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To overcome the shortcomings that the early fault characteristics of rolling bearing are not easy to be extracted and the
identification accuracy is not high enough, a novel collaborative diagnosis method is presented combined with VMD and LSSVM
for incipient faults of rolling bearing. First, the basic concept of VMD was introduced in detail, and then, the adaptive selection
principle of parameter K in VMD was constructed by instantaneous frequency mean. Furthermore, we used Lagrangian
polynomial and Euclidean norm to verify the value of K accurately. Secondly, we proposed a classification algorithm based on
PSO-optimized LSSVM. Meanwhile, the flowchart of the classification algorithm of fault modes may be also designed. ,ird, the
experiment shows that the presented algorithm in this paper is effective by using the existing failure data provided by the
laboratory of Guangdong Petrochemical Research Institute. Finally, some conclusions and application prospects were discussed.

1. Introduction

In recent years, the machinery has become more high-speed,
intelligentized, and complicated with the development of the
modern industrialization. As we all know, the rotating
machinery is the cornerstone of transportation, power
electronics, and manufacturing. So, how to guarantee the
security of whole rotating machinery systems is very im-
portant in the industrial field. In the actual industrial sce-
nario, the engineers and researchers have noticed that the
safety of the bearings is often one of the critical joints, which
ensures the global safety of whole rotating machinery [1].
,erefore, it is essential to detect and assess the performance
of the running state of the bearings. ,e traditional fault
diagnosis methods that judge and evaluate the running state
of the bearing are operated or implemented by observing the
frequency of the vibration signal. ,e skeleton of these
methods consists of just three steps: signal processing,
feature extraction, and fault pattern recognition. In most
realistic scenarios, signal processing is often used as the
preparing work for the feature extraction. Of course, the
feature extraction is also used as the prepared work for the

fault pattern recognition because the classification accuracy
of the fault modes is the final objective in fault diagnosis of
the bearing, so the signal processing and feature extraction
are often integrated to analyze the vibration signals of the
bearing. And, how to implement them becomes critical.

For the question raised above, the scholars have pre-
sented and constructed some models such as Empirical
Mode Decomposition (EMD), Wavelet Transform (WT),
Local Mean Value Decomposition (LMVD), and Variational
Mode Decomposition (VMD) in references [2–4]. ,e ex-
periment results show that these methods may acquire the
most of the valuable information in the specified scenarios.
Unfortunately, almost all these methods have some
shortcomings. For example, the EMD and LMD have the
phenomenon such as modal aliasing and endpoint effect.
,e WTneeds to select the wavelet base and decomposition
scale because the finite length may cause inaccurate de-
composition of complete components. In the VMD, if the
parameter K is wrongly selected, the phenomenon such as
overdecomposition or underdecomposition will appear. To
overcome these shortcomings, some improved algorithms
have been presented such as Simplistic Geometric Mode
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Decomposition (SGMD), Adaptive Chirped Mode De-
composition (ACMD), and New Spectral Analysis Methods
(NSAM) in [5–7]. Especially, to address the shortcoming of
the EMD, the study in [8] has constructed the EMD en-
velope correction method using B-spline interpolation and
base spline. ,ese methods may alleviate the modal aliasing
problem of high-frequency signals. Meanwhile, to optimally
select the parameterK of VMD, the genetic variation sample
group, kurtosis criterion variational mode decomposition,
and self-organizing mapping (SOM) neural network have
been adopted to adaptively determine the optimal value of
the parameter K in [9–12]. To verify the effectiveness of
these new methods, some experiment examples have been
used to simulate in [13–17]. ,e simulated results showed
that these improvedmodels may solve the shortcomings to a
certain extent. For practical application, the constant im-
provement of the existing methods is the goal of the en-
gineers and scholars. ,us, we will treat the problem in this
paper.

On the contrary, in the view of fault diagnosis, to get the
accurate classification of fault modes is the other main
objective of the bearing fault diagnosis. In fact, an excellent
pattern recognition method of the fault modes has an
important influence for the final diagnosis accuracy. Based
on this objective, support vector machine (SVM), least-
squares’ support vector machine (LSSVM), BP neural
network (BPNN), fuzzy logic (FM), and other methods
have been successfully applied in [18–23]. And, then, these
fault pattern recognition methods have been widely used in
different industrial environments. Further, some improved
methods of the fault pattern recognition were studied in
[24, 25]. For example, the double support-vector machine
and smooth iterative online-support tensor algorithm are
proposed to improve the performance of the traditional
support vector machine in [26, 27]. ,e least-squares’
ground projection method of the double support-vector
machine reduces the diagnostic error in [28]. Meanwhile,
to optimize the penalty factor C and kernel parameter of
LSSVM, some new algorithms such as the Moth-flame
Optimization (MFO), the von Neumann Topology Whale
Optimization Algorithm (VNWOA), Quantum Particle
Swarm (QPS), and Chaotic Antlion Algorithm (CAA) were
introduced to implement the optimization operation for
enhancing the precision of fault diagnosis in [29–34]. ,e
experiments have verified the performance of these pre-
sented algorithms. However, the global searching ability of
these algorithms is weak in the real industrial environment.
So, searching the improved pattern recognition method to
enhance the global searching ability and improve the
classification accuracy of fault modes is another concern in
our paper.

Based on the two points mentioned above, an improved
fault diagnosis of the bearing will be presented combined
with the VMD algorithm based on instantaneous frequency
optimization and particle swarm optimization least-squares’
support vector machine in our paper.,e rest of this paper is
arranged as follows. In Section 2, the adaptive selection
principle of K value in the VMD algorithm is given in detail.
In Section 3, the least-squares’ support vector machine

classification model for particle swarm optimization (PSO)
is established, and the concrete flowchart of the fault di-
agnosis process is designed and analyzed. In Section 4, some
simulated examples were used to verify the effectiveness of
our algorithm through the existing failure data provided by
the laboratory of Guangdong Petrochemical Research In-
stitute. Finally, some conclusions are summarized in Section
5.

2. Adaptive Selection Principle of Parameter
K in the VMD Algorithm

2.1. *e Basic Concept of the VMD Decomposition Principle.
,e intrinsic mode function (IMF) is defined as an FM and
AM signal by VMD decomposition and is expressed as
follows:

uk(t) � Ak(t)cos ϕk(t) , k � 1, 2, . . . , K, (1)

where Ak(t) expresses the instantaneous amplitude, wk �

ϕk
′(t) is the instantaneous frequency, and K represents the

number of signal components after decomposition.
Suppose the original signal f is a multicomponent

signal, which is composed of the K IMF component with
limited bandwidth, and the central frequency of each IMF is
wk. To determine the bandwidth of each mode, the following
steps are used to obtain it:

(1) Analytic signals of modal functions are obtained, and
Hilbert transformation is performed for each modal
function uk(t):

σ(t) +
j

πt
 uk(t). (2)

(2) Mix the estimated center frequency e−jwkt of each
modal analytic signal. ,e spectrum of each modal is
modulated to the corresponding baseband as follows:

σ(t) +
j

πt
  × uk(t) e

−jwkt
. (3)

(3) Calculate the square L2 norm of the gradient of the
above demodulation signal, and estimate the
bandwidth of eachmodal component.,e constraint
variational model is established as follows:

min
uk{ }, wk{ }


k

zt σ(t) +
j

πt
  × uk(t) e

− iwkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭

s.t 
k

uk(t) � f,

(4)

where uk � u1, u2, . . . , uk  represents the K IMF compo-
nents obtained by decomposition and wk � w1, w2, . . . , wk 

represents the center frequency of each component.
In order to solve the above constraint variational model,

the quadratic penalty factor α and Lagrangian multiplication
operator λ(t) are introduced, where the quadratic penalty
factor can guarantee the reconstruction accuracy of the
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signal in the presence of Gaussian noise and λ(t) keeps the
constraint conditions strict. ,e expanded Lagrangian ex-
pression is as follows:

L uk(t) , ωk(t) , λ(  � α
k

zt σ(t) +
j

πt
  × uk(t) e

− jωkt

�������

�������

2

2

+ f(t) − 
k

uk(t)

���������

���������

2

2

+〈λ(t), f(t) − 
k

uk(t)〉.

(5)

,e multipliers’ alternating direction algorithm is used
to update the IMF and its center frequency, and the saddle
point of formula (4) is the optimal solution of the original
problem. All IMF in the frequency domain can be obtained
by the following formula:

u
n+1
k (w) �

f(w) − i≠kui(w) + λ(w)/2
1 + 2α w − wk( 

2 , (6)

where un+1
k (w) is the current residual quantity and f(w) −

 i≠ kui(w) is the result of Wiener filtering. ,e new IMF
power-spectrum centers in the algorithm are as follows:

w
n+1
k �


∞
0 w uk(w)



2dw


∞
0 uk(w)



2dw

, (7)

where wn+1
k is the power spectrum center.

,e above process is the adaptive decomposition process of
VMD. From the decomposition principle, it can be known that
VMD can well avoid the endpoint effect and modal confusion.
But, from the perspective of the actual decomposition process,
the VMD algorithm loses the ability to decompose signals
independently, which needs to preset the value of K. And, the
reasonableness of the K value determines the signal decom-
position accuracy of VMD. If the K value is estimated
according to the existing observationmethod, that is, observing
the center frequency differentiation of the signal component,
the better the center frequency differentiation is, the better the
selection of the K value is, and there is no overdecomposition
and underdecomposition. However, there is a large error in this
method, which makes it difficult to guarantee the decompo-
sition accuracy of the signal and also affects the final classi-
fication accuracy. ,erefore, this paper proposes a method to
optimize the K value of VMD by using instantaneous fre-
quency, which can make use of the difference of instantaneous
frequency between signal components to measure the ad-
vantage of the K value.

2.2. K Value Estimation of the VMD Component Based on
Instantaneous Frequency. If the K value is set too high, the
decomposition number will be too large, and then, the
component will be fragmenting, especially at high frequency,
and the average instantaneous frequency will decrease. If the
K value is set too low, the signal will not be completely
decomposed, and the superiority of the signal component
cannot be reflected. ,erefore, the original signal may be
decomposed by VMD once the K value was traversed from 2
to 10. And then, the mean values of instantaneous

frequencies may be calculated under different K values, and
the line graph may be also drawn. Lagrange polynomials
were used to fit the discrete points, and the polynomial
coefficients under different K values were extracted to
construct the coefficient vector, and then, the Euclidean
norm of the vector was calculated.,e smaller the normwas,
the smoother the fitting instantaneous frequency curve was
and the better the value was.

,e definition of instantaneous frequency is as follows:

fi(t) �
1
2π

dφ(t)

dt
, (8)

where φ(t) is a single-valued function of time t, that is, a
single-component signal on frequency.,e analytic signal of
instantaneous frequency is defined as follows:

z(t) � x(t) + jx
∧
(t) � a(t)e

jφ(t)
, (9)

where x
∧
(t) is the Hilbert transform of x(t), z(t) is the analytic

signal of x(t), a(t) is the module of the signal

a(t) �

�����������

x2(t) + x2(t)



, and φ(t) is the phase of the signal,
which is expressed as φ(t) � arctan(x(t)/x(t)). ,e in-
stantaneous frequencymultiplying the integral of the density
function over the entire time axis is the average frequency of
the signal. ,rough the Fourier transform of the analytic
signal z(t) in formula (9), we can get the following formula:

Z(f) � 
∞

−∞
a(t)

j φ(t)− 2πfit[ ]dt
. (10)

According to the principle of the stationary phase, the
integral of equation (10) has a maximum value at the fre-
quency fi, which needs to meet the condition d/dt[φ(t) −

2πfi(t)] � 0, namely, fi(t) � (1/2π)(dφ(t)/dt). ,is con-
clusion indicates that the energy of nonstationary signals is
mainly concentrated at the instantaneous frequency. ,is
conclusion indicates that the instantaneous frequency plays
a very important role in the recognition, detection, esti-
mation, and modeling of signals, and it can also be used as
the evaluation index of VMD decomposition signals.
,erefore, on the basis of the original VMD, the original
signal is decomposed into different signal components, and
the decomposed number is the K value. ,en, the average
instantaneous frequency under different mode numbers ofK
from 2 to 10 is calculated to judge the trend of the corre-
sponding line graph. ,e flatter the trend is, the better the
corresponding K value is, so as to realize the optimization of
the parameters of the VMD algorithm. However, this
method may be misjudged to some extent. In order to
measure the instantaneous frequency change more accu-
rately and select the optimal K value, corresponding
methods should be adopted to obtain numerical results.

2.3. *e Superiority Distinction of K Values Based on
Lagrange Polynomials. After calculating the average in-
stantaneous frequency of each component, we need to adopt
an index to measure the variation trend of the instantaneous
average frequency, which can avoid the error caused by
subjective judgment. By fitting the mean instantaneous
frequency, the Lagrangian polynomials can be calculated, the
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vector norm of their coefficients can be compared, and the
merits and disadvantages of the K value can be evaluated.

For any point xk(k � 0, 1, . . . , n) in the interpolation
node x0, x1, . . . , xn, make a polynomial lk(x) of degree n,
which satisfies the following formula:

lk(x) �
1, i � k,

0, i≠ k.
 (11)

,e basic function of Lagrange interpolation is as lk(x),
and the node is presented as xi(i � 0, 1, . . . , k − 1, k, k + 1,

. . . , n). So, lk(x) is a polynomial with n null points.
,erefore,

lk(x) � 
n

i�0
i≠k

x − xi( 

xk − xi( 
�

x − x0(  . . . x − xk−1(  x − xk+1(  . . . x − xn( 

xk − x0(  . . . xk − xk−1(  xk − xk+1(  . . . xk − xn( 
,

(12)

where lk(x)(k � 0, 1, . . . , n) is the n-order basic interpola-
tion polynomial or n-order Lagrangian interpolation basis
function on n+ 1 interpolation nodes. Using the n-order
basic interpolation polynomial, the n-order Lagrange
polynomial satisfying the interpolation condition Pn(xi) �

f(xi) � yi(i � 0, 1, 2, . . . , n) can be written as follows:

pn xi(  � Ln(x) � 
n

k�0
yklk(x) � y0l0(x)

+y1l1(x) + · · · + ynln(x).

(13)

,e average instantaneous frequency of different com-
ponents is taken as the discrete point of calculating La-
grangian polynomials. After obtaining the simplest form of
the Lagrangian polynomial by calculation, the coefficients of
the polynomial are extracted and constructed into a vector,
and the Euclidean distance of the vector with different K
values is calculated. For the coefficient vector
v � (v1, v2, . . . , v3), the Euclidean distance of the vector is
‖v‖ �

������


n
i�1 v2i


.

3. Classification Algorithm-Based Least-
Squares’ Support Vector Machine with
Particle Swarm Optimization

3.1. Basic Concept of LSSVM. ,e LSSVM is an improved
algorithm of the support vector machine; however, as a
binary classifier, its core idea remains unchanged, that is, to
find a hyperplane that optimizes classification and maxi-
mizes the gap between classifications, so as to improve the
credibility of classification. ,e difference between LSSVM
and SVM is that the construction of the objective function of
LSSVM is through the binomials for the error factor, and at
the same time, constraints are equally constraint, and in
terms of solving the optimization problem, because the
LSSVM is the constraint equation form, the solution is the
system of linear equations; to a certain extent, it reduced the
difficulty of the algorithm and raised the solving speed, and
these advantages make it different from other improvement
on the SVM algorithm. ,e basic principle of this method is
described as follows.

,e sample of training data can be expressed as
xi, yi 

l
i�1, xi ∈ Rn is the input vector of the ith sample, yi ∈ R

is the target value of the ith sample, and l is the number of
training samples. In special space, the LSSVM model can be
expressed as

y(x) � w
Tφ(x) + b, (14)

where φ(x) is the mapping function of nonlinear trans-
formation, which maps the input sample data to the high-
dimensional feature space. W is the weight vector, and B is
the offset. ,e objective function of least-squares’ support
vector machines is described as

min J w
Tξ  �

1
2

w
T
w +

c

2


l

i�1
ξ2, i � 1, 2, . . . , l. (15)

Type ξ is the error variable, and Υ> 0 is the penalty
coefficient. For the simplicity of analyzing, the Lagrangian
function is designed as follows:

L(w, B, ξ, a) � J(w, ξ) − 
l

i�1
ai w

Tφ xi(  + b + ξ − yi ,

(16)
where ai is the Lagrange multiplier. In the real operation, the
KKT optimal condition is used to calculate zL/zw � 0,
zL/zb � 0, zL/zξ � 0, and zL/zai � 0. So, the following
system of linear equations should be obtained:

0 q
T

q pp
T

+ c
− 1

I

⎡⎣ ⎤⎦
b

a
  �

0

l
 , (17)

p � φ xi( 
T
yi,φ x2( 

T
y2, ...,φ xl( 

T
yl ,

l � [1, 1, . . . , 1]
T

,

q � y1, y2, . . . , yl 
T
,

a � a1, a2, . . . , al 
T
.

(18)

In equation (17), I is the identity matrix. According to
the Mercer condition, the kernel function can be written as
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k xi, xj  � φ xi( 
Tφ xj . (19)

After a and b can be obtained from equations (18) and
(19), the nonlinear function of LSSVM can be obtained as
follows:

y(x) � 
l

i�1
aik xi, xj  + b. (20)

3.2. PSO Parameter Optimization for LSSVM. LSSVM re-
quires two parameters to be tuned: gam and sig2, where gam
is the regularization parameter, which determines the
minimization and smoothness of the adaptation error, and
sig2 is the parameter of the RBF function. PSO optimizes two
parameters of LSSVM, gam and sig2, to find the optimal
combination of parameters, so as to improve the classifi-
cation accuracy. ,e general optimization steps are as
follows:

(1) Initializing the various parameters of the PSO al-
gorithm, such as population size, learning factor, the
maximum number of iterations, initial position, and
the velocity of particles.

(2) Respectively, in the LSSVM predictive learning
sample of each particle vector, get the prediction
error of the current position value of the particle,
which is used as the fitness value for each particle.
,en, the current fitness value of each particle is
compared with the best fitness value of the particle
itself. If there are many, the current position of the
particle is taken as the best position of the particle.

(3) ,e adaptive value of the optimal position of each
particle was compared with the adaptive value of the
optimal position of the population. If it is better, the
optimal position of the particle is regarded as the
optimal position of the population.

(4) Use formulas (21) and (22) to update the particle
velocity and position:

v � w × v + C1 × Rand × pbest − x( 

+ C2 × Rand × gbest − x( ,
(21)

x � x + v, (22)

where V is the particle speed, X is the position of the
current particle, Rand () is a random number be-
tween (0, 1), and C1 and C2 are the learning factors,
usually C1�C2�1.5.

(5) Check the result of optimization (maximum number
of iterations or expected accuracy) is met or not. If
so, the optimization is completed and the optimal
solution is found. Otherwise, go to Step (2) and
continue the search.

3.3. Rolling Bearing Fault Diagnosis Steps. ,e acceleration
sensor is used to collect four state signals of the rolling
bearing, which are normal, bearing external crack, bearing
internal crack, and bearing wear. 10 groups of data of each
state signal are collected. Take the normal state as an ex-
ample, they were normal 1, normal 2, . . ., normal 10. Set the
signal period to 1024, which means that, in a file such as
“normal 1” with 10240 pieces of data, it is divided into
1024∗10 groups. Based on the above analysis, in order to
ensure the realization of fault diagnosis and classification,
the classification algorithm flow chart can be designed as
follows:

(1) Traverse the K value of VMD (K value is the number
of original signals decomposed into different com-
ponents), input the first group of data of each state of
the original signal collected into the VMD algorithm,
and get K components under different K values
(K� 2, 3, ..., 10).

(2) Calculate the average instantaneous frequency cor-
responding to different components of K, draw a line
chart, and estimate the K value through the trend of
the line chart.

(3) In order to further verify the pros and cons of K, the
different components of the average instantaneous
frequency may be used as computing Lagrange
polynomial of discrete points, and then the most
simplified forms of Lagrange polynomial can be
computed. So, the extraction of polynomial coeffi-
cients may be constructed as a vector. In fact, the
vector may be demonstrated and calculated under
different K values, coefficient of Euclidean distance,
and judge norm size to determine the optimal values
of K.

(4) Set the optimal K value as the mode number that
VMD needs to decompose. Decompose the 10
groups of data of each state and extract the time-
domain features to form the feature set.

(5) ,e parameters of gamand sig2 of the LSSVM al-
gorithm were optimized by the PSO algorithm.

(6) ,e obtained data set is input into the LSSVM
classification algorithm, which is divided into
training data and test data. ,e parameters of the
model are updated with the training data, and the
test data is input into the trained model to obtain the
diagnosis results of fault pattern recognition;

,e corresponding flowchart is shown in Figure 1.

4. Classification Experiment

To test the validity and rationality of the algorithm, some test
data of the bearing provided by Guangdong Key Laboratory of
Petrochemical Equipment Fault Diagnosis was used to
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simulate and experiment. ,is data set included the acceler-
ation changes with four different states: normal, bearing in-
ternal crack, bearing external crack, and bearing wear. ,e
bearing damage and data acquisition platform are shown in
Figure 2.

Figures 2(a)–2(c), respectively, represent bearing inter-
nal crack, bearing external crack, and bearing fault data
acquisition platform. ,e acceleration sensor was used for
data collection, with the collection period T�1024. ,e
collected fault data was divided into 10 groups according to
the period, and the four different bearing states were divided
into 40 groups.

Since these data are the most original vibration signal
data, it is difficult to extract subsequent features without
processing, so VMD is used to preprocess vibration signals.
In order to select the optimal decomposed mode number K,
first select 1 group from the 10 groups of data of each bearing
state to input VMD, traverse K values from 2 to 10, calculate
the instantaneous frequency mean, and get the corre-
sponding broken line chart, as shown in Figure 3.

From Figure 3, a rough estimate of K may be obtained.
Noticing that four kinds of condition is the most gentle the
most ideal when K� 2, there is no high frequency under the
intermittent and suddenly curved because the original signal
only is decomposed into two components. Because the result
do not conform to the actual, K� 2 is not as the objects of
choice. ,us, it can be estimated that the optimal value K in
the normal state is 3, the optimal value K in the bearing wear
state is 6, the optimal value K in the bearing internal crack
state is 4, and the optimal value K in the bearing external

crack state is 5. However, such estimation may lead to wrong
choices when the difference between the broken lines is not
large. ,erefore, it is necessary to choose an index to ac-
curately judge the advantages and disadvantages of the K
value. In this paper, Lagrange polynomials are proposed to
be established, and instantaneous frequencies under each K
value are used as discrete points to calculate Lagrange
polynomials. After obtaining the simplest polynomials,
coefficients are extracted and corresponding coefficient
vectors are calculated.,e smaller the Euclidean norm is, the
better the K value is. ,e normal state data are selected here
for experimental verification.

Table 1 shows the average instantaneous frequency
corresponding to differentK values in the normal state of the
bearing, and Table 2 shows the corresponding Euclidian
norm. From Table 2, it can be seen that the norm is the
smallest when K� 2, but because it is not consistent with the
actual situation, the value of K is excluded as 2. ,erefore, it
can be known that when the K value is 3, the corresponding
norm is the smallest, and the optimal modal component
number in the normal state of the bearing is 3, which is also
consistent with the estimated result of the line graph of the K
value above.

Setting the optimal K� 3 as the number of modes that
VMD needed to decompose, 10 groups of data in the normal
state were decomposed in a cycle to obtain the spectrum
diagram and time-domain feature set of the modal com-
ponents after VMD decomposition.

Figure 4 represents the spectrum diagram of VMD
decomposition when K� 3 under the normal state. From the

Collect bearing
original vibration

signal

VMD decomposed
the original signal

into K-signal
components

The Lagrangian 
polynomial is

constructed, and the
Euclidean norm of its

coefficients is
calculated

Calculate the 
instantaneous 

frequency of the 
signal component 
under different K 

values

Start

The optimal K obtained 
is set to the number of 
VMD decomposition 

modes

Determine the 
minimum norm value 

and output the 
corresponding K value

K2 K3 K10...

The spectrum and 
characteristics of the 

signal are obtained by 
decomposition

The feature set is entered 
into the LSSVM toolkit
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parameters of LSSVM

The feature data are 
divided into training set 

and feature set

The classification 
diagnosis accuracy of fault 

modes is obtained

End

Figure 1: Fault diagnosis flow chart based on optimized VMD.
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spectrum diagram obtained, VMD avoids the defects of
modal aliasing and endpoint effect of decomposition methods
such as EMD. Figure 5 shows the characteristic signals
extracted from the signal components under the normal state.
In this paper, 16 time-domain indexes are used to reflect the
features. ,e three states of wear, internal crack, and external

crack are also obtained through these steps, and then, these
feature data are put into an Excel sheet to form a feature set.
,e feature set is divided into training data and test data and
input into the LSSVM toolbox for fault pattern recognition.

,is paper made three contrast figures of fault diagnosis
precision.,ey are, respectively, as follows: VMDwas optimized
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Figure 3: Broken line diagrams of instantaneous frequencies with different K values under various bearing conditions. (a) ,e changing
curve of the K value under the normal state. (b),e changing curve of the K value with the worn state. (c),e changing curve of the K value
with the internal crack. (d) ,e changing curve of the K value with the external state.
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Figure 2: Bearing damage and fault signal acquisition platform. (a) Internal crack. (b) External crack. (c) Data acquisition platform.
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Table 2: Euclidean norm for different values of K.

K value 2 3 4 5 6 7 8 9 10
Norm 0.3525 0.7622 1.3034 2.7008 2.7934 1.6146 16.5533 3.6468 20.5225

Table 1: Mean instantaneous frequency corresponding to different K values under the normal condition of bearing.

K f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
2 0.1396 0.0656
3 0.2451 0.1391 0.0656
4 0.2450 0.1420 0.0661 0.0440
5 0.2859 0.2396 0.1420 0.0661 0.0440
6 0.4418 0.2859 0.2396 0.1420 0.0661 0.0440
7 0.4418 0.2869 0.2397 0.1455 0.1081 0.0661 0.0430
8 0.4418 0.3611 0.2859 0.2397 0.1455 0.1081 0.0661 0.0430
9 0.4418 0.3670 0.2971 0.2655 0.2377 0.1450 0.1081 0.0661 0.0430
10 0.4418 0.3690 0.2976 0.2684 0.2382 0.1455 0.1110 0.0712 0.0615 0.0430
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Figure 4: VMD decomposition spectrum at K� 3 in the normal state.

Figure 5: Feature data extracted at K� 3 in the normal state.
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and unoptimized, LSSVM was optimized and unoptimized, as
well as the condition of the VMD and LSSVM was optimized
and unoptimized. Figure 6(a) shows that the fault diagnosis
accuracy of optimizedVMD is 91.5%. Figure 6(b) shows that the
diagnostic accuracy of unoptimized VMD is 88.3333%, and the
contrast figure from this group that can validate the proposed
VMD optimization method is effective; Figure 7(a) shows that
the fault diagnosis accuracy of optimized LSSVM is 91.8333%.

Comparedwith the result of 88.3333%without optimization, the
optimization of LSSVM also has the effect of improving the
accuracy. When VMD and LSSVM were optimized, it further
improved the accuracy of fault diagnosis, as shown in
Figure 8(a), as the accuracy was 92%. Let the optimizedVMDbe
abbreviated as P-VMD, and the optimized LSSVM is abbre-
viated as P-LSSVM. Table 3 lists and illustrates the fault diag-
nosis accuracy of different algorithms and our algorithm.
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Figure 6: Comparison of diagnosis accuracy of optimized VMD, unoptimized LSSVM, and unoptimized. (a) Result of optimized VMD and
unoptimized LSSVM. (b) Diagnosis accuracy of nonoptimized.
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Figure 7: Comparison of diagnosis accuracy of optimized LSSVM, unoptimized VMD, and unoptimized. (a) Result of optimized LSSVM
and unoptimized VMD. (b) Diagnosis accuracy of nonoptimized.
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From the comparison of three sets of results, we can
clearly see that the proposed method in this paper based on
instantaneous frequency optimization of the VMD fault
diagnosis method is effective.

5. Conclusions

In this paper, the K value optimization problem of the
variational modal decomposition algorithm is studied.
Considering that the mode number K of VMD needs to be
selected according to prior knowledge, improper selection
will lead to overdecomposition or underdecomposition so
that useful characteristic data cannot be extracted, ultimately
leading to the problem of low accuracy of fault diagnosis. In
this paper, the instantaneous frequency is used to find the
optimalK value of VMD decomposition. Finally, the LSSVM
model optimized by particle swarm optimization is com-
bined to carry out fault pattern recognition.,e results show
the following:

(1) ,e advantage of measuring the value of K by the
change of the instantaneous frequency of the signal
component after VMD decomposition is more ac-
curate and simple than the previous observation
method to judge the value of K, which can avoid
overdecomposition and underdecomposition.

(2) ,e optimized VMD decomposition algorithm can
better reflect the characteristic parameters of vi-
bration signals, which make subsequent feature

extraction easier and helps to improve the diagnostic
accuracy. As shown in the final experimental results,
the accuracy of the optimized VMD is nearly 4%
higher than that of the unoptimized results, indi-
cating the effectiveness of this method.

(3) ,e use of the PSO-LSSVM classification model for
fault diagnosis can further improve the accuracy of
the final diagnosis.,is conclusion can be verified by
Figures 7 and 8 in the final experimental results.

It can be seen that a joint fault diagnosis method based
on optimized VMD and LSSVM proposed in this paper
improves the accuracy of fault diagnosis.
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Reliable fault diagnosis of the rolling element bearings highly relies on the correct extraction of fault-related features from
vibration signals in time-frequency analysis. However, considering the nonlinear, nonstationary characteristics of vibration
signals, the extraction of fault features hidden in the heavy noise has become a challenging task. Variable mode decomposition
(VMD) is an adaptive, completely nonrecursive method of mode variation and signal processing. +is paper analyzes the
advantages of VMD compared with EMD in robustness of against noise, overcoming the end effect and mode aliasing. +e signal
decomposition performance of VMD algorithm largely depends on the selection of mode number k and bandwidth control
parameter α. To realize the adaptability of influence parameters and the improvement of decomposition accuracy, a parameter-
optimized VMD method is presented. +e random frog leaping algorithm (SFLA) is used to search the optimal combination of
influence parameters, and the mode number and bandwidth control parameters are set according to the search results. A
multiobjective evaluation function is constructed to select the optimal mode component.+e envelope spectrum technique is used
to analyze the optimal mode component. +e proposed method is evaluated by simulation and practical bearing vibration signals
under different conditions. +e results show that the proposed method can improve the decomposition accuracy of the signal and
the adaptability of the influence parameters and realize the effective extraction of the bearing vibration signal.

1. Introduction

Rolling element bearings, as a very important component of
rotating machinery, has been widely used in modern in-
dustry such as engineering machinery and aerospace [1, 2].
+e working state of rolling element bearings is directly
related to the safety of the rotating machinery. Rolling el-
ement bearings are easily damaged under the long-term
operation of harsh environment with high speed, heavy load,
strong impact, and high temperature. +e developed me-
chanical faults may cause the deterioration of machine
operating conditions, resulting in serious economic losses
and casualties [3–5]. +e vibration signal detected by the

sensor is always related to the important physical infor-
mation that a series of shock pulses will occur when the
rolling element bearing is subjected to a local fault [6, 7].
However, the defect-induced impulses in practice are too
weak to distinguish well from vibration signal corrupted by a
large amount of background noise. +erefore, it is critical to
remove noise and extract intrinsic fault features from the
measured original signal for the fault diagnosis of rolling
element bearing.

Many vibration analysis methods have been proposed in
the literature for bearing fault detection in the time domain,
the frequency domain, and the time-frequency domain,
respectively [8, 9]. However, the vibration signal of rolling
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element bearings is the nonstationary and nonlinearity
signal. It is very difficult to identify the fault characteristics of
the rolling element bearing only in the analysis of time
domain or the frequency domain. To effectively analyze the
fault features from the vibration signals, some traditional
time-frequency analysis methods have been widely used,
such as short-time Fourier transform (STFT) [10],
Wigner–Ville distribution (WVD) [11], and wavelet trans-
form (WT) [12]. However, due to the limitation of Hei-
senberg’s uncertainty principle, STFT method cannot get
high resolution in the time domain and frequency domain
simultaneously when dealing with the nonstationary signals.
+e disadvantage of the WVD method is that it cannot
guarantee nonnegativity and produce serious cross-term
interference for multicomponent signals or signals with
complex modulation laws. +e WTmethod decomposes the
signal by performing scaling and translation operations on
the wavelet basis and can effectively obtain time-frequency
information from the measured signal. It has good locali-
zation properties in the time domain and frequency domain
and has multiresolution analysis features [13, 14]. However,
the WT cannot accurately split the high-frequency band
where the modulation information of machine fault always
exists.

Compared with the traditional analysis methods, em-
pirical mode decomposition (EMD) offers a different
analysis approach to signal processing in the time-frequency
domain. +e EMD provides more realistic signal repre-
sentations without artifacts imposed by the nonadaptive
limitations of both Fourier and wavelet transform-based
time-frequency analysis methods and is suitable for the
analysis of the nonlinear and nonstationary signals [15–17].
It is based on the local characteristic time scales of a signal
and can self-adaptively decompose the complicated signal
into a limited number of intrinsic mode functions (IMFs)
through automatically performing a series of recursive
calculations.+e IMFs represent the fundamental oscillatory
modes embedded in the signal, from which the instanta-
neous time-frequency features of interest are deemed to be
observed. +is enables the EMD-based methods to have
potential as promising tools for dealing with the engineering
problems associated with the analysis of nonstationary
signals [18]. +erefore, the EMD and its extension forms
(such as Ensemble Empirical Mode Decomposition
(EEMD)) have attracted the attention of many researchers
and are widely applied in the fault diagnosis and recognition
of rolling element bearings [19–23]. In practical applications,
although the EMD and its improved method have advan-
tages in the processing of the nonstationary signals, the
method itself still has the following inherent defects:

Weak Robustness of against Noise. +e EMD-based
methods are sensitive to the complex noise in the vi-
bration signal. A little change in the signal-to-noise
ratio (SNR) can lead to the different signal decom-
position results [18].
Mode Aliasing. +e local mean is defined by the upper
and lower envelopes of the signal in the EMD. Based on
this definition, different modal components can be

distinguished through the characteristic scale of the
signal. +e IMF is no longer limited to the narrowband
signal, and it can also show amplitude modulation and
frequency modulation at the same time. However,
when there is a jump change in the time scale of the
signal, the direct screening process will produce mode
aliasing issues. Intuitively, it is impossible to effectively
separate the different modal components according to
the characteristic scale, which makes the existing IMFs
contain the different time-scale components and can-
not clearly reflect the intrinsic properties of the signal.
End Effect.+e upper and lower envelopes of the signal
are interpolated by the cubic spline interpolation in the
EMD. +e cubic spline interpolation needs two adja-
cent points. As a result, the divergence occurs at both
ends of the data, and the divergent results gradually
“pollute” the whole data sequence during the data
decomposition process, which leads to the serious
distortion and energy leakage.

Variational mode decomposition (VMD) method has
been proposed and developed recently, which is an alter-
native nonrecursive signal decomposition method that can
adaptively determine the relevant frequency bands and the
corresponding mode simultaneously [24–26]. +e VMD
method decomposes a signal into a series of band-limited
modes. +ese modes can be continuously updated with
Wiener filtering, and the central frequency of each mode can
be gradually demodulated to the corresponding baseband.
+e nonrecursive signal decomposition of VMD is more
efficient than the EMD and its extension forms in com-
putation. At the same time, the application of Wiener fil-
tering makes the VMD method robust to the background
noise. Due to the application of Wiener filters, the narrow-
banded function of VMD resultant modes not only reduces
the mode mixing issues existing in the EMD but also helps to
accurately extract the fault characteristics of the signal
through the Hilbert transform. However, the decomposition
accuracy of the VMD method is usually affected by the
number of modes k and the bandwidth control parameter α.
+e original VMD method used the default values to im-
plement the signal analysis, which largely limits its de-
composition precision and the capability of feature
extraction to a certain extent.

In this paper, we firstly analyze the advantages of VMD
compared with EMD in robustness of against noise, over-
coming the end effect and mode aliasing. To realize the
adaptability of influence parameters and the improvement of
decomposition accuracy, a parameter-optimized VMD
method is presented. +e random frog leaping algorithm
(SFLA) is used to search the optimal combination of in-
fluence parameters, and the mode number and bandwidth
control parameters are set according to the search results. A
multiobjective evaluation function is constructed to select
the optimal mode component. +e envelope spectrum
technique is used to analyze the optimal mode component.
+e proposed method is evaluated by simulation and
practical bearing vibration signals under different condi-
tions. +e remaining section of the paper is organized as
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follows: Section 2 introduces the fundamental theory of the
VMD. +e superiorities of the VMD over the EMD are
analyzed in Section 3. +e parameter-optimized VMD al-
gorithm is presented in Section 4. +e fault feature ex-
traction based on the parameter-optimized VMD is given in
Section 5. Section 6 will present the experimental results and
analysis. Finally, the conclusion is drawn in Section 7.

2. Brief Introduction to VMD

+e VMD algorithm is an adaptive, quasiorthogonal, and
completely nonrecursive signal processing method. It de-
composes the input signals composed of multicomponents
into several inherent modes with limited bandwidth, and
most of these modes are closely around their corresponding
central frequencies [24]. By solving the optimal solution of
constrained variational problem, the central frequency and
band limit of each mode can be decided. An input signal
f(t) can be expressed as follows:

f(t) � 
K

k�1
uk(t), (1)

where the number of modes k is defined in advance and
uk(t)is the narrowband mode function. It can be written as

uk(t) � Ak(t)cos ϕk(t)( , (2)

where Ak(t) is the instantaneous amplitude of uk(t), ϕk(t) is
the instantaneous phase, and ϕk(t) is the reduction function
that instantaneous frequency ωk(t) � dϕk(t)/dt≥ 0. Com-
pared to ϕk(t), the variation in Ak(t) and ωk(t) is more
gradual that can be regarded as a harmonic signal of constant
amplitude and frequency in a smaller time horizon.

+e VMD decomposes the input signal into a certain
number of modes, and the decomposed modes have specific
sparsity property while reproducing the input signal. It is
assumed each mode is closely integrated around the center
frequency. To assess the bandwidth of a mode, the following
scheme is needed: the VMD method decomposes the input
signal into a certain number of modes, which make them
reappear the input signal and have specific sparsity prop-
erties. It is assumed each mode is closely integrated around
the center frequency. To assess the bandwidth of a mode, the
following scheme is needed: (1) compute the analyzed signal
by means of the Hilbert transform to get a one-sided fre-
quency spectrum for the mode; (2) transform the frequency
spectrum of each mode to the baseband by mixing with an
exponential tuned to the estimated center frequency; (3)
estimate the bandwidth through the H1 Gaussian
smoothness of the demodulated signal, that is, the squared
L2-norm of the gradient. +e constrained variational
problem would be expressed as follows:

min
uk{ }, ωk{ }


k

zt δ(t) +
j

πt
 ∗ uk(t) e

− jωkt22
⎧⎨

⎩

⎫⎬

⎭,

s.t. 
k

uk(t) � f(t),

(3)

where uk (k � 0, 1, 2, . . . , K) represents the k-th mode
component obtained by decomposition and ωk  represents
the corresponding central frequencies of the k-th mode
component.

To solve the constrained variational problem, the aug-
mented Lagrange is introduced and the unconstrained
variational problem is gotten by

L uk , ωk , λ(  � α
k

zt δ(t) +
j

πt
 uk(t) e

− jωkt

�������

�������

2

2

+ f(t) − 
k

uk(t)

���������

���������

2

2

+ 〈λ(t), f(t) − 
k

uk(t)〉, (4)

where α represents the quadratic penalty factor, which can
guarantee the accuracy of signal reconstruction in the
presence of Gauss noise, and λ represents the Lagrange
operator, which can be used to maintain the strictness of
constraints.+e saddle point of the augmented Lagrange L is
the optimal solution of original minimization problem,
which can be solved using alternate direction method of
multipliers (ADMM). All the modes can be obtained from
(5) in the frequency domain through updating each mode:

u
n+1
k (ω) �

f(ω) − i≠kui(ω) + λ(ω)/2
1 + 2α ω − ωk( 

2 , (5)

where un+1
k (ω) can be equivalent to the Wiener filter of the

current residual signal and the full spectrum of the real mode
can be obtained by conjugate symmetry. +us, the real part
uk(t)  can be achieved through utilizing the inverse Fourier
transform of un+1

k (ω) .

Similarly, to obtain the minimum value of ωn+1
k , the

central frequency updating problem can be transformed into
the corresponding frequency domain, and the solutions of
the central frequencies can be given as follows:

ωn+1
k �


∞
0 ω uk(ω)



2dω


∞
0 uk(ω)



2dω

. (6)

+erefore, the new value of ωk can be set to the center of
gravity of the corresponding modal power spectrum.

To update the Lagrange operator λ, the following ex-
pression is given:

λ
n+1

(ω) � λ
n
(ω) + τ f(ω) − 

k

u
n+1
k (ω)⎛⎝ ⎞⎠. (7)

According to the above theoretical description, the de-
tailed procedures of VMD algorithm are given as follows:

Mathematical Problems in Engineering 3



(1) Define the number of modes k;
(2) Initialize: u1

k  ω1
k , λ

1
and n � 0;

(3) Update uk andωk according to Equations (5) and (6);
(4) Update λ according to Equation (7);
(5) Set the error ε> 0, if the inequality (k‖un+1

k −

un2

k2‖/‖un2

k2 < ε‖) holds, then the iteration stops, or else
go back to step 2.

3. Superiorities of VMD over EMD

+e VMD algorithm transfers the signal decomposition pro-
cess to the variational framework and achieves adaptive signal
decomposition by searching the optimal solution of the con-
strained variational model. Compared with the EMD method,
theVMDmethod hasmore advantages in the noise robustness,
the mode aliasing, and the end effect. +e superiorities of the
VMD over the EMD will be investigated in this section.

3.1. Noise Robustness and Elimination of Mode Aliasing.
To verify the advantages of VMD in the noise robustness, the
mode aliasing, and the end effect, a simulated signal x(t) is
designed in Figure 1, which is the sum of a harmonic signal
and white noise η. +e signal is modulated by 30Hz and
56Hz. +e purpose of this simulation is to simulate the
phenomenon that fault vibration signal is a multicomponent
modulation signal. +e noise existing in the original signal
often appears as white noise in the practical applications,
which covers the entire frequency domain. White noise with
a signal-to-noise ratio of 2 db is added to the signal. +e
simulated signal is expressed as follows:

x(t) � sin(2π × 30t)) +
1
4
sin(2π × 56t) + η. (8)

+e time waveform of the simulated signal collected by
using a sampling frequency of 1000Hz is shown in Figure 1.
It can be clearly seen from Figure 1 that the harmonic signal
has been seriously distorted by noise. +en, the EMD
method is applied to process the simulated signal, and the
corresponding results are shown in Figure 2.

From the spectrum diagram of the EMD decomposition
shown in Figure 2, it can be seen that the extracted IMF4
mainly includes 30Hz frequency components, but not 56Hz
frequency components. For the multicomponent simulation
signal, the decomposed results also show that the decom-
position effect of the EMD algorithm is not ideal, and there is
mode aliasing the first three-order intrinsic modal function
(IMFs). +is is because some useful weak signals are sub-
merged in the decomposed signal. +e cubic spline fitting in
the decomposition process of the EMD method leads to the
deviation of decomposition. In addition, the first three-order
IMFs also contain other components of the mode function,
and the decomposition of EMD has pseudocomponents.

+e VMD method is more effective for the decompo-
sition of simulation signal; not only it can effectively remove
pseudocomponents but also each IMF component shows a
certain scale of modalities, and there is no mode aliasing
between each other. VMD can realize the multiscale

representation of the simulated signal. Compared with
Figures 2 and 3, the VMDmethod has stronger ability in the
noise filtering than EMD method. +is method successfully
suppresses the noise distributed in different frequency
bands, and its decomposition effect is better than the EMD
decomposition method. EMD cannot effectively remove the
noise, especially in the high frequency band.+is means that
noise still exists in the IMFs generated by EMD.

3.2. Suppression of End Effect. +e decomposition results of
EMD and VMD are orthogonal to the signal. +at is, the
energy sum of the decomposed mode functions is equal to
the signal energy before the decomposition. However, if the
decomposition result has an end effect, it will affect the
decomposition accuracy of the signal and produce false
components, which will result in a change in the energy sum
of the modal function after decomposition. By analyzing the
changes in the energy value before and after decomposition,
we can understand the inhibitory effect on the signal end
effect when the two methods are used for the signal analysis.

+e energy expression of the mode function generated
after the signal decomposition by the EMD and VMD can be
expressed as follows:

E �

��������


n
i�1 x

2
(i)

n



, (9)

where E is the energy of the original signal or the energy of the
mode functions after the decomposition, x(i) is the signal
sequence, and n is the number of sample points for the signal.

Comparing the deviation between the energy of all mode
functions and the energy of the original signal, the evalu-
ation index ξ can be defined as

ξ �

����������


m
k�1 E

2
k − Ei





Ei

, (10)

where Ei is the energy of the original signal, Ek is the energy
of the k-th modal function, and m is the total number of
modal functions.

From the definition of the evaluation index depicted
above, it can be seen that when ξ is the larger, the energy of
the decomposed mode functions will be smaller. +at is, the
energy leakage after the signal decomposition becomes
larger, and the end effect will become stronger. +e simu-
lated signals X2(t) and X3(t) are constructed as follows:

X2(t) � sin(2π × 3t) + 0.8 sin(2π × 15t)

+ 0.4 sin(2π × 45t))0.6 sin(2π × 63t) + sin(2π × 90t),

(11)

X3(t) � [1 + 0.5 sin(2π × 3t)]

× sin[2π × 5t + sin(2π × 50t)]

+[1 + sin(2π × 6t)]

× sin[2π × 8t +(0.6 × sin(2π × 5t))].

(12)

+e equations (8), (11), and (12) of the simulated signal are
used to calculate the energy Ei, respectively. +e energy Ek of
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each modal function and the evaluation parameter ξ of energy
deviation after the decomposition of EMD and VMD are also
calculated.+e calculation results of the evaluation parameter ξ
are shown in Table 1. It can be seen fromTable 1 that the values
of the evaluation parameter calculated after VMD decompo-
sition are small, which indicates that compared with the EMD
method, the energy leakage calculated by the VMD decom-
position is smaller and the end effect is not obvious.

4. The Proposed Parameter-Optimized
VMD Algorithm

+e number of modes k and bandwidth control parameter α
affect the accuracy of decomposition in the VMD algorithm.
A large number of modes will lead to the redundant in-
formation in the result of signal decomposition, while a
small number of modes will result in the phenomenon of

mode mixing. On the contrary, a wider filter bandwidth will
introduce more noise and interference items into the de-
composition result. +e narrow filter bandwidth will cause
important information missing in the signal decomposition.
+erefore, how to choose the optimal parameter combi-
nation is the key to eliminate the noise and mode aliasing
and extract the feature information accurately in the VMD
algorithm. In this section, shuffled frog leaping algorithm
(SFLA) is introduced into the algorithm to achieve the
combination of optimal influence parameters [27–30]. A
multiobjective evaluation function is constructed to select
the optimal mode component in the VMD algorithm.

4.1. ShuffledFrogLeapingAlgorithm. +e SFLA simulates the
thought transfer process of frogs in searching for the food
according to their population. It combines global
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Figure 1: +e time domain plot of the simulated signal.
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Figure 2: +e decomposition results and corresponding frequency spectrum of IMFs with EMD.
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information exchange and local deep search. Local search
enables thoughts to be transmitted between local individ-
uals, and hybrid strategies enable the exchange of local
thoughts. +rough this global information exchange and
local depth exploration, the algorithm can jump out of the
local extreme points and move towards the global optimum.

An initial population of P frogs is randomly generated
within the S-dimensional space. +e i-th frog is represented
by S variables as Xi � (xi1, xi2, . . . , xiS). In each evolutionary
iteration process, all frogs are arranged in a descending order
according to the fitness value of the frogs. +e population is
divided into m subsets. +e subset is referred to as mem-
eplexes, and each contains n frogs. +e method of allocation
is the first frog enters the first memeplex, the second frog
goes to the second memeplex, the m frog goes to the m-th
memeplex, and the m + 1 frog goes back to the first
memeplex and so forth. Assuming that Mk is a set of frogs
for the k-th memeplex, the allocation process can be de-
scribed as follows:

M
k

� Xk+m(l−1)∈P|1≤ l≤ n , 1≤ l≤m. (13)

Within each memeplex, the frogs with the best and the worst
fitness are identified as Xb and Xω, respectively. Also, the
frog with the global best fitness is identified as Xg. +en, an
evolution process is applied to improve only the frog with
the worst fitness (i.e., not all frogs) in each cycle. Accord-
ingly, the position of the frog with the worst fitness is ad-
justed as follows:

Di � Rand × Xb − Xω( , (14)

Xω′ � Xω + Di, D≤Dmax, (15)

where Dmax is the maximum allowed change for the position
of the frog.

If the evolution process produces a better frog (solution),
it replaces the worst frog. Otherwise, the calculations in
equations (14) and (15) are repeated with respect to the
global best frog (i.e., Xg replaces Xb). +ere is no im-
provement in this situation, and a new solution will be
randomly generated, that is, to replace the worst frog with
another frog with any fitness. +e calculation will continue
for a specific number of evolutionary iterations in each
memeplex. +erefore, SFLA uses a process similar to the
PSO algorithm to simultaneously perform independent local
searches in each memeplex.

A predetermined number of memetic evolution steps are
performed in each memeplex, and the solution of the
evolvedmemeplexes X1, X2, . . . , XP  is replaced with a new
population, which is called the shuffling process. +e
shuffling process facilitated the global exchange of infor-
mation among frogs. +en, the population is sorted in the
descending order of fitness value, the position Xg of the best
frog of the population is updated, and the frog group is
redivided into the memeplexes and evolved in each mem-
eplex until the conversion criterion is met. Generally, the
convergence criterion can be defined as follows:
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Figure 3: +e decomposition results and corresponding frequency spectrum of modes with VMD.

Table 1: Energy leakage evaluation parameter.

Simulated signal ξ
EMD VMD

X1(t) 0.2964 0.1620
X2(t) 0.3648 0.0618
X3(t) 0.3643 0.0425
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+e relative change in the fitness of the global frog
within a number of consecutive shuffling iterations is
less than a prespecified tolerance.
+e maximum predefined number of shuffling itera-
tions has been obtained.

4.2. Parameter Optimization by Using SFLA. +e SFLA is a
metaheuristic intelligent optimization algorithm that has
good capabilities of global optimization and fast convergence
speed. +e SFLA combines the advantages of gene-based
memetic algorithm (MA) and the social behavior-based
particle swarm optimization (PSO) algorithm. +erefore, the
SFLA is used to optimize the influencing parameters of VMD,
can avoid the intervention of subjective factors, and auto-
matically screen out the best combination of influencing
parameters.

Suppose that the population composed of Npop frogs isX

in D dimension space, and Npop frogs are divided into Nm

subgroups through the descending order. +e best indi-
vidual pb and the worst individual pw in the subgroup can be
calculated. Group optimal solution s1 in the maximum
number of iterations M can be expressed as follows:

s1 � A × pb − pw( . (16)

When using SFLA to optimize the mode number k and
bandwidth control parameter α, the fitness function needs to
be determined. Each update of the frog is achieved by
comparing the fitness values.

Shannon entropy is a good indicator for evaluating
signal sparsity. +e size of entropy reflects the uniformity of
probability distribution. +e most uncertain probability
distribution (equal probability distribution) has the largest
entropy value. In order to reflect the sparseness of the
measured signal, the concept of envelope entropy is pro-
posed. +e demodulated envelope signal is processed into a
probability distribution sequence. +e calculated entropy
value reflects the sparsity of the original measurement signal
[31]. +e envelope entropy of the signal can be expressed as
follows:

Ep � − 
N

i�1
pilgpi

pi � a(i)/
N

i�1
a(i)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (17)

In order to search the global optimal component, that is,
to extract the mode component with the most abundant
feature information from the bearing fault signal, the
multiobjective evaluation function is constructed for the
selection of the optimal mode component and the calcu-
lation of fitness value, which is based on the envelope en-
tropy, the kurtosis, and the correlation coefficients. When
the i-th frog is located in the position j (corresponding to a
set of parameters αj and kj), the kurtosis, the correlation
coefficient, and the envelope entropies of all mode com-
ponents obtained by VMD processing are all calculated. +e
components with the largest kurtosis value, the highest

correlation, and the smallest envelope entropy are selected
and reconstructed as the fitness value in the optimization
processing. +e optimization method of influencing pa-
rameters is briefly described below:

(1) Initialize the parameters: total number of frogs Npop,
number of subgroups Nm, number of each group
frogs Nf, maximal number of iterations M, random
initialization of frog individuals, and initialize the
population.

(2) Implement VMD and obtain a set of IMFs.
(3) Construct the global fitness function based on the

envelope entropy, the kurtosis, and the correlation
coefficients.

(4) Calculate the fitness value of each frog.
(5) Rank the frogs according to their fitness values.
(6) Divided the sorted frogs Npop into Nm subgroups

according to the descending order of the objective
function. +e first frog goes to the first memeplex,
the second frog goes to the second memeplex, frogm
goes to the m-th memeplex, and frog m + 1goes to
the first memeplex.

(7) Determine the best individual of the subgroup pb,
the worst individual pw, and the optimal solutions in
the population S1; the worst solution is improved by
equation (16) in evolutional iteration M.

(8) Update the worst individual and descend the order to
the individual to form a new group.

(9) Judge whether the algorithm satisfies the terminating
condition and outputs the optimum solution when
the algorithm satisfies the termination condition and
otherwise moves on to step 6.

5. The Fault Feature Extraction by Parameter-
Optimized VMD

+e periodic impact energy caused by the failure of the
rolling element bearing is weak, and it is relatively difficult to
extract fault features due to the effects of noise and signal
attenuation. When there is a fault for the rolling bearing, the
useful characteristic components usually have very little
energy, and it is submerged by the background noise. It is
difficult to extract useful fault features. In order to extract the
fault feature effectively and realize the fault diagnosis, the
parameter-optimized VMD is presented to extract the useful
fault features for the fault diagnosis of the rolling element
bearing. +e vibration signal is decomposed into a series of
intrinsic mode functions by the parameter-optimized VMD
algorithm. +e envelope spectrum technique is utilized to
analyze the best signal component. +e fault features of the
rolling bearing would be easily detected and extracted. +e
fault features extraction procedure of the parameter-opti-
mized VMD method is briefly described as follows:

(1) Initialize population and parameters: the numbers of
subgroup Nm, the numbers of each group frogs Nf,
the numbers of iteration within a group Ne, and the
numbers of evolutional iteration M.
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(2) Optimize VMD parameters by applying SFLA and
obtain global optimal parameters k and α.

(3) Decompose the original vibration signal into a set of
the IMFs by the improved VMD.

(4) Calculate the envelope entropy, kurtosis, and cor-
relation coefficients of all IMF components.

(5) Select the reconstructed IMF component with the
largest kurtosis value, the highest correlation, and the
smallest envelope entropy as the optimal component.

(6) Implement the spectrum analysis and compare the
fault feature frequency in the envelope spectrum
with the theoretical value of the bearing fault and
determine the fault.

6. Experimental Results and Analysis

6.1. Simulation Analysis Using the Parameter-Optimized
VMD. To quantitatively evaluate the effectiveness of the
parameters-optimized VMD method, the simulation signal
of rolling element bearings is constructed because the faults
of rolling element bearings produce a series of shocks.
+erefore, the simulation signal is mainly composed of the
impact signal and noise signal generated by a bearing fault.
+e signal is sampled at 12 kHz. +e simulated fault fre-
quency fi is set to 80Hz. +e resonance frequency fn is set
to 3 kHz. +e rotating frequency fr is 20Hz. +e simulated
signal is expressed as follows:

x(t) � s(t) + n(t) � 
i

Aih t − iT − τi(  + n(t)

Ai � 1 + A0 sin 2πfrt( 

h(t) � e
− Ct sin 2πfnt( 

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (18)

where h(t) is the generated waveform of a single impact; Ai

is the amplitude of the i-th impact force and considers
possible periodic modulations, and n(t) is the white
Gaussian white noise; signal-to-noise ratio RSNR is -1 dB; T is
the mean spacing among impacts; the attenuation coefficient
C is 700; and τi is an independent and identically distributed
random variable.

+e time domain plot and the envelope spectrum of the
simulated signal are shown in Figure 4. It can be seen form
Figure 4 that the impact signal is submerged in the strong
background noise. +e resonance frequency band in the
spectrum is also not obvious. +e frequency and period of
the signal cannot be found, and the characteristic frequency
of the fault signal cannot be accurately found from the
envelope spectrum.

+e simulated signal is decomposed by EEMD, and the
corresponding frequency spectrum is shown in Figure 5.
Obviously, the useful frequency components could not be
distinguished from the decomposed IMFs, and they are
contaminated with noise. Many parts of IMF 1 are replaced
by the intermittent pulse signal. +e replaced parts of IMF 1
are shifted to IMF 2 resulting in the phenomenon of mode
mixing in the second and the following IMFs. In addition, as
noted in Figure 4, the first three IMFs provided more in-
formation than the other IMFs, and the rest of the IMFs

contain many redundant low-frequency components. In
other words, the first three IMFs could be regarded as valid
components of the signal, while the other IMFs were the
low-frequency pseudocomponents that can mislead the
analysis of the signal. +e optimal mode component cor-
responding to the EEMD is IMF1. +e envelope spectrum of
the optimal mode component decomposed by the EEMD
method is shown in Figure 6. It can be seen from Figure 6
that the impact characteristics associated with faults could
not be identified, and the feature frequency of fault signals
could not be extracted.

+e VMD method is used to decompose the simulated
signal, and the decomposed simulated signal has 5 mode
components. +e waveform and the corresponding fre-
quency spectrum are shown in Figure 7. From the de-
composition results, the VMD method can realize the
adaptive segmentation of each component in the frequency
domain, effectively overcome the mode aliasing phenome-
non in EEMD, and has stronger noise robustness and weaker
end effect than EEMD.+emode component corresponding
to the minimum envelope entropy is mode 4, which is se-
lected as the best component, and the envelope analysis is
further done. +e envelope spectrum of the signal is shown
in Figure 8. It can be seen that the characteristic frequency of
the fault signal cannot be accurately extracted by the original
VMD method.

+e parameter-optimized VMDmethod is implemented
to analyze the simulation signal. +e decomposition results
and corresponding frequency spectrum of modes are shown
in Figure 9. According to the decomposition results, the
mode component corresponding to the smallest envelope
entropy is IMF2, the mode component corresponding to the
largest kurtosis is IMF5, and the mode component corre-
sponding to the largest correlation is IMF5. +e three mode
components are reconstructed and used as the optimal
component. +e envelope spectrum of the reconstructed
signal is shown in Figure 10. It can be seen that the spectral
amplitude is prominent at the characteristic frequency
80Hz, and the corresponding frequency doubling can also
be obtained, which means that the parameter-optimized
VMD can effectively decompose the fault signal and accu-
rately extract the characteristic frequency of the fault signal.

6.2. Actual Vibration Signal Analysis. To further verify the
effectiveness of the proposed parameter-optimized VMD
method, the fault feature extraction of the actual experiment
is implemented. +e vibration data of rolling bearings are
provided by Case Western Reserve University bearing data
center [32]. +e test stand consists of a 2 hp, three-phase
induction motor, a torque transducer/encoder, and a dy-
namometer. +e test bearings support the motor shaft at the
drive end. Single point faults were introduced to the test
bearings.+e deep groove ball bearing with the type of 6205-
2RS JEM SKF was used in the test. +e locations of fault
cover inner raceway, outer raceway, and rolling element.+e
tests are carried out under the four different motor loads
with the motor speed. +e vibration data were acquired at
the sampling frequency of 12 kHz by using the
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accelerometers, which are mounted at the drive end of the
motor. +e vibration signals of outer race defect with the
motor load 0 hp and the fault diameters 7 mills are chosen to
extract the fault feature. +e characteristic frequency of the
outer race defect signal is calculated to be at 107.37Hz.

+e time domain plot of the fault signal with outer race is
shown in Figure 11, and Figure 12 shows the decomposition
results of EEMD and corresponding the demodulated
spectrum of IMFs. +e first IMF component decomposed by
EEMD contains abundant fault feature information and is
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Figure 4: +e time domain plot of the simulated signal and envelope spectrum.
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Figure 5: +e decomposition results and corresponding frequency spectrum of IMFs with EEMD.
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selected as the optimal feature component. +e envelope
spectrum of optimal component is shown in Figure 13. It can
be seen from Figure 13 that the fault-rated impact features
can be perceived from the time-frequency maps of the
signals, and the characteristic frequency of the fault signal
can be extracted. However, there are still many redundant
components, and considerable background noise is also
present in the figures, which smears the fault features and
consequently leads to the risk of either false alarm or the
failure of fault detection.

+e VMD method is used to decompose the outer ring
defect signal. +e decomposition results and the corre-
sponding frequency spectrum of IMFs are shown in
Figure 14. According to the calculation results of de-
composition, the mode component corresponding to the
smallest envelope entropy is IMF6, the mode component
corresponding to the largest kurtosis is IMF6, and the
mode component corresponding to the largest correlation
is IMF3. +e three mode components are reconstructed

and used as the optimal component. +e envelope spec-
trum of the signal is shown in Figure 15. It can be seen
from Figure 15 that when the default values of the mode
number and bandwidth control parameter were adopted,
the fault-rated impact features can be perceived from the
time-frequency maps of the signals, and the characteristic
frequency of the fault signal can be extracted. Compared
with the EEMD method, the traditional VMD method has
more superiorities than the EEMD method in the noise
robustness and the elimination of mode aliasing. However,
compared with EEMD, the fault feature extracted from the
optimal mode component reconstructed by decomposing
the signal with the default value of the influencing pa-
rameters is not good.

+e proposed parameter-optimized VMD method is
utilized to analyze the practical bearing vibration signal.
+e decomposition results and corresponding frequency
spectrum of modes are shown in Figure 16. According to
the calculation results of decomposition, the mode
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Figure 6: +e envelope spectrum of optimal component by using EEMD.
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component corresponding to the smallest envelope en-
tropy is IMF4, the mode component corresponding to the
largest kurtosis is IMF5, and the mode component cor-
responding to the largest correlation is IMF3. +e en-
velope spectrum of the reconstruction signal is shown in
Figure 17. It can be seen that the spectral amplitude is
prominent at the characteristic frequency 107.37 Hz,

which means that the parameter-optimized VMD can
correctly decompose the fault signal and accurately ex-
tract the characteristic frequency of the fault signal.
Compared with the VMD method without the optimi-
zation and the EEMD method, the fault frequency
extracted by the proposed method is more prominent and
the noise is also suppressed.
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Figure 9: +e decomposition results of parameter-optimized VMD and corresponding frequency spectrum of modes.
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Figure 10: +e envelope spectrum of optimal component by using the parameter-optimized VMD.
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Figure 12: +e decomposition results of EEMD and corresponding frequency spectrum of IMFs for outer ring defect.
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Figure 13: +e envelope spectrum of the optimal component for outer ring defect by using EEMD.
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Figure 14: +e decomposition results and corresponding frequency spectrum of modes for outer ring defect with VMD.
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7. Conclusion

+e completely nonrecursive signal modal variational nature
of the VMDmethod makes it more advantageous than EMD
in terms of robustness against noise, overcoming end effects,
and mode aliasing. +is paper analyzes these three aspects.
+e decomposition accuracy of VMD method is affected by
the choice of mode number k and bandwidth control pa-
rameter α. +e parameter-optimized variational mode de-
composition is developed to achieve the accurate
decomposition of fault signal and adaptive control of in-
fluence parameters. Shuffled frog leaping algorithm is used
to implement the optimization the influence parameters.
+e multiobjective evaluation function is constructed to
select the optimal mode component. +e envelope spectrum
technique is used to analyze the optimal mode component.
According to the characteristics of the vibration signal, we

build the simulation signal to verify the feasibility and ef-
fectiveness of the signal and also use the vibration data of
Western Reserve University to verify the proposed method.
+e experimental results show that the proposed parameter-
optimized VMD method can correctly decompose the fault
signal and accurately extract the characteristic frequency of
the fault signal. Compared with the VMD method without
the optimization and the EEMDmethod, the fault frequency
extracted by the proposed method is more prominent and
the noise is also suppressed. +e proposed method also
provides a new way to solve the problem for the analysis of
vibration signal.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.
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Figure 15: +e envelope spectrum of optimal component for outer ring defect by using VMD.
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Figure 16: +e decomposition results and corresponding frequency spectrum of modes by using the parameter-optimized VMD.
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In order to diagnose the faults of rolling bearings in motors via time-frequency analysis of bearing vibration signals quickly, this
paper puts forward a method of extracting the main components from time-frequency images. A threshold is adaptively de-
termined based on the gray histogram feature of the time-frequency images obtained from the vibration signals of the motor
rolling bearings. ,en, a mask template is generated by the threshold and a binarization processing. Based on a multiplication
operation between the mask template and the original time-frequency image, the signal component with low energy in the time-
frequency image is filtered out, and only the main components with high energy is remained for fault diagnosis, which is
convenient for the subsequent identification of the faults for motor rolling bearings. ,e main components in the time-frequency
images can be retained adaptively with the thresholds determined by the time-frequency images themselves.

1. Introduction

Conditionmonitoring and fault diagnosis for equipment can
monitor the health status of equipment in real time and
determine the fault location and severity by the changes of
some signals, which can not only avoid the occurrence of
major accidents but also greatly save maintenance costs.
While a motor is working, factors such as overload impact,
assembly error, poor lubrication, or impurity doping will
lead to the failure of the bearing. ,e vibration signals of a
motor will show the unsteady characteristic, and then, the
nonstationary signals have the characteristics of limited
duration and timely variation. ,e traditional signal pro-
cessing methods are mostly based on the assumption of a
stable state, which can only analyze the statistical charac-
teristics of the signal in the time domain or frequency
domain, but are unable to reveal the instantaneous char-
acteristics in the joint time-frequency domain. ,e time-
frequency representation of a signal can describe the energy
distribution and time-varying characteristics in the time-
frequency domain, which is the most complete expression

method for unstable signals. Along with the development of
image recognition, some mechanical fault identification
methods are put forward based on the time-frequency image
texture, shape, and other visual feature extraction. ,ese
methods can not only help us to understand the images but
also are good to improve the recognition accuracy.

Many scholars have studied this problem. Hongkun et al.
[1] make an investigation of the rolling bearing faults’ di-
agnosis by a time-frequency image processing technology,
and the experiment results showed that the Hough trans-
form of time-frequency images can effectively classify the
faults of rolling bearings. Isobe et al. [2] combined the local
wave time-frequency spectrum with image processing to
extract the features from vibration signals of reciprocating
machines. Cai et al. [3] calculated the Wigner–Ville dis-
tributions of acceleration signals by time-frequency analysis,
obtained a series of time-frequency gray images from the
above distributions by image processing, and then obtained
a group of fractal texture characteristic parameters from
these gray images to identify the abnormal status of a diesel
engine valve gap. Wei and Zhan-Sheng [4] studied a

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6687195, 12 pages
https://doi.org/10.1155/2021/6687195

mailto:wangchengdong@uestc.edu.cn
https://orcid.org/0000-0001-5187-2691
https://orcid.org/0000-0001-7391-0185
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6687195


diagnosis method that is based on gray level-gradient co-
occurrence matrix, by extracting the information of image
texture characteristic to conduct the fault diagnosis of a
rotating machine. Cai et al. [5] proposed a new fault di-
agnosis method based on the time-frequency image rec-
ognition of EMD-WVD vibration spectrums by SVM.
,rough extracting the moment invariant feature of the
images, the diagnosis eigenvectors were achieved, and their
modes were recognized by an improved binary tree classifier.
Verstraete at al. [6] proposed a deep learning enabled fea-
tureless method, where the images generated by time-fre-
quency representations of the raw data were fed into a deep
convolutional neural network (CNN) architecture for
classification and fault diagnosis, and the results are good.

In time-frequency images, important information is
expressed through time-frequency components with high
energy. ,erefore, when the distribution law of frequency
components in time-frequency images is studied, the time-
frequency components with low energy can be regarded as
noise and be filtered out, which will help us to pay attention
to the time-frequency components with high energy. n is the
time-frequency images, and the energy of the time-fre-
quency component is reflected with the gray value of image,
so the classification of images can be achieved based on the
important components. A noise removal method for time-
frequency images is studied in this paper. A binarization
processing is applied to the time-frequency images to get a
mask template with which the original images are over-
lapped to highlight the components with concentrated en-
ergy. ,en, the fault diagnosis can be carried out according
to the remained signal components.

,e remaining sections of this paper are arranged as
follows. Firstly, the method of extracting the main com-
ponents of time-frequency images is introduced in Section 2.
,en, the OTSU method, the KSW-Entropy method, and
our improved method based on OTSU and KSW-entropy
methods are introduced in Section 3. ,e comparison of the
results and the analysis of the experimental data are de-
scribed in Section 4. ,e summary of our results is given in
Section 5.

2. The Method of Extracting the Main
Components from Time-Frequency Images

In fault diagnosis for mechanical equipment, especially in
the treatment of nonstationary signals, we mainly focus on
the changes of the main signal components which will
greatly affect or even determine the characteristic of the
whole signal. We often want to know how the frequency of a
signal component is changed with time and how the energy
of a signal component is changed with time. By the methods
of time-frequency analysis, we can see the changes of signal
components. ,ere are many methods of time-frequency
analysis, such as Wigner–Ville distributions (WVD) [7–9],
short-time Fourier transform (STFT) [10–12], wavelet
transform [13–15], and Hilbert–Huang transform [16–18].
Among these methods, the short-time Fourier transform is
simple and can be worked out quickly, while giving the main
information of how the signal component is changing with

time. Although the time-frequency resolution of STFT is not
as high as that of WVD, STFT is widely used because of its
free of crossterms, which limits the application of WVD
largely. In order to show the results of time-frequency
analysis visually, images are usually used, where the time is
expressed in horizontal coordinate and the frequency is
expressed in a vertical coordinate. In this paper, STFT is used
to get the time-frequency images of motor bearings.

2.1. Short-Time Fourier Transform (STFT) and Time-Fre-
quency Images. ,e STFT is a popular method for analyzing
nonstationary signals, which is a transform of traditional
Fourier transform [19]. ,e basic idea of STFT is as follows.

When a short-time window function is applied to an
original signal, the original nonstationary signal can be
viewed as a stationary signal during the very short interval of
the window. ,e window function ω(t) is then moved so
that x(τ)ωt,f(τ − t) can be always considered as a stationary
signal for a continuous finite time length. ,en, the power
spectrum of the signal at different time periods can be
calculated. ,e STFT of the signal x(t) is defined as

F
w
x (t, f) �  x(τ)ωt,f(τ − t)e

−j2πfτdτ, (1)

where x(τ) is the signal to be analyzed, ω(τ) is the sliding
window function, and Fw

x (t, f) is the spectral distribution of
signal x at time t.

,e discrete STFT is defined as

F
ω
x (m, n) � 

ms+N−1

k�ms

x(k)ω(k − ms)e
−j2πkn/N

,

(m � 0, 1, 2 . . . M − 1; n � 0, 1, 2 . . . N − 1),

(2)

where ω(k) is the window function with the length of N, the
sliding step of the window function is s sampling time in-
terval, m is the location of the window, corresponding to the
time parameter of STFT, and n is the frequency parameter.
Suppose the sampling frequency of the original signal x(k) is
fs; then, the sampling time interval is Ts � 1/fs. Fω

x(m, n) is
the spectrum of the signal at the time of msTs, where the
frequency parameter of n corresponds to nfs/N.

By using STFT, we can get the power spectrum of the
signal at different time.,en, we show the results of STFT in
time-frequency images with the horizontal axis as time and
the vertical axis as frequency and the amplitude of the STFT
as the gray value. In order to observe the energy distribution
in time-frequency images, this paper inverts the gray scale of
time-frequency images, that is, at a certain moment and a
certain frequency, the larger the energy is, the smaller the
gray value will be.

2.2. Extraction of theMainComponents fromTime-Frequency
Images. A time-frequency image can be regarded as an
ordinary two-dimensional image, where the time is
expressed in horizontal coordinate and the frequency is
expressed in vertical coordinate. And, the energy of every
time-frequency component is reflected with the gray value.
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In the process of bearing faults’ diagnosis, the classification
of important feature components can be achieved based on
the classification of the gray value of the image.,at is to say,
the features of faults are largely contained in the main
components whose energy is expressed with large gray
values in the time-frequency image. So, our attention can
only focus on the parts with large gray values in the time-
frequency image.

In this paper, an adaptive method of extracting the main
components of time-frequency images is presented. Firstly,
STFT is used to get the time-frequency image of vibration
signals. ,en, a suitable threshold is calculated according to
the time-frequency image based on themethods of OTSU and
KSW-entropy. ,en, a mask template is generated according
to the threshold with the same size as the original image. ,e
value of each pixel is 0 or 1, where 1 means the pixels will be
kept and 0 means the pixels will be removed. ,en, the time-
frequency image which only retains the main components is
obtained by a multiplication between the mask template and
the original time-frequency image. Finally, the fault diagnosis
is carried out based on the time-frequency image with only
main components. ,e recognition computation of the time-
frequency image with only the important fault feature in-
formation retained will be much smaller than that of the
original time-frequency image.

,e process of the main components extraction method
is shown in Figure 1.

3. TheAdaptiveMethods of Threshold Selection

,e key of our method is the threshold selection of image
binarization, which also means the selection of the energy
threshold. An appropriate energy threshold can extract the
main characteristics components of a time-frequency image
and filter out other weak signals or irrelevant features.
,erefore, an improved adaptive threshold selection method
is proposed based on the KSW-entropy algorithm and
OTSU threshold segmentation algorithm.

3.1. /reshold Based on OTSU. Among all the algorithms
related to image threshold, OTSU algorithm [20], proposed
by OTSU, a Japanese scholar, is considered as the best al-
gorithm for threshold selection in image segmentation. It
divides the image into background and foreground
according to its gray scale. As variance is a measure of gray
distribution uniformity, the greater the interclass variance
between the background and foreground, the greater the
difference between the two parts of the image. If part of the
foreground is misclassified into background or part of the
background is misclassified into foreground, the difference
between the two parts will decrease. ,erefore, the seg-
mentation that maximizes the variance between classes
means that the probability of misclassification is minimized.

,e principle of OTSU is as follows.
If a threshold value is set as t, then the image pixel can be

divided into two categories of C1 (whose gray value lesser
than t) and C2 (whose gray value greater than t). Assuming
that the mean gray values of the two classes of pixel grayscale

are μ1 and the average gray value of the whole image is μ, the
percentage of C1 to total pixels is ω1, the percentage of C2 to
total pixels is ω2, the total number of pixels is N × M, and
the interclass variance is σ2. ,en, the formulas can be
expressed as follows:

ω1 �
C1

M × N
, (3)

ω2 �
C2

M × N
, (4)

ω1 + ω2 � 1, (5)

μ � ω1 × μ1 + ω2 × μ2, (6)

σ2 � ω1 × μ1 − μ( 
2

+ ω2 × μ2 − μ( 
2
. (7)

According to formulas (6) and (7), the final expression of
interclass variance is

σ2 � ω1 × ω2 × μ1 − μ2( 
2
. (8)

If the maximal image gray is L, by trying every gray value
and calculating the interclass variance of C1 and C2 pixels of

Start

Present the results of time-frequency 
analysis in gray-scale image

Binary processing 

Using binarization image to extract main 
time-frequency component

End

Obtain interclass 
variance set σ2 

and calculate the 
threshold T1

Obtain entropy set E(t)
and calculate the 

threshold T2

Calculate the weight S

Calculate the final 
threshold T

Time-frequency 
analysis of data

Figure 1: Algorithm flowchart of this paper.
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the image, the best threshold T can be found with the biggest
interclass variance:

σ2(T) � max σ2(t)|0≤ t≤ L − 1 . (9)

3.2. /reshold Based on KSW-Entropy. In 1985, Kapur,
Shaoo, and Wong proposed a method to select threshold
automatically based on optimal entropy, which was ab-
breviated as KSW-entropy algorithm [21]. ,e method
applies the entropy of image information to image seg-
mentation. For an image, a threshold value is found to divide
the histogram into two categories, and the information
entropy of the two categories is calculated, respectively.
Based on the threshold, the entropy is maximum. Entropy is
used in information theory to describe uncertain factors.,e
more ordered a system is, the lower its entropy is. In the
image, the boundary distribution of the target is the most
uncertain, so the boundary between the image target and the
background has the maximum entropy. ,e KSW-entropy
algorithm is good for image segmentation with fuzzy
boundaries between the target and background.

For an image with a gray scale of L, assuming that
p0, p1, p2, . . . , pL−1 are the probability distribution of each
gray level in the image. Image pixels are divided into two
categories by the threshold t. ,e pixels whose gray values
are in the range of [0, t] are divided into C1 category and the
pixels whose gray values are in the range of [t + 1, L − 1] are
divided into C2 category. Let PC1 � 

t
i�0 pi be the sum of the

probability of pixels in C1 and PC2 � 
L−1
i�t+1pi be the sum of

the probability of pixels in C2, and PC1 � 1 − PC2. ,e
probability distribution of each pixel in C1 is p0/PC1,

p1/PC1, p2/PC1, . . . , pt/PC1, and the probability distribution
of each pixel in C2 is pt+1/PC2, pt+2/PC2, pt+3/PC2, . . . ,

pL−1/PC2. ,en, the information entropy E(C1) of C1 and
entropy E(C2) of C2 are calculated as follows:

E(C1) � − 
t

i�0

pi

PC1
ln

pi

PC1
, (10)

E(C2) � − 
L−1

i�t+1

pi

PC2
ln

pi

PC2
. (11)

,e total information entropy is

E(t) � E(C1) + E(C2). (12)

After traversing the whole gray levels of L, the threshold
T that maximizes entropy E is the optimal segmentation
threshold:

E(T) � max E(t)|0≤ t≤ L − 1{ }. (13)

3.3. /reshold Based on Combined OTSU and KSW-Entropy.
,e segmentation result of OTSU is not good for the image
with blurred edges, which is mainly reflected in the mis-
classification of image edges and the sensitivity to noise.
However, the edge part of images is processed better with

KSW-entropy than with OTSU, but in the background part,
where a wrong segmentation may be classified. So, we
combine the methods of OTSU and KSW-entropy to pro-
pose an adaptive threshold segmentation method.

In order to satisfy formulas (9) and (13) simulta-
neously as far as possible, considering the theory of
multiobjective programming, the linear weighting
method in the evaluation function is used to reconstruct a
function of threshold selection. Suppose the weight of
interclass variance is S, Emin is the minimum entropy in
the calculation process of the calculating, Emax is the
maximum entropy, and norm(σ2) is to normalize the
interclass variance of all calculated thresholds into
[Emin, Emax]. ,en, the mathematical model of our method
can be expressed as follows:

E(T) � max S × norm σ2(t)  +(1 − S) × E(t)|0≤ t≤ L − 1 .

(14)

,e weight S is calculated by the threshold T1 and the
threshold T2 which are determined by OTSU and KSW-
entropy. Considering OTSU’s missing edge and KSW’s
excessive background, the best threshold should be posi-
tioned between the thresholds determined by the two
methods. So, when the threshold value of image is decided,
both the variance and entropy should be taken into con-
sideration. At the same time, due to the effect of both
methods, the value of the variance should be moved towards
the direction of the maximum entropy, and the entropy
value should be moved towards the direction of maximum
variance, to achieve a balance of the effect of two methods.
,erefore, the definition of S can be expressed as the fol-
lowing formula:

S �
T2

T1 + T2
, (15)

with the weight S, the threshold of an image can be selected
dynamically and adjustable. ,e classification between the
edge and the background of a time-frequency image can be
achieved by taking the maximum intercategory variance
and the maximum entropy into consideration as far as
possible.

4. Experimental Results and Analysis

4.1. Introduction to the Bearing Data. ,e experimental data
we used were obtained from the Bearing Datasets of Case
Western Reserve University (CWRU) [22–24]. ,e test rig
consisted of a 2 horsepower (hp) motor driving a shaft
mounted with a torque transducer and encoder. ,e torque
is applied to the shaft by a dynamometer and a control
system. ,e acceleration data of vibration was measured
near to the motor bearings. ,e faults of the motor bearings
were artificially seeded using electro-discharge machining
(EDM). Faults ranging from 0.007 inches (or 7mil) to 0.040
inches in diameter were introduced separately at the inner
raceway, rolling element (i.e., ball), and outer raceway.
Faulted bearings were reinstalled into the test motor and the
vibration data was recorded for motor loads of 0 to 3
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horsepower (the motor speeds ranged from 1720 rpm to
1779 rpm).

A vibration data of a faulty bearing we analyzed came
from the dataset, where the fault size is 7 mil with zero
loading, and the shaft rotation speed is 1797 rpm, and the
sampling frequency is 12 KHz. In the process of STFT, a
hamming window with the length of 63 is used, and the
sliding step of the window is 1. Firstly, the results of
normal bearing in the same situation are shown in Fig-
ures 2 and 3. Figure 2 is the time domain and frequency
domain waveforms, and Figure 3 is the joint time-fre-
quency distribution image. ,e waveforms of time and
frequency are also shown in Figure 3, where the upper
waveform is for time domain and the left waveform is for
frequency domain. ,e joint time-frequency distribution
image of STFT is shown in the right-bottom corner in
Figure 3. Figure 4 shows the waveforms of a faulty bearing,
respectively, in time and frequency domains where the
inner ring is faulty in size of 7mil. ,e joint time-fre-
quency distribution image of the faulty bearing is shown
in Figure 5 as the same manner in Figure 4. In the fol-
lowing parts, we only show the time-frequency images of
STFT.

By comparing the time domain waveforms, the fre-
quency domain waveforms, and time-frequency images of
the normal bearing and the fault bearing, it can be seen that
the waveforms are quite different if a bearing has fault or not.
From Figure 2, we can see that the frequency of vibration
signals of normal bearings is mainly concentrated near
160Hz, 360Hz, 1050Hz, and 2100Hz, among which the
component near 1050Hz has the largest energy. ,e signal
component at 160Hz has the second largest energy. We can
only obtain this information from the spectrum diagram.
However, it can be seen from the time-frequency image that
the components near 1050Hz do not always exist; these
components appear at about 0.009 s, 0.046 s, and 0.079 s,
respectively, and the duration is less than 0.01 s, as shown in
Figure 3.

In the vibration signal of the faulty bearing, as shown
in Figure 4, the signal components are particularly rich,
mainly concentrating in the frequency band range be-
tween 2600 Hz and 2900 Hz and around 3900 Hz. From
the time-frequency image as shown in Figure 5, we can see
that even within these two frequency bands. ,e signal
components appear intermittently and the durations of
each component are slightly different. At the same time,
we can also see that, in addition to these main compo-
nents, there are also many components of weak energy
distributed randomly in the time-frequency domain,
which tend to disturb our attention due to their weak
energy and random distribution. We hope to filter out
these disturbances and then we can concentrate on finding
the components that reflect the characteristics of the
bearing failure.

4.2. Comparison of the Extraction Effects. ,e original time-
frequency image of the faulty bearing data is shown in
Figure 6. ,e mask template and the extracted main com-
ponents by the threshold of OTSU are shown in Figures 7
and 8. ,e mask template and the extracted main compo-
nents using KSW-entropy are also shown in Figures 9 and
10. ,e mask template and main components extracted by
our method are shown in Figures 11 and 12. And the main
components of the normal bearing extracted by our method
are shown in Figure 13.

,e threshold selected by our method is 192, which is
between the threshold of 205 and 157, respectively, obtained
by the methods of OTSU and KSW-entropy. Comparing the
Figures 6, 8, 10, and 12, we can see that when the threshold
value is different, the extracted main components are not
exactly the same. ,e larger the threshold is, the less the
time-frequency components are filtered out. ,e threshold
calculated by the method of KSW-entropy is smaller than
that of OTSU, so the main components extracted by the
method of KSW-entropy are less than the main components
extracted by the method of OTSU. ,e amount of the main
components extracted will affect our judgment and ability to
grasp the principal information of faulty bearings.

By comparing Figures 12 and 13, it can be seen that the
main time-frequency components extracted from the time-
frequency images of the faulty bearing and the normal
bearing are greatly different. ,e fault of the bearing can be
judged by observing the distribution of these major
components. From the main time-frequency components
extracted by our method, it can be easily seen that the signal
components are mainly concentrated in the frequency
bands around 1300Hz, 2800Hz, and 3600Hz, as shown in
Figure 12. ,ese signal components do not appear con-
tinuously, but occur at regular intervals with slight changes
in energy each time. For example, there are some obviously
signal components occur at 0.0085 s, 0.0272 s, 0.0455 s, and
0.0642 s, as shown in Figure 12 with red dotted lines, and
the time interval between these signal components is about
0.0185 s. Between each two components with obviously
high energy, there are also two signal components with
slightly lower energy. ,at is to say, a signal component is
occurred at almost every 0.0066 s or so. From this time
period we can see that the frequency of the components is
about 152Hz which is close to the characteristic frequency
of inner bearing ring fault. Based on the analysis of the
main components of the time-frequency image, we can
roughly infer that there may be a fault in the inner bearing
ring.

In order to make the results more convincing, another
data is analyzed to verify our method. ,e data is recorded
on the fault size of 21mil, and the motor load is 2 horse-
power with 1750 rpm, and the sampling frequency is also
12 kHz.,e waveforms of time and frequency domain are as
shown in Figure 14, where 4096 samples are analyzed. ,e
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Figure 4:,e waveforms of a faulty bearing in time and frequency domain: (a) time domain of data IR007_0_X105_DE_time_00001_01024
and (b) spectrum of data IR007_0_X105_DE_time_00001_01024.
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Figure 9: ,e mask template obtained with the method of KSW-entropy.
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Figure 10: ,e main components’ image of the faulty bearing extracted with the mask template obtained from KSW-entropy.
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Figure 12: ,e main components’ image of the faulty bearing extracted with the mask template obtained from our method.
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time-frequency image of STFT and the extracted main
components are shown in Figures 15 and 16.

,e threshold we calculated with our method is 202.
As shown in Figure 16, where the bearing failure is more
serious, the signal components are still mainly

concentrated in frequency band of 2400 Hz∼3400 Hz. ,e
signal components in this frequency band are very
abundant and occur discontinuous. ,e time intervals are
not constant and the intensity of the signal components
are also various.
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Figure 13: ,e main components’ image of the normal bearing extracted with the mask template obtained from our method.
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IR021_2_X211_DE_time_0000001_0004096 and (b) spectrum of data IR021_2_X211_DE_time_0000001_0004096.
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5. Conclusions

,is paper presents an adaptive method of extracting the
main components from time-frequency images, which is
based on the gray histogram features of time-frequency
images. In order to get a mask template, with which the
main components of time-frequency images can be
extracted, a threshold is firstly calculated adaptively by a
method combined of OTSU and KSW-Entropy. ,en, by
the idea of binarization processing, the mask template and
the original time-frequency image is operated with
multiplication; thus, the signal components with little

energy in time-frequency image can be filtered out. By this
method, the main components of time-frequency images
can be retained adaptively while some little details or
noisy components can be filtered out, which will help us to
focus on or find the characteristics of the time-frequency
images obtained from the vibration signals of motor
bearings. With this method, the effective pixel points of
time-frequency images can be effectively reduced, and the
amount of data to be processed during the later recog-
nition processing will also be reduced, which will help us
to use computers to automatically recognize or classify
time-frequency images for bearing faults’ diagnosis.
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Due to the high-voltage and high-current operating characteristics of the electric drive system of electric vehicles, it forms strong
electromagnetic interference during the working process. )e shielding effectiveness of the high-voltage connection cable that
connects the components of the electric drive system is directly related to its electromagnetic interference emissions. )erefore,
the modeling and analysis of the shielding effectiveness of the connection cable is very important for the development of a
connection cable with good shielding effectiveness. Firstly, the transfer impedance value representing the shielding effectiveness of
the shielded cable is analyzed, and the difference between the single-layer shield and the double-layer shield cable is compared.)e
influence of double-layer shielded high-voltage connection cables commonly used in electric vehicles on the shielding layer DC
resistance and keyhole inductance is clarified. Secondly, the transfer impedance optimization model ZT_D-Desmoulins is obtained by
combining with the single-layer shielded cable Desmoulins model and considering the influence of shielded layer DC resistance
and keyhole inductance. Finally, three double-layer shielded cables of different types were selected for the triaxial test. )e error
rates of the test data and the ZT_D-Desmoulin optimization model are all lower than 20% in each frequency band, which verified the
correctness, universality, and great engineering application value of the optimization model.

1. Introduction

Due to the high-voltage and high-current working char-
acteristics of the electric drive system of electric vehicles,
strong electromagnetic interference is formed during the
working process. )e shielding effectiveness of the high-
voltage connection cables that connect the components of
the electric drive system is directly related to its electro-
magnetic interference emission level [1, 2]. )e connection
cables with poor shielding efficiency usually cause the
electromagnetic field emission level of the entire electric
vehicle to exceed the standard. )erefore, how to effectively
evaluate and test the shielding effectiveness of the connector
assembly is the common concern for cable and connector
suppliers and vehicle manufacturers.

To solve the above problems, scholars at home and
abroad have carried out extensive research on the surface

transfer impedance of the connection cables. Vance [3]
deeply studied the low-frequency characteristics when ra-
diating to the cable braid and gave the most commonly used
Zd model formula. )e braided inductance part was in-
troduced by Tyni [4] to improve the accuracy when cal-
culating the transfer impedance of high and low projection
coverage cables; Demoulin and Degauque [5] proposed a
new model that took into account the effects of additional
fluctuations and generated additional attenuation; Marconi
et al. [6] proposed a test method to measure the transfer
impedance of two coaxial cables RG 213 under the same
conditions and compared the test results with theoretical
calculations; Xiaoling et al. [7] proposed a new model for
accurately predicting the transfer impedance of braided
coaxial cables by summarizing and studying the classical
model; Mushtaq and Frei [8, 9] introduced the ground plate
method (GPM) and capacitive voltage probe (CVP). He
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compared the test results of the above methods with the
triaxial injection method and line injection method. )e
above studies all used braided single-layer shielded cables as
the research object. At present, high-voltage power cables on
electric vehicles usually use double-layer shielding. )e so-
called double-layer shielding refers to the inner shielding
layer using tinned copper wire braiding. )e outer shielding
layer is wrapped with aluminum-plastic composite tape
(aluminum foil). However, domestic and foreign experts
have not conducted in-depth research on the modeling
method of double-layer shielded cables. )e transfer im-
pedance model of double-layer shielded cables is of great
significance to the shielding effectiveness of vehicles.
)erefore, it is necessary to carry out the research of the
surface transfer impedance of the double-layer shielded
cable connection cables.

In view of the above analysis, this article first introduces
the difference in transfer impedance between single- and
double-shielded cables, and the influence of double-layer
shielded high-voltage connection cables used in electric
vehicles on the shielding layer DC resistance and keyhole
inductance is clarified. )en, based on the Demoulin model,
the equivalent circuit diagram of the double-layer shielded
cable is obtained by considering the influence of the shield
layer DC resistance and keyhole inductance, and the opti-
mization model of the double-layer shielded cable is
established.)ree sets of double-shielded cables are tested by
the tri-coaxial method, and the correctness and generality of
the optimized model are verified.

2. Surface Transfer Impedance and Its
Analytical Formula

2.1. Surface Transfer Impedance. Surface transfer impedance
[10, 11] is a characteristic parameter that characterizes the
shielding performance of power cables. )e lower the
transfer impedance, the better the shielding performance of
the cable and the stronger its electromagnetic immunity. It is
defined [12] as the unit length of the cable. )e induced
voltage formed between the core wire and the shield layer
when current flows through the shield layer (as shown in
Figure 1), that is, the ratio of the axial voltage change rate on
the braid layer to the axial current, and the calculation
formula can be expressed as follows:

ZT �
1
I0

zV

zz
, (1)

where I0 represents the current flowing through the outer
surface of the braid; (zV/zz) represents the effective value of
the voltage per unit length of the uniform transmission line
composed of the core wire and the shielding layer; z indi-
cates the axial direction of the cable, as shown in Figure 1; l

indicates the cable length.

2.2. Transfer Impedance Analytical Formula. Generally, the
high-voltage power cables used in electric vehicles are
braided shielded cables. As shown in Figure 2, the analytical
model of the transfer impedance can be established by the

structural parameters of the cable braid and the electro-
magnetic field theory.

)e analytical method can effectively analyze the in-
fluence of the parameterization of the shielded cable on the
transfer impedance. Regarding the input parameters of the
analytical model, the structural characteristics of the cable
braid can be described by 7 parameters: the inner diameter
of the braid D0, the diameter of the braided wire d, the
number of braid strands contained in a circle on the braided
layer c, the number of wires in each braided bundle N, the
braid angle α, the conductivity of the braided layer σ, and the
magnetic permeability of the braided layer. After these
parameters, the transfer impedance value of the shielded
cable can be simulated; refer to the schematic diagram in
Figure 3.

2.3. Analysis of Transfer Impedance Characteristic Curve.
For power shielded cables, the equivalent circuit can be built
through the RLC electrical parameters, as shown in Figure 4.
)e inductance parameter L is mainly composed of the
inductance Lc of the core conductor, the inductance Ls of the
shielding layer, and the mutual inductance M_cs between
the two. In addition, the influence of small hole inductance
and braided inductance Lh and Lb should be considered on
the braided layer. )e resistance parameter R is mainly
composed of the resistance of the internal conductor Rc and
the resistance of the shielding layer Rs. )e resistance is
affected by the skin effect and changes with frequency. )e
skin effect will affect the shielding effectiveness of the cable
and the impedance value at the resonance frequency. )e
capacitance parameter C is composed of the capacitance
C_cs between the core wire and the shielding layer. )e
transfer impedance value is mainly affected by inductive
coupling, so we should pay attention to the influence of these
electrical parameters on the transfer impedance of the power
cable [13].

As shown in Figure 5, the composition of the ZT curve of
the shielded cable transfer impedancemodel is analyzed.)e
dotted lines in the figure are several key components that

V
l

I0

Figure 1: Schematic diagram of transfer impedance definition.

Cable sheath

Insulation

Conductor core

Shield

d
D0

Figure 2: Schematic diagram of the shielded cable structure.
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affect the value of transfer impedance, where Zd is scattering
impedance and jωL is inductance and respectively, and the
solid lines in the figure are the transfer impedance curves
containing each component. In area 1 (gray), when the low
frequency is less than 150 kHz, the current density in the
braided shielding layer is evenly distributed, and the transfer
impedance value is approximately the same as the DC re-
sistance value R of the shielding layer. In zone 2 (green), the
transfer impedance is mainly determined by the scattering
impedance Zd. As the frequency increases, the current
density in the shielding layer becomes uneven. Due to the
skin effect, the skin depth decreases according to the square
root of the frequency, and the ZT value decreases. In zone 3
(yellow) near 1MHz, the transfer impedance value is de-
termined by the scattering impedance Zd, the small hole

inductance jωLh, the braided inductance jωLb, and the
additional wave attenuation, resulting in an obvious in-
flection point. As the frequency increases further, the
magnetic field leakage caused by the diamond-shaped holes
in the braided layer increases, and the inductance compo-
nent of the small holes increases. )e weaving of the braided
bundles that intersect each other in the braid layer will cause
the cutting of magnetic flux, which will also generate in-
duced electromotive force, forming braided inductance, and
increase the transfer impedance value. In the case of high
frequency, the magnetic field between the inner and outer
layers of the woven mesh will cause eddy current effects and
additional attenuation. In area 4 (red), it is greater than
2MHz, which is mainly determined by the small hole in-
ductance and braided inductance. As the frequency in-
creases, the transfer impedance value continues to increase
[14, 15].

3. Double-Layer Shielding Optimization Model

According to the above analysis of the composition of the ZT
curve, ZT is mainly determined by the DC resistance when
zone 1 (gray) is less than 150 kHz. At present, high-voltage
power cables on electric vehicles usually adopt double-layer
shielding. In addition to the inner tinned copper wire woven
mesh, the outer layer is also wrapped with a layer of alu-
minum-plastic composite tape (aluminum foil), so the tested
power cables also need to consider the influence of the DC
resistance of the aluminum foil on the transfer impedance
value at low frequencies.

In addition, it can be seen from Figure 6 that because the
double-layer shielded cable [16] adds a layer of aluminum foil
to the outside of the shielding layer, compared with the single-
layer shielding, the diamond-shaped holes on the inside are
covered by aluminum foil, which can effectively prevent the
magnetic field from passing through small hole leaks, and the
small hole inductance effect is greatly reduced and can be
ignored. )erefore, it will affect the small hole inductance of
the high-frequency part of area 4 (red) in Figure 5, and the
transfer impedance value will theoretically decrease.

For the additional DC resistance value of aluminum foil,
the aluminum foil layer model can be established by Q3D
software for numerical analysis and calculation to extract the
resistance value, as Figure 7 shows. Assuming that the
aluminum foil model is ideal with a uniform thickness of
0.1mm, any section can be selected for calculation. In order
to reduce the calculation amount, the length is set to
100mm, and the DC resistance of the aluminum foil in the
cable under test is calculated. It is 0.004Ω/m.

Demoulin proposed an analytical model of formula (12),
taking into account the effects of additional volatility.

)e additional wave effect is the eddy current effect
caused by the magnetic field between the braided bundles of
the inner and outer layers of the woven net at high fre-
quencies, which will generate additional attenuation and
lead to a decrease in the transfer impedance value in the
high-frequency range. )is component can be described by
the eddy current caused by the tangential electric field on the
shielding layer and is proportional to
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Figure 5: ZT curve composition analysis diagram.

Figure 3: Schematic diagram of the structural parameters of the
braid.
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Figure 4: Shielded cable equivalent circuit diagram.
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ZT_Demoulin � Zd + jω Lh2 − Lb1(  + k
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. (7)

Considering the impact of double-layer shielding, the
equivalent circuit diagram of a double-layer shielded cable as
shown in Figure 8 is obtained. Double-layer shielded power
cables need to be considered in the analytical optimization
model due to the influence of the DC resistance of the
additional aluminum foil and the elimination of the small
hole inductance on the transfer impedance.

In summary, the double-layer shielding optimization
model is as follows:

ZT_D−Demoulin � Z′d − jωLb1 + k
��
ω

√
e

+j(π/4)
, (8)

where

Zd
′ � R′

(1 + j)d/δ
sinh[(1 + j)d/δ]

, (9)

R′ �
4

πd
2
NCσ cos α

+ RAL, (10)

k � −
1.16

NC d
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N

3
· sin

π
2

− 2α  ·

��
μ
σ



. (11)

)e single-layer shielding model and the double-layer
optimization model were simulated and analyzed, as shown
in Figure 9, considering increasing the DC resistance and
eliminating the influence of the small hole inductance. It can
be seen that the influence of the DC resistance is mainly in
the low-frequency band and the influence of the inductance
is in the high-frequency band. From the perspective of the
overall optimization model, the transfer impedance of a
double-layer shielded cable at high frequency is significantly
lower than that of a single-layer shielded cable.

4. Triaxial Method Test and Model
Comparison Verification

4.1. Triaxial Test. )e triaxial method is a method in which
the tested cable is placed in a coaxial nonferromagnetic good
conductor tube for measurement, namely, the inner con-
ductor of the cable core, the cable shielding layer, and the
coaxial good conductor tube constituting a test device. )e
triaxial method can characterize the complex electromag-
netic coupling mechanism [17] with directly measured

(a) (b)

Figure 6: Single-layer shielded cable (a) and double-layer shielded cable (b).

Figure 7: Aluminum foil Q3D calculation model.
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R0 RAL
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Figure 8: Equivalent circuit diagram of double-layer shielded
cable.
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circuit parameters (the electromagnetic field that affects the
shielding effectiveness is replaced by surface current and
surface charge equivalent), suitable for asymmetric cables
and different size and structure complex connector testing,
and the test results are repeatable.

Table 1 shows the comparison of triaxial methods a, b,
and c. Considering the test stability, ease of operation, and
commonality, this test adopts the triaxial B method; refer to
the test standard: IEC62153-4-3-2013 [19]. Figure 10 shows
the triaxial test layout of the power cable.

Calculation method of the triaxial b method transfer
impedance value:

Zt �
R1 + Z0

2 · Lc

· 10− ameans− acal/20{ }, (12)

where ameans � 20log10(S21) represents the measured atten-
uation loss, acal represents the composite loss measured
during calibration, Z0 represents the impedance of the signal

generator and receiver, usually 50Ω, and Lc represents the
coupling length of the tested cable and R1 represents ter-
minal impedance.

4.2. Comparison and Verification of Multiple Samples.
Combined with the triaxial b method test schematic diagram
(as shown in Figure 11), the flowchart of the power cable test
was developed (as shown in Figure 12). As shown in Table 2,
three double-layer shielded cables with different parameters
were selected for testing. In the test, the coupling length of the
three groups of samples is 0.5m. When the triaxial b method
is used, the test cutoff frequency is 50MHz (the maximum
measurable 50MHz). As shown in Figure 13, the test value of
the sample cable in the figure produces a resonance point at
50MHz and the trend of the transfer impedance curve
changes. Comparing the simulation value of the double-layer
shielding optimization model with the actual test value of the
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Figure 9: Comparison of single-layer shielding model and double-layer optimization model.

Table 1: Comparison of three coaxial a, b, and c methods [18].

Testing
method Test method a Test method b Test method c

Advantage Test cut higher stop frequency Measurement has more higher
dynamic range

Suitable for measuring very low transfer impedance
values (below 1 μΩ/m m and lower)

Cutoff
frequency fcut ∗ l ≈ 80MHz∗m fcut ∗ l ≈ 25MHz∗m fcut ∗ l ≈ 30MHz∗m

Disadvantages Low dynamic range of
measurement Test cut lower frequency

)e effect of capacitive coupling is suppressed by the
short circuit in the primary and secondary circuits, and

the test is quite sensitive

Features

Matching resistance and
impedance mismatch
Need to connect to the

matching impedance network
Near-end core wire injection

Only need to connect the
terminal matching resistor

Near-end core injection signal

No matching resistor
No need to access matched impedance network inject

signal from remote test tube
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sample cable, it can be seen that the simulation models of the
three samples have a good fitting effect.

Table 3 shows the numerical comparison between the
optimizedmodel and the test value of three different samples
at several common frequencies. As can be seen from the data
in Table 3, the simulated calculated value of the optimized
model at each frequency point is very close to the actual
measured value after removing the keyhole inductance and
considering adding the aluminum foil DC resistance. At the
frequency of 150 kHz, the error rates of the three samples
were 2.16%, 0.50%, and 2.55%, which were all lower than 3%;
at the frequency of 10MHz, the error rates of sample 1 and
sample 2 were 1.84% and 1.02%, respectively, both less than
2%, and the error rate of sample 3 is 9.01%. At 1MHz and
2MHz, the error rates of sample 1 were 7% and 8.86%,
respectively, which were lower than 9%; the error rates of
sample 2 and sample 3 were both lower than 12%; at 20MHz

Network analyzer
Coupling tool

Near end

PC test software

Far end

Shielded cable under
test (in coaxial tube)

Triaxial test equipment

Figure 10: Physical diagram of power cable test layout.

U2Z1 = R1
5

1

8 2

3

4
7

Lc

2
I1
6

Figure 11: Schematic diagram of the test principle of the triaxial b
method. (1) Network analyzer or receiver; (2) cable insulation
sleeve; (3) test sleeve; (4) terminal impedance R1 length; (5) signal
generator; (6) cable shield; (7) test core wire; (8) test connection
line. Lc: cable coupling.

Terminal impedance
calculation

Remote matching resistor
connection

Near-end shorting

Connection coupling toolConnect the test head

Network analyzer

CoMet test software Standard IEC 62153-4-3

Z0 = 60/√εr ln D/d

Figure 12: Power cable test flowchart.

Table 2: Sample cable parameters.

Sample 1 Sample 2 Sample 3
Inner diameter of woven layer D0
(mm) 10.3 11.58 10.02

Braided wire diameter d (mm) 0.15 0.15 0.15
Number of braid strands c 8 10 10
Number of wires per share n 24 24 24
Weaving angle α 35 38 38
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Figure 13: Comparison and analysis of simulated values and test
values of samples 1, 2, and 3.
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and 30MHz, the error rates of the three samples were less
than 20%. In summary, the experimental data of the three
samples and the calculation error rate of the optimization
model in each frequency band were all less than 20%, which
verified the correctness of the optimization model and the
universality of the optimization model.

5. Conclusion

(1) )is paper analyzed the transfer impedance value
representing the shielding effectiveness of the shielded
cable, compared the difference between the single-layer
shielded cable and the double-layer shielded cable, and
clarified the influence of the double-layer shielded high-
voltage connection cable commonly used in electric
vehicles on the DC resistance and keyhole inductance of
the shielded cable.

(2) Considering the influence of the shielding layer’s DC
resistance and small hole inductance, the optimi-
zation model ZT_D-Desmoulins for the transfer im-
pedance of the double-layer shielded cable was
obtained, and the single-layer shielding model and
the double-layer shielding model were simulated and
analyzed. )e influence of DC resistance in a low-
frequency band and inductance in a high-frequency
band was determined.

(3) )ree different types of double-shielded cables were
selected for the triaxial test.)e calculation error rates of
the test data and the ZT_D-Desmoulin optimization model
in each frequency band were less than 20%. At the
frequency point of 10MHz that the enterprise focuses
on, the error rates of the three double-layer shielded
cables were all lower than 10%, and two of them were
1.84% and 1.02%, which almost coincided with the test
data. )e correctness and generality of the optimization
model were verified, and it had good engineering ap-
plication value.
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&is paper aims to solve the control problem of coupled spacecraft tracking maneuver in the case of actuator faults, inertia
parametric uncertainties, and external disturbances. Firstly, the spacecraft attitude and position coupling kinematics and dy-
namics model are established on the Lie group SE(3), and the coupled relative motion tracking error model is derived by
exponential coordinates. &en, considering the actuator faults, an adaptive fuzzy scheme is proposed to estimate the lumped
disturbances in real time, and a novel modified fixed-time terminal sliding mode fault-tolerant control law is developed to deal
with the actuator faults and compensate the lumped disturbances. Next, the Lyapunov method is used to prove the stability and
convergence of the system. Finally, the proposed controller can achieve fast and high-precision fault-tolerant control goals, and its
effectiveness and feasibility are verified by numerical simulation.

1. Introduction

In the context of the rapid development of space technology,
new and higher requirements have been put forward for the
mobility and accuracy of spacecraft. &e modeling and control
of the attitude and trajectory of relativelymoving spacecraft has
always been a hot research topic in the fields of space ren-
dezvous and docking, spacecraft formation flying (SFF) [1, 2].
Due to the strong coupling and nonlinearity of the relative
motion of spacecraft’s attitude and position motion, the
conventional idea of dividing attitude and positionmotion into
independent two-channel control ignores the influence of
coupling between the two, although it satisfies the requirements
of some space missions. However, for aerospace missions with
high-precision requirements, the divide-and-conquer method
will appear powerless [3]. &erefore, seeking the integrated
control of spacecraft attitude and position has theoretical
guidance and is of great significance to engineering practice.

Due to long-term exposure to harsh space environments
such as strong radiation and ultra-low temperature, the
actuator will have various types of failures. &erefore, the

conventional control theory based on the normal operation
of the actuator may be difficult to cope with the failure and
may eventually cause the system to crash or fail. In addition,
the spacecraft itself will also face the uncertainty of internal
parameters and external disturbances, which brings huge
challenges to the design of the control system. So it is
particularly important to choose a suitable fault-tolerant
control strategy for the aforementioned drawbacks, which
also provides a strong guarantee for the long-term service
operation of the spacecraft.

At present, many research results have been made on the
problem of spacecraft attitude fault-tolerant control [4, 5].
But for the spacecraft attitude and position coupling control
system, when various faults occur in the relative attitude and
position actuators at the same time, the related six-degree-
of-freedom (6-DOF) fault-tolerant control algorithm design
is not enough [6]. Dong et al. [7, 8], studied the integrated
fault-tolerant control of the spacecraft’s position and atti-
tude in the case of actuator failure based on the dual qua-
ternion, and their numerical simulation results verified the
effectiveness of the algorithm.
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In recent years, the coupled modeling of rotation and
translation relative motion based on different forms of rigid
spacecraft has attracted widespread attention. Common
spacecraft attitude and position coupling modeling and
control forms mainly include dual quaternion [7, 8], Lie
group SE(3) [9, 10], modified Rodrigues parameters (MRPs),
and other forms [11, 12]. Although the integrated modeling
method of spacecraft attitude and position based on dual
quaternion is widely used, dual quaternion also has its
limitations. &e model based on dual quaternion uses eight
parameters to describe the three-dimensional motion, so it
requires unitized constraints. Sometimes improper handling
of this constraint will cause problems. Moreover, since the
group function corresponding to the unit quaternion is left
multiplication and right multiplication, the quaternion
description rotation is not unique, which will cause ambi-
guity, and when it is serious, it will cause unwinding problem
[3]. Moreover, describing the attitude based on MRPS is
nonglobal and nonunique [13]. Compared with the tradi-
tional description method in Euclidean space, the geometric
framework of Lie group SE(3) is more natural and concise,
the analysis results are more realistic and credible, and the
designed controller is more concise, so in recent years, it
received attention gradually. Lie group SE(3) can describe
the three-dimensional translation and rotation of a rigid
body. Lee et al. [14], Sanyal et al. [15], and Bullo and Murray
[16], conducted an in-depth study on the control of the 6-
DOF motion of a spacecraft on SE(3). By using the rela-
tionship between the exponential mapping function and the
logarithm mapping function of Lie group and Lie algebra,
the motion spinor is transformed into the corresponding
spacecraft attitude and position motion equation. On this
basis, various simple controllers are designed to realize the
pose tracking control target [17]. In this paper, the integrated
model of spacecraft attitude and position coupling is
established in the framework of Lie group SE(3), which is
convenient for the design of fault-tolerant controllers in the
following.

Fault-tolerant control mainly includes active fault-toler-
ant control and passive fault-tolerant control. Among them,
considering the actuator failure belongs to the integrity design
category of passive fault-tolerant control, it is also a hot re-
search direction in the field of fault-tolerant control and has
obtained rich research results [18–22]. Fuzzy approximation
can make full use of the information ability of fuzzy logic
systems; it is easier to construct and can approximate non-
linear functions with arbitrary accuracy. When the actuator
fails, the uncertainty of the system increases. For the pa-
rameter uncertain system, the adaptive law can be constructed
by the Lyapunovmethod, and the uncertain parameters in the
model can be replaced by the adaptive control based on the
principle of equivalence. Finally, the adaptive law is designed
for the estimated parameters to make the closed-loop system
stable. &is mainstream adaptive control method has been
widely used in the field of spacecraft control due to its simple
design and easy to understand [23]. Recently, many major
achievements in the engineering application of fuzzy ap-
proximation methods have been reported, such as application
of adaptive fuzzy controller in industrial process [24, 25]. At

the same time, fuzzy control is also applied to robust fault-
tolerant control for fault detection and actuator faults
[26–29]. In addition, the fuzzy control scheme to approximate
the disturbance of the spacecraft has been successfully ap-
plied, and it is effective to combine the adaptive fuzzy con-
troller of NFTSMC in [30, 31] to reject the system uncertainty.
Zhang et al. [32] applied fuzzy adaptive finite-time control to
the 6-DOF SFF system and achieved success when consid-
ering the consensus control problem among the followers
with signal transmission time delays.

Fixed-time control is developed on the basis of finite-
time control. &e difference between the two is only in the
form of the sliding surface. &e former can achieve fixed-
time convergence without relying on the initial state, while
the latter’s convergence time is related to the initial state.
Double-power fast terminal sliding mode control is a kind of
fixed time control, which can be used to realize the fixed time
stability of the system, which is more useful than the finite-
time sliding mode control methods, such as terminal sliding
mode (TSM) [33], fast terminal sliding mode (FTSM) [34],
and nonsingular fast terminal sliding mode (NFTSM) [35].
It has faster convergence speed and better control effect. Shi
et al. achieved attitude tracking control of rigid spacecraft on
Lie group with fixed-time convergence [36] and global fixed
time attitude tracking control for the rigid spacecraft with
actuator saturation and faults [37]. Gao et al. proposed
adaptive fixed time attitude tracking control for rigid
spacecraft with actuator faults on MRPs [38]. Gong et al.
proposed modified adaptive fixed-time terminal sliding
mode control on SE(3) for coupled spacecraft tracking
maneuver [3]. Mobayen et al. [39] proposed a new adaptive
finite-time stabilization method based on global sliding
mode to advance the steady state and transient performances
of a class of chaotic flows in the presence of disturbances.
Also, Mobayen and Pujol-Vázquez used robust LMI ap-
proach to deal with nonlinear feedback stabilization of
continuous state-delay systems with lipschitzian nonline-
arities and verified the effectiveness through experiments
[40]. Jafari and Mobayen [41] combined LMI approach and
second-order sliding set design for a class of uncertain
nonlinear systems with disturbances.

Motivated by the facts mentioned above, this paper takes
the leader-follower formation spacecraft as the research
object. Firstly, a dynamic model of the relative tracking error
of the spacecraft attitude and position coupling with model
uncertainties, external disturbances, and actuator faults is
derived on the Lie group SE(3). &en, the adaptive fuzzy
method is used to design the sliding mode controller to
realize the fixed-time fault-tolerant control.

&e novelty of this paper is as follows: inspired by [3, 32],
the proposed model in this paper takes the actuator faults
into consideration. Based on the established model, a
modified double-power fast terminal sliding manifold is
defined by the exponential coordinates and velocity tracking
errors, and then adaptive fuzzy modified fixed-time fault-
tolerant control schemes is proposed, in which the adaptive
fuzzy control technique is applied to reject the system
lumped disturbances. Compared with finite-time stability
and traditional fixed time stability, the control performance
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obtained in this paper has significant advantages in con-
vergence accuracy and effectiveness.

&e structure of this paper is as follows: Section 2 in-
troduces the mathematics preliminaries and the rigid body
dynamics of the spacecraft on SE(3) with actuator faults.
Section 3 adopts fuzzy adaptive method to design the sliding
mode controller to realize the modified fixed-time fault-
tolerant control and uses the Lyapunov method to prove the
stability of the system strictly. Section 4 verifies the effec-
tiveness of this method through numerical simulation.
Section 5 draws conclusions and summarizes this paper.

2. Mathematics Preliminaries

In order to facilitate the design and stability proof and
analysis of the integrated attitude and position control
system, the following will give some related definitions and
stability theory and lemmas.

2.1. Notations. For any column vector
x � [x1, x2, . . . , xn]T ∈ Rn, define the following vector and
operation:

(1) |x|α � [|x1|
α, |x2|

α, . . . , |xn|α]T, where | · | is the ab-
solute value.

(2) ‖x‖ denotes the Euclidean norm or its induced
norm.

(3) sigα(x) � |x|αsgn(x) � [|x1|
αsgn(x1), |x2|

αsgn(x2),

. . . , |xn|αsgn(xn)]T, where sgn(·) is the sign function.
(4) (d|x|α/dt) � diag[αsigα− 1(x)] _x,

(dsigα(x)/dt) � diag[α|x|α− 1] _x.
(5) [·]∧ represents an operator that maps a vector to a Lie

algebra. For ςe(3), it maps a vector to an skew-

symmetric matrix, that is, u∧ �

0 − uz uy

uz 0 − ux

− uy ux 0

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦;

[·]∨ represents the operator that maps the Lie algebra
to a vector. For ςe(3), it maps the skew-symmetric

matrix to a vector, which is
0 − uz uy

uz 0 − ux

− uy ux 0

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

∨

� u.

2.2. Relative Coupled Dynamics of Spacecraft on Lie Group
SE(3). Firstly, in order to describe the space orientation of
the leader-follower spacecraft and establish the kinematics
and dynamics model, we introduce three reference frames
that are all orthogonal coordinate systems as shown in
Figure 1. &e Earth-centered inertial (ECI) reference frame
with the origin at the center of the Earth is represented by
I{ } � xI, yI, zI , which is used to describe the absolute
motion of the spacecraft relative to the Earth.&e body-fixed
frames of the leader spacecraft and the follower spacecraft
can be expressed as Lb{ } � xLb, yLb, zLb  and
Fb{ } � xFb, yFb, zFb , respectively; their origin is at the
center of mass of the spacecraft, and the axis coincides with
the principal axis of inertia.

In nature, the configuration space of rigid body motion
is SE(3), which can express translation and rotation of rigid

body compactly. &e special Euclidean group SE(3) is the
semidirect product of the three-dimensional Euclidean
space and the special orthogonal space, which can be
expressed as SE(3) � R3⋉SO(3). R3 is used to describe the
translation of the rigid body’s center of mass; SO(3) �

R ∈ R3×3|RRT � I, det(R) � 1  is a rotation group com-
posed of a three-dimensional rotation matrix, which is used
to represent the rotation of the rigid body around the center
of mass. &erefore, an element g in the Lie group SE(3) can
express the configuration of the spacecraft [3]:

g �
R b

01×3 1
  ∈ SE(3), (1)

where R ∈ SO(3) is the rotation matrix of the spacecraft
from the body-fixed frame to the ECI reference frame and
b ∈ R3 is the position vector from the center of mass of the
Earth to the center of mass of the spacecraft in the ECI
coordinate system.

&e angular velocity and translational velocity of the
spacecraft are defined as

ξ �
v

ω
  ∈ R6

. (2)

&e above velocity vectors are defined in the body-fixed
frame of the spacecraft. To describe the kinematics and
dynamics equations below, it is necessary to introduce the
Lie group SE(3) and its corresponding Lie algebra ςe(3) to
meet the following mapping relations:

ξ �
v

ω
  ∈ R6

. (3)

&e adjoint matrix of g � g(R, b) ∈ SE(3) can be
expressed as

Adg �
R b∧R

03×3 R
⎡⎣ ⎤⎦ ∈ R6×6

. (4)

&e Lie algebra corresponding to ξ � vT ωT 
T can be

expressed as

b0

b

Leader spacecra�

Follower spacecra�

xI

zI

yI

ECI frame

Follower’s orbit

Leader’s orbit

xFb

yFb

zFb

xLb zLb

yLb

Figure 1: &e relative motion and coordinate reference frames
definition of the leader-follower spacecraft.
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ξ∧ �
ω∧ v

01×3 0
⎡⎣ ⎤⎦ ∈ ςe(3). (5)

&e adjoint matrix of ξ∧ � ξ∧(ω, v) ∈ ςe(3) can be
expressed as

adξ �
ω∧ v∧

03×3 ω∧
⎡⎣ ⎤⎦ ∈ R6×6

. (6)

&e co-adjoint matrix of ξ∧ � ξ∧(ω, v) ∈ ςe(3) can be
expressed as

ad∗ξ � adξ 
T

�
− ω∧ 03×3

− v∧ − ω∧
⎡⎣ ⎤⎦ ∈ R6×6

. (7)

&e coupled kinematics of the spacecraft in the ECI
coordinate system can be expressed as

_R � Rω∧,
_b � Rv.

⎧⎨

⎩ (8)

&e above kinematics equation can be simplified as
follows:

_g � gξ∧. (9)

&e coupled dynamics of the spacecraft in the body-fixed
frame can be expressed as

m _v + mω × v � Fg(b,R) + mRTaJ2
(b) + Fc(b,R, v,ω) + Fd,

J _ω + ω × Jω � Mg(b,R) + Mc(b,R, v,ω) + Md.

⎧⎨

⎩

(10)

where m and J are the mass and moment of inertia of the
spacecraft, respectively; Fg and Mg are the gravity gradient
force and the gravity gradient moment of the spacecraft,
respectively; aJ2

is the perturbation caused by the Earth’s
oblateness; Fc and Mc are the control force and control
torque of the spacecraft, respectively; and Fd andMd are the
unknown external force and external torque caused by ra-
diation pressure, atmosphere drag, and other bounded
uncertain disturbances, respectively. &e specific forms of
Fg, Mg, and aJ2

are as follows:

Fg � −
mμ
‖b‖

3 I3 +
3

m‖b‖
2

1
2

tr(J)I3 + J −
5bTRJRTb

2‖b‖
2 I3  RTb,

aJ2
� −

3μJ2R
2
e

2‖b‖
5 bx 1 −

5b2z
‖b‖2

  by 1 −
5b2z
‖b‖2

  bz 3 −
5b2z
‖b‖2

  

T

,

Mg �
3μ

‖b‖
5 RTb 

∧
JRTb,

(11)

where μ � 398, 600.44 km3s− 2 is the gravitational constant of
the Earth, J2 � 0.00108263 is the perturbation caused by the
Earth’s oblateness, and Re � 6378.14 km is the equatorial
radius of the Earth.

&en, the coupling dynamics of the spacecraft can be
expressed in a compact form as follows:

Ξ � ad∗ξ ξ + Γg + Γc + Γd, (12)

where Ξ � diag(mI3, J) is the unified inertia matrix of
spacecraft, Γc � FT

c MT
c 

T
is the unified control input

vector, and Γg � (Fg + mRTaJ2
)T MT

q 
T

is the unified
input vector related to gravity.

&us, combining equations (9) and (12), the coupled
kinematics and dynamics of the spacecraft can be expressed
compactly as

_g � gξ∧,

Ξ _ξ � ad∗ξΞ ξ + Γg + Γc + Γd.

⎧⎨

⎩ (13)

Next, based on the above equations, the coupled relative
motion tracking error dynamics will be derived. Let go be the
actual pose configuration of the leader spacecraft, which the
leader spacecraft can be real or virtual; gb be the actual pose
configuration of the follower spacecraft. &en the actual
relative pose configuration between the leader-follower
spacecraft is as follows:

h � g− 1
o gb. (14)

Let gd be the desired pose configuration of the leader
spacecraft, then the desired relative pose configuration be-
tween the leader-follower spacecraft is

hd � g− 1
o gd. (15)

&us the pose configuration tracking error is as follows:

he � h− 1
d h � g− 1

d gog
− 1
o gb � g− 1

d gb. (16)

In general, the desired relative pose configuration is a
constant value, and the desired relative linear velocity and
angular velocity are zero, which means that the follower
spacecraft and the leader spacecraft keep relatively stationary
in a fixed configuration.

&e configuration tracking error of the follower space-
craft can be expressed by exponential coordinates as

ηe �
ρe

φe

  ∈ R6
. (17)

&e velocity tracking error of the follower spacecraft can
be expressed by exponential coordinates as

ξe �
ve

ωe

  ∈ R6
. (18)

&en he can be expressed on SE(3) as

he �
Re be

01×3 1
 . (19)

&rough the logarithm mapping between the Lie group
SE(3) and the Lie algebra ςe(3), we can get the following
results:
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ηe � log he( ( 
∨
,

log he(  �
φ∧e ρe

01×3 0
⎡⎣ ⎤⎦,

(20)

where ρe is the position tracking error and φe is the attitude
tracking error, which are expressed as follows:

ρe � S− 1 φe( be,

φ∧e �

0, θ � 0,

θ
sin θ

Re − RT
e , θ ∈ (− π, π), θ≠ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

S− 1 φe(  � I −
1
2
φ∧e +

1
θ2

1 −
θ sin θ

2(1 − cos θ)
  ϕ∧e( 

2
,

(21)

where θ � arccos((1/2)[tr(Re) − 1]), which is the norm of φe

and corresponds to the principal rotation angle. When θ � 0,
it is injective; when |θ|< π, it is bijective.

According to the relationship between Lie group and Lie
algebra, it can be deduced that when the desired relative
velocity is zero, the expressions of the relative velocity error
and relative acceleration error of the follower spacecraft are

ξe � ξb − Adh− 1
e
ξd � ξb − Adh− 1ξo,

_ξe � _ξb + adξr
Adh− 1ξo − Adh− 1 _ξo.

(22)

&en the coupled relative motion tracking error kine-
matics as given in [32] is

_ηe � G ηe( ξe, (23)

where G(ηe) is expressed as a block-triangular matrix:

G ηe(  �
A φe(  T φe, ρe( 

03×3 A φe( 
 , (24)

where

A φe(  � I3 +
1
2
φ∧e +

1
θ2

1 −
(1 + cos θ)θ

2 sin θ
  φ∧e( 

2
,

T φe, ρe(  �
1
2
S φe( ρe( 

∧A φe(  +
1
θ2

1 −
(1 + cos θ)θ

2 sin θ
  φeρ

T
e + φT

e ρe A φe(  

−
(1 + cos θ)(θ − sin θ)

2θ sin2 θ
S φe( ρeφ

T
e +

(1 + cos θ)(θ − sin θ)

2θ3sin2 θ
−

2
θ4

 φT
e ρeφeφ

T
e .

(25)

Taking equation (12) into equation (22) yields

Ξ _ξe � Ξ _ξb + adξr
Adh− 1ξo − Adh− 1 _ξo 

� ad∗ξb
Ξξb + Γg + Γc + Γd + Ξ adξr

Adh− 1ξo − Adh− 1 _ξo .

(26)

However, in actual space missions, the inertia matrix Ξ is
uncertain due to fuel consumption and external distur-
bances, so the actual inertia matrix Ξ can be expressed as

Ξ � Ξ0 + ΔΞ, (27)

where Ξ0 is the nominal part and ΔΞ is the uncertainty part.
&en the inverse of the inertia matrix can be expressed as

Ξ− 1
� Ξ0 + ΔΞ( 

− 1
� Ξ− 10 + ΔΞ,

ΔΞ � − Ξ− 10 ΔΞ I6 + Ξ− 10 ΔΞ Ξ− 10 .
(28)

&erefore, (26) can be rewritten as
_ξe � H + Γ− 1

0 Γc + Δd,

H � Γ− 1
0 ad∗ξb

Γ0ξb + adξb
Adh− 1ξo − Adh− 1 _ξo + Γ− 1

0 Γg,

Δd � ΔΞ ad∗ξb
Γ0 + ΔΓ( ξb+ Γg + Γc + Γ− 1

0 ad∗ξb
ΔΓξb + Γ− 1

0 + ΔΞ Γd,

(29)

whereH is a known deterministic term of the system and Δd
is the lumped disturbances, including uncertainties and
external disturbances. &en the coupling model of relative
motion spacecraft can be expressed as follows:

_ηe � G ηe( ξe,

_ξe � H + Γ− 1
0 Γc + Δd.

⎧⎨

⎩ (30)

2.3. Actuator Configuration with Faults. In this paper, the
actuator of attitude control is reaction flywheel, and the
actuator of orbit control is thruster.4 reaction flywheels and
4 pairs of thrusters are used. &en the control vector can be
expressed as

Γc �
Fc

Mc

  � Du, (31)

where D ∈ R6×12 is the configuration matrix,
u � [u1, u2, u3, . . . , u12]

T is the actual control vector, and
ui(i � 1, 2, 3, . . . , 12) is the torque or force that each flywheel
or thruster can provide.

&e four reaction flywheels adopt the traditional in-
stallation method of three orthogonal and one inclined
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installation, and the configuration structure is shown in
Figure 2.

&e control torque distribution matrix of the reaction
flywheel is

D1 �

1 0 0
�
3

√

3

0 1 0
�
3

√

3

0 0 1
�
3

√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

Eight thrusters are installed symmetrically at the middle
point of each edge of the cube in pairs.&e installation mode

of thrust passing through the center of mass is adopted. &e
configuration structure is shown in Figure 3.

&e control force distribution matrix of the thruster is

D2 �

�
2

√

2
−

�
2

√

2
−

�
2

√

2

�
2

√

2
−

�
2

√

2

�
2

√

2
−

�
2

√

2

�
2

√

2

0 0 0 0 −

�
2

√

2

�
2

√

2

�
2

√

2
−

�
2

√

2

�
2

√

2
−

�
2

√

2

�
2

√

2
−

�
2

√

2
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)

&en the attitude and position coupling integrated
control distribution matrix D is

D �

�
2

√

2
−

�
2

√

2
−

�
2

√

2

�
2

√

2
−

�
2

√

2

�
2

√

2
−

�
2

√

2

�
2

√

2
0 0 0 0

0 0 0 0 −

�
2

√

2

�
2

√

2

�
2

√

2
−

�
2

√

2
0 0 0 0

�
2

√

2
−

�
2

√

2

�
2

√

2
−

�
2

√

2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0
�
3

√

3

0 0 0 0 0 0 0 0 0 1 0
�
3

√

3

0 0 0 0 0 0 0 0 0 0 1
�
3

√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

According to the cause of the faults of the actuator, the
failure of the actuator can be divided into the following
categories: stuck, loose, saturated, damaged, or invalid. &e
abovementioned faults types can be unified as follows:

u(t) � Euc(t) +(I − E)u, (35)

where uc(t) is the control command of the actuator; u is the
stuck fault of the actuator with bounded value and satisfies
the constraint |ui|≤min uimax, |uimin| ; ui � uimax, uimin 

indicates that the i-th thruster is in saturated state; ui � 0
indicates that the i-th thruster is in loose position.
E � diag(σ1, σ2, σ3, . . . , σn) is the actuator effectiveness
matrix and satisfies the constraint 0≤ σi ≤ 1. σi � 0 denotes
that the i th actuator does not supply any control output;
σi � 1 means there is no fault for the i th actuator; and
0< σi < 1 implies the i th actuator has partially lost its ef-
fectiveness [38].

Taking equations (31) and (35) into equation (30), the
integrated dynamic equation of relative motion space-
craft considering actuator fault can be expressed as
follows:

_ξe � H + Γ− 1
0 DEuc + Δd, (36)

where Δd � Ξ− 10 [D(I − E) u] + Δd.

3. Adaptive Fuzzy Modified Fixed-Time Fault-
Tolerant Controller Design and
Stability Analysis

In this part, our goal is to design a fault-tolerant controller
on the relative coupled dynamics so that the configuration of
the spacecraft can converge to the desired state in the
presence of model uncertainties and external disturbances
and actuator faults in fixed time.
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3.1. Introduction of Fuzzy Approximation Technique. &e
spacecraft exhibits strong nonlinearity due to the influence
of lumped disturbances, which will affect the performance of
the controller. So it is critical to approximate the lumped
disturbances with high accuracy, and fuzzy logic system
(FLS) is an effective way to realize this objective. &e fuzzy
approximation method can make full use of fuzzy linguistic
information to approximate any nonlinear continuous
function. It has a good effect in fitting nonlinear function. It
can approach nonlinear continuous function with arbitrary
precision. &e structure and basic theory of fuzzy approx-
imation system are given below [32].

X � (x1, x2, . . . , xn)T ∈ Rn is the input variable of the
FLS, and M fuzzy rules are designed for each component of

the input variable, then the whole system has nM fuzzy rules,
and the specific expression of each fuzzy rule is

IFx1isA
l
1 and . . . andxN isA

l
N THEN z isB

l
, (37)

where li � 1, . . . , M is the number of fuzzy rules for each
input variable xk, z is the output of the fuzzy system, Al

k is
the fuzzy set of system input variables, and Bl is the fuzzy set
of system output.

If the fuzzy system adopts singleton fuzzifier, center-
average defuzzifier, and product inference engine, the output
of fuzzy approximation system can be obtained as follows:

z �
z

l


N
k�1μAl

k
xk(  


M
l�1 

N
k�1μAl

k
xk(  

, (38)

where μAl
k
(xk) is the membership function corresponding to

the input variable xk; in this paper, Gauss membership
function is used with the form

μAl
k

xk(  � a
l
k exp −

1
2

xk − xl
k

bl
k

 

2
⎛⎝ ⎞⎠, (39)

where al
k,x

l
k, and bl

k are all positive real parameters with
0< al

k ≤ 1. xl
k is the abscissa corresponding to the mem-

bership function μAl
k
(xk) when the maximum value is 1.

Let W � (z1, z2, . . . , zM), then equation (38) can be
rewritten as follows:

z � Wβ, (40)

where β is the basis function, which can be expressed as

β(X) �


N
k�1 μAl

k
xk( 


M
l�1 

N
k�1 μAl

k
xk( .

(41)

Based on the above introduction, the total external
disturbances of the follower spacecraft can be estimated by
the fuzzy approximation as

Δd � W∗β(X) + ε, (42)

whereW∗ is the optimal weight matrix and ε is the bounded
approximation error of FLS. Let W be the estimation ofW∗.
&e sliding surface S is the input variable of β(X), and then
the estimated value Δd of the total external disturbances Δd
of the spacecraft can be expressed as

Δd � Wβ(X) + ε. (43)

&en the estimation error of the optimal weight matrix is
W � W − W∗. (44)

In order to design and analyze the controller, some
assumptions are given below.

Assumption 1. &e output of FLS is bounded, and the es-
timated value of the external total disturbances is bounded
such that

O

Z

Y

X

1

2

4

3

Figure 2: Configuration structure of flywheels.
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3
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Figure 3: Configuration structure of thrusters.
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‖Δd‖≤ dm, (45)

where dm is a positive constant.

Assumption 2. &e approximation error of FLS is bounded
such that

‖ε‖≤ εm, (46)

where εm is a positive constant.

Assumption 3. &e optimal weight matrix of FLS is bounded
such that

tr W
T W ≤Wm, (47)

where Wm is a positive constant.

Assumption 4. &e faults of the actuators satisfy the con-
straint rank(DE) � 6, and this means that the redundant
actuators can still combine enough control output to
complete the given goal.

Remark 1. Because the mass, moment of inertia, fault
amplitude, input variables of FLS, and external disturbance
of the system are bounded, so Assumption 1 is reasonable;
Assumptions 2 and 3 have the property that fuzzy ap-
proximation system can fit any nonlinear continuous
function, and Assumption 4 does not consider under-
actuated system, so it is also reasonable.

3.2.ControllerDesign. In order to achieve the control goal of
modified fixed time stability, 3 sliding surface forms are
proposed as follows.

Firstly, the finite-time terminal sliding mode is denoted
as

S � ξe + C1ηe + C2sig
α ηe( . (48)

&en, the fixed-time terminal sliding mode is denoted as

S � ξe + C1sig
α1 ηe(  + C2sig

α2 ηe( . (49)

Finally, the modified fixed-time terminal sliding mode is
denoted as

S � ξe + C1sig
(1/2)+(1/2)α1+ (1/2)α1− (1/2)( )sgn ηe| |− 1( ) ηe(  + C2sig

α2 ηe( ,

(50)

where C1,C2 ∈ R6×6 are both positive definite diagonal
matrices, α ∈ ((1/2), 1), and α1 ∈ (1, +∞), α2 ∈ ((1/2), 1).

Remark 2. In fact, equation (50) is developed on the basis of
equations (49) and (48), and it can be classified and dis-
cussed as follows:

(1) When |ηe|< 1, equation (50) can be expressed as
S � ξe + C1|ηe|sgn(ηe) + C2sigα(ηe), and it has a
similar form to equation (48).

(2) When |ηe| � 1, equation (50) can be expressed as
S � ξe + C1sig(1/2)+(1/2)α1(ηe) + C2sigα2(ηe), and it
has a similar form to equation (49).

(3) When |ηe|> 1, equation (50) can be expressed as
S � ξe + C1sigα1(ηe) + C2sigα2(ηe), and it has the
same form to equation (49).

From the above analysis and discussion, we can see that
the modified fixed-time terminal sliding mode is a combi-
nation of the finite-time terminal slidingmode and the fixed-
time terminal sliding mode under different conditions. To
guarantee that the relative motion can spacecraft converge to
the desired state in the expected time even in the case of
actuator faults, the corresponding three kinds of adaptive
fuzzy sliding mode controllers are designed as follows:

(1) Corresponding to (48), adaptive fuzzy finite-time
fault-tolerant controller (AF-Finite) is given as

uc � − (DE)
† Γ0 H + C1G ηe( ξe + αC2diag ηe



α− 1

 G ηe( ξe + Wβ(X)  + K1S + K2sig
α
(S) . (51)

(2) Corresponding to (49), adaptive fuzzy fixed-time
fault-tolerant controller (AF-Fixed) is given as

uc � − (DE)
† Γ0

H + α1C1diag ηe



α1− 1

 G ηe( ξe+

α2C2diag ηe



α2− 1

 G ηe( ξe + Wβ(X)

⎛⎜⎝ ⎞⎟⎠ + K1sig
α1(S) + K2sig

α2(S)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (52)

(3) Corresponding to (50), adaptive fuzzy modified
fixed-time fault-tolerant controller (AF-MFixed) is
given as
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uc � − (DE)
†

Γ0

1 + α1
2

+
α1 − 1
2

sgn ηe


 − 1  C1diag ηe




1+α1/2( )+ α1− 1/2( )sgn ηe| |− 1( )( )− 1
 G ηe( ξe

+α2C2diag ηe



α2− 1

 G ηe( ξe + Wβ(X) + H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+K1sig
1+α1/2( )+ α1− 1/2( )sgn(|S|− 1)

(S) + K2sig
α2(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (53)

where (DE)† � (DE)T[(DE)(DE)T]− 1 is the pseu-
doinverse of matrix DE; from Assumption 4, we
know thatDE(DE)T is full rank, so its pseudoinverse
exists; K1,K2 ∈ R6×6 are both positive definite di-
agonal matrices.

&en the adaptive update law of the optimal weight
matrix W is given by

_W � _W � cΓT
0 Sβ

T
(X), (54)

where c> 0 is an auxiliary parameter independent of control.

3.3. Stability Analysis. In this part, we will take the stability
proof of AF-finite fault-tolerant controller as an example for
stability analysis, and the other two (AF-Fixed and AF-
MFixed) stability analysis methods are the same as is. Some
lemmas are given before the stability analysis.

Lemma 1 (see [6]). Assuming that V(x): Rn⟶ R is a
continuous positive definite function and satisfies the fol-
lowing differential inequality

_V(x) + ρ1V(x) + ρ2V
υ
(x)≤ 0, ∀t> 0, (55)

where ρ1 > 0, ρ2 > 0, υ ∈ (0, 1), then V(x) can converge to the
equilibrium point in finite time, and the finite time T satisfies
the following constraints:

T≤
1

ρ1(1 − υ)
ln
ρ1V

1− υ x0(  + ρ2
ρ2

. (56)

Lemma 2 (see [38]). Assuming that V(x): Rn⟶ R is a
continuous positive definite function and satisfies the fol-
lowing differential inequality:

_V(x) + ρ1V
υ1(x) + ρ2V

υ2(x)≤ 0, ∀t> 0, (57)

where ρ1 > 0, ρ2 > 0, υ1 > 1, υ2 ∈ (0, 1), then V(x) can con-
verge to the equilibrium point in fixed time, and the fixed time
T satisfies the following constraints:

T≤
1

ρ1 υ1 − 1( 
+

1
ρ2 1 − υ2( 

. (58)

Lemma 3 (see [3]). Assuming that V(x): Rn⟶ R is a
continuous positive definite function and satisfies the fol-
lowing differential inequality

_V(x) + ρ1V
(1/2)+(1/2)υ1+ (1/2)υ1− (1/2)( )sgn(V(x)− 1)

(x) + ρ2V
υ2(x)≤ 0, ∀t> 0, (59)

where ρ1 > 0, ρ2 > 0, υ1 > 1, υ2 ∈ (0, 1), then V(x) can con-
verge to the equilibrium point in modified fixed time, and
the modified fixed time T satisfies the following constraints:

T≤
1

ρ1 υ1 − 1( 
+

1
ρ1 1 − υ2( 

ln 1 +
ρ1
ρ2

 . (60)

Because the inequality ln(1 + (ρ1/ρ2))≤ (ρ1/ρ2) holds,
the convergence time in Lemma 3 is shorter than that in
Lemma 2.

Lemma 4 (see [32]). &e eigenvalues of matrix G(ηe) are all
positive.

Next, the Lyapunov method will be used to prove the
reachability of slidingmode variables and the convergence of
the system states.

Theorem 1. When the nonlinear system equation (48)
reaches the sliding mode surface S � 0, the state ηe, ξe of the
system can converge to the equilibrium point in a finite time.

Proof. When equation (48) reaches the sliding mode surface
S � 0, such that

S � ξe + C1ηe + C2sig
α ηe(  � 0, (61)

then we have

ξe � − C1ηe − C2sig
α ηe( . (62)

A candidate Lyapunov function is selected as follows:

V �
1
2
ηT

e ηe. (63)
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Taking the derivative of V with respect to time yields:

_V � ηT
e _ηe � ηT

e G ηe( ξe � ηT
e G ηe(  − C1ηe − C2sig

α ηe(  

≤ − λmin G ηe( C1(  ηe

����
����
2
2 − λmin G ηe( C2(  ηe

����
����
1+α

≤ − 2λmin G ηe( C1( V − 2(1+α/2)λmin G ηe( C2( V
(1+α/2)

� − a1V − a2V
(1+α/2)

,

(64)

where a1 � 2λmin(G(ηe)C1), a2 � 2(1+α/2)λmin(G(ηe)C2), by
using Lemma 4 we know that the eigenvalues of matrix
G(ηe) are all positive; in addition, C1,C2 ∈ R6×6 are both
positive definite diagonal matrices, and then we have
a1, a2 > 0. By using Lemma 1, we can conclude that V will
converge to equilibrium point in finite time T, such that

T≤
2

a1(1 − α)
ln

a1V
(1− α/2)

(0)

a2
+ 1 . (65)

So, ηe can also converge to equilibrium point in finite
time; according to equation (62), ξe will converge to equi-
librium point in finite time too. □

Remark 3. Since αC2diag(|ηe|
α− 1)G(ηe)ξe is included in

equation (51), when ηe reaches the equilibrium point before
ξe, the control output will become infinite. &e singularity
can be avoided by selecting α ∈ ((1/2), 1) in this paper.
Because when ηe � 0, the following equation holds:

αC2diag ηe



α− 1

 G ηe( ξe � αC2diag ηe



α− 1

 G ηe(  − C1ηe − C2sig
α ηe( ( 

� − αC2C1G ηe(  ηe



α

− αC2
2G ηe( sig2α− 1 ηe(  � 0.

(66)

Remark 4. When we choose the other two sliding surfaces in
equations (49) and (50) and use the same proof method as
&eorem 1, we can also get that the system state will con-
verge to the equilibrium point in fixed time. By using
equation (49) and Lemma 2, ηe, ξe will converge to the
equilibrium point in fixed time Tf:

Tf ≤
2

a1f α1 − 1( 
+

2
a2f 1 − α2( 

, (67)

where a1f � 2(1+α1/2)λmin(G(ηe)C1) and a2f � 2(1+α2/2)λmin
(G(ηe)C2).

By using equation (50) and Lemma 3, ηe, ξe will converge
to the equilibrium point in modified fixed time Tm:

Tm ≤
2

a1m α1 − 1( 
+

2
a1m 1 − α2( 

ln 1 +
a1m

a2m

 , (68)

where a1m � 2(1+(1/2)+(1/2)α1+((1/2)α1− (1/2))sgn(|ηe|− 1)/2)λmin
(G(ηe)C1) and a2m � 2(1+α2/2)λmin(G(ηe)C2).

To guarantee that the sliding surface can reach S � 0 in
finite time, &eorem 2 is proposed.

Theorem 2. For the relative motion spacecraft system with
actuator faults in equation (36), the sliding surface S of the
system can converge to a small region containing zero in finite
time when using sliding surface in equation (48) and fuzzy
adaptive control law in equations (51) and (54).

Proof. Another candidate Lyapunov function is selected as
follows:

V1 �
1
2
STΓ0S +

1
2c

tr W
T W . (69)

Taking the derivative of V1 yields

_V1 � STΓ0 _S +
1
c
tr W

T _W 

� STΓ0 _ξe + C1G ηe( ξe + αC2diag ηe



α− 1

 G ηe( ξe  +
1
c
tr W

T _W 

� STΓ0
H + Γ− 1

0 DEuc + Δd + C1G ηe( ξe

+αC2diag ηe



α− 1

 G ηe( ξe

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ +
1
c
tr W

T _W 

� − STΓ0 Wβ(X) + STΓ0ε − STK1S − STK2sig
α
(S) +

1
c
tr W

T _W 

�
1
c
tr W

T _W − cΓT
0 Sβ

T
(X)   + STΓ0ε − STK1S − STK2sig

α
(S).

(70)
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Substituting the adaptive law of equation (54) into the
above equation yields

_V1 � STΓ0ε − STK1S − STK2sig
α
(S)

≤ − λmin K1( 
2

λmax Γ0( 

1
2
STΓ0S − λmin K2( 

2
λmax Γ0( 

 

(1+α/2) 1
2
STΓ0S 

(1+α/2)

−
1
2c

tr W
T W  −

1
2c

tr W
T W  

(1+α/2)

+ Δ,

(71)

where Δ is defined as

Δ �
1
2c

tr W
T W  +

1
2c

tr W
T W  

(1+α/2)

+‖S‖ Γ0
����

����‖ε‖.

(72)

From Assumptions 2 and 3, we know that the following
inequalities are satisfied:

Δ≤
1
2c

Wm +
1
2c

Wm 

(1+α/2)

+ εm‖S‖ Γ0
����

���� � Δ′, (73)

where χ1 and χ2 are defined to satisfy the following
equations:

χ1 � min λmin K1( 
2

λmax Γ0( 
, 1 ,

χ2 � min λmin K2( 
2

λmax Γ0( 
 

(1+α/2)

, 1
⎧⎨

⎩

⎫⎬

⎭.

(74)

&en equation (71) can be simplified as

_V1 ≤ − χ1V1 − χ2V
(1+α/2)
1 + Δ′. (75)

&e above equation can be rewritten as

_V1 + χ1V1 + χ2V
(1+α/2)
1 ≤ 0,

_V1 + χ1V1 + χ2V
(1+α/2)
1 ≤ 0,

⎧⎨

⎩ (76)

where χ1 � χ1 − (Δ′/V1) and χ2 � χ2 − (Δ′/V(1+α/2)
1 ), by

using Lemma 1, V1 will converge to the equilibrium point in
finite time.

When χ1 > 0, that is,V1 > (Δ′/χ1),V1 will converge to the
region Δ1 containing zero in finite time T1:

T1 ≤
2

χ1(1 − α)
ln

χ1V
(1− α/2)

(0)

χ2
+ 1 ,

Δ1 ≤
Δ′
χ1

.

(77)

When χ2 > 0, that is, V1 > (Δ′/χ2)
(2/1+α), V1 will converge

to the region Δ2 containing zero in finite time T2:

T2 ≤
2

χ1(1 − α)
ln

χ1V
(2/1− α)

(0)

χ2
+ 1 ,

Δ2 ≤
Δ′
χ2

 

(2/1+α)

.

(78)

According to equations (77) and (78), we can conclude
that V1 will converge to the regionΔ containing zero in finite
time T′:

T′ � min T1, T2 ,

Δ � min Δ1,Δ2 .
(79)

Since the following inequality holds
1
2
STΓ0S≤V1,

1
2c

tr W
T W ≤V1,

(80)

the sliding surface S of the system can converge to a small
region ΔS �

������������

(2/λmin(Ξ0))Δ


containing zero in finite time.
&e estimated value of the optimal weight matrix can also
converge to the true value. □

Remark 5. When we choose the other two controllers in
equations (52) and (53) and use the same adaptive update
law in equation (54), we can also draw the conclusion that
the sliding surface converges in fixed time. By using equation
(52) and Lemma 2, V1 will converge to the region Δf

containing zero in fixed time Tf
′.

Tf
′ � min T1f, T2f ,

Δf � min Δ1f,Δ2f ,
(81)

where T1f ≤ (2/χ1f(α1 − 1)) + (2/χ2f(1 − α2)), Δ1f ≤
(Δf
′/χ1f)(2/1+α1); T2f ≤ (2/χ1f(α1 − 1)) + (2/χ2f(1 − α2)),
Δ2f ≤ (Δf

′/χ2f)(2/1+α2). &e derivation process of χ1f, χ1f,
χ2f, and χ2f can be referenced with &eorem 2.

By using equation (53) and Lemma 3, V1 will converge to
the region Δm containing zero in fixed time Tm

′:

Tm
′ � min T1m, T2m ,

Δm � min Δ1m,Δ2m ,
(82)
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where T1m ≤ (2/χ1m(α1 − 1)) + (2/χ1m(1 − α2))ln(χ1m/χ2m),
Δ1m ≤ (Δm

′/χ1m)(2/1+α1); T2m ≤ (2/χ1m(α1 − 1)) + (2/χ1m

(1 − α2))ln(χ1m/χ2m), Δ2m ≤ (Δm
′/χ2m)(2/1+α2). &e derivation

process of χ1m, χ1m, χ2m, and χ2m can be referenced with
&eorem 2.

4. Numerical Simulation Analysis

In this part, three kinds of fuzzy adaptive finite-time and
fixed-time fault-tolerant control algorithms proposed in this
paper are simulated to verify the effectiveness of the algo-
rithms. Before the simulation, the input expression of the
fuzzy approximation system is defined as

xk �
sk

sk


 + 0.0001

, (k � 1, 2, . . . , 6). (83)

Seven fuzzy membership functions are selected as
follows:

μA1
k

xk(  �
1

1 + exp 5 xk + π/4( ( 
,

μA2
k

xk(  � exp − 0.5
xk + 1
0.25

 
2

 ,

μA3
k

xk(  � exp − 0.5
xk + 0.5
0.25

 
2

 ,

μA4
k

xk(  � exp − 0.5
xk

0.25
 

2
 ,

μA5
k

xk(  � exp − 0.5
xk − 0.5
0.25

 
2

 ,

μA6
k

xk(  � exp − 0.5
xk − 1
0.25

 
2

 ,

μA7
k

xk(  �
1

1 + exp 5 xk − π/4( ( 
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(84)

In the simulation, the mass and moment of inertia of the
follower spacecraft and the leader spacecraft are chosen the
same as

m � 110kg,

J �

21.7 − 0.2 − 0.5

− 0.2 22.3 − 0.3

− 0.5 − 0.3 25.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦kg.m2
.

(85)

&e leader spacecraft moves on a Molniya orbit, and its
initial orbital elements are given in Table 1 [3].

Assuming that the leader spacecraft moves along an ideal
orbit, its orbit is generated by offline calculation. At the

initial moment, the body-fixed frame of the leader spacecraft
coincides with the orbital coordinate system, and its initial
pose configuration and initial velocity are

go �

0.8660 − 0.5 0 16490.0

0.2239 0.3878 − 0.8942 4262.8

0.4471 0.7744 0.4478 8512.6

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ξo � 3.7052 3.6292 0 0 0 0.0011 
T
.

(86)

&e position vector is expressed in the ECI system, and
its unit iskm, and the velocity vector is expressed in the
body-fixed coordinate system, and the units are rad/s and
km/s.

&e definition of the initial pose configuration and initial
velocity parameters of the follower spacecraft relative to the
leader spacecraft are shown in Table 2.

&e desired pose configuration and desired velocity of
the follower spacecraft relative to the leader spacecraft are
shown in Table 3.

In other words, the control goal is to keep the attitude
synchronization between the follower spacecraft and the
leader spacecraft, hover under it, and the relative velocity of
the two is zero.

&e uncertain part of the mass and inertia matrix and the
external disturbances are selected as follows:

ΔΓ � diag sin(0.5t)I3, 0.1 sin(0.5t)I3( ,

Γd �

0.05 sin(0.5t)N

0.05 sin(0.5t)N

− 0.05 sin(0.5t)N

0.005 sin(0.15t)N · m

0.005 sin(0.25t)N · m

− 0.005 sin(0.2t)N · m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(87)

During the simulation, the maximum output of the
reaction flywheel and thruster are 1N.m and 10N, re-
spectively. &at is, the boundary of control force is
[− 10, 10]N, and the control torque is limited to [− 1, 1]N · m.
&e parameters of the controllers are chosen as in Table 4.

&e specific fault types of each flywheel and each thruster
are shown in Table 5.

Figures 4–7 show the output of AF-MFixed and its
comparison with AF-Finite and AF-Fixed under the normal
condition of the actuator; Figures 8–11 show the output with
the actuator fault. &e above output results verify the sta-
bility analysis of the proposed control scheme.

Figure 4 illustrates the pose configuration and the ve-
locity tracking error of AF-MFixed without actuator fault. It
can be seen that the attitude and angular velocity tracking
errors quickly converge to the equilibrium state within 18 s,
and the convergence accuracy is finally maintained within
1 × 10− 4deg and 2 × 10− 5deg/s, respectively; the position
and translational velocity tracking errors quickly converge to
the equilibrium state within 60 s, and the convergence
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accuracy is finally maintained within 8 × 10− 5m and
1 × 10− 6m/s, respectively.

Figure 5(a) shows the output torque of each flywheel and
Figure 5(b) shows the output force of each thruster under
normal conditions. It is evident that all the actuator outputs
are bounded.

Figure 6 shows the comparison of the pose configuration
and the velocity tracking error norms among AF-Finite, AF-
Fixed, and AF-MFixed without actuator fault. It can be seen
from Figures 6(a) and 6(b) that the convergence rates and
convergence accuracy of the threemethods are almost the same
for attitude and angular velocity tracking errors. From
Figures 6(c) and 6(d), as for position and translational velocity
tracking errors, AF-MFixed and AF-Fixed are superior to AF-
Finite in convergence rates, AF-Finite have the highest con-
vergence accuracy of position tracking error, and theminimum
overshoot of translational velocity tracking error, but it has the
lowest convergence accuracy of translational velocity tracking
error, and the control performance of AF-Fixed is between the
other two. In summary, AF-MFixed has more obvious ad-
vantages in terms of rapidity than AF-Finite and accuracy of
control performance than AF-Fixed, which also confirms the
analysis and discussion of AF-MFixed in Remark 2.

Figure 7 shows the comparison of the integration of
control force and torque of the three methods without ac-
tuator fault. &e integral of the control output often rep-
resents the control energy. From Figure 7(a), we can know
that AF-Finite has the largest energy consumption of control
force (integration of control force) and AF-Fixed and AF-
MFixed have the similar control force energy consumption.
However, it can be seen from Figure 7(b) that there is no
significant difference in the energy consumption of control
torque (integration of control torque) among the three.
&erefore, AF-MFixed also has great advantages in reducing
control energy consumption.

Figure 8 illustrates the pose configuration and the ve-
locity tracking error of AF-MFixed with actuator fault. It can

be seen that the attitude and angular velocity tracking errors
quickly converge to the equilibrium state within 20 s, and the
convergence accuracy is finally maintained within
3 × 10− 4deg and 2 × 10− 5deg/s, respectively. &e position
tracking errors quickly converge to the equilibrium state
within 60 s, and the convergence accuracy is finally main-
tained within 4 × 10− 3m and tends to decrease; the trans-
lational velocity tracking errors quickly converge to the
equilibrium state within 75 s, and the convergence accuracy
is finally maintained within 2 × 10− 5m/s.

Figure 9(a) shows the output torque of each flywheel,
and Figure 9(b) shows the output force of each thruster
under fault conditions. It is evident that all the actuator
outputs are bounded, and the output curves well reflect the
types of the fault. It is worth noting that the control torques
and forces do not vanish completely when the control goal is

Table 1: Initial orbital elements of the leader.

Orbital element Value
Semimajor axis (km) a (km) 26628
Eccentricity e 0.7417
Inclination i (deg) 63.4
RAAN Ω (deg) 0
Argument of perigee ω (deg) 270
True anomaly f (deg) 120

Table 2: Initial state of the follower spacecraft relative to the leader
spacecraft.

Initial relative parameters Values
Initial relative position (m) 15 15 15 

T

Initial relative linear velocity (m/s) − 0.051 − 0.247 − 0.075 
T

Initial relative attitude (rad) 2π/3
Initial relative principal rotation
axis − 2 − 2 − 3 

T

Initial relative angular velocity
(rad/s) 0.009 5.98 − 9.31 

T
× 10− 4

Table 3: Desired state of the follower spacecraft relative to the
leader spacecraft.

Desired relative parameters Values
Desired relative position (m) 5 0 0 

T

Desired relative linear velocity (m/s) 0 0 0 
T

Desired relative attitude (rad) 0
Desired relative angular velocity (rad/s) 0 0 0 

T

Table 5: Fault conditions of actuators.

Actuator Fault expression

Flywheel 1 u1 �
u1c t< 25 s
0.65u1c t≥ 25 s

Flywheel 2 u2 �
u2c t< 25 s
0.5u2c t≥ 25 s

Flywheel 3 u3 � 0.8u3c, t> 0 s

Flywheel 4 u4 � 0.6u4c, t> 0 s

&ruster 1 u5 �
0N t< 15 s
0.4u5c t≥ 15 s

&ruster 2 u6 � 0.9u6c, t> 0 s

&ruster 3 u7 �
0N t< 15 s
0.6u7c t≥ 15 s

&ruster 4 u8 � 0.75u8c, t> 0 s

&ruster 5 u9 �
u9c t< 1 s
0.8u9c t≥ 15 s

&ruster 6 u10 � 0.3u10c, t> 0 s

&ruster 7 u11 �
u11c t< 15 s
0.6u11c t≥ 15 s

&ruster 8 u12 � 0.45u12c, t> 0 s

Table 4: Control parameters for simulation.

Parameter name Values

Sliding surface
α � 0.6, α1 � 1.2, α2 � 0.6

C1 � diag(0.054, 0.054, 0.054, 0.18, 0.18, 0.18)

C2 � diag(0.054, 0.054, 0.054, 0.18, 0.18, 0.18)

Controller
parameters

K1 � diag(1200, 800, 800, 10, 10, 10)

K2 � diag(1200, 800, 800, 10, 10, 10)

c � 0.001
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achieved because they also need to compensate for the total
disturbances and actuator faults to keep the relative pose
configuration between the follower spacecraft and the leader
spacecraft.

Figure 10 shows the comparison of the pose configu-
ration and the velocity tracking errors norms among AF-
Finite, AF-Fixed, and AF-MFixed with actuator fault. It can
be seen from Figures 10(a) and 10(b) that the convergence
rates of the three methods are almost the same for attitude
and angular velocity tracking errors, but AF-MFixed has a
significant advantage over AF-Fixed in terms of convergence
accuracy for attitude tracking error. We can know from

Figures 10(a) and 10(c) that AF-Finite has the highest
convergence accuracy for relative pose configuration
tracking error. From Figures 10(c) and 10(d), as for po-
sition and translational velocity tracking errors, AF-M-
Fixed and AF-Fixed are superior to AF-Finite in
convergence rates, AF-Finite have the highest convergence
accuracy of position and translational velocity tracking
error and the minimum overshoot of translational velocity
tracking error, the control performance of AF-Fixed is
between the other two, and it can realize the translational
velocity tracking error control with high accuracy and
convergence rates, but AF-MFixed can converge more
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Figure 4: Tracking errors of AF-MFixed under normal condition.
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Figure 5: Tracking errors of AF-MFixed under normal condition.
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Figure 6: Continued.
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accurately than AF-Fixed at the same convergence speed.
In summary, AF-MFixed has more obvious advantages in
terms of rapidity and accuracy of control performance,
which also confirms the analysis and discussion of AF-
MFixed in Remark 2.

Figure 11 shows the comparison of the integration of
control force and torque of the three methods with actuator

fault. From Figure 11(a), we can know that AF-Finite has
the lowest energy consumption of control force, and AF-
MFixed is slightly higher than that of AF-Fixed in order to
achieve fast convergence performance. However, it can be
seen from Figure 11(b) that AF-Fixed has the lowest energy
consumption of control torque, and AF-Finite is slightly
higher than that of AF-Fixed, but the difference in the
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Figure 6: Comparison of the tracking error output norms of the three methods under normal condition.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200
t/s

AF-Finite
AF-Fixed
AF-MFixed

∫ |
|F

||d
t (

N
.s)

(a)

0

5

10

15

20

25

0 50 100 150 200
t/s

AF-Finite
AF-Fixed
AF-MFixed

∫ |
|T

||(
N

.m
.s)

(b)

Figure 7: Comparison of the integration of control output of the three methods under normal condition.
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Figure 8: Tracking errors of AF-MFixed with actuator fault.
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Figure 9: Output of actuators under fault condition.
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energy consumption of control torque is not obvious
among the three compared with energy consumption of
control force.

5. Conclusions

In this paper, adaptive fuzzy modified Fixed-time fault-
tolerant control schemes on SE(3) for coupled spacecraft
were proposed to solve the attitude and position tracking

problem with external disturbances, model uncertainties,
and actuator faults simultaneously. From the comparative
analysis of the three control strategies, we can see that AF-
MFixed can achieve the control goals of fast convergence
and higher tracking accuracy; the settling time of the closed-
loop tacking system can be independent of the initial states.
&e integrated attitude and position modeling method based
on Lie group SE(3) is simple and can be applied to solve the
problem of 6-DOF in practical aerospace engineering. &e
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Figure 10: Comparison of the tracking error output norms of the three methods with actuator fault.
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Figure 11: Comparison of the integration of control output of the three methods with actuator fault.
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fuzzy adaptive control scheme can estimate the total dis-
turbances and fault information with high accuracy. &e
parameter tuning of the proposed algorithm is simple,
avoiding the tedious adjustment of too many parameters.
Moreover, the algorithm is suitable for both actuator failure
and normal condition, and the control performance under
fault condition will be slightly lower than that under normal
condition, which also shows that the robustness proposed in
this paper has a strong advantage, and it has potential en-
gineering application value. However, the practical problem
is that the actuator fault information is difficult to obtain in
real time. &e establishment of a fault observer for fault
diagnosis will be the work of the author in the future, and the
estimated fault information will be applied to the design of
fault-tolerant controllers. In addition, the next research
content of this paper will consider the influence of sensor
measurement noise and fault, and design a more robust
fault-tolerant controller.
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With the widespread application of machine learning (ML), data security has been a serious issue. To eliminate the conflict
between data privacy and computability, homomorphism is extensively researched due to its capacity of performing operations
over ciphertexts. Considering that the data provided by a single party are not always adequate to derive a competent model via
machine learning, we proposed a privacy-preserving training method for the neural network over multiple data providers.
Moreover, taking the trainer’s intellectual property into account, our scheme also achieved the goal of model parameter pro-
tection. +anks to the hardness of the conjugate search problem (CSP) and discrete logarithm problem (DLP), the confidentiality
of training data and system model can be reduced to well-studied security assumptions. In terms of efficiency, since all messages
are coded as low-dimensional matrices, the expansion rates with regard to storage and computation overheads are linear
compared to plaintext implementation without accuracy loss. In reality, our method can be transplanted to any machine learning
system involving multiple parties due to its capacity of fully homomorphic computation.

1. Introduction

With the continuous development of artificial intelligence,
data have become precious resources due to their value for
mining. Nevertheless, numerous private information is
embodied as data, which may be abused to violate personal
privacy, business secrets, or even state secrets. For example,
once a patient’s medical record is exposed to insurance
companies, they may never sell him some kind of medical
insurance [1]. Similarly, many other machine learning ap-
plications have also caught sight of privacy infringements,
such as financial analysis, product customization, and public
opinion surveillance [2–4]. On the other hand, any data-
driving mechanism heavily relies on the quantity and quality
of information, which brings about the conflict between data
usability and data confidentiality. Fortunately, secure mul-
tiparty computation (SMC) [5–7] and homomorphic en-
cryption (HE) [8, 9] provide us powerful tools to process

data in a concealed manner. +erefore, the remaining
problem to address is how to devise a cryptosystem that is
applicable for machine learning in consideration of storage
and computation overheads.

As a cryptographic technology orienting decentralized
systems, secure multiparty computation aims at data
confidentiality for distributed participants. Despite the
privacy concern, the involved parties can still figure out a
public output as they wish. Based on such cryptosystem,
F. Ö. Çatak et al. [10] proposed a privacy-preserving
learning protocol for classification in virtue of vertically
segmented data from multiple parties. Since the data is
just partially shared without concealing, semantic security
is unachievable as plain data dose. +e first provable
secure ML protocol of this kind is presented by R. Devin
et al. [11] for text classification. Howbeit, their research
only focused on the privacy of data classification and left
the learning process unaddressed.
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Oriented at centralized systems, homomorphic en-
cryption is another way towards secure machine learning,
which is capable of performing specific operations over
ciphertexts. Researches of applying FE for data privacy
during machine learning have developed rapidly since the
significant innovation [12] appeared in 2016. Y. Aono et al.
[13] combined the additive homomorphism with deep
learning to narrow the gap between system functionality and
data security, by applying FH technology to asynchronous
stochastic gradient descent algorithm. F. Bourse et al. [14]
improved the FHE structure of Chillotti et al. [15] and
proposed a homomorphic neural network evaluation
framework, namely, FHE-DiNN. Its complexity is strictly
linear in network depth, but the model parameters must be
proactively predefined. Based on a multikey variant of two
HE schemes [16, 17] with ciphertexts packed, H. Chen et al.
[18] provided a suite of interfaces for secure machine
learning which also exploited bootstrapping for arbitrary
circuit evaluation. As matter of fact, almost all existing FHE-
based machine learning algorithms are based on the alge-
braic structure of lattice, such as BGV [19–21], CKKS
[22–24], and NTRU [25–27]. +ese methods suffer from a
common defect that decryption may fail due to noise
growth.+ough bootstrapping can be deemed as an effective
tool for noise control, its extra computational burden is
hardly acceptable. Surprisingly, J. Li et al. [28] discovered an
alternative tool, saying Conjugate Search Problem, to ac-
tualize full homomorphism without noise interference.+ey
also applied such cryptosystem for privacy-preserving data
training, which achieved the same accuracy as the plaintexts
used for learning.

+ough more comprehensible and effective than lattice-
based secure machine learning, Li’s scheme can only be
applied to the scenario of a signal data provider. Ordinarily,
one party can always provide a small quantity of data which
may incur an overfitted model. To ensure the generalization
of machine learning, data from diverse sources should be
gathered for a specific learning task. In the circumstances of
multiparty secure machine learning, each data provider may
conceal their information by a dependent key. +erefore, a
training framework that operates over heterogeneous (i.e.,
encrypted by different keys) ciphertext is desiderated.
Conversely, the parameters of the system model should be
taken as assets held by the trainer as in general business
operation. +us, we should also make sure that the machine
is concealed, even when not thoroughly trained.

To preserve the privacy of all participants, this paper
presents a complete machine learning mechanism in virtue
of CSP and DLP hardness. Our contributions are summa-
rized as follows.

1.1. Contributions

(1) We coded float-type data as low-dimensional upper
triangular matrices that are homomorphic under the
operations of addition, subtraction, multiplication,
division, and comparison. With the help of CSP, the
plain matrices can also be projected to semantically
secure ciphertexts homomorphically under the same

kind of operations. +at is to say, our basic cryp-
tosystem is fully homomorphic, since addition and
multiplication are simultaneously implemented.
+erefore, we can realize secure training and clas-
sification/regression once private data are provided
under the same key.

(2) We constructed a cyclic group by lifting the plain
matrices to a Galois domain. +ereafter, key
switching (switch a ciphertext encrypted by one key
to another) is made possible via DLP for the purpose
of cooperative training.

(3) We combined the two aforementioned technologies
and devised a secure machine learning protocol
under semihonest model, which preserves the pri-
vacy of multiple data providers as well as that of the
trainer.

2. System Model

Neural network (NN) is employed as the engineering
background and verification model in this paper due to its
extensive application. Nevertheless, it is worth mentioning
that our scheme can be applied to most machine learning
algorithms if privacy is significant to multiple participants.

2.1. Neural Network Model. A typical neural network con-
tains three or more layers, which turns into a deep learning
model if hidden layers are multiple [29]. +e certain prin-
ciple of NN lies in the fact that numerous neurons can
automatically extract features of the inputs layer by layer.
Besides the topology of NN, the most important factors that
defined it are the weights and bias designated to each link
and neuron. As for learning, the essence is how to adjust
these parameters in virtue of training data via iterative
forward-/back-propagation. +ereafter, to securely imple-
ment a neural network model, we should homomorphically
evaluate the following functions.

Forward calculation (e.g., sigmoid):

ffw � sigmoid ai,wi + bi( , (1)

where ai and wi are the input and weight vectors
corresponding to the proactive links of neuron i, while
bi represents its bias.
Backward calculation:
Loss function (e.g., quadratic loss function):

fbw loss � L(Y|ft(X)) � 
n

tn − on( 
2
, (2)

where tn is the target value and on is the actual value.
Parameter adjusting (e.g., gradient descent):

fbw adj � oldwj,k − Δwj,k, (3)

Δwj,k � α · Ek · Ok 1 − Ok(  · O
T
j , (4)
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where Ek is the error vector between the target value and the
actual value, OT

j is the transpose of the output of the current
layer node, and Ok is the output of the node of the next layer.

2.2. System Model and Security Goal. In our system, a
powerful trainer expects to acquire a neural network whose
topology is predefined. To ensure the completeness of the
resultant model, they may request multiple parties for
training data. However, the data providers concern about
privacy leakage though they have strong wills to cooperate.
Meanwhile, the trainer also worries that the system pa-
rameters may expose and infringe their intellectual property.
+erefore, we should preserve the privacy of all participants
and guarantee the functionality of machine learning at the
same time. Moreover, taking the trained neural network as a
service, a user may not only desire to designate a classifi-
cation/regression task to the server but also be anxious about
data abuse.

2.3. Adversary Model. Suppose that the trainer and all data
providers are honest but curious during the whole process.
+at is to say, they will completely follow the protocol to
avoid unnecessary disputes but may be interested in the
privacy contained within the data. Furthermore, it is rea-
sonable to assume that both the trainer and data owner are
provided with PPT (probabilistic polynomial time) com-
putational power. However, since the trainer is always better
equipped than data providers, the hypothesis that they have
the accessibility to a quantum machine may also be valid. To
define the success of privacy violation, we exploit the
concept of symmetric IND-CPA (indistinguishability under
chosen-plaintext attack) as below.

2.4. Symmetric IND-CPA [30]. Define an experiment under
symmetric cryptosystem SE � (SE.KeyGen, SE.Enc,
SE.Dec) as

ExpCPAHE,A(κ):

k←HE.KeyGen(κ),

M0, M1( ←AHE.Enck(·)
(·), for M0


 � M1


,

c←R 0, 1{ }, C
∗

� HE.Dec Mc ,

c′ � A C
∗

( ,

Output 1, if c � c′, and 0 otherwise,

(5)

for any PPT adversary A that queries the oracle HE.Enck(·)

polynomial times. +us, the adversary’s advantage can be
expressed by

AdvCPAHE,A(κ) � Pr ExpCPAHE,A(λ) � 1  −
1
2




. (6)

+en the cryptosystem SE is IND-CPA-secure if
AdvCPAHE,A(κ)< ϵ(κ), where ϵ(κ) stands for a negligible
function in the security parameter κ.

3. Cryptographic Construction

Focusing on the security goals presented in the system
model, we are now ready to construct our cryptographic
building blocks. In this part, we first explore the ho-
momorphism of conjugate search problem to underpin
the functionality of training over homogeneous (i.e.,
encrypted by the same key) ciphertexts. +en, we present
a key switching technology that can convert a ciphertext
encrypted by one key to be decryptable by another.

Conjugate search problem is a special form of group
factorization problem (GFP) [31], defined as follows.

3.1. Conjugate Search Problem (CSP) [31]. Given
(C, M) ∈ Ψ × Ψ over a nonabelian algebraic structure Ψ, it
is intractable to solve H ∈ Ψ such that C � HMH− 1.

B. Evgeni [32] proved that the CSP is postquantum secure
over the general linear group GLd(R) (R means real number
field) if d≥ 4. Hence, to assure system security, we should code
the message as a matrix with degree larger than 4.

To protect the privacy of data providers without affecting
the accuracy of training, we resort to homomorphic encryption
that is capable of actualizing the forward-/backward-propa-
gation processes covertly. +ereafter, we devised a way that
makes CSP semantically secure and homomorphic. It is worth
noting that the conjugate search problem is resistant to
quantum attacks, which dispels the privacy concern for data
providers even if the trainer is extremely equipped.

A typical homomorphic encryption algorithm can be
noted as a tetrad
HE � (HE.KeyGen, HE.Enc, HE.Dec, HE.Eval), standing
for the functions of key generation, encryption, decryption,
and evaluation, respectively.

For any data m over the message space R, we first code it
as an upper triangular matrix M ∈ R6×6 as follows.

3.2. Encoding. Convert the message m into three pairs of
random numbers (a1, a2), (a3, a4), and (a5, a6), satisfying
a1 + a2 � m, a3 + a4 � a5 + a6 � r, and
(a2

3 − a2
4)(a2

5 − a2
6) � 1, where r is a constant random

number of the system. +us, we can construct the following
matrices:

M1 �
a1 a2

a2 a1
 ,

M2 �
a3 a4

a4 a3
 ,

M3 �
a5 a6

a6 a5
 .

(7)

Combining the above matrices, the message m is finally
coded as

M �

M1 R1 R2

0 M2 R3

0 0 M3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (8)
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where 0 represents the 2 × 2 all-zero matrix and
Ri(i � 1, 2, 3) stands for random matrices uniformly sam-
pled from R2×2.

For clarity, we denote the space of codedmessages as Γ. It
is interesting that Γ naturally constitutes a multiplicative
cyclic group (excluding the elements whose determinants
are zero) and R ∼ Γ (homomorphic). Furthermore, it is well
known that all square matrices with the same dimension
compose a ring. +ough Γ⊆R6×6 and its elements are
commutative for multiplication, there is an overwhelming
probability that a matrix P uniformly sampled from R6×6 is
noncommutative with the coded message M. +ereupon, a
CSP-based fully homomorphic encryption algorithm can be
actualized as below.

3.3. Key Generation. HE.KeyGen(1κ): uniformly sample a
matrix from R9×9, which can also be represented as a
combination of nine 6 × 6 random matrices, namely,

P �

P1 P2 P3

P4 P5 P6

P7 P8 P9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, forPi �

pi1 pi2

pi3 pi4
 , (i � 1, 2, . . . , 9).

(9)

+e probability that P is communitive with elements in Γ
should be negligible. +en, the algorithm takes k � P as the
symmetric key.

3.4. Encryption. HE.Enc(P, M): output

C � PMP− 1
� P

M1 R1 R2

0 M2 R3

0 0 M3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠P

− 1
(10)

as the ciphertext of message m (coded as a matrix M).

3.5. Decryption. HE.Dec(P, C): compute M � P− 1CP to
obtain

M1 �
a1 a2

a2 a1
 . (11)

+en, figure out m � a1 + a2 to recover the plaintext.

3.6. Evaluation. HE.Eval(f, C1, . . . , Cl): We describe the
very basic operations underpinning formulae (2)-(4) in
advance. Suppose that C1 and C2 are ciphertexts corre-
sponding to m1 and m2 under the same key; the additive and
multiplicative arithmetic can be simply carried out by Cadd �

C1 + C2 and Cmul � C1C2. +ese two operations can be
trivially assembled to realize the functions for backward
propagation. However, since the exponential operation
cannot be implemented directly via homomorphic addition
and multiplication, some activation functions of forward
propagation such as sigmoid should be approximated as the
form of polynomials. +ereby, we resort to a specific con-
version [32–34],

sigmod( x ) �

0.000734x
4

+ 0.014222x
3

+ 0.108706x
2
+

0.392773x + 0.571859,
−∞< x≤ − 1.5,

0.002083x
5

+ 0.020833x
3

+ 0.25x + 0.5, −1.5<x≤ 1.5,

−0.000734x
4

+ 0.014222x
3

− 0.108706x
2
+

0.3922773x + 0.428141,
1.5<x<∞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

to replace

sigmod(x) �
1

1 + e
− x. (13)

Noting that the aforementioned formula is expressed as a
piecewise function, to homomorphically decide which
subfunction should be carried out, we can encrypt the
numbers of −1.5 and 1.5 and compare them with x for
branching.

To program a piecewise function, J. Li et al. [28] pre-
sented a homomorphic algorithm that covertly compares the
size between two ciphertexts. +ough our scheme is similar
to that of [28], we argue that their cryptosystem is not se-
mantically secure because a2i−1 + a2i � m and a2i−1 is always
bigger than a2i for i � 1, 2, 3.

3.7. Security Analysis of [28]. By computing

det C
∗

− TC′  � det(P)det

M
∗
1 − tM1′ R

∗
1 R

∗
2

0 M
∗
2 − tM2′ R

∗
3

0 0 M
∗
2 + tM2′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠det P

− 1
 , (14)
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where R∗i is also a random matrix, for

T �

t R1 R2

0 t R3

0 0 t

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, (15)

where

t �
0 1

1 0
 , (16)

and Ri(i � 1, 2, 3) is uniformly sampled from R2×2, the
adversary carries out a chosen-plaintext attack such as the
following.

ExpCPAHE,A(κ): ,
k←HE.KeyGen(κ),
(M0, M1, C′)←AHE.Enck(·)(·),,
for |M0| � |M1|,C′ �HE.Enck(M′), andM0<M′ <M1,
c←R 0, 1{ }, C∗ � HE.Dec(Mc),
c′ � 1 if det(C∗ − TC′), and c′ � 0 otherwise,
Output 1, if c � c′, and 0 otherwise.
Considering that

det C
∗

− TC′(  � det(P)det M
∗
1 − tM1′( det M

∗
2 − tM2′( 

det M
∗
3 − tM3′( det P

− 1
 , (i � 1, 2, 3),

(17)

where

det M
∗
i − tMi
′(  � a

∗
2i−1 − a2i

′( 
2

− a
∗
2i − a2i−1′( 

2
,

� m
∗

− m′  ( a
∗
2i−1 − a

∗
2i )t + n a2i−1′ − a2i

′( ( ,

(18)

since a2i−1 > a2i is guaranteed throughout Li’s scheme [28],
(( a∗2i−1 − a∗2i )t + n( qa2i−1′h −a 2i′) must be positive. It is
obvious that det(P)det(P− 1) � 1; hence, the adversary can
easily determine whether m∗ � m0 or m∗ � m1 by checking
the sign of det(C∗ − TC′). +at is to say,

AdvCPAHE,A(κ) � Pr ExpCPAHE,A(κ) � 1  −
1
2




� 1. (19)

It seems that the conflict between piecewise function
evaluation and IND-CPA security is infeasible to address.
However, we can introduce a specific form of ciphertext
which can be used to encrypt a designated number and
compare it with any other normal ciphertext. Our con-
struction is given below.

+e data provider randomly chooses a nonzero number
k ∈ R − 0{ } and encrypts m′ as

C′ � PM′P
− 1

� P

kM1′ R1 R2

0 kM2′ R3

0 0 kM3′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠P

− 1
, (20)

for

Mi
′ �

ai1′ ai2′

ai3′ ai4′
 , (i � 1, 2, 3), (21)

which satisfies

ai1′ + ai4′ � k≠ 0, i � 1, 2, 3,

ai2′ + ai3′ � −k≠ 0, i � 1, 2, 3,

ai1′ai4′ − ai2′ai3′ � m′, i � 1,

ai1′ai4′ − ai2′ai3′ � r, i � 2, 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

To compare C′ with general cipher C∗ without de-
cryption, the evaluator computes

Δ �
det C

∗
C′( 

det C′( 
− det C

∗
− C′(  � k

2
m
∗

− m′(  (23)

and thus achieves

Ccomp �

m
∗ >m′ if Δ> 0,

m
∗ >m′ if Δ � 0,

m
∗ >m′ if Δ< 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

3.8. Correctness. +e correctness of encryption and de-
cryption algorithms is straightforward, so we only focus on
the homomorphism of evaluation.

Homomorphic addition: since

Cadd � C1 + C2,

� P
− 1

M11 R11 R12

0 M12 R13

0 0 M13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P + P

− 1

M21 R21 R22

0 M22 R23

0 0 M23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P,

� P
− 1

M11 + M21 R11 + R21 R12 + R22

0 M12 + M22 R13 + R23

0 0 M13 + M23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P,

(25)

we can decrypt it as

Madd � P C1 + C2( P
− 1

,

�

M11 + M21 R11 + R21 R12 + R22

0 M12 + M22 R13 + R23

0 0 M13 + M23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

because

M11 + M21 �
a11 + a21 a12 + a22

a12 + a22 a11 + a21
 . (27)

+e addition of m1 and m2 can be decoded as

madd � a11 + a21 + a12 + a22 � m1 + m2. (28)

Homomorphic multiplication: because
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Cmul � C1C2,

� P
− 1

M11 R11 R12

0 M12 R13

0 0 M13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M21 R21 R22

0 M22 R23

0 0 M23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠P ,

� P
− 1

M11M21 R
∗
1 R

∗
2

0 M12M22 R
∗
3

0 0 M13M23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠P,

M11M21 �
a11a21 + a12a22 a11a22 + a12a21

a12a21 + a11a22 a12a22 + a11a21
 ,

(29)

we can deduce that

a11a21 + a12a22(  + a11a22 + a12a21(  � a11 + a12(  a21 + a22(  � m1m2.

(30)

Homomorphic comparison: on the premise of
det(P)det(P− 1) � 1, it can be seen that

Δ �
det C

∗
C′ 

det(C′)
− det C

∗
− C′ ,

�
det M

∗
M′ 

det(M′)
− det M

∗
− M′ a,

� 
3

i�1

det M
∗
i kMi
′( 

det kMi
′( 

− 
3

i�1
det M

∗
i − kMi

′( .

(31)

According to formula (21), we have

det M
∗
i kMi
′( 

det kMi
′( 

� a
∗
2i−12 − a

∗
2i2,

det M
∗
i − Mi
′(  � a

∗
2i−12 − a

∗
2i2(  − k

22i

a
∗
2i−1 + a

∗
2i − det Mi

′( ( , i � 1, 2, 3.

(32)

Recall that a∗2i−1 + a∗2i � m∗ and ai1′ai4′ − ai2′ai3′ � m′when
i � 1, while a∗2i−1 + a∗2i � ai1′ai4′ − ai2′ai3′ � r when i � 2, 3. In
terms of the condition that (a2

3 − a2
4)(a2

5 − a2
6) � 1, we can

reduce formula (30) to

Δ � k
2

m
∗

− m′ . (33)

It is obvious that the signs of Δ and m∗ − m′ are exactly
the same, since k2 > 0, which determines the relationship
between m∗ and m′ without decryption.

3.9. Security. +anks to the hardness of Conjugate Search
Problem, an adversary must find P such that P− 1CP � M to
recover the plaintext. As for the semantic security of our
scheme, it can be seen that (( a∗2i−1 − a∗2i) + (a2i−1′ − a2i

′) ) in
formula (17) is not always positive due to arbitrary

relationship between a2i−1 and a2i. +erefore, when an ad-
versary executes a chosen-plaintext attack as mentioned
before, their advantage is negligible. Noting that any normal
ciphertext can just be compared with specifically encrypted
messages without decryption, the data provider has full
control over their privacy and permits exact comparisons
only if necessary.

After each training, the neural network coefficients are
concealed by the key of the data provider. When multiple
data providers take part in the training process, those
semimanufactured parameters should also be re-encrypted
under the key of subsequent data holder for homomorphic
computation.+erefore, we devised a way to decrypt and re-
encrypt the machine coefficients without exposing them to
data providers, in consideration of the trainer’s property
right. Our key switching scheme is based on the hardness of
Discrete Logarithm Problem (DLP).

3.10. Discrete Logarithm Problem. Given a cyclic group G, a
generator g ∈ G, and a random element h ∈ G, it is difficult
to find the discrete logarithm a such that ga � h.

Accordingly, if an adversary has obtained a ciphertext
y � hb � gab ∈ G, it is hard for them to recover h because of
the confidentiality on ab [35]. However, in light of the
Lagrange theorem [36], we can exploit a trapdoor to reverse
y back to h.

3.11. Lagrange=eorem. Denote H as a subgroup of finite G;
then, |H|||G|, for |H| and |G| are the orders of groups H and
G.

Since any h ∈ G generates a subgroup H⊆G via
H � ha|a ∈ Z{ }, we can conclude that h|G| � e in terms of the
Lagrange theorem, where e is the identity of group G.

Based on the aforementioned mathematical tools, we are
now ready to construct our key switching scheme as a triad
KS � (KS.KeyGen, KS.CSPtoDLP, KS.DLPtoCSP). With-
out loss of generality, we denote kt � (b, s), kA � PA, and
kB � PB as secret keys belonging to the trainer T and two
data providers A and B, respectively. +en KS.KeyGen can
be used to generate the encryption/decryption key pair for
the trainer, while KS.CSPtoDLP is used to convert a ci-
phertext CA encrypted by kA to be decryptable by kt and
KS.CSPtoDLP is utilized to modify Ct (encrypted under kt)
as CB whose corresponding key is kB.

3.12. Key Generation. KS.KeyGen(1κ): as mentioned before,
we denote the space of codedmessages as Γ. Suppose that the
precision of matrix elements in HE is l-bits whose integer
part is m-bits and the decimal part is n-bits. We can multiply
any coded plaintext M by 2n to lift it over Z6×6

2l . Accordingly,
the message space is changed to a cyclic group Γ′ for
|Γ′| � 212l(2l − 1)3. Moreover, for each 2nMi, it composes a
group Γi′ satisfying |Γi′| � 2l − 1. +ereby, we uniformly
sample an odd number b ∈ Z2l−1 and compute s ∈ Z2l−1 such
that s · b � 1mod (2l − 1). Output kt � (b, s) as the key to
the trainer.
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3.13. Switching CA to Ct KS.CSPtoDLP(CA). +e trainer T

changes the encrypted model parameters CA as
CA
′ � 2nCAmod 2l ∈ Z6×6

2l and sends CAt � (CA
′)bmod 2l to

data provider A. On receiving CAt, A computes
Ct � P−1

A CAtPA mod 2l as their response.

3.14. SwitchingCt toCB KS.DLPtoCSP(Ct). On receiving Ct

from the trainer T, the data provider B computes their
response as CtB � PBCtP

−1
B mod 2l. +erefore, the trainer T

can reverse CtB back to a ciphertext CB � PBMP−1
B purely

encrypted under kB via CB
′ � (CtB)smod 2l and then right-

shift its elements by n-bits.

3.15. Correctness. Since CA
′ � PA(2nM)P−1

A mod 2l, we have

CAt � PA 2n
M( P

−1
A PA 2n

M( P
−1
A , . . . , PA 2n

M( P
−1
A√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

b times

� PA 2n
M( 

b
P

−1
A mod 2l

.

(34)

+us, Ct � P−1
A PA(2nM)bP−1

A PA � (2nM)bmod 2l.
Similarly, because CtB � PB(2nM)bP−1

B mod 2l,

CB
′ � PB 2n

M( 
b·s

P
−1
B mod 2l

,

� PB

2n
M1( 

1+k1 2l− 1( ) R
∗
1 R

∗
2

0 2n
M2( 

1+k3 2l− 1( ) R
∗
3

0 0 2n
M3( 

1+k3 2l− 1( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P

−1
B ,

(35)

where ki are integers for i � 1, 2, 3.
During the encoding process in HE, it is easy to choose

a2i−1 such that 2na2i−1 ≠ 0mod 2l. Considering that a1 + a2 �

m and a2i−1 + a2i � r for i � 1, 2, the space of 2nMi must be a
cyclic group Γi′ for |Γi′| � 2l − 1. According to the Lagrange
+eorem, it can be seen that (2nMi)

1+ki(2l− 1) � 2nMimod 2l;
thus CB

′ � PB(2nM)P−1
B mod 2l. By right-shifting n -bits on

CB
′, we obtain CB � PBMP−1

B .

3.16. Security. Note that, after receiving CAt, the trainer can
trivially compute M � (Cs

t mod 2l)/2n to recover the mes-
sage. Nevertheless, since the model parameters are of their
intellectual property, such operation does not conflict with
our security goal.

As for data providers, they can just witness an expo-
nential form of the plaintext (i.e., Ct � (2nM)b mod 2l).
According to the hardness of DLP, the information about
message M will not be exposed.

4. Privacy-Preserving Machine Learning with
Multiple Data Providers

To preserve privacy for machine learning, many crypto-
graphic training and classification/regression methods have
been proposed in the scene of a single data provider. In most
cases, data should be sourced from multiple providers to
guarantee the generality of training. +erefore, we present a

secure machine learning mechanism with the capacity of
training as well as classification/regression in consideration
of data and parameter privacy.

As for training, the cloud is supposed to obtain model
parameters with the help of labeled data. During the ini-
tialization phase, the trainer T computes
kt←KS.KeyGen(1κ) for key switching and each data pro-
vider i generates ki←HE.KeyGen(1κ) for homomorphic
training.

Denote the encoded training data owned by provider i as
Mi and the system parameters as Mt. +e server primarily
encrypts the initialized system coefficients (may contain
some private intellectual property information) as
Ct � (2nMt)

bmod2l to the first data provider who executes
C1←HE.Enc(k1, M1) and C1←KS.DLPtoCSP(Ct) as their
response. On encrypted data C1 and C1 corresponding to the
same key k1, the cloud can thus achieve
C1←HE.Eval(ftraining,

C1) which are updated system pa-
rameters decryptable by k1.

For clarity, we describe the above processes as shown in
Table 1.

Note that KS.DLPtoCSP(·) is a protocol that should be
carried out by both the data provider and the cloud.

To make the updated coefficients homomorphically
computable with data encrypted by the following providers,
we can exploit the key switching scheme to re-encrypt it.
Without loss of generality, the updated parameters under
key ki will be represented as Ci. By means of
Ct←KS.CSPtoDLP(Ci) and Ci+1←KS.DLPtoCSP(Ct), the
cloud can obtain the re-encrypted coefficients Ci+1 with the
help of successive providers. After receiving Ci+1 from the
next provider, they can compute
Ci+1←HE.Eval(ftraining, Ci+1,

Ci+1) since both ciphertexts are
encrypted by ki+1. In consideration of the final parameters
CN, the cloud needs to execute Ct←KS.CSPtoDLP(CN) with
the last provider and then computes M � (Cs

t mod 2l)/2n to
restore the plain parameters.

+e subsequent training and recovering processes are
presented in Table 2.

+e classification/regression process is straightforward
that, on encrypted data Cu←HE.Enc(ku, Mu) and system
parameters Cu←KS.DLPtoCSP(Ct) for
Ct � (2nMt)

b mod 2l, the cloud can homomorphically
compute Cu←HE.Eval(fcla/reg, Cu, Cu). By decrypting the
received Cu, the user obtains the classification/regression
result such that Mcla/reg←HE.Dec(ku, Cu). +is process can
be found in Table 3.

5. Experiment Analysis

We drew support from the power load data of Chongqing
Tongnan Electric Power Co., Ltd., dating fromMay 4 to May
10 in 2015, to verify the effectiveness of our training method.
A short-term electrical load prediction model is also testified
in virtue of 96 historical data pieces sampled during 4
consecutive days. +e original machine learning model is
exactly the same as that of [29], which has considered
nothing about privacy. Our experiment environment is
shown in Table 4.
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To simulate the scenario of multiparty machine learning,
we divide the data into three parts and realize the training
process corresponding to 3 different keys in HE. To prove
that our method is not harmful to the accuracy of the trained
network, as is shown in Figure 1, we compared the pre-
diction result directly achieved via original model (without
privacy-preserving) with that of ours (privacy-preserving
scheme). Figure 1 illustrates that the two results are com-
pletely consistent.

+e experimental results are shown in Table 5; our
scheme can perform encryption training and prediction for
multiple data providers in general machine learning. As for

the efficiency of training and prediction, our scheme is 73578
and 12000 times slower than its plain version. Nevertheless,
since the server is always powerful on computational ca-
pacity and the data providers only have to carry out trivial
multiplications over R6×6, our scheme is practical in cloud
environments. Moreover, if the accuracy is tolerable, we can
shorten the ciphertext to make it more efficient.

In terms of communication overheads, encrypted data
for training or prediction are 18 times larger than plain
messages. In each iteration, the cloud should also exchange
the ciphertexts of system parameters with two successive
data providers, which are also 18 times of original

Table 4: Experiment environment.

CPU OS RAM (GB) Programming language
i5-10210U 1.60GHz Win10 64-bit 16 Python

Table 1: Initialization and first training.

Key generation
Data providers Cloud
ki←HE.KeyGen(1κ) kt←KS.KeyGen(1κ)

First training
Data provider 1 Cloud
Receives Ct ⇐ Ct � (2nMt)

b mod 2l

C1←KS.DLPtoCSP(Ct) ⇒ Receives C1
C1←HE.Enc(k1, M1) ⇒ Receives C1

C1←HE.Eval(ftraining, C1,
C1)

Table 3: Classification and regression.

Classification/regression
User u Cloud
Receives Ct ⇐ Ct � (2nMt)

b mod 2l

Cu←KS.DLPtoCSP(Ct) ⇒ Receives Cu

Cu←HE.Enc(ku, Mu) ⇒ Receives Cu

Receives Cu ⇐ Cu←HE.Eval(fcla/reg, Cu, Cu)

Mcla/reg←HE.Dec(ku, Cu)

Table 2: Subsequent training and recovering.

Subsequent training
Data providers i Cloud
Receives Ci ⇐ Ci

Ct←KS.CSPtoDLP(Ci) ⇒ Receives Ct

Data providers i + 1 Cloud
Receives Ct ⇐ Ct
Ci+1←KS.DLPtoCSP(Ct), ⇒ Receives Ci+1
Ci+1←HE.Enc(ki+1, Mi+1) ⇒ Receives Ci+1

Ci+1←HE.Eval(ftraining, Ci+1,
Ci+1)

Recovering
Data provider N Cloud
Receives CN ⇐ CN

Ct←KS.CSPtoDLP(CN) ⇒ Receives Ct

Mt←(Cs
t mod 2l)/2n
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coefficients. Considering that the expansion rate is not big
and system parameters are quite limited, the communication
burden causes just little performance degradation.

6. Conclusions

We presented a privacy-preserving machine learning
method that works over multiple data providers in this
paper. +anks to the hardness of the conjugate search
problem, data can be homomorphically processed for
training or classification/regression under the same key. It is
worth mentioning that we solved the intrinsic conflict be-
tween IND-CPA security and homomorphic comparision
(without decryption), by specifically encoding the data
which is allowed to be compared. To support training among
multiple data providers, a key switching technology is also
proposed based on the difficulty of the discrete logarithm
problem and Lagrange theorem, which evaded the necessity
of multikey homomorphic computation. Experiment illus-
trated that the accuracy of machine learning cannot be
affected by the privacy capability of our scheme. +e ex-
pansion rate of computation/communication complexity is
small enough, which makes the scheme practical in cloud
environments.

Data Availability

Our dataset comes from Chongqing Tongnan Electric Power
Co., Ltd. (telephone: 023-44559308; official website: http://
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Reliability assessment is of great significance in ensuring the safety and reducing maintenance cost of equipment. (e traditional
statistical method is widely used to estimate the reliability of mass equipment; however, it cannot efficiently predict the overall
reliability of single or small batch equipment due to lack of failure data.(is paper introduced the operational reliability concept to
describe the running condition of single or small batch equipment and proposed a method based on the combination of Relevance
Vector Machines (RVMs) and Principal Component Analysis (PCA) to evaluate the operational reliability. Some representative
characteristic indexes of operating equipment were firstly selected, and PCA was applied to obtain a hybrid index of the
equipment’s running condition. (en, a RVM prediction model was trained to predict the development of the hybrid index and
corresponding probability density function (PDF). Based on this, the operational reliability of the equipment was calculated by the
interval integral defined by the failure threshold and the predicted value of the hybrid index.(e approach was validated using the
experimental test conducted on the aero-engine rotor bearings.(e results show a good agreement in the evaluations of the failure
time between the proposed method and the experimental test.

1. Introduction

Reliability assessment is of great significance in ensuring the
safety and reducing maintenance cost of equipment. In
general, the reliability of equipment includes overall reli-
ability and operational reliability. (e former is obtained by
statistical analysis of a large number of equipment failure
data [1], and it reflects the overall reliability of the equipment
throughout the lifetime. (e latter is obtained from the
performance degradation information of the equipment,
and it reflects the real time reliability of the equipment [2]. In
engineering field, single or small batch equipment is widely
used, and failure data are very scarce in this case, so the
traditional statistical method is not suitable for the reliability
evaluation of this type of mechanical equipment, such as
high precision NC machine tools, nuclear power facilities,
aircraft [3–5], and so on. In contrast, the operational reli-
ability is more of practical significance to ensure the safety of
this type of equipment because it can be obtained in real time

when the condition monitoring data are sampled
continuously.

(e operational reliability of the equipment is evaluated
based on the performance degradation information, which is
normally extracted from the monitoring data of the
equipment [6]. (e operating condition information ob-
tained from the monitoring data is supposed to effectively
reflect the evolution process of the dynamic operating
characteristics of the equipment. In general, the equipment
is considered to be failed or unreliable when some of its
important performance parameters (such as vibration, noise,
and so on) gradually reduced to the critical threshold [7, 8];
therefore, the relationship between performance parameters
and operational reliability can be established.

(ere are three basic steps in evaluating the operational
reliability of the equipment based on the performance
degradation information. First, the characteristic index
which reflects the operating condition is selected, and then
the operational reliability calculation model based on the
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characteristic index is established. (ird, the reliability of
the equipment is predicted based on various prediction
algorithms, such as artificial neural network [9], Support
Vector Machines (SVMs) [10], Relevance Vector Machines
(RVMs) [11], and so on. For the problem of characteristic
index selection, the most related characteristic index to the
health of the equipment is usually selected. For example,
Casandra et al. [12] chosen the kurtosis as the bearing status
indicators to evaluate the reliability of aero-engine rotor
bearings. Shaban et al. [13] selected wear amount of tool as
the performance degradation characteristic of cutting tools.
Zi et al. [14] used the radial runout of the spindle end as the
characteristic index of the electric spindle performance
degradation. Li et al. [15] selected the waveform index of
bearing vibration signal and used the energy obtained from
wavelet packet decomposition as the degradation index of
bearings to establish the reliability model. In the above
references, only single characteristic index is used in op-
erational reliability evaluation; this may result in the lack of
robustness of the assessment method. Several references
show that the reliability estimation accuracy can be im-
proved by using multiple characteristic parameters.
Widodo and Yang [11] introduced multiple parameters in
reliability evaluation of aero-engine rotor bearings by using
the Principal Component Analysis (PCA) method to fuse
peak, kurtosis, and entropy to a hybrid index. Zheng et al.
[16] also employed PCA to combine 10 variables, such as
power system equipment availability coefficient, power
supply reliability rate, capacity-to-load ratio, and so on, to
estimate the reliability of the power supply system, and the
reliability prediction accuracy was proved to be improved
by adopting the hybrid index.

After selection of the characteristic index, the opera-
tional reliability can be obtained by several methods. One
widely used method is to calculate the interval integral of the
probability density function (PDF) of the selected index
between the failure threshold and the observed value of the
index [9]. In this method, the model of PDF of the selected
index should be assumed and estimated firstly. Wang and
Dragomir-Daescu [17] assumed that the PDF of wear data of
the bearing in induction generators is a two-parameter
Weibull distribution. Zi et al. [14] compared normal dis-
tribution, the logarithmic distribution, and the Weibull
distribution in estimation the operational reliability of the
spindle. Schömig and Infineon [18] obtained the fault data
through simulation experiments and compared the accuracy
of the reliability evaluation when the fault data obey the
gamma distribution, exponential distribution, and Weibull
distribution. (e results show that the Weibull distribution
is the best distribution in evaluation the operational reli-
ability of semiconductor manufacturing equipment. It is
easy to know that the accurate evaluation of PDF of the
selected index is a critical issue in operational reliability
estimation; however, the estimation accuracy of PDF is
highly dependent on the number of samples.

Another commonly used method of operational reli-
ability assessment is the K-M evaluator, in which the con-
tinued product of the ratio between the number of normal
samples and the total number of samples is taken as the

operational reliability of the equipment [19]. (e main
advantage of the K-M evaluator is that its computation
process does not involve the estimation of PDF of samples,
and the evaluation of operational reliability of equipment is
simplified. Heng et al. [9] took the difference between the
suspended data and CM (condition monitoring) data into
consideration and combined the K-M and PDF methods to
calculate the reliability of centrifugal pumps. He et al. [20]
used the K-M estimator and the proportional hazards model
to estimate the reliability of the engine exhaust valve based
on mean air pressure, maximum coolant temperature,
maximum fuel temperature, and other indexes. Fang et al.
[21] used the K-M estimator to evaluate the reliability of the
CNC honing hydraulic system based on pump output flow
value. Based on tools wear amount, Chen et al. [22] esti-
mated the reliability of CNC machine tools by combining
Bayes and K-M estimators. However, the accuracy of the
K-M evaluator still depends on the number of observed
failure samples, so it is also limited in applying in the single
or small batch equipment.

In order to overcome the shortcomings of the tradi-
tional reliability evaluation methods, the RVM and PCA
methods are introduced in this paper to develop a new
evaluation method of the operational reliability for single
or small patch equipment. RVM is a Bayesian-based ma-
chine learning method proposed by Tipping [23]; it is often
adopted as a predictor in reliability prediction. For ex-
ample, it is used in bearing reliability prediction [11],
battery reliability prediction [24], and software reliability
prediction [25]. In fact, RVM can also estimate the pos-
terior probability of the predicted object at each prediction
step. If it is applied to predict the characteristic index of
equipment, the value of the characteristic index as well as
its PDF can be obtained simultaneously. Based on the
predicted PDF and the preset failure threshold, the oper-
ational reliability of the equipment can be obtained. At the
same time, the PCA method is used to combine several
characteristic indexes into one hybrid index to increase the
robustness and the accuracy of the operational reliability
prediction. (e steps of method include the following.
First, some representative characteristic indexes of running
equipment are selected, and PCA is applied to these indexes
to get the hybrid index. (en, the series of the hybrid index
of long-term monitoring is used to train a single-step
prediction RVMmodel to predict the value and probability
density function (PDF) of the next step. (ird, the oper-
ational reliability of the equipment is calculated by the
interval integral defined by the failure threshold and the
predicted value of the hybrid index.

In this method, only the performance degradation in-
formation of the object equipment is required, and there is
no any other information from the same type equipment
used, so the method is suitable for the reliability estimation
problem of single equipment. (e rest of the paper is or-
ganized as follows. Section 2 discusses RVM, PCA, and
operational reliability calculation model and presents the
framework of the methodology. Section 3 describes vali-
dation experiments, and Section 4 shows the results and
discussion. Section 5 gives the conclusions.
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2. Theoretical Method

2.1. RVM Regression Model. Regression problem is defined
as follows. Given an input xi (i� 1,2,. . ., N), by using the
regression model, we can get its output ti(i� 1,2,. . ., N), that
is, a set of sample set xi, ti 

N
i�1 satisfies the following

relationship:

ti � y xi,ω(  + εi, (1)

where εi is the prediction noise of xi and is assumed to be
zero-mean Gaussian distribution with variance σ2. More-
over, y(xi, ω) can be expressed [26] as follows:

y xi,ω(  � 
N

i�1
ωiK x, xi(  + ω0, (2)

where ωi is an adjustable weight, ω0 is bias, and K(x, xi) is the
corresponding kernel function; it is used to map the inputs xi
from nonlinear space to high dimensional space and per-
form the linear regression in this space. (e likelihood
function of the training sample set is as follows:

p t|ω, σ2  � 2πσ2 
− (N/2)

exp −
1
2σ2

‖t − Φω‖
2

 , (3)

where Φ � [ϕ(x1), ϕ(x2), ..., ϕ(xN)]T is the N× (N+1) de-
sign matrix with ϕ(xi) � [1, K(xi, x1), K(xi, x2), ..., K(xi,

xN)]T, xi, i� 1, 2, . . ., N. In order to avoid the problem of

over-learning, hyperparameter αi is introduced to each
weight coefficient ωi.

Supposing ωi obeys a zero-mean Gaussian with variance
α− 1, then we can get the following:

p(ω|α) � 

N

i�0
N ωi|0, α− 1

i . (4)

According to the Bayesian formula, we can get the
posterior distribution function of the weight ω with the
likelihood function equation (3) and a priori distribution
function equation (4). (at is,

p ω|t, α, σ2  �
p t|ω, σ2 p(ω|α)

p t|α, σ2 
� N(ω|μ, ), (5)

where the posterior covariance andmean are, respectively, as
follows:

Σ � σ − 2ΦTΦ + A 
− 1

,

μ � σ − 2
ΦTt.

(6)

In equation (6), A � diag(α1, α2, ..., αN). (e optimized
hyperparameters αMP and σMP can be obtained by maxi-
mizing the marginal likelihood function p(t|α, σ2) with
respect to α and σ [11]:

max
αMP,σMP

p t|α, σ2  �  p t|ω, σ2 p(ω|α)dω � (2π)
− (N/2) σ2Ι + ΦA− 1ΦT




− (1/2)

exp −
1
2
t
T σ2Ι + ΦA− 1ΦT
 

− 1
t . (7)

Given a new input value x∗, the target output is as
follows:

p t∗|x∗, αMP, σ2MP  �  p t∗|ω, σ2MP p ω|t, αMP, σ2MP dω.

(8)

which can be easily computed since both integrated terms
obeys Gaussian distribution, that is,

p t∗|x∗, αMP, σ2MP  � N t∗|y∗, σ
2
∗ , (9)

where the mean and variance are, respectively, as follows:

y∗ � μTϕ x∗( ,

σ2∗ � σ2MP + ϕ x∗( 
T

Φ x∗( .
(10)

(erefore, the RVM learning method based on the
Bayesian framework can be used to predict the probability
and obtain the forecast value and its probability distribution.
If the input and output data are from a time series (for
example, precipitation data), RVM can be used to predict the
future value of the time series.

2.2. Operational Reliability Calculation Model. (e tradi-
tional reliability theory can only provide the overall reli-
ability assessment for mass equipment, but in engineering
field, single or small batch equipment is widely used and
failure data are very scarce in this case; people are more
concerned about the reliability of the particular equipment
in operation. To solve the reliability evaluation problem of
single or small batch equipment, Heng et al. [9] proposed an
operational reliability model based on the equipment run-
ning characteristic index, and the model is described as
follows.

Let Yi(t) be the value of the condition characteristic
index for equipment i at operating age t, and
Y(t) � [Y1(t), Y2(t), ..., Ym(t)]T containing the condition
values from all of the m historical equipment in interval t,
and Ythresh be the threshold of the characteristic index; if
Yi(t)>Ythresh, the equipment is considered to be failed.
f(Y|t) is the corresponding PDF of Y(t); the overall reli-
ability at time t is defined as follows:

R(t) � P Y(t)<Ythresh(  � 
Ythresh

0
f(Y|t)dY. (11)
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(e operational reliability of equipment i at time t+ kΔt
is defined as follows:

Ri(t + kΔt) � 
k

j�1

P ythresh >Yi(t + jΔ)≥yi,t+jΔ|ythresh >Yi(t +(j − 1)Δ)≥yi,t+(j− 1)Δ, ... 

P Yi(t + jΔ)≥yi,t+jΔ|ythresh >Yi(t +(j − 1)Δ)≥yi,t+(j− 1)Δ, ... 
� 

k

j�1


ythresh

yi,t+jΔ
f(y|t + jΔ)dy


∞
yi,t+jΔ

f(y|t + jΔ)dy
, (12)

where 
ythresh

yi,t+jΔ
f(y|t + jΔ)dy is the integral of the PDF be-

tween the observed degradation index of device i and the
threshold and

∞
yi,t+jΔ

f(y|t + jΔ)dy is the integral of the PDF
over all possible values equal to or higher than the observed
degradation index of device i.

In summary, if the value of the characteristic index and
the corresponding PDF can be obtained, the operational
reliability of equipment can be calculated by equation (12).

2.3. PCA. In the process of reliability analysis, several vi-
bration characteristics of the equipment can be obtained
simultaneously. It will be too complicated to evaluate the
reliability if we choose all of them. To improve the stability of
reliability estimation, an intuitive approach is to fuse all
characteristics to conduct the reliability analysis [27]. In this
paper, the PCA method is adopted to fulfill this requirement.
PCA is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated
variables called principal components. If the vibration
characteristics have similar trends with respect to time, the
first principal component will contain the most information
of all characteristics and can be used as the reliability index.

(e principal component analysis method is obtained by
projecting the original vector as a new coordinate space
consisting of the eigenvectors of the covariance matrix of the
original variables [28, 29]. For a given vibration charac-
teristic vector set of m features X � x1, · · · , xm , xi ∈ Rn

which consists of feature vectors, the covariance matrix C is
given as equation (13), in which µ is mean value of xi:

C �
1
m



m

i�1
xi − μ(  xi − μ( 

T
. (13)

(en, the eigenvalues λi(i� 1, 2, . . ., n) and corre-
sponding eigenvectors vi(i� 1, 2, . . ., n) of C are given as
follows:

C]i � λi]i. (14)

Sort the eigenvalues in decreasing order λ1≥ λ2≥,. . .,
≥λn, and composite the first k eigenvalues Δ�(λ1,λ2,. . ., λk)
and the corresponding eigenvectors V�(v1,v2,. . ., vk) and
then transform the original data X onto the new subspace V
and get the transformed data Y:

Y � VTX. (15)

(e number of principle component is selected
depending on the cumulative contribution Rk, which is
usually set more than 85%–90%:

Rk �


k
i�1 λi


n
i�1 λi

. (16)

2.4. Operational Reliability Prediction Methodology. As de-
scribed above, the method employs performance degrada-
tion data of equipment which are obtained from the
continuously monitoring of equipment’s running condition.
Some representative characteristic indexes of equipment,
which can describe the degradation process of equipment
from normal to failure, are selected. PCA is applied to deal
with these characteristic indexes to obtain the hybrid index.
(e RVM regression model is then trained to obtain the
hybrid index. Based on the RVM regression method, the
posterior distribution function and the predicted value of the
characteristic index in different time can be obtained. Fi-
nally, the operational reliability can be calculated by the
mentioned operational reliability calculation model (Section
2.2). (e total process is illustrated in Figure 1.

3. Experimental Investigation

(e data of fatigue life experiments of aero-engine rotor
bearings [30] are adopted to validate the proposed method.
In experiments, four bearings were installed on a shaft. (e
rotation speed was kept constant at 2000 rpm, radial load of
6000 lbs is applied onto the shaft, and all bearings were force
lubricated. (ree different types failure are tested. (e first
failure type is inner ring failure; it comes from the 3# bearing
(it is named A bearing in the paper). (e second failure type
is composite failure of outer ring and rolling element; it
comes from the of 4# bearing (named B bearing), and the
third failure is outer ring spalling of 1# bearing (named C
bearing). (e data were collected every 20 minutes, and the
sampling frequency is 12 kHz in each measurement cycle.
(emeasurement time is 43000 minutes, and the data length
is 2150 points. It means that the measurement time is 20
times the measurement points.(e selected data in the paper
come from reference [30], but they do not include the one of
the first 5 days considering the instability of the previous
data.

Several time-domain characteristic indexes of bearing A
are shown in Figure 2. From RMS and waveform curves, it
can be observed that at the beginning of experiments, the
curves keep stable (the small change at the very beginning is
considered to be caused by the instability of the running
stage), and the main fluctuations are happened near to 1800
measurement points that means the early failure is happed in
the bearing. (is trend can also be found in kurtosis and
peak index. While for mean value, it can be observed that its
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value decreases with the running of experiment and is not
sensitive to the failure. (e skewness index oscillates sharply
when the early failure happens, which does not conform to
our expectation of continuous increase or continuous re-
duction of the selected index in operational reliability
evaluation.

From Figure 2, it is also can be found that different
characteristic indexes have different sensitivity to the failure.
(ough the RMS index and waveform index rise sharply

with the increase in the severity of the failure, the changes on
the trend of the curves caused by early failure are relatively
small compared with the peak index and kurtosis index. As
for the kurtosis index, it increases at the early stage of failure,
while decreases with the development of the failure. Tomake
the characteristic index both sensitive and robust to the
failure, RMS, waveform index, and peak value are selected
and combined with the PCA method, and the obtained
hybrid index of bearing A, B, and C is shown in Figure 3.
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Figure 2: Vibration signal time-domain indexes: (a) mean, (b) RMS, (c) skewness, (d) kurtosis, (e) peak, and (f) waveform.
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Figure 1: Operational reliability prediction process.
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An empirical threshold xt � 0.12 is assumed and plotted in
Figure 3 with dotted line. It can be observed that when the
hybrid index is smaller than the threshold, the hybrid index
changesmore smoothly, and the bearing is supposed towork in
normal condition. When the threshold is exceeded, the hybrid
index increases rapidly and has a relatively violent fluctuation,
which means the happening of failure in the bearing. (e
failure time of the three bearings determined by the failure
threshold is 703, 1614, and 1821 points, respectively.

4. Results and Discussion

(e hybrid index of the first 1500 points of bearing A, the
first 1500 points of bearing B, and the first 650 points of
bearing C are selected, respectively, to train the single-step
RVM prediction model for each bearing. (e embedding
dimension is set to 20, the RVM kernel parameter opti-
mization range is [0.1, 20], and the optimization objective
fitness function is as follows [31]:

fitness �
RMStrain ∗ n1 + RMStest ∗ n2( ∗RV

n1 + n2
, (17)

where RMStrain and RMStest are training errors and the test
errors and are obtained with the 5-folds cross-validation
method, respectively. n1 and n2 are the number of training
samples and the number of test samples, and RV is the
number of relevance vectors. Minimizing this fitness
function makes the trade-off of kernel parameter between
training and test errors and makes the trained model to have
the best prediction accuracy. (e obtained optimized kernel
parameters for each model are given in Table 1, and the
prediction accuracy is defined as follows:

accuracy � 1 −
ta− tp





ta

⎛⎝ ⎞⎠ × 100%, (18)

where ta is the actual failure time and tp is the predicted
failure time. It must be indicated that the failure time is 20
times the failure point for this case.

(e prediction results on the hybrid index of three
bearings are shown in Figure 4(a), Figure 5(a), and
Figure 6(a), respectively. In each graph, the red points
represent actual data and the blue points represent the
predicted data. (e results show that the change trend of the
predicted value closely matches the actual value; it means
RVM has acceptable accuracy in predicting the time series of
the hybrid index. Figure 4(b), Figure 5(b), and Figure 6(b),
respectively, show the prediction results on operational
reliability of three bearings and corresponding enlarged
diagram. It can be observed that at the early stage of bearing
total lifetime, the bearings have relatively high operational
reliability and relatively small degradation trend (from the
start of operation to approximate 1823, 1512, and 704
measurement points of three bearings, respectively). After
that, the operational reliabilities of three bearings show
sharp drops, which means the initiation of a defect. At 1836
points of bearing A, 1623 points of bearing B, and 714 points
of bearing C, the operational reliability is forecasted to fall
close to zero, meaning that the bearings are closed to
complete failure. (is degradation process indicates that the
occurrence and development of bearing fault is a rapid
process and will happen in very short time, compared with
the total service life of the bearing.
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Figure 3: Hybrid index of three bearing.

Table 1: Optimization results of kernel parameters for the RVM
model.

RVM model Kernel parameter Fitness
Bearing A 16.8 0.0334
Bearing B 6.2 0.07
Bearing C 9.9 0.0203
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It is also noted that three bearings have experienced dif-
ferent time from initiation of the defect to final failure because of
the difference of bearing fault. In fact, this failure mechanism
and fault development process can also be observed in Figure 3,
in which the similar evolutionary process of the hybrid index is
shown; it proves that the RVM prediction models have learned
the failure pattern of three bearings. (e prediction accuracy
obtained from the reliability curve with equation (18) is shown
in Table 2. (e results show that the prediction accuracy on
failure time of three bearings is all above 98%. (e results
suggest that the operational reliability evaluation model

captures the nonlinear relationship between the hybrid index
and the actual health state of the monitored equipment.

In addition, in order to verify the validity of the hybrid
index, this paper also compares the reliability evaluation
results based on the single index with that on the hybrid
index. Table 3 gives the results on bearing C as an example; it
was shown that the prediction accuracy of the failure time
obtained with the hybrid index is higher than that obtained
with the single index, indicating that the hybrid index can
synthetically consider a variety of information and obtain
better evaluation results.
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Figure 4: Prediction results of bearing A: (a) hybrid index and (b) operational reliability.

–0.5

0

0.5

1

1.5

H
yb

rid
 in

de
x

500 1000 1500 2000 25000
Measurement points

Training data
Test data

Predicted data
95% confidence
upper limit

(a)

1612 1616 1620 1624
0

0.5

1

0

0.2

0.4

0.6

0.8

1

O
pe

ra
tio

na
l r

eli
ab

lit
y

1800 2000 22001600
Measurement points

(b)

Figure 5: Prediction results of bearing B: (a) hybrid index and (b) operational reliability.
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5. Conclusions

(is paper presents a method to evaluate the operational
reliability for single or small patch equipment based on RVM
and PCA. (e PCA was used to fuse the features and obtain
the hybrid index which can represent the degradation in-
formation of the equipment more robustly. (e RVM was
used to establish a single-step prediction model of the hybrid
index and predict the future value of the hybrid index and the
corresponding PDF at a certain moment. Based on PDF and
the predicted value of the hybrid index, the operational re-
liability of the equipment is obtained with the interval integral
defined by the failure threshold and the predicted value of the
hybrid index. (e performance of the proposed method is
validated by predicting the failure time of aero-engine rotor
bearings. (is paper also compares the reliability evaluation
results based on the hybrid index with the reliability evalu-
ation results based on a single index. (e results proves the
plausibility and effectiveness of the proposed method.

Data Availability

(e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is study was supported by the National Natural Science
Foundation of China (nos. 51805412 and 51635010),
Science and Technology Major Project of Henan Province
(no. 191110213300), National Key Research and Devel-
opment Project (no. 2020YFB2007900), and China
Postdoctoral Science Foundation (nos. 2018M631144 and
2019T120897).

Training data
Test data

Predicted data
95% confidence
upper limit

–0.5

0

0.5

1

1.5
H

yb
rid

 in
de

x

200 400 600 800 10000
Mesurement points

(a)

704 706 708 710 712 714
0

0.5

1

0

0.2

0.4

0.6

0.8

1

O
pe

ra
tio

na
l r

eli
ab

lit
y

800 900 1000700
Measurement points

(b)

Figure 6: Prediction results of bearing C: (a) hybrid index and (b) operational reliability.

Table 2: (ree bearing failure time prediction results.

Bearing Actual failure time (min) Predicted failure time (min) Accuracy (%)
A 36420 36720 99.2
B 32280 32460 99.4
C 14060 14280 98.4

Table 3: Single index method and hybrid index method prediction results of bearing C.

Characteristic index Actual failure time (min) Predicted failure time (min) Accuracy (%)
Waveform 14060 14380 97.7
Peak 14080 14360 98.0
Kurtosis 14080 14480 97.2
Hybrid index 14060 14280 98.4
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Decentralized power systems are commonly used in high-speed trains. However, many parameters in decentralized power systems
are uncertain and inevitably have errors. We present a reasoning method based on the interval numbers for decentralized power
systems in high-speed trains. Uncertain parameters and their unavoidable errors are quantitatively described by interval numbers.
We also define generalized linear equations with interval numbers (LAIs), which can be used to describe the movement of the
train. Furthermore, it is proven that the zero sets of LAIs are convex.-erefore, the inside of the fault-tolerance area can be formed
by their vertexes and edges and represented by linear inequalities. Consequently, we can judge whether the system is working
properly by verifying that the current system state is in the fault-tolerance area. Finally, a fault-tolerance area is obtained, which
can be determined by linear equations with an interval number, and we test the correctness of the fault-tolerance area through
large-scale random test cases.

1. Introduction

-eorem proving is well established in formal verification
[1, 2]. Unlike model checking [3, 4], the deductive reasoning
method is used to verify the safety conditions or properties
of the system. -is method and model checking have
complementary strengths and disadvantages [5, 6]. To verify
certain properties of the system, labeled transition systems
(LTSs) are widely used to describe the system behaviors in
the field of system verification, such as communication
protocols and hardware logic testing [7, 8], and a similar
structure is used. Abstract labels of the labeled transition
system (LTS) describe the system states by a set of logical
assignments. For instance, the LTS model of a microwave
oven, where “close” represents the state that the door of
microwave oven is close, “∼close” represents the state of
“open door,” “heat” represents the heating state, and “∼heat”

represents the nonheating state. -us, (close, ∼heat) indi-
cates that the oven is closed and not heating. However, it is
not completely adequate to describe the state of complex
systems. For example, train motion must be described by
algebraic equations Naturally, algebraic transition systems
can be modeled in the above example, being labeled by
polynomial algebraic equations [9, 10]. as the promotion of
the logical labeled transition system. In recent years, alge-
braic polynomial-labeled transition systems or their similar
structures are still largely involved with the verification of
more complex systems [11]. Especially for verification of
hybrid systems characterized by differential polynomial
algebraic equations, many theories based on polynomial
invariants have been put forward [12–16]. However, to find
polynomial invariants, the symbolic calculation theory with
high time complexity is involved, such as the Gröbner bases,
cylindrical algebraic decomposition, and fixed points.
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However, in some complex systems, some parameters may
be uncertain. For example, in high-speed trains, some model
parameters are uncertain, such as the changing weight with
the number of passengers [17]. Even if it is assumed that the
uncertain parameters change continuously, nonetheless, this
may result in the discontinuity of the obtained Gröbner
bases. Simply put, the Gröbner bases of two polynomial
systems with very close coefficients may be completely
different, which limits the application of the above theory to
the verification of these systems. In contrast, for the design of
systems with uncertain parameters, some scholars have
performed system design based on fault-tolerant methods
[18, 19]. -e fault-tolerant method is mature and has been
applied in many aspects [20–22]. -e success of the fault-
tolerant method in the design of complex systems implies
that it may also be effective in the verification of complex
systems [23–25]. Nevertheless, verification methods with
fault-tolerance are rarely reported.

Furthermore, regardless of the uncertain parameters,
even measurements cannot be completely accurate. For
example, in a real system, it is impossible to accurately
measure the temperature just to reach a specified value and
often with a certain error. -e measurement process is also
accompanied by a certain error. Hence, verification with
fault tolerance is significant in the industry. In addition,
nonlinear problems can be approximated as linear problems
in small parts of the system design space [26]. -e gener-
alized linear assertion also has a certain theoretical value.

In this paper, we present a new reasoning method with
fault tolerance between generalized linear algebraic asser-
tions to verify decentralized power systems in high-speed
trains, and the method does not involve the methods in
numerical calculations. Although the numerical calculation
method is much faster than symbolic calculation to solve
equations, the accumulation of errors during the reasoning
process is inevitable and may lead to incorrect conclusions.
In numerical calculations, the iterative algorithm for solving
equations is terminated after reaching the termination
condition. In fact, we still do not know the exact distance
between the numerical solution and the unknown exact
solution [27]. On the other hand, some scholars have studied
fault detection in power systems, in which machine learning
algorithms are involved [28, 29].-eir method is effective on
nonlinear problems. However, there are still few reports
about their methods in dealing with the system with un-
certain parameters.

2. Problem Descriptions

Proper decentralized power can reduce themaintenance cost
of high-speed trains and avoid unsafe speeds. Safe speed and
decentralized power need to be considered.

2.1. Safe Speeds. -e safe speed defines the safe speed range
of high-speed trains. Excessive speed increases the risk of
derailment, especially when the train is turning. For ex-
ample, the derailment of a high-speed railway caused more
than 80 deaths in Spain in 2013. When the train turns,

excessive or insufficient speed increases the force between
the train wheel flanges and the rails, which is a crucial cause
of rail scratches. Moreover, rail scratches reduce the toler-
ance of the rail, which further increases the risk of derail-
ment. Usually, when the train turns, there is an inclination
angle in the rail to balance the centripetal force. Ideally, the
centripetal force when the train turns is equal to the
component of the train’s gravity along the inclination. At
this time, the force between the wheel flange and the rail is
zero.

According to Newtonian mechanics, we have

m
v
2

R
− g tan θ  � fw, (1)

where m denotes the mass of a carriage, g is the acceleration
due to gravity, fw denotes the combined force of all wheel
flanges of the two carriages on their wheels, v denotes the
speed of the train, R is the turning radius, and θ is the
inclination angle of the rail. During train movement, some
of the above parameters have inevitable errors. For example,
m varies within a certain range depending on the passengers
and their luggage.

2.2. Power Distribution. Decentralized power systems are
often used in high-speed railways, compared with central-
ized power systems. High-speed trains usually consist of four
or eight carriages. -e power-decentralization problem of
the two carriages can be considered first because the problem
for sixteen carriages can be solved by the recursive 2-carriage
problem. Among them, some parameters remain uncertain.
For example, when the train is moving at a constant speed,
the air resistance changes with the change in air pressure. In
addition, the speed of the train cannot be held exactly
constant, only within a very small range. -e air resistance is
proportional to the air pressure and the square of the speed.
Hence, changing the air resistance will cause dynamic
changes in the net power.

In the verification field based on the theorem proof, a
reasoning method that fully considers the parameters with
errors is necessary to verify the safety conditions and
properties of the system.

3. Preliminary

In this section, we introduce some of the mathematical
concepts that have been established and involved in our
approach.

Definition 1 (Algebraic transition system). Let
A � < S, F,Ψ,Λ> be an algebraic transition system, where

S is the set of all states in the algebraic transition system
F is the set of transitions between states, F⊆S × S

Ψ is the set of the algebraic assertions
Λis the set of mapping relationships from F to Ψ and
from S to Ψ. Each state or transition can be distributed
into algebraic equations based on the mapping
relationship
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-e algebraic transition system describes the system’s
transition relationship and the state itself of the system. -e
set F of an algebraic transition system describes the tran-
sition relations between states. Correspondingly, Λ provides
each state satisfied algebraic equations or satisfied conditions
of transitions between states.

In recent years, the algebraic transition system and its
generalized structure have been well established in the field
of verification [30, 31].

To establish a reasoning method with fault tolerance, we
generalize linear algebraic assertions to quantitatively de-
scribe uncertain parameters. A quantitative description of
these errors is necessary. Interval numbers have been widely
used in the field of error estimation [32, 33]. As a result, we
introduce interval numbers to describe the errors. -e
following is the definition and operation of interval
numbers.

Definition 2 (Interval number). An interval number is a set
of all real numbers in a closed interval.

Let X be an interval number. -en, X � [x− , x+], where
x− ≤ x+; x− is the lower bound of X and x+ is the upper
bound of X. -us, X can be any value in this closed interval.
In particular, when x− � x+, the interval number becomes a
normal real number.

Definition 3 (Interval number operation). -e interval
number operation includes the operations of addition,
subtraction, multiplication, and division. Some operations
are given as follows.

Let a � [a− , a+] and b � [b− , b+], where c is a constant.
Addition:

c + a � a
−

+ c, a
+

+ c ,

a + b � a
−

+ b
−

, a
+

+ b
+

 .
(2)

Subtraction:

a − b � a
−

− b
+
, a

+
− b

−
 ,

a − c � a
−

− c, a
+

− c .
(3)

Multiplication:

ab � min a
−

b
−

, a
−

b
+
, a

+
b

−
, a

+
b

+
( , max a

−
b

−
, a

−
b

+
, a

+
b

−
, a

+
b

+
(  .

(4)

Especially when a≥ 0 and b≥ 0, ab � [a− b− , a+b+].

if c> 0, ca � ca
−

, ca
+

 ,

if c< 0, ca � ca
+
, ca

−
 ,

if c � 0, ca � [0, 0] � 0.

(5)

Division:

if c> 0,
a

c
�

a
−

c
,
a

+

c
 ,

if c< 0,
a

c
�

a
+

c
,
a

−

c
 .

(6)

In addition, there are some other definitions of interval
number operations [34]. However, we do not elaborate here,
as different definitions are irrelevant for the reasoning
approach.

Unfortunately, although the errors can be described as
any possible values over given intervals, the operation of
interval number is not sufficient for reasoning between
linear algebra assertions because it may lead to incorrect

reasoning. For example, let φ �
X2 − X1 � [3, 4],

X2 + X1 � [5, 6].


According to the interval operation defined above, the
linear equations can be solved as follows:

X1 � [0, 2],

X2 � [4, 5].
(7)

-is is not a correct result. -e correct result is in the
blue diamond area in Figure 1.

Definition 4 (Polynomial). A polynomial is a mathematical
expression consisting of a sum of terms, where each term
includes one or more variables raised to a power and
multiplied by a coefficient.

Let V � x1, . . . , xn  be a set of variables. Let
R[x1, . . . , xn] be a set that comprising all polynomials with
real coefficients on V. An example of a polynomial is as
follows:

f1 x1, x2, x3(  � 5x
3
1x2x

2
3 + x

2
2 + 2x3. (8)

Definition 5 (Zero set of polynomials). f(x1, . . . , xn) ∈ R
[x1, . . . , xn]. -e zero set of f(x1, . . . , x2) is the set as below,
denoted by Zero(f):

Zero(f) � (x1, . . . , xn) ∈ Cn|f(x1, . . . , x2) � 0 .

Definition 6 (Linear algebraic assertions). A linear algebraic
assertion consists of one or more linear equations. ψ is a
linear algebraic assertion that contains the following
equations:

ψ �

f1 x1, . . . , xn(  � 0,

f2 x1, . . . , xn(  � 0,

. . . ,

fn x1, . . . , xn(  � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

4. Implication and Equivalence Relations
Based on Interval Numbers

In this section, we introduce the judgment rule of impli-
cation and equivalence relations based on interval numbers.
Implication and equivalence relations are the most basic
rules in any reasoning method. We first introduce the
reasoning method (Definitions 7 and 8) involving impli-
cation and equivalence relations. -en, we introduce the
definitions (Definitions 9–12).
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In the classic rules of reasoning, the implication rela-
tionship between algebraic assertions can be judged by the
inclusion relationship of their zero set.

Definition 7 (Implication relations between algebraic
assertions). Let φ1 and φ2 are two algebraic assertions. φ1
implies φ2, denoted as φ1| � φ2, iff Zero(φ1)⊆Zero(φ2).

For example, x − 1 � 0 implies x2 + 2x − 3 � 0 because
1{ }⊆ 1, 2{ }.

Definition 8 (Equivalence relations between algebraic
assertions). Let φ1 and φ2 be two algebraic assertions. φ1 is
equivalent to φ2, denoted as φ1 ≡ φ2, iff Zero(φ1)

� Zero(φ2).

Definition 9 (LEI and LAI). An LEI is a linear algebraic
equation whose variables and coefficients can be interval
numbers. -e LAI consists of one or more LEIs.

Definition 10 (Zero set of LEIs). Let f(x1, . . . , xn) � a0 +

a1x1 + a2x2 + · · · + anxn � 0 be an LEI. a0, a1, a2, . . . , an are
given some interval numbers, as defined above. -e zero set
of f(x1, . . . , x2) is the set as below and is denoted as Zero
(f):

x1, . . . , xn( |∀a0 ∈a0,∀a1 ∈a1,∀a2 ∈a2, . . . ,∀an ∈an, a0 + a1x1 + a2x2 + · · · + anxn � 0 . (10)

Definition 11 (Implication relations between LAIs). Let φ1
and φ2 be two LAIs that have been defined above. φ1 implies
φ2, denoted as φ1| � φ2, iff Zero(φ1)⊆Zero(φ2).

Definition 12 (Equivalence relations between LAIs). Let φ1
and φ2 be two LAIs. φ1 is equivalent to φ2, denoted as
φ1 ≡ φ2, iff Zero(φ1) � Zero(φ2).

-e implication and equivalence relations are the two
main reasoning rules. A simple example is shown in Figure 1
for reasoning between LAIs.

Let φ1 �
X2 − X1 � [3, 4],

X2 + X1 � [5, 6]
 and

φ2 �
X1 � [0.75, 1.25],

X2 � [4.25, 4.75]
 .

Obviously, Zero(φ2)⊆Zero(φ1) ，and we conclude that
φ2| � φ1.

5. Reasoning Method between LAIs
and Example

5.1. Reasoning Method between LAIs. In this section, we
present a reasoning method to judge inclusion relations
between zero sets of LAIs. Implication relations between
LAIs can be judged by whether their zero set has an inclusion
relation just like Definition 11 introduced above. -e
equivalence relations between LAIs can be judged by
whether their zero sets have inclusion relations with each
other. If the two sets are equal, the two sets contain each
other. Before we introduce the reasoningmethod, we need to
introduce the theorems (Lemma 1 and -eorem 1) and two

basic mathematical definitions involving our reasoning
method.

Definition 13 (Convex set). D ⊂ Rn, and let arbitrary
x ∈ D andy ∈ D. Dis the convex set, if for, z � λx + (1 −

λ)y ∀λ 0≤ λ≤ 1 then z ∈ D is always true.

Definition 14 (Vertex set). V is a vertex set, if and only if for
arbitrary, z ∈ V , and z ∉ z′|z′ � λx + (1 − λ)y, ∀x,∀y

∈ V,∀λ ∈ [0, 1]}.

Lemma 1. @e intersection of the zero set of LEI and the first
quadrant is a convex set.

Proof. Let f(x1, . . . , xn) is LEI, and
f(x1, . . . , xn) � a0 + a1x1 + a2x2 + · · · + anxn � 0, where
a0 � [a0− , a0+], a1 � [a1− , a1+], . . . , an � [an− , an+].

Let, if arbitrary α ∈ Zero(f), β ∈ Zero(f), α≠ β,

α � xα1, xα2, . . . , xαn 
T
,

β � xβ1, xβ2, . . . , xβn 
T
,

(11)

then

∃aα,∃aβ, aα � aα1, aα2, . . . ., aαn 
T
, aβ � aβ1, aβ2, . . . , aβn 

T
,

aα1 ∈ a1, aα2 ∈ a2, . . . , aαn ∈ an,

aβ1 ∈ a1, aβ2 ∈ a2, . . . , aβn ∈ an.

(12)

We have
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Figure 1: Inclusion relations between zero sets of two LAIs.
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aα0 + aα1xα1 + · · · + aαnxαn � 0,

aβ0 + aβ1xβ1 + · · · + aβnxβn � 0.
(13)

For arbitrary λ, 0≤ λ≤ 1, let λ, 1 − λ. By multiplying the
above two equations, we have

λaα0 + λaα1xα1 + · · · + λaαnxαn � 0,

(1 − λ)aβ0 +(1 − λ)aβ1xβ1 + · · · +(1 − λ)aβnxβn � 0.
(14)

By adding the above two equations, we have

λaα0 +(1 − λ)aβ0  + λaα1xα1 +(1 − λ)aβ1xβ1  + · · ·

+ λaαnxαn +(1 − λ)aβnxβn  � 0.

(15)

Let (λaα0 + (1 − λ)aβ0) � az0.
Apparently, az0 � λaα0 + (1 − λ)aβ0 ∈ [min(aα0, aβ0),

max(aα0, aβ0)] ⊆[a0− , a0+].
Let z � λα + (1 − λ)β, following the definition of

Zero(f).
z ∈ Zero(f), if and only if

∃az1 ∈ a1, ...,∃azn ∈ an, az0 + az1 λxα1 +(1 − λ)xβ1  + · · ·

+ azn λxαn +(1 − λ)xβn  � 0.

(16)
Let us prove (16).
Take az1 � ((λaα1xα1 + (1 − λ)aβ1xβ1)/(λxα1 + (1 − λ)

xβ1)), . . . , azn � ((λaαnxαn + (1 − λ)aβnxβn)/(λxαn + (1 − λ)

xβn)) according to (15). Apparently, we have

az0 + az1 λxα1 +(1 − λ)xβ1  + · · · + azn λxαn +(1 − λ)xβn  � 0.

(17)

Furthermore, assuming aα1 ≤ aβ1 (the case of aα1 > aβ1 is
similar), we easily obtain

aα1 λxα1 +(1 − λ)xβ1 ≤ λaα1xα1 +(1 − λ)aβ1xβ1 

≤ aβ1 λxα1 +(1 − λ)xβ1 .
(18)

Because both α and β belong to the first quadrant, we
have

λxα1 +(1 − λ)xβ1 > 0. (19)

By dividing (18) by (λxα1 + (1 − λ)xβ1), we obtain

aα1 ≤
λaα1xα1 +(1 − λ)aβ1xβ1 

λxα1 +(1 − λ)xβ1 
≤ aβ1, (20)

that is,

aα1 ≤ az1 ≤ aβ1. (21)

So, az1 ∈ [aα1, aβ1] ⊂ [a1− , a1+] � a1.
Similarly, azn ∈ [aαn, aβn] ⊂ [an− , an+] � an.

Theorem 1. the intersection of the zero set of LAI and the
first quadrant is a convex set.

Proof. As the definition of LEI, an LAI consists of one LEI or
much more LEI.

Let φ be an LAI,

φ �

f1 x1, . . . , xn( ,

. . . ,

fn x1, . . . , xn( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

Let A1 denote the first quadrant area.
Apparently, Zero(φ) � Zero(f1)∩ · · · ∩Zero(fn), and

Zero(f1)∩A1, . . . ,Zero(fn)∩A1 are convex sets, following
the conclusion of Lemma 1 above.

According to one of the properties of a convex set [35],
we find that

(Zero(f1)∩A1)∩ (Zero(f2)∩A1)∩ · · · ∩ (Zero(fn)

∩A1) is also a convex set.
-at is, A1 ∩Zero(f1)∩Zero(f2)∩ · · · ∩Zero(fn) is

also a convex set.
For most engineering problems, only solutions in the

first quadrant are meaningful. Although it may be mean-
ingful that the solutions are negative to some problems, it is
still possible to make the solution meaningful in the first
quadrant through proper coordinate transformation.

For example, if c represents the temperature value in
degrees Celsius, and represents c′ represents the temperature
in Kelvin. -e coordinate transformation is c′ � c + 273.15.
Apparently, c′ is meaningful only when it is positive. In this
article, the zero set of LAIs to which we refer is its inter-
section with the first quadrant.

Because, if A and B are both convex sets and
p1, p2, . . . , pn are all vertexes of A, then A⊆B iff ∀pi ∈ B,
i � 1, 2, . . . , n. -erefore, we can judge whether all of its
vertexes are contained by another zero set of LAI to de-
termine whether there is an inclusion relationship between
the two sets. We thus obtain the following reasoning
method.

Let φ1 and φ2 be two linear algebraic assertions. Is φ1| �

φ2 correct? A method for judging inclusion relations be-
tween the LAI can be given as follows:

Step 1. Calculate all vertexes of φ1.

Step 2. Determine the inequality equations, which are
equivalent to the zero set of φ2.

Step 3. If all vertexes of φ1 satisfy the inequalities ob-
tained in Step 2, we have that φ1| � φ2 is true; other-
wise, it is not true. □

5.2. Reasoning Method Example with LAIs. In this section,
we present a case that can be solved by linear algebraic
reasoning rules with errors.
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Let

φ1 �

[0.9, 1]X +[0.8, 1]Y +[0.7, 1]Z � [0.8, 1.2],

[0.9, 1]X +[0.7, 1.1]Y − [0.9, 1]Z � [0.3, 0.4],

[0.9, 1.1]X − [0.7, 1.1]Y +[0.9, 1]Z � [0.5, 0.6],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

φ2 �

X � [0.35, 0.55],

Y � [0.25, 0.4],

Z � [0.2, 0.3],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

We want to know whether φ2| � φ1.

Proof. First, we can easily obtain the boundary equations as
follows to find all vertexes of φ1:

X + Y + Z � 0.8,

0.9X + 0.8Y + 0.7Z � 1.2,


0.9X + 0.7Y − Z � 0.4,

X + 1.1Y − 0.9Z � 0.3,


1.1X − 0.7Y + Z � 0.5,

0.9X − 1.1Y + 0.9Z � 0.6.


(24)

We obtain three equation systems, each of which con-
tains two equations. An equation is selected arbitrarily from
each equation system, so eight groups of equations can be
formed. By solving these eight groups of equations, we
obtain eight vertexes.

Calculate all vertexes of φ1: p1 � (9/20, 69/340, 5/34),
p2 � (549/950, 3/50, 77/475), p3 � (9/19, 3/50, 253/950),
p4 � (81/245, 48/245, 67/245), p5 � (284/1253, 7971253,

872/1253), p7 � (9/20, 1583/2580, 1121/2580), and
p8 � (1934/2925, 118/325, 146/325).

-e above eight vertexes of φ1 constitute a hexahedron in
3D space. To mathematically represent the interior region of
the hexahedron (including boundary), we need to obtain a
group of linear inequalities defining this region. According
to the theory of cylindrical algebraic decomposition, all
points in a linear closed region isolated by finite points
satisfy the same inequalities. To find a point in the interior
region of a hexahedron, we need to solve a group of
equations, in which the coefficients can take any value within
their interval according to -eorem 1, as proven above. If
there is no solution or if the solution is not unique for
arbitrarily selected coefficients, we can reselect a group of
coefficients until the system of equations has a solution.

Find an interior point P(XP, YP, ZP),

0.9X + 0.9Y + 0.9Z � 1,

X + Y − Z � 0.35,

X − Y + Z � 0.5,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⟺P XP, YP, ZP(  �
17
40

,
11
36

,
137
360

 .

(25)

P(XP, YP, ZP) must be in the interior region of the
hexahedron (including the boundary), as shown in Figures 2
and 3.

Substituting point P(XP, YP, ZP) into formula (24), we
obtain three groups of linear inequalities as follows:

Xp + Yp + Zp ≥ 0.8,

0.9Xp + 0.8Yp + 0.7Zp ≤ 1.2,

⎧⎨

⎩

0.9Xp + 0.7Yp − Zp ≤ 0.4,

Xp + 1.1Yp − 0.9Zp ≥ 0.3,

⎧⎨

⎩

1.1Xp − 0.7Yp + Zp ≥ 0.5,

0.9Xp − 1.1Yp + 0.9Zp ≤ 0.6.

⎧⎨

⎩

(26)

Calculate all vertexes of φ2:

q1 � (0.4, 0.3, 0.3),

q2 � (0.4, 0.3, 0.4),

q3 � (0.4, 0.35, 0.3),

q4 � (0.4, 0.35, 0.4),

q5 � (0.5, 0.3, 0.3),

q6 � (0.5, 0.3, 0.4),

q7 � (0.5, 0.35, 0.3),

q8 � (0.5, 0.35, 0.4).

(27)

According to the properties of convex sets, if all vertexes
of φ2 are in the interior region (including the boundary) of
the zero set of φ1, then Zero(φ2)⊆Zero(φ1).

Take all eight vertexes of φ2 into formula (26) to verify all
inequalities in formula (26). We find that only q3 is not
satisfied with one inequality of formula (26). For q3, 1.1X −

0.7Y + Z≥ 0.5 does not hold, as 1.1Xq3
− 0.7Yq3

+

Zq3
� 0.495.
So, Zero(φ2)⊄Zero(φ1).
In other words, φ2| � φ1 does not hold.
If only looking at Figures 4 and 5, it seems that all

vertexes of φ2 are interior regions of the zero set of φ1.
However, after the above calculations, q3 is almost inside. So
it dose not hold. □

6. Verification of Decentralized Power
Systems during Turn

In this section, we present a case that can be solved by the
reasoning method mentioned above in this article. -e
problem in four or eight carriages can be solved by a re-
cursive 2-carriage problem. Hence, we mainly discuss the
power decentralization of 2 carriages.

A simplified algebraic transition system for the train is
shown in Figure 6. g1 and g2 represent the conditions
satisfied by corresponding transitions between the states. φ1,
φ2 and φ3 are the equations that need to be satisfied in the
corresponding states. -at is, when the train is in the ac-
celeration state and if φ1 is not satisfied, there is a strong
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possibility that the train is in an abnormal acceleration
process, which requires timely troubleshooting.

-e following case is when a constant-speed train is
turning. Decentralized power systems are widely used in
high-speed trains. -e power source is scattered among the

engines of the carriages. -e net traction power of each
compartment in a train will vary randomly within a small
range, caused by the movement of passengers, their luggage,
and wind resistance. -e role of the wheel flange of the train
is to prevent derailment, especially when the train is turning.
-e force analysis during turning is shown in Figure 6.

-e two self-powered carriages at constant speed are
shown in Figure 7. Carriage 1 and carriage 2 may be two
connected carriages or two groups of carriages. We have the
following description: f1 and f2 denote the traction force of
carriage 1 and carriage 2, respectively; m denotes the initial
mass of each carriage; and Δm denotes the quality change in
each carriage due to the variation of passengers and their
luggage and is similar to the effect of mass change. When a
train passes the inclined plane in turning, a part of the
gravity caused by a certain inclination provides the cen-
tripetal force for the train to turn, which is also similar to the
change in the mass of the train. μ stands for the friction
coefficient; f12 denotes the force of carriage 1 on carriage 2;
g is the acceleration due to gravity; and fw denotes the
combined force of all wheel flanges of the two carriages on
their wheels. Wheel flange is a special device to reduce risks
when turning. It is shown in Figure 8. When the train turns
quickly, fw may exceed the force limit of the wheel flange,
which may cause the train to derail. Moreover, a larger fw

will increase the friction between the wheel flanges and the
rail and cause injures on the wheel flange of both rail flats.
Injured rails and wheels further increase the possibility of
derailment when turning. -erefore, fw should be within a
certain range. ζ is related to the air density and the shape of
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the train. Among them, the air density may change due to
different altitudes. -erefore, ζ is also defined within a
certain range.

It is assumed that the above parameters require the fol-
lowing values according to the design requirements of the train:
m � 50000 kg, Δm � [0, 0.2m], μ � 0.01, f12 � [0, 2000]N,
θ � 10°, g � 10m · s− 2, ζ � [1.5, 1.6] kg · m− 1, R � 3000m,
and fw � [− 10000, 10000]N.

According to mechanics, we have

φ �

f1 + f2 � 2(m + Δm)gμ + ζv
2
,

− f12 + f1 � (m + Δm)gμ + ζv
2
,

(m + Δm)
v
2

R
− g tan θ  � fw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

From the third equation in (28), we obtain

v
2

R
− g tan θ  �

fw

m[1, 1.2]
� [− 0.2, 0.2],

v
2

� R[g tan θ − 0.2, g tan θ + 0.2].

(29)

Let R(g tan θ − 0.2) � v2− and R(g tan θ + 0.2) � v2+.
-en, v2 � [v2− , v2+].
-at is,

φ �

f1 + f2 − ζv
2

� 2m[1, 1.2]gμ,

f1 − ζv
2

� m[1, 1.2]gμ + f12,

v
2

� v
2
− , v

2
+ .

⎧⎪⎪⎨

⎪⎪⎩
(30)

-e boundary equation of each equation in φ can be
obtained as follows, which can solve all vertexes of φ:

f1 + f2 − 1.5v
2

� 10000,

f1 + f2 − 1.6v
2

� 12000,


f1 − 1.5v
2

� 5000,

f1 − 1.6v
2

� 8000,


v
2

� v
2
− � 3000 10 tan 10° − 0.2( ,

v
2

� v
2
+ � 3000 10 tan 10° + 0.2( .



(31)

We obtain three equation groups, each of which contains
two equations. Select an equation arbitrarily from each
equation system, so eight equation systems can be formed.
Solving these eight equations, we can obtain eight vertexes.

Calculate all vertexes of φ1 (f1, f2, v2):

p1 � 5000 + 1.5v
2
− , 5000, v

2
−  ≈ (12034.7, 5000, 4689.8),

p2 � 5000 + 1.5v
2
+, 5000, v

2
+  ≈ (13834.7, 5000, 5889.8),

p3 � 8000 + 1.6v
2
− , 2000 − 0.1v

2
− , v

2
−  ≈ (15503.69, 1531, 4689.8),

p4 � 8000 + 1.6v
2
+, 2000 − 0.1v

2
+, v

2
+  ≈ (17423.69, 1411, 5889.8),

p5 � 5000 + 1.5v
2
− , 7000 + 0.1v

2
− , v

2
−  ≈ (12034.7, 7468.98, 4689.8),

p6 � 5000 + 1.5v
2
+, 7000 + 0.1v

2
+, v

2
+  ≈ (13834.7, 7588.98, 5889.8),

p7 � 8000 + 1.6v
2
− , 4000, v

2
−  ≈ (15503.69, 4000, 4689.8),

p8 � 8000 + 1.6v
2
+, 4000, v

2
+  ≈ (17423.69, 4000, 5889.8).

(32)

As before, the above eight vertexes of φ constitute a
hexahedron in 3D space. To mathematically represent the
interior region of the hexahedron (including boundary), we
need to obtain a group of linear inequalities of this region.
According to the theory of cylindrical algebraic decompo-
sition, all points in a linear closed region isolated by finite
points satisfy the same inequalities. To find a point in the
interior region of a hexahedron, we just need to solve a group
of equations, in which coefficients can take any value of their
interval according to -eorem 1.

An interior point P(f1′, f2′, v2′) can be solved by equa-
tions with certain coefficients in the allowable error range.
Without losing generality, P(f1′, f2′, v2′) can be solved by the
following equations:

Carriage 2

f2f1

f12

Carriage 1

Figure 7: Two self-powered carriages turning.

Centripetal force

θ

f

θ

Wheel f lange

Figure 8: Train turning.
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f1 + f2 − 1.55v
2

� 1.1 · 2mgμ,

f1 − 1.55v
2

� 1.1 · mgμ + 1000,

1.1m
v
2

R
− g tan θ  � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟺P f1′, f2′, v
2′

  ≈ (14699.20, 4500, 5289.81), (33)

By substituting point P(f1′, f2′, v2′) into formula (31), we
obtain the following three groups of linear inequalities:

f1 + f2 − 1.5v
2 ≥ 10000,

f1 + f2 − 1.6v
2 ≤ 12000,

⎧⎨

⎩

f1 − 1.5v
2 ≥ 5000,

f1 − 1.6v
2 ≤ 8000,

⎧⎨

⎩

v
2 ≥ v

2
− � 3000 10 tan 10° − 0.2( ,

v
2 ≤ v

2
+ � 3000 10 tan 10° + 0.2( .

⎧⎨

⎩

(34)

-e inequality groups in formula (34) represent the
fault-tolerance area of the system, which is the area where

the system allows controllable errors. -e fault-tolerance
area is shown in Figures 9 and 10.

We can verify whetherf1, f2, and v2 satisfy the in-
equality group in formula (34) to judge whether the
decentralized power systems and train speed are working
properly. Whenf1, f2, and v2 do not satisfy formula (34),
the decentralized power system or train speed is probably
working incorrectly and requires timely error detection.

In the fault-tolerance area, the interval number of v2 can
be transformed into an interval number of v. -e equivalent
fault-tolerance area will not be described again:

v
2 ≈ [4689.8, 5889.8] ⇔ v ≈ [68.48, 76.74]m · s− 1

 ⟺ v ≈ [246.52, 276.26] km · h− 1
 . (35)

7. Simulation and Comparison

7.1. Simulation. In this section, we test the fault-tolerance
area in Section 6. Δm denotes the quality change; ζ is related
to the air density and the shape of the train; fw denotes the
combined force of all wheel flanges of the two carriages on
their wheels; and f12 denotes the force of carriage 1 on
carriage 2. -ere are four parameters (Δmζfwf12) with
errors in (28). -e meanings of these four uncertain pa-
rameters are the same as those in Section 6. -erefore, it will
not be described in detail here.-e four interval numbers are
as follows:

Δm � [0, 10000],

ζ � [1.5, 1.6],

fw � [− 10000, 10000],

f12 � [0, 2000].

(36)

An arbitrary test case refers to randomly assigned values
for the four parameters. -e N test cases can be described by
the following formula:

case1 � Δm1, ζ1, fw( 1, f12( 1 , . . . , casen � Δmn, ζn, fw( n, f12( n . (37)

By substituting formula (37) into formula (28), we can
obtain the solutions of the corresponding test cases as the
following formula:

solution1 � f1( 1, f2( 1, v
2
1  . . . , solutionn � f1( n, f2( n, v

2
n .

(38)

By substituting formula (38) into formula (28), we can
verify the correctness of the fault-tolerance area. After
testing, the solutions of all test cases are inside the fault-
tolerance area, including its boundary. Figures 11(a) and
11(b) show that the solutions of these 1000 test cases are all
inside the fault-tolerance area. Figures 11(c) and 11(d) show
that the solutions of these 10,000 and 100,000 test cases.

When the number of test cases is 10,000 and 100,000, the
same conclusion is obtained, as shown in Figures 11(c) and
11(d), respectively.

-e sensitivities of these four uncertain parameters are
different. -e change of mass and air coefficient is the most
sensitive to safety conditions. For example, China’s Fuxing
high-speed railway has strict limits on the number of
passengers.

7.2. Comparison. Previous reasoning methods based on
algebraic polynomials have mainly concentrated on non-
error systems [9, 12–15], whose coefficients and variables are
accurately described. For systems with errors in coefficients
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and variables, most previous methods are incompetent.
However, the method of Reference [16] is very valuable in
theory but is only effective for a single variable or coefficient
with error not for multiple error variables or coefficients.
Among the fault-tolerant methods, there are many similar
fault-tolerant error analysis methods [23–25], but formal
reasoning methods are rarely reported.

8. Conclusion

Our main contribution is to show that the reasoning method
is reliable and the error controllable, even though errors exist
in the coefficients and variables in the linear assertion.
Furthermore, the method proposed in this paper is not
limited only to the verification of decentralized power
systems, as errors in many systems are common and un-
avoidable. -is method is promising in systems described by
linear equations with error parameters. In such systems, our
method may remain effective by using linear equations to
approximate the nonlinearity within a small time interval.
Hence, the method in this study has a wide range of
applications.

Nevertheless, if not to approximate the nonlinearity of
the system by linear equations within a small time interval,
our reasoning method may not be applicable to these
nonlinear systems with errors. -is is also the focus of our
work in the future.
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Nowadays, the Internet of Vehicles has become the focus of global technological innovation and transformation in the automotive
industry. Its flowmodelling appears to play a very important role for designing and controlling the transportation systems, since it
is not only necessary for improving safety and transportation efficiency but also can yield a series of society, economy, and
ecosystem environment problems. Considering the characteristics of the frame structure includes states and actions and discrete
and continuous aspects of traffic flow dynamics, both petri net and Z have proved to be useful tools for modelling the Internet of
Vehicles. It can formally describe the vehicle behavior accurately with petri net and more details with Z frame structure. A new
integration formal method of time petri net and Z is presented in this paper for modelling the vehicle behaviors and traffic rules
through taking into account state dependencies on external rules. Moreover, a case study in the Internet of Vehicles is proposed to
deal with the accurate localization of events. It shows that this formal verification methods significantly improves the safety and
intelligence of the Internet of Vehicles.

1. Introduction

With the development of communication technology,
wireless sensing technology, automatics, artificial intelli-
gence, and so on, the Internet of Vehicles techniques come
out. It is the achievements combined with the latest tech-
nological of computers and the modern automobile in-
dustry. Because of the complex and dynamic environment
when it is working, the control system becomes more and
more complex. Since it is about life, the key safety factor,
such as automotive engine, air bag control, brake system,
sensor monitoring system, and traffic regulations, have very
strict reliability requirements. Internet of Vehicles has made
our life convenient; nevertheless, at the same time, accidents
still happen often. Many researchers ensure the safety from
different aspects [1–3] by different methods, such as control
strategy, security factor, and intelligent platform. More and
more experiences show that the formal method is very ef-
fective to ensure the safety of the Internet of Vehicles [4–7]
systems.

In fact, the formal method is a good way to inspect the
problems in system design or requirement design [8, 9]. 'e
running environment of the Internet of Vehicles is very
complex and changes dynamically. It is hard to describe the
Internet of Vehicle using only one single formal language.
'e traditional process analysis methods, such as Petri nets
[10], CCS (Calculus of Communicating Systems) [11, 12],
and CSP (Communication Sequential Processes) [13, 14],
can model different aspects of the system from different
angles and abstractions, but the powers of description for
functional and nonfunctional attribute and constraint
condition are deficient. 'e traditional model languages
such as V [15, 16], B [17], and Z [18, 20] are good at
modelling description, but poor at describing system con-
currency. At present, the integrated specification languages
are a hot topic, which produced CSPZ [21], TCOZ [22], PZN
[23, 24], and so on. However, it seems that these languages
do not aim at the Internet of Vehicles. PZN has a good
advantage in describing traditional systems, since specifi-
cation Z has a good frame structure both in state description
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and operation description, and Petri nets [25–28] are very
suitable to express the behavior of the parallel and con-
current system model. So, the hybrid methodology which
combines the advantages of both specification Z and Petri
nets is very suitable for modelling and analyzing the Internet
of Vehicles system. PZN has been used to model and analyze
validity and accessibility of networked software. Experi-
mental results showed that PZN is very suitable to apply in it.
In the Internet of Vehicles circumstance, except states and
operation, time constraint is also very important. It not only
has continuous part time but also has discrete time. Some
researchers used time Petri nets to model the requirements
and software of system [29–34], but it lacked specific rule
descriptions and state depictions.

Motivated by the previous experience in formal verifi-
cation of requirements modelling and analyzing of net-
worked software, in this paper, TPZN (integration Time
Petri Net and Z) is proposed to formal modelling and
verifying the Internet of Vehicles systems. It is able to de-
scribe the concurrent process and fore-and-aft states in
systems at different times. TPZN consists of two parts
TPZN-TPN and TPZN-Z. TPZN-TPN defines the data flow
of the whole structure, order, and behavior of process at one
moment, while, TPZN-Z depicts the abstract data frame,
specific rule restriction, and time constraint. So, based on
enhancing the abstraction of the data and refinements by Z,
the number of states of the Time Petri Nets can be decreased
effectively. A case study shows the modelling method in
detail. 'is formal method is proved greatly by improving
the safety and validity of the intelligent vehicle systems.

2. Background

In this section, we recall some preliminary backgrounds that
are necessary for the rest of the paper.

2.1. Hybrid Petri Net Extension. Hybrid petri net extension
for traffic road modelling is proposed by Riouali et al. in [7].
It brought discrete parts and continuous parts which include
discrete and continuous places and transitions. 'e moving
and evolution of the Internet of Vehicles depend on the state
of places and are governed by various function, namely,
creation, destruction, merging, and splitting; meanwhile, it
defined the speed, maximum density, length, and maximum
flow of the traffic road modelling.

A hybrid petri net consists of three kinds of objects:
places, transitions, and directed arcs. However, unlike the
traditional petri net, here places are divided into two kinds:
discrete places and continuous places. Transitions as well as
places also fall into discrete transitions and continuous
transitions. Arcs still show the state dynamic from places to
transitions or from transitions to places. Hybrid petri net
extension is defined 6-tuplet N� (P, T, Pre, Post, Υ, Time).

(1) P is a set of places, P�Pc ∪ Pd, where Pc represents
continuous places and Pd represents discrete places.

(2) T is a set of transitions.
(3) Pre is the backward incidence matrix P × T⟶ N.

(4) Post is the forward incidence matrix T × P⟶ N.
(5) c represents the batch place function. It associates

with each batch place 4-tuplet (Vi: speed; di: a
maximum density; Si: length; Φmax: a maximum
flow).

(6) Time represents the firing delay in case of continuous
or batch transitions.

Here, we consider the time factor, while the c is more
suitable to be used in more intelligent vehicle concurrent
environment.

2.2. Z Frame Structure. Z is a good formalism for modelling
and designing. Compared with Petri Net, Z has better
abilities in type definition and data abstraction and model
refining. Its basic frame contains states and operations as
Figure 1. Every operation has relative states and constrain
rules. However, it does not describe the dynamic behavior of
the systems.

Although Ding et al. and Wei et al. proposed a method
that models systems by both Z and Petri Nets in [27, 28] and
the authors also showed that using PZN (Z and Petri Nets) to
model the requirements of software is an effective and
feasible way [9], it is still not good enough to model the
Internet of Vehicles. 'e reason is that PZN does not have
the ability to describe the real-time performance which is
very important in vehicle systems. In transportation systems,
time is a very important factor. So, all previous works have to
be improved and time constraints will be added in PZN [9].
TPZN stands for the integration of PZN and time factor. In
Section 3, we will introduce the modelling and analysis
methods by TPZN.

3. Modelling with TPZN

For satisfying the real-time capability and dynamic evolution
and data abstraction and type definition capabilities of the
Internet of Vehicles, the integrated specification TPZN is
presented in this paper. Based on enhancing the abstraction
of the data and refinements by Z, the state-of-the-time Petri
Nets can be decreased effectively. Compared with time petri
nets, color petri nets, PZN, and CSPZ, TPZN is more
suitable to define the intelligent vehicle systems.

3.1. TPZN

Definition 1. A TPZN is a tuple<P, T, F, Zp, ZT, S, C, M0,
SI>, where

(1) P is a set of the states.
(2) T is a set of the transitions.
(3) F is a set of the arcs which links state and transition.
(4) N � (P, T, F) is a SISO net.
(5) TPN� (P, T, F,M0, SI) is like a traditional time petri

net.
(6) PZN� (P, T, F, Zp, ZT, S, C) is a PZN as in [9, 19].
(7) Zp is a set of the state frame based on Z.
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(8) ZT is a set of the operation frame based on Z.
(9) S: P⟶Zp is a set of the one-to-one map rela-

tionship between P and Zp.
(10) C: T⟶ZT is a set of the one-to-one map rela-

tionship between T and ZT.
(11) M0: is the initial mark, and ∃t ∈ T, (p0, t) ∈

F, M0[t> .
(12) ∃ω,ω ∈ L(TPN), φf (TPN,ω) � (Mf, Df, SIf),

M0 � pi +pj + · · · + pk, D0 � D0(tm), D0(tn), . . . ,
SI0 � [0, 0], pi, pj, . . . , pk are all trigger states in the
beginning and tm, tn,...are all trigger transitions.Mf

represents the state of every node device in one
time. Df represents a set of the time interval of the
next possible transition. SIf represents the time
interval of the systemmay need when it arrives Mf.
φf represents the system’s situation during time
interval-SIf. If Mf is the final state, Df � ∅.

To ensure the compatibility and validity of the design,
TPZN-Z frame is used to describe the sign, property, rules,
and so on. 'e corresponding relation of TPN and Z is
shown in Figure 2. 'e green dashed box is the precondition
of transition. 'e rules and constraints are formally de-
scribed by Z in Zt. 'e purple dashed box represents the
postcondition by Z.

3.2. Time Constrained in TPZN. 'is paper introduces
global time and relative time for TPZN. 'e global time
proves the standard system time, and the relative time
supplies the time relative to previous statusMi. Here, it needs
to define two variables. One is the earliest occurrence time,
EAR(t), the other one is the latest occurrence time, LAT(t).
SIi contains the earliest occurrence time EAR(ti) and the
latest occurrence time LAT(ti). SIi � [EAR(ti), LAT(ti)].
Di(t) is the relative time to Mi-1, Mi−1[ti > .

For example, in Figure 3, relative time is marked. For
example, “t7 [15, 25]” means that t7 can be triggered in 15
seconds at least and 25 seconds at most. If it exceeds 25
seconds, the automatic delivery truck will stop working.
Accordingly, the system will be warning. 'e global time is
always synchronized with the time of the system.

3.3. Model Refining. 'e environment of the Internet of
Vehicles running is always complex, dynamic, and unex-
pected so that model refining and topological evolution
capability is to be very important. Suppose TPZN11and
TPZN12 are the subnet of TPZN1:

TPZN11 �〈P11, T11, F11, Zp11, ZT11, S11, C11, M011, SI11〉,

TPZN12 �〈P12, T12, F12, Zp12, ZT12, S12, C12, M012, SI12〉.
(1)

'en, (TPZN11 ∩TPZN12) ⊂ TPZN1. ∀pi, pi ∈ P,

P ∈ TPZN11/(TPZN11 ∩TPZN12) are all the new additional
virtual states which represent the possible states before or after
the subnet TPZN11. ∀ti, ti ∈ T, T ∈ TPZN11/ (TPZN11 ∩
TPZN12) are all the new additional virtual transitions which
represent the possible preconditions or postconditions. Of
course, new Z frame structure Zp

′ and Zt
′ should be redefined

by additional rules. In the similar way, a new TPZN′ can
substitute a transition ti, when the control structure change.

On the contrary, when one model is needed to be ab-
stracted, it can be seen as a new transition t′; then adding its
precondition and postcondition and reserving input and
output are relative to the conterminal model.

Theorem 1. If the global execution time of every transition
sequence of the new refined TPZN model from the beginning
to the end is equal to the execution time of the substituted ti of
the original TPZN, the new refined TPZN can maintain
behavioral consistency with the original one.

Because TPZN integrates TPN and Z, the refined TPN
can maintain behavioral consistency with the original one
and has been proved in [35–37].

4. Modelling Analysis

4.1. Accessibility. Traditionally speaking, there are two ways
to analysis the accessibility of the model. One way is using

Name of Zp

Name of Zt

X?: ...
Y!: ...

∃x1, y1, z1: ...

......
Δstate

state: ..., ...
......

Figure 1: Frame structure of Z.

P

T

ZP

F

S

C

State
...

ZT

ΔState
... F

P∃x, x ∈ Zp • State,
∃t, t ∈ Zp • Time,
∃d, d ∈ Zp • Distance,
y?: Zp • State

s!: Zp • Distance × LocalTime

Pre-condition

Post-condition

...

Figure 2: 'e relation between TPN and Z in TPZN.
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the reachability tree which is used to analysis the accessibility
of model states. Because the accessibility of the TPZN involves
limited time and there are lots of the state classes, some
methods to reduce the state classes are necessary. For in-
stance, Bourdil and Berthomieu have proposed somemethods
to reduce the state classes [28, 31]. Based on their work, we use
Z frame to abstract the system so to reduce the state number.
'e layer can be subdivided into smaller layers. If the lowest
layers can be verified to be correct, accessible, and safe, the
whole upper layer will have the same character. 'e reach-
ability tree can be built by φf based on TPZN. From φfi to
φfj, the path from the node φfi of the tree to the node φfj

shows the transition sequence (Figure 4).
'e other way is using the incidence matrix marked

C(C�D+ −D−). Here, the output matrix-D+ is defined as

D
+
[i, j] �

0, ∄fk � ti, pj , fk ∈ T × P,

n, ∃fk � ti, pj , fk ∈ T × P∧TokenPj � n,

⎧⎪⎨

⎪⎩

(2)

where D+[i, j]� 0 means there does not exist an arc from the
ti to pj. While,D+[i, j]� nmeans that there is an arc from the
ti to pj, and it will produce n same type elements with the
transfer. 'e (i, j) entry of D- is defined as

D
−

[i, j] �
0, ∄fk � pi, tj , fk ∈ P × T,

n, ∃fk � pi, tj, fk ∈ P × T∧TokenPi � n > tj,

⎧⎪⎨

⎪⎩

(3)

where D−[i, j]� 0 means there is not an arc from the pi to tj,
while D−[i, j]� n means that there is an arc from the pi to tj
and the transition can happen only if there is n same type
elements in the pj.

SupposingMi is a marked state. FromMi toMj, if there is
an transition sequences σ � titi+1, . . . , tj marked by X-vector
quantity and it satisfies Mj � Mi + X•(D+ − D− ), it proves
that the Mi state is accessibility. However, in TPZN, it must
consider the limited time. 'e time constrained rules are
described by Z frame. In the automotive vehicles system,

time constrained rules must be built strictly because subtle
time changemay cause serious traffic accident. So, modelling
the vehicles’ system, it needs to abstract the whole system,
then subdivide the whole system into specific layers, and go
on subdividing until it is subdivided into atom modules. By
φf which represents the state class containing timestamp, we
can get the possible behavior information of the system in
certain time interval and then predict the next step. 'e
algorithm of accessibility is designed as Algorithm 1 which
shows the accessibility decision from Mi to Mj, and the case
study explains how to use it in Figure 5.

4.2. Validity. 'e validity of the control structure can be
analyzed by the transfer matrix LDP of TPZN. From the LDP,
concurrent transition can be obtained by the same column
and row. As the following in LDP1, t1 and t2 can be trigger

P0

P1

P2

P3

P4

P5

P6

t2

t3

t4

Send 
message

Start

A receives 
message

Car drives

B receives 
message

Go

Wait
[3, 30]

A reaches 
the place

B reaches 
the place

Car arrives
P7

P8

Finish A

Finish BB picks up Y
[2, 5]

Car 
returns

Finish

t5

t6

P9

[1, 5]
t1

[3, 30]
Wait

[15, 25]

[2, 5]
A picks up X

[15, 25]
t7

Figure 3: 'e TPZN of automatic delivery truck.

φf0

φfm

SI0 = [0, 0], D0 = {D0(t0) = [5, 30], D0(t1) = [5.5, 30.5]}

t0 t1

SI2 = [5.5, 30.5],
D2 = {D2(th) = [6.3, 39],
D2(tk) = [6.8, 39.5]}

SI1 = [5, 30],
D1 = {D1(ti) = [6, 3.8],
D1(tj) = [6.7, 38.5]}

...
...

SIm = [12.9, 50.5],
Dm = ⌀

φf1 φf2

Figure 4: 'e TPZN of automatic delivery truck.
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simultaneously from p0 to p1 and pe, while, if p1 is arrived, t1
and t3 must be triggered:

p0 p1 pe...
...

...

p0

p1LDP1 =

pe

...

0 t2

0 0 .

0

...

t1

t3

0 0

... ...

0

...
(4)

So, the data flow structure can be mapped into the
transfer matrix LDP. If there exist several transitions in the
same row pi, it means when the system arrives into the state
pi, these transitions will be simultaneously triggered. While
if there exist several transitions in the same column pi, it
means only under the condition that all the transitions are
triggered, and pi can be reached.

After getting the initial model and parameters, the
sampled data or historical data can be used to correct
the model and parameters. Of course, real time data also can
be used to modify the model and parameters, but more
often, it is used to predict possible state of the future.

'e process of modelling the Internet of Vehicles with
TPZN is as Figure 6. First, the node device information and
traffic rules and evaluation indicators are obtained from the
initial systemmodel.Meanwhile, the data flow structure of the
system should be obtained, and divide the initial system into
subsystem. Second, the foregoing information is described by
Z frame structures, and the latter is described by TPN. 'ird,
the subsystem should be refined. 'en, the whole system can
be formally modelled by TPZN. Next, the related parameters
such as LDP, φf, D

+, and D− can be obtained from the TPZN
model. Combined with the current information of the system,
the initial parameters are used to analyze the character. At last,
the future behavior of the vehicle system can be predicted. If
the prediction shows, it will be in danger, and some strategies
can be adopted. If the danger is caused by some traffic rules,
these rules will be modified.

4.3. Advantage. Compared with TPN, PZN, and Z, TPZN
has better dynamic structure and more convenient time
constraint which are very important to the Internet of
Vehicles. Except these, TPZN has better frame structure
which can abstract the system to reduce the number of the
states to avoid the explosive growth usually happened in
traditional Petri Net. So, the advantage of modelling with
TPZN is shown very clearly in Table 1.

5. A Case Study

To verify effectiveness of our modelling methods to analyze
our verification algorithms, in this section, a simple case
study is offered. Suppose that an intelligent car has 4 lidars, 4
radars, 4 side vision, 1 full vision, image processing system,
radar system, lidar system, brake system, and so on. It is
running on the straight road, as shown in Figure 7.

For modelling the system, the first step is to obtain the Z
frame structure of every node device. Here, parts of the system
model’s, such as Zp and Zt, are put forward as space is limited.

CAR
Number: number
Brand: Volk, Ford, Benz, BMW, ...

Fuel: Gasoline, Electric, ...
FuelState: full, over, normal
Lidar: FrontLeftLi, FrontRightLi, FrontMiddleLi, BackLeftLi, BackRightLi
Radar: FrontLeftRa, FrontRightRa, BackLeftRa, BackRightRa
Vision: FrontLeftVi, FrontRightVi, BackLeftVi, BackRightVi, FullVi
ProcessSystem: RadarSystem, LidarSystem, VisionSystem, BrakeSystem, ...

State: Start, Stop, Brake, Acceleration, Deceleration, Back, TurnLeft, TurnRight, ...
......

'e above frame is the same parts of one element of the
Zp, which is defined as one kind of state of the system. As the
blue dashed box shows, it formally defines relative devices.
'e following one defines one node device of the system.

FrontLe�Li
Name: Lidar
Time: GlobalTime, LocalTime
Distance: LongDistance, LimitDistance, SafeDistance
Speed: Distance X LocalTime, ConstrainSpeed
StateLi1: Work, Rest
......

'e next frame is one element of the Zt which defines
one kind of possible transition of the system.

BEGIN
∆ CAR
∆ FrontLe�Li
∆ FrontRightLi
∆ FrontMiddleLi
∆ BackLe�Li
∆ BackRightLi
∆ FrontLe�Ra
∆ Door
......

......

x?: CAR.State
x1!: FrontLe�Li.StateLi1
x2!: FrontRightLi.StateLi2
x3!: FrontMiddleLi.StateLi3
x4!: BackLe�Li.StateLi4
x5!: BackRightLi.StateLi5
z!: Door.StateDoor

→(x1! = 1) ^ (x2! = 1) ^ (x3! = 1) ^ (x4! = 1) ^ (x5! = 1) ^ (z! = {1, 1, 1, 1})...

∃n: CAR.Number, ∃y: CAR.FuelState...

((n ∈ number) ^ (x? ∈ Start) ^ y ∉ over ^ ...)

...

So, at the first step, every node device’s Z frame structure
and every transition can be defined. In second step, the TPN
model of the Internet of Vehicles system will be built. Parts
of the TPN model are shown in Figure 8.

'en, the TPZN of this case is <P, T, F, Zp, ZT, S, C,M0,
SI>, where

(1) P � p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,

p13, p14, p15, p16}.

(2) T � t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 .
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(3) F is the set of arcs in Figure 8. 'e elements are like
the following form (p0, t0), (t0, p1), (t0,

p2), (t0, p3), (t0, p4), (t0, p5), (p1, t1), . . ..

(4) Zpi is the element of the set of Zp, and it represents
the state of Z frame of the node devices as CAR and
FrontLeftLi.

(5) Zti is the element of the set of ZT, and it
represents the transition of Z frame of the system
as BEGIN.

(6) S maps the relationship from state pi to Z frame of
the state, as p0->CAR.

(7) Cmaps the relationship from transition ti to Z frame
of the transition, as t0->BEGIN.

(8) M0�(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) represents the
initial condition of the system.

SIi is shown in Table 2, which represents the temporal
interval under Mi. Some of the details of each pi and ti are
shown as Table 3. Figure 7 shows parts of the case study, so,
the p9 and p10 are not the real final states. In fact, p9 and p10
can turn into normal state by some steps.

From Figure 8, the final state classes are φf5,
φf6, andφf7, where φf5 is the emergency brake, φf7is slow

Input: φf � φf0,φf1,φf2, . . . ,φfe , Mi, Mj, D+, D−

Output: true (print the path); false
Find the X, X� (Mj − Mi)•(D+ − D− )− 1

If X not exist, return false;
Else

For (k� 0; k< n; k++)
σk � th, th+1, . . . , th+c;//σk store the different value of X, n is the number of X.

φf0 is the root node;//built the reachability tree
For (k� 1; k≤ e; k++)

{if ( ∃tm, tm ∈ T, Mk]> tm ) ∧([SIk · EAR(tk), SIk · LAR(tk)]⊆ system(t) + interval time(tk) 

φfk is the child node of φf(k−1) ;
}//test the time constrain

For(k� 0; k< n; k++)
{If ( σk � th, th+1, . . . , th+c) exist in one path of φfi to φfj,

Lookup(S, C); //find the relative Zp′ and ZT′, test the logical relationship
If the logical relationship from Zpa ,Zpb, . . . ,Zpd((Mi � Pa + Pb + · · · + Pd),Zpa,Zpb, . . . ,Zpd ∈ Zp′) to Zpe,Zpf , . . . ,Zpr ((Mj �

Zpe + Zpf + · · · + Zpr),Zpe,Zpf , . . . ,Zpr ∈ Zp′) is reasoned to be correct.
Print φfi, tn,φfi+1, tn+1, . . . , tn+c,φfj;

}

ALGORITHM 1: 'e algorithm of accessibility. Accessibility decision from Mi to Mj.

SI0 = [0, 0], D0 = {D0(t0) = [5, 30]}, M0= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

SI0 = [5, 30],
D1 = {D1(t1) = [5.04, 30.8]}, D1(t1) = [5.04, 30.08],

D1(t3) = [5.05, 30.1], D1(t4) = [5.04, 30.1],
D1(t7) = [5.03, 30.1], D1(t8) = [5.03, 30.1]}

M0 = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0)

SI3 = [5.05, 30.1], 
D3 = {D3(t5) = [5.15, 30.6]},

M0 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0)

SI4 = [5.05, 30.1], 
D4 = {D4(t9) = [5.06, 30.12]},

M4 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0)

SI2 = [5.05, 30.1], 
D2 = {D2(t6) = [5.06, 30.6]},

M2 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0)

SI5 = [5.35, 30.06], 
D5 = ⌀

M5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

SI6 = [5.06, 30.12], 
D6 = ⌀

M6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

SI7 = [5.15, 30.6],
D7 = ⌀

M7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

t5 t10
t6

t2, t3, t7

t1, t4, t8

t1, t4, t7

t0

φf0

φf1

φf4 φf2φf3

φf7 φf6 φf5

Figure 5: Reachability tree of the case study.
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Build Z frame structure of 
device and rules
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device node and traffic 
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Modeling the data flow 
structure with TPN

Modeling the whole 
system with TPZN

Get LDP, ϕf, D+, D–, and so on 

Accessibility?
Validity?
Safety?

Getting the current 
information

Initialize the parameters

Alarming

Normal operation

N

Y

Accident? Modify the 
rules

Formal analysis

YEmergnecy
strategy

N

Figure 6: 'e flow diagram of modelling with TPZN.

FullVision

SideVision

Lidar

Radar

Figure 7: 'e environment of a case study.

Table 1: Compared TPZN, TPN, PZN, and Z.

Dynamic structure Frame structure Number of states Time constraint
TPZN Good Good Abstract Good
TPN Good Not good Explosive growth Good
PZN Good Good Abstract Not good
Z Not good Good Abstract Not good
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P2

P3

P1 t1

t2

P8

P7

Alarm

P5

P4

t3

t4

P6

P11

P13

P12 t7

t8

P14

P15

t5

Alarm

P10

t9

Brake

P16

P0 t0

[5, 30]

[0.04, 0.08]

[0.04, 0.08]

[0.05, 0.1]

[0.05, 0.1]

[0.03, 0.1]

[0.03, 0.1]

[0.1, 0.5]

[0.01, 0.02]

Start

Deceleration

P9t6

[0.01, 0.5]

Alarm

Figure 8: TPN model of the case study.

Table 3: 'e details of states and operations.

P0 'e start of intelligent car P14 Obstacles, traffic light, and so on
P1 Lidar 1 P15 Normal environment
P2 Lidar 2 P16 Keep running
P3 Lidar 3 t0 Start
P4 Radar 1 t1 Processed normal data by lidar system
P5 Radar 2 t2 Processed abnormal data by lidar system
P6 Detected obstacles ahead by radar t3 Processed normal data by radar system
P7 Detected obstacles ahead by lidar t4 Processed abnormal data by radar system
P8 Detected normal environment by radar t5 Decelerating
P9 Brake t6 Braking
P10 Deceleration t7 Process by vision-front
P11 Detected normal environment by lidar t8 Process by wide-angle
P12 Vision-front t9 Check information
P13 Wide-angle

Table 2: 'e detail of SI.

I φfi Mi Di SIi
i� 0 (M0, D0, SI0) P0 D0(t0) � [5, 30]  [0, 0]

i� 1 (M1, D1, SI1) P1 + P2 + P3 + P4 + P5 + P12 + P13

D1(t1) � [5.04, 30.08],

[5, 30]

D1(t2) � [5.04, 30.08],

D1(t3) � [5.05, 30.1],

D1(t4) � [5.05, 30.1],

D1(t7) � [5.03, 30.1],

D1(t8) � [5.03, 30.1]}

i� 2 (M2, D2, SI2) P7 + P6 + P14 D2(t6) � [5.06, 30.6]  [5.05, 30.01]

i� 3 (M3, D3, SI3) P8 + P11 + P14 D3(t5) � [5.15, 30.6]  [5.05, 30.1]

i� 4 (M4, D4, SI4) P8 + P11 + P15 D4(t9) � [5.06, 30.12]  [5.05, 30.1]

i� 5 (M5, D5, SI5) P9 ∅ [5.35, 30.6]

i� 6 (M6, D6, SI6) P16 ∅ [5.06, 30.12]

i� 7 (M7, D7, SI7) P10 ∅ [5.15, 30.6]
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down, and φf6 is running straight normally. 'e transfer
matrix LDP, D+, and D− of this case study is as follows:

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16
p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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0

0

0

0

0

0
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0
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0

0

0
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0
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0
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0

0
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0
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1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0
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,

,

,

t0
t1
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t6
t7
t8
t9

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

(5)

From the matrix LDP, the concurrent behavior can be
easily found. By the D+, D− , Mi, Mj, φfi, and φfj, the next
behavior can be deduced exactly. 'e exact arrival time can

also be obtained from SIi and SIj from the reachability tree as
shown in Figure 5.'e rules can be amended through the Zp

and Zt with the new data coming as well. Every Z frame
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structure can be coded by high-level programming language
so to reason the logic relationship easily.

6. Conclusions

In this paper, we propose a new way that uses TPN and Z
frame structure to formally model and analyze the safety and
accessibility of the Internet of Vehicles.'emethod has been
explained in detail by a case study. Although it promotes the
efficiency of finding problem when the system goes wrong
and can predict the future behavior, the multiple intelligent
vehicles working cooperatively are not taken into account,
which is an important and intriguing topic that we are
working on.
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To solve the problem that the bearing fault of variable working conditions is challenging to identify and classify in the industrial
field, this paper proposes a new method based on optimization of multidimension fault energy characteristics and integrates with
an improved least-squares support vector machine (LSSVM). First, because the traditional wavelet energy feature is difficult to
effectively reflect the characteristics of rolling bearing under different working conditions, based on analyzing the wavelet energy
feature extraction in detail, a collaborative method of multidimension fault energy feature extraction combined with the method
of Transfer Component Analysis (TCA) is constructed, which improves the discrimination between the different features and the
compactness between the same features of rolling bearing faults. *en, for solving the problem of the local optimal of particle
swarm optimization (PSO) in fault diagnosis and recognition of rolling bearing, an improved LSSVM based on particle swarm
optimization and wavelet mutation optimization is established to realize the collaborative optimization and adjustment of LSSVM
dynamic parameters. Based on the improved LSSVM and optimization of multidimensional energy characteristics, a new method
for fault diagnosis of rolling bearing is designed. Finally, the simulation and analysis of the proposed algorithm are verified by the
experimental data of different working conditions. *e experimental results show that this method can effectively extract the
multidimensional fault characteristics under variable working conditions and has a high fault recognition rate.

1. Introduction

In industrial equipment, the rolling bearing is an essential
part of high-speed ratingmachinery. During actual operation,
once the rolling bearings have failures (such as internal
cracking, abrasion, external cracking, et al.), the safety and
reliability of the entire system will be directly affected. In this
situation, the condition monitoring and fault diagnosis of
rolling bearings have become a hot research topic in prog-
nostic and health management (PHM) of industrial systems.

Over the past decade, the accretion data, which reflect
the running performance of rolling bearings, are usually
used to analyze and test the fault characteristics of the rolling
bearings. However, because the working operation of rolling
bearings is influenced by various kinds of dynamic factors,
the fault characteristics of the acceleration data may be
quickly submerged by the ambient noise. *us, these all

cause a huge difficulty in diagnosing the fault of rolling
bearings. And fortunately, when the fault characteristic of
rolling bearings is located in the blind areas, the energy
waveform of the original signal shows the characteristics of
high efficiency and low amplitude. So, some researchers have
tried to extract the energy feature from the acceleration data
to accomplish the target of fault diagnosis for the rolling
bearings. Unfortunately, because the fault data signal of
rolling is nonlinear and nonstationary vibration response in
the industrial environment, the energy characteristics
extracted by based-wavelet packet and improved methods
cannot effectively distinguish the differences of different
features and the tightness of the similar characteristics for
the complex industrial environment.

To extract useful information of energy features, Wavelet
*eory is a usual method to analyze the vibration data of
rolling bearing in previous work [1]. *e key reason is that
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the wavelet packets can adaptively be selected according to
the characteristics of the signal and may divide a frequency
band into multiple frequency bands. Based on this, some
scholars had presented some improved extracted method
(such as wavelet packet transform (WPT), the fuzzy mutual
information of wavelet packet transform (FMIWPT), dual-
tree complex wavelet packet transform, support vector
machine based- WPT, complex wavelet packet energy
moment entropy and maximal overlap wavelet packet
transform, et al.) of energy feature in [2–7]. *ese methods
may not only implement the initial enhancement of the fault
feature but also extract multiple permutation entropy fea-
tures in the real application.

To address this problem, some scholars have tried to
decompose the fault data signal into different frequency
bands by using the wavelet packet and reconstruct the nodes
in the frequency band in [8]. *e advantage of the method is
that characteristic frequency points may be located as
quickly as possible in an industrial environment. Meanwhile,
to treat the irregular vibration signal, the fault features may
be extracted in time domain by using wavelet transform (see
[9]). Besides, the optimization of structure of the energy
characteristics has been also discussed briefly using Transfer
Component Analysis (TCA) in [10]. By using the algorithm,
the data properties may be preserved and the data distri-
butions in different domains may converge to a stable scale.
However, the running state of rolling bearings is affected by
the endogenous factors; the different decomposition depths
of the energy features are a very key problem in our working
condition. Due to the diversity and variability of the actual
fault diagnosis distribution, some methods (such as opti-
mized transfer learning (TL) algorithm and regularization
terms of multilayer) are aimed at solving the domain ad-
aptation and reducing the distribution discrepancy and the
among-class distance of the learned transferable features in
[11, 12]. *ese methods can optimize the structure of feature
sets better. At the same time, for getting better effectiveness
in fault diagnosis under variable working conditions, some
improved methods based on transfer learning (such as high-
order Kullback–Leibler, parameter transfer, improved joint
distribution adaptation, et al.) were also presented in
[13–16]. So, it is essential to find out a newmethod to further
optimize the structure of energy characteristics of rolling
bearings in the real application. *is problem is the first key
core of this paper.

Additionally, on the one hand, the purpose of extracting
the energy features is to implement the accurate diagnosis of
fault state in industrial scenes. For this reason, the diagnosis
method needs to be also simultaneously concerned while the
multifeatures of fault signal are extracted. In the light of this,
the support vector machine (SVM), which has the preferable
ability of the classification, is usually used to implement the
classification and recognition of fault in running processing
of rolling bearing. However, the algorithm does not suit the
situation of large amounts of data. *us, some researchers
presented improved algorithms such as binary SVM or
based-HV SVM to identify the multifault types of the rolling
bearing [17]. Further, the least-squares support vector
machine (LSSVM) was constructed to reduce the difficulty of

calculation and improve the recognition speed. *e algo-
rithm and model have solved the inequality constraint in
SVM. But how does equality constraint substitute the in-
equality constraint is very difficult in practice. To overcome
this problem, some optimized methods (such as multiclass
LSSVM, trend analysis based-LSSVM, et al.) have been
presented to diagnose the fault state in [18–22]. *ese
models can better identify the fault state in a complex in-
dustrial scenario. Meanwhile, to get the better classification
performance of fault states, some integrated intelligent di-
agnosis methods and models (such as based-SVM neural
network, based-LSSVM neural network, et al.) were also
established in [23]. *e result showed that the improved
algorithms have the classification performance for the
rolling bearing in industrial systems.

However, although these improved models and algo-
rithms may achieve the desired goal in fault diagnosis of
rolling bearing, there are two crucial parameters of LSSVM
worth noting, i.e., the penalty factor and the kernel function
parameter. Because the penalty factor trades off between
misclassification samples and interface simplicity and the
kernel function defines the size of the impact of the single
training sample, the accuracy of fault diagnosis is decided by
them to a great extent. At present, the optimization of the
two parameters has not yet been resolved. From the point of
practical engineering application, there are few methods to
synergistically adjust the structure of the feature to make it
better for practical fault diagnosis. To overcome the prob-
lem, some optimized algorithms (such as multimode PSO,
the PSO based on the Mahalanobis distance (MD), imple-
ments mutation based on PSO, et al.) was proposed to adjust
significant parameters in [24–26]. So, the second area that
we were focusing on in this paper is considering the in-
teractive impact between the optimization selecting of the
energy feature and the accuracy of fault diagnosis [27–31].

According to the statement, the method in this paper
uses three effective methods to construct a bearing fault
diagnosis model. First, wavelet transform and energy fea-
tures are used to represent the characteristics of the bearing
signal,d while the eight-dimension energy feature set cannot
distinguish the difference between the five bearing states.
*en, TCA is introduced to optimize the distribution of the
energy feature set. Because the TCA can both reduce the
distribution between different bearing states and increase the
distance of the learned transferable features, the optimized
feature set is beneficial to the improvement of diagnostic
accuracy. At last, the improved PSO aims to find the optimal
parameters of LSSVM.

According to these two points, a new fault diagnosis
method of rolling bearing was presented by integration with
cooperative energy feature extraction and improved LSSVM
to extract the multidimensional feature set and enhance the
accuracy of fault diagnosis. *e rest of the paper is arranged
as follows. In Section 2, the cooperative energy feature
extraction rule has been discussed in detail combined with
TCA andWP. In Section 3, we have established an improved
LSSVM algorithm with dynamic parameter adjustment-
based Particle Swarm Optimization (PSO) and Wavelet
Mutation Optimization (WMO). In Section 4, the fault data
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coming from the laboratory of the Guangdong Institute of
Petrochemical Technology was used to verify the effective-
ness of the model algorithm. Finally, some promising ap-
plications of the model have been discussed in detail in
Section 5.

2. CooperativeEnergyFeatureExtractionModel
and Algorithm for Vibration Signal of
Rolling Bearings

In general, the extraction of the reasonable feature from
original signal data is a universal method in an industrial
scenario. But, as we all know, the original signal data of the
bearing is large and complicated in the real industrial scene.
In addition, the original data set is disturbed by complex
noises. *erefore, in this situation, how to extract the energy
features of the original signal data is very important to
exactly represent the running state of the rolling bearing.
Based on this, the Wavelet *eory and Transfer Component
Analysis are introduced to construct the cooperative energy
feature extraction model. *e advantage of this processing
method has the following two points: the first point is that
the primary signal components with different frequency
bands may be in detail depicted by wavelet packet because
the wavelet packet may provide satisfactory localization
properties in both time and frequency domains; the second
point is that the structure of energy feature can be optimized
by the TCA. Also, this cooperative processing method can
get the internal form of the energy feature. Next, the energy
feature extraction model based on wavelet packet shall first
be expounded.

2.1. Energy Feature Extraction Model Based on Wavelet
Packet. To address the above first problem, the vibration
data may be divided into multiple frequency bands by
wavelet packet. In a real application, the internal charac-
teristics of the signal can be adaptively selected. To better
understand the idea, the detailed algorithm shall be in detail
described by using a wavelet packet in the next step.

To further analyze the data resource, let L2(R) � ⊕j∈ZWj

indicate the fact that multiresolution analysis is based on
different scale factors of j. In the multifrequency analysis,
L2(R) is decomposed into a series of subspaces of the or-
thogonal sum of Wj(j ∈ Z), where Wj is the subspace of the
wavelet function. In our work, the wavelet space of Wj is
refined in binary mode to achieve the goal of increasing the
frequency resolution. To ensure the mapped performance
between the scale-space Vj and wavelet subspace of Wj in a
new subspace Un

j , the iteration formula was defined as
follows:

U
0
j � Vj,

U
1
j � Wj,

j � Z,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where the subspace of Un
j is the closure space of the function

ωn(t) and U2n
j is the closure space of function ω2n(t); the

following two-scale equations should be also satisfied:

ω2n(t) �
�
2

√
 h(k)ωn(2t − k),

ω2n+1(t) �
�
2

√
 g(k)ωn(2t − k),

⎧⎪⎨

⎪⎩
(2)

where g(k) � (− 1)kh(1 − k); the sequence of ωn(t), n ∈ Z 

is the basis function. And then the sequence constructed is
determined by the basis function ω0(t) � ϕ(t) and is called
the orthogonal wavelet packet; ω0(t) and ω1(t) are the
scaling function of ϕ(t) and the wavelet basis function ψ(t),
respectively.

In addition, the normalized orthogonal basis of L2(R) is
composed of ωn(t − k),ωn(t − l) � δkl and ωn(t), n ∈ Z .
*e wavelet packet series of h(k) is described as
ωn(t), n ∈ Z .

Further, for an arbitrary cn
j(t) ∈ Un

j , cn
j(t) can be

expressed as follows:

c
n
j(t) � 

t

d
k,n
l ωn 2j

t − l , (3)

where U2n
j ⊥U2n+1

j , Un
j+1 � U2n

j ⊕U2n+1
j . And then, cn

j+1(t) can
be decomposed into c2n

j (t) and c2n+1
j (t) by using wavelet

decomposition.
In addition, di+1,n

l  is used to obtain the equations for
d

j,2n

l and d
j,2n+1
l  according to the following formula:

d
j,2n

l � 
k

hk− 2ld
j+1,n

k ,

d
j,2n+1
l � 

k

gk− 2ld
j+1,n

k .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

In conventional approaches, the three-layer wavelet
packet decomposition structure is shown in Figure 1.

From Figure 1, for an arbitrary signal S at which the
frequency range is in[0, f], it may be decomposed into a
high-frequency part D1 and a low-frequency part A1. After
the first layer in the multiresolution analysis framework, the
frequency range of the high-frequency part is [f/2, f], and the
frequency range of the low-frequency part signal is [0, f/2].
Once the first layer was ended, the decomposition in the
second layer starts to perform; i.e., the low-frequency part
AA2 and the high-frequency part DA2 are obtained from
decomposing the low-frequency part A1. *e high-fre-
quency part D1 is also decomposed to obtain the low-fre-
quency component AD2 and the high-frequency
componentDD2. *is means that the four frequency ranges
may be indicated as [0, f/4], [f/4, f/2], [f/2, 3f/4], and [3f/4, f].
Analogously, the signal data set may be implemented to
decompose layer by layer. *e decomposition relationship
for signal S may be formulated as follows:

S � AAA3 + DAA3 + ADA3 + DDA3 + AAD3

+ DAD3 + ADD3 + DDD3.
(5)

*rough the above algorithm, the different orthogonal
wavelet spaces of Un

j have different time–frequency resolution
spaces, and all Un

j can cover the entire bandwidth of signal S.
Obviously, the time–frequency domain analysis can adaptively
project the spectral components of the signal onto the

Mathematical Problems in Engineering 3



orthogonal wavelet packet space of the corresponding fre-
quency band. In engineering of energy feature extraction of
rolling bearing, because the components of the original signal
at each decomposition level represent the signal information
in the corresponding local time–frequency area, the infor-
mation of the component signal may be always intact. Of
course, the energy of the signal distribution has been calculated
at a certain decomposition level, and the energy in the or-
thogonal wavelet packet space at a certain decomposition level
can be calculated. *en, the frequency indices of energy
wavelet packets are arranged to form the eigenvectors of the
original signals.

To better characterize the energy feature, suppose that
the calculation formula of the wavelet packet energy is as
follows:

E(j, n) � 
k∈Z

ωn(2t − k) 
2
, (6)

where ωn(2t − k) is the wavelet packet transform coefficient.
To further understand and analyze the distribution of

energy features, the statistical distribution of the energy is
calculated according to the decomposed signals at different
frequency bands.

Unfortunately, when the energy feature with different
working conditions is input into the classifier, the result of
training accuracy is 97.5%, and the test accuracy is only
87.2%. *e energy characteristics cannot fully depict the
differences among different states of the bearing, which
results in low accuracy for bearing fault diagnosis. *us, to
find a method to make up for the shortage of wavelet packet
is necessary. To reduce the data dimension and optimize the
data distribution, the TCA theory was used to further op-
timize the feature sets in our research. Next, an improved
cooperative energy feature extraction shall be established to
solve the problem of combining with wavelet packet and
TCA.

3. An Improved Cooperative Energy Feature
Extraction Method Based on the Transfer
Component Analysis Algorithm

In the real operation of extracted energy feature for signal
data of rolling bearing, how to accurately distinguish the
differences among the states in variable working conditions
is very crucial. To ensure that the energy feature set of rolling
bearing has the characteristics such as stronger class and

compact inner class, the TCA was introduced to reduce the
distribution discrepancy and among-class distance of the
learned transferable features. *e main role of TCA is to
optimize the structure of energy characteristics gotten in the
above section. To accommodate more flexible modeling,
based on introducing the basic concept and approach of
transfer feature, this section would design and implement a
cooperative energy feature extraction method by using the
TCA algorithm.

3.1. Basic Concepts of Transfer Feature. Notice that the TCA
algorithm can adjust the edge distribution probability of the
data set, and the edge distribution probability represents the
probability distribution of the data set. *e distribution of
the bearing feature set is insufficient to meet the accuracy
requirements of fault diagnosis. To reduce the distance in the
same feature set and expand the gap of different feature sets,
the method can reduce the distribution between the source
domain and target domain data. *e transfer feature
mapping process is designed in Figure 2.

*e circle and triangle represent source domain and
target domain, respectively. A and B mean different data.
Before the common mapping process is implemented, the
edge probability distribution between the feature set of the
source domain differs from the feature set of the target
domain. *e mapping relationship from the source domain
to the target domain should be depicted.

For simplicity of further analysis, assume that the source
domain is DS � XS, XT , the target domain is DT � XT ,
XT is the feature set of the source domain, YS is the label set,
and XT is the feature set of the target domain. And then,
P(XS)≠P(XT).

In fact, after feature mapping by using the TCA algo-
rithm, the edge probabilities of M(XS) and M(XT) are as
similar as possible, and the following relationship should be
satisfied:

P M XS(   ≈ P M XT(  . (7)

Once the above formula is correct, the source domain
feature sample set and the target domain feature sample set
are mapped to the shared subspace, and the knowledge of the
feature sample transfer process can be fully utilized to
improve the cross-domain learning ability.

4. Energy Feature Extraction Method Based on
the Transfer Component Analysis Algorithm

To ensure that the difference between the source domain and
the target domain should be reduced by finding the common
points, the distance between the transfer method and
retaining the original features of the two data sets is defined
as follows:

DS � XS, XT  � xSi
, ySi

 
ns

i�1, (8)

where nS is the number of labeled source domain training
samples data and nt is the number of unlabeled data in the
target domain forXT � xTi

 
nt

j�1.

S

A1 D1

AA2 DA2 AD2 DD2

AAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3DAA3

Figure 1: Schematic diagram of the wavelet packet decomposition
structure.
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In this situation, the goal is to predict the sample label of
yTi

. At the same time, the data mapping function ϕ between
the source domain and the target domain is defined as
follows:

XS⟶ ϕ XS(  � X
∗
S ,

XT⟶ ϕ XT(  � X
∗
T.

(9)

*e objective of this process is to reduce the difference
between the edge probability distributions P(XS) and
P(XT) so that P(X∗S ) ≈ P(X∗T).

Similarly, for a given source domain data set XS and
associate target domain data set XT, the distance function
MMD between the two data sets can be expressed as follows:

MMD XS, XT(  �
1
ns



ns

i�1
ϕ xSi

  −
1
nt



n

j�1
ϕ xTj

 
2

H
, (10)

where ϕ(xTj
)2
H
is the squared standard operation performed

in the regenerative kernel Hilbert space. *e source and
target domain data are mapped into a shared low-dimen-
sional potential space through the nonlinear mapping, and
then the kernel functions can be solved as follows:

K �
KS,S KS,T

KT,S KT,T

  ∈ R ns+nt( )× ns+nt( ). (11)

In equation (11), KS,S, KS,T, KT,S, and KT,T are the
corresponding kernel functions obtained from the source
domain, the target domain, and the hybrid domain,
respectively.

Further, the formula can be rewritten as

MMD XS, XT(  � Tr(KL), (12)

where Tr represents the trace of a matrix

For simplicity, Li,j maybe expressed as follows:

Li,j �

1
n
2
s

, xi, xj ∈ XS,

1
n
2
t

, xi, xj ∈ XT,

−
1

nxnt( 
, others.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

*rough the above analysis, the distribution among
different data may be reduced, and shared feature repre-
sentation of the two domains is realized. *e representation
may also maintain the data feature attributes of the two
domains. Also, the method may achieve this goal and extract
the data components for the transfer of data from different
but related fields. *e main purpose of the algorithm is
twofold. First, the distance between ϕ(XS) and ϕ(XT) is
minimized; second, the main feature attributes of the raw
data sets Xs and XT are preserved.

For the whole mapped samples, we can find an em-
bedded matrix W ∈ R(nx+nt)×m（m≪ nx + nt）, s.t.

K � KK− 1/2 K KWWT
K. (14)

Based on equation (14), equation (11) may be rewritten
as follows:

MMD X
∗
S , X
∗
T(  � Tr KWWT

K L  � Tr W
TKLKW .

(15)

Once the covariance matrixWmay be found, the largest
variance of the energy feature can be maintained into the
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newly created subspace. *e concrete kernel matrix formula
can be indicated as  , i.e.,





� W

TKHKW, (16)

where H � I − (1/(ns + nt)1T) ∈ R(ns+nt)×(ns+nt) indicates the
center matrix.

*erefore, the problem may be transformed into the
optimal problem of 


� Im, and Im ∈ Rm×m is a unit matrix.

*e final core learning problem can be established as follows:

min
W

Tr W
TKLKW  + μTr W

T
W ,

s.t. W
TKHKW � Im,

(17)

where μ is the trade-off parameters and μ> 0.
Next, the optimization problem can be transformed into

a maximum mapping matrix W, which can be obtained by
matrix decomposition. First, we need to calculate the matrix
(KLK + μI)− 1 KHK to obtain W.

So far in this discussion, the core energy features can be
selected by integration with the above model. On the other
hand, because the distance between the same-state features
becomes increasingly similar, the separability of energy
feature becomes increasingly clear for different states. All in
all, the compactness of features has been greatly improved
after integrating with TCA. It is convenient to use classifiers
to improve the fault diagnosis accuracy of bearings.

4.1. Design and Analysis of a Cooperative Energy Feature
Extraction Algorithm. According to the above theoretical
analysis, an improved cooperative energy feature extraction
algorithm may be designed as follows.

(i) Step 1. Original signals in different working con-
ditions of the bearing are input to the wavelet
packets for three-layer decomposition.

(ii) Step 2. According to the signal component, the
energy of every component is calculated, and the
bearing feature set is constructed.

(iii) Step 3. *e training sample set of the source domain
is built based on the energy characteristics with
explicit working conditions. Moreover, feature sets
under unknown working conditions are con-
structed to collect test samples in the target field.

(iv) Step 4. *e source domain feature set and the target
domain feature set are mapped into the kernel space
together. *e maximum mean distance between the
source domain feature samples and the target fea-
ture samples is measured in space. *e calculated
maximum mean distance is used as a criterion for
judging the source domain data.

(v) Step 5. *e data are input into the optimized
LSSVM, training is performed with the source
domain data, and the target domain data are used to
test the training result. Finally, the classification
results are obtained and accuracy is assessed. *e
detailed flowchart is shown in Figure 3.

Whether the extraction mechanism of the energy feature
is improved, the final goal of the energy feature is to improve
the accuracy of the fault recognition of rolling bearing. Of
course, good differentiation among different states and a
high correlation among the same states will bring some gains
in diagnostic accuracy. *at is to say, it is also convenient to
use classifiers to improve the fault diagnosis accuracy of
rolling bearings. In the next step, the fault diagnosis method
of rolling bearing shall be established to solve the goal.

5. Classification Process of Improved
LSSVMwithDynamic Parameter Adjustment

According to the above analysis, an improved fault diagnosis
method combining with improved LSSVM with dynamic
parameter adjustment is listed in Figure 4.

(i) Step 1. Input the extracted data features into the
improved LSSVM model and train the two pa-
rameters that need to be optimized.

(ii) Step 2. Initialize the parameter in particle swarm,
such as evolutionary algebra, the learning factor, the

Start

MMDE metric

Train Test

End

Decompose the original
signal with a wavelet

packet

Calculate the energy
characteristics of the
decomposed signal

Build a flagged source
domain feature

sample set

Build an unlabeled target
domain feature

sample set

Mapping to the
regenerative kernel

Hilbert space

Mapped source domain
feature set after mapping

Target domain feature set
after mapping

Optimized LSSVM
classification model

Figure 3: Flowchart of the bearing fault diagnosis method.
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initial position xid of each particle, the initial ve-
locity vid, et al.

(iii) Step 3. *e best position is set as the initial position
of each particle. *e optimal fitness equals the best
position of each particle. *e speed and position of
each particle are calculated according to the
formula.

(iv) Step 4. Calculate the scale parameter and wavelet
function value from the wavelet variogram. *e
mutation operation is performed on the current
optimal particle according to the wavelet function
formula.

(v) Step 5. Update pbest and gbest according to the fitness
value of the particle. *en, update the velocity and
position information of the particle at the same
time.

(vi) Step 6. Determine whether the results of the algo-
rithm reach the optimal condition. *e training
classification accuracy of the classification model is
defined as the fitness degree of the PSO. If the fitness
value calculated in the current cycle is the best, the
current particle is saved as the best particle. If the
fitness is not the best, the optimal parameters from
the end of the previous cycle are used. *e optimal
particle search continues until the end of the cycle.
*e punishment coefficient C and Gaussian radial
kernel function R are saved to construct the LSSVM
classification model.

*rough this algorithm, the cooperative energy feature
extraction model and algorithm for the vibration signal of a
rolling bearing are used to build a multidimensional feature
set. And the fault diagnosis may also be implemented. *e
special flowchart of fault diagnosis is designed in Figure 4.

6. Experiments and Discussions

To verify the effectiveness of the proposed fault diagnosis
method, the experimental acceleration data of bearings are
used for fault diagnosis. *e experimental data were ob-
tained from the multifault diagnosis equipment of the rotary
unit in the State Key Laboratory of Bearings, Guangdong
University of Petrochemical Technology. Figure 5 shows the
single-stage centrifugal fan fault diagnosis unit. Figure 6
shows the schematic diagram of the inner and outer cracks
of bearings.

With this experimental platform, the data for each fault
can be acquired under five states: normal, external cracking,
internal cracking, missing bearings, and wearing bearings.

6.1. Signal Processing and Feature Set Construction. In our
testing rig, the acceleration signals of five different condi-
tions in the normal, external cracking, internal cracking,
wearing, and missing states of the bearing during operation
are used as the original signals for fault diagnosis.

*e five different working conditions are in A of length
1150mm, speed 2870 r/min; in B of length 1730mm, speed
2980 r/min; in C of length 1800mm, speed 2970 r/min; in D
of length 2450mm, speed 2980 r/min; and in E of length
2200mm, speed 4800 r/min. *e 300 characteristics of the
first three working conditions are used as the source domain
set; the 200 characteristics of the latter two working con-
ditions are used as the target domain set. *e original signals
for the original states of the bearing are shown in Figure 7.

To verify the effectiveness of our algorithm, a sample
data set containing 10240 sampling points in a sample period
is used to extract the energy feature. To facilitate signal
processing and extraction, the original signals are divided
into 1024∗10 groups. Figure 7 shows the acceleration signal
of the bearing under normal conditions. From Figure 7, the
original data set has been divided into 1024∗10 groups. And

Start

Extract the energy characteristics of the raw data and
enter the classification model

Initialize the parameters of the particle swarm
algorithm

Calculate the velocity and position information of the
particles and determine the optimal particles based on

fitness

Calculate relevant parameters based on wavelet
variogram and select optimal particles for mutation

operation

Update particle information to calculate fitness

Meet the requirements of the classification
model parameters

Bring the optimized parameters into the classification
model to get the classification results

Yes

No

End

Figure 4: Schematic diagram of the optimized LSSVM classifi-
cation model.
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the signal in each group is decomposed into 8 frequency
bands by wavelet packet algorithms as shown in Figure 8.

*e signal has a large volume due to high sampling
frequency, and it is difficult to distinguish faults from these
signals. First, the original signal is decomposed into three
layers of wavelet packets to obtain signal components with
eight different frequency bands. Figure 8 is a diagram
showing the signal components obtained by decomposing
the original signals for the original states of the bearing. *e
frequency band of the original signal is divided into multiple
bands. According to the characteristics of the signal, the
corresponding frequency band is adaptively selected to
match the signal frequency, thereby improving the resolu-
tion of the signal frequency. Figure 7 only shows that the
signal is decomposed into signal components of different
frequency bands, and it does not reflect obvious fault
characteristics. *erefore, the next step is to further extract
the energy characteristics of the signal components.

After the original signal in five different states is
decomposed by the wavelet packet, the characteristic his-
togram is obtained by calculating the energy of the node in
the component signal. *e energies described the multidi-
mensional feature set of the bearing and the energy features
extracted from one group of the normal signal. From the
using point of view, constructing the feature set of signals is
reasonable by using them in a sample period. As shown in
Figure 9, the distribution of energy is different under dif-
ferent bearing states. *e energy characteristics can initially
show the difference, and then the energy feature values are
extracted to construct the energy feature table. So, these
features may be used to constitute a complete feature set for
structure processing and fault diagnosis. Based on this, the
energy feature values extracted from the 1024∗10 group of
the normal signal are listed in Table 1.

In our experiment, the data sets for the five bearing states
include 10∗10240 groups, and each group of signals is di-
vided into ten groups for signal decomposition. We can
obtain 8 different frequency bands from the original signal.
*e energy characteristics of the nodes are used to construct
a multidimensional energy feature set for the bearing. Ta-
ble 1 shows the multidimensional energy feature data sets for
the original states; it is obvious that different bearing state
has different energy features. *en, the table of energy
features is input into the classifier.

*e energy features extracted from the bearing fault
vibration signal constitute a feature set that has been nor-
malized. *e labeled source domain data sample set and the

unlabeled target domain data sample set are mapped to the
regenerative Hilbert kernel space. Between the source do-
main and target domain, the difference in the total maxi-
mum mean value reflects the difference in the distribution.
*e smaller the maximum mean difference is between the
source domain and target domain, the stronger the source
domain to target domain mobility. It is beneficial to select
source domain data with high similarity to the target domain
data.

Unfortunately, when the energy feature with different
working conditions is input into the classifier, the result of
training accuracy is 97.5%, and the test accuracy is only
87.2%. *e energy characteristics cannot fully depict the
differences among different states of the bearing, which
results in low accuracy for bearing fault diagnosis. *us, to
find a method to make up for the shortage of wavelet packet
is necessary. To reduce the data dimension and optimize the
data distribution, the TCA theory was used to further op-
timize the feature sets in our research. Next, an improved
cooperative energy feature extraction shall be established to
solve the problem of combining with wavelet packet and
TCA.

Energy feature is recalculated from each component by
the improved cooperative energy feature extraction algo-
rithm. In our simulation experiment, the feature set in A is
inputted into TCAwhich is used to optimize the distribution
of the feature set. In this hidden subspace, a classifier can be
trained using the tagged samples from the mapped source
domain, and the classifier is used to test the target domain
data in the hidden space.*e simulation results are shown in
Figures 10 and 11.

Figure 10 shows the original energy distributions of the
bearing. *e five state characteristics of the bearing (normal,
outer crack, inner crack, wear, and missing steel ball in
bearing) are not distinct, and a poor energy distribution
leads to low classification accuracy. Obviously, after in-
putting the energy characteristics into the TCA algorithm,
the energy distribution of the bearing is shown in Figure 11.
For indeed, the distance between same-state features be-
comes increasingly similar and the energy features possessed
the advantage of the time–space concentricity. *at has
shown that our model and algorithm are effective.

Whether the extraction mechanism of the energy fea-
ture is improved, the final goal of the energy feature is to
improve the accuracy of the fault recognition of rolling
bearing. Of course, good differentiation among different
states and a high correlation among the same states will
bring some gains in diagnostic accuracy. *at is to say, it is
also convenient to use classifiers to improve the fault di-
agnosis accuracy of rolling bearings. In the next step, the
fault diagnosis method of rolling bearing shall be estab-
lished to solve the goal.

6.2. Comparative Experimental Analysis. As a classifier, the
optimized LSSVM is used for random cross-validation ex-
periments. *e data set of the source domain is used as a
training set, and the data set of the target domain is used as a
test set.

Figure 5: Single-stage centrifugal fan fault diagnosis unit.
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Figure 6: (a) Bearing outer crack. (b) Bearing inner crack.
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Figure 7: (a) Normal original signal diagram. (b) Outer crack original signal diagram.
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In the TCA algorithm, the kernel function maps the data
from the source domain and the target domain to the high-
dimensional space. *erefore, the choice of the kernel
function is related to the data mapping process of the source
domain and the target domain. Four different kernel
functions, namely, primal, RBF, linear, and SAM, are used to
conduct comparative experiments. Under different kernel
functions in TCA, the ability to analyze the corresponding

energy characteristics is tested. *e training accuracy and
test accuracy are calculated. Because TCA is a data di-
mensionality reduction algorithm, the dimension of data
reduction is related to the classification accuracy. In this
paper, the original data dimension of the energy feature data
set is 8, and the dimensionality reduction is varied from 1 to
8 to test the diagnostic accuracy of the fault diagnosis
method. Combining the results from Table 2 and Figure 12,
the diagnostic accuracy of the RBF kernel function is rel-
atively high and stable. *erefore, the RBF kernel function is
used for bearing fault diagnosis analysis.

Based on the above fault diagnosis classification model,
each group uses 100 sets of data features for fault identifi-
cation. *e simulation results for the training phase and the
test phase are shown in Figure 12(a).

As shown in Figure 13(a), there are 210 training values for
the 5 states ((1) normal, (2) internal cracking, (3) outer cracking,
(4) wear, and (5) missing). *e training accuracy is 100%.

According to the test data in Figure 13(b), there are 120
groups of test data for the 5 states ((1) normal, (2) internal
cracking, (3) outer cracking, (4) wear, and (5) missing).
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Figure 9: (a) Normal signal energy characteristics. (b) Outer crack signal energy characteristics.

Table 1: Normal signal energy characteristics.

E1 E2 E3 E4 E5 E6 E7 E8
1 0.61 0.30 0.00 0.08 0.00 0.00 0.00 0.00
2 0.46 0.47 0.00 0.06 0.00 0.00 0.00 0.00
3 0.48 0.46 0.01 0.05 0.00 0.00 0.00 0.00
4 0.57 0.37 0.00 0.05 0.00 0.00 0.00 0.00
5 0.51 0.43 0.01 0.05 0.00 0.00 0.00 0.00
6 0.59 0.35 0.00 0.05 0.00 0.00 0.00 0.00
7 0.65 0.28 0.01 0.04 0.01 0.01 0.01 0.00
8 0.64 0.32 0.00 0.04 0.00 0.00 0.00 0.00
9 0.62 0.33 0.01 0.04 0.00 0.00 0.00 0.00
10 0.55 0.39 0.00 0.05 0.00 0.00 0.00 0.00
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Among them, two values are incorrectly classified, so the test
accuracy is 98.3%.

To verify the validity and superiority of the algorithm
presented in this paper, we compare different unoptimized
algorithms with the optimized classification algorithm
proposed.

Four different methods are compared under the same
experimental environment and the same experimental data.
Table 3 shows that the correct rate can reach 100% during the
training process using the method developed in this paper.

Additionally, the correct rate can reach 99.8% during
the test process. *e fault diagnosis accuracy is better

Table 2: Fault diagnosis accuracy under different kernel functions.

Different kernel functions Training accuracy Test accuracy Statistical accuracy (%)
Primal 100 98.4 98.7
Linear 99.8 97.6 98
RBF 100 99.6 99
SAM 99.6 96.8 97.6
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Figure 12: (a) Relationship between the feature dimension and training accuracy after mapping. (b) Relationship between the feature
dimension and test accuracy after mapping.
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than that of the other three methods. *e comparison
shows that the TCA algorithm is effective in analyzing
the energy characteristics of wavelet packets. Moreover,
the optimized classification algorithm is superior to the
traditional single classification algorithm and has a better
diagnostic ability.

7. Conclusions

In this paper, to improve the accuracy of identifying and
classifying fault in variable working conditions, a new
method based on optimization of multidimension fault
energy characteristics and integrate with an improved least-
squares support vector machine (LSSVM). *e main con-
tributions of this paper are as follows.

(1) *e method of wavelet packet is used to reduce the
surrounding noise and decompose the original signal
with eight different frequency bands. *e energy of
every component is calculated to construct a feature
set for bearing.

(2) Because the TCA can amend the distribution of the
energy feature, the *e distribution of the feature
set is optimized, and the data dimension is much
closer than before. *e optimized feature structure
could improve the accuracy of bearing fault
diagnosis.

(3) Particle swarm and the wavelet mutation were in-
tegrated to optimize two parameters of LSSVM.
*rough the real data of bearing, the training ac-
curacy of the proposed method is 100%, and the test
accuracy 99.8%. *e experiment result shows that
the proposed method is effective in the low-precision
problem of fault diagnosis for complex bearings in
the equipment.

(4) Unfortunately, there are still two problems to be
solved in the next research. First, the complex noise
of the original signal brings interference to the fault
diagnosis of bearing. Second, the kernel function
selected in the TCA algorithm is very single.
*erefore, the next step is to focus on signal
denoising and TCA construction of multicore
kernel functions to further improve the fault
accuracy.
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With a view to realizing the fault diagnosis of rotatingmachinery effectively, an integrated health condition detection approach for
rotating machinery based on refined composite multivariate multiscale amplitude-aware permutation entropy (RCmvMAAPE),
max-relevance andmin-redundancy (mRmR), and whale optimization algorithm-based kernel extreme learningmachine (WOA-
KELM) is presented in this paper. 1e approach contains two crucial parts: health detection and fault recognition. In health
detection stage, multivariate amplitude-aware permutation entropy (mvAAPE) is proposed to detect whether there is a fault in
rotating machinery. Afterward, if it is detected that there is a fault, RCmvMAAPE is employed to extract the initial fault features
that represent the fault states from the multivariate vibration signals. Based on the multivariate expansion and multiscale
expansion of amplitude-aware permutation entropy, RCmvMAAPE enjoys the ability to effectively extract state information on
multiple scales from multichannel series, thereby overcoming the defect of information loss in traditional methods. 1en, mRmR
is adopted to screen the sensitive features so as to form sensitive feature vectors, which are input into the WOA-KELM classifier
for fault classification. Two typical rotating machinery cases are conducted to prove the effectiveness of the raised approach. 1e
experimental results demonstrate that mvAAPE shows excellent performance in fault detection and can effectively detect the fault
of rotating machinery. Meanwhile, the feature extraction method based on RCmvMAAPE and mRmR, as well as the classifier
based on WOA-KELM, shows superior performance in feature extraction and fault recognition, respectively. Compared with
other fault identification methods, the raised method enjoys better performance and the average fault recognition accuracy of the
two typical cases in this paper can all reach above 98%.

1. Introduction

As one of the widely applied mechanical equipment, rotating
machinery plays a vital role in industrial production.
Nevertheless, it usually operates in harsh environments such
as heavy load and high speed, which greatly increases the risk
of faults.1ese faults may result in equipment shutdown and
even casualties cause if they are not dealt with in time [1, 2].
Due to the particularity of industrial machinery, direct
disassembly overhaul will affect normal production. Hence,
research on nondisassembly health condition detection
technology of rotating machinery has always been a hotspot.
When encountering faults, some changes will occur in the

internal structure of rotating machinery, which affects the
frequency and amplitude of vibration signals. It indicates
that the vibration signals contain a wealth of information
related to the operating states of rotating machinery [3, 4].
Consequently, analyzing vibration signals is a feasible
method for fault diagnosis [5].

1e essences of vibration signals-based fault diagnosis
are the fault feature extraction and pattern recognition is-
sues. Among which, how to extract the features which can
represent the working states from the vibration signals is the
key in fault diagnosis. In the past decades, time-frequency
analysis is widely applied in feature extraction of vibration
signals. Many time-frequency analysis methods such as
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empirical mode decomposition (EMD) [6], local mean
decomposition (LMD) [7], wavelet packet transform (WPT)
[8], and variational mode decomposition (VMD) [9] are
applied to fault diagnosis of rotating machinery. Unfortu-
nately, the vibration signals of rotating machinery usually
exhibit nonlinear and nonstationary characteristics, which
cause the above methods to have some defects in practical
applications. For instance, WPTneeds to choose the suitable
wavelet kernel function [8] and VMD need to set the penalty
factor α and the number of intrinsic mode functions (IMFs)
K before processing the vibration signals [10], thereby the
self-adaptive capacity of them is poor. EMD enjoys good
adaptability, but it has defects such as mode mixing and end
effect. In addition, the application of time-frequency analysis
methods alone requires the operators to have a certain
knowledge reserve, which limits the efficiency and appli-
cation scope of these methods. 1erefore, developing an
efficient and accurate fault feature extraction tool is urgent
and necessary.

Recently, the entropy-based theory has been widely
adopted as feature extraction tool in the field of fault di-
agnosis due to its excellent performance in measuring the
nonlinear complexity of time series [11]. Entropy methods
that are commonly applied include approximate entropy
(AE) [12], sample entropy (SE) [13], fuzzy entropy (FE) [14],
and permutation entropy (PE) [15]. Among them, AE is
highly dependent on the data length and is prone to un-
defined entropy value. SE and FE are time-consuming, so
they are not suitable for processing signals with a large
amount of data, while PE is favored by many scholars be-
cause of its high computational efficiency and strong anti-
noise ability. Zhang et al. [16] adopted PE to detect bearing
faults and proposed a bearing fault diagnosis model based on
PE, ensemble empirical mode decomposition, and opti-
mized SVM. Kuai et al. [17] proposed a fault diagnosis
method for planetary gears based on PE, CEEMDAN, and
ANFIS.CEEMDAN is applied to decompose the vibration
signal of planetary gears, and PE is used to extract the
characteristics of the obtained IMFs. Finally, ANFIS is used
as a classifier to complete fault identification. Nevertheless,
PE also exists some inherent defects. For example, it loses
sight of the influence of amplitude information of signals on
the entropy value, which may lose the crucial information.
To address this problem, Azami et al. [18] presented the
amplitude-aware permutation entropy (AAPE), which is not
only sensitive to the frequency but also sensitive to the
amplitude of signals. 1e excellent performance of AAPE
has been verified through the simulation and biological
signals experiments.

However, AAPE also possesses some shortcomings that
cannot be ignored. Firstly, AAPE only measures the com-
plexity of themeasured signal on one temporal scale, thereby
cannot capture the long correlation of the signal [19]. To
address this question, based on multiscale entropy theory
[19], multiscale amplitude-aware permutation entropy
(MAAPE) was proposed to extract the fault information of
rolling bearings [20]. Unfortunately, MAAPE enjoys poor
stability, especially for short-time series. 1e defect will
cause MAPPE to produce unreliable entropy values on high

scales. Secondly, AAPE cannot extract fault features from
multichannel vibration signals, which limits its ability to
extract fault information for large equipment. For large
equipment, the long transmission path will reduce the vi-
bration impulse to a certain extent. In other words, the fault
information will be lost. 1erefore, the vibration signal
collected by single channel is usually not enough to provide
enough fault information to identify the fault type [21]. It is
necessary to improve AAPE so that it can extract fault
features from multichannel vibration signals synchronously.

With a view to solving the aforementioned defects, re-
fined composite multivariate multiscale amplitude-aware
permutation entropy (RCmvMAAPE) is presented in this
paper. Compared with the existing AAPE methods, the
proposed RCmvMAAPE possesses two main improvements.
Firstly, refined composite multiscale method is employed to
substitute the traditional multiscale method in MAAPE to
overcome the entropy instability problem [22]. In addition,
on the basis of multidimensional embedding reconstruction
theory [23], AAPE is expanded to multivariate AAPE
(mvAAPE) to measure the complexity of multichannel vi-
bration signals. Based on the above improvements,
RCmvMAAPE overcomes the abovementioned defects and
can stably measure the complexity of multichannel signals
on multiple scales. 1e performance of RCmvMAAPE is
comprehensively tested utilizing a variety of synthetic signals
in this paper, and the results indicate that RCmvMAAPE can
availably measure the complexity of multivariate signals. In
view of the advantages of RCmvMAAPE, this paper employs
it to extract the fault features of multichannel vibration
signals of rotating machinery.

As we know, the fault features distributed on multiple
scales extracted by RCmvMAAPE are a high-dimensional
feature vector. Among which, some sensitive features can
effectively represent the fault information, but some re-
dundant features not only affect the accuracy of subsequent
fault classification but also reduce the diagnosis efficiency.
For this reason, it is necessary to compress the high-di-
mensional fault features to improve the fault recognition
rate. 1e max-relevance and min-redundancy (mRmR) is a
typical features selection method based on spatial search,
which usesmutual information tomeasure the relevance and
redundancy of features [24]. 1e maximum correlation
indicates that the feature has a large correlation with the
sample category, that is, it can reflect the sample category
information to the greatest extent. Minimal redundancy
means that the correlation between features is the smallest,
that is, the redundancy of features is the smallest. 1is paper
adopts mRmR to select the sensitive features to form sen-
sitive features vectors that represent the fault state of rotating
machinery.

Afterward, different fault states of rotating machinery
will be identified according to the sensitive feature vectors,
namely, pattern recognition. At this stage, a classifier with
high computational efficiency and good generalization
performance is needed. Kernel extreme learning machine
(KELM) [25] is a machine learning method that combines
ELM and kernel function. While retaining the high calcu-
lation efficiency of ELM, the introduction of kernel function
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enables KELM to enjoy stronger generalization ability
compared with commonly used classifiers such as BP neural
network (BP) [26], support vector machine (SVM) [27], and
extreme learning machine (ELM) [28] when dealing with
linear inseparable problems; meanwhile, KELM is sensitive
to parameter setting due to the existence of kernel function.
To choose the best parameters, we need to employ a suitable
optimization algorithm to determine the best parameters of
KELM. Commonly used optimization algorithms consist of
particle swarm optimization (PSO) [29], ant colony opti-
mization (ACO) [30], and whale optimization algorithm
(WOA) [31]. Among which, WOA has attracted more and
more attention due to its uncomplicated operation, less
adjustment parameters, and strong capability to jump out of
local optimum. 1erefore, WOA is utilized to iteratively
select the optimal parameter of KELM to build a classifier
based on WOA-KELM. 1e low-dimensional sensitive
feature vectors are input intoWOA-KELM so as to judge the
fault type of the rotating machinery.

Consequently, a new integrated health detection method
for rotating machinery is proposed, which includes two
parts: fault detection and fault identification. In the fault
detection stage, mvAAPE is employed to extract the features
of the vibration signals to determine whether the rotating
machinery is malfunctioning. By introducing the key link of
fault detection, the unnecessary disassembly and mainte-
nance of the equipment can be avoided, and the damage to
the equipment can be reduced. In the fault identification
stage, the presented method based on RCmvMAAPE,
mRmR, and WOA-KELM is applied to diagnose different
fault types and fault severity of rotating machinery. Two
examples are conducted to prove the performance of the
proposed method and its superiority compared to other
existing methods.

1e rest of the paper is arranged as follows: in Sections 2
and 3, the basic theory of RCmvMAAPE and WOA-KELM
is introduced in detail; Section 4 displays the steps of the
proposed approach; two typical cases are adopted for ex-
periments to verify the excellent performance of the pro-
posed approach in Section 5; finally, this paper is
summarized in Section 6.

2. The Basic Theory of RCmvMAAPE

2.1. Multivariate Amplitude-Aware Permutation Entropy

2.1.1. AAPE. AAPE is a method based on PE, which is a
powerful tool for analyzing nonlinear time series. 1erefore,
it is necessary to introduce the concept of PE firstly. 1e
original theory of PE is reviewed in [15].

For a given time series X � xi , i � 1, 2, . . . , N, at any
time point t, them dimensional reconstruction vector can be
obtained as

X
m,d
t � xt, xt+d, . . . , xt+(m− 2)d, xt+(m− 1)d , t � 1, 2, . . . , N − (m − 1)d,

(1)

where m denotes the embedding dimension and d denotes
the time delay.

For each reconstruction vector, in accordance with the
size of the elements in ascending order, the permutation
πr0 ,r1 ,...,rm− 1

can be acquired, which fulfills that

xt+ j1− 1( )d, xt+ j2− 1( )d, . . . , xt+ jm− 1− 2( )d, xt+ jm − 1( )d , (2)

where j∗ represents the index of the column of each element
in the reconstructed component. Accordingly, there are m!
possible permutation patterns, of which the i-th permutation
is marked as πi.

1e relative frequency of πi can be expressed as

p πi(  �
g πi( 

N − (m − 1)d
, (3)

where g(πi) represents the function that counts the number
of πi in Xm,d

t . 1e value of g(πi) will increase by 1 if the
permutation order of the internal elements of Xm,d

t is πi.
Consequently, based on the calculation theorem of

Shannon entropy, PE can be defined as

PE(X, m, d) � − 
m!

i�1
p πi( lnp πi( . (4)

Nevertheless, PE enjoys some nonnegligible deficiencies,
which led to its inability in describing the irregularity of the
series. Firstly, from the theoretical point of view, the original
PE algorithm only considers the effect of the ordinal
structure of the time series on the entropy value, but the
amplitude information of each mapped element in the series
is ignored. Secondly, when there are elements with equal
amplitude, their influence on the entropy value cannot be
accurately estimated. In view of the aforementioned defects
of PE, Azami proposed AAPE to significantly enhance the
performance of PE [18]. 1e basic principle of the AAPE
algorithm is as follows:

Supposing that the starting value of p(πi) is 0, for the
reconstruction vector Xm,d

t , when the time t adds from 1 to
N − m+ 1, the value of p(πi) is updated whenever the
permutation is πi.

p
update πi(  � p πi(  +

α
m



m

k�1
xt+(k− 1)d


 +

1 − α
m − 1



d

k�2
xt+(k− 1)d − xt+(k− 2)d


⎛⎝ ⎞⎠, (5)

where α ∈ [0, 1] denotes the adjustment coefficient which is
utilized to adjust the weight of the time series amplitude

average and the deviation between the amplitudes. 1us, the
probability of p(πi) is
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p πi(  �
p
update πi( 


N− m+1
t�1 (α/m) 

m
k�1 xt+(k− 1)d


 +(1 − α/m − 1) 

m
k�2 xt+(k− 1)d − xt+(k− 2)d


 

. (6)

1e AAPE of time series x can be defined as

AAPE(X, m, d, α) � − 
m!

i�1
p πi( lnp πi( . (7)

2.1.2. mvAAPE. To describe the complexity of multichannel
time series, it is necessary to extend the AAPE to

multivariate analysis so as to put forward multivariate
amplitude-aware permutation entropy (mvAAPE). 1e
definition of mvAAPE is described as follows:

(1) Given a p-channel series X � xc,1, xc,2, . . . , xc,i,

. . . , xc,N}, c � 1, 2, . . . , p, phase space reconstruction is
performed as follows:

Z
m,d
t � xc,t, xc,t+d, . . . , xc,t+(m− 2)d, xc,t+(m− 1)d , t � 1, 2, . . . , N − (m − 1)d. (8)

(2) Arrange the reconstruction time series Zm,d
i in as-

cending order as [xc,i+(j1− 1)d≤xc,i+(j2− 1)d≤ · · · ≤
xc,i+(j m− 1 − 1)d≤xc,i+(jm − 1)d]. At the same time,
there are m! potential permutations πi, 1≤ i≤m!.

(3) For c-th channel, supposing that the starting value of
p(πc,i) is 0, for the reconstruction series Zm,d

i , when t

gradually increases from 1 to N − m+ 1, the value of
p(πc,i) will be renewed as πc,i appears.

p
update πc,i  � p πc,i  +

α
m



m

k�1
xc,t+(k− 1)d


⎛⎝

+
1 − α
m − 1



d

k�2
xc,t+(k− 1)d − xc,t+(k− 2)d


⎞⎠.

(9)

(4) Calculate the relative frequency of i-th permutation
in c-th channel πc,i as follows:

p πc,i  �
p
update πc,i 


p
c�1 

N− m+1
t�1 (α/m) 

m
k�1 xc,t+(k− 1)d


 +(1 − α/m − 1) 

m
k�2 xc,t+(k− 1)d − xc,t+(k− 2)d


 

. (10)

For p-channel time series, p(πc,i) satisfies


p
c�1 

m!
j�1p(πc,i) � 1.

(5) 1e probability of the i-th pattern πi in p-channel
time series X can be calculated as follows:

p πi(  � 

p

c�1
p πc,i . (11)

(6) Based on the definition of Shannon entropy,
mvAAPE is expressed as

mvAAPE(X, m, α, d) � − 
m!

i�1
p πi( lnp πi( , (12)

where mvAAPE actually extends the application of AAPE
from univariate analysis to multivariate analysis. However,
mvAAPE only analyzes the multichannel time series on one
temporal scale, while the measured time series often con-
tains information on multiple scales. 1erefore, the key
information will lose if only a single scale analysis is con-
ducted. In response to this problem, mvMAAPE that is able
to analyze time series on multiple scales is proposed.

2.2. mvMAAPE. 1e principle of mvMAAPE is as follows:

(1) For p-channel series U � uk,1, uk,2, . . . , uk,i, . . . ,

uk,L}, k � 1, 2, . . . , p, the multivariate coarse-grained
time series at scale factor τ is defined as follows:

y
τ
k,j �

1
τ



jτ

b�(j− 1)τ+1
uk,i, 1≤ j≤

L

τ
, 1≤ k≤p. (13)

When τ > 1, the multivariate series is divided into
coarse-grained time series of length [L/τ].

(2) Calculate the mvAAPE of τ multivariate coarse-
grained time series and the result is as follows:

mvMAAPE(U, m, α, d, τ) � mvAAPE y
τ
k,j, m, α, d ,

(14)

where mvMAAPE overcomes the shortcomings that PE does
not consider the amplitude information; meanwhile, the
combination with multivariate analysis improves the utili-
zation of multichannel information, which is essentially an
assessment of the irregularity of multichannel data. 1e
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evaluation principle can be summarized into two aspects: (1)
if the entropy value of the multivariate series X is greater
than that of series Y on most scale factors, it can be shown
that X is more random than Y and more prone to dynamic
mutations. (2) If the entropy value of X decreases signifi-
cantly with the increase of the scale factor, it indicates that
the information included in X mainly appears on a smaller
scale factor, such as a randomwhite noise signal. mvMAAPE
considers the interrelationship of each time series in mul-
tichannel data and comprehensively evaluates each di-
mension of multichannel series. 1erefore, mvMAAPE can
effectively detect the mutation change of multichannel
series.

2.3. Refined Composite Multivariate Multiscale Amplitude-
Aware Permutation Entropy

2.3.1. Basic Principle. 1e mvMAAPE realizes multivariate
and multiscale analysis by extending the mvAAPE method
to multiple scales, so as to obtain more useful information.
However, the coarse-graining method adopted by
mvMAAPE has serious defects, which leads to incomplete
information analysis. For instance, the calculation of
mvMAAPE only considers the coarse-graining series
starting from uk,1 and ignores the coarse-graining series such
as uk,2 at scale factor τ. However, the remaining τ − 1 time
series also contain the key information, and the direct ne-
glect will lead to insufficient analysis and affect the analysis
effect. 1erefore, the refined composite multiscale coarse-
graining approach is employed to achieve accurate and
sufficient analysis. 1e implementation principle of the
coarse-graining method is presented in Figure 1.

1eDetailed Procedures of RCmvMAAPE are Described
as follows:

(1) For p-channel series U � uk,1, uk,2, . . . , uk,i, . . . ,

uk,L}, k � 1, 2, . . . , p, the coarse-grained multivariate
time series are computed on a given scale factor τ
and the elements of the a-th coarse-grained time
series Yτ

a � yτ
k,i,1, yτ

k,i,2, . . .  are computed by

y
τ
k,i,a �

1
τ



a+iτ− 1

b�a+(i− 1)τ
uk,b, (15)

where 1≤ i≤ L/τ, 1≤ k≤p, 1≤ a≤ τ. For the scale
factor τ, there will be τ diverse coarse-grained
multivariate time series.

(2) For each coarse-grained multivariate series, the
marginal relative frequencies p(πj) are computed.
1en, the average relative frequencies p(πj) can be
acquired by

p πj  �
1
τ



τ

a�1
pa πj . (16)

(3) 1e RCmvMAAPE of original multivariate time
series is computed as follows:

RCmvMAAPE(U, m, α, d, τ) � − 
m!

j�1
p πj  lnp πj .

(17)

In the RCmvMAAPE approach, there are three key
parameters, namely, the m, α, and d. For the embedding
dimension m, if the value is too small, the reconstructed
vector includes too few states and the algorithm will lose its
validity and significance, whereas if m is too large, the phase
space reconstruction will homogenize the time series, which
not only increases the amount of calculation but also cannot
reflect the slight change of the time series. According to
references [18, 29], the AAPE for univariate analysis usually
sets the embedding dimension to 3–7, and the optimal
parameters of the univariate analysis method and multi-
variate analysis are generally consistent, so this article sets
the embedding dimension to m� 5. 1e adjustment coef-
ficient α is usually set to 0.5 according to reference [18], so
this article sets α � 0.5. Time delay has little effect on the
performance of the algorithm, so in this article, d� 1.

2.3.2. Performance Analysis. To validate the performance of
RCmvMAAPE, other multivariate analysis approaches are
compared with it to reflect its advantages in extracting the
complexity of multichannel signals. White Gaussian noise
(WGN) and 1/f noise are two signals that are widely adopted
to evaluate the univariate and multivariate analysis method.
Compared with WGN signals, the power spectrum of 1/f
noise is more complicated and includes more mode infor-
mation. 1e generation of WGN is randomly distributed, so
the probability of its state transition matrix appearing is
approximately equal. On the contrary, 1/f noise is a long-
range correlation signal, and the irregularity of 1/f noise is
lower than that of WGN. Consequently, the complexity of 1/
f noise is higher than that of WGN. Considering the uni-
versality, WGN and 1/f noise are employed to create a
multichannel signal with three different channels to analyze
RCmvMAAPE, mvMAAPE, RCmvMSE, and RCmvMPE.
1ey are (a) three channel WGN; (b) three channel 1/f noise;
(c) two channelWGN and one channel 1/f noise; and (d) two
channel 1/f noise and one channel WGN. 1ere are 25
groups (length 2048) of the synthesized signals in each case.

For sake of verifying the advantages of the proposed
approach in measuring the complexity of multivariate sig-
nals, RCmvMAAPE, mvMAAPE, RCmvMPE, and
RCmvMSE of four kinds of multivariate synthetic signals are
calculated. 1e mean standard deviation diagrams of the
four methods are shown in Figure 2. Compared with
mvMAAPE, RCmvMPE, and RCmvMSE, the standard de-
viation of RCmvMAAPE is significantly smaller than
mvMAAPE and RCmvMSE, which indicates that the sta-
bility and robustness of RCmvMAAPE are stronger than
mvMAAPE and RCmvMSE. It can be clearly seen from the
figure that RCmvMAAPE can effectively separate four
multivariate synthetic signals, proving that RCmvMAAPE
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has better separation performance. What’s more, the fluc-
tuation of the RCmvMPE curve is greater than that of
RCmvMAAPE, especially the fluctuation of (d) is obvious.
1is phenomenon shows that RCmvMAAPE is more stable
when analyzing multivariate data and is not prone to large
errors. In addition, when the scale factor is 14–20,
RCmvMSE cannot effectively distinguish between (b) and
(d). Similarly, mvMAAPE cannot effectively distinguish (a)
and (c); meanwhile, the entropy value of four multivariate
signals has extremely large fluctuation, which also verifies
that the traditional coarse-graining method is prone to large
errors. In a word, compared with the other three multi-
variate analysis methods, RCmvMAAPE enjoys better
separation performance and robustness, thereby can better
characterize the complexity of multivariate signals.

3. The Principle of the WOA-KELM

3.1. Kernel Extreme Learning Machine. Kernel extreme
learning machine is a training algorithm based on single-
hidden layer feedforward neural network. It does not require
to repeatedly adjusting the hidden layer parameters [28]. In
addition, the conventional single-hidden layer feedforward
neural network parameter training problem is transformed
into solving linear equations, and the smallest norm least-
squares solution obtained is used as the network output

weight. 1e whole training process is completed once.
1erefore, the training speed is greatly improved and the
generalization performance is better.

For input and output data, the goal of ELM is to si-
multaneously minimize training error and output weight
norm, which can be expressed as follows:

min β · h xi(  − ti

����
����
2
,

min‖β‖,

⎧⎨

⎩ (18)

where β is the connection weight vector between the hidden
layer and the output layer and h(xi) is the kernel mapping of
the hidden layer.

1e optimization problem of equation (18) is simplified
to the following constraint problem:

min L �
1
2
‖β‖

2
+ C

1
2



N

i�1
ξ2i ,

h xi( β � ti − ξi, i � 1, 2, . . . , N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where ξi stands for training error and C denotes the penalty
factor. Using the theory of orthogonal projection, the
training process of ELM is equivalent to solving the fol-
lowing dual optimization problems:

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,2i–1 x1,2i

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6
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x2,2i–1 x2,2i

y1,1
(1) y1,2

(1) y1,3
(1)

y2,1
(1) y2,2

(1) y2,3
(1)
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(1) yp,3
(1)

y1,i = (x1,2i–1 + x1,2i)/2(1)

y2,i = (x2,2i–1 + x2,2i)/2(1)

yp,i = (xp,2i,–1 + xp,2i)/2(1)

(a)
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xp,1 xp,2 xp,3 xp,4 xp,5 xp,2i xp,2i + 1

x2,1 x2,2 x2,3 x2,4 x2,5 x2,2i x2,2i + 1

y1,1
(2) y1,2

(2)

x2,1
(2) y2,2

(2)

yp,1
(2) yp,2

(2)

y1,i = (x1,2i + x1,2i + 1)/2(2)

y2,i = (x2,2i + x2,2i + 1)/2(2)

yp,i = (xp,2i + xp,2i + 1)/2(2)

(b)

Figure 1: Illustration of refined composite coarse-grained approach for multivariate data with scale factor 2. (a) First coarse-grained time
series; (b) second coarse-grained time series.
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LELM �
1
2
‖β‖

2
+ C

1
2



N

i�1
ξ2i − 

N

i�1
αi h xi( β − ti + ξi( , (20)

where αi is the Lagrangian operator, and the derivative of it is

zLELM

zβ
� 0⟹ β �  αi h xi( ( 

T
� H

Tα,

(21)

zLELM

zξi

� 0⟹ αiξi � 0, (22)

zLELM

zαi

� 0⟹ h xi( β − ti + ξi � 0, (23)

where α � [αi, . . . , αN]T.
Substituting formulas (20) and (21) into formula (22),

the formula (23) can be equivalently written as follows:
I

C
+ HHT

 α � T. (24)

1e corresponding output function of ELM is described
as follows:

f(x) � h(x)β � h(x)H
T I

C
+ HHT

 
− 1

T. (25)

It can be seen from the formula (25) that the parameter
I/C is added to the main diagonal in the unit diagonal HHT,
thereby its eigenvalue cannot be 0. 1en, the weight vector is
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Figure 2: RCmvMAAPE, RCmvMPE, RCmvMSE, and mvMAAPE of multivariate synthetic signals. (a) RCmvMAAPE; (b) RCmvMPE; (c)
RCmvMSE; and (d) mvMAAPE.
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computed. ELM is more stable and has strong generalization
ability in this way.

1e kernel function is introduced into ELM and the
KELM algorithm is proposed. Mercer condition is applied to
define the kernel function matrix of KELM as follows:

Ω � HH
T
,

Ωi,j � h xi(  × h xj  � K xi, xj ,
(26)

where K(xi, xj) denotes the kernel function and the ele-
ments of the kernel matrix Ωi,j in row i and column j,
i, j ∈ (1, 2, . . . , N).

1erefore, it can be concluded that the actual output of
the KELM model is

f(x) � h(x)H
Tπ

I

C
+ HH

T
 

− 1
T �

K x, x1( 

· · ·

K x, xN( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I

C
+Ω 

− 1
T.

(27)

3.2. Whale Optimization Algorithm. Whale optimization
algorithm (WOA) is a novel heuristic search optimization
algorithm [31]. Its advantages lie in its uncomplicated op-
eration, less adjustment parameters, and strong capability to
jump out of local optimum. 1e algorithm mainly imitates
three behaviors of humpback whale, including encircling
prey, hunting prey, and searching prey.

WOA supposes that the current best candidate solution
is the target quarry or close to the best. After defining the
best search agent, other search agents will therefore try to
renew their best-located search agents. 1e update formula
of WOA position is as follows:

D � CX
∗
(t) − X(t)


,

X(t + 1) � X
∗
(t) − A D,

(28)

where A and C are the coefficients; t is the number of it-
erations; X(t) represents the current position vector of the
whale; and X∗(t) denotes the best whale position vector so
far. 1e mathematical expressions of A and C are as follows:

A � 2ar1 − a,

C � 2 · r2,

a � 2 1 −
t

Tmax
 ,

(29)

where Tmax represents the maximum number of iterations
and r1 and r2 are random numbers in the interval [0, 1]. 1e
value of a decreases linearly from 2 to 0, and t is the number
of iterations.

When hunting, humpback whales not only swim to the
prey in spiral shape but also contract the encircling circle.
1e position of whales is updated with 50% probability
between the contraction mechanism and the spiral model.

X(t + 1) �
X
∗
(t) − A · D if p< 0.5,

D′ · e
bl

· cos(2πl) + X
∗
(t) if p≥ 0.5,

⎧⎨

⎩

(30)

where D′ � |X∗(t) − X(t)| denotes the distance between the
whale and its prey; the constant b is used to define the spiral
shape; and l is a random number in [− 1, 1].

When the humpback whale attacks the prey, by linearly
reducing the value of parameter a, the fluctuation range of A
is continuously decreased and the value of A in the interval
[–a, a] decreases continuously as a decreases. When the
value of A is in the interval [–1, 1], the solution position of
the whale’s next search agent will be any position between
the current position and the prey position. By simulating the
behavior of the humpback whale attacking the prey, the
development capability of local search is shown. When the
random value of A is greater than 1 or less than − 1, the
humpback whale search agent moves away from the prey to
search, thereby finding a more suitable prey, which shows
the exploration function of the whale optimization algo-
rithm in the global search.

3.3. Whale Optimization Algorithm-Based Kernel Extreme
Learning Machine (WOA-KELM). Considering that the
performance of the KELM is easily affected by penalty
factors and kernel parameters, a new method for optimizing
the kernel extreme learning machine by whale optimization
algorithm is raised. 1e optimization procedure is presented
in Figure 3, and the detailed step is as follows:

(1) Input training set and testing set samples and nor-
malize the two sample sets, respectively.

(2) Initialize the position of whale population and set the
population number to N. 1e maximum iteration
number is Tmax.

(3) Initialize the parameters of KELM and select the
corresponding fitness function.

(4) 1e fitness of each whale is computed and sorted
according to the fitness value, so as to continuously
update the whale population.

(5) When the fitness value meets the conditions or
reaches the maximum number of iterations, the
optimization process is terminated.

(6) According to the optimal penalty factor and kernel
function parameter, the KELM fault diagnosis model
is established.

8 Mathematical Problems in Engineering



(7) 1e trained KELM health condition detection model
is employed to output the fault type and severity of
the testing data.

4. The Proposed Approach

In this study, considering that RCmvMAAPE possesses
excellent performance of processing multivariate time series,
it is used to extract the fault features of rotating machinery.
Combining mRmR and WOA-KELM, an integrated health
condition detection method for rotating machinery is
proposed. 1e method includes fault detection and health
condition recognition.

4.1. Fault Detection. 1e ability of mvAAPE to measure the
complexity of multivariate nonlinear data and the proba-
bility of dynamic mutation is the basis for fault diagnosis.
Since mvAAPE is proposed based on mvPE, it inherits the
ability of mvPE to detect failures. 1e inconsistent entropy
values of mvAAPE corresponding to different states are a
prerequisite for fault screening.

1e mvAAPE values of the rotating machinery vibration
signals in all fault states are greater than that in the normal
state, and the difference is obvious. 1erefore, mvAAPE can

be applied for fault screening. In order to determine the
screening criteria intuitively, a threshold based on
mvMAAPE is set. When the mvMAAPE value of the vi-
bration signal of rotating machinery in an unknown state is
less than the threshold, the state is determined to be healthy.
Conversely, if it is greater than the threshold, it is deter-
mined that there is a fault.

4.2. Health Condition Recognition. After fault detection, if it
is detected that there is a fault in rotating machinery, further
analysis is required to judge the type and severity of the fault.
Firstly, RCmvMAAPE is employed to acquire the nonlinear
complex information of fault multichannel vibration signals
to form the initial fault feature vectors. However, the
RCmvMAAPE values at all scales may include redundant
information, so it is necessary to compress the feature di-
mensions to obtain sensitive feature vectors. 1e mRmR is a
dimensionality reduction algorithm for nonlinear data,
which uses mutual information to measure the correlation
and redundancy of features, so as to realize the importance
ranking of features. 1erefore, the mRmR is utilized to
screen the initial fault features to obtain sensitive feature
vectors. Finally, the whale optimization algorithm is utilized
to optimize the kernel function parameter and penalty factor
of KELM to construct the optimal classification model and
accomplish the health condition recognition of rotating
machinery.

1e flowchart of the raised approach is shown in Figure 4
and the implementation procedures of the integrated health
condition detection method are listed as follows:

(1) Multichannel vibration signals of rotatingmachinery
under diverse working conditions are collected.

(2) Divide the collected vibration data into multiple
nonoverlapping samples of length N.

(3) Compute the mvAAPE value of the vibration signal
and establish a threshold based on mvAAPE to
determine the health condition of the rotating ma-
chinery. If the mvAAPE value of the vibration signal
to be detected is less than the threshold value, it
indicates that the rotating machinery is healthy. 1e
output is normal and the diagnosis terminates.
Otherwise, the next step is conducted to judge the
fault type and severity of the rotating machinery.

(4) RCmvMAAPE is utilized to extract fault information
from fault vibration signals of rotating machinery to
generate the initial fault features.

(5) 1e mRmR method is employed to screen the
sensitive feature from the initial fault feature to form
the sensitive feature vectors.

(6) 1e training set samples are utilized to train the
WOA-KELM-based multiclassifier.

(7) 1e testing set samples are fed to the trained mul-
ticlassifier for prediction. 1e fault type and severity
are recognized in line with the output of WOA-
KELM multifault classifier.

Input training samples and testing samples

Initialize the position of whale, set the number of iterations and
population size

Initialize parameters of KELM and define fitness function

Calculate fitness value of whales and update population

Determine best parameters combination

Construct the best predictable model of WOA-KELM
and start training and testing

Output fault types and severity

Yes

Not ≤ Tmax ?

Figure 3: 1e flow chart of WOA-KELM algorithm.

Mathematical Problems in Engineering 9



5. Experimental Analysis and Results

In order to study the health condition detection method for
rotating machinery raised in this paper to verify its uni-
versality and effectiveness for fault identification of general
rotating machinery, experiments and analysis are conducted
using two typical examples, namely, rolling bearings and
gearboxes. 1e rolling bearing dataset was provided by
CWRU [32]. 1e gearbox experiment data were collected on
the QPZZ-II vibration analysis platform produced by
Jiangsu Qianpeng Diagnostic Engineering Co., Ltd.

5.1.HealthConditionDetection Experiment of Rolling Bearing

5.1.1. Experimental Rig and Data Introduction. 1e data
were collected by the high-precision multichannel sensor
installed on the bearing experimental rig. 1e specific
structure of the bearing experimental rig is presented in
Figure 5. 1e experimental rig includes a motor, a torque
transducer/encoder, control electronics, and a dynamome-
ter. 1e installation position of the acceleration sensors is at
the 12 o’clock position at both the drive end and fan end of
the motor housing, which are connected with the magnetic
casing. 1e collected experimental data are the vibration
waveforms of the motor, which are collected by the 16-
channel data recorder. Single-point faults are set on SKF
rolling bearings by electrical discharge machining. 1e fault
diameter is 0.1778mm, 0.3556mm, and 0.5334mm, re-
spectively, and the fault depth is 0.2794mm. 1e three fault
diameters represent the different severity of the bearing fault.
1e experimental environment is set as follows: the motor
load is 0 hp, the motor speed is 1797 r/min, and the sampling
frequency is 12 kHZ. In this article, the data used include 10
categories, normal bearings, inner race faults, outer race
faults, and ball faults. 1e fault diameter of each fault state is

0.1778mm, 0.3556mm, and 0.5334mm (label as NM, IRF1,
IRF2, IRF3, ORF1, ORF2, ORF3, BF1, BF2, and BF3, re-
spectively). For each fault state, the synchronous vibration
signal at the drive end and fan end is used as dual-channel
data. Generally, in the field of bearing fault diagnosis, the
vibration signals are basically collected at the drive end.
Since the data quality of the driver end is higher, which
contains less noise and can directly reflect the vibration of
the output part, however, for the fault diagnosis of me-
chanical equipment, high accuracy of fault identification is
our goal. 1erefore, it is necessary for us to use all available
information to improve the utilization rate of information.
1e data of the fan end contains part of the fault information
and the use of the data can significantly improve the
characteristic quality, thus improving the fault recognition
rate.

In this study, the vibration data of each working con-
dition were divided into 58 samples without overlap, and the

�e rotating machinery with multiple sensors

Raw multivariate vibration signal

Partition into nonoverlapping windows
of series length

Compute the mvAAPE values

mvAAPE value > threshold

Normal working condition

RCmvMAAPE of all samples are computed to
generate the initial fault feature

MCFS is employed to select the sensitive
fault feature

Training and testing the WOA-KELM-based
multi classifier

Output the fault type and severity

Yes

No

Figure 4: 1e flowchart of the proposed integrated health condition detection method.

Fan end
bearing

Electric
motor Dynamometer

Drive end
bearing

Torque transducer/encoder
self-aligning coupling

Figure 5: 1e rolling bearing test platform.
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number of sampling points of each sample was set to 2048.
In order to be consistent with the engineering application
under the actual condition, 28 samples for various working
conditions are randomly selected for training, and the
remaining 30 samples are the testing set. 1e effectiveness of
the raised approach is validated by randomly selecting
training and testing samples.1e specific introduction of the
dataset is presented in Table 1.

5.1.2. Fault Detection. 1e time domain waveforms of
rolling bearing under ten working conditions are shown in
Figure 6. Due to the lack of regularity, it is hard to directly
recognize diverse working conditions based on their original
vibration signals. According to previous analysis, PE has the
ability to detect faults, the mvAAPE is obtained based on the
theory of multidimensional embedding, and reconstruction
also enjoys the same function. 1erefore, mvAAPE can be
used to detect whether the equipment is faulty. Figure 7
shows the mvAAPE values for all samples. As presented in
Figure 7, the mvAAPE values in the fault states are generally
large and the mvAAPE of the normal state is small, which is
significantly different from the mvAAPE values of the fault
states. Consequently, this method can be used to screen the
normal state of the bearing. 1e value at the blue dotted line
is defined as the mvAAPE threshold (2.9973). By comparing
the mvAAPE value of the vibration signals with the
threshold, the normal and fault states can be clearly dis-
tinguished. However, the samples of different fault types
have poor separability, so mvAAPE cannot be used as the
standard to judge the fault type and severity. A further
analysis is needed to obtain more reliable characteristics.

1e fault samples have the maximum mvAAPE value,
which demonstrates that they are more complicated than
normal samples. When the bearing is in normal operation,
the vibration mainly comes from the interaction and cou-
pling between the mechanical parts and the ambient noise,
thereby the vibration signal shows certain regularity.
1erefore, the mvAAPE value of normal condition is lower
than that of the fault condition. When a fault occurs in the
running process of the bearing, the vibration of the bearing
will produce periodic pulse components.1e high frequency
vibration is mixed with the bearing vibration, which makes
the frequency component and bandwidth of vibration signal
more complex.

1e first procedure in fault diagnosis is health detection.
For a complicated mechanical system, it is necessary to judge
whether there is a fault in the component firstly and then
identify the type and severity of the fault. If the system does
not detect the fault, it indicates that the system is running
normally, and there is no need to disassemble and repair it.

5.1.3. Fault Recognition. Once a bearing fault is detected, the
raised approach is used to distinguish the diverse fault types
and severity. To validate the advantages of multivariate
analysis, univariate analysis methods such as RCMAAPE are
employed to test the bearing vibration signals at the drive
end. By comparing with the univariate feature extraction
method, the advantages of multichannel analysis in terms of

information utilization are intuitively verified. Each method
uses data from 9 fault conditions for experiments. 1e
entropy results of univariate analysis method RCMAAPE
and multivariate analysis methods RCmvMAAPE,
RCmvMPE, RCmvMSE, and mvMAAPE are shown in
Figures 8(a)–8(e).

Compared with other multivariate analysis methods
shown in Figures 5(b)–5(d), the entropy deviation of
RCmvMAAPE is smaller and the stability is higher. First of
all, when the scale factor is 5–16, RCmvMPE has poor
discrimination of NM, IRF3, and ORF3. In addition,
mvMAAPE is generally poorly distinguished, and the en-
tropy deviation of each fault state is very large, which in-
dicates its performance is unstable and easily causes large
errors. Except for NM and ORF2, the RCmvMSE curves of
the other states are similar on most scales, and the degree of
overlap is high, making it difficult to distinguish them. For
the other two univariate analysis methods, entropy deviation
is significantly greater than that of the multivariate analysis
method, and the degree of entropy curve overlap is also
greater than that of the multivariate analysis method. 1is is
mainly because the univariate analysis method only uses the
vibration information of one channel, so the utilization rate
of information is relatively low, while the multivariate
analysis method realizes the effective use of information by
comprehensively considering the vibration information of
multiple channels, thus improving the stability and ro-
bustness of the analysis. 1erefore, based on the above-
mentioned analysis, RCmvMAAPE is more effective in
feature extraction than RCmvMPE, RCmvMSE, mvMAAPE,
and RCMAAPE, while the quality of the extracted features is
also higher.

According to the abovementioned analysis, although the
features extracted by the RCmvMAAPE method have high
quality and can represent the fault state well, the fault
features on the partial scale enjoy low separability and
cannot achieve satisfactory distinguishing effect. For the sake
of reducing the redundancy between features and enhancing
the separability of fault features, the mRmR approach is
utilized to reduce the dimension of original features. 1e
distribution of multiscale features after the rearrangement is
visually described in Figure 9. 1e dimensionality of the new
multiscale fault features is selected as 9 according to the
correlation with the main fault information and the im-
portance of the features. Finally, the obtained new fault
features are input into the WOA-KELM classifier to de-
termine the fault type and severity. Figure 10 shows the
failure classification results for one trial. It can be clearly
observed from the figure that all the faults have been ac-
curately identified and the classification accuracy has
reached 100%, which indicates that the proposed approach
can availably distinguish the types and severity of faults.

In addition, for the sake of avoiding the influence of
random factors such as contingency on the experimental
results, 20 trials are repeated to obtain more accurate and
reliable classification results. Moreover, four other entropy-
based methods are also used to diagnose rolling bearing
faults. 1e detailed classification results of the five ap-
proaches for 20 trials are presented in Figure 10 and Table 2.

Mathematical Problems in Engineering 11



From Figure 11 and Table 2, it is obvious that the average
classification accuracy of the raised approach is higher than
that of other approaches, and the average accuracy rate is
99.96%. Moreover, the accuracy of the multivariate analysis
methods (RCmvMAAPE, RCmvMPE, RCmvMSE, and
mvMAAPE) is generally higher than that of the univariate
analysis method (RCMAAPE), which is consistent with the
previous analysis. 1erefore, the comparison results indicate
that the raised approach can effectively extract fault features
and obtain high fault recognition rate.

To verify the necessity of mRmR feature selection, two-
dimensional projections of two random features selected
without adopting the mRmR method are presented in
Figure 12(a), while the first two sensitive features obtained
applying the mRmR method are visualized as Figure 12(b).
By comparing Figures 12(a) and 12(b), it can be clearly

found that RCmvMAAPE combined with mRmR has a
better recognition effect than using RCmvMAAPE alone.
Moreover, nine random features
(τ � 8, 19, 1, 17, 9, 3, 20, 14, 6) are directly inputted into
WOA-KELM to identify the fault type and the identification
results are presented in Table 3. According to the results in
Table 3, it can be clearly found that the fault recognition
accuracy rate gained without using the mRmR method is
lower than that gained with adopting the mRmR method. In
addition, it can be noticed that the recognition accuracy of
RCmvMAAPE is still higher than that of other methods
without using mRmR. 1us, the experimental results again
verify that RCmvMAAPE can extract fault features from
multichannel signals effectively and improve the quality of
fault information. 1e mRmR method can select sensitive
low-dimensional features from high-dimensional fault

Table 1: 1e detailed introduction of experiment sample.
Fault location Fault diameter (mm) Abbreviation Training sample number Testing sample number Class label

Normal 0 NM 28 30 0
0.1778 IRF1 28 30 1

Inner race
0.3556 IRF2 28 30 2
0.5334 IRF3 28 30 3
0.1778 ORF1 28 30 4

Outer race
0.3556 ORF2 28 30 5
0.5334 ORF3 28 30 6
0.1778 BF1 28 30 7

Ball 0.3556 BF2 28 30 8
0.5334 BF3 28 30 9
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Figure 6: 1e waveforms of diverse classes of rolling bearing, where red denotes data of drive end and blue denotes fan end.
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Figure 8: Continued.
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features, which not only improves the recognition accuracy
but also improves the classification efficiency.

1is section discusses the superiority of using WOA
algorithm to optimize KELM in fault identification. For
comparison, three commonly used classifiers are used for
comparison, namely, support vector machine (SVM), ex-
treme learning machine (ELM), and kernel extreme learning
machine (KELM). 1e ratio of training samples to testing
samples remains the same. 1e diagnostic results of the five
approaches using diverse classifiers are listed in Table 4. It
can be seen that when the four classifiers are combined with
the five feature extraction methods, the classification ac-
curacy of WOA-KELM is the highest, which shows that
WOA-KELM is an effective classifier. In addition, it can be
clearly found that when the features obtained by different

feature extraction methods are input to the four classifiers,
the classification accuracy of RCmvMAAPE is the highest,
which further verifies that the raised RCmvMAAPE ap-
proach has excellent performance in feature extraction.

5.2. Health Condition Detection Experiment of Gearbox

5.2.1. Experimental Rig and Data Introduction. 1e gearbox
experiment data were collected from the experiment plat-
form QPZZ-II that is built by Jiangsu Qianpeng Diagnosis
Engineering Co., Ltd. 1e overall structure of the experi-
mental platform is shown in Figure 13. 1e experimental
platform is composed of gearbox, motor, iron base, ca-
pacitance, and sensors. 1e sensors are installed above the
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Figure 8: 1e entropy results of rolling bearing data analyzed by adopting five approaches. (a) RCmvMAAPE; (b) RCmvMPE; (c)
mvMAAPE; (d) RCmvMSE; (e) RCMAAPE.
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gearbox. 1e experimental data consist of eight channels of
vibration signals and one channel of tachometer signals, in
which the motor speed is 880 r/min. In the experiment, a
total of four operating conditions were set up, including
normal condition, gear pitting fault (pitting), gear tooth
breaking (tooth breaking), pinion wear fault (wearing), and
gear pitting fault coupling with pinion wear fault (pitting
and wearing). 1e detailed introduction of gearbox

experimental data is shown in Table 5. 1e data acquisition
equipment is QPZZ-II produced by Jiangsu Qianpeng Di-
agnostic Engineering Co., Ltd., with a sampling frequency of
5.12 kHZ and sampling time of 6 s. 1erefore, each health
state contains 53248 data points. 1e selected channels are
the acceleration signal collected by the bearing X on the
motor side of the input shaft and the bearing Y on the load
side of the output shaft. 1e collected vibration signals are
divided into 26 nonoverlapping samples with length 2048.
Among them, 10 samples were used for training, and the
remaining 16 groups were used for testing.

5.2.2. Fault Detection. 1e time domain waveforms of the
gearbox under four working conditions are shown in Fig-
ure 14. It is difficult to directly judge the type of gear failure
based on the amplitude and frequency changes of the
waveforms. According to the previous analysis, mvAAPE
can be used to detect whether mechanical equipment is
faulty and is successfully used to detect the health condition
of rolling bearings. Due to the complicated structure of the
gearbox, it is difficult to disassemble and inspect the gearbox.
1erefore, it is necessary to detect the health condition of the
gearbox. Figure 15 shows the mvAAPE values of all samples
of the gearbox. It can be observed from the figure that all
faulty samples have larger mvAAPE values, while all normal
samples have smaller mvAAPE values. 1e value shown by
the blue dashed line is defined as the mvAAPE threshold
(4.2342). By comparing the mvAAPE value of the sample to
be tested with the threshold, it can be judged whether the
gearbox is faulty. However, the entropy values between
different fault samples are relatively close, and the fault type
cannot be judged intuitively. 1erefore, the mvAAPE value
cannot be used as a criterion for judging the fault type and
further analysis is needed to obtain more obvious
characteristics.

1e fault samples have larger mvAAPE values, which
indicates that the vibration signals of the fault samples are
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Table 2: Identification result of five approaches for rolling bearings
with mRmR feature selection.

Diverse approaches Accuracy (%)
Max Min Mean SD

1e proposed method 100 99.26 99.96 0.1655
RCmvMPE and mRmR 100 97.41 98.54 0.8358
mvMAAPE and mRmR 91.11 86.30 88.69 1.2900
RCmvMSE and mRmR 95.56 92.22 93.92 1.0024
RCMAAPE and mRmR 90.37 85.56 87.52 1.4565
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Figure 11: 1e diagnostic result of the five methods for 20 trials.
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more complicated than that of the normal samples. After the
gearbox fails, the vibration signals enjoy obvious modulation
characteristics, which are composed of multiple AM and FM
signals. Compared with the vibration signals of the normal
samples, the fault signals contain more impact components;
meanwhile, due to the influence of random factors such as
noise in the signal, the signal component is more complex,
so it has a larger entropy value.

5.2.3. Fault Recognition. After detecting the gearbox failure,
for the sake of identifying different fault types, the raised
approach is utilized to process the fault vibration signals to
obtain stronger features. Similarly, to verify the advantages
of multivariate analysis, the univariate analysis method
(RCMAAPE) is used for the motor side vibration signals. In
addition, for the sake of studying the effectiveness of the
RCmvMAAPE approach for extracting fault features, the
RCmvMPE, mvMAAPE, and RCmvMSE approaches are
used to analyze multichannel vibration signals. 1e analysis
result is shown in Figures 16(a)–16(e).

It can be observed from Figure 16 that the overall trend of
the RCmvMAAPE curve is consistent with that of RCmvMPE
and mvMAAPE, but RCmvMAAPE has smaller entropy
deviation, which indicates that the RCmvMAAPEmethod has

better stability. Compared with the RCmvMSE method, the
RCmvMAAPE curve has more obvious fluctuation, so it can
effectively highlight the earth oscillation component of
gearbox fault vibration signal, so as to extract fault features
more effectively. In addition, compared with the univariate
analysis method RCMAAPE, the entropy deviation of
RCmvMAAPE is significantly smaller, that is, its performance
is better. 1e main reason is that the univariate analysis
method only makes rough use of the fault information in the
single channel vibration signal, while the rich information in
other channels is not used reasonably. However, after gearbox
fails, the transmission path of internal vibration is complex
and has multiple directions. 1e vibration signals collected
from each channel contain the fault information, so it is
impossible to fully characterize the fault state only by per-
forming univariate analysis. Based on the abovementioned
analysis, RCmvMAAPE can effectively analyze multichannel
vibration signals and has stable performance.

It can be observed from Figure 16 that the fault features
extracted by RCmvMAAPE are redundant at some scales,
which indicates that not all features can be used for fault
classification. It is necessary to screen them to select sensitive
features. In order to improve the separability of fault fea-
tures, the mRmR approach is used to process the features.
1e distribution of multiscale features after the rearrange-
ment is visually described in Figure 17. 1e dimensionality
of the new multiscale fault features is selected as 9 according
to the correlation with the main fault information and the
importance of the features. Finally, the obtained new fault
features τ � (19, 8, 7, 16, 5, 13, 10, 3, 2) are fed into the
WOA-KELM classifier to determine the fault type. Figure 18
shows the fault classification results for one trial. It can be
clearly observed from the figure that except two samples of
pitting and wear fault are misclassified as tooth breaking
fault, the other faults are accurately identified, and the
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Figure 12: (a) Two-dimensional visualization of two random selected features without adopting mRmR. (b) Two-dimensional visualization
of two new features selected utilizing mRmR.

Table 3: Identification result of five approaches without mRmR
feature selection.

Methods Accuracy (%)
Max Min Mean

RCmvMAAPE 94.44 89.26 92.32
RCmvMPE 91.85 88.15 90.69
mvMAAPE 87.04 84.44 85.86
RCmvMSE 90.37 87.78 89.63
RCMAAPE 86.30 81.85 84.27
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Table 4: 1e diagnostic results gained by combining diverse methods with four classifiers.

Diverse classifiers
1e testing accuracy of classifiers with diverse approaches (%)

Average accuracy (%)
RCmvMAAPE (%) RCmvMPE (%) mvMAAPE (%) RCmvMSE (%) RCMAAPE (%)

ELM 97.04 95.93 88.52 94.44 85.19 92.22
SVM 95.56 94.07 87.04 92.96 83.33 90.59
KELM 98.52 96.30 89.26 94.81 85.92 92.96
WOA-KELM 100 99.26 91.48 95.93 88.89 95.11
Average accuracy (%) 97.78 96.39 89.07 94.54 85.83 —

Gearbox Sensor position

Iron base

AC motor

MPB

Figure 13: 1e experimental rig of the gearbox from QPZZ-II.

Table 5: 1e brief introduction of the experimental sample.
Fault type Training sample number Testing sample number Class label
Normal 10 16 0
Wearing 10 16 1
Tooth breaking 10 16 2
Pitting and wearing 10 16 3
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Figure 14: 1e vibration signal waveforms of the gearbox in different health conditions, where red denotes data of the motor side and blue
denotes the load side.
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Figure 16: Continued.
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overall classification accuracy rate reaches 95.83%, which
shows that the raised approach can availably distinguish
different fault types of gearbox.

Similarly, in order to reduce the large randomness of
experimental results due to only performing one trial, 20
trials are repeated to obtain more reliable and accurate
classification results. In addition, in order to intuitively
verify the advantages of RCmvMAAPE method, four other
entropy-based methods are used to diagnose gearbox faults.
1e detailed classification results of five approaches for 20
trials are shown in Figure 19 and Table 6. It is obvious from
Table 7 that the average recognition accuracy of the pre-
sented approach is the highest and the standard deviation is
the smallest, which indicates that the raised approach has

stable and excellent performance. 1e accuracy of
RCmvMPE approach is slightly lower than that of the
proposed approach, which indicates that RCmvMPE can
also effectively diagnose gearbox faults. But the standard
difference is large, indicating that the recognition rate is not
stable. In addition, the accuracy of the multivariate analysis
method is higher than that of the univariate analysis method,
which verifies the necessity of multivariable analysis in
gearbox fault diagnosis.

As before, for the sake of investigating the importance of
mRmR feature selection, two-dimensional projections of
two random features selected without adopting the mRmR
method are presented in Figure 20(b), while the first two
sensitive features obtained applying the mRmR approach are
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Figure 16:1e entropy results of gearbox data analyzed by adopting five approaches. (a) RCmvMAAPE; (b) RCmvMPE; (c) mvMAAPE; (d)
RCmvMSE; (e) RCMAAPE.

Mathematical Problems in Engineering 19



visualized as Figure 20(a). It can be seen from the figure that
the features without mRmR feature selection are disorderly
and have no obvious clustering center, which indicates that
the quality of features is not high and further processing is
needed to obtain separable features. After mRmR feature
selection, although no obvious clustering center is obtained,
the separability of the three fault states becomes stronger. It
can be concluded that mRmR feature selection can improve
the recognition of features and has better recognition effect.
1en, nine features are randomly selected and input into the
WOA-KELM classifier to determine the fault type of
gearbox. Similarly, each method was repeated 20 times.
Table 7 shows the gearbox identification results of five
methods without using mRmR feature selection for 20 trials.
As can be seen from Table 7, although the highest recog-
nition rate of the RCmvMAAPE approach is lower than that
of the RCmvMPE method, the average recognition rate is

still the highest, which indicates that the performance of
RCmvMAAPE is more stable. Consistent with the previous
analysis, the recognition accuracy of the multivariate
analysis approach is higher than that of the univariate
analysis approach, which directly verifies the necessity of
multivariate analysis. In a word, mRmR dimension reduc-
tion can significantly improve the fault recognition rate, that
is, improve the reliability of fault identification.

To validate the necessity of utilizing WOA-KELM, three
commonly used classifiers are used for comparison: SVM,
ELM, and KELM. 1e same proportion of training and test
samples is employed to train and test the classifier. Table 8
shows the classification results of five approaches using
diverse classifiers. It can be seen that the RCmvMAAPE
approach still has the highest fault recognition rate when
using different classifiers, which is higher than that of the
RCmvMPE method. Obviously, amplitude-aware
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Table 6: Identification result of five approaches for gearbox with mRmR feature selection.

Diverse methods Accuracy (%)
Max Min Mean SD

1e proposed method 100 93.75 98.96 1.8514
RCmvMPE and mRmR 100 89.58 98.02 3.4778
mvMAAPE and mRmR 91.67 83.33 87.50 2.8685
RCmvMSE and mRmR 100 87.50 97.5 3.9183
RCMAAPE and mRmR 87.80 77.08 83.17 3.0853

Table 7: Identification result of five approaches without mRmR feature selection.

Approaches Accuracy (%)
Max Min Mean

RCmvMAAPE 89.58 85.42 87.22
RCmvMPE 91.67 83.33 86.94
mvMAAPE 81.25 72.92 78.46
RCmvMSE 87.5 81.25 84.32
RCMAAPE 75 66.67 72.53

Table 8: 1e diagnostic results gained by combining diverse methods with four classifiers.

Diverse classifiers
1e testing accuracy of classifiers with diverse approaches (%)

Average accuracy (%)
RCmvMAAPE (%) RCmvMPE (%) mvMAAPE (%) RCmvMSE (%) RCMAAPE (%)

ELM 93.75 91.67 83.33 87.50 85.42 88.33
SVM 91.67 89.58 79.17 87.50 83.33 86.25
KELM 97.92 93.75 87.50 89.58 85.42 90.83
WOA-KELM 100 95.83 89.58 93.75 87.50 93.33
Average accuracy (%) 95.84 92.71 84.90 89.58 85.42 —
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permutation entropy has better performance than permu-
tation entropy by considering the amplitude and frequency
information of time series. In addition, when the five
methods are combined with different classifiers, the WOA-
KELM classifier has the highest average recognition rate of
93.33%, which is higher than that of the KELM classifier
alone. Since the performance of KELM is affected by the
kernel parameters and penalty factor. 1e artificial setting
cannot achieve the best classification effect. In conclusion,
the WOA-KELM classifier has excellent performance, and
the generalization performance is better than the commonly
used classifiers.

6. Conclusions

In this study, a novel nonlinear analysis approach called
RCmvMAAPE is raised. Various synthetic signals are an-
alyzed and compared with RCmvMPE, mvMAAPE, and
RCmvMSE. 1e results verify that RCmvMAAPE could
effectively measure the complexity of multivariate time se-
ries and enjoys more stable performance. In the fault de-
tection part, the mvAAPE is used to define a threshold. If the
mvAAPE value of the measured sample is less than the
threshold value, the equipment is normal, so as to realize the
fault detection of the equipment. When a fault is detected,
RCmvMAAPE is employed to extract fault features to
construct initial feature vectors, and then mRmR is used to
select sensitive features to form sensitive features to be
classified. Finally, the sensitive feature vectors are input into
the WOA-KELM classifier to determine the type and se-
verity of the fault. 1e validity of the raised approach is
verified by two typical examples, namely, rolling bearing and
gearbox. 1e results demonstrate that the raised approach
can not only accurately detect the fault of rotatingmachinery
but also effectively identify the fault type. In addition,

compared with other methods, RCmvMAAPE can extract
higher quality fault features from multichannel vibration
signals and is superior to that of common entropy-based
methods, which verifies its effectiveness in feature extrac-
tion. From the perspective of practical application, the
proposed method avoids the mode classification that is full
of uncertainty and improves the effectiveness and timeliness
of fault diagnosis by detecting the state of rotating ma-
chinery, thereby is more in line with the actual engineering
needs.
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When a compound fault occurs, the randomness and ambiguity of the gearbox will cause uncertainty in the collected signal and
reduce the accuracy of signal feature extraction. To improve accuracy, this research proposes a gearbox compound fault feature
extraction method, which uses the inverse cloud model to obtain the signal feature value. First, EEMD is used to decompose the
collected vibration signals of gearbox faults in normal and fault states. )en, the mutual information method is used to select the
sensitive eigenmode function that can reflect the characteristics of the signal. Subsequently, the inverse cloud generator is used to
extract cloud digital features and construct sample feature sets. On this basis, the concept of synthetic cloud is introduced, and the
cloud-based distance measurement principle is used to synthesize new clouds, reduce the feature dimension, and extract relevant
features. Finally, a simulation experiment on a rotating machinery unit with a certain type of equipment verifies that the proposed
method can effectively extract the feature of gearbox multiple faults with less feature dimension. And comparing with the feature
set extracted by the single cloud model, the results show that the method can better represent the fault characteristic information
of the signal.

1. Introduction

Gear transmission is one of the commonly used transmis-
sion methods in mechanical equipment and is often used in
high-speed trains, wind power generation, aviation, ship-
ping, petrochemical, mining, lifting, and transportation
industries. According to domestic and foreign statistics,
about 10.3% of mechanical failures are caused by gearbox
failure, so it is particularly important to predict and diagnose
gearbox failures [1].

Due to the complex and harsh working environment of
mechanical equipment, the vibration signals collected on-
site are often doped with noise. To eliminate the influence of
noise in the signal, a large number of researchers have
carried out relevant research work in recent years. To reduce
the noise in the signal, some researchers applied the wavelet
denoising method to feature extraction and achieved good
results [2–4]. However, this method has difficulties in
selecting wavelet bases and determining thresholds in

practical applications. Empirical mode decomposition
(EMD) has no fixed basis, so compared with wavelet analysis
methods, it solves the problem of difficult selection of
wavelet basis, and it has a better processing effect on
nonstationary signals than wavelet, but there is a problem
with model confusion. To solve the above problems, Wu
et al. [5] proposed the ensemble empirical mode decom-
position (EEMD) to denoise the original signal, which
overcomes the inherent mode confusion problem compared
with the original EMD method. Also, there are some other
methods used for fault feature extraction [5–8]. For example,
Deng et al. [9] proposed an improved quantum heuristic
differential evolution method to construct the best deep
confidence network and propose a new fault classification
method. )e advantage of this method is to integrate the
fault feature extraction process in the fault diagnosis
algorithm.

)e cloud model theory proposed by Professor Wang
et al. in 1995 has been widely used in data mining [10, 11],
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intelligent control [12–14], decision analysis [15, 16], in-
telligent transportation [17], image processing, and other
fields in the past 20 years. Han et al. [18] proposed that
EEMD can be combined with the cloud model to perform
feature extraction of bearing faults and achieved good re-
sults, but there is a problem of more fault feature dimen-
sions. )erefore, this article has improved based on the
literature [18] and proposed a fault feature extraction
method based on EEMD and synthetic cloud model, which
can effectively extract fault features while avoiding difficult
parameter selection problems. First, EEMD is used to de-
compose multiple IMF components of the vibration signal,
and the mutual information method is used to select the
sensitive eigenmode function that can reflect the charac-
teristics of the signal. Subsequently, the cloud model is used
to extract cloud digital features and use them as sample
features. )en, the concept of synthetic cloud is introduced,
the cloud similarity criterion is used to determine the choice
of the base cloud, and then the number of features is reduced
by synthetic cloud. Finally, by comparing with the feature
sets extracted by the single cloud model, the result shows
that this method can better represent the feature information
of the fault signal.

2. Related Theories

2.1. EEMD Decomposition Principle. Ensemble empirical
mode decomposition (EEMD) uses the statistical charac-
teristics of Gaussian white noise with uniform time-fre-
quency distribution to solve the problem of mode confusion,
to achieve the purpose of improving EMD. It adds Gaussian
white noise to the signal for multiple EMD decompositions
and finally defines the overall average of the IMF decom-
posed multiple times as the final IMF. Based on the above,
the principal steps of the EEMD algorithm are rough as
follows:

(1) Initialize the overall average number M and the
added noise amplitude, and set m� 1.

(2) Perform the mth EMD decomposition.

(1) Add white noise nm(t) of constant amplitude to
the signal x(t) to be analyzed;

xm(t) � x(t) + nm(t). (1)

In the above formula, nm(t) is the white noise added
for themth time, and xm(t) is the signal after themth
noise is added.

(2) Use EMD to decompose the noised signal xm(t) to
obtain a set of IMF cn,m (n � 1, 2, . . . , N), where cn,m

is the nth IMF obtained from themth decomposition
(3) If m<M, then return to step (1) and make

m � m + 1. Repeat steps (1) and (2) until m � M.

(3) Calculate the overall average yn of the M IMFs

yn �
1

M


M

m�1
cn,m, n � 1, 2, . . . , M. (2)

(4) Save the average yn (n � 1, 2, . . . , N) of the previous
N IMF decompositions as the final IMF.

2.2. Cloud Model Related ,eories

2.2.1. CloudModel. )e cloudmodel [19] is a qualitative and
quantitative conversion model proposed by the academi-
cians Li and Du. )e cloud generator can realize the mutual
conversion between qualitative concepts and quantitative
data. )e cloud model uses expectations Ex, entropy En, and
hyper-entropy He as digital features to represent qualitative
concepts. )e expected value Ex is the value that best
represents the current qualitative concept, reflecting the
information center value of the corresponding qualitative
knowledge, and entropy En is a measure of the randomness
of a qualitative concept, reflecting the degree of dispersion of
cloud drops that can represent this qualitative concept. )e
hyper-entropyHe is the entropy of the entropy En, reflecting
the random degree of the numerical value belonging to the
qualitative concept, and it also indirectly reflects the
thickness of the cloud. As is shown in Figure 1, it is a simple
cloud model (Ex� 18, En� 2, He� 0.2), and its ordinate μ is
the degree of certainty of the cloud drop on the qualitative
concept, which represents the certainty of the current cloud
drop on its concept.

)e above-mentioned cloud digital feature expectations
Ex, entropy En, and hyper-entropy He are calculated using
the algorithm of backward cloud algorithm [20].)e specific
calculation method is as follows:

Input: N cloud drops xi;
Output: the qualitative concept expectations Ex,
entropy En, and hyper-entropy He represented by
these N cloud drops.

(1) )e estimated value of Ex is

Ex �
1
N



N

i�1
xi. (3)

(2) )e estimated value of En is

En �

��
π
2



×
1
N



N

i�1
xi − Ex


. (4)

(3) )e estimated value of He is

He �

������

S
2

− E
2
n



. (5)

)e one-dimensional forward cloud algorithm is

Input: )ree numerical characteristic values Ex, En,
He, cloud drop N representing the qualitative con-
cept A;
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Output: the quantitative value of N cloud drops, and
the certainty μ that each cloud drop represents a
concept A.

(1) Generate a normal random number En′ with En as
the expected value and He as the standard deviation;

(2) Generate a normal random number x with Ex as the
expected value and En′ is the standard deviation, x is
the cloud drop;

(3) Calculate y � e− (x− Ex)2/2(En′)2 , which is the certainty
of x;

(4) Repeat the above steps until N cloud drops are
generated.

2.2.2. Cloud Synthesis. Cloud synthesis [21] is the process of
superimposing two cloud models to obtain a comprehensive
cloud model. C1 � (Ex1, En1, He1), C2 � (Ex2, En2, He2)

are two cloud models, and a and b are two constants.
According to the independent normal distribution algo-
rithm, the synthesis method of the integrated cloud can be
expressed as follows:

aC1 + bC2 � a Ex1, En1, He1(  + b Ex2, En2, He2( 

� aEx1 + bEx2,

���������������

aEn1( 
2

+ bEn2( 
2



,

����������������

aHe1( 
2

+ bHe2( 
2



 .
(6)

)emethod of selecting the base cloud to be synthesized
is based on the similarity criterion of the cloud. To consider
the basic structure of the original base cloud as far as
possible, the cloud similarity [19] is used as the judgment of
the base cloud to be synthesized. According to the guide-
lines, the definition of cloud similarity is mainly described as
follows:

Input: two cloud models C1(Ex1, En1, He1) and
C2 � (Ex2, En2, He2), and the number of cloud
drops n1 and n2;
Output: the distance between two cloud models
d(C1,

C2).
(1) )e two cloudmodels generate n1 and n2 cloud drops

respectively through the cloud generator.

(2) Sort the cloud drops according to the abscissa from
largest to smallest.

(3) Filter the cloud drops and keep the cloud drops in the
range of [Ex − 3En, Ex + 3En].

(4) Assuming n1 ≤ n2, randomly select n2 cloud drops
from n1 cloud drops in cloud 1, and sort them in
sequence, and keep them in set Drop1 and set Drop2
respectively. If n1 > n2, the same is true.

(5) Calculate the distance between each cloud drop in
the two sets Drop1 and Drop2 in the corresponding
order:

d C1,
C2  ≈ d(Drop1,Drop2) �

1
n2



n2

k�1

���������������������������

x1k − x2k( 
2

+ μ(x)1k − u(x)2k( 
2



. (7)
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Figure 1: An example of cloud models and digital features.
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In the above steps, in step 3, since the cloud satisfies the
normal distribution, most of the cloud drops remain in the
interval [Ex − 3En, Ex + 3En], so the number of cloud
drops outside the interval can be ignored. In the cloud
similarity measurement, it is difficult to distinguish the
similarity by setting a threshold. In this article, the distance is
directly used as the similarity selection, and the two clouds
with the smaller distance are selected as the base cloud to be
synthesized.

2.2.3. Mutual Information Method. Mutual information
(MI) can be used to describe the relationship between two
random variables. It is regarded as the amount of infor-
mation contained in one random variable about another
random variable. )e mutual information between two
variables can be described as

I(X, Y) � H(X) + H(Y) − H(X, Y). (8)

In the formula, H(X) and H(Y) are the entropy of
variables X and Y, respectively, H(X, Y) is the joint entropy
of variables X and Y, and the distribution can be expressed as

H(X) � − 
i

p xi( logp xi( ,

H(Y) � − 
i

p yi( logp yi( ,

H(X, Y) � − 
i


j

p xi, yj logp xi, yi( ,

(9)

where p(x) and p(y) are the probability density functions of
X and Y; p(x, y) is the joint probability density function.

2.3. Feature Extraction Method Based on the EEMD Cloud
Model. )e cloud model is used as a composite fault signal
feature characterization method. )e feasibility of its cloud
digital feature entropy as a fault signal feature character-
ization has been demonstrated by related experiments [18].
Also, cloud digital features have related applications in fault
diagnosis applications [22–24]. )erefore, it is theoretically
feasible to use the digital feature of the cloud model as a
feature representation of the fault signal.

)e cloud model can be used as a feature extraction
method to obtain cloud digital features, but for gearbox
multifault vibration signals, the cloud digital features ob-
tained with a single cloud model have a high dimensionality
in numbers, and some features are difficult to distinguish
effectively. )erefore, this paper uses the synthetic cloud
model as the feature extraction method to extract the fea-
tures of the gearboxmultifault vibration signal. According to
the previous analysis, the feature extraction method based
on EEMD and cloud model can be completed by the fol-
lowing steps:

(1) IMFj (j � 1, 2, . . . , n) is obtained by decomposing
the vibration signal collected by the EEMD
experiment.

(2) Calculate all mutual information values between all
IMFj (j � 1, 2, . . . , n) components and the original

signal. Select the sensitive IMF based on the mutual
information threshold.
)e threshold is determined according to reference
[25].

uh �
max ui( 

10 × max ui(  − 3
, i � 1, 2, . . . , n. (10)

In the above formula, it is the mutual information
between the ui IMF and the original signal n is the
number of IMFs and max(ui) is the maximum value
of the mutual information.

(3) Keep the IMF components whose mutual informa-
tion value with the original signal is greater than the
threshold uh, and delete the IMF components whose
mutual information value with the original signal is
less than the threshold.

(4) Perform cloud model feature extraction and trans-
formation on the retained IMF components, syn-
thesize the cloud into a new cloud, and calculate the
cloud digital features of the new cloud as a new
sample feature set.

)e algorithm flow diagram of the method for extracting
the fault feature of the gearbox compound fault based on the
EEMD and cloud model is shown in Figure 2.

3. Experimental Verification and
Result Analysis

To verify the effectiveness of the feature extraction method
proposed in this paper, it is applied to the actual diagnosis of
multiple faults in a certain type of equipment bearing. )e
experimental data [26] is collected from the rubber ex-
pansion dryer and extrusion dehydrator simulation platform
of the Guangdong Petrochemical Equipment Fault Diag-
nosis Key Laboratory. By replacing various faulty gears,
bearings, transmission shafts, and other components, the
simulation cantilever centrifugal compression realized
common single failures and compound failures of the engine
or expander unit.

Aiming at common bearing and gear faults of complex
equipment, combined with the typical industrial unit
structure and load, based on the above simulation experi-
ment platform, a set of fault accessories matching the system
is designed, including bearing external cracks, bearing in-
ternal cracks, bearing ball wear, bearing lack of balls, cracked
teeth, and gear wear. Some parts of the experimental failure
parts are shown in Figures 3–5. Based on the above fault
accessories, the test selects the NSK NN3021 bearing model
for multiple fault simulation, and each fault sample is set to
40.

Based on the above fault accessories, the experiment
selects NSK NN3021 bearing model for multiple fault
simulation and designs 5 types of multiple fault types,
namely, type 1-normal, type 2-gearbox large and small gear
missing teeth + Left bearing inner ring missing the ball, type
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3-gearbox large and small gears missing teeth +Outer ring
wear on the right bearing, type 4-gearbox large and small
gears missing teeth + Left bearing inner ring wear, and type
5-gearbox large and small gears missing teeth + Left bearing
outer ring wear. )e original signal of the five sample data is
shown in Figure 6.

)e EEMD parameter sets the total average time
M� 100, and the added noise amplitude is 0.01 times the
standard deviation of the original signal. After the above
signal is decomposed by EEMD, 9 groups of IMF compo-
nents are obtained. Usually, the most important information
of the original signal is concentrated in the decomposed
EEMD among the first few IMF components, as shown in
Figure 7, and the MI values of IMF1∼IMF9 and the original
signal are calculated by the MI method in the five states. )e
abscissas in the figure represent the IMF components, the
threshold is calculated by formula (10), and the thresholds
are 0.1861, 0.1550, 0.1565, 0.1421, and 0.1359, respectively. It
can be seen from Figure 8 that both IMF1 and IMF2 are
higher than the corresponding threshold, and IMF3 in type 3
is higher than the threshold, so IMF1, IMF2, and IMF3 are
selected as the sensitive IMF components after EEMD de-
composition. To facilitate subsequent experimental simu-
lations, IMF4 is selected as the sensitive IMF component at
the same time, so IMF1∼IMF4 components were selected as
the sensitive IMF components.

IMF1∼IMF4, respectively, represent the first 4 sensitive
IMF components selected, and the cloud digital features are
calculated by formulas (3)–(5). )e cloud digital feature
average values of each category signal and IMF component
are shown in Table 1.

For the convenience of calculation, in the paper, the
clouds of IMF1∼IMF4 components are defined as base clouds
C1∼C4. In this paper, the synthetic cloud is used to extract
cloud digital features, the number of cloud drops is set to
1000, the cloud digital information obtained by IMF com-
ponents is calculated by similarity to calculate the distance,
and the two IMF components with the smaller distance are
selected as the base cloud as the synthetic cloud algorithm.
Calculate the distance between the cloud and the cloud by
formula (7), and use this as the basis to determine the base
cloud to be synthesized, and get d(C1,

C2) � 0.2642,
d(C3,

C4) � 0.1642. )erefore, IMF1 and IMF2, IMF3, and
IMF4 are selected as the base cloud to be synthesized. In the
synthetic cloud algorithm, the value of a is set to 1, and the
calculation method of the value of b is calculated as follows:

bi �
Ex1

Ex2
. (11)

In the above formula, bi is the value of the coefficients of
different synthetic base clouds, and Ex1 and Ex2 are the
average expected values of the base cloud to be synthesized,
where Ex1 >Ex2.)erefore IMF1 and IMF2, IMF3, and IMF4
are, respectively, used as base clouds to perform synthetic
cloud, and calculation of the digital characteristics of the
synthetic cloud is shown in Table 2.

As the final pattern recognition algorithm, there are
many classifier algorithms, such as the literature [9, 27, 28],
and the proposed method boosts the classification

Begin

Use EEMD to decompose the
fault signal 

IMF1 IMF2 IMFm…

Threshold uh selection of sensitive
IMF components 

Cloud model computing cloud digital
features 

Use cloud similarity to calculate
distance to determine the base cloud

to be synthesized

Feature reduction through synthetic
cloud algorithm 

Sample feature set

End

Figure 2: )e algorithm flow diagram of the method for extracting
the fault feature of the gearbox compound fault based on the EEMD
and cloud model.

Bearing ball wear

Figure 3: Bearing ball wear failure parts.

Bearing missing ball

Figure 4: Bearing missing ball accessories.

Cracked tooth

Figure 5: Cracked tooth fault accessories.
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performance across the classes of the data. Since the fault
sample data is small, considering the time efficiency issue,
this paper directly uses the support vector machine as the
classifier for experimental verification. For the calculated
synthetic cloud digital features, 200 samples were selected
from the samples at a ratio of 6 : 4, as 120 samples were used
for training and 80 samples were used for testing. In the
support vector machine (SVM) algorithm, the penalty factor
C� 150, σ � 1, the experimental results are shown in Table 3,
and the test classification effects of the two methods are
shown in Figures 7 and 9. )e results show that, in the
feature extraction method of the EEMD synthetic cloud
model, compared with the single cloud model, the feature
dimension is reduced, and the degree of discrimination is
also improved.

From Figure 7 and Table 3, it can be seen that the cloud
digital features extracted by the single cloud model are used

as the fault feature extraction method to verify that the
classification accuracy is up to 88.25%, which verifies that the
cloud model as a method for extracting composite fault
features is reliable and effective. It can be seen from Figure 9
and Table 3 that the synthetic cloud model feature extraction
method proposed in this paper has a verification classifi-
cation accuracy of 91.25%. At the same time, analyzing
Figure 7 shows that fault category 1 and fault category 2 in
the single cloudmodel are prone tomisdiagnosis. Analysis of
Figure 9 shows that fault categories 2 and 4 in the synthetic
cloud model have fault identification phenomena. In the
synthetic cloud algorithm, the choice of parameters will also
directly affect the category of features, so it depends on the
situation. But overall, in terms of feature dimension and

IMF component

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ut

ua
l i

nf
or

m
at

io
n 

va
lu

e

Type 1
Type 2
Type 3

Type 4
Type 5

1 2 3 4 5 6 7 8 9

Figure 7: MI value between IMF1∼IMF9 and original signal in five
states.

0 10 20 30 40 50 60 70 80
Single cloud model

1

2

3

4

5

Ca
te

go
ry

 la
be

l

Actual category
Predict class

Figure 8: Single cloud model.

0 100 200 300 400 500 600 700 800 900 1000
–5

0
5

Ty
pe

 5
m

·s–2

0 100 200 300 400 500 600 700 800 900 1000
–5

0
5

Ty
pe

 4
m

·s–2

0 100 200 300 400 500 600 700 800 900 1000
–5

0
5

Ty
pe

 3
m

·s–2

0 100 200 300 400 500 600 700 800 900 1000
–5

0
5

Ty
pe

 2
m

·s–2

0 100 200 300 400 500 600 700 800 900 1000
–5

0
5

Ty
pe

 1
m

·s–2

Sample number (Hz)

Figure 6: 5-state source signal diagram.

0 10 20 30 40 50 60 70 80
Single cloud model

1

2

3

4

5

Ca
te

go
ry

 la
be

l

Actual category
Predict class

Figure 9: Synthetic cloud model.

6 Mathematical Problems in Engineering



classification accuracy, the synthetic cloud model method
and the single cloud model fault feature extraction method
have certain advantages.

4. Conclusions

)is paper proposes a feature extraction method for gearbox
composite fault signals based on EEMD and synthetic cloud
model. )e EEMD algorithm is used for signal decompo-
sition and then uses themutual informationmethod to select
the sensitive IMF to obtain the feature information. )en,
the concept of synthetic cloud is introduced, and the cloud-
based distance measurement principle is used to select the
cloud to be synthesized, synthesize the new cloud, and re-
duce the number of features at the same time, and relevant
features are extracted. Finally, use the actual composite fault
data set for verification and compare it with the feature set
extracted by the single cloud model. Also, the time com-
plexity of the method proposed in this article mainly de-
pends on the choice of parameters. )ere are mainly several
parameters to determine including the number of decom-
position k in the EEMD algorithm, and the similarity dis-
tance of the cloud model. In terms of judgment, the number

of cloud drops needs to be calculated, and the number of
generated cloud drops determines the timeliness of the
entire algorithm. In practical applications, the method
proposed in this paper is mainly determined by the number
of cloud drops, depending on the scale of the data. )e
experimental results prove that this method is effective and
superior to the single cloud model fault extraction method,
which has certain engineering practical application
significance.
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With the rapid development and application of intelligent traffic systems, traffic flow prediction has attracted an increasing
amount of attention. Accurate and timely traffic flow information is of great significance to improve the safety of transportation.
To improve the prediction accuracy of the backward-propagation neural network (BPNN) prediction model, which easily falls
into local optimal solutions, this paper proposes an adaptive differential evolution (DE) algorithm-optimized BPNN (DE-BPNN)
model for a short-term traffic flow prediction. First, by the mutation, crossover, and selection operations of the DE algorithm, the
initial weights and biases of the BPNN are optimized. )en, the initial weights and biases obtained by the aforementioned
preoptimization are used to train the BPNN, thereby obtaining the optimal weights and biases. Finally, the trained BPNN is
utilized to predict the real-time traffic flow. )e experimental results show that the accuracy of the DE-BPNN model is improved
about 7.36% as compared with that of the BPNNmodel.)eDE-BPNN is superior to the performance of three classical models for
short-term traffic flow prediction.

1. Introduction

In recent years, with the development of traffic detection
technology, big data technology, and data mining tech-
nology, accurate and real-time traffic flow operation data
and traffic accident data are easy to collect [1]. By studying
the changing characteristics of traffic flow before and after
traffic accidents, the traffic safety status is analyzed, evalu-
ated, and forewarned according to the collected real-time
traffic flow data. Real-time and dynamic release of early
warning information can adjust and control traffic flow
parameters in time, greatly reduce the occurrence of traffic
accidents and the degree of accident damage, and thus
improve the operation efficiency of the expressway network.
Among them, the intelligent prediction of traffic flow plays a
key role in various technologies. Short-term traffic flow
forecasting is the most valuable practice in traffic applica-
tion, and it is the foundation and basis for the realization of
advanced traffic management system and traffic information
service system. )e accuracy of short-term traffic flow

prediction directly affects the effects of traffic flow guidance
and traffic control, which is of great significance for
maintaining traffic safety. Real-time and accurate traffic flow
prediction is the premise and key to the realization of both
traffic flow guidance systems and traffic control systems [2].

As a matter of fact, short-term traffic flow prediction
largely relies on the historical and real-time traffic data
collected through various sensors (e.g., induction coils, ra-
dar, cameras, mobile global positioning systems, and social
media) to build corresponding models and algorithms. )e
fundamental principle of short-term traffic flow prediction is
as follows: first, a rational prediction model is built by a
dedicated structure and parameters based on a certain
amount of sensor data such as the historical traffic flow,
vehicle density, and vehicle speed; then, the prediction
model is trained by the corresponding learning algorithm
based on the collected data to obtain a set of optimal so-
lutions; finally, the traffic sensor data to be determined are
fed back into the trained model to predict the future traffic
flow. By principle, existing short-term traffic flow prediction
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methods are broadly classified into parametric methods,
nonparametric methods, and simulation approaches [3].
Parametric methods principally include time series models,
Kalman filtering, autoregression, and exponential smooth-
ing. Nonparametric methods include K-nearest neighbor
methods, support vector machines (SVMs), and artificial
neural networks. Simulation approaches predict traffic flow
using existing traffic simulation tools. )ese classical short-
time traffic flow prediction methods offer favourable results
for theoretical analysis and simulation. Unfortunately, their
application in practical engineering scenarios is greatly
limited due to the explosive growth of traffic big data.

Accordingly, to solve the data explosion problem arising
from the explosive growth of traffic data, many short-term
traffic flow prediction methods based on improving the
parameters of the aforementioned classical models have
been developed. For instance, based on a classical parametric
prediction method, the seasonal autoregressive integrated
moving average (ARIMA) model, Williams and Hoel [4]
built a short-term traffic flow prediction model by consid-
ering the impact of seasonal factors on road traffic flow.
Furthermore, considering the influencing factors of affect
spatiotemporal correlations such as the road network to-
pology and time-varying speed, Duan et al. [5] proposed a
spatiotemporal model based on the Space-Time Autore-
gressive Integrated Moving Average (STARIMA) model,
which further enhances the accuracy of short-term traffic
flow prediction. However, it is difficult to achieve high traffic
flow prediction accuracy with the limited small samples.
)erefore, Kumar [6] assumed a linear traffic flow and at-
tached great importance to the temporal correlation of traffic
flow at a particular location with a relatively stable traffic
flow, thereby proposing a Kalman filter-based prediction
scheme, which improves the prediction accuracy using small
samples. However, such methods neglect the impacts of
complex and changeable actual traffic environment chal-
lenges, such as spatiotemporal interaction and coupling.

To solve this problem, building new short-term traffic
flow prediction models by combining models based on
nonparametric prediction methods is considered to be a
solution for short-term traffic flow prediction [7, 8]. Duo
et al. [9] optimized the parameters of an SVM and built a
short-term traffic flow prediction model by decomposing the
traffic flow sequence into different frequency components
and then introducing the crossover and mutation factors of
the genetic algorithm into particle swarm optimization
(PSO). Dai et al. [10] proposed a gated recurrent unit-
(GRU-) based short-term traffic flow predictionmodel based
on an analysis of the spatiotemporal characteristics of traffic
flow data. Chen et al. [11] attempted to build a number of
prediction models with different time delays to propose the
least squares support vector regression (LSSVR) based short-
term traffic flow prediction model and to achieve a
favourable prediction performance. Zhao et al. [12] pro-
posed a hybrid model by combing K-nearest neighbor
(KNN) with support vector regression (SVR), imitating the
KNN search mechanism to rebuild a historical traffic flow
sequence Unfortunately, since the road network traffic
system is affected by uncertainties such as the road traffic

environment, weather conditions, and pedestrians, the ac-
tual traffic flow data are evidently nonlinear, time-varying,
and susceptible to random noise. )erefore, the above traffic
flow prediction methods are not suitable for short-term
traffic flow prediction in complex conditions because they
are still limited by dedicated model parameters, low pre-
diction accuracy, and poor generalization. So, exploring
more effective methods to achieve higher short-term traffic
flow prediction accuracy has become a great concern for
traffic researchers.

Recently, deep learning-based methods, such as back-
ward-propagation neural networks (BPNNs), have been
successfully applied to various tasks in traffic flow predic-
tion. Some scholars have introduced artificial neural net-
works with many hidden layers to build short-term traffic
flow prediction models [13–15], which achieve better pre-
diction performance. However, BPNNs have two obvious
shortcomings, including a high involvement in local optimal
solutions and a low convergence rate. Meanwhile, these
models lack the interpretability of the learning process.
Hence, how to optimize the structural parameters of a BPNN
and building a practicable short-term traffic flow prediction
model is the main focus of this article.

For the above problems, based on the influence of traffic
volume and traffic safety, this paper proposes an adaptive
differential evolution (DE) algorithm-optimized BPNN
(DE-BPNN) model for short-term traffic flow prediction.
First, the DE algorithm is used for heuristic random opti-
mization of the group difference of the BP parameters based
on a brief description of the BPNN to make up for the
random defects of the BPNN in terms of the initial weight
and bias selection. Second, to accelerate the convergence rate
in short-term traffic flow prediction, the BPNN is combined
with the DE algorithm to build a novel short-term traffic
prediction model for global optimization and generalization
of short-time traffic flow. Finally, simulation verification is
performed for the proposed algorithms and models using
the standard data set collected by the Caltrans Performance
Measurement System (PeMS), USA. )e simulation results
show that the proposed algorithm has a better learning
ability and global optimization performance compared to
conventional algorithms such as ARIMA, wavelet neural
networks (WNNs), and BPNNs.

2. Traffic Flow Prediction Modelling
Based on DE-BPNN

In general, traffic flow prediction can be classified by the
prediction period into long-term prediction, medium-term
prediction, and short-term prediction. In fact, once travellers
learn the evolution trend of short-term traffic flow in real-
time, they can change their routes for fast, convenient, and
comfortable travel. )erefore, travellers extremely concern
about short-term traffic flow prediction. In actual traffic
environments, the 5- to 30-minute traffic flow evolution trend
is chosen as the time range for short-term traffic flow pre-
diction. To ensure the prediction accuracy, the traffic flow
data sequence observed within n identical time intervals at an
observation point in the traffic network is assumed to be
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xi , i � 1, 2, . . . , n, and the predicted traffic flow of a certain
period in the future is y. With a rational traffic flow prediction
model, it is possible to observe the traffic flow data sequence
for accurate prediction within a short time, thereby providing
an effective decision-making basis for travellers to choose
their travel routes. )is paper adopts the DE-BPNN-based
model for the optimization and improvement of accuracy. For
the simplicity of analysis and the integrity of the overall frame
structure, the basic structure of the BPNN-based short-term
traffic flow prediction model is introduced first.

2.1. Overview of the BPNN-Based Short-Term Traffic Flow
PredictionModel. It is well known that the traffic system is a
large, complex, nonlinear, time-varying, and stochastic
system. BPNN can identify complex nonlinear systems and
constantly adjust the parameters based on a large number of
collected data sequences. Moreover, it can approximate any
nonlinear continuous function with an arbitrary precision
through the deep data fusion of parallel structures and the
data processing capability of self-learning. Such properties
help to remarkably reduce the computing workload of
online prediction. )erefore, BPNN-based methods are
widely applied in the field of short-term traffic flow pre-
diction [16, 17]. Generally, the BPNN structure includes an
input layer, a hidden layer, and an output layer. Each layer is
connected by weights and bias. )e weights and bias value
range is typically [−1, 1]. As shown in Figure 1, a neuron
model contains an input layer with n nodes, an intermediate
layer with m nodes, and an output layer with 1 node. In
short-term traffic flow prediction, the processing procedure
basic execution process consists of the forward propagation
of traffic information and the backward propagation of
error, as shown in Figure 2.

It is assumed that xi represents the traffic flow of an
observation point in the traffic network in the ith time in-
terval; the input is (x1, x2, . . . , xn)T, and the output is y.

netj � 

n

i�1
ωij ∗xi + θj,

yj � fj netj ,

net � 
m

j�1
υj ∗yj + θ,

y � f(net),

j � 1, 2, . . . m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where wij and υj are the connection weight between the
input-hidden layers and hidden-output layers, respectively;
θj and θ are the biases of the hidden layer and output layer,
respectively; fj(·) and f(·) are the activation functions of
the hidden layer and output layer, respectively.

)e BPNN weights and biases can generate three ma-
trices and one bias, including, the weight matrix W from the
input layer to the hidden layer, the weight matrix V from the
hidden layer to the output layer, and the bias matrix T of the
hidden layer and the output layer bias θ. Each matrix is
represented as follows:

W �

ω1,1 ω1,2 · · · ω1,n

ω2,1 ω2,2 · · · ω2,n

⋮ ⋮ ⋮

ωm,1 ωm,2 · · · ωm,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V � υ1, υ2, . . . , υm ,

T � θ1, θ2, . . . , θm 
T
.

(2)

Compared with classical traffic flow prediction algo-
rithms, the BPNN has obvious superiorities, such as higher
prediction accuracy and noise robustness. However, such a
black box-like learning mode still faces several challenges
[7]. Firstly, since the training process utilizes the current
real-time data, the trained network may be no longer ap-
plicable when the traffic flow changes. Secondly, the con-
nection weights and bais of each layer in BPNN are set
randomly, which may make the training process fall into
local minimization. To alleviate these challenges, this paper
relies on the DE algorithm to optimize BPNN parameters,
resulting in faster convergence, simpler implementation,
and higher prediction accuracy.

2.2. Improvement of theModel by DEAlgorithm-Based BPNN
Parameter Optimization. As a group difference-based
heuristic global search algorithm, the DE algorithm opti-
mizes the distribution of the weights and biases for each
layer in BPNN through real number encoding. During the
iteration process, the optimal weights and biases are chro-
mosomes obtained by the assistance of the DE algorithm. In

x1

xi xiωi
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Input f
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…
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Figure 1: Neuron model structure.
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Figure 2: Single hidden layer BPNN structure diagram.
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the end, the local optimization of the BPNN-based traffic
flow prediction model ultimately leads to the global optimal
solution. Conventionally, the DE algorithm employs a dif-
ferent strategy for mutation operations, that is, the difference
vector between individuals in the population to perturb
individuals to achieve individual variation. )e mutation
method of the DE algorithm improves the search capacity by
using the characteristics of the population distribution
effectively.

In fact, the DE optimization process adopts population
initialization, mutation, crossover, and selection strategies to
map matrices, including W, V, T, and θ, into the chro-
mosome. )e mapping relationship is expressed as follows:

ω1，1,ω1，2, . . . ,ωn,m, υ1, υ2, . . . , υm, θ1, θ2, . . . , θm, θ ,

(3)

where the set of mappings is D, which represents the number
of dimensions of a variable. )e initial variables are cal-
culated and assigned based on equation (4), and the initial
population zi(0)|zL

i.j ≤ zi.j(0)≤ zU
i.j, i � 1, 2, . . . ,Np,

j � 1, 2, . . . , D} is generated randomly as given in the fol-
lowing equation.

zi,j(0) � z
L
i.j + rand(0, 1) z

U
i.j − z

L
i.j , (4)

where zi(0) represents the ith individual of the 0th generation
in the population; zi.j(0) represents the jth “gene” (number
of dimensions) of the ith individual in the 0th generation in
the population; zL

i.j and zU
i.j, respectively, represent the

minimum and maximum numbers of dimensions of the
individual; Np represents the population size; and rand(0, 1)

is a random number uniformly distributed in the interval
(0, 1).

A mutation operation is performed to achieve individual
mutation through a differential strategy. )ree different
individuals are randomly selected from Np numbers of
individuals; two of them are scaled by the vector difference,
and another vector is added thereto, that is,

vi(g + 1) � zr1(g) + F zr2(g) − zr3(g)( , (5)

where zi(g) represents the ith individual in the gth gener-
ation population; r1, r2, r3, and target vector i are different
from each other; and F is a scale factor, which has been
assigned a value between [0, 2] and used to control the
scaling of differential variables [18, 19].

)e crossover operation is performed between indi-
viduals for the gth generation population zi(g)  and the
intermediate vi(g + 1) 

ui.j(g + 1) �
vi.j(g + 1), ifrand(0, 1)≤CR orj � jrand,

zi.j(g), otherwise,
⎧⎨

⎩

(6)

where CR is the crossover factor and jrand is a random
integer in [1, 2, . . . , D]. To ensure at least one “gene” in the
intermediate individual is passed to the next generation, the
jthrand gene of each individual is passed in the first crossover
“gene” operation. zi(g) or vi(g + 1) is chosen as the allele of

ui(g + 1), which depends on the CR probability for sub-
sequent crossover operations.

)e selection strategy focuses on the population selec-
tion after the crossover operation in the differential algo-
rithm. Based on the complexity of the actual traffic
environment, the DE algorithm employs the greedy algo-
rithm to choose the individuals inputting to the next gen-
eration of the traffic flow population; that is,

zi(g + 1) �
ui(g + 1), f ui(g + 1)( ≤f xi(g)( ,

xi(g), otherwise.
 (7)

For the DE algorithm, the mutation, crossover, and
selection operations are continuously performed through
equations (5)–(7) until meeting the conditions. )us, the
DE-BPNN parameter optimization is achieved. Note that,
the scale and crossover factors of the DE algorithm are fixed
values based on experience. In actual traffic flow prediction,
this algorithm requires a wider search range to avoid be-
coming trapped in local optimal solutions in the early stage,
while it requires a narrower search range to prevent the
algorithm frommissing the extreme points in the later stage.
)erefore, to conform to the dynamics of short-term traffic
flow, it is necessary to improve the method of determining
the scale and crossover factors.

2.3. Method of Determining the Dynamics of Adaptive Scale
and Crossover Factors for DE Algorithm. To ensure the ac-
curacy and effectiveness of short-term traffic flow prediction,
the established adaptive scale factors need to guarantee the
following characteristics: as the number of iterations in-
creases, the mutation rate should gradually decrease; at the
beginning of an iteration, a larger scale factor should be
selected to increase the diversity of the traffic flow pop-
ulation; a smaller scale factor should be selected in the later
stage to preserve the superior individuals of the traffic flow
population. Based on these considerations, adaptive scale
factors are generated with the following equation:

F � F0 ∗ 2 e
1− Gm/Gm+(1− G)( ), (8)

where F0 represents the initial scale factor, Gm is the
maximum number of iterations, and G stands for the current
number of iterations.

Similarly to the scale factor, as the number of iterations
increases, the crossover rate changes dynamically. )e larger
crossover factor at the initial stage ensures the global traffic
flow state mutation. )e smaller crossover rate in the later
period is more focused on local traffic state convergence.
Hence, the design adaptive crossover factor is shown in the
following equation:

CR � CRmax −
G CRmax − CRmin( 

Gm

 , (9)

where CRmax is the maximum value of the crossover pa-
rameter and CRmin represents the minimum value of the
crossover parameter.

In regard to traffic flow prediction, because the DE al-
gorithm optimizes the BP parameters, it can prevent the
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BPNN from being trapped in local optimal solutions and
improve the accuracy of the BPNN-based traffic flow
algorithm.

3. Design of the Short-Term Traffic Flow
Prediction Algorithm Based on Adaptive DE-
BPNN

)e preceding section introduces the BPNN-based short-
term traffic prediction model and the DE algorithm, as well
as the method for determining the dynamic parameter
factors in the DE algorithm. )e basic procedure of the
hybrid short-term traffic flow prediction model algorithm is
given below, as shown in Figure 3.

Step 1: initialize the population. Np populations are
randomly initialized based on equation (4). Each in-
dividual has D dimensions, each of which represents a
parameter in a neural network.
Step 2: the error between the neural network output
and actual values is defined as the population-depen-
dent fitness function. )e fitness of each individual is
calculated, and the minimum fitness value is the global
minimum; the globally optimal individual is updated.
)e fitness function can be represented by the mean
square error (MSE) or the root mean square error
(RMSE) as given in the following equation:

MSE �
1

Nts



Nts

i�1
yi − yi( 

2
,

RMSE �

��������������

1
Nts



Nts

i�1
yi − yi( 

2




,

(10)

where Nts represents the number of trained samples; yi

is the actual value of the predicted traffic flow; and yi

stands for the value of the actual traffic flow.
Step 3: the next-generation individual xi(g + 1) is
obtained based on the DE mutation, crossover, and
selection operations.
Step 4: step 3 is repeated until the next-generation
population is obtained.
Step 5: determine whether or not the termination
condition (the global minimum meets the predefined
accuracy requirements, or the maximum number of
iterations is reached) is met; if yes, the iteration will be
stopped with the optimal individuals as parameters of
the neural network; otherwise, go to the next step.
Step 6: if g � g + 1; go back to Step 2.
Step 7: enter the test set and perform prediction with
the trained network.

4. Simulation Experiment

4.1. ExperimentConditions. To verify the performance of the
proposed short-term traffic flow prediction model, the PeMS

data set, one of the most commonly used data set in short-
term traffic flow prediction [20], was selected. )e data
acquired from one road segment were chosen for detection;
the data collected by these detectors were summarized once
in every 5 minutes, and the traffic flow was summarized for
three one-way lanes. )en, the data were subjected to
preprocessing, including the removal of redundant data, the
correction of erroneous data, and normalization. Figure 4
shows the traffic flow at a detection point along a freeway
overtime during the week. It can be seen that the traffic flow
on weekdays tends to be consistent. To more closely assess
the similarity of weekdays, the daily traffic flow was com-
pared in the same plane. As shown in Figure 5, the morning
and evening rush hours are almost at the same time on the
weekdays, which reflects the consistency of travel patterns.
Hence, to ensure the accuracy of the prediction, weekends
and weekdays are distinguished, and the experimental study
was conducted on weekday traffic flow data collected from
May 2 to May 6, 2018. )e data collected on May 2 and 3,
2018, were used as the training set, while the data acquired
on May 4 were used as the prediction set.

4.2. Assessment Indicators. To evaluate the effectiveness of
the DE-BPNN model and some conventional models, the
four most commonly used performance indicators were
selected for regression problems: the mean absolute error
(MAE), the MSE, the mean absolute percentage error

Determine BPNN's structure 
parameters

Establish the mapping relationship 
between the input and output

Initialize parameters

Determine the fitness function
calculate the fitness value for each 

variable

Mutation and crossover operations
update the fitness value for each 

variable

Select the 
global optimal 

fitness value
�e maximum

number of iterations is reached,
or the training error is less than

the set value

Output the optimal network

Yes

No

Figure 3: DE-BPNN algorithm flowchart.
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(MAPE), and the mean square percent error (MSPE). All
indicators are defined as follows: yt and yt represent the
detection value and the model prediction value of traffic
flow, respectively [21, 22].

(1) Mean absolute error (MAE): it can avoid the problem
of mutual cancellation of errors, so it can well reflect
the actual situation of predicted value errors.

MAE �
1
n



n

t�1
yt − yt


. (11)

(2) Mean square error (MSE): it is a measure reflecting
the difference between the estimated quantity and
the estimated quantity, which can evaluate the
change degree of the data. )e smaller the MSE
value, the better the accuracy of the prediction model
in describing the experimental data:

MSE �
1
n

�����������



n

t�1
yt − yt( 

2




. (12)

(3) Mean absolute percentage error (MAPE): it is used as
a statistical indicator to measure the accuracy of
prediction. A smaller MAPE indicates a better model
effect.

MAPE �
1
n



n

t�1

yt − yt

yt




. (13)

(4) Mean square percent error (MSPE): it is used to test
the degree of model fitting. )e smaller the MSPE is,
the better the fitting degree is, and the model can be
accepted.
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MSPE �
1
n
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yt − yt

yt

 

2



. (14)

4.3. Model Parameters. )e experiment used the BPNN-
based method with a single hidden layer (m− 2m+ 1− 1). As
shown in Figure 2, the input data were set as
(x1, x2, . . . , xn)T, and the output result was y[23, 24]. )e
parameters of the BPNNmodel are as follows: the maximum
number of trainings is 1,000, the training error target is
0.001, the learning rate is 0.01, the activation function of the
hidden layer is tansig: f(x) � (2/(1 + e− 2x)) − 1, the acti-
vation function of the output layer is purelin: f(x) � x, and
the training function is trainlm. )e parameter settings for
the DE algorithm are as follows: the population size is
Np � 10, the number of iterations is g � 100, the results of
several trial calculations determine the mutation factor is
F0 � 0.9, and the crossover factor CRmin � 0.1 and
CRmax � 0.7. )e experiment was performed on a PC with
an Intel i7 2.4GHZ CPU and an 8GB RAM; the algorithm
was written in the MATLAB R2018a environment.

4.4. Interpretation of Results

4.4.1. Model Prediction Results. In this paper, the traffic flow
data observed at an observation point in the road network on
May 4 were analyzed. )e prediction results are shown in
Figure 6. It can be seen from Figure 6 that the DE-BPNN
model yields excellent prediction results. )e predicted
values at each time point are basically consistent with the
actual values, so the traffic flow trend throughout the day is
excellently predicted, and the trend of the change in the
traffic flow is accurately identified.

4.4.2. Comparative Analysis of Models. )eoretically, the
adaptive DE-BPNN model proposed in this paper offers
higher convergence rates and smaller prediction errors
compared with the use of the BPNN alone. In the early stage,
the DE algorithm can effectively avoid the local extremum
problem and offer fast convergence and optimization.
Furthermore, this algorithm can find the optimal initial
parameters of the BPNN during training and continuously
optimize the BPNN, and the parameter values are more
accurate than the initial values randomly generated by the
neural network, thereby enhancing the prediction accuracy.
To compare the predictive performance of the DE-BPNN
model, three classical prediction models were selected for
comparison, including the ARIMA-based, WNN-based, and
BPNN-based models. )e results of the short-term traffic
flow predictions performed with the ARIMA, BPNN, and
WNN models are given below. )e data in Figures 7–9
include the actual values, the predicted values, and the
prediction errors, including the emergence of morning and
evening peaks.

For a more intuitive comparison of the model prediction
results, the four performance evaluation indicators are used
to evaluate the four prediction models.

)e performances of the ARIMA, WNN, BPNN, and
DE-BPNN models were compared. We used the same data
set in all cases. Table 1 shows the prediction result of the
5 min freeway traffic flow verification data set. It should be
noted that we only used the traffic flow data as the input for
prediction without considering engineering factors related
to the traffic flow, such as weather conditions, accidents, and
other traffic flow parameters (density and speed). As shown
in Table 2, the MAE values of DE-BPNN model decreases
49.04%, 8.16%, and 7.36% as compared with those of the
ARIMA, WNN, and BPNN models, respectively; the MSE
values of DE-BPNN model decreases 44.97%, 5.88%, and
6.66% as compared with those of the ARIMA, WNN, and
BPNN models, respectively; the MAPE values of the DE-
BPNN decreases 33.43%, 19.68%, and 18.55% as compared
with those of the ARIMA, WNN, and BPNN models, re-
spectively; and the MSPE values decreases 23.58%, 29.85%,
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Figure 6: Traffic flow prediction results of the DE-BPNN model.
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Figure 7: Traffic flow prediction results with the ARIMA model.
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and 27.69% as compared with those of the ARIMA, WNN,
and BPNN models, respectively.

5. Conclusions

Short-term traffic flow prediction is of great social and
economic significance for reducing traffic safety hazards,
reducing traffic accidents, providing safe and efficient ex-
perience for highway travellers, and improving highway
traffic and transportation efficiency. By integrating intelli-
gent optimization algorithm theory with machine learning
methods, this paper proposes a DE-BPNN model for short-
term traffic flow prediction. Restricted by a variety of in-
ternal and external factors, the actual traffic system exhibits
strong nonlinearity and uncertainty. )e BPNN is suitable
for any nonlinear fitting; furthermore, to avoid being
trapped in local extrema during the conventional BPNN
training process, a difference-based heuristic random search
DE algorithm is used for global preoptimization, and then,
the weights and biases obtained from the DE algorithm are
used to train the BPNN, thus improving the prediction
accuracy. )e results show that the DE-BPNN prediction
model effectively improves the prediction accuracy of short-
term traffic flow. Compared with the ARIMA, WNN, and
BPNN models, the DE-BPNN model leads to lower values
for the MAE, MSE, MAPE, and MSPE error evaluation
indicators. )e research scope can be expanded, and more
complex road network data can be used for experiments in
the future. Traffic flows may be affected by weather, traffic
accidents, and other factors. How to use such auxiliary
information to improve the prediction accuracy will also be a
focus in future studies.

Data Availability

)e data used to support the findings of this study are
available at http://pems.dot.ca.gov.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China (Grant no. 61573076), Science Tech-
nology Research Program of Chongqing Municipal Edu-
cation Commission (Grant no. KJZD-K201800701),
Program of Chongqing Innovation and Entrepreneurship
for Returned Overseas Scholars of P.R. China (Grant no.
cx2018110), Chongqing Natural Science Foundation (Grant
no. cstc2020jcyj-msxmX0797), the Science and Technology
Research Program of Chongqing Municipal Education
Commission (Grant no. KJQN202000717), and the Inno-
vation Foundation of Chongqing Postgraduate Education
(Grant no. CYS20282).

References

[1] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and
C. Chen, “Data-driven intelligent transportation systems: a
survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 4, pp. 1624–1639, 2011.

500

400

300

200

100

–100
00:00 04:00 08:00 12:00 16:00 20:00 24:00

Ve
hi

cle
 fl

ow
 ( 

ve
ch

ic
le

s/
5m

in
)

Time

Actual value
Predicted value
Prediction error

0

Figure 9: Traffic flow prediction results with the BPNN model.

Table 1: Prediction performances of the ARIMA, WNN, BPNN,
and DE-BPNN models.

Model MAE MSE MAPE MSPE
ARIMA 31.7049 2.3084 0.1735 0.0123
WNN 17.5927 1.3496 0.1438 0.0134
BPNN 17.4396 1.3609 0.1418 0.0130
DE-BPNN 16.1563 1.2702 0.1155 0.0094

Table 2: Percentage improvement in the prediction results with the
DE-BPNN model compared with the ARIMA, WNN, and BPNN
models.

Model MAE (%) MSE (%) MAPE (%) MSPE (%)
ARIMA 49.04 44.97 33.43 23.58
WNN 8.16 5.88 19.68 29.85
BPNN 7.36 6.66 18.55 27.69

500

400

300

200

100

0

–100
00:00 04:00 08:00 12:00 16:00 20:00 24:00

Ve
hi

cle
 fl

ow
 (v

ec
hi

cle
s/

5m
in

)

Time

Actual value
Predicted value
Prediction error

Figure 8: Traffic flow prediction results with the WNN model.

8 Mathematical Problems in Engineering

http://pems.dot.ca.gov


[2] D. Huang, Z. Deng, S. Wan, B. Mi, and Y. Liu, “Identification
and prediction of urban traffic congestion via cyber-physical
link optimization,” IEEE Access, vol. 6, pp. 63268–63278, 2018.

[3] Y. Lv, Y. Duan, W. Kang, and Z. Li, “Traffic flow prediction
with big data: a deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2,
pp. 865–873, 2015.

[4] B. M. Williams and L. A. Hoel, “Modeling and forecasting
vehicular traffic flow as a seasonal ARIMA process: theoretical
basis and empirical results,” Journal of Transportation Engi-
neering, vol. 129, no. 6, pp. 664–672, 2003.

[5] P. Duan, G. Mao, W. Yue et al., “A unified STARIMA based
model for short-term traffic flow prediction,” in Proceedings of
the 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 1652–1657, IEEE, Maui, Hawaii,
USA, 2018.

[6] S. V. Kumar, “Traffic flow prediction using kalman filtering
technique,” Procedia Engineering, vol. 187, pp. 582–587, 2017.

[7] J. Zhang, S. Zhao, Y. Wang, and X. Zhu, “Improved social
emotion optimization algorithm for short-term traffic flow
forecasting based on back-propagation neural network,”
Journal of Shanghai Jiaotong University (Science), vol. 24,
no. 2, pp. 209–219, 2019.

[8] M. Lippi, M. Bertini, and P. Frasconi, “Short-term traffic flow
forecasting: an experimental comparison of time-series
analysis and supervised learning,” IEEE Transactions on In-
telligent Transportation Systems, vol. 14, no. 2, pp. 871–882,
2013.

[9] M. Duo, Y. Qi, G. Lina et al., “A short-term traffic flow
prediction model based on EMD and GPSO-SVM,” in Pro-
ceedings of the 2017 IEEE 2nd Advanced Information Tech-
nology, Electronic and Automation Control Conference
(IAEAC), pp. 2554–2558, IEEE, Chongqing, China, 2017.

[10] G. Dai, C. Ma, and X. Xu, “Short-term traffic flow prediction
method for urban road sections based on space-time analysis
and GRU,” IEEE Access, vol. 7, pp. 143025–143035, 2019.

[11] X. Chen, X. Cai, J. Liang, and Q. Liu, “Ensemble learning
multiple LSSVR with improved harmony search algorithm for
short-term traffic flow forecasting,” IEEE Access, vol. 6,
pp. 9347–9357, 2018.

[12] L. Zhao, D. Wei, Y. Dong-Mei et al., “Short-term traffic flow
forecasting based on combination of k-nearest neighbor and
support vector regression,” Journal of Highway & Trans-
portation Research & Development, vol. 12, no. 1, pp. 89–96,
2018.

[13] Y. Ma, Z. Zhang, and A. Ihler, “Multi-lane short-term traffic
forecasting with convolutional LSTM network,” IEEE Access,
vol. 8, pp. 34629–34643, 2020.

[14] Y. Gu, W. Lu, X. Xu et al., “An improved bayesian combi-
nation model for short-term traffic prediction with deep
learning,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 3, pp. 1332–1342, 2019.

[15] W. Cheng and P. Feng, “Network traffic prediction algorithm
research based on PSO-BP neural network,” in Proceedings of
the 2015 International Conference on Intelligent Systems Re-
search and Mechatronics Engineering, Atlantis Press,
Zhengzhou, China, 2015.

[16] S. A. Zargari, S. Z. Siabil, A. H. Alavi et al., “A computational
intelligence-based approach for short-term traffic flow pre-
diction,” Expert Systems, vol. 29, no. 2, pp. 124–142, 2012.

[17] K. Kumar, M. Parida, and V. K. Katiyar, “Short term traffic
flow prediction for a non urban highway using artificial neural
network,” Procedia—Social and Behavioral Sciences, vol. 104,
no. 2, pp. 755–764, 2013.

[18] J. Liu and J. Lampinen, “A fuzzy adaptive differential evo-
lution algorithm,” Soft Computing, vol. 9, no. 6, pp. 448–462,
2005.

[19] J. Ye, J. Zhao, K. Ye et al., “How to build a graph-based deep
learning architecture in traffic domain: a survey,” 2020,
https://arxiv.org/abs/2005.11691.

[20] Caltrans, “Performance measurement system (PeMS),” 2020,
http://pems.dot.ca.gov.

[21] D. Huang, Z. Deng, L. Zhao et al., “A short-term traffic flow
forecasting method based on markov chain and grey verhulst
model,” in Proceedings of the 2017 6th Data Driven Control
and Learning Systems (DDCLS), pp. 606–610, IEEE,
Chongqing, China, 2017.

[22] D. Huang, Z. Deng, and B. Mi, “A new synergistic forecasting
method for short-term traffic flow with event-triggered strong
fluctuation,” Journal of Control Science and Engineering,
vol. 2018, Article ID 4570493, 8 pages, 2018.

[23] B. L. Smith and M. J. Demetsky, “Traffic flow forecasting:
comparison of modeling approaches,” Journal of Trans-
portation Engineering, vol. 123, no. 4, pp. 261–266, 1997.

[24] E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, “Short-
term traffic forecasting: overview of objectives and methods,”
Transport Reviews, vol. 24, no. 5, pp. 533–557, 2004.

Mathematical Problems in Engineering 9

https://arxiv.org/abs/2005.11691
http://pems.dot.ca.gov


Research Article
Balancing Access Control and Privacy for Data Deduplication via
Functional Encryption

Bo Mi,1 Ping Long ,1 Yang Liu,1 and Fengtian Kuang2

1College of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

Correspondence should be addressed to Ping Long; longpingcq@163.com

Received 2 November 2020; Revised 19 November 2020; Accepted 24 November 2020; Published 10 December 2020

Academic Editor: Yong Chen

Copyright © 2020 Bo Mi et al. +is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data deduplication serves as an effective way to optimize the storage occupation and the bandwidth consumption over clouds. As
for the security of deduplication mechanism, users’ privacy and accessibility are of utmost concern since data are outsourced.
However, the functionality of redundancy removal and the indistinguishability of deduplication labels are naturally incompatible,
which bring about a lot of threats on data security. Besides, the access control of sharing copies may lead to infringement on users’
attributes and cumbersome query overheads. To balance the usability with the confidentiality of deduplication labels and securely
realize an elaborate access structure, a novel data deduplication scheme is proposed in this paper. Briefly speaking, we drew
support from learning with errors (LWE) to make sure that the deduplication labels are only differentiable during the duplication
check process. Instead of authority matching, the proof of ownership (PoW) is then implemented under the paradigm of inner
production. Since the deduplication label is light-weighted and the inner production is easy to carry out, our scheme is more
efficient in terms of computation and storage. Security analysis also indicated that the deduplication labels are distinguishable only
for duplication check, and the probability of falsifying a valid ownership is negligible.

1. Introduction

As a flourishing service mode, cloud computing adopts
load balancing, distributed computing, and other tech-
nologies to conveniently provide computation and storage
functions for remote follow-up users, thus saving local
resources and promoting work efficiency. However, if the
users immoderately outsource their data to the cloud, a
serious problem may occur due to massive duplicated data.
As reported in [1], almost half of the cloud storage is wasted
because of data redundancy. Consequently, the budget for
managing duplicate data raises up to eight times than that
of source data maintenance [2, 3]. With the explosive
growth of data nowadays, the tremendous storage re-
quirements or the exorbitant administrative expenses have
put enormous pressure on cloud service providers.
+erefore, how to store and manage data economically and
efficiently has become a serious challenge for these
enterprises.

To cut down the costs caused by redundant data,
deduplication technology has been widely used by cloud
service providers [4]. In such a technology, duplication
check and proof of ownership are two key problems. Till
now, the problem of how to balance the conflict between
comparability and confidentiality for secure duplication
check remains unsolved [5]. Meanwhile, the problems of
how to efficiently validate the access authority and how to
achieve complex access structures are also urgent to address,
considering that the mechanism of query matching is
cumbersome and the downloading certificates may be
abused to launch various attacks.

As a research hotspot, lots of attentions are put on the
efficiency and security of data deduplication. In the pub-
lished literature, Li et al. [6] suggested carrying out dedu-
plication by comparing the fingerprint of the outsourced file
with the uploaded ones in a direct way. However, this
method is deficient since the communication and com-
parison of those fingerprints are inefficient and the contents

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 6662662, 11 pages
https://doi.org/10.1155/2020/6662662

mailto:longpingcq@163.com
https://orcid.org/0000-0002-9147-7378
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6662662


of data are exposed. To reduce the traffic of deduplication
labels and conceal the data, Puzio et al. [7] used the hash
function to code the same plaintexts into identical values,
which serve as the labels for duplication check. Although this
method achieved the goals of transmission efficiency and
storage saving, it is vulnerable to dictionary attacks since the
hash values are overt.

In order to ensure the confidentiality of deduplication
labels, Chen et al. [8] utilized the message lock encryption
(MLE) to encrypt those hash values of data. However, the
traditional MLE scheme is not semantic secure and vul-
nerable against quantum attacks [9].

Fortunately, cryptographers have been devoted to design
secure, efficient, and effective crypto systems to resist
quantum attacks in recent years. In 2005, Regev et al. [10]
proposed a novel paradigm as an underpinning of cryp-
tography, namely, learning with errors. +ey proved that the
difficulty of solving it is equivalent to the hardness of
shortest vector problem (SVP) over lattice, and thus, it can
resist the attacks based on quantum computing. Besides, it is
provided with the capacity of homomorphic and linear
computation. +erefore, we consider exploiting it in our
scheme to ensure the functionality, efficiency, and security of
deduplication labels.

As for the proof of ownership, the best solutions till now
are all based on Merkle hash tree (MHT) [11, 12]. In detail,
the cloud and the user independently hold an MHT com-
puted from the outsourced data. +us, the user can upload
the same MHT to the cloud for comparison. +e disad-
vantages of such scheme are not only high storage and
communication overheads but also low computation effi-
ciency. +erefore, Chen et al. [13] improved it by randomly
asking the cloud to select some leaf nodes of the MHT to
challenge the user. +e user must trace the path from the
root to these leaves as a reply to prove that he possesses the
same tree. Although this method does not require the
transmission of the whole MHT for comparison, it
demanded that the user and the cloud should construct and
store a complete MHTfor each file. Moreover, the challenge-
response mode implies a long delay.

In order to promote the performance of PoW, the ad-
vantages of inner product predicate gradually entered the
researchers’ sight [14–16]. Roughly speaking, only if the
inner product results 0, the user can be granted a permission
to access the corresponding file. +e most significant merit
of this method is using computation instead of comparison
to efficiently perform ownership proof. +erefore, we
adopted it in our scheme to balance the conflict between the
variety of access structures and the security of users’ privacy.

Aiming at checking replication over semantic secure
deduplication labels and achieving fine-grained access
control, this paper proposed a novel cloud data dedupli-
cation scheme by exploiting LWE (learning with errors)
together with inner product predicate. Our contributions are
abbreviated as follows:

(i) +ough designed for the purpose of deduplication,
the deduplication labels are indistinguishable to any
process except for duplication check. +is property

is achieved in virtue of semantic secure and ho-
momorphic LWE, which is also resistant to quan-
tum attack.

(ii) +e proof of ownership is carried out by inner
product, which is computationally efficient. Besides,
we impose the accessibility of users on their attri-
butes, implying the functionality of the elaborate
access structure and ownership transfer.

(iii) For each file, only one light-weighted downloading
certificate should be stored by the cloud, while the
clients should only carry out and upload its cor-
responding proof on demand. +at is to say that
both the storage and bandwidth are economic for
cross-user access.

+e rest of this paper is organized as follows. In Section
2, some formal definitions related to LWE and inner product
predicate are given. Section 3 depicts our deduplication
scheme, including the detailed way for duplication check
and ownership proof. +e correctness of our scheme is
formally validated in Section 4, followed by security and
performance analysis in Sections 5–7 that concludes the
paper.

2. Preliminaries

For better understanding of our scheme, the concepts related
to learning with errors and inner product predicate [2, 17]
will be introduced in advance.

Definition 1 (Integer lattice). An integer lattice Λ is the
integer linear combination of vectors
a1, a2, . . . , aka1, a2, . . . , ak over Zm, expressed as

Λ a1, a2, . . . , ak(  � 
k

i�1
aizi: zi ∈ Z

⎧⎨

⎩

⎫⎬

⎭. (1)

Definition 2 (LWE hardness assumption). On parameters
n, m, q, α and a discrete Gaussian distribution χ, where

Pr[x⟵ χ: |x|> αq]<negl(n), (2)

for x ∈ Zq, we select a noise e from χm and uniformly sample
a vector s ∈ Zn

q together with a matrix P ∈ Zn×m
q . Based on

the value of

b � [sP + e]q, (3)

two versions of LWE hardness can be defined as follows:

(a) LWE-Search hardness: Given multiple pairs of (P, b)

on constant P and s, searching for the value of s is
difficult.

(b) LWE-Determination hardness: For uniformly sam-
pled b′ ∈ Zn

q, the tuples of (P, b) and (P, b′) are
statistically indistinguishable. It means that it is
difficult to tell if the second term of those tuples are
randomly chosen or computed from formula (3).
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In fact, the LWE-search hardness is equivalent to the
problem of finding a short enough vector in lattice
(GapSVP), and the LWE-determination hardness can be
reduced to the problem of solving linearly independent
shortest vectors (SIVP) of a lattice in the worst case.
+erefore, the LWE assumption can be used to guarantee the
one-way property for encryption with semantic security.

Definition 3 (Inner product predicate). +e inner product
predicate Pn,q is defined on the Cartesian product K × I that

Pn,q( v
→

, tw
→

) �

1, 
i�1,...,n

viwi � 0,

0, other.

⎧⎪⎨

⎪⎩
(4)

From the perspective of functional encryption (FE), I can
be deemed as the space of ciphertexts and K is composed of
secret keys. Once a correct key v

→ is known, we are able to
learn the output of function Pn,q( v

→
, tw

→
).

To construct an attribute-based access control policy, the
access structure is coded as a vector w

→, thus the access
authority can be verified with respect to the consistency of
authorization certificate v

→.To avoid obfuscation, the sym-
bols used in this paper is listed in advance, as in Table 1.

3. Duplication Check Based on LWE

To prevent dictionary attacks caused by the exposure of
deduplication labels, we intended to make them indistin-
guishable except for the process of duplication check.
+erefore, LWE is adopted to randomize the hash value of
file to ensure the indistinguishability of deduplication labels
and resist the attacks of quantum computation. In addition,
we exploit inner product predicate to control the accessi-
bility of clients, which is flexible for functions such as cross-
user sharing and ownership transfer. +e logical idea of our
scheme is illustrated below, which is shown in Figure 1.

4. File Upload

A user denoted as A, who possesses a file MA and expects to
upload it, is not aware of its existence over cloud at the very
beginning. To avoid unnecessary storage and bandwidth, he
is supposed to check if there is a copy already held by the
server.

Drawing support from any strong-collision resistant
hash function

H: 0, 1{ }
∗ ⟶ 0, 1{ }

ℓ
, (5)

the user figures out the hash value of file MA as

hA � H MA( , (6)

and codes it as a vector of ℓ elements. On fixed public matrix
P ∈ Zn×m

q and a pseudorandom sequence generator (PSRG),
he produces a vector

s
→

A � PSRG hA( , − 1(  ∈ Zn+1
q , (7)

and exploits LWE to obtain

vA
�→

� P, bA(  · rA ∈ Z
n+1
q . (8)

Herein, bA � [PSRG(hA)P + eA]q stands for the last row
of (P, bA), where PSRG(hA) is considered as a n dimensional
vector and rA is randomly chosen from − 1, 0, 1{ }m.To this
point, the user is ready to take the n + 1 dimensional vector
vA
�→ as a deduplication label and upload it to the cloud. Since
the subsequent actions he should take depend directly on the
result of duplication check, we will discuss the situations for
original uploader and repeated uploader, respectively, who
are denoted as A and B for clarity.

4.1. *e Process of Original Uploading. We defer the de-
scription of duplication check to the circumstance of
repeated upload, if suppose that user A is informed with
the inexistence of file MA. For further deduplication, he
should secretly upload the deduplication certificate sA

→ to
the cloud. To ensure the confidentiality of his file, its hash
value can be taken as a symmetric key skA � hA to hide the
plaintext as

EncskA
MA(  � CA. (9)

+en, the cloud preserves the uploaded ciphertext CA for
storage and the deduplication certificate sA

→ for duplication
check. To further retrieve the file, user A ought to upload a
downloading certificate as well, like the following.

Assuming that the attributes of user A correspond to a
secret vector μA

�→
� (μA,0, μA,1, . . . , μA,n− 1) ∈ Zn

q, which can
also be regarded as a polynomial

f μA
�→

(  � μA,0 + μA,1x + · · · + μA,n− 1x
n− 1mod q. (10)

It is worth mentioning that the user is aware of the
elements of μA

�→ only if he corresponds to those attributes. To
actualize a functional encryption which reflects the access
structure in covert manner, he uniformly samples two
vectors wi(i � 0, 1, . . . , n − 2) and
uA
�→

� (uA,0, uA,n− 1, uA,n− 2, . . . , uA,1). Similarly, the vector
uA
�→

� (uA,0, uA,n− 1, . . . , uA,1) ∈ Zn
q can also be expressed as a

polynomial g(uA
�→

) � uA,0 + uA,n− 1x + · · · + uA,1x
n− 1mod q,

which is equivalent to a cyclic matrix

UA �

uA,0 uA,n− 1 · · · uA,1

uA,1 uA,0 · · · uA,2

⋮ ⋮ · · · ⋮

uA,n− 1 uA,n− 2 · · · uA,0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Z
n×n
q , (11)

with respect to the homorganic between polynomials and
cyclic matrices.

In order to construct the correct downloading certificate,
he computes UA · μA

�→
� XA

��→
� (xA,0, xA,1, . . . xA,n− 1)

T and
figures out wn− 1 for <XA

��→
, w
→> � 0mod q by

wn− 1 � −


n− 2
i�0 xA,iwi

xn− 1
mod q. (12)
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After that, the user uploads w
→

� (w0, w1, . . . , wn− 1) as
the downloading certificate and submits

y � wn− 2xA,n− 2 + wn− 1xA,n− 1 � − 
n− 3

i�0
wixA,i

⎛⎝ ⎞⎠, (13)

to the cloud for further expansions on access structure.
At the end, the user preserves the hash value skA, the

essential elements uA
�→

� (uA,n− 1, . . . , uA,1, uA,0) of matrix UA,
and the replied link of outsourced file. While the ciphertext
CA can be held by the cloud server, attached with sA

→,y, and w
→

for duplication check, access expansion, and ownership proof.

4.2.*eProcess ofRepeatedUploading. Asmentioned before,
once a deduplication label is figured out, any user should
firstly hand it over to the cloud for duplication check. As-
sume that the deduplication certificate of an existing file MA

is sA
→, the cloud can inspect its consistency with another

deduplication label vB
�→ as the following:

When user B expects to upload his file MB, he submits its
deduplication label vB

�→
� (P, bB) · rB to the cloud and keeps

the hash value hB private.

Based on an outsourced deduplication certificate sA
→, the

cloud computes within a lifted interval
[− (q − 1)/2, (q − 1)/2] which is as follows:

< sA
→

, vB
�→> � <PSRG hA( P − PSRG hB( P − eB, rB > .

(14)

It can be seen that, if the two files are identical, only
〈− eB, rB〉 will remain in formula (14). +erefore, when the
result satisfies

〈sA
→

, t vB
�→〉

����∞≤ αq,
���� (15)

the cloud can ensure the duplication of file MB with neg-
ligible false positive.

To validate his accessibility, user B should also figure
out the downloading right of the corresponding file.
However, it is more reasonable to use existing download
rights w

→ held by the cloud server for the purpose of storage
saving. Based on this, user B can use the following sub-
protocol to obtain the download right of the duplicate file,
and the cloud will simply send the link back to him for
further retrieval.

4.3. *e Subprotocol for Access Expansion. Denoting the
secret corresponding to the attributes of repeated uploader B
as μB

�→
� (μB,0, μB,1, . . . , μB,n− 1)

T. To bind the access structure
with his own attributes, he should also figure out a cyclic
matrix UB which can be used to compute his proof of
ownership which is as follows:

<UB · μB
�→

, w
→> � 0. (16)

+ough the downloading certificate w
→ cannot be ex-

posed to prevent unauthorized access, the cloud can provide
user B with the values of (wn− 3, wn− 2, wn− 1) and y to help
him calculate the correct cyclic matrix UB. +us, the
downloading right can be carried out by user B in
Algorithm 1.

5. Proof of Ownership

Once any legal user obtained his downloading right, he
should be authorized to retrieve the corresponding file
from the cloud. To improve the efficiency of ownership
proof, access authorization is executed in a computational
way.

After uploading, the legal user A will be provided with
the last row uA

�→
� (uA,n− 1, . . . , uA,1, uA,0) of the cyclic matrix.

+erefore, he only needs to form the cyclic matrix UA and
combines it with his attribute vector uA

�→ to figure out the
downloading right. Based on the resulted vector, the cloud
can easily verify his accessibility by functional encryption.
+e process of PoW is completely given in Algorithm 2.

After obtaining the ciphertext CA, user A can decrypt the
file by computing DecskA

(CA) � MA because he is aware of
the secret key skA � H(MA).

In fact, the ownership proof process for user B is similar
to that of user A. +e reason why user B can also decrypt the
file CA is due to the equality of plaintexts MA and MB. Since

Table 1: Symbols and notations.

Symbol Notation
f Length of a file
b Length of each file block
g Length of the hash value
N Number of users participating in key aggregation
K Total number of bloom filters
L Length of bloom filter array
Q(n) Number of common attributes in a user group
n Number of attributes for an individual user
Hash Computational cost of performing a hash function
CE_K Computational cost of performing a key aggregation

Enc Computational overhead of performing a symmetric
encryption

PoW Computational cost of performing a proof of ownership
Add Computational cost of performing an addition

Original file

Deduplication label

Original upload Repeated upload

Download 
certificate

Download 
right

Transfer to the same
group of attribute

users

Download 
right

Transfer to the same
group of attribute

users

Download 
certificate

Figure 1: +e overall framework of the deduplication program.
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skB � H(MA) he is able to obtain the corresponding file via
DecskB

(CA) � MA.

6. Downloading Right Transfer

On noting that, without the secret vectors corresponding to
the attributes of legal users, other users are incapable of
computing the downloading right even if the last row of
cyclic matrix is known. Since the access controls sub-
protocol, any legal user can directly transfer the resultant
downloading right to other users to avoid redundant op-
erations such as peer to peer transmission. However, it may
lead to the abuse of downloading right and violate the
confidentiality of user’s attributes. Practically, legal users are
prone to transfer the downloading right of their file to others
who share party of common attributes with him. +erefore,
we designed a protocol that any legal user can update the
downloading right and transfer it to a group of users with the
same set of attributes. In this way, the owner does not have to
download the file from the cloud and only needs to transfer
the downloading right to other users to complete file sharing,
which effectively reduces the consumption of communica-
tion bandwidth.

Definition 4 (Common attributes vector). Suppose that the
file owner A can be identified by attributes vector
μA
�→

� (μA,0, μA,1, . . . , μA,n− 1), and all users in the same group
have Q(n) common attributes denoted by
μall
��→

� (μall,0, . . . , μall,n− 1, . . . , μall,Q(n)). +en, the common
attributes vector μteam

����→
� (μteam,0, . . . , μteam,n− 1) can be de-

fined as a partial ordering relation that μteam,i � μA,i if
μA,i ∈ μtall,j|j � 0, . . . , Q(n)  and μteam,i � 0, otherwise.

Specifically, the process that the user A constructs the
common attribute vector μteam

����→
� (μteam,0, μteam,1, . . . , μteam,n− 1)

is detailed in Figures 2 and 3.
As shown in Figures 2 and 3, the user A mainly retains

the secret attributes shared by the same group and sets the
attributes which are distinct in the user group as 0. Finally,
he outputs a common attribute vector μteam

����→.

6.1. Proof of Ownership. +e user A performs the following
steps to realize the PoW and retrieves (wn− 3, wn− 2, wn− 1) and
y.If the downloading right is valid, the inner product will
result in 0, meaning that the userA is authorized to retrieve the
file. +erefore, the cloud server returns CA(wn− 3, wn− 2, wn− 1)

and y back to him. Similarly, the values of (wn− 3, wn− 2, wn− 1)

and y can be used to update the downloading right for a group
of users. Specifically, the process of PoW is shown in Algo-
rithm 2, which is the same for any valid user even if the
updated downloading right is used.

6.2. Update the Downloading Right. To share the file to a
group, the downloading right update process can be carried
out by the user A as the following. In a clear form, the
process that the userA calculates the downloading right for a
group of users is shown in Algorithm 3.

6.3. Sharing the Downloading Right. After the previous two
stages, the user A can share the vector

uteam′
����→

� (uteam, n− 1′ , . . . , uteam,1′ , uteam,0′ ) and the secret key skA

to all users who are within the same attributes set. In these
ways, a group of users are provided with the downloading
right, which can be valid if the common attributes vector
μteam
����→ is known.

7. Correctness Proof

+e previous section is mainly composed of three parts,
namely, the file uploading, the proof of ownership, and the
downloading right transfer. To verify the correctness of our
design, this section intends to prove that file duplication can
be effectively eliminated and only authenticated users can
access the file.

Firstly, the correctness for the deduplication label is
given by +eorem 1.

Theorem 1 (Correctness of deduplication label). Suppose
that the cloud holds a deduplication certificate sA

→ which is
correspondent to file MA. After the user B uploaded the
deduplication label vB

�→ before outsourcing the same file MA,
the cloud can perform deduplication correctly with negligible
false positive.

Proof. Due to the deduplication certificate
sA
→

� (PSRG(hA), − 1) ∈ Zn+1
q stored on the cloud, where

hA � H(MA). After the user B uploaded the deduplication
label vB

�→
� (P, bB) · rB ∈ Zn+1

q of the same file MA to the
cloud for bB � [PSRG(hB) + eB], the cloud executes the
following calculation on each deduplication certificate. Once
sA
→ is met, the inner product can be carried out as follows:

< sA
→

, vB
�→> � PSRG hA( 

√√√√√√√√
n bits

, − 1⎛⎜⎝ ⎞⎟⎠ ·

P
n×m

bB
1×m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)×m

· rB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� PSRG hA( 
√√√√√√√√

1×n

, − 1⎛⎝ ⎞⎠ ·

P
n×m

bB
1×m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)×m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ · rB

� PSRG hA(  · P − bB(  · rB

� <PSRG hA(  · P − PSRG hB(  · P + eB( , rB >

� <PSRG hA(  · P − PSRG hB(  · P − eB, rB > .

(17)
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Since PSRG(·) is a deterministic algorithm, when
hA � hB,PSRG(hA) � PSRG(hB). Meanwhile, according to
the common matrix P, it is obvious that
PSRG(hA) · P � PSRG(hB) · P. +us, we can easily see that
〈sA

→
, vB
�→

〉 � 〈− eB, rB〉 from equation (17). Because the inner
product of < − eB, rB > ≤ (1/Q(m)) is definite, the inner
product of <sA

→
, vB
�→> ≤ (1/Q(m)) can also be guaranteed,

meaning that duplication can be detected with 100%
probability.

Theorem 2 (Correctness of download right). Suppose that
the cloud possesses a downloading certificate w

→ corresponding
to file MA, then any legal user can correctly pass the procedure
of PoW in terms of his downloading right.

Proof. For user A, who uploads the original file MA to the
cloud, he rotates uA

�→
� (uA,n− 1, . . . , uA,1, uA,0) to right by one

bit to get uA
′

�→
� (uA,0, uA,n− 1, . . . , uA,1) and uses it to re-

construct the cyclic matrix UA. +en, user A calculates
download right

XA

��→
� UA · μA

�→
� xA,0, xA,1, . . . xA,n− 1 

T
, (18)

where μA
�→

� (μA,0, μA,1, . . . , μA,n− 1) are the attributes of the
user A. After which the user A sends the download right XA

��→

to the cloud. Finally, the cloud calculates the inner product
of

< w
→

, XA

��→
> � 

n− 1

i�0
wi · xA,i � 

n− 2

i�0
wi · xA,i + wn− 1 · xA,n− 1 � 

n− 2

i�0
wi · xA,i + − 

n− 2

i�0
wi · xA,i

⎛⎝ ⎞⎠ � 0. (19)

Based on the last element of download certificate w
→

is wn− 1 � − ((
n− 2
i�0 xA,iwi)/(xn− 1))mod q, so that the result

of wn− 1xA,n− 1 can transfer as (− 
n− 2
i�0 wixA,i). +erefore,

the inner product of 〈XA

��→
, tw

→
〉 is zero. For the repeated

file user B, the first two steps are the same for the user
B.

µA,0

µall,0

µall,1

µall,1 µall,n–1 µall,Q(n)

µA,1

µA,1

µA,n–1

µA,n–1 µteam

≠ =

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2: Common attributes.

0 µA,1 µA,n–1 µteam

µall,0 µall,1 µall,n–1 µall,Q(n)

µA,0 µA,1 µA,n–1

≠ ≠ ≠

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 3: Noncommon attributes.
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+en, he also gets the result of download right XB

��→
and

sends it to the cloud. Moreover, the inner product of

〈w
→

, tXB
′

�→
〉 calculates the process as follows:

< w
→

, XB
′

�→
> � w

→
· xB,0, xB,0, . . . , xB,n− 3′, xB,n− 2′, xB,n− 1′ 

T

� 
n− 4

i�0
wixB,i + wn− 3xB,n− 3′ + wn− 2xB,n− 2′ + wn− 1xB,n− 1′ 

� 
n− 4

i�0
wixB,i + wn− 3xB,n− 3′ + y

r � 
n− 4

i�0
wixB,i

⎛⎝ ⎞⎠ + wn− 3xB,n− 3 + y′ − y(  ⎡⎢⎢⎣ ⎤⎥⎥⎦ + y

� − y′ + y′ − y(   + y � (− y) + y � 0.

(20)

In a word, all legal users who hold the download right
corresponding to file MA can pass the PoW. □

8. Security Analysis

+is part will prove that the deduplication label is in-
distinguishable except for duplication check process, and
the downloading right is resistant to forgery. To begin
with, the security about deduplication label is given in
+eorem 3.

Theorem 3 (Security of deduplication label). For legitimate
users, whether uploading the same or different files to perform
deduplication, the deduplication labels are only distinguish-
able to the duplication check process.

Proof. +e following analysis will be divided into two cases,
with respect to the deduplication labels corresponding to
same files and different files.

Case 1. Supposing user A and user B possess the same
file. +ey have the same hash value hA � hB of two
identical files, and their deduplication labels are

v
(1)
A

��→
� PSRG hA(  · P + e

(1)
A  · r

(1)
A ,

v
(1)
B

��→
� PSRG hB(  · P + e

(1)
B  · r

(1)
B .

(21)

According to the deterministic algorithm PSRG(·), we
can see PSRG(hA) � PSRG(hB). Moreover, for the
common matrix P, it is obvious that
PSRG(hA) · P � PSRG(hB) · P. However, eA, eB and

rA, rB are randomly sampled from χm
q and − 1, 0, 1{ }m,

respectively. +e probability that the deduplication
labels are identical is (1/(3q)m)< (1/Q(m)), which is

negligible. +erefore, we claim that the results v
(1)
A

��→
�

v
(1)
B

��→
is almost impossible, which means v

(1)
A

��→
and v

(1)
B

��→

satisfy semantic security.
Case 2. Supposing user A and user B possess different
files. +at is to say, they have different file hash values
that hA ≠ hB, and the deduplication labels are

v
(2)
A

��→
� PSRG hA(  · P + e

(2)
A  · r

(2)
A ,

v
(2)
B

��→
� PSRG hB(  · P + e

(2)
B  · r

(2)
B .

(22)

Similarly, since PSRG(hA)≠PSRG(hB), the probability
that deduplication labels are the same is
(1/(n + 1)(3q)m)< (1/Q(m)), which is indistinguishable
from the distribution of Case 1.

+erefore, we can conclude that, since the deduplication
labels of the same file are different, Case1 is of the same
distribution indistinguishable from Case2, and the dedu-
plication labels are semantic secure. In summary, the
deduplication tags corresponding to the same file and dif-
ferent files are indistinguishable. □

Theorem 4 (Security proof of downloading right). None of
the users can forge a valid downloading right XA

��→
which can

deceive access control.

Specifically, the security analysis of the downloading
right can be guided by Lemmas 1 and 2.
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Lemma 1 After the original uploader A outsourced the file
MA to the cloud, the entire download certificate w

→ is known
only by the cloud.

Proof. According to inner product predicate, the user A’s
downloading right XA

��→
can make the inner products

〈XA

��→
, tw

→
〉 output 0.

However, the download certificate w
→ is calculated by the

user A who samples wi(i � 0, . . . , n − 2) and sets the last
element wn− 1 of the download certificate w

→ to be
wn− 1 � − ((

n− 2
i�0 xA,iwi)/(xn− 1))mod q.

+en, when the user A uploads for the first time, the
cloud obtains the completed download certificate w

→ cor-
responding to A’s secret attributes. For now, if there is an
illegal user who tries to falsify the download certificate

w
→←$ Zn

q to cheat the PoW system, his advantage is

Pr <XA

��→
, w′
�→
> � 0  �

1
q

(n− 1)
≤

1
Q(n)

, (23)

which is negligible. □

Lemma 2. For repeated file uploaders, they do not know the
remaining elements of the download certificate w

→ except for
(wn− 3, wn− 2, wn− 1).

Proof. Take a repeated file uploader B as an example, he uses
(wn− 3, wn− 2, wn− 1) to update the last three elements of
download right XB

��→
into (xB,n− 3′ , xB,n− 2′ , xB,n− 1′ ).

In detail,

xB,n− 3′ � xB,n− 3 −
y − y′( 

wn− 3
, (24)

wn− 2xB,n− 2′ + wn− 1xB,n− 1′ � y. (25)

Since the value of wn− 3 is known, the result of xB,n− 3′ can
be calculated. However, because the rank of formula (25) is
equal to 1 and wn− 2xB,n− 2′ + wn− 1xB,n− 1′ � y, the formula of
(25) contains two unknowns variables. +us, the results of
xB,n− 2′ and xB,n− 1′ are infinite. +erefore, when the user B
calculates the downloading right, he does not know the
remaining elements of the download certificate w

→ except for
(wn− 3, wn− 2, wn− 1).

Considering that the solutions of formula (25) are
infinite, the security of downloading right can be effectively
protected, namely, XB

��→
of the user B. +us, it also guarantees

the confidentiality of legal users’ attributes. If an illegal user
attempts to forge the remaining n − 3 elements of w

→ to get
the new download certificate

w″
�→

� (w′
′
0, . . . , w′

′
n− 4, wn− 3 . . . , wn− 1), his advantage is just

Pr <XB
′

�→
, w″
�→
> � 0  �

1
q

(n− 3)
≤

1
Q(n)

, (26)

which is negligible. +erefore, our scheme will not expose
the remaining elements of the download certificate w

→.

In terms of Lemmas 1 and 2, it can be seemed that no
user can forge a valid downloading right since the complete
download certificate and the attributes vector μA

�→ will not be
exposed. □

9. Performance Analysis

+en, the performance of our schemes will be analysed
comparing with other main technologies. +e notation of
symbols can be found in Table 1, as for functions, such as the
necessity of third-party, deduplication level, participants,
and the necessity of key fusion, and the comparison can be
found in Table 2.

Compared with the schemes from [2, 3, 9], our scheme
does not require any third-party, which effectively
avoided extra trusting relationships and can save nu-
merous computation/communication resources. More-
over, our scheme executes file deduplication amongst
multiple users, implying that it is more flexible and more
adaptive to various cloud environment. From the per-
spective of key fusion, when compared with the literature
from [2, 3, 8, 9], any key fusion process is unnecessary in
our scheme, so that it can be applied even if the user
resources are limited.

+en, we compare the computation overheads for
deduplication taken by the client, third-party, and cloud in
the above schemes. +e details are given in Table 3.

Compared with the cost on client side in scheme [3], that
of our scheme is O(f)Hash + O(1)PSRG, where a pseu-
dorandom number sequence is generated instead of N

convergence keys. In fact, it means that our scheme is more
efficient since PSRG can be iterated generated via small
numbers, not saying that our scheme if free of any third-
party. Moreover, the hash value of file can be secretly used as
the encryption key in this paper. +erefore, there is no need
for multiple users to reconstruct the convergence key, which
further outperformed the scheme of [3] by avoiding the
consumption of key distribution and fusion.

Compared with the schemes in [8, 9], our method does
not need to construct Bloom filter or attribute binary tree on
client side, so the computational cost is slightly advanta-
geous. In addition, since our scheme does not involve any
third-party, the computational cost of TTP can be neglected.
As for the overhead on cloud side, our scheme does not have
to initialize any ownership data structure compared with
that of schemes [8, 9]. +erefore, the calculation is deduced
to O(g) since it is not related to the file size but only to the
length hash value.

Now, we compare the computational overhead for PoW,
respectively on client, third-party and cloud side. +e results
are shown in Table 4.

It can be seen from Table 4 that users have to preserve
and search the Bloom filter or attribute binary tree to ac-
complish PoW in [2, 3, 8, 9]. So, there is an additional cost
O(kL) or O(N logN) on the client side. However, our
scheme does not require this process, so the calculation cost
is only O(f)Hash + O(n)Add, where the second term is just
n times of add operation. Comparing the cost on cloud side,
our scheme dose also outperformed that of [2, 3, 8, 9], which
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User A
Input: (uA

�→
, μA
�→

, n, skA)

(1) Computes f(μA
�→

)←μA
�→, g(uA

′
�→

)←g(uA
�→

) · xmodxn,
uA
�→←uA

′
�→

, xA,0←g(uA
�→

) · f(μA
�→

)

(2) Computes f(μB
�→

)←μB
�→, g(uB

�→
)←uB

�→;
xB,0←g(uB

�→
) · f(μB

�→
)

(3) For all k ∈ 1, . . . , n − 1{ }

g(uA,k
���→

)←g(uA
�→

) · xmodxn, xA,k←g(uA,k
���→

) · f(μA
�→

)

uA
�→←uA,k

���→, k←k + 1

(4) Sends XA

��→
� (xA,0, xA,1, . . . , xA,n− 1)  to Cloud.

Cloud
Input: (w

→
, XA

��→
, CA, α, q)

(5) Computes <w→, XA

��→
>←

n− 1
i�0 wi · xA,i

(6) If <w→, XA

��→
> � 0

Output: CA, (wn− 3, wn− 2, wn− 1), y ; Otherwise
Output: NULL.

(7) Sends CA, (wn− 3, wn− 2, wn− 1), y  to User A

ALGORITHM 2: Process chart of PoW for the original file user.

User A
Input: (μteam

����→
, n, (wn− 3, wn− 2, wn− 1), y)

(1) Samples uteam
����→

� (uteam,0, uteam,1, . . . , uteam,n− 1), where uteam,0 is irreversible with cofficients belong to Zq

(2) Computes f(μteam
����→

)←μteam
����→

for all k ∈ 1, . . . , n − 1{ }

g(uteam,k
������→

)←g(uteam
����→

) · xmodxn+1; xteam,(n− k− 1)←g(uteam,k
������→

) · f(μteam
����→

); uteam
����→←uteam,k

������→; k←k + 1
(3) Computes y′←wn− 2 · xteam,n− 2 + wn− 1 · xteam,n− 1
(4) Computes xteam,n− 3′ ←xteam,n− 3 − ((y − y′)/(wn− 3))

(5) Samples xteam,n− 2′ ←$ Zn
q, xteam,n− 2←xteam,n− 2′ , and Computes xteam,n− 1←(y − wn− 2 · xteam,n− 2′ )/wn− 1

(6) For all k ∈ 1, . . . , n − 1{ }

uteam,i · μteam,0 + uteam,[i+(n− 1)]mod n · μteam,1 + · · · + uteam,(i+1)mod n · μteam,n− 1←xteam,i

Output: uteam
����→

� (uteam,0, uteam,n− 1, . . . , uteam,1) 

ALGORITHM 3: Calculation process chart of common downloading right.

User B
Input: ((wn− 3, wn− 2, wn− 1), y, μB

�→
)

(1) Samples uB
�→

� (uB,0, uB,n− 1, uB,n− 2, . . . , uB,1), where uB,i is irreversible and cofficients belong to Zq

(2) Computes f(μB
�→

)←μB
�→, g(uB

�→
)←uB

�→, xB,0←g(uB
�→

) · f(μB
�→

)

for all k ∈ 1, . . . , n − 1{ }

g(uB,k
���→

)←g(uB
�→

) · xmodxn, xB,k←g(uB,k
���→

) · f(μB
�→

), uB
�→←uB,k

���→, k←k + 1
(3) Computes y′←wn− 2 · xB,n− 2 + wn− 1 · xB,n− 1, xB,n− 3′←xB,n− 3 − (y − y′)/wn− 3
(4) Samples xB,n− 2′←

$
Zn

q, xB,n− 2←xB,n− 2′; and computes xB,n− 1←((y − wn− 2 · xB,n− 2′)/(wn− 1))

(5) For all k ∈ 1, . . . , n − 1{ }

(6) uB,iμB,0 + uB,[i+(n− 1)]modnμB,1 + · · · + uB,(i+1)modnμB,n− 1←xB,i

Output: uB
�→

� t(uB,n− 1, . . . , uB,1, uB,0) 

ALGORITHM 1: Calculation process chart of repeated file.
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is O(n)Add.+e reason is similar that the calculation cost on
cloud side has nothing to do with the file size but only the
number of attributes.

Finally, taking the file of 256 bits as an example, we
compare the communication overhead for deduplication
and PoW amongst the same set of schemes. +e details are
shown in Figure 4.

According to Figure 4, our scheme has obvious ad-
vantage on communication overheads compared with other
schemes. Our solution can effectively reduce the usage of
bandwidth as well as time delay. Moreover, since all
deduplication check and ownership proof processes are
independent, our scheme is capable of parallel processing,
which is more fit for batch implementation.

In [10] In [8] In [9] In [7] This paper
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Figure 4: Histogram of communication cost of similar schemes.

Table 2: Function comparison between main data deduplication schemes.

Schemes Technology TTP Level Object Key fusion
[8] BL-MLE+PoW — Block Single user Yes
[3] +reshold blind signature + verifiable secret sharing Key servers File Single user Yes
[2] Authentication protocol + authorization detection Cloud server File Multiple users Yes
[9] Attribute encryption + random sampling Attribute center Block Multiple users Yes
+is paper Attribute access policy + inner product predicate — File Multiple users No

Table 3: Computation overheads for deduplication.

Schemes Client TTP Cloud
[8] O(b)Hash · Hash — O(b)PoW
[3] O(f)Hash + O(N)CE K O(f)Hash O(g)

[2] O(f) O(f) —
[9] O(f)Hash + O(f)PoW O(f)Hash O(f)PoW
+is paper O(f)Hash + O(1)PSRG — O(g)

Table 4: Computation overheads for PoW.

Schemes Client TTP Cloud
[8] O(b)Hash + O(b) — O(f)Add
[3] O(f)Hash + O(kL) O(N)CE K O(kLf)Add
[2] O(f) + O(kL) — O(kLf)Add
[9] O(f)Hash + O(N logN) O(N)CE K O(kLf)Add
+is paper O(f)Hash + O(n)Add — O(n)Add
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10. Conclusions

+is paper proposed a novel deduplication scheme based on
LWE and FE to balance the conflict between the accessibility
and the indistinguishability of data. Focusing on the purpose
of deduplication check, LWE is exploited to construct
deduplication labels which are distinguishable only if their
deduplication certificates are known. To realize more effi-
cient and flexible access control, inner product predicate is
used that data can be retrieved only if both users down-
loading right and attributes vector are possessed. +anks to
the separation of downloading right and user’s attributes, the
downloading right can be recalculated for repeated
uploading and authorization transfer without changing the
corresponding deduplication label or download certificate
over cloud. Correctness and security analyses proved that
deduplication can be accomplished only by the duplication
check process with negligible false positive, and it is almost
impossible for any adversaries to fabricate a legal down-
loading right. Compared with other main technologies, our
scheme is more applicable to multiuser environment and
freed from trusted third-party. Since both duplication check
and ownership proof are realized by inner product, the
performances of computation and communication are more
advantageous in our method, not mentioning its capacity of
batch processing due to parallelism.
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[12] L. González-Manzano, J. M. D. Fuentes, and K. K. R. Choo,
“Ase-PoW: a proof of ownership mechanism for cloud
deduplication in hierarchical environments,” 2016.

[13] Y. Chen, C. L. Li, J. L. Lan et al., “Secure sensitive data
deduplication schemes based on deterministic/probabilistic
proof of file ownership,” Journal on Communications, vol. 36,
no. 9, pp. 1–12, 2015.

[14] S. Wan, Y. Xia, L. Qi et al., “Automated colorization of a
grayscale image with seed points propagation,” IEEE Trans-
actions on Multimedia, vol. 99, pp. 1–12, 2020.

[15] M. M. Xie, X. F. Liao, and Q. Zhou, “Generalized oblivious
transfer protocol in distributed setting based on secret
sharing,” Computer Engineering, vol. 40, no. 3, pp. 184–187,
2014.

[16] S. Ding, S. Qu, Y. Xi, and S. Wan, “Stimulus-driven and
concept-driven analysis for image caption generation,”
Neurocomputing, vol. 398, pp. 520–530, 2020.

[17] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee, and W. Lou, “Secure
deduplication with efficient and reliable convergent key
management,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1615–1625, 2014.

Mathematical Problems in Engineering 11

http://www.12398.gov.cn/html/information/753078881/753078881201200006.shtml
http://www.12398.gov.cn/html/information/753078881/753078881201200006.shtml


Research Article
Travel Time Reliability-Based Signal Timing Optimization for
Urban Road Traffic Network Control

Zhengfeng Ma,1,2 Darong Huang ,3 Changguang Li,4 and Jianhua Guo 4

1School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China
2School of Civil & Transportation Engineering, Qinghai Nationalities University, Xining 810007, China
3School of Information Science & Engineering, Chongqing Jiaotong University, Chongqing 400074, China
4Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China

Correspondence should be addressed to Darong Huang; drhuang@cqjtu.edu.cn and Jianhua Guo; gjh@seu.edu.cn

Received 14 September 2020; Revised 29 October 2020; Accepted 12 November 2020; Published 2 December 2020

Academic Editor: Esam Hafez Abdelhameed

Copyright © 2020 ZhengfengMa et al./is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to increasing traffic demand, many metropolitan areas are experiencing extensive traffic congestion, which demands for
efficient traffic signal timing and optimization. However, conventional efficiency measure-based signal optimization cannot
handle the ubiquitous uncertainty in the road networks, demanding for the incorporation of reliability measures into signal
optimization, which is still in its early stage. /erefore, targeting this issue, based on the recent studies on recognizing travel time
reliability (TRR) as an important reliability measure of road networks, a travel time reliability-based urban road traffic network
signal timing optimizationmodel is proposed in this paper, with the objective function to optimize a TTRmeasure, i.e., buffer time
index. /e proposed optimization model is solved using the heuristic particle swarm optimization approach. A case study is
conducted using microscopic traffic simulation for a road network in the City of Nanjing, China. Results demonstrate that the
proposed optimization model can improve travel time reliability of the road traffic network and the efficiency of the road traffic
network as well. Future studies are recommended to expand the integration of travel time reliability into traffic signal
timing optimization.

1. Introduction

Due to the increasing motorization and urbanization around
the globe, congestion has become a pronounced phenom-
enon for many metropolitan areas (Huang et al. 2017) [1].
Consequently, many measures have been adopted to battle
the worsening traffic congestion, with the traffic signal
timing optimization as one of the most direct and effective
strategies. However, due to many factors in the context of
metropolitan areas, uncertainty is ubiquitous in urban
transportation systems, and hence in addition to the con-
ventional efficiencymeasures, the incorporation of reliability
measures into traffic signal optimization to deal with traffic
uncertainty is gaining increasing attention from different
perspectives of the society.

Travel time reliability (TTR) is an important reliability
measure, relating heavily to the variability of travel time. It is

an important indicator for measuring the reliability of traffic
systems. Travel time reliability is in general defined as the
probability of a vehicle reaching the destination from the
origin within a specified time. It can also be defined as the
maximum time a traveler needs to arrive at the destination
on time with a certain probability. According to different
objectives, travel time reliability can be measured in terms of
road segment travel time reliability, path travel time reli-
ability, or road network travel time reliability. In this end,
road segment travel time reliability refers to the probability a
traveler completes the travel on a given road segment within
a given period of time, path travel time reliability takes into
account all the road segment travel time reliability in the
path, and road network travel time reliability will incor-
porate the reliability of travel time over all OD pairs.

Even though the importance of travel time reliability has
been acknowledged by traffic signal control practitioners or
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scholars, the incorporation of travel time reliability into
urban traffic signal timing optimization and control is still in
its infancy. Currently, few studies have paid attention to
optimize traffic signal timing based on travel time reliability,
both for isolated intersections or network level signal timing
optimization. /erefore, the objective of this paper is to
propose an urban road traffic network signal timing opti-
mization model based on optimizing travel time reliability of
the road network. /e heuristic approach of particle swarm
optimization is applied to solve the proposed model, and
microscopic simulation is used in a case study to implement
and validate the proposed model for a road network in the
City of Nanjing, China, as an example.

/e rest of the paper is organized as follows. First,
Section 2 provides a brief review on travel time reliability
measures and travel time reliability-based signal optimiza-
tion studies. /en, Section 3 presents the proposed travel
time reliability based signal timing optimization model,
together with the solution approach based on particle swarm
optimization. Afterwards, a case study is conducted to
implement and validate the proposed model, together with a
comparison of the proposed model with the conventional
travel time-based optimization model. Finally, the paper
concludes with summaries and recommendations on future
research.

2. Literature Review

In this section, travel time reliability measures are sum-
marized, together with a brief review on travel time reli-
ability-based signal timing optimization studies.

2.1. Travel Time Reliability Measures. Many travel time reli-
ability measures have been proposed in the literature. In this
end, commonly used travel time reliability measures include in
general probabilistic indicators (Asakura (1996) [2]; Lo et al.
(1999) [3]; Levinson and Zhang (2001) [4]), statistical indicators
(Booz-Allen (1998) [5]; Recker et al. (2005) [6]; Sisiopiku and
Rouphail (1994) [7]; Petty et al. (1998) [8]), buffer time indi-
cators (Lomax et al. (2001) [9]; Chen et al. (2003) [10]; Lo (2002)
[11]; Lo and Tung (2003) [12]; Lo and Luo (2004) [13]; Lo et al.
(2006) [14]; Luo (2004) [15]; Siu and Lo (2008) [16]; Shao et al.
(2006) [17]; Shao et al. (1985) [18]; Shao et al. (2008) [19]; Lam
et al. (2008) [20]), and delay indicators (Lomax et al. (2003)
[21]). In practice, probability indicators could be the distribu-
tion of travel time or percentile travel time, statistical indicators
could be the average, median, or standard deviation of travel
time, buffer time indicators could be buffer time or buffer time
index of travel time, and delay indicators could be delay time or
delay time index. As is clear from above descriptions, all these
reliability indicators are helpful for transportation system
managers to estimate the performance of the road network, and
all these indicators can be tailored to accommodate the purpose
of specific transportation applications.

2.2. TTR-Based Signal Timing Optimization. Currently, re-
liability-based traffic signal control is limited with insuffi-
cient applications. Heydecker modified the equation of

control delay to show the randomness of traffic, and the
randomness of control effectiveness is reflected by the
correction of delay equation [22]. Although the concept is
relatively easy, the steady state at the intersection is difficult
to achieve at each cycle at higher saturation level. Kamar-
ajugadda and Park used delay variance and average delay as
optimization objectives to consider reliability in traffic signal
control optimization, while delay variance is obtained by
assuming a given delay distribution and the selected normal
distribution needs further justification [23]. Hong studied
the reliability of signalized intersections and used the ran-
domness of intersection traffic signal control to characterize
its reliability [24]. Using the phase clearance reliability
(PCR) as the starting point, single-layer and multi-layer
signal control models are adopted. Simulation results show
that, under low saturation level, PCR can be greatly im-
proved by increasing the traffic signal control cycle. Lu and
Niu proposed a signal timing optimization model based on
PCR [25]. According to the definition of PCR and the
stochastic characteristics of arrival rate, quantitative rela-
tionship between PCR and parameters at each intersection is
studied, and the equation of cycle and green time under
given PCR can be derived. Application results showed that
the randomness of queuing length at an intersection has
great influence on signal parameters. Lu and Niu studied the
influence of traffic flow randomness on traffic signal timing
optimization at the intersection level [26]. PCR is expressed
by expected offset of each phase, and traffic signal timing
optimization model is established with the goal of mini-
mizing the sum of all expected offsets. Example studies
showed that longer green time is required for larger phase
variance at the intersection under a given reliability level.

2.3. Summary. In summary, the study on reliability-based
urban traffic road network signal timing and control is still in
its infancy. First, studies in this field mostly focus on the
framework and definition of the concept with limited ap-
plicable models and methods. In addition, current studies
are mostly directed at isolated intersection with limited
studies on reliability of network traffic signal control.
/erefore, this paper proposes a travel time reliability based
signal timing optimization model for urban road network
signal timing optimization and control.

3. Proposed TTR-Based Signal Timing Model

In this section, the selected travel time reliability measure is
described, and the proposed TTR-based signal timing model
is presented together with the solution approach based on
particle swarm optimization.

3.1. Travel Time Reliability Measure Selection. Travel time
reliability measure is fundamental in the field of trans-
portation system reliability optimization. In this end, con-
sidering the importance of travel time in measuring the
performance of transportation systems, buffer time is de-
fined as the extra travel time within a reasonable range to
ensure an on-time arrival at the destination under uncertain
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traffic conditions. In this sense, buffer time measures the
reliability of road network from the perspective of travelers
and hence can effectively assist the travelers in making
reasonable travel plans to tackle traffic uncertainty. In ad-
dition, since travel time is closely related to the traveling
distance, in order to measure the reliability of travel time
consistently across the road network, buffer time index is
developed through normalizing the buffer time with respect
to the traveling distance. /erefore, in this paper, the buffer
time index is used as the reliability indicator with its cal-
culation as follows:

BTI �
T90 − T

T
, (1)

where T90 is the 90% percentile value of the travel time in
the sample data and T is the average travel time. It should
be noted that there is a balance between the selected
percentile value and the efficiency performance of the
optimized signal control system. In general, it is con-
jectured that the higher percentile value will introduce
higher network reliability with reduced efficiency per-
formance. /erefore, in order to ensure a preferable
integrated system performance in terms of reliability and
efficiency, 90% percentile travel time is selected in this
paper when calculating the buffer time index.

Buffer time has many ramifications in transportation
field, relating to factors such as purpose of traveler, travel
mode, and psychological factors of traveler. Buffer time
can be used for the comparison of the same road segment
at different times and different road segments at the same
time as well. Buffer time can reflect the changes in the
accessibility and convenience of travel at different stages,
and smaller buffer time indicates higher level of travel
convenience and accessibility. Buffer time can also be
used to determine the level of sustainable urban transport
development for further road network optimization.

3.2. Proposed TTR-Based Optimization Model. /e perfor-
mance of traffic signal control system manifests the state of
traffic flow movement under the control of a certain timing
plan. /e essence of establishing a traffic signal control
model is to use mathematical or analytical methods to
simulate the traffic flow movement on the road network and
study the influence of changes in signal timing parameters
on the movement of traffic, so as to objectively develop an
optimized signal timing plan. /e traffic model should be
able to reliably assess the trafficmovement parameters under
the control of different traffic timing schemes.

In the abovementioned signal optimization process,
delay is conventionally selected as efficiency measure for
signal timing optimization. Delay is closely related to
travel time. However, vehicle travel time is a random
variable, and average travel time cannot reflect the actual
traffic condition. For example, for heavily uncertain
traffic, average travel time cannot accurately reflect the
reliability of road network. /erefore, as discussed pre-
viously, reliability measure should be incorporated into

signal optimization. As a typical travel time reliability
measure, buffer time can be incorporated to develop a
regional traffic signal timing optimization model. In this
model, the average buffer time index of road segments in
the road network can be minimized to improve road
network reliability. In this end, the objective function of
the model is defined as

y �
1
n



n

i�1
BTIi, (2)

where n represents the number of station pairs in the road
network, BTIi represents the buffer time index of the road
segment for the ith station pair in the road network, and
y represents the optimization objective function. It
should be emphasized that station pairs are counted
according to adjacent intersections and directions are
considered. For example, a road section can be counted as
two station pairs according to different directions, and
the buffer time index should be calculated separately in
the model.

Next, constraints are set for the major signal control
parameters, including offset, green time, and signal cycle.
First, effective green time cannot be negative. /erefore,
following constraints are listed as

gi,k ≥ 0,

gi,min ≤gi,k ≤gi,max,
(3)

where i denotes the intersection number in the road net-
work, k denotes the phase number of the intersection, gi,k

denotes the effective green time of the kth phase of the ith
intersection, gi,min denotes the lower limit of effective green
time for the ith intersection, and gi−max represents the upper
limit of the effective green time for the ith intersection.

Second, the traffic signal cycle of an intersection cannot
be negative. /erefore, following constraints are listed as



m

k�1
gi,k + Li � Ci,

Ci,min ≤Ci,k ≤Ci,max,

(4)

where m denotes the total number of phases for the in-
tersection, Li denotes the total loss time in the signal cycle of
the ith intersection, Ci denotes the traffic signal control cycle
of the ith intersection, Ci,min indicates the lower limit of the
cycle for the ith intersection, and Ci−max represents the upper
limit of the cycle for the ith intersection.

Similarly, phase offset in signal control cannot be neg-
ative, with the constraint listed as

ϕ≥ 0, (5)

where ϕ represents the phase offset between two
intersections.
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In summary, the travel time reliability-based urban road
network traffic signal timing optimization model can be
established as follows:

Z � miny � min
1
n



n

i�1
BTIi

s.t

gi,k ≥ 0,

gi,min ≤gi,k ≤gi,max,



m

k�1
gi,k + Li � Ci,

Ci,min ≤Ci,k ≤Ci,max,

ϕ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where gi,min is set as 0 for both off-peak and peak hours,
gi,max is set as 50 seconds or 60 seconds for off-peak hours or
peak hours, respectively, Ci,min is set as 0 for both off-peak
and peak hours, and Ci,max is set as 150 seconds or 180
seconds for off-peak or peak hours, respectively.

3.3. Particle Swarm Optimization (PSO) Procedure.
Particle swarm optimization (PSO) procedure is adopted in
this paper to solve the proposed optimizationmodel. Particle
swarm algorithm originated from the foraging process of
biological population or group. Each individual in the group
is termed as a particle, and the space where the particle is
located is termed as a D-dimensional space. /e D-di-
mensional space represents the solution space of the opti-
mization problem, and the position of each particle
represents a solution. In order to move the particles in the

D-dimensional space, i.e., to search the solution space, each
particle is given a certain initial flight speed. In order to
evaluate the location of a particle, that is, to evaluate the
solution in the solution space, a fitness function must be
defined. For PSO, through a sharing mechanism, the search
information is shared from a global scope, and each particle
changes the direction of advancement according to its own
moving experience so that the entire population moves
toward the global optimum value. In addition, particle
swarm optimization uses the uncertainty of random factors
and inertia weight to expand the search space and ensures
the global convergence of the optimization algorithm.

During the movement of each particle in the D-di-
mensional space, the fitness function of its position is cal-
culated and the maximum value of the fitness function of the
particle in its own flight path is recorded as the optimal
fitness value. /e particle position corresponding to the
optimal fitness value is recorded as the individual optimal
value. For the entire group, there is only one location that
attracts all particles./e optimal fitness values of all particles
are compared and the largest fitness value is regarded as the
global optimum fitness value. /e particle position corre-
sponding to the global optimal fitness value is recorded as
the global optimal value, i.e., the solution to the optimization
problem.

/e flying speed of each particle is not fixed. After each
population movement, the flying speed of each particle is
updated using the velocity equation. Clerc and Kennedy
improved the basic particle swarm algorithm and introduced
a shrinkage factor in the velocity equation as below to ensure
the convergence of the optimization process [27]:

V
t+1
id � K V

t
i d + c1 · rand1 · pbesttid − V

t
i d  + c2 · rand2 gbesttd − V

t
i d  ,

θ � c1 + c2,

K �
2

2 − θ −
������
θ2 − 4θ





,

(7)

where pbesttid is the d th dimensional element of the ith
particle in generation t; gbesttid is the best dth dimensional
element for all particles in generation t; rand1 and rand2 are
uniformly distributed random numbers within [0, 1]; Vt

id is
the ith dimensional element representing particle speed; c1
and c2 are the accelerating factors with c1 � c2 � 2.005; and K
is the shrinking factor.

In summary, given proper design of the particle swarm
optimization problem, the general flowchart of imple-
menting the particle swarm optimization is shown in
Figure 1.

3.4. Particle Swarm Optimization Design. To solve the re-
gional signal timing optimization issue using the particle
swarm optimization procedure, mainly two aspects should
be designed first. /e first aspect is the parameters setting of

the optimization algorithm, and the second aspect is de-
termination of the fitness function.

3.4.1. Parameter Settings. According to the proposed opti-
mization model, the traffic signal control parameters to be
optimized include mainly intersection phase offset and green
time of each phase. /erefore, each particle in the population
must express green time for each phase and phase offset. Note
that signal cycle for each intersection can be computed by
summing up the green times for the corresponding signal
phases. In summary, the structure of each particle is described in
Figure 2, with the dimension of each particle set to 65.

In addition, the number of particle populations is set to 30.
/e corresponding velocity vector for each particle has a di-
mension of 65, and the total number of velocity vectors for all
particles is 30./emaximum evolution generation is set to 100.
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3.4.2. Fitness Function. Based on the proposed urban road
network traffic signal timing optimization model, the av-
erage buffer time index of all road segments in the road
network is used as the fitness function to evaluate the signal
timing plan represented by each particle in the particle
group. After running simulation, the buffer time index of all
road segments in the road network can be calculated.
Smaller average buffer time index shows that travelers do not
need to reserve excessive extra time and the travel time of the
road network is reliable. /erefore, the traffic signal timing
plan can increase the reliability of the travel time of the road
network. /e equation for the fitness function is as follows:

fitness2 �
n


n
i�1 BTIi

, (8)

where n represents the number of station pairs in the road
network and BTIi represents the buffer time index of the
segment along the ith station pair of the road network.

4. Case Study

/is paper proposed an urban road network traffic signal
timing optimization model, which can be solved using the
heuristic particle swarm optimization procedure. In this
section, the proposedmodel is implemented and validated in
a microscopic simulation environment for a real-world
urban road network. Note that microscopic traffic

simulation software Paramics is selected in this study due to
its flexible programing ability provided through abundant
Application Programming Interfaces (APIs).

4.1. Study Area and Data Collection. /e study area selected
in this paper is a region in the city of Nanjing, China. For this
road network, 22 radio frequency identification (RFID) base
stations are installed, collecting individual vehicle passing
records continuously. /ese base stations are in general
located along Zhujiang Road, East Zhongshan Road, Ruijin
Road, Middle Longpan Road, and Yu Dao Street. /e se-
lected road network and the locations of the RFID base
stations are shown in Figure 3, and the overview of the
intersections within this road network is shown in Table 1.

RFID is a noncontact automatic identification tech-
nology. Noncontact two-way radio communication is
employed to automatically recognize target objects, and
therefore, for each vehicle equipped with a RFID tag passing
a certain RFID base station, a vehicle passing record will be
generated, with collected information primarily including
base station number, passing time, and vehicle license plate
number. From these vehicle passing records, travel time
between base station pairs can be obtained by matching the
recorded information at the starting base station and the
destination base station. /e RFID base station pairs are
listed in Table 2 for the selected road network. For more
information on processing RFID data, readers can refer to
[28].

In addition, for signal timing parameters of this road
network, primarily the turning information and the phase
setting information are collected manually for both peak
hours and off-peak hours. For these intersections, 7 inter-
sections have 5 phases, 2 intersections have 7 phases, and 1
intersection has 6 phases. /e overview of the signal timing
setting is shown in Tables 3 and 4 for peak hours and off-
peak hours, respectively.

4.2. Comparison Models and Performance Measures.
/reemodels will be implemented and compared in this case
study, as listed in Table 5. Original_Plan indicates the
current timing plan without optimization. TTR_Plan is the
timing plan generated using the proposed travel time reli-
ability based optimizationmodel. TT_Plan is the timing plan
generated using minimum mean travel time as the opti-
mization objective with the objective function defined as

Z � min
1
n



n

i�1
TTi, (9)

where TTi is the average travel time of the road segment i in
the road network. Note that TT_Plan is also solved using the
particle swarm optimization technique, and the fitness
function for PSO is as follows:

fitness3 �
n


n
i�1 TTi

. (10)

Initialize population

Calculate particle fitness
function value 

Update particle individual optimal
value and global optimal value 

Update particle speed

Update particle position

Maximum generation
reached?

Start

End

Y

N

Figure 1: Flow chart of particle swarm algorithm optimization.
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In order to compare these three models, four perfor-
mance measures are selected, including travel time of road
network (NTT), buffer time index (BTI), queue length at the
intersection (QL), and delay of the road (DR). Note that
these performance measures are calculated for the simulated
road network, which can provide detailed traffic network
condition data for computing these measures.

4.3. Simulation Model Calibration. Before model validation
and comparison, it is necessary to calibrate the simulated

road network in the simulation software, i.e., to adjust the
traffic volume for each OD pair in the simulated network, so
that the simulated road network will reflect truthfully the
real world road network. For this purpose, the particle
swarm optimization technique is used for simulation model
calibration, as presented below.

4.3.1. Parameter Settings of OD Calibration Algorithm.
In the road network, there are 144 OD pairs to be calibrated.
/erefore, each particle in the defined particle group will

M
id

dl
e L

on
gp

an
 ro

ad

Zhujiang road

East Zhongshan road

Ruijin road

Jie
fa

ng
 ro

ad
H

ua
ng

pu
 ro

ad

East Zhongshan road

Ruijin road

Yu
da

o 
str

ee
t

M
in

gg
ug

on
g 

ro
ad

Q
in

gx
i r

oa
d

Zhujiang road
6286

6026

6027

6285

6253
6254

6435

6028

6029

6326 6325 6324 6323
6148

0 125 250 375 500
Meters

6149

6252

6151

N

6150

6250

6283

6284

RFID base station
Main road
Secondary road
Branch road

Figure 3: Selected road network.
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Figure 2: Particle structure.
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have 144 elements, each of which corresponds to a volume of
an OD pair, with the structure of the particle shown in
Figure 4.

In addition to the structure design of the particle, the
number of particles is set to 30. /e corresponding ve-
locity vector of each particle has a dimension of 144, and
there are 30 particle velocity vectors. /e maximal evo-
lution generation is set to 100.

4.3.2. Fitness Function. According to the positions of RFID
base stations in the road network, vehicle detectors are set in
the simulated road network, counting number of vehicles
passing the detectors during the simulation. Note that the
difference between simulated traffic volume and real world
traffic volume indicates the closeness of the simulated
network to the real world network. Consequently, this
difference is used to build the fitness function of the particle
swarm optimization algorithm, as follows:

fitness1 �
1

sum rfidi − vdei


 /22  + 1

, (11)

where rfidi denotes the real world traffic volume detected by
the ith RFID base station and vdei denotes the simulated
traffic volume detected by the ith vehicle detector.

4.3.3. Calibration Result. Using the designed particle swarm
optimization algorithm, the simulated road network was
calibrated for both peak hours and off-peak hours, with the
pattern of the fitness function values shown in Figures 5 and
6, respectively. Clearly, with the progress of optimization,

Table 2: RFID base station pair overview.

No. Start station End station
1 6148 6251
2 6150 6283
3 6151 6250
4 6026 6254
5 6028 6326
6 6251 6435
7 6252 6150
8 6253 6028
9 6283 6435
10 6285 6026
11 6324 6148
12 6435 6324
13 6148 6250
14 6149 6323
15 6151 6251
16 6027 6286
17 6029 6254
18 6252 6149
19 6253 6027
20 6254 6435
21 6284 6151
22 6286 6435
23 6325 6029
24 6435 6325
25 6286 6284
26 6283 6285
27 6026 6028
28 6029 6027
29 6254 6252
30 6252 6250
31 6251 6253
32 6326 6324
33 6323 6325
34 6148 6150
35 6151 6149

Table 4: Original signal timing parameters for off-peak hours (unit:
second).

Timing
parameter J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Gi−1 38 12 10 12 15 18 23 12 40 15
Gi−2 33 20 20 28 12 30 27 10 15 22
Gi−3 12 28 25 15 38 45 42 18 20 20
Gi−4 22 25 20 17 10 15 18 27 10 18
Gi−5 30 15 30 12 15 22 15 10 20 27
Gi−6 — — — 15 — — — 22 — 10
Gi−7 — — — 10 — — — 20 — —
Yi 3 3 3 3 3 3 3 3 3 3
Ci 150 115 120 130 105 145 140 140 120 130

Table 1: Road network intersection overview.

No. Intersection location
J1 Zhujiang rd./Middle longpan rd.
J2 Huangpu rd./Zhujiang road rd.
J3 Zhujiang rd./Beianmen bridge rd
J4 Middle longpan rd./East Zhongshan rd.
J5 East Zhongshan rd./Huangpu rd.
J6 East Zhongshan rd./Minggugong rd.
J7 East Zhongshan rd./Minggugong rd.
J8 Middle longpan rd./Ruijin rd.
J9 Ruijin rd./Jiefang rd.
J10 Ruijin rd./Yudao st.

Table 3: Original signal timing parameters for peak hours (unit:
second).

Timing
parameter J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Gi−1 48 15 13 15 16 20 20 13 55 21
Gi−2 40 25 28 40 17 33 35 11 20 33
Gi−3 12 35 34 20 48 58 56 20 25 21
Gi−4 21 30 20 22 15 20 20 40 12 24
Gi−5 44 20 40 10 19 24 24 10 23 40
Gi−6 — — — — — — — — — 13
Gi−7 — — — — — — — 25 — —
Yi 3 3 3 3 3 3 3 3 3 3
Ci 180 140 150 155 130 170 170 170 150 170

Table 5: Comparative models.

Model abbreviations Description
Original_Plan Original timing plan
TTR_Plan Optimized plan based on maximum TTR
TT_Plan Optimized plan based on minimum TT
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the difference between the simulated and real world traffic
volumes decreases continuously, and to the end of the
optimization, the differences remain stable, indicating the
convergence of the calibration process, for both peak hours
and off-peak hours.

4.4. TTR_Plan Result. Using the calibrated road network,
TTR_Plan was implemented. Figures 7 and 8 show the
pattern of fitness function values of TTR_Plan during peak
and off-peak hours, respectively. It can be seen that for both
peak hours and off-peak hours, the fitness function value
gradually increases as the optimization iteration proceeds,

indicating a continuous decrease of average buffer time
index of the road network, i.e., a continuous improvement of
the reliability of travel time in the road network.

/e optimized signal timing settings are shown in Ta-
bles 6 and 7 for peak hours and off-peak hours, respectively.
Clearly, the proposed model adjusted the signal timing
settings for all the intersections, compared with the signal
timing settings in Original_Plan.

4.5. TT_Plan Result. Using the calibrated road network,
TT_Plan was implemented. Figures 9 and 10 show the
pattern of fitness function values of TT_Plan during peak
and off-peak hours, respectively. It can be seen that TT_Plan
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Figure 4: Structure of OD pair volume particles.

0.013

0.0135

0.014

0.0145

0.015

Fi
tn

es
s v

al
ue

0 10 20 30 40 50 60 70 80 90 100
Algebra

Fitness value

Figure 5: Calibration fitness function pattern for peak hours.
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shows the same pattern as TTR_Plan, for both peak hours
and off-peak hours. /is indicates that TT_Plan improves
network performance in terms of average travel time.
However, no inference on the reliability of travel time can be
drawn as travel time reliability measure is not incorporated
in the optimization process.

Similarly, the optimized signal timing settings are shown
in Tables 8 and 9 for peak hours and off-peak hours, re-
spectively. Clearly, TT_Plan also adjusted differently the

signal timing settings for all the intersections, compared
with the signal timing settings in Original_Plan.

4.6. Performance Comparisons. Using optimized timing
plans given above for TTR_Plan and TT_Plan, the perfor-
mances of the three models can be compared quantitatively
in terms of four performance measures, i.e., travel time of
road network (NTT), buffer time index (BTI), queue length
at the intersection (QL), and delay of the road (DR).

Table 6: TTR_Plan signal timing parameters for peak hours (unit:
second).

Timing
parameters J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Gi−1 28 9 21 30 30 53 42 11 24 16
Gi−2 25 38 33 33 34 16 28 8 32 28
Gi−3 40 58 27 1 51 4 34 21 42 46
Gi−4 40 30 24 51 30 47 37 16 14 23
Gi−5 32 30 60 4 20 45 23 26 53 30
Gi−6 — — — 8 — — — 29 — 18
Gi−7 — — — 32 — — — 47 — —
φi 70 123 64 91 117 31 65 59 110 49
Yi 3 3 3 3 3 3 3 3 3 3
Ci 180 180 180 180 180 180 179 179 180 179

Table 7: TTR_Plan signal timing parameters for off-peak hours
(unit: second).

Timing
parameters J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Gi−1 44 20 35 23 16 24 28 20 36 23
Gi−2 29 18 37 14 13 20 28 26 42 13
Gi−3 16 9 32 12 50 30 38 23 21 13
Gi−4 19 43 16 13 11 38 25 17 27 28
Gi−5 27 44 15 22 16 23 16 15 9 24
Gi−6 — — — 13 — — — 14 — 30
Gi−7 — — — 32 — — — 14 — —
Φi 41 50 62 14 77 90 23 80 87 90
Yi 3 3 3 3 3 3 3 3 3 3
Ci 150 149 150 150 121 150 150 150 150 149
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Figure 9: TT_Plan fitness function pattern for peak hours.
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Figure 10: TT_Plan fitness function pattern for off-peak hours.

Table 8: TT_Plan signal timing parameters for peak hours (unit:
second).

Timing
parameter J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Gi−1 9 31 20 25 16 38 34 34 34 36
Gi−2 52 28 21 22 17 22 24 6 32 21
Gi−3 30 50 43 22 60 37 36 22 23 25
Gi−4 43 30 23 15 15 32 34 30 30 35
Gi−5 31 26 57 16 19 36 37 12 46 27
Gi−6 — — — 30 — — — 37 — 17
Gi−7 — — — 28 — — — 17 — —
φi 57 107 102 126 51 95 49 75 52 85
Yi 3 3 3 3 3 3 3 3 3 3
Ci 180 180 179 179 142 180 180 179 180 179

Table 9: TT_Plan signal timing parameters for off-peak hours
(unit: second).

Timing
parameter J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Gi−1 47 4 29 8 16 18 30 30 25 20
Gi−2 24 26 30 32 12 33 38 3 36 23
Gi−3 15 39 30 26 50 27 14 11 6 3
Gi−4 20 31 34 20 11 29 19 24 32 39
Gi−5 30 35 12 6 16 28 35 22 36 27
Gi−6 — — — 21 — — — 14 — 20
Gi−7 — — — 14 — — — 24 — —
φi 51 47 93 64 69 64 60 50 61 64
Yi 3 3 3 3 3 3 3 3 3 3
Ci 151 150 150 148 120 150 151 149 150 150
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Table 10 lists the performance measures of the three
models for peak hours. On observing Table 10, first, it can be
seen that compared with Original_Plan, both TTR_Plan and
TT_Plan show significant improvement in terms of all the
measures./is indicates a significant margin of improving the
original timing through applying optimization technique.
Second, TTR_Plan outperforms TT_Plan in terms of BTI,
while TT_Plan outperforms TTR_Plan in terms of NTT,
which is in alignment with the optimization objective of these
two models. /ird, in terms of QL and DR, the performances
of TTR_Plan and TT_Plan are mixed, indicating comparable
performance of TTR_Plan and TT_Plan. In summary, both
signal timing optimization plans can improve the network
performance over the original timing plans, while the two
optimization plans show comparable performances. On re-
flection, this might be caused by high traffic level where there
might be less room left for optimization.

Table 11 lists the performance measures of the three
models for off-peak hours. On observing Table 11, first, it is
clear that both TTR_Plan and TT_Plan outperform signifi-
cantly the Originial_Plan, which indicates that optimization
technique can improve the performance of signal timing for
off-peak hours. Second, different from the results for peak
hours, for all the four performance measures, TTR_Plan
consistently outperforms TT_Plan. /is is an interesting
finding, indicating that minimizing travel time reliability
might at the same time minimize travel time for off-peak
hours. On reflection, this might be caused by the existence of
excessive room left for off-peak traffic levels to first balance
travel time and then reduce the level of average travel time
before reaching the minimized average buffer time index.

In summary, it is clear that for both peak hours and off-
peak hours, the proposed travel time reliability-based signal
optimization model can improve the performance of urban
road network, in terms of both efficiency and reliability. In
particular, for off-peak hours, the proposed model shows a
consistent improvement of network efficiency and network
reliability over models of minimizing average travel time only.

5. Conclusions

Recently, travel time reliability has become an important
performancemeasure of the urban traffic network. However,

in urban traffic signal control systems, travel time reliability
has not been sufficiently investigated. /erefore, more re-
search is needed to understand the performance of network
traffic signal control with the objective to optimize travel
time reliability. To this end, an urban traffic network signal
timing optimization model is proposed in this paper to
optimize the average buffer time index of all road segments
in the network. Particle swarm algorithm is adopted to solve
the optimization models for both peak and off-peak hours. A
case study is conducted for a road network in Nanjing city.
/e results show that the proposed travel time reliability-
based signal timing optimization model can significantly
improve the reliability of traffic network and efficiency as
well, in particular for off-peak hours when excessive room is
available for traffic signal optimization.

Considering the importance of incorporating reliability
measures into real-world traffic management and control,
future research is recommended as follows. First, more travel
time reliability measures can be investigated in urban traffic
network signal timing optimization. In particular, the effect
of travel time percentile can be further investigated to show
its effect on the reliability of the optimized system. Second,
studies should be conducted to relate travel time reliability
measures to the traffic condition uncertainty models as
developed by Guo et al. (2008, 2012, 2014) [29–31] and Shi
et al. [32], so that signal timing could be directly related to
uncertain traffic conditions. /ird, more advanced traffic
signal optimization methods such as reinforced learning
approach could be investigated together with the reliability
measures. Finally, andmost importantly, online methods are
expected to be developed to meet the real world requirement
of urban traffic signal optimization and control.
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Table 10: Performance comparison for peak hours.

Timing plan NTT (s) QL (m) DR (s) BTI
Original_Plan 440.89 64.63 75.76 0.5245
TTR_Plan 437.67 (−0.73%) 48.18 (−25.45%) 28.39 (−62.53%) 0.2336 (−55.46%)
TT_Plan 357.22 (−18.98%) 41.13 (−36.36%) 45.99 (−39.30%) 0.3733 (−28.83%)

Table 11: Performance comparison for off-peak hour.

Timing plan NTT (s) QL (m) DR (s) BTI
Original_Plan 362.22 49.58 56.12 0.5269

TTR_Plan 318.44
(−12.09%)

36.93
(−25.51%)

28.39
(−49.41%)

0.3495
(−33.67%)

TT_Plan 345.67
(−4.57%)

39.93
(−19.46%)

41.09
(−26.78%)

0.4583
(−13.02%)
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Whine noise from the electric powertrain system of electric vehicles, including electromagnetic noise and gear-meshing noise,
significantly affects vehicle comfort and has been getting growing concern. In order to identify and avoid whine problems as early
as possible in the powertrain development process, this paper presents a vibration and noise simulation methodology for the
electric powertrain system of vehicles under speed-varying operating conditions. +e electromagnetic forces on the stator teeth of
the motor and the bearing forces on the gearbox for several constant-speed operating conditions are obtained first by elec-
tromagnetic field simulation and multi-body dynamic simulation, respectively. Order forces for the speed-varying operating
condition are generated by interpolation between the obtained forces, before they are applied on the mechanical model whose
natural modes have been calibrated in advance by tested modes. +e whine noise radiated from the powertrain is then obtained
based on acoustic boundary element analysis. +e simulated bearing forces indicate that the overlooking of the motor torque
ripple does not result in significant loss in simulation accuracy of electromagnetic noise. +e simulation results and tested data
show good consistency, with the relative frequency deviation of local peaks being less than 8% and the error of the average sound
pressure level (SPL) being mostly below 10 dB (A).

1. Introduction

+e electric vehicle industry has achieved rapid development
in recent years. +e high-frequency electromagnetic and gear
whine noise emitted from the electric powertrain system
could significantly affect driving comfort and has become an
important noise, vibration, and harshness (NVH) problem of
electric vehicles. +e motor and reducer are two main vi-
bration and noise sources of the electric powertrain system.
+e electromagnetic forces of the motor and the gear-
meshing forces of the reducer could cause structural vibration
and whine noise that shows obvious order characteristics.

+e integration design of the electric drive system has
become a technological trend, which means that more
functional units, such as the motor, reducer, motor control

unit, and power supply, are integrated into just one drive
unit, i.e., the electric powertrain. +e integration of the
electric drive system can significantly reduce the volume,
weight, and cost of the powertrain system and hence gain
competitive advantages in the market place. As a result, the
physical boundaries between components turn increasingly
vague, and the mechanical coupling between the compo-
nent structures become stronger, which introduces chal-
lenges to NVH analysis and control [1]. +e generation
mechanism of powertrain whine noise is consistent with
that of the motor and reducer [2]. However, the coupling
effect between the components will significantly affect the
characteristics of whine noise. For instance, the tangential
electromagnetic forces acting on the stator teeth, which can
be ignored in the noise analysis of a standalone motor, turn
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to be nonnegligible in the NVH simulation of the inte-
grated powertrain, as the tangential electromagnetic forces
could excite the reducer housing to vibrate and radiate
noise [3]. Fang and Zhang [4] analyzed the vibration
characteristics of the electric drive system through simu-
lation and test, revealing that the motor, reducer, and
controller, due to the coupling phenomenon, must be
considered as an indivisible whole in the NVH analysis.
Vibration and sound simulation based on computer-aided
engineering (CAE) is an important approach for ana-
lyzing and optimizing electric powertrain noise, especially
in the early phase of design. Harris et al. [5] introduced a
CAE method to optimize the whine problem caused by
gear-meshing excitation. +e dynamic meshing force at
the contact point of gears is reduced by changing the
geometry of the rim and web of the gears. Yu et al. [6, 7]
established a finite element (FE) model of the electric
drive assembly system to predict its vibration. +e sim-
ulation model reflects part of the frequency characteristics
of vibration, but quantitative evaluation on the vibration
simulation accuracy is not provided. +e key challenge of
NVH simulation for the highly integrated electric pow-
ertrain system is to efficiently calculate the whine noise
caused by various types of excitations, such as electro-
magnetic forces and gear-meshing forces, within the
whole speed range and with good simulation accuracy.
However, the NVH simulation method for integrated
electric powertrain with both satisfactory accuracy and
efficiency is rarely reported.

In this paper, NVH simulation analysis for an inte-
grated electric powertrain system under electromagnetic
and gear-meshing excitations is performed. +e electro-
magnetic forces on the stator teeth and gear-meshing
forces acting on the bearings in the time domain for
several constant-speed operating conditions are obtained
first by electromagnetic simulation and multi-body dy-
namic simulation. Forces in the frequency domain are
then obtained by performing fast Fourier transform
(FFT). Cubic spline interpolation is utilized to obtain the
order forces under the speed-varying condition, which
significantly cuts down the time required for multi-
condition force simulation. In order to ensure the sim-
ulation accuracy, the material parameters of the motor
stator are calibrated by performing modal correlation
analysis of the tested modes and the simulated modes
before the FE model is used for any dynamic simulation,
including the multi-body analysis and vibration simula-
tion. +e acoustic transfer vector (ATV) from the surface
vibration of the powertrain housing to the sound pressure
of the observing point is calculated by the acoustic FE
analysis. Finally, the radiated sound pressure is calculated
by using the obtained housing vibration velocity and
ATV. Based on the simulation model, the influence of the
motor torque ripple on the whine noise is evaluated. +e
effectiveness of the simulation method is verified by using
tested results. +e influence of the stator breathing mode
on the 48-order whine noise is revealed. +e main con-
tribution of the paper lies in the presentation of an NVH
simulation method for the electric powertrain system with

satisfactory accuracy and efficiency, which makes it
possible to identify and avoid whine problems at early
stages of powertrain development.

2. Process of Vibration and Sound Analysis

When the electric vehicle is speeding up or decelerating,
harmonic excitation forces with order characteristics in the
electric drive system excite the powertrain housing to vibrate
and radiate noise into the air. +ere are two main types of
harmonic excitation forces responsible for whine noise, i.e.,
electromagnetic excitation loads and gear-meshing forces.
+e electromagnetic loads mainly consist of two parts, in-
cluding the electromagnetic forces on the stator teeth and the
torque ripple on the rotor [8–10]. +e former acts on the
stator structure directly, while the latter acts on the rotor shaft
which transmits the pulsating harmonic load to the power-
train housing through the bearings of the drive system [11].
Gear-meshing forces are the dynamic loads produced by the
interaction between meshing gears, which can also be
transmitted to the powertrain housing through the bearings.
In this paper, the time-domain electromagnetic loads under a
couple of constant-speed conditions are obtained by 2-di-
mensional (2D) electromagnetic field simulation in the
software Maxwell. +e time-domain forces on the bearings
under the constant-speed conditions are obtained through
multi-body dynamic simulation. +en, the order loads are
generated by the interpolation algorithm after the forces of the
constant-speed conditions have been obtained. +e normal
vibration velocity of the powertrain housing is obtained by
using FE analysis by applying the order forces onto the
structural model. +e acoustic FE module in the commercial
software Virtual Lab is used to calculate the acoustic transfer
vector (ATV) from the surface vibration velocity of the
powertrain housing to sound pressure at the acoustic ob-
serving positions. At last, the sound pressure levels (SPLs) of
the observing positions can be calculated by the surface vi-
bration velocity of the powertrain housing and the ATV.

NVH simulation error of the electric powertrain system
is affected by a number of factors, among which the
modeling accuracy of the structural modes is a crucial one.
On the one hand, the modeling accuracy of the structural
modes determines the accuracy of the multi-body dynamic
simulation, which means it will affect the computed results
of the bearing forces. On the other hand, the simulated
results of forced vibration are significantly affected by the
accuracy of structural modes. +e key challenge in modeling
the powertrain structure lies in the treatment of the stator.
+e stator core is composed of compacted silicon steel
sheets, which shows material anisotropy and parameter
uncertainty. +ese characteristics make it quite difficult to
model the core accurately. In addition, the stator windings
have similar characteristics. In order to model the stator as
accurate as possible, modal correlation analysis for tested
modes and simulated modes [12–14] is performed to cali-
brate the stator parameters before the FE model is used for
multi-body dynamic simulation and vibration analysis. +e
complete process of the NVH simulation analysis is illus-
trated in Figure 1.
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3. FE Modeling and Calibration for the
Powertrain System

In Figure 2, the 3D structural model of powertrain NVH
simulation is illustrated. +e powertrain system consists of a
motor, a motor controller, and a reducer, and it connects to
the vehicle body through the suspensions.

+e difficulty of FE modeling lies in the construction of
the stator model. Under the constant-speed condition, the
air-gap electromagnetic force is a periodic function of time
and circumferential angle. As a result, under the speed-
varying condition, the air-gap force shows order charac-
teristics in both the frequency domain and the wavenumber
domain. +e air-gap electromagnetic load can be considered
as a superposition of a series of “force patterns” which can be
regarded as a set of basis of the electromagnetic load and can
be obtained by 2D Fourier transform (FT) to the air-gap
electromagnetic load. Each force pattern has a specific spatial
distribution and rotates circumferentially under a specific
frequency. +e magnitude of the electromagnetic noise is
heavily dependent on the level of agreement between the
“force patterns” and the stator modes. While the rotating
frequency of a “force pattern” is close to a modal frequency
and the shape of the “force pattern” matches well with the
modal shape, the stator will experience strong resonance,
radiating intense electromagnetic noise. In order to confirm
the accuracy of simulation, an accurate FE model of stator
structure is of great importance. Natural modes for the stator
structure are tested in advance to conduct parameter
calibration.

+e calibration of the model is a process of optimizing
model parameters, thus making the simulation model
represent the actual dynamic characteristics of the structure
and leading to good agreement between the simulation
results and the test data regarding the modal shapes and
frequencies. In general, there are two approaches in terms of

calibration, namely, manual adjustment and modal corre-
lation analysis. Manual adjustment needs to tune each
physical parameter in order to achieve good agreement.
Hence, this method heavily relies on personal experience
and is difficult to implement for a complicated model. Modal
correlation analysis can be carried out by using commercial
software, for example, the correlationmodule in Virtual Lab,
in which parameters can be optimized automatically after
importing the tested modes into the software. In this paper,
the latter method has been adopted.

+e FE model of the stator is shown in Figure 3. +e
modeling method of the winding is revealed in the zoom-
in image of Figure 3. +e winding is considered to be made
up of two parts: the equivalent isolation layer and the
equivalent winding. +e former part is isotropic material
with small elasticity modulus, and the latter is anisotropic
material. +e initial material parameters of the stator core
and the equivalent winding are set according to [12]. +e
material for the isolation layer is polyimide with the
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default setting to be shown as follows: density ρ= 1.2 g/ml,
elasticity modulus E = 3GPa, and Poisson ratio μ= 0.35.

In the modal test, the frequency response functions are
obtained under transient excitations.+e stator is hung with an
elastic slope, and a hammer is used to excite structural vi-
bration. In total, 36 vibration-measuring points are distributed
in the matrix along the stator surface, 3 circles with 12 test
points equally spaced within one circle.+ree axial acceleration
sensors are used to acquire vibration signals. After the modal
test, the results are fed to the correlation module of Virtual Lab
to carry out correlation analysis and parameter optimization. In
Figure 4, the comparison between simulated and tested modes
is provided, showing the modal results with axial order m=0
and circumferential order n being 0, 2, 3, and 4, respectively.
+e discrepancy stands for the relative error between the
computational modal frequency and experimental modal
frequency. MAC=1 means that the two modes are identical,
whileMAC=0 denotes that themode shapes are orthogonal. As
can be seen in Figure 4, after parameter calibration, the FE
model can represent the natural vibration characteristics ac-
curately. +e relative errors for the 4 modes are less than 6.4%,
with the correlation coefficient higher than 0.6. Apart from the
stator, the material for other structural parts can be considered
as isotropic, which will not be discussed in detail here.

4. Simulation of Excitation Forces

+eNVH performance of the powertrain system depends on
the running conditions. In most conditions, the vehicle
velocity and motor torque are often transient under real-
world driving. In general, the whole throttle acceleration and
coasting deceleration are the two worst conditions in terms
of powertrain whine noise for electric vehicles. +erefore,
these two conditions are normally selected as the key
conditions to be evaluated for powertrain NVH perfor-
mance. Taking the whole throttle condition as an example,
simulation of the order of vibration and noise has been
carried out for the powertrain system. In order to obtain the
order forces, the electromagnetic forces and bearing forces
under constant-speed conditions are obtained at first, and

then the order forces under the speed-varying condition can
be calculated with interpolation.

4.1. Electromagnetic Forces under Constant-SpeedConditions.
+e powertrain system is equipped with a permanent
magnet synchronous motor with 8 poles and 48 slots. FE
analysis for the electromagnetic field in the softwareMaxwell
has been performed to constant-speed conditions to obtain
the electromagnetic forces. +e simulation of the electro-
magnetic field is conducted from 1000 rpm to the maximum
speed, with a step of 1000 rpm. According to the previous
research work [15], satisfactory simulation accuracy can be
achieved when applying interpolation to electromagnetic
force calculation with this step.

Instead of using the electromagnetic forces at the nodes
of each tooth for subsequent interpolation and simulation
directly, the equivalent concentrated electromagnetic forces
for each tooth are adopted. +e node forces on the tooth are
equalized to a concentrated axial force and a concentrated
tangential force, with the distribution effect of the electro-
magnetic loading in circumferential direction neglected.
+is approach brings in little deterioration in simulation
accuracy but significantly reduces the amount of data to be
processed, hence improving simulation efficiency. +e 48
slots of the motor are evenly distributed, and the electro-
magnetic force is sampled in circumference at 48 points.
According to the sampling theorem, when carrying out FFT,
only the forces for the first 24 spatial orders can be rec-
ognized. When the concentrated forces are adopted for
NVH calculation, the contribution of forces with spatial
orders higher than 24 (n> 24) is ignored. Generally, the
electromagnetic vibration of the motor is heavily dependent
on the circumferential structural modes with low orders. As
the order increases, the vibration amplitude of the mode
decreases with a speed of n4 [16]. In addition, as the force
order increases by a multiple of the number of poles, the
amplitude of the electromagnetic force shows a decreasing
trend. Hence, the application of concentrated electromag-
netic force has little influence on simulation accuracy.

Equivalent insulation

Equivalent coils

Figure 3: FE model of the stator core with winding.
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4.2. Bearing Forces under Constant-Speed Conditions. +e
reducer is a one-ratio two-stage gear transmission system,
and there are two pairs of helical gears in the gearbox for
speed slowdown and torque increasing. In addition, there is
a pair of differential gears. Dynamic forces generate during
gear-meshing process, which is transmitted to the axles first
and then to the powertrain housing via bearings. In this
paper, multi-body dynamic simulation is performed to
obtain the exciting forces at the bearings under constant-
speed conditions.

According to research work [17, 18], the flexibility of the
housing has influence on dynamic meshing force charac-
teristics. Hence, the powertrain housing is considered as a
flexible body in the multi-body dynamic model. Before
feeding the FE model which has been calibrated in Section 3
to the multi-body dynamic model, modal condensation is
used to reduce the degrees of freedom of the housing model,
hence improving efficiency. Provided with the highest fre-
quency of the noise of interest fmax, only the housing modes
with natural frequency below 2fmax are retained. In Section
4.3, the speed conditions selected for multibody dynamic
simulation are introduced.

4.3. Order Forces under the Varying Speed Condition. In this
section, the order forces under the acceleration condition
can be obtained by applying interpolation. +e notion
“order” refers to howmany times the frequency is referenced
to the rotating frequency of the rotor. FFT is performed to
obtain the frequency spectrums of the forces. In the end,
force interpolation in the frequency domain between ad-
jacent constant-speed conditions is performed . Cubic spline

interpolation is used here, with the boundary condition at
each endpoint being a not-a-knot boundary (the 3rd de-
rivative at the endpoint equals that of the adjacent point).

+e constant-speed conditions used for interpolation
include speeds of two parts, with one part being the same as
that used in electromagnetic force simulation and the other
being additional speed conditions. +e latter is included to
take into account the influence of the natural vibration
characteristics of the powertrain housing on the order
bearing forces. Under each additional speed condition, the
order frequency of the gear engagement matches well with
one of the natural frequencies of the powertrain housing.
Figure 5 illustrates how to select additional speed conditions.
fi represents the modal frequency of the powertrain
housing. +e order lines intersect with the resonance fre-
quency lines, and the speeds at the intersection points are
selected as the additional speed conditions. For example,
speeds N1

i and N2
i are included in force interpolation to take

into account the coupling effects of the housing mode fi. If
the number of the housing modes within the frequency
range of interest is I and the number of force orders of
interest is q, the number of additional speed conditions
should be I∗q.

5. Vibration and Noise Simulation

5.1. Vibration Modeling and Loading. Before vibration
simulation, the natural modes of the powertrain system
should be computed by FE analysis. In this paper, the
commercial software Nastran is used for the modal calcu-
lation, and then the modal results are imported into the
software LMS Virtual Lab for force loading and vibration
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Error: 4.2%

Simulation: 1837.1Hz
Error: 2%

Test: 662Hz
MAC: 0.81

Test: 1801Hz
MAC: 0.87

Simulation: 3329.5Hz
Error: –6.4%

Test: 3557Hz
MAC: 0.60

Simulation: 5491.8Hz
Error: –3.1%

Test: 5667Hz
MAC: 0.83

Figure 4: Modal results of the stator core with winding.
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simulation. Spring elements are used to model the sus-
pension cushions, with the stiffness coefficients of each el-
ement set as the static stiffness coefficients of the suspension
cushions.

A force treatment program “Force_gene.exe” is worked
out to automatically generate order forces, match them
with the FE geometry, and output a load file in the format of
“.unv” which then can be imported into LMS Virtual Lab
for vibration simulation. +e program is much more ef-
ficient and error-less than loading manually , as the in-
terpolation and loading of the order forces of all 48 stator
teeth and 6 bearing holes can be completed by just running
the program in seconds. It needs to be noted that the load
on each stator tooth obtained by interpolation calculation
is still a concentrated force. +e code “Force_gene.exe”
uniformly decomposed the concentrated force into dozens
of point forces distributed on the tooth surface .

5.2. Acoustic Simulation. +e boundary element method
(BEM) [19] is a native method for simulation acoustic wave
problems, especially for exterior acoustic problems. To
overcome drawbacks of the conventional BEM, such as
efficiency and large memory consumption, fast accelerated
BEM has been proposed and applied for large-scale acoustic
problems [20, 21]. In this work, acoustic transfer vector
(ATV) from the vibration of the powertrain housing to
sound pressure response is calculated by the acoustic FE
simulation in the software LMS Virtual Lab. ATV can be
regarded as the linear input-output transfer relation between
the housing vibration and the response point of the sound
field, which can be expressed by the following equation:

p(ω) � 〈ATV(ω)〉 Vn(ω) . (1)

Vn(ω)  is the normal vibration velocity matrix of the
powertrain housing, p(ω) denotes the sound pressure of the
sound field response point, and 〈ATV(ω)〉 represents the

ATV matrix. +e ATV matrix depends on the housing
geometry, acoustic impedance at the structure-air interface,
acoustic field response position, acoustic signal frequency,
and acoustic medium parameters, but it is not related to the
surface vibration velocity of the structure. +erefore, ATV
can be calculated without the presence of vibration velocity.
For the electric powertrain system, NVH simulation analysis
is usually required for different operating conditions, such as
full-throttle acceleration, half throttle acceleration, and
coasting deceleration. For acoustic simulation under mul-
tiple operating conditions, the ATVmethod is more efficient
than the direct vibroacoustic FE method. Instead of calcu-
lating the sound pressure directly for multiple rounds, the
former only needs one round of acoustic FE simulation as
the ATV keeps invariable for different operating conditions.

6. Results and Discussion

6.1. Bearing Forces. +e electromagnetic loads of the motor
include two parts, namely, the electromagnetic forces on the
teeth and the torque ripple on the rotor. In addition to the
tooth order forces discussed in Section 4.1, the torque ripple
on the motor rotor also contains the order components in
multiples of the number of poles, such as order 8 and order
48. +e harmonic torques can be also transmitted to the
powertrain housing through the bearings and cause vibra-
tion and noise. If one needs to take into account the con-
tribution of the torque ripple on bearing forces, the time-
domain signal of the rotor torque obtained by electro-
magnetic simulation should be adopted in the multi-body
dynamic model in Section 4.2. Figure 6 illustrates the am-
plitude curves of the order forces at one bearing of the input
shaft of the reducer, including the orders caused by the
electromagnetic torque ripple, i.e., order 8 and order 48, and
those caused by meshing gears. +e curve Oij in the figure
denotes the j-th order force caused by the i-th pair of
meshing gears. Each curve in the figure denotes the am-
plitude of the vector sum of the order force, which has been
converted into A-weighted level in decibel, with the level FL

calculated with equation (2). F(n) is the force amplitude
corresponding to rotor speed n, and the reference value of
the force F0 � 1N:

FL � 20 log
F(n)

F0
 . (2)

Figure 6 indicates that the bearing forces caused by the
motor torque ripple (orders 8 and order 48) are more than
30 dB (A) smaller than the gear-meshing order forces, which
means that the sound pressure levels (SPL) caused by the
former should be much smaller than the latter. It should be
noted that the SPLs caused by the electromagnetic forces on
the stator teeth could often reach or even exceed those
caused by meshing gears, implying that the electromagnetic
noise caused by the torque ripple should be a negligible value
compared to that caused by the electromagnetic forces on
the stator teeth. In the following NVH simulation, constant
torques are used for inputs in multi-body dynamic analysis
with torque ripples neglected since the overlooking of the

...
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Motor
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Figure 5: Schematic diagram of the additional steady-speed op-
eration condition determination method.
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motor torque ripple does not result in significant loss in
simulation accuracy of electromagnetic noise.

6.2. Experiment Verification and Analysis. +e simulated
vibration and noise results are compared with the NVH test
data for verification. +e test is conducted in a semi-anechoic
laboratory, and the electric powertrain is installed on the test
bench through the suspension system as shown in Figure 7.
Four microphones are located 1 meter away from the pow-
ertrain housing in different directions, i.e., the front, back,
right, and above, and a 3-axis acceleration sensor is positioned
on the powertrain housing. +e vibration and sound pressure
signals are recorded under the full-throttle acceleration
condition.

+e vibration acceleration at the housing and the average
SPLs of the 4 microphones are presented in Figure 8, with the
vibration acceleration denoting the vector sum of the signals of
the 3-axis acceleration sensor. As can be seen, the simulation
curves and the experiment results show good consistency. +e
relative speed deviation of any local peak |δr| is below 8%, with
|δr| calculated by formula (3), where NCAE is the motor speed
corresponding to the local peak value on the simulation curve
and Ntest is the motor speed corresponding to the local peak
value on the experiment curve. +e error of the average SPL is
mostly below 10dB (A), with the peak error of the 48th order
around 7200 rpm being about 1dB (A) and the peak error of the
order O11 around 6800 rpm being about −8dB (A):

δr �
NCAE − Ntest

Ntest
. (3)

+e maximum peaks on the 48-order vibration and
noise curves appear near 7000 rpm, and the response

frequency is about 5600Hz which is highly consistent with
the resonant frequency of the “breathing” mode of the
motor stator (n � 0, f5600Hz), as presented in Figure 4.
+is strong peak appears at around 5600Hz due to the
following two factors. On the one hand, the spatial zero-
order “force pattern” (n � 0, f5600Hz) of the 48th order
electromagnetic force matches well with the stator
“breathing” mode in both shape and frequency, leading to
strong resonance; on the other hand, for the “breathing”
mode, the normal velocity of the stator is in the same phase,
which means it has strong acoustic radiation efficiency. +e
results indicate that accurate simulation of the stator modes
is very important for the calculation of motor-related noise,
reinforcing the significance of the modal calibration in
Section 3.

TOP
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Figure 7: NVH test of the powertrain in a semianechoic chamber.
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7. Conclusions

+is paper presents a method of NVH simulation analysis
for the electric powertrain system under speed-varying
conditions. Modal correlation analysis is performed to
calibrate the natural modes of the motor stator and improve
NVH simulation accuracy.

+e calibrated simulated modes are in good agreement
with the experimental modes. For the four modes of interest,
the frequency errors are within 6.4%, and the MACs are not
less than 0.6.

+e computed bearing forces show that electromagnetic
noise caused by the torque ripple would be a negligible value
compared to that caused by the electromagnetic forces on
the stator teeth. When multi-body dynamic simulation is
used to calculate the bearing forces, ignoring the torque
ripple of the motor rotor does not lead to significant loss in
electromagnetic SPLs.

+e vibration and sound results obtained by simulation
and the test are in good agreement. +e relative frequency

deviation of local peaks between simulation and test curves is
less than 8%. +e peak error of the motor of 48-order SPL is
about 1 dB (A) and that of the order O11 is about −8 dB (A).

+e 48-order whine noise is strongly related to the
breathing mode of the stator. When the circumferential 0-
order component of the 48th-order electromagnetic force
coincides with the stator breathing mode in space and
frequency, the vibration and sound curves show strong local
resonance peaks.

+e influence of model parameters on simulation ac-
curacy should be an interesting research topic in the future.
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Precise fault recognition of motor rolling bearing fault is playing a significant role in any machinery and equipment. However,
conventional decomposition methods fail to completely reveal the fault signal information of motor rolling bearing due to mixed
modes problem. To solve the problem, the median-point mode decomposition (MMD) method is presented. )e MMD method
uses sort-based inversion to sort out each variation of the same time interval for better and specific mode decomposition, with the
assistance of the advanced envelope curve formed by the median points between adjacent extreme points. It certainly alleviates the
mixed mode during the iteration of intrinsic mode functions (IMFs).)erefore, comparison results are simulated in the proposed
MMDmethod with conventional methods. Experiment of motor rolling bearing fault is operated for fault recognition in order to
demonstrate the MMD algorithm.

1. Introduction

Rolling bearings are common components in rotating
machines, which have been significant in the industry. )e
motor signal is a nonlinear, nonstationary weak signal with
strong randomness. In the acquisition process, it will be
affected by external environmental actions or noise inter-
ference such as power frequency, leading to mixed modes in
the IMF components. )erefore, the preprocessing of this
type of signal is an important research problem. Meanwhile,
fault signal of the motor cannot be intuitively observed due
to its characteristic complexity, so it needs to be decomposed
or extracted in time domain and frequency domain and fault
characteristic values from multiple angles should be ob-
tained. Feature extraction is the core content of fault rec-
ognition. )e accuracy of the signal process and that of
feature extraction will directly affect the reliability of fault
recognition. )us, HHT is an adaptive time-frequency
analysis method to be used in the feature extraction of fault
recognition.

Conventional signal processing techniques can only
detect stationary and linear signals [1]. Wavelet transform
was studied for nonstationary signals and time-sfrequency

analysis [2], but the wavelet base function limits the result
of it, which may lead to a priori assumption on the
characteristics of the investigated vibration signal [3]. As a
self-adaptive signal processing method, empirical mode
decomposition (EMD) is analyzed to decompose the
complicated signal into a set of complete and intrinsic
mode functions (IMFs) [4, 5].

However, mixed mode problem is one of the major
drawbacks of EMD, caused by the screening process in the
EMD algorithm and the discontinuity of the eigenmode
function of a certain time scale and several time scales [6].
Mixed mode problem leads to the decomposed IMFs be-
coming distorted because the signals are mixed with dis-
continuous high-frequency weak noise interference and it
confuses the time-frequency distribution, making each IMF
lack physical meaning.

A simple mixed mode example would be like two
identical signals, one having low-order random noise and
the other not; the results of EMD decomposition can be
quite different [7–10]. Mixed modes in bearing faults cause
the fatal breakdown of machines and inestimable economic
losses [11–14]. In order to overcome the above problems,
ensemble empirical mode decomposition (EEMD) is studied
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as a new solution for mixed mode problem, which is through
adding finite white noise to the investigated signal. However,
the Gaussian white noise may make it difficult to determine
an ensemble mean as the different iterations can generate
different number of IMFs [15–18]. Furthermore, the EEMD
method is hard to be self-adaptive as it requires an amplitude
of noise and ensemble number as parameters.)erefore, it is
significant to detect the existence and severity of a bearing
fault with an efficiently fast, accurate method.

In this paper, a novel median-point algorithm with time
interval sort-based inversion is developed. EMD and EEMD
algorithms with some of their drawbacks are reviewed. )e
rest of the paper is organized as follows: In Section 2, the
principle of the proposed median-point mode decomposi-
tion is presented. )en, detail process simulations of MMD
are shown in Section 3, followed by the flowchart of the
MMD method. Finally, simulations of EMD and EEMD
based on the same original mode as MMD and simulated
fault recognition are all given to demonstrate that the
proposed method based on MMD obtains a more precise
mode decomposition result. )e proposed MMD method
can be applied in practice, particularly in fault recognition of
rolling element bearings since its occurrence.

2. Principle of the Proposed Median-Point
Mode Decomposition (MMD)

Median-point mode decomposition (MMD) can be treated
as a screening process, which is a self-adaptive method and
can decompose any complex signal into a list of intrinsic
mode functions (IMFs), which must meet two conditions as
follows in Table 1.

All the local extrema are identified as x(t). In EMD, the
first step is to construct the upper envelope and lower en-
velope in the signal by interpolating the local maxima and
minima, respectively, using cubic spline [11]. However, in
MMD, we apply sort-based inversion to detect out all pe-
riods in the same frequency and then, respectively, employ
only the median point between adjacent extreme points of
one specific part, to gain the median-point-fit-curvem(t) for
further managements.

Huge difference among EMD, EEMD, and MMD is that
the sort-based inversion algorithm is adopted in MMD to
sort the obtained time intervals from small to large. Set a
default maximum value rate of time intervals earlier. )en,
when the rate of change exceeds the set value, the system
defaults to take the time interval value before the change as
the maximum time interval value Tmax of this required
mode.

)e median-point-fit-curve is formed by cubic spline
function, under two different conditions, listed in Table 2.

)us, the difference between the local extrema of x(t) and
median-point-fit-curve m(t) is marked as equation (1),
which should meet the condition in Table 1:

h(t) � x(t) − m(t). (1)

Repeat the above steps until h(t) is an IMF, and then, set
ci(t)� h(t). )en, compute the residue ri(t)� x(t)− ci(t) and

set x(t)� ri(t) and repeat the above steps to extract the next
IMF until ri(t) is monotonic or constant.

)e result of MMD algorithm can be expressed as

x(t) � 
n

j�1
cj(t) + rn(t), (2)

where x(t) is decomposed into a series of IMFs cj(t) and a
residue r(t). For better presentation of the principle of
MMD, we have listed the steps ofMMD, as shown in Table 3.

3. Detail Process of MMD

)e original signal composed of signals with different am-
plitude and frequency ratios is crucial to the EMD\EEMD
mode mixing problems. As the principle of MMD is pre-
sented completely in Section 2, an example is presented as
follows, where x(t) is composed of x1, x2, x3, x4, and x5:

x1(t) � 0.01t, (3)

x2(t) � 0.1 sin(2πt), (4)

x3(t) � 0.12 sin(6πt), (5)

x4(t) � 0.15 sin 16πt2( , (6)

x5(t) � 0.35 sin 76πt1( , (7)

where 0≤ t≤ 2, 0.3≤ t2 ≤ 0.6, and 1.3≤ t1 ≤ 1.6, shown in
Figure 1.

)e original signal x(t) consists of constituent signals
with different degrees of frequency separation, which is
shown in Figure 1. Mixed mode exists in nonlinear and
nonstationary signals. In order to verify the sensitivity of
MMD to signal changes, the proposed method adds new
interference processing in the time t1 � 0.3 s and t2 �1.3 s and
ends at the time of 0.6 s and 1.6 s, respectively. Each com-
ponent in x(t) contains only a simple vibration mode (single
instantaneous frequency), and the signals of these compo-
nents can completely represent the real physical information
in the original signal.

For comparison, the simulation signal x(t) is analyzed
using the EMD and EEMD method and the decomposition
results are displayed in Figures 2 and 3.

Notice that when EMD is operated on the original signal
x(t), the result is as shown in Figure 2. Mixed mode problem
makes the scale of the first-order IMF1 (c1) different, and the
scale of IMF2 (c2) is also affected by c2, while c3 and c4
contain the same scale signal. It can be judged that there are
obvious mixed modes existing, leading to the mode com-
ponent becoming seriously distorted, as compared with the
original signal. It is indistinct that the problem of mixed
modes appears at IMF1-4 below, showing that the EMD
method fails to provide the reasonable decomposition.

)e components y1, y2, y3, y4, and y5 in original signal
x(t) are defined in (equations (3)–(7)). From top to the
bottom of Figure 2, each subfigure represents IMFs with
ascending order and is produced by the EMD method.
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Despite the previous example [1] showing the EMD’s
accurate decomposition of a synthetic signal, the result
above indicates that the mixed modes problem containing
mixed components of the input signal cannot be decom-
posed successfully.)erefore, the same original signal x(t) is
taken as the input signal for the EEMD method for better
comparison, shown as follows.

In Figure 3, it can be observed that when mixed modes
occur, the signal components of different scales coexist in the
same order of IMF. In other words, signal components with
different frequencies coexist in the same order of IMF. From
top to the bottom of Figure 3, each subfigure represents
IMFs with ascending order produced by the EEMDmethod.
As EEMD performing the signal x(t), mixed modes can be
reduced to a certain extent, but it cannot be eliminated
fundamentally, and the decomposition result cannot reveal
the signal characteristics and provide accurate information.

Note that MMD has multiresolution analysis and the
advantages of signal analysis such as local adaptability,
shown in Figure 4, where IMF1 is decomposed without the
influence of mixed mode problem.

)e process of the method for decomposing signals into
each IMF is shown in Figure 4, demonstrating the advantage
of self-adaptiveness and high efficiency in MMD.

)e red curve in Figure 4 is the median-point-fit-curve
m(t), and the blue curve is the original signal x(t); the
difference between x(t) andm(t) can be obtained as an IMF if
conditions meet equally (Table 1), denoted as h(t). Even with
a complex original signal in Figure 1, it can be noticed that
imf1 h(t)� x(t) –m(t) without obvious mixed mode.

Hence, the IMFs h(t) equals the difference between the
original signal x(t) and the median-point-fit-curvem(t). )e
MMD algorithm is operated in all five different composition
processes in five different time intervals sorted by the

Table 1: Conditions of IMF.

Condition 1 )e number of signal extreme points is equal to zero point or the difference in them is within 1.

Condition 2 At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is
zero.

Table 2: Conditions of the maximum time interval value Tmax.

Condition 1 When the interval of adjacent extreme points is larger than Tmax, the value of median point would be the magnitude and
amount of time of x(t) between the current extreme points.

Condition 2 When the interval is less than Tmax, theMMD assigns the value of median point from the current adjacent extreme points and
the value of median point corresponding to the original signal, together to the value of median point.

Table 3: )e MMD algorithm.
Step 1 Identify all the local extrema of x(t).
Step 2 Obtain the local maxima and minima of x(t).
Step 3 Gain all the time intervals between adjacent extreme points.
Step 4 Apply sort-based inversion algorithm for time intervals from high frequency to low.
Step 5 Determine the rate of change of the time interval and set a maximum of time interval Tmax.
Step 6 Gain different values of median point in different periods of time intervals based on two conditions of Tmax.

Step 7 In each sorted period of time intervals, through cubic spline function, form the median-point-fit-curve with all the gained median
points m(t).

Step 8 Set h(t)� x(t)−m(t).
Step 9 Repeat the above steps until h(t) is an IMF, check in Table 1, and then set ci(t)� h(t).
Step 10 Compute the residue ri(t)� x(t)− ci(t).
Step 11 Set x(t)� ri(t) and repeat the above steps to extract the next IMF until ri(t) is monotonic or constant.

4
3
2
1
0

–1
–2
–3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

x(t)

Figure 1: Synthetic signal waveform x(t).
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ranking algorithm, in order to obtain IMF1-5, shown in
Figure 5.

)e result in Figure 5 demonstrates that the MMD
method can effectively decompose the added interferences
and normal signal into the correct constituent signals in
various cases, alleviating mixed modes problem and being
self-adaptive at the same time.

It can be seen from the results of IMFs in Figure 5 that
MMD algorithm can decompose a series of IMFs from high
to low frequencies, without the influence of mixed mode
problem.

As the problem of mixedmode occurs, an IMF can cease to
have physical meaning by itself, suggesting falsely that there
may be different physical processes represented in a mode. In
MMD, when acquiring IMF components, because too many
iterations would damage the integrity of the signal and its
physical meaning, the number of iterations needs to be limited.
)erefore, the criterion to end iterations used in this method is
already written in Tables 1 and 2 and Step 11 of Table 3.

Additionally, observing the differences of EMD and
EEMD shown in Figures 2 and 3, the decomposition result of
the EEMD method is better than that of the EMD method.
However, EEMD takes three more steps to iterate out the
final IMF component. )us, the result of MMD using the

same original signal x(t) given in Figure 5 represents better
mode decomposition.

Applying MMD to decompose x(t) resulted in a series of
IMFs, where the imf1-5 denote all the IMFs, showing a
successful decomposition of four smoothly sinusoidal sig-
nals and single residual, accordingly. As can be seen, MMD
can solve the problem of mixed modes well with the mode
component very similar to the original signal. Comparing
Figures 3–5, the IMFs decomposed by MMD is obviously
more accurate than the decomposition results of EMD and
EEMD. )e frequency of each IMF is sequentially reduced,
and the waveform transformation is more regular. It shows
that MMD can avoid mixed mode because it could separate
high-frequency and low-frequency components clearly and
obtain the meaningful signal sufficiently. It can also prove
that MMD maintains the adaptability in signal
decomposition.

In the interim, the implementation flowchart of this
proposed MMD method is shown in Figure 6. )e x(t)
represents original signal in Figure 1. c(t) stands for each of
IMFs h(t), and r(t) denotes residue, which equals to x(t) –
c(t). )e median-point-fit-curve m(t) is formed by cubic
spline function. At first, identify all the local extrema of
original signal x(t) to obtain the local maxima andminima of
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Figure 2: EMD result of signal x(t).
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x(t). )en, the time interval in all the adjacent extreme
points is arranged in ascending order with sort-based in-
version, selecting out the different frequency periods for
MMD to operate, respectively. Check two conditions about
the pre-set maximum of time interval Tmax of Table 2, then
the cubic spline function is used to form the median-point-
fit curve in each sorted time interval, and the median-point-
fit curve obtained is processed in the next step according to
the EEMD and EMD methods. Finally, the MMD algorithm
achieves self-adaptive mode decomposition with the alle-
viation in mixed modes.

4. Motor Fault Recognition Experiments

)e characteristic complexity in motor fault signal makes it
hard to be detected. Generally, engineers and researchers
adopt different diagnostic methods for different bearing
faults of motors, but each one needs the separation from the
decomposition and extraction of modes.

When a bearing fault occurs in an asynchronous motor,
its vibration frequency will change significantly, and for
different types of bearing faults, the characteristic frequency
of the fault produced is also different.
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Figure 3: EEMD result of signal x(t).
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)erefore, the type of bearing failure can be identified by
the vibration characteristic frequency. )e following is the
vibration characteristic frequency formula of various

bearing faults. )e expression of outer ring fault fOD, inner
ring fault fID, rolling element fault fBD, and cage fault fCD,
are shown as follows [12]:
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fOD �
n

2
frm 1 −

db

dp

cosΦ , (8)

fID �
n

2
frm 1 +

db

dp

cosΦ , (9)

fBD �
dp

2db

frm 1 −
db

dp

cosΦ 

2
⎡⎣ ⎤⎦, (10)

fCD �
1
2
frm 1 −

db

dp

cosΦ , (11)

where frm is the rotation frequency of motor, db and dp are
the diameter of the bearing rolling elements and the di-
ameter of the bearing cage, respectively, n is the number of

the bearing rolling elements, and V is the contact angle of
rolling element.

As we can see above, the rolling element of motor rolling
bearing fault is simulated and the time-domain waveform of
the fault vibration signal is shown in Figure 7, where the
vertical axis represents the vibration signal of the motor. For
better observation, an enlarged view of Figure 7 during the
time of zero to two seconds is presented in Figure 8. At the
same time, the four IMF components (IMF1∼IMF4) and one
residual term (Res) obtained by adaptive MMD decompo-
sition of the fault vibration signal are shown in Figure 9.
Note that from the corresponding kurtosis value of each IMF
component, we can conclude that since the kurtosis value of
the IMF component of the 4th layer is the largest, the IMF4
component contains a lot of obvious fault characteristic
information.

)erefore, the characteristics of the vibration signal as
the rolling bearing outer ring in motor fault are verified,
which demonstrates the effectiveness of the MMD method
for the fault recognition.

Note that the MMD algorithm is able to alleviate the
mixed modes problem in fault signal, where each IMF shows
a certain periodicity. In this proposed method, the algorithm
based on MMD and sort-based inversion is used to separate
and alleviate themixedmodes. MMD decomposition of each
quasi-margin term is re-decomposed to realize the self-
adaptive function, making sure every IMF meets the con-
ditions in Table 1. )e result of EMD and MM obtained are
both shown in Figure 9, illustrating through comparison
with the conventional method that the algorithm success-
fully separated mixed modes problems in motor fault.

In Figure 9, the signal of IMF1 is completely extracted in
the MMD method, while the EMD method still has mixed
mode problem. Note that the resonance occurs with specific
resonance frequency, and we manage to analyze with Hil-
bert–Huang spectrum for further needs of fault recognition.

In order to respond to the relationship between time-
frequency-amplitude more intuitively, the three-dimen-
sional Hilbert spectrum based on the information from the
above IMFs is drawn in Figure 10. In Figure 10, there are
fluctuations in the low-frequency part, but basically no
energy distribution on the high-frequency part, which can be
seen as linearly distributed and stable.

For better observation in the low-frequency part,
comparative IMFs marginal spectrums of EMD and MMD
in motor rolling bearing fault are given in Figure 11. )e
decomposition result ofMMDhas 5 IMFs.)e IMFs contain
enough physical meaning which are called effective intrinsic
functions (EIMF). False intrinsic mode function (FIMF)
components denote no physical meaning in IMFS. As can be
seen in Figure 11, the result from EMD of Figure 11(a)
conducts more numbers of FIMFs than MMD, which means
the MMD method has better performance, particularly in
fault recognition of rolling element bearings.

It can be seen from Figure 11(b) that the largest am-
plitude is around 0.35 with the frequency of near 38Hz.
According to theoretical calculation in equation (9), the
inner ring is faulty with the calculated frequency of 37.6Hz.
)us, the frequency near 38Hz occupies the main
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Figure 6: Implementation flowchart of MMD.
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components, representing ability gathering, which proves
obvious fault information and can be treated as a motor
rolling bearing fault. )at is, the MMD method can effec-
tively extract the signal feature effectively and avoid the
mixed modes problem.

Figure 12 shows the whole process of MMD applied in
practice for extracting the motor fault; thus, the detected

feature vector verifies the effectiveness of the proposed
algorithm.

5. Conclusions

A fault recognition method for motor rolling bearing fault is
put forward in this paper, which is based on a novel median-
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point mode decomposition (MMD) with sort-based inver-
sion algorithm. )e MMD method is not only suitable for
analyzing complex multicomponent signals but also chosen
to precondition the vibration signal of the roller bearing to
produce a set of IMF components. For the fact that the
vibration signal is nonlinear and unstable, theMMDmethod
keeps the algorithm self-adaptive for sorting out each var-
iation of the extreme points interval with better and specific
mode decomposition. Comparison simulations and exper-
iments are operated to highlight the advantages of MMD in
dealing with mixed mode problem in nonlinear signals.

In summary, MMD is a better choice when the signal
needs time-frequency analysis, especially when the signal is
nonlinear and nonstationary. )e proposed method MMD
keeps the advantages of EMD and EEMD and avoid mixed
mode, whichmakes it capable of capturing the features of the
signal in motor rolling bearing fault accurately. [13–18]
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+e distributed drive electric vehicle is a complex hybrid system including discrete events and continuous events. In order to
coordinate the longitudinal and lateral motion of the distributed drive electric vehicle, a hierarchical control method was
proposed. In the upper layer, the body attitude tracking controller based on sliding mode control algorithm was established to
accurately analyze the driving expectation and to track the longitudinal speed, the lateral speed, and the yaw rate of the vehicle. In
the lower layer, the switching controller based on the hybrid theory was established to improve the driving stability under various
working conditions.+e switching controller can switch between control strategies according to the working conditions.+e joint
simulation was carried out under various working conditions using Simulink and CarSim software. +e results showed that the
controller can coordinate the longitudinal and lateral motion of the vehicle well in linear acceleration and sinusoidal acceleration
conditions and can strictly track the driving expectation and maintain the desired body posture. And another, the controller can
be switched according to the working conditions and control strategies accurately and smoothly and can ensure stable driving in
the constant speed single lane change condition. +e controller can reveal the continuous behavior characteristics of the vehicle
and reflect the characteristics of discrete events by coordinating the longitudinal and lateral motion of the vehicle. It improves the
stability and control performance of the distributed drive electric vehicle under various working conditions.

1. Introduction

Since the 21st century, with the increasing environmental
and energy problems, distributed drive electric vehicle as a
new type of new energy vehicle has gradually entered the
field of vision of researchers. +e chassis layout of the
distributed drive electric vehicle is novel. Four driving
motors are installed in the wheel rim, respectively, and the
transmission structure of the vehicle is cancelled, and the
drive motor is controlled independently [1]. +erefore, it
has the characteristics of fast response speed and inde-
pendent torque control and brings huge control potential
for the vehicle. As a kind of vehicle chassis control tech-
nology, the longitudinal and transverse motion control
technology plays an important role in improving the
driving stability of vehicles. However, the research on the
longitudinal and transverse motion control technology is

mainly focused on the traditional internal combustion
engine vehicles, and the control system is not perfect. +e
optimization algorithm of longitudinal and horizontal tire
force is single, which cannot comprehensively consider the
various working conditions faced by the vehicle in the
process of driving. It is easy to cause the unreasonable
distribution of the longitudinal and lateral forces of the
vehicle and affect the driving attitude and handling stability
of the vehicle. Some scholars use the average distribution of
vehicle tire force to improve the stability of the vehicle,
which does not fully consider the impact of vehicle steering
and vehicle load transfer on tire force, so the vehicle sta-
bility cannot be fully improved. +erefore, it is of great
significance to study the longitudinal and lateral motion of
the vehicle under multiple working conditions to control
the vehicle’s driving attitude and improve the lateral
driving stability and economy.
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In order to solve the above problems, this paper proposes
a distributed drive electric vehicle stability controller based
on multi driving conditions. +e controller adopts a top-
down hierarchical control architecture. +e upper controller
tracks the desired body posture based on the sliding mode
control algorithm and calculates the longitudinal force,
lateral force, and yaw moment required by the vehicle. +e
lower controller establishes the vehicle condition switching
controller by analyzing the continuous state characteristics
and discrete state characteristics of the vehicle system based
on the hybrid theory and designs the control strategy for
each working condition which scientifically and reasonably
distributes the longitudinal and transverse forces of the
vehicle, so as to ensure that the vehicle can keep stable
running in all driving conditions and comprehensively
improve the driving stability of the vehicle. Finally, a sim-
ulation platform is built based on Simulink and CarSim to
verify the effectiveness of the stability controller for dis-
tributed drive electric vehicles under multiple working
conditions.

2. Stability Coordination Controller

Based on a hierarchical control framework, a stability
coordinated controller for multi driving conditions of a
distributed drive electric vehicle is established. +e spe-
cific structure is shown in Figure 1. +e stability coor-
dination controller mainly includes the following parts:
the upper vehicle reference model and body attitude
tracking controller, the lower working condition
switching controller, and the actuator controller. +e
controller receives the steering wheel angle signal and
accelerator pedal signal from the driver and calculates the
expected driving state of the vehicle through the reference
model. +e body attitude tracking controller tracks the
expected driving state of the vehicle. +e condition
switching controller divides the driving condition of the
vehicle into a straight driving condition and steering
condition and optimizes the distribution of the force for
the different driving conditions of the vehicle. At last, the
actuator controller controls the vehicle drive/steering
motor. Finally, the purpose of improving the driving
stability of vehicles is achieved.

3. Upper Controller

3.1. Reference Model. +e reference model is used to receive
the driver’s operation information (including steering wheel
angle and accelerator pedal opening) and calculate the ex-
pected running state information of the vehicle (including
the expected longitudinal speed, the expected lateral speed,
and the expected yaw rate of the vehicle). At the same time,
the reference model transmits the expected information to
the vehicle body attitude tracking controller to provide the
tracking target for the body motion controller.

In order to avoid coupling between the longitudinal
system and transverse system, the longitudinal system and
transverse system are designed separately in this paper.

Yaw rate is the key data to represent the driving state
of the vehicle. +erefore, it is necessary to obtain the
relationship between steering wheel input and yaw rate of
the vehicle. +e paper establishes a linear two degrees-of-
freedom vehicle model as the reference model of the
vehicle steering system to represent the relationship. +e
output results of the reference model are all the desired
data.

+e transfer matrix of vehicle linear two degree-of-
freedom steering model is as follows.

_Vy

_φ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

kf + kr

mVx

lfkf − lrkr

mVx

− Vx

lfkf − lrkr

IzVx

l
2
fkf + l

2
rkr

IzVx
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Vy

φ
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−
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−
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lrkr

Iz
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δf
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(1)

+rough mathematical derivation, the desired yaw rate
of the vehicle can be expressed as

_φ �
Vxδf

1 + KgV
2
x  lf + lr 

. (2)

Among them,

Kg �
m

lf + lr 
2

lf

kr

−
lr

kf

 . (3)

After considering the yaw rate constraint, the desired
yaw rate can be expressed as

_φd � min |φ|, μ · g/Vx


 , (4)

where µ is the ground friction coefficient and g is 9.8m/s2.
+e reference model of the longitudinal system is mainly

to obtain the expected longitudinal speed of the vehicle,
which can be determined by the longitudinal acceleration in
the time domain.

Vx d � Vx0 + 
t

0
ax d(τ)dτ, (5)

where kf and kr are the side deflection stiffness of front and
rear wheels, respectively; δf and δr are the front and rear
wheel angles; Vx is the longitudinal speed of the vehicle; Vy

is the lateral velocity of the vehicle; _φ is the yaw rate of the
vehicle; m is the mass of the vehicle; lf is the distance from
vehicle centroid to front axle; lr is the distance from vehicle
centroid to rear axle; Iz is the moment of inertia; and Vx0 is
the initial speed of the vehicle.

3.2. Body Attitude Tracking Controller. +e function of the
body motion controller is to calculate the expected lon-
gitudinal total torque, expected total lateral moment, and
expected yawmoment of the vehicle through the advanced
control algorithm according to the information of the
reference model. However, the vehicle system has com-
plex nonlinear characteristics. +e paper selects the
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sliding mode variable structure control algorithm to track
the longitudinal speed, lateral speed, and yaw angle of the
vehicle by comparing a variety of advanced control
algorithms.

+e sliding mode control algorithm can make the
tracking error converge to zero on the designed sliding mode
surface and can track the expectation of the reference model
output well.

+e sliding surface is designed as shown in the following
equations:

S1 � Vx − Vx d, (6)

S2 � Vy − Vy d, (7)

S3 � _φ − _φd. (8)

+e design sliding mode variable structure control rate
can be expressed as

_Sk � ukn, ∀k ∈ 1, 2, 3{ }. (9)

In order to suppress the chattering of the system, the
linear saturation function is used as the sliding surface S1, S2,
and S3.

ukn � −ηknsat
Sk

ϕk

 , ∀k ∈ 1, 2, 3{ },

sat
Sk

ϕk

  �

Sk

ϕk

, if Sk


<ϕk,

sgn
Sk

ϕk

 , if Sk


≥ϕk.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

+e Lyapunov function is constructed to determine the
stability of the system, as shown in the following equation:

Vk �
S
2
k

2
, ∀k ∈ 1, 2, 3{ },

(11)

_Vk � Sk · _Sk � −Sk · sat
Sk

ϕk

 ≤ 0 ∀k ∈ 1, 2, 3{ }. (12)

It can be seen from equation (12) that the controller
satisfies the stability condition and is stable.

Finally, the total longitudinal force, total lateral force,
and yaw moment required for vehicle attitude tracking are
obtained.

Fx d � m _Vx − _Vy _φ  � m _Vx d − η1nsat
S1

ϕ1
  − _Vy _φ ,

Fy d � m _Vy + Vx _φ  � m _Vy d − η2nsat
S2

ϕ2
  + _Vx _φ ,

Mz d � Iz€φ � Iz €φd − η3nsat
S3

ϕ3
  .

(13)

Here, Fx d and Fy d represent the expected total longitudinal
force and expected total lateral force. Mz d is the desired yaw
moment.

4. Lower Controller

4.1. Condition SwitchingController. Based on hybrid control
theory, the main function of the controller is to determine
and switch real-time driving conditions according to vehicle
information and switch the corresponding control strategy
to optimize the tire force distribution. +e distributed drive
electric vehicle is a hybrid system, which can switch the
driving mode of the vehicle in real time according to the
change of the discrete signal of the vehicle [2]. +e driving
condition of the vehicle is divided into two driving condi-
tions: straight driving condition and steering condition, and
appropriate control strategies are developed, respectively, as
shown in Figure 2.

+e hybrid system is modeled by automata, as shown in
the following equation:

H � (Q, X, V, Y, lint, f, ln v, E,Ψ), (14)

Driver

Reference model

Body attitude
tracking control

module

Condition switching controller

Straight
condition

Steering
condition 

Actuator controller

Vehicle

Upper controller

Lower controller

Figure 1: Framework of stability coordination controller.
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where Q is the driving condition of the vehicle: {straight
condition, steering condition}; X is the continuous state
variable of the system: Fxfl, Fxfr, Fxrl, Fxrr,

Fyfl, Fyfr, Fyrl, andFyrr}; and V is the continuous input
variable ax, ay, Fx d, Fy d, andMz d  and discrete input
variable S1 and S2 .S1 and S2 are the control strategies of two
driving conditions; Y is the continuous output variable:
Fxfl, Fxfr, Fxrl, Fxrr, Fyfl, Fyfr, Fyrl, andFyrr ; lint is the
initial state of the system; ln v is the set of invariant state
quantity of the system E is the set of discrete switching
events: E1 andE2 ; and ψ specifies an allowable input field
for each state. Here, Fx, Fy, and Fz represent the longitu-
dinal force, lateral force, and vertical load of the vehicle. At
the same time,fl, frrl, and rr represent the left front, right
front, left rear, and right rear wheels of the vehicle, re-
spectively. ax and ay represent the longitudinal and lateral
acceleration of the vehicle.

When the vehicle is in the straight driving condition, the
vehicle adopts the tire force distribution method based on
the vertical load of the tire; when the vehicle is in the steering
condition, the vehicle adopts the tire force distribution
method based on the minimum tire adhesion margin. +e
monitoring data are driver steering wheel angle δ, steering
wheel angle velocity δω, and vehicle yaw angle acceleration _φ.
+e monitoring data switching thresholds are set, respec-
tively. When the monitoring data are lower than the system
set thresholds, it is determined that the vehicle is in straight
running condition; otherwise, it is determined that the
vehicle is in steering condition.

4.2. Optimized Distribution of Tire Force. +e distributed
drive electric vehicle has four drive motors and four steering
motors. +e degree of freedom required to control is far less
than the number of controllable actuators. +e system is
highly redundant and overdrive system. +erefore, the
control strategy is designed by control distribution theory.
+e optimal distribution of tire force based on the control
distribution theory can effectively improve the dynamic
response of the vehicle.

Under the condition of straight driving, the longitudinal
force has a great influence on the driving state of the vehicle.

And then, the vertical load of the tire will move between the
front and rear axles. +e driving force distribution method
based on tire load can better meet the requirements of
vehicle power and safety in the straight driving condition.

+e vertical load of tire is shown in the following
equations:

Fzfl � m
glr

2 lr + lf 
−

hax

2 lr + lf 
−

hlray

tf lr + lf 
⎛⎝ ⎞⎠, (15)

Fzfr � m
glr

2 lr + lf 
−

hax

2 lr + lf 
+

hlray

tf lr + lf 
⎛⎝ ⎞⎠, (16)

Fzrl � m
glr

2 lr + lf 
+

hax

2 lr + lf 
−

hlfay

tr lr + lf 
⎛⎝ ⎞⎠, (17)

Fzrr � m
glr

2 lr + lf 
+

hax

2 lr + lf 
+

hlfay

tr lr + lf 
⎛⎝ ⎞⎠. (18)

+e total vertical load of the wheel can be expressed by
the following equation:

Fzt � Fzfl + Fzfr + Fzrl + Fzrr. (19)

Finally, the driving force of each wheel can be shown in
the following equation:

Fxij �
Fzij

Fzt

Fz d, i ∈ f, r , j ∈ l, r{ }, (20)

where tf and tr are the front and rear track width and h is the
height from the vehicle center of mass to the ground. At this
driving condition, the tire lateral force is evenly distributed
under the straight driving condition.

When the vehicle is in the steering condition, the lon-
gitudinal force, lateral force, and yaw moment generated by
the vehicle to maintain the body attitude will have an impact
on the driving state of the vehicle. At this condition, the tire
force distribution should focus on improving the stability of
the vehicle. And the tire force distribution method based on

Straight condition
(tire force 

distribution algorithm 
based on vertical 

load)

Steering condition
(tire force 

distribution algorithm 
based on tire 

adhesion margin)

System input

External input

External discrete input

System output

Internal discrete input

Condition switching controller

Figure 2: Condition switching controller.
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the tire load coefficient is adopted. +e smaller the load
factor of the vehicle tire, the greater the potential of the tire,
the higher the stability of the vehicle.

min J � 

i�f,r

j�l,r

F
2
xij + F

2
yij

μ2ijF
2
zij

,
(21)

where μ is the ground adhesion coefficient and Fz is the
vertical force of each tire.

At steering condition, the distributed longitudinal force,
lateral force, and yaw moment shall also meet the kinematic
equation of the vehicle.

Fxd � Fxfl + Fxfr + Fxrl + Fxrr,

Fyd � Fyfl + Fyfr + Fyrl + Fyrr,

Mzd � lf Fyfl + Fyfr  − lr Fyrl + Fyrr  +
tf

2
−Fxfl + Fxfr 

+
tr

2
−Fxrl + Fxrr( .

(22)

In addition, the longitudinal and lateral forces of the
vehicle during driving should meet the constraints of the
vertical forces of the tire. +at is to say, the limit condition of
the friction circle should be met.

F
2
xij + F

2
yij ≤ μ

2
ijF

2
zij. (23)

At the same time, the driving force and lateral force of
the vehicle also need to meet the maximum torque re-
quirements of the motor.

Fxij ≤
Tmax

r
, i ∈ f, r , j ∈ l, r{ }, (24)

where Tmax is the maximum output torque of the motor and
r is the effective radius of the tire.

In this paper, the interior point method of quadratic
programming (SQP) is used to solve the problem with in-
equality constraints. Finally, the S-function in Simulink is
used to write the objective function. And the optimization
problem is solved iteratively to get the optimal distribution
of tire force.

4.3. Actuator Controller. +e main function of the actuator
controller is to convert the received optimal driving force
and lateral force into the driving torque and steering angle of
the actuator motor. Accurate control of vehicle actuators is
the key to improve vehicle driving stability.

It can be seen from tire dynamics that the longitudinal
force of tire can be realized by directly controlling the torque
of the driving motor. According to the longitudinal force
model of single wheel and the principle of moment balance,
the driving moment of the driving motor can be calculated
by using the following equation:

Twij � RwijFwij + Jwijωwij + Tbij, i ∈ f, r , j ∈ l, r{ }.

(25)

+e tire lateral force cannot be directly transformed into
the wheel angle of the steering motor. It needs to be solved
indirectly by the inverse model of tire cornering. +e tire
model shown in equation (26) is used to realize the model
[3]. +e tire model can better represent the linear rela-
tionship between tire lateral force and tire cornering angle:

Fy � −CGx

μ
k
tan− 1 kα

μ
 . (26)

Gx and k are factors defined as

Gx �

����������

1 −
Fx

μFz

 

2




,

k � C
π
2

1
Fz

.

(27)

According to the tire model, the angle between the tire
running direction and the coordinate axis can be expressed
by the following equation:

α �
μ
k
tan

−Fy k

CGxμ
 . (28)

+e angle between the driving direction of the tire and
the coordinate axis can be known from the side slip of the
tire:

σij � δij + αij. (29)

At the same time, it can be seen from the vehicle dy-
namics model:

σlf,rl � tan−1 Vy − lrφ 

Vx∓tfφ/2 
⎛⎝ ⎞⎠,

σlr,rr � tan−1 Vy − lrφ 

Vx∓trφ/2( 
⎛⎝ ⎞⎠.

(30)

Finally, it can be seen that the required wheel angle of the
vehicle can be expressed by the following equation:

δij � σij − αij, i ∈ f, r , j ∈ l, r{ }. (31)

5. Simulation Verification

In order to prove the effectiveness of the stability coordi-
nated controller designed, this paper establishes a joint
simulation model of Simulink and CarSim and carries out
simulation verification under the conditions of linear ac-
celeration, sinusoidal acceleration condition, and uniform
single lane change condition. +e input of the coordination
controller is the acceleration determined by the steering
wheel angle and accelerator pedal opening of the vehicle.+e
simulation vehicle includes four driving motors and four
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steering motors, and the specific parameters are shown in
Table 1.

5.1. Linear Acceleration Condition. +e linear acceleration
condition is mainly to verify the effectiveness of the vehicle
coordination controller for driver driving expectation
tracking.

In the condition of linear acceleration, the steering wheel
angle input is always 0. +e initial speed of vehicle is 36 km/
h, and the acceleration curve can be shown in Figure 3. +e
ground is flat. +e coefficient of adhesion is 0.8. +e ac-
celeration is given to the vehicle in the 2 seconds when the
vehicle is running, and the acceleration is increased to 1.5m/
ŝ 2 in one second and keep it for 5 seconds. At last, the
vehicle acceleration is reduced to 0 in the sixth second.

+e specific simulation results are shown in Figures 4
and 5.

Figure 4 shows the longitudinal speed chart of the ve-
hicle. When the vehicle starts to accelerate in 1 s and stops to
accelerate in 6 s, the vehicle speed accelerates from 36 km/h
to 57.6 km/h. +e vehicle speed curve is smooth, which
tracks the expected speed of the vehicle well and meets the
acceleration expectation of the driver. Figure 5 shows the
actual acceleration curve of the vehicle. In the simulation
process, the actual acceleration curve can better track the
expected acceleration curve, and the vehicle response is fast
and accurate, which fully meets the acceleration expectation
of the driver. It can be seen from the simulation results of the
linear acceleration condition that the actual driving speed of
the vehicle can track the target speed quickly and accurately.
At the same time, it can meet the acceleration needs of the
driver in the linear condition, and the coordination con-
troller can better track the driving expectation of the vehicle.
+erefore, the coordinated controller is effective.

5.2. Sinusoidal Acceleration Condition. +e sinusoidal ac-
celeration condition is to verify the effectiveness of the
vehicle stability coordination controller to improve the
lateral stability under the steering condition. +e steering
wheel input and accelerator pedal input are shown in Fig-
ures 6 and 3.+e initial speed of the vehicle was set as 36 km/
h. +e ground is flat, and the coefficient of adhesion is 0.8.

+e simulation results are shown in Figures 7–9.
Figure 7 shows the comparison between the actual yaw

rate and the desired yaw rate of the vehicle. When the
steering wheel angle and longitudinal speed increase

continuously, the yaw rate of the vehicle will produce errors
when tracking the desired yaw rate of the vehicle, but the
errors are small where maximum error is less than 0.3 deg/s.
It cannot have a big impact on the stability of the vehicle. In
this condition, the controller can complete the tracking of
the yaw rate as a whole and track the longitudinal direction
of the vehicle better speed. It has a better impact to improve
the stability of the vehicle. In the first four seconds of the
simulation, the vehicle can track the longitudinal acceler-
ation very well. However, the longitudinal acceleration of the
vehicle will fluctuate due to the excessive change rate of the
steering angle of the vehicle at four seconds and the sixth.
+erefore, it can quickly track the expected acceleration of
the vehicle after the fluctuation. To sum-up, the vehicle
coordination controller can better complete the driver’s
steering intention, track the vehicle’s yaw acceleration and
acceleration, and improve the vehicle’s yaw stability and
safety to a certain extent.

5.3. Uniform Single Lane Change Condition. +e uniform
single lane change condition is mainly to verify the effec-
tiveness of the hybrid controller in the process of vehicle
driving. In this case, it is necessary to design a driver model
to convert the model path input into the vehicle steering
wheel input. +e specific driver model is not described here.
+e steering wheel angle input is shown in Figure 10. +e
vehicle speed is set as 36 km/h. +e ground is flat without
slope, and the ground adhesion coefficient is 0.8.

As shown in Figure 11, the speed of the simulation
vehicle is maintained at 35.999 km/h when driving straight,
and the speed fluctuates slightly when turning. +e maxi-
mum error is 0.003 km/h in this condition. +e impact on
the overall speed can be ignored basically. +e vertical and
horizontal coordination controller can better track the
longitudinal speed of the vehicle.

It can be seen from Figure 12 that the vehicle cannot
fully track the desired yaw rate in which the maximum
error is less than 0.25 deg/s when turning. However, the
yaw rate curve of the vehicle is smooth and has no
fluctuation, which can better maintain the yaw stability of
the vehicle under this working condition in this simu-
lation process. Figure 13 is a schematic diagram of vehicle
working condition switching. 1 represents straight driving
condition and 2 represents steering condition. It can be
seen from Figure 13 that the hybrid controller can switch
vehicle conditions smoothly according to the change of

Table 1: Main parameters of the vehicle.

Parameters Numerical value
Distance from the center of the mass to front axle, lf (m) 1.232
Distance from the center of the mass to rear axle, lr (m) 1.468
Wheel base, L (m) 2.7
Vehicle mass, m (kg) 1723
Front axle track, tf (m) 1.416
Rear axle track, tr (m) 1.375
Height from the center of mass to ground, hg (m) 0.54
Effective radius of tire, R (m) 0.28
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vehicle monitoring data and select the corresponding
control strategy to optimize the distribution of vehicle tire
force.

6. Conclusion

In order to improve the driving stability of the vehicle
under multiple working conditions, the longitudinal and
transverse stability controller of the distributed drive
electric vehicle is established in this paper. +e body
attitude tracking controller is established based on the
sliding mode variable structure control idea, and the
vehicle condition switching controller is established based
on the hybrid control theory. At last, the distributed
vehicle is simulated and verified under the multi condi-
tions. +e simulation results show that the vehicle stability
coordination controller can meet the driver’s driving
expectations and improve vehicle stability and safety. +e
vehicle condition switching controller can switch vehicle
working conditions and control strategies in real time
according to vehicle monitoring information and opti-
mize tire force distribution to realize yaw stability control
of the vehicle under different working conditions and
meet the driving requirements of drivers under different
working conditions. +erefore, the vehicle stability con-
troller is effective.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

Funding from the National Natural Science Foundation of
China (Grant no. 61503163) and the Key University Science
Research Project of Jiangsu Province (Grant no.
18KJA580004) is gratefully acknowledged.

References

[1] Z. Yu and X. Lu, “Review on vehicle dynamics control of
distributed drive electric vehicle,” Journal of Mechanical En-
gineering, vol. 49, no. 8, pp. 105–114, 2013.

0
–1

–0.5

0

0.5

1

5 10
Time (s)

W
he

el
 an

gl
e (

de
g)

Figure 10: Steering wheel angle of single moving line.

Time (s)

Desired speed
Actual speed

0 5 10
35.99

35.995

36

36.005

36.01

Lo
ng

itu
di

na
l s

pe
ed

 (k
m

/h
)

Figure 11: Comparison curve of longitudinal speed.

Desired yaw rate
Actual yaw rate

Time (s)
0

–4

–2

0

2

4

5 10

Ya
w

 ra
te

 (d
eg

/s
)

Figure 12: Comparison curve of yaw rate.

0

1

1.2

1.4

1.6

1.8

2

5 10
Time (s)

D
riv

in
g 

co
nd

iti
on

Figure 13: Working condition switching diagram.

Mathematical Problems in Engineering 9



[2] L. Hai-mei, N. Zhang, B. Shao-yi, F. Jun-ping, and J.-b. Zhao,
“Dynamics and switching control of hybrid power steering
system of distributed drive electric vehicle,” Science and
Technology and Engineering, vol. 16, no. 17, pp. 283–291, 2016.

[3] S.-I. Sakai, H. Sado, and Y. Hori, “Dynamic driving/braking
force distribution in electric vehicles with independently driven
four wheels,” Electrical Engineering in Japan, vol. 138, no. 1,
pp. 79–89, 2002.

10 Mathematical Problems in Engineering



Research Article
Rotor Temperature Safety Prediction Method of
PMSM for Electric Vehicle on Real-Time Energy Equivalence

Anjian Zhou ,1,2 Changhong Du,2 Zhiyuan Peng,2 Qianlei Peng,2 and Datong Qin1

1State Key Laboratory of Mechanical Transmission & School of Automotive Engineering, Chongqing University,
Chongqing 400044, China
2Chongqing Changan New Energy Automobile Technology Co., Ltd., Chongqing 401133, China

Correspondence should be addressed to Anjian Zhou; 20183201027g@cqu.edu.cn

Received 19 June 2020; Accepted 21 August 2020; Published 14 October 2020

Guest Editor: Esam Hafez Abdelhameed

Copyright © 2020 Anjian Zhou et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e load capacity of the permanent magnet synchronous motor is limited by the rotor temperature, and the excessive temperature
of the rotor will bring potential thermal safety problems of the system.,erefore, the accurate prediction of the rotor temperature
of the permanent magnet synchronous motor for the electric vehicle is crucial to improve the motor performance and system
operation safety. ,is paper studied the heating mechanism and the energy flow path of the motor and built the heat energy
conversion model of the stator and rotor. ,e real-time algorithm to predict the rotor temperature was constructed based on the
dissipative energy conservation of the stator of the motor rotor temperature. And the prediction method of the initial rotor
temperature is fitted using the experimental results when the system is powered on. Finally, the test platform was set up to validate
the rotor temperature accuracy. ,e results show that the motor rotor temperature estimation error under the dynamic operating
condition is within ±5.,e research provides a solution to improve the performance and thermal safety of the permanent magnet
synchronous motor for electric vehicles.

1. Introduction

,e permanent magnet synchronous motor (PMSM) is
widely used in pure electric vehicles due to high-power
density, high efficiency, and high torque. ,ermal safety and
peak performance are the difficulties of PMSM development.
,e copper and the iron losses are the main sources for the
temperature rise of rotor magnetic steel, and the tempera-
ture of rotor magnetic steel directly determines the duration
of the peak power of the motor. ,erefore, the research of
the rotor temperature prediction can not only ensure the
thermal safety of the motor but also improve the peak
performance of the motor. Meanwhile, the coercive force of
magnetic steel is closely related to temperature, which de-
creases with the rise of temperature. When the temperature
of the rotor magnetic steel exceeds the limit value, the ir-
reversible demagnetization will happen. In general, the ir-
reversible demagnetization should be avoided under the
operating condition of the motor [1–3]. In fact, the torque

capacity of PMSM is usually lower than its actual torque
capacity to avoid overheating failure of the motor without
the high-precision rotor temperature prediction [4, 5].

It is difficult to obtain the temperature of rotor magnetic
steel by direct measurement when the motor is running [6].
,e rotor temperature measurement methods include sliding
ring and wireless temperature sensor. But these two methods
have high cost and low engineering feasibility, so they cannot
be applied in batch. Compared with the direct temperature
measurement with an integrated sensor to the rotor, a mature
rotor temperature algorithm has advantages in development
cost and fast response of thermal protection [7, 8]. But the
real-time rotor temperature prediction technology faces some
challenges, such as thermal model complexity, algorithm
safety, and temperature prediction accuracy [9]. In the cur-
rent research, the rotor temperature prediction methods
mainly include three directions. ,e first method predicts the
rotor temperature with the empirical formula by the indirect
variables [10]. ,e second method is to subdivide the motor
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into elements, establish the thermal resistance between ele-
ments, and form the thermal network model [11]. ,e third
method is to measure the counterelectromotive force of the
motor and calculate the residual flux density of the motor
[12].,e actual rotor temperature is obtained by querying the
corresponding relationship between the residual flux density
and the rotor temperature [13, 14].

Nevertheless, there are some shortcomings in these re-
search methods. Firstly, the temperature change of the rotor
of the motor under natural cooling condition is not taken
into account after the whole vehicle system is powered down.
As a result, the initial temperature of the rotor cannot be
assigned to calculate when the system is powered up again.
Secondly, it only predicts the rotor temperature under
normal temperature conditions without considering the
influence of ambient temperature on the rotor temperature
characteristics, resulting in poor adaptability and limited
accuracy of the algorithm [15]. In addition, when measuring
the rotor temperature with the counterelectromotive force
method, the motor current should be unloaded. It is not
practical to predict the real working condition of the vehicle.
,is paper will comprehensively consider the thermal nodes
that affect the rotor temperature of the motor, and obtain the
law of the rotor temperature characteristics of the motor
through the test method.,e rotor temperature algorithm is
built under different environmental temperatures and load
conditions, so as to improve the performance and operation
safety of the motor system [16, 17].

2. Main Problem

To predict the temperature of the rotor accurately, the
mechanism of heat generation and conduction for the motor
should be researched. Considering the complexity of the
thermal characteristics on the actual motor work condition,
the energy transfer paths inside the motor system were
simplified as shown in Figure 1.

,e temperature rise of the rotor is affected by the copper
loss Pcu, the iron loss Piron, the mechanical loss Pmech, and
the coolant dissipation Pw [18–20]. ,e loss exchanges with
the environment in the form of heat to attain the ther-
modynamic equilibrium. Meanwhile, the stator generates
loss or heat when the three-phase current reacts on the
stator. As a source, the stator would heat on the rotor with a
power of Pr, dissipate to the air with a power of Ps−air, and
dissipate to the coolant with a power of Pw. Also, the rotor
would dissipate to the air with a power of Pr−air.

As a main heat source of the stator, the copper loss is
caused by three-phase current passing through the stator
winding cross section. To eliminate the irregularity of stator
current in the winding, the current in the stator winding
section is simplified and equivalent to uniform distribution.
,e copper loss is estimated by the following formula [21, 22]:

PCu � nI
2
phaseRphase,

Rphase � R20
235 + Ten( 

(235 + 20)
,

(1)

where n is the phase number of the motor, Iphase is the phase
current, Rphase is the phase resistance, R20 is the resistance of
the stator winding at an ambient temperature of 20, and Ten
is the ambient temperature.

,e iron loss includes the hysteresis loss and the eddy
current loss. ,e hysteresis loss is caused by the change of
alternating magnetic field caused by the alternating current
in the stator winding. ,e eddy current loss is caused by the
induced current as the magnetic field changes in the core.
,e iron loss is calculated by the following formula [23, 24]:

Piron � khfB
2
m + kef

2
B
2
m, (2)

where kh is the hysteresis loss coefficient, ke is the eddy
current loss coefficient, f is the armature field alternating
frequency, and Bm is the amplitude of flux density of the
stator core.

,e mechanical loss consists of the bearing friction loss
and the windage loss. ,e mechanical loss is calculated by
the following formula [25, 26]:

Pmech � kcCfπρairω
3
mr

4
l, (3)

where kc is the coefficient of surface roughness, Cf is the
friction coefficient, π is the constant parameter of Pi, ρair is
the density of air, ωm is the angular velocity of the rotor, l is
the length of the rotor, and r is the radius of the rotor.

As themotor works, most of the heat is taken away by the
coolant and the rest is carried away by air. ,e heat dissi-
pated by the coolant is estimated by the following formula
[27, 28]:

Pw � ρwCwAwv
Tin − Tout( 

t2 − t1( 
, (4)

where ρw is the density of the coolant, Cw is the specific heat
of the coolant, Aw is the section area of the cooling pipe, v is
the flow velocity of the coolant, Tin and Tout are the tem-
peratures of the coolant at the inlet and the outlet, and t1 and
t2 are the beginning and the ending time.

,e heat carried away by air is evaluated by the following
formula [29].

Its Newton function is given by

Ps−air � δAs

Ts − Ten( 

t2 − t1( 
,

Pr−air � αAr

Tr − Ten( 

t2 − t1( 
,

(5)
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Figure 1: ,e energy transfer paths of the motor system.
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where δ and α are the coefficients of convection heat transfer
for the stator and the rotor [30], As is the area of convection
heat transfer between the stator surface and the air, Ar is the
area of convection heat transfer between the rotor surface
and the air, and Ts and Tr are the temperatures at the surface
of the stator and the rotor:

δ � 9.73 + 14V
0.62
s ,

α � 9.73 + 14V
0.62
r ,

⎧⎨

⎩ (6)

where Vs and Vr are the air velocity of the cooling surface for
the stator and the rotor, respectively.

,e estimation accuracy of rotor temperature is greatly
influenced by factors of motor operation condition and
environment temperature. In order to obtain high accuracy
rotor temperature, equivalent and accurate modeling so-
lutions will be used to build a rotor temperature model based
on the running state and stop state, respectively.

It is clear that the heating power of the stator mainly
consists of three parts including copper loss, iron loss, and
mechanical loss according to the energy flow analysis during
motor running state from Figure 1. ,e conservation of
energy can be expressed as follows.

From this, the decision function corresponding to the
segmentation hyperplane equation can be solved, which is
given by

Ps � PCu + Piron + Pmech. (7)

,e absorbing energy of the stator will change its
temperature during the period of time, so it is concluded as
follows:

Ps � CsMs

Ts2 − Ts1( 

t2 − t1( 
, (8)

where Cs is the specific heat of the stator, Ms is the mass of
the stator, Ts1 and Ts2 are the stator temperatures at interval
time points of sample period, respectively, and t1 and t2 are
interval time points of sample periods, respectively.

Meanwhile, the stator will bring heat energy to cooling
water, atmosphere, and rotor as a heating energy resource.
,erefore, the absorbing heat power of the rotor can be
concluded based on the conservation of energy as follows:

Ps � Pr + Pw + Ps−air + Pr−air. (9)

,e absorbing energy of the rotor will change its tem-
perature during the period of time, so it is concluded as
follows:

Pr � CrMr

Tr2 − Tr1( 

t2 − t1( 
, (10)

where Cr is the specific heat of the rotor, Mr is the mass of
the rotor, and Tr1 and Tr2 are the rotor temperatures at
interval time points of the sample period, respectively.

3. Method

Due to the rotor temperature variation during motor run-
ning state, updating of the rotor temperature can be attained

by putting the previous rotor temperature into formula (10)
and adopting a real-time iterative algorithm per operation
period. ,erefore, combine formulas (8) and (9) to build an
estimation model of rotor temperature as follows:

Tr−act � Tr2 � Tr1 + ΔTr,

ΔTr �
CsMs Ts2 − Ts1(  − Pw + Ps−air + Pr−air(  t2 − t1( 

CrMr

,

(11)

where Tr−act is the real-time rotor temperature from the
estimation model.

When the motor comes into a stop state, the heat energy
of the rotor brings to the atmosphere and its temperature
goes down to the environment temperature along stop time.
,erefore, the rotor temperature model under the motor
stop state can be attained by obtaining the relationship
between rotor temperature and stop time.

When the vehicle is powered on, initial rotor temper-
ature can be attained by adopting the previous rotor tem-
perature Tr−pre, the stop time tstop, and the environment
temperature Ten as the following steps:

(1) Obtain the value of Tr−pre and tstop which are saved in
electrically erasable programmable read-only
memory (EEPROM) of the motor controller last
time.

(2) Receive the environment temperature Ten from the
air-conditioning controller, and initialization time
point t0 can be captured by looking up the table of
rotor temperature and the stop time from Figure 2 at
different environment temperatures T1 and T2.

(3) According to tstop and t0 from step (1) and step (2),
initial rotor temperature Tr−init(T1) and Tr−init(T2) of
different environment temperatures T1 and T2 can
be obtained by looking up the table of rotor tem-
perature and stop time from Figure 2 at the time
point of t0 + tstop.

(4) Based on output results from step (3), rotor initial
temperature at different environment temperatures
Ten can be matched as follows:

Tr−init(T) � ξTr−init(T1) +(1 − ξ)Tr−init(T2), (12)

where ξ is the matching coefficient depending on
environment temperature as shown in Table 1.

A real-time control algorithm is constructed to estimate
the rotor temperature at different environment temperatures
and operation states based on the rotor temperature model.
,e algorithm process and software frame are introduced in
Figure 3.

Firstly, it is necessary to make sure whether the system is
powered on or not, and then judge motor operation state by
actual motor torque and speed. When the motor comes into
stop state (Flg� 0), initial rotor temperature is attained by
the estimation model in the stop state. Next step, when
motor torque and speed are checked by controller, real-time
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rotor temperature is calculated by the estimation model in
running state. Rotor temperature needs to be modified
during the motor running state if it meets the requirement
of the modification strategy. Finally, when it comes into
power off for the system, real-time rotor temperature is

stored into the memorizer of EEPROM and the previous
rotor temperature can be used again in next power on for the
system.

,ere is an accumulative error to adopt a real-time it-
erative algorithm to estimate rotor temperature.,erefore, it
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Figure 2: ,e relationship between rotor temperature and stop time.

Table 1: ,e matching coefficient for the rotor initial temperature.

Ten 0°C–10°C 10°C–20°C 20°C–30°C 30°C–40°C 40°C–50°C 50°C–60°C 60°C–70°C
ξ 0.1 0.3 0.3 0.5 0.5 0.1 0.1
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Figure 3: ,e algorithm process of rotor temperature.

4 Mathematical Problems in Engineering



is necessary to build a modification strategy to improve the
estimation accuracy of rotor temperature as follows:

ncal−1 ≤ nmot


≤ ncal−2,

Tmot−trq



≤Tcal,

Δψmot ≤Δψcal,

(13)

where nmot is the actual motor speed, ncal−1 and ncal−2 are
low- and high-level limitation of motor speed, respectively,
Tmot−trq is the actual motor torque, Tcal is the motor torque
limitation, Δψmot is the changing rate of motor actual flux
linkage, and Δψcal is the changing rate limitation of motor
flux linkage.

It is necessary to limit the changing rate to eliminate the
prominent variation between estimation value and modi-
fication value and avoid power break-off or torque cut-down
in a short time. ,erefore, the updated value of rotor
temperature in a running period should be modified based
on the following equation:

Tvar � Tr−act + k Ttab − Tr−act( , (14)

where Ttab is the rotor temperature from looking up the flux
linkage table for motor and k is the changing rate for rotor
temperature modification.

,e numerical model of the rotor temperature algorithm
is built by relevant experiments and embedded in the
software of the motor control system to satisfy the practi-
cability of the rotor temperature algorithm.

According to the algorithm established above, the pre-
diction of the rotor temperature will produce accumulated
errors with the extension of calculation time. In order to
ensure the accuracy of rotor temperature prediction,
equation (14) is used to correct the rotor temperature.

Firstly, the counterelectromotive force of the motor
corresponding to each rotor temperature was obtained
through experiments. And the motor flux was calculated by
using the following formula:

ψmot �
Eφ

ωmot
�

7.8Emot

ηmotpmot
, (15)

where Eφ is the maximum phase electromotive force, ωmot is
the electrical angular frequency, Emot is the phase electro-
motive force, and pmot is the pole pairs of the motor.

As a result, the numerical model of the motor flux and
rotor temperature was built, as shown in Figure 4.

,e total cooling dissipation of the motor includes three
parts: cooling water dissipated power and stator and rotor
dissipated power to air. ,e relationship between the total
cooling dissipation of the system and the stator temperature
change rate is established as shown in Figure 5. ,e cali-
bration and optimization of the numerical model were carried
out by experiments under different load conditions to im-
prove the prediction accuracy of the rotor temperaturemodel.

In order to obtain the initial rotor temperature when the
motor system is powered on, the numerical model is estab-
lished corresponding to the rotor temperature and downtime
under the state of natural cooling of the motor system. ,e

motor was run at high power until the rotor temperature rose
to the equilibrium point at each ambient temperature under
the conditions of 10°C, 30°C, 50°C, and 70°C, respectively. And
the expression of rotor temperature and shutdown time was
fitted by the polynomial, as shown in Figures 6–9.

4. Results

To validate the real-time control algorithm of the rotor tem-
perature predictionmodel established in this paper, anAVL test
system is used to build a motor rotor temperature accuracy
experimental platform, as shown in Figure 10. A slip ring is used
to draw out the thermal resistance for the rotor temperature, as
shown in Figure 11. ,e experimental platform consists of
power dynamometer, battery simulator, temperature box,
cooling system, motor system, electrical parameter tester, ad-
justable low-voltage power supply, and related sensors.

To ensure the prediction accuracy of the algorithm in the
different environment temperatures under the condition of
changing load, the motor was running under different loads
in the ambient temperature 30°C and 70°C, respectively. As
shown in Figures 12–14, the maximum error between the
prediction value and the experimental results under fixed
load conditions is within ±6°C.
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Figure 4: ,e relationship between the rotor temperature and the
motor flux linkage.
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Figure 5: ,e numerical model of the total cooling dissipation.
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To validate the proposed algorithm accuracy rotor
temperature under the changing load condition, the motor
was running with the vehicle real variable load in the en-
vironment temperatures of 30°C and 70°C, respectively. ,e
comparison indicates that the maximum dynamic error is
within ±5°C between the predicted and the measured values,
as shown in Figures 15 and 16.
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Figure 8:,e rotor temperature curve at environment temperature
50°C.
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Figure 13: Test results at constant load condition (5000 rpm/68Nm and environment temperature 30°C).
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Figure 14: Test results at constant load condition (4000 rpm/193Nm and environment temperature 30°C).
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Figure 15: Test results at variational load condition (environment temperature 30°C).
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Figure 16: Test results at variational load condition (environment temperature 70°C).
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5. Conclusion

A method to estimate the rotor temperature of the per-
manent magnet synchronous motor in this paper has been
proposed. ,e method is characterized with the equivalent
thermal model of rotor temperature estimation by ana-
lyzing the principle of heat generation and heat transferring
path inside the motor system during operation based on the
conservation of energy for the stator heat consumption and
establishing a numerical model of rotor temperature es-
timation by experiment. Different constant load power is
adopted to motor real operation states at different envi-
ronment temperatures and the numerical model of total
cooling power is optimized by comparing rotor tempera-
ture errors between real test and model calculation to
improve the estimation accuracy of the rotor temperature
model. ,en, the model estimation accuracy of rotor
temperature is validated at different environment tem-
peratures and variational load power, and the test result
shows that dynamic estimation accuracy between mea-
surement and estimation is within ±5°C. According to the
high accuracy estimation of rotor temperature in this re-
search, duration operation time of motor peak power can
be significantly expanded because the protection threshold
of rotor temperature is increased to improve the peak
performance of motor in electric vehicle.
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Aiming at solving the problem that the parameters of a fault detection model are difficult to be optimized, the paper proposes the
fault detection of the wind turbine variable pitch system based on large margin distributionmachine (LDM) which is optimized by
the state transition algorithm (STA). By setting the three parameters of the LDMmodel as a three-dimensional vector which was
searched by STA, by using the accuracy of fault detection model as the fitness function of STA, and by adopting the four state
transformation operators of STA to carry out global search in the form of point, line, surface, and sphere in the search space, the
global optimal parameters of LDM fault detection model are obtained and used to train the model. Compared with the grid search
(GS) method, particle swarm optimization (PSO) algorithm, and genetic algorithm (GA), the proposed model method has lower
false positive rate (FPR) and false negative rate (FNR) in the fault detection of wind turbine variable pitch system in a real
wind farm.

1. Introduction

With the rapid development of the wind power industry, the
installed capacity and quantity of wind turbines are growing
continuously. -e World Wind Energy Association predicts
that by the end of 2020, the global installed capacity will reach
1.9×106mw [1]. However, the availability of wind turbines is
not ideal due to the increasing failure rate and maintenance
cost of wind turbines along with the development of wind
farms. -e wind turbine variable pitch system is one of the
important parts of the wind turbine, which has a complex
internal mechanical structure and operated in a harsh envi-
ronment that will lead to its failure rate significantly higher
than other wind turbine subsystems. Since the safe and stable
operation of the variable pitch system directly affects the op-
eration efficiency of wind turbines, fault detection of the
variable pitch system is of great significance for stable and
efficient generation of wind turbines [2, 3].

-e fault detection method is generally divided into the
model-based method and the data-driven method [4]. -e
model-based fault detection method needs to establish an
accurate mathematical model for the diagnosis object through
mathematical and physical knowledge and detect faults by
observing the change of the residual value [5]; the residual value
of an equipment under normal state should be zero or close to
zero, and it is not zero when the equipment is disturbed or
malfunctioned.-is method can be divided into the parameter
estimation method [6], state estimation method [7], and
equivalent space method [8]. -e model-based fault detection
method can quickly get a more accurate mathematical model
and detect faults accurately for the system with simple
structure. However, for the fault detection of large-scale wind
turbines, the modeling process is easy to be affected by various
parameters which will influence the robust performance and
the accuracy of the fault detection and evenmakes it difficult to
locate the wind turbine internal fault causes.
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-e data-driven fault detection method extracts useful
information through various data processing and analysis
methods based on the collected data, compares the collected
historical data with the real-time data of the system, and
analyzes their potential relationship so as to carry out fault
detection. Being capable of detecting the fault of the equip-
ment through data analysis, this method does not need to
establish an accurate mathematical model. It does not depend
on the complexity and uncertainty of the system, so a good
detection performance is obtained of it. As the method meets
the needs of the industrial big data era, it is widely used in the
industrial field. Artificial neural networks (ANNs), SVM,
LDM, and other models are usually used for fault detection of
equipment in the data-driven fault detection method.

-e ANN is a classic data-driven model based on
mimicing the biological nervous system. It can automatically
analyze and infer the input information to detect faults by
simulating the physiological structure and thinking mode of
the human brain. -e application of ANNs in wind turbine
fault detection has a good detection performance. Con-
cerning the problem of sensor fault of the wind turbine, Qiu
et al. proposed a damage prediction method for the offshore
wind turbine tower structure based on ANNs, which can
improve the accuracy of fault prediction [9]. In the case of
gearbox fault, Chen et al. proposed a fault diagnosis method
based on wavelet analysis and neural networks to diagnose
the wind turbine gearbox and predict the early fault signs
and obtained good results [10]. -e ANN has the ability of
self-study which is similar to the human brain. It has good
robustness to the interference and noise of the system.
However, due to the nature of the black box, this method is
difficult to make a good explanation for specific faults.
Moreover, it has high requirements for data in actual use and
requires high running cost.

SVM is another classic data-driven model based on global
optimization. It has good performance and can solve the
problems of multiclassification recognition and regression
prediction [11, 12], which has been widely recognized in the
field of wind turbine fault research. Hang et al. proposed awind
turbine fault diagnosis method based on a multiclass fuzzy
SVM classifier to improve the accuracy of fault diagnosis [13].
Rotating parts in wind turbines are one of the key objects in
fault diagnosis of wind turbines. However, in fact, the vibration
signals collected from the rotating parts are generally non-
Gaussian and nonstationary, and the fault samples are very
limited. Liu et al. proposed a wind turbine fault diagnosis
method based on a diagonal spectrum and clustering binary
tree SVM, which achieved good results [14]. Although having a
good performance on simple binary classification problems,
SVM is ineffective in dealing with large-scale data problems
and sensitive to model parameters and data integrity.

-e distribution machine supported by large margin
theory can find the distributionmodel according to the sample
distribution characteristics while considering the sample mean
value and sample variance. Compared with the former two
models, LDM has higher fault detection performance. In the
fault detection of wind turbines, Tang et al. proposed a cost-
sensitive large margin distribution machine (CLDM) to solve
the problems of class imbalance data and misclassification

unequal cost of large wind turbine data sets, which has ef-
fectively improved the fault detection performance [15].

-e data-driven fault detection model has good practi-
cability in actual wind turbine fault detection and fault di-
agnosis. However, most of these models depend on the
selection of parameters, so it is necessary to use the parameter
optimization algorithm to quickly and accurately find the
global optimal model parameters. -e GS, PSO, and GA are
most commonly used to optimize the parameters of the fault
detection model in wind turbine fault detection. Aguilar et al.
proposed a multiobjective particle swarm optimization
(MOPSO) algorithm for the electrical fault of variable-speed
wind turbines, which improved the stability of wind turbines
[16]. Concerning the problem that the traditional threshold
setting is difficult to identify the abnormal operation of wind
turbines, Zhang et al. put forward a new backpropagation
neural network (BPNN) anomaly identification model
combined with GA, which provides good performance effect
for abnormal identification of wind turbines [17]. Yan et al.
optimized the parameters of SVM by the GS method in wind
turbine fault detection to improve the diagnostic accuracy
[18]. PSO, GA, and GS can achieve approximate global op-
timal solution for parameter optimization of a simple model,
but it is easy to fall into local optimum when used in fault
detection of large and complex wind turbines.

-e STA is a parameter optimization algorithmwith four
state transition operators, facing the complex fault detection
problem; the global optimal value can be quickly and ac-
curately found by the four state transformation operators
alternately, which is suitable for detecting the complex fault
of the wind turbine variable pitch system. Because of its
strong performance and practicability, the STA has solved
many problems in the industry and other fields [19, 20].

It is of great significance to choose a fault detection
model with proper performance. However, in the fault
detection model based on machine learning, parameter
optimization is an important process, and how to select
appropriate parameters to enable the detection model to
meet the fault detection standard of the wind turbine var-
iable pitch system is the key and difficult problem of all
machine learning models. -erefore, an improved LDM
model based on the STA is studied with an aim to effectively
finding out the optimal model parameters, making it meet
the fault characteristics of the variable pitch system, and
improving the accuracy of fault detection.

2. Large Margin Distribution Machine

If the traditional machine learning algorithm based on
margin theory for optimization is adopted, attention should
be paid to find the minimum margin between samples, such
as SVM, which can be adopted to find the hyperplane that
maximizes the minimum margin between two kinds of
samples in the optimization process [21]. However, the
method only focuses on the support vectors that only ac-
count for a small proportion in a large number of samples,
while the rest of the sample information is not considered in
the learning process. -e above method will lead to the loss
of some samples of useful information as well as reduction of
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the learning ability of the algorithm for samples; in addition,
the learning effect remains to be improved.

-e LDM proposed by Zhang and Zhou is used to find
the separation hyperplane according to the distribution
characteristics of samples under the premise of considering
the margin distribution of the whole sample [22]. Compared
with the support vector machine which only optimizes the
minimum margin, it has stronger generalization perfor-
mance. Figure 1 shows the different results of the final
classification hyperplane due to different margin consider-
ations in the classification process.

In Figure 1, the triangle icon refers to the first type of
sample, the square icon refers to the second type of sample, the
elliptical dotted line shows the potential distribution of the two
types of samples, and the red triangle and red square indicate
the distribution mean of the two types of samples. If the
classification hyperplane is searched based on the minimum
margin between the two types of samples as hmin in the figure,
it can be found to intersect with the potential distribution
range of the right sample, and there is the possibility of
misclassification; if the overall distribution of two types of
samples has been considered in the classification hyperplane
with the classification plane as hdist in the figure, the con-
clusion can be drawn that it has better classification perfor-
mance and stronger robustness for two types of samples [23].

For LDM, we should set X � [ϕ(x1), . . . ,ϕ(xm)] and set
the algorithm y � [y1, . . . , ym] as the m-dimensional col-
umn vector, where ϕ(·) is the feature mapping through a
positive definite function κ(·, ·), Y is an m-order square
matrix, and the diagonal is y1, . . . , ym; therefore, the mean
value of the margin can be defined as follows:

cm �
1
m
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1
m
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It is important to make a linear combination of margin
mean and margin variance into an optimization problem,
introduce L2-norm as the regularization term, and select
hinge loss for the loss function; therefore, the formalization
of LDM is as follows:

min ω,ξi

1
2

ω2����
���� + λ1c] − λ2cm +

C

m


m

i�1
ξi

s.t. yiω
Τϕ xi( ≥ 1 − ξi,

ξi ≥ 0, ∀i ∈ [m],

(3)

where parameters λ1 and λ2 are trade-off parameters and are
used to adjust the weight of the margin mean and margin
variance in the objective function, while C is a loss function

parameter. Although the theory of large margin distribution
has achieved good results in theory and practice, the clas-
sification surface may show unbalanced tendency in the face
of the number of unbalanced margins and samples with
noise, and the robustness to noise is not strong. -erefore,
the model needs further development and improvement.

3. The State Transition Algorithm

Being a global optimization method proposed by Zhou et al.
[24] the STA is an individual-based intelligent stochastic
global optimization method. It uses different state trans-
formation operators to operate independently through the
given current solution, thus generating the candidate so-
lution set and finding out the solution better than the current
candidate solution in the candidate solution set, which
serves as a new solution of the update iteration. -e process
should be repeated till the certain termination condition is
met.

In brief, the STA is based on the state space of modern
control theory, which treats the solving process of the op-
timization problem as the process of state transition and
treats the generation and update of the solution as the
formation and update of the state.

3.1. 1e State Transformation Operator. -e state-space
expression in modern control theory is used as the unified
framework of the candidate set, and the state transformation
operators are designed for the framework. -e unified
framework of candidate solutions for the STA is as follows:

xk+1 � Akxk + Bkuk,

yk+1 � f xk+1( ,
 (4)

where xk � [x1, x2, . . . , xn]T is the current state and rep-
resents a candidate solution in the optimization problem, Ak

hmin hdist

Figure 1: Minimum margin hyperplane and margin distribution
hyperplane.
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and Bk are the state transition matrices, which are random
matrices and equivalent to state transformation operators,
uk is a function of the historical state and current state,
which is equivalent to a control variable, and f(·) is the
objective function, that is, the fitness function.

-e four state transition operators in the STA corre-
spond to four search functions, and each state transfor-
mation operator can form a regular geometric neighborhood
with unique shape and adjustable size. State transformation
operators mainly include rotation transformation operator,
translation transformation operator, expansion transfor-
mation operator, and axesion transformation operator.

(1) -e rotation transformation operator:

xk+1 � xk + α
1

n xk

����
����2

Rrxk, (5)

where α> 0 is the rotation factor; Rr ∈ Rn×n is a ran-
dom matrix with its element values evenly distributed
between [−1, 1]; ‖ · ‖2 is the vector L2-norm, and the
function of the rotation transformation operator is to
search in the hypersphere with α as the radius.

(2) -e translation transformation operator:

xk+1 � xk + βRt

xk − xk−1

xk − xk−1
����

����2
, (6)

where β> 0 is the translation factor; the value range of
Rt ∈ R is [0, 1], meeting the uniform distribution. As
a heuristic search operator, the translation transfor-
mation operator can search with β as the maximum
length from point xk−1 to point xk along the line.

(3) -e expansion transformation operator:

xk+1 � xk + cRexk, (7)

where c> 0 is the expansion factor and Re ∈ Rn×n is a
diagonal matrix, with its element value of nonzero,
complying with the Gaussian distribution. As the global
search operator, the expansion transformation operator
can expand each element in xk to the whole range of
(−∞, +∞), thus realizing the search of thewhole space.

(4) -e axesion transformation operator:

xk+1 � xk + δRaxk, (8)

where δ > 0 is the axesion factor and Ra ∈ Rn×n is a sparse
random diagonal matrix, with its element value of
nonzero, complying with the Gaussian distribution. Being
a heuristic search operator with relatively strong single-
dimensional search ability, the axesion transformation
operator can search along the axesion axis direction.

4. Large Margin Distribution Machine
Optimized by the State Transition Algorithm

Fitness function is a main factor affecting the convergence
speed and finding the optimal solution of the parameter

optimization algorithm, and it is an evaluation criterion to
select and update the optimal solution in the process of
parameter optimization. In the STA, the mean accuracy of
the LDM optimization model which was verified by 10-fold
cross-validation is used as the fitness function to judge the
selection and update of the current parameter state; if the
accuracy is higher than that of the current optimal state, the
new parameter will be used as a better solution to update the
current state, and if the accuracy is lower than that of the
current optimal state, the parameter will be abandoned for
the next iteration. -e fitness function is as follows:

fitness �


kcv

i�0accuracy LDM λ1, λ2, C( ( 

kcv

, (9)

where kcv � 10 is the number of cross-validations, λ1, λ2, and
C are the three parameters in LDM, which are the margin
variance parameter, margin mean parameter, and loss
function parameter, respectively. -e meaning and value
range of three parameters are shown in Table 1.

LDM parameters are adjusted by the STA, and the three
parameters in LDM are taken as a three-dimensional vector
form, a state in the STA. -e new candidate solution set is
generated by alternately using the four transformation op-
erators of rotation, expansion, axesion, and translation.

-e use of the fitness function of the improved LDM and
the selection and updated pseudocode of the current optimal
state solution are given in Algorithm 1.

However, Best0(λ10, λ20, C) refers to the initial state, and
the three parameters of LDM are assigned from Step 6 to
Step 8; the training set is adopted to train the adjusted LDM
algorithm to establish the learning model in Step 9; the
testing set is used to predict the model in Step 10; the
classification accuracy of the predicted results is used as the
evaluation criterion of fitness function in Step 11; the ro-
tation transformation, expansion transformation, axesion
transformation, and the function of selection and update are
realized from Steps 12 to 14, and the discriminant rules for
selection and update follow the fitness function Fitness based
on predicted accuracy of LDM. If the specified termination
criterion is met, the output solution Best(λ1, λ2, C) will be
the global optimal parameters to improve the LDM. Figure 2
shows the specific process of the STA selecting the optimal
parameters of LDM by the fitness function.

5. Experimental Results and Analysis

-e experimental data used the wind turbine variable pitch
system fault data of one year’s SCADA data set collected by a
wind farm in East China, including variable pitch main
power supply fault, variable pitch blade server drive tem-
perature over-limit fault, and variable pitch system emer-
gency stop fault. -e number of fault samples and the
number of fault features of the three fault data are shown in
Table 2.

According to the different fault detection of the wind
turbine variable pitch system, the sample set in normal
operation should be classified as normal, and the sample set
in failure should be classified as a fault. It is important to
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divide the whole sample set into two parts with each part
containing normal data and fault data, which are used as a
training set and testing set, respectively. -e training set is
mainly used to train the fault detection model, and the
testing set is used to predict the model.-e parameters of the
STA are set as αmax � 1, αmin � 1e − 4, β � 1, c � 1, δ � 1,
SE � 30, and fc � 2.

In order to verify that the STA can be adopted to im-
prove the parameter adjustment of LDM and the improved
LDM is effective for fault detection of the wind turbine
variable pitch system, measures should be taken to introduce
GS, PSO, and GA into the model parameter optimization
method for comparison. -e evaluation indexes were four
indexes produced by the confusion matrix, including ac-
curacy, F1-score, FPR, and FNR:

accuracy �
TP + TN

TP + FN + FP + TN
,

F1 − score �
2

(1/(TP/(TP + FP))) +(1/(TP/(TP + FN)))
,

FPR �
FP

TN + FP
,

FNR �
FN

TP + FN
,

(10)

where TP means the actual sample is positive and the
prediction is positive; FP means the actual sample is

negative and the prediction is positive; TN means the
actual sample is negative and the prediction is negative;
FN means the actual sample is positive and the prediction
is negative.

In terms of the fault of wind turbine variable pitch main
power supply, the boxplot of accuracy is shown in Figure 3.
-e comparison results of F1-score, FPR, and FNR are
shown in Table 3.

-e results indicated that the detection accuracy and F1-
score of the improved LDM based on the STA for the
variable pitch main power supply fault were higher than the
values in terms of the methods of parameter adjustment
through PSO, GA, and GS. FNR and FPR were the lowest
among the four parameter adjustment methods.

For wind turbine variable pitch blade server drive
temperature over-limit fault situation, Figure 4 shows the
accuracy boxplot. -e comparison results of F1-score, FPR,
and FNR are shown in Table 4.

-e results indicated that the detection accuracy and F1-
score of the improved LDM based on the STA for wind
turbine variable pitch blade server drive temperature over-
limit fault were the highest while FNR and FPR were lower
than the other three parameter adjustment methods.

For the wind turbine variable pitch system emergency
stop fault situation, Figure 5 shows the accuracy boxplot.-e
comparison results of F1-score, FPR, and FNR are shown in
Table 5.

-e results indicated that the detection accuracy and F1-
score of the improved LDM based on the STA for wind
turbine variable pitch system emergency stop fault were

Table 1: Meaning and value range of LDM parameters.

Parameter Meaning Value range
λ1 -e trade-off parameter of margin variance, which is adopted to adjust the weight of margin variance [2−1, 210]
λ2 -e trade-off parameter of margin mean, which is adopted to adjust the weight of margin mean [2−1, 210]
C -e loss function parameter, which is adopted to adjust the weight of the loss function in the objective function [20, 220]

(1) Best⟵Best0(λ10, λ20, C)

(2) repeat
(3) if α< αmin then
(4) α⟵αmax
(5) end if
(6) λ1⟵Best(1)

(7) λ2⟵Best(2)

(8) C⟵Best(3)

(9) LDM⟵(λ1, λ2,C, training set)
(10) accuracy(LDM)⟵testing set
(11) Fitness⟵accuracy(LDM)

(12) Best⟵rotation transformation(Fitness,Best, SE, β, α)

(13) Best⟵expansion transformation(Fitness,Best, SE, β, c)

(14) Best⟵axesion transformation(Fitness,Best, SE, β, δ)

(15) α⟵α/fc
(16) Until the specified termination criterion is met
(17) Output Best

ALGORITHM 1: Optimal parameters of the improved LDM.
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Figure 2: -e specific process of the STA selecting optimal parameters of LDM by fitness function.

Table 2: -e number of fault samples and the number of fault features of the three variable pitch system fault data.

Fault type Number of fault samples Number of fault features
Variable pitch main power supply fault 2902 212
Variable pitch blade server drive temperature over-limit fault 4864 212
Variable pitch system emergency stop fault 5893 212
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Table 3: Performance comparison of variable pitch main power supply fault detection.

Fault detection model F1-score FPR FNR
PSO_LDM 95.54% (±0.0057) 9.39% (±0.1086) 3.43% (±0.0296)
GA_LDM 89.38% (±0.0779) 13.19% (±0.0868) 9.84% (±0.1456)
GS_LDM 91.17% (±0.0081) 11.31% (±0.1059) 8.05% (±0.0159)
STA_LDM 96.49% (±0.0142) 5.07% (±0.1091) 2.97% (±0.0143)
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Figure 3: Boxplot of variable pitch main power supply fault detection accuracy.
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Figure 4: Boxplot of variable pitch blade server drive temperature over-limit fault detection accuracy.

Table 4: Performance comparison of variable pitch blade server drive temperature over-limit fault detection.

Fault detection model F1-score FPR FNR
PSO_LDM 96.24% (±0.0092) 5.44% (±0.0166) 2.73% (±0.0371)
GA_LDM 95.68% (±0.0457) 6.71% (±0.1048) 3.04% (±0.0018)
GS_LDM 87.37% (±0.0135) 8.75% (±0.0191) 13.64% (±0.0713)
STA_LDM 98.72% (±0.0241) 1.10% (±0.0049) 1.16% (±0.0118)
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higher than the values in terms of the methods of parameter
adjustment through PSO, GA, and GS. FNR and FPR were
the lowest among the four parameter adjustment methods.

6. Conclusion

Concerning the problem of dependent parameter selection of
the fault detection model, this paper introduces the STA to
improve LDM in terms of the parameter optimization of the
classification algorithm. First, in order to meet the structure
need of the optimization problem, the three parameters in
LDM were regarded as a three-dimensional vector form, a
state in the STA. In addition, a new state candidate assembly
was generated by alternately using the four transformation
operators. Second, the accuracy of the fault detection model
output is used as a fitness function to support parameter
updating and optimization. Finally, for verifying the effec-
tiveness of the wind turbine variable pitch system fault de-
tection method based on the improved LDM, the paper
introduced the GS method, PSO, and GA for comparison on
parameter optimization. -e evaluation indexes were accu-
racy, F1-score, FPR, and FNR. -e experimental data were
variable pitch main power supply fault data, variable pitch
blade server drive temperature over-limit fault data, and
variable pitch system emergency stop fault data.

Experimental results showed that the fault detection
model which used the STA for parameter optimization had
higher accuracy and lower FPR and FNR than the other
three optimization algorithms, which proved that the im-
proved LDM has stronger capability of detecting wind
turbine variable pitch system fault.

On account of the vulnerability of the wind turbine to be
affected by the environment and load while running, it is
incomprehensive to use a single detection method in the
process of fault detection. As a result, it is indispensable to
study a hybrid fault detection method based on various fault
detection methods and technologies in the future.
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Traffic flow anomaly detection is helpful to improve the efficiency and reliability of detecting fault behavior and the overall
effectiveness of the traffic operation. 0e data detected by the traffic flow sensor contains a lot of noise due to equipment failure,
environmental interference, and other factors. In the case of large traffic flow data noises, a traffic flow anomaly detection method
based on robust ridge regression with particle swarm optimization (PSO) algorithm is proposed. Feature sets containing historical
characteristics with a strong linear correlation and statistical characteristics using the optimal sliding window are constructed.
0en by providing the feature sets inputs to the PSO-Huber-Ridge model and the model outputs the traffic flow. 0e Huber loss
function is recommended to reduce noise interference in the traffic flow.0e L2 regular term of the ridge regression is employed to
reduce the degree of overfitting of themodel training. A fitness function is constructed, which can balance the relative size between
the k-fold cross-validation root mean square error and the k-fold cross-validation average absolute error with the control
parameter η to improve the optimization efficiency of the optimization algorithm and the generalization ability of the proposed
model. 0e hyperparameters of the robust ridge regression forecast model are optimized by the PSO algorithm to obtain the
optimal hyperparameters. 0e traffic flow data set is used to train and validate the proposed model. Compared with other
optimization methods, the proposed model has the lowest RMSE, MAE, and MAPE. Finally, the traffic flow that forecasted by the
proposed model is used to perform anomaly detection. 0e abnormality of the error between the forecasted value and the actual
value is detected by the abnormal traffic flow threshold based on the sliding window.0e experimental results verify the validity of
the proposed anomaly detection model.

1. Introduction

Traffic flow anomaly detection plays an essential role in the
traffic field. Traffic jams have become a common thing in big
cities and have received considerable critical attention. 0e
traffic flow anomaly detection model can detect the ab-
normal traffic flow and can be achieved by constructing a
traffic flow forecast model, which is helpful to avoid traffic
congestion in time. 0e accurate forecast of traffic flow can
not only provide a basis for real-time traffic control but also
provide support for the alleviation of traffic jams and the
effective use of traffic networks, and the forecast result of
traffic flow can directly affect the accuracy of traffic anomaly

detection. Useful information can be extracted frommassive
traffic flow data through the traffic flow forecast model so as
to quickly forecast the short-term traffic flow in the future
and detect the traffic flow abnormalities in time, thus im-
proving the traffic operation efficiency.

In recent years, many experts and scholars have studied
traffic flow forecasting. 0e ARIMA model is a classic time
series model that is often used in traffic flow forecasts.
Kumar and Vanajakshi proposed a SARIMA-based traffic
flow forecast scheme, which effectively solved the problem of
massive data required for model training [1]. Shahriari et al.
combined bootstrap with the ARIMA model, which over-
came the shortcomings of nonparametric methods lacking
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theoretical support and improved the forecast accuracy of
the model [2]. Luo et al. combined the improved SARIMA
model with the genetic algorithm and used the real traffic
flow to test the model. 0e model forecast results were good
[3]. 0e ARIMA model forecasts the traffic flow based on
historical values. If the model training data contain noise,
the model’s performance will be greatly reduced.

0e neural network model can fit complex data rela-
tionships, which can learn the nonlinear relationships im-
plicit in traffic flow. Qu et al. proposed a batch learning
method to solve the time-consuming problem of the traffic
flow neural network prediction model, which effectively
reduced the training time of the neural network [4]. Zhang
et al. used the spatiotemporal feature extraction algorithm to
extract the temporal and spatial features in traffic flow. 0e
features were input into the recurrent neural network for
modeling and forecast, which effectively improved the
forecast performance of the model [5]. Zhang et al. proposed
a multitask learning deep learning model to forecast the
traffic network flow. 0e nonlinear Granger causality
analysis was used to select features for the model. 0e
Bayesian optimization algorithm was used to optimize the
model parameters.0e forecast performance was better than
that of the single deep learning model [6]. Do et al. used
temporal and spatial attention mechanisms to help neural
network models fully explore the temporal and spatial
characteristics of the traffic flow, which not only effectively
improved the prediction performance of the model but also
enhanced the interpretability of the model [7]. 0e use of
neural network models can cause overfitting easily with a
calculation cost much higher than that of the traditional
traffic flow forecast model. As neural networks can fit
nonlinear relationships of data, it is easy to use the wrong
noise as the implicit nonlinear relationship in the data,
which will reduce the generalization ability of the model.

0e support vector regression machine can fit data based
on the strategy of structural risk minimization, which is a
common model in the field of traffic flow forecasts. Wang
et al. proposed an adaptive traffic flow forecast framework,
which used the Bayesian optimization algorithm to optimize
the parameters of the support vector machine model. 0e
forecast performance was better than that of the SARIMA
model [8]. Luo et al. used the discrete Fourier transform to
extract the trend information in traffic flow and used the
support vector machines for error compensation, which
improved the forecast accuracy of themodel [9].0e support
vector regression machine solves the optimization problem
based on quadratic programming. When the sample size is
large, the model training time will be greatly increased. 0e
support vector regression machine is very sensitive to the
noise in the data. When the support vector regression
machine selects the noise as the support vector, the forecast
performance of the model will be poor.

Traffic flow anomaly detection plays an important role in
the field of urban traffic control. Many studies have done
related work in the field of traffic flow anomaly detection.
Djenouri et al. proposed a framework for detecting temporal
and spatial traffic anomalies. 0e KNN algorithm was ap-
plied to the space-time traffic database, and the traffic flows

at ten different locations were experimented. Experimental
results showed that the performance of the proposed
framework is better than the baseline model [10]. Yujun et al.
proposed a hybrid model that contained the Poisson mixture
model and coupled hidden Markov model. 0e proposed
model considered the spatial correlation of traffic flow and
the degree of traffic congestion. Semisynthetic and real traffic
anomaly data were used to verify the validity of the model
[11]. Zhang et al. employed the dictionary-based com-
pression theory to identify the spatial and temporal char-
acteristics of traffic flow and used anomaly index to quantify
the degree of traffic anomalies [12]. 0e proposed method
can clearly detect the location of traffic flow spatial anom-
alies. Noise in traffic data may lead to false detection results
of traffic anomaly detection models, which may affect the
normal operation of traffic networks.

Influenced by factors such as mechanical damage, line
aging, signal loss, and environmental interference, the data
detected by the traffic flow sensor contain a lot of noise.
Huber loss function is a mixture of L1 and L2 loss functions,
which is insensitive to noise [13], the L2 regular term of the
ridge regression can effectively avoid overfitting caused by
model training [14]. To improve the generalization per-
formance of the model, the sum of RMSEkcv

and η∗MAEkcv

on the training set based on k-fold cross-validation is
constructed as the fitness function and the PSO algorithm is
used to optimize the model hyperparameters. 0e PSO al-
gorithm originated from the research on the foraging
process of birds [15]. It has a simple structure. Each particle
in the particle swarm has three main parameters: position,
velocity, and fitness. In recent years, many pieces of liter-
ature have achieved good results using the particle swarm
optimization algorithm [16–20].

To solve the problem of noise in traffic flow data, a
Huber-Ridge traffic flow anomaly detection model with the
particle swarm optimization (PSO) algorithm is proposed.
0e Huber-Ridge model is used to reduce the negative
impact of noise in the data. Huber-Ridge model perfor-
mance depends on model hyperparameters. 0erefore, it is
very important to determine the optimal model hyper-
parameters. A PSO algorithm based on the proposed fitness
function is used to search for the optimal hyperparameters of
the model so that the model has the best performance.

0e remaining part of the paper proceeds as follows:
Section 2 introduces the theoretical information of the
Huber-Ridge algorithm; Section 3 proposes the data pre-
processing steps and the steps using PSO algorithm to
optimize the Huber-Ridge model parameters; Section 4 il-
lustrates themodel evaluation indexes; Section 5 presents the
experimental content which contains the comparison of the
forecast models and the results of traffic flow anomaly de-
tections; Section 6 is conclusions.

2. Huber-Ridge Algorithm

2.1.HuberFunction. 0e combination of the Huber function
with the L1 loss function and the L2 loss function can ef-
fectively avoid the interference of noise in the data during
the data fitting [21]. Its robustness is better than that of L1
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and L2 loss functions. 0e definition of the Huber loss
function is

ϕhub(u) �
u
2
, |u|≤M,

M(2|u| − M), |u|>M.

⎧⎨

⎩ (1)

0e definitions of L1 loss function and L2 loss function
are shown in equations (2) and (3):

ϕL1
(u) � M(2|u| − M), (2)

ϕL2
(u) � u

2
, (3)

where u is the error between the actual value and the es-
timated value, and M is the threshold. When the threshold
M is 1, the comparison of the Huber loss function, the L1 loss
function, and the L2 loss function is shown in Figure 1.
Compared with the L1 loss function, when u is smaller than
the threshold M, the Huber loss function penalizes the
model for making large errors. Compared with the L2 loss
function, when u is greater than the threshold M, the Huber
loss function penalizes the model for making small error
0erefore, the Huber loss function is quadratic for smaller
errors and is linear for larger errors.

2.2. Ridge Regression Model. 0e ridge regression model is
first proposed by Hoerl and Kennard. 0e ridge regression
objective function adds the L2 regular term based on the least
square objective function [22]. Its definition is as follows:

ŵj � argminw 

n

i�1
yi − yi( 

2
+ λ

k

j�1
wj 

2⎛⎝ ⎞⎠, (4)

where 
k
j�1 (wj)

2 is the L2 regular term and λ is the ridge
parameter, which is the weight of the L2 regular term.

For the linear regression model y � wx + ε, the least
square estimation of the regression coefficient is defined as
follows:

ŵ � x
T
x 

− 1
x

T
y, (5)

where x is the independent variable matrix and y is the
dependent variable vector.

0e mean square error of the least square estimation is
defined as follows:

ŵmse � E ||w − ŵ||
2

  � σ2tr x
T
x 

− 1
� σ2 

q

i�1

1
ki

. (6)

If there is a linear correlation between independent
variables, the matrix xTx is a singular matrix. Some char-
acteristic roots ki of the singular matrix are close to zero,
resulting in a large ŵmse. 0is indicates that there is a large
error between the least-squares estimated value and the
actual value. 0e addition of the disturbance term λI(λ> 0)

on the matrix xTx will weaken the singularity, thereby re-
ducing ŵmse. 0e least square estimation with the distur-
bance term added is the ridge estimation. 0e ridge estimate
is defined as follows:

ŵ(λ) � x
T
x + λI 

− 1
x

T
y, (7)

where λ is the ridge parameter and I is the identity matrix.
ŵ(λ) indicates the ridge estimation of the regression pa-
rameter w when the ridge parameter is λ. When λ � 0, the
ridge estimation is the least square estimation. In the case of
linear correlation of independent variables, the ridge esti-
mation provides improved efficiency in parameter estima-
tion problems, that is, biased but has lower variance than the
least square estimator.

2.3. Huber-Ridge Regression. Owen uses the Huber loss
function to replace the least-squares loss function and
converted the ridge regression to the Huber-Ridge regres-
sion [23]. 0e definition of the Huber-Ridge model is as
follows:

ŵj � argminw ϕhub(u) +
λ
2



k

j�1
wj 

2⎛⎝ ⎞⎠, (8)

where w is the weight vector of the regression when the
objective function is the smallest, wj represents the estimate
for each regression coefficient, 

k
j�1 (wj)

2 is the L2 regular
term, and λ/2 is the weight of the L2 regular term, which is
used to balance the relationship between the Huber loss
function and the L2 regular term. 0e Huber loss function
can help the model avoid the influence of the data noise. 0e
L2 regular term helps the model have a proper sparsity and
avoid overfitting of the model. 0e Huber-ridge regression
combines the robustness of the Huber regression to noise
with the regularization of the Ridge regression, which not
only ensures the robustness of the model but also makes the
regression model more stable.
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Figure 1: When the threshold M is 1, comparison of Huber
function with L1 loss function and L2 loss function.
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k
j�1 (wj)

2 can be considered as ||w||22, which is the L2
norm square of the weight vector w. 0e objective function
f(w) is defined as follows:

f(w) � ϕhub(u) +
λ
2
||w||

2
2, (9)

where u is the error. 0e objective function f(w) is used to
take the partial derivative of the weight vector w and let it to
be zero. It can be obtained that the expression of the weight
vector w is at the minimum value of the objective function in

the direction of the weight vector w. 0e solution process of
equation (9) is as follows:

zf(w)

zw
�

zϕhub(u)

zu

zu

zw
+
d(λ/2)||w||

2
2

dw
� 0, (10)

where u � xw − y, xw is the estimated value, and y is the
actual value. 0e first term of equation (10) can be simplified
as

zϕhub(u)

zu

zu

zw
�

zϕhub(u)

zu
x, (11)

zϕhub(u)

zu
�

zϕhub u1( 

zu1
,
zϕhub u2( 

zu2
, . . . ,

zϕhub un( 

zun

 

T

� h u1( , h u2( , . . . , h un(  ,

zϕhub ui( 

zui

�
2 ui


, ui


≤M,

2M, ui


>M.



(12)

Let ω(u) � zh(u)/zu, equation (11) can be simplified as

x
Tzϕhub(u)

zu
� x

Tφu,

φ � diag ω u1( ,ω u2( , . . . ,ω un(  .

(13)

0e second term of equation (10) can be simplified as

d(λ/2)w
2
2

dw
�
d(λ/2) w

T
w 

2

dw
� λw. (14)

In summary, the solution process of equation (10) is as
follows:

x
Tφu + λw � 0,

x
Tφ(xw − y) + λw � 0,

(15)

w � x
Tφx + λI 

− 1
x

Tφy, (16)

where I is the identity matrix. 0e optimal threshold M and
the ridge parameter λ can be found in a fixed interval
through the optimization algorithm. 0e weight vector w

can be obtained by substituting the threshold value M, the
ridge parameter λ, and the sample data into equation (16).

3. PSO-Huber-Ridge Model

3.1. PSO Algorithm. 0e core idea of the PSO algorithm
comes from the foraging process of birds. For the PSO al-
gorithm, the candidate solution of the optimization problem
is a particle in the hyperparameter space. Each particle has its
corresponding fitness value, speed, and position. 0e speed
of the particle determines the direction and the displacement
of the particle to look for the candidate solution. 0e PSO
algorithm can find the optimal solution by iterating a group
of initialized random particles.

For the PSO algorithm, there are m particles in the D-
dimensional space. 0e speed of each particle can be
expressed as v

→
i � (vi1, vi2, . . . , vi D), and the position of each

particle can be expressed as s
→

i � (si1, si2, . . . , si D), where
i ∈ [1, 2, . . . , m]. In the loop iteration, each particle repre-
sents a candidate solution. 0e corresponding fitness value
can be obtained through the fitness function. 0e individual
optimal particle and the global optimal particle can be se-
lected based on the fitness value. 0e personal optimal
particle (pbest) is expressed as p

→
i � (pi1, pi2, . . . , pi D), and

the global optimal particle (g best) is expressed as
p
→

g � (pg1, pg2, . . . , pg D). Before the next iteration, each
particle will update its speed and position through equations
(17)–(19):

v
→(t+1)

i � ω∗ v
→(t)

i + c1 ∗ r1 ∗ p
→

i − s
→(t)

i  + c2 ∗ r2 ∗ p
→

g − s
→(t)

i ,

(17)

v
(t+1)
ij �

vMax, v
(t+1)
ij



> vMax,

v
(t+1)
ij , otherwise,

⎧⎪⎨

⎪⎩
(18)

s
→(t+1)

i � s
→(t)

i + v
→(t+1)

i , (19)

i ∈ [1, 2, . . . , m],

j ∈ [1, 2, . . . , D],
(20)

where ω is the inertia factor (ω> 0), c1 is the local learning
factor, and c2 is the global learning factor (c1, c2 > 0). r1 and
r2 are random numbers uniformly distributed between
[0, 1]. t and t + 1 represent the number of iterations. vMax
represents the maximum speed of the particle.

For equation (17), where ω∗ v
→(t)

i is called the memory
item, which refers to the influences of the speed on the
particle when it is updated; c1 ∗ r1 ∗ ( p

→
i − s

→(t)

i ) is called the
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self-cognition term, which means that when the particle is
updated, it is biased toward the individual optimal particle;
c2 ∗ r2 ∗ ( p

→
g − s

→(t)

i ) is called the group-cognition term,
which means that when the particles are updated, they are
biased toward the group optimal particle. It represents the
result of collaboration among multiple particles.

3.2. Fitness Function. 0e PSO algorithm can find the op-
timal hyperparameters for the model based on the fitness
function. 0e smaller the particle fitness value, the lower the
forecast error of the hyperparameters. To improve the
generalization ability of the model, the k-fold cross-vali-
dation [24] is added to the fitness function. 0e fitness
function is defined as the sum of RMSE and MAE of k-fold
cross-validation on the model training set. 0e expression
equation for the fitness function is as follows:

fitness � RMSEkcv
+ η∗MAEkcv

. (21)

RMSEkcv
is a root mean square error based on k-fold

cross-validation and its expression is as follows:

RMSEkcv
�

������������������


kcv

j�1
n

i�1 yij − yij 
2

nkcv




. (22)

MAEkcv
is based on the average absolute error of k-fold

cross-validation, and its expression equation is as follows:

MAEkcv
� 

kcv

j�1


n

i�1

yij − yij|

nkcv,


(23)

where n is the number of training samples, kcv is the number
of cross-validated subsets. yij and yij are the model esti-
mated value and the true value, respectively. 0e smaller the
fitness function value, the better the corresponding particle.

0e weight of MAEkcv
is η (η> 0), which is also the

control parameter used to balance the size of RMSEkcv
and

MAEkcv
. When 0< η< 1, MAEkcv

has less weight than
RMSEkcv

; when 1< η< +∞, MAEkcv
has more weight than

RMSEkcv
; when η � 1, MAEkcv

has the same weight as
RMSEkcv

. RMSEkcv
has a small penalty for small errors. 0e

degree of MAEkcv
penalty for errors remains unchanged.

However, it does not punish large errors as much as
RMSEkcv

. 0e fitness function controls the degree of which
the fitness function penalizes errors by adjusting the size of
the control parameter η. As the control parameter η in-
creases, the degree of penalty for small errors by the fitness
function increases. Combining MAEkcv

and RMSEkcv
, the

problem of insufficient penalty for small errors for RMSEkcv

and insufficient penalty for large errors for MAEkcv
can be

improved, which not only increases the penalty for model
prediction errors but also improves the generalization ability
of the model.

3.3. Data Preprocessing. Good data quality can improve the
performance of the model. 0e missing values and the di-
mensional differences in the data will reduce the forecast
performance of the model. 0erefore, it is significant to
preprocess the data. 0e data preprocessing can be divided
into the following steps:

(1) Data cleaning. 0e previous value of the missing
value should be used to fill in the missing value.

(2) Construction of model feature sets and output
samples. For the traffic flow data set, the historical
characteristics based on the linear correlation and
the statistical characteristics based on the sliding
window should be constructed. 0e model output
sample is the traffic flow at the next time point in the
sliding window.

(3) Data standardization. 0ere are dimensional dif-
ferences between different features. To prevent di-
mensional errors from reducing the model
performance, the data distribution is transformed
into a standard distribution with a mean of 0 and a
variance of 1 through the standardized equation.0e
standardized equation is as follows:

xki �
Xki − Xi

σi

,

σi �
X1i − Xi( 

2
+ X2i − Xi( 

2
+ · · · + Xni − Xi( 

2

n
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

For the feature matrix, xki is the standardized data
of the k-th row and the i-th column, Xi is the mean

value of the i-th column, σi is the standard deviation of
the i-th column, and n is the number of samples.
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3.4. PSO-Huber-Ridge Model Optimization Process. 0e
optimization steps of the PSO-Huber-Ridge model are as
follows:

Step 1. Start the optimization.
Step 2. Determine the model inputs and outputs. 0e
feature set is used as the model input and the model
output the traffic flow.
Step 3. PSO-Huber-Ridge model parameter settings.
0e number of particles m, the inertial factor ω, the
local learning factor c1, and the global learning factor c2
are input into the PSO algorithm. Initialize the speed v

→

and the position s
→ of each particle. Set the maximum

number of iterations of the PSO algorithm iMax and the
value range of the model hyperparameters.
Step 4. i � i + 1.
Step 5. Particles update. Use equations (17)∼(19) to
update the speed v

→ and position s
→ of each particle.

Step 6. Fitness evaluation. Use equation (21) to cal-
culate the fitness value of the particle based on the
threshold value M and the ridge parameter λ of each
particle.
Step 7. Optimal particle selection. Select the individual
optimal particle and the global optimal particle
according to the fitness value of the particles.
Step 8. Terminate training judgment. If the number of
iterations i does not meet the termination condition
(i> iMax), return to Step 4. Otherwise, continue to the
next step.
Step 9. Output optimization results. Output the
threshold M and the ridge parameter λ in the global
optimal particle.
Step 10. End the optimization.

4. Evaluation Indexes

0e average absolute error (MAE), root mean square error
(RMSE), and average absolute percentage error (MAPE)
were used to evaluate the forecast performance of the model.
0e definition equations of MAE, RMSE, and MAPE are as
follows:

MAE �
1
n



n

i�1
yi − yi


,

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




,

MAPE �
1
n



n

i�1

yi − yi

yi




,

(25)

where n is the number of samples in the test set, yi is the
model forecast value, yi is the true value. MAE and RMSE
can reflect the forecast error of the model. 0e value range of
MAPE is [0, +∞]. 0e closer its value is to 0, the better the
model performance.

5. Experimental Results and Analysis

5.1. Data Description. 0e traffic flow data set used in the
experiment came from a highway intersection in
Changsha City and was collected by a single detector with a
data interval of 5 minutes. 0ere were a small number of
missing values in the traffic flow data set and the previous
value of the missing value was used to fill in the missing
points. 0e data sets containing 5 days of traffic flow were
divided into the training set and the test set.0e traffic flow
from Saturday to Tuesday was used as the training set for
the training model. 0e traffic flow on Wednesday was
used as the test set to verify the performance of the trained
model.

5.2. Feature Extraction and Selection. Historical character-
istics based on the linear correlation from the traffic flow
data were selected.0e statistical characteristics based on the
optimal sliding window were extracted.

0e historical characteristics were selected. 0e Pearson
correlation coefficient was used to judge the strength of the
linear correlation between the data. 0e range of the cor-
relation coefficient r was [−1, 1]. 0e closer to 1, the stronger
the positive correlation between the data; the closer to −1,
the stronger the negative correlation between the data; the
closer to 0, the weaker the linear correlation between the
data. 0e historical value of r greater than 0.9 was selected as
historical characteristics. See Table 1 for the correlation
coefficients of traffic flow with delays of 1–9.

According to Table 1, the historical characteristics with
delays of 1–6 were selected as historical characteristics. To
fully consider the periodicity of the traffic flow, the historical
characteristics at the same time point last week were selected.
0e set of historical characteristics included the historical
values with delays of 1–6 and the historical values at the same
time point last week.

0e statistical characteristics of the optimal sliding
window were extracted. 0e maximum, minimum, median,
mean, standard deviation, skewness, and kurtosis of the data
set within the length of the sliding window were taken as the
statistical characteristics. 0e sliding window length L had a
value range of [6, 150]. 0e Huber-Ridge model with default
hyperparameters (λ � 0.0001, M � 1.35) was used for the
exhaustive operation on the traffic flow training set. 0e
optimal window length was selected with the MAPE eval-
uation index as the standard. It can be seen from Figure 2
that when the MAPE value was the smallest, the sliding
window length was 34 as the optimal sliding window length.

5.3. Experimental Results. 0e state transition algorithm
(STA) [25], grey wolf optimizer (GWO) [26], genetic al-
gorithm (GA) [27], and PSO algorithm were used to opti-
mize the hyperparameters of the Huber-Ridge model. 0e
range of model parameters is shown in Table 2:

0e parameter values of the optimization algorithm are
shown in Table 3:

0e model training was performed using the stan-
dardized traffic flow training set. 0e fitness function based
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on 10-fold cross-validation was used. 0e control parameter
η of the fitness function was taken as 1. 0e performances of
the STA-Huber-Ridge model, the GWO-Huber-Ridge
model, the GA-Huber-Ridge model, and the PSO-Huber-
Ridge model were compared and analyzed using RMSE,
MAE, and MAPE evaluation functions. 0e optimization

results of the four model parameters are shown in Table 4.
0e iterative comparison of their fitness values is shown in
Figure 3.

It can be seen from Table 1 and Figure 3 that the fitness
value of the STA algorithm dropped rapidly in the early stage
of the iteration and then fell into the search for the local

Table 1: Pearson correlation coefficient of traffic flow with delays of 1–9.

Number of delays 9 8 7 6 5 4 3 2 1 0
R 0.85 0.87 0.89 0.90 0.92 0.93 0.95 0.96 0.97 1.00
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min : (34, 13.93)

Figure 2: Relationship between sliding window length and MAPE (%).

Table 2: Model hyperparameters and value ranges.

Hyperparameter Value range
0reshold M M ∈ [1, 4]

Ridge parameter λ λ ∈ [0.0001, 4]

Table 3: Optimization algorithm parameters.

Optimization algorithm Parameter value
STA m � 30; αmax � 1; αmin � 10− 4; β � 1; c � 1; δ � 1; fc � 2; maxital � 100
GWO m � 30; a ∈ [0, 2]; r1, r2 ∈ [0, 1]; maxital � 100
GA m � 30; probmut � 0.001; maxital � 100
PSO m � 30; ω � 0.5; c1 � 0.5; c2 � 0.5; vMax � 2; maxital � 100
where m represents the number of seeds of each optimization algorithm, the maxital represents the maximum number of the iterations of the optimization
algorithms. For the STA: the value range of the rotation factor α is [αmax, αmin], which decreases in the form of an exponential function with 1/fc as the base
with the increasing number of iterations; β indicates the translation factor; c indicates the expansion factor; δ indicates the axesion factor. For the GWO: a is
called the convergence factor and decreases from 2 linear to 0 with the increase of iterations; r1 and r2 are random numbers evenly distributed over an interval
[0, 1]. For the GA: probmut represents the mutation probability, and the Partial-Mapped crossover is used as the crossover operator. For the PSO algorithm: ω
indicates the inertia factor; c1 indicates the local learning factor; c2 indicates the global learning factor; vMax represents the maximum speed of the particle.

Table 4: Comparison of optimization results between 4 model parameters.

0reshold M Ridge parameter λ Fitness function value
STA-huber-ridge 1.54822021 3.64338165 0.203787303
GWO-huber-ridge 1.67576409 3.48931938 0.230480862
GA-huber-ridge 1.54444195 3.47396986 0.203815397
PSO-huber-ridge 1.55445167 3.99935861 0.203780642
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optimum; after that, it dropped slowly in the later stage. 0e
state transition algorithm used four transform operators to
search.0e search range was large and the early convergence
was fast. However, transform operators with fixed values
limited the global search capability of the state transition
algorithm [28]. 0e fitness value of the GWO algorithm
decreased slowly in the iterative process. 0e global opti-
mization efficiency was not high. 0e GWO algorithm may
easily fall into the local optimum and be unsuccessful in
finding the global best [29]. 0e control parameters of the

GWO algorithm decreased linearly with the iterative pro-
cess, which cannot satisfy the complex search process [30].
0e fitness value of GA stagnated in the early stage of the
iteration and fell into the search for the local optimum. 0is
is because the genetic algorithm has a premature phe-
nomenon [31], making it difficult to jump out of the local
optimum. Compared with the GWO, GA, and STA opti-
mization algorithms, the PSO algorithm has a better iterative
update strategy. It updates the particle position based on the
individual experience of particles and the global experience
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Figure 3: Comparison of four optimization iterations.
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Figure 4: Forecast results of traffic flow by PSO-huber-ridge model.

Table 5: Comparison of forecast results of 4 models.

MAE RMSE MAPE (%)
STA-huber-ridge 7.06437 9.31449 13.9243
GWO-huber-ridge 7.06517 9.31559 13.9235
GA-huber-ridge 7.06418 9.31511 13.9238
PSO-huber-ridge 7.06393 9.31346 13.9230
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of the particle swarm so that it will not all into the search for
the local optimum easily.

0e forecast evaluation results of the four models are
shown in Table 5. 0e forecast result of the PSO-Huber-
Ridge model is shown in Figure 4.

It can be seen from Table 5 that the PSO-Huber-Ridge
model had the lowest MAE, RMSE, and MAPE; that is, the
forecast performance of the PSO-Huber-Ridge model was
the best. It can be seen from Figure 4 that the PSO-Huber-
ridge model can well forecast the trend of the traffic flow at
most time points.

Based on the error between the predicted value of the
PSO-Huber-Ridge model and the actual value, the anomaly
detection was performed on the traffic flow using the
threshold (mean ± 2σ) by calculating the mean value
(mean) and variance (σ) of error data in a sliding window
with a length of 10. If the forecast error at the next time point
of the sliding window was greater than the anomaly de-
tection threshold, the traffic flow at this time point was
defined as an abnormal flow. 0e abnormal warnings would
be reported to relevant traffic departments to avoid possible
traffic jams.0e label for abnormal traffic flowwas defined as
1 and the label for normal traffic flow was defined as 0. 0e
traffic flow anomaly detection based on the PSO-Huber-
Ridge model is shown in Figure 5. It can be seen from
Figure 5 that the proposed model can well detect the ab-
normal traffic flow in each period time.

6. Conclusions

To solve the problem of the large data noises in traffic flow,
the traffic flow anomaly detection based on PSO-Huber-
Ridge model is proposed. 0e strong robustness of the
Huber function enables it to effectively reduce the influence
of noise in traffic flow data on model training. 0e addition
of the L2 regular term of the ridge regression in the objective
function can reduce the risk of model overfitting.0e sum of
RMSEkcv

and MAEkcv
based on 10-fold cross-validation is

constructed as the fitness function to improve the gener-
alization ability of the model. 0e optimal model parameters
can be obtained through the particle swarm optimization

algorithm so as to improve the model performance. Com-
pared with the STA-Huber-Ridge, GA-Huber-Ridge, and
GWO-Huber-Ridge models, the experimental results show
that the PSO-Huber-Ridge model has the best model
forecast performance. 0e traffic flow anomaly detection is
performed using the traffic flow forecasted by the PSO-
Huber-Ridge model. 0e error between the forecasted and
actual traffic flow at a certain time point is large, which
indicates that the regular pattern of traffic flow at that time
point is different from that of history and may cause traffic
congestion. 0e anomaly detection is performed on the
traffic flow using the threshold (mean ± 2σ). 0e experi-
mental results verify the validity of the proposed traffic flow
anomaly detection model.

0e information contained in the traffic flow is complex.
0e PSO-Huber-Ridge model is limited to explore the linear
information in the traffic flow. 0e nonlinear information
needs further analysis and exploration. When extracting
statistical features in feature engineering, the optimal sliding
window is determined by the method of exhaustion. Its
disadvantage is that it takes a long time and is not easy to
apply. Using an adaptive method to extract features will
greatly reduce the time of feature engineering. 0e Huber
loss function reduces the negative impact of the data noise
on the model training by reducing the penalty for large
errors. Combining the Huber function with outlier detection
method in data preprocessing can further improve the ro-
bustness of the model. Using adaptive feature extraction to
mine linear and nonlinear information on the basis of
improving model robustness is the next step.

Data Availability

0e data used to support the findings of this study are
currently under embargo, while the research findings are
commercialized. Requests for data, 6/12 months after
publication of this article, will be considered by the corre-
sponding author.

Conflicts of Interest

0e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

All authors contributed equally to this work.

Acknowledgments

0is research was funded by the National Natural Science
Foundation of China (Grant no. 61403046), the Natural
Science Foundation of Hunan Province, China (Grant no.
2019JJ40304), Changsha University of Science and Tech-
nology “0e Double First Class University Plan” Interna-
tional Cooperation and Development Project in Scientific
Research in 2018 (Grant no. 2018IC14), the Research
Foundation of Education Bureau of Hunan Province (Grant
no. 19K007), Hunan Provincial Department of Trans-
portation 2018 Science and Technology Progress and

1

0

Tr
af

fic
 fl

ow
 la

be
l

01 : 00 04 : 00 07 : 00 10 : 00 13 : 00 16 : 00 19 : 00 22 : 00
Time

Figure 5: Traffic flow anomaly detection based on PSO-huber-
ridge model.

Mathematical Problems in Engineering 9



Innovation Plan Project (Grant no. 201843), the Key Lab-
oratory of Renewable Energy Electric-Technology of Hunan
Province, the Key Laboratory of Efficient and Clean Energy
Utilization of Hunan Province, Innovative Team of Key
Technologies of Energy Conservation, Emission Reduction
and Intelligent Control for Power-Generating Equipment
and System, CSUST, Hubei Superior and Distinctive Dis-
cipline Group of Mechatronics and Automobiles (Grant no.
XKQ2020009), National Training Program of Innovation
and Entrepreneurship for Undergraduates (Grant no.
202010536016), Major Fund Project of Technical Innovation
in Hubei (Grant no. 2017AAA133), and Hubei Natural
Science Foundation Youth Project (Grant no. 2020CFB320).

References

[1] S. V. Kumar and L. Vanajakshi, “Short-term traffic flow
prediction using seasonal ARIMA model with limited input
data,” European Transport Research Review, vol. 7, no. 3, p. 21,
2015.

[2] S. Shahriari, M. Ghasri, S. A. Sisson, and T. Rashidi, “En-
semble of ARIMA: combining parametric and bootstrapping
technique for traffic flow prediction,” Transportmetrica A:
Transport Science, vol. 16, no. 3, pp. 1552–1573, 2020.

[3] X. Luo, L. Niu, and S. Zhang, “An algorithm for traffic flow
prediction based on improved SARIMA and GA,” KSCE
Journal of Civil Engineering, vol. 22, no. 10, pp. 4107–4115,
2018.

[4] L. Qu, W. Li, W. Li, D. Ma, and Y. Wang, “Daily long-term
traffic flow forecasting based on a deep neural network,”
Expert Systems with Applications, vol. 121, pp. 304–312, 2019.

[5] W. Zhang, Y. Yu, Y. Qi, F. Shu, and Y. Wang, “Short-term
traffic flow prediction based on spatio-temporal analysis and
CNN deep learning,” Transportmetrica A: Transport Science,
vol. 15, no. 2, pp. 1688–1711, 2019.

[6] K. Zhang, L. Zheng, Z. Liu, and N. Jia, “A deep learning based
multitask model for network-wide traffic speed prediction,”
Neurocomputing, vol. 396, pp. 438–450, 2020.

[7] L. N. N. Do, H. L. Vu, B. Q. Vo, Z. Liu, and D. Phung, “An
effective spatial-temporal attention based neural network for
traffic flow prediction,” Transportation Research Part C:
Emerging Technologies, vol. 108, pp. 12–28, 2019.

[8] D. Wang, C. Wang, J. Xiao, Z. Xiao, W. Chen, and
V. Havyarimana, “Bayesian optimization of support vector
machine for regression prediction of short-term traffic flow,”
Intelligent Data Analysis, vol. 23, no. 2, pp. 481–497, 2019.

[9] X. Luo, D. Li, and S. Zhang, “Traffic flow prediction during the
holidays based onDFTand SVR,” Journal of Sensors, vol. 2019,
Article ID 6461450, 10 pages, 2019.

[10] Y. Djenouri, A. Belhadi, J. C. Lin, and A. Cano, “Adapted K-
nearest neighbors for detecting anomalies on spatio-temporal
traffic flow,” IEEE Access, vol. 7, pp. 10015–10027, 2019.

[11] Y. Chen, J. Pu, J. Du, Y. Wang, and Z. Xiong, “Spatial-
temporal traffic outlier detection by coupling road level of
service,” IET Intelligent Transport Systems, vol. 13, no. 6,
pp. 1016–1022, 2019.

[12] Z. Zhang, Q. He, H. Tong, J. Gou, and X. Li, “Spatial-temporal
traffic flow pattern identification and anomaly detection with
dictionary-based compression theory in a large-scale urban
network,” Transportation Research Part C: Emerging Tech-
nologies, vol. 71, pp. 284–302, 2016.

[13] P. Petrus, “Robust Huber adaptive filter,” IEEE Transactions
on Signal Processing, vol. 47, no. 4, pp. 1129–1133, 1999.

[14] D. W. Marquardt and R. D. Snee, “ridge regression in
practice,” Be American Statistician, vol. 29, no. 1, pp. 3–20,
1975.

[15] P. Smets and R. Kennes, “0e transferable belief model,”
Artificial Intelligence, vol. 66, no. 2, pp. 191–234, 1994.

[16] Z. Zhang, J. Yin, N. Wang, and Z. Hui, “Vessel traffic flow
analysis and prediction by an improved PSO-BP mechanism
based on AIS data,” Evolving Systems, vol. 10, no. 3,
pp. 397–407, 2019.

[17] C. Luo, C. Huang, J. Cao et al., “Short-term traffic flow
prediction based on least square support vector machine with
hybrid optimization algorithm,” Neural Processing Letters,
vol. 50, no. 3, pp. 2305–2322, 2019.

[18] Q. Ma, “Design of BP neural network urban short-term traffic
flow prediction software based on improved particle swarm
optimization,” AIP Conference Proceedings, vol. 2073, no. 1,
Article ID 020085, 2019.

[19] W. Cai, J. Yang, Y. Yu, Y. Song, T. Zhou, and J. Qin, “PSO-
ELM: a hybrid learning model for short-term traffic flow
forecasting,” IEEE Access, vol. 8, pp. 6505–6514, 2020.

[20] L. Lin, J. C. Handley, Y. Gu, L. Zhu, X. Wen, and A. W. Sadek,
“Quantifying uncertainty in short-term traffic prediction and
its application to optimal staffing plan development,”
Transportation Research Part C: Emerging Technologies,
vol. 92, pp. 323–348, 2018.

[21] P. J. Huber, “Robust estimation of a location parameter,”“-
Robust estimation of a location parameter,” in Breakthroughs
in Statistics: Methodology and Distribution, S. Kotz and
N. L. Johnson, Eds., pp. 492–518, Springer New York, New
York, NY, USA, 1992.

[22] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased
estimation for nonorthogonal problems,” Technometrics,
vol. 12, no. 1, pp. 55–67, 1970.

[23] A. B. Owen, “A robust hybrid of lasso and ridge regression,”
Contemporary Mathematics, vol. 443, pp. 59–72, 2006.

[24] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity
analysis of k-fold cross validation in prediction error esti-
mation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 3, pp. 569–575, 2010.

[25] X. Zhou, C. Yang, C. Yang, and W. Gui, “State transition
algorithm,” Journal of Industrial & Management Optimiza-
tion, vol. 8, no. 4, pp. 1039–1056, 2012.

[26] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf opti-
mizer,” Advances in Engineering Software, vol. 69, pp. 46–61,
2014.

[27] D. Whitley, “A genetic algorithm tutorial,” Statistics and
Computing, vol. 4, no. 2, pp. 65–85, 1994.

[28] X. Zhou, J. Long, C. Xu, and G. Jia, “An external archive-based
constrained state transition algorithm for optimal power
dispatch,” Complexity, vol. 2019, Article ID 4727168, 11 pages,
2019.

[29] W. Long, J. Jiao, X. Liang, and M. Tang, “An exploration-
enhanced grey wolf optimizer to solve high-dimensional
numerical optimization,” Engineering Applications of Artifi-
cial Intelligence, vol. 68, pp. 63–80, 2018.

[30] W. Long, J. Jiao, X. Liang, and M. Tang, “Inspired grey wolf
optimizer for solving large-scale function optimization
problems,” Applied Mathematical Modelling, vol. 60,
pp. 112–126, 2018.

[31] S. Yu and S. Kuang, “Fuzzy adaptive genetic algorithm based
on auto-regulating fuzzy rules,” Journal of Central South
University of Technology, vol. 17, no. 1, pp. 123–128, 2010.

10 Mathematical Problems in Engineering



Research Article
An Integrated Method for Fire Risk Assessment in
Residential Buildings

Hongfu Mi ,1 Yaling Liu,1 Wenhe Wang,1 and Guoqing Xiao2

1College of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China

Correspondence should be addressed to Hongfu Mi; mimihh5@163.com

Received 12 May 2020; Revised 10 August 2020; Accepted 17 August 2020; Published 26 August 2020

Guest Editor: Esam Hafez Abdelhameed

Copyright © 2020 Hongfu Mi et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Building fires are characterized by high uncertainty, so their fire risk assessment is a very challenging task. Many indexes and
parameters related to building fires are ambiguous and uncertain; as a result, a flexible and robust method is needed to process
quantitative or qualitative data and update existing information when new data are available.)is paper presents a novel model to
deal with the uncertainty of the residential building fire risk and systematically optimize its performance effectiveness. )e model
includes fuzzy theory, evidence reasoning theory, and expected utility methods. Fuzzy analysis hierarchy process is applied to
analyze the residential building fire risk index system and determine the weights of the risk indexes, while the evidence reasoning
operator is used to synthesize them. )ree buildings were selected as a case study to illustrate the proposed fire risk model. )e
results show that the fire risk level of three buildings corresponds to “moderate” or below which is consistent with the previous
study. )ese results also truly reflect the actual situation of fire safety in these residential buildings. )e application of this model
provides a powerful mathematical framework for cooperative modeling of the fire risk assessment system and allows data to be
analyzed step by step in a systematic manner. It is expected that the proposed model could provide managers and researchers with
flexible and transparent tools to effectively reduce the fire risk in the system.

1. Introduction

With the acceleration of industrialization, urbanization, and
marketization in China, building construction industry has
developed rapidly. Particularly, the structure and function of
buildings are becoming more complex, and various new
technologies and techniques are emerging constantly, which
have led to the increasingly severe situation of building fires.
According to the statistics provided by the Ministry of Public
Security in 2013, a total of 388,821 fires were recorded in China,
in which 52% (202,299) of fires occurred in buildings, resulting
in 3410 civilian deaths or injuries and 3760 million Chinese
yuan (CNY) direct property losses. Nowadays, building fire is
considered to be an enormous threat to people’s life and
production in China, and a growing concern is how to take
appropriate measures to reduce the fire risk, minimize the
damage and loss caused by fire in buildings, and guarantee
building fire safety.)erefore, it is urgent to establish a suitable

fire risk assessment model, and it provides information
through quantitative or qualitative analysis results to make
decisions on whether to take steps to reduce the risk [1, 2].

)ere are mainly four conventional types of fire risk
analysis methods: checklist, description, index, and proba-
bility method [3]. However, most of these approaches have
prescriptive drawbacks which make them difficult to
quantitative fire risk analysis due to the inability to deal with
the uncertainties associated with the fire risk factors of the
system. With the improvement of performance-based fire-
protection design, some fire risk analysis models and cor-
responding software have emerged, such as FiRECAM™
(Fire Risk Evaluation and Cost Assessment Model) [4, 5],
FIERAsystem (Fire Evaluation and Risk Assessment system)
[6], CESARE-RISK (Centre for Environment Safety and Risk
Engineering, RISK) [7, 8], and Crisp II (Computation of Risk
Indices by Simulation Procedures) [9]. However, these
models should depend on some strict constraints, such as a
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large number of input data, specific fire scenarios, and the
large amount of calculations. Consequently, researchers are
concentrating on developing flexible fire risk analysis tools
based on systematic safety theory. For example, Ibrahim
et al. presented a fire risk method based on the analytical
hierarchy method (AHP) for heritage buildings [10]. Lo
developed a fire risk ranking system for existing buildings
using the fuzzy set approach [11]. Liu et al. built a fire risk
analysis system for commercial buildings by using the
structure entropy weight method [12]. Xin and Huang pro-
posed scenario cluster methods in the process of the fire risk
analysis model for residential buildings [2]. Briefly speaking,
these methods reveal two main challenges in an uncertain
environment associated with the fire risk factors of the system.
)e first challenge faced by these methods is the lack of the
ability to process a variety of data suitable for fire risk reasoning
mechanisms, and the second is the lack of the ability to analyze
the interdependence of risk factors. In this paper, a fire risk
analysis model integrated fuzzy theory, and evidential rea-
soning (ER) theory is presented for residential buildings.
Compared with the traditional fuzzy reasoning approach, ER
has the advantage of avoiding losing useful information;
therefore, it can be applied to model complex systems. )e
framework of this model is organised as follows. Section 2
illustrates themethodology of the research. Section 3 presents a
case study to verify the feasibility of the methodology. Sections
4 and 5 discuss the empirical results and conclusions.

2. Methodology

Quantitative risk assessment (QRA) techniques are usually
used for assessing uncertainties in building fires. However,
due to the lack of fire accident statistics, an effective solution
is to integrate expert judgments into the QRA process. QRA
consists of four main procedures: hazard identification,
occurrence probability calculation, consequence severity
assessment, and risk quantification [13, 14]. In order to
process the complex system structure and promote a flexible
implementation method, different decision-making tech-
niques can be used, such as fuzzy analytic hierarchy process,
fuzzy set theory, and evidence reasoning method. Due to the
fact that fuzzy logic could provide a flexibility way to rep-
resent the vague information resulting from the lack of data
or knowledge. )erefore, the fuzzy set theory has a wide
application in different fields such as reliability engineering,
system safety, and risk assessment [15].

)e proposed framework, shown in Figure 1, allows
step-by-step analysis of the utility tunnel fire risk in a
transparent way, as described as follows:

(1) Identifying fire risk factors and establishing the hi-
erarchical structure of the index system

(2) Using fuzzy analytic hierarchy process (FAHP) to
calculate the weights of indexes

(3) Applying the belief degree structure based on the
fuzzy set theory to measure the fire risk

(4) Aggregating the result of the fire risk using the ev-
idence reasoning (ER) algorithm

(5) Using the expected utility method to obtain a clear
result of the fire risk

(6) Sensitivity analysis

2.1. Identifying Fire Risk Factors and Establishing the Hier-
archical Structure of the Index System. In order to make
better decisions on fire control protection and emergency
evacuation measures, a structured and systematic ap-
proach is needed. It is better to describe the fire risk
problem in a hierarchical structure so that decision
makers could have a thorough understanding of the
system, especially when it is a complex system with
multilevel structural indexes.

According to NFPA550 Guidelines, to achieve fire safety,
reducing the fire risk mainly starts from two aspects: one is
to prevent the occurrence of fire, and the other is to control
the impact of fire [16]. In this paper, fire risk factors of these
two aspects are, respectively, defined as disaster-causing
factors and loss-controlling factors. Disaster-causing factors
may cause the fire risk to be transformed into disaster before
fire occurs, while loss control factors signified various fire
protection and management measures to control the de-
velopment process of fire and mainly involved four aspects:
passive measures, active measures, fire management, and fire
brigade fighting.

Based on the characteristics of residential building fire
and the literature review [6, 17–20], the factors influ-
encing the risk of building fires are analyzed from the two
aspects of disaster-causing factors and loss-controlling
factors. A general hierarchical structure (presented in
Figure 2) is finally established after theoretical prepara-
tion, the initial construction of the index system, the
optimization of the index system, and the determination
of the index system.

2.2. Fuzzy Analytic Hierarchy Process (FAHP). )e tradi-
tional analytic hierarchy process (AHP) constructs the
judgment matrix by comparing the two factors with the 1–9
scale method. However, due to the subjectivity of human
judgment, different people will get different conclusions.
Using the triangular fuzzy number to scale the two-pair
comparison of factors can consider the uncertainty of
experts in analysis and judgment, which give the range of
expert’s judgment in the form of intervals to reduce sub-
jectivity. In 1996, Chang [21] applied triangular fuzzy
numbers to construct judgment matrices and combined
with the extent analysis method to calculate the weights of
each index in the hierarchical structure. Finally, the tra-
ditional AHP is transformed into the FAHP in the fuzzy
environment, which can provide more practical results
[22].

2.2.1. Triangular Fuzzy Number. Suppose the triangular
fuzzy number is M, and its membership function
μM: R⟶ [0, 1] is equal to
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μM(x) �

x − l

m − l
, l≤ x≤m,

x − u

m − u
, m≤x≤ u,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Herein, l≤m≤ u, l and u represent the lower and upper
boundary value of triangular fuzzy number M, respectively,
and m represents the median value of triangular fuzzy
number M. Generally, triangular fuzzy number M can be
abbreviated as (l, x, m). Let M1 � (l1, x1, m1) and
M2 � (l2, x2, m2) be triangular fuzzy numbers; then, the
possibility degree of M1 ≥M2 is defined as follows:

V M1 ≥M2(  �

1, m1 ≥m2,

l2 − u1

m1 − u1(  − m2 − l2( 
, m1 <m2, l2 ≤ u1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

2.2.2. Fuzzy Synthetic Extent. Consider X � x1, x2, . . . , xn 

as a set of analytic objects and U � u1, u2, . . . , un  as a target
set; we can get the extent value of the i-th object satisfying
the j-th goal, in which the sign is M

j
Ei
. )en, the value of

synthetic extent of the i-th object is defined as [21, 23]

Si � 
m

j�1
M

j
Ei



n

i�1


m

j�1
M

j
Ei

⎛⎝ ⎞⎠

− 1

. (3)

2.2.3. 2e Procedure of the FAHP. In the evaluation of the
fire risk, the determination of the weight of each fire risk
factor is particularly important. )e weight represents the
relative importance of each factor in the overall evaluation.
Only when the weight of each factor is obtained, the fire risk
assessment can be carried out. )e steps of determining the
weight by the FAHP method are as follows:

(1) According to the objective of fire risk assessment, the
hierarchical system structure is established, which is
composed of fire risk factors.

(2) )e judgment matrix is constructed by triangular
fuzzy numbers (according to Table 1) through a
pairwise comparison of the index system by experts
[24, 25].

(3) According to equation (3), the value Si of synthetic
extent Si of each factor is obtained.

(4) )e possibility degree d′(Ai) is calculated such that
factor Ai is more important than others:

d′ Ai(  � min√√
j�1,2,...,n,j≠i

V Si ≥ Sj , i � 1, 2, . . . , n. (4)

)en, the weight vector is obtained:

W′ � d′ A1( , d′ A2( , . . . , d′ An( ( 
T
. (5)

Finally, the normalized weight vector is obtained.

2.3. Application of the Belief Structure for the Fire Risk
Calculation. After identifying fire risk factors and estab-
lishing the hierarchical structure of the index system, an-
other important task of risk management is to assess the risk,
which is an effective way to prevent or reduce the effect of the
fire [2]. In this paper, the fire risk of residential buildings is
defined as the result of comprehensive measurement asso-
ciated to the occurrence likelihood and the consequence
severity of the fire. )e formula is as follows:

P � L⊗ S, (6)

where P is the magnitude of the fire risk presented by various
potential fire hazards, L refers to the occurrence likelihood of
potential fire hazards or fire risk factors, S implies the
consequence severity of potential fire hazards or fire risk
factors, and ⊗ represents the interconnection relationship
between L and S.

2.3.1. Fuzzy Linguistic Variables for the Fire Risk. After
defining the fire risk, it is necessary to transform the
factors into the same form of fuzzy evaluation grade. Due to
the uncertainty, analysts tend to use linguistic variable
terms rather than precise numerical values to evaluate the
fire risk. )erefore, this paper uses a ranking form of fuzzy
linguistic variables to represent the fire risk profile of each
factor.

A belief degree is generally used to describe the level of
expectations for trust events, and it must be less than or
equal to 1 to express the degree of which answer is con-
sidered true. Individual differences of belief degree depend
on assessor’s expertise and the knowledge to understand the
assessment system. A belief structure can solve the problems
of fuzziness, uncertainty, and imprecision in human deci-
sion-making. )erefore, this paper presents a model that
combines fuzzy linguistic variables and a belief degree to
construct a belief structure with the same set of assessment
grades [26]. )ese sets’ form of each factor could be
expressed as follows:

RL � RL1, RL2, RL3, RL4, RL5  � highly unlikely, unlikely slight, likely, reasonably likely, highly likely ,

RS � RS1, RS2, RS3, RS4, RS5  � negligible, slight,moderate, serious, catastrophic ,

R � R1, R2, R3, R4, R5  � very low, low,medium, high, very high .

(7)
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Among them, RL, RS, and R represent the evaluation
grade variables of the occurrence likelihood of fire, conse-
quence severity of fire, and fire risk, respectively.

2.3.2. Fire Risk Level Based on a Belief Structure. Because of
the complexity and uncertainty of the system, the type of
membership function is not the dominant factor in the risk
assessment analysis of the system [27]. )erefore, as listed in
Table 2 and Figure 2, this paper applies the triangular mem-
bership function which is the most commonly used one to
describe the subjective linguistic variables [15] and adopts the
five-phase method, adjusted and modified from Ngai andWat
[28] to represent the occurrence likelihood of fire (L) and the
consequence severity of building fire (S), respectively. Suppose
that the occurrence likelihood of building fire (L) and the
consequence severity of building fire (S) for each factor are
independent of each other; they are denoted by triangular fuzzy
numbers FTNL � (aL, bL, cL) and FTNS � (bS, bS, cS). )en,
the desired fire risk of each factor can be expressed as

FTNLS � FTNL ⊗ FTNS � aL ⊗ aS, bL ⊗ bS, cL ⊗ cS( . (8)

Fuzzy risk P with a belief structure can be obtained
through the following steps:

(1) According to formula (8), calculate FTNLS of each
factor

(2) Map the calculated FTNLS to the FTNP membership
curve, and obtain the intersection points of each
fuzzy language level variable (note: if there is more
than one intersection point on a certain fuzzy lan-
guage level variable, take the intersection point with
the largest longitudinal coordinate value), as shown
in Figures 3 and 4

(3) Obtain a set of intersection values (βP), which denote
five nonstandardized linguistic variable levels of risk
P in the form of fuzzy sets

(4) Normalize βP, and obtain the basic belief degree β of
each factor related to its fire risk

As listed in Table 2, if a single factor judged by experts’
knowledge and experience takes a fire risk value of that the
occurrence likelihood of building fire corresponds to
(0.5,0.75,1), the consequence severity of building fire cor-
responds to (0.25,0.50,0.75). )e corresponding value of
FTNLS will be (0.125,0.375,0.75). )en, map FTNLS to FTNP

to get the set of intersection values (βP), shown in Figure 4.
Finally, the basic belief degree β is obtained after the nor-
malization of βP, which denotes that five nonstandardized
linguistic variables of very low, low, general, high, and very
high correspond to 0.25, 0.75, 0.8, 0.4, and 0, respectively.

It is noteworthy that the triangular fuzzy numbers for the
occurrence likelihood (L) and the consequence severity (S)
of building fire judged by experts cannot be used directly as
input data for the synthesis of fire risk results by the evi-
dential reasoning algorithm. )ey need to convert to five
standardized linguistic variable terms before synthesizing
the fire risk of each factor [29].

2.4. Synthesizing Assessment Result Using the Evidence Rea-
soning Algorithm. )e theory of evidential reasoning was
first proposed by Dempsterin 1967 [30]. )en, in 1976,
Shafer further expanded and improved Dempster’s work to
form a complete and systematic theory [31]. Subsequently, in
commemoration of Dempster and Shafer’s contribution to
the theory of evidence reasoning, the theory was often called
Dempster–Shafer theory or D-S theory for abbreviation. D-S
theory can be used to deal with uncertain, imprecise, and or
inaccurate information. It was originally used as an ap-
proximate reasoning tool for information synthesis in expert
systems [32]. Later, it was applied to the decision-making
judgment of uncertain problems [33]. Due to the uncertainty
of the changing system environment and qualitative de-
scriptive information and to consider the influence of the
weight in the synthesis of evidence, evidence reasoning
algorithm (ER algorithm) was proposed [34].

After knowing the basic belief degree β and the weight ω
of each factor, suppose mn,i is a basic probability mass,

Table 1: Relative importance described by the triangular fuzzy numbers.

Relative importance in
qualitative description Description Triangular fuzzy

number
Equally important Both indexes contribute equally to the target fire risk (1, 1, 2)
Between equally and slightly
important Between the front and the back (1, 2, 3)

Slightly important Based on the objective judgment and expert experience, it is considered that one
index contributes slightly more to the target fire risk than another (2, 3, 4)

Between slightly and strongly
important. Between the front and the back (3, 4, 5)

Strongly important Based on the objective judgment and expert experience, it is considered that the
contribution of one index to the target fire risk is better than another (4, 5, 6)

Between strongly and very
strongly important Between the front and the back (5, 6, 7)

Very strongly important )e index’s contribution to the target fire risk is significantly better than another (6, 7, 8)
Between very strongly and
absolutely important. Between the front and the back (7, 8, 9)

Absolutely important )ere is evidence that one index is definitely better than another for the target fire
risk (8, 9, 9)
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denoting the degree to which the i-th basic factor ei supports
the general factor y to be evaluated as the n-th grade:

mn,i � ωiβn,i, n � 1, . . . , N. (9)

)e unassigned probability mass mH,i is composed of
two parts, which represent the unassigned mass function
mH,i due to the weight and the unassigned mass function
mH,i due to the lack of information and incompleteness:

mH,i � 1 − 
N

n�1
mn,i � 1 − ωi 

N

n�1
βn,i, (10)

mH,i � mH,i + mH,i, (11)

mH,i � 1 − ωi, (12)

mH,i � ωi 1 − 

N

n�1
βn,i

⎛⎝ ⎞⎠. (13)

Suppose mn,I(i+1) represent the combined masses of i

basic factors synthesized on the n-th evaluation grade.
Suppose mH,I(i+1) represent the unassigned probability mass
to the first i basic factors. )e formula is as follows:

Hn : mn,I(i+1) � KI(i+1) mn,I(i)mn,i+1 + mH,I(i)mn,i+1

+ mn,I(i)mH,i+1,
(14)

H{ }: mH,I(i+1) � KI(i+1) mH,I(i) + mH,i+1 , (15)

H{ }: mH,I(i+1) � KI(i+1) mH,I(i) mH,i+1 + mH,I(i) mH,i+1

+ mH,I(i)mH,i+1,
(16)

KI(i+1) � 1− 
N

t�1


N

j�1
j≠1

mt,I(i)mj,i+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

, i � 1, . . . ,L −1, (17)

where KI(i+1) represents the normalizing factor, which re-
flects the degree of conflict between the indicators (evi-
dence). Suppose that there is a total of L basic factors for
evaluation objectives; then, mn,I(L), mH,I(L), and mH,I(L) are
obtained by iteration calculation. After that, the combined
belief degree can be obtained by the following normalization
process:

Hn : βn �
mn,I(i)

1 − mH,I(L)

, (18)

H{ }: βH �
mH,I(L)

1 − mH,I(L)

, (19)

where βH represents the unassigned belief degree to the
general factor y after aggregation. βn and βH represent the
comprehensive belief degree to the evaluation object.

Table 2: Linguistic variables described by the triangular membership number.

Likelihood of building fire (L) Severity of building fire (S) Triangular fuzzy number
Highly unlikely (HU) Negligible (NE) (0.00, 0.00, 0.25)
Unlikely slight (US) Slight (SL) (0.00, 0.25, 0.50)
Likely (LI) Moderate (MO) (0.25, 0.50, 0.75)
Reasonably likely (RL) Serious (SE) (0.50, 0.75, 1.00)
Highly likely (HL) Catastrophic (CA) (0.75, 1.00, 1.00)

NE
HU

SL
US

MO
LI

SE
RL

CA
HL

0.0
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0.6

0.8
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U
 (x

)
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x

Figure 3: Triangular fuzzy membership function.
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Figure 4: An example of mapping FTNLS to FTNP.
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2.5. Obtaining a Clear Result Using the Expected Utility
Method. In fact, the belief degree vector obtained in the
former evaluation is the trust distribution of risk under the
identification framework, and the result cannot be shown
clearly. For example, the identification framework of a
building fire risk (i.e., assessment set) is recorded as “very
low,” “low,” “general,” “high,” and “very high.” Suppose that
the combined degree of the belief vector is (0,0.45,0.5,0.05,0),
calculated by the above formula, which means that the
construction risk level corresponds to a “low” level of 45%, a
“general” level of 50%, and a “high” level of 5%. However,
this information cannot clearly indicate themagnitude of the
fire risk. )erefore, the concept of utility value is introduced
in [35] as follows:

u(y) � 
N

n�1
βnu Hn( , (20)

where u(Hn) represents the utility of the evaluation grade
Hn. In order to further clarify the level of the fire risk
corresponding to the utility value, it is necessary to classify
the grade of the fire risk. )is paper presents the classifi-
cation as shown in Table 3.

Quantitative evaluation results (utility values) can be
obtained by processing the above methods. However, if the
basic attribute (factor) information is incomplete or the
expert’s information about the factor is uncertain, the result
obtained by the ER algorithm is also uncertain. [34, 36–38]
refer to the concept of utility interval and conquer this
problem through minimum utility umin(y), maximum
utility umax(y), and average utility uavg(y):

umin(y) � β1 + βH( u H1(  + 
N

n�2
βnu Hn( ,

umax(y) � 
N−1

n�1
βnu Hn(  + βN + βH( u HN( ,

uavg(y) �
umax(y) + umin(y)

2
.

(21)

2.6. Verification of the Model Using Sensitivity Analysis.
Due to the influence of external factors, input values ob-
tained from different experts or the same experts in different
periods are different. Consequently, the uncertainty is in-
herent in fire risk assessment. In this paper, a sensitivity
analysis method is introduced for studying and predicting
the disturbance degree of the model output value (risk
magnitude) caused by the change of the input value of each
index. Sensitivity analysis is a systematic analysis method,
which identifies weak points or areas in the system with the
insight of managers in quantitative evaluation and contin-
uously improves the design of the system and improves the
stability of the system [39].

If the validated model is reliable and its reasoning
process is logically feasible, then the sensitivity analysis of
the model at least satisfies the following three theorems:

(1) A slight increase/decrease in the degrees of belief at
any linguistic variables of the lowest-level factors will
result in increase/decrease in the fire risk level of the
output of the model

(2) If the belief degree at the lowest preference linguistic
variable of the lowest-level factors increases by p and
q (meanwhile, the belief degree at the highest
preference linguistic variable decreases by p and q

(1> q>p)) and the utility values of the model output
are up and uq, then up should be greater than up

(3) In the lowest-level factors, the total influence of x

factors on the output of the model is always greater
than that of x − y(y ∈ x) factor sets

3. Case Study

)ree residential buildings marked from BUILDING-1 to
BUILDING-3 were selected as a case study to illustrate the
proposed fire risk model. )is paper takes BUILDING-1, for
example, to describe the calculation process of the model
step by step. Based on the hierarchical structure of the fire
risk model in Figure 2 and the available information in [40],
the fire risk of BUILDING-1can be assessed through the
following steps.

3.1. Develop a Generic Fire Risk Model for BUILDING-1.
At this phase, the identified fire risk factors and a generic fire
risk model are presented in Figure 1.)e index system of fire
risk assessment mainly consists of three levels, including the
total target risk, the first-level factor set, and the second-level
factor set. According to Wang et al. [41], fuzzy linguistic
terms for risk expression are used for effective information
processing in the range of 4 to 7. )erefore, this study uses
five linguistic terms to denote the assessment of fire risk
based on the viewpoint of experts in the field.

3.2. Determine the Weights of Each Factor. Given the hier-
archical structure of fire risk in Figure 2, the weight cal-
culations for fire risk factors are conducted. )e weight
calculations of factors U1, U2, U3, U4, and U5 are taken as
an example. Firstly, the judgment matrix is constructed
through the pairwise comparison of these five factors by
experts (according to Table 1) and presented in Table 4.
)en, according to equations (3) and (4), the value of
synthetic extent Si and the possibility degree d′(Ai) of each
factor are obtained, respectively. Finally, the normalized
weight vector for five factors is obtained. Using a similar
way, the weights of all factors can be calculated and listed in
Table 5.

3.3. Application of the Belief Structure for Fire Risk in
BUILDING-1. According to the actual situation of
BUILDING-1 fire safety, the occurrence likelihood of fire (L)
and the consequence severity of fire (S) for each bottom
index should be scored, and the scoring standards are mainly
based on the code for fire-protection design of buildings
(GB50016-2014) [42], code for fire prevention in design of
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interior decoration of buildings (GB 50222-2017) [43],
guidance on building fire risk assessment for property in-
surance, and CIB W14Workshop Report [44]. For example,
the detailed scoring rules of index U15 (building service life)
and index U4 (property fire management) are shown in
Table 6. According to these rules, it is easy to obtain the value
of FTNL and FTNs of each bottom index. Accordingly, by
utilising equation (8), the fire risk of each bottom index is
presented in Table 7 in the form of FTNLS. )en, FTNLS is
mapped to FTNP for obtaining the intersection point. Fi-
nally, the basic belief degree β is obtained after the nor-
malization of βP, and the results are shown in Table 8.

3.4. Synthesizing Assessment Result Using the Evidence Rea-
soning Algorithm. On the premise that the weight of
each index was obtained, the aggregation calculations for
U11, U12, U13, U14, U15, and U16 were implemented
according to the D-S operator (equations (9)–(20)); then,
the aggregation result of disaster-causing factor U1 is
obtained. Similarly, the aggregation results of
passive measures U2, active measures U3, property
fire management U4, the rescue capability of fire brigade
U5 and the objective fire risk R can also be obtained,
and the results of the first-level index are presented in
Table 9.

Table 3: Classification of the building fire risk level.

Fire risk level Risk interval Risk description and measures
Very low (0.00, 0.06] Risks are negligible.
Low (0.06, 0.25] Risks are acceptable, but if cost-effectiveness is reasonable, measures can be taken to reduce risks.
Moderate (0.25, 0.44] Risks are tolerable and, if feasible, measures must be taken to reduce them.
High (0.44, 0.72] Measures must be taken to reduce risks.
Very high (0.72, 1.00] Risk is unacceptable. Measures must be taken to reduce the risk and control it effectively.

Table 4: Triangular fuzzy judgment matrix of indexes U1–U5.

R U1 U2 U3 U4 U5
Expert 1 (1,1,2) (2,3,4) (2,3,4) (2,3,4) (1,2,3)
Expert 2 (1,1,2) (2,3,4) (1,2,3) (1,2,3) (3,4,5)
Expert 3 (1,1,2) (3,4,5) (2,3,4) (2,3,4) (1,2,3)
Expert 4 (1,1,2) (2,3,4) (2,3,4) (1,2,3) (1,2,3)
Expert 5 (1,1,2) (2,3,4) (2,3,4) (2,3,4) (3,4,5)
Expert 6 (1,1,2) (3,4,5) (1,2,3) (2,3,4) (1,2,3)
U1 (1,1,2) (2.33,3.33,4.33) (1.67,2.67,3.67) (1.67,2.67,3.67) (1.67,2.67,3.67)
Expert 1 (0.25,0.33,0.5) (1,1,2) (0.33,0.5,1) (1,1,2) (1,1,2)
Expert 2 (0.25,0.33,0.5) (1,1,2) (0.25,0.33,0.5) (1,1,2) (1,2,3)
Expert 3 (0.2,0.25,0.33) (1,1,2) (0.5,1,1) (1,1,2) (0.5,1,1)
Expert 4 (0.25,0.33,0.5) (1,1,2) (0.33,0.5,1) (1,1,2) (0.5,1,1)
Expert 5 (0.25,0.33,0.5) (1,1,2) (0.25,0.33,0.5) (1,1,2) (1,2,3)
Expert 6 (0.2,0.25,0.33) (1,1,2) (0.5,1,1) (1,1,2) (1,1,2)
U2 (0.23,0.31,0.44) (1,1,2) (0.36,0.61,0.83) (1,1,2) (0.83,1.33,2)
Expert 1 (0.25,0.33,0.5) (1,2,3) (1,1,2) (1,1,2) (1,2,3)
Expert 2 (0.33,0.5,1) (2,3,4) (1,1,2) (1,2,3) (1,2,3)
Expert 3 (0.25,0.33,0.5) (1,1,2) (1,1,2) (1,2,3) (1,1,2)
Expert 4 (0.25,0.33,0.5) (1,2,3) (1,1,2) (1,1,2) (1,1,2)
Expert 5 (0.25,0.33,0.5) (2,3,4) (1,1,2) (1,2,3) (1,2,3)
Expert 6 (0.33,0.5,1) (1,1,2) (1,1,2) (1,2,3) (1,2,3)
U3 (0.28,0.39,0.67) (1.33,2,3) (1,1,2) (1,1.67,2.67) (1,1.67,2.67)
Expert 1 (0.33,0.5,1) (0.5,1,1) (0.5,1,1) (1,1,2) (1,1,2)
Expert 2 (0.25,0.33,0.5) (0.5,1,1) (0.5,1,1) (1,1,2) (1,1,2)
Expert 3 (0.33,0.5,1) (0.5,1,1) (0.33,0.5,1) (1,1,2) (0.5,1,1)
Expert 4 (0.25,0.33,0.5) (0.5,1,1) (0.5,1,1) (1,1,2) (0.5,1,1)
Expert 5 (0.33,0.5,1) (0.5,1,1) (0.5,1,1) (1,1,2) (1,1,2)
Expert 6 (0.33,0.5,1) (0.5,1,1) (0.33,0.5,1) (1,1,2) (1,1,2)
U4 (0.28,0.39,0.67) (0.5,1,1) (0.33,0.5,1) (1,1,2) (0.83,1,1.67)
Expert 1 (0.33,0.5,1) (0.5,1,1) (0.33,0.5,1) (0.5,1,1) (1,1,2)
Expert 2 (0.2,0.25,0.33) (0.33,0.5,1) (0.33,0.5,1) (0.5,1,1) (1,1,2)
Expert 3 (0.33,0.5,1) (1,1,2) (0.5,1,1) (1,1,2) (1,1,2)
Expert 4 (0.33,0.5,1) (1,1,2) (0.5,1,1) (1,1,2) (1,1,2)
Expert 5 (0.2,0.25,0.33) (0.33,0.5,1) (0.33,0.5,1) (0.5,1,1) (1,1,2)
Expert 6 (0.33,0.5,1) (0.5,1,1) (0.33,0.5,1) (0.5,1,1) (1,1,2)
U5 (0.29,0.42,0.78) (0.61,0.83,1.33) (0.39,0.67,1) (0.67,1,1.33) (1,1,2)
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Table 5: Weights of fire risk factors.

Fire risk factors Abbreviation Weights
Disaster-causing factors U1 0.364
Passive measures U2 0.149
Active measures U3 0.244
Property fire management U4 0.122
)e rescue capability of fire brigade U5 0.121
Electrical equipment U11 0.276
Occupant density U12 0.236
Gas use mode U13 0.222
Interior decoration U14 0.117
Building service life U15 0.110
Ambient U16 0.049
Fire resistance rating U21 0.476
Fire compartment U22 0.205
Safe evacuation U23 0.265
Fire separation distance U24 0.054
Indoor hydrant water supply system U31 0.331
Portable fire-extinguisher apparatus U32 0.366
Safety monitoring system U33 0.303
Fire lane U51 0.317
Fighting capability of fire brigade U52 0.367
Water supply system of outdoor fire hydrant U53 0.316

Table 6: Detailed scoring rules of U15 and U4.

Indexes Detailed scoring rules Score (L) Score (S) Remarks

U15-building
service life

(1) 0< service life< n/5
(2) n/5< service life≤ 2n/5
(3) 2n/5< service life≤ 3n/5
(4) 3n/5< service life≤ 4n/5
(5) Service life< 4n/5

(0.00, 0.00, 0.25)
(0.00, 0.25, 0.50)
(0.25, 0.50, 0.75)
(0.50, 0.75, 1.00)
(0.75, 1.00, 1.00)

(0.00, 0.00, 0.25)
(0.00, 0.25, 0.50)
(0.25, 0.50, 0.75)
(0.50, 0.75, 1.00)
(0.75, 1.00, 1.00)

n is the design life

U4-property fire
management

(1) Four aspects are perfect
(2) Any aspects are not perfect
(3) All four aspects are not perfect

(0.25, 0.50, 0.75)
(0.25, 0.50, 0.75)
(0.50, 0.75, 1.00)

(0.25, 0.50, 0.75)
(0.25, 0.50, 0.75)
(0.50, 0.75, 1.00)

Including four aspects:
(1) )ere are full-time fire safety
management personnel with prejob training
(2) )e system of fire management is
established, and the responsibility is clear
(3) )e hidden danger is checked and
recorded every day
(4) Regular inspection of fire facilities
and timely maintenance

Table 7: )e fire risk of each factor.

Fire risk factors FTNL FTNS FTNLS

U11 (0,0,0.25) (0,0.25,0.5) (0,0,0.13)
U12 (0.25,0.5,0.75) (0.25,0.5,0.75) (0.06,0.25,0.56)
U13 (0,0.25.0.5) (0.25,0.5,0.75) (0,0.06,0.25)
U14 (0.5,0.75,1) (0.5,0.75,1) (0.25,0.56,1)
U15 (0.25,0.5,0.75) (0.25,0.5,0.75) (0.06,0.25,0.56)
U16 (0,0,0.25) (0,0,0.25) (0,0,0.06)
U21 (0.25,0.5,0.75) (0.25,0.5,0.75) (0.06,0.25,0.56)
U22 (0.25,0.5,0.75) (0,0.25.0.5) (0,0.13,0.38)
U23 (0.25,0.5,0.75) (0.25,0.5,0.75) (0.06,0.25,0.56)
U24 (0,0,0.25) (0,0,0.25) (0,0,0.06)
U31 (0.25,0.5,0.75) (0.25,0.5,0.75) (0.06,0.25,0.56)
U32 (0.25,0.5,0.75) (0,0.25.0.5) (0,0.13,0.38)
U33 (0,0.25.0.5) (0,0.25.0.5) (0,0.06,0.25)
U4 (0.25,0.5,0.75) (0.25,0.5,0.75) (0.06,0.25,0.56)
U51 (0.25,0.5,0.75) (0,0,0.25) (0,0,0.19)
U52 (0.25,0.5,0.75) (0,0.25.0.5) (0,0.13,0.38)
U53 (0.25,0.5,0.75) (0,0.25.0.5) (0,0.13,0.38)
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3.5.2eTarget Fire Risk Assessment Using the ExpectedUtility
Method. From Table 9, the objective fire risk R corre-
sponding to five-level linguistic terms can be expressed as
R� {VL (0.36), L (0.43), M (0.16) H (0.04), VH (0.005)},
which cannot reveal the magnitude of the target fire risk in a
clear way. )us, the final fire risk (FR) is evaluated using
equation (21), and the result is 0.2205, shown in Table 10.
According to Table 3, it could be observed that the objective
fire risk R is acceptable, but if cost-effectiveness is reason-
able, measures can be taken in this building to reduce its fire
risks.

3.6. Sensitivity Analysis. In order to verify the model, the
degrees of belief at the lowest preference linguistic variable of
the lowest-level factors should increase by 10%, 20%, and
30% (meanwhile, the degrees of belief at the highest pref-
erence linguistic variable decrease by 10%, 20%, and 30%).
)e model output data are tabulated in Table 11, and the
graphic display results are listed in Figure 5. It is obvious that
all the results are consistent with theorems 1 and 2, re-
spectively. According to theorem 3, if the model is logically
reasonable and feasible, the belief degree at the lowest level of
the hierarchy structure associated with x factors will always
be smaller than the one associated with x − y (y ∈ x) fac-
tors. )is can be illustrated by comparing the results of
different input data, such as if the belief degree at the lowest

preference linguistic variable associated with all the lowest-
level factors increases by 10% (simultaneously, the one at the
highest preference linguistic variable decreases by 10%), the
output utility value is 0.1717. However, if the belief degree at
the lowest preference linguistic variable associated with U11,
U12, U13, U14, U15, U16, U21, U22, U23, U24, U31, U32,
and U33 factors increases by 10% (simultaneously, the one at
the highest preference linguistic variable decreases by 10%),
the output utility value is 0.1826. Considering that 0.1717 is
smaller than 0.1826, it can be concluded that the verified
model satisfies theorem 3.

4. Results and Discussion

Based on the results of the case study in Table 12 and
Figure 6, it can be observed that the fire risk level of three
buildings corresponds to “moderate” or below. However, it
is noteworthy to mention that some aspects should be paid
attention to.

In the aspect of disaster-causing factor U1: since the
service life of the three residential buildings is less than 10
years and there is no dangerous disaster-causing factor in the
internal and external environment of these buildings, the fire
risk corresponding to U1 of these buildings is all acceptable.

In the aspect of passive measures U2: U2 of BUILDING-
2 and BUILDING-3 was higher than that of BUILDING-1.
)is was mainly due to obstruction of safe evacuation in the

Table 8: Intersection results of fire risk factors.

Fire risk factors
βP β

VL L M H VH VL L M H VH

U11 1 0.33 0 0 0 0.75 0.25 0 0 0
U12 0.25 0.75 0.8 0.4 0 0.11 0.34 0.36 0.18 0
U13 0.67 0.75 0.25 0 0 0.4 0.45 0.15 0 0
U14 0 0.44 0.89 0.73 0.36 0 0.18 0.37 0.3 0.15
U15 0.43 1 0.56 0.11 0 0.2 0.48 0.27 0.05 0
U16 0.8 0.57 0 0 0 0.58 0.42 0 0 0
U21 0.43 1 0.56 0.11 0 0.2 0.48 0.27 0.05 0
U22 0.67 0.75 0.25 0 0 0.4 0.45 0.15 0 0
U23 0.43 1 0.56 0.11 0 0.2 0.48 0.27 0.05 0
U24 1 0.2 0 0 0 0.83 0.17 0 0 0
U31 0.43 1 0.56 0.11 0 0.2 0.48 0.27 0.05 0
U32 0.67 0.75 0.25 0 0 0.4 0.45 0.15 0 0
U33 0.8 0.57 0 0 0 0.58 0.42 0 0 0
U4 0.43 1 0.56 0.11 0 0.2 0.48 0.27 0.05 0
U51 1 0.43 0 0 0 0.7 0.3 0 0 0
U52 0.67 0.75 0.25 0 0 0.4 0.45 0.15 0 0
U53 0.67 0.75 0.25 0 0 0.4 0.45 0.15 0 0

Table 9: Aggregation of fire risk factors.

Fire risk factors Very low Low Moderate High Very high
Disaster-causing factors U1 0.3875 0.3515 0.1753 0.0721 0.0136
Passive measures U2 0.2555 0.4841 0.2234 0.0370 0
Active measures U3 0.3898 0.4679 0.1277 0.0146 0
Property fire management U4 0.2045 0.4773 0.2652 0.0530 0
)e rescue capability of fire brigade U5 0.5099 0.4015 0.0886 0 0
Objective fire risk R 0.3644 0.4332 0.1572 0.0383 0.0049
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stairwell of BUILDING-2 and BUILDING-3, such as some
evacuation passageways are littered with debris and some
safety evacuation signs are missing, which mean that the
residents may fail to evacuate from these buildings in case of
a fire.

In the aspect of active measures U3 and property fire
management U4: U3 and U4 of BUILDING-3 were higher
than those of BUILDING-1 and BUILDING-2. )is was
mainly due to the lack of regular maintenance of fire-fighting
equipment in BUILDING-3. It can be assured that if there is
no regular maintenance and inspection, the reliability of fire-
fighting equipment will be reduced. In BUILDING-3, it was
found that some fire-fighting equipment were rusty or even
abandoned, such as safety monitoring device was out of use,
and the fire extinguisher was out of the service date range. In
addition, U4 of BUILDING-2 was higher than that of
BUILDING-1. )is is mainly because that, in BUILDING-2,
there is no prejob training of safety management personnel,
and daily fire hazard investigation is not carried out.

In the aspect of the rescue capability of fire brigade U5:
BUILDING-2 and BUILDING-3 are all located in CBD of
the city. It means that the traffic around the buildings is
congested, and the nearby fire brigade may not be able to
arrive in time. In particular, BUILDING-2 is further away
from the fire brigade than BUILDING-3.

Furthermore, the fire risk of residential buildings is
determined by many factors in the complex external envi-
ronment. It is noteworthy from the analysis that a slight
change will lead to the corresponding change in the output
value of the model. According to Figure 5, it is obvious that
the fire risk model is more sensitive to occupant density U12,
electrical equipment U11, property fire management U4,
portable fire-extinguisher apparatus U32, and indoor hy-
drant water supply system U31 than other factors. In other
words, the uncertainty of these factors has a relatively large
influence on the disturbance of the model system.)erefore,
the most effective way to reduce the fire risk of residential
buildings is to control these five indicators at first. )e
analysis results are also consistent with the actual fire pre-
vention measures.

In the previous studies [40, 45], grey correlation method
and fuzzy clustering method were applied for fire risk as-
sessment in these buildings of China, and the results of these
studies are in accordance with the results of our research,
which indicated that the presented model is logically feasible
and can still maintain its specific function under turbulence
or uncertainty conditions.

Table 10: Utility value for measuring the building fire risk.

Rating Hn Very low Low Moderate High Very high

Vn 1 2 3 4 5
u(Hn) 0 0.25 0.5 0.75 1
βn 0.3664 0.4332 0.1572 0.0383 0.0049
βn × u(Hn) 0 0.1083 0.0786 0.0287 0.0049
FR � 

N
n�1 βn × u(Hn) � 0.2205

Table 11: Increase/decrease model input data.

Increase the input data at the lowest preference linguistic variable;
meanwhile, decrease the input data at the highest preference
linguistic variable
Fire risk factors 10% 20% 30%
U12 0.2116 0.2054 0.1997
U11 0.2123 0.2069 0.2026
U4 0.2128 0.2076 0.2041
U32 0.2138 0.2094 0.2050
U31 0.2142 0.210 0.2069
U21 0.2146 0.2108 0.2082
U14 0.2155 0.2121 0.2089
U13 0.2163 0.2132 0.2102
U33 0.2168 0.2143 0.2118
U52 0.2170 0.2152 0.2134
U23 0.2172 0.2153 0.2138
U53 0.2174 0.2160 0.2147
U22 0.2179 0.2168 0.2156
U51 0.2180 0.2168 0.2160
U16 0.2181 0.2170 0.2161
U15 0.2182 0.2173 0.2164
U24 0.2191 0.2184 0.2177
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Figure 5: Sensitivity analysis of model output data.

Table 12: Fire risk levels of three buildings.

Target building U1 U2 U3 U4 U5 U
BUILDING-1 0.2432 0.2604 0.1918 0.2916 0.1447 0.2205
BUILDING-2 0.2264 0.3804 0.1921 0.4034 0.2691 0.2511
BUILDING-3 0.2398 0.3779 0.3367 0.6042 0.2558 0.3073
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5. Conclusions

)is study proposes a novel model which combines evidence
theory, fuzzy theory, and sensitivity analysis technique for
assessing the building fire risk using inaccurate input data in
order to optimize system operating efficiency by a stan-
dardized fuzzy linguistic term. )is model is different from
the traditional risk assessment model and characterized with
flexible data acquisition capability and unified input and
output modes. )erefore, it is easy to deal with the un-
certainty of the fire risk problem in the complex system.

Furthermore, the model adopts a series of processes,
such as weight calculation based on the FAHP, two-di-
mensional measurement of the fire risk based on triangular
fuzzy numbers, construction of the belief structure, factor
aggregation via the evidential reasoning algorithm, and
assessment results using the expected utility method, to
effectively address uncertainties of subjective estimation. In
summary, the proposed model has the following advantages
for fire risk analysis on the complex system: (1) this model
presents a managerial view to analysts in a reasonable, re-
liable, and transparent way so that they can collaborate with
experts’ suggestion or on-site investigation to model com-
plex systems under external uncertainties. (2) )e model
provides an effective tool for researchers to make full use of
limited information to assess the fire risk of the whole system
and improve its operational flexibility. (3) )e model has
strong flexibility, has high robustness, and is easy to pro-
gram. It can be used as a computer tool for fire risk as-
sessment of complex systems under high uncertainty.

)is research proposes a quantitative fire risk assessment
model which could provide building fire managers and
researchers with flexible and transparent tools to effectively
reduce the fire risk under the disturbance of fire risk

uncertainty of the system. It should be noted that, in our
study, the index scoring rules are mainly based on codes and
standards, which lead to conservative results. )erefore, the
acceptable level of fire risk based on performance-based
codes needs to be determined in the future [46].
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+e coal mill is one of the important auxiliary engines in the coal-fired power station. Its operation status is directly related to the safe
and steady operation of the units. In this paper, a model-based deep learning algorithm for fault diagnosis is proposed to effectively
detect the operation state of coal mills. Based on the system mechanism model of coal mills, massive fault data are obtained by
analyzing and simulating the different types of faults. +en, stacked autoencoders (SAEs) are established by combining the said data
with the deep learning algorithm. +e SAE model is trained by the fault data, which provide it with the learning and identification
capability of the characteristics of faults. According to the simulation results, the accuracy of fault diagnosis of coalmills based on SAE
is high at 98.97%. Finally, the proposed SAEs can well detect the fault in coal mills and generate the warnings in advance.

1. Introduction

+e coal mill is one of the important auxiliary equipment of
coal-fired units, and its operating status is directly related to
the safe and stable operation of the units. When a fault
occurs in the coal mill, the fuel supply of the boiler cannot be
guaranteed which creates the mismatch between boiler
energy output and the turbine power output. Under this
situation, a quick load rejection operation will occur, which
directly leads to fire extinguishing in the furnace.+e fault in
the coal mill will cause large economic loss to power gen-
eration enterprises and decrease the safety and stability of
the power system. +erefore, it is of great necessity to
guarantee the normal operation through effective fault
warning and diagnosing of coal mill.

Agrawal et al. [1] divided the fault diagnosis methods
into three categories: model-, signal-, and historical oper-
ation data-based fault diagnosis methods. Model-based fault
diagnosis methods need to establish the mathematical model
of the coal mill. Odgaard and Mataji [2] used a simplified
energy balance equation to monitor and diagnose abnormal
energy flow in the coal mill. Andersen et al. [3] designed a
Kalman filter to estimate the moisture in the coal that enters

and exists a coal mill to determine whether the energy in the
coal mill is in normal condition. Based on the multisegment
model of coal mills established byWei et al. [4], Guo et al. [5]
realized the monitoring of the state of coal mills by iden-
tifying the abnormal variation in the model parameters.
Model-based fault diagnosis methods analyze the mathe-
matical model of the actual object for fault diagnosis, and
thus, the physical meaning is clear. However, establishing
the exact model in practical application is difficult [6–10].
+us, the operability of these methods is poor.

Signal-based fault diagnosis systems are widely used to
evaluate the health of mechanical equipment. Many signals
of high frequency change during the operation of the coal
mill, such as current of coal mill, outlet primary air flow of
coal mill, and differential pressure of primary air. Su et al.
[11] designed a system that records the vibration signals of
the coal mill and shifts them to energy amplitudes by use of
wavelet analysis. Whether the coal mill is in coal inter-
ruption or coal choking, other fault operations can be de-
termined by analyzing the relationship between the
vibration signals and the amount of coal in the mill. Kisić
et al. [12] proposed a method to detect the wear degree of
grinding roller and analyzed the multivariate control chart on
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the frequency spectrum to find the appropriate time to replace
the worn parts. Collura et al. [13] utilized model identification
and signal processing techniques to develop a coal mill
performance monitoring tool based on real-time detection of
the fineness of pulverized coal. Compared with the model-
based fault diagnosis method, the signal-based fault diagnosis
method does not need to establish complex object model.
Only through the analysis of collected data can a fault in the
system be found. However, these methods often need to
install a large number of sensors to collect signal, thereby
resulting in high implementation and maintenance costs.

Fault diagnosis based on historical operation data is
mainly done by analyzing the differences between the
normal operation data and fault operation data to determine
the health status of coal mill. Han and Jiang [14] proposed a
fault diagnosis method based on fuzzy decision clustering
and used a single-layer neural network to realize three kinds
of fault identification of coal mill. Qin et al. [15] utilized the
abnormal operation data of the coal mill to establish an
expert system to determine the operating status of the coal
mill by comparing the trend of the model output with the
expert system. A data-based fault analysis method is a data-
driven approach, and even researchers who are unfamiliar
with the system can use relevant algorithms for analysis.
However, fault types and fault data in the mass historical
data of the thermal power units are incomplete and a data-
driven method requires analyzing a large amount of fault
data. +us, selecting the fault data from the vast amount of
historical data one by one is difficult [16–18].

+e model-based fault diagnosis method needs to es-
tablish an accurate model of the coal mill in order to obtain
good fault diagnosis results. However, the coal mill is a
complex object with multiparameter coupling. It is difficult
to establish an accurate mathematical model. +e premise of
applying signal-based fault diagnosis methods is to be able to
measure themonitored parameters.+erefore, it is necessary
to install a large number of new sensors on the shell of the
coal mill. However, when the coal mill was initially con-
structed, it usually did not consider reserving the mechanical
interface for new sensors. So, it is not easy to install new
sensors on the shell of the coal mill. +e fault diagnosis
method based on historical operation data firstly needs to
obtain a large amount of fault operation data of the coal mill.
However, the fault data of the coal mill is usually mixed with
the normal operation data, which is difficult to classify and
identify. Based on the above analysis, the existing methods
are difficult to achieve good application results for the fault
diagnosis of coal mills. Although the above three types of
traditional methods have shortcomings, combining their
advantages can find a simpler and more effective method to
solve the fault diagnosis of coal mills. +e basic idea is to
obtain fault simulation data based on a simplified model and
use big data analysis for fault identification. In recent years,
the rapid development of deep learning algorithms has
provided the possibility of big data analysis. Guo et al. [19]
constructed an adaptive convolution neural network, which
greatly improves accuracy of fault diagnosis of motor
bearing. Duan et al. [20] used a deep learning algorithm to
study the missing traffic data to implement the interpolation

of missing data. In this study, a model-based data-driven
fault diagnosis method is proposed to obtain a fault diag-
nosis method with simple operation, low cost, and high
accuracy. First, on the basis of the simplified coal mill model,
massive fault data of the coal mill are obtained by analyzing
the fault principle and simulating the fault operation status
of the coal mill.+is method solves the difficulty in obtaining
a large amount of fault data manually from the massive data.
+en, stacked autoencoders (SAEs) with multilayer neural
networks are established on the basis of the theory of deep
learning algorithm.+e numerous fault data obtained by the
steps above are used in the training of the networks to fully
motivate the nonlinear characteristics of deep neural net-
works. +us, the built network can accurately learn the
essential characteristics of all kinds of faults and then achieve
the early warning and diagnosis of the fault in coal mills.+e
above method can greatly improve the fault diagnosis ac-
curacy of the coal mill, and at the same time, it can also
provide fault warning to the operator, which is of great
significance for ensuring the safe operation of the power
plant and ensuring the safety of the equipment.

+e rest of the paper is organized as follows. Section 2
introduces the working principle of the coal mill and its
nonlinear dynamic model. Section 3 analyzes the mecha-
nism of two typical coal mill faults and obtains a large
number of fault data by simulation experiments. Section 4
introduces the working principle of the SAEs and makes
certain improvements to the model. Section 5 is the sim-
ulation analysis that aims to verify the effectiveness of the
proposed method in the fault diagnosis of the coal mill.
Section 6 elaborates the conclusions of the study.

2. Brief Introduction of the Coal Mill System

2.1. Working Principle. MPS-type medium-speed coal mill
[21] is a roller-type coal mill designed and manufactured by
Babcock, Germany. Such mills are characterized by smooth
output, low energy consumption, and long maintenance
period. In this study, MPS180-HP-II medium-speed coal
mill is used in the analysis. +e maximum output is 44.496 t/
h, and the fineness of coal powder R90 is 22% (Figure 1). R90
indicates the probability that coal powders cannot pass
through a sieve with a pore size of 90 μm.

+e raw coal falls into the coal mill through the coal
dropping pipe and is milled into coal powder under the
squeezing effect of twomilling parts (grinding disks and rollers)
[4]. +e primary air enters the coal mill through the annulus
around the grinding disk to dry the coal powders and bring
them into the coarse coal separator for separation.+e qualified
fine coal powders are blown into the boiler for combustion
while large ones return into the coal for subsequent milling.

2.2. Mathematical Model of the Coal Mill. +e operation of
the coal mill involves the mass balance of coal and the energy
balance of the entire coalmill. Establishing an effective dynamic
mathematical model of coal mills is an important prerequisite
for the state monitoring of coal mills. Zeng et al. [22–24]
established an MPS medium-speed mill model (equation (1)),
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which includes three inputs and three outputs based on the
mass and energy balance of the primary air and coal moisture
in the mill. +e proposed method is based on this model, and
the symbolic description of the model is shown in Table 1:

_Wair �
1

T1
−Wair + W

max
L uL + W

max
H uH( ,

_Tin �
1

T2
−Tin +

CLWmax
L uLTL + CHWmax

H uHTH

Cin Wmax
L uL + Wmax

H uH( 
 ,

_Mc � Wc − K10Mc,

_Mpf � K10Mc − Wpf,

Wpf � K11ΔPpaMpf,

ΔPpa �
22.4
28.8

·
273 + Tin

273
·

Wair

10
 

2
,

I � K6Mpf + K7Mc + K8,

_Tout � K1Tin + K2 Wair + K3Wc

− K4Tout + K5  Wair + Wc  + K9I

+ K12Tout − K14W
water
free ,

_Mpc �
1

Mc + Mpf

MarWc − W
water
free − MpcWpf ,

W
water
free � K13 WcMar( Tout 1 − e

Wair/K15( ) .

(1)

In Equation (1), UL, UH, and Wc are the control
quantities of the model; Wair, Tout, and Wpf are the output
quantities of themodel; andKi and Ti (i� 1, 2, . . ., 15, j� 1, 2)
are the model parameters to be identified and of which the
values are shown in Table 2.

3. Model-Based Coal Mill Fault Simulation

+e fault types and fault data in the vast amount of historical
data of the thermal power units are incomplete, and selecting
the fault data one by one from the massive historical data is
difficult. +erefore, effectively obtaining a large number of
fault data is the key to solve the fault diagnosis of coal mill.
+e simulation results in [22] showed that the mathematical
model of MPS-type medium speed coal mill presents high
precision. In the current study, the coal mill model is used in
the analysis and two typical coal mill faults (coal interruption
and coal choking) are simulated by analyzing the fault
mechanism of coal mill. +e simulation experiments obtain
a large number of fault data, which can effectively solve the
difficulty in obtaining fault data manually from the massive
data.

First, a control scheme is designed for the coal mill
model. +e purpose is to ensure that the simulation ex-
periments are conducted under the closed loop regulation,
such that the fault data obtained by the simulation exper-
iments can be significantly close to the real operation status
of coal mill. +e control scheme is shown in Figure 2. +e
entire control scheme consists of three controlled, three
control, and four state variables as presented in Table 3. +e
control circuits are composed of three single-loop

Coarse coal
separator

Raw
coal Mixture of air and

pulverized coal

Grinding
disk

Grinding motor and
deceleration
mechanism

Primary 
air

Grinding
roller

Figure 1: Schematic structure of the MPS medium-speed mill.

Table 1: Nomenclature.

Symbol Meaning
Wmax

L Maximum flow of cold air (kg/s)
Wmax

H Maximum flow of hot air (kg/s)
uL Valve position of cold air
uH Valve position of hot air
TL Temperature of cold air (°C)
TH Temperature of hot air (°C)
ΔPpa Differential pressure of primary air (mbar)
Cin Specific heat capacity of mixed primary air (kJ/(kg·°C))
CL Specific heat capacity of cold air (kJ/(kg·°C))
CH Specific heat capacity of hot air (kJ/(kg·°C))
Tin Inlet primary air temperature of coal mill (°C)
Wair Inlet primary air flow of coal mill (kg/s)
Wpf Outlet pulverized coal flow of coal mill (kg/s)
Mpf +e mass of pulverized coal in coal mill (kg)
Wc Inlet coal flow of coal mill (kg/s)
Mc +e mass of raw coal in coal mill (kg)
Tout Outlet temperature of coal mill (°C)
Wwater

free Evaporation of coal moisture (kg/s)
Mpc Pulverized coal (%)
Mar Coal moisture (%)
I Current of coal mill (A)
T1 Delay time of the value position to primary air flow (s)

T2
Delay time of value position to primary air temperature

(s)
Ki Identified model parameters (i � 1, 2, . . . , 15)
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proportion-integral-differential (PID) controllers. Specifi-
cally, PID1, where the setting parameters, respectively, are
Kp� 1, Ki � 0.05, Kd� 0, controls the outlet temperature of
coal mill by adjusting the valve position of cold air. PID2,
where the setting parameters, respectively, are Kp� 2, Ki� 0.5,
Kd� 0, controls the inlet primary air flow of coal mill by
adjusting the valve position of hot air, and PID3, where the
setting parameters, respectively, are Kp� 0.1, Ki � 0.1, Kd� 0,
controls the outlet pulverized coal flow of coal mill by
adjusting the inlet coal flow of coal mill. After designing the
control scheme, the fault operation status of the coal mill can
be simulated by adjusting the corresponding controllers.

3.1. Fault Simulation of Coal Interruption. When an ob-
struction exists in the coal dropping pipe or a fault occurs in
the coal feeder, the amount of coal into the coal mill will
reduce directly and coal interruption will occur when the
case is serious, thereby endangering the stability of the boiler
combustion.+e process of simulating coal interruption is as
follows. When the coal mill is in stable operation, a negative
slope signal is superimposed on PID3, such that the mass of
coal entering the coal mill is gradually reduced to 0.+e data
generated in this process can be considered the coal in-
terruption samples. A large number of coal interruption
samples can be obtained by adjusting the set value to run the
coal mill in other operation status and repeating the steps
above to record fault data.

To verify the effectiveness of the simulation experiments
of coal interruption, the variables that change significantly
during the period of coal interruption are selected and their
varying curves are drawn. Figure 3 shows the result of an
arbitrary selection of experimental data. Figure 3(a) shows
that coal interruption decreases the mass of coal entering the
coal mill, which then decreases the outlet pulverized coal
flow of the coal mill. Meanwhile, the heat consumption of
the inlet primary air flow of coal mill through the coal mill
reduces, thereby resulting in an upward trend in the outlet
temperature of coal mill; the valve position of cold air is then

rapidly opened, thereby making the outlet temperature of
coal mill fall (Figure 3(b)). +e reduction in the mass of coal
stored in the coal mill results in the reduction of the current
of coal mill and the differential pressure of primary air. +e
trend is consistent with that of the curves described in
Figures 3(c) and 3(d). +e ramp signal is removed after 75 s,
and the variables are returned to the original set value under
the control of the controller.

+e research object in [19] is a MPS-type medium speed
coal mill in a power plant in Hainan, China. +e current
study obtains sets of fault data of coal interruption by
looking for the historical operation data of the coal mill and
draws the varying curves of key variables as shown in
Figure 4. According to the accident analysis, the coal in-
terruption fault occurs because of the malfunctioning of the
coal feeder; as a result, the actual supply of coal gradually
reduces to 0 (Figure 4(a)). Figure 4 shows that, when coal
interruption fault occurs, the outlet temperature of the coal
mill rises (Figure 4(b)); however, the current of coal mill
(Figure 4(c)) and the differential pressure of primary air
(Figure 4(d)) decrease. +is changing trend is similar to that
of the key variables in the simulation of coal interruption.
+erefore, the simulation of coal interruption in this study is
reasonable. Accordingly, the data in the rectangular frame in
Figure 3 can be recorded as fault samples.

3.2. Fault Simulation of Coal Choking. Coal choking may be
caused by too little inlet primary air flow of coal mill, ex-
cessive coal feed, or too much moisture in raw coal. +e
process of simulating coal choking is as follows. A positive
step signal is superimposed on PID3 to make the mass of
coal in coal mill quickly reach the upper limit, and the data
are recorded as the coal choking samples. Similar to previous
simulation experiments, a large number of coal choking
samples can be obtained by adjusting the set value to run the
coal mill in other operation status and repeating the steps
above to record fault data.+e upper limit of the mass of coal
stored in the coal mill is set as 60 kg.

+e varying curves of the variables are drawn, and
Figure 5 shows the result of an arbitrary selection of ex-
perimental data. As shown in the figure, the sudden increase
in the set value of the outlet pulverized coal flow of coal mill
causes the mass of raw coal in the coal mill to rise con-
tinuously (Figure 5(a)) and increases the resistance along the
way, which results in the increase in differential pressure of
primary air (Figure 5(c)). At the same time, the work load of
coal mill increases accordingly, such that the current of the
coal mill increases as well (Figure 5(b)). When the thickness
of the raw coal reaches a certain degree, the grinding effi-
ciency drops significantly, which then reduces the current of
the coal mill. +e outlet pulverized coal flow of coal mill is
reduced to 0 until the mass of raw coal in the coal mill
reaches the upper limit, at which time the primary air pipe is
blocked and the pulverized coal cannot be blown out
(Figure 5(d)). +e analysis above shows that the simulation
experiment results are consistent with the fault character-
istics of coal choking; therefore, the data in the rectangular
frame can be used as fault samples.

Table 2: Identified model parameters.

Parameter Value
K1 0.00069
K2 0.19549
K3 0.00999
K4 0.00109
K5 0.09338
K6 0.17999
K7 0.88836
K8 34.2065
K9 0.01656
K10 0.41378
K11 0.07005
K12 −0.05987
K13 0.01152
K14 0.26254
K15 14.9867
T1 10.3004
T2 3.6765
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4. Stacked Autoencoders

+e fault diagnosis method based on historical operation
data is a data-driven approach, which aims to obtain the
nonlinear mapping relationship between the data and fault
features. When sufficient data are available for learning, the
deep neural networks can theoretically approximate any
nonlinear function. +is section describes a deep neural
network called SAE, which is stacked by autoencoders (AEs),
for fault diagnosis of coal mill and proposes two ways to
improve the network performance.

4.1. Fundamentals of Autoencoder. An AE neural network
can be considered a three-layer neural network. +is net-
work applies unsupervised learning algorithm to train and
adjust the network weight and ultimately sets the network
output to be equal to the network input. A typical example is

shown in Figure 6, where {x1, x2, . . ., xn; xi ∈Rn} can be
treated as a set of unlabeled raw data and
x1′, x2′, . . . , xn

′; xi
′ ∈ Rn  represents the network output. +e

circles with b are called bias units and correspond to the
intercept term.

+e transfer process of raw data from the input layer to
the hidden layer is called encoding, and the transfer process
from the hidden layer to the output layer is called decoding,
which can be described by

d � S W1x + b1( , (2)

y � S W2x + b2( , (3)

where S(·) represents sigmoid function, W1 represents the
weight matrix between the input and hidden layers, W2
represents the weight matrix between the hidden and output
layers, and b1 and b2 represent the bias.

According to the concepts mentioned in this section,
AE tries to learn a function hw,b(x)≈x. In other words, AE is
trained to learn an approximate function such that the
network output is similar to the network input. In fact, by
putting constraints into AE, such as limiting the number of
nodes in hidden layer, AE can obtain the low-dimensional
feature of the data by compressing the high-dimensional
input data. In Section 3, a large number of fault data have
been obtained by fault simulation experiments. +e
remaining parts focus on the establishment of a suitable
AE network to find the relationship between data and fault
characteristics by effective learning of the complex fault
data.
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outlet temperature 
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Figure 2: Control scheme for fault simulation of the coal mill.

Table 3: Variables declaration of control scheme.

Variable Symbol

Controlled variable
Tout
Wair
Wpf

Control variable
uL

uH

Wc

State variable

Mc

Mpf

I

ΔPpa
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+e backpropagation algorithm is used for AE training.
A training set (x(1), y(1)), . . . , (x(m), y(m))  of m training
samples is assumed. +e network can be trained using batch
gradient descent. For a single training example (x, y), the
cost function can be defined as

J(W, b; x, y) �
1
2

hw,b(x) − y
����

����
2
. (4)

For a training set of m samples, the overall cost function
is

J(W, b) �
1
m



m

i�1

1
2

hw,b(x) − y
2

 ⎡⎣ ⎤⎦ +
λ
2



nl−1

l�1


sl

i�1


sl+1

j�1
W

(l)
ji 

2
,

(5)

where λ represents weight decay coefficient that controls the
relative importance of the two terms in equation (5). W

(l)
ji

represents the synaptic weight between the i-th neuron in
layer l and j-th neuron in layer l+ 1. nl represents the number
of layers in AE. In other words, nl can represent the output
layer of the network, and sl represents the number of the
total neurons in layer l. +e first term in the definition of
J(W, b) is an average sum-of-squares error term.+e second
term is a weight decay term that can decrease the magnitude
of the weights and prevent overfitting.

+e weight W and bias b are updated with gradient
descent as follows:
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where α represents the learning rate. +e partial derivatives
in the equations above are derived as follows:
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where a
(l)
j represents the activation of unit j in layer l and

δ(l+1)
i represents the error term of layer l + 1, given by

δl
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i

⎛⎝ ⎞⎠f′ z
(l)
i , (9)

where z
(l)
i represents the input weighted sum of unit i in

layer l and f′(·) represents partial deflection of sigmoid
function. +e error term of the output layer nl is given by
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i � − yi − a
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f′ z
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i  � a
(l)
i 1 − a

(l)
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(10)

where a
(l)
i represents the activation of unit i of layer l, a

(nl)
i

represents the activation of unit i in the output layer, and z
(nl)
i

represents the input weighted sum of unit i in the output layer.
Repeating the above equations can make the output of

AE equal to the input of AE by minimizing the overall cost
function (equation (5)).

4.2. Improvement of AE. As mentioned in Section 4.1,
limiting the number of nodes in hidden layer is conducive to
helping AE learn the relationship between the input data and
fault features, because reducing the number of neurons can
simplify the structure of the hidden layer and reduce the
dimension of the input data.

Restricting the number of neurons can reduce the di-
mension of the data, but the network can learn few features
in the hidden layer. On the basis of guaranteeing the di-
versity of the features in the hidden layer, a method called
sparse constraint is introduced in this study to improve AE.
+e main idea is not to reduce the number of neurons but to

consider restrictions to limit the activities of the neurons and
thus reduce the dimension of the input data. Accordingly,
the original overall cost function (equation (5)) should be
modified to introduce an additional penalty factor, given by

Jsparse(W, b) � J(W, b) + β
s

j�1
KL ρ ‖ ρj , (11)

where

KL ρ ‖ ρj  � ρ log
ρ
ρj

+(1 − ρ)log
1 − ρ
1 − ρj

, (12)

where 
s
j�1 KL(ρ ‖ ρj) represents the sparsity penalty term,

β controls the weight of the sparsity penalty term, ρj rep-
resents the average activation of unit j in hidden layer, ρ
represents a sparsity parameter, and s represents the number
of units in one hidden layer.

+e penalty term has the following property: if ρj � ρ,
then KL(ρ ‖ ρj); the value increases monotonically with
the difference between ρj and ρ. +erefore, the activations of
hidden units are sufficiently small when ρ is set close to zero.

Randomnoise is introduced into the input data tomake the
network learn rich information and thus prevent the AE from
learning only the equivalent representation of the original data.
+e main idea is to set a small number of nodes in the input
layer to zero at a small probability. However, the probability of
introducing random noise should be appropriate; otherwise,
the noise may cause irreversible damage to the input data.

SAEs are deep neural networks consisting of multiple
layers of the improved AEs in which the output of each layer
is wired to the input of the next layer. +e SAE model is
connected with a Softmax classifier to complete the con-
struction of the deep neural network (Figure 7). +e SAE
model can identify the fault in the coal mill by learning the
labeled data obtained from the fault simulation experiments
of the coal mill.

5. Fault Diagnosis Based on SAE

5.1. Data Preprocessing and Health State Definition. In ac-
cordance with the fault simulation method described in
Section 3, the simulation experiments are conducted re-
peatedly, and then 5000 sets of experimental data are obtained
including three kinds of data samples; namely, coal mill
operates in coal broken condition (coal interruption), full-of-
coal condition (coal choking), and normal condition (normal
operation). To facilitate the training of the SAE model, the
three different operation conditions of the coal mill are la-
beled. +e definition is shown in Table 4. +e 5000 sets of
data are randomly divided into training data and test data
(Table 5). At the same time, two experiments are conducted to
validate the effects of the proposed fault diagnosis method.
+e test samples of two experiments are the same.

5.2. Establishment of the SAE Model. +e optimum SAE
model has important effects on the accuracy rate of fault
identification. In [25, 26], the unsupervised learning effect of
SAE is reported to be affected by parameters of model, such
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as the number of nodes in the input and hidden layers,
sparse parameter, and the number of times of network
training. +e experimental data of Experiment 1 are used as
training samples, and relevant experiments are conducted to
determine the optimum parameters of the SAE model. +e
evaluation index is the reconstruction error of the first layer
of the SAE model, which is calculated by equation (4), and
the experimental results are shown in Figure 8. According to
the analysis in Section 3, the significantly changed variables
during the fault period of the coal mill include differential
pressure of primary air, outlet temperature of coal mill, and
current of coal mill.+erefore, the three variables are used as
the input nodes of the SAE model.

+e SAE model can learn much information when the
number of nodes in the input layer is large. However, the
number of nodes in the input layer cannot be increased
indefinitely because of the computational complexity.
Figure 8(a) shows that, when the number of nodes in the

input layer increases from 40 to 100, the reconstruction error
of the network decreases continuously. If the number of
nodes in the input layer increases further, then the recon-
struction error will remain unchanged.

+e number of nodes in the hidden layer determines the
degree to which the model compresses the input data. +e
degree of compression is high when the number of nodes in
the hidden layer is small. An experiment is employed using
the first layer of SAE. In the experiment, the input size is set
to 120 on the basis of the experiment above to determine the
appropriate hidden layer parameters by analyzing the in-
fluence on the reconstruction results. As shown in
Figure 8(b), when the number of hidden layer nodes is less
than the input layer nodes, the reconstruction error fluc-
tuates in a small range. +is result indicates that the original
data can obtain better compression when the number of
hidden layer nodes is small, and this situation is conducive
for the model to learn data characteristics. However, when
the number of nodes in the hidden layer exceeds the number
of nodes in the input layer, the reconstruction error in-
creases rapidly, and the training effect is poor. +e reason is
that the sparse parameter ρ is set to 0 at this time, and the
activities of neurons in the hidden layer cannot be limited,
which then leads to the poor compression effect of the SAE
model on original data. Combining the constraints of
complexity of network structure and computational effi-
ciency, the number of hidden layers is set to three, and the
number of nodes in each layer is 100, 50, and 25.

Sparse constraint is introduced to improve the capability of
the SAE model to compress input data. Figure 8(c) shows that,
when the value of ρ is between 0.05 and 0.15, the reconstruction
error of the network continues to decrease, showing that the
inhibitory effect on neurons is appropriate.With the increase in
the value of ρ, the inhibitory effect on neurons is excessive, and
the reconstruction error increases rapidly.

AE3

AE3

AE2
AE2

AE1

AE1

Stack
combination

So�max
classifier

Hidden
layer 3

Hidden
layer 2

Hidden
layer 1

Input
layer

Random noise

Figure 7: Deep neural network with SAE.

Table 4: Definition of different conditions of the coal mill.

Label Condition
1 Coal interruption
2 Coal choking
3 Normal operation

Table 5: Training and testing data for fault diagnosis of the coal
mill.

Experiment Sample
Label

1 2 3

Experiment 1 Training samples 1500 1500 500
Testing samples 61 58 75

Experiment 2 Training samples 1500 1500 1500
Testing samples 61 58 75
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Random noise is introduced to the input data to prevent
the SAE model from learning only the equivalent repre-
sentation of the original data. As shown in Figure 8(d), when
the probability of introducing noise is in the range of 0 to 0.1,
reconstruction error decreases with the increase in noise.
However, with the increase in noise, the reconstruction error
increases rapidly because excessive noise causes nonde-
structive damage to the raw data.

In combination with the analysis above, the key parameters
of the SAE model are shown in Table 6. +e allocation of the
nodes in the input layer is shown in Table 7. In the table, 1–40
nodes are sampled values of the differential pressure of primary
air in four seconds (the sampling time is set to 0.1 s), 41–80
nodes are sampled values of outlet temperature of coalmill, and
81–120 nodes are sampled values of current of coal mill.

5.3. Validation of the Proposed Method. After determining
the parameters of SAE, the network is trained by the training
data obtained from simulation experiments, and then the
test data are sent into the network to test the result of fault
identification of the SAE model, as shown in Figure 9. +e
simulation results of Experiment 1 show that all samples of
false diagnosis in the 194 groups of test samples are from the
normal operation data. Two sets of normal operation
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Figure 8: Reconstruction error curves for different SAEmodel parameters. (a) Input size; (b) number of hidden nodes; (c) sparse parameter;
(d) noise probability.

Table 6: SAE network parameters.

Structure parameters Input neurons Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer Transfer function
120 100 50 20 4 Sigmoid

Learning parameters Number of training Batch size ρ Noise probability β Learning rate
500 100 0.15 0.1 0.05 0.2

Table 7: Assignment situation of input layer nodes.

No. Variable
1–40 Differential pressure of primary air
41–80 Outlet temperature of coal mill
81–120 Current of coal mill
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samples are mistakenly diagnosed as coal interruption, and
seven sets of normal samples are mistakenly diagnosed as
coal choking. +e accuracy rate of fault identification is
95.4%. To analyze the experimental results, the data curves
corresponding to the misdiagnosed test samples are plotted
and shown in Figure 10. +e two sets of misdiagnosed
samples contained in the rectangular box in Figure 9(a)
correspond to data contained in the rectangular box in
Figure 10. +e change trend of data during this period
indicates that differential pressure of primary air decreases,
outlet temperature of coal mill rises, and current of coal mill
decreases. +ese trends are consistent with the character-
istics of coal mill when the coal interruption fault occurs, and

these characteristics have been described in Section 3.1.
+erefore, when normal operation samples are insufficient,
SAE cannot fully study the differences between the two types

Right classified
Misjudged

0

1

2

3

4
La

be
l

20 40 60 80 100 120 140 160 180 2000
Sample no.

(a)

0

1

2

3

4

La
be

l

20 40 60 80 100 120 140 160 180 2000
Sample no.

Right classified
Misjudged

(b)

Figure 9: SAE-based classification result. (a) Experiment 1; (b) Experiment 2.
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Table 8: Comparison of the effectiveness of network improvement.

Methods Fault recognition accuracy
(%)

SAE without noise and sparse
constraint 84.02

SAE with sparse constraint 85.05
SAE with random noise 89.18
Improved SAE 95.4
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of data and wrongly diagnoses the normal operation data as
coal interruption fault.

Similarly, from the data contained in the ellipse box in
Figure 10, the change trend of the data in this period is found
to be consistent with the characteristics of the coal choking,
differential pressure of primary air rises, outlet temperature of
coal mill decreases, and current of coal mill decreases. +us,
SAE can mistakenly diagnose the normal operation data as
coal choking fault. To improve the accuracy of fault diagnosis
of SAE, the training samples of normal operation are in-
creased to 1500 groups, and an experiment (Experiment 2) is
conducted again. Figure 9(b) shows that, although two sets of
misdiagnosed samples are still present, the accuracy of fault
diagnosis of SAE has been improved to 98.7%. +erefore, if
the training samples continue to increase, then the accuracy of
fault diagnosis of SAE will theoretically be close to 100%.

To illustrate the effectiveness of the method that im-
proves the performance of SAE, the accuracy rate of fault
diagnosis of SAE before and after the algorithm improve-
ment is compared. +e comparison results are shown in
Table 8. Training and test samples are from the data in
Experiment 1. Table 8 shows that, when no improvement is
implemented in SAE, the fault recognition rate is 84.02%.
When sparse constraint is introduced in SAE, the fault
recognition rate is increased to 85.05%. After introducing
random noise into input data, the fault identification rate
increases to 89.18%. When two improved methods are in-
troduced into SAE, the network fault recognition rate

further increases to 95.4%.+e above analysis shows that the
two improved methods proposed in this study can improve
the fault recognition capability of SAE.

+e coal mill is characterized by a large delay system.
Detecting changes in outlet pulverized coal flow of coal mill
to find the operation fault in coal mill often cannot establish
early warning. +rough real-time monitoring of differential
pressure of primary air, outlet temperature of coal mill, and
current of coal mill, and the three kinds of fast changing
signals, the trained SAE can find the operation fault in the
coal mill in advance. Coal interruption is taken as an ex-
ample in this study. As shown in Figure 11, coal interruption
fault occurs by artificial simulation. As a result, the outlet
pulverized coal flow of coal mill reduces to 0 in 110 s, while
the output of the SAE jumps from the normal operation state
to coal interruption fault in 75 s. +e network has advanced
35 s to predict the fault in the coal mill. With the adjustment
of PID, the outlet pulverized coal flow of the coal mill rises
gradually and goes back to the safety limit in 160 s. At this
point, the output of the SAE returns to normal. +us, the
proposed method based on the deep learning algorithm can
play an important role in the fault diagnosis of the coal mill.

6. Conclusions

In this study, a deep learning algorithm based on a data-
drivenmodel is proposed for fault diagnosis of coal mills. On
the basis of the mechanism model of coal mills, the fault
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Figure 11: SAE-based fault diagnosis of coal interruption. (a) Outlet pulverized coal flow of coal; (b) early warning signal.
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operation of coal mills is simulated and numerous fault data
are obtained. +us, the difficulty in obtaining the fault data
using traditional methods is addressed. +e performance of
SAE is improved by introducing sparse constraints and
random noise in the input layer. At the same time, the
accuracy of fault diagnosis of coal mills is effectively im-
proved, thereby enabling the possible prediction of fault in
coal mills. +e method proposed in the paper greatly im-
proves the accuracy of the fault diagnosis of coal mills, which
is of great significance for ensuring the safe operation of
power plants. In addition, the proposed method is easy to
generalize. Complex mechanical equipment in other in-
dustrial fields can use this method for fault diagnosis. +e
method can reduce the use of sensors for fault diagnosis of
large equipment and the investment of human resources,
which is essential to improve the economy and safety of the
industry.

It should be noted that the paper does not consider
online training for SAE. +e main reason is that the online
training of deep neural networks will take a lot of time,
which puts stricter requirements on the performance of
computers and optimization algorithms. So, we adopt a
simplified method which chooses to directly use the offline
training model to achieve fault diagnosis. It greatly saves the
cost of calculation. However, using the online training
model can continuously optimize the accuracy of the model
[27–31] as the data accumulate. +erefore, how to realize the
online training of the model will be the focus of our follow-
up research.
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+e data used to support the findings of this study are
available from the corresponding author upon request.
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In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the
wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator
system based on the multiclass optimal margin distribution machine. In this method, the power output of the wind turbine
generator system is used as the main status parameter, and the operating data history of the wind turbine generator system in the
wind power supervisory control and data acquisition (SCADA) system is subject to correlation analysis with the Pearson
correlation coefficient, to eliminate the features that have low correlation with the power output status parameter. Secondary
analysis is performed to the remaining features, thus reducing the number and complexity of samples. Datasets are divided into
the training set for training of the multiclass optimal margin distribution machine fault detection model and test set for testing.
Experimental verification was carried out with the operating data of one wind farm in China. Experimental results show that,
compared with other support vector machines, the proposed method has higher fault detection accuracy and precision and lower
false-negative rate and false-positive rate.

1. Introduction

Wind turbine generator systems are usually used in complex
and unstable natural environments and eroded by sunlight,
rain, wind, and sand all the year round. In addition, the wind
turbine generator systems work at high altitudes, and their
main parts are in high-altitude nacelles, which may lead to
faults during operation. Long downtime of the wind turbine
generator system arising from failure will result in a lot of
operation and maintenance costs and part replacement
costs, low power generation efficiency of the wind farm, and
huge economic losses [1].

+e pitch system is a critical part of the wind turbine
generator system, mainly consisting of the blades, hubs, and
other parts. +ese parts account for a large proportion in
terms of the average maintenance time, material costs, and
corresponding technical personnel [2]. Hence, it is of

particular importance to guarantee the safe and stable op-
eration of the pitch system of the wind turbine generator
system. Timely and efficient status monitoring and fault
detection of the pitch system has excellent economic benefits
and engineering application values for the wind power in-
dustry [3].

+e current fault detection of wind turbine generator
systems is mainly based on the data analysis of the wind
power supervisory control and data acquisition (SCADA)
system. A correlation model is built by analyzing the data
(e.g., power, vibration, and temperature) generated in the
operation of the wind turbine generator system, to obtain the
operating status, fault, and other information of the wind
turbine generator system and thus detecting faults [4].

Fault detection mainly involves two aspects: feature
selection and detection model [5–7]. +e status parameters
reflecting the faults of the wind turbine generator system are
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selected from the SCADA system, and the detection model is
built through training, which is used for status monitoring
and fault detection of the wind turbine generator system.
Pandit and Infield proposed a method of status monitoring
of the wind turbine generator system based on the Gaussian
process [8]. +e wind power curve is predicted according to
the data of the SCADA system and used for yaw fault de-
tection of the wind turbine generator system. Liu et al.
presented a method of wavelet transform fault detection
based on the generative adversarial network, in which the
normal operating data of the wind turbine generator system
is converted into rough fault data based on the prior
knowledge, and a generative adversarial network model is
built for fault detection [9]. Ruiming et al. proposed a
method based on SCADA data and dynamical network
marker, which is constructed as a fault warning signal of a
wind turbine [10]. +e techniques including the multinode
complex network and the correlation and cross-correlation
analysis of the denosed method, and the experiment verifies
its convenience and robustness. However, the excessive use
of the feature parameters based on artificial experience will
introduce human influencing factors into fault detection,
resulting in interference in the detection process. Due to the
particularity of the SCADA system, the operating data of the
wind turbine generator system may be missing or abnormal,
and it is difficult to extract effective features from a large
amount of raw data, which may lead to low efficiency [11].
Furthermore, the current SCADA system is not yet mature,
which may involve strong coupling of status parameters.+e
use of these parameters will lead to redundancy and ulti-
mately model overfitting. Hence, more potential of SCADA
data needs to be explored [12].

+e support vector machine (SVM), as a machine
learning method based on the statistical theory, has good
learning performance. It has been successfully applied in
many fields such as multiclass recognition and regression
forecasting [13–15] and favored by a large number of
scholars in the field of fault research on wind turbine
generator systems, including fault diagnosis and prediction
of wind turbine generator systems via the SVM [16–18]. Liu
et al. presented the diagonal spectrum and clustering binary
tree are combined with the SVM for fault detection of the
gearboxes of wind turbine generator systems [19]. Hang et al.
proposed a method of fault diagnosis of wind turbine
generator systems based on the multilevel fuzzy SVM
classifier, in which the fault feature vectors are extracted
from vibration signals utilizing empirical mode decompo-
sition, and the kernel function parameters of the fuzzy
clustering algorithm are optimized, and the faults of wind
turbine generator systems are diagnosed via the multilevel
fuzzy SVM [20]. Saari et al. were to detect and identify wind
turbine bearing faults by using fault-specific features
extracted from vibration signals. Automatic identification
was achieved by trainingmodels by using these features as an
input for a one-class support vector machine [21]. In the
SVM, however, classification is based on the identification of
the hyperplane with the minimum margin, leading to low
generalization performance and, in the case of complex
nonlinear multiclassification, final optimization may

become a nondifferentiable nonconvex process [22]. In
order to solve this problem, Zhang and Zhou put forward the
multiclass optimal distribution machine (mcODM), in
which a distribution model is built based on the sample
distribution features during fault detection. +e sample
mean and sample variance are taken into account for higher
classification performance [23]. +e experiments of multiple
datasets have verified the accuracy and generalization per-
formance of this model and the model complexity is rela-
tively low during the optimization.

To resolve the unbalanced samples and complex dis-
tribution in fault detection of the pitch system of the wind
turbine generator system, a method for fault detection of the
pitch system of the wind turbine generator system based on
mcODM is proposed. +is method mainly consists of three
parts. First, the SCADA data of the wind turbine generator
system are preprocessed, including data cleaning and nor-
malization. Secondly, the correlation of parameters is ana-
lyzed according to the operation mechanism of the wind
turbine generator system and the Pearson correlation co-
efficient, followed by feature selection. Finally, sample sets
are built, including the training set for training of the de-
tection model and the test set for testing of this model, using
the actual operating data of one wind farm in China as
experimental data. Experimental results show that this
method has higher accuracy and precision of fault detection
and lower false-negative rate and false-positive rate.

2. Pitch System of Wind Turbine
Generator System

+e pitch system of the wind turbine generator system is
used to change the upwind area of the blades when the rotor
is facing the wind, thus controlling the rotation torque of the
rotor. In combination with the yaw system, the wind turbine
generator system can maintain the stable efficiency of power
generation under different wind conditions [24]. At present,
the pitch systems of wind turbine generator systems are
mainly divided into the hydraulic pitch system and electric
pitch system.

+e hydraulic pitch system is equipped with a set of
crank sliding structure to drive all blades for synchronous
pitching. +is system has a fast response to pitch signals and
large pitch torque, which is conducive to the centralized
layout and integration. It is mostly used in large-sized wind
turbine generator systems. However, it is a nonlinear system
that has a relatively complex structure and may be subject to
hydraulic oil leakage, jamming, etc. [25].

+e electric pitch system is equipped with an inde-
pendent control mechanism for each blade and composed of
the pitch controller, servo driver, and standby power supply,
in which the pitch of each blade is controlled separately. Its
transmission features a relatively simple structure, stable
operation, and high reliability, but has large inertia due to its
poor dynamic features. Where the wind speed changes
rapidly, frequent pitching may lead to controller overheat
and damage to the body [26].

Once the pitch system of the wind turbine generator
system fails, the blade pitch will be abnormal and the
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rotation torque of the rotor will not be the expected value. If
the speed is too low, the wind energy capture rate will be
affected. +e mechanical energy generated in the rotation
will be transferred to the generator through the gearbox
transmission chain, resulting in the abnormal speed of the
generator and ultimately affecting the power output of the
generator. Accordingly, the safe and stable operation of the
pitch system is essential for the stable and efficient power
generation of the wind turbine generator system.

During fault detection of the pitch system of the wind
turbine generator system, an important step is to acquire the
status parameters that effectively reflect the features of the
pitch system from a lot of SCADA data. Due to the par-
ticularity of the SCADA system that involves the complex
and diverse parameters of the pitch system, including strong
coupling parameters, it is necessary for feature selection to
optimize the model complexity to reduce the calculation
time and the amount and select the effective status pa-
rameters and also to take redundant items into account to
delete excess parameters and avoid model overfitting
[27, 28].

+e method proposed in this paper is for fault detection
of the electric pitch systems of large-sized wind turbine
generator systems. +e experimental data are the actual
operating data of a wind farm, and various categories of
samples are used. +e method involves the typical data
category imbalance, complex distribution, and the like.

3. Fault Detection of Pitch System of Wind
Turbine Generator System

Fault detection of the pitch system of the wind turbine
generator system consists of the preprocessing of the op-
erating data acquired, selection of effective features, and
building of the sample sets, including training sets for the
training of the detection model and the test set for testing.
Figure 1 shows the mcODM-based process for fault de-
tection of the pitch system of the wind turbine generator
system.

3.1. Data Cleaning and Preprocessing. In order to obtain the
fault samples of the pitch system of the wind turbine gen-
erator system, the actual operating data of the wind turbine
generator system of one wind farm are used, including the
sensor monitoring data during normal operation and at the
failure time of the pitch system. Unstable environmental
factors and sensor abnormalities under the actual operating
conditions will cause information processing errors, data
losses, data abnormalities, and other problems. +us, the
obtained raw data are cleaned and preprocessed as follows:

Step 1: delete the “no data” variable in the dataset
Step 2: delete all status variables with a value of “0”
Step 3: according to the fault record of the wind turbine
generator system, select the data from 30min before a
fault to 30min after the fault
Step 4: normalize the sample data by the following
formula:

X′ �
X − Xmin

Xmax − Xmin
, (1)

where X is a status parameter, Xmin and Xmax represent the
minimum and maximum value of the status variable, re-
spectively, and X′ represents the normalized value.

Normalization makes the model smoother and more
convergent to find the optimal solution.

3.2. Feature Selection. According to the mechanism analysis
of the pitch system, when the pitch system fails, the main
status parameter that is ultimately affected is the power
output of the wind turbine generator system. Hence, the
correlation between the power output and other operating
parameters of the wind turbine generator system is analyzed
based on the Pearson correlation coefficient during feature
selection, to delete the parameters that are little correlated to
the pitch system.

+e Pearson correlation coefficient was proposed by the
British statistician Karl Pearson in the 20th century. It re-
flects the degree of correlation between two variables and
calculated by the following formula:

ρX,Y �
cov(X, Y)

σXσY

�
E X − μX(  Y − μY( ( 

σXσY

, (2)

where cov(X, Y) represents the covariance of the two var-
iables, and μX/μY and σX/σY represent the mean and
standard deviation of the two variables, respectively.

+e aforesaid formula defines the population correlation
coefficient. When the sample size of the variables X and Y is
n, the Pearson correlation coefficient is given by

r �


n
i�1 Xi − X(  Yi − Y( 

�������������


n
i�1 Xi − X( 

2
 ������������


n
i�1 Yi − Y( 

2
 , (3)

where r represents the degree of linear correlation between
the two variables. It ranges from −1 to 1, i.e., −1≤ r≤ 1, as
described as follows: 0< r< 1: the two variables are positively
correlated. +e closer r is to 1, the greater the positive
correlation of the variables; −1< r< 0: the two variables are
negatively correlated. +e closer r is to −1, the greater the
negative correlation of the variables; |r| � 1: the two vari-
ables are linearly correlated; and r � 0: the two variables are
linearly independent of each other.

In order to further reduce the sample size as well as the
computational complexity of the model, and avoid model
overfitting, the status variables selected in the first step are
subject to a secondary Pearson correlation analysis, to delete
some highly correlated parameters and resolve the
redundancy.

Following the feature selection of the datasets based on
the Pearson correlation coefficient, the normal and fault
samples are divided into the training set for model training
and test set for model performance testing.
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3.3. mcODM Algorithm. A feature set X � [x1, . . . , xk] is
assumed, corresponding to the category label setY � [K], where
[K] � 1, . . . , k{ }. +e training set is S � (x1, y1), (x2,

y2), . . . , (xm, ym)}. +emapping function φ is defined, and the
sample set is mapped by the kernel function κ to the high-
dimensional space φ: X⟶Η. +e corresponding weight
vectors are ω1, . . . ,ωk. A scoring function is ωT

l φ(x) defined
for each weight vector ωl. +e feature value of each sample and
the corresponding label will maximize the value of the scoring
function of the samples, i.e., h(x) � argmaxl∈YωT

l φ(x), thereby
leading to a margin definition:

ch(x, y) � ωT
yφ(x) − max

l≠y
ωT

l φ(x). (4)

When a negative margin is generated in calculation, the
category provided by the classifier will be incorrect.

Let c represent the mean of margins, the optimal margin
distribution machine can be expressed as follows:

min
ω,c,ξj,εj

Ω(ω) − ηc +
λ
m



m

j�1
ξ2j + ε2j ,

s.t. ch xj, yj ≥ c − ξj,

ch xj, yj ≤ c + εj,∀j,

(5)

where Ω(ω) is a regular term, η and λ are balance pa-
rameters, ξj and εj are the positive and negative deviations of
the margin ch(xj, yj) and its mean c, respectively, and
(1/m) 

m
j�1(ξ

2
j + ε2j) is the variance.

+e margin mean can be fixed at 1 by scaling of ω. +e
deviation of the sample (xj, yj) and margin mean will be
|ch(xj, yj) − 1|. +en, the optimal margin distribution
machine can be expressed as follows:

min
ω,ξj,εj

Ω(ω) +
λ
m



m

j�1

ξ2j + τε2j
(1 − θ)2

,

s.t. ch xj, yj ≥ 1 − θ − ξj,

ch xj, yj ≤ 1 + θ + εj,∀j,

(6)

where τ ∈ [0, 1) is a parameter balancing two different de-
viations (greater or less than the margin means). θ ∈ [0, 1) is
a zero-loss parameter which can control the number of
support vectors, i.e., the sparseness of the solution. (1 − θ)2

is a substitution loss used to change the aforesaid second
item into a 0-1 loss function.

+e regular term is Ω(ω) � 
k
l�1(‖ωl‖

2
Η/2), and the

mcODM is ultimately expressed as follows:

min
ωl ,ξj,εj

1
2



k

l�1
ωl

����
����
2
Η +

λ
m



m

j�1

ξ2j + τε2j
(1 − θ)2

,

s.t. ωΤyj
φ xj  − max

l≠yj

ωΤl φ xj ≥ 1 − θ − ξj,

ωΤyj
φ xj  − max

l≠yj

ωΤl φ xj ≤ 1 + θ + εj,∀j,

(7)

where λ, τ, and θ are the aforementioned balance
parameters.

+e parameters are selected by the grid search method,
among which λ is determined in the sequence
[20, 22, 24, . . . , 220] and τ and θ in [0.2, 0.4, 0.6, 0.8].

3.4. Evaluation Criteria for Fault Detection Performance.
To evaluate the fault detection performance of the model, a
confusion matrix [29] is introduced, as defined in Table 1.

+e following five evaluation indicators are obtained via
the confusion matrix:

accuracy �
TP + TN

TP + FN + FP + TN
,

precision �
TP

TP + FP
,

F1 − score �
2

(1/precision) +(1/recall)
,

FPR �
FP

TN + FP
,

FNR �
FN

TP + FN
.

(8)
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Figure 1: mcODM-based process for fault detection of the pitch system of wind turbine generator system.
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4. Experimental Analysis

4.1. Data Description. In order to verify the effectiveness of
the proposed fault detection method, the actual operating
data of one wind farm in Shandong in one year was used in
the experiment. +is wind farm includes 33 variable-speed
and variable-pitch wind turbine generator systems in total,
which are separately connected to the monitoring center
through sensors. +e data were sampled at intervals of 2 s
and stored in the database.

Among them, the main power supply of the pitch system
of the #11 wind turbine generator system failed onMarch 14,
2016. +e failure lasted from 0 : 43 to 1 : 29. +e data from
30min before the fault to 30min after the fault were selected
as the experimental data, to effectively classify samples and
fully reflect fault features. Accordingly, the status parameters
were selected from 0 :13 to 1 : 59 on March 14. Part of the
original data is given in Table 2.

4.2. Selection of Sample Features. According to the operation
mechanism of the wind turbine generator system, when the
pitch system fails, the status parameter affected directly is the
power output of the wind turbine generator system. +e

correlation between the power output and each variable was
analyzed based on the Pearson correlation coefficient, to
select effective variables.

+e raw data of the aforesaid status parameters were first
subject to data cleaning, to eliminate “no data” and the data
corresponding to the value “0” of all status variables. After the
data were normalized, the correlation with the output power
was calculated. Some calculation results are given in Table 3.

As can be seen from the correlation results in Table 3,
some variables of the status parameters have a low corre-
lation with the output power. Based on the nature of the
Pearson correlation coefficient, the variables with the ab-
solute value of the correlation coefficient less than 0.55 were
deleted, and those with the absolute value of the correlation
coefficient greater than 0.55 were taken as the main influ-
encing factors of the fault, as indicated by the bold part in
Table 3. In order to prevent model overfitting due to the
interference of redundant variables in model training, these
status variables were subject to a secondary calculation with
the Pearson correlation coefficient to identify the redundant
parameters that have a high correlation and simplify the
sample size. Some secondary Pearson calculation results are
given in Table 4.

Table 1: Confusion matrix.
Number of predicted faulty samples Number of predicted normal samples

Number of actual faulty samples (P) TP FN
Number of actual normal samples (N) FP TN
Note. TP: the number of the samples classified as faulty samples and predicted to be faulty in the sample set; FP: the number of the samples classified as faulty
samples and predicted to be normal in the sample set; TN: the number of the samples classified as normal samples and predicted to be normal in the sample
set; FN: the number of the samples classified as normal samples and predicted to be faulty in the sample set.

Table 2: Some data of faulty fan on July 23, 2016.

Status parameter Time
0:38:02 0:40:14 0:46:18 0:55:46 1:01:42 1:05:16 1:16:22 1:21:08 1:32:34 1:40:22

Rotor speed (r/m) 17.38 16.97 9.36 1.23 0 0 0 0 0.21 0.14
Generator speed (r/m) 1763.6 1702.8 1214.6 27.3 8.9 7.3 9.0 6.1 953.4 1651.6
Temperature of bearing A (°C) 43.8 42.6 44.0 47.7 48.5 48.4 47.1 46.7 454 45.2
Temperature of bearing B (°C) 45.1 45.8 46.2 44.5 48.8 47.3 46.4 45.5 46.8 47.1
Current of pitch motor 1 (A) 120 80 0 0 0 0 0 0 0 40
Current of pitch motor 2 (A) 70 50 20 0 0 0 0 0 30 20
Current of pitch motor 3 (A) 50 40 40 0 0 0 0 0 10 50
Brake pressure (N) 0 27.53 110.14 124.47 160.29 143.21 120.45 150.41 140.12 134.47
1min average wind speed (m/s) 8.32 9.95 10.39 8.87 9.81 10.32 11.14 9.48 8.22 9.13
U1 phase winding current (A) 890 832 32 6 6 6 6 6 4 4
U2 phase winding current (A) 883 838 37 6 6 6 6 6 4 4
U3 phase winding current (A) 880 828 35 6 6 6 6 6 4 4
Lubricant filter inlet pressure (N) −3.96 −3.78 −3.67 −3.54 −3.66 −3.92 −3.96 −3.88 −3.68 −3.86
Lubricant filter outlet pressure (N) 5.77 6.04 3.03 2.78 4.66 3.45 6.20 2.97 3.42 2.64
Pressure of main hydraulic system (N) 143.12 151.24 160.14 152.13 130.24 163.48 153.46 143.34 132.04 130.19
Wind angle (°) 4.21 3.24 5.25 3.54 2.14 1.67 3.45 2.87 2.21 4.15
Grid voltage (kV) 407.2 406.4 405.7 407.2 403.1 401.8 406.7 405.3 404.1 405.9
Pitch angle 1 (°) 0.25 0.33 89.04 89.04 89.04 89.04 89.04 89.04 89.04 89.04
Pitch angle 2 (°) 0.27 0.34 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02
Pitch angle 3 (°) 0.27 0.33 89.04 89.04 89.04 89.04 89.04 89.04 89.04 89.04
Pitch controller location (°) 56.21 52.47 0 0 0 0 0 0 0 0
Voltage of pitch capacitor (V) 59.23 59.17 59.10 59.11 59.14 59.18 59.17 59.21 59.33 59.12
Yaw speed (°/s) 0 0.12 0 0 0 0 0 0 0 0
Nacelle vibration (mm) 0.06 0.04 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.03
Gearbox inlet oil temperature (°C) 46.5 44.1 45.6 43.9 43.2 44.5 44.7 43.5 42.3 44.9
Generator torque deviation (N·m) 56.63 44.12 23.14 17.19 0.12 0.11 0 0 0 0
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As can be seen from some calculation results in Table 4,
the correlation coefficient of the yaw angle 1 and pitch angle
1 of the blade was close to 1, and that of the pitch angle 2 and
rotor speed was also close to 1.+e same status parameters of
different parts also had a high correlation. +ey essentially
had the same effect during the operation of the pitch system.
If these status parameters are considered simultaneously in a
model, redundant variables will be introduced, which will
increase the complexity and calculation of the model and
may lead to overfitting and other problems. +erefore, the
redundant parameters were eliminated in conjunction with
the correlation results in Tables 3 and 4. +e sample feature
set was built with the remaining status parameters.

4.3. Experimental Results. +e sample set corresponding to
the normal operation of the wind turbine generator systems
was classified as a normal category and that corresponding
to the failure of the main power supply of the pitch system as
a fault category. +e entire sample set was divided into two
parts: training set and testing set, including normal and fault
data, respectively. +e training set was used to train the
mcODM model, while the testing set to test the model. +e
one-versus-rest SVM (ovrSVM) and one-versus-one SVM

(ovoSVM) were compared in the experiment on the Matlab
platform.

According to the performance evaluation indicators of
the model, five indicators were compared, i.e., the accuracy,
precision, F1-score, false-negative rate, and false-positive
rate. +e test set was subject to tenfold cross-validation,
using the average of results.

+e comparison results of accuracy and precision are
given in Table 5, the box chart of accuracy is presented in
Figure 2, and the box chart of precision is presented in
Figure 3. +e comparison results of F1-score and FPR and
FNR are given in Table 6.

As shown above, the accuracy, precision, and F1-score of
the mcODM model were higher than those of the other two
models, while its false-negative rate and false-positive rate
were the lowest.

In order to verify the universality of the method pro-
posed in this paper, the operating data of multiple wind
turbine generator systems with failure in their pitch systems
in this wind farm were used in the experiment. +e number
of 23 wind turbine generator system occurred the over-
temperature of the servo drive of the pitch blade 1 on July 23,
2016, in this wind farm, the comparison results of accuracy
and precision are given in Table 7, the box chart of accuracy

Table 3: Some correlation calculation results 1.
Status parameter Pearson correlation coefficient
Rotor speed (r/m) 0.97753
Generator speed (r/m) −0.99738
Temperature of bearing A (°C) 0.33852
Temperature of bearing B (°C) −0.26418
Current of pitch motor 1 (A) 0.79989
1min average wind speed (m/s) −0.20292
U1 phase winding current (A) 0.99992
U2 phase winding current (A) 0.99988
Pitch angle 2 (°) −0.94072
Pitch angle 3 (°) −0.95908
Yaw speed (°/s) 0.03103
Voltage of pitch capacitor (V) 0.56784
Pressure of main hydraulic system (N) 0.02426
U3 phase winding current (A) 0.99985
Current of pitch motor 2 (A) 0.80794
Lubricant filter inlet pressure (N) −0.02909
Lubricant filter outlet pressure (N) −0.81853
Current of pitch motor 3 (A) 0.80471
Wind angle (°) 0.21073
Grid voltage (kV) −0.88644
Pitch angle 1 (°) −0.94581
Nacelle vibration (mm) 0.58414
Brake pressure (N) 0.12353
Gearbox inlet oil temperature (°C) −0.25683
Generator torque deviation (N·m) −0.85781
Pitch controller location (°) −0.85769

Table 4: Some correlation calculation results 2.
Pearson correlation coefficient Pitch angle 1 U1 phase winding current (A) Rotor speed Current of pitch motor 1
Yaw angle 1 0.99998 −0.60992 −0.97406 −0.83843
U2 phase winding current (A) −0.58954 0.99863 0.64357 0.51048
Pitch angle 2 0.99981 −0.60992 −0.97406 −0.83843
Current of pitch motor 2 −0.85505 0.53974 0.83172 0.91606
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is presented in Figure 4, and the box chart of precision is
presented in Figure 5. +e comparison results of F1-score
and FPR and FNR are given in Table 8. +e number of 28

wind turbine generator system occurred the emergency stop
of the pitch system on June 8, 2016, in this wind farm, the
comparison results of accuracy and precision are given in
Table 9, the box chart of accuracy is presented in Figure 6,
and the box chart of precision is presented in Figure 7. +e
comparison results of F1-score and FPR and FNR are given
in Table 10.

In the fault detection at the overtemperature of the servo
drive of the pitch blade 1 and the emergency stop of the pitch
system, the mcODM model has the highest accuracy, pre-
cision, and F1-score and lowest false-negative rate and false-
positive rate.

It can be seen from the aforesaid comparison results that,
in terms of the faults of the pitch systems of different wind
turbine generator systems, the mcODM model has high
efficiency in sample classification and capabilities in gen-
eralization, since the distribution model is built based on the
features of the sample distribution. In conjunction with the
aforesaid method of feature selection, the status parameters
of low correlation can be eliminated, thus reducing the
sample size and model training burden and avoiding
overfitting. When the mcODM algorithm is combined with
the proposed feature selection method in fault detection of
pitch systems of wind turbine generator systems, higher
capabilities can be achieved in fault detection.

5. Conclusions

+is paper proposes the mcODM-based method for fault
detection of pitch systems of wind turbine generator sys-
tems. +e features are extracted according to the operating
features of the pitch system and the Pearson correlation
coefficient of the wind turbine generator system. +e cor-
relation of status parameters is fully considered, and the
model complexity is subject to secondary Pearson analysis,
which can eliminate the redundant parameters and avoid
model overfitting while ensuring the detection rate.+is also
solves the problem of selecting the feature parameters
reflecting the faults of pitch systems from a large amount of
SCADA data. Considering the detectionmodel, the mcODM
model has been successfully applied in fault detection of the
pitch systems of wind turbine generator systems. Due to the
combination of the margin mean and variance and full
consideration to the sample distribution features, this model
solves the problem of inefficient classification arising from
the sample category unbalance and complex distribution of
pitch system fault samples.

In order to verify the universality of this method, the
SCADA data of wind turbine generator systems with dif-
ferent pitch system faults were used in the fault detection
experiment. At the same time, the ovrSVM and ovoSVM
models were introduced for comparison. +e experimental
results show that the proposed method has good perfor-
mance in generalization and high accuracy and precision as
well as low false-negative rate and false-positive rate in fault
detection of the pitch systems of wind turbine generator
systems.

Since wind turbine generator systems are affected by
multiple factors (e.g., operating environment and load) and

Table 5: Comparison of fault detection performance for the main
power supply of pitch system 1.
Model Accuracy Precision
mcODM 96.11% (±0.0345) 95.09% (±0.0185)
ovrSVM 93.84% (±0.0237) 92.62% (±0.0095)
ovoSVM 91.32% (±0.0514) 90.77% (±0.0126)
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Figure 3: Box chart of fault detection precision for the main power
supply of the pitch system.
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Figure 2: Box chart of fault detection accuracy for the main power
supply of the pitch system.

Table 6: Comparison of fault detection performance for the main
power supply of pitch system 2.
Model F1-score FPR FNR

mcODM 96.03% (±0.0027) 5.01% (±0.0127) 3.01%
(±0.0116)

ovrSVM 93.75%
(±0.0013）

8.26%
(±0.0084）

6.43%
(±0.0237)

ovoSVM 90.14%
(±0.0019）

10.64%
(±0.0092) 8.18% (±0.0134)
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their operating conditions are changing during fault de-
tection, it is difficult to meet the fault detection requirements
for the entire wind turbine generator systems in most cases.

+erefore, the research on status monitoring and fault de-
tection of the entire wind turbine generator systems under
changing conditions can help effectively reduce the fault rate
and improve operating stability.

Table 9: Comparison of fault detection performance at the
emergency stop of pitch system 1.
Model Accuracy Precision
mcODM 94.73% (±0.0219) 94.41% (±0.0427)
ovrSVM 89.14% (±0.0271) 88.83% (±0.0316)
ovoSVM 90.81% (±0.0184) 89.76% (±0.0251)
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Figure 6: Box chart of fault detection accuracy at the emergency
stop of the pitch system.
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Figure 7: Box chart of fault detection precision at the emergency
stop of the pitch system.

Table 10: Comparison of fault detection performance at the
emergency stop of pitch system 2.
Model F1-score FPR FNR

mcODM 93.16%
(±0.0024) 6.25% (±0.0121) 3.52%

(±0.0057)

ovrSVM 88.15% (±0.0019) 11.70%
(±0.0079) 8.43% (±0.0081)

ovoSVM 90.08% (±0.0021) 9.07% (±0.0237) 7.51% (±0.0048)

Table 7: Comparison of fault detection performance at over-
temperature of servo drive of pitch blade 1.
Model Accuracy Precision
mcODM 92.07% (±0.0214) 90.26% (±0.0426)
ovrSVM 89.94% (±0.0186) 88.75% (±0.0329)
ovoSVM 86.44% (±0.0621) 86.16% (±0.0084)
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Figure 4: Box chart of fault detection accuracy at overtemperature
of servo drive of pitch blade 1.
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Figure 5: Box chart of fault detection precision at overtemperature
of servo drive of pitch blade 1.

Table 8: Comparison of fault detection performance at over-
temperature of servo drive of pitch blade 2.
Model F1-score FPR FNR

mcODM 91.93%
(±0.0023) 8.24% (±0.0134) 6.07% (±0.0112)

ovrSVM 89.81% (±0.0018) 11.07%
(±0.0121) 8.82% (±0.0082)

ovoSVM 85.78% (±0.0012) 13.39%
(±0.0219)

10.48%
(±0.0148)
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,is paper studies the problems of external disturbance and various actuator faults in a nonlinear robotic system. A composite
compensation control scheme consisting of adaptive sliding mode controller and observer-based fault-tolerant controller is
proposed. First, a sliding mode controller is designed to suppress the external disturbance, and an adaptive law is employed to
estimate the bound of the disturbance. Next, a nonlinear observer is designed to estimate the actuator faults, and a fault-tolerant
controller is obtained based on the observer. Finally, the composite compensation control scheme is obtained to simultaneously
compensate the external disturbance and various actuator faults. It is proved by Lyapunov function that the disturbance
compensation error and fault compensation error can converge to zero in finite time. ,e theoretical results are verified by
simulations. Compared to the conventional fault reconstruction scheme, the proposed control scheme can compensate the
disturbance while dealing with various actuator faults. ,e fault compensation accuracy is higher, and the fault error convergence
rate is faster. Moreover, the robot can track the desired position trajectory more accurately and quickly.

1. Introduction

Robotic system is a complex nonlinear system with the
characteristics of multiple variables, high nonlinearity, and
strong coupling. In robotic system, there are a variety of
problems, such as external disturbance and actuator fault.
,e position tracking performance of the robot will decrease
due to disturbance. Meanwhile, the controller needs to
tolerate actuator fault to keep the robotic system stable [1–3].
,erefore, disturbance and actuator fault are two of the main
issues to be solved in robot control.

For robotic system with disturbance, sliding mode
control has been widely applied due its robustness to dis-
turbance and uncertainty [4]. However, there are some
drawbacks in conventional sliding mode control. For ex-
ample, the error cannot converge in finite time, and there
exits chattering phenomenon. In addition, the upper bound
of the disturbance needs to be known. In order to avoid the
drawbacks in conventional sliding mode control, observer is
one of the effective approaches. In [5], a composite

controller based on a nonlinear controller and a nonlinear
disturbance observer was proposed for nonlinear systems,
where the observer was employed to estimate the distur-
bance generated by an exogenous system. In [6], the external
disturbance in a nonlinear system was viewed as an un-
known input. An adaptive extended state observer was
designed to estimate the unknown input, and then, a con-
troller was designed to compensate the external disturbance
using the estimated value. In [7], for the unknown matched
and mismatched time-varying disturbances in a robotic
system, a continuous sliding mode control based on gen-
eralized proportional integral observer was proposed. ,e
observer was to estimate the matched disturbance and
mismatched disturbance, respectively. ,e continuous
sliding mode manifold was to remove the offset caused by
the mismatched disturbance. In [8], the uncertain hydro-
dynamics and unknown external disturbance in an under-
water robotic system were regarded as a lumped disturbance.
An integral sliding mode controller based on extended state
observer was presented. ,e extended state observer was to
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estimate the lumped disturbance and unmeasurable states,
and the adaptive gain update algorithm was to estimate the
bound of the lumped disturbance. In [9], the model errors,
uncertainties, friction, and unknown external disturbances
in automobile electrocoating conveying mechanism were all
regarded as a lumped disturbance. A nonlinear disturbance
observer was to estimate the lumped disturbance, and a
sliding mode controller was designed for the hybrid series-
parallel mechanism. Although the approaches in [5–9] can
effectively deal with the disturbance in the system, they all
potentially assume that all the actuators in the system are
working normally without any fault.

In fact, in addition to external disturbance, many me-
chanical systems and electronic devices, such as sensors,
actuators, and amplifiers, may undergo fault due to aging,
affecting the performance and even safety of the system
[10–12]. In order to ensure the performance and safety of the
system when actuator fault occurs, different fault-tolerant
control schemes have been proposed. In [13], a fault re-
construction scheme based on terminal sliding mode ob-
server and fault-tolerant control was proposed for robotic
manipulators.,e fault reconstruction error can converge to
zero in finite time. Nevertheless, only actuator fault was
considered. In [14], for external disturbance and actuator
fault in manipulator, a fault-tolerant control based on
adaptive dynamic sliding mode was proposed. However,
only loss of effectiveness fault was considered. In [15], ac-
tuator faults and friction in a robotic system were regarded
as total uncertain dynamics. A sliding mode observer was
designed to estimate the total uncertain dynamics. A non-
linear observer was used to reconfigure the uncertainty.
However, since the fault and friction were regarded as total
uncertain dynamics, their respective characteristic cannot be
reflected. In [16], actuator faults and external collision in
robot manipulator were regarded as centralized disturbance.
A sliding mode observer was used to estimate the velocity
and centralized disturbance. A protective control framework
based on disturbance reconstruction was proposed. Nev-
ertheless, the characteristic of fault was not formally de-
scribed in [16]. In [17], for robots subject to unmatched
disturbance and actuator fault, a fault-tolerant adaptive
control based on disturbance observer and backstepping
control was proposed. Nevertheless, the disturbance error
cannot converge to zero in finite time, and the error con-
vergence rate was slow. In [18, 19], for actuator fault,
matched or unmatched disturbance in a class of uncertain
nonlinear systems, an active fault-tolerant control was
designed based on integral-type sliding mode control.
However, since active fault-tolerant control was based on
fault information, delay of the fault information feedback
will result in delay of the fault compensation time. Con-
sequently, the systemmay become unstable. In [20], actuator
fault, external disturbance, and input saturation were
regarded as total uncertainty for the robotic system, and a
finite-time fault-tolerant adaptive robust control strategy
was proposed. ,e total uncertainty was estimated by the
adaptive law, and then, a fault-tolerant adaptive robust
controller was obtained by the integral backstepping control.
However, as actuator fault, external disturbance, and input

saturation in the system were treated as total uncertainty,
and their respective characteristic could not be reflected well.
Moreover, only time-varying fault was considered in [20].

In this paper, a composite compensation control ap-
proach is proposed for a nonlinear robotic system with
external disturbance and various actuator faults. ,e pro-
posed composite compensation controller consists of an
adaptive sliding mode controller and an observer-based
fault-tolerant controller. Compared to the conventional fault
reconstruction scheme, the proposed control can compen-
sate disturbance while dealing with various actuator faults,
including no fault, loss of effectiveness fault, and floating
around trim fault. ,e fault compensation accuracy is
higher, and the fault error convergence rate is faster.
Moreover, the robot can track the desired position trajectory
more accurately and quickly.

,e remainder of this paper is organized as follows: in
Section 2, the model of robotic system subject to external
disturbance and actuator faults is formally described; in
Section 3, the composite compensation control is designed
based on adaptive sliding mode control and observer-based
fault-tolerant control, and the convergence of the distur-
bance compensation error and fault compensation error is
proved; simulations are provided in Section 4; and the paper
is concluded in Section 5.

2. Model of Robotic System Subject to External
Disturbance and Actuator Faults

A nonlinear robotic system with external disturbance and
actuator faults is considered in this paper, as shown in
Figure 1.

2.1. Model of Robotic System Subject to External Disturbance.
,e dynamic model of a n-DOF nonlinear robot subject to
external disturbance can be described as follows [21]:

M(q)€q + C(q, _q) _q + G(q) + τd � u, (1)

where q ∈ Rn×1, _q∈ Rn×1, and €q∈ Rn×1 represent the joint
position, joint velocity, and joint acceleration of the robot,
respectively; M(q) ∈ Rn×n, C(q, _q) ∈ Rn×n, and G(q) ∈ Rn×1

represent the inertia matrix, Coriolis and centrifugal term,
and gravity term. u ∈ Rn×1 is the control torque, and
τd ∈ Rn×1 denotes the external disturbance.

In practical applications, the external disturbance of a
system is usually bounded [22], i.e.,

τd

����
����≤F, (2)

where F is an unknown constant.
For the dynamic model of the robot (1), there are two

important properties.

Property 1. ,e inertia matrix M(q) is symmetric and
positive definite which satisfies

λ0‖ξ‖
2 ≤ ξT

M(q)ξ ≤ λ1‖ξ‖
2
, (3)

where λ0 and λ1 are positive constants and ∀ξ ∈ Rn×1.
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Property 2. ,e matrix _M(q) − 2C(q, _q) is skew symmetric,
i.e., ξT

( _M(q) − 2C(q, _q))ξ � 0, ∀ξ ∈ Rn×1.

2.2. Model of Actuator Faults. In a practical robotic system,
the actuators may undergo fault due to aging, affecting the
performance and even safety of the system. ,e mathe-
matical model of actuator faults can be described as follows
[13]:

uf(T) � u − unom, (4)

where uf(T) ∈ Rn×1 represents the actuator fault and
unom ∈ Rn×1 represents the control torque from the nominal
controller. Besides, T � T1 T2 ... Tn 

T ∈ Rn×1 is the fault
time-profile, where Ti(i � 1, 2, . . . , n) denotes the time at
which the ith actuator undergoes fault. Generally, there are
four types of actuator faults [23]:

(i) No fault: the controller is the nominal controller,
i.e., u � unom and uf(T) � 0.

(ii) Locked-in-place fault: the actuator fault is a con-
stant, and the nominal controller is zero, i.e.,
u � uf(T), unom � 0, and uf(T) is a constant.

(iii) Loss of effectiveness fault: it means
u � D(t)unom + uf(T). u ∈ Rn×1 is the actual con-
trol generated by the actuator.
D(t) � diag[l1(t), l2(t), . . . , ln(t)] denotes the ef-
fectiveness of the actuator, where 0< li(t)≤ 1 means
that the ith actuator experiences a partial loss of
effectiveness, and uf(T) � 0, i � 1, 2, . . . , n.

(iv) Floating around trim fault: it can be accounted as
u � unom + uf(T) and uf(T)≠ 0.

3. Composite Compensation Control of
Robotic System

For robotic system subject to external disturbance (1) and
actuator faults (4), the structure of the proposed composite
compensation control scheme is shown in Figure 2. First, a
sliding mode controller is designed to suppress the external

disturbance τd. An adaptive law is employed to estimate the
bound of the disturbance and obtain its estimation F.,en, a
nonlinear observer is designed to directly estimate the state
vector of the nonlinear function and obtain its estimation
α(t) such that the actuator faults uf(T) can be indirectly
estimated. A fault-tolerant controller is obtained based on
the observer to compensate the actuator faults. Finally, the
composite compensation controller ucom is composed of the
adaptive sliding mode controller τdcom and observer-based
fault-tolerant controller τfcom. Furthermore, the actual
controller u is obtained by combining the composite
compensation controller ucom and the nominal controller
unom. In this way, the external disturbance and various
actuator faults can be accurately compensated, and the real
position q of the robot can accurately track the desired
position qd.

3.1.Designof theAdaptiveSlidingModeController. Take x1 �

q ∈ Rn×1 and x2 � _q∈ Rn×1 as the state variables of the sys-
tem, and (1) can be directly rewritten into the state-space
form as

_x1 � x2,

_x2 � M x1( 
− 1

u − τd − C x1, x2( x2 − G x1( ( .
 (5)

Define the sliding manifold as

s � x2 − ϕ, (6)

where ϕ is the state of the following nonlinear system (7):
_ϕ � M x1( 

− 1
k1s + Fsign(s) + k2|s|

n1/n2 · sign |s|
n1/n2 

+ u − G x1(  − C x1, x2( x2 + C x1, x2( s,

(7)

where k1 > 0 and k2 > 0 are positive constants and n1 > 0 and
n2 > 0 are two odd integers satisfying n1 < n2.

In order to suppress the external disturbance τd in (5),
the sliding mode controller τdcom can be designed as

τdcom � − k1s − Fsign(s) − k2|s|
n1/n2 · sign |s|

n1/n2 . (8)

As the bound of the external disturbance is usually
unknown, an adaptive law is designed to estimate the bound
F:

_F � βs
Tsign(s), (9)

where F is the estimation of F, β> 0 is a positive constant,
and sign is signum function.

3.2. Design of the Observer-Based Fault-Tolerant Controller.
Let us introduce a new vector Ma(q) � M(q) _q − 

t

0 ed(l)dl,
where ed � τdcom − τd is the disturbance compensation er-
ror. ,en, from (1) and (4), we can get

_Ma(q) � unom + uf(T) − ω(q, _q) − τdcom, (10)

where ω(q, _q) � C(q, _q) _q + G(q) − _M(q) _q.
Now, define a new nominal controller uanom � unom +

τdcom and a new variable

Actuator
faults

External
disturbance

Robotic system OutputInput

Figure 1: Robotic system with external disturbance and actuator
faults.
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α(t) � k3 
t

0
uanom − ω(q, _q) − 2τdcom − α(x) dx − k3Ma(q),

(11)

where k3 > 0 is a constant and α(t) is the state vector of the
nonlinear function (11).

Differentiating (11) with respect to time and substituting
(1) and (10) into it, we have

_α(t) � − k3α(t) − k3uf(T), (12)

where uf(T) can be regarded as the unknown input of the
system (12).

As for the output of the system (12), we can take it as

y � k4α(t), (13)

where k4 > 0 is a positive constant.
Now, the fault uf(T) can be indirectly estimated by

directly estimating the state α(t) of the system (12) through
the following nonlinear observer

_α(t) � − k3α(t) +
1
k4

_y + k5y + k6|e|
n1/n2 , (14)

where α(t) is the estimation of α(t), e � α − α denotes the
observation error of α(t), and k5 � k3/k4 and k6 > 0 are
observation gains.

Since α(t) can be estimated by the nonlinear observer
(14), the fault-tolerant controller can be designed as

τfcom � − α(t) −
1

k3k4
_y. (15)

3.3. Design of the Composite Compensation Controller.
With the adaptive sliding mode controller (8)-(9) and the
observer-based fault-tolerant controller (14)-(15), the
composite compensation controller ucom can be designed as

ucom � τdcom + τfcom � − k1s − Fsign(s) − k2|s|
n1/n2

· sign |s|
n1/n2  − α(t) −

1
k3k4

_y.

(16)

,e composite compensation controller (16) can si-
multaneously compensate external disturbance and various
types of actuator faults.

Theorem 1. Consider the nonlinear robotic system subject to
external disturbance (1) and actuator faults (4). If it is
controlled by the composite compensation controller (16),
which is composed of the adaptive sliding mode controller (8)-
(9) and the observer-based fault-tolerant controller (14)-(15),
then the disturbance compensation error and fault com-
pensation error of the robotic system can converge to zero in
finite time, i.e., limt⟶tc

ed � limt⟶tc
(τdcom − τd) � 0 and

limt⟶tc
ef � limt⟶tc

(τfcom − uf(T)) � 0.

Proof. Differentiating the observation error e � α − α with
respect to time and substituting (12)–(14) into it, we can
obtain

_e � _α − _α

� − k3α − k3uf + k3α −
1
k4

_y − k5y − k6|e|
n1/n2

� − k3e − k6|e|
n1/n2 .

(17)

Define a Lyapunov function as

V1 �
1
2
e

T
e +

1
2
s

T
M x1( s. (18)

Differentiating (18) with respect to time and substituting
(5)–(7) into it, we get

Robotic system

Adaptive law

Composite compensation controller

Sliding mode
controller

Nonlinear
observer

Actuator
faults

External
disturbance

Fault-tolerant
controller

Adaptive sliding mode
controller Observer-based fault-

tolerant controller

q

u

ucom

unom

τd

q, q.

q, q.

τfcomτdcom

qd

uf (T)

α (t)

F

Figure 2: Structure of composite compensation control.
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_V1 � e
T

_e +
1
2
s

T _M x1( s + s
T
M x1(  _s

� e
T

_e +
1
2
s

T _M x1( s + s
T
M x1(  M x1( 

− 1


· u − τd − C x1, x2( x2(

− G x1(  − M x1( 
− 1

k1s + Fsign(s) + k2|s|
n1/n2

· sign |s|
n1/n2  + u − G x1(  − C x1, x2( x2 + C x1, x2( s

� e
T

_e +
1
2
s

T _M x1( s − s
Tτd − k1s

T
s − Fs

Tsign(s)

− s
T
C x1, x2( s − k2s

T
· |s|

n1/n2 · sign |s|
n1/n2  .

(19)

Substituting (17) into (19) and using Property 2, we can
get

_V1 � e
T

− k3e − k6|e|
n1/n2  +

1
2
s

T _M x1( s − s
Tτd − k1s

T
s

− Fs
Tsign(s)

− s
T
C x1, x2( s − k2s

T
· |s|

n1/n2 · sign |s|
n1/n2  

� − k3e
T

e − k6e
T
|e|

n1/n2 − s
Tτd − k1s

T
s − Fs

Tsign(s)

− k2s
T

· |s|
n1/n2 · sign |s|

n1/n2  .

(20)

According to Property 1 and Property 2, (20) becomes

_V1 ≤ − 2k3
1
2
e

T
e  − 2 n1+n2( )/2n2k6

1
2
e

T
e 

n1+n2( )/2n2

+‖s‖ τd

����
���� −

2k1

λ1

1
2
s

T
M x1( s 

− F‖s‖ − k2
2
λ1

 

n1+n2( )/2n2 1
2
s

T
M x1( s 

n1+n2( )/2n2

≤ − 2k3
1
2
e

T
e  − 2 n1+n2( )/2n2k6

1
2
e

T
e 

n1+n2( )/2n2

−
2k1

λ1

1
2
s

T
M x1( s 

− k2
2
λ1

 

n1+n2( )/2n2 1
2
s

T
M x1( s 

n1+n2( )/2n2

.

(21)

Now, let k7 � 2k3, k8 � 2k1/λ1, k9 � 2(n1+n2)/2n2k6, and
k10 � (2/λ2)

(n1+n2)/2n2k2, and we can further obtain

_V1 ≤ − k7
1
2
e

T
e  − k8

1
2
s

T
M x1( s  − k9

1
2
e

T
e 

n1+n2( )/2n2

− k10
1
2
s

T
M x1( s 

n1+n2( )/2n2

≤ − c1
1
2
e

T
e +

1
2
s

T
M x1( s 

− c2
1
2
e

T
e +

1
2
s

T
M x1( s 

n1+n2( )/2n2

� − c1V1 − c2V
n1+n2( )/2n2

1 ,

(22)

where c1 � min k7, k8  and c2 � min k9, k10  and
0< ((n1 + n2)/2n2)< 1. Solving (22) leads to V1(t) ≡ 0 for all
t≥ tc. ,erefore, from (22), it is easy to show that _V1(t)≤ 0
and the finite time tc can be obtained as

tc ≤
2n2

c1 n2 − n1( 
ln

c1V
n2− n1( )/2n2

1 (0) + c2

c2
. (23)

Now, define another Lyapunov function as

V2 � V1 +
1
2β

F
2
, (24)

where F � F − F is the estimation error of F.
Differentiating (24) with respect to time and substituting

(5)–(7) into it yield

_V2 � _V1 −
1
β

(F − F)
_F

� e
T

_e +
1
2
s

T _M x1( s + s
T
M x1(  _s −

1
β

(F − F) _F

� e
T

_e +
1
2
s

T _M x1( s + s
T
M x1(  M x1( 

− 1


· u − τd − C x1, x2( x2(

− G x1(  − M x1( 
− 1

k1s + Fsign(s) + k2|s|
n1/n2

· sign |s|
n1/n2 

+ u − G x1(  − C x1, x2( x2 + C x1, x2( s −
1
β

(F − F)
_F

� e
T

_e +
1
2
s

T _M x1( s − s
Tτd − k1s

T
s − Fs

Tsign(s)

− s
T
C x1, x2( s

− k2s
T

· |s|
n1/n2 · sign |s|

n1/n2   −
1
β

(F − F) _F.

(25)

Substituting (9) and (17) into (25) and using Property 2
give us
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_V2 � e
T

− k3e − k6|e|
n1/n2  +

1
2
s

T _M x1( s − s
Tτd − k1s

T
s

− Fs
Tsign(s) − k2s

T
· |s|

n1/n2 · sign |s|
n1/n2  

− s
T
C x1, x2( s −

1
β

(F − F) _F

� − k3e
T

e − k6e
T
|e|

n1/n2 − s
Tτd − k1s

T
s − Fs

Tsign(s)

− k2s
T

· |s|
n1/n2 · sign |s|

n1/n2   − Fs
Tsign(s)

+ Fs
Tsign(s).

(26)

Using Property 1 and Property 2, we have
_V2 ≤ − k3‖e‖

2
− k6e

T
|e|

n1/n2 +‖s‖ τd

����
���� − k1‖s‖

2

− k2s
T
|s|

n1/n2 − F‖s‖

≤ − 2k3
1
2
e

T
e  − 2 n1+n2( )/2n2k6

1
2
e

T
e 

n1+n2( )/2n2

−
2k1

λ2

1
2
s

T
M x1( s 

− k2
2
λ2

 

n1+n2( )/2n2 1
2
s

T
M x1( s 

n1+n2( )/2n2

� − k7
1
2
e

T
e  − k8

1
2
s

T
M x1( s  − k9

1
2
e

T
e 

n1+n2( )/2n2

− k10
1
2
s

T
M x1( s 

n1+n2( )/2n2

≤ − c1
1
2
e

T
e +

1
2
s

T
M x1( s  − c2

1
2
e

T
e +

1
2
s

T
M x1( s 

n1+n2( )/2n2

� − c1V1 − c2V
n1+n2( )/2n2

1 .

(27)

Solving (27) leads to V1(t) ≡ 0 for all t≥ tc. ,erefore,
from (27), we can obtain _V2(t)≤ 0.

From (5) and (8), the disturbance compensation error
can be derived as

ed � τdcom − τd

� − k1s − Fsign(s) − k2|s|
n1/n2 · sign |s|

n1/n2  − u

+ C x1, x2( x2 + G x1(  + M x1(  _x2.

(28)

Substituting (6) and (7) into (28), we can get

ed � − k1s − Fsign(s) − k2|s|
n1/n2 · sign |s|

n1/n2 

− u + M x1(  _s + M x1(  _ϕ + C x1, x2( x2 + G x1( 

� M x1(  _s + C x1, x2( s.

(29)

From (12), (13), and (15), the fault compensation error
can be derived as

ef � τfcom − uf

� − α(t) −
1

k3k4
_y − − α(t) −

1
k3

_α(t) 

� − α(t) + α(t)

� − e.

(30)

Solving (27) leads to V2(t) ≡ 0 for all t≥ tc. ,en,
according to (18), we have e(t) � 0 and s(t) � 0 for all t≥ tc.
,us, we can further have _s(t) � 0. ,erefore, from (29) and
(30), we can get ed�0 and ef � 0 for all t≥ tc. ,is indicates
that ed and ef can converge to zero in finite time tc, i.e.,
limt⟶tc

ed � limt⟶tc
(τdcom − τd) � 0 and limt⟶tc

ef �

limt⟶tc
(τfcom − uf(T)) � 0. ,is concludes the proof of

,eorem 1.

Remark 1. It can be seen from the nonlinear observer (14)
and the proof of ,eorem 1 that the nominal controller unom

can be cancelled in the composite compensation controller
(16). ,is indicates that the proposed composite compen-
sation control scheme does not depend on the specific
nominal control law.

Remark 2. In the literature [18–20], disturbance and fault
are treated as centralized uncertainty. Different from them,
the designed composite compensation controller (16) con-
sists the terms regarding disturbance as well as actuator
faults. ,us, the respective characteristic of disturbance and
actuator faults can better be reflected.

4. Simulations

Simulations are conducted on a 2-DOF robot manipulator,
as shown in Figure 3. ,e dynamics of the robot is

M(q) �
p1 + p2 + 2p3 cos q2 p2 + p3 cos q2

p2 + p3 cos q2 p2
 ,

C(q, _q) �
− p3 _q2 sin q2 − p3 _q1 + _q2( sin q2

p3 _q1 sin q2 0
 ,

G(q) �
p4g cos q1 + p5g cos q1 + q2( 

p5g cos q1 + q2( 
 ,

(31)

where q � q1 q2 
T and q1 and q2 represent the position of

the first joint and the second joint, respectively. Besides,
p1

p2

p3

p4

p5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

m1h
2
1 + m2l

2
1 + J1

m2h
2
2 + J2

m2l1h2

m1h1 + m2l1

m2h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

where m1 and m2 are the mass of the link, l1 and l2 are the
length of the link, h1 and h2 are the distance to the center of
the mass, J1 and J2 are the moment of inertia, and g is the
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gravity coefficient. In the simulations, m1 � m2 � 1,
l1 � l2 � 1, h1 � h2 � 0.5, and J1 � J2 � 0.08.

,e conventional PD controller [24] which is widely
applied in practice is taken as the nominal controller unom:

unom � M(q) €qd + kd _ep + kpep  + C(q, _q) + G(q), (33)

where ep � qd − q represents the position tracking error of
the robot.

,e initial value of the robot is q(0) � 0.05 0.1 
T. ,e

desired position of the robot is qd � qd1 qd2 
T, where

qd1 � 0.05 sin(4t − 0.5π),

qd2 � 0.06 sin(4t − 0.5π).
 (34)

,e external disturbance in the robotic system is

τd � 0.2 cos(2t) 0.4 cos(2t) 
T
. (35)

For joint 1 of the robot, during 2 sec-3 sec and 8 sec-9 sec,
the actuator fault is constant deviation fault. During
4 sec–7 sec, the actuator fault is time-varying fault. For the
rest of the time, the actuator is no fault.

For joint 2 of the robot, during 0 sec–5 sec, the actuator is
no fault. After 5 sec, the actuator fault is loss of effectiveness
fault; i.e., the actuator losses 20% of the effectiveness.

Specifically, the actuator fault for joint 1 and joint 2 is as
follows:

uf1
T1(  �

− 0.8, 2≤ t≤ 3,

− 0.6 sin(4t), 4≤ t≤ 7,

− 0.5, 8≤ t≤ 9,

0, elsewhere

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,

uf2
T2(  �

− 0.2unom, t≥ 5,

0, elsewhere.


(36)

In the simulations, the performances of the conven-
tional fault reconstruction scheme [13] and the proposed
composite compensation control scheme are compared.
,e parameters of the conventional fault reconstruction
scheme [13] are chosen as kd � 70, kp � 50, k1 � 0.001,
k2 � 25, k3 � 75, k4 � 145, n1 � 101, and n2 � 103. ,e
parameters of the proposed composite compensation

controller are chosen as kp � 800, kd � 500, k1 � 1165,
k2 � 680, k3 � 800, k4 � 50, k5 � k3/k4 � 16, k6 � 0.5,
n1 � 87, n2 � 103, and β � 0.5. ,e simulation results are
shown in Figures 4–9.

,e effect of the external disturbance compensation with
the composite compensation controller is shown in Figures 4
and 5. It can be seen that the proposed composite com-
pensation controller can successfully compensate the dis-
turbance, and the disturbance compensation error can
quickly converge within a short time. Since the conventional
fault reconstruction scheme cannot compensate the external
disturbance, the effect of the external disturbance com-
pensation with the conventional fault reconstruction scheme
is not shown.

Figures 6(a) and 6(b) show that both the conventional
fault reconstruction scheme and the proposed composite
compensation controller can compensate various types of
actuator faults. However, it can be seen from Figures 7(a)
and 7(b) that when the proposed controller is employed, the
fault compensation accuracy is higher and the fault error
convergence rate is faster.

Figure 8(a) shows that, with the conventional fault
reconstruction scheme, the real position trajectory of the
robot cannot track the desired position trajectory well.
Comparatively, Figure 8(b) shows that, with the proposed
composite compensation controller, the robot can track
the desired position in a satisfactory way within a short
time. As shown in Figure 9(a), when the fault recon-
struction scheme is used, there exists obvious position
tracking error, and the error convergence rate is slow.
Comparatively, when the proposed controller is employed,
the position tracking error is ideal, and the error con-
vergence rate is faster in Figure 9(b). ,e reason is that the
proposed composite compensation controller can not only
deal with actuator faults but also external disturbance in
the system.

To further demonstrate the superiority of the proposed
composite compensation control scheme, several perfor-
mance indicators are compared in quantitative in Tables 1–3.
,e indicator tdis

denotes the adjustment time of disturbance
compensation, and |edi

| represents the disturbance com-
pensation error. tfis

denotes the adjustment time of fault
compensation, and |efi

| represents the fault compensation
error. tpis

denotes the adjustment time of position tracking,

q1

q2

l1

l2

h1

h2

Figure 3: 2-DOF robot manipulator.
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Figure 4: External disturbance and compensation of joint 1 and joint 2 (composite compensation controller).
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Figure 6: Actuator faults and compensation of joint 1 and joint 2: (a) fault reconstruction scheme [13]; (b) composite compensation
controller.
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and |epi
|max represents the position tracking error, where i �

1, 2 represent joint 1 and joint 2 of the robot, respectively.
Table 1 indicates that, with the proposed composite

compensation controller, the disturbance compensation
error of joint 1 and joint 2 can rapidly converge in 0.1191 sec
and 0.0833 sec, respectively. Nevertheless, the conventional
fault reconstruction scheme cannot compensate
disturbance.

Table 2 shows that, with the proposed composite
compensation controller, the adjustment time of fault
compensation is shorter and the absolute value of the fault

compensation error is smaller. In other words, when the
proposed controller is employed, the fault compensation
accuracy is higher and the fault error convergence rate is
faster.

Table 3 shows that, with the proposed composite
compensation controller, the adjustment time of position
tracking for both joint 1 and joint 2 is shorter, and the
absolute value of the position tracking error is smaller. In
other words, when the proposed controller is employed, the
robot can track the desired position trajectory more accu-
rately and quickly.
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Figure 8: Position tracking of joint 1 and joint 2: (a) fault reconstruction scheme [13]; (b) composite compensation controller.
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Figure 7: Fault compensation error of joint 1 and joint 2: (a) fault reconstruction scheme [13]; (b) composite compensation controller.
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5. Conclusions

For a robotic system subject to simultaneous external
disturbance and various actuator faults, a composite
compensation control scheme based on adaptive sliding
mode controller and observer-based fault-tolerant con-
troller is proposed. Compared to the conventional fault
reconstruction scheme, the proposed scheme can com-
pensate not only external disturbance but also various
actuator faults. ,e fault compensation accuracy is
higher, and the fault error convergence rate is faster.
Moreover, the robot can track the desired position

trajectory more accurately and quickly. Experimental
verification of the proposed control in this paper is quite
necessary and remains as our work in the next step.
Besides, the extension of the proposed control to online
estimates the fault information for a nonlinear robotic
system using a fault diagnosis approach remains as our
future research.

Data Availability

,e data that support our manuscript conclusions are some
open access articles that have been properly cited, and the
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Figure 9: Position tracking error of joint 1 and joint 2: (a) fault reconstruction scheme [13]; (b) composite compensation controller.

Table 1: Quantitative comparison of external disturbance compensation.

Composite compensation controller Fault reconstruction scheme
tdis

(±2%)(sec) |edi
|max(Nm) tdis

(±2%)(sec) |edi
|max(Nm)

Joint 1 0.1191 1.147 × 10− 2 None None
Joint 2 0.0833 1.53 × 10− 2 None None

Table 2: Quantitative comparison of actuator fault compensation.

Composite compensation controller Fault reconstruction scheme
tfis

(±5%)(sec) |efi
|max(Nm) tfis

(±5%)(sec) |efi
|max(Nm)

Joint 1 0.006 1.11 × 10− 16 0.044 1.89 × 10− 5

Joint 2 0.006 8.88 × 10− 15 0.044 1.89 × 10− 5

Table 3: Quantitative comparison of position tracking.

Composite compensation controller Fault reconstruction scheme
tpis

(±3%)(sec) |epi
|max(rad) tpis

(±3%)(sec) |epi
|max(rad)

Joint 1 2.435 3.32 × 10− 5 5.777 2.49 × 10− 3

Joint 2 2.734 3.65 × 10− 6 4.834 3.57 × 10− 3
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readers can easily obtain these articles to verify the
conclusions.
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&e braking quality is considered as the most important performance of the adaptive control system that influences the vehicle
safety and ride comfort remarkably. &is research is aimed at designing an adaptive cruise control (ACC) system based on active
braking algorithm using hierarchical control. Taking into account the vehicle with safety and comfort, the upper decision-making
controller is designed based on model predictive control algorithm. &rottle controller and braking controller are designed with
feedforward and feedback algorithms as the bottom controller, where the braking controller is designed based on the hydraulic
braking model. &e whole model is simulated collaboratively with Amesim, Carsim, and Simulink. By comparison with the full
deceleration model, the results show that the proposed algorithm can not only make the vehicle maintain a safe distance under the
premise of following the target vehicle ahead effectively but also provide favorable driving comfort.

1. Introduction

In recent years, one of the most important goals in the
automotive industry has been to offer passengers the highest
level of safety, comfort, and efficiency by partially or
completely removing driving duties from humans. Ad-
vanced Driver Assistant System (ADAS) has become a re-
search hotspot in the field of intelligent transportation; it not
only improves the road capacity [1], but also ensures the
safety of drivers and vulnerable road users to some extent
[2, 3]. Studies have shown that the active safety systems,
such as adaptive cruise control, electronic stability control,
or lane keeping assistant, which are already on the auto-
motive market, can improve safety by decreasing the
number of traffic accidents, among which the ACC helps
a lot to reduce the driver’s work intensity; an ACC
equipped vehicle uses radar or other sensors that detect
the distance and speed to other preceding vehicles
(downstream vehicles) on the highway. In the absence of
preceding vehicles, the ACC vehicle travels at a driver-set
speed. If a preceding vehicle is detected on the highway by

the vehicle’s radar, the ACC system determines to control
the throttle and braking system so as to maintain an
expected distance and acceleration from the preceding
vehicle [4].

&e planning and decision-making modules are the
“brain” of the vehicle and have a high degree of intelligence.
All response actions of the vehicle are performed according
to the instructions issued by the module. By processing and
calculating the real-time state information and environ-
mental information of the vehicle, this module can plan the
most reasonable vehicle movement state and send it to the
execution control module [5]. &e most critical parts for the
ACC, the planning and decision-making module, need to
decide the optimal control target according to the relative
motion state between the host vehicle and the target vehicle:
expected longitudinal acceleration or distance [6]. So far, the
decision algorithms of the ACC mainly have the following
forms: PID feedback control, model predictive control, fuzzy
logic control, and optimal control [7–10].

Longitudinal control is the basic function of ACC system
where the control technology is used to achieve constant
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speed driving of the vehicle, maintaining the distance be-
tween vehicles or the time between vehicles to follow the
leading vehicle, identifying and tracking the curve of the
vehicle ahead, automatic braking, and other functions. &e
quality of the longitudinal control effect has a direct impact
on the safety and comfort of ACC system. &e executive
control module mainly achieves rapid response to the in-
structions issued by the planning and decision module and
precise tracking of the expected goal through the precise
control of the driving system and the braking system. ACC
system in accordance with the working conditions can be
divided into cruise mode, following mode, and overtaking
mode [11]; the research scope of this article is car-following
model, whose function is to keep an appropriate distance
and speed with the leading vehicle. In order to further
improve the effect of vehicle longitudinal control, dynamic
model has become one of the key links in the field of vehicle
longitudinal control. Among them, Zhan established a
longitudinal dynamic model and braking system model for
ACC system [12]. &e researchers adopted longitudinal
control method based on vehicle longitudinal inverse model
and used vehicle inverse model to control electronic throttle
and braking pressure [13, 14].

With the development of ACC system, more and more
working conditions involve speeds of 30 km/h and below, so
the vehicle longitudinal control has experienced the de-
velopment process from single throttle control to combined
throttle-braking control [15]. Due to strong robustness, low
accuracy requirements for controlled objects, and no need
for accurate modeling, classical control methods represented
by PID control and numerical look-up tables are widely
used. In addition, many researchers use the modified form of
PID controller to study longitudinal control of vehicles, and
try to improve longitudinal control effect by improving PID
controller [16, 17].

Adaptive Neural Network scheme has been used in a
platoon, in order to solve the traffic stability problem [18].
PID algorithm is used to directly control the accelerator
pedal and the brake pedal to control the acceleration and
deceleration of the vehicle to maintain the distance from the
preceding vehicle [19, 20]. &e fuzzy logic-based ACC
controller is used to make one vehicle follow another vehicle
stably, having no shock during the process of the accelerator
and brake switching [21, 22]. &e fuzzy ACC system with
speed sign detection capability and synovial control is used
for adaptive control system [23, 24]. &e change of signal
light is also considered to control the driving of vehicles at
intersections [25]. &e prospective velocity of the preceding
vehicle is estimated by a prediction model based on the
measured intervehicle distance and the I2V communication
to enable an anticipatory driving behavior for the controlled
vehicle [26].

One can conclude from the research that the previous
active braking functions of adaptive cruise-following system
also did not fully consider the ride comfort and hydraulic
hysteresis problem. &is research is aimed at designing an
ACC considering the vehicle ride and proposing an analysis
model based on active braking algorithm using hierarchical
control.

In this paper, considering the safety, comfort, and the
physical characteristics of hydraulic braking system, by
switching on and off the valve and motor start-stop,
adjusting the hydraulic cylinder pressure, a new ACC
control strategy based on active braking is proposed. By
comparison with the full deceleration model, the proposed
method can improve the braking ride comfort obviously.
&e remainder of this paper is structured as follows: Section
2, modeling; Section 3, control algorithm research; Section 4,
simulation and discussion; Section 5, conclusions.

2. Modeling

&is paper is aimed at designing a control scheme that could
guarantee safety considering the vehicle characteristic and
ensure braking comfort at all times. As shown in Figure 1,
the vehicle longitudinal dynamics model, the hydraulic
braking system, and the control mechanism are included in
the proposed researchmodel.&emain idea of the controller
model is as follows:

(1) &e real-time safety distance according to the vehicle
speed and the actual distance and relative speed
between leader vehicle and follower vehicle are
obtained as the controller input.

(2) &e limitation of the acceleration and relative dis-
tance of the follower vehicle is calculated by the
longitudinal dynamics model.

(3) &e expected acceleration of the follower vehicle is
calculated and the optimized brake pressure is
transmitted to the executive agency including active
brake controller and active throttle controller.

(4) &e braking pressure is produced by the hydraulic
braking system, and the vehicle speed slows down. In
this process, the brake pressure information is also
transmitted to the longitudinal dynamics model.

2.1. Vehicle DynamicsModel. In this paper, Carsim software
is used to build vehicle dynamics model for collaborative
simulation. &e vehicles are four-wheel drive B-class
hatchback with the engine power of 125 kW, and with the
hydraulic ABS braking system. &e vehicle model includes 7
subsystems: the body, aerodynamics input, transmission
system, braking system, steering system, suspension system,
and the tire. &e parameters of the vehicles are shown in
Table 1. &e output of the model includes the longitudinal
velocity v, acceleration a, engine speed ωe, and position S.

2.2. Vehicle Reverse Longitudinal Dynamics Model. In the
ACC system, the control command from the host controller
is a desired vehicle acceleration that needs to be shifted to the
desired throttle opening and brake pressure by the vehicle
reverse longitudinal dynamic model, which then transmitted
to the vehicle longitudinal dynamics model to control the
vehicle acceleration, deceleration, or uniform motion in
order to achieve the function of the car adaptive cruise
system [27, 28].
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2.2.1. Mode Switch. To the vehicle dynamics system, ac-
celeration and braking are separate movements. When
braking, the car should first release the accelerator pedal,
using engine drag, wind resistance, and rolling resistance
and other ways to brake. If the above action still cannot meet
the needs of vehicle deceleration, then depress the brake
pedal, applying brake force to increase vehicle deceleration.
Besides, taking into account the driving comfort and the
reliability of the corresponding parts of the vehicle, the
designing process should avoid frequent switching between
acceleration control and braking control.

It is easy to directly measure the maximum deceleration
value amax at different speeds in Carsim software, as shown
in Figure 2. In order to improve the driving comfort of the
vehicle, the width of the transition area is set on the upper

and lower sides of the switching curve, which is generally
taken from experience.

&e expected acceleration of the vehicle is defined as
afdes. According to the switching curve, when afdes ≥ amax, the
car switches to acceleration control. On the contrary, when
afdes ≤ amax, the car switches to braking control.

2.2.2. Acceleration Control. If the vehicle switches to ac-
celeration control mode, it is necessary to do as the expected
acceleration requires. &e expected torque is calculated from
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Figure 1: Scheme of the proposed ACC control model.

Table 1: Parameters of the vehicles.

Parameters Symbol Value
Sprung mass (kg) M 1111
Distance between CM and front axle (m) a 1.04
Distance between CM and rear axle (m) b 1.56
Air density (kg/m3) ρ 1.206
Rolling resistance coefficient f 0.02
Track (m) d 1.695
Centroid height (m) H 0.54
Gear ratio of main gear i0 4.1
Transmission gear N 6
Gear ratio of transmission ig 1
Tire rolling radius (m) r 0.311
Air resistance coefficient CD 0.342
Frontal area (m2) A 1.6
&e efficiency of the drive system η 0.9 0 5 10 15 20 25 30 35
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Figure 2: Acceleration control/braking control switching curve.
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the expected acceleration, and then the desired throttle
opening can be checked through the engine mapping.

Without considering the conversion quality of rotating
parts, the longitudinal dynamic analysis of the vehicle is
analyzed and the vehicle longitudinal dynamics model is as
follows:

mafdes � Ft − Fxb −  F(v) ,

 F(v) �
1
2

CDAρv
2

+ mgf ,

(1)

where afdes is the expected acceleration, m is the vehicle
mass, Ft is the driving force, Fxb is the braking force,  F(v)

is the sum of the resistances, CD is the air resistance coef-
ficient, A is the frontal area, ρ is the air density, v is the car
speed, g is the gravitational acceleration, and f is the rolling
resistance coefficient.

Regardless of the elastic deformation of the transmission
system, the driving force can be calculated as follows:

Ft �
ητ ωt/ωe( igi0

r
Te � KdTe, (2)

where η is the mechanical efficiency, Te is the engine torque,
ωt is the torque converter turbine speed, ωe is the engine
speed, ig is the transmission gear ratio, i0 is the main gear
ratio, τ(ωt/ωe) is a torque converter characteristic function,
r is the wheel rolling radius, and Kd is a variable that can be
observed in real time:

Kd �
ητ ωt/ωe( RgRm

r
�
ητ vRgRm / rωe(  RgRm

r
. (3)

When the vehicle is accelerating, Fxb � 0. And the ex-
pected engine output torque can be obtained according to
the transmission gear ratio and speed ratio:

Tdes �
ma +  F(v)

Kd
. (4)

It is easy to get the throttle opening of the engine from
the mapping by taking the throttle opening required to
output different torques at different speeds. &e values are
expressed as follows:

αdes � f Tdes,ωe( . (5)

2.2.3. Braking Control. If the car switches to braking control
mode, it is necessary to do as the expected deceleration
requires. &e desired braking force can be calculated
according to the desired acceleration, and the braking
pressure can be obtained through the braking reverse model
[29].

In this case, the engine output torque is terminated,
Te � 0; according to equation (2), it can be seen that Ft � 0;
the vehicle longitudinal force can be shown as

mafdes � − Fxb −  F(v). (6)

&e braking force and braking pressure can be ap-
proximated as a linear relationship as follows:

Fbdes � KbPdes , (7)

where Kb is a constant.
It is not hard to calculate the braking pressure from

equations (6) and (7):

Pdes �
− mafdes − 0.5CDAρv2 − mgf




Kb
. (8)

2.3. Active Braking Hydraulic System Model. &e expected
acceleration got from upper-level decision controller is
transformed by the inverse vertical dynamic model into the
desired braking pressure or desired throttle opening to the
underlying accelerator and brake actuator. Active braking
objective is archived by controlling the plunger pump and
valves to start or stop to achieve the object hydraulic oil
pressure, thereby controlling the brake calipers.

2.3.1. Designing of the Active Braking Principle. &e sim-
plified hydraulic structure of active braking system is shown
in Figure 3. &e working principle is as follows. If the system
switches into the active braking mode, there are three active
modes: booster, packing, and decompression. When pres-
sure increases, high-pressure directional valve 6 and di-
rectional valve 5 are opened and the pump motor is started.
Brake fluid flows through high-pressure valve 6 and motor
pump and then through the inlet valve 12 into the wheel
cylinder, then pushing the piston of wheel cylinder to slow
down the wheel rotate speed. When braking force reaches a
certain intensity, active braking system switches into the
pressure hold-on mode, directional valve 5 is opened, pump
motor and high-pressure valve 6 are closed, and wheel
cylinder pressure keeps constant at this state. When pressure
decreases, the high-pressure valve 6 is opened, directional
valve 5 and the motor are closed, and the braking fluid flows
into the low-pressure accumulator 9, increasing the braking
fluid storage of the accumulator. In the process of the new
pressure increase case, plunger pump 8 works, and the
braking fluid flows out of the low-pressure accumulator 9
and then through inlet valve 12 to the wheel cylinder.

2.3.2. Modeling of the Hydraulic Braking System

(1) Accumulator model
&e pressure and volume of the accumulator follow
the idea gas law. &e mathematical model is as
follows:

PAVn
A � P1V

n
1 � P2V

n
2, (9)

where PA and VA are the inflation pressure and
accumulator capacity, respectively, P1 and P2 are the
highest and the lowest pressure values of the accu-
mulator, and V1 and V2 are the highest and the
lowest volume values of the accumulator. Consid-
ering that the braking process could be seen as
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adiabatic, n � 1.4. Apart from these, PA should meet
the requirement that 0.25P1＜PA＜0.9P2.

(2) Motor pump model
&e motor starts to work when the accumulator
pressure is below the lower limit and stops when the
accumulator pressure reaches the upper limit. &e
mathematical model is as follows [30]:

Qb � Vcω
E

E αPin +(1 − α)Pout 
, (10)

(i) where Qb is the oil pump flow rate, Vc is the pump
displacement, ω is the motor speed, Pout and Pin are
the output and input of pump pressure, respectively,
E is the bulk modulus of braking fluid, and α is the
pump pressure factor.

(3) High-speed switch solenoid switch model
For the on-off action of the solenoid switch that is
controlled by the input voltage, there will be a certain
delay phenomenon. In addition, inertia of the spool
can also cause delay. &e mathematical model of the
high-speed on-off valve with the second-order delay
is as follows:

G(s) �
K1ω

s2 + 2ξωs + ω2, (11)

whereK1 is the current gain,ω is the valve frequency,
and ξ is the equivalent damping ratio of the valve.

(4) Restrictor model

&e restrictor controls the flow rate by the order of
system pressure, and the mathematical model is as
follows:

q � a tanh
2χ

���������
((2Δp)/ρ)



]Re
 

qmax
, (12)

where q is the hydraulic medium flow, A is the ef-
fective circulation area of valves, χ is the hydraulic
diameter, ρ is the fluid density, Δp is the valve’s
pressure difference, ] is the sports viscosity, and Re is
the critical Reynolds number.

(5) Braking model
&e braking model is as follows:

m
d2b
dt2

� − PS + Ceq
db

dt
+ Km b0 + b( ,

bS � 
t

0 Qdt ,

(13)

where m is the brake caliper mass, b is the brake caliper
displacement, P is the hydraulic cylinder braking
pressure, Ceq is the equivalent damping, Km is the
spring stiffness, x0 is the spring initial position, and S is
the area of hydraulic cylinder cross section.

3. Control Algorithms

Due to the complex conditions of the vehicle following, the
former researches have shown that the ACC system should
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Figure 3: Schematic of the active hydraulic braking system. (1) Master cylinder; (2) hydraulic unit; (3) hydraulic circuit; (4) check valve; (5)
directional valve; (6) high pressure directional valve; (7) pressure-increasing valve; (8) oil returning pump; (9) low pressure accumulator;
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both control the vehicle speed and adapt to external in-
terference such as the leading vehicle’s velocity [31, 32].
Independent hierarchical control method is used in the
proposed ACC model. And the control method is divided
into the upper controller (decision-making controller)
module and the bottom controller (underlying executive
module controller).

&e upper controller determines the expected acceler-
ation afdes based on the driving information provided by the
sensors and the driver’s settings at this time. Based on the
output from the upper controller, the bottom controller
makes the vehicle dynamics system to achieve the desired
acceleration.

3.1. Upper Controller Design

3.1.1. Establishment of the Follower Model. Car-following
model is built based on the driver desired distance and the
vehicle dynamic characteristic. Equation (14) describes the
driver desired distance [33], and equation (15) shows the
relationship of the vehicle dynamic:

ddes � Thvf + d0, (14)

where ddes is the expect distance,Th is the time headway, vf is
the velocity of the following vehicle, and d0 is the minimum
safe distance when the two vehicles stop.

It is clear that the distance error and the velocity dif-
ference can be as follows:

Δ d � ddes − d,

Δv � vl − vf ,
 (15)

where d is the factual distance, Δ d is the distance error, vl is
the velocity of the leading vehicle, and Δv is the velocity
difference.

A simulation system is built to analyze the vehicle dy-
namic relationship. &e frequency response method is
adopted to identify the system input and output charac-
teristics, and finally the transfer function is obtained as
equation (18):

af �
K

Ts + 1
afdes, (16)

where K is the gain and T is the time delay.
Combining equations (16)–(19), the car-following model

can be as follows:

_x � A′x + B′u + G′v, (17)

where x � [Δ dΔv af ]
T, u � afdes, λ � ap,

A′ �
0 1 − Th
0 0 − 1
0 0 − (1/T)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, B′ �

0
0

K/T

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, and G′ � 0 1 0 

T.

x is the system status variable; u is the system input; λ is
the disturbance of the input, which is the preceding vehicle’s
acceleration ap here; A′, B′, and G′ are the coefficient matrix
of the input.

3.1.2. Performance Index Design

(1) Following performance index
&e ACC system needs to control the vehicle fol-
lowing the leading vehicle steadily, and the following
performance is manifested in the performance index
of speed and the safety index [34–36].
&e square sum of the speed error Δv(k) and the
distance error Δ d(k) is taken as the following per-
formance index:

lt(k) � wΔd(Δ d(k))2 + wΔv(Δv(k))2, (18)

where Δ d(k) � sf(k) − sl(k) − ddes(vl(k)), Δv(k) �

vh(k) − vf(k),wΔd and wΔv are the distance error
weight and speed error weight, sf is the displacement of
the front car, and sh is the distance of the car traveled.
&e following performance index in the forecast time
domain is as follows:

Lt(k) �  lt(k)

k�1
P

.
(19)

(2) Safety index
&e vehicle should keep a safe distance to avoid
collision. Meanwhile, the distance between the two
vehicles should avoid being too large to avoid ac-
cidental vehicle insertion. &e vehicle should also
keep an appropriate speed difference to ensure safety
and to increase traffic efficiency. And the velocity
error between two vehicles should not be too large.
&e optimization problem is solved subject to de-
sired intervehicle distance and acceleration limita-
tion, which are incorporated as constraints.
&erefore, the constraints of the vehicle distance
error and speed error are as follows:

0≤Δd(k)≤Δdmax,

Δvmin ≤Δv(k)≤Δvmax.
 (20)

(3) System prediction optimization
Based on the index functions and constraints
established before, the integrated index for the op-
timization problem is established as follows:

L � 
P

i�1
‖Δ d(k + i + 1 | k)‖2wΔ d

+ 
P

i�1
‖Δv(k + i + 1 | k)‖2wΔv ,

(21)

where P is the length of the predictive sample time.
System constraints are as follows:

xmin ≤x(k + i | k)≤xmax,

ymin ≤y(k + i | k)≤ymax,
 i � 0: P − 1. (22)

From the above analysis, the objective optimization
problem of the system can be described as follows:
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min
i�0: P− 1

L, (23)

subject to
0≤Δ d(k)≤Δdmax,

Δvmin ≤Δv(k)≤Δvmax,

xmin ≤x(k + i | k)≤ xmax,

ymin ≤y(k + i | k)≤ymax.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

3.2. Bottom Controller Design. &e bottom controller is the
system that ensures the vehicle response is constant with the
expected value calculated by the upper controller as much as
possible. &e desired acceleration from the upper controller
is translated into the desired braking pressure or throttle
opening to the braking controller and the throttle controller
via the inverse longitudinal braking model.

3.2.1. ;rottle Controller. &e PID algorithm is adopted in
the throttle controller to ensure the system is working in
robust and reliable condition. &e algorithm takes the linear
combination of the error’s proportion (P), integral (I), and
differential (D) as control variables and controlling object.

&e PID control law is as follows:

Δy � Kp ε +
1
TI


t

0
εdt + TD

dε
dt

 , (25)

where ε is the difference between the expected acceleration
ades and the actual car acceleration a, Kp is the proportional
gain, TI is the integration time constant, and TD is the
derivative time constant.

&e conversion to transfer function is as follows:

(s) �
U(s)

E(s)
� Kp 1 +

1
TIs

+ TDs . (26)

3.2.2. Braking Controller. &e purpose of the braking
pressure controller is to make the real braking pressure and
the expected as close as possible so as to follow up the desired
acceleration. Due to inertial links (mechanical system in-
ertia, electrical system inertia, and control system inertia) of
the active braking control system, real-time control value
cannot act on the control system timely. Even if the pa-
rameters of the classical discrete PID algorithm are opti-
mized, the control result still has serious lag and overshoot,
which cannot meet the control requirements. &e ideas for
solving these problems will be given in the next paragraph.

By using proportional feedback control, it is easy to
double the interference noise in feedback acceleration,
which is not conducive to the stability. Feedback control
structure is used tomake the actual pressure follow the target
pressure. And the feedforward control structure is used to
improve the controller execution response to recuperate the
time lag of the feedback controller. &e cooperation of the
feedback and feedforward controller is used to eliminate the
static error and improve the accuracy of acceleration control.

&e overall structure of the braking controller is shown in
Figure 4.

Feedforward compensator uses the look-up table
method. According to the pressure difference between the
actual pressure and the ideal pressure of the hydraulic
cylinder, the system controls the duty cycle signal of the
increasing and reducing valve so as to control the pressure
change rate of the hydraulic cylinder, precisely controlling
the hydraulic cylinder pressure.

When the pressure difference is active, the system will
select a larger duty cycle in order to quickly increase or reduce
hydraulic cylinder pressure. When the pressure difference is
positive, the system will choose a smaller duty cycle to ac-
curately track the ideal pressure, and to improve the wheel
pressure accuracy and robustness [37, 38], specifically as listed
in Table 2, where X is the pressure difference, Y1 is the valve
duty signal of the booster valve, and Y2 is the duty cycle of the
valve control signal of the pressure reducing valve.

Similar to the throttle controller, the PID algorithm is
used in the braking controller. &e difference between the
expected braking pressure and the actual braking pressure is
taken as the target control variable. From the design process,
one can conclude that the designs of the feedforward
compensator and the feedback compensator do not affect
each other and can be performed independently.

4. Simulation and Discussion

A collaborative simulation model is built by Matlab/
Simulink, Carsim, and Amesim to validate the proposed
algorithm. &e simulation parameters and restrictions are
defined, as shown in Table 3.

Simulation conditions are as follows: at 0–15 s, the
leading vehicle drives at 20m/s; at 15–25 s, the leading
vehicle accelerates to 30m/s with acceleration 1m/s2; at
25–35 s, the leading vehicle drives at 30m/s; at 35–42 s, the
leading vehicle slows down to 18m/s with deceleration
− 1.7m/s2. &e initial distance between two vehicles is 50m,
and the initial speed of the follower vehicle is 25m/s. &e
simulation results are shown in Figures 5–8. &e follow
process includes 3 stages, shown as follows.

Feedforward
compensator

Lower control
object

Feedback
compensator

+

+
+

+

+

–

acon

ades e

wd

xf
··

Figure 4: Structure of the braking controller.

Table 2: Duty ratio of high-pressure valve and directional valve
under different pressure differences.
X (MPa) − 6 − 4 − 3 − 2 − 1 − 0.5 − 0.3 − 0.1
Y1 (%) 100 40 35 30 25 20 15 10
Y2 (%) 0 0 0 0 0 0 0 0
X (MPa) 0 0.1 0.3 0.5 1 2 3 4 6
Y1 (%) 0 0 0 0 0 0 0 0 0
Y2 (%) 0 10 20 20 25 30 40 40 100
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4.1. S-1 FollowDistanceAdjustment. During the time 0 − 5 s,
the actual distance between the two vehicles is greater than
the desired distance; the system judges the condition is safe.
&e upper controller instructs the bottom controller to
accelerate to shorten the distance to improve the traffic
efficiency. &e braking controller is on the standby mode,
and the throttle is in a small opening. As the velocity in-
creases, the expected distance also increases.

4.2. S-2 Follow Velocity Adjustment. As the velocity of the
follower vehicle increases, the expected distance increases
also.&e actual distance is shortened as the velocity difference
increases; the system judges the condition is in danger. &e
upper controller instructs the bottom controller to decelerate
to lengthen the distance to improve the safety. &e throttle
controller is on the standby mode; the braking controller
opens valves 5 and 6 and starts the brake pump (Figure 3); and
the braking pressure is increased. And then, the vehicle de-
celeration increases, and the velocity of the follower vehicle
decreases near the velocity of the leading vehicle.

Table 3: &e simulation parameters.

Items ts(s) th(s) τ(s) d0(m) dc(m) vmin(m/s) vmax(m/s)
Value 0.2 1.5 0.7 7 5 0 36
Items aumin(m/s2) aumax(m/s2) R N P R
Value − 3 2 1 5 10 diag 2, 10, 0{ }
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4.3. S-3 Follow with the Leading Vehicle. As the leading
vehicle accelerates during 15–25 s and decelerates during
35–42 s, the follower vehicle changes the throttle opening
and braking pressure, keeping the desired distance and
speed. As can be seen from Figure 7, although the accel-
eration of the vehicle has slight fluctuation, the acceleration
falls in a narrow range of − 3 to 2m/s2, which ensures the ride
comfort. As can be seen in Figure 8, the target pressure
follows the change of the desired acceleration response
quickly and steadily with less hysteresis.

To illustrate purposes and evaluate results conveniently,
a comparison with a state-of-the-art ACC used in the au-
tomotive industry research is analyzed [39]. In this paper,
the safety and comfort are evaluated and provided directly.
&e full declaration method is used in the mode which
presents detailed simulation results for one considered
scenario. &e results show that the velocity of the leading
vehicle accelerates from 10m/s–15m/s and the acceleration
of follower vehicle falls in a width range of − 10 − 5m/s2.&e
jerk caused by application of full braking results in un-
comfortable driving.

By comparison, the proposed strategy results show that
the acceleration of the vehicle has slight fluctuation and fast
response, which implies comfortable driving without jerky
maneuvers. &e ability of keeping intervehicle distance as
close as possible to safe distance shows good tracking
performance. In this way, both safety and comfort are
achieved by utilizing the proposed model based on opti-
mization of active braking strategy.

5. Conclusions

&is research is aimed at proposing an ACC strategy con-
sidering the safety and comfort based on the active braking
where the system hysteresis problem is included. For this
purpose, vehicle dynamics model, vehicle reverse longitu-
dinal dynamics model, and active hydraulic braking system
model are proposed. And the models are simulated in
Carsim, MATLAB/Simulink, and Amesim collaboratively.
&e control algorithm is proposed and optimized to improve
the ride comfort. From the results, it can be seen that the
velocity and distance values are preserved in the specified
comfortable range although the vehicle velocity changes
obviously:

(1) &e control algorithm based on the model predictive
control algorithm can be optimized by considering
the multivariable constraints simultaneously; that is
to say, the cruise-following control safety can be
ensured and the ride comfort can be satisfied.

(2) &e proposed algorithm is evaluated by comparison
with using full deceleration simulation, and it shows
active performance on position and velocity track-
ing. &us, we can conclude that the proposed ap-
proach guarantees safety and comfort for ACC-
equipped vehicles in low velocity conditions.

&is study only focuses on the occupant kinematics
during the pre-crash period; the occupant kinematics and

injury indexes within the in-crash phase of such typical
scenario require subsequent study.
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To predict the probability of roadside accidents for curved sections on highways, we chose eight risk factors that may contribute to
the probability of roadside accidents to conduct simulation tests and collected a total of 12,800 data obtained from the PC-crash
software. &e chi-squared automatic interaction detection (CHAID) decision tree technique was employed to identify significant
risk factors and explore the influence of different combinations of significant risk factors on roadside accidents according to the
generated decision rules, so as to propose specific improved countermeasures as the reference for the revision of the Design
Specification for Highway Alignment (JTG D20-2017) of China. Considering the effects of related interactions among different
risk factors on roadside accidents, path analysis was applied to investigate the importance of the significant risk factors.&e results
showed that the significant risk factors were in decreasing order of importance, vehicle speed, horizontal curve radius, vehicle type,
adhesion coefficient, hard shoulder width, and longitudinal slope. &e first five important factors were chosen as predictors of the
probability of roadside accidents in the Bayesian network analysis to establish the probability prediction model of roadside
accidents. Eventually, the thresholds of the various factors for roadside accident blackspot identification were given according to
probabilistic prediction results.

1. Introduction

Roadside accidents occur when a vehicle leaves the travel line,
crosses an edge line or a centre line, collides with trees,
guardrails, utility poles, and other natural or man-made
objects located on roadsides, or overturns or falls into deep
ditches or rivers. According to the Fatal Accident Reporting
System (FARS), these accident types account for more than
39% of fatal accidents in the United States [1]. In China,
roadside accidents account for approximately 50% of the
collisions in which more than three people perish [2]. A
European study also shows that 20% of all traffic accidents
every year are roadside accidents; however, the fatality rate is
over 35% in these accidents, and approximately one-third of
run-off-road (ROR) collision fatalities occurred on curved
road sections [3], the road type upon which this study focuses.

&ere are several complex reasons a vehicle departs from
the travelled path, such as an inappropriate avoidance

manoeuvre or inattention of a driver, crossing a curve
segment with a high speed, or understeering. A variety of
contributing factors to roadside accidents have been iden-
tified based on various collected data and data analysis
methods. Numerous studies have confirmed that highway
geometric design indexes (i.e., roadway characteristics and
roadside characteristics) play a significant role in whether a
crash occurs resulting from driver error [4], especially for
curve sections on highways. In terms of roadway charac-
teristics, a wider shoulder has been found to decrease the
occurrence of ROR accidents on horizontal curves [3, 5], but
the increase of the shoulder width is also associated with an
increasing vehicle operating speed [6]. &e frequency of
ROR accidents will increase if vehicles travel in a narrower
lane because the requirement for sharing the roadway with
other vehicles increases the chance of conflicts, whereas
driveway density has little impact on ROR accidents [3, 5].
Moreover, some research has confirmed that pavement edge
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drop-off and low friction of pavement surfaces tend to cause
a high frequency of single-vehicle accidents [7]. Sharp curves
are also a key factor contributing to roadside accident oc-
currence and approximately 30% of the ROR events occur
on road curves [8–10]. In an attempt to identify roadside
design risk factors, a large number of studies have been
implemented, involving analysis of the relationship between
the frequency of roadside accidents and critical slope, fences,
bridges, guardrail, ditches, utility pole density, distance to
pole and distance to tree, and so on [3, 11–17].

Among the environmental factors, most ROR accidents
tend to occur on weekends [3, 5]. Area type and lighting
conditions are found to be significant factors contributing to
the probability of roadside accidents [9]. A study investi-
gated whether road type and local amenities are associated
with single-vehicle accident frequency [18]. Additionally,
local population density is also related to accident occur-
rence [19].

In terms of human factors, the National Highway Traffic
Safety Administration (NHTSA) suggested that driver dis-
traction, fatigue, driver’s degree of familiarity with the
roadway, blood alcohol presence, age, and gender were the
most significant factors contributing to roadside accidents
[18], and 30% of these accidents occurred due to driver
inattention [8–10]. All of these factors have a direct or in-
direct effect on changes in vehicle speeds, and the risk of
accidents increases, followed by an increase in vehicle
speeds.

From a methodological perspective, different methods
have been employed to determine these factors. Originally,
Zegeer and Deacon [20] developed a lognormal regression
model to investigate the relationship between ROR accident
frequencies and various variables, such as average annual
daily traffic (AADT), shoulder width, lane width, terrain
type, and clear roadside recovery distance (CRRD). In a
further study, they added some variables (i.e., density and
lateral offset of the roadside object) to the previous model
[21]. However, this conventional linear regression model has
been demonstrated as inappropriate and to be often erro-
neous [22–24]. More appropriate prediction models for
accident frequency (i.e., Poisson and negative binomial (NB)
regression models) have been widely used in recent decades
[22, 25–27]. To address the problem of zero-inflated
counting processes in accident frequency analysis, the zero-
inflected Poisson (ZIP) and zero-inflected negative binomial
(ZINB) regression models have gained considerable ac-
ceptance [28–32].

Although there have been a considerable number of
roadside accident frequency studies, few studies have fo-
cused on the quantitative analysis of roadside accident
probability. Various approaches (i.e., Poisson model, NB
model, ZIP model, and ZINB model) are capable of pre-
dicting the number or frequency of roadside accidents based
on mass accident data but cannot precisely calculate
probability values under the effects of various variables.
Moreover, the research results based on the prediction of
accident frequency or number are often influenced by dif-
ferent traffic characteristics in various regions, which is not
universal. Considering that accident probability is more able

to represent the degree of frequent accidents, it is better to
carry out the prediction of accident probability than to carry
out the prediction of accident frequency or number. To
identify the roadside accidents blackspot and reduce the
accidents probability, we therefore used a data mining
technique (i.e., CHAID decision tree technique) to identify
significant risk factors contributing to roadside accidents
and another data mining technique (i.e., Bayesian network
analysis) to establish the probability prediction model of
roadside accidents. Additionally, we investigate the im-
portance of various variables under the interactions of ac-
cident occurrence by developing a path analysis based on a
logistic regression model. To the best of our knowledge, no
research has used these three methods together in the study
of the probability of roadside accidents.

2. Data and Methodology

2.1. Data. Substantial statistical analysis generally relies on
historical accident data. However, the constantly changing
traffic environment, the high cost of maintaining or col-
lecting roadside accident data, and the long-term lack of
detailed data have formed a barrier to developing a study of
the relationship between road design and the probability and
severity of accidents [25, 33]. Automobile dynamics simu-
lation technology, regarded as an alternative approach, has
been popularly applied to obtain accident data in recent
years. Compared to collected accident data, the data from
simulation software has the following advantages: (1)
comprehensive accident information, (2) no consideration
of the impact of time and traffic condition on accident data,
(3) universal applicability in the absence of regional char-
acteristics, (4) low cost of research, and (5) free choice of
variables according to your interest. In the present study, we
used accident data obtained from PC-crash simulation
software. &is software is primarily developed to take ac-
cident reconstruction and has been used for collisions be-
tween vehicles [34] and accidents involving vehicles and
pedestrians [35], as well as single-vehicle accidents [36, 37].
It has been demonstrated that PC-crash has good perfor-
mance in simulating single-vehicle (rollover) accidents
[36–40].

We chose highway geometric design indexes (horizontal
curve radius, hard shoulder width, longitudinal slope, su-
perelevation slope, and width value of the curve), pavement
condition (adhesion coefficient), and traffic characteristics
(vehicle speed and vehicle type) as input variables, and
vehicle final states as the output variable. In the present
study, the final states of vehicles include departing from the
roadway and not departing from the roadway. &e former
state refers to the circumstances of vehicle rollover or any of
the vehicle wheels entering the slope represents the oc-
currence of a roadside accident (see Figure 1), and the latter
state involves a vehicle running normally and represents no
occurrence of a roadside accident.

Consider that the values of slope gradient and slope
height mainly affect the severity of the roadside accident
when the vehicle enters the slope and have little effect on the
occurrence of the roadside accident. In addition, in
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combination with the provisions of carriageway width and
crown slope in the Design Specification for Highway
Alignment (DSHA) (JTG D20-2017) of China [41], in the
PC-crash simulation software, we built a two-way two-lane
road model with a carriageway width of 3.75m, a crown
slope of 2%, a slope gradient of 1 :1 and a slope height of 5m
as a typical representative, and two rigid models for the car
and truck. “BMW-116d autom” and “ASCHERSLEBEN
KAROSS” were chosen as the represented car and truck
model, respectively, and the initial position of the vehicles
were set on the centre of the one-way lane; their parameters
are shown in Table 1.

Notably, in the vehicle parameter setting, the steering of
the vehicle was set ahead to match with different horizontal
curve radii because we are unable to involve the driving
behaviour factors considering the characteristics of the
simulation software. For instance, when the horizontal curve
radius is 200m, the steering degree of the car is automatically
updated to 1.57° and 1.54° to match the above radius by
setting the turning radius of the vehicle as 200m in the
simulation software (see Figure 2(a)). In terms of the width
value of the curve setting, according to the DSHA [41], the
widened value was set only when the horizontal curve radius
was no more than 250m (see Figure 2(b)), and in case the
horizontal curve radius was 200m∼250m, the widened value
was 0.4m for car and 0.6m for truck. &erefore, the cor-
responding widened values were set for different vehicle
types in the simulation test.

Each variable value is shown in Table 2. Among these
variables, horizontal curve radius, hard shoulder width, width
value of the curve, adhesion coefficient, vehicle speed, and
vehicle type can be set directly in the simulation software;
however, longitudinal slope and superelevation slope need
some complex operations to be set. For instance, the setting of
the longitudinal slope can be achieved by adjusting the dif-
ference in height from the beginning to the end of the test
section, and the difference in height h1 is calculated as follows:

h1 � l1 × sin arctan i1( ( , (1)

where l1 represents the length of the test section (m) and i1
denotes the longitudinal slope (%) (the value of the downhill
slope is positive).

Similarly, the setting of superelevation slope can be
achieved by adjusting the difference in height from the
outside to the inside of the test section, and the difference in
height h2 is shown as follows:

h2 � l2 × sin arctan i2( ( , (2)

where l2 is the width of the test section (including hard
shoulder width) (m) and i2 denotes the superelevation slope
(%), which is set in themiddle of the test section and its value
is positive when the outside height is greater than the inside
height of the test section.

According to the value of each variable (excluding the
width value of the curve) from the highway geometric
design indexes and pavement condition (see Table 2),
5× 4× 4× 4× 4�1280 combinations were established, and
then two kinds of the flat curve and curved slope combi-
nation sections were constructed corresponding to different
hard shoulder widths, adhesion coefficients, and superele-
vation slopes. By applying 5 initial speeds to the vehicle and
setting the width value of curve according to different vehicle
types, simulation experiments were carried out for truck and
car. Eventually, 1280× 5× 2�12800 simulation data were
collected, in which the data of no roadside accidents oc-
currence was 9,973 (77.9%) and the data involving the oc-
currence of roadside accidents was 2,827 (22.1%).

2.2. CHAID Decision Tree Technique. &e CHAID decision
tree, as a data mining technique, has been widely applied in
various fields, such as the airline industry and public
transport management. However, few studies have inves-
tigated traffic risk, especially for roadside accidents.

&e CHAID decision tree is a technique of database
segmentation that is capable of extracting significant in-
formation from a large quantity of data [42, 43]. After a test
order is conducted, the data are split by means of a statistical
algorithm in CHAID. &e original node on the independent
variable is split into as many subgroups as possible, which
are significantly different from binary variables. &e process
then splits these new nodes according to the variables that
distinguish each of them. &is process continues until no
other splits are significant.

&e CHAID analysis is generally called tree analysis,
similar to a trunk (i.e., original node) being split into
multiple branches; then, more branches until the trunk
cannot be split any further in which case overfitting occurs.
To identify optimal splits, the chi-square independence test
is employed to examine and test the cross tabulations be-
tween each of the input variables (i.e., predictors of the
occurrence of roadside accidents) and the outcome variables
(i.e., occurrence of roadside accidents).&e CHAID decision

(a) (b)

Figure 1: Occurrence of roadside accidents. (a) Vehicle rollover. (b) Wheel of vehicle entering slope.
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tree is, therefore, capable of providing detail that identifies
the significant factors that result in the highest or lowest risk
of roadside accidents using a series of if-then-else rules.

Furthermore, to prevent the occurrence of overfitting,
CHAID usesP values with a Bonferroni correction as splitting
criteria; P value criteria are sensitive to the number of data
involved in the split and tend to avoid splitting into too small
groups [44]; the smaller the P value is, the greater the
goodness of treemodel fitting.&eP value of the F statistic for
the difference in mean values is shown as follows [45]:

F �
TSS − WSS(WSS/(g − 1))

WSS/(n − g)
∼ F(g−1),(n−g), (3)

where TSS denotes the total sum of squares before the split,
WSS is the variance, g represents the nodes generated by the
split, and n is the number of categories of variables.

2.3. Path Analysis. Path analysis is a form of structural
equation modelling (SEM), in which all the variables are
observed variables. In the present study, SEM was used
because the mediated andmoderated relationships of a set of
variables can be tested in SEM. In other words, SEM can not
only test the direct impact of independent variables on
dependent variables but also analyses the indirect effect on
dependent variables through other variables (mediators). In
path analysis, mediation, moderation, moderatedmediation,
and mediated moderation can all be tested [46], and me-
diation is a statistical approach applied to understand how a
variable x delivers its effects to another variable z. In other
words, whether the effect of x on z is direct only, indirect
only or both direct, and indirect can be obtained in me-
diation analysis [47].

A simple mediation model describes a model in which
the independent variable x has an impact on the dependent

Table 1: Vehicle parameter.

Parameter
Value

Car Truck
Length (m) 4.325 6.370
Width (m) 1.765 2.500
Height (m) 1.420 3.100
Wheelbase (m) 2.690 3.700
Weight (kg) 1385 7200
Height of centre of gravity (m) 0.450 1.200
Distance of height of centre of gravity from front axle (m) 1.210 1.070
Tyre pattern 215/50 R 16 (621mm) 7.50 R 16 (719mm)
ABS Yes Yes
ESP Yes No

(a)

0.6m

(b)

Figure 2: Setting (a) the steering degree for the vehicle and (b) the width value of the curve.

Table 2: Description of variables.

Variable Value

Highway geometric design indexes

Horizontal curve radius (m) 200 300 400 500 600
Hard shoulder width (m) 0.75 1.5 2.25 3.00
Longitudinal slope (%) 0 2 4 6
Superelevation slope (%) 0 2 4 6
Width value of curve (m) 0.4 0.6

Pavement condition Adhesion coefficient 0.2 0.4 0.6 0.8

Traffic characteristics Vehicle type “Truck”� 0 “Car”� 1
Vehicle speed (km/h) 40 60 80 100 120

Output variable Vehicle final state “No departing
from road”� 0

“Departing from
road”� 1
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variable z through a single mediator variable y (i.e., x is
assumed to have an impact on y, and this impact then
transmits to z, apart from the direct relationship between x
and z). Two basicmediationmodels are built in equations (4)
and (5). In particular, equation (4) represents the combi-
nation of the paths from x to z and y to z, and equation (5)
represents the path from x to y:

z � α0 + α1yi + α2xi + ε1, (4)

yi � β0 + β1xi + ε2, (5)

where z is the outcome variable, yi is the mediator variable,
xi is the independent variable, ε1 and ε2 are the errors, α0 and
β0 are the intercepts of the models, and α1, β1, and α2 are
partial regression coefficients of the models.

However, these partial regression coefficients in the
above models denote the direct effect of various variables but
cannot reflect the magnitude of impact from these variables
on the outcome variable due to the presence of their different
units and standard deviation. For this purpose, a binary
logistic regression model was fitted to obtain a standard
regression coefficient that can meet the demand of testing
the magnitude of direct effects from input variables on the
outcome variable as follows:

αi
′ � αi

Si

SZ

 , (6)

where αi
′ is the standard regression coefficient of xi; αi is the

partial regression coefficient of xi; Si is the standard deviation
of xi; and SZ is the standard deviation of the Z random
variable in the logistic regression model, set as π/

�
3

√
[48]. αi
′

represents the magnitude of the direct effect of xi on the
outcome variable (z).

&en, the indirect effect of x on z through all other
mediator variables (yi) can be estimated using the product-
of-coefficient estimator as in [46]

ci � 
n

j�1
βijαj
′, (7)

where ci represents the magnitude of the indirect effect of xi
on z and βij is the correlation coefficient between xi and yj.
Finally, the overall effects χi (i.e., both the direct and indirect
effects) of xi on z can be computed as follows:

χi � ci + αi
′. (8)

2.4. Bayesian Network Analysis. &e Bayesian network be-
came popular in the late 1990s and has been increasingly
used since 2000. &e Bayesian network, also known as the
belief network, is regarded as one of the most effective
theoretical models applied for representation and reasoning
of uncertain knowledge. Bayesian nets and probabilistic
directed acyclic graphs are technologies for graphically
representing the joint probability distribution of a set of
selected variables [49, 50]. &e structure of the Bayesian
network is a directed acyclic graph, in which node sets
represent various variables and directed edges denote the

dependencies between variables. &e confidence level or
correlation strength between variables can be described using
a conditional probability table (CPT). Tasks such as predic-
tion, diagnosis, and classification can be realized through
statistical inference functions and automatic learning of the
Bayesian theorem. &e structure of the Bayesian network can
be regarded as the qualitative part of the model, while the
added probability parameter represents a quantitative di-
mension to the model [51]. &e Bayesian network represents
various forms of uncertainty by using probability and applies
probabilistic rules for achieving the training and reasoning
processes, as shown in equations (9) and (10), respectively:

P Bij Aj

  �
P Aj Bij

 P Bij 



m

j�1
P Aj Bij

 P Bij 

,
(9)

P Aj B1j

 · · · Bnj  �
P B1j Aj

 P B2j Aj

  · · · P Bnj Aj

 P Aj 



m

j�1
P B1j Aj

 P B2j Aj

  · · · P Bnj Aj

 P Aj 

,

(10)

where P(Aj | Bij) (i � 1, 2, . . . , n; j � 1, 2, . . . , m) repre-
sents the prior probability of Aj (i.e., the final state of the
vehicles in the accident simulation) under the effect of
variable Bij (i.e., the risk factor leading to roadside accident),
P(Bij | Aj)denotes the conditional probability of variable Bij
under the premise of Aj occurrence, and P(Aj | Bij . . . Bnj) is
the posterior probability of Aj under the effects of a set of
variables (B1 . . . Bnj). &e above processes can also be
achieved by efficient algorithms, such as the gradient descent
(GD) algorithm in Netica software.

Compared to other theoretical models, the Bayesian
network is suitable for traffic safety studies based on the
following advantages: (1) combining data with expert ex-
perience and prior knowledge, (2) avoiding overfitting, (3)
dealing with missing data, and (4) denoting causality by
means of providing an understandable graph [52]. &e
Bayesian network, as an effective tool for developing an
accident prediction model, has been widely used to predict
accident injury [53–56] and frequency [57–59] and has
demonstrated higher accuracy in predicting crash severity
compared to regression models [60]. However, few studies
have involved quantitative analysis of the probability of
roadside accidents using the Bayesian network.

3. Results and Discussion

3.1. Identification of Risk Factor. For crossvalidation, we
divided the accident data obtained from the simulation into
a training dataset (70%) and a test dataset (30%). &e
training data were applied to fit the model and estimate the
model parameters, while the test data were used to deter-
mine the model for its ability to generalize and confirm the
model’s applicability to independent variables. In the
present study, we used exhaustive CHAID because it is
superior in checking all possible splits [61]. To limit the
growth of decision trees, we set the classification level to
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four. Additionally, to minimize the intrinsic imbalanced
nature of the data, a misclassification cost ratio of 100 :1 was
selected to promote CHAID to identify roadside accidents
accurately more often.

CHAID provides the percentage of records with a
particular value to the outcome variable, and the given value
represents the confidence (accuracy) of the generated rules
for the input variables. &e overall classification accuracy of
both the training set and testing set was 94% using the
CHAID decision tree. Moreover, the p value in each node of
both the training set and testing set was 0.001< 0.05 (sig-
nificance level), which indicates quite accurate classification
with no overfitting.

CHAID analysis took 3,783 samples from the overall
dataset for testing, and the percentage of roadside accident
data was 22%. All data involving roadside accidents and
nonroadside accident occurrences were divided into 67
subgroups from the parent node to child nodes through
different branches. &e percentage of roadside accidents
varied from 0% to 100%. &e decision tree included hori-
zontal curve radius, hard shoulder width, longitudinal slope,
adhesion coefficient, vehicle speed, and vehicle type in the
final structure, which indicates that these variables are
significant risk factors in determining the occurrence of
roadside accidents. Other predictors not involved in the tree
structure (i.e., superelevation slope and width value of the
curve) only play a slight role in improving roadside safety
performance.

Figure 3 only displays major tree structures that have a
higher accuracy of generated classification rules due to the
limitation of scope. &e split at the first classification level
was according to vehicle speed, which indicates that the
influence of vehicle speed on the roadside accidents is rel-
atively significant, while other risk factors are considered as
nonsignificant risk factors at this classification level. By
analogy, the classification of data at the second to four level
could be obtained. &rough the analysis of 3 783 test data,
the generated decision rules were screened and sorted, as
shown in Table 3.

Each decision rule in Table 3 corresponds to different
combinations of risk factors. By analyzing the influence of
these combinations on the percentage of roadside accidents,
some important conclusions and specific improved measure
were obtained as follows:

(1) According to decision rule 1, when V≤ 40 km/h,
other risk factors had no significant effect on the
roadside accidents, and the percentage of roadside
accidents was 0%. 40 km/h is, therefore, considered
as the relatively safe speed to ensure the no occur-
rence of roadside accidents. Decision rules 2∼12
presented that when V> 40 km/h, there was a sig-
nificant influence of horizontal curve radius on
roadside accidents, and roadside accidents tend to
decrease with an increase in the horizontal curve
radius. Decision rules 12 showed that only when
100 km/h<V≤ 120 km/h and 200m<R≤ 300m, the
longitudinal slope had a certain impact on the oc-
currence of truck roadside accidents, and in case of

longitudinal slope ≥4%, the accidents percentage
increased to 100%. &is finding shows that the fre-
quency of roadside accidents increases with a larger
longitudinal slope.

(2) Decision rules 6 and 9 presented that the percentage
of roadside accidents for trucks was larger than that
for cars under the same road condition, which can be
concluded that trucks have a higher risk of roadside
accidents compared to accidents involving cars be-
cause the higher centre of gravity for trucks cause
them to be more likely to rollover than cars.

(3) It can be seen from decision rules 2 and 5 that, in case
of 40 km/h<V≤ 60 km/h and R≤ 200m, as well as
when 60 km/h<V≤ 80 km/h and R≤ 300m, adhe-
sion coefficient showed a significant impact on
roadside accidents, and the percentage of roadside
accidents gradually decreased as adhesion coefficient
increased. &erefore, antislip measures should be
strengthened for the highway with the above oper-
ating speed and horizontal curve radius. &e
abovementioned conclusion can be used as a sup-
plement to the revision of the DSHA.

(4) According to decision rule 7, when 60 km/
h<V≤ 80 km/h and 300m<R≤ 400m, hard
shoulder width played a certain role in reducing
roadside accidents, but the improvement is not
obvious. According to decision rules 8 and 9, in case
of 80 km/h<V≤ 100 km/h and 300m<R≤ 600m,
hard shoulder width had a significant impact on
roadside accidents, and setting hard shoulder width
≥1.5m could obviously reduce the percentage of
roadside accidents. &erefore, for the highway with
the above operating speed and horizontal curve
radius, the width of hard shoulder should be set as
≥1.5m.

(5) Decision rule 9 showed that, in case of 80 km/
h<V≤ 100 km/h and 400m<R≤ 600m, if the width
of hard shoulder≤ 0.75m, the percentage of truck
roadside accidents was 34.2% and that of car
roadside accidents was 0%; if the hard shoulder
width ≥1.5m, the percentage of roadside accidents
was only 0.4% for both trucks and cars. &is finding
adequately illustrates that the hard shoulder width
has more significant impact on the frequency of
roadside accidents involving trucks than cars.

(6) It can be seen from decision rules 10 and 11 that when
100 km/h<V≤ 120 km/h and 300m<R≤ 600m, a
setting of hard shoulder width ≥2.25m can effectively
avoid the occurrence of truck roadside accidents.
&erefore, for freeway with the above operating speed
and horizontal curve radius, the width of hard
shoulder should be set as ≥2.25m to ensure driving
safety of trucks.

Using decision tree analysis, we discussed the rela-
tionship between different combinations of risk predictors
and the occurrence of roadside accidents and identified the
significant risk factors resulting in roadside accidents.
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Vehicle speed
≤ 40km/h > 40km/h, ≤ 60km/h

Horizontal curve radius

≤ 200m > 200m

Adhesion coefficient
≤ 0.2 ≥ 0.6, ≤ 0.8

Hard shoulder width
≤ 0.75m ≥ 1.5m> 0.2, ≤ 0.8

Vehicle type
Truck Car

> 60km/h, ≤ 80km/h

≤ 300m > 300m, ≤ 400m > 400m

≤ 0.2

Horizontal curve radius

Adhesion coefficient

Node 0
Category % n
No 78.0 2949
Yes 22.0 834
Total 100.0 3783

Node 3
Category % n
No 86.3 622
Yes 13.7 99
Total 19.1 721

Node 2
Category % n
No 97.5 740
Yes 2.5 19
Total 20.1 759

Node 1
Category % n
No 100.0 803
Yes 0.0 0
Total 21.2 803

Node 6
Category % n
No 88.1 140
Yes 11.9 19
Total 4.2 159

Node 7
Category % n
No 100.0 600
Yes 0.0 0
Total 15.9 600

Node 8
Category % n
No 39.5 60
Yes 60.5 92
Total 4.0 152

Node 9
Category % n
No 94.9 129
Yes 5.1 7
Total 3.6 136

Node 10
Category % n
No 100.0 433
Yes 0.0 0
Total 11.4 433

Node 47
Category % n
No 100.0 83
Yes 0.0 0
Total 2.2 83

Node 46
Category % n
No 95.8 23
Yes 4.2 1
Total 0.6 24

Node 24
Category % n
No 69.7 53
Yes 30.3 23
Total 2.0 76

Node 44
Category % n
No 40.6 13
Yes 59.4 19
Total 0.8 32

Node 45
Category % n
No 90.9 40
Yes 9.1 4
Total 1.2 44

Node 21
Category % n
No 99.2 124
Yes 0.8 1
Total 3.3 125

Node 22
Category % n
No 0.0 0
Yes 100.0 42
Total 1.1 42

Node 20
Category % n
No 47.1 16
Yes 52.9 18
Total 0.9 34

(a)

≤ 0.75m ≥ 1.5m≤ 0.6

≤ 300m

≥ 1.5m

Truck Car

> 80km/h, ≤ 100km/h

> 300m, ≤ 400m

> 0.6, ≤ 0.8

> 400m, ≤ 600m

≤ 0.75m

Vehicle speed

Horizontal curve radius

Adhesion coefficient Hard shoulder width Hard shoulder width

Vehicle type

Node 0
Category % n
No 78.0 2949
Yes 22.0 834
Total 100.0 3783

Node 4
Category % n
No 63.8 490
Yes 36.2 278
Total 20.3 768

Node 13
Category % n
No 74.5 123
Yes 25.5 42
Total 4.4 165

Node 11
Category % n
No 5.0 8
Yes 95.0 152
Total 4.2 160

Node 28
Category % n
No 0.0 0
Yes 100.0 37
Total 1.0 37

Node 29
Category % n
No 19.5 8
Yes 80.5 33
Total 1.1 41

Node 50
Category % n
No 33.3 18
Yes 66.7 36
Total 1.4 54

Node 51
Category % n
No 89.3 25
Yes 10.7 3
Total 0.7 28

Node 34
Category % n
No 82.9 63
Yes 17.1 13
Total 2.0 76

Node 35
Category % n
No 99.6 224
Yes 0.4 1
Total 5.9 225

Node 54
Category % n
No 65.8 25
Yes 34.2 13
Total 1.0 38

Node 55
Category % n
No 100.0 38
Yes 0.0 0
Total 1.0 38

Node 14
Category % n
No 95.3 287
Yes 4.7 14
Total 8.0 301

(b)

Figure 3: Continued.
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However, the magnitude of the importance of these factors
has not been investigated. To obtain a deeper insight into the
interactions of factors and their impacts on roadside

accidents, a path analysis based on a logistic regression
model was built.

3.2. Importance of Risk Factors. We input the risk factors
(horizontal curve radius, hard shoulder width, longitudinal
slope, adhesion coefficient, vehicle speed, and vehicle type)
into the path analysis model and found that these factors
were also statistically significant because they were all
retained by the model. &e coefficient of determination
R2 � 0.868, illustrating the model fit, is good. Table 4 shows
the outcomes of the model and represents the direct effects
of different variables on roadside accident occurrence.
According to the magnitude of direct effects, the most
important risk factors were in decreasing order of impor-
tance, vehicle speed (3.321), horizontal curve radius
(−2.572), vehicle type (−1.005), adhesion coefficient
(−0.827), hard shoulder width (−0.812), and longitudinal
slope (0.314). As expected, vehicle speed and longitudinal
slope were found to be positively correlated with the oc-
currence of roadside accidents. In contrast, horizontal curve
radius, vehicle type, adhesion coefficient, and hard shoulder
width were inversely related to roadside accidents.

It is important to note that unlike real accident data,
there seemed to be no interaction between factors in the
present study because the values of all these factors were set
artificially in the simulation. However, to investigate the
indirect effects caused by the interaction of variables on the
occurrence of roadside accidents, we assumed that the
correlation coefficient between variables could be regarded
as their interaction.

A structural diagram of path analysis is shown as Fig-
ure 4.&is figure represents that all risk factors are correlated

Truck Car

≤ 1.5m ≥ 2.25m ≤ 1.5m ≥ 2.25m ≤ 1.5m ≥ 2.25m

≤ 200m > 200m, ≤ 300m > 300m, ≤ 400m > 400m, ≤ 600m

> 100km/h, ≤ 120km/h
Vehicle speed

Horizontal curve radius

Vehicle type Vehicle type
Truck Car

Hard shoulder width Hard shoulder width Hard shoulder width

Vehicle type
Car Truck

< 4% ≥ 4%
Longitudinal slope

Node 5
Category % n
No 40.2 294
Yes 59.8 438
Total 19.3 732

Node 38
Category % n
No 9.9 7
Yes 90.1 64
Total 1.9 71

Node 58
Category % n
No 19.4 7
Yes 80.6 29
Total 1.0 36

Node 59
Category % n
No 0.0 0
Yes 100.0 35
Total 0.9 35

Node 62
Category % n
No 23.3 10
Yes 76.7 33
Total 1.1 43

Node 63
Category % n
No 67.5 27
Yes 32.5 13
Total 1.1 40

Node 64
Category % n
No 78.1 25
Yes 21.9 7
Total 0.8 32

Node 65
Category % n
No 97.1 34
Yes 2.9 1
Total 0.9 35

Node 66
Category % n
No 32.4 12
Yes 67.6 25
Total 1.0 37

Node 67
Category % n
No 100.0 44
Yes 0.0 0
Total 1.2 44

Node 39
Category % n
No 68.1 49
Yes 31.9 23
Total 1.9 72

Node 40
Category % n
No 44.6 37
Yes 55.4 46
Total 2.2 83

Node 41
Category % n
No 88.1 59
Yes 11.9 8
Total 1.8 67

Node 43
Category % n
No 96.9 63
Yes 3.1 2
Total 1.7 65

Node 42
Category % n
No 69.1 56
Yes 30.9 25
Total 2.1 81

Node 17
Category % n
No 39.2 56
Yes 60.8 87
Total 3.8 143

Node 16
Category % n
No 15.8 23
Yes 84.2 123
Total 3.9 146

Node 18
Category % n
No 64.0 96
Yes 36.0 54
Total 4.0 150

Node 19
Category % n
No 81.5 119
Yes 18.5 27
Total 3.9 146

Node 0
Category % n
No 78.0 2949
Yes 22.0 834
Total 100.0 3783

(c)

Figure 3: Decision tree for the identification of risk factors. (a) Tree 1. (b) Tree 2. (c) Tree 3. Note. “No” represents “no roadside accident
occurrence” and “Yes” represents “roadside accident occurrence”.

Table 3: Decision rules.

No.
Classification level Percentage

(%)1 2 3 4
1 ≤40 — — — 0

2 40<V≤ 60 R≤ 200 μ≤ 0.2 — 52.9
0.2< μ≤ 0.8 0.8

3 200<R — — 0

4
R≤ 300 — — 60.5

300<R≤ 400 — — 5.1
400<R — — 0

5 60<V≤ 80 R≤ 300 μ≤ 0.2 — 100
0.6≤ μ≤ 0.8 — 30.3

6 0.6≤ μ≤ 0.8 Truck 59.4
Car 9.1

7 300<R≤ 400 w≤ 0.75 — 4.2
w≥ 1.5 0

8 80<V≤ 100 300<R≤ 400 w≤ 0.75 — 66.7
w≥ 1.5 10.7

9 400<R≤ 600 w≤ 0.75 Truck 34.2
Car 0

w≥ 1.5 — 0.4

10 100<V≤ 120 300<R≤ 400 Truck w≤ 1.5 76.7
w≥ 2.25 32.5

11 400<R≤ 600 Truck w≤ 1.5 67.6
w≥ 2.25 0

12 200<R≤ 300 Truck α< 4 80.6
α≥ 4 100

Note:V represents the vehicle speed (km/h),R is the horizontal curve radius (m),
μ represents the adhesion coefficient, w denotes the hard shoulder width (m), α
represents the longitudinal slope (%), and— indicates that the risk factors at the
corresponding decision rules have no significant impact on roadside accidents.
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and indicates that apart from direct effects, all risk factors
had indirect effects on roadside accidents through other
factors based on these correlations in the model. Among
these interactions, the combination of vehicle speed-hori-
zontal curve radius had the largest impact of interaction
(−0.891) on roadside accident occurrence, and the negative
interaction indicated that there was a mutually restricted
relationship between these two factors.&ere were also other
large interactions involved in Figure 4, including vehicle
speed-vehicle type (−0.684), horizontal curve radius-vehicle
type (0.679), vehicle speed-adhesion coefficient (−0.614),
horizontal curve radius-adhesion coefficient (−0.606), and
vehicle speed-hard shoulder width (−0.596).

Table 5 mainly shows the indirect effect of each risk
factor through another mediating factor and the overall
effect on roadside accident occurrence. It can be observed

that vehicle speed transmitted its largest indirect effect
(2.292) on roadside accidents through the horizontal curve
radius than other factors, while horizontal curve radius had
the largest indirect effect (−2.960) on accidents by vehicle
speed. In addition, it was interesting to note that all other
factors also had their largest and second indirect effects on
roadside accidents by means of vehicle speed and horizontal
curve radius. &ese results emphasize that vehicle speed and
horizontal curve radius are still the most significant risk
factors causing roadside accidents.

According to the overall effect of each risk factor on
roadside accidents shown in Table 5, the most important risk
factors were in decreasing order of importance, vehicle speed
(7.749), horizontal curve radius (−7.644), vehicle type
(−6.086), adhesion coefficient (−5.496), hard shoulder width
(−5.373), and longitudinal slope (2.607). It is significant to

Table 4: Modelling results.

Variable Parameter estimate S.E.a S.D.b P value Standard parameter estimate
Horizontal curve radius −0.033 0.001 141.388 <0.05∗∗ −2.572
Hard shoulder width −2.527 0.108 0.583 <0.05∗∗ −0.812
Longitudinal slope 0.430 0.027 1.325 <0.05∗∗ 0.314
Adhesion coefficient −6.699 0.279 0.224 <0.05∗∗ −0.827
Vehicle speed 0.213 0.006 28.282 <0.05∗∗ 3.321
Vehicle type −3.645 0.136 0.5 <0.05∗∗ −1.005
Note. ais standard error. bis standard deviation. ∗∗indicates 95% confidence level is used (i.e., P value <0.05 is statistically significant).

Vehicle
speed

Horizontal
curve radius

Adhesion
coefficient

Hard 
shoulder

width

Longitudinal
slope

Vehicle type

Roadside
accidents

3.321

0.314

0.592

–0.586–0.684
–0.891

–0.614

–0.596
–0.606

0.587

0.679 –2.572

–0.392

–0.827

0.398 0.454

–0.385

0.443
–0.812

–1.00

–0.438

Figure 4: Structure diagram of path analysis.
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note that the order of importance of these risk factors was
not changed by the overall effects compared to the direct
effects. &is finding indicates that the indirect effects of
different factors are not expected to play an important role in
the occurrence of roadside accidents.

3.3. Probability of Roadside Accidents. Given that Bayesian
network performs best with a small set of variables [62] and
the least impact was longitudinal slope on roadside accidents
compared to other important factors, we input the first five
important factors (i.e., vehicle speed, horizontal curve ra-
dius, vehicle type, adhesion coefficient, and hard shoulder
width) into a Bayesian network analysis to establish the
probability prediction model for roadside accidents.

In the present study, the Bayesian network structure was
developed based on the results of path analysis, and the
Bayesian network parameter learning of roadside accidents
was performed using the GD algorithm in Netica software,
in which the prior and conditional probability distribution
of each node could be obtained. In addition, according to the
sensitivity analysis (see Table 6), the order of nodes (vari-
ables) based on the magnitude of mutual information
(impact on roadside accidents) was consistent with the order
obtained from path analysis, indicating that an accurate
Bayesian network model used to predict the probability of
roadside accidents was built (see Figure 5).

&e probability of roadside accidents (i.e., posterior
probability) under different combinations of variables can be
obtained in this prediction model. For instance, assuming that
a road section was a dry asphalt pavement with a speed limit of
80 km/h, a horizontal curve radius of 235m, and a hard
shoulder width of 0.75m, then the probability of roadside
accidents for truck passing through above road section need be
predicted. First, the state of 60 km/h<V≤ 80 km/h,
200m<R≤ 300m, 0.6≤ μ≤ 0.8, w≤ 0.75m, and vehicle type
of 0 were as 100%, and after automatically updating the
probabilities of the whole network, the calculated probability
of roadside accidents for truck driving at a speed of 60 km/
h<V≤ 80 km/h was 38.7% (see Figure 6).

Furthermore, the developed prediction model can also
predict probabilities under the effects of any number (from 1
to 5) of factors (i.e., in the absence of some factors). For
example, given that the speed limit of a road section was
80 km/h and the width of hard shoulder was 0.75m, but lack

of other indicators, and it could also be calculated that the
probability of roadside accidents for car with a speed of
60 km/h<V≤ 80 km/h was 18.2% (see Figure 7(a)).

For another example, assume a road section was a dry
asphalt pavement and horizontal curve radius and hard
shoulder width were unknown. If the speed limit of this
section was 80 km/h, the probabilities of roadside accident
were 3.52% for car and 14.9% for truck (see Figures 7(b) and
7(c)), whereas the same probabilities were 14.3% for car and
44.5% for truck if the speed limit was 100 km/h (see
Figures 7(d) and 7(e)), which further indicates that trucks
have a higher risk of rollover than cars, especially when the
vehicle speed was great than 80 km/h. Of course, the more
factors involved, the more precise the obtained probability.

It is important to note that when various variables were
in extreme states tending to avoid roadside accidents, even if
vehicle speed was set as 120 km/h, whether for car or truck,
and the probability of roadside accidents was, not as ex-
pected, only 1.31% (see Figure 7(f)), which adequately il-
lustrates the importance of reasonable road design in
situations where the driver’s behaviour cannot be controlled.
&erefore, in the purpose of further improving roadside
safety and identifying the road conditions in which roadside
accidents occur frequently, a variety of thresholds of hori-
zontal curve radius, adhesion coefficient, and hard shoulder
width corresponding to different vehicle speeds and vehicle
types are given based on the Bayesian network prediction
model, as shown in Table 7.

3.4. Identification of Roadside Accident Blackspot. We con-
sidered that there was a high frequency of roadside accidents
(i.e., accident blackspot) when the probability of roadside

Table 5: &e magnitude of the impact of factors on roadside accidents.

Variable Direct
effect

Indirect effect
Vehicle
speed

Horizontal curve
radius

Adhesion
coefficient

Hard shoulder
width

Longitudinal
slope

Vehicle
type

Overall
effect

Vehicle speed 3.321 — 2.292 0.508 0.484 0.461 0.684 7.749
Horizontal curve
radius −2.572 −2.960 — −0.501 −0.477 −0.456 −0.679 −7.644

Adhesion
coefficient −0.827 −2.040 −1.559 — −0.323 −0.305 −0.443 −5.496

Hard shoulder
width −0.812 −1.979 −1.510 −0.329 — −0.300 −0.443 −5.373

Longitudinal slope 0.314 1.066 1.007 0.124 0.013 — 0.083 2.607
Vehicle type −1.005 −2.272 −1.746 −0.366 −0.360 −0.341 — −6.086

Table 6: Sensitivity analysis result of the node “roadside accident.”

Node Mutual
info Percent Variance in

beliefs
Roadside accident 0.84054 100 0.1968046
Vehicle speed 0.13101 15.6 0.0358728
Horizontal curve
radius 0.07927 9.43 0.0220364

Vehicle type 0.01063 1.27 0.0028862
Adhesion coefficient 0.00959 1.14 0.0026972
Hard shoulder width 0.00731 0.87 0.0020842
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accidents occurrence was greater than that of no roadside
accidents occurrence (i.e., the probability of roadside acci-
dents was greater than 50%). According to the results from
Table 7, a range of vehicle speeds corresponds to 1 to 4
identification rules for roadside accident blackspots. When
the value of each risk factor from a certain road section
meets any of these 18 identification rules, this road section is
then judged to be the road section with frequent occurrences
of roadside accidents.

In this paper, a section (K2639 + 498.02 to K2679 + 170)
from G105 was selected to confirm the effectiveness of the
proposed method of identification. &e G105 is a first-class
road with a design speed of 80 km/h. By collecting road
design documents and data of annual operating speed, the
location of K2669 + 256.378 is determined to be the road
section with frequent accidents according to the risk factor
threshold, as shown in Table 7. &e horizontal curve radius
of this location is 280m, the width of the hard shoulder is

Roadside accident
0
1

73.2
26.8
0.268 ?0.44

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

26.4
27.8
26.8
19.0

0.377 ?0.22

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

23.3
26.8
25.3
24.7

1.51 ?0.85

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

17.1
18.2
20.6
23.8
20.3

70.7 ?31

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600

21.0
25.5
16.3
17.6
19.6

329 ?160

Vehicle type
0
1

56.0
44.0
0.44 ?0.5

Figure 5: Bayesian network prediction model of roadside accidents. Note: 0 represents “truck” and 1 represents “car” in vehicle type; 0
denotes “no roadside accident occurrence” and 1 denotes “roadside accidents occurrence” in roadside accidents.

Roadside accident
0
1

61.3
38.7
0.387 ?0.49

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

0
0
0

100
0.7 ?0.058

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

100
0
0
0

0.375 ?0.22

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

0
0

100
0
0

70 ?5.8

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600

0
100

0
0
0

250 ?29

Vehicle type
0
1

100
0
0

Figure 6: Probability calculation of roadside accidents.
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Roadside accident
0
1

81.8
18.2

0.182 ?0.39

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

26.4
27.8
26.8
19.0

0.377 ?0.22

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

100
0
0
0

0.375 ?0.22

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

0
0

100
0
0

70 ?5.8

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600
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25.5
16.3
17.6
19.6

329 ?160

Vehicle type
0
1

0
100

1

(a)

Roadside accident
0
1

96.5
3.52

0.0352 ?0.18

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

0
0
0

100
0.7 ?0.058

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

23.3
26.8
25.3
24.7

1.51 ?0.85

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

0
0

100
0
0

70 ?5.8

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600

21.0
25.5
16.3
17.6
19.6

329 ?160

Vehicle type
0
1

0
100

1

(b)

Figure 7: Continued.

12 Mathematical Problems in Engineering



Roadside accident
0
1

85.1
14.9

0.149 ?0.36

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

0
0
0

100
0.7 ?0.058

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

23.3
26.8
25.3
24.7

1.51 ?0.85

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

0
0

100
0
0

70 ?5.8

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600

21.0
25.5
16.3
17.6
19.6

329 ?160

Vehicle type
0
1

100
0
0

(c)

Roadside accident
0
1
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14.3

0.143 ?0.35

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

0
0
0

100
0.7 ?0.058

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

23.3
26.8
25.3
24.7

1.51 ?0.85

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

0
0
0

100
0

90 ?5.8

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600
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25.5
16.3
17.6
19.6

329 ?160

Vehicle type
0
1

0
100

1

(d)

Figure 7: Continued.
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1.5m, the operating speed of cars are mainly distributed in
120 km/h>V≥ 100 km/h (see Figure 8(a)), and that of
trucks are mainly distributed in 100 km/h>V≥ 80 km/h
(Figure 8(b)). &e above indicators, respectively, conform to
the 7 and 17 identification rules. According to the traffic
police department’s accident records, there were more than
80 roadside accidents in the above section from 2014 to 2018,
which has been classified as the roadside accident-prone
road. Based on the above analysis, the reliability of the
proposed identification method for roadside accident
blackspot in this paper is, therefore, verified.

&e importance of such a study lies in the fact that it can
help authorities identify significant risk factors that result in

frequent roadside accidents in small curve segments to
implement effective countermeasures or optimize alignment
design in the process of future road construction and re-
construction. For instance, most of the thresholds for trucks
were larger than those for cars at the same vehicle speed in
Table 7, which suggests that the higher designed standard of
geometric design and pavement condition is required for
truck driving safety. Furthermore, for curve sections with
truck speeds of no less than 60 km/h or car speeds of no less
than 80 km/h, some thresholds of adhesion coefficients had
almost reached the maximum 0.8. &erefore, we can reduce
the risk of roadside accidents by optimizing other factors
according to their respective thresholds.

Roadside accident
0
1

55.5
44.5
0.445 ?0.5

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

0
0
0

100
0.7 ?0.058

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

23.3
26.8
25.3
24.7

1.51 ?0.85

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

0
0
0

100
0

90 ?5.8

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600

21.0
25.5
16.3
17.6
19.6

329 ?160

Vehicle type
0
1

100
0
0

(e)

Roadside accident
0
1

98.7
1.31

0.0131 ?0.11

Adhesion coefficient
0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8

0
0
0

100
0.7 ?0.058

Hard shoulder width
0 to 0.75
0.75 to 1.5
1.5 to 2.25
2.25 to 3

0
0
0

100
2.63 ?0.22

Running speed
0 to 40
40 to 60
60 to 80
80 to 100
100 to 120

0
0
0
0

100
110 ?5.8

Horizontal curve radius
0 to 200
200 to 300
300 to 400
400 to 500
500 to 600

0
0
0
0

100
550 ?29

Vehicle type
0
1

56.0
44.0
0.44 ?0.5

(f )

Figure 7: Probability calculation of roadside accidents. (a) Result 1. (b) Result 2. (c) Result 3. (d) Result 4. (e) Result 5. (f ) Result 6.
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4. Conclusions and Recommendations

&e issue of roadside safety is crucial, especially for curve
sections. In the present study, we employed CHAID decision
tree analysis to identify significant risk factors resulting in
the occurrence of roadside accidents, explored the impact of
different combinations of risk factors on roadside accidents,
and then used path analysis to determine the importance of
these significant risk factors by investigating their direct and
indirect effects on roadside accident occurrence. According
to the results of the CHAID technique and path analysis, the
significant predictors were in decreasing order of impor-
tance, vehicle speed, horizontal curve radius, vehicle type,

adhesion coefficient, hard shoulder width, and longitudinal
slope. &e first five important factors were included as
predictors of the probability of roadside accidents in the
Bayesian network analysis to establish the probability pre-
diction model of roadside accidents. Based on the results of
probabilities of roadside accidents, the thresholds of hori-
zontal curve radius, adhesion coefficient, and hard shoulder
width corresponding to different vehicle speeds and vehicle
types for accident blackspot identification in curve section
were given.

&ese findings contribute to improving roadside safety
in curve sections with a small radius. For instance, we
confirmed again that vehicle speed and horizontal curve

Table 7: &reshold of significant factors leading to frequent roadside accidents.

No. Vehicle speed
(km/h) Vehicle type Horizontal curve radius (m) Hard shoulder width (m) Adhesion coefficient Probability (>50%)

1
80≥V> 60 Truck

300<R≤ 400 w≤ 0.75 μ≤ 0.2 ≥55.9
2 200<R≤ 300 w≤ 0.75 μ≤ 0.6 ≥54.3
3 R≤ 200 w≤ 1.50 μ≤ 0.8 ≥54.9
4

100≥V> 80

500<R≤ 600 w≤ 0.75 μ≤ 0.2 ≥54.2
5 400<R≤ 500 w≤ 0.75 μ≤ 0.8 ≥55.0
6 300<R≤ 400 w≤ 1.50 μ≤ 0.8 ≥54.8
7 R≤ 300 w≤ 2.25 μ≤ 0.8 ≥55.3
8

120≥V> 100 500<R≤ 600 1.50<w≤ 2.25 μ≤ 0.2 ≥55.3
9 w≤ 1.50 μ≤ 0.8 ≥54.3
10 R≤ 500 w≤ 2.25 μ≤ 0.8 ≥54.2
11 80≥V> 60 Car R≤ 300 w≤ 0.75 μ≤ 0.2 ≥54.2
12

100≥V> 80
300<R≤ 400 w≤ 1.50 μ≤ 0.2 ≥55.3

13 200<R≤ 300 w≤ 1.50 μ≤ 0.4 ≥55.3
14 R≤ 200 w≤ 2.25 μ≤ 0.8 ≥54.2
15

120≥V> 100

300<R≤ 400 w≤ 2.25 μ≤ 0.4 ≥54.5
16 200<R≤ 300 w≤ 1.50 0.4< μ≤ 0.6 ≥54.6
17 w≤ 2.25 μ≤ 0.8 ≥55.9
18 R≤ 200 w≤ 3.00 μ≤ 0.8 ≥54.3
Note. V represents the vehicle speed, R represents the horizontal curve radius, μ denotes the adhesion coefficient, and w is the hard shoulder width.
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Figure 8: Operating speed distributions. (a) Car. (b) Truck.
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radius are still the most critical factors leading to roadside
accidents, whether in this study or other previous literature
[63–66], and road sections with a high running speed and
small radius are usually regarded as accident blackspot areas.
Furthermore, based on the results of CHAID analysis, some
specific recommended countermeasures as a supplement or
reference for the revision of the DSHA of China were
proposed as follows:

(i) For the highway with an operating speed of 60 km/
h and a horizontal curve radius ≤200m or an
operating speed of 80 km/h and a horizontal curve
radius ≤300m, antislip measures should be
strengthened

(ii) For the highway with an operating speed of
100 km/h and a horizontal curve radius of
300m <R ≤ 600m, the width of hard shoulder
should be set as ≥1.5m

(iii) For the freeway with an operating speed of 120 km/h
and a horizontal curve radius of 300m<R≤ 600m,
the width of hard shoulder should be set as ≥2.25m
to ensure driving safety of trucks

Another important findings is that compared with cars,
the width of the hard shoulder has a more significant in-
fluence on roadside accidents involving trucks, and trucks
are more likely to have roadside accidents, especially in case
of the vehicle speed >80 km/h. To ensure truck driving
safety, the design standards of the horizontal curve radius,
adhesion coefficient, and hard shoulder width should be
further improved by decision makers in future highways
construction. Additionally, limiting the load and running
speed can be the most effective measures to mitigate the risk
resulting from a higher centre of gravity. In recent years, a
real-time monitoring system transmitting warning messages
to truck drivers in cases of overload or overspeed has been
designed by combining embedded technology and GPRS
technology [67]. &is system is expected to perform well in
reducing truck roadside accidents. Another countermeasure
is that regular maintenance of the truck, in case the brake
failed in an emergency, also contributes to a decrease of
accident rate [68].

&e most remarkable result in this paper is that the
developed Bayesian network prediction model can achieve
the quantitative analysis of the probability of roadside ac-
cidents under the effects of any number (from 1 to 5) of
factors. &e resulting threshold of factors leading to accident
blackspot can be a guide for authorities to identify and check
roadside accidents prone areas located in small curve sec-
tions. In fact, if there are obstacles to promoting safe design
standards for the horizontal curve radius, the adhesion
coefficient, and the hard shoulder width due to high con-
struction cost or unrealistic issues, many other effective
countermeasures, such as setting deceleration strips in the
pavement or related warning signs to control running
speeds, widening the road in curve sections to provide a
fault-tolerant space for drivers [69], and removing roadside
hazards to reduce the loss of run-off-road accidents [70],
could also be implemented.

Despite these promising results, some limitations exist in
this paper. For example, this paper mainly predicts the
roadside accident probability for two-way two-lanes or outer
lanes of more than two lanes. &erefore, it remains to be
further studied whether the prediction model is applicable to
other road types (e.g., inner lanes of more than two lanes). In
future studies, given the important impact of vehicle speed
on roadside accidents, the limitation of maximum safe speed
corresponding to different road geometric designs will be an
additional research direction.
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