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Editorial
THE 10TH ANNIVERSARY SPECIAL ISSUE

MAHYAR A. AMOUZEGAR, KHOSROW MOSHIRVAZIRI,

AND ROGER Z. RÍOS-MERCADO

Received 12 September 2006; Accepted 12 September 2006

Copyright © 2006 Mahyar A. Amouzegar et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

Ten years later

More than ten years ago, two colleagues and I developed an idea for a new journal that
promised, as we stated in the preface of the first issue, “to bring together three main ar-
eas of applied mathematics, namely, classical applied mathematics, applied statistics, and
operations research.” We believe that we have succeeded in our goal as is evident in over
170 articles spanning such areas as biofuel production, dynamics growth games, convex
and nonconvex optimization, robustness of sample correlation, global optimization, dy-
namical system modeling, decision support system, and much more.

Although the initial focus of this journal was to fill the gap in applied mathematics
and decision sciences research that existed in New Zealand, the journal quickly grew to
become an international journal with over thirty editors across the globe.

In our first issue, we also promised our readers and potential contributors that the
Journal of Applied Mathematics and Decision Sciences (JAMDS) would “appeal to practi-
tioners as well as theoreticians with carefully reviewed articles, be inexpensively priced,
and be published rapidly.” Today, we continue striving to satisfy all these goals. Every ar-
ticle that appeared in our journal has been diligently reviewed by two or more referees,
followed by a careful examination by the editor in charge, and depending on the nature
of the article, a final review by an area editor or the editor-in-chief. We continue to be
a leader in our response time to authors and though our journal has been reasonably
priced throughout its life, as of this year, we have made the journal available at no cost to
the readers through a novel business model called Open Access Program.

To celebrate a decade of successful publications and our association with a new pub-
lisher, Hindawi Publishing Corporation, we have devoted this special issue to the current
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2 Editorial

and former editors of JAMDS. The articles that appear in this issue illustrate the quality
and the diversity of our editorial board.

D. J. Best et al. present a paper on “Nonparametric analysis of blocked ordered cat-
egories data: some examples revisited.” This article demonstrates the use of Cochran-
Mantel-Haenszel (CMH) statistics in nonparametric analysis of general block design.
Several important examples for randomized block designs with or without missing val-
ues, for balanced incomplete block designs, and for supplemented balanced designs are
given and investigated. By implementing the idea on four known examples in the litera-
ture, the authors show how CMH statistics can also be applied in less standard situations.
Additionally, several well-known nonparametric statistics are shown to be special cases
of CMH statistics.

In “Stochastic dominance for location-scale family,” Wing-Keung Wong makes an in-
teresting contribution to the theory of mean-variance criterion by extending some re-
sults previously developed independently by Meyer, Tobin, and Levy. His results include
the development of some properties for first- and second-degree stochastic-dominance
efficient sets and the mean-variance efficient set.

In “Comparison of two common estimators of the ratio of the means of independent
normal variables in agricultural research,” Chin-Diew Lai et al. address the problems of
estimating the ratio of the means of independent normal variables in agriculture research.
Their results, tested in data from rice breeding multienvironment trials in Jilin, China,
demonstrate the validity of this proposed approach.

In “Effectiviness of high-interest rate policy on exchange rates: a re-examination of the
Asian financial crisis,” Jack Penm et al. examine the effects of higher-interest rates during
the Asian financial crisis. Their results indicate that sharply higher-interest rates helped
support the exchange rates in various Asian countries.

Y. X. Lin et al. in the “Loss protection in pairs trading through minimum profit
bounds: a cointegration approach” use cointegration principles to develop a procedure
that embeds a minimum profit condition within a pairs trading strategy. Necessary con-
ditions for such a procedure are derived and incorporated in the implementation of a
five-step procedure for identifying eligible trades. Using this technique, in which its sta-
tistical validity is verified through simulation data, the author provides exploitable infor-
mation on long-run time series behavior of share pairs that is not currently available in
statistical methods.

In “Mapping the convergence of genetic algorithms,” Zvi Drezner and George A. Mar-
coulides apply “MD cluster analytic” procedure, which was devised by the authors, to
fully investigate the structure of the population and convergence of genetic algorithms.
This is illustrated using a hybrid genetic algorithm and applying it to the well-known
quadratic assignment problem (QAP). The use of the tools provided here is highly rec-
ommended and is shown to be effective in the construction of better and more efficient
genetic algorithms.

F. Beltrán and N. Santamarı́a use simulation in “A measure of the variability of revenue
in auctions: a look at the revenue equivalence theorem” to verify certain known results
in auction theory, such as revenue equivalence theorem. They also attempt to develop a
criterion to guide the auctioneer in deciding about the type of auction to be used. The
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paper presents an interesting statistical analysis in its verification process. The variability
of the results obtained about the average is measured for each type of auction, for increas-
ing number of auctions, and for increasing number of bidders. These results are further
illustrated in several companion plots.

In “A simulation framework for networked queue models: analysis of queue bounds
in a G/G/c supply chain,” M. Amouzegar and K. Moshirvaziri present a closed stochastic
simulation network model and several approximation and bounding schemes for G/G/c
systems. The analysis was, originally, conducted to verify the integrity of simulation mod-
els used to develop alternative policy options for the United States Air Force. The au-
thors showed that the theoretical bounds could be used to derive superior approximation
for mean capacities at various queues. In “An analytical characterization for an optimal
change of Gaussian measures,” H. Schellhorn presents an alternate characterization of
the solution of an optimal control problem by considering two Gaussian measures. The
author is also interested in the optimal speed of mean reversion that is shown to follow a
Riccati equation. This equation is solved analytically when the volatility curve takes spe-
cific shapes. An application of the result to simulation is further discussed.

Mahyar A. Amouzegar
Khosrow Moshirvaziri

Roger Z. Rı́os-Mercado



NONPARAMETRIC ANALYSIS OF BLOCKED ORDERED
CATEGORIES DATA: SOME EXAMPLES REVISITED

D. J. BEST, J. C. W. RAYNER, AND O. THAS

Received 5 October 2005; Revised 12 May 2006; Accepted 15 May 2006

Nonparametric analysis for general block designs can be given by using the Cochran-
Mantel-Haenszel (CMH) statistics. We demonstrate this with four examples and note
that several well-known nonparametric statistics are special cases of CMH statistics.

Copyright © 2006 D. J. Best et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we will use Cochran-Mantel-Haenszel (CMH) statistics to analyse four data
sets which have appeared in the literature. It is well known that tests based on the CMH
statistics are equivalent to certain standard rank tests but here we show how CMH statis-
tics also apply in less standard situations. In particular, examples are given for random-
ized block designs both with and without missing values, for balanced incomplete block
designs, and for supplemented balanced designs.

Recent descriptions of CMH statistics have been in Davis [6, Chapter 8] and Agresti
[1, Chapter 7, Section 5]. We now give a very brief outline of CMH statistics, mainly from
Davis [6, Chapter 8].

2. Cochran-Mantel-Haenszel statistics

The CMH statistics apply to counts Nijh in which i= 1, . . . ,r, j = 1, . . . ,c, and h= 1, . . . ,s.
Typically, the layer index h reflects the subjects or experimental units, usually referred to
as the strata; the row index i reflects the levels of the factor of interest, and the column
index j reflects the values of the response variable. The marginal totals {n· jh} and {ni·h}
for each of the s strata are taken to be fixed. For each stratum, the vector of counts Nh =
(n11h, . . . ,n1ch, . . . ,nr1h, . . . ,nrch)T has probability function

{ r∏
i=1

ni·h!

}{ c∏
j=1

n· jh!

}/{
n··h!

r∏
i=1

c∏
j=1

ni jh!

}
. (2.1)
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2 Blocked ordered categorical data

Initially no assumption is made about the ordering of the row and column variables:
both are taken to be nominal. The null hypothesis of interest, that there is no association
between row and column variables in any of the s tables, is first tested against its negation.

Davis [6, Section 8.2.2] shows that for a table consisting of only a single stratum, the
CMH statistic to test for randomness in a 2× 2 table is {(n− 1)/n}X2, where X2 is the fa-
miliar Pearson test statistic

∑
(observed− expected)2/expected. A test statistic for testing

no association between row and column variables across s 2× 2 tables is due to Cochran
[5] and Mantel and Haenszel [11]. For an arbitrary single stratum r × c table, a test for
randomness may be based on {(n− 1)/n}X2. The test for no association between s 2× 2
tables can be generalized to s r× c tables. The details follow.

2.1. CMH general association statistic. Suppose now we have counts in s independent
r × c tables. The test statistic may be derived by considering the vector of counts for the
hth stratum, Nh, modified by removing the redundant counts for the final row and col-
umn; these are known if the row and column totals and the other row or column en-
tries are known. We also need the expected value under the null hypothesis of no as-
sociation, E[Nh], and the difference, Gh = Nh − E[Nh]. Now G =∑hGh is the aggrega-
tion over all strata of (r − 1) (c− 1) differences between observation and expectation,
and G has expectation zero and covariance matrix VG, say under the null hypothesis,
so that QG = GTV−1

G G has asymptotic distribution χ2
(r−1)(c−1) as the total sample size

n··· =
∑

h n··h approaches infinity. This is known as the CMH general association statistic.
The Anderson [3] and McNemar [12] statistics are particular cases of the CMH general
association statistic.

2.2. CMH mean score statistic. Assume now that the column variable is ordinal or in-
terval, and that every observation in the jth column of the hth stratum is scored as bhj ,
j = 1, . . . ,c. The null hypothesis, that there is no association between row and column
variables in any of the s tables, is now tested against the alternative that the r row mean
scores differ, on average, across strata. First, define Njh as the r − 1 vector of counts Nijh,
i = 1, . . . ,r − 1, and then define Mh = (

∑c
j=1 bhj(Njh − E[Njh])) as the vector containing

the first r − 1 row sums for the hth stratum. It is routine to show that under the null hy-
pothesis of no association M =∑hMh has expectation zero and covariance matrix VM

say, so that QM =MTV−1
M M has asymptotic distribution χ2

r−1 as the total sample size
n··· =

∑
h n··h approaches infinity. The statistic QM is known as the CMH mean score

statistic. If mid-rank scores are used, then if s = 1,QM is the Wilcoxon-Mann-Whitney
statistic for r = 2 and the Kruskal-Wallis [10] statistic for r > 2, while if s > 1 and all row
totals for all strata are unity, QM is the Friedman [8] statistic. If the “natural” scores,
bhj = j, j = 1, . . . ,c, are used when s = 1 and r > 2, then a statistic due to Yates [19] is
obtained.

2.3. CMH correlation statistic. Assume now that both the row and column variables
are ordinal or interval, and that every observation in the ith row of the hth stratum is
scored as ahi, i= 1, . . . ,r, and that every observation in the jth column of the hth stratum
is scored as bhj , j = 1, . . . ,c. The null hypothesis, that there is no association between row
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and column variables in any of the s tables, is now tested against the alternative that across
strata there is a consistent association, positive or negative, between the row scores and
column scores. Let Ch be a scalar given by Ch =

∑
i

∑
j ahibh j{Nijh−E[Nijh]}. It is routine

to show that under the null hypothesis of no association, C =∑hCh has expectation zero
and variance VC say, so that QC = CTV−1

C C = C2/VC has asymptotic distribution χ2
1 as

the total sample size n··· =
∑

h n··h approaches infinity. The statistic QC is known as the
CMH correlation statistic. If s = 1, then QC is (n··· − 1) times the square of the Pearson
correlation between the row and column variables; if s= 1 and natural scores ahi = i and
bhj = j are used, then QC is (n··· − 1) times the square of the Spearman correlation. The
CMH correlation test is a detector of linear-linear association.

2.4. Generalized CMH statistics. Suppose that the row variable is not ordered (nomi-
nal) while the column variable is ordinal or interval, with scores {bhj}. Suppose that the
scores satisfy bhj = bv( j) for all h with

∑
j br( j)bs( j)N· j·/n··· = δrs. Then M is an (r − 1)

vector with typical element
∑

j bv( j){Nij· −E[Nij·]}. It follows from Rayner and Best [16,
Section 4.4] that M standardised is the vth component of Pearson’s X2 in the sense that
the sum of the squares of the (c− 1) components is X2. This order v component detects
departures of the data from the model of homogeneity of row means. As before, if natu-
ral linear scores are used, the resulting test is related to that of Yates [19]. However, if the
scores are quadratic, the resulting test detects dispersion differences between rows. The
set of p-values resulting from applying all (c− 1) component tests gives a detailed and
informative scrutiny of the data, albeit an informal one.

Suppose that both row and column variables are ordinal or interval, ahi = au(i) for all h
with

∑
i ar(i)as(i)Ni··/n··· = δrs, and bhj = bv( j) for all h with

∑
j br( j)bs( j)N· j·/n···=δrs.

Then C =∑i

∑
jau(i)bv( j){Nij· −E[Nij·]}. It follows from Rayner and Best [16, Section

8.2] that C standardised is the uvth component of Pearson’s X2, detecting departures of
the data from the model of independence in the uvth bivariate moment. As previously
noted, if natural linear scores are used for both row and column variables, then C is
Spearman’s ρ. However, if one set of scores is linear while the other is quadratic, this leads
to interesting tests of bivariate skewness.

3. Randomized blocks

Possibly, the most commonly used experimental design is the randomized block design.
We begin this section by illustrating how the three CMH statistics QG, QM , and QC in-
troduced in the previous section are equivalent to three nonparametric rank statistics for
randomized blocks.

Suppose, as in Bradley [4, page 127], that we consider measures of visual acuity for
five subjects which have been given drugs designated as A, B, C, and D. The data are
presented in Table 3.1. Suppose further that we wish to carry out nonparametric tests
based on the within blocks (subjects) rankings for this data set. These rankings are given
in parentheses in Table 3.1. We wish to use these ranks to test for equality of median drug
effects, that is, to test H0 : τA = τB = τC = τD against K : not H0, that at least two medians
differ. Friedman’s [8] test statistic T takes the value 8.28 with corresponding p-value 0.04
based on an χ2

3 approximation.



4 Blocked ordered categorical data

Table 3.1. Visual acuity data from Bradley [4].

Drug\subject 1 2 3 4 5

A 0.39 (3) 0.21 (2) 0.73 (1) 0.41 (2) 0.65 (1)

B 0.55 (1) 0.28 (1) 0.69 (2) 0.57 (1) 0.57 (3)

C 0.33 (4) 0.19 (3) 0.64 (3) 0.28 (4) 0.53 (4)

D 0.41 (2) 0.16 (4) 0.62 (4) 0.35 (3) 0.60 (2)

Table 3.2. Stratum 1 contingency table for visual acuity data.

Drug\rank 1 2 3 4

A 0 0 1 0

B 1 0 0 0

C 0 0 0 1

D 0 1 0 0

Table 3.3. Partition of A for visual acuity data.

Source df SS p-value

Friedman 3 8.28 0.04

Dispersion 3 0.60 0.90

Residual 3 1.32 0.72

Anderson 9 10.20 0.33

If we wish to test H0 : τA = τB = τC = τD against K : τA > τB > τC > τD, then Page’s [14]
test is appropriate. We find the Page test statistic L takes the value 4.7 with corresponding
p-value 0.03 based on an χ2

1 approximation. To test for the equality of the distributions of
the ranks for the four drugs, we use Anderson’s [3] test based on A, which here takes the
value 10.20 with p-value 0.33 based on an χ2

9 approximation.
The T statistic is simply QM , the L statistic is QC, and the A statistic is QG. To calculate

the three CMH statistics, we need to form five 4× 4 tables of counts. For subject or block
1, the 4× 4 stratum table is shown as Table 3.2. Notice that each row and each column
sum is one.

Software for calculating QG, QM , andQC is available in the IMSL, SAS, and StatXact
(version 6) computer packages. To calculate QM and QC, scores are needed. To obtain T
and L, the scores 1, 2, 3, and 4 are required. The usual parametric F test for mean drug
differences gives F3,12 with p-value 0.014.

Before proceeding to use the CMH approach to obtain analogues of T , L, and A for
more complicated designs, we note as an aside that using the orthogonal polynomial
methods of Rayner and Best [16] and Rayner et al. [17], we can partition the statistic A
for randomized block designs. Results for Table 3.1 data are given in Table 3.3. The CMH
approach can be used to obtain the dispersion statistic in Table 3.3 by using QM with the
quadratic scores 9, 1, 1, 9.
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4. Balanced incomplete blocks

We now illustrate the CMH approach for data from a balanced incomplete block design.
Off-flavour in six ice cream samples was rated by 15 subjects tasting four samples

each. A seven-point scale was used, with “1” meaning little off-flavour and “7” meaning
considerable off-flavour. The data were given in Meilgaard et al. [13, Table 7.11] and are
shown here in Table 4.1. Notice that the original data in Meilgaard et al. [13, Table 7.11]
is in error for subject 14, in that, a rating of “1” should be given to ice cream F, not to
ice cream E. All six ice cream samples were not given to each subject as it was thought six
samples were too many to evaluate at once. Sensory fatigue is well documented and often
only three or four samples are judged at one sitting.

To apply CMH statistics, we form an r× c contingency table for each of the s subjects.
Here r is the number of ice creams and c is the number of categories, so that s= 15, r = 6,
and c = 7. The rows relate to ice creams and the columns to categories. Thus for each
subject, a 6× 7 contingency table of 0 s and 1s is formed. For example, for subject 1 the
contingency table is given by Table 4.2. Of course, for a complete block design, rows E
and F would have a “1” in one of the columns. Summing the 6× 7 contingency tables for
all 15 subjects, we obtain Table 4.3. Notice that not all rows and columns sum to one as
they did for randomized blocks. Tied data would give us some column sums greater than
one.

Are the six histograms whose counts are given in Table 4.3 significantly different? To
answer this, we calculate QG, the generalized association CMH statistic, or the mean
scores CMH statistic, QM . This can easily be done by using as data the 15 (0, 1) sub-
ject tables for IMSL [9] routine CTRAN. The SAS and StatXact routines for generalized
CMH statistics will not now do all the analysis needed.

For the Table 4.3 data, we find QG = 32.86 with an approximate p-value, based on the
χ2

29 distribution, of 0.28. Note that because here the covariance matrix is a generalized
inverse of rank 29, the degrees of freedom are 29, not 30. It appears that QG is not too
sensitive for these data. Perhaps this is because QG does not take into account that the
data are ordered. If we use the category identifiers as scores, then we find QM = 19.8 with
a p-value of 0.001 based on the χ2

5 approximation. An F test using the same scores gives
a p-value less than 0.001 according to Meilgaard et al. [13]. The F test relies on more
assumptions than the test based on QM .

Rayner et al. [17] give an alternative analysis of the Table 3.1 data using ranks. Also
note that for r = 2, QG is the Stuart [18] test of marginal homogeneity.

5. Missing values

Alvo and Cabilio [2] derive a nonparametric ranks-based test for an ordered alternative
τ1 ≥ τ2 ≥ τ3 ≥ ··· when the data are from a randomized block design with missing val-
ues. We now illustrate how to apply QC to obtain an alternative test statistic. We consider
the same lymph heart pressure (in mm of Hg) as did Alvo and Cabilio [2]. These data
are reproduced in Table 5.1 and concern measurements on eight toads which were dehy-
drated for 6-, 12-, 18-, and 24-hour periods. Biologists expect that on average, a toad’s
lymph heart pressure will decrease with increasing dehydration.
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Table 4.1. Off-flavour ratings for six ice creams.

Subject\ice cream A B C D E F

1 6 1 1 2 — —

2 6 — — 1 3 3

3 — 4 2 — 5 2

4 7 2 3 — 2 —

5 3 5 — 1 — 1

6 — — 1 1 3 2

7 7 4 4 — — 3

8 2 — 1 1 1 —

9 — 2 — 2 2 3

10 4 2 — 2 5 —

11 5 — 3 — 1 1

12 — 3 2 1 — 2

13 4 2 — — 1 1

14 5 — 2 2 — 1

15 — 2 4 5 3 —

Table 4.2. Off-flavour ratings of six ice creams for subject 1.

Ice cream\category 1 2 3 4 5 6 7

A 0 0 0 0 0 1 0

B 1 0 0 0 0 0 0

C 1 0 0 0 0 0 0

D 0 1 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0

Table 4.3. Off-flavour ratings combined for subjects.

Ice cream\category 1 2 3 4 5 6 7

A 0 1 1 2 2 2 2

B 1 5 1 2 1 0 0

C 3 3 2 2 0 0 0

D 5 4 0 0 1 0 0

E 3 2 3 0 2 0 0

F 4 3 3 0 0 0 0

To find QC, we need to rank the data within toads and we use eight indicator matrices
or contingency tables which are similar in form to Tables 3.2 and 4.2. For toad 24, this
indicator table is given as Table 5.2.
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Table 5.1. Lymph heart pressure (in mm of Hg) data of Alvo and Cabilio [2].

Toad\dehydration time 6 hours 12 hours 18 hours 24 hours

21 11.9 9.8 7.6 10.2

22 5.6 4.9 4.0 3.1

23 — 14.4 14.2 7.8

24 13.3 — — 10.0

25 8.0 7.9 — 7.6

27 17.7 16.6 15.3 11.6

28 9.0 8.0 11.9 6.8

29 9.8 8.0 7.7 7.8

Table 5.2. Rankings for toad 24 in a 4× 4 table.

Hours\rank 1 2 3 4

6 1 0 0 0

12 0 0 0 0

18 0 0 0 0

24 0 1 0 0

Table 6.1. Growth of strawberry plants after applying pesticides.

Block I Block II Block III Block IV

C, 107 A, 136 B, 118 O, 173

A, 166 O, 146 A, 117 C, 95

D, 133 C, 104 O, 176 C, 109

B, 166 B, 152 D, 132 A, 130

O, 177 D, 119 B, 139 D, 103

A, 163 O, 164 O, 186 O, 185

O, 190 D, 132 C, 103 B, 147

Using routine CTRAN from IMSL [9], we findQC = 11.9 with p-value 0.0006 based on
an χ2

1 approximation. Alvo and Cabilio [2] found that for these data, their recommended
test statistic took the value 226.75 and quoted exactly the same p-value as do we, namely
0.0006.

6. Supplemented balance designs

Pearce [15] suggested the use of supplemented balanced designs and used these designs
to analyse data when pesticides designated as A, B, C, D, and O are applied to strawberry
plants. The pesticides were intended to control weeds and allow the strawberry plants
to grow bigger and presumably produce more strawberries. However, while eradicating
the weeds, do the pesticides inhibit strawberry growth? Pearce [15] gave the results and
the design that we reproduce in Table 6.1. The figures quoted represent the spread of the
strawberry plants. Pesticide “O” is a control.
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Table 6.2. Rankings for block I in a 5× 8 table.

Drug\rank 1 2 3 3.5 4 5 6 7

A 0 0 0 1 0 1 0 0

B 0 0 0 1 0 0 0 0

C 0 0 0 0 0 0 0 1

D 0 0 0 0 0 0 1 0

O 1 1 0 0 0 0 0 0

To use CMH to obtain an analogue of Friedman’s T for this more complex design,
we proceed as before, ranking within blocks and forming four 5× 8 indicator matrices.
Notice in block I, there are two tied observations. Table 6.2 shows the indicator matrix
for this block.

We find QM = 20.1 with a p-value of 0.0005 based on an χ2
4 approximation. An F test

based on a regression routine gives, for these data, F4,20 = 24.6 with p-value less than
0.0001. Desu and Raghavarao [7] give an analogue of Friedman’s T for general block
designs that have the same asymptotic chi-squared distribution as T . For Table 6.1 data,
their statistic has the value 20.0, almost identical to QM . Perhaps the difference is in the
treatment of the tied observations.
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Meyer (1987) extended the theory of mean-variance criterion to include the compari-
son among distributions that differ only by location and scale parameters and to include
general utility functions with only convexity or concavity restrictions. In this paper, we
make some comments on Meyer’s paper and extend the results from Tobin (1958) that
the indifference curve is convex upwards for risk averters, concave downwards for risk
lovers, and horizontal for risk neutral investors to include the general conditions stated by
Meyer (1987). We also provide an alternative proof for the theorem. Levy (1989) extended
Meyer’s results by introducing some inequality relationships between the stochastic-
dominance and the mean-variance efficient sets. In this paper, we comment on Levy’s
findings and show that these relationships do not hold in certain situations. We further
develop some properties among the first- and second-degree stochastic dominance effi-
cient sets and the mean-variance efficient set.

Copyright © 2006 Wing-Keung Wong. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Mean-variance (MV) efficient sets have been widely used in both economics and finance
to analyze how people make their choices among risky assets. Markowitz [21] demon-
strated that if the ordering of alternatives is to satisfy the von Neumann-Morgenstern
[39] (NM) axioms of rational behavior, only a quadratic (NM) utility function is con-
sistent with an ordinal expected utility function that depends solely on the mean and
variance of the return. Thereafter, Feldstein [7], Hanoch and Levy [12], Rothschild and
Stiglitz [31, 32], and others commented that the MV criterion is applicable only when the
decision maker’s utility function is quadratic and the probability distribution of return is
normal. Moreover, Baron [2] pointed out that even if the return for each alternative has a
normal distribution, the MV framework cannot be used to rank alternatives consistently
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2 Stochastic dominance theory for location-scale family

with the NM axioms unless a quadratic NM utility function is specified. Meyer [25] ex-
tended the MV theory to include general utility functions and comparison between dis-
tributions that differ only by location and scale parameters.

Meyer’s extensions are important as it is well known that the distribution of investment
returns is usually nonnormal and the restriction of the utility function to the quadratic
form is too limited in scope. These restrictions were popular in the literature not only
before Meyer’s findings but remained common after Meyer’s findings. For example, Zhao
and Ziemba [45] restricted the use of mean-variance criterion to normal or log-normal
distributions and the quadratic utility function. Chow [4] pointed out that the mean-
variance portfolio theory assumes that investor utility functions are quadratic and/or the
return distributions of assets are multivariate normal. In this paper, we make some com-
ments on Meyer’s paper and extend the results from Tobin [37], who postulated that the
indifference curve is convex upwards for risk averters and is concave downwards for risk
lovers, to include a wide family of distributions for the returns as well as to include gen-
eral utility functions as stated in Meyer [25]. We also provide an alternative proof for the
theorem.

Levy [16] extended Meyer’s results to prove that the first- (FSD) and second-degree
(SSD) stochastic dominance efficient sets are equal to the mean-variance (MV) efficient
set under certain conditions and established some inequality relationships between the
variables in the same location-scale family. In this paper, we comment on Levy’s findings
and show that the inequality relationships developed by Levy do not hold in certain situ-
ations. We further explore the relationships among the FSD, SSD, and MV efficient sets,
which culminate in three important findings: (1) the SSD efficient set is a proper subset
of the FSD efficient set, (2) the SSD efficient set is a proper subset of the MV efficient set,
and (3) the FSD efficient set is not equal to the MV efficient set in a way that neither is a
proper subset of each other.

Being of both theoretical and practical interests, the main challenge of the MV and SD
analyses is to identify the assets that constitute attainable efficient portfolios. Unfortu-
nately, the relationships between the MV efficient sets and the SD efficient sets have not
been well established. With this in mind, we seek to develop the relationships between the
MV and SD efficient sets to capture the essence of portfolio selection here. In addition,
we explore the shapes of indifference curves for risk averters, risk lovers, and risk-neutral
investors. Our findings could be useful in facilitating the MV and SD procedures and
enabling investors to make wiser decisions in their investments.

We begin by introducing a brief literature in this section. In Section 2, we first review,
discuss, and give comments on some properties stated in Meyer [25], Levy [16], and Sinn
[34]. We then proceed to develop some properties on the expected utility maximization
and the stochastic dominance theory for the location-scale family. The concluding re-
marks are in Section 3.

2. Theory

In this section, we first review and discuss some properties stated in Meyer [25], Levy [16],
and Sinn [34], and further extend their work by developing some additional properties.
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In order to avoid confusion, we use “proposition” to state our results and “property” to
state the results produced by Meyer [25] and Levy [16].

Let the return X be the random variable with zero mean and variance one, with the
location-scale family � generated by X such that

�= {Y | Y = μ+ σX , −∞ < μ <∞, σ > 0
}
. (2.1)

The expected utility V(σ ,μ), see Meyer [25], for the utility U on the random variable Y
can then be expressed as

V(σ ,μ)= E
[
U(Y)

]=
∫ b

a
u(μ+ σx)dF(x), (2.2)

where [a,b] is the support of X , F is the distribution function of X , and the mean and
variance of Y are μ and σ2, respectively. We note that the requirement of the zero mean
and unit variance for X is not necessary. However, without loss of generality, we can
make these assumptions as we will always be able to find such a seed random variable in
the location-scale family.

For any constant α, the indifference curve drawn on the (σ ,μ) plane such that V(σ ,μ)
is a constant can be expressed as

Cα =
{

(σ ,μ) |V(σ ,μ)≡ α
}
. (2.3)

In the indifference curve, we follow Meyer [25] to have

Vμ(σ ,μ)dμ+Vσ(σ ,μ)dσ = 0 (2.4)

or

Vμ(σ ,μ)
dμ

dσ
+Vσ(σ ,μ)= 0, (2.5)

where

Vμ(σ ,μ)= ∂V(σ ,μ)
∂μ

=
∫ b

a
u′(μ+ σx)dF(x),

Vσ(σ ,μ)= ∂V(σ ,μ)
∂σ

=
∫ b

a
u′(μ+ σx)xdF(x).

(2.6)

The following proposition is then obtained by applying Meyer [25, Properties 1 and 2]
and the implicit function theorem.

Proposition 2.1. If the distribution function of the return with mean μ and variance σ2

belongs to a location-scale family and for any utility function u, if u′ > 0, then the indifference
curve Cα can be parameterized as μ= μ(σ) with slope

S(σ ,μ)=−Vσ(σ ,μ)
Vμ(σ ,μ)

. (2.7)
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In addition,
(1) if u′′ ≤ 0, then the indifference curve μ= μ(σ) is an increasing function of σ ; and
(2) if u′′ ≥ 0, then the indifference curve μ= μ(σ) is a decreasing function of σ .

Proof. From (2.6), we have

S(σ ,μ)=−
∫ b
a u

′(μ+ σx)xdF(x)∫ b
a u′(μ+ σx)dF(x)

(2.8)

in which
∫ b
a u

′(μ+ σx)dF(x) > 0 because u′ > 0. For the numerator, as E(X)= 0, we have∫ 0
a xdF(x)=−∫ b0 xdF(x). If u′′ < 0, we have

∫ b

0
u′(μ+ σx)xdF(x) <

∫ b

0
u′(μ)xdF(x)=−

∫ 0

a
u′(μ)xdF(x)

<−
∫ 0

a
u′(μ+ σx)xdF(x).

(2.9)

Hence, S(σ ,μ) > 0. Similarly, if u′′ > 0, we have S(σ ,μ) < 0. �

Meyer [25] continued to investigate the properties of ∂S(σ ,μ)/∂μ without the restric-
tion of V(σ ,μ)≡ α and obtained the following property (we refer to Property 5 in Meyer’s
paper).

Property 2.2. ∂S(σ ,μ)/∂μ≤ (=≥)0 for all μ and for all σ ≥ 0 if and only if u(μ+ σx) dis-
plays decreasing (constant, increasing) absolute risk aversion.

We note that Sinn [34] obtained similar results as the above property in Meyer’s paper.
But similar to Meyer’s approach, the proof of the results in Sinn [34] was also done with-
out the restriction of V(σ ,μ)≡ α. It should be equally important to study the convexity
of the indifference curve Cα with the restriction of V(σ ,μ) ≡ α. Under the constraint of
(σ ,μ)∈ Cα, we have the following proposition for ∂S(σ ,μ)/∂σ as a complement of Meyer’s
Property 5 and Sinn’s work.

Proposition 2.3. The distribution function of the return with mean μ and variance σ2

belongs to a location-scale family. For any utility function u with u′ > 0,
(1) if u′′ ≤ 0, then μ= μ(σ) is a convex function of σ , and
(2) if u′′ ≥ 0, then μ= μ(σ) is a concave function of σ .

Proof. As

dμ

dσ
=−

∫ b
a u

′(μ+ σx)xdF(x)∫ b
a u′(μ+ σx)dF(x)

=− I1

I2
, (2.10)
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we have

d2μ

dσ2
= 1

I2
2

(
I1
∂I2

∂σ
− I2

∂I1

∂σ

)

= I1

I2
2

∫ b

a
u′′(μ+ σx)

(
dμ

dσ
+ x
)
dF − 1

I2

∫ b

a
u′′(μ+ σx)

(
dμ

dσ
+ x
)
xdF

=− 1
I2

dμ

dσ

∫ b

a
u′′(μ+ σx)

(
dμ

dσ
+ x
)
dF − 1

I2

∫ b

a
u′′(μ+ σx)

(
dμ

dσ
+ x
)
xdF

=− 1
I2

∫ b

a
u′′(μ+ σx)

(
dμ

dσ
+ x
)2

dF

=−
∫ b
a u

′′(μ+ σx)(dμ/dσ + x)2dF∫ b
a u′(μ+ σx)dF

≥ (>)0 as u′ > 0, u′′ ≤ (<)0

≤ (<)0 as u′ > 0, u′′ ≥ (>)0.

(2.11)

�

The above proposition can be easily extended to include the situation in which u′ ≥ 0
and u′′ ≤ 0 and the situation in which u′ ≥ 0 and u′′ ≥ 0 with the condition Prob(u′ >
0) > 0. It may be rewritten as the indifference curve Cα is convex upwards for risk averters,
concave downwards for risk lovers, and horizontal for risk neutral investors.

In addition, we note that Tobin [37] had proven the above proposition on the qua-
dratic utility functions with the normality assumption for the distributions of the return.
Our proposition is then an extension of Tobin [37] results to include the general utility
functions, as well as the distributions in the location and scale family as in Meyer’s paper.
Furthermore, since Sinn [34] also obtained similar results for risk averters, our proof is
an alternative to the results reported by Tobin and Sinn.

Levy [16] stated the first-degree stochastic dominance (FSD), the second-degree sto-
chastic dominance (SSD), and the mean-variance (MV) rules (Levy called it mean-
standard deviation rule); and defined the FSD, SSD, and MV efficient sets (see Levy for
the detailed definitions). He also extended Meyer’s results to prove that the first- and
second-degree stochastic dominance efficient sets are equal to mean-variance efficient set
under certain conditions and showed the relationships between the support of the seed
random variable X and the parameters in the two linear functions Yi and Yj of X in the
following property (Levy termed it as “proposition” in his paper).

Property 2.4. Let X be a random variable with a finite mean and variance, but with no
further restriction on its distribution, and let Yi and Yj differ from X by location and
scale parameters, such that Yi = αi +βiX , Yj = αj +βjX . The support of X is [a,b]. Then

(1) Yi and Yj are in the MV-efficient set for all nondecreasing preferences if and only
if

a <
αj −αi
βi−βj

. (2.12)
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(2) (a) If Yi dominates Yj in MV, then such dominance exists in expected utility
(EU) for all risk-averse investors with no additional restriction on F(X).

(b) However, a dominance in EU for all nondecreasing U exists, if and only if

b ≤ αi−αj

βj −βi
. (2.13)

If (2.12) holds, no dominance by MV implies no dominance for all nondecreasing U and
also no dominance for all nondecreasing concave U . If (2.12) holds and (2.13) does not
hold, the MV- and EU-efficient sets are identical when risk aversion is assumed. If both
(2.12) and (2.13) hold, the MV- and EU-efficient sets are identical for all nondecreasing
preference U .

Next, we study the relationships among the efficient sets for the FSD, SSD, and MV
rules for the location-scale family, and the validity of the above property in Levy. Letting
�FSD, �SSD, and �MV be the FSD efficient set, the SSD efficient set, and the MV efficient
set, respectively, we obtain the following proposition.

Proposition 2.5. For any location-scale family,
(1) �SSD ⊂�FSD;
(2) �SSD ⊂�MV; and
(3) (a) �MV−�FSD 	=∅, and

(b) �FSD−�MV 	=∅.

Proof. Since X �1 Y ⇒ X �2 Y , we obtain part (1) of Proposition 2.5. The following is a
simple example to show that �SSD 	=�FSD.

Example 2.6. Y = βX , where 0 < β < 1 and E(X)= 0.

In this example, Y �2 X but X and Y do not dominate each other in the sense of FSD.
Hence, (X ,Y)∈�FSD but (X ,Y) /∈�SSD. Thus, part (1) of the proposition holds.

Applying Hadar and Russell [10, Theorem 4], Tesfatsion [36, Theorem 1′], or Li and
Wong [20, Theorem 8b], we find that �SSD is a subset of �MV. To show that �SSD is a
proper subset of �MV, we use the following example.

Example 2.7. Let X be the seed random variable with support [a,b] = [0,1], let Yi =
αi +βiX , and let Yj = αj +βjX , and set βi > βj > 0 and αi = αj +βi−βj .

In this example, (Yi,Yj)∈�MV but (Yi,Yj) /∈�SSD. Hence, �SSD is a proper subset of
�MV and thus part (2) of the proposition holds.

Example 2.7 can also be used to prove (3a). In this example, (Yi,Yj) ∈ �MV but
(Yi,Yj) /∈�FSD. Hence, (3a) holds.

One can also easily postulate that Example 2.6 can be used to show (3b) as (X ,Y) ∈
�FSD but (X ,Y) /∈�MV. �

It is well established that the FSD efficient set is equivalent to the EU efficient set for
all nondecreasing preference structures U , the SSD efficient set is equivalent to the EU
efficient set for all nondecreasing concave U ; see, for example, Hanoch and Levy [12],
Hadar and Russell [10], Meyer [24], and Li and Wong [20]. From part (1) of the above
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proposition, we know that the SSD efficient set is a subset of the FSD efficient set. Hence,
we can define a complement of the SSD efficient set within the FSD efficient set, denoted
by �c

SSD, to be the efficient set for all nondecreasing preference U but not for any nonde-
creasing concave U . We have

�FSD =�SSD∪�c
SSD (2.14)

and �c
SSD is not an empty set. In the proof of parts (2) and (3) in the above proposition,

we simply utilize (Yi,Yj)∈�c
SSD such that the results hold.

Lastly, we valuate the validity of Levy’s property. It is easy to find that Example 2.7 in
the above can be used to show that parts (1) and (2b) in Levy’s property may not hold. In
this example, we illustrate that (Yi,Yj)∈�MV but (2.12) does not hold as

αj −αi
βi−βj

= αj −αj −βi +βj

βi−βj
=−1 < a. (2.15)

This shows that part (1) in Levy’s property may not hold in �c
SSD. Additionally, we find

that Yi �1 Yj . Applying Li and Wong [20, Theorem 7], we have E[U(Yi)] > E[U(Yj)] for
any nondecreasing U and thus, there exists a dominance in EU for all nondecreasing U .
However, as

αi−αj

βj −βi
=−1 < b, (2.16)

thus inequality in (2.13) does not hold, implying that part (2b) in Levy’s property may
not hold.

We now give another example in which (2.12) holds but (Yi,Yj) /∈�MV as shown in
the following.

Example 2.8. Let X be the seed random variable with support [a,b] = [0,1], let Yi =
αi +βiX , and let Yj = αj +βjX , and set βi > βj > 0 and αj = αi +βi−βj .

In this example, since βi > βj > 0 and αj > αi, we have (Yi,Yj) /∈�MV. However,

αj −αi
βi−βj

= αi +βi−βj −αi
βi−βj

= 1 > a (2.17)

and hence (2.12) holds. This leads to our conclusion that part (1) of Levy’s property does
not hold in this example. However, in this example, we find that

αi−αj

βj −βi
= 1≥ b (2.18)

and hence (2.13) holds and it is easy to show that Yi �1 Yj . In this connection, part (2b)
of Levy’s property is valid in this example. Another trivial example in which part (2b)
does not hold is the following.

Example 2.9. We set αi > αj and βi = βj .

In this example, Yi �1 Yj and hence there exists a dominance in EU for all nondecreas-
ing U but (2.13) does not hold.
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3. Concluding remarks

Meyer [25] contributed to the theory of mean-variance criterion by extending the the-
ory to include the comparison among distributions that differ only by location and scale
parameters as well as to include the general utility functions with only convexity or con-
cavity restrictions. Levy [16] extended Meyer’s results by introducing some relationships
between the stochastic-dominance and the mean-variance efficient sets. However, Meyer
[26] commented that Levy’s findings is an application of the principle that segments of
efficient sets cannot have slopes which are greater (smaller) than the highest (least) sloped
indifference curve and commented that those portions of the MV-efficient set which are
either too flat or too steeply sloped are not EU efficient.

We first make some comments on Meyer’s paper and extend the results from Tobin
[37] that the indifference curve is convex upward for risk averters, concave downwards
for risk lovers, and horizontal for risk neutral investors to include the general conditions
as stated in Meyer [25]. We then comment on Levy’s findings and show that the rela-
tionships in Levy’s property do not hold in certain situations. We further explore the
relationships among the first- and second-degree stochastic dominance efficient sets and
the mean-variance efficient set to show that they are not equal to one another. We check
the literature on the subject and conclude that the results in our paper are still new and
we hope that our results would be able to contribute to the existing literature.

Further extensions of the theory developed in this paper, future work could extend our
efforts to link stochastic dominance to mean-variance criterion developed by Markowitz
[21], Tobin [37], and Sharpe [33] for location-scale family. As the theory developed by
Meyer and Levy, and in this paper mainly concerns only risk averters, it would also be
worthwhile to extend it to risk lovers (see, e.g., Hammond [11], Meyer [24], Hershey
and Schoemaker [13], Stoyan [35], Myagkov and Plott [27], Wong and Li [44], Post [28],
Anderson [1], and Post and Levy [30]) and to investors with S-shaped or reverse S-shaped
utility functions (see, e.g., Kahneman and Tversky [14], Tversky and Kahneman [38],
Levy and Wiener [19], and Levy and Levy [17, 18]). Another area of extension is to extend
our theory to a variable of loss (see, e.g., Weeks and Wingler [41], Weeks [40], Post and
Diltz [29], and Dillinger et al. [5]). In addition, the theory developed in this paper could
be applied to many different areas in business, economics, and finance. For example, one
could easily incorporate our approach to explain well-known financial anomalies (see,
e.g., McNamara [23], Wong and Bian [42], Post [28], Post and Levy [30], Kuosmanen
[15], and Fong et al. [9]) and to model investment risk (see, e.g., Matsumura et al. [22],
Doumpos et al. [6], Wong and Chan [43], Fong and Wong [8], and Broll et al. [3]).
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This paper addresses the problem of estimating the ratio of the means of independent
normal variables in agricultural research. The first part of the research examines the dis-
tributional properties of the ratio of independent normal variables, both theoretically
and using simulation. The second part of the research evaluates the relative merits of two
common estimators of the ratio of the means of independent normal variables in agri-
cultural research, an arithmetic average and a weighted average, via simulation experi-
ments using normal distributions. The results are then tested using research data from
rice breeding multi-environment trials in Jilin Province, China, in 1994. These data are
used to demonstrate the diagnostic approach developed for assessing the “safe” use of the
arithmetic and the weighted average methods for estimating the ratio of the means of
independent normal variables.

Copyright © 2006 C. G. Qiao et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A ratio R= X/Y of independent normal variables is commonly used to capture the rela-
tive merits of two contrasting treatments, practices or methodologies in agricultural re-
search. Examples include the ratio of grain yield of a new crop variety to that of the com-
mercial control variety across a range of environments, harvest index (the ratio between
economical and biological yields of plants), and relative efficiency (the ratio between er-
ror estimates of two biological models in agricultural research). It is important to know
how the mean E(X/Y) of the ratio of the two independent normal variables should be
estimated when several such ratio estimates are available. Throughout, we assume that X
and Y are uncorrelated and that μY > 0.

The motivation for this research lies in the study of relative performance of rice va-
rieties in grain yield in Jilin Province of China in 1994 (see Jilin Provincial Seed Station
[4]), where a series of ratio estimates needed to be pooled or averaged over different en-
vironments. For this rice breeding multi-environment trial (MET) conducted over eight
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2 Ratio estimators of means of continuous variables

Table 1.1. Grain yields (kg/ha) of three rice varieties (850011, Chang 90–40, and Yan 501) and the
percent grain yield of each of these test varieties relative to the control variety (Jiyin 12) by the arith-
metic average (RA) and weighted average (RW ) in a multi-environment trial in 1994.

Location
850011 Control Chang 90–40 Control Yan 501 Control

(X) (Y) (X) (Y) (X) (Y)

Changchun 7353 5498 6304 5498 6753 5498

Gongzhuling 7574 6063 7917 6063 6485 6063

Jilin 9285 8820 8475 8820 5745 8820

Shuangyang 5646 7857 6504 7857 — —

Lishu 8940 8945 9250 8945 8625 8945

Shulan 8554 8049 9005 8049 9254 8049

Tonghua 6278 5002 — — 6627 5002

Yanbian 7889 7820 7545 7820 7956 7820

Correlation (X ,Y) 0.601 (p = 0.115) 0.648 (p = 0.116) 0.418 (p = 0.351)

Mean 7690 7257 7857 7579 7349 7171

Standard deviation 1264 1521 1154 1316 1279 1622

Coefficient of
0.164 0.210 0.147 0.174 0.174 0.226

variation

RA 108.6 — 105.1 — 105.8 —

RW 106.0
CVY =
0.074

103.7
CVY =
0.066

102.5
CVY =
0.086

locations, the grain yield data were analysed to quantify the percent increase in grain yield
of three varieties over the control variety (Table 1.1). In such studies, a subset of rice va-
rieties are added in or dropped out from the regional variety testing program every year,
based on their overall performance (mainly yield) relative to the control. This makes the
field evaluation of rice varieties progress in a roll-over pattern. The aim is to estimate the
mean percent yield increase of each of the test varieties over the control variety across a
range of environments. In Table 1.1, the percent grain yield of each test variety relative to
the control variety (Jiyin 12) is used to assess the yield improvement of the new variety
at these locations. The ratio of grain yield of each test variety to grain yield of the control
(expressed as a percentage), over all possible trials in the MET, is to be estimated.

Since the mean E(X/Y) of the ratio of two independent normal variables does not
exist (Lukacs and Laha [10]; Lukacs [9]; Springer [16]; Johnson et al. [5]), this causes a
practical problem in its estimation due to the non-existence of E(1/Y), because Y can in
theory assume values arbitrarily close to zero. Lai et al. [8] studied a punctured normal
distribution, where a small neighbourhood (|Y | ≤ ε with ε a small positive number) is re-
moved from consideration, through two left-truncated normal variables. They show that
the mean of the inverse of the punctured normal variable exists, whence E(X/Y | |Y | >
ε)= E(X)E(1/Y | |Y | > ε) also exists although E(X/Y) fails to exist. They also justify the
estimation of μX/μY as a surrogate for E(X/Y), because μX/μY is a satisfactory measure of
centre for X/Y . Hence, as the maximum likelihood estimator of μX/μY , X/Y is naturally
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the best estimator of μX/μY . The aim of this paper is to explore theoretical and numerical
aspects of the estimation of this ratio, leading to the provision of useful advice for the
practitioner.

Two methods are widely used for averaging different ratio estimates in agricultural re-
search. The first is the arithmetic average approach, which divides the sum of all the ratio
estimates by the total number of estimates (Kaeppler et al. [6]; Moreau et al. [11]; Qiao
et al. [13]). The second is known as the weighted average approach, which estimates the
true ratio via dividing the sum of all the numerators by the sum of all the denominators
of the individual ratio estimates (Robinson et al. [15]; Haque et al. [2]; Witcombe et al.
[17]). When used on the same set of data to estimate the mean of the ratio of two inde-
pendent normal variables, these two approaches may give different results or even reach
contradictory conclusions in some circumstances. We have not, however, found any re-
port in the literature comparing these two methods. We note that related research was
conducted in Qiao et al. [14], where the corresponding estimators of a binomial propor-
tion using several independent samples in agricultural research were investigated. That
work provided the impetus for the current study.

We pause now to describe the two estimators. Suppose a sample of observations
(Xi,Yi), i = 1,2, . . . ,n, is taken from a bivariate normal population N(μX ,μY ,σX ,σY ,ρ)
and for each observation, the ratio Xi/Yi is calculated. There are two popular ways in
agricultural research to estimate the ratio μX/μY , the arithmetic average approach, with
RA = (

∑
Xi/Yi)/n, and the weighted average approach, with

RW=
∑

Wi
Xi

Yi
=
[(

Y1∑
Yi

)(
X1

Y1

)
+

(
Y2∑
Yi

)(
X2

Y2

)
+ ···+

(
Yn∑
Yi

)(
Xn

Yn

)]
=
∑
Xi∑
Yi
= Xn

Yn
.

(1.1)

Intuition suggests that RA = (
∑
Xi/Yi)/n is a poor estimator of μX/μY . This is because Yi

can be small and positive, leading to large and positive Xi/Yi, thus biasing the final average
upwards. It averages after division. In contrast, RW = Xn/Yn should be a better estimator
of μX/μY as very small Yn values are less likely to occur, thus lessening the upward bias. It
averages before division. Hence, RW appears generally superior to RA.

For the motivation example, a ratio of means of independent normal variables (grain
yield in this instance) is to be estimated. The arithmetic and weighted average ratio esti-
mators produced different estimates in Table 1.1 and it is unclear which estimator should
be used. This forms the drive for investigations of the theoretical foundation of the dif-
ference between the two methods and for evaluation of them in a more general sense in
agricultural research.

The paper is presented in five sections. Section 2 explores the distribution of the ratio
of two independent normal variables; this is followed by an evaluation of the two esti-
mators of the ratio of normal means, both theoretically and using simulation. Section 4
applies the findings to a data set from an agricultural experiment, while Section 5 con-
tains general recommendations concerning the use of the two estimators in agricultural
research.
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2. Distribution of the ratio of independent normal variables

2.1. The probability density function of the ratio of independent normal variables.
Springer (see [16, pages 139–148]) found the probability density function of W =
(X/σX)/(Y/σY ) and then R = X/Y through the use of the simple transformation R =
(σX/σY )W . This result is rather unwieldy for computational purposes. Kamerud [7] gave
the probability density function of R= X/Y explicitly. There is an error in her derivation
of the density function of W that we rectify in the following, making it necessary to adjust
the density function.

Define U = X/σX , V = Y/σY , and thus U ∼ N(μX/σX ,1), V ∼ N(μY /σY ,1). Set W =
U/V and let g be its density function. Replacing μ1 and μ2 in Kamerud [7] by μX/σX and
μY /σY , respectively, we have

g(w)= (2π)−1Qexp(M), (2.1)

whereM=−(1/2)((μY /σY )w−μX/σX)2s2,Q=ks(2π)1/2[1−2Φ(−k/s)]+2s2 exp(−k2/2s2),
s= (w2 + 1)−1/2, k = ((μX/σX)w+μY /σY )s2, and Φ is the standard normal cumulative dis-
tribution function. The probability density of R is then given by f (r)= (σY /σX)g((σY /
σX)r).

In contrast to the method given in Springer [16], Kamerud’s expressions are easy to
compute numerically. Hence, Kamerud’s probability density function is used to generate
graphs of X/Y against its density, shown in Figure 2.1, to assess the distributional proper-
ties of the ratio of two independent normal variables. Some typical plots (Figures 2.1(a)–
2.1(c)) are drawn using this density function, with varying coefficient of variation (CV)
for the denominator variable. From the considerations of Section 2 and Qiao et al. [14],
it is evident that the CV of the denominator is of critical importance. In Figure 2.1(a), the
CV of both X and Y is small (0.1). Hence, the density function is fairly symmetric around
μX/μY = 1, having the bell-shape of a normal distribution. The long tail in Figure 2.1(b)
and multiple peaks in Figure 2.1(c), where the CV is small for the numerator but large
for the denominator, indicate that the moments, especially the mean of the distribution,
may not exist.

For small coefficient of variation of Y(CVY ), the moments of the ratio appear to exist.
This is due to the fact that very small Y values were not sampled in the above graphical
presentation and hence we were effectively sampling from (X/Y) | |Y | > ε, a punctured
normal for the denominator variable (Lai et al. [8]). The moments of X/Y appear to exist
in this situation. Both the arithmetic and the weighted average methods involve ratios
of independent normal variables. We will demonstrate later that, as far as estimation
of μX/μY is concerned, both the arithmetic and the weighted average methods can be
used when CVY is sufficiently small. The circumstances under which the ratio of two
independent normal values can be used to safely estimate the ratio of the means are now
investigated using simulation.

2.2. Simulation of the distribution of the ratio of normal random variables. Software
SAS 8.2 was used to simulate the distributional properties of the ratio R = X/Y of two
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Figure 2.1. Density functions for the ratio R of two independent normal variables X ∼ N(100,σX)
and Y ∼ N(100,σY ), so μX/μY = 1, as CVY varies.

normal variables X ∼ N(μX ,σX) and Y ∼ N(μY ,σY ). The population means of both vari-
ables were fixed at 100 and hence μX/μY = 1. The population standard deviations of both
variables took the values 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, and 500, leading to
both CVX and CVY taking values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, and 5. For
each of these 144 combinations, 500 000 pairs of (Xi,Yi) were sampled; the mean and
standard deviation of the ratios Ri = Xi/Yi were examined.

Before considering the simulation results, we offer some theoretical reflections. The
mean of X/Y does not exist, but under sampling, X/Y and X/Y | |Y | > ε are essentially
the same random variable for sufficiently small ε. For example, if μY > 0 and CVY < 0.2,
it is possible to find an ε such that 0 < ε < μY − 5σY . Hence, fewer than one in a million
sample values of Y will have absolute value less than ε. As argued in the introduction,
E(X/Y | |Y | > ε) = E(X)E(1/Y | |Y | > ε) and this is approximately μX/μY (Lai et al. [8,
Section 4.2]) as long as CVY < 0.2. As pointed out in (Lai et al. [8, Section 5.2]), X/Y is the
maximum likelihood estimator of μX/μY , and hence the estimator of choice. In summary,
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as long as CVY < 0.2, theory tells us that X/Y is a sound estimator for the centre of X/Y .
Our simulation results now confirm these findings.

The simulation results, listed in Table 2.1, indicate that the sample mean and standard
deviation of the ratio estimates are all strongly influenced by CVY . This supports our
earlier remark that CVY , not CVX , is a critical parameter. When CVY < 0.2, the mean of
R remains close to μX/μY = 1, while the standard deviation of R increases approximately
linearly as CVX increases (Table 2.1). It appears that the variation of R is almost purely
determined by the variation in the numerator variable when CVY is small. Evidently,
CVY = 0.2 is an appropriate cut-off point for the denominator; for larger CVY values,
the mean deviates substantially from μX/μY = 1 and the standard deviation increases ac-
cordingly. In contrast, CVX has no influence on the mean of R, and a relatively small
influence on the standard deviation. Hence, the deleterious effect of increasing CVY is
much stronger than that when increasing CVX .

The sample mean of the ratios fails to estimate μX/μY when CVY > 0.4, while the stan-
dard deviation is extremely large, with erratic behaviour, when CVY > 0.3. For the sam-
ple means to serve as reasonable estimators of μX/μY for this sample size (500 000), CVY

apparently has to be kept sufficiently small (CVY < 0.2 appears to suffice). In practical
applied research, it is rare for the CV of a normal variable to be larger than 5.0. Thus, as
long as CVY < 0.2, it makes empirical sense use the ratio estimator X/Y .

This simulation was repeated first with μX/μY = 10/100= 0.1, and then with μX/μY =
100/10 = 10. The mean and standard deviation of the ratio behave similarly to the case
where μX/μY = 1. This provides circumstantial evidence that the magnitude of μX/μY
does not influence the manner in which the sample mean estimates μX/μY .

2.3. Implications in applied research. The non-existence of moments of the ratio of
normal variables presents a problem. In practical applications, as long as we avoid sam-
pling in an interval around Y = 0, moments of X/Y will appear to exist. If we let ε be a
sufficiently small positive quantity, then Xi/Yi can be used to estimate the ratio of μX/μY ,
provided |Yi| > ε. Hall [1] showed that if a positive random variable Y has a normal dis-
tribution singly truncated from below, denoted by Na(μ,σ), where 0 < a < Y , then the
inverse moments E(Y−1) and E(Y−2) can be approximated accurately by expressions in-
volving Dawson’s integral. The expressions are independent of the truncation point a,
provided that (σ/μ)2 < a/μ < 1/25. This will ensure the apparent existence of the expec-
tation of the ratio of two independent normal variables E(X/Y) when (σ/μ)2 < 1/25, or
CVY = σ/μ < 1/5= 0.2. The central idea behind this and behind our investigations is sim-
ilar, namely to make the denominator variable nonzero, a condition easily met in practical
research.

The findings also suggest that if we want to use the sample mean of ratios Xi/Yi to
estimate μX/μY , then the larger the sample we use, the smaller the CVY we will need to
avoid sample points getting close to zero in the denominator. When CVY is sufficiently
small, there is almost no chance for a value of Y very close to zero being sampled, thus
ensuring the apparent existence of sample moments.

When CVY is very small, Y behaves as Y | |Y | ≥ ε for some ε > 0, thus the moments
of 1/Y can be accurately approximated (Hall [1]; Nahmias and Wang [12]). This leads to
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Table 2.1. Simulation of the ratio distribution: mean and standard deviation for 500 000 pairs of
observations Xi/Yi, where Xi ∼ N(μX ,σX) and Yi ∼ N(μY ,σY ), under varying coefficients of variation
(CV), with μX/μY = 100/100= 1.

CVX
CVY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 5.0

Mean

0.1 1.010 1.046 1.149 1.168 1.738 1.077 3.653 1.199 0.466 −1.810 −0.144 −0.054

0.2 1.011 1.046 1.150 1.167 1.771 0.967 3.485 1.123 0.271 −1.910 −0.143 −0.031

0.3 1.011 1.047 1.152 1.166 1.803 0.857 3.318 1.046 0.076 −2.009 −0.142 −0.007

0.4 1.011 1.047 1.153 1.164 1.835 0.747 3.150 0.970 −0.120 −2.108 −0.140 0.017

0.5 1.011 1.047 1.155 1.163 1.868 0.637 2.982 0.893 −0.315 −2.207 −0.139 0.041

0.6 1.011 1.047 1.156 1.162 1.900 0.527 2.815 0.817 −0.510 −2.307 −0.138 0.065

0.7 1.011 1.047 1.158 1.161 1.932 0.417 2.647 0.740 −0.706 −2.406 −0.137 0.089

0.8 1.011 1.047 1.160 1.159 1.965 0.307 2.479 0.664 −0.901 −2.505 −0.136 0.113

0.9 1.012 1.047 1.161 1.158 1.997 0.197 2.312 0.587 −1.096 −2.605 −0.134 0.137

1.0 1.012 1.047 1.163 1.157 2.029 0.088 2.144 0.511 −1.292 −2.704 −0.133 0.160

2.0 1.013 1.049 1.178 1.145 2.353 −1.012 0.467 −0.255 −3.245 −3.697 −0.121 0.399

5.0 1.017 1.053 1.107 1.225 3.323 −4.311 −4.563 −2.550 −9.105 −6.676 −0.085 1.116

Standard deviation

0.1 0.1 0.3 12.4 49.1 548.6 433.7 1606.9 255.3 1020.0 2145.6 552.5 93.4

0.2 0.2 0.3 12.6 50.7 575.8 439.2 1552.3 244.4 1143.8 2175.4 545.2 84.1

0.3 0.3 0.4 12.9 52.3 604.0 459.6 1498.9 240.1 1269.0 2206.5 538.3 79.9

0.4 0.4 0.5 13.4 54.1 633.1 493.2 1446.8 242.7 1395.1 2238.9 531.9 81.5

0.5 0.5 0.6 13.9 55.9 663.0 537.5 1396.2 252.0 1521.9 2272.6 526.0 88.8

0.6 0.6 0.7 14.4 57.8 693.5 590.1 1347.3 267.3 1649.3 2307.5 520.6 100.4

0.7 0.7 0.8 15.1 59.8 724.6 648.9 1300.1 287.6 1777.1 2343.6 515.7 115.1

0.8 0.8 0.9 15.8 61.8 756.2 712.5 1254.9 311.9 1905.2 2380.8 511.3 131.8

0.9 0.9 1.0 16.5 63.9 788.3 779.6 1212.0 339.5 2033.6 2419.0 507.5 149.8

1.0 1.0 1.1 17.3 66.1 820.8 849.4 1171.6 369.5 2162.3 2458.3 504.2 168.8

2.0 2.0 2.2 26.4 89.3 1160.1 1615.1 965.4 730.3 3455.8 2896.7 503.7 376.8

5.0 5.1 5.4 58.4 167.2 2234.0 4055.0 2305.0 1931.0 7357.4 4490.4 779.2 1029.9

apparent existence of the sample moments of X/Y . From our simulations and the results
of Hall [1], CVY < 0.2 can be used as a condition which determines the usefulness of RA

and RW .

3. Comparison of the two estimators

In this section, we examine the performance of the two estimators of μX/μY , first in the
light of the conclusion of Section 2, then theoretically, and finally using simulation.

3.1. Estimators and coefficient of variation. From the previous section, it is evident that
Xi/Yi is a reasonable estimate of μX/μY provided CVY < 0.2. This observation will provide
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the reason why RW improves as the sample size n increases, while for RA, this is not the
case; hence, RW will be regarded as a superior estimator. We now examine RW and RA

separately and conclude that RW can be used if CVYn
< 0.2, while RA can be adopted if

CVY < 0.2. The error in RA as an estimator of μX/μY does not decrease with sample size,
whereas the error in RW as an estimator of μX/μY decreases to zero with sample size,
hence RW is to be favoured.

3.2. Weighted average ratio estimator. Recall that RW is called the weighted average
estimator, named so because it can be written as

RW = Xn

Yn
=
(

Y1∑
Yi

)(
X1

Y1

)
+

(
Y2∑
Yi

)(
X2

Y2

)
+ ···+

(
Yn∑
Yi

)(
Xn

Yn

)
. (3.1)

Since X ∼ N(μX ,σX) and Y ∼ N(μY ,σY ), it follows that Xn ∼ N(μX ,σX/
√
n) and Yn ∼

N(μY ,σY /
√
n). Hence, CVXn

= (σX/
√
n)/μX and CVYn

= (σY /
√
n)/μY . If μX ,μY �= 0 and

(σY /
√
n)/μY < 0.2, then our simulations demonstrate that RW = Xn/Yn is an acceptable

estimator of μX/μY . Thus, for practical purposes, we recommend that RW is used to esti-
mate μX/μY , since taking a sample of sufficiently large size n will reduce the coefficient of
variation of Yn.

In designing a research experiment or survey, the sample size n required to provide
a reasonably good estimate of μX/μY can be determined in the following way. Take a
sample of size n from X ∼ N(μX ,σX) and Y ∼ N(μY ,σY ). In order for RW = Xn/Yn to
estimate μX/μY , the coefficient of variation for the denominator of RW has to satisfy
CVY = σY /

√
n/μY < 0.2, or n > 25(σ2

Y /μ
2
Y ). Here, CVY , rather than CVY , being small is

the condition that needs to be fulfilled. In practical situations, the population means
and standard deviations of interest are rarely known, but can be estimated by the relevant
sample means and standard deviations. Hence, the above inequality can be approximated

by n > 25(s2
Y /Y

2
n).

In practical terms, the sample size n is always predetermined. Thus, sample results can
be examined to see if they satisfy the requirement sY /

√
n/Yn < 0.2. This will provide a

general guideline for evaluating the suitability of the weighted average method in esti-
mating the ratio of the means of two normal variables.

3.3. Arithmetic average ratio estimator. Estimator RA =
∑n

i=1(Xi/Yi)/n is an equally
weighted average of n ratios Xi/Yi. We can adopt the same methodology used in eval-
uating the weighted average method to assess the suitability of RA. The coefficient of vari-
ation of Yi, however, is σY /μY in this case, instead of σY /

√
n/μY . If σY /μY ≥ 0.2, for exam-

ple, then Xi/Yi is a poor estimator of μX/μY . Taking a larger sample size n is of little use.
Naturally, the sample value of sY /Yn can be used as a diagnostic tool for the evaluation
of the appropriateness of RA. Thus, we recommend the use of RA only if the coefficient
of variation of Yi is sufficiently small, that is, CVY = sY /Yn < 0.2. The simulation results,
which follow, support our recommendation.
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3.4. Theoretical considerations. Here we prove thatRW does converge to μX/μY in prob-

ability, as the sample size increases. Recall that Xn
P−→ X , convergence in probability, if for

every ε > 0, P(|Xn−X| ≥ ε)→ 0 as n→∞. We now present the following relevant results.

Lemma 3.1 (Lukacs [9, Corollary to Theorem 2.3.3]). Let g(x, y) be a continuous function

of the real variables x and y. If Xn
P−→ X and Yn

P−→ Y , then g(Xn,Yn)
P−→ g(X ,Y) as n→∞.

Theorem 3.2. Let Xn and Yn be means of samples of size n, drawn independently from

normal populations. Then Xn/Yn
P−→ μX/μY .

Proof. From the weak law of large numbers, Xn
P−→ μX and Yn

P−→ μY . Take g(x, y) = x/y,
Xn = Xn, Yn = Yn, X = μX , and Y = μY in the above lemma and the theorem follows
immediately. �

It is the behaviour of X/Y for Y is near zero that permits us only to conclude that RW

converges to μX/μY in probability. Ensuring that μY �= 0 and CVY < 0.2 in practice allows
us to avoid estimation difficulties, when using RW .

3.5. Simulation study of the two estimators. Random samples were generated, using
software SAS 8.2, from two independent normal distributions, N(μX ,σX) and N(μY ,σY ),
to evaluate the relative merits of the two ratio estimators. The coefficients of variation of
the two populations were assumed equal, or σX/μX = σY /μY = CV. A preliminary sim-
ulation was conducted to compare the distributions of the two estimators graphically.
Systematic simulations were then conducted for a more in-depth evaluation of the dis-
tributions using parameter values typically found in agricultural studies. Mean and stan-
dard deviation were examined for each of the two estimators.

3.6. A preliminary simulation. The distributions of RA and RW were simulated from
two independent normal populations for the particular case, where μX = σX = 200 and
μY = σY = 100, hence μX/μY = 2 and there is moderately large population variation
(CVX = CVY = 1). Two hundred samples, each of size n = 300, were drawn from each
of the numerator and denominator populations. The distributions of RA and RW are
graphically compared in Figure 3.1.

The central tendency is different between the two estimators, with the mean of the
RW estimates being almost the same as the true ratio of two, and that of the RA esti-
mates further away. Furthermore, the variance of the former is much smaller than that
of the latter. This indicates that RA gives some unusually large or extraordinarily small
values while RW is concentrated near the true ratio. In this fairly typical example, it is
evident that the weighted average is better at estimating the ratio of the two popula-
tion means. The reason for this contrast is explained as follows. For ratio estimator RA,
since X ∼ N(200,200) and Y ∼ N(100,100), CVY = 100/100= 1 > 0.2. Thus the RA esti-
mates are meaningless, since the values of RA = (

∑300
i=1Xi/Yi)/300 are extremely variable.

For ratio estimator RW , in contrast, X300 ∼ N(200,200/
√

300), Y 300 ∼ N(100,100/
√

300),
thus CVY 300

= 100/
√

300= 0.0577 < 0.2. Hence, the values of RW = X300/Y 300 are close to
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Figure 3.1. A comparison of the distributions of RA and RW using 200 ratio estimates. Note the dif-
ferent scales used in (a) and (b), where the mean and standard deviation over the 200 estimates are
1.430 and 18.465 for RA and 2.015 and 0.152 for RW , respectively.

Table 3.1. Impact of sample size on the mean and standard deviation of RA and RW .

Sample size 1 4 25 100 400

Mean of RA 3.135 0.669 0.744 0.540 0.478

Standard deviation of RA 32.968 19.407 7.820 7.328 6.216

Mean of RW 3.135 1.042 1.038 1.014 1.001

Standard deviation of RW 32.968 1.591 0.302 0.147 0.073

CVY 1 0.5 0.2 0.1 0.05

μX/μY = 2, leading to useful RW values. In conclusion, RW here is a better estimator of
μX/μY than RA.

3.7. Comparison as sample size changes, with coefficient of variation fixed. Here we
illustrate the effect of increasing sample size on the two estimators, when CVY > 0.2. We
use X and Y independently drawn from two N(100,100) distributions, whence CVX =
CVY = 1; 200 random samples of 1, 4, 25, 100, and 400 pairs of observations (xi, yi)
were generated. Table 3.1 summarised the distributions of RA and RW for each sample
size, where the means and standard deviations are based on 200 samples in each cell of
the table and RA = RW when n= 1. Results show that the weighted average settles down
to the true ratio of one as the sample size increases. The arithmetic average RA always
fails to estimate μX/μY , whereas with increasing sample size, CVY falls under 0.2 and the
weighted average RW becomes a useful estimator of μX/μY .

Note that RA, even as the sample size increases, shows no tendency to approach the
true ratio of one. In fact, the mean of RA took arbitrary values as sample size increased.
On the other hand, the distribution of RW centres on the true ratio as the sample size
increases. In particular, for sample sizes of 25 or more (whence CVY < 0.2), RW performs
well.
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In summary, RW unlike RA, improves as an estimator of μX/μY under moderate in-
creases in sample size. The major difference between RA and RW is mainly because the
latter has a better theoretical basis as an estimator for μX/μY . The advantage of RW over
RA in reducing the estimation bias, however, depends on the sample size.

4. Application of the two estimators in rice trials

The grain yield data of the rice breeding MET are used in an attempt to evaluate the
relative merits of the two estimators of the ratio of independent normal variables in agri-
cultural research. Detailed results of the analyses using both estimators were listed in
Table 1.1. An examination of the correlations between the numerator (X) and denomi-
nator (Y) variables shows that there was no significant correlation between the yield of
each of the three test varieties (X) and that of the control variety (Y). Hence, the follow-
ing analysis assuming independent normal variables is justified. (Under the assumption
of (X ,Y) having a bivariate normal distribution, corr (X ,Y)= 0 implies that X and Y are
independent.)

4.1. Estimation of the pooled percent yield improvement over control. Here the ratio
of averages RW represents the expected performance of the test variety across the whole
region, while the average ratio RA could be regarded as an indicator of what might be
expected at any particular location. The choice of the two estimators depends predomi-
nantly on the aims of the research, rather than purely on their statistical properties. Since
the emphasis was on testing for broad adaptation of the crop varieties, or to summarise
information on the overall performance of each cultivar, relative to the control, over the
whole range of environments (region), RW is thus a naturally better option than RA. As
far as specific adaptation is concerned, the RA may have its merit in that it has a better
relationship with the expected performance of the variety at a particular location. This,
however, is out of the scope of the present study.

The results show that there is a degree of variation in the difference between RA and
RW for the three test varieties, ranging from 1.4% to 3.3% (Table 1.1). Estimators RA and
RW demonstrate greater difference for the two test varieties 850011 and Yan 501 than for
Chang 90–40. From the plant breeding point of view, there is reason (to be discussed in
the next subsection) to believe that differences of such magnitude between RA and RW for
rice varieties are sufficiently large to change the conclusions of the plant breeding METs.

It is regulated by the Jilin Provincial Crop Variety Evaluation Committee [3] that a
new variety of a self-pollinated crop species such as rice has to exceed the control, in
grain yield, by at least 5% over three consecutive years before it can be considered for re-
lease and commercialisation. The regulation imposed by the committee is most stringent,
and it is usually difficult for a test variety to increase grain yield by an extra 1% against the
control variety. Thus a 1% difference between the two ways of estimating the pooled ratio
of the two rice varieties under comparison can make a real difference in deciding whether
a particular variety should be released. Therefore, based on the observed difference be-
tween RA and RW for the three varieties, it is evident that the two ways of estimating
the ratio of normal variables can influence the decision of plant breeding in terms of
recommendation for release and commercialisation. The findings of this paper indicate
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that the weighted average ratio estimator RW should be used in practical agricultural re-
search.

4.2. Application of the diagnostic approach in rice trials. The difference between these
two estimators ranges from 1.4% to 3.3%, depending on the coefficient of variation for
the denominator variable, the grain yield of the control. When the CV of the control is
larger than 0.2, as in the case for 850011 and Yan 501, the two estimators differ by a rea-
sonably large amount, 2.6% and 3.3%, respectively. The RA is unreliable in this case, while
RW should be used to demonstrate the yield potential of the two varieties relative to the
control. In comparison, in the case of Chang 90–40, the CV of the control is only 0.174
(below 0.2) and hence the difference between RW and RA is relatively much smaller. Thus,
the difference between RW and RA is dependent on the CV of the grain yields for the con-
trol (denominator variable) over the range of environments in which the test variety is
being compared with the control. Furthermore, CVY , the CV of the denominator of esti-
mator RW , is always much smaller than CVY , the CV of the denominator of estimator RA,
for each of the three comparisons between the test varieties and the control (Table 1.1).
This clearly demonstrates the advantage of using the weighted average method in these
situations.

Based on the RW estimates of all test rice varieties, only 850011 exceeded the control in
grain yield by more than 5% in 1994. By standards commonly adopted in the province, a
particular variety will qualify for possible release only if it has outperformed (exceeded)
the control in grain yield by 5% or more for all three years of the Provincial Regional
Test. Thus, if 850011 continued to outperform the control by 5% or more in grain yield
for another two years in the Regional Test, it would be recommended for release, as long
as its other agronomic traits have reached the relevant levels of standards. The other two
test varieties (Chang 90–40 and Yan 501) have both failed to exceed the control in grain
yield by the threshold of 5%. Hence, both varieties were regarded as having no potential
for future release from this round of regional trials.

Further studies will focus on a comparison of weighted and arithmetic average es-
timators under assumption of dependence. Another potential estimator of μX/μY , the
geometric mean of the X/Y ratios, may prove useful under this circumstance, since it
may possess some potentially valuable attributes. A comprehensive investigation of these
estimators is thus justified.

5. Conclusions

The mean of the ratio X/Y of two independent normal variables does not exist. The mean
appears to exist, however, and is close to μX/μY , if we avoid sampling points for which
|Y | ≤ ε, with ε being a small positive quantity. This favourable situation is approximated
in practice when the coefficient of variation of the denominator variable is sufficiently
small (less than 0.2). In such circumstances, the ratio of two independent variables can
be used to estimate μX/μY .

The coefficient of variation of the denominator should thus be considered when es-
timating a ratio of independent normal variables; the weighted average method auto-
matically reduces denominator coefficient of variation as sample size increases and so is



C. G. Qiao et al. 13

better than the arithmetic average method. We recommend the use of the weighted aver-
age approach for estimating the true ratio from a series of ratio estimates in agricultural
research. The arithmetic average approach, however, has to be adopted when only the
individual ratios are recorded.

Using the weighted average estimates of all test rice varieties in the motivation exam-
ple, we concluded that only rice variety 850011 exceeded the control in grain yield by
more than 5% in 1994. If 850011 continued to outperform the control by 5% or more in
grain yield for another two years in the three-year Provincial Regional Test, it would be
recommended for release, as long as its other agronomic traits have reached the relevant
levels of standards.

The empirically determined critical coefficient of variation value (0.2) for the denom-
inator of the ratio of independent normal variables can be used to evaluate the suitability
of both estimators. A practical diagnostic formula has been proposed to assess the relia-
bility of the weighted average ratio estimator, namely that the coefficient of variation for
the denominator mean Yn is smaller than 0.2. The arithmetic average ratio estimator is
of less use and should be employed only when the coefficient of variation for the denom-
inator is smaller than 0.2. The development of a satisfactory estimator of the ratio when
X and Y are dependent remains an area for future research.
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One of the most controversial issues in the aftermath of the Asian financial crisis has
been the appropriate response of monetary policy to a sharp decline in the value of some
currencies. In this paper, we empirically examine the effects on Asian exchange rates of
sharply higher interest rates during the Asian financial crisis. Taking account of the cur-
rency contagion effect, our results indicate that sharply higher interest rates helped to
support the exchange rates of South Korea, the Philippines, and Thailand. For Malaysia,
no significant causal relation is found from the rate of interest to exchange rates, as the
authorities in Malaysia did not actively adopt a high interest rate policy to defend the
currency.

Copyright © 2006 Tim Brailsford et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Many countries at the centre of the Asian financial crisis adopted a high interest rate
policy in an attempt to defend their currencies. This action is consistent with the tradi-
tional view in which tight monetary policy is believed to be necessary for supporting a
currency, as higher interest rates increase the return for investing in a country and hence
reduce capital outflows, and discourage speculative attacks on the currency concerned.

However, many economists have argued a revisionist view. They believe that when
balance of payment crises occur simultaneously with financial crises, as is the case of the
Asian financial crisis, a tightening of monetary policy may be counter productive. This is
because, they argue, sharply higher interest rates will adversely affect economic activity
and financial market confidence. Consequently, such a policy response will lead to further
currency depreciation such as Feldstein [6].

Empirical testing of this issue has so far yielded mixed results. Most of the previous
studies are not supportive of the use of sharply higher interest rates to defend the currency
during financial crises. However, these studies also do not produce findings that support
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the revisionist view. Many studies fail to identify any significant relationship between
interest and exchange rates in the crisis-affected countries.

Recently, Dekle et al. [4] have provided results that empirically support the traditional
view. For South Korea, Malaysia, and Thailand, their results indicate changes in inter-
est rates “Granger cause” movements in their respective exchange rates during the Asian
financial crisis. Dekle et al. adopt the approach introduced by Hsiao [10] in which a parsi-
monious vector autoregressive (VAR) specification is determined that allows the presence
of zero and nonzero patterned coefficients. The presence of zero and nonzero patterned
coefficients appears to have significantly contributed to their findings.

Although Hsiao’s approach allows the presence of zero and nonzero patterned coeffi-
cients in a VAR system, the model specification is determined by applying an order selec-
tion algorithm to each single equation separately, rather than to the system as a whole.
As demonstrated by Penm and Terrell [15], the so-determined specification can lead to
misleading conclusions on the presence of Granger causality in the system. To overcome
this shortfall, Penm and Terrell [15] provide a robust algorithm to select the optimal VAR
specification with zero and nonzero patterned coefficients (if the underlying system has
such a structure). Brailsford et al. [1] develop an adjustment to this algorithm, which en-
sures that the resultant variance-covariance matrix of the white noise disturbance process
is symmetric for the determined VAR.

In this paper, we reexamine the existence of Granger causality from interest to ex-
change rates for four Asian countries that were at the centre of the Asian financial crisis,
namely Thailand, Malaysia, the Philippines, and South Korea. We apply the algorithm
developed by Brailsford et al. [1] to daily observations during the crisis period. An inno-
vative approach that has been adopted in this study is that the relationship is examined
allowing for the presence of contagion effects from movements in other crisis-affected
Asian currencies. The presence of contagion effects during the Asian financial crisis has
been well documented (e.g., Nagayasu [13]). Given the strong contagion effect during the
Asian financial crisis, misleading results can be obtained if such an effect is not accounted
for in the model.

This paper is organised as follows. In Section 2, brief reviews of the previous studies
and interest and exchange rate movements during the Asian financial crisis are presented.
Due to the nature of this study, the literature review is limited to those that focus on the
testing of Granger causality. In Section 3, we discuss the VAR specifications determined
by the procedure developed by Brailsford et al. [1]. We also employ the method presented
by Geweke [7] to measure the linear dependence in the systems. Out-of-sample forecast-
ing is then undertaken using the determined VAR models. These results are presented in
Section 4, and a summary is given in Section 5.

2. Previous empirical evidence

The nature of the interest and exchange rate relationships in the Asian financial crisis has
been subjected to a significant debate among international organisations and researchers.
For example, the International Monetary Fund argues that sharp rises in interest rates
are helpful in stabilising Asian exchange rates (IMF [11]). On the other hand, the World
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Bank believes that significantly higher interest rates destabilised the Asian currencies by
markedly increasing the risks of business bankruptcy and economic contraction (Capo-
rale et al. [2]).

Numerous studies have employed Granger causality testing to investigate whether
sharply higher interest rates supported or weakened Asian exchange rates during the
Asian financial crisis. These studies present mixed results about the effectiveness of us-
ing sharply higher interest rates to support Asian exchange rates. Based on the full-order
VAR techniques, Goldfajn and Baig [8] estimate the relationship between interest and ex-
change rate data for a number of Asian countries and find little evidence supporting the
use of higher interest rates. Similarly, Kaminsky and Schmukler [12] estimate full-order
VAR models using daily nominal interest and exchange rates to calculate the correspond-
ing impulse response functions. Their results also indicate little interaction between in-
terest and exchange rates in either direction. Using full-order VARs in levels, Choi and
Park [3] reexamine this issue. They include spot and forward exchange rates and interest
rate differentials in their study and conclude that no causal relationship from interest rate
differentials to spot exchange rates exists for the countries they investigate.

Attempts have also been made to examine this issue using error correction modelling
techniques. For example, Gould and Kamin [9] estimate, in the VECM framework, the
relationship between the real exchange rate and domestic interest rates for a number of
Asian countries and Mexico. They also include international credit spreads and domestic
stock prices, as proxies for creditworthiness and country specific risk, in order to improve
the estimation. However, changes in domestic interest rates are still found to be insignif-
icant in influencing movements in the exchange rates.

Notwithstanding the above results, Park et al. [14] use daily observations to test for
causal relations between interest and exchange rates in South Korea. They report evidence
of Granger causality from higher interest rates to exchange rate movements during the
crisis period. As discussed above, Dekle et al. [4] report similar results. Using weekly
observations, higher interest rates are found in Granger cause movements in the exchange
rates of a number of Asian countries, including South Korea, Thailand, and Malaysia.

Interest and exchange rate movements during the crisis. The Asian financial crisis started in
Thailand in mid-1997, with the Thai baht under significant pressure due to speculative
currency attacks. The initial responses from the Thai government were intervention in
the foreign exchange market and introduction of capital controls. Following a significant
worsening of the foreign reserve position, the baht was floated in early July 1997. As these
measures failed to stem the sharp decline in the value of the baht, the Thai government
sought assistance from the IMF in early August 1997. After an agreement was reached
with the IMF, interest rates in Thailand were raised sharply and kept relatively high for
the remainder of 1997 and early 1998. Toward mid-1998, interest rates were gradually
reduced, following a gradual return of stability in the currency market.

Following the speculative attacks on Thailand’s currency, Malaysia’s ringgit and the
Philippines’peso were also under significant downward pressure as a result of the conta-
gion effect. In Malaysia, the initial response from the government was a sharp increase in
the official interest rate. However, this increase lasted only for a short while before inter-
est rates were reduced to the preshock level. Because of a relatively sound foreign reserve
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position, Malaysia did not seek assistance from the IMF and interest rates in that country
remained relatively stable.

At the beginning of the Asian financial crisis, the overnight interest rate differential
between the Philippines and the United States was the widest in the region. Significant
downward pressure on the peso emerged in August 1997. Domestic interest rates in the
Philippines became unstable in the second half of 1997. For example, in early October
1997, the overnight interbank call rate increased from around 12 per cent to 102 per
cent within a few days, before falling back to the preshock level in late October. In early
1998, the peso exhibited some stability against the US dollar. Consequently, movements
in domestic interest rates became less volatile.

Korea’s currency, the won, depreciated gradually between July and September 1997,
partly reflecting the contagion effect of the currency instability in South-East Asia. The
overnight interest rate differential with the United States also gradually widened over this
period. Between late October and early December 1997, a crisis of debt financing in Ko-
rea emerged, leading to significant downward pressure on the Korean won. In response,
domestic interest rates were raised significantly. The Korean government also sought as-
sistance from the IMF in early December 1997.

In the first few months of 1998, the Korean exchange rate was volatile and so was
the overnight call rate. A solution emerged, after an agreement was reached with foreign
banks to roll over most of Korea’s short-term debts, with stability gradually returning to
the foreign exchange market.

3. Empirical test results

In this section, we present the empirical results of testing for Granger causality between
interest and exchange rates for the above-mentioned four Asian countries. Since the de-
bate has focused on the effectiveness of using higher interest rates to defend a sharp de-
cline in currency, we have therefore concentrated this testing over the Asian financial
crisis period (defined as from 1 July 1997 to 1 July 1998).

For ease of comparison with previous studies, we have adopted a similar model to
Dekle et al. [4], which includes the variables, daily overnight interest rate differential with
the United States, exchange rate against the US dollar, and producer price differential
with the United States (approximated by the monthly index movements). To capture the
currency contagion effect during the crisis period, we also include the exchange rate of
the Malaysian ringgit against the US dollar in the models for Thailand, the Philippines,
and South Korea. In the case of Malaysia, the Thai baht against the US dollar is used as a
proxy.

In the calculation of interest rate differentials, we use the overnight interbank rates
for the Asian countries and the daily repo rate for the United States. Following Dekle et
al. [4], we employ observations over the whole crisis period. Data of interest and exchange
rates were obtained from Datastream. Producer price indexes were from International
Financial Statistics.

To undertake this testing, a pretest strategy is followed by first examining for the pres-
ence of unit roots and also, where applicable, for cointegration in the models. Based on
the ADF test (Dickey and Fuller [5]), all the exchange rates over the crisis period can be
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characterised as integrated of order 1. While the series of overnight interest rate differen-
tial for South Korea is found integrated of order 1, those for Thailand, Malaysia, and the
Philippines are stationary. The producer price differentials are also found to be station-
ary. The hypothesis of cointegration is rejected for each individual system using the Stock
and Watson [16] test.

The zero and nonzero patterned VAR specifications are determined using the algo-
rithm developed by Brailsford et al. [1] (together with the Schwarz criterion). No discus-
sion is given on this procedure for the reason of brevity. Interested readers are referred to
Brailsford et al. [1] and Penm and Terrell [15] for details.

The estimation results based on the Zellner [17] SUR are presented in Table 3.1. We
also apply the Brailsford et al. procedure to the estimated residuals to ensure that they can
be characterised as white noise.

As demonstrated by the determined VAR specifications (see Table 3.1), changes in
overnight interest rate differentials are found to have affected the exchange rates of Thai-
land, the Philippines, and South Korea during the Asian financial crisis. For Malaysia,
however, the determined zero and nonzero patterned VAR specification indicates that
the variable, overnight interest rate differential, is independent of the rest of the system.
Consequently, we omit this variable from the system and present the estimation results
for Malaysia without this variable.

This finding for Malaysia suggests that over the Asian financial crisis period, inter-
est rate movements in that country do not significantly influence movements in the
Malaysian ringgit against the US dollar. This is in contrast to the finding of Dekle et
al. [4], but consistent with a priori expectations, as the Malaysian government did not
actively adopt a high interest rate policy to defend its currency during the Asian financial
crisis.

As mentioned above, we also include the exchange rate of the Thai baht against the
US dollar in the system for Malaysia, as a proxy for the contagion effect. As presented in
Table 3.1, the one-period lagged Thai exchange rate variable is selected to explain move-
ments in the Malaysian ringgit. The estimated relationship is statistically significant at
the 5 per cent level. The coefficient estimate indicates that a depreciation of the Thai baht
against the US dollar Granger causes a depreciation of the Malaysian ringgit against the
US dollar during the crisis period.

In the case of Thailand, the one-period lagged differential in overnight interest rates
is selected as an explanatory variable for the exchange rate. Although the estimated co-
efficient has a sign consistent with a priori expectations, the associated t-statistics is not
significant at the 5 per cent level, casting doubts on the test results. In an attempt to im-
prove the estimation, we also first difference the variable, interest rate differential, and
repeat the selection procedure. The one-period lagged interest rate differential is again
selected in the exchange rate equation, but the coefficient estimate remains insignificant
at the 5 per cent level. Consequently, we conclude that, for Thailand, only weak evidence
is obtained for the presence of Granger causality from domestic interest rate movements
to the currency.

The one-period lagged Malaysian ringgit is also selected as an explanatory variable for
movements in the Thai baht, with a t-statistics significant at the 5 per cent level. The
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Table 3.1. VAR estimates. X1 denotes units of domestic currency per unit of the US dollar, X2 de-
notes differential between domestic and US overnight interest rates, X3 denotes differential between
domestic and US producer price indexes, and X4 denotes another regional exchange rate and d first
difference. The zero and nonzero patterned model specifications are determined using the Schwarz
criterion.

Thailand

d lnX1
t = 0.0150

(1.30)
+ 0.2118

(3.13)
d lnX1

t−1− 0.1401
(2.63)

d lnX1
t−2

−0.0053
(1.50)

lnX2
t−1 + 0.1499

(2.48)
d lnX4

t−1,

lnX2
t = 0.3969

(4.17)
+ 0.6956

(11.31)
lnX2

t−1 + 0.1530
(2.50)

lnX2
t−2,

X3
t = 0.0376

(0.95)
+ 0.9720

(64.56)
X3
t−1,

d lnX4
t = 0.0014

(1.24)
+ 0.1578

(2.06)
d lnX1

t−1 + 0.1008
(1.45)

d lnX4
t−1

Malaysia

d lnX1
t = 0.0014

(1.22)
+ 0.1049

(1.53)
d lnX1

t−1 + 0.1447
(1.98)

d lnX4
t−1,

X3
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(1.61)
+ 0.9553
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X3
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(1.01)
+ 0.1398

(2.35)
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t−1 + 0.1834
(2.87)

d lnX4
t−1

The Philippines

d lnX1
t = 0.0061

(1.18)
− 0.1441

(2.65)
d lnX1

t−2 + 0.0075
(2.41)

d lnX1
t−4

−0.0240
(4.24)
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t−6 + 0.0143

(3.02)
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lnX2
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X3
t = 0.0506
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(521.97)
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t = 0.0016

(1.38)
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South Korea

d lnX1
t = 0.0008

(0.45)
+ 0.3298

(5.77)
d lnX1

t−1− 0.0690
(2.32)

d lnX2
t−1

+0.0549
(1.86)

d lnX2
t−3 + 0.1782

(1.95)
d lnX4

t−1,

d lnX2
t =−0.0033

(−0.87)
+ 0.1963

(1.72)
d lnX1

t−2− 0.1824
(3.07)

d lnX2
t−3

+0.0255
(3.92)

X3
t−2− 0.0215

(3.30)
X3
t−3,

X3
t = 0.0211

(0.59)
+ 3.6846

(3.48)
d lnX1

t−3− 1.6718
(3.02)
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t−1 + 0.9782

(77.84)
X3
t−1,

d lnX4
t = 0.0013

(1.17)
+ 0.1467

(3.93)
d lnX1

t−1 + 0.1563
(2.61)

d lnX4
t−1

sign of this coefficient estimate is consistent with a priori expectations, reinforcing the
significance of currency contagion during the Asian financial crisis.

For the Philippines, the estimated relationship between interest rate differential and
movements in the exchange rate appears dynamic. In the equation of exchange rate, the
six-period lagged interest rate differential is selected with a negative coefficient, and the
seven-period lagged interest rate differential is selected with a positive coefficient. Based
on the coefficient estimates, the net effect of a widening of interest rate differential in
the Philippines causes an appreciation of the peso against the US dollar. In contrast to
the results for Thailand, these coefficient estimates are statistically significant at the 5 per
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cent level, which give strong support for the presence of Granger causality from interest
rate movements to the exchange rate. In addition to the effects of interest rate changes,
the lagged movements in the Malaysian ringgit significantly influence the peso during the
crisis.

For South Korea, the one-period lagged interest rate differential is selected in the equa-
tion of exchange rate with a negative coefficient, and the three-period lagged interest rate
differential is selected with a positive coefficient. The estimation results indicate that dur-
ing the Asian financial crisis, higher interest rates adopted by the Korean government
help to support the won. The variable, one-period lagged movements in the Malaysian
ringgit, is also selected as an explanatory variable for movements in the Korean won. The
coefficient estimate indicates that a depreciation of the Malaysian ringgit also results in a
decline in the value of the won against the US dollar over the crisis period.

4. Measurement of linear dependence

To further understand the effects of interest rate movements on the Asian currencies over
the crisis period, we measure the linear dependence in the above VAR systems using the
Geweke [7] approach. Two cases of interest are presented in Table 4.1. Testing at the 5
per cent level, 95 per cent confidence intervals are shown parenthetically. In the first case,
the linear dependence on the interest rate differential is calculated. In the second case,
the linear dependence on the contagion effect is measured. Because of the determined
specifications, these measures effectively indicate the linear dependence of the exchange
rate on changes in interest rate differential and the contagion effect.

In Table 4.1, the measures indicate that the interest rate effects varied among the Asian
exchange rates. In the case of the Philippines, the linear dependence of its peso on interest
rate differential is stronger than that for Thailand and South Korea. This effect is also
higher than the impact on the currency of the contagion effect.

However, in the cases of Thailand and South Korea, the linear dependence of their ex-
change rates on changes in interest rate differentials is less significant than the contagion
effects. These results indicate that, for these two countries, the exchange rate movements
during the Asian financial crisis are more significantly influenced by currency contagion.
Despite sharply higher interest rates imposed by the authorities, such a policy response is
unable to prevent their currencies from declining against the US dollar.

An important question raised by these results is the appropriateness of using a high
interest rate policy to defend the currency, especially in the presence of significant cur-
rency contagion. There are economic consequences associated with sharply higher inter-
est rates. For example, sharply higher interest rates, if sustained, will lead to a marked
slowdown in economic activity.

To further demonstrate the impact of changes in interest rate differentials and currency
contagion on movements in the Asian exchange rates during the crisis period, we also
examine the forecasting performance of our models. To undertake this exercise, we divide
the sample into two periods. The first period consists of data from 1 July 1997 to 18 June
1998 and the second period consists of data from 19 June to 1 July 1998. We use data from
the first period to reestimate the VAR specification for each country and then produce the
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Table 4.1. Measurement of linear dependence. Confidence intervals in brackets. Nonzero measure-
ment indicates the existence of Granger causality.

Xt =
[
x1
t x3

t x4
t

]
Yt =

[
x2
t

]
Xt =

[
x1
t x2

t x3
t

]
Yt =

[
x4
t

]
Thailand 0.007 [−0.002 0.015] 0.032 [0.002 0.653]

Malaysia — Not available 0.025 [0.001 0.580]

The Philippines 0.176 [0.002 0.345] 0.059 [0.002 0.131]

South Korea 0.013 [0.001 0.035] 0.045 [0.005 0.094]

Table 4.2. Forecasting performance.

AR
VAR including interest rate
and currency contagion

Improvement

Thailand 1.53% 1.49% 2.85%

Malaysia 2.44% 2.33% 4.52%

The Philippines 1.43% 0.75% 47.3%

South Korea 3.18% 2.46% 22.5%

forecasts for the second period. To examine the forecasting performance, we calculate the
root mean squared error (RMSE) for the respective exchange rate over the forecast period,
expressed as the percentage of the sample mean over the forecast period (see Table 4.2).

For the purpose of comparison, we also construct a set of univariate autoregressive
(AR) systems for the four Asian exchange rates using the Brailsford et al. procedure. Sim-
ilarly, these AR systems are first estimated using observations from the first period. Fore-
casts for the second period are then produced and the RMSEs are calculated.

Table 4.2 presents the improvement in forecasting performance of our models. The
results indicate that interest rate movements and currency contagion are two important
factors in the determination of Asian exchange rates during the crisis period. Consistent
with the estimation results presented in Table 3.1, the improvement in forecasting per-
formance is particularly significant for the Philippines and South Korea.

5. Summary

In this paper, we have reexamined the effects on Asian exchange rates of higher interest
rates during the Asian financial crisis. In contrast to most previous studies, we find that
higher interest rates provided support for many Asian exchange rates during the crisis.
This finding is consistent with the traditional view about this relationship. We find no
evidence to support the revisionist view, in which sharply higher interest rates are argued
to lead to a weaker exchange rate during financial crises.

Currency contagion is found to be significant in the Asian financial crisis. In the cases
of Thailand and South Korea, the contagion effects on their currencies are deemed to
be more significant than the impacts of sharply higher interest rates. This finding raises
questions about the appropriateness of using a high interest rate policy to defend an ex-
change rate, especially in the presence of contagion.
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Pairs trading is a comparative-value form of statistical arbitrage designed to exploit tem-
porary random departures from equilibrium pricing between two shares. However, the
strategy is not riskless. Market events as well as poor statistical modeling and parameter
estimation may all erode potential profits. Since conventional loss limiting trading strate-
gies are costly, a preferable situation is to integrate loss limitation within the statistical
modeling itself. This paper uses cointegration principles to develop a procedure that em-
beds a minimum profit condition within a pairs trading strategy. We derive the necessary
conditions for such a procedure and then use them to define and implement a five-step
procedure for identifying eligible trades. The statistical validity of the procedure is verified
through simulation data. Practicality is tested through actual data. The results show that,
at reasonable minimum profit levels, the protocol does not greatly reduce trade numbers
or absolute profits relative to an unprotected trading strategy.

Copyright © 2006 Yan-Xia Lin et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Pairs trading is a statistical arbitrage strategy with a long history of modest but persistent
profits on Wall St (Peskin and Boudreau [10]; Gatev et al. [3]). The strategy identifies
pairs of shares whose prices are driven by the same economic forces, then trades on any
temporary deviations of those two-share prices from their long-run average relationship
(Gillespie and Ulph [4]). The arbitrage or risk-free nature of the strategy arises from the
opening of opposing positions for each trade—shorting the over-valued share and buying
the under-valued share.

The simple statistical techniques used for share pairs selection and trading decisions
make pairs trading an appealing arbitrage strategy. But simplicity comes at a cost. Corre-
lation, covariance, and regression analysis of share price associations provide an impre-
cise, simplistic statistical definition of a long-run equilibrium relationship between share
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prices. Moreover, they do not necessarily imply mean reversion to a long-run equilibrium
price spread.

This paper assumes that such deficiencies of the statistical techniques are best dealt
with by systematic improvement within the underlying statistical modeling itself, rather
than left to costly hedging and conditional order techniques. We use cointegration theory
to provide a statistically precise foundation for the decisions involved in pairs trading and
then use these principles to derive a loss limiting rule that ensures that each eligible trade
will return some preset minimum profit, subject, of course, to the previously mentioned
endemic market risks which are always present.

In this paper we use the principle of cointegrated series to derive a precise, dynamic
definition of long-run equilibrium price spread that inherently implies mean reversion in
component series. We then use cointegration principles to establish a protocol for ensur-
ing that any selected trade will satisfy preset minimum profit conditions.

The paper extends the work on cointegration in pairs trading by Gatev et al. [3], Gille-
spie and Ulph [4], and Alexander and Dimitriu [1] to integrate a minimum nominal
profit requirement into other trading strategy decisions such as the choices about share
pairs, dollar weighting of long/short positions, trade opening and closing criteria and to-
tal dollar investment. We first use cointegration coefficient weighting (CCW) principles
to derive the necessary conditions that will ensure that a trade delivers a preset mini-
mum nominal profit per trade (MNPPT). These conditions are then incorporated into a
practical, five step procedure for achieving any given MNPPT.

The analysis proceeds in six sections. Section 2 summarizes pairs trading fundamen-
tals and identifies the main parameter estimates required for a pairs trading strategy.
Section 3 introduces the concept of cointegration-based dollar weighting of long/short
positions as the theoretical foundation for deriving the necessary conditions of a preset
minimum profit per trade. A five step procedure for putting the necessary conditions into
practice is presented at the end of Section 3. Section 4 uses the simulated data series to in-
vestigate the procedure’s sensitivity to alternative opening trade hurdle values under two
trading conditions: un-constrained and constrained total investment dollars. Actual daily
share price data is used in Section 5 to examine the effect of investment dollar constraints
on the number of valid trades for six preset minimum profit levels, with decreasing open
condition values at each level. Section 6 discusses the risk minimization implications of
our results in the context of arbitrage trading strategies.

The data simulation exercise in Section 4 indicates that while all trades can be im-
munized in a theoretical sense, the crucial factor that determines the number of eligible
trades is the allowable investment dollar maximum, since some trades require large out-
lays. However, real data are needed to test the practical limitations of the capital require-
ment.

The practicality of imposing minimum profit conditions is tested on daily closing price
data for two Australian Stock Exchange quoted bank shares—the Australia New Zealand
Bank (ANZ) and the Adelaide Bank (ADB) over the period January 2, 2001 to August 30,
2002. The results show that trading strategy profit potential is not unduly constrained by
adding a reasonable minimum profit condition to protect against losses.
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2. Pairs trading and statistical arbitrage

Pairs trading relies on the principle of equilibrium pricing for near-equivalent shares. In
efficient markets, capital asset pricing model-based valuation theory and the law of one
price require price equality for equivalent financial assets over time (Reilly and Brown
[11]; Sharpe et al. [12]). The price spreads of near-equivalent assets should also conform
to a long-term stable equilibrium over time. Hendry and Juselius [6] use this principle
to show that short-term deviations from these equivalent pricing conditions may create
opportunities for arbitrage profits depending upon the size and duration of the price
shock.

When a sufficiently large deviation of price spread from the long-run norm is iden-
tified, a trade is opened by simultaneously buying (go long) the under-valued share and
selling (short) the over-valued share. The trade is closed out when prices return to their
equilibrium price spread levels by selling the long position and off-setting the short po-
sition. Net trading profit sums the profits from the long and short positions, calculated
as the difference between the opening and closing prices (net of trading costs less interest
on short sale receipts). See Gillespie and Ulph [4] and L’Habitant [8].

The “risk free” characteristic of pairs trading arises from the simultaneous long-short
(buy-sell) opening market positions. The opposing positions ideally immunize trading
outcomes against systematic market-wide movements in prices that may work against
uncovered positions (see Jacobs and Levy [7]).

But arbitrage trading of the “convergence trade” type is rarely risk-less. Market events,
persistent pricing inefficiencies or structural price changes may invalidate statistical pric-
ing models, confound future price expectations or require parameter reestimation. Price
spreads after position opening may escalate rather than revert, or the equilibrium posi-
tion may shift. The inherent nature of losses were dramatically demonstrated by the un-
raveling of long-term capital management’s highly leveraged long/short sovereign bond
positions in the late 90s (Lowenstein [9]).

Pairs trading is also exposed to risk from the inherent limitations in the statistical tech-
niques used to identify and extract profit potential. Traditional techniques may appeal in
their simplicity but suffer severe limitations as a foundation for trading decision choices
that determine arbitrage profit potential and extraction.

The profit reduction consequences of these risks may be offset by loss limitation strate-
gies including stop loss and time limit orders and derivatives hedging. But these strategies
are costly and only limit rather than prevent loss. With regard to statistical inefficiency, a
preferable situation is integrating loss protection into the statistical modeling itself. This
paper develops and tests such a procedure by using cointegration theory to define the
necessary conditions for ensuring a minimum nominal profit before a trade is opened.
The next section describes the foundation for this analysis.

3. Cointegration-based strategies

Alexander et al. [2] demonstrate that the arbitrage profit potential between two shares
depends critically on the presence of a long-term equilibrium spread between share
prices, the existence of short-run departures (price shocks) from that equilibrium and
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re-convergence to equilibrium. In this situation, the statistical technique used for pairs
trading must be able to provide an effective model of share price time behavior; detect
equilibrium value relationships, and provide a measure of the extent and size of short-
term variations from that equilibrium relationship. Gatev et al. [3], Gillespie and Ulph
[4] and Alexander and Dimitriu [1] all suggest that cointegration theory offers a more
integrative framework for statistical arbitrage strategies than current techniques.

Definition 3.1. A time series Xt is called an I(1) series if the first difference of the time
series forms a stationary series, denoted by I(0).

Many share price series are I(1) series. Therefore, the following cointegration defini-
tion is given based on I(1) series.

Definition 3.2. Let X1t, X2t, . . . , Xnt be a sequence of I(1) time series. If there are nonzero
real numbers β1, β2, . . . , βn such that

β1X1t +β2X2t + ···+βnXnt (3.1)

becomes an I(0) series, then X1t,X2t, . . . ,Xnt are said to be cointegrated.

Cointegrated price series possess a stationary long-run stable equilibrium relationship
with the associated property of mean reversion. By the definition, the linear combina-
tion of cointegrated price series is stationary and will always revert back to the mean of
the stationary series. This is an important fact, which will ensure that the pair trading
technique developed in this paper becomes practicable. Further details on cointegration
analysis can be found in Harris [5].

We now use the concept of cointegrated share price series to derive the necessary con-
ditions for ensuring a given minimum profit per trade over a selected trading horizon.
The selection of share pairs and all subsequent trading decisions is made on cointegra-
tion principles. Long and short positions are weighted by their cointegration coefficients
rather than being equally weighted. Trade opening boundaries are defined in terms of de-
viations from the linear combination of cointegrated series rather than deviations from
some absolute mean-spread value.

The following assumptions simplify the analysis:
(A1) the two-share price series are always cointegrated over the relevant time horizon;
(A2) long and short positions always apply to the same shares in the share pair. For

any trade, S1 always represents the short position while S2 represents the long
position;

(A3) at the opening of any trade, the price for the shorted share S1 is always higher
than the price of the share in long position S2.

Remarks 3.3. (1) Since divergence from equilibrium pricing is random, any one share
in a pair is just as likely to be over-priced as under-priced. However, since we are only
concerned with profit per trade and since any one’s trade must be concluded before the
next trade is started, assumption (A2) does not affect either the validity of the simulation
or empirical tests in relation to the ability of the necessary conditions to generate greater
than minimum required profits per trade.
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(2) Assumption (A3) is quite general since a linear transformation of a price series has
no effect on its cointegrating properties.

(3) The above simplifying assumptions do not affect the validity or generality of the
“necessary conditions” tests, except that assumption (A3) under-estimates the number of
possible trades in any period, since, on standardized prices, the shorted share, S1, is just
as likely to be below S2 as above.

3.1. Profit produced by a completed pair trade. The first step is to derive a profit for-
mula for a pair of shares S1 and S2.

Let to and tc be the times of opening and closing out a trade position, respectively. A
trade is opened at to when a preset open trade condition (OTC) is met. The trade is closed
out at tc when a preset close trade condition (CTC) is met.

The following notations are used in the analysis. Denote by

NS1 (to) the number of shares in short position at to;
NS2 (to) the number of shares in long position at to;
PS1 (to) the price of share S1 at to;
PS1 (tc) the price of share S1 at tc;
PS2 (to) the price of share S2 at to;
PS2 (tc) the price of share S2 at tc.

A trade is opened when the OTC is met at time t0. The over-valued share, S1, is shorted
(sold), so that NS1 (to) shares are sold for the receipt of NS1 (to)PS1 (to) dollars. A long po-
sition on NS2 (to) shares is taken in the under-valued share S2 at a cost of NS1 (to)PS2 (to)
dollars.

The trade is then closed out when the CTC is met at time tc, by simultaneously sell-
ing the long position shares for the receipt of PS2 (tc)NS2 (t0) dollars and buying back the
NS1 (to) of S1 shares at a cost of NS1 (to)PS1 (tc) dollars.

Thus, the total profit from the trade is

TPtc =NS2

(
to
)[
PS2

(
tc
)−PS2

(
to
)]

+NS1

(
to
)[
PS1

(
to
)−PS1

(
tc
)]
. (3.2)

A trade is profitable if and only if TPtc > 0. So a loss prevention strategy equates to
ensuring that TPtc > 0 or, more generally, that TPtc > K > 0 for any preset value K .

3.2. The conditions of minimum profit per trade under the CCW rule. We now estab-
lish a cointegration coefficient weighting (CCW) rule and derive the conditions necessary
to ensure a minimum profit per trade (MPPT).

Under (A1), the prices of shares S1 and S2 are cointegrated; say

PS1 (t) +βPS2 (t)= εt, t ≥ 1 (3.3)

where εt is an I(0) series.
The following study is restricted to the situation where the cointegration coefficient

β < 0. This condition is not restrictive since previous studies show that most cointegrated
share price series conform to this condition.
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To ensure that the money gained from S1 at to will cover the outlay to buy S2 at to, we
need the following condition for opening a trade:

NS1

(
to
)
PS1

(
to
)≥NS2

(
to
)
PS2

(
to
)
. (C1)

In general, a trade can be opened at any time as long as (C1) is satisfied. Here we introduce
an open trade criterion by the following.

Open trade condition (OTC(a)). Let a be a positive real number. A time to can be consid-
ered as an open trading time if to satisfies the following condition:

PS1

(
t0
)

+βPS2

(
t0
)= εt0 > a > 0. (3.4)

To ensure that both conditions OTC(a) and (C1) are true, a condition on NS1 (to) and
NS2 (to) needs to be imposed. If a trader decides to buy n shares, that is, NS2 (to)= n, then,
the trader should sell at least n/|β| shares in the short position. For simplicity, fractional
share holdings are permitted. In this situation we will have PS1 (to)NS1 (to) > PS2 (to)NS2 (to).
So (C1) holds. After manipulation, under OTC(a) with NS2 (to)= n and NS1 (to)= n/|β|,
the total profit made at time tc can be calculated below:

TPtc =NS2

(
t0
)[
PS2

(
tc
)−PS2

(
t0
)]

+NS1

(
t0
)[
PS1

(
t0
)−PS1

(
tc
)]

= n

β

{[
εtc −PS1

(
tc
)]− [εto −PS1

(
to
)]}

+
n

|β|
[
PS1

(
t0
)−PS1

(
tc
)]

=− n

|β|
[
PS1

(
to
)−PS1

(
tc
)]

+
n

|β|
[
PS1

(
to
)−PS1

(
tc
)]

+
n

|β|
(
εto − εtc

)= n
(
εt0 − εtc

)
|β| .

(3.5)

This derivation shows that for any pair of cointegrated shares, if at open time to the
number of shares in the long and short positions are NS2 (to) = n and NS1 (to) = n/|β|,
respectively, the total profit from long/short trading can be expressed solely in terms of β,
εto , εtc , and n.

We now need to define an appropriate close time tc such that a trader, who opened a
trade under OTC(a) with NS2 (to)= n and NS1 (to)= n/|β|, will be able to gain a minimum
of $K when the trader closes the trade.

From (3.5), to ensure the minimum gain requirement, εtc has to satisfy the following
inequality:

n
(
εt0 − εtc

)
|β| > K. (3.6)

In other words, the value of εtc has to be lower than εto and the difference between εto and
εtc has to be greater than |β|K/n. Thus, to ensure a minimum profit of $K , we use the
following closing condition.
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Close trade condition (CTC(a), (b)). If a trade is opened at OTC(a) with NS2 (to) > K|β|/
(a− b) and NS1 (to)=NS2 (to)/|β|, where a > b, then the trade needs to be closed at tc when
εtc < b.

In practice, NS1 (to) can take value [NS2 (to)/|β|] + 1, in case NS2 (to)/|β| is not an integer,
where “[d]” denotes the maximum integer less than d.

3.3. Five-step trading strategy. We now use the above necessary conditions to build a
five-step procedure for obtaining the required minimum profit $K on any completed
trade.

Step 1. Choose an opening condition a and closing condition b such that a > b. Usually
b is assigned as the mean of ε1 and a is assigned as kσ where k is a positive real number
and σ is the standard deviation of ε1 (recall that εt is a stationary time series).

Step 2. Choose an integer n > K|β|/(a− b).

Step 3. Open a trade at to when PS1 (to) > PS2 (to) and condition OTC(a) is satisfied.

Step 4. Buy n shares of S2 and sell [n/|β|] + 1 shares of S1 at time t0.

Step 5. Close out the trade at tc when εtc < b.

Following the above steps, we have

n
(
εt0 − εtc

)
|β| >

n(a− b)
|β| > K , (3.7)

which will ensure a given MPPT of $K for the trade.
In the above strategy, the proportion of shares assigned to the long and short positions

is determined by the cointegration coefficient β rather than by the more traditional equal
weighting strategy. We label this the cointegration coefficient weighting strategy (CCW).

Remark 3.4. In practice, the CCW weighting strategy will always work if the total dollar
investment is permitted by the broker. This is because the open and close conditions
are based on the movement of the stationary time series εt. To ensure an appropriate
frequency of trades, the opening condition (a) and the closing condition (b) should be
chosen such that they are regularly crossed by the process εt, thus ensuring the frequent
opening and closing of trades.

4. The application of minimum profit conditions

The preceding analysis derived the theoretical conditions for achieving a given MPPT
and formulated a five step procedure to implement the trading strategy. We now examine
practical application issues of constraints imposed by the procedure on numbers of trades
and sensitivity to maximum investment levels.

The theoretical derivation of the necessary conditions for achieving a given level of
minimum profit may be enhanced if the procedure is a practical one in terms of its impact
on trade numbers and trading profitability. The current analysis concentrates on profit
per trade, trade numbers, and dollar investment implications.
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Table 4.1. Total profit and trades for varying MPPT levels under CCW strategy: simulated data.

K
Open condition ∗ Close condition ∗ Average Average

(a) (b) total profit total trades

10 m+ σ m 1350 51.8

50 m+ σ m 6006 51.8

100 m+ σ m 11751 51.8

10 m+ (σ/2) m 3248 81.7

50 m+ (σ/2) m 15180 81.7

100 m+ (σ/2) m 30032 81.7

∗m and σ denote the mean and standard deviations, respectively, of the I(0) series εt
.

We investigate the trade number and profit constraint issues using data generated from
a known cointegration model. The simulation study has two purposes. First, to demon-
strate how the CCW strategy works for the simulated data and whether altering the val-
ues for (a) and (b) affects the number of trades for any given MPPT level. Second, to
demonstrate the effect on trade numbers of introducing a constraint on the total dollar
investment allowed in any trade.

As an investigative technique, simulation enhances control over the data generation
process by ensuring that sample data conform to a given cointegration model with the
prescribed parameters. This filters out data “noise” that may complicate results on the
effects of the treatment variable on the target variable/s.

The sample price data are simulated from a cointegration model:

PS1 (t) +βPS2 (t)= εt,

PS2 (t)−PS2 (t− 1)= et,
(4.1)

where et − 0.1et−1 = 13 + δ1,t and δ1,t are iid normally distributed, N(0,0.5); β =−0.2; εt
follows model εt − 0.2εt−1 = 13 + δt and {δt} are iid with standard normal distribution
N(0,1). 100 independent samples are simulated from this model and each sample has
500 data points equally spaced over the trading horizon to permit calculation of profit
per time period over a horizon of 500 periods. Simulations are run with $K equal to $10,
$50, and $100, respectively.

4.1. Application to the CCW strategy: unconstrained investment. Following the five
step trading strategy, the simulation output in Table 4.1 is given by setting NS2 (to) =
[K|β|/(a− b)] + 1 and NS1 (to)=NS2 (to)/|β| for each trade.

Table 4.1 shows that the average total trade numbers per sample is just over 51. When
the value (a) is closer to the mean of εt, the average total trade numbers increase to over
81 trades per sample.

Under the CCW rule, the number of trades in a trading horizon is largely determined
by the open and close criterion values. Since both criteria now relate to the stationary
time series εt, reconvergence to the long-run equilibrium value m is more frequent.
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Table 4.2. Total profit and trades for varying MPPT under CCW strategy with constrained investment
dollars: simulated data.

K W
Open Close Average Average

condition (a) condition (b) total profit total trades

10 90000 m+ σ m 523 15.25

10 100000 m+ σ m 875 25.37

10 250000 m+ σ m 1932 51.78

10 100000 m+ (σ/2) m 0 0

10 250000 m+ (σ/2) m 3999 81.75

50 250000 m+ σ m 0 0

50 400000 m+ σ m 5864 46.50

50 250000 m+ 1.5σ m 1523 14.16

50 100000 m+ 1.5σ m 0 0

100 400000 m+ 1.5σ m 1114 5.69

4.2. Application to the CCW strategy: constrained investment dollars. In the previous
unconstrained CCW simulation, the total dollar investment in long/short positions can-
not be preset. They depend on the price of shares at each open trade position. So while
minimum profit $K requirement is met, the total dollars investment required to produce
this result may be large. In this section, another simulation study is considered. This sim-
ulation constrains the total dollar investment permitted per trade. Trades that require $W
investment above the indicated values are now deleted. Table 4.2 presents the results.

The results indicate that the size of the average dollar commitment per trade necessary
to meet the MPPT condition can make the rate of return on investment very small at
the given entry hurdle—even when set below the prevailing risk free rate. However, re-
call that we are not deriving a profit maximizing strategy, but a strategy ensuring a given
minimum profit. The simulations emphasize the sensitivity of required capital outlay to
the other decision parameter values. Keeping outlays feasible implies the selection of real-
istic parameter values and reasonably priced shares relative to intended outlay. Expensive
shares require more capital.

The low rate of return on investment may reflect the lack of price shocks in the simu-
lated model of this section. A more realistic test of returns requires actual data. The next
section details an empirical investigation of these results.

5. Application of the CCW strategy to empirical data

We now use empirical data to examine how alternative levels of maximum investment
affect trade numbers for a given MPPT value K . Maximum investment limits (W) are
set at $5.000 through to $100.000 for given alternative MPPT levels K of $10 through to
$2000. Within each investment level, the opening condition is varied from m+ 1.5σ to
m+ σ/5 and the closing condition is always set at m, where m and σ are the mean and
standard deviations of εt in (5.1), respectively.



10 Pairs trading based on cointegration approach

The data are daily closing prices from January 2, 2001 to August 30, 2002 for two
Australian Stock Exchange quoted bank shares—the Australia New Zealand Bank (ANZ)
and the Adelaide Bank (ADB). The cointegration parameters are estimated on the first
year’s data, that is, from January 2, 2001 to January 1, 2002. Both price series are I(1)
processes with a stationary cointegrated spread of the form:

PADB(t) +βPANZ(t)= εt, (5.1)

where εt is an I(0) series. The estimate of β is −1/2.0237 = −0.4941. The model is then
applied to the data from January 2, 2002 to August 30, 2002, which are 167 trade days.
The outputs are presented by Tables 5.1 and 5.2.

Several patterns emerge from the tables. First, at least one valid trade is generated at all
MPPT levels, except where the open condition becomes too low to allow potential trades
to develop at the given investment levels. Predictably, the number of valid trades yielding
a given MPPT increases with increased investment dollars. Second, a reduction in open
trade boundary values increases the number of valid trades and then falls to zero trades as
the spread becomes too small to generate trades within the given investment levels. This
pattern reflects the functional relationship between the open condition level and the level
of MPPT.

Third, the number of valid trades may appear low for all MPPT levels. But the re-
strictive nature of the second analytical assumption makes the results conservative. The
restriction of valid trades to those situations where S2 is the shorted share will eliminate
number of potential trades. So the actual number of trades in an unrestricted trading
situation is probably higher than those reported here at all MPPT levels.

The purpose of the analysis did not include an examination of the effects of the MPPT
procedure on the total profit levels of pairs trading. However, the total profit figures for
the trading during the 167 days are included in Tables 5.1 and 5.2. At all MPPT levels
the rate of return on investment increases as open condition boundaries are lowered,
until they become too low to generate eligible trades at the MPPT level within the given
investment levels. The pattern and level of increases in the rate of return on investment
appear consistent across increasing levels of MPPT levels and invariant to that level.

6. Discussion

In this paper we derived a cointegration-based procedure that would always return at
least a given minimum profit level. We then tested the feasibility of the procedure in
terms of the number of possible trades that could be immunized at different MPPT lev-
els for several combinations of open trade values, and investment dollars. The results of
the empirical analysis suggest that the five-step strategy is feasible for commonly used
parameter values.

Pairs trading strategies involve several decision choices. Taken together, these choices
determine how much arbitrage profit potential is actually extracted from each pairs trade.
Our cointegration-based analysis provides exploitable information on the long-run time
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Table 5.1. Total profit and trades under varying MPPT for three levels of investment: ANZ and ADB
share pairs.

K W
Open Close Number of Total

TP/W
condition (a) condition (b) trades profit P

m+ 1.5σ 1 12.76 0.00255

m+ σ 1 14.08 0.00282

10 5000 m+ 0.75σ m 2 26.26 0.00525

m+ (σ/2) 2 37.26 0.00745

m+ (σ/3) 3 74.38 0.01487

m+ 1.5σ 1 63.83 0.01276

m+ σ 1 68.42 0.01368

50 5000 m+ 0.75σ m 2 131.30 0.02626

m+ (σ/2) 2 186.31 0.03726

m+ (σ/3) 0 0 0

m+ 1.5σ 1 63.83 0.00638

m+ σ 1 68.42 0.00684

50 10000 m+ 0.75σ m 2 131.30 0.01313

m+ (σ/2) 2 186.31 0.01863

m+ (σ/3) 3 368.26 0.03683

m+ 1.5σ 1 127.65 0.02553

m+ σ 1 135.84 0.02716

100 5000 m+ 0.75σ m 0 0 0

m+ (σ/2) 0 0 0

m+ (σ/3) 0 0 0

m+ 1.5σ 1 127.65 0.01277

m+ σ 1 135.84 0.01358

100 10000 m+ 0.75σ m 2 262.60 0.02626

m+ (σ/2) 2 372.61 0.03726

m+ (σ/3) 0 0 0

m+ 1.5σ 1 127.65 0.00255

m+ σ 1 135.84 0.00272

100 50000 m+ 0.75σ m 2 262.60 0.00525

m+ (σ/2) 2 372.61 0.00745

m+ (σ/3) 3 734.70 0.01469
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Table 5.2. Total profits and trades under varying MPPT with constant constrained investment: ANZ
and ADB share pairs.

K W
Open Close Number of Total

TP/W
condition (a) condition (b) trades profit P

m+ 1.5σ 1 636.84 0.00637

m+ σ 1 678.18 0.00678

m+ 0.75σ 2 1310.06 0.01310

500 100000 m+ (σ/2) m 2 1858.92 0.01859

m+ (σ/3) 3 3666.25 0.03666

m+ (σ/4) 4 5998.04 0.05998

m+ (σ/5) 0 0 0

m+ 1.5σ 1 1273.67 0.01274

m+ σ 1 1355.36 0.01355

m+ 0.75σ 2 2620.11 0.02620

1000 100000 m+ (σ/2) m 2 3717.84 0.03718

m+ (σ/3) 0 0 0

m+ (σ/4) 0 0 0

m+ (σ/5) 0 0 0

m+ 1.5σ 1 2547.34 0.02547

m+ σ 1 2710.72 0.02710

m+ 0.75σ 0 0 0

2000 100000 m+ (σ/2) m 0 0 0

m+ (σ/3) 0 0 0

m+ (σ/4) 0 0 0

m+ (σ/5) 0 0 0

series behavior of share pairs that is not available through currently used statistical meth-
ods. Unlike these current techniques, cointegration also offers a technique for systemati-
cally analyzing the interdependence of strategic choices. Our analysis shows that the prof-
itability of a pairs trading strategy depends upon using weighting rules, minimum profit
hurdles, and open/close criterion that reflect traders’ preferences and are appropriate to
the short and long-run price behavior of the component shares. Unrealistic values im-
ply low trading rates, excessive trade durations, and low profits per share trade. Through
cointegration the trader has a tool for investigating the statistical relationship between
parameters.

Our analysis also emphasizes a range of other fundamental issues in statistical arbi-
trage strategies that require further study.
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(1) The contribution to arbitrage profit of each share depends upon relative price
volatilities and mean-reversion characteristics of the component shares.

(2) “Success” in pairs trading is a compromise between arbitrage levels and profit
levels. Alternative weighting rules may optimize one objective but not both. For
example, at the extreme, the most profitable strategy is to weight investment in
the more volatile share at 100 percent and zero weight the other share, but this
strategy offers minimal systematic risk protection.

(3) Any trading strategy is a compromise between trading frequency, duration, and
per trade profitability. Arbitrage profit levels depend on achieving a suitable mix
relevant to the price series behavior of a given pair of financial assets.

(4) For cointegrated share pairs, the latent profit potential relates directly to both
the size and the frequency of short-term shocks characterizing each price series.
Exploiting that potential depends on strategic choices.

Pairs trading, although limited to the simplest long/short case of two shares, is directly
congruent with the much wider case of n-share long/short portfolios. Moreover, since
there is no reason why pairs trading should not use put and call options rather than
the underlying shares, our statistical analysis also translates to the derivatives portfolio
context. It also reflects the statistical equivalent of the economic maxim that there are no
“free lunches.”
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This paper examines the convergence of genetic algorithms using a cluster-analytic-type
procedure. The procedure is illustrated with a hybrid genetic algorithm applied to the
quadratic assignment problem. Results provide valuable insight into how population
members are selected as the number of generations increases and how genetic algorithms
approach stagnation after many generations.
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1. Introduction

Hybrid genetic algorithms have recently become very popular metaheuristic methods
(Beasley [6]). Most genetic algorithms produce offspring by mating parents and attempt
to improve the population makeup by replacing existing population members with su-
perior offspring. In contrast, hybrid genetic algorithms, sometimes called memetic al-
gorithms (Moscato [28]), incorporate some heuristic improvement on every offspring
before considering its inclusion into the population. For a plethora of introductory ex-
positions published on the topic, see Salhi [33] or Beasley [6].

This paper examines the convergence of genetic algorithms using a cluster-analytic-
type technique called the “MD procedure” (Marcoulides and Drezner [26]). The pro-
posed procedure is illustrated with a hybrid genetic algorithm applied to the solution of
the quadratic assignment problem (QAP). For a review of the QAP, see Rendl [31]. Be-
cause population members form clusters as progress is made to a solution, the clustering
structure can provide a better implementation of genetic algorithms. For example, clus-
tering structure can be used to develop better stopping criteria, for instance when the
population clusters become stagnant.

In the next section we describe the MD procedure. In Section 3 we describe the qua-
dratic assignment problem and the hybrid genetic algorithm used for its solution. In
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Section 4 we present an analysis of the procedures. Finally, Sections 5 and 6 present the
results of some computational experiments and conclusions.

2. The MD procedure

The MD procedure is used to display k-dimensional data in two dimensions so that clus-
ters can be easily observed. The procedure is successful in preserving distances between
the various data points, thus retaining the structure of the set of points. It is based on
the proposed solution for the layout problem (Drezner [12]), which is a variant of the
DISCON (dispersion-concentration) procedure Drezner [11].

The layout problem is very similar to the QAP except that there are no specific loca-
tions for the facilities. While the QAP is concerned with finding the best permutation of
the facilities among the given sites, the layout problem is concerned with the location of
facilities of a given size anywhere in the plane. A set of weights {wij}, wij = wji associ-
ated with facility pairs is given. As in the QAP, we wish that pairs of facilities with larger
weights be closer to one another in the final configuration.

Drezner [12] proposed to minimize the function

∑n
i�= j=1wijd

2
i j∑n

i�= j=1d
2
i j

(2.1)

which is equivalent to

min

{ n∑
i�= j=1

wijd
2
i j

}
subject to

n∑
i�= j=1

d2
i j = 1, (2.2)

where di j is the Euclidean distance between the unknown locations of facilities i and j.
Since d2

i j = (xi− xj)2 + (yi− yj)2,

n∑
i�= j=1

wijd
2
i j =

n∑
i�= j=1

wij
(
xi− xj

)2
+

n∑
i�= j=1

wij
(
yi− yj

)2

= 2
n∑
i=1

{ n∑
j=1

wij

}
x2
i − 2

n∑
i�= j=1

wijxixj + 2
n∑
i=1

{ n∑
j=1

wij

}
y2
i − 2

n∑
i�= j=1

wij yi y j .

(2.3)

Define the matrix S = {si j} by Sii =
∑n

j=1wij and Si j = −wij , for i �= j. Our problem is
equivalent to minimizing

xTSx+ yTSy

xTEx+ yTEy
, (2.4)

where E is the matrix S with all weights equal to 1.
The matrix S is singular and therefore one of its eigenvalues is 0 with an associated

eigenvector of (1, . . . ,1). Note that adding a constant to all weights does not change (2.1)
or (2.2), and thus we can guarantee that all eigenvalues of S (except the zero eigenvalue)
are positive. As is shown by Drezner in [12] and by Marcoulides and Drezner in [26],
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the solution to (2.4) is x = y, where x or y is the eigenvector associated with the smallest
positive eigenvalue. This solution is on a line. To get a two-dimensional solution, we select
for the y-coordinates the best solution that is orthogonal to the first solution. This second
solution is the eigenvector associated with the second smallest positive eigenvalue. These
(x, y) coordinates provide a solution to the layout problem in the plane.

Marcoulides and Drezner [26] suggested the use of this layout algorithm to transform
k-dimensional data to a two-dimensional scatter plot, while retaining the special struc-
ture of the data. They proposed to use the reciprocal of the distances between the points
in the k-dimensional space as weights. In this way, points that are close to each other in
the k-dimensional data will tend to be close in the solution of the layout problem. Let
Dij be the k-dimensional distances between points i and j. Marcoulides and Drezner [26]

suggested to use wij =D
−p
i j with a positive p as the weights in (2.1), and search for the best

p using the golden section search. For each value of p, the correlation coefficient between
the original distances Dij and the calculated two-dimensional distances by the procedure
di j is found, and the best p in [0,10] that maximizes this correlation coefficient is selected
for implementation.

Marcoulides and Drezner [27] suggested the application of the MD procedure for clus-
ter analysis with excellent results. They proposed to use the solution on a line (which is
the projection of the scatter diagram on the x-axis). Clusters are identified as follows: the
distances between successive points on the line are calculated and large distances between
successive points constitute separators between clusters.

3. The quadratic assignment problem

The quadratic assignment problem (QAP) is considered to be one of the most difficult
combinatorial optimization problems to solve. The problem is defined as follows. A set
of n possible sites is given and n facilities are to be located on these sites, one facility at
a site. Let ci j be the cost per unit distance between facilities i and j and let di j be the
distance between sites i and j. A high cost between two facilities means that we wish the
two facilities to be close to one another. The cost f to be minimized over all possible
permutations, calculated for an assignment of facility i to site p(i) for i= 1, . . . ,n, is

f =
n∑
i=1

n∑
j=1

ci jdp(i)p( j). (3.1)

Optimal algorithms can solve relatively small problems. Recently, Anstreicher et al. [3],
Hahn and Krarup [23], Nystrom [30], and Anstreicher and Brixius [2] report optimal
solutions for problems with n = 30 to 36 facilities. Such optimal solutions are based on
branch-and-bound algorithms which require “good” lower bounds. Gilmore [20] and
Lawler [24] proposed the first lower bound based on the simple assignment problem.
Anstreicher and Brixius [2] proposed a lower bound based on quadratic programming.
Two lower bounds used by Hahn and Grant [21] and Hahn et al. [22] are based on a dual
formulation. A dual formulation was suggested by Drezner in [13] and its implementa-
tion reported by Resende et al. in [32].
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Since optimal algorithms can solve only relatively small problems, considerable ef-
fort has been devoted to constructing heuristic algorithms. The first heuristic algorithm
proposed for the solution of the QAP was CRAFT (Armour and Buffa [4]) which is a
descent heuristic. More recent algorithms use metaheuristics such as Tabu search (Battiti
and Tecchiolli [5]; Skorin-Kapov [34]; and Taillard [35]), simulated annealing (Burkard
and Rendl [8]; Wilhelm and Ward [38]; and Connolly [10]), genetic algorithms (Ahuja
et al. [1]; Fleurent and Ferland [18]; Tate and Smith [37]; and Drezner [15–17]), ant
colony search (Gambardella et al. [19]), or specially designed heuristics (Drezner [14];
Li et al. [25]). For a complete discussion and list of references, see Burkard [7], Çela [9],
Rendl [31], and Taillard [36].

3.1. The hybrid genetic algorithm. Genetic algorithms maintain a population of solu-
tions. In order to create each generation, two parents are selected and merged to produce
an offspring. If the produced offspring is better than the worst population member, the
offspring replaces that member. The process continues for a prespecified number of gen-
erations. The best population member at the conclusion of the process is the solution of
the genetic algorithm. Hybrid genetic algorithms apply an improving procedure on each
offspring before considering it for inclusion in the population. Such an improvement pro-
cedure produces better offspring and the algorithm usually requires fewer generations to
obtain quality solutions. The important components of a hybrid genetic algorithm are
the merging process of two parents, and the postmerging improvement algorithm.

For the implementation of the genetic algorithm for the solution of the QAP, each so-
lution (chromosome) is defined by the facilities assigned to sites #1,#2, . . . ,#n. The Ham-
ming distance between two solutions is the number of facilities located at different sites.
We use a population of 100 solutions. As the merging procedure, the “cohesive merging
procedure” (Drezner [15]) is used. The idea behind the cohesive merging procedure is
to select about half of the sites that are close to one another “(cohesive)” and assigning
the facilities from the first parent to this cohesive set, and to assign the facilities from the
second parent to the rest of the sites. For a complete description, the reader is referred to
Drezner [15]. As the postmerging procedure, we use the “short” concentric Tabu search,
modified by selecting a random number of levels. The concentric Tabu search was first
presented by Drezner in [14] and was used as a postmerging procedure in hybrid genetic
algorithms (Drezner [15–17]). The short version was used by Drezner in [16, 17] and
gave excellent results.

The postmerging procedure is summarized below. The procedure starts with a so-
lution termed the “center” solution and attempts to find a better solution by checking
solutions at increasing Hamming distance from the center solution. This process can be
viewed as searching in concentric circles centered at the center solution. The concentric
Tabu search (Drezner [14]) stops once one application of the radial search fails to find a
better solution. In the short concentric Tabu search, the maximum radius of the concen-
tric searches is randomly generated at [0.3n,0.9n] which is less than the maximum possi-
ble Hamming distance between two solutions (n). The algorithm below applies between
3 and 9 “levels.” Each level is a concentric Tabu search, but if the search fails to produce a
better solution, a new center solution is selected for the next level.
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3.2. The postmerging procedure for the QAP. The procedure starts with a so-called
“center” solution. The Hamming distance between permutation p and the center solution
is Δp. The procedure proceeds by checking solutions with increasing Hamming distance.

(1) Set a counter c = 0. Randomly generate the number of levels L in [3,9] (with
probability of 1/7 for each level).

(2) Select R (the radius of the search) randomly in [0.3n,0.9n].
(3) Set Δp = 0. sol0 is the center solution. Empty the solutions sol1 and sol2 (the best

found solutions for Δp+ 1 and Δp+ 2, resp.).
(4) All pair exchanges of sol0 are evaluated.
(5) If the exchanged solution is better than the best found solution, the best found

solution is updated and the rest of the exchanges are evaluated.
(6) If the distance of an exchanged solution is Δp or lower, it is in the Tabu list.

Therefore, it is ignored and the rest of the exchanges are evaluated. (In this way,
we force the search away from the center solution.)

(7) If its distance is Δp+ 1 or Δp+ 2, sol1 or sol2 is updated, if necessary.
(8) If a new best found solution is found by scanning all the exchanges of sol0, the

starting (center) solution is set to the new best found solution. Go to step (1).
(9) Otherwise, sol0 = sol1, sol1 = sol2, and sol2 is emptied. Set Δp = Δp+ 1.

(10) If Δp ≤ R, go to step (4).
(11) If Δp = R+ 1, advance the counter c = c+ 1, and

(i) if c ≤ L and is odd, use the best solution with depth R as the new center solu-
tion and go to step (2);

(ii) if c ≤ L and is even, use the best solution found throughout the scan (the pre-
vious center solution is not considered) as the new center solution and go to
step (2);

(iii) if c = L+ 1 stop and report the best found solution.

4. Analysis

Hybrid genetic algorithms start with a population of random solutions (each improved
by a postmerging procedure) and keep improving the population members by entering
better offspring and removing poorer population members. As the number of generations
increases, the population members tend to cluster into groups, such that group members
are “close” to one another.

In order to analyze this phenomenon, we first define a distance between population
members. The Hamming distance is used. The distance between two population mem-
bers is the number of variables which are different in the two solutions. Thus, two popu-
lation members are at distance zero from one another if they are identical. Note that this
distance measure satisfies the triangle inequality.

Suppose we perform a cluster analysis on a given population. The distance between
every pair of population members is calculated and a scatter plot is generated using the
MD procedure. The distance matrix is given as input to the MD procedure, and the result
is a two-dimensional scatter diagram of the population members. Pairs of population
members that are “close” to one another tend to be close to one another in the scatter
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diagram. We employ the weights [Dij −Dmin + 1]−p, where Dij is the Hamming distance
between population members i and j, and Dmin =mini�= j{Dij}.

We implemented this idea in the analysis of a hybrid genetic (memetic) algorithm
for the solution of the quadratic assignment problem. Each solution of the quadratic
assignment problem is a permutation of n facilities. Therefore, the distance between two
solutions (permutations) can be between 0 (when the permutations are identical) and n.
Note that a distance of 1 is impossible.

4.1. Properties of the Hamming distance for the QAP

Theorem 4.1. The expected distance between two random permutations is equal to n− 1.

Proof. Let Pn(k) be the probability that two random permutations of n elements have k
identical elements. The number of permutations that have k members identical to per-

mutation #1 is n!Pn(k). It is clear that n!Pn(k)=
(
n
k

)
(n− k)!Pn−k(0) leading to

Pn(k)= Pn−k(0)
k!

. (4.1)

By (4.1),

Pn−1(k− 1)= Pn−k(0)
(k− 1)!

= kPn(k). (4.2)

Therefore,

n∑
k=1

kPn(k)=
n∑

k=1

Pn−1(k− 1)= 1. (4.3)

We showed that the expected number of identical elements in two random permuta-
tions is 1, which proves the theorem. �

Theorem 4.1 provides us with a reference for comparison between the average distance
among all population members and the expected distance if the population members
were random. Thus, if the average distance between all pairs of population members is
lower than n− 1, then the population is not random.

5. Computational experiments

We selected three QAP problems for analysis: Nug30 (Nugent et al. [29]) of 30 facilities
for which the optimum solution of 6124 is known (Anstreicher et al. [3]), Sko56 and
Sko100a (Skorin-Kapov [34]) of 56 and 100 facilities, respectively, for which the best
known solutions of 34458 and 152002 are not proven optimum yet. We used a population
of 100 and therefore the scatter diagram consists of 100 points. Each problem was solved
using 50n generations, and the results after multiples of 10n generations were recorded
and analyzed.

In Table 5.1 we report for each problem the minimum and average distances among
population members, and the minimum and average values of the objective function for
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Table 5.1. Distances between population members and objective function values.

Gen.

Nug30 Sko56 Sko100a

Distance Objective Distance Objective Distance Objective

Min. Aver. Min. Aver. Min. Aver. Min. Aver. Min. Aver. Min. Aver.

0 0 27.73 6134 6211.48 36 53.84 34512 34906.84 84 97.55 152368 153441.30

10n 0 26.98 6124 6160.00 2 45.35 34458 34501.96 2 41.95 152026 152097.70

20n 0 26.87 6124 6155.24 2 41.92 34458 34481.68 2 33.32 152026 152075.44

30n 0 26.83 6124 6152.54 2 41.36 34458 34479.04 2 30.32 152026 152072.46

40n 0 26.70 6124 6151.04 2 41.27 34458 34477.54 2 29.84 152026 152071.74

50n 0 26.72 6124 6149.94 2 41.55 34458 34477.24 2 29.77 152026 152071.58

all population members. The starting population of Nug30 (consisting of 100 popula-
tion members) includes three pairs of identical population members (i.e., at a distance of
zero from one another). These pairs of population members have an objective function
values of 6146, 6172, and 6190, respectively. Since the hybrid genetic algorithm (Drezner
[15–17]) does not allow into the population, the offspring that are identical to existing
population members, no more identical population members are added to the popula-
tion. After 50n generations, the worst population member has an objective function value
of 6160, and thus two of the identical pairs were removed from the population, and only
one of the three pairs is still a member of the population at the end of the process. The
optimum solution of 6124 was obtained before 10n (300) generations are completed. It
seems that the populations do not improve much after 300 iterations. The best known
solution for Sko56 was also reached before 10n (560) iterations. The populations do not
improve much after 20n generations. For Sko100a, the procedure obtained the value of
152026 which is slightly higher than the best known solution of 152002 after 10n gener-
ations as well. It should be noted that the best known solution for Sko100a was obtained
frequently with other random seeds (see Section 5.2). The population also seems to have
stabilized after 20n generations.

The average distance between population members generally declines as the number
of generations increases. However it stabilizes after 20n− 40n generations. A random ini-
tial population is expected to have an average distance of n− 1 by Theorem 4.1. Since a
postmerging procedure is applied on the initial population, the initial population is al-
ready somewhat clustered (average distance of 27.73 compared with expected of 29 for
Nug30, 53.84 compared with 55 for Sko56, and 97.55 compared with 99 for Sko100a). In
Figures 5.1, 5.2, and 5.3, we depict the scatter diagrams obtained by the MD procedure.
The averages also confirm the scatter diagrams depicted in these figures. The scatter dia-
gram of Nug30 (Figure 5.1) is the most scattered. Therefore, their average distance is not
much lower than the expected distance for random populations. On the other hand, the
scatter diagram of Sko100a (Figure 5.3) has one cluster of 97 population members. As
expected, its average distance is the lowest when compared with the expected average of
n− 1.

The starting population for Nug30 does not exhibit clear clustering. The successive
scatter diagrams indicate “convergence” to five clusters. Note that the problem has exactly
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(a) G= 0 (b) G= 10n

(c) G= 20n (d) G= 30n

(e) G= 40n (f) G= 50n

Figure 5.1. The scatter plots for Nug30.

four optimum solutions that are mirror images of one another and the Hamming distance
between two optimum solutions is 30. It is important to note that if the scatter diagrams
are projected on the x-axis, there are only two clusters. The separation between the two
clusters is best for G= 40n.

Different diagrams are obtained for Sko56 and Sko100a. In Figure 5.2, we observe
no clusters at the starting population (with two outliers). The amorphous “cloud” is no
longer observed even for G= 10n. A projection on the x-axis for G= 10n indicates that
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(a) G= 0 (b) G= 10n

(56)

(33)
(8)

(c) G= 20n

(57)

(34)
(6)

(d) G= 30n

(51)

(41)
(5)

(e) G= 40n

(51)

(41)
(5)

(f) G= 50n

Figure 5.2. The scatter plots for Sko56.

there are two clusters. The general structure obtained for G = 20n remains almost un-
changed until G = 50n generations are reached. The projections on the x-axis indicate
two distinct clusters of 3 and 97 population members, respectively. The second cluster of
97 population members is divided into three clusters in the second dimension.

In Figure 5.3, we depict the scatter diagrams for Sko100a. The starting population does
not exhibit any clusters. The projection on the x-axis indicates two clusters of 99 and 1
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(a) G= 0 (b) G= 10n

(98)

(c) G= 20n

(97)

(d) G= 30n

(97)

(e) G= 40n

(97)

(f) G= 50n

Figure 5.3. The scatter plots for Sko100a.

members each starting with G = 10n. From G = 30n and upward, a cluster of 97 with 3
outliers is evident.

5.1. Further investigation of Sko56. The scatter plot for Sko56 (Figure 5.2) shows three
main clusters and three outliers. We further investigated the Sko56 problem by recreating
the scatter diagram by removing the 3 outliers and running the MD procedure on the
remaining 97 population members for G= 50n so that the internal structure of the three
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Figure 5.4. The final scatter of Sko56 without the 3 outliers.

Table 5.2. Objective function values for various clusters.

G= 10n

Cluster size 1 3 4 36 56

Average 34524.0 34497.3 34513.5 34502.4 34500.7

Minimum 34524 34472 34508 34462 34458

Maximum 34524 34512 34518 34526 34526

G= 20n

Cluster size 3 8 33 56 —

Average 34466.0 34478.0 34483.7 34481.9 —

Minimum 34462 34462 34458 34458 —

Maximum 34472 34490 34494 34494 —

G= 50n

Cluster size 3 5 41 51 —

Average 34466.0 34471.2 34478.2 34477.7 —

Minimum 34462 34462 34458 34458 —

Maximum 34472 34480 34486 34486 —

main clusters can be observed. The resulting scatter diagram is depicted in Figure 5.4. The
projection on the x-axis indicates two distinct clusters. However, the clusters of 41 and 5
members appear as two clusters in the second dimension and the cluster of 51 members
reveals a “core” of 42 population members and 9 members in its vicinity with 7 of them
possibly defining another cluster.

Another interesting experiment is the analysis of the values of the objective functions
for the different clusters. In Table 5.2, we report the statistics for the members of each
cluster for G = 10n, 20n, 50n. The clusters are depicted in Figure 5.2. For G = 10n, the
cluster of one is at the top of the scatter diagram. The cluster of 56 is depicted as two or
three close points at the bottom-left corner, and the close-by cluster is the cluster of 36,
followed by clusters of 3 and 4.
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It is clear that the cluster of one has almost the worst value of the objective function
in the population (34524 compared with the worst value of 34526, see Table 5.2). It is
removed from the population in a few generations. It is interesting that the three outliers
have the best average of the value of the objective function of all clusters. Many more
iterations are required before any of the members of this cluster are removed from the
population. Fortunately, the best known solution is in the bigger clusters. However, it is
conceivable that the best solution could fall near the cluster of three. If so, the algorithm
will miss it, because it is unlikely (probability of 0.0006 per generation) that both par-
ents will be selected from this cluster to augment it. Once the structure of the clusters
is known, one can modify the parent selection accordingly in order to generate better
offspring.

5.2. Is avoiding identical population members helpful? Most genetic algorithms do not
check whether newly generated offsprings are identical to existing population members
before considering them for inclusion in the population. Such a provision is proposed
and applied by Drezner in [15–17] with good results.

An offspring generated by two identical population members is identical to its parents
(regardless of the merging process). The postmerging procedure cannot improve it (it
could not further improve its parents at the time they were generated), and therefore the
offspring joins the population and more identical members are added to the population.
As the group of identical members increases in number, the likelihood of merging two
identical parents increases. After some generations, more and more identical parents are
merged and the population may consist of all identical members and no improvement is
possible. We believe that the reason other genetic algorithms do not employ this provision
is that researchers are under the impression that generating an identical offspring is very
unlikely and one can ignore such a possibility.

The new tool proposed in this paper can be used to analyze the effect of such a provi-
sion. We ran the hybrid genetic 10 times each for Nug30, Sko56, and Sko100a with and
without the provision (of not adding offspring identical to existing population mem-
bers). With this provision in place, the optimum solution for Nug30 and the best known
solution for Sko56 were found in all 10 runs. The best known solution for Sko100a was
found 3 times out of 10 with the average solution being just 0.015% over the best known
solution. The same hybrid genetic algorithm without the provision also found the opti-
mum solution to Nug30 in all 10 runs, but found it only 4 times out of 10 for Sko56 with
the average solution being only 0.008% above the best known solution. The best known
solution of Sko100a was found four times out of ten but with the average solution being
0.022% over the best known solution.

In many of these runs, the population after 50n generations consisted of 100 identical
members. In many of these cases, all population members are inferior to the best known
solution. This clearly indicates an early convergence to an inferior local minimum. In
Figure 5.5 we depict the clusters for Nug30. For G = 50n, all population members are
optimal. The average Hamming distances are 27.73 for G = 0, 25.32 for G = 10n, 19.03,
19.54, 21.55, and 3.42 for the next checkpoints, respectively. Contrary to the scatter di-
agrams in Figure 5.1, convergence is observed to four clear clusters, each with identi-
cal optimal members. The cluster on the left consists of 94 members, the cluster in the
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(a) G= 0 (b) G= 10n

(c) G= 20n (d) G= 30n

(e) G= 40n (f) G= 50n

Figure 5.5. The scatter plots for Nug30 without the provision.

middle-right consists of 4 members, and the two clusters (one on top and one at the bot-
tom) have one member each. We are “lucky” in this case that early convergence was to
the optimum and not to an inferior local optimum. However, we were not that lucky in
six runs for Sko56 and six runs of the Sko100a problem.
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6. Conclusions

In this paper we proposed to investigate the structure of the population in genetic al-
gorithms by applying the MD cluster-analytic-type procedure. By analyzing the results,
valuable information and insight can be gained into the behavior and characteristics in
the population as the genetic algorithm progresses. As an illustration, we analyzed the
inclusion of the provision that an offspring identical to an existing population member
is ignored rather than being added to the population. The resulting scatter plots show
the early convergence of the algorithm, when this provision is not implemented. We also
observed that the population becomes stagnant after about 20n generations and there is
no need to perform 50n generations for these test problems.

In future research, we advocate use of this tool in order to construct better and more ef-
ficient genetic algorithms. Since the calculations involved in this procedure are very quick,
the parameters controlling the genetic procedures can be modified during the progres-
sion of the genetic algorithm according to the results of such analyses. As we observed in
our test problems, a stopping criterion based on the scatter diagrams can be established
for genetic algorithms.
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One not-so-intuitive result in auction theory is the revenue equivalence theorem, which
states that as long as an auction complies with some conditions, it will on average gener-
ate the same revenue to an auctioneer as the revenue generated by any other auction that
complies with them. Surprisingly, the conditions are not defined on the payment rules to
the bidders but on the fact that the bidders do not bid below a reserve value—set by the
auctioneer—the winner is the one with the highest bidding and there is a common equi-
librium bidding function used by all bidders. In this paper, we verify such result using
extensive simulation of a broad range of auctions and focus on the variability or fluctu-
ations of the results around the average. Such fluctuations are observed and measured
in two dimensions for each type of auction: as the number of auctions grows and as the
number of bidders increases.

Copyright © 2006 F. Beltrán and N. Santamarı́a. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the early 1980s, a series of papers appeared in the economics literature on auctions,
dealing specially with the issue of the expected revenue to an auctioneer in a single-
object buyer’s auction. The pioneer work of Vickrey offered the first insights into the
expected revenues of four different auctions finding them to be equivalent (Milgrom
[4]). The main result, appearing in [6] by Riley and Samuelson, and Myerson [5] be-
came known as the revenue equivalence theorem. The theorem states that as long as an
auction complies with some conditions, it will on average generate the same revenue to
an auctioneer as the revenue generated by any other auction with the same conditions.
Surprisingly the conditions are not defined on the payment rules but on the facts that
bidders do not bid below a reserve value—defined by the auctioneer—the winner is the
one with the highest bid and there is a common equilibrium bidding function used by all
bidders.
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2 Variability of revenue in auctions

More specifically, as Klemperer [3] puts it: “each of a given number of risk-neutral
potential buyers of an object has a privately known signal independently drawn from
a common, strictly increasing, atomless distribution. Then any auction mechanism in
which

(i) the object always goes to the buyer with the highest signal, and
(ii) any bidder with the lowest-feasible signal expects zero surplus

yields the same expected revenue (and results in each bidder making the same expected
payment as a function of her signal).”

The result applies both to private-value models—every player’s value is independently
drawn from the same continuous distribution on a finite interval—and to more general
common-value models—the value of the object is the same for all players, but it is un-
known at the time of the bidding—provided that bidders’ signals are independent.

2. Is an auctioneer interested in the variability of the mean revenue?

The revenue equivalence theorem has been a remarkable piece in the construction of a
theory of auctions. Under the stated conditions, such seemingly different auctions as the
all-pay or the second-price sealed-bid yield the same expected revenue. As Milgrom [4]
affirms, one practical use of the revenue equivalence theorem is as a benchmark for the
analyses of revenues in auctions, when the assumptions of the theorem do not hold or
cannot be verified properly.

A main concern to be addressed in this paper is that of an auctioneer trying to decide
which auction to use. Suppose an auctioneer has an object to sell. If he knew that such an
object represented a private value to all potential bidders, bidders values were indepen-
dent and any bid placed for the auction was larger than a reserve value—which would
happen in the case of at least one bidder informed about such price and willing to partic-
ipate in the auction—then the auctioneer should be indifferent among several different
auctions he could choose from. For instance, he could use a first-price sealed-bid auction
or a “sad losers” auction (Riley and Samuelson [6]). The latter is an auction in which ev-
ery bidder, except the winner, pays his/her bid. There could, however, be a very practical
concern that the auctioneer needs to deal with: the revenue equivalence theorem states its
result in terms of the expected revenue to the seller but the seller not always likes or needs
to run a large number of auctions of the same object—or type of object. Maybe, what is
being sold is not ordinary merchandise but a right for the exploitation of a public good.
Assuming the auctioneer will award the object to the highest bidder, would the design
of the auction—that is, the payment from the bidders—matter to the auctioneer? The
theorem would ease the auctioneer’s worries with a categorical “it would not.” Well, “it
would not” if the auctioneer ran a sufficient number of auctions so that on average his
revenue from each auction was the one predicted by the theorem.

If the auctioneer is not running many auctions or if he is just auctioning one object, his
attention may shift to find a measure of the variability of such average or mean value. For
instance, in [7] by Waehrer et al., it is shown that a risk-averse auctioneer prefers a first-
price auction to a second-price auction, and in turn he prefers a second-price auction
to an English auction. In this paper, we use a simulator to better understand how large
around the mean are the variations of running several auctions for at least six different
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auctions, which under the assumptions of the theorem should yield the same (expected)
revenue.

In this paper, firstly, we verify the results of the theorem running simulations of a
broad range of auctions and, secondly, we focus on the variability or fluctuation about
the average revenue of an auction with a given number of bidders, we attempt to find a
criterion that helps the auctioneer to decide about the type of auction to be used. The
fluctuations are observed and measured in two dimensions for each type of auction: as
the number of instances of a given auction grows and as the number of bidders in the
auction increases.

3. The revenue equivalence theorem

Theorem 3.1 (Klemperer [3]). In an auction of a single object, suppose there are n risk-
neutral potential bidders with privately known independent signals drawn from a common
distribution F(v). Then any auction mechanism in which (i) the object always goes to the
buyer with the highest signal, and (ii) any bidder with the lowest-feasible signal expects zero
surplus yields the same expected revenue.

For the proof, see Klemperer [3, Chapter 1, page 17].

4. Optimal bids

In all auctions considered here, the winner is the bidder with the highest bid; ties are
broken randomly. In an all-pay auction, every bidder pays his/her bid; in sad losers auction,
all but the winner pay their bids; in last-pays auction, only the bidder with the lowest bid
pays. In Santa Claus auction, the auctioneer takes the payment from the winner and gives
back a portion of it to all bidders, including the winner (Riley and Samuelson [6]). First-
price and second-price are the so-called traditional auctions where the amount paid by
the winner is the highest bid or the second highest bid, respectively.

We have used the result above to calculate the optimal bids in several auctions which
comply with the conditions of the theorem. Starting with basic results for two bidders
presented in [6] by Riley and Samuelson, we previously calculated (Beltrán et al. [1]) the
optimal bids for n bidders in all-pay, sad losers, last-pays and Santa Claus. To the latter,
we have added the first-price auction, whose optimal bid expression is found in [2] by
Gibbons, and the second-price auction where it is optimal for a bidder to bid his true
value (Klemperer [3]). Optimal bid functions for n users in the auctions mentioned can
be found in Appendix A.

5. Simulating the auctions

In order to perform the computational experiments, we used a random number gener-
ator to determine the bidders’ valuations; the valuations are uniformly drawn from the
interval [0,1]. Every run consists of a number of auctions or scenarios of the auction,
for a predefined number of bidders; the bids are calculated according to the optimal bid
functions obtained in the preceding section. The simulator determines the optimal allo-
cation and the revenue for the seller, repeating this procedure until the number of desired
scenarios is completed. The runs are conducted while varying the number of bidders and
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Figure 5.2. Coefficient of variation for 5 auction types.

the number of scenarios. For each run, we calculated the mean revenue for the auction-
eer and the coefficient of variation of the revenue, defined as the ratio of the variance
with respect to the square of the expected value. This was done for each of six auctions:
first-price, second-price, all-pay, Santa Claus, sad losers, and last-pays. The analysis that
follows uses data from all auctions except last-pays, which because of its particular design
deserves a special analysis in a subsequent section. Figures 5.1 and 5.2 show, for up to 20
bidders, the average and coefficient of variation for 20 scenarios.
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It can be observed that as the number of bidders increases, the mean revenue ap-
proaches the theoretical expected revenue and the variation around the mean decreases
for most of the auction types. However, this variation is significantly different for sad
losers and all-pay. This is also confirmed if the number of scenarios is increased. Appendix
B illustrates this fact, where simulations results are reported in which 50 and 100 scenar-
ios were performed for auctions with up to 20 bidders.

In the traditional auction formats (first-price and second-price auctions), fluctuations
around the mean revenue are less than those of the other auctions, except for the Santa
Claus auction. By the central limit theorem, increasing the number of scenarios, the de-
gree of variability around the mean revenue decreases. Runs with 100 and 500 scenarios
were also done. Those results show that as a function of the number of bidders, the co-
efficient of variation converges to zero for first-price, second-price, and Santa Claus, and
seems to settle around 0.65 for all-pay. However the variability of sad losers remains high
when compared to the others and does not seem to converge to any value.

6. A real experiment

Our previous experimentation with auctions in a broader setting has included the de-
velopment of SUBASTIN (http://subastas.uniandes.edu.co), a web application for the
administration of auctions over the Internet. SUBASTIN collects the bids from the play-
ers and determines the winner in a fairly large family of auctions (SUBASTIN administers
all the auctions described in this paper plus several dynamic auctions such as ascend-
ing English, descending Dutch, German, and simultaneous ascending auctions. SUB-
ASTIN is also capable of administering single-bid combinatorial auctions). Using SUB-
ASTIN, we ran a real all-pay auction where bidders were students of a Game Theory
Class (Universidad de Los Andes, Departamento de Ingenierı́a Industrial, Game Theory
Course, January–May 2004). When bidding to get the object being auctioned, the bid-
ders used their SUBASTIN Web windows; the results are summarized in Table 6.1. (Bids
are stated in Colombian pesos (COP). In April 2004, the exchange rate was US $1 =
COP $2700. This illustrates that the object auctioned did not mean a high expense to any
bidder.)

The market value of the auctioned object was about $15000. So, the auctioneer was not
only able to recover the cost of purchasing the object, but also able to make quite a bit of a
profit. It is clear that at least three bidders were not interested at all; some others bid a very
low value. It is tempting to say that each of these bidders thought of winning the auction
expecting others to bid low as well. Perhaps they disliked the idea that the auctioneer
could profit excessively. However, quite a few bid high, even close to the market value.
This behavior contrasts the behavior of those who bid low.

This experiment is just a sample of what could happen in a nontraditional auction,
even though such type is one that satisfies the assumption of the theorem, at least in
regard to who wins the auction and the seeming independence of the bidders’ valuations.
Simulations of all-pay show a larger variability of the expected revenue than that of first-
price, second-price, and Santa Claus auctions. The results from the experiment shed some
light on the possibility that an auctioneer prefers using one auction over other.
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Table 6.1. Bids in a real all-pay auction.

Bidder ID Bid

El Coyote 0

Ricky Ricon 1000

Carmedelgad3 10000

Juangalind 12000

Andrevasque1 10000

Andresantac 500

Diego Martin 100

Diegodiazm 1000

Rubenjacome 100

Javieguarin 0

Florbetanc 100

Mauriescoba 0

Ricarpedraz 15000

Paulabarrie 20000

J2zp 13000

Francovoyageur 14000

Sebassalaza 100

Maurisuarez 2000

Juanredond 1000

El Mani 500

7. Some experimental difficulties of last-pays

Results shown in Appendix B for simulation runs of last-pays are not quite encouraging.
Expected revenue in auctions in which a few bidders are simulated is close to the theoret-
ical value calculated in Appendix A. However, results no longer seem to hold as long as
more bidders are included.

In last-pays, the auctioneer has positive revenue only if the valuation for all the bidders
is greater than the auctioneer’s reserve value. If at least one bidder’s valuation is less than
the reserve value, the revenue for the auctioneer will be zero as such a bidder is the one
who should be paying. The probability that all valuations are greater than the reserve
value decreases when the number of bidders increases; this also increases the probability
that the auctioneer’s revenue is zero. The results of the simulation runs performed on
last-pays show that when the number of bidders increases, the expected revenue for the
auctioneer goes to zero. Appendix B shows the difference in expected revenue obtained
when a 5000-scenario simulation is compared to a 50000-scenario simulation.

8. Conclusions

For each run, that is, an auction type simulated several times with a given number n
of users, we have found the expected revenue to the auctioneer and a measure of the
variability of such result using its coefficient of variation. When the number of bidders is
fixed, we have then compared such measure across several auction types. If an auctioneer
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does not have the time or the need to run a large number of auctions, would the result
provided by the theorem influence his decision as to which auction to use? If he is inter-
ested in maximizing his revenue, all-pay or sad losers seem to provide some greater degree
of variability of the expected revenue. From the results, we can argue that an auctioneer
seeking to improve his revenue may prefer one auction to another, if he is willing to bear
the risk implied in the variance of the revenue.

For the real auction we performed, if we believed that the assumptions of the theo-
rem held, in particular, that the students’ signals were independent, then we might assert
that the auctioneer could have used a first-price or second-price auction instead of the all-
pay auction. In the context of the main result of the theorem, we would have expected
the same revenue for the auctioneer without worrying about the type of auction admin-
istered. However, as the results of simulations showed, the variability of the revenue is
quite different in all-pay when compared to the more traditional first-price and second
price. It is in this sense that the result from the real experiment becomes relevant to the
inquiry about the auctioneer’s question posed at the beginning and the risk he incurs
when answering such a question.

Appendices

A. Bid functions (Beltrán et al. [1])

Let π represent the bidder expected revenue, v the bidder’s value, b the bid function, and
F(v) the distribution of the bidder’s value.

Optimal bidding function in Santa Claus auction with n bidders is

π = Fn−1(b) · (v− b) +
∫ b

v∗
Fn−1(v)dv, (A.1)

π = bn−1v− bn +
bn

n
−
(
v∗
)n

n
, (A.2)

∂π

∂b
= (n− 1) · bn−2 · v−n · bn−1 + bn−1 = 0, (A.3)

bn−2(v− b)= 0, (A.4)

b = v. (A.5)

Santa Claus’ gift to every bidder in a Santa Claus auction is

S(b)=
∫ b

v∗
Fn−1(v)dv = bn

n
−
(
v∗
)n

n
= bn− (v∗)n

n
. (A.6)

Optimal bid function in all-pay auction with n bidders is

b(v)= vFn−1(v)−
∫ v

v∗
Fn−1(x)dx,

b(v)= v · vn−1−
∫ v

v∗
xn−1dx,

b(v)= vn− vn

n
+

(
v∗
)n

n
.

(A.7)
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Optimal bidding function in sad losers auction with n bidders is as follows.
(i) Any bidder’s expected revenue is π = Fn−1(x) · v− (1−Fn−1(x)) · b(x)− c.

(ii) Let H(x)= (1−Fn−1(x)) · b(x).
(iii) Revenue is maximized when ∂π/∂x = v · (∂/∂x)Fn−1(x)−H′(x)= 0.
(iv) H′(x)= v · (∂/∂x)Fn−1(x).

At equilibrium, a bidder bids its valuation, that is, x = v,

H′(v)= v · ∂

∂v
Fn−1(v),

H(v)=
∫ v

v∗
x ·d(Fn−1(x)

)
+ k(A.1).

(A.8)

Applying the expression of the expected revenue to v∗, then πv∗=v∗·Fn−1(v∗)−H(v∗)−
c∗ = 0, and so H(v∗)= v∗ ·Fn−1(v∗)− c∗ (A.2). Equating (A.1) and (A.2),

k = v∗ ·Fn−1(v∗)− c∗,

H(v)=
∫ v

v∗
x ·d(Fn−1(x)

)
+v∗ ·Fn−1(v∗)− c∗

= vFn−1(v)−
∫ v

v∗
Fn−1(x)dx− c∗.

(A.9)

If F(x)≈U[0,1], then

H(v)= 1
n

(
(n− 1)vn +

(
v∗
)n−nc∗

)
. (A.10)

Using the original definition of H(v) ,

b(v)= H(v)
1− vn−1

= (n− 1)vn +
(
v∗
)n−nc∗

n
(
1− vn−1

) . (A.11)

Replacing c∗ = v∗Fn−1
(
v∗
)= (v∗)n,

b(v)=
(n− 1)

(
vn− (v∗)n)

n
(
1− vn−1

) . (A.12)

Optimal bid function in last-pays auction with n bidders is

b(v)= vFn−1(v)− ∫ vv∗Fn−1(x)dx(
1−F(v)

)n−1 , b(v)= v · vn−1− ∫ vv∗ xn−1dx

(1− v)n−1
,

b(v)=
(
v∗
)n

+ (n− 1)vn

n(1− v)n−1
.

(A.13)
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Figure B.1. Results for 20 bidders and 100 scenarios.

Auctioneer’s expected revenue is

π = n
∫ v

v∗

(
vF′(v) +F(v)− 1

) ·F(v)n−1dv,

π = n
∫ v

v∗

(
v+ v− 1

) · vn−1dv,

π = n
[

2vn+1

n+ 1
− vn

n

]v
v∗

,

π =
2n
(

(v)n+1− (v∗)n+1
)
− (n+ 1)

(
(v)n− (v∗)n)

n+ 1
.

(A.14)

B. Simulation results

Figures B.1 to B.11 show results for different numbers of bidders and scenarios.
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Figure B.2. Results for 20 bidders and 500 scenarios.
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Figure B.3. Results for 50 bidders and 100 scenarios.
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Figure B.4. Results for 50 bidders and 100 scenarios.
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Figure B.5. Results for 50 bidders and 500 scenarios.
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Figure B.6. Results for 50 bidders and 500 scenarios.
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Figure B.7. Results for 100 bidders and 100 scenarios.
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Figure B.8. Results for 100 bidders and 100 scenarios.
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Figure B.9. Results for 100 bidders and 500 scenarios.
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Figure B.10. Results for 100 bidders and 500 scenarios.
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Figure B.11. Last-pay: 15 bidders, results from 5000 and 50000 scenarios.
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Some limited analytical derivation for networked queue models has been proposed in the
literature, but their solutions are often of a great mathematical challenge. To overcome
such limitations, simulation tools that can deal with general networked queue topology
must be developed. Despite certain limitations, simulation algorithms provide a mecha-
nism to obtain insight and good numerical approximation to parameters of networked
queues. This paper presents a closed stochastic simulation network model and several
approximation and bounding schemes for G/G/c systems. The analysis was originally
conducted to verify the integrity of simulation models used to develop alternative policy
options conducted on behalf of the US Air Force. We showed that the theoretical bounds
could be used to approximate mean capacities at various queues. In this paper, we present
results for a G/G/8 system though similar results have been obtained for other networks
of queues as well.

Copyright © 2006 M. Amouzegar and K. Moshirvaziri. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

In this paper we consider a closed stochastic simulation system model used in the analy-
sis of aircraft engines maintenance and repair options. In this analysis, we evaluated the
cost and benefits of centralized maintenance versus a decentralized option. This analy-
sis was prompted by the ongoing reorganization of the Air Force into an Air and Space
Expeditionary Force (AEF). The main objective of this reorganization is to replace the
forward presence of air power with a force that can deploy quickly from the continental
United States (CONUS) in response to a crisis, commence operations immediately upon
arrival, and sustain those operations as needed. To support the expeditionary force, sup-
port processes such as munitions, fuels, and maintenance also need to be transformed.
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2 A simulation framework for networked queue models

AEF requires a combat support system capable of supporting an expanded range of op-
erations from humanitarian and disaster relief to major combat and peacekeeping oper-
ations, which could take place in any of a number of different locations.

One of the critical processes for the Air Force is the intermediate maintenance for
jet engines. This so-called intermediate maintenance facility (IMF) consists of several
components, including the maintenance (repair and service) shop, the module shop, and
the assembly and test cell. IMF is one of three levels of maintenance used by the Air Force
to repair jet engines, especially those powering fighter aircraft.

(i) Flightline maintenance consists mostly of inspections, diagnostics, engine re-
movals, and some quick repairs that do not involve engine teardown.

(ii) Service at IMF includes disassembly of the engines; substantial repairs to parts
such as fans, low pressure turbines, and afterburners; and engine test cell runs.

(iii) Depot maintenance involves the complete teardown and refurbishment of any
repairable part in an engine. The rebuilding of an engine at the depot allows the
engine’s use of parameters (flight time, cycles, etc.) effectively to be reset at zero.

Traditionally, the IMF has been located at the operating base with the aircraft. This pol-
icy was reinforced by the planning for major wars in Europe and Korea: a unit would
be moved to existing bases in theater in preparation for immediate action and could ex-
pect little resupply during the first few weeks of combat. Under traditional planning for
wing deployment, therefore, the IMF is prepared to move along with the rest of the wing
support, although not with the combat units themselves, who will use spares to replace
engines until the IMF arrives and is up and running.

1.1. Current practices and trends. In recent years, the question of whether or not IMF
operations should be centralized has been the subject of frequent discussion in the engine
community. Many factors have favored centralization, including the increased complexity
of engines and the large investment required for repair facilities. Other factors have mit-
igated against centralization, particularly the fact that, unlike other commodities such as
avionics components, engines are heavy and bulky and thus require special packing to
ship. Over the years, the Air Force has experienced a pattern of alternation between the
partial centralization of the maintenance operations—in certain regions and for certain
engine types—and the subsequent restoration of IMF to operating units. The require-
ments associated with expeditionary operations—including the ability to move quickly
and the need to keep initial transportation requirements down—have raised new ques-
tions about the policy of locating the IMF at the operating base. This research aims to
provide insights into this issue by determining whether engine maintenance support can
best be provided from decentralized shops at the supported bases or from a centralized,
off-base facility.

The operation and maintenance of engines comprise the sequence of events illustrated
as an aggregate in Figure 1.1: planes fly (sorties) from main bases and remote operating
locations across the globe to meet training and other requirements. After each sortie,
aircraft engines are inspected on the flight line, and, depending on the accumulated flying
hours and other factors, are given minor maintenance. Engines may also be removed from
aircraft and sent to an intermediate maintenance facility for major service and repair. At
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Figure 1.1. Operation and maintenance sequence.

this facility the engines are inspected, repaired, tested, and then returned to the flight line
as serviceable spares. At each operating site there is a cache of serviceable spares to replace
engines sent to IMF. However, there is only a limited inventory of such spares; there may
be time where aircraft are grounded due to the engines availability. The ultimate goal is
to increase the efficiency of the maintenance process while keeping the least number of
spares as possible.

1.2. Model formation. The nature of this problem has lent itself to a closed loop net-
works of multiple servers/queues, some sequential and others parallel (over forty queues
and servers). A queueing system is said to be closed if the servicing facility processes only
a given group of permanent customers. When a customer needs service, it joins the queue
and it is either served based on FIFO discipline or is given priority if it meets a certain
criteria (e.g., a particular engine is required in the field faster than other type). The de-
mand for service and duration of service depends on many variables and for this study
we used historical data to compute the arrival and departure rates. The complexity of this
problem led to a queueing model that could only be described with general arrival and
service times or a G/G/c/n queueing system where n, the restriction on system capacity,
varied depending on the process. G/G/c queue and its related families, M/G/c, G/G/1,
are too complex to analyze mathematically and there are very few closed-formed results
about such systems. However, several quite useful approximate and bounding results have
been obtained. We used these approximations and bounds to create a robust simulation
model for a large-scale engine maintenance system. These bounds and approximations
were used in evaluating the robustness of our simulation model.
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In the next section, we will describe some of the results associated with G/G/c. In the
subsequent section, we will present the simulation model and some numerical results.
We will end this paper with a few concluding remarks.

2. G/G/c system

The G/G/1 system and its theoretical results are used to derive what is presently known
about the G/G/c system and thus will be discussed first. We consider a G/G/1 system con-
sisting of a single server with independent and identically distributed interarrival times
as well as service times and unlimited queueing capacity. Let X denote interarrival times
and let fx(x), 1/λ, and σ2

x denote the probability density function (pdf), the mean, and
the variance of X , respectively. In addition, let S, fs(s), 1/μ, and σ2

s represent those cor-
responding for the service times. Although there are no closed form solutions for this
model, there are some useful bounds developed in recent years for the quantities L, Lq,
W , and Wq (see [4, 7]).

For G/G/1 systems with no restrictions on the interarrival or on the service time pdf ’s,
several bounds have been developed (see [8, 9]). These bounds, in essence, state that for
the average steady-state waiting time in queue, Wq, we have

ρ2
(
1 +C2

s

)− 2ρ
2λ
(
1− ρ

) <Wq ≤ λ
(
σ2
x + σ2

s

)
2(1− ρ)

, (2.1)

where Cs = σsμ is the coefficient of variation for the service times, and ρ = λ/μ is the
utilization factor. For the stability of the system we must have ρ < 1. Note that the lower
bound given above is not tight. This becomes obvious from the fact that, even at very high
utilization rates, the bounds take negative values, unless Cs > 1. But for Cs to be greater
than 1, it must be that the service time pdf must be “more random” than the negative
exponential pdf which has its Cs = 1.

2.1. Desired class property. A tight simple lower bound is given in [9] for a class of
G/G/1 queues, which includes most practical problems encountered in the real world.
Thus, class requirement is that all queueing systems in it must have interarrival time pdf,
fx(x), satisfying the following property:

E
[
X − t | X > t

]≤ 1
λ

∀t ≥ 0. (2.2)

If it is known that any given interarrival gap lasted more than a time t, then the condition
above requires that the expected length of the remaining time, X − t, in that gap be less
than the unconditional expected length of the gap, E[X](= 1/λ). This is of course true for
the negative exponential variable, and in that case the condition becomes equality. When
the condition holds, then we have

U − 1 + ρ

2λ
≤Wq ≤U , U = λ

(
σ2
x + σ2

s

)
2(1− ρ)

. (2.3)

The upper and lower bounds may now be derived using this and by applying Little’s
formula, L = λW , Lq = λWq, and the fact that W = 1/μ + Wq. The following is easily
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obtained:

λ ·U − 1 + ρ

2
≤ Lq ≤ λ ·U. (2.4)

This implies that the difference between the upper and the lower bounds is (1 + ρ)/2, but
0 < ρ < 1, so this difference is always between 0.5 and 1. Thus, we can find the average
queue length to within an accuracy of between 0.5 and 1 (depending on the value of ρ).
Note that most “well-behaved” arrival time distributions satisfy the condition, including
uniform, triangular, or beta-type pdf ’s, which often are reasonably good approximations
of many general interarrival time pdf ’s. Only a few common continuous random vari-
ables, such as those in the hyperexponential family, which are “more random” (informally
speaking) than the negative exponential random variable, do not satisfy the condition.

2.2. Under heavy traffic. Another important result that is available for the G/G/1 system
is known as the heavy-traffic approximation (for more information see [5]). It applies for
values of ρ near 1 and thus provides estimates for waiting times when it is known that
waiting times are large. When ρ is near 1, the distribution of steady-state waiting time in
queue in a G/G/1 system is approximately negative exponential with mean value Wq =U .
The average waiting time for G/G/1 queueing systems is dominated by a (1− ρ)−1 term
under steady-state conditions, as the utilization ratio tends to 1. Consequently, the type
of behavior that is normally seen in a simple M/M/1 system is also present for entirely
general arrival- and service-time distributions, G/G/1.

2.3. G/G/c bounds. The only general results on G/G/c system [2] that have been obtained
to date are in the form of quite relaxed upper and lower bounds on average steady-state
queueing characteristics. These bounds are often computed by, first, comparing a G/G/c
system with a G/G/1 system that has the same “service behavior” as the G/G/c system.
That is, the single server in G/G/1 works c times as fast as each of the servers in G/G/c and
by applying the earlier results on G/G/1, given in the previous section. The most useful
and applicable bounds on the average waiting time in queue which have been derived to
date for G/G/c systems, based on those of G/G/1, is

W1
q −

(c− 1)μE
[
S2
]

2c
≤Wq ≤

[
σ2
X + (1/c)σ2

S +
(
(c− 1)/c2

)(
1/μ2

)]
λ

2(1− λ/cμ)
, (2.5)

where for each of the c servers, μ, σ2
S , and E[S2] are the rate, variance, and the second mo-

ment of service time, respectively. W1
q denotes the mean waiting time for a G/G/1 system

with a service time denoted by a random variable S1 = S/c with service c times faster than
that of each of the c servers in the G/G/c system, but with an identical arrival process. If
W1

q is known or is computed using the results discussed above, we can substitute an exact
expression. Note that for the general M/G/1 system we have the following well-known
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results, which can be used in deriving the G/G/c approximation bounds:

P◦ = 1− ρ, L= ρ+
ρ2 + λ2σ2

S

2(1− ρ)
,

W = L

λ
= 1

μ
+
ρ2 + λ2σ2

S

2(1− ρ)
,

Wq =W − 1
μ
= ρ2 + λ2σ2

S

2(1− ρ)
= λ

[(
1/μ2

)
+ σ2

S

]
2(1− ρ)

,

Lq = λWq = ρ2 + λ2σ2
S

2(1− ρ)
.

(2.6)

Thus, for example, for the M/G/c queueing system, one should use the exact expression
for W1

q given above with 1/cμ and σ2
S /c

2, for the expected value and variance of the service
times, respectively.

The corresponding heavy-traffic approximation for G/G/c systems has been derived
[6]. This result implies that for λcμ approaching 1 in a G/G/c system, the waiting time in
queue under steady-state conditions assumes a distribution that is approximately negative
exponential with mean value

Wq =
[
σ2
X +

(
σ2
S /c
)]
λ

2(1− λ/cμ)
. (2.7)

Note once more that expected waiting time is dominated by a (1− ρ) term, as ρ ap-
proaches 1 (ρ = λ/cμ for multiserver systems). We used the above results for G/G/c to
have a point of reference for the simulation and tested the results against these theoretical
backdrops.

3. An overview of the simulation model

In terms of modeling, we are interested in the flow of entities (e.g., spares, personnel),
the state of the system (e.g., engine not serviceable, spares inventory), and the processes
(e.g., service time, sortie rates). The structure of the model is based on a set of hierarchi-
cal, functional blocks that generate and modify entities, processes, and attributes. These
blocks represent main bases, airfields, and intermediate maintenance shops.

In general, the simulation is based on the following sequence of events: aircraft are
flown from main bases or remote sites to meet certain flying requirements. After each
mission, the aircraft and their engines are inspected at the airfield and in most cases
they are fully operational within hours. However, when engines accumulate enough fly-
ing hours, or when unscheduled maintenance is required, engines are removed from the
planes and sent to an intermediate maintenance facility. Flightline maintenance includes
servicing, repairs, cycle recording, and tracking, which are coordinated with the engine
management branch (EMB) and IMF. On the flightline, installed aircraft engines are ser-
viced on a daily basis, which includes servicing the oil, inspecting the chip detectors,
and entering the intakes and augmentor to inspect for foreign object damage (FOD) and
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Figure 3.1. Intermediate maintenance shop.

external engine damage. In addition, engine cycles are recorded in the comprehensive en-
gine management systems (CEMS) database. CEMS enables the EMB to monitor usage of
engines and modules (when used) to determine the need for inspections and time change
technical orders (TCTOs). The flightline also performs all engine removals and installa-
tions. After the flightline removes an engine for maintenance at the IMF, it sometimes
performs sheet metal work on the engine bay and replaces some of the hydraulic lines
and cables in the aircraft engine bay that have been damaged due to chafing, cracks, or
heat.

The IMF is responsible for both scheduled and unscheduled off-equipment engine
maintenance. Scheduled maintenance includes module time changes, TCTOs, and other
inspections and repairs. Unscheduled maintenance consists primarily of performance-
related problems that either cannot be corrected by the flightline or are beyond their
capabilities per technical order. For unscheduled maintenance, the intermediate main-
tenance shop often performs a preliminary test cell run to troubleshoot the engine and
identify other potential problems. The IMF is capable of replacing any module in a mod-
ular engine and also repairs some of the modules while sending others to the depot. It is
also responsible for packing engines for transportation.

The IMF operates the engine test cell facility and functions. As part of this function, the
IMF personnel transport engines, hook up cables, and fuel lines conduct pre- and post-
run engine inspection, and disconnect cables and fuel lines. In many instances, the IMF
also serves as a source of expertise to back up the flightline and provide quick response
repair or cannibalizing key parts as needed. This organization is quite large (100–150
people for a fighter wing) and occupies an industrial space equipped with five or more
work bays of 1500 square feet each, an overhead crane, supply storage, backshops for spe-
cialized repair activities, and a test cell. The test cell is typically located offsite in a “hush
house” where a fully-assembled engine can be run at full power for testing purposes.

The general flow of IMF work is as follows with portion of the process depicted in
Figure 3.1:

(i) receive engine from the flightline;
(ii) perform inspection and time change check;
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Figure 3.2. Top-level view of the simulation model.

(iii) perform database history check;
(iv) create a job in core automated maintenance system (CAMS);
(v) assign engine to a crew;

(vi) determine required repairs;
(vii) decide on complete or partial disassembly;

(viii) conduct other inspections;
(ix) conduct teardown;
(x) perform IMF repair and maintenance;

(xi) perform module work, if needed, at module shop;
(xii) assemble engine;

(xiii) send to test cell “(hush house);”
(xiv) conduct final inspection.

The first requirement for the model is the number and types of aircraft, and the number
and the age of installed engines. The aircraft and engines are combined to form fully op-
erational aircraft. They are sorted, based on the age of the engine, and are then queued for
flying. After each sortie, the aircraft is sent to the airfield block where it is inspected and
maintained. Each aircraft that passes the inspection is sent back to the pool of available
aircraft. Some aircraft require minor repair, which is performed on the flight line. The
number of engines pulled from the aircraft is a function of the age and the type of the
engine. The detached engines are tagged according to the removal type (i.e., scheduled
or unscheduled) and are sent to the IMF shop. Aircraft are then identified as not opera-
tional and are queued for the next available serviceable engine. These aircraft are either
put back to service immediately, if there are serviceable spares available, or they await the
arrival of engines from the maintenance shop. Figure 3.2 illustrates the top level view of
the simulation model using block diagrams from Extend software (Extend is a registered
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trademark of Imagine That, Inc.). This figure presents notional F-15 and F-16 jet fighters
with a centralized maintenance facility.

At the maintenance facility, engines are queued in two parallel lines, the first is for the
engines that require parts that are not available and the other is for engines that await
maintenance. The modular engines that have been processed by the IMF shop are sent to
the module shops. Engines that enter the module shop are separated into five modules.
Engines that leave the module shop are sent to the assembly and test cell. In this section,
engines are queued for assembly, the test cell, and the final inspection. After assembly and
test cell, engines are sent to the spare engines pool to be installed on the aircraft to create
fully operations aircraft. These aircraft leave this section to join the pool of other aircraft
and the whole cycle starts again. Figure 1.1 illustrates this process for only one main and
operating base. The model, however, has taken into account a problem with several such
bases (for more information on the simulation model, see [1]).

3.1. Simulation setup and data analysis. We analyzed a number of possible support
configurations for the IMF involving various combinations of centralized and decen-
tralized locations. Centralized maintenance structures include forward support bases,
while decentralized locations include home base support and maintenance at forward
operating bases. Each structure was assessed under both a war and a peacetime sce-
nario.

Here we describe in detail the specific IMF alternatives we evaluate in this analysis.

(i) Decentralized-deployed. In this alternative peacetime, maintenance is provided by
IMFs located at each base. When part of a unit is deployed, part of that unit’s IMF deploys
to the appropriate forward bases as well.

(ii) Decentralized-no deployment. As with the previous alternative, each of the peacetime
bases has its own IMF, but in this case the home IMF supports any deployed forces from
its unit as well. The home base is sized so that it has the resources to support both peace-
time and wartime flying.

(iii) Decentralized-forward support location. As with the previous two alternatives, each
peacetime base has its own IMF, but when the units deploy, some of the IMF person-
nel (but not their equipment) deploy to a single overseas base in theater from which all
deployed units are supported.

(iv) US support location-forward support location. In this alternative all units are sup-
ported in peacetime by a single centralized operation at home, which deploys personnel
to an overseas base in theater when conflict occurs. In peacetime, the home IMF is staffed
with the sum of the rail teams needed for deployment and those required to keep the
nonengaged forces flying.

(v) Home support location. In this last alternative all units everywhere are supported by a
single shop both during peacetime and in deployment.

During the simulations, we evaluated each of these alternatives using three broad
metrics. The first is performance: does the alternative provide the required support for
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operational flying? In peacetime this means being able to maintain the requisite flying for
pilot training; in wartime it means being able to meet the required number of sorties day
by day. The second metric is resources: what does the alternative require to provide ade-
quate performance? For jet engines, one of the key resources is spare engines, which can
provide a hedge against uncertainties. Other resources are personnel and transportation
costs, and the evaluation provides an indication of the tradeoff between these two. The
third metric is uncertainty: how well does the alternative respond to unforeseen events?
For this metric, we evaluate how robust the Alternatives are to changes in the engine
removal rate.

Many of the inputs to the model were provided by analysis of data drawn from the
comprehensive engine management system (CEMS), reliability and maintainability
management information system (REMIS), which rolls up data from the base-level core
automated maintenance system (CAMS), as well as data in both electronic and paper
form provided by the units we visited. The CEMS data provided information on total
repair time for individual engines, engine not mission capable due to supply (ENMCS)
times and transportation times for some engines were provided by some of the bases.
REMIS provided a check on the CEMS data for overall engine repair and provided repair
data for module work.

3.2. Simulation results. In this section, we will present some of the parameters used in
our analysis and the results of the simulation runs. We will illustrate these parameters by
running a scenario with 36 F-16s and 66 F-15s. The model is run for about two simulated
years.

Engines are typically set on a rail and require a 5-person team per shift. The regu-
lar shift is about 8 hours and the shops operate at 2 shifts a day. During peak demand
period, the shops may shift their operations to 24 hours a day, seven days a week with
each shift as long as 12 hours. The capacity of the IMF is determined by the combina-
tion of rails and the personnel, a “rail team.” Other shops have different architecture but
all are bounded by number of staff and the equipment. Airfields and the transportation
network are bounded by the capacity of the flight line and the number of transporters,
respectively. There are three smaller main bases with three-rail team capacity and a large
one with 7-rail teams capacity; in other words, 3 and 7 parallel servers, respectively. There
is also a remote facility with 8 rail teams. The other parts of the shop (e.g., the module
shop) are sized accordingly.

On average about 119 customers entered the system (with variance of 253 and stan-
dard deviation of 15). At the end of the simulation run, about 105 customers were served.
The IMF shop at the remote site (with 8 servers) reported an average wait time of
5.538461538462 days. Although the arrival and the service times varied widely, as they
depend heavily on the other parts of the system, the reported wait time seemed reasonable
and was consistent with the theoretical bounds. Using the Poisson distribution, we get a
wait time of 2.06 days and 4.13 using the exponential distribution. Table 3.1 illustrates
the theoretical bounds for a single server process in the inspection shop. The simulation
model reported an average of 0.808499576845 for the queue length and 10 days for the
average wait.



M. Amouzegar and K. Moshirvaziri 11

12

10

8

6

4

2

0

�2

�4

Se
rv

ic
ea

bl
e

sp
ar

es

1 10 19 28 37 46 55 64 73 82 91 100

Days Threshold
to maintain

sortiesCSL
FSL
Dep JEIM
Home

Figure 3.3. Deployed F-16 results.

Table 3.1. Sample results for a G/G/1 system.

Distribution
Utilization

Var (X) Var (S)
Wait time Length

factor LB UB LB UB

Poisson 1.32 0.33 0.25 — — 0.06130 —

Eponential 0.757576 0.1089 0.0625 0.78125 1.07125 3.125 3.24621

Uniform
— 0.02083 — — — — —

0.08 3 0.003333 — 0.01050 — 0.00840

Normal
— 0.90090 — — — — —

0.18018 1 5 2.58725 3.24225 2.51103 2.92094

Table 3.2 illustrates the arrival and departure rates for the sequence of servers in the
maintenance process. Some customers bypass the first queue and enter the second queue
with multiple servers. After the service, some customers, again, bypass the next server. In
this section, there are five parallel servers and customers depending on their requirement
must enter a particular server queue. Finally all customers enter the last server.

Table 3.3 illustrates the theoretical versus simulated bounds for the first queue, in the
eight-server scenario discussed above.

Figure 3.3 presents the results from the deployment portion of the operation for the
F-16 aircraft, comparing the centralized US support location (US), forward support loca-
tion (FSL), deployment maintenance shops (Dep IMF), and home base locations (Home).
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Table 3.2. Arrive and departure in the IMF.

Server (single) Server (multiple) Server (single) 5 parallel Server (single)

A D B A D A D B A D

33 25 86 111 104 94 92 10 102 96

Table 3.3. Sample results for a G/G/8 system.

Distribution

Queue
Length

Simulation

wait time results

LB UB LB UB W L

Poisson arrivals — — — — — —

Exponential 3.21107 4.97622 1.22465 1.64215 5.04683 5.66852

Uniform 0.68181 1.3561 .02367 .15627 3.97198 3.20338

Normal 2.58725 3.24225 2.51103 2.92094 5.04280 5.89083

4. Concluding remarks

We presented a closed stochastic simulation network model and several approximation
and bounding options available in a G/G/c system. The model was implemented under
several simulation environments, including Extend v6 [3]. The analysis was conducted
to verify the integrity of the simulation model used to developed alternative policy op-
tions conducted on behalf of the US Air Force and presented in [1]. We showed that the
theoretical bounds could be used to approximate mean capacities at various queues. In
this paper only the results for G/G/8 was presented in order to avoid lengthy numeri-
cal tabulation of the results. However, such consistency was observed amongst the other
queues.

References

[1] M. Amouzegar, L. S. Galway, and A. Geller, Supporting expeditionary aerospace forces: an analysis
of jet engine intermediate maintenance options, Tech. Rep. MR-1431-AF, RAND, California, 2001.

[2] S. L. Brumelle, Some inequalities for parallel-server queues, Operations Research 19 (1971), 402–
413.

[3] B. Diamond, S. Lamperti, D. Krahl, and A. Nastasi, Extend v6 User’s Guide, 2002.
[4] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed., Wiley Series in Probability

and Statistics: Texts and References Section, John Wiley & Sons, New York, 1998.
[5] J. F. C. Kingman, On queues in heavy traffic, Journal of the Royal Statistical Society. Series B.

Methodological 24 (1962), 383–392.
[6] L. Köllerström, Heavy traffic theory for queues with several servers: I, Journal of Applied Proba-

bility 11 (1974), 544–552.
[7] R. Larson and A. Odoni, Urban Operations Research, Prentice-Hall, New Jersey, 1981.



M. Amouzegar and K. Moshirvaziri 13

[8] W. G. Marchal, Some simpler bounds on the mean queuing time, Operations Research 26 (1978),
no. 6, 1083–1088.

[9] K. T. Marshall, Some inequalities in queuing, Operations Research 16 (1968), 651–665.

Mahyar Amouzegar: The RAND Corporation, Santa Monica, CA 90407-2138, USA;
College of Engineering, California State University, Long Beach, CA 90840, USA
E-mail address: mahyar@csulb.edu

Khosrow Moshirvaziri: Information Systems Department, California State University, Long Beach,
CA 90840, USA
E-mail address: moshir@csulb.edu



AN ANALYTICAL CHARACTERIZATION FOR AN OPTIMAL
CHANGE OF GAUSSIAN MEASURES

HENRY SCHELLHORN

Received 25 February 2006; Revised 9 June 2006; Accepted 9 June 2006

We consider two Gaussian measures. In the “initial” measure the state variable is Gauss-
ian, with zero drift and time-varying volatility. In the “target measure” the state variable
follows an Ornstein-Uhlenbeck process, with a free set of parameters, namely, the time-
varying speed of mean reversion. We look for the speed of mean reversion that minimizes
the variance of the Radon-Nikodym derivative of the target measure with respect to the
initial measure under a constraint on the time integral of the variance of the state variable
in the target measure. We show that the optimal speed of mean reversion follows a Riccati
equation. This equation can be solved analytically when the volatility curve takes specific
shapes. We discuss an application of this result to simulation, which we presented in an
earlier article.

Copyright © 2006 Henry Schellhorn. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider two Gaussian measures. In the “initial” measure the state variable is Gauss-
ian, with zero drift, (we chose zero drift for ease of exposition, but the same development
applies to a nonzero drift) and time-varying volatility. In the “target measure” the state
variable follows an Ornstein-Uhlenbeck process, with a free set of parameters, namely,
the time-varying speed of mean reversion. We look for the speed of mean reversion that
minimizes the variance of the Radon-Nikodym derivative of the target measure with re-
spect to the initial measure under a constraint on the time integral of the variance of the
state variable in the target measure.

We studied this problem in an earlier article (see Schellhorn [10]), where we explained
one application of this result to the field of Monte Carlo simulation. It is sometimes im-
portant to resimulate a system under a different measure than the initial measure. The im-
mediate example is sensitivity analysis. Another example is in the field of finance, where
practitioners are often interested in seeing the results of their simulations in two different
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measures, the “actual measure,” and the “risk-neutral” measure. One of these measures
has typically a free parameter, or sets of parameters. Suppose the goal is to calculate
E[z] under two different measures, and that the integrand z(ω)—which is expensive to
compute—was initially simulated in the initial measure. We argued that a computation-
ally better resimulation estimator (compared to resimulating z(ω) in the target measure)
was the sum of the initial z(ω) weighted by the Radon-Nikodym derivative g(ω) of the
target measure with respect to the initial measure. However, the product g(ω)z(ω) tends
to have a larger variance than z(ω), and this fact may outweigh the performance gain of
not resimulating z. Care must be therefore taken in selecting a target measure for simula-
tion performance, and we suggested that a good performance measure was the variance
of g. When the state variable x is assumed Gaussian in both measures (which is very often
the case in practice for better analytical tractability), the only free parameter is the speed
of mean reversion a of x in the target measure.

The problem above is completely characterized once one of several constraints on the
autocovariance function of x in the target measure are introduced—we do not consider
the usually less interesting case, where x is not first-moment stationary in the target mea-
sure. In Schellhorn [10] we considered in turn two possible constraints:

(i) a constraint on the terminal variance of x,
(ii) a constraint on the average variance of x,

and showed that, in both cases, the control satisfied (together with other variables) a sys-
tem of four nonlinear ordinary differential equations. This system happened to be quite
difficult to solve numerically. Nevertheless, the so-called “change of measure” resimula-
tion technique proved out to be effective on various examples.

Another potential application of this problem is the theory of incomplete markets
in mathematical finance. Several authors (see, e.g., Rouge and El Karoui [8], Delbaen et
al.[2]) explore the duality between utility maximization and optimal choice of measure. If
the utility function is exponential, the dual objective to minimize is the relative entropy of
the target measure, that is, the first moment of g log g. If the utility function is quadratic,
the dual objective to minimize is the second moment of g (see Duffie and Richardson [3],
Schweizer [11], Bellini and Frittelli [1]). A majority of authors seems to have pursued the
first avenue, that is, minimizing entropy, because among others of its better tractability
(Rheinlaender [7]). We conjecture that the result of this paper may help research in the
second avenue, that is, quadratic utility functions.

In this article, we consider only a constraint on the average variance of x. Compared
to our earlier article, we use a different representation of the second moment of g, which
turns out to be easier to handle analytically. Using the maximum principle, we show that
the optimal speed of mean reversion follows a Riccati equation. We show solutions of the
problem in two cases, when volatility is constant, and when volatility is an exponential
function of time. We suspect that other cases are also amenable to closed form formulae.
Finally, we compare our exact results to the approximation given in Schellhorn [10].

2. Model and results

Notation 1. The complete filtered probability space (Ω,�,PI) supports a Brownian mo-
tion WI . We use the superscripts I and T to refer to the probability measure, expectation
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operator, variance (Var) operator, and Brownian motion in the initial/terminal measure.
When not shown otherwise, the expectation and variance operators are taken at time
zero.

The dynamics of the variable x of interest are

dx(t)= σ(t)dWI(t),

x(0)= 0,
(2.1)

where σ > 0 is a deterministic function of time. The terminal measure PT supports one
Brownian motion WT , with

dWT(t)= dWI(t) +
a(t)x(t)
σ(t)

dt. (2.2)

Once the speed of mean reversion a(t) is specified, PT becomes fully specified. We
define the Radon-Nikodym derivative process:

g(t)≡ EI

[
dPT

dPI

∣∣∣∣�t

]
. (2.3)

By Girsanov theorem,

dg(t)= a(t)x(t)
σ(t)

dWI(t). (2.4)

The optimization problem is to minimize the variance of g under a constraint on the
average variance of the state variable in the terminal measure:

minEI
[
g2(t)

]
, (2.5)

VarT
[∫∞

0
x2(t)dt

]
≤A. (2.6)

Theorem 2.1. The speed of mean reversion that solves (2.5) and (2.6) is of the form

a(t)= σ2(t)y(t), (2.7)

where y solves the Riccati equation

dy(t)
dt

=−σ2(t)y2(t)− λ,

y(T)= 0,

(2.8)

and λ≥ 0 is the Lagrange multiplier of relation (2.6).

We now look at the solution of the Riccati equation for particular volatility functions.
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Case 1 (σ is constant). The solution to the Riccati equation is

a(t)= σ
√
λ tan

(
σ
√
λ(T − t)

)
. (2.9)

As required by the transversality conditions, a(T)= 0. As expected the speed of mean
reversion is increasing in λ and decreasing in t. We notice that when λ is small the speed
of mean reversion is a linear decreasing function.

Case 2 (σ2(t) = αexp(−kt) for α > 0). We write J1 for the Bessel functions of the first
kind. Let

C ≡
−(1/2)J1

(
(2/k)

√
λαexp(−kT)

)
− (2/k)

√
λαexp(−kT)J

′
1

(
(2/k)

√
λαexp(−kT)

)
J−1

(
(2/k)

√
λαexp(−kT)

)
+ (2/k)

√
λαexp(−kT)J

′
−1

(
(2/k)

√
λαexp(−kT)

) .

(2.10)

Then

y(t)=−σ2(t)
k exp(kT)

α

u
′(
ek(T−t))

u
(
ek(T−t)) ,

u(s)= s1/2J1

(
2
k

√
λαexp(−kT)s

)
+CJ−1

(
2
k

√
λαexp(−kT)s

)
.

(2.11)

Lemma 2.2. Let v(t)= ET[x2(t)]. Then

EI
[
g2(T)

]= exp

(∫ T

t=0

a2(t)
σ2(t)

v(t)dt

)
. (2.12)

Proof. Let μ= ax/σ . Then

EI
[
g2(T)

]= ET
[
g(T)

]

= ET

[
exp

(
−
∫ T

0
μ(t)dWI(t)− 1

2

∫ T

0
μ2(t)dt

)]

= ET

[
exp

(
−
∫ T

0
μ(t)

(
dWT(t)−μ(t)dt

)− 1
2

∫ T

0
μ2(t)dt

)]

= ET

[
exp

(∫ T

0
μ2(t)dt

)]
.

(2.13)
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We obtain then

EI[g2(T)]= ET

[
exp

[∫ T

0

a2(t)
σ2(t)

[
WT

(
v(t)

)]2
dt

]]

= ET

[
exp

[∫ v(T)

0

dt

dv

∣∣∣∣
u

a2
(
v−1(u)

)
σ2
(
v−1(u)

)W2(u)du

]]

= ET

[
exp

[∫ v(T)

0
h(u)W2(u)du

]]
,

(2.14)

where we have defined

h(u)= dt

dv

∣∣∣∣
u

a2
(
v−1(u)

)
σ2
(
v−1(u)

) . (2.15)

To calculate the Carleman-Fredholm determinant (see, e.g., Grasselli and Hurd [4] or
Levendorskii [5]), we resort to a discrete approximation. We first define V as the smallest
value larger than or equal to v(T) so that V/Δu is integer. We also define

H(u)=
∫ v(T)

u
h(s)ds,

z =
[
z(1) ··· z

(
V

Δu

)]
,

Σ−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− 2H(Δu)Δu −4H(2Δu)Δu
... −4H(V)Δu

0 1− 2H(2Δu)Δu
... ···

...
...

... −4H(V)Δu

0
... 0 1− 2H(V)Δu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.16)

We calculate

EI
[
g2(T)

]= ET

[
exp

[∫ v(T)

u=0
h(u)W2(u)

]]

= lim
Δu→0

ET

[
exp

[V/Δu∑
u=1

h(uΔu)
u∑
s=1

u∑
t=1

z(s)z(t)(Δu)2

]]

= lim
Δu→0

1√
(2π)V/2Δu

∫
···

∫
exp

(
− 1

2
zΣ−1z

)
dz
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= lim
Δu→0

1√(
1− 2H(Δu)Δ

)···(1− 2H(V)Δu
)

= lim
Δu→0

exp

(∫ v(t)

0
H(u)du

)

= exp

(∫ v(T)

u=0

∫ v(t)

s=u
dt

dv

∣∣∣∣
s

a2
(
v−1(s)

)
σ2
(
v−1(s)

)dsdu
)

= exp

(∫ v(T)

s=0

dt

dv
|s a

2
(
v−1(s)

)
σ2
(
v−1(s)

)v(v−1(s)
)
ds

)

= exp

(∫ T

t=0

a2(t)
σ2(t)

v(t)dt

)
.

(2.17)

�

Proof of Theorem 2.1. The problem is

min
a

∫ T

0

(
a2(t)
σ2(t)

+ λ
)
v(t)dt,

dv(t)
dt

=−2a(t)v(t) + σ2(t),

v(0)= 0.

(2.18)

�

The Hamiltonian is

H
(
v(t),a(t), t

)=−( a2(t)
σ2(t)

+ λ
)
v(t) + z(t)

(− 2a(t)v(t) + σ2(t)
)
. (2.19)

The Pontryagin optimality conditions are

∂H

∂a
=−2av

σ2
− 2zv = 0, (2.20)

dz(t)
dt

= a2(t)
σ2(t)

+ λ+ 2a(t)z(t), (2.21)

z(T)v(T)= 0. (2.22)

We note that these optimality conditions are sufficient (see Mangasarian [6]). From
(2.20) we obtain

z(t)=− a(t)
σ2(t)

, (2.23)
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which we reinsert in (2.21)

d

dt

(
a(t)
σ2(t)

)
=− a2(t)

σ2(t)
− λ. (2.24)

We let y = a/σ2 and obtain the result. The transversality condition (2.22) imposes
a(T)= 0.

3. Example

In this section, we compare on two examples the optimal control given by the solution
of the theorem, to the approximate optimal control given in Schellhorn [10]. We now
expose briefly the approximation approach. In the latter article, we did not exploit the
lemma, but used the following representation for our objective:

EI
[
g2(T)

]= exp

[∫ T

0
σ2(t) f (t)dt

]
, (3.1)

where

df (t)
dt

=− a2(t)
σ2(t)

+ 4a(t) f (t)− 2σ2(t) f 2(t),

f (T)= 0.

(3.2)

The representation (3.1)-(3.2) when inserted in the optimization problem (2.5), (2.6)
results in optimal control problem involving two state variables: f and v. The optimal-
ity conditions of that problem (which were not even sufficient) turned out to be quite
difficult to solve numerically. Instead, we suggested to reduce the state space to only one
variable, in a line similar to Sannutti [9].

The approximated optimal control follows, then

aapprox(t)=−σ2(t)z(t)v(t)∫ t
0 σ2(u)du

, (3.3)

where the costate variable z follows:

dz

dt
= λ+ 2az, (3.4)

under the terminal constraint z(T)= 0.
We report in Figures 3.1 and 3.2 our results for two different volatilities:

(i) σ(t)= 0.2 in Figure 3.1;
(ii) σ(t)= 0.2(1 + 0.2cos(t/4)) in Figure 3.2.

In both cases, the relative average variance of x is the ratio between the cumulated vari-
ance VarT[

∫ T
0 x2(t)dt] “with mean reversion” and the cumulated variance VarI[

∫ T
0 x2(t)dt]

“without mean reversion.” Since the constraint (2.6) is clearly tight, the numerator of this
ratio is equal to our constraint A. On the y-axis, we report the logarithm of the second
moment of g(T), calculated according to the representation of this article, that is, (2.12).
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Example with constant volatility
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Figure 3.1. Logarithm of E[g2(T)] as a function of the ratio of A over the cumulated variance of x in
the uncontrolled case (a= 0). The volatility is σ(t)= 0.2 and T = 3.

Example with nonconstant volatility
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Figure 3.2. Logarithm of E[g2(T)] as a function of the ratio of A over the cumulated variance of x in
the uncontrolled case (a= 0). The volatility is σ(t)= 0.2(1 + 0.2cos((t/4))) and T = 3.

It turns out that both methods, the exact method of this article, and the approximate one,
yield remarkably similar results in these two examples.

4. Conclusions

This article provides an alternate characterization of the solution of an optimal control
problem first introduced in the literature by us in Schellhorn [10]. The result presented
in this article is stronger, since it is not the result of a reduction of the problem. The
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examples we presented show however a remarkable coincidence in results between both
methods. We emphasize that this needs not be the case.

Our methodology can be applied to Monte Carlo resimulation, that is, simulation in
two different measures. We reported in our earlier article that the “change of measure”
resimulation scheme, where we simulate the cash flows z(ω) only once (to calculate mar-
ket value), and then adjust them by g(ω) to calculate the empirical distribution, was up
to twice faster than a “traditional scheme,” where two independent simulations were per-
formed. The same speed improvement can be attained using the method presented here.
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