 
𝑇

𝑗
]

<

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) [Θ

𝑖𝑖
+ 𝜀
−1

𝑖

𝑖

𝑇

𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡)) [Θ

𝑖𝑗
+ 𝜀
−1

𝑖

𝑖

𝑇

𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖

+ Θ
𝑗𝑖
+ 𝜀
−1

𝑗

𝑗

𝑇

𝑗
+ 𝜀
𝑗
Ξ
𝑗
Ξ
𝑇

𝑗
]

<

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) Γ

𝑖
+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡)) [Π

𝑖𝑗
+ Π
𝑇

𝑗𝑖
]

=

[

[

[

[

[

ℎ
1
(𝑠(𝑡))𝐼

ℎ
2
(𝑠(𝑡))𝐼

...
ℎ
𝑟
(𝑠(𝑡))𝐼

]

]

]

]

]

𝑇

[

[

[

[

[

Γ
1
Π
12
⋅ ⋅ ⋅ Π

1𝑟

∗ Γ
2
⋅ ⋅ ⋅ Π

2𝑟

...
... d

...
∗ ∗ ⋅ ⋅ ⋅ Γ

𝑟

]

]

]

]

]

[

[

[

[

[

ℎ
1
(𝑠 (𝑡)) 𝐼

ℎ
2
(𝑠 (𝑡)) 𝐼

...
ℎ
𝑟
(𝑠 (𝑡)) 𝐼

]

]

]

]

]

< 0.

(46)

Then, it is easy to see that

{diag(𝜒−𝑇
2
[
𝑊
−1

0

0 𝐼
] , 𝐼, . . . , 𝐼)} 𝜅 {diag(𝜒−𝑇

2
[
𝑊
−1

0

0 𝐼
] , 𝐼, . . . , 𝐼)}

= [

Ω Ψ
12

Ψ
13

∗ Ψ
22

0
∗ ∗ Ψ

33

] < 0,

(47)
which is equivalent to (3). Therefore, the condition in
Theorem 4 is satisfied when the LMIs in (38)–(41) hold.
Finally, it can be concluded that the filtering error system (Σ̃)

is stochastically stable with𝐻
∞

performance level 𝛾.

Remark 7. There is more than one time delay appear in the
electric system, the network system, and so on. So, it makes
sense to investigate the system containing two terms of time
delays as shown in this paper. The model we consider here
contains two terms of time-varying delay as 𝜏

1
(𝑡) and 𝜏

1
(𝑡) in

the state 𝑥(𝑡). The method we use can be easily drawn back
to the system that has only one time delay. Meanwhile, the
result we get can be extended to the system that containsmore
delays at the same time by developing the Lyapunov function
with ℎ

3
, ℎ
4
, . . . integral terms in the same way.

5. Numerical Example

In this section, we provide a numerical example to show the
effectiveness of the results obtained in the previous section.

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1.5

2.5

1

2

3

−1

−0.5

x1

x2

Filter-x1
Filter-x2

Figure 1: State responses of 𝑥(𝑡) and 𝑥(𝑡).

0 5 10 15 20 25 30

0

0.5

1.5

1

−1

−0.5

Figure 2: Responses of the signal �̃�(𝑡) = 𝑧(𝑡) − �̂�(𝑡).

Example 1. Consider the T-S fuzzy stochastic system (Σ̃) with
model parameters given as follows:

𝐴
1
= [

−1.9 0.4

0.2 −1.1
] , 𝐴

𝑑11
= [

−1.1 0.1

−0.8 −0.9
] ,

𝐴
𝑑21

= [

−0.02 0.01

0.05 −0.05
] , 𝐻

1
= [

−0.04 0.1

0.03 −0.05
] ,

𝐻
𝑑11

= [

−0.01 0.02

0.01 −0.05
] , 𝐻

𝑑21
= [

−0.04 0.01

0.03 −0.05
] ,
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𝐶
1
= [1 −0.4] , 𝐶

𝑑11
= [−0.4 0.1] ,

𝐶
𝑑21

= [−0.1 −0.4] , 𝐷
1
= 0.3,

𝐿
1
= [1.0 −0.5] , 𝐿

𝑑11
= [1 −0.5] ,

𝐿
𝑑21

= [1 −0.5] , 𝐴
2
= [

−2.1 0.2

0.1 −1.1
] ,

𝐴
𝑑12

= [

−0.9 0.1

−1.1 −1.2
] , 𝐴

𝑑22
= [

−0.04 0.05

0.02 −0.04
] ,

𝐻
2
= [

−0.4 0.01

0.03 −0.05
] , 𝐻

𝑑12
= [

−0.05 0.01

0.03 −0.05
] ,

𝐻
𝑑22

= [

−0.06 0.02

0.01 −0.05
] ,

𝐶
2
= [0.2 −0.5] , 𝐶

𝑑12
= [−0.4 0.5] ,

𝐶
𝑑22

= [−0.3 −0.4] , 𝐿
2
= [−0.2 0.3] ,

𝐿
𝑑12

= [−0.2 −0.5] , 𝐿
𝑑22

= [−0.3 −0.5]

𝐵
1
= [

1.0

−0.2
] , 𝐵

2
= [

0.3

0.1
] , 𝐷

2
= −0.3,

(48)

and the parameter uncertainties are shown as

𝐾
11
= [

1.0

−0.5
] , 𝐾

12
= [

−0.2

0.3
] ,

𝐾
21
= [

0.8

−0.1
] , 𝐾

22
= [

−0.1

0.4
] ,

𝑇
11
= [0 −0.3] , 𝑇

21
= [−0.2 0.1]

𝑇
31
= [−0.5 0.1] , 𝑇

12
= [0 −0.3]

𝑇
22
= [0 −0.1] , 𝑇

32
= [−0.3 −0.2] .

(49)

The twomembership functions are, respectively, described as

ℎ
1
(𝑥
1
(𝑡)) = (1 −

1

1 + exp (6𝑥
1
(𝑡) + 2)

) ,

ℎ
2
(𝑥
1
(𝑡)) = 1 − ℎ

1
.

(50)

In this example, the noise attenuation level 𝛾 is set to 𝛾 =
0.42. FromTheorem 6, it is to see that the robust𝐻

∞
filtering

problem is solvable for any 0 < ℎ
1
(𝑡) ≤ 0.8, 0 < ℎ

2
(𝑡) ≤ 0.9.

Thus, a desired fuzzy 𝐻
∞

filter can be constructed as in the
form of (11) with

[

𝐴
𝑓1

𝐵
𝑓1

𝐿
𝑓1

𝐴
𝑓2

𝐵
𝑓2

𝐿
𝑓2

] =

[

[

[

[

−69.057

48.860

76.641

53.611

−0.514

0.427
−24.7515 −26.0768

46.823

−131.781

58.857

−161.087

−0.083

0.116
−76.7602 −93.953

]

]

]

]

. (51)

The simulation results of the state response of the plant
and the filter are given in Figure 1, where the initial condition
is 𝑥
0
(𝑡) = [0.4 2.5]

𝑇, 𝑥
0
(𝑡) = [0 0]

𝑇. Figure 2 shows the
simulation results of the signal 𝑧(𝑡) − �̂�(𝑡), and the exogenous
disturbance input V(𝑡) is given by V(𝑡) = 12/(5 + 3.1𝑡), 𝑡 ≥ 0,
which belongs toL

2
[0,∞).

6. Conclusion

This paper has investigated the filter design problem for
the uncertain T-S fuzzy stochastic system with time-varying
delays. An LMI approach has been developed to design the
fuzzy filter ensuring not only the robust stochastic mean-
square stability but also a prescribed 𝐻

∞
performance level

of the filtering error system for all admissible uncertainties.
A numerical example has been provided to show the effec-
tiveness of the proposed filter design methods.
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Safety risk analysis and assessment of high-risk work system in hydroelectric project has an important role in safety management.
The interactive relationships between human factors and the importance of factors are analyzed and proposed. We analyze the
correlation relationship among the factors by using statistical method, which is more objective than subjective judgment. The
HFACS is provided to establish a rational and an applicable index system for investigating human error in accidents; the structural
equation modeling (SEM) and accident data are used to construct system model and acquire the path coefficient among the risk
factor variables; the ANP model is built to assess the importance of accident factors. 289 pieces of valid questionnaires data are
analyzed to obtain the path coefficient between risk factor variables and to build the ANP model’s judgment matrix. Finally, the
human factors’ weights are calculated by ANP model. Combining SEM’s results and factor’s frequency analysis and building the
ANPmodel, the results show that the four greatest weight values of the factors are, respectively, “personal readiness,” “perception and
decision errors,” “skill-based errors,” and “violation operations.” The results of ANP model provide a reference for the engineering
and construction management.

1. Introductions

Hydroelectric project construction has higher safety risk for
the interactive factors like complex geological conditions,
small venue, large amount of construction workers, various
stages of cross-operation, and frequent aerial work, which is
vulnerable to induce safety accidents. In recent years, in order
to guarantee the safety of hydroelectric project construction
work, a great deal of human, material, and financial resources
have been invested, the management and supervision of con-
struction have gradually strengthened, but the overall status
remains grim, and the annual total number of hydroelectric
project construction accidents and the number of deaths
and serious injuries are still high in China. The safety work
management is still in a blind state; especially the role of
human factors in the accident control still lacks clarity. In
order to create a good work environment and improve the

safety index of the hydroelectric project construction, we
need to find out the safety factors in construction, implement
identification of human risk factors, analyze interrelationship
between human factors, calculate the weight of every factors,
find out the factors need to improve, andminimize or prevent
the occurrence of accidents.

In hydroelectric project construction process, a signifi-
cant proportion of the technical causes of serious accidents
are attributed to human factors, to establish a rational and
comprehensive safety classification system based on human
behavior is important for safety assessment.The classification
system is used to provide the types of failure involved in
accidents. One of the more widely used approaches is the
Human Factors Analysis and Classification System [1] drawn
in [2]. HFACS is a commonly utilized tool for investi-
gating human contributions to aviation accidents under a
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widespread evaluation scheme. HFACS, and its derivatives,
has been adapted, applied, and promoted in several domains
(and countries) in addition to commercial and private flying,
including mining accident [3, 4], helicopter maintenance [5],
maritime accident [6, 7], railroad accident [8], and surgery
accident [9]. In [6], the HFACSwas extended on an analytical
basis in a fuzzy environment to investigate shipping accidents
in a consistent manner. A sample of 263 significant mining
incidents in Australia across 2007-2008 are analyzed using
HFACS and provide a greater understanding of the systemic
factors involved inmining accidents [3].Therefore, we extend
the HFACS on an analytical basis in the safety assessment of
work system in hydropower project construction to evaluate
the faulty behavioral risk value.

In HFACS framework extended for hydroelectric project
construction, there are some observed factors and latent
factors; some of these are influenced by each other;
quantitative analysis on these factors to assess their weight in
whole system is needed. Structural equationmodeling (SEM)
is a modeling technique that can handle a large number of
endogenous and exogenous variables, as well as latent (unob-
served) variables specified as linear combinations (weighted
averages) of the observed variables. Regression, simultaneous
equations (with and without error-term correlations), path
analysis, and variations of factor analysis and canonical
correlation analysis are all special cases of SEM [10]. We
can consider the risk as a quantity, which can be measured
and expressed by a mathematical relation, under the help
of real accidents’ data [11–13]. SEM is a relatively new
method, and its history can be traced back to the 1970s.
Most applications have been in psychology, sociology, the
biological sciences, educational research, political science,
andmarket research. Applications in travel behavior research
date from 1980. Use of SEM is now rapidly expanding as user-
friendly software becomes available, and researchers become
comfortable with SEM and regard it as another tool in their
arsenal. Chen et al. [14] research the influencing factors of
coalmine employees’ deliberate violation behaviors in China
coalmine fatal accidents.

There are some evaluation methods for hydroelec-
tric project high-risk operations, such as LEC assessment
method, Safety Inspection Table, Analytic Hierarchy Process
(AHP), Fault Tree Analysis method, Fuzzy Comprehensive
Evaluation method, and Neural Network. Many scholars
over the world have researched in this area. In [15], the
degree of danger was studied when the workers work
in potentially dangerous environment, presented the LEC
method’s formula D = L∗E∗C, where D is the value-at-
risk, L is the probability of the accident happening, E is
how often exposure to dangerous environment, and C is
the possible consequences of the accident. LEC method is
greatly dependent on the subjectivity of experts, which is
prone to difference in the process of rating value; the results
are not very objective. Dongzhi [16] used Accident Tree
Analysis, studied risk factors of hydroelectric engineering
construction, put forward improvement measures to reduce
the incidence of accidents, and improved the safety level

of construction. But Accident Tree Analysis method has
many calculation steps and is difficult to make quantitatively
analysis when the data are less. Dedobbeleer and Béland
[17] identified the current safety performance evaluation
index of construction work system, understood the practical
characteristics of workplace by questionnaire survey, and
accordingly analyzed construction of safety environment.
In [18, 19], safety warnings were proposed after certain
steps, including identification of factors which can influence
safety level, assessment of potential changes of those factors,
assessment of the impact of those changes and selection of
safety-related criteria.

The above studies adopt different evaluation methods to
analyze the project safety, but there is no evaluation from a
holistic perspective; all the methods have some deficiencies.
Application of Analytic Network Process (ANP) in the
project construction for safety assessment is a hotspot; this
is a method based on Analytic Hierarchical Process (AHP).
ANP method considers interrelationship among all factors
in the same level and adjacent levels, uses supermatrix to
comprehensively analyze the factors affecting each other, and
obtains the ultimate hybrid weight. In dealing with complex
problems that elements connected with and influenced each
other, ANP method is proved to be effective and reasonable
by the global studies. In [20], fuzzy ANP method was
adopted to evaluate the operation system’s risk factors, but the
correlations among the factors are simply used by the experts’
estimation, which may induce expert’s bias. In [21], the “3P +
I” model was proposed to evaluate the effectiveness of safety
management system, AHP and factor analysis were used to
identify the key indicators impacting the construction and
eventually the questionnaire and expert scoringmethod were
adopted to determine the weight. In [22] the hydroelectric
project risk factors were studied to establish the index system
based on the ANP, and five main classes of risk factors were
identified: organization andmanagement of risks, technolog-
ical risks, natural risks, social risk, and economic risk and
actually a hydroelectric project was assessed. In contrast with
the above studies, there is a little research on hydroelectric
project construction, or it only uses a single method to
qualitatively analyze correlation coefficient and may cause
subjective influence. In [23], it was noted noted that the ANP
method has some limitations, cannot exclude the bias of the
experts, the model’s output depends on the given value of
expert and cause inconsistencies in the pairwise comparison
process. Therefore, it was mentioned that knowledge should
be incorporated. In [24], it was pointed out should make use
of statistical methods for the analysis of accident statistics,
so as to more accurately determine dependency relationship
between elements, which avoid the comparison between
factors given by experts with prejudice or inconsistency
problem.

Therefore, it is necessary to use ANP method combined
with quantitative methods and systematically study the fac-
tors from the layers of management to construction workers.
Combining ANP and other methods for comprehensive
assessment can take advantage of their respective advantages,
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develop its advantages, avoid disadvantages, and get better
results. In [25], ANP and Bayesian Networks method were
used to study the safety classification of nuclear power
plants. In [26], the ANP and DEMATEL were combined
successfully to solve the evaluation for vehicle fleet main-
tenance management. In [27], QFD, fuzzy ANP, and fuzzy
FMEA (failure modes and effect analysis) were used to
identify the important types and causes of hazards in the
construction industry, meantime providing risk assessment
values of hazard causes and relevant improvement strategies.
Above researches combined ANP with other methods, the
evaluation process is becoming more refined and more
realistic. In this paper, we combined ANP, HFACS, SEM, and
synthetic statistical methods to evaluate the high-risk work
system in hydroelectric projects.

The rest of this paper is organized as follows. In Section 2,
the framework of research methodology is constructed and
has been presented in detail. In Section 3, based on the
HFACS framework, the questionnaire is designed and SEM
is built by AMOS. Section 4 analyzes the correlation factors’
interdependence relationships based on accident cases by
lambda method and tau-y method. In Section 5, the relative
weights of factors are calculated by synthetic matrix in ANP
model. Finally, the results were thoroughly analyzed, while
in the last section the main conclusions and future research
topics were drawn up.

2. Methodology Research

ANP model is based on risk influential factors’ classification
and layered architecture. This study firstly analyzes the
human risk factors; therefore, human factors analysis and
classification system framework (HFACS) is used to analyze
human factors in construction engineering accidents. The
technical thinking of this study is firstly applying HFACS
and other standardized documents or results to design ques-
tionnaire, which is designed for the Three Gorges project,
and Xiluodu project, Xiangjiaba project, and then sends the
questionnaire to the management units, design units, con-
struction units, supervision units, and technical and safety
management staff. Secondly, we analyze the questionnaire
data; SPSS17.0 can analyze reliability and validity of the data
and confirm the internal consistency of the data. If the
data’s reliability is high, use AMOS to establish structural
equation modeling (SEM); the path coefficients among the
factors can be obtained, thus the relationship can be analyzed
among the factors. Thirdly, under the HFACS, structure
the previous accident cases of Xiluodu project, Xiangjiaba
project, and theThree Gorges project, using statistical meth-
ods to analyze human factors of accident, we can get the
correlation coefficient between the factors. Finally, based on
the preceding analysis, combine judgment matrix achieved
by empowerment table with judgment matrix by SEM, use
linear weighting method, obtain one synthesized judgment
matrix, and then calculate this judgment matrix by Super
Decision (SD) tool. Eventually, we obtain the ANP evaluation
weight and ranking of various factors. In summary, this study
was carried out through interviews, questionnaires, theoretic
analysis with modeling and statistic methods, and decision

and assessment method. It consists of 3 stages shown in
Figure 1.

3. Factors Correlation Analysis Based on
Empirical Study

3.1. HFACS Framework. Before designing the questionnaire,
firstly make sure of the composition of hydroelectric con-
struction risk factors, determine the classification and hier-
archical structure of human factors, and construct hierarchy
model of hydroelectric construction risk; then base on the
model to implement the study. In this study, the HFACS
framework is adopted to analyze the human factors which
result in the engineering construction accidents; HFACS
considers both unsafe behaviors and potential factors which
influence unsafe behaviors, satisfy the characteristics of
reliability, diagnostic and comprehensive, in accidents inves-
tigation. We revise the standard framework of HFACS to
adapt with actual safety management of hydroelectric project
construction, technical measurements, personnel quality sit-
uation, and so forth; the adjusted risk influential human
factor is shown in Figure 2.

3.2. Questionnaire Design. In the HFACS framework shown
in Figure 1, there are 4 categories and 17 indicators of human
factors in this study. We finally formed a questionnaire with
63 detailed items, which include 9 items about organizational
influences, 24 items about safetymanagement, 23 items about
site work related factors, and 7 items about construction
personal unsafe behaviors. According to the degree of impor-
tance, the questionnaire’s indicators are in descending order
and adopt Likert-3 table scale method to divide indictors into
three degrees: “the first class indicator,” scheduled for score 3;
“the second class indicator,” scheduled for score 2 and “the
third class indicator,” scheduled for score 1. Each item needs
to record the corresponding rating value. The questionnaires
were issued in 418 pieces; 403 valid pieces were collected.
After sorting and filtering data, we finally obtained 289 pieces
of valid questionnaires data and based on this tomake validity
analysis.

3.3. Reliability Analysis andValidity Analysis. SPSS17.0 is used
to analyze the reliability and validity of the data. By the
SPSS software’s “reliability analysis” function, the reliability
analysis results of all data can be obtained. 𝛼 value is closer to
1, the reliability is better. Use SPSS software’s “factor analysis”
function to precede validity analysis and get validity result
of all the data, the reliability and validity of latent variables’
analysis results are shown in Table 1, the reliability analysis
results are shown in Table 2, and KMO and Bartlett’s values
are shown in Table 3.

In these tables, Cronbach’s alpha coefficient is the internal
consistency coefficient, which is one of the most commonly
used indicators to test questionnaire’s reliability, reflecting the
consistency and stability degree of the scale items; Bartlett’s
test assumes that variable correlation coefficient matrix is
the identity matrix; if the original hypothesis denied, it is
suitable for factor analysis; KMO is the sampling appropriate
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Table 1: The test result of latent variables’ reliability and validity.

Latent variable Measurable variables number KMO Bartlett’s test Cronbach’s alpha (𝛼 value)
Approx. chi-square df Sig.

Organizational influences 4 0.675 177.907 6 0.000 0.510
Safety management 5 0.854 536.007 10 0.000 0.822
Site work related factors 7 0.918 1074.889 21 0.000 0.883
Workers’ unsafe behaviors 3 0.727 342.280 3 0.000 0.816

Table 2: The reliability analysis results of all data.

Cronbach’s alpha (𝛼 value) Terms number
0.916 19

Table 3: The KMO and Bartlett’s test results of this study.

KMO and Bartlett’s test
Kaiser-Meyer-Olkin measurement of sampling
adequacy 0.923

Bartlett’s test
Approx. chi-square 2924.223
df 171
Sig. 0.000

parameter; this when the value is greater than 0.5, means that
these variables can make factor analysis; Sig. is significance
level and less than 0.05.

We can infer from the parameters in the table data that the
value of 𝛼 for each subscale is good, and the entire question-
naire’s Cronbach’s alpha coefficient reaches 0.910, close to 1,
which indicates the high reliability of the questionnaire data.
Each subscale’s KMO and Bartlett’s test value is good, and the
entire questionnaire data’s KMO value is 0.928, very close to
1, Sig. <0.05, which shows good questionnaire construction
validity. In short, the reliability and validity of the survey data
are desirable.

3.4.The Factors Correlation Analysis Based on the SEMModel.
Consider organizational influences as SEM model’s external
latent variable, the corresponding observable variables are
exogenous observable variables, safety management, and the
site work related factors and construction personal unsafe
behaviors are latent variable, and the corresponding observ-
able variables are endogenous observable variable. We try
to establish two test models: the first model is the high
layer factors which only directly affect their low layers, L4
effects on L3, L3 effects on L2, L2 effect on L1 (more accord
with the HFACS theory); the second model is L3 affect L2
and L1, but L2 does not affect L1. By AMOS17.0 software,
make comparison of the two models’ fit indices; the fitting
parameter of the first model is more satisfactory, and the first
model is also more in line with the actual significance of this
study. Therefore, amend the first model and make the result
analysis.

Observe the M.I. value in the AMOS’s output. The M.I.
value is the revised index, which can discover meaningful

information for improving the model’s fitting situation; the
correction index can predict the reduction of the chi-square
value. Before the correction, we must check whether the path
is correct in the model and the variable is really relevant;
if the regression coefficient is significantly not equal to 0, it
represents that the path relationship between the variables is
correct. Whenmodifying the model, the higher modification
index’s value of the path means more conduciveness to
improve the model’s fitting situation.

After repeatedly estimating the model and constantly
checking the output of AMOS software to find out variables
with high M.I. value, simultaneously combine with the
practical significance of the model to increase the correlation
path. Eventually, we get the fixed model as shown in Figure 3,
where the path coefficients are marked.

Model-fitted indices after being amended are shown in
Table 4. We can see that the correction model’s chi-square
value is reduced, the path value P is significantly below level
0.01, and all fit indices have been improved greatly, explaining
the model’s fitting situation that getting better.

The correlation coefficient between the variables is over
0, which means the relationship between each latent variable
is positively correlated, indicating that one of the latent
variables will have a positive impact on the other latent
variable. Similarly, the influence between the latent variable
and its corresponding observable variables is positive.

We may acquire analysis result by the AMOS that
in the organizational influences layer, the safety laws and
regulations’ standardization path coefficient is the highest
(0.799), which indicates the safety laws and regulations have
a very big influence in this level. In safety management
layer, emergency rescue’s standardization path coefficient is
the highest (0.765), followed by risk monitoring (0.755); the
next is education and training (0.735). In site work related
factors, team management’s standardized path coefficient is
0.802, showing the biggest influence in this layer, followed by
technicalmeasurements (0.760). Inworkers’ unsafe behaviors
layer, perception and decision errors’ path coefficient is the
highest (0.901); therefore, its influence is themost in this layer,
followed by skill-based errors and violation operations. The
interrelationship between hidden variables is different: the
correlation coefficient between organizational influences and
the safety management, the correlation coefficient between
safety management and site work related factors, the correla-
tion coefficient between site related factors and construction
personal unsafe behaviors are, respectively, 0.872, 0.808,
and 0.547; therefore, the organizational influences have the
greatest impact on safety management.
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Figure 3: Path analysis graph for SEM revised model.

Table 4: Commonly used fitting index computed result of revised model.

Fit index Chi-square FID CFI NFI IFI RFI RMSEA AIC BCC GFI RMR
Result 181.207 108 0.970 0.930 0.970 0.911 0.049 271.207 277.207 0.932 0.124

4. The Correlation Analysis of Factors
Based on Accident Cases

Based on the accident data, we count accidents caused by
human factors, find out factor categories with big proportion,
and analyze their influence on accidents.The data come from
“the Xiluodu project accident cases analysis,” “the Xiangjiaba
project accident cases analysis” and “theThreeGorges project
accident cases analysis.” Apply Kappa coefficient analysis
method to analyze 108 accident cases happened in the above
three projects. Determining the human factors’ correspond-
ing accident cases and calculating the percentage accounted
for the total number of all accidents, this study gets a general
understanding of the frequency of occurrence of each factor,
as well as the weighting among all the factors. The weights
of human factors in Table 5 are calculated on the basis of
frequency statistics of all factors resulting in the accident.

Empowering values in Table 5 will provide an important
reference to build judgment matrix.

Subsequently, statistically analyze the interaction between
human factors and use Chi-square test to analyze the cor-
relation and identify the linkages between factors; apply
Lambda method and Tau-y method to calculate the pro-
portional reduction in error (PRE), which is correlation
analysis. Both Lambda method and Tau-y method are
directional statistics, and they can determine the degree of
correlation between the human factors. By these methods,
we find out how the factors influence each other and how
to form a clue between different levels. The more detailed
correlation analysis based on accident cases can be referred
to in our previous work in the reference. Here, we take an
example as follows: the impact of “organization structure and
responsibility” on “education and training” is calculated in
Table 6. When the Tau-y value exceeds 0.10, the correlation
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Table 5: The empowerment for each human factor.

First class index Weight
ai Second class index Weight

bi
Normalized
weight Wi

Organizational
influences L4 0.1254

Organization structure and responsibility 0.6019 0.0741
Safety investment 0.3241 0.0399

Safety laws and regulations 0.0926 0.0114

Safety
management L3 0.3123

Education and training 0.8981 0.1106
Safety supervision, inspection, and acceptance 0.787 0.0969

Risk monitoring 0.7222 0.0889
Emergency rescue 0.0741 0.0091

Accident report, investigation, and treatment 0.0556 0.0068

Site work related
factors L2 0.3945

Operating environment 0.6481 0.0798
Technical measurements 0.787 0.0969

Team management 0.6667 0.0821
Personal readiness 0.9167 0.1129

Mechanical equipment 0.1296 0.0160
Material 0.0556 0.0068

Construction
personal unsafe
behaviors L1

0.1671
Perception and decision errors 0.5278 0.0645

Skill-based errors 0.3426 0.0422
Violation operations 0.4907 0.0604

Table 6: The cross table of “organization structure and responsibil-
ity” on “education and training.”

Count
q1 “organization structure and
responsibility” sum
Not resulting
in accident (0)

Resulting in
accident (1)

A1 “education and
training”

Not resulting in
accident (0) 10 1 11

Resulting in accident (1) 33 64 97
Sum 43 65 108

relationship is practical; when it exceeds 0.3, the correlation
relationship is strong:

𝐸1 =

[(108 − 97) ∗ 97 + (108 − 11) ∗ 11]

108

= 19.759

𝐸2 =

[(43 − 10) ∗ 10 + (43 − 33) ∗ 33]

43

+

[(65 − 1) ∗ 1 + (65 − 64) ∗ 64]

65

= 17.318

Tau-𝑦 = 𝜏𝑦 = 𝐸1 − 𝐸2
𝐸1

=

19.759 − 17.318

19.759

= 0.124.

(1)

Based on the correlation analysis, we can draw theHFACS
framework shown in Figure 4, which reflects the degree of
correlation. The thick solid lines indicate strong correlation
between the two factors (the Tau-y value exceeds 0.1), and the
dashed line indicates the weak correlation between the two
factors. In Figure 4, the dashed box means the frequency of
the occurring factor in the accident cases is less than 0.1.

In Figure 4, there are some connections between the fac-
tors “organization structure and responsibility” in the L4 layer
and “education training,” “safety supervision, inspection, and
acceptance,” and “emergency rescue” in the L3 layer; the rela-
tionship between “organization structure and responsibility”
and “emergency rescue” is weak, which means that safety
management facilities, safety management personnel, and
safe work responsibility system have limited impact on safety
work emergency management and accident rescue but can
greatly affect on the staff “education and training” and “safety
supervision, inspection, and acceptance,”which indicates that
safety managers responsibilities’ full fulfillments can improve
the effect of safety education and training; carefully found
hidden danger, strict rectification, and process monitoring
can also play an important role in accident prevention.

“Education and training” in L3 layer has relationship
with “team management” and “personal readiness” in L2,
but the correlation with “team management” is weaker,
which indicates that good safety education training of team
members has a positive effect on good information commu-
nication, team cooperation, and effectiveness of foreknowing
dangerous activities. The correlation between “education
training” and “personal readiness” is strong, which means
that “education training” can greatly improve the “personnel’s
basic situation”; the workers get enough safety education and
skills training, which enhance their safety consciousness; they
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Figure 4: The correlation analysis among the HFACS factors using Tau-ymethod.

also can understand their objective situation and avoid being
involved in the accidents. “Safety supervision, inspection, and
acceptance” in L3 layers and “personal readiness” in L2 layer
as well as “mechanical equipment” have relationships, which
mean “safety supervision, inspection, and acceptance” affects
both the workers’ situation and the mechanical equipment
safety management, but less the latter. “Risk control” in
L3 layer and “technical measures” in L2 layers also have
relationship, which means that the dangerous places and
hazards identification, assessment, and monitoring can lead
to more targeted and practical measures. The premise of
the safety warning signs set is the hazards identification;
the rational allocation of safety measurements and confiding
technical intentions are also determined by the hazards
identification.

There are relationships between “operation environment”
in layer 2 and “perception and decision errors” in layer 1,
“technical measures” in layer 2 and “skill-based errors” in
layer 1, “Personal readiness” in layer 2 and “perception and
decision errors,” “violation operation” in layer 1. The dotted
lines mean the relationships are weak, indicating that the
construction workers’ unsafe behavior is little affected by
site work related conditions. The capacity of the worker’s
perception and decision-making, work skills, and operational
violations are affected by the individual subjective, individual
technical ability, and accidental factors; therefore, there are
some relationships between L2 layer factors and L1 layer ones.

5. Safety Assessment Based on
the ANP Method

5.1. Molding and Building Judgment Matrix. According to
the HFACS framework as well as the mutual correlation
among the human factors, build the ANP network hierarchy
evaluation model, as shown in Figure 5. The model reflects
the relationship between the various factors in the criterion
layer.

The core work of the ANP’s empowerment and solution
is to compute each supermatrix, weighted super matrix, and

limitation supermatrix, which is a very complex calculation
process. Therefore, we use the Super Decision tool to deal
with the calculation.

The judgment matrix constructed in this study is quite
different from other studies. The judgment matrix is not
from the expert’s pairwise comparison but linearly weighs the
judgmentmatrix𝑊 and judgmentmatrix𝑊.Thenext both
matrixes are respectively, from the pairwise comparison of
empowerment values (see Table 5) and the pairwise compar-
ison of path coefficients of structure equation modeling (see
Figure 3). According to the properties of the positive recip-
rocal matrix, use the following formula to obtain synthetic
matrix:

𝑊 = 𝛼𝑊


+ (1 − 𝛼)𝑊


. (2)

In this formula, 𝛼 is weighted index, 𝛼 ∈ [0, 1], 𝑊is
built by the pairwise comparison of empowerment values
in Table 5, 𝑊 is built by the pairwise comparison of path
coefficients of structure equation modeling in Figure 3, and
𝑊 is the final judgment matrix. 𝑊,𝑊, and 𝑊 are all
positive reciprocal matrixes, subjected to 𝑎

𝑖𝑗
> 0,𝑎

𝑖𝑖
=

1,𝑎
𝑖𝑗
= 1/𝑎

𝑗𝑖
(𝑖, 𝑗 = 1, 2, . . . , 𝑛). The judgment matrix is from

concrete values compared with each other, so the judgment
matrix is satisfied with 𝑎

𝑖𝑗
= 𝑎
𝑖𝑘
/𝑎
𝑗𝑘
. Each judgment matrix’

consistency ratio CR is equal to zero and is satisfied with full
consistency. Using the synthetic matrix, the ANP assessment
process is a fully quantitative process.

The value of weighted index 𝛼 is set to 0.7 on preference.
All factors of layers with mutual relationship are carried out
pair-wise comparisons. The detailed calculation process is as
follows.

Firstly, build the judgment matrixes of “organizational
influences,” “safety management,” “site work related factors”
and “personal unsafe behaviors”:

𝑊


1
=

[

[

[

[

1 0.40 0.32 0.75

2.5 1 0.79 1.86

3.125 1.266 1 2.35

1.33 0.538 0.426 1

]

]

]

]
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Figure 5: Hierarchical and correlation of the factors in ANP model.

𝑊


1
=

[

[

[

[

1 1.147 1.418 2.597

0.872 1 1.238 2.262

0.705 0.808 1 1.828

0.385 0.442 0.547 1

]

]

]

]

.

(3)

According to the formula (2), the synthetic matrix is as
follows:

𝑊
1
=

[

[

[

[

1 0.62 0.65 1.30

1.61 1 0.92 1.98

1.54 1.09 1 2.19

0.77 0.51 0.46 1

]

]

]

]

. (4)

The judgment matrix of the elements in “organizational
influences” is as follows:

𝑊
2
=
[

[

1 1.54 4.69

0.65 1 2.63

0.21 0.38 1

]

]

. (5)

The judgment matrix of the elements in “safety manage-
ment” is as follows:

𝑊
3
=

[

[

[

[

[

[

1 1.10 1.16 8.80 11.73

0.91 1 1.05 7.75 10.32

0.86 0.95 1 7.14 9.50

0.11 0.13 0.14 1 1.29

0.09 0.10 0.11 0.78 1

]

]

]

]

]

]

. (6)

The judgment matrix of the elements in “site work related
factors” is as follows:

𝑊
4
=

[

[

[

[

[

[

[

[

1 0.82 0.92 0.75 3.76 8.47

1.22 1 1.11 0.91 4.56 10.28

1.09 0.90 1 0.83 3.93 8.77

1.33 1.10 1.20 1 5.26 11.92

0.27 0.22 0.25 0.19 1 1.93

0.12 0.10 0.11 0.08 0.52 1

]

]

]

]

]

]

]

]

. (7)

The judgment matrix of the elements in “personal unsafe
behaviors” is as follows:

𝑊
5
=
[

[

1 1.47 1.14

0.68 1 0.78

0.88 1.28 1

]

]

. (8)

Considering correlation analysis, the judgment matrix of
“organizational structure and responsibilities” to its correla-
tion factors is as follows:

𝑊
6
=
[

[

1 0.947 1.632

1.056 1 1.724

0.613 0.580 1

]

]

. (9)

Considering correlation analysis, the judgment matrix of
“education and training” to its correlation factors is as follows:

𝑊
7
= [

1 0.076

13.158 1
] . (10)
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Table 7: ANP assessment weights.

First class index ANP weight Second class index ANP
weight ANP rank Normalized

weight Wi Cases rank

Organizational
influences 0.1315

q1 organization structure and responsibility 0.0347 11 0.0741 8
q2 safety investment 0.0214 13 0.0399 12

q3 safety laws and regulations 0.0078 15 0.0114 14

Safety
Management 0.3474

a1 education and training 0.0693 6 0.1106 2
a2 safety supervision, inspection, and acceptance 0.0652 7 0.0969 3

a3 risk monitoring 0.0493 8 0.0889 5
a4 emergency rescue 0.0146 14 0.0091 15

a5 accident report, investigation, and treatment 0.0050 16 0.0068 16

Site work related
factors 0.3755

x1 operating environment 0.0363 10 0.0798 7
x2 technical measurements 0.0934 5 0.0969 4

x3 team management 0.0440 9 0.0821 6
x4 personal readiness 0.1664 1 0.1129 1

x5 mechanical equipment 0.0216 12 0.0160 13
x6 material 0.0044 17 0.0068 17

Construction
personal unsafe
behaviors

0.1456
d1 perception and decision errors 0.1551 2 0.065 9

d2 skill-based errors 0.1122 3 0.0422 11
d3 violation operations 0.0994 4 0.0604 10

Considering correlation analysis, the judgment matrix
of “safety supervision, inspection, and acceptance” to its
correlation factors is as follows:

𝑊
8
= [

1 4.325

0.231 1
] . (11)

Considering correlation analysis, the judgment matrix
of “personal basic situation” to its correlation factors is as
follows:

𝑊
9
= [

1 1.212

0.825 1
] . (12)

According to Figure 5, we use SD tool to build the
ANP model. The model reflects the relationship between
the variables in the layer factors. At the network layer, we
have four categories; each category has several elements (17
evaluation indicators in the sum). Because the factors in the
layers are not independent, the circular arrow lines are seen
in Figure 5.

5.2. Solutions. Through calculation by the SD software, the
weight values of every factor are shown in Table 7.

5.3. Results. In Table 7, the four smallest weight values of
the factors are, respectively, “material” (0.0044), “accident
report, investigation and treatment” (0.0050), “safety laws
and regulations” (0.0078), and “emergency rescue” (0.0146).
The normalized weight values based on cases statistics also
show that these four factors result in accidents less frequently,
which indicate that these four factors less likely to result in
accidents in the high-risk construction operations, and the
organizations have done well in these four aspects.

The four greatest weight values of the factors are,
respectively, “personal readiness” (0.1664), “perception and
decision errors” (0.1551), “skill-based errors” (0.1122), and
“violation operations” (0.0994). But in of cases statisti-
cal analysis, the four greatest weight values are “personal
readiness”(0.1129), “education training” (0.1106), “technical
measures” (0.0969), and “safety supervision, inspection, and
acceptance” (0.0969). Only “personal readiness” is the most
greatest in both methods, which shows that in the project
construction, when the worker’s basic situation greatly influ-
ences his safety consciousness, risk awareness, and psycho-
logical andphysiological conditions. In order to guarantee the
safety of construction projects, organizations should strive to
improve this factor. The rank of “educating training” drops
from the original 2 to 6, indicating that the interaction among
the factors will lead to the assessment results change. Because
the “education and training” and “personal readiness” have
a very strong relationship, the imperfections of the safety
education and skills training will lead to personnel’s basic
situation get worse. In order to avoid the double counting of
the associated factors, the assessment weight of “education
and training” decreases. The weight of “safety supervision,
inspection, and acceptance” drops from the original ranking
3 to 7, which is a result that this factor also directly affects
“personal readiness.” So with the similar reason, the ANP
assessment weight of “safety supervision, inspection, and
acceptance” decreases.

After ANP assessment, the weight values of “perception
and decision errors,” “skill-based errors,” and “operation
violation” have increased. According to the results of fac-
tor analysis, “education training” and “safety supervision,
inspection, and acceptance” will influence “personal readi-
ness,” “personal readiness” located in L2 layer directly influ-
ences “perception and decision-making errors” in L1 layer
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and “operation violation,” and “risk monitoring” influences
“technology measures,” “technology measures” in L2 layer
influence “skills errors” in L1 layer. It can be seen that
construction worker’s unsafe behavior is the direct influential
factor which may lead to the accident. Three factors in L1
layer “perception and decision-making errors,” “skill errors,”
and “operation irregularities” with higher weight values in
ANP assessment, which also indicate the unsafe behavior of
construction workers, are the most important factors leading
to accidents.

In “organizational influences” layer, the three factors
of “organization structure and duties,” “safety investments,”
and “safety laws and regulations,” their weight values being
relatively smaller, indicate that the organizations have taken
complete measurements on these aspects, have invested on
safety management institutions, safety management per-
sonnel, and have established the safety work responsibility
system, series of laws and regulations, and relevant rules and
regulations. All the above measures are successful.

In the actual construction project, these 17 assessment
factors often influence each other, so the ANP assessment
results may be more realistic and can provide a reference for
the engineering and construction management. Meanwhile,
there are still a lot of factors need to be considered to
determine the final management plans and schedules.

6. Conclusions

This study firstly revises the standard HFACS framework
to evaluate the risk factors of the high-risk operations in
hydroelectric engineering construction, constructs a compre-
hensive framework system from the organizational layer to
personal layer, and is based on the framework to deal with
the subsequent research.

Secondly, this study obtains the original data from ques-
tionnaire and analyzes the data by the SPSS. The reliability
and validity analysis results indicate that the questionnaire
data met the realistic requirements. The conceptual model
is drawn by AMOS, the raw data is imported from the
SPSS to fit, make comparison, revise, and analyze the model.
After modeling, analyzing, and revising, we get correlation
coefficients between latent variables which may influence
hydroelectric construction safety as well as correlation coef-
ficients between latent variables and their corresponding
observable variables. The correlation coefficients excess zero,
which means the variables have positive relationships; if any
variable (factor) is improved, other variables (factors) will
also be improved to some degree. The value of correlation
coefficient between variables shows the influence on each
other. These results give some reference for the organizations
to develop management regulations and strategies.

Thirdly, we use the statistical methods such as the PRE
method, revise HFACS framework to analyze 108 accident
cases, and count the frequency of each risk factor in the
accidents.We use the chi-square test to determine correlation
between adjacent level factors, in order to determine the
concrete association degree between the factors more accu-
rately and calculate the correlation coefficient with the PRE

method between the factors. The coefficient values indicate
the correlation degree between the two factors.

Finally, we use the ANP method to evaluate the impor-
tance of the factors influencing safety work. The traditional
safety assessment methods generally use subjective qualita-
tive or semiqualitative principles; not quantitatively assess
the safety and risk of construction project. The AHP method
cannot consider the interrelationship between the factors
they do and is not consistent with the actual situation.
However, the ANP method makes up for such deficiency.
In this study, the ANP model’s judgment matrix is not from
the pair-wise comparison method, but from a combination
of accident cases analysis results of factor frequency, the
correlation coefficient between the factors, and the path
coefficient of structural equation modeling. Then, we follow
a linear formula to get the final judgment matrix, which
can improve the qualitative analysis result relative to the
traditional ANP method (the expert rating). Such method
makes possible the assessment results more objective and
quantitative.

Due to research limitation, there remains a further
analysis to satisfy a more realistic factors classification and
hierarchical relationships as well asmore rational framework.
The accident cases data are also limited and cannot cover all
characteristics of risk factors. The analysis model is to some
extent simple, according to a fixed direction to make factor
analysis, and the variables in the analysis process are nominal
variables. However, in the actual construction project, the
relationships between the factors are complex; there are no
such simple relationships in the HFACS model. Therefore,
there may some deviations between the analysis results and
the realistic situation.

Finally, this study only selects structural equation model-
ing, accidents statistical analysis, and ANP method to imple-
ment the safety assessment research and has not compre-
hensively compared other more methods, such as Bayesian
theory, D-S evidence theory, and neural network. Therefore,
the assessment results may not be most accurate and optimal.
As a result, we should carry out a variety of assessment
methods and select the combination of optimal methods to
evaluate in the future.
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This paper is concerned with the problems of delay-dependent robust stability and stabilization for a class of continuous singular
systems with time-varying delay in range and parametric uncertainties. The parametric uncertainties are assumed to be of a linear
fractional form, which includes the norm bounded uncertainty as a special case and can describe a class of rational nonlinearities.
In terms of strict linear matrix inequalities (LMIs), delay-range-dependent robust stability criteria for the unforced system are
presented. Moreover, a strict LMI design approach is developed such that, when the LMI is feasible, a desired state feedback
stabilizing controller can be constructed, which guarantees that, for all admissible uncertainties, the closed-loop dynamics will
be regular, impulse free, and robustly asymptotically stable. Numerical examples are provided to demonstrate the effectiveness of
the proposed methods.

1. Introduction

Singular time-delay systems, which are known as descriptor
time-delay systems, implicit time-delay systems, or general-
ized differential-difference equations, often appear in various
engineering systems, for example, aircraft attitude control,
flexible arm control of robots, large-scale electric network
control, chemical engineering systems, lossless transmission
lines, and so forth [1, 2]. Since singular time-delay systems are
matrix delay differential equations coupled with matrix dif-
ference equations, the study for such systems is much more
complicated than that for standard state-space time-delay
systems. Recently, a great deal of attention has been devoted
to the study of such more general class of delay systems; see
[3–27].

The existing stability criteria for singular time-delay sys-
tems can be classified into two types: delay independent [3–
5] and delay dependent [6–10]. Generally, delay-dependent
conditions are less conservative than the delay-dependent
ones, especially when the time delay is small. To obtain delay-
dependent conditions, many efforts have been made in

the literature, among which the model transformation and
bounding technology for cross-terms [8–10] are often used.
However, it is known that the bounding technology and the
model transformation are the main source of conservation
[28]. Recently, some improved stability conditions with
less conservatism have been provided by utilizing the free
weighting matrix method [11–13], the integral inequality [14],
and the delay decomposition approach [15–17], in which
neither the bounding technology nor model transformation
is involved. However, these conditions in [6–17] were estab-
lished under the assumption that the delay was time invari-
ant. For the continuous singular systems with time-varying
delay, Yue andHan investigated the delay-dependent stability
condition by introducing the free weighting matrices [18]. In
[19], a delay-dependent stability condition was presented by
using the integral inequality method. But the range of the
time-varying delay considered in [18, 19] is from 0 to an
upper bound. In practice, a time-varying interval delay is
often encountered; that is, the range of delay varies in an
interval for which the lower bound is not restricted to 0. In
this case, the stability criteria in [18, 19] are conservative
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because they do not take into account the information of the
lower bound of delay. Moreover, when estimating the upper
bound of the derivative of Lyapunov functional, some useful
terms are ignored in [18, 19]. More recently, continuous
singular systemswith time-varying delay in a range have been
extensively studied; see, for example, [20–27] and references
therein.

On the other hand, in recent years, more and more atten-
tion has been devoted to derive strict LMI conditions for
stability analysis and controller design; see, for example [29,
30] and references therein. The strict LMI conditions, that is,
definite LMIs without equality constraints, are highly tracta-
ble and reliable when checked by some recently developed
algorithms for solving LMIs [31]. However, it should be
pointed that the stability conditions derived in [20–27] are
formulated in terms of nonstrict LMIs, whose solutions are
difficult to calculate since equality constraints are often fragile
and usually not met perfectly. Furthermore, up to now, to the
best of the authors’ knowledge, for a continuous uncertain
singular system with a time-varying interval delay, the prob-
lems of robust stability, stabilization, and feedback control
have not been fully investigated yet [23]. Particularly, strict
LMI-based condition has never been reported in the pub-
lished works.

In this paper, by using a strict LMI approach, we study
the robust stability and stabilization problems for a class
of singular systems with a time-varying interval delay and
uncertainties. Different from the existing results in [13, 19, 21,
23], first, the criteria proposed in our paper do not contain
any semidefinite matrix inequality and are expressed as strict
LMIs. Second, the new criteria are obtained by only using a
well-known integral-inequality and do not employ any free-
weighting matrix, which makes our methods more efficient.
Third, a new type of uncertainty, namely, linear fractional
form, is considered in this paper. Three numerical examples
are given to illustrate the effectiveness of the presented
method.

Notations. R𝑛 denotes the 𝑛-dimensional Euclidean space,
andR𝑛×𝑚 denotes the sets of all 𝑛×𝑚matrices. 𝐼 is the identity
matrix with appropriate dimensions. For a real symmetric
matrix 𝑋, 𝑋T denotes its transpose, the notation 𝑋 ≥ 0

(𝑋 > 0) means that the matrix 𝑋 is positive semidefinite
(positive-definite), and 𝜆min(𝑋) (𝜆max(𝑋)) denotes the min-
imum (maximum) eigenvalue of 𝑋. 𝐶

𝑛,𝜏
:= 𝐶([−𝜏, 0], 𝑅

𝑛

)

denotes the Banach space of continuous vector functions
mapping the interval [−𝜏, 0] into 𝑅

𝑛, 𝑥
𝑡

:= 𝑥(𝑡 + 𝜃), 𝜃 ∈

[−𝜏, 0], and 𝑡 ≥ 0 denotes the function family defined on
[−𝜏, 0] which is generated by 𝑛-dimensional real vector val-
ued continuous function 𝑥(𝑡), 𝑡 ∈ [−𝜏, +∞). Obviously, 𝑥

𝑡
∈

𝐶
𝑛,𝜏
. ‖⋅‖ refers to the Euclidean vector normor spectralmatrix

norm, and ‖𝜑‖
𝑐

:= sup
−𝜏≤𝑡≤0

‖𝜑(𝑡)‖ stands for the norm of
a function 𝜑 ∈ 𝐶

𝑛,𝜏
. The symmetric terms in a symmetric

matrix are denoted by ∗.

2. Problem Formulation and Preliminaries

Consider the following singular time-delay system:

𝐸 ̇𝑥 (𝑡) = (𝐴 + Δ𝐴) 𝑥 (𝑡) + (𝐴
𝜏
+ Δ𝐴

𝜏
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ (𝐵 + Δ𝐵) 𝑢 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ
2
, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, and 𝑢(𝑡) ∈ R𝑚 is the
control input. 𝐸, 𝐴 ∈ R𝑛×𝑛, 𝐴

𝜏
∈ R𝑛×𝑛, and 𝐵 ∈ R𝑛×𝑚

are real constant matrices with appropriate dimensions, and
0 < rank𝐸 = 𝑟 ≤ 𝑛. 𝜏(𝑡) denotes the time-varying delay
which satisfies ℎ

1
< 𝜏(𝑡) ≤ ℎ

2
, ̇𝜏(𝑡) ≤ 𝜇 < 1. Note that

ℎ
1
may not be equal to 0. 𝜙(𝑡) is a compatible continuous

vector-valued initial function on [−ℎ
2
, 0]. Δ𝐴, Δ𝐴

𝜏
and Δ𝐵

are matrices with parametric uncertainties satisfying

[Δ𝐴 Δ𝐴
𝜏

Δ𝐵] = 𝐷Δ (𝑡) [𝐸
𝑎

𝐸
𝜏

𝐸
𝑏
] , (2)

Δ (𝑡) = 𝐹 (𝑡) (𝐼 − 𝐽𝐹 (𝑡))
−1

, (3)

𝐼 − 𝐽
T
𝐽 > 0, (4)

where𝐷,𝐸
𝑎
,𝐸

𝜏
,𝐸

𝑏
, and 𝐽 are known real constantmatrices of

approximate dimensions and𝐹(𝑡) are unknown time-varying
matrix function satisfying

𝐹
T
(𝑡) 𝐹 (𝑡) ≤ 𝐼. (5)

The parametric uncertainties Δ𝐴, Δ𝐴
𝜏
, and Δ𝐵 satisfying

(2)–(5) are said to be admissible.

Remark 1. The above-structured linear fractional form
includes the norm-bounded uncertainty as a special case
when 𝐽 = 0 [3, 8–11, 13, 19, 23] and can describe a class of
rational nonlinearities [32]. Note also that conditions (4) and
(5) guarantee that 𝐼 − 𝐽𝐹(𝑡) is invertible.

The nominal unforced system of (2) can be written as

𝐸 ̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝜏
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ
2
, 0] .

(6)

The following notations are given.

(i) 𝑆
0
:= {𝜙(𝑡) ∈ 𝐶

𝑛,ℎ2
, 𝜙(𝑡) is the compatible initial func-

tion of system (6)}.
(ii) 𝑆 := {𝜙(𝑡) ∈ 𝐶

𝑛,ℎ2
, and there exists a uniquely contin-

uous solution of system (6) on [0, +∞) for 𝜙(𝑡)}.
(iii) 𝐵(0, 𝛿) := {𝜙(𝑡) | 𝜙(𝑡) ∈ 𝐶

𝑛,ℎ2
, ‖𝜙‖

𝑐
≤ 𝛿, 𝛿 > 0}.

Definition 2 (see [33]). (1)Thepair (𝐸, 𝐴) is said to be regular
if det(𝑠𝐸 − 𝐴) is not identically 0.

(2) The pair (𝐸, 𝐴) is said to be impulse-free if
deg(det(𝑠𝐸 − 𝐴)) = rank𝐸.

Lemma 3 (see [3]). If the pair (𝐸, 𝐴) is regular and impulse
free, then for any compatible initial function 𝜙(𝑡) ∈ 𝐶

𝑛,ℎ2
, there

exists a uniquely continuous solution of system (6) on [0, +∞)

for 𝜙(𝑡).

Definition 4 (see [3]). The singular system (6) is said to be reg-
ular and impulse free, if the pair (𝐸, 𝐴) is regular and impulse
free.
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Definition 5 (see [11]). (1) The system (6) is said to be stable,
if for any 𝜀 > 0, there exists a scalar 𝛿(𝜀) > 0 such that for any
compatible initial function𝜙(𝑡) ∈ 𝐵(0, 𝛿)∩𝑆, the solution𝑥(𝑡)

of system (6) satisfies ‖𝑥(𝑡)‖ ≤ 𝜀, 𝑡 > 0.
(2)The system (6) is said to be asymptotically stable, if its

zero solution is stable, and furthermore, there exists a 𝑏
0
> 0

such that for any compatible initial function 𝜙(𝑡) ∈ 𝐵(0, 𝑏
0
) ∩

𝑆, the solution 𝑥(𝑡) → 0 as 𝑡 → ∞.
The objective of this note is to develop delay-range-

dependent robust stability conditions for system (2) with
𝑢(𝑡) = 0 and to design a state-feedback controller

𝑢 (𝑡) = 𝐾𝑥 (𝑡) , 𝐾 ∈ R𝑚×𝑛 (7)

so that system (2) is closed-loop regular, impulse-free, and
robustly asymptotically stable for admissible linear fractional
form uncertainties. To this end, the following lemmas are
needed.

Lemma 6 (see [34]). For any constant matrix 𝑊 ∈ R𝑛×𝑛,
𝑊 = 𝑊

T
> 0, scalar 0 ≤ 𝑟(𝑡) ≤ 𝑟

𝑀
, and vector function ̇𝑥 :

[−𝑟
𝑀
, 0] → R𝑛 such that the following integration is well

defined, then

− 𝑟
𝑀

∫

0

−𝑟(𝑡)

̇𝑥
T
(𝑡 + 𝜉)𝑊 ̇𝑥 (𝑡 + 𝜉) 𝑑𝜉

≤ (𝑥
T
(𝑡) 𝑥

T
(𝑡 − 𝑟 (𝑡))) (

−𝑊 𝑊

𝑊 −𝑊
)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝑟 (𝑡))
) .

(8)

Lemma7 (see [35]). Consider the function𝜑 : 𝑅
+

→ 𝑅, if ̇𝜑 is
bounded on [0,∞); that is, there exists a scalar 𝛼 > 0 such that
| ̇𝜑(𝑡)| ≤ 𝛼 for all 𝑡 ∈ [0,∞), and then𝜑 is uniformly continuous
on [0,∞).

Lemma 8 (see [35]). Consider the function 𝜑 : 𝑅
+

→ 𝑅,
if 𝜑(𝑡) is uniformly continuous and ∫

∞

0

𝜑(𝑠)𝑑𝑠 < ∞, then
lim

𝑡→∞
𝜑(𝑡) = 0.

Lemma 9 (see [32]). Given matrices 𝑄 = 𝑄
𝑇, Γ, and Ξ of

approximate dimensions, then

𝑄 + ΓΔ (𝑡) Ξ + Ξ
𝑇

Δ
𝑇

(𝑡) Γ
𝑇

< 0, (9)

whereΔ(𝑡) is as in (3), if and only if there exists scalar 𝜀 > 0 such
that

𝑄 + [𝜀
−1

Ξ
𝑇

𝜀Γ] [

𝐼 −𝐽

−𝐽
𝑇

𝐼

]

−1

[

𝜀
−1

Ξ

𝜀Γ
𝑇
] < 0. (10)

3. Stability Issue

In this section, first of all, we will present new delay-range-
dependent stability conditions that guarantee system (6) to
be regular, impulse free, and asymptotically stable in terms
of LMI, which will play a key role in obtaining the robust
stability criterion for the uncertain system (2).

Theorem 10. Given scalars 0 ≤ ℎ
1
< ℎ

2
and 𝜇, the singular

system (6) is regular, impulse free, and asymptotically stable if
there exist positive-definite matrices 𝑃, 𝑄

𝑖
, 𝑖 = 1, 2, 3, 𝑍

𝑗
, 𝑗 =

1, 2 and matrix 𝑆 with appropriate dimensions such that

Λ =

[

[

[

[

[

[

[

[

Λ
11

Λ
12

0 0 ℎ
2
𝐴

𝑇

𝑍
1

ℎ
12
𝐴

𝑇

𝑍
2

∗ Λ
22

Λ
23

Λ
24

ℎ
2
𝐴

𝑇

𝜏
𝑍

1
ℎ
12
𝐴

𝑇

𝜏
𝑍

2

∗ ∗ Λ
33

0 0 0

∗ ∗ ∗ Λ
44

0 0

∗ ∗ ∗ ∗ −ℎ
2
𝑍

1
0

∗ ∗ ∗ ∗ ∗ −ℎ
12
𝑍

2

]

]

]

]

]

]

]

]

< 0, (11)

where
Λ

11
= 𝐸

𝑇

𝑃𝐴 + 𝐴
𝑇

𝑃𝐸 + 𝑆𝑅
𝑇

𝐴 + 𝐴
𝑇

𝑅𝑆
𝑇

+

3

∑

𝑖=1

𝑄
𝑖
− ℎ

−1

2
𝐸
𝑇

𝑍
1
𝐸,

Λ
12

= 𝐸
𝑇

𝑃𝐴
𝜏
+ 𝑆𝑅

𝑇

𝐴
𝜏
+ ℎ

−1

2
𝐸
𝑇

𝑍
1
𝐸,

Λ
22

= − (1 − 𝜇)𝑄
3
− ℎ

−1

2
𝐸
𝑇

𝑍
1
𝐸

− ℎ
−1

12
𝐸
𝑇

(𝑍
1
+ 𝑍

2
) 𝐸 − ℎ

−1

12
𝐸
𝑇

𝑍
2
𝐸,

Λ
23

= ℎ
−1

12
𝐸
𝑇

𝑍
2
𝐸,

Λ
24

= ℎ
−1

12
𝐸
𝑇

(𝑍
1
+ 𝑍

2
) 𝐸,

Λ
33

= −𝑄
1
− ℎ

−1

12
𝐸
𝑇

𝑍
2
𝐸,

Λ
44

= −𝑄
2
− ℎ

−1

12
𝐸
𝑇

(𝑍
1
+ 𝑍

2
) 𝐸,

ℎ
12

= ℎ
2
− ℎ

1
,

(12)

and 𝑅 ∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and
satisfies 𝐸𝑇

𝑅 = 0.

Proof. Since rank𝐸 = 𝑟 ≤ 𝑛, there must exist two invertible
matrices 𝐺 and𝐻 such that

𝐸 = 𝐺𝐸𝐻 = [

𝐼
𝑟

0

0 0
] . (13)

Then, 𝑅 can be parameterized as

𝑅 = 𝐺

T
[

0

Φ

] , (14)

where Φ ∈ R(𝑛−𝑟)×(𝑛−𝑟) is any nonsingular matrix.
Similar to (13), we define

𝐴 = 𝐺𝐴𝐻 = [

𝐴
11

𝐴
12

𝐴
21

𝐴
22

] ,

𝑃 = 𝐺

−T
𝑃𝐺

−1

= [

𝑃
11

𝑃
12

𝑃
21

𝑃
22

] ,

𝑆 = 𝐻

T
𝑆 = [

𝑆
1

𝑆
2

] , 𝑅 = 𝐺

−T
𝑅 = [

0

Φ

] ,

𝑍
1
= 𝐺

−T
𝑍

1
𝐺

−1

= [

𝑍
1,11

𝑍
1,12

𝑍
1,21

𝑍
1,22

] .

(15)
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Since Λ
11

< 0 and 𝑄
𝑖
> 0, 𝑖 = 1, 2, 3, we can formulate the

following inequality easily:

Ψ = 𝐸
T
𝑃𝐴 + 𝐴

T
𝑃𝐸 + 𝑆𝑅

T
𝐴 + 𝐴

T
𝑅𝑆

T
− ℎ

−1

2
𝐸
T
𝑍

1
𝐸 < 0.

(16)

Pre- and postmultiplying Ψ < 0 by 𝐻

T and 𝐻, respectively,
yields

Ψ = 𝐻

T
Ψ𝐻 = [

Ψ
11

Ψ
12

∗ 𝐴

T
22
Φ𝑆

T
2
+ 𝑆

2
Φ

T
𝐴

22

] < 0, (17)

where Ψ
11
and Ψ

12
represent the matrices not relevant in the

following discussion. From (17), it is easy to see that

𝐴

T
22
Φ𝑆

T
2
+ 𝑆

2
Φ

T
𝐴

22
< 0 (18)

which gives that 𝐴
22
is nonsingular.

Define

𝐺 = [
𝐼 −𝐴

12
𝐴

−1

22

0 𝐼

]𝐺, �̃� = 𝐻[

𝐼 0

−𝐴

−1

22
𝐴

21
𝐴

−1

22

] . (19)

After some algebraic manipulations, we can obtain

𝐸 = 𝐺𝐸�̃� = [

𝐼
𝑟

0

0 0
] , 𝐴 = 𝐺𝐴�̃� = [

𝐴
11

0

0 𝐼

] , (20)

where 𝐴
11

= 𝐴
11

− 𝐴
12
𝐴

−1

22
𝐴

21
. Then, it can be shown that

det (𝑠𝐸 − 𝐴) = det (𝐺−1

) det (𝑠𝐸 − 𝐴) det (�̃�−1

)

= det (𝐺−1

) (−1)
(𝑛−𝑟) det (𝑠𝐼

𝑟
− 𝐴

11
) det (�̃�−1

)

(21)

which implies that det(𝑠𝐸 − 𝐴) is not identically zero and
deg(det(𝑠𝐸−𝐴)) = 𝑟 = rank𝐸.Then, the pair of (𝐸, 𝐴) is reg-
ular and impulse-free, which shows that system (6) is regular
and impulse-free. In the following, we will prove that system
(6) is also asymptotically stable.

Denote

𝐴
𝜏
= 𝐺𝐴

𝜏
�̃� = [

𝐴
𝜏11

𝐴
𝜏12

𝐴
𝜏21

𝐴
𝜏22

] ,

�̃� = 𝐺
−T

𝑃𝐺
−1

= [

�̃�
11

�̃�
12

�̃�
21

�̃�
22

] ,

�̃� = 𝐺
−T

𝑅 = [

0

Φ̃

] , 𝑆 = �̃�
T
𝑆 = [

𝑆
1

𝑆
2

] ,

𝑄
𝑖
= �̃�

T
𝑄

𝑖
�̃� = [

𝑄
𝑖,11

𝑄
𝑖,12

𝑄
𝑖,21

𝑄
𝑖,22

] , 𝑖 = 1, 2, 3,

̃
𝑍

𝑗
= 𝐺

−T
𝑍

𝑗
𝐺

−1

= [

̃
𝑍

𝑗,11

̃
𝑍

𝑗,12

̃
𝑍

𝑗,21

̃
𝑍

𝑗,22

] , 𝑗 = 1, 2.

(22)

By using Schur complement and noting that 𝑄
𝑖
> 0, 𝑖 =

1, 2, 𝜇 < 1, it follows from (11) that

[

Λ
11

Λ
12

∗ Λ
22

] < 0, (23)

where

Λ
11

= 𝐸
T
𝑃𝐴 + 𝐴

T
𝑃𝐸 + 𝑆𝑅

T
𝐴 + 𝐴

T
𝑅𝑆

T
+ 𝑄

3
− ℎ

−1

2
𝐸
T
𝑍

1
𝐸,

Λ
22

= −𝑄
3
− ℎ

−1

2
𝐸
T
𝑍

1
𝐸 − ℎ

−1

12
𝐸
T
(𝑍

1
+ 𝑍

2
) 𝐸 − ℎ

−1

12
𝐸
T
𝑍

2
𝐸.

(24)

Pre- and post-multiplying (23) by diag{�̃�T
, �̃�

T
} and diag{�̃�,

�̃�}, respectively, yields

[

̃
Λ

11
Λ̃

12

∗
̃
Λ

22

] < 0, (25)

where

̃
Λ

11
= 𝐸

T
�̃�𝐴 + 𝐴

T
�̃�𝐸 + 𝑆�̃�

T
𝐴 + 𝐴

T
�̃�𝑆

T
+ 𝑄

3
− ℎ

−1

2
𝐸
T
̃
𝑍𝐸,

Λ̃
12

= 𝐸
T
�̃�𝐴

𝜏
+ 𝑆�̃�

T
𝐴

𝜏
+ ℎ

−1

2
𝐸
T
̃
𝑍

1
𝐸,

̃
Λ

22
= − 𝑄

3
− ℎ

−1

2
𝐸
T
̃
𝑍

1
𝐸 − ℎ

−1

12
𝐸
T
(
̃
𝑍

1
+

̃
𝑍

2
) 𝐸 − ℎ

−1

12
𝐸
T
̃
𝑍

2
𝐸.

(26)

Substituting (20), (22) into (25), we have

[

𝑆
2
Φ̃

T
+ Φ̃𝑆

T
2
+ 𝑄

3,22
𝑆
2
Φ̃

T
𝐴

T
𝜏22

∗ −𝑄
3,22

] < 0. (27)

Pre- and post-multiplying (27) by 𝜉 =

[Φ̃
−T

𝑆
−1

2
−𝐴

𝜏22
Φ̃

−T
𝑆
−1

2
] and 𝜉

T, respectively, yields

𝐴
𝜏22

Θ̃𝐴
T
𝜏22

− Θ̃ < 0, (28)

where

Θ̃ = −Φ̃
−T

𝑆
−1

2
(𝑆

2
Φ̃

T
+ Φ̃𝑆

T
2
+ 𝑄

3,22
) 𝑆

−T
2

Φ̃
−1

> 0. (29)

Therefore,

𝜌 (𝐴
𝜏22

) < 1. (30)

Now, let

𝑥 (𝑡) = [

𝑥
1
(𝑡)

𝑥
2
(𝑡)

] = 𝐻

−1

𝑥 (𝑡) , (31)

where 𝑥
1
(𝑡) ∈ R𝑟 and 𝑥

2
(𝑡) ∈ R𝑛−𝑟. Using the expressions in

(20), (22), and (31), system (6) can be decomposed as

̇
�̃�
1
(𝑡) = 𝐴

11
𝑥
1
(𝑡) + 𝐴

𝜏11
𝑥
1
(𝑡 − 𝜏 (𝑡)) + 𝐴

𝜏12
𝑥
2
(𝑡 − 𝜏 (𝑡)) ,

(32)

0 = 𝑥
2
(𝑡) + 𝐴

𝜏21
𝑥
1
(𝑡 − 𝜏 (𝑡)) + 𝐴

𝜏22
𝑥
2
(𝑡 − 𝜏 (𝑡)) , (33)
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or equivalently rewritten as

𝐸
̇

�̃� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝜏
𝑥 (𝑡 − 𝜏 (𝑡)) . (34)

It is easy to see that the stability of system (6) is equivalent to
that of system (34).

Construct the Lyapunov-Krasovskii functional for system
(34) as

�̃� (𝑥
𝑡
) = 𝑥

T
(𝑡) 𝐸

T
�̃�𝐸𝑥 (𝑡)

+

2

∑

𝑖=1

∫

𝑡

𝑡−ℎ𝑖

𝑥
T
(𝑠) 𝑄

𝑖
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
T
(𝑠) 𝑄

3
𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ2

∫

𝑡

𝑡+𝜃

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

1
𝐸

̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

2
𝐸

̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃.

(35)

By Lemma 6, the following inequalities are true

− ℎ
2
∫

𝑡

𝑡−ℎ2

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

1
𝐸

̇
�̃� (𝑠) 𝑑𝑠

= −ℎ
2
∫

𝑡

𝑡−𝜏(𝑡)

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

1
𝐸

̇
�̃� (𝑠) 𝑑𝑠

− ℎ
2
∫

𝑡−𝜏(𝑡)

𝑡−ℎ2

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

1
𝐸

̇
�̃� (𝑠) 𝑑𝑠

≤ (𝑥
T
(𝑡) 𝑥

T
(𝑡 − 𝜏 (𝑡)))

× (

−𝐸
T̃
𝑍

1
𝐸 𝐸

T̃
𝑍

1
𝐸

𝐸
T̃
𝑍

1
𝐸 −𝐸

T̃
𝑍

1
𝐸

)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

)

+ ℎ
−1

12
(𝑥

T
(𝑡 − 𝜏 (𝑡)) 𝑥

T
(𝑡 − ℎ

2
))

× (

−𝐸
T̃
𝑍

1
𝐸 𝐸

T̃
𝑍

1
𝐸

𝐸
T̃
𝑍

1
𝐸 −𝐸

T̃
𝑍

1
𝐸

)(

𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − ℎ
2
)

) ,

− ℎ
12

∫

𝑡−ℎ1

𝑡−ℎ2

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

2
𝐸

̇
�̃� (𝑠) 𝑑𝑠

= −ℎ
12

∫

𝑡−𝜏(𝑡)

𝑡−ℎ2

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

2
𝐸

̇
�̃� (𝑠) 𝑑𝑠

− ℎ
12

∫

𝑡−ℎ1

𝑡−𝜏(𝑡)

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

2
𝐸

̇
�̃� (𝑠) 𝑑𝑠

≤ (𝑥
T
(𝑡 − 𝜏 (𝑡)) 𝑥

T
(𝑡 − ℎ

2
))

× (

−𝐸
T̃
𝑍

2
𝐸 𝐸

T̃
𝑍

2
𝐸

𝐸
T̃
𝑍

2
𝐸 −𝐸

T̃
𝑍

2
𝐸

)(

𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − ℎ
2
)

)

+ (𝑥
T
(𝑡 − ℎ

1
) 𝑥

T
(𝑡 − 𝜏 (𝑡)))

× (

−𝐸
T̃
𝑍

2
𝐸 𝐸

T̃
𝑍

2
𝐸

𝐸
T̃
𝑍

2
𝐸 −𝐸

T̃
𝑍

2
𝐸

)(

𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − 𝜏 (𝑡))

) .

(36)

On the other hand, noticing that𝐸T
𝑅 = 0, we can deduce that

0 = 2𝑥
T
(𝑡) 𝑆�̃�

T
𝐸

̇
�̃� (𝑡) , (37)

where 𝑆 is any matrix with appropriate dimensions.
Taking the derivative of �̃�(𝑥

𝑡
) with respect to 𝑡 along the

trajectory of system (34) and using (36) and (37), we have

̇
�̃� (𝑥

𝑡
)

=
̇

�̃�

T
(𝑡) 𝐸

T
�̃�𝐸𝑥 (𝑡) + 𝑥

T
(𝑡) 𝐸

T
�̃�𝐸

̇
�̃� (𝑡)

+

2

∑

𝑖=1

{𝑥
T
(𝑡) 𝑄

𝑖
𝑥 (𝑡) − 𝑥

T
(𝑡 − ℎ

𝑖
) 𝑄

𝑖
𝑥 (𝑡 − ℎ

𝑖
)}

+ 𝑥
T
(𝑡) 𝑄

3
𝑥 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑥

T
(𝑡 − 𝜏 (𝑡)) 𝑄

3
𝑥 (𝑡 − 𝜏 (𝑡))

+ ℎ
2

̇
�̃�

T
(𝑡) 𝐸

T
̃
𝑍

1
𝐸

̇
�̃� (𝑡) − ∫

𝑡

𝑡−ℎ2

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

1
𝐸

̇
�̃� (𝑠) 𝑑𝑠

+ (ℎ
2
− ℎ

1
)

̇
�̃�

T
(𝑡) 𝐸

T
̃
𝑍

2
𝐸

̇
�̃� (𝑡) − ∫

𝑡−ℎ1

𝑡−ℎ2

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

2
𝐸

̇
�̃� (𝑠) 𝑑𝑠

≤ �̃�
T
(𝑡) Λ̃�̃� (𝑡) ,

(38)

where

�̃� (𝑡) = [𝑥
T
(𝑡) 𝑥

T
(𝑡 − 𝜏(𝑡)) 𝑥

T
(𝑡 − ℎ

1
) 𝑥

T
(𝑡 − ℎ

2
)]

T
,

Λ̃ =

[

[

[

[

Λ̃
11

Λ̃
12

0 0

∗ Λ̃
22

Λ̃
23

Λ̃
24

∗ ∗ Λ̃
33

0

∗ ∗ ∗ Λ̃
44

]

]

]

]

,

(39)

with

Λ̃
11

= 𝐸
T
�̃�𝐴 + 𝐴

T
�̃�𝐸 + 𝑆�̃�

T
𝐴 + 𝐴

T
�̃�𝑆

T

+

3

∑

𝑖=1

𝑄
𝑖
+ ℎ

2
𝐴

T
̃
𝑍

1
𝐴 + ℎ

12
𝐴

T
̃
𝑍

2
𝐴 − ℎ

−1

2
𝐸
T
̃
𝑍

1
𝐸,

Λ̃
12

= 𝐸
T
�̃�𝐴

𝜏
+ 𝑆�̃�

T
𝐴

𝜏
+ ℎ

2
𝐴

T
̃
𝑍

1
𝐴

𝜏
+ ℎ

12
𝐴

T
̃
𝑍

2
𝐴

𝜏

+ ℎ
−1

2
𝐸
T
̃
𝑍

1
𝐸,

Λ̃
22

= − (1 − 𝜇)𝑄
3
+ ℎ

2
𝐴

T
𝜏

̃
𝑍

1
𝐴

𝜏
+ ℎ

12
𝐴

T
𝜏

̃
𝑍

2
𝐴

𝜏

− ℎ
−1

2
𝐸
T
̃
𝑍

1
𝐸 − ℎ

−1

12
𝐸
T
(
̃
𝑍

1
+

̃
𝑍

2
) 𝐸 − ℎ

−1

12
𝐸
T
̃
𝑍

2
𝐸,
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Λ̃
23

= ℎ
−1

12
𝐸
T
̃
𝑍

2
𝐸, Λ̃

24
= ℎ

−1

12
𝐸
T
(
̃
𝑍

1
+

̃
𝑍

2
) 𝐸,

Λ̃
33

= −𝑄
1
− ℎ

−1

12
𝐸
T
̃
𝑍

2
𝐸,

Λ̃
44

= −𝑄
2
− ℎ

−1

12
𝐸
T
(
̃
𝑍

1
+

̃
𝑍

2
) 𝐸.

(40)

It is easy to see that (17) guarantees ̇
�̃�(𝑥

𝑡
) < 0 and

𝜆
1





𝑥
1
(𝑡)






2

− �̃� (𝑥 (0)) ≤ − �̃� (𝑥 (𝑡)) − �̃� (𝑥 (0))

= ∫

𝑡

0

̇
�̃� (𝑥 (𝑠)) 𝑑𝑠 ≤ −𝜆

2
∫

𝑡

0

‖𝑥(𝑠)‖
2

𝑑𝑠

≤ − 𝜆
2
∫

𝑡

0





𝑥
1
(𝑠)






2

𝑑𝑠 < 0,

(41)

where 𝜆
1
= 𝜆min(�̃�11) > 0, 𝜆

1
= −𝜆max(Λ̃) > 0.

Taking into account (41), we can deduce that

𝜆
1





𝑥
1
(𝑡)






2

+ 𝜆
2
∫

𝑡

0





𝑥
1
(𝑠)






2

𝑑𝑠 ≤ �̃� (𝑥 (0)) . (42)

Therefore,





𝑥
1
(𝑡)






2

≤ 𝑚
1
, (43)

∫

𝑡

0





𝑥
1
(𝑠)






2

𝑑𝑠 ≤ 𝑚
2
, (44)

where 𝑚
1

= (1/𝜆
1
)�̃�(𝑥(0)) > 0, 𝑚

2
= (1/𝜆

2
)�̃�(𝑥(0)) >

0. Thus, ‖𝑥
1
(𝑡)‖ is bounded. Considering this and (30), it

can be deduced from (33) that ‖𝑥
2
(𝑡)‖ is bounded;, hence,

it follows that from (32) that ‖ ̇
�̃�
1
(𝑡)‖ is bounded. Therefore,

(𝑑/𝑑𝑡)‖
̇

�̃�
1
(𝑡)‖

2 is bounded too. By Lemma 7, we obtain that
‖

̇
�̃�
1
(𝑡)‖

2 is uniformly continuous. Therefore, noting (44) and
using Lemma 8, we get

lim
𝑡→∞





𝑥
1
(𝑡)





= 0. (45)

This, together with (33), implies that

lim
𝑡→∞





𝑥
2
(𝑡)





= 0. (46)

Thus, according to Definition 5, system (34) is stable. This
completes the proof.

Remark 11. From the proof of Theorem 10, it is clear to see
that neither model transformation nor bounding technique
for cross-terms is involved. Hence, the conservatism inher-
ited from these ideas will no longer exist in Theorem 10.

Remark 12. Free-weighting matrices in [11–13, 22, 23, 25]
plays an important role to reducing the conservatismof delay-
dependent stability conditions. However, too many free-
weighting matrices will complicate the system analysis and
increase the computational demand. It is worth pointing out
that no free-weighting matrix is involved in Theorem 10.

Remark 13. Recently, the delay-partitioning or delay-frac-
tioning method [36] was widely used to reduce the conser-
vatism of the delay-dependent results of standard time-delay
systems. This method can be extended to study the stability
of singular time-delay system (2). Suppose we decompose the
delay interval [ℎ

1
, ℎ

2
] into 𝑁equidistant subintervals. Defin-

ing ℎ𝑖 = ℎ
1
+𝑖(ℎ

2
−ℎ

1
)/𝑁, 𝑖 = 1, 2, . . . , 𝑁−1, and constructing

the following Lyapunov-Krasovskii functional:

�̃� (𝑥
𝑡
) = 𝑥

T
(𝑡) 𝐸

T
�̃�𝐸𝑥 (𝑡) +

2

∑

𝑖=1

∫

𝑡

𝑡−ℎ𝑖

𝑥
T
(𝑠) 𝑄

𝑖
𝑥 (𝑠) 𝑑𝑠

+

𝑁−1

∑

𝑗=1

∫

𝑡

𝑡−ℎ
𝑗

𝑥
T
(𝑠) 𝑄



𝑗
𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ2

∫

𝑡

𝑡+𝜃

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

1
𝐸

̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−ℎ1

−ℎ
1

∫

𝑡

𝑡+𝜃

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

2
𝐸

̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃

+

𝑁−2

∑

𝑙=1

∫

−ℎ
𝑙

−ℎ
𝑙+1

∫

𝑡

𝑡+𝜃

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

𝑙+2
𝐸

̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−ℎ
𝑁−1

−ℎ2

∫

𝑡

𝑡+𝜃

̇
�̃�

T
(𝑠) 𝐸

T
̃
𝑍

𝑁+1
𝐸

̇
�̃� (𝑠) 𝑑𝑠 𝑑𝜃

(47)

with 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑁 − 1, ̃𝑍

1
> 0,

̃
𝑍

2
> 0 and ̃

𝑍
𝑙+2

> 0, 𝑙 = 1, 2, . . . , 𝑁 − 2. Then, by checking
the variation of �̃�(𝑥

𝑡
) for the case when 𝜏(𝑡) ∈ [ℎ

1
, ℎ

1

] or
𝜏(𝑡) ∈ [ℎ

𝑗

, ℎ
𝑗+1

] (𝑗 = 1, 2, . . . , 𝑁 − 1) or 𝜏(𝑡) ∈ [ℎ
𝑁−1

, ℎ
2
],

respectively, we can derive the delay-dependent condition,
which can guarantee that �̃�(𝑥

𝑡
) < 0. Generally, increasing 𝑁

may result in the reduction of conservatism of the obtained
results. However, the corresponding computational complex-
ity will be increased greatly since the dimensions and matrix
variables of the involved LMIs will be sharply expanded. For
example, in [36], a numerical example has shown that, with
𝑁 changing from 1 to 3, the allowable upper bounds of ℎ

2

increased 12.9%, but the consumed CPU time increased 9
times.

Theorem 10 presents a delay-range-dependent criterion
for system (6) with time-varying delay 𝜏(𝑡) in a range. If we
set𝑄

1
= 0 and𝑍

2
= 0,Theorem 10 yields the following delay-

dependent stability criterion.

Corollary 14. Given scalars ℎ
2
> 0, ℎ

1
= 0 and 𝜇, system (6)

is regular, impulse free, and asymptotically stable if there exist
positive-definite matrices 𝑃,𝑄

𝑖
, 𝑖 = 2, 3, 𝑍

1
, and matrix 𝑆 with

appropriate dimensions such that

[

[

[

[

𝑇
11

𝑇
12

0 ℎ
2
𝐴

𝑇

𝑍
1

∗ 𝑇
22

ℎ
−1

2
𝐸
𝑇

𝑍
1
𝐸 ℎ

2
𝐴

𝑇

𝜏
𝑍

1

∗ ∗ Τ
33

0

∗ ∗ ∗ −ℎ
2
𝑍

1

]

]

]

]

, (48)
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where

Τ
11

= 𝐸
𝑇

𝑃𝐴 + 𝐴
𝑇

𝑃𝐸 + 𝑆𝑅
𝑇

𝐴 + 𝐴
𝑇

𝑅𝑆
𝑇

+

3

∑

𝑖=2

𝑄
𝑖
− ℎ

−1

2
𝐸
𝑇

𝑍
1
𝐸,

Τ
12

= 𝐸
𝑇

𝑃𝐴
𝜏
+ 𝑆𝑅

𝑇

𝐴
𝜏
+ ℎ

−1

2
𝐸
𝑇

𝑍
1
𝐸,

Τ
22

= − (1 − 𝜇)𝑄
3
− 2ℎ

−1

2
𝐸
𝑇

𝑍
1
𝐸,

Τ
33

= − 𝑄
2
− ℎ

−1

2
𝐸
𝑇

𝑍
1
𝐸,

(49)

and 𝑅 ∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and sat-
isfies 𝐸𝑇

𝑅 = 0.

Now, we will present the delay-range-dependent robust
stability conditions for the uncertain singular time-delay sys-
tem (2) with 𝑢(𝑡) = 0 via Theorem 10.

Theorem 15. Given scalars 0 ≤ ℎ
1
< ℎ

2
and 𝜇, the uncertain

singular time-delay system (2)with 𝑢(𝑡) = 0 is regular, impulse
free, and robustly asymptotically stable if there exist positive-
definite matrices 𝑃, 𝑄

𝑖
, 𝑖 = 1, 2, 3, 𝑍

𝑗
, 𝑗 = 1, 2, and matrix 𝑆

with appropriate dimensions and a scalar 𝜂 > 0 such that the
following LMI holds:

[
[
[
[
[
[
[
[
[
[
[

[

Λ
11

Λ
12

0 0 ℎ
2
𝐴
𝑇

𝑍
1

ℎ
12
𝐴
𝑇

𝑍
2

𝜂𝐸
𝑇

𝑎
(𝐸

𝑇

𝑃 + 𝑆𝑅
𝑇

)𝐷

∗ Λ
22

Λ
23

Λ
24

ℎ
2
𝐴
𝑇

𝜏
𝑍
1

ℎ
12
𝐴
𝑇

𝜏
𝑍
2

𝜂𝐸
𝑇

𝜏
0

∗ ∗ Λ
33

0 0 0 0 0

∗ ∗ ∗ Λ
44

0 0 0 0

∗ ∗ ∗ ∗ −ℎ
2
𝑍
1

0 0 ℎ
2
𝑍
1
𝐷

∗ ∗ ∗ ∗ ∗ −ℎ
12
𝑍
2

0 ℎ
12
𝑍
2
𝐷

∗ ∗ ∗ ∗ ∗ ∗ −𝜂𝐼 𝜂𝐽

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜂𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(50)

where Λ
11
, Λ

12
, Λ

22
, Λ

23
, Λ

24
, Λ

33
, Λ

44
, and ℎ

12
are defined

in (11).

Proof. Suppose (50) to be true. Let 𝜀 = 1/√𝜂. Pre- and
postmultiplying the left-hand side matrix of (50) by diag{𝐼, 𝐼,
𝐼, 𝐼, 𝐼, 𝐼, 𝜀, 𝜀} and its transpose, respectively, we obtain

Λ + [𝜀
−1

Ξ
T

𝜀Γ] [

𝐼 −𝐽

−𝐽
T

𝐼

]

−1

[

𝜀
−1

Ξ

𝜀Γ
T ] < 0, (51)

where

Γ = [𝐷
T
(𝑃𝐸 + 𝑅𝑆

T
) 0 0 0 ℎ

2
𝐷

T
𝑍

1
ℎ
12
𝐷

T
𝑍

2
]

T
,

Ξ = [𝐸
𝑎

𝐸
𝜏

0 0 0 0] ,

(52)

and Λ is defined in (11). Thus,Θ = Λ+ΓΔ(𝑡)Ξ +Ξ
T
Δ
T
(𝑡)Γ

T
<

0 holds according to Lemma 9. It can be verified that Θ is
exactly the left-hand side of (11) when 𝐴and 𝐴

𝜏
are replaced

with 𝐴 +𝐷Δ(𝑡)𝐸
𝑎
and 𝐴

𝜏
+𝐷Δ(𝑡)𝐸

𝜏
in (11), respectively. The

result then follows fromTheorem 10.

4. Control Design

On the basis of the previous stability conditions, we will
present a design method of robustly stabilizing controllers in
this section. For simplicity, we first consider system (6).

Theorem 16. Given scalars 0 ≤ ℎ
1
< ℎ

2
and 𝜇, if there exist

scalar 𝛼 > 0, positive-definite matrices 𝑃, 𝑄
𝑖
, 𝑖 = 1, 2, 3, 𝑍

𝑗
,

𝑗 = 1, 2, 𝑋, and matrices 𝑅, 𝑆, 𝑈 with appropriate dimensions
such that

Ψ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ11 Ψ12 Ψ13 0 0 0 Ψ17 0 Ψ19

∗ Ψ22 𝑋𝐴
𝑇

𝜏
0 0 ℎ2𝑍1 −ℎ2𝑋 ℎ12𝑍2 −ℎ12𝑋

∗ ∗ Ψ33 Ψ34 Ψ35 0 ℎ2𝐴𝜏𝑋 0 ℎ12𝐴𝜏𝑋

∗ ∗ ∗ Ψ44 0 0 0 0 0

∗ ∗ ∗ ∗ Ψ55 0 0 0 0

∗ ∗ ∗ ∗ ∗ −ℎ2𝑍1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ℎ2𝑋 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ℎ12𝑍2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ℎ12𝑋

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(53)

where

Ψ
11

= 𝐴𝑋 + 𝑋𝐴
𝑇

+ 𝐵𝑈 + 𝑈
𝑇

𝐵
𝑇

+

3

∑

𝑖=1

𝑄
𝑖
− ℎ

−1

2
𝐸𝑍

1
𝐸
𝑇

,

Ψ
12

= 𝐸𝑃 + 𝑆𝑅
𝑇

− 𝑋 + 𝐴𝑋 + 𝐵𝑈,

Ψ
13

= 𝑋𝐴
𝑇

𝜏
+ ℎ

−1

2
𝐸𝑍

1
𝐸
𝑇

,

Ψ
17

= ℎ
2
𝐴𝑋 + ℎ

2
𝐵𝑈, Ψ

19
= ℎ

12
𝐴𝑋 + ℎ

12
𝐵𝑈,

Ψ
22

= −2𝑋 + 3𝑎𝐼,

Ψ
33

= − (1 − 𝜇)𝑄
3
− ℎ

−1

2
𝐸𝑍

1
𝐸
𝑇

− ℎ
−1

12
𝐸 (𝑍

1
+ 𝑍

2
) 𝐸

𝑇

− ℎ
−1

12
𝐸𝑍

2
𝐸
𝑇

,

Ψ
34

= ℎ
−1

12
𝐸𝑍

2
𝐸
𝑇

, Ψ
35

= ℎ
−1

12
𝐸 (𝑍

1
+ 𝑍

2
) 𝐸

𝑇

,

Ψ
44

= −𝑄
1
− ℎ

−1

12
𝐸𝑍

2
𝐸
𝑇

,

Ψ
55

= −𝑄
2
− ℎ

−1

12
𝐸 (𝑍

1
+ 𝑍

2
) 𝐸

𝑇

(54)

and 𝑅
1

∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and
satisfying𝐸𝑇

𝑅
1
= 0, then there exists a state feedback controller

(7) such that the resulting closed-loop system of system (6) is
regular, impulse free, and asymptotically stable. In this case, a
suitable controller gain is given by

𝑢 (𝑡) = 𝑈𝑋
−1

𝑥 (𝑡) . (55)

Proof. With the control law 𝑢(𝑡) = 𝐾𝑥(𝑡), the resultant
closed-loop system of system (6) is

𝐸 ̇𝑥 (𝑡) = (𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝐴
𝜏
𝑥 (𝑡 − 𝜏 (𝑡)) . (56)

Following the same philosophy as that in [37], we represent
system (56) as the following form,

[

𝐸 0

0 0
] [

̇𝑥 (𝑡)

̇𝑦 (𝑡)
]

= [

0 𝐼

𝐴 + 𝐵𝐾 −𝐼
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

0 0

𝐴
𝜏

0
] [

𝑥 (𝑡 − 𝜏 (𝑡))

𝑦 (𝑡 − 𝜏 (𝑡))
] ,

(57)

where 𝑦(𝑡) = 𝐸 ̇𝑥(𝑡).
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For notational convenience, we introduce

𝐸 = [

𝐸 0

0 0
] , 𝐴 = [

0 𝐼

𝐴 + 𝐵𝐾 −𝐼
] ,

𝐴
𝜏
= [

0 0

𝐴
𝜏

0
] .

(58)

Then, byTheorem 10, we can show that system (57) is regular,
impulse free, and asymptotically stable if (11) holds, where 𝐸,
𝐴, 𝐴

𝜏
, 𝑃, 𝑄

𝑖
, and 𝑖 = 1, 2, 3, 𝑍

𝑗
, 𝑗 = 1, 2, 𝑅, 𝑆 are replaced by

𝐸, 𝐴, 𝐴
𝜏
, 𝑃, 𝑄

𝑖
, 𝑖 = 1, 2, 3, 𝑍

𝑗
, and 𝑗 = 1, 2, 𝑅, 𝑆, respectively.

For a special issue, we choose 𝑃, 𝑄
𝑖
, 𝑍

𝑗
, 𝑅, and 𝑆 as

𝑃 = [

𝑃 0

0 𝛼𝐼
] , 𝑄

1
= [

𝑄
1

0

0 𝛼𝐼
] ,

𝑄
2
= [

𝑄
2

0

0 𝛼𝐼
] , 𝑄

3
= [

𝑄
3

0

0 𝛼𝐼
] ,

𝑍
1
= [

𝑍
1

0

0 𝑋
] , 𝑍

2
= [

𝑍
2

0

0 𝑋
] ,

𝑅 = [

𝑅 0

0 𝑋
] , 𝑆 = [

𝑆 𝐼

0 𝐼
] ,

(59)

where 𝑃 ∈ R𝑛×𝑛, 𝑄
𝑖
∈ R𝑛×𝑛, 𝑖 = 1, 2, 3, 𝑍

𝑗
∈ R𝑛×𝑛, and

𝑗 = 1, 2,𝑋 ∈ R𝑛×𝑛 are symmetrical positive-definite matrices,
𝑅 ∈ R𝑛×(𝑛−𝑟) is with full column rank and satisfies 𝐸T

𝑅 = 0,
𝑆 ∈ R𝑛×(𝑛−𝑟) is any matrix and 𝛼 > 0 is a scalar. It is easy to
verify that 𝑅 is with full column rank and satisfies 𝐸T

𝑅 = 0.
Then, the following LMI can be obtained:

[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

0 0 0 Φ
17

0 Φ
19

∗ Φ
22

𝑋𝐴
𝜏

0 0 ℎ
2
𝑍
1

−ℎ
2
𝑋 ℎ

12
𝑍
2

−ℎ
12
𝑋

∗ ∗ Φ
33

Φ
34

Φ
35

0 ℎ
2
𝐴
T
𝜏
𝑋 0 ℎ

12
𝐴
T
𝜏
𝑋

∗ ∗ ∗ Φ
44

0 0 0 0 0

∗ ∗ ∗ ∗ Φ
55

0 0 0 0

∗ ∗ ∗ ∗ ∗ −ℎ
2
𝑍
1

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ℎ
2
𝑋 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ℎ
12
𝑍
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ℎ
12
𝑋

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(60)

where

Φ
11

= 𝑋 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)
T
𝑋 +

3

∑

𝑖=1

𝑄
𝑖
− ℎ

−1

2
𝐸
T
𝑍

1
𝐸,

Φ
12

= 𝐸
T
𝑃 + 𝑆

1
𝑅
T
1
− 𝑋 + (𝐴 + 𝐵𝐾)

TX,

Φ
13

= 𝑋𝐴
𝜏
+ ℎ

−1

2
𝐸
T
𝑍

1
𝐸, Φ

17
= ℎ

2
(𝐴 + 𝐵𝐾)

T
𝑋,

Φ
19

= ℎ
12
(𝐴 + 𝐵𝐾)

T
𝑋, Φ

22
= −2𝑋 + 3𝑎𝐼,

Φ
33

= − (1 − 𝜇)𝑄
3
− ℎ

−1

2
𝐸
T
𝑍

1
𝐸 − ℎ

−1

12
𝐸
T
(𝑍

1
+ 𝑍

2
) 𝐸

− ℎ
−1

12
𝐸
T
𝑍

2
𝐸,

Φ
34

= ℎ
−1

12
𝐸
T
𝑍

2
𝐸, Φ

35
= ℎ

−1

12
𝐸
T
(𝑍

1
+ 𝑍

2
) 𝐸,

Φ
44

= −𝑄
1
− ℎ

−1

12
𝐸
T
𝑍

2
𝐸, Φ

55
= −𝑄

2
− ℎ

−1

12
𝐸
T
(𝑍

1
+ 𝑍

2
) 𝐸.

(61)

Note that the pairs (𝐸, (𝐴 + 𝐵𝐾)) and (𝐸, (𝐴 + 𝐵𝐾 + 𝐴
𝜏
))

are regular, causal if and only if the pairs (𝐸T
, (𝐴+𝐵𝐾)

T
) and

(𝐸
T
, (𝐴+𝐵𝐾+𝐴

𝜏
)
T
) are regular, causal. Furthermore, det(𝑠𝐸−

(𝐴+𝐵𝐾)−𝑒
−𝜏(𝑡)𝑠

𝐴
𝜏
) = det(𝑠𝐸T

−(𝐴+𝐵𝐾)
T
−𝑒

−𝜏(𝑡)𝑠

𝐴
T
𝜏
).Then,

as long as the regularity, causality, and stability problems are
concerned, we can consider the following system instead of
(56):

𝐸
T ̇
𝜁 (𝑡) = (𝐴 + 𝐵𝐾)

T
𝜁 (𝑡) + 𝐴

T
𝜏
𝜁 (𝑡 − 𝜏 (𝑡)) , (62)

where 𝜁(𝑡) ∈ R𝑛 is the state vector.
In this sense, (53) can be obtained by replacing 𝐸, (𝐴 +

𝐵𝐾), 𝐴
𝜏
in (60) by 𝐸

T, (𝐴 + 𝐵𝐾)
T, 𝐴T

𝜏
, respectively, and

introducing a matrix 𝑈 = 𝐾𝑋.

The robust stabilizability result for uncertain singular
system (2) is presented in the following theorem.

Theorem 17. Given scalars 0 ≤ ℎ
1
< ℎ

2
and 𝜇, if there exist

scalar 𝛼 > 0, positive-definite matrices 𝑃, 𝑄
𝑖
, 𝑖 = 1, 2, 3, 𝑍

𝑗
,

𝑗 = 1, 2, X, and matrices 𝑅, 𝑆, 𝑈 with appropriate dimensions
and scalars 𝜂

1
> 0, 𝜂

2
> 0 such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ψ
11

Ψ
12

Ψ
13

0 0 0 Ψ
17

0 Ψ
19

Ψ
110

𝜂
1
𝐷 Ψ

112
0

∗ Ψ
22

𝑋𝐴
𝑇

𝜏
0 0 ℎ

2
𝑍

1
−ℎ

2
𝑋 ℎ

12
𝑍

2
Ψ
29

Ψ
210

0 Ψ
212

0

∗ ∗ Ψ
33

Ψ
34

Ψ
35

0 ℎ
2
𝐴

𝜏
𝑋 0 Ψ

39
0 0 0 𝜂

2
𝐷

∗ ∗ ∗ Ψ
44

0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ Ψ
55

0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −ℎ
2
𝑍

1
0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ℎ
2
𝑋 0 0 Ψ

710
0 Ψ

712
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ℎ
12
𝑍

2
0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ℎ
12
𝑋 Ψ

910
0 Ψ

912
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜂
1
𝐼 𝜂

1
𝐽 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜂
1
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜂
2
𝐼 𝜂

2
𝐽

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜂
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (63)
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where Ψ
11
, Ψ

12
, Ψ

13
, Ψ

17
, Ψ

19
, Ψ

22
, Ψ

33
, Ψ

34
, Ψ

35
, Ψ

44
, and Ψ

55

are defined in (53),Ψ
29

= −ℎ
12
𝑋,Ψ

110
= Ψ

210
= 𝑋𝐸

𝑇

𝑎
+𝑈

𝑇

𝐸
𝑇

𝑏
,

Ψ
112

= Ψ
212

= 𝑋𝐸
𝑇

𝜏
, Ψ

39
= ℎ

12
𝐴

𝜏
𝑋, Ψ

710
= ℎ

2
(𝑋𝐸

𝑇

𝑎
+ 𝑈

𝑇

𝐸
𝑇

𝑏
),

Ψ
910

= ℎ
12
(𝑋𝐸

𝑇

𝑎
+ 𝑈

𝑇

𝐸
𝑇

𝑏
), Ψ

712
= ℎ

2
𝑋𝐸

𝑇

𝜏
, Ψ

912
= ℎ

12
𝑋𝐸

𝑇

𝜏
,

and 𝑅
1

∈ R𝑛×(𝑛−𝑟) is any matrix with full column rank and
satisfying𝐸𝑇

𝑅
1
= 0; then there exists a state feedback controller

(7) such that the resulting closed-loop system of system (2) is
regular, impulse free, and robustly asymptotically stable. In this
case, a suitable controller gain is given by

𝑢 (𝑡) = 𝑈𝑋
−1

𝑥 (𝑡) . (64)

Proof. Replacing𝐴 by𝐴+𝐷Δ(𝑡)𝐸
𝑎
,𝐴

𝜏
by𝐴

𝜏
+𝐷Δ(𝑡)𝐸

𝜏
and

𝐵 by 𝐵+𝐷Δ(𝑡)𝐸
𝑏
in (53), respectively, results in the following

condition:

Ψ + Γ
1
Δ (𝑡) Ξ

1
+ Ξ

T
1
Δ
T
(𝑡) Γ

T
1
+ Γ

2
Δ (𝑡) Ξ

2
+ Ξ

T
2
Δ
T
(𝑡) Γ

T
2

< 0,

(65)

where

Γ
1
= [𝐷

T
0 0 0 0 0 0 0 0]

T
,

Ξ
1
= [𝐸

𝑎
𝑋 + 𝐸

𝑏
𝑈 𝐸

𝑎
𝑋 + 𝐸

𝑏
𝑈 0 0 0 0 ℎ

2
(𝐸

𝑎
𝑋 + 𝐸

𝑏
𝑈) 0 ℎ

12
(𝐸

𝑎
𝑋 + 𝐸

𝑏
𝑈)] ,

Γ
2
= [0 0 𝐷

T
0 0 0 0 0 0]

T
,

Ξ
2
= [𝐸

𝜏
𝑈 𝐸

𝜏
𝑈 0 0 0 0 ℎ

2
𝐸
𝜏
𝑋 0 ℎ

12
𝐸
𝜏
𝑋] ,

(66)

and Ψ is defined in (53).
By Lemma 9, (65) holds for Δ(𝑡) satisfying (3), if there

exist scalars 𝜀
1
> 0, 𝜀

2
> 0 such that

Ψ + [𝜀
−1

1
Ξ
T
1

𝜀
1
Γ
1
] [

𝐼 −𝐽

−𝐽
T

𝐼

]

−1

[

𝜀
−1

1
Ξ
1

𝜀
1
Γ
T
1

]

+ [𝜀
−1

2
Ξ
T
2

𝜀
2
Γ
2
] [

𝐼 −𝐽

−𝐽
T

𝐼

]

−1

[

𝜀
−1

2
Ξ
2

𝜀
2
Γ
T
2

] < 0.

(67)

Suppose (63) to be true. Let 𝜀
𝑖

= √𝜂
𝑖
, 𝑖 = 1, 2. Pre-

and postmultiplying the left-hand side matrix of (63) by
diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝜀−1

1
, 𝜀

−1

1
, 𝜀

−1

2
, 𝜀

−1

2
} and its transpose, respec-

tively, and using Schur complement equivalence to (63) yields
(67). The result then follows fromTheorem 16.

5. Numerical Examples

In this section, some examples are provided to illustrate the
benefits of our results.

Example 1. Consider the nominal unforced part of system (2)
with

𝐸 = [

1 0

0 0
] , 𝐴 = [

0.5 0

0 −1
] , 𝐴

𝜏
= [

−1.1 1

0 0.5
] .

(68)

The case for ℎ
1

= 0 and 𝜇 = 0 has been studied in [12].
We choose 𝑅 = [0 1]

T. The comparison among Corollary 14
in this note and those in [6–9, 11, 12, 19] is listed in Table 1
for ℎ

1
= 0. It should be pointed out that the results of [7]

fail to deal with the system because the matrix describing
the relationship between the fast and slow variables cannot
be chosen beforehand. It can be seen that our method is less
conservative than those in [6, 9] and gives the same results
as that in [8, 11, 12, 19]. However, when the time delay is

a varying delay, our method gives better results than that
in [19] for 𝜇 = 0.3 and 𝜇 = 0.75 since the relationship
among ℎ

2
, 𝜏(𝑡), ℎ

2
− 𝜏(𝑡), and 𝜏(𝑡) − ℎ

1
has been taken into

account in Corollary 14. On the other hand, for system with
time-varying delay in a range, Table 1 also lists the allowable
maximum upper bounds of ℎ

2
for different 𝜇 with ℎ

1
= 0.3

and ℎ
1
= 0.6.

Example 2. Consider the unforced part of uncertain system
(2) with

𝐸 = [

1 0

0 0
] , 𝐴 = [

0.4 0.2

0 −1
] ,

𝐴
𝜏
= [

−1 1

0 0.3
] , 𝐷 = [

0.1 0

0 0.1
] ,

𝐸
𝑎
= [

−0.05 0

0 0.05
] , 𝐸

𝜏
= [

0.05 0

0 −0.05
] .

(69)

We choose 𝑅 = [0 1]

T. For ℎ
1
= 0, the comparison among

Theorem 15 in this note and that in [19] is listed in Table 2. It is
clear that the result in this note is better than that in [19].The
corresponding maximum upper bounds of ℎ

2
for different ℎ

1

and 𝜇 derived byTheorem 15 are also listed in Table 2.

Example 3. Consider system (2) with

𝐸 =
[

[

1 1 0

1 −1 1

2 0 1

]

]

, 𝐴 =
[

[

1.5 0.5 1

−1 0 1

0.5 0 1

]

]

,

𝐴
𝜏
=

[

[

−1 0 1

1 −1 0.5

0.3 0.5 −1

]

]

, 𝐵 =
[

[

1 1

1 0

0 1

]

]

,
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Table 1: Allowable upper bounds of ℎ
2
with given ℎ

1
for different 𝜇.

ℎ
1

Methods 𝜇 = 0 𝜇 = 0.3 𝜇 = 0.75

0

[7] — — —
[9] 0.5567 — —
[6] 0.9680 — —

[8, 11, 12] 1.0660 — —
[19] 1.0660 1.0130 0.6496

Corollary 14 1.0660 1.0263 0.7141
0.3 Theorem 10 1.0660 1.0315 0.7376
0.6 Theorem 10 1.0660 1.0421 0.7426

Table 2: Allowable upper bounds of ℎ
2
with given ℎ

1
for different 𝜇.

ℎ
1

Methods 𝜇 = 0 𝜇 = 0.3 𝜇 = 0.75

0 [19] 1.1836 1.1217 1.0307
Theorem 15 (𝐽 = 0) 1.1836 1.1348 1.1095

0.3 Theorem 15 (𝐽 = 0) 1.1836 1.1394 1.1197
Theorem 15 (𝐽 = 0.1) 1.1842 1.1400 1.1200

0.6 Theorem 15 (𝐽 = 0) 1.1836 1.1489 1.1317
Theorem 15 (𝐽 = 0.1) 1.1842 1.1494 1.1321

Table 3: Allowable upper bounds of ℎ
2
with given ℎ

1
.

ℎ
1 Methods ℎ

2
𝐾

0 Theorem 17
(𝐽 = −0.1) 0.9062 [

−0.5515 −0.1800 −0.7849

−1.0962 −0.7997 −0.2503

]

0.3 Theorem 17
(𝐽 = −0.1) 1.0482 [

−0.5845 −0.1547 −0.8065

−1.1257 −0.7953 −0.2363

]

0.6 Theorem 17
(𝐽 = −0.1) 1.1919 [

−0.6093 −0.1360 −0.8218

−1.1582 −0.7942 −0.2136

]

𝐷 = [0.1 0.1 0.1]

T
, 𝐸

𝑎
= [0.2 0.1 0.3] ,

𝐸
𝜏
= [0.1 0.2 0.1] , 𝐸

𝑏
= [0.1 0.1] , 𝜇 = 0.1.

(70)

We choose𝑅 = [−1 1 2]

T. According toTheorem 17, Table 3
shows the allowed maximum upper bounds of ℎ

2
and the

corresponding state feedback gain 𝐾 for different ℎ
1
.

6. Conclusions

In this note, the delay-range-dependent robust stability and
stabilization for singular time-delay systems with linear frac-
tional uncertainty and time-varying delay in a range are stud-
ied.The results are obtained by using the strict LMI approach
and constructing an appropriate Lyapunov-Krasovskii func-
tional. Numerical examples have been given to demonstrate
the effectiveness of the presented criteria and their improve-
ment over existing results.
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As one of the main power devices of active power filter (APF), iron core reactor DCmagnetic bias would affect the performance of
APF. Based on the study of DC magnetic bias mechanism of APF iron core reactor, the data model was established in this paper.
The performance of APF device impacted by iron core reactor DC magnetic bias was analysed through the simulation in different
DC current conditions, and optimization scheme was proposed to reduce DC magnetic bias to improve working performance of
APF. To reduce DC magnetic bias, main circuit parameters and control characteristics were uniform, and reluctance of iron core
was increased. Results of the simulations and experiments validated that the improved method could restrain reactor DCmagnetic
bias to reduce even harmonic current in APF output current, which could greatly optimize APF performance.

1. Introduction

Nowadays, with the increase of power electronic devices
application, the voltage and current of electric power system
have been distorted and it caused serious pollution problems
of power supply quality [1, 2]. Power system harmonics
suppression, to improve power quality, has become an urgent
problem to be resolved [3, 4]. Active power filter (APF) is
a kind of power electronic devices that is currently used to
suppress harmonic and compensate reactive power [5, 6].
Figure 1 shows a parallel APF structure diagram. Because of
the nonlinear load, load current 𝐼

𝑙
has harmonic component,

with harmonic suppression current 𝐼
𝑐
of APF. Harmonic

component of the system current 𝐼
𝑠
would be reduced. It is

clearly seen that APF consists of two parts, including cur-
rent detection and control units and four-leg inverter main
circuit. Through current detection, APF obtains harmonic
and reactive current reference value, and through pulse width
modulation (PWM) control and drive circuit, inverter main
circuit would generate the compensation current to realize
harmonic suppression and reactive power compensation
function [7, 8]. As the main power components, the filter
reactor L is connected to power system with converter, and
working current of APF device is undertaken. Therefore, the

reactor feature is very important to decide the performance
of APF [9]. APF filter reactance according to the magnetic
medium can be divided into two categories [10, 11], which are
air core reactor and iron core reactor.Due to the advantages of
simple structure and low price, air core reactors were widely
applied in the traditional APF, but insulation aging and
magnetic leakage problem are the two largest unavoidable
defects. So, iron core reactors have got more application in
APF instead of air core reactor. DCmagnetic bias of converter
transformer was researched in documents [12, 13], but the
study of iron core reactor DC magnetic bias mechanism in
APF as high frequency converter is not sufficient [14]. In
the actual application process, magnetic bias DC excitation
of iron core can lead working current of APF to have large
even harmonic current [15] and cause the core saturation.
Thereby, it would increase the loss of reactor and reduce the
efficiency of APF, which seriously affected the performance
of the APF [16]. In this paper, based on study of DCmagnetic
bias mechanism of iron core reactor of APF, data model was
established. The performance of the APF device impacted
by the DC magnetic bias was analysed through simulation,
and optimization schemewas proposed. Experimental results
showed that the optimization could greatly reduce the DC
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Figure 1: APF structure diagram.
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Figure 2: Main circuit configuration diagram of APF.

bias magnetic content of core reactor, even harmonic output
was reduced to below 1%, and the performance of APF would
be greatly optimized. Data-driven fault diagnosis methods
become hot topic in industry sectors. So a combination
of the proposed method and data-driven techniques is the
future work to realize DCmagnetic bias compression for APF
operation [17–20].

The paper is organized as follows. In the next section, we
introduce DC magnetic bias Mechanism of iron core reactor
in APF. DC magnetic bias modeling process is extended in
Section 3. In Section 4, we give simulation analysis of APF
DCmagnetic bias. Improvedmethod and experiment of APF
are supplied in Section 5 before summarising in Section 6.

2. Research on DC Magnetic Bias Mechanism
of Iron Core Reactor in APF

Because the imbalance of forward and reverse volt second
area of the transformer or reactor was inevitable in positive
and negative pulse process, work hysteresis loop center of the
magnetic core deviated from the coordinate origin, and this
asymmetrical magnetic working state caused DC magnetic
bias. In ideal conditionsmagnetization process of APF device
iron core reactor should be two-way, excitation current
should be pure alternating current (AC), and each cycle of
iron core magnetic would reset in each repetition period. But
because of the actual operation factors of APF, magnetic bias
DC excitation of iron core would have DC component, which

lead to DC magnetic bias. Specific factors of generating DC
magnetic bias are as follows.

(1) The given reference sine wave and triangular wave
signal of control system have DC component.

(2) The power electronics devices (IGBT) characteristics
and the driving signal transmission delay are differ-
ent.

(3) The feedback control systems had zero drift.
(4) The application of amplitude limiting in detection

and current protection method would cause the
imbalance of excitation current.

(5) The magnetic circuit of iron core reactor of APF was
asymmetric.

3. DC Magnetic Bias Modeling of APF

The main circuit configuration diagram of APF was shown
in Figure 2. In this figure, three-phase power system could be
expressed as 𝑒

𝑎
, 𝑒
𝑏
, and 𝑒

𝑐
and zero line could be expressed as

𝑜. The filter reactor L could be expressed as L, and the output
currents of APF could be expressed as 𝐼

𝑎
, 𝐼
𝑏
, 𝐼
𝑐
, and 𝐼

𝑛
. The

three-phase four-leg inverter of APF was composed of IGBT
devices (𝑉

𝑎
, 𝑉


𝑎
, . . . , 𝑉

𝑛
, 𝑉


𝑛
) and DC capacitor (𝐶). DC-bus

voltage of capacitor could be expressed as 𝐸
𝑑
. As research

object, DC magnetic bias of three-phase four wire APF was
modeled, the mathematical expression was established, and
the output performance of the DC bias condition of APF
device was analysed as follows. The output voltage of APF
converter could be expressed as

𝑈
𝑎𝑛
= 𝑈
𝑑
+ 𝑚𝐸
𝑑
sin (𝜔

0
𝑡 + 𝜑)

+

∞

∑

𝑛=1

4

𝑛𝜋

{

𝑛𝜋

2

[𝑚 sin (𝜔
0
𝑡 + 𝜑) − 1]} cos 𝑛𝜔

𝑠
𝑡,

(1)

where 𝑈
𝑑
was DC component of output voltage, 𝑚 was

modulation ration, 𝐸
𝑑
was DC-bus voltage, 𝜔

0
was funda-

mental frequency, and𝜔
𝑠
was carrier wave frequency. Assume

resistance of core reactor was 𝑟; the DC current of reactor coil
could be as follows:

𝐼
𝑑
=

𝑈
𝑑

𝑟

, (2)

DC current would generate DC bias magnetic flux (𝜓
𝑑
)

and magnetic induction (𝐵
𝑑
), which could be given as

𝜓
𝑑
= 𝜇𝐻
𝑑
𝑆 =

𝜇𝑆𝑁
𝑖

𝑙
𝑖

⋅ 𝐼
𝑑
,

𝐵
𝑑
=

𝜓
𝑑

𝑆

,

(3)

where 𝑁
𝑖
and 𝑙
𝑖
were the number of windings and magnetic

path length of the reactor, 𝜇wasmagnetic permittivity of iron
core, and 𝑆 was cross-sectional areas of iron core. According
to (1), the following equation could be obtained:

𝑁
1

𝑑𝜓
1

𝑑𝑡

= 𝑚𝐸
𝑑
sin (𝜔

0
𝑡 + 𝜑) , (4)
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where 𝜓
1
was fundamental magnetic flux. Both sides of (4)

were integrated with time 𝑡; then

𝜓
1
=

𝑚𝐸
𝑑

𝑁
1
𝜔
0

sin(𝜔
0
𝑡 + 𝜙 −

𝜋

2

) . (5)

So, variation amplitude of fundamental magnetic flux
(Δ𝜓
1
) and induction (Δ𝐵

1
) can be given by

Δ𝜓
1
=

𝑚𝐸
𝑑

𝑁
1
𝜔
0

,

Δ𝐵
1
=

Δ𝜓
1

𝑆

.

(6)

In order to improve the utilization ratio of iron core, the
maximum magnetic induction intensity would be set near
the saturated magnetic induction intensity (𝐵

𝑠
). Normally,

variation range of flux was between −Δ𝜓
1
and +Δ𝜓

1
, and

variation range of magnetic induction intensity was between
−Δ𝐵
1
and +Δ𝐵

1
. Because DCmagnetic bias induction inten-

sity existed, magnetic induction intensity ranges between
𝐵
𝑑
− Δ𝐵
1
and 𝐵

𝑑
+ Δ𝐵
1
. It led the core work saturation

magnetization area and the current to be distorted, which
was shown in Figure 3. In this figure, the dotted line was
the ideal magnetic excitation process, in which the magnetic
induction intensity was sine wave and it was in linearity
area of the magnetization curve. So the output current was
sine wave, too. However, existence of the DC magnetic bias
induction intensity made the magnetic excitation process
move to the saturated range of the magnetization curve.
The negative and positive half wave curve of the magnetic
induction intensity was asymmetric, which was shown as
the solid line in Figure 3. The output current of APF was
severely distorted. From Figure 3, it can be clearly seen that,
with DC magnetic bias, APF working current had large even
harmonic current, and it caused output current of APF half-
wave asymmetry, which decayed the APF performance.

4. Simulation Analysis of APF
DC Magnetic Bias

In order to analyze APF DC magnetic bias model, the
simulation system was established to study the influence of
DCmagnetic bias. Iron core reactor was selected as APF filter
reactor. Silicon steel sheet was usually chosen as iron core
material of APF device, and its saturated induction intensity
was normally between 1.9 T and 2.0 T. The expression for the
𝐵−𝐻 function could be fitted according to themagnetization
curve. Consider the following:

𝐵 = 𝛼
1
arctan 𝐻

𝐾

+ 𝛼
2
𝐻, (7)

where 𝛼
1
= 1.121 and 𝛼

2
= 5.937 × 10

−6 were the fitting
coefficients.𝐻 was magnetic field intensity and𝐾 was 204.4.
The fitting curve was shown in Figure 4.

According to the definition of magnetic field intensity,

𝐻 =

𝑁
𝑗

𝑙
𝑗

𝑖 (𝑡) , (8)
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Figure 3: Current and flux based on DC magnetic bias of APF.
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Figure 4: Magnetization curve of silicon steel sheet.

where𝑁
𝑗
and 𝑙
𝑗
were the number of windings and magnetic

path length of reactor, and 𝑖(𝑡) was output current of APF.
Assumed APFmainly suppressed 5th, 7th, and 11th harmonic
currents; output current of phase A would be

𝑖 (𝑡) = 𝐼
𝑑
+ √2𝐼

5
sin (5𝜔

0
𝑡) + √2𝐼

7
sin(7𝜔

0
𝑡)

+ √2𝐼
11
sin (11𝜔

0
𝑡) ,

(9)

where 𝐼
𝑑
was DC current and 𝐼

𝑛
(𝑛 = 5, 7, 11) was each

order harmonic current amplitude. According to (7) and (9),
magnetic induction intensity could be expressed as

𝐵 = 𝑓 (𝑡) = 𝛼
1
arctan

𝑁
𝑖
𝑖 (𝑡)

𝐾𝑙
𝑖

+ 𝛼
2

𝑁
𝑖

𝑙
𝑖

𝑖 (𝑡) . (10)

According to the law of electromagnetic induction, mag-
netic induction intensity in the iron core of APF reactor
would induce electromotive voltage and produce induced
current 𝑖(𝑡), and it could be expressed as

𝑖 (𝑡) = −

𝑁
𝑖
𝑆

𝑟

⋅

𝑑𝐵

𝑑𝑡

. (11)
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Figure 5: Magnetic induction intensity via the different DC magnetic bias.

From (11), harmonic components in induction current
were equivalent to harmonic components inmagnetic induc-
tion intensity. According to Fourier decomposition of (10),
frequency spectrogram of magnetic induction could be
obtained. Therefore, thing 𝑁

𝑖
= 300 turn, 𝑙

𝑖
= 0.5m,

𝐼
5
= 20A, 𝐼

7
= 14.29A, and 𝐼

11
= 9.1A, the relation

between magnetic induction intensity and DC current (𝐼
𝑑
)

would be analyzed. And the simulation result with different
𝐼
𝑑
was shown in Figure 5. When 𝐼

𝑑
= 0, there are only odd

harmonics in magnetic induction intensity. If DC current
existed, even harmonics in magnetic induction intensity
were created. With the DC current increasing, DC magnetic
bias became more and more serious and even harmonics
of induction intensity increased (second harmonic was the
most significant in the even harmonics). And output current
of APF was distorted at same time, which worsened the
APF performance. So more even harmonics current were
injected into the power system and reduced the power quality.
From the simulation results with different DC magnetic bias

conditions, we could see that the DC magnetic bias would
decay the magnetic excitation process, which would reduce
the performance of APF.

5. Improved Method and Experiment of APF

Iron core reactor of APF would lead DC magnetic bias while
running and it could produce more even harmonics current
and reduce the performance of APF. Particular attention
should be paid to loss and overheat of the reactor when
DC magnetic bias was serious. So, improved methods of DC
magnetic biaswere proposed and the improvedmethodswere
listed as follows.

(1) Main circuit parameters of APF devices and reactor
characteristics may be uniform and reluctance of iron
core was increased to enhance the ability against DC
magnetic bias.
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Figure 6: Simulation results of APF performance.

(2) Three-phase control parametersmust be uniform and
maximum variation rate of reference current in APF
should be limited to ensure current symmetry in
positive and negative half-wave region.

(3) Soft start technology can be used to prevent starting
transient saturation and the minimum duty ratio of
driving signal should be limited.

The simulation system of APF with DC magnetics bias
influence was established in PSCAD environment, which
could verify improvedmethods. In the simulation, AC power
frequency was 50Hz, phase voltage amplitude was 220V, and
the main circuit topology was three-phase four-leg inverter.
The nonlinear loadwas three-phase rectifier, and the loadwas
10Ω resistor series-wound to the 5mH inductance. The DC
current signal would be added to the reference current of APF
to simulate DC magnetics bias, and simulation results were
shown in Figure 6. System current of APF running with DC
biaswas shown in Figure 6(a), system current ofAPF running

with improved methods was shown in Figure 6(b), and the
system current total harmonic distortion (THD) simulation
result of APF by improved methods was given in Figure 6(c).
In Figure 6, 𝐼

𝑠𝑎
, 𝐼
𝑠𝑏
, and 𝐼

𝑠𝑐
were system phase current after

APF running, and 𝐼
𝑠𝑛
was the zero-line current of system side.

From Figure 6, it could be seen that, because of DCmagnetic
bias of APF, the operation performance was affected, and the
system current contained the even harmonic components.
The improved method could reduce DC magnetic bias, and
even harmonic components of system current were reduced,
which improved the APF operation performance.The system
current with DC bias deviated from the coordinate origin
and was asymmetric, which brought more even harmonic
components, see Figures 6(a) and 6(b). However, the system
current was symmetrical after processing by the proposed
methods, which compressed even harmonic currents, see
Figures 6(c) and 6(d). So, the proposedmethod could restrain
DC magnetic bias to improve the APF performance.
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Figure 7: Simulation result of APF performance.

In order to verify DC magnetics bias influence and
improved methods, experiment platform was established.
Iron core inductors, intelligent power module (PM75-
RSE120), and capacitors are used to designmain circuit of the
three-phase four-wire APF device. AC power frequency was
50Hz and voltage amplitude was 220V.The iron core reactor
was selected as the filter reactor of APF and the inductance
was 4mH. To produce harmonic current, the nonlinear load
was three-phase rectifier, and the load was 8Ω resistor series-
wound to the 5mH inductance. When APF was running,
the DC current would be added to the reference current
of APF to simulate DC magnetics bias of iron reactor. The
experimental results were shown in Figure 7. The waveform
in Figure 7(a) was the nonlinear load current of the phase
A, the waveform in Figure 7(b) was the system current of
phase A after compensation of APF with DC magnetic bias,
and the waveform in Figure 7(c) was system current of
phase A after compensation of APF with DC magnetic bias
improvedmethod. In order to validate the performance of the
proposed method, total harmonic distortion (THD) analysis
was shown in Figure 7(d).

From Figure 7, because of the nonlinear load, the load
current was distorted. It contained many harmonic compo-
nents. With reactor DCmagnetic bias of APF, output current
contained the even harmonic components, the filtering per-
formance was affected, and distortion rate of power system
side current after filtering by APF was 13.54%. With DC
magnetic bias optimization method, even harmonic current
in APF device output current was reduced. The distortion
rate of power system side current after filtering by APF was

Table 1: Harmonic analysis of system side current.

Harmonic order Nonoptimization Optimization
2 4.78 0.55
3 1.16 0.36
4 1.57 0.30
5 0.56 0.52
6 1.28 0.22
7 0.08 0.06
8 0.78 0.17
9 1.18 0.09
10 1.37 0.18
11 0.95 0.63
12 1.26 0.04
13 0.27 0.23
THD 13.54% 5.4%

only 5.4%. So, filtering performance of APF was improved
obviously.

In order to analyse the proposed method of DCmagnetic
bias of APF, the harmonic analytical data of two operational
conditions was shown in Table 1. From Table 1, it can be
seen that while APF was working, DC magnetic bias would
generate even harmonic current components, such as second
and fourth harmonic. The even harmonic current amplitude
was large and it would cause power system side current
to be distorted, which affected the performance of APF.



Mathematical Problems in Engineering 7

Optimization method must be used to suppress the reactor
DC bias to improve APF performance.

6. Conclusion

As one of the main power devices of APF, iron core reactor
would cause DCmagnetic bias at running time, which would
cause loss of reactor increasing, output current contain-
ing even harmonic currents. APF device performance was
decayed.ThemechanismofDCbias andmathematicalmodel
were analysed in this paper. From the three-phase four-
leg APF simulation, it was shown that DC magnetic bias
caused by iron core reactor would produce even harmonics
injected into the power grid and reduce the performance of
APF.The improved method was proposed, and experimental
platform was established. Experimental results shown that
the improved method can reduce reactor DC magnetic
bias and even harmonic current and greatly optimize APF
performance. The study of this issue is quite significant for
APF application.
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The congestion controller based on the multiple model adaptive control is designed for the network congestion in TCP/AQM
network. As the conventional congestion control is sensitive to the variable network condition, the adaptive control method is
adopted in our congestion control.Themultiple model adaptive control is introduced in this paper based on the weight calculation
instead of the parameter estimation in past adaptive control. The model set is composed by the dynamic model based on the
fluid flow. And three “local” congestion controllers are nonlinear output feedback controller based on variable RTT, H

2
output

feedback controller, andproportional-integral controller, respectively.Ns-2 simulation results in section 4 indicate that the proposed
algorithm restrains the congestion in variable network condition and maintains a high throughput together with a low packet drop
ratio.

1. Introduction

In recent years, with the rapid growth of network size and
network applications, congestion control has been exposed
as an essential factor in communication network design.
Congestion [1] occurs when the aggregate demand for a
resource exceeds the available capacity of the resource, which
may deteriorate the performance and the reliability of the
network. Resulting effects from such congestion include long
delays in data delivery, wasted resources due to lost or
dropped packets, and even possible congestion collapse [2],
in which all communications cease in the entire network.

TCP can only provide best effort service, in which the
traffic is processed as quickly as possible, but there is no
guarantee as to timeliness or actual delivery [3]. Moreover,
it is difficult for the data source to perceive the network
condition. When the incoming packet rate is higher than the
router’s outgoing packet rate, the queue size will increase and
eventually give rise to the congestion.Thequeuemanagement
scheme in router will use queue to smooth spike in the
incoming packet rates. In the Drop Tail (DT) policy which
is the most extensive dropping policy, the packet will be
dropped when it arrives and finds the queue full. It has been
shown that the DT mechanism interacts badly with TCP’s

congestion control mechanisms and could lead to a poor
performance [3].

In the same time, Active Queue Management (AQM) is
the early notification of incipient congestion so that TCP
senders can reduce their transmission rate before the queue
overflows [4]. Random Early Detection (RED) [5, 6] is
an important AQM mechanism, which is recommended
by Internet Engineering Task Force (IETF) [7]. The basic
idea behind RED queue management is to detect incipient
congestion early and convey congestion notification to the
end hosts, allowing them to reduce their transmission rates
before queues in the network overflow and packets are
dropped. To fulfill this aim, RED maintains an exponentially
weighted moving average of the queue length which it uses
to detect congestion. RED takes an average measure of the
queue length and randomly drop packets that are within
a threshold between minth and maxth. As a result, RED
requires a wide range of parameters to operate correctly
under different congestion scenarios. When RED parameters
are not correctly defined, REDmay perform even worse than
the traditional tail drop policy [8, 9].

To solve the problem of the parameter setting in RED,
application of the control theory to solve the congestion
problem has been considered since late 1990s [10]. In such
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Figure 1: Block diagram of TCP’s congestion avoidance flow-control mode.

approach, the main idea is to analyses the dynamic of
TCP/AQM networks, build the mathematical models, and
use the available tools to design and analyze suitable conges-
tion controllers [11]. Based on the close loop system for the
communication networks, several conventional controllers
such as P, PI [12], PID [13], Lyapunov Drifts [14], and variable
structure control (VSC) [15] have been designed as AQM
scheme in TCP/AQM networks.

Due to inevitability of the time-variable parameters in
network, some limitations and disadvantages are presented in
the controllers mentioned above. For example, PI controllers
are very sensitive to system parameter variations, and PID
controller would generate a high fluctuation in queue length
of router buffers [13]. Consequently, the controller seems
necessary, which is of better performance in variable network
condition. In [16], a self-regulating AQM controller has
been proposed, which has been compared with RED and
PI controllers in variable network parameters. However, it
is known that self-regulatory control performs weakly in
the presence of noise. In order to overcome this, congestion
controller based on adaptive controller is presented in [17–
23]. The parameters in conventional adaptive controllers
would be considered as the infinite model identification [24].

Through the analysis above, the congestion control based
on multiple model adaptive control (MMAC) is designed in
this paper. Multiple model adaptive control [25–28] is con-
sidered as the finite model identification method, which uses
the weight calculation rather than the parameters estimation.
Simulation results indicate that the proposed multiple model
adaptive congestion control (MMACC) is superior from
queue length in bottleneck router, throughput for the data
source, and drop ratio for the whole communication network
of the conventional congestion control.

We believe that three aspects of this paper will make it
interesting to general readers. Firstly, the congestion control
algorithm based on the adaptive control is proposed in
variable network condition. Secondly, the multiple model
adaptive control is introduced in this paper based on the
weight calculation instead of the parameter estimation in tra-
ditional adaptive control. Finally, the model set is introduced

in the paper, which is composed by the dynamic model based
on the fluid flow.The rest of the paper is structured as follows.
The dynamic model of TCP/AQM in congestion control is
discussed in Section 2. Section 3 investigates the design of our
proposedMMACC for congestion control. Simulation results
are presented in Section 4. Finally, Section 5 concludes the
paper.

2. A Fluid-Flow Model of TCP Behavior

In this section, we overview the system model [29] for
TCP and queue dynamics based on fluid-flow and stochastic
differential equation analysis. This model describes a sample
path of each long-lived TCP connection with an additive
increase and multiplicative decrease (AIMD) strategy and
is given by the following coupled, nonlinear differential
equations:

𝑊(𝑡) =

1

𝑅 (𝑡)

−

𝑊 (𝑡)

2

𝑊 (𝑡 − 𝑅 (𝑡))

𝑅 (𝑡 − 𝑅 (𝑡))

𝑝 (𝑡 − 𝑅 (𝑡)) ,

̇𝑞 (𝑡) = −𝐶 (𝑡) +

𝑁 (𝑡)

𝑅 (𝑡)

𝑊 (𝑡) ,

(1)

where𝑊 is the average congestion window size (packets), 𝑞
is the average queue length (packets), 𝑅(𝑡) = 𝑞(𝑡)/𝐶(𝑡) +𝑇

𝑝
is

the round trip time (secs), and 𝑝 is the probability of packet
mark/drop in AQM, which takes value only in [0, 1]. 𝐶, 𝑇

𝑝

and𝑁 denote the link capacity (packets/sec), the propagation
delay (secs), and the connection number, respectively. 1/𝑅(𝑡)
indicates the additive increase strategy, and𝑊(𝑡)/2means the
multiplicative decrease strategy. Simulation results demon-
strated that this model accurately captured the dynamics of
TCP. Hollot et al. [30] illustrated these differential equations
in the block diagram of Figure 1 which highlights TCP
window-control and queue dynamics.
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Taking (𝑊, 𝑞) as the state variables and 𝑝 as the reference
input, the equilibrium point (𝑊

0
, 𝑞
0
, 𝑝
0
) is defined by𝑊 = 0

and ̇𝑞 = 0, so that

𝑊
0
= √

2

𝑝
0

=
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0
𝐶
0

𝑁
0

=
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0
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𝑝
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0
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𝑝
0
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0
𝐶
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(𝑞
0
+ 𝐶
0
𝑇
𝑝
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2
,

𝑅
0
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𝑞
0

𝐶
0

+ 𝑇
𝑝
,

(2)

where the steady sate queue length 𝑞
0
is the desired queue

length in the buffer and 𝑁(𝑡) ≡ 𝑁
0
and 𝐶(𝑡) ≡ 𝐶

0
are

assumed as constants.
Employing small signal linearization, we linearize the

model (1) about equilibrium point and ignore the delay term.
The simplified dynamics is given as

∙

𝑥
1
(𝑡) = −

𝑁
0

𝑅
2

0
𝐶
0

(𝑥
1
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0
))
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𝑅
0
𝐶
2

0

2𝑁
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0
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0
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)) ,

∙
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0
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1
(𝑡) −

1

𝑅
0

𝑥
2
(𝑡) ,

(3)

where 𝑥
1
(𝑡) = 𝛿𝑊 = 𝑊(𝑡) − 𝑊

0
, 𝑥
2
(𝑡) = 𝛿𝑞 = 𝑞(𝑡) − 𝑞

0
,

𝑢(𝑡) = 𝛿𝑝 = 𝑝(𝑡) − 𝑝
0
.

Based on (3) and assuming 𝑅
0
≫ 𝑁
0
/𝐶
0
(which allows

us to ignore the delay), the open loop transfer function of
linearized system can be obtained as

𝑃 (𝑠) =

𝐾

(𝑇
1
𝑠 + 1) (𝑇

2
𝑠 + 1)

, (4)

where𝐾 = (𝑅
0
𝐶
0
)
3

/4𝑁
2

0
, 𝑇
1
= 𝑅
0
, 𝑇
2
= 𝑅
2

0
𝐶
0
/2𝑁
0
.

Remark 1. For typical network condition, 𝑊
0

≫ 1 is a
reasonable assumption. Based on formula (2), we can get
𝑊
0
= 𝑅
0
𝐶
0
/𝑁
0
, so 𝑅
0
≫ 𝑁
0
/𝐶
0
.

Discrediting (4) with sampling period 𝑇
𝑠
using the bilin-

ear 𝑍-transformation 𝑠 = (2/𝑇)((1 − 𝑧
−1

)/(1 + 𝑧
−1

)), the
equivalent discrete systemmodel of the linearizedTCP/AQM
can be written as follows:

𝑃 (𝑧) =

𝑏
0
+ 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

1 + 𝑎
1
𝑧
−1
+ 𝑎
2
𝑧
−2
, (5)

where

𝑎
1
=

2 (𝑇
2

𝑠
− 4𝑇
1
𝑇
2
)

(𝑇
𝑠
+ 2𝑇
1
) (𝑇
𝑠
+ 2𝑇
2
)

,

𝑎
2
=

(𝑇
𝑠
− 2𝑇
1
) (𝑇
𝑠
− 2𝑇
2
)

(𝑇
𝑠
+ 2𝑇
1
) (𝑇
𝑠
+ 2𝑇
2
)

,

𝑏
0
= 𝑏
2
=

𝐾𝑇
2

𝑠

(𝑇
𝑠
+ 2𝑇
1
) (𝑇
𝑠
+ 2𝑇
2
)

,

𝑏
1
=

2𝐾𝑇
2

𝑠

(𝑇
𝑠
+ 2𝑇
1
) (𝑇
𝑠
+ 2𝑇
2
)

.

(6)

3. Congestion Control Based on Multiple
Model Adaptive Control

In this section, we present the proposed multiple model
adaptive congestion controller. First, we describe the multi-
ple model adaptive control taken into consideration. Then,
we introduce the “local” congestion controller assigned in
MMAC.

3.1. The MMAC Controller. Now, the system equation with
input 𝑢(𝑘), output 𝑦(𝑘), and the system noise 𝑒(𝑘) can be
written as

𝐴(𝑧
−1

) 𝑦 (𝑘) = 𝐵 (𝑧
−1

) 𝑢 (𝑘) + 𝑒 (𝑘) , (7)

where𝐴(𝑧−1) = 1+𝑎
1
𝑧
−1

+⋅ ⋅ ⋅+𝑎
𝑛
𝑧
−𝑛 is a single polynomial of

order 𝑛with coefficients 𝑎
𝑖
and𝐵(𝑧−1) = 𝑏

0
+𝑏
1
𝑧
−1

+⋅ ⋅ ⋅+𝑏
𝑚
𝑧
−𝑚

is a general polynomial of order𝑚 with coefficients 𝑏
𝑖
.

Remark 2. According to the statistics of MCI, 95% of bytes
and 90% of packets are transported within the TCP scheme
[31]. So the non-TCP data traffics, such as UDP, are consid-
ered as the noise in congestion control model.

In order to estimate the online parameters, the output
𝑦(𝑘) can be rewritten as

𝑦 (𝑘) = 𝜃𝜑
𝑇

(𝑘) , (8)

where

𝜃 = [−𝑎
1
, . . . , −𝑎

𝑛
, 𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑚
] ,

𝜑 (𝑘) = [𝑦 (𝑘 − 1) , . . . , 𝑦 (𝑘 − 𝑛) , 𝑢 (𝑘) , . . . , 𝑢 (𝑘 − 𝑚)] ,

(9)

where M = {𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑁} is the model set that may

include the true model of the unknown plant P. Further,
define 𝑦

𝑖
as the output of 𝑀

𝑖
. For each model 𝑀

𝑖
∈ M, its

output error is given by

𝑒
𝑖
= 𝑦 (𝑘) − 𝑦

𝑖
(𝑘) . (10)

A concise block diagram is shown in Figure 2 to represent
an MMAC system, where “local” controller 𝐶

𝑖
is designed
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Figure 2: Block diagram of MMAC system.

according to any possible control strategies, if 𝐶
𝑖
stabilizes

model𝑀
𝑖
. Then, the global control 𝑢(𝑘) is obtained by

𝑢 (𝑘) =

𝑁

∑

𝑖=1

𝑝
𝑖
(𝑘) 𝑢
𝑖
(𝑘) , (11)

where 𝑢
𝑖
(𝑘) is the output of the “local” controller 𝐶

𝑖
.

Typically, controller weights 𝑝
𝑖
(𝑘) are calculated through

a bank of Kalman filters [32]. But in [28], a new algorithm is
proposed which is simpler in 𝑝

𝑖
(𝑘) calculation; that is,

𝑝
𝑖
(0) = 𝑙

𝑖
(0) =

1

𝑁

,

𝑙


𝑖
(𝑘) = 1 +

1

𝑘

𝑘

∑

𝑟=1

𝑒
2

𝑖
(𝑟) ,

𝑙


min (𝑘) = min
𝑖

{𝑙


𝑖
(𝑘)} ,

𝑙
𝑖
(𝑘) =

𝑙


min (𝑘)

𝑙


𝑖
(𝑘)

𝑙
𝑖
(𝑘 − 1) ,

𝑝
𝑖
(𝑘) =

𝑙
𝑖
(𝑘)

∑
𝑁

𝑟=1
𝑙
𝑟
(𝑘)

.

(12)

3.2. “Local” Congestion Controller. The model set M is
composed by three kinds of congestion models including
nonlinear model, local linearization model, and the model
without time delay. The model set is described as follows:

M = {𝑀
𝑖
, 𝑖 = 1, 2, 3} . (13)

In other words, three “local” congestion controllers (𝐶
1
, 𝐶
2
,

and 𝐶
3
) should be designed to stabilize the submodel 𝑀

𝑖
,

respectively.
Firstly, nonlinear output feedback control based on vari-

able RTT (NOFC-VRTT, 𝐶
1
) [33] is designed according to

nonlinear dynamic model (1); that is,

𝑝
1
(𝑘) = 2 [𝑁

0
𝑞 (𝑘) + (𝑁

0
�̂� (𝑘) 𝑞 (𝑘) − 1) (𝑘

1
𝑞
∗

− 1)

+𝑘
2
𝑞 (𝑘) (𝑁

0
�̂� (𝑘) 𝑞 (𝑘) − 1 − 𝑘

1
(𝑞 (𝑘) − 𝑞

∗

))]

× (𝑁
0
�̂�
2

(𝑘) 𝑞 (𝑘))

−1

.

(14)
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Figure 3: Network topology.

The congestion window observer is chosen as

̇
�̂� (𝑘) = 𝐶

0
𝑞 (𝑘) −

𝐶
0

2

�̂�
2

(𝑘) 𝑞 (𝑘) 𝑝 (𝑘) , (15)

where

𝑞 =

1

𝑞 + 𝑇
𝑝
𝐶

, 𝑞
∗

=

1

𝑞
0
+ 𝑇
𝑝
𝐶
0

. (16)

The control parameters 𝑘
1
and 𝑘
2
should satisfy the following

inequalities:

1 ≤ 𝑘
1
𝑞
∗

+ 𝑘
2
𝑞 ≤ 2,

0 ≤ 𝑁
0
𝑞 + 1 − 𝑘

1
𝑞
∗

− 𝑘
2
𝑞 − 𝑘
1
𝑘
2
𝑞𝑧
2

≤ 2𝑁
0
𝑞 (2 − 𝑘

1
𝑞
∗

− 𝑘
2
𝑞) .

(17)

Secondly, based on the linear state spacemodel (3), theH
2

output feedback controller (H
2
OFC, 𝐶

2
) could be presented

as
∙

𝑥(𝑡)= 𝐴
0
𝑥 (𝑡) + 𝐴

1
𝑥 (𝑡 − 𝑅

0
) + 𝐵𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
0
𝑥 (𝑡) + 𝐶

1
𝑥 (𝑡 − 𝑅

0
) + 𝐷𝑦 (𝑡) .

(18)
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Figure 4: Robustness of MMACC.

This controller could also be described in the frequency
domain by the nonrational transfer function

𝐶
2
(𝑠) = (𝐶

0
+ 𝐶
1
𝑒
−𝑠𝑅0

) (𝑠𝐼 − 𝐴
0
− 𝐴
1
𝑒
−𝑠𝑅0

)

−1

𝐵 + 𝐷, (19)

where the parameter matrices 𝐴
0
, 𝐴
1
, 𝐵, 𝐶

0
, 𝐶
1
, and 𝐷

are regulated by the linear matrix inequalities. A detailed
description of the regulation could be seen in Section 3 of
[34]. In the same time, the transfer function in the 𝑧-domain
is obtained by the bilinear 𝑍-transformation.

Lastly, the classical proportional integral control (PI,
𝐶
3
) is adopted in the transfer function model (4), and the

parameter tuning is discussed in paper [35]:

𝐶
3
(𝑠) = 𝐾

𝑝
+

𝐾
𝑖

𝑠

= 𝐾
𝑃𝐼

(𝑠/𝑧 + 1)

𝑠

. (20)

4. Simulation

In this section, we verify the proposed MMACC via sim-
ulation using the Ns-2 simulator. The benchmark network
topology is addressed as shown in Figure 3. The following
numerical values are considered as the system parameters:
𝑁 = 30 TCP sessions, 𝑇

𝑝
= 0.1 s, 𝑞

0
= 200 packets, and

buffer size is 800 packets. Also, the bottleneck link bandwidth

is 10Mb/s with an average packet size of 500 byte which
results in 𝐶 = 2500 packets/s. Using these parameters,
we can calculate other parameters such as 𝑅

0
, 𝑊
0
, and 𝑝

0

according to formula (2). Node 𝑆
𝑑
is set up as the UDP sender

with a 0.5Mb/s bandwidth as discussed in Section 3.1. The
sample frequency is 160Hz, and the simulation period equals
to 300 s. The parameters of the three “local” controllers are
designed by the network simulation condition above.

In detail, the parameters of 𝐶
1
are as follows:

𝑘
1
= 224, 𝑘

2
=

11

3

. (21)

The parameters of 𝐶
2
are calculated as

𝑎 = 1.547𝑒 − 9, 𝑏 = 0.3607. (22)

And the parameters of 𝐶
3
are

𝐾
𝑝
= 1.822𝑒 − 5, 𝐾

𝑖
= 1.816𝑒 − 5. (23)

Experiment 3. Nowwe look at the bottleneck router 𝑛𝑛1 run-
ningMMACC and router 𝑛𝑛2 running drop tail algorithm. In
order to verify the robustness of the proposed MMACC, the
network condition is changed as follows: (a) initial condition;
(b) propagation delay 𝑇

𝑝
is converted from 0.1 s to 0.15 s;
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Figure 5: Instantaneous queue length in the bottleneck router.

(c) 15 new FTP sources start at 80 s and 15 FTP sources
stop at 180 s randomly; (d) UDP/CBR source as noise starts
at 80 s and stops at 240 s. Figure 4 shows the instantaneous
queue length of the bottleneck router in variable network
condition. As depicted in Figure 4, the instantaneous queue
lengthmaintains round the equilibriumvalue.The simulation
results show that MMACC has a good robustness when
network condition changes or modeling is uncertain.

Experiment 4. MMACC is considered as the linear combi-
nation of the NOFC-VRTT, H

2
OUT, and PI. In this simu-

lation experiment, we compare the performance of the four
congestion controllers. Figure 5 displays the queue length of
the bottleneck router adopting the four congestion control
strategies. It is indicated that MMACC has well disturbance
attenuation and strong convergence. Tables 1 and 2 show that
MMACC achieves a lower packet drop ratio and a higher
link utilization than the other three congestion controls in
variable network conditions.The simulation results show that
MMACC provides better network performance and higher
quality of service (QoS). On the other hand, PI controller
omitted the high frequency part of the fluid model, and
NOFC-VRTT controller only gave the range of the control

Table 1: Packet drop ratio in variable RTT.

RTT(s) 0.10 0.12 0.14 0.16 0.18 0.20
MMACC 0.393% 0.361% 0.329% 0.303% 0.282% 0.271%
NOFC-VRTT 0.683% 0.628% 0.581% 0.540% 0.492% 0.479%
H2OFC 0.931% 0.720% 0.630% 0.504% 0.393% 0.372%
PI 1.556% 1.263% 0.989% 0.767% 0.576% 0.497%

Table 2: Link utilization in variable RTT.

RTT(s) 0.10 0.12 0.14 0.16 0.18 0.20
MMACC 95.41% 95.09% 94.83% 94.57% 94.22% 94.07%
NOFC-VRTT 95.27% 94.78% 94.45% 93.92% 93.47% 93.10%
H2OFC 95.03% 93.68% 92.04% 89.85% 86.76% 85.71%
PI 95.27% 94.72% 94.14% 93.05% 91.63% 89.69%

coefficient. So the performance of H
2
OFC is much better

among the three “local” congestion controllers.

5. Conclusion

A new AQM method for TCP network based on multiple
model adaptive control has been presented in the paper.
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Three dynamic models based on the TCP/AQM fluid-flow
mode have been designed for the MMAC. Then the pro-
posed adaptive method regulates the weight of the “local”
congestion controller. Simulation results demonstrate that
the proposed MMACC scheme is able to preserve the queue
length efficiently in the bottleneck router around the desired
point. In addition, the superior performance of the proposed
controller has been illustrated through the results obtained
via Ns-2 simulation. In the MMACC, all of the “local”
congestion controllers are queue-based AQM scheme. As the
rate-based schemes, providing early feedback for congestion,
the rate-based “local” congestion controller would improve
our MMACC, which is the next step for us.
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To avoid obstacle in the unknown environment for unmanned undersea vehicle (UUV), an obstacle avoiding system based on
improved vector field histogram (VFH) is designed. Forward looking sonar is used to detect the environment, and the divisional
sonar modal is applied to deal with the measure uncertainty. To adapt to the VFH, rolling occupancy grids are used for the map
building, and high accuracy details of local environment are obtained. The threshold is adaptively adjusted by the statistic of
obstacles to solve the problem that VFH is sensitive to threshold. To improve the environment adaptability, the hybrid-behaviors
strategy is proposed, which selects the optimal avoidance command according to the motion status and environment character.
The simulation shows that UUV could avoid the obstacles fast and escape from the U shape obstacles.

1. Introduction

UUV plays an increasingly important role in underwater
operations. A major challenge in the development of UUV is
obstacle avoidance in unknown, complex, and unstructured
environment. This demands UUV to have accurate percep-
tion of environment andmake decision intelligently. Obstacle
detection and avoidance strategy are two key technologies in
obstacle avoidance [1, 2].

For obstacle detection, forward looking sonar (FLS) is
the primary sensor to obtain the underwater information [3].
Since sonar data are incomplete and time delayed, current
information measured is not enough for avoidance decision.
A map with historical sonar data is essential for avoidance.
Compared with geometric map and topology map, occu-
pancy grids map is more convenient to describe the unstruc-
tured obstacle and has better capability to handle measure
uncertainty [4]. Meanwhile, global map cannot be used in
long voyage, because of the storage and processing constrains.
To save the map storage space and improve the mapping
speed, localmap is widely used, which can quickly createmap
with accurate details.

For avoidance strategy, there are many popular real-time
avoidance approaches, such as, artificial potential field (APF)
[5], dynamic window approach (DWA) [6], fuzzy systems
[7], expert systems [8], and neural network [9]. However,
they all have drawbacks. For instance, APF and DWA are
unable to grasp the environmental connectivity and are easily
trapped into local minima position. Design of fuzzy system
is complex, and it is difficult to determine avoidance rules.
The vector field histogram (VFH) is developed based on the
concept of APF and certainty grid. There is two-stage data
reduction process for computing the desired commands. In
the first stage the histogram grid is reduced to one-dimen-
sional polar histogram. Each sector in the polar histogram
contains a polar obstacle density (POD). In the second stage,
the algorithm selects the most suitable steering direction
among all polar histogram sectors with a low POD [10]. VFH
and many of its variants (VFH∗,VFH+) are computationally
efficient and important consideration for real-time operation
[10, 11]. It has been usedwidely inmany fields and can be used
for UUV avoidance. However, VFH has some shortcomings,
which must be solved.
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Figure 1: The simulation of sonar detection.

(1) Threshold is sensitive and threshold selection relies
heavily on experience. Some algorithms have been
studied for adaptive threshold. An adaptive threshold
is adjusted according to the distance from the obsta-
cles in [12], and [13] searches for the best threshold
in certain interval. However, optimization algorithms
are applied in [12, 13], and the computational cost is
large.

(2) Adaptability of complex environments: outdoor envi-
ronment brings up the challenges to the percep-
tion and control. Because the calculation of steering
direction in the second stage is relatively simple,
traditional VFH is unable to adapt to the environment
with dense obstacles. Meanwhile, the same as other
local planning methods, local minima is the inherent
disadvantage of traditional VFH [14]. When sailing
near the coast, UUV will be trapped in U shape ports
or coasts. Following-wall strategy is widely used to get
rid of trap [15, 16]. It is essential to determine when to
activate and when to suspend the following-wall, and
coordination mechanisms are applied for the inte-
gration of following-wall with other avoidance algo-
rithms [16]. In [15], following-wall is combined with
virtual force field method and is activated when the
vehicle’s heading is more than 90∘ off-target. In [16],
following-wall and move-to-goal are combined into
the vector polar histogrammethod.The statememory
and position prediction strategies are applied to get
better coordination ability.

In this paper, the obstacle avoidance for UUV in
unknown unstructured environment is considered. A novel
obstacle avoidance system based on VFH is proposed. FLS
is used for obstacle detecting. The measures uncertainty is
considered in the sonar modal. Storage and processing con-
strains are considered in the mapping with long voyage. To

overcome the problems of traditional VFH and tomakeUUV
more adaptable and robust, the traditional VFH is improved.
Behavior-based mechanism is introduced into avoidance
process, which can respond to various environments.

The main novelties of this paper are as follows.

(1) To adapt to theVFH, rolling occupancy grids are used
for the map building, which can effectively reduce
the measure uncertainty and provide high accuracy
information for avoidance decision.

(2) To solve the problem that VFH is sensitive to thresh-
old, the threshold is adaptively adjusted by the statistic
of POD.

(3) To improve the environment adaptability and get
rid of minima position, hybrid-behaviors, straight-
to-goal, avoidance-toward-goal, and following-wall,
are introduced into the second stage of VFH directly.
According to the motion status and environment
character, the optimal avoidance command is gener-
ated through the switching strategy. Differently from
other approaches, no coordination mechanism is
applied.

2. Sonar Detection

FLS is used for obstacles detecting and mapping, which is
installed in front of UUV. The maximal operating range is
200m, number of beam is 60, horizontal beam width is 120∘,
and vertical beam width is 15∘. The obstacles are detected in
horizontal plane with simulation (see Figure 1).

In this paper, occupancy grids are used for mapping. In
occupancy gridsmap, each cell𝐶has two states: occupied and
empty, denoted byOCCandEMP.Theprobabilistic estimates
of two states are 𝑃[𝑠(𝐶) = OCC] and 𝑃[(𝑠(𝐶) = EMP],
and the states are exclusive and exhaustive: OCC = ¬EMP,
𝑃[𝑠(𝐶) = OCC] + 𝑃[𝑠(𝐶) = EMP] = 1.
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2.1. Coordinate Transform. There areworking space and sens-
ing space in the sailing. As shown in Figure 2, polar coordi-
nate is used in the sensing space, and the polar axis is denoted
as O
𝑠
X
𝑠
. In the 2D plane, the sensing data of sonar have the

distance and direction, denoted by (𝜌
𝑠
, 𝜃
𝑠
). Cartesian coordi-

nate𝑋𝑂𝑌 is used in the working space.
To further analyze the relationship between the two

spaces, coordinate transform is solved.The polar coordinates
(𝜌
𝑠
, 𝜃
𝑠
) can be converted to the Cartesian coordinate 𝑋𝑂𝑌.

First, (𝜌
𝑠
, 𝜃
𝑠
) is converted to (𝑥

𝑠
, 𝑦
𝑠
) through (1). UUV in the

working space is (𝑥
𝑟
, 𝑦
𝑟
, 𝜃), and the angle between polar axis

and 𝑥-axis is 𝛽; then (𝑥
𝑠
, 𝑦
𝑠
) is converted to (𝑥

𝑒
, 𝑦
𝑒
) in 𝑋𝑂𝑌

space through (2). The information in two spaces is unified
with the coordinate transform:

[

𝑥
𝑠

𝑦
𝑠

] = 𝜌
𝑠
[

cos (𝜃
𝑠
)

sin (𝜃
𝑠
)
] , (1)

[

𝑥
𝑒

𝑦
𝑒

] = [

cos (𝛽) − sin (𝛽)
sin (𝛽) cos (𝛽) ] [

𝑥
𝑠

𝑦
𝑠

] + [

𝑥
𝑟

𝑦
𝑟

] . (2)

2.2. Measure Uncertainty Handling. Due to the poor direc-
tionality of FLS and the error in range measurement [3], it is

necessary to handle measure uncertainty in sonarmodel.The
previous ideal model does not adapt to complex underwater
environment. So, one order gauss probability distribution is
applied for the Dolphin sonar in [4]. Divisional sonar modal
is proposed in [17, 18], and the effectiveness of proposed
modal has been proved.

Here, the divisional sonar modal is applied to handle the
measure uncertainty. Figure 3 shows the model of the single
sonar beam. In the sensing space, the obstacle detecting data
is 𝑟
𝑡
= (𝜌
𝑠
, 𝜃
𝑠
) in time 𝑡, and covering area can be expressed

as one cone, which has range 2Δ𝛼 and radius 𝑅max. The cone
is divided into 3 regions: Region I denotes the empty region,
where no obstacle exists; Region II denotes the occupancy
region, where the obstacles are found; Region III denotes the
unknown region, and it cannot be determined whether there
is obstacle [17]. The measure uncertainty of any cell 𝐶 =

(𝜌
𝑖
, 𝜃
𝑗
) in the covering area is associated with the cell’s posi-

tion. The closer the cell to the axis of beam is, the less noise
the raw data has and vice versa. So the occupied probability
of cell 𝑃[𝑠(𝐶(𝜌

𝑖
, 𝜃
𝑗
)) = OCC | 𝑟

𝑡
] can be estimated piecewise

according to the region the cell belongs to. The measure
distance error is defined as Δ𝜌, and 𝑃[𝑠(𝐶(𝜌

𝑖
, 𝜃
𝑗
)) = OCC |

𝑟
𝑡
] is given by

𝑃 [𝑠 (𝐶 (𝜌
𝑖
, 𝜃
𝑗
)) = OCC𝑟

𝑡
] =

{
{
{
{
{

{
{
{
{
{

{

𝑝emp, 0 < 𝜌
𝑖
≤ 𝜌
𝑠
− Δ𝜌,

[1 − 0.5(





𝜌
𝑖
− 𝜌
𝑠






Δ𝜌

×






𝜃
𝑗
− 𝜃
𝑠







Δ𝛼

)]𝑝occ, 𝜌
𝑠
− Δ𝜌 < 𝜌

𝑖
< 𝜌
𝑠
+ Δ𝜌

𝑝unk, 𝜌
𝑠
+ Δ𝜌 ≤ 𝜌

𝑖
< 𝑅max,

, (3)

where𝑝emp,𝑝occ, and𝑝unk are positive constants, which repre-
sent the initial probability of empty state, occupied state, and
unknown state, respectively. These values can be 𝑝emp = 0.3,
𝑝occ = 0.9, and 𝑝unk = 0.5, and 𝑅max is the maximal operating
range of FLS.

Figure 4 shows a simulation for 𝑃[𝑠(𝐶(𝜌
𝑖
, 𝜃
𝑗
)) = OCC] in

the covering area of single sonar beam.The parameters in (3)
choose 𝜌

𝑠
= 90m, 𝜃

𝑠
= 45
∘, Δ𝜌 = 10m, and 𝑅max = 150m.

In Figure 4, the occupied probability is represented with the
color. The light blue region is the empty region, the green
region is the unknown region, and the red region is the occu-
pied region. The probabilities in different region have signif-
icant difference. The states are distinguished easily and are in
accordance with the physical character of sonar.

Always, one grid may be covered by multiple beams and
has different states. Information conflicts among multiple
beams cause inaccurate map. To obtain high-precision map,
grid state needs to be fused and updated. For 𝑠(𝐶

𝑖
), historical

sonar data are {𝑟}
𝑡
= {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑡
} and current state is

𝑃[𝑠(𝐶
𝑖
) = OCC | {𝑟}

𝑡
]. Given new sonar data 𝑟

𝑡+1
and accord-

ing to Bayes theory, the grid state can be updated as [4]

𝑃 [𝑠 (𝐶
𝑖
) = OCC | {𝑟}

𝑡+1
]

=

𝑝 [𝑟
𝑡+1

| 𝑠 (𝐶
𝑖
) = OCC] 𝑃 [𝑠 (𝐶

𝑖
) = OCC | {𝑟}

𝑡
]

∑
𝑠(𝐶𝑖)

𝑝 [𝑟
𝑡+1

| 𝑠 (𝐶
𝑖
)] 𝑃 [𝑠 (𝐶

𝑖
) | {𝑟}

𝑡
]

,

(4)

where 𝑝[𝑟
𝑡+1

| 𝑠(𝐶
𝑖
)] is the prior probability. Current

probability estimation 𝑃[𝑠(𝐶
𝑖
) = OCC | {𝑟}

𝑡
] is extracted

from the grids map and updated with 𝑟
𝑡+1

; then new 𝑃[𝑟
𝑡+1

|

𝑠(𝐶
𝑖
) = OCC] is stored in the map.

3. Rolling Occupancy Grids Map

Real-time information storage and processing capacity for
UUV are limited. In the long voyage, the environment infor-
mation increases continuously. If there is no limitation on the
mapping, the data will overflow storage capacity and process-
ing time will become longer.

Quad tree model is used in the mapping [19], and there
is a map optimization strategy in [20] by cutting the low
utilization grids. Here, the rolling occupancy grids map
(ROGM) is proposed to adapt the VFH. According to the
vision features of UUV, the grids far from UUV have low
utilization and will not have impact on the decision-making.
On the premise that the information in the active window is
complete and accurate, the grids with low utilization can be
deleted.

Active window is always centered around the UUV posi-
tion𝑋

𝑅
, and a circular window would be geometrically more

appropriate. Active window takes the following form.
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Definition 1. Active window in time 𝑡 is

𝐴𝑊(𝑡) = {𝑋 | 𝑋 ∈ 𝑊, 𝑑 (𝑋,𝑋
𝑅
(𝑡)) < 𝑅

𝑤
} , (5)

where 𝑅
𝑤
denotes the radius of 𝐴𝑊(𝑡). The size of ROGM

must be bigger than active window. It moves with the move-
ment of UUV. A circular window is also used in ROGM,
which has radius 𝑅

𝑒
and is defined as follows.

Definition 2. ROGM in time 𝑡 is

𝐶𝑊(𝑡) = {𝑋 | 𝑋 ∈ 𝑊, 𝑑 (𝑋,𝑋
𝑀
(𝑡)) < 𝑅

𝑒
} , (6)

where𝑋
𝑀
(𝑡) is the center of𝐶𝑊(𝑡);𝑅

𝑒
= 𝜆
𝑤
𝑅
𝑤
, (𝜆
𝑤
> 1),𝜆

𝑤

is themargin coefficient and guarantees that active window is
contained in ROGM, so that 𝐴𝑊(𝑡) ⊂ 𝐶𝑊(𝑡). In the initial
time 𝑡

0
, the initial ROGM 𝐶𝑊(𝑡

0
) has the center 𝑋

𝑀
(𝑡
0
) =

𝑋
𝑅
(𝑡
0
), where𝑋

𝑅
(𝑡
0
) is the initial position of UUV.
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Figure 4: Simulation for occupied probability in the covering area
of single sonar beam.

Differently from active window, ROGM does not move
with UUV on time and only moves when the triggering con-
dition is satisfied. From 𝑡 to 𝑡 + 𝑇tra, if the travelling distance
is bigger than 𝐷cha, ROGM will move. It can be described
as Dis(𝑋

𝑅
(𝑡), 𝑋
𝑅
(𝑡 + 𝑇tra)) > 𝐷cha. Here 𝐷cha is defined as

𝑅
𝑒
− 𝑅
𝑤
> 𝐷cha. When moving, 𝑋

𝑀
(𝑡) will move to 𝑋

𝑀
(𝑡 +

𝑇tra). 𝑋𝑀(𝑡 + 𝑇tra) will be given by the position of closest
grid 𝐶close(𝑡) to𝑋𝑅(𝑡 + 𝑇tra); thus𝑋𝑀(𝑡 + 𝑇tra) = 𝑋(𝐶close(𝑡)).
Here,𝑋(𝐶close(𝑡)) = argmin

𝐶𝑖(𝑡)
(Dis(𝑋

𝑅
(𝑡 + 𝑇tra), 𝑋(𝐶𝑖(𝑡)))),

𝐶
𝑖
(𝑡) ∈ 𝐶𝑊(𝑡).
After moving, The ROGM 𝐶𝑊(𝑡) is changed to 𝐶𝑊(𝑡 +

𝑇tra). Some new grids will be expanded into𝐶𝑊(𝑡+𝑇tra), with
the state 𝑃[𝑠(𝐶) = OCC] = 0.5. If the distance from one grid
in 𝐶𝑊(𝑡) to 𝑋

𝑅
(𝑡 + 𝑇tra) is bigger than 𝑅𝑒, the grid would be

deleted from the 𝐶𝑊(𝑡).
In [𝑡, 𝑡+𝑇

𝑡𝑟𝑎
], the position of𝐶𝑊(𝑡) is static. All the grids

in 𝐶𝑊(𝑡) are updated in every detection cycle. The update
principles of grids in 𝐶𝑊(𝑡) are shown as follows.

(A) New sonar data are added into grid map. The sonar
data are converted to the working space with (1) and
(2). By using (3), the occupied probability of grids is
obtained.

(B) The states of overlapping grids are updated following
(4).

Because the size of ROGM is constant, unlimited expan-
sion problem of the information can be solved. The speed of
mapping is improved, and requirements forVFHare satisfied.

4. Obstacle Avoidance System Design

Based on ROGM, the obstacle avoidance system is designed
based on improved VFH. The UUV motion constrains
include maximal linear velocity 𝑢max, minimum linear veloc-
ity 𝑢min, maximal yaw angular velocity 𝑤max, minimum
turning radius 𝑅min, and minimum safety distance 𝑑safe =

𝜆
𝑠
(𝑅min + 𝐿𝑟).
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VFH establishes polar coordinate system with the center
of mobile robot and converts the impact of obstacle to POD
histogram. The recommended direction is derived from an
analysis of POD histogram.

4.1. Polar Histogram. According to the concept of VFH [10],
in the active windowAW, the active cell 𝑐

𝑖𝑗
with the center

(𝑥
𝑖
, 𝑦
𝑗
) is now treated as an obstacle vector.The direction and

magnitude of the obstacle vector can be expressed as

𝛽
𝑖𝑗
= arctan

𝑦
𝑗
− 𝑦
𝑡

𝑟

𝑥
𝑖
− 𝑥
𝑡

𝑟

, 𝑚
𝑖𝑗
= (𝑐
∗

𝑖𝑗
)

2

(𝑎 − 𝑏𝑑
𝑖𝑗
) . (7)

Here, 𝛽
𝑖𝑗

is the direction of obstacle vector; 𝑚
𝑖𝑗

is the
magnitude of the obstacle vector; 𝑎, 𝑏 are positive constants
and 𝑎−𝑏𝑑max = 0; 𝑑𝑖𝑗 is the distance between active cell 𝑐𝑖𝑗 and
UUV; 𝑐∗

𝑖𝑗
is the occupied probability. As shown in (7), 𝑚

𝑖𝑗
is

in inverse proportion to 𝑑
𝑖𝑗
.

The polar histogram H has an angular resolution 𝛼 such
that 𝑛 = 360∘/𝛼 (𝛼 = 10∘). Sector 𝑘 corresponds to a discrete
angle 𝑘𝛼, 𝑘 = 0, 1, . . . , 𝑛 − 1, and sector 𝑘 is established
through

𝑘 = INT(
𝛽
𝑖𝑗

𝛼

) . (8)

For each sector 𝑘, the POD ℎ
𝑘
is calculated as

ℎ
𝑘
= ∑

𝑖,𝑗

𝑚
𝑖𝑗
. (9)

Because of the discrete nature of the histogram grid, the
result of mapping may appear ragged and cause errors in
the selection of steering direction. Therefore, a smoothing
function is applied toH, which is defined by

ℎ


𝑘
=

ℎ
𝑘−𝑙

+ ℎ
𝑘−𝑙+1

⋅ ⋅ ⋅ + ℎ
𝑘
⋅ ⋅ ⋅ + ℎ

𝑘+𝑙−1
+ ℎ
𝑘+𝑙

2𝑙 + 1

. (10)

Here, 𝑙 = 3.

4.2. Candidate Heading Set. The safety sector is obtained by
the H and a certain threshold ℎsafe. The sector with POD
above the threshold (ℎ

𝑘
≥ ℎsafe) is treated as unsafe sector, and

the sector with POD below the threshold (ℎ
𝑘
< ℎsafe) is called

safe sector. The consecutive safe sectors are combined as a
valley. The valley combined with more than 𝑠max (𝑠max = 8)
sectors is considered as wide valley, and other valleys are
called narrow valleys [10]. Each valley has two border sectors,
left border 𝑘

𝑙
and right border 𝑘

𝑟
. If narrow valley has only

one sector 𝑘, then 𝑘
𝑙
= 𝑘
𝑟
= 𝑘.

The desired heading of the next planning cycle is selected
in the candidate valleys. The desired headings generated
in each valley compose the candidate heading set Ωcan =

{𝜃
𝑐

𝑠
}. The candidate heading should guarantee the safety and

smoothness of the movement, which is generated according
to valley type in the following discussions.

(1) For narrow valley, candidate heading is selected as the
middle direction of the valley, 𝜃𝑐

𝑠
= ((𝑘

𝑙
+ 𝑘
𝑟
)/2)𝛼.

UUV will maintain a course centered between obsta-
cles.

(2) For wide valley, if the candidate heading is still the
middle direction of the valley, sometimes the candi-
date heading is far from current heading, and UUV
would adjust the heading acutely. The best situation
is that UUV travel at a proper distance from the
obstacle, so there are two candidate headings within
the wide valley: 𝜃𝑐

𝑠
= (𝑘
𝑙
+ 𝑠max/2)𝛼 and 𝜃𝑐

𝑠
= (𝑘
𝑟
−

𝑠max/2)𝛼.

4.3. Adaptive Threshold. To reduce the steering frequency, it
is not necessary to avoid forane obstacles; meanwhile, the
close obstacles should not be neglected. It is important for
UUV to find fine-tuned threshold. With the same polar his-
togram, the bigger the threshold is, the more safe the sectors
are selected and vice versa. If the threshold is much too large,
UUV is not aware of obstacle and may approach obstacle
closely. If threshold ismuch too low, some potential candidate
valleys will be precluded and UUV will not pass through
narrow passage [4].

Here, a novel method to get threshold is proposed. The
statistics of POD are used for the threshold selection. ℎmax =
max(ℎ

𝑘
), 𝑘 = 0, 1, . . . , 𝑛 − 1, which represents the closest

obstacle to UUV. The average POD of all sectors is ℎave =

∑
𝑛−1

𝑘=0
ℎ


𝑘
, which represents obstacles contribution. To some

extent, ℎave represents the type of obstacles. ℎave is large
in the narrow passage, and ℎave is low in the environment
with sparse obstacles. If UUV is requested to pass through
a narrow passage, the ℎsafe should be temporarily raised [4].
To obtain potential candidate valleys, ℎsafe is raised with the
increase of ℎave. The ℎave and ℎmax are considered in the
threshold selection, which can be defined by ℎsafe = 𝜔1ℎave +
𝜔
2
ℎmax, where𝜔1, 𝜔2 ∈ [0, 1] are weight factors and𝜔1+𝜔2 =

1. Because ℎave ≤ ℎmax, we can find ℎsafe = 𝜔1ℎave + 𝜔2ℎmax ≤
(𝜔
1
+ 𝜔
2
)ℎmax ≤ ℎmax. So at any time, the sectors with ℎmax

are treated as unsafe sector, and UUV is aware of the close
obstacle.

To guarantee the safety, ℎsafe is chosen in the range
[𝐻min, 𝐻max], and the formula for threshold is written by

ℎsafe

=

{
{

{
{

{

𝐻min if (𝜔
1
ℎave + 𝜔2ℎmax) < 𝐻min

𝐻max else if (𝜔
1
ℎave + 𝜔2ℎmax) > 𝐻max

𝜔
1
ℎave + 𝜔2ℎmax else.

(11)

4.4. Hybrid-Behaviors for Avoidance. Single steering strategy
of VFH cannot meet the demand for avoidance in complex
environment. So hybrid avoidance strategies are applied. The
behaviors of UUV are divided into 3 kinds: straight-to-goal
(SG), avoidance-toward-goal (AG), following-wall (FW). SG
behavior is traveling to the goal directly without avoidance,
AG behavior is the avoidance under the guidance of goal,
and FW behavior is the avoidance ignoring the goal. Only
one behavior is taken at the same time, and behaviors are
triggered according to their triggering conditions.
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4.4.1. SG Behavior. When there is no obstacle in the active
window or the surrounding obstacles do not affect UUV
to sail directly to goal point, SG behavior is triggered. The
situation that there is no obstacle in the active window is
written by

𝑠 (𝑋) = EMP, ∀𝑋 ∈ 𝐴𝑊(𝑡) . (12)

However, in the real application, it is difficult to satisfy
(12). Always, there are some obstacles in the active window.
We can accept thatUUVcan take SGbehavior if all the sectors
are safe. This criterion is defined as follows.

Condition 1. Consider

ℎ
𝑘
< ℎsafe, ∀𝑘 ∈ [0, 1, . . . , 𝑛 − 1] . (13)

There is no doubt that Condition 1 must also satisfy (12).
Besides, SG behavior should be triggered, if goal is found in
active window and there is no unsafe sector within the range
of 90∘ from the target heading. It implies that obstacles have
no impact on the target heading. UUV can take SG behavior.
It is written as follows.

Condition 2. Consider

ℎ
𝑘
< ℎsafe, ∀𝑘 ∈ {𝑘 |






𝑓AL (𝜃𝑔 − 𝑘𝛼)






< 90
∘

} ,

𝑑 (𝑋
𝑅
(𝑡) , 𝑋

𝐺
) < 𝑅
𝑤
,

(14)

where 𝑓AL(⋅) is the steering angle limitation function, which
limits the steering angle in (−180∘, 180∘]

𝑓AL (𝑥) = {
𝑥 − 360

∘

, if 𝑥 > 180∘,
𝑥 + 360

∘

, if 𝑥 ≤ −180∘.
(15)

To sum up, SG behavior is triggered if any one of Condi-
tions 1 and 2 is satisfied. The UUV state is 𝑋𝑡

𝑟
= (𝑥
𝑡

𝑟
, 𝑦
𝑡

𝑟
, 𝜃
𝑡

𝑟
),

the goal point is 𝑋
𝐺
= (𝑥
𝑔
, 𝑦
𝑔
), and target heading in 𝑡 is

defined by 𝜃
𝑔
= arctan(𝑦

𝑔
−𝑦
𝑡

𝑟
)/(𝑥
𝑔
−𝑥
𝑡

𝑟
). In SG behavior, the

desired heading in 𝑡 + 1 is given by ̂𝜃𝑡+1
𝑟

= 𝜃
𝑔
, and the desired

linear velocity in 𝑡 + 1 is implemented by �̂�𝑡+1
𝑟

= 𝑢max. SG
behavior canmakeUUVapproach the goal quickly under safe
conditions.

4.4.2. AG Behavior. AG behavior is the main behavior and
UUV avoids obstacles under the guidance of goal point. If
none of Conditions 1 and 2 is satisfied, obstacles may collide
with UUV, and UUV should avoid the obstacles. The rela-
tionship between current heading and target heading can be
divided into 2 conditions.

Condition 3. Consider





𝑓AL (𝜃𝑔 − 𝜃

𝑡

𝑟
)






< 90
∘

. (16)

Condition 4. Consider





𝑓AL (𝜃𝑔 − 𝜃

𝑡

𝑟
)






≥ 90
∘

. (17)

When Condition 3 is satisfied, AG behavior is triggered.
Guidance of goal point means that the candidate heading
closest to the target heading in Ωcan is selected as the desired
heading in 𝑡 + 1:

̂
𝜃
𝑡+1

𝑟
= argmin (


𝑓AL (𝜃𝑔 − 𝜃

𝑐

𝑠
)






, 𝜃
𝑐

𝑠
∈ Ωcan) . (18)

The magnitude of the linear velocity is affected by POD.
Bigger POD means that UUV approaches closer to obstacle,
so it requires UUV to turn a big direction and slow down
to obtain enough time for avoidance. The magnitude of the
linear velocity is inversely proportional to the POD, and the
desired linear velocity in 𝑡 + 1 is

�̂�
𝑡+1

𝑟
= 𝑢max (1 −

ℎsafe
ℎmax

) . (19)

4.4.3. FW Behavior. Usually, there is local minima in the
working space filledwithU shape obstacles or complex obsta-
cles. Local minima is generated under both influence of goal
point and local obstacle. UUV may be trapped in the local
minima or makes reciprocating traveling along closed route.
Following-wall is an effective mechanism to get rid of local
minima. Take U shape obstacle as an example; following-wall
will give up the guidance of goal temporarily and follow the
edges of the U shape obstacle, until UUV escapes from the
trap.

When the difference between current heading and target
heading is more than 90∘, UUV may be trapped in the local
minima. It implies that Condition 4 is satisfied; then FW
behavior is triggered. In FW behavior, the candidate heading
closest to the current heading inΩcan is selected as the desired
heading in 𝑡 + 1:

̂
𝜃
𝑡+1

𝑟
= argmin (


𝑓AL (𝜃𝑐 − 𝜃

𝑐

𝑠
)




, 𝜃
𝑐

𝑠
∈ Ωcan) . (20)

The same with AG, set the desired linear velocity in 𝑡 + 1 as
(18). To prevent the infinite loop, a watchdog TickCount is
used. When TickCount exceeds the preset number of cycles
𝑇stop, FW behavior is terminated and TickCount is cleared to
zero.

To sum up, the termination condition for FW behavior is
defined as






𝑓AL (𝜃𝑔 − 𝜃

𝑡

𝑟
)






< 90
∘ or 𝑇𝑖𝑐𝑘𝐶𝑜𝑢𝑛𝑡 ≥ 𝑇stop. (21)

The switch strategy of the three behaviors is shown in
Figure 5.

4.5. UUV Motion. The first-order motion model of UUV
moving in two dimensions is

𝑋
𝑡+1

𝑟
=

[

[

[

[

𝑥
𝑡

𝑟
+ 𝑢
𝑡

𝑟
Δ𝑇 cos (𝜃𝑡

𝑟
)

𝑦
𝑡

𝑟
+ 𝑢
𝑡

𝑟
Δ𝑇 sin (𝜃𝑡

𝑟
)

𝜃
𝑡

𝑟
+ 𝑤
𝑡

𝑟
Δ𝑇

]

]

]

]

. (22)
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Figure 5: The switch strategy of hybrid-behaviors.
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The linear velocity and yaw velocity satisfy the constrains:
𝑢min ≤ |�̂�

𝑡+1

𝑟
| ≤ 𝑢max and |̂𝜃

𝑡+1

𝑟
− 𝜃
𝑡

𝑟
| ≤ 𝑤max. So, the linear

velocity and heading in 𝑡 + 1 are

𝑢
𝑡+1

𝑟
=

{
{
{
{

{
{
{
{

{

�̂�
𝑡+1

𝑟
, 𝑢min < �̂�

𝑡+1

𝑟
< 𝑢max,

𝑢min, �̂�
𝑡+1

𝑟
≤ 𝑢min,

𝑢max, �̂�
𝑡+1

𝑟
≥ 𝑢max,

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

Maximal POD
Average POD
Threshold

H
va

lu
e

Time (s)

Figure 7: The threshold of VFH in Case 1.

𝜃
𝑡+1

𝑟
=

{

{

{

̂
𝜃
𝑡+1

𝑟
,







̂
𝜃
𝑡+1

𝑟
− 𝜃
𝑡

𝑟






≤ 𝑤max,

𝜃
𝑡

𝑟
+ sgn (̂𝜃𝑡+1

𝑟
− 𝜃
𝑡

𝑟
)𝑤max,







̂
𝜃
𝑡+1

𝑟
− 𝜃
𝑡

𝑟






> 𝑤max,

(23)

where sgn(⋅) is the symbol function and sgn(𝑥) = {−1 𝑥<00 𝑥=0

1 𝑥>0

.

4.6. Algorithm Steps. Through the FLS detection and ROGM
building, obstacle avoidance algorithm steps are given as fol-
lows.

Step 1 (initialization). The initialization includes the motion
constrains and the parameters of sonar and map.

Step 2 (sonar detecting). The obstacles are detected by FLS,
and the sonar data are converted to the position information
in working space by using (1) and (2).

Step 3 (ROGM building). The occupied probability of new
data is calculated using (3). The ROGM is updated according
to the principle.

Step 4 (H building). By using ROGM in Step 3, H is built
according to (4), (7), (8), (9), and (10).

Step 5 (threshold generation). After average POD and maxi-
mal POD are generated according to H, the adaptive thresh-
old is calculated through (11).

Step 6 (generation for candidate heading set). Using the
threshold generated in Step 5, the valleys are determined.The
candidate heading is calculated according to the valley type.

Step 7 (hybrid-behaviors switch). SG, AG, and FW behaviors
are chosen according to Conditions 1–4.The desired heading
is selected in Ωcan generated in Step 6.
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(d) TheH in 𝑇 = 200 s
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Figure 8: Avoidance scenes in different phases andH value of Case 1.

Step 8 (UUV state update). Under the new command, the
speed and position of UUV are updated by (22). If the goal is
arrived, the algorithm quits and else returns to Step 8.

5. Simulation

A simulation framework is developed in Matlab to test pro-
posed method. In the simulation, the size and position of the
obstacles are completely unknown, and UUVmakes decision
relying on the obstacle data detected by FLS. The motion

constrains include𝑢max = 3m/s,𝑢min = 0.3m/s,𝑤max = 5
∘

/s,
𝑅min = 20m, 𝐿

𝑟
= 10m, 𝜆

𝑠
= 1.5, and 𝑑safe = 𝜆𝑠(𝑅min+𝐿𝑟) =

45m. The detecting range of FLS is 𝑅max = 150m, and zero
mean Gaussian noise is added into the sensing distance from
FLS.The parameters ofmap are𝑅

𝑤
= 150m,𝑅

𝑒
= 180m, and

𝐷cha = 25m. According to 𝑑safe, the safe threshold interval
chooses 𝐻min = 30, 𝐻max = 90, and the coefficients in (10)
choose 𝜔

1
= 0.8, 𝜔

2
= 0.2. Simulations are developed in

the map with dense obstacles, narrow passage, and U shape
obstacle, respectively.
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Case 1. Avoidance test with dense obstacles.

In Case 1, 6 obstacles with different size are designed in
the map with size of 800m× 800m. UUV sails from the start
point (0, 0) to goal (600, 600).The total traveling time is 327 s,
and Figure 6 shows the map and complete avoidance results
for Case 1. Edges of obstacles (dashed line) and the sonar
data (blue point) are plotted in the map. The average POD,
maximum POD, and adaptive threshold are shown in Fig-
ure 7.

Figure 8 shows the avoidance scenes andH in 60 s, 200 s,
and 300 s. Figure 8(a) shows the avoidance scene in 60 s, and

Figure 8(b) showsH, current heading (black solid line), target
heading (green dashed line), and desired heading (magenta
solid line) calculated by the proposed algorithm. As shown
in Figure 8(a), when 𝑇 = 60 s, UUV takes AG behavior and
chooses the closest candidate heading to target heading. As
shown in Figures 8(c) and 8(d), there are 3 narrow valleys in
Hwhen 𝑇 = 200 s, and UUV takes AG behavior. As shown in
Figures 8(e) and 8(f), UUV takes SG behavior when 𝑇 =

300 s. In this test, UUV can pass through the dense obstacles
successfully and safely.

Case 2. Avoidance test in passage environment.

Curved passage is designed in the map with size of
2000m × 1800m in Case 2. Width of passage is about 200m,
and it is difficult forUUV to traverse.UUV sails from the start
point (1650, 350) to goal (400, 1000). Traveling time is 1086 s,
and Figure 9 shows the map and complete avoidance results
for Case 2. The average POD, maximum POD and adaptive
threshold are shown in Figure 10.

As seen fromFigures 9 and 10, from 350 s to 500 s, average
POD is low while passing through the wide passage and the
threshold is low. However, average POD is large when UUV
passes through the narrow passage from 600 s to 750 s, and
threshold is raised.The adaptive threshold helps UUV to pass
through the narrow passage.

Figure 11 shows the avoidance scene andH in 290 s, 600 s,
and 950 s. In Figure 11(a), when 𝑇 = 290 s, UUV detects the
frontal and right obstacles in the corner of the passage, and
there are a wide valley and a narrow valley in H (see Fig-
ure 11(b)); UUV turns left under the guidance of target head-
ing. In Figure 11(c), when 𝑇 = 600 s, the obstacles on the two
sides of the passage cause 2 peaks and 2 narrow valleys in the
polar histogram (see Figure 11(d)). So,UUV travels in the cen-
ter path of the passage. In Figure 11(e), when 𝑇 = 950 s, UUV
takes SG behavior. In this test, UUV can pass through the
narrow passage and has the ability to choose new heading
agilely in the complex passage.

Case 3. Avoidance test with U shape obstacle.

A comparison of the improved VFH to traditional VFH
is given in Case 3. U shape obstacle is designed in the map
with size of 1300m × 1000m, and UUV sails from start
point (800, 200) to goal (800, 800). Figure 12 shows the map
and avoidance results for Case 3. The avoidance result with
traditional VFH described in [10] is shown in Figure 12(a),
and UUV makes reciprocating traveling along closed route
and fails to reach the goal. Figure 12(b) shows the avoidance
result by using improved VFH with hybrid-behaviours. The
traveling time is 608 s. As seen from Figure 12(b), UUV turns
left when the front obstacles are found in 80 s. After a period
of sailing, the right obstacles are found, and UUV turns
left. UUV takes FW behavior in 125 s and terminates FW
behavior in 160 s.Then, UUV takes AG behavior until leaving
the obstacles. Compared with Figure 12(a), this test clearly
illustrates that UUV chooses right decisions in U shape
obstacle and gets rid of the minima trap through following
the edges of obstacle.
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Figure 11: Avoidance scenes in different phases andH value of Case 2.

6. Conclusions

To improve the avoidance ability of UUV in the unknown
unstructured environment, an obstacle avoidance system
based on improved VFH is designed. The FLS is used for
obstacle detection, and the divisional sonar modal is applied
to handle the measures uncertainty. To adapt to the VFH,
rolling occupancy grids are used for the map building, which
can effectively reduce the measure uncertainty and provide

high accuracy information for avoidance decision. There are
two main improvements over traditional VFH. First, the
threshold is adaptively adjusted by the statistic of POD, which
represents the obstacle type and solves the problem that VFH
is sensitive to threshold. In narrowpassage, threshold is raised
adaptively to make UUV pass through. Second, to improve
the environment adaptability and get rid of minima posi-
tion, hybrid-behaviours are proposed into the second stage
of VFH, which are straight-to-goal, avoidance-toward-goal,
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Figure 12: Avoidance results in Case 3.

and following-wall. According to the motion status and
environment character, the optimal avoidance command is
generated through the switching strategy.

Simulations are developed in three different scenarios.
Simulation results illustrate that UUV can avoid the dense
obstacles fast, pass through the curved passage, and escape
from the U shape obstacles successfully. The proposed
approach can help UUV to adapt to various environments.
The feasibility of the proposed approach is confirmed. A
future extension of this work is a realization of proposed
avoidance system in a real UUV.
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Bag-of-visual-words has been shown to be a powerful image representation and attained great success in many computer vision
and pattern recognition applications. Usually, for a given dataset, researchers choose to build a specific visual vocabulary from the
dataset, and the problem of deriving a universal visual vocabulary is rarely addressed. Based on previous work on the classification
performance with respect to visual vocabulary sizes, we arrive at a hypothesis that a universal visual vocabulary can be obtained
by taking-into account the similarity extent of keypoints represented by one visual word. We then propose to use a similarity
threshold-based clusteringmethod to calculate the optimal vocabulary size, where the universal similarity threshold can be obtained
empirically. With the optimal vocabulary size, the optimal visual vocabularies of limited sizes from three datasets are shown to be
exchangeable and therefore universal. This result indicates that a universal and compact visual vocabulary can be built from a not
too small dataset. Our work narrows the gab between bag-of-visual-words and bag-of-words, where a relatively fixed vocabulary
can be used with different text datasets.

1. Introduction

Bag-of-visual-words is a powerful andwidely used image rep-
resentation in computer vision and pattern recognition appli-
cations. In this approach, salient image regions (keypoints)
are detected, described, and then clustered into groups. By
treating the centroid of each group as a visual word, we obtain
a visual vocabulary composed of all visual words. With this
vocabulary, an image can be represented as a histogram of
the visual words, namely, a bag-of-visual-words [1]. Since
one visual word represents one type of image patterns, a
bag-of-visual-words can be regarded as the distribution of
various image patterns in an image. The basic bag-of-visual-
words representation captures this distribution in the whole
image and ignores the spatial relationships among keypoints,
and this is shown to weaken the discriminative power of
this representation [2, 3]. In order to make use of the
spatial information, in [4] the authors proposed to use a
spatial pyramidal partition of an image and concentrate the
histogram in each partition into one final description. Some
other approaches to encode spatial information include [5, 6]
considering that some visual words in a visual vocabulary

may bemore informative than the others in a specific domain,
[3, 7, 8] propose to weight visual words accordingly, and
[9, 10] present methods to reduce vocabulary size for better
efficiency. Furthermore, it was proposed in [7] to build a
vocabulary tree by hierarchical 𝑘-means clustering to scale to
large vocabularies and large datasets.

While the potential of bag-of-visual-words has been
explored in various aspects as we briefly reviewed above,
the construction of visual vocabularies almost always follows
a fixed procedure; that is, randomly selecting some images
from the given datasets, extracting keypoints from these
images, and building the specific vocabulary by clustering in
the keypoints, where the vocabulary size is selected empir-
ically and may range from hundreds to tens of thousands
[1, 4, 11, 12]. This practice is quite different from that of
bag-of-words in text domain, where a universal and limited
vocabulary can be used for different datasets. Noticing that
bag-of-words is the counterpart and preceder of bag-of-
visual-words, we are interested to find out if it is possible to
eliminate this difference and build a universal and compact
visual vocabulary. By universal we mean that on different
datasets, the visual vocabulary performs comparable to their
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specifically trained vocabularies, and thereby removing the
necessity to build a specific visual vocabulary for each dataset,
and by compactwemean that the vocabulary is not so large, in
case users feel it is not worthwhile to use a large vocabulary.
An earlier version of some works in this paper appeared in
[13].

In the literature, the most related works to ours are the
ones in [14, 15] which address the problem of deriving a
universal visual vocabulary. Specifically, it was empirically
found in [14, 15] that the visual vocabularies trained from
one dataset can be used on some other datasets without
apparently harming the performance, only if the dataset
is large enough. In these two papers, the vocabulary sizes
are still user-defined and this implies that an inappropriate
vocabulary size may lead to a universal vocabulary that
performs moderately, which obviously is not what we really
expect. On the contrary, in our work, the universal vocabu-
lary is naturally derived fromourwork onoptimal vocabulary
size. Furthermore, the universal vocabulary obtained with
our approach is optimal and compact, in that it can be used
on different datasets to obtain the (near-)best performance,
and the vocabulary size is only several thousands. These
two important properties are not possessed by the universal
vocabularies achieved in [14, 15].

It should be noted that in [16, 17], the term universal is
used-with different meanings. In [16], a universal vocabulary
refers to a large vocabulary which serves as the basis of
generating small and optimal vocabularies.Whereas in [17], a
universal vocabulary is built from images from all categories,
in contrast to the class-specific ones built from one category.
On the contrary, in this paper, a vocabulary is universal in
that it can be used-with different datasets to achieve the
(near-)best performance.

The remainder of this paper is organized as follows. In
Section 2, we present details on using a similarity threshold-
based clustering method and an optimal similarity threshold
to determine the optimal vocabulary size for a given dataset.
Then, in Section 3, we test if the optimal vocabulary trained
from one dataset can be used to produce the (near-)best
performance on other datasets, and thus decide if it can be
used as a universal visual vocabulary. Section 4 discusses
the experimental results in Sections 2 and 3 and their
implications. Finally, Section 5 concludes the paper.

2. Optimal Visual Vocabulary

2.1. Hypothesis. This work originates from the observations
from experiments on vocabulary sizes in [3], where it is found
that with the increase of vocabulary size, the classification
performance of the visual vocabulary rises dramatically until
a peak is reached, and after that, the performance levels off
or drops mildly. Experiments in [18] also showed that when
the vocabulary size reaches a certain value, a larger size does
not improve the performance further. These observations
imply that the increase in vocabulary size does not definitely
improve the classification performance. Instead, their exists
an optimal vocabulary size for a given dataset, and the
optimal size is smaller than the number of keypoints. This,

in turn, indicates that if a set of keypoints are similar enough
to each other, they should be represented by one single visual
word, not only for efficiency reasons, but also for the best
performance. With a descriptor of limited dimension, for
example, SIFT, this means that all the possible keypoints
can be mapped to a limited number of visual words, which
can then be used as a universal visual vocabulary. Here,
by optimal we mean that the vocabulary performs the
(near-)best and a larger size does not pay off.

We have speculated that there should exist a universal
visual vocabulary of limited size. However, it is still not
clear how to derive such a visual vocabulary. Noticing that a
universal visual vocabulary is the optimal one for any dataset,
our solution to universal visual vocabulary derivation is to
build an optimal vocabulary from a large and representative
dataset, and then test if it is also the optimal ones for
other datasets. For a given dataset, the optimal vocabulary is
decided by the optimal vocabulary size.We already know that
there exists an optimal vocabulary size for a given dataset, but
we do not know how to determine the optimal vocabulary
size. Empirically selecting such a size is not a good option,
because the optimal vocabulary size varies from dataset to
dataset, and there are somany sizes to test for each dataset. In
fact, we propose to use a similarity threshold-based clustering
method and an optimal similarity threshold to determine
the optimal vocabulary size for a given dataset. After the
optimal vocabularies for some datasets are obtained by 𝑘-
means clustering, we test if they are also the optimal ones
for other datasets to decide if they can be treated as universal
visual vocabularies.

Determining the optimal vocabulary size is the key step
in building the optimal vocabulary from a given dataset.
While [3, 18] show that there exists an optimal vocabulary
size smaller than the number of training descriptors for
a given dataset, they do not provide the reason behind
the observation and provide a solution to find the optimal
size. Instead, they just test many sizes and select the best
performing one. In this paper, we intend to analyze the
reasons behind the observations and then derive a method
to determine the optimal visual vocabulary size.

2.2. Similarity Based Clustering Method. With the popular
detectors, for example, DoG used in SIFT [19], usually at
least hundreds of keypoints can be detected from one image.
Therefore, with only hundreds of training images, we can
obtain at lease tens of thousands of training keypoints. In
this case, using a vocabulary size of several hundreds implies
that a large number of keypoints are clustered into one
single group and are represented by one single visual word.
This often means a large intracluster dissimilarity and leads
to little discriminating power of the vocabulary. With the
increase of vocabulary size, one visual word tends to represent
only similar keypoints and the discriminating power of the
vocabulary tends to increase. In this way, a larger vocabulary
should performs better until the largest vocabulary size,
that is, the number of keypoints, is reached. However, the
experiments in [3, 18] show that when the vocabulary size
is large enough (i.e., the optimal size observed), a larger size
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does not result in performance gain. This further indicates
that if a set of keypoints are similar enough, they should
be clustered into one single group and represented by one
single visual word, instead of many different visual words,
respectively.This is a very important conclusion and it serves
as the basis of deriving a universal visual vocabulary which
is optimal and of limited size. Therefore, in the following, we
explain it in a little more detail.

Firstly, at the optimal size, the keypoints represented by
one visual word are so similar that they actually describe
the same image pattern and their difference is too small to
be taken into account. Secondly, the difference in keypoints
represented by the same visual word may be caused by
noise and thus should be ignored. This viewpoint is also
supported by the work on local descriptors matching in
[20] and visual words weighting scheme in [3]. In [20], we
show that in straightforward local keypoints matching, the
number ofmatched keypoint types is a better image similarity
measure than that of the number of matched keypoints.
Here, by type, we mean that one type of keypoints are very
similar to each other and thus should be regarded as of one
type. In [3], experiments on binary weighting and term-
frequency weighting indicate that when the vocabulary size
is large enough, the count of keypoints in one visual word
provides no more useful information than the presence or
absence of the visual word. If we regard the keypoints of
enough similarity as of one type, all these works lead to the
same conclusion that it is better to treat keypoints by types
than individually. In other words, in bag-of-visual-words
representation, the optimal vocabulary size should be equal to
the number of training keypoints types, and not the number
of training keypoints. Nowwhat is left for us to do is to define
when a set of keypoints can be regarded as of one type and
calculate the number of keypoint types among keypoints.

Since the keypoints of one type are similar to each other,
we use a similarity threshold to define the notion of keypoint
type. Specifically, we regard a set of keypoints as of one type
if their similarities with their mean are all above a threshold
th
𝑠
. In order to calculate the number of keypoint types

among training descriptors, we need to do clustering among
keypoints where each cluster corresponds to one keypoint
type. Besides, wewant the number of clusters to beminimized
so that all keypoints of one type are really grouped into one
cluster. Since the number of clusters is not knownbeforehand,
the 𝑘-means-like clustering methods cannot be used here.
Based on our previous work [13, 21], we propose to use the
following similarity threshold based clustering method.

(1) Label all training keypoints as unclustered.
(2) Label the first unclustered keypoint as the centroid of

one cluster.
(3) Compare each unclustered keypoint with the current

center, and add it into the current cluster if the
similarity is bigger than th

𝑐
.

(4) Return to Step 2 until all keypoints are clustered.
(5) Calculate the new centroid of each cluster, and use the

count of keypoints in the cluster as the weight.
(6) Sort the centroids by weight in decreasing order.

(7) Compare all keypoints with each centroid in order
and add to the corresponding cluster if the similarity
is bigger than th

𝑐
.

(8) If there are keypoints left unclustered, repeat Step 2 to
3 to cluster them into new clusters.

(9) Repeat Steps 5 to 8 for a certain time.

The above presented is a simple clustering procedure to
serve our purpose of obtaining a clustering with minimal
clusters and each cluster corresponds to one keypoint type.
Although we do not have theoretical evidence that this
clustering procedure is guaranteed to converge andminimize
the number of clusters, all our experiments show that the
number of clusters obtained decreases gradually and tends
to be stable after 5 iterations. Recalling that the performance
of bag-of-visual-words is not sensitive to small changes in
vocabulary size, we stick to this procedure in this paper and
use the results after 10 iterations in all experiments.

Different from the traditional clustering methods which
strengthen high intracluster similarity and low intercluster
similarity, our clustering method requires all clusters to have
an identical distribution range determined by the similarity
threshold. In other words, our clustering method actually
seeks to obtain an even and disjoint partition of the keypoint
feature space by a set of hyperspheres whose radii are
determined by the similarity threshold. Since the features in
each hypersphere are represented by visual words, the visual
vocabulary obtained in this way covers the whole feature
space and is guaranteed to be of the minimum size. This
visual vocabulary can therefore be regarded as a universal one
and used-with any datasets. Here, we see that the similarity
threshold, based clusteringmethod is not a clusteringmethod
in the strict sense, and it is just an approach to find the
similarity extent of one visual word in the universal visual
vocabulary.

2.3. Optimal Similarity Threshold. In order to determine
the optimal vocabulary size, we still need an appropriate
selection of the similarity threshold th

𝑠
. By definition, th

𝑠

decides if a set of keypoints should be treated as of one type.
Theoretically deriving such a threshold, if feasible, is out of
our scope in this paper as it may involves physiological and
psychological issues. Instead, we choose to empirically select
the optimal similarity threshold th

𝑠
. In the first step, we test

several candidates of th
𝑠
on different datasets and check if the

best performing candidates coincidence with each other. If a
unique best performing th

𝑠
is identified, the corresponding

vocabulary size is then compared with other candidate sizes
to see if it is the best performing one. It should be pointed
out that in our experiments, the similarity threshold based
clustering is only used to determine the vocabulary size, and
the vector quantization with all vocabulary sizes is done with
𝑘-means clustering method. In this way, we make sure that
the performance difference of different vocabulary sizes is not
due to different clustering methods.

The experimental setup is as follows. DoG and SIFT
[19] is used to detect and describe keypoints, and cosine
similarity is selected as the keypoints similarity measure.
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We do SVM classification on three diverse datasets: Caltech-
101 [22], Scene-15 [4, 23, 24], and Event-8 [25]. With the
well known Caltech-101, we randomly select 30 images per
class as training and up to 15 images in the remaining as
testing. Different from some of the literature using only
101 classes, here we test with all 102 classes. The Scene-15
dataset is composed of images of 15 classes with 200 to 400
images in each class. Following the setup in [4], we use
100 randomly selected images per class in training and all
the others in testing. The Event-8 dataset contains images
of 8 sports categories and each category has 130 to 250
images. This dataset is challenging for classification, not just
in classifying events from static images, but that cluttered and
diverse background, and various poses, sizes, and views of
foreground objects are involved. We follow the setup in [25],
that is, randomly selecting 70 images per class as training and
another 60 images as testing.

We build the visual vocabularies of each dataset based
on a set of randomly selected images from the dataset. In
order to avoid any additional influence on the classification
performance, the bag-of-visual-words histograms are built
in the whole image, that is, at spatial pyramid level 0. In
classification, we use term-frequency weighting scheme to
build linear kernels. The multiclass SVM is trained in a one-
versus-all setup and the regulation parameter 𝐶 is fixed to be
1000. For all three datasets, we test with 10 training-testing
splits and report the mean results. The performance measure
adopted is the mean recognition rate per class. Note that
in all our experiments, we use visual words without spatial
information or special kernel; therefore, we do not expect to
obtain superior classification performance comparable to the
state-of-the-art. What is really important here is the trend of
recognition rates with respect to the vocabulary sizes.

In the first step, we compare the performance of 4
candidate similarity thresholds 0.7, 0.75, 0.8, and 0.85. We
do not adopt larger or smaller candidates as they produce
extremely large or small vocabulary sizes that are obviously
far from the optimal ones in our experiments. The four sizes
calculated with similarity based clustering are 544, 2323,
12593, and 88328 for Caltech-101; 455, 1790, 9208, and 59539
for Event-8; and 560, 2378, 13124, and 92735 for Scene-15.
The classification rates are reported in Figure 1, where we use
similarity thresholds instead of the specific vocabulary sizes
to show the trend more evidently. From this figure, we find
that the vocabulary sizes from th

𝑐
= 0.75 and th

𝑐
= 0.8

perform the best.
We then compare the vocabulary sizes from these two

optimal similarity thresholds with other sizes 100, 1000,
10000, 50000, and 100000 to check if they still perform
the best. The results are shown in Table 1. As the optimal
sizes corresponding to similarity thresholds 0.75 and 0.8 are
different for different datasets, in the leftmost column we use
th
𝑐
= 0.75 and th

𝑐
= 0.8 to represent their respective sizes.

It is evident from Table 1 that the vocabulary sizes from
th
𝑐
= 0.75 and th

𝑐
= 0.8 perform the best or near-best among

all sizes with three datasets. This confirms that th
𝑐
= 0.75

and th
𝑐
= 0.8 can be used to produce the optimal vocabulary

size. Taking into account the small performance difference
and large size difference between thresholds 0.8 and 0.75, we
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Figure 1: Recognition rates of different similarity thresholds. With
all three datasets, the similarity thresholds 0.75 and 0.8 produce the
best or near-best performance.

Table 1: Classification rates of different vocabulary sizes on three
datasets. The sizes corresponding to similarity thresholds 0.75 and
0.8 produce the best or near-best results in all cases.

caltech-101 Event-8 Scene-15
100 36.6 ± 1.0 70.7 ± 2.5 65.0 ± 0.4
1000 48.5 ± 1.1 79.3 ± 2.1 73.1 ± 0.7
10000 48.3 ± 1.1 80.0 ± 2.2 73.9 ± 0.5
50000 47.1 ± 0.9 78.5 ± 2.1 72.1 ± 0.5
100000 46.5 ± 1.1 78.1 ± 2.0 71.3 ± 0.7
th
𝑐
= 0.75 49.5 ± 0.9 79.5 ± 2.4 73.9 ± 0.6

th
𝑐
= 0.8 49.0 ± 1.0 80.4 ± 2.5 73.8 ± 0.5

recommend to select 0.75 as the optimal similarity threshold
in practical applications. Although Table 1 also indicates that
the exact optimal similarity threshold should lie between
these two values, we do not bother to seek it and are satisfied
with these two candidates. Onemain consideration is that the
performance of a visual vocabulary is not very sensitive to its
size, only if the size is not too small. Our experiments indicate
that for a common dataset of about the size of Caltech-101,
1000, or 2000, itmight be a suitable vocabulary size. Adopting
a larger size usually does not pay off.

In this, section we present a similarity threshold based
clustering method to determine the optimal vocabulary size
for a given dataset. Although the similarity threshold is
determined empirically, this method cannot be regarded as
just transforming the problemof determining 𝑘 in 𝑘-means to
the one of determining th

𝑠
. For different datasets the optimal

vocabulary sizes are usually different, as shown in Table 1.
This implies that one cannot select the optimal vocabulary
size from one dataset and apply this size to other datasets.
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Whereas with our similarity threshold based clustering
method, the different optimal vocabulary sizes from different
datasets correspond to a relatively fixed threshold th

𝑠
. This

means that we can use this threshold to compute the optimal
vocabulary size for a newly given dataset. More importantly,
the results of this section support our hypothesis that the
whole feature space can be mapped to a limited number of
visual words, as one visual word is able to represent a set of
keypoints that are similar enough. As shown in Section 3, this
hypothesis is the basis of obtaining a universal and compact
visual vocabulary.

3. Universal Visual Vocabulary

With a given dataset, researchers usually choose to build a
specific visual vocabulary, instead of using an existing univer-
sal vocabulary. One possible explanation is that researchers
tend to believe that the optimal visual vocabulary is data
dependent and must be built specifically. However, the
existence of an optimal visual vocabulary size smaller than
the number of keypoints indicates that if some keypoints are
similar enough, they should be grouped into one cluster and
represented by one single visual word, but not by different
visual words separately.This further implies that all keypoints
can be mapped to a limited number of visual words. With
the visual vocabulary obtained this way, all image patterns
with semantic meanings can be represented with enough
precision. This amounts to say that the images from any
datasets can be represented accurately by this vocabulary; that
is, this vocabulary is universal across datasets.

Recall that the optimal similarity threshold sets a criterion
for keypoints to be mapped to one single visual word.
Theoretically it is possible to enumerate all the possible visual
words with the optimal similarity threshold th

𝑠
. However,

it is not clear if all these image patterns represented by
the vocabulary occur frequently in images or have semantic
meanings. In other words, by enumerating all possible image
pattern types, we may obtain a visual vocabulary that is
complete but of a very large size. Nevertheless, many of these
image patterns may rarely appear in real images. This causes
unnecessary computation load and reduces the necessity of
obtaining a universal vocabulary. Therefore, in this paper, we
resort to empirical methods.

In Section 2, we have computed the optimal visual vocab-
ularies for three datasets, which we refer to as voc-caltech,
voc-event, and voc-scene, respectively. Here, we interchange
the roles of datasets and visual vocabularies to check if
different visual vocabularies produce a large performance
difference on the same datasets. Take voc-caltech for example,
we use it on Event-8 and Scene-15 and see if it performs
comparably to voc-event and voc-scene, respectively. The
comparison is shown in Figure 2.

Contrary to the traditional viewpoint that a good visual
vocabulary is data dependent, we found from the comparison
in Figure 2 that with each dataset, the visual vocabularies built
with the three datasets perform rather similarly. This seems
to imply that the visual vocabularies built from different
datasets have a rather larger portion of visual words in

common. In order to validate this viewpoint, we calculate the
pairwise similarity between three vocabularies. Specifically,
for each visual word in one vocabulary, we compute its
cosine similarity with its closest counterpart in the other
vocabulary. For all the 6 cases, that is, Caltech-Event, Event-
Caltech, Caltech-Scene, Scene-Caltech, Event-Scene, and
Scene-Event, almost all visual words have 𝑎 > 0.9 similarity
with their counterparts in other vocabularies, and over 60%
of the visual words have 𝑎 > 0.95 similarity. These results
confirm that the three vocabularies are very similar to each
other.This is interesting as the descriptors from three diverse
datasets are mapped to almost identical vocabularies with
our optimal vocabulary sizes. This observation confirms our
belief that there does exist a universal visual vocabulary
and the difference in appearances of images is only caused
by the different distribution of image patterns represented
by these visual words in the vocabulary. In other words,
the experiments indicate that obtaining a universal visual
vocabulary is not only theoretically sound, but practically
feasible.

In [14], the authors conclude through experiments that
with a given vocabulary size large enough, the visual vocab-
ularies built from different datasets are exchangeable without
harming the classification performance evidently. Therefore,
a large vocabulary needs to be computed only once and
can be used as a universal one. However, it is not clear if
the universal visual vocabulary obtained this way is optimal
or suboptimal. A vocabulary that is universal but performs
ordinarily is not what we need definitely. In this paper, we
arrive at much more powerful conclusions. When we say an
optimal vocabulary is universal, our meaning is threefold.
Firstly, the vocabulary can be used on other datasets to
obtain comparable performance as their specific vocabulary.
Secondly, our vocabulary is optimal in that it can produce
the best or near-best performance on any datasets. Thirdly,
our optimal vocabularies are of limited size (1000 to several
thousands). This not only means efficiency in classification,
but implies that a very large vocabulary may not be necessary
at all. To sum up, in this paper, we provide an approach to
produce a vocabulary that is universal, optimal, and compact.

Although currently we only test the approach on three
datasets, we also note that all the three datasets contain
objects of diverse types and large variations, and are thus
rather representative. In the next step, we will extend
the experiments to more and larger datasets, for example,
Caltech-256 [26], Oxford flowers [27], NUS-WIDE [28], and
Graz [29], and so forth, in order to finally produce a universal
visual vocabulary, which can be used in a large number of
datasets for the best or near-best performance.

4. Discussion

Our work in this paper is motivated from the difference
between bag-of-words and bag-of-visual-words and also the
experiments in [3]. Since bag-of-words is the counterpart
and preceder of bag-of-visual-words, we expect them to share
some common properties. However, we observe that in text
domain, a universal vocabulary of relatively fixed size can
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Figure 2: Recognition rates with vocabularies trained from different datasets. 𝑥-axis represents different testing datasets, and the different
bars indicate vocabularies trained from different datasets. It is clear that different vocabularies perform similarly on the same datasets.

be used on different datasets, whereas in image domain the
visual vocabularies are usually built specifically for given
datasets and the vocabulary sizes are user-defined or deter-
mined empirically. On the other hand, the experiments in
[3, 18] indicate that for an image dataset, the best performing
vocabulary size is smaller than the number of keypoints. In
other words, if some keypoints are similar enough to each
other, they should be represented by one single visual word
instead of many different visual words separately in order to
obtain the best performance. From this perspective, we see
that with any descriptor of limited dimension, all the possible
keypoints can be represented by a limited number of visual
words. Since this vocabulary of limited size covers the whole
feature space, it can be used as a universal visual vocabulary.
In Sections 2 and 3, we empirically validate this hypothesis.

The existence of a universal and compact visual vocab-
ulary can be understood as follows. In the text domain, the
number of words with semantic meanings is limited and the
vocabulary is of a limited size. However, this vocabulary of
limited size is able to deliver numerous meanings which we
intend to express.The reason, in our opinion, lies in that each
word in the vocabulary delivers not just one basic meaning,
but also some other meanings similar enough to the basic
one. In other words, each word in the vocabulary covers not
just one point in the space of semantic meanings, but also
the neighborhood of the point. In this way, a vocabulary
of limited size is able to cover the whole space of semantic
meanings and be used as a universal vocabulary. From this
perspective, it is easy to understand why a compact visual
vocabulary is able to represent all the image patterns with
semantic meanings accurately and is universal across image
datasets.

The observation in [3] that a larger size than the optimal
may result in performance loss is explained in the following.
Theoretically, visual vocabularies of optimal and larger sizes
are all able to describe all the possible image patterns and their
performances should be identical. However, with the increase
of vocabulary sizes, the number of keypoints represented
by one visual word tends to decrease. As a result, the
calculation of a visual word as the centroid of a group of
keypoints is more likely to be influenced by noise, which, in
turn, harms the performance of visual vocabularies. Another
interesting observation is that the optimal vocabularies from
different datasets are of different sizes and they all can be
used as the universal one. Our explanation is that when the
vocabulary size is large enough, the relatively small variance
in vocabulary sizes has little influence on the representation
of image content, as illustrated in Table 1.

Based on the above analysis and the experimental results
in Sections 2 and 3, we believe we have found out something
related to the mechanism of bag-of-visual-words. In the next
step, we plan to deepen our work by borrowing ideas and
methods from related domains, for example, data-driven
approaches [30–35] and psychological research.

5. Conclusion

Bag-of-visual-words is an important image representation
and has been widely used in computer vision and pattern
recognition problems. While much works have been pub-
lished surrounding this representation, almost all existing
works are based on the implicit assumption that a good visual
vocabulary is data dependent. The problem of building a
universal visual vocabulary of limited size is rarely touched.
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Based on previous works on classification performance with
respect to the vocabulary sizes, we arrive at the hypothesis
that when features are similar enough, they should be
represented by one visual word in order to obtain the best
classification results. This further indicates that the whole
feature space can be represented by a limited number of
visual words, which constitute a universal visual vocabulary
of limited size.

Starting from this hypothesis, we proposed to use a
similarity threshold based clustering method to calculate the
optimal vocabulary size for a given dataset. The optimal
vocabulary size is then used to generate the optimal visual
vocabulary for the dataset. In the experiments, we found
that the three optimal vocabularies of limited sizes (several
thousands) built from three datasets separately are very
similar to each other, and any of them can be used to generate
the best or near-best performance with all three datasets.This
encouraging result indicates thatwithmore datasets involved,
it is really feasible to obtain a universal and compact visual
vocabulary to be used in any datasets to generate (near-)best
performance.

We analyzed the reasons behind the existence of a univer-
sal and compact visual vocabulary and other related phenom-
ena observed in experiments. Based on the experiments and
our analysis, we believe that we have found out something
underlying the behavior of the bag-of-visual-words repre-
sentation. Since in text domain a universal vocabulary is
usually usedwith different datasets, ourwork narrows the gap
between bag-of-visual-words and bag-of-words. This may
lead to new approaches to explore the potential of the bag-of-
visual-words representation and other image representation
methods.
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The problem of active disturbance rejection control of induction motors is tackled by means of a generalized PI observer based
discrete-time control, using the delta operator approach as the methodology of analyzing the sampled time process. In this
scheme, model uncertainties and external disturbances are included in a general additive disturbance input which is to be online
estimated and subsequently rejected via the controller actions. The observer carries out the disturbance estimation, thus reducing
the complexity of the controller design. The controller efficiency is tested via some experimental results, performing a trajectory
tracking task under load variations.

1. Introduction

To obtain high performance control of electric machines
there has been a growing interest in the design of controllers
based on the discrete-time model of the system. In the case
of induction motors, the system is continuous in nature,
being necessary to obtain a sampled-timemodel. Preliminary
studies on the sampling of continuous time nonlinear systems
can be found in [1]. Many advances have been reported about
control of sampled nonlinear systems; see for instance [2, 3]
and references therein. Specifically, an analysis about the
discretization techniques for the induction motor model can
be found in [4].

There exists a variety of control strategies for the induc-
tion motor that depend on the difficulty to measure parame-
ters while their closed loop behavior is found to be sensitive
to their variations. Generally speaking, the designed feedback
control strategies have to exhibit a certain robustness level
with respect to unknown bounded additive disturbance, in
order to guarantee an acceptable performance. It is possible

to (online or offline) obtain estimates of themotor parameters
[5], but some of them can be subject to variations when the
system is undergoing actual operation. Frequentmisbehavior
is also due to external and internal disturbances, such as
generated heat, that significantly affect some of the system
parameter values. An alternative to overcome this situation
is to use robust feedback control techniques which take into
account these variations as unknown disturbance inputs that
need to be online estimated and rejected. One of the first
attempts to solve this problem was proposed by Johnson
[6], known as disturbance accommodation control, in which
external disturbances are given as “waveform functions”,
proposing an unknown input observer to perform the robust
controller. On the other hand, the active disturbance rejec-
tion scheme [7–9] considers both external disturbances and
internal perturbations, as a lumped generalized additive
disturbance functions to be canceled out. The main idea
of the controller is the fact that the disturbance observer
can estimate the lumped disturbance input, which allows to
approximately reduce the original nonlinear tracking control
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problem to that of a disturbed input tracking problem,
suitable for the application of a simple controller.

One variant of this scheme resorts to a local internal
model characterization of the lumped disturbance using a
representative element of a family of discrete-time polyno-
mial signals of fixed degree. This results in a local self-
updating polynomial model of the uncertainty which can
be estimated, in an arbitrarily close manner, via a suitable
extended linear observer of generalized proportional integral
(GPI) nature [10]. The GPI estimation procedure has been
extended for fault tolerant control applications as proposed
in [11].

For the case of the induction motor control, we consider
a robust controller design based upon a simplified discrete
model of the system including additive, completely unknown,
disturbance inputs lumping nonlinearities and external dis-
turbances whose effect is to be determined in an online
fashion by means of a discrete-time linear observer of the
GPI. The gathered knowledge will be used in the appropriate
canceling of the assumed disturbances themselves while
reducing the underlying control problem to a simple linear
feedback control task. The control scheme thus requires
knowledge of a reduced set of the motor parameters to be
implemented.

The controller design for the induction motor is carried
out within the philosophy of the classical field oriented
controller scheme and implemented through a flux simulator
or reconstructor (see Chiasson [12] andMart́ın and Rouchon
[13]). It is considered a two-stage design procedure for the
feedback control scheme of an induction motor which allows
one to, simultaneously, regulate the motor shaft angular
velocity towards a prespecified reference trajectory and to
stabilize the flux magnitude to a desired constant level. The
first stage designs a controller for the reference trajectory
tracking of the rotor shaft angular velocity.The stator currents
are used as auxiliary control input variables within a field
oriented strategy combined with a load torque elimination
executed on the basis of an online close estimation of the load
disturbance input.

The control configuration for the first stage inherently
includes a flux reconstructor, and a discrete-time generalized
proportional integral observer based control for the efficient
and rather accurate online estimation of the unknown but
bounded load torque disturbance input function.The second
design stage takes the synthesized rotor currents as reference
trajectories to be tracked from the rotor input voltages.

In this case, the sampled time system is not defined purely
in terms of the time-shift operator but in terms of the unified
operator approach proposed by Goodwin et al. [14]. This
operator came up with an alternative to obtain better results
in high sampling rates, where most traditional discrete-time
algorithmsmay be ill-conditionedwhen applied to data taken
at sampling rates which are high relative to the dynamics
of sampled data [15]. The unified approach developed a
strategy capable of unifying both continuous and discrete-
time formulations [14]. Moreover, this approach overcomes
the unstable sampling zero problem as analyzed in [16]
and the procedure for the control gains is enhanced since
the stability region increases as sampling time decreases,
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Figure 1: Stability region for delta operator.

avoiding extra reparametrizations as the Tustin approach. In
this type of approach, the authors proposed the use of an
operator called 𝛿-operator defined as follows: 𝛿 = (𝑞 − 1)/Δ,
where 𝑞 is the forward shift operator in the time domain and
Δ is the sampling time.

Here, the discrete-time GPI control has been proposed
using the delta operator approach taking advantages of the
high sampling rates and advantages of working directly in the
sampled time system with respect to the continuous scheme,
such as the faster implementation in a digital controller.

The remainder of the paper is organized as follows.
Section 2 introduces the unified operator framework. In
Section 3, the induction motor model is introduced, and
some considerations regarding the additive disturbances are
reported. Section 4.3 presents the problem of disturbance
estimation in the context of the discrete-time GPI observer.
Section 5 deals with the field oriented control strategy; the
angular velocity and stator current controls are presented as
a two-stage design procedure involving inner and outer loop
controls. Section 6 provides some experimental results in a
test bed to show the behavior of the observer-based control.
Finally, some conclusions are reported in Section 7.

2. Brief Remarks about the Delta Operator

In this section, some preliminary concepts regarding the
𝛿 operator and its properties are introduced; more details
concerning the operator and its applications are found in
[14, 17, 18].

Definition 1. The domain of possible nonnegative “times”
Ω
+

(Δ) is defined as follows:

Ω
+

(Δ) = {

R+ ∪ {0} : Δ = 0,

{0, Δ, 2Δ, 3Δ, . . .} : Δ ̸= 0
} , (1)

whereΔdenotes the sampling period in discrete time orΔ = 0
for a continuous time framework.

Definition 2. A time function 𝑥(𝑡), 𝑡 ∈ Ω+(Δ), is, in general,
simply amapping from times, to either the real or the complex
set. That is, 𝑥(𝑡) : Ω+ → C.

Definition 3. The 𝛿 operator is defined as follows:

𝛿𝑥 (𝑡) ≜

(𝑞 − 1) 𝑥 (𝑡)

Δ

=

𝑥 (𝑡 + Δ) − 𝑥 (𝑡)

Δ

: Δ ̸= 0, (2)
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where 𝑞 is the shift operator and

lim
Δ→0

+

𝛿 (𝑥 (𝑡)) =

𝑑𝑥 (𝑡)

𝑑𝑡

. (3)

Definition 4. We will consider 𝜌 as a generalized derivative
operator, which will denote 𝑑/𝑑𝑡 in continuous time or 𝛿 in
discrete time.

Definition 5. The unified integration operation S is given as
follows:

S𝑡2
𝑡1

𝑥 (𝜏) 𝑑𝜏 =

{
{
{
{
{

{
{
{
{
{

{

𝑡2

∫

𝑡1

𝑥 (𝜏) 𝑑𝜏 : Δ = 0

Δ

𝑙=𝑡2/Δ −1

∑

𝑙=𝑡1/Δ

𝑥 (𝑙Δ) : Δ ̸= 0

}
}
}
}
}

}
}
}
}
}

}

, (4)

𝑡
1
, 𝑡
2
∈ Ω
+.

The integration operator corresponds to the antideriva-
tive operator.

Definition 6 (generalized matrix exponential). In the case of
the unified transform theory, the generalized exponential 𝐸
is defined as follows:

𝐸 (𝐴, 𝑡, Δ) = {

𝑒
𝐴𝑡

: Δ = 0

(𝐼 + 𝐴Δ)
𝑡/Δ

: Δ ̸= 0

} , (5)

where 𝐴 ∈ C𝑛×𝑛, 𝐼 is the identity matrix, and 𝑡 ∈

Ω
+. The generalized matrix exponential satisfies to be the

fundamentalmatrix of 𝛿𝑥 = 𝐴𝑥, and thus the unique solution
to

𝜌𝑥 = 𝐴𝑥, 𝑥 (0) = 𝑥
0

(6)

is 𝑥(𝑡) = 𝐸(𝐴, 𝑡, Δ)𝑥
0
. The general solution to:

𝜌𝑥 = 𝐴𝑥 + 𝐵𝑢, 𝑥 (0) = 𝑥
0

(7)

is

𝑥 (𝑡) = 𝐸 (𝐴, 𝑡, Δ) 𝑥
0
+ S𝑡
0
𝐸 (𝐴, 𝑡 − 𝜏 − Δ, Δ) 𝐵𝑢 (𝜏) 𝑑𝜏. (8)

Definition 7 (stability boundary). The solution of (6) is said to
be asymptotically stable if and only if, for all 𝑥

0
, 𝑥(𝑡) → 0 as

time elapses. The stability arises if and only if 𝐸(𝐴, 𝑡, Δ) → 0

as 𝑡 → ∞ if and only if every eigenvalue of𝐴, denoted as 𝜆
𝑖
,

𝑖 = 1, . . . , 𝑛, satisfies the following condition:

Re {𝜆
𝑖
} +

Δ

2





𝜆
𝑖






2

< 0. (9)

Therefore, the stability boundary is the circle with center
(−1/Δ, 0) and radius 1/Δ (see Figure 1). In particular, con-
sider the following 𝑛th degree characteristic equation on the
complex variable 𝛾 (see Definition 8):

𝑛

∏

𝑖=1

(𝛾 − 𝜆
𝑖
) = 𝛾
𝑛

+ 𝑐
𝑛−1
𝛾
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑐
1
𝛾 + 𝑐
0
= 0. (10)

If all the roots 𝜆
𝑖
, 𝑖 = 1 . . . , 𝑛, of the last equation satisfy

condition (9), then the solution of the associated system to
(10) is asymptotically stable.

Definition 8 (Unified Transform Theory). There is a close
connection between the forward shift operator 𝑞 and the 𝑍-
transform variable 𝑧. Analogously, consider a new transform
variable 𝛾 associated with the 𝛿 operator as 𝛾 = (𝑧 − 1)/Δ.
From the 𝑍-transform, the delta transform is derived as
follows:

T (𝑓 (𝑘)) = Δ𝐹(𝑧)|
𝑧=Δ𝛾+1

= Δ

∞

∑

𝑘=0

𝑓 (𝑘) (1 + Δ𝛾)
−𝑘

. (11)

2.1. Transform Properties. We will just point out to the
transformproperties to be used throughout the work. Amore
extensive list of the delta transformproperties is found in [17].

(i) Linearity. For any scalar 𝛼
1
, 𝛼
2
,

T {𝛼
1
𝑓 (𝑡) + 𝛼

2
𝑔 (𝑡)} = 𝛼

1
T {𝑓 (𝑡)} + 𝛼

2
T {𝑔 (𝑡)} . (12)

(ii) Differentiation

T {𝜌 [𝑓 (𝑡)]} = 𝛾T {𝑓 (𝑡)} − 𝑓 (0−) (1 + Δ𝛾) . (13)

(iii) Integration

T {S𝑡
0
𝑓 (𝜏) 𝑑𝜏} =

1

𝛾

T {𝑓 (𝑡)} . (14)

(iv) Frequency Differentiation

T {𝑡𝑓 (𝑡)} = − (Δ𝛾 + 1) 𝑑
𝑑𝛾

[T {𝑓 (𝑡)}] . (15)

3. System Model and Problem Formulation

Consider the two-phase equivalent mathematical model
(𝑎, 𝑏) of a three-phase induction motor controlled by the
phase voltages represented by the complex input voltage 𝑢

𝑆
=

𝑢
𝑆𝑎
+ 𝑗𝑢
𝑆𝑏
= |𝑢
𝑆
|𝑒
𝑗𝜃𝑢 . The state variables are given by: 𝜃,

which is the rotor angular position, 𝜔 denoting the rotor
angular velocity, 𝜓

𝑅𝑎
and 𝜓

𝑅𝑏
denote the unmeasured rotor

fluxes consolidated by the complex rotor flux: 𝜓
𝑅
= 𝜓
𝑅𝑎
+

𝑗𝜓
𝑅𝑏
= |𝜓
𝑅
|𝑒
𝑗𝜃𝜓 . The variables 𝑖

𝑆𝑎
and 𝑖
𝑆𝑏
represent the stator

currents, and 𝑖
𝑆
= 𝑖
𝑆𝑎
+ 𝑗𝑖
𝑆𝑏
= |𝑖
𝑆
|𝑒
𝜃𝑖 is their corresponding

complex armature current. It is assumed that 𝑗 = √−1 is the
imaginary unit, 𝑥 is the conjugate of 𝑥,R

𝑒
(𝑥) denote the real

part of 𝑥 and I
𝑚
(𝑥) denote the imaginary part of 𝑥. From

the abovementioned definitions, we have

𝜌𝜔 = 𝜇 Im (𝜓
𝑅
𝑖
𝑆
) −

𝐵

𝐽

𝜔 −

𝜏
𝐿

𝐽

,

𝜌𝜓
𝑅
= − (𝜂 − 𝑗𝑛

𝑝
𝜔)𝜓
𝑅
+ 𝜂𝑀𝑖

𝑆
,

𝜌𝑖
𝑆
= 𝛽 (𝜂 − 𝑗𝑛

𝑝
𝜔)𝜓
𝑅
− 𝛾𝑖
𝑆
+

1

𝜎𝐿
𝑆

𝑢
𝑆
,

(16)

with 𝜌 the generalized derivative operator, 𝜂 := 𝑅
𝑅
/𝐿
𝑅
, 𝛽 :=

𝑀/𝜎𝐿
𝑅
𝐿
𝑆
, 𝜇 := 𝑛

𝑝
𝑀/𝐽𝐿

𝑅
, 𝛾 := 𝑀

2

𝑅
𝑅
/𝜎𝐿
2

𝑅
𝐿
𝑆
+ 𝑅
𝑆
/𝜎𝐿
𝑆
,

and 𝜎 := 1 − 𝑀2/𝐿
𝑅
𝐿
𝑆
. 𝑅
𝑅
and 𝑅

𝑆
are the rotor and stator

resistances. The rotor and stator inductance parameters are
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given by 𝐿
𝑅
and𝐿

𝑆
, and𝑀 is themutual inductance constant;

the moment of inertia is set by 𝐽, the friction coefficient is
denoted by 𝐵, and 𝑛

𝑝
is the number of pole pairs. The signal

𝜏
𝐿
is the unknown load torque disturbance input.

3.1. Flux Observer. A simple way to obtain a discretization
of the flux observer is using 𝛿-operator approximation for
the derivatives (which is equivalent to Euler’s approximation);
that is,

̇𝜓
𝑅
(𝑡) ≈ 𝛿𝜓

𝑅
(𝑡) =

[𝜓
𝑅
(𝑡 + Δ) − 𝜓

𝑅
(𝑡)]

Δ

. (17)

A discretized version of flux dynamics is given by

𝜓
𝑅
(𝑡 + Δ) = [1 − 𝜂Δ + 𝑗𝑛

𝑝
Δ𝜔 (𝑡)] 𝜓

𝑅
(𝑡) + 𝜂𝑀Δ𝑖

𝑆
(𝑡) . (18)

An observer for this discretized system is given by

�̂�
𝑅
(𝑡 + Δ) = [1 − 𝜂Δ + 𝑗𝑛

𝑝
Δ𝜔 (𝑡)] �̂�

𝑅
(𝑡) + 𝜂𝑀Δ𝑖

𝑆
(𝑡) . (19)

In order to analyze the stability of the discrete-time flux
estimator, the estimation error is defined as: 𝑒

𝜓
(𝑡 + Δ) =

𝜓
𝑅
(𝑡+Δ)−�̂�

𝑅
(𝑡+Δ); these errors satisfy 𝑒

𝜓
(𝑡+Δ) = [1−𝜂Δ+

𝑗𝑛
𝑝
Δ𝜔(𝑡)]𝑒

𝜓
(𝑡). Consider the Lyapunov function candidate

𝑉(𝑘) = |𝑒
𝜓
(𝑡)|
2 under simple algebraic manipulations yields

𝑉 (𝑡 + Δ) = 𝛼 (𝑡) 𝑉 (𝑡) (20)

with 0 ≤ 𝛼(𝑡) = (1 − 𝜂Δ)
2

+ (𝑛
𝑝
Δ𝜔(𝑡))

2. The stability is
guaranteed when 0 ≤ 𝛼(𝑡) < 1. It is possible to find a
condition on the sample period, Δ, and speed, 𝜔, such that
the origin of the complex error space, 𝑒

𝜓
(𝑡) = 0, is a globally

asymptotic equilibrium point for (18):

Δ <

2𝜂

𝜂
2
+ 𝑛
2

𝑝
𝜔
2

max
⇒ 0 ≤ 𝛼 (𝑡) < 1, (21)

where 𝜔max is the maximum angular velocity of the motor.
The flux simulator variable, �̂�

𝑅
, will be used, henceforth,

in place of the actual flux without further considerations.

3.2. Assumptions

(i) It is assumed that only the shaft’s angular position, 𝜃,
and the stator currents, 𝑖

𝑆𝑎
, 𝑖
𝑆𝑏
, are measured.

(ii) The motor parameters are assumed to be known.

(iii) The load torque 𝜏
𝐿
(𝑡) is assumed to be time-varying

but unknown.

(iv) Let us assume that the sampling period Δ is suffi-
ciently small to achieve accurate results when using,
as a discretization methodology, the unified operator
𝜌 (the use of Euler methods is in [4] in a difereent
context). In particular, Δ is small enough to satisfy
(21).

3.3. Problem Formulation. Under the above assumptions,
consider the induction motor dynamic model (16). Given
a reference trajectory for the motor angular velocity, 𝜔∗(𝑡),
and a reference for the magnitude of the complex flux, |𝜓∗

𝑅
|,

the main objective of this paper is to devise multivariable
discrete-time feedback control laws for the stator voltages,
𝑢
𝑆𝑎
(𝑡), 𝑢
𝑆𝑏
(𝑡), such that they force, in an arbitrary fashion,

𝜔(𝑡) to track 𝜔∗(𝑡) and |𝜓
𝑅
| to track |𝜓∗

𝑅
| regardless of the

values adopted by the time-varying torque, 𝜏
𝐿
(𝑡), the dis-

cretization errors resulting from the 𝛿-operator discretization
procedure, and eventually parameter uncertainty.

4. Control Strategy

4.1. Simplified Model. The proposed control strategy is based
on a simplified vision of the system model (16), which is
systematically advocated in the ADRC approach. One adopts
the simplified models, defined in terms of complex variables
notation:

𝜌𝜔 = 𝜇 Im (𝜓
𝑅
𝑖
𝑆
) + 𝜉
1
(𝑡) , (22)

𝜌




𝜓
𝑅






2

= − 2𝜂




𝜓
𝑅






2

+ 2𝜂𝑀Re (𝜓
𝑅
𝑖
𝑆
) , (23)

𝜌𝜃
𝜓
= 𝑛
𝑝
𝜔 +

𝑅
𝑟
𝑀

𝐿
𝑟





𝜓
𝑅






2
Im (𝜓

𝑅
𝑖
𝑆
) , (24)

𝜌𝑖
𝑆
=

1

𝜎𝐿
𝑆

𝑢
𝑆
+ 𝜉
2
(𝑡) , (25)

where ̃𝜉
1
(𝑡) is the exogenous disturbance function that takes

into account the load torque disturbance term, −𝜏
𝐿
(𝑡)/𝐽, the

viscous friction term, −(𝐵/𝐽)𝜔, and discretization errors due
to 𝛿-operator approximation; ̃𝜉

2
(𝑡) is the endogenous state

dependent disturbance function that represents nonlinear
and linear additive dissipation terms, depending on the stator
currents, 𝑖

𝑆𝑎
, 𝑖
𝑆𝑏
, and the angular velocity, 𝜔, and it also

includes discretization errors.

4.2. Field Oriented Control. From (22) and (23), we can
obtain an interesting control decoupling property: the angu-
lar velocity is governed by Im(𝜓

𝑅
𝑖
𝑆
), while the squared flux

magnitude is commanded by Re(𝜓
𝑅
𝑖
𝑆
). Consequently, taking

the current, 𝑖
𝑆
, as auxiliary control input, both constitutive

parts of the system can be controlled independently of each
other. This classical indirect control decoupling property is
equivalent to the field oriented control approach. We use this
property to set, with the help of auxiliary input variable, V =
V
𝑎
+ 𝑗V
𝑏
, the following input current field oriented controller:

𝑖
𝑆
= (

𝜓
𝑅





𝜓
𝑅






2
) V, (26)

yielding the following set of control decoupled linear dis-
turbed systems:

𝜌𝜔 = 𝜇V
𝑏
+ 𝜉
1
(𝑡) , (27)

𝜌




𝜓
𝑅






2

= −2𝜂




𝜓
𝑅






2

+ 2𝜂𝑀V
𝑎
. (28)
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The control law V should accomplish the simultaneous
tracking tasks for |𝜓

𝑅
| and 𝜔 (see (28), (27)) and the control

law 𝑢
𝑆
for the tracking of 𝑖

𝑆
(see (25)) in a two-stage feedback

observer based control configuration.The key observation of
this observer based control approach is that the disturbance
inputs, 𝜉

1
, 𝜉
2
, involved in (27), (25), can be approximately

estimated and then canceled at the controller stage. This
procedure goes with the total active disturbance rejection
paradigm (see [8]).

4.3. Disturbance Estimation. In this subsection, a method-
ology of disturbance estimation by means of a delta oper-
ator discrete-time observer, which can be associated to an
extended Luenberger like linear observer, is developed.

The ideal performance of control systems and its dual esti-
mation is to achieve zero steady-state errors in an asymptotic
fashion. Given the uncertainty of unified disturbance signals
(regarding external disturbances and the dynamics of the
system) involved in the dynamics of the inner and outer loops
of the proposed control scheme, it is necessary to make an
approach to a generic model for signals. The approximation
used and which is simpler to determine the internal model
is given by the approximation of the truncated Taylor series.
These families of functionswith respect to disturbance signals
are in agreement with themodel 𝜌𝑚𝑖𝜉

𝑖
= ((𝑞−1)

𝑚𝑖
/Δ
𝑚𝑖
)𝜉
𝑖
≈ 0

with 𝑖 = 1, 2. The approach uses the fact that the disturbance
inputs, 𝜉

𝑖
, 𝑖 = 1, 2, can be approximately modeled by

𝜌
𝑚𝑖
𝜉
𝑖
≈ 0, (29)

where𝑚
1
,𝑚
2
are integers large enough. So, taking 𝜉

𝑖
, 𝑖 = 1, 2,

as augmented variables it is possible to establish generalized
state observers (see [19]).

The disturbance inputs 𝜉
𝑖
can be expressed as functions

of the output, the input and a finite application of the
delta operator on them; therefore, the algebraic observability
property is achieved, and a delta operator based observer can
be proposed in each equation.

The construction of the delta generalized proportional
integral disturbance observer for 𝜉

1
is described in the

following proposition.

Proposition 9. Define the observation error as 𝑒
𝜃
(𝑡) = 𝜃(𝑡) −

̂
𝜃(𝑡). The following system

̂
𝜌𝜃 (𝑡) = �̂� (𝑡) + 𝑙

𝑚1+1
𝑒
𝜃
(𝑡) ,

𝜌𝜔 (𝑡) = 𝜇V
𝑏
(𝑡) + 𝑙m1𝑒𝜃 (𝑡) + �̂�1,1 (𝑡) ,

𝜌𝑧
1,1
(𝑡) = 𝑙

𝑚1−1
𝑒
𝜃
(𝑡) + �̂�

1,2
(𝑡) ,

𝜌𝑧
1,2
(𝑡) = 𝑙

𝑚1−2
𝑒
𝜃
(𝑡) + �̂�

1,3
(𝑡) ,

...

𝜌𝑧
1,𝑚1−1

(𝑡) = 𝑙
1
𝑒
𝜃
(𝑡) + �̂�

1,𝑚1
(𝑡) ,

𝜌𝑧
1,𝑚1

(𝑡) = 𝑙
0
𝑒
𝜃
(𝑡) ,

̂
𝜃 (0) = �̂� (0) = �̂�

1,1
(0) = ⋅ ⋅ ⋅ = �̂�

1,𝑚1
(0) = 0,

̂
𝜉
1
(𝑡) = �̂�

1,1
(𝑡)

(30)

constitutes an asymptotic unified discrete generalized propor-
tional integral observer of order 𝑚 for the disturbance 𝜉

1
,

where 𝑙
0
, . . . , 𝑙
𝑚1+1

are the design constants which regulate the
convergence rate of the observation error.

Proof. The disturbance estimation procedure is the dual
counterpart of disturbance rejection mechanism which
resides in the application of 𝑚

1
discrete-time successive

differences; that is, 𝜌𝑚1 = 𝛿𝑚1 = (𝑞 − 1)𝑚1/Δ𝑚1 (see (29)).
Let us use (30) in (27) and the internal model of the

disturbance input 𝜉
1
. Then, applying the unified operator

and some algebraicmanipulations in the resulting expression,
the observation error satisfies the following disturbed linear
dynamics:

𝜌
𝑚1+2

𝑒
𝜃
+ 𝑙
𝑚1+1

𝜌
𝑚1+1

𝑒
𝜃
+ 𝑙
𝑚1
𝜌
𝑚1
𝑒
𝜃
+ ⋅ ⋅ ⋅ + 𝑙

1
𝜌𝑒
𝜃
+ 𝑙
0
𝑒
𝜃

= 𝜌
𝑚1
𝜉
1
(𝑡) .

(31)

According to the assumptions, 𝜉
1
; is uniformly bounded,

therefore, successive differences of 𝜉
1
, namely, 𝜌𝑚1𝜉

1
, remain

also uniformly bounded. If 𝜌𝑚1𝜉
1
(𝑡) is uniformly abso-

lutely bounded, by selecting the gain parameters 𝑙
𝑗
, 𝑗 =

0, 1, . . . , 𝑚
1
+1, such that the characteristic polynomial in the

variable 𝛾, associated to the linear undisturbed part of (31)

𝑝
𝑜,𝜃
(𝛾) = 𝛾

𝑚1+2

+ 𝑙
𝑚1+1

𝛾
𝑚1+1

+ ⋅ ⋅ ⋅ + 𝑙
1
𝛾 + 𝑙
0
, (32)

satisfies (9), the estimation error 𝑒
𝜃
is restricted to a vicinity

of zero as time elapses. Thus, ̂𝜉
1
(𝑡) tends to be located in the

neighborhood of 𝜉
1
(𝑡). The size of the vicinity is related to

the achieved rank of attenuation in the term 𝜌
𝑚1
𝜉
1
(𝑡). The

parameter 𝑚
1
is related to the complexity of the signal to

estimate, as in the case of Taylor polynomial approximation
[10].

Remark 10. ADRC-GPI observer-based controllers use an
internal model approximation of the perturbation functions
to reconstruct and reject the perturbations. Under this
disturbance model approximation setting, several authors
have applied it to different areas. Parker and Johnson used a
first-order perturbation approximation to model wind speed
perturbations in a wind turbine operating in region 3 [20].
Freidovich and Khalil [21] used a first-order perturbation
model approximation to estimate the model uncertainty
and disturbance on a nonlinear system. Zhao and Gao also
used a first-order internal model disturbance approximation
to estimate the resonance in two-inertia systems [22] and
a first- and second-order approximation to estimate the
nonlinearities of an actuator [23]. Zheng et al. also used
disturbance model approximation applied to disturbance
decoupling control [24].

Remark 11. The parameter 𝑚 is related to the complexity of
the signal to estimate, as in the case of Taylor polynomial
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approximation. A first-order perturbation model approxi-
mation means that the internal model naturally converges
towards a constant disturbance. Equation (30) is a more
generalized extension of the internal model perturbation
function which provides extra information and increases the
ability to track different types of disturbances. For example,
𝑚 = 2 allows convergence to a disturbance with a constant
derivative,𝑚 = 3 allows convergence to a disturbance with a
constant acceleration, and so forth.

Remark 12. The ultimate bounded of the estimation errors,
produced by the GPI observer, is strongly dependent on the
product of poles magnitudes of the dominant characteristic
polynomial for the estimation error. Given a desired ultimate
value the use of a lager𝑚 in the internalmodel approximation
can alleviate the need for high gain related to the observer
parameters. In practice, however,𝑚 can be small and chosen
within the range of 2 to 5. We recall here a quote by J. von
Neumann: “With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk!”

Remark 13. GPI observers are bandwidth limited by the roots
location of the estimation error characteristic polynomial.
Generally, the larger the observer bandwidth is, the more
accurate the estimation will be. However, a large observer
bandwidth will increase noise sensitivity. Then, the selection
of the roots of the estimation error characteristic polyno-
mial affects the bandwidth of the GPI observer and also
the influence of measurement noises on the estimations.
Therefore, GPI observers are usually tuned in a compromise
between disturbance estimation performance (set by the
internal model approximation degree) and noise sensitivity.

Remark 14. The trajectory tracking problem is formulated
in terms of the angular velocity. The disturbance observer,
however, is treated in terms of the angular position second-
order dynamics. This allows an alternative estimation of the
angular velocity, �̂�.

For the estimation of 𝜉
2
a similar procedure can be

proposed which is synthesized in the following proposition.

Proposition 15. Consider the observation error 𝑒
𝑖𝑆
= 𝑖
𝑆
− �̂�
𝑆
,

and consider the following characteristic polynomial: 𝑝
𝑜,𝑖𝑆

=

𝛾
𝑚2+1

+𝛼
𝑚2
𝛾
𝑚2
+⋅ ⋅ ⋅+𝛼

1
𝛾+𝛼
0
, with all the roots into the stable

region related to 𝛿 operator (see Figure 1); then the system

𝜌𝑖
𝑆
(𝑡) =

1

𝜎𝐿
𝑆

𝑢
𝑆
(𝑡) + 𝛼

𝑚2
𝑒
𝜃
(𝑡) + �̂�

2,1
(𝑡) ,

𝜌𝑧
2,1
(𝑡) = 𝛼

𝑚2−1
𝑒
𝜃
(𝑡) + �̂�

2,2
(𝑡) ,

𝜌𝑧
2,2
(𝑡) = 𝛼

𝑚2−2
𝑒
𝜃
(𝑡) + �̂�

2,3
(𝑡) ,

...

𝜌𝑧
2,m2−1 (𝑡) = 𝛼1𝑒𝜃 (𝑡) + �̂�2,𝑚2 (𝑡) ,

𝜌𝑧
2,𝑚2

(𝑡) = 𝛼
0
𝑒
𝜃
(𝑡) ,

�̂�
𝑆
(0) = �̂�

2,1
(0) = ⋅ ⋅ ⋅ = �̂�

2,𝑚2
(0) = 0,

̂
𝜉
2
(𝑡) = �̂�

2,1
(𝑡)

(33)

constitutes an asymptotic unified discrete generalized propor-
tional integral observer of order 𝑚 for the disturbance 𝜉

2
,

where 𝛼
0
, . . . , 𝛼

𝑚2
are the design constants which regulate the

convergence rate of the observation error.

Proof. Theproof is similar to that of the previous proposition.

5. Controller Design

A two-stage feedback control law is considered for this sys-
tem. In the first stage (outer loop), the angular position of the
motor shaft is forced to track a reference signal 𝜔∗(𝑡), while
regulating the flux magnitude towards a given constant value
|𝜓
∗

𝑅
|. This stage devises a set of desirable current trajectories,

which are taken as output references for the second stage.
The second stage (inner loop) designs a feedback controller
to track the current trajectories from the first stage; in this
case, the stator voltages are the control inputs. For both stages,
observer based controls will be implemented.

5.1. Outer Loop Design

5.1.1. Flux Magnitude Regulation. Consider again the linear
system (27) and (28). According to the problem formulation,
for the case of rotor flux magnitude regulation, a simple
control law can be proposed:

V
𝑎
=





𝜓
∗

𝑅






2

𝑀

.
(34)

From (34), it is guaranteed that the tracking of the rotor
fluxmodulus approaches to the given referencemodulus flux.
Indeed, in closed loop, the square modulus of the rotor flux
satisfies 𝜌(|𝜓

𝑅
|
2

) = −2𝜂[|𝜓
𝑅
|
2

− |𝜓
∗

𝑅
|
2

], and then |𝜓
𝑅
| tends

to |𝜓∗
𝑅
| in an exponential asymptotic manner for a constant

reference flux modulus. Notice that the partial feedback
(28) requires no cancelations of exogenous or endogenous
disturbances. In the case of a time variant reference flux
modulu, the decoupling property allows one to propose an
independent flux magnitude control law.This fact is properly
used in [25].

5.1.2. Stator Current Control. Assuming a proper observer
behavior related to system (30), accurate estimations for the
disturbance input 𝜉

1
and angular velocity𝜔 are provided.The

following observer based control is proposed:

V
𝑏
=

1

𝜇

[𝜌𝜔
∗

(𝑡) − 𝑘
0𝜔
(�̂� − 𝜔

∗

) −
̂
𝜉
1
(𝑡)] . (35)

The characteristic polynomial of the tracking error, 𝑒
𝜔
=

𝜔 − 𝜔
∗, is given by 𝑝

𝑒𝜔
(𝛾) = 𝛾 + 𝑘

0𝜔
= 𝛾 + 𝑝

𝑘
, where 𝑘

0𝜔
=

𝑝
𝑘
and Re{−𝑝

𝑘
} + (Δ/2)|𝑝

𝑘
|
2

< 0, to ensure the closed loop
stability property.
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Figure 2: Velocity tracking results.

5.2. Inner Loop Design. Let 𝑖∗
𝑠
(𝑡) be the desired stator current

vector reference trajectory as represented by (26). At this
stage, the given structure for the outer loop control is also
proposed for the current regulation scheme. We have

𝑢
𝑆
(𝑡) = 𝜎𝐿

𝑠
[𝜌𝑖
∗

𝑆
(𝑡) − 𝑘

0𝑖
𝑒
𝑖𝑆
(𝑡) −

̂
𝜉
2
(𝑡)] , (36)

where 𝑒
𝑖𝑆
(𝑡) = 𝑖

𝑆
(𝑡) − 𝑖

∗

𝑆
(𝑡) and the estimation ̂𝜉

2
is provided

by the observer in (33). Finally, the closed loop tracking error
for the stator currents is given by 𝑝

𝑖𝑆
(𝛾) = 𝛾 + 𝑘

0𝑖
.

6. Experimental Results

To assess the control approach, some experiments were
carried out in a test bed including a controlled load, by
means of a controlled coupled DC motor. The experimental
induction motor has the following parameters: 𝐽 = 2 ×

10
−3 [Kg⋅m2], 𝑛

𝑝
= 1, 𝑀 = 0.2374 [H], 𝐿

𝑅
= 0.2505 [H],

𝐿
𝑆
= 0.2505 [H], 𝑅

𝑆
= 4.32 [Ω], and 𝑅

𝑅
= 2.8807 [Ω].

The flux absolute desired value was selected to maximize the
induced torque subject to the nominal current constraints.
That is, 𝜓∗

𝑅
= 𝑀𝑖nom/√2 = 0.5036 [Wb], for 𝑖nom = 3 [A].

The controller was devised in a MATLAB-xPC Target
environment using a sampling period of 0.125 [ms]. The
communication between the plant and the controller was
performed by two data acquisition devises: a National Instru-
ments PCI-6025E data acquisition card for the analog data,
and the digital I/O implementation was performed in a
National Instruments PCI-6602 data acquisition card. The
voltage and current signals are conditioned for acquisition
system by means of low pass filters with cut frequency of 1
[kHz].

The reference trajectory of the velocity consisted in a
series of rest to rest transitions with values 0, 15, 13, and
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Figure 3: Regulation of the flux magnitude and control input.

21 [rad/s]. The gain parameter associated to the velocity
control was 𝑘

0𝜔
= −70.3071, and the gain constant of

the current control was set to be 𝑘
0𝑖
= −357.7691. The

characteristic polynomial of the disturbance GPI observer
in the velocity loop was set to be (𝛾2 + 35.96𝛾 + 339.23)2,
and the characteristic polynomial for the disturbance GPI
observer of the current control loop was (𝛾2 + 98.9𝛾 +

2500)
2. The characteristic polynomial selection was based on

the transformation of continuous time transfer functions (𝑠-
domain) to the unified operator domain (𝛾) (further details
concerning this procedure are found in [17]). The responses
were given in terms of two nested second-order damped
responses with damping coefficients 4 and 6 for the velocity
and current loops and natural frequencies of 4 and 50,
respectively.

Figure 2 shows the behavior of the tracking velocity with
respect to the reference value, achieving accurate results.
Figure 3 illustrates that the rotor flux magnitude is regulated
with an approximate error of about 15 × 10

−4 [Wb]. In
Figure 4, a precise tracking of the stator currents is depicted.
Additionally, to illustrate the robustness of the scheme, a time
varying load torque was applied through the manipulation
of the DC motor armature current, such that the generated
external torque load described a trajectory of a chaotic type,
corresponding to the output of a Chua’s circuit, respectively.
The peak value of the applied torque was 1.7 [N⋅m]. The
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Figure 4: Trajectory tracking of the stator currents and associated
disturbance estimations.

estimation of the disturbance, as well as the applied torque,
are shown in Figure 5.

The main advantage of the control algorithm, using the
xPC target environment, in a single tasking execution mode
was the minimization of the execution time; in the case of
the discrete-time control scheme, this time was 4.810−5 [s], in
contrast with a similar control scheme in a continuous time
design, which has an execution time of 6.510−5 [s].

7. Concluding Remarks

In this work, a discrete-time disturbance observer based
control was proposed to solve the problem of controlling
an induction motor. The discrete-time process based on the
delta operator allows a faster digital control implementation
scheme as well as some easy tuning strategies for both control
and observer processes in relation to the pole placement for
the closed loop tracking (and injection) errors. The presence
of the observer in the control loop makes the proposed
scheme quite simple and easy to implement. Besides, it is
accurate in presence of different nature disturbance inputs.

The degree of polynomial approximation of the distur-
bance input, denoted by 𝑚, depends on the sampling fre-
quency parameter; for high sampling frequencies the approx-
imation needs a smaller degree of polynomial approximation;
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−0.5

0

0.5

1

1.5

2

𝜉1(t)

𝜇 J 
(t)

(N
·m

)

(a)

t (s)
0 2 4 6 8 10 12 14 16 18

−0.5

0

0.5

1

1.5

2

𝜏L(t)
(N

·m
)

(b)

Figure 5: Mechanical lumped disturbance estimation.

in particular, the treated case study was satisfied with𝑚 = 2,
which reduces considerably the implementation complexity.

Even though the control loops were proposed for first-
order plants, the proposed observer based control can be
extended without loss of generality to higher order systems.
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This paper considers the problem of multitarget tracking in cluttered environment. To reduce the dependency on the noise priori
knowledge, an improved particle filtering (PF) data association approach is presented based on the𝐻

∞
filter (HF). This approach

can achieve higher robustness in the condition that the measurement noise prior is unknown. Because of the limitations of the
HF in nonlinear tracking, we first present the 𝐻

∞
unscented filter (HUF) by embedding the unscented transform (UT) into the

𝐻
∞

extended filter (HEF) structure. Then the HUF is incorporated into the Rao-Blackwellized particle filter (RBPF) framework
to update the particles. Simulation results are provided to demonstrate the effectiveness of the proposed algorithms in linear and
nonlinear multitarget tracking.

1. Introduction

Multitarget tracking is to estimate the targets’ current posi-
tions from a series of noise-corrupted measurements by
filtering methods [1]. In cluttered environment, the foremost
difficulty involves the problem of associating the correct
measurements with the appropriate tracks. A number of
strategies, including the joint probabilistic data association
(JPDA) [2, 3], multiple hypothesis tracking (MHT) [4, 5], S-D
assignment [6], and the probabilistic hypothesis density filer
(PHDF) [7–9], are available to solve this problem.

Recently, the sequential Monte Carlo (SMC) data associ-
ation approaches are also applied to the tracking and asso-
ciation problems [10, 11]. This paper tackles data association
joint with state estimation via a SMC method called Rao-
Blackwellized particle filter (RBPF) [12–14]. This particle
method can be considered as a generalization of MHT,
which represents the data association and state posteriors
as a discrete set of hypotheses. Instead of the pure par-
ticle strategy, a mixture of Gaussian representation of the
joint posterior distribution is used to reduce the estimation
variance. In the application of RBPF for nonlinear target
tracking, it can replace the Kalman filter (KF) in the data
association algorithm by the extended Kalman filter (EKF)

or the unscented Kalman filter (UKF) [15]. Although RBPF
has shown higher tracking efficiency against the pure particle
filtering schemes, there is still weakness lying in the strong
assumptions on the system models and noise statistics [16].
That is, the KF or its variants can only be applied in the
condition that a perfect system model is known and the
process and measurement noise statistics are white and
Gaussian with known covariance matrices. In many practical
applications, these assumptions can hardly be satisfied, and
the performance of the KF based methods may degrade
severely when the measurement disturbances are not in
definite Gaussian forms. Hence, we need a solution with
more robustness against the uncertainties of the noise than
the KF. The 𝐻

∞
filter (HF), which aims at minimizing the

worst possible effects of the disturbances on the estimation
errors, can provide an alternative to solve this problem [17–
19]. Different from the KF, the only assumption made for HF
is that the noise signals have a finite energy but without any
statistic assumptions.

The HF techniques have been used in linear-model
target tracking. Accordingly, the 𝐻

∞
extended filter (HEF)

has also been proposed for nonlinear models by using the
EKF structure. As another way to approximate the filtering
distribution, the unscented transform (UT) can be more



2 Mathematical Problems in Engineering

accurate compared to the EKF for it performs a higher
order of the Taylor series expansion. By a Gaussian density
instead of approximating the nonlinear functions as the
EKF, the UT technique has shown its priority in handling
nonlinear estimation problems and also been combined with
the 𝐻

∞
filter [20]. In this paper, we aim to incorporate

the HF technique into the framework of RBPF to reduce
its dependency on a priori knowledge of the noise statistics
in multitarget tracking. In RBPF, the continuous state is
estimated using the KF or its variants, while the discrete state
or the mode state is estimated using particle filters. Thus,
the HF can be embedded into the RBPF structure directly.
Because of the limitations of theHF in nonlinear tracking, we
present the𝐻

∞
unscented filter (HUF) by embedding theUT

into the HEF structure. Since the HUF has the same observer
structure as the UKF, it can also be embedded into the RBPF
framework to update the continuous states of the particles.

The remainder of this paper is organized as follows.
In Section 2, we give a brief introduction of the generic
RBPF target tracking approach and the basic𝐻

∞
linear filter

structure. The main work is given in Section 3 where the
HUF is first presented.Then theHUF is incorporated into the
RBPF framework to update the particles. Simulation results
are provided in Section 4 to demonstrate the effectiveness of
the proposed algorithms in linear and nonlinear multitarget
tracking. In Section 5, conclusions are also given to summa-
rize the main works of this paper.

2. Background

2.1. Rao-Blackwellized Particle Filter for Target Tracking.
Consider the following time-varying state-space system:

x
𝑘
= F
𝑘−1

x
𝑘−1

+ w
𝑘−1
,

z
𝑘
= H
𝑘
x
𝑘
+ k
𝑘
,

(1)

where x
𝑘
∈ R𝑛 and z

𝑘
∈ R𝑝 are the system state and

measurement vectors at time step 𝑘, respectively. w
𝑘−1

∼

N(0,Q
𝑘−1
) and k

𝑘
∼ N(0,R

𝑘
) are zero mean mutually

independent Gaussian process noise, and F
𝑘−1

and H
𝑘
are

matrices with compatible dimensions. Suppose that we are
able to form another variable 𝑐

𝑘
to describe the matrices F

𝑘−1

and H
𝑘
; then the RBPF algorithm can be applied to estimate

the whole state {x
𝑘
; 𝑐
𝑘
} [21]. For space consideration, we omit

the details of the RBPF algorithms which can be found in
[22, 23]. In the application of RBPF for target tracking, the
latent variable 𝑐

𝑘
is defined to be the data association event

indicator [12]. That is, 𝑐
𝑘
= 0 when the measurement is from

clutter, and 𝑐
𝑘
= 𝑗 when the measurement is from target 𝑗

(𝑗 = 1, . . . , 𝑇, where 𝑇 is number of targets). The predictive
probability 𝑝(𝑐

𝑘
| 𝑐
1:𝑘−1

) gives the data association prior given
the data association results {𝑐

1:𝑘−1
} in the previous 𝑘 − 1 time

steps. The posterior distribution of 𝑐
𝑘
is 𝑝(𝑐

𝑘
| 𝑐
1:𝑘−1

, z
1:𝑘
)

which can be calculated by

𝑝 (𝑐
𝑘
| 𝑐
1:𝑘−1

, z
1:𝑘
)

∝ 𝑝 (z
𝑘
| 𝑐
𝑘
, 𝑐
1:𝑘−1

, z
1:𝑘−1

) 𝑝 (𝑐
𝑘
| 𝑐
1:𝑘−1

) ,

(2)

where the data association prior 𝑝(𝑐
𝑘
| 𝑐
1:𝑘−1

) is modeled as
a recursive Markov chain, which guarantees the association
assumption of one target per measurement in each time step.
Accordingly, the 𝑝(𝑐

𝑘
| 𝑐
1:𝑘−1

) in (2) has been replaced by
𝑝(𝑐
𝑘
| 𝑐
𝑘−𝑀:𝑘−1

) [13], and the general form of the joint prior
model is given by

𝑝 (𝑐
𝑘+𝑀−1

, . . . , 𝑐
𝑘
) =

𝑀

∏

𝑚=1

𝑝 (𝑐
𝑘+𝑚

| 𝑐
𝑘
, . . . , 𝑐

𝑘+𝑚−1
) . (3)

That means if we obtain 𝑀 measurements in time step 𝑘,
the 𝑚th (𝑚 = 2, . . . ,𝑀) measurement’s association prior
𝑝(𝑐
𝑘+𝑚−1

| 𝑐
𝑘+𝑚−2

, . . . , 𝑐
𝑘
) only depends on the previous

association results {𝑐
𝑘+𝑚−2

, . . . , 𝑐
𝑘
} in the 𝑘th time step. Note

that 𝑐
𝑘
has the prior 𝑝(𝑐

𝑘
) if 𝑚 = 1. This RBPF multitarget

tracking algorithm is also termed Rao-Blackwellized Monte
Carlo data association (RBMCDA) [12]. In this paper, we aim
to improve the robustness of the RBPF for target tracking by
the𝐻

∞
filter and unscented transform.

2.2. 𝐻
∞

Linear Filter. Consider the model given by (1),
where the process noise w

𝑘−1
and the measurement noise

k
𝑘
are assumed to be uncorrelated zero-mean white noise

processes with unknown statistical properties. Note that
they are also the energy bounded 𝑙

2
[0, +∞] signals. Let

x̂
𝑘|𝑘

≜ L{z
0
, z
1
, . . . , z

𝑘
} denote the estimation of x

𝑘
given

measurements z
0:𝑘
. We can define the estimation error as

E
𝑘
≜ x̂
𝑘|𝑘
−x
𝑘
and denoteT

𝑘
(L) as the transfer operator that

maps the unknown disturbances x
0
− x̂
0|0
, w
0:𝑘−1

, and k
1:𝑘

to
the estimation errorsE

1:𝑘
, where x̂

0|0
is a priori estimate of x

0

and x
0
− x̂
0|0

represents unknown initial estimation error.
In optimal 𝐻

∞
filter, it is operated to minimize the

possible worst effects of the unknown disturbances on the
estimation errors. That is, the estimation strategy L should
be designed so as to minimize the𝐻

∞
norm of the operator

T
𝑘
(L). Actually, it is hard to obtain the closed-form solution

of the optimal𝐻
∞
filtering except in some specific cases. For

example, the desired accuracy of the optimal 𝐻
∞

filter can
be obtained by iterating the 𝛾2 of the suboptimal solution
[16]. This paper considers the suboptimal solutions that can
bound themaximum energy gain from the disturbance to the
estimation errors under the prescribed disturbance tolerance
level. Given a scalar 𝛾2 > 0, find the estimation strategies L
such that the𝐻

∞
norm ofT

𝑘
(L) satisfies [24, 25]
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2
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𝑡
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R−1
𝑡

)

< 𝛾
2

,

(4)

where the notation ||𝑎||
2

𝛽
is defined as the square of the

weighted 𝑙
2
norm of 𝑎, that is, ||𝑎||2

𝛽
= 𝑎
𝑇

𝛽𝑎. The matrix
P
0|0

> 0 reflects a priori knowledge of how close x
0
is to

the initial estimate x̂
0|0
. Q
𝑡
> 0 and R

𝑡
> 0 are weighting

matrices, by which the designer can make appropriate choice
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to satisfy the performance requirements. The solution to the
𝐻
∞

filtering algorithm as shown in [26] is given by

x̂
𝑘|𝑘−1

= F
𝑘−1

x̂
𝑘−1|𝑘−1

, (5)

P
𝑘|𝑘−1

= F
𝑘−1

P
𝑘−1|𝑘−1

F𝑇
𝑘−1

+Q
𝑘−1
, (6)

x̂
𝑘|𝑘
= x̂
𝑘|𝑘−1

+ K
𝑘
(z
𝑘
−H
𝑘
x̂
𝑘|𝑘−1

) , (7)

K
𝑘
= P
𝑘|𝑘−1

H𝑇
𝑘
[R
𝑘
+H
𝑘
P
𝑘|𝑘−1

H𝑇
𝑘
]

−1

, (8)

P
𝑘|𝑘
= P
𝑘|𝑘−1

− P
𝑘|𝑘−1

[H𝑇
𝑘
𝐼] 𝑅
−1

E,𝑘[H
𝑇

𝑘
𝐼]

𝑇

P
𝑘|𝑘−1

, (9)

where 𝐼 is an identity matrix with compatible dimension.The
matrix 𝑅E,𝑘 is given by

𝑅E,𝑘 = [
R
𝑘

0

0 −𝛾
2

𝐼

] + [

H
𝑘

𝐼
]P
𝑘|𝑘−1

[H𝑇
𝑘
𝐼] . (10)

3. Improved Rao-Blackwellized Particle Filter

3.1.𝐻
∞
Nonlinear Filter withUnscented Transform. Consider

the following discrete-time nonlinear state-space model:

x
𝑘
= 𝑓 (x

𝑘−1
) + w
𝑘−1
,

z
𝑘
= ℎ (x

𝑘
) + k
𝑘
.

(11)

The HEF just replaces F
𝑘−1

and H
𝑘
in (5) and (7) by

𝑓(x̂
𝑘−1|𝑘−1

) and ℎ(x̂
𝑘|𝑘−1

), respectively. Here, we present the
HUF by embedding the UT technique into the HF structure,
which can be used to update the continuous-state particles in
the RBPF framework. Suppose that (2𝑛 + 1) sigma points are
generated based on the state estimates at time 𝑘 − 1,

𝜁
0

𝑘−1|𝑘−1
= x̂
𝑘−1|𝑘−1

,

𝜁
𝑠

𝑘−1|𝑘−1
= x̂
𝑘−1|𝑘−1

+ (√(𝑛 +D)P
𝑘−1|𝑘−1

)

𝑠

,

𝜁
𝑠+𝑛

𝑘−1|𝑘−1
= x̂
𝑘−1|𝑘−1

− (√(𝑛 +D)P
𝑘−1|𝑘−1

)

𝑠

, 𝑠 = 1, . . . , 𝑛,

(12)

where the state estimate x̂
𝑘−1|𝑘−1

and its covariance P
𝑘−1|𝑘−1

have been obtained at time 𝑘−1.D ∈ R is a scaling factor, and
(√(𝑛 +D)P

𝑘−1|𝑘−1
)
𝑠 is the 𝑠th row or column of the matrix

squares root of (𝑛 + D)P
𝑘−1|𝑘−1

. By implementing the UT
into (5) and (6), the predicted mean and covariance can be
obtained as follows:

𝜁
𝑠

𝑘|𝑘−1
= 𝑓 (𝜁

𝑠

𝑘−1|𝑘−1
) ,

x̂
𝑘|𝑘−1

=

2𝑛

∑

𝑠=0

𝜔
𝑠

𝜁
𝑠

𝑘|𝑘−1
,

P
𝑘|𝑘−1

=

2𝑛

∑

𝑠=0

𝜔
𝑠

[𝜁
𝑠

𝑘|𝑘−1
− x̂
𝑘|𝑘−1

]

× [𝜁
𝑠

𝑘|𝑘−1
− x̂
𝑘|𝑘−1

]

𝑇

+Q
𝑘−1
,

(13)

where 𝜔𝑠 is the normalized weight associated with the 𝑠th
sigma points (see [27, 28]). Since the linearizedmeasurement
function H

𝑘
does not exist explicitly under the unscented

transform framework, the statistical linear error propagation
method [29] is used to reformulate the updated equations.
Approximately, the measurement covariance and its cross-
correlation covariance can be given by

P𝑧𝑧
𝑘|𝑘−1

≈ H
𝑘
P
𝑘|𝑘−1

H𝑇
𝑘
,

P𝑥𝑧
𝑘|𝑘−1

≈ P
𝑘|𝑘−1

H𝑇
𝑘
.

(14)

By using the predicted sigma points, they can be calculated
by

P𝑧𝑧
𝑘|𝑘−1

=

2𝑛

∑

𝑠=0

𝜔
𝑠

[ℎ (𝜁
𝑠

𝑘|𝑘−1
) − ẑ
𝑘|𝑘−1

]

× [ℎ (𝜁
𝑠

𝑘|𝑘−1
) − ẑ
𝑘|𝑘−1

]

𝑇

,

P𝑥𝑧
𝑘|𝑘−1

=

2𝑛

∑

𝑠=0

𝜔
𝑠

[𝜁
𝑠

𝑘|𝑘−1
− x̂
𝑘|𝑘−1

]

× [ℎ (𝜁
𝑠

𝑘|𝑘−1
) − ẑ
𝑘|𝑘−1

]

𝑇

,

(15)

where

ẑ
𝑘|𝑘−1

=

2𝑛

∑

𝑠=0

𝜔
𝑠

ℎ (𝜁
𝑠

𝑘|𝑘−1
) . (16)

By substituting (14) into (7)–(10), the filtered estimates can be
obtained by

x̂
𝑘|𝑘
= x̂
𝑘|𝑘−1

+ P𝑥𝑧
𝑘|𝑘−1

[R
𝑘
+ P𝑧𝑧
𝑘|𝑘−1

]

−1

× (z
𝑘
− ẑ
𝑘|𝑘−1

) ,

P
𝑘|𝑘
= P
𝑘|𝑘−1

− [P𝑥𝑧
𝑘|𝑘−1

P
𝑘|𝑘−1

]

× R−1E,𝑘[P
𝑥𝑧

𝑘|𝑘−1
P
𝑘|𝑘−1

]

𝑇

,

(17)

where

𝑅E,𝑘 = [
R
𝑘
+ P𝑧𝑧
𝑘|𝑘−1

[P𝑥𝑧
𝑘|𝑘−1

]

𝑇

P𝑥𝑧
𝑘|𝑘−1

−𝛾
2

𝐼 + P
𝑘|𝑘−1

] . (18)

It should be pointed out that the HUF has the same observer
structure as that of the UKF, and Q

𝑘−1
and R

𝑘
play the

same role as the covariance matrices of the process noise
and the measurement noise when using the UKF. Hence, the
weightingmatrices can be adjustedwith no conflictions to the
framework of KF. For the HUF, it not only outperforms the
HEF in accuracy, but also achieves more robustness than the
UKF for unknown noise statistics [16].

3.2. 𝐻
∞

Unscented Rao-Blackwellized Particle Filter. In this
section, the HUF based RBPF multiple target tracking
algorithm (HURBPF) is provided. It can be found that
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the 𝑝(x
𝑘
| 𝑐
𝑖,1:𝑘

, z
1:𝑘
)will not be strictly Gaussian if the system

dynamic and (or) measurement function are (is) nonlinear.
In this case, the HUF can be a better candidate than HEF
or UKF for updating the continuous state within the particle
filtering framework. The conditional distribution mentioned
above can be chosen as

𝑝 (x
𝑘
| 𝑐
𝑖,1:𝑘

, z
1:𝑘
) =N (x

𝑘
; x̂
𝑖,𝑘|𝑘

,P
𝑖,𝑘|𝑘

) , (19)

where x̂
𝑖,𝑘|𝑘

and P
𝑖,𝑘|𝑘

are the mean and covariance of x
𝑘

computed by the HUF (17). The main procedure for the
HURBPF algorithm is presented as follows (see Algorithm 1).
In this algorithm, the target state priors can be represented as
a weighted importance sample set

𝑝 (x(𝑗)
0
) =

𝑁𝑝

∑

𝑖=1

w
𝑖,0
N (x(𝑗)
0
| x(𝑗)
𝑖,0
,P(𝑗)
𝑖,0
) , (20)

where 𝑖 (𝑖 = 1, . . . , 𝑁
𝑝
) is the identifier of particle.

Algorithm 1. 𝐻
∞
unscented Rao-Blackwellized particle filter.

For 𝑘 = 1 to 𝑛 do.

Step 1. Do prediction step. For 𝑖 = 1, 2, . . . , 𝑁
𝑝
and 𝑗 =

1, 2, . . . , 𝑇, perform HUF prediction from the mean x̂
𝑖,𝑘−1|𝑘−1

and covariances P
𝑖,𝑘−1|𝑘−1

to generate the predicted estimates
x̂(𝑗)
𝑖,𝑘|𝑘−1

and P(𝑗)
𝑖,𝑘|𝑘−1

.

Step 2. Calculate the data association priors 𝑝(𝑐
𝑖,𝑘

| 𝑐
𝑖,1:𝑘−1

)

based on the recursive Markov chain described in [13].

Step 3. For 𝑖 = 1, 2, . . . , 𝑁
𝑝
, perform HUF update for each

particle to get contemporary filtered estimates x(𝑗)
𝑖,𝑘|𝑘

and P(𝑗)
𝑖,𝑘|𝑘

.

Step 4. Calculate the posterior distribution of 𝑐
𝑖,𝑘
:

𝑝 (𝑐
𝑖,𝑘
| 𝑐
𝑖,1:𝑘−1

, z
1:𝑘
)

= 𝑝 (z
𝑘
| 𝑐
𝑖,𝑘
, 𝑐
𝑖,1:𝑘−1

, z
1:𝑘−1

) 𝑝 (𝑐
𝑖,𝑘
| 𝑐
𝑖,1:𝑘−1

) .

(21)

Step 5. Sample a new association 𝑐
𝑖,𝑘
= 𝑗 with probability 𝜌(𝑗)

𝑖
:

𝜌
(𝑗)

𝑖
=

𝜌
(𝑗)

𝑖

∑
𝑇

𝑗

=0
𝜌
(𝑗

)

𝑖

, 𝑗 = 0, . . . , 𝑇, (22)

where

𝜌
(0)

𝑖
= 𝑝 (𝑐

𝑖,𝑘
= 0 | 𝑐

𝑖,1:𝑘−1
, z
1:𝑘
) ,

𝜌
(𝑗)

𝑖
= 𝑝 (𝑐

𝑖,𝑘
= 𝑗 | 𝑐

𝑖,1:𝑘−1
, z
1:𝑘
) .

(23)

Step 6. Calculate the new weights

w
𝑖,𝑘
∝ w
𝑖,𝑘−1

𝑝 (z
𝑘
| 𝑐
𝑖,𝑘
, 𝑐
𝑖,1:𝑘−1

, z
1:𝑘−1

) 𝑝 (𝑐
𝑖,𝑘
| 𝑐
𝑖,1:𝑘−1

)

𝑝 (𝑐
𝑖,𝑘
| 𝑐
𝑖,1:𝑘−1

, z
1:𝑘
)

. (24)

Step 7. Update the 𝑗th target according to the new 𝑐
𝑖,𝑘

(𝑖 =
1, 2, . . . , 𝑁

𝑝
). If 𝑐
𝑖,𝑘
= 𝑗 (𝑗 ̸= 0), then

x̂(𝑗)
𝑖,𝑘|𝑘

= x(𝑗)
𝑖,𝑘|𝑘

, P(𝑗)
𝑖,𝑘|𝑘

= P(𝑗)
𝑖,𝑘|𝑘

. (25)

Step 8. Calculate the target state vectors

x̂(𝑗)
𝑘|𝑘
=

𝑁𝑝

∑

𝑖=1

w
𝑖,𝑘
x̂(𝑗)
𝑖,𝑘|𝑘

. (26)

End for. (Resample if needed [30–32].)

It should be pointed out that in𝐻
∞
filter the level 𝛾must

be selected carefully to guarantee the existence of the HUF,
or else the filtering program will fail in the applications of
HURBPF approach. To adaptively adjust 𝛾 to its minimum
at each iteration, we can choose the value of 𝛾

𝑘
as [16]

𝛾
2

𝑘
= 𝛼max{eig (P−1

𝑘|𝑘−1
+ P−1
𝑘|𝑘−1

P𝑥𝑧
𝑘|𝑘−1

Rk
−1

×[P−1
𝑘|𝑘−1

P𝑥𝑧
𝑘|𝑘−1

]

𝑇

)

−1

} ,

(27)

where 𝛼 is a scalar larger than one andmax{eig(𝐴)−1} denotes
the maximum eigenvalue of the matrix 𝐴−1.

4. Simulation Results

This section presents the two-dimensional (2D) target track-
ing examples to demonstrate the performance of the pro-
posed tracking algorithms.

Example 1. The targets are modeled with near constant
velocity model in Cartesian coordinates. The discrete-time
dynamic and measurement models of the 𝑗th target have the
following form:

x
𝑗,𝑘
= F
𝑗,𝑘−1

x
𝑗,𝑘−1

+ w
𝑘−1
,

z
𝑗,𝑘
= H
𝑗,𝑘
x
𝑗,𝑘
+ k
𝑘
,

(28)

where

F
𝑗,𝑘−1

= (

1 0 𝛿
𝑡
0

0 1 0 𝛿
𝑡

0 0 1 0

0 0 0 1

) ,

H
𝑗,𝑘
= (

1 0 0 0

0 1 0 0
) ,

(29)

w
𝑘−1

and k
𝑘
are zero mean Gaussian process noises. The

standard process and measurement noise variances are
selected as 𝜎

𝑥
= 0.001 km and 𝜎

𝑧
= 20 km, respectively.

The sample interval 𝛿
𝑡

= 1 and the correct measure-
ments return with a known detection probability 𝑃

𝑑
=

1 (detection missing will not happen). At each time step
𝑘, the target is located at coordinates (𝑥

𝑘
, 𝑦
𝑘
) and moves

with constant velocity vector ( ̇𝑥
𝑘
, ̇𝑦
𝑘
), which are combined
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Figure 1: Example of two targets tracking (a successful track by
HRBPF).

with the target’s state vector x
𝑘

= (𝑥
𝑘
, 𝑦
𝑘
, ̇𝑥
𝑘
, ̇𝑦
𝑘
)
𝑇. In

this two-target-crossing scenario (see Figure 1), target 1 and
target 2 begin at 𝑘 = 0 with position-velocity coordi-
nates x(1)

0
= (50 km, 50 km, 10 km/s, 2.5 km/s)𝑇 and x(2)

0
=

(50 km, 400 km, 10 km/s, −9 km/s)𝑇, respectively. The total
number of tracking time steps is 40.

The KRBPF serves as the baseline algorithm, and the
proposed HRBPF algorithm is compared with it. Both
algorithms are designed based on the same assumptions,
and the performance of the two algorithms is eval-
uated by the average results over Monte Carlo runs.
The initial state estimates of the two targets are set to
x̂(1)
0|0

= (30 km, 50 km, 10 km/s, 2.5 km/s)𝑇 and x̂(2)
0|0

=

(30 km, 400 km, 10 km/s, −9 km/s)𝑇, respectively. The clutter
is modeled as independent and identically distributed with
uniform spatial distribution in a detection region of the
coordinate plane [0 km, 500 km] × [0 km, 500 km], and the
number of cluttermeasurements obeys a Poisson distribution
with the Poisson random number 𝜆 = 10 (clutter rate).
The number of particles used in the simulation is 100. The
standard measurement variance used in both algorithms,
KRBPF (Kalman filter based RBPF) and HRBPF (𝐻

∞
filter

based RBPF), is 𝜎𝑎
𝑧
= 30 km. The position root mean square

errors (RMSEs) of the KRBPF and HRBPF algorithms are
illustrated in Figure 2 (target 1) and Figure 3 (target 2). We
can see that the overall performance of the proposed HRBPF
is significantly better than that of theKRBPF as expected.This
is due to the fact that the HF outperforms the KF when the
statistics of the noise processes are not known by the filtering
algorithms.

Example 2. Consider a scenario of tracking two targets using
bearings-only measurements received by two static sensors
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Figure 2: Comparison of the average position estimation errors of
target 1.
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Figure 3: Comparison of the average position estimation errors of
target 2.

which are located at (𝑠𝑖
𝑥,𝑘
, 𝑠
𝑖

𝑦,𝑘
), 𝑖 = 1, 2 (see Figure 4, where

“◻” represents the location of the sensor). The dynamic of
discrete-time velocity model is the same as (28), and the
measurement function is given by

𝑧
𝑖

𝑗,𝑘
= arctan(

𝑦
𝑗,𝑘
− 𝑠
𝑖

𝑦,𝑘

𝑥
𝑗,𝑘
− 𝑠
𝑖

𝑥,𝑘

) + 𝑟
𝑖

𝑘
, (30)

where 𝑟𝑖
𝑘
∼ 𝑁(0, 𝜎

2

𝑧
) with 𝜎

𝑧
= 0.01 rad. Since this measure-

ment model is nonlinear, the URBPF (UKF based RBPF) and
HURBPF are employed for tracking. The clutter originated
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Figure 4: Example of two targets bearings-only tracking (a success-
ful track by HURBPF).
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Figure 5: Comparison of the average position estimation errors of
target 1.

measurements obey Poisson distribution with clutter rate 𝜆 =
5 in a single time step.Thedetection region of the coordinated
plane is set to be [0 km, 50 km] × [0 km, 50 km].The standard
bearings-onlymeasurement variance used in both algorithms
is 𝜎𝑎
𝑧
= 0.03 rad.

The performance of the HURBPF is compared with
that of the URBPF using 50 particles. The two targets
begin at 𝑘 = 0 with position-velocity coordinates x(1)

0
=

(15 km, 5 km, 0.2 km/s, 1 km/s)𝑇 and x(2)
0

= (45 km, 5 km,
−0.8 km/s, 1 km/s)𝑇, respectively. The total number of track-
ing time steps is 40. In this example, the initial state
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Figure 6: Comparison of the average position estimation errors of
target 2.

estimates of the two targets are set to x̂(1)
0|0

= (13 km, 3 km,
0.05 km/s, 0 km/s)𝑇 and x̂(2)

0|0
= (43 km, 3 km, −0.2 km/s,

0 km/s)𝑇.
The tracking performance of the HURBPF and the

URBPF in terms of RMSE in position is shown in Figures
5 and 6. It can be seen that the HURBPF also outperforms
the URBPF for almost the entire simulation interval since the
HURBPF deals with the unknown measurement noises vari-
ance priors. By the typical examples demonstrated above, a
conclusion can be drawn that the𝐻

∞
based RBPF algorithms

show good robustness against unknown noise statistics.

5. Conclusions

In this paper, we present an improved Rao-Blackwellized
particle filtering algorithm by using the 𝐻

∞
unscented

transform. The main benefit lies in it requiring no priori
knowledge of the statistical properties of the measurement
noise. By decomposing the RBPF filtering distribution, the
HRBPF and HURBPF algorithms are developed based on
the 𝐻

∞
filter for solving the multitarget tracking problems

with unknown noise statistics. The proposed algorithms are
tested by both the linear and nonlinear tracking experiments.
Simulation results show that they can achieve better tracking
performance than the standard KF and UKF based RBPF
algorithms.
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[32] M. Bolić, P. M. Djurić, and S. Hong, “Resampling algorithms
and architectures for distributed particle filters,” IEEE Transac-
tions on Signal Processing, vol. 53, no. 7, pp. 2442–2450, 2005.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 852502, 9 pages
http://dx.doi.org/10.1155/2013/852502

Research Article
Robust Adaptive Switching Fault-Tolerant Control of a Class of
Uncertain Systems against Actuator Faults

Xiao-Zheng Jin

The Key Laboratory of Manufacturing Industrial Integrated Automation, Shenyang University, Shenyang Liaoning 110044, China

Correspondence should be addressed to Xiao-Zheng Jin; jin445118@163.com

Received 18 August 2013; Accepted 16 October 2013

Academic Editor: Bo-Chao Zheng

Copyright © 2013 Xiao-Zheng Jin. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the fault-tolerant control (FTC) problem for a class of linear time-invariant systemswith time-varying actuator
faults and uncertainties. Formore general consideration, the faults and uncertainties are supposed to depend on the states of systems
andunknown constant bounds. For the sake of eliminating the effects of such state-dependent faults anduncertainties automatically,
a switching control strategy which is formulated by a sign function is designed to configure controller based on system’s states. And
some adjustable control parameters are updated via designing adaptive laws. Based on the information from switching function
and the adaptive estimation mechanism, the robust adaptive controllers are constructed to compensate for the effects of faults and
uncertainties. Through Lyapunov functions and adaptive schemes, the asymptotic stability of the resulting adaptive FTC uncertain
system can be achieved. The effectiveness of the proposed design is illustrated via a rocket fairing structural-acoustic model.

1. Introduction

In recent years, the safety, reliability, and validity of practical
systems have attracted growing attention. However, during
the operation of systems, the occurrence of some critical
and unpredictable faults of system components, especially in
actuators and sensors, is unavoidable and intolerable. As we
know, actuators afford the operating function of the whole
system. In the event of an actuator fault, the traditional feed-
back control designmay result in unsatisfactory performance
of systems or even cause other catastrophic consequence.
Thus, fault-tolerant control (FTC) designs are necessary to
make the system have capability of tolerating potential actua-
tor faults and to improve the safety and reliability of systems.

In the existing literatures, there are many valuable re-
search results on fault-tolerant control designs in time-delay
systems [1, 2], uncertain systems [3–9], nonlinear systems
[10, 11], network control systems [12, 13], and so forth. Among
those studies, the FTC design approaches can be generally
classified into two types, that is, the passive FTC approach
and the active FTC approach. By considering faults as special
strong uncertainties without any access of on-line fault
information, the passive FTC approach just designs a fixed
controller to compensate for the faults and take no additional

actions in response to the faults (see, e.g., [14, 15]). Contrarily,
active FTC methodologies design adjustable controllers on
line and take some response actions to the faults for eliminat-
ing the effects of faults. On one hand, the active FTCmethods
based on fault detection and isolation (FDI) technique can
reconfigure or reconstruct controllers by using the real-time
fault information provided by the fault diagnosis mechanism
[16–18]. But note that some delays of the response action
may occur in the procedure of diagnosing the faults, and
incorrect decision of FDI mechanism may also happen due
to some unexpected factors such as exogenous disturbances
and system uncertainties. On the other hand, the active
FTC methods based on adaptive technique can regulate
controller inputs immediately according to the state changes
caused by faults.However, estimating or adjusting parameters
by adaptive laws will consume large computation resource,
which will make its unavailable in a practical system. Overall,
despite the fact that an active FTC approach always causes
some drawbacks, it is less conservative and more flexible in
dealing with various faults than a passive FTC approach.

Recently, as adaptive technique has capability of quick
and automatic response for estimating unknown parameters
at each instant, there has been a growing interest in designing
active FTC schemes for systems based on adaptive methods.
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The faults of loss actuator effectiveness and parameteriz-
able stuck-actuator faults were studied in [19–24] by using
indirect adaptive and direct adaptive methods, respectively.
Afterward, the unparameterizable stuck-actuator faults were,
respectively, dealt with in [25, 26] with indirect adaptive and
direct adaptivemethods.The problem of bias-/stuck-actuator
fault compensation was addressed in [27, 28] via an adaptive
sliding-mode design with 𝐿

2
gain performance specification.

Moreover, for the loss actuator effectiveness faults, the papers
[29, 30] combined adaptive technique and linear matrix
inequality (LMI) technique to provide the optimization of
adaptive 𝐻

∞
performance of an FTC system via dynamic

output feedback and state feedback designs, respectively.
Using the notion of adaptive 𝐻

∞
performance in [29, 30],

the recent papers [31, 32] gave less conservativemethods with
mode-dependent Lyapunov functions against unparameteri-
zable stuck-actuator faults. In terms of the above studies, the
adaptive methods can deal with the actuator faults covering
loss of effectiveness, outage, and bias-/stuck-actuator faults.
Motivated by the effectiveness and real-timely of eliminating
a variety of actuator faults, we design a novel active FTC
methodology based on adaptive technique to automatically
accommodate faults in this paper.

It should be mentioned that the compensation of uncer-
tainties have not been fully considered in the existing
robust FTC literature, though some works considered the
robust fault-tolerant compensation control with external
disturbances in [25, 26]. Similar to the studies of some
related uncertain systems [33], the uncertainties can always
be addressed by the LMI technique [3, 4] and sidling mode
control methods [5] in FTC systems. In [6], an adaptive
method was proposed to deal with norm bounded uncer-
tainties and actuator faults. Combining the effects of para-
metric uncertainties, external disturbances, actuator failures,
and control input constraints, the authors of [7] developed
fuzzy logic and back-stepping techniques to construct an
adaptive controller for achieving high attitude performance
of aircraft. For uncertain nonlinear systems, the papers
[8, 9] utilized Hamilton-Jacobi-inequality-based approach
and adaptive diagnostic-based approach to solve the FTC
problem, respectively. In those studies, the uncertainties were
always considered as norm bounded, sector-bounded, and
polytopic-type uncertainties. However, in particular, system’s
uncertainties may vary along with the changes of system’s
state, and it will cause huge damage to the systems when the
states have big amplitude. Thus, the kind of state-dependent
uncertainties should also receive considerable attention.

In this paper, a novel switching adaptive method is pro-
posed to solve the robust fault-tolerant control compensation
problem of a class of uncertain linear systems. Similar to
the adaptive controllers designed in [25, 26], the proposed
adaptive approach can also be used for the general actuator
fault model, which covers the cases of normal operation, loss
of effectiveness, outage, and unparameterizable bias/stuck
faults. But different from [25, 26], a more general state-
dependent unparameterizable bias/stuck fault is considered
in this paper. Moreover, the state-dependent uncertainties
are also addressed in the adaptive controller designs. Here,
each control effectiveness and bias/stuck faults are assumed

to be unknown, and the rate of dependency of states in uncer-
tainties also needs not to be known. But themaximumdegree
of dependency states is supposed to be known.Thus, a switch-
ing control strategy which is formulated by a sign function
is proposed, and, furthermore, some adaptation laws are
designed to estimate the unknown controller parameters on
line. Based on the switching function and the updated values
of these estimations, a class of state feedback controllers is
constructed to solve the active FTC problem. Based on the
Lyapunov stability theory, the adaptive closed-loop system
can be guaranteed to be asymptotically stable in the presence
of failures on actuators and uncertainties.

The rest of the paper is organized as follows. The robust
fault-tolerant control problem formulation is described in
Section 2. In Section 3, the switching adaptive state feed-
back controllers are developed. Section 4 gives a numerical
example of rocket fairing structural-acoustic model and its
simulation results. Finally, conclusion is given in Section 5.

2. Preliminaries and Problem Statement

In this paper, we consider that a linear time-invariant uncer-
tain continuous-time model captured the following state-
space equation:

̇𝑥 (𝑡) = (𝐴 + Δ
𝐴
) 𝑥 (𝑡) + (𝐵 + Δ

𝐵
) 𝑢 (𝑡) , (1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state, 𝑢(𝑡) ∈ 𝑅𝑚 is the control input,𝐴,
𝐵 are known real constant matrices with appropriate dimen-
sions, and Δ

𝐴
and Δ

𝐵
stand for the system uncertainties

described by some bounded nonlinear functions.
Similar to [25], we consider the following mathematic

model to formulate actuator faults:

𝑢
𝐹

𝑖𝑗
(𝑡) = 𝜌

𝑗

𝑖
(𝑡) 𝑢
𝑖
(𝑡) + 𝜎

𝑗

𝑖
𝑢
𝑠𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝐿,

(2)

where the index 𝑖 denotes the 𝑖th actuator, 𝑗 stands for the
𝑗th faulty mode, 𝐿 is the total faulty modes, 𝑢𝐹

𝑖𝑗
(𝑡) represents

the signal from the 𝑖th actuator that has failed in the 𝑗th
faulty mode, 𝜌𝑗

𝑖
(𝑡) is the unknown time-varying actuator

efficiency factor, 𝜌𝑗
𝑖

and 𝜌𝑗
𝑖
represent the known lower and

upper bounds of 𝜌𝑗
𝑖
(𝑡), respectively, satisfying 0 ≤ 𝜌𝑗

𝑖

≤ 𝜌
𝑗

𝑖
≤

𝜌
𝑗

𝑖
≤ 1 according to the practical case, and 𝜎𝑗

𝑖
is an unknown

constant defined as

𝜎
𝑗

𝑖
= {

0, 𝜌
𝑗

𝑖
> 0,

0 or 1, 𝜌𝑗
𝑖
= 0.

(3)

𝑢
𝑠𝑖
(𝑡) is the unparametrizable time-varying stuck-actuator

fault in the 𝑖th actuator satisfying





𝑢
𝑠
(𝑡)




≤ 𝛼 ‖𝑥 (𝑡)‖ + 𝑢

𝑠
, (4)

where 𝛼 ≥ 0 and 𝑢
𝑠
> 0 are unknown constants. Note that the

fault model can formulate the faults of actuator outage, loss of
effectiveness, and bias and stuck (please see [25] for detail).
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Remark 1. According to the practical case, the occurrence of
time-varying unparametrizable faults may be related to the
current system states. Thus, we assume that the unparame-
trizable stuck fault in (4) depends on system’s states and
a positive constant.Obviously, it is amore general assumption
on actuator-stuck faults than the norm-bounded unparame-
trizable stuck faults considered in [25] or parametrizable
stuck faults addressed in [21–24]. Setting 𝛼 = 0, the condition
reduces to the assumption proposed in [25].

Here, we define the following sets:

Δ
𝜌
𝑗 = {𝜌

𝑗

(𝑡) : 𝜌
𝑗

(𝑡) =

𝑚

diag
𝑖=1

[𝜌
𝑗

𝑖
(𝑡)] , 𝜌

𝑗

𝑖
(𝑡) ∈ [𝜌

𝑗

𝑖

, 𝜌
𝑗

𝑖
]} ,

𝑁
𝜌
𝑗 = {𝜌

𝑗

(𝑡) : 𝜌
𝑗

(𝑡) =

𝑚

diag
𝑖=1

[𝜌
𝑗

𝑖
(𝑡)] ,

𝜌
𝑗

𝑖
(𝑡) = 𝜌

𝑗

𝑖

or 𝜌𝑗
𝑖
(𝑡) = 𝜌

𝑗

𝑖
} ,

(5)

where 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝐿, and the notation
diag𝑚
𝑖=1
[𝜌
𝑗

𝑖
(𝑡)] denotes the block-diagonal matrix with 𝜌𝑗

𝑖
(𝑡),

𝑖 = 1, 2, . . . , 𝑚 along the diagonal. And, for the sake of
convenience description, for all possible faulty modes 𝐿, the
following uniform actuator fault model is exploited:

𝑢
𝐹

(𝑡) = 𝜌 (𝑡) 𝑢 (𝑡) + 𝜎𝑢
𝑠
(𝑡) , (6)

where 𝜌(𝑡) = diag[𝜌
1
(𝑡), . . . , 𝜌

𝑚
(𝑡)] ∈ {𝜌

1

(𝑡), . . . , 𝜌
𝐿

(𝑡)}.
Taking actuator faults (6) into consideration, the actual

control inputs 𝑢(𝑡) generated by actuators are

𝑢
𝐹

(𝑡) = 𝑢 (𝑡) + 𝑃 (𝑡 − 𝑇) [(𝜌 (𝑡) − 𝐼) 𝑢 (𝑡) + 𝜎𝑢
𝑠
(𝑡)] , (7)

where 𝑃(𝑡−𝑇) = diag𝑚
𝑖=1
[𝑝
𝑖
(𝑡− 𝑡
𝑖
)]with 𝑇 = [𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
]
𝑇

∈

𝑅
𝑛 denotes the time profiles of faults and 𝑡

𝑖
, 𝑖 = 1, 2, . . . , 𝑚

is the unknown fault-occurrence time representing the time
profile of a fault affecting the 𝑖th actuator.Then, the faults with
time profiles are modeled as follows:

𝑝
𝑖
(𝑡 − 𝑡
𝑖
) = {

0, if 𝑡 < 𝑡
𝑖
,

1 − 𝑒
−𝑎𝑖(𝑡−𝑡𝑖)

, if 𝑡 ≥ 𝑡
𝑖
,

(8)

where the scalar 𝑎
𝑖
> 0 denotes the unknown fault evolution

rate. Small values of 𝑎
𝑖
characterize slowly developing faults,

also known as incipient faults. For large values of 𝑎
𝑖
, the

time profile 𝑝
𝑖
approaches a step function that models abrupt

faults. It was worth mentioning that the fault time profile
described by (8) denotes only the developing speed of a fault,
whereas all its other basic features are defined by the vector
(𝜌(𝑡) − 𝐼)𝑢(𝑡) + 𝜎𝑢

𝑠
(𝑡).

Hence, considering actuator faults (7), the dynamics of
system (1) can be described by

̇𝑥 (𝑡) = (𝐴 + Δ
𝐴
) 𝑥 (𝑡)

+ (𝐵 + Δ
𝐵
) (𝐼 + 𝑃 (𝑡 − 𝑇) (𝜌 (𝑡) − 𝐼)) 𝑢 (𝑡)

+ (𝐵 + Δ
𝐵
) 𝑃 (𝑡 − 𝑇) 𝜎𝑢

𝑠
(𝑡) .

(9)

Here, we consider the case of state-feedback fault-tolerant
controller design.Thus, we assume that all the states of system
are available at every instant and all pairs {𝐴, 𝐵𝜌(𝑡)}, are uni-
formly completely controllable for any actuator failure mode
𝜌(𝑡) ∈ {𝜌

1

(𝑡), . . . , 𝜌
𝐿

(𝑡)}. Moreover, according to the study
of [25], for completely compensating the unparametrizable
stuck faults, rank[𝐵𝜌(𝑡)] = rank[𝐵] should be satisfied for any
actuator failure mode 𝜌(𝑡) ∈ {𝜌1(𝑡), . . . , 𝜌𝐿(𝑡)}. On the other
hand, for an uncertain system (1), the following assumption
in FTC design is also assumed to be valid.

Assumption 2. For any vector 𝑥 ∈ 𝑅𝑛, there exists a positive
constant 𝜂 < 1 such that






𝑥
𝑇

Δ
𝐵






≤ 𝜂






𝑥
𝑇

𝐵𝜌






, (10)

where 𝜌 = min(diag𝑚
𝑖=1
[𝜌
𝑗

𝑖

]) ∈ Δ
𝜌
𝑗 , 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1,

2, . . . , 𝐿. Moreover, Δ
𝐴
is a norm bounded matrix satisfying




Δ
𝐴





≤ 𝛿
𝐴
, (11)

where 𝛿
𝐴
is an unknown positive constant.

Then, the main objective of this paper is to construct
a robust adaptive state feedback controller 𝑢(𝑡) such that
the closed-loop system (9) can be guaranteed to be asymp-
totically stable even in the cases of actuator failures and
uncertainties.

3. Switching Robust Adaptive FTC
System Design

For the sake of eliminating the effects of actuator faults
and uncertainties completely, a switching adaptive control
strategy is proposed in this section. Some adaptive laws
are designed to construct the controller with the estimation
signals of the unknown actuator failure parameters and
upper bound of uncertainties.Then, the asymptotically stable
results of the closed-loop FTC system via state feedback are
presented inTheorem 3.

Consider a linear time-invariant uncertain FTC model
described by (9) and controller model

𝑢 (𝑡) = − sgn (𝑥𝑇𝐵)
𝑇

(
̂
𝑘
1
(𝑡) +

̂
𝑘
2
(𝑡)






𝑥
𝑇

𝐵𝜌






) , (12)

where the sign function sgn(𝑥𝑇𝐵)𝑇 = [sgn(𝑏
1
), sgn(𝑏

2
),. . . ,

sgn(𝑏
𝑚
)]
𝑇, 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 is the 𝑖 element of the vector 𝑥𝑇𝐵

and sgn(𝑏
𝑖
) is defined by

sgn (𝑏
𝑖
) =

{
{

{
{

{

−1, if 𝑏
𝑖
< 0,

1, if 𝑏
𝑖
> 0,

0, if 𝑏
𝑖
= 0;

(13)

̂
𝑘
1
(𝑡) ∈ 𝑅 is updated by the following adaptive law:

𝑑
̂
𝑘
1
(𝑡)

𝑑𝑡

= 𝛾 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌






, (14)
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where 𝛾 is any positive constant and ̂𝑘
1
(𝑡
0
) is finite, and, from

(14), we can see that ̂𝑘
1
(𝑡) ≥ 0 if ̂𝑘

1
(𝑡
0
) ≥ 0; ̂𝑘

2
(𝑡) ∈ 𝑅 is

updated by the following adaptive law:

𝑑
̂
𝑘
2
(𝑡)

𝑑𝑡

= 𝜅 (1 − 𝜂) 𝜆min‖𝑥‖
2

, (15)

where 𝜅 is any positive constant, 𝜆min is the smallest eigen-
value of 𝐵𝜌(𝐵𝜌)𝑇, and ̂𝑘

2
(𝑡
0
) is finite, and, from (15), we can

see that ̂𝑘
2
(𝑡) ≥ 0 if ̂𝑘

2
(𝑡
0
) ≥ 0.

Therefore, substituting (12) into (9), the closed-loop FTC
system model can be written by

̇𝑥 (𝑡) = (𝐴 + Δ
𝐴
) 𝑥 (𝑡) − 𝐵 (𝐼 + 𝑃 (𝑡 − 𝑇) (𝜌 (𝑡) − 𝐼))

× sgn (𝑥𝑇𝐵)
𝑇

(
̂
𝑘
1
(𝑡) +

̂
𝑘
2
(𝑡)






𝑥
𝑇

𝐵𝜌






)

− Δ
𝐵
(𝐼 + 𝑃 (𝑡 − 𝑇) (𝜌 (𝑡) − 𝐼))

× sgn (𝑥𝑇𝐵)
𝑇

(
̂
𝑘
1
(𝑡) +

̂
𝑘
2
(𝑡)






𝑥
𝑇

𝐵𝜌






)

+ (𝐵 + Δ
𝐵
) 𝑃 (𝑡 − 𝑇) 𝜎𝑢

𝑠
(𝑡) .

(16)

On the other hand, we denote that

̃
𝑘
1
(𝑡) =

̂
𝑘
1
(𝑡) − 𝑘

1
,

̃
𝑘
2
(𝑡) =

̂
𝑘
2
(𝑡) − 𝑘

2
.

(17)

Since 𝑘
1
and 𝑘

2
are unknown constants, we can write the

following error system:

𝑑
̃
𝑘
1
(𝑡)

𝑑𝑡

= 𝛾 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌






,

𝑑
̃
𝑘
2
(𝑡)

𝑑𝑡

= 𝜅 (1 − 𝜂) 𝜆min‖𝑥‖
2

.

(18)

In the following, we denote a solution of the closed-loop
system and the error system by (𝑥, ̃𝑘

1
,
̃
𝑘
2
)(𝑡). Then, the fol-

lowingmain results can be obtainedwhich shows the globally
asymptotic stability of the solutions of the adaptive closed-
loop system described by (16) and (18).

Theorem 3. Consider the adaptive closed-loop system de-
scribed by (16) and (18) satisfying Assumption 2. The fault-
tolerant control system is asymptotically stable for any 𝜌(𝑡) ∈
Δ
𝜌
𝑗 , if one chooses the controller as (12) and determine ̂𝑘

3
(𝑡),

̂
𝑘
4
(𝑡) according to the adaptive laws (14) and (15), respectively.

Proof. For the adaptive closed-loop system described by (16),
we first define a Lyapunov functional candidate as

𝑉(𝑥,
̃
𝑘
1
,
̃
𝑘
2
) = 𝑥
𝑇

𝑥 + 𝛾
−1̃
𝑘
2

1
+ 𝜅
−1̃
𝑘
2

2
. (19)

Then, according to (9), the time derivative of 𝑉 for 𝑡 > 0
associated with a certain failure mode 𝜌 ∈ Δ

𝜌
𝑗 is

𝑑𝑉 (𝑥,
̃
𝑘
1
,
̃
𝑘
2
, 𝑡)

𝑑𝑡

= 𝑥
𝑇

[(𝐴 + Δ
𝐴
)
𝑇

+ (𝐴 + Δ
𝐴
)] 𝑥

+ 2𝑥
𝑇

(𝐵 + Δ
𝐵
) (𝐼 + 𝑃 (𝑡 − 𝑇) (𝜌 (𝑡) − 𝐼)) 𝑢

+ 2𝑥
𝑇

(𝐵 + Δ
𝐵
) 𝑃 (𝑡 − 𝑇) 𝜎𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2

= 2𝑥
𝑇

(𝐴 + Δ
𝐴
)
𝑇

𝑥

− 2𝑥
𝑇

𝐵 (𝐼 + 𝑃 (𝑡 − 𝑇) (𝜌 (𝑡) − 𝐼))

× sgn (𝑥𝑇𝐵)
𝑇

(
̂
𝑘
1
+






𝑥
𝑇

𝐵𝜌







̂
𝑘
2
)

− 2𝑥
𝑇

Δ
𝐵
(𝐼 + 𝑃 (𝑡 − 𝑇) (𝜌 (𝑡) − 𝐼))

× sgn (𝑥𝑇𝐵)
𝑇

(
̂
𝑘
1
+






𝑥
𝑇

𝐵𝜌







̂
𝑘
2
)

+ 2𝑥
𝑇

(𝐵 + Δ
𝐵
) 𝑃 (𝑡 − 𝑇) 𝜎𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
.

(20)

According to the definition of 𝜌(𝑡) and 𝑃(𝑡−𝑇) in (2) and
(8), respectively, we know that (𝐼 + 𝑃(𝑡 − 𝑇)(𝜌(𝑡) − 𝐼)) is a
positive diagonal matrix. Then considering the definition of
(13), we have the following fact:






𝑥
𝑇

𝐵𝑃
𝜌






≤ 𝑥
𝑇

𝐵𝑃
𝜌
sgn (𝑥𝑇𝐵)

𝑇

, (21)

where 𝑃
𝜌
= 𝐼 + 𝑃(𝑡 − 𝑇)(𝜌(𝑡) − 𝐼).

Thus, by the light of the inequality of (21) and the
condition (4), we can rewrite (20) as

𝑑𝑉 (𝑥,
̃
𝑘
1
,
̃
𝑘
2
)

𝑑𝑡

≤ ‖𝑥‖
2 



𝐴 + Δ

𝐴






− 2






𝑥
𝑇

𝐵𝑃
𝜌







̂
𝑘
1
− 2






𝑥
𝑇

𝐵𝑃
𝜌












𝑥
𝑇

𝐵𝜌







̂
𝑘
2

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖





𝑢
𝑠






+ 2






𝑥
𝑇

Δ
𝐵
𝑃
𝜌







̂
𝑘
1
+ 2






𝑥
𝑇

Δ
𝐵
𝑃
𝜌












𝑥
𝑇

𝐵𝜌







̂
𝑘
2

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2

≤ ‖𝑥‖
2 



𝐴 + Δ

𝐴






− 2






𝑥
𝑇

𝐵𝑃
𝜌







̂
𝑘
1
− 2






𝑥
𝑇

𝐵𝑃
𝜌












𝑥
𝑇

𝐵𝜌







̂
𝑘
2

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ (𝛼 ‖𝑥 (𝑡)‖ + 𝑢

𝑠
)
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+ 2






𝑥
𝑇

Δ
𝐵
𝑃
𝜌













̂
𝑘
1
+ 2












𝑥
𝑇

Δ
𝐵
𝑃
𝜌












𝑥
𝑇

𝐵𝜌







̂
𝑘
2

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
.

(22)

Due to the fact that 𝜌 ≤ 𝐼 + 𝑃(𝑡 − 𝑇)(𝜌 − 𝐼) ≤ 𝐼, we
have ‖𝑥𝑇𝐵𝜌‖ ≤ ‖𝑥

𝑇

𝐵𝑃
𝜌
‖ and ‖𝑃

𝜌
‖ ≤ 1. Then, following

Assumption 2, we can yield

𝑑𝑉 (𝑥,
̃
𝑘
1
,
̃
𝑘
2
)

𝑑𝑡

≤ ‖𝑥‖
2 



𝐴 + Δ

𝐴






− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̂
𝑘
1
− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







2

̂
𝑘
2

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝛼 ‖𝑥 (𝑡)‖

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2

≤ ‖𝑥‖
2 



𝐴 + Δ

𝐴






− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̂
𝑘
1
− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







2

̂
𝑘
2

+ 2‖𝑥‖
2 



𝐵 + Δ

𝐵





‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝛼

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2

≤ ‖𝑥‖
2

(




𝐴 + Δ

𝐴





+ 2




𝐵 + Δ

𝐵





‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝛼)

− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̂
𝑘
1
− 2 (1 − 𝜂) 𝜆min‖𝑥‖

2̂
𝑘
2

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
,

(23)

where 𝜆min is the smallest eigenvalue of 𝐵𝜌(𝐵𝜌)𝑇.
On the other hand, according to the definition of (1), (4),

and (8), we know that there always exist positive constants 𝑘
1

and 𝑘
2
such that

(1 − 𝜂)






𝑥
𝑇

𝐵𝜌






𝑘
1

>






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝑢

𝑠
,

(1 − 𝜂) 𝜆min‖𝑥‖
2

𝑘
2

> ‖𝑥‖
2

(




𝐴 + Δ

𝐴





+ 2




𝐵 + Δ

𝐵





‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝛼)

(24)

for any 𝑥 ̸= 0.

Then, it follows from (22) that, for any 𝑥 ̸= 0,

𝑑𝑉 (𝑥,
̃
𝑘
1
,
̃
𝑘
2
)

𝑑𝑡

< −2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̃
𝑘
1
− 2 (1 − 𝜂) 𝜆min‖𝑥‖

2̃
𝑘
2

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2

= 0.

(25)

Hence, it is easy to see that 𝑑𝑉(𝑥, ̃𝑘
1
,
̃
𝑘
2
)/𝑑𝑡 < 0 for any

𝑥 ̸= 0. Thus, the solutions of closed-loop FTC system are uni-
formly bounded, and the state 𝑥(𝑡) converges asymptotically
to zero. This ends the proof.

Theorem 3 indicates that the proposed adaptive switching
control scheme can deal with a class of uncertain systems
and actuator faults with condition (4) and Assumption 2.
Actually, some more relaxant conditions of systems and
actuator faults can also be dealt with by themodified adaptive
switching control designs. The following theorem is given to
illustrate the asymptotic stability results of multidimension
state-dependent uncertainties and stuck-actuator faults.

Theorem 4. Consider uncertain system (1) satisfying (10) and




Δ
𝐴





≤ 𝛿‖𝑥‖

𝑝

+ 𝛿
𝐴
, (26)

where 𝛿, 𝛿
𝐴
> 0, and actuator faults formulated in (6) with





𝑢
𝑠
(𝑡)




≤ 𝛼‖𝑥(𝑡)‖

𝑞

+ 𝑢
𝑠
, (27)

where 𝑝 and 𝑞 are known maximum degree of ‖𝑥(𝑡)‖ denoting
the rate of dependency of states using the following controller:

𝑢
𝑖
(𝑡) = − sgn (𝑥𝑇𝐵)

𝑇

× (
̂
𝑘
1
(𝑡) +

̂
𝑘
2
(𝑡)






𝑥
𝑇

𝐵𝜌







+
̂
𝑘
3
(𝑡)






𝑥
𝑇

𝐵𝜌







𝑝+1

+
̂
𝑘
4
(𝑡)






𝑥
𝑇

𝐵𝜌







𝑞

) ,

(28)

where ̂𝑘
1
(𝑡) and ̂𝑘

2
(𝑡) are updated by adaptive laws (14) and

(15) and ̂𝑘
3
(𝑡) and ̂𝑘

4
(𝑡) are adjusted by the following adaptive

laws:

𝑑
̂
𝑘
3
(𝑡)

𝑑𝑡

= 𝜁 (1 − 𝜂) ‖𝑥‖
𝑝+2

,

𝑑
̂
𝑘
4
(𝑡)

𝑑𝑡

= 𝜉 (1 − 𝜂) 𝜆min‖𝑥‖
𝑞+1

,

(29)

where 𝜁 and 𝜉 are any positive constants.Then, the system states
are asymptotically convergence to zero within finite time.

Proof. Similar to the proof of Theorem 3, we first define a
Lyapunov functional candidate as:

𝑉(𝑥,
̃
𝑘
1
,
̃
𝑘
2
,
̃
𝑘
3
,
̃
𝑘
4
) = 𝑥
𝑇

𝑥 + 𝛾
−1̃
𝑘
2

1
+ 𝜅
−1̃
𝑘
2

2
+ 𝜁
−1̃
𝑘
2

3
+ 𝜉
−1̃
𝑘
2

4
.

(30)
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Then, in terms of (21), the time derivative of 𝑉 for 𝑡 > 0
associated with a certain failure mode 𝜌 ∈ Δ

𝜌
𝑗 is

𝑑𝑉 (𝑥,
̃
𝑘
1
,
̃
𝑘
2
,
̃
𝑘
3
,
̃
𝑘
4
, 𝑡)

𝑑𝑡

= 𝑥
𝑇

[(𝐴 + Δ
𝐴
)
𝑇

+ (𝐴 + Δ
𝐴
)] 𝑥

+ 2𝑥
𝑇

(𝐵 + Δ
𝐵
) (𝐼 + 𝑃 (𝑡 − 𝑇) (𝜌 (𝑡) − 𝐼)) 𝑢

+ 2𝑥
𝑇

(𝐵 + Δ
𝐵
) 𝑃 (𝑡 − 𝑇) 𝜎𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
+ 2𝜁
−1̃
𝑘
3

̇
̃
𝑘
3
+ 2𝜉
−1̃
𝑘
4

̇
̃
𝑘
4

≤ 2‖𝑥‖
2

(‖𝐴‖ +




Δ
𝐴





)

− 2






𝑥
𝑇

𝐵𝑃
𝜌







̂
𝑘
1
− 2






𝑥
𝑇

𝐵𝑃
𝜌












𝑥
𝑇

𝐵𝜌







̂
𝑘
2

− 2






𝑥
𝑇

𝐵𝑃
𝜌












𝑥
𝑇

𝐵𝜌







𝑝+1

̂
𝑘
3
− 2






𝑥
𝑇

𝐵𝑃
𝜌












𝑥
𝑇

𝐵𝜌







𝑞

̂
𝑘
4

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖





𝑢
𝑠






+ 2






𝑥
𝑇

Δ
𝐵
𝑃
𝜌







̂
𝑘
1
+ 2






𝑥
𝑇

Δ
𝐵
𝑃
𝜌












𝑥
𝑇

𝐵𝜌







̂
𝑘
2

+ 2






𝑥
𝑇

Δ
𝐵
𝑃
𝜌












𝑥
𝑇

𝐵𝜌







𝑝+1

̂
𝑘
3
+ 2






𝑥
𝑇

Δ
𝐵
𝑃
𝜌












𝑥
𝑇

𝐵𝜌







𝑞

̂
𝑘
4

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
+ 2𝜁
−1̃
𝑘
3

̇
̃
𝑘
3
+ 2𝜉
−1̃
𝑘
4

̇
̃
𝑘
4
.

(31)

From the fact of ‖𝑥𝑇𝐵𝜌‖ ≤ ‖𝑥
𝑇

𝐵𝑃
𝜌
‖, ‖𝑃
𝜌
‖ ≤ 1, and

inequalities (10), (26), and (27), we can rewrite (31) as

𝑑𝑉 (𝑥,
̃
𝑘
1
,
̃
𝑘
2
,
̃
𝑘
3
,
̃
𝑘
4
, 𝑡)

𝑑𝑡

≤ 2‖𝑥‖
2

(‖𝐴‖ + 𝛿‖𝑥‖
𝑝

+ 𝛿
𝐴
)

− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̂
𝑘
1
− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







2

̂
𝑘
2

− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







𝑝+2

̂
𝑘
3
− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







𝑞+1

̂
𝑘
4

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ (𝛼‖𝑥 (𝑡)‖

𝑞

+ 𝑢
𝑠
)

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
+ 2𝜁
−1̃
𝑘
3

̇
̃
𝑘
3
+ 2𝜉
−1̃
𝑘
4

̇
̃
𝑘
4

≤ 2‖𝑥‖
2

(‖𝐴‖ + 𝛿
𝐴
) + 2𝛿‖𝑥‖

𝑝+2

− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̂
𝑘
1
− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







2

̂
𝑘
2

− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







𝑝+2

̂
𝑘
3
− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







𝑞+1

̂
𝑘
4

+ 2𝛼‖𝑥‖
𝑞+1 



(𝐵 + Δ

𝐵
)




‖𝑃 (𝑡 − 𝑇) 𝜎‖

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
+ 2𝜁
−1̃
𝑘
3

̇
̃
𝑘
3
+ 2𝜉
−1̃
𝑘
4

̇
̃
𝑘
4

≤ 2‖𝑥‖
2

(‖𝐴‖ + 𝛿
𝐴
) + 2𝛿‖𝑥‖

𝑝+2

− 2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̂
𝑘
1
− 2 (1 − 𝜂) 𝜆min‖𝑥‖

2̂
𝑘
2

− 2 (1 − 𝜂) 𝜆min‖𝑥‖
𝑝+2̂
𝑘
3
− 2 (1 − 𝜂) 𝜆min‖𝑥‖

𝑞+1̂
𝑘
4

+ 2𝛼‖𝑥‖
𝑞+1 



(𝐵 + Δ

𝐵
)




‖𝑃 (𝑡 − 𝑇) 𝜎‖

+ 2






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝑢

𝑠

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
+ 2𝜁
−1̃
𝑘
3

̇
̃
𝑘
3
+ 2𝜉
−1̃
𝑘
4

̇
̃
𝑘
4
,

(32)

where 𝜆min is the smallest eigenvalue of 𝐵𝜌(𝐵𝜌)𝑇.
Since 𝛿,𝛼, 𝛿

𝐴
, and 𝑢

𝑠
are constants, then there always exist

positive constants 𝑘
1
, 𝑘
2
, 𝑘
3
, and 𝑘

4
such that

(1 − 𝜂)






𝑥
𝑇

𝐵𝜌






𝑘
1
>






𝑥
𝑇

(𝐵 + Δ
𝐵
)






‖𝑃 (𝑡 − 𝑇) 𝜎‖ 𝑢

𝑠
,

(1 − 𝜂) 𝜆min‖𝑥‖
2

𝑘
2
> ‖𝑥‖

2

(‖𝐴‖ + 𝛿
𝐴
) ,

(1 − 𝜂) 𝜆min‖𝑥‖
𝑝+2

𝑘
3
> 𝛿‖𝑥‖

𝑝+2

,

(1 − 𝜂) 𝜆min‖𝑥‖
𝑞+1

𝑘
4
> 𝛼‖𝑥‖

𝑞+1 



(𝐵 + Δ

𝐵
)




‖𝑃 (𝑡 − 𝑇) 𝜎‖

(33)

for any 𝑥 ̸= 0.
Then, it follows from (32) that, for any 𝑥 ̸= 0,

𝑑𝑉 (𝑥,
̃
𝑘
1
,
̃
𝑘
2
,
̃
𝑘
3
,
̃
𝑘
4
, 𝑡)

𝑑𝑡

< −2 (1 − 𝜂)






𝑥
𝑇

𝐵𝜌







̃
𝑘
1
− 2 (1 − 𝜂) 𝜆min‖𝑥‖

2̃
𝑘
2

− 2 (1 − 𝜂) 𝜆min‖𝑥‖
𝑝+2̃
𝑘
3
− 2 (1 − 𝜂) 𝜆min‖𝑥‖

𝑞+1̃
𝑘
4

+ 2𝛾
−1̃
𝑘
1

̇
̃
𝑘
1
+ 2𝜅
−1̃
𝑘
2

̇
̃
𝑘
2
+ 2𝜁
−1̃
𝑘
3

̇
̃
𝑘
3
+ 2𝜉
−1̃
𝑘
4

̇
̃
𝑘
4

= 0.

(34)

Hence, it indicates that, for any 𝑥 ̸= 0, 𝑑𝑉(𝑥, ̃𝑘
1
,
̃
𝑘
2
,
̃
𝑘
3
,
̃
𝑘
4
,

𝑡)/𝑑𝑡 < 0. Thus, the global adaptive fault-tolerant compen-
sation problem of uncertain system is solvable. The solutions
of closed-loop FTC system are uniformly bounded, and the
state 𝑥(𝑡) converges asymptotically to zero.

Remark 5. Theorem 4 has shown that the proposed method
can compensate for multidimension state-dependent uncer-
tainties and stuck-actuator faults. However, the dependency
rate of states should be known to construct the compensation
controllers, which will bring some limitation of this method.
On the other hand, inequality (10) is also a conservative
condition for uncertainties. Some more effective methods
should be investigated to reduce the limitation in future
studies.

From Theorems 3 and 4, we know that the multi-
dimension state-dependent uncertainties and unparametriz-
able stuck-actuator faults can be completely compensated by
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the proposed adaptive switching control method. Actually,
the proposed adaptive switching compensation control de-
signs are not only suitable for the system’s uncertainties, but
also suitable for the controller gain uncertainties. The fol-
lowing corollary is given to illustrate the asymptotic stability
of such nonfragile systems in the case of additive controller
coefficient variations.

Corollary 6. Consider uncertain system (1) satisfying (10),
(26), and (27) using the following controller:

𝑢
𝑖
(𝑡) = − sgn (𝑥𝑇𝐵)

𝑇

(
̂
𝑘
1
(𝑡) + Δ

𝑘1
+ (
̂
𝑘
2
(𝑡) + Δ

𝑘2
)






𝑥
𝑇

𝐵𝜌







+ (
̂
𝑘
3
(𝑡) + Δ

𝑘3
)






𝑥
𝑇

𝐵𝜌







𝑝+1

+ (
̂
𝑘
4
(𝑡) + Δ

𝑘4
)






𝑥
𝑇

𝐵𝜌







𝑞

) ,

(35)

where Δ
𝑘1
, Δ
𝑘2
, Δ
𝑘3
, and Δ

𝑘4
are bounded additive controller

coefficient variations satisfying |Δ
𝑘𝑙
| ≤ 𝛿

𝑘𝑙
, 𝛿
𝑘𝑙
is unknown

positive constants, 𝑙 = 1, 2, 3, 4, and ̂𝑘
1
(𝑡), ̂𝑘
2
(𝑡), ̂𝑘
3
(𝑡), and

̂
𝑘
4
(𝑡) are updated by adaptive laws (14), (15), and (29). Then,

the system states are asymptotically convergence to zero within
finite time.

Proof. Theproof of this corollary is omitted. It is quite similar
to the one of Theorem 4.

Remark 7. FromTheorems 3 and 4, we can see that the effects
of system matrix 𝐴 have also been eliminated in the designs.
Different from other designs to construct a Lyapunov matrix
𝑃 from systemmatrices𝐴 and𝐵 in [25], themethodneeds not
to solve the Lyapunov matrix. Thus, the estimation of 𝐾

1
in

[25] has also been omitted.And it can reduce the computation
burden in the designs. It should also be mentioned that the
same design can also be realized by modifying𝐾

2
such as

𝐾
2
(𝑡) =

−(𝑥
𝑇

𝑃𝐵)

𝑇

𝛽






𝑥
𝑇

𝑃𝐵






(
̂
𝑘
1
(𝑡) +

̂
𝑘
2
(𝑡)






𝑥
𝑇

𝑃𝐵






)





𝑥
𝑇
𝑃𝐵





2

𝛼

(36)

in [25]. In other word, the function of (12) and (36) is the
same.

Remark 8. Actually, several methods have been proposed
to completely compensate for the effects of time-varying
matched perturbations and redundant actuator faults (e.g.,
[25, 26, 31]). All of the methods have a limitation that chat-
tering phenomenon will occur when the states or tracking
errors converge to zero. Note that the limitation still exists
in the method proposed in this paper, because of the usage
of sign function sgn(⋅) in (13). The limitation can be reduced
by some improved control strategies such as filtering theory,
boundary layer around the switching surface, and switching
gain which is proposed in sliding mode control technique
[34, 35]. However, a bounded stability result can be achieved
rather than asymptotic stability.

4. Numerical Example

Similar to [22, 23], the rocket fairing structural-acoustic
model which is also used in [25] is adopted with the following
system matrices:

𝐴 =

[

[

[

[

0 1 0.0802 1.0415

−0.1980 −0.115 −0.0318 0.3

−3.0500 1.1880 −0.4650 0.9

0 0.0805 1 0

]

]

]

]

,

𝐵 =

[

[

[

[

1 1.55 0.75

0.975 0.8 0.85

0 0 0

0 0 0

]

]

]

]

.

(37)

With the similar simulation of [25], we consider four
possible faulty modes as follows.

Normal Mode 1. All the third actuators are normal; that is,
𝜌
1

𝑖
= 1, 𝜎1

𝑖
= 0, 𝑎

𝑖
= 0, and 𝑖 = 1, 2, 3.

Fault Mode 2. The first actuator is outage or stuck, the second
and the third actuatorsmay be normal or loss of effectiveness;
described by 𝜌2

1
= 0, 𝑏

2
≤ 𝜌
2

2
≤ 1, 𝑏

3
≤ 𝜌
2

3
≤ 1, and

𝑏
2
= 0.3, and 𝑏

3
= 0.5, which denotes the maximum loss

of effectiveness for the second and the third actuators, and
𝑎
2
= 2, 𝑎

3
= 3.

Fault Mode 3. The second actuator is outage or stuck, the first
and third actuators may be normal or loss of effectiveness,
that is, 𝜌3

2
= 0, 𝑏

1
≤ 𝜌
3

1
≤ 1, 𝑏

3
≤ 𝜌
3

3
≤ 1, 𝑏

1
= 0.5, 𝑏

3
= 0.3,

which denotes the maximum loss of effectiveness for the first
and the third actuators, and 𝑎

1
= 3, 𝑎

3
= 2.

Fault Mode 4. The third actuator is outage or stuck, the first
and second actuators may be normal or loss of effectiveness;
that is, 𝜌4

3
= 0, 𝑐
1
≤ 𝜌
4

1
≤ 1, 𝑐
2
≤ 𝜌
4

2
≤ 1, 𝑏
1
= 0.5, and 𝑏

2
= 0.2,

which denotes the maximum loss of effectiveness for the first
and the second actuators, and 𝑎

1
= 1, 𝑎

2
= 0.5.

For the sake of verifying the effectiveness of the proposed
adaptivemethod, the simulations are givenwith the following
parameters and initial conditions:

𝛾 = 50, 𝜅 = 1, 𝜁 = 10, 𝜀 = 10,

𝑥 (0) = [0, 1, 0.5, −1]
𝑇

,
̂
𝑘
𝑖
(0) = 0, 𝑖 = 1, 2, 3, 4.

(38)

The following faulty case is considered in the simulations;
that is, before 8 second, the systems operate in normal case
and the uncertainties Δ

𝐴
= (−0.3 sin(0.1𝑡)‖𝑥‖ + 0.5) × 𝐴,

Δ
𝐵
= 0.2 × 𝐵 enter into the system at the beginning (𝑡 ≥

0). At 8 second, the fault mode 2 has occurred; that is,
the first actuator has stuck at 𝑢

𝑠1
(𝑡) = 2 + 0.5 sin(0.1𝑡) −

0.5 cos(0.5𝑡)‖𝑥‖2 and the third actuator loss of effectiveness
described by 𝜌

3
= 1 − 0.03𝑡 until loss effectiveness of 50%.

Figure 1 is the response curves of the system’s states
with robust adaptive state feedback controller in the above-
mentioned faulty case. Figure 2 illustrates the estimated
curves of controller parameters ̂𝑘

1
(𝑡), ̂𝑘
2
(𝑡), ̂𝑘
3
(𝑡), and ̂𝑘

4
(𝑡),

respectively. It is easy to see that the estimates can converge
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Figure 1: Response curves of the system’s states 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, 3, 4

under the proposed adaptive switching controller (28).
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Figure 2: Response curves of the adaptive adjustable control
parameters ̂𝑘
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(𝑡), ̂𝑘
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(𝑡), and ̂𝑘

4
(𝑡), respectively.

and the closed-loop FTC system asymptotically stable in the
presence of faults on actuators and uncertainties.

5. Conclusion

This paper presents a switching adaptive method for robust
fault-tolerant control problem of actuator faults and compen-
sation in continuous-time linear systems. The fault model of
normal operation, loss of effectiveness, outage, and stuck are
considered, and the bias-/stuck-actuator faults and system
uncertainties are supposed to be satisfying a state-dependent
condition.The switching robust adaptive control schemes are
constructed based on a sign function and some updating
adaptation laws which are used to estimate the controller
parameters on line. The proposed state feedback controllers
can automatically compensate the fault and uncertainty
effects and guarantee the asymptotically stable of the system.
A numerical example has shown the effectiveness of the
proposed method.

One of the further research topics is to eliminate the
assumption of knowing the dependency rate of states 𝑝 and
𝑞 and to reduce the condition of (10). Additionally, the
chattering problem should be further considered for the sake
of application of the proposed method.

Acknowledgments

This work is supported by the National Natural Science
Foundation (Grant nos. 61104029, 61273155, and 61203087),
Program for Liaoning Excellent Talents in University (LNET)
(Grant no. LJQ2013122), the science and technology plan of
Liaoning Province (2011219011), the Natural Science Foun-
dation of Liaoning Province (Grant no. 201202156), and
the Scientific Research Foundation for Doctor of Liaoning
Province (Grant no. 20121040).

References

[1] Z. Mao, B. Jiang, and P. Shi, “Observer-based fault-tolerant
control for a class of networked control systems with transfer
delays,” Journal of the Franklin Institute, vol. 348, no. 4, pp. 763–
776, 2011.

[2] E. Tian, D. Yue, and C. Peng, “Reliable control for networked
control systems with probabilistic actuator fault and random
delays,” Journal of the Franklin Institute, vol. 347, no. 10, pp. 1907–
1926, 2010.

[3] C. Cheng and Q. Zhao, “Reliable control of uncertain delayed
systems with integral quadratic constraints,” IEE Proceedings of
Control Theory and Applications, vol. 151, no. 6, pp. 790–796,
2004.

[4] S. Ye, Y. Zhang, X. Wang, and B. Jiang, “Fault-tolerant control
for a class of uncertain systems with actuator faults,” Tsinghua
Science and Technology, vol. 15, no. 2, pp. 174–183, 2010.

[5] T.Wang,W.Xie, andY. Zhang, “Slidingmode fault tolerant con-
trol dealing with modeling uncertainties and actuator faults,”
ISA Transactions, vol. 51, no. 3, pp. 386–392, 2012.

[6] X. J. Li and G. H. Yang, “Robust adaptive fault-tolerant control
for uncertain linear systems with actuator failures,” IET Control
Theory & Applications, vol. 6, no. 10, pp. 1544–1551, 2012.



Mathematical Problems in Engineering 9

[7] A.-M. Zou and K. D. Kumar, “Adaptive fuzzy fault-tolerant
attitude control of spacecraft,” Control Engineering Practice, vol.
19, no. 1, pp. 10–21, 2011.

[8] G.-H. Yang, J. L. Wang, and Y. C. Soh, “Reliable guaranteed cost
control for uncertain nonlinear systems,” IEEE Transactions on
Automatic Control, vol. 45, no. 11, pp. 2188–2192, 2000.

[9] X. Zhang, T. Parisini, and M. M. Polycarpou, “Adaptive
fault-tolerant control of nonlinear uncertain systems: an
information-based diagnostic approach,” IEEE Transactions on
Automatic Control, vol. 49, no. 8, pp. 1259–1274, 2004.

[10] S. Varma and K. D. Kumar, “Fault tolerant satellite attitude
control using solar radiation pressure based on nonlinear
adaptive sliding mode,” Acta Astronautica, vol. 66, no. 3-4, pp.
486–500, 2010.

[11] Z. Zhang and W. Chen, “Adaptive output feedback control of
nonlinear systems with actuator failures,” Information Sciences,
vol. 179, no. 24, pp. 4249–4260, 2009.

[12] C.-X. Yang, Z.-H. Guan, and J. Huang, “Stochastic fault tolerant
control of networked control systems,” Journal of the Franklin
Institute, vol. 346, no. 10, pp. 1006–1020, 2009.

[13] H. Zhihong, Z. Yuan, and X. Chang, “A robust fault-tolerant
control strategy for networked control systems,” Journal of
Network and Computer Applications, vol. 34, no. 2, pp. 708–714,
2011.

[14] R. J. Veillette, J. B. Medanic, and W. R. Perkins, “Design
of reliable control systems,” IEEE Transactions on Automatic
Control, vol. 37, no. 3, pp. 290–304, 1992.

[15] G.-H. Yang, J. L. Wang, and Y. C. Soh, “Reliable H
∞
controller

design for linear systems,”Automatica, vol. 37, no. 5, pp. 717–725,
2001.

[16] K. Zhang, B. Jiang, and P. Shi, “Fast fault estimation and
accommodation for dynamical systems,” IET Control Theory
and Applications, vol. 3, no. 2, pp. 189–199, 2009.

[17] H. Alwi and C. Edwards, “Fault detection and fault-tolerant
control of a civil aircraft using a sliding-mode-based scheme,”
IEEE Transactions on Control Systems Technology, vol. 16, no. 3,
pp. 499–510, 2008.

[18] W. Chen and F. N. Chowdhury, “Analysis and detection of
incipient faults in post-fault systems subject to adaptive fault-
tolerant control,” International Journal of Adaptive Control and
Signal Processing, vol. 22, no. 9, pp. 815–832, 2008.

[19] J. D. Boskovic and R. K. Mehra, “A robust adaptive reconfig-
urable flight con-trol scheme for accommodation of control
effector failures,” in Proceeding of the American Control Confer-
ence, vol. 2, pp. 1127–1132, Arlington, Va, USA, 2001.

[20] D. Ye and G.-H. Yang, “Adaptive fault-tolerant tracking control
against actuator faults with application to flight control,” IEEE
Transactions on Control Systems Technology, vol. 14, no. 6, pp.
1088–1096, 2006.

[21] G. Tao, S. M. Joshi, and X. Ma, “Adaptive state feedback
and tracking control of systems with actuator failures,” IEEE
Transactions on Automatic Control, vol. 46, no. 1, pp. 78–95,
2001.

[22] L. F. Wang, B. Huang, and K. C. Tan, “Fault-tolerant vibration
control in a networked and embedded rocket fairing system,”
IEEE Transactions on Industrial Electronics, vol. 51, no. 6, pp.
1127–1141, 2004.

[23] X. Tang,G. Tao, L.Wang, and J. A. Stankovic, “Robust and adap-
tive actuator failure compensation designs for a rocket fairing
structural-acousticmodel,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 40, no. 4, pp. 1359–1366, 2004.

[24] X. D. Tang, G. Tao, and S. M. Joshi, “Adaptive actuator failure
compensation for nonlinear MIMO systems with an aircraft
control application,” Automatica, vol. 43, no. 11, pp. 1869–1883,
2007.

[25] X.-Z. Jin and G.-H. Yang, “Robust adaptive fault-tolerant
compensation control with actuator failures and bounded
disturbances,” Acta Automatica Sinica, vol. 35, no. 3, pp. 305–
309, 2009.

[26] X. Jin, G. Yang, and Y. Li, “Robust fault-tolerant controller
design for linear time-invariant systems with actuator failures:
an indirect adaptive method,” Journal of Control Theory and
Applications, vol. 8, no. 4, pp. 471–478, 2010.

[27] Q. Hu, “Robust adaptive sliding-mode fault-tolerant control
with L

2
-gain performance for flexible spacecraft using redun-

dant reaction wheels,” IET ControlTheory and Applications, vol.
4, no. 6, pp. 1055–1070, 2010.

[28] Q.Hu andB. Xiao, “Adaptive fault tolerant control using integral
sliding mode strategy with application to flexible spacecraft,”
International Journal of Systems Science, vol. 44, no. 12, pp. 2273–
2286, 2013.

[29] G.-H. Yang and D. Ye, “Adaptive fault-tolerant H
∞

control via
dynamic output feedback for linear systems against actuator
faults,” in Proceeding of the 45th IEEE Conference on Decision
and Control 2006, pp. 3524–3529, San Diego, Calif, USA,
December 2006.

[30] G.-H. Yang and D. Ye, “Reliable H
∞

control of linear systems
with adaptive mechanism,” IEEE Transactions on Automatic
Control, vol. 55, no. 1, pp. 242–247, 2010.

[31] X. Z. Jin, G. H. Yang, X. H. Chang, and W. W. Che, “Robust
fault-tolerant H

∞
control with adaptive compensation,” Acta

Automatica Sinica, vol. 39, no. 1, pp. 31–42, 2013.
[32] X. Z. Jin, G. H. Yang, and X. H. Chang, “Robust H

∞
and adap-

tive tracking control against actuator faults with a linearised
aircraft application,” International Journal of Systems Sciences,
vol. 44, no. 1, pp. 151–165, 2013.

[33] X. Xie, X. Zhu, and Y. Wang, “Relaxed global asymptotic
stability of 2-D state-space digital filters described by Roesser
model with polytopic-type uncertainty,” Signal Processing, vol.
94, no. 1, pp. 102–107, 2014.

[34] W.-J. Cao and J.-X. Xu, “Nonlinear integral-type sliding surface
for both matched and unmatched uncertain systems,” IEEE
Transactions on Automatic Control, vol. 49, no. 8, pp. 1355–1360,
2004.

[35] P. Kachroo and M. Tomizuka, “Chattering reduction and error
convergence in the sliding-mode control of a class of nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 41, no. 7,
pp. 1063–1068, 1996.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 636374, 6 pages
http://dx.doi.org/10.1155/2013/636374

Research Article
Modeling Analysis of Power Transformer Fault Diagnosis
Based on Improved Relevance Vector Machine

Lutao Liu1 and Zujun Ding2

1 College of Information and Telecommunication, Harbin Engineering University, Harbin 150001, China
2Department of Electronic and Electrical Engineering, Huaiyin Institute of Technology, Huai’an 223001, China

Correspondence should be addressed to Zujun Ding; dzj king@263.net

Received 13 September 2013; Accepted 15 October 2013

Academic Editor: Zhiguang Feng

Copyright © 2013 L. Liu and Z. Ding. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A newmethod of transformer fault diagnosis based on relevance vectormachine (RVM) is proposed. Bayesian estimation is applied
to support vector machine (SVM) in the novel algorithm, which made fault diagnosis system work more effectively. In the paper,
the analysis model is presented that the solutions of RVM have the feature of sparsity and RVM can obtain global solutions under
finite samples. The process of transformer fault diagnosis for four working statuses is given in experiments and simulations. The
results validated that this method has obvious advantages of diagnosis time and accuracy compared with backpropagation (BP)
neural networks and general SVMmethods.

1. Introduction

Power transformer is one of the key equipment for electric
power transmission and distribution, which is a widely
distributed, complex, and expensive equipment in the power
system. And its safety situation plays a great effect on stability
and security level of power system. Therefore, it is of great
realistic significance to study the fault diagnosis technology
and raise the level of maintenance of power transformers.
Dissolved gas analysis (DGA) [1, 2], which provides operation
information by detection of certain gases generated in an
oil-filled transformer, is the method widely adopted by the
utilities. The concentrations of the dissolved gases, their
generation rates, ratio of respective gases, or total combustible
gases in the oil are the attributes used in the DGAmethod to
interpret a malfunction. Accuracy and reliability of the DGA
data are influenced by many factors, so the DGA three-ratio
method and its improved ratio methods by classical IEC [3]
are considered that limitations are obvious, such that the ratio
crosses the coding boundary or codes change sharply [3, 4].
And it cannot offer completely objective, accurate diagnosis
for all the faults, such as the low diagnostic accuracy for over-
heating fault. With the development of artificial intelligence,
some solutions [5, 6] based on neural networks are applied
to power transformer fault diagnosis process. Though some

improved results in faults diagnosis can be obtained, this kind
of methods has some inherent disadvantages in application,
such as local optimization and danger of overfitting [7, 8].
Support vector machine (SVM) overcomes the drawbacks
of neural networks in aspects of convergence and real-
time application [9, 10]. In recent years, SVM methods
have been applied to fault diagnosis and identification of
power transformers [11–13]. However, the input characteristic
information during the process of fault diagnosis is large
in order that SVM methods take heavy computation to
approximate the optimal solution and spend much time in
parameter searching [14, 15]. So they are difficult in real-time
monitoring and power transformer fault diagnosis.

According to practical situations that there are many
uncertainties in the running of transformers and there are
finite samples during fault diagnosis process, relevance vector
machine is introduced to fault detection and identification
of power transformers. RVM, which applies Bayesian esti-
mation model to SVM algorithms [16, 17], can decrease
hyperparameters in diagnosis algorithms and bring good
adaptive ability in kernel function and model parameters
chosen. RVM is a machine learning methodology based on
sparse Bayesian learning theory proposed byTipping in 2000.
It absorbs the advantages of wonderful generalization and
precision from SVM;meanwhile, it overcomes some inherent
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limitations of SVM and possesses advantageous features
such as high degree of sparsity, fewer kernel functions, and
low computation load. Particularly, the RVM classification
can provide posterior probabilities for class memberships,
which is suitable to analyse indeterminate problem in power
transformer fault diagnosis. By dissolved gas analysis of
power transformer oil, fault diagnosis models are established
based on RVM in the paper. Through fault diagnosis for
several kinds of power transformers, the proposed algorithm
is validated to be better than BP neural networks and general
SVMmethods in the aspects of finite sample size, diagnosing
speed, and diagnosing accuracy. It provides a new way of
thinking for resolving the transformer fault diagnosis prob-
lem in real time. In the future, the research of transformer
diagnosis faults based on RVM is real-time implementation
for power transformer systems. Recently, data-driven fault
diagnosis methods become more popular in many industry
sectors [18–21]. So a combination of the proposed method
and data-driven methods is the future work to realize large-
scale real-time implementation in fault diagnosis of power
transformers.

The paper is organized as follows. In the next section, we
introduce RVM model of fault diagnosis. Diagnosis process
for power transformers is extended in Section 3, which
includes fault information preprocessing, diagnosis model
training, and fault identification for power transformers. In
Section 4, we give the experiment results in application and
offer some benchmark comparisonwith least squares support
vector machine (LS-SVM) and BP neutral networks before
summarising in Section 5.

2. Analysis of RVM Model for Faults Diagnosis

RVM based on Bayesian learning framework introduces
Bayesian theory of Gaussian process in SVM. The results of
inference are shown in the form of probability density, and it
can be written as

𝑦 (𝑥) =

𝑛

∑

𝑗=1

ℎ
𝑗
𝜙
𝑗
(𝑥) + ℎ

0
, (1)

where𝜙
𝑗
(𝑥) is a nonlinear kernel function and ℎ

𝑗
is theweight

of the model. For avoiding overfitting of traditional SVM,
based on Bayesian framework [22], maximum likelihood
method is applied to training of the model weight. RVM
defines the prior probability distribution as follows:

𝑝 (ℎ
𝑗
| 𝑎
𝑗
) = (

𝑎
𝑗

2𝜋

)

1/2

exp(−1
2

𝑎
𝑗
ℎ
2

𝑗
) , (2)

where 𝑎
𝑗
is hyperparameter of the prior distribution. Assum-

ing that input training sample set is {𝑥
𝑗
, 𝑘
𝑗
}
𝑁

𝑗=1

, target value 𝑘
𝑗

is independent, and input noise is Gaussian distribution with
variance 𝜎2, the maximum likelihood function of training
sampling set correspondingly can be expressed as

𝑝 (k | h, 𝜎2) = (2𝜋𝜎2)
−𝑁/2

exp(− 1
2𝜎
2
‖k −Φh‖2) , (3)

where k = [𝑘
1
, . . . , 𝑘

𝑁
]
T, h = [ℎ

1
, . . . , ℎ

𝑁
]
T, and Φ = [1,

Φ
1
(𝑥
𝑗
), . . . , Φ

𝑛
(𝑥
𝑗
)]
T is the response of all kernel functions

with input 𝑥
𝑗
. The posterior distribution of the weight value

conditioned on the data is given by combining the likelihood
function (3) and the prior probability distribution (2) within
Bayesian rule:

𝑝 (h | k, a, 𝜎2) =
𝑝 (k | h, 𝜎2) 𝑝 (h | a)
𝑝 (k | a, 𝜎2)

, (4)

where a = [𝑎
1
, . . . , 𝑎

𝑛
]
T denotes the vector of hyperparam-

eters. And the posterior probability distribution over the
weights is multivariate Gaussian distribution:

𝑝 (h | k, a, 𝜎2) ∼ 𝑁 (𝜇,Σ) , (5)

where Σ = (𝜎−2ΦTΦ+A)−1 is the posterior covariance of the
multivariate Gaussian distribution, A is defined as diagonal
matrix with the elements (𝑎

1
, . . . , 𝑎

𝑛
), and 𝜇 = 𝜎−2ΣΦT is the

mean of the multivariate Gaussian distribution. Integrating
the distribution with respect to weight value, the likelihood
distribution of training value can be given by

𝑝 (ℎ
𝑗
| 𝑘
𝑗
, 𝑎
𝑗
, 𝜎
2

) = ∫𝑝 (𝑘
𝑗
| ℎ
𝑗
, 𝜎
2

) 𝑝 (ℎ
𝑗
| 𝑎
𝑗
) dℎ
𝑗
. (6)

Marginalize (6); marginal likelihood distribution of hyperpa-
rameters can be written as

𝑝 (k | a, 𝜎2) ∼ 𝑁 (0,C) , (7)

where C = 𝜎2I + ΦA−1ΦT. Estimated values of weights
in RVM method are given by the means of the posterior
probability distribution. Maximum posterior estimation of
weights depended on hyperparameter a and noise variance
𝜎
2, and estimated values a and 𝜎2 can be computed by

the maximum marginal likelihood distribution. Uncertainty
of diagnosis model prediction can be represented by the
uncertainty of optimum weight, which is shown in the
posterior distribution. If input x∗ is given, the corresponding
probability distribution of output can be expressed as

𝑝 (𝑘
𝑗
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∗

𝑗
, 𝑎
𝑗
, 𝜎
2

)
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𝑗
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2

) d𝑘
𝑗
,

(8)

and this probability distribution is Gaussian distribution:

𝑝 (k∗ | x∗, a, 𝜎2) ∼ 𝑁(y∗, 𝜎2∗) . (9)

In (9), the predict mean and variance are, respectively,

y∗ = 𝜇TΦ (𝑥∗) ,

𝜎
2∗

= 𝜎
2

+Φ
T
(𝑥
∗

)ΣΦ (𝑥
∗

) .

(10)

Using Bayesian theory to compute parameters of fault diag-
nosis model based on RVM, diagnosis parameters choice can
be optimized and application range of the faults diagnosis can
be extended.
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3. Diagnosis Process of the Transformer
Based on RVM

Internal faults of transformers are classified into heat fault
and electrical fault. In this paper, RVM method was applied
to diagnose four types of working situations in power trans-
formers, which include high energy discharge, low energy
discharge, overheating, and normal condition operation.
After the following three steps: characteristic information
extraction by DGA, diagnosis model training, and faults
recognition, the fault of transformer can be identified accu-
rately.

3.1. Fault Information Preprocessing. Through DGA, concen-
trations of dissolved gases H

2
(hydrogen), CH

4
(methane),

C
2
H
6
(ethane), C

2
H
4
(ethylene), and C

2
H
2
(acetylene) could

be obtained. The information of concentration of the five
dissolved gases can be used to verify the four fault types stated
above. So the ratio of each gas can be computed firstly by the
following method:

𝑥
𝑘

=

𝑐
𝑘

max5
𝑖=1
(𝑐
𝑖
)

, (11)

where 𝑘 = 1, 2, . . . , 5 is the index of each gas. 𝑐𝑘 is the
concentration of gas in the unit ppm. Then, we can obtain
special character information by computing the maximum
concentration of the gas as 𝑥6 = log

10
(max5
𝑘=1
(𝑥
𝑘

)), which is
used for crosswise comparisons for all groups of test data.The
six characteristics of data construct a six-dimension vector
x = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]T. This fault character information
vector can be used to determine the working condition
of power transformer: high energy discharge, low energy
discharge, overheating, or normal condition.

3.2. Diagnosis Model Training. After faults feature extraction,
it is necessary for fault diagnosis that RVM classifiers are
trained to identify four possible states: high energy discharge,
low energy discharge, overheating, and normal condition. So
three diagnosis RVMs should have been set up and trained
by all training samples. Each RVM corresponds to one of
the fault states in power transformers. Training samples are
sent into RVMs for training and identification. The output
is assigned to one if the data of identification result is larger
than zero. On the contrary, the output is zero if the data is
less than zero. Firstly, the RMV1 is trained to overheating
identification by the training sample set. Output of RVM1 for
overheating samples is set to one, and the output for other
fault states remains zero. Secondly, the RVM2 is trained to
separate high energy discharge from low energy discharge.
The output of RVM2 is set to one when the input is a high
energy discharge sample; otherwise output of RVM2 is zero.
Finally, RVM3 for low energy discharge is trained. In the same
way, the output for low energy discharge samples is set to one;
otherwise output is zero.Thus, three RVMs could be obtained
to realize binary classification to all the samples for faults
diagnosis. In the process, the kernel functions implicated in
the three RVMs are all Gaussian radial basis functions. The
flowchart of diagnosis model training was shown in Figure 1.

Training sample x

RVM1 RVM2 RVM3

Overheating High energy
discharge

Low energy
discharge

0 1 0 1 0 1

Figure 1: The flowchart of diagnosis model training.

3.3. Fault Identification of Power Transformers. After features
extraction of DGA in Section 3.1, the test data with character
information are considered as identification samples, which
would be input to the RVMs established for faults diagnosis.
The three RVMs are used to recognize the fault types. If the
output of RVM1 is larger than zero, we could consider that
the fault of power transformer is overheating. If the output
of RVM1 is less than zero, the sample continues to be sent to
RVM2 and RVM3 for recognizing the faults of high energy
discharge and low energy discharge in the same way. If the
outputs of the three RVMs are all less than zero, the power
transformer would be judged in normal working condition.
Thus, RVM classifier identifies the four states of transformers
after three times of identification process.

4. Experimental Results and Analysis of Faults
Diagnosis of Power Transformers

Sixty groups of historical data about gas concentrations in
certain power transformer were collected as the training
set. The data corresponding to actual fault conditions were
known. In the training dataset, there were four working
states of the power transformer, whichwere overheating, high
energy discharge, low energy discharge, and normal opera-
tion. Each state had 15 samples. Three RVMs (RVM1, RVM2,
and RVM3) were constructed by the samples related to each
state in the training dataset, separately. And other 10 groups
of samples of the running transformer were considered as the
test data set; the test samples included 3 overheating samples,
2 high power discharge samples, 3 low power discharge
samples, and 2 normal operation samples; see Table 1.

The 10 groups of test data were sent to the three RVMs
for faults diagnosis after the preprocessing mentioned above.
The output of test data through RVM1 was [4.4361, 0.9235,
3.4215, −8.4312, −7.6557, −9.5236, −4.1404, −2.9146, −6.3237,
−8.3624]; then, we could modify the output result of RVM1
as [1, 1, 1, 0, 0, 0, 0, 0, 0, 0], so the first three samples in Table 1
were adjudged as overheating faults by RMV1. In the same
way, the test samples were sent to RVM2 for the identifi-
cation of high energy discharge fault. The output of RVM2
was [−3.7431, −17.2762, −4.0026, 12.7902, 9.2563, −12.5385,
−3.0571, −6.7612, −37.6247, −26.6382]. So the result of RVM2
was represented as [0, 0, 0, 1, 1, 0, 0, 0, 0, 0]; samples numbers
4 and 5 were recognized as high energy discharge fault.
Finally, the test samples were sent to RVM3, and the outputs
were [−10.9261, −0.7481, −7,6892, −3.6297, −2.6589, 1.2792,
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Table 1: Sample group of dissolved gases.

No. Fault type Data of gas content (unit: ppm)
H2 CH4 C2H6 C2H4 C2H2

1 Overheating 74 523 142 1200 6
2 Overheating 220 382 82 1019 17
3 Overheating 116 352 90 465 5
4 High energy discharge 295 51 12 117 124
5 High energy discharge 449 83 12 104 176
6 Low energy discharge 566 92 35 46 2
7 Low energy discharge 152 54 32 20 3
8 Low energy discharge 172 78 36 28 6
9 No fault 5 3 2 6 6
10 No fault 6 7 6 13 6

Table 2: Diagnosis comparison of the algorithms.

Diagnosis model Target error Training time (s) Test times (s) Accuracy diagnosis
BP neutral net 0.01 116.47 0.25 93%
LS-SVM 0.01 1.25 0.107 96%
Proposed RVM 0.01 0.714 0.05 100%
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Figure 2: Training time via different numbers of training samples.

3.4769, 4.2915, −6.4163, −5.4794]; the result through RVM3
was written as [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]; we could obtain the
decision that low energy discharge happened in samples
of numbers 6, 7, and 8. From the whole process of fault
diagnosis, we found that the output results of three RVMs
were all zeros for the samples numbers 9 and 10, whichmeans
that the transformer was in normal condition. From the
results of the fault diagnosis by the proposed RVM method
in experiments, we concluded that it had the ability for fault
detection and identification of power transformers and the
identification rate was high.

For evaluation of the proposed fault diagnosis model,
we compared three learning models: the proposed RVM, BP
neutral network and LS-SVM. There were 6 six input nodes,

44 hidden nodes, and 4 output nodes in BP neutral network,
in which target error is 0.01. For LS-SVM, target error is
0.01 with the Gaussian radial basis function as the kernel
function. Test parameters included training time, test time,
and diagnosis accuracy of three methods in the condition
of the same training samples. The test samples were 50
groups of historical data samples of the power transformer.
The performance of testing was shown in Table 2. It is
shown in Table 2 that the faults diagnosis models of LS-
SVM and proposed RVM algorithms are superior to those
of BP neutral network in the aspects of training time, test
time, and diagnosis accuracy under the same target error.
Furthermore, because of application of Bayesian probabil-
ity model in the proposed RVM algorithm, the number
of hyperparameters decreases. So test time and diagnosis
accuracy of the proposed algorithm are better compared to
those of conventional LS-SVM algorithm. It is more suitable
to practical application. Next, the performance of training
time, diagnose accuracy, and test time of LS-SVM and the
proposed RVM are illuminated. Figures 2 and 3 show the
performance of training time and diagnose accuracy in
different numbers of training samples. The range of training
samples number is from 25 to 200. From Figure 2, we can
find that training time obviously become, longer for both
of fault diagnosis models with the training sample number
increasing. However, training time of the proposed optimum
RVM model is much less than that of LS-SVM. In Figure 3,
the testing diagnosis accuracy reaches 100% for the proposed
method when the number of training samples is larger than
25. The proposed method is also superior to LS-SVM in test
time see (Figure 4), in which the training sample number
is 200. All the performance described above proves that the
proposed RVM algorithm has advantages in the aspects of
global optimization and sparsity of the solution. It has a wider
range of adaptability than that of conventional SVMmodel.
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Figure 4: Test time via different numbers of test samples.

From the results of the faults diagnosis model by the
RVM algorithm in the experiments, we can conclude that
the proposed method can output the probability of working
states of power transformers, which supplymore useful infor-
mation for transformer overhaul. The method is superior
to conventional diagnosis methods in diagnosis accuracy,
response time, and sample number.

5. Conclusion

The novel fault diagnosis model based on RVM for power
transformers is proposed in the paper. Bayesian learning
framework applied in the model makes hyperparameters
decrease and improves the sparsity of the solutions. It
overcomes the limitations of some traditional algorithms
and enhances applicability of fault diagnosis. The proposed

method uses three RVMs to identify the faults of power
transforms and brings about good results. The probability
statistics of characteristics of the diagnosis model provide
the advantages of small sampling, high sparsity, and low
computation load. Compared to BP neutral network and LS-
SVM, the test time of fault diagnosis is shorter and accuracy
of fault diagnosis is much higher. The results of experiments
and simulations validate that this diagnosis method is suit-
able for real-time surveillance and identification of power
transformers fault. The study of this issue is quite significant
for transformers fault diagnosis application. The future work
is to realize real-time implementation in power transformer
systems by the proposed method.
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The control system may lose the performance to suppress the structural vibration due to the faults in sensors or actuators. This
paper designs the filter to perform the fault detection and isolation (FDI) and then reforms the control strategy to achieve the
fault tolerant control (FTC). The dynamic equation of the structure with active mass damper (AMD) is first formulated. Then, an
estimated system is built to transform the FDI filter design problem to the static gain optimization problem. The gain is designed
to minimize the gap between the estimated system and the practical system, which can be calculated by linear matrix inequality
(LMI) approach. The FDI filter is finally used to isolate the sensor faults and reform the FTC strategy. The efficiency of FDI and
FTC is validated by the numerical simulation of a three-story structure with AMD system with the consideration of sensor faults.
The results show that the proposed FDI filter can detect the sensor faults and FTC controller can effectively tolerate the faults and
suppress the structural vibration.

1. Introduction

Thestructural control system is commonly classified into four
types: passive, active, hybrid, and semiactive control [1–9].
An active control system contains sensors, controllers, and
actuators. Sensors can measure the structural vibration data
that is sent to the controllers. The controllers compute the
desired force according to the control strategy and sensor data
and then command the control devices to generate control
force for vibration reduction. Active control can achieve
many control decisions. Therefore, active control is an effi-
cient method to resist external excitation, such as earthquake
and strong wind. Control strategy is the key of active control,
which is widely studied in recent decades [10–16]. However,
there are some controller design problems in civil engineering
due to the characteristics of the civil structures, such as large
number of degrees of freedom and uncertainties of system
parameters, in whichmany researchers are interested [17–21].

In practical engineering, sensors and actuators may be
destroyed due to the lack of maintenance or extreme loading
such as strong wind or intense earthquake. These faulty
sensors and control devices may degrade the performance
of vibration suppressing and even enlarge the structural

response. Therefore, the robustness is important for the
control system. Fault tolerant control (FTC) technology is an
efficient method to promote the system reliability. FTC can
tolerate faults caused by the components of control system,
such as sensors and actuators, and then guarantee the system
performance. FTC can be divided into two categories, passive
FTCand active FTC.Thedifference between themexists if the
faults are identified online. Passive FTC cannot detect faults
online and cannot be recognized as traditional robust control
[22]. The faults in passive FTC are assumed as system model
uncertainties. Accordingly, passive FTC has limited tolerance
ability because its robustness is only for the estimated faults,
and the faults cannot be detected online. On the other hand,
active FTC can detect faults online, which is called the
fault detection and isolation (FDI) technology, and suppress
excessive structural response.

This paper designs a fault detection and isolation (FDI)
filter and reforms a fault tolerant controller (FTC) through
LMI approach considering sensor faults in civil building
structures with active mass damper (AMD). An estimated
system is built to facilitate the design of FDI and FTC. In
order to make the difference between the estimated and the
practical system smaller, an FDI filter is designed, which
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can minimize the H∞ norm of the transfer function from
all the inputs to the residual of the estimated and practical
state. According to the bounded real lemma, solving the FDI
filter problem is transformed to solve a matrix inequality,
which can be deformed to a linear matrix inequality (LMI)
by variable substitution method [23]. LMI problem is convex
and can be solved easily. After the FDI filtering, the new data
is used to isolate the sensor faults and transmitted to the
previous designed controllers so that the control strategy is
reformed. The process executes the function of fault tolerant
control (FTC). Finally, the numerical example of a three-story
building is provided to validate the performance of FDI and
FTC.

2. Formulation of AMD Control System

Considering 𝑛 degrees of freedom civil structural system
which is subjected to a unidirectional earthquake with ̈𝑞

𝑔
(𝑡)

acceleration, the dynamic equation is described as follows:
M ̈q (𝑡) + C ̇q (𝑡) + Kq (𝑡) = T

𝑔
̈𝑞
𝑔
(𝑡) + T

𝑢
u (𝑡) , (1)

where M, C, and K ∈ R𝑛×𝑛 are, respectively, mass, damping,
and stiffness matrix; q(𝑡), ̇q(𝑡) and ̈q(𝑡) ∈ R𝑛×1 are the rela-
tive displacement, relative velocity, and relative acceleration
vector, respectively; u(𝑡) ∈ R𝑚𝑢×1 is the control force vector
generated by actuators and T

𝑢
∈ R𝑛×𝑚𝑢 and T

𝑔
∈ R𝑛×1

are the location matrices of the control force and earthquake
excitation, respectively.

For a structure with an AMD on the top floor as shown in
Figure 1, the control force is exerted only on the top floor.The
control force location matrix T

𝑢
and earthquake excitation

location matrix T
𝑔
are represented as

T
𝑢
= [
0, 0 . . . , 0,⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

1
]

𝑇

1×𝑛

,

T
𝑔
= −M{1}

𝑛×1
.

(2)

The dynamic equation of the AMD system can be formu-
lated as

𝑚
𝑎
( ̈𝑞
𝑎
(𝑡) + ̈𝑞

𝑔
(𝑡)) + 𝑐

𝑎
( ̇𝑞
𝑎
(𝑡) − ̇𝑞

𝑛
(𝑡))

+ 𝑘
𝑎
(𝑞
𝑎
(𝑡) − 𝑞

𝑛
(𝑡)) = 𝐹

𝑎
(𝑡) ,

(3)

where𝑚
𝑎
, 𝑐
𝑎
, and 𝑘

𝑎
∈ R1×1 are, respectively, mass, damping,

and stiffness of AMD system and 𝑞
𝑎
(𝑡), ̇𝑞
𝑎
(𝑡), and ̈𝑞

𝑎
(𝑡) ∈

R1×1 are the relative displacement, relative velocity, and
relative acceleration of AMD system. 𝑞

𝑛
(𝑡) and ̇𝑞

𝑛
(𝑡) ∈ R1×1

are relative displacement and relative velocity of the 𝑛th floor,
which is also the top floor and can be represented as

𝑞
𝑛
(𝑡) = T

𝑛
q (𝑡) , ̇𝑞

𝑛
(𝑡) = T

𝑛
̇q (𝑡) ,

T
𝑛
= [
0, 0 . . . , 0,⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

1
]

1×𝑛

.

(4)

𝐹
𝑎
(𝑡) ∈ R1×1 is the force between structural system and

AMD mass. The motion equation of the structural system
with AMD can be derived as

M
𝑠
̈q
𝑠
(𝑡) + C

𝑠
̇q
𝑠
(𝑡) + K

𝑠
q
𝑠
(𝑡) = T

𝑔𝑠
̈𝑞
𝑔
(𝑡) + T

𝑢𝑠
𝐹
𝑎
(𝑡) . (5)

The matricesM
𝑠
, C
𝑠
, K
𝑠
, q
𝑠
, T
𝑔𝑠
, and T

𝑢
are denoted as

M
𝑠
= [

M
𝑚
𝑎

] =

[

[

[

[

𝑚
1

d
𝑚
𝑛

𝑚
𝑎

]

]

]

](𝑛+1)×(𝑛+1)

,

q
𝑠
= [

q
𝑞
𝑎

] =

[

[

[

[

[

𝑞
1

...
𝑞
𝑛

𝑞
𝑎

]

]

]

]

](𝑛+1)×1

,

T
𝑔𝑠
= [

T
𝑔

−𝑚
𝑎

] = −M
𝑠

{
{
{
{

{
{
{
{

{

1

...
1

1

}
}
}
}

}
}
}
}

}(𝑛+1)×1

,

T
𝑢
= [

−T
𝑢

1
] =

{
{
{
{
{
{

{
{
{
{
{
{

{

0

...
0

−1

1

}
}
}
}
}
}

}
}
}
}
}
}

}(𝑛+1)×1

,

K
𝑠
= [

K + T
𝑢
𝑘
𝑎
T
𝑛
−T
𝑢
𝑘
𝑎

−𝑘
𝑎
T
𝑛

𝑘
𝑎

]

=

[

[

[

[

[

𝑘
1
+ 𝑘
2
−𝑘
2

0 0

−𝑘
2

d −𝑘
𝑛

0

0 −𝑘
𝑛
𝑘
𝑛
+ 𝑘
𝑎
−𝑘
𝑎

0 0 −𝑘
𝑎

𝑘
𝑎

]

]

]

]

](𝑛+1)×(𝑛+1)

,

C
𝑠
= [

C + T
𝑢
𝑐
𝑎
T
𝑛
−T
𝑢
𝑐
𝑎

−𝑐
𝑎
T
𝑛

𝑐
𝑎

]

=

[

[

[

[

𝑐
1
+ 𝑐
2
−𝑐
2

0 0

−𝑐
2

d −𝑐
𝑛

0

0 −𝑐
𝑛
𝑐
𝑛
+ 𝑐
𝑎
−𝑐
𝑎

0 0 −𝑐
𝑎

𝑐
𝑎

]

]

]

](𝑛+1)×(𝑛+1)

,

(6)

where 𝑚
𝑖
, 𝑐
𝑖
, and 𝑘

𝑖
are the 𝑖th floor mass, damping, and

stiffness. Equation (5) can be represented in state space as
follows:

̇Xs (t) = AsX𝑠 (𝑡) + B1𝑠 ̈𝑞𝑔 (𝑡) + B2𝑠𝐹𝑎 (𝑡) , (7)

where A
𝑠
∈ R2(𝑛+1)×2(𝑛+1), B

1𝑠
∈ R2(𝑛+1)×1, and B

2𝑠
∈

R2(𝑛+1)×1 are system matrix, excitation matrix, and control
matrix, respectively.

One can see that

A
𝑠
= [

[0]
(𝑛+1)×(𝑛+1)

[I]
(𝑛+1)×(𝑛+1)

−M−1
𝑠
K
𝑠

−M−1
𝑠
C
𝑠

] ,

B
1𝑠
= [

[0]
(𝑛+1)×1

M−1
𝑠
T
𝑔𝑠

] ,

B
2𝑠
= [

[0]
(𝑛+1)×1

M−1
𝑠
T
𝑢𝑠

] .

(8)
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Figure 1: The model of AMD structure system.

X
𝑠
(𝑡) = [q

𝑠
(𝑡); ̇q
𝑠
(𝑡)] ∈ R2(𝑛+1)×1 is the state vector, which

contains relative displacement and relative velocity. This
relative state vector can be transformed to another state vector
which consists of interstory drift and interstory velocity as,

X (𝑡) = [𝑞
1
𝑞
2
− 𝑞
1
⋅ ⋅ ⋅ 𝑞
𝑛
− 𝑞
𝑛−1

𝑞
𝑎
− 𝑞
𝑛
, ̇𝑞
1
̇𝑞
2
− ̇𝑞
1
⋅ ⋅ ⋅ ̇𝑞
𝑎
− ̇𝑞
𝑛
]

𝑇

∈ R
2(𝑛+1)×1

. (9)

Define a transformation matrix Γ ∈ R2(𝑛+1)×2(𝑛+1) to
obtain X(𝑡) such that X(𝑡) = ΓX

𝑠
(𝑡). Substituting X

𝑠
(𝑡) =

Γ
−1X(𝑡) into (7) and left-multiplying this equation with Γ, the

state equation expressed by X(𝑡) becomes

̇X (𝑡) = AX (𝑡) + B
1
̈𝑞
𝑔
(𝑡) + B

2
𝐹
𝑎
(𝑡) , (10)

where A = ΓA
𝑠
Γ
−1

∈ R2(𝑛+1)×2(𝑛+1), and B
1
= ΓB

1𝑠
∈

R2(𝑛+1)×1, B
2
= ΓB
2𝑠
∈ R2(𝑛+1)×1, and Γ is shown as

Γ = [
Γ
𝑠

[0]
(𝑛+1)×(𝑛+1)

[0]
(𝑛+1)×(𝑛+1)

Γ
𝑠

] ,

Γ
𝑠
=

[

[

[

[

[

[

[

[

1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

−1 1 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1

]

]

]

]

]

]

]

](𝑛+1)×(𝑛+1)

.

(11)

3. Fault Detection and Isolation and Fault
Tolerant Control

A simple and efficient way to design a controller for this
structural control systemwithAMD is to design theH∞ state
feedback gain G

∞
∈ R1×2(𝑛+1) [24], such that

𝐹
𝑎
(𝑡) = G

∞
X (𝑡) . (12)

However, when there are some faults in sensors or
actuators, the performance of vibration suppressing may be
degraded and even enlarge the structural response. So, it is

necessary to detect and isolate faults such that the controller
can tolerate the faults. This paper only considers the faults in
sensors and designs a fault detection and isolation (FDI) filter.
The designed FDI filter is intended to estimate structural
system state, which can be used to reappear the structural
sensor data with fewer faults. The difference between the
measured output data and the estimated output data is the
faults. The estimated output data can be used to isolate the
faults transmitted to the designed H∞ state feedback gain
G
∞
. So, the controller strategy is reformed and can perform

the fault tolerant control performance.
For the faults in sensors, the sensor data including faults

can be represented as

yV (𝑡) = C
𝑦
X (𝑡) + k (𝑡) , (13)

where k(𝑡) ∈ R𝑞×1 is the faults part in sensor data yV(𝑡) ∈
R𝑞×1 and C

𝑦
X(𝑡) is the real part of sensor data, which is

the system real output. The faults can be recognized as the
additional data into the real sensor data. Combined with (10),
the following equation can be derived:

̇X (𝑡) = AX (𝑡) + B
1
̈𝑞
𝑔
(𝑡) + B

2
𝐹
𝑎
(𝑡) ,

yV (𝑡) = C
𝑦
X (𝑡) + k (𝑡) .

(14)

The faults estimator is shown in Figure 2 and its state
space formulation can be described as

̇X̂ (𝑡) = AX̂ (𝑡) + B
2
𝐹
𝑎
(𝑡) + r (𝑡) ,

ŷ (𝑡) = C
𝑦

̂X (𝑡) ,

r (𝑡) = K (ŷ (𝑡) − yV (𝑡)) ,

(15)
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Figure 2: FDI diagram of AMD structure system.

where ̂X(𝑡) ∈ R2(𝑛+1)×1 is the estimated state for the structural
state X(𝑡), ŷ(𝑡) ∈ R𝑞×1 is the estimated measurement output
for the real part of yV(𝑡) ∈ R𝑞×1, that is, C

𝑦
X(𝑡), r(𝑡) ∈

R2(𝑛+1)×1 is the adjustment vector for estimated state vector,
and K ∈ R2(𝑛+1)×𝑞 is the FDI filter to make the estimated
state vector closed with structural system state vector. In this
structural system with the sensor faults, the state is estimated
so that the sensor data real part C

𝑦
X(𝑡) can be estimated as

ŷ(𝑡) = C
𝑦

̂X(𝑡). The faults in sensor data yV(𝑡) ∈ R𝑞×1 can be
calculated by yV(𝑡)− ŷ(𝑡) and then can be isolated by replacing
yV(𝑡) with ŷ(𝑡). This is the fault detection and isolation (FDI).
According to (14) and (15), the residue equation is obtained
as follows:

̇
̃X (𝑡) = ̃ÃX (𝑡) + ̃Bw (𝑡) ,

Z̃ (𝑡) = C̃X̃ (𝑡) + D̃w (𝑡) .
(16)

̃A, ̃B, ̃C, ̃D, ̃X(𝑡), ̃Z(𝑡), and w(𝑡) are defined as

̃A = A + KC
𝑦
∈ R
2(𝑛+1)×2(𝑛+1)

,

̃B = [B
1
K] ∈ R2(𝑛+1)×(𝑞+1),

C̃ = I ∈ R2(𝑛+1)×2(𝑛+1),

D̃ = [0]
2(𝑛+1)×(𝑞+1)

∈ R
2(𝑛+1)×(𝑞+1)

,

(17a)
̃X (𝑡) = (X (𝑡) − ̂X (𝑡)) ∈ R2(𝑛+1)×1,

̃Z (𝑡) = ̃X (𝑡) ∈ R2(𝑛+1)×1,

w (𝑡) = [ ̈𝑞𝑔 (𝑡) ; k (𝑡)] ∈ R(𝑞+1)×1,

(17b)

where Z̃(𝑡) = X̃(𝑡) ∈ R2(𝑛+1)×1 is the output of the residue
equation and ̃X(𝑡) is the state of the residue equation.

In order to estimate the system state X(𝑡) precisely, this
paper designs the FDI filter K in (15) to minimize the H∞
norm of the transfer function from input w(𝑡) to output
Z̃(𝑡). This design can be recognized as H∞ optimization
problem. It can be described as designing a static controller
K to stabilize the system (16) such that

𝐽 =




Hzw (𝑠)




∞
= sup
𝜔,‖𝜔(𝑡)‖2 ̸=0

(







̃Z (𝑡)
2

‖w (𝑡)‖
2

) < 𝛾, (18)

where 𝛾 is a given scalar. According to the bounded real
lemma [25], the following two statements are equivalent:

(1) H∞ norm of the system in (16) is less than 𝛾, and Ã
is stable;

(2) There exists a symmetric positive definite matrix
Φ ∈ R2(𝑛+1)×2(𝑛+1) such that the following matrix
inequality holds:

[

[

Ã𝑇Φ +ΦÃ ΦB̃ C̃𝑇
B̃𝑇Φ −𝛾I D̃𝑇
̃C ̃D −𝛾I

]

]

< 0. (19)

Substituting (17b) into (19),

[

[

[

[

(A + KC
𝑦
)

𝑇

Φ +Φ (A + KC
𝑦
) Φ[B

1
𝐾]
2(𝑛+1)×(𝑞+1)

I
2(𝑛+1)×2(𝑛+1)

[B
1
K]𝑇
(𝑞+1)×2(𝑛+1)

Φ −𝛾I
(𝑞+1)×(𝑞+1)

[0]
(𝑞+1)×2(𝑛+1)

I
2(𝑛+1)×2(𝑛+1)

[0]
2(𝑛+1)×(𝑞+1)

−𝛾I
2(𝑛+1)×2(𝑛+1)

]

]

]

]

< 0. (20)

Because both Φ and K are unknown variables and
multiplied together, this problem cannot be solved directly.
This paper employs variable substitution method [23] to
linearize this constraint.

Define a new variableΞ = ΦK ∈ R2(𝑛+1)×𝑞 and take it into
(20)

[

[

[

[

[

A𝑇Φ +ΦA + C𝑇
𝑦
Ξ
𝑇

+ ΞC
𝑦
[ΦB
1
]
2(𝑛+1)×1

Ξ
2(𝑛+1)×𝑞

I
2(𝑛+1)×2(𝑛+1)

[B𝑇
1
Φ]
1×2(𝑛+1)

−𝛾I
1×1

[0]
1×𝑞

[0]
1×2(𝑛+1)

Ξ
𝑞×2(𝑛+1)

[0]
𝑞×1

−𝛾I
𝑞×𝑞

[0]
𝑞×2(𝑛+1)

I
2(𝑛+1)×2(𝑛+1)

[0]
2(𝑛+1)×1

[0]
2(𝑛+1)×𝑞

−𝛾I
2(𝑛+1)×2(𝑛+1)

]

]

]

]

]

< 0. (21)
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Equation (21) is a linear matrix inequality with matrix
variables Φ and Ξ. The optimal values of Φ and Ξ can be
computed through the solver feasp and mincx in MATLAB
LMI toolbox. Then, K can be obtained from K = Φ−1Ξ. So,
the FDI filter in (15) is designed.

Through FDI filter, the estimated state ̂X(𝑡) and the
estimated sensor data ŷ(𝑡) = C

𝑦
X̂(𝑡) can be very closed to

the system state X(𝑡) and the sensor data real part C
𝑦
X(𝑡),

respectively.The estimated state X̂(𝑡) can be recognized as the
input of H∞ state feedback gain G

∞
. This reformed control

system can be described in Figure 3. The reformed control
strategy is different from the one in (12)

𝐹
𝑎
(𝑡) = G

∞

̂X (𝑡) . (22)

As a summary,when the sensor data has faults, the control
system cannot guarantee a good performance. Through FDI
filter, the sensor data real part and system state can be
estimated. The estimated information can be used to isolate
the sensor faults. Then, put the estimated state into the
previous designed H∞ state feedback controller to reform
the control strategy such that the control system can perform
the fault tolerant control (FTC).

4. Numerical Example

Considering a three-story numerical example [26], an AMD
control device is set on the top of this structure as shown in

Figure 4. Define the structural mass, damping, and stiffness
as follows:

M =
[

[

6

6

6

]

]

× 10
3 kg,

C = [
[

12.4 −5.16

−5.16 12.4 −4.59

−4.59 7.2

]

]

× 10
3N/(m/s) ,

K = [
[

3.4 −1.8

−1.8 3.4 −1.6

−1.6 1.6

]

]

× 10
6N/m.

(23)

AMD control system mass, damping, and stiffness are as
follows:

𝑚
𝑎
= 360 kg,

𝑘
𝑎
= 18819N/m,

𝑐
𝑎
= 365.3910N/(m/s) .

(24)

Suppose the sensor measurement outputs are the system
states. H∞ state feedback control strategy is employed to
control this structural system with AMD. The H∞ state
feedback gain G

∞
in (12) can be obtained as follows:

G
∞
= [3.2155 3.1275 6.7705 −0.0127 −0.1344 −0.0877 −0.1335 −0.0188] × 10

6

. (25)

The El Centro NS earthquake acceleration record ̈𝑞
𝑔
(𝑡)

with its peak scaled to 200 gal (2m/s2) is used as the ground
excitation.The response suppression comparisons are shown
in Figures 5 and 6 for the bare structure without control,
passive tuned mass damper (TMD) structure, and active
mass damper (AMD) structure without sensor faults. The
bare structure is the structure without actuators. The TMD
structure has actuators but does not generate control force.
The control strategy for the AMD structure is H∞ state
feedback control.

In Figure 6,G
∞
represents H∞ state feedback controller.

Figures 5 and 6 illustrate the relative displacement response
on the 3rd floor.The maximum value of the relative displace-
ment for the TMD structure is 24.1% less than the one for the
bare structure, while AMD structure is 67.0% off. Therefore,

TMD and AMD can both suppress the structural vibration.
Furthermore, AMD structure can reduce the vibration 56.5%
more than TMD structure.

If there exist some faults in sensors, the faulty signal data
k(𝑡) is supposed to be located in the third floor displacement
sensors. And its mean value and variance are zero and 2.5 ×
10
−5, respectively. The comparison of the 3rd interstory drift

between the AMD structure and the TMD structure is shown
in Figure 7.

From Figure 7, AMD structural control system with H∞
state feedback control strategy loses its control performance
when there exist faults in the sensors. Accordingly, it is
necessary to detect and isolate the faults in the sensors.
Through proposed FDI filter design method, the gain K is
obtained as follows:

K = [
[

−6.4162 −2.4851 −0.9160 0.4926 −92.0527 −118.6123 −28.5338 −23.9462

−1.0675 −2.3501 −0.6025 0.1106 −42.2075 93.6605 −82.5947 −27.4098

0.3623 −0.1068 −1.8490 −0.4097 39.9383 −55.9578 105.6514 −90.3240

]

]

𝑇

. (26)

Taking K into (15) and putting the estimated state ̂X(𝑡)
into state feedback gain G

∞
, the control strategy is reformed

to perform the fault tolerate control.

Figure 8 compares the interstory drift in the top story
between the real interstory drift and the estimated drift. The
related coefficients are shown in Table 1. From Table 1, the
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Figure 4: Three-story structure model with AMD system.
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Figure 5: Comparison of the 3rd floor relative displacement
between no control and TMD passive control.

dash line, which is the real drift, matches the solid line,
which is the estimated drift by FDI. From Table 1, the related
coefficients (RCs) are almost close to 1, whichmeans that FDI
can estimate drift precisely.

Through FTC strategy, the interstory drift is suppressed,
and the third story drift is shown in Figures 9 and 10. Table 2
shows some details about vibration suppression effects for
other stories.

Figure 9 illustrates the comparison of the interstory drift
in the 3rd story between TMD structure and AMD structure
considering sensor faults. In AMD structure, the control
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Figure 6: Comparison of the 3rd floor relative displacement
between TMD passive control and AMD-H∞ state feedback con-
trol.

strategy is FTC. AMD structure can suppress the structural
vibration more effectively than TMD structure does. While
only using H∞ state feedback control strategy, the vibration
is worsened as shown in Figure 7. Figure 10 can illustrate the
difference more directly.

From Table 2, the maximum values of all the interstory
drifts for AMD structure with H∞ state feedback control
strategy are 29.37%, 38.29%, and −46.50% less than the TMD
structural drifts, respectively. While using FTC strategy, the
drifts are 23.42%, 39.19%, and 54.78% less than the TMD
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Table 1: Correlation coefficient between FDI estimated state and the real state.

Comparison between the states estimated by FDI and structure system real states
Interstory drift Interstory velocity

𝑞
1

cm
𝑞
2
− 𝑞
1

cm
𝑞
3
− 𝑞
2

cm
𝑞a − 𝑞3
cm

̇𝑞
1

cm
̇𝑞
2
− ̇𝑞
1

cm
̇𝑞
3
− ̇𝑞
2

cm
̇𝑞a − ̇𝑞
3

cm
RC 0.8422 0.8064 0.8584 0.9989 0.7741 0.7483 0.9035 0.9985

Table 2: Suppressing effect comparisons among the bared structure, TMD structure, AMD structure without faults, and AMDH∞ structure
with faults.

Systems 𝑞
1

cm
𝑞
2
− 𝑞
1

cm
𝑞
3
− 𝑞
2

cm
𝑞a − 𝑞3
cm

𝐹
𝑎
(𝑡)

kN
Bare system 4.04 2.81 1.68 — —
TMD system 2.69 2.22 1.57 25.08 —
AMD system without faults using G

∞ 1.88 1.08 0.86 78.38 15.46
AMD system with faults using G

∞ 1.90 1.37 2.30 108.7 209.1
AMD system with faults using FTC 2.06 1.35 0.71 83.36 16.00
G
∞

represents H∞ state feedback control.

0 5 10 15 20 25 30

0
1
2

Time (s)

D
isp

la
ce

m
en

t (
cm

)

−1

−2

AMD-G∞ with faults
TMD

Figure 7: Comparison of the 3rd story interstory drift between
TMD and AMD with H∞ state feedback control strategy consid-
ering the sensor faults.
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Figure 8: Comparison between the real and FDI estimated inter-
story drift in the top story.

structural drifts, respectively. The actuator force 𝐹
𝑎
(𝑡) saves

a lot of energy using FTC strategy than when only using H∞
state feedback control strategy. Therefore, FTC can tolerate
faults in sensors and suppress structural vibration efficiently.

5. Conclusions

In practical engineering, structural control system may have
faults which can degrade control system performance. This
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Figure 9: Comparison of the interstory drifts in the 3rd story
between the TMD and AMD-FTC control.
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Figure 10: Comparison of the 3rd floor interstory drifts between the
AMD-H∞ state feedback control and AMD-FTC control.

paper presents fault tolerant control (FTC) for civil struc-
tures. Considering the faults in sensors, fault detection and
isolation (FDI) filter is designed. Transmitting the estimated
state to H∞ state feedback controller designed previously,
the reformed control strategy is obtained, which is called
fault tolerant control (FTC). This paper also presents the
derivation of FDI, which transforms the inequality matrix to
linear inequality matrix using variable substitution method.
A three-story numerical example validates FDI and FTC
performance. From this study, there are some conclusions.
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(1) When there is no fault in sensors, H∞ state feedback
control in AMD structure has better suppressing
performance than TMD structure.

(2) When there are faults in sensors, H∞ state feedback
control in AMD structure cannot guarantee the con-
trol performance and even worsen the vibration.

(3) FDI designed by the proposed method can detect
and isolate the faults. It can estimate the system state
precisely. According to the estimated state, the mea-
surement output from sensors can also be estimated.

(4) FTC designed by the proposed method can tolerate
the faults in sensors. So, it can strengthen the robust-
ness of the control system.
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This paper is concerned with the problem of passive control design for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time
delay and disturbance input via delta operator approach. The discrete-time passive performance index is established in this paper
for the control design problem. By constructing a new type of Lyapunov-Krasovskii function (LKF) in delta domain, and utilizing
some fuzzy weighing matrices, a new passive performance condition is proposed for the system under consideration. Based on the
condition, a state-feedback passive controller is designed to guarantee that the resulting closed-loop system is very-strictly passive.
The existence conditions of the controller can be expressed by linear matrix inequalities (LMIs). Finally, a numerical example is
provided to demonstrate the feasibility and effectiveness of the proposed method.

1. Introduction

It is well known that the fuzzy logic control [1–4] is one of the
most effective approaches to handle complex nonlinear sys-
tems. Takagi-Sugeno (T-S) fuzzymodel has been proposed in
[5] and applied to formulate a complex nonlinear systems into
a framework. Some affine local models can be interpolated
by a set of fuzzy membership functions in this framework.
By T-S fuzzy model, a set of complex nonlinear systems
can be possibly described as a weighed sum of some simple
linear subsystems. Recently, the problem of stability analysis
and controller synthesis of nonlinear systems in T-S fuzzy
model has been extensively investigated in [5–18]. Due to the
effect of time delay in systems, the problems of T-S fuzzy
systems with time delays have got considerable attention
in recent years, and some results have been developed in
[9, 19–31].

Recently, due to the fact that the passive properties can
keep the system internally stable and have been frequently
used to improve the stability of control systems.The passivity

control has been widely applied in various engineering areas,
such as electrical circuits systems, complex networks systems,
mechanical systems, and nonlinear systems. The problems of
passivity analysis and passive control for systems have been
widely investigated [32–38]. The passive control problem has
been investigated for fuzzy systems [35, 39, 40]. Among them,
the authors in [40] are concerned with the very strict passive
controller design problem for T-S fuzzy systems with time-
varying delay.

It is well known that the best system performances can
be obtained with the shorter sampling period. In [41, 42],
the authors pointed out that the excellent finite word length
performance can be achieved under fast sampling via delta
operator approach. The authors in [43] introduced the trans-
formations between shift operator and delta operator transfer
functionmodels. A techniquewas developed in [44] to obtain
an approximate delta operator system for a given continuous
system. In [45], a tabular method was presented for real
polynomial root distribution with respect to a circle in the
complex plane, which is useful in stability of delta operator
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formulated discrete-time systems with a sampling time. By
using delta operator formulation, the main design features of
a loop transfer recovery controller both at input and output
have been overviewed in [46]. More recently, many stability
analysis and controller synthesis results about delta operator
approach have been proposed in [47–49]. To mention a few,
the robust stabilization problem was investigated in [47] for
delta operator systems with time-varying delays. The authors
in [49] investigated the robust 𝐻

∞
control problem for a

class of T-S fuzzy systems with time delays by using delta
operator approach. However, there have been few results on
the passive control for T-S fuzzy systems with time delays
and disturbance inputs via delta operator approach, which
motivates this study.

In this paper, the problem of passive control is investi-
gated for discrete-time T-S fuzzy systems with time delay
and disturbance input via delta operator approach. The
discrete-time passive performance index is concerned in
this paper for the control design problem. A novel type
Lyapunov-Krasovskii functional (LKF) is constructed in delta
domain to present a new passive performance condition for
discrete-time T-S fuzzy systems. Based on the condition,
a state-feedback passive controller is designed to guaran-
tee that the resulting closed-loop system is very strictly
passive. The controller existence condition can be obtained
in terms of linear matrix inequalities (LMIs), which can
be solved by the standard software. A numerical exam-
ple is given to illustrate the effectiveness of the proposed
approach.

At first, the T-S fuzzy model is employed to represent the
nonlinear systems. By applying the LMIs techniques and LKF
in 𝛿-domain, the problem of passive control design for the
discrete T-S fuzzy system with time delay and disturbance
inputs is chewed. Then a new fuzzy state-feedback controller
is designed which guarantees that the closed-loop fuzzy delta
operator system with time delay is robustly asymptotically
stable and satisfies a prescribed passive performance level.
And those are some key points of contribution. It is worth-
while to note that a faster sampling method is utilized,
and hence a better control effect by applying delta operator
approach than shift operator approach is achieved. Finally,
a numerical example is shown to indicate the feasibility and
effectiveness of the proposed method.

This paper is organized as follows. The problem to be
solved is formulated in Section 2. Main results, including
passive analysis and passive controller design, are presented
in Section 3. Section 4 provides an illustrative example to
show the effectiveness and potential of the proposed design
techniques. It is concluded this paper in Section 5.

Notation. The notation used throughout the paper is fairly
standard. 𝐿

2
[0,∞) denotes the space of square-integrable

vector functions over [0,∞). The notation 𝑋 > 0 (resp., 𝑋 ≥

0), for 𝑋 ∈ R𝑛×𝑛, means that the matrix 𝑋 is real symmetric
positive definite (resp., positive semidefinite).The symbol “∗”
in a matrix 𝐴 ∈ R𝑛×𝑛 stands for the transposed elements
in the symmetric positions. The superscripts “𝑇” and “−1”
denote thematrix transpose and inverse, respectively. Identity
matrices of appropriate dimensions will be denoted by 𝐼.

The shorthand diag{𝑀
1
,𝑀
2
, . . . ,𝑀

𝑟
} denotes a block diag-

onal matrix with diagonal blocks being the matrices 𝑀
1
,

𝑀
2
,. . ., 𝑀

𝑟
. If not explicitly stated, all matrices are assumed

to have compatible dimensions for algebraic operations.

2. Problem Formulation

Considering the following fuzzy delta operator system with
time delay, which is described by

Plant Rule 𝑖. IF 𝜃
1
(𝑡
𝑘
) is𝑁
𝑖1
, and . . ., and 𝜃

𝑗
(𝑡
𝑘
) is𝑁
𝑖𝑗
, and . . .,

and 𝜃
𝑝
(𝑡
𝑘
) is𝑁
𝑖𝑝
, THEN

𝛿𝑥 (𝑡
𝑘
) = 𝐴

𝑖
𝑥 (𝑡
𝑘
) + 𝐴
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐵
𝑖
𝑢 (𝑡
𝑘
) + 𝐵
𝑤𝑖
𝑤 (𝑡
𝑘
) ,

𝑧 (𝑡
𝑘
) = 𝐶
𝑖
𝑥 (𝑡
𝑘
) + 𝐶
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐷
𝑖
𝑢 (𝑡
𝑘
) + 𝐷
𝑤𝑖
𝑤 (𝑡
𝑘
) ,

𝑥 (𝑡
𝑘
) = 𝜙 (𝑡

𝑘
) , 𝑡

𝑘
= −𝑑
𝑀
, 𝑑
𝑀
+ 𝑇, . . . , 0, 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝑥 (𝑡
𝑘
) ∈ R𝑛 is the state variable, 𝑢 (𝑡

𝑘
) ∈ R𝑚 is

the control input variable, 𝑤 (𝑡
𝑘
) ∈ R𝑙 is the disturbance

input variable which belongs to 𝐿
2
[0,∞), 𝑧(𝑡

𝑘
) ∈ R𝑝 is the

control output, and𝜙 (𝑡
𝑘
) is a continuous vector-valued initial

function. Let 𝑡
𝑘
= 𝑘𝑇 for the convenience in analysis. 𝐴

𝑖
,

𝐴
𝑑𝑖
, 𝐵
𝑖
, 𝐵
𝑤𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, 𝐷
𝑖
, and 𝐷

𝑤𝑖
(𝑖 = 1, 2, . . . , 𝑟) are system

matrices with appropriate dimensions. The scalar 𝑟 is the
number of IF-THEN rules. 𝜃

𝑗
(𝑡
𝑘
) and 𝑁

𝑖𝑗
are the premise

variable and the fuzzy set, respectively, for 𝑗 = 1, 2, . . . , 𝑝.
The parametric variable 𝑑

𝑘
= 𝑛𝑇 which is the bounded

time delay in the state and satisfies 0 < 𝑑
𝑚

≤ 𝑑
𝑘

≤

𝑑
𝑀

with 𝑑
𝑚

= 𝑛
𝑚
𝑇 and 𝑑

𝑀
= 𝑛
𝑀
𝑇 (𝑛
𝑚

and 𝑛
𝑀

are
the known positive and finite integers, and 𝑇 is a sampling
period). 𝛿𝑥(𝑡

𝑘
) is the delta operator of 𝑥(𝑡

𝑘
), which is defined

by

𝛿𝑥 (𝑡
𝑘
) =

{
{
{

{
{
{

{

𝑑

𝑑𝑡
𝑘

𝑥 (𝑡
𝑘
) , 𝑇 = 0,

𝑥 (𝑡
𝑘
+ 𝑇) − 𝑥 (𝑡

𝑘
)

𝑇

, 𝑇 ̸= 0.

(2)

Then the defuzzified model of system (1) is inferred as
follows:

𝛿𝑥 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡
𝑘
)) [𝐴
𝑖
𝑥 (𝑡
𝑘
) + 𝐴
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
)

+𝐵
𝑖
𝑢 (𝑡
𝑘
) + 𝐵
𝑤𝑖
𝑤 (𝑡
𝑘
)] ,

𝑧 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡
𝑘
)) [𝐶
𝑖
𝑥 (𝑡
𝑘
) + 𝐶
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
)

+𝐷
𝑖
𝑢 (𝑡
𝑘
) + 𝐷
𝑤𝑖
𝑤 (𝑡
𝑘
)] ,

(3)

where ℎ
𝑖
(𝜃(𝑡
𝑘
)) = 𝜇

𝑖
(𝜃(𝑡
𝑘
))/∑
𝑟

𝑖=1
𝜇
𝑖
(𝜃(𝑡
𝑘
)), 𝜇
𝑖
(𝜃(𝑡
𝑘
)) =

∏
𝑝

𝑗=1
𝑁
𝑖𝑗
(𝜃
𝑗
(𝑡
𝑘
)), and 𝑁

𝑖𝑗
(𝜃
𝑗
(𝑡
𝑘
)) is the degree of the mem-

bership of 𝜃
𝑗
(𝑡
𝑘
) in fuzzy set 𝑁

𝑖𝑗
. It can be assumed that

𝜇
𝑖
(𝜃(𝑡
𝑘
)) ≥ 0 (for 𝑖 = 1, 2, . . . , 𝑟) and ∑

𝑟

𝑖=1
𝜇
𝑖
(𝜃(𝑡
𝑘
)) ≥ 0

(for all 𝑡
𝑘
). Therefore, ℎ

𝑖
(𝜃(𝑡
𝑘
)) ≥ 0 (for 𝑖 = 1, 2, . . . , 𝑟) and
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∑
𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡
𝑘
)) = 1. Based on the parallel distributed com-

pensation (PDC), similar to the fuzzy model, the following
overall fuzzy control law can be constructed as

𝑢 (𝑡
𝑘
) =

𝑟

∑

𝑠=1

ℎ
𝑠
(𝜃 (𝑡
𝑘
))𝐾
𝑠
𝑥 (𝑡
𝑘
) , (4)

where 𝐾
𝑠
(𝑠 = 1, 2, . . . , 𝑟) is the local control gain such that

closed-loop fuzzy system (3) is asymptotically stable. Then
substituting (4) into system (3), the closed-loop fuzzy system
can be expressed as

𝛿𝑥 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑠
[(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑠
) 𝑥 (𝑡
𝑘
)

+ 𝐴
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐵
𝑤𝑖
𝑤 (𝑡
𝑘
)] ,

𝑧 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑠
[(𝐶
𝑖
+ 𝐷
𝑖
𝐾
𝑠
) 𝑥 (𝑡
𝑘
)

+ 𝐶
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐷
𝑤𝑖
𝑤 (𝑡
𝑘
)] ,

(5)

where ∑𝑟
𝑖=1

ℎ
𝑖
= ∑
𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡
𝑘
)). For the convenience, system

(5) can be rewritten as

𝛿𝑥 (𝑡
𝑘
) = 𝐴 (𝑡

𝑘
) 𝑥 (𝑡
𝑘
) + 𝐴
𝑑
(𝑡
𝑘
) 𝑥 (𝑡
𝑘
− 𝑑
𝑘
)

+ 𝐵
𝑤
(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ,

𝑧 (𝑡
𝑘
) = 𝐶 (𝑡

𝑘
) 𝑥 (𝑡
𝑘
) + 𝐶
𝑑
(𝑡
𝑘
) 𝑥 (𝑡
𝑘
− 𝑑
𝑘
)

+ 𝐷
𝑤
(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ,

(6)

where

𝐴 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑠
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑠
) ,

𝐴
𝑑
(𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
𝐴
𝑑𝑖
, 𝐵

𝑤
(𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
𝐵
𝑤𝑖
,

𝐶 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑠
(𝐶
𝑖
+ 𝐷
𝑖
𝐾
𝑠
) ,

𝐶
𝑑
(𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
𝐶
𝑑𝑖
, 𝐷

𝑤
(𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
𝐷
𝑤𝑖
.

(7)

In the next section, the following definitions and lemmas
are introduced for developing the main results.

Definition 1 (see [47]). The conditions for the asymptotic
stability of a delta operator system hold:

(a) 𝑉(𝑥(𝑡
𝑘
)) ≥ 0, with equality if and only if 𝑥(𝑡

𝑘
) = 0,

(b) 𝛿𝑉(𝑥(𝑡
𝑘
)) = [𝑉(𝑥(𝑡

𝑘
+ 𝑇)) − 𝑉(𝑥(𝑡

𝑘
))]/𝑇 < 0,

where 𝑉(𝑥(𝑡
𝑘
)) is a Lyapunov function in 𝛿-domain. For

Lyapunov function both in s-domain and z-domain, the

condition (𝑎) 𝑉(𝑥(𝑡
𝑘
)) ≥ 0 in Definition 1 is given. On the

other hand for the condition (b), when 𝑇 → 0, there exists

lim
𝑇→0

𝛿𝑉 (𝑥 (𝑡
𝑘
)) = lim
𝑇→0

𝑉 (𝑥 (𝑡
𝑘
+ 𝑇)) − 𝑉 (𝑥 (𝑡

𝑘
))

𝑇

=

𝑑𝑉 (𝑥 (𝑡
𝑘
))

𝑑𝑡
𝑘

< 0,

(8)

and when 𝑇 = 1, there exists

𝛿𝑉 (𝑥 (𝑡
𝑘
)) =

[𝑉 (𝑥 (𝑡
𝑘
+ 1)) − 𝑉 (𝑥 (𝑡

𝑘
))]

1

= 𝑉 (𝑥 (𝑡
𝑘
+ 1)) − 𝑉 (𝑥 (𝑡

𝑘
)) < 0.

(9)

Obviously, the Lyapunov function in 𝛿-domain can be
reduced to the traditional Lyapunov function in s-domain or
z-domain when the sampling period 𝑇 tends to 0 or is 1.

Definition 2 (see [50]). (i) System (5) is said to be passive if
there exists constant 𝜌 such that

2

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ≥ 𝜌. (10)

(ii) System (5) is said to be strictly passive if there exist
constants 𝜁 > 0 and 𝜌 such that

2

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ≥ 𝜌 + 𝜁

∞

∑

𝑡𝑘=0

𝑤
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) . (11)

(iii) System (5) is said to be output strictly passive if there
exist constants 𝜀 > 0 and 𝜌 such that

2

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ≥ 𝜌 + 𝜀

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
) . (12)

(iv) System (5) is said to be very strictly passive if there
exist constants 𝜀 > 0, 𝜁 > 0, and 𝜌 such that

2

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ≥ 𝜌 + 𝜀

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
)

+ 𝜁

∞

∑

𝑡𝑘=0

𝑤
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) .

(13)

Lemma 3 (see [47]). For any of the time functions 𝑥(𝑡
𝑘
) and

𝑦(𝑡
𝑘
),

𝛿 (𝑥 (𝑡
𝑘
) 𝑦 (𝑡
𝑘
)) = 𝛿 (𝑥 (𝑡

𝑘
)) 𝑦 (𝑡

𝑘
) + 𝑥 (𝑡

𝑘
) 𝛿 (𝑦 (𝑡

𝑘
))

+ 𝑇𝛿 (𝑥 (𝑡
𝑘
)) 𝛿 (𝑦 (𝑡

𝑘
)) ,

(14)

where 𝑇 is a sampling period.

Lemma 4 (see [51]). For any of the two positive integers 𝑟 and
𝑟
0
, satisfying 1 ≤ 𝑟

0
≤ 𝑟 holds:

[

𝑟

∑

𝑖=𝑟0

𝑥 (𝑖)]

𝑇

𝑀[

𝑟

∑

𝑖=𝑟0

𝑥 (𝑖)] ≤ (𝑟 − 𝑟
0
+ 1)

𝑟

∑

𝑖=𝑟0

𝑥
𝑇

(𝑖)𝑀𝑥 (𝑖) ,

(15)

where𝑀 is a constant positive semidefinite symmetric matrix.
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Lemma 5 (see [52]). For the given constant matrices𝐺,𝐻 and
a symmetric constant matrix 𝜒 of appropriate dimensions, the
following inequality holds:

𝜒 + 𝐺𝐹 (𝑡
𝑘
)𝐻 + 𝐻

𝑇

𝐹
𝑇

(𝑡
𝑘
) 𝐺
𝑇

≤ 0, (16)

where 𝐹(𝑡
𝑘
) satisfies 𝐹𝑇(𝑡

𝑘
)𝐹(𝑡
𝑘
) ≤ 𝐼, if and only if for 𝜉 > 0

the following inequality holds:

𝜒 + 𝜉
−1

𝐻
𝑇

𝐻 + 𝜉𝐺𝐺
𝑇

≤ 0. (17)

Lemma 6. If there exist scalars 𝜀 > 0, 𝜁 > 0, and a differential
function 𝑉(𝑥(𝑡

𝑘
)) ≥ 0 such that

𝛿𝑉 (𝑥 (𝑡
𝑘
)) + 𝜀𝑧

𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
) + 𝜁𝑤

𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
)

− 2𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ≤ 0,

(18)

then system (5) is very strictly passive.

Proof. It follows from (18) that

2

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ≥ − 𝑉 (𝑥 (0)) + 𝜀

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
)

+ 𝜁

∞

∑

𝑡𝑘=0

𝑤
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
)

= 𝜌 + 𝜀

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
)

+ 𝜁

∞

∑

𝑡𝑘=0

𝑤
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ,

(19)

where 𝜌 = −𝑉(𝑥(0)). Then, it can be seen that (13) is
equivalent to (18) for very strict passive definition.

Remark 7. Based on Definition 2, the main objective of this
paper is just to prove that T-S fuzzy system (5) is very strictly
passive via delta operator approach, which can also satisfy
other three indexs.The very strictly passive control for system
(5) is shown in the next section.

3. Main Results

This section focuses on designing a sufficient condition for
the solvability of the proposed passive control problem and a
developed LMI approach for designing the passive controller
for fuzzy system (5). Firstly, the passivity analysis criterion is
derived for the system (5) in the following theorem.

Theorem 8. Considering fuzzy delta operator system (5), for a
given sampling period𝑇 > 0, constants𝑑

𝑚
, 𝑑
𝑀
(0 < 𝑑

𝑚
≤ 𝑑
𝑀
),

and matrix 𝐾
𝑠
(𝑠 = 1, 2, . . . , 𝑟), system (5) is very strictly

passive if there exist scalars 𝜀 > 0, 𝜁 > 0 and symmetric
matrices 𝑃 > 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝑄

𝜅
> 0, 𝑆

1𝜅
> 0, and 𝑆

2𝜅
> 0

(𝜅 = 1, 2, . . . , 𝑟) with appropriate dimensions, such that the
following LMIs hold for 𝜅, 𝜆, 𝜇, ], 𝑖, 𝑠 = 1, 2, . . . , 𝑟:

Θ
𝜅𝜆𝜇]𝑖𝑖 < 0,

Θ
𝜅𝜆𝜇]𝑖𝑠 + Θ

𝜅𝜆𝜇]𝑠𝑖 < 0, 𝑠 ̸= 𝑖,

(20)

where

Θ
𝜅𝜆𝜇]𝑖𝑠 = [

Ω
1𝜅𝜆𝜇]𝑖𝑠 Ω

𝑇

2𝑖𝑠

∗ −𝜀𝐼

] , Ω
2𝑖𝑠

= [0 𝐶
𝑖
+ 𝐷
𝑖
𝐾
𝑠
𝐶
𝑑𝑖

0 0 𝐷
𝑤𝑖
] ,

Ω
1𝜅𝜆𝜇]𝑖𝑠 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1
𝑃 (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑠
) 𝑃𝐴

𝑑𝑖
0 0 𝑃𝐵

𝑤𝑖

∗ Ξ
2𝜅𝑖𝑠

𝑃𝐴
𝑑𝑖

1

𝑑
𝑚

𝑅
1

1

𝑑
𝑀

𝑅
2

Ξ
3𝑖𝑠

∗ ∗ −𝑄
𝜆

0 0 −𝐶
𝑑𝑖

∗ ∗ ∗ −𝑆
1𝜇

−

1

𝑑
𝑚

𝑅
1

0 0

∗ ∗ ∗ ∗ −𝑆
2] −

1

𝑑
𝑀

𝑅
2

0

∗ ∗ ∗ ∗ ∗ 𝜁𝐼 − 𝐷
𝑤𝑖
− 𝐷
𝑇

𝑤𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ξ
1
= (𝑇 − 2) 𝑃 + 𝑑

𝑚
𝑅
1
+ 𝑑
𝑀
𝑅
2
, Ξ

3𝑖𝑠
= 𝑃𝐵
𝑤𝑖
− (𝐶
𝑖
+ 𝐷
𝑖
𝐾
𝑠
)
𝑇

,

Ξ
2𝜅𝑖𝑠

= 𝑃 (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑠
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑠
)
𝑇

𝑃 + (𝑑
𝑀
− 𝑑
𝑚
+ 𝑇 + 1)𝑄

𝜅
+ 𝑆
1𝜅
+ 𝑆
2𝜅
−

1

𝑑
𝑚

𝑅
1
−

1

𝑑
𝑀

𝑅
2
.

(21)
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Proof. Firstly, in order to simplify the calculation, relevant
fuzzy weighing matrices which directly include the member-
ship functions are defined as follows:

̆𝑄(𝑡
𝑘
) =

𝑟

∑

𝜅=1

ℎ
𝜅
(𝜃 (𝑡
𝑘
)) 𝑄
𝜅
, ̆𝑆

1
(𝑡
𝑘
) =

𝑟

∑

𝜅=1

ℎ
𝜅
(𝜃 (𝑡
𝑘
)) 𝑆
1𝜅
,

̆𝑆
2
(𝑡
𝑘
) =

𝑟

∑

𝜅=1

ℎ
𝜅
(𝜃 (𝑡
𝑘
)) 𝑆
2𝜅
.

(22)

Choose a LKF 𝑉(𝑥(𝑡
𝑘
)) for system (5) as follows:

𝑉 (𝑥 (𝑡
𝑘
)) = 𝑉

1
(𝑥 (𝑡
𝑘
)) + 𝑉

2
(𝑥 (𝑡
𝑘
)) + 𝑉

3
(𝑥 (𝑡
𝑘
))

+ 𝑉
4
(𝑥 (𝑡
𝑘
)) + 𝑉

5
(𝑥 (𝑡
𝑘
)) ,

(23)

where

𝑉
1
(𝑥 (𝑡
𝑘
)) = 𝑥

𝑇

(𝑡
𝑘
) 𝑃𝑥 (𝑡

𝑘
) ,

𝑉
2
(𝑥 (𝑡
𝑘
)) = 𝑇

𝑛

∑

𝑖=1

𝑥
𝑇

(𝑡
𝑘
− 𝑖𝑇) ̆𝑄 (𝑡

𝑘
− 𝑖𝑇) 𝑥 (𝑡

𝑘
− 𝑖𝑇) ,

𝑉
3
(𝑥 (𝑡
𝑘
)) = 𝑇

𝑛𝑚

∑

𝑖=1

𝑥
𝑇

(𝑡
𝑘
− 𝑖𝑇) ̆𝑆

1
(𝑡
𝑘
− 𝑖𝑇) 𝑥 (𝑡

𝑘
− 𝑖𝑇)

+ 𝑇

𝑛𝑀

∑

𝑖=1

𝑥
𝑇

(𝑡
𝑘
− 𝑖𝑇) ̆𝑆

2
(𝑡
𝑘
− 𝑖𝑇) 𝑥 (𝑡

𝑘
− 𝑖𝑇) ,

𝑉
4
(𝑥 (𝑡
𝑘
)) = 𝑇

2

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑖

∑

𝑠=1

𝑥
𝑇

(𝑡
𝑘
− 𝑠𝑇) ̆𝑄 (𝑡

𝑘
− 𝑠𝑇) 𝑥 (𝑡

𝑘
− 𝑠𝑇) ,

𝑉
5
(𝑥 (𝑡
𝑘
)) =

𝑛𝑚

∑

𝑖=1

𝑖

∑

𝑠=1

𝑒
𝑇

(𝑡
𝑘
− 𝑠𝑇) 𝑅

1
𝑒 (𝑡
𝑘
− 𝑠𝑇)

+

𝑛𝑀

∑

𝑖=1

𝑖

∑

𝑠=1

𝑒
𝑇

(𝑡
𝑘
− 𝑠𝑇) 𝑅

2
𝑒 (𝑡
𝑘
− 𝑠𝑇) ,

(24)

and symmetric matrices 𝑃 > 0, 𝑅
1
> 0, 𝑅

2
> 0, 𝑄

𝜅
> 0, 𝑆
1𝜅

>

0, 𝑆
2𝜅

> 0 (for 𝜅 = 1, 2, . . . , 𝑟), and 𝑒(𝑠) = 𝑥(𝑠) − 𝑥(𝑠 + 𝑇)

from which it can be concluded that there exist 𝑒(𝑡
𝑘
− 𝑖𝑇) =

𝑥(𝑡
𝑘
− 𝑖𝑇) − 𝑥(𝑡

𝑘
− (𝑖 − 1)𝑇) and 𝛿𝑥(𝑡

𝑘
) = −𝑒(𝑡

𝑘
)/𝑇.

Applying Lemma 3 to 𝑉
1
(𝑥(𝑡
𝑘
)) and along the trajectory

of the system (5), it can be obtained that

𝛿𝑉
1
(𝑥 (𝑡
𝑘
)) = 𝛿

𝑇

(𝑥 (𝑡
𝑘
)) 𝑃𝑥 (𝑡

𝑘
) + 𝑥
𝑇

(𝑡
𝑘
) 𝑃𝛿 (𝑥 (𝑡

𝑘
))

+ 𝑇𝛿
𝑇

(𝑥 (𝑡
𝑘
)) 𝑃𝛿 (𝑥 (𝑡

𝑘
))

= 𝑥
𝑇

(𝑡
𝑘
) [𝑃𝐴 (𝑡

𝑘
) + 𝐴
𝑇

(𝑡
𝑘
) 𝑃] 𝑥 (𝑡

𝑘
)

+ 2𝑥
𝑇

(𝑡
𝑘
) 𝑃𝐴
𝑑
(𝑡
𝑘
) 𝑥 (𝑡
𝑘
− 𝑑
𝑘
)

+ 2𝑥
𝑇

(𝑡
𝑘
) 𝑃𝐵
𝑤
(𝑡
𝑘
) 𝑤 (𝑡
𝑘
)

+ 𝑇𝛿
𝑇

(𝑥 (𝑡
𝑘
)) 𝑃𝛿 (𝑥 (𝑡

𝑘
)) .

(25)

Similarly, applying the delta operator to 𝑉
2
(𝑥(𝑡
𝑘
)),

𝑉
3
(𝑥(𝑡
𝑘
)), and 𝑉

4
(𝑥(𝑡
𝑘
)), it can be obtained as follows:

𝛿𝑉
2
(𝑥 (𝑡
𝑘
)) =

1

𝑇

[𝑇

𝑛

∑

𝑖=1

𝑥
𝑇

(𝑡
𝑘
− 𝑖𝑇 + 𝑇) ̆𝑄 (𝑡

𝑘
− 𝑖𝑇 + 𝑇)

× 𝑥 (𝑡
𝑘
− 𝑖𝑇 + 𝑇)

− 𝑇

𝑛

∑

𝑖=1

𝑥
𝑇

(𝑡
𝑘
− 𝑖𝑇) ̆𝑄 (𝑡

𝑘
− 𝑖𝑇) 𝑥 (𝑡

𝑘
− 𝑖𝑇)]

≤ 𝑥
𝑇

(𝑡
𝑘
) ̆𝑄 (𝑡
𝑘
) 𝑥 (𝑡
𝑘
)

− 𝑥
𝑇

(𝑡
𝑘
− 𝑑
𝑘
) ̆𝑄 (𝑡
𝑘
− 𝑑
𝑘
) 𝑥 (𝑡
𝑘
− 𝑑
𝑘
)

+ 𝑇

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑥
𝑇

(𝑡
𝑘
− 𝑖𝑇) ̆𝑄 (𝑡

𝑘
− 𝑖𝑇) 𝑥 (𝑡

𝑘
− 𝑖𝑇) ,

𝛿𝑉
3
(𝑥 (𝑡
𝑘
)) = 𝑥

𝑇

(𝑡
𝑘
) ( ̆𝑆
1
(𝑡
𝑘
) + ̆𝑆
2
(𝑡
𝑘
)) 𝑥 (𝑡

𝑘
)

− 𝑥
𝑇

(𝑡
𝑘
− 𝑑
𝑚
) ̆𝑆
1
(𝑡
𝑘
− 𝑑
𝑚
) 𝑥 (𝑡
𝑘
− 𝑑
𝑚
)

− 𝑥
𝑇

(𝑡
𝑘
− 𝑑
𝑀
) 𝑆
2
(𝑡
𝑘
− 𝑑
𝑀
) 𝑥 (𝑡
𝑘
− 𝑑
𝑀
) ,

𝛿𝑉
4
(𝑥 (𝑡
𝑘
)) = 𝑇[

𝑖

∑

𝑠=1

(𝑥
𝑇

(𝑡
𝑘
− 𝑠𝑇 + 𝑇) ̆𝑄 (𝑡

𝑘
− 𝑠𝑇 + 𝑇)

× 𝑥 (𝑡
𝑘
− 𝑠𝑇 + 𝑇))

−

𝑖

∑

𝑠=1

(𝑥
𝑇

(𝑡
𝑘
− 𝑠𝑇) ̆𝑄 (𝑡

𝑘
− 𝑠𝑇)

× 𝑥 (𝑡
𝑘
− 𝑠𝑇)) ]

= (𝑑
𝑀
− 𝑑
𝑚
+ 𝑇) 𝑥

𝑇

(𝑡
𝑘
) ̆𝑄 (𝑡
𝑘
) 𝑥 (𝑡
𝑘
)

− 𝑇

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑥
𝑇

(𝑡
𝑘
− 𝑖𝑇) ̆𝑄 (𝑡

𝑘
− 𝑖𝑇) 𝑥 (𝑡

𝑘
− 𝑖𝑇) .

(26)

Applying Lemma 4 to 𝑉
5
(𝑥(𝑡
𝑘
)) and along the trajectory

of system (5), it can be obtained that

𝛿𝑉
5
(𝑥 (𝑡
𝑘
)) =

1

𝑇

[

𝑛𝑚

∑

𝑖=1

𝑖

∑

𝑠=1

𝑒
𝑇

(𝑡
𝑘
− 𝑠𝑇 + 𝑇)𝑅

1
𝑒 (𝑡
𝑘
− 𝑠𝑇 + 𝑇)

−

𝑛𝑚

∑

𝑖=1

𝑖

∑

𝑠=1

𝑒
𝑇

(𝑡
𝑘
− 𝑠𝑇) 𝑅

1
𝑒 (𝑡
𝑘
− 𝑠𝑇)

+

𝑛𝑀

∑

𝑖=1

𝑖

∑

𝑠=1

𝑒
𝑇

(𝑡
𝑘
− 𝑠𝑇 + 𝑇)
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× 𝑅
2
𝑒 (𝑡
𝑘
− 𝑠𝑇 + 𝑇)

−

𝑛𝑀

∑

𝑖=1

𝑖

∑

𝑠=1

𝑒
𝑇

(𝑡
𝑘
− 𝑠𝑇) 𝑅

2
𝑒 (𝑡
𝑘
− 𝑠𝑇)]

=

1

𝑇

[

𝑛𝑚

∑

𝑖=1

𝑒
𝑇

(𝑡
𝑘
) 𝑅
1
𝑒 (𝑡
𝑘
)

−

𝑛𝑚

∑

𝑖=1

𝑒
𝑇

(𝑡
𝑘
− 𝑖𝑇) 𝑅

1
𝑒 (𝑡
𝑘
− 𝑖𝑇)

+

𝑛𝑀

∑

𝑖=1

𝑒
𝑇

(𝑡
𝑘
) 𝑅
2
𝑒 (𝑡
𝑘
)

−

𝑛𝑀

∑

𝑖=1

𝑒
𝑇

(𝑡
𝑘
− 𝑖𝑇) 𝑅

2
𝑒 (𝑡
𝑘
− 𝑖𝑇)]

≤ 𝑒
𝑇

(𝑡
𝑘
) (

𝑛
𝑚

𝑇

𝑅
1
+

𝑛
𝑀

𝑇

𝑅
2
) 𝑒 (𝑡
𝑘
)

−

1

𝑛
𝑚
𝑇

[

𝑛𝑚

∑

𝑖=1

𝑒 (𝑡
𝑘
− 𝑖𝑇)]

𝑇

𝑅
1

× [

𝑛𝑚

∑

𝑖=1

𝑒 (𝑡
𝑘
− 𝑖𝑇)] −

1

𝑛
𝑀
𝑇

[

𝑛𝑀

∑

𝑖=1

𝑒 (𝑡
𝑘
− 𝑖𝑇)]

𝑇

× 𝑅
2
[

𝑛𝑀

∑

𝑖=1

𝑒 (𝑡
𝑘
− 𝑖𝑇)]

= 𝛿
𝑇

(𝑥 (𝑡
𝑘
)) (𝑑
𝑚
𝑅
1
+ 𝑑M𝑅2) 𝛿 (𝑥 (𝑡𝑘))

−

1

𝑑
𝑚

[𝑥 (𝑡
𝑘
) − 𝑥 (𝑡

𝑘
− 𝑑
𝑚
)]
𝑇

× 𝑅
1
[𝑥 (𝑡
𝑘
) − 𝑥 (𝑡

𝑘
− 𝑑
𝑚
)]

−

1

𝑑
𝑀

[𝑥 (𝑡
𝑘
) − 𝑥 (𝑡

𝑘
− 𝑑
𝑀
)]
𝑇

× 𝑅
2
[𝑥 (𝑡
𝑘
) − 𝑥 (𝑡

𝑘
− 𝑑
𝑀
)] .

(27)

For the real matrix 𝑃 > 0, the following equation is
tenable:

0 = − 2𝛿
𝑇

(𝑥 (𝑡
𝑘
)) 𝑃 [𝛿 (𝑥 (𝑡

𝑘
)) − 𝐴 (𝑡

𝑘
) 𝑥 (𝑡
𝑘
)

−𝐴
𝑑
(𝑡
𝑘
) 𝑥 (𝑡
𝑘
− 𝑑
𝑘
) − 𝐵
𝑤
(𝑡
𝑘
) 𝑤 (𝑡
𝑘
)]

= − 2𝛿
𝑇

(𝑥 (𝑡
𝑘
)) 𝑃𝛿 (𝑥 (𝑡

𝑘
)) + 2𝛿

𝑇

(𝑥 (𝑡
𝑘
)) 𝑃𝐴 (𝑡

𝑘
) 𝑥 (𝑡
𝑘
)

+ 2𝛿
𝑇

(𝑥 (𝑡
𝑘
)) 𝑃𝐴
𝑑
(𝑡
𝑘
) 𝑥 (𝑡
𝑘
− 𝑑
𝑘
)

+ 2𝛿
𝑇

(𝑥 (𝑡
𝑘
)) 𝑃𝐵
𝑤
(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) .

(28)
Generally, considering the passive performance index in

Definition 2, which is described as the passivity analysis,
performance of system (5) can be established as follows:

𝐽 = 𝜀
−1

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
) + 𝜁𝑤

𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
)

− 2𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) + 𝛿𝑉 (𝑡

𝑘
) .

(29)

By adding (28) into 𝛿𝑉(𝑡
𝑘
) and applying (7), it can be

found that

𝐽 = 𝜀
−1

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
) + 𝜁𝑤

𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) − 2𝑧

𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
)

+ 𝛿𝑉 (𝑡
𝑘
)

≤ 𝜂
𝑇

(𝑡
𝑘
)

𝑟

∑

𝜅=1

𝑟

∑

𝜆=1

𝑟

∑

𝜇=1

𝑟

∑

]=1

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝜅
ℎ
𝜆
ℎ
𝜇
ℎ]ℎ𝑖ℎ𝑠𝜂

𝑇

(𝑡
𝑘
)

× [Ω
1𝜅𝜆𝜇]𝑖𝑠 + 𝜀

−1

Ω
𝑇

2𝑖𝑠
Ω
2𝑖𝑠
] 𝜂 (𝑡
𝑘
) ,

(30)

where ℎ
𝜅
= ℎ
𝜅
(𝜃(𝑡
𝑘
)), ℎ
𝜆
= ℎ
𝜆
(𝜃(𝑡
𝑘
− 𝑑
𝑘
)), ℎ
𝜇
= ℎ
𝜇
(𝜃(𝑡
𝑘
−

𝑑
𝑚
)), ℎ] = ℎ](𝜃(𝑡𝑘 − 𝑑

𝑀
)), ℎ
𝑖
= ℎ
𝑖
(𝜃(𝑡
𝑘
)), ℎ
𝑠
= ℎ
𝑠
(𝜃(𝑡
𝑘
)), and

𝜂
𝑇

(𝑡
𝑘
) = [𝛿

𝑇

(𝑥 (𝑡
𝑘
)) 𝑥
𝑇

(𝑡
𝑘
) 𝑥
𝑇

(𝑡
𝑘
− 𝑑
𝑘
) 𝑥
𝑇

(𝑡
𝑘
− 𝑑
𝑚
) 𝑥
𝑇

(𝑡
𝑘
− 𝑑
𝑀
) 𝑤
𝑇

(𝑡
𝑘
)] . (31)

On the other hand, it can be seen fromTheorem 8 that

𝑟

∑

𝜅=1

𝑟

∑

𝜆=1

𝑟

∑

𝜇=1

𝑟

∑

]=1

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝜅
ℎ
𝜆
ℎ
𝜇
ℎ]ℎ𝑖ℎ𝑠Θ𝜅𝜆𝜇]𝑖𝑠

=

𝑟

∑

𝜅=1

𝑟

∑

𝜆=1

𝑟

∑

𝜇=1

𝑟

∑

]=1

ℎ
𝜅
ℎ
𝜆
ℎ
𝜇
ℎ]

× [

𝑟

∑

𝑖=1

ℎ
2

𝑖
Θ
𝜅𝜆𝜇]𝑖𝑖

+

𝑟−1

∑

𝑖=1

𝑟

∑

𝑠=𝑖+1

ℎ
𝑖
ℎ
𝑠
(Θ
𝜅𝜆𝜇]𝑖𝑠 + Θ

𝜅𝜆𝜇]𝑠𝑖)] < 0.

(32)

Applying Schur complement, it can be obtained that

𝐽 = 𝜀
−1

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
) + 𝜁𝑤

𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
)

− 2𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) + 𝛿𝑉 (𝑡

𝑘
) < 0.

(33)
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It can be seen that the LMIs conditions in Theorem 8
satisfy the very strictly passive performance index for the
fuzzy delta operator system (5). The proof is completed.

Based on the conditions inTheorem 8, the state-feedback
control gain matrices 𝐾

𝑠
(𝑠 = 1, 2, . . . , 𝑟) will be designed in

the following theorem.

Theorem 9. Considering fuzzy delta operator system (5), for
a given sampling period 𝑇 > 0 and constants 𝑑

𝑚
, 𝑑
𝑀

(0 <

𝑑
𝑚

≤ 𝑑
𝑀
), system (5) is very strictly passive if there exist

scalars 𝜀 > 0, 𝜁 > 0 and symmetric matrices 𝑃 > 0, 𝑅
1
> 0,

𝑅
2
> 0, 𝑄

𝜅
> 0, 𝑆

1𝜅
> 0, and 𝑆

2𝜅
> 0 (𝜅 = 1, 2, . . . , 𝑟) with

appropriate dimensions, such that the following LMIs hold for
𝜅, 𝜆, 𝜇, ], 𝑖, 𝑠 = 1, 2, . . . , 𝑟:

Θ
𝜅𝜆𝜇]𝑖𝑖 < 0,

Θ
𝜅𝜆𝜇]𝑖𝑠 + Θ

𝜅𝜆𝜇]𝑠𝑖 < 0, 𝑠 ̸= 𝑖,

(34)

where

Θ
𝜅𝜆𝜇]𝑖𝑠 = [

Ω
1𝜅𝜆𝜇]𝑖𝑠 Ω

𝑇

2𝑖𝑠

∗ −𝜀𝐼

] , Ω
2𝜆𝜇]𝑖𝑠 = [0 𝐶

𝑖
𝑃 + 𝐷

𝑖
𝐾
𝑠
𝐶
𝑑𝑖
𝑃 0 0 𝐷

𝑤𝑖
] ,

Ω
1𝜅𝜆𝜇]𝑖𝑠 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1
𝐴
𝑖
𝑃 + 𝐵

𝑖
𝐾
𝑠
𝐴
𝑑𝑖
𝑃 0 0 𝐵

𝑤𝑖

∗ Ξ
2𝜅𝑖𝑠

𝐴
𝑑𝑖
𝑃

1

𝑑
𝑚

𝑅
1

1

𝑑
𝑀

𝑅
2

Ξ
3𝑖𝑠

∗ ∗ −𝑄
𝜆

0 0 −𝑃𝐶
𝑇

𝑑𝑖

∗ ∗ ∗ −𝑆
1𝜇

−

1

𝑑
𝑚

𝑅
1

0 0

∗ ∗ ∗ ∗ −𝑆
2] −

1

𝑑
𝑀

𝑅
2

0

∗ ∗ ∗ ∗ ∗ 𝜁𝐼 − 𝐷
𝑤𝑖
− 𝐷
𝑇

𝑤𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ξ
1
= (𝑇 − 2) 𝑃 + 𝑑

𝑚
𝑅
1
+ 𝑑
𝑀
𝑅
2
, Ξ

3𝑖𝑠
= 𝐵
𝑤𝑖
− 𝑃𝐶
𝑇

𝑖
− 𝐾

𝑇

𝑠
𝐷
𝑇

𝑖
,

Ξ
2𝜅𝑖𝑠

= 𝐴
𝑖
𝑃 + 𝑃𝐴

𝑇

𝑖
+ 𝐵
𝑖
𝐾
𝑠
+ 𝐾

𝑇

𝑠
𝐵
𝑇

𝑖
+ (𝑑
𝑀
− 𝑑
𝑚
+ 𝑇 + 1)𝑄

𝜅
+ 𝑆
1𝜅
+ 𝑆
2𝜅
−

1

𝑑
𝑚

𝑅
1
−

1

𝑑
𝑀

𝑅
2
.

(35)

The fuzzy sate-feedback controller can be obtained:

𝑢 (𝑡
𝑘
) = 𝐾

𝑠
𝑃

−1

𝑥 (𝑡
𝑘
) . (36)

Proof. Premultiplying and postmultiplying (34) by diagonal
matrix

diag {𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝑃−1, 𝐼, 𝐼} (37)

and letting

𝑃 = 𝑃

−1

, 𝐾
𝑠
= 𝐾
𝑠
𝑃

−1

, 𝑅
1
= 𝑃

−1

𝑅
1
𝑃

−1

,

𝑅
2
= 𝑃

−1

𝑅
2
𝑃

−1

,

𝑄
𝑖
= 𝑃

−1

𝑄
𝑖
𝑃

−1

, 𝑆
1𝑖
= 𝑃

−1

𝑆
1𝑖
𝑃

−1

,

𝑆
2𝑖
= 𝑃

−1

𝑆
2𝑖
𝑃

−1

,

(38)

for 𝑖 = 1, 2, . . . , 𝑟, it can be found that the conditions (20)
hold, whichmeans that system (5) is very strictly passive.The
proof is completed.

Remark 10. In this paper, the modeling uncertainties are not
taken into account in system (1). It should be pointed out
that the robust passive controller design condition can be
presented for uncertain discrete-time T-S fuzzy systems with
time delay and disturbance input via delta operator approach.

In order to present the stability and stabilization condi-
tion for discrete-time T-S fuzzy systems with time delay via
delta operator approach, it is assumed that the disturbance
input 𝑤(𝑡

𝑘
) = 0 in fuzzy delta operator system (3), which can

be described as

𝛿𝑥 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡
𝑘
))

× [𝐴
𝑖
𝑥 (𝑡
𝑘
) + 𝐴
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐵
𝑖
𝑢 (𝑡
𝑘
)] ,

𝑧 (𝑡
𝑘
) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡
𝑘
))

× [𝐶
𝑖
𝑥 (𝑡
𝑘
) + 𝐶
𝑑𝑖
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐷i𝑢 (𝑡𝑘)] .

(39)
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Similar to the proof of Theorems 8 and 9, the following
two corollaries can be obtained.

Corollary 11. For a given sampling period𝑇 > 0 and constants
𝑑
𝑚
and 𝑑

𝑀
(0 < 𝑑

𝑚
≤ 𝑑
𝑀
), system (39) (𝑢(𝑡

𝑘
) = 0) is

asymptotically stable if there exist symmetric matrices 𝑃 > 0,
𝑅
1
> 0, 𝑅

2
> 0, 𝑄

𝜅
> 0, 𝑆

1𝜅
> 0, and 𝑆

2𝜅
> 0 (𝜅 = 1, 2, . . . , 𝑟)

with appropriate dimensions, such that the following LMIs hold
for 𝜅, 𝜆, 𝜇, ], 𝑖 = 1, 2, . . . , 𝑟:

Θ̆
𝜅𝜆𝜇]𝑖 < 0, (40)

where

Θ̆
𝜅𝜆𝜇]𝑖 =

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1

𝑃𝐴
𝑖
𝑃𝐴
𝑑𝑖

0 0

∗ Ξ̆
2𝜅𝑖

𝑃𝐴
𝑑𝑖

1

𝑑
𝑚

𝑅
1

1

𝑑
𝑀

𝑅
2

∗ ∗ −𝑄
𝜆

0 0

∗ ∗ ∗ −𝑆
1𝜇

−

1

𝑑
𝑚

𝑅
1

0

∗ ∗ ∗ ∗ −𝑆
2] −

1

𝑑
𝑀

𝑅
2

]

]

]

]

]

]

]

]

]

]

]

]

,

Ξ
1
= (𝑇 − 2) 𝑃 + 𝑑

𝑚
𝑅
1
+ 𝑑
𝑀
𝑅
2
,

Ξ̆
2𝜅𝑖

= 𝑃𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃 + (𝑑

𝑀
− 𝑑
𝑚
+ 𝑇 + 1)𝑄

𝜅
+ 𝑆
1𝜅
+ 𝑆
2𝜅
−

1

𝑑
𝑚

𝑅
1
−

1

𝑑
𝑀

𝑅
2
.

(41)

Corollary 12. System (39) with the controller in (4) is asymp-
totically stable for a given sampling period 𝑇 > 0 and constants
𝑑
𝑚
and 𝑑

𝑀
(0 < 𝑑

𝑚
≤ 𝑑
𝑀
), if there exist symmetric matrices

𝑃 > 0, 𝑅
1
> 0, 𝑅

2
> 0, 𝑄

𝜅
> 0, 𝑆

1𝜅
> 0, and 𝑆

2𝜅
> 0

(𝜅 = 1, 2, . . . , 𝑟) with appropriate dimensions, such that the
following LMIs hold for 𝜅, 𝜆, 𝜇, ], 𝑖, 𝑠 = 1, 2, . . . , 𝑟:

Θ̃
𝜅𝜆𝜇]𝑖𝑖 < 0,

Θ̃
𝜅𝜆𝜇]𝑖𝑠 + Θ̃

𝜅𝜆𝜇]𝑠𝑖 < 0, 𝑠 ̸= 𝑖,

(42)

where

Θ̃
𝜅𝜆𝜇]𝑖𝑠 =

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1
𝐴
𝑖
𝑃 + 𝐵

𝑖
𝐾
𝑠
𝐴
𝑑𝑖
𝑃 0 0

∗ Ξ
2𝜅𝑖𝑠

𝐴
𝑑𝑖
𝑃

1

𝑑
𝑚

𝑅
1

1

𝑑
𝑀

𝑅
2

∗ ∗ −𝑄
𝜆

0 0

∗ ∗ ∗ −𝑆
1𝜇

−

1

𝑑
𝑚

𝑅
1

0

∗ ∗ ∗ ∗ −𝑆
2] −

1

𝑑
𝑀

𝑅
2

]

]

]

]

]

]

]

]

]

]

]

]

,

Ξ
1𝜅

= (𝑇 − 2) 𝑃 + 𝑑
𝑚
𝑅
1
+ 𝑑
𝑀
𝑅
2
,

Ξ
2𝜅𝑖𝑠

= 𝐴
𝑖
𝑃 + 𝑃𝐴

𝑇

𝑖
+ 𝐵
𝑖
𝐾
𝑠
+ 𝐾

𝑇

𝑠
𝐵
𝑇

𝑖
+ (𝑑
𝑀
− 𝑑
𝑚
+ 𝑇 + 1)𝑄

𝜅
+ 𝑆
1𝜅
+ 𝑆
2𝜅
−

1

𝑑
𝑚

𝑅
1
−

1

𝑑
𝑀

𝑅
2
.

(43)

Then, the controller (4) can be designed as

𝑢 (𝑡
𝑘
) = 𝐾

𝑠
𝑃

−1

𝑥 (𝑡
𝑘
) . (44)

4. Numerical Example

In this section, one example is presented to demonstrate the
effectiveness of the proposed method.

Example 1. Consider the following fuzzy system with time-
varying delay and input disturbance:

Plant Rule 1. IF 𝜃(𝑡
𝑘
) is 0, THEN

𝛿𝑥 (𝑡
𝑘
) = 𝐴

1
𝑥 (𝑡
𝑘
) + 𝐴
𝑑1
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐵
1
𝑢 (𝑡
𝑘
)

+ 𝐵
𝑤1
𝑤 (𝑡
𝑘
) ,
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Table 1: The feasibility of the system with 𝑇 = 0.001.

𝑑
𝑚

𝑑
𝑀

𝐾
1

𝐾
2

𝑇 = 0.001 0.01 7.44 [−0.2229 −13.6801] [−1.7743 −4.5044]

𝑧 (𝑡
𝑘
) = 𝐶
1
𝑥 (𝑡
𝑘
) + 𝐶
𝑑1
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐷
1
𝑢 (𝑡
𝑘
)

+ 𝐷
𝑤1
𝑤 (𝑡
𝑘
) .

(45)

Plant Rule 2. IF 𝜃(𝑡
𝑘
) is ±(𝜋/2)(|𝜃(𝑡

𝑘
)| < 𝜋/2), THEN

𝛿𝑥 (𝑡
𝑘
) = 𝐴

2
𝑥 (𝑡
𝑘
) + 𝐴
𝑑2
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐵
2
𝑢 (𝑡
𝑘
)

+ 𝐵
𝑤2
𝑤 (𝑡
𝑘
) ,

𝑧 (𝑡
𝑘
) = 𝐶
2
𝑥 (𝑡
𝑘
) + 𝐶
𝑑2
𝑥 (𝑡
𝑘
− 𝑑
𝑘
) + 𝐷
2
𝑢 (𝑡
𝑘
)

+ 𝐷
𝑤2
𝑤 (𝑡
𝑘
) .

(46)

The system matrix parameters in (45) and (46) are given
as follows:

𝐴
1
= [

−2.000 −0.060

0.070 0.100
] , 𝐴

2
= [

−1.800 0.080

−0.050 0.100
] ,

𝐵
1
= [

0.080

0.050
] , 𝐵

2
= [

0.080

0.090
] ,

𝐴
𝑑1

= [

−0.020 −0.010

0.010 0.020
] , 𝐴

𝑑2
= [

−1.800 0.080

−0.050 0.100
] ,

𝐵
𝑤1

= [0.010 −0.100]

𝑇

,

𝐵
𝑤2

= [−0.010 −0.100]

𝑇

, 𝐶
1
= [−0.010 0.010] ,

𝐶
2
= [0.120 −0.100] , 𝐷

1
= 0.010,

𝐶
𝑑1

= [0.080 0.010] , 𝐶
𝑑2

= [−0.010 −0.050] ,

𝐷
2
= 0.020, 𝐷

𝑤1
= 0.010, 𝐷

𝑤2
= 0.020.

(47)

Two membership functions are chosen for Plant Rules 1
and 2 as follows:

ℎ
1
(𝜃 (𝑡
𝑘
)) =

{
{
{

{
{
{

{

1 −

2

𝜋

𝜃 (𝑡
𝑘
) , 0 ≤ 𝜃 (𝑡

𝑘
) ≤

𝜋

2

,

1 +

2

𝜋

𝜃 (𝑡
𝑘
) , −

𝜋

2

≤ 𝜃 (𝑡
𝑘
) < 0,

ℎ
2
(𝜃 (𝑡
𝑘
)) = 1 − ℎ

1
(𝜃 (𝑡
𝑘
)) .

(48)

And Figure 1 shows the membership functions.
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Figure 1: Membership functions of two rules.
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Figure 2: Response of 𝜍(𝑡
𝑘
) of the open-loop system.

Define the value range of time delay 𝑑
𝑘

= 𝑛𝑇, and
choosing the lower bound 𝑑

𝑚
= 0.01, the sampling period

𝑇 may be assumed as 𝑇 = 0.001 and it can be found from
Theorem 9 that the maximum upper bound of time delay 𝑑

𝑘

and the control gain matrices are listed in Table 1.
Assume that time delay 𝑑

𝑘
= 𝑛𝑇 = 40𝑇 and the

disturbance input 𝑤(𝑡
𝑘
) = −1/(2 + 𝑡

𝑘
). It can be calculated
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Figure 3: Response of 𝜐(𝑡
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) of the open-loop system.
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Figure 4: State response of the open-loop system.

that ∑∞
𝑡𝑘=0

𝑤
𝑇

(𝑡
𝑘
)𝑤(𝑡
𝑘
) = 0.5 < ∞, which means that 𝑤(𝑡

𝑘
) ∈

𝐿
2
[0,∞). Let

𝜐 (𝑡
𝑘
) = 2

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) − 𝜀

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑧 (𝑡
𝑘
)

− 𝜁

∞

∑

𝑡𝑘=0

𝑤
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) ,

𝜍 (𝑡
𝑘
) = 2

∞

∑

𝑡𝑘=0

𝑧
𝑇

(𝑡
𝑘
) 𝑤 (𝑡
𝑘
) .

(49)
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Figure 5: Response of 𝜍(𝑡
𝑘
) of the closed-loop system.
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Figure 6: Response of 𝜐(𝑡
𝑘
) of the closed-loop system.

In Figure 2, it can be observed that 𝜍(𝑡
𝑘
) decreases finally

as the time 𝑡
𝑘
increases, whichmeans that there may not exist

a scalar 𝜌 such that 𝜍(𝑡
𝑘
) ≥ 𝜌 hold for all 𝑡

𝑘
≥ 0 for 𝑇 = 0.001.

Furthermore, Figure 3 shows that there may not exist a scalar
𝜌 such that 𝜐(𝑡

𝑘
) ≥ 𝜌, whichmeans that the open-loop system

is not passive in the sense of Definition 2, and it is not very
strictly passive. Figure 4 illustrates that the open-loop system
is not stable for 𝑇 = 0.001.

Under the control gain matrices in Table 1, Figure 5 plots
the responses of 𝜍(𝑡

𝑘
) for the closed-loop system for 𝑇 =

0.001. It can be seen that there may exist a scalar 𝜌 such that
𝜍(𝑡
𝑘
) ≥ 𝜌 holds for all 𝑡

𝑘
≥ 0. It can be seen from Figure 6 that

there may exist a scalar 𝜌 such that 𝜐(𝑡
𝑘
) ≥ 𝜌. Then, it is clear

that the closed-loop system is very strictly passive under the
control gain matrices in Table 1. In addition, Figure 7 shows
that the closed-loop system is stable. Furthermore, Figure 8
depicts the control input responses. These simulation
results have demonstrated the effectiveness of the proposed
method.
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Figure 7: State response of the open-loop system.
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Figure 8: Control signal response of the closed-loop system.

5. Conclusions

In this paper, the problems of passivity analysis and passive
control have been investigated for fuzzy delta operator sys-
temswith timedelay anddisturbance input. By applying some
new LKF in 𝛿-domain and utilizing some fuzzy weighing
matrices, the state-feedback controller has been designed to
guarantee that the resulting closed-loop system is very strictly
passive. The existence conditions for the controller have
been expressed as LMIs. Finally, a numerical example has
been included to illustrate the effectiveness of the proposed
results. In future work, based on T-S fuzzy control method,
the problems of control and monitoring in the data-driven
framework [53, 54] could be further studied.
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This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new
Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and
reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are
given to illustrate the less conservatism of the proposed theoretical results.

1. Introduction

It is well known that time-varying delays are frequently
encountered in many practical control systems, and they
are usually regarded as a source of instability and poor
performance. So the stability issue of time delay systems has
received considerable attention [1–16]. In the last years, in
order to further reduce conservatism of the stability results,
some methods were developed, such as the delay-fraction
approach in [1, 2], free weighting matrices method in [3, 4],
the convex analysis method in [5, 6], the reciprocally convex
approach in [7], LKF constructingmethod withmatrices that
depend on the time delays [8], LKF constructing method
with triple-integral terms in [9], LKF constructing method
with quadruple-integral terms in [10], and simple LKF having
quadratic termsmultiplied by a higher degree scalar function
[11, 12]. These methods reduced the conservatism of the
stability results. But when delay is interval time-varying, the
information of the delay derivative is not full used, which
causes the conservatism of the stability results.

Motivated by recent methods, in this paper, we further
discuss the stability of linear systems with interval time-
varying delay. Firstly, a novel LKF is introduced. Then, by
introducing new vectors, using free matrices and reciprocally
convex approach, the derivative of LKF is estimated less
conservatively, and as a result, the stability criterion is

obtained in terms of LMI. Finally, two examples are given to
illustrate the effectiveness of the proposed method.

Throughout the note, the used notations are standard. R𝑛
denotes the 𝑛-dimensional Euclidean space, R𝑛×𝑚 is a set of
𝑛 × 𝑚 real matrix, 𝐴𝑇 is the transpose of 𝐴, 𝑃 > 0 (𝑃 < 0)

means symmetric positive (negative) definite matrix, and ∗

in the matrix denotes the symmetric element; 𝐼 is the identity
matrix of appropriate dimensions, 𝑥

𝑡
= 𝑥(𝑡 + 𝜃), 𝜃 ∈ [−ℎ, 0].

Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulations

Consider the following time-delay system:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, the initial condition 𝜙(𝑡) is
a continuously differentiable vector-valued function,𝐴,𝐴

1
∈

R𝑛×𝑛 are known real constant matrices, and ℎ(𝑡) is the time-
varying delay satisfying

ℎ
1
≤ ℎ (𝑡) ≤ ℎ

2
,

̇
ℎ (𝑡) ≤ 𝜇 ≤ ∞, (2)

where ℎ
1
, ℎ
2
, and 𝜇 are constants.
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To obtain the main results, the following lemmas are
needed.

Lemma 1 (see [9]). For any symmetric matrix 𝑍 = 𝑍
𝑇

≥ 0,
scalars ℎ

2
> ℎ
1
> 0 such that the integration is well defined;

then

− (ℎ
2
− ℎ
1
) ∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑑𝑠 𝑑𝜃𝑍∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.

(3)

Lemma 2 (see [7]). Let 𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
: R𝑚 → R have

positive values in an open subsetD of R𝑚.Then, the reciprocally
convex combination of 𝑓

𝑖
over D satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max
𝑔𝑖𝑗(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖𝑗
(𝑡)

subject to 𝑔
𝑖,𝑗
: R𝑚 → R, 𝑔

𝑖𝑗
(𝑡) = 𝑔

𝑗𝑖
(𝑡) ,

[

𝑓
𝑖
(𝑡) 𝑔

𝑖𝑗
(𝑡)

𝑔
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑡)

] ≥ 0.

(4)

Lemma 3 (see [16]). The symmetric appropriately dimen-
sional matrices Θ > 0, Ξ, Υ, if Ξ − ΥΘΥ

𝑇

< 0 hold; then
there exists a matrix of appropriate dimension Π such that the
following LMI holds:

[
Ξ + ΥΠ

𝑇

+ ΠΥ
𝑇

Π

∗ −Θ

] < 0. (5)

3. Main Results

In this section, the stability of system (1) is investigated.
Through constructing a novel LKF and estimating the deriva-
tive of it, new stability condition is provided.

Firstly, define the following vector as

𝜁
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) ∫

𝑡

𝑡−ℎ1

𝑥
𝑇

(𝑠) 𝑑𝑠] ,

𝜉
𝑇

(𝑡) = [ ̇𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)] ,

(6)

and then construct the L-K functional as follows:

𝑉 (𝑥
𝑡
) =

4

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
) , (7)

where

𝑉
1
(𝑥
𝑡
) = 𝜁
𝑇

(𝑡) 𝑃𝜁 (𝑡) ,

𝑉
2
(𝑥
𝑡
) = ∫

𝑡

𝑡−ℎ1

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥
𝑇

(𝑠) 𝑄
3
𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑥
𝑡
) = ℎ
1
∫

0

−ℎ1

∫

𝑡

𝑡+𝜃

𝜉
𝑇

(𝑠) [

𝑅
1

0

∗ 𝑅
2

] 𝜉 (𝑠) 𝑑𝑠 𝑑𝜃

+ (ℎ
2
− ℎ
1
) ∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

𝜉
𝑇

(𝑠) [

𝑋
1

0

∗ 𝑋
2

] 𝜉 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
4
(𝑥
𝑡
) =

ℎ
2

1

2

∫

0

−ℎ1

∫

0

𝜃

∫

𝑡

𝑡+𝜆

̇𝑥
𝑇

(𝑠) 𝑈
1
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃

+

ℎ
2

2
− ℎ
2

1

2

∫

−ℎ2

−ℎ1

∫

0

𝜃

∫

𝑡

𝑡+𝜆

̇𝑥
𝑇

(𝑠) 𝑈
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃

+

1

2

∫

𝑡−ℎ1

𝑡−ℎ2

∫

𝑡−ℎ1

𝜃

∫

𝑡

𝜆

̇𝑥
𝑇

(𝑠) 𝑈
3
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃,

(8)

and matrices 𝑄
1
, 𝑄
2
, 𝑄
3
, 𝑅
1
, 𝑅
2
, 𝑋
1
, 𝑋
2
, 𝑈
1
, 𝑈
2
, 𝑈
3
∈ R𝑛×𝑛 >

0, 𝑃 = [𝑃
𝑖𝑗
] (1 ≤ 𝑖 ≤ 𝑗 ≤ 2) ∈ R2𝑛×2𝑛 > 0.

In order to make the proof process clear, the following
notations are used:

𝛼 (𝑡) = ℎ (𝑡) − ℎ
1
, 𝛽 (𝑡) = ℎ

2
− ℎ (𝑡) , 𝜑 (𝑡) =

1

𝛼 (𝑡)

∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠, 𝜙 (𝑡) =

1

𝛽 (𝑡)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥
𝑇

(𝑠) 𝑑𝑠,

𝜒
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑥
𝑇

(𝑡 − ℎ
1
) 𝑥
𝑇

(𝑡 − ℎ
2
) ∫

𝑡

𝑡−ℎ1

𝑥
𝑇

(𝑠) 𝜑
𝑇

(𝑡) 𝜙
𝑇

(𝑡) ̇𝑥
𝑇

(𝑡) ]

(9)

and block entry matrices 𝑒
𝑖
(𝑖 = 1, 2, . . . , 5) (e.g., 𝑒𝑇

2
=

[0 𝐼 0 0 0 0 0 0]).
Then taking the time derivatives of 𝑉

𝑖
(𝑥
𝑡
) along the

trajectory of system (1) yields

𝑉
1
(𝑥
𝑡
)= 2𝜁

𝑇

(𝑡) 𝑃
̇
𝜁 (𝑡)= 2𝜒

𝑇

(𝑡) [𝑒
1
𝑒
5
] 𝑃[𝑒
8
𝑒
1
− 𝑒
3
]

𝑇

𝜒 (𝑡),

𝑉
2
(𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − ℎ
1
) (𝑄
1
− 𝑄
2
) 𝑥 (𝑡 − ℎ

1
)

− (1 −
̇
ℎ (𝑡)) 𝑥

𝑇

(𝑡 − ℎ (𝑡)) (𝑄
2
− 𝑄
3
) 𝑥 (𝑡 − ℎ (𝑡))

−𝑥
𝑇

(𝑡 − ℎ
2
) 𝑄
3
𝑥 (𝑡 − ℎ

2
)

≤ 𝜒
𝑇

(𝑡) [𝑒
1
𝑄
1
𝑒
𝑇

1
− 𝑒
3
(𝑄
1
− 𝑄
2
) 𝑒
𝑇

3

− (1 − 𝜇) 𝑒
2
(𝑄
2
− 𝑄
3
) 𝑒
𝑇

2
− 𝑒
4
𝑄
3
𝑒
𝑇

4
] 𝜒 (𝑡) ,

(10)
where 𝑄

2
− 𝑄
3
> 0.
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To reduce the conservatism of the main result, by using
the Jesen inequality and Lemma 2 with introducing appro-
priate matrices 𝑌

1
, 𝑌
2
∈ R𝑛×𝑛, we can calculate 𝑉

3
(𝑥
𝑡
) as

𝑉
3
(𝑥
𝑡
) = ℎ
2

1
𝜉
𝑇

(𝑡) [

𝑅
1

0

∗ 𝑅
2

] 𝜉 (𝑡)

+ (ℎ
2
− ℎ
1
)
2

𝜉
𝑇

(𝑡) [

𝑋
1

0

∗ 𝑋
2

] 𝜉 (𝑡)

− ℎ
1
∫

𝑡

𝑡−ℎ1

𝜉
𝑇

(𝑠) [

𝑅
1

0

∗ 𝑅
2

] 𝜉 (𝑠) 𝑑𝑠

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ1

𝑡−ℎ2

𝜉
𝑇

(𝑠) [

𝑋
1

0

∗ 𝑋
2

] 𝜉 (𝑠) 𝑑𝑠

≤ 𝜒
𝑇

(𝑡) {𝑒
8
[ℎ
2

1
𝑅
1
+ (ℎ
2
− ℎ
1
)
2

𝑋
1
] 𝑒
𝑇

8

+ 𝑒
1
[ℎ
2

1
𝑅
2
+ (ℎ
2
− ℎ
1
)
2

𝑋
2
] 𝑒
𝑇

1

− (𝑒
1
− 𝑒
3
) 𝑅
1
(𝑒
1
− 𝑒
3
)
𝑇

− 𝑒
5
𝑅
2
𝑒
𝑇

5
} 𝜒 (𝑡)

− 𝜒
𝑇

(𝑡) [𝑒
2
− 𝑒
3
𝑒
4
− 𝑒
2
]

× [

𝑋
1

𝑌
1

∗ 𝑋
1

] [𝑒
2
− 𝑒
3
𝑒
4
− 𝑒
2
]

𝑇

𝜒 (𝑡) − Γ
1
,

(11)

where by using Lemma 2 with matrix 𝑌
1
, one can get

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ1

𝑡−ℎ2

̇𝑥
𝑇

(𝑠)𝑋
1
̇𝑥 (𝑠) 𝑑𝑠

= − (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

̇𝑥
𝑇

(𝑠)𝑋
1
̇𝑥 (𝑠) 𝑑𝑠

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

̇𝑥
𝑇

(𝑠)𝑋
1
̇𝑥 (𝑠) 𝑑𝑠

≤ −[

𝑥(𝑡 − ℎ(𝑡)) − 𝑥(𝑡 − ℎ
1
)

𝑥(𝑡 − ℎ
2
) − 𝑥(𝑡 − ℎ(𝑡))

]

𝑇

× [

𝑋
1

𝑌
1

∗ 𝑋
1

] [

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − ℎ
2
) − 𝑥 (𝑡 − ℎ (𝑡))

]

= −𝜒
𝑇

(𝑡) [𝑒
2
− 𝑒
3
𝑒
4
− 𝑒
2
] [

𝑋
1

𝑌
1

∗ 𝑋
1

]

× [𝑒
2
− 𝑒
3
𝑒
4
− 𝑒
2
]

𝑇

𝜒 (𝑡) ,

(12)

and by using Lemma 2 with matrix 𝑌
2
, one can get

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ1

𝑡−ℎ2

𝑥
𝑇

(𝑠)𝑋
2
𝑥 (𝑠) 𝑑𝑠

= − (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠)𝑋
2
𝑥 (𝑠) 𝑑𝑠

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥
𝑇

(𝑠)𝑋
2
𝑥 (𝑠) 𝑑𝑠

≤ −

[

[

[

[

[

∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠

∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥(𝑠)𝑑𝑠

]

]

]

]

]

𝑇

× [

𝑋
2

𝑌
2

∗ 𝑋
2

]

[

[

[

[

[

∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

= Γ
1
.

(13)

To the time-derivative of 𝑉
4
(𝑥
𝑡
), it can be calculated as

𝑉
4
(𝑥
𝑡
) =

ℎ
4

1

4

̇𝑥
𝑇

(𝑡) 𝑈
1
̇𝑥 (𝑡) +

(ℎ
2

2
− ℎ
2

1
)

2

4

̇𝑥
𝑇

(𝑡) 𝑈
2
̇𝑥 (𝑡)

+

(ℎ
2
− ℎ
1
)
2

4

̇𝑥
𝑇

(𝑡) 𝑈
3
̇𝑥 (𝑡)

−

ℎ
2

1

2

∫

0

−ℎ1

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑈
1
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

−

ℎ
2

2
− ℎ
2

1

2

∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑈
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

−

1

2

∫

𝑡−ℎ1

𝑡−ℎ2

∫

𝑡−ℎ1

𝜃

̇𝑥
𝑇

(𝑠) 𝑈
3
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

= 𝜒
𝑇

(𝑡) 𝑒
8

[

[

ℎ
2

1

2

𝑈
1
+

(ℎ
2

2
− ℎ
2

1
)

2

4

𝑈
2

+

(ℎ
2
− ℎ
1
)
2

4

𝑈
3
] 𝑒
𝑇

8
𝜒 (𝑡)

− 𝜒
𝑇

(𝑡) (ℎ
1
𝑒
1
− 𝑒
5
) 𝑈
1
(ℎ
1
𝑒
1
− 𝑒
5
)
𝑇

𝜒 (𝑡)

− 𝜒
𝑇

(𝑡) [(𝑒
3
− 𝑒
6
)
𝑇

𝑈
3
(𝑒
3
− 𝑒
6
)

− (𝑒
2
− 𝑒
7
)
𝑇

𝑈
3
(𝑒
2
− 𝑒
7
)] 𝜒 (𝑡) − Γ

2
,

(14)

where by using Lemma 1, we can get

−

ℎ
2

1

2

∫

0

−ℎ1

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑈
1
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −[ℎ
1
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠]

𝑇

× 𝑈
1
[ℎ
1
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠]

= −𝜒
𝑇

(𝑡) (ℎ
1
𝑒
1
− 𝑒
5
) 𝑈
1
(ℎ
1
𝑒
1
− 𝑒
5
)
𝑇

𝜒 (𝑡) ,

−

1

2

∫

𝑡−ℎ1

𝑡−ℎ2

∫

𝑡−ℎ1

𝜃

̇𝑥
𝑇

(𝑠) 𝑈
3
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃
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≤ −

1

2

∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

∫

𝑡−ℎ1

𝜃

̇𝑥
𝑇

(𝑠) 𝑈
3
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

−

1

2

∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

∫

𝑡−ℎ(𝑡)

𝜃

̇𝑥
𝑇

(𝑠) 𝑈
3
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −[(ℎ (𝑡) − ℎ
1
) 𝑥 (𝑡 − ℎ

1
) − ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

×

𝑈
3

𝛼
2
(𝑡)

[(ℎ (𝑡) − ℎ
1
) 𝑥 (𝑡 − ℎ

1
) − ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠]

− [(ℎ
2
− ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡)) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠]

𝑇

×

𝑈
3

𝛽
2
(𝑡)

[(ℎ
2
− ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡)) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠]

= −𝜒
𝑇

(𝑡) [(𝑒
3
− 𝑒
6
)
𝑇

𝑈
3
(𝑒
3
− 𝑒
6
)

− (𝑒
2
− 𝑒
7
)
𝑇

𝑈
3
(𝑒
2
− 𝑒
7
)] 𝜒 (𝑡) .

(15)

Similar to the method in (12)-(13), by introducing matrix
𝑌
3
∈ R𝑛×𝑛 and using Lemma 2, we can estimate the following:

−

ℎ
2

2
− ℎ
2

1

2

∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑈
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

= −

ℎ
2

2
− ℎ
2

1

2

∫

−ℎ1

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑈
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

−

ℎ
2

2
− ℎ
2

1

2

∫

−ℎ(𝑡)

−ℎ2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑈
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −

[

[

[

[

[

(ℎ(𝑡) − ℎ
1
)𝑥(𝑡) − ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

(ℎ
2
− ℎ(𝑡))𝑥(𝑡) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥(𝑠)𝑑𝑠

]

]

]

]

]

𝑇

× [

𝑈
2
𝑌
3

∗ 𝑈
2

]

[

[

[

[

[

(ℎ (𝑡) − ℎ
1
) 𝑥 (𝑡) − ∫

𝑡−ℎ1

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

(ℎ
2
− ℎ (𝑡)) 𝑥 (𝑡) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

= Γ
2
.

(16)

In the last, in order to obtain the stability result base on
LMI, we can deal with Γ

1
, Γ
2
as follows:

Γ
1
+ Γ
2
= − 𝜒

𝑇

(𝑡) [

0 0 0 0 0 𝛼(𝑡) 0 0

0 0 0 0 0 0 𝛽(𝑡) 0
]

𝑇

[

𝑋
2

𝑌
2

∗ 𝑋
2

] [

0 0 0 0 0 𝛼 (𝑡) 0 0

0 0 0 0 0 0 𝛽 (𝑡) 0
] 𝜒 (𝑡)

− 𝜒
𝑇

(𝑡) [

𝛼(𝑡) 0 0 0 0 −𝛼(𝑡) 0 0

𝛽(𝑡) 0 0 0 0 0 −𝛽(𝑡) 0
]

𝑇

× [

𝑈
2
𝑌
3

∗ 𝑈
2

]

× [

𝛼 (𝑡) 0 0 0 0 −𝛼 (𝑡) 0 0

𝛽 (𝑡) 0 0 0 0 0 −𝛽 (𝑡) 0
] 𝜒 (𝑡)

= − 𝜒
𝑇

(𝑡) Υ (𝑡) ΘΥ
𝑇

(𝑡) 𝜒 (𝑡) ,

(17)
where

Υ
𝑇

(𝑡) =

[

[

[

[

𝛼 (𝑡) 0 0 0 0 −𝛼 (𝑡) 0 0

𝛽 (𝑡) 0 0 0 0 0 −𝛽 (𝑡) 0

0 0 0 0 0 𝛼 (𝑡) 0 0

0 0 0 0 0 0 𝛽 (𝑡) 0

]

]

]

]

,

Θ =

[

[

[

[

𝑈
2
𝑌
3

0 0

∗ 𝑈
2

0 0

0 0 𝑋
2

𝑌
2

0 0 ∗ 𝑋
2

]

]

]

]

.

(18)

Also, for appropriate matrices𝑁
1
, 𝑁
2
, one can have

2 [𝑥
𝑇

(𝑡)𝑁
1
+ ̇𝑥
𝑇

(𝑡)𝑁
2
]

× [𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ (𝑡)) − ̇𝑥 (𝑡)] = 0.

(19)

Therefore, combining (10)–(19), we can obtain

𝑉 (𝑥
𝑡
) =

4

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
) ≤ 𝜒
𝑇

(𝑡) [Ξ − Υ (𝑡) ΘΥ
𝑇

(𝑡)] 𝜒 (𝑡) , (20)

where
Ξ = [𝑒

1
𝑒
5
] 𝑃[𝑒
8
𝑒
1
− 𝑒
3
]

𝑇

+ [𝑒
8
𝑒
1
− 𝑒
3
] 𝑃[𝑒
1
𝑒
5
]

𝑇

− 𝑒
3
(𝑄
1
− 𝑄
2
) 𝑒
𝑇

3
− (1 − 𝜇) 𝑒

2
(𝑄
2
− 𝑄
3
) 𝑒
𝑇

2
− 𝑒
4
𝑄
3
𝑒
𝑇

4

+ 𝑒
8
[ℎ
2

1
𝑅
1
+ (ℎ
2
− ℎ
1
)
2

𝑋
1
+

ℎ
2

1

2

𝑈
1

+

(ℎ
2

2
− ℎ
2

1
)

2

4

𝑈
2
+

(ℎ
2
− ℎ
1
)
2

4

𝑈
3

]

]

𝑒
𝑇

8

+ 𝑒
1
[𝑄
1
+ ℎ
2

1
𝑅
2
+ (ℎ
2
− ℎ
1
)
2

𝑋
2
] 𝑒
𝑇

1

− (𝑒
1
− 𝑒
3
) 𝑅
1
(𝑒
1
− 𝑒
3
)
𝑇

− 𝑒
5
𝑅
2
𝑒
𝑇

5

− [𝑒
2
− 𝑒
3
𝑒
4
− 𝑒
2
] [

𝑋
1

𝑌
1

∗ 𝑋
1

] [𝑒
2
− 𝑒
3
𝑒
4
− 𝑒
2
]

𝑇

− (ℎ
1
𝑒
1
− 𝑒
5
) 𝑈
1
(ℎ
1
𝑒
1
− 𝑒
5
)
𝑇

− (𝑒
3
− 𝑒
6
)
𝑇

𝑈
3
(𝑒
3
− 𝑒
6
) − (𝑒
2
− 𝑒
7
)
𝑇

𝑈
3
(𝑒
2
− 𝑒
7
)

+ (𝑒
1
𝑁
1
+ 𝑒
8
𝑁
2
) (𝑒
𝑇

1
𝐴 + 𝑒
𝑇

2
𝐴
1
− 𝑒
8
)

𝑇

+ (𝑒
𝑇

1
𝐴 + 𝑒
𝑇

2
𝐴
1
− 𝑒
8
) (𝑒
1
𝑁
1
+ 𝑒
8
𝑁
2
)
𝑇

.

(21)
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As we know, if Ξ − Υ(𝑡)ΘΥ
𝑇

(𝑡) < 0 holds, then 𝑉(𝑥
𝑡
) < 0,

which means that system (1) is asymptotically stable. So, by
Lemma 3, there exists a matrix of appropriate dimension Π

such that the following LMI holds:

[
Ξ + ΥΠ

𝑇

+ ΠΥ
𝑇

Π

∗ −Θ

] < 0. (22)

So, we give the main theorem of this paper as follows.

Theorem 4. The time-delayed system (1) having contrains
(2) is asymptotically stable, if there exist matrices
𝑄
1
, 𝑄
2
, 𝑄
3
, 𝑅
1
, 𝑅
2
, 𝑋
1
, 𝑋
2
, 𝑈
1
, 𝑈
2
, 𝑈
3

∈ R𝑛×𝑛 > 0, matrix
𝑃 ∈ R2𝑛×2𝑛 > 0, and appropriate matrices 𝑌

1
, 𝑌
2
, 𝑌
3
, 𝑁
1
, 𝑁
2
, Π

such that the following LMIs hold:

𝑄
2
− 𝑄
3
> 0,

[
Ξ + Υ
1
Π
𝑇

+ ΠΥ
𝑇

1
Π

∗ −Θ

] < 0,

[
Ξ + Υ
2
Π
𝑇

+ ΠΥ
𝑇

2
Π

∗ −Θ

] < 0,

(23)

where Ξ, Υ, Π, and Θ are defined in (18) and (21).

Proof. From above, one can see that Ξ + ΥΠ
𝑇

+ ΠΥ
𝑇 is a

convex combination of matrix Π as

Ξ + ΥΠ
𝑇

+ ΠΥ
𝑇

= Ξ + (ℎ (𝑡) − ℎ
1
) (Υ
1
Π
𝑇

+ ΠΥ
𝑇

1
)

+ (ℎ
2
− ℎ (𝑡)) (Υ

2
Π
𝑇

+ ΠΥ
𝑇

2
) < 0.

(24)

So (22) can be handled nonconservatively by the two corre-
sponding boundary LMIs:

[
Ξ + Υ
1
Π
𝑇

+ ΠΥ
𝑇

1
Π

∗ −Θ

] < 0,

[
Ξ + Υ
2
Π
𝑇

+ ΠΥ
𝑇

2
Π

∗ −Θ

] < 0,

(25)

where Υ
1
= Υ(ℎ(𝑡) − ℎ

1
= 0), Υ

2
= Υ(ℎ

2
− ℎ(𝑡) = 0). This

completes the proof.

Remark 5. From (17) and (22), it can be seen that, in order
to obtain the less conservative stability condition in terms of
LMI, 𝛼(𝑡), 𝛽(𝑡) are used, but free matrices Π = [Π

𝑖𝑗
] (1 ≤ 𝑖 ≤

𝑗 ≤ 8) are also introduced, which increases the computational
burden; this is a disadvantage of the proposed method.

Remark 6. When ℎ
1
≤ ℎ(𝑡) ≤ ℎ

2
, 𝜇
1
≤

̇
ℎ(𝑡) ≤ 𝜇

2
, let

Ξ
1
= Ξ(𝜇 = 𝜇

1
),Ξ
2
= Ξ(𝜇 = 𝜇

2
), and using the convex combi-

nation again with [ Ξ1+Υ1Π𝑇+ΠΥ𝑇1 Π
∗ −Θ

] < 0, [ Ξ1+Υ2Π𝑇+ΠΥ𝑇2 Π
∗ −Θ

] <

0, [ Ξ2+Υ1Π𝑇+ΠΥ𝑇1 Π
∗ −Θ

] < 0, [ Ξ2+Υ2Π𝑇+ΠΥ𝑇2 Π
∗ −Θ

] < 0, the
corresponding stability criterion can also be obtained.

4. Numerical Examples

In this section, the effectiveness of the obtained results in this
paper is shown by the two well-known numerical examples.

Table 1: Admissible upper bound ℎ
2
for various ℎ

1
and 𝜇 in

Example 1.

ℎ
1

Methods 𝜇 = 0.3 𝜇 = 0.5 𝜇 = 0.9

2
Shao [6] 2.69 2.50 2.50

Sun et al. [9] 2.91 2.50 2.50
Theorem 4 3.00 2.64 2.64

3
Shao [6] 3.25 3.25 3.25

Sun et al. [9] 3.34 3.34 3.34
Theorem 4 3.35 3.35 3.35

Table 2: Admissible upper bound ℎ
2
for various ℎ

1
and 𝜇 = 0.3 in

Example 1.

Methods ℎ
1

0.3 0.5 0.8 1
Shao [6] ℎ

2
2.22 2.22 2.23 2.24

Sun et al. [9] ℎ
2

2.26 2.28 2.30 2.30
Theorem 4 ℎ

2
2.39 2.41 2.42 2.43

Example 1. Consider the linear system (1) with

𝐴 = [

−2 0

0 −0.9
] , 𝐴

1
= [

−1 0

−1 −1
] . (26)

The purpose is to compare the admissible upper bounds
ℎ
2
given lower bound ℎ

1
and 𝜇.

For ℎ
1

= 0, 𝜇 = 0.5, 0.9, in [14], the result is ℎ
2

=

2.04, 1.37, in [17], the result is ℎ
2
= 2.33, 1.87, and our results

are ℎ
2
= 2.33, 1.87.

For ℎ
1

= 1, 𝜇 = 0.5, 0.9, in [14], the result is ℎ
2

=

2.07, 1.74, in [17], the result is ℎ
2
= 2.33, 2.07, and our results

are ℎ
2
= 2.43, 2.08.

For ℎ
1

= 2, 𝜇 = 0.5, 0.9, in [14], the result is ℎ
2

=

2.43, 2.43, in [17], the result is ℎ
2
= 2.61, 2.61, and our results

are ℎ
2
= 2.64, 2.64.

For various ℎ
1
, 𝜇, themaximumupper bounds on delay ℎ

2

by different methods are also listed in Table 1. It can be seen
that the result obtained in this paper is less conservative.

Example 2. Consider the linear system (1) with

𝐴 = [

0 1

−1 −2
] , 𝐴

1
= [

0 0

−1 1
] . (27)

The purpose is to compare the admissible upper bounds
ℎ
2
which guarantee the asymptotic stability of the above

system for given lower bound ℎ
1
and 𝜇. This example is used

inmany recent papers, such as [6, 9], For 𝜇 = 0.3, Table 2 lists
the comparison of our results with some recent ones, and it
is easy to see that the results obtained in this paper are less
conservative.

5. Conclusions

In this note, the stability of interval time-varying delay
systems has been discussed. Through constructing a novel
LKF and using some new analysis methods, the delay-range-
dependent stability criteria were derived. Compared with
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some previous stability conditions, the obtained main results
in this paper have less conservatism. In the end, numerical
examples were given to show the superiority of the obtained
criteria and their improvements over the existing results.
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To solve the strong nonlinearity and coupling problems in robot manipulator control, two novel robust adaptive PID control
schemes are proposed in this paper with known or unknown upper bound of the external disturbances. Invoking the two proposed
controllers, the unknown bounded external disturbances can be compensated and the global asymptotical stability with respect
to the manipulator positions and velocities is able to be guaranteed. As compared with the existing adaptive PD control methods,
the designed control laws can enlarge the tolerable external disturbances, enhance the accuracy in finite-time trajectory tracking
control, and improve the dynamic performance of the manipulator systems.The stability and convergence properties of the closed-
loop system are analytically proved using Lyapunov stability theory and Barbalat’s lemma. Simulations are performed for a planner
manipulator with two rotary degrees of freedom to illustrate the viability and the advantages of the proposed controllers.

1. Introduction

Robotmanipulators play an important part inmodern indus-
try by providing lower production cost, enhanced precision,
quality, productivity, and efficiency.The control of rigid robot
manipulators faces significant difficulties such as highly non-
linear, coupled, and time-varying behaviors. Moreover, there
always exist uncertainties in the system’s dynamic model,
such as the external disturbances and parameter uncertainty,
to name a few, which cause unstable performance of the robot
manipulator systems.

Since linear control methods are not suitable for strong
coupled, nonlinear, and time-varying rigid robotmanipulator
systems, many nonlinear control schemes based on conven-
tional PID control theory have been proposed to improve the
control performance. In [1], the global asymptotic stability
of a class of nonlinear PD-type controllers for position and
motion control of robot manipulators is analyzed, and
a global regulator constrained to deliver torques within pre-
scribed limits of the actuator’s capabilities is proposed. This
class of controllers, when rule-based or gain scheduling
approaches are used, can get high performance control sys-
tems. However, it has been shown that although the PD
controller is robust with respect to uncertainties on inertial

parameters and the global asymptotic stability is guaranteed,
uncertainties on the gravity parametersmay lead to undesired
steady-state errors [2]. A PID control scheme can eliminate
the steady-state errors, but it can only ensure local asymptotic
stability. Moreover, to guarantee the stability, the gain matri-
ces must satisfy complicated inequalities [3]. In [4], a new
variable structure PID control scheme is designed for robot
manipulators. Even through the global asymptotic stability
of the controlled robot systems is analyzed, the bounds of
systemparametermatrices need to be known in the controller
design.

To further enhance the tracking performance of robot
manipulator systems in presence of parametric uncertain-
ties, significant efforts have been made to seek advanced
control strategies. Robust and adaptive control schemes of
robot manipulators have been the active research topics
for many years. Robust control laws are used for external
disturbances, unstructured dynamics, and other sources of
uncertainties. Leitmann [5] and Corless and Leitmann [6]
present a popular approach utilized for designing robust
controller for robot manipulators. In an early application
of the Corless-Leitmann approach to robot manipulators
[7], a simple robust nonlinear control law is derived for
𝑛-link robot manipulators using the well-known Lyapunov
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based theory of guaranteed stability of uncertain systems.
The uncertainty bounds needed to derive the control law and
to prove that uniform ultimate boundedness of the tracking
errors only depends on the inertia parameters of the robot.
Some other robust controlmethods developed based on [5, 6]
are given in [8, 9]. However, disturbances and unmodeled
dynamics are not considered in the algorithms in [7–9]. In
[10], Spong’s method [7] is extended in such a manner that
the control law is robust not only to uncertain inertia param-
eters but also to unmodeled dynamics and disturbances.
Another improvement to the Spong’s methodology [7] is
suggested in [11]. A drawback of a single robust control is
that it cannot estimate the uncertainties and disturbances
online, which limits the adaptability of the controller to the
changed uncertain parameters. Adaptive algorithm provides
an effectiveway to solve this problem; however,most adaptive
controls, like most parameter adaptive methods, may exhibit
poor robustness to unstructured dynamics and external
disturbances. Some related results can be seen in [12–15]. To
resolve this, a combination of robust control and adaptive
algorithm is investigated in a number of literature sources. In
[16], adaptive controllers are designed for robot manipulator
systems that yield robust trajectory in spite of the unwanted
effects of the external disturbances and fast maneuvering
of the manipulator. The convergence rate is improved and
the transient oscillation is reduced considerably. In [17],
an adaptive control law for continuous-time direct adaptive
control of robot manipulator is presented. The algorithm
is suitable for swift adaptation to rapidly changing system
parameters. And the uniform global asymptotic stability
with respect to the manipulator positions and velocities is
guaranteed for unknown constant parameters. In [18], a
decentralized adaptive robust controller is investigated for
trajectory tracking of robot manipulator systems. A distur-
bance observer (DOB) is introduced in each local controller
to compensate for the low-passed coupled uncertainties, and
an adaptive sliding mode control term is employed to handle
the fast-changing components of the uncertainties beyond
the pass band of the DOB. For some other results on robust
and adaptive control the reader can refer to [19–22].

Furthermore, other control algorithms such as fuzzy
logic, neural networks, and PD control have been adopted
to combine with robust and adaptive control to cope with
the problems in robot manipulators control. In [23], a robust
adaptive compensation scheme is presented for compensa-
tion of asymmetric deadzone, dynamic friction, and uncer-
tainty in the direct-drive robot manipulator. The estimation
laws of deadzone and friction are proposed to offset both
deadzone of joint input torque and friction. A model-free
recurrent wavelet cerebellar model articulation controller
(RWCMAC) to mimic the ideal control law is employed to
overcome some shortcomings of the traditional model-based
adaptive controller. In [24], a novel robust decentralized
control of electrically driven robot manipulator by adaptive
fuzzy estimation and compensation uncertainty is proposed.
The controller is designed via voltage control strategy. A fuzzy
system is used to estimate and compensate uncertainty. In
[25, 26], two adaptive PD control methods are investigated
for trajectory tracking control of robot manipulators with

known and unknown upper bound of the external distur-
bances, respectively. Both of the controllers are composed
by a nonlinear PD feedback control law and an adaptive
algorithm. The PD feedback control law can avoid large
initial torque due to the large initial position error, and the
adaptive algorithm can make good dynamic performance for
the robot manipulator systems. However, the PD feedback
control is rarely used in practical control systems. That is
because the pure differential element cannot be realized in
practice. Moreover, the differential action is very sensitive
to system noise; as a result, if the PD control is adopted,
any disturbances in each system’s element would result in big
fluctuation in systems output.Hence, the PDcontrol is indeed
of no benefit for the improvement of the system dynamic
performance.

In the present study two new robust adaptive PID con-
trollers are introduced for an 𝑛 degree-of-freedom robot
manipulator systems with known or unknown upper bound
of the external disturbances based on [1, 25, 26].The designed
controllers are composited by PID control and robust adap-
tive approach to cope with the external disturbances and
unknown constant parameters that can arise. As regards the
innovation of this study, an integration element is embedded
in both PD control and robust adaptive algorithm based
on the existing adaptive PD control laws [25, 26]. With the
adoption of the proposed controllers, the tolerable external
disturbances are enlarged, and also the dynamic performance
of the manipulator systems is improved and the finite-time
tracking control accuracy is enhanced in contrast to those
obtained with the usage of the adaptive PD controllers [25,
26]. By choosing adequate Lyapunov candidate functions and
utilizing Barbalat’s lemma, the system’s closed-loop stability is
proven. Some numerical results are also presented in order to
demonstrate the control systems performance.

This paper is organized as follows.The nonlinear dynam-
ics of rigid robot manipulator and some useful properties of
dynamic systems are introduced in Section 2. In Section 3,
three necessary assumptions for control laws development
and systems stability analysis are given, and two robust
adaptive PID controllers are designed for trajectory tracking
control of robot manipulator with known or unknown
upper bound of the external disturbances, respectively. The
numerical verification of the controllers and the discussion
are presented in Section 4. A short conclusion is given in
Section 5.

2. Dynamic Model of Robot Manipulator and
Some Properties

2.1. Dynamic Model. Generally, the dynamics of an 𝑛 degree
of freedom (𝑛-DOF) rigid link robot manipulator with rotary
joints can be expressed as [27]

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) + 𝑢 = 𝜏, (1)

where 𝑞(𝑡) ∈ 𝑅
𝑛 is the vector of joint angles, 𝑀(𝑞) ∈ 𝑅

𝑛×𝑛

is the inertia matrix of the manipulator, 𝐶(𝑞, ̇𝑞) ∈ 𝑅
𝑛×𝑛 is

the matrix of Coriolis and centripetal forces, 𝐺(𝑞) ∈ 𝑅
𝑛 is
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Figure 1: The frames assignment of an 𝑛-DOF rigid robot manipulator.

the vector of gravity factor, 𝜏 ∈ 𝑅
𝑛 is the vector of input

torque, and 𝑢 ∈ 𝑅𝑛 is the vector of all external disturbances.
Figure 1 presents the conceptual model of an 𝑛-DOF

rigid robot manipulator. Assume that the manipulator is
mounted on a fixed base, so the dynamic coupling between
the manipulator and the base is neglected.

2.2. Dynamic System Properties. The dynamic systems given
by (1) exhibit the following properties that are utilized in the
subsequent control laws development and stability analysis
[27].

(B1) The inertial matrix is symmetric and positive definite;
that is, 𝑀(𝑞) = 𝑀

𝑇

(𝑞) > 0, ∀𝑞 ∈ 𝑅
𝑛. There are pos-

itive constants 𝑚
𝑚

and 𝑚
𝑀

such that 𝑚
𝑚
‖𝑦‖
2

≤

𝑦
𝑇

𝑀(𝑞)𝑦 ≤ 𝑚
𝑀
‖𝑦‖
2, ∀𝑦 ∈ 𝑅

𝑛.

(B2) 𝑀(𝑞)−2𝐶(𝑞, ̇𝑞) is a skew-symmetricmatrix; for exam-
ple, 𝑠𝑇[𝑀(𝑞) − 2𝐶(𝑞, ̇𝑞)]𝑠 = 0, ∀𝑠 ∈ 𝑅𝑛.

(B3) 𝑀(𝑞), 𝐶(𝑞, ̇𝑞), and 𝐺(𝑞) meet the linear condition of
𝑀(𝑞)𝛼 + 𝐶(𝑞, ̇𝑞)𝛽 + 𝐺(𝑞) = Ψ(𝑞, ̇𝑞, 𝛼, 𝛽)𝑃, where 𝑃 ∈

𝑅
𝑚 is an unknown constant vector which describes

the mass characteristics of the manipulator and Ψ(𝑞,
̇𝑞, 𝛼, 𝛽) ∈ 𝑅

𝑛×𝑚 is a known regression matrix.

3. Robust Adaptive PID Control of
Robot Manipulator

Firstly, the following assumptions are imposed for themanip-
ulator systems.

(C1) The desired trajectory 𝑞
𝑑
and the time derivatives ̇𝑞

𝑑

and ̈𝑞
𝑑
are available and bounded signals.

(C2) The external disturbances vector 𝑢 is bounded, and it
is confined within the following limit:

‖𝑢‖ ≤ 𝑏
1
+ 𝑏
2
‖𝑒‖ + 𝑏

3
‖ ̇𝑒‖ + 𝑏

4










∫

𝑡

0

𝑒𝑑𝑡










, (2)

where 𝑏
1
, 𝑏
2
, 𝑏
3
, and 𝑏

4
are positive constants, 𝑒 =

𝑞 − 𝑞
𝑑
and ̇𝑒 = ̇𝑞 − ̇𝑞

𝑑
are the position tracking error

and the velocity tracking error, respectively, ∫𝑡
0

𝑒𝑑𝑡 =

[∫

𝑡

0

𝑒
1
𝑑𝑡, . . . , ∫

𝑡

0

𝑒
𝑛
𝑑𝑡]

𝑇

.
(C3) ̈𝑒(𝑡) = ̈𝑞 − ̈𝑞

𝑑
is existent and bounded in 𝑡.

Here we introduce two variables 𝑥 and 𝑞
𝑘
; meanwhile let

𝑥 = ̇𝑒 + 𝛾𝑒 + ∫

𝑡

0

𝑒𝑑𝑡,

̇𝑞
𝑘
= ̇𝑞
𝑑
− 𝛾𝑒 − ∫

𝑡

0

𝑒𝑑𝑡,

(3)

where the parameter 𝛾 is a positive constant.
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With (3) giving

̇𝑞 − ̇𝑞
𝑘
= 𝑥. (4)

With regard to the robot manipulator property (B3), let
𝛼 = ̈𝑞
𝑘
, 𝛽 = ̇𝑞

𝑘
; one obtains

𝑀(𝑞) ̈𝑞
𝑘
+ 𝐶 (𝑞, ̇𝑞) ̇𝑞

𝑘
+ 𝐺 (𝑞) = Ψ (𝑞, ̇𝑞, ̇𝑞

𝑘
, ̈𝑞
𝑘
) 𝑃. (5)

Substituting (4) into the above equation yields

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) −𝑀(𝑞) ̇𝑥 − 𝐶 (𝑞, ̇𝑞) 𝑥

= Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) 𝑃.

(6)

3.1. Robust Adaptive PID Controller Design with KnownUpper
Bound of the External Disturbances. For the robot manipu-
lator systems (1), if the upper bound of the external distur-
bances signals 𝑢 is known, motivated by [1, 25], the controller
which makes the position and the velocity tracking errors
asymptotically converge to zero can be designed as follows:

𝜏 = −𝐾
𝑃
𝑒 − 𝐾
𝐷
̇𝑒 − 𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡) + Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) �̂� + 𝑉,

(7)

𝑉 = [V
1
, . . . , V

𝑛
]
𝑇

, (8)

V
𝑖
= −(𝑏

1
+ 𝑏
2
‖𝑒‖ + 𝑏

3
‖ ̇𝑒‖ + 𝑏

4










∫

𝑡

0

𝑒𝑑𝑡










) sgn (𝑥
𝑖
) , (9)

where �̂� is the estimate value of 𝑃.
Take the parameter estimation law of �̂� as

̇
�̂� = −ΦΨ

𝑇

(𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) 𝑥. (10)

The gain matrices are given by

𝐾
𝑃
= diag [𝑘

𝑃1
, . . . , 𝑘

𝑃𝑛
] ,

𝐾
𝐷
= diag [𝑘

𝐷1
, . . . , 𝑘

𝐷𝑛
] ,

𝐾
𝐼
= diag [𝑘

𝐼1
, . . . , 𝑘

𝐼𝑛
] ,

(11)

where 𝑘
𝑃𝑖
, 𝑘
𝐷𝑖
, 𝑘
𝐼𝑖
(𝑖 = 1, 2, . . . , 𝑛) are all positive constants

and 𝑘
𝐷𝑖
= 𝑘
𝐼𝑖
, Φ ∈ 𝑅

𝑚×𝑚 is a positive definite and symmetric
matrix.

The framework of the proposed control scheme is shown
in Figure 2.

Proof. Considering the Lyapunov function candidate,

𝑉 =

1

2

[𝑥
𝑇

𝑀(𝑞) 𝑥 + 𝑒
𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐷
) 𝑒

+ (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐼
) (∫

𝑡

0

𝑒𝑑𝑡) + �̃�
𝑇

Φ
−1

�̃�]

(12)

with �̃� = �̂� − 𝑃.

From property (B1) one obtains

(𝑥
𝑇

𝑀(𝑞) 𝑥)



= ̇𝑥
𝑇

𝑀(𝑞) 𝑥 + 𝑥
𝑇

𝑀(𝑞) 𝑥 + 𝑥
𝑇

𝑀(𝑞) ̇𝑥

= 𝑥
𝑇

𝑀(𝑞) 𝑥 + 2𝑥
𝑇

𝑀(𝑞) ̇𝑥.

(13)

With the positive definite and symmetric matrices 𝐾
𝑃
,

𝐾
𝐷
,𝐾
𝐼
, and Φ, one gets

[𝑒
𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐷
) 𝑒]



= 2𝑒
𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐷
) ̇𝑒,

[(∫

𝑡

0

𝑒𝑑𝑡)

𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐼
) (∫

𝑡

0

𝑒𝑑𝑡)]



= 2(∫

𝑡

0

𝑒𝑑𝑡)

𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐼
) 𝑒,

(�̃�
𝑇

Φ
−1

�̃�)



= 2�̃�
𝑇

Φ
−1 ̇
�̃�.

(14)

Therefore, one obtains

𝑉 =

1

2

𝑥
𝑇

𝑀(𝑞) 𝑥 + 𝑥
𝑇

𝑀(𝑞) ̇𝑥

+ 𝑒
𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐷
) ̇𝑒

+ (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐼
) 𝑒 + �̃�

𝑇

Φ
−1 ̇
�̃�.

(15)

Using (6) and (7) leads to

𝑥
𝑇

𝑀(𝑞) ̇𝑥 = 𝑥
𝑇

[𝜏 − 𝑢 − Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) 𝑃 − 𝐶 (𝑞, ̇𝑞) 𝑥]

= 𝑥
𝑇

[−𝐾
𝑃
𝑒 − 𝐾
𝐷
̇𝑒 − 𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡)

+ Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) �̃� + 𝑉 − 𝑢]

− 𝑥
𝑇

𝐶 (𝑞, ̇𝑞) 𝑥.

(16)

Considering 𝑥𝑇 = ̇𝑒
𝑇

+ 𝛾𝑒
𝑇

+ (∫

𝑡

0

𝑒𝑑𝑡)
𝑇, one gets

𝑥
𝑇

(−𝐾
𝑃
𝑒 − 𝐾
𝐷
̇𝑒 − 𝐾
𝐼
∫

𝑡

0

𝑒𝑑𝑡)

= [ ̇𝑒
𝑇

+ 𝛾𝑒
𝑇

+ (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

] [−𝐾
𝑃
𝑒 − 𝐾
𝐷
̇𝑒 − 𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡)]

= − ̇𝑒
𝑇

𝐾
𝑃
𝑒 − ̇𝑒
𝑇

𝐾
𝐷
̇𝑒 − ̇𝑒
𝑇

𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡) − 𝛾𝑒
𝑇

𝐾
𝑃
𝑒

− 𝛾𝑒
𝑇

𝐾
𝐷
̇𝑒 − 𝛾𝑒
𝑇

𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡) − (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

𝐾
𝑃
𝑒

− (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

𝐾
𝐷
̇𝑒 − (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡) .

(17)
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Manipulator
q

1

S

qd

𝜏 = −KPe − KD − KIė (∫t
0
edt)

+ Ψ(q, , k, k) + V,q̇ q̇ q̈ P̂

= −ΦΨ
T
(q, ̇̇

q, ̇qk, ̈qk)xP̂

V =

�i = −(b1 + b2‖e‖ + b3‖ ̇e‖

+ b4‖∫
t

0
edt‖)sgn(xi)

[�1, ... , �n ]T,

Figure 2: Framework of control law with known upper bound of the disturbances.

Substituting (16) and (17) into (15) yields

𝑉 = − ̇𝑒
𝑇

𝐾
𝐷
̇𝑒 − 𝛾𝑒
𝑇

𝐾
𝑃
𝑒 − (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡)

− ̇𝑒
𝑇

(𝐾
𝐷
+ 𝐾
𝐼
) (∫

𝑡

0

𝑒𝑑𝑡) +

1

2

𝑥
𝑇

𝑀(𝑞) 𝑥 − 𝑥
𝑇

𝐶 (𝑞, ̇𝑞) 𝑥

+ �̃�
𝑇

Φ
−1 ̇
�̃� + 𝑥
𝑇

Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) �̃� + 𝑥

𝑇

(𝑉 − 𝑢) .

(18)

With property (B2) one obtains

1

2

𝑥
𝑇

𝑀(𝑞) 𝑥 − 𝑥
𝑇

𝐶 (𝑞, ̇𝑞) 𝑥 =

1

2

𝑥
𝑇

[𝑀 (𝑞) − 2𝐶 (𝑞, ̇𝑞)] 𝑥 = 0.

(19)

Note that

𝑥
𝑇

Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) �̃� = �̃�

𝑇

Ψ
𝑇

(𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) 𝑥,

̇
�̃� =

̇
�̂�, (20)

and one gets

�̃�
𝑇

Φ
−1 ̇
�̃� + 𝑥
𝑇

Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) �̃�

= �̃�
𝑇

Φ
−1

[−ΦΨ
𝑇

(𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) 𝑥]

+ �̃�
𝑇

Ψ
𝑇

(𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) 𝑥 = 0.

(21)

Thus, one obtains

𝑉 = − ̇𝑒
𝑇

𝐾
𝐷
̇𝑒 − 𝛾𝑒
𝑇

𝐾
𝑃
𝑒 − (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡)

− ̇𝑒
𝑇

(𝐾
𝐷
+ 𝐾
𝐼
) (∫

𝑡

0

𝑒𝑑𝑡) + 𝑥
𝑇

(𝑉 − 𝑢) .

(22)

Note that the following equalities and inequalities hold

̇𝑒
𝑇

𝐾
𝐷
̇𝑒 =

𝑛

∑

𝑖=1

𝑘
𝐷𝑖

̇𝑒
2

𝑖
, 𝛾𝑒

𝑇

𝐾
𝑃
𝑒 =

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖
,

(∫

𝑡

0

𝑒𝑑𝑡)

𝑇

𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡) =

𝑛

∑

𝑖=1

𝑘
𝐼𝑖
(∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

,

̇𝑒
𝑇

(𝐾
𝐷
+ 𝐾
𝐼
) (∫

𝑡

0

𝑒𝑑𝑡) =

𝑛

∑

𝑖=1

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) ̇𝑒
𝑖
(∫

𝑡

0

𝑒
𝑖
𝑑𝑡) ,

−

𝑛

∑

𝑖=1

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) ̇𝑒
𝑖
(∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

≤

1

2

𝑛

∑

𝑖=1

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) ̇𝑒
2

𝑖

+

1

2

𝑛

∑

𝑖=1

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) (∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

.

(23)

Hence, one gets

𝑉 = −

𝑛

∑

𝑖=1

𝑘
𝐷𝑖

̇𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝑘
𝐼𝑖
(∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

−

𝑛

∑

𝑖=1

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) ̇𝑒
𝑖
(∫

𝑡

0

𝑒
𝑖
𝑑𝑡) + 𝑥

𝑇

(𝑉 − 𝑢)

≤ −

𝑛

∑

𝑖=1

𝑘
𝐷𝑖

̇𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝑘
𝐼𝑖
(∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

+

1

2

𝑛

∑

𝑖=1

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) ̇𝑒
2

𝑖
+

1

2

𝑛

∑

𝑖=1

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) (∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

+ 𝑥
𝑇

(𝑉 − 𝑢)
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≤ −

𝑛

∑

𝑖=1

[𝑘
𝐷𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
)] ̇𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖

−

𝑛

∑

𝑖=1

[𝑘
𝐼𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
)] (∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

+ 𝑥
𝑇

(𝑉 − 𝑢) .

(24)

Now considering the term of 𝑥𝑇(𝑉 − 𝑢),

𝑥
𝑇

𝑉 =

𝑛

∑

𝑖=1

𝑥
𝑖
[−(𝑏

1
+ 𝑏
2
‖𝑒‖ + 𝑏

3
‖ ̇𝑒‖ + 𝑏

4










∫

𝑡

0

𝑒𝑑𝑡










) sgn (𝑥
𝑖
)]

=

𝑛

∑

𝑖=1

[−(𝑏
1
+ 𝑏
2
‖𝑒‖ + 𝑏

3
‖ ̇𝑒‖ + 𝑏

4










∫

𝑡

0

𝑒𝑑𝑡










)




𝑥
𝑖





]

≤

𝑛

∑

𝑖=1

(− ‖𝑢‖ ⋅




𝑥
𝑖





) ;

(25)

here the assumption (C2) has been used.
Note that

−𝑥
𝑇

𝑢 ≤






𝑥
𝑇





⋅ ‖𝑢‖ . (26)

Defining ‖𝑥𝑇‖ = ∑
𝑛

𝑖=1
|𝑥
𝑖
| gives

𝑉 ≤ −

𝑛

∑

𝑖=1

[𝑘
𝐷𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
)] ̇𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖

−

𝑛

∑

𝑖=1

[𝑘
𝐼𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
)] (∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

+

𝑛

∑

𝑖=1

(− ‖𝑢‖ ⋅




𝑥
𝑖





) +






𝑥
𝑇





⋅ ‖𝑢‖

≤ −

𝑛

∑

𝑖=1

[𝑘
𝐷𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
)] ̇𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖

−

𝑛

∑

𝑖=1

[𝑘
𝐼𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
)] (∫

𝑡

0

𝑒
𝑖
𝑑𝑡)

2

.

(27)

With 𝑘
𝐷𝑖
= 𝑘
𝐼𝑖
> 0 and 𝑘

𝑃𝑖
> 0 one obtains

𝑘
𝐷𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) = 0, 𝛾𝑘

𝑃𝑖
> 0,

𝑘
𝐼𝑖
−

1

2

(𝑘
𝐷𝑖
+ 𝑘
𝐼𝑖
) = 0.

(28)

Finally, one gets

𝑉 ≤ −

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖
. (29)

From the proof and analysis above we know that the
function 𝑉 is negative and vanishes if and only if 𝑒(𝑡) = 0;
thus the position tracking error goes to zero as time goes to
infinity; namely, lim

𝑡→∞
𝑒(𝑡) = 0.

According to the assumption (C3) we obtain that ̇𝑒(𝑡) :

𝑅
+

→ 𝑅 is uniformly continuous [28]. Consider the follow-
ing formula holds:

lim
𝑡→∞

∫

𝑡

0

̇𝑒 (𝜏) 𝑑𝜏 = lim
𝑡→∞

[𝑒 (𝑡) − 𝑒 (0)] = lim
𝑡→∞

𝑒 (𝑡) − 𝑒 (0)

= −𝑒 (0) < ∞

(30)

which implies that the limit lim
𝑡→∞

∫

𝑡

0

̇𝑒(𝜏)𝑑𝜏 is existent and
bounded.Therefore, it follows from the Barbalat’s lemma [29]
that ̇𝑒(𝑡) → 0 as 𝑡 → ∞; that is, lim

𝑡→∞
̇𝑒(𝑡) = 0.

Hence, the designed controller can guarantee the equilib-
rium (𝑒, ̇𝑒) = (0, 0) globally asymptotically stable. It is also
seen that the parameter vector �̃� is bounded but does not
necessarily converge to zero.

3.2. Robust Adaptive PID Controller Design with Unknown
Upper Bound of the External Disturbances. On the other
hand, if the upper bound of the external disturbances signals
𝑢 is unknown, inspired by [1, 26], the controllerwhich ensures
the global asymptotical stability of the manipulator positions
and velocities can be designed as follows:

𝜏 = −𝐾
𝑃
𝑒 − 𝐾
𝐷
̇𝑒 − 𝐾
𝐼
(∫

𝑡

0

𝑒𝑑𝑡) + Ψ (𝑞, ̇𝑞, ̇𝑞
𝑘
, ̈𝑞
𝑘
) �̂� + 𝑉,

(31)

𝑉 = −

(
̂
𝑏𝜉)

2

(
̂
𝑏𝜉) ‖𝑥‖ + 𝜀

2

⋅ 𝑥, (32)

̇
̂
𝑏 = 𝜆
1
𝜉 ‖𝑥‖ ,

̂
𝑏 (0) = 0, (33)

̇𝜀 = −𝜆
2
𝜀, 𝜀 (0) ̸= 0, (34)

where 𝑏 = 𝑏
1
+ 𝑏
2
+ 𝑏
3
+ 𝑏
4
, ̃𝑏 = 𝑏 −

̂
𝑏, ̂𝑏 is the estimate

value of 𝑏, 𝜉 = max(1, ‖𝑒‖, ‖ ̇𝑒‖, ‖ ∫

𝑡

0

𝑒𝑑𝑡‖), 𝜆
1
and 𝜆

2
are the

arbitrary positive constants, and other parameters are defined
as Section 3.1.

The framework of the proposed control scheme is shown
in Figure 3.

Proof. Consider the following Lyapunov function:

𝑉 =

1

2

[𝑥
𝑇

𝑀(𝑞) 𝑥 + 𝑒
𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐷
) 𝑒

+ (∫

𝑡

0

𝑒𝑑𝑡)

𝑇

(𝐾
𝑃
+ 𝛾𝐾
𝐼
) (∫

𝑡

0

𝑒𝑑𝑡)

+ �̃�
𝑇

Φ
−1

�̃� + (𝜆
−1

1

̃
𝑏
2

+ 𝜆
−1

2
𝜀
2

) ] .

(35)

Based on the controller stability analysis with known
upper bound of the external disturbances in Section 3.1,
according to (24) one gets

𝑉 ≤ −

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖
+ 𝑥
𝑇

𝑉 − 𝑥
𝑇

𝑢 + 𝜆
−1

1

̃
𝑏
̇
̃
𝑏 + 𝜆
−1

2
𝜀 ̇𝜀. (36)
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Manipulator
q

1

S

qd

𝜏 = −KPe − KD − KIė (∫t
0
edt)

+ Ψ(q, , k, k) + V,q̇ q̇ q̈ P̂

V = −
( 𝜉)

2

( 𝜉)‖x‖+ 𝜀
2

= 𝜆1𝜉‖x‖,
ˆ b̂

b̂

b̂

(0) = 0,

= −𝜆2𝜀,̇

̇

𝜀

̇
b

𝜀(0) 0

= −ΦΨ
T
(q, ̇q, ̇qk, ̈qk)xP̂

·x,

≠

Figure 3: Framework of control law with unknown upper bound of the disturbances.

Substituting (32) and (34) into (36) yields

𝑉 ≤ −

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖
+ 𝑥
𝑇
[

[

−

(
̂
𝑏𝜉)

2

(
̂
𝑏𝜉) ‖𝑥‖ + 𝜀

2

]

]

𝑥 − 𝑥
𝑇

𝑢 + 𝜆
−1

1

̃
𝑏
̇
̃
𝑏 − 𝜀
2

.

(37)
Take into account that the following equalities and

inequalities hold:

𝑥
𝑇

𝑥 = ‖𝑥‖
2

, −𝑥
𝑇

𝑢 ≤ ‖𝑥‖ ⋅ ‖𝑢‖ ,

‖𝑢‖ ≤ 𝑏
1
+ 𝑏
2
‖𝑒‖ + 𝑏

3
‖ ̇𝑒‖ + 𝑏

4










∫

𝑡

0

𝑒𝑑𝑡










≤ 𝑏𝜉,

̇
̃
𝑏 = −

̇
̂
𝑏 = −𝜆

1
𝜉 ‖𝑥‖ ;

(38)

here the assumption (C2) and (33) have been used.
Therefore, one obtains

𝑉 ≤ −

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖

−

(
̂
𝑏𝜉)

2

(
̂
𝑏𝜉) ‖𝑥‖ + 𝜀

2

⋅ ‖𝑥‖
2

+ ‖𝑥‖ ⋅ (𝑏𝜉) −
̃
𝑏𝜉 ‖𝑥‖ − 𝜀

2

≤ −

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖

+

−(
̂
𝑏𝜉)

2

‖𝑥‖
2

+ (
̂
𝑏𝜉)

2

‖𝑥‖
2

+ 𝜀
2

𝜉 ‖𝑥‖
̂
𝑏 − 𝜀
2

(
̂
𝑏𝜉)‖𝑥‖ − 𝜀

4

(
̂
𝑏𝜉) ‖𝑥‖ + 𝜀

2

≤ −

𝑛

∑

𝑖=1

𝛾𝑘
𝑃𝑖
𝑒
2

𝑖
−

𝜀
4

(
̂
𝑏𝜉) ‖𝑥‖ + 𝜀

2

.

(39)
From the definitions of (33) and (34), it can be easily

verified that ̂𝑏 > 0 and 𝜀
2

> 0 as 𝑡 > 0, and 𝜀 → 0 as
𝑡 → ∞. Thus the condition 𝑉 < 0 is satisfied. According to
the Lyapunov stability theory andBarbalat’s lemma (see (30)),

the convergence of 𝑒 and ̇𝑒 to zero is guaranteed, and also the
boundedness of the parameter vector �̃� is obtained.

4. Simulation Experiments and Discussion

In order to illustrate the performance of the proposed robust
adaptive PID controllers, simulation results are given by
means of MATLAB/SIMULINK. A comparison between the
adaptive PD controllers in [25, 26] and the robust adaptive
PID controllers derived in this study is carried out. The
simulation model is a two-degree-of-freedom planar rigid
manipulator with rotary joints. According to (1), its dynamic
equation can be described as follows [30]:

[

𝑀
11
(𝑞
2
) 𝑀
12
(𝑞
2
)

𝑀
12
(𝑞
2
) 𝑀
22
(𝑞
2
)

] [

̈𝑞
1

̈𝑞
2

]

+ [

−𝐶
12
(𝑞
2
) ̇𝑞
2
−𝐶
12
(𝑞
2
) ( ̇𝑞
1
+ ̇𝑞
2
)

𝐶
12
(𝑞
2
) ̇𝑞
1

0

]

⋅ [

̇𝑞
1

̇𝑞
2

] + [

𝐺
1
(𝑞
1
, 𝑞
2
) 𝑔

𝐺
2
(𝑞
1
, 𝑞
2
) 𝑔

] = [

𝜏
1

𝜏
2

] ,

(40)

where

𝑀
11
(𝑞
2
) = (𝑚

1
+ 𝑚
2
) 𝑟
2

1
+ 𝑚
2
𝑟
2

2
+ 2𝑚
2
𝑟
1
𝑟
2
cos 𝑞
2
,

𝑀
12
(𝑞
2
) = 𝑚

2
𝑟
2

2
+ 𝑚
2
𝑟
1
𝑟
2
cos 𝑞
2
,

𝑀
22
(𝑞
2
) = 𝑚

2
𝑟
2

2
,

𝐶
12
(𝑞
2
) = 𝑚

2
𝑟
1
𝑟
2
sin 𝑞
2
,

𝐺
1
(𝑞
1
, 𝑞
2
) = (𝑚

1
+ 𝑚
2
) 𝑟
1
cos 𝑞
2
+ 𝑚
2
𝑟
2
cos (𝑞

1
+ 𝑞
2
) ,

𝐺
2
(𝑞
1
, 𝑞
2
) = 𝑚

2
𝑟
2
cos (𝑞

1
+ 𝑞
2
) .

(41)

At first, linearize (40) and give the parameter matrices Ψ
and 𝑃.
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According to (5) the following equality holds:

𝑀(𝑞) ̈𝑞
𝑘
+ 𝐶 (𝑞, ̇𝑞) ̇𝑞

𝑘
+ 𝐺 (𝑞) = Ψ (𝑞, ̇𝑞, ̇𝑞

𝑘
, ̈𝑞
𝑘
) 𝑃. (42)

Let the matrices Ψ and 𝑃 have the following forms:

Ψ = [

𝜓
11

𝜓
12

𝜓
13

𝜓
21

𝜓
22

𝜓
23

] , 𝑃 = [𝑝
1
𝑝
2
𝑝
3
]

𝑇

. (43)

Then the parameters can be derived as below:

𝜓
11
= ̈𝑞
1𝑘
+ (

𝑔

𝑟
1

) cos 𝑞
2
, 𝜓

12
= ̈𝑞
1𝑘
+ ̈𝑞
2𝑘
,

𝜓
13
= 2 ̈𝑞
1𝑘
cos 𝑞
2
+ ̈𝑞
2𝑘
cos 𝑞
2
− ̇𝑞
2
̇𝑞
1𝑘
sin 𝑞
2

− ( ̇𝑞
1
+ ̇𝑞
2
) ̇𝑞
2𝑘
sin 𝑞
2
+ (

𝑔

𝑟
1

) cos (𝑞
1
+ 𝑞
2
) ,

𝜓
21
= 0, 𝜓

22
= 𝜓
12
,

𝜓
23
= ̇𝑞
1
̇𝑞
1𝑘
sin 𝑞
2
+ ̈𝑞
1𝑘
cos 𝑞
2
+ (

𝑔

𝑟
1

) cos (𝑞
1
+ 𝑞
2
) ,

𝑝
1
= (𝑚
1
+ 𝑚
2
) 𝑟
2

1
, 𝑝

2
= 𝑚
2
𝑟
2

2
, 𝑝

3
= 𝑚
2
𝑟
1
𝑟
2
.

(44)

The link parameters of robot manipulator are given by
𝑟
1
= 1m, 𝑟

2
= 0.8m,𝑚

1
= 0.5 kg, and𝑚

2
= 0.5 kg.The upper

bound parameters are selected as 𝑏
1
= 2, 𝑏

2
= 3, 𝑏

3
= 6, and

𝑏
4
= 1. The disturbances vector is chosen as 𝑢 = [1.0 1.0]

𝑇

+

2𝑒 + 5 ̇𝑒. The reference trajectories are 𝑞
1𝑑

= cos(𝜋𝑡) and
𝑞
2𝑑
= cos(𝜋𝑡).The initial values of manipulator positions and

velocities are selected as [𝑞
1

̇𝑞
1
𝑞
2

̇𝑞
2
]
𝑇

= [0.6 0 0.3 0]
𝑇.

Take the gain coefficients of the robust adaptive PID
control as

𝐾
𝑃
= diag [1000, 400] , 𝐾

𝐷
= diag [180, 150] ,

𝐾
𝐼
= 𝐾
𝐷
, 𝛾 = 5, Φ = diag [5.0, 5.0, 5.0] .

(45)

The adaptive PD control gains𝐾
𝑃
and𝐾

𝐷
are determined

by [25, 26].
The MATLAB/SIMULINK framework is shown in

Figure 4.
In order to show the advantage of the proposed control

laws, two simulations are conducted, one with adaptive PD
control and the other with robust adaptive PID control. The
simulation results are presented in Figures 5–16.

4.1. Simulation Results with Known Upper Bound of the
ExternalDisturbances. Adopting the control lawdescribed in
Section 3.1 to simulate the tracking effects of robot manipu-
lator, the simulation results can be seen from Figures 5, 6, 7,
8, 9, and 10.

4.2. Simulation Results with Unknown Upper Bound of the
External Disturbances. Choosing 𝜆

1
= 𝜆
2
= 40 and utilizing

the control scheme represented in Section 3.2 to express
the tracking capability of robot manipulator, the simulation
results are shown in Figures 11, 12, 13, 14, 15, and 16.

5. Discussion

These figures indicate that the robust adaptive PID control
schemes can compensate the unknown bounded external
disturbances and guarantee the manipulator systems to track
the desired position and velocity trajectories accurately with
quite small tracking errors in finite time. The adaptive algo-
rithm can effectively estimate the unknown constant vector𝑃
which describes the mass characteristics of robot manipula-
tor.

In comparisonwith the adaptive PD controllers proposed
in [25, 26], the robust adaptive PID controllers can provide
better control performance. The main reason lies in the
incorporation of an integral action within both PD control
and robust adaptive algorithm based on the adaptive PD
control laws [25, 26]. Concerning the PID control term in the
robust adaptive PID controllers, it exhibits the superiority in
contrast to the PD one in the adaptive PD controllers [25, 26].
In the case of PD control, the differential element only plays
a part in dynamic process, and it has no effect on steady-
state process, although the steady-state errors can be smaller
by increasing the proportional gain matrix; yet, too large
proportional gain may cause the system to be unstable. In
addition, from a practical point of view, the pure differential
element cannot be realized in practice; furthermore, the
differential action is very sensitive to system noise; as a result,
any disturbances in each system’s element would result in
big fluctuation in systems output. Hence, the adoption of PD
control is indeed of no benefit for the improvement of system
dynamic performance. While the PID control includes an
integral element which can raise the indiscrimination degree
of the system, so it can enhance the stead-state performance
of the closed-loop system. Apart from that, the PID control
can also provide one negative real zero, which contributes
to improve the dynamic performance of robot manipulator
systems. In terms of the adaptation algorithm in this work,
different from the one in [25, 26], an integral element acts
on the estimation law ̇

�̂� via the variable 𝑥 (see (3) and (10)).
In this case, note that continuously accumulated position
errors under the action of integration element result in a
bigger value of ̇

�̂� than that in [25, 26], which implies that
the estimated rate of the estimate vector �̂� is increased. As a
consequence, the dynamic performance and the finite-time
estimation accuracy of the estimate vector �̂� are improved
with comparison to those in [25, 26]. In addition to these,
note that assumption (C2) provides a bigger upper bound
of the external disturbances than the one which is defined
as ‖𝑢‖ ≤ 𝑏

1
+ 𝑏
2
‖𝑒‖ + 𝑏

3
‖ ̇𝑒‖ in [25, 26]. Because when the

two upper bound inequalities of the external disturbances
signals 𝑢 in [25, 26] and this study hold the same parameter
values of 𝑏

1
, 𝑏
2
, and 𝑏

3
, an arbitrary positive constant 𝑏

4

together with the nonzero accumulated position errors in
assumption (C2) can lead to a bigger upper bound value for
the external disturbances signals 𝑢. However, the enlarged
external disturbances can be compensated by the enhanced
robust term 𝑉 (see (3), (9), (32), and (33)). Therefore, greater
external disturbances are allowed for this study than the ones
tolerated in [25, 26].Hence, the proposed robust adaptive PID
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Figure 5: Position and velocity trajectory tracking of link 1.

control laws could show their advantages with appropriate
control gains in contrast to the adaptive PD ones [25, 26].

However, it should emphasize that the proposed robust
adaptive PID controllers can only enhance the finite-time
tracking accuracy in contrast to the existing adaptive PD
ones [25, 26], because the global asymptotical stability with
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Figure 6: Position and velocity trajectory tracking errors of link 1.

respect to the manipulator positions and velocities can also
be achieved by using the adaptive PD control laws [25, 26],
which implies that 𝑒(𝑡) → 0 and ̇𝑒(𝑡) → 0 as 𝑡 → ∞ can be
guaranteed. Nevertheless, the dynamic performance of the
closed-loop system can be improved in the whole process
by adopting the robust adaptive PID control laws. In fact,
the control procedure is always the finite-time process in
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Figure 8: Position and velocity trajectory tracking errors of link 2.

practical control systems; hence the study of the finite-time
control performance improvement of robot manipulator in
this work is of practical significance.

Simulation results verify the advantages of the proposed
control schemes. The experimental curves show that the
robust adaptive PID controllers provide higher accuracy in
finite-time position and velocity tracking control than those
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Figure 10: Control inputs of link 1 and link 2.

provided by the adaptive PD ones [25, 26]. Moreover, the
robust adaptive PID controllers result in better dynamic
performance of the manipulator systems. By observing the
experimental figures, it can be verified that the proposed
control laws can ensure a faster convergence rate and smaller
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Figure 11: Position and velocity trajectory tracking of link 1.
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Figure 12: Position and velocity trajectory tracking errors of link 1.

overshoot of the system states tracking to the desired tra-
jectories when compared with the adaptive PD controllers
[25, 26]. In terms of the control input, the robust adaptive PID
controllers lead to less chattering effect, which is beneficial
to prolong the service life of robot manipulator. For the
unknown constant vector 𝑃, the designed controllers in
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Figure 13: Position and velocity trajectory tracking of link 2.

0 1 2 3 4 5
Time (s)

Po
sit

io
n 

er
ro

r o
f

 li
nk

 2
 (r

ad
)

1

0.5

0

−0.5

(a)

0 1 2 3 4 5
Time (s)

Tracking error of adaptive PD
Tracking error of adaptive PID

Ve
lo

ci
ty

 er
ro

r o
f 

lin
k 

2 
(r

ad
/s

)

3

2

1

0

−1

(b)

Figure 14: Position and velocity trajectory tracking errors of link 2.

this study ensure higher finite-time estimation accuracy and
significantly lower overshoot.

From the above analysis, the investigation of this work
presents more effective control methods for robot manip-
ulator operation under unknown bounded external distur-
bances.
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Remark. Both the adaptive PD control laws in [25, 26]
and the robust adaptive PID control laws in this study can
make the position and the velocity tracking errors of the
manipulator systems asymptotically converge to zero, which
means 𝑒(𝑡) → 0 and ̇𝑒(𝑡) → 0 as 𝑡 → ∞. Therefore, when
the control gains chosen for simulation in [25, 26] and this

paper simultaneously result in rapid convergence of the
manipulator positions and velocities, the advantage of the
robust adaptive PID controllers will be tiny with comparison
to the adaptive PD controllers [25, 26].

Nevertheless, it is necessary to emphasize that the pro-
posed controllers are unavailable under manipulator actua-
tors fault. However, actuators fault may occur due to infre-
quent maintenance or limited life cycle, which could cause
several damages to the operators and products. In [31],
an adaptive variable structure control scheme is proposed
for underactuated mechanical manipulators. Reference [32]
investigates the basic data-driven methods for process mon-
itoring and fault diagnosis. And [33] discusses two online
schemes for an integrated design of fault-tolerant control
systems. Based on these current researches, our future work
will focus on the fault diagnosis and fault-tolerant control of
robot manipulators in case of actuators fault.

6. Conclusion

This paper describes the design and simulation implementa-
tion of two new robust adaptive PID controllers for the trajec-
tory tracking control of rigid robot manipulator with known
or unknown upper bound of the external disturbances. The
main feature of this design is that it combines PID control
law with robust adaptive algorithm. The adaptive algorithm
is utilized to estimate the unknown constant vector 𝑃 online,
while the robust term and the PID control are used to cope
with the unknown bounded external disturbances, adaptive
approximation errors, and trajectory tracking errors.

The convergence and stability properties of the closed-
loop system are guaranteed. In addition, the tolerable external
disturbances are enlarged; besides, the dynamic performance
of the manipulator systems is improved and the finite-time
tracking control accuracy is enhanced by adopting the pro-
posed control schemes in contrast to those achieved through
applying the existing adaptive PD control laws [25, 26]. The
control techniques have been finally simulated for a planner
manipulator model with two rotary degrees of freedom in
MATLAB/SIMULINK toolbox. Simulation results show the
advantages of the designed controllers and verify that the
proposed strategies are able to cope with both the external
disturbances, that can typically arise in practical control, and
uncertain constant parameters in system dynamics.

The limitation of the proposed control schemes lies in
the requirement of 𝐾

𝐷
= 𝐾
𝐼
, which in fact constrains the

flexibility of the controllers. Currently we are working on the
extension of the proposedmethods to remove this constraint.
Future work will investigate the fault diagnosis and fault-
tolerant control of robot manipulator systems with actuators
fault.
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[22] D. J. López-Araujo, A. Zavala-Rı́o, V. Santibáñez, and F. Reyes,
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This paper studies the fuzzy modeling problem and the fault detection and diagnosis (FDD) algorithm for non-Gaussian stochastic
distribution systems based on the nonlinear fuzzy filter design. Following spline function approximation for output probability
density functions (PDFs), the T-S fuzzy model is built as a nonlinear identifier to describe the dynamic relationship between the
control input and the weight vector. By combining the designed filter and the threshold value, the fault in T-S weight model can
be detected and the stability of error system can also be guaranteed. Moreover, the novel adaptive fuzzy filter based on stochastic
distribution function is designed to estimate the size of system fault. Finally, the simulation results can well verify the effectiveness
of the proposed algorithm for the constant fault and the time-varying fault, respectively.

1. Introduction

In order to improve the stability and the security of system,
the fault detection and diagnosis (FDD) algorithm for the
complex systems has been an important part in the field of
control engineering. Many significant approaches have also
been presented and applied to practical processes successfully
(see [1–4] and references therein). On the other hand, a
series of modeling and control strategies which control the
shape of output probability density functions (PDFs) for non-
Gaussian stochastic processes have received considerable
attention (see [5–8]). However, most of the existing FDD
results for stochastic systemswere only concernedwithGaus-
sian variables, where mean or variance was the objective for
optimization and control [9]. Since 2000, the FDD algorithm
for non-Gaussian stochastic distribution systems has begun
to be discussed based on filter theory [10]. In these results,
the modeling problem is often ignored and only linear model
or common nonlinear model is considered in FDD (see [10–
12]).

In recent years, the well-known T-S fuzzy model was
viewed as a popular and powerful modeling tool since it
is a powerful solution that bridges the gap between linear
and nonlinear control systems (see [13–15]). By introducing

a family of fuzzy IF-THEN rules that represent local linear
input-output relations of the system, many complex non-
linear models, such as descriptor systems [16], stochastic
systems [17], and time-delay model [14], can be described
or approximated by T-S fuzzy modeling. Meanwhile, some
typical control problems, including dynamic tracking control
[14], sliding-mode control [18], and filter design [19, 20], have
also been considered through T-S fuzzy modeling.

In this paper, we provide a novel FDD approach for
non-Gaussian stochastic distribution systems. Based on B-
spline approximation and T-S fuzzymodeling, the concerned
FDD problem of the dynamic non-Gaussian systems can
be transferred into a special nonlinear FDD problem for
deterministic T-S weight dynamics. Instead of common
nonlinear observer or filter in [10–12], the nonlinear fuzzy
filter and the adaptive filter are conducted by involving the
measured output PDFs with the T-S fuzzy weight dynamics.
Moreover, by optimizing a series of linear matrix inequalities
(LMIs), the fault existing in the stochastic processes can
be detected with a defined threshold and the satisfactory
estimation value for the size of fault can also be guaranteed.
It is noted that the T-S fuzzy model is first applied into the
FDD for stochastic distribution systems which solves the
nonlinearmodeling difficulty in previous results [10–12].This
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represents a significant extension of the previous results that
only common linear/nonlinear weight dynamic models are
considered and has also an independent significance in the
field of fuzzy FDD.

In this paper, for a square matrix 𝑀, we denote that
sym(𝑀) = 𝑀 + 𝑀

𝑇. The identity and zero matrices are
expressed by 𝐼 and 0, respectively. For a symmetric matrix
𝑀, the notation 𝑀 > (≥)0 is used to denote that 𝑀 is
positive definite (positive semidefinite). The case for 𝑀 <

(≤)0 follows similarly. Moreover, for a vector V(𝑡), define
Euclidean norm by ‖V(𝑡)‖ = V𝑇(𝑡)V(𝑡).

2. Problem Formulation and T-S
Fuzzy Modeling

For a complex non-Gaussian stochastic process, we denote
that 𝑢(𝑡) ∈ 𝑅

𝑚 is the control input, 𝑦(𝑡) ∈ [𝑎, 𝑏] is the
stochastic output of the concerned system, and 𝐹 represents
the fault to be detected and is supposed as a constant vector.
The conditional probability of output 𝑦(𝑡) lying inside [𝑎, 𝛽]
can be defined as follows:

𝑃 {𝑎 ≤ 𝑦 (𝑡) < 𝛽} = ∫

𝛽

𝑎

𝛾 (𝑧, 𝑢 (𝑡) , 𝐹) 𝑑𝑧, (1)

where 𝛾(𝑧, 𝑢(𝑡), 𝐹) stands for the output PDF with fault term
under the effect of the control input 𝑢(𝑡).

Similarly, with [7, 10, 11], it is supposed that the output
PDF 𝛾(𝑧, 𝑢(𝑡), 𝐹), as the control objective, can bemeasured or
estimated. For the PDF 𝛾(𝑧, 𝑢(𝑡), 𝐹), the square root B-spline
expansion is given as

√𝛾 (𝑧, 𝑢 (𝑡) , 𝐹) =

𝑛

∑

𝑖=1

V
𝑖
(𝑢 (𝑡) , 𝐹) 𝑏

𝑖
(𝑧) + 𝜔 (𝑧, 𝑢 (𝑡) , 𝐹) , (2)

where 𝑏
𝑖
(𝑧) are the prespecified basis functions and V

𝑖
(𝑢(𝑡), 𝐹)

are the corresponding weight values with fault. 𝜔(𝑧, 𝑢(𝑡), 𝐹)
represents the model uncertainty or the error term of the
approximation of PDFs, which is assumed to satisfy the
inequality ‖𝜔(𝑧, 𝑢(𝑡), 𝐹)‖ ≤ 𝜉, where 𝜉 is a known positive
constant.

Due to the PDF constraint condition ∫𝑏
𝑎

𝛾(𝑧, 𝑢(𝑡), 𝐹)𝑑𝑧 =

1, only 𝑛 − 1 weights are independent. Thus, the output PDF
can be further expressed as

√𝛾 (𝑧, 𝑢 (𝑡) , 𝐹) = 𝐵 (𝑧)𝑉 (𝑢 (𝑡) , 𝐹) + ℎ (𝑉 (𝑢 (𝑡) , 𝐹)) 𝑏
𝑛
(𝑧)

+ 𝜔 (𝑧, 𝑢 (𝑡) , 𝐹) ,

(3)

where 𝑉(𝑢(𝑡), 𝐹) = [V
1
(𝑢(𝑡), 𝐹), . . . , V

𝑛−1
(𝑢(𝑡), 𝐹)]

𝑇, 𝐵(𝑧) =
[𝑏
1
(𝑧), . . . , 𝑏

𝑛−1
(𝑧)]. Similarly, with [7], the nonlinear term

ℎ(𝑉(𝑡)) satisfies the following equality:

ℎ (𝑉 (𝑡)) =

√Λ
3
− 𝑉
𝑇
(𝑡) Λ
0
𝑉 (𝑡) − Λ

2
𝑉 (𝑡)

Λ
3

,
(4)

where Λ
0
= Λ
1
− Λ
−1

3
Λ
𝑇

2
Λ
2
and

Λ
1
= ∫

𝑏

𝑎

𝐵
𝑇

(𝑧) 𝐵 (𝑧) 𝑑𝑧, Λ
2
= ∫

𝑏

𝑎

𝐵 (𝑧) 𝑏
𝑛
(𝑧) 𝑑𝑧,

Λ
3
= ∫

𝑏

𝑎

𝑏
2

𝑛
(𝑧) 𝑑𝑧 ̸= 0.

(5)

It is obvious that the nonlinear term ℎ(𝑉(𝑡)) satisfies the
Lipschitz conditionwithin its operation region; that is, for any
𝑉
1
(𝑡) and 𝑉

2
(𝑡), there exists a known matrix 𝑈

1
such that





ℎ (𝑉
1
(𝑡)) − ℎ (𝑉

2
(𝑡))





≤




𝑈
1
(𝑉
1
(𝑡) − 𝑉

2
(𝑡))





. (6)

In the following, we will find the dynamic relationship
between the control input 𝑢(𝑡) and the weight vectors
𝑉(𝑢(𝑡), 𝐹), which corresponds to a further modeling proce-
dure. It is well known that the T-S fuzzy model is a powerful
solution for identifying complex nonlinear dynamics by a
blending of some local linear systemmodels. Compared with
those results that only consider common linear/nonlinear
weight dynamic model (see [10–12]), we will use the T-S
model to describe the nonlinear weight dynamics and the 𝑖th
rule of the T-S fuzzy model is of the following form.

Plant Rule 𝑖. If 𝜃
1
is 𝜇
𝑖1
, 𝜃
2
is 𝜇
𝑖2
, 𝜃
𝑝
is 𝜇
𝑖𝑝
, then

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐻

𝑖
𝑢 (𝑡) + 𝐽

𝑖
𝐹,

𝑉 (𝑡) = 𝐸
𝑖
𝑥 (𝑡) ,

(7)

where 𝑉(𝑡) := 𝑉(𝑢(𝑡), 𝐹) ∈ 𝑅𝑛−1 is the independent weight
vector. 𝑥(𝑡) ∈ 𝑅

𝑚 is the unmeasured state and 𝑥(𝑡 − 𝜏(𝑡))
represents the time-delay state. The time-varying delay 𝜏(𝑡)
is assumed to satisfy 0 < ̇𝜏(𝑡) < 𝛽 < 1, where 𝛽 is a
known constant. 𝐴

𝑖
, 𝐺
𝑖
, 𝐻
𝑖
, 𝐽
𝑖
, and 𝐸

𝑖
are known constant

real matrices of appropriate dimension. 𝜃
𝑗
and 𝑢

𝑖𝑗
(𝑖 =

1, . . . , 𝑟, 𝑗 = 1, . . . , 𝑝) are, respectively, the premise variables
and the fuzzy sets, 𝑟 is the number of the If-Then rules, and
𝑝 is the number of the premise variables. By fuzzy blending,
the overall fuzzy model can be defined as follows:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) (𝐴

𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐻

𝑖
𝑢 (𝑡) + 𝐽

𝑖
𝐹) ,

𝑉 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) 𝐸
𝑖
𝑥 (𝑡) ,

(8)

where

𝜃 = [𝜃
1
, ⋅ ⋅ ⋅ , 𝜃

𝑝
] , ℎ

𝑖
(𝜃) =

𝜎
𝑖
(𝜃)

∑
𝑟

𝑖=1
𝜎
𝑖
(𝜃)

,

𝜎
𝑖
(𝜃) =

𝑝

∏

𝑗=1

𝜇
𝑖𝑗
(𝜃
𝑗
) .

(9)

Moreover, we have

𝜎
𝑖
(𝜃) ≥ 0, 𝑖 = 1, . . . , 𝑟,

𝑟

∑

𝑖=1

𝜎
𝑖
(𝜃) > 0 (10)
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for any 𝜃. Hence, ℎ
𝑖
(𝜃) satisfies

ℎ
𝑖
(𝜃) ≥ 0, 𝑖 = 1, . . . , 𝑟,

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) = 1. (11)

3. Fault Detection for T-S Fuzzy Weight Model

To detect the fault existing in the output stochastic distribu-
tion, we construct the following fuzzy filter:

̇
�̂� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) (𝐴

𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝑥
𝜏
(𝑡) + 𝐻

𝑖
𝑢 (𝑡) + 𝐿𝜀 (𝑡)) , (12)

where 𝑥(𝑡) is the estimated state, 𝐿 is the gain to be
determined later, and 𝜀(𝑡) represents the residual signal and
is defined as follows:

𝜀 (𝑡) = ∫

𝑏

𝑎

𝜎 (𝑧) (√𝛾 (𝑧, 𝑢 (𝑡) , 𝐹) − √𝛾 (𝑧, 𝑢 (𝑡))) 𝑑𝑧,

√𝛾 (𝑧, 𝑢 (𝑡)) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) 𝐵 (𝑧) 𝐸

𝑖
𝑥 (𝑡)

+ ℎ(

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) 𝐸
𝑖
𝑥 (𝑡)) 𝑏

𝑛
(𝑧) ,

(13)

where 𝜎(𝑧) can be regarded as the prespecified vector defined
on [𝑎, 𝑏]. By defining 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡), 𝐸 = ∑𝑟

𝑖=1
ℎ
𝑖
(𝜃)𝐸
𝑖
, the

estimated error system can be expressed as

̇𝑒 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) [(𝐴

𝑖
− 𝐿Γ
1
) 𝑒 (𝑡) + 𝐺

𝑖
𝑒
𝜏
(𝑡)

− 𝐿Γ
2
(ℎ (𝐸𝑥 (𝑡)) − ℎ (𝐸𝑥 (𝑡)))

+𝐽
𝑖
𝐹 − 𝐿Δ (𝑡)] ,

(14)

where

Γ
1
= ∫

𝑏

𝑎

𝜎 (𝑧) 𝐵 (𝑧) 𝐸 𝑑𝑧, Γ
2
= ∫

𝑏

𝑎

𝜎 (𝑧) 𝑏
𝑛
𝑑𝑧,

Δ (𝑡) = ∫

𝑏

𝑎

𝜎 (𝑧) 𝜔 (𝑧, 𝑢 (𝑡) , 𝐹) 𝑑𝑧.

(15)

It can be seen that ‖Δ(𝑡)‖ ≤ ̃
𝜉, where ̃𝜉 = 𝜉‖ ∫𝑏

𝑎

𝜎(𝑧)𝑑𝑧‖

is a known constant. Meanwhile, the residual signal can be
expressed as

𝜀 (𝑡) = ∫

𝑏

𝑎

𝜎 (𝑧) 𝐵 (𝑧) 𝐸𝑒 (𝑡) 𝑑𝑧

+ ∫

𝑏

𝑎

𝜎 (𝑧) [ℎ (𝐸𝑥 (𝑡)) − ℎ (𝐸𝑥 (𝑡))] 𝑏
𝑛
(𝑧) 𝑑𝑧

+ ∫

𝑏

𝑎

𝜎 (𝑧) 𝜔 (𝑧, 𝑢 (𝑡) , 𝐹) 𝑑𝑧

= Γ
1
𝑒 (𝑡) + Γ

2
[ℎ (𝐸𝑥 (𝑡)) − ℎ (𝐸𝑥 (𝑡))] + Δ (𝑡) .

(16)

In the fault detection phase, our objective is to find the
gain 𝐿 such that the estimated error system (14) is stable if
𝐹 = 0, which can be formulated in the following theorem.

Theorem 1. For the known parameters 𝜆 > 0, 𝜂 > 0, suppose
that there exist matrices 𝑃 > 0, 𝑄 > 0, 𝑅, such that the
following LMIs

[

[

[

[

[

Π
𝑖
+ 𝜂𝐼 𝑃𝐺

𝑖
𝑅Γ
2

𝐺
𝑇

𝑖
𝑃 − (1 − 𝛽)𝑄 + 𝜂𝐼 0

Γ
𝑇

2
𝑅
𝑇

0 −𝜆
−2

𝐼

]

]

]

]

]

< 0, 𝑖 = 1, . . . , 𝑟

(17)

are solvable, where

Π
𝑖
= sym (𝑃𝐴

𝑖
− 𝑅Γ
1
) + 𝑄 + 𝜆

−2

𝐸

𝑇

𝑈
𝑇

𝑈𝐸; (18)

then the error system (14) is stable when 𝐹 = 0, and, for any
𝑡 ∈ [−𝜏(𝑡), +∞), the error variable 𝑒(𝑡) satisfies

‖𝑒 (𝑡)‖ ≤ 𝛼
0
= max {


𝑒
𝑚





, 2𝜂
−1̃
𝜉 ‖𝑅‖} , (19)

where the gain 𝐿 can be computed by 𝐿 = 𝑃−1𝑅.

Proof. Denote the Lyapunov function candidate as

Φ (𝑒, 𝑥, 𝑥, 𝑡)

= 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝜏) (𝑡) 𝑄𝑒 (𝜏) 𝑑𝜏

+

1

𝜆
2
∫

𝑡

0

[






𝑈𝐸𝑒 (𝜏)







2

−






ℎ (𝐸𝑥 (𝜏)) − ℎ (𝐸𝑥 (𝜏))







2

] 𝑑𝜏,

(20)

when 𝐹 = 0, and, based on (14), we can get

Φ̇ ≤

𝑛

∑

𝑖=1

ℎ
𝑖
(𝜃) {𝑒
𝑇

(𝑡) (sym (𝑃𝐴
𝑖
− 𝑅Γ
1
) + 𝑄) 𝑒 (𝑡)}

+ 2

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) 𝑒
𝑇

𝑃𝐺
𝑖
𝑒
𝜏
(𝑡) − (1 − 𝛽) 𝑒

𝑇

𝜏
(𝑡) 𝑄𝑒

𝜏
(𝑡)

+ 𝜆
−2

𝑒
𝑇

(𝑡) 𝐸

𝑇

𝑈
𝑇

𝑈𝐸𝑒 (𝑡) − 2𝑒
𝑇

(𝑡) 𝑃𝐿Δ (𝑡)

+ 𝜆
2

𝑒
𝑇

(𝑡) 𝑃𝐿Γ
2
Γ
𝑇

2
𝐿
𝑇

𝑃𝑒 (𝑡)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) 𝜉
𝑇

(𝑡) Ω
𝑖
𝜉 (𝑡) − 2𝑒

𝑇

(𝑡) 𝑃𝐿Δ (𝑡) ,

(21)

where 𝜉(𝑡) = [𝑒𝑇(𝑡), 𝑒𝑇
𝜏
(𝑡)]
𝑇,

Ω
𝑖
=
[

[

Ξ
𝑖

𝑃𝐺
𝑖

𝐺
𝑇

𝑖
𝑃 − (1 − 𝛽)𝑄

]

]

,

Ξ
𝑖
= sym (𝑃𝐴

𝑖
− 𝑅Γ
1
) + 𝑄 + 𝜆

−2

𝐸

𝑇

𝑈
𝑇

𝑈𝐸

+ 𝜆
2

𝑃𝐿Γ
2
Γ
𝑇

2
𝐿
𝑇

𝑃.

(22)
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By defining 𝐿 = 𝑃
−1

𝑅 and using Schur complement
formula with respect to (17), we have

Φ̇ ≤ − 𝜂‖𝑒(𝑡)‖
2

+ 2
̃
𝛿 ‖𝑒 (𝑡)‖ ‖𝑅‖

= − 𝜂 ‖𝑒 (𝑡)‖ (‖𝑒 (𝑡)‖ − 2𝜂
−1

‖𝑅‖
̃
𝛿) .

(23)

Thus, when ‖𝑒(𝑡)‖ > 2𝜂
−1

‖𝑅‖
̃
𝛿, Φ̇ < 0 can be guaranteed.

So we can get that the system (14) is stable and the estimated
error satisfies

‖𝑒 (𝑡)‖ ≤ max {

𝑒
𝑚





, 2𝜂
−1̃
𝜉 ‖𝑅‖} , (24)

where ‖𝑒
𝑚
‖ = max

−𝜏(𝑡)<𝑡<0
‖𝑒(𝑡)‖.

It is noted that Theorem 1 gives a necessary condition for
fault detection. Based on the conclusion of Theorem 1, when
the fault 𝐹 = 0, the residual error signal satisfies the following
inequality:

‖𝜀 (𝑡)‖ ≤




Γ
1





‖𝑒 (𝑡)‖ +





Γ
2





‖𝑈‖ ‖𝑒 (𝑡)‖ + ‖Δ (𝑡)‖

≤ 𝛼
0
(




Γ
1





+




Γ
2





‖𝑈‖) +

̃
𝛿.

(25)

By defining the threshold 𝛼 = 𝛼
0
(‖Γ
1
‖ + ‖Γ

2
‖‖𝑈‖) +

̃
𝛿, we

can conclude that the system has no fault, when the residual
error signal is less than or equal to the threshold. If the
residual signal is greater than the threshold, the system causes
the existence of fault.

4. Fault Diagnosis for T-S Fuzzy Weight Model

Based on the results regarding fault detection, this part will
estimate the size of the fault if the system has fault. We
construct the following adaptive fuzzy filter:
̇
�̂� (𝑡)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) (𝐴

𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝑥
𝜏
(𝑡) + 𝐻

𝑖
𝑢 (𝑡) + 𝐿𝜀 (𝑡) + 𝐽

𝑖
𝐹 (𝑡)) ,

̇
�̂� = −𝐶

1
𝐹 (𝑡) + 𝐶

2
𝜀 (𝑡) ,

𝜀 (𝑡) = ∫

𝑏

𝑎

(√𝛾 (𝑧, 𝑢 (𝑡) , 𝐹) − √𝛾 (𝑧, 𝑢 (𝑡))) 𝑑𝑧,

√𝛾 (𝑧, 𝑢 (𝑡)) = 𝐵 (𝑧) 𝐸𝑥 (𝑡) + ℎ (𝐸𝑥 (𝑡)) 𝑏
𝑛
(𝑧) ,

(26)

where 𝐹 is the estimate value of the fault 𝐹, 𝐶
𝑖
> 0, (𝑖 = 1, 2)

are the designed learning rate. Denoting 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡),
𝐹(𝑡) = 𝐹 − 𝐹(𝑡), the estimated error system can be expressed
as follows:

̇𝑒 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃) [ (𝐴

𝑖
− 𝐿Γ
1
) 𝑒 (𝑡) + 𝐺

𝑖
𝑒
𝜏
(𝑡)

− 𝐿Γ
2
(ℎ (𝐸𝑥 (𝑡)) − ℎ (𝐸𝑥 (𝑡)))

+𝐽
𝑖
𝐹 − 𝐿Δ (𝑡)] ,

̇
�̃� = −𝐶

1
𝐹 + 𝐶

1
𝐹 − 𝐶

2
𝜀 (𝑡) .

(27)

Theorem 2. Suppose that ‖𝐹‖ ≤ 𝑀/2, ‖𝐹‖ ≤ 𝑀/2; then one
has ‖𝐹‖ ≤ 𝑀. For the known parameter 𝜆 > 0 andmatrices𝐶

𝑖
,

(𝑖 = 1, 2), there exist matrices 𝑃 > 0, 𝑄 > 0, 𝑅 and constants
𝑘
1
> 0, 𝜃

𝑗
> 0, (𝑗 = 1, 2, 3) satisfying

[
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< 0, (28)

where
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Π
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Γ
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2
= [
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𝑅
] ;

(29)

then the error system (27) is stable in the presence of 𝐹. The
estimation error satisfies

‖𝑒(𝑡)‖
2

≤ max {

𝑒
𝑚






2

, 𝑘
−1

((𝜃
−2

1
+ 𝜃
−2

2
)
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𝛿
2

) +




𝐶
1





𝑀
2

}

(30)

for all 𝑡 ∈ [−𝜏,∞). The gain 𝐿 of diagnosis filter (26) can be
computed by 𝐿 = 𝑃−1𝑅.

Proof. Define the Lyapunov function as follows:

Υ (𝑒, 𝑥, 𝑥, 𝐹, 𝑡) = Φ (𝑒, 𝑥, 𝑥, 𝑡) + 𝐹
𝑇

(𝑡) 𝐹 (𝑡) , (31)

where Φ(𝑒, 𝑥, 𝑥, 𝑡) is defined in (20), and it can be concluded
that
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Furthermore, we can get that
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Figure 1: The responses of residual signal.

where

𝜉 (𝑡) = [𝑒
𝑇

(𝑡) , 𝑒
𝑇
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.

(35)

By using Schur complement, the inequality (28) is equiv-
alent to Ψ

𝑖
< diag{−𝑘𝐼, 0, 0}. Then we can get that

Υ̇ ≤ − 𝑘‖𝑒 (𝑡)‖
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𝑀
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.

(36)

So Υ̇ < 0, if 𝑘‖𝑒(𝑡)‖2 ≥ (𝜃
−2

1
+ 𝜃
−2

2
)
̃
𝛿
2

+ ‖𝐶
1
‖𝑀
2 holds.

Similarly, with Theorem 1, the estimated error ‖𝑒(𝑡)‖ satisfies
the inequality (30). It can be validated that system (27) is
stable in the presence of 𝐹, which also implies the good fault
diagnosis performance.

5. An Illustrative Example

Suppose that the output PDFs can be approximated using the
following B-spline model:

𝑏
𝑖
= {

|sin 2𝜋𝑧| , 𝑧 ∈ [0.5 (𝑖 − 1) , 0.5𝑖]

0, 𝑧 ∈ [0.5 (𝑗 − 1) , 0.5𝑗]

𝑖 ̸= 𝑗, (37)

where 𝑖 = 1, 2, 3, 𝑧 ∈ [0, 1.5].
In the simulation, it is supposed that ̃𝛿 = ‖Λ

1
‖
−1

= 5. The
fault 𝐹 is defined as

𝐹 (𝑡) = {

0, 𝑡 ≤ 5

1, 𝑡 > 5.

(38)
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Figure 2: Fault and its estimation value.

For the T-S fuzzy weight dynamics, the rule 𝑖 = 2 and the
model parameters are given as follows:

𝐴
1
= [

−5 1

1 −5
] , 𝐺

1
= [

0 1

1 0
] , 𝐻

1
= 𝐻
2
= [

1

1
] ,

(39)

𝐴
2
= [

−2 2

2 −2
] , 𝐺

2
= [

0 1

1 0
] , 𝐸

1
= 𝐸
2
= [

4 1

1 4
] .

(40)

Furthermore, we choose the following Gaussian type
functions as our member functions:

𝑀
𝑖
=

exp (−(V
2
± 1)
2

/𝜎
2

)

exp (−(V
2
+ 1)
2

/𝜎
2
) + exp (−(V

2
− 1)
2

/𝜎
2
)

, 𝑖 = 1, 2,

(41)

where 𝜎 = 0.8.
By defining 𝜆 = 𝜂 = 1, 𝜃

1
= 0.1, and 𝜃

2
= 𝜃
3
= 0.05 and

solving LMIs (17), we can get that

𝐿 = [

6.0672 1.5213

1.6494 6.6723
] . (42)

The responses of the residual signal are shown in Figure 1.
It can be clearly seen that when 𝑡 > 5, the fault will occur.
Figure 2 is the fault and its estimated value that shows the
estimation error can be converged in a small field. Figure 3
shows the 3D mesh plot of the output PDFs and we can find
that the fault occurs in front of two peaks. Moreover, when
the fault 𝐹 is redefined as a time-varying function

𝐹 (𝑡) = {

0, 𝑡 ≤ 5

1 + 0.2 sin 𝑡, 𝑡 > 5

(43)

the responses of time-varying fault and its estimated value are
shown in Figure 4.

6. Conclusions

This paper presents a novel FDD algorithm for non-Gaussian
stochastic distribution systems based on T-S fuzzy modeling
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Figure 4: Time-varying fault and its estimation value.

and nonlinear fuzzy filter design. A series of LMIs based
solution is presented such that the estimation error system
is stable and the fault can be detected through a known
threshold. Moreover, the adaptive filter based on the T-
S fuzzy model is designed to estimate the size of system
fault by optimizing the solutions for the concerned LMIs.
Simulations are given to demonstrate the efficiency of the
proposed approach.
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The compound control of active-disturbance-rejection control (ADRC) with sliding mode is proposed to improve the performance
of the closed-loop system and deal with the constraint condition problem of a surface ship. The advantages of ADRC with sliding
mode were verified by ship course control simulations. Meanwhile, to solve the path-following problem of underactuated surface
ships with uncertainties of internal dynamic and external disturbances, the ADRC controller with sliding mode is introduced to
steer the ship to follow the desired path. In order to overcome the cross-track error caused by wind and current, drift angle is
compensated in the controller by designing a coordinate transformation equation. Simulations were performed on a nonlinear
kinematics model of a training ship to validate the stability and excellent robustness of the proposed path-following controller.

1. Introduction

Control of underactuated ships is an active field due to
its important applications such as passenger and goods
transportation, environmental surveying, and offshore oil
installations. Based on its practical requirement, motion
control of an underactuated surface vessel on the horizontal
plane can be divided into ship course, path following, and
trajectory tracking. Ship course control is mainly concerned
with keeping its heading angle to a desired course angle,
which is not an underactuated control problem. However,
nowadays, by making use of the position feedback signals
obtained from a GPS navigation device, a ship guidance
system, namely, a tracking control system, can be designed
to make the ship track a desired path. Path following is here
defined as a control problem of forcing an underactuated ship
to follow a specified path at a desired forward speed [1, 2].

Ship control problems are challenging due to the fact
that the motion of underactuated surface ships possesses
more degrees of freedom to be controlled than the num-
ber of the independent controls under some nonintegrable
second-order nonholonomic constraints [3]. In particular,
underactuated ships do not usually have an actuator in the

sway axis on the horizontal plane, whose configuration is
by far the most common among marine vessels. Therefore,
Brockett’s condition indicates that any continuous time-
invariant feedback control law does not make a null solution
of the underactuated surface ship dynamics asymptotically
stable in the sense of Lyapunov. Furthermore, as observed
in [3], the underactuated ship system is not transformable
into a standard chain system. Consequently, existing control
schemes [4] developed for chained systems cannot be applied
directly.

Due to the high dependence on the reference model and
complicated control laws of the trajectory tracking approach,
several researchers have studied the path following problem,
which is more suitable for practical implementation. The
problem of path following was introduced in [5] where some
local results were obtained using linearization techniques. A
fourth-order ship model in the Serret-Frenet frame was used
in [6] to develop a control strategy to track both a straight
line and a circumference under constant ocean current dis-
turbance. A path-following controller was proposed in [7] by
using a kinematic model written in polar coordinates, which
is inspired by the solution for mobile robots in [8]. However,
the controller was designed at the kinematic level with
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an assumption of constant ocean current and its direction
known to achieve an adjustable boundedness of the path-
following error. Since ocean vessels do not have direct control
over velocities, a static mapping implementationmight result
in an unstable closed-loop system due to nonvanishing envi-
ronmental disturbances. A path-following controller based
on a transformation of the ship kinematics to the Serret-
Frenet frame, which was used for mobile robot control [9],
on the path was proposed in [10], where an acceleration
feedback and linearization of ship dynamics were used. Since
underactuated surface ships have fewer numbers of actuators
than the to be controlled degrees of freedomand are subject to
nonintegrable acceleration constraints, their dynamicmodels
are not transformable into a system without drifts.Therefore,
the above control scheme is not directly applicable.

The simplest track-keeping system can be designed froma
conventional course-keeping autopilot by using information
from a positioning system. The whole system approach
may be considered as applying “analytical control strategies”
dependent techniques including self-tuning control, LQG
control, multivariable optimal control, and 𝐻

∞
control.

The main drawback of analytical control strategies is their
dependence on a reliable model. As a matter of fact, a surface
ship is strongly influenced by the model internal dynamic
uncertainties as well as external disturbances of wind, waves,
and ocean current flow. Furthermore, the surface shipmotion
usually has large inertia, large time lag, nonlinearity, and
constraint condition characteristics which reflects in the ship
yaw angular rate with a constraint.

In some literature, several methods have been proposed
to deal with the uncertainties of the system and the external
perturbations. An adaptive robust controller combining the
Nussbaum gain technique with a backstepping approach was
developed in [11] to cope with ship straight-line tracking
control system with parametric uncertainties and unknown
control gain coefficients without a priori knowledge of its
sign. In [12], a global controller was presented without
velocity measurements for feedback. To deal with nonlinear
damping coefficients, an adaptive observer was used to
estimate the inaccuracies. In order to avoid the need of
explicit knowledge of the detailed ship dynamics, application
to the marine field of techniques of neural network, fuzzy
logic control, and other artificial intelligence (AI) was also
investigated in recent years. However, in most of these works,
the uncertainty of external perturbation of the nonnegligible
ocean current was seldom explicitly involved. These con-
trollers are able to drive the cross-track error to zero in the
absence of a constant direction current disturbance. When
a surface ship is proceeding under perturbation of a cross
ocean constant direction current or wind, it is necessary
to maintain a deliberate deviation angle known as “drift
angle and leeway.” In [13], based on a technique of feedback
linearization and backstepping, a control algorithm for a
fourth-order shipmodel was developed with an estimation of
the uncertain constant ocean currentwith knowndirection to
track both line and circumference. However, the assumption
and precondition of a priori knowledge of current’s direction
are very restrictive from a practical point of view.

Based upon the above observations, this paper aims at
developing a ship-tracking controller with improved perfor-
mance in adaptation and robustness by employing the ADRC
technique which has been proved to very effective due to its
independence of accurate mathematical model of the plant.
Aiming specially at the uncertain system, the ADRC tech-
nique was proposed by Han [14, 15]. Then, the linear ADRC
(LADRC) was developed to achieve the parameterization by
Gao [16]. LADRC is a simplified algorithm comparing to
nonlinear ADRC, but it also inherits ADRC’s advantages;
furthermore, it is easy to apply in engineering.

It is well known that the sliding mode control (SMC)
has also attractive features to keep the systems insensitive
to uncertainties on the sliding surface; its applications have
been extensively studied in [17–24]. In this paper, compound
control combines the advantages of ADRC and SMC to
apply to ship course and path-following control, so that
improves the performance of the ship closed-loop systems
andmakes the parameters ofmore obvious physicalmeaning.
The cross-track error resulting from constant direction wind
and current is removed.

The rest of this paper is organized as follows. The ship
model is described in Section 2; three degrees of freedom
model for simulation are given. Section 3 proposes the design
of ADRC with SMC. Section 4 designs the ship course
controller and validates control performance. The ship path-
following controller design and simulations are studied in
Section 5. Finally, Section 6 contains the main conclusions.

2. Ship Motion Control Model

2.1. The Ship Kinematics Model. The kinematics and dynam-
ics (MMG) model [25] of an underactuated ship moving in
surge, sway, and yaw in the earth-fixed and body-fixed frames
(Figure 1) can be described as

̇𝑥 = 𝑢
𝑟
cos𝜓 − V

𝑟
sin𝜓 + 𝑉

𝑐
cos𝜓
𝑐
= 𝑉
𝑋
cos𝜓 − 𝑉

𝑌
sin𝜓,

̇𝑦 = 𝑢
𝑟
sin𝜓 + V

𝑟
cos𝜓 + 𝑉

𝑐
sin𝜓
𝑐
= 𝑉
𝑋
sin𝜓 + 𝑉

𝑌
cos𝜓,

̇𝑢
𝑟
= 𝑉
𝑋
− 𝑉
𝑐
𝑟 sin (𝜓

𝑐
− 𝜓) ,

̇V
𝑟
= 𝑉
𝑌
+ 𝑉
𝑐
𝑟 cos (𝜓

𝑐
− 𝜓) ,

̇𝜓 = 𝑟,

(𝑚 + 𝑚
𝑥
) 𝑉
𝑋
− (𝑚 + 𝑚

𝑦
)𝑉
𝑌
𝑟

= 𝑋
𝐻
+ 𝑋
𝑃
+ 𝑋
𝑅
(𝛿) + 𝑋

𝑊

+ (𝑚
𝑥
− 𝑚
𝑦
)𝑉
𝑐
sin (𝜓

𝑐
− 𝜓) 𝑟,

(𝑚 + 𝑚
𝑦
)𝑉
𝑌
+ (𝑚 + 𝑚

𝑥
) 𝑉
𝑋
𝑟

= 𝑌
𝐻
+ 𝑌
𝑃
+ 𝑌
𝑅
(𝛿) + 𝑌

𝑊

− (𝑚
𝑥
− 𝑚
𝑦
)𝑉
𝑐
cos (𝜓

𝑐
− 𝜓) 𝑟,

(𝐼
𝑧𝑧

+ 𝐽
𝑍𝑍

) ̇𝑟 = 𝑁
𝐻
+ 𝑁
𝑃
+ 𝑁
𝑅
(𝛿) + 𝑁

𝑊
,

(1)
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Figure 1: Ship’s planimetric position and kinematics with current
disturbance.

where 𝑥, 𝑦, and 𝜓 are the longitudinal displacement, lateral
displacement, and heading angle, respectively, in the earth-
fixed frame, 𝑉

𝑋
and 𝑉

𝑌
are the longitudinal and lateral

velocities over ground, respectively, 𝑟 is the yaw angular rate
in the ship-fixed frame, 𝑢

𝑟
and V

𝑟
denote surge and sway

velocities through water, and 𝑉
𝑐
and 𝜓

𝑐
denote the speed and

set of current in the earth-fixed frame.The vector summation
of both determines the magnitude and direction of current. 𝛿
is rudder angle.𝑚,𝑚

𝑥
,𝑚
𝑦
, 𝐼
𝑧𝑧
, and 𝐽

𝑧𝑧
denote the ship inertia,

addedmass, and addedmoment of inertia.𝑋,𝑌, and𝑁 terms
with subscripts 𝐻, 𝑃, 𝑅, and 𝐸, respectively, are longitudinal
and lateral forces and moments induced by hydrodynamic
damping, propeller, rudder, and other external effects except
current.

2.2. Ship Course and Path-Following Control Problem. In this
paper, in order to design ADRC ship-tracking controller, the
following path-following design model derived from (1) is
used:

̇𝑦 = 𝑉
𝑥
sin𝜓 + 𝑉

𝑦
cos𝜓,

̇𝜓 = 𝑟,

̇𝑟 = 𝑓 (𝑟, 𝑤) + 𝑏𝛿,

(2)

where 𝑓(𝑟, 𝑤) is a multivariable function of both the states
and external disturbances as well as time. 𝑤 is the combined
external disturbance from wind and current. 𝑏 > 0 is the
control gain which is the design parameter. In the system
of (2), the last two equations can be defined as ship course
control system which is not an underactuated system.

In practice, when an underactuated surface ship travels
at sea, its rudder angle is the only control input used to
follow a desired path and to steer a comparatively steady
course. However, cross track cannot be regulated to zero by
coordinate transformation for the sake of rudder angle under
drift caused bywind and current, and itmust be compensated
by a loxodrome (or sideslip compensation) since no sway
control means are available. Because of this, the equilibrium
point of the system is not at the origin of transformed

coordinates but at a drifting point since the wind and current
are time and regional variant. Moreover, the only measurable
state variables are the ship’s position and heading in earth-
fixed coordinates.Thepath-following problem is rephrased as
the stabilization to zero of a suitable scalar path error function
based on basic knowledge of the steering feature. The goal of
ship path following is to design a robust controller that can
force an underactuated surface shipwith the abovementioned
constraints to follow a desired path.

3. ADRC Controller Design

3.1. ADRC Structure and Its Algorithm. Consider a generally
nonlinear time-varying second dynamic system:

̈𝑦 (𝑡) = 𝑓 ( ̇𝑦 (𝑡) , 𝑦 (𝑡) , 𝑑 (𝑡)) + 𝑏𝑢, (3)

where 𝑦 and 𝑢 are output and input, respectively, and 𝑑(𝑡) is
the external disturbance. Here, 𝑓( ̇𝑦(𝑡), 𝑦(𝑡), 𝑑(𝑡)) represents
the nonlinear time-varying dynamics of the plant, that is,
unknown. 𝑏 is control gain and unknown, although some
knowledge of 𝑏 can be got; that is, 𝑏 ≈ 𝑏

0
. Rewrite (3) as

̈𝑦 (𝑡) = 𝑓 ( ̇𝑦 (𝑡) , 𝑦 (𝑡) , 𝑑 (𝑡)) + (𝑏 − 𝑏
0
) 𝑢 + 𝑏

0
𝑢

= 𝑓 + 𝑏
0
𝑢,

(4)

where 𝑓 = 𝑓( ̇𝑦(𝑡), 𝑦(𝑡), 𝑑(𝑡)) + (𝑏 − 𝑏
0
)𝑢 is referred to as the

generalized disturbance. Assuming that𝑓 is differentiable, let
𝑥
3
= 𝑓 and ℎ =

̇
𝑓; (4) can be written in an augmented state

space form

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= 𝑥
3
+ 𝑏
0
𝑢,

̇𝑥
3
= ℎ,

𝑦 = 𝑥
1
,

(5)

where 𝑥 = [𝑥
1

𝑥
2

𝑥
3
]
𝑇. An extended state observer (ESO)

of (5) will estimate the derivatives of 𝑦 and 𝑓 since (5) is now
a state in extended statemodel.With𝑢 and𝑦 as inputs of ESO,
the ESO of (5) is given as

̇
�̂�
1
= 𝑥
2
− 𝑙
1
(𝑥
1
− 𝑥
1
) ,

̇
�̂�
2
= 𝑥
3
− 𝑙
2
(𝑥
1
− 𝑥
1
) + 𝑏
0
𝑢,

̇
�̂�
3
= −𝑙
3
(𝑥
1
− 𝑥
1
) ,

(6)

where 𝑥 = [𝑥
1

𝑥
2

𝑥
3
]
𝑇 is the estimate of the state of (5), and

𝑙
𝑖
, 𝑖 = 1, 2, 3, are the observer gain parameters to be chosen.
The observer gains are chosen such that the characteristic
polynomial 𝑠3+𝑙

1
𝑠
2

+𝑙
2
𝑠+𝑙
3
is Hurwitz. For tuning simplicity,

all the observer poles are placed at −𝜔
𝑜
. It results in the

characteristic polynomial of (6) to be

𝑠
3

+ 𝑙
1
𝑠
2

+ 𝑙
2
𝑠 + 𝑙
3
= (𝑠 + 𝜔

𝑜
)
3

, (7)

where the observer bandwidth 𝜔
𝑜
is the sole turning param-

eter, and 𝐿 = [3𝜔
𝑜

3𝜔
2

𝑜
𝜔
3

𝑜
]
𝑇.
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Generally, the larger the observer bandwidth is, the more
accurate the estimation will be. However, a large observer
bandwidth will increase noise sensitivity. Therefore, a proper
observer bandwidth should be selected in a compromise
between the tracking performance and the noise tolerance
[16].

Once the observer is designed and well tuned, its outputs
will track 𝑥

1
, 𝑥
2
, and 𝑥

3
, respectively. By canceling the effect

of 𝑓 using 𝑥
3
, the ADRC actively compensates for 𝑓 in real

time. The ADRC control law is given by

𝑢 =

−𝑘
𝑝
(𝑥
1
− V) − 𝑘

𝑑
(𝑥
2
− ̇V) + ̈V − 𝑥

3

𝑏
0

, (8)

where V is the reference signal and 𝑘
𝑝
and 𝑘
𝑑
are the controller

gain parameters selected to make 𝑠
2

+ 𝑘
𝑑
𝑠 + 𝑘

𝑝
which is

Hurwitz.
The closed-loop system becomes

̈𝑦 = (𝑓 − 𝑥
3
) − 𝑘
𝑝
(𝑥
1
− V) − 𝑘

𝑑
(𝑥
2
− ̇V) + ̈V. (9)

Note that with a well-designed ESO, the estimation error
in 𝑥
𝑖
, 𝑖 = 1, 2, 3, is ignored, and let 𝑒 = 𝑥

1
− V. Then, 𝑥

1
− V ≈ 𝑒

and 𝑥
2
− ̇V ≈ ̇𝑒. The plant (4) is reduced to

̈𝑒 = −𝑘
𝑝
𝑒 − 𝑘
𝑑
̇𝑒 = 𝑢
0
, (10)

which is a classic PD control law.
It is apparent that system (10) is stable, while 𝑡 → ∞,

𝑒(𝑡) → 0.

3.2. Feedback Control Law Design with Linear Sliding Mode.
The method of determining 𝑘

𝑝
and 𝑘

𝑑
was proposed using

the bandwidth idea in [16], but its physical meaning is not
clear. Furthermore, the tracking is hard to achieve perfect
performance.Therefore, linear slidingmode idea is applicable
to the design of error feedback control law in this section.

Letting 𝑘
1
= 𝑘
𝑝
/𝑘
𝑑
and 𝑘
2
= 𝑘
𝑑
, (10) and (4) become

̈𝑒 = −𝑘
2
(𝑘
1
𝑒 + ̇𝑒) . (11)

And let

𝜎 = 𝑘
1
𝑒 + ̇𝑒. (12)

While 𝜎 → 0, ̇𝑒(𝑡) = −𝑘
1
𝑒(𝑡), 𝑒(𝑡)will converge in index law,

and time constant is 1/𝑘
1
. Therefore, 𝜎 is the phrase locus of

𝑒 and ̇𝑒
1
on the phrase plane. To stabilize system, (11) is the

problem of stabilizing 𝜎.
Letting 𝑇 = 1/𝑘

1
and 𝑒(0) = 1, we have

𝑒 (𝑡) = 𝑒
−𝑡/𝑇

, (13)

where 𝑒(𝑡) is an exponential decline curve. Meanwhile, the
time constant is 𝑇. We have

𝑒 (𝑇) = 1 − 0.632 = 0.368,

𝑒 (2𝑇) = 1 − 0.865 = 0.135,

𝑒 (3𝑇) = 1 − 0.95 = 0.05,

𝑒 (4𝑇) = 1 − 0.982 = 0.018.

(14)

For (12),

̇𝜎 = 𝑘
1
̇𝑒 + ̈𝑒 = 𝑘

1
̇𝑒 + 𝑢
0
= 𝑘
1
̇𝑒 − 𝑘
𝑑
𝜎. (15)

Owing to 𝑘
1
̇𝑒(𝑡) → 0, while 𝑡 → ∞ and 𝑘

𝑑
>

0, obviously, system (15) is a simple proportion negative
feedback system; that is,

̇𝜎 = −𝑘
𝑑
𝜎. (16)

The essence of PD control for a second-order system is
similar to the design of only one-step sliding mode in form.
The control law of (10) is written as

𝑢
0
= −𝑘
2
(𝑘
1
𝑒 + ̇𝑒) , (17)

where 𝑘
1

> 0 and 𝑘
2

> 0 are the design parameters. In
addition, 𝑘

2
> 𝑘
1
normally. 1/𝑘

1
is the system convergence

time constant. 𝑘
1
is tuned based on how fast we want the

output to track the set point. A large 𝑘
1
generally increases the

response speed, but itmay push the system to its limit, leading
to oscillations or even instability. So 𝑘

1
should be adjusted

based on the competing requirements of performance of the
actuator. We should consider the limit of the actuator to
calculate the value of 𝑘

1
. For instance, we set the value of

𝑘
1
according to the desired turn back time and the limit of

ship turning rate. 𝑘
2
determines the response speed of control

input directly. A large 𝑘
2
within a limited range usually

increases the rate of change in control signal, but it may lead
the system to oscillations or even instability.

3.3. Feedback Control Law Design with Nonlinear Sliding
Mode. The important feature of linear sliding is that its
projection in each phase plane is a straight line. Linear sliding
mode requests the system state has a larger convergence rate
when it is at a greater deviation, which can be achieved
by higher speed and larger control input. However, in the
actual control system, to ensure the control quality of the
system when the deviation is large, it often needs to reduce
approach speed due to the limited control input, and the cost
is to sacrifice the control quality when the deviation is small,
where the result is that the system is too slow to be stable.
Therefore, linear slidingmode is essentially the same as linear
control system, which applies to the small neighborhood of
system.

To solve the above problem of linear sliding mode (LSM),
the form of nonlinear sliding mode (NLSM) in the phase
plane as shown in Figure 2 can be taken. The characteristic
of nonlinear sliding mode is that the system has fast conver-
gence rate when the deviation is small, and with the increase
of deviation, the convergence rate increases as nonlinear until
it tends to a constant, so that the nonlinear slidingmode could
ensure good control quality in a wide range.

The actual state of system has constraint condition due to
the limitation of control input, so we can select themonotone
bounded hyperbolic tangent function as the nonlinear sliding
mode function. Let

𝜎 = 𝑘
1
tanh (𝑘

0
𝑒) + ̇𝑒. (18)
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Figure 2: Comparison of linear with nonlinear sliding modes.

The feedback control law of system (10) becomes

𝑢
0
= 𝑘
2
(𝑘
1
tanh (𝑘

0
𝑒) + ̇𝑒) , (19)

where 𝑘
𝑖
∈ R+, 𝑖 = 0, 1, 2, are the parameters to be tuned.

If 𝜎 → 0, then ̇𝑒 → −𝑘
1
tanh(𝑘

0
𝑒), where max(| ̇𝑒|) →

𝑘
1
and −1 < ̇𝑒 < 1.That is, themaximum system convergence

rate is less than 𝑘
1
. While 𝑒 is large enough, 𝑒 will converge as

almost fixed rate 𝑘
1
. While 𝑒 is small enough, 𝑒 will converge

as index law. At the same time, 𝑘
0
and 𝑘
1
determine the slope

of sliding mode in phase plane.

4. Ship Course Controller Design
and Simulation

4.1. Ship Course Controller Design. For the ship course
response model

̇𝜓 = 𝑟,

̇𝑟 = 𝑓 (𝑟, 𝑤) + 𝑏𝛿,

𝜓 = 𝜓
𝑑
,

(20)

where 𝜓
𝑑
is the tracking target, and the meaning of the other

symbols is the same as system (2).
Similar to (6), the 3rd-order LESO of the plant (20) can

be written as

̇
�̂�
1
= �̂�
2
− 𝑙
1
(�̂�
1
− 𝜓) ,

̇
�̂�
2
=

̂
𝑓 − 𝑙
2
(�̂�
1
− 𝜓) + 𝑏

0
𝛿,

̇
̂
𝑓 = −𝑙

3
(�̂�
1
− 𝜓) ,

(21)

where �̂�
1
and �̂�

2
are the estimators of 𝜓 and ̇𝜓, respectively,

and ̂
𝑓 is the estimator of 𝑓(𝑟, 𝑤) + (𝑏 − 𝑏

0
)𝛿, which contains

the total uncertainties of internal dynamic and external
disturbances.

Similar to (8), the controller is defined as

𝛿 =

𝑢
0
−

̂
𝑓 + ̈𝜓

𝑑

𝑏
0

. (22)
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Figure 3: Course (heading) angle with 𝑘
1
= 0.01.

Similar to (17), linear sliding mode control law is

𝑢
0
= −𝑘
2
(𝑘
1
(�̂�
1
− 𝜓
𝑑
) + (�̂�

2
− ̇𝜓
𝑑
)) . (23)

Or similar to (19), nonlinear sliding mode control law is

𝑢
0
= −𝑘
2
(𝑘
1
tanh (𝑘

0
(�̂�
1
− 𝜓
𝑑
)) + (�̂�

2
− ̇𝜓
𝑑
)) . (24)

4.2. Ship Course Control Simulation. In this section, sim-
ulation results are based on an oceangoing training vessel
“Yulong” of Dalian Maritime University. The principal par-
ticulars are as follows: length of ship is 126m, beam is 20.8m,
mean draft is 8.80m, trim is 0, diameter of propeller is 4.6m,
and block coefficient is 0.681.

In this section, a simple ship response model is used to
simulate. In the system (20), let

𝑓 (𝑟, 𝑤) = −

𝑎
1

𝑇
1

𝑟 −

𝑎
3

𝑇
1

𝑟
3

+ 𝑤. (25)

While the ship speed of Yulong is 7.2m/s, 𝑇
1
= 216, 𝑎

1
=

1, and 𝑎
3
= 30 [11]. External disturbance 𝑤 is given as white

noise of amplitude 0.001.
First of all, two simulations were based on linear sliding

mode feedback control law as (22) and (23).

Case 1. The tracking target 𝜓
𝑑

= 1 rad; that is, 𝜓
𝑑

=

57.3
∘. While a linear sliding mode control law was used, the

parameters are chosen as 𝑘
1
= 0.01 and 𝑘

2
= 0.1, control gain

𝑏
0
= 0.0022, and the bandwidth of observer 𝜔

𝑜
= 0.4. The

results were shown in Figures 3 and 4.

Case 2. Let the parameter of linear sliding mode control
law 𝑘
1
= 0.02; the other parameters of controller, observer,

control gain, and ship state are the same as Case 1.The results
were shown in Figures 5 and 6.

Based on the simulation results of Figures 3, 4, 5, and
6, while 𝑘

1
= 0.01, the time of ship course reaching

designated course is about 400 s which approximately equals
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Figure 4: Rudder angle with 𝑘
1
= 0.01.
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Figure 5: Course angle with 𝑘
1
= 0.02.
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Figure 6: Rudder angle with 𝑘
1
= 0.02.
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Figure 7: Rudder angle, course rate, and ship course with 𝑘
1

=

0.004.

4/𝑘
1
, whereas, while 𝑘

1
= 0.02, the time of ship course

reaching designated course is about 200 s which also equals
4/𝑘
1
. Meanwhile, the rudder angle being used has increased

in order to prompt response. The results of simulations
validated the meaning of time constant 1/𝑘

1
. In practical

work, deck officers can choose the appropriate parameter of
𝑘
1
according to the angle of ship course to be changed and the

desired time to reach the designated course.
Then, the following two simulations were based on

nonlinear slidingmode feedback control law as (22) and (24).

Case 3. The tracking target𝜓
𝑑
= 60
∘. While nonlinear sliding

mode control lawwas used, the parameters are chosen as 𝑘
0
=

10, 𝑘
1
= 0.004, and 𝑘

2
= 0.1, and the other parameters of

observer, control gain, and ship state are the same as Case 1.
The results were shown in Figure 7.

We canfind themaximumship turning ratewas restricted
within 0.004 rad of the range.

Case 4. Let the parameter of nonlinear sliding mode control
law 𝑘
1
= 0.01; the other parameters of controller, observer,

control gain, and ship state are the same as Case 3.The results
were shown in Figure 8.

We can find that the maximum ship turning rate was
restricted within 0.01 rad/s of the range, and the time of
reaching the designated course was shortened.

5. ADRC Based Ship Path-Following
Controller Design and Simulation

5.1. ADRC Based Ship Path-Following Controller Design. The
first formula of system (2) can be written as

̇𝑦 = 𝑉
𝑋
sin𝜓 + 𝑉

𝑌
cos𝜓 = √𝑉

2

𝑋
+ 𝑉
2

𝑌
sin (𝜓 + 𝛽) , (26)
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Figure 8: Rudder angle, course rate, and ship course with 𝑘
1
= 0.01.

where 𝛽 = arctan(V/𝑢) is called the ship leeway angle or drift
angle, as Figure 1, which can bemeasured by GPS in real time
on a modern ship. 𝜓 is also the ship heading angle. 𝜓 + 𝛽 is
the ship course over the ground, and it is also called course
made good in navigation.

In this paper, a nonlinear function of combining 𝑦 with
𝜓 + 𝛽 by designing a coordinate transformation equation is
defined as

𝑧 = 𝑐
1
tanh (𝑐

0
𝑦) + 𝜓 + 𝛽, (27)

where 𝑐
0
> 0 and 𝜋 > 𝑐

1
> 0 are design parameters.

Theorem 1. For the system (2), if the nonlinear function 𝑧 →

0, then both 𝑦 → 0 and 𝜓 + 𝛽 → 0.

Proof. There exists a Lyapunov function 𝑉 = (1/2)𝑦
2; then

𝑉 = 𝑦 ̇𝑦 = 𝑦√𝑉
2

𝑋
+ 𝑉
2

𝑌
sin(𝑧 − 𝑐

1
tanh(𝑐

0
𝑦)); if 𝑧 = 0, then

𝑉 = 𝑦√𝑉
2

𝑋
+ 𝑉
2

𝑌
sin(−𝑐

1
tanh(𝑐

0
𝑦)); while 𝑦 > 0 and 𝜋 > 𝑐

1
>

0, −𝑐
1
< −𝑐
1
tanh(𝑐

0
𝑦) < 0. We have sin(−𝑐

1
tanh(𝑐

0
𝑦)) < 0,

so 𝑉 < 0.
In addition, while 𝑦 < 0 and 𝜋 > 𝑐

1
> 0,

sin(−𝑐
1
tanh(𝑐

0
𝑦)) > 0, so 𝑉 < 0; while 𝑦 = 0, 𝑉 = 0. Thus,

while 𝑉 = (1/2)𝑦
2

≥ 0, 𝑉 ≤ 0. While 𝑧 → 0, 𝑦 → 0;
meanwhile, 𝜓 + 𝛽 → 0.

In (27), 𝑐
0
is used to compress coordinate and 𝑐

1
is used to

adjust ship track convergence rate. Meanwhile, 𝑐
1
can restrict

themaximumcourse angle over ground𝜓+𝛽 to be usedwhen
the ship returns to the planned route. Accordingly, the physics
meaning of parameters is obvious and parameters would be
tuned easily.

Let 𝜓∗ = −𝑐
1
tanh(𝑐

0
(𝑦 − 𝑦

𝑑
)) − 𝛽; 𝜓∗ is the desired ship

heading angle that makes the ship cross-track error converge
to zero. Hence, the ship track control problem is transformed
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Figure 9: Straight-line path and input-output based on trace
tracking method.

into ship course control. Based on the theory of ship course
ADRC with sliding mode control, similar to (20)–(23), path
following can be achieved by letting ship heading angle track
the desired ship heading angle 𝜓

∗ which is regarded as
reference signal. The controller can automatically seek “drift
angle and leeway” and the input control quantity of rudder
angle can remove the cross-track error in real time resulting
from wind and current.

5.2. Ship Path-Following Control Simulation

5.2.1. Straight-Line Path Following. To demonstrate the prac-
ticality of the design, simulations were performed using the
ship Yulong based on the kinetic model as (1), and the control
law was selected as the form of ADRC with linear sliding
mode.

The initial states were chosen to be as follows: the main
engine was set to be 103.4 revolutions per minute (RPM), 𝑥 =

0, 𝑦 = 500, 𝜓 = 0, and 𝑉
𝑋

= 7.2m/s. Planned route is a
straight line to the north of 𝑦

𝑑
= 0. External disturbances are

as the following: constant wind direction of NE with speed
5m/s and constant current set of SW with velocity of 1m/s.

The parameters of ADRC below simulations in this paper
were chosen as 𝜔

𝑜
= 0.4 and 𝑏

0
= 0.0022; the parameters

of linear sliding mode control law were chosen as 𝑘
1
= 0.02

and 𝑘
2
= 0.1, where 𝑘

1
= 0.02 means that the time constant

of ship heading angle reaching maximum is 50 seconds;
the parameters of the transformation (27) were chosen as,
respectively, 𝑐

0
= 0.03 and 𝑐

1
= 𝜋/12, where 𝑐

1
= 𝜋/12

indicates that max(𝜓 + 𝛽) = 𝜋/12 will be used before ship
is stable.

In Figure 9, when the system is stable, heading angle is not
zero because the ship was affected bywind and ocean current.
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Figure 10: Curve path and input-output based on ship trace tracking
method.

5.2.2. Curve Path Following. In the earth-fixed frame, ship
initial heading angle and position (𝜓

0
, 𝑥
0
, 𝑦
0
) are (20

∘

, 0, 0),
and planned route is a curve of 𝑦

𝑑
= 300 sin(0.0005 𝜋𝑥). The

others of ship initial state and external disturbances are the
same as the above simulation. The parameters of controller
are chosen as 𝑘

1
= 0.03, 𝑘

2
= 0.1, 𝑐

1
= 𝜋/6, and 𝑐

0
= 0.03. The

simulation results are shown in Figure 10.

Remark 2. 𝑘
1
and 𝑐
1
here are larger than the ones of straight-

line path following because faster turning rate and larger
heading angle are needed while curve path following.

By analyzing the results of Figures 9 and 10, we can
summarize some conclusions as follows.

Firstly, the cross-track error resulting from constant
wind and current has been overcome. The tracking control
precision is high. Rudder and course response are smooth,
and the rudder-turning angle is not large in spite of external
disturbances, such as wind and current.

Secondly, the results indicate that the ADRC controller
has powerful robustness to the environment and the non-
linearity of ship tracking motion control with constraint
condition. And the ship tracking control is fast and smooth
with lower energy consumption.

6. Conclusion

This paper has presented a novel path-following control
approach to underactuated vessels under environmental
disturbances of ocean current andwind. A compound control

approach of ADRC with sliding mode has been applied
to the design of ship course and path-following control
utilizing the characteristic of ADRC independence of the
controlled plant’s mathematical model. The parameters of
controller have more obvious physical meaning; meanwhile,
the constraint condition problem of a ship has been solved.
The leeway angle was compensated in the controller by
means of designing a coordinate transformation equation.
The ADRC controller has guaranteed that the cross-track
error converges to the planned path, and the parameters
of controller can be easily tuned according to the ship’s
maneuverability. The high precision ship tracking controller
is robust to the internal dynamic uncertainties of a ship and
the external disturbances.
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Globally exponential stability of Complex (with coupling) Nonlinear Singular Impulsive Networked Control Systems (CNSINCS)
with packet dropouts and time-delay is investigated. Firstly, the mathematic model of CNSINCS is established.Then, by employing
the method of Lyapunov functional, exponential stability criteria are obtained and the impulsive controller design method is given.
Finally, some simulation results are provided to demonstrate the effectiveness of the proposed method.

1. Introduction

At present, singular system is widely used in the control
of spacecraft, flexible robot, complex power, large chemical
and wireless transmission system [1–5]. Many results had
been achieved for discrete singular system and time-delay
singular system. Such as in [6], the nonlinear discrete sin-
gular perturbation model was established and the system
condition was given. In [7], chattering free sliding mode
control for uncertain discrete time-delay singular system was
investigated. The asymptotically stable was established, and
the chattering problem that appears in traditional variable
structure system was eliminated. As for time-delay singular
system, the stability of uncertain time-delay singular systems
was researched and the asymptotic stability condition was
achieved in [8] by using Jensen integral inequality and
feedback control method.

On the other hand, singular system has impulsive behav-
ior in many cases [9–14]. So it is very important to discuss
the problem of impulsive control. For the stability of the
impulsive control system, nonlinear impulsive control was
put forward and the concept of asymptotic stability condition
was provided in [11]. Asymptotic stability condition for a
class of uncertain impulsive system was established through
the comparison theorem in [12]. Switch control method was
used to research the stability of singular impulsive system,

robust stabilization, and 𝐻
∞

control problem in [13]. Linear
approximation and the LMI method were used, respectively,
to study the problem of system stability and the sufficient
conditions for asymptotic stability in [14].

In network impulsive control system packet dropouts and
time-delay exist which will influence the stability of singular
system. It is necessary to analyze stability condition and the
method of controller design. That is the problem focussed
in this study. According to the Lyapunov function theory
and comparison theorem, the sufficient conditions for the
global exponential stability of the system is obtained. The
detailed design process of impulsive controller is given in
the paper. System will be stable in accordance with the decay
rate to achieve exponential stability. A numerical example is
provided to illustrate the correctness of theoretical and the
effectiveness of design method.

2. The Mathematic Model of CNSINCS

Themathematic model of CNSINCS can be described as

𝐸 ̇𝑥
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, . . . , 𝑁, 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
]
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𝑥
𝑖
(𝑡
+

𝑘
) = 𝑐
𝑖
𝑥
𝑖
(𝑡
𝑘
) + 𝑢
𝑖
(𝑡
𝑘
) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . .

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥
𝑖
(𝑡) ∈ 𝑅

𝑛 is the state vector of the 𝑖th node. 𝐴 is
a constant matrix of 𝑛 × 𝑛. 𝑐

𝑖
is known scalar. 𝐸 ∈ 𝑅

𝑛×𝑛

is a singular constant matrix, and 0 < rank𝐸 = 𝑟 ≤ 𝑛,
without loss of generality; we hypotheses 𝐸 = [

𝐼𝑟 0

0 0
]. 𝑓(⋅)

is a nonlinear function. Γ is the internal coupling matrix.
𝐺 = 𝐺

𝑖𝑗
∈ 𝑅
𝑛×𝑛 is the coupling matrix of the whole network

structure and weights. 𝜏(𝑡) is network transmission delay and
is assumed to satisfy 0 ≤ 𝜏(𝑡) ≤ 𝜏.

In the process of data transmitting, the buffer’s model can
be described as:

𝑢
𝑖
(𝑡
𝑘
)={

𝑢
𝑖
(𝑡
𝑘
), 𝑘=1, 2,. . . , if transmitted successfully,

𝑢
𝑖
(𝑡
𝑘−1
), 𝑘=1, 2,. . . , otherwise,

𝑥
𝑖
(𝑡
𝑘
)={

𝑥
𝑖
(𝑡
𝑘
), 𝑘=1, 2,. . . , if transmitted successfully,

𝑥
𝑖
(𝑡
𝑘−1
), 𝑘=1, 2,. . . , otherwise.

(2)

The impulsive controller can be designed as

𝑢
𝑖
(𝑡
𝑘
) = 𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘
) , (3)

where 𝑢
𝑖
(𝑡
𝑘
) ∈ 𝑅

𝑚. Substituting (2) and (3) into (1), the
closed-loop nonlinear singular impulsive networked system
model is obtained as follows:

𝐸 ̇𝑥
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, . . . , 𝑁, 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑥
𝑖
(𝑡
+

𝑘
) = 𝑐
𝑖
𝑥
𝑖
(𝑡
𝑘
) + (1 − 𝜎

𝑖
(𝑡
𝑘
))𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘
)

+ 𝜎
𝑖
(𝑡
𝑘
)𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘−1
) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . . ,

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(4)

where 𝜎
𝑖
(𝑡
𝑘
) = 1 denotes that there are data dropouts and,

𝜎
𝑖
(𝑡
𝑘
) = 0, there are no packet dropouts.

Lemma 1. Let 𝑃 ∈ 𝑅
𝑛×𝑛 be a symmetric positive definite

matrix and 𝑃 = 𝑄
𝑇

𝑄. For any 𝑥, 𝑦 ∈ 𝑅
𝑛×𝑛 and 𝐴 ∈ 𝑅

𝑛×𝑛,
then

(1) 𝑥𝑇(𝐴𝑇𝑃𝐸 + 𝐸𝑇𝑃𝑇𝐴)𝑥 ≤ 2𝜆max(𝐴)𝑥
𝑇

𝐸
𝑇

𝑃𝐸𝑥,
(2) 𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 ≤ 2𝜇(𝑄𝐴𝑄−1)𝑥𝑇𝑃𝑥,

(3) |𝑥𝑇𝑃𝑦| ≤ √𝑥𝑇𝑃𝑥√𝑦𝑇𝑃𝑦.

Lemma 2. According to the definition of Kronecker product,
for a given matrix 𝐴, 𝐵, and scalar 𝛼, the following equality
can be achieved:

(1) (𝛼𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝛼𝐵),
(2) (𝐴 + 𝐵) ⊗ 𝐶 = (𝐴 ⊗ 𝐶) + (𝐵 ⊗ 𝐶),
(3) (𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷).

If 𝑋(𝑡) = (𝑥
𝑇

1
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇, 𝐶 = diag{𝑐

1
, . . . , 𝑐

𝑁
}, and

𝐹(𝑋(𝑡)) = (𝑓
𝑇

(𝑥
𝑇

1
(𝑡), . . . , 𝑓

𝑇

(𝑥
𝑇

𝑁
(𝑡))
𝑇, according to Lemma 1,

the complex nonlinear singular system can be expressed as

(𝐼
𝑁
⊗ 𝐸)𝑋 (𝑡) = (𝐼

𝑁
⊗ 𝐴)𝑋 (𝑡) + 𝐹 (𝑋 (𝑡))

+ (𝐺 ⊗ Γ)𝑋 (𝑡 − 𝜏 (𝑡)) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑋 (𝑡
+

𝑘
) = 𝐶𝑋 (𝑡

𝑘
) + (1 − 𝜎 (𝑡

𝑘
))𝐾𝑋 (𝑡

𝑘
)

+ 𝜎 (𝑡
𝑘
)𝑋 (𝑡
𝑘−1
) , 𝑡 = 𝑡

+

𝑘
.

(5)

Suppose

𝐸 = [

𝐸 0

0 0
] , 𝐼

𝑁
= [

𝐼
𝑁

0

0 0
] , 𝑍 (𝑡

𝑘
) = [

𝑋 (𝑡
𝑘
)

𝑋 (𝑡
𝑘−1
)
] ,

𝐴 = [

𝐴 0

0 0
] .

(6)

Then (5) is equivalent to the following system:

(𝐼
𝑁
⊗ 𝐸) ̇𝑧 (𝑡) = (𝐼

𝑁
⊗ 𝐴) 𝑧 (𝑡) + [

𝐹 (𝑥 (𝑡))

0
]

+ [

𝐺 ⊗ Γ 0

0 0
] 𝑧 (𝑡 − 𝜏 (𝑡)) ,

(𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)

= 𝐶 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

+ [

(1 − 𝜎 (𝑡
𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
] (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
) .

(7)

Lemma 3 (see [15]). If 𝐿(𝑡, 𝑧(𝑡)) and 𝑈
𝑘
(𝑧(𝑡)) satisfy the

Lipchitz condition, there exists a uniqueness of solution to
nonlinear singular impulsive differential equation which is
written as

̇𝑧 (𝑡) = 𝐿 (𝑥, 𝑡) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

Δ𝑧 (𝑡) = 𝑈
𝑘
(𝑧 (𝑡)) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . . ,

(8)

where 𝑧(𝑡) ∈ 𝑅𝑛, 𝐿 : 𝑅
+
× 𝑅
𝑛

→ 𝑅
𝑛

, 𝑈
𝑘
: 𝑅
𝑛

→ 𝑅
𝑛.

3. The Design of CNSINCS

For the nonlinear singular networked impulsive control
system (4), we have the following theorem.
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Theorem 4. If there exist 0 < 𝜌 = sup
𝑘∈𝑁

{𝑡
𝑘
− 𝑡
𝑘−1
} < ∞ and

a nonsingular matrix 𝐾 ∈ 𝑅
𝑛×𝑛, such that

2 ln𝛽
𝜌

+(2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1)

+𝜆
2

max (𝐺 ⊗ Γ) < 1

(9)

0 < 𝛽 < 1, (10)

where

𝛽 = [𝜆
2

max (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])]

1/2

(11)

then the nonlinear singular networked impulsive control system
(4) is asymptotically stable:

‖𝑥 (𝑡)‖ ≤

1

𝛽

√

𝜆max (𝑃)

𝜆min (𝑃)
sup
−𝜏≤𝜃≤0

{




𝜙 (𝜃)





} 𝑒
−(𝜆/2)𝑡

, (12)

where 𝜆 is the positive solution of 𝜆 + 𝑝 + 𝑞𝑒𝜆𝜏 = 0, and 𝑞 >
0, 𝑝 + 𝑞 < 0:

𝑝 =

2 ln𝛽
𝜌

+(2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1)

+ 𝜆
2

max (𝐺 ⊗ Γ) .

(13)

Proof. From [16], we know that 𝜆 + 𝑝 + 𝑞𝑒𝜆𝜏 = 0 must have
a solution. Set 𝑉(𝑡) = 𝑧

𝑇

(𝑡)(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃(𝐼
𝑁
⊗ 𝐸)𝑧(𝑡), where

(𝐼
𝑁
⊗ 𝐸)
𝑇

𝑃(𝐼
𝑁
⊗ 𝐸) ≥ 0.

When 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], the derivative of 𝑉(𝑡) along the

trajectories of the CNSINCS (4) is

𝑉 (𝑡) = ((𝐼
𝑁
⊗ 𝐸) ̇𝑧 (𝑡))

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ ((𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡))

𝑇

𝑃
𝑇

(𝐼
𝑁
⊗ 𝐸) ̇𝑧 (𝑡)

= ((𝐼
𝑁
⊗ 𝐴) 𝑧 (𝑡) + [

𝐹 (𝑥 (𝑡))

0
] + [

𝐺 ⊗ Γ 0

0 0
]

×𝑧 (𝑡 − 𝜏 (𝑡)))

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ ((𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡))

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐴) 𝑧 (𝑡) [

𝐹 (𝑥 (𝑡))

0
]

+ [

𝐺 ⊗ Γ 0

0 0
] 𝑧 (𝑡 − 𝜏 (𝑡))

= 𝑧
𝑇

(𝑡) (𝐴

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) + (𝐼

𝑁
⊗ 𝐸)

𝑇

𝑃
𝑇

𝐴)

× 𝑧 (𝑡) + 𝐹
𝑇

(𝑥 (𝑡)) 𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃𝐹 (𝑥 (𝑡))

+ 𝑧
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐺
𝑇

𝑃𝐸𝑧 (𝑡)

+ 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃
𝑇

𝐺𝑧 (𝑡 − 𝜏 (𝑡)) .

(14)

According to Lemma 3 we have

𝑉 (𝑡)

≤ 2𝜆max (𝐴) 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 2𝐿𝜆(𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 ‖𝑧 (𝑡)‖

+ 2√𝑧
𝑇
(𝑡) 𝑃 (𝐼

𝑁
⊗ 𝐸) 𝑧 (𝑡)

× √𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) (𝐺 ⊗ Γ)

𝑇

(𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐺 ⊗ Γ) 𝑧 (𝑡 − 𝜏 (𝑡))

≤ 𝜆
2

max (𝐺 ⊗ Γ) 𝑧
𝑇

(𝑡 − 𝜏 (𝑡)) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡 − 𝜏 (𝑡))

+ 2𝐿

𝜆max ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 2𝜆max (𝐴) 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡)

+ 𝑧
𝑇

(𝑡) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡) .

(15)

On the other hand, when 𝑡 = 𝑡+
𝑘
,

𝑉 (𝑡
+

𝑘
) = 𝑧
𝑇

(𝑡
+

𝑘
) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)

= 𝑧
𝑇

(𝑡
+

𝑘
) (𝐼
𝑁
⊗ 𝐸)

𝑇

(𝐼
𝑁
⊗ 𝐸)

𝑇

× 𝑃 (𝐼
𝑁
⊗ 𝐸) (𝐼

𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)

= [(𝐼
𝑁
⊗ 𝐸) 𝑧

𝑇

(𝑡
+

𝑘
)]

𝑇

(𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸)

× [(𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

+

𝑘
)]

= (𝐶 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

+ [

(1 − 𝜎 (𝑡
𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
] (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
))

𝑇

,

(𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸)

× (𝐶 + [

(1 − 𝜎 (𝑡
𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
]) (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)
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= 𝑧
𝑇

(𝑡
𝑘
) (𝐼
𝑁
⊗ 𝐸)

𝑇

× (𝐶 + [

(1 − 𝜎 (𝑡
𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])

𝑇

× (𝐼
𝑁
⊗ 𝐸)

𝑇

,

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

≤ 𝜆
2

max (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])

× 𝑧
𝑇

(𝑡
𝑘
) (𝐼
𝑁
⊗ 𝐸)

𝑇

(𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃,

(𝐼
𝑁
⊗ 𝐸) (𝐼

𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

= 𝜆
2

max (𝐶 + [
(1 − 𝜎 (𝑡

𝑘
))𝐾 𝜎 (𝑡

𝑘
)𝐾

0 0
])

× 𝑧
𝑇

(𝑡
𝑘
) (𝐼
𝑁
⊗ 𝐸)

𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸) 𝑧 (𝑡

𝑘
)

= 𝛽
2

𝑉 (𝑡
𝑘
) ,

(16)

where 𝛽2 = 𝜆2max(𝐶+ [
(1−𝜎(𝑡𝑘))𝐾 𝜎(𝑡𝑘)𝐾

0 0
]), supposing that 𝜀 > 0

is random constant, a comparison system can be established
as follows:

̇V (𝑡) = (2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1) V (𝑡)

+ 𝜆
2

max (𝐺 ⊗ Γ) V (𝑡 − 𝜏 (𝑡)) + 𝜀 𝑡 ̸= 𝑡
𝑘
,

V (𝑡+
𝑘
) = 𝛽V (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
,

V (𝜃) = 𝜆max (𝑃)




𝜙 (𝜃)






2

, −𝜏 ≤ 𝜃 ≤ 0.

(17)

It is clear that𝑉(𝑡) ≤ V(𝑡)when −𝜏 ≤ 𝜃 ≤ 0, according to [16],
and we have𝑉(𝑡) ≤ V(𝑡)when 𝑡 ≥ 0; the trivial solution of the
comparison system is

V (𝑡) = 𝑊 (𝑡, 0) V (0)

+ ∫

𝑡

0

𝑊(𝑡, 𝑠) 𝜆
2

max (𝐺 ⊗ Γ) V (𝑠 − 𝜏 (𝑠) + 𝜀) 𝑑𝑠, 𝑡 ≥ 0,

(18)

where𝑊(𝑡, 𝑠) is Cauchy matrix which satisfies

𝑊(𝑡, 𝑠) = 𝛽
2𝜂(𝑡,𝑠)

× 𝑒
{(2𝜆max(𝐴)+2𝐿(𝜆max((𝐼𝑁⊗𝐸)

𝑇

𝑃)/𝜆min((𝐼𝑁⊗𝐸)
𝑇

𝑃))+1)(𝑡−𝑠)}

≤ 𝛽
2(𝑡−𝑠/𝜌)−1

𝑒
(𝑝−(2 ln𝛽/𝜌))(𝑡−𝑠)

≤ 𝛽
−2

𝑒
𝑝(𝑡−𝑠)

(19)

in which 𝜂(𝑡, 𝑠) is the number of control impulses in the
interval (𝑠, 𝑡], 0 < 𝜌 = sup

𝑘∈𝑁
{𝑡
𝑘
− 𝑡
𝑘−1
} < ∞, for 𝑡 ≥ 0;

we have

V (𝑡) ≤ 𝛽−2𝜆max ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸))





𝜑 (0)






2

+ ∫

𝑡

0

𝛽
−2

𝑒
𝑝(𝑡−𝑠)

𝜆
2

max (𝐺 ⊗ Γ) V (𝑠 − 𝜏 (𝑠) + 𝜀) 𝑑𝑠

≤ 𝛾𝑒
𝑝𝑡

+ 𝑒
𝑝(𝑡−𝑠)(𝑞V (𝑠 − 𝜏 (𝑠) + 𝜀) 𝑑𝑠,

(20)

where

𝛾 = 𝛽
−2

𝜆max ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃 (𝐼
𝑁
⊗ 𝐸)) sup

−𝜏≤𝑠≤0





𝜑 (𝑠)






2

= 𝛽
−2

𝜆max (𝑃) sup−𝜏≤𝑠≤0




𝜑 (𝑠)






2

.

(21)

In the following, we will prove that the following inequal-
ity holds:

V (𝑡) ≤ 𝛾𝑒−𝜆𝑡 −
𝜀

𝛽
2
𝑝

, 𝑡 ≥ 0 (22)

Since 𝜀 > 0, 𝑝 < 0, so 𝜀/𝛽2𝑝 < 0. If there exists 𝑡∗ > 0 which
satisfies

V (𝑡∗) ≥ 𝛾𝑒−𝜆𝑡
∗

−

𝜀

𝛽
2
𝑝

, (23)

V (𝑡) > 𝛾𝑒−𝜆𝑡 −
𝜀

𝛽
2
𝑝

, 𝑡 < 𝑡
∗

. (24)

From (16) and (24) we have

V (𝑡∗)

≤ 𝛾𝑒
−𝜆𝑡
∗

+ ∫

𝑡
∗

0

𝑒
𝑝(𝑡
∗
−𝑠)

[𝑞V (𝑠 − 𝜏 (𝑠)) + 𝜀] 𝑑𝑠

< 𝑒
𝑝𝑡
∗

{𝛾 −

𝜀

𝛽
2
(𝑝 + 𝑞)

+∫

𝑡
∗

0

𝑒
−𝑝𝑠

[𝛾𝑞𝑒
−𝜆(𝑠−𝜏(𝑠))

−

𝜀𝑞

𝛽
2
(𝑝 + 𝑞)

+

𝜀

𝛽
2
]𝑑𝑠}

< 𝑒
𝑝𝑡
∗

{𝛾 −

𝜀

𝛽
2
(𝑝 + 𝑞)

+ 𝛾𝑞𝑒
𝜆𝜏

×∫

𝑡
∗

0

𝑒
−(𝑝+𝜆)𝑠

𝑑𝑠 +

𝜀𝑝

𝛽
2
(𝑝 + 𝑞)

∫

𝑡
∗

0

𝑒
−𝑝𝑠

𝑑𝑠}

< 𝑒
𝑝𝑡
∗

{𝛾 −

𝜀

𝛽
2
(𝑝 + 𝑞)

+𝛾 [𝑒
−(𝑝+𝜆)𝑡

∗

− 1] −

𝜀

𝛽
2
(𝑝 + 𝑞)

(𝑒
−𝑝𝑡
∗

− 1)}

= 𝛾𝑒
−𝜆𝑡
∗

−

𝜀

𝛽
2
(𝑝 + 𝑞)

(25)
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which contradicts with (23), and consequently (22) holds. Let
𝜀 → 0; then

𝑉 (𝑡) ≤ V (𝑡) ≤ 𝛾𝑒−𝜆𝑡, 𝑡 ≥ 0. (26)

Moreover

𝑉 (𝑡) ≥ 𝜆min (𝑃) ‖𝑥 (𝑡)‖
2

, 𝑡 ≥ 0. (27)

Combining the inequality (26) and (27),

‖𝑥 (𝑡)‖ ≤ (

1

𝛽

)√

𝜆max (𝑃)

𝜆min (𝑃)
sup
−𝜏≤𝜃≤0

{




𝜙 (𝜃)





} 𝑒
−(𝜆/2)𝑡 (28)

which implies conclusion (22) and this completes the proof.

Remark 5. For the case 𝛽 ≥ 1, we can replace the condition
0 < 𝜌 = sup

𝑘∈𝑁
{𝑡
𝑘
−𝑡
𝑘−1
} < ∞with 0 < 𝜍 = inf

𝑘∈𝑁
{𝑡
𝑘
−𝑡
𝑘−1
} <

∞; then the conclusion of Theorem 4 still holds except that
now inequality (9) becomes

2 ln𝛽
𝜍

+(2𝜆max (𝐴) + 2𝐿
𝜆max ((𝐼𝑁 ⊗ 𝐸)

𝑇

𝑃)

𝜆min ((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)

+ 1)

+ 𝜆
2

max (𝐺 ⊗ Γ) < 1.

(29)

For 𝛽 ≥ 1, we have






𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)






≤

1

√𝛽

sup
−𝜏≤𝑡≤0

{




𝜙 (𝑡)





} 𝑒
−(𝜆/2)𝑡 (30)

in which 𝜆 = max
𝑘∈𝑁

{ln𝛽/(𝑡
𝑘
− 𝑡
𝑘−1
)}.

The proof of the above conclusion remains largely the
same as Theorem 4, so we omitted it to avoid repetition.

4. Design Procedure of Impulsive Control for
Complex Network

According to Theorem 4, the design process of impulsive
control is given as follows.

(1) Calculate the parameters 𝐿,𝑚.

(2) Choose amatrix𝑃which satisfies (𝐼
𝑁
⊗𝐸)
𝑇

𝑃(𝐼
𝑁
⊗𝐸) ≥

0.
(3) For a given parameter 𝜆

0
, we can determine the

control sequence {𝑡
𝑘
}, 𝑡 ∈ 𝑁 as follows. If 0 <

𝛽 < 1, let Θ := (2𝜆max(𝐴) + 2𝐿(𝜆max((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)/

𝜆min((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)) + 1) + 𝜆
2

max(𝐺 ⊗ Γ); then the upper
bounds of time can be taken as 0 < 𝜌 = sup

𝑘∈𝑁
{𝑡
𝑘
−

𝑡
𝑘−1
} = −(ln𝛽)/Θ; if 𝛽 ≥ 1, let Θ := (2𝜆max(𝐴) +

2𝐿(𝜆max((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)/𝜆min((𝐼𝑁 ⊗ 𝐸)
𝑇

𝑃)) + 1) +

𝜆
2

max(𝐺⊗Γ); then the lower bounds of control intervals
is 0 < 𝜍 = inf

𝑘∈𝑁
{𝑡
𝑘
− 𝑡
𝑘−1
} = (ln𝛽)/Θ.

5. Numerical Simulation

In this section, a numerical example is presented to illustrate
the effectiveness of derived results.

Example 6. Consider the following complicated nonlinear
singular system:

𝐸 ̇𝑥
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, . . . , 𝑁, 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑥
𝑖
(𝑡
+

𝑘
) = 𝑐
𝑖
𝑥
𝑖
(𝑡
𝑘
) + (1 − 𝜎

𝑖
(𝑡
𝑘
))𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘
)

+ 𝜎
𝑖
(𝑡
𝑘
)𝐾
𝑖
𝑥
𝑖
(𝑡
𝑘−1
) , 𝑡 = 𝑡

+

𝑘
, 𝑘 = 1, 2, . . . ,

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] .

(31)

The parameters are given as follows:

𝐸 =

[

[

[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

]

]

]

]

, 𝑐
1
= 𝑐
2
= 1.2,

𝐴 =

[

[

[

[

[

[

[

[

−10 10 0 0

8

3

−1 0 0

0 0

−8

3

0

0 0 2 1

]

]

]

]

]

]

]

]

, 𝑁 = 2,

𝑓 (𝑡, 𝑥
𝑖
(𝑡)) = (0(−𝑥

𝑖1
(𝑡) 𝑥
𝑖3
(𝑡))
𝑇

(𝑥
𝑖1
(𝑡) 𝑥
𝑖2
(𝑡))
𝑇

2𝑥
𝑖3
(𝑡))

𝑇

.

(32)

For simplicity, consider the systemwith 2 nodes. Assume that
the external coupling matrix is 𝐺 = [

−7 3

3 −4
] and the internal

coupling matrix is

Γ =

[

[

[

[

0.1 −0.2 −0.1 0

0 0.1 0.2 0

−0.2 0 0.1 0

0.1 0.2 0.1 −0.1

]

]

]

]

. (33)

Supposing that 𝜏(𝑡) = 0.02sint. According to Lemma 1, we
can choose 𝑃 = 𝐼

8 × 8
, 𝑇 = 𝑡

𝑘+1
− 𝑡
𝑘
= 0.005. The region

of parameters of chaotic system is 𝐿 = 80, and the gain of
impulsive controller is −1.8653 ≤ 𝐾 ≤ −0.5347. The state
trajectory diagram of system is depicted in Figure 1. For the
case of packet dropouts probability is Pr(𝜎(𝑘) = 0 | 0.8)

and initial condition is 𝑥
1
(𝑡) = [3 2 − 1 2]

𝑇, 𝑥
2
(𝑡) =

[6 5 −4 8]
𝑇, and 𝑡 ∈ (−𝜏, 0).

Figure 1 shows that the asymptotic stability of the closed-
loopuncertain systemcan be guaranteed using the networked
impulsive controller designed in this paper.
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Figure 1: The state response of CNSINCS via impulsive control
(color online).

6. Conclusion

In this paper, the global exponential stability CNSINCS
via impulsive control is investigated. According to the Lya-
punov stability theory, the mathematic model of CNSINCS
is established. A general model of network consisting of
time-delay and packet dropouts has been formulated and
the globally exponential stable sufficient conditions have
been established. Impulsive controller, which may ensure
the system achieves exponential stability with a given decay
rate is designed. Therefore our control scheme is efficient
and practical in dealing with problems of data transmission
with time-delay and packet dropouts. As an application, a
numerical simulation is given to demonstrate the usefulness
and practicability of proposed theoretical results.
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Back propagation (BP) neural network is used to approximate the dynamic character of nonlinear discrete-time system.Considering
the unmodeling dynamics of the system, the weights of neural network are updated by using a dead-zone algorithm and a robust
adaptive controller based on the BP neural network is proposed. For the situation that jumping change parameters exist, multiple
neural networks with multiple weights are built to cover the uncertainty of parameters, and multiple controllers based on these
models are set up. At every sample time, a performance index function based on the identification error will be used to choose
the optimal model and the corresponding controller. Different kinds of combinations of fixed model and adaptive model will be
used for robust multiple models adaptive control (MMAC). The proof of stability and convergence of MMAC are given, and the
significant efficacy of the proposed methods is tested by simulation.

1. Introduction

Due to the strong ability of approximation, neural network
has been widely used in the identification of nonlinear
system. It is also a very useful tool for prediction, pattern
recognition, and control [1].Thenetwork structure comprises
the interconnected group of nodes and the weight. There are
many kinds of neural networks such as back propagation
(BP), radial basis function (RBF), cerebellar model artic-
ulation controller (CMAC). As the most effective learning
algorithm for feedforward networks [2], BP neural network
has been the research focus for many years [3–6].

Adaptive control of nonlinear systems using neural net-
work has been an active research area for over two decades
[7–9].The controller will be set up by adjusting the weights of
the neural network [10, 11]. But adaptive control using neural
network still has the same shortcomings as conventional
adaptive control; it is extensively studied in time-invariant
system with unknown parameters or time-variant system
with slow drifting parameters [12, 13]. While the system has
abrupt changes in parameters, the algorithm cannot find the
exact identification model and will respond slowly to system
parameter variations. To solve this kind of problem, MMAC
has been a very useful tool in recent years.

Since MMAC was presented in 1970s, it has attracted
a lot of attention of experts [14–17]. MMAC is an effective
approach to solve problems such as time variations and
uncertainties. It has the ability to improve the transient
responses and the control performance. According to the
dynamic character of controlled plant, multiple models are
set up to cover the uncertainty of parameter. Much research
has been done on continuous-time and discrete-time linear
systems [18, 19]. For nonlinear system, only a few results
have been given. In recent years, the MMAC based on
neural network has been considered by some researchers
[20, 21]. But in these papers, the nonlinear system has been
modeled by the combination of linear model (the main
part) and neural network model (the unmodeled dynamics).
The multiple models are still multiple linear models with
different parameters, and neural network is used only to
compensate for the modeling error of linear model. In this
case, the nonlinear system should not be very complex, and
too big modeling error between the system and linear model
is forbidden. The parameter and structure uncertainty of a
relatively complex nonlinear system cannot be modeled by
this method. This kind of MMAC with neural network still
follows the main ideas of linear MMAC.
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In this paper, a kind of robust MMAC is proposed for
nonlinear system.Multiple BP neural networks with different
weights will be used to cover the uncertainty of the param-
eters of the system. A performance index function based
on the identification errors will be used to choose the best
model and the corresponding controller. Considering the
unmodeling error of neural network, a dead-zone recursive
algorithm will be used, and the proof of robust property and
stability of the MMAC are given. Different combinations of
adaptive models and fixed models will be used for MMAC,
and the effectiveness of the proposed method has been tested
in simulations.

2. Robust Adaptive Control Using
Neural Network

The single-input/single-output nonlinear discrete-time sys-
tem can be represented as follows:

𝑦 (𝑘 + 1) = 𝑓
0
(⋅) + 𝑔

0
(⋅) 𝑢 (𝑘 − 𝑑 + 1) , (1)

where 𝑓
0
and 𝑔

0
are infinitely differentiable functions of

𝑦 (𝑘 − 𝑛 + 1) , . . . , 𝑦 (𝑘) , 𝑢 (𝑘 − 𝑑 − 𝑚 + 1) , . . . , 𝑢 (𝑘 − 𝑑) ,

(2)

where 𝑦 is the output, 𝑢 is the input, 𝑚 ≤ 𝑛, 𝑑 is the relative
degree of the system, and 𝑔

0
is bounded away from zero. The

arguments of 𝑓
0
and 𝑔

0
are real variables.

Due to the existence of noncausal problem, normally state
transformation should be made first [11], and a causal system
as follows can be given:

𝑦 (𝑘 + 𝑑) = 𝑓
𝑑−1
[x (𝑘)] + 𝑔

𝑑−1
[x (𝑘)] 𝑢 (𝑘) . (3)

Assumptions 1 and 2 in [11] about 𝑔
0
(x), . . . , 𝑔

𝑑−1
(x) and

minimum phase assumption should still be satisfied.
As Assumption 3 in [11], there exist the weights w, k of

neural network; the functions ̂𝑓
𝑑−1
[x(𝑘),w] and 𝑔

𝑑−1
[x(𝑘), k]

can approximate the functions 𝑓
𝑑−1

and 𝑔
𝑑−1

with any
accuracy 𝜖.

Plant (3) can be modeled by the neural network.
Consider

𝑦 (𝑘 + 𝑑) =
̂
𝑓
𝑑−1
[x (𝑘) ,w] + 𝑔

𝑑−1
[x (𝑘) , k] 𝑢 (𝑘) . (4)

The functions ̂𝑓
𝑑−1
[⋅, ⋅] and 𝑔

𝑑−1
[⋅, ⋅] depend on the structure

of the neural network and the number of neurons. For
example, if ̂

𝑓
𝑑−1
[⋅, ⋅] and 𝑔

𝑑−1
[⋅, ⋅] are three-layer neural

networks with 𝑝 and 𝑞 hidden neurons, respectively, then
they can be expressed as

̂
𝑓
𝑑−1
[x (𝑘) ,w] =

𝑝

∑

𝑖=1

𝑤
𝑖
𝐻(

𝑚+𝑛+𝑑−1

∑

𝑗=1

𝑤
𝑖𝑗
𝑥
𝑗
(𝑘) + 𝑤

𝑖
) ,

𝑔
𝑑−1
[x (𝑘) , k] =

𝑞

∑

𝑖=1

V
𝑖
𝐻(

𝑚+𝑛+𝑑−1

∑

𝑗=1

V
𝑖𝑗
𝑥
𝑗
(𝑘) + V̂

𝑖
) ,

(5)

where𝐻 is a hyperbolic tangent function.

Let w(𝑘) and k(𝑘) denote the estimates of w and k at time
𝑘. Rewrite (3) and (4) as follows:

𝑦 (𝑘 + 1) = 𝑓
𝑑−1
[x (𝑘 − 𝑑 + 1)]

+ 𝑔
𝑑−1
[x (𝑘 − 𝑑 + 1)] 𝑢 (𝑘 − 𝑑 + 1) ,

𝑦 (𝑘 + 1) =
̂
𝑓
𝑑−1
[x (𝑘 − 𝑑 + 1) ,w]

+ 𝑔
𝑑−1
[x (𝑘 − 𝑑 + 1) , k] 𝑢 (𝑘 − 𝑑 + 1) .

(6)

We have the estimated plant output as:

𝑦
∗

(𝑘 + 1) =
̂
𝑓
𝑑−1
[x (𝑘 − 𝑑 + 1) ,w (𝑘)]

+ 𝑔
𝑑−1
[x (𝑘 − 𝑑 + 1) , k (𝑘)] 𝑢 (𝑘 − 𝑑 + 1) .

(7)

Define 𝑒∗(𝑘 + 1) as

𝑒
∗

(𝑘 + 1) = 𝑦
∗

(𝑘 + 1) − 𝑦 (𝑘 + 1) . (8)

If the neural network could approximate the nonlinear
system with zero error; that is, 𝜖 = 0, the following weight
Θ = [

w
k ] updating rule can be used:

Θ (𝑘 + 1) = Θ (𝑘) −
1

𝑟 (𝑘)

𝑒
∗

(𝑘 + 1) J (𝑘 − 𝑑 + 1) , (9)

where

J (𝑘 − 𝑑 + 1)

= [

𝜕𝑦(𝑘 + 1)
∗

𝜕Θ








Θ(𝑘)

]



=

[

[

[

[

[

[

(

𝜕
̂
𝑓
𝑑−1
[x(𝑘 − 𝑑 + 1),w]

𝜕w










w(𝑘)

)



(

𝜕𝑔
𝑑−1
[x(𝑘 − 𝑑 + 1), k]

𝜕k








k(𝑘)

)



𝑢 (𝑘 − 𝑑 + 1)

]

]

]

]

]

]

(10)

and 𝑟(𝑘) is the reference command. One has

𝑟 (𝑘) = 1 + J (𝑘 − 𝑑 + 1) J (𝑘 − 𝑑 + 1) . (11)

Due to the existence of unmodeling dynamics 𝜖 > 0, the
design of robust adaptive controller should be considered. A
dead-zone algorithm will be used instead of (9) for updating
the weights. Therefor,

𝐷 (𝑒) =

{
{

{
{

{

0, if |𝑒| ≤ 𝑑
0
,

e − 𝑑
0
, if 𝑒 > 𝑑

0
,

𝑒 + 𝑑
0
, if 𝑒 < −𝑑

0
,

(12)

where 𝑑
0
will be the function of 𝜖 which can be seen in proof

procedure of the Theorem 1.
The output of the dead-zone function is used in the

following updating rule:

Θ (𝑘 + 1) = Θ (𝑘) −
1

𝑟 (𝑘)

𝐷 (𝑒
∗

(𝑘 + 1)) J (𝑘 − 𝑑 + 1) . (13)
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Define the parameter error as

Θ̃ (𝑘) = Θ (𝑘) −Θ (14)

and give the control 𝑢(𝑘) as follows:

𝑢 (𝑘) =

−
̂
𝑓
𝑑−1
[x (𝑘) ,w (𝑘)] + 𝑟 (𝑘)
𝑔
𝑑−1
[x (𝑘) , k (𝑘)]

. (15)

We haveTheorem 1 for the feedback control system.

Theorem 1 (see [11]). Suppose |𝑟(𝑘)| ≤ 𝑑
1
for all 𝑘 ≥ 0. Given

any constant 𝜌 > 0 and any small constant 𝑑
0
> 0, there

exist positive constants 𝜌
1
= 𝜌
1
(𝜌, 𝑑
1
), 𝜌
2
= 𝜌
2
(𝜌, 𝑑
1
), 𝜖∗ =

𝜖
∗

(𝜌, 𝑑
0
, 𝑑
1
), and 𝛿∗ = 𝛿∗(𝜌, 𝑑

0
, 𝑑
1
) such that if Assumptions

1 and 3 are satisfied on 𝑆 ⊃ 𝐵
𝜌1
, with 𝜖 < 𝜖∗, Assumption 2 is

satisfied on 𝐵
𝜌2
, |x(0)| ≤ 𝜌, and |Θ̃(0)| ≤ 𝛿 < 𝛿∗, then

(1) the x(𝑘) and 𝑢(𝑘) are bounded for all 𝑘,
(2) |Θ̃(𝑘)| will be monotonically nonincreasing, andΘ(𝑘 +
1) −Θ(𝑘) will converge to zero,

(3) ∑∞
𝑘=1
([𝐷(𝑒
∗

(𝑘+1))]
2

/(1+J(𝑘−𝑑+1)J(𝑘−𝑑+1))) ≤ 0,
(4) the tracking error between the plant output and the

reference command will converge to a ball of radius 𝑑
0

centered at the origin.

3. Robust Multiple Model Adaptive Control

The conventional adaptive control systems are usually based
on a fixed or slowly adaptive model. It cannot react quickly to
abrupt changes and will result in large transient errors before
convergence. For this kind of problem, MMAC algorithm is
presented as a useful tool. The rationale for using MMAC is
to ensure that there is at least one model with parameters
sufficiently close to those of the unknown plant. By the
switching rule, the control strategy is to determine the best
model for the current environment at every instant and
activate the corresponding controller. The structure of the
multiple model adaptive control is shown in Figure 1.

3.1. Architecture of the Control System. Multiple adaptive
models can be regarded as an extension of conventional
indirect adaptive control.The objective is to make the control
error 𝑒𝑐 = 𝑟−𝑦 tend to zero, where 𝑟 is the desired output.The
control system contains𝑁 identification models, denoted by
𝐼
(𝑙), 𝑙 ∈ {1, 2, . . . , 𝑁} according to (7), operating in parallel.
Consider the following:

𝐼
(𝑙)

: 𝑦
∗(𝑙)

(𝑘 + 1) =
̂
𝑓
(𝑙)

𝑑−1
[x (𝑘 − 𝑑 + 1) ,w(𝑙) (𝑘)]

+ 𝑔
(𝑙)

𝑑−1
[x (𝑘 − 𝑑 + 1) , k(𝑙) (𝑘)]

× 𝑢
(𝑙)

(𝑘 − 𝑑 + 1) ,

(16)

where
̂
𝑓
(𝑙)

𝑑−1
[x (𝑘) ,w(𝑙) (𝑘)]

=

𝑝

∑

𝑖=1

𝑤
(𝑙)

𝑖
(𝑘)𝐻(
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Figure 1: Structure of multiple model adaptive control.

𝑔
(𝑙)

𝑑−1
[x (𝑘) , k(𝑙) (𝑘)]

=

𝑞

∑

𝑖=1

V(𝑙)
𝑖
(𝑘)𝐻(

𝑚+𝑛+𝑑−1

∑

𝑗=1

V(𝑙)
𝑖𝑗
(𝑘) 𝑥
𝑗
− V̂(𝑙)
𝑖
(𝑘)) .

(17)

The identification error between the output 𝑦∗(𝑙) of 𝐼(𝑙) and 𝑦
of the plant is denoted as 𝑒∗(𝑙) = 𝑦∗(𝑙) − 𝑦. Corresponding to
each 𝐼(𝑙) is a parameterized controller 𝐶(𝑙) which achieves the
control objective for 𝐼(𝑙). The output of 𝐶(𝑙) is denoted by 𝑢(𝑙).

One has

𝑢
(𝑙)

(𝑘) =

−
̂
𝑓
(𝑙)

𝑑−1
[x (𝑘) ,w(𝑙) (𝑘)] + 𝑟 (𝑘)

𝑔
(𝑙)

𝑑−1
[x (𝑘) , k(𝑙) (𝑘)]

, (18)

where 𝑙 ∈ {1, 2, . . . , 𝑁}, and 𝑟(𝑘) is the reference command.
At every instant, one of the models 𝐼(𝑙) is selected by a

switching rule, and the corresponding control input is used
to control the plant.

Given prior knowledge of the different possible environ-
ments, the control problem is to determine suitable rules
for switching and tuning these parameters to yield the best
performance for the given objective while assuring stability.

3.2. Choice of Multiple Models. The following three different
combinations have been considered [22].

3.2.1. 𝑁 Adaptive Models. 𝑁 adaptive models with different
initial parameter values can be viewed as an extension of
conventional indirect adaptive control. When the parameters
of the plant change abruptly, the change can be detected by
identification error. Then, the parameters of models are reset
to initial values, and the model with the smallest error is
selected. Hence, we can construct multiple adaptive models
with different initial parameters which adjust dynamically in
any instant. The method was considered in detail in [8, 19].
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3.2.2. 𝑁−1 Fixed Models and One Adaptive Model. The
previous method reveals that massive calculation may be
produced because each adaptive model needs to adjust
dynamically. Hence, if the models are fixed, the same strat-
egy can be used in stationary and time-varying environ-
ments. However, fixed models can represent exactly only
a finite number of environments. Thus, 𝑁 − 1 parallel
fixed model and one adaptive model are combined, and
the efficiency can be improved by the multiple fixed mod-
els and the accuracy can be increased by the adaptive
model.

3.2.3. 𝑁−2 Fixed Models, One Free Running Adaptive Model,
and One Reinitialized Adaptive Model. It is commonly
accepted that the convergence time of an adaptive model
will be large for large initial parametric errors. Hence, in
the configuration described above, a large number of fixed
models may be needed to keep the transient response under
control until the adaptive model has converged. If the fixed
model, which is the closest to the given plant, is assumed to
be known, faster convergence can be obtained by initiating a
new adaptivemodel from the location of the former.The same
objective can be achieved on-line by starting adaptation from
the location of each different fixed model that is successively
chosen by the switching scheme.

The reinitialized adaptive model 𝐼𝑟 included is intro-
duced, and its parameters are determined as follows: if a fixed
model 𝐼(𝑙), 𝑙 ∈ {1, 2, . . . , 𝑁 − 2}, is activated by the switching
rule at any instant 𝑘, then the parameters of 𝐼𝑟 are reinitialized
to the value of 𝐼(𝑙). Thereafter, this adaptive model will be left
to adapt until the next reinitialization.

3.3. Choice of the Switching Rule. A natural way to decide
when and to which controller one should switch is to
determine performance cost indexes for each controller 𝐶(𝑙),
𝑙 ∈ {1, 2, . . . , 𝑁}, and switch to the one with the minimum
index at every instant. However, since only one control input
can be used at any instant, the performance of any candidate
controller can be evaluated only after it has been used. On
the other hand, the performance of all the identification
models can be evaluated in parallel at every instant. Hence,
the indexes must be based on the performance of the models
rather than the controllers, that is, using identification errors
𝑒
(𝑙) rather than the control error 𝑒𝑐. From an adaptive control
point of view, this rationale extends the principle of certainty
equivalence from tuning to switching.

Considering the unmodeling error of neural network
and robustness of the adaptive controller, the specific perfor-
mance index proposed has the form

𝐽
𝑚
(𝑘) =

∞

∑

𝑘=1

[𝐷 (𝑒
∗

(𝑘 + 1))]
2

1 + J (𝑘 − 𝑑 + 1) J (𝑘 − 𝑑 + 1)
, (19)

where 𝑒∗(𝑘 + 1) = 𝑦∗(𝑘 + 1) − 𝑦(𝑘 + 1).
The switching scheme consists of monitoring the perfor-

mance indexes 𝐽
𝑚
(𝑘) at every instant. After every switching,

the controller corresponding to themodel with theminimum
index is chosen (switched) to control the plant.

Theorem 2. Suppose |𝑟(𝑘)| < 𝑑
1
for all 𝑘 ≥ 0. Given any

constant 𝜌 > 0, for all the model (adaptive model or fixed
model), if |𝑥(0)| ≤ 𝜌, |Θ̃(𝑙)(0)| ≤ 𝛿 < 𝛿

∗, 𝑙 = 1, 2, . . . , 𝑁,
and the conditions in Theorem 1 are satisfied, then when index
switching (19) is used,

(1) all the signals in the system are bounded,
(2) the tracking error between 𝑟(𝑘) and 𝑦(𝑘 + 𝑑)

lim
𝑘→∞





𝑟 (𝑘) − 𝑦 (𝑘 + 𝑑)





< 𝑑
0
. (20)

3.4. Proof of the Multiple Models Stability

3.4.1. 𝑁 Adaptive Model. At time 𝑘, 𝑙th adaptive model will
be selected, 𝑙 ∈ {1, 2, . . . , 𝑁}.

The control input

𝑟 (𝑘) =
̂
𝑓
𝑑−1
[x (𝑘) ,w(𝑙) (𝑘)] + 𝑔

𝑑−1
[x (𝑘) , k(𝑙) (𝑘)] 𝑢 (𝑘) .

(21)

FromTheorem 1, if |x(0)| ≤ 𝜌, |Θ̃(𝑙)(0)| < 𝛿 < 𝛿∗, with control
input (21), we can have that x(𝑘) and 𝑢(𝑘) are bounded, for all
𝑘, and

lim
𝑘→∞






𝑒
∗(𝑙)

(𝑘)






= lim
𝑘→∞






𝑦
∗(𝑙)

(𝑘) − 𝑦 (𝑘)






< 𝑑
0
,

lim
𝑘→∞








Θ̃
(𝑙)

(𝑘)








= lim
𝑘→∞






Θ
(𝑙)

(𝑘 + 1) −Θ
(𝑙)

(𝑘)






→ 0.

(22)

Then, the control error at time 𝑘 is given by






𝑦
∗(𝑙)

(𝑘 + 𝑑) − 𝑟 (𝑘)






≤







̂
𝑓
𝑑−1
[x (𝑘) ,w(𝑙) (𝑘 + 𝑑 − 1)]

−
̂
𝑓
𝑑−1
[x (𝑘) ,w(𝑙) (𝑘)]



+






{𝑔
𝑑−1
[x (𝑘) , k(𝑙) (𝑘 + 𝑑 − 1)]

−𝑔
𝑑−1
[x (𝑘) , k(𝑙) (𝑘)]} 𝑢 (𝑘)



≤ 𝑘






Θ
(𝑙)

(𝑘 − 𝑑 + 1) −Θ
(𝑙)

(𝑘)







→ 0 as 𝑘 → ∞,

(23)





𝑟 (𝑘) − 𝑦 (𝑘 + 𝑑)





=






𝑟 (𝑘) − 𝑦

∗(𝑙)

(𝑘 + 𝑑)

+ 𝑦
∗(𝑙)

(𝑘 + 𝑑) − 𝑦 (𝑘 + 𝑑)







≤






𝑟 (𝑘) − 𝑦

∗(𝑙)

(𝑘 + 𝑑)







+






𝑦
∗(𝑙)

(𝑘 + 𝑑) − 𝑦 (𝑘 + 𝑑)







≤






𝑦
∗(𝑙)

(𝑘 + 𝑑) − 𝑦 (𝑘 + 𝑑)







< 𝑑
0

as 𝑘 → ∞.

(24)

Let one of𝑁 controller be chosen at random, for any instant
of time 𝑘 and any model chosen; then (24) holds.
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So we have all the signals in the system bounded, and

(1) lim
𝑘→∞

|𝑒
∗(𝑙)

(𝑘)| < 𝑑
0
,

(2) lim
𝑘→∞

|𝑟(𝑘) − 𝑦(𝑘 + 𝑑)| < 𝑑
0
.

3.4.2. 𝑁−1 Fixed Model and One Adaptive Model. Consider
the following index function:

𝐽
(𝑙)

𝑚
(𝑘) =

∞

∑

𝑘=1

[𝐷
(𝑙)

(𝑒
∗

(𝑘 + 1))]

2

1 + (J(𝑙) (𝑘 − 𝑑 + 1))J(𝑙) (𝑘 − 𝑑 + 1)
. (25)

At every instant 𝑘, model 𝐼(𝑙),

𝑙 = arg min
1≤𝑙≤𝑁

𝐽
(𝑙)

𝑚
(𝑘) , (26)

will be selected.

Proof. FromTheorem 1, we have that, for adaptive model,

lim
𝑘→∞

𝐽
(𝑎)

𝑚
(𝑘)

= lim
𝑘→∞

∞

∑

𝑘=1

[𝐷
(𝑎)

(𝑒
∗

(𝑘 + 1))]

2

1 + (J(𝑎) (𝑘 − 𝑑 + 1))J(𝑎) (𝑘 − 𝑑 + 1)

< ∞.

(27)

For the fixed models 𝑙, lim
𝑘→∞

𝐽
(𝑙)

𝑚
(𝑘) is either bounded or

∞, if the performance index 𝐽(𝑙)
𝑚
(𝑘) tends to∞; there exist a

time 𝑡, 𝐽(𝑎)
𝑚
(𝑘) < 𝐽

(𝑙)

𝑚
(𝑘), 𝑘 ≥ 𝑡, which implies that the adaptive

model will be selected finally.
If lim
𝑘→∞

𝐽
(𝑙)

m (𝑘) is bounded, then

lim
𝑘→∞

∞

∑

𝑘=1

[𝐷
(𝑙)

(𝑒
∗

(𝑘 + 1))]

2

1 + (J(𝑙) (𝑘 − 𝑑 + 1))J(𝑙) (𝑘 − 𝑑 + 1)
< ∞, (28)

lim
𝑘→∞

[𝐷
(𝑙)

(𝑒
∗

(𝑘 + 1))]

2

1 + (J(𝑙) (𝑘 − 𝑑 + 1))J(𝑙) (𝑘 − 𝑑 + 1)
→ 0. (29)

If the fixed model is selected, the relationship of 𝜌, 𝜖, 𝛿 in
Theorem 1 is satisfied; the proof procedure will be similar
to that of multiple adaptive controller. We also have the
following:

(1) all the signals in the system are bounded,

(2) lim
𝑘→∞

|𝑒
∗(𝑙)

(𝑘)| < 𝑑
0
,

(3) lim
𝑘→∞

|𝑟(𝑘) − 𝑦(𝑘 + 𝑑)| < 𝑑
0
.

3.4.3. 𝑁−2 Fixed Model, One Free Running Adaptive Model,
and One Reinitialized Adaptive Model. The introduction of
the reinitialized adaptive model will not affect the stability of
the whole system, and the proof of the stability will be similar
to the case of𝑁 − 1 fixed model and one adaptive model.

4. Simulation
4.1. The Problem. PH neutralization is a very important
procedure in the chemical industry. Usually, we use the log-
arithmic behavior to present pH characteristic; the existing
nonlinearity always makes the identification and control of
pH neutralization more difficult. A strong acid flows into
a tank and is thoroughly mixed with a strong base whose
inward rate of flow is controlled in such a way to produce
a neutral outward flow from the tank. Because the acid and
the base are strong, they are completely dissociated, and also
the dissociation of the water can be disregarded [23]. The
equation describing this model is

𝑉

𝑑𝑦

𝑑𝑘

= 𝐹 (𝑘) (𝑎 − 𝑦 (𝑘)) − 𝑢 (𝑘) (𝑏 + 𝑦 (𝑘)) , (30)

where 𝑦(𝑘) = [H+] − [pH−] is the distance from neutrality,
𝑉 = volume of the tank,
𝐹(𝑘) = rate of flow of the acid,
𝑎 = concentration of the acid,
𝑢(𝑘) = rate of flow of the base,
𝑏 = concentration of the base.

Note that pH value can be determined from the 𝑦(𝑘), pH(𝑘)
by the following nonlinear transformation:

pH (𝑘) = −log
10
(

𝑦(𝑘) + √(𝑦 (𝑘))
2

+ 4𝐾
𝑤

2

) , (31)

where𝐾
𝑤
= water equilibrium constant ≃ 1014.

We suppose that 𝑏 and 𝑎 are fixed and known, that 𝐹(𝑘)
can be measured online, and that 𝑢(𝑘) can be given assigned
values within certain limits.

An approximate discrete-time model can be developed,
incorporating measurement and input actuator errors, as
follows:

𝑦
𝑘+1
≃ 𝑦
𝑘
+

𝑇

𝑉

[𝐹 (𝑘) (𝑎 − 𝑦
𝑘
) − 𝑢
𝑘
(𝑏 + 𝑦

𝑘
)] . (32)

The following values were adopted for the various quantities
of interest:
0.1 ≤ 𝐹 (𝑘) ≤ 0.125 l/min, 0 ≤ 𝑢 (𝑘) ≤ 0.2 l/min,

𝑎 = 10
−3mol/l, 𝑉 = 2 l,

𝑏 = 10
−3mol/l, 𝑇 = 2min.

(33)

Then our goal is to control the plant as follows:

𝑦 (𝑘 + 1) = 𝑦 (𝑘) [1 − 0.5𝐹 (𝑘)] + 0.5 × 10
−3

𝐹 (𝑘)

− 0.5 [10
−3

+ 𝑦 (𝑘)] 𝑢 (𝑘) ,

(34)

where 𝐹(𝑥) is the variable parameter. And the single-input/
single-output nonlinear discrete-time system represented as
(1) can be modeled by

𝑦
∗

(𝑘 + 1) =
̂
𝑓 [𝑦 (𝑘) ,w (𝑘)] + 𝑔 [𝑦 (𝑘) , k (𝑘)] 𝑢 (𝑘) , (35)

where ̂𝑓 and 𝑔 are the output of neural network.
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Figure 2: One adaptive mode with fixed parameter.

The neural networks ̂𝑓 and 𝑔 are 3 layered with 4 neurons
in each hidden layer. Based on the error between the plant
output 𝑦(𝑘 + 1) and the model output 𝑦∗(𝑘 + 1), the network
parametersw(𝑘) and k(𝑘) are updated tow(𝑘+1) and k(𝑘+1)
using the standard back propagation algorithm.

4.2. Experiments
Adaptive Model Only. In the process of parameter identifica-
tion, let 𝐹(𝑘) = 0.1, 𝑑

0
= 0.001, 𝑦(1) = 0, 𝑦(2) = 0, the

reference command 𝑟(𝑘) = 0 (according to (31), pH(𝑘) = 7),
and 𝑘 = 1, 2, . . . , 300. The initial weights w and k are given
a random number in the range [−1, 1]. The identification
results are shown in Figure 2.

After 300 sample times, the weights will converge to the
following values:

w = [0.865, 0.799, −0.823, 1.478, 0.232, 0.484,

− 0.251, 0.794, 1.052, −0.742, 0.591, −0.019]
𝑇

,

k = [−0.483, −0.665, −0.288, −0.767, −0.519, −0.187,

0.506, −0.236, −0.268, 0.965, 1.201, 0.891]
𝑇

.

(36)

Now, we consider a worse case of the plant where abruptly
changing parameters appear:

𝐹 (𝑘) =

{
{

{
{

{

0.1, 1 ≤ 𝑘 < 100,

0.113, 100 ≤ 𝑘 < 200,

0.125, 200 ≤ 𝑘 < 300.

(37)

Given the initial weights as the convergent weights of w and
k in (36).

As the parameters change at 𝑘 = 100 and 𝑘 = 200, the
overshoot of the system is big and the settling time is long.The
nonlinear system cannot track the reference trajectory in time
(Figure 3). When MMAC is used, the following simulation
results can be obtained.

4.2.1. Three Adaptive Models. Three adaptive models 𝐼(𝑎1),
𝐼
(𝑎2), and 𝐼(𝑎3) are established. According to the three different
values of 𝐹(𝑘) obtained (𝑘 = 1, 100, 300), each group of
weights can be got using the samemethod as that in (36). One
has

w(𝑎1) = w, k(𝑎1) = w

w(𝑎2) = [−0.423, 0.482, −0.054, 1.023, 0.487, 0.248,

0.072, 0.825, 0.230, −0.214, −0.678, 0.032]
𝑇

,

k(𝑎2) = [−1.064, −0.103, 0.563, 0.578, −0.439, −0.487,

0.258, −0.557, −0.820, 0.385, 0.842, 0.831]
𝑇

,

w(𝑎3) = [−0.584, 0.341, 0.376, 0.733, 0.394, 0.476,

1.067, 1.089, −0.144, −0.577, 0.051, −0.058]
𝑇

,

k(𝑎3) = [0.811, 0.076, −0.532, 0.399, 0.412, −0.268,

0.897, −0.384, 0.933, −0.131, −0.313, −0.758]
𝑇

.

(38)

Themultiplemodels based on neural networks are chosen
as in (16). Figures 4(a) and 4(b) present the responses of
the plant. Switching sequence of controllers is shown in
Figure 4(c). Obviously, this method can track the reference
trajectory fast and improve the transient response. According
to the index function, the system can choose an approximate
model to identify the unknown plant. Once the parameters
change, the weights and the index functions of neural
networkmodels will be initialized and the system will choose
the optimal model again to conduct identification. In this
way, the overshoot of the system can be decreased and the
reference trajectory can be tracked fast at the same time.

4.2.2. Three Fixed Models and One Adaptive Model. In this
case, three fixed models 𝐼(𝑓1), 𝐼(𝑓2), and 𝐼(𝑓3) are used to
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Figure 3: One adaptive mode with variable parameter.
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Figure 5: Three fixed models and one adaptive model.

improve the transient response, and one adaptive model 𝐼(𝑎4)
is used to guarantee the stability. The initial weights of the
three fixed models are the same as those of the three adaptive
models, and the weights of one adaptive model 𝐼(𝑎4) are equal
to those of 𝐼(𝑓1).

In the process of parameter identification, this method
could improve the transient response comparedwith the con-
ventional adaptive control (Figures 5(a) and 5(b)). Switching
sequence of controllers is shown in Figure 5(c). Once the
parameter changes abruptly at 100 or 200, the controller will
switch to the nearest fixed model 𝐼(𝑓2), 𝐼(𝑓3) to reduce the
error. When the adaptive model gradually converges to the
true value, the system will switch to the adaptive model 𝐼(𝑎4).
Multiple fixed models play a transitional role in the process
of identification.This method can reducemassive calculation
compared with the case of three adaptive models, but it
produces a larger overshoot compared with Figures 4(a) and
4(b).

4.2.3. Three Fixed Models, One Free Running Adaptive Model,
and One Reinitialized Adaptive Model. In this case, we

establish three fixed models 𝐼(𝑓1), 𝐼(𝑓2), and 𝐼(𝑓3) with differ-
ent initial weights; 𝐼(𝑎4) is the free adaptive model and 𝐼(𝑟5)
is the reinitialized adaptive model. The reinitialized adaptive
model can achieve the initial weights by choosing a set of
fixed models based on the past performance of the plant. If
at any instant one of them is determined to be the best, the
reinitialized adaptive model can be adapted from this model.

From the simulation, we can see that this method
can improve the control quality dramatically (Figures 6(a)
and 4(b)). Switching sequence of controllers is shown in
Figure 6(c). Compared with the other algorithm proposed
before, this method show perfect performance in reducing
the overshoot and tracking the reference trajectory, and
computation time is reduced greatly.

5. Conclusion

In this paper, multiple models are used to establish robust
multiple models adaptive controller for a class of nonlinear
discrete-time systems by using neural networks. Three kinds
of combinations of adaptive model and fixed model are used
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Figure 6: Three fixed models, one free running adaptive model and one reinitialized adaptive model.

to make the multiple model set, and a switching law is
suitably defined to make the decision of the best model. The
principal contribution of this paper is the proof of stability
of robust MMAC by using neural networks. Multiple neural
network models with different weights represent different
dynamical characters of the plant when it operates in different
environments, which can be described by a mount of input
and output data. So the design of the model set can also be
regarded as a kind of data driven problem [24, 25]. How to
divide the region of data into suitable numbers of subregions
which can be represented by multiple neural network models
will decide the accuracy ofMMAC. Amoving or dynamically
optimal model set will be an important problem that needs to
be solved in the future.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Fundamental Research
Funds for the Central Universities under Grant FRF-TP-12-
005B, the Program for New Century Excellent Talents in
Universities under Grant NCET-11-0578, and the National
Natural Science Foundation of China under Grant 61074055.

References

[1] D. Wang and J. Huang, “Adaptive neural network control for
a class of uncertain nonlinear systems in pure-feedback form,”
Automatica, vol. 38, no. 8, pp. 1365–1372, 2002.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[3] X. J. Jing and L. Cheng, “An optimal PID control algorithm for
training feedforward neural networks,” IEEE Transactions on
Industrial Electronics, vol. 60, no. 6, pp. 2273–2283, 2013.



10 Mathematical Problems in Engineering

[4] B.William and L. Stanislao, “Robot navigation control based on
monocular images: an image processing algorithm for obstacle
avoidance decisions,” Mathematical Problems in Engineering,
vol. 2012, Article ID 240476, 14 pages, 2012.

[5] M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, “Optimizing
spatial filters by minimizing within-class dissimilarities in
electroencephalogram-based brain—computer interface,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 24,
no. 4, pp. 610–619, 2013.

[6] H. A. Talebi and K. Khorasani, “A neural network-based
multiplicative actuator fault detection and isolation of nonlinear
systems,” IEEE Transactions on Control Systems Technology, vol.
21, no. 3, pp. 842–851, 2012.

[7] K. J. Astrom and B. Wittenmark, Adaptive Control, Addison-
Wesley, Longman Publishing, Boston, Mass, USA, 1995.

[8] K. S. Narendra and A. Annaswamy, Stable Adaptive Systems,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.

[9] P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice-
Hall, Upper Saddle River, NJ, USA, 1996.

[10] K. S. Narendra andK. Parthasarathy, “Identification and control
of dynamical systems using neural networks,” IEEE Transac-
tions on Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.

[11] F. C. Chen and H. K. Khalil, “Adaptive control of a class of
nonlinear discrete-time systems using neural networks,” IEEE
Transactions on Automatic Control, vol. 40, no. 5, pp. 791–801,
1995.

[12] F. C. Chen and H. K. Khalil, “Adaptive control of nonlinear sys-
tems using neural networks,” International Journal of Control,
vol. 55, no. 6, pp. 1299–1317, 1992.

[13] G. Kreisselmeier and B. D. O. Anderson, “Robust model
reference adaptive control,” IEEE Transactions on Automatic
Control, vol. 31, no. 2, pp. 127–133, 1986.

[14] L. Giovanini, “Robust adaptive control using multiple models,
switching and tuning,” IET Control Theory & Applications, vol.
5, no. 18, pp. 2168–2178, 2011.

[15] W.Wang and X. L. Li,Multiple Model Adaptive Control, Science
Press, Beijing, China, 2001.

[16] D. T. Magill, “Optimal adaptive estimation of sampled stochas-
tic processes,” IEEE Transactions on Automatic Control, vol. 10,
pp. 434–439, 1965.

[17] D.G. Lainiotis, “Partitioning: a unifying framework for adaptive
systems. I. Estimation,” vol. 64, no. 8, pp. 1126–1143, 1976.

[18] M. Athans, D. Castanon, K.-P. Dunn et al., “The stochastic
control of the F-8C aircraft using a multiple model adaptive
control (MMAC) method—part I: equilibrium flight,” IEEE
Transactions on Automatic Control, vol. 22, no. 5, pp. 768–780,
1977.

[19] K. S. Narendra and J. Balakrishnan, “Adaptive control using
multiple models,” IEEE Transactions on Automatic Control, vol.
42, no. 2, pp. 171–187, 1997.

[20] L. Chen and K. S. Narendra, “Nonlinear adaptive control using
neural networks and multiple models,” Automatica, vol. 37, no.
8, pp. 1245–1255, 2001.

[21] Y. Fu and T. Chai, “Nonlinear multivariable adaptive control
using multiple models and neural networks,” Automatica, vol.
43, no. 6, pp. 1101–1110, 2007.

[22] K. S. Narendra and C. Xiang, “Adaptive control of discrete-
time systems using multiple models,” IEEE Transactions on
Automatic Control, vol. 45, no. 9, pp. 1669–1686, 2000.

[23] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and
Control, Prentice-Hall, Englewood Cliffs, NJ, USA, 1984.

[24] S. Yin, S. X. Ding, A. Haghani, H. Y. Hao, and P. Zhang,
“A comparison study of basic data-driven fault diagnosis and
process monitoring methods on the benchmark Tennessee
Eastman process,” Journal of Process Control, vol. 22, no. 9, pp.
1567–1581, 2012.

[25] S. Yin, H. Luo, and S. X. Ding, “Real-time implementation of
fault-tolerant control systems with performance optimization,”
IEEE Transactions on Industrial Electronics, no. 99, p. 1, 2013.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 364726, 9 pages
http://dx.doi.org/10.1155/2013/364726

Research Article
Sliding Sector-Based Variable Structure Control of
Continuous-Time Markov Jump Linear Systems Subject to
Unknown Transition Rates

Yan-Mei Xue,1 Jianwei Yang,1 and Xiao-Mei Liu2

1 The School of Mathematics & Statistics, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
2The School of Automation, Southeast University, Nanjing, Jiangsu 210096, China

Correspondence should be addressed to Yan-Mei Xue; ymxue1@163.com

Received 8 August 2013; Accepted 5 October 2013

Academic Editor: Tao Li

Copyright © 2013 Yan-Mei Xue et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on sliding sector technique, the variable structure control for a class of uncertain continuous-time Markovian jump linear
systems (MJLS) is investigated. The elements in the transition rate matrix include completely known, boundary known, and
completely unknown ones. First, the related notions about sliding sector for continuous-timeMarkov jump linear systems are given;
then based on linear matrix inequalities (LMIs) technique, sufficient conditions for the design of the sliding sector are provided.
Second, a variable structure control law is presented to guarantee the mean-square quadratic stability of the closed-loop system in
spite of the effects of the existing uncertainties and unknown/uncertain transition rates. Finally, an example is given to verify the
validity of the theoretical results.

1. Introduction

The subject of this paper is variable structure control of
continuous-time Markov jump linear uncertain systems.
Control design problems of Markov jump systems are moti-
vated by the fact that these systems represent a class of impor-
tant stochastic systemswhich is popular inmodeling practical
engineering systems subject to failures or changes in struc-
tures and parameters. Such as in [1, 2], Markovian switching
technique has been used to model the switching action of
mobile manipulators. In addition, some important theoret-
ical results have also been published so far; see, for example,
[3–9] and the references therein. It is worth noticing that
these results require that the transition probabilities/rates
must be known precisely. In fact, the likelihood of obtaining
the perfect information on all transition probabilities/rates
is questionable, and the cost might be expensive in some
areas. As a result, the study of control synthesis for Markov
jump systems with uncertain or unknown transition proba-
bilities/rates becomes interesting, and some important results
have been established. For instance, the robust control
designs for MJLS subject to the norm-bounded or polytopic

uncertainties in the transition rates were considered in [10,
11]. However, they both require to know the structure and
“nominal” terms of the uncertain transition rates. Further-
more, control designs of MJLS with partly unknown transi-
tion rates were developed in [12–14], in which the transition
rate matrix included two kinds of elements: completely
known and completely unknown ones. In fact, besides the
two kinds of elements, it might also own boundary known
elements in practice, and we will consider this more general
case for reducing the conservatism of control design in this
paper.

On the other hand, variable structure control is a well-
known robust control technique against external distur-
bances, parameter uncertainties, and unmodeled dynamics
[15–17], and thus there are also some remarkable results pub-
lished on variable structure control of continuous-timeMJLS
recently [18–22]. In [21], the robust stabilization of variable
structure control for continuous-time MJLS with matched
uncertainties was first investigated, and then in [22], a singu-
lar system approachwas introduced for systemswith parame-
ter uncertainties and unknownnonlinear function. It is worth
mentioning that these works require the transition rates to be
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precisely known a prior, and to the best of our knowledge,
no results have been reported to variable structure control
of continuous-time MJLS with unknown transition rates. In
addition, one of the disadvantages about variable structure
control is that chattering phenomenon might occur on the
neighbor of the slidingmanifold which is harmful to actuator
devices, and thus it is a barrier for the use of the variable struc-
ture control strategy [23–25]. In order to avoid the occurrence
of chattering phenomenon, it is worth noting that for a class
of linear deterministic systems, a variable structure control-
based sliding sector is first introduced in [26]. The main
feature of the sliding sector-based variable structure control
scheme is that zero control input can be used in the sliding
sector of the state space and then the chattering phenomenon
is avoided.

Motivated by the aforementioned discussion, for a class
of continuous-time uncertain MJLS subject to unknown
transition rates, a novel robust variable structure control-
based sliding sector technique is investigated. The main con-
tribution of this paper is summarized as follows. First, related
notions of the sliding sector for MJLS, 𝑃

𝑖
𝑅
𝑖
-sliding sector,

simplified 𝑃
𝑖
𝑅
𝑖
-sliding sector, and inner sector and outer sec-

tor are given. Second, sufficient conditions for the design of
the simplified 𝑃

𝑖
𝑅
𝑖
-sliding sector for the considered Markov

jump linear uncertain system are presented in terms of LMI
technique. Finally, a variable structure control law is estab-
lished to drive the state trajectory to converge to the inner
sector of the 𝑃

𝑖
𝑅
𝑖
-sliding sector and guarantee mean square

quadratic stability of the closed-loop system in spite of the
effect of unknown transition rates and system uncertainties.

The rest of this paper is organized as follows.The problem
statement and preliminaries are presented in Section 2. The
main results are given in Section 3. In Section 4, a numerical
example is presented to illustrate the effectiveness of the
results, and the conclusions are drawn in Section 5.

Throughout this paper, the following notations are used.
R𝑛 denotes the 𝑛-dimensional Euclidean space; 𝐴𝑇 stands
for the transpose of matrix 𝐴; 𝐼 and 0 represent the identity
matrix and zero matrix in appropriate dimension, respec-
tively. In addition, the symbol He(𝑋) is used to represent𝑋+

𝑋
𝑇.𝑃 > 0 (𝑃 ≥ 0 )means that𝑃 is real symmetric and (semi-)

positive definite. | ⋅ | denotes the absolute value of a scalar, the
standardEuclideannormof a vector, or the inducednormof a
matrix, respectively. In symmetric block matrices, the nota-
tion∗ is used to represent a term that is induced by symmetry.

2. Problem Statement and Preliminaries

Consider the following time-invariant continuous-time lin-
ear uncertain system:

̇𝑥 = (𝐴 (𝑟
𝑡
) + Δ𝐴 (𝑟

𝑡
)) 𝑥 + (𝐵 (𝑟

𝑡
) + Δ𝐵 (𝑟

𝑡
)) 𝑢, (1)

where 𝑥(𝑡) ∈ R𝑛 and 𝑢(𝑡) ∈ R are state and control input,
respectively. Δ𝐴𝑟

𝑡
and Δ𝐵(𝑟

𝑡
) are the system uncertainties.

{𝑟
𝑡
, 𝑡 ≥ 0} is a continuous-time Markovian process with right

continuous trajectories and taking values in a finite set S =

{1, 2, . . . ,N}. It governs the switching among the different

system modes with the following mode transition probabil-
ities:

Prob {𝑟
𝑡+𝑚

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜆
𝑖𝑗
𝑚 + 𝑜 (𝑚) , if 𝑗 ̸= 𝑖,

1 + 𝜆
𝑖𝑖
𝑚 + 𝑜 (𝑚) , if 𝑗 = 𝑖,

(2)

where 𝑚 > 0, lim
𝑚→0

(𝑜(𝑚)/𝑚) = 0 and 𝜆
𝑖𝑗

≥ 0 (𝑖, 𝑗 ∈

S, 𝑗 ̸= 𝑖) denote the switching rate from mode 𝑖 at time 𝑡 to
mode 𝑗 at time 𝑡 + 𝑚, and 𝜆

𝑖𝑖
= −∑

N
𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
for each 𝑖 ∈ S.

In general, the Markov process transition rate matrixΛ is
defined by

Λ = [𝜆
𝑖𝑗
]
N×N

. (3)

In this paper, the transition rates of the jumping process
are assumed to be partly available; that is, some elements inΛ

have been exactly known; some ones are uncertain but with
known boundaries; others may have no information to use.
For instance, for system (1) with four operation modes, the
transition rate matrix might be described by

Λ =

[

[

[

[

? 𝜆
12

𝜆
13

?

𝜆
21

? 𝜆
23

?

? 𝑎 ? 𝜆
34

𝑏 ? 𝜆
43

𝜆
44

]

]

]

]

, (4)

where ? represents the completely unknown element in the
transition rate matrix; parameters 𝑎 and 𝑏 represent the ele-
ments with known lower and upper bounds. That is, 𝑎 ≤ 𝑎 ≤

𝑎 and 𝑏 ≤ 𝑏 ≤ 𝑏, where 𝑎, 𝑎, 𝑏, and 𝑏 are known parameters;
𝜆
𝑖𝑗
denotes the precisely known element.
For clarity, denoteS = S𝑖

𝑘1
∪S𝑖
𝑘2

∪S𝑖
𝑢𝑘
, 𝑖 = 1, 2, . . . ,N by

S
𝑖

𝑘1
= {𝑗 : 𝜆

𝑖𝑗
is exactly known} ,

S
𝑖

𝑘2
= {𝑗 : the bounds of 𝜆

𝑖𝑗
is known} ,

S
𝑖

𝑢𝑘
= {𝑗 : there is no information available for 𝜆

𝑖𝑗
} .

(5)

Furthermore, let S𝑖
𝑘

= {𝑗 : 𝜆
𝑖𝑗

≤ 𝜆
𝑖𝑗

≤ 𝜆
𝑖𝑗
}; then

S𝑖
𝑘

= S𝑖
𝑘1

∪ S𝑖
𝑘2
. Let S𝑖

𝑘
= {K𝑖

1
,K𝑖
2
, . . . ,K𝑖

𝑚
𝑖

𝑘

}. S𝑖
𝑢𝑘

=

{K𝑖
1
,K𝑖
2
, . . . ,K𝑖

𝑚
𝑖

𝑢𝑘

}, whereK𝑖
𝑙1

denotes the 𝑙
1
th element inS𝑖

𝑘

with the indexK𝑖
𝑙1

in the 𝑖th row of the matrixΛ.K𝑖
𝑙2

denotes
the 𝑙
2
th element inS𝑖

𝑢𝑘
with the indexK𝑖

𝑙2

in the 𝑖th row of the
matrixΛ.𝑚𝑖

𝑘
and𝑚

𝑖

𝑢𝑘
represent the number of elements inS𝑖

𝑘

and S𝑖
𝑢𝑘
, respectively.

Remark 1. When 𝜆
𝑖𝑗

= 𝜆
𝑖𝑗
, the transition rates are reduced

to the situation in [12]. Obviously, the solving method there
can only treat the above known bound case as the completely
unknown case, and some conservativeness has been brought
in.

For convenience, let 𝐴
𝑖
= 𝐴(𝑟

𝑡
), Δ𝐴

𝑖
= Δ𝐴(𝑟

𝑡
), 𝐵
𝑖
=

𝐵(𝑟
𝑡
), and Δ𝐵

𝑖
= Δ𝐵(𝑟

𝑡
) for each possible value 𝑟

𝑡
= 𝑖, 𝑖 ∈ S,
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where 𝐴
𝑖
and 𝐵

𝑖
are known constant matrices with appropri-

ate dimensions; then system (1) can be described by

̇𝑥 = (𝐴
𝑖
+ Δ𝐴
𝑖
) 𝑥 + (𝐵

𝑖
+ Δ𝐵
𝑖
) 𝑢. (6)

Throughout this paper, for each 𝑖, suppose that the fol-
lowing assumptions are valid.

Assumption 2. The pair (𝐴
𝑖
, 𝐵
𝑖
) is controllable.

Assumption 3. The uncertainties satisfy Δ𝐴
𝑖
= 𝐷
𝑖
𝐸
𝑖
(𝑡, 𝑥)𝐹

𝑖
,

Δ𝐵
𝑖
= 𝐵
𝑖
Θ
𝑖
(𝑡), where 𝐷

𝑖
and 𝐹

𝑖
are known constant matrices

with appropriate dimensions, 𝐸
𝑖
(𝑡, 𝑥) is time-varying uncer-

tain matrix satisfying 𝐸
𝑖
𝐸
𝑇

𝑖
≤ 𝐼, the parameter Θ

𝑖
(𝑡) satisfies

|Θ
𝑖
(𝑡)| ≤ 𝑑

𝑖
< 1, 𝑑

𝑖
is a known positive scalar.

For continuous-time Markov jump linear nominal sys-
tems

̇𝑥 = 𝐴
𝑖
𝑥 + 𝐵
𝑖
𝑢, (7)

some related notions of sliding sector are firstly presented.

Definition 4. The 𝑃
𝑖
𝑅
𝑖
-sliding sector is a subset ofR𝑛 defined

as

S
𝑖
=

{

{

{

𝑥 | 𝑥
𝑇

(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
)𝑥

≤ −𝑥
𝑇

𝑅
𝑖
𝑥, 𝑥 ∈ R

𝑛
}

}

}

,

(8)

where 𝑃
𝑖
∈ R𝑛×𝑛 is a positive definite symmetric matrix, 𝑅

𝑖
∈

R𝑛×𝑛 is a positive semidefinite symmetric matrix, 𝑅
𝑖
= 𝐶
𝑇

𝑖
𝐶
𝑖
,

𝐶
𝑖
∈ R𝑙𝑖×𝑛, 𝑙

𝑖
≥ 1, and (𝐶

𝑖
, 𝐴
𝑖
) is an observable pair.

The set of the𝑃
𝑖
𝑅
𝑖
-sliding sector is nonempty since at least

zero state stays inside it.
Obviously, while the state of the plant evolves in the 𝑃

𝑖
𝑅
𝑖
-

sliding sector S
𝑖
, the 𝑃

𝑖
-norm |𝑥|

𝑃𝑖
= 𝑥
𝑇

𝑃
𝑖
𝑥 of the plant (7)

decreases with zero control input since

̇𝐿
𝑖
= 𝑥
𝑇

(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
)𝑥

≤ −𝑥
𝑇

𝑅
𝑖
𝑥 ≤ 0, ∀𝑥 ∈ S

𝑖
, 𝑥 ̸= 0,

(9)

where 𝐿
𝑖
= |𝑥|
2

𝑃𝑖

.

Remark 5. When 𝐴
𝑖
= 𝐴, 𝑃

𝑖
= 𝑃, 𝑅

𝑖
= 𝑅, the 𝑃

𝑖
𝑅
𝑖
-sliding

sector in (8) becomes

S = {𝑥 | 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴) 𝑥 ≤ −𝑥
𝑇

𝑅𝑥, 𝑥 ∈ R
𝑛

} . (10)

The definition of 𝑃𝑅-sliding sector for linear deterministic
systems is introduced in [26].

Definition 6. A simplified 𝑃
𝑖
𝑅
𝑖
-sliding sector is a subset ofR𝑛

defined as

S
𝑖
= {𝑥 |





𝑠
𝑖
(𝑥)





≤ 𝛿
𝑖
(𝑥) , 𝑥 ∈ R

𝑛

} , (11)

where the linear function 𝑠
𝑖
(𝑥) and the square root 𝛿

𝑖
(𝑥) of

the quadratic function 𝛿
2

𝑖
(𝑥) are determined by

𝑠
𝑖
(𝑥) = 𝑆

𝑖
𝑥, 𝑆

𝑖
∈ R
1×𝑛

,

𝛿
𝑖
(𝑥) = √𝑥

𝑇
Ω
𝑖
𝑥, Ω

𝑖
∈ R
𝑛×𝑛

, Ω
𝑖
≥ 0 (Ω

𝑖
̸= 0) .

(12)

Remark 7. Suppose that the following inequalities are satis-
fied:

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
− 𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄
𝑖
< 0,

𝑖 = 1, 2, . . . ,N.

(13)

Then the parameters in the simplified 𝑃
𝑖
𝑅
𝑖
-sliding sector 𝑃

𝑖
,

𝑅
𝑖
, 𝑆
𝑖
, andΩ

𝑖
can be selected as follows:

Ω
𝑖
= 𝑟
𝑖
𝑄
𝑖
, 𝑅

𝑖
= (1 − 𝑟

𝑖
) 𝑄
𝑖
, 𝑆

𝑖
= 𝐵
𝑇

𝑖
𝑃
𝑖
, (14)

where 0 < 𝑟
𝑖
< 1.

Obviously, while the state of the plant evolves in the sim-
plified𝑃

𝑖
𝑅
𝑖
-sliding sectorS

𝑖
, the𝑃

𝑖
-norm |𝑥|

𝑃𝑖
of the plant (7)

decreases with zero control input since

̇𝐿
𝑖
= 𝑥
𝑇

(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
)𝑥

= 𝑥
𝑇

(𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
− 𝑄
𝑖
) 𝑥

= 𝑠
2

𝑖
(𝑥) − 𝛿

2

𝑖
(𝑥) − 𝑥

𝑇

𝑅
𝑖
𝑥

≤ −𝑥
𝑇

𝑅
𝑖
𝑥, ∀𝑥 ∈ S

𝑖
, 𝑥 ̸= 0.

(15)

In addition, in order to avoid the chattering phenomenon
on the boundary of the𝑃

𝑖
𝑅
𝑖
-sliding sector, an inner sectorSin

𝑖

and an outer sectorSout
𝑖

are introduced as subsets of the 𝑃
𝑖
𝑅
𝑖
-

sliding sector (11):

S
in
𝑖

= {𝑥 |




𝑠
𝑖
(𝑥)





≤ 𝛼
𝑖
𝛿
𝑖
(𝑥) , 𝑥 ∈ R

𝑛

} , (16)

S
out
𝑖

= {𝑥 | 𝛼
𝑖
𝛿
𝑖
(𝑥) <





𝑠
𝑖
(𝑥)





≤ 𝛿
𝑖
(𝑥) , 𝑥 ∈ R

𝑛

} , (17)

where the positive scalar 𝛼
𝑖
satisfies 0 < 𝛼

𝑖
< 1. It is not diffi-

cult to see that the sets Sin
𝑖
and Sout

𝑖
constitute a partition of

the simplified 𝑃𝑅-sliding sector S
𝑖
. That is, S

𝑖
= Sin
𝑖

∪ Sout
𝑖

and Sin
𝑖

∩Sout
𝑖

= 0.
A hysteresis dead-zone function 𝜎

𝑖
(𝑠
𝑖
(𝑥), 𝛿
𝑖
(𝑥)) is further

introduced for avoiding the chattering. It is defined as

𝜎
𝑖
(𝑠
𝑖
(𝑥) , 𝛿

𝑖
(𝑥)) =

{
{

{
{

{

0, 𝑥 ∈ Sin
𝑖

unchanged, 𝑥 ∈ Sout
𝑖

1, 𝑥∈S
𝑖
.

(18)
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Lemma 8 (see [20]). For any given 𝜆
𝑗
≥ 0 and matrices 𝑃

𝑗
>

0 (𝑃
𝑗
∈ 𝑅
𝑛×𝑛

, 1 ≤ 𝑗 ≤ N), if there exists 𝑍
𝑖
≥ 𝑃
𝑗
, then the fol-

lowing inequality holds:
N

∑

𝑗=1

𝜆
𝑗
𝑃
𝑗
≤

N

∑

𝑗=1

𝜆
𝑗
𝑍
𝑖
. (19)

Lemma 9 (see [27]). Given a symmetric matrixΠ and matri-
ces 𝑀, 𝑁 with appropriate dimensions, then Π + 𝑀𝐹(𝑡)𝑁 +

𝑁
𝑇

𝐹
𝑇

(𝑡)𝑀
𝑇

< 0 for all 𝐹(𝑡) satisfying 𝐹
𝑇

(𝑡)𝐹(𝑡) ≤ 𝐼, if and
only if there exists a scalar 𝜀 > 0 such that the following inequal-
ity holds:

Π + 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁 < 0. (20)

Lemma 10 (see [28]). For symmetric and positive definite
matrices 𝑋 and 𝑌, if 𝑋 ≥ 𝑌 > 0, then 𝑌

−1

≥ 𝑋
−1

> 0.

3. Main Results

First, we present the design of the simplified 𝑃
𝑖
𝑅
𝑖
-sliding sec-

tor for the considered continuous-time Markov jump linear
uncertain system (6). Second, the controller design formean-
square quadratic stability of the continuous-time Markov
jump linear uncertain system is developed.

3.1. The Design of the Simplified 𝑃
𝑖
𝑅
𝑖
-Sliding Sector

Theorem 11. For continuous-time Markov jump linear uncer-
tain system (6), there exist symmetric and positive definite
matrices 𝑋

𝑖
, 𝑍
𝑖
, and 𝑌

𝑖
satisfying the following LMIs:

𝑖 ∈ S
𝑖

𝑘
,

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

[

[

[

[

[

[

Γ
11𝑖

Γ
12𝑖

Γ
13𝑖

𝑋
𝑖

𝑋
𝑖
𝐹
𝑖

∗ −Γ
22𝑖

0 0 0

∗ ∗ −𝑍
𝑖

0 0

∗ ∗ ∗ −𝑌
𝑖

0

∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

]

]

]

]

]

]

< 0,

𝑍
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖

(21)

𝑖 ∈ S
𝑖

𝑢𝑘
,

{
{
{
{
{

{
{
{
{
{

{

[

[

[

[

Φ
11𝑖

Φ
12𝑖

𝑋
𝑖

𝑋
𝑖
𝐹
𝑖

∗ −𝑋
𝑗

0 0

∗ ∗ −𝑌
𝑖

0

∗ ∗ ∗ −𝜀
𝑖
𝐼

]

]

]

]

< 0,

𝑋
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖,

(22)

where
Γ
11𝑖

= He (𝐴
𝑖
𝑋
𝑖
) + 𝜆
𝑖𝑖
𝑋
𝑖
− 𝐵
𝑖
𝐵
𝑇

𝑖
+ 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
,

Γ
12𝑖

= [√𝜆
𝑖K𝑖
1

𝑋
𝑖
, √𝜆
𝑖K𝑖
2

𝑋
𝑖
, . . . , √𝜆

𝑖K𝑖
𝑚
𝑖

𝑘

𝑋
𝑖
] ,

Γ
22𝑖

= diag{−𝑋K𝑖
1

, −𝑋K𝑖
2

, . . . , −𝑋K𝑖
𝑚
𝑖

𝑘

} ,

Γ
13𝑖

= √−( ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
+ 𝜆
𝑖𝑖
)𝑋
𝑖
,

Φ
11𝑖

= He (𝐴
𝑖
𝑋
𝑖
) − ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑋
𝑖
− 𝐵
𝑖
𝐵
𝑇

𝑖
+ 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
,

Φ
12𝑖

= [√𝜆
𝑖K𝑖
1

𝑋
𝑖
, √𝜆
𝑖K𝑖
2

𝑋
𝑖
, . . . , √𝜆

𝑖K𝑖
𝑚
𝑖

𝑘

𝑋
𝑖
] ,

Φ
22𝑖

= diag{−𝑋K𝑖
1

, −𝑋K𝑖
2

, . . . , −𝑋K𝑖
𝑚
𝑖

𝑘

} ;

(23)
then the parameters of 𝑃

𝑖
𝑅
𝑖
-sliding sector in (14) can be

designed as 𝑃
𝑖
= 𝑋
−1

𝑖
, 𝑄
𝑖
= 𝑌
−1

𝑖
, Ω
𝑖
= 𝑟
𝑖
𝑌
−1

𝑖
, 𝑅
𝑖
= (1 − 𝑟

𝑖
)𝑌
−1

𝑖
,

and 𝑆
𝑖
= 𝐵
𝑇

𝑖
𝑋
−1

𝑖
.

Proof. For system (6), for all Δ𝐴
𝑖
, 𝑖 = 1, 2, . . . ,N, the con-

ditions in (13) are equal to

(𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑖
+ Δ𝐴
𝑖
)

+ ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗
+ ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗

+ 𝜆
𝑖𝑖
𝑃
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄
𝑖
< 0.

(24)

In the following, we consider two cases: 𝑖 ∈ S𝑖
𝑘
and 𝑖 ∈ S𝑖

𝑢𝑘

in the proof.

Case I (𝑖 ∈ S𝑖
𝑘
). In this case, the conditions in (24) can be

guaranteed when for 𝑖 = 1, 2, . . . ,N, the following inequali-
ties:

He ((𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
) + ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗

+ ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑊
𝑖
+ 𝜆
𝑖𝑖
𝑃
𝑖

− 𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄
𝑖
< 0,

𝑃
𝑗
≤ 𝑊
𝑖
, 𝑗 ∈ S

𝑖

𝑢𝑘
,

(25)

are satisfied. Substituting∑
𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
= −∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
−𝜆
𝑖𝑖

into the first inequality above and utilizing the boundary
information of 𝜆

𝑖𝑗
, one can see that the above inequalities can

be guaranteed by

He ((𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
)

+ ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗
− ( ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
+ 𝜆
𝑖𝑖
)𝑊
𝑖

+ 𝜆
𝑖𝑖
𝑃
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄
𝑖
< 0,

𝑃
𝑗
≤ 𝑊
𝑖
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(26)

Pre- and postmultiplying 𝑃
−1

𝑖
on both sides of the first ine-

quality in above inequalities and letting𝑋
𝑖
= 𝑃
−1

𝑖
, one has

He ((𝐴
𝑖
+ Δ𝐴
𝑖
)𝑋
𝑖
) + ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖

− ( ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
+ 𝜆
𝑖𝑖
)𝑋
𝑖
𝑊
𝑖
𝑋
𝑖
+ 𝜆
𝑖𝑖
𝑋
𝑖

− 𝐵
𝑖
𝐵
𝑇

𝑖
+ 𝑋
𝑖
𝑄
𝑖
𝑋
𝑖
< 0.

(27)
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Let 𝑌
𝑖
= 𝑄
−1

𝑖
, 𝑍
𝑖
= 𝑊
−1

𝑖
, and applying Schur-complement

technique and Lemma 9, one can obtain the first LMI condi-
tion in (21).

In addition, by using Lemma 10, one can see that the sec-
ond inequality in (26) can be converted into the second LMI
condition in (21).

Case II (𝑖 ∈ S𝑖
𝑢𝑘
). In this case, substituting 𝜆

𝑖𝑖
=

−∑
𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
− ∑
𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
into (24), one has

He ((𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
) + ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗

+ ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗
− ( ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
+ ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
)𝑃
𝑖

− 𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄
𝑖
< 0,

𝑖 = 1, 2, . . . ,N.

(28)

The conditions in (28) can be guaranteed provided that
for 𝑖 = 1, 2, . . . ,N, one has

He ((𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
) + ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗

− ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄
𝑖
< 0,

𝑃
𝑗
≤ 𝑃
𝑖
, 𝑗 ∈ S

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖.

(29)

Taking use of the boundary information of 𝜆
𝑖𝑗
, one can see

that the above inequalities can be guaranteed by

He ((𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
) + ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗

− ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑖
− 𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄
𝑖
< 0,

𝑃
𝑗
≤ 𝑃
𝑖
, 𝑗 ∈ S

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖.

(30)

Pre- and postmultiplying 𝑃
−1

𝑖
on both sides of the first ine-

quality in above inequalities and letting 𝑋
𝑖
= 𝑃
−1

𝑖
and 𝑌

𝑖
=

𝑄
−1

𝑖
, one has

He ((𝐴
𝑖
+ Δ𝐴
𝑖
)𝑋
𝑖
) + ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖

− ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑋
𝑖
− 𝐵
𝑖
𝐵
𝑇

𝑖
+ 𝑋
𝑖
𝑄

−1

𝑖
𝑋
𝑖
< 0.

(31)

Applying Schur-complement technique and Lemma 9 again,
the above inequality (31) can be converted into the first LMI
condition in (22).

Applying Lemma 10, one can see that the second inequal-
ity in (30) can be converted into the second condition in (22).
By the design of the parameters of PR-sliding sector in (14),
the proof of Theorem 11 is completed.

3.2. Variable Structure Control Design

Theorem 12. Considering the simplified 𝑃
𝑖
𝑅
𝑖
-sliding sector S

𝑖

(11)with the inner sectorSin
𝑖
(16) and the outer sectorSout

𝑖
(17),

the following variable structure controller is designed to ensure
that the state trajectories of the plant (6) enter into the inner
sector from the outside of 𝑃

𝑖
𝑅
𝑖
-sliding sector and obtain mean-

square quadratic stability of the closed-loop system. Consider

𝑢 = 𝑢
𝑖1
+ 𝑢
𝑖2
, (32)

where

𝑢
𝑖1

= −𝜎
𝑖
(𝑠
𝑖
(𝑥) , 𝛿

𝑖
(𝑥)) (𝑆

𝑖
𝐵
𝑖
)
−1

(𝑆
𝑖
𝐴
𝑖
𝑥 + 𝐾

𝑖
𝑠
𝑖
(𝑥)) , (33)

𝑢
𝑖2

= −

1

1 − 𝑑
𝑖

𝜎
𝑖
(𝑠
𝑖
(𝑥) , 𝛿

𝑖
(𝑥))

× (𝑆
𝑖
𝐵
𝑖
)
−1 sign (𝑠

𝑖
(𝑥)) 𝜌

𝑖
,

(34)

𝜌
𝑖
= |𝑆
𝑖
||𝐷
𝑖
||𝐹
𝑖
||𝑥|+𝑑

𝑖
|𝑆
𝑖
𝐴
𝑖
||𝑥|+𝑑

𝑖
𝐾
𝑖
|𝑠
𝑖
(𝑥)| and the parameter

𝐾
𝑖
> max{𝑆

𝑖
𝐵
𝑖
/2,𝐻
𝑖
} satisfies the following inequality:

2𝐻
𝑖
𝛼
2

𝑖
𝑟
𝑖
𝑄
𝑖
+ 𝑆
𝑇

𝑖
𝑆
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑆
𝑇

𝑖
𝑆
𝑖
> 0. (35)

Proof. It is assumed that the initial state of the plant
lies outside the 𝑃

𝑖
𝑅
𝑖
-sliding sector. In this case, we have

𝜎
𝑖
(𝑠
𝑖
(𝑥), 𝛿
𝑖
(𝑥)) = 1 and𝑢

𝑖1
= −(𝑆

𝑖
𝐵
𝑖
)
−1

(𝑆
𝑖
𝐴
𝑖
𝑥+𝐾
𝑖
𝑠
𝑖
(𝑥)). It can

be easily checked that

𝑠
𝑖
(𝑥) ̇𝑠
𝑖
(𝑥) = −𝐾

𝑖
𝑠
2

𝑖
(𝑥) + 𝑠

𝑖
(𝑥) 𝑆
𝑖
Δ𝐴
𝑖
𝑥

+ 𝑠
𝑖
(𝑥) 𝑆
𝑖
𝐵
𝑖
𝑢
𝑖2
+ 𝑠
𝑖
(𝑥) 𝑆
𝑖
Δ𝐵
𝑖
𝑢.

(36)

Noting that Δ𝐵
𝑖
= 𝐵
𝑖
Θ
𝑖
and |Θ| ≤ 𝑑

𝑖
< 1, we have

𝑠
𝑖
(𝑥) ̇𝑠
𝑖
(𝑥) ≤ −𝐾

𝑖
𝑠
2

𝑖
(𝑥) + 𝑠

𝑖
(𝑥) 𝑆
𝑖
𝐵
𝑖
𝑢
𝑖2

+




𝑠
𝑖
(𝑥)










𝑆
𝑖










Δ𝐴
𝑖





|𝑥| + 𝑑

𝑖





𝑠
𝑖
(𝑥)










𝑆
𝑖
𝐵
𝑖





|𝑢| .

(37)

In view of 𝑢 = 𝑢
𝑖1
+ 𝑢
𝑖2
, it is easy to check that

𝑠
𝑖
(𝑥) ̇𝑠
𝑖
(𝑥) ≤ −𝐾

𝑖
𝑠
2

𝑖
(𝑥) + 𝑠

𝑖
(𝑥) 𝑆
𝑖
𝐵
𝑖
𝑢
𝑖2

+




𝑠
𝑖
(𝑥)










𝑆
𝑖










Δ𝐴
𝑖





|𝑥| + 𝑑

𝑖





𝑠
𝑖
(𝑥)






×




𝑆
𝑖
𝐵
𝑖










𝑢
𝑖1





+ 𝑑
𝑖





𝑠
𝑖
(𝑥)










𝑆
𝑖
𝐵
𝑖










𝑢
𝑖2





.

(38)

Substituting 𝑢
𝑖1

= −(𝑆
𝑖
𝐵
𝑖
)
−1

(𝑆
𝑖
𝐴
𝑖
𝑥 + 𝐾

𝑖
𝑠
𝑖
(𝑥)) into the above

inequality and noting that 𝑆
𝑖
𝐵
𝑖
= 𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
> 0, one can see that

𝑠
𝑖
(𝑥) ̇𝑠
𝑖
(𝑥)

≤ − (1 − 𝑑
𝑖
)𝐾
𝑖
𝑠
2

𝑖
(𝑥) + (1 − 𝑑

𝑖
) 𝑠
𝑖
(𝑥) 𝑆
𝑖
𝐵
𝑖
𝑢
𝑖2

+




𝑠
𝑖
(𝑥)










𝑆
𝑖










Δ𝐴
𝑖





|𝑥| + 𝑑

𝑖





𝑠
𝑖
(𝑥)










𝑆
𝑖
𝐴
𝑖






× |𝑥| + 𝑑
𝑖
𝑠
𝑖
(𝑥) 𝑆
𝑖
𝐵
𝑖
𝑢
𝑖2
+ 𝑑
𝑖





𝑠
𝑖
(𝑥)










𝑆
𝑖
𝐵
𝑖










𝑢
𝑖2





.

(39)
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Taking use of 𝑢
𝑖2

in (34) where 𝜌
𝑖

= |𝑆
𝑖
||𝐷
𝑖
||𝐹
𝑖
||𝑥| +

𝑑
𝑖
|𝑆
𝑖
𝐴
𝑖
||𝑥|+𝑑

𝑖
𝐾
𝑖
|𝑠
𝑖
(𝑥)| > 𝑑

𝑖
|𝑆
𝑖
𝐴
𝑖
||𝑥|+𝑑

𝑖
𝐾
𝑖
|𝑠
𝑖
(𝑥)|, one can see

that

𝑠
𝑖
(𝑥) ̇𝑠
𝑖
(𝑥) ≤ −𝐾

𝑖
𝑠
2

𝑖
(𝑥) + 𝑑

𝑖
𝑠
𝑖
(𝑥) 𝑆
𝑖
𝐵
𝑖
𝑢
𝑖2

+ 𝑑
𝑖





𝑠
𝑖
(𝑥)










𝑆
𝑖
𝐵
𝑖










𝑢
𝑖2





.

(40)

According to the design of 𝑢
𝑖2
again, one can easily observe

that

𝑠
𝑖
(𝑥) 𝑆
𝑖
𝐵
𝑖
𝑢
𝑖2
+




𝑠
𝑖
(𝑥)










𝑆
𝑖
𝐵
𝑖










𝑢
𝑖2






≤ −

1

1 − 𝑑
𝑖





𝑠
𝑖
(𝑥)





𝜌
𝑖
+

1

1 − 𝑑
𝑖





𝑠
𝑖
(𝑥)






×




𝑆
𝑖
𝐵
𝑖











(𝑆
𝑖
𝐵
𝑖
)
−1








sign (𝑠

𝑖
(𝑥))





𝜌
𝑖
= 0.

(41)

It follows from (40) and (41) that

𝑠
𝑖
(𝑥) ̇𝑠
𝑖
(𝑥) ≤ −𝐾

𝑖
𝑠
2

𝑖
(𝑥) . (42)

Thus the state trajectory of the closed-loop system will be
driven into the inner sector of the 𝑃

𝑖
𝑅
𝑖
-sliding sector.

In the following, we will prove that the 𝑃
𝑖
-norm keeps

decreasing. Consider

̇𝐿
𝑖
(𝑡) = 𝑥

𝑇
{

{

{

(𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃 + 𝑃 (𝐴
𝑖
+ Δ𝐴
𝑖
) +

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗

}

}

}

𝑥

+ 2𝑥
𝑇

𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
) 𝑢

≤ 𝑠
2

𝑖
(𝑥) − 𝛿

2

𝑖
(𝑥) − 𝑥

𝑇

𝑅
𝑖
𝑥 + 2𝑥

𝑇

𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
) 𝑢.

(43)

Noting that Δ𝐵
𝑖
= 𝐵
𝑖
Θ
𝑖
and 𝑆
𝑖
= 𝐵
𝑇

𝑖
𝑃
𝑖
, one can see that

̇𝐿
𝑖
(𝑡) ≤ 𝑠

2

𝑖
(𝑥) − 𝛿

2

𝑖
(𝑥) − 𝑥

𝑇

𝑅
𝑖
𝑥 + 2𝑠

𝑖
(𝑥) 𝑢
𝑖1

+ 2𝑠
𝑖
(𝑥) 𝑢
𝑖2
+ 2𝑠
𝑖
(𝑥)Θ
𝑖
(𝑢
𝑖1
+ 𝑢
𝑖2
) .

(44)

In the following, we first prove that

𝑠
𝑖
(𝑥) 𝑢
𝑖2
+ 𝑑
𝑖





𝑠
𝑖
(𝑥)










𝑢
𝑖1
+ 𝑢
𝑖2





≤ 0. (45)

Substituting (33) and (34) into the left side of above inequality,
one has

𝑠
𝑖
(𝑥) 𝑢
𝑖2
+ 𝑑
𝑖





𝑠
𝑖
(𝑥)










𝑢
𝑖1
+ 𝑢
𝑖2






= −

1

1 − 𝑑
𝑖

(𝑆
𝑖
𝐵
𝑖
)
−1 




𝑠
𝑖
(𝑥)





𝜌
𝑖
+ 𝑑
𝑖





𝑠
𝑖
(𝑥)






×












(𝑆
𝑖
𝐵
𝑖
)
−1

𝑆
𝑖
𝐴
𝑖
𝑥 + 𝐾

𝑖
(𝑆
𝑖
𝐵
𝑖
)
−1

𝑠
𝑖
(𝑥)

+

1

1 − 𝑑
𝑖

(𝑆
𝑖
𝐵
𝑖
)
−1 sign (𝑠

𝑖
(𝑥)) 𝜌

𝑖












.

(46)

Noting that 𝑆
𝑖
𝐵
𝑖
= 𝐵
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
> 0 and 𝑑

𝑖
< 1, we have

𝑠
𝑖
(𝑥) 𝑢
𝑖2
+ 𝑑
𝑖





𝑠
𝑖
(𝑥)










𝑢
𝑖1
+ 𝑢
𝑖2






≤ −(𝑆
𝑖
𝐵
𝑖
)
−1 




𝑠
𝑖
(𝑥)





𝜌
𝑖
+ 𝑑
𝑖
(𝑆
𝑖
𝐵
𝑖
)
−1 




𝑠
𝑖
(𝑥)






×




𝑆
𝑖
𝐴
𝑖
𝑥 + 𝐾

𝑖
𝑠
𝑖
(𝑥)





.

(47)

Since 𝜌
𝑖
= |𝑆
𝑖
||𝐷
𝑖
||𝐹
𝑖
||𝑥| +𝑑

𝑖
|𝑆
𝑖
𝐴
𝑖
||𝑥| +𝑑

𝑖
𝐾
𝑖
|𝑠
𝑖
(𝑥)|, it is easy to

check that

𝜌
𝑖
≥ 𝑑
𝑖





𝑆
𝑖
𝐴
𝑖
𝑥 + 𝐾

𝑖
𝑠
𝑖
(𝑥)





. (48)

It follows from (47) and (48) that (45) is established.Thus we
have

̇𝐿
𝑖
(𝑡) ≤ 𝑠

2

𝑖
(𝑥) − 𝛿

2

𝑖
(𝑥) − 𝑥

𝑇

𝑅
𝑖
𝑥 + 2𝑠

𝑖
(𝑥) 𝑢
𝑖1
. (49)

Substituting (33) into the above inequality (49) and noting
that 𝐾

𝑖
> (𝑆
𝑖
𝐵
𝑖
/2), 2𝐾

𝑖
𝛼
2

𝑖
𝑟
𝑖
𝑄
𝑖
+ 𝑆
𝑇

𝑖
𝑆
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑆
𝑇

𝑖
𝑆
𝑖
> 0 and

𝑠
2

𝑖
(𝑥) ≥ 𝛼

𝑖
𝛿
2

𝑖
(𝑥), one can see that

̇𝐿
𝑖
(𝑡) ≤ 𝑠

2

𝑖
(𝑥) − 𝛿

2

𝑖
(𝑥) − 𝑥

𝑇

𝑅
𝑖
𝑥 + 2𝑠

𝑖
(𝑥)

× (−(𝑆
𝑖
𝐵
𝑖
)
−1

𝑆
𝑖
𝐴
𝑖
𝑥 − 𝐾

𝑖
(𝑆
𝑖
𝐵
𝑖
)
−1

𝑠
𝑖
(𝑥))

= −(𝑆
𝑖
𝐵
𝑖
)
−1

𝑥
𝑇

(2𝐾
𝑖
𝛼
2

𝑖
𝑟
𝑖
𝑄
𝑖
+ 𝑆
𝑇

𝑖
𝑆
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑆
𝑇

𝑖
𝑆
𝑖
) 𝑥

− 𝑥
𝑇

𝑅
𝑖
𝑥

< −𝑥
𝑇

𝑅
𝑖
𝑥.

(50)

After being forced into the inner sector of the 𝑃
𝑖
𝑅
𝑖
-sliding

sector and before moving out of the 𝑃
𝑖
𝑅
𝑖
-sliding sector, the

control input 𝑢(𝑡) is set equal to zero with 𝜎
𝑖
(𝑠
𝑖
(𝑥), 𝛿
𝑖
(𝑥)) = 0.

In this case, |𝑠
𝑖
(𝑥)| ≤ 𝛿

𝑖
(𝑥) and

̇𝐿
𝑖
(𝑡) = 𝑥

𝑇
{

{

{

(𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃 + 𝑃 (𝐴
𝑖
+ Δ𝐴
𝑖
) +

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗

}

}

}

𝑥

≤ 𝑠
2

𝑖
(𝑥) − 𝛿

2

𝑖
(𝑥) − 𝑥

𝑇

𝑅
𝑖
𝑥 ≤ −𝑥

𝑇

𝑅
𝑖
𝑥. ∀𝑥 ∈ S

𝑖
.

(51)

Once the state trajectory of the plant runs out of the 𝑃
𝑖
𝑅
𝑖
-

sliding sector with zero control input, the control input (32)–
(34) will make it move back to the inside of the inner sector
again, while the 𝑃

𝑖
-norm |𝑥|

𝑃𝑖
keeps decreasing.

Thus, from the above proof, one can see that it guarantees
that the state trajectory of the plantmoves from the outside of
the 𝑃
𝑖
𝑅
𝑖
-sliding sector into the inside of the inner sector and

the Lyapunov function 𝐿
𝑖
(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥 keeps decreasing in the

whole state space; thenmean-square quadratic stability of the
closed-loop system is established.
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4. Illustrative Example

Consider theMarkov jump linear system with four operation
modes:

𝐴
1
= [

1 0

2 3
] , 𝐴

2
= [

0 1

1 −2
] ,

𝐴
3
= [

2 0

0 −1
] , 𝐴

4
= [

3 1

−1 2
] ,

𝐵
1
= [

1

1
] , 𝐵

2
= [

1

1
] ,

𝐵
3
= [

2

1
] , 𝐵

4
= [

2

3
] ,

𝐷
1
= [

0.1

0
] , 𝐷

2
= [

0.2

0.5
]

𝐷
3
= [

0.2

0.6
] , 𝐷

4
= [

0.1

0.5
] ,

𝐹
1
= [0 −0.1] , 𝐹

2
= [1 0.3] ,

𝐹
3
= [0.2 0.5] , 𝐹

4
= [0.1 0.1] .

(52)

For simulation, we take 𝐸
1
(𝑡, 𝑥) = 0.1 sin(𝑡), 𝐸

2
(𝑡, 𝑥) =

0.1 sin(2𝑡), 𝐸
3
(𝑡, 𝑥) = 0.5 sin(𝑡), 𝐸

4
(𝑡, 𝑥) = 0.4 sin(2𝑡), Θ

1
=

0.2 sin(2), Θ
2

= 0.3 cos(2𝑡), Θ
3

= 0.2 cos(𝑡), and Θ
4

=

0.2 sin(2𝑡).
The transition rates matrix is

Λ =

[

[

[

[

−1.5 0.2 ? ?

? ? 0.5 0.9

1 ? −2 ?

0.1 𝛼 ? 𝛽

]

]

]

]

, (53)

where 0.5 ≤ 𝛼 ≤ 2 and −0.8 ≤ 𝛽 ≤ −0.1. Since there exist
the completely unknown transition rates “?” and boundary
known transition rates 𝛼 and 𝛽, the reported methods in
[21, 22] cannot work. Solving the LMIs conditions (21)-(22) in
Theorem 11, one can obtain that positive definite matrices are
as follows:

𝑃
1
= [

6.2534 −6.4840

−6.4840 18.4380
] , 𝑃

2
= [

6.8785 −7.1343

−7.1343 20.0458
] ,

𝑃
3
= [

8.5811 −9.6120

−9.6120 15.6407
] , 𝑃

4
= [

6.1859 −1.5374

−1.5374 1.1026
] ,

𝑄
1
= [

6.9519 −7.5088

−7.5088 22.4304
] ,

𝑄
2
= [

13.4209 −14.1627

−14.1627 40.0263
]

𝑄
3
= [

11.4377 −11.6823

−11.6823 18.2712
] ,

𝑄
4
= [

10.3808 −2.6205

−2.6205 2.0926
] .

(54)
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Figure 1: The response curves of the system states.
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Figure 2: The response curve of the control input.

Selecting 𝛼
1
= 0.8, 𝛼

2
= 0.9, 𝛼

3
= 0.6, 𝛼

4
= 0.6, 𝑟

1
= 0.8, 𝑟

2
=

0.9, 𝑟
3
= 0.8, 𝑟

4
= 0.8, 𝐾

1
= 20, 𝐾

2
= 120, 𝐾

3
= 40, 𝐾

4
= 50,

then the condition inTheorem 12 is satisfied. For the purpose
of simulation, let 𝑑

1
= 0.2, 𝑑

2
= 0.3, 𝑑

3
= 0.2, and 𝑑

4
= 0.2.

Using these data, a simulation program has been done in
Matlab.The simulation results are presented in Figures 1–3. It
can be seen fromFigure 1 that the system state can converge to
the equilibrium point in less than 5 seconds. Figure 2 shows
the response curve of the control input. One can easily see
that no chattering phenomenon happens in the whole control
process.The transitionmodes of system are given in Figure 3.
It can be seen that the considered continuous-time Markov
jump linear uncertain system is stochastic quadratic stable
in spite of mismatched uncertainty and the transition rate
matrix which covers completely known, boundary unknown,
and completely unknown elements.
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Figure 3: The response curve of the transition modes.

5. Conclusions

In this paper, the problem of designing sliding sector-based
variable structure controllers is considered for Markov jump
linear uncertain continuous-time time-invariant systems
with unknown transition rates. First, the related notions
about sliding sector for continuous-timeMJLSs are presented
and sufficient conditions for the design of the sliding sector
are given by LMIs. Second, the variable structure control law
is presented to ensure the mean-square quadratic stability of
the closed-loop system, and simulation results finally have
verified the effectiveness of the proposed method. In our
future research, how to design dynamic output feedback vari-
able structure controller based on sliding sector technique
and considering the applying of the sliding sector technique
in industrial robotic systems are interesting work. Finally, the
authors would like to thank the associate editor and all the
reviewers for their constructive comments and suggestions
for improving this paper.
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The fault detection problem in the finite frequency domain for networked control systems with signal quantization is considered.
With the logarithmic quantizer consideration, a quantized fault detection observer is designed by employing a performance index
which is used to increase the fault sensitivity in finite frequency domain. The quantized measurement signals are dealt with by
utilizing the sector bound method, in which the quantization error is treated as sector-bounded uncertainty. By using the Kalman-
Yakubovich-Popov (GKYP) Lemma, an iterative LMI-based optimization algorithm is developed for designing the quantized fault
detection observer. And a numerical example is given to illustrate the effectiveness of the proposed method.

1. Introduction

Recently, due to many advantages of networked control sys-
tems, such as lower cost, easier installation and maintenance,
and higher reliability, NCSs have been found successfully
industrial applications in automobiles, manufacturing plants,
aircraft, HVAC, systems and unmanned vehicles. However,
the insertion of the communication channels results in
discrepancies between the data information to be transmitted
and their associated remotely transmitted images, hence
raising new interesting and challenging problems such as
quantization, packet losses, and time delays. As is well
known to all, quantization always exists in bandwidth limited
networked systems and the performance of NCSs will be
inevitably subject to the effect of quantization error. Hence,
the quantization problem of NCSs has long been studied
and many important results have been reported in [1–10]
and the references therein. Two most pertinent references
to this paper are the work [2] and the following work [3].
In [2], the problem of quadratic stabilization of discrete-
time single-input single-output (SISO) linear time-invariant
systems using quantized feedback is studied. In [3], the
work of [2] is generalized to general multi-input multi-
output (MIMO) systems and to control problems requiring
performances. This is done using the so-called sector bound

method, which is based on using a simple sector bound
to model the quantization error. This method has been
employed by quite a few researchers and many results have
been given correspondingly [4–7] and so on.

On the other hand, fault detection (FD) is a very
significant problem and has attracted a lot of attention in
the past two decades. A fault is defined as an unpermitted
deviation of at least one characteristic property of a variable
from an acceptable behaviour. Such a fault disturbs the
normal operation of an automatic system, thus causing an
unacceptable deterioration of the performance of the system
[11, 12]. To detect the fault, an observer is usually designed
which generates the residual signal, and, by satisfying certain
performances, the observer parameters are then determined.
Up to now, the studies on the FD are mainly categorized
into two classes depending on the fault frequency domain.
There are many results that study the FD problem in the
full frequency domain, such as [13, 14]. Recently, there are
many studies considering the fault in finite frequency domain
which much more accords with practice. Because in practice,
faults are usually in the finite frequency domain; for example,
for an incipient fault signal, the fault information is contained
within a low frequency band as the fault development is slow
as stated in [15]. Another important finite frequency fault is
the actuator stuck fault whose frequency is zero. The stuck
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fault occurs when an aircraft control surface (such as the
rudder or an aileron) is stuck at some fixed value as stated
in [16]. And the stuck fault is also considered for the F-
16 aircraft in [17]. So, the finite frequency domain method
to FD has been paid more attention to many new results
occur successively [18–20]. In networked control systems, FD
problem also exists and is unavoidably. So far, there have
been some studies on the FD problem of the networked
control systems [21, 22]. But to the best of the authors’
knowledge, there has been nowork considering the quantized
FDproblem infinite frequency domain for networked control
systems.

Motivated by the above-mentioned reason, in this paper,
the quantized FD observer design problem for networked
control systems with logarithmic quantizers is studied. The
quantization errors are modeled as sector-bounded uncer-
tainties. By employing the GKYP method, a quantized FD
observer design method is proposed with an iterative LMI-
based optimization algorithm. Finally, a numerical example
is given to show the effectiveness of the proposed method.

The organization of this paper is as follows. Section 2
presents the problem under consideration and some pre-
liminaries. Section 3 gives design methods of quantized FD
observer design strategies. In Section 4, an example is pre-
sented to illustrate the effectiveness of the proposedmethods.
Finally, Section 5 gives some concluding remarks.

Notation. For amatrix𝐸, 𝐸𝑇, 𝐸⊥, and 𝐸
∗ denote its transpose,

orthogonal complement, and complex conjugate transpose,
respectively. And 𝐴

†

= 𝐴
𝑇

(𝐴𝐴
𝑇

)
−1 denotes its Moore-

Penrose inverse. I denotes the identity matrix with an appro-
priate dimension. For a symmetric matrix, 𝐴 > (≥) 0 and
𝐴 < (≤) 0 denote positive (semi-) definiteness and negative
(semi-) definiteness. The Hermitian part of a square matrix
𝑀 is denoted by 𝐻𝑒(𝑀) := 𝑀 + 𝑀

∗. The symbol 𝐻
𝑛
stands

for the set of 𝑛 × 𝑛 Hermitian matrices. The symbol “∗”
within a matrix represents the symmetric entries. 𝜎max(𝐺)

and 𝜎min(𝐺) denote maximum and minimum singular value
of the transfer matrix 𝐺, respectively.

2. Problem Statement and Preliminaries

2.1. Problem Statement. Consider an LTI discrete-time sys-
tem as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵
1
𝑓 (𝑘) + 𝐵

2
𝑢
𝑐
(𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷
1
𝑓 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ 𝑅
𝑛 is the state, 𝑢

𝑐
(𝑘) ∈ 𝑅

𝑢 is the control input,
and 𝑓(𝑘) ∈ 𝑅

𝑓 is the fault input vector, respectively. 𝐴, 𝐵
1
,

𝐵
2
, 𝐶, and 𝐷

1
are known constant matrices of appropriate

dimensions. Without loss of generality, assume that (𝐴, 𝐶) is
observable and 𝐵

1
is of full column rank.

To formulate the quantized FD problem, consider the
quantized FD observer with the following form.

Consider a dynamic observer-based control strategy for
(1) with observer given by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵
2
𝑢
𝑐
(𝑘) + 𝐿 (𝑦

𝑐
(𝑘) − 𝑦

𝑐
(𝑘))

𝑦
𝑐
(𝑘) = 𝐶𝑥 (𝑘) ,

𝑢
𝑐
(𝑘) = 𝐾𝑥 (𝑘) ,

𝑟 (𝑘) = 𝑦
𝑐
(𝑘) − 𝑦

𝑐
(𝑘) ,

(2)

where 𝑦
𝑐
(𝑘) ∈ 𝑅

𝑦 is the observer output, 𝑥(𝑘) ∈ 𝑅
𝑛 is the

state estimation of system (1), and 𝑟(𝑘) ∈ 𝑅
𝑟 is the residual

signal. 𝐿 is the observer gain to be designed. Due to the
insertion of the communication channel, the measurement
signals will be quantized before they are transmitted to the
filter through the network.The quantizer is denoted as 𝑞[⋅] =
[𝑞
1
[⋅], 𝑞

2
[⋅], . . . , 𝑞

𝑦
[⋅]]

𝑇, which is assumed to be symmetric;
that is, 𝑞

𝑗
[−𝜀] = −𝑞

𝑗
[𝜀], 𝑗 = 1, 2, . . . , 𝑦. In this paper, the

quantizer is selected as a logarithmic one, and, for each 𝑞
𝑗
[⋅],

the quantization levels are given by

𝑉
𝑗
= {±](𝑗)

𝑖
: ](𝑗)

𝑖
= 𝜌

𝑖

𝑗
](𝑗)
0

, 𝑖 = 0, ±1, ±2, . . . } ∪ {0} ,

](𝑗)
0

> 0, 0 < 𝜌
𝑗
< 1.

(3)

As in [3, 4], the associated quantizer is defined as follows:

𝑞
𝑗
[𝜀] =

{
{
{
{

{
{
{
{

{

𝜌
𝑖

𝑗
]𝑗
0
, if 1

1 + 𝛿
𝑗

𝜌
𝑖

𝑗
]𝑗
0
< 𝜀 <

1

1 − 𝛿
𝑗

𝜌
𝑖

𝑗
]𝑗
0
, 𝜀 > 0

0, if 𝜀 = 0,

−𝑞
𝑗
[−𝜀] , if 𝜀 < 0,

(4)

𝛿
𝑗
=

1 − 𝜌
𝑗

1 + 𝜌
𝑗

. (5)

Then, based on the quantizer (4), the measurement signal at
the filter end is with the form as

𝑦
𝑐
(𝑘) = 𝑞 (𝑦 (𝑘)) =

[

[

[

𝑞
1
(𝑦

1
(𝑘))

...
𝑞
𝑦
(𝑦

𝑦
(𝑘))

]

]

]

= (𝐼 + Δ (𝑘)) 𝑦 (𝑘) , (6)

where

Δ (𝑘) = diag {Δ
1
(𝑘) , Δ

2
(𝑘) , . . . , Δ

𝑦
(𝑘)} ,

Δ
𝑖
(𝑘) ∈ [−𝛿

𝑖
, 𝛿
𝑖
] .

(7)

Combining FDobserver (2)with system (1) and the quantized
measurement (6), the following quantized error dynamic
system is obtained:

𝑥 (𝑘 + 1) = (𝐴 + 𝐵
2
𝐾)𝑥 (𝑘) + 𝐵

1
𝑓 (𝑘) − 𝐵

2
𝐾𝑒 (𝑘) ,

𝑒 (𝑘 + 1) = (𝐴 − 𝐿𝐶) 𝑒 (𝑘) − 𝐿Δ (𝑘) 𝐶𝑥 (𝑘)

+ (𝐵
1
− 𝐿Δ (𝑘)𝐷

1
) 𝑓 (𝑘) ,

𝑟 (𝑘) = 𝐶𝑒 (𝑘) + Δ (𝑘) 𝐶𝑥 (𝑘) + (𝐼 + Δ (𝑘))𝐷
1
𝑓 (𝑘) ,

(8)

where 𝑒(𝑘) = 𝑥(𝑘) − 𝑥(𝑘).
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Facilitating the presentation, (8) can be rewritten as

𝑥
𝑒
(𝑘 + 1) = 𝐴𝑥

𝑒
(𝑘) + 𝐵

1
𝑓 (𝑘)

𝑟 (𝑘) = 𝐶𝑥
𝑒
(𝑘) + 𝐷

1
𝑓 (𝑘) ,

(9)

where 𝑥
𝑒
(𝑘) = [

𝑒(𝑘)

𝑥(𝑘)
] and

𝐴 = [

𝐴 − 𝐿𝐶 −𝐿Δ (𝑘) 𝐶

−𝐵
2
𝐾 𝐴 + 𝐵

2
𝐾

] ,

𝐵
1
= [

𝐵
1
− 𝐿 (𝐼 + Δ (𝑘))𝐷

1

𝐵
1

] ,

𝐶 = [𝐶 Δ (𝑘) 𝐶] , 𝐷
1
= (𝐼 + Δ (𝑘))𝐷

1
.

(10)

Note that the dynamics of the residual signal depends on the
fault 𝑓(𝑘), to detect the fault effects; quantized observer (2) is
designed in this work such that the following conditions are
satisfied:

(i) : 𝐴 = [

𝐴 − 𝐿𝐶 −𝐿Δ (𝑘) 𝐶

−𝐵
2
𝐾 𝐴 + 𝐵

2
𝐾

] is stable,

(ii) : inf 𝜎min (𝐺𝑟𝑓
(𝑒
𝑗𝜃

)) > 𝛾, ∀𝜃 ∈ [𝜐
1
, 𝜐
2
] ,

(11)

where

𝐺
𝑟𝑓

(𝑒
𝑗𝜃

) := 𝐶(𝑒
𝑗𝜃

𝐼 − 𝐴)

−1

(𝐵
1
− 𝐿𝐷

1
) + 𝐷

1
. (12)

Remark 1. Condition (ii) is a finite frequency performance
index used to increase the fault sensitivity. Note that 𝜐

1
, 𝜐

2

are given scalars which reflects the frequency range of faults.

The problem addressed in this paper is as follows.

Quantized FD Control Problem. Considering the effects of
the quantization, design a quantized FD observer such that
the error system (8) is with high fault sensitivity in finite
frequency domain.

2.2. Preliminaries. The following lemma presented will be
used in this paper.

Lemma 2 (see [23]). Consider a transfer function matrix
𝐺(𝑒

𝑗𝜃

) := 𝐶(𝑒
𝑗𝜃

𝐼 − 𝐴)
−1

𝐵 + 𝐷; let a symmetric matrix Π and
scalars ]

1
, ]

2
be given; the following statements are equivalent.

(i) The finite frequency inequality

[
𝐺 (𝑒

𝑗𝜃

)

𝐼

]

∗

Π[
𝐺 (𝑒

𝑗𝜃

)

𝐼

] < 0, ∀𝜃 ∈ []
1
, ]
2
] . (13)

(ii) There exist matrices 𝑃,𝑄 ∈ H
𝑛
of appropriate dimen-

sions, satisfying 𝑄 > 0, and

[

𝐴 𝐵

𝐼 0
]

∗

Ξ[

𝐴 𝐵

𝐼 0
] + [

𝐶 𝐷

0 𝐼
]

∗

Π[

𝐶 𝐷

0 𝐼
] < 0, (14)

where

Ξ = [

−𝑃 𝑒
𝑗(]1+]2)/2

𝑄

𝑒
−𝑗(]1+]2)/2

𝑄 𝑃 − (2 cos ((]
2
− ]

1
) /2))𝑄

] . (15)

Lemma 3 (Finsler’s Lemma). Let 𝑥 ∈ 𝑅
𝑛, 𝑄 ∈ 𝑅

𝑛×𝑛, and 𝑈 ∈

𝑅
𝑛×𝑚. Let 𝑈⊥ be any matrix such that 𝑈⊥

𝑈 = 0. The following
statements are equivalent:

(i) 𝑥∗𝑄𝑥 < 0, for all 𝑈∗

𝑥 = 0, 𝑥 ̸= 0,

(ii) 𝑈⊥

𝑄𝑈
⊥
∗

= 0,
(iii) ∃𝜇 ∈ 𝑅 : 𝑄 − 𝜇𝑈𝑈

∗

< 0,
(iv) ∃𝑦 ∈ 𝑅

𝑚×𝑛

: 𝑄 + 𝑈𝑌 + 𝑌
∗

𝑈
∗

< 0.

Lemma 4 (Projection Lemma). Let Γ, Λ, Θ and be given.
There exists a matrix 𝐹 satisfying Γ𝐹Λ + (Γ𝐹Λ)

𝑇

+ Θ < 0 if
and only if the following two conditions hold:

Γ
⊥

Θ < 0, Λ
𝑇
⊥

ΘΛ
𝑇
⊥
𝑇

< 0.
(16)

Lemma 5 (see [24]). For any real matrices 𝑌, 𝑀, 𝐹, and 𝐸

with compatible dimensions and 𝐹
𝑇

𝐹 ≤ 𝛿
2

𝐼, where 𝛿 > 0 is a
scalar, then

𝑌 + 𝑀𝐹𝐸 + (𝑀𝐹𝐸)
𝑇

< 0 (17)

holds if and only if there exists a scalar 𝜀 > 0, such that

𝑌 +

1

𝜀

𝑀𝑀
𝑇

+ 𝜀𝛿
2

𝐸
𝑇

𝐸 < 0. (18)

3. Quantized FD Observer Design

In this section, an inequality for the stability condition (i) is
given first.Then, considering the fault sensitivity problem, an
inequality is given for the fault sensitivity condition (ii).

Firstly, considering the stability condition (i), we have the
following lemma.

Lemma 6. Consider system (9) if there exists a matrix 𝑋 =

[
𝑋 0

0 𝑋
] > 0 such that the following inequality holds:

[

[

[

[

[

[

[

[

−𝑋 ∗ ∗ ∗ ∗ ∗

0 −𝑋 ∗ ∗ ∗ ∗

𝑋𝐴 − Γ
𝑇

𝐶 0 −𝑋 ∗ ∗ ∗

−𝑋𝐵
2
𝐾 𝑋𝐴 + 𝑋𝐵

2
𝐾 0 −𝑋 ∗ ∗

0 0 −Γ 0 −𝜀𝐼 ∗

0 𝛿
𝑎
𝜀𝐶 0 0 0 −𝜀𝐼

]

]

]

]

]

]

]

]

< 0,

(19)

where Γ = 𝐿
𝑇

𝑋.

Proof. It is easy to know that (i) holds if there exists 𝑋 > 0,
such that

𝐴

𝑇

𝑋𝐴 − 𝑋 < 0. (20)

By using the Schur complement lemma, we have that

[
−𝑋 𝐴

𝑇

𝑋

𝑋𝐴 −𝑋

] < 0. (21)
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Equation (21) can be converted into

[

[

[

[

[

[

[

[

−𝑋 ∗ ∗ ∗ ∗ ∗

0 −𝑋 ∗ ∗ ∗ ∗

𝑋𝐴 − Γ
𝑇

𝐶 −𝑋𝐿Δ (𝑘) 𝐶 −𝑋 ∗ ∗ ∗

−𝑋𝐵
2
𝐾 𝑋𝐴 + 𝑋𝐵

2
𝐾 0 −𝑋 ∗ ∗

0 0 −Γ 0 −𝜀𝐼 ∗

0 𝛿
𝑎
𝜀𝐶 0 0 0 −𝜀𝐼

]

]

]

]

]

]

]

]

< 0.

(22)

Obviously, (22) can be rewritten as

[

[

[

[

[

[

[

[

−𝑋 ∗ ∗ ∗ ∗ ∗

0 −𝑋 ∗ ∗ ∗ ∗

𝑋𝐴 − Γ
𝑇

𝐶 0 −𝑋 ∗ ∗ ∗

−𝑋𝐵
2
𝐾 𝑋𝐴 + 𝑋𝐵

2
𝐾 0 −𝑋 ∗ ∗

0 0 −Γ 0 −𝜀𝐼 ∗

0 𝛿
𝑎
𝜀𝐶 0 0 0 −𝜀𝐼

]

]

]

]

]

]

]

]

+

[

[

[

[

0

0

−Γ

0

]

]

]

]

Δ (𝑘) [0 𝐶 0 0]

+

[

[

[

[

[

[

[

[

0

0

−Γ

0

]

]

]

]

Δ (𝑘) [0 𝐶 0 0]

]

]

]

]

𝑇

< 0.

(23)

By using Lemma 5, (19) holds, which shows that condition (i)
holds if (19) holds. This completes the proof

In the following, the fault sensitivity problem is studied.
Considering system (9), the following lemma is presented to
give the fault sensitivity condition.

Lemma 7. Let real matrix 𝐴, 𝐵
1
, 𝐶, 𝐷

1
, a symmetric matrix

Π = [
−𝐼 0

0 𝛾
2
𝐼
], and scalars 𝜗

1
, 𝜗

2
be given; consider system (9),

then the following conditions are equivalent.
(i) The following finite frequency inequality

𝜎min (𝐺𝑟𝑓
(𝑒
𝑗𝜃

)) > 𝛾, ∀𝜃 ∈ [𝜗
1
, 𝜗
2
] (24)

holds, where 𝐺
𝑟𝑓
(𝑒
𝑗𝜃

) = 𝐶(𝑒
𝑗𝜃

𝐼 − 𝐴)
−1

𝐵
1
+ 𝐷

1
is the transfer

function matrix from 𝑓(𝑘) to 𝑟(𝑘).
(ii) There exist 2𝑛 × 2𝑛 Hermitian matrices 𝑃 and 𝑄 satis-

fying 𝑄 > 0, and

[
𝐴 𝐵

𝐼 0

]

∗

Ξ[
𝐴 𝐵

1

𝐼 0

] + [
𝐶 𝐷

1

0 𝐼

]

∗

Π[
𝐶 𝐷

1

0 𝐼

] < 0, (25)

where

Ξ =
[

[

−𝑃 𝑒
𝑗(]1+]1)/2

𝑄

𝑒
−𝑗(]1+]1)/2

𝑄 𝑃 − (2 cos ]1 − ]
1

2

)𝑄

]

]

. (26)

Note that condition (25) in Lemma 7 can be rewritten as

[Υ 𝐼] 𝑇 [

Ξ 0

0 Π
]𝑇

∗

[Υ 𝐼]

∗

< 0, (27)

where

Υ =
[

[

[

𝐴
𝑇

− 𝐶
𝑇

𝐿
𝑇

−𝐾
𝑇

𝐵
𝑇

2
𝐶
𝑇

−𝐶
𝑇

Δ (𝑘) 𝐿
𝑇

𝐴
𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
Δ (𝑘) 𝐶

𝑇

𝐵
𝑇

1
− 𝐷

𝑇

1
(𝐼 + Δ (𝑘))

𝑇

𝐿
𝑇

𝐵
𝑇

1
𝐷
𝑇

1
(𝐼 + Δ (𝑘))

𝑇

]

]

]

,

(28)

and 𝑇 is the permutation matrix defined as

[𝑁
1

𝑁
2

𝑁
3

𝑁
4

𝑁
5

𝑁
6
] 𝑇 = [𝑁

1
𝑁
2

𝑁
5

𝑁
3

𝑁
4

𝑁
6
] .

(29)

By using Lemma 3, we have that (27) is equivalent to the
existence of a multiplierX such that

𝑇[

Ξ 0

0 Π
]𝑇

∗

< 𝐻𝑒 [

𝐼

Υ
]X. (30)

Obviously, Υ can be rewritten as

Υ =
[

[

𝐴
𝑇

−𝐾
𝑇

𝐵
𝑇

2
𝐶
𝑇

0 𝐴
𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
Δ (𝑘) 𝐶

𝑇

𝐵
𝑇

1
𝐵
𝑇

1
𝐷
𝑇

1
(𝐼 + Δ (𝑘))

𝑇

]

]

+
[

[

−𝐶
𝑇

−𝐶
𝑇

Δ (𝑘)

−𝐷
𝑇

1
(𝐼 + Δ (𝑘))

𝑇

]

]

𝐿
𝑇

[𝐼 0 0] = A +B𝐿
𝑇

C.

(31)

To facilitate dealing with the problem, restrict X with the
following structure:

X = {C
†

𝑋𝑅 + (𝐼 −C
†

C)𝑉 | 𝑋 ∈ R
𝑛×𝑛

, det𝑋 ̸= 0} ,

(32)

where 𝑅 is a matrix to be specified later, 𝑋, 𝑉 are matrix
variables.

Then, we have

ΥX = (A +B𝐿
𝑇

C) (C
†

𝑋𝑅 + (𝐼 −C
†

C)𝑉)

= AX +BΓ𝑅.

(33)

Then the following lemma is given to show that the
restriction of ΥX does not introduce conservatism if the
matrix 𝑅 is specified appropriately.

Lemma 8. Consider system (9), let 𝑅 andΠ be with appropri-
ate dimensions, and let 𝑄 > 0; then the following statements
are equivalent.

(i)There exists a gainmatrix 𝐿 such that condition (25) and

(𝑆𝑅
∗

)
⊥

𝑆𝑇 [

Ξ 0

0 Π
]𝑇

∗

𝑆
∗

(𝑆𝑅
∗

)
⊥∗

< 0 (34)

hold, where

𝑆 =

[

[

[

[

𝐴
𝑇
− 𝐶
𝑇
𝐿
𝑇

−𝐾
𝑇
𝐵
𝑇

2
𝐶
𝑇

𝐼 0 0

−𝐶
𝑇
Δ (𝑘) 𝐿

𝑇
𝐴
𝑇
+ 𝐾
𝑇
𝐵
𝑇

2
Δ (𝑘)𝐶

𝑇
0 𝐼 0

𝐵
𝑇

1
− 𝐷
𝑇

1
(𝐼 + Δ (𝑘))

𝑇
𝐿
𝑇

𝐵
𝑇

1
𝐷
𝑇

1
(𝐼 + Δ (𝑘))

𝑇
0 0 𝐼

𝐼 0 0 0 0 0

0 𝐼 0 0 0 0

]

]

]

]

.

(35)

(ii) There exists matrix variable Γ = 𝐿
𝑇

𝑋 such that

𝑇[

Ξ 0

0 Π
]𝑇

∗

< 𝐻𝑒 [

X
−AX −BΓ𝑅

] . (36)
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Proof. The proof is similar to the proof of Lemma 5 in [20],
it is omitted here.

Then, combining Lemmas 7 and 8, the following theorem
is presented.

Denote

𝐹
𝑎1

=

[

[

[

[

[

[

[

[

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

𝐼 −𝐶
𝑇

0 0

0 0 −𝐷
𝑇

1
−𝐷

𝑇

1

]

]

]

]

]

]

]

]

,

𝐹
𝑎2

=

[

[

[

[

𝐶
𝑇

𝑉
𝑐1

𝐶
𝑇

𝑉
𝑐2

𝐶
𝑇

𝑉
𝑐3

𝐶
𝑇

𝑉
𝑐4

𝐶
𝑇

𝑉
𝑐5

𝐶
𝑇

𝑉
𝑐6

Γ Γ 0 0 Γ −Γ𝐵
1

𝑉
𝑐1

𝑉
𝑐2

𝑉
𝑐3

𝑉
𝑐4

𝑉
𝑐5

𝑉
𝑐6

Γ Γ 0 0 Γ −Γ𝐵
1

]

]

]

]

,

(37)

Λ =

[

[

[

[

[

[

−𝑃
11

− 𝑋 − 𝑋
𝑇

∗ ∗ ∗ ∗ ∗

−𝑃
21

− 𝑉
𝑏1

− 𝑋
𝑇

−𝑃
22

− 𝑉
𝑏2

− 𝑉
𝑇

𝑏2
∗ ∗ ∗ ∗

𝑒
−𝑗𝜗𝑐

𝑄
11

− 𝑉
𝑐1

𝑒
−𝑗𝜗𝑐

𝑄
12

− 𝑉
𝑐2
𝑉
𝑇

𝑏3
Φ ∗ ∗ ∗

Φ
1

Φ
2

Φ
3

Φ
4

∗ ∗

Φ
5

Φ
6

Φ
7

Φ
8

Φ
9

∗

Φ
10

Φ
11

Φ
12

Φ
13

Φ
14

Φ
15

]

]

]

]

]

]

,

(38)

where

Φ = 𝑃
12

− 2 cos 𝜗
𝑤
𝑄
12

− 𝑉
𝑐3

− 𝑉
𝑇

𝑐3
,

Φ
1
= 𝑒

−𝑗𝜗𝑐
𝑄
𝑇

12
+ 𝐴

𝑇

𝑋 − 𝐾
𝑇

𝐵
𝑇

2
𝑉
𝑏1

+ 𝐶
𝑇

𝑉
𝑐1

− 𝐶
𝑇

Γ − 𝑋
𝑇

,

Φ
2
= 𝑒

−𝑗𝜗𝑐
𝑄
𝑇

22
+ 𝐴

𝑇

𝑋 − 𝐾
𝑇

𝐵
𝑇

2
𝑉
𝑏2

− 𝐶
𝑇

𝑉
𝑐3

+ 𝐶
𝑇

Γ − 𝑉
𝑇

𝑏4
,

Φ
3
= 𝑃

12
2 cos 𝜗

𝑤
𝑄
22

− 𝐾
𝑇

𝐵
𝑇

2
𝑉
𝑏3

+ 𝐶
𝑇

𝑉
3
+ 𝑉

𝑇

𝑐4
,

Φ
4
= −𝐾

𝑇

𝐵
𝑇

2
𝑉
𝑏4

+ 𝐶
𝑇

𝑉
𝑐4

− (𝐾
𝑇

𝐵
𝑇

2
𝑉
𝑏4

− 𝐶
𝑇

𝑉
𝑐4
)

𝑇

,

Φ
5
= (𝐴

𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
)𝑉

𝑏1
− 𝑋

𝑇

,

Φ
6
= (𝐴

𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
)𝑉

𝑏2
− 𝑉

𝑏5
,

Φ
7
= (𝐴

𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
)𝑉

𝑏3
− 𝑉

𝑐5
,

Φ
8
= −𝐼 + (𝐴

𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
)𝑉

𝑏4
+ 𝑉

𝑇

𝑐5
+ 𝑋

𝑇

𝐴 − 𝑉
𝑇

𝑏5
𝐵
2
𝐾 − Γ

𝑇

𝐶,

Φ
9
= (𝐴

𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
)𝑉

𝑏5
− 𝑉

𝑇

𝑏5
(𝐴 + 𝐵

2
𝐾) ,

Φ
10

= 𝐵
𝑇

1
𝑋 + 𝐵

𝑇

1
𝑉
𝑏1

+ 𝐵
𝑇

1
𝑋
𝑇

− 𝐷
𝑇

1
𝑉
𝑐1

− 𝐷
𝑇

1
Γ,

Φ
11

= 𝐵
𝑇

1
𝑋 + 𝐵

𝑇

1
𝑉
𝑏2

− 𝑉
𝑇

𝑏6
− 𝐷

𝑇

1
𝑉
𝑐2

− 𝐷
𝑇

1
Γ,

Φ
12

= 𝐵
𝑇

1
𝑉
𝑏3

− 𝑉
𝑐6

− 𝐷
𝑇

1
𝑉
𝑐3
,

Φ
13

= 𝐵
𝑇

1
𝑉
𝑏4
+ [𝐴

𝑇

𝑋𝐵
1
− 𝐾

𝑇

𝐵
𝑇

2
𝑉
𝑏6

+𝐶
𝑇

𝑉
𝑐6

+ 𝐶
𝑇

Γ𝐵
1
]

𝑇

− 𝐷
𝑇

1
𝑉
𝑐4
,

Φ
14

= 𝐵
𝑇

1
𝑋 + 𝐵

𝑇

1
𝑉
𝑏5

+ [𝐴
𝑇

+ 𝐾
𝑇

𝐵
𝑇

2
𝑉
𝑏6
]

𝑇

− 𝐷
𝑇

1
𝑉
𝑐5

− 𝐷
𝑇

1
Γ,

Φ
15

= 𝐵
𝑇

1
𝑋𝐵

1
− 𝐵

𝑇

1
𝑉
𝑏6

+ [𝐵
𝑇

1
𝑋𝐵

1
− 𝐵

𝑇

1
𝑉
𝑏6
]

𝑇

− 𝐷
𝑇

1
𝑉
𝑐6

+ 𝐷
𝑇

1
Γ𝐵

1
,

(39)

with

𝜗
𝑐
=

(𝜗
1
+ 𝜗

2
)

2

, 𝜗
𝜔
=

(𝜗
2
− 𝜗

1
)

2

. (40)

Theorem9. Consider system (9); let 𝛾 > 0 and 𝛿
𝑎
> 0 be given

constants and

Π := [

−𝐼 0

0 𝛾
2

𝐼

] , 𝑃, 𝑄 ∈ 𝐻
𝑛

(41)

and 𝑄 > 0. Provided that 𝑅 = [𝐼 𝐼 0 0 − 𝐵
1
], then

𝜎min𝐺𝑟𝑓
(𝑒
𝑗𝜃

) > 𝛾, ∀𝜃 ∈ [𝜗
2
, 𝜗
2
] , (42)

holds if there exist matrix variables𝑉
𝑏𝑖
,𝑉

𝑐𝑖
, 𝑖 = 1, . . . , 6, 𝑋, and

scalars 𝜗
1
, 𝜗

2
, and 𝜀 such that

[

[

Λ 𝐹
𝑎1

𝛿
𝑎
𝜀𝐹

𝑇

𝑎2

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]

]

< 0. (43)

Proof. By Lemmas 7 and 8, we have that (42) holds if
inequality (36) holds. Similar to the proof of Theorem 1 in
[20], sinceC = [𝐼 0 0], we know that

C
†

=
[

[

𝐼

0

0

]

]

. (44)

Then from (32) we have

X =
[

[

𝐼

0

0

]

]

𝑋𝑅 +
[

[

0 0 0

0 𝐼 0

0 0 𝐼

]

]

𝑉. (45)

Partition 𝑉 as 𝑉 = [

𝑉𝑎

𝑉𝑏

𝑉𝑐

]; then we get

X =
[

[

𝑋𝑅

𝑉
𝑏

𝑉
𝑐

]

]

. (46)

So, (36) can be written as

𝑇[

Ξ 0

0 Π
]𝑇

∗

< 𝐻𝑒

[

[

[

[

[

[

[

[

𝐼 0 0 0

0 𝐼 0 0

0 0 𝐼 0

−𝐴
𝑇

𝐾
𝑇

𝐵
𝑇

2
−𝐶

𝑇

𝐶
𝑇

0 −𝐴
𝑇

− 𝐾
𝑇

𝐵
𝑇

2
−Δ (𝑘) 𝐶

𝑇

𝐶
𝑇

Δ (𝑘)

−𝐵
𝑇

1
−𝐵

𝑇

1
𝐷
𝑇

1
(𝐼 + Δ (𝑘)) 𝐷

𝑇

1
(𝐼 + Δ (𝑘))

]

]

]

]

]

]

]

]

×

[

[

[

[

𝑋𝑅

𝑉
𝑏

𝑉
𝑐

Γ𝑅

]

]

]

]

.

(47)
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Let 𝑉
𝑏
= [𝑉

𝑏1
− 𝑉

𝑏6
], 𝑉

𝑐
= [𝑉

𝑐1
− 𝑉

𝑐6
], and partition 𝑃 and 𝑄

as 𝑃 = [
𝑃11 𝑃12

𝑃21 𝑃22

] , 𝑄 = [

𝑄11 𝑄12

𝑄
𝑇

12
𝑄22

] > 0; then we have

Λ + 𝐹
𝑎1
diag {Δ (𝑘) , Δ (𝑘) , Δ (𝑘) , Δ (𝑘)} 𝐹

𝑎2

+ (𝐹
𝑎1
diag {Δ (𝑘) , Δ (𝑘) , Δ (𝑘) , Δ (𝑘)} 𝐹

𝑎2
)
𝑇

< 0,

(48)

where Δ(𝑘) satisfyies (7). By using Lemma 5, we can obtain
that (43) holds. So, it concludes that (42) holds if (43) holds,
which completes the proof.

Combining Lemma 6 andTheorem 9, we have the follow-
ing theorem.

Theorem 10. Consider system (1), and let 𝛾 > 0 and 𝛿
𝑎

>

0 be given constants; there exists a quantized fault detection
observer (2) such that error closed-loop system (9) is stable and
with the finite frequency performance

𝜎min𝐺𝑟𝑓
(𝑒
𝑗𝜃

) > 𝛾, ∀𝜃 ∈ [𝜗
2
, 𝜗
2
] (49)

if there exist matrix variables Γ, 𝑉
𝑏𝑖
, 𝑉

𝑐𝑖
, 𝑖 = 1, . . . , 6, 𝑋 =

[
𝑋 0

0 𝑋
] > 0, 𝑃 = [

𝑃11 𝑃12

𝑃21 𝑃22

], and 𝑄 = [

𝑄11 𝑄12

𝑄
𝑇

12
𝑄22

] > 0 and scalars
𝜗
1
, 𝜗

2
, 𝜀
1
, and 𝜀

2
such that the following inequalities hold:

[

[

[

[

[

[

[

[

−𝑋 ∗ ∗ ∗ ∗ ∗

0 −𝑋 ∗ ∗ ∗ ∗

𝑋𝐴 − Γ
𝑇

𝐶 0 −𝑋 ∗ ∗ ∗

−𝑋𝐵
2
𝐾 𝑋𝐴 + 𝑋𝐵

2
𝐾 0 −𝑋 ∗ ∗

0 0 −Γ 0 −𝜀
1
𝐼 ∗

0 𝛿
𝑎
𝜀
1
𝐶 0 0 0 −𝜀

1
𝐼

]

]

]

]

]

]

]

]

< 0

[

[

Λ 𝐹
𝑎1

𝛿
𝑎
𝜀
2
𝐹
𝑇

𝑎2

∗ −𝜀
2
𝐼 0

∗ ∗ −𝜀
2
𝐼

]

]

< 0,

(50)

where 𝛿
𝑎
= max{𝛿

𝑖
, 𝑖 = 1, . . . , 𝑦} and Λ is defined by (38), and

the observer gain 𝐿 is obtained as 𝐿𝑇 = Γ𝑋
−1.

Remark 11. Note that, due to the existence of the unknown
controller gain, the conditions given in Theorem 10 are not
convex. In order to solve this problem, we design a controller
gain by state feedback method as follows:

[
−𝑋 𝑋𝐴

𝑇

+ 𝐾

𝑇

𝐵
𝑇

2

𝐴𝑋 + 𝐵
2
𝐾 −𝑋

] < 0, (51)

for 𝑋 > 0, and the controller gain is given as 𝐾 = 𝐾𝑋
−1.

Then use the state feedback controller gain as the initial value
to obtain the observer gain 𝐿. So the following algorithm is
given.

Algorithm 12. Let 𝛿
𝑎
> 0 be given scalars and 𝜁 > 0 a given

small constant specifying a convergence criterion.

Step 1. By (51), we obtain the initial solutions 𝐾
ini; go to

Step 2.

Step 2. Letting𝐾 = 𝐾
ini,

max 𝛾

s.t. (50) ,
(52)

we obtain Γ,𝑋, 𝑉
𝑏𝑖
, 𝑖 = 1, . . . , 6, and 𝛾ini; then go to Step 3.

Step 3. Let𝑋ini = 𝑋, 𝑉ini
𝑏𝑖

= 𝑉
𝑏𝑖
, 𝑖 = 1, . . . , 6,

max 𝛾

s.t. (50) .
(53)

𝛾 and 𝐾 are obtained. Then if ‖𝛾 − 𝛾ini‖ < 𝜁, stop, and 𝐿
𝑇

=

Γ𝑋
−1, else, let 𝐾 = 𝐾 and 𝛾ini = 𝛾; return to Step 2.

Remark 13. 𝜀
1
, 𝜀
2
in (50) can be obtained by searchingmethod

to guarantee that the performance 𝛾 is maximum.

4. Example

In this section, an example is given to illustrate the effective-
ness of the developed theory. Consider a linear systemof form
(1) with

𝐴 =
[

[

0.9673 0 0.12

0.0293 0.8763 −0.4

0.0259 0 0.9032

]

]

,

𝐵
1
=

[

[

0.1 0

0.5 0.06

−0.2 0.15

]

]

, 𝐵
2
=

[

[

1 0.04

0 0.3

0 0.05

]

]

,

𝐷
1
= [

0.1 0

0.5 12
] , 𝐷

2
= [

1 0

0.5 0.1
] ,

𝐶 = [

0.1 0 0

1 1 0
] .

(54)

For this example, set the quantization densities as 𝜌
1
= 𝜌

2
=

0.91. Assume that the frequency range of faults is known as
𝜃 ∈ [0, 0.5]. Let 𝜀

1
= 0.9899, 𝜀

2
= 1.1299; by Algorithm 12,

we obtain the fault sensitivity performance index 𝛾 = 1.2131,
and, correspondingly, the quantized fault detection observer
gain matrix 𝐿finite is obtained as

𝐿finite =
[

[

0.1452 0.0541

−0.0145 −0.2156

−0.5421 0.3741

]

]

. (55)

In order to study the effects of fault on residual of the
quantized detection observer, the fault signal is selected as

𝑓 (𝑘) =

{

{

{

[1 0.9]

𝑇

, 𝑘 ≥ 20,

[0 0]

𝑇

, otherwise.
(56)

Using the observer gain matrix 𝐿finite given in (48), the two
residual outputs are denoted by the solid lines of Figures 1 and
2, respectively, fromwhich we can see that the faulty cases are
well discriminated from the fault free cases in presence of the
disturbance effects.
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Figure 1: Residual output signal.
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Figure 2: Residual output signal.

5. Conclusion

This paper considers the fault detection problem in the
finite frequency domain for networked control systems with
signal quantization. A quantized fault detection observer is
designed by employing a performance index which is used
to increase the fault sensitivity in finite frequency domain.
By using the logarithmic quantizer method, the quantized
measurement signals are dealt with by utilizing the sector
bound method, in which the quantization error is treated
as sector-bounded uncertainty. Further, By using the GKYP
Lemma, an iterative LMI-based optimization algorithm is
developed to design the quantized fault detection observer.
Finally, a numerical example is given to illustrate the the
effectiveness of the proposed method.
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Due to the bandwidth constraints in the networked control systems (NCSs), a deadband scheduling strategy is proposed to
reduce the data transmission rate of network nodes. A discrete-time model of NCSs is established with both deadband scheduling
and network-induced time-delay. By employing the Lyapunov functional and LMI approach, a state feedback H

∞
controller is

designed to ensure the closed-loop system asymptotically to be stable with H
∞

performance index. Simulation results show that
the introduced deadband scheduling strategy can ensure the control performance of the system and effectively reduce the node’s
data transmission rate.

1. Introduction

Networked control systems (NCSs) are control systems in
which the control loop is closed over a wired or wireless
communication network. They have received a great deal
of attention in the recent years owing to their successful
applications in a wide range of areas such as industrial
automation, aerospace, and nuclear power station [1, 2].
Compared with the traditional point-to-point communica-
tion, NCSs have advantages of low cost, easy installation and
maintenance, great reliability, and so forth. However, due
to the introduction of the communication networks, they
also incur some new issues such as network-induced delays,
packet dropouts, and limited bandwidth resources, which
make the analysis and design of NCSs becomemore complex
[3, 4].

Many results for NCSs have been reported to handle
network-induced delays, packet dropouts and communica-
tion constraints in the literature; see [5–12] and the references
therein. It should be pointed out that most of the available
results make use of time-driven sampling and communi-
cation scheme since it is relatively easy to implement, and
there is a well-established system theory for periodic signals.
However, time-driven communication scheme is not desir-
able in many control applications. For example, in the NCSs
with limited bandwidth resources, frequent data transmission

will increase the network collision probability when there are
many nodes on the network, thereby increasing the commu-
nication delay and data dropouts and leading to the poor
performance and instability of the systems [3]. On the other
hand, as is well-known, in the wireless networked control
systems (WNCSs), amain constraint of wireless devices is the
limited battery life, and wireless transmission consumes sig-
nificantly more energy than internal computation [13]; thus
reducing the data transmission rate is particularly important
in theWNCSs. For the above two cases, time-driven commu-
nication scheme is not suitable since its transmission rate is
generally high which results in inefficient utilization of the
limited resources, such as network bandwidth and energy.
Therefore, how to design a reasonable scheduling strategy
to reduce the use of constrained resources and ensure the
performance of NCSs becomes one of the research hotspots.

Not only deadband scheduling techniques (i.e., by setting
transmission deadband for the network node, the node will
not transmit a new message if the node signal or signal
change is within the deadband), which can effectively reduce
the use of network bandwidth and energy consumption, but
also the algorithms which are easy to realize have received
an increasing attention in the recent years [14–18]. Besides,
numerous other concepts have been proposed in the liter-
ature, such as send-on-delta sampling [19–21], event-based
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sampling [22–24], and event-triggered sampling [25, 26].
Despite the existence of many names, the basic principle is
the same. In [14], a deadbandmethodwas introduced into the
NCSs for the first time, in which the transmission deadbands
were set in the sensor and controller to reduce the data
transmission rate, and the deadband threshold optimization
problem was also discussed. In [15], the relationship between
the deadband threshold and the control performance was
analyzed by simulation. The paper [23] used the deviation
of two adjacent states beyond the deadband threshold to
drive the nodes’ data transmission and a dynamically selected
deadband threshold value in accordance with the round-trip
delay. In [16, 17], the stability of the system with deadband
scheduling was investigated, but the network delay was not
considered in [16] the nodes should be synchronized and the
network delay should be measurable in [17]. The paper [18]
proposed a signal difference-based transmission deadband
scheduling strategy, a continuous-time model of WNCSs
was established with both the probability distribution of
delay and parametric uncertainties, and the 𝐻

∞
controller

was designed. In [26], for a class of uncertain continuous-
time NCSs with quantizations, the codesign for controller
and event-triggering scheme was proposed by using a delay
system approach.

Until now, although some important pieces of work have
been reported on deadband scheduling schemes in NCSs,
which have a great significance on both theoretical develop-
ment and practical applications in NCSs, it is worth noting
that the obtained results on deadband scheduling in NCSs
mostly focus on the system simulation and performance
analysis; few papers have solved the problems of controller
design and synthesis, which are more useful and challenging
than the issue of performance analysis. In addition, to the best
of our knowledge, few related results have been established
for discrete-time NCSs with deadband scheduling, which
motivates the work of this paper.

In this paper, we propose a deadband scheduling scheme
to save the limited bandwidth resources while guarantee-
ing the desired 𝐻

∞
control performance. Considering the

influence of uncertain short time-delay, the NCSs with both
deadband scheduling and time-delay ismodeled as a discrete-
time system with parameter uncertainties. By the Lyapunov
functional and LMI approach, the 𝐻

∞
control problem is

investigated. Finally, a numerical example is given to show
the usefulness of the derived results.

The rest of this paper is organized as follows. Section 2
gives a discrete-time model of the closed-loop system. In
Section 3, a state feedback 𝐻

∞
controller is designed to

ensure the closed-loop system asymptotically to be stable
with 𝐻

∞
performance index. Section 4 demonstrates the

validness of the proposed method through a numerical
example. Conclusions are given in Section 5.

Notation.The notations used throughout this paper are fairly
standard. R𝑛 denotes the 𝑛-dimensional Euclidean space.
‖ ⋅ ‖
2
refers to the Euclidean vector norm. 𝑙

2
[0,∞) is the

space of square summable infinite sequence. 𝐼 and 0 represent
the identity matrix and zero matrix with appropriate dimen-
sions, respectively. diag{⋅ ⋅ ⋅ } stands for a diagonal matrix.

DS1

Network

Controller

Storer

DS2Storer

Sampler

K

Actuator Plant

Smart sensor

x(k)

x(k)

̄x(k)
̄x(k − 1)

𝜏
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k

𝜏
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k

u(k)�(k)

�(k − 1)

Figure 1: Model of networked control system with deadband
scheduling.

The superscripts “𝑇” and “−1” represent matrix transpose
and inverse, and “∗” denotes the term that is induced by
symmetry.

2. Problem Description and Modeling

The networked control system with deadband scheduling in
this paper is shown in Figure 1, where deadband schedulers
(DS1, DS2) are set in the sensor and controller, respectively,
𝜏
sc
𝑘

is sensor-to-controller delay, and 𝜏
ca
𝑘

is controller-to-
actuator delay.

Consider the following continuous plant model:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
1
V (𝑡) + 𝐵

2
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of plant, V(𝑡) ∈ R𝑝 is
the input vector, 𝑦(𝑡) ∈ R𝑞 is the output vector, and 𝑤(𝑡) ∈

R𝑝 is the disturbance input. 𝐴, 𝐵
1
, 𝐵
2
, and 𝐶 are known real

constant matrices with appropriate dimensions.
Make the following assumptions for the system.

(1) In the smart sensor, the sampler is time-driven, with
a sampling period ℎ; both the controller and actuator
are event-driven.

(2) The total network-induced time-delay 𝜏
𝑘
= 𝜏

sc
𝑘

+ 𝜏
ca
𝑘

is time varying and nondeterministic, which satisfies
0 ≤ 𝜏
𝑘
≤ ℎ.

Thus, the discretized equation of plant can be described
as [27]

𝑥 (𝑘 + 1) = 𝐺𝑥 (𝑘) + 𝐻
0
(𝜏
𝑘
) V (𝑘)

+ 𝐻
1
(𝜏
𝑘
) V (𝑘 − 1) + 𝐻

𝑤
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(2)
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where 𝐺 = 𝑒
𝐴ℎ, 𝐻
0
(𝜏
𝑘
) = ∫

ℎ−𝜏𝑘

0

𝑒
𝐴𝑡

𝑑𝑡𝐵
1
, 𝐻
1
(𝜏
𝑘
) = ∫

ℎ

ℎ−𝜏𝑘

𝑒
𝐴𝑡

𝑑𝑡

𝐵
1
, and 𝐻

𝑤
= ∫

ℎ

0

𝑒
𝐴𝑡

𝑑𝑡𝐵
2
. By mathematical transformation,

𝐻
0
(𝜏
𝑘
),𝐻
1
(𝜏
𝑘
) can be expressed as

𝐻
0
(𝜏
𝑘
) = 𝐻

0
+ 𝐷𝐹 (𝜏



𝑘
) 𝐸,

𝐻
1
(𝜏
𝑘
) = 𝐻

1
− 𝐷𝐹 (𝜏



𝑘
) 𝐸,

(3)

where

𝐻
0
= ∫

ℎ/2

0

𝑒
𝐴𝑠

𝑑𝑠 ⋅ 𝐵, 𝐻
1
= ∫

ℎ

ℎ/2

𝑒
𝐴𝑠

𝑑𝑠 ⋅ 𝐵,

𝛿 = max
𝜏


𝑘












∫

−𝜏


𝑘

0

𝑒
𝐴𝑠

𝑑𝑠










2

=











∫

ℎ/2

0

𝑒
𝐴𝑠

𝑑𝑠









2

,

𝐷 = 𝛿𝑒
𝐴(ℎ/2)

, 𝐸 = 𝐵, 𝜏


𝑘
∈ [−

ℎ

2

,

ℎ

2

] ,

𝐹
𝑇

(𝜏


𝑘
) 𝐹 (𝜏



𝑘
) ≤ 𝐼.

(4)

Remark 1. Limited by space, the detailed discretization pro-
cess for system (1) with uncertain short time-delay is omitted
in this paper and can be found in [27]. From (2) and (3), we
know that the continuous plant with uncertain short time-
delay inNCSs can bemodeled as a discrete linear systemwith
parameter uncertainties.

2.1. Description of Deadband Schedulers. The signal will be
transmitted only when the difference between the current
signal and the previous transmission signal is greater than
the error threshold. According to this, the deadband sched-
ulers designed in this paper are the error threshold-based
deterministic schedulers. The working mechanism of the
deadband scheduler 1(DS1) in the sensor can be described as

𝑥
𝑖
(𝑘) = {

𝑥
𝑖
(𝑘) ,





𝑥
𝑖
(𝑘 − 1) − 𝑥

𝑖
(𝑘)





> 𝛿
𝑖





𝑥
𝑖
(𝑘)





,

𝑥
𝑖
(𝑘 − 1) ,





𝑥
𝑖
(𝑘 − 1) − 𝑥

𝑖
(𝑘)





≤ 𝛿
𝑖





𝑥
𝑖
(𝑘)





,

(5)

where 𝑖 = 1, 2, . . . , 𝑛; 𝛿
𝑖
∈ [0, 1], 𝑥

𝑖
(𝑘), and 𝑥

𝑖
(𝑘) are given

error threshold values, output signals, and input signals of
DS1, respectively.

Set Λ
1
= diag{𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
}, 𝐹
1
(𝑘) = diag{𝑓

11
(𝑘), 𝑓
12
(𝑘),

. . . , 𝑓
1𝑛
(𝑘)}, 𝑓

1𝑖
(𝑘) ∈ [−1, 1], 𝑖 = 1, 2, . . . , 𝑛; then from (5), the

input-output relationship of DS1 can be converted to

𝑥 (𝑘) = 𝑥 (𝑘) + Λ
1
𝐹
1
(𝑘) 𝑥 (𝑘) , (6)

where 𝐹𝑇
1
(𝑘)𝐹
1
(𝑘) ≤ 𝐼.

Remark 2. In this paper, the effect of active packet dropouts
under the deadband scheduling scheme is modeled as a
bounded uncertain item of the transmission signal.Themain
advantages of this modeling method are as follows: (1) a
non-linear relationship between the input and output of the
deadband scheduler is converted to a linear relationship
with uncertain parameters; (2) due to the bounded ranges
of uncertain parameters related to the deadband threshold

values, it is easier to merge scheduling policy parameters into
the system model.

Similarly, the workingmechanism of deadband scheduler
2(DS2) in the controller can be described as:

V
𝑗
(𝑘) =

{

{

{

𝑢
𝑗
(𝑘) ,






V
𝑗
(𝑘 − 1) − 𝑢

𝑗
(𝑘)






> 𝜎
𝑗






𝑢
𝑗
(𝑘)






,

V
𝑗
(𝑘 − 1) ,






V
𝑗
(𝑘 − 1) − 𝑢

𝑗
(𝑘)






≤ 𝜎
𝑗






𝑢
𝑗
(𝑘)






,

(7)

where 𝑗 = 1, 2, . . . , 𝑝; 𝜎
𝑗
∈ [0, 1], V

𝑗
(𝑘) and 𝑢

𝑗
(𝑘) are given

error threshold values, output signals and input signals of
DS2, respectively.

Set Λ
2
= diag{𝜎

1
, 𝜎
2
, . . . 𝜎
𝑝
}, 𝐹
2
(𝑘) = diag{𝑓

21
(𝑘), 𝑓
22
(𝑘),

. . . , 𝑓
2𝑝
(𝑘)},𝑓

2𝑗
(𝑘) ∈ [−1, 1], 𝑗 = 1, 2, . . . , 𝑝, then from (7) the

input-output relationship of DS2 can be converted to:

V (𝑘) = 𝑢 (𝑘) + Λ
2
𝐹
2
(𝑘) 𝑢 (𝑘) , (8)

where 𝐹𝑇
2
(𝑘)𝐹
2
(𝑘) ≤ 𝐼.

From the above, we know that after the introduction of
deadband schedulers into NCSs, the signals do not need to
be transmitted at each sampling period so as to achieve the
purpose of reducing data transmission rate and the effect
of bandwidth constraints on the system. In addition, the
principles of the considered schedulers are simple, which do
not require a lot of computing and data storage.

2.2. TheModel of Closed-Loop System. Employ a memoryless
state feedback controller

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (9)

where 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑝, and𝐾 is the state feedback gain
with appropriate dimensions.

Selecting the augmented vector 𝑧(𝑘) =

[𝑥
𝑇

(𝑘) V𝑇(𝑘 − 1)]

𝑇

and synthesizing (2), (3), (6), (8),
and (9), the closed-loop system can be described as

𝑧 (𝑘 + 1) = Φ
𝑘
𝑧 (𝑘) + 𝐻

𝑤
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑧 (𝑘) ,

(10)

where
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Φ
𝑘
= [

𝐺 + (𝐻
0
+ 𝐷𝐹 (𝜏



𝑘
) 𝐸) (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾 (𝐼 + Λ

1
𝐹
1
(𝑘)) 𝐻

1
− 𝐷𝐹 (𝜏



𝑘
) 𝐸

(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾 (𝐼 + Λ

1
𝐹
1
(𝑘)) 0

]

= 𝐺 + 𝐻𝐾
1
𝐼 + 𝐷𝐹 (𝜏



𝑘
) 𝐸𝐾
1
𝐼 + 𝐷𝐹 (𝜏



𝑘
) 𝐸,

(11)

where

𝐺 = [

𝐺 𝐻
1

0 0
] , 𝐶 = [𝐶 0] ,

𝐻 = [

𝐻
0

𝐼
] , 𝐷 = [

𝐷

0
] ,

𝐼 = [𝐼 0] , 𝐸 = [0 −𝐸] ,

𝐻
𝑤
= [

𝐻
𝑤

0
] , 𝐾

1
= (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾 (𝐼 + Λ

1
𝐹
1
(𝑘)) .

(12)

3. Design of 𝐻
∞

Controller

In this section, we will investigate 𝐻
∞

control problem for
the closed-loop system (10). Throughout this paper, we will
use the following lemmas.

3.1. Related Lemmas

Lemma 3 (see [28]). For the given matrices 𝐴, 𝑄 = 𝑄
𝑇, and

𝑃 = 𝑃
𝑇

> 0, 𝐴𝑇𝑃𝐴 + 𝑄 < 0 hold if and only if

[

𝑄 𝐴
𝑇

𝐴 −𝑃
−1
] < 0, [

−𝑃
−1

𝐴

𝐴
𝑇

𝑄

] < 0. (13)

Lemma 4 (see [28]). Let 𝑊, 𝑀, 𝑁, 𝐹(𝑘) be real matrices of
appropriate dimensions with 𝐹

𝑇

(𝑘)𝐹(𝑘) ≤ 𝐼 and 𝑊 = 𝑊
𝑇;

then

𝑊 + 𝑀𝐹 (𝑘)𝑁 + 𝑁
𝑇

𝐹
𝑇

(𝑘)𝑀
𝑇

< 0 (14)

holds if and only if there exists a real scalar 𝜀 > 0, satisfying

𝑊 + 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁 < 0. (15)

More especially, when 𝐹(𝑘) is a diagonal matrix, there also
exists the following lemma.

Lemma 5 (see [29]). Let 𝑊, 𝑀, 𝑁 be real matrices of
appropriate dimensions, let 𝐹(𝑘) be a diagonal matrix with
𝐹
𝑇

(𝑘)𝐹(𝑘) ≤ 𝐼 and𝑊 = 𝑊
𝑇; then the following two conditions

are equivalent:

(1) 𝑊 + 𝑀𝐹(𝑘)𝑁 + 𝑁
𝑇

𝐹
𝑇

(𝑘)𝑀
𝑇

< 0

(2) there exists a matrix 𝑆 = 𝑆
𝑇

> 0, satisfying 𝑊 +

𝑀𝑆𝑀
𝑇

+ 𝑁
𝑇

𝑆
−1

𝑁 < 0.

Remark 6. Due to the introduction of a symmetric positive-
definite matrix instead of a scalar in Lemma 5, problem

solving is expected to have a less conservatism comparedwith
Lemma 4.

We are now in a position to formulate 𝐻
∞

control
problem forNCSswith both deadband scheduling and uncer-
tain short time-delay. More specifically, given a disturbance
attenuation level 𝛾, we design a state feedback controller of the
form (9) such that the closed-loop system (10) with 𝑤(𝑘) = 0

is asymptotically stable and under zero initial condition; the
output 𝑦(𝑘) satisfies ‖𝑦‖

2
≤ 𝛾‖𝑤‖

2
for all nonzero 𝑤(𝑘) ∈

𝑙
2
[0,∞).

3.2. Main Results. Based on Lyapunov functional method
and 𝐻

∞
theory [28], the following conclusions can be

obtained.

Theorem 7. For a given scalar 𝛾 > 0, under the given
deadband scheduling schemes (5) and (7), the closed-loop
system (10) is asymptotically stable with 𝐻

∞
performance 𝛾

if there exist symmetric positive-definite matrices 𝑃, 𝑊
1
, 𝑊
2
,

feedback gain matrix 𝐾, and scalar 𝜀
1
> 0 such that

[

[

[

[

[

[

[

[

[

Π
11

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

Π
14

𝐻𝐾Λ
1

0

∗ Π
22

0 (𝐸𝐾𝐼 + 𝐸)

𝑇

0 (𝐾𝐼)

𝑇

∗ ∗ −𝛾
2

𝐼 0 0 0

∗ ∗ ∗ Π
44

𝐸𝐾Λ
1

0

∗ ∗ ∗ ∗ −𝑊
1

(𝐾Λ
1
)
𝑇

∗ ∗ ∗ ∗ ∗ −𝑊
2

]

]

]

]

]

]

]

]

]

< 0,

(16)
where

Π
11

= −𝑃
−1

+ 𝜀
1
𝐷𝐷

𝑇

+ (𝐻Λ
2
)𝑊
2
(𝐻Λ
2
)

𝑇

,

Π
14

= (𝐻Λ
2
)𝑊
2
(𝐸Λ
2
)
𝑇

,

Π
22

= −𝑃 + 𝐶

𝑇

𝐶 + 𝐼

𝑇

𝑊
1
𝐼,

Π
44

= −𝜀
1
𝐼 + (𝐸Λ

2
)𝑊
2
(𝐸Λ
2
)
𝑇

.

(17)

Proof . (i) We first show that system (10) with 𝑤(𝑘) = 0

is asymptotically stable. To the end, defining a Lyapunov
functional as 𝑉(𝑘) = 𝑧

𝑇

(𝑘)𝑃𝑧(𝑘), we have that
Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘)

= 𝑧
𝑇

(𝑘 + 1) 𝑃𝑧 (𝑘 + 1) − 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘)

= 𝑧
𝑇

(𝑘)Φ
𝑇

𝑘
𝑃Φ
𝑘
𝑧 (𝑘) − 𝑧

𝑇

(𝑘) 𝑃𝑧 (𝑘)

= 𝑧
𝑇

(𝑘) (Φ
𝑇

𝑘
𝑃Φ
𝑘
− 𝑃) 𝑧 (𝑘) .

(18)
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Obviously, ifΦ𝑇
𝑘
𝑃Φ
𝑘
−𝑃 < 0, thenΔ𝑉(𝑘) < 0, and the closed-

loop system (10) is asymptotically stable.
(ii) Next, we prove that system (10) has𝐻

∞
performance

𝛾. Define

𝐽 =

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)]

=

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + Δ𝑉 (𝑘)]

− 𝑉 (∞) + 𝑉 (0) .

(19)

Under zero initial conditions, we have that 𝑉(0) = 0, but
𝑉(∞) ≥ 0; therefore,

𝐽 ≤

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + Δ𝑉 (𝑘)]

=

∞

∑

𝑘=0

[𝑧
𝑇

(𝑘) 𝑤
𝑇

(𝑘)]Π [

𝑧 (𝑘)

𝑤 (𝑘)
] ,

(20)

where

Π = [

Φ
𝑇

𝑘
𝑃Φ
𝑘
+ 𝐶

𝑇

𝐶 − 𝑃 Φ
𝑇

𝑘
𝑃𝐻
𝑤

∗ 𝐻

𝑇

𝑤
𝑃𝐻
𝑤
− 𝛾
2

𝐼

] . (21)

If Π < 0, thenΦ
𝑇

𝑘
𝑃Φ
𝑘
+𝐶

𝑇

𝐶−𝑃 < 0; therefore,Φ𝑇
𝑘
𝑃Φ
𝑘
−

𝑃 < −𝐶

𝑇

𝐶 < 0; the condition in (i) holds, and system
(10) with 𝑤(𝑘) = 0 is asymptotically stable. In addition, If

Π < 0, then 𝐽 < 0; therefore, ‖𝑦‖2
2

= ∑
∞

𝑘=0
𝑦
𝑇

(𝑘)𝑦(𝑘) <

𝛾
2

∑
∞

𝑘=0
𝑤
𝑇

(𝑘)𝑤(𝑘) = 𝛾
2

‖𝑤‖
2

2
.

According to Π < 0, substituting Φ
𝑘

= 𝐺 + 𝐻𝐾
1
𝐼 +

𝐷𝐹(𝜏


𝑘
)𝐸𝐾
1
𝐼 + 𝐷𝐹(𝜏



𝑘
)𝐸 into (21) and applying Lemma 3, we

have that

[

[

[

−𝑃
−1

𝐺 + 𝐻𝐾
1
𝐼 𝐻
𝑤

∗ −𝑃 + 𝐶

𝑇

𝐶 0

∗ ∗ −𝛾
2

𝐼

]

]

]

+
[

[

𝐷

0

0

]

]

𝐹 (𝜏


𝑘
) [0 𝐸𝐾

1
𝐼 + 𝐸 0]

+ [0 𝐸𝐾
1
𝐼 + 𝐸 0]

𝑇

𝐹
𝑇

(𝜏


𝑘
)
[

[

𝐷

0

0

]

]

𝑇

< 0.

(22)

Due to 𝐹
𝑇

(𝜏


𝑘
)𝐹(𝜏


𝑘
) ≤ 𝐼 and by the use of Lemma 4, we can

get that

[

[

[

−𝑃
−1

𝐺 + 𝐻𝐾
1
𝐼 𝐻
𝑤

∗ −𝑃 + 𝐶

𝑇

𝐶 0

∗ ∗ −𝛾
2

𝐼

]

]

]

+ 𝜀
1

[

[

𝐷

0

0

]

]

[

[

𝐷

0

0

]

]

𝑇

+ 𝜀
−1

1
[0 𝐸𝐾

1
𝐼 + 𝐸 0]

𝑇

[0 𝐸𝐾
1
𝐼 + 𝐸 0] < 0.

(23)

According to Lemma 3, (23) is equivalent to

[

[

[

[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷

𝑇

𝐺 + 𝐻𝐾
1
𝐼 𝐻
𝑤

0

∗ −𝑃 + 𝐶

𝑇

𝐶 0 (𝐸𝐾
1
𝐼 + 𝐸)

𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]

]

]

]

]

< 0.

(24)

Substituting𝐾
1
= (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾(𝐼 + Λ

1
𝐹
1
(𝑘)) into (24), we

have that

[

[

[

[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷

𝑇

𝐺 + 𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 𝐻

𝑤
0

∗ −𝑃 + 𝐶

𝑇

𝐶 0 (𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 + 𝐸)

𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]

]

]

]

]

+

[

[

[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]

]

]

]

𝐹
1
(𝑘) [0 𝐼 0 0] + [0 𝐼 0 0]

𝑇

𝐹
𝑇

1
(𝑘)

[

[

[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]

]

]

]

𝑇

< 0.

(25)

Considering that 𝐹
1
(𝑘) is a diagonal matrix with

𝐹
𝑇

1
(𝑘)𝐹
1
(𝑘) ≤ 𝐼, and so employing Lemma 5, we can get that
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[

[

[

[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷

𝑇

𝐺 + 𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 𝐻

𝑤
0

∗ −𝑃 + 𝐶

𝑇

𝐶 0 (𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 + 𝐸)

𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]

]

]

]

]

+

[

[

[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]

]

]

]

𝑊
−1

1

[

[

[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]

]

]

]

𝑇

+ [0 𝐼 0 0]

𝑇

𝑊
1
[0 𝐼 0 0] < 0.

(26)

According to Lemma 3, (26) is equivalent to

[

[

[

[

[

[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷

𝑇

𝐺 + 𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 𝐻

𝑤
0 𝐻 (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾Λ

1

∗ −𝑃 + 𝐶

𝑇

𝐶 + 𝐼

𝑇

𝑊
1
𝐼
1

0 (𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 + 𝐸)

𝑇

0

∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ −𝜀
1
𝐼 𝐸 (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾Λ

1

∗ ∗ ∗ ∗ −𝑊
1

]

]

]

]

]

]

]

< 0. (27)

Similarly, we can eliminate𝐹
2
(𝑘). By use of Lemma 5, we have

that

[

[

[

[

[

[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷

𝑇

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

0 𝐻𝐾Λ
1

∗ −𝑃 + 𝐶

𝑇

𝐶 + 𝐼

𝑇

𝑊
1
𝐼
1

0 (𝐸𝐾𝐼 + 𝐸)

𝑇

0

∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ −𝜀
1
𝐼 𝐸𝐾Λ

1

∗ ∗ ∗ ∗ −𝑊
1

]

]

]

]

]

]

]

+

[

[

[

[

[

[

𝐻Λ
2

0

0

𝐸Λ
2

0

]

]

]

]

]

]

𝑊
2

[

[

[

[

[

[

𝐻Λ
2

0

0

𝐸Λ
2

0

]

]

]

]

]

]

𝑇

+ [0 𝐾𝐼 0 0 𝐾Λ
1
]

𝑇

𝑊
−1

2
[0 𝐾𝐼 0 0 𝐾Λ

1
] < 0.

(28)

Furthermore, applying Lemma 3, (28) can be converted to
(16).

The proof is completed.

Remark 8. Notice that the matrix inequality (16) in Theo-
rem 7 is a bilinear matrix inequality due to the existence of
𝑃
−1. Generally, it can be solved by the linear approach [30] or

the cone complementarity linearization (CCL) method [31].
By contrast, the CCL result is less conservative [32] and so is
employed in this paper.

Corollary 9. The bilinear matrix inequality (16) can be
transformed to the following objective function minimization
problems by the CCL method.

Find
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𝑃 > 0, 𝑋 > 0, 𝑊
1
> 0,

𝑊
2
> 0, 𝜀

1
> 0,𝐾

min Trace (𝑃𝑋)

s.t.

[

[

[

[

[

[

[

[

[

Π̂
11

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

Π
14

𝐻𝐾Λ
1

0

∗ Π
22

0 (𝐸𝐾𝐼 + 𝐸)

𝑇

0 (𝐾𝐼)

𝑇

∗ ∗ −𝛾
2

𝐼 0 0 0

∗ ∗ ∗ Π
44

𝐸𝐾Λ
1

0

∗ ∗ ∗ ∗ −𝑊
1

(𝐾Λ
1
)
𝑇

∗ ∗ ∗ ∗ ∗ −𝑊
2

]

]

]

]

]

]

]

]

]

< 0,

[

𝑃 𝐼

𝐼 𝑋
] ≥ 0,

(29)

where Π̂
11

= −𝑋 + 𝜀
1
𝐷𝐷

𝑇

+ (𝐻Λ
2
)𝑊
2
(𝐻Λ
2
)

𝑇.

Since Corollary 9 has turned the nonconvex feasibility
problem of Theorem 7 into a minimization problem of
nonlinear objective function with linear matrix inequalities
constraints, it can be solved by the following iterative algo-
rithm.

Algorithm 10.

Step 1. Find a set of feasible solutions Ξ
0

= {𝑃
0
, 𝑋
0
,𝑊
10
,

𝑊
20
, 𝜀
10
, 𝐾
0
}, which satisfyies (29), and set the iterative

number 𝑙 = 0.

Step 2.Use LMI toolbox ofmincx solver to solve the following
linear objective function minimization problem:

min Trace (𝑃
𝑙
𝑋 + 𝑃𝑋

𝑙
)

s.t. (29) .
(30)

The solutions are set Ξ∗ = {𝑃
∗

, 𝑋
∗

,𝑊
∗

1
,𝑊
∗

2
, 𝜀
∗

1
, 𝐾
∗

}.

Step 3. Substituting the solutions Ξ∗ into the matrix inequal-
ity (16) in Theorem 7 to check if (16) is satisfied, then 𝐾

∗

becomes the state feedback gain matrix and the iteration
terminates. Otherwise, enter into Step 4.

Step 4. If the iterative number satisfies 𝑙 ≤ 𝐿 (𝐿 is a
predetermined iterative number upper bound), set Ξ

𝑙+1
=

Ξ
∗

, 𝑙 = 𝑙 + 1, and return to Step 2 for the next iteration.
Otherwise, enter into Step 1 and reselect a set of feasible
solutions Ξ

0
to calculate.

Thus, a state feedback 𝐻
∞

controller can be obtained
for NCSs with both deadband scheduling and uncertain
short time-delay. More especially, if there are no deadband
schedulers in the NCSs shown in Figure 1, the closed-loop
system in (10) reads

𝑧 (𝑘 + 1) = Φ
𝑘
𝑧 (𝑘) + 𝐻

𝑤
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑧 (𝑘) ,

(31)

where

Φ
𝑘
= [

𝐺 + (𝐻
0
+ 𝐷𝐹 (𝜏



𝑘
) 𝐸)𝐾 𝐻

1
− 𝐷𝐹 (𝜏



𝑘
) 𝐸

𝐾 0

]

= 𝐺 + 𝐻𝐾𝐼 + 𝐷𝐹 (𝜏


𝑘
) 𝐸𝐾𝐼 + 𝐷𝐹 (𝜏



𝑘
) 𝐸.

(32)

Then, we have the following corollary, which can be
proved along similar lines as in the proof of Theorem 7.

Corollary 11. Consider the NCSs in Figure 1, but without the
deadband schedulers. For a given scalar 𝛾 > 0, the closed-loop
system (31) is asymptotically stable with 𝐻

∞
performance 𝛾 if

there exist symmetric positive-definite matrix 𝑃, feedback gain
matrix 𝐾, and scalar 𝜀

1
> 0 such that

[

[

[

[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷

𝑇

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

0

∗ −𝑃 + 𝐶

𝑇

𝐶 0 (𝐸𝐾𝐼 + 𝐸)

𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]

]

]

]

]

< 0.

(33)

Similarly, the bilinear matrix inequality (33) can be solved
by the above CCL method and the iterative algorithm in
Corollary 9 and is thus omitted.

4. Numerical Example

In this section, a numerical example is introduced to demon-
strate the effectiveness of the proposed method. Consider a
ball and beam system with [33]

̇𝑥 (𝑡) = [

0 1

0 0
] 𝑥 (𝑡) + [

0

1
] 𝑢 (𝑡) + [

0

1
]𝑤 (𝑡) ,

𝑦 (𝑡) = [1 0] 𝑥 (𝑡) .

(34)
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Table 1: The feedback gain matrix 𝐾 values for various Λ
1
, Λ
2
.

Case Λ
1

Λ
2

𝐾

1 Without scheduling Without scheduling 𝐾 = [−0.5462 − 1.0978]

2 [0.02 0; 0 0.02] 0.02 𝐾 = [−0.4942 − 1.0314]

3 [0.05 0; 0 0.05] 0.05 𝐾 = [−0.4393 − 0.9733]

4 [0.07 0; 0 0.07] 0.05 𝐾 = [−0.4185 − 0.9605]

5 [0.1 0; 0 0.1] 0.07 No solution

1 2 3
0

0.2

0.4

0.6

0.8

1

Series

TR

Case 1
Case 2

Case 3
Case 4

Figure 2: The performance of MTR.

In this example, we choose ℎ = 0.5𝑠, and 𝜏
𝑘
∈ [0, ℎ] is

time varying and nondeterministic. According to (2) and (3),
we have that

𝐺 = [

1 0.5

0 1
] , 𝐻

0
= [

0.0313

0.25
] ,

𝐻
1
= [

0.0938

0.25
] , 𝐷 = [

0.2661 0.0665

0 0.2661
] ,

𝐸 = [

0

1
] , 𝐻

𝑤
= [

0.125

0.5
] .

(35)

For a given disturbance attenuation level 𝛾 = 5, based
on the LMI toolbox, and applying Corollaries 9 and 11, the
feedback gain matrix 𝐾 values are given with different error
threshold values Λ

1
, Λ
2
in Table 1. It is obvious from Table 1

that for a given level 𝛾 we can find the feasible feedback gain
matrix𝐾 values when Λ

1
, Λ
2
are within certain ranges.

In addition, we choose the initial value 𝑥
0
= [2 −0.5]

𝑇,
the disturbance

𝑤 (𝑘) = {

0.1, 50 ≤ 𝑘 ≤ 60,

0, other,
(36)

and the total runtime 100 seconds. Define MTR = 𝑛sent/𝑛total
and IAE = ∑ ‖𝑒(𝑘)‖

2
⋅ ℎ, in which MTR denotes the mean

0

1

2

3

4

5

6

7

8

IA
E

1 2 3
Series

Case 1
Case 2

Case 3
Case 4

Figure 3: The performance of IAE.

data transmission rate (𝑛sent and 𝑛total denote the number
of data transmitted with and without deadband schedulers
in the runtime, respectively.) and IAE denotes the control
performance of the system. Under three different random
time-delay sequences, the performance of MTR and IAE is
shown for the system with the above four error threshold
values in Figures 2 and 3, respectively. It can be easily seen
that compared with the system without deadband schedulers
(case 1), although the control performance of the system by
using deadband scheduling scheme (case 2–case 4) is slightly
worse (in Figure 3), the mean data transmission rate of the
system is greatly reduced (in Figure 2).

Figures 4–6 show the simulation results for the system in
which the error threshold values take Λ

1
= diag{0.07, 0.07},

Λ
2
= 0.05, the feedback gain matrix𝐾 = [−0.4185 −0.9605]

according to Table 1, and the time-delay takes the first series.
It can be seen that the closed-loop system is asymptotically
stable (in Figure 4), and only part of the sampled data and
control signal are transmitted with the proposed deadband
scheduling scheme (in Figures 5 and 6, here the transmission
interval of 𝑥

2
(𝑘) is similar to 𝑥

1
(𝑘) in DS1 and is thus

omitted).
Furthermore, under zero initial conditions, we get that

‖𝑦‖
2

= 0.7310, ‖𝑤‖
2

= 0.3317, which yields 𝛾
∗

= 2.20.
It means that the practical disturbance attenuation level
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Figure 4: State response curves of the closed-loop system.
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Figure 5: Comparisons of the transmission interval of 𝑥
1
(𝑘).

is smaller than the given level 𝛾 = 5, which shows the
effectiveness of the proposed𝐻

∞
controller design method.

5. Conclusions

In this paper, a discrete-time model for NCSs with both
deadband scheduling and time-delay has been established
and the𝐻

∞
control problem has been investigated. Based on

the LMI approach, a state feedback 𝐻
∞

controller has been
designed to ensure the closed-loop system asymptotically to
be stable with𝐻

∞
performance index. A numerical example

has been provided to show the validness of the derived results.
Since the principles and algorithms of deadband schedulers
in this paper are very simple, the smart sensor and controller
are easy to implement. In addition, simulation results show

20 30 40 50 60 70 80

0

0.5

0.5

20 30 40 50 60 70 80

0

t/s (with DS2)

t/s (without DS)

−0.5

−0.5

�
(k
)

�
(k
)

Figure 6: Comparisons of the transmission interval of V(𝑘).

that it can effectively reduce the node’s data transmission rate,
so it is very suitable for applying in the NCSs with limited
bandwidth resources.
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Electronic throttle is widely used in modern automotive engines. An electronic throttle system regulates the throttle plate angle
by using a DC servo motor to adjust the inlet airflow rate of an internal combustion engine. Its application leads to improvements
in vehicle drivability, fuel economy, and emissions. In this paper, by taking into account the dynamical behavior of the electronic
throttle, the mechanism model is first built, and then the mechanism model is transformed into the state-space model. Based on
the state-space model and using the backstepping design technique, a new backstepping controller is developed for the electronic
throttle. The proposed controller can make the actual angle of the electronic throttle track its set point with the satisfactory
performance. Finally, a computer simulation is performed, and simulation results verify that the proposed control system can
achieve favorable tracking performance.

1. Introduction

In recent years, many functions of modern automobiles are
shifting from a purely mechanical to an electromechanical
implementation. These functions are implemented by using
the so-called “x-by-wire” systems, including drive-by-wire
and steer-by-wire systems [1]. “X-by-wire” systems act as an
interface between the driver and the targeted mechanical
subsystem of the vehicle. Now, advanced control strategies,
including the data-driven control [2], fuzzy control [3, 4], and
neural network control [5, 6], have been widely applied in
the process industry and automobile industry, for example,
the Tennessee Eastman process [7], the suspension control
system [8, 9], the electronic throttle control system [10, 11],
and so on. In this paper, we focus on the control strategy of
the electronic throttle system, which is one of the important
drive-by-wire systems in the automobile industry.

In automotive spark ignition engines, the air coming
into the intake manifold and therefore the power generated
strongly depend on the angular position of a throttle valve
[12]. In traditional systems, the throttle position is actuated
by a mechanical link with the accelerator pedal, directly

operated by the driver. The traditional mechanical throttle
is difficult to achieve the accurate control result. Therefore,
the vehicle drivability, fuel economy, and emissions are not
satisfactory by using the traditional mechanical throttle. In
recent years, new and increasing requirements in terms of
emissions control, drivability, and safety have led to the devel-
opment of electronic throttle system.The electronic throttle is
essentially a DC-motor-driven valve that regulates air inflow
into the vehicle’s combustion system, and the mechanical
linkage between accelerator pedal and the throttle is replaced
by an electronic connection [13]. Recently, several control
strategies for electronic throttle have been presented. In [10],
a new intelligent fuzzy controller is proposed. It can handle
the nonlinear hysteretic of electronic throttle. In [11], the
controller synthesis is performed in discrete time by solving a
constrained time-optimal control problem of the throttle. In
[12], a robust position controller for motorized throttle body
in automotive applications is presented. Complexity of the
control problem is explained and control architecture is also
presented. In [13], a process to design the control strategy is
proposed for a vehicle with the electronic throttle control and
the automatic transmission, and the dynamic programming
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(DP) technique is also used to obtain the optimal gear shift
and throttle opening angular which maximizes fuel economy
while satisfying the power demand. In [14], the nonlinear
hysteretic characteristic of the electronic throttle is described
and the variable structure control method is proposed to
control the electronic throttle. In [15], an adaptive control
strategy for the electronic throttle is introduced. In [16],
an integrated control strategy is proposed, which consists
of a proportional-integral-derivative (PID) controller and a
feedback compensator for friction and limp-home effects. In
[17], a novel nonlinear controller for the electronic throttle
valve is presented, which uses the approximatemodelmethod
and support vector machine (SVM) modeling. Although the
abovementioned control methods can achieve the acceptable
control performance, these control methods have complex
structure and algorithm. As we know, the controller complex
design process often leads to the difficulty of its realization
in the actual automotive manufacturing industry. Therefore,
more attention has been paid to backstepping design tech-
nique because of its systematic design and the excellent tran-
sient performance of the closed-loop system. Backstepping
design technique is a recursive and systematic design scheme
first presented by Kanellakopoulos et al. in 1991 [18]. The
main idea is to decompose a complex system into multiple
small-scale subsystems, then to design recursively control
Lyapunov function and virtual controller for each subsystem,
and finally obtain the original control law and realize the
global regulation and tracking for the controlled system [19–
21]. For the systematic design process, backstepping control
scheme is easy to be realized, and it has been applied in many
cases, such as inductionmotor [22], chemical process [23, 24],
ship course [25], and robot manipulator [26].

Motivated by the advantage of the backstepping design
method, this paper investigates the backstepping control
problem of the electronic throttle. Since the backstepping
design technique is a typical model-based designmethod, the
dynamical model of the electronic throttle is first built in this
paper. Based on the proposed dynamical model, the back-
stepping control design method for the electronic throttle is
presented.The proposed backstepping controller can achieve
the satisfactory performance; that is, the actual angular of the
electronic throttle can track its set point. Finally, a computer
simulation is performed, and simulation results verify the
effectiveness of the proposed control method.

This paper is organized as follows. Section 2 describes
the mathematical model of the electronic throttle. Section 3
designs the electronic throttle controller by using the back-
stepping method. Section 4 illustrates the simulation results
and finally Section 5 shows the conclusion of this paper.

2. Mathematic Model of the
Electronic Throttle

There are some symbols in this section. At first, definitions of
these symbols are described as follows:

𝜃
∗: Set point of the valve plate angular

𝜃(𝑡): Actual angular of the valve plate
𝜃
0
: Static angular of the valve plate

𝜔(𝑡): Angular speed of the valve plate
𝑖
𝑎
(𝑡): Armature current

𝑅
𝑎
: Armature resistance

𝑈
𝑎
(𝑡): Input voltage of the motor

𝑈
𝑏
(𝑡): Electromotive force

𝑈bat: Supply voltage
𝐷(𝑡): Duty cycle of the bipolar chopper
𝑇
𝑒
(𝑡): Electromagnetism torque

𝑇
𝑠
(𝑡): Return spring torque

𝑇
𝑓
(𝑡): Friction torque

𝐾
𝑡
: Torque constant

𝐾
𝑠
: Elastic coefficient

𝐾
𝑚
: Torque compensation coefficient

𝐾
𝑑
: Friction coefficient

𝐽: Moment of inertia
𝑗: Gear ratio.

The schematic of a typical electronic throttle control sys-
tem is shown in Figure 1.

There are a controller, a bipolar chopper, and an electronic
throttle body (ETB) in Figure 1. ETB consists of a DC drive
powered by the bipolar chopper, a gearbox, a valve plate, a
return spring, and a position sensor. When the valve plate
angular is regulated, the air inflow into the vehicle’s com-
bustion system can also be regulated. The control objective
of the electronic throttle is to control the valve plate angular
tracking its set point with the satisfactory performance.

At first, we build the motion equation for the electronic
throttle system. The motion equation is

𝑗𝑇
𝑒
(𝑡) − 𝑇

𝑠
(𝑡) − 𝑇

𝑓
(𝑡) = 𝑗

2

𝐽

𝑑𝜔 (𝑡)

𝑑𝑡

. (1)

The relation between current 𝑖
𝑎
(𝑡) and input voltage𝑈

𝑎
(𝑡)

in the armature circuit is described as

𝑖
𝑎
(𝑡) 𝑅
𝑎
= 𝑈
𝑎
(𝑡) − 𝑈

𝑏
(𝑡) , (2)

where
𝑈
𝑎
(𝑡) = 𝑈bat × 𝐷 (𝑡) ,

𝑈
𝑏
(𝑡) = 𝐾

𝑡
× 𝑗 × 𝜔 (𝑡) .

(3)

By substituting (3) into (2), we have

𝑖
𝑎
(𝑡) =

𝑈bat × 𝐷 (𝑡) − 𝐾
𝑡
× 𝑗 × 𝜔 (𝑡)

𝑅
𝑎

. (4)

Computation formula of 𝑇
𝑒
(𝑡) is

𝑇
𝑒
(𝑡) = 𝐾

𝑡
𝑖
𝑎
(𝑡) . (5)

By substituting (4) into (5), we get

𝑇
𝑒
(𝑡) = 𝐾

𝑡

𝑈bat × 𝐷 (𝑡) − 𝐾
𝑡
× 𝑗 × 𝜔 (𝑡)

𝑅
𝑎

. (6)

Return spring torque 𝑇
𝑠
(𝑡) and friction torque 𝑇

𝑓
(𝑡) are

𝑇
𝑠
(𝑡) = 𝐾

𝑠
(𝜃 (𝑡) − 𝜃

0
) + 𝐾
𝑚
,

𝑇
𝑓
(𝑡) = 𝐾

𝑑
𝜔 (𝑡) .

(7)
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ia(t)

M

𝜔(t)

Gearbox

Electronic throttle body

Valve
plate

Return
spring

𝜃

Air inflow

Position
sensor

Car battery

Figure 1: Electronic throttle control system.

By substituting (6) and (7) into (1), we get

𝑑𝜔 (𝑡)

𝑑𝑡

= −

𝐾
𝑠

𝑗
2
× 𝐽

× 𝜃 (𝑡) − (

𝐾
2

𝑡

𝐽𝑅
𝑎

+

𝐾
𝑑

𝑗
2
× 𝐽

)𝜔 (𝑡)

+

𝐾
𝑡
× 𝑈bat

𝑗 × 𝐽 × 𝑅
𝑎

𝐷 (𝑡) +

𝐾
𝑠
𝜃
0
− 𝐾
𝑚

𝑗
2
× 𝐽

.

(8)

Equation (8) is the mechanismmodel of the electronic throt-
tle.

Defining state variables 𝑥
1
(𝑡) = 𝜃(𝑡), 𝑥

2
(𝑡) = 𝜔(𝑡), input

variable 𝑢(𝑡) = 𝐷(𝑡), and the output variable 𝑦(𝑡) = 𝜃(𝑡), (8)
can be rewritten as

̇𝑥
1
(𝑡) = 𝑥

2
(𝑡) , (9)

̇𝑥
2
(𝑡) = −

𝐾
𝑠

𝑗
2
× 𝐽

× 𝑥
1
(𝑡) − (

𝐾
𝑡

2

𝐽𝑅
𝑎

+

𝐾
𝑑

𝑗
2
× 𝐽

)𝑥
2
(𝑡)

+

𝐾
𝑡
× 𝑈
𝑏𝑎𝑡

𝑗 × 𝐽 × 𝑅
𝑎

𝑢 (𝑡) +

𝐾
𝑠
𝜃
0
− 𝐾
𝑚

𝑗
2
× 𝐽

,

(10)

𝑦 (𝑡) = 𝑥
1
(𝑡) . (11)

Equations (9)–(11) are the state-space model of the elec-
tronic throttle.

3. Backstepping Control Design and
Stability Analysis

The control objective of this paper is to design a backstepping
control system such that the output 𝑦(𝑡) of the system shown
in (11) to track its set point 𝑥

𝑑
asymptotically. The proposed

backstepping control procedure is described step by step as
follows.

Step 1. For the position-tracking objective, define the track-
ing error as

𝑧
1
(𝑡) = 𝑥

1
(𝑡) − 𝑥

𝑑
. (12)

Taking 𝛼(𝑡) as a virtual control and defining

𝑧
2
(𝑡) = 𝑥

2
(𝑡) − 𝛼 (𝑡) , (13)

consider the following Lyapunov function candidate:

𝑉
1
(𝑡) =

1

2

𝑧
2

1
(𝑡) . (14)

The time derivative of 𝑉
1
(𝑡) is

𝑉
1
(𝑡) = 𝑧

1
(𝑡) ̇𝑧
1
(𝑡) . (15)

From (12) and (13), we obtain

̇𝑧
1
(𝑡) = ̇𝑥

1
(𝑡)

= 𝑥
2
(𝑡)

= −𝑧
1
(𝑡) + 𝑧

1
(𝑡) + 𝑥

2
(𝑡) − 𝛼 (𝑡) + 𝛼 (𝑡)

= −𝑧
1
(𝑡) + 𝑥

2
(𝑡) − 𝛼 (𝑡) + 𝑧

1
(𝑡) + 𝛼 (𝑡)

= −𝑧
1
(𝑡) + 𝑧

2
(𝑡) + 𝑧

1
(𝑡) + 𝛼 (𝑡) .

(16)

Choosing the virtual control function 𝛼(𝑡)

𝛼 (𝑡) = −𝑧
1
(𝑡) . (17)

By substituting (17) into (16), we have

̇𝑧
1
(𝑡) = −𝑧

1
(𝑡) + 𝑧

2
(𝑡) . (18)

By using (18) and (15), we get

𝑉
1
(𝑡) = 𝑧

1
(𝑡) ̇𝑧
1
(𝑡)

= 𝑧
1
(𝑡) (−𝑧

1
(𝑡) + 𝑧

2
(𝑡))

= −𝑧
2

1
(𝑡) + 𝑧

1
(𝑡) 𝑧
2
(𝑡) .

(19)

From (19), we know if 𝑧
2
(𝑡) is equal to zero, the time derivative

of 𝑉
1
(𝑡) will be smaller than or equal to zero. If 𝑉

1
(𝑡) ≤ 0, we

know that 𝑧
1
(𝑡) will converge to zero, and 𝑥

1
(𝑡) will converge

to the set point 𝑥
𝑑
. Therefore, in the next step, we will design

a controller 𝑢(𝑡) to make 𝑧
2
(𝑡) converge to zero.

Step 2. Consider the following Lyapunov function candidate
𝑉
2
(𝑡):

𝑉
2
(𝑡) =

1

2

𝑧
2

2
(𝑡) + 𝑉

1
(𝑡) . (20)

The time derivative of 𝑉
2
(𝑡) is

𝑉
2
(𝑡) = 𝑧

2
(𝑡) ̇𝑧
2
(𝑡) + 𝑉

1
(𝑡)

= 𝑧
2
(𝑡) ̇𝑧
2
(𝑡) − 𝑧

2

1
(𝑡) + 𝑧

1
(𝑡) 𝑧
2
(𝑡)

(21)

From (10), (13), and (17), we have

̇𝑧
2
(𝑡) = ̇𝑥

2
(𝑡) − ̇𝛼 (𝑡)

= 𝜇
0
𝑢 (𝑡) − 𝜇

1
𝑥
1
(𝑡) − 𝜇

2
𝑥
2
(𝑡) + 𝐹 − ̇𝛼 (𝑡) ,

(22)

where 𝜇
0

= 𝐾
𝑡
/(𝑗 × 𝐽 × 𝑅

𝑎
), 𝜇
1

= 𝐾
𝑠
/(𝑗
2

× 𝐽), and 𝜇
2

=

𝐾
𝑏
× 𝐾
𝑡
/𝐽𝑅
𝑎
+ 𝐾
𝑑
/𝑗
2

× 𝐽 and 𝐹 = (𝐾
𝑠
𝜃
0
− 𝐾
𝑚
)/(𝑗
2

× 𝐽).
Note that

̇𝛼 (𝑡) = − ̇𝑧
1
(𝑡)

= − ̇𝑥
1
(𝑡)

= −𝑥
2
(𝑡) .

(23)
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Table 1: Parameter values.

𝑗 = 20 𝐽 = 0.02Kg⋅m2
𝑅 = 2.1Ω

𝐾
𝑏
= 0.075N⋅m/A 𝐾

𝑡
= 0.072N⋅m/A 𝐾

𝑚
= 0.34N⋅m

𝐾
𝑠
= 0.01N⋅m/rad 𝐾

𝑑
= 5 × 10

−6N⋅m⋅s/rad 𝜃
0
= 0.16 rad

By substituting (23) into (22), we have

̇𝑧
2
(𝑡) = 𝜇

0
𝑢 (𝑡) − 𝜇

1
𝑥
1
(𝑡) − 𝜇

2
𝑥
2
(𝑡) + 𝐹 + 𝑥

2
(𝑡)

= 𝜇
0
𝑢 (𝑡) − 𝜇

1
[𝑥
1
(𝑡) − 𝑥

𝑑
+ 𝑥
𝑑
]

− 𝜇
2
[𝑥
2
(𝑡) − 𝛼 (𝑡) + 𝛼 (𝑡)] + 𝐹 + 𝑥

2
(𝑡)

= 𝜇
0
𝑢 (𝑡) − 𝜇

1
𝑧
1
(𝑡) − 𝜇

1
𝑥
𝑑
− 𝜇
2
𝑧
2
(𝑡)

− 𝜇
2
𝛼 (𝑡) + 𝐹 + 𝑥

2
(𝑡)

= 𝜇
0
𝑢 (𝑡) − 𝜇

1
𝑧
1
(𝑡) − 𝜇

1
𝑥
𝑑
− 𝜇
2
𝑧
2
(𝑡)

+ 𝜇
2
𝑧
1
(𝑡) + 𝐹 + 𝑥

2
(𝑡) .

(24)

Choosing the control function 𝑢(𝑡)

𝑢 (𝑡) =

1

𝜇
0

{(𝜇
1
− 1) 𝑧

1
(𝑡) + (𝜇

2
− 1) 𝑧

2
(𝑡)

+𝜇
1
𝑥
𝑑
− 𝜇
2
𝑧
1
(𝑡) − 𝐹 − 𝑥

2
(𝑡)} .

(25)

From (25) and (24), we have

̇𝑧
2
(𝑡) = −𝑧

1
(𝑡) − 𝑧

2
(𝑡) (26)

Substituting (26) into (21) results in

𝑉
2
(𝑡) = 𝑧

2
(𝑡) ̇𝑧
2
(𝑡) − 𝑧

2

1
(𝑡) + 𝑧

1
(𝑡) 𝑧
2
(𝑡)

= 𝑧
2
(𝑡) [−𝑧

1
(𝑡) − 𝑧

2
(𝑡)]

− 𝑧
2

1
(𝑡) + 𝑧

1
(𝑡) 𝑧
2
(𝑡)

= −𝑧
2

1
(𝑡) − 𝑧

2

2
(𝑡) ≤ 0.

(27)

Equation (27) means that 𝑉
2
(𝑡) ≤ 0. Therefore, it is obtained

that the variables 𝑧
1
(𝑡) and 𝑧

2
(𝑡) converge to zero; that is, the

output 𝑦(𝑡) = 𝑥
1
(𝑡) of the system shown in (11) can track its

set point 𝑥
𝑑
asymptotically.

4. Simulation Experiments

In this section, we perform simulation experiment to confirm
the effectiveness of the proposed backstepping control. The
values of the parameters in the electronic throttle system
are given in Table 1. All these parameters are obtained from
the experiment platform of the electronic throttle in our
laboratory.

Simulation results are shown in Figures 2–5. Figure 2
shows the set point of the electronic throttle angular, that is,
𝑥
𝑑
. Figure 3 shows the input voltage of the DC servo motor.

Figure 4 shows the actual angular of the electronic throttle,
that is, 𝑥

1
(𝑡). Figure 5 shows the actual angular speed of the

electronic throttle, that is, 𝑥
2
(𝑡). In Figure 2, set point 𝑥

𝑑
is
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Figure 2: Set point of the valve plate angular.
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Figure 3: Input voltage of the motor.

20 degrees during 0 to 200 seconds. After 200 seconds, 𝑥
𝑑
is

increased from 20 to 50 degrees, and after 400 seconds, 𝑥
𝑑
is

decreased from 50 to 40 degrees.
At 200 seconds, 𝑥

𝑑
is increased. In order to increase the

actual angular 𝑥
1
(𝑡), the input voltage should be increased.

From Figure 3, at first, the input voltage is increased when
time is 200 seconds. Increase of the input voltage 𝑢(𝑡) leads
to the increase of the angular speed 𝑥

2
(𝑡), which is shown

in Figure 5. When the angular speed 𝑥
2
(𝑡) is increased, the

actual angular of the electronic throttle 𝑥
1
(𝑡) will be also

increased, which is shown in Figure 4. Therefore, the actual
angular 𝑥

1
(𝑡) is regulated to track its set point. When the

dynamical regulation process is finished, the input voltage
𝑢(𝑡) is a new stable value, and 𝑥

2
(𝑡) is controlled to zero.
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Figure 4: Actual angular of the valve plate.
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Figure 5: Angular speed of the valve plate.

At 400 seconds, 𝑥
𝑑
is decreased.When 𝑥

𝑑
is decreased, in

order to decrease the actual angular 𝑥
1
(𝑡), the input voltage

should be decreased. From Figure 3, at first, the input voltage
is decreasedwhen time is 400 seconds. For the decrease of the
input voltage, the angular speed 𝑥

2
(𝑡) is also decreased, which

is shown in Figure 5. When the 𝑥
2
(𝑡) is decreased, the actual

angular of the electronic throttle 𝑥
1
(𝑡) will be decreased,

which is shown in Figure 4. Therefore, the actual angular
𝑥
1
(𝑡) is regulated to track its set point. When the dynamical

regulation process is finished, the input voltage is a new stable
value, and 𝑥

2
(𝑡) is controlled to zero.

From Figures 2–5, we know that the dynamical process of
the simulation experiment is right for the electronic throttle,
and the tracking performance is also satisfactory.

5. Conclusions

In this paper, themodel and controlmethod on the electronic
throttle is considered. The dynamical mechanism model and
state-space model of the electronic throttle are presented.
Based on the state-space model, a backstepping controller
is developed. The proposed controller can make the actual

angular of the throttle plate track its set point with the satis-
factory performance. Simulation experiment is implemented,
and the simulation results confirm the effectiveness of the
proposed control method.
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trol of electronic throttle valve,” IEEE Transactions on Industrial
Electronics, vol. 55, no. 11, pp. 3899–3907, 2008.
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[24] D. M. Bošković and M. Krstić, “Backstepping control of chemi-
cal tubular reactors,” Computers and Chemical Engineering, vol.
26, no. 7-8, pp. 1077–1085, 2002.

[25] A. Witkowska and R. Smierzchalski, “Nonlinear backstepping
ship course controller,” International Journal of Automation and
Computing, vol. 6, no. 3, pp. 277–284, 2009.

[26] Y. Li, S. Tong, and T. Li, “Adaptive fuzzy output feedback control
for a single-link flexible robotmanipulator drivenDCmotor via
backstepping,”Nonlinear Analysis. Real World Applications, vol.
14, no. 1, pp. 483–494, 2013.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 719474, 9 pages
http://dx.doi.org/10.1155/2013/719474

Research Article
Robust Tracking Control of Robot Manipulators Using Only
Joint Position Measurements

Ancai Zhang,1 Jinhua She,2 Xuzhi Lai,3 Min Wu,3 Jianlong Qiu,4 and Xiangyong Chen4

1 School of Automobile Engineering, Linyi University, Linyi, Shandong 276005, China
2 School of Computer Science, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
3 School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China
4 School of Science, Linyi University, Linyi, Shandong 276005, China

Correspondence should be addressed to Jinhua She; she@stf.teu.ac.jp

Received 13 August 2013; Accepted 23 September 2013

Academic Editor: Bo-Chao Zheng

Copyright © 2013 Ancai Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper concerns the tracking control of a robot manipulator with unknown uncertainties and disturbances. It presents a new
control method that uses only joint position measurements to design a tracking controller. The controller has two parts. One is
based on a feedback linearization technique; it makes the nominal model of a manipulator asymptotically track a desired trajectory.
The other is based on the idea of equivalent input disturbance (EID); it compensates for uncertainties and disturbances. Together
they enable a robot manipulator to precisely track the desired trajectory. The new control algorithm is applied to a two-link robot
manipulator, and simulation results demonstrate the validity of this method.

1. Introduction

Robot manipulators are widely used in many fields. They
are especially useful in areas where it is impractical or
undesirable for a human to go, for example, undersea explo-
ration, radioactive environments, and defusing explosive
devices. Interest in the control of robotmanipulators has been
increasing over the past few years [1–3], and it is now a central
issue in robotics.

If an exact dynamic model of a robot manipulator is
known, the motion control problem is easy to solve by the
computed-torque-control (CTC) method [4]. It uses nonlin-
ear state feedback to cancel the nonlinear terms and a simple
PD controller for motion control. Although this method
is simple and effective, the requirement of an exact model
limits its practicality because it is usually impossible to obtain
an exact, or even reasonably accurate, dynamic model in
practical applications. For example, an actual plant inevitably
contains structured and unstructured uncertainties, and a
robot manipulator may be influenced by unpredictable exter-
nal disturbances when the operating environment changes.
Since these uncertainties and disturbances may greatly affect

control performance, it is necessary to consider their effects
in the study of the motion control of robot manipulators.

A number of strategies have been developed to solve the
problem of controlling the motion of a robot manipulator
with uncertainties and disturbances. They include a Lya-
punov-basedmethod [5], a neural-network-basedmethod [6,
7], an adaptive neural network 𝐻

∞
strategy [8], an adaptive

switching learning PD (ASL-PD) method [9], a parameter-
dependent nonlinear observer approach [10], and a variable-
structure PID control method [11]. However, all of them
require measurement of both the displacement and velocity
of joints.

Generally speaking, joint displacement can be accurately
measured with an encoder. However, velocity is typically
measured with a tachometer, and the results usually contain
noise, which can affect the control precision and performance
of a closed-loop system. So, both practically and theoretically,
it is meaningful to devise a motion control method for
robot manipulators which relies only on the measurement
of joint position. Various strategies have been developed to
solve this challenging problem. One is a controller-observer
combination strategy. It has a two-step design procedure:
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(1) construct an observer for a robot manipulator based on
joint information and (2) use joint displacement and the
state of the observer to design a state feedback controller.
Many control methods based on this strategy have been
reported [12–14]. The problem with it is that the stability
of both the observer and the controller is of a local nature.
Another strategy [15–17] involves using a linear or nonlinear
compensator to obtain substitutes for the velocity variables. It
enables the global tracking control of a robotmanipulator, but
the addition of external state variables complicates the design
of the control system. A third is an adaptive tracking control
strategy that includes an output feedback scheme (OFS) [18]
and an iterative learning scheme (ILS) [19], but the OFS-
based controller only locally ensures the asymptotic stability
of the joint position error, and the ILS-based controllermakes
the system only track the same task iteratively.

This paper presents a new tracking control approach
for a robot manipulator with unknown uncertainties and
disturbances. Its advantage is that the design of the tracking
controller relies only on the measurements of joint position,
not velocity, and the tracking control is global. It is based
on the concept of an equivalent input disturbance (EID),
which was first presented in [20] to deal with disturbance
rejection in a linear servo system. The EID approach has
been validated through application to several mechatronic
systems [20–22]. In this study, it was used to design a
global robust tracking controller for a robot manipulator.The
controller has two parts: one makes the nominal model of
a manipulator asymptotically track a desired trajectory and
the other compensates for uncertainties and disturbances.
Together they enable a robot manipulator with unknown
uncertainties and disturbances to precisely track the desired
trajectory.

The rest of this paper is organized as follows. Section 2
describes the model and formulates the problem. Section 3
explains the design of an EID-based tracking controller.
Section 4 discusses a numerical example for a two-link robot
manipulator. Finally, Section 5 presents some concluding
remarks.

2. Model Description and
Problem Formulation

For a robot manipulator with 𝑛 serial links, we take ̈𝑞, ̇𝑞, 𝑞 ∈

R𝑛 to be the acceleration, velocity, and position vectors,
respectively, of the joints. Choose the Lagrangian of the robot
system to be

𝐿 (𝑞, ̇𝑞) =

1

2

̇𝑞
𝑇

𝑀(𝑞) ̇𝑞 − 𝑃 (𝑞) , (1)

where 𝑀(𝑞) ∈ R𝑛×𝑛 is a positive-definite symmetric inertia
matrix and 𝑃(𝑞) is the potential energy of the system. The
equation of motion of the manipulator is obtained from the
Euler-Lagrange equation:

𝑑

𝑑𝑡

[

𝜕𝐿 (𝑞, ̇𝑞)

𝜕 ̇𝑞

] −

𝜕𝐿 (𝑞, ̇𝑞)

𝜕𝑞

= 𝜏 − 𝜏
𝑓
+ 𝜏ext, (2)

where 𝜏 ∈ R𝑛×1 is the vector of control torques, 𝜏
𝑓

∈ R𝑛×1 is
the vector of friction torques, and 𝜏ext ∈ R𝑛×1 is the vector of
the external disturbances imposed on the joints. We rewrite
(2) in the general form

𝑀(𝑞) ̈𝑞 + 𝐻 (𝑞, ̇𝑞) + 𝑁 (𝑞) = 𝜏 − 𝜏
𝑓
+ 𝜏ext, (3)

where𝐻(𝑞, ̇𝑞) ∈ R𝑛×1 is the vector of Coriolis and centrifugal
forces and𝑁(𝑞) ∈ R𝑛×1 is the gravity vector.

Due to the unmodeled dynamics,measurement error, and
changes in environment, it is difficult to obtain precise values
for themasses and lengths of the links, themoments of inertia
of the links, and other physical parameters. The measured
values of these parameters are usually not very accurate.Thus,
the values of the matrices𝑀(𝑞), 𝐻(𝑞, ̇𝑞), and𝑁(𝑞) in (3) are

𝑀(𝑞) = 𝑀
0
(𝑞) + Δ𝑀(𝑞) ,

𝐻 (𝑞, ̇𝑞) = 𝐻
0
(𝑞, ̇𝑞) + Δ𝐻 (𝑞, ̇𝑞) ,

𝑁 (𝑞) = 𝑁
0
(𝑞) + Δ𝑁 (𝑞) ,

(4)

where 𝑀
0
(𝑞), 𝐻

0
(𝑞, ̇𝑞), and 𝑁

0
(𝑞) are the nominal values of

𝑀(𝑞), 𝐻(𝑞, ̇𝑞), and 𝑁(𝑞), respectively, and Δ𝑀(𝑞), Δ𝐻(𝑞, ̇𝑞),
and Δ𝑁(𝑞) are the corresponding additive uncertain terms.
Consequently, (3) becomes

𝑀
0
(𝑞) ̈𝑞 + 𝐻

0
(𝑞, ̇𝑞) + 𝑁

0
(𝑞) = 𝜏 + 𝑑, (5)

where

𝑑 = 𝜏ext − Δ𝑀(𝑞) ̈𝑞 − Δ𝐻 (𝑞, ̇𝑞) − Δ𝑁 (𝑞) − 𝜏
𝑓
. (6)

We assume that there is no prior information about
Δ𝑀(𝑞), Δ𝐻(𝑞, ̇𝑞), Δ𝑁(𝑞), 𝜏

𝑓
, or 𝜏ext. Thus, 𝑑 is an unknown

disturbance of the nonlinear system (5).
Let 𝑞
𝑟
∈ R𝑛×1 be the desired trajectory of themanipulator,

and let 𝑒 = 𝑞 − 𝑞
𝑟
be the tracking error of the trajectory. If we

take the control law, 𝜏, in (5) to be

𝜏
0
= 𝑀
0
(𝑞) [ ̈𝑞

𝑟
− 𝐾
𝐷
( ̇𝑞 − ̇𝑞

𝑟
) − 𝐾
𝑃
(𝑞 − 𝑞

𝑟
)]

+ 𝐻
0
(𝑞, ̇𝑞) + 𝑁

0
(𝑞) ,

(7)

where 𝐾
𝑃
and 𝐾

𝐷
∈ R𝑛×𝑛 are two given positive-definite

diagonal matrices, then (5) and (7) give

̈𝑒 + 𝐾
𝐷

̇𝑒 + 𝐾
𝑃
𝑒 − 𝑀

−1

0
(𝑞) 𝑑 = 0. (8)

Assume that Δ𝑀(𝑞), Δ𝐻(𝑞, ̇𝑞), Δ𝑁(𝑞), 𝜏
𝑓
, and 𝜏ext are all

zero, which means that there are no parameter perturbations
and external disturbances acting on the manipulator. Then,
combining (6) and (8) yields

̈𝑒 + 𝐾
𝐷

̇𝑒 + 𝐾
𝑃
𝑒 = 0. (9)

It is easy to obtain lim
𝑡→∞

𝑒 = 0 and lim
𝑡→∞

̇𝑒 = 0 for (9).
So, the state variables of the system, [𝑞𝑇, ̇𝑞

𝑇

], asymptotically
approach the desired trajectory, [𝑞𝑇

𝑟
, ̇𝑞
𝑇

𝑟
], for this case.

However, in practice it is difficult to acquire exact knowl-
edge of a robot manipulator; uncertainties and disturbances
can greatly reduce the tracking precision. So, we need to
consider the tracking control problem for the perturbed robot
system (5). This paper presents an EID-based tracking con-
troller for (5) that relies only on measured joint position, 𝑞.
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Figure 1: Configuration of an EID-based control system.

3. Design of EID-Based Tracking Controller

For the nonlinear system (5), we take

𝜏 = 𝜏
0
+ 𝑀
0
(𝑞) 𝐵𝑢, (10)

where 𝜏
0
is defined in (7); 𝐵 = [𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
]
𝑇

∈ R𝑛×1, 𝑏
𝑖
(𝑖 =

1, 2, . . . , 𝑛) are constants; and 𝑢 ∈ R is a new input that is used
to compensate for the disturbance, 𝑑. Combining (5) and (10)
yields

̈𝑒 = −𝐾
𝐷

̇𝑒 − 𝐾
𝑃
𝑒 + 𝐵𝑢 + 𝑀

−1

0
(𝑞) 𝑑. (11)

Let 𝑥 = [𝑒
𝑇

, ̇𝑒
𝑇

]
𝑇

∈ R2𝑛×1; the state space form of (11) is

̇𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝜀, (12)

where

𝐴 = [

0
𝑛×𝑛

𝐼
𝑛

−𝐾
𝑃

−𝐾
𝐷

] , 𝐵 = [

0
𝑛×1

𝐵

] ,

𝜀 = [

0
𝑛×1

𝑀
−1

0
(𝑞) 𝑑

] ,

(13)

where 𝐼
𝑛
is the 𝑛 × 𝑛 identity matrix and 0

𝑖×𝑗
is an 𝑖 × 𝑗 zero

matrix for positive integers 𝑖 and 𝑗.
Since only the measured 𝑞 is available, we take the output

of (12) to be

𝑦 = 𝐶𝑥 = 𝑒, 𝐶 = [𝐼
𝑛
, 0
𝑛×𝑛

] . (14)

It is easy to verify that (𝐶, 𝐴) is observable. If we denote

Φ (𝑠) = [𝐾
𝑃
+ (𝑠𝐼
𝑛
+ 𝐾
𝐷
) 𝑠𝐼
𝑛
]
−1

, (15)

then

𝐶(𝑠𝐼 − 𝐴)
−1

𝐵 = [𝐼
𝑛
, 0
𝑛×𝑛

]

× [

−Φ (𝑠) (𝑠𝐼
𝑛
+ 𝐾
𝐷
) Φ (𝑠)

−𝐼
𝑛
− 𝑠𝐼
𝑛
Φ (𝑠) (𝑠𝐼

𝑛
+ 𝐾
𝐷
) 𝑠𝐼
𝑛
Φ (𝑠)

] 𝐵

= [−Φ (𝑠) (𝑠𝐼
𝑛
+ 𝐾
𝐷
) , Φ (𝑠)] 𝐵

= [0
𝑛×1

, −Φ (𝑠) 𝐵] .

(16)

Equation (16) tells us that (𝐴, 𝐵, 𝐶) has no zeros on the imag-
inary axis because

Φ (𝑠) 𝐵 = [

𝑏
1

𝜙
1
(𝑠)

,

𝑏
2

𝜙
2
(𝑠)

, . . . ,

𝑏
𝑛

𝜙
𝑛
(𝑠)

]

𝑇

, (17)

where 𝜙
𝑖
(𝑠) = 𝑠

2

+ 𝐾
𝑑𝑖
𝑠 + 𝐾
𝑝𝑖
(𝑖 = 1, 2, . . . , 𝑛), and 𝐾

𝑝𝑖
and

𝐾
𝑑𝑖

are the diagonal elements of the matrices 𝐾
𝑃
and 𝐾

𝐷
,

respectively.
In addition, we choose 𝑏

𝑖
in 𝐵 such that (𝐴, 𝐵) is control-

lable. Then, as shown in [20], there always exists an EID, 𝑑
𝑒
,

on the control input channel. It produces the same effect on
the output, 𝑦, as the disturbance, 𝜀, does.The perturbed plant
(12) and (14) can be considered to be an EID-based plant:

̇𝑥 = 𝐴𝑥 + 𝐵 [𝑢 + 𝑑
𝑒
] ,

𝑦 = 𝐶𝑥.

(18)

In the configuration of the EID-based control system (see
Figure 1), 𝐾

𝑓
is the feedback gain; 𝐿 is the observer gain; ̂

𝑑
𝑒

is an estimate of the EID, 𝑑
𝑒
; and 𝐹(𝑠) is a low-pass filter that

limits the angular frequency band of the disturbance estimate.
Their design is discussed below.
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3.1. Estimation of Equivalent InputDisturbance. First, we con-
struct a full-order Luenberger observer for (18):

̇
�̂� = 𝐴𝑥 + 𝐵𝑢

𝑓
+ 𝐿 (𝑦 − 𝐶𝑥) , (19)

where 𝑢
𝑓
= 𝑢 + 𝑑

𝑒
. Letting

Δ𝑥 = 𝑥 − 𝑥 (20)

and substituting that into (18) yield

̇
�̂� = 𝐴𝑥 + 𝐵 [𝑢 +

̂
𝑑
𝑒
] , (21)

where

̂
𝑑
𝑒
= 𝑑
𝑒
+ Δ𝑑,

𝐵Δ𝑑 = Δ ̇𝑥 − 𝐴Δ𝑥.

(22)

Note that (21) has the same form as (18). We take ̂
𝑑
𝑒
to be

an estimate of the actual EID, 𝑑
𝑒
. From (18), (21), and (22), it

is clear that the difference between the state of the plant and
that of the observer is equivalent to the difference between 𝑑

𝑒

and ̂
𝑑
𝑒
. Combining (19) and (21) yields

𝐵 (𝑢 +
̂
𝑑
𝑒
− 𝑢
𝑓
) = 𝐿 (𝑦 − 𝐶𝑥) . (23)

We solve (23) for ̂
𝑑
𝑒
and obtain a least-squares solution:

̂
𝑑
𝑒
= 𝐵
+

𝐿 (𝑦 − 𝐶𝑥) + 𝑢
𝑓
− 𝑢, (24)

where

𝐵
+

= [𝐵
𝑇

𝐵]

−1

𝐵
𝑇

. (25)

To ensure the estimation accuracy, the low-pass filter

𝐹 (𝑠) =

1

𝑇𝑠 + 1

(26)

is used to select the angular frequency band for disturbance
estimation, where 𝑇 is the time constant. The filtered distur-
bance estimate, ̃

𝑑
𝑒
, is given by

𝐷
𝑒
(𝑠) = 𝐹 (𝑠)𝐷

𝑒
(𝑠) , (27)

where 𝐷
𝑒
(𝑠) and 𝐷

𝑒
(𝑠) are the Laplace transforms of ̃

𝑑
𝑒
and

̂
𝑑
𝑒
, respectively.
We take control law 𝑢 to be

𝑢 = 𝑢
𝑓
−

̃
𝑑
𝑒
, (28)

𝑢
𝑓
= 𝐾
𝑓
𝑥, (29)

where 𝐾
𝑓
is a feedback gain that makes 𝐴 + 𝐵𝐾

𝑓
stable.

Assume that the observer (19) is stable. Then, control law
(29) makes the output of plant (18) asymptotically converge
to zero. According to the definition of EID, control law (28)
asymptotically stabilizes the output of (12), which is 𝑒, at the
origin. Thus, the tracking control objective of system (12) is
achieved.

Remark 1. From (7) and (10), the velocity, ̇𝑞, is needed to
calculate the control input, 𝜏. Since we assume that the
measured value of ̇𝑞 is unavailable, we use information of the
observer (19) to obtain a substitute for ̇𝑞 in (7):

̇𝑞 = 𝑥
2
+ ̇𝑞
𝑟
, (30)

where 𝑥
2

∈ R𝑛, 𝑥 = [𝑥
𝑇

1
, 𝑥
𝑇

2
]
𝑇 is the state vector of the

observer (19), and 𝑥
1
∈ R𝑛.

3.2. Design of State Observer. Since the separation theorem
holds for an EID-based control system [20], we can separately
design the feedback gain 𝐾

𝑓
and the observer gain 𝐿. Since

(𝐴, 𝐵) is controllable, it is easy to design a 𝐾
𝑓

by any
appropriate method (pole placement, optimal control, etc.).
So, here we focus on the design of 𝐿.

The design of 𝐿 should first ensure the stability of the state
observer (19). We take

𝐿 = 𝐾
𝑇

𝜌
,

𝐾
𝜌
= 𝑅
−1

𝐿
𝐶𝑆,

𝐴𝑆 + 𝑆𝐴
𝑇

− 𝑆𝐶
𝑇

𝑅
−1

𝐿
𝐶𝑆 + 𝜌𝑄

𝐿
= 0,

(31)

where 𝑄
𝐿
and 𝑅

𝐿
are two given positive-definite matrices

and 𝜌 is a positive scalar. Since (𝐶, 𝐴) is observable, (𝐶𝑇, 𝐴𝑇)
is controllable. Thus, the observer gain, 𝐿, designed in (31)
makes𝐴−𝐿𝐶 stable, whichmeans that the state observer (19)
is stable.

On the other hand, we tackle the stability issue by first
letting 𝑑 = 0. From (19), (21), and (22), we have

Δ ̇𝑥 = (𝐴 − 𝐿𝐶)Δ𝑥 + 𝐵
̃
𝑑
𝑒
. (32)

Combining (24) and (10) yields
̂
𝑑
𝑒
= −𝐵
+

𝐿𝐶Δ𝑥 +
̃
𝑑
𝑒
. (33)

From (32) and (24), we obtain the transfer function from
̃
𝑑
𝑒
to ̂

𝑑
𝑒
:

𝐺 (𝑠) = 1 − 𝐵
+

𝐿𝐶[𝑠𝐼 − (𝐴 − 𝐿𝐶)]
−1

𝐵

= 𝐵
+

(𝑠𝐼 − 𝐴) [𝑠𝐼 − (𝐴 − 𝐿𝐶)]
−1

𝐵.

(34)

Note that the transfer function from ̂
𝑑
𝑒
to ̃

𝑑
𝑒
is 𝐹(𝑠)

(Figure 2). The small-gain theorem [23] tells us that the
condition

‖𝐺𝐹‖
∞

< 1 (35)
must be satisfied to guarantee the stability of the control
system, where ‖𝐺𝐹‖

∞
:= sup

0≤𝜔≤∞
𝜎max[𝐺(𝑗𝜔)𝐹(𝑗𝜔)] and

𝜎max(⋅) is the maximum singular-value function.
Since the number of inputs of the plant (𝐴𝑇, 𝐶𝑇, 𝐵𝑇) is not

less than the number of outputs, and since𝐴𝑇−𝐶𝑇𝐾
𝜌
is stable,

according to [24, Theorems 1 and 3], we have

lim
𝜌→∞

{[𝑠𝐼 − (𝐴 − 𝐾
𝑇

𝜌
𝐶)]

−1

𝐵}

𝑇

= 0. (36)

Note that [𝑠𝐼−(𝐴−𝐾
𝑇

𝜌
𝐶)]
−1

𝐵 is part of𝐺(𝑠). So, for a given
𝐹(𝑠) in (26), the observer gain, 𝐿, designed in (31) makes the
condition (35) true provided that 𝜌 is large enough.
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4. Numerical Example

We applied the EID-based tracking control strategy to a two-
link rigid robot manipulator (Figure 3) to demonstrate its
validity.

The simulations employed the parameters (Table 1) of a
PUMA 560 manipulator [7]. The matrices for the dynamics
of the nominal model are

𝑀
0
(𝑞) = [

𝑎
1
+ 𝑎
2
+ 2𝑎
3
cos 𝑞
2

𝑎
2
+ 𝑎
3
cos 𝑞
2

𝑎
2
+ 𝑎
3
cos 𝑞
2

𝑎
2

] ,

𝐻
0
(𝑞, ̇𝑞) = [

−𝑎
3
(2 ̇𝑞
1
+ ̇𝑞
2
) ̇𝑞
2
sin 𝑞
2

𝑎
3

̇𝑞
2

1
sin 𝑞
2

] ,

𝑁
0
(𝑞) = [

−𝑏
1
sin 𝑞
1
− 𝑏
2
sin (𝑞
1
+ 𝑞
2
)

−𝑏
2
sin (𝑞
1
+ 𝑞
2
)

] ,

(37)

Table 1: Parameters of the two-link manipulator for simulations.

Link 𝑖 𝑚
𝑖
(kg) 𝐿

𝑖
(m) 𝐿

𝑐𝑖
(m) 𝐽

𝑖
(kg⋅m2)

𝑖 = 1 31.20 1.05 0.43 0.41
𝑖 = 2 22.53 0.78 0.32 0.35

where

𝑎
1
:= 𝑚
1
𝐿
2

𝑐1
+ 𝑚
2
𝐿
2

1
+ 𝐽
1
,

𝑎
2
:= 𝑚
2
𝐿
2

𝑐2
+ 𝐽
2
,

𝑎
3
:= 𝑚
2
𝐿
1
𝐿
𝑐2
,

𝑏
1
:= (𝑚

1
𝐿
𝑐1

+ 𝑚
2
𝐿
1
) 𝑔,

𝑏
2
:= 𝑚
2
𝐿
𝑐2
𝑔,

(38)

𝑞
1
is the angle of the first link relative to the vertical, 𝑞

2
is

the angle of the second link relative to the first link, 𝑚
𝑖
is

the mass of the 𝑖th link (𝑖 = 1, 2), 𝐿
𝑖
is the length of the

𝑖th link (𝑖 = 1, 2), 𝐿
𝑐𝑖
is the distance from the 𝑖th joint to

the center of mass (COM) of the 𝑖th link (𝑖 = 1, 2), 𝐽
𝑖
is the

moment of inertia around the COM of the 𝑖th link (𝑖 = 1, 2),
𝜏
𝑖
is the torque applied to the 𝑖th joint (𝑖 = 1, 2), and 𝑔 is the

gravitational constant (9.80665m/s2).
Let the desired trajectory 𝑞

𝑟
= [𝑞
1𝑟
, 𝑞
2𝑟
]
𝑇 be

𝑞
1𝑟

= 0.5 cos 𝑡 + 0.2 sin 3𝑡,

𝑞
2𝑟

= −0.2 sin 2𝑡 − 0.5 cos 𝑡.
(39)

First, when 𝑑 = 0, we choose

𝐾
𝑃
= [

1 0

0 1
] , 𝐾

𝐷
= [

2 0

0 1
] (40)

for (7) and (9). Figure 4 shows the tracking control results for
the initial condition

[𝑞
1
, 𝑞
2
, ̇𝑞
1
, ̇𝑞
2
]
𝑇

= [𝜋, 0, 0, 0]
𝑇

. (41)

Notice that the actual trajectories converge to the desired
trajectories in less than 10 seconds.

Next, we consider the uncertainties in the physical
parameters by letting 𝑚

1
and 𝐿

𝑐2
be 5% larger than their

nominal values, letting 𝑚
2
and 𝐿

𝑐1
be 5% smaller than their

nominal values, and letting 𝐽
1
and 𝐽

2
be 10% larger than

their nominal values. We also added two types of torques to
the joints of the manipulator: (a) a viscous friction torque,
𝜏
𝑓
= [𝜏
1𝑓

, 𝜏
2𝑓

]
𝑇:

𝜏
1𝑓

= 0.5 ̇𝑞
1
, 𝜏

2𝑓
= 0.5 ̇𝑞

2
, (42)

and (b) an external disturbance torque, 𝜏ext = [𝜏
1ext, 𝜏2ext]

𝑇

(Figure 5):

𝜏
1ext = 0.5 (sin 4𝜋𝑡 + cos 2𝜋𝑡) ,

𝜏
2ext = 0.5 (sin𝜋𝑡 + cos 0.5𝜋𝑡) .

(43)
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Figure 4: Tracking control results without uncertainties or disturbances.
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Figure 5: Disturbance to torque of joints added to the two-link manipulator.

The simulation results (Figure 6) for (5), (7), (40), and (41)
show that the tracking performance was much worse, and a
large steady-state tracking error appeared. That means that
control law (7) by itself does not force the robot manipulator
to track the desired trajectory when uncertainties and distur-
bances are present.

Finally, we applied the EID-based control strategy. We
chose 𝐵 = [10, 10]. It is easy to verify that (𝐴, 𝐵) is control-
lable. Letting all of the poles of 𝐴 + 𝐵𝐾

𝑓
be −2.5 yields the

feedback gain

𝐾
𝑓
= [−2.3625, −1.4437, −1.8563, 1.1563] . (44)

The design parameters for (26) and (31) were chosen to be

𝑇 = 0.1, 𝑄
𝐿
= 10𝐼
4
, 𝑅

𝐿
= 50𝐼
2
, 𝜌 = 10

6

.

(45)

That gave

𝐿 = [

447.4463 0 104.1078 0

0 447.6245 0 183.8319
]

𝑇

,

‖𝐺𝐹‖
∞

= 0.9186 < 1.

(46)

The simulation results (Figure 7) for (5), (10), (28), (40),
(41), and (45) show that the tracking performance was much
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Figure 6: Simulation results for control law (7) when uncertainties and disturbances are present.
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Figure 7: Simulation results for EID-based control when uncertainties and disturbances are present.
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Figure 8: Simulation results for EID-based control when uncertainties, disturbances, and measurement white noise are present.

better than that in Figure 6. The EID-based controller (28)
almost completely rejects the effect of the uncertainties and
disturbances. So, the perturbed manipulator system (3) pre-
cisely tracks the desired trajectory. Since measurement noise
is very common in actual control engineering applications,
we also added white noise (peak value: ±0.2) to the measured
𝑞. The simulation results (Figure 8) show that the robot
manipulator precisely tracks the desired trajectory even in
this case.

5. Conclusion

This paper presents an EID-based control strategy that
solves the tracking control problem for a robot manipulator
with unknown uncertainties and disturbances. It uses only
joint position measurements in the design of the tracking
controller. The controller has two parts: one part uses an
exact linearization technique to guarantee the asymptotical
stability of the nominal model and the other is based on the
idea of EID, which compensates for the effects of parameter
uncertainties and exogenous disturbances. The combination
makes a robot manipulator precisely track the desired tra-
jectory. Simulation results show the validity of this control
strategy.
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A new autopilot system for unmanned underwater vehicle (UUV) using multi-single-beam sonars is proposed for environmental
exploration. The proposed autopilot system is known as simultaneous detection and patrolling (SDAP), which addresses two
fundamental challenges: autonomous guidance and control. Autonomous guidance, autonomous path planning, and target tracking
are based on the desired reference path which is reconstructed from the sonar data collected from the environmental contour with
the predefined safety distance. The reference path is first estimated by using a support vector clustering inertia method and then
refined by Bézier curves in order to satisfy the inertia property of the UUV. Differential geometry feedback linearization method is
used to guide the vehicle entering into the predefined path while finite predictive stable inversion control algorithm is employed for
autonomous target approaching.The experimental results from sea trials have demonstrated that the proposed system can provide
satisfactory performance implying its great potential for future underwater exploration tasks.

1. Introduction

Underwater exploration often encounters environment that
is difficult or even impossible for humans to access due to
their physical constraints such as deep depth, narrow spaces,
and severe working conditions. Unmanned underwater vehi-
cle has a number of advantages for exploring underwater
environments, such as autonomous control ability and self-
sufficient energy supply. Autopilot of UUV often relies on the
information or characteristics (e.g., geometrical information)
of the surrounding environment, reflected by data collected
from sensors such as sonars.

When in operation, sonar sends out an acoustic beam and
the returned (usually the fastest) beam from the environment
is collected to determine the distance and location of the
environment. This means that it can detect the point on the
contour that has the shortest distance from the sonar. There-
fore, sonar data can be used to plan the desired path of the
UUV and control it by changing thruster forces and rudder
angles of the UUV to approach the target. An important
issue for designing UUV control systems is the strength of

the signal observed from sonar. It is weak primarily due to
the random effect caused by complicatedmarine disturbance;
other interferences between received beams can be due to
delay and scattering effect.

In this paper a new autopilot system, known as simul-
taneous detection and patrolling (SDAP), is proposed to
address this challenge. Autonomous guidance and control
are implemented synchronously where the reconstructed
environment contour is used as the guidance path for UUV
navigation. For the environment contour reconstruction, the
major focus of research is on simultaneous localization and
mapping (SLAM) [1], where navigation is the key issue to be
addressed.With the advances in control theory, UUV control
systems have rapidly evolved from classic control theory to
modern control models, including PID [2, 3], backstepping
[4–7], fuzzy theory [8, 9], neutral network [10–13], sliding
model [14, 15],model prediction control [16, 17], and feedback
linearization [18–23]. In particular, Zou has proposed an
optimal inversion-based output tracking approach for the
guidance of a vertical takeoff and landing (VTOL) aircraft
problem [21]. Song has further improved this approach
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Figure 1: Illustration of the proposed SDAP system for different environments.

with better convergence property such that a second order
convergence can be achieved evenwith aggressive trajectories
and strong nonlinearities [20]. Given that stable inversion
technique has shown excellent performance for achieving
stable control inputs, it is chosen to be implemented in the
controllers for accuracy, efficiency, and cost effectiveness.

In this paper autopilot of UUV for both closed and
open environments is considered, as shown in Figure 1. In
the closed port (Figure 1(a)), there is only one entrance
and the UUV has to be able to navigate to the only ready
point from any launch and recovery position (L&R). For
the open island (Figure 1(b)), there are theoretically infinite
numbers of possible entrance points around the island. With
consideration of the disturbances such as current direction,
an appropriate ready point has to be chosen to guide theUUV
to enter into the manned-unknown area. In the manned-
known areas, accurate predefined path is applied for theUUV
to follow in order to reduce the cost and risks.Themain issue
addressed in the paper is the navigation using autonomous
guidance and control is implemented in manned-unknown
areas or area inaccessible for humans where the contour
has to be reconstructed in real time. Although in reality,
the environment is semiclosed where there is more than
one entrance, it is not discussed explicitly here as it can be
addressed by applying the strategy for closed environment in
an iterative manner.

The main novelties of this paper are as follows.
(1) To address the weak sonar data, a wavelet transform

is applied to preprocess the original data so as to
eliminate possible outliers in the original sonar data.
To reduce the information loss in the preprocessing,
the wavelet coefficient values of the current time
are estimated using those coefficients estimated in
the past times and the original sonar data. All the
estimated wavelet coefficients are then regarded as
the data resource for the contour reconstruction
processes.

(2) A support vector clustering (SVC) inertia algorithm
is proposed to cluster the data into different classes so
as to determine the property of the original sonar data
and obtain the boundaries of the classes (also known
as contour). The resulting contour after this step is
composed of successively connected lines.

(3) To satisfy the inertia property of the UUV path,
the initial contour is smoothed using different order
Bézier curves which are automatically determined by
the local properties of the structural environments.

(4) With the information of the smoothed contour as the
reference path and a predefined safety distance, an
improved inversion algorithm, finite predictive stable
inversion is proposed to control vehicle navigation.

The remainder of this paper is organized as follows:
in Section 2, weak observable sonar data is preprocessed
using the wavelet transform and represented as a collection
of wavelet coefficients. In Section 3, the wavelet coefficients
together with the data confidence limit andDVL information
are used to estimate the contour of the environment structure
by a support vector clustering inertia method. Addressing
the inertia requirement of the vehicle, in Section 4 different
order Bézier curves are introduced to smooth the initial
contour and automatic decision strategy is made to generate
the reference path according to the local properties of the
structural environment. In Section 5 details on the controller
design methods are presented, and employed for predictive
trading during detection mission. The validation experiment
design and results are presented in Section 6. Section 7
concludes this paper with some insightful discussions.

2. Preprocessing of Sonar Data Using
Wavelet Transform

2.1. Collection of Sonar Data. In this paper five single-beam
sonars are configured on the vehicle in order to automatically
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Table 1: Metrics to categorize obstacles.

𝐸
𝑡

𝐸
Δ𝑡

𝐿
𝑡
change Class

1 1 No TO
1 1 Yes GLTO
1 0 No contour Noise or SLTO

detect the underwater environment: three sonars in the front
to detect local environment characteristics and two on the left
and the right side for contour reconstruction.The three front
sonars are deployed in a way where the middle one is located
on the axis of the vehicle surge direction and the other two
are installed on the left and right of the middle one with an
angle of 7.5 degree, respectively.

Data collected from sonars often include useful data
describing obstacles and noise from random outliers. To
address the “false alarm” problem in vehicle navigation,
those outliers have to be detected and eliminated as much
as possible. Outliers can be divided into noise patches and
objects (e.g., fish swarm) that have less or no threats to the
vehicle. Therefore, three different types of objects are defined
as follows.

(a) Threaten Obstacle (TO).They are obstacles existing in
the environment that can be detected by sonar and
have threats to the vehicle, including wreck, reef, and
iceberg.

(b) Low Threaten Obstacle (LTO). They are obstacles
existing in the environment that can be detected by
sonar but have low level of threat to the vehicle, such
as suspensions, and fish swarms. LTO can be further
fractionized to single LTO (SLTO) distributing as
single isolated objects and group LTO (GLTO) with
unfixed contour.

(c) Noise. Data is collected from sonar that denotes non-
obstacles.

With the above definitions, data describing TO is consid-
ered to be useful while LTO and noise are regarded as outliers
in this paper. Let 𝐸

𝑡
and 𝐸

Δ𝑡
be data distribution at instants 𝑡

and (𝑡 + Δ𝑡), respectively, and the values of 1 and 0 describe
data existence and nonexistence, respectively; 𝐿

𝑡
express the

contour of data class at time 𝑡, and the sonar data can be
classified as Table 1.

2.2. Preprocessing of Weak Observable Data Using Wavelet
Transform Modulus Maxima. Outliers mixed in the dataset
can be described as singularities by estimating local Lipchitz
exponent using wavelet transforms. Defined either at a
certain time instant or in an interval, Lipschitz exponent can
be calculated by numerical methods. A wavelet transform
modulus maximum (WTMM) is introduced to preprocess
the sonar data.

Let 𝑥(𝑡) and 𝜓(𝑡) be the sonar data and a certain function
(introduced next) at instant 𝑡, respectively; the wavelet
transform can be defined as 𝑊𝑥(𝑏, 𝑎) = (1/√𝑎) ∫∞

−∞

𝑥(𝑡) ⋅

𝜓((𝑡 − 𝑏)/𝑎)𝑑𝑡, where − is complex conjugation and 𝑎 and
𝑏 describe scale element and shift coefficient, respectively.

Mathematically the local regularity indicated by Lipschitz
exponent is the precondition for data reconstruction using
wavelet transform. Owing to the relationship between the
WTMM and Lipschitz exponent, the pattern of change
in WTMM at different scales is of great importance for
the preprocessing of weak data. At a certain scale, if the
maximum modulus exists at some time point, search along
the scale decrease direction within the cone of influence will
find a singular point or a peak point close to the zero scale,
which can be determined by the Lipschitz exponent.

2.2.1. Estimation of Wavelet Coefficients and Compensation of
Lost Data. In order to remedy the eliminated sonar data and
to guarantee the continuity of the reconstructed contour, the
wavelet coefficient estimation method proposed by Liu and
Mao [24] is used. More specifically, the original sonar data
in previous five instants and the wavelet coefficients in the
previous six instants are used for the estimation as follows:

𝑊𝑥(𝑘𝑇, 𝑓) = √𝑓𝑇 {𝛿
1
𝑥 [(𝑘 − 1) 𝑇, 𝑓]

+ 𝛿
2
𝑥 [(𝑘 − 2) 𝑇, 𝑓]

+ 𝛿
3
𝑥 [(𝑘 − 3) 𝑇, 𝑓]

+ 𝛿
4
𝑥 [(𝑘 − 4) 𝑇, 𝑓]

+ 𝛿
5
𝑥 [(𝑘 − 5) 𝑇, 𝑓]

− 𝜆
1
𝑊𝑥[(𝑘 − 1) 𝑇, 𝑓]

− 𝜆
2
𝑊𝑥[(𝑘 − 2) 𝑇, 𝑓]

− 𝜆
3
𝑊𝑥[(𝑘 − 3) 𝑇, 𝑓]

− 𝜆
4
𝑊𝑥[(𝑘 − 4) 𝑇, 𝑓]

− 𝜆
5
𝑊𝑥[(𝑘 − 5) 𝑇, 𝑓]

− 𝜆
6
𝑊𝑥[(𝑘 − 6) 𝑇, 𝑓]} ,

(1)

where
𝜀 = 𝑒

−𝑓𝑇(𝜎−𝑖𝑤0)

,

𝜆
1
= −6𝜀,

𝛿
1
= [

(𝜎𝑓𝑇)
3

3

−

(𝜎𝑓𝑇)
4

4

+

(𝜎𝑓𝑇)
5

5

] 𝜀,

𝛿
2
= [

2(𝜎𝑓𝑇)
3

3

−

5(𝜎𝑓𝑇)
4

3

+

26(𝜎𝑓𝑇)
5

15

] 𝜀
2

,

𝜆
2
= 15𝜀

2

,

𝜆
3
= −20𝜀

3

,
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𝛿
3
= [

22 ⋅ (𝜎𝑓𝑇)
5

5

− 2(𝜎𝑓𝑇)
3

] 𝜀
3

,

𝛿
4
= [

2 ⋅ (𝜎𝑓𝑇)
3

3

+

5 ⋅ (𝜎𝑓𝑇)
4

3

+

26 ⋅ (𝜎𝑓𝑇)
5

15

] 𝜀
4

,

𝜆
4
= 15𝜀

4

,

𝜆
5
= −6𝜀

5

,

𝜆
6
= 𝜀

6

,

𝛿
5
= [

(𝜎𝑓𝑇)
3

3

+

(𝜎𝑓𝑇)
4

6

+

(𝜎𝑓𝑇)
5

15

] 𝜀
5

.

(2)

2.2.2. Confidence Limit of a Single-Beam Sonar Data. Confi-
dence limit is introduced to assess the degree of match bet-
ween the wavelet coefficients and the model calculated using
the data. Hypothesis test is used to estimate this confidence
limit.

Assume that 𝑀 is the calculated model built using
Hidden Markov Model [24]; the null hypothesis 𝐻

0
and

alternative hypothesis𝐻
1
are as the follows.

𝐻
0
:𝑊𝑇 is valid data and equals the data calculated using

the model. This means the original sonar data are the true
signal from threatening obstacles.
𝐻

1
:𝑊𝑇 is an outlier and its corresponding original sonar

data are from either low threatening obstacles or noise.
The tracking evaluation function is introduced to esti-

mate the confidence limit,

𝐸V (𝑊𝑇,𝐻
0
, 𝐻

1
) =

𝑃 {𝑊𝑇 | 𝐻
0
}

𝑃 {𝑊𝑇 | 𝐻
1
}

, (3)

where 𝑃{𝑊𝑇 | ⋅} is the probability to obtain the same model
data with𝑊𝑇 in corresponding hypothesis.

If 𝑇min is defined as the acceptable minimum threshold,
the ratio between the evaluation function value and 𝑇min is
used to determine the class property of the data; see Table 2.

3. Initial Contour Reconstruction

Thepreprocess sonar data by using the wavelet transform can
locally amplify abnormal signals or outliers.This observation
helps detect and eliminate potential outliers in order to
reconstruct the contour of environmental structure. Support
vector clustering (SVC) inertial algorithmwas used to achieve
the initial contour reconstruction.

Table 2: Determination of class types.

Ratio Class type
≥1 Outliers
<1 Valid data

Table 3: Criterion of clustering.

Class Condition Conclusion
Nonbounded
support vector 𝜗

𝑖
= 0, 0 < 𝛼

𝑖
< 𝑃 Class contour

Bounded support
vector 𝜗

𝑖
> 0, 𝛼

𝑖
= 𝑃 Outliers

Data class 𝛼
𝑖
= 0 Class data

3.1. Structural Environment Construction Using SVC Algo-
rithm. The main idea of SVC is to project sonar data
{𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
} into high-dimension hypersphere space with

a minimum radius using nonlinear mapping 𝐻 = {Φ(𝑥
𝑖
) |

1 ≤ 𝑖 ≤ 𝑁}. For the mapping data in hypersphere, it holds
that ‖Φ(𝑥

𝑖
) − 𝑎‖

2

≤ 𝑅
2 where 𝑎 and 𝑅 denote the center and

radius of the sphere. The objective function is described as
[25],

max
{

{

{

𝑁

∑

𝑖=1

𝐾(𝑥
𝑖
, 𝑥

𝑖
) 𝛼

𝑖
−

𝑁

∑

𝑖=1,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝐾(𝑥

𝑖
, 𝑥

𝑗
)

}

}

}

. (4)

In high dimension space, the distance from 𝑥 to the
sphere center 𝑎, 𝑅2 = ‖Φ(𝑥) − 𝑎‖2 is adapted as

𝑅
2

= 𝐾 (𝑥, 𝑥) − 2

𝑁

∑

𝑖=1

𝛼
𝑖
𝐾(𝑥

𝑖
, 𝑥) +

𝑁

∑

𝑖=1,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝐾(𝑥

𝑖
, 𝑥

𝑗
) , (5)

where hypersphere radius 𝑅 = ∑
𝑖
𝑅(𝛼

∗

𝑖
)/𝑁, a support vector

𝛼
∗

𝑖
, and the number of support vector𝑁. Class bound of data-

set will be collected

{𝑥 | 𝑅 (𝑥) = 𝑅} . (6)

Outliers are defined as

{𝑥 | 𝑅 (𝑥) > 𝑅} . (7)

After the clustering, the sonar data are separated into
three classes according to the positionwith respect to the class
bound, shown in Table 3. 𝜗 and𝑃 are the relaxation factor and
penalty coefficient to balance the performance.

Adjacency matrix𝐴 = (𝐴
𝑖𝑗
)
𝑁×𝑁

is included to determine
type of classes with the distance as its elements:

𝐴
𝑖𝑗
= {

1 ∀𝑡 ∈ seg (𝑥
𝑖
, 𝑥

𝑗
) , 𝑅 (𝑡) ≤ 𝑅

0 other,
(8)

where seg(𝑥
𝑖
, 𝑥

𝑗
) expresses the line segment between 𝑥

𝑖
and

𝑥
𝑗
. If the line is either inside or outside the hypersphere, 𝑥

𝑖

and 𝑥
𝑗
are then attributed to the same class. A three-step

implementation is as follows.
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Sonar data

A known class exists 
in visible space?

Put data into 
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A new class
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Y
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Y

Y
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certain class?

N

Y

End

N

Is confidence N

Y

Y

N
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greater than Tmin?

Is data greater than uΔt?

Figure 2: Flow chart of outlier inertia detection for preprocessed data.

Step 1. 𝑘-average interpolation is applied on the line between
𝑥
𝑖
and 𝑥

𝑗
.

Step 2. Compute 𝑥 = ‖𝑥
𝑖
− 𝑥

𝑗
‖ ⋅ 𝑙/𝑘, and let Δ𝑥 be regarded as

the determinant distance and 𝑙 is the number of lines inside
or on the hypersphere.
Step 3. If 𝑥 ≥ Δ𝑥, 𝑥

𝑖
and 𝑥

𝑗
are attributed to the same class;

otherwise they are from different classes and will have to be
further differentiated in the next subsection.

3.2. Inertia Algorithm for Improving Construction. Inertia
algorithm is a common action delay method proposed to
avoid unnecessary actions of theUUV in order to escape from
potentially threatening obstacles [25]. This idea is adopted
here to determine the classes of those data that has not
been successfully classified. Outliers determined by the SVC
algorithm are regarded as candidate outliers. Inertia method
is used to determine the class label of those data that have

not been explicitly classified. After this step the sonar data are
separated into three classes: data class, class bound data, and
outliers by using inertia algorithm. The flowchart of inertia
algorithm is illustrated in Figure 2.

Let 𝑘 and 𝜌
𝑇
, respectively, denote the number of classes

and a preset minimum constant threshold. ∀𝑖 ≥ 1, if it is
satisfied that

∃⋃

𝑘

{𝑥
𝑘
| 𝑘 > 𝜌

𝑇
} ⊆ 𝐶

𝑖
. (9)

𝐶
𝑖
is regard as a known class. An alternative set is introduced

to temporarily place preoutliers, denoted as 𝐴𝑙𝑆.
The conditions for classifying the sonar data into the

alternative set can be described as follows.

(1) There is not any known class.

At the beginning of path planning, there is not enough
sonar data to be clustered and to clearly indicate any obstacles.
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The data 𝑥 is placed into alternative set 𝐴𝑙𝑆. If there is more
sonar data in the visible range of 𝑥 and the density increases
to 𝜌

𝑇
, it means that the dataset constitutes the first class 𝐶

1
.

If the density is still lower than 𝜌
𝑇
with time evolution of Δ𝑡,

𝑥 will be determined as LTO or noise and will not be used to
reconstruct the contour of the environment.

(2) If any 𝐶
𝑖
exists with 𝑖 ≥ 1, 𝑖 ∈ N+, the class may

include class data, class bound data, and/or outliers
and thus cannot be directly determined. Let 𝑋 be an
arbitrary dataset and described as

𝑋 =

{

{

{

𝑚

⋃

𝑗=1

𝑥
𝑗
| 𝑚 < 𝜌

𝑇
, 𝑥

𝑗
∉ 𝐶any

}

}

}

, (10)

where 𝐶any denotes any known class. It implies that once the
destiny of sonar data is less than 𝜌

𝑇
, it will be placed into 𝐴𝑙𝑆

for further assessment.
Assume that𝑁

𝑐
is the number of known classes, andClass

set 𝐶 is defined as

𝐶 = ⋃

𝑖∈𝑀

𝐶
𝑖
= {𝑥 : ∃𝑖 ∈ 𝑁

𝑐
,with 𝑥 ∈ 𝐶

𝑖
} . (11)

Outlier set is symbol by 𝑂, including the outliers and the
data with density less than the preset threshold 𝜌

𝑇
.

Criterion 1. For any sonar data 𝑥, if it is satisfied that 𝑥 ∈ 𝐿
𝑖
,

1 ≤ 𝑖 ≤ 𝑀, where 𝐿
𝑖
is the bound of known class 𝐶

𝑖
, we will

have 𝑥 ∈ 𝐶
𝑖
.

For arbitrary data 𝑥, Criterion 1 is utilized to identify
whether it belongs to any known class. If it just falls into
bound 𝐿

𝑖
, 𝑥 is assigned to 𝐶

𝑖
directly and 𝑥 ∈ 𝐶

𝑖
; otherwise,

go to the next criterion. In order to determine the properties
of the data, visible space is defined as follows.

Visible space is an artificial sphere space centered at 𝑥
with a radius of 𝑟. It is used to estimate distribution density
near𝑥. In the visible space, if the density of sonar data is larger
than a predefined threshold, we can determine that it is a valid
class.
Criterion 2. ∀𝑥, 𝑥 ∉ 𝐶

𝑖
, 𝑥 does not belong to any known class.

Assume that 𝑉 = {𝑥 | |𝑥 − 𝑥
𝑎
| < 𝑟}, with 𝑥

𝑎
as a point in

the visible range of 𝑥. If the number of data satisfying the
condition 𝑥

𝑎
∈ 𝐶

𝑖
is not less than 𝜌

𝑇
, then 𝐶

𝑖
is a known class

in 𝑥’s visible range.
Criterion 3. If the number of data in 𝐶

𝑖
is larger than 𝜌

𝑇
, and

𝐶
𝑖
is the unique known class of 𝑥, it can be ascertained that

𝑥 ∈ 𝐶
𝑖
directly.

To determine the property of any 𝑥 that has not been
successfully classified by using Criterion 1, Criterion 3 is
important to ensure whether it can be assigned to a unique
known class. If it fails, reclustering has to be performed.

It is observed that the objects for reclustering 𝐶Re only
contain the classes including the data point and those in its
visible range, and therefore the effectiveness of algorithm can
be increased:

𝐶Re = {𝑥 | 𝑥 ∉ 𝐶𝑖⋂




𝑥 − 𝑥

𝑎





< 𝑟}⋃{𝑥

𝑎
| 𝑥

𝑎
∈ 𝐶

𝑖
} . (12)

Sonar data 𝑥 with unknown class in its visible range will
be located in the alternative set𝐴𝑙𝑆. Similarly, those data that
can still not be classified by reclustering are also placed into
𝐴𝑙𝑆 for further analysis.
Criterion 4. ∀1 ≤ 𝑖 ≤ 𝑀, ∃𝑥

𝑖
∈ 𝐴𝑙𝑆, SVC algorithm is applied

to cluster and class 𝐶
𝑟
is obtained. If the density 𝜌

𝑅
of 𝐶

𝑟
is

larger than 𝜌
𝑇
, it is considered that 𝐶

𝑟
⊆ 𝐶. The total number

of 𝑀 increases by 1. Otherwise, data 𝑥 (or dataset 𝑋) exist
which satisfies the following condition:

{𝑥 | 𝑡 > 𝑡
𝑇
} ⊆ 𝑂

{𝑋 | Total number of 𝑋 < 𝜌
𝑇
, 𝑡 > 𝑡

𝑇
} ⊆ 𝑂,

(13)

where 𝑡 shows the time related to the data 𝑥 (or set𝑋).
In environmental structure detection, data gradually

accumulates.Through preprocessing usingwavelet transform
and clustering by SVC inertia algorithm, an initial contour
can be reconstructed with data class bound as reference.
The initial contour consists of several successively connected
lines.

4. Smoothing Initial Contour Based on Local
Environment Characters

4.1. Extraction of Local Environmental Characteristics. Based
on the assumption that the data collected from the 5 sonars
are accurate, three different local environmental characteris-
tics can be determined, and they are described as follows.

4.1.1. Line Path. Figure 3 shows two scenarios where the
vehicle is located on the right (Figure 3(a)) and left side
(Figure 3(b)) of a local linear environment, respectively. 𝑙

1
, 𝑙
2
,

and 𝑙
3
denote the data collected from the left, middle, and

right sonars in the front of the vehicle, respectively, while
𝑙
𝑙
and 𝑙

𝑟
are the data collected from the left and right side

sonars.
If the left (resp., right) side sonar data is valid and the right

(resp., left) one shows maximum effective distance, then the
vehicle is on a line path and on the right (resp., left) side of
the contour. Remark: energy carried with an UUV is often
limited. When there is no obstacle on one side of the vehicle,
the sonar on that side can be turned off in order to conserve
energy and extend the working time for the mission.

4.1.2. Narrow Path. If the distance between the environment
contours on both sides of the path is not wide enough for the
vehicle to turn safely, the vehicle is in a narrow path. Figure 4
illustrates this scenario where the distances 𝑙

12
and 𝑙

23
are

calculated by using the data from the three front sonars. If
the sonar data from the left and right side are effective and
𝑙
12
+ 𝑙

23
< 2𝑑

𝑐
where 𝑑

𝑐
is the predefined minimum turning

radius, the vehicle is in a narrow turning path.

Proof. Thetriangle inequality theorem states that any one side
of a triangle is always shorter than the sum of the other two
sides. For the triangle with 𝑙

12
, 𝑙
23
, and 𝑙

13
as its sides, it holds

that
𝑙
12
+ 𝑙

23
> 𝑙

13
. (14)



Mathematical Problems in Engineering 7

l1

l1

ll

ll

l2

l2

l3

l3

y

y

x

x

lr

lr

𝛼𝛼

𝛼𝛼

Figure 3: Diagram illustrating line path.

Let 𝑙
0
be the line connecting the two sides of the contours;

it also holds that

𝑙
13
≥ 𝑙

0
. (15)

Then we have

𝑙
0
≤ 𝑙

13
< 𝑙

12
+ 𝑙

23
. (16)

If 𝑙
12
+ 𝑙

23
< 2𝑑

𝑐
is satisfied, it holds that 𝑙

0
< 2𝑑

𝑐
. That is, the

line is smaller than the turning radius, and the vehicle cannot
steer out of this narrow turning environment by normal
turning motion. Theorem holds.

4.1.3. Regular Turning Path. The determination of regular
turning path is similar to the narrow turning path. If the left
side sonar data is effective, the vehicle in regular turning path
can be separated into two situations according to the data
from the 3 sonars at the front; see Figure 5.The left front sonar
beam is located on the previous path, with the middle and
right ones being located on the rear path in Figure 5(a). The
difference between (b) and (a) is the left and middle sonar
beam located on the previous path, with the right sonar beam
being on the rear path.The stage of UUV turning is reflected.
If the sonar data on one side is effective and the other side
is ineffective or has the maximum value (this is different to
narrow turning path), it can be determined that the vehicle is
in a regular turning path.

4.2. Smoothness of the Local Environmental Contour. The ini-
tial contour reconstructed by using the SVC inertia algorithm
comprises lines that are successively connected. Due to the
inertia property of the underwater vehicle, this cannot be
used as the reference path for tracking. In this paper, Bézier
curve is introduced to smooth the initial contour in order to
extract a reference path that can be used for navigation.

Given a set of control points 𝑃
0
, 𝑃

1
, . . . , 𝑃

𝑛
, ∀𝑡 ∈ [0, 1],

𝑛th-order Bézier curve can be defined as 𝐵(𝑡) = ∑𝑛

𝑖=0
𝑃
𝑖
𝑏
𝑖,𝑛
(𝑡),

with Bernstein Polynomial 𝑏
𝑖,𝑛
(𝑡) = [𝑛 𝑖]

𝑇

𝑡
𝑖

(1 − 𝑡)
𝑛−𝑖, 𝑖 =

0, 1, . . . , 𝑛. Different order Bézier curves are chosen to smooth
the initial contour. To determine the curve orders, control
points are located first. Considering navigation requirement
and the contour characteristics, it is intrinsic that the starting

l13

l12 l23

l1

ll

l2 l3

y

x

lr

𝛼 𝛼

Figure 4: Diagram illustrating narrow turn path.
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(a)

l12
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(b)

Figure 5: Diagram illustrating normal turn paths.

point, end point, and intersection point between turning
paths should be the control points. Moreover, the width
of the local environment is another significant issue to be
considered for the order of Bézier curve.

Based on Section 4.1, the local environmental character-
istics are separated into line and turning paths, and then the
orders of different characteristics are classified. It has been
proved that 2nd-order Bézier curve is sufficient for turning
path restriction [26], and as such Bézier curves used here
must satisfy 𝐶2 continuity condition.
𝐶
𝑘 continuity condition: Bézier curves 𝑃(𝑡) and 𝑄(𝑡) in 𝐶𝑘

continuous at 𝑡
0
are,

𝑃 (𝑡
0
) = 𝑄 (𝑡

0
)

̇𝑃 (𝑡
0
) = ̇𝑄 (𝑡

0
)

...

𝑃
(𝑘)

(𝑡
0
) = 𝑄

(𝑘)

(𝑡
0
) .

(17)
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Figure 6: Rolling path with different orientations to find initial
points on reference path.

Based on the definition of 𝐶𝑘 continuity condition,
smoothness conditions for 𝑛 segments can be shown as

𝑖−1

𝑃
𝑛𝑖−1

=
𝑖

𝑃
0

𝑛
𝑖−1
(
𝑖−1

𝑃
𝑛𝑖−1

−
𝑖−1

𝑃
𝑛𝑖−1−1
) = 𝑛

𝑖
(
𝑖

𝑃
1
−

𝑖

𝑃
0
)

𝑛
𝑖−1
(𝑛

𝑖−1
− 1) (

𝑖−1

𝑃
𝑛𝑖−1
− 2 ⋅

𝑖−1

𝑃
𝑛𝑖−1−1

+
𝑖−1

𝑃
𝑛𝑖−1−2
)

= 𝑛
𝑖
(𝑛

𝑖
− 1) (

𝑖

𝑃
2
− 2 ⋅

𝑖

𝑃
1
+

𝑖

𝑃
0
) ,

(18)

where 𝑖 = 2, 3, . . . , 2𝑁 − 3, and 𝑛
𝑖
is the number of control

points for the 𝑖th Bézier subcurves.The first and last segments
are special cases and their orders are discussed first and
followed by those ones in the middle.

4.2.1. First and Last Segments. For the first and last segments,
1

𝐵(𝑡) and 2𝑁−3

𝐵(𝑡), with the known control points𝑊
1
=

1

𝑃
0

and 𝑊
𝑁
=

2𝑁−3

𝑃
4
. To find the orders of these curves, the

following must hold.

Condition 1. The heading 𝜓
0
and 𝜓

𝑓
at control points𝑊

1
and

𝑊
𝑁
must be guaranteed as follows:

1
𝑝
1
= 𝑊

1
+ 𝑐

0
[cos𝜓

0
sin𝜓

0
]
𝑇

, 𝑐
0
∈ R+

,

2𝑁−3
𝑝
3
= 𝑊

𝑁
− 𝑐

𝑓
[cos𝜓

𝑓
sin𝜓

𝑓
]

𝑇

, 𝑐
𝑓
∈ R+

,

(19)

where 𝑐
0
and 𝑐

𝑓
are constant parameters. To satisfy Condition

1, 1

𝑃
0
and 1

𝑃
1
of the first segment, as well as 2𝑁−3

𝑃
3
and

2𝑁−3

𝑃
4
of the final segment must be known.

Condition 2. 𝐶2 continuity condition with contiguous sub-
curves must be guaranteed. Therefore, the points 𝑖−1

𝑃
𝑛𝑖−1

,
𝑖−1

𝑃
𝑛𝑖−1−1

, and 𝑖−1

𝑃
𝑛𝑖−1−2

should be known in (18).
Given all the above conditions, the total number of the

control points required to be known is 5 for the first and
last segment, respectively. This implies that 4th-order Bézier
curves are needed for both of them.

4.2.2. Middle Segments. To guarantee 𝐶2 continuity condi-
tion, for each middle segment it has 6 control points in total:
three control points, respectively, from the previous segment
(including 𝑖

𝑃
2
, 𝑖

𝑃
1
and 𝑖

𝑃
0
) and the segment after (including

𝑖−1

𝑃
𝑛𝑖−1

, 𝑃
𝑛𝑖−1−1

, and 𝑃
𝑛𝑖−1−2

) are known (see (30)). Therefore,
the order of Bézier subcurves is 5 for the middle segments,

Table 4: Orders of Bézier curve.

Local environment character Order of Bézier curve
Turning 2nd-order
Start and final segments 4th-order
Middle segments 5th-order

𝑖

𝐵(𝑡), 𝑖 = 3, 5, . . . , 2𝑁 − 5. Table 4 summarizes the order
selection for different local environment characters.

5. Path Tracking Control

Two types of feedback linearizationmethods are used for path
tracking control: differential geometry feedback linearization
and stable inversion, which can be used for exactly automatic
target approaching in known region and contour reconstruc-
tion in unknown region, two stages of the navigating process.
This will be detailed in this section.

The path tracking control model for a UUV can be
described with state vectors as follows:

̇𝑥 (𝑡) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝜇 (𝑡) ,

𝑦 (𝑡) = [𝑦
1
𝑦
2
𝑦
3
]
𝑇

= ℎ (𝑥 (𝑡)) ,

(20)

where 𝑥(𝑡) = [𝑥 𝑦 𝜓 𝑢 V 𝑟 ]
𝑇

∈ R6 denotes states, 𝜇(𝑡) =
[𝜏

𝑢
𝜏
𝑟
]

𝑇

∈ R2 denotes input variable matrix, mapping 𝑓(⋅) :
R6

→ R6, 𝑔(⋅) : R6

→ R6×2, and ℎ(⋅) : R6

→ R3 is smooth
enough. 𝑓 and 𝑔 are nonlinear items and input coefficient
items given in the following:

𝑓 =

[

[

[

[

[

[

[

[

𝑢 cos𝜓 − V sin𝜓 + 𝜏
𝑑𝑢

𝑢 sin𝜓 + V cos𝜓 + 𝜏
𝑑V

𝑟 + 𝜏
𝑑𝑟

𝑝
1
V𝑟 + 𝑝

2
𝑢

𝑝
4
𝑢𝑟 + 𝑝

5
V

𝑝
7
𝑢V + 𝑝

8
𝑟

]

]

]

]

]

]

]

]

,

𝑔 =

[

[

[

[

[

[

[

[

0 0

0 0

0 0

𝑝
3
0

0 0

0 𝑝
9

]

]

]

]

]

]

]

]

,

(21)

where 𝑝
1
= 𝑚

22
/𝑚

11
, 𝑝

2
= (−𝑋

𝑢
−𝑋

𝑢|𝑢|
|𝑢|)/𝑚

11
, 𝑝

3
= 1/𝑚

11
,

𝑝
4
= 𝑚

11
/𝑚

22
, 𝑝

5
= (−𝑌V − 𝑌V|V||V|)/𝑚22

, 𝑝
6
= 1/𝑚

22
, 𝑝

7
=

(𝑚
11
− 𝑚

22
)/𝑚

33
, 𝑝

8
= (−𝑁

𝑟
− 𝑁

𝑟|𝑟|
|𝑟|)/𝑚

33
, 𝑝

9
= 1/𝑚

33
,

𝑚
11
= 𝑚 − 𝑋

̇𝑢
, 𝑚

22
= 𝑚 − 𝑌

̇V, and 𝑚33
= 𝐼

𝑧
− 𝑁

̇𝑟
. 𝑚 is

the mass of the UVV; 𝑋(⋅), 𝑌(⋅), and𝑁(⋅) are the derivatives
of the hydrodynamic coefficients related to the added mass;
𝐼
𝑧
denotes the initial moment of the UUV under body

coordinate system, 𝜏
𝑢
and 𝜏

𝑟
are the input force, and moment

𝜏
𝑑𝑢
, 𝜏

𝑑V, and 𝜏𝑑𝑟 are the disturbance at those corresponding
directions.

5.1. Autonomous Arriving Based on Differential Geometry
Feedback Linearization. TheUUV is diving underwater with
arbitrary states (including heading and position) at any point
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Figure 7: Rolling path generation for three different situations. (a) UUV is outside circle path. (b) UUV is outside circle path. (c) UUV is
outside line path.

and has to be able to navigate towards a preset target near the
structural environment.This is known as Autonomous Arriv-
ing. A differential geometry feedback linearization control
algorithm with rolling path guidance is proposed to achieve
accurate tracking. Figure 6 illustrates how to find the initial
points: circle arc is used to represent rolling path according
to the initial heading and orientation of the vehicle, Ω and
Ω

𝑡
represent the desired path and rolling path, respectively,𝜓

and𝜓
𝑑
are the current heading direction and desired heading

direction, respectively, and 𝑇 denotes the tangent point of
Ω and Ω

𝑡
, which is the initial point on Ω for the vehicle.

Note, the UUVs in Figure 6 have the same initial positions
but different headings (upward and downward in Figures
6(a) and 6(b), resp.). Given the desired orientation and the
inertia of the vehicle, the vehicle is unable to turn at 𝑇 in the
scenario as shown in Figure 6(b). Further analysis is required
and detailed as follows.

Let model output be 𝜂 = [𝜂
1
𝜂
2
]

𝑇, 𝜂
1
is the distance of

the chosen path, and 𝜂
2
= 𝜓.

It has been proved that any nonlinear path can be
reconstructed by circular arcs and lines [27]. Therefore, with
circle and line as example, rolling paths are generated as the
desired path for the guidance of the UUV.

(1) Circle Path. Assume that 𝑝
𝑓
(𝑥

𝑓
, 𝑦

𝑓
) is the center of

a circle path and the radius of the circle path 𝑅
𝑓
is a

constant; then the output can be given as

𝜂
1
= √(𝑥 − 𝑥

𝑓
)

2

+ (𝑦 − 𝑦
𝑓
)

2

− 𝑅, (22)

where 𝑝
𝐿
(𝑥, 𝑦) is the actual initial position of the vehicle.

From the equation above, |𝜂
1
| is the minimum distance

between 𝑝
𝐿
and the circle path.

According to the position between the desired path and
the current position of the vehicle, radius of a rolling path
can be derived as follows:

(a) when the initial position of the UUV is outside of the
circular path (see Figure 7(a)) and 𝜛 is a constant

𝑅
𝑡
=

{

{

{

𝜂
1
+ 𝜛𝑅 𝜂

1
>

𝑅

2

𝑅 others,
(23)

(b) when the initial position of the UUV is inside of the
circular path (see Figure 7(b))

𝑅
𝑡
=

{
{

{
{

{

𝜂
1
+ 2𝑅

2

− 𝜛𝑅 𝑝
𝐿
̸=𝑝

𝑓

𝑅

2

others.
(24)

(2) Line Path. With line path𝐴𝑥+𝐵𝑦+𝐶 = 0, the output
𝜂
1
is given as follows,

𝜂
1
=

(𝐴𝑥 + 𝐵𝑦 + 𝐶)

√𝐴
2
+ 𝐵

2

, (25)

where 𝐴2

+ 𝐵
2

̸=0. In this case 𝑅
𝑡
= 𝜛𝜂

1
+ 𝑅

0
and 𝑅

0
is a

constant.

Assumption 1. UUV tracking system satisfies 𝑚
11
< 𝑚

22
and

the surge and yaw velocity are nonobservable.

Figure 7 illustrates how the rolling path is generated in
three different cases as discussed above.The solid and dashed
circles are tangent to the rolling circular path across the
vehicle position 𝑝

𝐿
. According to the consistency between

the heading direction of the vehicle and the desired path,
the solid arc 𝑝

𝐿
𝑝 will be chosen as the rolling path while

the orientation of the vehicle becomes close to the direction
of the desired path. Once a rolling path is generated as
above, a feedback linearization controller can be designed for
automatic arriving.

Theorem 1. Assume (i) the mass, added mass, and damping
coefficients are diagonal matrixes; (ii) Assumption 1 is satisfied.
For the nonlinear tracking model (20), according to the relative
position between the vehicle and the originally desired path, if
a circular arc rolling path with radius 𝑅

𝑡
is chosen in real time

with suitable parameters (𝑘
11
,𝑘

12
) and (𝑘

21
,𝑘

22
), the controller

can be designed.
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Proof. The lines and circular arcs can be combined to form
any nonlinear path; therefore, the proof is established from
the following two aspects.

(1) Desired path is a circle path.

Obtaining a direct relationship between the output 𝜂 and
the input vector,

̇𝜂
1
=

1

√(𝑥 − 𝑥
𝑓
)

2

+ (𝑦 − 𝑦
𝑓
)

2

⋅ [(𝑥 − 𝑥
𝑓
) ( ̇𝑥 − ̇𝑥

𝑓
) + (𝑦 − 𝑦

𝑓
) ( ̇𝑦 − ̇𝑦

𝑓
)]

̇𝜂
2
= ̇𝜓

̈𝜂
1
= −0.5𝑒

3

𝑘

× [(𝑥 − 𝑥
𝑓
) ( ̇𝑥 − ̇𝑥

𝑓
) + (𝑦 − 𝑦

𝑓
) ( ̇𝑦 − ̇𝑦

𝑓
)]

2

+ 𝑒
𝑘
[( ̇𝑥 − ̇𝑥

𝑓
)

2

+ (𝑥 − 𝑥
𝑓
) ( ̈𝑥 − ̈𝑥

𝑓
)]

+ 𝑒
𝑘
[( ̇𝑦 − ̇𝑦

𝑓
)

2

+ (𝑦 − 𝑦
𝑓
) ( ̈𝑦 − ̈𝑦

𝑓
)]

̈𝜂
2
= ̇𝑟,

(26)

where

𝑒
𝑘
=

1

√(𝑥 − 𝑥
𝑓
)

2

+ (𝑦 − 𝑦
𝑓
)

2

.

(27)

Define state function ℎ = [ℎ
1
ℎ
2
]

𝑇, and

𝑢
1
= 𝑝

1
V𝑟 + 𝑝

2
𝑢 + 𝑝

3
𝜏
𝑑𝑢

V
1
= 𝑝

4
𝑢𝑟 + 𝑝

5
V + 𝑝

6
𝜏
𝑑V

ℎ
1
= −0.5𝑒

𝑘

3

× [( ̇𝑥 − ̇𝑥
𝑓
) (𝑥 − 𝑥

𝑓
) + ( ̇𝑦 − ̇𝑦

𝑓
) (𝑦 − 𝑦

𝑓
)]

2

+ (𝑥 − 𝑥
𝑓
) (𝑢

1
cos𝜓 − 𝑢𝑟 sin𝜓

−V
1
sin𝜓 − V𝑟 cos𝜓 − ̈𝑥

𝑓
)

+ 𝑒
𝑘
⋅ {( ̇𝑥 − ̇𝑥

𝑓
)

2

+ ( ̇𝑦 − ̇𝑦
𝑓
)

2

+ (𝑦 − 𝑦
𝑓
) (𝑢

1
sin𝜓 + 𝑢𝑟 cos𝜓

+V
1
cos𝜓 − V𝑟 sin𝜓 − ̈𝑦

𝑓
) }

ℎ
2
= 𝑝

7
𝑢V + 𝑝

8
𝑟 + 𝑝

9
𝜏
𝑑𝑟

̈𝜂 = ℎ + [
𝑒
𝑘
⋅ (𝑝

3
𝜏
𝑢
((𝑥 − 𝑥

𝑓
) cos𝜓 + (𝑦 − 𝑦

𝑓
) sin𝜓))

𝑝
9
𝜏
𝑟

] .

(28)

Choose a new input 𝜇 = []
1
]
2
]

𝑇 and neglect nonlinear
portion; let 𝑒 = √(𝑥 − 𝑥

𝑓
)
2

+ (𝑥 − 𝑥
𝑓
)
2

− 𝑅 be the tracking
error, and the input vector can be derived as follows:

]
1
= −𝑘

11
𝑒
1
− 𝑘

12
̇𝑒
1
= −𝑘

11

× (√(𝑥 − 𝑥
𝑓
)

2

+ (𝑦 − 𝑦
𝑓
)

2

− 𝑅)

− 𝑘
12

[

[

[

[

1

√(𝑥 − 𝑥
𝑓
)

2

+ (𝑦 − 𝑦
𝑓
)

2

]

]

]

]

⋅ [(𝑥 − 𝑥
𝑓
) ( ̇𝑥 − ̇𝑥

𝑓
) + (𝑦 − 𝑦

𝑓
) ( ̇𝑦 − ̇𝑦

𝑓
)]

]
2
= ̈𝜂

2𝑑
− 𝑘

21
𝑒
2
− 𝑘

22
̇𝑒
2

= ̈𝜓
𝑑
− 𝑘

21
(𝜓 − 𝜓

𝑑
) − 𝑘

22
( ̇𝜓 − ̇𝜓

𝑑
) ,

(29)

where 𝑘
11
, 𝑘

12
, 𝑘

21
, and 𝑘

22
are constants, 𝜂

2𝑑
= 𝜓

𝑑
.

The input vector can be shown as

𝜏
𝑢
=

(]
1
− ℎ

1
)

𝑝
3
𝑒
𝑘
[(𝑥 − 𝑥

𝑓
) cos𝜓 + (𝑦 − 𝑦

𝑓
) sin𝜓]

𝜏
𝑟
=

(]
2
− ℎ

2
)

𝑝
9

.

(30)

(2) Desired path is line path.
The proving process is similar to the above:

̇𝜂
1
=

(𝐴 ̇𝑥 + 𝐵 ̇𝑦 + 𝐶)

√𝐴
2
+ 𝐵

2

̇𝜂
2
= ̇𝜓

̈𝜂
1
=

̇𝑢 (𝐴 cos𝜓 + 𝐵 sin𝜓) + ̇V (𝐵 cos𝜓 − 𝐴 sin𝜓)
√𝐴

2
+ 𝐵

2

+

𝐴 (−𝑢𝑟 sin𝜓 − V𝑟 cos𝜓)
√𝐴

2
+ 𝐵

2

+

𝐵 (𝑢𝑟 cos𝜓 − V𝑟 sin𝜓) + 𝐶
√𝐴

2
+ 𝐵

2

̈𝜂
2
= ̇𝑟

ℎ
1
= 𝑡

𝑘
[𝐴 (−𝑢𝑟 sin𝜓 − V𝑟 cos𝜓)

+ 𝐵 (𝑢𝑟 cos𝜓 − V𝑟 sin𝜓) + 𝐶

+ 𝑢
1
(𝐴 cos𝜓 + 𝐵 sin𝜓)

+ V
1
(𝐵 cos𝜓 − 𝐴 sin𝜓)]

ℎ
2
= 𝑝

7
𝑢V + 𝑝

8
𝑟 + 𝑝

9
𝜏
𝑑𝑟

̈𝜂 = ℎ + [

𝑡
𝑘
𝑝
3
(𝐴 cos𝜓 + 𝐵 sin𝜓) 𝜏

𝑢

𝑝
9
𝜏
𝑟

]

(31)

with 𝑡
𝑘
= 1/√𝐴

2
+ 𝐵

2.
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Let 𝑒
1
= 𝑡

𝑘
(𝐴𝑥 + 𝐵𝑦 + 𝐶) be the tracking error and 𝑒

2
=

𝜂
2𝑑
− 𝜂

2
the heading error; the new inputs are described as

]
1
= −𝑘

11
𝑒
1
− 𝑘

21
̇𝑒
1

= −𝑘
11
𝑡
𝑘
(𝐴𝑥 + 𝐵𝑦 + 𝐶)

− 𝑘
21
𝑡
𝑘
(𝐴 ̇𝑥 + 𝐵 ̇𝑦)

]
2
= ̇𝜂

𝑑2
− 𝑘

12
𝑒
2
− 𝑘

22
̇𝑒
2

= ̈𝜓
𝑑
− 𝑘

12
(𝜓 − 𝜓

𝑑
) − 𝑘

22
( ̇𝜓 − ̇𝜓

𝑑
) .

(32)

The control output can be shown as

𝜏
𝑢
=

(]
1
− ℎ

1
)

[𝑝
3
𝑡
𝑘
(𝐴 cos𝜓 + 𝐵 sin𝜓)]

𝜏
𝑟
=

(]
2
− ℎ

2
)

𝑝
9

(33)

5.2. Contour Reconstruction Based on Finite Predictive Stable
Inversion. For ∀𝜀 > 0, a predictive time instant 𝑇

𝑝
can be

found to obtain stable input 𝜇
𝑑
(𝑡
𝑐
) using future output 𝑦

𝑑
(𝑡),

𝑡 ∈ [𝑡
𝑐
, 𝑡

𝑐
+ 𝑇

𝑝
]. It satisfies






𝜇
𝑑
(𝑡

𝑐
) − 𝜇

𝑝
(𝑡

𝑐
)






≤ 𝜀, (34)

where 𝜇
𝑝
(𝑡
𝑐
) is the desired input. The inner dynamic condi-

tion is given as

𝐿 ≜ [

𝐿
𝑠
(𝑡

𝑐
)

𝐿
𝑢
(𝑡

𝑓
)

] ≜ [

𝜎
𝑠
(𝑡

𝑐
)

𝜎
𝑢
(𝑡

𝑓
)

] , 𝑡
𝑓
= 𝑡

𝑐
+ 𝑇

𝑝
. (35)

A finite predictive path is regarded as known variables
in the time window [𝑡

𝑐
, 𝑡

𝑐
+ 𝑇

𝑝
]. The desired output in this

time window is utilized to describe the stable and unstable
part of the inner dynamics. Picard iteration method [10] is
introduced to solve the bounded solution of both parts.

Given the nonlinear tracking model (20), the linearity
item of inner dynamics 𝜎(𝑡) is extracted to obtain a bounded
solution.

Let 𝐴
𝜎
= 𝜕𝑠(𝜎, 𝑌

𝑑
)/𝜕𝜎|

𝑌𝑑=0,𝜎=0
, and the linearity part ̇𝜎

can be resolved from 𝜎(𝑡) as ̇𝜎 = 𝐴
𝜎
𝜎. The inner dynamics

can be described as

̇𝜎 (𝑡) = 𝐴
𝜎
𝜎 (𝑡) + [𝑠 (𝜎 (𝑡) , 𝑌

𝑑
(𝑡)) − 𝐴

𝜎
𝜎 (𝑡)]

≜ 𝐴
𝜎
𝜎 (𝑡) + Ψ (𝜎 (𝑡) , 𝑌

𝑑
(𝑡)) .

(36)

𝐴
𝜎
can be further separated into a stable part 𝐴

𝑠
and an

unstable part𝐴
𝑢
, which, respectively, denote the characteris-

tic values in the left and right planes of the imaginary axis of
the complex plane. Thus, the inner dynamics equations can
be rewritten as

̇𝜎
𝑠
= 𝐴

𝑠
𝜎
𝑠
+ 𝐼

𝑠
Ψ
𝑠
([𝜎

𝑠
𝜎
𝑢
]

𝑇

, 𝑌
𝑑
)

≜ 𝐴
𝑠
𝜎
𝑠
+ Ψ

𝑠
(𝜎

𝑠
, 𝜎

𝑢
, 𝑌

𝑑
)

̇𝜎
𝑢
= 𝐴

𝑢
𝜎
𝑢
+ 𝐼

𝑢
Ψ
𝑢
([𝜎

𝑢
𝜎
𝑢
]

𝑇

, 𝑌
𝑑
)

≜ 𝐴
𝑢
𝜎
𝑢
+ Ψ

𝑢
(𝜎

𝑠
, 𝜎

𝑢
, 𝑌

𝑑
) .

(37)

With Picard iteration method, the bounded solution for
both parts of the inner dynamic can be derived as

̇𝜎
𝑠,𝑘
(𝑡) = 𝐴

𝑠
𝜎
𝑠,𝑘
(𝑡)

+ Ψ
𝑠
(𝜎

𝑠,𝑘−1
(𝑡) , 𝜎

𝑢,𝑘−1
(𝑡) , 𝑌

𝑑
(𝑡))

̇𝜎
𝑢,𝑘
(𝑡) = 𝐴

𝑢
𝜎
𝑢,𝑘
(𝑡)

+ Ψ
𝑢
(𝜎

𝑠,𝑘−1
(𝑡) , 𝜎

𝑢,𝑘−1
(𝑡) , 𝑌

𝑑
(𝑡)) .

(38)

For any 𝑡 ∈ [𝑡
𝑐
, 𝑡

𝑓
], the bounded solution can be described

as follows:

(1) Initial solution is shown with 𝑘 = 0,

𝜎
0
(𝑡) =

[

[

𝑒
𝐴𝑠(𝑡−𝑡𝑐)

𝐿
𝑠
(𝑡

𝑐
)

𝑒
−𝐴𝑢(𝑡𝑓−𝑡)

𝐿
𝑢
(𝑡

𝑓
)

]

]

. (39)

(2) With 𝑘 ≥ 1,

𝜎
𝑘
(𝑡)

= [

𝜎
𝑠,𝑘
(𝑡)

𝜎
𝑢,𝑘
(𝑡)

]

=

[

[

[

[

𝑒
𝐴𝑠(𝑡−𝑡𝑐)

𝐿
𝑠
(𝑡

𝑐
) + ∫

𝑡

𝑡𝑐

𝑒
𝐴𝑠(𝑡−𝜏)

Ψ
𝑠
(𝜎

𝑠,𝑘−1
(𝜏) , 𝜎

𝑢,𝑘−1
(𝜏) , 𝑌

𝑑
(𝜏)) 𝑑𝜏

𝑒
−𝐴𝑢(𝑡𝑓−𝑡)

𝐿
𝑢
(𝑡

𝑓
) − ∫

𝑡𝑓

𝑡

𝑒
−𝐴𝑢(𝜏−𝑡)

Ψ
𝑢
(𝜎

𝑠,𝑘−1
(𝜏) , 𝜎

𝑢,𝑘−1
(𝜏) , 𝑌

𝑑
(𝜏)) 𝑑𝜏

]

]

]

]

≜ 𝑆
𝑀
(𝜎

𝑘−1
(⋅) , 𝑌

𝑑
(⋅) , 𝐿) (𝑡) .

(40)
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It is clear that the integration operation for the stable and
unstable inner dynamics are from current time instant 𝑡

𝑐
to 𝑡

forward and backward, respectively.

Assumption 2. Inner dynamics characterΨ(⋅, ⋅) is a nonlinear
item, and it is satisfied that local Lipschitz condition at origin
with any constants (𝐾

1
, 𝐾

2
) and any small positive constant

𝜎
0
hold that, for any 𝑡 ∈ R, a bounded function exists






Ψ (𝜎 (𝑡) , 𝑌 (𝑡)) − Ψ (𝜎 (𝑡) , 𝑌 (𝑡))





∞

≤ 𝐾
1
‖𝜎 (𝑡) − 𝜎 (𝑡)‖

∞
+ 𝐾

2






𝑌 (𝑡) − 𝑌 (𝑡)





∞
,

(41)

where

‖𝑌 (⋅)‖
∞
< 𝜎

0
,






𝑌 (⋅)





∞
< 𝜎

0
,

‖𝜎 (⋅)‖
∞
< 𝜎

0
,

‖𝜎 (⋅)‖
∞
< 𝜎

0
.

(42)

Remark. Nonlinearity for inner dynamics will decrease with
the decrease of Lipchitz constants𝐾

1
and𝐾

2
. IfΨ(⋅, ⋅) is con-

tinuous and differentiable, the locally Lipchitz condition is
satisfied.

Assumption 3. A positive constant𝐾 exists to hold that





Φ

𝑠
(𝑡, 𝑡

0
)



∞
≤ 𝐾𝑒

−𝛼(𝑡−𝑡0)

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑓






Φ

𝑢
(𝑡

𝑓
, 𝑡)





∞
≤ 𝐾𝑒

−𝛽(𝑡𝑓−𝑡)

∀𝑡
0
≤ 𝑡 ≤ 𝑡

𝑓
,

(43)

where 𝛼 and 𝛽 are minimum character values of 𝐴
𝑠
and 𝐴

𝑢
,

respectively,

𝛼 < inf
𝑖





Re (𝜆

𝑖
(𝐴

𝑠
))





𝛽 < inf
𝑖





Re (𝜆

𝑖
(𝐴

𝑢
))




,

(44)

where “inf” denotes the lower bound, “Re” means the real
part, and 𝜆

𝑖
(𝐴

𝑠
) and 𝜆

𝑖
(𝐴

𝑢
) are characteristic values of 𝐴

𝑠

and 𝐴
𝑢
, respectively.

Remark. The large 𝛼 and 𝛽 are, the further is the distance
from dynamics poles to the imaginary axis implying stronger
hyperbolic properties.

Theorem2. If Assumptions 1 and 2 are satisfied and there exist
positive constants 𝐾

𝑦
and 𝐾

𝜎
, it holds that






𝜇
𝑑
(𝜎 (𝑡) , 𝑌 (𝑡)) − 𝜇

𝑑
(𝜎 (𝑡) , 𝑌 (𝑡))





∞

≤ 𝐾
𝑦






𝑌 (𝑡) − 𝑌 (𝑡)





∞

+ 𝐾
𝜎
‖𝜎 (𝑡) − 𝜎 (𝑡)‖

∞
.

(45)

If Lipchitz constants 𝐾
1
and 𝐾

2
in (41) satisfy (𝐾

1
+

𝐾
2
)/2 < 1, there is only one fixed point 𝜎∗(⋅) to hold that

𝜎
∗

(𝑡) = 𝑠[𝜎
∗

(⋅), 𝑌
𝑑
(⋅)](𝑡) for any ∀𝑡 ∈ [𝑡

𝑐
, 𝑡

𝑐
+ 𝑇

𝑝
]. The

error between the desired input 𝜇
𝑒,𝑑
(𝑡
𝑐
) and the input 𝜇

𝑑,𝑚
(𝑡
𝑐
)

derived from finite predictive inversion can be quantitated as
𝑒
𝑑,𝑚
(𝑡

𝑐
) ≜




𝜇
𝑒,𝑑
(𝑡

𝑐
) − 𝜇

𝑑,𝑚
(𝑡

𝑐
)



∞

≤ 𝐾
𝜎
𝐾𝐾

𝛼𝛽
[

2𝐾𝐾
𝛼𝛽

𝐾
2

+

𝑒
−
̂
𝛽𝑇𝑝

1 − 𝛿
𝛽

]




𝑌
𝑑
(⋅)



∞
,

(46)

where

𝐾
𝛼𝛽
=

𝐾
𝛼𝛽,2

(1 − 𝐾
𝛼𝛽,1
)

𝐾
𝛼𝛽,1
= 𝐾𝐾

1
max {(1/𝛼) , (1/𝛽)}

𝐾
𝛼𝛽,2
= 𝐾𝐾

2
max {(1/𝛼) , (1/𝛽)} .

(47)

The proof is not included here due to space limit. The
reader is referred to the original paper for details [21]. Accord-
ing to Theorem 2, the parameter 𝑇

𝑝
can be optimized and

thus the time window.

6. Evaluations and Results

6.1. Evaluation Criteria. Evaluation criteria are set out for
assessing the contour accuracy and predictive controlperfor-
mance towards detectionmission using theUUVunder weak
observable conditions, respectively.

6.1.1. Evaluation Criterion for Contour Accuracy. Errors
between the reconstructed contour and the environment
model are computed in order to evaluate the accuracy of the
contour reconstruction (only the contours estimated using
the SVC inertia algorithm are evaluated here). Considering
the characteristics of the environment, “accumulate error”
and “overall error” are proposed. Figure 8 illustrates how
these errors are computed where the solid lines express the
actual contours of the environment model while the dashed
lines indicate the contour reconstructed by using the SVC
inertia algorithm.

(1) Accumulative Error Δ𝑑
𝑎
. The error between the contour

of the environment model and the reconstructed one can
accumulate over time, and the accumulative error is used to
evaluate this trend.

As shown in Figure 8, 𝑑
1
, 𝑑

3
, and 𝑑

5
are the deflections

between the environment contours and the reconstructed
smooth path at the starting point of each segment. 𝑑

2
, 𝑑

4
,

and 𝑑
6
are the deflections at the end point of each segment.

Assume that 𝑑
𝑠
is the safe distance, and the errors of each

segment Δ𝑑
𝑎1
, Δ𝑑

𝑎2
, and Δ𝑑

𝑎3
are described as follows:

Δ𝑑
𝑎1
= (𝑑

2
− 𝑑

𝑠
) − (𝑑

1
− 𝑑

𝑠
) = 𝑑

2
− 𝑑

1

Δ𝑑
𝑎2
= (𝑑

4
− 𝑑

𝑠
) − (𝑑

3
− 𝑑

𝑠
) = 𝑑

4
− 𝑑

3

Δ𝑑
𝑎3
= (𝑑

6
− 𝑑

𝑠
) − (𝑑

5
− 𝑑

𝑠
) = 𝑑

6
− 𝑑

5
.

(48)

The accumulative error can be defined as follows:

Δ𝑑
𝑎
=

𝑁

∑

𝑖=1

Δ𝑑
𝑎𝑖
/𝑁 𝑖 = 1, 2, 3. (49)
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Figure 8: Illustration of the accumulate error and overall error.

Port
contour

Figure 9: Deployment of the sonars.

(2) Overall Error Δ𝑑
𝑤
. The entire environment contour is

reconstructed and the overall error Δ𝑑
𝑤
at the end point is

defined as

Δ𝑑
𝑤
= 𝑑

6
− 𝑑

𝑠
. (50)

Remark. Both Δ𝑑
𝑎
and Δ𝑑

𝑤
have signed values. A positive

value means the deflection is larger than the safe distance
while a negative value means the deflection is smaller than
the safe distance implying a threat to the vehicle navigation.

6.1.2. Evaluation Criteria for Autonomous Tracking Control.
To estimate the performance of autonomous tracking control,
the error is defined as 𝑒

𝑘
= 𝑦(𝑘) − 𝑦(𝑘) where 𝑦(𝑘) is the

navigating path of the vehicle and 𝑦(𝑘) the smoothed contour
from reconstruction. More specifically, the error at the 𝑘
instant is the minimum distance from the vehicle position to
the contour, that is, the tangent point on the contour. Three
measures are proposed to analyze the errors.

(1)ZeroMeanValue. Define 𝑒 = (1/𝑛)∑𝑛

𝑘=1
𝑒
𝑘
as the estimated

value of error serial {𝑒
𝑘
}. To guarantee the zero mean value,

for any 𝑛 ∈ Z+, it is satisfied that 𝑒 → 0. From the definition
of error, it will be affected by the estimatedmean values of the
output 𝑦; therefore, reestimation of the mean value 𝑒 = 𝑒/𝑦 <
𝑒
𝑇
is needed. 𝑒

𝑇
is preset on the basis of accuracy requirement.

(2) Validity. It is defined as the degree of deflection between
the error serial {𝑒

𝑘
} and the zero mean value. Standard

deviation 𝜎 = √(1/(𝑛 − 1))∑𝑛

𝑘=1
(𝑒

𝑘
− 𝑒)

2 is introduced to
estimate the data validity.
(3) Independence.The error serial describes the error between
the real navigating path and the smoothed contour after
subtracting the safe distance. Error variables are regarded
as random variables and thus the independence describes

(a) (b)

Figure 10: Sonar data collection in sea trial.

Figure 11: Sea trial in islands environment.

the randomness. Autocorrelation coefficient 𝑟
𝑝
is used to

describe the independence as follows:

𝑟
𝑝
=

1

(𝑛 − 𝑝 − 1)

𝑛−𝑝

∑

𝑘=1

(Δ𝑒
𝑘
Δ𝑒

𝑝+𝑘
) , (51)

where Δ𝑒
𝑘
= 𝑒

𝑘
− 𝑒

𝑘
. In this paper the autocorrelation coef-

ficient is rewritten as 𝜌
𝑝
= 𝑟

𝑝
/𝑟

0
, and the relation between

𝜌
𝑝
− 𝑘 will be plotted for demonstration. If autocorrelation

coefficients are in the Independence Confidence Limit Inter-
val (−𝜎, 𝜎), the error serial is not correlated and vice versa.

6.2. Validation Using Sea Trial Data. The performance of the
proposed model is verified with the data collected from a sea
trial operated at Xiaoping Island in Dalian, China, in August
2009. We choose sonar data collected from two different
environments, respectively, a port and two islands. The
single-beam sonars were assembled on one side of a fishing
boat to simulate UUV sonars. To guarantee the number of
sonar data satisfying the clustering requirement, 3 single
beam sonars were fixed in the boat side; see Figure 9. The
sonars used in the sea trial are manufactured by Kongsberg,
Norway.The boat was steered along the contour with acoustic
beam vertically acting on environment. The sonars were
deployed below the bottomof the boat to avoid acoustic beam
to project onto the boat. The boat sails at a velocity of 2m/s.

Sonar data are collected during the boat navigating along
islands horizontally in real time. To verify the effectiveness
of the proposed control algorithm in disturbance situation,
synthetic disturbance noise is added: 𝑡

𝑑𝑢
= 40× (1+ rand(⋅)),
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Figure 12: Islands contour construction and patrolling.

𝜏
𝑑V = 35 × (1 + rand(⋅)), 𝜏𝑑𝑟 = 40 × (1 + rand(⋅)), with rand(⋅)
denoting zero-mean Gaussian random noise. From Figure 10
the sonar assembly in the sea can be seen, with diving in the
water as Figure 10(a) and navigating as Figure 10(b).

6.2.1. Path Following Validation Using Data from Islands. In
the first experiment, the boat navigates between two small
islands in order to move close to them (see Figure 11). We
record the data from initial point A (−30, −245) with heading
of 60 degree. The effective distance of sonars is 200m.

Figure 12 shows the process of data clustering. At the begin-
ning, the number of data is too small to construct accurate
data class; therefore, data are placed into alternative set; see
Figure 12(a). With the number of sonar data increasing, data
with the same property, including data in alternative set,
are clustered in corresponding class contours with support
vectors distributed on. Sonar data determined by the rules
in Section 3 are eliminated as outliers (see Figures 12(b) and
12(c)).The contours close toUUV, determined by normal line
and distance, connected with lines successively, are regarded
as preliminary contour, waiting for postprocessing.
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Figure 13: Patrolling errors at 𝑥- and 𝑦-axis in islands contour.
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Figure 14: Error autocorrelation coefficients of error serials.

On the basis of initial contour (see solid green line in
Figures 12(b) and 12(c)), the smoothing method described in
Section 4.2 is applied and a reasonable desired reference path
(dash black curves) for vehicle navigation can be achieved.
When the vehicle is close to the island on the right less
than 200m, sonar data returned is collected to construct the
contour in real time which is regarded as the guidance for
the vehicle to navigate, keeping a fixed distance (set to 10m
in this paper) as the safe distance. The optimal time window
parameter is 𝑇

𝑝
≥ 3 s. Considering the control period 0.5 s,

𝑇
𝑝
= 3 s satisfies the requirement (5 original sonar data

and 6 wavelet coefficients) to estimate wavelet coefficients at
any time. According to Section 6.1, the error series denoting
the deflection between the actual navigation path and the
reconstructed contour is computed; see Figure 13.

The mean (standard deviation) value along 𝑥- and 𝑦-axis
is 0.15 (0.37)m and 0.98 (0.30)m, respectively. According to
evaluation criterion for contour accuracy in Section 6.1.1, the
accumulated error for island contour is 1.45m, and overall

error is 1.74m. The negative deflection values are much
smaller than the safe distance; this means that the UUV
can safely complete the detection mission as designed. The
maximum absolute value of the autocorrelation coefficients
at 𝑥-axis and 𝑦-axis is 0.14 and 0.16, respectively, while
the respective standard deviations are 0.37 and 0.30 (see
Figure 14). This confirms that the error series is independent
without influence from the designed controller. This means
that the designed controller using finite predictive stable
inversion algorithm can control the vehicle to follow a path
predicted in real time.

6.2.2. Path Tracking Validation Using Data from Port. With
the same deployment and trial methods as above, sonar data
was collected in a port as Figure 15 with its environment pic-
tures at the right. The initial position of the boat was (−1605,
−688). Owing to the port area is wide and safe distance is
set to 30m. Figure 16 demonstrates the autonomous tracking
of the boat in the port. From Figure 16, it can be seen that
the smoothed path illustrated by black solid is reconstructed
using data from 3 sonars and guides the vehicle to approach
the target. The noise in the data is detected and eliminated to
guarantee the accuracy of the contour.

Figure 17 illustrates the error of the smoothed path recon-
structed and the actual path without consideration of the safe
distance. Figure 18 shows the autocorrelation coefficients of
the tracking error series to assess whether the errors are from
the control method or stochastic disturbance. The maximum
absolute value of autocorrelation coefficients at 𝑥-axis and 𝑦-
axis are 0.20 and 0.20,within the range of standard deviations,
respectively, (−0.26, 0.26) and (−0.38, 0.38) (see Figure 17).
Therefore, it is true that error series are caused stochastically.
Moreover, the accumulated error for island contour tracking
is 1.50m, and overall error is 1.20m, respectively.

7. Conclusions

A new autopilot system, known as SDAP, is proposed for
the exploration of underwater environments using UUV
equipped with multiple single-beam sonars. The main issue
studied is the control problem in detection process which is
separated into two stages according to different requirements
of the mission, accurate tracking and autonomous tracking.
A rolling path generation method is present to guide the
vehicle to follow a preset path accurately. For autonomous
tracking stage, wavelet transform is introduced to preprocess
weak observable data and the wavelet coefficients obtained
are used to reconstruct the contour of the environment using
the SVC inertia algorithm. To satisfy the inertia property of
the UUV which requires a smooth reference path, different
order Bézier curves are included to fit the initial contours
for the desired reference path by considering a fixed safety
distance. Finite predictive stable inversion method is applied
to control the vehicle in order to follow the predictive path in
real time. Data collected from a sea trial is used to validate the
proposed technique, and the results have demonstrated that
the algorithms are able to control vehicle navigating along the
desired paths that are either preset or predicted automatically.
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Figure 15: Sea trial in port environment.
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Figure 16: Port contour construction and tracking.
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Figure 17: Path error serials at 𝑥- and 𝑦-axis for patrolling port
contour.
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Figure 18: Error autocorrelation coefficients of error serials.

It has laid a solid foundation for usingUUV to perform SDAP
mission.

During environment detection, the accuracy of environ-
ment information obtained is vital to guide UUV steering
safely. With the insight, the navigation error will affect the
environment outline constructed. In this paper, it is assumed
that the navigation error is not considered in the UUV steer-
ing. In the future study, it is necessary to include navigation
error into the SDAP issue for completeness. Otherwise, the
further verification should be implemented through inserting
the algorithms into UUV and executing mission in the real
environment underwater.

Acknowledgments

This work is partially supported by the Natural Science Foun-
dation of China (51179038), the Program of New Century
Excellent Talents in University (NCET-10-0053), and Fun-
damental Research Funds for the Central Universities
(HEUCF041323).



Mathematical Problems in Engineering 17

References

[1] A. Chatterjee and F. Matsuno, “A Geese PSO tuned fuzzy
supervisor for EKF based solutions of simultaneous localization
and mapping (SLAM) problems in mobile robots,” Expert
Systems with Applications, vol. 37, no. 8, pp. 5542–5548, 2010.

[2] O. Calvo, A. Rozenfeld, A. Souza, F. Valenciaga, P. F. Puleston,
and G. Acosta, “Experimental results on smooth path tracking
with application to pipe surveying on inexpensive AUV,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’09), pp. 3647–3653, September 2008.

[3] Y. Gan, L. Wan, W. Li et al., “Research on path following of
underwater vehicle without rudder and fin,” The Ocean Engi-
neering, vol. 25, no. 1, pp. 70–75, 2007.

[4] P. Encarnação and A. Pascoal, “3D path following for auto-
nomous underwater vehicle,” in Proceedings of the 39th IEEE
Confernce on Decision and Control, pp. 2977–2982, December
2000.

[5] L. Lapierre and D. Soetanto, “Nonlinear path-following control
of an AUV,”The Ocean Engineering, vol. 34, no. 11-12, pp. 1734–
1744, 2007.

[6] L. Lapierre, D. Soetanto, and A. Pascoal, “Nonlinear path fol-
lowing with applications to the control of autonomous under-
water vehicles,” in Proceedings of the 42nd IEEE Conference on
Decision and Control, pp. 1256–1261, December 2003.

[7] X. Xiang, Research on Path following and coordinated con-
trol for second-order nonholonomic AUVs [doctor dissertation],
Huazhong University of Science and Technology, Wuhan,
China, 2010.

[8] H. Ren, L. Li, and X. Bian, “Research on fuzzy heading guidance
based track keeping method for AUV,” Applied Science and
Technology, vol. 31, no. 9, pp. 43–45, 2004.

[9] J. Zhao, AUV Fuzzy Neural Network Hybrid Learning Algorithm
Control, Harbin Engineering University, Harbin, China, 2007.
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This paper investigates the problemof passive controller design for a class of nonlinear systems under variable sampling.TheTakagi-
Sugeno (T-S) fuzzy modeling method is utilized to represent the nonlinear systems. Attention is focused on the design of passive
controller for the T-S fuzzy systems via sampled-data control approach. Under the concept of very-strict passivity, a novel time-
dependent Lyapunov functional is constructed to develop passive analysis criteria and passive controller synthesis conditions. A
new sampled-data controller is designed to guarantee that the resulting closed-loop system is very-strictly passive.These conditions
are formulated in the form of linear matrix inequalities (LMIs), which can be solved by convex optimization approach. Finally, an
application example is given to demonstrate the feasibility and effectiveness of the proposed results.

1. Introduction

Recently, it is well known that the fuzzy logic control [1–6]
is one of effective approaches to handle complex nonlinear
systems and has some applications in various real systems.
It is well known that the Takagi-Sugeno (T-S) [7] fuzzy
model has become a popular and effective method to control
complex nonlinear systems. T-S fuzzymodel is described as a
weighted sum of some simple linear subsystems and thus are
easily analyzable. During the past few decades, the problem
of stability analysis and controller synthesis of nonlinear
systems in Takagi-Sugeno (T-S) [7–10] fuzzy model has been
extensively studied and some stability analysis and controller
synthesis results have been reported, see, for instance, [11–18]
and the references therein. To mention a few, the book [11]
proposed fuzzy control systems design and analysis results
via linear matrix inequality (LMI) approach [19–26] and the
paper [12] presented a survey on the state-of-the-art and
recent developments of the art of analysis and design of

model-based fuzzy control systems. In addition, due to the
effect of time delay in systems, the study of T-S fuzzy systems
with time delays has received considerable attention in recent
years and the results have been developed in [27–35]. The
authors in [35] dealt with the problem of reliable fuzzy 𝐻

∞

controller design for uncertain active suspension systems
with actuator delay and fault.

In practical control systems, it is important to investigate
the controller design problem for sampled-data systems [36,
37]. Recently, the researchers in [38–43] discussed two main
methods to develop stability analysis and control synthesis for
sampled-data systems. The first one is to model a sampled
data system as a discrete-time system [44], in which a
sampled data system with a delay is modeled as a discrete-
time system and a stability condition is derived. However,
it should be mentioned that this method is very difficult to
analyze or synthesize for complex systems. The second one
is a delayed control input method by modeling the sampled-
data system as a continuous-time system with a delayed



2 Mathematical Problems in Engineering

control input, which was proposed in [41] and later used
in [42, 45]. More recently, many sampled-data analysis and
synthesis results have been reported for T-S fuzzy systems
[46–50]. Among these results, the state-feedback control
design method has been used in [47–51] and observed-based
control approach has been used in [46]. Using input delay
approach, the stabilization of nonuniform sampling fuzzy
control systems have been investigated in [48–52], where the
systems are regarded as ordinary continuous-time systems
with a fast-varying delay. The authors in [51] used the time-
dependent delay Lyapunov-Krasovskii functional idea [42]
and introduced some slack matrices to improve the sampled-
data control results about stabilization for fuzzy systems [48,
52]. However, these slack matrices may lead to a significant
increase in the computational demand.

The passive properties of a system can keep the system
internally stable and is frequently used in control systems to
prove the stability of systems.There are extensive applications
for passivity problem in various engineering areas such as
electrical circuits, complex networks, mechanical systems,
and nonlinear systems.Theproblems of passivity analysis and
passive control have been extensively applied in many areas
such as signal processing, fuzzy control, slidingmode control
[53], and networked control systems [54]. More recently, the
passive control problem has been studied for fuzzy systems
[55–57]. In [57], the authors considered the passive control
problems for a class of continuous-time T-S fuzzy systems
with both state and input delays. The state-feedback fuzzy
controller was designed such that the resulting closed-loop
system is very-strictly passive. To the best of the authors’
knowledge, so far no attempt has been made towards solving
the problem of passive control design results for nonlinear
systems with variable sampling. This problem still remains
challenging, which motivates this study.

In this paper, the passive controller design problem is
investigated for a class of nonlinear systems under variable
sampling. Firstly, the T-S fuzzy model is employed to repre-
sent the nonlinear systems. By using the input delay approach,
the T-S fuzzy system with variable uncertain sampling is
transformed into a continuous-time T-S fuzzy system with
a delay in the state. Secondly, by constructing a novel time-
dependent Lyapunov functional, under the concept of very-
strict passivity, new passive analysis criteria are proposed and
then novel sampled-data controller is designed to guarantee
that the resulting closed-loop system is very-strictly passive.
The existence conditions of the obtained controller can be
expressed as linear matrix inequalities (LMIs), which can be
solved using standard numerical software. Finally, an applica-
tion example is given to illustrate the feasibility and effective-
ness of the proposed passive control approach.The remainder
of this paper is organized as follows. The problem to be
solved is formulated in Section 2. Main results, including
passive analysis and passive controller design are presented
in Section 3. Section 4 provides an illustrative example to
show the effectiveness and potential of the proposed design
techniques. We conclude this paper in Section 4.

Notation. The notation used throughout the paper is fairly
standard. The notation 𝑋 > 0 (resp., 𝑋 ≥ 0), for𝑋 ∈ R𝑛×𝑛

means that the matrix 𝑋 is real symmetric positive definite
(resp., positive semidefinite). Identity matrices, of appropri-
ate dimensions, will be denoted by 𝐼. If not explicitly stated,
all matrices are assumed to have compatible dimensions
for algebraic operations. The symbol “∗” in a matrix 𝐴 ∈

R𝑛×𝑛 stands for the transposed elements in the symmetric
positions. The superscripts “𝑇” and “−1” denote the matrix
transpose and inverse, respectively.

2. Problem Formulation

In this paper, we consider the following nonlinear system:

̇𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) , (1)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑢(𝑡) ∈ R𝑛 denotes the control
input, and 𝑓(𝑥(𝑡), 𝑢(𝑡)) is a known nonlinear continuous
function and satisfies 𝑓(0, 0) = 0. In order to consider
the passive controller design problem, under the concept
of sector nonlinearity, the nonlinear system in (1) can be
represented by the following T-S fuzzy systems.

Plant Rule 𝑖. If 𝜃
1
(𝑡) is𝑁

𝑖1
and ⋅ ⋅ ⋅ 𝜃

𝑝
(𝑡) is𝑁

𝑖𝑝
, then

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝐵

𝑤𝑖
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝑢 (𝑡) + 𝐷

𝑤𝑖
𝑤 (𝑡) ,

(2)

where 𝑧(𝑡) ∈ R𝑝 is the control output and 𝑤(𝑡) ∈ R𝑝

is the disturbance input. 𝐴
𝑖
, 𝐵
𝑖
, 𝐵
𝑤𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, and 𝐷

𝑤𝑖
are

system matrices with appropriate dimensions. 𝑖 ∈ 1, 2, . . . , 𝑟,
the scalar 𝑟 is the number of IF-Then rules. 𝜃

𝑗
(𝑡) and 𝑁

𝑖𝑗

are the premise variable and the fuzzy set, respectively, 𝑗 =
1, 2, . . . , 𝑝. The defuzzified output of system (2) is inferred as
follows:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) [𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝐵

𝑤𝑖
𝑤 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) [𝐶

𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝑢 (𝑡) + 𝐷

𝑤𝑖
𝑤 (𝑡)] ,

(3)

where ℎ
𝑖
(𝜃(𝑡)) = 𝜇

𝑖
(𝜃(𝑡))/∑

𝑟

𝑖=1
𝜇
𝑖
(𝜃(𝑡)), 𝜇

𝑖
(𝜃(𝑡)) =

∏
𝑝

𝑗=1
𝑁
𝑖𝑗
(𝜃
𝑗
(𝑡)), and 𝑁

𝑖𝑗
(𝜃
𝑗
(𝑡)) is the degree of the member-

ship of 𝜃
𝑗
(𝑡) in fuzzy set 𝑁

𝑖𝑗
. In this paper, we assume that

𝜇
𝑖
(𝜃(𝑡)) ≥ 0 for 𝑖 = 1, 2, . . . , 𝑘 and ∑𝑟

𝑖=1
𝜇
𝑖
(𝜃(𝑡)) > 0 for all 𝑡.

Therefore, ℎ
𝑖
(𝜃(𝑡)) ≥ 0 (for 𝑖 = 1, 2, . . . , 𝑘) and∑𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡)) =

1. Suppose that the updating signal successfully transmitted
signal from the sampler to the controller and to the Zero-
Order Hold (ZOH) at the instant 𝑡

𝑘
. We assume that the

sampling intervals are bounded

𝑡
𝑘+1
− 𝑡
𝑘
≤ ℎ, 𝑘 = 0, 1, 2 . . . . (4)

Here ℎ denotes the maximum time span between the time 𝑡
𝑘

at which the state is sampled and the time 𝑡
𝑘+1

at which the
next update arrives at the destination. The initial conditions
of 𝑥(𝑡) and 𝑢(𝑡) are given as 𝑥(𝑡) = 𝜑(𝑡) and 𝑢(𝑡) = 0 for
𝑡 ∈ [𝑡
0
− ℎ, 𝑡
0
], where 𝜑(𝑡) is a differentiable function. Similar
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to the fuzzymodel, the same fuzz rule is used to construct the
following overall fuzzy control law:

𝑢 (𝑡) =

𝑟

∑

𝑠=1

ℎ
𝑠
(𝜃 (𝑡
𝑘
))𝐾
𝑠
𝑥 (𝑡
𝑘
) ,

𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
, 𝑘 = 0, 1, 2, . . . ,

(5)

where 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .) denotes the 𝑘th sampling instant,

𝑡
0
≥ 0, and lim

𝑘→∞
𝑡
𝑘
= ∞. 𝐾

𝑠
(𝑠 = 1, 2, . . . , 𝑟) are the local

control gains and 𝑡
𝑘+1

is the next updating instant time of the
ZOH after 𝑡

𝑘
. Denote 𝑑(𝑡) = 𝑡 − 𝑡

𝑘
for 𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
. It is

clear that 0 ≤ 𝑑(𝑡) < 𝑡
𝑘+1
− 𝑡
𝑘
≤ ℎ. It can be seen that 𝑑(𝑡)

is sawtooth structure, that is, piecewise-linear with derivative
̇
𝑑(𝑡) = 1, 𝑡 ̸= 𝑡

𝑘
. Then, from (5), we have

𝑢 (𝑡) =

𝑟

∑

𝑠=1

ℎ
𝑠
(𝜃 (𝑡
𝑘
))𝐾
𝑠
𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
, 𝑘 = 0, 1, 2, . . . .

(6)

Then, substituting (6) into (3) yields

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑘

𝑠
[𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝐾
𝑠
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐵

𝑤𝑖
𝑤 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑘

𝑠
[𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝐾
𝑠
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷

𝑤𝑖
𝑤 (𝑡)] ,

(7)

where ℎ
𝑖
and ℎ𝑘
𝑠
stand for ℎ

𝑖
(𝜃(𝑡)) and ℎ

𝑠
(𝜃(𝑡
𝑘
)), respectively.

In order to develop the main results in the next section,
the following definition is introduced.
Definition 1 (see [58]). Consider the following.

(D1) System (7) is said to be passive if there exists constant
𝜌 such that

2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) d𝑠 ≥ 𝜌 (8)

holds for all 𝑡 ≥ 0.
(D2) System (7) is said to be strictly passive if there exist

constants 𝛿 > 0 and 𝜌 such that

2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) d𝑠 ≥ 𝜌 + 𝛿∫
𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) d𝑠 (9)

holds for all 𝑡 ≥ 0.

(D3) System (7) is said to be output strictly passive if there
exist constants 𝜀 > 0 and 𝜌 such that

2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) d𝑠 ≥ 𝜌 + 𝜀∫
𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) d𝑠 (10)

holds for all 𝑡 ≥ 0.
(D4) System (7) is said to be very-strictly passive if there

exist constants 𝜀 > 0, 𝛿 > 0 and 𝜌 such that

2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) d𝑠

≥ 𝜌 + 𝜀∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) d𝑠 + 𝛿∫
𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) d𝑠
(11)

holds for all 𝑡 ≥ 0.

The main objective of this paper is to give the novel
sampled-data control conditions for T-S fuzzy system in
(7) via passive control method. The controller is designed
to guarantee that the resulting closed-loop system is very-
strictly passive.

2.1. Main Results. This section focuses on designing the
passive controller for fuzzy system (7). Firstly, the passivity
analysis criterion is established for system (7) in the following
theorem.

Theorem 2. Consider system in (7), for given constant ℎ and
matrix𝐾

𝑠
, system (7) is very-strictly passive if there exist scalars

𝜀 > 0, 𝛿 > 0, matrices 𝑃 > 0, 𝑄
𝑖𝑠
> 0, 𝑅

𝑖𝑠
> 0, 𝑍

1
> 0, and

𝑍
2
> 0 with appropriate dimensions, such that the following

LMIs hold for 𝑖, 𝑠 = 1, 2, . . . , 𝑟,

[

[

[

[

[

Ξ
11𝑖𝑠
+ Θ
1𝑖𝑠
Ξ
𝑇

12𝑖𝑠
Ξ
𝑇

13𝑖𝑠

∗ Ξ
22𝑖𝑠

0

∗ ∗ Ξ
33

]

]

]

]

]

< 0, (12)

[

[

Ξ
11𝑖𝑠
+ Θ
2𝑖𝑠
Ξ
𝑇

12𝑖𝑠

∗ Ξ
22𝑖𝑠

]

]

< 0, (13)

𝑄
𝑠𝑖
< 𝑅
𝑖𝑠
, (14)

where

Ξ
11𝑖𝑠
=

[

[

[

[

[

[

[

[

[

[

[

𝑃𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃 − 𝑄

𝑖𝑠
−

1

ℎ

𝑍
1
− 𝑍
2
𝑃𝐵
𝑖
𝐾
𝑠
+ 𝑄
𝑖𝑠
+

1

ℎ

𝑍
1
+ 𝑍
2

0 𝑃𝐵
𝑤𝑖
− 𝐶
𝑇

𝑖

∗ −2𝑄
𝑖𝑠
−

1

ℎ

𝑍
1
− 𝑍
2

𝑄
𝑖𝑠

−𝐾
𝑇

𝑠
𝐷
𝑇

𝑖

∗ ∗ −𝑄
𝑖𝑠

0

∗ ∗ ∗ 𝛿𝐼 − 𝐷
𝑤𝑖
− 𝐷
𝑇

𝑤𝑖

]

]

]

]

]

]

]

]

]

]

]

,



4 Mathematical Problems in Engineering

Ξ
12𝑖𝑠
=
[

[

𝐶
𝑖

𝐷
𝑖
𝐾
𝑠

0 𝐷
𝑤𝑖

ℎ𝑅
𝑖𝑠
𝐴
𝑖
ℎ𝑅
𝑖𝑠
𝐵
𝑖
𝐾
𝑠
0 ℎ𝑅
𝑖𝑠
𝐵
𝑤𝑖

]

]

, Ξ
22𝑖𝑠
= diag {−𝜀𝐼, −𝑅

𝑖𝑠
} ,

Θ
1𝑖𝑠
=

[

[

[

[

[

[

[

[

[

−𝑄
𝑖𝑠
𝑄
𝑖𝑠

0 0

∗ −𝑄
𝑖𝑠
0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

, Θ
2𝑖𝑠
=

[

[

[

[

[

[

[

[

[

[

0 0 0 0

∗ −𝑄
𝑖𝑠
𝑄
𝑖𝑠
0

∗ ∗ −𝑄
𝑖𝑠
0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

]

,

Ξ
13𝑖𝑠
=

[

[

[

[

[

ℎ𝑍
2

−ℎ𝑍
2

0 0

ℎ𝐴
𝑖

ℎ𝐵
𝑖
𝐾
𝑠
0 ℎ𝐵

𝑤𝑖

ℎ𝑍
1
𝐴
𝑖
ℎ𝑍
1
𝐵
𝑖
𝐾
𝑠
0 ℎ𝑍

1
𝐵
𝑤𝑖

]

]

]

]

]

, Ξ
33
= diag {−ℎ𝐼, −ℎ𝐼, −ℎ𝑍

1
} .

(15)

Proof. Now, define a Lyapunov-Krasovskii function for sys-
tem (7) as follows:

𝑉 (𝑥 (𝑡)) = 𝑉
1
(𝑥 (𝑡)) + 𝑉

2
(𝑥 (𝑡)) + 𝑉

3
(𝑥 (𝑡)) ,

𝑉
1
(𝑥 (𝑡)) = 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥 (𝑡)) = ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑅 (𝑠) ̇𝑥 (𝑠) d𝑠 d𝜃,

𝑉
3
(𝑥 (𝑡)) = (ℎ − 𝑑 (𝑡)) ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝑇

(𝑠) 𝑍
1
̇𝑥 (𝑠) d𝑠

+ (ℎ − 𝑑 (𝑡)) 𝜗
𝑇

(𝑡) 𝑍
2
𝜗 (𝑡) ,

(16)

where 𝑃 > 0, 𝑅(𝑡) = ∑𝑟
𝑖=1
∑
𝑟

𝑠=1
ℎ
𝑖
ℎ
𝑘

𝑠
𝑅
𝑖𝑠
> 0, 𝑍

1
> 0 and 𝑍

2
>

0, 𝜗(𝑡) = (𝑥(𝑡)−𝑥(𝑡−𝑑(𝑡))), 𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
. It can be found that

the term 𝑉
3
(𝑥(𝑡)) vanishes after the jumps because 𝑥(𝑡)

|𝑡=𝑡𝑘
=

𝑥(𝑡 − 𝑑(𝑡))
|𝑡=𝑡𝑘

. Hence 𝑉(𝑥(𝑡)) > 0 and is continuous in time.
The time-derivative of𝑉

1
(𝑥(𝑡)),𝑉

2
(𝑥(𝑡)), and𝑉

3
(𝑥(𝑡)) can be

obtained as
𝑉
1
(𝑥 (𝑡)) = 2𝑥

𝑇

(𝑡) 𝑃 ̇𝑥 (𝑡) ,

𝑉
2
(𝑥 (𝑡)) = ℎ

2

̇𝑥
𝑇

(𝑡) 𝑅 (𝑡) ̇𝑥 (𝑡)

− ℎ∫

𝑡

𝑡−ℎ

̇𝑥
𝑇

(𝑠) 𝑅 (𝑠) ̇𝑥 (𝑠) d𝑠,

𝑉
3
(𝑥 (𝑡)) = −∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝑇

(𝑠) 𝑍
1
̇𝑥 (𝑠) d𝑠

+ (ℎ − 𝑑 (𝑡)) ̇𝑥
𝑇

(𝑡) 𝑍
1
̇𝑥 (𝑡)

− 𝜗
𝑇

(𝑡) 𝑍
2
𝜗 (𝑡) + 2 (ℎ − 𝑑 (𝑡)) 𝜗

𝑇

(𝑡) 𝑍
2
̇𝑥 (𝑡) .

(17)

From the condition in (14), we have 𝑄(𝑡) =

∑
𝑟

𝑖=1
∑
𝑟

𝑠=1
ℎ
𝑖
ℎ
𝑘

𝑠
𝑄
𝑖𝑠
< 𝑅(𝑡). According to Jensen’s inequality

and the second term in 𝑉
2
(𝑥(𝑡)), we can have the following

inequalities:

− ℎ∫

𝑡

𝑡−ℎ

̇𝑥
𝑇

(𝑠) 𝑅 (𝑠) ̇𝑥 (𝑠) d𝑠

< −ℎ∫

𝑡

𝑡−ℎ

̇𝑥
𝑇

(𝑠) 𝑄 (𝑡) ̇𝑥 (𝑠) d𝑠

= −ℎ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝑇

(𝑠) 𝑄 (𝑡) ̇𝑥 (𝑠) d𝑠

− ℎ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇𝑥
𝑇

(𝑠) 𝑄 (𝑡) ̇𝑥 (𝑠) d𝑠

= − (ℎ − 𝑑 (𝑡)) ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝑇

(𝑠) 𝑄 (𝑡) ̇𝑥 (𝑠) d𝑠

− 𝑑 (𝑡) ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝑇

(𝑠) 𝑄 (𝑡) ̇𝑥 (𝑠) d𝑠

− (ℎ − 𝑑 (𝑡)) ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇𝑥
𝑇

(𝑠) 𝑄 (𝑡) ̇𝑥 (𝑠) d𝑠

− 𝑑 (𝑡) ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇𝑥
𝑇

(𝑠) 𝑄 (𝑡) ̇𝑥 (𝑠) d𝑠

≤ −

(ℎ − 𝑑 (𝑡))

ℎ

𝜁
𝑇

1
(𝑡) 𝑄 (𝑡) 𝜁

1
(𝑡) − 𝜁

𝑇

1
(𝑡) 𝑄 (𝑡) 𝜁

1
(𝑡)

− 𝜁
𝑇

2
(𝑡) 𝑄 (𝑡) 𝜁

2
(𝑡) −

𝑑 (𝑡)

ℎ

𝜁
𝑇

2
(𝑡) 𝑄 (𝑡) 𝜁

2
(𝑡)

= 𝜁
𝑇

3
(𝑡)
[

[

−𝑄 (𝑡) 𝑄 (𝑡) 0

𝑄 (𝑡) −2𝑄 (𝑡) 𝑄 (𝑡)

0 𝑄 (𝑡) −𝑄 (𝑡)

]

]

𝜁
3
(𝑡)
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+

(ℎ − 𝑑 (𝑡))

ℎ

𝜁
𝑇

3
(𝑡)
[

[

−𝑄 (𝑡) 𝑄 (𝑡) 0

𝑄 (𝑡) −𝑄 (𝑡) 0

0 0 0

]

]

𝜁
3
(𝑡)

+

𝑑 (𝑡)

ℎ

𝜁
𝑇

3
(𝑡)
[

[

0 0 0

0 −𝑄 (𝑡) 𝑄 (𝑡)

0 𝑄 (𝑡) −𝑄 (𝑡)

]

]

𝜁
3
(𝑡) ,

(18)

where

𝜁
1
(𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥 (𝑠) d𝑠, 𝜁
2
(𝑡) = ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇𝑥 (𝑠) d𝑠,

𝜁
𝑇

3
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − ℎ)] .

(19)

Similarly, for the first term in 𝑉
3
(𝑥(𝑡)), we can have the

following inequalities,

−∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝑇

(𝑠) 𝑍
1
̇𝑥 (𝑠) d𝑠 ≤ 𝜁𝑇

4
(𝑡)

[

[

[

[

−

1

ℎ

𝑍
1

1

ℎ

𝑍
1

1

ℎ

𝑍
1
−

1

ℎ

𝑍
1

]

]

]

]

𝜁
4
(𝑡) ,

(20)

where

𝜁
𝑇

4
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡))] . (21)

For the last term in 𝑉
3
(𝑥(𝑡)), it can be found that

2 (ℎ − 𝑑 (𝑡)) 𝜗
𝑇

(𝑡) 𝑍
2
̇𝑥 (𝑡)

≤

(ℎ − 𝑑 (𝑡))

ℎ

[ℎ𝜗
𝑇

(𝑡) 𝑍
2
𝑍
2
𝜗 (𝑡) + ℎ ̇𝑥

𝑇

(𝑡) ̇𝑥 (𝑡)] .

(22)

In addition,

𝑧
𝑇

(𝑡) 𝑧 (𝑡)

= {

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑘

𝑠
[𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝐾
𝑠
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷

𝑤𝑖
𝑤 (𝑡)]}

𝑇

×{

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑘

𝑠
[𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝐾
𝑠
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷

𝑤𝑖
𝑤 (𝑡)]}

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑘

𝑠
[𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝐾
𝑠
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷

𝑤𝑖
𝑤 (𝑡)]

𝑇

× [𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝐾
𝑠
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷

𝑤𝑖
𝑤 (𝑡)] .

(23)

Then, we establish the passivity analysis performance of
system in (7),

𝑉 (𝑥 (𝑡)) + 𝜀
−1

𝑧
𝑇

(𝑡) 𝑧 (𝑡) + 𝛿𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 2𝑧
𝑇

(𝑡) 𝑤 (𝑡)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑘

𝑠
𝜂
𝑇

(𝑡)

× [Ξ
11𝑖𝑠
− Ξ
𝑇

12𝑖𝑠
Ξ
−1

22𝑖𝑠
Ξ
12𝑖𝑠
+

(ℎ − 𝑑 (𝑡))

ℎ

× (Θ
1𝑖𝑠
− Ξ
𝑇

13𝑖𝑠
Ξ
−1

33
Ξ
13𝑖𝑠
) +

𝑑 (𝑡)

ℎ

Θ
2𝑖𝑠
] 𝜂 (𝑡)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑠=1

ℎ
𝑖
ℎ
𝑘

𝑠
𝜂
𝑇

(𝑡)

× [

(ℎ − 𝑑 (𝑡))

ℎ

(Ξ
11𝑖𝑠
− Ξ
𝑇

12𝑖𝑠
Ξ
−1

22𝑖𝑠
Ξ
12𝑖𝑠

+Θ
1𝑖𝑠
− Ξ
𝑇

13𝑖𝑠
Ξ
−1

33
Ξ
13𝑖𝑠
) +

𝑑 (𝑡)

ℎ

× (Ξ
11𝑖𝑠
− Ξ
𝑇

12𝑖𝑠
Ξ
−1

22𝑖𝑠
Ξ
12𝑖𝑠
+ Θ
2𝑖𝑠
) ] 𝜂 (𝑡) ,

(24)

where

𝜂
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − ℎ) 𝑤
𝑇

(𝑡)] . (25)

It follows fromTheorem 2 and (ℎ − 𝑑(𝑡))/ℎ + 𝑑(𝑡)/ℎ = 1; it is
derived that

𝑉 (𝑥 (𝑡)) + 𝜀
−1

𝑧
𝑇

(𝑡) 𝑧 (𝑡) + 𝛿𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 2𝑧
𝑇

(𝑡) 𝑤 (𝑡) ≤ 0.

(26)

Integrating both sides of (26) yields

2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) d𝑠 ≥ 𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥 (0))

+ 𝜀∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) d𝑠 + 𝛿∫
𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) d𝑠

≥ 𝜌 + 𝜀∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) d𝑠 + 𝛿∫
𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) d𝑠,

(27)

where 𝜌 = −𝑉(𝑥(0)). Then, it can be seen from Definition 1
that system (7) is very-strictly passive. The proof is finished.

Remark 3. In the proof of Theorem 2, we construct a
new time-dependent and membership-dependent Lyapunov
functional and use the advance methods to present the
passivity analysis conditions, resulting in less number of slack
variable being introduced inTheorem 2.

Based on the passivity analysis condition in Theorem 2,
the controller is derived in the form of (6) for the system in
(7).
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Theorem4. Consider system in (7), for given positive scalars ℎ,
]
𝑅𝑖𝑠
, ]
𝑍1
, and ]

𝑍2
, system (7) is very-strictly passive if there exist

scalars 𝜀 > 0, 𝛿 > 0, matrices 𝑃 > 0, 𝑄
𝑖𝑠
> 0, 𝑅

𝑖𝑠
> 0, 𝑍

1
> 0

and 𝐾
𝑠
with appropriate dimensions, such that the following

LMIs hold for 𝑖, 𝑠 = 1, 2, . . . , 𝑟,

[

[

[

[

[

[

Ξ
11𝑖𝑠
+ Θ
1𝑖𝑠
Ξ

𝑇

12𝑖𝑠
Ξ

𝑇

13𝑖𝑠

∗ Ξ
22𝑖𝑠

0

∗ ∗ Ξ
33

]

]

]

]

]

]

< 0, (28)

[

[

Ξ
11𝑖𝑠
+ Θ
2𝑖𝑠
Ξ

𝑇

12𝑖𝑠

∗ Ξ
22𝑖𝑠

]

]

< 0, (29)

𝑄
𝑠𝑖
< 𝑅
𝑖𝑠
, (30)

where

Ξ
11𝑖𝑠
=

[

[

[

[

[

[

[

[

[

[

[

𝐴
𝑖
𝑃 + 𝑃𝐴

𝑇

𝑖
− 𝑄
𝑖𝑠
−

1

ℎ

𝑍
1
− ]
𝑍2
𝑃 𝐵
𝑖
𝐾
𝑠
+ 𝑄
𝑖𝑠
+

1

ℎ

𝑍
1
+ ]
𝑍2
𝑃 0 𝐵

𝑤𝑖
− 𝑃𝐶
𝑇

𝑖

∗ −2𝑄
𝑖𝑠
−

1

ℎ

𝑍
1
− ]
𝑍2
𝑃 𝑄

𝑖𝑠
−𝐾

𝑇

𝑠
𝐷
𝑇

𝑖

∗ ∗ −𝑄
𝑖𝑠

0

∗ ∗ ∗ 𝛿𝐼 − 𝐷
𝑤𝑖
− 𝐷
𝑇

𝑤𝑖

]

]

]

]

]

]

]

]

]

]

]

,

Ξ
12𝑖𝑠
=
[

[

𝐶
𝑖
𝑃 𝐷

𝑖
𝐾
𝑠
0 𝐷
𝑤𝑖

ℎ𝐴
𝑖
𝑃 ℎ𝐵

𝑖
𝐾
𝑠
0 ℎ𝐵
𝑤𝑖

]

]

, Ξ
22𝑖𝑠
= diag {−𝜀𝐼, ]2

𝑅𝑖𝑠

𝑅
𝑖𝑠
− 2]
𝑅𝑖𝑠
𝑃} ,

Θ
1𝑖𝑠
=

[

[

[

[

[

[

[

[

[

−𝑄
𝑖𝑠
𝑄
𝑖𝑠

0 0

∗ −𝑄
𝑖s 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

, Θ
2𝑖𝑠
=

[

[

[

[

[

[

[

[

[

0 0 0 0

∗ −𝑄
𝑖𝑠
𝑄
𝑖𝑠
0

∗ ∗ −𝑄
𝑖𝑠
0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

,

Ξ
13𝑖𝑠
=

[

[

[

[

[

ℎ]
𝑍2
𝐼 −ℎ]

𝑍2
𝐼 0 0

ℎ𝐴
𝑖
𝑃 ℎ𝐵

𝑖
𝐾
𝑠
0 ℎ𝐵
𝑤𝑖

ℎ𝐴
𝑖
𝑃 ℎ𝐵

𝑖
𝐾
𝑠
0 ℎ𝐵
𝑤𝑖

]

]

]

]

]

, Ξ
33
= diag {−ℎ𝐼, −ℎ𝐼, ℎ (]2

𝑍1

𝑍
1
− 2]
𝑍1
𝑃)} .

(31)

Then, the control gain matrix is 𝐾
𝑠
= 𝐾
𝑠
P−1.

Proof. Firstly, it can be seen that the two inequalities
−𝑃𝑅

−1

𝑖𝑠
𝑃 ≤ ]2

𝑅𝑖𝑠

𝑅
𝑖𝑠
− 2]
𝑅𝑖𝑠
𝑃 and −𝑃𝑍

−1

1
𝑃 ≤ ]2

𝑍1

𝑍
1
− 2]
𝑍1
𝑃

hold for positive scalars ]
𝑅𝑖𝑠

and ]
𝑍1

due to the following two
inequalities:

(]
𝑅𝑖𝑠
𝑅
𝑖𝑠
− 𝑃)𝑅

−1

𝑖𝑠
(]
𝑅𝑖𝑠
𝑅
𝑖𝑠
− 𝑃) ≥ 0,

(]
𝑍1
𝑍
1
− 𝑃)𝑍

−1

1
(]
𝑍1
𝑍
1
− 𝑃) ≥ 0.

(32)

Then, define the variables as 𝑃 = 𝑃

−1, 𝑄
𝑖𝑠
= 𝑃

−1

𝑄
𝑖𝑠
𝑃

−1,
𝑅
𝑖𝑠
= 𝑃

−1

𝑅
𝑖𝑠
𝑃

−1, 𝑍
1
= 𝑃

−1

𝑍
1
𝑃

−1, and 𝑍
2
= ]
𝑍2
𝑃

−1,
and replace the terms ]2

𝑅𝑖𝑠

𝑅
𝑖𝑠
− 2]
𝑅𝑖𝑠
𝑃 and ]2

𝑍1

𝑍
1
− 2]
𝑍1
𝑃

with −𝑃𝑅−1
𝑖𝑠
𝑃 and −𝑃𝑍

−1

1
𝑃 in (28) and (29). We perform

congruence transformation to (28) and (29) by

diag {𝑃 𝑃 𝑃 𝐼 𝐼 𝑅
𝑖𝑠
𝐼 𝐼 𝑍

1
} ,

diag {𝑃 𝑃 𝑃 𝐼 𝐼 𝑅
𝑖𝑠
} ,

(33)

respectively. We can see that the LMIs conditions in (12)
and (13) hold. Therefore, all the conditions in Theorem 2 are
satisfied. The proof is completed.

If the assumption ̇
𝑑(𝑡) = 1 is removed, which means that

Lyapunov functional candidate (16) does not include the term
𝑉
3
(𝑥(𝑡)). Similar to the proof of Theorems 2 and 4, we have

the following corollaries.

Corollary 5. Consider system in (7), for given constant ℎ and
matrix𝐾

𝑠
, system (7) is very-strictly passive if there exist scalars
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𝜀 > 0, 𝛿 > 0, matrices 𝑃 > 0, 𝑄
𝑖𝑠
> 0, and 𝑅

𝑖𝑠
> 0 with

appropriate dimensions, such that the following LMIs hold for
𝑖, 𝑠 = 1, 2, . . . , 𝑟,

[

[

Ξ
11𝑖𝑠
+ Θ
1𝑖𝑠
Ξ
𝑇

12𝑖𝑠

∗ Ξ
22𝑖𝑠

]

]

< 0,

[

[

Ξ
11𝑖𝑠
+ Θ
2𝑖𝑠
Ξ
𝑇

12𝑖𝑠

∗ Ξ
22𝑖𝑠

]

]

< 0, 𝑄
𝑠𝑖
< 𝑅
𝑖𝑠
,

(34)

where

Ξ
11𝑖𝑠
=

[

[

[

[

[

[

[

[

[

𝑃𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃 − 𝑄

𝑖𝑠
𝑃𝐵
𝑖
𝐾
𝑠
+ 𝑄
𝑖𝑠

0 𝑃𝐵
𝑤𝑖
− 𝐶
𝑇

𝑖

∗ −2𝑄
𝑖𝑠

𝑄
𝑖𝑠

−𝐾
𝑇

𝑠
𝐷
𝑇

𝑖

∗ ∗ −𝑄
𝑖𝑠

0

∗ ∗ ∗ 𝛿𝐼 − 𝐷
𝑤𝑖
− 𝐷
𝑇

𝑤𝑖

]

]

]

]

]

]

]

]

]

,

Ξ
12𝑖𝑠
=
[

[

𝐶
𝑖

𝐷
𝑖
𝐾
𝑠

0 𝐷
𝑤𝑖

ℎ𝑅
𝑖𝑠
𝐴
𝑖
ℎ𝑅
𝑖𝑠
𝐵
𝑖
𝐾
𝑠
0 ℎ𝑅
𝑖𝑠
𝐵
𝑤𝑖

]

]

, Ξ
22𝑖𝑠
= diag {−𝜀𝐼, −𝑅

𝑖𝑠
} ,

Θ
1𝑖𝑠
=

[

[

[

[

[

[

[

[

[

−𝑄
𝑖𝑠
𝑄
𝑖𝑠

0 0

∗ −𝑄
𝑖𝑠
0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

, Θ
2𝑖𝑠
=

[

[

[

[

[

[

[

[

[

0 0 0 0

∗ −𝑄
𝑖𝑠
𝑄
𝑖𝑠
0

∗ ∗ −𝑄
𝑖𝑠
0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

.

(35)

Corollary 6. Consider system in (7), for given positive scalars
ℎ, ]
𝑅𝑖𝑠
, ]
𝑍1
, and ]

𝑍2
, system (7) is very-strictly passive if there

exist scalars 𝜀 > 0, 𝛿 > 0, matrices 𝑃 > 0, 𝑄
𝑖𝑠
> 0, 𝑅

𝑖𝑠
>

0, 𝑍
1
> 0, and 𝐾

𝑠
with appropriate dimensions, such that the

following LMIs hold for 𝑖, 𝑠 = 1, 2, . . . , 𝑟,

[

[

Ξ
11𝑖𝑠
+ Θ
1𝑖𝑠
Ξ

𝑇

12𝑖𝑠

∗ Ξ
22𝑖𝑠

]

]

< 0,

[

[

Ξ
11𝑖𝑠
+ Θ
2𝑖𝑠
Ξ

𝑇

12𝑖𝑠

∗ Ξ
22𝑖𝑠

]

]

< 0,

𝑄
𝑠𝑖
< 𝑅
𝑖𝑠
,

(36)

where

Ξ
11𝑖𝑠
=

[

[

[

[

[

[

[

[

[

[

𝐴
𝑖
𝑃 + 𝑃𝐴

𝑇

𝑖
− 𝑄
𝑖𝑠
𝐵
𝑖
𝐾
𝑠
+ 𝑄
𝑖𝑠

0 𝐵
𝑤𝑖
− 𝑃𝐶
𝑇

𝑖

∗ −2𝑄
𝑖𝑠

𝑄
𝑖𝑠

−𝐾

𝑇

𝑠
𝐷
𝑖

∗ ∗ −𝑄
𝑖𝑠

0

∗ ∗ ∗ 𝛿𝐼 − 𝐷
𝑤𝑖
− 𝐷
𝑇

𝑤𝑖

]

]

]

]

]

]

]

]

]

]

,

Ξ
12𝑖𝑠
=
[

[

𝐶
𝑖
𝑃 𝐷

𝑖
𝐾
𝑠
0 𝐷
𝑤𝑖

ℎ𝐴
𝑖
𝑃 ℎ𝐵

𝑖
𝐾
𝑠
0 ℎ𝐵
𝑤𝑖

]

]

, Ξ
22𝑖𝑠
= diag {−𝜀𝐼, ]2

𝑅𝑖𝑠

𝑅
𝑖𝑠
− 2]
𝑅𝑖𝑠
𝑃} ,
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Θ
1𝑖𝑠
=

[

[

[

[

[

[

[

[

[

−𝑄
𝑖𝑠
𝑄
𝑖𝑠

0 0

∗ −𝑄
𝑖𝑠
0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

, Θ
2𝑖𝑠
=

[

[

[

[

[

[

[

[

[

0 0 0 0

∗ −𝑄
𝑖𝑠
𝑄
𝑖𝑠
0

∗ ∗ −𝑄
𝑖𝑠
0

∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

.

(37)

The control gain matrix is computed as 𝐾
𝑠
= 𝐾
𝑠
𝑃

−1.

3. Simulation Results

In this section, an application example is used to demonstrate
the applicability of the controller design method proposed in
this paper.

Example 7. Consider the problem of balancing and swing-
up of an inverted pendulum on a cart. The equations of the
pendulum motion are given by [4]:

̇𝑥
1
(𝑡) = 𝑥

2
(𝑡) ,

̇𝑥
2
(𝑡) = (𝑔 sin (𝑥

1
(𝑡)) −

aml𝑥2
2
(𝑡) sin (2𝑥

1
(𝑡))

2

− 𝑎 cos (𝑥
1
(𝑡)) 𝑢 (𝑡) )

× (

4𝑙

3

− aml cos2 (𝑥
1
(𝑡)))

−1

,

(38)

where 𝑥
1
(𝑡) stands for the angle (in radians) of the pendulum

from the vertical, 𝑥
2
(𝑡) denotes the angular velocity, and 𝑢(𝑡)

is the force applied to the cart (in newtons). 𝑔 = 9.8m/s2 is
the gravity constant,𝑚 denotes themass of the pendulum, 𝑀
stands for the mass of the cart, 2𝑙 is the length of the
pendulum, and 𝑎 = 1/(𝑚 +𝑀). Here, we choose𝑚 = 2.0 kg,
𝑀 = 8.0 kg, and 2𝑙 = 1.0m in simulations [3].

The control objective here is to balance the inverted
pendulum for the approximate range 𝑥

1
(𝑡) ∈ (−(𝜋/2), (𝜋/2))

through a sampled-data control approach. First, we represent
the system in (38) by a two-rule Takagi-Sugenofuzzy model
[39].

Plant Rule 1. If 𝑥
1
(𝑡) is 0, then

̇𝑥 (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) , (39)

Plant Rule 2. If 𝑥
1
(𝑡) is ±(𝜋/2)(|𝑥

1
(𝑡)| < 𝜋/2), then

̇𝑥 (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) , (40)

where

𝐴
1
=
[

[

[

0 1

𝑔

4𝑙/3 − aml
0

]

]

]

, 𝐵
1
=
[

[

[

0

−

𝑎

4𝑙/3 − aml

]

]

]

,

𝐴
2
=

[

[

[

[

0 1

2𝑔

𝜋 (4𝑙/3 − aml𝛽2)
0

]

]

]

]

,

𝐵
2
=

[

[

[

[

0

−

𝑎𝛽

𝜋4𝑙/3 − aml𝛽2

]

]

]

]

,

(41)

and 𝛽 = cos(88∘) (notice that when 𝑥
1
(𝑡) = ±(𝜋/2), the

system is uncontrollable). Membership functions for Rules 1
and 2 are listed below:

ℎ
1
(𝜃 (𝑡)) =

{
{
{

{
{
{

{

1 −

2

𝜋

𝜃 (𝑡) , if 0 ≤ 𝜃 (𝑡) < 𝜋
2

,

1 +

2

𝜋

𝜃 (𝑡) , if − 𝜋
2

≤ 𝜃 (𝑡) < 0,

(42)

and ℎ
2
(𝜃(𝑡)) = 1−ℎ

1
(𝜃(𝑡)), where 𝜃(𝑡) = 𝑥

1
(𝑡). Figure 1 shows

the membership functions.
In order to demonstrate the effectiveness of the proposed

passive control designmethod, we consider the system in (38)
and other parameters in system (2):

𝐵
𝑤1
= [−0.01 0.01]

𝑇

, 𝐵
𝑤2
= [0.01 −0.01]

𝑇

,

𝐶
1
= [0.1 0.01] , 𝐶

2
= [−0.01 0.1] ,

𝐷
1
= −0.01, 𝐷

2
= 0.02,

𝐷
𝑤1
= 0.01, 𝐷

𝑤2
= 0.02.

(43)

We choose the disturbance input𝑤(𝑡) = −1/(2+ 𝑡). It can
be calculated that ∫∞

0

𝑤
𝑇

(𝑡)𝑤(𝑡)d𝑡 = 0.5 < ∞, which means
𝑤(𝑡) ∈ 𝐿

2
[0,∞). Let

 (𝑡) = 2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) d𝑠

− 𝜀∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) d𝑠 − 𝛿∫
𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) d𝑠.
(44)

In Figure 2, it can be observed that 2 ∫∞
0

𝑧
𝑇

(𝑡)𝑤(𝑡)d𝑡
decreases as the time 𝑡 increases, whichmeans that there may
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1

1.5−0.5 0 0.5 1−1−1.5

0.75

0.25

0.50

0

Rule 1
Rule 2

Figure 1: Membership functions of two rules.
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0.5
×10
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Figure 2: Response of 2 ∫∞
0

𝑧
𝑇

(𝑡)𝑤(𝑡)d𝑡 of the open-loop system.

not exist a scalar 𝜌 such 2 ∫∞
0

𝑧
𝑇

(𝑡)𝑤(𝑡)d𝑡 ≥ 𝜌 holds for all
𝑡 ≥ 0. In addition, Figure 3 still holds that there may not exist
a scalar 𝜌 such that (𝑡) ≥ 𝜌, which means that the open-
loop system is not passive in the sense of Definition 1, and
it is not very-strictly passive. Figure 4 demonstrates that the
open-loop system is not stable.

InTheorem 4, letting ]
𝑅11
= 0.01, ]

𝑅12
= 0.02, ]

𝑅21
= 0.02,

]
𝑅22
= 0.01, ]

𝑍1
= 10, and ]

𝑍2
= 1, it can be found that the

closed-loop system is very-strictly passive for the allowable
upper bound of ℎ = 9ms.The control gain matrices are listed
below:

𝐾
1
= [279.1851 74.3281] ,

𝐾
2
= [3363.479 1083.6839] .

(45)

Under the control gain matrices in (45), Figure 5 plots
the responses of 2 ∫∞

0

𝑧
𝑇

(𝑡)𝑤(𝑡)d𝑡 for the closed-loop sys-
tem, which means that there may exist a scalar 𝜌 such

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5

0
×10

120

Time (s)

Figure 3: Response of (𝑡) of the open-loop system.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−16

−14

−12

−10

−8

−6

−4

−2

0

2
×10

36
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)
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Figure 4: State response of the open-loop system.

2 ∫

∞

0

𝑧
𝑇

(𝑡)𝑤(𝑡)d𝑡 ≥ 𝜌 holds for all 𝑡 ≥ 0. In Figure 6, it can
be seen that there may exist a scalar 𝜌 such that (𝑡) ≥ 𝜌.
Then, one can know that the closed-loop system is very-
strictly passive under the control gain matrices in (45). In
addition, Figure 7 shows that the closed-loop system is stable.
The computed control inputs arriving at the ZOH are shown
in Figure 8, inwhichwe can see that the piecewise continuous
holding behavior of the control inputs.

According to the above observation, these simulation
results can demonstrate that the designed sampled-data
controller meets the specified design requirements.

4. Conclusions

In this paper, the problems of passivity analysis and passive
control have been investigated for nonlinear systems under
variable sampling. By using the nonlinear sector method, the
T-S fuzzy model was established to describe the nonlinear



10 Mathematical Problems in Engineering
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Figure 5: Response of 2 ∫∞
0

𝑧
𝑇

(𝑡)𝑤(𝑡)d𝑡 of the closed-loop system.
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Figure 6: Response of (𝑡) of the closed-loop system.
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Figure 7: State response of the closed-loop system.
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Figure 8: Control signal response of the closed-loop system

systems. Based on the input delay approach, the T-S fuzzy sys-
tem with variable uncertain sampling was transformed into a
continuous-timeT-S fuzzy systemwith a delay in the state. By
constructing a novel time-dependent Lyapunov functional,
sampled-data controller was designed to guarantee that the
resulting closed-loop system is very-strictly passive. The
controller existence conditions were expressed as LMIs. This
paper has taken into account the main characteristics of
sampled-data systems via defining a novel time-dependent
Lyapunov functional. An example has been included to
demonstrate the advantages of the theoretic results obtained.
This paper talks about passivity analysis and passive control
for nonlinear systems under variable sampling. In order to
achieve more practical oriented results, further work could
be considered under data-driven (measurements) framework
[59, 60]. The future topics, for example, control [61] and fault
tolerant scheme [62] in the identical framework, seem more
interesting from both academic and industrial domains.
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Theproblemof coordinated control formultiplemarine vessels in the presence of external disturbances is considered in this paper. A
robust coordinated control algorithm is proposed formultiplemarine vessels.The proposed robust coordinated control algorithm is
divided into two parts.The first part develops an extended state observer to estimate the disturbances of marine vessels.The second
part presents a robust coordinated control algorithm based on the output of the extended state observer. Furthermore, the robust
coordinated control algorithm is designed using the dynamic surface control method. In light of the leader-follower strategy, the
trajectory for each vessel is defined according to the desired trajectory of the assigned leader and the relative distance with respect
to the leader. The effectiveness of the proposed coordination algorithm is demonstrated by the simulation results.

1. Introduction

In recent years, coordinated control of multiple vehicles has
received increasing attention as an emerging technology [1].
Multiple vehicles can performmany complex tasks effectively
with less time and lower cost than a single vehicle. And
multiple vehicles can accomplish some tasks which cannot
be executable by a single one. In order to perform these
complicated practical tasks, it is necessary for these vehicles
to move collectively as a whole formation. In practice, many
relevant applications of coordinated control can be found
on the land, in the sea, and in the air [2]. For instance,
in the operations of underway replenishment by a fleet of
surface vessels, it is required that the replenished vehicle
should maintain a fixed relative position with respect to
the replenishing one, in order to ensure the replenishment
operation performed safely and effectively.

The problem of coordinated formation control has
been reported in a large number of recent publications.
Basic approaches of the coordinated control include leader-
follower approach [3–5], behavioral approach [6, 7], and
virtual structures approach [8, 9]. In the leader-follower
approach, some agents are considered as the leaders, and the

rest ones are considered as the followers. The followers will
track the leaders, and the leaders will track the predefined
desired trajectories. This method is easy to be manipulated
and implemented. However, the main criticism of the leader-
follower approach is that it depends heavily on the leader
to achieve the goal of the formation task which may be
undesirable [3–5]. In the behavioral approach, the colli-
sion avoidance/obstacle avoidance and the target tracking
are prescribed for each agent, and the whole formation is
achieved by calculating the weight of the relative importance
of each behavior.However, it is difficult to analyze the stability
of the group behavior using such approach [6, 7]. In the
virtual-structure approach, each member in the formation
is considered as a particle embedded in a rigid geometric
structure, but the relative applications are limited when the
formation structure is time-varying or needs to be frequently
reconfigured [8, 9].

Some advanced approaches including graph theory [10],
passivity-based control [11, 12], and hybrid control [13]
are also used for coordinated control of multiple marine
vessels. Most results about the coordinated control problem
addressed in the earlier papers are on the assumption that
marine vessels are free from environmental disturbances.
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However, coordinated control for multiple surface vessels
encountering exogenous disturbances adds a new level of
complexity to the problem. Other advanced methods are
proposed to solve the robust coordinated formation control
problem, for example, the Lagrangian approach [14], the
nonlinear model predictive control [15], the adaptive control
[16], and the sliding mode control [17]. In addition, the
fault tolerant control and the fault diagnosis are studied in
references [18–20]. In particular, the problem of coordinated
path following multiple vessels has also been discussed
in the related literature studies [21, 22]. The robustness
to environmental disturbances is highly important when
performing practical marine and offshore tasks for surface
vessels, which is also the concerned issue in this paper. The
core of the extended state observer is that the disturbances
and the unknown dynamics can be considered as extend
state, and then the detailed values can be estimated by
designed observer. The correlative applications can be found
in literature studies [23–26]. The stability of the extended
state observer is analyzed in [27–29].The robust coordination
control algorithm formultiple surface vessels based on extend
state observer and robust control technology is studied in
this paper. The designed controller is useful for the practical
marine operations.

In this paper, we consider the problem of coordinated
formation control of multiple surface vessels in the pres-
ence of exogenous disturbances. The coordinated formation
controller is proposed by combining the extended state
observer and dynamic surface control using the leader-
follower strategy. The extended state observer is developed
to estimate the external disturbances of the surface vessels.
The coordinated control algorithm is accomplished based on
the output of the extended state observer. Furthermore, the
trajectory of each vessel is defined using the desired trajectory
of the assigned leader and the relative distance with respect
to the leader. This paper is organized as follows. In Section 2,
the vessel model is established. Section 3 contains a detailed
algorithm of the coordination formation control for multiple
vessels. Simulation is carried out in Section 4, and we draw
conclusions in Section 5.

2. Preliminaries

The vessel model can be divided into two parts: the kine-
matics and nonlinear dynamics. Generally, only the motion
in the horizontal plane is considered for the surface vessel.
The elements corresponding to heave, roll, and pitch are
neglected. The dynamic model for the ith surface vessel can
be represented by the following 3 degrees of freedom (DOF)
[30]:
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denote the Coriolis-centripetal matrix and damping matrix,
respectively. The detailed representation of the above three
system matrices can be found in reference [30]. 𝜏
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the thruster system. 𝜏
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is the vector of external environment

forces and torques input which is generated by wind, wave,
and current.

In order to design the backstepping sliding mode con-
troller, we transform the vessel model as follows:
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Taking (4) and (6) into the vessel dynamic model (2) yields
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The above equation can be written as
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3. Coordinated Formation Controller Design

In this section, the controller is designed from two inspects.
One is the extended state observer design for each vessel, and
the other is the coordinated controller for multiple vessels
based on the output of the extended state observer.
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3.1. Extended State Observer Design. In this section, we
design the extended state observer for each vessel to estimate
the disturbances.

Let ̇𝜂
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Here K
𝑖
is assumed to be unknown. We assume that K
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is

an extended state. However, K
𝑖
can be estimated using an

extended state observer. Then the disturbances are observed
and compensated by the designed controller.

The extended state observer is designed as

z
1i = 𝜂
𝑖
− 𝜂
𝑖
,

̇
�̂�
𝑖
= k̂
𝑛𝑖

+ 𝛽
1
fal
1
(z
1𝑖
, 𝛼, 𝛿) ,

̇k̂
𝑛𝑖

=
̂K
𝑖
+ 𝛽
2
fal
2
(z
1𝑖
, 𝛼, 𝛿) + u

𝑖
,

̇
̂K
𝑖
= 𝛽
3
fal
3
(z
1𝑖
, 𝛼, 𝛿) ,

(13)

where

fal (z
1𝑖
, 𝛼, 𝛿) =

{

{

{





z
1𝑖






𝛼 sign (z
1𝑖
) ,





z
1𝑖





> 𝛿,

z
1𝑖

𝛿
𝛼−1

,




z
1𝑖





≤ 𝛿.

(14)

And 𝛿 > 0, 0 < 𝛼 < 1.
Set z
1𝑖

= 𝜂
𝑖
− 𝜂
𝑖
, z
2𝑖

= k
𝑛𝑖

− k̂
𝑛𝑖
, z
3𝑖

= K
𝑖
− K̂
𝑖
. 𝜂
𝑖
, k̂
𝑛𝑖
, K̂
𝑖

are the estimated values of 𝜂
𝑖
, k
𝑛𝑖
,K
𝑖
, respectively. Taking the

derivative of z
1𝑖
, z
2𝑖
, z
3𝑖
, respectively, we can obtain that

̇z
1𝑖

= k̂
𝑛𝑖

+ z
2𝑖
− k̂
𝑛𝑖

− 𝛽
1
fal
1
(e
𝑖
, 𝛼, 𝛿)

= z
2𝑖
− 𝛽
1
fal
1
(z
1𝑖
, 𝛼, 𝛿)

(15)

̇z
2𝑖

= K
𝑖
+ u
𝑖
−

̂K
𝑖
− 𝛽
2
fal
2
(z
1𝑖
, 𝛼, 𝛿) − u

𝑖

= z
3𝑖
− 𝛽
2
fal
2
(z
1𝑖
, 𝛼, 𝛿)

(16)

̇z
3𝑖

= ̇K
𝑖
− 𝛽
3
fal
3
(z
1𝑖
, 𝛼, 𝛿) . (17)

The following assumptions are presumed.

(1) The possibly unknown function K
𝑖
is continuously

differentiable with respect to their variables. | ̇K
𝑖
| ≤ 𝑀

for all 𝑡 > 0, where𝑀 is a positive constant.

Virtual leader

l1
l2

l3

N

E

Figure 1: The formation of these vessels.

(2) Let z = [z
1
, z
2
, z
3
]
𝑇, and ‖ ∙ ‖ denotes the Euclid norm

of R9. There exist positive definite constants 𝜆
𝑖
(𝑖 =

1, 2, 3, 4), 𝛼 and continuous differentiable functions
𝑉,𝑊 : R9 → R such that

(i) 𝜆
1
‖z‖2 ≤ V(z) ≤ 𝜆

2
‖z‖2, 𝜆

3
‖z‖2 ≤ W(z) ≤

𝜆
4
‖z‖2,

(ii) (𝜕𝑉/𝜕z
1
)(z
2
− 𝑓
1
(z
1
)) + (𝜕𝑉/𝜕z

2
)(z
2
− 𝑓
2
(z
1
)) +

(𝜕𝑉/𝜕z
3
)𝑓
3
(z
1
) ≤ −𝑊(z),

(iii) ‖𝜕𝑉/𝜕z
3
‖ ≤ 𝛼‖z‖.

The stability for the extended state observer is analyzed in
[24]. Then we can obtain 𝜂

𝑖
→ 𝜂
𝑖
, k̂
𝑛𝑖

→ k
𝑛𝑖
,
̂K
𝑖
→ K
𝑖
.

3.2. Coordinated Controller Design

3.2.1. Formation Setup. This paper considers a fleet of n
vessels to perform the desired coordination formation task.
Each vessel in the formation is identified by the index
set 𝐼 = [1, 2, . . . , 𝑛]. The desired formation is established
using the leader-follower strategy as shown in Figure 1.
Furthermore, the leader is a virtual vessel. If we assume
the desired trajectory of the leader vessel is denoted as 𝜂

𝑑
,

where 𝜂
𝑑

= [𝑛
𝑑
(𝑡), 𝑒
𝑑
(𝑡), 𝜓
𝑑
(𝑡)]
𝑇, 𝑛
𝑑
(𝑡), 𝑒
𝑑
(𝑡) are sufficiently

smooth functions, and 𝜓
𝑑
(𝑡) = arctan( ̇𝑒

𝑑
(𝑡)/ ̇𝑛
𝑑
(𝑡)). That

means the vessel direction is chosen as the tangential vector
of the respective desired trajectory. If we define the relative
distance between the follower vessel and the leader vessel as
l
𝑖
= [𝑥
0𝑖
, 𝑦
0𝑖
, 𝜓
0𝑖
]
𝑇, then the desired trajectory of the follower

vessel is denoted as 𝜂
𝑑𝑖

= 𝜂
𝑑
+ R(𝜓

𝑑
)l
𝑖
.

3.2.2. Controller Design. Define the first dynamic surface as

S
1𝑖

= 𝜂
𝑖
− 𝜂
𝑑𝑖
. (18)

Taking the derivative of the first surface, with (13), we obtain

̇S
1𝑖

=
̇

�̂�
𝑖
− ̇𝜂
𝑑𝑖

= k̂
𝑛𝑖

+ 𝛽
1
fal
1
(z
1𝑖
, 𝛼, 𝛿) − ̇𝜂

𝑑𝑖
.

(19)
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Define a virtual velocity k
𝑟𝑖
as follows:

k
𝑟𝑖

= ̇𝜂
𝑑𝑖

− 𝛽
1
fal
1
(z
1𝑖
, 𝛼, 𝛿) − Λ

1
S
1𝑖
, (20)

where Λ
1
is a positive definite matrix. With this definition,

if k
𝑟𝑖

= k̂
𝑛𝑖
, then ̇S

1𝑖
= −Λ

1
S
1𝑖
. Then S

1𝑖
→ 0 with a

convergence rate determined by the choice of Λ
1
. Because of

the definition of S
1𝑖
, this will also guarantee that 𝜂

𝑖
→ 𝜂
𝑖
→

𝜂
𝑑𝑖
.
k
𝑟𝑖
is passed through a first order filter in order to avoid

the problem existed in the backstepping scheme:

T ̇k
𝑑𝑖

+ k
𝑑𝑖

= k
𝑟𝑖
, (21)

whereT is a diagonalmatrix of the filter time constants which
are chosen to be as small as possible. Because k̂

𝑛𝑖
→ k
𝑛𝑖
, then

we can define the second sliding surface as

S
2𝑖

= k̂
𝑛𝑖

− k
𝑑𝑖
, (22)

where k
𝑑𝑖
is the estimated value of k

𝑟𝑖
; take the derivative of

k
𝑑𝑖
, then we have

̇k
𝑑𝑖

= T−1 (k
𝑟𝑖
− k
𝑑𝑖
) . (23)

Taking the derivative of the second surface, with (13), we have

̇S
2𝑖

=
̇k̂
𝑛𝑖

− ̇k
𝑑𝑖

= K̂
𝑖
+ 𝛽
2
fal
2
(z
1𝑖
, 𝛼, 𝛿) + u

𝑖
− ̇k
𝑑𝑖
.

(24)

We consider the following Lyapunov function candidate:

V
1𝑖

=

1

2

S𝑇
2𝑖
S
2𝑖
. (25)

We take the time derivative of (25):

̇V
1𝑖

= S𝑇
2𝑖
(
̂K
𝑖
+ 𝛽
2
fal
2
(z
1𝑖
, 𝛼, 𝛿) + u

𝑖
− ̇k
𝑑𝑖
) . (26)

So we choose the control input as u
𝑖
= ̇k
𝑑𝑖

−
̂K
𝑖
− 𝛽
2
fal
2
(z
1𝑖
,

𝛼, 𝛿) − K
𝐷
S
2𝑖
.

The control input of the vessel is 𝜏
𝑖
= M
𝑛𝑖
(𝜂
𝑖
)u
𝑖
. So the

control force input 𝜏 is selected as

𝜏
𝑖
= M
𝑛𝑖
(𝜂
𝑖
) ( ̇k
𝑑𝑖

− K̂
𝑖
− 𝛽
2
fal
2
(z
1𝑖
, 𝛼, 𝛿) − K

𝐷
S
2𝑖
) . (27)

Theorem 1. Consider the vessel with the nonlinear model as
in (1), (2), and (8), with the control law (27), and then one
can guarantee that the vessels approach the desired trajectory
ultimately while holding the desired formation structure.

Proof. With the definition of the second surface, (19) can be
rewrite as

̇S
1𝑖

= S
2𝑖
+ k
𝑑𝑖

− 𝛽
1
fal
1
(z
1𝑖
, 𝛼, 𝛿) − ̇𝜂

𝑑𝑖
. (28)

Define the estimated error of the first order filter as

S
3𝑖

= −T ̇k
𝑑𝑖

= k
𝑑𝑖

− k
𝑟𝑖
. (29)

Taking the derivative of S
3𝑖
yields

̇S
3𝑖

= ̇k
𝑑𝑖

− k
𝑟𝑖

= ̇k
𝑑𝑖

+ 𝛽
1

𝑑fal
1
(z
1𝑖
, 𝛼, 𝛿)

𝑑𝑡

+ Λ
1

̇S
1𝑖
− ̈𝜂
𝑑𝑖

= −

S
3𝑖

T
+ 𝛽
1

𝑑fal
1
(z
1𝑖
, 𝛼, 𝛿)

𝑑𝑡

+ Λ
1

̇S
1𝑖
− ̈𝜂
𝑑𝑖

= −

S
3𝑖

T
+ 𝑔 (𝛽

1
, z
1𝑖
, 𝛼, 𝛿, ̇z

1𝑖
, ̈𝜂
𝑑𝑖
, ̇S
1𝑖
) .

(30)

With (19) and (21), we obtain
̇S
1𝑖

= S
2𝑖
+ S
3𝑖
− Λ
1𝑖
S
1𝑖
. (31)

Define the Lyapunov function as

V
𝑖
=

1

2

S𝑇
1𝑖
S
1𝑖
+

1

2

S𝑇
2𝑖
S
2𝑖
+

1

2

S𝑇
3𝑖
S
3𝑖
. (32)

Differentiating the above equation yields

̇V
𝑖
= S𝑇
1𝑖

̇S
1𝑖
+ S𝑇
2𝑖

̇S
2𝑖
+ S𝑇
3𝑖

̇S
3𝑖

= S𝑇
1𝑖
(S
2𝑖
+ S
3𝑖
− Λ
1
S
1𝑖
) − S𝑇
2𝑖
K
𝐷
S
2𝑖
+ S𝑇
3𝑖

× (−

S
3𝑖

T
+ 𝑔 (𝛽

1
, z
1𝑖
, 𝛼, 𝛿, ̇z

1𝑖
, ̈𝜂
𝑑𝑖
,

̇S
1𝑖
))

= − S𝑇
1𝑖
Λ
1
S
1𝑖
+ S𝑇
1𝑖
S
2𝑖
+ S𝑇
1𝑖
S
3𝑖

− S𝑇
2𝑖
K
𝐷
S
2𝑖
−

S𝑇
3𝑖
S
3𝑖

T

+ S𝑇
3𝑖
𝑔 (𝛽
1
, z
1𝑖
, 𝛼, 𝛿, ̇z

1𝑖
, ̈𝜂
𝑑𝑖
,

̇S
1𝑖
) .

(33)

If we define the maximum of 𝑔(𝛽
1
, z
1𝑖
, 𝛼, 𝛿, ̇z

1𝑖
, ̈𝜂
𝑑𝑖
,

̇S
1𝑖
) is

𝑔max, we can know that S𝑇
1𝑖
S
1𝑖

+ S𝑇
2𝑖
MS
2𝑖

+ S𝑇
3𝑖
S
3𝑖

≤ 2𝑝, 𝑝
is a positive constant. Then we can obtain that 𝑉

𝑖
≤ 𝑝. Let

Λ
1
= K
𝐷

= 𝛼
0
+2𝐼
3
, and the filter time constant can be chosen

as T = (𝐼
3
+ (𝑔
𝑇

max𝑔max/2𝜀𝐼3) + 𝛼
0
)
−1; then we can obtain that

̇V
𝑖
= − S𝑇

1𝑖
(𝛼
0
+ 2𝐼
3
) S
1𝑖
− S𝑇
2𝑖
(𝛼
0
+ 2𝐼
3
) S
2𝑖

− S𝑇
3𝑖
(𝐼
3
+ (

𝑔
2

max
2𝜀𝐼
3

) + 𝛼
0
) S
3𝑖

+ S𝑇
1𝑖
S
2𝑖
+ S𝑇
1𝑖
S
3𝑖
+ S𝑇
3𝑖
𝑔

≤ − S𝑇
1𝑖
(𝛼
0
+ 2𝐼
3
) S
1𝑖
− S𝑇
2𝑖
(𝛼
0
+ 2𝐼
3
) S
2𝑖

+

2S𝑇
1𝑖
S
1𝑖
+ S𝑇
2𝑖
S
2𝑖
+ S𝑇
3𝑖
S
3𝑖

2

− S𝑇
3𝑖
S
3𝑖
− S𝑇
3𝑖
𝛼
0
S
3𝑖
− S𝑇
3𝑖
(

𝑔
𝑇

max𝑔max
2𝜀𝐼
3

) S
3𝑖

+

𝑔
2

maxS
𝑇

3𝑖
S
3𝑖

2𝜀𝐼
3

𝑔
𝑇

𝑔

𝑔
2

max
+

𝜀

2

≤ − 2𝛼
0
V
𝑖
+

𝜀

2

.

(34)
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Figure 2: The movement of the vessel in the plane.
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Figure 3: The practical value and estimated value of the positions.

If we choose 𝛼
0
> 𝜀/2𝑝, then 𝑉

𝑖
< 0. We can guarantee that

S
2𝑖

→ 0. This implies k̂
𝑛𝑖

→ k
𝑛𝑖

→ k
𝑑𝑖
, in turn, S

1𝑖
→ 0

and 𝜂
𝑖
→ 𝜂
𝑖
→ 𝜂
𝑑𝑖
.

4. Simulation Results

In this section, experimental simulations are carried out
to evaluate the effectiveness of the proposed coordinated
formation control algorithm. The detailed parameters of the
vessel are presented in the literature [11]. At the beginning, the
proposed extended state observer of one vessel is evaluated
by the simulation. Similarly, the performance of the extended
state observer of other vessels is achieved. Compare with
the existing literature studies, we let the initial position of
the vessel is 𝜂 = [0, 0, 0]

𝑇. The vessel moves in a beeline
northward. assume that the vessels encounter the wind, wave,
and current. The wind is assumed to be fixed direction and

0 500 1000 1500
0

5

0 500 1000 1500

0

0.02

0 500 1000 1500

0

5

−0.02

−5

×10
−3

�
(m

/s
)

u
(m

/s
)

t (s)

Practical value
Estimation

r
(∘

/s
)

t (s)

t (s)

Figure 4: The practical value and estimated value of the velocities.
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Figure 5: The estimated value of the disturbances.

fixed velocity, and then the disturbance of wind is a constant;
the wave and current are assumed to be the sine wave with a
fixed frequency at one time.The external disturbances can be
chosen as

𝜏
𝑑
= 10
6

∗ [0.05 sin (𝜋𝑡/100) + 0.02,

0.03 sin (𝜋𝑡/100) ,

0.01 sin(𝜋𝑡/100) + 0.01]
𝑇

(𝑁) .

(35)

In the simulation, we assume that the external disturbances
are unknown.The proposed observer parameters are selected
as 𝛽
1
= 30, 𝛽

2
= 15, 𝛽

3
= 5, 𝛼 = 0.25, and 𝛿 = 0.1.

The simulation results are shown in Figures 2 to 5.
Figure 2 shows themovements for the vessel in the plane.The
practical value and estimated value of the north position, east
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Figure 6: Coordinated trajectory tracking of the vessels.
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Figure 7: Heading change of the vessels.

position, and heading change curve of the vessel are shown
in Figure 3. Figure 4 shows the practical value and estimated
value of the surge velocity, sway velocity, and angular velocity
of the vessel.The estimated value of the external disturbances
are shown in Figure 5. In the simulation experiment, there
is no measurement noise in the kinematics and nonlinear
dynamics. So the practical value and estimated value of the
position and velocity are consensus in a way.What’smore, the
external disturbances can be estimated through introducing
the extended state.

Then we evaluate the effectiveness of the proposed robust
coordinated formation control algorithm. Three surface
vessels are considered to perform the coordinated track-
ing task. The initial positions of the three vessels are
𝜂
1
= [65 782 − 𝜋/3]

𝑇, 𝜂
2

= [80 831 − 7𝜋/30]
𝑇, and
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Figure 8: Surge velocity change of the vessels.
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Figure 9: Sway velocity change of the vessels.

𝜂
3

= [75 743 − 𝜋/4]
𝑇, respectively. In order to evaluate

the performance of the coordinated tracking, the desired
formation pattern of the coordinated formation controller is
described by l

1
= [0 0 0]

𝑇, l
2
= [0 −100 0]

𝑇, and
l
3
= [0 100 0]

𝑇. The desired trajectory for the assigned
leader is chosen as 𝜂

𝑑
(𝑡) = [𝑛

𝑑
𝑒
𝑑

𝜓
𝑑
]
𝑇, and the detailed

forms are 𝑛
𝑑
= 𝑡, 𝑒
𝑑
= 1000 sin(𝑡/600), 𝜓

𝑑
= arctan( ̇𝑒

𝑑
/ ̇𝑛
𝑑
).

The proposed controller parameters are selected as Λ
1

=

diag(0.05, 0.05, 0.05), T = diag(0.1, 0.1, 0.1), and K
𝐷

= 10
4

∗

diag(6.5, 6.5, 6.5).
The simulation results are shown in Figures 6 to 10.

Figure 6 shows the movements for these vessels in the plane.
The heading change curve of each vessel is shown in Figure 7.
Figures 8, 9, and 10 show the surge velocity, the sway
velocity, and the angular velocity of each vessel during the
coordinated control process, respectively. We can see that
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Figure 10: Angular velocity change of the vessels.

these vessels realized the coordinated tracking task from
Figures 6 and 7. From Figures 8, 9, and 10, the velocities
of these vessels achieve consensus as a whole, and the
velocities cannot achieve consensus absolutely when the
vessels move to the inflexion of the curves. With the analysis
of the simulation results, we can conclude that these vessels
can accomplish coordinated trajectory tracking task while
keeping the desired formation. It means that the proposed
coordination control algorithm is effective.

5. Conclusion

This paper has proposed a new robust coordinated formation
control algorithm for multiple surface vessels in the pres-
ence of external environmental disturbances. The proposed
coordinated formation controller for these vessels is designed
by combining the extended state observer and the dynamic
surface control together. The extended state observer is
designed to estimate the external disturbances of the surface
vessels. The coordinated formation is realized based on the
leader-follower strategy. The desired trajectory of each vessel
is defined using the desired trajectory of the assigned leader
and relative distance with respect to the leader.The controller
is designed based on the output of the extended state observer
and using the dynamic surface controlmethod.The proposed
coordinated controller is robust to the external disturbances.
Finally, the effectiveness of the proposed robust coordination
control algorithm is demonstrated by the simulation results.
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In recent years, air pollution control has caused great concern. This paper focuses on the primary pollutant SO
2
in the atmosphere

for analysis and control. Two indicators are introduced, which are the concentration of SO
2
in the emissions (PSO

2
) and the

concentration of SO
2
in the atmosphere (ASO

2
). If the ASO

2
is higher than the certain threshold, then this shows that the air

is polluted. According to the uncertainty of the air pollution control systems model, 𝐻
∞

control theory for the air pollution
control systems is used in this paper, which can change the PSO

2
with the method of improving the level of pollution processing

or decreasing the emissions, so that air pollution system can maintain robust stability and the indicators ASO
2
are always operated

within the desired target.

1. Introduction

The main feature of the 𝐻
∞

control theory is based on the
frequency designmethod of using the state-space model, and
this theory presents an effective method to solve the uncer-
tainty problem of external disturbance to the system. In order
to overcome the drawbacks of the classical control theory and
the modern control theory, 𝐻

∞
control theory established

technology and method of the loop shaping in the frequency
domain, which combines the classic frequency-domain and
the modern state-space method. The design problem of the
control system is converted to the 𝐻

∞
control problem,

whichmade the system closer to the actual situation andmeet
the actual needs. So it gives the robust control system design
method, which obtains 𝐻

∞
controller by solving two Riccati

equations.Thismethod fully considered the impact of system
uncertainty, which not only can ensure the robust stability of
the control system, but also can optimize some performance
indices. It is the optimal control theory in frequency domain,
and the parameters design of𝐻

∞
controller is more effective

than optimal regulator [1].
So the 𝐻

∞
control theory for the air pollution control

systems can solve the uncertainty of the air pollution control
systems model, which can get the control strategy to change

the PSO
2
, so that air pollution system can maintain robust

stability and the indicators ASO
2
are always operated within

the desired target.

2. Standard 𝐻
∞

Control Problem

2.1. Problem Description. The standard 𝐻
∞

control problem
is shown in Figure 1, which consists of𝐺 and𝐾.𝐺 is a general-
ized control targetwhich is a given part of the system.𝐾 is𝐻

∞

controller, and it needs to be designed.
It is supposed that 𝐺 and 𝐾 are described as the transfer

function matrix of the linear time invariant system [2].Then,
𝐺(𝑠) and 𝐾(𝑠) are proper rational matrices, Decomposing
𝐺(𝑠) as

𝐺 = [

𝐺
11

𝐺
12

𝐺
21

𝐺
22

] . (1)

Its state-space realization is

̇𝑥 = 𝐴𝑥 + 𝐵
1
𝜔 + 𝐵

2
𝑢,

𝑧 = 𝐶
1
𝑥 + 𝐷

11
𝜔 + 𝐷

12
𝑢,

𝑦 = 𝐶
2
𝑥 + 𝐷

21
𝜔 + 𝐷

22
𝑢.

(2)
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𝜔

G

K

u

y

G11𝜔 + G12u

G21𝜔 + G22u

Figure 1: The diagram of the standard𝐻
∞
control problem.

It is denoted as:

𝐺 =
[

[

𝐴 𝐵
1

𝐵
2

𝐶
1

𝐷
11

𝐷
12

𝐶
2

𝐷
21

𝐷
22

]

]

, (3)

where 𝑥 ∈ 𝑅
𝑛 is the state vector, 𝜔 is the external input, 𝑢 is

the control input, 𝑧 is the controlled output, and 𝑦 is themea-
sured output. They are all vector signals. To compare (1) and
(3), we can obtain

𝐺
𝑖𝑗
= 𝐶
𝑖
(𝑠𝐼 − 𝐴)

−1

𝐵
𝑗
+ 𝐷
𝑖𝑗
, 𝑖, 𝑗 = 1, 2. (4)

Obviously, the closed-loop transfer functionmatrix from𝜔 to
𝑧 can be expressed as

𝑇
𝑧𝜔

(𝑠) = 𝐺
11

+ 𝐺
12
𝐾(𝐼 − 𝐺

22
𝐾)
−1

𝐺
21

= 𝐹
𝑙
(𝐺,𝐾) . (5)

The problem of 𝐻
∞

optimal control theory is to find a
proper rational controller 𝐾 for closed-loop control system,
and make the closed-loop control system internally stabile,
and then minimize the 𝐻

∞
norm of closed-loop transfer

function matrix 𝑇
𝑧𝜔

(𝑠) [3]:

min
𝐾 stability𝐺





𝐹
𝑙
(𝐺,𝐾)




∞

< 1. (6)

2.2. State-Space 𝐻
∞

Output-Feedback Control. We assume
that the state-space representation of the generalized con-
trolled object 𝐺 state-space representation is (2), where 𝑥 ∈

𝑅
𝑛,𝜔 ∈ 𝑅

𝑚1 , 𝑢 ∈ 𝑅
𝑚2 , 𝑧 ∈ 𝑅

𝑝1 , 𝑦 ∈ 𝑅
𝑃2 ,𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵
1
∈ 𝑅
𝑛×𝑚1 ,

𝐵
2
∈ 𝑅
𝑛×𝑚2 , 𝐶

1
∈ 𝑅
𝑝1×𝑛, 𝐶

2
∈ 𝑅
𝑝2×𝑛, 𝐷

21
and𝐷

22
are the cor-

responding dimension of the real matrix, and controller 𝐾 is
dynamic output feedback compensator [4].

Consider that 𝐺 have a special form:

𝐺 =

[

[

[

[

[

𝐴 𝐵
1

𝐵
2

𝐶
1

0 𝐷
12

[

𝐼

0
] [

0

𝐼
] [

0

0
]

]

]

]

]

]

, (7)

which satisfies the following conditions:

(1) (𝐴, 𝐵
1
) is stabilizable, and (𝐶

1
, 𝐴) is detectable;

(2) (𝐴, 𝐵
2
) is stabilizable;

(3) 𝐷
𝑇

12
[𝐶
1

𝐷
12
] = [0 𝐼].

Obviously, 𝑦 = [
𝑥

𝜔
]; that is, the state 𝑥 of generalized

control object and the external input signal 𝜔 could be meas-
ured; then, it can be directly used to constitute control law.

As the result, we can obtainTheorem 1.

Theorem 1. If and only if𝐻
∞

∈ dom(Ric),𝑋
∞

= Ric(H
∞
) ≥

0, there exists 𝐻
∞

controller

𝑢 = −𝐵
𝑇

2
𝑋
∞
𝑥 + 𝑄 (𝑠) (𝜔 − 𝛾

−2

𝐵
𝑇

1
𝑋
∞
𝑥) . (8)

That is,

𝐾 (𝑠) = [−𝐵
𝑇

2
𝑋
∞

− 𝑄 (𝑠) 𝛾
−2

𝐵
𝑇

1
𝑋
∞
𝑄 (𝑠)] , (9)

where 𝑄(𝑠) ∈ 𝑅𝐻
∞
, ‖𝑄(𝑠)‖

∞
< 𝛾, which is made to stabilize

the closed-loop control system, and the closed-loop transfer
function matrix 𝑇

𝑧𝜔
(𝑠) from 𝜔 to 𝑧 is satisfied as ‖𝑇

𝑧𝜔
(𝑠)‖
∞

<

𝛾.

Proof. If Hamilton matrix 𝐻
∞

was considered, there exist
𝑋
∞

= Ric(𝐻
∞
), and then the derivative of 𝑥𝑇(𝑡)𝑋

∞
𝑥(𝑡) can

be achieved, such that
𝑑

𝑑𝑡

𝑥
𝑇

𝑋
∞
𝑥 = ̇𝑥

𝑇

𝑋
∞
𝑥 + 𝑥
𝑇

𝑋
∞

̇𝑥. (10)

Substituting (2) into (10) and considering Riccati equa-
tion (11) and orthogonality condition

𝐴
𝑇

𝑋
∞

+ 𝑋
∞
𝐴 + 𝛾
−2

𝑋
∞
𝐵
1
𝐵
𝑇

1
𝑋
∞

− 𝑋
∞
𝐵
2
𝐵
𝑇

2
𝑋
∞

+ 𝐶
𝑇

1
𝐶
1
= 0.

(11)

So the following formula can be achieved:

𝑑

𝑑𝑡

𝑥
𝑇

𝑋
∞
𝑥 = 𝑥

𝑇

(𝐴
𝑇

𝑋
∞

+ 𝑋
∞
𝐴)𝑥

+ 𝜔
𝑇

(𝐵
𝑇

1
𝑋
∞
𝑥) + (𝐵

𝑇

1
𝑋
∞
𝑥)

𝑇

𝜔

+ 𝑢
𝑇

(𝐵
𝑇

2
𝑋
∞
𝑥) + (𝐵

𝑇

2
𝑋
∞
𝑥)

𝑇

𝑢

= −




𝐶
1
𝑥





2

− 𝛾
−2





𝐵
𝑇

1
𝑋
∞
𝑥







2

+






𝐵
𝑇

2
𝑋
∞
𝑥







2

+ 𝜔
𝑇

(𝐵
𝑇

1
𝑋
∞
𝑥) + (𝐵

𝑇

1
𝑋
∞
𝑥)

𝑇

𝜔

+ 𝑢
𝑇

(𝐵
𝑇

2
𝑋
∞
𝑥) + (𝐵

𝑇

2
𝑋
∞
𝑥)

𝑇

𝑢

= −‖𝑧‖
2

+ 𝛾
2

‖𝜔‖
2

− 𝛾
2





𝜔 − 𝛾
−2

𝐵
𝑇

1
𝑋
∞
𝑥







2

+






𝑢 + 𝐵
𝑇

2
𝑋
∞
𝑥







2

.

(12)

If 𝑥(0) = 𝑥(∞) = 0, 𝜔 ∈ 𝐿
2
[0, +∞), to integral above equa-

tion from 𝑡 = 0 to 𝑡 = ∞, then

‖𝑧‖
2

2
− 𝛾
2

‖𝜔‖
2

2

=






𝑢 + 𝐵
𝑇

2
𝑋
∞
𝑥







2

2

− 𝛾
2





𝜔 − 𝛾
−2

𝐵
𝑇

1
𝑋
∞
𝑥







2

2

.

(13)
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According to the equivalence relation,





𝑇
𝑧𝜔

(𝑠)



∞

< 𝛾 ⇐⇒ ‖𝑧‖
2

2
< 𝛾
2

‖𝜔‖
2

2
. (14)

Form (12) and (13), we can get that





𝑇
𝑧𝜔

(𝑠)



∞

< 𝛾 ⇐⇒






𝑢 + 𝐵
𝑇

2
𝑋
∞
𝑥







2

2

< 𝛾
2





𝜔 − 𝛾
−2

𝐵
𝑇

1
𝑋
∞
𝑥







2

2

⇐⇒ 𝑢 + 𝐵
𝑇

2
𝑋
∞
𝑥

= 𝑄 (𝑠) (𝜔 − 𝛾
−2

𝐵
𝑇

1
𝑋
∞
𝑥) ,

(15)

where ‖ ∙ ‖ represent Euclidean norm.
Hence, 𝑢 = −𝐵

𝑇

2
𝑋
∞
𝑥 + 𝑄(𝑠)(𝜔 − 𝛾

−2

𝐵
𝑇

1
𝑋
∞
𝑥); the proof

is completed.

𝑢 is the input to ensure ‖𝑇
𝑧𝜔

(𝑠)‖
∞

< 𝛾, where
𝑄(𝑠)(𝜔 − 𝛾

−2

𝐵
𝑇

1
𝑋
∞
𝑥) is the output of the transfer system

𝑄(𝑠) by the input (𝜔 − 𝛾
−2

𝐵
𝑇

1
𝑋
∞
𝑥). From (12), the decay of

𝑥
𝑇

(𝑡)𝑋
∞
𝑥(𝑡) ≥ 0 is the slowest when 𝜔 = 𝛾

−2

𝐵
𝑇

1
𝑋
∞
𝑥. Then

for this kind of disturbance, we can stabilize (12) by using con-
trol strategy 𝑢.

3. Analysis and Synthesis of Air Pollution
Control System

Atmospheric qualitymanagement is essentially the process of
the analysis and synthesis to the air pollution control system.
So-called atmospheric system analysis is qualitative and
quantitative research for an atmospheric area system or
facilities system, which include that to evaluate the current
situation, to find out themain environment problems, to put a
series of optional target projects, and to establish the quan-
titative relation between emission and the quality of the per-
missive atmosphere [5].The systems synthesismeans the plan
and design of an air pollution control system on the basis of
system analysis to determine the target and to determine a
management method of a system, in other words, in order to
achieve certain environmental goal to select the optimal
planning scheme, to optimal design, to find the optimalman-
agementmethod, and so forth. So the process of the synthesis
should include three main steps: determine the target, form
better feasibility scheme of system, and optimization decision
[6].

Usually, the atmosphere has certain self-purification abil-
ity; namely, the atmospheric environment has a certain capac-
ity. It refers to the permissible pollutant emissions within the
natural purification capacity, which reach the limiting quan-
tity in order not to destruct the nature material circulation
[7]. We can make the quantity of pollutant discharged that
meets a certain environmental goal to be permissible total
emission. Only when the pollutant emissions beyond atmo-
spheric self-purification ability, namely, exceeds the environ-
mental capacity, there may be air pollution [8].

Wind direction

xi, yi, Qi

Qi

xi−1, yi−1

Kixi, hi(y
s

i
− yi)

�i

Figure 2: The stirred reactor model of an ideal atmosphere section.

In this paper, the objective of applying the 𝐻
∞

control
theory in air pollution control system is to find out regu-
larity, to make full use of atmospheric environmental self-
purification ability; we cannot only develop production but
also protect the environment.

4. 𝐻
∞

Control of Air Pollution

In recent years, air pollution control has caused great concern.
This paper focuses on primary pollutant SO

2
in the atmo-

sphere for analysis and control, which is mainly pollutant of
the PM2.5. We introduced two indicators, which are the con-
centration of SO

2
in the emissions (PSO

2
) and the concen-

tration of SO
2
in the atmosphere (ASO

2
). Meanwhile, we can

change the content of SO
2
in the emissions (with the method

of improving the methods of processing), with the aim of
returning atmospheric quality back to the desired value.

4.1. The Mathematical Model of Air Pollution. A certain
volumeof airmainly accepted the controlled pollutantswhich
discharged fromcertain purification equipments. In addition,
considering that the atmospheric self-purification ability is
mainly affected by wind and other meteorological factors, a
certain volume of air can be defined as atmospheric section.
Thus,we can put forward a second order state-space equation;
it describes the relationship between PSO

2
and ASO

2
on an

average point of the atmospheric section [9].The basic idea of
modeling is to consider each section as ideal stirred reactor,
as shown in Figure 2. So, the parameters and variables of the
whole section are consistent, and the output concentration of
PSO
2
and ASO

2
is equal to the counterpart concentration in

this section. Hence, from the point of view of the mass bal-
ance, we can get the following equation.

PSO
2
balance equation:

̇𝑥
𝑖
= −𝑘
𝑖
𝑥
𝑖
+

𝑄
𝑖−1

V
𝑖

𝑥
𝑖−1

−

𝑄
𝑖
+ 𝑄
𝐸

V
𝑖

𝑥
𝑖
. (16)

ASO
2
balance equation:

̇𝑦
𝑖
= ℎ
𝑖
(𝑦
𝑠

𝑖
− 𝑦
𝑖
) +

𝑄
𝑖−1

V
𝑖

𝑦
𝑖−1

−

𝑄
𝑖
+ 𝑄
𝐸

V
𝑖

𝑦
𝑖
− 𝑘
𝑖
𝑥
𝑖
, (17)

where 𝑥
𝑖
, 𝑥
𝑖−1

are the PSO
2
of Section 𝑖 and Section 𝑖 − 1

(mg/m3), V
𝑖
is the atmospheric capacity of Section 𝑖 (m3);
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Figure 3: The system step response.

𝑄
𝐸
is PSO

2
gas flow rate of Section 𝑖 (m3/d), 𝑦

𝑖
, 𝑦
𝑖−1

are ASO
2

of Section 𝑖 and Section 𝑖 − 1 (mg/m3), 𝑘
𝑖
, ℎ
𝑖
are daily decay

rate of PSO
2
of Section 𝑖 and supply rate of ASO

2
of Section 𝑖,

𝑄
𝑖
, 𝑄
𝑖−1

are atmosphere gas flow rates of Section 𝑖 and Section
𝑖 − 1 (m3/d), and 𝑦

𝑠

𝑖
is saturating capacity of SO

2
of Section 𝑖

(mg/m3).
From [5], we can conclude that it is advisable to take the

following values as the coefficients in above equations:

𝑘
𝑖
= 0.32/day, ℎ

𝑖
= 0.2/day, 𝑦

𝑠

𝑖
= 0.36mg/m3,

𝑄
𝐸

V
𝑖

= 0.1,

𝑄
𝑖

V
𝑖

,

𝑄
𝑖−1

V
𝑖

= 0.9.

(18)

Thus, the mathematical model of Section 𝑖 air pollution is

[

̇𝑥
𝑖

̇𝑦
𝑖

] = [

−1.32 0

−0.32 −1.2
] [

𝑥
𝑖

𝑦
𝑖

] + [

0.1

0
] 𝑢 + [

0.9𝑥
𝑖−1

0.9𝑦
𝑖−1

+ 1.9
] ,

(19)

where 𝑢 is control strategy.

4.2. Simulation of Air Pollution 𝐻
∞

Control. 𝐻
∞

control
problem of air pollution is basically how to control emissions
of pollutants in the best way, in order to properly handle the
cost of cleaning and the price we pay for too much atmos-
pheric pollution. Using𝐻

∞
control theory can better achieve

this goal, which not only saves investment but also is easy to
be realized [10].

In this paper, the simulation object is two sections of the
𝐻
∞

control of atmospheric pollution, the state-space equa-
tion is described as

[

[

[

[

̇𝑥
1

̇𝑦
1

̇𝑥
2

̇𝑦
2

]

]

]

]

=

[

[

[

[

−1.32 0 0 0

−0.32 −1.2 0 0

0.9 0 −1.32 0

0 0.9 −0.32 −1.2

]

]

]

]

[

[

[

[

𝑥
1

𝑦
1

𝑥
2

𝑦
2

]

]

]

]

+

[

[

[

[

0.1

0

0.1

0

]

]

]

]

𝑢 +

[

[

[

[

5.35

1.09

4.19

1.9

]

]

]

]

.

(20)

Using the MATLAB to simulate [11], we can conclude the
step response curve of the air pollution control system. We
have

𝑢 (𝑠)

=

570613.9602 (𝑠 + 7.702) (𝑠 + 1.32)
2

(𝑠 + 1.2)
2

(𝑠 + 4012) (𝑠 + 1.77) (𝑠
2
+ 2.5𝑠 + 1.563) (𝑠

2
+ 2.4𝑠 + 1.44)

,

(21)

𝐾 (𝑠) =

[

[

[

[

[

[

[

[

−0.67 −1.77 −2.32 −1.52 −0.4 0.1

0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.1 0 0

8.63 4.36 8.24 6.92 2.18 0.14

]

]

]

]

]

]

]

]

𝑄 (𝑠) ,

(22)

which is the transfer function and the state-space expression
of robust𝐻

∞
control strategy.

It could be seen from Figure 3, that the response time of
the original system is 3.6 s, while the response time of closed
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loop system is 0.026 s by using𝐻
∞
control strategy. It means

that𝐻
∞
control strategymakes the step response of the atmo-

sphere system with an improvement; the response time is
greatly reduced. Therefore,𝐻

∞
control strategy is a practical

control strategy, which can ensure that air pollution control
system is operating steadily within the desired target [12].

5. Conclusion

In this paper, the𝐻
∞
control theory andmethods have a great

application value on air pollution control system. It can help
the environmental protection departments at various levels to
analyze the air pollution system, which can ensure the atmo-
sphere quality steady work within the desired target value. Of
course, the analysis and control of a large-scale air pollution
system that introduced other influencing factors will be very
complicated, which will be the focus of the study in this field.

Acknowledgments

This work was supported by National Natural Science
Foundation of China (Grants nos. 61104062, 61374085, and
61174077), Jiangsu Qing Lan Project, and PAPD.

References

[1] H. Akashi and H. Kumamoto, “Optimal sulfur dioxide gas dis-
charge control for Osaka City, Japan,” Automatica, vol. 15, no. 3,
pp. 331–337, 1979.

[2] G. R. Cass, “Sulfate air quality control strategy design,” Atmo-
spheric Environment A, vol. 15, no. 7, pp. 1227–1249, 1981.

[3] E. J. Croke and S. G. Booras, “The design of an air pollution
incident control plan,” inProceedings of the Air Pollution Control
Assoc 62nd APCA Annual Meeting, Paper No. 69-99, New York,
NY, USA, 1969.

[4] P. J. Dejax and D. C. Gazis, “Optimal dispatch of electric power
with ambient air quality constraints,” IEEE Transactions on
Automatic Control, vol. AC-21, no. 2, pp. 227–233, 1976.

[5] R. E. KaHN, “A mathematical programming model for air pol-
lution control,” School Science and Mathematics, pp. 487–494,
1969.

[6] R. E. Kohn, A Linear Programming Model for Air Pollution Con-
trol, MIT Press, Cambridge, Mass, USA, 1978.

[7] C. P. Kyan and J. H. Seinfeld, “Determination of optimal multi-
year air pollution control policies,” Journal of Dynamic Systems,
Measurement andControl, Transactions of theASME, vol. 94, no.
3, pp. 266–274, 1972.

[8] C. P. Kyan and J.H. Seinfeld, “Real-time control of air pollution,”
AIChE Journal, vol. 19, no. 3, pp. 579–589, 1973.

[9] M.Wu andW.Gui,Modern Robust Control,ThePress of Central
South University, 1998.

[10] W. Jiang, W. Cao, and R. Jiang,TheMeteorology of the Air Pollu-
tion, The Meteorology Press, 1993.

[11] M. B. Beck,The application of control and system theory to prob-
lems of river pollution control [Ph.D. thesis], Cambridge Univer-
sity, New York, NY, USA, 1974.

[12] Z. Lu and D. Xiao, “The most optimum means of controlling
the vehicle exhaust pollution inmunicipal,”The Journal ofHubei
University, vol. 7, pp. 104–107, 2001.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 202969, 8 pages
http://dx.doi.org/10.1155/2013/202969

Research Article
Dissipativity Analysis and Synthesis for a Class of
Nonlinear Stochastic Impulsive Systems

Guici Chen,1,2 Jianzhong Zhou,1 and Yongchuan Zhang1

1 School of Hydropower & Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2Hubei Province Key Lab of Systems Science in Metallurgical Process, Wuhan University of Science and Technology,
Wuhan 430081, China

Correspondence should be addressed to Guici Chen; gcichen@aliyun.com

Received 1 August 2013; Accepted 6 September 2013

Academic Editor: Tao Li

Copyright © 2013 Guici Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The dissipativity analysis and control problems for a class of nonlinear stochastic impulsive systems (NSISs) are studied. The
systems are subject to the nonlinear disturbance, stochastic disturbance, and impulsive effects, which often exist in a wide variety of
industrial processes and the sources of instability. Our aim is to analyse the dissipativity and to design the state-feedback controller
and impulsive controller based on the dissipativity such that the nonlinear stochastic impulsive systems are stochastic stable and
strictly (𝑄, 𝑆, 𝑅)-dissipative. The sufficient conditions are obtained in terms of linear matrix inequality (LMI), and a numerical
example with simulation is given to show the correctness of the derived results and the effectiveness of the proposed method.

1. Introduction

As we all know that many real-world systems may be
disturbed by stochastic factors. Thus, stochastic differential
systems appear as a natural description of many observed
phenomena of real world. In the past few years, much
research effort has paid to the stability analysis and robust
control problems for stochastic systems which have been
come to play an important role inmanyfields including popu-
lation dynamics, macroeconomics, chemical reactor control,
communication network, image processes, and mobile robot
localization. So far, plenty of significant results also have been
published; see, for example, [1–8] and the references therein.

Recent years, there are many real-world systems and nat-
ural processes which display some kind of dynamic behavior
in a style of both continuous and discrete characteristics;
we called “impulsive effects,” which exist widely in many
evolution process, particularly some biological system such
as biological neural networks and bursting rhythmmodels in
pathology as well as optimal control models in economics,
frequency-modulated signal processing system, fly object
motions, and so on [9, 10]. Impulsive dynamical systems
are characterized by the occurrence of abrupt changes in

the state of the system occurring at certain time instants.
The stability and control problems of impulsive dynamical
systems have attracted considerable interest in science and
engineering during the past decades including stability anal-
ysis of stochastic impulsive systems or with time delay [11–
14], robust control of impulsive systems with time delay [15,
16], and robust control and filtering of stochastic impulsive
systems with time delay [17].

On the other hand, since the notation of dissipative
dynamical systemwas introduced byWillems [18], dissipative
systems have been of particular interest to researchers in
areas of systems, circuits, networks, control, and so forth.
Now, dissipative theory has wide-ranging implications and
applications in control theory. For instance, dissipativeness
was crucially used in the stability analysis of nonlinear system
[19], and the theory of dissipative systems generalizes basic
tools including the passivity theory, bounded real lemma,
Kalman Yakubovich lemma, and the circle criterion [20].
Among the relevant topics are the passivity analysis and
synthesis for time-delay systems [21, 22]. These results show
that the passivity-based methods are highly effective in
designing the robust controller.
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The stability and stabilization [11–13, 19, 23], controlla-
bility [14], robust control [15, 16, 20, 22], robust filtering
[17], and reliable dissipative control [24] problems have been
extensively studied. However, the dissipative analysis and
synthesis for nonlinear stochastic impulsive system have
not been fully discussed and remains challenging. In this
paper, we mainly study the dissipativity analysis and control
problems for a class of nonlinear stochastic impulsive systems
(NSISs).The systems are subject to the nonlinear disturbance,
stochastic disturbance, and impulsive effects, which often
exist in a wide variety of industrial processes and the sources
of instability. Here, our aim is to analysis the dissipativity
and to design the state-feedback controller and impulsive
controller based on the dissipativity such that the nonlinear
stochastic impulsive systems are stochastic stable and strictly
(𝑄, 𝑆, 𝑅)-dissipative.

Notations. Throughout this paper, if not explicitly stated,
matrices are assumed to have compatible dimensions. For
symmetric matrices𝑋 and 𝑌, the notation𝑋 ≥ 𝑌 (resp.,𝑋 >

𝑌) means that the matrix𝑋−𝑌 is positive semidefinite (resp.,
positive definite). 𝐼 is a identity matrix with appropriate
dimensions; the subscript “𝑇” represents the transposition.
𝐸(⋅) denotes the expectation operator with respect to some
probability measure 𝑃. 𝐿

2
[0,∞) is the space of square

integrable vector functions over [0,∞); let (Ω, 𝐹, 𝑃) be a
complete probability space which relates to an increasing
family (𝐹

𝑡
)
𝑡>0

of 𝜎 algebras (𝐹
𝑡
)
𝑡>0

⊂ 𝐹, where Ω is the
samples space, 𝐹 is 𝜎 algebra of subsets of the sample space,
and 𝑃 is the probability measure on 𝐹. 𝑅𝑛 and 𝑅𝑛×𝑚 denote
the 𝑛 dimensional Euclidean space and the set of all 𝑛 ×
𝑚 real matrices, respectively. For any 0 < 𝑇 < ∞,
we write [0, 𝑇] for the closure of the open interval (0, 𝑇)
in 𝑅 and denote by 𝐿𝑛

2
([0, 𝑇]; 𝐿

2

(Ω,𝐾
𝑘

)) the space of the
nonanticipative stochastic processes 𝑦(⋅) = (𝑦(⋅))

𝑡∈[0,𝑇]
with

respect to (𝐹
𝑡
)
𝑡∈[0,𝑇]

satisfying ‖𝑦(⋅)‖2
𝐿
𝑛

2

= 𝐸(∫

𝑇

0

‖𝑦(𝑡)‖
2d𝑡) =

∫

𝑇

0

𝐸(‖𝑦(𝑡)‖
2

)d𝑡 < ∞. 𝜆min(⋅) and 𝜆max(⋅) describe the mini-
mum and maximum eigenvalue, respectively.

2. A Class of Nonlinear Stochastic
Impulsive Systems

In this paper, we mainly consider the following nonlinear
stochastic impulsive systems (NSISs):

d𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐷V (𝑡)] d𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡)) d𝑤 (𝑡) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

Δ𝑥 (𝑡
+

𝑘
) = (𝐸

𝑘
+ 𝐸
𝑘
) 𝑥 (𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡
+

0
) = 𝑥
0
,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the system state, 𝑢(𝑡) ∈ 𝑅

𝑙 is the
control input, V(𝑡) ∈ 𝑅𝑞 is the exogenous disturbance input
of the systems which belong to 𝐿

2
[0,∞), 𝑧(𝑡) ∈ 𝑅

𝑟 is the

system control output, and 𝑤(𝑡) is a zero mean real scalar
Weiner processes on a probability space (Ω, 𝐹, 𝑃) relative to
an increase family (𝐹

𝑡
)
𝑡>0

of 𝜎 algebras (𝐹
𝑡
)
𝑡>0

⊂ 𝐹. 𝐴, 𝐵, 𝐶,
and𝐷 are the known real constant matrices with appropriate
dimensions. Moreover, we assume that

𝐸 (d𝑤 (𝑡)) = 0, 𝐸 ((d𝑤 (𝑡))2) = d𝑡. (2)

The sequence, {𝑡
𝑘
, 𝐸
𝑘
𝑥(𝑡
𝑘
)} and {𝑡

𝑘
, 𝐸
𝑘
𝑥(𝑡
𝑘
)} in the sys-

tems describe the impulsive effect and impulsive control,
respectively, where 𝐸

𝑘
, 𝐸
𝑘
are known real-valued matrices

with appropriate dimensions, which have the effect of sud-
denly changing the state of the system at the point 𝑡

𝑘
.Δ𝑥(𝑡

𝑘
) =

𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), where 𝑥(𝑡−

𝑘
) = lim

ℎ→0
+𝑥(𝑡
𝑘
− ℎ), 𝑥(𝑡+

𝑘
) =

lim
ℎ→0

+𝑥(𝑡
𝑘
+ ℎ) with discontinuity instants 𝑡

0
< 𝑡
1
< 𝑡
2
<

⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→∞
𝑡
𝑘
= ∞; for convenience, let 𝑡

0
= 0

and ℎ > 0 be sufficiently small. Without loss of generality, it
is assumed that 𝑥(𝑡

𝑘
) = 𝑥(𝑡

−

𝑘
) = lim

ℎ→0
+𝑥(𝑡
𝑘
− ℎ).

𝑓(⋅, ⋅) : 𝑅
+
× 𝑅
𝑛

→ 𝑅
𝑛 is an unknown nonlinear

function which describes the system nonlinearity satisfying
the following condition:

𝑓 (0, 0) = 0,




𝑓 (𝑡, 𝑥 (𝑡))





≤ 𝛽 ‖𝑥 (𝑡)‖ , (3)

for a positive constant 𝛽. Equivalently stated, condition (3)
implies that there exists a scalar 𝜅 > 0 such that

𝜅 (𝛽
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡))) ≥ 0. (4)

𝜎(⋅, ⋅) : 𝑅
+
×𝑅
𝑛

→ 𝑅
𝑛 also is an unknown nonlinear function

which describes the stochastic nonlinearity satisfying

𝜎
𝑇

(𝑡, 𝑥 (𝑡)) 𝜎 (𝑡, 𝑥 (𝑡)) ≤ 𝑥
𝑇

(𝑡) 𝐺
𝑇

𝐺𝑥 (𝑡) , (5)

where 𝐺 is a known real constant matrices with approximate
dimension.

3. Preliminaries

In this section, some definitions and lemmas are given.

Definition 1. For systems in (1) with V(𝑡) = 0, if there exists a
constant 𝑐 > 0 satisfying 𝐸∫∞

0

‖𝑥(𝑡)‖
2d𝑡 ≤ 𝑐‖𝑥

0
‖
2, 𝑥
0
∈ 𝑅
𝑛,

systems in (1) are said to be stochastically stable.

Before giving the following definition, we firstly give the
definition of quadratic energy supply function associated
with systems in (1) as follows:

Ψ (V, 𝑧, 𝑇)

= 𝐸∫

𝑇

0

(𝑧
𝑇

(𝑡) 𝑄𝑧 (𝑡) + 2V𝑇 (𝑡) 𝑆𝑧 (𝑡) + V𝑇 (𝑡) 𝑅V (𝑡)) d𝑡,

(6)

where 𝑄, 𝑆, and 𝑅 are real matrices with appropriate dimen-
sions and 𝑄 and 𝑅 are symmetrical.
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Definition 2. Systems in (1) are called (𝑄, 𝑆, 𝑅)-dissipative if
for any𝑇 > 0, under zero initial state, the following condition
is satisfied:

Ψ (V, 𝑧, 𝑇) ≥ 0, ∀𝑇 ≥ 0. (7)

Furthermore, if for a scalar 𝛼 > 0, such that

Ψ (V, 𝑧, 𝑇) ≥ 𝛼𝐸∫
𝑇

0

V𝑇 (𝑡) V (𝑡) d𝑡, ∀𝑇 ≥ 0, (8)

systems in (1) are called strictly (𝑄, 𝑆, 𝑅)-dissipative.

Lemma 3 (Schur complement lemma (see [25])). For a given
matrix 𝑆 = ( 𝑆1 𝑆3

∗ 𝑆2

) with 𝑆𝑇
1
= 𝑆
1
, 𝑆𝑇
2
= 𝑆
2
, then the following

conditions are equivalent:

(1) 𝑆 < 0,
(2) 𝑆
2
< 0, 𝑆

1
− 𝑆
3
𝑆
−1

2
𝑆
𝑇

3
< 0,

(3) 𝑆
1
< 0, 𝑆

2
− 𝑆
3
𝑆
−1

1
𝑆
𝑇

3
< 0.

Lemma 4 (see [26]). For any 𝑥 ∈ 𝑅𝑛, if 𝑃 ∈ 𝑅𝑛×𝑛 is a positive
definite matrix, 𝑄 ∈ 𝑅

𝑛×𝑛 is a symmetric matrix, then

𝜆min (𝑃
−1

𝑄)𝑥
𝑇

𝑃𝑥 ≤ 𝑥
𝑇

𝑄𝑥 ≤ 𝜆max (𝑃
−1

𝑄)𝑥
𝑇

𝑃𝑥. (9)

In this paper, our aim is to develop dissipativity criteria for
systems in (1) based on Definition 2 and subsequently design
the feedback dissipative controller 𝑢(𝑡) = 𝐾𝑥(𝑡).

4. Main Results and Proofs

4.1. Dissipativity Analysis of NSISs. For dissipativity analysis
for NSISs, we treat the free systems as follows:

d𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐷V (𝑡)] d𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡)) d𝑤 (𝑡) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

Δ𝑥 (𝑡
+

𝑘
) = (𝐸

𝑘
+ 𝐸
𝑘
) 𝑥 (𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡
+

0
) = 𝑥
0
.

(10)

Theorem5. Given a real matrix 𝑆, the positivematrices𝑅,𝑍 >

0 and a negative semidefinite matrix 𝑄 ≤ 0, if there exist a
scalar 𝛿 > 0 and a positive definite matrix 𝑃 > 0, such that the
following inequalities hold:

Ξ = (

Δ 𝑃𝐷 − 𝐶
𝑇

𝑆 𝑃

∗ −𝑅 0

∗ ∗ −𝜅𝐼

) < 0, (11)

𝛽
𝑘
= 𝜆max (𝑃

−1

(𝐼 + 𝐸
𝑘
+ 𝐸
𝑘
)

𝑇

𝑃 (𝐼 + 𝐸
𝑘
+ 𝐸
𝑘
)) < 1, (12)

where Δ = 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝐺
𝑇

𝑃𝐺 + 𝜅𝛽
2

𝐼 − 𝐶
𝑇

𝑄𝐶 + 𝛿𝑍. Then
the NSISs in (10) are stochastic stable and strictly (𝑄, 𝑆, 𝑅)-
dissipative.

Proof. Construct a simple Lyapunov function 𝑉(⋅, ⋅) : 𝑅𝑛 ×
𝑅
+
→ 𝑅
+
as follows:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) . (13)

For 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], 𝑘 = 1, 2, . . ., according to the Itô formula,

along with the solution of systems in (10), we have

𝐿𝑉 (𝑥 (𝑡) , 𝑡) = 2𝑥
𝑇

(𝑡) 𝑃 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐷V (𝑡)]

+ 𝜎
𝑇

(𝑡, 𝑥 (𝑡)) 𝑃𝜎 (𝑡, 𝑥 (𝑡)) .

(14)

Applying (3)–(5), we get that

𝐿𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴) 𝑥 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝑓 (𝑡, 𝑥 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃𝐷V (𝑡) + 𝜎𝑇(𝑡, 𝑥 (𝑡)) 𝑃𝜎 (𝑡, 𝑥 (𝑡))

≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝐺
𝑇

𝑃𝐺 + 𝜅𝛽
2

𝐼) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃𝑓(𝑡, 𝑥 (𝑡)) + 2𝑥
𝑇

(𝑡) 𝑃𝐷V (𝑡)

− 𝑘𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓(𝑡, 𝑥 (𝑡))

= 𝜒
𝑇

(𝑡) Θ𝜒 (𝑡) ,

(15)

where

𝜒 (𝑡) = (𝑥
𝑇

(𝑡) V𝑇(𝑡) 𝑓𝑇)
𝑇

,

Θ = (

𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝐺
𝑇

𝑃𝐺 + 𝜅𝛽
2

𝐼 𝑃𝐷 𝑃

∗ 0 0

∗ ∗ −𝜅𝐼

) .

(16)

So

𝐿𝑉 (𝑥 (𝑡) , 𝑡) − 𝑧
𝑇

𝑄𝑧 − 2𝑧
𝑇

𝑆V − V𝑇𝑅V ≤ 𝜒𝑇(𝑡) Θ𝜒 (𝑡) , (17)

where

Θ


= (

Σ


𝑃𝐷 − 𝐶
𝑇

𝑆 𝑃

∗ −𝑅 0

∗ ∗ −𝜅𝐼

) ,

Σ


= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝐺
𝑇

𝑃𝐺 + 𝜅𝛽
2

𝐼 − 𝐶
𝑇

𝑄𝐶.

(18)

By Lemma 3, if (17) holds, then (11) holds. Since 𝑅 > 0, there
exists a sufficient small 𝛼 > 0 such that 𝑅 − 𝛼𝐼 > 0. Together
with (11), we have

Ξ + diag (0, 𝛼𝐼, 0) < 0. (19)

In the following section, we firstly consider the stability of
NSISs in (10). Setting V(𝑡) = 0, by (11) and Lemma 4, we have

𝐿𝑉 (𝑥 (𝑡) , 𝑡) − 𝑧
𝑇

𝑄𝑧 − 2𝑧
𝑇

𝑆V − V𝑇𝑅V ≤ 𝛼V𝑇V, (20)

which leads to

𝐿𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝑥
𝑇

(𝐶
𝑇

𝑄𝐶 − 𝛿𝑍) 𝑥

≤ −𝜇𝑥
𝑇

𝑃𝑥 = −𝜇𝑉(𝑥 (𝑡) , 𝑡) ,

(21)

where 𝜇 = 𝜆min𝑃
−1

(𝛿𝑍 − 𝐶
𝑇

𝑄𝐶) > 0.
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Applying Dynkin formula and Grownwall-Bellman
inequality, together with (21), for 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], 𝑘 = 1, 2, . . .,

we have

𝐸 {𝑉 (𝑥 (𝑡) , 𝑡)} ≤ 𝑉 (𝑥 (𝑡
+

𝑘−1
) , 𝑡
+

𝑘−1
) e−𝜇(𝑡−𝑡𝑘−1). (22)

By Lemma 4 and (10), it follows that

𝑉 (𝑥 (𝑡
+

𝑘−1
) , 𝑡
+

𝑘−1
) = 𝑥
𝑇

(𝑡
+

𝑘−1
) 𝑃𝑥 (𝑡

+

𝑘−1
)

= 𝑥
𝑇

(𝑡
𝑘−1
) [𝐼 + 𝐸

𝑘−1
+ 𝐸
𝑘−1
]

𝑇

× 𝑃 [𝐼 + 𝐸
𝑘−1

+ 𝐸
𝑘−1
] 𝑥 (𝑡
𝑘−1
)

≤ 𝛽
𝑘−1
𝑥
𝑇

(𝑡
𝑘−1
) 𝑃𝑥 (𝑡

𝑘−1
)

= 𝛽
𝑘−1
𝑉 (𝑥 (𝑡

𝑘−1
) , 𝑡
𝑘−1
) .

(23)

For 𝑡 ∈ (𝑡
0
, 𝑡
1
], it follows from (22) and (23) that

𝐸 {𝑉 (𝑥 (𝑡) , 𝑡)} ≤ 𝑉 (𝑥 (𝑡
0
) , 𝑡
+

0
) e−𝜇(𝑡−𝑡0), (24)

which leads to

𝐸 {𝑉 (𝑥 (𝑡
1
) , 𝑡
1
)} ≤ 𝑉 (𝑥 (𝑡

0
) , 𝑡
+

0
) e−𝜇(𝑡1−𝑡0),

𝐸 {𝑉 (𝑥 (𝑡
1
) , 𝑡
+

1
)} ≤ 𝛽

1
𝑉 (𝑥 (𝑡

0
) , 𝑡
+

0
) e−𝜇(𝑡1−𝑡0).

(25)

Hence, for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], it follows from (22)–(25) that

𝐸 {𝑉 (𝑥 (𝑡) , 𝑡)} ≤ 𝑉 (𝑥 (𝑡
+

𝑘−1
) , 𝑡
+

𝑘−1
) e−𝜇(𝑡−𝑡𝑘−1)

≤ 𝛽
𝑘−1
𝑉 (𝑥 (𝑡

𝑘−1
) , 𝑡
𝑘−1
) e−𝜇(𝑡−𝑡𝑘−1)

≤ 𝛽
𝑘−1
𝑉 (𝑥 (𝑡

𝑘−2
) , 𝑡
+

𝑘−2
) e−𝜇(−𝑡𝑘−1−𝑡𝑘−2)

× e−𝜇(𝑡−𝑡𝑘−1) ≤ ⋅ ⋅ ⋅

≤ 𝛽
𝑘−1
𝛽
𝑘−2

⋅ ⋅ ⋅ 𝛽
1
𝑉 (𝑥 (𝑡

0
) , 𝑡
+

0
) e−𝜇(𝑡−𝑡0).

(26)

We know that

𝐸∫

𝑡1

𝑡
+

0

𝑉(𝑥 (𝑡) , 𝑡) d𝑡

≤ 𝐸∫

𝑡1

𝑡
+

0

𝑉(𝑥 (𝑡
0
) , 𝑡
+

0
) e−𝜇(𝑡−𝑡0)d𝑡

= −

1

𝜇

𝐸 {𝑉 (𝑥 (𝑡
0
) , 𝑡
+

0
)} [e−𝜇(𝑡1−𝑡0) − 1] ,

𝐸∫

𝑡𝑘

𝑡
+

𝑘−1

𝑉(𝑥 (𝑡) , 𝑡) d𝑡

≤ 𝐸∫

𝑡𝑘

𝑡
+

𝑘−1

𝑉 (𝑥 (𝑡
𝑘−1
) , 𝑡
+

𝑘−1
)

× e−𝜇(𝑡−𝑡𝑘−1)d𝑡

= −

1

𝜇

𝐸 {𝑉(𝑥 (𝑡
𝑘−1
) , 𝑡
+

𝑘−1
)}

× [e−𝜇(𝑡𝑘−𝑡𝑘−1) − 1]

≤ −

1

𝜇

𝐸 {𝑉 (𝑥 (𝑡
𝑘−1
) , 𝑡
+

𝑘−1
)}

× [e−𝜇(𝑡𝑘−𝑡𝑘−1) − 1]

≤ −

1

𝜇

𝛽
𝑘−1
𝐸 {𝑉 (𝑥 (𝑡

𝑘−2
) , 𝑡
+

𝑘−2
)}

× [e−𝜇(𝑡𝑘−1−𝑡𝑘−2)] [e−𝜇(𝑡𝑘−𝑡𝑘−1) − 1]

≤ ⋅ ⋅ ⋅ ≤ −

1

𝜇

𝛽
𝑘−1
𝛽
𝑘−2

⋅ ⋅ ⋅ 𝛽
1

× 𝐸 {𝑉 (𝑥 (𝑡
0
) , 𝑡
+

0
)}

× [e−𝜇(𝑡𝑘−𝑡0) − e−𝜇(𝑡𝑘−1−𝑡0)] .
(27)

In summary, we obtain that

𝐸∫

𝑇

𝑡
+

0

𝑉 (𝑥 (𝑡) , 𝑡) d𝑡 ≤ − 1
𝜇

𝐸 {𝑉 (𝑥 (𝑡
0
) , 𝑡
+

0
)} 𝜃, (28)

where 𝜃 = [e−𝜇(𝑡1−𝑡0) − 1] + 𝛽
1
[e−𝜇(𝑡2−𝑡0) − e−𝜇(𝑡1−𝑡0)] + ⋅ ⋅ ⋅ +

𝛽
𝑘
𝛽
𝑘−1

⋅ ⋅ ⋅ 𝛽
1
[e−𝜇(𝑇−𝑡0)−e−𝜇(𝑡𝑘−𝑡0)]; let𝛽 = max {𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑘
},

and we have

e−𝜇(𝑡1−𝑡0) − 1 − e−𝜇(𝑡1−𝑡0)
𝛽

1 − 𝛽

< 𝜃 < e−𝜇(𝑡1−𝑡0) − 1 < 0. (29)

Therefore, we get

𝐸∫

𝑇

𝑡
+

0

𝑉(𝑥 (𝑡) , 𝑡) d𝑡 ≤ − 1
𝜇

𝐸 {𝑉(𝑥 (𝑡
0
) , 𝑡
+

0
)} 𝜃 = −

𝜃

𝜇

𝑥
𝑇

0
𝑃𝑥
0
.

(30)

Then, there exists a constant 𝑐 = −𝜃𝜆max(𝑃)/𝜇𝜆min(𝑃) >
0, such that

lim
𝑇→∞

{𝐸∫

𝑇

𝑡0

𝑉(𝑥 (𝑡) , 𝑡) d𝑡} ≤ 𝑐𝑥𝑇
0
𝑥
0
, 𝑥
0
∈ 𝑅
𝑛

, 𝑡 ≥ 𝑡
0
.

(31)

Hence, the NSISs in (10) are stochastic stable.
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Secondly, we consider the (𝑄, 𝑆, 𝑅)-dissipativity of NSISs
in (10). When 𝑥(𝑡

0
) = 0, setting V(𝑡) ̸= 0, from (11) and (12),

we have

𝐸∫

𝑇

𝑡0

[𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) + 2𝑧
𝑇

(𝑠) 𝑆V (𝑠) + V𝑇(𝑠) (𝑅 − 𝛼𝐼) V (𝑠)] d𝑠

> 𝐸∫

𝑇

𝑡0

𝐿𝑉 (𝑥 (𝑠) , 𝑠) d𝑠 = 𝐸∫
𝑡1

𝑡0

𝐿𝑉 (𝑥 (𝑠) , 𝑠) d𝑠

+ 𝐸∫

𝑡2

𝑡
+

1

𝐿𝑉 (𝑥 (𝑠) , 𝑠) d𝑠

+ ⋅ ⋅ ⋅ + 𝐸∫

𝑇

𝑡
+

𝑘

𝐿𝑉 (𝑥 (𝑠) , 𝑠) d𝑠

= 𝐸𝑉 (𝑥 (𝑡
1
) , 𝑡
1
) − 𝐸𝑉 (𝑥 (𝑡

0
) , 𝑡
0
) + 𝐸𝑉 (𝑥 (𝑡

2
) , 𝑡
2
)

− 𝐸𝑉 (𝑥 (𝑡
+

1
) , 𝑡
+

1
) + ⋅ ⋅ ⋅ + 𝐸𝑉 (𝑥 (𝑇) , 𝑇)

− 𝐸𝑉 (𝑥 (𝑡
+

𝑘
) , 𝑡
+

𝑘
)

≥

𝑘

∑

𝑖=1

(1 − 𝛽
𝑖
) 𝐸𝑉 (𝑥 (𝑡

𝑖
) , 𝑡
𝑖
) + 𝐸𝑉 (𝑥 (𝑇) , 𝑇)

− 𝐸𝑉 (𝑥 (𝑡
0
) , 𝑡
0
) ≥ 𝐸𝑉 (𝑥 (𝑇) , 𝑇) > 0.

(32)

So it follows that (8) holds; thus the NSISs in (10) are
strictly (𝑄, 𝑆, 𝑅)-dissipative according to Definition 2. The
proof is complete.

Remark 6. From (12), we see that 𝛽
𝑘

= 𝜆max(𝑃
−1

(𝐼+

𝐸
𝑘
+ 𝐸
𝑘
)

𝑇

𝑃(𝐼 + 𝐸
𝑘
+ 𝐸
𝑘
)) < 1 is not a LMI; it is difficult to

obtain the feasible solution, so by schur complement lemma,
which is implied by a matrix inequality,

(
𝑃 (𝐼 + 𝐸

𝑘
+ 𝐸
𝑘
)

𝑇

∗ 𝑃
−1

) > 0. (33)

4.2. State-Feedback Dissipative Control of NSISs. We are now
ready to design the state-feedback controller 𝑢(𝑡) = 𝐾𝑥(𝑡)

for the closed-loop NSISs in (1), and the NSISs in (1) can be
rewritten as

d𝑥 (𝑡) = [(𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐷V (𝑡)] d𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡)) d𝑤 (𝑡) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

Δ𝑥 (𝑡
+

𝑘
) = (𝐸

𝑘
+ 𝐸
𝑘
) 𝑥 (𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡
+

0
) = 𝑥
0
.

(34)

Then, we have the following results.

Theorem 7. Given a real matrix 𝑆, a positive definite matrices
𝑅 > 0 and a negative semidefinite matrix 𝑄 ≤ 0, if there exist

a scalar 𝛿 > 0, and three matrices 𝑋 > 0, 𝑌, and ̃𝑍, such that
the following linear matrices inequalities (LMIs)

Σ = (

Σ
1
𝐷 − 𝑋𝐶

𝑇

𝑆 Σ
2

∗ −𝑅 0

∗ ∗ Σ
3

) < 0, (35)

(
𝑋 𝑋(𝐼 + 𝐸

𝑘
)
𝑇

+ 𝑌
𝑇

𝑘

∗ 𝑋

) > 0 (36)

have a feasible solution, then the NSISs in (34) are stochastic
stable and strictly (𝑄, 𝑆, 𝑅)-dissipative, the feedback gain is𝐾 =

𝑌𝑋
−1, and the impulsive controller gain is 𝐸

𝑘
= 𝑌
𝑘
𝑋
−1, where

Σ
1
= 𝑋𝐴

𝑇

+𝐴𝑋+𝛿
̃
𝑍+𝑌
𝑇

𝐵
𝑇

+𝐵𝑌,Σ
2
= (𝐼 𝑋𝐺

𝑇

𝑋𝐶
𝑇

𝜅𝛽𝑋),
Σ
3
= diag(−𝜅𝐼, −𝑋,𝑄−1, −𝜅𝐼).

Proof. For NSISs in (34), applying Theorem 5 and Lemma 3,
we have

(

(

Σ


1
𝑃𝐷 − 𝐶

𝑇

𝑆 𝑃 𝐺
𝑇

𝐶
𝑇

𝜅𝛽𝐼

∗ −𝑅 0 0 0 0

∗ ∗ −𝜅𝐼 0 0 0

∗ ∗ ∗ −𝑃
−1

0 0

∗ ∗ ∗ ∗ 𝑄
−1

0

∗ ∗ ∗ ∗ ∗ −𝜅𝐼

)

)

< 0, (37)

where Σ
1
= (𝐴 + 𝐵𝐾)

𝑇

𝑃 + 𝑃(𝐴 + 𝐵𝐾) + 𝛿𝑍.
Applying the congruent transformation 𝑇

1
= diag(𝑋, 𝐼, 𝐼,

𝐼, 𝐼, 𝐼) and 𝑇
2
= diag(𝑋, 𝐼), 𝑋 = 𝑃

−1 to (37) and (33),
respectively, introducing the linearization ̃

𝑍 = 𝑋𝑍𝑋, and
using𝐾𝑋 = 𝑌, 𝐸

𝑘
𝑋 = 𝑌

𝑘
, LMIs (35) and (36) hold.The proof

is complete.

Remark 8. When 𝑄 = −𝐼, 𝑆 = 0, and 𝑅 = 𝛾
2

𝐼, strictly
(𝑄, 𝑆, 𝑅)-dissipative reduces to the 𝐻

∞
performance level.

When 𝑄 = 0, 𝑆 = 𝐼, and 𝑅 = 𝛾𝐼, strictly (𝑄, 𝑆, 𝑅)-dissipative
reduces to the strictly passivity.

Remark 9. If 𝛽
𝑘
= 𝜆max(𝑃

−1

(𝐼 + 𝐸
𝑘
)
𝑇

𝑃(𝐼 + 𝐸
𝑘
)) < 1, then let

𝐸
𝑘
= 0, which means that there is no need for any impulsive

controller for NSIS (1). If 𝛽
𝑘
= 𝜆max(𝑃

−1

(𝐼 + 𝐸
𝑘
)
𝑇

𝑃(𝐼 +

𝐸
𝑘
)) > 1, then choose appropriate 𝐸

𝑘
such that 𝛽

𝑘
=

𝜆max(𝑃
−1

(𝐼 + 𝐸
𝑘
+ 𝐸
𝑘
)

𝑇

𝑃(𝐼+𝐸
𝑘
+𝐸
𝑘
)) < 1, whichmeans that

there is need of impulsive controller with gain 𝐸
𝑘
for NSISs

in (1).

Corollary 10. If there exist a scalar 𝛿 > 0 and three matrices
𝑋 > 0, 𝑌, and ̃𝑍, such that the inequalities

(

(

Σ
1

𝐷 𝐼 𝑋𝐺
𝑇

𝑋𝐶
𝑇

𝜅𝛽𝑋

∗ −𝛾
2

𝐼 0 0 0 0

∗ ∗ −𝜅𝐼 0 0 0

∗ ∗ ∗ −𝑋 0 0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜅𝐼

)

)

< 0 (38)

and (36) have a feasible solution, then the NSISs in (34) are
stochastic stable with𝐻

∞
performance level, and the feedback

gain is 𝐾 = 𝑌𝑋
−1.
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Corollary 11. If there exist a scalar 𝛿 > 0 and three matrices
𝑋 > 0, 𝑌, and ̃𝑍, such that the inequalities

(

Σ
1
𝐷 − 𝑋𝐶

𝑇

𝐼 𝑋𝐺
𝑇

𝜅𝛽𝑋

∗ −𝛾𝐼 0 0 0

∗ ∗ −𝜅𝐼 0 0

∗ ∗ ∗ −𝑋 0

∗ ∗ ∗ ∗ −𝜅𝐼

) < 0 (39)

and (36) have a feasible solution, then the NSISs (34) are
stochastic strictly passive, and the feedback gain is 𝐾 = 𝑌𝑋

−1.

5. Numerical Example with Simulation

In this section, we will give an example to show the cor-
rectness of the derived results and the effectiveness of the
proposed methods. Considering NSISs in (1), the system
parameters are given as follows:

𝐴 = (

−1.5 1 0 1

2 4 2.5 0

−1 −1.5 5 0

0 0 2 −5

) , 𝐵 = (

0 1

−0.5 0

−0.2 0

0 0.2

) ,

𝐶 = (

1 2 0 0

0 0.5 0 0

0 0 1 0

0 0 0.2 1

) , 𝐷 = (

0.4 0.2 0.1 0

0.5 0.1 0.5 0.2

0 0.1 0 1

0.1 0 1 0.1

) ,

𝐸 = (

−0.2 0 0 0

0 −0.1 0 0

0 0 −0.3 0

0 0 0 −0.2

) ,

𝑓 (𝑥) = (

0.1𝑥
1
sin𝑥
3

0.2𝑥
2
cos𝑥
2

0.1𝑥
3
sin𝑥
3

0.3𝑥
4
cos𝑥
1

),

𝜎 (𝑡, 𝑥 (𝑡)) =(

0.5𝑥
1
sin𝑥
1

𝑡

1 + 𝑡

𝑥
2

0.5𝑥
3
cos𝑥
3

0.2𝑡

𝑡 + 2

𝑥
4

),

V (𝑡) = (

0.5 sin 0.8𝑡
𝑒
−0.2𝑡 cos 𝑡
0.3 cos 0.5𝑡
𝑒
−𝑡 sin 𝑡

) , −𝑄 = 𝑅 = 𝑆 = 𝐼.

(40)

From Figure 1, we can see that the uncontrolled NSISs in
(1) are not stable; from (3)–(5), we can easily calculate that𝛽 =

0 0.5 1 1.5 2 2.5 3
−140

−120

−100

−80

−60

−40

−20

0

20

40

t (s)

x
(t
)

x1

x2

x3

x4

Figure 1: The state curves of the uncontrolled NSISs in (1) with
𝑥(0) = (2 −2 1 3)

𝑇.

0.3, 𝐺 = diag(0.5, 1, 0.5, 0.2), and we choose 𝜅 = 1. Applying
Theorem 7 to this example with ̃𝑍 = 0.2𝐼, then we have

𝑋 = (

218.4915 −78.3446 −28.6536 41.2314

−78.3446 61.9663 23.7252 −14.7112

−28.6536 23.7252 9.2450 −5.2351

41.2314 −14.7112 −5.2351 11.9250

) ,

𝑌 = 1.0𝑒 + 004 ∗ (

−0.0840 1.4332 0.5742 −0.0115

−1.0921 0.1494 0.0621 −0.2110
) .

(41)

So the controller parameters can be calculated as follows:

𝐾 = 1.0𝑒 + 003 ∗ (

0.1421 0.2444 0.4278 −0.0116

−0.0786 −0.4984 1.0753 −0.0478
) ,

𝐸
𝑘
= (

−0.8 0 0 0

0 −0.9 0 0

0 0 −0.7 0

0 0 0 −0.8

) .

(42)

The state curves and the output curves of closed-loop NSISs
in (1) can be seen in Figures 2 and 3.

From Figure 4, we can see that the closed-loop NSISs in
(1) are strictly (𝑄, 𝑆, 𝑅)-dissipative, and Figure 5 shows the
variation of 𝛼 inΨ(V, 𝑧, 𝑇) ≥ 𝛼𝐸∫𝑇

0

V𝑇(𝑡)V(𝑡)d𝑡, for all 𝑇 ≥ 0.

6. Conclusions

In this paper, the dissipativity analysis and control problems
for a class of nonlinear stochastic impulsive systems (NSISs)
have been investigated.The systems are subject to the nonlin-
ear disturbance, stochastic disturbance, and impulsive effects,
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Figure 2: The state curves of the NSISs in (1) under state-feedback
control and impulsive control with 𝑥(0) = (2 −2 1 3)

𝑇.

0 0.5 1 1.5 2 2.5 3
−60

−40

−20

0

20

40

60

O
ut

pu
tz

(t
)

t (s)

z1(t)

z2(t)

z3(t)

z4(t)

Figure 3:The output curves of the NSISs in (1) under state-feedback
control and impulsive control with 𝑥(0) = (2 −2 1 3)

𝑇.

which often exist in a wide variety of industrial processes and
the sources of instability. Based on the dissipativity, the state-
feedback controller and impulsive controller, such that the
nonlinear stochastic impulsive systems are stochastic stable
and strictly (𝑄, 𝑆, 𝑅)-dissipative, have been designed. The
sufficient conditions have been obtained in terms of linear
matrix inequalities (LMIs), and the given numerical example
with simulation shows the correctness of the derived results
and the effectiveness of the proposed method.
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Figure 4: The curves of performance level Ψ(V, 𝑧, 𝑇) and
𝐸∫

𝑇

0

V𝑇(𝑡)V(𝑡)d𝑡 of the NSISs in (1).
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Figure 5: The variation curve of 𝛼 in Ψ(V, 𝑧, 𝑇) ≥ 𝛼𝐸∫𝑇
0

V𝑇(𝑡)V(𝑡)d𝑡
in the NSISs in (1).
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The state tracking problem for a class of model reference adaptive control (MRAC) systems in the presence of controller temporary
failures is studied. Due to the controller temporary failure, the considered system is viewed as an error switched system. The
properties of Lyapunov function candidates without switching are described.Then the notion of global practical stability of switched
systems is presented, and sufficient conditions for global practical stability of the error system under the restrictions of controller
failure frequency and unavailability rate are provided. An example is presented to demonstrate the feasibility and effectiveness of
the proposed method.

1. Introduction
There are often parameter, structural, and environment unce-
rtainties in practical systems [1–4]. Model reference adaptive
control (MRAC) has been used as an important control
approach for such uncertain systems [5, 6]. Closed-loop
signal boundedness and asymptotic tracking can be ensured
by a state feedback controller and adaptive laws in MRAC
systems [7].

On the other hand, controller temporary failures are often
encountered in real control systems due to various enviro-
nment factors during operation. Some motivations of study-
ing controller failures are summarized in [8].The reasons can
be roughly classified into two categories: passive and positive
ones. A typical passive reason is that the signals are not
transmitted perfectly or the controller itself is not available for
some reasons. For instance, the packet dropout phenomenon
in networked control systems leads to controller failure,
which is inevitable because of unreliable transmission paths.
In contrast to passive reasons, a typical positive reason is that
the controller is purposefully suspended from time to time
for an economic or system life consideration [9]. Apparently,
controller failures may lead to severe performance deteriora-
tion of systems. Especially, for adaptive control systems, the
controller failuremay cause the tracking error divergence due

to the uncertainties of systems. Therefore, it is both theo-
retically and practically important to develop some new tech-
niques to deal with the case of controller temporary failure of
adaptive systems.

Recently, there are rapidly growing interests in switched
systems and switching control in the control community [10–
13]. In the study of stability of switched systems, one of the
effective tools is the average dwell time approach [14–16].
Based on this approach, exponential stability is guaranteed
if the unavailability rate of the controller is smaller than
a specified constant and the average time interval between
controller failures is large enough [9, 17, 18]. In [8], this result
was further extended to symmetric linear time-invariant
system. The concept of controller failure frequency was first
introduced in [9], and the cases of controller temporary
failure for a class of time-varying delay systemswere analyzed
in [19]. Interestingly, a nonswitched MRAC system in the
presence of controller temporary failure can be viewed as a
switched system with a switching signal depending on the
time interval between controller failures. Thus, theories and
methods of switched systems may be applicable to the study
of the state tracking problem for nonswitchedMRAC systems
with controller temporary failure. However, this issue has
been rarely explored so far.
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In this paper, we study the state tracking problem for
MRAC systems in the presence of controller temporary
failure. As in [8], the controller temporary failure means that
the controller itself is not available or the controller signals
are not transmitted perfectly within a certain time interval.
Furthermore, we assume that the parameter estimation is
“frozen” in the instant of the controller temporary failure until
the controller works normally. There are two main issues to
be addressed in this paper. One is to describe a tradition
MRAC system in the presence of controller temporary
failure as an error switched system with two subsystems: the
normal error subsystem which stands for the case without
controller failure and the unstable error subsystem which
describes the case of controller failure. The other issue is the
stability analysis for the error switched system. To address the
second issue, we analyze the properties of Lyapunov function
candidates without switching and introduce the notions of
global practical stability, failure frequency, and unavailability
rate.

The results in this paper have three features. First of
all, MRAC systems in the presence of controller temporary
failure are first considered. Secondly, the state tracking
problem is studied from a switched system point of view.
Finally, the global practical stability criterion is given for the
considered system under the condition of controller failure
frequency and unavailability rate.

The organization of the paper is as follows. The state
tracking problem in the presence of controller failure is
formulated in Section 2. In Section 3, we present an error
switched system. Section 4 gives three lemmas and the main
result. An example is given to illustrate the effectiveness of
the proposed method in Section 5. Finally, the conclusions
are presented in Section 6.

The notation is standard. Consider the following:

𝜆max(𝐴) (𝜆min(𝐴)): the largest (smallest) eigenvalue
of matrix 𝐴;

‖𝐴‖ = √𝜆max(𝐴𝐴
𝑇
): the norm of matrix 𝐴;

‖𝑥‖ = √(∑
𝑛

𝑖=1
|𝑥
𝑖
|
2

): the norm of a vector 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛;

tr[𝐴]: the trace of a square matrix 𝐴.

2. Problem Statement

Consider a system

̇𝑥 (𝑡) = Θ𝑓 (𝑥) + 𝐵𝑢 (𝑡) , (1)

where 𝐵 ∈ 𝑅
𝑛×𝑛 is input matrix, 𝑥(𝑡) ∈ 𝑅

𝑛 is the state,
𝑢(𝑡) ∈ 𝑅

𝑛 is the control input, Θ ∈ 𝑅
𝑛×𝑝 is an uncertain

constant parameter matrix with a bounded 𝛿
Θ
, that is, ‖Θ‖ ≤

𝛿
Θ
, and 𝑓(𝑥) ∈ 𝑅

𝑝 is a vector which can be described as
𝑓(𝑥) = 𝐹𝑥 + 𝑔(𝑥), where 𝐹 ∈ 𝑅

𝑝×𝑛 is a constant parameter
matrix and ‖𝑔(𝑥)‖ ≤ 𝑀 for some𝑀 ≥ 0.

The classical state tracking problem is to design a con-
troller such that the state 𝑥(𝑡) of the system (1) tracks a given

reference state 𝑥
𝑚
(𝑡) generated from the reference model

system

̇𝑥
𝑚
(𝑡) = 𝐴

𝑚
𝑥
𝑚
(𝑡) + 𝐵

𝑚
𝑟 (𝑡) , (2)

where 𝐴
𝑚
∈ 𝑅
𝑛×𝑛 is a constant Hurwitz matrix, 𝐵

𝑚
∈ 𝑅
𝑛×𝑛

is a constant input matrix, and 𝑟(𝑡) ∈ 𝑅
𝑛 is a bounded and

piecewise continuous reference input.
Suppose that there exist matrices 𝑅, 𝑇, and𝑊∗ such that

the following matching equations are satisfied:

𝐴
𝑚
= 𝐵𝑅, 𝐵

𝑚
= 𝐵𝑇, 𝐵𝑊

∗

= Θ, (3)

where 𝑊∗ is an unknown matrix due to uncertain constant
parameter matrix Θ.

Define the tracking error 𝑒(𝑡) = 𝑥
𝑚
(𝑡) − 𝑥(𝑡). To solve the

state tracking problem, we use the controller structure [20]

𝑢 (𝑡) = 𝜓𝜔, (4)

where 𝜓 = [𝑅 �̂�(𝑡) 𝑇] and 𝜔 = [

𝑥
𝑇

−𝑓
𝑇
(𝑥)

𝑟
𝑇

], �̂�(𝑡) is the

estimate of unknown matrix𝑊∗, and ‖�̂�(𝑡)‖ ≤ 𝛿
�̂�
.

Apply a parameter projection adaptive law

̇
�̂� (𝑡) = −Γ𝐵

𝑇

𝑃
1
𝑒 (𝑡) 𝑓

𝑇

(𝑥) + 𝐹
𝑠
, (5)

where Γ = diag{Γ
1
, Γ
2
, . . . , Γ

𝑖
, . . . , Γ

𝑀
} with positive constants

Γ
𝑖
,𝑃
1
is a symmetric positive definitematrix satisfying𝐴𝑇

𝑚
𝑃
1
+

𝑃
1
𝐴
𝑚
< 0, and 𝐹

𝑠
is a vector satisfying

𝐹
𝑠
=

{

{

{

0, if 

�̂� (𝑡)






≤ 𝛿
�̂�
,

Γ𝐵
𝑇

𝑃
1
𝑒 (𝑡) 𝑓

𝑇

(𝑡) , if 

�̂� (𝑡)






> 𝛿
�̂�
.

(6)

Then, the closed-loop system is

̇𝑥 (𝑡) = 𝐴
𝑚
𝑥 (𝑡) + 𝐵

𝑚
𝑟 (𝑡) + 𝐵�̃� (𝑡) 𝑓 (𝑥) , (7)

where �̃�(𝑡) = 𝑊
∗

− �̂�(𝑡).
From [5, 20, 21], 𝑥(𝑡) converges asymptotically to 𝑥

𝑚
(𝑡)

under the controller (4) and the adaptive law (5), that is,
lim
𝑡→∞

𝑒(𝑡) = 0.
We now consider the case of controller temporary failure

depicted in Figure 1. Controller failures occur when the
controller (a) itself is not available or when the signals are not
transmitted perfectly on the route (b). Suppose that the time
interval of the controller failures is not more than a specified
constant 𝑇

𝑠
, which means the designed controller can be

recovered within a finite time interval [19]. Also, the failed
controller implies the complete breakdown of the controller
(𝑢(𝑡) = 0) in its failure time interval [8]. Hence, the system
(1) with the controller temporary failure is dominated by the
following piecewise differential equations:

̇𝑥 (𝑡) = {

Θ𝑓 (𝑡) + 𝐵𝑢 (𝑡) , when the controller works,
Θ𝑓 (𝑡) , when the controller fails.

(8)

We introduce the following definitions which will play
key roles in deriving our main results.
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̇x(t) = Θf(x) + Bu(t)

Ŵ

Figure 1: Controller failures occur in MRAC systems.

Definition 1 (see [8]). For any 𝑇
2
> 𝑇
1
, denote 𝑇+(𝑇

1
, 𝑇
2
) as

the total time interval of controller failure during (𝑇
1
, 𝑇
2
), and

call the ratio𝑇+(𝑇
1
, 𝑇
2
)/(𝑇
2
−𝑇
1
) the unavailability rate of the

controller in the system.

Definition 2 (see [9]). For any 𝑇
2
> 𝑇
1
≥ 0, let 𝑁

𝑓
(𝑇
1
, 𝑇
2
)

denote the number of control failure in the time interval
(𝑇
1
, 𝑇
2
). 𝐹
𝑓
(𝑇
1
, 𝑇
2
) = 𝑁

𝑓
(𝑇
1
, 𝑇
2
)/(𝑇
2
− 𝑇
1
) is referred to as

the controller failure frequency in the time interval (𝑇
1
, 𝑇
2
).

In this paper, our objective is to develop conditions
underwhich𝑥(𝑡) tracks𝑥

𝑚
(𝑡) subject to controller temporary

failure.

3. Error Switched System

From the closed-loop system (7), we have a normal error
system

̇𝑒 (𝑡) = 𝐴
𝑚
𝑒 (𝑡) − 𝐵�̃� (𝑡) 𝑓 (𝑥) . (9)

When controller fails, we obtain an unstable error system

̇𝑒 (𝑡) = 𝐴
𝑚
𝑒 (𝑡) + 𝐴

𝑚
𝑥 (𝑡) + 𝐵

𝑚
𝑟 − Θ𝑓 (𝑥) . (10)

In this condition, we choose the adaptive law

̇
�̂� (𝑡) = 0. (11)

Remark 3. When controller fails, because the adaptive para-
meter �̂�(𝑡) has no influence on the tracking error 𝑒(𝑡), it
is proper that the parameter estimation �̂�(𝑡) is “frozen”
in the instants of the controller temporary failure until the
controller works normally.

Based on (5), (9), (10), and (11), 𝑒(𝑡) is governed by the
following error switched system:

̇𝑒 (𝑡) = 𝐴
𝑚
𝑒 (𝑡) + Φ

𝜎
(𝑡) , (12)

where 𝜎(𝑡) : [0, +∞) → 𝑀 = {1, 2}, Φ
1
= −𝐵�̃�(𝑡)𝑓(𝑥), and

Φ
2
= 𝐴
𝑚
𝑥(𝑡)𝐵
𝑚
𝑟 − Θ𝑓(𝑥).

Meanwhile, we have a switching adaptive law of the
following form:

̇
�̂� (𝑡) = (−Γ𝐵

𝑇

𝑃
1
𝑒 (𝑡) 𝑓

𝑇

(𝑥) + 𝐹
𝑠
)Ψ
𝜎
, (13)

where Ψ
1
= 𝐼
𝑝×𝑝

and Ψ
2
= 0
𝑝×𝑝

.

When 𝜎 = 1, the normal error subsystem is active, which
corresponds to the case of no controller failure; when 𝜎 = 2,
the unstable error subsystem is active, which denotes that the
controller fails.

Therefore, the problem of state tracking in the presence
of controller temporary failure can be handled by means of
analyzing the stability of the error switched system (12) with
the switching adaptive law (13).

To analyze the stability of the error switched system (12),
we introduce the following definition.

Definition 4 (see [22]). Consider system (12). Given a con-
stant 𝑟∗ > 0, the system (12) is said to be globally practically
stable with respect to 𝑟∗ if there exist a switching law 𝜎(𝑡) and
a constant𝑇 = 𝑇(𝑒(𝑡

0
), 𝑟
∗

) ≥ 0which depends on 𝑒(𝑡
0
) and 𝑟∗

such that 𝑒(𝑡; 𝑡
0,
𝑒(𝑡
0
)) ∈ 𝑆(𝑟

∗

) ≜ {𝑒 | ‖𝑒‖ ≤ 𝑟
∗

} for 𝑡 ≥ 𝑡
0
+ 𝑇.

Remark 5. Unlike the 𝜀-practical stability concept [23], the
initial error in Definition 4 is not required to be bounded.
If the initial error is constrained by 𝑒(𝑡

0
) ∈ 𝐵(𝑟

∗

), then the
global practical stability, given by Definition 4, degenerates
into 𝜀-practical stability [22]. Global practical stability stated
here expresses a global version of the existing practical sta-
bility concept. Obviously, Definition 4 covers the 𝜀-practical
stability as a special case.

4. Main Result

In this section, firstly, we give three lemmas to analyze
the properties of Lyapunov function candidates without
switching. Secondly, we present a theorem to give some
conditions under which the error switched system (12) is
globally practically stable. Let

𝑧 (𝑡) = [𝑒
𝑇

(𝑡) , 𝑤
𝑇

1
(𝑡) , . . . 𝑤

𝑇

𝑛
(𝑡) , . . . 𝑤

𝑇

𝑝
(𝑡)]

𝑇

∈ 𝑅
𝑛+𝑛×𝑝

,

(14)

where 𝑤
𝑖
(𝑡) ∈ 𝑅

𝑛 is the 𝑖th column of �̃�(𝑡), 𝑖 = 1, 2, . . . , 𝑝;
that is,

�̃� (𝑡) = [𝑤
1
(𝑡) , . . . , 𝑤

𝑝
(𝑡)] ∈ 𝑅

𝑛×𝑝

. (15)

According to [21], we have

tr [�̃�𝑇Γ−1𝐹
𝑠
] ≤ 0. (16)

Note that the parameter estimates �̂� are bounded; thus
there exists a constant 𝑙 > 0 defined as

𝑙 = max (tr [�̃�𝑇Γ−1�̃�]) . (17)

Consider the situation of the system (1) without controller
failure. A Lyapunov functional candidate of the normal error
subsystem of (12) is chosen as

𝑉
1
(𝑧 (𝑡)) = 𝑒

𝑇

(𝑡) 𝑃
1
𝑒 (𝑡) + tr [�̃�𝑇 (𝑡) Γ−1�̃� (𝑡)] . (18)

Differentiating𝑉
1
along the trajectory of the normal error

subsystem of (12) and the adaptive law (13) gives

𝑉
1
(𝑧 (𝑡)) = 𝑒

𝑇

(𝑡) (𝐴
𝑇

𝑚
𝑃
1
+ 𝑃
1
𝐴
𝑚
) 𝑒 (𝑡) + 2tr [�̃�𝑇Γ−1𝐹

𝑠
] .

(19)
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The following lemma gives the estimate of the conver-
gence rate of 𝑉

1
along the trajectory of the normal error

subsystem of (12).

Lemma 6. Consider the normal error subsystem of (12). For
any given 𝑟

1
> √𝑙/𝜆min(𝑃1), denote 𝑆(𝑟1) = {𝑒 | ‖𝑒‖ < 𝑟

1
}. If

𝑒(𝑡) ∈ 𝑅
𝑛

/𝑆(𝑟
1
), then the inequality

𝑉 (𝑧 (𝑡)) ≤ exp (−2𝜆
1
(𝑡 − 𝑡
0
)) 𝑉
1
(𝑧 (𝑡
0
)) (20)

holds for any 𝜆
1
satisfying 0 < 𝜆

1
≤ (𝜆
1
/2)(1−(𝑙/𝑟

2

1
𝜆min(𝑃1))).

Proof. From (17) and (18), it is easy to get

𝑒
𝑇

(𝑡) 𝑃
1
𝑒 (𝑡) ≤ 𝑉

1
(𝑧 (𝑡)) ≤ 𝑒

𝑇

(𝑡) 𝑃
1
𝑒 (𝑡) + 𝑙. (21)

It is obvious that

𝜆min (𝑃1) ‖𝑒 (𝑡)‖
2

≤ 𝑉
1
(𝑧 (𝑡)) ≤ 𝜆max (𝑃1) ‖𝑒 (𝑡)‖

2

+ 𝑙. (22)

From (16) and (19), it holds that

𝑉
1
(𝑧 (𝑡)) ≤ 𝑒

𝑇

(𝐴
𝑇

𝑚
𝑃
1
+ 𝑃
1
𝐴
𝑚
) 𝑒 < 0. (23)

Since 𝐴
𝑚
is Hurwitz matrix, there exists a scalar 𝜆

1
> 0

such that 𝐴𝑇
𝑚
𝑃
1
+ 𝑃
1
𝐴
𝑚
+ 𝜆
1
𝑃
1
< 0.

With the help of (21)– (23), we have

𝑉
1
(𝑧 (𝑡))

≤ −𝜆
1
𝑉
1
(𝑧 (𝑡)) + 𝜆

1
𝑙

= −2𝜆
1
𝑉
1
(𝑧 (𝑡)) − (𝜆

1
− 2𝜆
1
)𝑉
1
(𝑧 (𝑡)) + 𝜆

1
𝑙

≤ −2𝜆
1
𝑉
1
(𝑧 (𝑡)) − 𝜆min (𝑃1) (𝜆1 − 2𝜆

1
) ‖𝑒 (𝑡)‖

2

+ 𝜆
1
𝑙.

(24)

Given that 𝑟
1
> √𝑙/𝜆min(𝑃1), when 𝑒(𝑡) ∈ 𝑅

𝑛

/𝑆(𝑟
1
), applying

(24) leads to 𝑉
1
(𝑧(𝑡)) ≤ −2𝜆

1
𝑉
1
(𝑧(𝑡)) that is, 𝑉(𝑧(𝑡)) ≤

exp(−2𝜆
1
(𝑡 − 𝑡

0
))𝑉
1
(𝑧(𝑡
0
)); for any 𝜆

1
satisfying 0 < 𝜆

1
≤

(𝜆
1
/2)(1 − (𝑙/𝑟

2

1
𝜆min(𝑃1))).

This completes the proof.

When the controller fails, for the unstable error subsys-
tem of (12), we choose another Lyapunov functional candi-
date of the following form:

𝑉
2
(𝑧 (𝑡)) = 𝑒

𝑇

(𝑡) 𝑃
2
𝑒 (𝑡) + 𝑡𝑟 [�̃�

𝑇

(𝑡) Γ
−1

�̃� (𝑡)] , (25)

where 𝑃
2
is a positive definite matrix.

Differentiating𝑉
2
along the trajectory of the normal error

subsystem of (12) and the adaptive law (13) gives

𝑉
2
(𝑧 (𝑡)) = ̇𝑒 (𝑡) 𝑃

2
𝑒 (𝑡) + 𝑒 (𝑡) 𝑃

2
̇𝑒 (𝑡) . (26)

Then, in the following lemma, we estimate the divergence
rate of𝑉

2
along the trajectory of the unstable error subsystem

of (12).

Lemma 7. Consider the unstable error subsystem of (12). For
any given 𝑟

2
> 0, denote 𝑆(𝑟

2
) = {𝑒 | ‖𝑒‖ < 𝑟

2
}. If 𝑒(𝑡) ∈

𝑅
𝑛

/𝑆(𝑟
2
), then the inequality

𝑉 (𝑧 (𝑡)) ≤ exp (2𝜆
2
(𝑡 − 𝑡
0
)) 𝑉
2
(𝑧 (𝑡
0
)) (27)

holds for any 𝜆
2
satisfying 0 < 𝜆

2
≤ (1/2𝜆min(𝑃2))((𝛽2/𝑟2) +

𝛽
1
).

Proof. From (17), we have

𝑒
𝑇

(𝑡) 𝑃
2
𝑒 (𝑡) ≤ 𝑉

2
(𝑧 (𝑡)) ≤ 𝑒

𝑇

(𝑡) 𝑃
2
𝑒 (𝑡) + 𝑙. (28)

It is obvious that

𝜆min (𝑃2) ‖𝑒 (𝑡)‖
2

≤ 𝑉
2
(𝑧 (𝑡)) ≤ 𝜆max (𝑃2) ‖𝑒 (𝑡)‖

2

+ 𝑙. (29)

From (10) and (26), we have

𝑉
2
(𝑧 (𝑡)) = 𝑒

𝑇

(𝑡) (𝐴
𝑇

𝑚
𝑃
2
+ 𝑃
2
𝐴
𝑚
) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑃
2
(𝐴
𝑚
𝑥
𝑚
+ 𝐵
𝑚
𝑟 (𝑡) − Θ𝑓 (𝑥))

= 𝑒
𝑇

(𝑡) (𝐴
𝑇

𝑚
𝑃
2
− 𝑃
2
𝐴
𝑚
+ 2Θ𝐹) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑃
2
((𝐴
𝑚
− Θ𝐹) 𝑥

𝑚
+ 𝐵
𝑚
𝑟 (𝑡) − Θ𝑔 (𝑥))

= 𝑒
𝑇

(𝑡) 𝑃
3
𝑒 (𝑡) + 𝑒

𝑇

(𝑡) 𝜉
1
− 𝑒
𝑇

(𝑡) 𝑃
2
Θ𝑔 (𝑥) ,

(30)

where 𝑃
3
≜ 𝐴
𝑇

𝑚
𝑃
2
−𝑃
2
𝐴
𝑚
+2Θ𝐹 and 𝜉

1
≜ 2𝑃
2
(𝐴
𝑚
−Θ𝐹)𝑥

𝑚
+

𝐵
𝑚
𝑟(𝑡).
Since Θ and 𝑟(𝑡) are bounded, we have

𝑉
2
(𝑧 (𝑡)) ≤ ‖𝑒 (𝑡)‖

2 



𝑃
3





+ ‖𝑒 (𝑡)‖





𝜉
1






+ ‖𝑒 (𝑡)‖




𝑃
2





‖Θ‖





𝑔 (𝑥)






≤ ‖𝑒 (𝑡)‖
2 



𝑃
3





+ ‖𝑒 (𝑡)‖





𝜉
1






+𝑀‖𝑒 (𝑡)‖




𝑃
2





‖Θ‖

≤ ‖𝑒 (𝑡)‖
2 



𝑃
3





+ ‖𝑒 (𝑡)‖ (





𝜉
1





+ 𝑀





𝑃
2





‖Θ‖) .

(31)

Then, it holds that

𝑉
2
(𝑧 (𝑡)) ≤ 𝛽

1
‖𝑒 (𝑡)‖

2

+ 𝛽
2
‖𝑒 (𝑡)‖ , (32)

where 𝛽
1
= ‖𝑃
3
‖ and 𝛽

2
= ‖𝜉
1
‖ +𝑀‖𝑃

2
‖‖Θ‖.

Therefore, for any 𝑟
2
> 0, when 𝑒(𝑡) ∈ 𝑅

𝑛

/𝑆(𝑟
2
), then

the inequality 𝑉
2
(𝑧(𝑡)) ≤ 2𝜆

2
𝑉
2
(𝑧(𝑡)), that is, 𝑉(𝑧(𝑡)) ≤

exp(2𝜆
2
(𝑡−𝑡
0
))𝑉
2
(𝑧(𝑡
0
)), holds for any 𝜆

2
satisfying 0 < 𝜆

2
≤

(1/2𝜆min(𝑃2))((𝛽2/𝑟2) + 𝛽
1
).

This completes the proof.

Based on Lemmas 6 and 7, we have the following lemma.

Lemma 8. Consider the subsystems of (12). For any 𝑟
3
> 0, if

𝑒(𝑡) ∈ 𝑅
𝑛

/𝑆(𝑟
3
), then the inequality

𝜂
1
‖𝑒 (𝑡)‖

2

≤ 𝑉
𝑖
(𝑧 (𝑡)) ≤ 𝜂

3
‖𝑒 (𝑡)‖

2

, (33)

holds for 𝜂
1
= min{𝜆min(𝑃1), 𝜆min(𝑃2)}, 𝜂2 = max{𝜆max(𝑃1),

𝜆max(𝑃2)}, and 𝜂3 = 𝜂
2
+ (𝑙/𝑟

2

3
).
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Proof. Form (22) and (29), we have

𝑒
𝑇

(𝑡) 𝑃
𝑖
𝑒 (𝑡) ≤ 𝑉

𝑖
(𝑧 (𝑡)) ≤ 𝑒

𝑇

(𝑡) 𝑃
𝑖
𝑒 (𝑡) + 𝑙. (34)

Denote that 𝜂
1

= min{𝜆min(𝑃1), 𝜆min(𝑃2)} and 𝜂
2

=

max{𝜆max(𝑃1), 𝜆max(𝑃2)}. Then, we have

𝜂
1
‖𝑒 (𝑡)‖

2

≤ 𝑉
𝑖
(𝑧 (𝑡)) ≤ 𝜂

2
‖𝑒 (𝑡)‖

2

+ 𝑙. (35)

For any 𝑟
3
> 0, when 𝑒(𝑡) ∈ 𝑅

𝑛

/𝑆(𝑟
3
), we can find a

constant 𝜂
3
= 𝜂
2
+ (𝑙/𝑟

2

3
) such that 𝜂

1
‖𝑒(𝑡)‖

2

≤ 𝑉
𝑖
(𝑧(𝑡)) ≤

𝜂
3
‖𝑒(𝑡)‖

2.
This completes the proof.

Furthermore, according to Lemmas 6–8, for any given
𝑟


0
= max{𝑟

1
, 𝑟
2
, 𝑟
3
} and 𝑡 > 𝑡

0
, if 𝑒(𝑡) ∈ 𝑅

𝑛

/𝑆(𝑟


0
), it is true

that
𝑉 (𝑧 (𝑡))

≤

{
{
{
{

{
{
{
{

{

exp (−2𝜆
1
(𝑡 − 𝑡
0
)) 𝑉
1
(𝑧 (𝑡
0
)) when the controller

works,
exp (2𝜆

2
(𝑡 − 𝑡
0
)) 𝑉
2
(𝑧 (𝑡
0
)) when the controller

fails.
(36)

For (18) and (25), it is obvious that there exists 𝜇 = 𝜂
3
/𝜂
1

such that

𝑉
𝑖
(𝑧 (𝑡)) ≤ 𝜇𝑉

𝑗
(𝑧 (𝑡)) (𝑖, 𝑗 = 1, 2) . (37)

Without loss of generality, for 𝑘 = 0, 1, . . ., we assume
that the controller works during [𝑡

2𝑘
, 𝑡
2𝑘+1

), which means
that the first subsystem is active on [𝑡

2𝑘
, 𝑡
2𝑘+1

), while the
controller fails during [𝑡

2𝑘+1
, 𝑡
2𝑘+2

), which denotes that the
second subsystem is active on [𝑡

2𝑘+1
, 𝑡
2𝑘+2

).
When 𝑒(𝑡

2𝑘
) ∈ 𝑆(𝑟

1
), from (22), we have 𝑒(𝑡

2𝑘+1
) ∈ 𝑆(𝑟



1
)

for any given 𝑟


1
≥ √(𝑟

2

1
𝜆max(𝑃1) + 𝑙)/𝜆min(𝑃1). It is obvious

that (36) and (37) still hold for 𝑟
0
≥ max{𝑟

1
, 𝑟


0
}.

Remark 9. Because of the uncertainties of the systems, the
properties of the Lyapunov function candidates are restricted
outside the ball with the radius 𝑟

0
as described as in Lemmas

6–8.

Now, we are in the position to give the main result of this
paper.

Theorem 10. Consider the error switched system (12) with the
adaptive control law (13). For 𝑘 = 0, 1, . . ., if the switching law
𝜎(𝑡) satisfies the following two conditions:

Condition 1
𝑇
+

(𝑡
2𝑘
, 𝑡)

(𝑡 − 𝑡
2𝑘
)

≤

(𝜆
1
− 𝜆
∗

)

(𝜆
1
+ 𝜆
2
)

(38)

holds for some scalar 𝜆∗ ∈ (0, 𝜆
1
),

Condition 2

𝐹
𝑓
(𝑡
2𝑘
, 𝑡) ≤ 𝐹

∗

𝑓
=

𝜆

ln 𝜇 (39)

holds for some scalar 𝜆 ∈ (0, 𝜆
∗

), then, the error switched
system (12) is globally practically stable.

Proof. For any given 𝑟
0
≥ max{𝑟

1
, 𝑟


0
}, denote

𝑟
∗

= exp [‖Θ‖ ‖𝐹‖ (𝑇
𝑠
)] ⋅ 𝑟
0

+

(𝜅 +𝑀‖Θ‖) [exp (‖Θ‖ ‖𝐹‖ (𝑇
𝑠
)) − 1]

‖Θ‖ ‖𝐹‖

,

(40)

where 𝜅 ≥ ‖(𝐴
𝑚
−Θ𝐹)𝑥

𝑚
(𝑡) +𝐵

𝑚
𝑟(𝑡)‖ for some 𝜅 > 0. When

the initial error 𝑒(𝑡
0
) ∈ 𝑅

𝑛, we will show that there exists
a constant 𝑇 = 𝑇(𝑒(𝑡

0
), 𝑟
∗

) ≥ 0, concerned with 𝑒(𝑡
0
) and

𝑟
∗ such that 𝑒(𝑡; 𝑡

0,
𝑒(𝑡
0
)) ∈ 𝑆(𝑟

∗

) for 𝑡 ≥ 𝑡
0
+ 𝑇 under the

switching law 𝜎(𝑡) satisfying Conditions 1-2. To this end, we
will prove the theorem in three cases.

(a) For 𝑒(𝑡
2𝑘
) ∈ 𝑆(𝑟

0
), we will show that 𝑒(𝑡

2𝑘+2
) ∈ 𝑆(𝑟

∗

).

(b) For 𝑒(𝑡
2𝑘
) ∈ 𝑅

𝑛

/𝑆(𝑟
0
), we will prove that there exists

𝑇
2𝑘

= 𝑇
2𝑘
(𝑒(𝑡
2𝑘
), 𝑟
0
) ≥ 0 such that ‖𝑒(𝑡

2𝑘
+ 𝑇
2𝑘
)‖ = 𝑟

0

for 𝑒(𝑡) ∈ 𝑅
𝑛

/𝑆(𝑟
0
) and 𝑡 ∈ [𝑡

2𝑘
, 𝑇
2𝑘
).

(c) When the initial error 𝑒(𝑡
0
) ∈ 𝑅

𝑛, we will show that
there exists a constant 𝑇 = 𝑇(𝑒(𝑡

0
), 𝑟
∗

) ≥ 0 such that
𝑒(𝑡; 𝑡
0
, 𝑒(𝑡
0
)) ∈ 𝑆(𝑟

∗

) for 𝑡 ≥ 𝑡
0
+𝑇 under the switching

law 𝜎(𝑡) satisfying Conditions 1 and 2.

We first prove (a). Consider 𝑒(𝑡
2𝑘
) ∈ 𝑆(𝑟

0
). Because of

the asymptotical stability of the normal subsystem of (12), it
is obvious that 𝑒(𝑡

2𝑘+1
) ∈ 𝑆(𝑟

0
). When 𝑡 ∈ [𝑡

2𝑘+1
, 𝑡
2𝑘+2

), the
second subsystem is active. From (10), we have

̇𝑒 (𝑡) = Θ𝐹𝑒 (𝑡) + (𝐴
𝑚
− Θ𝐹) 𝑥

𝑚
+ 𝐵
𝑚
𝑟 − Θ𝑔 (𝑥) ; (41)

then, the trajectory of the error switched system (12) satisfies

𝑒 (𝑡
2𝑘+2

)

= exp [Θ𝐹 (𝑡
2𝑘+2

− 𝑡
2𝑘+1

)] 𝑒 (𝑡
2𝑘+1

)

+ ∫

𝑡2𝑘+2

𝑡2𝑘+1

{ exp [Θ𝐹 (𝑡
2𝑘+2

− 𝑡)]

× [(𝐴
𝑚
− Θ𝐹) 𝑥

𝑚
(𝑡) + 𝐵

𝑚
𝑟 (𝑡) − Θ𝑔 (𝑥 (𝑡))]} 𝑑𝑡.

(42)

With the help of ‖𝑒𝐴‖ ≤ 𝑒
‖𝐴‖, it is obvious that





𝑒 (𝑡
2𝑘+2

)





≤ exp [‖Θ‖ ‖𝐹‖ ⋅ (𝑡
2𝑘+2

− 𝑡
2𝑘+1

)]




𝑒 (𝑡
2𝑘+1

)





+ ∫

𝑡2𝑘+2

𝑡2𝑘+1

{ exp [‖Θ‖ ‖𝐹‖ ⋅ (𝑡
2𝑘+2

− 𝜏)]

× [




(𝐴
𝑚
− Θ𝐹) 𝑥

𝑚
(𝜏) + 𝐵

𝑚
𝑟 (𝜏)






+ ‖Θ‖




𝑔 (𝑥 (𝜏))





]} 𝑑𝜏
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≤ exp [‖Θ‖ ‖𝐹‖ (𝑡
2𝑘+2

− 𝑡
2𝑘+1

)]




𝑒 (𝑡
2𝑘+1

)





+ ∫

𝑡2𝑘+2

𝑡2𝑘+1

{(Λ +𝑀‖Θ‖) exp [‖Θ‖ ‖𝐹‖ (𝑡
2𝑘+2

− 𝜏)]} 𝑑𝜏

= exp [‖Θ‖ ‖𝐹‖ (𝑡
2𝑘+2

− 𝑡
2𝑘+1

)]




𝑒 (𝑡
2𝑘+1

)





+

(Λ +𝑀‖Θ‖) [exp (‖Θ‖ ‖𝐹‖ (𝑡
2𝑘+2

− 𝑡
2𝑘+1

)) − 1]

‖Θ‖ ‖𝐹‖

.

(43)

Because 𝑇
𝑠
= max

𝑘
{𝑡
2𝑘+2

− 𝑡
2𝑘+1

}, we have





𝑒 (𝑡
2𝑘+2

)




≤




𝑒 (𝑡
2𝑘+1

+ 𝑇
𝑠
)





= exp [‖Θ‖ ‖𝐹‖ (𝑇
𝑠
)]




𝑒 (𝑡
2𝑘+1

)





+

(𝜅 +𝑀‖Θ‖) [exp (‖Θ‖ ‖𝐹‖ (𝑇
𝑠
)) − 1]

‖Θ‖ ‖𝐹‖

.

(44)

Note that 𝑟
0
is the maximum value of ‖𝑒(𝑡

2𝑘+1
)‖; thus we

have





𝑒 (𝑡
2𝑘+2

)




≤ 𝑟
∗

= exp [‖Θ‖ ‖𝐹‖ (𝑇
𝑠
)] 𝑟
0

+

(𝜅 +𝑀‖Θ‖) [exp (‖Θ‖ ‖𝐹‖ (𝑇
𝑠
)) − 1]

‖Θ‖ ‖𝐹‖

.

(45)

Because of 𝑟∗ > 𝑟
0
, we have 𝑒(𝑡

2𝑘+2
) ∈ 𝑆(𝑟

∗

)when 𝑒(𝑡
2𝑘
) ∈

𝑆(𝑟
0
).
Then, we prove (b). For 𝑒(𝑡

2𝑘
) ∈ 𝑅

𝑛

/𝑆(𝑟
0
), obviously, we

only need to consider the trajectory 𝑒(𝑡) being totally outside
𝑆(𝑟
0
). We discuss two cases for 𝑡 ≥ 𝑡

2𝑘
. One is 𝑡 ∈ [𝑡

2𝑗
, 𝑡
2𝑗+1

),
and the other is 𝑡 ∈ [𝑡

2𝑗+1
, 𝑡
2𝑗+2

), where 𝑗 = 𝑘, 𝑘 + 1, . . ..
Thus, from Lemmas 6 and 7, it is true that

𝑉 (𝑧 (𝜏))

≤{

exp (−2𝜆
1
(𝜏 − 𝑡
2𝑘
)) 𝑉
1
(𝑧 (𝑡
2𝑘
)) , if 𝑡

2𝑘
≤ 𝜏 < 𝑡

2𝑘+1

exp (2𝜆
2
(𝜏 − 𝑡
2𝑘+1

)) 𝑉
2
(𝑧 (𝑡
2𝑘+1

)) , if 𝑡
2𝑘+1

≤ 𝜏 < 𝑡
2𝑘+2

.

(46)

If 𝑡 ∈ [𝑡
2𝑗
, 𝑡
2𝑗+1

), according to (37) and (46), it holds that

𝑉 (𝑧 (𝑡)) ≤ exp (−2𝜆
1
(𝑡 − 𝑡
2𝑗
))𝑉
1
(𝑧 (𝑡
2𝑗
))

≤ exp (−2𝜆
1
(𝑡 − 𝑡
2𝑗
)) 𝜇𝑉
2
(𝑧 (𝑡
2𝑗
))

≤ 𝜇 exp (−2𝜆
1
(𝑡 − 𝑡
2𝑗
)) exp (2𝜆

2
(𝑡
2𝑗
− 𝑡
2𝑗−1

))

× 𝑉
2
(𝑧 (𝑡
2𝑗−1

))

≤ 𝜇
2 exp (−2𝜆

1
(𝑡 − 𝑡
2𝑗
)) exp (2𝜆

2
(𝑡
2𝑗
− 𝑡
2𝑗−1

))

× 𝑉
1
(𝑧 (𝑡
2𝑗−1

))

≤ 𝜇
2 exp (−2𝜆

1
(𝑡 − 𝑡
2𝑗
)) exp (2𝜆

2
(𝑡
2𝑗
− 𝑡
2𝑗−1

))

× exp (−2𝜆
1
(𝑡
2𝑗−1

− 𝑡
2𝑗−2

))𝑉
1
(𝑧 (𝑡
2𝑗−2

))

≤ ⋅ ⋅ ⋅ ≤ 𝜇
2
(𝑗−𝑘)

exp (−2𝜆
1
(𝑡 − 𝑡
2𝑘
− 𝑇
+

(𝑡
2𝑘
, 𝑡)))

× exp (2𝜆
2
𝑇
+

(𝑡
2𝑘
, 𝑡)) 𝑉
1
(𝑧 (𝑡
2𝑘
)) .

(47)

If 𝑡 ∈ [𝑡
2𝑗+1

, 𝑡
2𝑗+2

), again from (37) and (46), we have

𝑉 (𝑧 (𝑡)) ≤ exp (2𝜆
2
(𝑡 − 𝑡
2𝑗+1

))𝑉
2
(𝑧 (𝑡
2𝑗+1

))

≤ exp (2𝜆
2
(𝑡 − 𝑡
2𝑗+1

)) 𝜇𝑉
1
(𝑧 (𝑡
2𝑗+1

))

≤ 𝜇 exp (2𝜆
2
(𝑡 − 𝑡
2𝑗+1

)) exp (−2𝜆
1
(𝑡
2𝑗+1

− 𝑡
2𝑗
))

× 𝑉
1
(𝑧 (𝑡
2𝑗
))

≤ 𝜇
2 exp (2𝜆

2
(𝑡 − 𝑡
2𝑗+1

)) exp (−2𝜆
1
(𝑡
2𝑗+1

− 𝑡
2𝑗
))

× 𝑉
2
(𝑧 (𝑡
2𝑗
))

≤ 𝜇
2 exp (2𝜆

2
(𝑡 − 𝑡
2𝑗+1

)) exp (−2𝜆
1
(𝑡
2𝑗+1

− 𝑡
2𝑗
))

× exp (2𝜆
2
(𝑡
2𝑗
− 𝑡
2𝑗−1

))𝑉
2
(𝑧 (𝑡
2𝑗−1

))

≤ ⋅ ⋅ ⋅ ≤ 𝜇
2
(𝑗−𝑘)+1

exp (−2𝜆
1
(𝑡 − 𝑡
2𝑘
− 𝑇
+

(𝑡
2𝑘
, 𝑡)))

× exp (2𝜆
2
𝑇
+

(𝑡
2𝑘
, 𝑡)) 𝑉
1
(𝑧 (𝑡
2𝑘
)) .

(48)

By Definition 2, we know 𝑁
𝑓
(𝑡
2𝑘
, 𝑡) = 2(𝑗 − 𝑘) for 𝑡 ∈

[𝑡
2𝑗
, 𝑡
2𝑗+1

) and 𝑁
𝑓
(𝑡
2𝑘
, 𝑡) = 2(𝑗 − 𝑘) + 1 for 𝑡 ∈ [𝑡

2𝑗+1
, 𝑡
2𝑗+2

).
Thus, for any 𝑡 ∈ [𝑡

2𝑗+1
, 𝑡
2(𝑗+1)

), from (47) and (48), we can
obtain

𝑉 (𝑧 (𝑡)) ≤ 𝜇
𝑁𝑓(𝑡2𝑘 ,𝑡) exp (−2𝜆

1
(𝑡 − 𝑡
2𝑘
− 𝑇
+

(𝑡
2𝑘
, 𝑡)))

× exp (2𝜆
2
𝑇
+

(𝑡
2𝑘
, 𝑡)) 𝑉
1
(𝑧 (𝑡
2𝑘
)) .

(49)

With the help of Lemma 8, it holds that

‖𝑒 (𝑧 (𝑡))‖ ≤ √

𝜂
2

𝜂
1

exp (𝑁
𝑓
(𝑡
2𝑘
, 𝑡) ln 𝜇)

× exp (−𝜆
1
(𝑡 − 𝑡
2𝑘
− 𝑇
+

(𝑡
2𝑘
, 𝑡)))

× exp (𝜆
2
𝑇
+

(𝑡
2𝑘
, 𝑡))





𝑒 (𝑧 (𝑡

2𝑘
))




.

(50)

Applying Condition 1 gives

exp (−𝜆
1
(𝑡 − 𝑡
2𝑘
− 𝑇
+

(𝑡
2𝑘
, 𝑡)) + 𝜆

2
𝑇
+

(𝑡
2𝑘
, 𝑡))

≤ exp (−𝜆∗ (𝑡 − 𝑡
2𝑘
)) .

(51)

From Condition 2 and Definition 1, we have

exp (𝑁
𝑓
(𝑡
2𝑘
, 𝑡) ln 𝜇) ≤ exp (𝜆 (𝑡 − 𝑡

2𝑘
)) . (52)
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Using (49), (51), and (52) results in




𝑒 (𝑧 (𝑡; 𝑡

2𝑘
, 𝑒 (𝑡
2𝑘
)))






≤ exp (− (𝜆∗ − 𝜆) (𝑡 − 𝑡
2𝑘
))




𝑒 (𝑧 (𝑡

2𝑘
))




.

(53)

Therefore, when 𝑒(𝑡
2𝑘
) ∈ 𝑅

𝑛

/𝑆(𝑟
0
), there exists 𝑇

2𝑘
=

𝑇
2𝑘
(𝑒(𝑡
2𝑘
), 𝑟
0
) ≥ 0 such that ‖𝑒(𝑡

2𝑘
+ 𝑇
2𝑘
)‖ = 𝑟

0
under the

switching law 𝜎(𝑡) satisfying Conditions 1-2. Obviously, {𝑇
2𝑘
}

is a decreasing sequence, and thus 𝑇
0
= max

𝑘
{𝑇
2𝑘
}.

Finally, we prove (c). If 𝑒(𝑡
0
) ∈ 𝑅

𝑛

/𝑆(𝑟
∗

), by applying
(a), (b), and 𝑟

∗

> 𝑟
0
, there exists a positive constant 𝑇 =

𝑇(𝑒(𝑡
0
), 𝑟
∗

) < 𝑇
0
such that 𝑒(𝑡; 𝑡

0,
𝑒(𝑡
0
)) ∈ 𝑆(𝑟

∗

) for 𝑡 ≥ 𝑡
0
+ 𝑇.

If 𝑒(𝑡
0
) ∈ 𝑆(𝑟

∗

), the result remains true with 𝑇 = 0.
This completes the proof.

Remark 11. When the initial error 𝑒(𝑡
0
) ∈ 𝑆(𝑟

∗

), the error
switched system is 𝜀-practical stability [23].

Remark 12. The error switched system (12) is globally practi-
cally stable if the controller fails only for a short time interval
and with a low frequency of occurrence.

5. Example

In this section, we present an example to demonstrate the
effectiveness of the proposed method in this paper.

Consider the system (1) with

Θ = [

1 3

1 2
] , 𝐹 = [

1 0

0 1
] ,

𝑔 (𝑥) = [

sin𝑥
1

cos𝑥
2

] , 𝐵 = [

1 0

0 2
] .

(54)

The reference state𝑥
𝑚
is generated by the referencemodel

(2) with 𝐴
𝑚
= [
−2 0

0 −3
], 𝐵
𝑚
= [
1

1
], and the reference input is

𝑟 = 1.
Choose 𝑅 = [

−2 0

0 −1.5
], 𝑇 = [

1

0.5
], 𝑃
1
= 𝑃
2
= [
0.4449 0

0 0.2862
],

and Γ = [
20 0

0 20
]. We have 𝑟∗ = 6.8147 when 𝑟

0
= 5. Then,

according to (38) and (39), we obtain 𝑇
+

(𝑡
2𝑘
, 𝑡)/(𝑡 − 𝑡

2𝑘
) ≤

0.0302 and 𝐹
𝑓
(𝑡
2𝑘
, 𝑡) ≤ 𝐹

∗

𝑓
= 0.548. The switching signal is

chosen as

𝜎 (𝑡) =

{

{

{

1, 𝑡 ∈ Π,

2, 𝑡 ∈

[0, +∞)

Π

,

(55)

where Π = [15𝑘, 15𝑘 + 1.95) ∪ [15𝑘 + 2, 15𝑘 + 4) ∪ [15𝑘 +

4.05, 15𝑘 + 6.35) ∪ [15𝑘 + 6.4, 15𝑘 + 8.85) ∪ [15𝑘 + 8.9, 15𝑘 +

11.55) ∪ [15𝑘 + 11.6, 15𝑘 + 14.55) ∪ [15𝑘 + 14.6, 15𝑘 + 15),
𝑘 = 0, 1, 2, . . ., which is described in Figure 2. It is easy to
verify that 𝜎(𝑡) satisfies Conditions 1-2 of Theorem 10.

When 𝑥
𝑚
(𝑡
0
) = [0, 0]

𝑇 and 𝑥(𝑡
0
) = [5, 6]

𝑇, the norm of
the tracking error of (12) with and without controller failures
is shown in Figures 3 and 4, respectively.

Simulations are carried out for ‖𝑒(𝑡
0
)‖ = 7.81 ≥ 𝑟

0
and

‖𝑒(𝑡
0
)‖ = 2.236 < 𝑟

∗. The results are depicted in Figures 5
and 6.

From Figures 5 and 6, we can conclude that whether
‖𝑒(𝑡
0
)‖ ≥ 𝑟

0
or not, the states of the system (1) with controller
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Figure 2: Switching signal.
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Figure 3: The norm of the tracking error of (12) when controller
fails.
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Figure 4: The norm of the tracking error of (12) without controller
failure.

temporary failure track the reference signal 𝑥
𝑚
(𝑡) well under

the switching signal𝜎(𝑡), and the tracking error ‖𝑒(𝑡)‖ is small
in the sense of 𝑟∗. Simulation illustrates the effectiveness of
the proposed method.

6. Conclusion

This paper has considered the state tracking problem for
a class of MRAC systems in the presence of controller
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Figure 5:Thenormof the tracking error of (12) under𝜎(𝑡)(‖𝑒(𝑡
0
)‖ =

7.81).
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Figure 6:Thenormof the tracking error of (12) under𝜎(𝑡)(‖𝑒(𝑡
0
)‖ =

2.236).

temporary failure. A key point is to describe such a system
as an error switched system. The properties of Lyapunov
function candidateswithout switching have been given.Then,
the global practical stability of the error switched system
can be ensured by the proposed scheme, providing that the
controller suffers from failures only for a relatively short time
interval and with a low frequency of occurrence. It is an
interesting topic to extend the results for the output tracking
problem of adaptive systems.
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This paper studies the problem of H
∞

finite-impulse response (FIR) filtering design of time-delay system. The time-delay
considered here is time-varying meanwhile with a certain stochastic characteristic, and the probability of delay distribution is
assumed to be known. Furthermore, the requirement of pulse-shape is also considered in filter design. Employing the information
about the size and probability distribution of delay, a delay-probability-distribution-dependent criterion is proposed for the filtering
error system. Based on a Lyapunov-Krasovskii functional, a set of linear matrix inequalities (LMIs) are formulated to solve the
problem. At last, a numerical example is used to demonstrate the effectiveness of the filter design approach proposed in the paper.

1. Introduction

In the studies about filtering problem, one most significant
approach frequently applied in the past decades is Kalman
filtering, themain idea ofwhich is tominimize the variance of
the estimation error assuming considered system dynamics
to be exactly known and the external disturbances to be
stationary Gaussian noises with known statistical properties
[1, 2]. However, in many practical engineering applications,
the statistical details about external noise are not available [3–
8]. In these cases,many approaches are introduced to improve
systems’ robustness, such as H

∞
, H
2
, and mixed H

∞
/H
2

filtering [2, 9–13]. In this paper, theH
∞
filtering approach is

utilized.
On the other hand, time-delays are frequently encoun-

tered in practical engineering systems, such asmanufacturing
systems, power systems, and networked control systems [14–
17]. Existence of delay makes the analysis and synthesis of
systems a much more difficult task; meanwhile it is also
the source of instability and poor performance in many
cases [13, 18–20]. The main approaches to solve delay prob-
lems can be classified into delay-dependent approach and
delay-independent approach. It has been shown in [21, 22]

that the results obtained using delay-dependent approaches
are generally less conservative than the delay-independent
approaches ones [23]. Acknowledging this fact, the delay-
dependent approach is applied in this paper.

In fact, the variation of delay may often stick to some
probability distribution in spite of its varying and underivable
property [24, 25]. Furthermore, in many real systems such
as networked control systems, the time-varying delay may
have some abrupt burst, leading to very large delay with a
very small probability [26]. In this sense, the discussion about
time-delay should not only depend on its size but also on
its probability distribution. In this paper, a new filter design
approach and new stability criteria for the filtering error
system taking the stochastic characteristic of time-varying
delay into account is proposed.

While an H
∞

optimal filter can catch the frequency-
domain property, the time-domain constraints such as enve-
lope constraints or bounds on signals cannot be handled by
this frequency-domain approach [27]. Among various time-
domain specifications, envelope constraints, which make
requirement on the pulse-shape, have significant applications
in many practical engineering systems, such as communi-
cation systems, radar, sonar systems, and signal processing
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systems [28–31]. For instance, in deconvolution filtering
and data channel equalization problems, it is extremely
important to achieve a desired pulse-shape throughdesigning
an appropriate filter [27].

Therefore, aiming at incorporating both frequency-
domain and time-domain constraints into the problem, we
intend to design a filter satisfying the H

∞
performance and

subject to envelope constraints in outputs. Meanwhile, time-
varying delays with certain stochastic characteristics in the
transmission channel are also taken into account. With the
proposed filter design approach, a more general condition
of time-varying delay problem can be solved. As in most
situations, although detailed and exact information about
delay cannot be achieved, the delay’s probability distribution
characteristics can be predicted or observed relatively easily.
Once the probability information is gotten, the filter design
approach can be developed.

In this paper, based on a Lyapunov-Krasovskii functional,
we first present an H

∞
optimal solution to the design

of a finite-impulse response (FIR) filter using information
about the range of time-varying delay and its probability
distribution. Then, the envelope constraints are taken into
consideration. The resultant filter is called an H

∞
optimal

Envelope-Constrained FIR (ECFIR) filter. We obtain the
solution via solving an LMI optimization problem. At last, a
numerical example is presented to illustrate the effectiveness
of the proposed filtering design approach.

2. Problem Formulation and Preliminaries

Consider a filtering system shown in Figure 1, where Σ
𝑙
rep-

resents a linear dynamic system with state-space realization
given by

Σ
𝑙
:

{

{

{

𝑥
𝑙
(𝑘 + 1) = 𝐴

𝑙
𝑥
𝑙
(𝑘) + 𝐵

𝑙
𝑤 (𝑘)

𝑠 (𝑘) = 𝐶
𝑙
𝑥
𝑙
(𝑘) ,

(1)

where 𝑥
𝑙
(𝑘) ∈ R𝑛𝑙 is the model state vector, 𝑤(𝑘) ∈ R𝑛𝑤 is

the input signal, 𝑠(𝑘) ∈ R𝑛𝑠 is the source signal generated by
the model, and 𝐴

𝑙
, 𝐵
𝑙
, 𝐶
𝑙
are known constant matrices with

appropriate dimensions. Then the output 𝑠(𝑘) is transmitted
through a channel with time-varying delay modeled by

Σ
𝑐
:

{

{

{

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
𝑥
𝑐
(𝑘) + 𝐴

𝑑
𝑠 (𝑘 − 𝑑 (𝑘)) + 𝐵

𝑐
V (𝑘)

𝑦 (𝑘) = 𝐶
𝑐
𝑥
𝑐
(𝑘) + 𝐶

𝑑
𝑠 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑐
V (𝑘) ,

(2)

where 𝑥
𝑐
(𝑘) ∈ R𝑛𝑐 is the channel state vector, 𝑑(𝑘) ∈ [0, 𝑑

2
]

is the time-varying delay with an upper bound of 𝑑
2
, 𝑦(𝑘) is

the output of the channel, and V(𝑘) is the disturbance input;
𝐴
𝑐
,𝐴
𝑑
, 𝐵
𝑐
,𝐶
𝑐
,𝐶
𝑑
,𝐷
𝑐
are all known constant systemmatrices

with appropriate dimensions. As is shown in (2), the source
signal 𝑠(𝑘) suffers from influence of time-varying delay 𝑑(𝑘)
and disturbance from the environment represented by V(𝑘).
The output of transmission channel is 𝑦(𝑘), which is also the
input signal of the filter. We are going to use the corrupted
signal 𝑦(𝑘) to reconstruct original source signal.

Signal model Transmission channel FIR filter
+

−

w(k) s(k) y(k)

e(k)

ŝ(k)

Noise
�(k)

∑l ∑c ∑f

Figure 1: Filtering system.

Assumption 1. 𝑑(𝑘) changes randomly and for a constant 𝑑
1
∈

[0, 𝑑
2
], and the probability of 𝑑(𝑘) ∈ [0, 𝑑

1
) and 𝑑(𝑘) ∈

[𝑑
1
, 𝑑
2
] can be known. The following sets and functions are

defined:

Ω
1
= {𝑘 : 𝑑 (𝑘) ∈ [0, 𝑑

1
)} ,

Ω
2
= {𝑘 : 𝑑 (𝑘) ∈ [𝑑

1
, 𝑑
2
]} ,

𝑑
1
(𝑘) = {

𝑑 (𝑘) , for 𝑘 ∈ Ω
1

0 for 𝑘 ∉ Ω
1
,

𝑑
2
(𝑘) = {

𝑑 (𝑘) , for 𝑘 ∈ Ω
2

𝑑
1
, for 𝑘 ∉ Ω

2
.

(3)

Obviously, it can be seen from the definition that 𝑘 ∈ Ω
1
is

equal to the occurrence of event 𝑑(𝑘) ∈ [0, 𝑑
1
) and 𝑘 ∈ Ω

2

means that the event 𝑑(𝑘) ∈ [𝑑
1
, 𝑑
2
] occurs. Therefore, a

stochastic variable 𝛽(𝑘) can be defined as

𝛽 (𝑘) = {

1, 𝑘 ∈ Ω
1

0, 𝑘 ∈ Ω
2
.

(4)

Assumption 2. 𝛽(𝑘) is a Bernoulli distributed sequence with

Prob {𝛽 (𝑘) = 1} = E {𝛽 (𝑘)} = 𝛽
0
,

Prob {𝛽 (𝑘) = 0} = 1 − E {𝛽 (𝑘)} = 1 − 𝛽
0
,

(5)

where 0 ≤ 𝛽
0
≤ 1 is a constant.

Remark 3. From Assumption 2, it is easy to see that E{𝛽(𝑘) −
𝛽
0
} = 0 and E{(𝛽(𝑘) − 𝛽

0
)
2

} = 𝛽
0
(1 − 𝛽

0
). As Prob {𝑑(𝑘) ∈

[0, 𝑑
1
)} = Prob {𝛽(𝑘) = 1} = 𝛽

0
and Prob {𝑑(𝑘) ∈

[𝑑
1
, 𝑑
2
]} = Prob {𝛽(𝑘) = 0} = 1 − 𝛽

0
, 𝛽
0
and 1 − 𝛽

0
also

denote the probability of 𝑑(𝑘) taking values in [0, 𝑑
1
) and

[𝑑
1
, 𝑑
2
], respectively.

According to Assumptions 1 and 2, the system model
described by (2) can be rewritten as

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
𝑥
𝑐
(𝑘) + 𝛽 (𝑘) 𝐴

𝑑
𝑠 (𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐴
𝑑
𝑠 (𝑘 − 𝑑

2
(𝑘)) + 𝐵

𝑐
V (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑐
𝑥
𝑐
(𝑘) + 𝛽 (𝑘) 𝐶

𝑑
𝑠 (𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐶
𝑑
𝑠 (𝑘 − 𝑑

2
(𝑘)) + 𝐷

𝑐
V (𝑘) .

(6)



Mathematical Problems in Engineering 3

At the receiving end, we are interested in designing a linear
filter with state-realization as follows:

Σ
𝑓
:

{

{

{

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
𝑦 (𝑘)

𝑠 (𝑘) = 𝐶
𝑓
𝑥
𝑓
(𝑘) + 𝐷

𝑓
𝑦 (𝑘) ,

(7)

where 𝑥
𝑓
(𝑘) ∈ R𝑛𝑓 is the filter state vector, 𝑠(𝑘), is the

estimated signal of source signal 𝑠(𝑘) and𝐴
𝑓
,𝐵
𝑓
,𝐶
𝑓
,𝐷
𝑓
have

the following form:

𝐴
𝑓
=

[

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]
𝑛𝑓×𝑛𝑓

, 𝐵
𝑓
=

[

[

[

[

[

[

[

0

0

...
0

1

]

]

]

]

]

]

]
𝑛𝑓×1

,

𝐶
𝑓
= [𝑓 (𝑛

𝑓
) 𝑓 (𝑛

𝑓
− 1) . . . 𝑓 (1)]𝐷

𝑓
= 𝑓 (0) .

(8)

The transfer function of the filter is given by

Φ
𝑓
(𝑧) = 𝐶

𝑓
(𝑧𝐼 − 𝐴

𝑓
)

−1

𝐵
𝑓
+ 𝐷
𝑓

= 𝑓 (0) + 𝑓 (1) 𝑧
−1

+ 𝑓 (2) 𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑓 (𝑛
𝑓
) 𝑧
−𝑛𝑓
,

(9)

where 𝑓(0), 𝑓(1), . . ., and 𝑓(𝑛
𝑓
) are parameters to be deter-

mined.Define the filtering error as 𝑒(𝑘) = 𝑠(𝑘)−𝑠(𝑘).Then, via
augmenting the models Σ

𝑙
and Σ

𝑐
, the filtering error system

is given as follows:

Σ
𝑒
:

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑥
𝑒
(𝑘 + 1) = 𝐴

𝑒
𝑥
𝑒
(𝑘)

+𝛽 (𝑘)𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘)) + 𝐵

𝑒
𝑤
𝑒
(𝑘)

𝑒 (𝑘)

= 𝐶
𝑒
𝑥
𝑒
+ 𝛽 (𝑘) 𝐶

𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐶
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘)) + 𝐷

𝑒
𝑤
𝑒
(𝑘) ,

(10)

where

𝑥
𝑇

𝑒
(𝑘) = [𝑥

𝑇

𝑙
(𝑘) 𝑥

𝑇

𝑐
(𝑘) 𝑥

𝑇

𝑓
(𝑘)]

𝑇

,

𝑤
𝑒
(𝑘) = [𝑤

𝑇

(𝑘) V𝑇 (𝑘)]
𝑇

,

𝐴
𝑒
=
[

[

𝐴
𝑙

0 0

0 𝐴
𝑐

0

0 𝐵
𝑓
𝐶
𝑐
𝐴
𝑓

]

]

, 𝐵
𝑒
=
[

[

𝐵
𝑙

0

0 𝐵
𝑐

0 𝐵
𝑓
𝐷
𝑐

]

]

,

𝐶
𝑒
= [𝐶
𝑙
−𝐷
𝑓
𝐶
𝑐
−𝐶
𝑓
] ,

𝐷
𝑒
= [0 −𝐷

𝑓
𝐷
𝑐
] ,

𝐴
𝑒𝑑
=
[

[

0 0 0

𝐴
𝑑
𝐶
𝑙
0 0

𝐵
𝑓
𝐶
𝑑
𝐶
𝑙
0 0

]

]

, 𝐶
𝑒𝑑
= [−𝐷

𝑓
𝐶
𝑑
𝐶
𝑙
0 0] .

(11)

Before giving the main results, we need following definitions
at first.

Definition 4. For a given function 𝑉(𝑥(𝑘)), its stochastic
difference operator is defined as

Δ𝑉 (𝑥 (𝑘)) = E {𝑉 (𝑥 (𝑘 + 1)) | 𝑥 (𝑘)} − 𝑉 (𝑥 (𝑘)) . (12)

Definition 5 (see [32]). The filtering error system in (10) is
said to be stochastically stable if for any initial condition
𝑥
𝑒
(0) and zero exogenous noise 𝑤

𝑒
(𝑘), there exists a positive

definite 𝑊 independent of 𝑥
𝑒
(0), such that the following

condition is satisfied:

E{
∞

∑

𝑘=0





𝑥
𝑒
(𝑘)





2

| 𝑥
𝑒
(0)} < 𝑥

𝑇

𝑒
(0)𝑊𝑥

𝑒
(0) . (13)

Definition 6. System (10) is said to be stochastically stable
with anH

∞
norm bound 𝛾, if the following conditions hold.

(1) The filtering error system with 𝑤
𝑒
(𝑘) = 0 is stochasti-

cally stable.
(2) For all nonzero 𝑤

𝑒
(𝑘) ∈ 𝑙

2
[0,∞) and under zero

initial conditions, the following inequality holds:

‖𝑒 (𝑘)‖
2
≤ 𝛾




𝑤
𝑒
(𝑘)



2
. (14)

Now, with the definitions above, we present the objective
of this paper.

Given the filtering system shown in Figure 1, we are
interested in designing a filter in the form of (7)-(8) such that

(a) the filtering error system (10) is asymptotically stable
in the stochastic sense;

(b) the filtering error system (10) possesses a minimized
H
∞

performance level 𝛾;
(c) a time-domain envelope constraint is imposed on the

output signal 𝑠(𝑘) as follows:

𝑙 (𝑘) ≤ 𝑠 (𝑘) ≤ 𝑢 (𝑘) , (15)

where 𝑙(𝑘) and 𝑢(𝑘) are the lower and upper bounds of the
time-domain mask, respectively.

3. Main Results

In this section, based on the Lyapunov-Krasovskii sta-
bility theorem, a delay-probability-distribution-dependent
approach is proposed to solve theH

∞
FIR filter design prob-

lem subject to envelope constraints described in (15). First, a
stability criterion for the filtering error system described in
(10) is proposed.Then the envelope constraints are taken into
consideration. AnH

∞
optimal ECFIR filter design approach

is given at last.

Theorem 7. Given the system in Figure 1, for some given
constants 0 ≤ 𝑑

1
≤ 𝑑
2
, 𝛽
0
, and 𝛾, the filtering error system (10)
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is stochastically stable with H
∞

performance 𝛾 if there exist
matrices 𝑃 > 0, 𝑄

1
> 0, 𝑄

2
> 0, 𝑅

1
> 0, 𝑅

2
> 0 of appropriate

dimensions such that the following optimization problem has
solutions,

min
𝑃>0,𝑄1>0,𝑄2>0, 𝑅1>0, 𝑅2>0, 𝑓

𝛾, (16)

subject to the following LMI constraint:

Ξ =
[

[

Ξ
11
Ξ
12
Ξ
13

∗ Ξ
22
Ξ
23

∗ ∗ Ξ
33

]

]

< 0, (17)

where

Ξ
11
=

[

[

[

[

[

[

−𝑃 𝑃𝐴
𝑒

𝛽
0
𝑃𝐴
𝑒𝑑

∗ 𝑄 − 𝑃 −

1

𝑑
1

𝑅
1

1

𝑑
1

𝑅
1

∗ ∗ −𝑄
1
−

1

𝑑
1

𝑅
1
−

1

𝑑
2
− 𝑑
1

𝑅
2

]

]

]

]

]

]

,

Ξ
12
=

[

[

[

[

(1 − 𝛽
0
) 𝑃𝐵
𝑒
𝑃𝐵
𝑒

0

0 0 √𝑑
1
(𝐴
𝑇

𝑒
− 𝐼) 𝑅

1

1

𝑑
2
− 𝑑
1

𝑅
2

0 √𝑑
1
𝛽
0
𝐴
𝑇

𝑒𝑑
𝑅
1

]

]

]

]

,

Ξ
13
=
[

[

[

0 0

√𝑑
2
− 𝑑
1
(𝐴
𝑇

𝑒
− 𝐼) 𝑅

2
𝐶
𝑇

𝑒

𝛽
0
√𝑑
2
− 𝑑
1
𝐴
𝑇

𝑒𝑑
𝑅
2

𝛽
0
𝐶
𝑇

𝑒𝑑

]

]

]

,

Ξ
22
=


















−𝑄
2
−

1

𝑑
2
− 𝑑
1

𝑅
2

0 √𝑑
1
(1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
𝑅
1

∗ −𝛾
2

𝐼 √𝑑
1
𝐵
𝑇

𝑒
𝑅
1

∗ ∗ −𝑅
1


















,

Ξ
23
=
[

[

[

√𝑑
2
− 𝑑
1
(1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
𝑅
2
(1 − 𝛽

0
) 𝐶
𝑇

𝑒𝑑

√𝑑
2
− 𝑑
1
𝐵
𝑇

𝑒
𝑅
2

𝐷
𝑇

𝑒

0 0

]

]

]

,

Ξ
33
= [

−𝑅
2
0

∗ −𝐼
] ,

𝑄 = (1 + 𝑑
1
) 𝑄
1
+ (𝑑
2
− 𝑑
1
+ 1)𝑄

2
,

(18)

and 𝐴
𝑒
, 𝐴
𝑒𝑑
, 𝐵
𝑒
, 𝐶
𝑒
, 𝐶
𝑒𝑑
, and𝐷

𝑒
are defined in (11).

Proof. First, define a Lyapunov-Krasovskii functional as fol-
lows:

𝑉 (𝑘) ≜ 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) , (19)

where
𝑉
1
(𝑘) ≜ 𝑥

𝑇

𝑒
(𝑘) 𝑃𝑥

𝑒
(𝑘) ,

𝑉
2
(𝑘) ≜

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖)

+

𝑘−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖) ,

𝑉
3
(𝑘) ≜

−1

∑

𝑖=−𝑑1+2

𝑘−1

∑

𝑗=𝑘+𝑖−1

𝑥
𝑇

𝑒
(𝑗)𝑄
1
𝑥
𝑒
(𝑗)

+

−𝑑1+1

∑

𝑖=−𝑑2+2

𝑘−1

∑

𝑗=𝑘+𝑖−1

𝑥
𝑇

𝑒
(𝑗)𝑄
2
𝑥
𝑒
(𝑗) ,

𝑉
4
(𝑘) ≜

𝑘−1

∑

𝑖=𝑘−𝑑1

𝑘−1

∑

𝑗=𝑖

𝛿
𝑇

(𝑗) 𝑅
1
𝛿 (𝑗)

+

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

𝑘−1

∑

𝑗=𝑖

𝛿
𝑇

(𝑗) 𝑅
2
𝛿 (𝑗) ,

𝛿 (𝑗) ≜ 𝑥
𝑒
(𝑗 + 1) − 𝑥

𝑒
(𝑗) ,

(20)

and 𝑃 = 𝑃𝑇 > 0, 𝑄
1
= 𝑄
𝑇

1
> 0, 𝑄

2
= 𝑄
𝑇

2
> 0, 𝑅

1
= 𝑅
𝑇

1
> 0,

and 𝑅
2
= 𝑅
𝑇

2
> 0 are Lyapunov matrices to be determined.

Then using the stochastic difference operator defined in
(12), we obtain

Δ𝑉
1
(𝑘) = [𝑥

𝑇

𝑒
(𝑘) 𝐴
𝑇

𝑒
+ 𝛽
0
𝑥
𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘)) 𝐴

𝑇

𝑒𝑑

+ (1 − 𝛽
0
) 𝑥
𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘)) 𝐴

𝑇

𝑒𝑑
+ 𝑤
𝑇

𝑒
(𝑘) 𝐵
𝑇

𝑒
]

× 𝑃 [𝐴
𝑒
𝑥
𝑒
(𝑘) + 𝛽

0
𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽
0
) 𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘)) + 𝐵

𝑒
𝑤
𝑒
(𝑘)]

− 𝑥
𝑇

𝑒
(𝑘) 𝑃𝑥

𝑒
(𝑘) ,

Δ𝑉
2
(𝑘) = 𝑥

𝑇

𝑒
(𝑘) (𝑄

1
+ 𝑄
2
) 𝑥
𝑒
(𝑘) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘))

× 𝑄
1
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

− 𝑥
𝑇

e (𝑘 − 𝑑2 (𝑘)) 𝑄2𝑥𝑒 (𝑘 − 𝑑2 (𝑘))

+

𝑘−1

∑

𝑖=𝑘+1−𝑑1(𝑘+1)

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖)

−

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑2(𝑘+1)

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖)

−

𝑘−1

∑

𝑖=𝑘−𝑑2(𝑘)+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖)
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≤ 𝑥
𝑇

𝑒
(𝑘) (𝑄

1
+ 𝑄
2
) 𝑥
𝑒
(𝑘) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘))

× 𝑄
1
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

− 𝑥
𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘)) 𝑄

2
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘))

+

𝑘

∑

𝑖=𝑘−𝑑1+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖) +

𝑘−𝑑1

∑

𝑘−𝑑2+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖) ,

Δ𝑉
3
(𝑘) = 𝑑

1
𝑥
𝑇

𝑒
(𝑘) 𝑄
1
𝑥
𝑒
(𝑘) + (𝑑

2
− 𝑑
1
) 𝑥
𝑇

𝑒
(𝑘) 𝑄
2
𝑥
𝑒
(𝑘)

−

𝑘

∑

𝑖=𝑘−𝑑1+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖) −

𝑘−𝑑1

∑

𝑖=𝑘−𝑑2+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖) ,

Δ𝑉
4
(𝑘) = 𝑑

1
𝛿
𝑇

(𝑘) 𝑅
1
𝛿 (𝑘) + (𝑑

2
− 𝑑
1
) 𝛿
𝑇

(𝑘) 𝑅
2
𝛿 (𝑘)

−

𝑘−1

∑

𝑖=𝑘−𝑑1

𝛿
𝑇

(𝑖) 𝑅
1
𝛿 (𝑖) −

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

𝛿
𝑇

(𝑖) 𝑅
2
𝛿 (𝑖)

≤ 𝑑
1
𝛿
𝑇

(𝑘) 𝑅
1
𝛿 (𝑘) + (𝑑

2
− 𝑑
1
) 𝛿
𝑇

(𝑘) 𝑅
2
𝛿 (𝑘)

−

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖) 𝑅
1
𝛿 (𝑖) −

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖) 𝑅
2
𝛿 (𝑖) .

(21)

Using the Jensen inequality [33], the following expressions are
obtained:

−

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖) 𝑅
1
𝛿 (𝑖)

≤ −

1

𝑑
1
(𝑘)

(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖))𝑅
1
(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿 (𝑖))

≤ −

1

𝑑
1

(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖))𝑅
1
(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿 (𝑖)) ,

−

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖) 𝑅
2
𝛿 (𝑖)

≤ −

1

𝑑
2
(𝑘) − 𝑑

1

(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖))𝑅
2
(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿 (𝑖))

≤ −

1

𝑑
2
− 𝑑
1

(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖))𝑅
2
(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿 (𝑖)) .

(22)

Thus, we have

Δ𝑉
4
(𝑘) ≤ 𝛿

𝑇

(𝑘) [𝑑
1
𝑅
1
+ (𝑑
2
− 𝑑
1
) 𝑅
2
] 𝛿 (𝑘)

−

1

𝑑
1

[𝑥
𝑇

𝑒
(𝑘) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘))]

× 𝑅
1
[𝑥
𝑒
(𝑘) − 𝑥

𝑒
(𝑘 − 𝑑

1
(𝑘))]

−

1

𝑑
2
− 𝑑
1

[𝑥
𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘)) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘))]

× 𝑅
1
[𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘)) − 𝑥

𝑒
(𝑘 − 𝑑

2
(𝑘))] .

(23)

Thus, we obtain

Δ𝑉 (𝑘) = Δ𝑉
1
(𝑘) + Δ𝑉

2
(𝑘) + Δ𝑉

3
(𝑘)

+ Δ𝑉
4
(𝑘) ≤ 𝜂

𝑇

(𝑘) Υ𝜂 (𝑘) ,

(24)

where

𝜂
𝑇

(𝑘)=[𝑥
𝑇

𝑒
(𝑘) 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘)) 𝑥

𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘)) 𝑤

𝑇

𝑒
(𝑘) ],

Υ =

[

[

[

[

Υ
11
Υ
12
Υ
13
Υ
14

∗ Υ
22
Υ
23
Υ
24

∗ ∗ Υ
33
Υ
34

∗ ∗ ∗ Υ
44

]

]

]

]

,

Υ
11
= 𝐴
𝑇

𝑒
𝑃𝐴
𝑒
+ (𝐴
𝑇

𝑒
− 𝐼) 𝑅 (𝐴

𝑒
− 𝐼) + 𝑄 − 𝑃 −

1

𝑑
1

𝑅
1
,

Υ
12
= 𝛽
0
𝐴
𝑇

𝑒
𝑃𝐴
𝑒𝑑
+ 𝛽
0
(𝐴
𝑇

𝑒
− 𝐼) 𝑅𝐴

𝑒𝑑
+

1

𝑑
1

𝑅
1
,

Υ
13
= (1 − 𝛽

0
) 𝐴
𝑇

𝑒
𝑃𝐴
𝑒𝑑
+ (1 − 𝛽

0
) (𝐴
𝑇

𝑒
− 𝐼) 𝑅𝐴

𝑒𝑑
,

Υ
14
= 𝐴
𝑇

𝑒
𝑃𝐵
𝑒
+ (𝐴
𝑇

𝑒
− 𝐼) 𝑅𝐵

𝑇

𝑒
,

Υ
22
= 𝛽
2

0
𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅)𝐴

𝑒𝑑
− 𝑄
1
−

1

𝑑
1

𝑅
1
−

1

𝑑
2
− 𝑑
1

𝑅
2
,

Υ
23
= 𝛽
0
(1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅)𝐴

𝑒𝑑
+

1

𝑑
2
− 𝑑
1

𝑅
2
,

Υ
24
= 𝛽
0
𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅) 𝐵

𝑒
,

Υ
33
= (1 − 𝛽

0
)
2

𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅)𝐴

𝑒𝑑
− 𝑄
2
−

1

𝑑
2
− 𝑑
1

𝑅
2
,

Υ
34
= (1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅) 𝐵

𝑒
,

Υ
44
= 𝐵
𝑇

𝑒
(𝑃 + 𝑅) 𝐵

𝑒
,

𝑅 = 𝑑
1
𝑅
1
+ (𝑑
2
− 𝑑
1
) 𝑅
2
.

(25)

By Schur complement, it can be concluded from (17) thatΥ <
0. By similar lines as in [32], the stochastic stability can be
guaranteed if condition (17) holds.

Then, define the performance index as follows:

𝐽 =

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑤
𝑇

𝑒
(𝑘) 𝑤
𝑒
(𝑘)] . (26)
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Considering the fact that 𝑉(𝑘) ≥ 0, under the zero initial
condition, we have

𝐽 ≤

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑤
𝑇

𝑒
(𝑘) 𝑤
𝑒
(𝑘)] + 𝑉 (∞) − 𝑉 (0)

=

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑤
𝑇

𝑒
(𝑘) 𝑤
𝑒
(𝑘) + Δ𝑉 (𝑘)] .

(27)

Thus, 𝐽 < 0 is equal to

𝜂
𝑇

(𝑘) (Θ + Υ) 𝜂 (𝑘) < 0, (28)

where

Θ =

[

[

[

[

𝐶
𝑇

𝑒
𝐶
𝑒
𝛽
0
𝐶
𝑇

𝑒
𝐶
𝑒𝑑

(1 − 𝛽
0
) 𝐶
𝑇

𝑒
𝐶
𝑒𝑑

𝐶
𝑇

𝑒
𝐷
𝑒

∗ 𝛽
2

0
𝐶
𝑇

𝑒𝑑
𝐶
𝑒𝑑
𝛽
0
(1 − 𝛽

0
) 𝐶
𝑇

𝑒𝑑
𝐶
𝑒𝑑

𝛽
0
𝐶
𝑇

𝑒𝑑
𝐷
𝑒

∗ ∗ (1 − 𝛽
0
)
2

𝐶
𝑇

𝑒𝑑
𝐶
𝑒𝑑

(1 − 𝛽
0
) 𝐶
𝑇

𝑒𝑑
𝐷
𝑒

∗ ∗ ∗ 𝐷
𝑇

𝑒
𝐷
𝑒
− 𝛾
2

𝐼

]

]

]

]

.

(29)

Through applying Schur complement, it is shown that (Θ +
Υ) < 0 can be guaranteed by condition (17). That is to say,
once (17) is satisfied, theH

∞
performance can be guaranteed

to be less than 𝛾. Thus, the proof is completed.
At this point, the second desired property of the system

will be considered, which is the envelope constraints demand.
First, some notations are introduced [34]:

𝑦 =

[

[

[

[

[

𝑦 (0)

𝑦 (1)

...
𝑦 (𝑚)

]

]

]

]

]

, 𝑙 =

[

[

[

[

[

𝑙 (0)

𝑙 (1)

...
𝑙 (𝑛)

]

]

]

]

]

,

𝑢 =

[

[

[

[

[

𝑢 (0)

𝑢 (1)

...
𝑢 (𝑛)

]

]

]

]

]

, 𝑓 =

[

[

[

[

[

𝑓 (0)

𝑓 (1)

...
𝑓 (𝑛
𝑓
)

]

]

]

]

]

,

𝑌 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑦 (0) 0 ⋅ ⋅ ⋅ 0

𝑦 (1) 𝑦 (0) ⋅ ⋅ ⋅ 0

... 𝑦 (1) ⋅ ⋅ ⋅

...

𝑦 (𝑚)

... 𝑦 (0)

0 𝑦 (𝑚)

... 𝑦 (1)

...
...

...
0 0 ⋅ ⋅ ⋅ 𝑦 (𝑚)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(30)

where 𝑌 is an 𝑛 × (𝑛
𝑓
+ 1)matrix, 𝑛 = 𝑚 + 𝑛

𝑓
+ 1,

{𝑦 (0) 𝑦 (1) ⋅ ⋅ ⋅ 𝑦 (𝑚) 0 0 ⋅ ⋅ ⋅} (31)

is a given signal, and

{𝑙 (0) 𝑙 (1) ⋅ ⋅ ⋅ 𝑙 (𝑚)} ,

{𝑢 (0) 𝑢 (1) ⋅ ⋅ ⋅ 𝑢 (𝑚)}

(32)

Are, respectively, the upper and lower bounds.Therefore, the
constraint of (15) is equal to

diag (𝑙) ≤ diag (𝑌𝑓) ≤ diag (𝑢) , (33)

where diag(∙) denotes a conversion from a vertical vector to
a diagonal matrix.

Based on Theorem 7 and (33), we can establish another
theorem to determine the filter that satisfies the envelope con-
straint meanwhile possessing optimalH

∞
performance.

Theorem 8. AnH
∞

optimal filter of the form (7)-(8) satisfy-
ing envelope constraint in (15) can be obtained by solving the
following LMI optimization problem:

min
𝑃>0,𝑄1>0,𝑄2>0, 𝑅1>0, 𝑅2>0, 𝑓

𝛾, (34)

subject to

Ξ =
[

[

Ξ
11
Ξ
12
Ξ
13

∗ Ξ
22
Ξ
23

∗ ∗ Ξ
33

]

]

< 0,

diag (𝑙) ≤ diag (𝑌𝑓) ,

diag (𝑌𝑓) ≤ diag (𝑢) ,

(35)

where Ξ is defined in (17).

4. An Illustrative Example

In this section, an example is given to support the filter design
method proposed in the paper. Consider a filtering system as
shown in Figure 1. The parameters for Σ

𝑙
are given by

𝐴
𝑙
=

[

[

[

[

[

[

−2.3060 −2.9625 −2.2590 −1.0922 −0.3009 −0.0325

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

]

]

]

]

]

]

,

𝐵
𝑙
=

[

[

[

[

[

[

1

0

0

0

0

0

]

]

]

]

]

]

,

𝐶
𝑙
= [0 0 0 0 0.0062 0.2170] .

(36)

The parameters for the delay channel Σ
𝑐
are given by

𝐴
𝑐
= [

0 1

0 −0.1
] , 𝐴

𝑑
= [

0

0.1
] , 𝐵

𝑐
= [

0.1

0.1
] ,

𝐶
𝑐
= [0 1] , 𝐶

𝑐𝑑
= 0.2, 𝐷

𝑐
= 1,

𝑑
1
= 2, 𝑑

2
= 3, 𝛽

0
= 0.7.

(37)

UsingTheorem 8, theH
∞
optimal filter is obtained via using

the LMI toolbox of MATLAB with 𝑛
𝑓
chosen to be 5. The
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Figure 2: Source signal 𝑠(𝑘), filter input signal 𝑦(𝑘), and envelope
bounds.
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Figure 3: Output of the filter without disturbance.

resultant optimal 𝛾 is 8.5057 and filter gains are given as
follows:

𝐶
𝑓
= [0.0437 −0.3344 −0.4023 0.2045 −0.5089] ,

𝐷
𝑓
= 4.3664.

(38)

The expected envelope constraints and 𝑠(𝑘) (the output
of Σ
𝑙
) corresponding to a particular case where input signal

0.3

0.25

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

−0.2

Filtering error e(k)

0 5 10 15 20 25 30 35 40 45 50
Time in samples

Figure 4: Filtering error 𝑒(𝑘) without disturbance.

𝑤(𝑘) is chosen to be unit impulse signal are shown in Figure 2.
The transmitted signal 𝑦(𝑘) through Σ

𝑐
which is generated

with no noise added is also given in the figure. The filter
output 𝑠(𝑘) and filtering error 𝑒(𝑘) are given in Figures 3 and
4, respectively.

Furthermore, to illustrate the performance of the
designed filter, we add the disturbance signal V(𝑘) chosen as
white noise with mean of zero and variance of 1 × 10−3 into
the system. The resultant filter output and filtering error are
shown in Figures 5 and 6, respectively. It is shown that the
designed filter is effective.

5. Conclusions

In this paper, we have solved the filtering design problem of
time-delay system. The time-delay considered here is time-
varying meanwhile with a certain stochastic characteristic,
and the probability of delay distribution is assumed to
be known. Furthermore, the envelope constraints are also
considered in the process of filtering design. The delay-
distribution-dependent criterion is formed for the filtering
error system, employing the information about not only
the size of delay but also its probability distribution. A
set of linear matrix inequalities (LMIs) are formulated to
solve the problem. Through solving the LMI optimization
problem, theH

∞
performance isminimized and pulse-shape

demand imposed by envelope constraints is satisfied. Finally,
an illustrative example is presented to demonstrate the effec-
tiveness of the filtering design approach. For future research
directions, extending the filter design approach proposed
in this paper to networked control systems and distributed
systems is an interesting issue. Besides, more general filter
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Figure 5: Output of the filter with disturbance.
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Figure 6: Filtering error 𝑒(𝑘) with disturbance.

design approaches considering delays in different forms with
different characteristics also deserve further investigation.
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This paper studies the problem of delay-dependent robust𝐻
∞
output feedback control for a class of uncertain fuzzy neutral systems

with both discrete and distributed delays. The system is described by a state-space Takagi-Sugeno fuzzy model with distributed
delays and norm-bounded parameter uncertainties. The purpose is to design a fuzzy dynamic output feedback controller which
ensures the robust asymptotic stability of the closed-loop fuzzy neutral system and satisfies an 𝐻

∞
norm bound constraint for all

admissible uncertainties. In terms of linearmatrix inequalities, sufficient conditions for the solvability of this problem are presented.
Finally, a numerical example is included to demonstrate the effectiveness of the proposed method.

1. Introduction

Fuzzy control, as a promising way to approach nonlinear
control problems, has had an impact on the control com-
munity [1–4]. Furthermore, the Takagi-Sugeno (T-S) fuzzy
dynamic model [5–9] is nonlinear system described by fuzzy
IF-THEN rules which give local linear representations of
the underlying systems [10, 11]. It has been shown that such
models can describe a wide class of nonlinear systems. Hence
it is important to investigate their stability analysis and
controller design problems, and in the past two decadesmany
stability and control issues related to the T-S fuzzy systems
have been studied; see, for example, [12–15] and the references
cited therein.

On the other hand, time delays exist commonly in
dynamic systems due to measurement, transmission, trans-
port lags, and so forth [16], which have been generally
regarded as a main source of instability and poor perfor-
mance.Thus the analysis of time delay systems and controller
design for them is very important [17–20]. Recently, T-S
fuzzy systems with time delays have attracted a great deal
of interests. For example, in [21], the stability analysis and
stabilization problems for T-S fuzzy delay systems were
considered, and state feedback fuzzy controllers and fuzzy
observers were designed. The robust 𝐻

∞
control problem

for T-S fuzzy systems with time delays was investigated in
[22, 23], and state feedback fuzzy controllers were designed;
the corresponding results for the discrete case can be found
in [24, 25], while in [26, 27], the robust𝐻

∞
output feedback

controllers were designed for the continuous and discrete
fuzzy time-delay systems, respectively.

Quite recently, T-S fuzzy time-delay systems of neutral
typewere introduced in [28], where both the stabilization and
𝐻
∞
control problemswere studied. It should be point out that

distributed delays were not taken into account.While in [29],
authors considered the problems of robust stabilization and
robust 𝐻

∞
control for uncertain T-S fuzzy neutral systems

with both discrete and distributed time delays. However, the
results in [28, 29] were all delay-independent. It is known
that delay-dependent results are less conservative than delay-
independent ones, especially in the case when the size of the
delay is small. On the other hand, these obtained results,
however, are mainly dealt with through a state feedback
controller design method that requires all state variables to
be available. In many cases, this condition is too restrictive.
So it is meaningful to investigate the output feedback control
method. To the best of our knowledge, so far, there are
no results of delay-dependent robust 𝐻

∞
output feedback

control for uncertain fuzzy neutral systemswith both discrete
and distributed delays. This motives the present studies.
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In this paper, we consider the delay-dependent robust𝐻
∞

output feedback control problem for fuzzy neutral systems
with both discrete and distributed delays. The system to be
considered is described by a state-spaceT-S fuzzymodel with
mixed delays and norm-bounded parameter uncertainties.
The distributed delays are assumed to appear in the state
equation, and the uncertainties are allowed to be time varying
but norm bounded. The aim of this paper is to design a full-
order fuzzy dynamic output feedback controller such that the
resulting closed-loop system is robustly asymptotically stable
while satisfying an 𝐻

∞
norm condition with a prescribed

level irrespective of the parameter uncertainties. A sufficient
condition for the solvability of this problem is proposed
in terms of linear matrix inequalities (LMIs). When these
LMIs are feasible, an explicit expression of a desired output
feedback controller is also given.

Notation. Throughout this paper, for real symmetric matrices
𝑋 and 𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the
matrix𝑋−𝑌 is positive semidefinite (resp., positive definite).
𝐼 is an identity matrix with appropriate dimension. N is the
set of natural numbers.L

2
[0,∞) refers to the space of square

summable infinite vector sequences. ‖ ⋅ ‖
2
stands for the usual

L
2
[0,∞) norm.Thenotation𝑀𝑇 represents the transpose of

the matrix𝑀. Matrices, if not explicitly stated, are assumed
to have compatible dimensions. “∗” is used as an ellipsis for
terms induced by symmetry.

2. Problem Formulation

A continuous T-S fuzzy neutral model with distributed
delays and parameter uncertainties can be described by the
following.

Plant Rule 𝑖: if 𝑠
1
(𝑡) is 𝜇

𝑖1
and ⋅ ⋅ ⋅ and 𝑠

𝑝
(𝑡) is 𝜇

𝑖𝑝
, then

̇𝑥 (𝑡) = [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥 (𝑡) + [𝐴

1𝑖
+ Δ𝐴
1𝑖
(𝑡)] 𝑥 (𝑡 − 𝜏

1
)

+ [𝐴
2𝑖
+ Δ𝐴
2𝑖
(𝑡)] ̇𝑥 (𝑡 − 𝜏

2
)

+ [𝐴
3𝑖
+ Δ𝐴
3𝑖
(𝑡)] ∫

𝑡

𝑡−𝜏3

𝑥 (𝑠) 𝑑𝑠

+ [𝐵
𝑖
+ Δ𝐵
𝑖
(𝑡)] 𝑢 (𝑡) + 𝐷

1𝑖
𝑤 (𝑡) ,

𝑦 (𝑡) = [𝐶
𝑖
+ Δ𝐶
𝑖
(𝑡)] 𝑥 (𝑡) + 𝐶

1𝑖
𝑥 (𝑡 − 𝜏

1
) + 𝐷
2𝑖
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐸
𝑖
𝑥 (𝑡) + 𝐸

1𝑖
𝑥 (𝑡 − 𝜏

1
) + 𝐺
𝑖
𝑢 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ∀𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝜇
𝑖𝑗
is the fuzzy set, 𝑟 is the number of IF-THEN rules,

and 𝑠
1
(𝑡), . . . , 𝑠

𝑝
(𝑡) are the premise variables.Throughout this

paper, it is assumed that the premise variables do not depend
on control variables; 𝑥(𝑡) ∈ R𝑛 is the state; 𝑢(𝑡) ∈ R𝑚

is the control input; 𝑦(𝑡) ∈ R𝑠 is the measured output;
𝑧(𝑡) ∈ R𝑞 is the controlled output; 𝑤(𝑡) ∈ R𝑝 is the noise
signal; 𝜏

𝑖
> 0 (𝑖 = 1, 2, 3) are integers representing the

time delay of the fuzzy systems; 𝜏 = max{𝜏
1
, 𝜏
2
, 𝜏
3
}; 𝐴
𝑖
, 𝐴
1𝑖
,

𝐴
2𝑖
, 𝐴
3𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐶
1𝑖
, 𝐷
1𝑖
, 𝐷
2𝑖
, 𝐸
𝑖
, 𝐸
2𝑖
, and 𝐺

𝑖
are known real

constant matrices; Δ𝐴
𝑖
(𝑡), Δ𝐴

1𝑖
(𝑡), Δ𝐴

2𝑖
(𝑡), Δ𝐴

3𝑖
(𝑡), Δ𝐵

𝑖
(𝑡),

and Δ𝐶
𝑖
(𝑡) are real-valued unknown matrices representing

time-varying parameter uncertainties and are assumed to be
of the form
[Δ𝐴
𝑖
(𝑡) Δ𝐴

1𝑖
(𝑡) Δ𝐴

2𝑖
(𝑡) Δ𝐴

3𝑖
(𝑡) Δ𝐵

𝑖
(𝑡) Δ𝐶

𝑖
(𝑡)]

= 𝑀
𝑖
𝐹
𝑖
(𝑡) [𝑁

0𝑖
𝑁
1𝑖
𝑁
2𝑖
𝑁
3𝑖
𝑁
4𝑖
𝑁
5𝑖
] 𝑖 = 1, 2, . . . , 𝑟,

(2)

where 𝑀
𝑖
, 𝑁
0𝑖
, 𝑁
1𝑖
, 𝑁
2𝑖
, 𝑁
3𝑖
, 𝑁
4𝑖
, and 𝑁

5𝑖
are known real

constant matrices and 𝐹
𝑖
(⋅) : N → R𝑙1×𝑙2 are unknown time-

varying matrix function satisfying

𝐹
𝑖
(𝑡)
𝑇

𝐹
𝑖
(𝑡) ≤ 𝐼, ∀𝑡. (3)

The parameter uncertainties Δ𝐴
𝑖
(𝑡), Δ𝐴

1𝑖
(𝑡), Δ𝐴

2𝑖
(𝑡),

Δ𝐴
3𝑖
(𝑡), Δ𝐵

𝑖
(𝑡), and Δ𝐶

𝑖
(𝑡) are said to be admissible if both

(2) and (3) hold.
Then the final output of the fuzzy neutral system is

inferred as follows:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) {[𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥 (𝑡)

+ [𝐴
1𝑖
+ Δ𝐴
1𝑖
(𝑡)] 𝑥 (𝑡 − 𝜏

1
)

+ [𝐴
2𝑖
+ Δ𝐴
2𝑖
(𝑡)] ̇𝑥 (𝑡 − 𝜏

2
)

+ [𝐴
3𝑖
+ Δ𝐴
3𝑖
(𝑡) ∫

𝑡

𝑡−𝜏3

𝑥 (𝑠) 𝑑𝑠]

+ [𝐵
𝑖
+ Δ𝐵
𝑖
(𝑡)] 𝑢 (𝑡) + 𝐷

1𝑖
𝑤 (𝑡)} ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) {[𝐶

𝑖
+ Δ𝐶
𝑖
(𝑡)] 𝑥 (𝑡)

+𝐶
1𝑖
𝑥 (𝑡 − 𝜏

1
) + 𝐷
2𝑖
𝑤 (𝑡)} ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) [𝐸

𝑖
𝑥 (𝑡) + 𝐸

1𝑖
𝑥 (𝑡 − 𝜏

1
) + 𝐺
𝑖
𝑢 (𝑡)] ,

(4)

where

ℎ
𝑖
(𝑠 (𝑡)) =

𝜛
𝑖
(𝑠 (𝑡))

∑
𝑟

𝑖=1
𝜛
𝑖
(𝑠 (𝑡))

,

𝜛
𝑖
(𝑠 (𝑡)) =

𝑝

∏

𝑗=1

𝜇
𝑖𝑗
(𝑠
𝑗
(𝑡)) ,

𝑠 (𝑡) = [𝑠
1
(𝑡) 𝑠
2
(𝑡) ⋅ ⋅ ⋅ 𝑠

𝑝
(𝑡)] ,

(5)

in which 𝜇
𝑖𝑗
(𝑠
𝑗
(𝑡)) is the grade of membership of 𝑠

𝑗
(𝑡) in 𝜇

𝑖𝑗
.

Then, it can be seen that

𝜛
𝑖
(𝑠 (𝑡)) ≥ 0, 𝑖 = 1, . . . , 𝑟,

𝑟

∑

𝑖=1

𝜛
𝑖
(𝑠 (𝑡)) > 0,

(6)
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for all 𝑡. Therefore, for all 𝑡,

ℎ
𝑖
(𝑠 (𝑡)) ≥ 0, 𝑖 = 1, . . . , 𝑟,

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) = 1, ∀𝑡.

(7)

Now, by the parallel distributed compensation (PDC), the fol-
lowing full-order fuzzy dynamic output feedback controller
for the fuzzy neutral system in (4) is considered.

Control Rule 𝑖: if 𝑠
1
(𝑡) is 𝜇

𝑖1
and ⋅ ⋅ ⋅ and 𝑠

𝑝
(𝑡) is 𝜇

𝑖𝑝
, then

̇
�̂� (𝑡) = 𝐴

𝑘𝑖
𝑥 (𝑡) + 𝐵

𝑘𝑖
𝑦 (𝑡) , (8)

𝑢 (𝑡) = 𝐶
𝑘𝑖
𝑥 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟, (9)

𝑥 (𝑡) = 0, 𝑡 ≤ 0, (10)

where 𝑥(𝑡) ∈ R𝑛 is the controller state and 𝐴
𝑘𝑖
, 𝐵
𝑘𝑖
, and 𝐶

𝑘𝑖

are matrices to be determined later. Then, the overall fuzzy
output feedback controller is given by

̇
�̂� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) [𝐴

𝑘𝑖
𝑥 (𝑡) + 𝐵

𝑘𝑖
𝑦 (𝑡)] , (11)

𝑢 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐶

𝑘𝑖
𝑥 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟. (12)

From (4) and (11), one can obtain the closed-loop system as

̇𝑒 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡))

× {[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
(𝑡)] 𝑒 (𝑡)

+ [𝐴
1𝑖𝑗
+ Δ𝐴
1𝑖
(𝑡)] 𝑒 (𝑡 − 𝜏

1
)

+ [𝐴
2𝑖
+ Δ𝐴
2𝑖
(𝑡)] ̇𝑒 (𝑡 − 𝜏

2
)

+ [𝐴
3𝑖
+ Δ𝐴
3𝑖
(𝑡)]

×∫

𝑡

𝑡−𝜏3

𝑒 (𝑠) 𝑑𝑠 + 𝐷
𝑖𝑗
𝑤 (𝑡)} ,

(13)

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡)) [𝐸

𝑖𝑗
𝑒 (𝑡) + 𝐸

1𝑖
𝑒 (𝑡 − 𝜏

1
)] ,

(14)

where

̇𝑒 (𝑡) = [

̇𝑥 (𝑡)

̇
�̂� (𝑡)

] ,

𝐴
𝑖𝑗
= [

𝐴
𝑖

𝐵
𝑖
𝐶
𝑘𝑗

𝐵
𝑘𝑗
𝐶
𝑖
𝐴
𝑘𝑗

] ,

Δ𝐴
𝑖𝑗
(𝑡) = [

Δ𝐴
𝑖
(𝑡) Δ𝐵

𝑖
(𝑡) 𝐶
𝑘𝑗

𝐵
𝑘𝑗
Δ𝐶
𝑖
(𝑡) 0

] ,

𝐴
1𝑖𝑗
= [

𝐴
1𝑖

0

𝐵
𝑘𝑗
𝐶
1𝑖
0
] , Δ𝐴

1𝑖
(𝑡) = [

Δ𝐴
1𝑖
(𝑡) 0

0 0
] ,

𝐴
2𝑖
= [

𝐴
2𝑖
0

0 0
] , Δ𝐴

2𝑖
(𝑡) = [

Δ𝐴
2𝑖
(𝑡) 0

0 0
] ,

𝐴
3𝑖
= [

𝐴
3𝑖
0

0 0
] , Δ𝐴

3𝑖
(𝑡) = [

Δ𝐴
3𝑖
(𝑡) 0

0 0
] ,

𝐷
𝑖𝑗
= [

𝐷
1𝑖

𝐵
𝑘𝑗
𝐷
2𝑖

] , 𝐸
𝑖𝑗
= [𝐸
𝑖
𝐺
𝑖
𝐶
𝑘𝑗
] ,

𝐸
1𝑖
= [𝐸
1𝑖
0] .

(15)

Then, the problem of robust fuzzy𝐻
∞
control problem to be

addressed in the previous is formulated as follows: given an
uncertain distributed delay fuzzy neutral system in (4) and
a scalar 𝛾 > 0, determine a dynamic output feedback fuzzy
controller in the form of (8) and (9) such that the closed-loop
system in (13) and (14) is robustly asymptotically stable when
𝑤(𝑡) = 0 and

‖𝑧‖
2
< 𝛾‖𝑤‖

2
, (16)

under zero-initial conditions for any nonzero 𝑤(𝑡) ∈

L
2
[0,∞) and all admissible uncertainties.

3. Main Results

In this section, an LMI approach will be developed to
solve the problem of robust output feedback 𝐻

∞
control of

uncertain distributed delay fuzzy neutral systems formulated
in the previous section. We first give the following results
which will be used in the proof of our main results.

Lemma 1 (see [30]). LetA,D,S,W, and𝐹 be realmatrices of
appropriate dimensions withW > 0 and 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼.
Then one has the following.

(1) For any scalar 𝜖 > 0 and vectors 𝑥, 𝑦 ∈ R𝑛,

2𝑥
𝑇

DFS𝑦 ≤ 𝜖
−1

𝑥
𝑇

DD
𝑇

𝑥 + 𝜖𝑦
𝑇

S
𝑇

S𝑦. (17)

(2) For any scalar 𝜖 > 0 such thatW − 𝜖DD𝑇 > 0,

(A +DFS)
𝑇

W
−1

(A +DFS)

≤ A
𝑇

(W − 𝜖DD
T
)

−1

A + 𝜖
−1

S
𝑇

S.

(18)
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Lemma 2 (see [31]). Given any matrices X, Y, and Z with
appropriate dimensions such thatY > 0, then, one has

X
𝑇

Z +Z
𝑇

X ≤ X
𝑇

YX +Z
𝑇

Y
−1

Z. (19)

Theorem 3. The uncertain fuzzy neutral delay system in (13)
and (14) is asymptotically stable, and (16) is satisfied if there
exist matrices 𝑃 > 0, 𝑃

1
> 0, 𝑃

2
> 0, 𝑄

1
> 0, 𝑄

2
> 0, 𝑅

1
, and

𝑅
2
and scalars 𝜖

𝑖𝑗
> 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟, such that the following

LMIs hold:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π
1𝑖𝑖

Π
2𝑖𝑖

𝑃𝐴
2𝑖
𝑃𝐴
3𝑖
𝑃𝐷
𝑖𝑖

𝜏
1
𝑅
1

𝐸
𝑇

𝑖𝑖
Γ
𝑖𝑖

𝑃𝑀
𝑖𝑖

𝑁
𝑇

𝑖𝑖

∗ 𝐽
1

0 0 0 𝜏
1
𝑅
2
𝐸
𝑇

1𝑖
Γ
1𝑖𝑖

0 0

∗ ∗ −𝑃
2

0 0 0 0 Γ
2𝑖

0 0

∗ ∗ ∗ −𝑄
2

0 0 0 Γ
3𝑖

0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0 Γ
4𝑖𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝜏
1
𝑄
1

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐽
𝑇

2
𝐽
𝑇

2
𝑀
𝑖𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖
𝑖𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖
−1

𝑖𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, 1 ≤ 𝑖 ≤ 𝑟,

[

[

Λ
1𝑖𝑗

Λ
2𝑖𝑗

Λ
3𝑖𝑗

∗ Λ
4𝑖𝑗

Λ
5𝑖𝑗

∗ ∗ Λ
6𝑖𝑗

]

]

< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,

(20)

where
Λ
1𝑖𝑗

=

[

[

[

[

Π
1𝑖𝑗
+ Π
1𝑗𝑖

Π
2𝑖𝑗
+ Π
2𝑗𝑖

𝑃𝐴
2𝑖
+ 𝑃𝐴
2𝑗
𝑃𝐴
3𝑖
+ 𝑃𝐴
3𝑗

∗ 2𝐽
1

0 0

∗ ∗ −2𝑃
2

0

∗ ∗ ∗ −2𝑄
2

]

]

]

]

,

Λ
2𝑖𝑗
=

[

[

[

[

[

𝑃𝐷
𝑖𝑗
+ 𝑃𝐷
𝑗𝑖
2𝜏
1
𝑅
1
𝐸
𝑇

𝑖𝑗
+ 𝐸
𝑇

𝑗𝑖
Γ
𝑖𝑗
+ Γ
𝑗𝑖

0 2𝜏
1
𝑅
2
𝐸
𝑇

1𝑖
+ 𝐸
𝑇

1𝑗
Γ
1𝑖𝑗
+ Γ
1𝑗𝑖

0 0 0 Γ
2𝑖
+ Γ
2𝑗

0 0 0 Γ
3𝑖
+ Γ
3𝑗

]

]

]

]

]

,

Λ
3𝑖𝑗
=

[

[

[

[

[

[

[

𝑃𝑀
𝑖𝑗
𝑃𝑀
𝑗𝑖
𝑁
𝑇

𝑖𝑗
𝑁
𝑇

𝑗𝑖

0 0 �̃�
𝑇

1𝑖
�̃�
𝑇

1𝑗

0 0 �̃�
𝑇

2𝑖
�̃�
𝑇

2𝑗

0 0 �̃�
𝑇

3𝑖
�̃�
𝑇

3𝑗

]

]

]

]

]

]

]

,

Λ
4𝑖𝑗
=

[

[

[

[

−2𝛾
2

𝐼 0 0 Γ
4𝑖𝑗
+ Γ
4𝑗𝑖

∗ −2𝜏
1
𝑄
1

0 0

∗ ∗ −2𝐼 0

∗ ∗ ∗ −2𝐽
𝑇

2

]

]

]

]

,

Λ
5𝑖𝑗
=

[

[

[

[

0 0 0 0

0 0 0 0

0 0 0 0

𝐽
𝑇

2
𝑀
𝑖𝑗
𝐽
𝑇

2
𝑀
𝑗𝑖
0 0

]

]

]

]

,

Λ
6𝑖𝑗
=

[

[

[

[

[

−𝜖
𝑖𝑗
𝐼 0 0 0

∗ −𝜖
𝑗𝑖
𝐼 0 0

∗ ∗ −𝜖
−1

𝑖𝑗
𝐼 0

∗ ∗ ∗ −𝜖
−1

𝑗𝑖
𝐼

]

]

]

]

]

,

Υ
1
= 𝐻
𝑇

(𝑃
1
+ 𝜏
2

3
𝑄
2
− 𝑅
1
− 𝑅
𝑇

1
)𝐻,

Π
1𝑖𝑗
= Υ
1
+ 𝑃𝐴
𝑖𝑗
+ 𝐴
𝑇

𝑖𝑗
𝑃,

Υ
2
= 𝐻
𝑇

(𝑅
1
− 𝑅
𝑇

2
) , Π

2𝑖𝑗
= Υ
2
+ 𝑃𝐴
1𝑖𝑗
,

Γ
𝑖𝑗
= 𝐴
𝑇

𝑖𝑗
(𝑃
2
+ 𝜏
1
𝑄
1
) ,

Γ
1𝑖𝑗
= 𝐴
𝑇

1𝑖𝑗
(𝑃
2
+ 𝜏
1
𝑄
1
) , Γ

2𝑖
= 𝐴
𝑇

2𝑖
(𝑃
2
+ 𝜏
1
𝑄
1
) ,

Γ
3𝑖
= 𝐴
𝑇

3𝑖
(𝑃
2
+ 𝜏
1
𝑄
1
) , Γ

4𝑖𝑗
= 𝐷
𝑇

𝑖𝑗
(𝑃
2
+ 𝜏
1
𝑄
1
) ,

𝐽
1
= −𝑃
1
+ 𝑅
2
+ 𝑅
𝑇

2
, 𝐽

2
= 𝑃
2
+ 𝜏
1
𝑄
1
,

𝑀
𝑖𝑗
= [

𝑀
𝑖

0

0 𝐵
𝑘𝑗
𝑀
𝑖

] , 𝐹
𝑖
(𝑡) = [

𝐹
𝑖
(𝑡) 0

0 𝐹
𝑖
(𝑡)
] ,

𝑁
𝑖𝑗
= [

𝑁
0𝑖
𝑁
3𝑖
𝐶
𝑘𝑗

𝑁
4𝑖

0

] , �̃�
1𝑖
= [

𝑁
1𝑖
0

0 0
] ,

�̃�
2𝑖
= [

𝑁
2𝑖
0

0 0
] , �̃�

3𝑖
= [

𝑁
3𝑖
0

0 0
] .

(21)

Proof. To establish the robust stability of the system in (13),
we consider (13) with 𝑤(𝑡) ≡ 0; that is,

̇𝑒 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡))

× {[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
(𝑡)] 𝑒 (𝑡)

+ [𝐴
1𝑖𝑗
+ Δ𝐴
1𝑖
(𝑡)] 𝑒 (𝑡 − 𝜏

1
)

+ [𝐴
2𝑖
+ Δ𝐴
2𝑖
(𝑡)] ̇𝑒 (𝑡 − 𝜏

2
)

+ [𝐴
3𝑖
+ Δ𝐴
3𝑖
(𝑡)] ∫

𝑡

𝑡−𝜏3

𝑒 (𝑠) 𝑑𝑠} .

(22)
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For this system, we define the following Lyapunov function
candidate:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) + 𝑉

6
(𝑡) ,

(23)

where

𝑉
1
(𝑡) = 𝑒(𝑡)

𝑇

𝑃𝑒 (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝜏1

𝑒(𝑠)
𝑇

𝑃
1
𝑒 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜏2

̇𝑒(𝑠)
𝑇

𝑃
2
̇𝑒 (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = ∫

0

−𝜏1

∫

𝑡

𝑡+𝛽

̇𝑒(𝛼)
𝑇

𝑄
1
̇𝑒 (𝛼) 𝑑𝛼 𝑑𝛽,

𝑉
5
(𝑡) = ∫

𝑡

𝑡−𝜏3

[∫

𝑡

𝑠

𝑒(𝜃)
𝑇

𝑑𝜃]𝑄
2
[∫

𝑡

𝑠

𝑒 (𝜃) 𝑑𝜃] 𝑑𝑠,

𝑉
6
(𝑡) = ∫

𝜏3

0

𝑑𝑠∫

𝑡

𝑡−𝛽

(𝜃 − 𝑡 + 𝛽) 𝑒(𝛼)
𝑇

𝑄
2
𝑒 (𝛼) 𝑑𝛼 𝑑𝛽.

(24)

The time derivative of 𝑉(𝑡) is given by

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) + 𝑉

6
(𝑡) ,

(25)

where

𝑉
1
(𝑡) = 2𝑒(𝑡)

𝑇

𝑃 ̇𝑒 (𝑡) ,

𝑉
2
(𝑡) = 𝑒(𝑡)

𝑇

𝑃
1
𝑒 (𝑡) − 𝑒(𝑡 − 𝜏

1
)
𝑇

𝑃
1
𝑒 (𝑡 − 𝜏

1
) ,

𝑉
3
(𝑡) = ̇𝑒(𝑡)

𝑇

𝑃
2
̇𝑒 (𝑡) − ̇𝑒(𝑡 − 𝜏

2
)
𝑇

𝑃
2
̇𝑒 (𝑡 − 𝜏

2
) ,

𝑉
4
(𝑡) = 𝜏

1
̇𝑒(𝑡)
𝑇

𝑄
1
̇𝑒 (𝑡) − ∫

𝑡

𝑡−𝜏1

̇𝑒(𝛼)
𝑇

𝑄
1
̇𝑒 (𝛼) 𝑑𝛼,

𝑉
5
(𝑡) = 2∫

𝑡

𝑡−𝜏3

(𝜃 − 𝑡 + 𝜏
3
) 𝑒(𝑡)
𝑇

𝑄
2
𝑒 (𝜃) 𝑑𝜃

− [∫

𝑡

𝑡−𝜏3

𝑒(𝜃)
𝑇

𝑑𝜃]𝑄
2
[∫

𝑡

𝑡−𝜏3

𝑒 (𝜃) 𝑑𝜃] ,

𝑉
6
(𝑡) =

1

2

𝜏
2

3
𝑒(𝑡)
𝑇

𝑄
2
𝑒 (𝑡) − ∫

𝑡

𝑡−𝜏3

(𝜃 − 𝑡 + 𝜏
3
) 𝑒(𝜃)
𝑇

𝑄
2
𝑒 (𝜃) 𝑑𝜃.

(26)

Now, by Lemma 1, it can be shown that

2𝑒(𝑡)
𝑇

𝑄
2
𝑒 (𝜃) ≤ 𝑒(𝑡)

𝑇

𝑄
2
𝑒 (𝑡) + 𝑒(𝜃)

𝑇

𝑄
2
𝑒 (𝜃) . (27)

Therefore

𝑉
5
(𝑡) ≤

1

2

𝜏
2

3
𝑒(𝑡)
𝑇

𝑄
2
𝑒 (𝑡)

+ ∫

𝑡

𝑡−𝜏3

(𝜃 − 𝑡 + 𝜏
3
) 𝑒(𝜃)
𝑇

𝑄
2
𝑒 (𝜃) 𝑑𝜃

− [∫

𝑡

𝑡−𝜏3

𝑒(𝜃)
𝑇

𝑑𝜃]𝑄
2
[∫

𝑡

𝑡−𝜏3

𝑒 (𝜃) 𝑑𝜃] .

(28)

This together with (26) implies

𝑉
5
(𝑡) + 𝑉

6
(𝑡) ≤ 𝜏

2

3
𝑒(𝑡)
𝑇

𝑄
2
𝑒 (𝑡) − 𝛼(𝑡)

𝑇

𝑄
2
𝛼 (𝑡) , (29)

where

𝛼 (𝑡) = ∫

𝑡

𝑡−𝜏3

𝑒 (𝜃) 𝑑𝜃. (30)

Then, there holds

𝑉 (𝑡) ≤ 2𝑒(𝑡)
𝑇

𝑃 ̇𝑒 (𝑡)

+ 𝑒(𝑡)
𝑇

𝑃
1
𝑒 (𝑡) − 𝑒(𝑡 − 𝜏

1
)
𝑇

𝑃
1
𝑒 (𝑡 − 𝜏

1
)

+ ̇𝑒(𝑡)
𝑇

𝑃
2
̇𝑒 (𝑡) − ̇𝑒(𝑡 − 𝜏

2
)
𝑇

𝑃
2
̇𝑒 (𝑡 − 𝜏

2
)

+ 𝜏
1
̇𝑒(𝑡)
𝑇

𝑄
1
̇𝑒 (𝑡) − ∫

𝑡

𝑡−𝜏1

̇𝑒(𝛼)
𝑇

𝑄
1
̇𝑒 (𝛼) 𝑑𝛼

+ 𝜏
2

3
𝑒(𝑡)
𝑇

𝑄
2
𝑒 (𝑡) − 𝛼(𝑡)

𝑇

𝑄
2
𝛼 (𝑡)

+ 2𝑒(𝑡)
𝑇

𝑅
1
∫

𝑡

𝑡−𝜏1

̇𝑒 (𝛼) 𝑑𝛼

− 2𝑒(𝑡)
𝑇

𝑅
1
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏

1
)]

+ 2𝑒(𝑡 − 𝜏
1
)
𝑇

𝑅
2
∫

𝑡

𝑡−𝜏1

̇𝑒 (𝛼) 𝑑𝛼

− 2𝑒(𝑡 − 𝜏
1
)
𝑇

𝑅
2
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏

1
)] .

(31)

It follows from (22) and Lemma 2 that

2𝑒(𝑡)
𝑇

𝑃 ̇𝑒 (𝑡)

= 2𝑒(𝑡)
𝑇

𝑃

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡))

× {[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
(𝑡)] 𝑒 (𝑡)

+ [𝐴
1𝑖𝑗
+ Δ𝐴
1𝑖
(𝑡)] 𝑒 (𝑡 − 𝜏

1
)

+ [𝐴
2𝑖
+ Δ𝐴
2𝑖
(𝑡)] ̇𝑒 (𝑡 − 𝜏

2
)

+ [𝐴
3𝑖
+ Δ𝐴
3𝑖
(𝑡)] ∫

𝑡

𝑡−𝜏3

𝑒 (𝑠) 𝑑𝑠}

≤ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡)) 𝑒(𝑡)

𝑇

𝑃𝐴
𝑖𝑗
𝛽 (𝑡)

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡))

× [𝜀
−1

1𝑖𝑗
𝑒(𝑡)
𝑇

𝑃𝑀
𝑖𝑗
𝑀
𝑇

𝑖𝑗
𝑃𝑒 (𝑡)

+ 𝜀
1𝑖𝑗
𝛽(𝑡)
𝑇

�̃�
𝑇

𝑖𝑗
�̃�
𝑖𝑗
𝛽 (𝑡)] ,

(32)

where

𝐴
𝑖𝑗
= [𝐴
𝑖𝑗
𝐴
1𝑖𝑗

𝐴
2𝑖
𝐴
3𝑖
] ,

𝛽 (𝑡) = [𝑒(𝑡)
𝑇

𝑒(𝑡 − 𝜏
1
)
𝑇

̇𝑒(𝑡 − 𝜏
2
)
𝑇

𝛼(𝑡)
𝑇

̇𝑒(𝛼)
𝑇
] ,

�̃�
𝑖𝑗
= [𝑁
𝑖𝑗
�̃�
1𝑖
�̃�
2𝑖
�̃�
3𝑖
] .

(33)
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It also can be verified that

̇𝑒(𝑡)
𝑇

𝑃
2
̇𝑒 (𝑡)

=

1

2

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑟

∑

𝑢=1

𝑟

∑

V=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡)) ℎ

𝑢
(𝑠 (𝑡)) ℎV (𝑠 (𝑡)) 𝛽(𝑡)

𝑇

× {[𝐴
𝑖𝑗
+𝑀
𝑖𝑗
𝐹
𝑖
(𝑡)�̃�
𝑖𝑗
]

𝑇

× 𝑃
2
[𝐴
𝑢V +𝑀𝑢V𝐹𝑢 (𝑡) �̃�𝑢V]

+ [𝐴
𝑢V +𝑀𝑢V𝐹𝑢 (𝑡) �̃�𝑢V]

𝑇

× 𝑃
2
[𝐴
𝑖𝑗
+𝑀
𝑖𝑗
𝐹
𝑖
(𝑡) �̃�
𝑖𝑗
]} 𝛽 (𝑡)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡)) 𝛽(𝑡)

𝑇

× [𝐴
𝑖𝑗
+𝑀
𝑖𝑗
𝐹
𝑖
(𝑡) �̃�
𝑖𝑗
]

𝑇

𝑃
2
[𝐴
𝑖𝑗
+𝑀
𝑖𝑗
𝐹
𝑖
(𝑡) �̃�
𝑖𝑗
]

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡)) 𝛽(𝑡)

𝑇

× [𝐴

𝑇

𝑖𝑗
(𝑃
−1

2
− 𝜀
−1

2𝑖𝑗
𝑀
𝑖𝑗
𝑀
𝑇

𝑖𝑗
)

−1

𝐴
𝑖𝑗
+ 𝜀
2𝑖𝑗
�̃�
𝑇

𝑖𝑗
�̃�
𝑖𝑗
] 𝛽 (𝑡) ,

𝜏
1
̇𝑒(𝑡)
𝑇

𝑄
1
̇𝑒 (𝑡)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡)) 𝛽(𝑡)

𝑇

× {𝐴

𝑇

𝑖𝑗
[(𝜏
1
𝑄
1
)
−1

− 𝜀
−1

3𝑖𝑗
𝑀
𝑖𝑗
𝑀
𝑇

𝑖𝑗
]

−1

𝐴
𝑖𝑗

+ 𝜀
3𝑖𝑗
�̃�
𝑇

𝑖𝑗
�̃�
𝑖𝑗
}𝛽 (𝑡) .

(34)

Hence, with the support of the above conditions, we have

𝑉 (𝑡) ≤ 2𝑒(𝑡)
𝑇

𝑃 ̇𝑒 (𝑡) + ̇𝑒(𝑡)
𝑇

𝑃
2
̇𝑒 (𝑡)

+ 𝜏
1
̇𝑒(𝑡)
𝑇

𝑄
1
̇𝑒 (𝑡) + 𝑒(𝑡)

𝑇

(𝑃
1
+ 𝜏
2

3
𝑄
2
) 𝑒 (𝑡)

− 𝑒(𝑡 − 𝜏
1
)
𝑇

𝑃
1
𝑒 (𝑡 − 𝜏

1
)

− ̇𝑒(𝑡 − 𝜏
2
)
𝑇

𝑃
2
̇𝑒 (𝑡 − 𝜏

2
) − ∫

𝑡

𝑡−𝜏1

̇𝑒(𝛼)
𝑇

𝑄
1
̇𝑒 (𝛼) 𝑑𝛼

− 𝛼(𝑡)
𝑇

𝑄
2
𝛼 (𝑡) + 2𝑒(𝑡)

𝑇

𝑅
1
∫

𝑡

𝑡−𝜏1

̇𝑒 (𝛼) 𝑑𝛼

− 2𝑒(𝑡)
𝑇

𝑅
1
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏

1
)]

+ 2𝑒(𝑡 − 𝜏
1
)
𝑇

𝑅
2
∫

𝑡

𝑡−𝜏1

̇𝑒 (𝛼) 𝑑𝛼 − 2𝑒(𝑡 − 𝜏
1
)
𝑇

× 𝑅
2
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏

1
)]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡)) 𝛽(𝑡)

𝑇

× [Ξ
𝑖𝑗
+ 𝐴
𝑖𝑗
(𝑃
−1

2
− 𝜀
−1

2𝑖𝑗
𝑀
𝑖𝑗
𝑀
𝑇

𝑖𝑗
)

−1

𝐴
𝑖𝑗

+𝐴
𝑖𝑗
(𝜏
−1

1
𝑄
−1

1
− 𝜀
−1

3𝑖𝑗
𝑀
𝑖𝑗
𝑀
𝑇

𝑖𝑗
)

−1

𝐴
𝑖𝑗
+ 𝛿
𝑖𝑗
�̃�
𝑇

𝑖𝑗
�̃�
𝑖𝑗
] 𝛽 (𝑡) ,

(35)

where

Ξ
𝑖𝑗
=

[

[

[

[

[

[

Σ
𝑖𝑗
𝑃𝐴
1𝑖𝑗
+ 𝑅
1
− 𝑅
𝑇

2
𝑃𝐴
2𝑖
𝑃𝐴
3𝑖

𝜏
1
𝑅
1

∗ −𝑃
1
+ 𝑅
2
+ 𝑅
𝑇

2
0 0 𝜏

1
𝑅
2

∗ ∗ −𝑃
2

0 0

∗ ∗ ∗ −𝑄
2

0

∗ ∗ ∗ ∗ −𝜏
1
𝑄
1

]

]

]

]

]

]

,

Σ
𝑖𝑗
= 𝑃𝐴
𝑖𝑗
+ 𝐴
𝑇

𝑖𝑗
𝑃 + 𝑃
1
+ 𝜏
2

3
𝑄
2
− 𝑅
1
− 𝑅
𝑇

1
+ 𝜀
−1

1𝑖𝑗
𝑃𝑀
𝑖𝑗
𝑀
𝑇

𝑖𝑗
𝑃,

(36)

for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟. On the other hand, by applying the Schur
complement formula to (20), we have that for 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,

Γ
𝑖𝑗
< 0, (37)

and from this and (7), we have that 𝑉(𝑡) < 0 for all 𝛽(𝑡) ̸=0.
Therefore, the system in (13) is robustly asymptotically stable.

This completes the proof.

Next, we will establish the robust𝐻
∞
performance of the

system in (13) and (14) under the zero initial condition. To
this end, we introduce

𝐽 (𝑡) = ∫

𝑡

0

[𝑧(𝑠)
𝑇

𝑧 (𝑠) − 𝛾
2

𝑤(𝑠)
𝑇

𝑤 (𝑠)] 𝑑𝑠, (38)

where 𝑡 > 0. Noting the zero initial condition, it can be shown
that for any nonzero 𝑤(𝑡) ∈L

2
[0,∞) and 𝑡 > 0,

𝐽 (𝑡) = ∫

𝑡

0

[𝑧(𝑠)
𝑇

𝑧 (𝑠) − 𝛾
2

𝑤(𝑠)
𝑇

𝑤 (𝑠) + 𝑉 (𝑠)] 𝑑𝑠 − 𝑉 (𝑡)

≤ ∫

𝑡

0

[𝑧(𝑠)
𝑇

𝑧 (𝑠) − 𝛾
2

𝑤(𝑠)
𝑇

𝑤 (𝑠) + 𝑉 (𝑠)] 𝑑𝑠,

(39)

where 𝑉(𝑠) is defined in (23), and then we have

𝑉 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑡)) ℎ

𝑗
(𝑠 (𝑡))

× {2𝑒(𝑡)
𝑇

𝑃 [𝐴
𝑖𝑗
(𝑡) 𝑒 (𝑡) + 𝐴

1𝑖𝑗
(𝑡) 𝑒 (𝑡 − 𝜏

1
)

+ 𝐴
2𝑖
(𝑡) ̇𝑒 (𝑡 − 𝜏

2
)

+𝐴
3𝑖
(𝑡) 𝛼 (𝑡) + 𝐷

𝑖𝑗
𝑤 (𝑡)]}
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+ 𝑒(𝑡)
𝑇

𝑃
1
𝑒 (𝑡) − 𝑒(𝑡 − 𝜏

1
)
𝑇

𝑃
1
𝑒 (𝑡 − 𝜏

1
)

+ ̇𝑒(𝑡)
𝑇

𝑃
2
̇𝑒 (𝑡) − ̇𝑒(𝑡 − 𝜏

2
)
𝑇

𝑃
2
̇𝑒 (𝑡 − 𝜏

2
)

+ 𝜏
1
̇𝑒(𝑡)
𝑇

𝑄
1
̇𝑒 (𝑡)

− ∫

𝑡

𝑡−𝜏1

̇𝑒(𝑡)
𝑇

𝑄
1
̇𝑒 (𝛼) 𝑑𝛼 + 𝜏

2

3
𝑒(𝑡)
𝑇

𝑄
2
𝑒 (𝑡)

− 𝛼(𝑡)
𝑇

𝑄
2
𝛼 (𝑡)

+ 2𝑒(𝑡)
𝑇

𝑅
1
∫

𝑡

𝑡−𝜏1

̇𝑒 (𝛼) 𝑑𝛼 − 2𝑒(𝑡)
𝑇

× 𝑅
1
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏

1
)]

+ 2𝑒(𝑡 − 𝜏
1
)
𝑇

𝑅
2
∫

𝑡

𝑡−𝜏1

̇𝑒 (𝛼) 𝑑𝛼 − 2𝑒(𝑡 − 𝜏
1
)
𝑇

× 𝑅
2
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏

1
)] .

(40)

Then, by noting (14) and using Lemma 2, we have

𝑧(𝑠)
𝑇

𝑧 (𝑠) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑟

∑

𝑢=1

𝑟

∑

V=1

ℎ
𝑖
(𝑠 (𝑠)) ℎ

𝑗
(𝑠 (𝑠)) ℎ

𝑢
(𝑠 (𝑠))

× ℎV (𝑠 (𝑠)) 𝜁(𝑠)
𝑇

𝐸
𝑇

𝑖𝑗
𝐸
𝑢V𝜁 (𝑠)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑠)) ℎ

𝑗
(𝑠 (𝑠)) 𝜁(𝑠)

𝑇

𝐸
𝑇

𝑖𝑗
𝐸
𝑖𝑗
𝜁 (𝑠) .

(41)

It can be deduced that

𝑧(𝑠)
𝑇

𝑧 (𝑠) − 𝛾
2

𝑤(𝑠)
𝑇

𝑤 (𝑠) + 𝑉 (𝑠)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑠 (𝑠)) ℎ

𝑗
(𝑠 (𝑠)) 𝜁(𝑠)

𝑇

Π
1𝑖𝑗
𝜁 (𝑠)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑠))

2

𝜁(𝑠)
𝑇

Ξ
1𝑖𝑖
𝜁 (𝑠)

+ 2

𝑟

∑

𝑖,𝑗=1,𝑖<𝑗

ℎ
𝑖
(𝑠 (𝑠)) ℎ

𝑗
(𝑠 (𝑠)) 𝜁(𝑠)

𝑇
Ξ
1𝑖𝑗
+ Ξ
1𝑗𝑖

2

𝜁 (𝑠) ,

(42)

where

Ξ
1𝑖𝑗
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
𝑖𝑗
𝑃𝐴
1𝑖𝑗
(𝑡) + 𝑅

1
− 𝑅
𝑇

2
𝑃𝐴
2𝑖
(𝑡) 𝑃𝐴

3𝑖
(𝑡) 𝑃𝐷

𝑖𝑗
𝜏
1
𝑅
1

𝐸
𝑇

𝑖𝑗
𝐴
𝑇

𝑖𝑗
(𝑡) (𝑃
2
+ 𝜏
1
𝑄
1
)

∗ 𝐽
1

0 0 0 𝜏
1
𝑅
2
𝐸
𝑇

1𝑖
𝐴
𝑇

1𝑖𝑗
(𝑡) (𝑃
2
+ 𝜏
1
𝑄
1
)

∗ ∗ −𝑃
2

0 0 0 0 𝐴
𝑇

2𝑖
(𝑡) (𝑃
2
+ 𝜏
1
𝑄
1
)

∗ ∗ ∗ −𝑄
2

0 0 0 𝐴
𝑇

3𝑖
(𝑡) (𝑃
2
+ 𝜏
1
𝑄
1
)

∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0 𝐷
𝑇

𝑖𝑗
(𝑃
2
+ 𝜏
1
𝑄
1
)

∗ ∗ ∗ ∗ ∗ −𝜏
1
𝑄
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −(𝑃
2
+ 𝜏
1
𝑄
1
)
𝑇

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝜁 (𝑠) = [𝑒(𝑡)
𝑇

𝑒(𝑡 − 𝜏
1
)
𝑇

̇𝑒(𝑡 − 𝜏
2
)
𝑇

𝛼(𝑡)
𝑇

𝑤(𝑡)
𝑇

̇𝑒(𝛼)
𝑇
]

𝑇

,

𝐸
𝑖𝑗
= [𝐸
𝑖𝑗
𝐸
1𝑖
0 0 0 0] ,

(43)

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑟. Similar to the previous section, applying
the Schur complement formula to the LMI in (20) results in
Ξ
1𝑖𝑗
< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟, which together with (39) gives 𝐽(𝑡) < 0

for any nonzero 𝑤(𝑡) ∈ L
2
[0,∞) and 𝑡 > 0. Therefore, we

have ‖𝑧‖
2
< 𝛾‖𝑤‖

2
.

Now, we are in a position to present a solution to the
robust output feedback𝐻

∞
control problem.

Theorem4. Consider the uncertain fuzzy neutral delay system
in (1), and let 𝛾 > 0 be a prescribed constant scalar. The robust
𝐻
∞

problem is solvable if there exist matrices 𝑋 > 0, 𝑌 > 0,
𝑄
1
, 𝑄
2
, Φ
𝑖
, Ψ
𝑖
, and Ω

𝑖
and scalars 𝜖

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟, such that

the following LMIs hold:

[

[

[

[

[

[

Σ
𝑖𝑖
Σ
1𝑖𝑖

Σ
2𝑖𝑖

Σ
3𝑖𝑖

𝑅
5

∗ −𝑅
11
𝑅
2𝑖𝑖

0 0

∗ ∗ 𝑅
3𝑖𝑖

0 𝑅
6𝑖𝑖

∗ ∗ ∗ −𝑅
4

0

∗ ∗ ∗ ∗ −𝑅
7

]

]

]

]

]

]

< 0, 1 ≤ 𝑖 ≤ 𝑟, (44)
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[

[

[

[

[

[

[

[

[

[

Σ
𝑖𝑗
+ Σ
𝑗𝑖
Σ
1𝑖𝑗
+ Σ
1𝑗𝑖

Σ̃
2𝑖𝑗

Σ
4𝑖𝑗

Σ
5𝑖𝑗

Σ
6𝑖𝑗

0

∗ −2𝑅
11

�̃�
2𝑖𝑗

0 0 0 0

∗ ∗ �̃�
3𝑖𝑗

0 0 0 �̃�
6𝑖𝑗

∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ −𝑅
8

0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟, (45)

[

−𝑌 −𝐼

−𝐼 −𝑋
] < 0, (46)

where

Θ
𝑖𝑗

= [

𝐴
𝑖
𝑋 + 𝑋𝐴

𝑇

𝑖
+ 𝐵
𝑖
Ψ
𝑗
+ Ψ
𝑇

𝑗
𝐵
𝑇

𝑖
𝐴
𝑖
+ Ω
𝑇

𝑖

𝐴
𝑇

𝑖
+ Ω
𝑖

𝑌𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑌 + Φ

𝑗
𝐶
𝑖
+ 𝐶
𝑇

𝑖
Φ
𝑇

𝑗

]

−𝑅
1
− 𝑅
𝑇

1
,

Θ
1𝑖𝑗
= [

𝐴
1𝑖
𝑋 𝐴

1𝑖

0 𝑌𝐴
1𝑖
+ Φ
𝑗
𝐶
1𝑖

] + 𝑅
1
− 𝑅
𝑇

2
,

Θ
2𝑖
= [

𝐴
2𝑖

0

𝑌𝐴
2𝑖
0
] , Θ

3𝑖
= [

𝐴
3𝑖

0

𝑌𝐴
3𝑖
0
] ,

Θ
4𝑖𝑗
= [

𝐷
1𝑖

𝑌𝐷
1𝑖
+ Φ
𝑗
𝐷
2𝑖

] , Θ
5𝑖𝑗
= [

𝑋𝐸
𝑇

𝑖
+ Ψ
𝑇

𝑗
𝐺
𝑇

𝑖

𝐸
𝑇

𝑖

] ,

Θ
6𝑖𝑗
= [

𝑋𝐴
𝑇

𝑖
+ Ψ
𝑇

𝑗
𝐵
𝑇

𝑖
Ω
𝑇

𝑗

𝐴
𝑇

𝑖
𝐴
𝑇

𝑖
𝑌 + 𝐶

𝑇

𝑖
Φ
𝑇

𝑗

] ,

Θ
7𝑖𝑗
= [

𝑀
𝑖

0

𝑌𝑀
𝑖
Φ
𝑗
𝑀
𝑖

] ,

Θ
8𝑖𝑗
= [

𝑋𝑁
𝑇

0𝑖
+ Ψ
𝑇

𝑗
𝑁
𝑇

4𝑖
𝑋𝑁
𝑇

5𝑖

𝑁
𝑇

0𝑖
𝑁
𝑇

5𝑖

] , 𝐽
3𝑖
= [

𝑋𝐸
𝑇

1𝑖

𝐸
𝑇

1𝑖

] ,

𝐽
4𝑖𝑗
= [

𝑋𝐴
1𝑖

0

𝐴
1𝑖

𝐴
1𝑖
𝑌 + 𝐶

𝑇

1𝑖
Φ
𝑇

𝑗

] ,

𝐽
5𝑖
= [

𝑋𝑁
𝑇

1𝑖
0

𝑁
𝑇

1𝑖
0

] , 𝐽
6𝑖
= [

𝐴
𝑇

2𝑖
𝐴
𝑇

2𝑖
𝑌

0 0

] ,

𝐽
7𝑖
= [

𝐴
𝑇

3𝑖
𝐴
𝑇

3𝑖
𝑌

0 0

] ,

𝐽
8𝑖𝑗
= [𝐷
𝑇

1𝑖
𝐷
𝑇

1𝑖
𝑌 + 𝐷

𝑇

2𝑖
Φ
𝑇

𝑗
] ,

𝐽
9
= Π
𝑇

2
+ Π
2
− 𝑃
2
− 𝜏
1
𝑄
1
,

𝐽
10𝑖𝑗

= [

𝑀
𝑖

0

𝑌𝑀
𝑖
Φ
𝑗
𝑀
𝑖

] ,

Σ
𝑖𝑗
=
[

[

[

Θ
𝑖𝑗

Θ
1𝑖𝑗

Θ
2𝑖

∗ −𝑈 + 𝑅
2
+ 𝑅
𝑇

2
0

∗ ∗ −𝑃
2

]

]

]

,

Σ
1𝑖𝑗
=
[

[

[

Θ
3𝑖
Θ
4𝑖𝑗

𝜏
1
𝑅
1

0 0 𝜏
1
𝑅
2

0 0 0

]

]

]

,

Σ
2𝑖𝑗
=
[

[

[

Θ
5𝑖𝑗

Θ
6𝑖𝑗

Θ
7𝑖𝑗

Θ
8𝑖𝑗

𝐽
3𝑖

𝐽
4𝑖𝑗

0 𝐽
5𝑖

0 𝐽
6𝑖

0 �̃�
𝑇

2𝑖

]

]

]

,

Σ̃
2𝑖𝑗
=

[

[

[

[

Θ
5𝑖𝑗
+ Θ
5𝑗𝑖

Θ
6𝑖𝑗
+ Θ
6𝑗𝑖

Θ
7𝑖𝑗

Θ
7𝑗𝑖

Θ
8𝑖𝑗

Θ
8𝑗𝑖

𝐽
3𝑖
+ 𝐽
3𝑗

𝐽
4𝑖𝑗
+ 𝐽
4𝑗𝑖

0 0 𝐽
5𝑖

𝐽
5𝑗

0 𝐽
6𝑖
+ 𝐽
6𝑗

0 0 �̃�
𝑇

2𝑖
�̃�
𝑇

2𝑗

]

]

]

]

,

Σ
3𝑖𝑗
=
[

[

[

Π
𝑇

1
𝜏
3
Π
𝑇

1
𝑇
𝑖𝑗

0 0 0

0 0 0

]

]

]

, 𝑇
𝑖𝑗
= [

0

𝑌𝐴
1𝑖
+ Φ
𝑗
𝐶
1𝑖

] ,

𝑅
5
=
[

[

0 0 0

𝑇
1
𝑇
1
0

0 0 0

]

]

,

𝑇
1
= [

𝑥

0

] , Σ
4𝑖𝑗
=
[

[

[

𝑇
2𝑖𝑗

𝑇
3𝑖𝑗

𝑇
4𝑖𝑗

𝑇
5𝑖𝑗

0 0 0 0

0 0 0 0

]

]

]

,

𝑇
2𝑖𝑗
= [

(𝐶
𝑖
𝑥 − 𝐶

𝑗
𝑥)

𝑇

0

] ,

𝑇
3𝑖𝑗
= [

0

Φ
𝑗
− Φ
𝑖

] , 𝑇
4𝑖𝑗
= [

(Ψ
𝑗
− Ψ
𝑖
)

𝑇

0

] ,

𝑇
5𝑖𝑗
= [

0

𝑌𝐵
𝑖
− 𝑌𝐵
𝑗

] ,

Σ
5𝑖𝑗
=
[

[

Π
𝑇

1
𝜏
3
Π
𝑇

1
𝑇
𝑖𝑗
0

0 0 0 𝑇
1

0 0 0 0

]

]

,
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Σ
6𝑖𝑗
=
[

[

𝑇
𝑗𝑖

0 𝑇
4
𝑇
2

0 𝑇
1
0 0

0 0 0 0

]

]

,

𝑅
11
= diag (𝑄

2
𝛾
2

𝐼 𝑉) , 𝑅
2𝑖𝑗
=
[

[

0 𝐽
7𝑖
0 �̃�
𝑇

3𝑖

0 𝐽
8𝑖𝑗

0 0

0 0 0 0

]

]

,

�̃�
2𝑖𝑗
=
[

[

0 𝐽
7𝑖
+ 𝐽
7𝑗

0 0 �̃�
𝑇

3𝑖
�̃�
𝑇

3𝑗

0 𝐽
8𝑖𝑗
+ 𝐽
8𝑗𝑖

0 0 0 0

0 0 0 0 0 0

]

]

,

𝑅
3𝑖𝑗
=

[

[

[

[

−𝐼 0 0 0

∗ −𝐽
9
𝐽
10𝑖𝑗

0

∗ ∗ −𝜖
𝑖𝑗
𝐼 0

∗ ∗ ∗ −𝜖
−1

𝑖𝑗
𝐼

]

]

]

]

,

�̃�
3𝑖𝑗
=

[

[

[

[

[

[

[

[

[

−2𝐼 0 0 0 0 0

∗ −2𝐽
9
𝐽
10𝑖𝑗

𝐽
10𝑗𝑖

0 0

∗ ∗ −𝜖
𝑖𝑗
𝐼 0 0 0

∗ ∗ ∗ −𝜖
𝑗𝑖
𝐼 0 0

∗ ∗ ∗ ∗ −𝜖
−1

𝑖𝑗
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜖
−1

𝑗𝑖
𝐼

]

]

]

]

]

]

]

]

]

,

𝑅
4
= diag (𝑃−1

1
𝑄
−1

2
𝐼) ,

𝑅
6𝑖𝑗
=

[

[

[

[

0 0 0

0 0 𝑇
6𝑖𝑗

0 0 0

0 0 0

]

]

]

]

, �̃�
6𝑖𝑗
=

[

[

[

[

[

[

[

[

0 0

𝑇
5𝑖𝑗

𝑇
3𝑖𝑗

0 0

0 0

0 0

0 0

]

]

]

]

]

]

]

]

,

𝑇
6𝑖𝑗
= [

0

𝑌𝐴
𝑇

1𝑖
+ Φ
𝑗
𝐶
1𝑖

] ,

𝑅
7
= diag (𝐼 𝐼 𝐼) , 𝑅

8
= diag (1

2

𝑃
−1

1

1

2

𝑄
−1

2
𝐼 𝐼) ,

Π
1
= [

𝑋 𝐼

𝑋 0
] , Π

2
= [

𝑋 𝐼

𝑋 0
] .

(47)

Furthermore a desired robust dynamic output feedback con-
troller is given in the form of (11) with parameters as follows:

𝐴
𝐾𝑖
= (𝑋
−1

− 𝑌)

−1

(Ω
𝑖
− 𝑌𝐴
𝑖
𝑋 − 𝑌𝐵

𝑖
Ψ
𝑖
− Φ
𝑖
𝐶
𝑖
𝑋)𝑋
−1

,

𝐵
𝐾𝑖
= (𝑋
−1

− 𝑌)

−1

Φ
𝑖
, 𝐶
𝐾𝑖
= Ψ
𝑖
𝑋
−1

, 1 ≤ 𝑖 ≤ 𝑟.

(48)

Proof. Applying the Schur complements formula to (44) and
(45) and using Lemma 2 result in

[

[

Σ̃
𝑖𝑖
Σ
1𝑖𝑖

Σ̂
2𝑖𝑖

∗ −𝑅
11
𝑅
2𝑖𝑖

∗ ∗ 𝑅
3𝑖𝑖

]

]

< 0, 1 ≤ 𝑖 ≤ 𝑟,

[

[

[

Σ̂
𝑖𝑗
Σ
1𝑖𝑗
+ Σ
1𝑗𝑖

Σ
2𝑖𝑗

∗ −2𝑅
11

�̃�
2𝑖𝑗

∗ ∗ �̃�
3𝑖𝑗

]

]

]

< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,

(49)

where

Σ̃
𝑖𝑗
=

[

[

[

[

Θ
𝑖𝑗
+ Π
𝑇

1
𝑃
1
Π
1
+ (𝜏
3
Π
1
)
𝑇

𝑄
2
(𝜏
3
Π
1
) Θ
1𝑖𝑗
+ [

0 0

(𝑌𝐴
1𝑖
+ Φ
𝑗
𝐶
1𝑖
)𝑋 0

] Θ
2𝑖

∗ −𝑈 + 𝑅
2
+ 𝑅
𝑇

2
0

∗ ∗ −𝑃
2

]

]

]

]

,

Σ̂
2𝑖𝑗
=

[

[

[

[

Θ
5𝑖𝑗

Θ
6𝑖𝑗

Θ
7𝑖𝑗

Θ
8𝑖𝑗

𝐽
3𝑖

𝐽
4𝑖𝑗
+ [

0 𝑋 (𝐴
1𝑖
𝑌 + 𝐶

𝑇

1𝑖
Φ
𝑇

𝑗
)

0 0

] 0 𝐽
5𝑖

0 𝐽
6𝑖

0 �̃�
𝑇

2𝑖

]

]

]

]

,

Σ̂
𝑖𝑗
= Σ̃
𝑖𝑗
+ Σ̃
𝑗𝑖
+

[

[

[

[

[

[

0 (𝐶
𝑖
𝑋 − 𝐶

𝑗
𝑋)

𝑇

(Φ
𝑗
− Φ
𝑖
)

𝑇

+ (Ψ
𝑗
− Ψ
𝑖
)

𝑇

(𝑌𝐵
𝑖
− 𝑌𝐵
𝑗
)

𝑇

0 0 0

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

]

]

]

]

]

]

,

Σ
2𝑖𝑗
= Σ̃
2𝑖𝑗
+
[

[

0 (Ψ
𝑇

𝑗
− Ψ
𝑇

𝑖
) (𝐵
𝑇

𝑖
𝑌 − 𝐵

𝑇

𝑗
𝑌) + (𝑋𝐶

𝑇

𝑖
− 𝑋𝐶
𝑇

𝑗
) (Φ
𝑇

𝑗
− Φ
𝑇

𝑖
) 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]

]

.

(50)
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Note that

Π
𝑇

2
+ Π
2
− 𝑃
2
− 𝜏
1
𝑄
1
≤ Π
𝑇

2
(𝑃
2
+ 𝜏
1
𝑄
1
)
−1

Π
2
. (51)

Then, by this inequality, it follows from (49) that

[

[

Σ̃
𝑖𝑖
Σ
1𝑖𝑖

Σ̂
2𝑖𝑖

∗ −𝑅
11
𝑅
2𝑖𝑖

∗ ∗ �̂�
3𝑖𝑖

]

]

< 0, 1 ≤ 𝑖 ≤ 𝑟,

[

[

[

Σ̂
𝑖𝑗
Σ
1𝑖𝑗
+ Σ
1𝑗𝑖

Σ
2𝑖𝑗

∗ −2𝑅
11

�̃�
2𝑖𝑗

∗ ∗ 𝑅
3𝑖𝑗

]

]

]

< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,

(52)

where

�̂�
3𝑖𝑗
=

[

[

[

[

[

−𝐼 0 0 0

∗ −Π
𝑇

2
(𝑃
2
+ 𝜏
1
𝑄
1
)
−1

Π
2
𝐽
10𝑖𝑗

0

∗ ∗ −𝜖
𝑖𝑗
𝐼 0

∗ ∗ ∗ −𝜖
−1

𝑖𝑗
𝐼

]

]

]

]

]

,

𝑅
3𝑖𝑗
=

[

[

[

[

[

[

[

[

[

−2𝐼 0 0 0 0 0

∗ −2Π
𝑇

2
(𝑃
2
+ 𝜏
1
𝑄
1
)
−1

Π
2
𝐽
10𝑖𝑗

𝐽
10𝑗𝑖

0 0

∗ ∗ −𝜖
𝑖𝑗
𝐼 0 0 0

∗ ∗ ∗ −𝜖
𝑗𝑖
𝐼 0 0

∗ ∗ ∗ ∗ −𝜖
−1

𝑖𝑗
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜖
−1

𝑗𝑖
𝐼

]

]

]

]

]

]

]

]

]

.

(53)

Now, set
�̃� = Π

2
Π
−1

1
. (54)

Then, by (46), it can be verified that �̃� > 0. Noting the
parameters in (48) and pre- and postmultiplying (3) by

diag (Π−𝑇
1
, Π
−𝑇

1
, 𝐼, 𝐼, 𝐼, Π

−𝑇

1
, 𝐼, Π
−𝑇

2
, 𝐼, . . . , 𝐼) (55)

and its transpose, respectively, we have

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π̃
1𝑖𝑖

Π̃
2𝑖𝑖

𝑃𝐴
2𝑖
𝑃𝐴
3𝑖
𝑃𝐷
𝑖𝑖

𝜏
1
�̃�
1

𝐸
𝑇

𝑖𝑖
Γ
𝑖𝑖

𝑃𝑀
𝑖𝑖

𝑁
𝑇

𝑖𝑖

∗ 𝐽
1

0 0 0 𝜏
1
�̃�
2
𝐸
𝑇

1𝑖
Γ
1𝑖𝑖

0 0

∗ ∗ −𝑃
2

0 0 0 0 Γ
2𝑖

0 0

∗ ∗ ∗ −𝑄
2

0 0 0 Γ
3𝑖

0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0 Γ
4𝑖𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝜏
1
𝑄
1

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐽
𝑇

2
𝐽
𝑇

2
𝑀
𝑖𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖
𝑖𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖
−1

𝑖𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, 1 ≤ 𝑖 ≤ 𝑟,

[

[

Λ
1𝑖𝑗

Λ
2𝑖𝑗

Λ
3𝑖𝑗

∗ Λ
4𝑖𝑗

Λ
5𝑖𝑗

∗ ∗ Λ
6𝑖𝑗

]

]

< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,

(56)

where

Λ̃
1
= 𝐻
𝑇

(𝑃
1
+ 𝜏
2

3
𝑄
2
− �̃�
1
− �̃�
𝑇

1
)𝐻,

Π̃
1𝑖𝑗
= Λ̃
1
+ 𝑃𝐴
𝑖𝑗
+ 𝐴
𝑇

𝑖𝑗
𝑃,

Λ̃
2
= 𝐻
𝑇

(�̃�
1
− �̃�
𝑇

2
) ,

Π̃
2𝑖𝑗
= Λ̃
2
+ 𝑃𝐴
1𝑖𝑗
,

�̃�
1
= Π
𝑇

1
𝑅
1
Π
1
.

(57)

Finally, byTheorem 3, the desired result follows immediately.
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Remark 5. Theorem 4 provides a sufficient condition for the
solvability of the robust𝐻

∞
output feedback control problem

for uncertain fuzzy neutral systems with both discrete and
distributed delays. It is worth pointing out that the result in
Theorem 4 can be readily extended to the case with multiple
delays.

Remark 6. In Theorem 4, if we set 𝐴
21
= 0, 𝑀

𝑖
= 0, and

𝑁
2𝑖
= 0 (𝑖 = 1, 2, . . . 𝑟), then the results in [32] are included

in our paper. Also, the controller design method in our paper
can be the reference for designing the observer-based output
feedback controllers and so forth.

4. Simulation Example

In this section, we provide one example to illustrate the
output feedback 𝐻

∞
controller design approach developed

in this paper.
The uncertain fuzzy system with distributed delays con-

sidered in this example is with two rules.
Plant Rule 1: if 𝑥

1
(𝑡) is 𝜇

1
, then

̇𝑥 (𝑡) = [𝐴
1
+ Δ𝐴
1
(𝑡)] 𝑥 (𝑡) + [𝐴

11
+ Δ𝐴
11
(𝑡)] 𝑥 (𝑡 − 𝜏

1
)

+ [𝐴
21
+ Δ𝐴
21
(𝑡)] ̇𝑥 (𝑡 − 𝜏

2
)

+ [𝐴
31
+ Δ𝐴
31
(𝑡)] ∫

𝑡

𝑡−𝜏3

𝑥 (𝑠) 𝑑𝑠

+ [𝐵
1
+ Δ𝐵
1
(𝑡)] 𝑢 (𝑡) + 𝐷

1𝑖
𝑤 (𝑡) ,

𝑦 (𝑡) = [𝐶
1
+ Δ𝐶
1
(𝑡)] 𝑥 (𝑡) + 𝐶

11
𝑥 (𝑡 − 𝜏

1
) + 𝐷
21
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐸
1
𝑥 (𝑡) + 𝐸

11
𝑥 (𝑡 − 𝜏

1
) + 𝐺
1
𝑢 (𝑡) .

(58)

Plant Rule 2: if 𝑥
1
(𝑡) is 𝜇

2
, then

̇𝑥 (𝑡) = [𝐴
2
+ Δ𝐴
2
(𝑡)] 𝑥 (𝑡) + [𝐴

12
+ Δ𝐴
12
(𝑡)] 𝑥 (𝑡 − 𝜏

1
)

+ [𝐴
22
+ Δ𝐴
22
(𝑡)] ̇𝑥 (𝑡 − 𝜏

2
)

+ [𝐴
32
+ Δ𝐴
32
(𝑡)] ∫

𝑡

𝑡−𝜏3

𝑥 (𝑠) 𝑑𝑠

+ [𝐵
2
+ Δ𝐵
2
(𝑡)] 𝑢 (𝑡) + 𝐷

12
𝑤 (𝑡) ,

𝑦 (𝑡) = [𝐶
2
+ Δ𝐶
2
(𝑡)] 𝑥 (𝑡) + 𝐶

12
𝑥 (𝑡 − 𝜏

1
) + 𝐷
22
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐸
2
𝑥 (𝑡) + 𝐸

12
𝑥 (𝑡 − 𝜏

1
) + 𝐺
2
𝑢 (𝑡) ,

(59)

where

𝐴
1
= [

0.05 0

−0.2 −0.06
] , 𝐴

11
= [

0.05 0.02

−0.05 0.01
] ,

𝐴
21
= [

−0.002 0.008

0.006 0
] ,

𝐴
31
= [

−0.05 0.08

0.06 0
] , 𝐵

1
= [

0.01 0

0.03 0.06
] ,

𝐶
1
= [

−0.03 −0.1

0.2 0.02
] , 𝐶

11
= [

−0.03 −0.01

0.02 0.02
] ,

𝐷
11
= [

0.03

0.06
] , 𝐷

21
= [

−0.5

0
] ,

𝐸
1
= [−0.2 0] , 𝐸

11
= [−0.02 0] ,

𝐺
1
= [0 −0.03] ,

𝐴
2
= [

−0.05 0

−0.2 −0.06
] , 𝐴

12
= [

−0.05 0.2

−0.5 0.01
] ,

𝐴
22
= [

0.008 −0.002

−0.003 0.02
] ,

𝐴
32
= [

0.05 −0.2

−0.3 0.2
] , 𝐵

2
= [

0.01 −0.08

0.02 0.05
] ,

𝐶
2
= [

0.03 −0.1

0.2 0.02
] ,

𝐶
12
= [

−0.03 −0.01

0.02 0.2
] , 𝐷

12
= [

−0.01

0.02
] ,

𝐷
22
= [

−0.3

0
] ,

𝐸
2
= [−0.01 0] , 𝐸

12
= [−0.01 0] ,

𝐺
2
= [0 0.02] ,

(60)

and Δ𝐴
𝑖
(𝑡), Δ𝐴

1𝑖
(𝑡), Δ𝐴

2𝑖
(𝑡), Δ𝐴

3𝑖
(𝑡), Δ𝐵

𝑖
(𝑡), Δ𝐶

𝑖
(𝑡) (𝑖 =

1, 2) can be represented in the form of (2) and (3) with

𝑀
1
= [

−0.02

0
] , 𝑁

01
= [−0.2 0.1] ,

𝑁
11
= [−0.2 0.2] ,

𝑁
21
= [−0.02 0.01] , 𝑁

31
= [−0.02 0.01] ,

𝑁
41
= [−0.02 0.01] ,

𝑁
51
= [−0.02 0.01] , 𝑀

2
= [

0.03

0
] ,

𝑁
02
= 𝑁
01
, 𝑁

12
= 𝑁
11
,

𝑁
22
= 𝑁
21
, 𝑁

32
= 𝑁
31
,

𝑁
42
= 𝑁
41
, 𝑁

52
= 𝑁
51
.

(61)
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Then, the final outputs of the fuzzy systems are inferred as
follows:

̇𝑥 (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡))

× {[𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥 (𝑡)

+ [𝐴
1𝑖
+ Δ𝐴
1𝑖
(𝑡)] 𝑥 (𝑡 − 𝜏

1
)

+ [𝐴
2𝑖
+ Δ𝐴
2𝑖
(𝑡)] ̇𝑥 (𝑡 − 𝜏

2
)

+ [𝐴
3𝑖
+ Δ𝐴
3𝑖
(𝑡)] ∫

𝑡

𝑡−𝜏3

𝑥 (𝑠) 𝑑𝑠

+ [𝐵
𝑖
+ Δ𝐵
𝑖
(𝑡)] 𝑢 (𝑡) + 𝐷

1𝑖
𝑤 (𝑡)} ,

𝑦 (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡))

× {[𝐶
𝑖
+ Δ𝐶
𝑖
(𝑡)] 𝑥 (𝑡)

+𝐶
1𝑖
𝑥 (𝑡 − 𝜏

1
) + 𝐷
2𝑖
𝑤 (𝑡)} ,

𝑧 (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) {𝐸

𝑖
𝑥 (𝑡) + 𝐸

1𝑖
𝑥 (𝑡 − 𝜏

1
) + 𝐺
𝑖
𝑢 (𝑡)} ,

(62)

where

ℎ
1
(𝑥
1
(𝑡)) =

{
{
{
{
{
{

{
{
{
{
{
{

{

1

3

, for 𝑥
1
< −1,

2

3

+

1

3

𝑥
1
, for 


𝑥
1





≤ 1,

1, for 𝑥
1
> 1,

ℎ
2
(𝑥
1
(𝑡)) =

{
{
{
{
{
{

{
{
{
{
{
{

{

2

3

, for 𝑥
1
< −1,

1

3

−

1

3

𝑥
1
, for 


𝑥
1





≤ 1,

0, for 𝑥
1
> 1.

(63)

In this example, we choose the𝐻
∞

performance level 𝛾 = 3.
In order to design a fuzzy𝐻

∞
output feedback controller

for the T-S model, we first choose the initial condition that
is 𝑥(0) = [0.3 −0.1]

𝑇, and the disturbance input 𝑤(𝑡) is
assumed to be

𝑤 (𝑡) =

1

𝑡 + 0.1

, 𝑡 ≥ 0. (64)

Then, solving the LMIs in (44), (45), and (46), we obtain the
solution as follows:

𝑋 = [

0.9868 0.6071

0.6071 1.3948
] ,

𝑌 = [

12.9348 0.1814

0.1814 6.3384
] ,

Ω
1
= [

−1.6069 −1.6112

−0.0417 −3.2117
] ,

Ω
2
= [

8.2076 −3.7031

−5.8461 5.3292
] ,

Φ
1
= [

3.1848 0.0758

−0.1899 −2.5282
] ,

Φ
2
= [

2.0547 0.1643

−0.2930 −0.7113
] ,

𝜓
1
= [

−140.1869 −27.8001

5.7867 −77.8562
] ,

𝜓
2
= [

−79.1853 −88.2601

−88.1012 −95.7242
] .

(65)

Now, by Theorem 4, a desired fuzzy output feedback con-
troller can be constructed as in (11) and (12) with

𝐴
𝑘1
= [

87.3277 −68.0397

139.9266 −107.2394
] ,

𝐴
𝑘2
= [

−24.9856 15.8880

11.1983 −12.2840
] ,

𝐵
𝑘1
= [

10.9115 −0.3725

16.5830 1.9936
] ,

𝐵
𝑘2
= [

1.4642 −0.0212

3.1940 0.5922
] ,

𝐶
𝑘1
= [

−16.0423 12.7577

20.2647 −14.8918
] ,

𝐶
𝑘2
= [

14.2596 −10.4929

3.2304 −1.1934
] .

(66)

With the output feedback fuzzy controller, the simulation
results of the state response of the nonlinear system are given
in Figure 1. Figure 2 shows the control input, while Figures
3 and 4 present the corresponding measured output and the
controlled output, respectively.

From these simulation results, it can be seen that the
designed fuzzy output feedback controller ensures the robust
asymptotic stability of the uncertain fuzzy neutral system and
guarantees a prescribed𝐻

∞
performance level.

5. Conclusion and Future Work

The problem of delay-dependent robust output feedback𝐻
∞

control for uncertain T-S fuzzy neutral systems with param-
eter uncertainties and distributed delays has been studied. In
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Figure 1: State response 𝑥
1
(𝑡) (continuous line) and 𝑥

2
(𝑡) (dashed

line).
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Figure 2: Control input 𝑢
1
(𝑡) (continuous line) and 𝑢

2
(𝑡) (dashed

line).

terms of LMIs, a sufficient condition for the existence of a
full-order fuzzy dynamic output feedback controller, which
robustly stabilizes the uncertain fuzzy neutral delay systems
and guarantees a prescribed level on disturbance attenuation,
has been obtained.

Future work will mainly cover the problem of robust
output feedback 𝐻

∞
control for uncertain fractional-order

(FO) T-S fuzzy neutral systems with state and distributed
delays. Firstly, investigate the robust output feedback 𝐻

∞

control for FOT-S fuzzy systemswith state delays; then, study
the robust output feedback 𝐻

∞
control for FO T-S fuzzy

systems with both state and distributed delays; finally, obtain
the results about the robust output feedback 𝐻

∞
control

for uncertain FO T-S fuzzy neutral systems with state and
distributed delays.
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The antidisturbance fault tolerant control problem of attitude control systems for microsatellite is investigated in the presence of
unknown input delay, stuck faults from the reaction wheel and the multiple disturbances. The multiple disturbances are supposed
to include the vibration disturbance torque from the reaction wheel and modeling uncertainties. The fault diagnosis observer and
disturbance observer are constructed to estimate stuck faults and vibration disturbance torque from the reactionwheel, respectively.
A composite fault tolerant controller is designed by combining a PID controller, the fault accommodation estimation based on the
fault diagnosis observer, and the disturbance compensator based on the disturbance observer.The controller and observer gains can
be easily obtained via a set of linear matrix inequalities. Simulation results are given to show that the faults can be accommodated
readily, and the disturbances can be rejected and attenuated simultaneously.

1. Introduction

Microsatellite, which is a kind of modern small satellites with
mass below 100 kg, plays more and more important roles
in position location, earth observation, atmospheric data
collection, space science, and other space missions because
of its advantages of cost, risk, and manufacturing time.
The reaction wheel had been widely used for microsatellite
attitude control as a kind of momentum exchange device
owing to its great decrease in size and weight. In order
to pursue designated space missions, the reaction wheel
works on a high-speed rotational state sometimes; it raises
the probability of faults to occur inevitably (see [1, 2]).
Moreover, the wheel produces a disturbance torque and
force as by products; the effects of wheel disturbances on
the microsatellite’s attitude error and stability are so critical
that the influence of disturbances on the quality of the
attitude control should be analyzed prior to the application
of the wheels for microsatellite (see [3–6]). In addition, it
is well known that time-delay is a common phenomenon
in many industrial and engineering system and is one of

the instability sources for dynamical systems (see [7–9]).
With an impending requirement on reliability and stability
of attitude control systems, time delay must be considered
when designing the control algorithm. All these aspects in
a realistic environment create considerable difficulty in the
design of attitude control systems for adequate performance
and stability, especially when all these issues are treated
simultaneously.

In the past several decades, one way to improve the
reliability is that enhancing the fault tolerance of the system.
More and more attention had been paid to the development
of methodologies to detect and isolate faults so that measures
could be taken to accommodate these faults (see [10–13]). In
[14], a simple and effective fault tolerant control method for
satellites with four reaction wheels has been proposed based
on dynamic inversion and time-delay control theory. In [15], a
nonlinear fault detection and isolation strategy for redundant
reactionwheels in the attitude control subsystem for a satellite
has been attempted. However, the strategy for redundant
reaction wheels is unfeasible for microsatellite because of its
size and weight.
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To remedy this problem, more and more attention had
been focused on model-based methodologies. In [16], an
interactive bank of unscented Kalman filters has been devel-
oped for fault detection and isolation in reaction wheel
actuators of satellite attitude control systems. In [17], an
unsupervised algorithm of kernel fuzzy 𝑐-means-based fault
diagnosis method for unknown faults in satellite reaction
wheels has been presented. Because of continued presence
of disturbance, the fault tolerant control (FTC) problem
of attitude control systems for microsatellite with multiple
disturbances will be more complicated.

To overcome these obstacles, some approaches have been
provided and applied. In [18], a robust adaptive FTCapproach
for attitude tracking of flexible spacecraft is proposed for use
in situations when there are reaction wheels/actuator failures,
external disturbances, and time-varying inertia-parameter
uncertainties. In [19], a FTC design technique against actua-
tor stuck faults with application to spacecraft attitudemaneu-
vering control systems has been proposed via designing an
integral-type sliding mode attitude controller to compensate
for the effects of stuck actuators and system parameters and
external disturbances. In [20], a robust adaptive controller
has been provided with the utilization of fuzzy logic and
backstepping techniques.The authors investigate the problem
of spacecraft in the presence of unknown mass moment
of inertia matrix, external disturbances, actuator failures,
and control input constraints. Overall, some robust control
techniques had been applied in most existing literature for
the disturbances are assumed to be norm bounded. However,
in practical engineering, the disturbance may originate from
various sources and can be described by a composite form
rather than a single variable. In this case, the robust control
may be too conservative to provide highly accurate control
performance. As such, disturbance attenuation and rejection
for linear (or nonlinear) control systems is a challenging
objective in the control area. Analysis and synthesis for
control systems with disturbances have been one of the
most active research fields in the past few decades. The
idea of disturbance-observer-based control (DOBC) is to
construct an observer to estimate and compensate some
external disturbances (see [21–27]). And it has been shown
that DOBC approach has a good performance to reject
the various unknown disturbances. However, none of these
methods has dealt with multiple disturbances as well as
unknown input delay simultaneously.

In this paper, a composite fault tolerant controller is firstly
addressed for the attitude control systems for microsatellite
with stuck faults from reaction wheel, multiple disturbances
and unknown input delay based on fault diagnosis observer,
disturbance observer and PID state-feedback controller. Fault
diagnosis observer can estimate the stuck faults from reaction
wheel real time. Disturbance observer can estimate the effect
of vibration from the reaction wheel. PID state-feedback
controller can attenuate the influence of the norm bounded
disturbances and the estimation errors. Simulation results
for a microsatellite are given to show the efficiency of the
proposed approach.

The remainder of this paper is organized as follows. In
Section 2, the dynamic model for microsatellite and control

problem formulation is presented. In Section 3, the fault
diagnosis observer and disturbance observer are designed.
In Section 4, the stabilization of the attitude control systems
under the given controller is analyzed, and the solution of
the controller is resolved. In Section 5, the proposed control
algorithm is confirmed by numerical simulation. Section 6
contains conclusions.

2. Problem Formulation

When the Euler angle is very small, the attitude dynamics
equation for microsatellite can be described by the following
matrix form:

𝐼
1
̈𝛾 − 𝜔 (𝐼
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(𝑡 − Δ (𝑡)) + 𝐹

3
+𝑀
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(1)

where 𝛾, 𝜑, and 𝜃 are the yaw angle, pitch angle, and rolling
angle, respectively. 𝐼

𝑖
(𝑖 = 1, 2, 3) is the inertiamatrix, and𝜔 is

the velocity of the orbital reference frame with respect to the
inertial frame expressed in the body-fixed reference frame.
Δ(𝑡) is an unknown control input delay, and the control input
torque is supposed to be 𝑢

𝑖
(𝑡 − Δ(𝑡)). Δ(𝑡) satisfies 0 ≤ Δ(𝑡) ≤

𝜏 < ∞ and Δ̇(𝑡) ≤ 𝑑 < 1. 𝑀
𝑑𝑖
and 𝐹

𝑖
are the disturbance

torques and fault input vector, respectively.
Since the microsatellite rarely performs a large angle

maneuver, the linearmodel is reasonably accurate and accept-
able to be used in attitude controller design. So, the attitude
dynamics equation can be rewritten as follows:

𝑀 ̈𝑝 (𝑡) + 𝐶 ̇𝑝 (𝑡) + 𝐾𝑝 (𝑡)

= 𝐵
𝑢
(𝑢 (𝑡 − Δ (𝑡)) + 𝐹 (𝑡) + 𝑑

1
(𝑡)) + 𝐵

𝑤
𝑑
2
(𝑡) ,

(2)

where 𝑝(𝑡) = [𝛾, 𝜑, 𝜃]
𝑇 is the state vector of Euler angles,

̇𝑝(𝑡) is the Euler angular velocity, and ̈𝑝(𝑡) is the Euler angles
acceleration.𝐹(𝑡) is the stuck fault from reactionwheel, and it
is supposed to be time varying, but its derivative is supposed
to be bounded. 𝑑

1
(𝑡) is the disturbance which represents the

vibration disturbance torque from reaction wheel. 𝑑
2
(𝑡) is the

merged disturbance from space environmental disturbances,
moment-of-inertia uncertainty, and noises from sensors and
actuators. Considering
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0

𝑝(𝜏)𝑑𝜏, 𝑝(𝑡), ̇𝑝(𝑡)]

𝑇

and then transform
the attitude dynamics equation into state space model, which
can be written as
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where
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The vibration disturbance torque 𝑑
1
(𝑡) is supposed to be

described by

𝑑
1
(𝑡) =

𝑛

∑

𝑖=1
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𝑡 + 𝜙
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) , (9)

where 𝑛 is the number of harmonics included in the model,
𝐶
𝑖
is the amplitude of the 𝑖th harmonic, 𝑓

𝑟𝑤𝑎
is the wheel

speed in Hz, ℎ
𝑖
is the 𝑖th harmonic number, and 𝜙

𝑖
is a

random phase (assumed to be uniform over [0, 2𝜋]) (see
[5, 6]). However, it is impossible to obtain the information
of 𝐶
𝑖
and 𝜙

𝑖
except 𝑓

𝑟𝑤𝑎
when the reaction wheel works on a

high-speed rotational state. The disturbance force or torque
𝑑
1
(𝑡) can be rewritten as the following matrix form:

𝑑
1
(𝑡) = 𝑉𝑤 (𝑡) ,

̇𝑤 (𝑡) = 𝑊𝑤 (𝑡) + 𝐵
3
𝛿 (𝑡) ,

(10)

where 𝑤(𝑡) is the state variable, and 𝛿(𝑡) is the additional
disturbance that results from the perturbations and uncer-
tainties in the exogenous system.𝑊 is the vibration frequency
of reaction wheel, and 𝑉 and 𝐵

3
are the known parameter

matrices of the exogenous system with proper dimension.

Assumption 1. (𝐴, 𝐵
1
) is controllable; (𝑊, 𝐵

1
𝑉) is observable.

In the next section, the objective is to design fault
diagnosis observer and disturbance observer, with which the
fault can be accommodated, and themodeled disturbance can
be rejected.

3. Fault Diagnosis Observer and Disturbance
Observer Design

3.1. Fault Diagnosis Observer Design. Fault diagnosis needs to
be accomplished in order to reconfigure system and improve

its reliability. For this purpose, the following fault diagnosis
observer is constructed to diagnose the stuck faults from the
reaction wheel

𝐹 (𝑡) = 𝜀 (𝑡) − 𝐾𝑥 (𝑡) ,

̇𝜀 (𝑡) = 𝐾𝐵
1
(𝜀 (𝑡) − 𝐾𝑥 (𝑡))

+ 𝐾 [𝐴𝑥 (𝑡) + 𝐵
1
𝑢 (𝑡 − Δ (𝑡)) + 𝐵

1

̂
𝑑
1
(𝑡)] ,

(11)

where 𝜀(𝑡) is the auxiliary variable, and 𝐹(𝑡) is the estimation
of 𝐹(𝑡). 𝐾 is the fault diagnosis observer gain to be deter-
mined later. ̂𝑑

1
(𝑡) is the estimation of 𝑑

1
(𝑡) which will be

designed in next subsection.

3.2. Disturbance Observer Design. Disturbance observer is
designed in this subsection in order to reject the modeled
external disturbance, and the disturbance observer is formu-
lated as

̂
𝑑
1
(𝑡) = 𝑉𝑤 (𝑡) ,

𝑤 (𝑡) = V (𝑡) − 𝐿𝑥 (𝑡) ,
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1
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1
𝐹 (𝑡)] ,

(12)

where V(𝑡) is the auxiliary variable, and𝑤(𝑡) is the estimation
of 𝑤(𝑡). 𝐿 is the disturbance observer gain to be determined
later.

The error of disturbance observer and fault diagnosis
observer are defined as

𝑒
𝑤
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where
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(15)

In this section, fault diagnosis observer and disturbance
observer are designed for fault estimation and disturbance
estimation, respectively. In the next section, a composite
time-delay fault tolerant controller should be determined
for reconfiguring the systems with disturbance rejection and
attenuation performance.

4. Composite Fault Tolerant Controller

In this section, a composite fault tolerant controller is de-
signed to guarantee system (7) stability in the presence of
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stuck faults and disturbances simultaneously. A composite
fault tolerant controller is presented as

𝑢 (𝑡) = 𝑀𝑥 (𝑡) −
̂
𝑑
1
(𝑡) − 𝐹 (𝑡) , (16)

where 𝑀 is the state feedback controller gain to be deter-
mined later. Substituting (16) into (7), and it is possible to
obtain the augmented system
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Then the reference output equation in the 𝐻
∞

preference
index can be described as
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Denoting 𝑥(𝑡) = [𝑥(𝑡) 𝑒(𝑡)]𝑇, then (17) and (18) can be
described as
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(𝑡) + 𝐵

𝐹

̇𝐹 (𝑡) ,

𝑧 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐶

2
𝑥 (𝑡 − Δ (𝑡)) ,

(19)

where

𝐴
0
= [

𝐴 𝐵
1
𝐸

0 𝑊
1

] , 𝐴
𝑑
= [

𝐵
1
𝑀 0

0 𝑁𝐵
1
𝐸
] ,

𝐵
0
= [

𝐵
2

0 0

0 𝑁𝐵
2
𝐻
3

] , 𝐵
𝐹
= [

0

𝐻
1

] ,

𝑤
0
= [𝑑
2
(𝑡) 𝑑
2
(𝑡 − Δ (𝑡)) 𝛿 (𝑡)]

𝑇

,

𝐶
1
= [𝐶
11
𝐶
12
] , 𝐶

2
= [𝐶
21
𝐶
22
] .

(20)

At this stage, the objective is to find𝐾, 𝐿, and𝑀 such that
system (17) is robustly asymptotically stable and satisfies the
generalized𝐻

∞
performance.We give the following theorem

for the concerned robust fault diagnosis problem.

Lemma 2. For composite system (21), the parameters 𝛾
1
> 0,

𝛾
2
> 0, if there exist matrices 𝑃 > 0,𝑄 > 0, 𝑆 > 0, and 𝑆 ≤ 𝑃−1,

satisfying

[

[

[

[

[

[

[

[

[

[

Φ
11

0 𝑃𝐵
0
𝑃𝐵
𝐹
𝜏𝐴
𝑇

0
𝜏𝑃𝐴
𝑑
𝐶
𝑇

1

∗ −𝜎𝑄 0 0 𝜏𝐴
𝑇

𝑑
0 𝐶

𝑇

2

∗ ∗ −𝛾
2

0
𝐼 0 𝜏𝐵

𝑇

0
0 0

∗ ∗ ∗ −𝛾
2

1
𝐼 𝜏𝐵
𝑇

𝐹
0 0

∗ ∗ ∗ ∗ −𝜏𝑆 0 0

∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑃 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

< 0, (21)

whereΦ
11
= 𝑠𝑦𝑚[𝑃(𝐴

0
+ 𝐴
𝑑
)] + 𝑄, 𝜎 = 1 − 𝑑, then the com-

posite system (21) is robustly asymptotically stable and satisfies
‖𝑧(𝑡)‖

2

2
< 𝛾
2

0
‖𝑤
0
(𝑡)‖
2

2
+ 𝛾
2

1
‖𝑤
𝐹
(𝑡)‖
2

2
.

Proof. First, we prove the stability of the control system, ac-
cording to the Schur complement formula and 𝑆 ≤ 𝑃−1, the
linear matrix inequalities (21) can be transformed into

Θ
1
=

[

[

[

[

[

Π
11

𝜏𝐴
𝑇

0
𝑆
−1

𝐴
𝑑
+ 𝐶
𝑇

1
𝐶
2

𝑃𝐵
0
+ 𝜏𝐴
𝑇

0
𝑆
−1

𝐵
0
𝑃𝐵
𝐹
+ 𝜏𝐴
𝑇

0
𝑆
−1

𝐵
𝐹

∗ − (1 − 𝑑)𝑄 + 𝜏𝐴
𝑇

𝑑
𝑆
−1

𝐴
𝑑
+ 𝐶
𝑇

2
𝐶
2

𝜏𝐴
𝑇

𝑑
𝑆
−1

𝐵
0

𝜏𝐴
𝑇

𝐷
𝑆
−1

𝐵
𝐹

∗ ∗ −𝛾
2

0
𝐼 + 𝜏𝐵

𝑇

0
𝑆
−1

𝐵
0

𝜏𝐵
𝑇

0
𝑆
−1

𝐵
𝐹

∗ ∗ ∗ −𝛾
2

1
𝐼 + 𝜏𝐵

𝑇

𝐹
𝑆
−1

𝐵
𝐹

]

]

]

]

]

< 0, (22)

where

Π
11
= sym [𝑃 (𝐴 + 𝐴

𝑑
)] + 𝑄 + 𝜏𝐴

𝑇

0
𝑆
−1

𝐴
0

+ 𝜏(1 − 𝑑)

−1

𝑃𝐴
𝑑
𝑆𝐴
𝑇

𝑑
𝑃 + 𝐶

𝑇

1
𝐶
1
.

(23)

Define

𝑥
𝑑
(𝑡) = 𝑥 (𝑡 − Δ (𝑡)) = 𝑥 (𝑡) − ∫

𝑡

𝑡−Δ(𝑡)

𝜉 (𝑠) 𝑑𝑠, (24)

where

𝜉 (𝑠) = 𝐴𝑥 (𝑠) + 𝐴
𝑑
𝑥
𝑑
(𝑠) + 𝐵

0
𝑤
0
(𝑠) + 𝐵

𝐹
𝑤
𝐹
(𝑠) . (25)

A Lyapunov function candidate for system (21) is chosen
as

𝑉 (𝑥, 𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−Δ(𝑡)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−Δ(𝑡)

∫

𝑡

𝑡+𝛽

𝜉
𝑇

(𝑠) 𝑆
−1

𝜉 (𝑠) 𝑑𝑠 𝑑𝛽.

(26)

It can be shown that
𝑉 (𝑥 (𝑡) , 𝑡)

= ̇𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃 ̇𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − [(1 − Δ̇ (𝑡))] 𝑥
𝑇

𝑑
(𝑡) 𝑄𝑥

𝑑
(𝑡)

+ Δ̇ (𝑡) ∫

𝑡

𝑡−Δ(𝑡)

𝜉
𝑇

(𝑠) 𝑆
−1

𝜉 (𝑠) 𝑑𝑠 + Δ (𝑡) 𝜉
𝑇

(𝑡) 𝑆
−1

𝜉 (𝑡)
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Figure 1: Curves of stuck fault and its estimation.
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Figure 2: Curves of the estimation error of stuck faults.

− ∫

0

−Δ(𝑡)

𝜉
𝑇

(𝑡 + 𝛽) 𝑆
−1

𝜉 (𝑡 + 𝛽) 𝑑𝛽

≤ 𝛼
𝑇

(𝑡) (Θ
1
− Θ
2
) 𝛼 (𝑡) , (27)

where

𝛼 (𝑡) =

[

[

[

[

𝑥 (𝑡)

𝑥
𝑑
(𝑡)

𝑤
0
(𝑡)

𝑤
𝐹
(𝑡)

]

]

]

]

,

Θ
2
=

[

[

[

[

[

[

[

[

𝐶
𝑇

1
𝐶
1
𝐶
𝑇

1
𝐶
2

0 0

∗ 𝐶
𝑇

2
𝐶
2

0 0

∗ ∗ −𝛾
2

0
𝐼 0

∗ ∗ ∗ −𝛾
2

1
𝐼

]

]

]

]

]

]

]

]

. (28)

By using Schur complement formula that Θ
1
< 0 leads

to Θ
1
− Θ
2
< 0, it can be obtained that 𝑉(𝑥(𝑡), 𝑡) ≤ 0,
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which implies that the system (17) is robustly asymptotically
stable.

The next step is to prove the robustness of the sys-
tem. Consider an auxiliary function as the performance
index

𝐽 (𝑥 (𝑡))

= 𝑉 (𝑥 (𝑡) , 𝑡) + ∫

𝑡

0

‖𝑧(𝑠)‖
2

2
− 𝛾
2

0





𝑤
0
(𝑠)





2

2
− 𝛾
2

1





𝑤
𝐹
(𝑠)





2

2
𝑑𝑠,

(29)

which satisfies the zero initial condition. Similar to the proof
of the stability, from (21) we have

̇𝐽 (𝑥 (𝑡 ) = 𝑉 (𝑥 (𝑡) , 𝑡) + ‖𝑧 (𝑡)‖
2

2
− 𝛾
2

0





𝑤
0
(𝑡)





2

2
− 𝛾
2

1





𝑤
𝐹
(𝑡)





2

2

≤ 𝛼
𝑇

(𝑡) (Θ
1
− Θ
2
) 𝛼 (𝑡) < 0.

(30)

Then, we can draw a conclusion that 𝐽(𝑥(𝑡)) < 0 under
the zero initial condition which further leads to ‖𝑧(𝑡)‖2

2
<

𝛾
2

0
‖𝑤
0
(𝑡)‖
2

2
+ 𝛾
2

1
‖𝑤
𝐹
(𝑡)‖
2

2
. The proof is completed.

Theorem 3. For composite system (18), the parameters 𝛾
0
> 0,

𝛾
1
> 0, 𝛾

2
> 0, and 𝛾

3
> 0, if there exist matrices 𝑋 > 0,

𝑌 > 0, 𝑃
2
> 0, 𝑄

2
> 0, 𝑇 > 0, 𝑆

1
> 0, and 𝑆

1
< 𝑋, 𝑇 < 𝑃

2
,

satisfying

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜙
11
𝐵
1
𝐸 0 0 𝐵

2
0 0 0 𝜏𝑋𝐴

𝑇

0 𝜏𝐵
1
𝑅
1

0 𝑋𝐶
𝑇

11

∗ 𝜙
22

0 0 0 𝑅
2
𝐵
2
𝑃
2
𝐻
3
𝑃
2
𝐻
1
𝜏𝐸
𝑇

𝐵
𝑇

1
𝜏𝑊
𝑇

1
𝑃
2

0 𝑅
2
𝐵
1
𝐸 𝐶

𝑇

12

∗ ∗ −𝜎𝑌 0 0 0 0 0 𝜏𝑅
𝑇

1
𝐵
𝑇

1
0 0 0 𝑋𝐶

𝑇

21

∗ ∗ ∗ −𝜎𝑄
2

0 0 0 0 0 𝜏𝐸
𝑇

𝐵
𝑇

1
𝑅
𝑇

2
0 0 𝐶

𝑇

22

∗ ∗ ∗ ∗ −𝛾
2

0
𝐼 0 0 0 𝜏𝐵

𝑇

2
0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

1
𝐼 0 0 0 𝜏𝐵

𝑇

2
𝑅
𝑇

2
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

2
𝐼 0 0 𝜏𝐻

𝑇

3
𝑃
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

3
𝐼 0 𝜏𝐻

𝑇

1
𝑃
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
1

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑇 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑋 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑃
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (31)

where 𝜙
11

= 𝑠𝑦𝑚(𝐴𝑋 + 𝐵
1
𝑅
1
) + 𝑌, 𝜙

22
= 𝑠𝑦𝑚(𝑃

2
𝑊
1
+

𝑅
2
𝐵
1
𝐸) + 𝑄

2
, then the composite system (18) with controller

gain𝑀 = 𝑅
1
𝑋
−1 and observer gain [ 𝐿

𝐾
] = 𝑃
2

−1

𝑅
2
is robustly

asymptotically stable and satisfies

‖𝑧 (𝑡)‖
2

2

< 𝛾
2

0





𝑑
2
(𝑡)





2

2
+ 𝛾
2

1





𝑑
2
(𝑡 − Δ (𝑡))






2

2
+ 𝛾
2

2
‖𝛿 (𝑡)‖

2

2

+ 𝛾
2

3







̇𝐹 (𝑡)







2

2

. (32)

Proof. According to the system (18), denoting

𝑃 = [

𝑃
1
0

0 𝑃
2

] , 𝑄 = [

𝑄
1
0

0 𝑄
2

] , 𝑆 = [

𝑆
1
0

0 𝑆
2

] .

(33)

Substituting the related matrix into Lemma 2, we can
get

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜑
11
𝑃
1
𝐵
1
𝐸 0 0 𝑃

1
𝐵
2

0 0 0 𝜏𝐴
𝑇

0 𝜏𝑃
1
𝐵
1
𝑁 0 𝐶

𝑇

11

∗ 𝜑
22

0 0 0 𝑅
2
𝐵
2
𝑃
2
𝐻
3
𝑃
2
𝐻
1
𝜏𝐸
𝑇

𝐵
𝑇

1
𝜏𝑊
𝑇

1
0 𝑅

2
𝐵
1
𝐸 𝐶
𝑇

12

∗ ∗ −𝜎𝑌 0 0 0 0 0 𝜏𝑀
𝑇

𝐵
𝑇

1
0 0 0 𝐶

𝑇

21

∗ ∗ ∗ −𝜎𝑄
2

0 0 0 0 0 𝜏𝐸
𝑇

𝐵
𝑇

1
𝑁
𝑇

0 0 𝐶
𝑇

22

∗ ∗ ∗ ∗ −𝛾
2

0
𝐼 0 0 0 𝜏𝐵

𝑇

2
0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

1
𝐼 0 0 0 𝜏𝐵

𝑇

2
𝑁
𝑇

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

2
𝐼 0 0 𝜏𝐻

𝑇

3
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

3
𝐼 0 𝜏𝐻

𝑇

1
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
1

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑃
1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑃
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (34)
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Figure 3: Curves of vibration estimation of disturbance observer.

0 500 1000 1500 2000

0

0.005

0.01

0.015

0.02

Time (s)

Pitch angle (rad)
Pitch angular rate (rad/s)

−0.02

−0.015

−0.01

−0.005D
ist

ur
ba

nc
e (

N
·m

)

(a) Time responses of attitude angle and attitude angular velocity

800 1000 1200 1400 1600 1800

0

1

2

3

4

5

Time (s)

Pitch angle (rad)
Pitch angular rate (rad/s)

−5

−4

−3

−2

−1

×10
−4

D
ist

ur
ba

nc
e (

N
·m

)

(b) Partial amplification of (a)

Figure 4: Time responses of attitude angle and attitude angular velocity.
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where 𝜑
11
= sym(𝑃

1
𝐴 + 𝐵

1
𝑀) + 𝑄

1
, 𝜑
22
= sym(𝑃

2
𝑊
1
+

𝑅
2
𝐵
1
𝐸) + 𝑄

2
, premultiply and postmultiply diag{𝑋, 𝐼, 𝑋, 𝐼, 𝐼,

𝐼, 𝐼, 𝐼, 𝐼, 𝑃
2
, 𝑋, 𝐼, 𝐼} simultaneously to the left and right sides

of (34), and then defining 𝑋 = 𝑃
−1

1
, 𝑅
1
= 𝑀𝑃

−1

1
= 𝑀𝑋,

𝑅
2
= 𝑃
2
𝑁, 𝑌 = 𝑋𝑄

1
𝑋, and 𝑇 = 𝑃

2
𝑆
2
𝑃
2
then (31) is obtained.

Furthermore, 𝑆
1
≤ 𝑃
−1

1
= 𝑋 and 𝑆

2
≤ 𝑃
−1

2
are equivalent

to 𝑇 ≤ 𝑃
2
. So, the composite system (18) with controller

gain𝑀 = 𝑅
1
𝑋
−1 and 𝑁 = 𝑃

−1

2
𝑅
2
is robustly asymptotically

stable and satisfies ‖𝑧(𝑡)‖2
2
< 𝛾
2

0
‖𝑑
2
(𝑡)‖
2

2
+ 𝛾
2

1
‖𝑑
2
(𝑡 − Δ(𝑡))‖

2

2
+

𝛾
2

2
‖𝛿(𝑡)‖

2

2
+ 𝛾
2

3
‖ ̇𝐹(𝑡)‖

2

2
.

5. Simulation Example

In order to demonstrate the effectiveness of the proposed
control algorithm, numerical simulations will be performed
in this section. The composite controller will be applied
for the attitude control of a microsatellite with unknown
input delay, reaction wheel’s faults, and vibration disturbance
torque from reaction wheel simultaneously.

In this paper, we only consider the attitude in the pitch
channel. Select the upper bound 𝜏 = 30ms, and 𝑑 = 0.1.
Themicrosatellite is supposed tomove in a circular orbit with
the altitude of 900 km; then the orbit rate 𝑛 = 0.0011 rad/s.
𝐽 = 6.14 kg⋅m2 is the nominal principal moment of inertia
of pitch axis. The initial pitch attitudes of the microsatellite
are 𝜃 = 0.02 rad and ̇

𝜃 = 0.002 rad/s. Periodic disturbances
𝑑
1
(𝑡) caused by reactionwheel are described by (10) with𝑊 =

[
0 6

−6 0
], 𝑉 = [5 0]. We select 𝛿(𝑡) as the random signal with

upper 2-norm bound 1. 𝑑
2
(𝑡) can also be considered as the

random signalwith boundedupper 2-norm. For the reference
output, it is denoted that 𝐶

11
= [0.2 0.2 0.2], 𝐶

12
=

[0.8 0.2 0], 𝐶
21
= [0 0.2 0.8], and 𝐶

22
= [0.8 0.2 0]. For

𝜎 = 0.9 and 𝛾
0
= 1, 𝛾

1
= 2, 𝛾

2
= 0.5, and 𝛾

3
= 1.2. It can be

solved via LMI related to (17) that the gain of fault diagnosis
observer (11) is

𝐾 = [0 0 −20.4023] , (35)

the gain of disturbance observer (12) is

𝐿 = [

0 0 −4.3713

0 0 −2.3608
] , (36)

and the gain of state feedback controller is

𝑀 = [−17.2607 −37.7208 −38.7539] . (37)

The stuck fault of reaction wheel is supposed to occur
at the 1000th second as 𝐹 = 0.02N⋅m. The estimation of
stuck faults is demonstrated in Figure 1, where the solid line
represents the real fault signal and the dash-dot line stands for
their estimation. Fault estimation error is shown in Figure 2.
From Figures 1 and 2, it can be seen that the proposed fault
diagnosis method has respectable estimation ability.

When the disturbance observer is constructed based on
(12), Figure 3(a) shows the actual value, and estimated value
of the disturbance caused by the reaction wheel. Figure 3(b)
is obtained by partially amplifying Figure 3(a). From both

figures, we can see that themain disturbance can be estimated
and rejected accurately by the proposed disturbance observer.

Figures 4(a) and 4(b) show that the composite controller
is capable of compensating the effect of stuck faults and vibra-
tion disturbance torque from reaction wheel actively and can
improve the reliability and stability of themicrosatellite in the
presence of the model uncertainty and space environmental
disturbances.

6. Conclusion

In this paper, the fault diagnosis problem is addressed
for microsatellite with unknown input delay. The following
features of the proposed algorithm are compared with the
previous results. Firstly, a uniform fault diagnosis observer
is constructed for the attitude control systems. Secondly, the
disturbances considered in this paper are assumed to include
vibration disturbance torque from reaction wheel and norm
bounded uncertain disturbance. A disturbance observer is
constructed to estimate the vibration disturbance. Thirdly,
a new composite controller is designed which can attenuate
the influence of the norm bounded disturbances and the
estimation errors and correspondingly guarantee the robust
stability against other disturbances. Finally, simulations for a
microsatellite are given to show the efficiency of the proposed
approach. Although numerical simulations have shown that
enhanced robustness can be achieved by using the proposed
method, more general theoretical research and experimental
simulations need to be carried out in the future to ensure
the reliability and stability of attitude control systems for
microsatellite.
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Conventional fault detection and isolation technology cannot fully ensure system redundancy features when sensors experience
drift in a redundant inertial navigation system. A new fault tolerant control method employs state estimation and state feedback
techniques to compensate the sensor drift. However, the method is sensitive to measurement noise characteristics, and the
performance of themethod nearly depends on the feedback gain.This paper proposes an improved fault tolerant control algorithm,
which employs an adaptive extended Kalman particle filter (AEKPF) to deal with unknown noise characteristics and model
inaccuracies. In addition, a drift factor is introduced in the improved fault tolerant controlin order to reduce the dependence
of compensation system on the feedback gain. Simulation results show that the improved fault tolerant control algorithm can
effectively correct the faulty sensor even when the multiple erroneous sensors are producing faulty outputs simultaneously.
Meanwhile, the AEKPF is able to solve the problem of unknown non-Gaussian noise characteristics. Moreover, the feedback gain
is significantly improved by the drift factor.

1. Introduction

The reliability of inertial sensor affects the reliability of the
entire inertial navigation system. A redundant technology
is applied to improve the precision and reliability of the
inertial navigation system, that is, by means of increasing
numbers of gyro and accelerometer [1–3]. In order tomonitor
a redundant system, an effective fault detection and isolation
scheme has to be designed to detect and isolate the fault in
time once a sensor failure occurs [4–8]. For the redundant
strapdown inertial navigation system usually working in
dynamic environments, the performance of fault detection
depends not only on the detecting method but also on the
constraint from errors of inertial sensors. Nowadays, many
fault detection and isolation techniques are constructed based
on the geometric redundancy and parity space approach,
involving identical inertial sensors deployed at various loca-
tions to establish algebraic equations for each inertial sensor
output [1, 9–11]. These equations are referred to as either par-
ity equations or voting equations. The erroneous sensor unit
can be identified by such equations and excluded from the
sensor array. As far as the parity space approach is concerned,
the fault identification is solved by some voting equations

[9, 10]. Both the threshold value and observation period
should be set up to watchdog the contaminated outputs by
noise. When outputs from the voting equations exceed the
threshold value at the end of an observation period, a faulty
sensor recognition is active [12]. However, the parity space
approach has following faults: (1) the threshold value and
the observation period are empirical, and the inappropriate
values will lead to failure of fault detection system, (2) the
need for an observation period indicates that this approach
cannot be done in real time [6], and (3) the redundant inertial
navigation system would lose its redundancy easily.

Conventional fault-identification algorithms are diffi-
cult to maintain the redundancy of the redundant inertial
navigation system. This is simply because each sensor in
a sensor array is drifting from time to time due to the
nature of the drift. Moreover, after the first few drifting
sensors are identified and excluded from the sensor array, the
system would lose its redundancy and identify other drifting
sensors. Therefore, the redundant inertial navigation system
should have the capability of self-repairing to maintain its
redundancy.

A fault tolerant control algorithm for fault-tolerant sensor
systems was proposed by Chen and You in [12]. The state
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estimation and state feedback techniques were used in fault
tolerant control algorithm. Due to its capability of the real
time fault correction, the fault tolerant control algorithm is
able to compensate sensor fault drifts. The sensor which has
experienced fault drift is no longer isolated, but compensated
in real time. Therefore, it maintains the system’s redundancy
[12–14]. However, the fault tolerant control algorithm is
sensitive to the priori knowledge of the measured noise and
the feedback gain. Inappropriate measurement of the noise
covariance and the feedback gain will cause the compen-
sation algorithm invalidity. Meanwhile, it requires that the
measured noise must be white Gaussian noise. Moreover, the
range of its feedback gain is narrow, and a lot of experiments
should be done to determine the feedback gain.

This paper proposes an improved fault tolerant control
algorithm based on the work [12], which employs an AEKPF
to deal with unknown noise characteristics and model inac-
curacies, and a drift factor is introduced in the improved fault
tolerant control to reduce the dependence of compensation
system on the feedback gain.The algorithm has the following
advantages. First, the drift sensors are compensated in real
time. Secondly, the improved algorithm does not need the
threshold value and the observation period. Thirdly, the
improved algorithm uses the AEKPF to solve the problem
of unknown noise characteristics and model inaccuracies.
Fourthly, the improved fault tolerant control algorithm is
insensitive to the feedback gain, and it can enlarge the range of
feedback gain due to the drift factor. Last but not the least, the
redundant inertial navigation system with the improved fault
tolerant control is unconditionally stable, even if all inertial
sensors have experienced drift at certain circumstances.

This paper is arranged as follows. The basic theory of the
fault tolerant control algorithm is introduced in Section 2.
The proposed improved fault tolerant control algorithm is
explained in Section 3. Simulation results of the improved
fault tolerant control algorithm are shown in Section 4.
Section 5 discusses both the certain circumstances and the
unique features of the improved fault tolerant control algo-
rithm. Finally, Section 6 concludes the paper.

2. The Basic Theory of the Fault
Tolerant Control Algorithm

A reasonable redundant configuration of inertial sensors
can improve the reliability of the inertial navigation sys-
tem. Assuming that there are 𝑛 similar inertial sensors in
the redundant inertial navigation system, the measurement
equation is given by

𝑚 = 𝐻𝜔 + 𝜀, (1)

where 𝑚 is a vector of sensor measurements, 𝐻 is measure-
ment matrix, 𝜔 is the state vector to be measured by sensors,
and 𝜀 is the sensor noise with zero mean. Let 𝐻∗ be the
transpose conjugate of 𝐻 and let 𝑉 be the null space of 𝐻∗;
then,

𝑉
∗

𝐻 = 0. (2)

The parity equations are defined as

𝑃 = 𝑉
∗

𝑚. (3)

As shows in previous researches [1–6], if there are 𝑛

gyroscopes to measure three angular rates in redundant
inertial navigation system, the navigation system can form
𝑛 − 3 parity equations. Assuming that only one faulty sensor
exists in a sensor array, the system needs at least two parity
equations to locate it [12, 13]. This means that one state needs
at least three sensors to measure it if the system needs to
locate the faulty sensor. So the number of parity equation
must be more than or equal to 2; that is, 𝑛 − 3 ≥ 2. These
𝑛 − 3 parity equations are often converted into 𝑛 equations
in linear transformation. In other words, the matrix 𝑉 can
be converted into a 𝑛 × 𝑛 matrix where all of the diagonal
terms are equal to zeros while nonzero elsewhere. The newly
formed equations are referred to as voting equations with an
associated voting matrix to distinguish them from the parity
equations. Furthermore, the votingmatrix is derived from the
𝑛 − 3 parity equations, resulting in a rank of 𝑛 − 3.

The voting equations are defined as

𝑄 = 𝐶V𝑚 = 𝐶V[𝑚1 ⋅ ⋅ ⋅ 𝑚
𝑛
]

𝑇

, (4)

𝐶V =

[

[

[

[

[

0 𝐶
12

⋅ ⋅ ⋅ 𝐶
1,𝑛

𝐶
21

0 ⋅ ⋅ ⋅ 𝐶
2,𝑛

...
...

𝐶
𝑛,1

⋅ ⋅ ⋅ 𝐶
𝑛,𝑛−1

0

]

]

]

]

]

=

[

[

[

[

[

𝐶V1
𝐶V2
...

𝐶V𝑛

]

]

]

]

]

, (5)

where 𝑚
1
, . . . , 𝑚

𝑛
represent measurements from the 𝑛 sen-

sors, and 𝐶V1, . . . , 𝐶V𝑛 are the row vectors of 𝐶V. The voting
equation (5) is derived from the parity equations of (3). By
means of linear transformations, the parity equations can be
converted into voting equation. A faulty sensor can be more
easily identified fromvoting equations than fromparity equa-
tions. For example, if the output of the first voting equation is
zero but the rest are non-zeros, one can determine that sensor
𝑚
1
is faulty.When sensormeasurements are contaminated by

noise, the above fault-finding method cannot be done in real
time, since at any time instant, none of the voting equation
outputs is zero. In addition, the abovemethod cannot be used
in the system when incorporated sensors experience sensor
drifts, because every sensor in a sensor array is drifting, and
thus the assumption of only one faulty sensor in a sensor array
can hardly be satisfied [12].

3. The Improved Fault Tolerant
Control Algorithm

The improved fault tolerant control algorithm is designed
under the condition when outputs of incorporated sensors
are contaminated by noise and signal drifts. This is done by
formulating the conventional fault-identification algorithm
into a real time state estimation and state compensation
algorithm.

3.1. Real Time Sensor Drifts Estimation. The state estimation
techniques are used to identify sensor drifts in sensor outputs,
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and the drift of sensor is separated from sensormeasurements
and modeled as a system which meets

𝑚
𝑑𝑖
= 𝑚
𝑖
+ 𝑑
𝑖
, 𝑖 = 1, . . . , 𝑛, (6)

where 𝑑
𝑖
is the drift of sensor 𝑖, 𝑚

𝑑𝑖
is the sensor output with

drift and white noise, and 𝑚
𝑖
is the sensor output with white

noise. When these drifts are treated as system states, their
governing equations can be written as

̇
𝑑
𝑖
= 𝛿, 𝑖 = 1, . . . , 𝑛, (7)

where 𝛿 is the change of drift.
From a system observability point of view, the above

system needs 𝑛 output equations to observe 𝑛 states. These
𝑛−3 parity equations, which are used to describe the relations
between outputs of 𝑛 sensors, can be processed to obtain 𝑛−3
output equations for the estimation. They can be arbitrary
chosen from 𝑛 − 3 row vectors in the voting matrix, such as
𝑍
1
shown as

𝑍
1
≜
[

[

[

𝐶V1
...

𝐶V𝑛−3

]

]

]

[

[

[

𝑑
1

...
𝑑
𝑛

]

]

]

=
[

[

[

𝐶v1
...

𝐶V𝑛−3

]

]

]

[

[

[

𝑚
𝑑1
− 𝑚
1

...
𝑚
𝑑𝑛

− 𝑚
𝑛

]

]

]

=
[

[

[

𝐶V1
...

𝐶V𝑛−3

]

]

]

[

[

[

𝑚
𝑑1

...
𝑚
𝑑𝑛

]

]

]

.

(8)

There are only 𝑛 − 3 equations in (8), so the system at least
need is 3 equationswhich are not linear correlationwith (8) in
addition. As stated as before, assuming that there is only one
fault sensor existed in the sensor array, the remaining output
equations can written as

𝑍
2
≜
[

[

𝐶V1𝑑 0 0

0 d 0

0 0 𝐶V𝑛𝑑

]

]

𝑑 =
[

[

𝐶V1𝑑 0 0

0 d 0

0 0 𝐶V𝑛𝑑

]

]

[

[

[

𝑑
1

...
𝑑
𝑛

]

]

]

=
[

[

[

𝐶V1𝑑𝑑1
...

𝐶V𝑛𝑑𝑑𝑛

]

]

]

=
[

[

[

0 + 𝐶
12
𝑑
2
𝑑
1
+ ⋅ ⋅ ⋅ + 𝐶

1𝑛
𝑑
𝑛
𝑑
1

...
𝐶
𝑛1
𝑑
1
𝑑
𝑛
+ 𝐶
𝑛2
𝑑
2
𝑑
𝑛
+ ⋅ ⋅ ⋅ + 0

]

]

]

.

(9)

Equation (9) also implements the constraint of only one faulty
sensor array. For example, themultiplication of any two drifts
is equal to zero (𝑑

𝑖
× 𝑑
𝑗
= 0, 𝑖 ̸= 𝑗). If only one faulty sensor

existed in the sensor array, the row vector 𝑍
2
is a zero vector;

otherwise, 𝑍
2
is not a zero vector. With both the system

governing equations (7) and the output equations (8) and (9),
one can estimate these drifts in real time by constructing a
state observer. Since the associated output equations 𝑍

2
are

nonlinear, a nonlinear filter should be chosen to serve as the
state observer [12, 13].

In fact, the expression of 𝛿 is hard to get since sensor
drifts are random. In order to facilitate the establishment
of system model, the governing equations can be written as
̇

𝑑
𝑖
= 0, 𝑖 = 1, . . . , 𝑛 if assuming 𝛿(𝑡) = 0, which means

that all of drifts are assumed as dc offset. However, when

the sensor errors are drifting, the real time drifts estimation
would fail because the new governing equation is incapable of
describing time-varying signals. In this case, the estimation
failure would be attributed to the system modeling error.
Some “fading memory” techniques [15–17] were developed
to ensure the state convergence in the presence of model
error. These techniques were applied to ensure the state
convergence by eliminating the effect of older data from
current state estimation if they are no longer valid [12]. If
the measurement noise is non-Gaussian noise in a variety of
applications, the performance and convergence of adaptive
extended Kalman filter cannot be ensured.This paper uses an
AEKPF to solve the problem that the measurement noise is
not white Gaussian noise and the systemmodel is inaccurate.

Assume that the state equation and measurement equa-
tion of estimation system can be written as

𝑑
𝑘+1

= 𝑑
𝑘
+𝑊
𝑘
,

𝑧
𝑘
= ℎ (𝑑) = [

𝑍
1

𝑍
2

] .

(10)

The AEKPF algorithm is expressed by following steps.

(1) Initialize the Particles.Theparticle number is initialized as
𝑁. The particle 𝑑𝑖

0
is sampled from the proposal distribution

𝑝(𝑑
0
), 𝑋 = {(𝑑

𝑖

0
, 𝜔
𝑖

0
) | 𝑖 = 1, 2, . . . , 𝑁}; at the same time, the

particle weights are set as 𝜔𝑖
0
= 1/𝑁. That is, 𝑑𝑖

0
∼ 𝑝(𝑑

0
).

(2) Sequential Importance Sampling. Every particle with EKF
is updated firstly. The project error covariance 𝑃

𝑘+1/𝑘
is

𝑃
𝑘+1/𝑘

= 𝜆
𝑘
𝑃
𝑘
. (11)

The Kalman gain is

𝐿
𝑘+1

= 𝑃
𝑘+1/𝑘

𝐻
𝑇

𝑘+1
(𝐻
𝑘+1

𝑃
𝑘+1/𝑘

𝐻
𝑇

𝑘+1
+ 𝑅
𝑘+1

)

−1

. (12)

The update error covariance is

𝑃
𝑘+1

= (𝐼 − 𝐿
𝑘+1

𝐻
𝑘+1

) 𝑃
𝑘+1/𝑘

. (13)

The update estimates is

̂
𝑑
𝑘+1

=
̂
𝑑
𝑘
+ 𝐿
𝑘+1

(𝑧
𝑘+1

− ℎ (
̂
𝑑
𝑘
)) . (14)

The observation matrix is

𝐻
𝑘+1

=

𝜕

𝜕𝑑

ℎ (𝑑) |
𝑑=
̂
𝑑𝑘

, (15)

where ̂
𝑑
𝑘
is the estimated value of 𝑑

𝑘
, 𝜆
𝑘
is the fading factor,

𝐿
𝑘
is the observer gain, 𝑃

𝑘
is the state covariance matrix, 𝑅

𝑘

is the measurement noise covariance matrix, and ℎ(⋅) is the
output equation for sensor measurements. If

𝑀
𝑘
= 𝐻
𝑘+1

𝑃
𝑘
𝐻
𝑇

𝑘+1
+ 𝑅
𝑘
,

𝑁
𝑘
= [𝑧
𝑘+1

− ℎ (
̂
𝑑
𝑘
)] [𝑧
𝑘+1

− ℎ (
̂
𝑑
𝑘
)]

𝑇

.

(16)



4 Mathematical Problems in Engineering

The fading factor is

𝜆
𝑘
= max{1,

trace (𝑁
𝑘
)

trace (𝑀
𝑘
)

} . (17)

With above equations, we can deduce the mean value 𝑑−𝑖
𝑘
and

variance 𝑃𝑖
𝑘
of the particles { ̂𝑑𝑖

𝑘
}
𝑁

𝑖=1
and sample particles 𝑑𝑖

𝑘

from the importance density function 𝑞(𝑑
𝑖

𝑘
| 𝑑
𝑖

𝑘−1
, 𝑧
1:𝑘
) =

𝑁(
̂
𝑑
𝑖

𝑘
; 𝑑
−𝑖

𝑘
, 𝑃
𝑖

𝑘
).

Secondly, the particle weights are updated. If the impor-
tance density is a first-orderMarkov process and expressed in
a recursively form, the expression of the particle weights can
be written as

𝜔
𝑖

𝑘
= 𝜔
𝑖

𝑘−1

𝑝 (𝑧
𝑘
| 𝑑
𝑘
) 𝑝 (𝑑

𝑖

𝑘
| 𝑑
𝑖

𝑘−1
)

𝑞 (𝑑
𝑖

𝑘
| 𝑑
𝑖

𝑘−1
, 𝑧
1:𝑘
)

. (18)

The particle weights are normalized as

𝜔
𝑖

𝑘
=

𝜔
𝑖

𝑘

∑
𝑁

𝑖=1
𝜔
𝑖

𝑘

. (19)

(3) Resample the Particles. The effective particle number is
given by

�̂�eff =
1

∑
𝑁

𝑖=1
(𝜔
𝑖

𝑘
)
2
. (20)

If �̂�eff < 𝑁th (here 𝑁th is the threshold of effective particle
number, i.e., 𝑁th = 2𝑁/3), then the particles { ̂𝑑𝑖

𝑘
}
𝑁

𝑖=1
and the

new particles are determined by

{𝑑
𝑖

𝑘
}

𝑁

𝑖=1

, 𝑃 (𝑑
𝑖

𝑘
=

̂
𝑑
𝑖

𝑘
) = 𝜔
𝑖

𝑘
,

𝑑
𝑖

𝑘
∼ (𝑑
𝑖

𝑘
, 𝜔
𝑖

𝑘
) , 𝜔

𝑖

𝑘
=

1

𝑁

.

(21)

By means of the resampling operation, those particles with
larger weights will be reserved, and those with smaller
weights be killed.

(4) Output.The expectation is assumed as

̂
𝑑
𝑘
=

𝑁

∑

𝑖=1

𝑑
𝑖

𝑘
𝜔
𝑖

𝑘
. (22)

And the covariance is

𝑃
𝑖

𝑘
= 𝐸 [(

̂
𝑑
𝑘
− 𝑑
𝑖

𝑘
) (

̂
𝑑
𝑘
− 𝑑
𝑖

𝑘
)

𝑇

] . (23)

(5) Replace 𝑘 = 𝑘 + 1 and Return to Step (2).

3.2. Real Time Sensor Drifts Compensation. Once the drift
in each sensor output is estimated in real time, the drift

compensation can be done by the state feedback technique,
as

̇
𝑑 = 𝑢, (24)

𝑢 = −𝐾𝛼
̂
𝑑. (25)

Equations (24) and (25) can also be written in a discrete time
form as

𝑑
𝑘
=

̂
𝑑
𝑘−1

+ 𝑢
𝑘−1

(24a)

𝑢
𝑘−1

= −𝐾𝛼
𝑘−1

̂
𝑑
𝑘−1

, (25a)

where𝐾 is the feedback gain, and 𝛼
𝑘
is the drift factor.

Since the drift is changed by the estimated drift in
the compensation system, the output equations, namely,
(8) and (9) which are used in the drift estimation system,
are no longer valid. The output values of output equations
for the compensation system are obtained by processing
the compensated drift values to obtain compensated sensor
outputs, as the𝑚

𝑐𝑖𝑘
shown in the following:

𝑚
𝑐𝑖𝑘

= 𝑚
𝑖𝑘
+ 𝑑
𝑐𝑖𝑘

= 𝑚
𝑖𝑘
+ 𝑑
𝑖𝑘
− 𝐾

𝑘

∑

𝜏=0

𝛼
𝑖𝜏

̂
𝑑
𝑖𝜏

= 𝑚
𝑑𝑖𝑘

− 𝐾

𝑘

∑

𝜏=0

𝛼
𝑖𝜏

̂
𝑑
𝑖𝜏
= 𝑚
𝑑𝑖𝑘

− 𝐷
𝑖𝑘
,

(27)

and then 𝑚
𝑐𝑖𝑘

should be replaced by 𝑚
𝑑𝑖𝑘

in (8) to obtain
new 𝑍

1
equations, the new 𝑍

2
equations remain the same as

shown in (9), where 𝑑
𝑐𝑖𝑘

is the drift value after compensation,
𝑑
𝑖𝑘
is the drift value,𝐷

𝑖𝑘
is compensated drift values,𝐾 is the

feedback gain, and 𝛼
𝑖𝑘
is the drift factor, and 𝑚

𝑑𝑖𝑘
is discrete

time form of 𝑚
𝑑𝑖
in (8). As shown in (27), the compensated

drift values𝐷
𝑖𝑘
is

𝐷
𝑖𝑘
= 𝐾

𝑘

∑

𝜏=0

𝛼
𝑖𝜏

̂
𝑑
𝑖𝜏
. (28)

As shown before, the state feedback technique is chosen
for the real time sensor fault drift compensation system, and
the compensation system is stated as discrete time form.
Figure 9 shows the block diagram of compensation system.
In the compensation system, the system feedback value is the
compensated drift values 𝐷

𝑖𝑘
; the input of estimation system

is the compensated sensor outputs 𝑚
𝑐𝑖𝑘
. This approach is

very similar to the conventional linear quadratic Gaussian
methods; the only difference is that the Kalman filter is
replaced by the AEKPF [13].

Since 𝑍
2
equations are incorrect in the compensation

system, the compensation system is no longer restricted to
the constraint of only on faulty sensor in a sensor array.
In turn, the proposed compensation algorithm can process
multiple erroneous sensors especially when they produce
faulty outputs simultaneously.

3.3. The Drift Factor. The performance of real time compen-
sation algorithm largely depends on the choice of feedback
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gain since the inappropriate feedback gain will lead to the
system failure [12]. Due to lack of a guiding theorem and
method, the choice of feedback gain relies on empirical
values. The feedback gain which is selected by experience
cannot always guarantee the system validation along with the
environmental change. Moreover, the feedback gain is not
only related to system features and drift characteristics but
also related to noise characteristics. The feedback gains of
some sensors are interrelated to each other. Therefore, the
choice of feedback gain is a complex problem. This paper
introduces a drift factor, which can increase and reduce
the sensitivity of real time compensation system to the
feedback gain. The drift factor makes compensation system
less dependent on feedback gain. It includes the prior drift
factor and the current drift factor.

(1) The Prior Drift Factor. The prior drift factor represents
the change of sensor drift in previous. The greater the rate of
change of predrift is, the greater the prior drift factor is. The
rate of change of sensor predrift is given by

𝛿
𝑖𝑘
= 𝐷
𝑖𝑘
− 𝐷
𝑖𝑘−1

= 𝐾

𝑘

∑

𝜏=0

𝛼
𝑖𝜏

̂
𝑑
𝑖𝜏
− 𝐾

𝑘−1

∑

𝜏=0

𝛼
𝑖𝜏

̂
𝑑
𝑖𝜏
= 𝐾𝛼
𝑖𝑘

̂
𝑑
𝑖𝑘
.

(29)

And the change of sensor predrift is

𝛽
𝑖𝑘
=

∑
𝑘

𝜏=0





𝛿
𝑖𝜏






𝑘

=

∑
𝑘

𝜏=0
𝐾𝛼
𝑖𝑘







̂
𝑑
𝑖𝑘







𝑘

=

𝐾∑
𝑘

𝜏=0
𝛼
𝑖𝑘







̂
𝑑
𝑖𝑘







𝑘

.
(30)

Here 𝛽
𝑖𝑘
is normalized as

𝛽
𝑖𝑘
=

𝛽
𝑖𝑘

∑
𝑛

𝑖=1
𝛽
𝑖𝑘

. (31)

(2) The Current Drift Factor. The current drift factor repre-
sents the change of sensor drift currently, which relates with
the amplitude and the rate of change of the current drift. The
greater the amplitude and the rate of change of the current
drift, the greater the current drift factor. The current drift
factor is given by

𝛾
𝑖𝑘
= 𝐷
𝑖𝑘

̂
𝑑
𝑖𝑘
. (32)

Here 𝛾
𝑖𝑘
is normalized as

𝛾
𝑖𝑘
=

𝛾
𝑖𝑘

∑
𝑛

𝑖=1
𝛾
𝑖𝑘

. (33)

(3)The Drift Factor.The drift factor is defined as

𝛼
𝑖𝑘
= 𝛽
𝑖𝑘
𝛾
𝑖𝑘
. (34)

Here 𝛼
𝑖𝑘
is normalized as

𝛼
𝑖𝑘
=

𝛼
𝑖𝑘

∑
𝑛

𝑖=1
𝛼
𝑖𝑘

. (35)

If 𝛼
𝑖𝑘
< 0.01, then 𝛼

𝑖𝑘
= 0.01. Therefore, the drift factor is

𝛼
𝑘
= diag (𝛼

1𝑘
𝛼
2𝑘

. . . 𝛼
𝑛𝑘
) . (36)

4. Simulation Results

A six-sensor configuration is preferred in the strap-down
inertial navigation system because of its powerful error cali-
bration and fault detection capabilities. In this configuration,
six sensors are mounted on a regular polyhedron with 12
faces, which is a specific symmetric structure. All the sensors
have an angle of 2𝛼 = 63

∘

26


5.8
 to each other, and each

two measurement axes are in one orthogonal plane of the
reference coordinate [1–4]. Taking the gyros as an example,
the measurement equation can be written as

𝑚 =

[

[

[

[

[

[

[

[

𝑚
1

𝑚
2

𝑚
3

𝑚
4

𝑚
5

𝑚
6

]

]

]

]

]

]

]

]

= 𝐻𝜔 =

[

[

[

[

[

[

[

[

cos𝛼 sin𝛼 0

cos𝛼 − sin𝛼 0

0 cos𝛼 sin𝛼
0 cos𝛼 − sin𝛼

sin𝛼 0 cos𝛼
− sin𝛼 0 cos𝛼

]

]

]

]

]

]

]

]

[

[

𝜔
𝑥

𝜔
𝑦

𝜔
𝑧

]

]

,

(37)

where 𝑚
1
∼ 𝑚
6
represent measurements from the six gyros,

𝐻 is measurement matrix, and 𝜔
𝑥
, 𝜔
𝑦
, 𝜔
𝑧
represent the three

angular velocities. The three parity equations can be found
from𝐻. Assuming that

𝑉
∗

=
[

[

0 0 − cos𝛼 cos𝛼 sin𝛼 sin𝛼
− sin𝛼 − sin𝛼 0 0 cos𝛼 − cos𝛼
cos𝛼 − cos𝛼 − sin𝛼 − sin𝛼 0 0

]

]

,

(38)

then 𝑉
∗

𝐻 = 0. According to (3), the parity equation can be
written as

𝑃 = 𝑉
∗

𝑚 = 𝑉
∗

[𝑚
1
⋅ ⋅ ⋅ 𝑚

6
]

𝑇

. (39)

In this configuration, there are six gyros to measure three
angular velocities.The three parity equations, which are used
to describe the relations between outputs of six gyros, can be
processed to obtain three output equations for estimation. Let
𝐶


V = 𝑉
∗; the output matrix can be written as

𝐶


V =
[

[

𝐶V1
𝐶V2
𝐶V3

]

]

= 𝑉

=
[

[

0 0 − cos𝛼 cos𝛼 sin𝛼 sin𝛼
− sin𝛼 − sin𝛼 0 0 cos𝛼 − cos𝛼
cos𝛼 − cos𝛼 − sin𝛼 − sin𝛼 0 0

]

]

.

(40)

In order to get the associated output equations𝑍
2
, the output

matrix 𝐶


V can be converted into 𝐶V. The associated output
matrix 𝐶V is defined as

𝐶V =

[

[

[

[

[

[

[

[

𝐶V1
𝐶V1
𝐶V2
𝐶V2
𝐶V3
𝐶V3

]

]

]

]

]

]

]

]

. (41)
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The system measurement equation is

𝑧
𝑘
= ℎ (𝑑) = [

𝑍
1

𝑍
2

] , (42)

where 𝑍
1
and 𝑍

2
are

𝑍
1
=
[

[

𝐶V1
𝐶V2
𝐶V3

]

]

[

[

[

𝑑
1

...
𝑑
6

]

]

]

=
[

[

𝐶V1
𝐶V2
𝐶V3

]

]

[

[

[

𝑚
𝑑1

...
𝑚
𝑑6

]

]

]

, (43)

𝑍
2
= diag (𝐶V1𝑑, 𝐶V1𝑑, 𝐶V2𝑑, 𝐶V2𝑑, 𝐶V3𝑑, 𝐶V3𝑑) 𝑑

=
[

[

[

𝐶V1𝑑𝑑1
...

𝐶V3𝑑𝑑6

]

]

]

,

(44)

respectively.
Assume that the measurement noise is glint noise which

describes the long-tailed nature of noise distribution. The
model of glint noise is expressed by amixture of twoGaussian
components. One Gaussian component has a large variance
and a small occurring probability, and the other has a small
variance but a large occurring probability. The weighting
coefficient (glint probability) in the mixture (percentage of
contamination) is used to the non-Gaussian nature of the
glint spikes. Further, assuming that the Gaussian terms are
denoted by 𝑁(𝑥; 𝜇

1
, 𝑃
1
) and 𝑁(𝑥; 𝜇

2
, 𝑃
2
), then the mixture

distribution has the following form [18, 19]:

𝑃 (𝑥) = (1 − 𝜀)𝑁 (𝑥; 𝜇
1
, 𝑃
1
) + 𝜀𝑁 (𝑥; 𝜇

2
, 𝑃
2
) , (45)

where 𝜀 is a small positive value, 𝜀 ∈ [0, 1]. 𝜇
1
, 𝜇
2
represent

the means, and 𝑃
1
, 𝑃
2
represent the variances. The mea-

surement noise is expressed by a mixture of 𝑁(𝑥; 0, 0.05)

and𝑁(𝑥; 0, 0.01), and the weighting coefficient 𝜀 is 0.4. The
feedback gain in the compensation algorithm is 40, and the
particle number is 100. Three experiments were done as
follows.

Experiment 1. Six gyros outputs are all drifting and these
drifts are initialed at different time instant.The drifting signal
with the gyro𝑚

1
is 2 − 0.5 sin 0.5𝑡 starting at the 2nd second.

The drifting signal with the gyro 𝑚
2
is −𝑒0.01𝑡 starting at the

6th second. The dc offset with the gyro𝑚
3
is 2 starting at the

12th second. The dc offset with the gyro 𝑚
4
is −2 starting at

the 20th second. The dc offset with the gyro 𝑚
5
is 2 starting

at the 26th second. The drifting signal with the gyro 𝑚
6
is

3−0.6 sin 𝑡 starting at the 32nd second. Simulation results are
shown in Figures 1 and 2.

Experiment 2. The drifting signals with the gyros 𝑚
1
∼ 𝑚
4
,

𝑚
6
are the same as Experiment 1. The drifting signal with the

gyro𝑚
5
is 2−0.6 sin 𝑡 starting at the 26th second. Simulation

results are shown in Figures 3 and 4.

Experiment 3. The drifting signals with the gyros 𝑚
1
∼ 𝑚
6

are the same as Experiment 1. When the feedback gains𝐾 are
5, 10, 40, 60, 80, and 120, respectively, the outputs of gyro𝑚

2

are shown in Figures 5 and 6.

5. Discussion

The real time sensor drift estimation algorithm (Section 3.1)
can estimate the dc offset value when the faulty sensor is
experiencing dc offset. The feedback compensated values
are constant due to the constant dc offsets. Those sensors
experiencing dc offset can be considered as not experienced
drift when the dc offset is compensated by real time sensor
drifts compensation algorithm (Section 3.2). Since the iner-
tial navigation system requires at least three of gyroscope to
measure three-directional speed of rotation, there are at least
three sensors that do not experience fault drift to measure
speed of rotation in the navigation system. If multisensors
experience fault drift, the system should have at least three
sensors that do not experience fault drift, otherwise the
navigation system cannot work. The proposed algorithm can
correct the faulty sensor. The substance of the proposed
algorithm is used to estimate the fault drift value of the
faulty sensor by the measurement of other sensors. If two
sensors break down at the same time, parity equations would
failure. In this situation, the algorithm cannot estimate the
fault drift of the sensors. All in all, to ensure the effectiveness
of the compensation algorithm, the sensors should not fail
simultaneously, but the fault drift can exist at the same
time. The impact of both drift and the feedback gain on the
compensation system and the estimation of the error signal
will be discussed one by one.

(1) The Impact of Drift on the Compensation System. As
shown in Figures 1 and 2, all drifts of gyros 𝑚

1
∼ 𝑚
6

are compensated. Can we draw the conclusion that the
proposed fault tolerant control algorithm can correct all these
drifting gyros in the redundant inertial navigation system?
The answer is obviously not. As shown in Figures 3 and 4,
the proposed improved fault tolerant control algorithm can
correct the drifting gyros 𝑚

1
∼ 𝑚
5
. However, the improved

fault tolerant control algorithm fails when the gyro𝑚
6
starts

drift at the 32nd second. That implies that the improved fault
tolerant controlalgorithm cannot correct all these drifting
gyros. Now the upcoming issue is under what circumstances,
that the improved fault tolerant control algorithm can correct
all these drifting gyros. According to the simulation results of
Experiments 1 and 2, when a sensor starts drift, the sensor can
be corrected by the improved fault tolerant control algorithm
if the sum of the number of the sensor that did not experience
drift and the sensor experienced dc offset but had been
corrected is not less than three sensors. For example, the
drifting gyros𝑚

1
∼ 𝑚
3
were corrected by the improved fault

tolerant control algorithm in Figures 1 and 3.More than three
gyros did not driftwhen the gyros𝑚

1
∼ 𝑚
3
experienced drift.

In Figures 2 and 4, the drifting gyros 𝑚
4
were corrected by

the proposed algorithm due to the gyros 𝑚
5
, 𝑚
6
which did

not drift and the gyro 𝑚
3
which experienced dc offset but

had been corrected when gyros𝑚
4
started drift. The drifting

gyros 𝑚
5
were corrected by the proposed algorithm due to

the gyros 𝑚
6
which did not drift and the gyro 𝑚

3
, 𝑚
4
which

experienced dc offset but had been corrected when gyros𝑚
5

started drift.
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Figure 1: Experiment 1: No. 1–3 Gyro output.
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Figure 2: Experiment 1: No. 4–6 Gyro output.
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Figure 3: Experiment 2: No. 1–3 Gyro output.
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Figure 4: Experiment 2: No. 4–6 Gyro output.
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Figure 5: Experiment 3: No. 2 Gyro output by different feedback
gain.

The drifting gyros 𝑚
6
were corrected by the improved

fault tolerant control algorithm in Figure 2 due to the gyro
𝑚
3
∼ 𝑚
5
which experienced dc offset but had been corrected

when gyros 𝑚
6
started drift. However, the improved fault

tolerant control algorithm was failure when gyros𝑚
6
started

drift in Figure 4.This is because there were only two gyros𝑚
3

and 𝑚
4
which experienced dc offset and had been corrected

when gyros𝑚
6
started drift. Therefore, the conclusion is that

the improved fault tolerant control algorithm can correct the
drifting sensor if the sum of the number of the sensor that
did not drift and the sensor that experienced dc offset but had
been corrected is not less than three.

(2) The Impact of the Feedback Gain on the Compensation
System. Figures 5 and 6 show the convergence of gyro 𝑚

2

outputs used in the improved fault tolerant control algorithm
for various feedback gains, ranging from 5 to 120. According
to the simulation results shown in Figure 5, the feedback gain
of 5 is too small to reduce sensor errors quickly. It needs 3
seconds to eliminate gyro 𝑚

2
error when the feedback gain

is 5. Intuitively, a large feedback gain in this compensation
algorithm is preferred for two reasons. It can compensate for
the fast changing drift signals, and it can quickly decrease
the magnitudes of current errors, so that the constraint of
local stability can be satisfied for the incoming sensor errors.
On the other hand, the large feedback gain may lead to the
oscillation of the system, and this oscillationwould be beyond
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Figure 6: Experiment 3: No. 2 Gyro output by different feedback
gain.

the stability region and stability constraint. This is the case of
feedback gain 80 and 120, as shown in Figure 6.

The performance of the fault tolerant control algorithm
largely depends on the choice of feedback gain. The inappro-
priate feedback gain will lead to the system failure [12]. The
drift factor in the improved fault tolerant control algorithm
is introduced, which can eliminate the dependence of the
feedback gain in fault tolerant control system.As shown in the
Figures 5 and 6, the improved fault tolerant control algorithm
can correctly compensate the drift for the sensor𝑚

2
when the

feedback gain𝐾 is 5, 10, 40, or 60.However, only the case with
feedback gain of 8 can correctly compensate for the sensor
drifts in the compensation algorithm proposed by Chen and
You [12].

(3) The Estimation of the Error Signal. Figure 7 shows the
estimation of the error signal of the adaptive extended
Kalman particle filter (AEKPF) and the traditional particle
filter (TPF).The particle number is 800 in the TPF. As shown
in plot, the AEKPF and the TPF can correctly estimate the
drift for each sensor when the sensors do not experience fault
drifts.TheTPF cannotworkwell when the sensors experience
fault drift, but the AEKPF can correctly estimate the drift for
each sensor in real time.

Figure 8 shows the estimation error of the error signal
for both the AEKPF and TPF. As shown in plot, the average
estimation error of the AEKPF is nearly half of that of the
TPF when the particle number of the AEKPF is 1/8 of TPF. As
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Figure 7: The estimation of the error signal for the AEKPF and TPF.

show in Table 1, the average estimation error of the AEKPF
is [0.1053, 0.1540, 0.1770, 0.1758, 0.1294, 0.1993] when the
particle number is 100, and the average estimation error of the
TPF is [0.2738, 0.3845, 0.2517, 0.2471, 0.2253, 0.2754] when
the particle number is 800.

The fault tolerant control system uses the real time
estimation techniques to estimate the error signal and then
compensates the error according to the estimated value.
However, the estimated value of the error signal is not being
very accurate due to the difference between the measured
noise and the system model. The fault tolerant control
algorithm can reduce the error signal but the error signalmay
not decrease to zero. Therefore, better results are expected

when the calibration and other offline methods are used to
further reduce the signal error further.

6. Conclusion

This paper presents an improved fault tolerant control algo-
rithm for the redundant inertial navigation system. The
improved fault tolerant control algorithm employs the state
estimation techniques to estimate the values of error signals
and the state feedback technique to eliminate the error signals
in real time. To overcome the shortcomings of the fault
tolerant control algorithm proposed by Chen, the improved
fault tolerant control algorithm applies an AEKPF to deal
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Figure 8: The estimation error of the error signal for the AEKPF and TPF.
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Figure 9: The block diagram of compensated system.

with the problem of non-Gaussian measurement noise and
the problem of inaccurate system model. In addition, a drift

factor is introduced in order to enlarge range of choice
of the feedback gain. In short, the improved fault tolerant
control algorithm can compensate the sensor drifts effectively
and improve the robustness and reliability of the redundant
inertial navigation system. Of course, the AEKPF which
involved in this paper is not the only way to solve the problem
of unknown noise characteristics. If the characteristics of the
measurement noise and system noise can be identified at
same time, the adaptive Kalman filter also can estimate sensor
drifts in real time. The autocovariance least squares (ALSs)
technique can estimate the measurement noise and system
noise characteristics, but there are a variety of problems
in ALS technique itself, such as the positive definiteness of
ALS result, and time-varying noise. In this manuscript, the
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Table 1: The average estimation error of the error signal for the
AEKPF and TPF.

The particle number𝑁 AEKPF TPF
100 800

The average estimation error
𝑚
1

0.1035 0.2738
𝑚
2

0.1540 0.3845
𝑚
3

0.1770 0.2517
𝑚
4

0.1758 0.2471
𝑚
5

0.1294 0.2253
𝑚
6

0.1993 0.2754

drift factor get from the normalized product of prior drift
factor and current drift factor. However, the drift factor also
can get from other method, such as fuzzy method. With
the development of estimation techniques, the fault tolerant
control algorithm can be improved by other methods.
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This paper is concerned with the problem of dynamic output feedback (DOF) control for a class of uncertain discrete impulsive
switched systems with state delays andmissingmeasurements.Themissingmeasurements are modeled as a binary switch sequence
specified by a conditional probability distribution. The problem addressed is to design an output feedback controller such that for
all admissible uncertainties, the closed-loop system is exponentially stable in mean square sense. By using the average dwell time
approach and the piecewise Lyapunov function technique, some sufficient conditions for the existence of a desired DOF controller
are derived, then an explicit expression of the desired controller is given. Finally, a numerical example is given to illustrate the
effectiveness of the proposed method.

1. Introduction

Due to their wide applications, switched systemswhich are an
important class of hybrid systems have drawn considerable
attention in the last decade [1, 2]. During these years, there
have been increasing research activities in the field of stability
analysis for such systems (see [3–6], and the references cited
therein). Recently, impulsive switched systems as a class of
special switched systems have gained research attention.This
is because impulsive switched systems can represent some
practical switched systems that exhibit impulsive dynamical
behavior due to sudden changes in the state of the system at
certain instants of switching. Some problems on impulsive
switched systems with and without delays have been success-
fully investigated, and a rich body of the literatures is now
available [7–10].

On the other hand, control synthesis is one of the
important issues in system theory. State feedback control
as an effective control strategy has been widely used in
various complex dynamical systems. For instance, some state
feedback control problems for switched systems have been
extensively studied in [11, 12]. The adaptive control for a class
of nonlinear systems via backsteppingmethod was studied in

[13].The authors in [14] considered an optimal state feedback
control problem for impulsive switched systems. In [15–
18], some controller design methods for impulsive switched
systems were developed. In addition, output feedback control
has been considered as an effective control method when
the states of the system are not all measurable in practice.
At present, many results on the output feedback controller
design for nonlinear systems or switched systems have been
obtained (see [19–24]), and less work has been done for
impulsive switched systems.

In almost all the works mentioned above, the assump-
tion of consecutive measurements has been made implic-
itly. Unfortunately, in many practical applications, such an
assumption does not hold. For example, due to sensor tem-
poral failure or network transmission delay/loss, at certain
time points, the systemmeasurementmay contain noise only,
indicating that the real signal is missing. One of the most
popular ways to describe the missing measurement is to
view it as a Bernoulli distributed (binary switching) white
sequence specified by a conditional probability distribution
in the output equation.TheBernoulli distribution description
was first proposed in [25] to deal with the optimal recursive
filtering problem and then has been used in [26–29] for
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various control and filtering problems of linear systems with
probabilistic missing measurements. It is worth pointing out
that the references mentioned above did not consider the
effect of impulse. However, the missing measurements and
impulsive jumps happening simultaneously in the systems
will bring some challenges and difficulties for the analysis
and synthesis. To the best of our knowledge, the issue of
dynamic output feedback controller design with missing
measurements for impulsive switched systems has not been
fully investigated, which motivates our present study.

In this paper, we will focus our interest on the problem
of dynamic output feedback (DOF) control for a class of
uncertain discrete impulsive switched systems with state
delays and missing measurements. The main contributions
of the paper are as follows: (1) a DOF controller is proposed
for discrete impulsive switched systems, and the controller
contains impulsive jumps, which is different from most
of the existing ones, for example, those in [20–23]; (2)
sufficient conditions for the existence of a DOF controller
are developed such that the resulting closed-loop system is
exponentially stable in mean square sense.

The remainder of the paper is organized as follows. In
Section 2, problem formulation and some necessary prelimi-
naries are given. In Section 3, the main results are presented.
Section 4 gives a numerical example to illustrate the effective-
ness of the proposed approach. Concluding remarks are given
in Section 5.

Notations.Throughout this paper, the superscript “𝑇” denotes
the transpose, and the notation 𝑋 ≥ 𝑌 (𝑋 > 𝑌) means
that matrix 𝑋 − 𝑌 is positive semidefinite (positive definite,
resp.). ‖ ⋅ ‖ denotes the Euclidean norm. 𝜀{⋅} stands for the
mathematical expectation, and Prob{⋅}means the occurrence
probability of the event “⋅”. 𝐼 represents the identity matrix
and diag{𝑎

𝑖
} denotes a diagonal matrix with the diagonal

elements 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. 𝑋−1 denotes the inverse of𝑋. The

asterisk ∗ in a matrix is used to denote a term that is induced
by symmetry.The set of all positive integers is represented by
𝑍
+.

2. Problem Formulation and Preliminaries

Consider the following uncertain discrete impulsive switched
systems with state delay:

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑)

+ 𝐵
𝜎(𝑘)

𝑢 (𝑘) , 𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(1a)

𝑥 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝑥 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

, (1b)

𝑦 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) , (1c)

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝑑, 0] , (1d)

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state vector, 𝑢(𝑘) ∈ 𝑅𝑚 is the control
input, 𝑦(𝑘) ∈ 𝑅

𝑝 is the output vector, and 𝜙(𝜃) is a discrete
vector-valued initial function on interval [−𝑑, 0]. 𝑑 is the
discrete time delay. 𝜎(𝑘) is a switching signal which takes its
values in the finite set𝑁 := {1, . . . , 𝑁},𝑁 denotes the number

of subsystems. 𝑘
0
is the initial time and 𝑘

𝑏
(𝑏 ∈ 𝑍+) denotes

the 𝑏th switching instant. Moreover, 𝜎(𝑘) = 𝑖 ∈ 𝑁means that
the 𝑖th subsystem is activated.

Themeasurement outputwhichmay containmissing data
is described by

𝑦 (𝑘) = 𝑟 (𝑘) 𝑦 (𝑘) = 𝑟 (𝑘) 𝐶
𝜎(𝑘)

𝑥 (𝑘) , (2)

where 𝑦(𝑘) ∈ 𝑅
𝑞 is the measurement output vector and

𝐶
𝑖
(𝑖 ∈ 𝑁) are known real constant matrices with appropriate

dimensions. The stochastic variable 𝑟(𝑘) ∈ 𝑅 is a Bernoulli
distributed white sequence taking the values of 0 and 1 with

Prob {𝑟 (𝑘) = 1} = 𝜀 {𝑟 (𝑘)} = 𝑟, (3a)

Prob {𝑟 (𝑘) = 0} = 1 − 𝜀 {𝑟 (𝑘)} = 1 − 𝑟, (3b)

where 𝑟 ∈ 𝑅 is a known positive scalar. From (3a)-(3b), we
obtain that

𝜏 = 𝜀 {(𝑟 (𝑘) − 𝑟)
2

} = (1 − 𝑟) 𝑟. (4)

For each 𝑖 ∈ 𝑁, 𝐴
𝑖
and 𝐴

𝑑𝑖
are uncertain real-valued

matrices with appropriate dimensions. We assume that these
uncertainties are norm-bounded and satisfy

[𝐴
𝑖
𝐴
𝑑𝑖
] = [𝐴

𝑖
𝐴
𝑑𝑖
] + 𝐻
𝑖
𝐹
𝑖
(𝑘) [𝑀

1𝑖
𝑀
2𝑖
] , (5)

where 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐻
𝑖
, 𝑀
1𝑖
, and 𝑀

2𝑖
, 𝑖 ∈ 𝑁, are known

real constant matrices with appropriate dimensions. 𝐹
𝑖
(𝑘)

are unknown and are possibly time-varying matrices with
Lebesgue measurable elements and satisfy

𝐹
𝑇

𝑖
(𝑘) 𝐹
𝑖
(𝑘) ≤ 𝐼. (6)

Here, we are interested in designing a DOF switched
controller described by

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐𝜎(𝑘)
𝑥
𝑐
(𝑘) + 𝐵

𝑐𝜎(𝑘)
𝑦 (𝑘) ,

𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(7a)

𝑥
𝑐
(𝑘 + 1) = 𝐺

𝜎(𝑘+1)𝜎(𝑘)
𝑥
𝑐
(𝑘) ,

𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(7b)

𝑢 (𝑘) = 𝐶
𝑐𝜎(𝑘)

𝑥
𝑐
(𝑘) , (7c)

𝑥
𝑐
(𝑘
0
+ 𝜃) = 0, 𝜃 ∈ [−𝑑, 0] , (7d)

where 𝑥
𝑐
(𝑘) ∈ 𝑅

𝑛𝑐 is the controller state vector; 𝐴
𝑐𝑖
, 𝐵
𝑐𝑖
, and

𝐶
𝑐𝑖
are constant matrices to be determined later.

Remark 1. Different from the existing DOF controllers pro-
posed in [20–23], the controller proposed here contains (7b),
which coincides with the structure of system (1a), (1b), (1c),
and (1d).

Now, define a new state vector,

𝜉 (𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

𝑐
(𝑘)]

𝑇

∈ 𝑅
𝑛+𝑛𝑐

. (8)
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The combination of the previous DOF controller (7a), (7b),
(7c), and (7d) and system (1a), (1b), (1c), and (1d) yields the
following closed-loop system:

𝜉 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝜉 (𝑘) + (𝑟 (𝑘) − 𝑟) 𝐴
𝑚𝜎(𝑘)

𝜉 (𝑘)

+ 𝐴
𝑑𝜎(𝑘)

𝜉 (𝑘 − 𝑑) , 𝑘 ̸= 𝑘
𝑏
− 1,

(9a)

𝜉 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝜉 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, (9b)

𝜉 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝑑, 0] , (9c)

where

𝐴
𝑖
= [

𝐴
𝑖

𝐵
𝑖
𝐶
𝑐𝑖

𝑟𝐵
𝑐𝑖
𝐶
𝑖
𝐴
𝑐𝑖

] , 𝐴
𝑑𝑖
= [

𝐴
𝑑𝑖

0

0 0

] ,

𝐴
𝑚𝑖
= [

0 0

𝐵
𝑐𝑖
𝐶
𝑖
0
] , 𝐸

𝑖𝑗
= [

𝐸
𝑖𝑗

0

0 𝐺
𝑖𝑗

] ,

𝜑 (𝜃) = [

𝜙 (𝜃)

0
] , 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗.

(10)

The following definitions and lemmas will be essential for
our later development.

Definition 2 (see [30]). For any 𝑘 > 𝑘
0
≥ 0, let 𝑁

𝜎
(𝑘
0
, 𝑘)

denote the switching number of 𝜎(𝑘) during the interval
[𝑘
0
, 𝑘). If there exist𝑁

0
≥ 0 and 𝜏

𝑎
≥ 0 such that

𝑁
𝜎
(𝑘
0
, 𝑘) ≤ 𝑁

0
+

𝑘 − 𝑘
0

𝜏
𝑎

, ∀𝑘 ≥ 𝑘
0
, (11)

then 𝜏
𝑎
and 𝑁

0
are called the average dwell time and the

chatter bound, respectively.

Remark 3. In this paper, the average dwell time method is
used to restrict the switching number during a time interval
such that the stability of system (9a), (9b), and (9c) can be
guaranteed.

Definition 4 (see [27]). System (9a), (9b), and (9c) is said
to be exponentially stable in mean square sense under the
switching signal 𝜎(𝑘), if there exist constants 𝛾 ≥ 0 and
𝜌 ∈ (0, 1), such that the trajectory of system (9a), (9b), and
(9c) satisfies

𝜀 {




𝜉 (𝑘)






2

} ≤ 𝛾𝜌
𝑘−𝑘0 sup
−𝑑≤𝜃≤0

𝜀 {




𝜉 (𝑘
0
+ 𝜃)






2

} , 𝑘 ≥ 𝑘
0
.

(12)

Lemma 5 (see [31]). For a given matrix 𝑆 = [

𝑆11 𝑆12

𝑆
𝑇

12
𝑆22

], where
𝑆
11

and 𝑆
22

are square matrices, the following conditions are
equivalent:

(i) 𝑆 < 0;
(ii) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0;

(iii) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 6 (see [32]). Let 𝑈, 𝑉,𝑊, and 𝑋 be real matrices of
appropriate dimensions with𝑋 satisfying𝑋 = 𝑋

𝑇, then for all
𝑉
𝑇

𝑉 ≤ 𝐼,𝑋+𝑈𝑉𝑊+𝑊
𝑇

𝑉
𝑇

𝑈
𝑇

< 0, if and only if there exists
a scalar 𝛽 such that 𝑋 + 𝛽𝑈𝑈

𝑇

+ 𝛽
−1

𝑊
𝑇

𝑊 < 0.

3. Main Results

3.1. Stability Analysis. The following theorem provides suf-
ficient conditions under which the exponential stability of
system (9a), (9b), and (9c) can be guaranteed in mean square
sense.

Theorem 7. Consider system (9a), (9b), and (9c), for a given
scalar 0 < 𝛼 < 1, if there exist positive definite symmetric
matrices 𝑅

𝑖
and 𝑃

𝑖
(𝑖 ∈ 𝑁) with appropriatedimensions, such

that

[

[

[

[

[

[

[

[

[

[

𝑅
𝑖
− 𝛼𝑃
𝑖

0 𝐴

𝑇

𝑖
𝑃
𝑖
𝜏𝐴

𝑇

𝑚𝑖
𝑃
𝑖

∗ −𝛼
𝑑

𝑅
𝑖
𝐴

𝑇

𝑑𝑖
𝑃
𝑖

0

∗ ∗ −𝑃
𝑖

0

∗ ∗ ∗ −𝜏𝑃
𝑖

]

]

]

]

]

]

]

]

]

]

< 0, (13)

where 𝜏 = (1−𝑟)𝑟, then, under the following average dwell time
scheme

𝜏
𝑎
> 𝜏
∗

𝑎
= −

ln 𝜇
ln𝛼

+ 1, (14)

system (9a), (9b), and (9c) is exponentially stable in mean
square sense, where 𝜇 ≥ 1 satisfies

[
𝑅
𝑖
− 𝜇𝑃
𝑗
𝐸

𝑇

𝑖𝑗
𝑃
𝑖

∗ −𝑃
𝑖

] < 0,

𝛼𝑅
𝑖
< 𝜇𝑅
𝑗
, (𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗) .

(15)

Proof. Choose a piecewise Lyapunov function candidate for
system (9a), (9b), and (9c) of the form

𝑉 (𝑘) = 𝑉
𝜎(𝑘)

(𝑥 (𝑘)) = 𝑉
𝜎(𝑘)

(𝑘) , (16)

the form of 𝑉
𝜎(𝑘)

(𝑘) is given by

𝑉
𝜎(𝑘)

(𝑘) = 𝑉
1𝜎(𝑘)

(𝑘) + 𝑉
2𝜎(𝑘)

(𝑘) , (17)

where

𝑉
1𝑖
(𝑘) = 𝜉

𝑇

(𝑘) 𝑃
𝑖
𝜉 (𝑘) ,

𝑉
2𝑖
(𝑘) =

𝑘−1

∑

𝑟=𝑘−𝑑

𝜉
𝑇

(𝑟) 𝑅
𝑖
𝜉 (𝑟) 𝛼

𝑘−𝑟−1

, 𝑖 ∈ 𝑁.

(18)
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When 𝑘 ∈ [𝑘
𝑏
, 𝑘
𝑏+1
−1), we let 𝜎(𝑘) = 𝜎(𝑘+1) = 𝑖 (𝑖 ∈ 𝑁).

Then along the trajectory of system (9a), (9b), and (9c), we
have

Δ𝑉
1𝑖
(𝑘) = 𝜀 {𝑉

1𝑖
(𝑘 + 1)} − 𝛼𝜀 {𝑉

1𝑖
(𝑘)}

= 𝜉
𝑇

(𝑘) (𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
− 𝛼𝑃
𝑖
) 𝜉 (𝑘)

+ 2𝜀 {(𝑟 (𝑘) − 𝑟)} 𝜉
𝑇

(𝑘) 𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑚𝑖
𝜉 (𝑘)

+ 2𝜉
𝑇

(𝑘) 𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖
𝜉 (𝑘 − 𝑑)

+ 𝜀 {(𝑟 (𝑘) − 𝑟)
2

} 𝜉
𝑇

(𝑘) 𝐴

𝑇

𝑚𝑖
𝑃
𝑖
𝐴
𝑚𝑖
𝜉 (𝑘)

+ 𝜉
𝑇

(𝑘 − 𝑑)𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝐴
𝑑𝑖
𝜉 (𝑘 − 𝑑)

+ 2𝜀 {(𝑟 (𝑘) − 𝑟)} 𝜉
𝑇

(𝑘) 𝐴

𝑇

𝑚𝑖
𝑃
𝑖
𝐴
𝑑𝑖
𝜉 (𝑘 − 𝑑) ,

Δ𝑉
2𝑖
(𝑘) = 𝜀 {𝑉

2𝑖
(𝑘 + 1)} − 𝛼𝜀 {𝑉

2𝑖
(𝑘)}

=

𝑘

∑

𝑟=𝑘+1−𝑑

𝜉
𝑇

(𝑟) 𝑅
𝑖
𝜉 (𝑟) 𝛼

𝑘−𝑟

−

𝑘−1

∑

𝑟=𝑘−𝑑

𝜉
𝑇

(𝑟) 𝑅
𝑖
𝜉 (𝑟) 𝛼

𝑘−𝑟

= 𝜉
𝑇

(𝑘) 𝑅
𝑖
𝜉 (𝑘) − 𝛼

𝑑

𝜉
𝑇

(𝑘 − 𝑑) 𝑅
𝑖
𝜉 (𝑘 − 𝑑) .

(19)

Notice that

𝜀 {𝑟 (𝑘) − 𝑟} = 0, 𝜏 = 𝜀 {(𝑟 (𝑘) − 𝑟)
2

} = (1 − 𝑟) 𝑟.

(20)

Thus we obtain

Δ𝑉
𝑖
(𝑘) = 𝜀 {𝑉

𝑖
(𝑘 + 1)} − 𝛼𝜀 {𝑉

𝑖
(𝑘)} = 𝑋

𝑇

(𝑘) 𝜑
𝑖
𝑋(𝑘) ,

𝜑
𝑖
= [

𝑅
𝑖
− 𝛼𝑃
𝑖

0

0 −𝛼
𝑑

𝑅
𝑖

] +
[

[

[

𝐴

𝑇

𝑖

𝐴

𝑇

𝑑𝑖

]

]

]

𝑃
𝑖
[𝐴
𝑖
𝐴
𝑑𝑖
]

+ [
𝜏𝐴

𝑇

𝑚𝑖
𝑃
𝑖
𝐴
𝑚𝑖

0

0 0

] ,

(21)

where𝑋𝑇(𝑘) = [ 𝜉𝑇(𝑘) 𝜉
𝑇

(𝑘 − 𝑑) ].
Applying Lemma 5, it is easy to get that inequality (13) is

equivalent to 𝜑
𝑖
< 0. Thus we can obtain from (13) that

𝜀 {𝑉
𝑖
(𝑘 + 1)} < 𝛼𝜀 {𝑉

𝑖
(𝑘)} , 0 < 𝛼 < 1. (22)

When 𝑘 = 𝑘
𝑏
−1, we let 𝜎(𝑘

𝑏
−1) = 𝑗. Along the trajectory

of system (9a), (9b), and (9c), we have

𝜀 {𝑉
𝑖
(𝑥 (𝑘
𝑏
))} − 𝜇𝜀 {𝑉

𝑗
(𝑥 (𝑘
𝑏
− 1))}

= 𝑥
𝑇

(𝑘
𝑏
− 1) (𝐸

𝑇

𝑖𝑗
𝑃
𝑖
𝐸
𝑖𝑗
− 𝜇𝑃
𝑗
) 𝑥 (𝑘

𝑏
− 1)

+

𝑘𝑏−1

∑

𝑟=𝑘𝑏−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘𝑏−𝑟−1

− 𝜇

𝑘𝑏−2

∑

𝑟=𝑘𝑏−1−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑗
𝑥 (𝑟) 𝛼

𝑘𝑏−𝑟−2

= 𝑥
𝑇

(𝑘
𝑏
− 1) (𝐸

𝑇

𝑖𝑗
𝑃
𝑖
𝐸
𝑖𝑗
− 𝜇𝑃
𝑗
+ 𝑅
𝑖
) 𝑥 (𝑘

𝑏
− 1)

− 𝜇𝑥
𝑇

(𝑘
𝑏
− 1 − 𝑑) 𝑅

𝑗
𝑥 (𝑘
𝑏
− 1 − 𝑑) 𝛼

𝑑−1

+

𝑘𝑏−2

∑

𝑟=𝑘𝑏−𝑑

𝛼
𝑘𝑏−𝑟−2

𝑥
𝑇

(𝑟) (𝛼𝑅
𝑖
− 𝜇𝑅
𝑗
) 𝑥 (𝑟) .

(23)

It can be obtained from (15) that

𝐸

𝑇

𝑖𝑗
𝑃
𝑖
𝐸
𝑖𝑗
− 𝜇𝑃
𝑗
+ 𝑅
𝑖
< 0,

𝛼𝑅
𝑖
− 𝜇𝑅
𝑗
< 0.

(24)

It follows that

𝜀 {𝑉
𝜎(𝑘𝑏)

(𝑥 (𝑘
𝑏
))} < 𝜇𝜀 {𝑉

𝜎(𝑘𝑏−1)
(𝑥 (𝑘
𝑏
− 1))} . (25)

Thus, for 𝑘 ∈ [𝑘
𝑏
, 𝑘
𝑏+1
), we have

𝜀 {𝑉
𝜎(𝑘)

(𝑥 (𝑘))} < 𝛼
𝑘−𝑘𝑏

𝜀 {𝑉
𝜎(𝑘𝑏)

(𝑥 (𝑘
𝑏
))}

< 𝜇𝛼
𝑘−𝑘𝑏

𝜀 {𝑉
𝜎(𝑘𝑏−1)

(𝑥 (𝑘
𝑏
− 1))} .

(26)

Repeating the previous manipulation, one has that

𝜀 {𝑉
𝜎(𝑘)

(𝑥 (𝑘))}

< 𝛼
𝑘−𝑘𝑏

𝜀 {𝑉
𝜎(𝑘𝑏)

(𝑥 (𝑘
𝑏
))}

< 𝜇𝛼
𝑘−𝑘𝑏

𝜀 {𝑉
𝜎(𝑘𝑏−1)

(𝑥 (𝑘
𝑏
− 1))}

< 𝜇𝛼
𝑘−𝑘𝑏−1−1

𝜀 {𝑉
𝜎(𝑘𝑏−1)

(𝑥 (𝑘
𝑏−1
))}

< 𝜇
2

𝛼
𝑘−𝑘𝑏−1−1

𝜀 {𝑉
𝜎(𝑘𝑏−1−1)

(𝑥 (𝑘
𝑏−1

− 1))}

< ⋅ ⋅ ⋅

< 𝜇
𝑏

𝛼
𝑘−𝑘0−𝑏

𝜀 {𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
))} .

(27)
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From Definition 2, we get that 𝑏 = 𝑁
𝜎
(𝑘
0
, 𝑘) ≤ 𝑁

0
+ (𝑘 −

𝑘
0
)/𝜏
𝑎
, where 𝑏 denotes the switching number of 𝜎(𝑘) during

the interval [𝑘
0
, 𝑘), then it follows that

𝜀 {𝑉
𝜎(𝑘)

(𝑥 (𝑘))}

< (𝜇𝛼
−1

)

𝑁0+(𝑘−𝑘0)/𝜏𝑎

𝛼
𝑘−𝑘0

𝜀 {𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
))}

< (𝜇𝛼
−1

)

𝑁0

𝑒
((𝑘−𝑘0)/𝜏𝑎)(ln 𝜇−ln𝛼)

𝑒
(𝑘−𝑘0) ln𝛼

𝜀 {𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
))}

< (𝜇𝛼
−1

)

𝑁0

𝑒
((ln 𝜇−ln𝛼)/𝜏𝑎+ln𝛼)(𝑘−𝑘0)

𝜀 {𝑉
𝜎(𝑘0)

(𝑥 (𝑘
0
))} .

(28)

Notice that

min
𝑖∈𝑁

{𝜆min (𝑃𝑖)} 𝜀 {




𝜉 (𝑘)






2

} ≤ 𝜀 {𝑉
𝜎(𝑘)

(𝑥 (𝑘))} ,

𝜀 {𝑉 (𝑥 (𝑘
0
))}

≤ max
𝑖∈𝑁

{𝜆max (𝑃𝑖) + 𝑑𝜆max (𝑅𝑖)} sup
−𝑑≤𝜃≤0

𝜀 {




𝜉 (𝑘
0
+ 𝜃)






2

} .

(29)

Then, one obtains

𝜀 {




𝜉 (𝑘)






2

} < 𝛾𝜌
(𝑘−𝑘0) sup
−𝑑≤𝜃≤0

𝜀 {




𝜉 (𝑘
0
+ 𝜃)






2

} , ∀𝑘 ≥ 𝑘
0
,

(30)

where

𝛾 = (𝜇𝛼
−1

)

𝑁0
max
𝑖∈𝑁

{𝜆max (𝑃𝑖) + 𝑑𝜆max (𝑅𝑖)}

min
𝑖∈𝑁

{𝜆min (𝑃𝑖)}
,

𝜌 = 𝑒
(ln 𝜇−ln𝛼)/𝜏𝑎+ln𝛼

.

(31)

Then under the average dwell time scheme (14), it is easy to
get that 0 < 𝜌 < 1, which implies that system (9a), (9b), and
(9c) is exponentially stable in mean square sense.

This completes the proof.

Remark 8. Compared with the existing results presented in
[16–18], we get sufficient conditions of exponential stability
in mean square sense. In addition, the paper takes the miss-
ing measurement into consideration, which yields different
results from those of [16–18], where themissingmeasurement
is not considered.

3.2. Design of DOF Controller. This section will give some
LMIs conditions for the controller design.

Theorem 9. Consider system (1a), (1b), (1c), and (1d) for a
given positive scalar 0 < 𝛼 < 1, if there exist positive-definite
symmetric matrices 𝑆

11𝑖
, 𝑃
11𝑖
, 𝑅
11𝑖
, and �̃�

𝑖
, any matrices Σ

𝑖
,

𝑌


𝑖
, and ̃𝑍

𝑖
with appropriate dimensions, and positive scalars

𝜀
𝑖
and 𝛿

𝑖
(𝑖 ∈ 𝑁), such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖
Λ
𝑖
0 0 𝜃

𝑖
Σ
𝑖

0 𝜏𝐶
𝑖

𝑇

𝑍
𝑖

𝑇

𝜀
𝑖
𝑀
𝑇

1𝑖
0 𝛿

𝑖
𝑀
𝑇

1𝑖
0

∗ Υ
𝑖
0 0 𝐴

𝑇

𝑖
𝑆
11𝑖

Θ
𝑖

0 𝜏𝐶
𝑖

𝑇

𝑍
𝑖

𝑇

𝜀
𝑖
𝑀
𝑇

1𝑖
0 𝛿

𝑖
𝑀
𝑇

1𝑖
0

∗ ∗ Ξ
𝑖

Ω
𝑖

𝐴
𝑇

𝑑𝑖
𝑆
11𝑖

𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0 𝜀
𝑖
𝑀
𝑇

2𝑖
0 𝛿

𝑖
𝑀
𝑇

2𝑖
0

∗ ∗ ∗ −𝛼
𝑑

𝑅
11𝑖

𝐴
𝑇

𝑑𝑖
𝑆
11𝑖

𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0 𝜀
𝑖
𝑀
𝑇

2𝑖
0 𝛿

𝑖
𝑀
𝑇

2𝑖
0

∗ ∗ ∗ ∗ −𝑆
11𝑖

−𝐼 0 0 0 𝑆
11𝑖
𝐻
𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
11𝑖

0 0 0 0 0 𝑃
11𝑖
𝐻
𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
11𝑖

−𝜏𝑆
11𝑖

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑃
11𝑖

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛿
𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛿
𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (32a)

where 𝜏 = (1 − 𝑟)𝑟, Φ
𝑖
= 𝑅
11𝑖

+ 𝑌


𝑖
+ (𝑌


𝑖
)

𝑇

+ �̃�


𝑖
− 𝛼𝑆
11𝑖
,

Υ
𝑖
= 𝑅
11𝑖
− 𝛼𝑃
11𝑖
, Λ
𝑖
= 𝑅
11𝑖
+ 𝑌


𝑖
− 𝛼𝑆
11𝑖
, 𝜃
𝑖
= 𝐴
𝑇

𝑖
𝑆
11𝑖
+ (
̃
𝑍


𝑖
)

𝑇

,
Θ
𝑖
= 𝐴
𝑇

𝑖
𝑃
11𝑖
+ 𝑟𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
, Ξ
𝑖
= −𝛼
𝑑

𝑅
11𝑖
−𝛼
𝑑

𝑌


𝑖
−𝛼
𝑑

(𝑌


𝑖
)

𝑇

−𝛼
𝑑

�̃�


𝑖
,

Ω
𝑖
= −𝛼
𝑑

𝑅
11𝑖
− 𝛼
𝑑

𝑌


𝑖
.

Then, there exists a DOF controller (7a), (7b), (7c), and
(7d) such that the closed-loop system (9a), (9b), and (9c) is
exponentially stable in mean square sense for any switching

signals with average dwell time scheme (14), where 𝜇 ≥ 1

satisfies

[
𝑅
𝑖
− 𝜇𝑃
𝑗
𝐸

𝑇

𝑖𝑗
𝑃
𝑖

∗ −𝑃
𝑖

] < 0, (32b)

𝛼𝑅
𝑖
< 𝜇𝑅
𝑗
, (𝑖, 𝑗 ∈ 𝑁) , (32c)
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where

𝑃
𝑖
= [

𝑃
11𝑖

𝑃
12𝑖

∗ 𝑃
22𝑖

] , 𝑅
𝑖
= [

𝑅
11𝑖

𝑅
12𝑖

∗ 𝑅
22𝑖

] , (33)

𝑃
11𝑖
𝑆

−1

11𝑖
+ 𝑃
12𝑖
𝑆
𝑇

12𝑖
= 𝐼, 𝑃

𝑇

12𝑖
𝑆

−1

11𝑖
+ 𝑃
22𝑖
𝑆
𝑇

12𝑖
= 0, (34a)

𝑅
12𝑖
= (𝑌


𝑖
)

𝑇

𝑆

−1

11𝑖
𝑆
−𝑇

12𝑖
, 𝑅

22𝑖
= 𝑆
−1

12𝑖
𝑆

−1

11𝑖
�̃�


𝑖
𝑆

−1

11𝑖
𝑆
−𝑇

12𝑖
. (34b)

Moreover, if the previous LMI conditions are feasible, then
the desired dynamic output feedback controller parameters can
be designed as

𝐴
𝑐𝑖
= 𝑃
−1

12𝑖
(Σ
𝑇

𝑖
− 𝑃
11𝑖
𝐴
𝑖
− 𝑟𝑍
𝑖
𝐶
𝑖
− 𝑃
11𝑖
𝑆

−1

11𝑖

̃
𝑍


𝑖
) 𝑆

−1

11𝑖
𝑆
−𝑇

12𝑖
,

(35a)

𝐵
𝑐𝑖
= 𝑃
−1

12𝑖
𝑍
𝑖
, 𝐶

𝑐𝑖
= 𝐵
−1

𝑖
𝑆

−1

11𝑖

̃
𝑍


𝑖
𝑆

−1

11𝑖
𝑆
−𝑇

12𝑖
. (35b)

Proof. Let the matrix 𝑃
𝑖

−1 be partitioned as follows:

𝑃
−1

𝑖
= [

𝑆
11𝑖

𝑆
12𝑖

∗ 𝑆
22𝑖

] , (36)

where 𝑆
11𝑖
∈ 𝑅
𝑛×𝑛.

By 𝑃
𝑖
𝑃
𝑖

−1

= 𝐼 and from (34a) and (36), we have

𝑃
11𝑖
𝑆
11𝑖
+ 𝑃
12𝑖
𝑆
𝑇

12𝑖
= 𝐼, 𝑃

𝑇

12𝑖
𝑆
11𝑖
+ 𝑃
22𝑖
𝑆
𝑇

12𝑖
= 0. (37)

Define the following matrices:

𝐽
𝑖
=
[

[

𝑆
11𝑖

𝐼

𝑆
𝑇

12𝑖
0

]

]

, 𝐽
𝑖
=
[

[

𝐼 𝑃
11𝑖

0 𝑃
𝑇

12𝑖

]

]

. (38)

Then we have

𝑃
𝑖
𝐽
𝑖
= 𝐽
𝑖
,

𝐽
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝐽
𝑖
=
[

[

𝐴
𝑖
𝑆
11𝑖
+ 𝐵
𝑖
𝐶
𝑐𝑖
𝑆
𝑇

12𝑖
𝐴
𝑖

Ψ
1𝑖

𝑃
11𝑖
𝐴
𝑖
+ 𝑟𝑃
12𝑖
𝐵
𝑐𝑖
𝐶
𝑖

]

]

,

𝐽
𝑇

𝑖
𝑃
𝑖
𝐴
𝑚𝑖
𝐽
𝑖
=
[

[

0 0

𝑃
12𝑖
𝐵
𝑐𝑖
𝐶
𝑖
𝑆
11𝑖

𝑃
12𝑖
𝐵
𝑐𝑖
𝐶
𝑖

]

]

,

𝐽
𝑇

𝑖
𝑃
𝑖
𝐴
𝑑𝑖
𝐽
𝑖
=
[

[

𝐴
𝑑𝑖
𝑆
11𝑖

𝐴
𝑑𝑖

𝑃
11𝑖
𝐴
𝑑𝑖
𝑆
11𝑖

𝑃
11𝑖
𝐴
𝑑𝑖

]

]

,

𝐽
𝑇

𝑖
𝑃
𝑖
𝐽
𝑖
=
[

[

𝑆
11𝑖

𝐼

𝐼 𝑃
11𝑖

]

]

,

𝐽
𝑇

𝑖
𝑅
𝑖
𝐽
𝑖
=
[

[

Ψ
2𝑖

𝑆
11𝑖
𝑅
11𝑖
+ 𝑆
12𝑖
𝑅
𝑇

12𝑖

𝑅
11𝑖
𝑆
11𝑖
+ 𝑅
12𝑖
𝑆
𝑇

12𝑖
𝑅
11𝑖

]

]

,

Ψ
1𝑖
= 𝑃
11𝑖
𝐴
𝑖
𝑆
11𝑖
+ 𝑟𝑃
12𝑖
𝐵
𝑐𝑖
𝐶
𝑖
𝑆
11𝑖

+ 𝑃
11𝑖
𝐵
𝑖
𝐶
𝑐𝑖
𝑆
𝑇

12𝑖
+ 𝑃
12𝑖
𝐴
𝑐𝑖
𝑆
𝑇

12𝑖
,

Ψ
2𝑖
= 𝑆
11𝑖
𝑅
11𝑖
𝑆
11𝑖
+ 𝑆
12𝑖
𝑅
𝑇

12𝑖
𝑆
11𝑖

+ 𝑆
11𝑖
𝑅
12𝑖
𝑆
𝑇

12𝑖
+ 𝑆
12𝑖
𝑅
22𝑖
𝑆
𝑇

12𝑖
.

(39)

Use diag{𝐽𝑇
𝑖
, 𝐽
𝑇

𝑖
, 𝐽
𝑇

𝑖
, 𝐽
𝑇

𝑖
} to premultiply and diag{𝐽

𝑖
, 𝐽
𝑖
,

𝐽
𝑖
, 𝐽
𝑖
} to postmultiply the left-hand term of (13), and denote

𝑍
𝑖
= 𝑃
12𝑖
𝐵
𝑐𝑖
,

̃
𝑍
𝑖
= 𝐶
𝑐𝑖
𝑆
𝑇

12𝑖
,

𝑌
𝑖
= 𝑆
12𝑖
𝑅
𝑇

12𝑖
, 𝑌

𝑖
= 𝑆
12𝑖
𝑅
22𝑖
𝑆
𝑇

12𝑖
.

(40)

Then,we can obtain that (13) is equivalent to the following
inequality:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖1
Λ
𝑖1

0 0
̂
𝜃
𝑖1

Σ̂
𝑖1

0 𝜏𝑆
11𝑖
𝐶
𝑇

𝑖
𝑍
𝑇

𝑖

∗ Υ
𝑖1

0 0 𝐴
𝑇

𝑖
Θ̂
𝑖1

0 𝜏𝐶
𝑇

𝑖
𝑍
𝑇

𝑖

∗ ∗ Ξ
𝑖1

Ω
𝑖1

𝑆
11𝑖
𝐴
𝑇

𝑑𝑖
𝑆
11𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0

∗ ∗ ∗ −𝛼
𝑑

𝑅
11𝑖

𝐴
𝑇

𝑑𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0

∗ ∗ ∗ ∗ −𝑆
11𝑖

−𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
11𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
11𝑖

−𝜏𝐼

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑃
11𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (41)
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where

Φ
𝑖1
= 𝑆
11𝑖
𝑅
11𝑖
𝑆
11𝑖
+ 𝑌
𝑖
𝑆
11𝑖
+ 𝑆
11𝑖
𝑌
𝑇

𝑖
+ 𝑌
𝑖
− 𝛼𝑆
11𝑖
,

Λ
𝑖1
= 𝑆
11𝑖
𝑅
11𝑖
+ 𝑌
𝑖
− 𝛼𝐼,

Υ
𝑖1
= 𝑅
11𝑖
− 𝛼𝑃
11𝑖
,

Σ̂
𝑖1
= 𝑆
11𝑖
𝐴
𝑇

𝑖
𝑃
11𝑖
+ 𝑟𝑆
11𝑖
𝐶
𝑇

𝑖
𝑍
𝑇

𝑖

+
̃
𝑍
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
11𝑖
+ (𝑃
12𝑖
𝐴
𝑐𝑖
𝑆
𝑇

12𝑖
)

𝑇

,

̂
𝜃
𝑖1
= 𝑆
11𝑖
𝐴
𝑇

𝑖
+
̃
𝑍
𝑇

𝑖
𝐵
𝑇

𝑖
,

Ξ
𝑖1
= −𝛼
𝑑

𝑆
11𝑖
𝑅
11𝑖
𝑆
11𝑖
− 𝛼
𝑑

𝑌
𝑖
𝑆
11𝑖
− 𝛼
𝑑

𝑆
11𝑖
𝑌
𝑇

𝑖
− 𝛼
𝑑

𝑌
𝑖
,

Θ̂
𝑖1
= 𝐴
𝑇

𝑖
𝑃
11𝑖
+ 𝑟𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
,

Ω
𝑖1
= −𝛼
𝑑

𝑆
11𝑖
𝑅
11𝑖
− 𝛼
𝑑

𝑌
𝑖
.

(42)

Using diag{𝑆−1
11𝑖
, 𝐼, 𝑆
−1

11𝑖
, 𝐼, 𝑆
−1

11𝑖
, 𝐼, 𝑆
−1

11𝑖
, 𝐼} to pre- and post-

multiply the left-hand term of (41) and denoting

̃
𝑍


𝑖
= 𝑆
−1

11𝑖
𝐵
𝑖

̃
𝑍
𝑖
𝑆
−1

11𝑖
, 𝑌



𝑖
= 𝑆
−1

11𝑖
𝑌
𝑖
,

�̃�


𝑖
= 𝑆
−1

11𝑖
𝑌
𝑖
𝑆
−1

11𝑖
,

(43)

one obtains

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖
Λ
𝑖
0 0

̂
𝜃
𝑖

Σ̂
𝑖

0 𝜏𝐶
𝑇

𝑖
𝑍
𝑇

𝑖

∗ Υ
𝑖
0 0 𝐴

𝑇

𝑖
𝑆
−1

11𝑖
Θ̂
𝑖

0 𝜏𝐶
𝑇

𝑖
𝑍
𝑇

𝑖

∗ ∗ Ξ
𝑖

Ω
𝑖

𝐴
𝑇

𝑑𝑖
𝑆
−1

11𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0

∗ ∗ ∗ −𝛼
𝑑

𝑅
11𝑖

𝐴
𝑇

𝑑𝑖
𝑆
−1

11𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0

∗ ∗ ∗ ∗ −𝑆
−1

11𝑖
−𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
11𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
−1

11𝑖
−𝜏𝑆
−1

11𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑃
11𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(44)

where

Φ
𝑖
= 𝑅
11𝑖
+ 𝑌


𝑖
+ (𝑌


𝑖
)

𝑇

+ �̃�


𝑖
− 𝛼𝑆
−1

11𝑖
,

Θ̂
𝑖
= 𝐴
𝑇

𝑖
𝑃
11𝑖
+ 𝑟𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
,

Λ
𝑖
= 𝑅
11𝑖
+ 𝑌


𝑖
− 𝛼𝑆
−1

11𝑖
,

̂
𝜃
𝑖
= 𝐴
𝑇

𝑖
𝑆
−1

11𝑖
+ (

̃
𝑍


𝑖
)

𝑇

,

Σ̂
𝑖
= 𝐴
𝑇

𝑖
𝑃
11𝑖
+ 𝑟𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
+ (

̃
𝑍


𝑖
)

𝑇

𝑆
11𝑖
𝑃
11𝑖
+ 𝑆
−1

11𝑖
(𝑃
12𝑖
𝐴
𝑐𝑖
𝑆
𝑇

12𝑖
)

𝑇

,

Υ
𝑖
= 𝑅
11𝑖
− 𝛼𝑃
11𝑖
,

Ξ
𝑖
= − 𝛼

𝑑

𝑅
11𝑖
− 𝛼
𝑑

𝑌


𝑖
− 𝛼
𝑑

(𝑌


𝑖
)

𝑇

− 𝛼
𝑑

�̃�


𝑖
,

Ω
𝑖
= − 𝛼

𝑑

𝑅
11𝑖
− 𝛼
𝑑

𝑌


𝑖
.

(45)

Then combining (5) with (44), one has

̂
𝑇
𝑖
= 𝑇
𝑖
+ Δ𝑇
𝑖
< 0

𝑇
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖
Λ
𝑖
0 0 𝜃

𝑖
Σ
𝑖

0 𝜏𝐶
𝑇

𝑖
𝑍
𝑇

𝑖

∗ Υ
𝑖
0 0 𝐴

𝑇

𝑖
𝑆
−1

11𝑖
Θ
𝑖

0 𝜏𝐶
𝑇

𝑖
𝑍
𝑇

𝑖

∗ ∗ Ξ
𝑖

Ω
𝑖

𝐴
𝑇

𝑑𝑖
𝑆
−1

11𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0

∗ ∗ ∗ −𝛼
𝑑

𝑅
11𝑖

𝐴
𝑇

𝑑𝑖
𝑆
−1

11𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0

∗ ∗ ∗ ∗ −𝑆
−1

11𝑖
−𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
11𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
−1

11𝑖
−𝜏𝑆
−1

11𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑃
11𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(46)

where

Θ
𝑖
= 𝐴
𝑇

𝑖
𝑃
11𝑖
+ 𝑟𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
,

𝜃
𝑖
= 𝐴
𝑇

𝑖
𝑆
−1

11𝑖
+ (

̃
𝑍


𝑖
)

𝑇

,

Σ
𝑖
= 𝐴
𝑇

𝑖
𝑃
11𝑖
+ 𝑟𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
+ (

̃
𝑍


𝑖
)

𝑇

𝑆
11𝑖
𝑃
11𝑖
+ 𝑆
−1

11𝑖
(𝑃
12𝑖
𝐴
𝑐𝑖
𝑆
𝑇

12𝑖
)

𝑇

,

Δ𝑇
𝑖
= 𝑀
𝑖
𝐹
𝑖
(𝑘)
𝑇

𝐻
𝑖
+ (𝑀
𝑖
𝐹
𝑖
(𝑘)
𝑇

𝐻
𝑖
)

𝑇

+𝑀
𝑖
𝐹
𝑖
(𝑘)
𝑇

�̃�
𝑖
+ (𝑀
𝑖
𝐹
𝑖
(𝑘)
𝑇

𝐻
𝑖
)

𝑇

,

𝑀

𝑇

𝑖
= [𝑀
1𝑖
𝑀
1𝑖
𝑀
2𝑖
𝑀
2𝑖
0 0 0 0] ,

𝐻
𝑖
= [0 0 0 0 𝐻

𝑇

𝑖
𝑆
−1

11𝑖
0 0 0] ,

�̃�
𝑖
= [0 0 0 0 0 𝐻

𝑇

𝑖
𝑃
11𝑖

0 0] .

(47)

By Lemma 6, (46) is equivalent to

𝑇
𝑖
+ 𝜀
𝑖
𝑀
𝑖
𝑀

𝑇

𝑖
+ 𝜀
−1

𝑖
𝐻

𝑇

𝑖
𝐻
𝑖
+ 𝛿
𝑖
𝑀
𝑖
𝑀

𝑇

𝑖
+ 𝛿
−1

𝑖
�̃�
𝑇

𝑖
�̃�
𝑖
< 0, (48)

where 𝜀
𝑖
and 𝛿
𝑖
are positive scalars.
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Using Lemma 5, we have

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖
Λ
𝑖
0 0 𝜃

𝑖
Σ
𝑖

0 𝜏𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
𝑀
𝑇

1𝑖
0 𝑀

𝑇

1𝑖
0

∗ Υ
𝑖
0 0 𝐴

𝑇

𝑖
𝑆
−1

11𝑖
Θ
𝑖

0 𝜏𝐶
𝑇

𝑖
𝑍
𝑇

𝑖
𝑀
𝑇

1𝑖
0 𝑀

𝑇

1𝑖
0

∗ ∗ Ξ
𝑖

Ω
𝑖

𝐴
𝑇

𝑑𝑖
𝑆
−1

11𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0 𝑀
𝑇

2𝑖
0 𝑀

𝑇

2𝑖
0

∗ ∗ ∗ −𝛼
𝑑

𝑅
11𝑖

𝐴
𝑇

𝑑𝑖
𝑆
−1

11𝑖
𝐴
𝑇

𝑑𝑖
𝑃
11𝑖

0 0 𝑀
𝑇

2𝑖
0 𝑀

𝑇

2𝑖
0

∗ ∗ ∗ ∗ −𝑆
−1

11𝑖
−𝐼 0 0 0 𝑆

−1

11𝑖
𝐻
𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
11𝑖

0 0 0 0 0 𝑃
11𝑖
𝐻
𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
−1

11𝑖
−𝜏𝑆
−1

11𝑖
0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑃
11𝑖

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
−1

𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −𝛿
−1

𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ −𝛿
𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (49)

Using diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝜀
𝑖
, 𝐼, 𝛿
𝑖
, 𝐼} to pre- and postmulti-

ply the left-hand term of (49) and denoting 𝑆
11𝑖

= 𝑆
−1

11𝑖
we

can obtain that (32a) is equivalent to (49), that is to say, (32a)
guarantees that (13) is tenable.

The proof is completed.

Remark 10. From Theorem 9, it is easy to see that a larger 𝛼
will be favorable to the solvability of inequality (32a), (32b),
and (32c) which leads to a larger value of 𝜏∗

𝑎
. Considering

these, we can first select a larger 𝛼 to guarantee the feasibility
of inequality (32a), (32b), and (32c), and then decrease 𝛼 to
obtain a smaller 𝜏∗

𝑎
.

Based on Theorem 9, we present an algorithm for the
design of dynamic output controller.

Algorithm 11.

Step 1. Given the system matrices and a constant 0 < 𝛼 < 1;
by solving (32a), we can get the feasible solution of positive
definite symmetric matrices 𝑆

11𝑖
, 𝑃
11𝑖
, 𝑅
11𝑖
, �̃�
𝑖
, matrices Σ

𝑖
,

𝑌


𝑖
, ̃𝑍
𝑖
, and positive scalars 𝜀

𝑖
, 𝛿
𝑖
.

Step 2. Applying singular value decomposition to the first
equation of (34a), we can obtain square and nonsingular
matrices 𝑃

12𝑖
and 𝑆
12𝑖
. Then we can get 𝑃

22𝑖
, 𝑅
12𝑖
, and 𝑅

22𝑖
by

(34a) and (34b).

Step 3. By substituting matrices 𝑃
11𝑖
, 𝑃
12𝑖
, 𝑃
22𝑖
, 𝑅
11𝑖
, 𝑅
12𝑖
, and

𝑅
22𝑖

into (32b)-(32c) and solving them, we can get 𝜇 and 𝜏∗
𝑎

by (14).

Step 4. Determine the DOF controller parameters 𝐴
𝑐𝑖
, 𝐵
𝑐𝑖
,

and 𝐶
𝑐𝑖
based on (35a) and (35b).

4. Numerical Example

In this section, we present an example to illustrate the
effectiveness of the proposed approach. Consider system (1a),

(1b), (1c), and (1d) with parameters as follows:

𝐴
1
= [

−0.5 0.6

−0.19 −0.6
] , 𝐴

𝑑1
= [

0.03 −0.053

−0.044 0.012
] ,

𝐵
1
= [

0.025 −0.012

−0.041 0.051
] , 𝐶

1
= [

−0.3 0.14

−0.2 −0.5
] ,

𝐻
1
= [

0.033 0.052

−0.041 −0.06
] , 𝑀

11
= [

0.012 −0.04

0.025 −0.06
] ,

𝑀
21
= [

−0.25 0.08

−0.077 0.055
] ,

𝐹
1
(𝑘) =

[

[

[

𝑒
−0.1𝑘

1 + 0.5𝑘

cos (𝑘) 0

0 sin (𝑘)

]

]

]

,

𝐴
2
= [

−0.8 −0.43

0.35 −0.4
] , 𝐴

𝑑2
= [

−0.035 0.037

0.027 −0.063
] ,

𝐵
2
= [

−0.041 0.051

0.025 −0.012
] , 𝐶

2
= [

−0.1 0.25

0.18 0.25
],

𝐻
2
= [

−0.01 −0.033

0.073 0.03
] , 𝑀

12
= [

−0.025 0.02

−0.015 0.074
],

𝑀
22
= [

0.4 −0.05

0.046 −0.062
] ,

𝐹
2
(𝑘) =

[

[

[

[

sin (𝑘) 0

0

𝑒
−0.1𝑘

1 + 0.5𝑘

cos (𝑘)

]

]

]

]

.

(50)
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Figure 1: Switching signal.

Let 𝛼 = 0.788, 𝑑 = 2, and 𝑟 = 0.7, then by solving
the matrix inequalities in Theorem 9, we can get the DOF
controller parameters

𝐴
𝑐1
= [

0.2203 0.0818

−0.1621 0.1568
] , 𝐵

𝑐1
= [

0.4072 −2.0364

−2.1032 0.7452
],

𝐶
𝑐1
= [

10.2067 −13.1427

5.4233 −11.6044
] , 𝐴

𝑐2
= [

0.1868 −0.0881

0.1339 0.1329
],

𝐵
𝑐2
= [

1.4037 2.2041

−2.6439 3.7189
] , 𝐶

𝑐2
= [

−16.7083 19.4157

−22.2824 11.7057
].

(51)

Let

𝐸
1,2
=

[

[

[

[

0.8 0 0 0

0 1.15 0 0

0 0 1.2 0

0 0 0 1.08

]

]

]

]

,

𝐸
2,1
=

[

[

[

[

1.16 0 0 0

0 0.9 0 0

0 0 0.9 0

0 0 0 1.12

]

]

]

]

.

(52)

According to (32a), (32b), and (32c), we get 𝜇 = 5.4319.
From (14), it can be obtained that 𝜏∗

𝑎
= 7.1028. Choosing

𝜏
𝑎
= 8, simulation results are shown in Figures 1 and 2, where

the initial conditions are 𝑥(0) = [2 1]

𝑇, 𝑥(𝜃) = 0, 𝜃 ∈

[−𝑑, 0), and 𝑥
𝑐
(𝜃) = 0, 𝜃 ∈ [−𝑑, 0]. Figure 1 depicts the

switching signal. Under this switching signal and dynamic
output feedback controller, the state responses of the resulting
closed-loop system are shown in Figure 2. From Figure 1, we
can see that the switching signal satisfies 𝜏

𝑎
= 8. Furthermore,

it can be observed from Figure 2 that the resulting closed-
loop system is exponentially stable inmean square sense.This
indicates that the designed controller is effective although
there exist missing measurements.

0
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Figure 2: State responses of the resulting closed-loop system.

5. Conclusions

This paper has presented a solution to the problem of
dynamic output feedback controller design for a class of
uncertain discrete impulsive switched systems with state
delay and missing measurements. By employing the average
dwell time approach, a sufficient condition for the existence
of a DOF controller is presented such that the exponential
stability in mean square sense of the resulting closed-loop
system is ensured. An example is given to illustrate the
applicability of the proposed approach. Our future work will
focus on studying the problem of asynchronous control for
discrete impulsive switched systems with state delay and
missing measurements.
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This paper investigates the ℓ
2
-ℓ
∞
filtering problem of T-S fuzzy systems with multiple time-varying delays. First, by the Lyapunov-

Krasovskii functional approach and free-weighting matrix method, a delay-dependent sufficient condition on ℓ
2
-ℓ
∞
-disturbance

attenuation is presented, in which both stability and prescribed ℓ
2
-ℓ
∞

performance are required to be achieved for the filtering-
error systems.Then, based on the condition, the full-order and reduced-order delay-dependent ℓ

2
-ℓ
∞
filter design schemes for T-S

fuzzy multiple time-varying delays systems are developed in terms of linear matrix inequality (LMI). Finally, an example is given
to illustrate the effectiveness of the result.

1. Introduction

Time delay arises frequently in many engineering areas
of the real world, which is usually a source of instability.
Therefore, the stability analysis and synthesis for time-delay
system have been one of a most hot research area in the
control community over the past years [1–9]. To research
the nonlinear time-delay system, the scholars considered the
Takagi-Sugeno (T-S) fuzzy time-delay model which is a kind
of effective representation, and many analysis and synthesis
methods for T-S fuzzy time-delay systems have been devel-
oped over the past years [10–13].

Since the state variables in control systems are not always
available, filtering or state estimation of a dynamic system
through an available measurement state is one of the fun-
damental problems in signal processing, communications,
and control application [14–22]. There are many works that
appeared to cope with the nonlinear filtering problem for T-
S fuzzy systems with time delays [23–31]. For example, in
[23, 24], a delay-dependentH

∞
filter design via continuous-

time T-S fuzzy model approach is proposed in terms of
linear matrix inequalities. In [25], by using a basis-dependent
Lyapunov function, a delay-dependent result on theH

∞
per-

formance of the discrete filtering error system is presented.

Based on the similar Lyapunov function combined with
Finslers Lemma, [26] researched the delay-dependent robust
H
∞

filtering problem for a class of uncertain discrete-time
T-S fuzzy systems with interval-like time-varying state delay.
Reference [27] proposed the delay-dependent approach to
robust H

∞
and ℓ
2
-ℓ
∞

filtering for a class of uncertain non-
linear time-delayed systems. References [28, 29] investigated
delay-dependentH

∞
filter design problems for discrete-time

T-S fuzzy time-delayed systems and continuous-time T-S
fuzzy time-delayed systems, respectively, which were both
based on a delay-dependent piecewise Lyapunov-Krasovskii
functional.

Several H
∞

filtering approaches for T-S fuzzy systems
with multiple delays have been developed over the past few
years [32–36]. For instance [32] studied theH

∞
filter design

problem for discrete-time T-S fuzzy systems with multiple
time delays. In [33], a robust mixed H

2
/H
∞

filtering prob-
lem for continuous-time T-S fuzzy systems with multiple
time-varying delays in state variables was addressed.

While the time-varying delay functions abovementioned
were all assumed slow-varying (the derivative of delay func-
tion is less than one) or fast-varying (the derivative of delay
function is unknown). Reference [34] dealt with the fuzzy
H
∞
filter design problem for discrete-time T-S fuzzy systems
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with multiple time delays in the state variables. Reference
[35] introduced a decentralized H

∞
fuzzy filter design for

nonlinear interconnected systems with multiple constant
delays via T-S fuzzy models. Reference [36] addressed the
problem of ℓ

2
-ℓ
∞

filter design for T-S fuzzy systems with
multiple time-varying delays, but the derivative of delay
functions must be less than one.

To the best of our knowledge, the problem of ℓ
2
-ℓ
∞

filter design for T-S fuzzy systems withmultiple time-varying
delays has not been fully investigated in the literature. As
is well known, time delays usually exist in many physical
systems and result in unsatisfactory performance, and the
derivative of delay function may vary from −∞ to +∞. So,
the research on T-S fuzzy systems withmultiple time-varying
delays is of great practical and theoretical significance. This
motivates the research in this paper.

In summary, the purpose of this paper is to develop
an ℓ
2
-ℓ
∞

filter for T-S fuzzy systems with multiple time-
varying delays. Based on the Lyapunov-Krasovskii func-
tional approach and free-weighting matrix method, a delay-
dependent sufficient condition on ℓ

2
-ℓ
∞
-disturbance atten-

uation is presented. Then, the full-order and reduced-order
delay-dependent ℓ

2
-ℓ
∞

filter design schemes for T-S fuzzy
multiple time-varying-delays systems are developed in terms
of LMI.The example illustrates the effectiveness of the result.

This paper is organized as follows. In Section 2, the T-
S fuzzy model and corresponding filter are formulated. In
Section 3we give the sufficient condition to assure asymptotic
stability and the ℓ

2
-ℓ
∞

noise-attenuation level bound for the
T-S fuzzy filtering-error systems. Based on the condition in
Section 3, we present a stable fuzzy filter in terms of LMIs.
Section 4 provides illustrative examples to demonstrate the
effectiveness of the proposed method. Conclusions are given
in Section 5.

Notations.The notations used throughout this paper are fairly
standard. The superscript “𝑇” stands for matrix transpose,
and the notation 𝑃 > 0 (𝑃 ≥ 0) means that matrix 𝑃 is
real symmetric and positive (or being positive semidefinite). 𝐼
and 0 and are used to denote identity matrix and zero matrix
with appropriate dimension, respectively. The notation ∗ in
a symmetric matrix always denotes the symmetric block in
thematrix.The parameter diag{⋅ ⋅ ⋅ } denotes a block-diagonal
matrix. Matrices, if not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. System Descriptions and Preliminaries

Consider the nonlinear system with multiple state delays that
is described by the following T-S model.

2.1. Plant Form

Rule 𝑖. IF 𝑠
1
(𝑡) is 𝐹

𝑖1
, 𝑠
2
(𝑡) is 𝐹

𝑖2
, and 𝑠

𝑛
(𝑡) is 𝐹

𝑖𝑛
, then

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) +

𝑞

∑

𝑘=1

𝐴
𝑑𝑖𝑘

𝑥 (𝑡 − 𝑑
𝑘
(𝑡)) + 𝐵

𝑖
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) +

𝑞

∑

𝑘=1

𝐶
𝑑𝑖𝑘

𝑥 (𝑡 − 𝑑
𝑘
(𝑡)) + 𝐷

𝑖
𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐸
𝑖
𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

ℎ = max {ℎ
𝑘
} , 𝑘 = 1, 2, . . . , 𝑞,

(1)

where 𝑠
1
(𝑡), 𝑠
2
(𝑡), . . ., and 𝑠

𝑛
(𝑡) are the premise variables that

are measurable, and each 𝐹
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑛) is a fuzzy set.
𝑥(𝑡) ∈ 𝑅

𝑛 is the state variables. 𝑦(𝑡) ∈ 𝑅
𝑚 is the measured

output of the system. 𝑧(𝑡) ∈ 𝑅
𝑝 is the signal to be estimated.

𝜔(𝑡) ∈ 𝑅
𝑏 is the disturbance input. 𝑟 is the number of IF-

THEN rules. Also 0 ≤ 𝑑
𝑘
(𝑡) ≤ ℎ

𝑘
is the time-varying delay

in the state, and it is assumed that ̇
𝑑
𝑘
(𝑡) ≤ 𝑑

𝑘
. That is, the

derivative of time-varying delay function is continuous and
bounded. 𝑞 is the number of time delays. 𝜙(𝑡) is a vector-
valued initial continuous function.

By using center-average defuzzifier, product inference,
and singleton fuzzifier, the dynamic fuzzy model (1) can be
expressed by the following global model:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑢
𝑖
(𝑠 (𝑡)) [𝐴

𝑖
𝑥 (𝑡) +

𝑞

∑

𝑘=1

𝐴
𝑑𝑖𝑘

𝑥 (𝑡 − 𝑑
𝑘
(𝑡)) + 𝐵

𝑖
𝜔 (𝑡)]

= 𝐴 (𝑡) 𝑥 (𝑡) +

𝑞

∑

𝑘=1

𝐴
𝑑𝑘

𝑥 (𝑡 − 𝑑
𝑘
(𝑡)) + 𝐵 (𝑡) 𝜔 (𝑡) ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝑢
𝑖
(𝑠 (𝑡)) [𝐶

𝑖
𝑥 (𝑡) +

𝑞

∑

𝑘=1

𝐶
𝑑𝑖𝑘

𝑥 (𝑡 − 𝑑
𝑘
(𝑡)) + 𝐷

𝑖
𝜔 (𝑡)]

= 𝐶 (𝑡) 𝑥 (𝑡) +

𝑞

∑

𝑘=1

𝐶
𝑑𝑘

𝑥 (𝑡 − 𝑑
𝑘
(𝑡)) + 𝐷 (𝑡) 𝜔 (𝑡) ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝑢
𝑖
(𝑠 (𝑡)) [𝐸

𝑖
𝑥 (𝑡)]

= 𝐸 (𝑡) 𝑥 (𝑡)

(2)

with

𝑢
𝑖
(𝑠 (𝑡)) =

𝛼
𝑖
(𝑠 (𝑡))

∑
𝑟

𝑖=1
𝛼
𝑖
(𝑠 (𝑡))

, 𝛼
𝑖
(𝑠 (𝑡)) =

𝑛

∏

𝑗=1

𝐹
𝑖𝑗
(𝑠
𝑗
(𝑡)) ,

(3)

in which 𝐹
𝑖𝑗
(𝑠
𝑗
(𝑡)) is the grade of membership of 𝑠

𝑗
(𝑡) in 𝐹

𝑖𝑗
. It

is assumed that 𝛼
𝑖
(𝑠(𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟, ∑

𝑟

𝑖=1
𝛼
𝑖
(𝑠(𝑡)) > 0

for all 𝑡. Therefore, 𝑢
𝑖
(𝑠(𝑡)) ≥ 0 and ∑

𝑟

𝑖=1
𝑢
𝑖
(𝑠(𝑡)) = 1 for all

𝑡. In this paper, we study the following filter form of order 𝑙

(𝑙 = 𝑛 for full-order filter, and 1 ≤ 𝑙 < 𝑛 for reduced-order
filter):

̇𝑥
𝑓
(𝑡) =

𝑟

∑

𝑖=1

𝑢
𝑖
(𝑠 (𝑡)) [𝐴

𝑓𝑖
𝑥 (𝑡)+ 𝐵

𝑓𝑖
𝑦 (𝑡)] ,

𝑧
𝑓
(𝑡) =

𝑟

∑

𝑖=1

𝐶
𝑓𝑖
𝑥
𝑓
(𝑡) ,

(4)
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where the 𝐴
𝑓𝑖
, 𝐵
𝑓𝑖
, and 𝐶

𝑓𝑖
are the filter parameters to be

designed. Combining (2) and (4) and defining 𝜉(𝑡) = [𝑥
𝑇

(𝑡),

𝑥
𝑇

𝑓
(𝑡)]
𝑇, 𝑒(𝑡) = 𝑧(𝑡) − 𝑧

𝑓
(𝑡), and 𝐾 = [𝐼

𝑛×𝑛
0
𝑛×𝑙

], we have the
filtering-error system:

̇
𝜉 (𝑡) = 𝐴 (𝑡) 𝜉 (𝑡) +

𝑞

∑

𝑘=1

𝐴
𝑑𝑘

(𝑡) 𝐾𝜉 (𝑡 − 𝑑
𝑘
(𝑡)) + 𝐵 (𝑡) 𝜔 (𝑡) ,

𝑒 (𝑡) = 𝐸 (𝑡) 𝜉 (𝑡) ,

(5)

where 𝜉(𝑡) ≐ [𝜙
𝑇

(𝑡), 0]
𝑇 for 𝑡 ∈ [−ℎ, 0] and

𝐴 (𝑡) = [

𝐴 (𝑡) 0

𝐵
𝑓
(𝑡) 𝐶 (𝑡) 𝐴

𝑓
(𝑡)

]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑢
𝑖
(𝑠 (𝑡)) 𝑢

𝑗
(𝑠 (𝑡)) [

𝐴
𝑗

0

𝐵
𝑓𝑖
𝐶
𝑗

𝐴
𝑓𝑖

] ,

𝐴
𝑑𝑘

(𝑡) = [

𝐴
𝑑𝑘

(𝑡)

𝐵
𝑓
(𝑡) 𝐶
𝑑
(𝑡)

]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑢
𝑖
(𝑠 (𝑡)) 𝑢

𝑗
(𝑠 (𝑡)) [

𝐴
𝑑𝑗𝑘

𝐵
𝑓𝑖
𝐶
𝑑𝑗

] ,

𝐵 (𝑡) = [

𝐵 (𝑡)

𝐵
𝑓
(𝑡) 𝐷 (𝑡)

]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑢
𝑖
(𝑠 (𝑡)) 𝑢

𝑗
(𝑠 (𝑡)) [

𝐵
𝑗

𝐵
𝑓𝑖
𝐷
𝑗

] ,

𝐸 (𝑡) = [𝐸 (𝑡) −𝐶
𝑓
(𝑡)]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑖=1

𝑢
𝑖
(𝑠 (𝑡)) 𝑢

𝑗
(𝑠 (𝑡)) [𝐸𝑗

−𝐶
𝑓𝑖
] .

(6)

Before ending this section, we introduce the following
definition, which will be used in the derivation of our main
results.

Definition 1 (ℓ
2
-ℓ
∞

performance). Given a scalar 𝛾 > 0, the
system (1) is said to be with ℓ

2
-ℓ
∞

performance if the system
(1) is asymptotically stable and the output 𝑧(𝑡) satisfies

‖𝑧 (𝑡)‖
∞

≤ 𝛾‖𝜔 (𝑡)‖
2

(7)

for all nonzero 𝜔 ∈ ℓ
2
[0, +∞] under zero-initial condition,

where,

‖𝜔 (𝑡)‖
2
= √∫

∞

0

𝜔
𝑇
(𝑡) 𝜔 (𝑡),

‖𝑧 (𝑡)‖
∞

= √sup
𝑡

{𝑧
𝑇
(𝑡) 𝑧 (𝑡)}.

(8)

Here, we want to design a suitable filter (4) for the system
(1) with a ℓ

2
-ℓ
∞

performance.

3. Main Results

In this section, the conditions to assure the system (1)
asymptotically stable with ℓ

2
-ℓ
∞

performance 𝛾 for the T-S
fuzzy filtering-error systems are presented (Lemmas 2 and
3). Then, based on the conditions, a filter is given in terms
of LMIs.

Lemma 2. Given 𝛾 > 0, if there exist common matrices 0 <

𝑃 ∈ 𝑅
(𝑛+𝑙)×(𝑛+𝑙), 0 < 𝑄

𝑘
∈ 𝑅
𝑛×𝑛, 0 < 𝑅

𝑘
∈ 𝑅
𝑛×𝑛, 𝑌
𝑘
(𝑡) ∈ 𝑅

𝑛×𝑛,
𝑇
𝑘
(𝑡) ∈ 𝑅

𝑛×𝑛,𝑈
𝑘
∈ 𝑅
𝑏×𝑛, 𝑘 = 1, 2, . . . , 𝑞, and𝐴

𝑓
(𝑡), 𝐵
𝑓
(𝑡), and

𝐶
𝑓
(𝑡) satisfying

[

[

[

Ξ
11

Ξ
12

Ξ
13

∗ −Ξ
22

0

∗ ∗ −Ξ
33

]

]

]

< 0, (9)

[

[

𝑃 𝐸

𝑇

(𝑡)

∗ 𝛾
2

𝐼

]

]

> 0, (10)

where

Ξ
11

=

[

[

[

[

[

[

[

[

[

Π
0

Π
1

⋅ ⋅ ⋅ Π
𝑞

Π
𝑞+1

∗ − (1 − 𝑑
1
) 𝑄
1
− 𝑇
1
(𝑡) − 𝑇

𝑇

1
(𝑡) 0 0 −𝑈

𝑇

1
(𝑡)

∗ ∗ d
...

...
∗ ∗ ∗ − (1 − 𝑑

𝑞
)𝑄
𝑞
− 𝑇
𝑞
(𝑡) − 𝑇

𝑇

𝑞
(𝑡) −𝑈

𝑇

𝑞
(𝑡)

∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

,

Π
0
= 𝐴

𝑇

(𝑡) 𝑃 + 𝑃𝐴 (𝑡) +

𝑞

∑

𝑘=1

(𝐾
𝑇

𝑄
𝑘
𝐾 + 𝐾

𝑇

𝑌
𝑘
(𝑡) 𝐾 + 𝐾

𝑇

𝑌
𝑇

𝑘
(𝑡) 𝐾) ,

Π
1
= 𝑃𝐴
𝑑1

(𝑡) − 𝐾
𝑇

𝑌
1
(𝑡) + 𝐾

𝑇

𝑇
𝑇

1
(𝑡) ,

Π
𝑞
= 𝑃𝐴
𝑑𝑞

(𝑡) − 𝐾
𝑇

𝑌
𝑞
(𝑡) + 𝐾

𝑇

𝑇
𝑇

𝑞
(𝑡) ,
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Π
𝑞+1

= 𝑃𝐵 (𝑡) + 𝐾
𝑇

𝑈
𝑇

𝑞
(𝑡) ,

Ξ
12

=

[

[

[

[

[

[

[

[

[

[

[

√ℎ
1
𝐴

𝑇

(𝑡) 𝐾
𝑇

𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴

𝑇

(𝑡) 𝐾
𝑇

𝑅
𝑞

√ℎ
1
𝐴

𝑇

𝑑1
(𝑡) 𝐾
𝑇

𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴

𝑇

𝑑1
(𝑡) 𝐾
𝑇

𝑅
𝑞

...
...

...
√ℎ
1
𝐴

𝑇

𝑑𝑞
(𝑡) 𝐾
𝑇

𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴

𝑇

𝑑𝑞
(𝑡) 𝐾
𝑇

𝑅
𝑞

√ℎ
1
𝐵

𝑇

(𝑡) 𝐾
𝑇

𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐵

𝑇

(𝑡) 𝐾
𝑇

𝑅
𝑞

]

]

]

]

]

]

]

]

]

]

]

,

Ξ
13

=

[

[

[

[

[

[

[

[

[

[

√ℎ
1
𝐾
𝑇

𝑌
1
(𝑡) ⋅ ⋅ ⋅ √ℎ

𝑞
𝐾
𝑇

𝑌
𝑞
(𝑡)

√ℎ
1
𝑇
1
(𝑡) ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ √ℎ
𝑞
𝑇
𝑞
(𝑡)

√ℎ
1
𝑈
1
(𝑡) ⋅ ⋅ ⋅ √ℎ

𝑞
𝑈
𝑞
(𝑡)

]

]

]

]

]

]

]

]

]

]

,

Ξ
22

= Ξ
33

= diag {𝑅
1
, . . . , 𝑅

𝑞
} ,

(11)

then the system (5) is asymptotically stable with an ℓ
2
-ℓ
∞

performance 𝛾.

Proof. Choose a Lyapunov-Krasovskii functional candidate
as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (12)

where

𝑉
1
(𝑡) = 𝜉

𝑇

(𝑡) 𝑃𝜉 (𝑡) ,

𝑉
2
(𝑡) =

𝑞

∑

𝑗=1

∫

𝑡

𝑡−𝑑𝑗(𝑡)

𝜉
𝑇

(𝑠) 𝐾
𝑇

𝑄
𝑗
𝐾𝜉 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) =

𝑞

∑

𝑗=1

∫

0

−ℎ𝑗

∫

𝑡

𝑡+𝜃

̇
𝜉
𝑇

(𝑠) 𝐾
𝑇

𝑅
𝑗
𝐾

̇
𝜉 (𝑠) 𝑑𝑠.

(13)

The time derivative of 𝑉(𝑡) along the solution of (5) is
computed as follows:

𝑉
1
(𝑡)

=
̇

𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) + 𝜉
𝑇

(𝑡) 𝑃
̇

𝜉 (𝑡)

= (𝐴 (𝑡) 𝜉 (𝑡) +

𝑞

∑

𝑘=1

𝐴
𝑑𝑘

𝐾𝜉 (𝑡 − 𝑑
𝑘
(𝑡))

+𝐵 (𝑡) 𝜔 (𝑡) )

𝑇

𝑃𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝑃(𝐴 (𝑡) 𝜉 (𝑡) +

𝑞

∑

𝑘=1

𝐴
𝑑𝑘

𝐾𝜉 (𝑡 − 𝑑
𝑘
(𝑡))

+𝐵 (𝑡) 𝜔 (𝑡) ) ,

(14)

𝑉
2
(𝑡) ≤

𝑞

∑

𝑘=1

{𝜉
𝑇

(𝑡) 𝐾
𝑇

𝑄
𝑘
𝐾𝜉 (𝑡)

− (1 − 𝑑
𝑘
) 𝜉
𝑇

(𝑡 − 𝑑
𝑘
(𝑡))𝐾

𝑇

𝑄
𝑘
𝐾𝜉 (𝑡 − 𝑑

𝑘
(𝑡))} ,

(15)

𝑉
3
(𝑡) =

𝑞

∑

𝑘=1

ℎ
𝑘

̇
𝜉
𝑇

(𝑡) 𝐾
𝑇

𝑅
𝑘
𝐾

̇
𝜉 (𝑡)

−

𝑞

∑

𝑘=1

∫

𝑡

𝑡−𝑑𝑘(𝑡)

̇
𝜉
𝑇

(𝑠) 𝐾
𝑇

𝑅
𝑘
𝐾

̇
𝜉 (𝑠) 𝑑𝑠.

(16)

Applying free-weighting matrix method [37], using the
Newton-Leibniz formula that

0 = 2 [𝜉
𝑇

(𝑡) 𝐾
𝑇

𝑌
𝑘
(𝑡) + 𝜉

𝑇

(𝑡 − 𝑑
𝑘
(𝑡))𝐾

𝑇

𝑇
𝑘
(𝑡)

+𝜔
𝑇

(𝑡) 𝑈
𝑘
(𝑡)]

× [𝐾𝜉 (𝑡) − 𝐾𝜉 (𝑡 − 𝑑
𝑘
(𝑡)) − ∫

𝑡

𝑡−𝑑𝑘(𝑡)

𝐾
̇

𝜉 (𝑠) 𝑑𝑠] ,

𝑘 = 1, 2, . . . , 𝑞,

(17)
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and defining

𝜂
𝑇

𝑘
(𝑡) = [𝜉

𝑇

(𝑡) , 𝜉
𝑇

(𝑡 − 𝑑
𝑘
(𝑡))𝐾

𝑇

, 𝜔
𝑇

(𝑡)] ,

𝑘 = 1, 2, . . . , 𝑞,

𝜂
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) , 𝜉
𝑇

(𝑡 − 𝑑
1
(𝑡))𝐾

𝑇

, . . . ,

𝜉
𝑇

(𝑡 − 𝑑
𝑞
(𝑡))𝐾

𝑇

, 𝜔
𝑇

(𝑡)] ,

𝑀
𝑇

(𝑡) = [𝑌
𝑇

(𝑡) , 𝑇
𝑇

(𝑡) , 𝑈
𝑇

(𝑡)] ,

(18)

we can know that

− ∫

𝑡

𝑡−𝑑𝑘(𝑡)

̇
𝜉
𝑇

(𝑠) 𝐾
𝑇

𝑅
𝑘
𝐾

̇
𝜉 (𝑠) 𝑑𝑠

= −∫

𝑡

𝑡−𝑑𝑘(𝑡)

̇
𝜉
𝑇

(𝑠) 𝐾
𝑇

𝑅
𝑘
𝐾

̇
𝜉 (𝑠) 𝑑𝑠

+ 2 [𝜉
𝑇

(𝑡) 𝐾
𝑇

𝑌
𝑘
(𝑡) + 𝜉

𝑇

(𝑡 − 𝑑
𝑘
(𝑡))𝐾

𝑇

𝑇
𝑘
(𝑡)

+𝜔
𝑇

(𝑡) 𝑈
𝑘
(𝑡)]

× [𝐾𝜉 (𝑡) − 𝐾𝜉 (𝑡 − 𝑑
𝑘
(𝑡)) − ∫

𝑡

𝑡−𝑑𝑘(𝑡)

𝐾
̇

𝜉 (𝑠) 𝑑𝑠]

≤ ℎ
𝑘
𝜂
𝑇

𝑘
𝑀(𝑡) 𝑅

−1

𝑘
𝑀
𝑇

(𝑡) 𝜂
𝑘

− ∫

𝑡

𝑡−𝑑𝑘(𝑡)

[𝜂
𝑇

𝑘
𝑀(𝑡) +

̇
𝜉
𝑇

(𝑠) 𝐾
𝑇

𝑅
𝑘
]

× 𝑅
−1

𝑘
[𝑀
𝑇

(𝑡) 𝜂
𝑘
+ 𝑅
𝑘
𝐾

̇
𝜉 (𝑠)] 𝑑𝑠

+ 2 [𝜉
𝑇

(𝑡) 𝐾
𝑇

𝑌
𝑘
(𝑡) + 𝜉

𝑇

(𝑡 − 𝑑
𝑘
(𝑡))𝐾

𝑇

𝑇
𝑘
(𝑡)

+𝜔
𝑇

(𝑡) 𝐾
𝑇

𝑈
𝑘
(𝑡) ]

× [𝐾𝜉 (𝑡) − 𝐾𝜉 (𝑡 − 𝑑
𝑘
(𝑡))] .

(19)

Consider the index

𝐽 ≜ 𝑉 (𝑡) − ∫

𝑡

0

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠. (20)

Then for any nonzero 𝜔 ∈ ℓ
2
[0, +∞] under zero-initial con-

dition,

𝐽 ≜ ∫

𝑡

0

(𝑉 (𝑠) − 𝜔
𝑇

(𝑠) 𝜔 (𝑠)) 𝑑𝑠. (21)

After substitution of ̇
𝜉(𝑡) into (16)with (5). and taking into

consideration (19), one has from (14), (15), and (16) that

𝐽 ≤ 𝜂
𝑇

(𝑡) {Ξ
11

+ Ξ
12
Ξ
−1

22
Ξ
𝑇

12
+ Ξ
13
Ξ
−1

33
Ξ
𝑇

13
} 𝜂 (𝑡) . (22)

Applying the Schur complement to (22), we know that (9)
guarantees 𝐽 < 0, which implies that

𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) ≤ 𝑉 (𝑡) < ∫

𝑡

0

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠. (23)

On the other hand, using the Schur complement to (10),
we can know that 𝐸𝑇(𝑡)𝐸(𝑡) < 𝛾

2

𝑃. Then it can be easily got
that for all 𝑡 ≥ 0

𝑒
𝑇

(𝑡) 𝑒 (𝑡) = 𝜉
𝑇

(𝑡) 𝐸

𝑇

(𝑡) 𝐸 (𝑡) 𝜉 (𝑡) < 𝛾
2

𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡)

< 𝛾
2

∫

𝑡

0

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠

< 𝛾
2

∫

∞

0

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(24)

Taking the supremum over 𝑡 ≥ 0 yields ‖𝑒(𝑡)‖
2

∞
< 𝛾
2

‖𝜔(𝑡)‖
2

2
for all nonzero 𝜔 ∈ ℓ

2
[0, +∞].

Next, we prove the asymptotic stability of system (5)when
𝜔 = 0. Choose a Lyapunov-Krasovskii functional 𝑉(𝜉

𝑡
) as in

(12), where 𝜉
𝑡
= 𝜉(𝑡 − 𝛼), 𝛼 ∈ [−ℎ, 0]. It is easy to find that

there exist two scalars 𝑐
1
> 0 and 𝑐

2
> 0 such that

𝑐
1





𝜉





2

≤ 𝑉 ≤ 𝑐
2
sup
𝛼∈[−ℎ,0]





𝜉
𝑡






2

. (25)

Similar to the above deduction, we can know from (9) that
the time derivative of 𝑉 along the solution of (5) with 𝜔 = 0

satisfies 𝑉 < 0. This proves the asymptotic stability of system
(5) with 𝜔 = 0 according to the same method of [19]. This
completes the proof.

Lemma 2 is the sufficient condition for the ℓ
2
-ℓ
∞

filter
design which contains the coupled matrix variables in the
matrix inequality. Using the decoupling technique as follows,
we can transform Lemma 2 into another form.

Lemma 3. Given 𝛾 > 0, if there exist common matrices 0 <

𝑃 ∈ 𝑅
(𝑛+𝑙)×(𝑛+𝑙), 0 < 𝑄

𝑘
∈ 𝑅
𝑛×𝑛, 0 < 𝑅

𝑘
∈ 𝑅
𝑛×𝑛, 𝑌
𝑘
(𝑡) ∈ 𝑅

𝑛×𝑛,
𝑇
𝑘
(𝑡) ∈ 𝑅

𝑛×𝑛,𝑈
𝑘
∈ 𝑅
𝑏×𝑛, 𝑘 = 1, 2, . . . , 𝑞, and𝐴

𝑓
(𝑡), 𝐵
𝑓
(𝑡), and

𝐶
𝑓
(𝑡), such that (9), (10) hold if and only if there exist matrices

0 < Ω, 0 < 𝐹, 0 < 𝑄
𝑘
, 𝑌
𝑘
(𝑡), 𝑇
𝑘
(𝑡), 𝑈

𝑘
(𝑡), 𝑘 = 1, 2, . . . , 𝑞,

and𝐴
𝑓
(𝑡),𝐵
𝑓
(𝑡), and𝐶

𝑓
(𝑡) such that the following inequalities

hold:

Σ (𝑡) < 0, (26)

[

[

[

[

Ω 𝐸𝐹 𝐸
𝑇

(𝑡)

∗ 𝐹 −𝐶
𝑇

𝑓
(𝑡)

∗ ∗ 𝛾
2

𝐼

]

]

]

]

> 0, (27)

where

Σ (𝑡) =
[

[

Σ
11

Σ
12

Σ
13

∗ −Σ
22

0

∗ ∗ −Σ
33

]

]

,



6 Mathematical Problems in Engineering

Σ
11

=

[

[

[

[

[

[

[

[

[

Φ
0

Φ
1

⋅ ⋅ ⋅ Φ
𝑞

Φ
𝑞+1

∗ − (1 − 𝑑
1
) 𝑄
1
− 𝑇
1
(𝑡) − 𝑇

𝑇

1
(𝑡) 0 0 −𝑈

𝑇

1
(𝑡)

∗ ∗ d
...

...
∗ ∗ ∗ − (1 − 𝑑

𝑞
)𝑄
𝑞
− 𝑇
𝑞
(𝑡) − 𝑇

𝑇

𝑞
(𝑡) −𝑈

𝑇

𝑞
(𝑡)

∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

,

Φ
0
= [

Ω𝐴 (𝑡) + 𝐸𝐵
𝑓
(𝑡) 𝐶 (𝑡) 𝐸𝐴

𝑓
(𝑡)

𝐹𝐸
𝑇

𝐴 (𝑡) + 𝐵
𝑓
(𝑡) 𝐶 (𝑡) 𝐴

𝑓
(𝑡)

] + [

Ω𝐴 (𝑡) + 𝐸𝐵
𝑓
(𝑡) 𝐶 (𝑡) 𝐸𝐴

𝑓
(𝑡)

𝐹𝐸
𝑇

𝐴 (𝑡) + 𝐵
𝑓
(𝑡) 𝐶 (𝑡) 𝐴

𝑓
(𝑡)

]

𝑇

+

𝑞

∑

𝑘=1

(𝐾
𝑇

𝑄
𝑘
𝐾 + 𝐾

𝑇

𝑌
𝑘
(𝑡) 𝐾 + 𝐾

𝑇

𝑌
𝑇

𝑘
(𝑡) 𝐾) ,

Φ
1
= [

Ω𝐴
𝑑1

(𝑡) + 𝐸𝐵
𝑓
(𝑡) 𝐶
𝑑1

(𝑡)

𝐹𝐸
𝑇

𝐴
𝑑1

(𝑡) + 𝐵
𝑓
(𝑡) 𝐶
𝑑1

(𝑡)

] − 𝐾
𝑇

𝑌
1
(𝑡) + 𝐾

𝑇

𝑇
𝑇

1
(𝑡) ,

Φ
𝑞
= [

Ω𝐴
𝑑𝑞

(𝑡) + 𝐸𝐵
𝑓
(𝑡) 𝐶
𝑑𝑞

(𝑡)

𝐹𝐸
𝑇

𝐴
𝑑𝑞

(𝑡) + 𝐵
𝑓
(𝑡) 𝐶
𝑑𝑞

(𝑡)

] − 𝐾
𝑇

𝑌
𝑞
(𝑡) + 𝐾

𝑇

𝑇
𝑇

𝑞
(𝑡) ,

Φ
𝑞+1

= [

Ω𝐵 (𝑡) + 𝐸𝐵
𝑓
(𝑡) 𝐷 (𝑡)

𝐹𝐸
𝑇

𝐵 (𝑡) + 𝐵
𝑓
(𝑡) 𝐷 (𝑡)

] + 𝐾
𝑇

𝑈
𝑇

𝑞
(𝑡) ,

Σ
12

=

[

[

[

[

[

[

[

[

[

[

[

[

[

√ℎ
1
𝐴

𝑇

(𝑡) 𝐾
𝑇

𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴

𝑇

(𝑡) 𝐾
𝑇

𝑅
𝑞

√ℎ
1
𝐴

𝑇

𝑑1
(𝑡) 𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴

𝑇

𝑑1
(𝑡) 𝑅
𝑞

...
...

...

√ℎ
1
𝐴

𝑇

𝑑𝑞
(𝑡) 𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴

𝑇

𝑑𝑞
(𝑡) 𝑅
𝑞

√ℎ
1
𝐵

𝑇

(𝑡) 𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐵

𝑇

(𝑡) 𝑅
𝑞

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Σ
13

=

[

[

[

[

[

[

[

[

[

[

[

[

√ℎ
1
𝐾
𝑇

𝑌
1
(𝑡) ⋅ ⋅ ⋅ √ℎ

𝑞
𝐾
𝑇

𝑌
𝑞
(𝑡)

√ℎ
1
𝑇
1
(𝑡) ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ √ℎ
𝑞
𝑇
𝑞
(𝑡)

√ℎ
1
𝑈
1
(𝑡) ⋅ ⋅ ⋅ √ℎ

𝑞
𝑈
𝑞
(𝑡)

]

]

]

]

]

]

]

]

]

]

]

]

,

Σ
22

= Σ
33

= diag {𝑅
1
, . . . , 𝑅

𝑞
} , 𝐸 = [𝐼

𝑙×𝑙
0
𝑙×(𝑛−𝑙)

] ,

(28)

then the system (5) is asymptotically stable with an ℓ
2
-ℓ
∞

performance 𝛾.

Proof. Necessity. Suppose (9), (10) hold. Partition as

𝑃 = [

Ω 𝐸𝑆

𝑆
𝑇

𝐸
𝑇

𝑊

] , (29)

where Ω > 0, 𝑊 > 0, and 𝑆 is invertible. Let

𝐻 = [

𝐼 0

0 𝑆𝑊
−1] . (30)

We pre- and postmultiply 𝐷 and its transpose to (9) and
(10), respectively, where

𝐷 = diag {𝐻, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} . (31)

Apply the changes of variables such that

𝐹 = 𝑆𝑊
−1

𝑆
𝑇

, 𝐴
𝑓
(𝑡) = 𝑆𝐴

𝑓
(𝑡)𝑊
−1

𝑆
𝑇

,

𝐵
𝑓
(𝑡) = 𝑆𝐵

𝑓
(𝑡) , 𝐶 (𝑡) = 𝐶

𝑓
(𝑡)𝑊
−1

𝑆
𝑇

.

(32)

Then we obtain (26) and (27).
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Sufficiency. Suppose that (26) and (27) hold forΩ > 0, 𝐹 > 0,
𝑄
𝑘

> 0, 𝑌
𝑘
(𝑡), 𝑇
𝑘
(𝑡), 𝑈
𝑘
(𝑡), 𝑘 = 1, 2, . . . , 𝑞, and 𝐴

𝑓
(𝑡), 𝐵
𝑓
(𝑡),

and 𝐶
𝑓
(𝑡). Choose two matrices with 𝑊 > 0 and 𝑆 being

invertible such that 𝐹 = 𝑆𝑊
−1

𝑆
𝑇. Let 𝑃 and 𝐻 be defined

as in (29) and (30). Then 𝑃 > 0 is concluded from (27). Pre-
and postmultiply 𝐷

−1 and 𝐷
−𝑇 to (26) and (27), respectively.

We can get (9) and (10) with the changes of variables as

𝐴
𝑓
(𝑡) = 𝑆

−1

𝐴
𝑓
(𝑡) 𝑆
−𝑇

𝑊, 𝐵
𝑓
(𝑡) = 𝑆

−1

𝐵
𝑓
(𝑡) ,

𝐶
𝑓
(𝑡) = 𝐶

𝑓
(𝑡) 𝑆
−𝑇

𝑊.

(33)

This completes the proof.

Theorem 4. Given 𝛾 > 0, if there exist common matrices Ω >

0, 𝐹 > 0, 𝑄
𝑘

> 0, 𝑇
𝑘𝑖
, 𝑌
𝑘𝑖
, 𝑈
𝑘𝑖
, 𝑘 = 1, 2, . . . , 𝑞, and 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
,

and 𝐶
𝑓𝑖
such that the following inequalities hold:

Θ
𝑖𝑗
+ Θ
𝑗𝑖

< 0, 𝑖 ≤ 𝑗 ≤ 𝑟, (34)

[

[

[

[

Ω 𝐸𝐹 𝐸
𝑇

𝑖

∗ 𝐹 −𝐶
𝑇

𝑓𝑖

∗ ∗ 𝛾
2

𝐼

]

]

]

]

> 0, (35)

then ℓ
2
-ℓ
∞

filter parameters in (4) are given by

𝐴
𝑓𝑖

= 𝐹
−1

𝐴
𝑓𝑖
, 𝐵

𝑓𝑖
= 𝐹
−1

𝐵
𝑓𝑖
, 𝐶

𝑓𝑖
= 𝐶
𝑓𝑖
, (36)

where

Θ
𝑖𝑗

=
[

[

[

Ψ
11

Ψ
12

Ψ
13

∗ −Ψ
22

0

∗ ∗ −Ψ
13

]

]

]

,

Ψ
11

=

[

[

[

[

[

[

[

[

[

Φ
0

Φ
1

⋅ ⋅ ⋅ Φ
𝑞

Φ
𝑞+1

∗ − (1 − 𝑑
𝑘
) 𝑄
1
− 𝑇
1𝑖

− 𝑇
𝑇

1𝑖
0 0 −𝑈

𝑇

1𝑖

∗ ∗ d
...

...
∗ ∗ ∗ − (1 − 𝑑

𝑞
)𝑄
𝑞
− 𝑇
𝑞𝑖

− 𝑇
𝑇

𝑞𝑖
−𝑈
𝑇

𝑞𝑖

∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

,

Φ
0
= [

Ω𝐴
𝑖
+ 𝐸𝐵
𝑓𝑗
𝐶
𝑖

𝐸𝐴
𝑓𝑗

𝐹𝐸
𝑇

𝐴
𝑖
+ 𝐵
𝑓𝑗
𝐶
𝑖

𝐴
𝑓𝑗

] + [

Ω𝐴
𝑖
+ 𝐸𝐵
𝑓𝑗
𝐶
𝑖

𝐸𝐴
𝑓𝑗

𝐹𝐸
𝑇

𝐴
𝑖
+ 𝐵
𝑓𝑗
𝐶
𝑖

𝐴
𝑓𝑗

]

𝑇

+

𝑞

∑

𝑘=1

(𝐾
𝑇

𝑄
𝑘
𝐾 + 𝐾

𝑇

𝑌
𝑘𝑖
𝐾 + 𝐾

𝑇

𝑌
𝑇

𝑘𝑖
𝐾) ,

Φ
1
= [

Ω𝐴
𝑑1𝑖

+ 𝐸𝐵
𝑓𝑗
𝐶
𝑑1𝑖

𝐹𝐸
𝑇

𝐴
𝑑1𝑖

+ 𝐵
𝑓𝑗
𝐶
𝑑1𝑖

] − 𝐾
𝑇

𝑌
1𝑖

+ 𝐾
𝑇

𝑇
𝑇

1𝑖
,

Φ
𝑞
= [

Ω𝐴
𝑑𝑞𝑖

+ 𝐸𝐵
𝑓𝑗
𝐶
𝑑𝑞𝑖

𝐹𝐸
𝑇

𝐴
𝑑𝑞𝑖

+ 𝐵
𝑓𝑗
𝐶
𝑑𝑞𝑖

] − 𝐾
𝑇

𝑌
𝑞𝑖

+ 𝐾
𝑇

𝑇
𝑇

𝑞𝑖
,

Φ
𝑞+1

= [

Ω𝐵
𝑖
+ 𝐸𝐵
𝑓𝑗
𝐷
𝑖

𝐹𝐸
𝑇

𝐵
𝑖
+ 𝐵
𝑓𝑗
𝐷
𝑖

] + 𝐾
𝑇

𝑈
𝑇

𝑞𝑖
,

Ψ
12

=

[

[

[

[

[

[

[

[

[

[

[

[

[

√ℎ
1
(𝐴
𝑖
𝐾)
𝑇

𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
(𝐴
𝑖
𝐾)
𝑇

𝑅
𝑞

√ℎ
1
𝐴
𝑇

𝑑1𝑖
𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴
𝑇

𝑑1𝑖
𝑅
𝑞

...
...

...

√ℎ
1
𝐴
𝑇

𝑑𝑞𝑖
𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐴
𝑇

𝑑𝑞𝑖
𝑅
𝑞

√ℎ
1
𝐵
𝑇

𝑖
𝑅
1

⋅ ⋅ ⋅ √ℎ
𝑞
𝐵
𝑇

𝑖
𝑅
𝑞

]

]

]

]

]

]

]

]

]

]

]

]

]

,



8 Mathematical Problems in Engineering

Ψ
13

=

[

[

[

[

[

[

[

[

[

[

√ℎ
1
𝐾
𝑇

𝑌
1𝑖

⋅ ⋅ ⋅ √ℎ
𝑞
𝐾
𝑇

𝑌
𝑞𝑖

√ℎ
1
𝑇
1𝑖

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ √ℎ
𝑞
𝑇
𝑞𝑖

√ℎ
1
𝑈
1𝑖

⋅ ⋅ ⋅ √ℎ
𝑞
𝑈
𝑞𝑖

]

]

]

]

]

]

]

]

]

]

,

Ψ
22

= Ψ
33

= diag {𝑅
1
, . . . , 𝑅

𝑞
} , 𝐸 = [𝐼

𝑙×𝑙
0
𝑙×(𝑛−𝑙)

] .

(37)

Proof. By considering (6),we know that Σ(𝑡) in (26) and the
Θ
𝑖𝑗
in (34) satisfy

Σ (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑢
𝑖
(𝑠 (𝑡)) 𝑢

𝑗
(𝑠 (𝑡)) Θ

𝑖𝑗

=

𝑟

∑

𝑖=1

𝑢
2

𝑖
(𝑠 (𝑡)) Θ

𝑖𝑖

+

𝑟

∑

𝑖<𝑗

𝑢
𝑖
(𝑠 (𝑡)) 𝑢

𝑗
(𝑠 (𝑡)) (Θ

𝑖𝑗
+ Θ
𝑗𝑖
) .

(38)

Based on Lemmas 2 and 3, the ℓ
2
-ℓ
∞

filter matrices are
given by (33). Under the transformation 𝑆

−𝑇

𝑊𝑥
𝑓
(𝑡), the filter

matrices functions can be of the following forms:

𝐴
𝑓
(𝑡) = 𝑆

−𝑇

𝑊(𝑆
−1

𝐴
𝑓
(𝑡) 𝑆
−𝑇

𝑊)𝑊
−1

𝑆
𝑇

,

𝐵
𝑓
(𝑡) = 𝑆

−𝑇

𝑊(𝑆
−1

𝐵
𝑓
(𝑡)) ,

𝐶
𝑓
(𝑡) = (𝐶

𝑓
(𝑡) 𝑆
−𝑇

𝑊)𝑊
−1

𝑆
𝑇

.

(39)

Hence, the filter in (4) can be got by (36). This completes
the proof.

4. Simulation

In this section, we give a numerical example to illustrate the
use of the present method. Consider the system of the form
(1) with two plants (𝑟 = 2) and two delays (𝑞 = 2), where

𝐴
1
= [

−2.1 0.1

1 −2
] , 𝐴

𝑑11
= [

−1.1 0.1

−0.8 −0.9
] ,

𝐴
𝑑21

= [

−0.1 0.1

−0.1 −0.3
] ,

𝐴
2
= [

−1.9 0

−0.2 −1.1
] , 𝐴

𝑑12
= [

−0.9 0

−1.1 −1.2
] ,

𝐴
𝑑22

= [

−0.1 0

−0.2 −0.2
] ,

𝐵
1
= [

1

−0.2
] , 𝐶

1
= [1 0] ,

𝐶
𝑑11

= [−0.8 0.6] ,

𝐶
𝑑21

= [−0.1 0.2] , 𝐷
1
= 0.3,

𝐸
1
= [1 −0.5] ,

𝐵
2
= [

0.3

0.1
] , 𝐶

2
= [0.5 −0.6] ,

𝐶
𝑑12

= [−0.1 0.1] ,

𝐶
𝑑22

= [−0.1 0.1] , 𝐷
2
= −0.6,

𝐸
2
= [−0.2 0.3] .

(40)

Here, we only consider the full-order filter design. First,
we set ℎ

1
= 0.5, ℎ

2
= 0.3. Figure 1 shows the ℓ

2
-ℓ
∞

gain bound got fromTheorem 4 in pointwise manner, where
the derivatives of time-varying delay function bound 𝑑

1
∈

[0 1.9], 𝑑
2

∈ [0 1.9]. We can find that the maximum ℓ
2
-ℓ
∞

gain is 𝛾 = 0.3714 at the point 𝑑
1

= 1.9, 𝑑
2

= 1.9. The
minimum ℓ

2
-ℓ
∞

gain is 𝛾 = 0.3358 at the point 𝑑
1

= 0,
𝑑
2
= 0.
Then, we set 𝑑

1
= 0.4, 𝑑

2
= 0.4. Figure 2 shows the ℓ

2
-

ℓ
∞

gain bound got from Theorem 4 in pointwise manner,
where the time-varying delay function bound ℎ

1
∈ [0 1.1],

ℎ
2

∈ [0 1.1]. We can find that the maximum ℓ
2
-ℓ
∞

gain is
𝛾 = 0.5257 at the point ℎ

1
= 1.1, ℎ

2
= 1.1. The minimum

ℓ
2
-ℓ
∞

gain is 𝛾 = 0.0055 at the point ℎ
1
= 0, ℎ

2
= 0.

Now, We choose both time-varying delays to be
0.4 sin(𝑡) + 0.7 which gives ℎ

1
= 1.1, ℎ

2
= 1.1, 𝑑

1
= 0.4, and

𝑑
2
= 0.4, and we get a set of feasible solutions to Theorem 4

with the ℓ
2
-ℓ
∞

gain 𝛾 = 0.5257 and

𝐹 = [

3.8096 −1.2607

−1.2607 0.6116
] ,

𝐴
𝑓1

= [

−12.9071 1.8516

5.1902 −1.1454
] ,

𝐴
𝑓2

= [

−10.0276 4.2653

3.0519 −1.5986
] , 𝐵

𝑓1
= [

−5.0266

1.9199
] ,

𝐵
𝑓2

= [

−4.1959

1.8120
] ,

𝐶
𝑓1

= [0.8524 −0.3426] , 𝐶
𝑓2

= [−0.2629 0.1428] .

(41)
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Figure 1: ℓ
2
-ℓ
∞
gain bound fromTheorem 4 with ℎ

1
= 0.5 and ℎ

2
=

0.3.
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00.20.40.60.81
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0.2
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0.4

0.5

0.6

h1
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𝛾

Figure 2: ℓ
2
-ℓ
∞

gain bound from Theorem 4 with 𝑑
1

= 0.4 and
𝑑
2
= 0.4.

Therefore, we can solve the corresponding filter from (36)
as

𝐴
𝑓1

= [

−1.8241 −0.4206

4.7259 −2.7398
] ,

𝐴
𝑓2

= [

−3.0858 0.8012

−1.3706 −0.9622
] ,

𝐵
𝑓1

= [

−0.8829

1.3191
] ,

𝐵
𝑓2

= [

−0.3806

2.1781
] , 𝐶

𝑓1
= [0.8524 −0.3426] ,

𝐶
𝑓2

= [−0.2629 0.1428] .

(42)
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−0.05

0

0.05

0.1

0.15

Time (s)

Er
ro

r d
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Figure 3: The signal 𝑒(𝑡).

To illustrate the performance of the designed filter, we
assume zero initial condition and the disturbance 𝜔(𝑡) as
follows:

𝜔 (𝑡) =

{
{

{
{

{

1, 0.5 ≤ 𝑡 ≤ 1

−1, 1.5 ≤ 𝑡 ≤ 2

0, otherwise.
(43)

The simulation result of signal 𝑒(𝑡) is given in Figure 3.
The resulting output ℓ

∞
-norm of the filtering-error sys-

tem is about 0.15, while ‖𝜔(𝑡)‖
2
= 1. Simulation result for the

ratio of the output ℓ
∞
-norm to the disturbance ℓ

2
-norm is

0.15, and 0.15 < 𝛾 = 0.5257 with ℎ
1
= 1.1, ℎ

2
= 1.1, 𝑑

1
= 0.4,

and 𝑑
2
= 0.4.

5. Conclusion

The problem on ℓ
2
-ℓ
∞

filter design has been addressed for a
class of TCS fuzzy-model-based systems with multiple time-
varying delays. Based on the Lyapunov-Krasovskii functional
approach and free-weighting matrix method, a sufficient
condition for the existence of ℓ

2
-ℓ
∞
filter, which stabilizes the

T-S fuzzy-model-based filtering-error systems and guaran-
tees a prescribed level on disturbance attenuation, has been
obtained in terms of LMI form. The numerical example has
shown the effectiveness of the proposed method. In addi-
tion, the basis-dependent Lyapunov-Krasovskii functional
approach for filtering problems of T-S fuzzy delayed systems
is also challenging, and could be our further work.
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This paper proposes a robust adaptive neural network controller (RANNC) for electrode regulator system. According to the
characteristics of electrode regulator system, an affine-like equivalent model is first derived. Then, the nonlinear control law
is derived directly based on the affine-like equivalent model identified with neural networks, which avoids complex control
development and intensive computation. The control scheme is simple enough that it can be implemented on an automotive
microcontroller system, and the performance meets the system requirements. The stability of the system is established by the
Lyapunov method. Several simulations illustrate the effectiveness of the controller.

1. Introduction

Electric arc furnaces (EAF) are widely used in the steel
industry for melting scrap. The most important part of EAF
is the electrode regulator system. Its performance affects not
only the power utilisation efficiency of the furnace but also
the electrode and refractory wear costs. A fast controller
response is required to optimise the power utilisation effi-
ciency, butwhere overshoot of the required electrode position
is caused, the results are increased refractory and electrode
wear and also, possibly, the injection of unwanted carbon into
the steel in the case of a molten bath. Thus, the controller
should be designed to meet the requirements of fast response
without overshoot. However, the demands are difficult to
accomplish since the electrode regulator system is burdened
with strong nonlinearity and strong coupling among three
phases. Moreover, the control strategy should be simple
enough to be implemented on an automotivemicrocontroller
system, while it has to be robust to plant parameter variations.

Several control strategies have been considered and/or
applied to furnaces in the past few decades. As early as 1977,
Billings and Nicholson proposed a temperature-weighting
adaptive controller [1], which uses ambient arc temperature
as an additional control parameter to weigh the error feed-
back. However, the conditions of continuous temperature

measurement are not easy to achieve. Zhizhong and Jian
pointed that the arc gain can be estimated by the energy
applied into the furnace [2], to avoid the problem of contin-
uous temperature measurement, and proposed an adaptive
feedback controller for the electrode regulator system, but
they did not give an expression for calculating the arc gain.
Several of the existing control designs use a linear model of
the process and derive a state feedback decoupling controller
[3]; however, the controller is only effective around the
operating points and has some limitations in the practical
applications. Intelligent methods such as fuzzy control and
neural network control were also applied in the electrode
regulator system [4–9]. Staib et al. proposed to utilize the
neural network to control the electrode, which can learn
online during the smelt process [4, 5]. In [7–9], an adaptive
inverse control algorithm based on RBF NN is presented,
which identifies real-time decoupling by RBF NN online,
but the control law computation is too much and needs
a high-speed acquisition and processing system. Variable
structure control with the slidingmode is an effectivemethod
for the control of the nonlinear plant with a parameter
uncertainty, and it has also been applied in the electrode
regulator system in [6]; however, the stability analysis of the
closed-loop system was not given in [6]. In [10], a direct
adaptive controller is designed. However, the computation is
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too much and the control scheme is difficult to be applied in
practice.

The principal aim of this paper is to present a practice-
oriented robust adaptive neural network controller for elec-
trode regulator system.The control strategy is achieved based
on approximate model method and the Taylor expansion
technology, which avoids complex control development and
intensive computation. So, it is easily implemented in prac-
tice. Moreover, the decoupling among the three phases is
also realized and the controller has a good performance with
respect to parameters varying and falling scrap, which can be
illustrated by simulation results.

The proposed controller is acceptable in engineering
practice, as it can meet the following requirements. (1) The
proposed control scheme is simple enough that it can be
implemented on an automotive microcontroller system for
practical application. (2)The performance of the closed-loop
system satisfies the requirements, that is, a fast transient
response without overshoot. (3) Robustness of the control
system with respect to variations of process parameters is
required, which can be caused by production deviations and
variations of external conditions. (4) Stability of the closed-
loop system is rigorously established.

This paper is organized as follows. In Section 2, the non-
linear discrete-time dynamics of electrode regulator system
is derived. In Section 3, the input-output approximate model
is directly derived via the Taylor expansion and nonlinear
control law is implemented using NRBFNN modeling. In
Section 4, the robustness of the stability is rigorously estab-
lished by the Lyapunov method. Finally, several simulations
and experiments are presented to illustrate the effectiveness
of the proposed nonlinear controller.

2. Model Construction

As shown in Figure 1, the electrode regulator system of EAF
consists of controller, hydraulic system, andEAFmain circuit.
In this paper, the hydraulic system and the EAF main circuit
are considered to be a generalized plant.

2.1. Hydraulic System. Since we focus on the electrode regu-
lator system, the hydraulic system of EAF is approximated as
a third-order system as in [10, 11]. The transfer function can
be written as

𝐺
𝑠
(𝑠) =

𝑏
0
𝑠 + 𝑏
1

𝑎
0
𝑠
3
+ 𝑎
1
𝑠
2
+ 𝑎
2
𝑠

. (1)

2.2. EAF Main Circuit. A typical power supply system of
EAF consists of high-voltage power distribution system, EAF
transformer, short net, and electric arc.The equivalent circuit
of main circuit is presented in Figure 2, where 𝑈

𝑗
, (𝑗 =

𝐴, 𝐵, 𝐶) is the primary voltage, 𝑈
𝑗
, (𝑗 = 𝑎, 𝑏, 𝑐) is the

secondary voltage, ̇𝐼
𝑗
, (𝑗 = 𝐴, 𝐵, 𝐶) is the primary current,

̇𝐼
𝑗
, (𝑗 = 𝑎, 𝑏, 𝑐) is the secondary current, 𝑅

𝑑
is the short

net resistance, 𝑋
𝑑
is the short net reactance, and 𝑍jarc, (𝑗 =

𝑎, 𝑏, 𝑐) is the impedance of the arc. In the furnace there is
also electrical conduction between the electrodes. However,

according to [12], these currents are nearly 1% of the phase
currents and we focus on the electrode regulator system. So,
thesemutual inductances will be neglected for simplicity, and
we assume that the parameters of the three phases are the
same to each other.

In order to obtain a simpler arc model, Köhle proposed
to represent the arc as an equivalent linear circuit element
constituted by a resistive and a reactive part [13]. In his
model, Köhle defines the arc reactance 𝑋

𝐿
as a function of

its resistance as follows:𝑋
𝐿
= 𝑎𝑅
𝐿
+𝑏𝑅
2

𝐿
, where the first term

represents the influences of low frequency fluctuations and
the second represents the influences of harmonics.The values
of 𝑎 and 𝑏 vary during the melting process.

The primary coils and the secondary coils of the EAF
transformer are star connected and delta connected, respec-
tively (as shown in Figure 2). According to the Kirchoff ’s law,
we can obtain the electrode-to-neutral currents as follows:

𝑖
𝑎
=











𝑈
𝐴
(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑏
) − 𝑈
𝐵
(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑐
)

𝑍
𝐾𝑎𝑏𝑐











,

𝑖
𝑏
=











𝑈
𝐵
(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑐
) − 𝑈
𝐶
(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑎
)

𝑍
𝐾𝑎𝑏𝑐











,

𝑖
𝑐
=











𝑈
𝐶
(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑎
) − 𝑈
𝐴
(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑏
)

𝑍
𝐾𝑎𝑏𝑐











,

(2)

where 𝑍
𝐾𝑎𝑏𝑐

= (𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑎
)(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑏
) + (𝑍

𝑘
/3𝑛 −

𝑛𝑍
𝑎
)(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑐
) + (𝑍

𝑘
/3𝑛 − 𝑛𝑍

𝑏
)(𝑍
𝑘
/3𝑛 − 𝑛𝑍

𝑐
), 𝑍
𝑗

=

𝑅
𝑑
+ 𝑗𝑋
𝑑
+ 𝑙
𝑗
𝑅per + 𝑗(𝑎𝑙

𝑗
𝑅per + 𝑏(𝑙

𝑗
∗ 𝑅per)

2

), (𝑗 = 𝑎, 𝑏, 𝑐).
𝑅
𝑑
is the short net resistance, 𝑋

𝑑
is the short net reactance,

and 𝑛 is the transformer ratio.
By using the 𝑛-order approximationmethod [14], one has

𝑇𝑖
(1)

𝑗
= 𝑖
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘), 𝑇2𝑖(2)

𝑗
= 𝑖
𝑗
(𝑘 + 1) − 2𝑖

𝑗
(𝑘) + 𝑖

𝑗
(𝑘 − 1),

𝑇
3

𝑖
(3)

𝑗
= 𝑖
𝑗
(𝑘 + 1) − 3𝑖

𝑗
(𝑘) + 3𝑖

𝑗
(𝑘 − 1) − 𝑖

𝑗
(𝑘 − 2), (𝑗 = 𝑎, 𝑏, 𝑐)

with 𝑇 being the sampling period. This way, according to (1)
and (2), the generalized control plant can be described in the
discrete system as

𝑖 (𝑘 + 1) = 𝑓 [𝜔 (𝑘) , 𝑢 (𝑘)] , (3)

where 𝑖(𝑘 + 1) = [𝑖
𝑎
(𝑘 + 1), 𝑖

𝑏
(𝑘 + 1), 𝑖

𝑐
(𝑘 + 1)]

𝑇,
𝜔(𝑘) = [𝑖

𝑎
(𝑘), 𝑖
𝑎
(𝑘 − 1), 𝑖

𝑎
(𝑘 −

2), 𝑖
𝑏
(𝑘), 𝑖
𝑏
(𝑘 − 1), 𝑖

𝑏
(𝑘 − 2), 𝑖

𝑐
(𝑘), 𝑖
𝑐
(𝑘 − 1), 𝑖

𝑐
(𝑘 − 2)]

𝑇,
𝑢(𝑘) = [𝑢

𝑎
(𝑘), 𝑢
𝑏
(𝑘), 𝑢
𝑐
(𝑘)]
𝑇, and 𝑓(⋅) = [𝑓

𝑎
(⋅), 𝑓
𝑏
(⋅), 𝑓
𝑐
(⋅)]
𝑇,

where 𝑓(⋅) is a vector-valued nonlinear function and 𝑓
𝑗
(⋅),

(𝑗 = 𝑎, 𝑏, 𝑐) is regarded as nonlinear mapping.

3. Control Strategy Design

In this section, a novel nonlinear controller is proposed based
on the approximate method, which avoids complex control
development and intensive computation.

3.1. Analysis of the Controlled Object. As ‖𝑍
𝐾𝑎𝑏𝑐

‖ > 0 always
holds for𝑍

𝐾𝑎𝑏𝑐
in (2), it is easy to validate that𝑓

𝑗
, (𝑗 = 𝑎, 𝑏, 𝑐)
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Figure 1: Schematic diagram of EAF electrode regulator system.
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Figure 2: Schematic diagram of EAF main circuit.

is derivable. For the nonlinear autoregressive moving average
(NARMA) model (3), a Taylor expansion of the plant gives

𝑖
𝑗
(𝑘 + 1) = 𝑓

𝑗
[𝜔 (𝑘 − 1) , 𝑢

𝑗
(𝑘 − 1)]

+ ∑

1

𝑟!

𝜕
𝑟

𝑓
𝑗
[𝜔 (𝑘 − 1) , 𝑢

𝑗
(𝑘 − 1)]

𝜕𝑢
𝑟

𝑗
(𝑘 − 1)

[Δ𝑢
𝑗
(𝑘)]

𝑟

+ ∑

1

𝑟!

𝜕
𝑟

𝑓
𝑗
[𝜔 (𝑘 − 1) , 𝑢

𝑗
(𝑘 − 1)]

𝜕𝜔
𝑟
(𝑘 − 1)

[Δ𝜔 (𝑘)]
𝑟

,

(4)

where Δ𝑢
𝑗
(𝑘) = 𝑢

𝑗
(𝑘) − 𝑢

𝑗
(𝑘 − 1), Δ𝜔(𝑘) = 𝜔(𝑘) − 𝜔(𝑘 − 1),

and (𝑗 = 𝑎, 𝑏, 𝑐).

The output 𝑖
𝑗
(𝑘 + 1) is highly sensitive to control input

𝑢
𝑗
(𝑘) in the operating region; that is, [15],













𝜕𝑓
𝑗
[𝜔 (𝑘 − 1) , 𝑢

𝑗
(𝑘 − 1)]

𝜕𝑢
𝑗
(𝑘 − 1)













≫













(∑

1

𝑟!

𝜕
𝑟

𝑓
𝑗
[𝜔 (𝑘 − 1) , 𝑢

𝑗
(𝑘 − 1)]

𝜕𝜔
𝑟
(𝑘 − 1)

× [Δ𝜔 (𝑘)]
𝑟

) × (Δ𝑢
𝑗
(𝑘))

−1













,

(5)

where Δ is the increment operator.
From (5), we can drop the third term on the right-hand

side of (4) to represent model (3) by

𝑖
𝑗
(𝑘 + 1) = 𝑖

𝑗
(𝑘) + 𝑓

1

𝑗
(𝑘) Δ𝑢

𝑗
(𝑘)

+ 𝑅
𝑗
[𝜔 (𝑘 − 1) , 𝑢

𝑗
(𝑘 − 1) , Δ𝑢

𝑗
(𝑘)] ,

(6)

where 𝑓1
𝑗
(𝑘) = 𝜕𝑓

𝑗
[𝜔(𝑘), 𝑢

𝑗
(𝑘)]/𝜕𝑢

𝑗
(𝑘)|
𝑢𝑗(𝑘)=𝑢𝑗(𝑘−1), 𝜔(𝑘)=𝜔(𝑘−1)

,
(𝑗 = 𝑎, 𝑏, 𝑐).

Theorem 1 (see [16]). The remainder term 𝑅
𝑗
[𝜔(𝑘−1), 𝑢

𝑗
(𝑘−

1), Δ𝑢
𝑗
(𝑘)] in (6) approaches zero at a faster rate than Δ𝑢

𝑗
(𝑘)
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approaches zero, and there exists a variable 𝜏
𝑗
(𝑘) ∈ (0, +∞]

such that












𝑅
𝑗
[𝜔 (𝑘 − 1) , 𝑢

𝑗
(𝑘 − 1) , Δ𝑢

𝑗
(𝑘)]

Δ𝑢
𝑗
(𝑘 − 1)













≪






𝑓
1

𝑗
(𝑘)






, (7)

whenever |Δ𝑢
𝑗
(𝑘)| ∈ [0, 𝜏

𝑗
(𝑘)], (𝑗 = 𝑎, 𝑏, 𝑐).

According to the Taylor expansion theory, as |Δ𝑢
𝑗
(𝑘)| ∈

[0, 𝜏
𝑗
(𝑘)], then the remainder 𝑅

𝑗
(𝑘) in (6) is bounded as

follows: |𝑅
𝑗
(𝑘)| ≤ 1/2𝑅

0

𝑗
𝜏
2

𝑗
(𝑘), with 𝑅

0

𝑗
being a finite positive

number. From (4)–(7), the input-output approximate model
of the plant can be derived by neglecting the term 𝑅

𝑗
(𝑘), and

thus, (3) can be simplified into

𝑖
𝑗
(𝑘 + 1) = 𝑖

𝑗
(𝑘) + 𝑓

1

𝑗
(𝑘) Δ𝑢

𝑗
(𝑘) (𝑗 = 𝑎, 𝑏, 𝑐) . (8)

From (8), the control law can be determined directly since
the increment Δ𝑢

𝑗
(𝑘) of the control signal appears linearly.

Before the computation of the control law, an assumption is
given.

Assumption 2. Controller output is bounded; that is,
|Δ𝑢
𝑗
(𝑘)| ≤ 𝛿

𝑗
(𝑘) with 𝛿

𝑗
(𝑘) being a finite positive number,

which considers constraints on physical variable.

Remark 3. According to Assumption 2, Δ𝑢
𝑗
(𝑘) should not be

too large in order to limit the approximation error of (8).
In electrode regulator system, this is reasonable because the
output of the hydraulic system (actuator) cannot change too
fast within a small time interval.

3.2. Derivation of Control Law. From (8), it requires precise
information about 𝑓1

𝑗
(𝑘) to compute 𝑢

𝑗
(𝑘). However, 𝑓1

𝑗
(𝑘)

exists but is unknown. In order to get the nonlinear function
𝑓
1

𝑗
(𝑘), a normalized radial basis function neural network

(NRBFNN) is used to identify the input-output representa-
tionmodel (3) at first. And then, the nonlinear function𝑓

1

𝑗
(𝑘)

can be estimated from the NN model and is referred to as
̂
𝑓
1

𝑗
(𝑘).
Evolved from radial basis function neural network

(RBFNN), the NRBFNN has the same structure as shown
in Figure 3. For the NARMA model (3), the output of the
NRBFNN is

�̂�
𝑗
(𝑘 + 1) = 𝑛𝑛 (𝜔 (𝑘) , 𝑢

𝑗
(𝑘))

= Θ
𝑇

Φ (𝑥) =

𝐿

∑

𝑖=1

𝜃
𝑖
𝜙
𝑖
(𝑥) ,

(9)

where 𝑥 = [𝜔
𝑇

(𝑘), 𝑢
𝑗
(𝑘)] is the input vector, Θ = [𝜃

1
⋅ ⋅ ⋅ 𝜃
𝐿
]
𝑇

is the weight vector, andΦ(𝑥) = [𝜙
1
(𝑥) ⋅ ⋅ ⋅ 𝜙

𝐿
(𝑥)]
𝑇 with 𝜙

𝑖
(𝑥)

being a normalized activation function to node 𝑖 and being
expressed as follows

𝜙
𝑖
(𝑥) =

exp (−




𝑥 − 𝐶

𝑖






2

/2𝑠
2

)

∑
𝐿

𝑗=1
exp (−
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𝑖






2

/2𝑠
2
)

, (10)
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Figure 3: Structure of an NRBFNN.

where 𝐶
𝑖
= [𝑐
𝑖1
⋅ ⋅ ⋅ 𝑐
𝑖𝑛
] denotes the centroid vector, 𝐿 denotes

the NN node number, and 𝑠 is the spread. The NRBFNN can
improve function approximation with a minimal number of
weights [17]. In (10), the kernel function is very similar to RBF
neural network, except that the kernel output is divided by
the sum of all the kernel outputs. Therefore, the outputs of
all the kernels add up to one; that is, ∑𝐿

𝑖=1
𝜙
𝑖
(𝑥) = 1. As the

output of every hidden node is less than 1, we can get that
the hidden output vector has the properties 0 < ‖Φ(𝑥)‖ ≤

1. These properties will be used in Section 4 for the stability
analysis of the closed-loop system.

To formulate a well-posed adaptive control problem, we
make the following assumptions. Similar assumptions are
used in [18, 19].

Assumption 4 (see [15]). An optimal weight vector Θ
𝑜

𝑗
for

a trained NRBFNN exists, and the corresponding optimal
estimation error 𝑒𝑜

𝑗
(𝑘) = �̂�

𝑜

𝑗
(𝑘)−𝑖

𝑗
(𝑘) has a known finite upper

bound [𝑒
𝑜

𝑗
]max, accordingly






�̂�
𝑜

𝑗
(𝑘) − 𝑖

𝑗
(𝑘)






=






𝑒
𝑜

𝑗
(𝑘)






< [𝑒
𝑜

𝑗
]
max

. (11)

Remark 5. The NRBFNN has been theoretically proven to
be capable of universal approximation in a satisfactory sense
[20]. Assumption 4 shows that a perfect function estimation
can be achieved if enough radial basis functions are used.
However, more hidden nodes means more computation.
There should be a trade-off between the computation burden
and approximation errors. In the electrode regulator system,
20 hidden nodes can meet the requirement of the estimation
errors.

The parameter update rule must be robust with respect
to modeling errors because these errors can prevent the
convergence of the weights of the neural network and thereby
destabilize the closed-loop system. One of the approaches to
ensure convergence of neural network weights is through a
“deadzone,” which suspends parameter adaption whenever
estimation error becomes small. The corresponding weights
updated law as follows:

Θ
𝑗
(𝑘 + 1) = Θ

𝑗
(𝑘) − 𝜌

𝑗
(𝑘) 𝜂
𝑗
(𝑘)

[

[

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +






Φ
𝑗
(𝑘)







2

]

]

,

(12)



Mathematical Problems in Engineering 5

where 𝜌
𝑗
(𝑘) is the adaptive rate, and 0 < 𝜌

𝑗
(𝑘) ≤ [𝜌

𝑗
]max < 2,

and

𝜂
𝑗
(𝑘) =

{
{
{

{
{
{

{

1, if 




𝑒
𝑗
(𝑘 + 1)






>

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

,

0, otherwise.
(13)

We have a gradient descent parameter update rule with a
deadzone, where 𝑒

𝑗
(𝑘 + 1) is the estimation error at the time

𝑘+1 and 𝑒
𝑗
(𝑘+1) = �̂�

𝑗
(𝑘+1)−𝑖

𝑗
(𝑘+1).Their other parameters

such as centroids and spreads can be found in [18, 19] and thus
are not discussed here.

Based on the NRBFNN model (9), we can get ̂
𝑓
1

𝑗
(𝑘); that

is,

̂
𝑓
1

𝑗
(𝑘) =

𝜕𝑛𝑛 [𝜔 (𝑘) , 𝑢
𝑗
(𝑘)]

𝜕𝑢
𝑗
(𝑘)











𝑢𝑗(𝑘)=𝑢𝑗(𝑘−1), 𝜔(𝑘)=𝜔(𝑘−1)

. (14)

And according to Assumptions 2 and 4, the control law can
be determined straigthforwardly from (8) as follows:

𝑢
𝑗
(𝑘) = 𝑢

𝑗
(𝑘 − 1) + Δ𝑢

𝑗
(𝑘) , (𝑗 = 𝑎, 𝑏, 𝑐) , (15)

where

Δ𝑢
𝑗
(𝑘) =

𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

[
̂
𝑓
1

𝑗
(𝑘)]

2

+ 𝛼

̂
𝑓
1

𝑗
(𝑘) if 





Δ𝑢
𝑗
(𝑘)






≤ 𝛿
𝑗
,

Δ𝑢
𝑗
(𝑘) = 𝛿

𝑗
sign 





Δ𝑢
𝑗
(𝑘)







if 




Δ𝑢
𝑗
(𝑘)






> 𝛿
𝑗
,

(16)

where 𝛼 and 𝛿
𝑗
are given finite positive constants and 𝑟

𝑗
(𝑘) is

the reference current.
Define the tracking error at the time 𝑘 as

[𝑒
𝑐
]
𝑗
(𝑘) = 𝑟

𝑗
(𝑘) − 𝑖

𝑗
(𝑘) , (𝑗 = 𝑎, 𝑏, 𝑐) . (17)

4. Stability Analysis of RANNC

Stability and performance of the closed-loop systemwith NN
adaptive control (15) and weight updating law (12) are given
inTheorem 6.

Theorem 6. For given |𝑟
𝑗
(𝑘) − 𝑟

𝑗
(𝑘 − 1)| ≤ Δ𝑟, using

the NN control law (15) with NN weight updating law (12),
then the solution of the error system (17) is uniformly ulti-
mately bounded (UUB) [21] for all 𝑘 with ultimate bound
lim
𝑘→∞

|[𝑒
𝑐
]
𝑗
(𝑘)| ≤ (𝑘

2
/(1 − 𝑘

1
)), where 𝑘

1
= |(1 −

𝑠
𝑗
(𝑘)([

̂
𝑓
1

𝑗
(𝑘)]
2

/([
̂
𝑓
1

𝑗
(𝑘)]
2

+𝛼)))| and 𝑘
2
= 𝑘
1
⋅𝑟
0
+2[𝑒
𝑜

𝑗
]max/(2−

[𝜌
𝑗
]max), in which 0 < 𝑠

𝑗
(𝑘) ≤ 1, 𝛼, 𝑟

0
, [𝑒𝑜
𝑗
]max and [𝜌

𝑗
]max are

the same as those defined above, (𝑗 = 𝑎, 𝑏, 𝑐).

Proof. See Appendix.

5. Simulations and Experiment

5.1. Simulations. This section shows the MATLAB simula-
tions of the proposed approximate model control strategy
on the electrode regulator system. The parameter values are
selected as follows.

(1) Hydraulic system: 𝑏
0
= 5, 𝑏
1
= 95, 𝑎

0
= 1, 𝑎

1
= 9, and

𝑎
2
= 110.

(2) EAF transformer: 𝑈
𝐴

= 35000V, 𝑈
𝐵

= 𝑈
𝐴
𝑒
−𝑗(2/3)𝜋,

𝑈
𝐶

= 𝑈
𝐴
𝑒
𝑗(2/3)𝜋, 𝑍

𝐾
= (0.0069 + 𝑗0.076)Ω, and 𝑛 =

80.
(3) Electric arc: 𝑎 = 0.12, 𝑏 = 0.02, and 𝑅per =

0.000058Ω/mm.
(4) Short net: (𝑍

𝑑
= 0.0003 + 𝑗8.3292𝑒 − 006)Ω.

(5) Controller parameters: 𝛼 = 0.01, [𝑒0
𝑗
]max = 50A, 𝛿

𝑗
=

3.5V, 𝜌
𝑗
= 1, and 𝑠 = 0.6.

Here, three controllers’ (including the PID controller
(PIDC), inverse neural network controller (INNC), Robust
adaptive neural network controller (RANNC)) capability
of following set-point, restraining parameters varying and
falling scrap is studied by simulation.

There are strong coupling among three phases in the
electrode regulator system. To validate the decoupling perfor-
mance of the proposed controller, several set-point trackings
are performed with different operating points and reference
changes. Figure 4 shows the simulation results of the current
𝐴 and current 𝐵. We can know from figures that the RANNC
is better in respect of tracking the set value, and the current
𝐵 is almost not influenced by the changes of current 𝐴.
Approximate decoupling is realized. When the PIDC and
INNC are used, the system has slower response and larger
overshoot, and its performance is worse than RANNC.

In the smelting process, production deviation and varia-
tions of external condition can cause the variation of process
parameters, and falling scrap is also common. In order
to make the proposed control strategy more acceptable in
practice, we simulate these situations and the parameters
change at 25 s and 50 s, respectively. The simulation results
are illustrated in Figure 5. We can know from figures that
the RANNCpreserves important performancemeasures, like
fast response, the little overshoot, and accuracy within the
measurement resolution.

Three phase electrodes discharge tomolten steel, forming
star connection, so there are strong coupling among three
phases. In PIDC system, there is three controllers for three
phases individually and the coupling effects are not con-
sidered. The performance of INNC is better than that of
PIDC as the coupling effects are regarded as disturbances
in INNC system. However, the complete decoupling is still
not achieved. In RANNC system, the control law is directly
derived from the approximate model, which fully reflects
the coupling effects among the three phases. Approximate
complete decoupling can be realized. From Figures 4 and 5,
we can get that the performance of the RANNC is better than
that of PIDC and INNC.

5.2. Experiment. The experiment apparatus is shown in
Figure 6, and our robust adaptive neural network controller
is implemented on SIEMENS CPU414-2. The parts of the
experiment system include arc modelMachine, programmer,
HMI, electrode PLC,master PLC, and othermodelsMachine,
and they communicate via industry ethernet. Long-distance
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Figure 4: Comparison of decoupling control.
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Figure 5: Comparison of robustness and falling scrap.
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Figure 6: Schematic diagram of EAF electrode system.
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Figure 7: Output of the currents.

𝐼/𝑂 interface ET200M is connected with Master PLC with
ProfibusDP.Thepowermodule is PS407, and the analog input
module and analog output module are AI431 and AO432;
digital inputmodule and digital outputmodule are DI321 and
DO322, respectively. Similar to the simulations, we verify the
effectiveness of the controller via decoupling performance,
robustness, and antidisturbance ability.The results are shown
in Figure 7.

The corresponding parameters are changed at 105 s.
Figure 7 shows experimental results of the three phase cur-
rents when only RANNC is used. As is shown in Figure 7,
the RANNC has a good performance, that is, faster response
and smaller overshoot, which means more power utilisation
efficiency and less refractory and electrode wear. From the
experiments, we can come to the following conclusions.

(i) As the coupling effects by other two phases are
considered in the approximate model, the coupling
among three phases is decreased greatly. Real-time
decoupling and control scheme are realized for the
electrode regulator system.

(ii) In our proposed controller, small nodes of NRBFNN
are chosen, which renders our control scheme pos-
sible application in real-time control of electric arc
furnace.

6. Conclusion

Many nonlinear discrete systems can be described by
NARMA model. In this paper, a generalized model for
electrode regulator system on NARMA form is established.
With a novel 𝐼/𝑂 approximation proposed for the NARMA
model, a robust adaptive controller is derived directly from
the approximation being and it can be implemented straight-
forwardly by using neural network. The controller design
method can be also applied on other systems such as
electronic throttle valve and distributed curing process etc., in
which the approximationmodel can be derived by the similar
procedure. The design of the proposed nonlinear controller
is simple and practical. Simulation results illustrate the good
performance of this controller.
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Appendix

Wewill prove, one by one in the order of the NN weights, the
estimation error and the tracking error are bounded.

(1) Boundedness of the weights: Choose a Lyapunov
candidate𝑉

𝑗
(𝑘, Θ̃
𝑗
(𝑘)) = Θ̃

𝑇

𝑗
(𝑘)Θ̃
𝑗
(𝑘), where Θ̃

𝑗
(𝑘) = Θ

𝑗
(𝑘)−

Θ
𝑜

𝑗
, Θ𝑜
𝑗
is the optimal weight vector as in Assumption 4; then

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= 𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1)) − 𝑉 (𝑘, Θ̃

𝑗
(𝑘))

= Θ̃
𝑇

𝑗
(𝑘 + 1) Θ̃

𝑗
(𝑘 + 1) − Θ̃

𝑇

𝑗
(𝑘) Θ̃
𝑗
(𝑘) .

(A.1)

According to [15]

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= 2Θ̃
𝑇

𝑗
(𝑘) ⋅ [ΔΘ̃

𝑗
(𝑘 + 1)]

+ [ΔΘ̃
𝑗
(𝑘 + 1)]

𝑇

⋅ ΔΘ̃
𝑗
(𝑘 + 1) ,

(A.2)

where ΔΘ̃
𝑗
(𝑘 + 1) = Θ̃

𝑗
(𝑘 + 1) − Θ̃

𝑗
(𝑘), and from (12), we get

ΔΘ̃
𝑗
(𝑘 + 1) = −𝜌

𝑗
(𝑘) 𝜂
𝑗
(𝑘)

[

[

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +






Φ
𝑗
(𝑘)







2

]

]

. (A.3)

Note that the estimation error is

𝑒
𝑗
(𝑘 + 1) = �̂�

𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘 + 1)

= Θ̃
𝑇

𝑗
(𝑘) ⋅ Φ

𝑗
(𝑘) + 𝑒

𝑜

𝑗
(𝑘 + 1) .

(A.4)

We consider two cases associated with (A.3) separately.

Case 1 (|𝑒
𝑗
(𝑘 + 1)| ≤ 2[𝑒

𝑜

𝑗
]
max

/(2 − [𝜌
𝑗
]max)). Equation (A.3)

implies Θ̃
𝑗
(𝑘+1) = Θ̃

𝑗
(𝑘), therefore,Δ𝑉

𝑗
(𝑘+1, Θ̃

𝑗
(𝑘+1)) = 0.

Case 2 (|𝑒
𝑗
(𝑘 + 1)| > 2[𝑒

𝑜

𝑗
]
max

/(2 − [𝜌
𝑗
]max)). Equation (A.3)

implies

ΔΘ̃
𝑗
(𝑘 + 1) = Θ̃

𝑗
(𝑘 + 1) − Θ̃

𝑗
(𝑘)

= − 𝜌
𝑗
(𝑘)

[

[

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +






Φ
𝑗
(𝑘)







2

]

]

.

(A.5)

From (A.4)

Θ̃
𝑇

𝑗
(𝑘) ⋅ Φ

𝑗
(𝑘) = 𝑒

𝑗
(𝑘 + 1) − 𝑒

𝑜

𝑗
(𝑘 + 1) . (A.6)

Therefore, substituting for Θ̃𝑇
𝑗
(𝑘) andΔΘ̃

𝑗
(𝑘+1) in (A.2) gives

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= 2 [𝑒
𝑗
(𝑘 + 1) − 𝑒

𝑜

𝑗
(𝑘 + 1)] ⋅

[

[

−𝜌
𝑗
(𝑘)

𝑒
𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2

]

]

+
[

[

−𝜌
𝑗
(𝑘)

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +






Φ
𝑗
(𝑘)







2

]

]

⋅
[

[

−𝜌
𝑗
(𝑘)

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +






Φ
𝑗
(𝑘)







2

]

]

.

(A.7)

This implies

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= −𝜌
𝑗
(𝑘)

[

[

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2

]

]

⋅
[

[

2(1 −

𝑒
𝑜

𝑗
(𝑘 + 1)

𝑒
𝑗
(𝑘 + 1)

) − 𝜌
𝑗
(𝑘)






Φ
𝑗
(𝑘)







2

1 +






Φ
𝑗
(𝑘)







2

]

]

.

(A.8)

Using the fact that |𝑒
𝑗
(𝑘 + 1)| > 2[𝑒

𝑜

𝑗
]
max

/(2 − [𝜌
𝑗
]max) and

0 < 𝜌
𝑗
(𝑘) ≤ [𝜌

𝑗
]max < 2, simple algebraic manipulations of

(A.8) can be used to show that Δ𝑉
𝑗
(𝑘) ≤ 0.

Clearly, the system must operate under Cases 1 or 2 or
alternate between both cases. Since Δ𝑉

𝑗
(𝑘) ≤ 0, for Cases 1

and 2, then Δ𝑉
𝑗
(𝑘) ≤ 0 for 𝑘 = 0, 1, 2, . . .. This implies

𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) =






Θ̃
𝑗
(𝑘)







2

≤






Θ̃
𝑗
(0)







2

, for 𝑘 = 0, 1, 2, . . . .

(A.9)

This proves that Θ̃
𝑗
(𝑘) is uniformly bounded. Since ‖Θ̃

𝑗
(𝑘)‖

is uniformly bounded and Θ̃
𝑗
(𝑘) = Θ

𝑗
(𝑘) −Θ

𝑜

𝑗
, whereΘ𝑜

𝑗
is a

constant, then ‖Θ
𝑗
(𝑘)‖ is uniformly bounded.

(2) Boundedness of the estimation error: since
𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) converges

lim
𝑘→∞

Δ𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) = 0. (A.10)

Clearly, this can only happen if there exists some 𝑘
0
, such that






𝑒
𝑗
(𝑘 + 1)






≤

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

, for 𝑘 = 𝑘
0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . .

(A.11)

This implies

Θ̃
𝑗
(𝑘 + 1) = Θ̃

𝑗
(𝑘) , for 𝑘 = 𝑘

0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . (A.12)
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which, in turn, implies

Δ𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) = 0, for 𝑘 = 𝑘

0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . . (A.13)

The fact that 𝑘
0
exists is proven by contradiction as shown

below. If 𝑘
0
described above does not exist, we consider

subsequence 𝑡
𝑘
(𝑖), 𝑖 = 1, 2, . . . of instants 𝑘 = 0, 1, 2, . . ., when

weights of the neural network are updated; that is,

𝑡
𝑘
=

{

{

{

𝑘 :






𝑒
𝑗
(𝑘 + 1)






>

2[𝑒
0

𝑗
]
max

2 − [𝜌
𝑗
(𝑘)]max

}

}

}

. (A.14)

Under this case,

Δ𝑉
𝑗
(𝑡
𝑘
+ 1, Θ̃

𝑗
(𝑡
𝑘
+ 1))

= −𝜌
𝑗
(𝑘)

[

[

𝑒
2

𝑗
(𝑡
𝑘
+ 1)

1 +






Φ
𝑗
(𝑡
𝑘
)







2

]

]

⋅
[

[

2(1 −

𝑒
𝑜

𝑗
(𝑡
𝑘
+ 1)

𝑒
𝑗
(𝑡
𝑘
+ 1)

) − 𝜌
𝑗
(𝑘)






Φ
𝑗
(𝑡
𝑘
)







2

1 +






Φ
𝑗
(𝑡
𝑘
)







]

]

.

(A.15)

From (A.8),

𝑉
𝑗
(𝑟, Θ̃
𝑗
(𝑟)) = 𝑉

𝑗
(0, Θ̃
𝑗
(0))

+

𝑟

∑

𝑘=1

− 𝜌
𝑗
(𝑘)

[

[

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2

]

]

⋅
[

[

2(1 −

𝑒
𝑜

𝑗
(𝑘 + 1)

𝑒
𝑗
(𝑘 + 1)

)

−𝜌
𝑗
(𝑘)






Φ
𝑗
(𝑘)







2

1 +






Φ
𝑗
(𝑘)







]

]

≤ 𝑉
𝑗
(0, Θ̃ (0))

− 𝜆

𝑟

∑

𝑘=1

[

[

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2

]

]

for 𝜆 > 0.

(A.16)

Hence

𝑟

∑

𝑘=1

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2
≤

1

𝜆

[𝑉 (0, Θ̃
𝑗
(0)) − 𝑉 (𝑟, Θ̃

𝑗
(𝑟))] .

(A.17)

When 𝑟 → ∞, we get

∞

∑

𝑘=1

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2
< ∞. (A.18)

In other words, sequence 𝑒
2

𝑗
(𝑘 + 1)/(1 + ‖Φ

𝑗
(𝑘)‖
2

) con-

verges. Normalized error 𝑒
𝑗
(𝑘 + 1)/√1 + ‖Φ

𝑗
(𝑘)‖
2 is squared

summable, and it follows that

lim
𝑘→∞

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2
= 0. (A.19)

Then, from 0 < ‖Φ
𝑗
(𝑘)‖
2

≤ 1, this implies

𝑒
2

𝑗
(𝑘 + 1)

1 + 1

≤

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2
(A.20)

or

𝑒
2

𝑗
(𝑘 + 1) ≤ 2

𝑒
2

𝑗
(𝑘 + 1)

1 +






Φ
𝑗
(𝑘)







2
. (A.21)

In the limit as 𝑘 → ∞, the right-hand side of (A.21)
converges zero which results in

lim
𝑘→∞

𝑒
𝑗
(𝑘) = 0. (A.22)

This conclusion clearly contradicts the assumption that
|𝑒
𝑗
(𝑡
𝑘
+ 1)| > 2[𝑒

𝑜

𝑗
]max/(2 − [𝜌

𝑗
]max) for all 𝑡𝑘. Therefore, the

only possibility is that an integer 𝑘
0
exists such that






�̂�
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘 + 1)






=






𝑒
𝑗
(𝑘 + 1)






≤

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

(A.23)

for 𝑘 = 𝑘
0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . which implies

lim
𝑘→∞






𝑒
𝑗
(𝑘)






= lim
𝑘→∞






�̂�
𝑗
(𝑘) − 𝑖

𝑗
(𝑘)






≤

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

. (A.24)

(3) Boundness of the tracking error: define a variable
𝑠
𝑗
(𝑘), where 0 < 𝑠

𝑗
(𝑘) ≤ 1 for all 𝑘. The control law (15) is

equivalently expressed as

Δ𝑢
𝑗
(𝑘) = 𝑠

𝑗
(𝑘)

𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

[
̂
𝑓
1

𝑗
(𝑘)]

2

+ 𝛼

̂
𝑓
1

𝑗
(𝑘) , (A.25)

where 𝑠
𝑗
(𝑘) = 1 if |Δ𝑢

𝑗
(𝑘)| < 𝛿

𝑗
, and 0 < 𝑠

𝑗
(𝑘) < 1 if

|Δ𝑢
𝑗
(𝑘)| > 𝛿. Using (A.25), one has

[𝑒
𝑐
]
𝑗
(𝑘 + 1) = 𝑟

𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘 + 1)

= 𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘) − 𝑓

1

𝑗
(𝑘) Δ𝑢

𝑗
(𝑘)
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= 𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

−
̂
𝑓
1

𝑗
(𝑘) Δ𝑢

𝑗
(𝑘) + 𝑒

𝑗
(𝑘 + 1)

= 𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

− 𝑠
𝑗
(𝑘) [

̂
𝑓
1

𝑗
(𝑘)]

2 𝑟𝑗 (
𝑘 + 1) − 𝑖

𝑗
(𝑘)

[
̂
𝑓
1

𝑗
(𝑘)]

2

+ 𝛼

+ 𝑒
𝑗
(𝑘 + 1)

= (1 − 𝑠
𝑗
(𝑘)

[
̂
𝑓
1

𝑗
(𝑘)]

2

[
̂
𝑓
1

𝑗
(𝑘)]

2

+ 𝛼

)

× (𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)) + 𝑒

𝑗
(𝑘 + 1)

= (1 − 𝑠
𝑗
(𝑘)

[
̂
𝑓
1

𝑗
(𝑘)]

2

[
̂
𝑓
1

𝑗
(𝑘)]

2

+ 𝛼

)

× (Δ𝑟
𝑗
(𝑘 + 1) + [𝑒

𝑐
]
𝑗
(𝑘)) + 𝑒

𝑗
(𝑘 + 1) .

(A.26)

Therefore
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𝑐
]
𝑗
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𝑗
(𝑘)
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𝑓
1

𝑗
(𝑘)]

2
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𝑓
1

𝑗
(𝑘)]

2

+ 𝛼

)

× (Δ𝑟
𝑗
(𝑘 + 1) + [𝑒

𝑐
]
𝑗
(𝑘)) + 𝑒

𝑗
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[𝑒
𝑐
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𝑗
(𝑘)(1 − 𝑠

𝑗
(𝑘)

[
̂
𝑓
1

𝑗
(𝑘)]

2

[
̂
𝑓
1

𝑗
(𝑘)]

2

+ 𝛼
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𝑓
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𝑗
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𝑓
1
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2

+ 𝛼

)

+𝑒
𝑗
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𝑗
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𝑓
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2
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𝑓
1

𝑗
(𝑘)]

2

+ 𝛼














+ |Δ𝑟| ⋅
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𝑗
(𝑘)
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𝑓
1

𝑗
(𝑘)]

2

[
̂
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1

𝑗
(𝑘)]
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𝑒
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(A.27)

From (A.24), one has
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𝑗
(𝑘)
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1 − 𝑠
𝑗
(𝑘)
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𝑓
1

𝑗
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1

𝑗
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+ 𝛼














+ 𝑟
0
⋅














1 − 𝑠
𝑗
(𝑘)

[
̂
𝑓
1

𝑗
(𝑘)]

2

[
̂
𝑓
1

𝑗
(𝑘)]
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+ 𝛼














+

2[𝑒
𝑜

𝑗
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max

2 − [𝜌
𝑗
]max

= 𝑘
1








[𝑒
𝑐
]
𝑗
(𝑘)








+ 𝑘
2
.

(A.28)

Since 0 ≤ 𝑘
1

< 1 and 𝑘
2
is bounded, according to [14,

Lemma 13.1], one concludes that, using the control law (15),
the solutions of error system (17) are UUB for all 𝑘 with
ultimate bound lim

𝑘→∞
|[𝑒
𝑐
]
𝑗
(𝑘)| ≤ (𝑘

2
/(1 − 𝑘

1
)).
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Based on dissipation theory, a novel robust control is proposed for the lower-triangular nonlinear systems, which include strict-
feedback systems and high-order lower-triangular systems. Some important concepts in dissipation theory are integrated into the
recursive design, which are used to dominate the uncertain disturbance and construct the robust controller. The gotten controller
renders the closed-loop system finite-gain 𝐿

2
stable in the presence of disturbance and asymptotically stable in the absence of

disturbance. Especially, the controller has its advantage in regulating large disturbance. Finally, one example and one application
are given to show the effectiveness of the design method. Moreover, by comparing with another robust controller, the characteristic
of the proposed controller is illustrated in the simulations.

1. Introduction

Over the last decade, the lower-triangular systems are
researched widely in the field of nonlinear systems [1–4].
This class of systems is not only important theoretically, but
a lot of practical systems can conform to or be transformed
into its form, such as the power generators [5], aircraft
control system [6], and mobile robots [7]. It is well known
that backstepping design [8, 9] is proposed to design the
strict-feedback systems, which hold the simplest triangular
structure. For different types of triangular systems, the
condition for existence of control laws is investigated in [10,
11], and the explicit constructions of controllers are provided
in [12, 13]. Then, a power integrator technique is given to
design the high-order lower-triangular systems, which are
neither feedback linearizable nor affine in the control input
[4, 14]. Moreover, the robust control problem of lower-
triangular systems has attracted a lot of attention [15–18] for
overcoming the hurdle of disturbance, which possibly comes
from model simplification, external disturbance, or other
unknown factors.

In this paper, based on dissipation theory, a novel design
method is proposed to solve the robust control problem
of lower-triangular nonlinear systems in the presence of
uncertain disturbance. This approach constructs the storage

function anddesigns the controller recursively, which ensures
that the closed-loop system satisfies the dissipation inequality
having 𝐿

2
-gain performance. The technique is firstly used

in the strict-feedback system. Then, it is extended to the
high-order lower-triangular system. Finally, one example of
lower-triangular system and one application of synchronous
generator system are given to illustrate the effectiveness of the
robust control.

For the lower-triangular system with uncertain distur-
bance, this work uses the frame of dissipation property theory
to solve the problem of disturbance rejection. First of all,
the appropriate function of supply rate is chosen, which
is used to gather the disturbance inputs in the recursive
design. Next, the storage function and robust controller
are constructed recursively to guarantee that the result
at each step satisfies the dissipation property. During the
design, by using feedback domination technique [4, 14], the
disturbed parts are dominated by the functions of system
states and disturbances. Then, the function of disturbances
is regarded as the input of supply rate, which satisfies the
dissipation inequality ensuring finite-gain 𝐿

2
stability. The

effect of this method can be summarized as two aspects.
Firstly, the restriction of uncertain disturbance is relaxed, and
the only assumption of uncertain disturbance is bounded.
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So, no information about disturbance is required in the gotten
control law, which means that certain controller can regulate
uncertain disturbance. Secondly, compared with some previ-
ous robust controllers only applicable for small disturbances,
the proposed robust controller is effective for all cases of
bounded disturbance, especially for large disturbance.

The structure of this paper is as follows: Section 2
describes the problem and offers key lemma; Section 3 gives
the robust controller design for strict-feedback systems;
Section 4 extends the design method to high-order lower-
triangular systems; Section 5 provides an example and appli-
cation to illustrate the effectiveness of design approach. The
conclusion is contained in Section 6.

2. Problem Formulation and Key Lemma

In this paper, we focus on the problem of constructing robust
controller for the lower-triangular system, which is described
by the following differential equations:

̇𝑥
1
= 𝑓
1
(𝑥
1
) + 𝑥
𝑝1

2
+ 𝜔
1
(𝑡)

̇𝑥
2
= 𝑓
2
(𝑋
2
) + 𝑥
𝑝2

3
+ 𝜔
2
(𝑡)

...

̇𝑥
𝑛
= 𝑓
𝑛
(𝑋
𝑛
) + 𝑢
𝑝𝑛
+ 𝜔
𝑛
(𝑡)

𝑦 = 𝑥
1
,

(1)

where for 𝑖 = 1, 2, . . . , 𝑛, the state𝑋
𝑖
= (𝑥
1
, . . . , 𝑥

𝑖
)
𝑇

∈ R𝑖, the
input 𝑢 ∈ R, the output 𝑦 ∈ R, the uncertain disturbance
vector 𝜔 = [𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇, 𝜔
𝑖
(𝑡) is unknown nonlinear

function, which denotes external disturbance with unknown
bound, 𝑓

𝑖
: R𝑖 → R is a smooth function, and 𝑓

𝑖
(0) = 0.

About the system (1), one hypothesis is given as follows.

Assumption 1. 𝑝
𝑖
≥ 1 (𝑖 = 1, 2, . . . , 𝑛) is odd integer, and 𝑝

1
is

maximum of them.
Compared with the corresponding assumption in [4, 14],

Assumption 1 relaxes the condition of 𝑝
𝑖
. Next, the main

definitions of dissipation theory are given as follows.

Definition 2 (see [1]). The general systems are described in
the following form:

̇𝑥 (𝑡) = 𝑓 (𝑥, 𝑢
0
)

𝑦
0
(𝑡) = ℎ (𝑥, 𝑢

0
) ,

(2)

where the state 𝑥 ∈ R𝑛, the input 𝑢
0
∈ R𝑝, and the output

𝑦
0
∈ R𝑞. Let the function 𝑠(𝑢

0
, 𝑦
0
) : R𝑝 × R𝑞 → R if there

exists 𝑉(𝑥) ≥ 0, 𝑉 : R𝑛 → R+, such that

𝑉 (𝑥 (𝜏)) ≤ 𝑉 (𝑥 (0)) + ∫

𝜏

0

𝑠 (𝑢
0
, 𝑦
0
) 𝑑𝑡; (3)

for any𝑥(0) and 𝜏, the system (3) is dissipative about 𝑠(𝑢
0
, 𝑦
0
).

And 𝑠(𝑢
0
, 𝑦
0
) is the supply rate, and 𝑉(𝑥) is the storage

function.

Remark 3. The supply rate 𝑠(𝑢
0
, 𝑦
0
) in Definition 2 is se-

lectable. And there are some optional functions. The most
commonly used are two options: one is 𝑠(𝑢

0
, 𝑦
0
) = 𝑢

𝑇

0
𝑦
0
,

and the other is 𝑠(𝑢
0
, 𝑦
0
) = Υ

2

‖𝑢
0
‖
2

− ‖𝑦
0
‖
2, Υ > 0. In this

paper, when the uncertain disturbance 𝜔 = [𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇

is regarded as the input of the system (3), the latter is chosen
as the supply rate. And if the closed-loop system is dissipative,
we have

𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥 (0)) ≤ ∫

𝜏

0

(Υ
2

‖𝜔‖
2

−




𝑦
0






2

) 𝑑𝑡. (4)

That is, the gain of the system is not more than Υ for the
uncertain disturbance.

Definition 4 (see [1]). A mapping𝐻 : 𝐿𝑚
𝑒
→ 𝐿
𝑞

𝑒
is finite-gain

𝐿 stable if there exist nonnegative constants Υ
𝐿
and 𝛽

𝐿
, such

that




(𝐻V)
𝜏




𝐿
≤ Υ
𝐿





V
𝜏




𝐿
+ 𝛽
𝐿
, (5)

for V ∈ 𝐿𝑚
𝑒
and 𝜏 ∈ [0,∞).

Young’s inequality is an important tool used in the
recursive design, and Lemma 6 is one direct consequence of
Young’s inequality.

Lemma 5 (Young’s inequality). For any two vectors 𝑥 and 𝑦,
the following holds

𝑥
𝑇

𝑦 ≤

𝜀
𝑝

𝑝

‖𝑥‖
𝑝

+

1

𝑞𝜀
𝑞





𝑦





𝑞

, (6)

where 𝜀 > 0 and the constants 𝑝 > 1 and 𝑞 > 1 satisfy (𝑝 −
1)(𝑞 − 1) = 1.

Lemma 6 (see [19]). For real numbers 𝑎 ≥ 0, 𝑏 ≥ 0, and 𝑚 ≥
1, the following inequality holds:

𝑎 ≤ 𝑏 + (

𝑎

𝑚

)

𝑚

(

𝑚 − 1

𝑏

)

𝑚−1

. (7)

3. Robust Controller Design of
Strict-Feedback Systems

The strict-feedback system is described by the following
equations

̇𝑥
1
= 𝑓
1
(𝑥
1
) + 𝑥
2
+ 𝜔
1
(𝑡)

̇𝑥
2
= 𝑓
2
(𝑋
2
) + 𝑥
3
+ 𝜔
2
(𝑡)

...

̇𝑥
𝑛
= 𝑓
𝑛
(𝑋
𝑛
) + 𝑢 + 𝜔

𝑛
(𝑡)

𝑦 = 𝑥
1
.

(8)

Based on the dissipation theory, the novel robust con-
troller design is proposed step by step. For 𝑖 = 1, 2, . . . , 𝑛,
firstly set the design parameter 𝐶

𝑖
> 0.
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Step 1. Let 𝑧
1
= 𝑥
1
. The storage function is constructed

as 𝑉
1
= 𝑧
2

1
/2, whose derivative is

𝑉
1
= 𝑧
1
̇𝑧
1
= 𝑧
1
(𝑓
1
(𝑥
1
) + 𝑥
2
) + 𝑧
1
𝜔
1
. (9)

For the above equation, according to the technique
of adding one power integrator [4, 14], by using Young’s
inequality (6) with 𝑝 = 𝑞 = 2 and 𝜀 = √𝑛/𝛾, the term 𝑧

1
𝜔
1
is

dominated by (𝑛/2𝛾2)𝑧2
1
+ (𝛾
2

/2𝑛)𝜔
2

1
, where the disturbance

attenuation coefficient 𝛾 > 0. Taking it into formula (9) yields

𝑉
1
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1
[𝑥
2
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1
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1

2

+

𝑛

2𝛾
2
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1
] +
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2
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−

𝑧
2

1

2

. (10)

Design the smooth virtual control as

𝛼
2
= −𝐶
1
𝑧
1
− 𝑓
1
(𝑥
1
) −

1

2

(1 +

𝑛

𝛾
2
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1
. (11)

Taking controller (11) into formula (10) results in

𝑉
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𝑧
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1
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Step k. Through 𝑘 − 1 steps, a group of virtual controllers
are 𝑧
1
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1
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2
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2
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2
,. . ., 𝑧
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, and the
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Let 𝑧
𝑘
= 𝑥
𝑘
− 𝛼
𝑘
, and the storage function is changed

into 𝑉
𝑘
= 𝑉
𝑘−1
+ 𝑧
2

𝑘
/2; its derivative is obtained as

𝑉
𝑘
= 𝑉
𝑘−1
+ 𝑧
𝑘
̇𝑧
𝑘

≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
2

𝑖
+

𝛾
2

2

𝑘−1

∑

𝑗=1

𝑘 − 𝑗

𝑛 + 1 − 𝑗

𝜔
2

𝑗
−

𝑧
2

1

2

+ 𝑧
𝑘
𝜔
𝑘

− 𝑧
𝑘

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

𝜔
𝑚
+ 𝑧
𝑘
[𝑓
𝑘
(𝑋
𝑘
) + 𝑥
𝑘+1
+ 𝑧
𝑘−1

−

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

(𝑓
𝑚
(𝑋
𝑚
) + 𝑥
𝑚+1
)] .

(14)

By using Young’s inequality, we have

𝑉
𝑘
≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
2

𝑖
+

𝛾
2

2

𝑘−1

∑

𝑗=1

𝑘 − 𝑗

𝑛 + 1 − 𝑗

𝜔
2

𝑗
−

𝑧
2

1

2

+

𝛾
2

2 (𝑛 + 1 − 𝑘)

𝜔
2

𝑘
+

𝛾
2

2

𝑘−1

∑

𝑚=1

𝜔
2

𝑚

𝑛 + 1 − 𝑚

+ 𝑧
𝑘
[𝑓
𝑘
(𝑋
𝑘
) + 𝑥
𝑘+1
+ 𝑧
𝑘−1
+

𝑛 + 1 − 𝑘

2𝛾
2
𝑧
𝑘

+

𝑧
𝑘

2𝛾
2

𝑘−1

∑

𝑚=1

(𝑛 + 1 − 𝑚)(

𝜕𝛼
𝑘

𝜕𝑥
𝑚

)

2

−

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

(𝑓
𝑚
(𝑋
𝑚
) + 𝑥
𝑚+1
)] .

(15)

In this step, the smooth virtual controller is taken as
follows:

𝛼
𝑘+1
= −𝐶
𝑘
𝑧
𝑘
− 𝑓
𝑘
(𝑋
𝑘
) − 𝑧
𝑘−1
−

𝑛 + 1 − 𝑘

2𝛾
2
𝑧
𝑘

−

𝑧
𝑘

2𝛾
2

𝑘−1

∑

𝑚=1

(𝑛 + 1 − 𝑚)(

𝜕𝛼
𝑘

𝜕𝑥
𝑚

)

2

+

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

(𝑓
𝑚
(𝑋
𝑚
) + 𝑥
𝑚+1
) .

(16)

Under the action of the above controller, formula (15) is
turned into

𝑉
𝑘
≤ −

𝑘

∑

𝑖=1

𝐶
𝑖
𝑧
2

𝑖
+ 𝑧
𝑘
(𝑥
𝑘+1
− 𝛼
𝑘+1
) +

𝛾
2

2

𝑘

∑

𝑗=1

𝑘 + 1 − 𝑗

𝑛 + 1 − 𝑗

𝜔
2

𝑗
−

𝑧
2

1

2

.

(17)

Step n. Let 𝑧
𝑛
= 𝑥
𝑛
−𝛼
𝑛
, and the storage function is𝑉 = 𝑉

𝑛
=

𝑉
𝑛−1
+ 𝑧
2

𝑛
/2 = (1/2)∑

𝑛

𝑖=1
𝑧
2

𝑖
. The nonlinear robust controller

is designed as

𝑢 = −𝐶
𝑛
𝑧
𝑛
− 𝑓
𝑛
(𝑋
𝑛
) − 𝑧
𝑛−1
−

𝑧
𝑛

2𝛾
2

−

𝑧
𝑛

2𝛾
2

𝑛−1

∑

𝑚=1

(𝑛 + 1 − 𝑚)(

𝜕𝛼
𝑛

𝜕𝑥
𝑚

)

2

+

𝑛−1

∑

𝑚=1

𝜕𝛼
𝑛

𝜕𝑥
𝑚

(𝑓
𝑚
(𝑋
𝑚
) + 𝑥
𝑚+1
) .

(18)

Now, the derivative of the storage function is

𝑉
𝑛
≤ −

𝑛

∑

𝑖=1

𝐶
𝑖
𝑧
2

𝑖
+

𝛾
2

2

𝑛

∑

𝑗=1

𝜔
2

𝑗
−

𝑧
2

1

2

. (19)

From system (8), it is known that the uncertain distur-
bance vector 𝜔 = [𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇 and the output 𝑦 = 𝑥

1
=

𝑧
1
. So, we have

𝑉
𝑛
≤ −

𝑛

∑

𝑖=1

𝐶
𝑖
𝑧
2

𝑖
+

𝛾
2

2

‖𝜔‖
2

2
−

1

2





𝑦





2

2
≤

1

2

(𝛾
2

‖𝜔‖
2

2
−




𝑦





2

2
) .

(20)

Based on dissipation theory, the robust controller (18)
makes the closed-loop system dissipative with the uncertain
disturbance, and the supply rate 𝑠(𝜔, 𝑦) = 𝛾2‖𝜔‖2

2
− ‖𝑦‖

2

2
.

Furthermore, the finite-gain 𝐿
2
stability of the closed-loop

system is concluded in the following theorem.
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Theorem 7. Consider the strict-feedback system with distur-
bance (8). There exists the smooth robust controller (18), such
that the closed-loop system is finite-gain 𝐿

2
stable and the

𝐿
2
gain is no more than 𝛾. Moreover, when the disturbance

input 𝜔 = [𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇

= 0, the closed-loop system is
asymptotically stable.

Proof. From (20), we have 𝑉 = 𝑉
𝑛
≤ (1/2)(𝛾

2

‖𝜔‖
2

2
− ‖𝑦‖

2

2
).

Integrating it yields the following inequality:

𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥 (0)) ≤

1

2

∫

𝜏

0

(𝛾
2

‖𝜔‖
2

2
−




𝑦





2

2
) 𝑑𝑡. (21)

Due to 𝑉(𝑥) ≥ 0, we obtain

∫

𝜏

0





𝑦





2

2
𝑑𝑡 ≤ 𝛾

2

∫

𝜏

0

‖𝜔‖
2

2
𝑑𝑡 + 2𝑉 (𝑥 (0)) . (22)

Taking the square roots and using the inequality
√𝑎
2
+ 𝑏
2
≤ 𝑎 + 𝑏 for nonnegative numbers 𝑎 and 𝑏, one

obtains





𝑦
𝜏




𝐿2
≤ 𝛾




𝜔
𝜏




𝐿2
+ √2𝑉 (𝑥 (0)). (23)

Therefore, based on Definition 4, It is known that the
system is finite-gain 𝐿

2
stable and the gain from disturbance

input to system output is no more than 𝛾.
Moreover, when 𝜔 = 0, from (20) we have

𝑉 = 𝑉
𝑛
≤

𝛾
2

2

‖𝜔‖
2

−

1

2





𝑦





2

≤ −

1

2





𝑦





2

≤ 0, (24)

and the storage function𝑉 = (1/2)∑𝑛
𝑖=1
𝑧
2

𝑖
is positive definite.

According to the invariance principle [1], we need to find 𝑆 =
{𝑋
𝑛
∈ R𝑛 | 𝑉 = 0}. Note that

𝑉 = 0 ⇒ 𝑦 = 0 ⇒ 𝑥
1
= 0. (25)

Hence, 𝑆 = {𝑋
𝑛
∈ R𝑛 | 𝑥

1
= 0}. Let 𝑋

𝑛
(𝑡) be a solution

that belongs identically to 𝑆. From the system (8), we can
deduce that

𝑥
1
≡ 0 ⇒ ̇𝑥

1
≡ 0 ⇒ 𝑥

2
≡ 0 ⇒ ̇𝑥

2
≡ 0 ⇒ ⋅ ⋅ ⋅ ⇒ 𝑥

𝑛
≡ 0.

(26)

Therefore, the only solution that can stay identically in 𝑆
is the trivial solution𝑋

𝑛
(𝑡) ≡ 0. Thus, the closed-loop system

is asymptotically stable in the case of 𝜔 = 0.

Remark 8. About the proposed method, there are the follow-
ing opinions.

(1) This method integrates the idea of dissipation prop-
erty into the recursive design. In the frame of dis-
sipation theory, by using the feedback domination
technology, the unknown disturbance is decoupled
from the known state and gathered together to satisfy
the dissipation inequality, which leads to the result of
disturbance rejection and finite-gain 𝐿

2
stability.

(2) In the previous research of lower-triangular system
(1), some assumption is needed for the uncertain dis-
turbance, such as boundary condition and functional
constraint. In this paper, the assumption is relaxed to
be bounded, which can ensure that the closed-loop
system is finite-gain 𝐿

2
stable. On the other hand,

just for there is no constraint about the uncertain
disturbance, the result is only finite-gain 𝐿

2
stable.

(3) It is interesting to note that the external disturbance
𝜔
𝑖
can be generalized to more general uncertainties

Δ
𝑖
(𝑋
𝑖
, 𝑡), which satisfies the condition |Δ

𝑖
(𝑋
𝑖
, 𝑡)| ≤

𝜔
𝑖
(𝑡)𝜙
𝑖
(𝑋
𝑖
), with 𝜙

𝑖
(𝑋
𝑖
) being a known smooth func-

tion and 𝜔
𝑖
(𝑡) being the unknown bound. The pro-

posed method is still applicable for the more general
case.

4. Robust Controller Design of
Lower-Triangular Systems

The robust control law of lower-triangular systems (1) is
designed in this section. Similarly, for 𝑖 = 1, 2, . . . , 𝑛, the
design parameter 𝐶

𝑖
> 0.

Step 1. Let 𝑧
1
= 𝑥
1
. Due to Assumption 1, the storage func-

tion is constructed as 𝑉
1
= 𝑧
𝑝1−𝑝1+2

1
/(𝑝
1
−𝑝
1
+2) = 𝑧

2

1
/2, and

its derivative is

𝑉
1
= 𝑧
1
̇𝑧
1
= 𝑧
1
(𝑓
1
(𝑥
1
) + 𝑥
𝑝1

2
) + 𝑧
1
𝜔
1
. (27)

Similar to the design of strict-feedback systems, one
obtains:

𝑉
1
≤ 𝑧
1
[𝑥
𝑝1

2
+ 𝑓
1
(𝑥
1
) + (

1

2

+

𝑛

2𝛾
2
)𝑧
1
] +

𝛾
2

2𝑛

𝜔
2

1
−

𝑧
2

1

2

.

(28)

Owing to (7), for any positive real number𝜎 > 0, let 𝑏 = 𝜎,
𝑎 = |𝑧

1
[𝑓
1
+ ((1/2) + (𝑛/2𝛾

2

))𝑧
1
]|, and𝑚 = 𝑝

1
+ 1. We have










𝑧
1
[𝑓
1
+ (

1

2

+

𝑛

2𝛾
2
)𝑧
1
]










≤ 𝜎 + 𝑧
𝑝1+1

1
𝜌
1
(𝑧
1
) , (29)

where 𝜌
1
(𝑧
1
) = (1/(𝑝

1
+ 1))[𝑝

1
/(𝑝
1
+ 1)𝜎]

𝑝1
(𝑓
1
+ 𝑧
1
/2 +

𝑛𝑧
1
/2𝛾
2

)

𝑝1+1

≥ 0.
Substituting (29) into (28) yields

𝑉
1
≤ 𝑧
1
𝑥
𝑝1

2
+ 𝑧
𝑝1+1

1
𝜌
1
(𝑧
1
) +

𝛾
2

2𝑛

𝜔
2

1
−

𝑧
2

1

2

+ 𝜎. (30)

Paying attention to Assumption 1, we design the smooth
virtual control as

𝛼
2
= −𝑧
1
(𝐶
1
+ 1 + 𝜌

1
(𝑧
1
))
1/𝑝1
. (31)

Taking the controller (31) into (30) results in

𝑉
1
≤ − (𝐶

1
+ 1) 𝑧

𝑝1+1

1
+ 𝑧
1
(𝑥
𝑝1

2
− 𝛼
𝑝1

2
) +

𝛾
2

2𝑛

𝜔
2

1
−

𝑧
2

1

2

+ 𝜎.

(32)



Mathematical Problems in Engineering 5

Step k. Through 𝑘 − 1 steps, a group of virtual controllers
are 𝑧
1
= 𝑥
1
, 𝑧
2
= 𝑥
2
− 𝛼
2
, . . . , 𝑧

𝑘−1
= 𝑥
𝑘−1
− 𝛼
𝑘−1

, and the
storage function is𝑉

𝑘−1
= ∑
𝑘−1

𝑖=1
(𝑧
𝑝1−𝑝𝑖+2

𝑖
/(𝑝
1
−𝑝
𝑖
+2)), whose

derivative is

𝑉
𝑘−1
≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝1+1

𝑖
− 𝑧
𝑝1+1

𝑘−1
+ 𝑧
𝑝1−𝑝𝑘−1+1

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝛼
𝑝𝑘−1

𝑘
)

+

𝛾
2

2

𝑘−1

∑

𝑗=1

𝑘 − 𝑗

𝑛 + 1 − 𝑗

𝜔
2

𝑗
−

𝑧
2

1

2

+ (𝑘 − 1) 𝜎.

(33)

Let 𝑧
𝑘
= 𝑥
𝑘
− 𝛼
𝑘
, and consider the storage function 𝑉

𝑘
=

𝑉
𝑘−1
+ 𝑧
𝑝1−𝑝𝑘+2

𝑘
/(𝑝
1
− 𝑝
𝑘
+ 2); its derivative is obtained as

𝑉
𝑘
= 𝑉
𝑘−1
+ 𝑧
𝑝1−𝑝𝑘+1

𝑘
̇𝑧
𝑘

≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝1+1

𝑖
− 𝑧
𝑝1+1

𝑘−1
+ 𝑧
𝑝1−𝑝𝑘−1+1

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝛼
𝑝𝑘−1

𝑘
)

+

𝛾
2

2

𝑘

∑

𝑗=1

𝑘 + 1 − 𝑗

𝑛 + 1 − 𝑗

𝜔
2

𝑗
−

𝑧
2

1

2

+ (𝑘 − 1) 𝜎

+ 𝑧
𝑝1−𝑝𝑘+1

𝑘
[𝑥
𝑝𝑘

𝑘+1
+ 𝑓
𝑘
(𝑋
𝑘
) +

𝑛 + 1 − 𝑘

2𝛾
2
𝑧
𝑝1−𝑝𝑘+1

𝑘

+

𝑧
𝑝1−𝑝𝑘+1

𝑘

2𝛾
2

𝑘−1

∑

𝑚=1

(𝑛 + 1 − 𝑚)(

𝜕𝛼
𝑘

𝜕𝑥
𝑚

)

2

−

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

(𝑓
𝑚
+ 𝑥
𝑝𝑚

𝑚+1
)] .

(34)

Due to Young’s inequality, there exists the smooth func-
tion 𝜌

𝑘
(𝑧
1
, . . . , 𝑧

𝑘
), such that






𝑧
𝑝1−𝑝𝑘−1+1

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝛼
𝑝𝑘−1

𝑘
)






≤ 𝑧
𝑝1+1

𝑘−1
+ 𝑧
𝑝1+1

𝑘
𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) ,

(35)

where

𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
)

=

𝑝
𝑘−1

𝑝
1
+ 1

(2
𝑝𝑘−1−2

𝑝
𝑘−1
)

(𝑝1+1)/𝑝𝑘−1

× [

2 (𝑝
1
− 𝑝
𝑘−1
+ 1)

𝑝
1
+ 1

]

(𝑝1−𝑝𝑘−1+1)/𝑝𝑘−1

+

1

𝑝
1
+ 1

[ (1 + 2
𝑝𝑘−1−2

) 𝑝
𝑘−1

× (𝐶
𝑘−1
+ 1 + 𝜌

𝑘−1
)
(𝑝𝑘−1−1)/𝑝𝑘−1

]

𝑝1+1

× (

2𝑝
1

𝑝
1
+ 1

)

𝑝1

,

(36)

and the construction of 𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) can refer to [19].

Then, we define a smooth function as follows:

𝐷
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) = 𝑓
𝑘
(𝑋
𝑘
) +

𝑛 + 1 − 𝑘

2𝛾
2
𝑧
𝑝1−𝑝𝑘+1

𝑘

+

𝑧
𝑝1−𝑝𝑘+1

𝑘

2𝛾
2

𝑘−1

∑

𝑚=1

(𝑛 + 1 − 𝑚)(

𝜕𝛼
𝑘

𝜕𝑥
𝑚

)

2

−

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

(𝑓
𝑚
+ 𝑥
𝑝𝑚

𝑚+1
) .

(37)

Similar to Step 1, we obtain





𝑧
𝑝1−𝑝𝑘+1

𝑘
𝐷
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
)






≤ 𝜎 + 𝑧

𝑝1+1

𝑘
𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) . (38)

Taking (35) and (38) into (34) yields

𝑉
𝑘
≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝1+1

𝑖
+ 𝑧
𝑝1−𝑝𝑘+1

𝑘
𝑥
𝑝𝑘

𝑘+1
+ 𝑧
𝑝1+1

𝑘
(𝜌
𝑘
(⋅) + 𝜌

𝑘
(⋅))

+

𝛾
2

2

𝑘

∑

𝑗=1

𝑘 + 1 − 𝑗

𝑛 + 1 − 𝑗

𝜔
2

𝑗
−

𝑧
2

1

2

+ 𝑘𝜎.

(39)

Design the following virtual control law

𝛼
𝑘+1
= −𝑧
𝑘
(𝐶
𝑘
+ 1 + 𝜌

𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) + 𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
))
1/𝑝𝑘
,

(40)

which renders

𝑉
𝑘
≤ −

𝑘

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝1+1

𝑖
− 𝑧
𝑝1+1

𝑘
+ 𝑧
𝑝1−𝑝𝑘+1

𝑘
(𝑥
𝑝𝑘

𝑘+1
− 𝛼
𝑝𝑘

𝑘+1
)

+

𝛾
2

2

𝑘

∑

𝑗=1

𝑘 + 1 − 𝑗

𝑛 + 1 − 𝑗

𝜔
2

𝑗
−

𝑧
2

1

2

+ 𝑘𝜎.

(41)

Step n. In the end, for the storage function, 𝑉 = 𝑉
𝑛
=

∑
𝑛

𝑖=1
(𝑧
𝑝1−𝑝𝑖+2

𝑖
/(𝑝
1
− 𝑝
𝑖
+ 2)), where 𝑧

𝑛
= 𝑥
𝑛
− 𝛼
𝑛
. There exists

the smooth controller

𝑢 (𝑧
1
, . . . , 𝑧

𝑛
) = −𝑧

𝑛
(𝐶
𝑛
+ 𝜌
𝑛
(𝑧
1
, . . . , 𝑧

𝑛
)

+ 𝜌
𝑛
(𝑧
1
, . . . , 𝑧

𝑛
))
1/𝑝𝑛
,

(42)

such that

𝑉
𝑛
≤ −

𝑛

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝1+1

𝑖
+

𝛾
2

2

𝑛

∑

𝑗=1

𝜔
2

𝑗
−

𝑧
2

1

2

+ 𝑛𝜎. (43)

Similar to Section 3, we finish this sectionwith the follow-
ing theorem.

Theorem9. Consider the lower-triangular systemwith distur-
bance (1). There exists the smooth robust controller (42), such
that the closed-loop system is finite-gain 𝐿

2
stable and the 𝐿

2

gain is no more than 𝛾.

Proof. The proof of this theorem is similar to Theorem 7,
which is omitted.
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5. Example and Application

Example 1. Consider the stabilization problem of a lower-
triangular system as follows:

̇𝑥
1
= 𝑥
2

1
+ 𝑥
3

2
+ 𝜔
1

̇𝑥
2
= 𝑥
1
𝑥
2

2
+ 𝑥
2
𝑒
𝑥2
+ 𝑢
3

+ 𝜔
2

𝑦 = 𝑥
1
,

(44)

where 𝜔
1
and 𝜔

2
are bounded unknown disturbance.

Firstly, let 𝑧
1
= 𝑥
1
, and construct the storage func-

tion 𝑉
1
= 𝑧
2

1
/2. According to the design steps, the virtual

control is obtained as

𝛼
2
= −𝑧
1
(𝐶
1
+ 1 + 𝜌

1
(𝑧
1
))
1/3

, (45)

where 𝜌
1
(𝑧
1
) = (27/256𝜎

3

)(𝑥
2

1
+ 𝑥
1
/2 + 𝑥

1
/𝛾
2

)

4, and the
positive parameters 𝜎 and 𝛾 can be adjusted according to the
requirements.

Secondly, let 𝑧
2
= 𝑥
2
− 𝛼
2
and 𝑉

2
= 𝑉
1
+ 𝑧
2

2
/2. Based on

the design process, the robust controller is taken as

𝑢 = −𝑧
2
(𝐶
2
+ 𝜌
2
(𝑧
1
, 𝑧
2
) + 𝜌
2
(𝑧
1
, 𝑧
2
))
1/3

, (46)

where

𝜌
2
(𝑧
1
, 𝑧
2
) =

1

4

(

3

4𝜎

)

3

[𝑥
1
𝑥
2

2
+ 𝑥
2
𝑒
𝑥2
+

𝑧
2

𝛾
2
(

𝜕𝛼
2

𝜕𝑥
1

)

2

−

𝜕𝛼
2

𝜕𝑥
1

(𝑥
2

1
+ 𝑥
2
) ]

4

𝜌
2
(𝑧
1
, 𝑧
2
) =

9

2

3
√3 +

27

32

[9(𝐶
1
+ 1 + 𝜌

1
(𝑧
1
))
2/3

]

4

.

(47)

According toTheorem 9, it is known that the solutions of
the system are globally bounded and the closed-loop system
is finite-gain 𝐿

2
stable.

In the simulation, the system parameters are given as
follows: 𝐶

1
= 1, 𝐶

2
= 1, 𝜎 = 2, and 𝛾 = 2. When the

disturbances are 𝜔
1
= 5, 𝜔

2
= 4 sin 𝑡, the state curves are

shown as Figure 1, and the control law is in Figure 2. From
them, we know that the closed-loop system is finite-gain 𝐿

2

stable and the gain is no more than 𝛾 = 2.

Example 2. Consider one machine connected to an infinite
bus system which is shown in Figure 3. The dynamic model
of synchronous generator can be described as follows:

̇
𝛿 = 𝜔 − 𝜔

0

̇𝜔 = −

𝐷

𝐻

(𝜔 − 𝜔
0
) +

𝜔
0

𝐻

(𝑃
𝑚
− 𝑃
𝑒
) + 𝜔
1

̇𝑃
𝑚
= −

𝑃
𝑚

𝑇
𝐻∑

+

𝑃
𝑚0

𝑇
𝐻∑

+

𝐶

𝑇
𝐻∑

𝜇 + 𝜔
2
,

(48)

where

𝑃
𝑒
=

𝐸


𝑞
𝑉
𝑠

𝑋


𝑑∑

sin 𝛿 +
𝑉
2

𝑠

2

(

𝑋


𝑑∑
− 𝑋
𝑞∑

𝑋


𝑑∑
𝑋
𝑞∑

) sin 2𝛿, (49)
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Figure 1: State response curves.
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Figure 2: Curve of control law.

𝛿 is the power angle; 𝛿
0
is the operating point of power angle;

𝜔 is the relative speed; 𝜔
0
is the synchronous machine speed;

𝑃
𝑚
is the mechanical input power; 𝑃

𝑚0
is the operating point

of mechanical input power; 𝑃
𝑒
is the electromagnetic power;

𝜇 is the steam-valving controller; the uncertain disturbances
𝜔
1
and 𝜔

2
are bounded.

Let (𝛿
0
, 𝜔
0
, 𝑃
𝑚0
) be the operating point, and define state

variables by 𝑥
1
= 𝛿 − 𝛿

0
, 𝑥
2
= 𝜔 − 𝜔

0
, and 𝑥

3
= 𝑃
𝑚
− 𝑃
𝑚0
;

then, system (48) and (49) is represented by

̇𝑥
1
= 𝑥
2

̇𝑥
2
= −

𝐷

𝐻

𝑥
2
−

𝜔
0

𝐻

Δ𝑃
𝑒
+

𝜔
0

𝐻

𝑥
3
+ 𝜔
1

̇𝑥
3
= −

1

𝑇
𝐻∑

𝑥
3
+

𝐶

𝑇
𝐻∑

𝜇 + 𝜔
2
,

(50)
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Figure 3: One-machine to infinite-bus circuit.

where

Δ𝑃
𝑒
=

𝐸


𝑞
𝑉
𝑠

𝑋


𝑑∑

[sin (𝛿
0
+ 𝑥
1
) − sin 𝛿

0
]

+

𝑉
2

𝑠

2

(

𝑋


𝑑∑
− 𝑋
𝑞∑

𝑋


𝑑∑
𝑋
𝑞∑

) [sin 2 (𝛿
0
+ 𝑥
1
) − sin 2𝛿

0
] .

(51)

From the model (50) and (51), we know that this is a
strict-feedback system. According to the design process in
Section 3, the robust controller is obtained as follows:

𝜇 = 𝑇
𝐻∑
{−𝐶
3
𝑧
3
+

𝑥
3

𝑇
𝐻∑

− 𝑧
2
−

𝑧
2

2𝛾
2

× [1 + 3(

𝜕𝛼
3

𝜕𝑥
1

)

2

+ 2(

𝜕𝛼
3

𝜕𝑥
2

)

2

]

+

𝜕𝛼
3

𝜕𝑥
1

𝑥
2
+

𝜕𝛼
3

𝜕𝑥
2

(−

𝐷

𝐻

𝑥
2
−

𝜔
0

𝐻

Δ𝑃
𝑒
+ 𝑥
3
)} ,

(52)

where 𝑧
1
= 𝑥
1
, 𝑧
2
= 𝑥
2
− 𝛼
2
, 𝑧
3
= 𝑥
3
− 𝛼
3
, 𝛼
2
= −(𝐶

1
+ 1/2 +

3/2𝛾
2

)𝑧
1
,

𝛼
3
=

𝐻

𝜔
0

[−𝐶
2
𝑧
2
+

𝐷

𝐻

𝑥
2
+

𝜔
0

𝐻

Δ𝑃
𝑒
− 𝑧
1
−

3𝑧
2

2𝛾
2
(

𝜕𝛼
2

𝜕𝑥
1

)

2

−

𝑧
2

𝛾
2
+

𝜕𝛼
2

𝜕𝑥
1

𝑥
2
] .

(53)

In order to verify the viability and effectiveness of the
control law (52), the computer simulation is performed with
the following parameters: 𝐷 = 8, 𝐻 = 2, 𝐶 = 1, 𝑉

𝑠
= 1,

𝑇
𝐻∑
= 0.35, and 𝑃

𝑚0
= 0.87455 (see Figures 4, 5, 6, and 7).

In the presence of external disturbances 𝜔
1
= 10 and

𝜔
2
= 15 cos 𝑡, the state responses and control law are shown

in Figures 4 and 5, respectively. In the absence of disturbance,
the simulation results are given in Figures 6 and 7. It is
obvious that the proposed controller is effective for bounded
disturbance and the closed-loop system can achieve finite-
gain 𝐿

2
stable. And, with the reduction of disturbance, the

𝐿
2
gain decreases. At last, when the disturbance vanishes,

the closed-loop system is asymptotically stable as shown in
Figure 6.

Moreover, in order to demonstrate the superiority of
the proposed controller, we compare it with another robust
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Figure 4: State curves with disturbances.

controller designed based on Hamiltonian function method
[20].

Firstly, Hamilton energy function is constructed as

𝐻 =

𝐸


𝑞
𝑉
𝑠

𝑋


𝑑∑

(1 − cos 𝛿) +
𝑉
2

𝑠

2

(

𝑋
𝑞∑
− 𝑋


𝑑∑

𝑋


𝑑∑
𝑋
𝑞∑

) cos2𝛿

+ 𝐻

(Δ𝜔)
2

2𝜔
0

+

1

2

(𝑃
𝑚
− 𝑃
𝑚0
)
2

+ 𝑃
𝑚0
(𝜋 − 𝛿) .

(54)

Then, the model (48) in Hamilton form is rewritten into

[

[

̇
𝛿

Δ ̇𝜔

̇𝑃
𝑚

]

]

=

[

[

[

[

[

[

[

[

[

0

𝜔
0

𝐻

0

−

𝜔
0

𝐻

−

𝐷𝜔
0

𝐻
2

𝜔
0

𝐻

0 0 −

1

𝑇
𝐻∑

]

]

]

]

]

]

]

]

]

∇𝐻 +

[

[

[

[

0

0

𝐶

𝑇
𝐻∑

]

]

]

]

𝜇+
[

[

0

𝜔
1

𝜔
2

]

]

.

(55)

Based on Hamiltonian function method, the robust con-
troller is designed as

𝜇 = 𝜇
0
− Γ𝐺
𝑇

∇𝐻 = −

𝑇
𝐻∑

𝐶

Δ𝜔 − Γ

𝐶

𝑇
𝐻∑

(𝑃
𝑚
− 𝑃
𝑚0
) , (56)

where 𝜇
0
= −(𝑇

𝐻∑
/𝐶)Δ𝜔 is pre-feedback control and Γ ∈ R

is design parameter.
Next, twomethods are compared by the simulations. Fig-

ures 8, 10, and 12 are the controlled results with Hamiltonian
function method; Figures 9, 11, and 13 are the controlled
results with dissipation theory method.

In the absence of disturbance, from Figures 8 and 9, it
is known that both of them are effective for the generator
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Figure 5: Control law with disturbances.
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Figure 6: State curves without disturbances.
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Figure 7: Control law without disturbances.
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Figure 8: Response curves of Hamiltonian function method with-
out disturbances.
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Figure 9: Response curves of dissipation theory method without
disturbances.

system. From the dynamic process, it is seen that overshoot-
ing of Hamiltonian function method is less than that of
dissipation theory method, and settling time of Hamiltonian
function method is longer than that of dissipation. Then, in
the presence of small disturbances with 𝜔

1
= 1, 𝜔

2
= 1,

the simulation results are shown in Figures 10 and 11. It is
shown that both of closed-loop systems are stable and the
robust controller is effective. Next, with the enlargement of
disturbances (𝜔

1
= 10, 𝜔

2
= 10), the response curves are

shown in Figures 12 and 13, where the controlled system
of Hamiltonian function method is unstable and the power
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Figure 10: Response curves of Hamiltonian function method with
small disturbances.

0 5 10 15 20 25 30 35 40
Time (s)

−2

−1

0

1

2

3

4

5

6

7

8

9

D
iss

ip
at

io
n 

th
eo

ry
 m

et
ho

d

Power angle
Relative speed difference
Mechanical input power

Figure 11: Response curves of dissipation theorymethod with small
disturbances.

angle is out of control, while that of dissipation theory
method is still stable, and the closed-loop system is 𝐿

2
stable.

In summary, based on Hamiltonian function method,
the design process is concise, and the gotten controller (56)
is simple, which is effective for the generator system in
the presence of no disturbance or small disturbance. By
using dissipation theory method, the construction of robust
controller is relatively complex. However, it can guarantee
that the closed-loop system is 𝐿

2
stable in all cases involving

no disturbance, small disturbance, or large disturbance.
Therefore, the proposed robust controller is more effective
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Figure 12: Response curves of Hamiltonian function method with
large disturbances.
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Figure 13: Response curves of dissipation theory method with large
disturbances.

for the systemwith uncertain disturbance, especially for large
disturbance.

6. Conclusions

In lower-triangular nonlinear systems, strict-feedback sys-
tems and high-order lower-triangular systems are two classes
of main mathematical models. In this paper, the dissipation-
based nonlinear controller is proposed to solve the robust
control problem of these two systems. Uncertain disturbance
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is dominated by the supply rate, and the stability analysis is
based on the storage function. The design method integrates
the energy supply, energy storage, and energy dissipation
into the recursive construction of robust controller. The
simulations illustrate that the gotten controller is effective
and has the advantage in regulating large disturbance. In the
future research, the dissipation-based idea can be expanded
to the robust controller design for more nonlinear systems.
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This paper deals with the robust stabilizability and 𝐿
2
disturbance attenuation for a class of time-delay Hamiltonian control systems

with uncertainties and external disturbances. Firstly, the robust stability of the given systems is studied, and delay-dependent
criteria are established based on the dissipative structural properties of the Hamiltonian systems and the Lyapunov-Krasovskii
(L-K) functional approach. Secondly, the problem of 𝐿

2
disturbance attenuation is considered for the Hamiltonian systems subject

to external disturbances. An adaptive control law is designed corresponding to the time-varying delay pattern involved in the
systems. It is shown that the closed-loop systems under the feedback control law can guarantee the 𝛾-dissipative inequalities be
satisfied. Finally, two numerical examples are provided to illustrate the theoretical developments.

1. Introduction

Systems with unknown delayed states are often encountered
in practice, such as communication systems, engineering
systems, and process control systems. For this reason, robust
stability analysis for uncertain time-delay control systems
has attracted a considerable amount of interests in recent
years [1–9].The Lyapunov-Krasovskii (L-K)method is always
employed, and the results are often obtained in the form
of linear matrix inequalities (LMIs). However, robust stabi-
lization of nonlinear systems with time delays has been a
challenging problem. As is well known, the control design
of nonlinear systems is a difficult process. The existence of
time delay in nonlinear systems further degrades the control
performance and sometimes makes the closed-loop stabi-
lization difficult [10–12]. More recently, Mahmoud and El
Ferik obtained some new results on dissipative analysis and
state feedback synthesis for a class of nonlinear systems with
time-varying delays and convex polytypic uncertainties [12].
This class consists of linear time-delay systems subject to
nonlinear cone-bounded perturbations. Hu et al. in [10]
integrated the sliding mode control method with the robust

𝐻
∞

technique and developed a discrete-time sliding mode
controller for a class of time-delay uncertain systems with
stochastic nonlinearities. The nonlinearities are described by
statistical means.

On the other hand, for affine nonlinear systems with dis-
turbances, the 𝐿

2
-gain analysis and the 𝐿

2
disturbance

attenuation are always important issues [13]. Almost all these
studies deal with the existence of solutions to some partial
differential inequality, which reflects the dissipative behavior
of the system under consideration for a certain supply rate
which is called passivity-based control design method. This
kind of method is used to achieve a 𝛾-dissipative inequality
which not only guarantees asymptotic stability but also
renders the 𝐿

2
-gain from disturbance to the penalty signal

less than or equal to a given level 𝛾 > 0. The key to solve
the problem of 𝐿

2
disturbance attenuation is to find a proper

storage function that ensures the 𝛾-dissipative inequality
holding.

As an important class of nonlinear systems, port-con-
trolled Hamiltonian systems (PCH) proposed by [14, 15]
have attracted increasing attentions in the field of nonlinear
control theory [16–18]. The Hamilton function in a PCH



2 Mathematical Problems in Engineering

system is considered as the sum of potential energy (exclud-
ing gravitational potential energy) and kinetic energy in
physical systems, and it can be used as a good candidate
of Lyapunov functions for many physical systems. Due to
this and its nice structure with clear physical meaning, the
PCH system has drawn a good deal of attention in practical
control designs [19–23]. In [21], with a proper penalty signal,
the 𝛾-dissipativity was achieved by making a sufficiently
large damping injection in the design stage. Wang et al.
in [23] proposed an energy-based adaptive 𝐿

2
disturbance

attenuation control scheme for the power systemswith super-
conducting magnetic energy storage (SMES) units. Besides,
Hamiltonian systems with time delay also have been studied
[24–27]. Reference [25] addresses the stabilization problemof
a class ofHamiltonian systemswith state time delay and input
saturation. The problem of 𝐿

2
-disturbance attenuation for

time-delay port-controlled Hamiltonian systems is studied
in [26]. The case that there are time-invariant uncertainties
belonging to some convex bounded polytypic domains is also
considered in [26], and an 𝐿

2
disturbance attenuation control

law is proposed. In practice, dynamic uncertainties often arise
from many different control engineering applications. The
inevitable uncertainties may enter a nonlinear system in a
much more complex way. In addition to polytypic uncer-
tainties, systems may encounter modeling error, parameter
perturbations, and external disturbances. However, to the
best of our knowledge, the analysis and synthesis for time-
delay Hamiltonian systems with parametric perturbations
have not been discussed yet. It is well worth pointing out that
with the help of Hamiltonian realization [28, 29], the control
problem of a large class of time-delay nonlinear systems
with uncertainties can be solved via the Hamiltonian system
framework. Thus, study of time-delay Hamiltonian control
systems with uncertainties and disturbances is a meaningful
topic.

Motivated by the above observations, in this paper we
study a class of time-delay Hamiltonian systems model with
uncertainties and external disturbances. We derive sufficient
condition for which the uncertain time-delay Hamiltonian
system along with the proposed feedback controller is
robustly stable for all admissible uncertainties.The condition
is given in terms of linear matrix inequalities. Furthermore,
the problem of 𝐿

2
disturbance attenuation is examined using

the parametric adaptive methodology for delay-dependent
case. The 𝐿

2
feedback adaptive control law can guaran-

tee that the closed-loop time-delay Hamiltonian system is
asymptotically stable and the 𝐿

2
performance is achieved.

The effectiveness of the proposed methods in this paper is
illustrated by numerical examples.

The paper is organized as follows. Section 2 presents
the problem formulation and some preliminaries. The main
results are proposed in Section 3. Section 4 illustrates the
obtained results by several numerical examples, which is fol-
lowed by the conclusion in Section 5.

Notations. R𝑛 denotes the 𝑛-dimension Euclidean space, and
R𝑛×𝑚 is the real matrices with dimension 𝑛 × 𝑚; ‖ ⋅ ‖ stands
for either the Euclidean vector norm or the inducedmatrix 2-
norm; ‖𝑥‖C = max

𝑡−ℎ⩽𝜑⩽𝑡
‖𝑥(𝜑)‖, where C = C([−ℎ, 0],R𝑛)

denotes the Banach space of continuous functions mapping
the interval [−ℎ, 0] into R𝑛; 𝐿𝑛

2
[0,∞) denotes the set of

all measurable functions 𝑥 : [0,∞) → R𝑛 that satisfy
∫

∞

0

|𝑥(𝑡)|
2

𝑑𝑡 < ∞. C𝑖 denotes the set of all functions with
continuous 𝑖th partial derivatives. The notation𝑋 ⩾ 𝑌 (resp.,
𝑋 > 𝑌) where 𝑋 and 𝑌 are symmetric matrices means
that the matrix 𝑋 − 𝑌 is positive semidefinite (resp., positive
definite); 𝜆max(𝐴) and 𝜆min(𝐴) denote the maximum and the
minimum of eigenvalue of a real symmetric matrix 𝐴. The
notation ∗ represents the elements below the main diagonal
of a symmetric matrix; 𝐴T denotes the transposed matrix of
𝐴; (⋅) and [⋅] denote the derivative of the variable inside the
brackets. What is more, for the sake of simplicity, throughout
the paper, we denote 𝜕𝐻/𝜕𝑥 by ∇𝐻.

2. Problem Statement and Preliminaries

Consider the following class of time-delay Hamiltonian sys-
tems with parametric uncertainties and external distur-
bances:

̇𝑥 (𝑡) = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥, 𝑝)

+ [𝐽
∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
) + 𝑔
1
𝑢 (𝑡) + 𝑔

2
𝜔 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑥
𝜏
:= 𝑥(𝑡 − 𝑑(𝑡)) ∈ C

stands for the delayed state; 𝑢 ∈ R𝑠 is the control input;
𝜔 ∈ 𝐿

𝑚

2
[0,∞) is the disturbance input; 𝐻(𝑥) : R𝑛 → R

is the Hamilton function which satisfies 𝐻(𝑥) ⩾ 0, 𝐻(0) =
0; 𝑝 is an unknown constant vector and denotes the distur-
bance parameter; 𝐽(𝑥, 𝑝), 𝐽∗(𝑥

𝜏
) ∈ R𝑛×𝑛 are skew-symmetric

structure matrices; 𝑅(𝑥, 𝑝), 𝑅∗(𝑥
𝜏
) ∈ R𝑛×𝑛 are positive semi-

definite symmetric matrices; 𝑔
1
and 𝑔

2
are gain matrices of

appropriate dimensions; 𝑔
1
𝑔
T
1
is nonsingular.

The delay 𝑑(𝑡) is a time-varying continuous function
which satisfies

0 ⩽ 𝑑 (𝑡) ⩽ ℎ,

̇
𝑑 (𝑡) ⩽ 𝜇 < 1,

(2)

where the bounds ℎ and 𝜇 are known positive scalars.
The initial condition is 𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−ℎ, 0].
Throughout the paper, we suppose that the following

assumptions are satisfied.

Assumption 1. Thematrices 𝑅(𝑥, 𝑝) and 𝑅∗(𝑥
𝜏
) satisfy

𝑅 (𝑥, 𝑝) ⩾ 𝑅, 𝑅
∗

(𝑥
𝜏
) ⩾ 𝑅

∗

, (3)

where 𝑅, 𝑅∗ ⩾ 0 are known constant matrices.

Assumption 1 means that 𝑅(𝑥, 𝑝) and 𝑅
∗

(𝑥
𝜏
) are

unknown, but they are bounded by known nonnegative
constant matrices. To illustrate that this assumption is
reasonable, an example is given below.
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Example 2. Consider two functional matrices

𝑅
1
(𝑥, 𝑝) = (

(1 + 𝑝
2

𝑥
2

1
)

2

+ 𝑥
2

2
𝑥
2

𝑥
2

2

) ,

𝑅
2
(𝑥
𝜏
) = (

2 + 𝑥
2

1
(𝑡 − 𝜏) 0 0

0 sin2 (𝑥
2
(𝑡 − 𝜏)) 0

0 0 0

) ,

(4)

where 𝑝 is unknown constant and 𝜏 is the time delay.

It is easy to find two corresponding matrices

𝑅 = (

1 0

0 1
) ,

𝑅

∗

= (

2 0 0

0 0 0

0 0 0

) ,

(5)

which satisfy 𝑅
1
(𝑥, 𝑝) ⩾ 𝑅 and 𝑅

2
(𝑥
𝜏
) ⩾ 𝑅

∗.

Assumption 3. The Hamilton function𝐻(𝑥) and its gradient
∇𝐻(𝑥) satisfy

(A1) 𝐻(𝑥) ∈ C2,
(A2) 𝜀

1
(‖𝑥‖) ⩽ 𝐻(𝑥) ⩽ 𝜀

2
(‖𝑥‖),

(A3) 𝜖
1
(‖𝑥‖) ⩽ ∇

T
𝐻(𝑥) ⋅ ∇𝐻(𝑥) ⩽ 𝜖

2
(‖𝑥‖),

(A4) 𝜋
1
(‖𝑥‖) ⩽ [(∇𝐻(𝑥))



]
T
⋅ [∇𝐻(𝑥)]



⩽ 𝜋
2
(‖𝑥‖),

where 𝜀
1
, 𝜀
2
, 𝜖
1
, 𝜖
2
, 𝜋
1
, 𝜋
2
all belong toK-class functions.

Remark 4. Assumption 3 not only guarantees the existence of
∇𝐻(𝑥) and [∇𝐻(𝑥)] but also guarantees that 𝐻(𝑥), ∇𝐻(𝑥),
and [∇𝐻(𝑥)] are bounded in terms of 𝑥. We shall note that
the assumption is not very conservative to Hamilton func-
tions and the majority of Hamilton functions in Hamiltonian
systems can easily satisfy these conditions.

Assumption 5. There exists a functionΦ(𝑥) such that

[𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] Δ
𝐻
(𝑥, 𝑝) = 𝑔

1
Φ (𝑥) 𝜃 (6)

holds for all 𝑥 ∈ R𝑛, where 𝜃 ∈ R𝑠 denotes an unknown
parametric vector, Δ

𝐻
(𝑥, 𝑝) = ∇𝐻(𝑥, 𝑝) − ∇𝐻(𝑥, 0).

In what follows, we shall address the problems of robust
stability and the disturbance attenuation of system (1). Specif-
ically, the objective of this paper can be summarized as
follows.

(i) Robust Stability Problem. In the absence of disturbances 𝜔,
develop LMI-based conditions, and find an adaptive control
law of the form

𝑢 = 𝛼 (𝑥,
̂
𝜃) ,

̇
̂
𝜃 = 𝜍 (𝑥) (7)

so that the closed-loop system under the control law can be
asymptotically stable.

(ii) 𝐿
2
Disturbance Attenuation Problem. Given a penalty

signal 𝑧 = 𝑞(𝑥) and a disturbance attenuation level 𝛾 > 0,
find an adaptive feedback control law

𝑢 = 𝛽 (𝑥,
̂
𝜃) ,

̇
̂
𝜃 = 𝜌 (𝑥) (8)

and a positive storage function 𝑉(𝑥, 𝑥
𝜏
,
̃
𝜃) such that the 𝛾-

dissipation inequality

𝑉(𝑥, 𝑥
𝜏
,
̃
𝜃) + 𝑄 (𝑥, 𝑥

𝜏
) ⩽

1

2

{𝛾
2

‖𝜔‖
2

− ‖𝑧‖
2

} ,

∀𝜔 ∈ 𝐿
𝑚

2
[0,∞)

(9)

holds along the closed-loop systems consisting of (1) and the
feedback law, where 𝑄(𝑥, 𝑥

𝜏
) is a nonnegative definite sym-

metric matrix.
We conclude this section by recalling an auxiliary result

to be used in this paper.

Lemma6 (see [30]). For givenmatrices𝑌 = 𝑌T,𝐷 and𝐸with
appropriate dimensions,

𝑌 + 𝐷𝐹 (𝑡) 𝐸 + 𝐸
T
𝐹
T
(𝑡) 𝐷

T
< 0 (10)

holds for all 𝐹(𝑡) satisfying 𝐹T
(𝑡)𝐹(𝑡) ⩽ 𝐼 if and only if there

exists 𝑐 > 0 such that

𝑌 + 𝑐
−1

𝐷𝐷
T
+ 𝑐𝐸

T
𝐸 < 0. (11)

3. Main Results

3.1. Robust Stabilization. In the absence of external distur-
bances, namely, 𝜔 = 0, and under Assumption 5, system (1)
can be transformed into

̇𝑥 = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ [𝐽
∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
) + 𝑔
1
Φ (𝑥) 𝜃 + 𝑔

1
𝑢.

(12)

In this subsection, we will put forward a robust stabi-
lization result for system (12). Delay-dependent criteria are
developed as follows.

Theorem 7. Consider system (12). Suppose that Assumptions 1
and 3 hold. If there exist matrices

0 < 𝑃
1
= 𝑃

T
1
, 0 < 𝑍

1
= 𝑍

T
1
, 0 < 𝑀

1
= 𝑀

T
1
,

0 ⩽ 𝑋 = 𝑋
T
= (

𝑋
11

𝑋
12

𝑋
13

𝑋
21

𝑋
22

𝑋
23

𝑋
31

𝑋
32

𝑋
33

),

(13)
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any appropriately dimensioned matrices 𝐸, 𝐹, 𝑇, 𝐵
1
, 𝐵
2
, and a

scalar 𝜀 > 0 such that the following conditions hold:

𝐽
∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
) = 𝐸Δ (𝑥

𝜏
) 𝐹 + 𝑇, (14)

Ξ
1
=
(

(

−𝑅 − 𝑅

∗ 𝐵
T
1

2

+ ℎ𝑋
12

𝐵
T
2

2

+ ℎ𝑋
13

∗ Φ
22

−

𝐵
T
2

2

+ ℎ𝑋
23

∗ ∗ −𝑀
1
+ ℎ𝑍
1
+ ℎ𝑋
33

)

)

< 0,

(15)

Θ =

(

(

(

(

(

𝑋
11
+ 𝜀
−1

𝐸𝐸
T
𝑋
12

𝑋
13

1

2

𝑇

∗ 𝑋
22

𝑋
23

1

2

𝐵
1

∗ ∗ 𝑋
33

1

2

𝐵
2

∗ ∗ ∗ 𝑍
1
+ 𝜀
−1

𝐹
T
𝐹

)

)

)

)

)

⩾ 0,

(16)

where

Δ
T
(𝑥
𝜏
) Δ (𝑥

𝜏
) ⩽ 𝐼,

Φ
22
= − (1 − 𝜇) 𝑃

1
−

𝐵
1

2

−

𝐵
T
1

2

+ ℎ𝑋
22
,

(17)

then the closed-loop systems under the feedback control law

𝑢 = − 𝑔
T
1
(𝑔
1
𝑔
T
1
)

−1

{ (𝑃
1
+ ℎ𝑋
11
) ∇𝐻 (𝑥) − Φ (𝑥)

̂
𝜃

+ [∇
T
𝐻(𝑥) ⋅ ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥)

× [(∇𝐻 (𝑥 (𝑡)))


]

T
𝑀
1
[∇𝐻 (𝑥 (𝑡))]



} ,

̇
̂
𝜃 = 𝐾

1
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥)

(18)

is asymptotically stable, where 𝐾
1
> 0 is an adaptive gain

matrix with appropriate dimension.

Proof. Substituting (18) into (12) yields

̇𝑥 = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ [𝐽
∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

+ 𝑔
1
Φ (𝑥) (𝜃 −

̂
𝜃) − (𝑃

1
+ ℎ𝑋
11
) ∇𝐻 (𝑥)

− [∇
T
𝐻(𝑥) ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥) [(∇𝐻 (𝑥 (𝑡)))


]

T

×𝑀
1
[∇𝐻 (𝑥 (𝑡))]



,

̇
̂
𝜃 = 𝐾

1
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥) .

(19)

Choose a Lyapunov functional described as

𝑉
1
(𝑥, 𝑥
𝜏
,
̃
𝜃) = 𝐻 (𝑥) +

1

2

̃
𝜃
T
𝐾
−1

1

̃
𝜃

+ ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥 (𝜑)) 𝑃

1
∇𝐻(𝑥 (𝜑)) 𝑑𝜑

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

[(∇𝐻 (𝑥 (𝛼)))


]

T

× 𝑍
1
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼𝑑𝛽,

(20)

where ̃𝜃 = 𝜃 − ̂𝜃.
Since 𝐻(𝑥) ∈ C2, 𝑃

1
> 0, 𝑍

1
> 0, and (A3) in

Assumption 3 holds, we have the following inequalities:

∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥 (𝜑)) 𝑃

1
∇𝐻(𝑥 (𝜑)) 𝑑𝜑

⩽ ∫

𝑡

𝑡−𝑑(𝑡)






∇
T
𝐻(𝑥 (𝜑)) 𝑃

1
∇𝐻(𝑥 (𝜑))






𝑑𝜑

⩽ 𝜄
𝑝
∫

𝑡

𝑡−𝑑(𝑡)

𝜖
2
(max 


𝑥 (𝜑)





) 𝑑𝜑

= ℎ𝜄
𝑝
𝜖
2
(‖𝑥‖C) ,

(21)

where 𝜄
𝑝
= 𝜆max(𝑃1) > 0.

Moreover, according to (A4) in Assumption 3, we have

∫

0

−ℎ

∫

𝑡

𝑡+𝛽

[(∇𝐻 (𝑥 (𝛼)))


]

T
𝑍
1
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼𝑑𝛽

⩽ ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

𝜄
𝑧
𝜋
2
(‖𝑥 (𝛼)‖) 𝑑𝛼 𝑑𝛽

=

1

2

ℎ
2

𝜄
𝑧
𝜋
2
(‖𝑥‖C) ,

(22)

where 𝜄
𝑧
= 𝜆max(𝑍1) > 0.

Combining (21) and (22), from (A2) in Assumption 3, we
obtain

𝑉
1
(𝑥, 𝑥
𝜏
,
̃
𝜃) ⩽ 𝜀

2
(‖𝑥‖) + 𝜅







̃
𝜃







2

+ ℎ𝜄
𝑝
𝜖
2
(‖𝑥‖C) +

1

2

ℎ
2

𝜄
𝑧
𝜋
2
(‖𝑥‖C) ,

(23)

where 𝜅 = 𝜆max(𝐾
−1

1
) > 0.

Let ](‖𝜒‖C) = 𝜀
2
(‖𝑥‖) + 𝜅‖

̃
𝜃‖

2

+ ℎ𝜄
𝑝
𝜖
2
(‖𝑥‖C) + (1/

2)ℎ
2

𝜄
𝑧
𝜋
2
(‖𝑥‖C), 𝜒 = [𝑥

T
𝑥
T
𝜏

̃
𝜃
T
]

T
. Obviously, it belongs to

K-class function. So, we obtain

𝜀
1
(




𝜒 (0)





) ⩽ 𝑉
1
(𝑥, 𝑥
𝜏
,
̃
𝜃) ⩽ ] (


𝜒



C
) . (24)

According to theNewton-Leibnitz formula, it follows that

∇𝐻 (𝑥) − ∫

𝑡

𝑡−𝑑(𝑡)

[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼 − ∇𝐻 (𝑥
𝜏
) = 0; (25)
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then for anymatrices𝐵
1
and𝐵

2
with appropriate dimensions,

we have

{∇
T
𝐻(𝑥) [𝐽

∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] + ∇

T
𝐻(𝑥
𝜏
) 𝐵
1

+[∇𝐻 (𝑥 (𝑡))]


𝐵
2
}

⋅ [∇𝐻 (𝑥) − ∇𝐻 (𝑥
𝜏
) − ∫

𝑡

𝑡−𝑑(𝑡)

[∇𝐻 (𝑥 (𝛼))]


𝑑𝛼] ≡ 0.

(26)

As is well known, for any positive definite matrix 𝑋 ⩾ 0

and a vector function 𝜂, the following inequality holds:

ℎ𝜂
T
(𝑡) 𝑋𝜂 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
(𝑡) 𝑋𝜂 (𝑡) 𝑑𝛼 ⩾ 0. (27)

Noting that

∇
T
𝐻(𝑥) 𝐽 (𝑥, 𝑝) ∇𝐻 (𝑥)

=

1

2

∇
T
𝐻(𝑥) [𝐽 (𝑥, 𝑝) + 𝐽

T
(𝑥, 𝑝)] ∇𝐻 (𝑥) = 0

(28)

and combining (26) and (27) and using Assumption 1, we can
evaluate the derivative of 𝑉

1
(𝑥, 𝑥
𝜏
,
̃
𝜃) along the trajectory of

the closed-loop system (19) as follows:

𝑉
1
(𝑥, 𝑥
𝜏
,
̃
𝜃)

= ∇
T
𝐻(𝑥) [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥) [𝐽

∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

+ ∇
T
𝐻(𝑥) 𝑔

1
Φ (𝑥)

̃
𝜃 + ∇

T
𝐻(𝑥) 𝑃

1
∇𝐻 (𝑥)

− ∇
T
𝐻(𝑥) (𝑃

1
+ ℎ𝑋
11
) ∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))


]

T
𝑀
1
[∇𝐻 (𝑥 (𝑡))]



− (1 −
̇

𝑑 (𝑡)) ∇
T
𝐻(𝑥
𝜏
) 𝑃
1
∇𝐻(𝑥

𝜏
)

−
̃
𝜃
T
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥)

+ ℎ[(∇𝐻 (𝑥 (𝑡)))


]

T
𝑍
1
[∇𝐻 (𝑥 (𝑡))]



− ∫

𝑡

𝑡−ℎ

[(∇𝐻 (𝑥 (𝛼)))


]

T
𝑍
1
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

⩽ −∇
T
𝐻(𝑥) 𝑅∇𝐻 (𝑥) − ℎ∇

T
𝐻(𝑥)𝑋

11
∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))


]

T
𝑀
1
[∇𝐻 (𝑥 (𝑡))]



− (1 − 𝜇) ∇
T
𝐻(𝑥
𝜏
) 𝑃
1
∇𝐻(𝑥

𝜏
)

− ∫

𝑡

𝑡−𝑑(𝑡)

[(∇𝐻 (𝑥 (𝛼)))


]

T
𝑍
1
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

+ ℎ[(∇𝐻 (𝑥 (𝑡)))


]

T
𝑍
1
[∇𝐻 (𝑥 (𝑡))]



− ∇
T
𝐻(𝑥) 𝑅

∗

∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥
𝜏
) 𝐵
1
∇𝐻 (𝑥) − ∇

T
𝐻(𝑥
𝜏
) 𝐵
1
∇𝐻(𝑥

𝜏
)

+ [(∇𝐻 (𝑥 (𝑡)))


]

T
𝐵
2
∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))


]

T
𝐵
2
∇𝐻(𝑥

𝜏
)

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥) [𝐸Δ (𝑥

𝜏
) 𝐹 + 𝑇] [∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥
𝜏
) 𝐵
1
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

− ∫

𝑡

𝑡−𝑑(𝑡)

[(∇𝐻 (𝑥 (𝑡)))


]

T

× 𝐵
2
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼 + ℎ𝜂
T
1
𝑋𝜂
1

− ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
1
(𝑡) 𝑋𝜂

1
(𝑡) 𝑑𝛼,

(29)

where 𝜂
1
= [∇

T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻(𝑥(𝑡)))



]

T
]

T
.

Let

𝜂
2

=[∇
T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻 (𝑥 (𝑡)))



]

T
[(∇𝐻 (𝑥 (𝛼)))



]

T
]

T
;

(30)

according to (15)-(16) and using Lemma 6, we get that

𝑉
1
(𝑥, 𝑥
𝜏
,
̃
𝜃) ⩽ 𝜂

T
1
Ξ
1
𝜂
1
− ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
2
Θ𝜂
2
𝑑𝛼 ⩽ 𝜂

T
1
Ξ
1
𝜂
1
.

(31)

Furthermore, since Ξ
1
< 0, according to Assumption 3,

there exists a continuous nondecreasing function 𝜖(‖𝜒‖), 𝜒 =
[𝑥

T
𝑥
T
𝜏

̃
𝜃
T
]

T
such that

𝑉
1
(𝑥, 𝑥
𝜏
,
̃
𝜃) ⩽ −𝜖 (





𝜒 (0)





) . (32)

According to the Lyapunov-Krasovskii stability theorem,
we can conclude that the closed-loop system (19) consisting
of system (12) and the control law (18) is asymptotically stable.
This completes the proof.

3.2. L
2
Disturbance Attenuation. Inwhat follows, we consider

the 𝐿
2
disturbance attenuation problem of systems (1). Given



6 Mathematical Problems in Engineering

a disturbance attenuation level 𝛾 > 0, choose the following
penalty function:

𝑧 = ℎ (𝑥) 𝑔
T
1
∇𝐻 (𝑥) , (33)

where ℎ(𝑥) ∈ R𝑞×𝑠 is weighing matrix.
For time delay 𝑑(𝑡) satisfying (2), we have the following

result.

Theorem8. Consider system (1). Suppose that Assumptions 1–
5 hold. If there exist matrices

0 < 𝑃
2
= 𝑃

T
2
, 0 < 𝑍

2
= 𝑍

T
2
, 0 < 𝑀

2
= 𝑀

T
2
,

(34)

0 ⩽ 𝑋 = (

𝑋
11

𝑋
12

𝑋
13

𝑋
21

𝑋
22

𝑋
23

𝑋
31

𝑋
32

𝑋
33

), (35)

any appropriately dimensioned matrices 𝐸, 𝐹, 𝑇, 𝐵
3
, 𝐵
4
and a

scalar 𝜀 > 0 such that (14) and the following conditions hold

Ξ
2
=
(

(

Φ
11
= −𝑅 − 𝑅

∗

−

1

2𝛾
2
(𝑔
1
𝑔
T
1
− 𝑔
2
𝑔
T
2
)

𝐵
T
3

2

+ ℎ𝑋
12

𝐵
T
4

2

+ ℎ𝑋
13

∗ − (1 − 𝜇) 𝑃
2
−

𝐵
3

2

−

𝐵
T
3

2

+ ℎ𝑋
22

−

𝐵
T
4

2

+ ℎ𝑋
23

∗ ∗ −𝑀
2
+ ℎ𝑍
2
+ ℎ𝑋
33

)

)

< 0,

Θ =

(

(

(

(

(

𝑋
11
+ 𝜀
−1

𝐸𝐸
T
𝑋
12

𝑋
13

1

2

𝑇

∗ 𝑋
22

𝑋
23

1

2

𝐵
3

∗ ∗ 𝑋
33

1

2

𝐵
4

∗ ∗ ∗ 𝑍
2
+ 𝜀𝐹

T
𝐹

)

)

)

)

)

⩾ 0,

(36)

then the 𝐿2 disturbance attenuation problem of system (1) can
be solved by the feedback control law:

𝑢 = − 𝑔
T
1
(𝑔
1
𝑔
T
1
)

−1

{ (𝑃
2
+ ℎ𝑋
11
) ∇𝐻 (𝑥) − Φ (𝑥)

̂
𝜃

+ [∇
T
𝐻(𝑥) ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥)

× [(∇𝐻 (𝑥 (𝑡)))


]

T
𝑀
2
[∇𝐻 (𝑥 (𝑡))]



}

− [

1

2

ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥) ,

̇
̂
𝜃 = 𝐾

2
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥) ,

(37)

where 𝐾
2
> 0 is an adaptive gain matrix with appropriate

dimension.
Moreover, the 𝛾-dissipation inequality

𝑉
2
(𝑥, 𝑥
𝜏
,
̃
𝜃) + 𝑄 (𝑥, 𝑥

𝜏
) ⩽

1

2

{𝛾
2

‖𝜔‖
2

− ‖𝑧‖
2

} (38)

holds along the trajectories of the closed-loop systems consisting
of (1) and (37), where

𝑄 (𝑥, 𝑥
𝜏
) = −𝜂

T
1
Ξ
2
𝜂
1
+ ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
2
Θ𝜂
2
𝑑𝛼 (39)

with

𝜂
1
= [∇

T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻 (𝑥 (𝑡)))



]

T
]

T
,

𝜂
2

= [∇
T
𝐻(𝑥) ∇

T
𝐻(𝑥
𝜏
) [(∇𝐻 (𝑥 (𝑡)))



]

T
[(∇𝐻 (𝑥 (𝛼)))



]

T
]

T
.

(40)

The storage function is given as

𝑉
2
(𝑥, 𝑥
𝜏
,
̃
𝜃)

= 𝐻 (𝑥) + ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥 (𝜑)) 𝑃

2
∇𝐻(𝑥 (𝜑)) 𝑑𝜑

+ ∫

0

−ℎ

∫

𝑡

𝑡−𝑑(𝑡)

[∇
T
𝐻(𝑥 (𝛼))]



𝑍
2
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼𝑑𝛽

+

1

2

̃
𝜃
T
𝐾
−1

2

̃
𝜃.

(41)
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Proof. Substituting (37) into (1) yields

̇𝑥 = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ [𝐽
∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

− (𝑃
2
+ ℎ𝑋
11
) ∇𝐻 (𝑥) + 𝑔

2
𝜔

− [∇
T
𝐻(𝑥) ∇𝐻 (𝑥)]

−1

∇𝐻 (𝑥)

× [(∇𝐻 (𝑥 (𝑡)))


]

T
𝑀
2
[∇𝐻 (𝑥 (𝑡))]



+ 𝑔
1
Φ (𝑥) (𝜃 −

̂
𝜃)

− 𝑔
1
[

1

2

ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥) ,

̇
̂
𝜃 = 𝐾

2
Φ

T
(𝑥) 𝑔

T
1
∇𝐻 (𝑥) .

(42)

Evaluating the derivative of (41) along the trajectory of system
(42) and using (26), (27), and Assumption 1, we get

𝑉
2
(𝑥, 𝑥
𝜏
,
̃
𝜃)

= ∇
T
𝐻(𝑥) [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥) [𝐽

∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
)

− ℎ∇
T
𝐻(𝑥)𝑋

11
∇𝐻 (𝑥) + ∇

T
𝐻(𝑥) 𝑔

2
𝜔

− [(∇𝐻 (𝑥 (𝑡)))


]

T
𝑀
2
[∇𝐻 (𝑥 (𝑡))]



− ∇
T
𝐻(𝑥) 𝑔

1
[

1

2

ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥)

− (1 −
̇

𝑑 (𝑡)) ∇
T
𝐻(𝑥
𝜏
) 𝑃
2
∇𝐻(𝑥

𝜏
)

+ ℎ[(∇𝐻 (𝑥 (𝑡)))


]

T
𝑍
2
[∇𝐻 (𝑥 (𝑡))]



− ∫

𝑡

𝑡−ℎ

[(∇𝐻 (𝑥 (𝛼)))


]

T
𝑍
2
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

⩽ −∇
T
𝐻(𝑥) 𝑅∇𝐻 (𝑥) − ℎ∇

T
𝐻(𝑥)𝑋

11
∇𝐻 (𝑥)

− [(∇𝐻 (𝑥 (𝑡)))


]

T
𝑀
2
[∇𝐻 (𝑥 (𝑡))]



− (1 − 𝜇) ∇
T
𝐻(𝑥
𝜏
) 𝑃
2
∇𝐻(𝑥

𝜏
)

+ ℎ[(∇𝐻 (𝑥 (𝑡)))


]

T
𝑍
2
[∇𝐻 (𝑥 (𝑡))]



− ∫

𝑡

𝑡−ℎ

[(∇𝐻 (𝑥 (𝛼)))


]

T
𝑍
2
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

+ ∇
T
𝐻(𝑥) [𝐽

∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥)

+ ∇
T
𝐻(𝑥
𝜏
) 𝐵
3
∇𝐻 (𝑥)

− ∇
T
𝐻(𝑥
𝜏
) 𝐵
3
∇𝐻(𝑥

𝜏
) +[(∇𝐻 (𝑥 (𝑡)))



]

T
𝐵
4
∇𝐻 (𝑥)

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥) [𝐽

∗

(𝑥
𝜏
) −𝑅
∗

(𝑥
𝜏
)] [∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

− ∫

𝑡

𝑡−𝑑(𝑡)

∇
T
𝐻(𝑥
𝜏
) 𝐵
3
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

− [(∇𝐻 (𝑥 (𝑡)))


]

T
𝐵
4
∇𝐻(𝑥

𝜏
)

− ∫

𝑡

𝑡−𝑑(𝑡)

[(∇𝐻 (𝑥 (𝑡)))


]

T
𝐵
4
[∇𝐻 (𝑥 (𝛼))]



𝑑𝛼

+ ℎ𝜂
T
1
𝑋𝜂
1

− ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
1
(𝑡) 𝑋𝜂

1
(𝑡) 𝑑𝛼

−

1

2










𝛾𝜔 −

1

𝛾

∇
T
𝐻(𝑥) 𝑔

2










2

− ∇
T
𝐻(𝑥) 𝑔

1
[

1

2

ℎ
T
(𝑥) ℎ (𝑥) +

1

2𝛾
2
𝐼
𝑚
] 𝑔

T
1
∇𝐻 (𝑥)

+

1

2𝛾
2
∇
T
𝐻(𝑥) 𝑔

2
𝑔
T
2
∇𝐻 (𝑥)

+

1

2

{𝛾
2

‖𝜔‖
2

− ‖𝑧‖
2

}

+

1

2

∇
T
𝐻(𝑥) 𝑔

1
ℎ
T
(𝑥) ℎ (𝑥) 𝑔

T
1
∇𝐻 (𝑥) .

(43)

According to (35), (36), and Lemma 6, we have

𝑉
2
(𝑥, 𝑥
𝜏
,
̃
𝜃) − 𝜂

T
1
Ξ
2
𝜂
1
+ ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
T
2
Θ𝜂
2
𝑑𝛼 ⩽

1

2

{𝛾
2

‖𝜔‖
2

− ‖𝑧‖
2

} .

(44)

It is obvious that the 𝛾-dissipation inequality (38) holds along
the closed-loop system (42)which consist of (1) and (37).This
completes the proof.

4. Illustrative Examples

In this section, we give some examples to show how to apply
the results proposed in this paper to investigate the robust
stabilization and the 𝐿

2
disturbance attenuation for a class of

time-delay nonlinear control systems with uncertainties and
disturbances.

Let us consider the following 2-dimensional time-delay
nonlinear control systems with parametric uncertainties and
external disturbances:

̇𝑥
1
(𝑡) = −4𝑥

3

1
(𝑡) − 4𝑥

3

1
(𝑡 − 𝑑 (𝑡)) + 2𝑢,

̇𝑥
2
(𝑡) = − 2𝑥

3

1
(𝑡) − (2 + 3𝑝 + 𝑝

2

) 𝑥
2
(𝑡) − 2𝑥

3

1
(𝑡 − 𝑑 (𝑡))

− 2𝑥
2
(𝑡 − 𝑑 (𝑡)) − 𝑥

2
(𝑡 − 𝑑 (𝑡)) sin (𝑥

2
(𝑡 − 𝑑 (𝑡)))

+ 3𝑢 + 0.5𝜔,

𝑥
1
(𝑡
0
) = 𝜙
1
(𝑡
0
) , 𝑥

2
(𝑡
0
) = 𝜙
2
(𝑡
0
) , 𝑡

0
∈ [−ℎ, 0] ,

(45)
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where 𝑑(𝑡) is a time varying delay of the system (45); 𝑝 is an
unknown constant, 0 < 𝑝 < 1; 𝜔 is the disturbance input.

The system (45) can be realized into the following Hamil-
tonian system form:

̇𝑥 = [𝐽 (𝑥, 𝑝) − 𝑅 (𝑥, 𝑝)] ∇𝐻 (𝑥, 𝑝)

+ [𝐽
∗

(𝑥
𝜏
) − 𝑅
∗

(𝑥
𝜏
)] ∇𝐻 (𝑥

𝜏
) + 𝑔
1
𝑢 + 𝑔
2
𝜔,

𝑥 (𝑡
0
) = 𝜙 (𝑡

0
) , 𝑡

0
∈ [−ℎ, 0]

(46)

with

𝐽 (𝑥, 𝑝) = (

0 0.5

−0.5 0
) , 𝑅 (𝑥, 𝑝) = (

2 0.5

0.5 2 + 𝑝
) ,

𝐽
∗

(𝑥
𝜏
) = (

0 0.5

−0.5 0
) ,

𝑅
∗

(𝑥
𝜏
) = (

2 0.5

0.5 2 + sin𝑥
2
(𝑡 − 𝑑 (𝑡))

) ,

𝑔
1
= (

2

3
) , 𝑔

2
= (

0

0.5
) ,

𝑥 = (

𝑥
1

𝑥
2

) , 𝜙 = (

𝜙
1

𝜙
2

) ,

(47)

𝐻(𝑥, 𝑝) = 0.5 (𝑥
4

1
+ (1 + 𝑝) 𝑥

2

2
) ,

𝐻 (𝑥
𝜏
) = 0.5 (𝑥

4

1
(𝑡 − 𝑑 (𝑡))) + 𝑥

2

2
(𝑡 − 𝑑 (𝑡)) .

(48)

Let 𝐸 = 𝐹 = ( 1 0
0 1
), 𝑇 = ( −2 0

−1 −2
), Δ(𝑥

𝜏
) = (
0 0

0 − sin𝑥2(𝑡−𝑑(𝑡)) ),
𝜃 = (−1−0.5𝑝)𝑝 andΦ(𝑥) = 𝑥

2
. It is easy to verify that system

(46) with the above values satisfies Assumptions 1–5 and the
condition (14) of Theorem 7.

Firstly, we demonstrate the application of Theorem 7 by
using LMI solver [31].

Set 𝜇 = 0.25 and ℎ = 1. Using the LMI control toolbox
of MATLAB, the LMIs in Theorem 7 are solved to find the
following matrices:

𝑃
1
= (

2.3387 −0.0187

−0.0187 2.3387
) , 𝑍

1
= (

0.3770 0.0447

0.0447 0.2949
) ,

𝑀
1
= (

1.0000 0.0000

0.0000 1.0000
) , 𝐵

1
= (

0.7608 0.0232

0.0232 0.7653
) ,

𝑋
11
= (

1.4363 0.0957

0.0957 1.4842
) , 𝑋

12
= (

−0.1565 −0.0155

−0.0155 −0.1583
) ,

𝑋
22
= (

1.3787 0.0070

0.0070 1.3801
) , 𝑋

33
= (

0.5258 −0.0203

−0.0203 0.5359
) ,

𝐵
2
= 𝑋
13
= 𝑋
23
= (

0 0

0 0
) .

(49)

Thus a robust stabilizing controller is obtained as

𝑢 = −3.8229𝑥
2
− 𝑥
2
( ̇𝑥
4

1
+ ̇𝑥
2

2
) (𝑥
4

1
+ 𝑥
2

2
)

−1

− 0.0770𝑥
3

1
− 𝑥
2

̂
𝜃.

(50)
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Figure 1: Responses of state 𝑥.
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Figure 2: Parameter estimation ̂𝜃.

The simulation with the initial condition 𝑥(0) = 𝜙(0) = [1 −

2]
T is given in Figures 1 and 2. It is clear that under the delay-

dependent conditions, system (46) along with the controller
(50) is asymptotically stable.

Next, we demonstrate the application of Theorem 8. We
will check whether the designed 𝐿

2
disturbance attenuation

controller according to Theorem 8 is effective in stabilizing
the given time-delay Hamiltonian system (46) and has strong
robustness against external disturbances.

Given a disturbance attenuation level 𝛾, choose

𝑧 = ℎ (𝑥) 𝑔
T
1
∇𝐻 (𝑥) (51)

as the penalty function, where ℎ = [0.1 0.1]
T.
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Figure 3: Responses of state 𝑥.
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Figure 4: Parameter estimation ̂𝜃.

Using the LMI control toolbox, the LMIs in Theorem 8
are solved to find the following matrices with 𝜇 = 0.25, ℎ = 1:

𝑃
2
= (

2.4230 −0.0178

−0.0178 2.4230
) , 𝑍

2
= (

0.3136 0.0426

0.0426 0.2926
) ,

𝑀
2
= (

1.0000 0.0000

0.0000 1.0000
) , 𝐵

3
= (

0.7859 0.0223

0.0223 0.7939
) ,

𝑋
11
= (

1.4799 0.0894

0.0894 1.5238
) , 𝑋

12
= (

−0.1568 −0.0160

−0.0160 −0.1551
) ,

𝑋
22
= (

1.4275 0.0069

0.0069 1.4304
) , 𝑋

33
= (

0.5382 −0.0194

−0.0194 0.5477
) ,

𝐵
4
= 𝑋
13
= 𝑋
23
= (

0 0

0 0
) .

(52)

Then according toTheorem 8, a feedback adaptive controller
can be obtained as

𝑢 = −4.4041𝑥
2
− 𝑥
2
( ̇𝑥
4

1
+ ̇𝑥
2

2
) (𝑥
4

1
+ 𝑥
2

2
)

−1

− 0.0716𝑥
3

1
− 𝑥
2

̂
𝜃.

(53)

To illustrate the effectiveness of the adaptive control law
(53), we carry simulation result with the following choices:
the disturbance signal𝜔 = sin 𝑡; the initial condition is 𝑥(0) =
𝜙(0) = [5 − 5]

T; the disturbance attenuation level is chosen
by 𝛾 = 0.9. The simulation results are shown in Figures 3 and
4, which are responses of the system’s state and the parameter
estimation, respectively. It can be seen from the simulation
that the time-delay system converges to its equilibrium very
quickly under the controller (53).

In general, from the simulations, we can conclude that
the results presented in this paper are very practicable and
effective in stabilization analysis and 𝐿

2
disturbance atten-

uation of time-delay Hamiltonian systems with parametric
uncertainties and external disturbances. What is more, by
using the result presented in this paper, we may solve the
stability and control problem of some classes of time-delay
nonlinear systems which can be realized into Hamiltonian
systems form.

5. Conclusions

In this paper, the robust asymptotical stability and 𝐿
2

disturbance attenuation problem of a class of time-delay
Hamiltonian control systems with parametric uncertainties
and external disturbances have been investigated. Delay-
dependent criteria are established. The proposed adaptive
feedback control law, by which the asymptotic stability and
the 𝐿
2
performance of the close-loop system is guaranteed, is

determined by linear matrix inequalities constraints. Simula-
tions show the effectiveness of the proposed method.
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Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage,
the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected
inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control withmultivariable internal
model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable
internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of
the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive
control law is designed to guarantee the closed-loop systemglobally uniformly bounded, which is proved by a constructed Lyapunov
function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal
form, the correctness and effectiveness of which are verified by the simulation results.

1. Introduction

Along with the strong demand of electric power energy,
conventional fossil fuels are gradually reduced.The exploiting
of renewable energy is an inevitable route for development
of sustainable society. According to the planning of EU
Commission, the renewable energy goal is achieving 20% of
energy consumption from sustainable sources by 2020 [1].

Renewable energy sources include wind (onshore and
offshore), solar PV, hydroenergy, biomass energy, geothermal
energy, and tidal energy. Currently, two of main utilization
approaches of renewable energy are off-grid power gen-
eration and connected to utility grid. In the past decade,
the renewable energy sources connected to utility grid have
achieved a considerable growth with the forceful needs of
electric power energy [2]. Grid-connected inverter, which
is one of the key technologies, supports renewable energy
to be transmitted to the utility grid. In design, pulse width
modulation (PWM) and the corresponding inverter control
system require grid voltage as an ideal sinewave. Actually, it is

difficult to keep a perfect sine wave of grid voltage under a
variety of nonlinear loads and unexpected network failures.
Furthermore, the existing researches have shown distorted
grid voltage, such as dips [3], asymmetry [4], and harmonics
[5], which will have a significantly adverse influence to grid
power quality. In other words, rejection of current harmonics
for grid-connected inverter under distorted grid voltage is a
useful work for the normal operation of power networks [6].

The rejection solutions of current harmonics for grid-
connected inverter mainly consist of two categories: hard-
ware implementation and software programming. A sim-
ple and practical scheme of hardware implementation is
adding filters to inverter’s output. The aim of adding filters
is to compensate for the fluctuations of grid voltage. In
[7], LCL filters are designed for grid-connected converters.
However, the application of LCL filters may encounter the
resonance problem. Close by the resonant frequency, the
impedance of the filters is small, and the harmonic current in
corresponding frequency would be amplified, even beyond
the harmonic standard [8]. In addition, new hardware will
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certainly increase the investment of the system. One of the
rejection ways for software programming is to design a
proportional resonant (PR) controller to improve the gain in
background harmonic [9]. Nevertheless, with the increasing
of the background harmonic frequency, the PR controller can
reduce the phase margin of the system [10]. The other one is
application of feedforward control of grid voltage to increase
output impedance of the system. The feedforward control
has no impact on phase margin of the system [11], but the
scheme, which only depends on the proportion feedforward
to regulation, cannot eliminate the influence of background
harmonic [12].

For the disadvantages of the above methods, some schol-
ars attempt to apply modern control theory to improve the
capability of harmonics disturbance rejection. The nonlinear
control methods, such as repetitive control [13, 14], 𝐻

∞

control [15, 16], prediction control [17–19], backstepping
control [20–22], and fuzzy-adaptive control [23–26], can deal
with the nonlinearity and uncertainty of nonlinear models
better. However, these preexisting rejection control methods
have the following problems more or less.

(1) The harmonics rejection algorithms are concerned
primarily with the single-input field; the research of
multiple-input field is rarely mentioned.

(2) For an operating grid-connected system, the parame-
ters of resistance and inductance for the system are
often time varying and cannot be measured accu-
rately. Hence, these proportional-integral-based con-
trollers, which take no account of the time-varying
characteristics of the parameters, cannot work very
efficiently.

(3) The parameter design of robust controller is relatively
complicated and needs large amount of calculations.

In the paper, a multivariable state feedback control
algorithm based on nonlinear backstepping control with
multivariable internal model principle (MIMP) and adaptive
control law (ACL) for grid-connected inverter is proposed
to reject the harmonic disturbance produced by a class
of exosystem and uncertainties related with system states
caused by modeling perturbations, parameter uncertainty
or actuator end disturbance. The main contributions in the
paper are the following.

(1) A new harmonic rejection algorithm based on non-
linear backstepping control with MIMP and ACL is
proposed in the paper, which extends the disturbance
rejection of the nonlinear single-input system tomul-
tivariable globally defined normal form in contrast
with the previous literatures.

(2) A new type of nonlinear multivariable internal model
for a class of nonlinear harmonic disturbances and
uncertain items related with system states is con-
structed.

(3) The proposed algorithm is practically applied to reject
current harmonic disturbances for grid-connected
inverter under distorted grid voltage.
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Figure 1: Modeling of grid-connected inverter.

The paper is organized as the following: it starts with
an introduction to the research status of current harmon-
ics rejection for grid-connected inverter in Section 1. The
modeling of state differential equation for grid-connected
inverter is constructed and an analysis of current harmonics
generation mechanism is given in Section 2. In addition,
Section 2 describes the control and mathematical problem
concerned in the paper. Nonlinear multivariable internal
model is presented and designed in Section 3. In Section 4,
nonlinear multivariable adaptive state feedback controller is
proposed and the global robust stabilization is demonstrated.
Section 5 gives the results of numerical simulation. Finally,
the conclusions are summarized in Section 6.

2. Problem Formulation

2.1. Modeling of Grid-Connected Inverter. Themodel of grid-
connected inverter can be shown in Figure 1. In Figure 1, 𝑅
and 𝐿 represent the equivalent series resistance and inductor,
respectively,𝐶 is the capacitance, V

𝑎𝑏𝑐
and 𝑖
𝑎𝑏𝑐

are three-phase
output voltage and grid current of three-phase inverter, and
𝑒
𝑎𝑏𝑐

represents three-phase grid voltage.
In terms of Figure 1, the voltage equations of three-phase

grid-connected inverter in stationary 𝑎𝑏𝑐 reference frame can
be written as

V
𝑎
= 𝑅𝑖
𝑎
+ 𝐿

𝑑𝑖
𝑎

𝑑𝑡

+ 𝑒
𝑎
,

V
𝑏
= 𝑅𝑖
𝑏
+ 𝐿

𝑑𝑖
𝑏

𝑑𝑡

+ 𝑒
𝑏
,

V
𝑐
= 𝑅𝑖
𝑐
+ 𝐿

𝑑𝑖
𝑐

𝑑𝑡

+ 𝑒
𝑐
.

(1)

Application of the park transformation to (1) in rotating
𝑑𝑞 reference frame equation (1) is converted into

V
𝑑
= 𝑅𝑖
𝑑
+ 𝐿

𝑑𝑖
𝑑

𝑑𝑡

− 𝜔𝐿𝑖
𝑞
+ 𝑒
𝑑
,

V
𝑞
= 𝑅𝑖
𝑞
+ 𝐿

𝑑𝑖
𝑞

𝑑𝑡

+ 𝜔𝐿𝑖
𝑑
+ 𝑒
𝑞
;

(2)
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namely,

[

[

[

[

𝑑𝑖
𝑑

𝑑𝑡

𝑑𝑖
𝑞

𝑑𝑡

]

]

]

]

=
[

[

[

−

𝑅

𝐿

𝜔

−𝜔 −

𝑅

𝐿

]

]

]

[

𝑖
𝑑

𝑖
𝑞

] +
[

[

[

1

𝐿

0

0

1

𝐿

]

]

]

[

V
𝑑
−𝑒
𝑑

V
𝑞
−𝑒
𝑞

] , (3)

where V
𝑑𝑞

and 𝑖
𝑑𝑞

represent the voltage and current of grid-
connected inverter in rotating 𝑑𝑞 reference frame, 𝑒

𝑑𝑞
is the

grid voltage in 𝑑𝑞 reference frame, and 𝜔 is the synchronous
angular velocity of the grid.

Rearrange (2) in the form of state space as follows:

̇x =Ax +B (k − e) ,

y =Cx,
(4)

where x, k, and y are the state vector, the control input
vector, and the output vector, respectively, e is the voltage
vector of the grid, x = [𝑖

𝑑
𝑖
𝑞
]
𝑇, k = [V

𝑑
V
𝑞
]
𝑇, y = x, e =

[𝑒
𝑑
𝑒
𝑞
]
𝑇, A = [ −𝑅/𝐿 𝜔

−𝜔 −𝑅/𝐿
], B = [ 1/𝐿 0

0 1/𝐿
], and C = [ 1 0

0 1
].

2.2. Current Harmonics Generation Mechanism for Grid-
Connected Inverter. In terms of Figure 1, the harmonic volt-
age equations of three-phase grid-connected inverter insta-
tionary 𝑎𝑏𝑐 reference frame can be written as

k
𝑎𝑏𝑐𝑘
= 𝑅i
𝑎𝑏𝑐𝑘
+ 𝐿

𝑑i
𝑎𝑏𝑐𝑘

𝑑𝑡

+ e
𝑎𝑏𝑐𝑘
, (5)

where 𝑘 is the harmonic order, k
𝑎𝑏𝑐𝑘

is the control voltage
vector, i

𝑎𝑏𝑐𝑘
is the current vector of harmonics, and e

𝑎𝑏𝑐𝑘
is

the unbalanced harmonic voltage vector of the grid.
Assume that the distorted voltage of the network contains

the 5th and 7th harmonics. In stationary 𝑎𝑏𝑐 reference frame,
the rotating direction of the 5th harmonics is contrary to
fundamental harmonics, and its rotating electrical angular
velocity is −5𝜔. However, the rotating direction of the 7th
harmonics is the same as the fundamental harmonics, and
its rotating electrical angular velocity is 7𝜔. Indeed, the
distorted voltage of the networkmay includemore harmonics
in addition to the 5th and 7th harmonics, such as the 3rd,
11th, and 13th. The rotating direction of the 11th harmonics is
exactly identical to the 5th, except that the rotating electrical
angular velocity is −11𝜔. A similar relationship exists in
the 7th and 13th harmonics. In order to reveal the essence
of the problem more simply, consider only the 5th and
7th harmonics and construct multiple synchronous rotating
reference frames shown in Figure 2. For convenience, in what
follows, +/− in superscript represents +/− rotating direction,
respectively; 5 and 7 in superscript describe the rotating
direction of the 5th and 7th harmonics, respectively; 1, 5, and
7 in subscript demonstrate the 1st, 5th, and 7th harmonics,
respectively.

In rotating 𝑑𝑞 reference frame of the 5th harmonics, the
voltage equation of the 5th harmonics can be written as

k
𝑑𝑞5
= 𝑅i
𝑑𝑞5
+ 𝐿

𝑑i
𝑑𝑞5

𝑑𝑡

+ e
𝑑𝑞5
− 𝑗5𝜔𝐿𝑖

𝑑𝑞5
, (6)
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Figure 2: Multiple synchronous rotating reference frames.

where

k
𝑑𝑞5
= k+
𝑑𝑞1
𝑒
𝑗6𝜔𝑡

+ k5−
𝑑𝑞5
+ k7+
𝑑𝑞7
𝑒
𝑗12𝜔𝑡

,

i
𝑑𝑞7
= i+
𝑑𝑞1
𝑒
𝑗6𝜔𝑡

+ i5−
𝑑𝑞5
+ i7+
𝑑𝑞7
𝑒
𝑗12𝜔𝑡

,

e
𝑑𝑞5
= e+
𝑑𝑞1
𝑒
𝑗6𝜔𝑡

+ e5−
𝑑𝑞5
+ e7+
𝑑𝑞7
𝑒
𝑗12𝜔𝑡

.

(7)

Equation (7) indicates that only voltage and current com-
ponents of the 5th harmonics are DC signals in rotating 𝑑𝑞
reference frame of the 5th harmonics. Voltage and current
components of the remaining harmonics are AC signals. One
other thing to note is that all of the harmonic components
in rotating 𝑑𝑞 reference frame of fundamental wave are AC
signals.

In a similarway, the voltage equation of the 7th harmonics
can be written as

k
𝑑𝑞7
= 𝑅i
𝑑𝑞7
+ 𝐿

𝑑i
𝑑𝑞7

𝑑𝑡

+ e
𝑑𝑞7
+ 𝑗7𝜔𝐿𝑖

𝑑𝑞7
. (8)

Equations (6) and (8) demonstrate that once the grid voltage
becomes unbalance, the controller designed by the principle
of ideal sine wave will not be able to compensate for
harmonic voltage, and the current waveform of the grid will
be distorted.

2.3. Control Problem Description. Use D(w) and 𝛿(x, 𝑡) to
describe the exogenous disturbance of voltage harmonics
and the uncertain items related with system states caused by
modeling perturbations, parameter uncertainties, or actuator
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end disturbances, respectively, then the state equation in (4)
can be rewritten as a multivariable system as follows:

̇x = Ax + B (k − e
0
−D (w) + 𝛿 (x, 𝑡))

= f (x) +
2

∑

𝑖=1

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x,𝑡)) ,

1 ≤ 𝑖 ≤ 2,

(9)

where x = [𝑥
1
, 𝑥
2
]
𝑇

= [𝑖
𝑑
, 𝑖
𝑞
]
𝑇, f(x) = [ −(𝑅/𝐿)𝑥1+𝜔𝑥2

−𝜔𝑥1−(𝑅/𝐿)𝑥2

] =

[

−(𝑅/𝐿)𝑖𝑑+𝜔𝑖𝑞

−𝜔𝑖𝑑−(𝑅/𝐿)𝑖𝑞

], g
1
(x) = g

2
(x) = 1/𝐿, k = [V

1
, V
2
]
𝑇

=

[V
𝑑
, V
𝑞
]
𝑇, [𝑒
10
, 𝑒
20
] = [𝑒

𝑑0
, 𝑒
𝑞0
], and 𝑒

𝑑0
and 𝑒
𝑞0

are network
voltages of fundamental wave in 𝑑𝑞 reference frame. For a
specific network, 𝑒

𝑑0
and 𝑒

𝑞0
can be determined easily. The

uncertain item 𝛿(x, 𝑡) in the control input channel satisfies
the matching condition. In the paper, the range of variable 𝑖
is (1,2). For convenience and conciseness, in what follows, the
range of variable 𝑖 is no longer written.

Assumption 1. w ∈ R𝑞 is an exogenous signal generated by
the following exosystem:

ẇ =W
𝑖
w, (10)

where W
𝑖
is a pending matrix depending on the exogenous

signal.

Assumption 2. Considering disturbance-free and no model-
ing perturbations, the nominal system of (9) can be written
as:

̇x = f (x) +
2

∑

𝑖=1

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
) (11)

there exists a control law of state feedback a follows:

V
𝑖
= V
𝑖
− 𝑒
𝑖0
= 𝛼
𝑖
(x) , (12)

let (11) be asymptotically stable. In addition, there exists a
Lyapunov function 𝑉(x) which satisfies:

𝑑 (‖x‖) ≤ 𝑉 (x) ≤ 𝑑 (‖x‖) , (13)

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x)) ≤ −𝑑

0
(‖x‖) , (14)












𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)











2

≤ 𝑑
0
(‖x‖) , (15)

where 𝑑, 𝑑, and 𝑑
0
are all of class 𝐾

∞
functions.

Assumption 3. There exist smooth functions 𝑟
𝑖
(𝑥) : R𝑛 →

R𝑞 which make

𝜕𝑟
𝑖
(x)
𝜕x

g
𝑖
(x) = K

𝑖
, (16)

where K
𝑖
are nonzero constant vectors defined in R𝑞.

Assumption 4. There exist a constant𝑚
𝑖
and a known smooth

bounded function 𝑝
𝑖
(x) making the uncertain item 𝛿(x, 𝑡)

satisfy





𝛿
𝑖
(x, 𝑡)

≤ 𝑚
𝑖
𝑝
𝑖
(x) . (17)

Remark 5. Similar to the uncertain item 𝛿(x, 𝑡), the distur-
bance D(w) also satisfies the matching condition and can
be injected in the input path. Nevertheless, a method of
iterative design, such as adaptive backstepping, can extend
the presented algorithm to more general instance of strict
feedback. Therefore, the matching condition is not critical,
and application of the assumption is reasonable.

Remark 6. One of the research points in the paper is stability
problem for multivariable input system. Currently, some
literatures focus on the point of stability problem, but the
focused attention of these literatures is the field of single input
and single output [27] or semiglobal stability [28]. For the
multivariable system, the research of stability problemwill be
more challenging, and the core is to transform the stability
problem from multivariable system to multiple single-input
system [29].

Remark 7. For Assumption 2, (13) and (14) automatically
hold when the closed-loop system is asymptotically stable.
Equation (15) holds when the closed-loop system is expo-
nentially stable. Nevertheless, Assumption 2 is not a sufficient
condition to make the closed-loop system exponentially
stable [30].

Remark 8. For Assumption 3, if g
𝑖
(x) is a nonzero constant

vector, it will be easy to find a solution of (𝜕𝑟
𝑖
(x)/𝜕x)g

𝑖
(x) =

K
𝑖
for a non-zero constant vector K

𝑖
. For a nonconstant

vector g
𝑖
(x), the solutions can be found more complex with

the help of geometric tool [31].

Remark 9. Assumption 4 is to guarantee the boundedness of
the uncertain item 𝛿(x, 𝑡) relative to the system state vector x.
For instance, if 𝛿

1
(x, 𝑡) = 𝑥

1
sin(𝑥
1
𝑡), 𝑚
1
and 𝑝

1
(x) can be

chosen as 1 and 𝑥
1
, respectively.

The problem solved in the paper can be described by the
following theorem.

Definition 10. For any given compact set Dw ∈ R𝑞, state
feedback controller V

𝑖
can always be found to ensure the

solution of closed-loop system (9) existing under arbitrary
initial conditions for all w(0) ∈ Dw and 𝑡 ≥ 0 and to reject
exogenous disturbances and uncertain items.

3. Design of Nonlinear Multivariable
Internal Model

Application of internal model principle (IMP) to reject the
exogenous disturbanceD(w) and uncertain item 𝛿(x, 𝑡) in the
paper is chosen as an indirect method. In other words, an
appropriate equation of internalmodel should be constructed
to estimate the nonlinear disturbances and uncertain items.
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The nonlinear equation of exogenous disturbance internal
model is designed as

𝐷
𝑖
(w) = V

𝑖
ŵ
𝑖
(𝑡) , (18)

ŵ
𝑖
(𝑡) = �̂�

𝑖
(𝑡) + r

𝑖
(x) , (19)

̇�̂�
𝑖
(𝑡) = (W

𝑖
− K
𝑖
V
𝑖
) (�̂�
𝑖
(𝑡) + r

𝑖
(x))

− K
𝑖
V
𝑖
(x) − 𝜕r𝑖 (x)

𝜕x
f (x) ,

(20)

where ŵ(𝑡) is the estimation value of exogenous
signal w(𝑡), �̂�

𝑖
is the introduced auxiliary vector, �̂�

𝑖
=

[𝜂
𝑖1
𝜂
𝑖2
⋅ ⋅ ⋅ 𝜂
𝑖𝑝
], r
𝑖
(x) is a vector constructed by the smooth

functions 𝑟
𝑖
(x), r
𝑖
(x) = [𝑟

𝑖
(x) 0 ⋅ ⋅ ⋅ 0]

1×𝑝
, and the matrix

K
𝑖
∈ R𝑞 is selected satisfying Assumption 3 and makes the

matrix (W
𝑖
− K
𝑖
V
𝑖
) be Hurwitz; that is, positive definite

matrices P
𝑖
andQ

𝑖
are always existing and satisfy

P
𝑖
(W
𝑖
− K
𝑖
V
𝑖
) + (W

𝑖
− K
𝑖
V
𝑖
)
𝑇P
𝑖
= −Q
𝑖
. (21)

In terms of Assumption 4, the adaptive internal model of
uncertain item is devised as

̂
𝛿
𝑖
(x, 𝑡) = 𝑚

𝑖
K
𝑖
𝑝
𝑖
(x) tanh(

𝜂
𝑇

𝑖
P𝑇
𝑖
K
𝑖
𝑝
𝑖
(x)

𝜆
𝑖

) , (22)

where 𝑚
𝑖
and 𝑝

𝑖
(x) indicate a constant and a known smooth

function defined in Assumption 4, respectively, and 𝜆
𝑖
is a

designed constant.
Define an auxiliary error vector as follows:

𝑒𝑟
𝑖
(𝑡) = w

𝑖
(𝑡) − ŵ

𝑖
(𝑡) . (23)

With the derivative of (23) along with (9), (10) and (19), we
can obtain
⋅

𝑒𝑟
𝑖
(𝑡) = ẇ

𝑖
(𝑡) −

̇ŵ
𝑖
(𝑡) =W

𝑖
w
𝑖
−
̇�̂�
𝑖
(𝑡) −

𝜕r
𝑖
(x)
𝜕x
𝜕x
𝜕𝑡

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) (�̂�
𝑖
(𝑡) + r

𝑖
(x))

+ K
𝑖
k
𝑖
(x) + 𝜕r𝑖 (x)

𝜕𝑥

f (x) −
𝜕r
𝑖
(x)
𝜕𝑥

× (f (x) + g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) +𝛿

𝑖
(x,𝑡)))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) (�̂�
𝑖
(𝑡) + r

𝑖
(x)) + K

𝑖
V
𝑖
(𝑥)

−

𝜕r
𝑖
(x)
𝜕𝑥

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) (�̂�
𝑖
(𝑡) + r

𝑖
(x)) + K

𝑖
V
𝑖
(x)

− K
𝑖
(V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) ŵ
𝑖
(𝑡) + K

𝑖
V
𝑖
(x)

− K
𝑖
(V
𝑖
− 𝑒
𝑖0
− V
𝑖
w (𝑡) + 𝛿

𝑖
(x, 𝑡))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) ŵ (𝑡) + K

𝑖
𝑉
𝑖
w (𝑡) − K

𝑖
𝛿
𝑖
(x, 𝑡)

= (W
𝑖
− K
𝑖
V
𝑖
) 𝑒𝑟
𝑖
(𝑡) − K

𝑖
𝛿
𝑖
(x, 𝑡) .

(24)

4. Design of Nonlinear State
Feedback Controller

In comparison with the nominal system (11), the original
system (9) adds two items: exogenous disturbance D(w) and
uncertain items 𝛿(x, 𝑡). On the basis of control law of the
nominal system, nonlinear state feedback controller of the
original system (9) should add two items to compensate
for D(w) and 𝛿(x, 𝑡). In terms of the idea, nonlinear state
feedback controller of the original system (9) is designed as

V
𝑖
= 𝛼
𝑖
(x) − 𝐷

𝑖
(w) + 𝜃

𝑖
(⋅) , (25)

where 𝜃(⋅) is a pending design function to compensate for an
uncertain item such as modeling perturbation.

Apparently, designing of nonlinear internal model
𝐷
𝑖
(w) is accomplished in Section 3. In what follows, we

complete the design of V
𝑖
in two steps. The first step is

application of backstepping theory to devise 𝛼
𝑖
(x), and the

second is to complete an adaptive solution of 𝜃(⋅) to reject
uncertain item 𝛿(x, 𝑡).

(1) Designing of 𝛼
𝑖
(x). It is assumed that the parameters of

grid-connected inverter are known and invariant.The control
target of designing 𝛼

𝑖
(x) is to regulate 𝑖

𝑑
(𝑥
1
) and 𝑖

𝑞
(𝑥
2
) to

track the respective reference value 𝑥
1ref and 𝑥2ref.

Firstly, we define the errors as follows:

𝑒𝑧
1
= 𝑥
1
− 𝑥
1ref,

𝑒𝑧
2
= 𝑥
2
− 𝑥
2ref;

(26)

the dynamics derived from (26), we can get with

⋅

𝑒𝑧
1
= ̇𝑥
1
− ̇𝑥
1ref,

⋅

𝑒𝑧
2
= ̇𝑥
2
− ̇𝑥
2ref.

(27)

Substituting (9) into (27), we obtain

⋅

𝑒𝑧
1
= ̇𝑥
1
− ̇𝑥
1ref = −

𝑅

𝐿

𝑥
1
+ 𝜔𝑥
2
+

1

𝐿

𝛼
1
(x) − ̇𝑥

1ref, (28)

⋅

𝑒𝑧
2
= ̇𝑥
2
− ̇𝑥
2ref = −

𝑅

𝐿

𝑥
2
− 𝜔𝑥
1
+

1

𝐿

𝛼
2
(x) − ̇𝑥

2ref. (29)

Define a quadratic function as the following:

𝑄
1
=

1

2

𝑐
1
𝑒𝑧
2

1
, (30)

where 𝑐
1
is a positive real number.

Derivative of 𝑄
1
along (28) can be written as

̇𝑄
1
= 𝑐
1
𝑒𝑧
1

⋅

𝑒𝑧
1
= 𝑐
1
𝑒𝑧
1
(−

𝑅

𝐿

𝑥
1
+ 𝜔𝑥
2
+

1

𝐿

𝛼
1
(x) − ̇𝑥

1ref) .

(31)

Assume that

−

𝑅

𝐿

𝑥
1
+ 𝜔𝑥
2
+

1

𝐿

𝛼
1
(x) − ̇𝑥

1ref = −
𝑒𝑧
1

𝑐
1

. (32)
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That is,

𝛼
1
(x) = −𝐿𝑒𝑧1

𝑐
1

+ 𝑅𝑥
1
− 𝐿𝜔𝑥

2
+ 𝐿 ̇𝑥
1ref. (33)

Replacing (33) into (31), the derivative of 𝑄
1
is given by

̇𝑄
1
= 𝑐
1
𝑒𝑧
1

⋅

𝑒𝑧
1
= −𝑒𝑧

2

1
≤ 0. (34)

Define another quadratic function as the following:

𝑄
2
=

1

2

𝑐
2
𝑒𝑧
2

2
, (35)

where 𝑐
2
is also a positive real number.

Derivative of 𝑄
2
along (29) is given by

̇𝑄
2
= 𝑐
2
𝑒𝑧
2

⋅

𝑒𝑧
2
= 𝑐
2
𝑧
2
(−

𝑅

𝐿

𝑥
2
− 𝜔𝑥
1
+

1

𝐿

𝛼
2
(𝑥) − ̇𝑥

2ref) .

(36)

Suppose that

−

𝑅

𝐿

𝑥
2
− 𝜔𝑥
1
+

1

𝐿

𝛼
2
(𝑥) − ̇𝑥

2ref = −
𝑒𝑧
2

𝑐
2

; (37)

that is,

𝛼
2
(x) = −𝐿𝑒𝑧2

𝑐
2

+ 𝑅𝑥
2
+ 𝐿𝜔𝑥

1
+ 𝐿 ̇𝑥
2ref. (38)

Replacing (38) into (36), the derivative of 𝑄
2
can be written

as

̇𝑄
2
= 𝑐
2
𝑒𝑧
2

⋅

𝑒𝑧
2
= −𝑒𝑧

2

2
≤ 0. (39)

Now, from (30) and (35), the Lyapunov function 𝑉(x)
defined in Assumption 2 can be written as

𝑉 (x) = 𝑄
1
+ 𝑄
2
=

1

2

𝑐
1
𝑒𝑧
2

1
+

1

2

𝑐
2
𝑒𝑧
2

2
. (40)

Hence, from (34) and (39), we can see that the
controllers 𝛼

1
(x) shown in (33) and 𝛼

2
(x) shown in (38) can

stabilize the disturbance-free closed-loop system.

(2) Designing of 𝜃(⋅). Under the actual operating envi-
ronments, the parameters of grid-connected inverter are
not always known and invariant. For instance, the induc-
tance 𝐿 varies with the environment temperature, and the
resistance 𝑅 changes nonlinearly with heating. Hence, the
parametric uncertainties in the process of system model-
ing should be considered to reflect the real condition of
the operating system. Due to the uncertainty of modeling
perturbations, 𝜃(⋅) should be an adaptive controller to reject
the perturbations. In terms of the internal model of uncertain
items shown in (22), the controller is devised as

𝜃
𝑖
(x, 𝑡) = 𝑚

𝑖
𝑝
𝑖
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) 𝑔
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

) , (41)

where 𝜉
𝑖
is the designed constant.

Convergence Proof of the Proposed Controller. For a start, we
give a lemma as the following.

Lemma 11. For any positive number 𝜀 > 0, there exists a
smooth function ℎ making the inequality |𝑥| ≤ 𝑥ℎ(𝑥) + 𝜀, for
all 𝑥 ∈ 𝑅 hold, and 𝑓(0) = 0.

Remark 12. If we choose ℎ(𝑥) = (1/4𝜀)𝑥, for all 𝑥 ∈ 𝑅,
the above inequality holds obviously. In [32], another func-
tion meeting the above requirements is given as ℎ(𝑥) =
tanh(𝛽𝑥/𝜀), for all 𝑥 ∈ 𝑅, where 𝛽 = 𝑒−(𝛽+1) and 𝛽 > 0,
hence 𝛽 < 1/2.

In terms of (23) and (40), construct a newLyapunov func-
tion as

𝑊 = 𝑉 (x) +
2

∑

𝑖=1

𝑒𝑟
𝑖

𝑇

𝑃
𝑖
𝑒𝑟
𝑖
. (42)

With the derivative of (42) along the system (9), (24), and
(25), we obtain

𝑊 =

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡)))

+

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
(P
𝑖
(W
𝑖
− K
𝑖
V
𝑖
) + (W

𝑖
− K
𝑖
V
𝑖
)
𝑇P
𝑖
) 𝑒𝑟
𝑖
)

+ 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(−K
𝑖
𝛿
𝑖
(x, 𝑡)))

=

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x))

+

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (𝐷

𝑖
(w) − 𝐷

𝑖
(w))

−

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (𝜃
𝑖
(x, 𝑡) − 𝛿

𝑖
(x, 𝑡))

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) + 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(−K
𝑖
𝛿
𝑖
(x, 𝑡)))

=

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x))

+

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
ŵ (𝑡) − 𝑉

𝑖
w (𝑡))

−

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)(𝑚

𝑖
𝑝
𝑖
(x) tanh

× (

(𝜕𝑉 (x) /𝜕x) g
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

)

−𝛿
𝑖
(x, 𝑡))

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(43)
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In terms of Assumption 4, (43) can be rewritten as

𝑊 ≤

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x)) + 𝜕𝑉 (x)

𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡))

−

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (𝑚

𝑖
𝑝
𝑖
(x) tanh((

𝜕𝑉 (x) /𝜕x) g
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

) −




𝑚
𝑖
𝑝
𝑖
(x)

)

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡)))

=

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x)) + 𝜕𝑉 (x)

𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡))

+ 𝑚
𝑖

2

∑

𝑖=1

(

𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 

𝑝
𝑖
(x)


−

𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 𝑝
𝑖
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) g
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

)

)

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(44)

According to Lemma 11, the following inequality holds:

0 ≤ |𝑥| − 𝑥 tanh(𝑥
𝜀

) ≤

1

2

𝜀. (45)

That is,

𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 

𝑝
𝑖
(x)


−

𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 𝑝
𝑖
(x) tanh((

𝜕𝑉 (𝑥) /𝜕𝑥) g
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

)

≤

1

2

𝜉
𝑖
.

(46)

Substituting (46) into (44), we can get

𝑊 ≤

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x))

+

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡)) + 𝑚

𝑖

1

2

𝜉
𝑖

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(47)

With the application of (14) inAssumption 2 into (47), we can
obtain

𝑊 ≤ −𝑑
0
(‖x‖) + 𝜕𝑉 (x)

𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡))

+ 𝑚
𝑖

1

2

𝜉
𝑖
−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
)

− 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡)))

≤ −𝑑
0
(‖x‖) +












𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)











2





V
𝑖
𝑒𝑟
𝑖
(𝑡)





+ 𝑚
𝑖

1

2

𝜉
𝑖
−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
)

− 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(48)

Assuming that 𝜆min(Q𝑖) represent the minimal eigenvalue of
the matrix Q

𝑖
, (48) can be given by

𝑊 ≤ −𝑑
0
(‖x‖) +












𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)











2





V
𝑖
𝑒𝑟
𝑖
(𝑡)





+ 𝑚
𝑖

1

2

𝜉
𝑖
−

𝑚

∑

𝑖=1

𝜆min (Q𝑖)




𝑒𝑟
𝑖






2

+

2

∑

𝑖=1

(2𝜇
𝑖





P
𝑖
K
𝑖






2



𝑒𝑟
𝑇

𝑖







2

+

1

2𝜇
𝑖





𝑚
𝑖
𝑝
𝑖
(x)


2

) ,

(49)

where 𝜇
𝑖
is a positive number.
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In terms of permanent establishment inequality 2𝑎𝑏 ≤
𝑐𝑎
2

+ 𝑐
−1

𝑏
2, (49) is rewritten as

𝑊 ≤ −𝑑
0
(‖x‖) + (












𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)











2

+

1

4

2

∑

𝑖=1





V
𝑖






2



𝑒𝑟
𝑖






2

)

+ 𝑚
𝑖

1

2

𝜉
𝑖
−

2

∑

𝑖=1

𝜆min (Q𝑖)




𝑒𝑟
𝑖






2

+

2

∑

𝑖=1

(2𝜇
𝑖





P
𝑖
K
𝑖






2



𝑒𝑟
𝑇

𝑖







2

+

1

2𝜇
𝑖





𝑚
𝑖
𝑝
𝑖
(x)


2

) .

(50)

With the application of (15) inAssumption 2 into (50), we can
obtain

𝑊 ≤ −𝑑
0
(‖x‖) + (𝑑

0
(‖x‖) + 1

4

2

∑

𝑖=1





V
𝑖






2



𝑒𝑟
𝑖






2

)

+ 𝑚
𝑖

1

2

𝜉
𝑖
−

2

∑

𝑖=1

𝜆min (Q𝑖)




𝑒𝑟
𝑖






2

+

2

∑

𝑖=1

(2𝜇
𝑖





P
𝑖
K
𝑖






2



𝑒𝑟
𝑇

𝑖







2

+

1

2𝜇
𝑖





𝑚
𝑖
𝑝
𝑖
(x)


2

)

=

1

4

2

∑

𝑖=1





V
𝑖






2



𝑒𝑟
𝑖






2

+ 𝑚
𝑖

1

2

𝜉
𝑖
−

2

∑

𝑖=1

𝜆min (Q𝑖)




𝑒𝑟
𝑖






2

+

2

∑

𝑖=1

(2𝜇
𝑖





P
𝑖
K
𝑖






2



𝑒𝑟
𝑇

𝑖







2

+

1

2𝜇
𝑖





𝑚
𝑖
𝑝
𝑖
(x)


2

)

≤

1

4

2

∑

𝑖=1





V
𝑖






2



𝑒𝑟
𝑖






2

−

2

∑

𝑖=1

𝜆min (Q𝑖)




𝑒𝑟
𝑖






2

+ 𝑚
𝑖

1

2

𝜉
𝑖
+

2

∑

𝑖=1

(2𝜇
𝑖





P
𝑖
K
𝑖






2



𝑒𝑟
𝑇

𝑖







2

+

𝑚
𝑖

2𝜇
𝑖





𝑝max





2

) ,

(51)

where |𝑝max| indicates the maximum value of |𝑝
𝑖
(𝑥)|.

Suppose that 𝑑
𝑖
= 𝜆min(Q𝑖) − (1/4)‖𝑉𝑖‖

2

−2𝜇
𝑖
‖P
𝑖
K
𝑖
‖
2

> 0

and choose proper 𝜉
𝑖
to satisfy

𝑊 ≤ −

𝑚

∑

𝑖=1

𝑑
𝑖





ei





2

+ 𝑚
𝑖

1

2

𝜉
𝑖
+

2

∑

𝑖=1

(

𝑚
𝑖

2𝜇
𝑖





𝑝max





2

) ≤ 0. (52)

As can be seen above, the proposed controller can ensure
all the signals of the closed-loop system uniformly bounded.
Consequently, the paper comes to the following conclusion.

Theorem 13. There exist positive definite matrices P
𝑖
and Q

𝑖

satisfying formula (21) and nonzero constant vector K
𝑖
∈

R𝑞 satisfying Assumption 3, such that the matrix W
𝑖
−K
𝑖
V
𝑖
is

Hurwitz. Furthermore, the formula (52) holds. For the mul-
tivariable nonlinear system (9) and exosystem (10) satisfying
the Assumptions (1) to (5), the nonlinear multivariable internal
models (18) and (22) and the input feedback control (25) can
make the closed-loop system globally uniformly bounded.

5. Numerical Simulations and Analysis

To illustrate the performance of the present control algo-
rithm, some numerical simulations are performed in the
section.Thewhole simulation time is 5 seconds with the sam-
pling interval 0.001 s. The simulation parameters are chosen
as follows.

For the grid, the rms value of network voltage 𝑒
0
= 380V

the synchronous angular velocity 𝜔 = 100𝜋 rad/s. For the
three-phase grid-connected inverters, the filter inductance
𝐿 = 1.0mH and equivalent series resistance 𝑅 = 0.02Ω.

Substituting the relevant parameters into the original
state equation (9), the nonlinear system (9) can be described
by

̇x = f (x) +
2

∑

𝑖=1

g
𝑖
(x) (k
𝑖
− e
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡)) ,

1 ≤ 𝑖 ≤ 2,

(53)

where x = [𝑥
1
, 𝑥
2
]
𝑇, f(x) = [

−20𝑥1+100𝜋𝑥2

−100𝜋𝑥1−20𝑥2

], g
1
(x) =

g
2
(x) = 1000, and [𝑒

10
, 𝑒
20
] = [380, 0]. The control input k =

[V
1
, V
2
]
𝑇. It is thus clear that the system (53) has two-variable

input, and the conventional single-input algorithm cannot
solve the problem.

Example 14. The network is immersed 3% 3rd harmonics to
fundamental wave.

The exosystem matrices for exogenous disturbanceD(w)
represented in (10) and (18) are given as W

1
= W

2
=

[
0 2𝜔

−2𝜔 0
], V
1
= V
2
= [11.4 0], and the uncertain items

satisfy

𝛿
1
(x, 𝑡) = 𝑥

1
sin (𝑥

1
𝑡) , 𝛿

2
(x, 𝑡) = 𝑥

2
sin (𝑥

2
𝑡) . (54)

It is worth noticing that the rotating electrical angular
velocity of the 3rd harmonics in stationary 𝑎𝑏𝑐 reference
frame is in accordance with that of the 2nd harmon-
ics in rotating 𝑑𝑞 reference frame of fundamental wave.
Hence, W

1
= W

2
= [

0 2𝜔

−2𝜔 0
] in 𝑑𝑞 coordinated system

represents the 3rd harmonics in stationary 𝑎𝑏𝑐 coordinated
system. Furthermore, the values of V

1
and V

2
represent that

the network is immersed 3% 3rd harmonics to fundamental
wave.

In terms of (33) and (38), the control law of the nominal
system is given by

𝛼
1
(x) = −𝐿𝑧

1
+ 𝑅𝑥
1
− 𝐿𝜔𝑥

2
+ 𝐿 ̇𝑥
1ref

= −0.001 (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.1𝜋𝑥2 + 0.001 ̇𝑥1ref,

𝛼
2
(x) = −𝐿𝑒𝑧

2
+ 𝑅𝑥
2
+ 𝐿𝜔𝑥

1
+ 𝐿 ̇𝑥
2ref

= −0.001 (𝑥
2
− 𝑥
2ref) + 0.02𝑥1 + 0.1𝜋𝑥2 + 0.001 ̇𝑥2ref.

(55)

Supposing that

𝑉 (x) = 1
2

𝑐
1
(𝑥
1
− 𝑥
1ref)
2

+

1

2

𝑐
2
(𝑥
2
− 𝑥
2ref)
2

, (56)
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we can obtain

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
)

= −(𝑥
1
− 𝑥
1ref)
2

− (𝑥
2
− 𝑥
2ref)
2

,

(57)

𝜕V (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)

=

𝑐
1
(𝑥
1
− 𝑥
1ref)

𝐿

+

𝑐
2
(𝑥
2
− 𝑥
2ref)

𝐿

.

(58)

Supposing x = [(𝑥
1
−𝑥
1ref) (𝑥2 − 𝑥2ref)

𝑇

], in terms of (56),
(57) and (58), and choosing 𝑐

1
= 𝐿 and 𝑐

2
= 𝐿 make the

following inequalities hold

1

2

𝐿






x


2

≤ 𝑉 (x) ≤ 𝐿

x


2

,

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
) ≤ −






x


2

,












𝜕V (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)











2

≤






x


2

.

(59)

That is, Assumption 2 is satisfied.
Choosing

𝑟
1
(x) = 9𝐿𝑥

1
, 𝑟

2
(x) = 9𝐿𝑥

1
, (60)

we can obtain

K
1
=

𝜕𝑟
1
(x)
𝜕x

g
1
(x) = [9 0]𝑇,

K
2
=

𝜕𝑟
2
(x)
𝜕x

g
2
(x) = [9 0]𝑇.

(61)

Therefore, Assumption 3 holds.
According to (61), we can obtain

W
1
− K
1
V
1
= [

−102.6000 628.3185

−628.3185 0
] , (62)

W
2
− K
2
V
2
= [

−102.6000 628.3185

−628.3185 0
] . (63)

Furthermore, let P
1
= P
2
= [
4 −2

2 4
]; substituting (62) and (63)

into (21), respectively, we obtain

Q
1
= [

820.8000 −205.2000

205.2000 0
] ,

Q
2
= [

820.8000 −205.2000

205.2000 0
] .

(64)

Let 𝜇
1
= 𝜇
2
= 0.005; substituting Q

𝑖
, V
𝑖
, P
𝑖
, K
𝑖
, and 𝜇

𝑖
into

(52), through some arithmetical operations, we can obtain

𝑑
1
= 𝜆min (Q1) −

1

4





V
1






2

− 2𝜇
1





P
1
K
1






2

= 54.9832 −

1

4

× 129.9600 − 2𝜇
1
× 1620 > 0,

𝑑
2
= 𝜆min (Q2) −

1

4





V
2






2

− 2𝜇
2





P
2
K
2






2

= 54.9832 −

1

4

× 129.9600 − 2𝜇
2
× 1620 > 0.

(65)

Hence, through the presented algorithm, the final internal
models of disturbance and uncertain items are given by

𝐷
1
(w) = V

1
ŵ
1
(𝑡) , 𝐷

2
(w) = V

2
ŵ
2
(𝑡) ,

ŵ
1
(𝑡) = �̂�

1
(𝑡) + r

1
(𝑥) , ŵ

2
(𝑡) = �̂�

2
(𝑡) + r

2
(x) ,

̇
�̂�
11
(𝑡) = −102.6𝜂

11
(𝑡) − 0.7434𝑥

1

+ 628.3185𝜂
12
(𝑡) − 9𝑢

1
− 2.8274𝑥

2
,

̇
�̂�
12
(𝑡) = −628.3185𝜂

11
− 5.6549𝑥

1
,

̇
�̂�
21
(𝑡) = − 102.6𝜂

21
(𝑡) + 628.3185𝜂

22
(𝑡) − 9𝑢

1

+ 1.9036𝑥
1
+ 0.18𝑥

2
,

̇
�̂�
22
(𝑡) = −628.3185𝜂

21
− 5.6549𝑥

1
,

̂
𝛿
1
(x, 𝑡) = 𝑚

1
K
1
𝑝
1
(x) tanh(

[𝜂
11
𝜂
12
]P𝑇
1
K
1
𝑝
1
(x)

𝜆
1

)

=
[

[

[

9 tanh(
(36𝜂
11
− 18𝜂
12
) 𝑥
1

𝜆
1

)

0

]

]

]

,

(66)

̂
𝛿
2
(x, 𝑡) = 𝑚

2
K
2
𝑝
2
(x) tanh(

[𝜂
3
𝜂
4
]P𝑇
2
K
2
𝑝
2
(x)

𝜆
2

)

=
[

[

[

9 tanh(
(36𝜂
21
− 18𝜂
22
) 𝑥
2

𝜆
2

)

0

]

]

]

.

(67)

Choosing 𝑚
1
= 𝑚
2
= 1, 𝜉

1
= 𝜉
2
= 0.1, the controller is

designed as

𝛼
1
(x) = −𝐿𝑒𝑧1

𝑐
1

+ 𝑅𝑥
1
− 𝐿𝜔𝑥

2
+ 𝐿 ̇𝑥
1ref

= − (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.3142𝑥2,

𝛼
2
(x) = −𝐿𝑒𝑧2

𝑐
2

+ 𝑅𝑥
2
+ 𝐿𝜔𝑥

1
+ 𝐿 ̇𝑥
2ref

= − (𝑥
2
− 𝑥
2ref) + 0.02𝑥2 + 0.3142𝑥1,
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V
1
= 𝛼
1
(x) − 𝐷

1
(w)

+ 𝑚
1
𝑝
1
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) 𝑔
1
(x) 𝑝
1
(x)

𝜉
1

)

= − (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.3142𝑥2

− 11.4 (𝜂
11
(𝑡) + 0.009𝑥

1
)

+ 𝑥
1
tanh(

(𝑥
1
− 𝑥
1ref) 𝑥1

𝜉
1

) − 380,

V
2
= 𝛼
2
(x) − 𝐷

2
(w)

+ 𝑚
2
𝑝
2
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) 𝑔
2
(x) 𝑝
2
(x)

𝜉
2

)

= − (𝑥
2
− 𝑥
2ref) + 0.02𝑥2 + 0.3142𝑥1

− 11.4 (𝜂
21
(𝑡) + 0.009𝑥

1
)

+ 𝑥
2
tanh(

(𝑥
2
− 𝑥
2ref) 𝑥2

𝜉
2

) .

(68)

Let the initial condition of the simulation be 𝑥(0) =
[0 0]

𝑇, 𝜂(0) = [0 0 0 0]𝑇, 𝑤(0) = [1 0]𝑇. The
reference values of the output current are chosen as 𝑥ref =
[4, 0]
𝑇. Figures 3, 4, 5, and 6 show the simulation results.

Figure 3 demonstrates the system states (output currents in
𝑑𝑞 reference frame). Figure 4 indicates the control inputs
in 𝑑𝑞 axis, respectively. The disturbances produced by the
exosystem and their estimates are shown in Figure 5. Figure 6
demonstrates the estimating errors under the existence of
exosystem disturbances and uncertain items. As shown in
Figure 3, the system states are asymptotically convergence
to the expected references under the existence of exogenous
disturbances and uncertain modeling perturbations. Figures
5 and 6 also indicate that the designed internal models
can produce the exogenous disturbance successfully and the
estimating errors converge to zero.

Example 15. The network is immersed 1.5% 3rd harmonics
and 1% 5th harmonics to fundamental wave.

The exosystem matrices for exogenous disturbance
D(𝑤) represented in (10) and (18) are given as W =

[

0 2𝜔 0 0

−2𝜔 0 0 0

0 0 0 4𝜔

0 0 −4𝜔 0

], V
1
= V
2
= [5.7 0 3.8 0], and the

uncertain items also satisfy

𝛿
1
(x, 𝑡) = 𝑥

1
sin (𝑥

1
𝑡) , 𝛿

2
(x, 𝑡) = 𝑥

2
sin (𝑥

2
𝑡) . (69)

The design of the nominal system and the verification of
Assumption 2 are the same as in Example 14, their derivation
processes are no longer described in detail.

Choosing

𝑟
1
(x) = 𝑟

2
(x) = [9𝐿𝑥

1
9𝐿𝑥
1
]

𝑇

, (70)

we can obtain:

𝐾
1
= 𝐾
2
=

𝜕𝑟
1
(x)
𝜕𝑥

g
1
(x) = [9 0 9 0]𝑇. (71)

Therefore, Assumption 3 holds.
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Figure 3: System states (output currents in 𝑑𝑞 reference frame).
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Figure 4: Control inputs in 𝑑𝑞 axis, respectively.

In terms of (71), we can obtain

W
1
− K
1
V
1

=W
2
− K
2
V
2

=

[

[

[

[

−51.3000 628.3185 −34.2000 0

−628.3185 0 0 0

−51.3000 0 −34.2000 1256.637

0 0 −1256.637 0

]

]

]

]

.

(72)
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Figure 5: Exogenous disturbances of 𝑤
1
and 𝑤

2
and their estimates.
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Figure 6: Estimating errors of 𝑤
1
and 𝑤

2
.

Let

P
1
= P
2

=

[

[

[

[

3.970777 −0.159154 −0.072142 −0.300626

−0.159154 4.137151 0.070735 0.045912

−0.072142 0.070735 5.920095 −0.079577

−0.300626 0.045912 −0.07957 6.010020

]

]

]

]

;

(73)

substituting (73) into (21), we obtain

Q
1
= Q
2

=

[

[

[

[

200.0011 100.0000 99.9996 99.9993

100.0000 199.9988 99.9989 100.0007

99.9996 99.9989 200.0100 100.0001

99.9996 100.0007 100.0004 199.9900

]

]

]

]

.

(74)
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Figure 7: System states (output currents in 𝑑𝑞 reference frame).
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Figure 8: Control inputs in 𝑑𝑞 axis, respectively.

Let 𝜇
1
= 𝜇
2
= 0.01; substituting Q

𝑖
, V
𝑖
, P
𝑖
, K
𝑖
, and 𝜇

𝑖
into

(52), through some arithmetical operations, we can obtain

𝑑
1
= 𝜆min (Q1) −

1

4





V
1






2

− 2𝜇
1





𝑃
1
𝐾
1






2

= 99.9924 −

1

4

× 46.93 − 2𝜇
1
× 4013.57 > 0,

𝑑
2
= 𝜆min (Q2) −

1

4





V
2






2

− 2𝜇
2





P
2
K
2






2

= 99.9924 −

1

4

× 46.93 − 2𝜇
1
× 4013.57 > 0.

(75)

Hence, through the presented algorithm, the final internal
models of disturbance and uncertain items are given by

𝐷
1
(w) = V

1
ŵ
1
(𝑡) , 𝐷

2
(w) = V

2
ŵ
2
(𝑡) ,

ŵ
1
(𝑡) = �̂�

1
(𝑡) + r

1
(𝑥) , ŵ

2
(𝑡) = �̂�

2
(𝑡) + r

2
(x) ,

̇
�̂�
11
(𝑡) = − 51.3𝜂

11
+ 628.3185𝜂

12
− 34.2𝜂

13

− 9𝑢
1
+ 5.3731𝑥

1
− 2.8274𝑥

2
,

̇
�̂�
12
(𝑡) = −628.3185𝜂

11
− 5.6549𝑥

1
,

̇
�̂�
13
(𝑡) = − 51.3𝜂

11
− 34.2𝜂

13
+ 1256.637𝜂

14

− 9𝑢
1
− 0.2817𝑥

1
− 2.8274𝑥

2
,

̇
�̂�
14
(𝑡) = −1256.637𝜂

13
,

̇
�̂�
21
(𝑡) = − 51.3𝜂

21
+ 628.3185𝜂

22
− 34.2𝜂

23

− 9𝑢
2
+ 2.3657𝑥

1
+ 0.18𝑥

2
,

̇
�̂�
22
(𝑡) = −628.3185𝜂

21
− 5.6549𝑥

1
,

̇
�̂�
23
(𝑡) = − 51.3𝜂

21
− 34.2𝜂

23
+ 1256.637𝜂

24

− 9𝑢
2
+ 2.3657𝑥

1
+ 0.18𝑥

2
,

̇
�̂�
24
(𝑡) = −1256.637𝜂

23
,

̂
𝛿
1
(x, 𝑡) = 𝑚

1
K
1
𝑝
1
(x) tanh

× (

[𝜂
11
𝜂
12
𝜂
13
𝜂
14
]P𝑇
1
K
1
𝑝
1
(x)

𝜆
1

)

=

[

[

[

[

[

[

[

[

[

[

[

[

9 tanh(
(
35.0877𝜂11−0.7958𝜂12

+52.6316𝜂13−3.4218𝜂14

) 𝑥
1

𝜆
1

)

0

9 tanh(
(
35.0877𝜂11−0.7958𝜂12

+52.6316𝜂13−3.4218𝜂14

) 𝑥
1

𝜆
1

)

0

]

]

]

]

]

]

]

]

]

]

]

]

,

̂
𝛿
2
(x, 𝑡) = 𝑚

2
K
2
𝑝
2
(x) tanh

× (

[𝜂
21
𝜂
22
𝜂
23
𝜂
24
]P𝑇
2
K
2
𝑝
2
(x)

𝜆
2

)

=

[

[

[

[

[

[

[

[

[

[

[

[

9 tanh(
(
35.0877𝜂21−0.7958𝜂22

+52.6316𝜂23−3.4218𝜂24

) 𝑥
2

𝜆
2

)

0

9 tanh(
(
35.0877𝜂21−0.7958𝜂22

+52.6316𝜂23−3.4218𝜂24

) 𝑥
2

𝜆
2

)

0

]

]

]

]

]

]

]

]

]

]

]

]

.

(76)
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Figure 9: Exogenous disturbances of 𝑤
1
and 𝑤

2
and their estimates.

Choosing 𝑚
1
= 𝑚
2
= 1, 𝜉

1
= 𝜉
2
= 0.1, the controller is

designed as

V
1
= 𝛼
1
(x) − 𝐷

1
(w)

+ 𝑚
1
𝑝
1
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) g
1
(x) 𝑝
1
(x)

𝜉
1

)

= − (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.31415𝑥2

− 5.7 (𝜂
11
(𝑡) + 0.009𝑥

1
) − 3.8𝜂

13
(𝑡)

+ 𝑥
1
tanh(

(𝑥
1
− 𝑥
1ref) 𝑥1

𝜉
1

) − 380,

V
2
= 𝛼
2
(x) − 𝐷

2
(w)

+ 𝑚
2
𝑝
2
(x) tanh((

𝜕𝑉 (𝑥) /𝜕𝑥) g
2
(x) 𝑝
2
(x)

𝜉
2

)

= − (𝑥
2
− 𝑥
2ref) + 0.02𝑥2 + 0.31415𝑥1

− 5.7 (𝜂
21
(𝑡) + 0.009𝑥

1
) − 3.8𝜂

23
(𝑡)

+ 𝑥
2
tanh(

(𝑥
2
− 𝑥
2ref) 𝑥2

𝜉
2

) .

(77)

Let the initial condition of the simulation be 𝑥(0) =
[0 0]

𝑇, 𝜂(0) = [0 0 0 0 0 0 0 0]𝑇, and 𝑤(0) =
[1 0 1 0]

𝑇. The reference values of the output current
are also chosen as 𝑥ref = [4, 0]

𝑇. Figures 7, 8, 9, and 10 show
the simulation results. Figure 7 display that the system states
are asymptotically convergence to the expected references
under the existence of exogenous disturbances and uncertain
modeling perturbations. Figures 9 and 10 also indicate that

the designed internal models can produce the exogenous
disturbances successfully.

6. Conclusions

In this paper, a nonlinear backstepping control with multi-
variable adaptive internalmodel principle for grid-connected
inverter is proposed to reject the harmonic disturbance pro-
duced by a class of exosystems under the existence of uncer-
tain items related with system states. Due to the nonlinearity
and multiple variables for the original system, a nonlinear
and multivariable internal model is constructed. In addition,
in order to compensate for the effect of bounded uncertain
items, an adaptive control law is designed to realize the real-
time estimation of the perturbation. Based on the backstep-
ping control law of the nominal system, a state feedback con-
troller combined with the multivariable internal model and
the adaptive control law is designed. A Lyapunov function
is constructed and theoretically proves that all the signals of
themultivariable closed-loop system are global boundedness.
The simulation results show that the proposed control algo-
rithm can guarantee the closed-loop system asymptotically
converge to expected references quickly and the designed
internal model can produce the exogenous disturbances
successfully.

Restricted by the actual problem of grid-connected
inverter control under distorted grid voltage, the proposed
algorithm in the research aims at rejection of harmonic
disturbances, and without considering the nonharmonic
disturbances. However, the nonharmonic disturbances may
induce adverse impacts, for example, noise and precision
reduction. The future research should extend the algorithm
to reject the nonharmonic disturbances.
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Figure 10: Estimating errors of𝐷
1
and𝐷
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For a class of continuous-timeMarkovian jump linear uncertain systems with partly known transition rates and input quantization,
the𝐻

2
state-feedback control design is considered.The elements in the transition ratesmatrix include completely known, boundary

known, and completely unknown ones. First, an𝐻
2
cost index for Markovian jump linear uncertain systems is introduced; then by

introducing a new matrix inequality condition, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs)
for the𝐻

2
control of the Markovian jump linear uncertain systems. Less conservativeness is achieved than the result obtained with

the existing technique. Finally, a numerical example is given to verify the validity of the theoretical results.

1. Introduction

Recently, much attention has been devoted to the study of
the stochastic stability for the Markovian jump systems, and
many important results have been published [1–4]. This is
because the Markovian jump systems have been widely
employed tomodelmany practical systems, such asmanufac-
turing systems, the power systems, and the economic systems
in which they may experience abrupt changes in their struc-
tures and parameters [5, 6]. It is worth noticing that these
results require that the transition probabilities/rates must
be known a priori. However, in many practical engineering
applications, the likelihood for obtaining the perfect informa-
tion on all transition probabilities/rates elements is question-
able, and the cost might be expensive in some cases. There-
fore, the study of the stabilization of the Markovian jump
systems with partly known transition probabilities/rates
becomes interesting, and some well-known results have been
published. The idea for the stochastic stability of the Marko-
vian jump linear uncertain systems with partly known

transition probabilities/rates is developed in Zhang et al. [7].
It is then applied to the 𝐻

∞
control design in Zhang and

Boukas [8]. In those papers, the feature of the information
about the transition probabilities/rates matrix considered
includes two kinds of elements: completely known and com-
pletely unknownones. As amatter of fact, the transition prob-
abilities matrix might involve completely known, completely
unknown, and boundary known elements. In Shen and Yang
[9], an 𝐻

2
state-feedback controller design method is pro-

posed for the continuous-timeMarkovian jump linear uncer-
tain systems with the three kinds of transition rates matrix
elements. In order to yield the design condition for analysis
and synthesis, a matrix inequality is introduced to present
LMIs conditions. In this paper, less conservative design con-
ditions will be formulated by introducing a new relaxed
matrix inequality condition.

On the other hand, in many modern engineering prac-
tices, all kinds of information processing devices, such as
analog-to-digital and digital-to-analog converters, have been
widely used. By the utilization of such information processing
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devices, some advantages have been brought, for example,
lower cost, reduced weight and power, simple installation,
and maintenance. However, some new phenomena have also
been induced, which might cause server deterioration of
system performance or even lead to system instability. Signal
quantization is one of the important aspects that should be
fully considered in such cases, which always exists in com-
puter-based control systems. Nowadays, many well-known
results have been published on quantized feedback control.
For example, the feedback stabilization problem is considered
by utilizing dynamic quantizers [10–13] and static quantizers
[14–17]. In addition, the filter design [18] and the𝐻

∞
control

design [19] are also investigated. Specially, quantization errors
have adverse effects on the network control systems which
can often be modeled as Markovian jump systems. In Xiao
et al. [20], the stabilization problem for single-input discrete
Markovian jump linear uncertain systems via mode-depend-
ent quantized state-feedback is addressed, but the transition
rates are assumed to be completely known.

To the best of our knowledge, no result has been presented
for the control design of the continuous-time Markovian
jump linear uncertain systems with partly known transition
rates and input signal quantization. In this paper, the 𝐻

2

control for a class of continuous-timeMarkovian jump linear
uncertain systems with respect to partly known transition
rates and input signal quantization is addressed.The structure
of the controller consists of two parts: the nonlinear part is
provided to eliminate the effect of input quantization, and
the linear part is obtained by solving LMIs for achieving the
𝐻
2
performance against unknown transition rates andmodel

uncertainties. In comparison with the design utilizing the
LMIs technique in Shen and Yang [9], the design method has
less conservativeness by introducing a relaxed inequality con-
dition.

The rest of this paper is organized as follows.The problem
statement and preliminaries are presented in Section 2. The
main results are given in Section 3. In Section 4, a numerical
example is presented to illustrate the effectiveness of the
results, and the conclusions are drawn in Section 5.

Notations. Throughout this paper, the following notations
are used. 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space; 𝐴𝑇
denotes the transpose of matrix 𝐴; 𝐼 and 0 represent the
identity matrix and a zero matrix in appropriate dimensions,
respectively;E{⋅} denotes themathematical expectation oper-
ator;𝑋 > 𝑌 (𝑋 ≥ 𝑌), where𝑋 and𝑌 are symmetricmatrices,
means that𝑋−𝑌 is positive definite (positive semi-definite);
|𝑥|
𝑝
denotes the 𝑝-norm of the vector 𝑥; that is, |𝑥|

𝑝
=

(|𝑥
1
|
𝑝

+ |𝑥
2
|
𝑝

+ ⋅ ⋅ ⋅ + |𝑥
𝑛
|
𝑝

)
1/𝑝, where 𝑝 ≥ 1. When 𝑝 = ∞,

|𝑥|
∞
= max

1≤𝑖≤𝑛
|𝑥
𝑖
|. For matrix 𝑋 ∈ 𝑅

𝑚×𝑛, |𝑋|
𝑝
is used to

present the matrix 𝑝-norm: |𝑋|
𝑝
= sup

𝑦 ̸=0
(|𝑋𝑦|
𝑝
/|𝑦|
𝑝
). The

notation | ⋅ |, in particular denotes the absolute value of a
scalar, the standard Euclidean norm of a vector, and the
induced norm of a matrix, respectively. In symmetric block
matrices, an ∗ is used to represent a term that is induced by
symmetry. Finally, the symbol 𝐻𝑒(𝑋) is used to represent
𝑋 + 𝑋

𝑇.

2. Problem Statement and Preliminaries

Consider a class of the continuous-time Markovian jump
linear uncertain systems in the following probability space
(Ω,F,P):

̇𝑥 (𝑡) = (𝐴 (𝑟
𝑡
) + Δ𝐴 (𝑟

𝑡
)) 𝑥 (𝑡) + (𝐵 (𝑟

𝑡
) + Δ𝐵 (𝑟

𝑡
)) 𝑞 (𝑢 (𝑡)) ,

𝑥
0
= 𝑥 (0) , 𝑟

0
= 𝑟 (0) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the system state and 𝑢(𝑡) ∈ 𝑅

𝑚 is the
control input. {𝑟

𝑡
, 𝑡 ≥ 0} is a continuous-time Markovian

process with right continuous trajectories taking values in the
finite set S = {1, 2, . . . , N}. It governs the switching among
the different system modes with the following mode transi-
tion probabilities:

Pr {𝑟
𝑡+ℎ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜆
𝑖𝑗
ℎ + 𝑜 (ℎ) , if 𝑗 ̸= 𝑖,

1 + 𝜆
𝑖𝑖
ℎ + 𝑜 (ℎ) , if 𝑗 = 𝑖,

(2)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜆
𝑖𝑗
≥ 0 (𝑖, 𝑗 ∈ S; 𝑗 ̸= 𝑖)

denote the switching rate from mode 𝑖 at time 𝑡 to mode 𝑗 at
time 𝑡 + ℎ and that 𝜆

𝑖𝑖
= −∑

N
𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
for each 𝑖 ∈ S.

In general, the Markovian process transition rates matrix
Λ is defined by:

Λ =

[

[

[

[

[

𝜆
11

𝜆
12

⋅ ⋅ ⋅ 𝜆
1N

𝜆
21

𝜆
22

⋅ ⋅ ⋅ 𝜆
2N

... ⋅ ⋅ ⋅ d
...

𝜆N1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜆NN

]

]

]

]

]

. (3)

In this paper, the transition rates of the jumping process are
assumed to be partly available; that is, some elements in
matrix Λ have been exactly known, some ones have been
merely known with lower and upper bounds, and others may
have no information to use. For instance, for the system (1)
with four operation modes, the transition rates matrix might
be described by

Λ =

[

[

[

[

𝜆
11

? ? 𝜆
14

? ? 𝜆
23

?

? ? 𝛽 ?

𝛼 ? 𝜆
43

𝜆
44

]

]

]

]

, (4)

where ? represents the completely unknown element of the
transition rates matrix and the parameters 𝛼 and 𝛽 represent
the elements with known lower and upper bounds. That is,
𝛼 ≤ 𝛼 ≤ 𝛼, and 𝛽 ≤ 𝛽 ≤ 𝛽, where 𝛼, 𝛼, 𝛽, and 𝛽 are known
parameters; 𝜆

𝑖𝑗
denotes the precisely known element.

For clarity, we denote that S = S𝑖
𝑘1
∪ S𝑖
𝑘2
∪ S𝑖
𝑢𝑘
, 𝑖 =

1, 2, . . . , N, with

S
𝑖

𝑘1
= {𝑗 : 𝜆

𝑖𝑗
is exactly known} ,

S
𝑖

𝑘2
= {𝑗 : the bounds of 𝜆

𝑖𝑗
are known} ,

S
𝑖

𝑢𝑘
= {𝑗 : there is no information available for 𝜆

𝑖𝑗
} .

(5)
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Furthermore, let S𝑖
𝑘
= {𝑗 : 𝜆

𝑖𝑗
≤ 𝜆
𝑖𝑗
≤ 𝜆
𝑖𝑗
}; then one can

obtain S𝑖
𝑘
= S𝑖
𝑘1
∪S𝑖
𝑘2
. If S𝑖
𝑘
̸=Ø, it can be described as

S
𝑖

𝑘
= {K

𝑖

1
, K
𝑖

2
, . . . ,K

𝑖

𝑚
𝑖

𝑘

} . (6)

Similarly, if S𝑖
𝑢𝑘

̸=Ø, let us denote that

S
𝑖

𝑢𝑘
= {K
𝑖

1
, K
𝑖

2
, . . . , K

𝑖

𝑚
𝑖

𝑢𝑘

} , (7)

whereK𝑖
𝑙1

denotes the 𝑙
1
th element inS𝑖

𝑘
with the indexK𝑖

𝑙1

in the 𝑖th row of the matrixΛ.K𝑖
𝑙2

denotes the 𝑙
2
th completely

unknown element with the index K𝑖
𝑙2

in the 𝑖th row of the
matrix Λ. 𝑚𝑖

𝑘
and 𝑚𝑖

𝑢𝑘
represent the number of elements

in S𝑖
𝑘
and S𝑖

𝑢𝑘
, respectively. For example, considering the

transition rates matrix (4), one can easily check that S4
𝑘
=

{K4
1
, K4
2
, K4
3
} with K4

1
= 1, K4

2
= 3, K4

3
= 4, S4

𝑢𝑘
= {K4
1
}

with K4
1
= 2, 𝑚4

𝑘
= 3, and𝑚4

𝑢𝑘
= 1.

Remark 1. When the lower and upper bounds of the elements
in S𝑖
𝑘2

are equal, the transition rates matrix is reduced to
the considered case in Zhang et al. [7]. It is obvious that the
solvingmethod there can only treat 𝑗 ∈ S𝑖

𝑘2
as the completely

unknown case which can result in some conservativeness.

For convenience, the notations 𝐴
𝑖
= 𝐴(𝑟

𝑡
), 𝐵
𝑖
= 𝐵(𝑟

𝑡
),

Δ𝐴
𝑖
= Δ𝐴(𝑟

𝑡
), and Δ𝐵

𝑖
= Δ𝐵(𝑟

𝑡
) are used for each possible

value 𝑟
𝑖
= 𝑖, 𝑖 ∈ S, where𝐴

𝑖
and𝐵

𝑖
are known constantmatri-

ces with appropriate dimensions. Then, the system (1) can be
described by

̇𝑥 (𝑡) = (𝐴
𝑖
+ Δ𝐴
𝑖
) 𝑥 (𝑡) + (𝐵

𝑖
+ Δ𝐵
𝑖
) 𝑞 (𝑢 (𝑡)) ,

𝑥
0
= 𝑥 (0) , 𝑟

0
= 𝑟 (0) .

(8)

The following assumptions are assumed to be valid.
Assumption 1.The pair (𝐴

𝑖
, 𝐵
𝑖
) is controllable.

Assumption 2. Consider the following: Δ𝐴
𝑖
= 𝐷
𝑖
𝐸
𝑖
(𝑡)𝐹
𝑖
,

Δ𝐵
𝑖
= 𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡)𝑁
𝑖
, and |𝑀

𝑖
Ξ
𝑖
(𝑡)𝑁
𝑖
|
∞
≤ 𝜓
𝑖
, where𝐷

𝑖
, 𝐹
𝑖
,𝑀
𝑖
,

and𝑁
𝑖
are known constantmatrices with appropriate dimen-

sions,𝐸
𝑖
(𝑡) andΞ

𝑖
(𝑡) are time-varying uncertainmatrices sat-

isfying 𝐸
𝑖
𝐸
𝑇

𝑖
≤ 𝐼 and Ξ

𝑖
Ξ
𝑇

𝑖
≤ 𝐼, and the parameter 𝜓

𝑖
satisfies

0 ≤ 𝜓
𝑖
< 1.

In addition, the quantizer 𝑞(⋅) is defined by an operator
function round(⋅) that rounds towards the nearest integer;
that is,

𝑞 (𝑢 (𝑡)) = 𝜇 ⋅ round(𝑢 (𝑡)
𝜇

) , (9)

where 𝜇(>0) is called a quantizing level of the quantizer. In
computer-based control systems, the value of 𝜇 depends on
the sampling accuracy and is known a priori. 𝑞(⋅) is the uni-
form quantizer with the fixed level 𝜇. Define 𝑒

𝜇
= 𝑞(𝑢(𝑡)) −

𝑢(𝑡), since each component of 𝑒
𝜇
is bounded by the half of the

quantizing level 𝜇; thus, we have |𝑒
𝜇
|
∞
≤ 𝜇/2.

The objective of this paper is to design the state-feedback
control law

𝑢 (𝑡) = 𝐾
𝑖
𝑥 + 𝑢
𝑖𝑐
, 𝐾
𝑖
= 𝐾 (𝑟

𝑡
) , when 𝑟

𝑡
= 𝑖, (10)

such that the resulting closed-loop system is stochastically
stable and obtains as small value of the𝐻

2
cost index for the

Markovian jump linear uncertain systems given in the follow-
ing as possible

J (𝑡) = E [∫
∞

𝑡

{𝑥
𝑇

(𝜏) 𝑄 (𝑟
𝜏
) 𝑥 (𝜏)

+𝑥
𝑇

(𝜏)𝐾
𝑇

(𝑟
𝜏
) 𝑅 (𝑟
𝜏
)𝐾 (𝑟
𝜏
) 𝑥 (𝜏)} 𝑑𝜏 | 𝑟

0
] ,

(11)

where𝑄(𝑟
𝑡
) and𝑅(𝑟

𝑡
) are positive definite matrices.The non-

linear part of the controller 𝑢
𝑖𝑐
is designed against the effect of

signal quantization, and the linear part 𝐾
𝑖
𝑥 is proposed to

deal with model uncertainties and to unknown transition
rates and achieve optimal𝐻

2
performance.

Remark 2. When 𝑄(𝑟
𝑡
) = 𝑄 > 0, 𝑅(𝑟

𝑡
) = 𝑅 > 0, and 𝐾(𝑟

𝑡
) =

𝐾, the above 𝐻
2
cost index is reduced to the following, (12)

which is given in Yun et al. [17]:

J (𝑡) = ∫

∞

𝑡

{𝑥
𝑇

(𝜏) 𝑄𝑥 (𝜏) + 𝑥
𝑇

(𝜏)𝐾
𝑇

𝑅𝐾𝑥 (𝜏)} 𝑑𝜏. (12)

Some useful lemmas are firstly presented before formulating
the main result.

Lemma 3 (see [21]). Given a symmetric matrix Π and matri-
ces𝑀 and𝑁with appropriate dimensions, thenΠ+𝑀𝐹(𝑡)𝑁+
𝑁
𝑇

𝐹
𝑇

(𝑡)𝑀
𝑇

< 0 for all 𝐹(𝑡) satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼, if and
only if there exists a scalar 𝜀 > 0 such that the following ine-
quality holds:

Π + 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁 < 0. (13)

Lemma 4. For any given 𝜆
𝑗
≥ 0 and matrices 𝑃

𝑗
> 0 (𝑃

𝑗
∈

𝑅
𝑛×𝑛

, 1 ≤ 𝑗 ≤ N), if there exists𝑍
𝑖
≥ 𝑃
𝑗
, then the following ine-

quality holds:

N

∑

𝑗=1

𝜆
𝑗
𝑃
𝑗
≤

N

∑

𝑗=1

𝜆
𝑗
𝑍
𝑖
. (14)

Proof. According to 𝑍
𝑖
≥ 𝑃
𝑗
and 𝜆

𝑗
≥ 0, one can obtain that

𝜆
𝑗
𝑍
𝑖
≥ 𝜆
𝑗
𝑃
𝑗
, which further imply that inequality (14) holds.

Remark 5. In Shen and Yang [9], the inequality ∑N
𝑗=1
𝜆
𝑗
𝑃
𝑗
≤

(∑
N
𝑗=1
𝜆
𝑗
)(∑

N
𝑗=1
𝑃
𝑗
) is introduced to obtain design conditions.

It is clear that the utilization of Lemma 4 will result in less
conservativeness sincemax {𝑃

1
, 𝑃
2
, . . . , 𝑃N} < ∑

N
𝑗=1
𝑃
𝑗
for any

𝑃
𝑖
> 0.

Lemma 6. For 𝛼, 𝛽 ∈ 𝑅𝑛, 𝑝 ≥ 1, and 𝑞 ≥ 1, the following ine-
quality holds:






𝛼
𝑇

𝛽






≤ |𝛼|
𝑝





𝛽



𝑞
, 𝑝
−1

+ 𝑞
−1

= 1. (15)

Lemma 7 (see [22]). For the symmetric and positive definite
matrices 𝑃 and 𝑄, if 𝑃 ≥ 𝑄 > 0, then 𝑄−1 ≥ 𝑃−1 > 0.
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Theorem 8. For the system (1) subject to Assumptions 1 and 2,
suppose that there exist the symmetric positive definite matrices
𝑋
𝑖
, general matrices 𝑌

𝑖
, and positive scalars 𝜀

𝑖
, 𝛿
𝑖
, and 𝛾 such

that

[

[

[

[

[

[

[

[

[

[

Γ
11

𝑋
𝑖
𝐹
𝑇

𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

𝑖
Γ
14

Γ
15

𝑋
𝑖

𝑌
𝑖

∗ −𝜀
𝑖
𝐼 0 0 0 0 0

∗ ∗ −𝛿
𝑖
𝐼 0 0 0 0

∗ ∗ ∗ Γ
44

0 0 0

∗ ∗ ∗ ∗ −𝑍
𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝑄
−1

𝑖
0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
−1

𝑖

]

]

]

]

]

]

]

]

]

]

< 0,

𝑍
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
,

(16)

[

[

[

[

[

[

[

[

Φ
11

𝑋
𝑖
𝐹
𝑇

𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

𝑖
Φ
14

𝑋
𝑖

𝑌
𝑇

𝑖

∗ −𝜀
𝑖
𝐼 0 0 0 0

∗ ∗ −𝛿
𝑖
𝐼 0 0 0

∗ ∗ ∗ Φ
44

0 0

∗ ∗ ∗ ∗ −𝑄
−1

𝑖
0

∗ ∗ ∗ ∗ ∗ −𝑅
−1

𝑖

]

]

]

]

]

]

]

]

< 0,

𝑋
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
,

(17)

[
𝛾 𝑥
𝑇

0

𝑥
0
𝑋
𝑖

] > 0, (18)

where
Γ
11
= 𝐻𝑒 (𝐴

𝑖
𝑋
𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝑌
𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖

+ 𝜆
𝑖𝑖
𝑋
𝑖
,

Γ
14
= [√𝜆

𝑖K𝑖
1

𝑋
𝑖
, √𝜆
𝑖K𝑖
2

𝑋
𝑖
, . . . , √𝜆𝑖K𝑖

𝑚
𝑖

𝑘

𝑋
𝑖
] ,

Γ
44
= diag{−𝑋K𝑖

1

, −𝑋K𝑖
2

, . . . , −𝑋K𝑖
𝑚
𝑖

𝑘

} ,

Γ
15
=
√
− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖
,

Φ
11
= 𝐻𝑒 (𝐴

𝑖
𝑋
𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝑌
𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖

− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖
,

Φ
14
= [√𝜆

𝑖K𝑖
1

𝑋
𝑖
, √𝜆
𝑖K𝑖
2

𝑋
𝑖
, . . . , √𝜆𝑖K𝑖

𝑚
𝑖

𝑘

𝑋
𝑖
] ,

Φ
44
= diag{−𝑋K𝑖

1

, −𝑋K𝑖
2

, . . . , −𝑋K𝑖
𝑚
𝑖

𝑘

} .

(19)

Then, the controller designed as

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) + 𝑢

𝑖𝑐
(𝑡) (20)

can drive the state trajectory to the origin asymptotically and
can obtain the𝐻

2
cost by theminimum of 𝑟, where𝐾

𝑖
= 𝑌
𝑖
𝑋
−1

𝑖
,

𝑃
𝑖
= 𝑋
−1

𝑖
, and 𝑢

𝑖𝑐
= (−(1 + 𝜓)𝜇/2(1 − 𝜓)) sign(𝑥𝑇𝑃

𝑖
𝐵
𝑖
).

Proof. Take the Lyapunov function candidate 𝑉 = 𝑥
𝑇

𝑃
𝑖
𝑥;

then, along the system trajectory of plant (1), the weak infini-
tesimal operatorI𝑥

𝑎
[⋅] of the process {𝑥(𝑡), 𝑟

𝑡
, 𝑡 ≥ 0} for plant

(8) at the point {𝑡, 𝑥, 𝑖} is given by Kushner [23] as follows:

I
𝑥

𝑎
[𝑉] = ̇𝑥

𝑇

𝑃
𝑖
𝑥 + 𝑥
𝑇

𝑃
𝑖
̇𝑥 + 𝑥
𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥

= [(𝐴
𝑖
+ Δ𝐴
𝑖
) 𝑥 + (𝐵

𝑖
+ Δ𝐵
𝑖
) (𝐾
𝑖
𝑥 + 𝑢
𝑖𝑐
+ 𝑒
𝜇
)]

𝑇

𝑃
𝑖
𝑥

+ 𝑥
𝑇

𝑃
𝑖
[(𝐴
𝑖
+ Δ𝐴
𝑖
) 𝑥 + (𝐵

𝑖
+ Δ𝐵
𝑖
) (𝐾
𝑖
𝑥 + 𝑢
𝑖𝑐
+ 𝑒
𝜇
)]

+ 𝑥
𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥

= 𝑥
𝑇

[(𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑖
+ Δ𝐴
𝑖
)

+ 𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)𝐾
𝑖
+𝐾
𝑇

𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)
𝑇

𝑃
𝑖
] 𝑥

+ 2𝑥
𝑇

𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
) (𝑢
𝑖𝑐
+ 𝑒
𝜇
) + 𝑥
𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥.

(21)

According to Assumption 2, 𝑢
𝑖𝑐
inTheorem 8, and Lemma 7,

one can obtain that

2𝑥
𝑇

𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
) (𝑢
𝑖𝑐
+ 𝑒
𝜇
)

= 2𝑥
𝑇

𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2𝑥
𝑇

𝑃
𝑖
Δ𝐵
𝑖
(𝑢
𝑖𝑐
+ 𝑒
𝜇
) + 2𝑥

𝑇

𝑃
𝑖
𝐵
𝑖
𝑒
𝜇

= 2𝑥
𝑇

𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2𝑥
𝑇

𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡)𝑁
𝑖
(𝑢
𝑖𝑐
+ 𝑒
𝜇
)

+ 2𝑥
𝑇

𝑃
𝑖
𝐵
𝑖
𝑒
𝜇

≤ 2𝑥
𝑇

𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1





𝑀
𝑖
Ξ
𝑖
(𝑡)𝑁
𝑖




∞
(




𝑢
𝑖𝑐




∞
+

𝜇

2

)

+ 2






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1

𝜇

2

= 2𝑥
𝑇

𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1
𝜓(





𝑢
𝑖𝑐




∞
+

𝜇

2

)

+






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1
𝜇

= 2𝑥
𝑇

𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ (1 + 𝜓)






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1
𝜇

+ 2𝜓






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1





𝑢
𝑖𝑐




∞

= −

(1 + 𝜓) 𝜇

1 − 𝜓






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1
+ (1 + 𝜓)






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1
𝜇

+

𝜓 (1 + 𝜓) 𝜇

1 − 𝜓






𝑥
𝑇

𝑃
𝑖
𝐵
𝑖





1
= 0.

(22)
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It follows from (21) and (22) that

I
𝑥

𝑎
[𝑉] ≤ 𝑥

𝑇

[(𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑖
+ Δ𝐴
𝑖
)

+𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)𝐾
𝑖
+ 𝐾
𝑇

𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)
𝑇

𝑃
𝑖
] 𝑥

+ 𝑥
𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥.

(23)

Furthermore, consider the following inequality:

(𝐴
𝑖
+ Δ𝐴
𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑖
+ Δ𝐴
𝑖
) + 𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)𝐾
𝑖

+ 𝐾
𝑇

𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)
𝑇

𝑃 +

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0.

(24)

Since Δ𝐵
𝑖
= 𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡)𝑁
𝑖
and Δ𝐴

𝑖
= 𝐷
𝑖
𝐸
𝑖
(𝑡)𝐹
𝑖
, the above

inequality can be rewritten as

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝑃
𝑖
𝐷
𝑖
𝐸
𝑖
(𝑡) 𝐹
𝑖
+ 𝐹
𝑇

𝑖
𝐸
𝑇

𝑖
(𝑡) 𝐷
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖

+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡)𝑁
𝑖
𝐾
𝑖

+ 𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
Ξ
𝑇

𝑖
(𝑡)𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0.

(25)

Using Lemma 3, it is equivalent to

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝜀
𝑖
𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
+

1

𝜀
𝑖

𝐹
𝑇

𝑖
𝐹
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖

+ 𝛿
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

1

𝛿
𝑖

𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖

+

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0.

(26)

That is,

𝐻𝑒 (𝐴
𝑇

𝑖
𝑃
𝑖
) + 𝐻𝑒 (𝑃

𝑖
𝐵
𝑖
𝐾
𝑖
) + 𝜀
𝑖
𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
+

1

𝜀
𝑖

𝐹
𝑇

𝑖
𝐹
𝑖

+ 𝛿
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

1

𝛿
𝑖

𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖
+ ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗

+ ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗
+ 𝜆
𝑖𝑖
𝑃
𝑖
+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0.

(27)

Two cases will be considered.

Case 1 (𝜆
𝑖𝑖
∈ S𝑖
𝑘
). In this case, using Lemma 4, one can see

that

𝐻𝑒 (𝐴
𝑇

𝑖
𝑃
𝑖
) + 𝐻𝑒 (𝑃

𝑖
𝐵
𝑖
𝐾
𝑖
) + 𝜀
𝑖
𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖

+

1

𝜀
𝑖

𝐹
𝑇

𝑖
𝐹
𝑖
+ 𝛿
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

1

𝛿
𝑖

𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖

+ ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗
+ ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑊
𝑖
+ 𝜆
𝑖𝑖
𝑃
𝑖

+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0,

𝑃
𝑗
≤ 𝑊
𝑖
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(28)

Substituting∑
𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
= −∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
−𝜆
𝑖𝑖
into the first

inequality in (22) and using the boundary information of the
elements of the transition rates matrix, one can achieve that

𝐻𝑒 (𝐴
𝑇

𝑖
𝑃
𝑖
) + 𝐻𝑒 (𝑃

𝑖
𝐵
𝑖
𝐾
𝑖
) + 𝜀
𝑖
𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖

+

1

𝜀
𝑖

𝐹
𝑇

𝑖
𝐹
𝑖
+ 𝛿
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

1

𝛿
𝑖

𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖

+ ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗
− ( ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
+ 𝜆
𝑖𝑖
)𝑊
𝑖

+ 𝜆
𝑖𝑖
𝑃
𝑖
+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0,

𝑃
𝑗
≤ 𝑊
𝑖
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(29)

Case 2 (𝜆
𝑖𝑖
∈ S𝑖
𝑢𝑘
; namely, it is completely unknown). In such

case, let us take 𝜆
𝑖𝑖
= −∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
− ∑
𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
into (21);

then, one can see that

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝜀
𝑖
𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
+

1

𝜀
𝑖

𝐹
𝑇

𝑖
𝐹
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖

+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝛿
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖

+

1

𝛿
𝑖

𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖
+ ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑃
𝑗
+ ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑗

+ (− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
− ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
)𝑃
𝑖
+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0.

(30)

Then, the stochastic stability can be guaranteed when

𝐻𝑒 (𝐴
𝑇

𝑖
𝑃
𝑖
) + 𝐻𝑒 (𝑃

𝑖
𝐵
𝑖
𝐾
𝑖
) + 𝜀
𝑖
𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
+

1

𝜀
𝑖

𝐹
𝑇

𝑖
𝐹
𝑖

+ 𝛿
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

1

𝛿
𝑖

𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖
+ ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑃
𝑗

− ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
𝑖
+ 𝑄
𝑖
+ 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
< 0,

𝑃
𝑗
≤ 𝑃
𝑖
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(31)
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For Case 1, pre- and postmultiplying𝑃−1
𝑖

in the first inequality
in (27) and using Lemma 7 in the second inequality in (21),
one can get that

𝐻𝑒 (𝑃
−1

𝑖
𝐴
𝑇

𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝐾
𝑖
𝑃
−1

𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+

1

𝜀
𝑖

𝑃
−1

𝑖
𝐹
𝑇

𝑖
𝐹
𝑖
𝑃
−1

𝑖

+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
+

1

𝛿
𝑖

𝑃
−1

𝑖
𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖
𝑃
−1

𝑖

+ ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃
−1

𝑖
𝑃
𝑗
𝑃
−1

𝑖
− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑃
−1

𝑖
𝑊
𝑖
𝑃
−1

𝑖

+ 𝜆
𝑖𝑖
𝑃
−1

𝑖
+ 𝑃
−1

𝑖
𝑄
𝑖
𝑃
−1

𝑖
+ 𝑃
−1

𝑖
𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
𝑃
−1

𝑖
< 0,

𝑊
−1

𝑖
≤ 𝑃
−1

𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(32)

Let𝑋
𝑖
= 𝑃
−1

𝑖
, 𝑌
𝑖
= 𝐾
𝑖
𝑃
−1

𝑖
, and 𝑍

𝑖
= 𝑊
−1

𝑖
; then, we have

𝐻𝑒 (𝐴
𝑖
𝑋
𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝑌
𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+

1

𝜀
𝑖

𝑋
𝑖
𝐹
𝑇

𝑖
𝐹
𝑖
𝑋
𝑖

+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
+

1

𝛿
𝑖

𝑌
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝑌
𝑖
+ ∑

𝑗∈S𝑖
𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖

− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖
𝑍
−1

𝑖
𝑋
𝑖
+ 𝜆
𝑖𝑖
𝑋
𝑖
+ 𝑋
𝑖
𝑄
𝑖
𝑋
𝑖
+ 𝑌
𝑇

𝑖
𝑅
𝑖
𝑌
𝑖
< 0,

𝑍
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(33)

Applying the Schur complement formula, one can get (16).
For Case 2, pre- and postmultiplying 𝑃−1

𝑖
in the first ine-

quality in (28) and applying Lemma 7 to the second inequal-
ity in (28), one can obtain that

𝐻𝑒 (𝑃
−1

𝑖
𝐴
𝑇

𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝐾
𝑖
𝑃
−1

𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+

1

𝜀
𝑖

𝑃
−1

𝑖
𝐹
𝑇

𝑖
𝐹
𝑖
𝑃
−1

𝑖

+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
+

1

𝛿
𝑖

𝑃
−1

𝑖
𝐾
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝐾
𝑖
𝑃
−1

𝑖

+ ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑃
−1

𝑖
𝑃
𝑗
𝑃
−1

𝑖
− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑃
−1

𝑖
+ 𝑃
−1

𝑖
𝑄
𝑖
𝑃
−1

𝑖

+ 𝑃
−1

𝑖
𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
𝑃
−1

𝑖
< 0,

𝑃
−1

𝑖
≤ 𝑃
−1

𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(34)

Let𝑋
𝑖
= 𝑃
−1

𝑖
and 𝑌

𝑖
= 𝐾
𝑖
𝑃
−1

𝑖
; then, one can see that

𝐻𝑒 (𝐴
𝑖
𝑋
𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝑌
𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+

1

𝜀
𝑖

𝑋
𝑖
𝐹
𝑇

𝑖
𝐹
𝑖
𝑋
𝑖

+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
+

1

𝛿
𝑖

𝑌
𝑇

𝑖
𝑁
𝑇

𝑖
𝑁
𝑖
𝑌
𝑖

+ ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖
− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖

+ 𝑋
𝑖
𝑄
𝑖
𝑋
𝑖
+ 𝑌
𝑇

𝑖
𝑅
𝑖
𝑌
𝑖
< 0,

𝑋
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
.

(35)

Thus, the LMIs in (17) are derived by using the Schur comple-
ment formula.

From the above proof, one can see that

I
𝑥

𝑎
[𝑉] < −𝑥

𝑇

𝑄
𝑖
𝑥 − 𝑥
𝑇

𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
𝑥. (36)

It follows from Kushner [23] that
E [𝑉 (𝑡, 𝑥, 𝑖) | 𝑟

0
] − 𝑉 (𝑥

0
, 𝑟
0
)

≤ −E [∫
𝑡

0

{𝑥
𝑇

(𝜏) 𝑄
𝑖
𝑥 (𝜏) − 𝑥

𝑇

(𝜏)𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
𝑥 (𝜏)} 𝑑𝜏] .

(37)
Since E[𝑉(𝑡, 𝑥, 𝑖) | 𝑟

0
] ≥ 0, by some simple calculation, one

can achieve that

J (𝑡) ≤ J (0) ≤ 𝑉 (𝑥
0
, 𝑟
0
) = 𝑥
𝑇

0
𝑃
𝑖
𝑥
0
≤ 𝛾. (38)

Therefore, the minimum cost can be obtained by minimizing
𝛾. Thus, the proof is achieved.

Remark 9. The merit of the proposed results lies in that the
transition rates of the jumping process are assumed to be
more general, which means that some elements in the tran-
sition rates matrix have been exactly known, some ones have
beenmerely knownwith lower and upper bounds, and others
may have no information to use. Dealing with the unknown
transition rates, a less conservative method is used. At the
same time, the impact of the input signal quantization on the
system is also considered. Finally, the controller design condi-
tions are presented in the framework of LMIs.

In order to make comparison with the design method
using the LMIs technique in Shen and Yang [9], we present
the conditions designed by the utilization of Lemma 2 there.

Proposition 10. For the system (1) subject to Assumptions
1 and 2, suppose that there exist symmetric positive definite
matrices𝑋

𝑖
, general matrices 𝑌

𝑖
, and positive scalars 𝜀

𝑖
, 𝛿
𝑖
, and

𝛾 such that

[

[

[

[

[

[

[

[

[

[

Γ
11

𝑋
𝑖
𝐹
𝑇

𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

𝑖
Γ
14

Γ
15

𝑋
𝑖

𝑌
𝑖

∗ −𝜀
𝑖
𝐼 0 0 0 0 0

∗ ∗ −𝛿
𝑖
𝐼 0 0 0 0

∗ ∗ ∗ Γ
44

0 0 0

∗ ∗ ∗ ∗ −Γ
55

0 0

∗ ∗ ∗ ∗ ∗ −𝑄
−1

𝑖
0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
−1

𝑖

]

]

]

]

]

]

]

]

]

]

< 0,

𝑍
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
,

(39)

[

[

[

[

[

[

[

[

Φ
11

𝑋
𝑖
𝐹
𝑇

𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

𝑖
Φ
14

𝑋
𝑖

𝑌
𝑇

𝑖

∗ −𝜀
𝑖
𝐼 0 0 0 0

∗ ∗ −𝛿
𝑖
𝐼 0 0 0

∗ ∗ ∗ Φ
44

0 0

∗ ∗ ∗ ∗ −𝑄
−1

𝑖
0

∗ ∗ ∗ ∗ ∗ −𝑅
−1

𝑖

]

]

]

]

]

]

]

]

< 0,

𝑋
𝑖
≤ 𝑋
𝑗
, 𝑗 ∈ S

𝑖

𝑢𝑘
,

(40)

[
𝛾 𝑥
𝑇

0

𝑥
0
𝑋
𝑖

] > 0, (41)
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where

Γ
11
= 𝐻𝑒 (𝐴

𝑖
𝑋
𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝑌
𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖

+ 𝜆
𝑖𝑖
𝑋
𝑖
,

Γ
14
= [√𝜆

𝑖K𝑖
1

𝑋
𝑖
, √𝜆
𝑖K𝑖
2

𝑋
𝑖
, . . . , √𝜆𝑖K𝑖

𝑚
𝑖

𝑘

𝑋
𝑖
] ,

Γ
44
= diag{−𝑋K𝑖

1

, −𝑋K𝑖
2

, . . . , −𝑋K𝑖
𝑚
𝑖

𝑘

} ,

Γ
15
=
[

[

√
− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖
,
√
− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖
, . . . ,

√
− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖

]

]

,

Γ
55
= diag{−𝑋K𝑖

1

, −𝑋K𝑖
2

, . . . , −𝑋K𝑖
𝑚
𝑖

𝑢𝑘

} ,

Φ
11
= 𝐻𝑒 (𝐴

𝑖
𝑋
𝑖
) + 𝐻𝑒 (𝐵

𝑖
𝑌
𝑖
) + 𝜀
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
+ 𝛿
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖

− ∑

𝑗∈S𝑖
𝑘

𝜆
𝑖𝑗
𝑋
𝑖
,

Φ
14
= [√𝜆

𝑖K𝑖
1

𝑋
𝑖
, √𝜆
𝑖K𝑖
2

𝑋
𝑖
, . . . , √𝜆𝑖K𝑖

𝑚
𝑖

𝑘

𝑋
𝑖
] ,

Φ
44
= diag{−𝑋K𝑖

1

, −𝑋K𝑖
2

, . . . , −𝑋K𝑖
𝑚
𝑖

𝑘

} .

(42)

Then, the controller designed as

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) + 𝑢

𝑖𝑐
(𝑡) (43)

can drive the state trajectory to the origin asymptotically and
can obtain the 𝐻

2
cost by minimizing 𝑟, where 𝐾

𝑖
= 𝑌
𝑖
𝑋
−1

𝑖
,

𝑃
𝑖
= 𝑋
−1

𝑖
, and 𝑢

𝑖𝑐
= (−(1 + 𝜓)𝜇/2(1 − 𝜓)) sign(𝑥𝑇𝑃

𝑖
𝐵
𝑖
).

Proof. The proof process is similar to that in Theorem 8 but
with replacing 𝑃

𝑗
≤ 𝑊
𝑖
, 𝑗 ∈ S𝑖

𝑢𝑘
, and ∑

𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑊
𝑗
with

(∑
𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
)(∑
𝑗∈S𝑖
𝑢𝑘
,𝑗 ̸= 𝑖

𝑃
𝑗
) in (22). The details are omitted

here for space limitation.

4. Numerical Example

An example is presented to illustrate the effectiveness of the
proposed method.

Consider the MJLSs with four operation modes as fol-
lows:

𝐴
1
= [

1 0.2

0.4 −4
] , 𝐴

2
= [

−1.5 1.2

1.4 −5
] ,

𝐴
3
= [

−1 3

2 −2
] , 𝐴

4
= [

0 3

4 0
] ,

𝐵
1
= [

0.5

0.2
] , 𝐵

2
= [

0.1

0.3
] ,

𝐵
3
= [

0

1
] , 𝐵

4
= [

0

1
] ,

Table 1: Comparison of optimal 𝛾.

Theorem 8 Proposition 10
1.4518 2.4567

𝐷
1
= [

0

2
] , 𝐷

2
= [

1

0
] ,

𝐷
3
= [

0.4

0.8
] , 𝐷

4
= [

−0.5

0.5
] ,

𝐹
1
= [1 0] , 𝐹

2
= [0.5 1] ,

𝐹
3
= [0 0.3] , 𝐹

4
= [0.5 0.8] ,

𝑀
1
= 0.4, 𝑀

2
= 0.6, 𝑀

3
= 0.5, 𝑀

4
= 1,

𝑁
1
= 0.8, 𝑁

2
= 0.2, 𝑁

3
= 0.1, 𝑁

4
= 0.5.

(44)

The considered transition rates matrix is given as follows:

Λ =

[

[

[

[

−1.3 0.2 ? ?

? 𝛼
1
0.3 0.3

0.6 ? ? ?

0.4 𝛼
2

? 𝛼
3

]

]

]

]

, (45)

where −1.2 ≤ 𝛼
1
≤ −0.8, 0.6 ≤ 𝛼

2
≤ 0.8, and −2 ≤ 𝛼

3
≤ −1.5.

Choosing 𝑥
0
= [1; −0.5] and solving (16)–(18) in Theorem 8

and (34)–(38) in Proposition 10, one can obtain the optimal
𝐻
2
performance indices shown in Table 1. It can be seen that

less conservativeness is obtained by the proposed method in
Theorem 8.

For simulation, one can obtain the controller gains by
solving the LMIs inTheorem 8 as follows:

𝐾
1
= [−5.2949 −0.5848], 𝐾

2
= [−2.4332 −1.6826],

𝐾
3
= [−4.0556 −4.6580], and 𝐾

4
= [−14.2188 −12.4624]

and by considering the positive definite matrices

𝑃
1
= [

1.5153 0.1052

0.1052 0.1670
] , 𝑃

2
= [

1.1640 0.5337

0.5337 0.4595
] ,

𝑃
3
= [

0.7788 0.4269

0.4269 0.4903
] , 𝑃

4
= [

3.6726 2.8438

2.8438 2.4925
] .

(46)

The following parameters are used in the simulation: 𝜇 =
0.3, 𝐸
1
(𝑡) = 0.2 cos(𝑡), 𝐸

2
(𝑡) = 0.05 sin(𝑡), 𝐸

3
(𝑡) = 0.8 cos(3𝑡),

𝐸
4
(𝑡) = 0.4 sin(𝑡), Ξ

1
(𝑡) = 0.5 cos(3𝑡), Ξ

2
(𝑡) = 0.6 cos(2𝑡),

Ξ
3
(𝑡) = 0.2 sin(𝑡), andΞ

4
(𝑡) = 0.05 cos(2𝑡). In order to reduce

the chattering effects induced by 𝑢
𝑖𝑐
, sign(𝑥𝑇𝑃

𝑖
𝐵
𝑖
) is substi-

tuted by sat(𝑥𝑇𝑃
𝑖
𝐵
𝑖
/𝛿
𝑖
), where 𝛿

1
= 0.0015, 𝛿

2
= 0.0004,

𝛿
3
= 0.0015, and 𝛿

4
= 0.0004.

The switching mode, the control input, and the response
curves of the system states are presented in Figures 1, 2, and 3,
respectively. Among them, Figure 1 shows a possible system
modes evolutionwhichmeets the transition rates given in this
example. As shown in Figure 1, the system has 4 modes and
is in different modes at a different time. Figure 2 shows the
curve of the control input 𝑢(𝑡). With this controller, Figure 3
depicts the state response curves of the closed-loop system.
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Figure 1: Evolution of the system mode.
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Figure 2: The curve of the control input 𝑢(𝑡).

It can be seen that the considered continuous-time Marko-
vian jump linear uncertain system is stochastically stable in
spite of mismatched uncertainty, the input signal quantiza-
tion, and the partly known transition rates covering the com-
pletely known, the boundary unknown, and the completely
unknown elements in the transition rates matrix.

5. Conclusions

𝐻
2
control design for a class of the continuous-time Marko-

vian jump linear uncertain systems with partly unknown
transition rates and input quantization has been investigated.
The 𝐻

2
cost index for the Markovian jump systems is first

introduced, and then sufficient conditions of the 𝐻
2
con-

trol for the Markovian jump linear uncertain systems with
unknown transition rates have been presented.The controller
is constructed by two parts. The nonlinear part is proposed
to eliminate the effect of input quantization.The linear part is
designed by solving the LMIs conditions for achieving the𝐻

2

0

0.5

1

x

−1

−0.5

x1

x2

0 5 10 15 20
Time (s)

Figure 3: The response curve of the state 𝑥.

performance againstmodel uncertainties and unknown tran-
sition rates. In comparison with the existing result in the lit-
erature, less conservativeness has been obtained by introduc-
ing new relaxed inequality conditions. Finally, a numerical
example is given to show the effectiveness of the proposed
design method.
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This paper is concerned with 𝐻
∞

filter design problem for large-scale systems with missing measurements. The occurrence of
missing measurements is assumed to be a Bernoulli distributed sequence with known probability. The new full-dimensional filter
is designed to make the filter error system exponentially mean-square stable and achieve a prescribed𝐻

∞
performance. Sufficient

conditions are derived in terms of linear matrix inequality (LMI) for the existence of the filter, and the parameters of filter are
obtained by solving the LMI. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.

1. Introduction

Inmanypractical applications, due to the limitations imposed
by the network, missing measurements often occur due to
the network link transmission errors, network congestion,
and so forth. Currently, the research of filter and controller
design for systems with missing measurements has attracted
more attention [1–7]. In [1], the robust control problem with
missing measurements was investigated, where the missing
measurements were described by a binary switch sequence
satisfied conditional probability distribution. The similar
model was employed in [2–4], where the filtering problem
was investigated in [2, 3], and the distributed state estimation
problem was studied in [4]. In [5], the quantized𝐻

∞
control

problem is investigated for a class of nonlinear stochastic
time-delay network-based systems with probabilistic data
missing. In [6], the filtering problem with packet loss was
considered using Markov chains to describe probabilistic
losses. The problem of robust 𝐻

∞
filtering for discrete-

time switched systems with missing measurements under
asynchronous switching is considered in [7].

Most of the existing research is focused on general
linear or nonlinear discrete system. However, many actual
systems are large-scale systems which are composed of
interconnected subsystems. Although ideas of decentralized

control of large-scale systems have attracted much attention
in the literature during the past two decades, the research
about large-scale systems with missing measurements is
seldom. In [8], a decentralized 𝐻

∞
controller design for a

class of large-scale systems with missing measurements is
considered. In [9], a state feedback𝐻

∞
controller is designed

for a class of linear discrete-time large-scale systemwith both
measurement data and control data missing simultaneously.

In this paper, 𝐻
∞

filter is considered for a class of
large-scale systems with missing measurements. We apply
Bernoulli distributed sequence to describe the occurrence of
missing measurements, and the linear discrete-time large-
scale system is modeled as interconnection of 𝑁 subsystems
with missing measurements. Then, we design a new decen-
tralized filter. Sufficient conditions are derived in terms of
linear matrix inequality (LMI) which is easy to be solved by
using MATLAB LMI Toolbox for the decentralized stabiliza-
tion of this class of large-scale system.

2. Problem Formulation

Consider the linear discrete-time large-scale system compris-
ing𝑁 subsystems Ξ

𝑖
, 𝑖 = 1, 2, . . . , 𝑁; the dynamics of the 𝑖th

subsystem is described by
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Ξ
𝑖
:

{
{
{
{
{

{
{
{
{
{

{

𝑥
𝑖
(𝑘 + 1) = 𝐴

𝑖
𝑥
𝑖
(𝑘) + 𝐵

𝑖
𝑤
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘)

𝑧
𝑖
(𝑘) = 𝐶

𝑖
𝑥
𝑖
(𝑘) + 𝐷

𝑖
𝑤
𝑖
(𝑘)

𝑦
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) ,

(1)

where 𝑥
𝑖
(𝑘) ∈ 𝑅

𝑛𝑖 is the state vector of the 𝑖th subsystem
at time 𝑘, 𝑦

𝑖
(𝑘) ∈ 𝑅

𝑞𝑖 is the measurement output, 𝑧
𝑖
(𝑘) ∈

𝑅
𝑝𝑖 is the controlled output, 𝑤

𝑖
(𝑘) ∈ 𝑅

𝑟𝑖 is the disturbance
vector belonging to 𝑙

2
[0,∞), 𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, and 𝐷

𝑖
are known

real constantmatriceswith appropriate dimensions, and𝐺
𝑖𝑗
∈

𝑅
𝑛𝑖×𝑛𝑗 is the interconnectionmatrix of the subsystem of 𝑗 and
𝑖.

Themeasurement with missing data can be characterized
by

𝑥
𝑖
(𝑘) = 𝛼

𝑖
(𝑘) 𝑥
𝑖
(𝑘) , (2)

where 𝑥
𝑖
(𝑘) ∈ 𝑅

𝑚𝑖 is the actual measured state, the stochastic
variable 𝛼

𝑖
(𝑘) ∈ 𝑅 is a Bernoulli distributed white noise

sequence taking the values of 0 and 1 with certain probability

prob {𝛼
𝑖
(𝑘) = 1} = 𝐸 {𝛼

𝑖
(𝑘)} := 𝛼

𝑖
,

prob {𝛼
𝑖
(𝑘) = 0} = 1 − 𝐸 {𝛼

𝑖
(𝑘)} := 1 − 𝛼

𝑖
,

(3)

and 0 < 𝛼
𝑖
< 1 is a known positive constant.

In order to observe the states of the system (1), we
consider the following filter of order 𝑛 described by

𝑥
𝑖
(𝑘 + 1) = 𝐴

𝑖
𝑥
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘) + 𝐾

𝑖
(𝛼
𝑖
𝑥
𝑖
(𝑘) − 𝑥

𝑖
(𝑘)) ,

�̂�
𝑖
(𝑘) = 𝐶

𝑖
𝑥
𝑖
(𝑘) ,

𝑦
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) ,

(4)

where 𝑥
𝑖
(𝑘) ∈ 𝑅

𝑛𝑖 is the state estimate of system (1) and 𝐾
𝑖
is

the observer gain to be determined later.
Define the state estimation error by

𝜀
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

𝑖
(𝑘) , (5)

and the filter error output is denoted by

𝑒
𝑖
(𝑘) = 𝑧

𝑖
(𝑘) − �̂�

𝑖
(𝑘) . (6)

Then it follows from (1), (2), and (4) that

𝜀
𝑖
(𝑘 + 1) = (𝐴

𝑖
+ 𝛼
𝑖
𝐾
𝑖
) 𝜀
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝜀
𝑗
(𝑘)

+ (𝛼
𝑖
(𝑘) − 𝛼

𝑖
)𝐾
𝑖
𝑥
𝑖
(𝑘) + 𝐵

𝑖
𝑤
𝑖
(𝑘) ,

(7)

𝑒
𝑖
(𝑘) = 𝑧

𝑖
(𝑘) − �̂�

𝑖
(𝑘) = 𝐶

𝑖
𝜀
𝑖
(𝑘) + 𝐷

𝑖
𝑤
𝑖
(𝑘) . (8)

Since it contains stochastic quantities 𝛼
𝑖
(𝑘), the filter error

system (8) is actually a stochastic parameter system.Then we
use the following definition.

Definition 1 (see [10]). The filter error system (8) is said to
be exponentially mean-square asymptotically stable if with
𝑤(𝑘) = 0, there exist constants 𝜅 > 0 and 0 < 𝜏 < 1, such
that

𝐸 {‖𝑒(𝑘)‖
2

} < 𝜅𝜏
𝑘

𝐸 {‖𝑒(0)‖
2

} , ∀𝑒 (𝑘) ̸= 0, (9)

where 𝑒(𝑘) = [𝑒
𝑇

1
(𝑘) ⋅ ⋅ ⋅ 𝑒

𝑇

𝑁
(𝑘)]

𝑇

and 𝑤(𝑘) =

[𝑤
𝑇

1
(𝑘) ⋅ ⋅ ⋅ 𝑤

𝑇

𝑁
(𝑘)]

𝑇

.
With this definition, our objective is to design the full-

order filter of form (4), such that

(1) the filter error system (8) is exponentially mean-
square asymptotically stable with 𝑤(𝑘) = 0;

(2) under zero-initial condition, the filter error 𝑒(𝑘)
satisfies

∞

∑

𝑘=0

𝐸 {‖𝑒(𝑘)‖
2

} < 𝛾
2

∞

∑

𝑘=0

𝐸 {‖𝑤(𝑘)‖
2

} , (10)

where 𝛾 is a given positive constant.

3. Main Results

For investigating the stability conditions of the filter error
system (8), the following lemma is needed.

Lemma 2 (see [10]). Let 𝑉(𝜂(𝑘)) be a Lyapunov functional. If
there exist constants 𝜆 ≥ 0, 𝜇 > 0, V > 0, and 0 < 𝜓 < 1 such
that

𝜇




𝜂(𝑘)






2

≤ 𝑉 (𝜂 (𝑘)) ≤ V

𝜂 (𝑘)






2

,

𝐸 {𝑉 (𝜂 (𝑘 + 1) | 𝜂 (𝑘))} − 𝑉 (𝜂 (𝑘)) ≤ 𝜆 − 𝜓𝑉 (𝜂 (𝑘)) ,

(11)

then the sequence 𝜂(𝑘) satisfies

𝐸 {






𝜂(𝑘)
2





} ≤

V

𝜇





𝜂 (0)






2

(1 − 𝜓)
𝑘

+

𝜆

𝜇𝜓

. (12)

The main results are concluded into the following theorems.

Theorem 3. Given 0 < 𝛼
𝑖
< 1 and 𝑤(𝑘) = 0, the filter error

system (8) is exponentially mean-square asymptotically stable
if there exist positive definite matrices 𝑃

1𝑖
= 𝑃
𝑇

1𝑖
, 𝑃
2𝑖
= 𝑃
𝑇

2𝑖
and

gain matrix 𝐾
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, satisfying

[

[

[

[

[

[

−P
1

0 QT
1
+ 𝛼K 0 0

0 −P
2

0 QT
1

K
Q
1
+ 𝛼K 0 −P−1

1
0 0

0 Q
1

0 −P−1
2

0

0 K 0 0 −𝛽
2P−1
1

]

]

]

]

]

]

< 0, (13)
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where

𝑄
1
=

[

[

[

[

[

𝐴
1
𝐺
12
⋅ ⋅ ⋅ 𝐺

1𝑁

𝐺
21

𝐴
2
⋅ ⋅ ⋅ 𝐺

2𝑁

...
... d

...
𝐺
𝑁1

𝐺
𝑁2

⋅ ⋅ ⋅ 𝐴
𝑁

]

]

]

]

]

,

𝑃
1
= diag {𝑃

11
, 𝑃
12
, . . . , 𝑃

1𝑁
} ,

𝑃
2
= diag {𝑃

21
, 𝑃
22
, . . . , 𝑃

2𝑁
} ,

𝐾 = diag {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑁
} , 𝛽 = diag {𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑁
} ,

𝛽
𝑖
= ((1 − 𝛼

𝑖
) 𝛼
𝑖
)
1/2

, 𝑖 = 1, 2, . . . , 𝑁,

𝛼 = diag {𝛼
1
, 𝛼
2
, . . . , 𝛼N} .

(14)

Proof. When 𝑤(𝑘) = 0, define the Lyapunov functional

𝑉 (𝑘) =

𝑁

∑

𝑖=1

𝜀
𝑇

𝑖
(𝑘) 𝑃
1𝑖
𝜀
𝑖
(𝑘) +

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑘) 𝑃
2𝑖
𝑥
𝑖
(𝑘) , (15)

where 𝑃
1𝑖
= 𝑃
𝑇

1𝑖
, 𝑃
2𝑖
= 𝑃
𝑇

2𝑖
are positive definite matrices. It

follows from (8) that

𝑉 (𝑘 + 1) − 𝑉 (𝑘)

=

𝑁

∑

𝑖=1

((𝐴
𝑖
+ 𝛼
𝑖
𝐾
𝑖
) 𝜀
𝑖
(𝑘)

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝜀
𝑗
(𝑘) + (𝛼

𝑖
(𝑘) − 𝛼

𝑖
)𝐾
𝑖
𝑥
𝑖
(𝑘))

𝑇

𝑃
1𝑖

×((𝐴
𝑖
+ 𝛼
𝑖
𝐾
𝑖
) 𝜀
𝑖
(𝑘)

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝜀
𝑗
(𝑘) + (𝛼

𝑖
(𝑘) − 𝛼

𝑖
)𝐾
𝑖
𝑥
𝑖
(𝑘))

+

𝑁

∑

𝑖=1

(𝐴
𝑖
𝑥
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘))

𝑇

𝑃
2𝑖

×(𝐴
𝑖
𝑥
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘))

−

𝑁

∑

𝑖=1

𝜀
𝑇

𝑖
(𝑘) 𝑃
1𝑖
𝜀
𝑖
(𝑘) −

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑘) 𝑃
2𝑖
𝑥
𝑖
(𝑘) .

(16)

Noting that 𝐸{𝛼
𝑖
(𝑘) − 𝛼

𝑖
} = 0, 𝐸{(𝛼

𝑖
(𝑘) − 𝛼

𝑖
)
2

} = (1 − 𝛼
𝑖
)𝛼
𝑖
≜

𝛽
2

𝑖
, we have

𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘)

=

𝑁

∑

𝑖=1

((𝐴
𝑖
+ 𝛼
𝑖
𝐾
𝑖
) 𝜀
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝜀
𝑗
(𝑘))

𝑇

𝑃
1𝑖

×((𝐴
𝑖
+ 𝛼
𝑖
𝐾
𝑖
) 𝜀
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝜀
𝑗
(𝑘))

+

𝑁

∑

𝑖=1

(𝐴
𝑖
𝑥
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘))

𝑇

𝑃
2𝑖

×(𝐴
𝑖
𝑥
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘))

+

𝑁

∑

𝑖=1

𝛽
2

𝑖
(𝐾
𝑖
𝑥
𝑖
(𝑘))
𝑇

𝑃
1𝑖
(𝐾
𝑖
𝑥
𝑖
(𝑘))

−

𝑁

∑

𝑖=1

𝜀
𝑇

𝑖
(𝑘) 𝑃
1𝑖
𝜀
𝑖
(𝑘) −

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑘) 𝑃
2𝑖
𝑥
𝑖
(𝑘)

= 𝜂
𝑇

(𝑘) 𝜃
1
𝜂 (𝑘) ,

(17)

where 𝑥(𝑘) = [𝑥
𝑇

1
(𝑘) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑘)]

𝑇

, 𝜀(𝑘) =

[𝜀
𝑇

1
(𝑘) ⋅ ⋅ ⋅ 𝜀

𝑇

𝑁
(𝑘)]

𝑇

, and 𝜂(𝑘) = [𝜀𝑇(𝑘), 𝑥𝑇(𝑘)]𝑇.
By Schur complement, inequality (13) implies 𝜃

1
< 0.

Then we have

𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘) = 𝜂
𝑇

(𝑘) 𝜃
1
𝜂 (𝑘)

≤ −𝜆min (−𝜃1) 𝜂
𝑇

(𝑘) 𝜂 (𝑘)

< −𝛾𝜂
𝑇

(𝑘) 𝜂 (𝑘) ,

(18)

where 0 < 𝛾 < min{𝜆min(−𝜃1), 𝜎}, and then from (18), we get

𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘) < −𝛾𝜂
𝑇

(𝑘) 𝜂 (𝑘)

< −

𝛾

𝜎

𝑉 (𝜂 (𝑘)) = −𝜓𝑉 (𝜂 (𝑘)) ,

(19)

where 𝜓 = 𝛾/𝜎 ∈ (0, 1).
From Definition 1 and Lemma 2, we can conclude that

the filter error system (8) is exponentially mean-square
asymptotically stable. This completes the proof.

In the sequel, we further provide method for solving
matrix inequality (13) that is not a linear matrix inequality
(LMI).
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Theorem 4. Given 0 < 𝛼
𝑖
< 1 if there exist positive definite

matrices𝑀
1
= 𝑀
𝑇

1
,𝑀
2
= 𝑀
𝑇

2
and gain matrices𝑁

1
,𝑁
2
that

satisfy linear matrix inequality

[

[

[

[

−𝑀
1

0 𝑀
1
𝑄
𝑇

1
+ 𝛼𝑁
1
0 0

0 −𝑀
2

0 𝑀
2
𝑄
𝑇

1
𝛽𝑁
2

𝑄
1
𝑀
1
+ 𝛼𝑁
1
0 −𝑀

1
0 0

0 𝑄
1
𝑀
2

0 −𝑀
2
0

0 𝛽𝑁
2

0 0 −𝑀
1

]

]

]

]

< 0 (20)

and equation

𝑁
1
𝑃
1
= 𝑁
2
𝑃
2
= 𝐾, (21)

where𝑀
1
= 𝑃
−1

1
, 𝑀
2
= 𝑃
−1

2
, 𝑁
1
= 𝐾𝑃

−1

1
, and N

2
= KP−1
2
,

then the error system (8) is exponentially mean-square asymp-
totically stable.

Proof. Through left- and right-multiplying (13) by diag{𝑃−1
1
,

𝑃
−1

2
, 𝐼, 𝐼, 𝛽𝐼}, we have

[

[

[

[

−𝑃
−1

1
0 𝑃

−1

1
(𝑄
1
+ 𝛼𝐾)

𝑇

0 0

0 −𝑃
−1

2
0 𝑃

−1

2
𝑄
𝑇

1
𝛽𝑃
−1

2
𝐾

(𝑄
1
+ 𝛼𝐾)𝑃

−1

1
0 −𝑃

−1

1
0 0

0 𝑄
1
𝑃
−1

2
0 −𝑃

−1

2
0

0 𝛽𝐾𝑃
−1

2
0 0 −𝑃

−1

1

]

]

]

]

< 0.

(22)

For the definitions of the matrices𝑀
1
,𝑀
2
, 𝑁
1
, and 𝑁

2
, the

matrix inequality (13) is equivalent to (20) and (21). This
completes the proof.

By solving the linear matrix inequality (20) and (21), we
have𝑀

1
,𝑀
2
and𝑁

1
,𝑁
2
. Moreover, thematrices are given by

𝑃
1
= 𝑀
−1

1
, 𝑃
2
= 𝑀
−1

2
, and𝐾 = 𝑁

1
𝑃
1
= 𝑁
2
𝑃
2
.

Theorem 5. Given 0 < 𝛼
𝑖
< 1 if there exist positive definite

matrices 𝑃
1𝑖
= 𝑃
𝑇

1𝑖
, 𝑃
2𝑖
= 𝑃
𝑇

2𝑖
and gain matrix 𝐾

𝑖
, 𝑖 = 1,

2, . . . , 𝑁, that satisfy the following linear matrix inequality:

[

[

[

[

[

[

[

[

[

[

−𝑃
1

∗ ∗ ∗ ∗ ∗ ∗

0 −𝑃
2

∗ ∗ ∗ ∗ ∗

0 0 −𝛾
2

𝐼 ∗ ∗ ∗ ∗

𝑄
1
+ 𝛼𝐾 0 𝐵 −𝑃

−1

1
∗ ∗ ∗

0 𝑄
1

𝐵 0 −𝑃
−1

2
∗ ∗

0 𝐾 0 0 0 −𝛽
2

𝑃
−1

1
∗

𝐶 0 𝐷 0 0 0 −𝐼

]

]

]

]

]

]

]

]

]

]

< 0,

(23)

where 𝐶 = diag{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
}, 𝐷 = diag{𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑁
},

𝐵 = diag{𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑁
}, and Q

1
, P
1
, P
2
, K, 𝛼, 𝛽

𝑖
, and 𝛽 are

the same as (13), then the filter error system (8) is exponentially
mean-square asymptotically stable and achieves the prescribed
𝐻
∞

performance.

Proof. When 𝑤(𝑘) = 0, (23) is equivalent to (13), so the filter
error system is exponentially mean-square asymptotically
stable.

When 𝑤(𝑘) ̸= 0, define the Lyapunov functional as

𝑉 (𝑘) =

𝑁

∑

𝑖=1

𝜀
𝑇

𝑖
(𝑘) 𝑃
1𝑖
𝜀
𝑖
(𝑘) +

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑘) 𝑃
2𝑖
𝑥
𝑖
(𝑘) , (24)

then

𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘)

+ 𝐸 {𝑒
𝑇

(𝑘) 𝑒 (𝑘)} − 𝛾
2

𝐸 {𝑤
𝑇

(𝑘) 𝑤 (𝑘)}

=

𝑁

∑

𝑖=1

((𝐴
𝑖
+ 𝛼
𝑖
𝐾
𝑖
) 𝜀
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝜀
𝑗
(𝑘) + 𝐵

𝑖
𝑤
𝑖
(𝑘))

𝑇

× 𝑃
1𝑖

× ((𝐴
𝑖
+ 𝛼
𝑖
𝐾
𝑖
) 𝜀
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝜀
𝑗
(𝑘) + 𝐵

𝑖
𝑤
𝑖
(𝑘))

+

𝑁

∑

𝑖=1

(𝐴
𝑖
𝑥
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘) + 𝐵

𝑖
𝑤
𝑖
(𝑘))

𝑇

𝑃
2𝑖

×(𝐴
𝑖
𝑥
𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝐺
𝑖𝑗
𝑥
𝑗
(𝑘) + 𝐵

𝑖
𝑤
𝑖
(𝑘))

+ 𝛽
2

𝑖

𝑁

∑

𝑖=1

(𝐾
𝑖
𝑥
𝑖
(𝑘))
𝑇

𝑃
1𝑖
(𝐾
𝑖
𝑥
𝑖
(𝑘))

+ 𝐸{

𝑁

∑

𝑖=1

(𝐶
𝑖
𝜀
𝑖
(𝑘) + 𝐷

𝑖
𝑤
𝑖
(𝑘))
𝑇

× (𝐶
𝑖
𝜀
𝑖
(𝑘) + 𝐷

𝑖
𝑤
𝑖
(𝑘)) }

−

𝑁

∑

𝑖=1

𝜀
𝑇

𝑖
(𝑘) 𝑃
1𝑖
𝜀
𝑖
(𝑘)

−

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑘) 𝑃
2𝑖
𝑥
𝑖
(𝑘) − 𝛾

2

𝐸 {𝑤
𝑇

(𝑘) 𝑤 (𝑘)}

= 𝜂
𝑇

(𝑘) 𝜃
2
𝜂 (𝑘) ,

(25)

where 𝜂(𝑘) = [𝜀𝑇(𝑘), 𝑥𝑇(𝑘), 𝑤𝑇(𝑘)]𝑇. By the Schur comple-
ment, inequality (23) implies 𝜃

2
< 0, and then we have

𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘) + 𝐸 {𝑒
𝑇

(𝑘) 𝑒 (𝑘)}

− 𝛾
2

𝐸 {𝑤
𝑇

(𝑘) 𝑤 (𝑘)} < 0,

∞

∑

𝑘=0

𝐸 {𝑒
𝑇

(𝑘) 𝑒 (𝑘)} < 𝛾
2

∞

∑

𝑘=0

𝐸 {𝑤
𝑇

(𝑘) 𝑤 (𝑘)}

+ 𝐸 {𝑉 (0)} − 𝐸 {𝑉 (∞)} .

(26)
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Since the system is exponentiallymean-square asymptotically
stable, it is straightforward to see that

∞

∑

𝑘=0

𝐸 {‖𝑒(𝑘)‖
2

} < 𝛾
2

∞

∑

𝑘=0

𝐸 {‖𝑤(𝑘)‖
2

} , (27)

under the zero-initial condition. This completes the proof.

In the sequel, we further present how to convert the
matrix inequality (23) into an LMI with matrix equality
constraint.

Theorem 6. Given 0 < 𝛼
𝑖
< 1 if there exist positive definite

matrices𝑀𝑇
1
= 𝑀
1
,𝑀𝑇
2
= 𝑀
2
and gain matrices𝑁

1
,𝑁
2
that

satisfy the following linear matrix inequality

[

[

[

[

[

[

[

[

[

[

−𝑀
1

∗ ∗ ∗ ∗ ∗ ∗

0 −𝑀
2

∗ ∗ ∗ ∗ ∗

0 0 −𝛾
2

𝐼 ∗ ∗ ∗ ∗

𝑄
1
𝑀
1
+ 𝛼𝑁
1

0 𝐵 −𝑀
1

∗ ∗ ∗

0 𝑄
1
𝑀
2

𝐵 0 −𝑀
2

∗ ∗

0 𝛽𝑁
2

0 0 0 −𝑀
1
∗

𝐶𝑀
1

0 𝐷 0 0 0 −𝐼

]

]

]

]

]

]

]

]

]

]

< 0,

𝐾 = 𝑁
1
𝑃
1
= 𝑁
2
𝑃
2
,

(28)

then the filter error system (8) is exponentially mean-square
asymptotically stable and achieves the prescribed H

∞
perfor-

mance.

Proof. Through left- and right-multiplying (23) by diag{𝑃−1
1
,

𝑃
−1

2
, 𝐼, 𝐼, 𝐼, 𝛽𝐼, 𝐼} > 0, we have

[

[

[

[

[

[

[

[

[

[

[

−𝑃
−1

1
∗ ∗ ∗ ∗ ∗ ∗

0 −𝑃
−1

2
∗ ∗ ∗ ∗ ∗

0 0 −𝛾
2

𝐼 ∗ ∗ ∗ ∗

(𝑄
1
+ 𝛼𝐾)𝑃

−1

1
0 𝐵 −𝑃

−1

1
∗ ∗ ∗

0 𝑄
1
𝑃
−1

2
𝐵 0 −𝑃

−1

2
∗ ∗

0 𝛽𝐾𝑃
−1

2
0 0 0 −𝑃

−1

1
∗

𝐶𝑃
−1

1
0 𝐷 0 0 0 −𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0.

(29)

Similar to the proof ofTheorem 4, we define𝑀
1
= 𝑃
−1

1
,𝑀
2
=

𝑃
−1

2
,𝑁
1
= 𝐾𝑃
−1

1
, and𝑁

2
= 𝐾𝑃
−1

2
. Then the matrix inequality

(29) is equivalent to (23). FromTheorem 5, we can conclude
that the filter error system (8) is exponentially mean-square
asymptotically stable and achieves the prescribed𝐻

∞
perfor-

mance. The proof is completed.

4. Numerical Simulations

Consider a linear discrete-time large-scale systemwhich con-
sists of two interconnected subsystems:

𝑥
1
(𝑘 + 1) = [

−1 3

0 −0.1
] 𝑥
1
(𝑘) + [

0.2 0.3

0.1 0.2
] 𝑥
2
(𝑘)

+ [

1 0

0 1
]𝑤
1
(𝑘)

= 𝐴
1
𝑥
1
(𝑘) + 𝐺

12
𝑥
2
(𝑘) + 𝐸

1
𝑤
1
(𝑘) ,

𝑧
1
= [

1 0

−1 0.8
] 𝑥
1
(𝑘) + [

1 1

1 0
]𝑤
1
(𝑘)

= 𝐶
1
𝑥
1
(𝑘) + 𝐷

1
(𝑘) 𝑤
1
(𝑘) ,

𝑦
1
(𝑘) = 𝑥

1
(𝑘) ,

𝑥
2
(𝑘 + 1) = [

−1 1

0 −0.2
] 𝑥
2
(𝑘) + [

0.3 0.1

0.2 0.2
] 𝑥
1
(𝑘)

+ [

1 0

0 1
]𝑤
2
(𝑘)

= 𝐴
2
𝑥
2
(𝑘) + 𝐺

21
𝑥
1
(𝑘) + 𝐸

2
𝑤
2
(𝑘) ,

𝑧
2
= [

1 0

1 −0.8
] 𝑥
2
(𝑘) + [

1 1

0 1
]𝑤
2
(𝑘)

= 𝐶
2
𝑥
2
(𝑘) + 𝐷

2
(𝑘) 𝑤
2
(𝑘) ,

𝑦
2
(𝑘) = 𝑥

2
(𝑘) .

(30)

Choose the disturbance input 𝑤
1
(𝑘) = 𝑤

2
(𝑘) =

0.01 [
sin(100𝑘)
sin(100𝑘) ]. The initial state values of original system and

its observer are 𝑥
1
(0) = [

2

1
], 𝑥
2
(0) = [

2

2
] and 𝑥

1
(0) = [

0

0
],

𝑥
2
(0) = [

−1

0
], respectively. Suppose that stochastic sequence

obeys Bernoulli distribution with probability 𝐸{𝛼
1
(𝑘) |

𝛼
1
(𝑘) = 1} = 𝐸{𝛼

2
(𝑘) | 𝛼

2
(𝑘) = 1} = 0.996, given 𝛾 = 1. For

simplicity, let𝑀 = 𝑃
−1

1
= 𝑃
−1

2
and 𝑁 = 𝐾𝑃

−1

1
= 𝐾𝑃

−1

2
. We

can obtain the following parameters in Theorem 6 by using
the MATLAB YALMIP Toolbox:

𝑀
1
= [

1.3549 0.4014

0.4014 0.3819
] , 𝑀

2
= [

1.1058 0.7881

0.7881 1.6449
] ,

𝑁
1
= [

0.1755 −0.3232

−0.3232 0.0041
] , 𝑁

2
= [

0.2464 −0.3847

−0.3847 0.3580
] .

(31)
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Figure 1: Filter error 𝑒
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Figure 2: Filter error 𝑒
12
(𝑘).

The Lyapunov function solution matrices and observer pa-
rameter are given by

𝑃
11
= 𝑃
21
= 𝑀
−1

1
= [

1.0718 −1.1264

−1.1264 3.8021
] ,

𝑃
12
= 𝑃
22
= 𝑀
−1

2
= [

1.3732 −0.6579

−0.6579 0.9231
] ,

𝐾
1
= 𝑁
1
𝑃
1
= [

0.5521 −1.4264

−0.3510 0.3789
] ,

𝐾
2
= 𝑁
2
𝑃
2
= [

0.5919 −0.5172

−0.7637 0.5835
] .

(32)

The simulation results are shown in Figures 1, 2, 3, and 4.
It can be verified that∑∞

𝑘=0
𝐸{‖𝑒(𝑘)‖

2

} < 𝛾
2

∑
∞

𝑘=0
{‖𝑤(𝑘)‖

2

}

and the filter error system satisfies the prescribed 𝐻
∞

performance.
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Figure 3: Filter error 𝑒
21
(𝑘).
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Figure 4: Filter error 𝑒
22
(𝑘).

5. Conclusion

In this paper, the 𝐻
∞

filter for a class of linear discrete-
time large-scale system has been designed, where the mea-
surements are probably missing. The missing probability is
assumed to obey Bernoulli distribution. By employing the
Lyapunov stability theory combined with stochastic analysis
method, a filter is designed to reconstruct the states of orig-
inal system such that the filter error system is exponentially
stable in the sense ofmean square and achieves the prescribed
𝐻
∞

performance.
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A new optimization algorithm of the path planning for spray painting robot of workpiece surfaces is proposed. This paper first
provides the paint deposition rate function on a plane according to the experiment data. And the model of film thickness on
surface is discussed. A multiobjective constraint optimization problem is formulated. An optimal tool path with an optimal time
and film quantity deviation is generated. And the min-max method is adopted here to calculate the values. A workpiece, which is a
free-form surface, is used to test the scheme. The results of experiments have shown that the path optimization algorithm achieves
satisfactory performance. This algorithm can also be extended to other applications.

1. Introduction

Painting robot is a kind of important and advanced spray
equipment. It is widely used in automotive manufacturing.
The figure of a product and the tool parameters can strongly
influence the quality of painting. In order to achieve the
new spraying operation standards, new painting models and
tool planning algorithms are active research for many years.
Automated tool path generation is the key technology of
robotic offline programming method. At present, generating
paint gun trajectories for plane and regular surfaces have
achieved satisfactory results [1, 2]. However, it is very difficult
to get the optimal tool trajectory with an optimal time and
film quantity deviation for a free-form surface in practice.
Due to the complex geometry of free-form surfaces, it is
still a challenge to generate optimization trajectories of spray
gun that satisfies paint uniformity requirements. Currently,
automated tool planning has always caused a bottleneck for
spray painting. Hence, it is essential to develop new auto-
mated tool path planning to replace past tool path planning.
This challenging research topic has been receiving more and
more attention from academia and industry [3–5]. Some
researchers developedmodelingmethods tomodel themate-
rial deposition for the spraying processes, such as parabolic,
Gaussian, Cauchy, and Beta models. Since the spray painting
process is much more complicated than the spray forming
process, these models may not generate satisfactory paint

paths to satisfy the paint distribution requirements [6–9].
Chen et al. [10–13] developed an automatic tool path planning
for a free-form surface. However, due to that the process is
complex and very timeconsuming, their algorithms could
not resolve robot trajectory optimization problem. The paint
thickness function for free-form surfaces is not considered,
and the optimal time is not satisfying.

In this paper, the paint thickness function for free-form
surfaces is given. A multiobjective constraint optimization
problem is formulated. An optimal tool trajectory with an
optimal time and film quantity deviation is generated. And
the min-max method is adopted here to calculate the values.
The spray painting experiment demonstrates the feasibility
and availability of the optimization algorithm.

2. The Path Planning on a Plane

In this paper, a model of paint deposition rate is established
according to the experimental data. And assuming that the
shape of spray painting from the gun is a cone, and the
distribution model of spray is shown in [14].

The tool path can be defined as a series of points. There
is a feasible method for determining the tool path. Firstly,
the nonoptimal path and orientation of the tool should be
designed. Then, the problem is transformed into how to find
the optimal time sequence along this pathwhen the objectives
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Figure 1: Paint accumulation on a plane.

can be optimal. Therefore, the variable parameters which are
six (the position and orientation of the paint gun) in path
optimization problem are reduced to one. The key factor of
thismethod is 𝑑which is the overlap distance of the two spray
painting optimization paths.

Figure 1 shows the paint accumulation on a plane. 𝑥 is the
distance of a point 𝑓 in the spray cone radius to the first path.
𝐹 is the projection of the point 𝑓. 𝑂 is the projection of gun
center.Thematerial thickness of the point𝑓 can be calculated
as

𝑞
𝑓

(𝑥) =

{
{

{
{

{

𝑞
1

(𝑥) , 0 ≤ 𝑥 ≤ 𝑅 − 𝑑,

𝑞
1

(𝑥) + 𝑞
2

(𝑥) , 𝑅 − 𝑑 < 𝑥 ≤ 𝑅,

𝑞
2

(𝑥) , 𝑅 < 𝑥 ≤ 2𝑅 − 𝑑,

(1)

where 𝑞
1
(𝑥) and 𝑞

2
(𝑥) are thematerial thickness of the point

𝑓 when the tool sprays on two adjacent paths. 𝑞
1
(𝑥) and

𝑞
2
(𝑥) can be calculated as

𝑞
1

(𝑥) = 2 ∫

𝑡1

0

𝑓 (𝑟
1
) 𝑑𝑡, 0 ≤ 𝑥 ≤ 𝑅,

𝑞
2

(𝑥) = 2 ∫

𝑡2

0

𝑓 (𝑟
2
) 𝑑𝑡, 𝑅 − 𝑑 ≤ 𝑥 ≤ 2𝑅 − 𝑑,

𝑡
1

=

√𝑅
2

− 𝑥
2

V
; 𝑡

2
=

√𝑅
2

− (2𝑅 − 𝑑 − 𝑥)
2

V
,

𝑟
1

= √(V𝑡)2 + 𝑥
2
; 𝑟

2
= √(V𝑡)2 + (2𝑅 − 𝑑 − 𝑥)

2

,

(2)

where 𝑡
1
and 𝑡
2
are the half time of the tool spraying on two

adjacent paths. 𝑟
1
and 𝑟
2
are the distance of a point 𝑓 to the

projection of gun center. 𝑡 is the time for the gunmoving from
the point 𝑂 to 𝐹. By (2), it can be calculated as 𝑞

𝑓
(𝑥, 𝑑, V) =

(1/V)𝐽(𝑥, 𝑑), where 𝐽 is a function of 𝑥 and 𝑑. To find optimal
velocity V and overlap distance 𝑑, the mean square error of
the thickness deviation from the average thickness 𝑞

𝑑
must

be minimized:

min
𝑑∈[0,𝑅],V

𝐸 (𝑑, V) = ∫

2𝑅−𝑑

0

(𝑞
𝑑

− 𝑞
𝑠
(𝑥, 𝑑, V))

2

𝑑𝑥. (3)

A golden section method [15] is adopted here to calculate
their values.
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Figure 2: Paint accumulation on a free-form surface.

3. The Path Planning on a Surface

There are many methods to model a surface in CAD, such as
Bezier method and B-splines method. But these methods are
too complicated to model a free-form surface [16]. In order
to obtain uniform material thickness on a free-form surface,
it can use “bounding box” method to design nonoptimal path
as follows.

(1) A triangular approximation of a free-form surface is
adopted in CAD modeling.

(2) The initial normal vector of each triangle is found. A
seed triangle is chosen as the first triangle of a patch.
Before adding a new neighbor triangle, a maximum
deviation angle is calculated. After all triangles are
found, they are taken as seeds, and new triangles are
added into the patch.The process is repeated until no
more neighbor triangles can be added into the patch.

(3) The overlap distance of the two spray painting opti-
mization paths is calculated. And the non-optimal
tool paths are planned.

Paths planning must consider the free-form surface geomet-
ric features. For example, the tool paths should parallel to the
boundary of the patch. Sheng et al. [5] presented the rules of
non-optimal tool paths planning.

Figure 2 shows paint accumulation on a surface. 𝑃
1
is a

reference plane, and𝑃
2
is a parallel plane which pass the point

𝑠; 𝜃
𝑖
is the angle of gun axis and the line of the point s to gun

center; ℎ
𝑖
is the actual tool height; ℎ is the desired tool height.

Suppose the material sprayed on a small area 𝑐
1
is projected

to the area 𝑐
2
. The relationship between the two areas is

𝑆
𝑐2

= (

ℎ
𝑖

ℎ

)

2

𝑆
𝑐1

, (4)

where 𝑆
𝑐1
and 𝑆

𝑐2
are the areas of 𝑐

1
and 𝑐
2
. Based on the

assumption, the material thickness on 𝑐
2
can be expressed as

follows:

𝑞
2

= 𝑞
𝑓
(

ℎ

ℎ
𝑖

)

2

, (5)

where 𝑞
𝑓
and 𝑞

2
are the material thickness on 𝑐

1
and 𝑐

2
,

respectively.
Figure 3(a) shows a circle 𝑐

3
, which is perpendicular to the

material emission direction. The material on 𝑐
3
is projected
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Figure 4: (a) The workpiece. (b) The triangular approximation of the workpiece.

to the free-from surface with deviation angle 𝛾
𝑖
, as shown

in Figure 4(b). The material thickness on 𝑐
3
and 𝑐
4
can be

expressed as:

𝑞
3

=

𝑞
2

cos 𝜃
𝑖

,

𝑞
𝑠

= 𝑞
3
cos 𝛾
𝑖
.

(6)

Based on (5), (6), the material thickness on the free-form
surface can be obtained as

𝑞
𝑠

= 𝑞
𝑓
(

ℎ

ℎ
𝑖

)

2 cos 𝛾
𝑖

cos 𝜃
𝑖

. (7)

If the distance from the tool to the point 𝑠 is 𝑙
𝑖
, ℎ
𝑖
= 𝑙
𝑖
cos 𝜃
𝑖
.

When the deviation angle 𝛾
𝑖

≥ 90
∘, there is no material

sprayed on a surface. Therefore, the material thickness on a
free-form surface can be modeled as

𝑞
𝑠

=

{
{

{
{

{

𝑞
𝑓
(

ℎ

𝑙
𝑖

)

2 cos 𝛾
𝑖

cos 𝜃
𝑖

, 𝛾
𝑖
< 90
∘

,

0, 𝛾
𝑖
≥ 90
∘

.

(8)

Since there are many parameters that need optimizing, such
as time, material thickness uniformity, and material waste.
The process optimization of surface manufacturing is a

multiobject optimization problem. The proposed technique
for solving the optimal process planning problem is based
on approximating the optimization parameters as a piecewise
constant functions. Therefore, the path is divided into 𝑃

segments. For each segment, we continue to divide the
segment into 𝑚 smaller segments and assume the parameters
in the smaller segment do not change too much. 𝑑

𝑘
is the

length of each segment; 𝑡
𝑘
is the spraying time on the kth

segment. In the derivative of (8),

𝑑𝑞
𝑠

𝑑𝑡

=

𝑑𝑞
𝑓

𝑑𝑡

(

ℎ

𝑙
𝑖

)

2 cos 𝛾
𝑖

cos3𝜃
𝑖

= 𝑓 (𝑟
𝑖
) (

ℎ

𝑙
𝑖

)

2 cos 𝛾
𝑖

cos3𝜃
𝑖

, (9)

with 𝑟
𝑖

= ℎ tan 𝜃
𝑖
. Suppose for each smaller segment, the

spray angle 𝜃
𝑖
and deviation angel 𝛾

𝑖
do not change toomuch.

Then, for the jth triangle on a free-form surface, its material
thickness due to the kth segment can be written as

𝑞
𝑗𝑘

=

𝑚

∑

𝑖=1

𝑓 (ℎ tan 𝜃
𝑖
) (

ℎ

𝑙
𝑖

)

2 cos 𝛾
𝑖

cos3𝜃
𝑖

𝑡


𝑘
, (10)

where 𝑡


𝑘
is the spraying time on each segment.Thus,material

thickness for the 𝑖th triangle is

𝑞
𝑗

=

𝑝

∑

𝑘=1

𝑚

∑

𝑖=1

𝑓 (ℎ tan 𝜃
𝑖
) (

ℎ

𝑙
𝑖

)

2 cos 𝛾
𝑖

cos3𝜃
𝑖

𝑡
𝑘

𝑚

. (11)
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Figure 5: (a) The part of generated gun path of the workpiece. (b) Robotic spray painting experiment.
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Figure 6: Material thickness of random chosen points on the workpiece: (a) nonoptimal tool path planning; (b) optimal tool path planning.

This equation can be written as

𝑞
𝑗

=

𝑝

∑

𝑘=1

𝑑
𝑘

𝑚V
𝑘

𝑚

∑

𝑖=1

𝑓 (ℎ tan 𝜃
𝑖
) (

ℎ

𝑙
𝑖

)

2 cos 𝛾
𝑖

cos3𝜃
𝑖

. (12)

The total time to spray the free-form surface is

𝑇 =

𝑝

∑

𝑘=1

𝑡
𝑘

=

𝑝

∑

𝑘=1

𝑑
𝑘

V
𝑘

. (13)

For a given free-form surface, find theminimum time to spray
the surface such that the given constraints are satisfied and
material deviation from the required material thickness is
minimized. Suppose the required average material thickness
is 𝑞
𝑑
, and the max material thickness deviation is 𝑞

𝑤
. Then,

the tool path optimization problems can be formulated as
min 𝐿 = (𝐿

1
, 𝐿
2
) ,

s.t. 




𝑞
𝑗

− 𝑞
𝑑







≤ 𝑞
𝑤

,

(14)

where

𝐿
1

=

𝑝

∑

𝑘=1

𝑑
𝑘

V
𝑘

, 𝐿
2

=

𝑁

∑

𝑗=1

(𝑞
𝑗

− 𝑞
𝑑
)

2

,

𝑞
𝑗

=

𝑝

∑

𝑘=1

𝑑
𝑘

𝑚V
𝑘

𝑚

∑

𝑖=1

𝑓 (ℎ tan 𝜃
𝑖
) (

ℎ

𝑙
𝑖

)

2 cos 𝛾
𝑖

cos3𝜃
𝑖

.

(15)

This is a constraint multi-objective optimization problem.
There are different ways to performmulti-objective optimiza-
tion problems, such as weighted-sum approach, nonlinear
approach, and min-max approach. In order to reduce the
calculation procedure, we usemin-max approach to solve the
problem as follows.

Step 1. Weights are given. 𝜔
𝑖
> 0 and ∑

2

𝑖=1
𝜔
𝑖
= 1.

Step 2. Non-linear programming problem is solved. Variable
parameter V is introduced, V > 0; V is (𝑖 = 1, 2) a common



Mathematical Problems in Engineering 5

Table 1:The results of non-optimal and optimal tool path planning.

Optimal Non-optimal
Average (𝜇m) 49.3 48.8
Maximum (𝜇m) 55.6 58.8
Minimum (𝜇m) 45.8 41.5
Process time (S) 49.6 57.8

upper bound of 𝜔
𝑖
𝑓
𝑖
(𝑥). The following auxiliary problem can

be formulated as

min V;

s.t. 𝜔
𝑖
𝑓
𝑖
(𝑥) ≤ V (𝑖 = 1, 2) , 𝑥 ∈ 𝐷,

(16)

where 𝐷 is the feasible region for 𝑥. Then, the optimal
solution (𝑥

∗

, V∗) can be obtained.

4. Experimental Verification

Suppose the required average material thickness is
𝑞
𝑑

= 50 𝜇m, and the max material thickness deviation
is 𝑞
𝑤

= 10 𝜇m. The spray radius 𝑅 = 60mm. The material
deposition rate is 𝑓(𝑟) = (1/15)(𝑅

2

− 𝑟
2

) 𝜇m/s.
After optimizing the spray process on a plane, the

tool velocity and the overlap distance are calculated as
V = 256.6mm/s, 𝑑 = 50.2mm.

The workpiece, shown in Figure 4(a), is used to test the
algorithm. The triangular approximation of the workpiece is
shown in Figure 4(b). The parameters in the algorithm are as
follows: 𝑞

𝑤
= 10 × 10

−6mm; 𝑅 = 60mm; ℎ = 100mm; 𝑁 =

586; 𝑃 = 192; 𝑑
𝑘

= 50mm; 𝑚 = 10; 𝜔 = (0.5, 0.5)
T.The non-

optimal tool path is generated using “bounding box” method.
The part of generated gun path is shown in Figure 5(a). And
Figure 5(b) shows the robotic spray painting experiment.

The material thickness of random chosen points on
the workpiece are measured by coating thickness gauge.
Figure 6(a) shows the result for non-optimal tool path plan-
ning. Figure 6(b) shows the result for optimal tool path
planning. The results for non-optimal and optimal tool path
planning are summarized in Table 1.

5. Conclusion

A general framework for optimal tool path planning on
surfaces has been developed. A multiobjective constraint
optimization problem has been formulated. Experiments are
performed to measure the material thickness on a free-
form surface for both optimal and non-optimal tool path.
Experimental results show that the optimal tool path takes
less process time compared with the non-optimal tool path.
And the results demonstrate the advantages of the optimal
path planning algorithm.This algorithm can also be extended
to other applications such as optimal tool path for free-form
surface of cleaning robot or grinding robot.
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For nonlinear differential-algebraic-equation subsystems, whose index is one and interconnection input is locally measurable,
the problem of invertibility is discussed and the results are applied to the power systems component decentralized control. The
inverse systems’ definitions for such a class of differential-algebraic-equation subsystems are put forward. A recursive algorithm is
proposed to judge whether the controlled systems are invertible. Then physically feasible 𝛼-order integral right inverse systems
are constructed, with which the composite systems are linearizaed and decoupled. Finally, decentralized excitation and valve
coordinative control for one synchronous generator within multimachine power systems are studied and the simulation results
based on MATLAB demonstrate the effectiveness of the control scheme proposed in this paper.

1. Introduction

A number of physical systems such as power systems,
economic systems, and constrained robot systems are mathe-
matically described by differential-algebraic-equation (DAE)
systems [1]. Various concepts, theories, and methods of
ordinary-differential-equation (ODE) systems are extended
and great progress has been made for DAE systems [2–6]. In
[2], for linear DAE systems with input saturation, the com-
posite nonlinear feedback control problem was considered
through introducing the generalized Lyapunov function. In
[3], the state-feedback stabilization is considered for nonlinear
discrete DAE large-scale control systems using Lyapunov
matrix equation. 𝐻

∞
Observer was designed for a class

of continuous time nonlinear DAE systems in [4], where
necessary and sufficient condition for observer existence was
established under the worst conditions. In [5], the traditional
Kalman filter was improved and a recursive state estimation
method is presented for nonlinear DAE systems. In [6], the
output feedback compensation problem was considered by

coupling the design of controller and observer instead of
separation principle.

In order to provide a measure of the difference between
DAE systems and ODE systems, the notion of differential
index is commonly used, which corresponds to theminimum
number of differentiations of the algebraic equations required
to obtain equivalentODE systems [7]. AmongnonlinearDAE
systems, the systems of index one represent an important
class of physical systems such as power systems and electric
circuits. In [8], the Lyapunov method of nonlinear ODE
systems was extended to nonlinear DAE systems of index one
and the sufficient conditions of stability are presented. In [9],
still for such a class of nonlinear DAE systems, an explicit
constructing method was given and the state space order-
reduction realization was achieved with application to power
systems control.

Inmost existing results, the controlled systems are treated
as isolated ones. However, in many practical applications,
controlled systems are subsystems within large-scale systems
and there exist mutual influence and constraint between the
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controlled systems and the rest of the large-scale systems.
Typically, a so-called “power systems component structural
model” put forward in [10, 11] for power systems component
decentralized control problem just falls into this category.
At the same time, it should be noted that DAE subsystems
control problems are commonnot only for power systems but
also for large-scale systems of others areas [12]. As far as the
authors know, the research about nonlinear DAE subsystems
is seldom found.

Among various nonlinear control methods, the invert-
ibility of systems plays an important role in linearization and
decoupling of general nonlinear systems (not restricted to
affine form) [13]. The research on invertibility of nonlinear
DAE systems can be traced to [14, 15], where the invertibility
of continuous and discrete DAE systems was discussed,
respectively.

In this paper, for nonlinear DAE systems whose index
is one and interconnection inputs are locally measurable
and bounded, the invertibility is studied and the results are
applied to power systems component decentralized control.
The structure of this paper is as follows. Firstly, the definitions
of unit right inverse systems and 𝛼-order integral right
inverse systems are given. Secondly, a recursive algorithm is
proposed with which to determine whether the controlled
nonlinear DAE subsystems are invertible. If the controlled
systems are invertible, physically realizable 𝛼-order integral
right inverse systems are constructed through state-feedback
and dynamic compensation, with which the decoupling and
linearization of the composite systems are both achieved
so that various linear control methods and theories can be
applied. At last, decentralized excitation and valve coordina-
tive controller are designed for one synchronous generator
set within multimachine power systems. The simulation is
conducted based on MATLAB and the simulation results
illustrate the effectiveness of the proposed scheme in this
paper.

2. System Description and
Problem Formulation

We consider general nonlinear DAE subsystems as follows:

̇𝑥
𝑖
= 𝑓

𝑖
(𝑥

𝑖
, 𝑧

𝑖
, 𝑢

𝑖
, V
𝑖
) ,

𝑔
𝑖
(𝑥

𝑖
, 𝑧

𝑖
, 𝑢

𝑖
, V
𝑖
) = 0,

𝑦
𝑖
= ℎ

𝑖
(𝑥

𝑖
, 𝑧

𝑖
, 𝑢

𝑖
, V
𝑖
) , 𝑖 = 1, . . . , 𝑁,

(1)

where 𝑥
𝑖
∈ 𝑁

𝑖

0
⊂ 𝑅

𝑛𝑖
, 𝑧

𝑖
∈ 𝑀

𝑖

0
⊂ 𝑅

𝑙𝑖
, 𝑢

𝑖
∈ 𝐿

𝑖

0
⊂

𝑅
𝑚𝑖
, 𝑦

𝑖
∈ 𝐾

𝑖

0
⊂ 𝑅

𝑚𝑖
, V

𝑖
∈ 𝑆

𝑖

0
⊂ 𝑅

𝑠𝑖 are differential variable,
algebraic variable, manipulated input, controlled output, and
interconnection input, respectively. V

𝑖
reflects the influence of

the rest of the large-scale systems on controlled systems (1).
𝑓
𝑖
∈ 𝑅

𝑛𝑖
, 𝑔

𝑖
∈ 𝑅

𝑙𝑖
, ℎ

𝑖
∈ 𝑅

𝑚𝑖 are smooth vector fields. For
the sake of simplicity, we will omit the subscript 𝑖 of (1) in
the remainder of this paper. Let 𝑋

0
= (𝑥

0
, 𝑢

0
, 𝑧

0
, 𝑦

0
, V
0
) ∈ 𝑈

0

is compatible initial conditions, that is, 𝑔(𝑥
0
, 𝑧

0
, 𝑢

0
, V
0
) = 0

where 𝑈
0
= [𝑁

0
,𝑀

0
, 𝐿

0
, 𝐾

0
, 𝑆

0
] [8].

Throughout this paper, the following basic hypotheses are
made for (1).

(H1) The Jacobian matrix of 𝑔(𝑥, 𝑧, 𝑢, V) with respect to 𝑧
has constant full rank on 𝑈

0
:

rank(
𝜕𝑔

𝜕𝑧

) = 𝑙, ∀ (𝑥, 𝑧, 𝑢, 𝑦, V) ∈ 𝑈
0
, (2)

that is, (1) is of index one.
(H2) The interconnection input V and its sufficient order

derivatives are locally measurable and bounded.

Remark 1. Above basic hypotheses hold for power systems
components under normal operating conditions.

In sequel we will give inverse systems definition of
nonlinear DAE subsystems (1), including unit right inverse
systems and 𝛼-order integral right inverse systems.

The controlled output 𝑦(𝑡) of nonlinear DAE subsystems
(1) is determined together by the interconnection input V,
manipulated input 𝑢(𝑡) and initial conditions. From the
functional point of view, nonlinear DAE subsystems (1) can
be regarded as an operator (marked by 𝜃) which maps the
manipulated input 𝑢(𝑡), and interconnection input V(𝑡) to
control output 𝑦(𝑡), that is,

𝑦 = 𝜃 (𝑢, V) . (3)

Definition 2. Suppose there exist systemsΣwhich bear input-
output mapping relationship: 𝑦 = 𝜃(𝑟, V), where the input
𝑟(𝑡) = (𝑟

1
, . . . , 𝑟

𝑚
)
𝑇 is a smooth vector. For nonlinear DAE

subsystems (1), if 𝑢(𝑡) = 𝑦(𝑡), we have 𝑦(𝑡) = 𝑟(𝑡), and then
the systems Σ are the unit right inverse systems of nonlinear
DAE subsystems (1). We call systems (1) are invertible.

Definition 3. Suppose there exist systems Σ
𝛼
which bear

input-output mapping relationship: 𝑦 = 𝜃
𝛼
(𝜑, V) where the

input 𝜑(𝑡) = (𝜑
1
, . . . , 𝜑

𝑚
)
𝑇

= 𝑟
(𝛼)

= (𝑟
(𝛼1)

1
, . . . , 𝑟

(𝛼𝑚)

𝑚
)
𝑇 is

a continuous vector. For nonlinear DAE subsystems (1), if
𝑢(𝑡) = 𝑦(𝑡), we have 𝑦(𝛼) = 𝜑 where 𝑦(𝛼) = (𝑦(𝛼1)

1
, . . . , 𝑦

(𝛼𝑚)

𝑚
)
𝑇

(i.e., 𝑦
𝑖

(𝛼𝑖)

= 𝜑
𝑖
, 𝑖 = 1, . . . , 𝑚), and then the systems Σ are the

unit right inverse systems of nonlinear DAE subsystems (1).
We call systems (1) are invertible.

The aim of this paper is to study the invertibility of
nonlinear DAE subsystems (1) satisfying (H1) and (H2). The
linearization and decoupling of the composite systems can
be achieved if the controlled systems (1) are invertible. As a
result, various linear control theorems and methods can be
applied.

3. Recursive Algorithm and Invertibility of
Nonlinear DAE Subsystems

We will give a recursive algorithm, with which to determine
the invertibility of nonlinear DAE subsystems (1).
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From (2) we know that (𝜕𝑔/𝜕𝑧)−1 exist on𝑈
0
. We use the

following operator 𝐸
𝜉
(⋅):

𝐸
𝜉
(𝐹) ≜

𝜕𝐹

𝜕𝜉








0=𝑔(𝑥,𝑧,𝑢,V)

=

𝜕𝐹

𝜕𝜉

−

𝜕𝐹

𝜕𝑧

(

𝜕𝑔

𝜕𝑧

)

−1

𝜕𝑔

𝜕𝜉

(4)

to denote the Jacobian matrix of vector function
𝐹(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘)

, V, . . . , V(𝑘)) with respect to some variable
𝜉 ∈ (𝑥, 𝑢, V) under the algebraic constraint 0 = 𝑔(𝑥, 𝑧, 𝑢, V).
For the limit of space, only the procedure of step 𝑘 is
presented.

Step 𝑘 (𝑘 = 1, 2, . . .). Suppose that, until to step 𝑘, we can
get a sequence of nonnegative integers 𝛾

0
, . . . , 𝛾

𝑘−2
, 𝛾
𝑘−1

and
the distribution Δ

𝑘−1
with 𝑋𝑘−1

0
is the regular point. Around

𝑋
𝑘−1

0
we have rank𝐸

𝑢
(ℎ

𝑘−1
) = 𝛾

𝑘−1
where ℎ

𝑘−1
= [

𝐻𝑘−2

̂
ℎ𝑘−1

].
Obviously 𝛾

𝑘−1
≥ 𝛾

𝑘−2
, and let ̂ℎ

𝑘−1,1
denote 𝛾

𝑘−1
− 𝛾

𝑘−2
rows

chosen from ̂
ℎ
𝑘−1

such that rank𝐸
𝑢
([

𝐻𝑘−2

̂
ℎ𝑘−1,1

]) = 𝛾
𝑘−1

. Let

𝐻
𝑘−1

= [

𝐻𝑘−2

̂
ℎ𝑘−1,1

] and ̂ℎ
𝑘−1,2

denote the rest rows of ̂ℎ
𝑘−1

. Then
there exist neighborhood 𝑈

𝑘
= [𝑁

𝑘
,𝑀

𝑘
, 𝐿

𝑘
, 𝐾

𝑘
, 𝑆

𝑘
] ⊆ 𝑈

𝑘−1

and smooth mapping 𝜆
𝑘−1
(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘−1)

, V, . . . , V(𝑘−1))
such that

𝐸
𝑢
(
̂
ℎ
𝑘−1,2
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𝑘−1

(⋅) 𝐸
𝑢
(𝐻

𝑘−1
) , (5)

where

𝑁
𝑘
= {𝑥 | 𝑥 ∈ 𝑁

𝑘−1
, rank (𝐸

𝑢
(ℎ

𝑘−1
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}
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, rank (𝐸
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, rank (𝐸
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}

𝐾
𝑘
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rank (𝐸
𝑢
(ℎ
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)) = 𝛾

𝑘−1
}

𝑆
𝑘
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,

rank (𝐸
𝑢
(ℎ

𝑘−1
)) = 𝛾
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} .

(6)

Remark 4. If 𝐸
𝑢
(ℎ𝑘 − 1, 2) = 0, then we only need to set

𝜆
𝑘−1
(⋅) = 0.
Let

̂
ℎ
𝑘
=
̂
ℎ
𝑘
(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘)

, V, . . . , V(𝑘))

= [𝐸
𝑥
(
̂
ℎ
𝑘−1,2

) − 𝜆
𝑘−1

(⋅) 𝐸
𝑥
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)] ̇𝑥

+
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∑
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[

𝜕
̂
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𝜕𝐻
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(7)

and define recursively

ℎ
𝑘
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]

]

= 0. (8)

Let 𝑈
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𝑘
are the value region of𝑦(𝑘) and V(𝑘), respec-

tively, when 𝑥 ∈ 𝑁
𝑘−1
, 𝑧 ∈ 𝑀

𝑘−1
, 𝑢 ∈ 𝐿

𝑘−1
, (𝑦, . . . , 𝑦
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0
) and let Δ
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the distribution generated by the row vectors of 𝐸
𝑢
(ℎ

𝑘
). If

𝑋
𝑘

0
is the regular point of Δ

𝑘
, that is, the matrix 𝐸

𝑢
(ℎ

𝑘
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constant rank 𝛾
𝑘
at some neighborhood of𝑋𝑘

0
. If 𝛾

𝑘
= 𝑚, then

algorithm stops; if 𝛾
𝑘
< 𝑚, then algorithm enters next step.

In the above construction we produce a sequence of
nonnegative integers 𝛾

1
, 𝛾
2
, . . . which satisfy 0 ≤ 𝛾

1
≤ 𝛾

2
≤

𝛾
3
≤ ⋅ ⋅ ⋅ ≤ 𝑚.

Definition 5. The relative order 𝜌 for the nonlinear DAE
subsystems (1) is the least positive integer 𝑘 such that 𝛾

𝑘
= 𝑚

or 𝜌 = ∞ if 𝛾
𝑘
< 𝑚 for all 𝑘 = 1, 2, . . ..

The main results of this paper can be concluded into the
following theorems.

Theorem 6. Consider the nonlinear DAE subsystems (1) with
relative order 𝜃. If 𝜃 < ∞, then there exist unit right inverse
systems of nonlinear DAE subsystems (1).

Proof. According to the recursive algorithm, at step 𝜃 we can
get the following equation:

ℎ
𝜃
(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝜃)

, V, . . . , V(𝜃)) = 0 (9)

with rank(𝐸
𝑢
(ℎ

𝜃
)) = 𝛾

𝜃
= 𝑚. By the virtue of the Implicit

FunctionTheorem, (9) determines a unique solution about 𝑢:

𝑢 = ℎ
−1

𝜃
(𝑥, 𝑧, 𝑦, . . . , 𝑦

(𝜃)

, V, . . . , V(𝜃)) . (10)

Denote V
𝑘
= (V𝑇, . . . , (V(𝑘))𝑇)𝑇, 𝑘 = 0, 1, . . . , 𝜃 and construct

the following systems:

̇
�̂� = 𝑓 (𝑥, �̂�, ℎ

−1

𝜃
(𝑥, �̂�, 𝑟, . . . , 𝑟

(𝜃)

, V
𝜃
) , V) ,

(𝑥 (𝑡
0
) , �̂� (𝑡

0
)) = (𝑥 (𝑡

0
) , 𝑧 (𝑡

0
))

0 = 𝑔 (𝑥, �̂�, ℎ
−1

𝜃
(𝑥, �̂�, 𝑟, . . . , 𝑟

(𝜃)

, V
𝜃
) , V) ,

𝑦 = ℎ
−1

𝜃
(𝑥, �̂�, 𝑟, . . . , 𝑟

(𝜃)

, V
𝜃
) ,

(11)

where 𝑥 ∈ 𝑅
𝑛

, �̂� ∈ 𝑅
𝑙

, 𝑟 ∈ 𝑅
𝑚 and 𝑦 ∈ 𝑅

𝑚, are
differential variables, algebraic variables, manipulated input,
and controlled output, respectively. Systems (11) are unit
right inverse systems of nonlinear DAE subsystems (1), and
conclusion can be proved as follows.

By virtue of the recursive algorithm, there exists a row

transmit matrix Π
𝑘
= [

𝐼𝑟
𝑘−1

0

0 Π̂𝑘1

0 Π̂𝑘2

] , 𝑘 = 1, . . . , 𝜃 − 1 where
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Π̂
𝑘1
∈ 𝑅

(𝛾𝑘−𝛾𝑘−1)×(𝑚−𝛾𝑘−1) and Π̂
𝑘2
∈ 𝑅

(𝑚−𝛾𝑘)×(𝑚−𝛾𝑘−1) such that
[

𝐻𝑘−1

̂
ℎ𝑘,1

] = Π
𝑘
⋅ ℎ

𝑘
, that is,

𝐻
𝑘
=
[

[

𝐻
𝑘−1

̂
ℎ
𝑘,1

]

]

=
[

[

𝐻
𝑘−1

Π̂
𝑘1
(

𝑑

𝑑𝑡

̂
ℎ
𝑘−1,2

− 𝜆
𝑘

𝑑

𝑑𝑡

𝐻
𝑘−1
)

]

]

,

̂
ℎ
𝑘,2
= Π̂

𝑘2
(

𝑑

𝑑𝑡

̂
ℎ
𝑘−1,2

− 𝜆
𝑘

𝑑

𝑑𝑡

𝐻
𝑘−1
) .

(12)

For ℎ
0
especially, we have [𝐻0

̂
ℎ0

] = [
Π̂01

Π̂02

] ℎ
0
, where Π̂

01
∈

𝑅
𝑟0×𝑚 and Π̂

𝑘2
∈ 𝑅

(𝑚−𝛾0)×𝑚.
When the manipulated input of nonlinear DAE subsys-

tems (1) is set to 𝑢(𝑡) = 𝑦(𝑡), the states (𝑥(𝑡), 𝑧(𝑡)) satisfy

̇𝑥 = 𝑓 (𝑥, 𝑧, 𝑦, V) ,

0 = 𝑔 (𝑥, 𝑧, 𝑦, V) .
(13)

From (11) we have ̇
�̂� = 𝑓(𝑥, �̂�, 𝑦, V), 0 = 𝑔(𝑥, �̂�, 𝑦, V) as well

as (𝑥(𝑡
0
), �̂�(𝑡

0
)) = (𝑥(𝑡

0
), 𝑧(𝑡

0
)); thus, we have (𝑥, �̂�) = (𝑥, 𝑧).

Define 𝑦
0

= Π̂
0,1
𝑦, 𝑦

0
= Π̂

0,2
𝑦 and let 𝑦

𝑘
=

Π̂
𝑘,1
𝑦
𝑘−1
, 𝑦

𝑘
= Π̂

𝑘,2
𝑦
𝑘−1
, 𝑘 = 1, . . . , 𝜃 − 1. It can be proved

that if the manipulated input 𝑟(𝑡) ∈ 𝐶
𝑛

(𝑅) of systems (11)
satisfies ℎ

𝛼
(𝑥, �̂�, 𝑦, 𝑟, . . . , 𝑟

(𝛼)

, V
𝜃
) = 0 and

𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑟, . . . , 𝑟

(𝑘)

, V
𝑘
)

= 𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘)

, V
𝑘
) , 𝑘 = 1, . . . , 𝜃 − 1

(14)

as well as initial conditions satisfying

̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑟 (𝑡

0
) , . . . , 𝑟

(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
))

=
̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑦 (𝑡

0
) , . . . ,

𝑦
(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
)) ,

(15)

then we have 𝑦(𝑡) = 𝑟(𝑡) where 𝑦(𝑡) is the controlled
output of nonlinear DAE subsystems (1). From Definition 2,
systems (11) are unit right inverse systems of nonlinear DAE
subsystems (1). This completes the proof.

Since (𝑥, �̂�) = (𝑥, 𝑧), unit right inverse systems (11) can
be realized by directly feedbacking states (𝑥, 𝑧) of nonlinear
DAE subsystems (1).The composite systemswill be linearized
and decoupled when (11) is series connected before (1).

It should be noted that there exist differential operator
in above realization (11), which is difficult to be realized in
physics. For this we have the following theorem.

Theorem 7. Consider the nonlinear DAE subsystems (1) with
relative order 𝜃. If 𝜃 < ∞, then there exist 𝛼-order integral right
inverse systems of nonlinear DAE subsystems (1).

Proof. Replace 𝑦 of (10) with 𝑟:

𝑢 = ℎ
−1

𝜃
(𝑥, 𝑧, 𝑟, . . . , 𝑟

(𝜃)

, V, . . . , V(𝜃)) . (16)

Let the highest and lowest order derivative of 𝑟
𝑖
(𝑖 = 1, . . . , 𝑚)

are 𝑟(𝛽𝑖)
𝑖

and 𝑟(𝛼𝑖)
𝑖

, respectively. Define

𝜑 = (𝜑
1
, . . . , 𝜑

𝑚
)
𝑇

= (𝑟
(𝛼1)

1
, . . . , 𝑟

(𝛼𝑚)

𝑚
)

𝑇

,

𝜉
𝑖
= (𝑟

(𝛽𝑖)

𝑖
, 𝑟
(𝛽𝑖+1)

𝑖
, . . . , 𝑟

(𝛼𝑖−1)

𝑖
)

𝑇

, 𝑖 = 1, . . . , 𝑚

(17)

and construct the following systems Σ
𝛼
:

̇
𝜉
𝑖
= 𝐴

𝑖
𝜉
𝑖
+ 𝐵

𝑖
𝜑
𝑖
, 𝑖 = 1, . . . , 𝑚

𝑦 = ℎ
−1

𝛼
(𝑥, 𝑧, 𝜉, 𝜑, V

𝛼
) ,

(18)

where

𝐴
𝑖
= (

0 1

d d
d 1

0

)

(𝛼𝑖−𝛽𝑖)×(𝛼𝑖−𝛽𝑖)

𝐵
𝑖
= (

0

...
0

1

)

(𝛼𝑖−𝛽𝑖)×1

,

𝜉 = (𝜉
𝑇

1
, . . . , 𝜉

𝑇

𝑚
)

𝑇

, V
𝜃
= (V𝑇, . . . , (V(𝜃))𝑇)

𝑇

.

(19)

If 𝑟(𝑡) ∈ 𝐶𝜃(𝑅) of (18) satisfies

ℎ
𝜃
(𝑥, 𝑧, 𝑢, 𝑟, . . . , 𝑟

(𝜃)

, V
𝜃
) = 0,

𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑟, . . . , 𝑟

(𝑘)

, V
𝑘
)

= 𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘)

, V
𝑘
) , 𝑘 = 1, . . . , 𝜃 − 1.

(20)

Meanwhile initial conditions satisfy

̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑟 (𝑡

0
) , . . . , 𝑟

(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
))

=
̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑦 (𝑡

0
) , . . . ,

𝑦
(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
))

(21)

when 𝜑 = (𝑟
(𝛼1)

1
, . . . , 𝑟

(𝛼𝑚)

𝑚
)
𝑇, 𝜉

𝑖
(𝑡
0
) =

(𝑟
(𝛽𝑖)

𝑖
(𝑡
0
), . . . , 𝑟

(𝛼𝑖−1)

𝑖
(𝑡
0
))
𝑇

(𝑖 = 1, . . . , 𝑚), we have output
of nonlinear DAE subsystems satisfies 𝑦(𝛼𝑖)

𝑖
(𝑡) = 𝜑

𝑖
(𝑡), 𝑖 =

1, . . . , 𝑚 (where 𝜑 is new control input to be designed).
By Definition 3, systems (18) are 𝛼-order integral right
inverse systems realized by state-feedback and dynamic
compensation. This completes the proof.

There are two possible difficulties existing in realization of
inverse systems:Theone hand, the proposedmethod depends
on the exact model of the controlled systems and sensitive
to the perturbation of parameters or variation of structure.
On the other hand, analysis solution of manipulated control
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may be difficult to be obtained. Inspired by [16], we may
use the excellent approximation ability of Neural Networks
to overcome the imprecise model and unknown analysis
solution of manipulated control. This will be the next work
we will undertake.

4. Decentralized Excitation and Valve
Coordinative Control of Synchronous
Generator

Excitation and valve coordinative control is studied for one
synchronous generator based on the scheme proposed in this
paper. For the sake of simplicity, the subscript 𝑖 is still omitted.

The mathematical model of synchronous generator exci-
tation and valve coordinative control is described by the
following two-input two-output nonlinear DAE subsystems
[10]:

̇
𝛿 = 𝑓

1
(⋅) = 𝜔 − 𝜔

0

̇𝜔 = 𝑓
2
(⋅) =

𝜔
0

𝐻

{𝑃
𝐻
+ 𝐶

𝑀𝐿
𝑃
𝑚0
−

𝐷

𝜔
0

(𝜔 − 𝜔
0
)

− [𝐸


𝑞
+ (𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑
] 𝐼

𝑞
}

̇𝐸


𝑞
= 𝑓

3
(⋅) =

1

𝑇


𝑑0

[𝐸
𝑓
− 𝐸



𝑞
− (𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑
]

̇𝑃
𝐻
= 𝑓

4
(⋅) =

1

𝑇
𝐻Σ

(−𝑃
𝐻
+ 𝐶

𝐻
𝑃
𝑚0
+ 𝐶

𝐻
𝑈
𝑐
)

𝑔 (𝑥, 𝑧, 𝑢, V) = 0,

(22)

where

𝑔 (𝑥, 𝑧, 𝑢, V)

=

(

(

(

(

(

(

(

(

𝑃
𝑡
− [𝐸



𝑞
+ (𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑
] 𝐼

𝑞
+ 𝑟

𝑎
(𝐼

2

𝑑
+ 𝐼

2

𝑞
)

𝜃
𝑈
− 𝛿 + arc 𝑐𝑡𝑔

𝑥
𝑞
𝐼
𝑞
− 𝑟

𝑎
𝐼
𝑑

𝐸


𝑞
− 𝑥



𝑑
𝐼
𝑑
− 𝑟

𝑎
𝐼
𝑞

𝐼
𝑡
− √𝐼

2

𝑑
+ 𝐼

2

𝑞

𝑄
𝑡
− 𝐸



𝑞
𝐼
𝑑
+ 𝑥

𝑞
𝐼
2

𝑞
+ 𝑥



𝑑
𝐼
2

𝑑

)

)

)

)

)

)

)

)

,

(23)

where the differential variables 𝑥 = (𝛿, 𝜔, 𝐸
𝑞
, 𝑃

𝐻
)
𝑇 are relative

power angle betweenG1 andG4, rotate speed deviation of G1,
𝑞-axis transient potential, and the high pressure mechanical
power, respectively, the algebraic variables 𝑧 = (𝑃

𝑡
, 𝜃

𝑈
, 𝐼
𝑑
, 𝐼
𝑞
)
𝑇

are active power, the angle of voltage, the 𝑑-axis current, and
the 𝑞-axis current, respectively, and the interconnection input
V = (𝐼

𝑡
, 𝑄

𝑡
)
𝑇 are the generator stator current and the reactive

power, respectively. The manipulated input 𝑢 = (𝐸
𝑓
, 𝑈

𝑐
)
𝑇

are induction electromotive force and the governor position,
respectively. The controlled output 𝑦 is chosen as voltage and
rotate speed deviation, respectively:

𝑦 = ℎ (⋅) = (

𝑉
𝑡

𝜔
) = (

√𝑃
2

𝑡
+ 𝑄

2

𝑡

𝐼
𝑡

𝜔

) . (24)

The others are the systems parameters.
The Jacobian matrix of 𝑔(𝑥, 𝑧, 𝑢, V) with respect to 𝑧 is

𝜕𝑔

𝜕𝑧

=

(

(

(

(

(

(

1 0 (𝑥
𝑞
−𝑥



𝑑
) 𝐼

𝑞
+2𝑟

𝑎
𝐼
𝑑
(𝑥

𝑞
−𝑥



𝑑
) 𝐼

𝑑
+2𝑟

𝑎
𝐼
𝑞

0 1

−1

1 + 𝐴
2

𝜕𝐴

𝜕𝐼
𝑑

−1

1 + 𝐴
2

𝜕𝐴

𝜕𝐼
𝑞

0 0

𝐼
𝑑

𝐼
𝑡

−

𝐼
𝑞

𝐼
𝑡

0 0 −𝐸


𝑞
+ 2𝑥



𝑑
𝐼
𝑑

2𝑥
𝑞
𝐼
𝑞

)

)

)

)

)

)

≜ (

1 0 𝑎
13

𝑎
14

0 1 𝑎
23

𝑎
24

0 0 𝑎
33

𝑎
34

0 0 𝑎
43

𝑎
44

),

(25)

where 𝐴 = (𝑥
𝑞
𝐼
𝑞
− 𝑟

𝑎
𝐼
𝑑
)/(𝐸



𝑞
− 𝑥



𝑑
𝐼
𝑑
− 𝑟

𝑎
𝐼
𝑞
). It can be verified

that under the normal operating condition, the following
equation det(𝜕𝑔/𝜕𝑧) = −(1/𝐼

𝑡
)(2𝑥

𝑞
𝐼
𝑑
𝐼
𝑞
+𝐸



𝑞
𝐼
𝑞
−2𝑥



𝑑
𝐼
𝑑
𝐼
𝑞
) ̸=0

holds, that is, matrix 𝜕𝑔/𝜕𝑧 is of full rank and generator is of
index one.

From (22) and (23), we can get the differential equation
of 𝑧 as follows:

̇𝑧 = −(

𝜕𝑔

𝜕𝑧

)

−1

(

𝜕𝑔

𝜕𝑥

)𝑓 − (

𝜕𝑔

𝜕𝑧

)

−1

(

𝜕𝑔

𝜕V
)

̇V, (26)

where

(

𝜕𝑔

𝜕𝑧

)

−1

= (

1 0 𝑏
1

𝑐
1

0 1 𝑏
2

𝑐
2

0 0 𝑏
3

𝑐
3

0 0 −𝑎
−1

33
𝑎
43

1

) ,

𝑏
1
= −𝑎

−1

33
𝑎
13
− 𝑎

−1

33
𝑎
43
𝑐
1
, 𝑏

2
= −𝑎

−1

33
𝑎
23
− 𝑎

−1

33
𝑎
43
𝑐
2
,

𝑏
3
= 1 − 𝑎

−1

33
𝑎
43
𝑐
3
, 𝑐

1
= −𝑐

−1

4
𝑎
14
+ 𝑎

−1

33
𝑐
−1

4
𝑎
13
𝑎
34
,

𝑐
2
= −𝑐

−1

4
𝑎
24
+ 𝑎

−1

33
𝑐
−1

4
𝑎
23
𝑎
34
,

𝑐
3
= 𝑐

−1

4
𝑎
34
, 𝑐

4
= 𝑎

44
− 𝑎

−1

33
𝑎
34
𝑎
43
.

(27)
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Figure 1: Two-area four-machine power system.

The Jacobian matrix of 𝑔 with respect to 𝑥 and interconnec-
tion input V are

𝜕𝑔

𝜕𝑥

=
(

(

0 0 −𝐼
𝑞

0

−1 0

−1

1 + 𝐴
2

𝜕𝐴

𝜕𝐸


𝑞

0

0 0 0 0

0 0 −𝐼
𝑑

0

)

)

,

𝜕𝑔

𝜕V
= (

0 0

0 0

1 0

0 1

) .

(28)

According to the recursive algorithm, the relative degree
of (22) is 2 and the solution of 𝑢 can be derived as follows:

𝐸
𝑓
=

𝑇


𝑑0

−𝐼
𝑞
− 𝑐

1
𝐼
𝑑

× {

1

𝑃
𝑡

[

1

𝐼
𝑡

√𝑃
2

𝑡
+ 𝑄

2

𝑡
(𝐼

2

𝑡
̇𝑦
1
+ ̇𝐼

𝑡
√𝑃

2

𝑡
+ 𝑄

2

𝑡
) − 𝑄

𝑡

̇𝑄
𝑡
]

+ 𝑏
1

̇𝐼
𝑡
+ 𝑐

1

̇𝑄
𝑡
} + 𝐸



𝑞
+ (𝑥

𝑑
− 𝑥



𝑑
) 𝐼

𝑑
,

𝑈
𝑐
=

𝜔
0
𝐶
𝐻

𝐻𝑇
𝐻Σ

× { ̈𝑦
2
−

𝜔
0

𝐻𝑇
𝐻Σ

(−𝑃
𝐻
+ 𝐶

𝐻
𝑃
𝑚0
)

−

𝐷

𝜔
0

𝑓
2
− 𝐼

𝑞
𝑓
3
− (𝑥

𝑞
− 𝑥



𝑑
) 𝑐

3
𝐼
𝑑
𝐼
𝑞
𝑓
3

+ (𝑥
𝑞
− 𝑥



𝑑
) 𝑏

3
𝐼
𝑞

̇𝐼
𝑡
+ (𝑥

𝑞
− 𝑥



𝑑
) 𝑐

3
𝐼
𝑞

̇𝑄
𝑡

− 𝐸


𝑞
𝐼
𝑑
𝑓
3
+ 𝑎

−1

33
𝑎
43
𝐸


𝑞

̇𝐼
𝑡
+ 𝐸



𝑞

̇𝑄
𝑡

− (𝑥
𝑞
− 𝑥



𝑑
) 𝐼

2

𝑑
𝑓
3
+ 𝑎

−1

33
𝑎
43
(𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑

̇𝐼
𝑖

+ (𝑥
𝑞
− 𝑥



𝑑
) 𝐼

𝑑

̇𝑄
𝑡
} .

(29)

According to (18), the (1, 2)-order integral right inverse
systems for synchronous generator (22) can be constructed,
with which the decoupling and linearization of the composed
systems can be achieved.

The simulation is conducted based on a two-area four-
machine power systems (as shown in Figure 1).

The parameters of each generator and transformer are
the same and the other parameters can be found in [17].
Systems operating condition is as follows: at first systems
operate under double circuit stable state, then a three-phase
symmetrical earth fault happens at 𝑘 point at line 7-8 on
0.5 second and the ground reactance of the failure point is
0.0001 pu.The fault is cut on 0.65 second and the systems
return to original operating condition. Generators G1, G3
both adopted inverse excitation and valve controller and the
closed-loop 𝜑

1
, 𝜑

2
adopted 𝑃𝐼𝐷 controller where 𝜑

1
only

adopts proportion part equal to 10 and 𝜑
2
adopt proportion

part equal to 30 and differential part equal to 5. The other
generators adopt traditional linear controller. The simulation
is based-on MATLAB and the results are shown in Figure 2.

As shown in Figure 2, when generators G1 and G3 both
equipped excitation and valve coordinative inverse controller,
both interarea oscillation and area oscillation are improved
dramatically.

With noting that 𝑥
𝑑
, 𝑥

𝑞
cannot be measured online. To

overcome this difficulty, we can adopt the method proposed
in [16] to replace the 𝑥

𝑑
, 𝑥

𝑞
with local measured signals.

5. Conclusion

In this paper, the problem of invertibility for a special class
of nonlinear DAE subsystems is studied. The definitions
of inverse systems for nonlinear DAE subsystems are put
forward. Then a recursive algorithm is given, with which
to determine the invertibility of nonlinear DAE subsystems.
Physically realizable right inverse systems are constructed



Mathematical Problems in Engineering 7

0 2 4 6 8

0

10

20

30

40

50

60

70

80

Ro
to

r a
ng

le
 (d

eg
)

Time (s)

(a) Relative power angle between G1 and G4

54

52

50

48

46

44

Ro
to

r a
ng

le
 (d

eg
)

0 2 4 6 8
Time (s)

(b) Relative power angle between G3 and G4

0 2 4 6 8
Time (s)

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

V
t

(p
u)

(c) Load bus voltage of G1

0 2 4 6 8
Time (s)

Ro
to

r a
ng

le
 (d

eg
)

28
26
24
22
20
18
16
14
12
10

8
6

(d) Relative power angle between G1 and G2

0 2 4 6 8

Inversion controller
Traditional linear controller

Time (s)

1.04

1.02

1.00

0.98

0.96

0.94

V
t

(p
u)

(e) Load bus voltage of G3

Figure 2: Simulation results of G1 and G3.
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through state-feedback and dynamic compensation, with
which the decoupling and linearization of composite systems
are achieved so that various linear control theorems and
methods can be applied. Not restricted to power systems
components decentralized control, the result of this paper
is also meaningful to decentralized control of other areas of
large-scale systems.
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Theproblemof the disturbance-observer-based control for singular hybrid systemwith two types of disturbances is addressed in this
paper. Under the assumption that the system states are, unavailable, full-order observers (for both system states and the disturbance)
and a nonlinear control scheme are constructed, such that the composite system can be guaranteed to be stochastically admissible,
and the two types of disturbances can be attenuated and rejected, simultaneously. Based on the Lyapunov stability theory, sufficient
conditions for the existence of the desired full-order disturbance-observer-based controllers are established in terms of linearmatrix
inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the proposed approaches.

1. Introduction

Singular systems, which are also referred to as implicit
systems, descriptor systems, are widely used tomodel various
engineering systems, such as electrical networks, power sys-
tems, networked control systems, and robotics, due to the fact
that such systems can provide a more general representation
than standard state-space systems in the sense of modeling
[1]. A great number of fundamental results based on the
theory of state-space systems have been successfully extended
to singular systems. For some fundamental work on this
subject, we refer the reader to [2–7].

Disturbance-observer-based control has been proven to
be an effective strategy to reject the disturbance which can
be modeled by an exogenous system [8–13]. Recently, its
applications have been found in the robotic systems [8],
table drive systems [12], missile system [11], and so on.
The essential idea of the disturbance-observer-based control
scheme is to design a disturbance observer to estimate the
matched disturbance and cancel the effect of the matched
disturbance by applying the estimation information into
the control law. On another research front line, singular
Markovian jump systemwhich includes the dynamics of both
singular system and Markovian jump system has attracted

great attention from researchers, and recently some results
are available in the publication: sliding control problem for
continuous Markovian jump singular system is investigated
in [14, 15], where the necessary and sufficient condition for the
admissibility of the nominal system is presented. ℓ

2
-ℓ
∞

filter
problem is designed for discrete-time singular Markovian
jump systems in [16]. Notice that in the above-mentioned
publications, the disturbance considered in the plant has
been assumed to be norm-bounded one. In this paper, we
will consider a wider case: the plant is subject to multiple
disturbances (one is norm-bounded disturbance, and the
other is the disturbance that can bemodeled by the exogenous
system).

Based on the previous reasons, in this paper, we will
investigate the disturbance-observer-based control problem
for a class of singular systems with Markovian switching
parameters and multiple disturbances. With the proposed
nonlinear control scheme andby choosing a proper stochastic
Lyapunov-Krasovskii functional, sufficient conditions for the
existence of the desired controllers in terms of LMIs [17, 18]
are presented, such that the composite system is stochastically
admissible and meets certain performance requirements.
Finally, a numerical example is used to illustrate the efficiency
of the developed results.
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The remainder of this paper is organized as follows.
Section 2 describes the problem and preliminaries. Section 3
presents the main theoretical results. A numerical example
is given in Section 4. Finally, we conclude the paper in
Section 5.

2. Problem Statement and Preliminaries

Fix a probability space (Ω,F,P), where Ω is the sample
space,F is the 𝜎-algebra of subsets of the sample space, and
P is the probability measure on F. Under this probability
space, we consider the following singular MJLs:

𝐸 ̇𝑥 (𝑡) = 𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐺 (𝑟

𝑡
) [𝑢 (𝑡) + 𝑑

1
(𝑡)] + 𝐻 (𝑟

𝑡
) 𝑑
2
(𝑡) ,

(1a)

𝑦 (𝑡) = 𝐷
1
(𝑟
𝑡
) 𝑥 (𝑡) + 𝐷

2
(𝑟
𝑡
) 𝑑
1
(𝑡) , (1b)

where 𝑥(𝑡) ∈ R𝑛 is the semistate vector, 𝑢(𝑡) ∈ R𝑚 is
the control input, 𝑦(𝑡) ∈ R𝑠 is the output measurement
and 𝑑

1
(𝑡) ∈ R𝑚 is supposed to satisfy conditions described

as Assumption 1, which can represent the constant and
harmonic noises. 𝑑

2
(𝑡) ∈ R𝑞 is another disturbance which

is assumed to be an arbitrary signal inL
2
[0,∞). The matrix

𝐸 ∈ R𝑛×𝑛 is singular with rank(𝐸) = 𝑟 < 𝑛, and the matrices
𝐴
𝑖
≜ 𝐴(𝑟

𝑡
= 𝑖), 𝐺

𝑖
≜ 𝐺(𝑟

𝑡
= 𝑖), 𝐻

𝑖
≜ 𝐻(𝑟

𝑡
= 𝑖), 𝐷

1𝑖
≜

𝐷
1
(𝑟
𝑡
= 𝑖), and 𝐷

2𝑖
≜ 𝐷
2
(𝑟
𝑡
= 𝑖) are known real constant

matrices of appropriate dimensions. {𝑟
𝑡
} is a continuous-

time Markov process with right continuous trajectories and
taking values in a finite set S = {1, 2, . . . ,N} with transition
probability matrix Π ≜ {𝜋

𝑖𝑗
} given by

Pr {𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
Δ + 𝑜 (Δ) if 𝑗 ̸= 𝑖,

1 + 𝜋
𝑖𝑖
Δ + 𝑜 (Δ) if 𝑗 = 𝑖,

(2)

where Δ > 0, lim
Δ→0

(𝑜(Δ)/Δ) = 0, 𝜋
𝑖𝑗
≥ 0 is the transition

rate from 𝑖 at time 𝑡 to 𝑗 at time 𝑡 +Δ, and 𝜋
𝑖𝑖
= −∑

N
𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
.

Assumption 1. Thedisturbance𝑑
1
(𝑡) can be formulated by the

following exogenous system:

̇𝜔(𝑡) = 𝑊
𝑖
𝜔 (𝑡) + 𝑀

𝑖
𝑑
3
(𝑡) ,

𝑑
1
(𝑡) = 𝑉

𝑖
𝜔 (𝑡) ,

(3)

where 𝑊
𝑖
, 𝑀
𝑖
, and 𝑉

𝑖
are known matrices with proper

dimensions. 𝑑
3
(𝑡) is the additional disturbance belonging to

L
2
[0,∞).

The following assumptions are necessary conditions for
the disturbance-observer-based control problem.

Assumption 2. (𝐸, 𝐴
𝑖
, 𝐷
1𝑖
) is impulse observable [19].

Assumption 3. (𝐸, 𝐴
𝑖
, 𝐺
𝑖
) is impulse controllable, and

(𝑊
𝑖
, 𝐺
𝑖
𝑉
𝑖
) is observable.

The free singular systemwithMarkovian switching of (1a)
and (1b) with 𝑢(𝑡) = 0, 𝑑

1
(𝑡) = 0, and 𝑑

2
(𝑡) = 0 can be

described as

𝐸 ̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) . (4)

We give the following definition for the singular Markovian
jump system (4).

Definition 4 (Dai [2]). The singular Markovian jump system
(4) or the pair (𝐸, 𝐴

𝑖
) is said to be

(i) regular if, for each 𝑖 ∈ S, det(𝑠𝐸−𝐴
𝑖
) is not identically

zero;
(ii) impulse-free if, for each 𝑖 ∈ S, deg(det(𝑠𝐸 − 𝐴

𝑖
)) =

rank(𝐸);
(iii) stochastically admissible if it is regular, impulse-free,

and stochastically stable.

In this section, we suppose that all of the states in (1a),
(1b), and (3) are unavailable. Then, we need to estimate
𝑥(𝑡) and 𝜔(𝑡), respectively. Here, we construct full-order
observers for the whole states, and then based on the
estimated states, we design a composite controller such that
the resulting composite system is stochastically admissible
with H

∞
performance 𝛾. For this purpose, Assumptions 2

and 3 are needed.
By augmenting the states of the system (1a) and (1b) by the

disturbance dynamics (3), we obtain the following augmented
model:

𝐸
̇
𝜉 (𝑡) = 𝐴

𝑖
(𝑡) 𝜉 (𝑡) + 𝐻

𝑖
𝑑 (𝑡) + 𝐺

𝑖
𝑢 (𝑡) , (5a)

𝑦 (𝑡) = 𝐷
𝑖
𝜉 (𝑡) (5b)

with 𝜉(𝑡) ≜ [𝑥(𝑡)𝑇 𝜔(𝑡)
𝑇

]

𝑇

, 𝑑(𝑡) ≜ [𝑑
2
(𝑡)
𝑇

𝑑
3
(𝑡)
𝑇

]

𝑇

, and

𝐴
𝑖
≜ [

𝐴
𝑖
𝐺
𝑖
𝑉
𝑖

0 𝑊
𝑖

] , 𝐸 ≜ [

𝐸 0

0 𝐼
] ,

𝐻
𝑖
≜ [

𝐻
𝑖
0

0 𝑀
𝑖

] , 𝐷
𝑖
≜ [𝐷
1𝑖
𝐷
2𝑖
𝑉
𝑖
] .

(6)

The full-order observer for both 𝑥(𝑡) and 𝜔(𝑡) is designed as

𝐸
̇
̂
𝜉 (𝑡) = 𝐴

𝑖

̂
𝜉 (𝑡) + 𝐺

𝑖
𝑢 (𝑡) + 𝐿

𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) , (7a)

𝑦 (𝑡) = 𝐷
𝑖

̂
𝜉 (𝑡) (7b)

with ̂𝜉(𝑡) ≜ [𝑥(𝑡)𝑇 �̂�(𝑡)
𝑇

]

𝑇

, and 𝐿
𝑖
is the observer gain to be

determined.
Define

𝑒 (𝑡) ≜ 𝜉 (𝑡) −
̂
𝜉 (𝑡) ≜ [

𝑒
𝑥
(𝑡)

𝑒
𝜔
(𝑡)
] ≜ [

𝑥 (𝑡) − 𝑥 (𝑡)

𝜔 (𝑡) − �̂� (𝑡)
] (8)

as the estimation error.
Based on (5a), (5b), (7a), and (7b), we obtain the estima-

tion error dynamics as follows:

𝐸 ̇𝑒 (𝑡) = (𝐴
𝑖
+ 𝐿
𝑖
𝐷
𝑖
) 𝑒 (𝑡) + 𝐻

𝑖
𝑑 (𝑡) . (9)

In the DOBC scheme, the control can be constructed as

𝑢 (𝑡) = −
̂
𝑑
1
(𝑡) + 𝐾

𝑖
𝑥 (𝑡) , (10)
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where ̂𝑑
1
(𝑡) ≜ 𝑉

𝑖
�̂�(𝑡) is the estimation of 𝑑

1
(𝑡) and 𝐾

𝑖
is the

controller gain. Combining the estimation error equation (9)
with system (1a) and (1b) yields

𝐸 ̇𝜂 (𝑡) = 𝐴
𝑖
𝜂 (𝑡) + �̃�

𝑖
𝑑 (𝑡) (11)

with 𝜂(𝑡) ≜ [𝑥(𝑡)𝑇 𝑒(𝑡)
𝑇

]

𝑇

and

𝐸 ≜ [

𝐸 0

0 𝐸

] , 𝐴
𝑖
≜ [

𝐴
𝑖
+ 𝐺
𝑖
𝐾
𝑖

𝐵
𝑖

0 𝐴
𝑖
+ 𝐿
𝑖
𝐷
𝑖

] ,

�̃�
𝑖
≜ [

𝐻
𝑖
0

0 𝐻
𝑖

] , 𝐵
𝑖
≜ [−𝐺

𝑖
𝐾
𝑖
𝐺
𝑖
𝑉
𝑖
] ,

(12)

where 𝐸, 𝐴
𝑖
, 𝐹
𝑖
,𝐻
𝑖
, and𝐷

𝑖
are defined in (5a) and (5b).

The reference output is set to be

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) ≜ 𝐶

𝑖
𝜂 (𝑡) (13)

with 𝐶
𝑖
≜ [𝐶
𝑖
0].

Therefore, the disturbance-observer-based control prob-
lem based on full-order observer (7a) and (7b) for system (1a)
and (1b) with (3) can be formulated as follows.

Disturbance-Observer-Based Control Problem. Given the
Markovian jump singular system (1a) and (1b)with (3), design
full-order observer of the form (7a) and (7b) and controller
of the form (10) such that the following requirements are
satisfied:

(R1) the composite system in (11) and (13) with 𝑑(𝑡) = 0 is
stochastically admissible;

(R2) under the zero initial conditions, the following
inequality holds:

‖𝑧 (𝑡)‖
2
< 𝛾‖𝑑 (𝑡)‖

2
(14)

for all nonzero 𝑑(𝑡) ∈ L
2
[0,∞), where 𝛾 > 0 is a prescribed

scalar and ‖𝑧(𝑡)‖
2
= ∫

∞

0

𝑧
𝑇

(𝑡)𝑧(𝑡)𝑑𝑡.

3. Main Results

Under Assumptions 2 and 3, suppose that 𝐾
𝑖
and 𝐿

𝑖
are

given, and we first present the bounded real lemma for the
composite system in (11) and (13) in terms of LMIs.

Lemma 5. Given the controller gains𝐾
𝑖
, the observer gains 𝐿

𝑖
,

parameters 𝜆
1𝑖
> 0, 𝜆

2𝑖
> 0, and 𝛾 > 0, the composite system

in (11) and (13) is stochastically admissible and satisfies theH
∞

performance inequalities (14) if there exist matrices𝑃
𝑖
such that

for 𝑖 = 1, 2, . . . ,N,

𝐸
𝑇

𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸 ≥ 0, (15a)

[

Ξ
𝑖
𝑃
𝑇

𝑖
�̃�
𝑖

⋆ −𝛾
2

𝐼

] < 0 (15b)

with
Ξ
𝑖
≜ 𝐸
𝑇

𝑃
𝑖
+ 𝑃
𝑇

𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝐶
𝑇

𝑖
𝐶
𝑖
,

𝑃
𝑖
≜

N

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
.

(16)

Proof. Define a Lyapunov functional candidate as follows:

𝑉 (𝜂 (𝑡) , 𝑟
𝑡
, 𝑡) ≜ 𝜂

𝑇

(𝑡) 𝐸
𝑇

𝑃
𝑖
𝜂 (𝑡) . (17)

LetA be the weak infinitesimal generator of the random
process {𝜉(𝑡), 𝑟

𝑡
}.Then, for each 𝑟

𝑡
= 𝑖, 𝑖 ∈ S, it can be shown

that

A𝑉 (𝜂 (𝑡) , 𝑖, 𝑡)

= 2𝜂
𝑇

(𝑡) 𝑃
𝑇

𝑖
(𝐴
𝑖
𝜂 (𝑡) + �̃�

𝑖
𝑑 (𝑡)) + 𝜂

𝑇

(𝑡) 𝐸
𝑇

𝑃
𝑖
𝜂 (𝑡)

= 𝜁
𝑇

(𝑡) [
Ξ
𝑖
𝑃
𝑇

𝑖
�̃�
𝑖

⋆ 0

] 𝜁 (𝑡)

(18)

with 𝜁(𝑡) ≜ [𝜂𝑇(𝑡) 𝑑𝑇(𝑡)]
𝑇

and

Ξ
𝑖
≜ 𝐸
𝑇

𝑃
𝑖
+ 𝑃
𝑇

𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
. (19)

Consider the following index:

𝐽 (𝑇) ≜ E{∫
𝑇

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡)] 𝑑𝑡} . (20)

Then, under the zero initial conditions, it follows from (13)
and (18) that

𝐽 (𝑇)

= E{∫
𝑇

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡)] 𝑑𝑡} + E𝑉 (𝜂 (𝑇) , 𝑖, 𝑇)

= E{∫
𝑇

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡)+A𝑉 (𝜂 (𝑡) , 𝑟
𝑡
= 𝑖)] 𝑑𝑡}

= E{∫
𝑇

0

𝜁
𝑇

(𝑡) Ω
𝑖
𝜁 (𝑡) 𝑑𝑡}

(21)

with

Ω
𝑖
≜ [

Ξ
𝑖
+ 𝐶
𝑇

𝑖
𝐶
𝑖
𝑃
𝑇

𝑖
𝐻
𝑖

⋆ −𝛾
2

𝐼

] . (22)

Based on (15b), we can derive 𝐽(𝑇) ≤ 0 by taking (21) into
account. Thus, under the zero initial conditions and for any
nonzero 𝑑(𝑡) ∈ L

2
(0,∞), letting 𝑇 → ∞, we obtain

‖𝑧(𝑡)‖
2
≤ 𝛾‖𝑑(𝑡)‖

2
. The proof is completed.

Now, we are in a position to present a solution to the
composite DOBC andH

∞
control problem formulated in this

section.

Theorem 6. Consider system (1a) and (1b) with the distur-
bance (3) under Assumptions 2 and 3. Given parameters 𝜆

1𝑖
>

0, 𝜆
2𝑖
> 0, and 𝛾 > 0, there exists a full-order observer in

the form of (7a) and (7b) and there exists a controller in the
form of (10) such that the augmented system in (11) and (13)
is stochastically admissible and satisfies the H

∞
performance



4 Mathematical Problems in Engineering

inequalities (14) if there exist parameters 𝛼
𝑖
> 0, matrices

𝑃
1𝑖
> 0, 𝑃

2𝑖
, 𝑄
𝑖
> 0,𝑋

𝑖
, and 𝑌

𝑖
such that for 𝑖 = 1, 2, . . . ,N,

𝑄
𝑖
𝐸
𝑇

= 𝐸𝑄
𝑖
≥ 0, (23a)

𝑄
𝑖
𝐸
𝑇

≤ 𝛼
𝑖
𝐼, (23b)

𝐸

𝑇

𝑃
2𝑖
= 𝑃
𝑇

2𝑖
𝐸 ≥ 0, (23c)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π
1𝑖

0 𝐻
𝑖

0 𝑄
𝑖
𝐶
𝑇

𝑖
𝐺
𝑖
𝑋
𝑖
𝐺
𝑖
𝑉
𝑖
𝑊
𝑖

⋆ Π
2𝑖
𝐹
𝑖

0 𝑃
𝑇

2𝑖
𝐻
𝑖

0 0 0 0

⋆ ⋆ 0 0 0 0 0 0

⋆ ⋆ 0 0 0 0 0 0

⋆ ⋆ −𝛾
2

𝐼 0 0 0 0 0

⋆ ⋆ ⋆ −𝛾
2

𝐼 0 0 0 0

⋆ ⋆ ⋆ ⋆ 0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑄
𝑖

0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐼 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −Λ
𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(23d)

𝑃
1𝑖
𝑄
𝑖
= 𝐼, (23e)

where 𝜆
𝑖
is defined in (15a) and (15b) and

𝑊
𝑖
≜ [√𝜋𝑖1

𝑄
𝑖
⋅ ⋅ ⋅ √𝜋𝑖𝑗

𝑄
𝑖
⋅ ⋅ ⋅ √𝜋𝑖N𝑄

𝑇

𝑖
]
𝑗 ̸= 𝑖

,

Λ
𝑖
≜ diag {2𝑄

1
− 𝛼
1
𝐼, . . . , 2𝑄

𝑗
− 𝛼
𝑗
𝐼, . . . , 2𝑄N − 𝛼N𝐼}

𝑗 ̸= 𝑖

,

Π
1𝑖
≜ 𝐴
𝑖
𝑄
𝑖
+ 𝐺
𝑖
𝑋
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+ 𝐺
𝑖
𝑋
𝑖
)
𝑇

+ 𝜋
𝑖𝑖
𝑄
𝑖
𝐸
𝑇

,

Π
2𝑖
≜ 𝑃
𝑇

2𝑖
𝐴
𝑖
+𝑌
𝑖
𝐷
𝑖
+(𝑃
𝑇

2𝑖
𝐴
𝑖
+ 𝑌
𝑖
𝐷
𝑖
)

𝑇

+ 𝐸

𝑇

𝑃
2𝑖
+diag {𝑃

1𝑖
, 𝐼} ,

𝑃
2𝑖
≜

N

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
2𝑗
.

(24)

Moreover, if the previous conditions are feasible, the gains of the
desired observer in the form of (7a) and (7b) and the desired
controller in the form of (10) are given by

𝐾
𝑖
= 𝑋
𝑖
𝑄
−1

𝑖
, 𝐿

𝑖
= 𝑃
−𝑇

2𝑖
𝑌
𝑖
. (25)

Proof. Define

𝑃
𝑖
≜ [

𝑃
1𝑖

0

0 𝑃
2𝑖

] (26)

with 𝑃
1𝑖
> 0.

Substituting 𝐴
𝑖
, �̃�
𝑖
defined in (11), 𝐶

𝑖
defined in (13),

and 𝑃
𝑖
defined in (26) into (15a) and (15b) of Lemma 5 and

based on the process of the proof of Lemma 5, we can draw
a conclusion that the system in (11) and (13) is stochastically

admissible withH
∞
performance 𝛾 if (23c) and the following

equalities and inequalities hold:

𝐸
𝑇

𝑃
1𝑖
= 𝑃
1𝑖
𝐸 ≥ 0, (27a)

𝜁
𝑇

(𝑡)

[

[

[

[

Γ
1𝑖

0 𝑃
1𝑖
𝐻
𝑖

0

⋆ Γ
3𝑖

0 𝑃
𝑇

2𝑖
𝐻
𝑖

⋆ ⋆ −𝛾
2

𝐼 0

⋆ ⋆ ⋆ −𝛾
2

𝐼

]

]

]

]

𝜁 (𝑡) + 2𝑥
𝑇

(𝑡) Γ
2𝑖
𝑒 (𝑡) < 0,

(27b)

where 𝑃
2𝑖
is defined in (25) and

Γ
1𝑖
≜ 𝑃
1𝑖
(𝐴
𝑖
+ 𝐺
𝑖
𝐾
𝑖
) + (𝐴

𝑖
+ 𝐺
𝑖
𝐾
𝑖
)
𝑇

𝑃
1𝑖
+ 𝐸
𝑇

𝑃
1𝑖
+ 𝐶
𝑇

𝑖
𝐶
𝑖
,

Γ
2𝑖
≜ 𝑃
1𝑖
[−𝐺
𝑖
𝐾
𝑖
𝐺
𝑖
𝑉
𝑖
] ,

Γ
3𝑖
≜ 𝑃
𝑇

2𝑖
(𝐴
𝑖
+ 𝐿
𝑖
𝐷
𝑖
) + (𝐴

𝑖
+ 𝐿
𝑖
𝐷
𝑖
)

𝑇

𝑃
2𝑖
+ 𝐸

𝑇

𝑃
2𝑖
,

𝑃
1𝑖
≜

N

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
1𝑗
.

(28)

Note that
2𝑥
𝑇

(𝑡) Γ
2𝑖
𝑒 (𝑡)

= −2𝑥
𝑇

(𝑡) 𝑃
𝑇

1𝑖
𝐺
𝑖
𝐾
𝑖
𝑒
𝑥
(𝑡) + 2𝑥

𝑇

(𝑡) 𝑃
𝑇

1𝑖
𝐺
𝑖
𝑉
𝑖
𝑒
𝜔
(𝑡)

≤ 𝑥
𝑇

(𝑡) 𝑃
1𝑖
𝐺
𝑖
𝐾
𝑖
𝑃
−1

1𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑃
1𝑖
𝑥 (𝑡) + 𝑒

𝑇

𝑥
(𝑡) 𝑃
1𝑖
𝑒
𝑥
(𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
1𝑖
𝐺
𝑖
𝑉
𝑖
𝑉
𝑇

𝑖
𝐺
𝑇

𝑖
𝑃
1𝑖
𝑥 (𝑡) + 𝑒

𝑇

𝜔
(𝑡) 𝑒
𝜔
(𝑡) .

(29)

Considering (27b) and (29) and using Schur complement, we
can see that if the following equalities (30) hold, then (27b)
holds as follows:

[

[

[

[

[

[

[

[

[

[

Γ
1𝑖

0 𝑃
1𝑖
𝐻
𝑖

0 𝐶
𝑇

𝑖
𝑃
1𝑖
𝐺
𝑖
𝐾
𝑖
𝑃
−1

1𝑖
𝑃
1𝑖
𝐺
𝑖
𝑉
𝑖

⋆ Γ
3𝑖
+ 𝑅 0 𝑃

𝑇

2𝑖
𝐻
𝑖
0 0 0

⋆ ⋆ −𝛾
2

𝐼 0 0 0 0

⋆ ⋆ ⋆ −𝛾
2

𝐼 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑃
−1

1𝑖
0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐼

]

]

]

]

]

]

]

]

]

]

< 0

(30)

with 𝑅 ≜ diag{𝑃
1𝑖
, 𝐼}.

Define

𝑄
𝑖
≜ 𝑃
−1

1𝑖
, 𝑋

𝑖
≜ 𝐾
𝑖
𝑃
−1

1𝑖
, 𝑌

𝑖
≜ 𝑃
2𝑖
𝐿
𝑖
. (31)

Performing a congruence transformation to (30) by
diag{𝑄

𝑖
, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼}, we obtain

[

[

[

[

[

[

[

[

[

[

Π
1𝑖

0 𝐻
𝑖

0 𝑄
𝑖
𝐶
𝑇

𝑖
𝐺
𝑖
𝑋
𝑖
𝐺
𝑖
𝑉
𝑖

⋆ Π
2𝑖

0 𝑃
𝑇

2𝑖
𝐻
𝑖

0 0 0

⋆ ⋆ −𝛾
2

𝐼 0 0 0 0

⋆ ⋆ ⋆ −𝛾
2

𝐼 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑄
𝑖

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐼

]

]

]

]

]

]

]

]

]

]

< 0 (32)
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with Π
1𝑖

≜ 𝐴
𝑖
𝑄
𝑖
+ 𝐺
𝑖
𝑋
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+ 𝐺
𝑖
𝑋
𝑖
)
𝑇

+ 𝜋
𝑖𝑖
𝑄
𝑖
𝐸
𝑇

+

∑
N
𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑄
𝑖
𝐸
𝑇

𝑄
−1

𝑗
𝑄
𝑖
.

Performing a congruence transformation to (23a) and
(23b) by 𝑄−1

𝑖
, respectively, we can readily get (27a) and

𝐸
𝑇

𝑄
−1

𝑖
≤ 𝛼
𝑖
𝑄
−1

𝑖
𝑄
−1

𝑖
. (33)

By Schur complement to (32) and based on (33), we can
conclude that if the following inequalities (34) hold, then (32)
holds as follows:

[

[

[

[

[

[

[

[

[

[

[

Π̃
1𝑖
0 𝐹

𝑖
0 𝐻

𝑖
0 𝑄

𝑖
𝑈
𝑇

𝑖
𝑄
𝑖
𝐶
𝑇

𝑖
𝐺
𝑖
𝑋
𝑖
𝐺
𝑖
𝑉
𝑖

⋆ Π
2𝑖
0 𝑃

𝑇

2𝑖
𝐹
𝑖
0 𝑃

𝑇

2𝑖
𝐻
𝑖
0 0 0 0

⋆ ⋆ −𝜆
𝑖
𝐼 0 0 0 0 0 0 0

⋆ ⋆ ⋆ −𝜆
𝑖
𝐼 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝛾
2

𝐼 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝛾
2

𝐼 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝜆
2

1𝑖
𝐼 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐼 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑄
𝑖
0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0

(34)

with Π̃
1𝑖

≜ 𝐴
𝑖
𝑄
𝑖
+ 𝐺
𝑖
𝑋
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+ 𝐺
𝑖
𝑋
𝑖
)
𝑇

+ 𝜋
𝑖𝑖
𝑄
𝑖
𝐸
𝑇

+

∑
N
𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑄
𝑖
𝛼
𝑗
𝑄
−1

𝑗
𝑄
−1

𝑗
𝑄
𝑖
.

By Schur complement to (34), we have

[

[

[

[

[

[

[

[

[

[

[

[

Π
1𝑖

0 𝐻
𝑖

0 𝑄
𝑖
𝐶
𝑇

𝑖
𝐺
𝑖
𝑋
𝑖
𝐺
𝑖
𝑉
𝑖
𝑊
𝑖

⋆ Π
2𝑖

0 𝑃
𝑇

2𝑖
𝐻
𝑖

0 0 0 0

⋆ ⋆ −𝛾
2

𝐼 0 0 0 0 0

⋆ ⋆ ⋆ −𝛾
2

𝐼 0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑄
𝑖

0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐼 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −Λ
𝑖

]

]

]

]

]

]

]

]

]

]

]

]

< 0 (35)

with

Λ
𝑖
≜ diag {𝛼−1

1
𝑄
2

1
, . . . , 𝛼

−1

𝑗
𝑄
2

𝑗
, . . . , 𝛼

−1

N𝑄
2

N}
𝑗 ̸= 𝑖

. (36)

By using the fact that

𝛼
−1

𝑗
𝑄
2

𝑗
≥ 2𝑄
𝑗
− 𝛼
𝑗
𝐼, (37)

we can show that if (23d) holds, then (34) holds, and thus
(27b) holds. The proof is completed.

Corollary 7. Note that the conditions (23d) given in
Theorem 6 are not strict LMI conditions due to (23e).
However, with the result of [20], one can solve these nonconvex
feasibility problems by formulating them into some sequential
optimization problems subject to LMI constraints. By making
the cone complementary linearization (CCL) [20], instead
of dealing with the original nonconvex feasibility problem
formulated in (23d) of Theorem 6, one may consider solving

the following minimization problem involving LMI conditions
(23d):

min trace{
N

∑

𝑖=1

𝑄
𝑖
𝑃
1𝑖
} ,

𝑠.𝑡. (23a)–(23d) for 𝑖 = 1, 2, . . . ,N,

[

𝑃
1𝑖

𝐼

𝐼 𝑄
𝑖

] ≥ 0.

(38)

Now, similar to Section 3, we consider the following
case: system (1a) and (1b) under Assumptions 1–3 is without
jumping parameters (that is𝑁 = 1), and thus the observer in
(7a) and (7b) and the controller in (10) aremode independent.
For such a case, the composite system in (11) and (13) becomes
singular system effectively operating at one of the subsystems
all the time, and it can be described by

𝐸 ̇𝜂 (𝑡) = 𝐴𝜂 (𝑡) + �̃�𝑑 (𝑡) , (39a)

𝑧 (𝑡) = 𝐶𝜂 (𝑡) (39b)

with

𝐴 ≜ [

𝐴 + 𝐺𝐾 𝐵

0 𝐴 + 𝐿𝐷

] , 𝐴 ≜ [

𝐴 𝐺𝑉

0 𝑊
] ,

�̃� ≜ [

𝐻 0

0 𝐻

] , 𝐵 ≜ [−𝐺𝐾 𝐺𝑉] , 𝐶 ≜ [𝐶 0] ,

𝐻 ≜ [

𝐻 0

0 𝑀
] , 𝐷 ≜ [𝐷

1
𝐷
2
𝑉] .

(40)

Corollary 8. Consider system (1a) and (1b) under Assump-
tions 1–3 without jumping parameters. Given parameters 𝜆

1
>

0, 𝜆
2
> 0, and 𝛾 > 0, there exists a full-order observer in

the form of (7a) and (7b) without jumping parameters and
there exists a controller in the form of (10) without jumping
parameters such that the composite system in (39a) and (39b) is
admissible and satisfies theH

∞
performance inequalities (14)

if there exist matrices 𝑃
1
> 0, 𝑃

2
, 𝑄 > 0,𝑋, and 𝑌 such that

min trace {𝑄𝑃
1
} ,

𝑠.𝑡. (42a) , (42b) , (42c) , (42d)
(41)

𝑄𝐸
𝑇

= 𝐸𝑄 ≥ 0, (42a)

𝐸

𝑇

𝑃
2
= 𝑃
𝑇

2
𝐸 ≥ 0, (42b)

[

[

[

[

[

[

[

[

[

[

Π
1

0 𝐻 0 𝑄𝐶
𝑇

𝐺𝑋 𝐺𝑉

⋆ Π
2

0 𝑃
𝑇

2
𝐻 0 0 0

⋆ ⋆ −𝛾
2

𝐼 0 0 0 0

⋆ ⋆ ⋆ −𝛾
2

𝐼 0 0 0

⋆ ⋆ ⋆ ⋆ −𝐼 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑄 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐼

]

]

]

]

]

]

]

]

]

]

< 0, (42c)

[

𝑃
1
𝐼

𝐼 𝑄
] ≥ 0 (42d)
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with

Π
1
≜ 𝐴𝑄 + 𝐺𝑋 + (𝐴𝑄 + 𝐺𝑋)

𝑇

,

Π
2
≜ 𝑃
𝑇

2
𝐴 + 𝑌𝐷 + (𝑃

𝑇

2
𝐴 + 𝑌𝐷)

𝑇

+ diag {𝑃
1
, 𝐼} .

(43)

Moreover, if the previous conditions are feasible, the gains of
the desired observer in the form of (7a) and (7b) without
jumping parameters and the desired controller in the form of
(10) without jumping parameters are given by

𝐾 = 𝑋𝑄
−1

, 𝐿 = 𝑃
−𝑇

2
𝑌. (44)

Remark 9. To the best of the authors’ knowledge, this is
also the first time that the full-order disturbance-observer-
based control strategy is applied in the singular system with
multiple disturbances.

4. Numerical Example

In this section, a numerical example is given to illustrate
the effectiveness of the proposed approaches. Consider the
systems in (1a), (1b), and (3) with the following parameters:

𝐴
1
= [

−2.2 1.2

−0.9 −0.2
] , 𝐺

1
= [

−0.1

0.1
] ,

𝐻
1
= [

0.2

0.1
] , 𝐸 = [

1.0 0

0 0
] ,

𝐶
1
= [0.1 0.1] , 𝐷

11
= [

0.1 0

0 0.1
] ,

𝐷
21
= [

0.1

0.1
] , 𝑊

1
= [

0 0.2

−0.2 0
] ,

𝑉
1
= [3.0 0] , 𝑀

1
= [

0.2

0.4
] ,

𝐴
2
= [

−1.2 0.5

0.2 −0.8
] , 𝐺

2
= [

0.1

0.3
] ,

𝐶
2
= [0.2 0.1] , 𝐷

12
= [

0.05 0

0 0.1
] ,

𝐷
22
= [

0.1

0.1
] , 𝐻

2
= [

0.2

1.0
] ,

𝑊
2
= [

0 0.5

−0.5 0
] , 𝑉

2
= [1.0 0] , 𝑀

2
= [

0.1

0.3
] .

(45)

The transition probability matrix is assumed to be Π =

[
−0.5 0.5

1.0 −1.0
], and 𝛾 is set to be 𝛾 = 1. Our intention here

is to design reduced-order-observer-based controller in the
form of (7a), (7b), and (10), such that the composite system
is stochastically admissible and satisfies prescribed H

∞

performance. We resort to the LMI Toolbox in MATLAB to

solve the problems established in (38), and the gains of the
desired observer and controller are given by

𝐾
1
= [0.5657 −9.2561] , 𝐾

2
= [−0.0461 −3.2981] ,

𝐿
1
=

[

[

[

[

−1.7020 2.8579

−4.2366 2.7401

−3.9409 −4.4407

−5.3114 −10.7753

]

]

]

]

,

𝐿
2
=

[

[

[

[

35.2258 −19.4542

119.1428 −95.2410

−22.2709 −0.0573

−42.1632 −0.2238

]

]

]

]

.

(46)

5. Conclusion

The problem of disturbance-observer-based control for
Markovian jump singular systems with multiple disturbance
has been studied. Full-order observer- (both disturbance and
system states) based controller has been constructed. The
explicit expression of the desired disturbance-observer-based
controller has also been presented. Finally, the proposed
methods have been verified by a numerical example.
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Two different chaos synchronization methods are proposed for a class of energy resource demand supply-system with input
constraint. Firstly, chaotic synchronization is achieved for a class of energy resource demand supply system with known system
parameters based on the Lyapunov theory. Secondly, an adaptive control approach is investigated for a class of energy resource
demand supply system with input constraint, and the parameters of the system are unknown based on the Lyapunov stability
and robust adaptive theory. To address the input constraint, new auxiliary signals and design systems are employed. Numerical
simulations are provided to illustrate the effectiveness of the proposed approach.

1. Introduction

Energy resource system is a kind of complex nonlinear sys-
tem. Energy resource including coal, petroleum, natural gas,
water and electricity, and nuclear power can be classified as
renewable energy and nonrenewable energy according to the
capability of sustainable utilization. The issue of energy sup-
ply and demand has been valued worldwide with increasing
development of economy. One of the most noticeable prob-
lems in the field of energy resource is how to study energy
resource system deeply through nonlinear dynamics, which
is currently a rapid developing method [1].

Reference [2] established a three-dimensional energy
resource demand-supply system based on the real energy
resources demand-supply in the East and the West of China.
Furthermore, by adding a new variable to consider the renew-
able resources, a four-dimensional energy resource system
was proposed in [3]. The dynamics behaviors of the four-
dimensional energy resource system have been analyzed by
means of the Lyapunov exponents and bifurcation diagrams.
Also the same as the above-mentioned power systems, this
four-dimensional energy resource system is with rich chaos
behaviors. The problem of chaotic control for the energy
resource system was considered in [1]. Feedback control and
adaptive control methods were used to suppress chaos to
unstable equilibrium or unstable periodic orbits, where

only three of the system’s parameters were supposed to
be unknown. Reference [4] investigated the robust chaos
synchronization problem for the four-dimensional energy
resource systems based on the sliding mode control tech-
nique. The control of energy resource chaotic system was
investigated by time delayed feedback control method in [5].
Based on stability criterion of linear system and Lyapunov
stability theory, respectively, the chaos synchronization prob-
lems for energy resource demand-supply system were dis-
cussed using two novel different control methods in [6].

Although the adaptive synchronization control has
achieved a great progress, the aforementioned control ap-
proaches assume that all the components of the considered
energy resource demand-supply systems are in good oper-
ating conditions. As we know, many control systems have
constraints on their inputs in the forms of input saturation
or dead zone [7–17]. In practice, input saturation constraint
is one of the most important input constraints which usually
appear in many industries control systems. There are two
main motivations for the saturation studies. One is that satu-
ration is a potential problem for actuators of control systems.
It often severely degrades the system performance, gives rise
to undesirable inaccuracy, or even affects system stability.
The other is that the control actions are usually limited in
energy or magnitude; the saturation of the control output is
necessary in practice.
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Figure 1: Energy resource attractor.

Motivated by the above observations, two different chaos
synchronization control methods are proposed for a class
of energy resource demand-supply system with input con-
straint. Based on Lyapunov stability and robust adaptive the-
ory, on the assumption that all the parameters of the system
are known and unknown, nonadaptive and adaptive control
approaches are proposed to make the states of two chaotic
systems asymptotic synchronization.Themain contributions
of the proposed algorithm are that (i) the problems of the
input constraint are solved by employing a new auxiliary
system; (ii) the stability of the energy resource demand-
supply system is guaranteed based on the Lyapunov theory.

2. Energy Resource Chaotic System

In the paper, we consider the following energy resource sys-
tem (see [2, 6]):

̇𝑥 = 𝑎
1
𝑥(1 −

𝑥

𝑀

) − 𝑎
2
(𝑦 + 𝑧) ,

̇𝑦 = −𝑏
1
𝑦 − 𝑏
2
𝑧 + 𝑏
3
𝑥 [𝑁 − (𝑥 − 𝑧)] ,

̇𝑧 = 𝑐
1
𝑧 (𝑐
2
𝑥 − 𝑐
3
) ,

(1)

where 𝑥(𝑡) is the energy resource shortage in A region, 𝑦(𝑡) is
the energy resource supply increment in B region, and 𝑧(𝑡) is
the energy resource import in A region;𝑀,𝑁, 𝑎

𝑖
, 𝑏
𝑗
(𝑖 = 1, 2,

𝑗 = 1, 2, 3) are parameters that are all positive real.
Similar to [6], when the system parameters are taken as

the following values, this system exhibits chaotic behavior:
𝑀 = 1.8, 𝑁 = 1, 𝑎

1
= 0.09, 𝑎

2
= 0.15, 𝑏

1
= 0.06, 𝑏

2
= 0.082,

𝑏
3
= 0.07, 𝑐

1
= 0.2, 𝑐

2
= 0.5, and 𝑐

3
= 0.4 . Without the

particular statement, these values are adopted in this whole
paper. Figure 1 shows the phase portrait with initial condi-
tions of 𝑥(0) = 0.82, 𝑦(0) = 0.29, and 𝑧(0) = 0.48.

3. Synchronization of the Energy
Resource System

In this section, we will design a controller in order to make
the response system trace the drive system. In order to obtain

synchronization of the energy resource system (1), the drive
system with subscript 1 is written as

̇𝑥
1
= 𝑎
1
𝑥
1
(1 −

𝑥
1

𝑀

) − 𝑎
2
(𝑦
1
+ 𝑧
1
) ,

̇𝑦
1
= −𝑏
1
𝑦
1
− 𝑏
2
𝑧
1
+ 𝑏
3
𝑥
1
[𝑁 − (𝑥

1
− 𝑧
1
)] ,

̇𝑧
1
= 𝑐
1
𝑧
1
(𝑐
2
𝑥
1
− 𝑐
3
) .

(2)

The controlled response system with subscript 2 can be
expressed as

̇𝑥
2
= 𝑎
1
𝑥
2
(1 −

𝑥
2

𝑀

) − 𝑎
2
(𝑦
2
+ 𝑧
2
) + 𝑢
1
(V
1
(𝑡)) ,

̇𝑦
2
= −𝑏
1
𝑦
2
− 𝑏
2
𝑧
2
+ 𝑏
3
𝑥
2
[𝑁 − (𝑥

2
− 𝑧
2
)] + 𝑢

2
(V
2
(𝑡)) ,

̇𝑧
2
= 𝑐
1
𝑧
2
(𝑐
2
𝑥
2
− 𝑐
3
) + 𝑢
3
(V
3
(𝑡)) ,

(3)

where V
𝑖
(𝑖 = 1, 2, 3) is the controller inputs to be designed,

𝑢
𝑖
(V
𝑖
(𝑡)) (𝑖 = 1, 2, 3) denotes the plant input subject to satura-

tion type nonlinearly.

Remark 1. If no input saturation (i.e., 𝑢
𝑖
(V
𝑖
(𝑡)) = V

𝑖
(𝑡)) (𝑖 =

1, 2, 3) is included in (3), then (3) becomes the chaotic systems
studied widely; see [2, 6].

𝑢(V(𝑡)) is described by

𝑢
𝑖
(V
𝑖
(𝑡)) = sat (V

𝑖
(𝑡))

= {

sign (V
𝑖
(𝑡)) 𝑢
𝑀
,




V
𝑖
(𝑡)




≥ 𝑢
𝑖𝑀
,

V
𝑖
(𝑡) ,





V
𝑖
(𝑡)




< 𝑢
𝑖𝑀
,

(4)

where 𝑢
𝑖𝑀

is a known bound of 𝑢
𝑖
(V
𝑖
(𝑡)). Clearly, the rela-

tionship between the applied control 𝑢
𝑖
(V
𝑖
(𝑡)) and the control

input V
𝑖
(𝑡) has a sharp corner when |V

𝑖
(𝑡)| = 𝑢

𝑖𝑀
. Similar to

[15], define

𝑒
1
= 𝑥
2
− 𝑥
1
− ℎ
1
,

𝑒
2
= 𝑦
2
− 𝑦
1
− ℎ
2
,

𝑒
3
= 𝑧
2
− 𝑧
1
− ℎ
3
,

(5)

where ℎ
𝑖
(𝑖 = 1, 2, 3) are filter signals and will be given later.

By using (2), (3), and (5), the error dynamical system can
be written as

̇𝑒
1
= −

̇
ℎ
1
+ 𝑎
1
𝑒
1
− 𝑎
2
(𝑒
2
+ 𝑒
3
) −

𝑎
1
𝑥
2

2

𝑀

+

𝑎
1
𝑥
2

1

𝑀

+ 𝑎
1
ℎ
1
+ 𝑎
2
(ℎ
2
+ ℎ
3
) + 𝑢
1
(V
1
(𝑡)) ,

̇𝑒
2
= −

̇
ℎ
2
− 𝑏
1
𝑒
2
− 𝑏
2
𝑒
3
+ 𝑏
3
𝑁𝑒
1
− 𝑏
3
𝑥
2

2

+ 𝑏
3
𝑥
2

1
+ 𝑏
3
𝑥
2
𝑧
2
− 𝑏
3
𝑥
1
𝑧
1
+ 𝑏
1
ℎ
2

+ 𝑏
2
ℎ
3
− 𝑏
3
𝑁ℎ
1
+ 𝑢
2
(V
2
(𝑡)) ,

̇𝑒
3
= −

̇
ℎ
3
− 𝑐
1
𝑐
3
𝑒
3
+ 𝑐
1
𝑐
2
𝑥
2
𝑧
2

− 𝑐
1
𝑐
2
𝑥
1
𝑧
1
+ 𝑐
1
𝑐
3
ℎ
3
+ 𝑢
3
(V
3
(𝑡)) .

(6)



Mathematical Problems in Engineering 3

Similar to [18, 19], choose Lyapunov function candidate 𝑉 as

𝑉 =

1

2

𝑒
2

1
+

1

2

𝑒
2

2
+

1

2

𝑒
2

3
. (7)

The time derivative of 𝑉 is
𝑉 = 𝑒

1
̇𝑒
1
+ 𝑒
2
̇𝑒
2
+ 𝑒
3
̇𝑒
3
. (8)

Define the dynamic system as
̇
ℎ
𝑖
= −ℎ
𝑖
+ (𝑢
𝑖
− V
𝑖
) , 𝑖 = 1, 2, 3. (9)

Substituting (6) and (9) into (8) results in

𝑉 = 𝑒
1
[ℎ
1
+ V
1
+ 𝑎
1
𝑒
1
− 𝑎
2
(𝑒
2
+ 𝑒
3
) −

𝑎
1
𝑥
2

2

𝑀

+

𝑎
1
𝑥
2

1

𝑀

+ 𝑎
1
ℎ
1
+ 𝑎
2
(ℎ
2
+ ℎ
3
)]

+ 𝑒
2
[ℎ
2
+ V
2
− 𝑏
1
𝑒
2
− 𝑏
2
𝑒
3
+ 𝑏
3
𝑁𝑒
1

− 𝑏
3
𝑥
2

2
+ 𝑏
3
𝑥
2

1
+ 𝑏
3
𝑥
2
𝑧
2
− 𝑏
3
𝑥
1
𝑧
1

+𝑏
1
ℎ
2
+ 𝑏
2
ℎ
3
− 𝑏
3
𝑁ℎ
1
+ 𝑢
2
]

+ 𝑒
3
[ℎ
3
+ V
3
− 𝑐
1
𝑐
3
𝑒
3
+ 𝑐
1
𝑐
2
𝑥
2
𝑧
2

− 𝑐
1
𝑐
2
𝑥
1
𝑧
1
+ 𝑐
1
𝑐
3
ℎ
3
] .

(10)

By using Young’s inequality, we have

−𝑎
2
𝑒
1
(𝑒
2
+ 𝑒
3
) ≤ 𝑎
2

2
𝑒
2

1
+

1

2

𝑒
2

2
+

1

2

𝑒
2

3
,

𝑒
2
[−𝑏
2
𝑒
3
+ 𝑏
3
𝑁𝑒
1
] ≤

𝑏
2

2
+ 𝑏
2

3
𝑁
2

2

𝑒
2

2
+

1

2

𝑒
2

3
+

1

2

𝑒
2

1
.

(11)

Substituting (11) into (10) results in

𝑉 ≤ (𝑎
1
+ 𝑎
2

2
+

1

2

) 𝑒
2

1
+ (𝑏
1
+

1

2

+

𝑏
2

2
+ 𝑏
2

3
𝑁
2

2

) 𝑒
2

2

+ (1 − 𝑐
1
𝑐
3
) 𝑒
2

3

+ 𝑒
1
[ℎ
1
+ V
1
−

𝑎
1
𝑥
2

2

𝑀

+

𝑎
1
𝑥
2

1

𝑀

+ 𝑎
1
ℎ
1
+ 𝑎
2
(ℎ
2
+ ℎ
3
)]

+ 𝑒
2
[ℎ
2
+ V
2
− 𝑏
3
𝑥
2

2
+ 𝑏
3
𝑥
2

1
+ 𝑏
3
𝑥
2
𝑧
2
− 𝑏
3
𝑥
1
𝑧
1

+ 𝑏
1
ℎ
2
+ 𝑏
2
ℎ
3
− 𝑏
3
𝑁ℎ
1
]

+ 𝑒
3
[ℎ
3
+ V
3
+ 𝑐
1
𝑐
2
𝑥
2
𝑧
2
− 𝑐
1
𝑐
2
𝑥
1
𝑧
1
+ 𝑐
1
𝑐
3
ℎ
3
] .

(12)
Choose the actual controllers V

𝑖

V
1
= − 𝑙
1
𝑒
1
− ℎ
1
+

𝑎
1
𝑥
2

2

𝑀

−

𝑎
1
𝑥
2

1

𝑀

− 𝑎
1
ℎ
1
− 𝑎
2
(ℎ
2
+ ℎ
3
) ,

V
2
= − 𝑙
2
𝑒
2
− ℎ
2
+ 𝑏
3
𝑥
2

2
− 𝑏
3
𝑥
2

1
− 𝑏
3
𝑥
2
𝑧
2

+ 𝑏
3
𝑥
1
𝑧
1
− 𝑏
1
ℎ
2
− 𝑏
2
ℎ
3
+ 𝑏
3
𝑁ℎ
1
,

V
3
= −𝑙
3
𝑒
3
− ℎ
3
− 𝑐
1
𝑐
2
𝑥
2
𝑧
2
+ 𝑐
1
𝑐
2
𝑥
1
𝑧
1
− 𝑐
1
𝑐
3
ℎ
3
,

(13)

where 𝑙
𝑖
(𝑖 = 1, 2, 3) are positive design parameters. Substitut-

ing (13) into (12) results in

𝑉 ≤ −(𝑙
1
− 𝑎
1
− 𝑎
2

2
−

1

2

) 𝑒
2

1

− (𝑙
2
− 𝑏
1
−

1

2

−

𝑏
2

2
+ 𝑏
2

3
𝑁
2

2

) 𝑒
2

2
− (𝑙
3
+ 𝑐
1
𝑐
3
− 1) 𝑒

2

3
.

(14)

Let 𝑙
𝑖
satisfy 𝑙

1
> 𝑎
1
+ 𝑎
2

2
+ 1/2, 𝑙

2
> 𝑏
1
+ 1/2 + (𝑏

2

2
+ 𝑏
2

3
𝑁
2

)/2,
and 𝑙
3
+ 𝑐
1
𝑐
3
> 1. We can obtain 𝑉 ≤ 0, and it is concluded

that 𝑒
1
, 𝑒
2
, and 𝑒

3
converge to zero as time 𝑡 tends to infinity.

Therefore, the synchronization of response systems (3) and
the drive system (2) is finally achieved.

Remark 2. It is noted that the controller in [6] was designed
by using the stability criterion of linear system, not based
on Lyapunov stability theory. However, this paper designed
the control laws based on Lyapunov method. This paper can
use a constructive way to obtain the control laws for this
class of energy resource demand-supply system. In addition,
the control laws’ design parameters of this paper have fewer
restrictions compared to [6].

4. Simulation Results 1

In this section, the initial values of are chosen as 𝑥
1
(0) = 0.82,

𝑦
1
(0) = 0.29, 𝑧

1
(0) = 0.48, 𝑥

2
(0) = 0.69, 𝑦

2
(0) = −0.03,

𝑧
2
(0) = 1.25. The saturation values are 𝑢

1𝑀
= 0.5, 𝑢

2𝑀
= 2,

and 𝑢
3𝑀

= 2.The design parameters in controllers are chosen
as 𝑙
1
= 20, 𝑙

2
= 10, and 𝑙

3
= 10. The simulation results are

shown in Figures 2, 3, 4, and 5.

5. Adaptive Synchronization of the Energy
Resource System

In this section, we assume that all the parameters of the
energy resource system are unknown. For convenience, we
define 𝑎

3
= 𝑎
1
/𝑀, 𝑏

4
= 𝑏
3
𝑁, 𝑑
1
= 𝑐
1
𝑐
2
, and 𝑑

2
= 𝑐
1
𝑐
3
. The

energy resource system (1) can be rewritten as:

̇𝑥 = 𝑎
1
𝑥 − 𝑎
2
(𝑦 + 𝑧) − 𝑎

3
𝑥
2

,

̇𝑦 = −𝑏
1
𝑦 − 𝑏
2
𝑧 − 𝑏
3
𝑥 (𝑥 − 𝑧) + 𝑏

4
𝑥,

̇𝑧 = 𝑑
1
𝑥𝑧 − 𝑑

2
𝑧

(15)

and the drive system can be also rewritten as

̇𝑥
1
= 𝑎
1
𝑥
1
− 𝑎
2
(𝑦
1
+ 𝑧
1
) − 𝑎
3
𝑥
2

1
,

̇𝑦
1
= −𝑏
1
𝑦
1
− 𝑏
2
𝑧
1
− 𝑏
3
𝑥
1
(𝑥
1
− 𝑧
1
) + 𝑏
4
𝑥
1
,

̇𝑧
1
= 𝑑
1
𝑥
1
𝑧
1
− 𝑑
2
𝑧
1
.

(16)
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Figure 2: The trajectories of 𝑒
1
(solid line), 𝑒

2
(star line), and 𝑒

3

(dash-dotted line).
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Figure 3:The trajectories of V
1
(solid line) and 𝑢

1
(dash-dotted line).
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Figure 4:The trajectories of V
2
(solid line) and𝑢

2
(dash-dotted line).
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Figure 5:The trajectories of V
3
(solid line) and 𝑢

3
(dash-dotted line).

The response system can be expressed as

̇𝑥
2
= 𝑎
1
𝑥
2
− 𝑎
2
(𝑦
2
+ 𝑧
2
) − 𝑎
3
𝑥
2

2
+ 𝑢
1
(V
1
(𝑡)) ,

̇𝑦
2
= −𝑏
1
𝑦
2
− 𝑏
2
𝑧
2
− 𝑏
3
𝑥
2
(𝑥
2
− 𝑧
2
) + 𝑏
4
𝑥
2
+ 𝑢
2
(V
2
(𝑡)) ,

̇𝑧
2
= 𝑑
1
𝑥
2
𝑧
2
− 𝑑
2
𝑧
2
+ 𝑢
3
(V
3
(𝑡)) .

(17)

Choose the same errors 𝑒
𝑖
as (5) and the same filter signals ℎ

𝑖

as (9), and we have

̇𝑒
1
= −

̇
ℎ
1
+ 𝑎
1
𝑒
1
− 𝑎
2
(𝑒
2
+ 𝑒
3
) − 𝑎
3
𝑥
2

2
+ 𝑎
3
𝑥
2

1

+ 𝑎
1
ℎ
1
+ 𝑎
2
(ℎ
2
+ ℎ
3
) + 𝑢
1
(V
1
(𝑡)) ,

̇𝑒
2
= −

̇
ℎ
2
− 𝑏
1
𝑒
2
− 𝑏
2
𝑒
3
+ 𝑏
4
𝑒
1
− 𝑏
3
𝑥
2

2
+ 𝑏
3
𝑥
2

1
+ 𝑏
3
𝑥
2
𝑧
2

− 𝑏
3
𝑥
1
𝑧
1
+ 𝑏
1
ℎ
2
+ 𝑏
2
ℎ
3
− 𝑏
4
ℎ
1
+ 𝑢
2
(V
2
(𝑡)) ,

̇𝑒
3
= −

̇
ℎ
3
− 𝑑
2
𝑒
3
+ 𝑑
1
𝑥
2
𝑧
2
− 𝑑
2
𝑥
1
𝑧
1
+ 𝑑
1
ℎ
3
+ 𝑢
3
(V
3
(𝑡)) .

(18)

Choose the Lyapunov function candidate 𝑉 as

𝑉 =

1

2

(𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑎
2

1
+ 𝑎
2

2
+ 𝑎
2

3
+
̃
𝑏
2

1
+
̃
𝑏
2

2

+
̃
𝑏
2

3
+
̃
𝑏
2

4
+
̃
𝑑
2

1
+
̃
𝑑
2

2
) ,

(19)

where 𝑎
𝑖
= 𝑎
𝑖
− 𝑎
𝑖
(𝑖 = 1, 2, 3), ̃𝑏

𝑗
= 𝑏
𝑗
−
̂
𝑏
𝑗
(𝑗 = 1, 2, 3, 4), and

̃
𝑑
𝑘
= 𝑑
𝑘
−
̂
𝑑
𝑘
(𝑘 = 1, 2).

The time derivative of𝑉 along with the solution of (18) is

̇
𝑉 = 𝑒

1
[ℎ
1
+ V
1
+ 𝑎
1
𝑒
1
− 𝑎
2
(𝑒
2
+ 𝑒
3
) − 𝑎
3
𝑥
2

2

+ 𝑎
3
𝑥
2

1
+ 𝑎
1
ℎ
1
+ 𝑎
2
(ℎ
2
+ ℎ
3
)]

+ 𝑒
2
[ℎ
2
+ V
2
−
̂
𝑏
1
𝑒
2
−
̂
𝑏
2
𝑒
3
+
̂
𝑏
4
𝑒
1
−
̂
𝑏
3
𝑥
2

2

+
̂
𝑏
3
𝑥
2

1
+
̂
𝑏
3
𝑥
2
𝑧
2
−
̂
𝑏
3
𝑥
1
𝑧
1
+
̂
𝑏
1
ℎ
2
+
̂
𝑏
2
ℎ
3
−
̂
𝑏
4
ℎ
1
]

+ 𝑒
3
[ℎ
3
+ V
3
−
̂
𝑑
2
𝑒
3
+
̂
𝑑
1
𝑥
2
𝑧
2
−
̂
𝑑
2
𝑥
1
𝑧
1
+
̂
𝑑
1
ℎ
3
]
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+ 𝑎
1
(𝑒
1
ℎ
1
+ 𝑒
2

1
−
̇
�̂�
1
)

+ 𝑎
2
(− (𝑒
2
+ 𝑒
3
) 𝑒
1
+ (ℎ
2
+ ℎ
3
) 𝑒
1
−
̇
�̂�
2
)

+ 𝑎
3
(−𝑒
1
𝑥
2

2
+ 𝑒
1
𝑥
2

1
+ 𝑒
1
ℎ
1
+ 𝑒
1
(ℎ
2
+ ℎ
3
) −

̇
�̂�
3
)

+
̃
𝑏
1
(−𝑒
2

2
+ 𝑒
2
ℎ
2
−
̇
̂
𝑏
1
) +

̃
𝑏
2
(−𝑒
2
𝑒
3
+ 𝑒
2
ℎ
3
−
̇
̂
𝑏
2
)

+
̃
𝑏
3
(−𝑒
2
𝑥
2

2
+ 𝑒
2
𝑥
2

1
+ 𝑒
2
𝑥
2
𝑧
2
− 𝑒
2
𝑥
1
𝑧
1
−
̇
̂
𝑏
3
)

+
̃
𝑏
4
(𝑒
1
𝑒
2
− 𝑒
2
ℎ
1
−
̇
̂
𝑏
4
)

+
̃
𝑑
1
(𝑒
3
𝑥
2
𝑧
2
+ 𝑒
3
ℎ
3
−
̇
̂
𝑑
1
) +

̃
𝑑
2
(−𝑒
2

3
− 𝑒
3
𝑥
1
𝑧
1
−
̇
̂
𝑑
2
) .

(20)

Choose the actual controllers V
𝑖
and update the laws of 𝑎

𝑖
(𝑖 =

1, 2, 3), ̂𝑏
𝑗
(𝑗 = 1, 2, 3, 4), and ̂𝑑

𝑘
(𝑘 = 1, 2) as follows:

V
1
= − 𝑙
1
𝑒
1
− ℎ
1
− 𝑎
1
𝑒
1
+ 𝑎
2
(𝑒
2
+ 𝑒
3
)

+ 𝑎
3
𝑥
2

2
− 𝑎
3
𝑥
2

1
− 𝑎
1
ℎ
1
− 𝑎
2
(ℎ
2
+ ℎ
3
) ,

V
2
= − 𝑙
2
𝑒
2
− ℎ
2
+
̂
𝑏
1
𝑒
2
+
̂
𝑏
2
𝑒
3
−
̂
𝑏
4
𝑒
1
+
̂
𝑏
3
𝑥
2

2
−
̂
𝑏
3
𝑥
2

1

−
̂
𝑏
3
𝑥
2
𝑧
2
+
̂
𝑏
3
𝑥
1
𝑧
1
−
̂
𝑏
1
ℎ
2
−
̂
𝑏
2
ℎ
3
+
̂
𝑏
4
ℎ
1
,

V
3
= − 𝑙
3
𝑒
3
− ℎ
3
+
̂
𝑑
2
𝑒
3
−
̂
𝑑
1
𝑥
2
𝑧
2
+
̂
𝑑
2
𝑥
1
𝑧
1
−
̂
𝑑
1
ℎ
3
,

(21)

where 𝑙
𝑖
(𝑖 = 1, 2, 3) are positive design parameters:

̇
�̂�
1
= 𝑒
1
ℎ
1
+ 𝑒
2

1
,

̇
�̂�
2
= − (𝑒

2
+ 𝑒
3
) 𝑒
1
+ (ℎ
2
+ ℎ
3
) 𝑒
1
,

̇
�̂�
3
= −𝑒
1
𝑥
2

2
+ 𝑒
1
𝑥
2

1
+ 𝑒
1
ℎ
1
+ 𝑒
1
(ℎ
2
+ ℎ
3
) ,

̇
̂
𝑏
1
= −𝑒
2

2
+ 𝑒
2
ℎ
2
,

̇
̂
𝑏
2
= −𝑒
2
𝑒
3
+ 𝑒
2
ℎ
3
,

̇
̂
𝑏
3
= −𝑒
2
𝑥
2

2
+ 𝑒
2
𝑥
2

1
+ 𝑒
2
𝑥
2
𝑧
2
− 𝑒
2
𝑥
1
𝑧
1
,

̇
̂
𝑏
4
= 𝑒
1
𝑒
2
− 𝑒
2
ℎ
1
,

̇
̂
𝑑
1
= 𝑒
3
𝑥
2
𝑧
2
+ 𝑒
3
ℎ
3
,

̇
̂
𝑑
2
= −𝑒
2

3
− 𝑒
3
𝑥
1
𝑧
1
.

(22)

Substituting (21) and (22) into (20) results in

̇
𝑉 = −𝑙

1
𝑒
2

1
− 𝑙
2
𝑒
2

2
− 𝑙
3
𝑒
2

3
. (23)

From (23), we can conclude that the states 𝑥
2
, 𝑦
2
, and 𝑧

2

of response system (17) and the states 𝑥
1
, 𝑦
1
, and 𝑧

1
of drive

system (16) are ultimately synchronized asymptotically.
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Figure 6: The trajectories of 𝑒
1
(solid line), 𝑒

2
(star line), and 𝑒

3

(dash-dotted line).
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Figure 7:The trajectories of V
1
(solid line) and 𝑢

1
(dash-dotted line).

6. Simulation Results 2

In this section, the initial values are chosen as 𝑥
1
(0) = 0.82,

𝑦
1
(0) = 0.29, 𝑧

1
(0) = 0.48, 𝑥

2
(0) = 0.69, 𝑦

2
(0) = −0.03, and

𝑧
2
(0) = 1.25, and the other initial values are chosen as zeros.

The saturation values are 𝑢
1𝑀

= 0.5, 𝑢
2𝑀

= 0.5, and 𝑢
3𝑀

= 2.
The design parameters in controllers are 𝑙

1
= 5, 𝑙

2
= 4, and

𝑙
3
= 4.The simulation results are shown in Figures 6, 7, 8, and

9.

7. Conclusions

For a class of known and unknown parameters for energy
resource demand-supply system with input constraints, the
chaos synchronization problems have been discussed using
two different controlmethods, respectively.Themain features
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Figure 8:The trajectories of V
2
(solid line) and 𝑢

2
(dash-dotted line).
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Figure 9:The trajectories of V
3
(solid line) and 𝑢

3
(dash-dotted line).

of the proposed algorithm are that (i) the problems of the
input constraint have been solved by employing a new auxil-
iary system; (ii) the stability of the energy resource demand-
supply system has been guaranteed based on Lyapunov
theory. The results all have demonstrated the validity and
feasibility of the proposed approaches.
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