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Background. Cerebrovascular disease has been the leading cause of death in China since 2017, and the control of medical expenses
for these diseases is an urgent issue. Diagnosis-related groups (DRG) are increasingly being used to decrease the costs of healthcare
worldwide. However, the classification variables and rules used vary from region to region. Of these variables, the question of
whether the length of stay (LOS) should be used as a grouping variable is controversial. Aim. To identify the factors influencing
inpatient medical expenditure in cerebrovascular disease patients. *e performance of two sets of classification rules, and the
effects of the extent of control of unreasonable medical treatment, were compared, to investigate whether the classification
variables should include LOS. Methods. Data from 45,575 inpatients from a Healthcare Security Administration of a city in
western China were used. Kruskal–Wallis H tests were used for single-factor analysis, and multiple linear stepwise regression was
used to determine the main factors. A chi-squared automatic interaction detector (CHAID) algorithm was built as a decision tree
model for grouping related data. *e intensity of oversupply of service was controlled step by step from 10% to 100%, and the
performance was calculated for each group. Results. *e average hospitalization cost was 1,284 US dollars, and the total was 51.17
million US dollars. Of this, 43.42 million were paid by the government, and 7.75 million were paid by individuals. Factors
including gender, age, type of insurance, level of hospital, LOS, surgery, therapeutic outcomes, main concomitant disease, and
hypertension significantly influenced inpatient expenditure (P< 0.05). Incorporating LOS, the patients were divided into seven
DRG groups, while without LOS, the patients were divided into eight DRG groups. More clinical variables were needed to achieve
good results without LOS. Of the two rule sets, smaller coefficient of variation (CV) and a lower upper limit for patient costs were
found in the group including LOS. Using this type of economic control, 3.35 million US dollars could be saved in one year.

1. Introduction

Cerebrovascular disease and its complications are the
leading cause of disability and death worldwide. Of all the
diseases of the nervous system, cerebrovascular diseases have
the greatest impact on disability and produce the highest
economic burden [1–3]. Since 2017, this disease has become
the leading cause of death in China [4]. *e number of
people suffering from cardiovascular and cerebrovascular
diseases in China was 330 million in 2019, and these diseases
are the leading cause of death among urban and rural
residents [5]. In 2017, the total cost of treating cerebro-
vascular diseases in China reached 83.83 billion US dollars,
ranking first among all diseases and accounting for 17% of
the total medical cost of treating diseases, equivalent to

0.66% of GDP [6]. One city alone spent 51.17 million US
dollars a year on these diseases in this study. In the face of so
much economic pressure, the government must take ef-
fective action to reduce the economic burden of cerebro-
vascular diseases.

Diagnosis-related groups (DRG) are one of the most
advanced medical payment management methods, aiming
to reduce inefficiency and contain costs [7]. Based on factors
such as a patient’s demographic information, diagnosis, and
disease severity, DRG-based payment systems group pa-
tients with similar clinical attributes requiring similar care,
providing the necessary framework to aggregate patients
into case types or products, which entail the use of similar
resources [8]. DRG adopt a standard pricing framework for a
single disease group [9] and provide equity in payments
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across healthcare providers for services of the same kind.
Most studies have found DRG to have positive effects on
controlling medical expenses and reducing the economic
burden among patients [10]. Studies into cerebrovascular
diseases have found that DRG can effectively reduce un-
reasonable costs incurred in the treatment of cerebrovas-
cular diseases [11, 12]. However, the rules of the grouping
vary between countries and regions; for example, length of
stay (LOS) is widely used as a statistical classification index
in research into DRG management in Poland, Britain, and
other developed countries [10]. Japan uses LOS as a sec-
ondary parameter [9]. However, Finland and Sweden do not
consider LOS [13].

China Healthcare Security Diagnosis-Related Groups
(CHS-DRG) are the unified grouping standard used by the
national pilot city [14]. Due to the unbalanced development
of China’s economy, the Chinese government requires cities
to develop localized grouping rules based on their actual
conditions, so there are variations of DRG payment policy
design and grouping rules across China [15]. Beijing Di-
agnosis-Related Groups (BJ-DRG) are the earliest localiza-
tion group in China; Beijing built Chinese Diagnosis-Related
Groups (CN-DRG) following the model of the All-Patient
Diagnosis-Related Groups (AP-DRG) in the USA, and
Shanghai built a Shanghai-DRG and National standards for
paying fees according to DRG (C-DRG) based on the
Australia Refined DRG (AR-DRG). However, these
grouping methods are all based on the data collected from
the first-tier developed cities in China, and there is no re-
search into the underdeveloped cities in the west of the
country. It is inappropriate for cities in the west to use the
same rules, due to the unbalanced economic and techno-
logical development in China [16]. None of those grouping
rules take into account the LOS, unlike most countries in
Asia, which incorporate LOS [17].

In this study, we collected data from an underdeveloped
city in western China. Machine learning was used to group
patients with similar costs, and two sets of rules were built,
one incorporating LOS and the other without LOS. We
compared the performance of the grouping rules based on
the coefficient of variation (CV) to assess the heterogeneity
within a group, as has been done in previous studies [8]. We
identified the outliers in each group and considered them to
represent unreasonable costs. Finally, we tried to control
these costs to different extents. *is study fills the gap in
previous studies, which have only focused on developed
cities and which use CV as the standard measure of the
results of grouping. In our study, underdeveloped cities and
control performance were considered.

*e rest of this paper is organized as follows. In Section
2, we introduce our materials and methods. In Section 3, we
present our results, including general information and in-
patient medical expenditure, single and multiple factor
analysis of the factors influencing inpatient medical ex-
penditure, the results of two sets of rules for DRG grouping,
medical expenses in different DRG, and payment method
adjustment results. In Section 4, we discuss the results.
Section 5 concludes this study and provides a description of
directions for future research.

2. Materials and Methods

2.1. Patient Data. *e data used in this research were col-
lected from the Healthcare Security Administration of a city
in western China during 2018. *e data included medical
records and cost information related to 93,185 inpatients
with cerebrovascular diseases (ICD-10:60-69) as the prin-
cipal diagnosis, all of which under the major diagnostic
categories (MDC) of diseases and dysfunction of the nervous
system (MDCB). Original information on these patients
included 58 variables, such as gender, age, LOS, cost of
hospitalization, payment of medical insurance, and type of
insurance.

2.2. Data Cleaning. In the first step of data cleaning, we
selected data from only the comprehensive grade tertiary
and secondary hospitals. *e patients from township hos-
pitals, community hospitals, and school hospitals were re-
moved. As a second step, we eliminated outliers in costs [8]
and patients younger than 18 years of age. Finally, patients
who were not hospitalized in our study city but were re-
imbursed by the city’s Medical Insurance Bureau were ex-
cluded. Valid data from a total of 45,575 patients were
obtained after screening.

2.3. Statistical Analysis and Data Grouping. *e proportions
of the training set and the test set were 80% and 20%, re-
spectively. Firstly, the training set is grouped, and the effect
of grouping is detected with the data of the test set. Finally,
all the data are put into grouping rules and analyzed.

Kruskal–Wallis tests were used for single factor analysis
to determine the factors influencing hospitalization ex-
penses. Values of P< 0.05 were considered to be statistically
significant [18]. Stepwise multiple generalized linear re-
gression was used for variance analysis [19]. *e medical
costs for different subgroups were calculated, and the sta-
tistically significant variables with the greatest impacts on
medical costs were selected for grouping analysis.

*e Chi-Squared Automatic Interaction Detection
(CHAID) algorithm was used to establish the combination
of DRG [10, 20]. In the selection of grouping variables, we
considered both the inclusion and exclusion of LOS, CV, and
the percentage of outliers. We considered a CV value of less
than 1 to indicate no heterogeneity within a group, as has
been done in previous studies [8]. We regarded outliers to
represent unreasonable medical treatment and calculated
the variation in unreasonable medical costs among different
participants under different degrees of control. We used
inpatient hospitalization expenditure as the dependent
variable, and the variables selected by the generalized linear
stepwise model were set as the independent variables. LOS
was shown to have a significant positive influence on
medical expenditure. In order to further investigate the
grouping performance of LOS, we built two decision tree
models. *e first model used the LOS as a classification
variable, and the second model omitted the LOS. We have
conducted more than ten random trials using data sampling
samples, and the results of each trial are consistent, which
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indicates that the performance of the algorithm is stable. All
analyses were carried out using R.studio 4.0.2 software [21]
with the CHAID package [22].

3. Results

In the following section, we summarize general information
about the patients’ medical costs in Section 3.1, and single
factor and multiple analysis are shown in Sections 3.2 and
3.3, respectively.*e results of grouping using the two sets of
rules based on machine learning are shown in Section 3.4.
Finally, the performance of the algorithm using different
levels of implementation control is presented in Section 3.5.

3.1. General Information and Inpatient Medical Expenditure.
As shown in Table 1, women, individuals over 60 years old,
and urban residents accounted for the majority of patients,
while men, the elderly, and rural residents had relatively high
expenses. Of the patients, 50.18% spent less than nine days in
hospital, and 82.26% recovered after hospitalization. Of the
patients with complete data, 19,488 (42.76%) were male and
26,087 (57.24%) were female; 1,995 (4.37%) were under the
age of 45, while 9,117 (20%) were aged between 45 and 60,
and 34,463 patients (75.64%) were older than 65. With
respect to residence, 30,243 (66.36%) patients were urban
workers, and 15,332 (33.64%) were rural residents. Among
them, 24,482 (53.74%) were from a secondary grade hospital,
and 21,087 (46.26%) were from a tertiary grade hospital. We
also carried out statistical analysis on the effect of LOS, with
surgery or without surgery, discharge status, and comor-
bidities complications (CCs) and whether there was grade III
hypertension, on the distribution of patients’ medical ex-
penditure in different subgroups.*e average expenditure of
these patients was 1,284 US dollars. Among the subgroups,
males, individuals aged over 65, rural residents, patients
from tertiary grade hospitals, LOS more than 13 d, surgery,
death, and CCs with insufficiency of blood supply to the
cerebral arteries were more expensive.

3.2. Single Factor Analysis of the Factors Influencing Inpatient
Medical Expenditure. In this study, 58 variables were ex-
amined using single-factor analysis (Table 1). Ten fac-
tors—gender, age, type of insurance, surgery, LOS, status on
discharge, CCs, and a hypertension level of three—were
shown to be associated with statistically significant differ-
ences in hospital expenditure, using Kruskal–Wallis tests
(P< 0.01). Expenditure on men, individuals older than 60,
rural residents, patients with longer LOS, patients under-
going surgery, death, and patients with CCs was the highest.

3.3. Multiple Factor Analysis of the Factors Influencing In-
patient Medical Expenditure. Generalized linear stepwise
models were used for multiple regression analysis. Gender,
LOS, level of hospital, surgery, status on discharge, type of
insurance, comorbidities complications, and age had

significant impacts on medical expenditure (Table 2). *e R-
squared value of the model was 0.521, and the kappa value
was 12.08, indicating that the model performed well, and
there was no multicollinearity between variables. All of these
variables could be regarded as reasonable data for DRG
grouping.

3.4. Two Rules for DRG Grouping and Medical Expenses in
Different DRG. *ere were seven subgroups in model one
and eight groups in model two. *e hospital level was the
main factor, and the second rule, without LOS, required
more disease-related information, such as details of CCs.*e
group without LOS was more stringent. For example, grade
A tertiary and grade B tertiary were in the same group under
the rule incorporating LOS, while they were in different
groups without LOS. *e number of individuals in each
group and details of expenses are shown in Tables 3 and 4.
Most of the CVs of the first grouping method were less than
0.5, indicating that the homogeneity within the group was
good, and the grouping effect was better in the grouping
rules incorporating LOS.*e weight calculation formula was
(the average cost of the group)/(all the average costs). *e
higher the weight, the more resources consumed by the
patients in the group. We set P75 + 1.5 IQR as the cost limit
of each group, and the excess amount indicates the number
of each group’s medical expenses that were outside the cost
limit.

We also analyzed the outliers of each group. Using the
first grouping rules, the outliers were older than the normal
patients, while using the second grouping rules, the outliers
had a significantly longer LOS than the average.

3.5. Prediction of Medical Expenses Based on an Increasing
Control Ratio of Unreasonable Treatment. In 2018, a total of
51.17 million US dollars medical expenses were related to
45,575 inpatients with cerebrovascular diseases as the
principal diagnosis. *e average cost was 1,248 US dollars.
Among them, 43.42 million were paid by the Healthcare
Security Administration, and 7.75 million were paid by
patients themselves. All of this expenditure was based on the
Fee for Service (FFS) payment system. We took the mean
cost of each group as the payment standard for the DRG
group and calculated the average cost to the Healthcare
Security Administration, hospital, and patient.

*e current FFS method encourages an oversupply of
service in order to increase revenue [9]. We consider ex-
penditure less than the cost limit in each group to be a
normal supply and the instances in which the outliers exceed
the upper limit as an oversupply of services. We increased
the control intensity step by step from 10% to 100% for this
oversupply service, to simulate performance under the
payment system of DRG. *e control effect of the two
grouping rules is shown in Table 5. If we took full control, the
rules with LOS could save 598,570 US dollars, and 3.35
million US dollars could be saved based on the grouping
rules without LOS.
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Table 1: Factor assignment and result of single factor analysis of the factors influencing inpatient medical expenditure (n� 45,575).

Variables Assignment of influencing factors Simple size Expenditure $ (M+ IQR) t/F P value
Gender Male� 1 19,488 (42.76%) 1111.82± 741.66 247.81 <0.000

Female� 2 26,087 (57.24%) 1026.12± 688.18
Age Age≤ 45�1 1,995 (4.37%) 808.56± 535.69 788.16 <0.000

Age between 45 and 60� 2 9,117 (20.00%) 954.13± 640.03
Age≥ 60� 3 34,463 (75.62%) 1108.76± 745.46

Level of hospital Grade B secondary hospital� 1 7,609 (16.70%) 784.12± 431.26 23,064 <0.000
Grade A secondary hospital� 2 16,879 (37.04%) 932.23± 671.61
Grade B tertiary hospital� 3 9,208 (20.20%) 1140.05± 825.05
Grade A tertiary hospital� 4 11,879 (26.06%) 1597.27± 1160.64

LOS ≤9 d� 1 22,870 (50.18%) 779.17± 537.85 16,838 <0.000
9∼13 d� 2 9,544 (20.94%) 1180.41± 884.23
≥13 d� 3 13,161 (28.88%) 1708.35± 1252.09

Surgery Yes� 1 2,820 1315.17± 765.10 330.79 <0.000
No� 2 36,987 1013.85± 684.21

Others� 3 5,768 1212.19± 711.22
Discharge status Recovery� 1 37,492 (82.26%) 1108.33± 750.21 1,413 <0.000

Transfers� 2 707 (1.55%) 933.52± 608.18
Death� 3 262 (0.57%) 1525.31± 760.29
Others� 4 7,954 (15.48%) 842.92± 570.62

Midway check-out� 5 60 (0.13%) 1112.47± 605.51
Comorbidities complications *e cerebral arteries lack blood supply� 1 20,936 (45.94%) 1031.86± 884.13 6285.7 <0.000

Lacunar infarction� 2 10,111 (22.19%) 1081.60± 740.06
Cerebral infarction� 3 5,246 (11.51%) 1477.85± 1031.87

Chronic cerebral ischemia� 4 1,989 (4.36%) 1089.20± 763.47
Others� 5 7,293 (16%) 1560.89± 974.51

Hypertension level three Yes� 1 9,303 (20.41) 1162.96± 778.03 84.216
No� 0 36,272 (79.59%) 1116.37± 699.49

Table 2: Multiple linear stepwise regression results of factors influencing hospitalization expenditure in cerebrovascular disease patients.

Variables Regression coefficient Standard deviation T-statistic P value
Gender (take the male as a reference)
Female −229.84 44.53 −5.16 <0.000
LOS (take less than nine days as a reference)
9 days∼13 days 2360.58 57.49 40.12 <0.000
More than 13 days 6463.63 59.93 119.86 <0.000
Level of hospital (take grade B secondary hospital as a reference)
Grade A secondary hospital 1369.27 66.80 20.50 <0.000
Grade B tertiary hospital 3542.44 75.10 47.17 <0.000
Grade A tertiary hospital 6038.54 76.85 78.57 <0.000
Surgery (take having surgery as a reference)
No surgery −1480.79 90.11 −16.43 <0.000
Status on discharge (take recovery as a reference)
Transfers −669.11 265.52 −2.52 0.012
Death 3035.03 265.08 11.45 <0.000
Others 16.50 64.99 0.25 0.80
Midway check-out −665.90 819.97 −0.81 0.416
Type of insurance (take urban as a reference)
Rural −260.14 46.82 −5.56 <0.000
Main comorbidities complications (take cerebral arteries lack blood supply as a reference)
Lacunar infarction −3814.00 67.45 −56.55 <0.000
Cerebral infarction −3440.60 74.52 −46.17 <0.000
Chronic cerebral ischemia −1622.16 86.57 −18.74 <0.000
Others −3925.15 120.92 −32.46 <0.000
Age (take less than 45 as a reference)
45∼60 385.83 115.15 3.35 0.001
More than 60 512.51 108.66 4.72 <0.000
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4. Discussion

Cerebrovascular disease has been the leading cause of death
in China since 2017. *e total cost of treating cerebrovas-
cular diseases in China reached 540.6 billion yuan, ranking
first among all kinds of diseases and accounting for 17% of
the total cost of treating diseases, equivalent to 0.66% of
GDP. Our study showed that the total cost of cerebrovas-
cular disease was 51.17 million US dollars in an underde-
veloped city in western China during 2018. *e average
medical expenditure on cerebrovascular disease patients was
1,284 US dollars, of which the government paid 43.42

million US dollars and patients paid 7.75 million US dollars,
accounting for 84.8% and 15.2%, respectively. *e gov-
ernment therefore paid an average of 1,087 US dollars for
each patient, and each patient paid 196 US dollars for
themselves. *e expenditure in developed cities was even
higher. Control of the medical expenses caused by cere-
brovascular disease is an urgent problem for the Chinese
government.

*e city we chose uses a Fee for Service system, which
may provide an incentive to oversupply services. We used
local data to classify the patients into different groups with
similar medical costs. Two models with different rules were

Table 3: Results of first grouping rule (with LOS) and hospitalization expense for cerebrovascular disease patients (US dollars).

Group
no. Grouping rules N (%) Mean in

US dollars Median± IQR CV Weight Cost
limit

Excess
amount N

(%)
DRG 1 Grade secondary hospital, LOS< 13 d 16,787 (42%) 760 710± 501 0.47 0.59 11,020 29 (1.74%)
DRG 2 Grade tertiary hospital, LOS≤ 9 d 8,344 (21%) 1,125 1004± 761 0.60 0.88 15,755 282 (3.38%)
DRG 3 Grade tertiary hospital, LOS 9∼13 d 3,741 (9%) 1,620 1503± 1195 0.42 1.26 23,700 62 (1.66%)
DRG 4 Grade secondary hospital, LOS≥ 13 d 5,046 (13%) 1,409 1336± 1043 0.36 1.09 21,044 1 (0.02%)

DRG 5
Grade tertiary hospital, CCs with the cerebral
arteries lack blood supply, lacunar infarction,

chronic cerebral ischemia
2,618 (7%) 2,007 1834± 2007 0.42 1.56 29,132 52 (1.99%)

DRG 6
Grade tertiary hospital, CCs with cerebral
infarction, principal diagnosis ICD I60, I63,

I65, I66, I67, I69
2,007 (5%) 2,957 2602± 1923 0.46 2.30 42,263 42 (2.09%)

DRG 7
Grade tertiary hospital, CCs with cerebral
infarction, principal diagnosis ICD I61, I62,

I64, I68
1,246 (3%) 3,368 3403± 2337 0.44 2.86 46,271 21 (1.68%)

Table 4: Results of second grouping rule (without LOS) and hospitalization expense for cerebrovascular disease patients (US dollars).

Group
no. Grouping rules N (%)

Mean in
US

dollars
Median± IQR CV Weight Cost

limit
Excess amount

N (%)

DRG 1
Grade secondary hospital, CCs with the
cerebral arteries lack blood supply, lacunar

infarction, chronic cerebral ischemia
17,490 (44%) 838 773± 535 0.48 0.65 8,640 2,015 (11.52%)

DRG 2 Grade secondary hospital, CCs with
cerebral infarction 4,343 (11%) 1,096 1001± 765 0.49 0.85 12,357 289 (6.65%)

DRG 3
Grade B tertiary hospital, CCs with the
cerebral arteries lack blood supply, lacunar

infarction, chronic cerebral ischemia
5,031 (13%) 1,203 1106± 735 0.51 0.94 11,852 687 (13.65%)

DRG 4
Grade A tertiary hospital, CCs with the
cerebral arteries lack blood supply, lacunar

infarction, chronic cerebral ischemia
5,660 (14%) 1,548 1405± 1063 0.47 1.21 17,142 380 (6.67%)

DRG 5

Grade B tertiary hospital, CCs with
cerebral arteries supply blood, lacunar
infarction, chronic ischemic cerebral,

main diagnosis ICD I60, I63, I65, I66, I67,
I69

2,132 (5%) 1,789 1483± 1048 0.63 1.39 16,980 325 (15.52%)

DRG 6
Grade A tertiary hospital, CCs with

cerebral infarction, main diagnosis ICD
I60, I63, I65, I66, I67, I69

2,710 (7%) 2,360 1953± 1187 0.67 1.84 19,147 316 (11.66%)

DRG 7
Grade B tertiary hospital, CCs with

cerebral infarction, main diagnosis ICD
I61, I62, I64, I68

1,172 (3%) 2,363 1983± 1426 0.56 1.84 22,997 430 (36.69%)

DRG 8
Grade A tertiary hospital, CCs with

cerebral infarction, main diagnosis ICD
I61, I62, I64, I68

1,251 (3%) 3,151 2884± 1746 0.57 2.45 28,160 329 (26.29%)
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built, based on whether the LOS was included as a classi-
fication variable. We used the CV to measure the quality of
the grouping and analyzed the characteristics of the outliers
in each group. We then increased the intensity of control of
the oversupply of services step by step, from 10% to 100%, to
simulate the performance based on the two grouping rules.
*e model incorporating LOS had a smaller CV than the
model without LOS. If our standard model was built without
LOS, it could reduce the occurrence of medical oversupply,
saving 3.35 million US dollars in one year. *ese figures
apply to only one city; if the whole country controlled costs
in this way, the economic pressures on healthcare could
quickly be alleviated.

Although it is generally recognized that LOS is the main
factor influencing medical expenses [23], the inclusion of
LOS as a classification variable of DRG is inconsistent. It is
generally believed that considering LOS as a classification
variable may lead to upcoding [11]. Most European coun-
tries, including England, Estonia, and Finland, do not
consider LOS as a classification variable. *e official Chinese
CHD-DRG, modelled on the American MS-DRG, does not
include LOS [14], and the Shanghai-DRG, based on the
Australia AR-DRG, also does not consider LOS. However,
some studies indicate that omitting LOS may increase the
frequency of readmission andmoves between hospitals, with
services provided in alternative ways [17]. Omitting LOS also
leads to poorer care for patients who should have a longer
stay. *e grouping rules of some countries, such as France,
Ireland, and Poland, consider LOS to be an important factor
[13].

Tables 3 and 4 show the results of grouping. *e
grouping rule with LOS has a smaller CV, indicating that the
cost difference within grouping rule one was smaller, and the
grouping was more reasonable. We used the P75 + 1.5 IQR
as the upper limit to test for outliers in each group. *e
proportion of outliers was higher in the group without LOS.
*is observation implies that the use of LOS can lead to
accurate grouping. Both grouping rules demonstrate that the
hospital level is very important. In grouping rules without
LOS, hospital levels and comorbidity are more finely di-
vided. It is therefore counterproductive to consider only one
hospital level.

We analyzed the outliers (Tables 3 and 4) and found that
in the LOS group, the age of the outliers was significantly
higher than the average value of the group, while in the

group without LOS, the LOS was significantly higher than
the average. A study using MS-DRG hospital data from
Malta also found that most of the outliers were older and
higher costs were associated with higher LOS [8]. Further
analysis of these results could help identify the reasons for
the high costs.

In Asia, only the Republic of Korea considers the type of
hospital as a factor for DRG-based payment [9]. In this
study, we found that the level of the hospital crucially
influenced inpatient medical expenditure. Although there
have been studies looking at the impact of hospital levels on
costs [19], research into DRG has tended to focus only on
tertiary hospitals. Our research therefore complements
previous studies that only grouped hospitals at one level [13].

*e major diagnosis was directly related to the differ-
ences in the cost of hospitalization. Comorbid patients often
require special treatment and care, and different comor-
bidities may affect the cost of additional care, making
comorbid diseases an important grouping variable. Medical
costs are higher for the elderly, who require special treat-
ments [13], but age did not show up in our grouping var-
iables. In China, many DRG subgroups, such as the
pneumonia subgroup, have age as the primary factor [19],
possibly because the high cost of this group is mainly
concentrated in the elderly and children. However, the age
distribution of cerebrovascular disease is mainly concen-
trated in the elderly. In most of the European countries, like
England and Estonia, age is not a factor used in grouping
[13]. *is observation is consistent with our findings. Most
grouping rules have found surgery to be an important
variable, and our single analysis also showed that surgery has
a significant impact on costs. But surgery was not a variable
identified in our results. *is situation may have something
to do with the choice of disease species. A cluster study in
Beijing, China, also confirmed that in stroke, one of the
cerebrovascular diseases, surgery is rare [24].

Table 5 shows the performance if the oversupply of
services is controlled under the payment system of DRG.*e
intensity of control was increased step by step from 10% to
100%, and the results of application of the two rule sets were
compared. More money could be saved without the LOS.
Experience in Europe indicates that use of LOS leads to
upcoding, and the medical cost was high when considering
the LOS.*ese results imply that without LOS the cost could
be controlled better, but with LOS the patients could be

Table 5: *e payment situation under different control intensity (US dollars).

FFS
DRG control intensity

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Rules with
LOS

Society Total 51.17M 51.03M 50.97M 50.91M 50.86M 50.80M 50.73M 50.67M 50.61M 50.55M 50.40M
Average 1,284 1,282 1,281 1,279 1,278 1,276 1,275 1,273 1,272 1,270 1,263

Hospital Total 0 −0.06M −0.12M −0.18M −0.24M −0.30M −0.33M −0.42M −0.48M −0.54M −0.60M
Average 0 −1.55 −2.95 −4.50 −6.05 −7.44 −9.00 −10.54 −11.94 −13.49 −15.04

Rules
without LOS

Society Total 51.17M 50.71M 50.40M 50.09M 49.78M 49.31M 49.00M 48.69M 48.38M 48.07M 47.76M
Average 1,284 1,275 1,267 1,258 1,250 1,242 1,233 1,225 1,216 1,208 1,199

Hospital Total 0 −0.33M −0.67M −1.01M −1.34M −1.68M −2.01M −2.35M −2.68M −3.01M −3.35M
Average 0 −8.37 −16.75 −25.27 −33.65 −42.18 −50.55 −58.93 −67.30 −75.83 −84.20

M: millions.
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classified better. More incentives and oversight are needed if
DRG is to be introduced. For one city, 21 million RMB could
be saved by applying the results of our research, an outcome
which is highly desirable for the government.

*ere were some limitations in this study. Due to the lack
of standards for the data reported by the hospitals, there
were 5,768 cases lacking information on whether surgery
was performed, so these data were excluded from the
grouping. Since there is no uniform surgical code between
each hospital, we could not use the surgical code as our
research object. Due to the large amount of data, we only
considered data from one year. In the future, data frommore
years could be included, or the data from another year could
be used for the CV of the test group.

5. Conclusions

We used real data from less developed regions for grouping
for the DRG, filling the gap in previous studies, which took
developed regions as research objects. To the best of our
knowledge, this is the first time that secondary grade hos-
pitals have been considered in a Chinese DRG study. We
compared two grouping methods and discussed the results
of the grouping. DRG payments were fixed, and this study
adjusted the payment ratio of medical insurance, patients,
and hospitals to achieve a satisfactory result for all three
parties. To speed the development of DRG and rationalize
the costs of cerebrovascular disease, the structure of hospital
information and the standardization of data entry are es-
sential. More research in this area is urgently needed.
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Inguinal hernia repair is one of the most frequently conducted surgical procedures worldwide. Laparoscopic inguinal hernia
repair is considered to be technically challenging. Artificial intelligence technology has made significant progress in medical
imaging, but its application in laparoscopic surgery has not been widely carried out. Our aim is to detect vas deferens images in
laparoscopic inguinal hernial repair using the convolutional neural network (CNN) and help surgeons to identify the vas
deferens in time. We collected surgery videos from 35 patients with inguinal hernia who underwent laparoscopic hernia repair.
We classified and labeled the images of the vas deferens and used the CNN to learn the image features. Totally, 2,600 images (26
patients) were labeled for training and validating the neural network and 1,200 images (6 patients) and 6 short video clips (3
patients) for testing. We adjusted the model parameters and tested the performance of the model under different confidence
levels and IoU and used the chi-square to analyze the statistical difference in the video test dataset. We evaluated the model
performance by calculating the true positive rate (TPR), true negative rate (TNR), accuracy (ACC), positive predictive value
(PPV), and F1-score at different confidence levels of 0.1 to 0.9. In confidence level 0.4, the results were TPR 90.61%, TNR
98.67%, PPV 98.57%, ACC 94.61%, and F1 94.42%, respectively. ,e average precision (AP) was 92.38% at IoU 0.3. In the video
test dataset, the average values of TPR and TNR were 90.11% and 95.76%, respectively, and there was no significant difference
among the patients. ,e results suggest that the CNN can quickly and accurately identify and label vas deferens images in
laparoscopic inguinal hernia repair.

1. Introduction

Inguinal hernias are found in 3%–8% of the general pop-
ulation [1]. Inguinal hernia repair (IHR) is one of the most
commonly used surgical methods in general surgery. More
than 20 million inguinal or femoral hernias are repaired
every year, and 75% of abdominal wall hernias are classified
as inguinal hernia [2, 3].

With the development of medical technology andmedical
equipment, minimally invasive surgery has been performed
widely. Transabdominal preperitoneal (TAPP) [4] and total
extraperitoneal (TEP) [5] surgeries are the most commonly
used minimally invasive methods for inguinal hernia.

However, laparoscopic IHR is considered to be tech-
nically challenging. Laparoscopic minimally invasive

surgery method can reduce the extent of skin incisions,
nerve damage, and hematoma; lower postoperative pain and
risk of infection of the surgical site; and lead to quicker
recovery [6, 7], but it also has several disadvantages: for
example, the surgeon initially needs a longer surgery time
before plateauing on his/her learning curve; the surgery has a
higher risk of complications; it needs much more knowledge
of pelvic anatomy; and it needs a high level of surgical skill
[8, 9], which can lead to more mistakes and harm to patients
during the learning process. In clinical practice, young
surgeons need a long learning curve to carry out laparo-
scopic repair surgery well, especially TEP technology. With
the increase of surgical experience and familiarity with local
anatomy, complications and recurrence rates will gradually
decrease [10].
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Common complications of the operation include
bleeding; bladder lesions; intestinal obstructions; intestinal
perforations; injury to the iliac vein, femoral nerve, and vas
deferens; and even death [8].

With the development of artificial intelligence (AI)
technology, CNNs have become an effective method for
medical image analysis, disease prediction and diagnosis,
and lesion detection and have been widely used [11–13].
CNNs are not a solution to replace doctors, but will help
doctors optimize their routine tasks, thus having a poten-
tially positive impact on medical practice [14]. We have also
applied deep learning technology to nerve and dura mater
recognition under spinal endoscopy and achieved satisfac-
tory results [15].

,ere are many neural network models for object de-
tection [16–19], but each neural network has its own ad-
vantages. Some can detect objects quickly, but the precision is
not optimal, while others can detect an object with higher
precision, but the speed of detection is quite slow. In this
research, we want to use a CNNmodel that can detect objects
fast enough to be used at 30 frames per second and have good
precision. YOLO is a one-stage convolutional neural network
for object detection [20, 21], whose rate of detection can reach
65 fps with an average precision of up to 43.5% on the COCO
dataset [21]. ,e innovations of this article are as follows: (1)
combined with computer CNN technology and clinical data, a
new method for identifying vas deferens images in laparo-
scopic inguinal hernia repair using the CNN model is pro-
posed, and the object detection ability of the CNN model
(YOLOv4) on the medical dataset is also tested; (2) different
annotation methods are used to train the CNN model and to
examine the performance of the model in the process of
training and testing; (3) discussed with clinical experts and
selected the appropriate IoU value to evaluate the perfor-
mance of the model for reference by clinical surgeons.

2. Materials and Methods

2.1. Data Collection. ,is research was approved by the
Ethics Committee at Hannan Hospital, Hannan District,
Wuhan City, Hubei Province, China.

In this study, 35 adult male patients with inguinal hernia
disease admitted to the hospital for laparoscopic surgery
from April 2018 to December 2019 were selected. ,e
laparoscopic image device used was KARL STORZ En-
doscopy (22202020-110), America. All patients underwent
laparoscopic hernia repair and signed a patient consent
form. We collected information such as gender, age, disease
name, and interoperation videos. All endoscopic surgeries
were performed by senior endoscopic experts at Hannan
Hospital. Details of the dataset are shown in Table 1, and the
patient age distribution is shown in Figure 1.

2.1.1. Inclusion Criteria. We selected those subjects satis-
fying all of the following three criteria: (i) adult male; (ii) the
patient was diagnosed with inguinal hernia and underwent
hernia repair for the first time; and (iii) the patient agreed to
allow the use of video recordings for scientific research.

2.1.2. Exclusion Criteria. We excluded subjects matching
any of the following three criteria: (i) female patient; (ii)
patients with irreducible inguinal hernia; and (iii) the lap-
aroscopic surgery was converted into an open surgery for
any reason.

2.2. Data Processing. ,e patients were randomly divided
into three groups, 26 patients in the training dataset, 6
patients in the image test dataset, and 3 patients in the video
test dataset. In the training dataset and image test dataset, we
used MATLAB (9.6.0.1174912 (R2019a) Update 5, academic
use) to decompose the surgical videos into images according
to different datasets and then saved them. A laparoscopic
expert selected these images manually; then, the other
laparoscopic expert verified them and finally deleted the
disputed images and reached an agreement. In the video test
dataset, we selected two short video clips from each patient’s
full surgical video, each of which is 30 seconds. All the videos
used in this study were 30 frames per second. One of them is
a clip with the vas deferens image, and the other is a clip
without the vas deferens image. ,en, two laparoscopic
experts verified these video clips and reached an agreement.

In order to balance the training data, we selected 100
images containing the vas deferens for each patient in the
training dataset. In the image test dataset, we chose 200
images for each patient (100 images that included the vas
deferens and 100 images without the vas deferens). ,us, a
total of 3800 pictures (2600 images in the training dataset
and 1200 images in the image test dataset) of the vas deferens
and 180 seconds (90 seconds with the vas deferens and 90
seconds without the vas deferens) of video clips were chosen
to form an experimental database. ,ere was no overlap in
patients and images between the training dataset, image test
dataset, and video test dataset.

Table 1: Dataset and patient information.

Dataset Number of patients Age (years) Number of images
Training 26 63.15± 7.64 2,600
Image test 6 64± 8.12 1,200
Video test 3 55± 6.56 5,433
All patients are male.
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All the training data were labeled using software LabelImg
(v1.8.1) and then validated by two laparoscopic experts; none
of the researchers had any objection to the labeling results.
,e research flowchart is shown in Figure 2. ,e original
images with the vas deferens, labeled images, and original
images without the vas deferens are depicted in Figure 3.

2.3. Training Parameters and Computer Configuration. In
order to achieve higher accuracy with a faster processing
speed, we used a one-stage neural network, YOLOv4 (based
on the Darknet framework), to train and test the above
datasets.

For training the model, we randomly divided the
training dataset (2,600 images) into training data and in-
ternal validation data according to the ratio of 9 :1. ,e
details of neural network training parameters are as follows:
input size� 416∗ 416, batch� 64, subdivisions� 32, initial
learning rate� 0.001, momentum� 0.95, and max-
batches� 10000.

Because our study is only a binary classification task, vas
deferens tissue will only appear in one area of an image in
laparoscopic IHR.,erefore, in the target detection stage, we
adjusted the parameters in the process of nonmaximum
suppression (NMS) and set NMS-IoU to 0.1 to reduce the
number of detection boxes.

,e computer was an Intel i9 9900k CPU@3.6GHz× 16,
RAM 32GB, with a CUDA-enabled Nvidia Titan 312GB
graphics processing unit (Nvidia), based on hardware of the
NVIDIA GeForce RTX 2070 SUPER GPU. ,e whole
training time was about 12 hours.

3. Results

We examined the test dataset using the best training weight
in the training process, and then two laparoscopic experts
verified whether the images in the test dataset were correctly
labeled by the model. ,e two laparoscopic experts verified
the labels in all the images and further discussed any labeled
images that were controversial. Finally, they reached an
agreement on all the labeling results.

We defined those images with the vas deferens that were
correctly labeled as true positive (TP); the images without
the vas deferens but wrongly identified and labeled incor-
rectly as false positive (FP); the images containing the vas
deferens but not identified and not labeled as false negative
(FN); and the images without the vas deferens and without
any label as true negative (TN).

In the image test dataset, we used different confidence
levels from 0.1 to 0.9 to evaluate the performance of the
model. ,e model was used to label the images in the image
test dataset, and two laparoscopic experts examined these
results. For 600 positive symbols (images include the vas
deferens), a total of 607 detection boxes were labeled on
these images. ,e detailed test results at different confidence
levels are shown in Table 2. Example images of TP, FP, and
FN are shown in Figure 4.

TPR �
TP

(TP + FN)
,

TNR �
TN

(TN + FP)
,

PPV �
TP

(TP + FP)
,

ACC � TP +
TN

(TP + TN + FP + FN)
,

F1 �
2∗PPV∗TPR
(PPV + TPR)

.

(1)

According to the test results in Table 2, we used the
following indicators to evaluate the performance of the CNN
model: true positive rate (TPR), true negative rate (TNR),
accuracy (ACC), positive predictive value (PPV), intersec-
tion over union (IoU), average precision (AP), and F1-score.
We also draw the receiver operating characteristic (ROC)
curve and calculate the AUC value as indicators to evaluate
the performance of the model. ,e formulas used to cal-
culate these values are as follows, and the results are shown
in Table 3. ,e ROC curve is shown in Figure 5. ,e per-
formance of the model for different IoUs is shown in Table 4.

According to the ROC curve, we calculate that the
optimal confidence threshold of the model is around con-
fidence level 0.4, and the AUC value is 0.97, so in the process
of testing the video test dataset, we use the confidence level of
0.4 to test the real-time detection function of the model.
After saving the video detection results, we decompose the
video clips into images for verification. A total of 5433
images were decomposed from the video clips (2719 with the
vas deferens and 2714 without the vas deferens). Two lap-
aroscopic experts verified these images one by one and
confirmed the results. ,e evaluation indicators and specific
results are shown in Table 5.

In the video test dataset, these results were analyzed
using IBM SPSS Statistics version 23.0. We used the chi-
square test to analyze the statistical differences between
patients, with p> 0.05, meaning no significant difference
between the tested objects.,e p value of TPR was 0.768, the
p value of TNR was 0.608, and all p values were greater than
0.05; the average TPR, TNR, PPV, and ACC were 90.11%,
95.76%, 95.52%, and 92.93%, respectively. ,e results show
that the model can effectively identify the vas deferens
images in laparoscopic inguinal hernia repair, and the
sensitivity and specificity of themodel to different patients in
the video test dataset are not statistically different.

We also tested the real-time detection ability of the
model.,e results show that when the input size is 416∗ 416,
the detection speed of the model can reach 45.32 frames per
second, and the detection speed is greater than 30 frames per
second, which meets the real-time detection requirements of
laparoscopic inguinal hernia repair.
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4. Discussion

Using CNNs for medical image detection is not new, but using
this technology to detect the vas deferens under laparoscopic
IHR surgery is novel; we use the CNN model to train and test
the vas deferens images and obtained good results.

4.1. Performance of theCNN-Based Identification. In order to
select the appropriate parameters and indicators to evaluate
the performance of the model, we set different confidence
levels to calculate the evaluation indicator. Laparoscopic
experts verified the labeled images one by one and concurred
on the final results.

CNN Model Adjustment
Parameters Pre-Trained Weight

TAPP and
TEP Videos

Final Results
Validated by

Experts
�e Detection

Results by CNN Model

Training
the CNN

Model

�e Best
Training
Weight

Training
Dataset

Test
Dataset

Image Test
Dataset

With Vas Deferens

With Vas Deferens

Without Vas Deferens

With Vas Deferens

Without Vas Deferens

Labeled by Experts

Video Test
Dataset

Figure 2: Research flowchart.

Figure 3: Original images. ,e first row shows original images with the vas deferens; the second row shows labels included by the experts;
the third row shows original images without the vas deferens.
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According to Table 3, it is clear that, with increasing
confidence levels, TPR gradually decreased from 95.06% to
75.95%, while TNR and PPV gradually increased from
90.67% and 91.15%, respectively, to 100%. In order to ob-
serve the performance of the model more comprehensively,
we also calculated the ACC and F1-score, both of which first
increased and then decreased with increasing confidence
levels.

,e F1-score is often used as a comprehensive index to
judge the performance of a CNN model; it is a combination
of TPR and PPV. When the confidence level is 0.2, 0.3, and
0.4, the F1-score of the CNN model is higher than 94%. ,e

ROC curve can show the influence of different thresholds on
the generalization performance of the model, which is
helpful to select the best threshold [22, 23]. We analyzed the
ROC curve, compared the F1-score, and discussed with
laparoscopy experts. Finally, we thought that when the
confidence level was 0.4, the comprehensive performance of
the model was more suitable for the dataset.

4.2. Medical Image Labeling Method. Using the correct la-
beling method is also an important aspect of the CNN
model’s target detection to achieve good results. Due to the

Table 2: ,e test result at different confidence levels.

Confidence level TP FP TN FN
≥0.1 577 56 544 30
≥0.2 565 32 568 42
≥0.3 555 17 583 52
≥0.4 550 8 592 57
≥0.5 545 4 596 62
≥0.6 531 2 598 76
≥0.7 516 1 599 91
≥0.8 494 0 600 113
≥0.9 461 0 600 146
,ese results are based on all the detection boxes.

Figure 4: CNN-labeled vas deferens area and corresponding confidence level. ,e first row shows the true positive (TP); the vas deferens is
labeled with a purple rectangle, and the confidence level is shown above the rectangle.,e second line shows the false positive (FP).,e third
line shows the false negative (FN). ,e model does not give any labels on the image. ,e researchers circled the area of the vas deferens in
yellow.
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complex environment of the endoscopic surgery, target
detection in the endoscopic surgery is also a new challenge.
,ere is currently no clear method for labeling the target
tissue in the endoscopic surgery.

At the beginning of this study, when we labeled the vas
deferens on the surgical images, because the features of the

target do not take on a regular shape, in order to lessen the
proportion of nonvas deferens tissue in the label box and
reduce the influence of nonvas deferens tissue on the target
tissue, we only labeled the area with obvious vas deferens
features on the image. However, the results show that the
model is unable to obtain all information pertaining to the
vas deferens in these images, which leads to unsatisfactory
training and testing results.

We adjusted the labeling method and expanded the
scope of the label box so that the vas deferens tissue in the
image could be included in the label box as much as possible.
Although the proportion of the nonvas deferens in the label
box increases, when we use the same training image and
validation image and the same training parameters to train
and test the model again, the training process and results
show that the training effect of the new labeling method is

Table 3: ,e evaluation indicators at different confidence levels.

Confidence level TPR (%) TNR (%) PPV (%) ACC (%) F1 (%)
≥0.1 95.06 90.67 91.15 92.87 93.06
≥0.2 93.08 94.67 94.48 93.87 93.85
≥0.3 91.43 97.17 97.03 94.28 94.16
≥0.4 90.61 98.67 98.57 94.61 94.42
≥0.5 89.79 99.27 99.27 94.53 94.29
≥0.6 85.01 99.62 99.62 93.54 93.16
≥0.7 85.01 99.81 99.81 92.38 91.82
≥0.8 81.38 100 100 90.64 89.73
≥0.9 75.95 100 100 87.9 86.33

ROC Curve/AUC = 97.16%
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Figure 5: ,e ROC curve and AUC value.

Table 4: ,e evaluation indicators under different IoUs.

IoU TPR (%) PPV (%) AP (%) F1 (%)
≥0.2 88.73 99.82 95.64 93.95
≥0.3 87.75 98.71 92.38 92.91
≥0.4 85.95 96.69 89.31 91.00
≥0.5 80.72 90.81 80.88 85.47
≥0.6 72.22 81.25 68.73 76.47
≥0.7 52.29 58.82 36.97 55.36
,ese evaluation indicators are calculated based on 600 positive data items in the test dataset.

Table 5: ,e test results in the video test dataset.

Patients TPR (%) TNR (%) PPV (%) ACC
(%)

1 90.23 (822/911) 96.14 (872/907) 95.92 93.18
2 89.50 (810/905) 95.23 (859/902) 94.96 92.36
3 90.58 (818/903) 95.91 (868/905) 95.67 93.25
Average 90.11 (2450/2719) 95.76 (2599/2714) 95.52 92.93
,ese evaluation indicators are calculated based on confidence level 0.4.
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better than our previous labeling method. ,e example after
adjusting the labeling method is shown in line 2 of Figure 3,
and the data details of the training process are shown in
Figure 6.

,rough the observation of the model training process, it
is not difficult to find that different annotation methods will
significantly affect the training effect of the model. During
surgery, although the target tissue may be partially occluded
by other nontarget tissues, our suggestion is to label the
target tissue as completely as possible.

4.3. Indicator IoUandAP. IoU is the ratio of the overlap area
and the union area of the label box and the test box. In the
field of medical image recognition, the higher the IoU is, the
higher the positioning accuracy is and the more it meets the
needs of clinicians.

We tested the performance of the model under different
IoU thresholds (0.7 to 0.2). ,e results showed that AP
increased from 36.97% to 95.64%, and PPV increased from
58.82% to 99.82%.

We discussed with laparoscopic experts whether these
labeled areas are enough to remind surgeons to identify the
vas deferens. Experts believe that, in laparoscopic surgery,
the role of computer-aided surgery is to remind surgeons to
readily discover target tissue and to pay more attention to
this target area. When surgeons know the general location of
the vas deferens, they will be more alert and cautious, so as
not to damage the vas deferens and other target tissues
during surgery.

By comparing the images in the test results, experts
believed that when the IoU was greater than 0.3, the labeling

result was acceptable. However, when the IoU dropped to
0.2, some labels were inaccurate, the proportion of target
tissue in the label box was too low to correctly represent the
vas deferens, and the center of the label box was not located
over the vas deferens.,ese results also tell us that IoU is also
an important indicator to evaluate the performance of the
model, and higher IoU will better assist doctors to observe
and discover target organizations.

We found that when the IoU threshold was greater
than 0.2, the TPR was lower than 90%, which indicated
that the label box given by the model was not accurate
enough, and the learning of the vas deferens was not
enough. Although the model could recognize obvious
features of the vas deferens, if the vas deferens’ surface was
partially obscured, the model could not accurately rec-
ognize and label the vas deferens. ,e details are shown in
Figure 7.

4.4. Limitations. We used the CNNmodel to identify the vas
deferens in laparoscopic inguinal hernia repair for the first
time. Although we achieved satisfactory results, our research
also has some limitations. First, we should further expand
the number of patients and the absolute number of vas
deferens images as the training dataset so that the CNN
model can fully learn the characteristics of the vas deferens.
Second, more indicators and test data should be set to
evaluate the performance of the model, and we need to
compare the performance with surgeons in different levels,
so as to make the evaluation of the model more objective.
,ird, we only use the data of one hospital to train and verify
the model, and the multicenter data will more effectively

(a) (b)

Figure 6: Processes of training and validation using different labeling methods. (a) ,e graph showing the training process of the partial
labeling method. (b) ,e graph showing the training process of the new labeling method. ,e red line shows the internal validation
precision, and the blue line shows the loss curve.
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prove the detection and generalization ability of the model.
Fourth, this model has a large number of parameters. Al-
though the detection performance is satisfactory, it requires
high computer configuration and time-consuming training
process. We should further optimize the model structure,
reduce the model parameters, and improve the model de-
tection ability.

In future studies, we plan to collect more data frommore
hospitals, compare the neural network with the indicators of
identifying important tissues in laparoscopic inguinal hernia
repair by surgeons with different levels of experience, and
further test whether this technology can help young general
surgeons optimize the learning curve and reduce the inci-
dence of vas deferens injury complications.
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Figure 7: ,e AP of the model under different IoU values and the corresponding image examples. In the first row and the third row, from
left to right, AP curves at IoU 0.2 to 0.4 and 0.5 to 0.7 are shown. In the second row and the fourth row, the corresponding images at different
IoU values are shown. ,e blue rectangle boxes were labeled by laparoscopic experts in advance, and the green rectangle boxes were labeled
by the model.
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5. Conclusion

As an effective target detection method, computer deep
learning technology has been widely used in medical image
recognition [24–27]. In this study, we used YOLO (v4) to
identify vas deferens images under laparoscopic inguinal
hernia repair. We used different confidence levels from 0.1 to
0.9 to calculate various evaluation indicators in the image
test dataset; picked the best confidence level for the video test
dataset; adjusted the IoU thresholds from 0.2 to 0.7 to
understand the positioning accuracy and AP of the model;
and discussed with laparoscopic experts to select appropriate
parameters to evaluate the performance of the model. In the
image test dataset, the values of TPR, TNR, PPV, ACC, and
F1 were 90.61%, 98.67%, 98.57%, 94.61%, and 94.42%
(confidence level 0.4), respectively. In the video test dataset,
the values of TPR, TNR, PPV, and ACC were 90.11%,
95.76%, 95.52%, and 92.93%, respectively. In IoU 0.3, the
average precision (AP) was 92.38%.

We confirmed that a CNN can identify and label vas
deferens images efficiently in laparoscopic inguinal hernia
repair.,is will help laparoscopic surgeons, especially young
ones, to better carry out clinical work, optimize the learning
curve of the laparoscopic surgery, improve surgical effi-
ciency, and reduce surgical complications.
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Adverse drug reactions (ADRs) pose health threats to humans. )erefore, the risk re-evaluation of post-marketing drugs has
become an important part of the pharmacovigilance work of various countries. In China, drugs are mainly divided into three
categories, from high-risk to low-risk drugs, namely, prescription drugs (Rx), over-the-counter drugs A (OTC-A), and over-
the-counter drugs B (OTC-B). Until now, there has been a lack of automated evaluation methods for the three status switch
of drugs. Based on China Food and Drug Administration’s (CFDA) spontaneous reporting database (CSRD), we proposed a
classification model to predict risk level of drugs by using feature enhancement based on Generative Adversarial Networks
(GAN) and Synthetic Minority Over-Sampling Technique (SMOTE). A total of 985,960 spontaneous reports from 2011 to
2018 were selected from CSRD in Jiangsu Province as experimental data. After data preprocessing, a class-imbalance data set
was obtained, which contained 887 Rx (accounting for 84.72%), 113 OTC-A (10.79%), and 47 OTC-B (4.49%). Taking drugs
as the samples, ADRs as the features, and signal detection results obtained by proportional reporting ratio (PRR) method as
the feature values, we constructed the original data matrix, where the last column represents the category label of each drug.
Our proposed model expands the ADR data from both the sample space and the feature space. In terms of feature space, we
use feature selection (FS) to screen ADR symptoms with higher importance scores. )en, we use GAN to generate artificial
data, which are added to the feature space to achieve feature enhancement. In terms of sample space, we use SMOTE
technology to expand the minority samples to balance three categories of drugs and minimize the classification deviation
caused by the gap in the sample size. Finally, we use random forest (RF) algorithm to classify the feature-enhanced and
balanced data set. )e experimental results show that the accuracy of the proposed classification model reaches 98%. Our
proposed model can well evaluate drug risk levels and provide automated methods for status switch of post-
marketing drugs.

1. Introduction

Drug risk has always been a worldwide concern, and its most
intuitive manifestation is adverse drug reactions (ADRs).
)e severity of adverse reactions of different drugs varies
greatly. In some cases, it can even be fatal, which poses a
great threat to people’s health [1]. ADRs refer to harmful
reactions of qualified drugs that have nothing to do with the
purpose of medication under normal usage and dosage.
Edwards and Aronson proposed a clearer definition of

ADRs: “An appreciably harmful or unpleasant reaction,
resulting from an intervention related to the use of a me-
dicinal product, which predicts hazard from future ad-
ministration and warrants prevention or specific treatment,
or alteration of the dosage regimen, or withdrawal of the
product [2].”

In order to reduce the harm caused by ADRs, the
classification system of prescription (Rx) drugs and over-
the-counter (OTC) drugs has become an internationally
common model. According to the regulations of the US
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Food and Drug Administration (FDA), drugs are classified
into Rx drugs and OTC drugs based on indicators such as
toxicity and dependence [3]. Compared with Rx drugs, OTC
drugs have less adverse reactions, and they can be purchased
without a doctor’s prescription to treat mild diseases. For
OTC drugs, the China Food and Drug Administration
(CFDA) further divides OTC drugs into two categories,
namely, OTC-A drugs and OTC-B drugs, of which OTC-B is
safer [4]. )erefore, drugs in China are divided into three
categories, and the order of risk levels is Rx>OTC-
A>OTC-B. At present, the drug regulatory authorities of
many countries implement a re-evaluation system for post-
marketing drugs, and switch Rx drugs and OTC drugs based
on the frequency and severity of ADRs [5, 6]. As Brass
argues, removal of the requirement for prescriptions saves
both the health care professional and the patient time, but
assessment of the ability of patients to use drugs in this
manner is a critical component of the regulatory review [7].
)is method mainly relies on the judgement of medical
experts and lacks an automated risk identification tech-
nology. We hope to build a multi-classifier to determine
whether a drug belongs to one of the above three categories
by evaluating ADRs, in order to provide an objective and
automatic method for the status switch of drugs. Further-
more, the accurate classification of drugs will provide more
convenience for patients’ medication, while reducing the
risk of ADRs as much as possible.

)e ADR reports used in this experiment all originate
from CFDA’s spontaneous reporting system (SRS). Spon-
taneous reporting means that medical workers voluntarily
report suspicious ADRs discovered in the clinic to drug
manufacturers, adverse reaction monitoring agencies, drug
regulatory departments, etc. [8]. SRS is suitable for wide
deployment in various regions and can collect large amounts
of ADR data [9]. Nowadays, most members of WHO
Uppsala Monitoring Centre (UMC) have adopted this
system [10]. However, the information in many reports is
too rough, which may affect the causality of adverse reac-
tions, leading to over or under attribution [11]. At the same
time, incomplete or missing reports make it impossible to
calculate the incidence of ADR accurately. )erefore, it is
necessary to standardize the original data and use the
method of signal detection to extract effective information.
At present, the commonly used signal detection method for
ADRs is disproportionality analysis (DPA) [12, 13]. )e
proportional reporting ratio (PRR) used in this paper is one
of the DPA methods. Based on the PRR method, we can
build a data matrix with drugs as samples, ADR symptoms as
features, and signal detection results as feature values. )e
last column of the matrix represents the category label of
each drug.

Since the overall data contains many types of ADRs, and
only part of the adverse reactions is caused by one drug, this
data matrix is high-dimensional and sparse. A large number
of features can increase interference noise and may obscure
some important ADR data. In order to improve the clas-
sification accuracy, it is necessary to perform feature se-
lection on the data set. )e principle of feature selection is to
use detection methods to evaluate all features from the data

set, and retain features that are efficient and reliable for data
classification [14]. )e experiment uses machine-learning
methods to extract features with high importance scores.

Considering that the high-dimensional feature space
contains a lot of information about ADR symptoms, we
cannot simply keep important features and delete those that
are not helpful for classification, because this method may
cause some serious ADR features to disappear, making it
difficult to accurately evaluate the potential risks of drugs.
On the basis of retaining the existing ADR features, we hope
to expand the feature space with more effective data that are
helpful for the classification. Goodfellow et al. proposed the
concept of generative adversarial networks (GANs) in 2014
[15]. As a popular theory in deep learning in recent years,
GAN has achieved outstanding performance in data gen-
eration. )erefore, according to the feature selection data,
we use GAN to generate similar artificial data, which are
added to the feature space to achieve feature enhancement.

In terms of sample space, the number of Rx drugs and
OTC drugs in our ADR data set is extremely imbalanced.
Traditional classification techniques perform poorly on this
type of data because they tend to favor themajority class.)e
synthetic minority over-sampling technique (SMOTE) al-
gorithm proposed by Chawla et al. is one of the most
representative external methods to balance data sets through
resampling [16]. We use SMOTE to balance the data set by
adding samples based on k-nearest neighbors in the mi-
nority class. )e samples of Rx, OTC-A, and OTC-B drugs
will reach a balanced state after SMOTE resampling, which
lays a data foundation for using conventional random forest
(RF) classification algorithm.

)e purpose of this paper was to build a high-accuracy
drug risk level classificationmodel, which can be deployed in
the Chinese spontaneous reporting system. When a drug
manufacturer applies to the drug regulatory authority for
drug category switch, CFDA organizes medical experts to
conduct drug risk assessment. In this process, the proposed
model can automatically identify the drug category
according to the ADR monitoring data after the drug is put
on the market, which can provide auxiliary decision support
for experts.

2. Related Work

With the development of computer science, the use of
machine learning to solve ADR problems is common and
widely used, which makes great contribution to the control
of medication risks. In 2011, Pouliot et al. used more than
480,000 molecular activity data in the PubChem database to
establish a logistic regression model to predict the level of
ADRs that may be caused by target drugs [17]. )e results
show that 75% of the adverse reaction signals mined by this
model could be verified by relevant medical literature or
drug instructions. In the same year, Santiago et al. proposed
a new ADR detection method, which compared and
screened the drugs involved in the adverse reaction signals,
and then obtained the final mining results [18]. In this
way, the sensitivity of mining adverse reactions related to
rhabdomyolysis reached 70%, and the positive detection rate
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reached 45%. In 2013, Chen et al. realized the identification
of high-risk proteins and the discovery of potential adverse
reaction mechanisms through the analysis of the high-risk
protein network of ADRs [19]. )is study analyzed the data
of drug target proteins, protein pathways, and proteins
related to adverse reactions. )e results found a total of 41
ADR protein subnetworks, and found that certain biological
enzymes and transport proteins are the key factors causing
adverse reactions.

In the field of risk mining of ADRs, researchers have
conducted a lot of research on various types of spontaneous
report databases and have achieved sufficient results. In 2014,
Roberto et al. used signal detection methods to conduct data
mining, trying to detect the serious cardiovascular adverse
reaction signals of triptans drugs [20]. )e results show that
triptans drugs are related to a variety of adverse reactions such
as ischemic cerebrovascular complications. In 2015, Mai et al.
conducted data mining in the spontaneous report database
and found that the use of statin drugs may increase the risk of
rectal cancer or pancreatic cancer [21]. In 2018, Scholl et al.
proposed a prediction-model-based approach to improve the
efficiency of full database screening [22]. )e AUC value and
the ratio of potential signals of this method have been greatly
improved compared with traditional signal detection
methods. In 2019, to resolve entity-level ADR classification
tasks, Alimova and Tutubalina investigated deep neural
network models in the natural language processing (NLP)
field based on various ADR corpus [23].

In recent years, researchers have analyzed ADR from
multiple perspectives such as patient age and drug inter-
action, and have proposed many new risk detection
methods. In 2020, Martocchia et al. evaluated the incidence
of adverse events and drug-drug interactions exposed to
polypharmacy and proposed that the application of certain
software programs could significantly reduce the incidence
of adverse events at every level of healthcare [24]. In 2021,
Giangreco and Tatonetti pointed out that detection of ADR
is challenging due to dynamic biological processes during
ontogeny, which alter pharmacokinetics and pharmacody-
namics [25]. )e population modeling technique they
proposed exhibited normally distributed and robust ADR
risk estimation at all development stages of children. In the
same year, Mehta et al. reviewed the risk assessment
methods of prescription drug and developed more than two
dozen prescription drug-based risk indices, which differ
significantly in design, performance, and application [26].

Regarding China’s spontaneous report data, scholars
have integrated and evaluated ADR information, and have
begun to measure drug risks in an intelligent way. In 2015,
Ge et al. used the NLP method to extract knowledge of
adverse reactions in a large number of Chinese clinical
narrative texts [27]. Based on the results of knowledge ex-
traction, they established a knowledge base corresponding to
drugs and adverse reactions, and set up a website to provide
online query and to download ADR information. In 2020,
we compared four drug-risk prediction models using ma-
chine-learning methods as classifiers, and determined the
best risk prediction framework [28], with a classification
accuracy rate of 95%.

In order to further improve the classification accuracy so
that the risk prediction model can be applied in practice, this
paper is based on the previous research, and realizes the
feature enhancement of high-dimensional ADR feature space
through the combination of GAN and feature selection.
Furthermore, by comparing with our previous models, we
propose a better predictive model for evaluating drug risks.

3. Materials

ADR reports used in this study were obtained from the
CFDA in Jiangsu Province. )e data set covered a total of
985,960 ADR reports in Jiangsu Province from 2011 to 2018,
including report ID, report address, patient age, gender,
drug name, and ADRs symptom. Due to invalid and du-
plicate reports, we deleted data with no reference value and
standardized the names of drugs and ADR symptoms. )en
1,047 drug names and 751 ADR symptoms were prepared. In
more detail, for each drug, the ADRmentioned in one report
would increase the total of corresponding ADR symptoms
by one.)e result of the final statistics is a table with the drug
names corresponding to the frequency of all types of ADRs.
Data set could be described as the following.

Sample space:

X � x1, x2, . . . , xm􏼈 􏼉. (1)

Here, m� 1047. )e drugs and ADRs make up the
sample space together. Drugs are the samples and ADRs are
the features.

Feature vector:

xi � xi1, xi2, . . . , xi d( 􏼁 ∈ X. (2)

Here, d� 751. Every sample is composed of d features,
and xi is one of the feature vectors in sample space, where
xi d represents the frequency under the matching drug-ADR
pairs.

According to the China Medical Information Platform,
we manually labeled all drug samples, with values 0, 1, and 2
representing Rx, OTC-A, and OTC-B, respectively.

)e statistical results in Table 1 show that Rx drugs
account for a high proportion, while the two categories of
OTC drugs are the opposite, which means that the classes in
the data set are imbalanced.

4. Methods

4.1. Model Framework. Figure 1 shows the flowchart of the
proposed model. )e model is mainly divided into four
stages: signal detection stage, feature enhancement stage,
minority expansion stage, and RF classification stage.

(1) Signal detection stage: the first step of the proposed
model is to use signal detection on the preprocessed
spontaneous report data, and calculate the PRR value
of the drug-ADR pairs to obtain the ADR imbal-
anced data set.

(2) Feature enhancement stage: based on the ADR
imbalanced data set, the model selects the top 200
features of classification importance, and uses GAN
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to generate artificial features that meet the real data
distribution. )e generated features are added to the
imbalanced ADR data set, so that the feature space

contains more effective features, which can improve
the classification accuracy. So far, the feature-en-
hanced ADR imbalance data set has been obtained.

Spontaneous
report data

Extract
Drug-ADR event PRR analysis ADR imbalanced

data set

Set generation
ratio

Expand the
minority samples

Feature-enhanced
ADR balanced

data set

Rank feature
importance

Select the top 200
features

Train GAN model

Expand effective
features

Feature-enhanced
ADR imbalanced

data set

Generate artificial
features

Train RF classifier

Predict drug
category

Signal Detection

Feature
selection

ADR feature enhancement
GAN

SMOTE
RF

Classification

Evaluate drug risk

Figure 1: Flowchart of the proposed model.

Table 1: Quantity information of drugs in data set.

Drug category Label Sample size Percentage
Rx 0 887 84.72
OTC-A 1 113 10.79
OTC-B 2 47 4.49

4 Journal of Healthcare Engineering



(3) Minority expansion stage: SMOTE is used to expand
the minority samples (OTC-A and OTC-B) to
equalize the number of the three categories of drugs,
which helps to obtain a feature-enhanced ADR
balanced data set.

(4) RF classification stage: the RF algorithm is used to
classify the feature-enhanced ADR balanced data set.
Finally, we analyze the results of the proposed model
based on multiple indicators, and further evaluate
the risks of postmarketing drugs.

4.2. SignalDetection. )eDPAmethod is currently the most
used ADR signal detection technology [29]. DPA is used to
measure the disproportion or imbalance of the sample
distribution in the database. If the number of occurrences
associated with drug and adverse event is greater than the
expected number or the number of other combinations, it is
considered that there is a potential connection between the
drug and the adverse event, which may be a positive ADR
signal. Calculation of DPA is based on the principles using
the two-by-two contingency table.

Proportional reporting ratio (PRR) is one of the DPA
methods, which was proposed in 2001 by Evans of the British
Medical Regulatory Authority [30], and it is a key method
for ADR signal detection in the world. )e calculation of
PRR is similar to the relative risk in epidemiological studies,
which is used to quantify the strength of the drug-ADR
association. According to Table 2, the formula to compute
PRR value is

PRR �
(A/(A + B))

(C/(C + D))
. (3)

Formula (3) indicates that if the PRR value of a drug-
ADR pair is larger, the relative risk is higher, so the risk of
the adverse reaction corresponding to the drug is greater. In
our study, after calculating the PRR value of all drug-ADR
pairs based on statistical data, the data matrix is established
with drugs as the sample, ADR as the feature, and PRR
results as the matrix value. )e last column of the data
matrix is the category label of each drug, where Rx is “0,”
OTC-A is “1,” and OTC-B is “2.” Due to the quantitative
difference among the three categories of drugs, we got the
ADR imbalance data set.

4.3. Feature Enhancement. Since the overall data contain
many types of ADRs, and only part of the adverse reactions
is caused by one drug, this data matrix obtained by PRR is
high-dimensional and sparse. In order to improve the
model’s classification accuracy of this data set, we expand the
effective ADR data in the feature space to achieve feature
enhancement.4.3.1. Algorithm ID4 is Used for Feature Se-
lection (FS)

In the process of decision tree attribute splitting, the Gini
index is used to calculate the contribution of a single feature
for the correct classification. During tree growth, the purity
measure of split at node k is:

Gini pk( 􏼁 � 􏽘

n

k�1
pk 1 − pk( 􏼁 � 1 − 􏽘

n

k�1
p
2
k. (4)

In formula (4), pk represents the probability that the
sample is correctly classified at node k. )e sample is divided
into different branches to produce their branch sets Tv, and
the purity measure is as follows:

Giniindex(T,k) � 􏽘
V

v�1

T
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|T|
Gini T

v
( 􏼁. (5)

T represents the current divided set, and the Gini index
reflects the probability that any two branch sets are in-
consistent. A smaller Gini index in formula (5) indicates that
the branch set is purer, which also means that the classifi-
cation accuracy will be higher. )erefore, node k strives to
meet the minimum purity:

k
∗

� argmin
k

Giniindex(T,k). (6)

)e feature fi is the classification basis of node k, and left
and right branches can be obtained. )ey are measured
according to the Gini changes of the branches:

Gini fi,k( ) � Gini Pk( 􏼁 − Gini P1( 􏼁 − Gini Pr( 􏼁. (7)

Gini(P1), Gini(Pr) represent the Gini index of the left
and right branches, respectively. After calculating Gini(fi,k)

in formula (7), the importance of the feature fi in the j-th
tree is:

ImGini
j � 􏽘

m∈M
Gini fi,k( ). (8)

)e importance of feature fi on a single tree is calculated
by formula (8). Furthermore, in the total number ofm trees,
the feature fi appears when part of the tree nodes split.)en,
the overall importance of measuring feature fi is:

Imfi
� 􏽘

m

j�1
ImGini

j . (9)

In order to select features that are more effective for
classification, the features are ranked in the descending
order of importance calculated by formula (9). )e first 200
main features are retained as the basis for the next step of
GAN feature generation.

4.3.1. Use GAN to Generate New Features. GAN is a gen-
erative model based on zero-sum game theory. It includes a
generative model (G) and a discriminant model (D), both of
which are based on neural networks. In the training process
of G and D, G generates data similar to the true value

Table 2: DPA two-by-two contingency table.

Target ADRs Other ADRs Total
Target drugs A B A+B
Other drugs C D C+D
Total A+C B+D A+B+C+D
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through the noise space z. )e goal of D is to distinguish
between real data or generated data. Generator and dis-
criminator are iteratively optimized with each other, so that
their performance continues to improve. In the end, the two

models reached a Nash equilibrium. At this time, the data
generated by GAN approximates the real data [31, 32]. )e
evaluation formula of GAN is as follows:

min
G

max
D

V(D, G) � Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1 − D(G(x)))]. (10)

In formula (10), x is the real data, which conforms to the
Pdata(x) distribution; z is the hidden space noise, which
conforms to the Pz(z) distribution. V(D, G) represents the
degree of difference between the real sample and the gen-
erated sample. Formula (10) indicates that when the dis-
criminator maximizes the difference and the generator
minimizes the difference between the real samples and the
generated samples, after multiple rounds of iterative
training, realistic data can be obtained.

We use two sets of neural networks to constructG andD,
respectively. )e key factors in the training process are
gradient descent, alternate training, and back propagation.
)e training steps in the experiment are summarized as
follows:

Step1: select some samples z1, z2, . . . , zm􏼈 􏼉 from the
input random noise Pz(z).
Step2: sampling from the original training set, the
number of samples x1, x2, . . . , xm􏼈 􏼉 is the same as the
noise samples.
Step3: set the parameter ofD to θd, and use the gradient
ascent algorithm in formula (11) to update the
discriminator:

∇
1
m

􏽘

m

i�1
log D xi( 􏼁 + log 1 − D G zi( 􏼁( 􏼁( 􏼁􏼂 􏼃. (11)

Step4: repeat steps 1–3 for k times, and then update G
once.
Step5: set the parameter ofG to θg, and use the gradient
descent algorithm in formula (12) to update the
generator:

∇
1
m

􏽘

m

i�1
log 1 − D G zi( 􏼁( 􏼁( 􏼁. (12)

Step6: repeat steps 1–5 until the GANmodel converges.

Input the features selected in Step 4.3 (1) into GAN to
generate an equal number of artificial ADR features. )ese
generated features satisfy the real value distribution and are
consistent with the original data. Use generated ADR fea-
tures as real data to expand the feature space in order to
enhance the risk characteristics of the drugs. Now, we obtain
a feature-enhanced ADR imbalance data set.

4.4. Synthetic Minority Over-Sampling Technique (SMOTE).
After adding the generated ADR features to the data set, the
number of effective features in the sample is increased,

which is helpful for subsequent classification. However, the
proportions of Rx, OTC-A, and OTC-B drugs in the data set
are quite imbalanced. Traditional classification algorithms
will seriously bias the majority class and ignore the minority
class, leading to deviations in the result. )erefore, for the
imbalanced data set in this experiment, we use the SMOTE
algorithm to expand the minority samples before
classification.

)e core of SMOTE is to insert randomly generated new
samples between the minority samples and their neighbor
samples [33]. )is can increase the number of minority
samples and improve the class imbalance distribution of the
data set [34]. )e steps of the SMOTE are as follows:

Step 1: the number of majority samples in the data set is
N+, and the number of minority samples is N− . Cal-
culate the imbalance ratio IR and oversampling rate K
of the original data set:

IR �
N

+

N
−. (13)

Round down IR in formula (13) to get the oversampling
rate K:

K � ⌊IR⌋, (14)

(⌊⌋ means rounding down the data.)
Step 2: for each minority sample xi, calculate the
Euclidean distance with other minority samples, and
find the k nearest neighbors. )e Euclidean distance is
calculated as follows:

d xi, xj􏼐 􏼑 �

����������������������������������

xi1 − xj1􏼐 􏼑 + xi1 − xj2􏼐 􏼑 + · · · + xip − xjp􏼐 􏼑

􏽱

.

(15)

Step 3: according to the oversampling rate K in formula
(14) and Euclidean distance d(xi, xj) in formula (15), K
samples are randomly selected from the k nearest
neighbors with replacement, and mark them as
xi(i � 1, 2, . . . , K). Calculate the difference between x
and xi as (x − xi).
Step 4: use formula (16) to synthesize each new sample
xi
new:

x
i
new � x + rand(0, 1) × x − xi( 􏼁, i � 1, 2, . . . , K,

(16)

(rand(0, 1) returns a random value in the interval
(0, 1).)
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Step 5: repeat the above steps to synthesize K · N− data
artificially for the minority samples.

After the above steps, the three categories of Rx, OTC-A,
and OTC-B in the data set have reached the same number,
which improves the data distribution in the sample space. As
a result, we obtained the feature-enhanced ADR balanced
data set, which laid a data foundation for classification.

4.5. Random Forest Classifier. We use the random forest
(RF) algorithm to classify the feature-enhanced ADR bal-
anced data set. )e RF algorithm is a machine-learning
method proposed by Breiman in 2001 [35]. Its main idea is to
build a forest containing multiple decision trees. Each de-
cision tree adopts a random decision-making method in this
process and remains independent during classification. Each
decision tree in the RF will predict the outcome. Finally, all
the outcomes are integrated by voting, and the class with the
highest probability is selected as the classification result [36].
)e steps of RF classification are as follows:

Step 1: assume that the number of samples in the
training set (S) is N. We randomly select N samples
from the training set with replacement as the training
set Si of the decision tree Ti. A total of K training sets
are extracted to construct K decision trees.
Step 2: the dimension of the features in each sample is
M. In the process of training the decision tree, m
subsets are randomly selected from all the features of
each node.
Step 3: the decision tree selects a node with the best
splitting ability in the feature subset to split.
Step 4: each decision tree grows to the maximum extent
and does not require pruning.
Step 5: all decision trees constitute the final RF, and
the result of the classification is determined by
voting.

4.6. EvaluationMetrics. Traditional classification algorithms
use precision metric to determine the performance of the
classifier on the data set. Although it is effective for balanced
data, there will be obvious deviations for unbalanced data.

For example, for tumor detection data, the proportion of
benign is very high, and the proportion of malignant is very
low. High accuracy can be obtained by classifying all tumors
as benign. However, this classification is meaningless, be-
cause for issues such as disease detection, disaster prediction,
and credit fraud, the minority samples are of great signifi-
cance and need to be focused on.

For a given sample set, we can get the confusion matrix
by comparing the real class with the class predicted by the
classifier [37]. As shown in Table 3, there are four situations:

According to the confusion matrix in Table 3, the fol-
lowing evaluation metrics can be calculated:

(1) Precision: Tthe precision rate reflects the proportion
of true positive samples in the positive class judged
by the classifier.

Precision �
TP

TP + FP
. (17)

(2) Recall: the recall rate reflects the proportion of
positive classes that are correctly classified in the
total positive classes.

Recall �
TP

TP + FN
. (18)

(3) Accuracy: the accuracy rate reflects the classifier’s
ability to predict the positive and negative classes
correctly.

Accurary �
TP + TN

TP + FN + FP + TN
. (19)

(4) F-measure: F1 is the harmonic mean of precision and
recall [38], and is a commonly used evaluation
criterion for classification of imbalanced data sets.
After obtaining Precision and Recall in formulas (17)
and (18), F1 can be calculated as

F1 �
1 + β2􏼐 􏼑∗Recall∗ Precision

β2 ∗Recall + Precision
, (20)

β is the scale factor, and its usual value is 1.
(5) Macro-avg: macro average is a commonly used

evaluation index for multi-classification prob-
lems, which can measure the overall situation of
the classifier [39]. For formulas (17), (18), and
(20), the values of each class are first calculated,
and then the average values of all the classes are
calculated.

MacroP �
1
n

􏽘

n

i�1
Pi. (21)

MacroR �
1
n

􏽘

n

i�1
Ri. (22)

MacroF1 �
2∗MacroP ∗MacroR

MacroP + MacroR

, (23)

n represents the number of classes, i represents each
class.
Macro average in formula (21)–(23) treats each class
equally, and its results are more susceptible to

Table 3: Classification in the confusion matrix.

Positive Negative
True True positive (TP) True negative (TN)
False False positive (FP) False negative (FN)
TP: the number of samples that predict the positive class as a positive class.
TN: the number of samples that predict the negative class as a negative class.
FP: the number of samples that predict a negative class as a positive class.
FN: the number of samples that predict a positive class as a negative class.
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minority samples. In other words, macro average has
advantages in highlighting the classification per-
formance of minority samples.

(6) Weighted-avg: )e weighted average can compre-
hensively evaluate the accuracy of classification [40].
By assigning weight to each class, the average value of
all classes is calculated according to Precision, Recall,
and F1 in formulas (17), (18), and (20).

WeightedP � 􏽘
n

i�1

Ci

|C|
∗Pi,

WeightedR � 􏽘
n

i�1

Ci

|C|
∗Ri,

WeightedF1 � 􏽘
n

i�1

Ci

|C|
∗ F1i,

(24)

n represents the number of classes, i represents each
class, |C| represents all samples, andCi represents the
samples included in one class.

(7) Receiver Operating Characteristic (ROC) Curve
Among the evaluation criteria for imbalanced data
sets, the ROC curve is a generally accepted and
comprehensive evaluation criterion [41]. )e ROC
curve has a false positive rate (FPR � FP/(FP + TN))
on the horizontal axis and a true positive rate
(TPR � TP/(TP + FN)) on the vertical axis. )rough
the cross-validation method, multiple sets of point
pairs (FPR, TPR) of the classifier can be obtained.
)en, draw them to a plane and connect them to
form the final ROC curve. )e ROC curve is a very
intuitive way to evaluate the classifier. )e closer the
curve is to the upper left corner, the better the
performance of the classifier.
Area under curve (AUC) refers to the area enclosed
by the ROC curve and the coordinate axis. )e value
of this area will not be greater than 1. Since the ROC
curve is generally above the line y � x, the value of
AUC ranges between [0.5, 1]. )e closer the AUC is
to 1, the higher the accuracy of classification.

4.7. Experiment Design. In order to observe the effect of the
abovementioned methods on the classification of CFDA’s
spontaneous reporting data, this paper designs three com-
parative models.

In the first model (Model 1. RF), we use the data set after
PRR signal detection as the basis (ADR imbalance data set).
)e total number of three categories of drugs is 1047, in-
cluding 887 Rx drugs (label� 0), 113 OTC-A drugs (label-
� 1), and 47 OTC-B drugs (label� 2). )e data space
contains 751 features (ADRs). Use traditional RF algorithm
for classification.

In the second model (Model 2. SMOTE+RF), we use the
SMOTE algorithm to expand the data set after PRR signal
detection, so that the quantity of each category reaches a
balance (ADR balanced data set). )e total number of drugs

is 2661, and the number of Rx (label� 0), OTC-A (label� 1),
OTC-B (label� 2) drugs are equal, all of which are 887. )e
data space contains 751 features. )en, use RF for
classification.

In the third model (Model 3. FS_GAN+ SMOTE+RF),
we will use the model proposed in this paper. )e ADR data
set used by this model has also been improved in terms of
samples and features (feature-enhanced ADR balanced data
set).)e total number of drugs is 2661, and the number of Rx
(label� 0), OTC-A (label� 1), and OTC-B (label� 2) drugs
are equal, all of which are 887. )e data space contains 951
features (751 original + 200 generated). Finally, the RF al-
gorithm is used for classification.

)e experiment in this article consists of two sections. In
the first section, the above three models all use 70% of the
sample space as the training set, and the remaining 30% as
the test set. )en, we observe the classification results based
on the test set. In the second section, we input the actual
ADR data collected by CFDA into all three trained models
and observe the results. Furthermore, it means that the three
models use the same actual ADR data after PRR (1047
samples) as the test set.

5. Results

5.1. Results of theClassifiersUsing theTest Set. In this section,
the three models use 70% of their sample space for training,
and use the remaining 30% as the test set. )e sample size in
the test set of each model is calculated as follows:

Sample size (model 1)� 1047× 30%� 315
Sample size (model 2)� 2661× 30%� 799
Sample size (model 3)� 2661× 30%� 799

)erefore, the sample size of test sets used by each model
is 315 (Model 1), 799 (Model 2), and 799 (Model 3). )e
confusion matrices obtained by classification are shown in
Figure 2:

Figure 2 shows three confusionmatrices of three models,
from which it can be seen that Model 3
(FS_GAN+SMOTE+RF) has the largest proportion of
results on the diagonal, which means it has the highest
accuracy of classification. More detailed evaluation indica-
tors are shown in Table 4.

Table 4 shows the evaluation metrics of the three models
based on their test set. Model 1 is biased towards the ma-
jority class, so the prediction results for OTC-A (label� 1)
and OTC-B (label� 2) are very poor, and its accuracy is the
lowest, only 84.44%. Model 2 balances the data set and can
predict most of the OTC drugs (label� 1, 2), with an ac-
curacy rate of 91.99%. Model 3 has the highest prediction
accuracy for minority samples, reaching 96.25%. From the
macro average and weighted average metrics, Model 1 is the
worst, Model 2 ranks second, and Model 3 has the best
performance.

5.2. Validation Results Based on Actual ADR Data. In the
verification section, the actual ADR data are used as the test
set to validate the prediction results of the three trained
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models in Section5.1. )e test sample size of the three
models equals to that of the actual ADR data, which is 1047.

)e confusion matrices corresponding to the three
models are shown in Figure 3.

Figure 3 illustrates the confusion matrices of the three
models using the actual ADR data after PRR signal detection
as the input (sample size1,2,3 � 1047). In the confusion
matrix, the blocks on the diagonal indicate the number of
correctly classified labels. For each model, the sum of cor-
rectly predicted data is calculated as follows:

Sum (Model 1)� 874 + 41 + 13� 928
Sum (Model 2)� 845 + 102 + 44� 991
Sum (Model 3)� 876 + 105 + 44�1025

Under the verification of the same data set, the number
of samples correctly predicted by Model 3 is the largest,
reaching 1025, which is higher than 928 of Model 1 and 991
of Model 2. )is result means that Model 3 has the highest
prediction accuracy. More detailed evaluation metrics are
shown in Table 5.

Table 5 shows the evaluation metrics of the three models
using the same actual ADR data. Among them, the accuracy
of Model 1 is the lowest, only 88.63%. Model 2 has sig-
nificantly improved its ability to recognize minority classes,
with an accuracy rate of 94.65%. )e results indicate that

Model 3, which uses the combination of feature enhance-
ment (FS_GAN) and SMOTE, has a higher accuracy than
Model 2, which only uses SMOTE, reaching 97.90%. )e
other metrics such as macro average and weighted average
also indicate that the performance of Model 3 is the best.

Figure 4 shows the ROC curves and AUC values of the
three models. It indicates that Model 1 using only the RF
algorithm has the worst classification result for the imbal-
anced ADR data set, and its AUC value of 0.85 is also the
lowest. For the latter two models after SMOTE, the ROC
curve of Model 3 with feature enhancement (FS_GAN) is
closer to the (0, 1) point. )e AUC value of Model 3 is also
the highest among them, reaching 0.99.

6. Discussion

)e classification results on CFDA’s actual ADR data show
that the accuracy of Model 1 reaches 88.63%, which seems to
be a good result. However, by observing the index of the
recall rate of Model 1, we can find that the recall rate of label
1 is 0.36, and the recall rate of label 2 is 0.28. In other words,
Model 1 predicts most of the samples as the majority class
(label� 0), so it obtains high accuracy. As mentioned in Part
4, such classification is meaningless, because the minority
classes are not identified. )e latter two models use SMOTE
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Figure 2: Confusion matrices based on the test set.

Table 4: Evaluation metrics based on the test set.

Classifier Label Precision Recall F1 Accuracy (%)

Model 1 (RF)

0 0.85 0.99 0.92
1 0.50 0.03 0.06 84.44
2 0.00 0.00 0.00

Macro-avg 0.45 0.34 0.32
Weighted-avg 0.78 0.84 0.78

Model 2 (SMOTE+RF)

0 0.91 0.85 0.88
1 0.91 0.94 0.92 91.99
2 0.94 0.97 0.96

Macro-avg 0.92 0.92 0.92
Weighted-avg 0.92 0.92 0.92

Model 3 (FS_GAN+SMOTE+RF)

0 0.93 0.96 0.94
1 0.98 0.94 0.96 96.25
2 0.98 0.98 0.98

Macro-avg 0.96 0.96 0.96
Weighted-avg 0.96 0.96 0.96
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to expand the minority samples, and the number of Rx (label
0), OTC-A (label� 1), andOTC-B (label� 2) drugs reached a
balance. )erefore, the recall rate and F1 index are both very
high, which indicates that they have a good classification
effect on the three categories of drugs.

By comparing the three models, we found that Model 3 is
the best, with an accuracy of 97.90%. )e Precision, Recall,
and F1 index corresponding to the three categories of labels

in Model 3 are all higher than Model 2. Especially, for the
recognition of minority classes (label� 1 and label� 2), their
prediction success rates in Model 3 have been greatly
improved.

From the perspective of macro averaging, Model 3 has
achieved excellent performance.)emacro average takes the
arithmetic average of all classes, which means that each class
is treated equally during classification, so that the impact of

Table 5: Evaluation metrics based on the actual ADR data.

Classifier Label Precision Recall F1 Accuracy (%)

Model 1 (RF)

0 0.89 0.99 0.94
1 0.80 0.36 0.50 88.63
2 0.72 0.28 0.40

Macro-avg 0.81 0.54 0.61
Weighted-avg 0.88 0.89 0.87

Model 2 (SMOTE+RF)

0 0.98 0.95 0.97
1 0.80 0.90 0.85 94.65
2 0.72 0.94 0.81

Macro-avg 0.83 0.93 0.88
Weighted-avg 0.95 0.95 0.95

Model 3 (FS_GAN+SMOTE+RF)

0 0.99 0.99 0.99
1 0.92 0.93 0.93 97.90
2 0.96 0.94 0.95

Macro-avg 0.96 0.95 0.95
Weighted-avg 0.98 0.98 0.98
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Figure 4: ROC curves and AUC values based on the actual ADR data.
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Figure 3: Confusion matrices based on the actual ADR data.
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small samples on the results can be more clearly highlighted.
)e macro-average value of Model 3 is higher than Model 1
and Model 2, so Model 3 is more suitable for the classifi-
cation of imbalanced samples.

Compared with the macroaverage, the weighted average
is more inclined to be affected by the majority class, because
the majority category accounts for a larger proportion of the
entire samples, and the corresponding weight is also larger.
)e weighted average of each metric of Model 3 is 0.98,
which is the highest among all classifiers.

From the perspective of the ROC curve, the ROC curve
of Model 3 is closest to the (0, 1) point among the three,
which indicates that Model 3 has the highest classification
accuracy rate for imbalanced data sets. )is result is con-
firmed again from the perspective of AUC.)eAUC value of
Model 3 is 0.99, which is higher than 0.85 of Model 1 and
0.97 of Model 2.

Based on the same CFDA’s ADR data, we compared the
model proposed in this paper (Model 3) with the model
established by our previous work in multiple evaluation
indicators. Previously, we compared the prediction results of
four machine-learning algorithms, including RF, gradient
boost (GB), logistic regression (LR), and AdaBoost (ADA),
in the steps of PRR signal detection and SMOTE over-
sampling, and finally obtained the optimal combination
PRR-SMOTE-RF. )rough the comparison of experimental
results, the accuracy of Model 3 proposed in this paper is
0.98, which is higher than the 0.95 of the previous model
PRR-SMOTE-RF. )is comparison shows that for ADR
samples with obscure features, Model 3 will achieve better
prediction results. From the perspective of ROC curves,
Model 3 in this paper also has better performance. )e AUC
value of Model 3 reached 0.99, higher than the 0.97 of PRR-
SMOTE-RF, which means that Model 3 has better classifi-
cation performance for imbalanced data sets. Finally, we can
determine that the model with feature enhancement pro-
posed in this paper has better performance on actual ADR
data, and has a higher accuracy rate for drug risk prediction.

For the high-dimensional ADR feature space, it is dif-
ficult for us to remove redundant features to improve the
classification accuracy. )e reasons mainly include the
following two points. On the one hand, the feature space
contains the adverse reactions corresponding to the drugs. If
a part of the features that have no effect on the classification
are deleted, the potential risks of some drugsmay be ignored,
leading to deviations in the classification of drugs. For drugs
with serious adverse reactions, ignoring their ADR features
is fatal, which will cause great harm to patients in the future.
On the other hand, additional experiments prove that de-
leting some redundant features does not improve the
classification accuracy very well. We hope to add some
effective data that are helpful for classification in the feature
space to achieve feature enhancement. In addition, GAN has
great advantages in data generation. )rough multiple
training iterations, GAN can learn about the potential data
distribution in the samples and generate similar artificial
data. )erefore, when the number of samples is sufficient,
GAN-based feature enhancement is an efficient method to
solve such problems.

)e experimental results prove that it is effective to use
feature enhancement technology andminority oversampling
at the same time for high-dimensional imbalanced data sets.
Compared with the previous PRR-SMOTE-RF framework
that does not use feature enhancement, the model proposed
in this paper has a higher classification accuracy on the same
ADR data set. Other evaluation indicators also confirmed
this conclusion. Furthermore, the results indicate that it is
effective to use GAN to generate artificial data to improve
the overall data distribution in the feature space. In other
words, on the basis of minority oversampling of imbalanced
data sets, feature enhancement can help achieve more ac-
curate classification. At the same time, this method retains
all existing ADR features, thus avoiding the risk evaluation
deviation caused by lack of features.

Furthermore, we compare the artificial data generated by
GAN with the real data in the ADR data set. Since the data
set contains a variety of ADR symptoms, and a drug causes
only a small part of the adverse reactions, the data matrix
after PRR signal detection is high-dimensional and sparse.
)e proportion of nonzero elements in the original ADR
imbalanced data set is 1.73%. For the top 200 features
screened by FS, the proportion of nonzero elements is 5.02%;
while for the artificial data generated by GAN, its proportion
is 4.85%.)is result indicates that artificial data and real data
have a high degree of similarity in numerical form. )e
artificial features generated by GAN satisfy the spatial dis-
tribution characteristics of the original data. More specifi-
cally, the data distribution of artificial data and real data is
similar. )erefore, adding artificial features to the ADR
imbalanced data set can improve the sparsity of its feature
space. )is once again verified that it is feasible to use GAN
to achieve feature enhancement.

)rough the above analysis, we can draw conclusion that
Model 3 (FS_GAN+SMOTE+RF) is more suitable for the
prediction of CFDA’s spontaneous report data. When
choosing this model to evaluate drug risks, we need to
conduct further analysis on misclassified drugs. On the one
hand, the proposed model has deviation, which can make
some medicines misclassified. On the other hand, the ad-
verse reaction corresponding to the drug does not match the
class it belongs to, which leads to the wrong classification. In
view of the above two situations, experts will reevaluate the
misclassified drugs. For drugs that do not match their
category, they need to switch among Rx, OTC-A, and OTC-
B to control the risks of drugs.

However, this study has several limitations including the
following:

(1) Sample size: the research used 985,960 spontaneous
reports from 2011 to 2018 provided by CFDA in
Jiangsu Province as experimental data, which can
visually verify the effectiveness of the proposed
model. However, it is difficult to verify the model’s
evaluation results of drug risks on a larger scale
because the sample size is not sufficient. Since
Chinese spontaneous report database is not open to
the public, we cannot further obtain more updated
samples. )is results in the limited availability of
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relevant data due in part to the high cost of collection
of such specialized data. During the preprocessing
stage, we deleted a large amount of incomplete and
worthless ADR data, which led to a reduction in the
sample size. At the same time, the time span and the
quality of the SRS are also key factors affecting
sample size.

(2) Feature enhancement: in the process of feature se-
lection, we use the relative importance score to rank
the ADR features. )is selection method may cause
some features that have an important impact on the
classification to be ranked lower, or even be ob-
scured. We discussed the characteristics of artificial
data and real data above, and proved the similarity
between the two in terms of data distribution.
However, how to further measure the difference
between artificial data and real data requires in-
depth research in the follow-up work.

(3) Drug interaction: in this study, aspects such as ad-
verse reactions caused by drug interactions are not
investigated as these factors are beyond the scope of
this research. Potentially, the analysis of ADRs
caused by the interaction of different drugs involved
in the collected spontaneous reports will help us
understand the process of adverse reactions and
further clarify the risks of drugs.

In summary, the results of this study indicate that it is
feasible to use GAN and SMOTE to classify imbalanced
ADR data from CFDA’s spontaneous reporting database.
)is classification can help us understand the applicable
population of drugs. )rough the evaluation of the classi-
fication results, we can further identify the drug risks faced
by consumers in a variety of situations, so as to reduce the
occurrence of unexpected problems. At the same time, the
evaluation of drug risks may help to develop new inter-
ventions to deal with adverse reactions after medication.

)emain contributions of this study include the accurate
classification of actual ADR data, as well as the GAN and
SMOTE methods used in this process, in an effort to realize
the feature enhancement and minority oversampling. We
verify that the model combining PRR, feature enhancement
(FS_GAN), SMOTE, and RF classification is optimal for
CFDA’s spontaneous reporting data, and gives the evalua-
tion metrics suitable for imbalanced data set. )is study also
provides reference for medical experts on the risk evaluation
and status switch of post-marketing drugs.

7. Conclusions

)is paper proposes a model combining feature enhance-
ment (FS_GAN) and SMOTE for drug risk evaluation in
CFDA’s spontaneous reporting data. Based on the com-
parison of three sets of models, the classification accuracy of
the proposed model is nearly 98%. )e results suggest that
the combination of PRR, FS_GAN, SMOTE, and RF method
is determined to be the optimal framework for class-im-
balance problems in ADR data. At the same time, the ef-
fective features generated by GAN have a significant

contribution to the classification performance. )is means
GAN can be used in more classification scenarios to obtain
better results.

)is model has the potential to be generalized to more
drug regulatory agencies, because it can provide a conve-
nient and reliable way for the ADR signal detection and drug
classification. )e results will serve as a strong basis for
experts to evaluate potential risk of drugs and help them
make more judgmatic decisions for the switch of drug status.
In the future, it is necessary to pay attention to the adverse
reactions caused by the mutual influence of multiple drugs,
which will help to further explore the relationship between
different ingredients and reduce the risk of medication.
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People often concern the relationships between symptoms and diseases when seeking medical advices. In this paper, medical data
are divided into three copies, records related to main disease categories, records related to subclass disease types, and records of
specific diseases firstly; then two disease recognition methods only based on symptoms for the main disease category identi-
fication, subclass disease type identification, and specific disease identification are given. In the methods, a neural network and a
support vector machine (SVM) algorithms are adopted, respectively. In the method validation part, accuracy of the two diagnosis
methods is tested and compared. Results show that automatic disease prediction only based on symptoms is possible for intelligent
medical triage and common disease diagnosis.

1. Introduction

At present, there is shortage of per capita medical resources,
and high-quality medical resources are concentrated in large
cities and large hospitals. In China, many patients have
strong health awareness, even if their symptoms are not
serious; they also flock to large hospitals to seek quality
medical services. Constraints and conflicts between medical
resource supply and demand are a long-standing
phenomenon.

In medical consultations, what people intuitively care
about are the relationships between symptoms and diseases.
Nowadays, many people provide symptoms online to obtain
prediagnosis results, and their objective is to screen critical
illnesses and seek an advice for further accurate medical
treatment.

An intelligent information system, which can auto-
matically perform prediagnosis based on the symptoms
provided by patients, can alleviate the problem of medical
resource shortage. In this paper, such diagnosis methods are
proposed. )rough these methods, preliminary diagnoses
can be provided for specialized diseases, and it can help
medical workers in areas having underdeveloped medical
resources implement medical triage and provide

consultation services for people who will seek precise
treatment in big hospitals. Additionally, a common disease
diagnosis service can be realized for people who can seek
medical treatment by themselves.

2. Related Works

Computer aided diagnosis research has begun since the last
century. Most intelligent disease diagnosis researches focus
on a certain type disease or only a specific disease. )e
contents mostly are intelligent diagnosis using machine
learning algorithms based on pathology data, influencing
factors, examination data, physiological performance, or
images when disease types are known previously [1–7].
Some exploratory works have discussed the disease diagnosis
only based on the symptoms provided by patients. A simple
method is to compare the symptoms provided by a patient to
record symptoms in each data item, and the disease in the
most similar entry is an output result. In [8], the user gives
out feathers related to the diseases such as gender, age,
affected part, and related symptoms firstly. Jackcard simi-
larities are calculated based on symptom matrixes, and the
similarities are arranged in descending order. Diseases in the
first 3 items are selected as alternative recommended
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answers. In [9], the similarities, which are evaluated by
differences between a symptom vector provided by the user
and characteristic symptom sets of different diseases, are
calculated. )e similarities are also arranged in descending
order, and the diseases in the first 3 selected items are al-
ternative recommended answers. Disease diagnosis only
based on symptoms and without disease type limitation is a
general practice (GP) problem. If the above methods are
used to solve this kind of diagnosis problem, the efficiency is
extremely low, and repetition calculations are involved in
each diagnosis case. In related works [10, 11], automatic
disease diagnoses based on machine learning algorithms are
proposed; in these works, symptoms are extracted firstly,
and then, the diagnosis is implemented using deep learning
algorithms. )ere are many diseases, while all proposed
methods are limited to discussions on few diseases in the
above papers.

Without detailed medical examination data and pa-
thology support, accuracy of diagnosis methods based on
symptoms cannot be guaranteed, while, in current online
applications, reports, and documents, diagnosis only based
on symptoms can be a disease screening method and used to
help fast disease type recognition and disease triage in
hospital. )e key problem is the adaptability of this kind of
diagnosis methods. At present, there is no discussion about
which disease type levels or which diseases this kind of
diagnosis methods is suitable for. To fill this gap, in this
paper, this issue is considered.

Disease prediagnosis based on symptoms, which are
contained in consultation words, is indeed a text classification
problem. In these works, the first step would mostly be lexical
feather extraction, and then classification based on different
feather properties is implemented [12–14]. Considering the
particularity in clinic and immature Chinese word segmen-
tations, in this paper, we only discuss the core prediagnosis
problem, and the symptoms, which are also disease feathers,
have been extracted according to clinical experience previ-
ously. A hierarchical frame is provided in this paper. Firstly,
the diseases are divided into major categories and then are
divided into several subtypes. Furthermore, specific diseases
are filled into subclass disease types. In this paper, two au-
tomatic diagnosis methods using a neural network technology
and a support vector machine (SVM) technology, respec-
tively, are given to solve this general practice (GP) problem. In
the methods, the first is the major disease category identifi-
cation, and then it is based on the results to identify disease
subtypes. Further process is the training for specific disease
identification. To observe the effectiveness, the two diagnosis
methods are tested and compared.

3. Problem Statement and Theories in
This Paper

3.1. 'e Diagnosis Problem in 'is Paper. )e intelligent
diagnosis problem to be solved in this paper includes two
aspects.)e first one is seeking diagnosis experience according
to the relationships between symptoms and diseases. Here,
supervisedmachine learningmethods are adopted.)e second

one is disease prediction based on the symptoms provided by
visitors. )e first one is the main problem.

In our research, symptoms have been extracted in data
preprocessing. Consider that samples with respect to the same
disease type are in a hyperplane and linearly separable, and a
different symptom may make two similar samples refer to
different disease types; the support vector machine (SVM)
algorithm is an appropriate method. As the neural network is
a generic method inmulticlassification problems, this method
is also adopted in this paper and compared with SVM [15].

3.2. 'e Neural Network in 'is Paper. To describe this
method, symbolic notations are given firstly:

N: there are N symptoms in each data item
Γ: the number of nodes in the output layer of a neural
network
Y: the number of nodes in the hidden layer of a neural
network is Y, and Y � 10 +

������
N + T

√

hn � (hn1, hn2, hn3, . . . , hnY): the input vector of the
hidden layer is hn, and the input of the pth hidden layer
unit is hnp

ho � (ho1, ho2, ho3, . . . , hoY): the output vector of the
hidden layer is ho, and the output of the pth hidden
layer unit is hoP

yn � (yn1, yn2, yn3, . . . , ynΓ): the input vector of the
output layer is yn, and the input of the qth output layer
unit is ynq

yo � (yo1, yo2, yo3, . . . , yoΓ): the output vector of the
output layer is yo, and the output of the qth output
layer unit is yoq

wnp: the connection weight between the nth input layer
unit and the pth hidden layer unit
ϖpq: the connection weight between the pth hidden
layer unit and the qth output layer unit
bp: the threshold value of the pth hidden layer
bq: the threshold value of the qth output layer
xk � (x

(k)
1 , x

(k)
2 , . . . , x

(k)
N ): the kth symptom record,

which contains N components, is xk, and each com-
ponent represents a different symptom
dk � (d

(k)
1 , d

(k)
2 , . . . , d

(k)
Γ ): the expected output when xk

is input to the neural network is dk, and if this record is
about the r th disease or disease type, the component
d(k)

r � 1, other components d
(k)
j � 0(j≠ r, j ∈ 1, 2, 3,{

. . . , Γ})
o(k) � (xk, dk) � ((x

(k)
1 , x

(k)
2 , . . . , x

(k)
N ), (d

(k)
1 , d

(k)
2 , . . . ,

d
(k)
Γ )): represents the kth training sample

In the neural network, each nerve cell is actually an
activation function. For the pth hidden layer unit, if sample
o(k) is used, the input is

hn
(k)
p � 􏽘

N

n�1
wnpx

(k)
n − bp. (1)
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A sigmoid function is used as the activation function,
and the output is

h(k)
(k)
p � f hn

(k)
p􏼐 􏼑 �

1
1 + exp − hn

(k)
p􏼐 􏼑􏼐 􏼑

, (2)

where exp() is an exponential function. An output cell of the
hidden layer is an input cell of the output layer, and for the
qth output layer unit, if sample o(k) is used, the input is

yn
(k)
q � 􏽘

Y

p�1
ϖpqho

(k)
p − θq, (3)

and a softmax output is

y(k)
(k)
q � f2 yn

(k)
q􏼐 􏼑 �

exp yn
(k)
q􏼐 􏼑

􏽐
Γ
q�1 exp yn

(k)
q􏼐 􏼑

. (4)

Furthermore, in the neural network, a cross-entropy loss
function is adopted:

e
(k)

� f3 yo
(k)
q􏼐 􏼑 � − 􏽘

Γ

q�1
d

(k)
q lny(k)

(k)
q . (5)

In the neural network, some important differential
equations are also involved.)e first is the partial differential
of error function e(k) with respect to ϖpq, and it is

ze
(k)

zϖpq

�
ze

(k)

zyn
(k)
q

·
zyn

(k)
q

zϖpq

. (6)

Considering formula (3) and that the processing pro-
cedure is focused on the connection weight between the pth
specific hidden layer unit and the qth specific output layer
unit, the following formula can be obtained:

zyn
(k)
q

zϖpq

�
z 􏽐

Y
p�1 ϖpqh(k)

(k)
p − θq􏼐 􏼑

zϖpq

� ho
(k)
p . (7)

Further, based on formulas (4) and (5), there is

ze
(k)

zyn
(k)
q

�
ze

(k)

zyo(k)
q

·
zyo(k)

q

zyn
(k)
q

� − d
(k)
q + y(k)

(k)
q 􏽘

Γ

q�1
d

(k)
q . (8)

Here, this result is marked as δ(k)
q .

If δ(k)
q is obtained, it can be used to renew the weight

between a hidden layer unit and an output layer unit, and the
update rule is

ϖpq � ϖpq + η
ze

(k)

zϖpq

� ϖpq + ηδ(k)
q h(k)

(k)
p . (9)

)e connection weight between the pth hidden layer unit
and the qth output layer unit in the next training process is
the connection weight at present combined with the partial
differential δ(k)

q and output ho(k)
p . η is a given learning rate.

In the concrete implementation process, the parameter
values of k, p, and q are given in operations with respect to a
particular neuron unit.

In the neural network, the partial differential of error
function e(k) with respect to wnp is also involved, and it is
shown as follows:

ze
(k)

zwnp

�
ze

(k)

zh(k)
(k)
p

·
zhn

(k)
p

zwnp

. (10)

Similarly, considering formula (2) and that the pro-
cessing procedure is focused on the connection weight
between the nth specific input layer unit and the pth specific
hidden layer unit, the following formula can be obtained:

zhn
(k)
p

zwnp

�
z 􏽐

N
i�1 wnpx

(k)
n − bp􏼐 􏼑

zwnp

� x
(k)
n . (11)

Further, based on formulas (2)–(5), there is

ze
(k)

zhn
(k)
p

�
ze

(k)

zyn
(k)
q

·
zyn

(k)
q

zho
(k)
p

·
zho

(k)
p

zhn
(k)
p

� − 􏽘
Γ

q�1
δ(k)

q ϖpq
⎛⎝ ⎞⎠f1

′
hn

(k)
p􏼐 􏼑,

� − 􏽘
Γ

q�1
δ(k)

q ϖpq
⎛⎝ ⎞⎠exp − hn

(k)
p􏼐 􏼑 1 + exp − hn

(k)
p􏼐 􏼑􏼐 􏼑

− 2
.

(12)

Here, this result is marked as σ(k)
p .

If σ(k)
p is obtained, it can be used to renew the weight

between a hidden layer unit and an output layer unit, and the
update rule is

wnp � wnp + η
ze

(k)

zwnp

� wnp + ησ(k)
p x

(k)
n . (13)

)e connection weight between the nth hidden layer unit
and the pth output layer unit in the next training process is
the connection weight at present combined with the partial
differential σ(k)

p and input x(k)
n . η is also a given learning rate.

3.3.'e Support VectorMachine (SVM) in'is Paper. In this
paper, a disease sample is x(k) � (x

(k)
1 , x

(k)
2 , . . . , x

(k)
N , x

(k)
N+1),

where (x
(k)
1 , x

(k)
2 , . . . , x

(k)
N ) represents different symptoms

and x
(k)
N+1 is a disease or disease type.

)e hyperplane separating samples are depicted as
follows:

f(x) � ωT
x + c. (14)

)e purpose is to get the classification parameters ω and
c. If there are T(b) samples in the sample space, the specific
problem should be solved:

min
(ω,c)

1
2
‖ω‖

2
,

s.t. x
(k)
N+1 ω x

(k)
1 , . . . , x

(k)
N􏽨 􏽩

T
+ c􏼒 􏼓≥ 1, k � 1, 2, . . . , T(b).

(15)

If the classification parameters have been obtained, and
there is a symptom vector k � (κ1, κ2, . . . , κN), while
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ωκ + c � ω1κ1 + ω2κ2 + · · · + ωNκN + c> 0, (16)

it can be determined that κ belongs to the disease category I,
while

ωκ + c � ω1κ1 + ω2κ2 + · · · + ωNκN + c< 0, (17)

and it can be determined that κ does not belong to the
disease category I.

In learning procedures, a one-against-the-rest SVM
method [16] based on this basic form can be adopted to
implement multiclassification.

4. Disease Identification Methods

4.1. Preconditions. Suppose that a preprocess step has been
implemented on existing electronic medical records. Disease
symptoms, disease types, and relations between the two are
known clearly.

4.2. Labelling. Number the N disease symptoms in the da-
tabase, and the symptoms are numbered as 1, 2, 3, 4, . . . , N,
respectively. Considering that the same symptoms in different
gender patients are often with regard to different common
diseases or disease types, gender is deemed as a default
“symptom,” which is labelled 1. Diseases in the database are
divided into B main categories, which are numbered as
N∗ 10 + 1, N∗ 10 + 2, . . ., N∗ 10 + B. Each main disease
category is further divided into several subclasses and num-
bered. )ere are T(b) subtype diseases under the main disease
category N∗ 10 + b, and they are numbered as N∗ 10 + b + 1,
N∗ 10 + b + 2, . . ., N∗ 10 + b + T(b), b� 1, 2, 3, . . ., B. T(b,j)

diseases are related to the disease type (N∗ 10 + b)∗ 10 + j

and numbered as ((N∗ 10 + b)∗ 10 + j)∗ 10 + 1, ((N∗ 10 +

b) ∗ 10 + j)∗ 10 +2, . . ., ((N∗ 10 + b)∗ 10 + j)∗ 10 + T(b,j),
b � 1, 2, 3, . . . , B, j � 1, 2, 3, . . . , T(b).

Establish a data relationship list, in which the data
structure is (Symptom 1, Symptom 2, Symptom 3, . . .,
Symptom N, Disease). Each entry contains N symptoms. If
symptom n does exist in the item of a disease, the value
below “Symptom n ” is 1, or else, the value is 0.

For example, suppose that there are only N � 11
symptoms in the current medical study records, the
symptoms are male, fever, ulcer, pain, aching and limp, nasal
congestion, diarrhea, bleeding, tumor, drowsiness, and face
yellowing, and the label values of these symptoms are 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, and 11.)ere are only B � 10 major disease
categories in the studied medical records, tumor disease,
infectious disease, blood disease, cardiovascular disease,
digestive disease, endocrine system disease, respiratory
disease, urinary system disease, ophthalmic disease, and
otolaryngology disease, and labelled numbers of these dis-
ease types are 101(N∗ 10 + 1), 102(N∗ 10 + 2),
103(N∗ 10 + 3), 104(N∗ 10 + 4), 105(N∗ 10 + 5), 106

(N∗ 10 + 6), 107(N∗ 10 + 7), 108(N∗ 10 + 8), 109(N∗ 10
+9), 110(N∗ 10 + 10), respectively. Furthermore, suppose
that there are T(1) � 3 subtype diseases, benign tumor
1011((N∗ 10 + 1)∗ 10 + 1), borderline tumor 1012((N∗
10 + 1)∗ 10 + 2), and malignant tumor 1013((N∗
10 + 1)∗ 10 + 3) in tumor diseases. And T(1,1) � 5 diseases,
which are squamous cell carcinoma
10111(((N∗ 10 + 1)∗ 10 + 1)∗ 10 + 1), adenocarcinoma
10112(((N∗ 10 + 1)∗ 10 + 1)∗ 10 + 2), basal cell carcinoma
10113(((N∗ 10 + 1)∗ 10 + 1)∗ 10 + 3), transitional cell
carcinoma 10114(((N∗ 10 + 1)∗ 10 + 1)∗ 10 + 4) and sar-
coma 10115(((N∗ 10 + 1)∗ 10 + 1)∗ 10 + 5), are in the
benign tumor disease. If there is a medical record about the
squamous cell carcinoma disease, and the symptoms are
fever, ulcers, pain, and tumor, there are three data items that
are related to this case and shown in Table 1.

A BP neural network that is shown in Figure 1 is used for
the disease type and specific disease identification. )ere are
N input layer nodes, Γ output layer nodes, and Y � 10 +�����

N + Γ
√

hidden layer nodes. K training symptom samples
o(k) � (xk, dk), k � 1, 2, 3, . . . , K are known. One medical
record is related to a sample. When symptom x(k)

n appears in
the record x(k), x(k)

n � 1, or else x(k)
n � 0. When a medical

record is about the disease type d(k)
ς , d(k)

ς � 1, and the rest
items are zero, that is, d

(k)
q≠ ς � 0. )e (N + 1) th input layer

unit with an input value “− 1” and the (Y + 1)th hidden layer
unit also with an input value “− 1” are used to generate
threshold values, and connection weights ω(N+1)p and
ω–(Y+1)q are used as thresholds bp and θq, respectively.

Specific training procedures are implemented according
to formulas (1)–(13) in Section 3.2. Based on the data form in
Table 1, the value of x(k)

n is 0 or 1, n � 1, 2, . . . , N. If d
(k)
j is in

(N∗ 10 + 1), (N∗ 10 + 2), . . . , (N∗ 10 + B){ }, it is the
training procedure to identify main disease categories. An
identification neural network NT is obtained. If d

(k)
j is in

(N∗ 10 + b)∗ 10 + 1, (N∗ 10 + b)∗ 10 + 2, . . . ,{ (N∗ 10+

b)∗ 10 + T(b)}, it is the training procedure to identify
subclass disease types under the main disease category
N∗ 10 + b. Identification neural networks NT − b,
b � 1, 2, 3, . . . , B are obtained. If d

(k)
j is in ((N∗ 10+{

b)∗ 10 + j)∗ 10 + 1, ((N∗ 10 + b)∗ 10 + j)∗ 10 + 2, . . . ,

((N∗ 10 + b)∗ 10 + j)∗ 10 + T (b, j)}, it is the training
procedure to identify specific diseases under the subclass
disease type (N∗ 10 + b)∗ 10 + j. Identification neural
networks NT − (b, j), b � 1, 2, 3, . . . , B, j � 1, 2, 3, . . . , T(b)

are obtained.
While the SVMmethodmentioned in Section 3.3 is used,

classification parameters with respect to major disease types

(ω, c)
1
, (ω, c)

2
, . . . , (ω, c)

B
, (18)

classification parameters with respect to subcategory disease
types
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(ω, c)
(1,1)

, (ω, c)
(1,2)

, . . . , (ω, c)
(1,T(1))

, (ω, c)
(2,1)

, (ω, c)
(2,2)

, . . . , (ω, c)
(2,T(2))

,

· · ·

(ω, c)
(B,1)

, (ω, c)
(B,2)

, . . . , (ω, c)
(B,T(B))

.

(19)

and classification parameters with respect to specific diseases

(ω, c)
(1,1,1)

, (ω, c)
(1,1,2)

, . . . , (ω, c)
1,1,T(1,1)( ), (ω, c)

(1,2,1)
, (ω, c)

(1,2,2)
, . . . , (ω, c)

1,2,T(1,2)( ),

· · ·

(ω, c)
(B,T(B),1)

, (ω, c)
(B,T(B),2)

, . . . , (ω, c)
B,T(B),T(B,T(B))( ),

(20)

can be obtained.

Table 1: An example of disease records.

Sequence
number Gender Fever Ulcer Pain Aching and

limp
Nasal

congestion Diarrhea Bleeding Tumor Drowsiness Face
yellowing Disease

1 1 1 1 1 0 0 0 0 1 0 0 101
2 1 1 1 1 0 0 0 0 1 0 0 1013
3 1 1 1 1 0 0 0 0 1 0 0 10131

x1
(k)

w11

w12

w21

w22
w2γ 

wN1wN2
wNY

w(N+1)1
(b1)

w(N+1)2 (b2)
w(N+1)γ (bN)

w1γ

hn1
(k) yn1

(k) yo1
(k)

yn2
(k) yo2

(k)

ynҐ
(k) yoҐ

(k)

ho1
(k)

hn2
(k)

hnγ
(k) hoγ

(k)

ho2
(k)

11

12

21

22

γ2

γ1

(γ+1)Ґ (θγ)

γҐ

2Ґ

(γ+1)2 (θ2)
(γ+1)1 (θγ)

1Ґ

Input layer Hidden layer Output layer

x2
(k)

xN
(k)

−1 −1

Figure 1: BP neural network in this paper.
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5. Diagnosis Implementations

5.1. IdentificationofMainDiseaseCategories. )e symptoms,
which are provided by a patient, are κ � (κ1, κ2, . . . , κN).

(1) Identification based on the neutral network: put κ
into the neutral network NT to estimate which main
disease category the symptoms refer to

(2) Identification based on SVM: identify whether the
disease category is based on vectors (ω, c)b,
b � 1, 2, 3, . . . , B by SVM

5.2. Identification of Subclass Disease Types. If the main
disease category is b � ς and the symptoms provided by a
patient are κ � (κ1, κ2, . . . , κN), based on the neutral net-
work NT − ς and SVM identification parameters
(ω, c)(ς,τ), τ � 1, 2, 3, . . . , T(ς) to identify subclass disease
types.

(1) Subclass disease type identification based on the
neutral network
Put κ � (κ1, κ2, . . . , κN) into the neutral network
NT − ς to estimate which subclass disease type the
symptoms refer to.

(2) Subclass disease type identification based on SVM
Step 1: Initial value is τ � 1.
Step 2: Identify whether the disease type is τ based on
vector (ω, c)(ς,τ) in the SVM classification method. If
the disease type is τ, go to Step 3, or else, make
τ � τ + 1. Verify that whether τ >T(ς), and if it is,
quit out the whole procedure, or else loop through
Step 2.
Step 3: )e subclass disease type τ is the output
result.

5.3. Identification of Specific Diseases. Suppose that the main
disease category is b � ς and the subclass type is j � τ. Based
on the neutral network NT − (ς, τ) and SVM identification
parameters (ω, c)(ς,τ,υ), υ � 1, 2, 3, . . . , T(ς,τ) to identify
specific diseases.

(1) Disease identification based on the neural network
Put κ � (κ1, κ2, . . . , κN) into the neutral network
NT − (ς, τ) to estimate what disease it is.

(2) Disease identification based on SVM
Step 1: Initial value is υ � 1.
Step 2: Identify whether the disease is υ based on
vector (ω, c)(ς,τ,v) in the SVM classification method.
If the disease is υ, go to Step 3, or else make υ � υ + 1.
Verify that whether υ>T(ς,τ), and if it is, quit out the
whole procedure, or else loop through Step 2.
Step 3: Disease υ is the output result.

6. Method Tests

In this part, the diagnosis methods are tested. )e tests in
this paper are implemented in digestive diseases, respiratory
diseases, and urinary diseases and used as examples.

6.1. Leave-One-Out Cross Validation. )e neural network
disease identification method and the support vector ma-
chine (SVM) disease identification method are compared.

Example 1. If a test sample is given, distinguish it as a di-
gestive disease, a respiratory disease, or a urinary disease.
Test results are shown in Table 2.

In Table 2, the accuracy of the main disease category
identification is 94.4%.

Disease triage is to estimate which subclass disease type
consulting symptoms provided by the user refer to. Disease
triage is tested in the following examples.

Example 2. Tests are implemented in cases. Case 1: if a test
sample has been diagnosed as a respiratory disease, dis-
tinguish it as a pulmonary disease, a respiratory tract in-
fection, a chest disease, or a mediastinal disease. Case 2: if a
test sample has been diagnosed as a digestive disease, dis-
tinguish it as an intestinal disease, a hepatic and gall disease,
an epityphlon and pancreas disease, or a stomach disease.
Case 3: If a test sample has been diagnosed as a urinary
system disease, distinguish it as a bladder disease, a kidney
disease, or an ureteral disease. )e results are shown in
Table 3.

In Table 3, the accuracy in disease subtype identification
is higher than 80%, but lower than the accuracy in the main
disease category identification.

Specific disease identification tests are carried on in
Example 3 and Example 4. In Example 3, binary classifi-
cation tests are executed. Samples about a disease are one
class, samples not related to this disease are “the other” one.
Example 4 is a multiclassification test, and samples related to
different diseases are different categories.

Example 3. Tests are implemented in such cases. Case 1:
Gastritis identification in stomach diseases; Case 2: Duo-
denal ulcer identification in stomach diseases. Case 3:
Common cold identification in respiratory tract infections.
Case 4: Pharyngitis disease identification in respiratory tract
diseases; Case 5: Asthma identification in respiratory tract
diseases. Case 6: Pneumonia identification in pulmonary
diseases. Case 7: Pulmonary tuberculosis identification in
pulmonary diseases. Case 8: Enteritis identification in in-
testinal diseases. Case 9: Intestinal obstruction identification
in intestinal diseases. Case 10: Hepatitis identification in
hepatic and gall diseases. Case 11: Gallstone identification in
hepatic and gall diseases. Test results are shown in Table 4.
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Example 4. Tests are implemented in such cases: Case 1:
Gastritis, upper gastrointestinal bleeding, duodenal ulcer,
and gastric ulcer identifications in stomach diseases; Case 2:
Intestinal obstruction, intussusception, ulcerative colitis,
common enteritis, and lower gastrointestinal bleeding
identifications in intestinal diseases; Case 3: Viral hepatitis,
cholangitis, gallstones, cholecystitis, liver abscess, and cir-
rhosis identifications in hepatic and gall diseases; Case 4:
Pneumonia, emphysema, lung abscess, pulmonary throm-
bosis, and tuberculosis identifications in pulmonary dis-
eases; Case 5: Upper respiratory tract infection and lower
respiratory tract infection identifications in respiratory tract
infections; Case 6: Renal failure, glomerulonephritis, py-
elonephritis, kidney stones, and nephrotic syndrome

identifications in kidney diseases. Test results are shown in
Table 5.

Comparing the results in Tables 4 and 5, if the specific
disease diagnosis is put into binary classifications, the ac-
curacy is higher than 80%, and when it is put into multi-
classification modules, the results are unsatisfactory.
Without the support of detailed pathology data, specialized
diseases actually cannot be accurately diagnosed by methods
only based on symptoms. However, considering the result
supports in Table 4, identifications of common diseases such
as gastritis, common cold, pharyngitis, and common en-
teritis, which always do not need the support of detailed
pathology data, can be provided to the user in an automatic
disease diagnosis system.

6.2. Diagnosis with Weight Samples. In clinic, some diseases
have high relational discrepancy symptoms. In a common
disease diagnosis experiment, which we have carried out,
sample weights are assigned to some samples artificially
according to clinical experience, and these weights are added
into loss functions in machine learning procedures [17]. In
the test, binary classification results using samples with
weights and without weights are similar, and the precision
difference is less than 4%. )us, high relational discrepancy
degree samples are suggested to be put into test sample sets
in validation procedures of machine learning methods.

6.3. Multitype Diseases Diagnosis. A person may have more
than 1 disease, and these diseases refer to different types, and
results also can be obtained when κ � (κ1, κ2, . . . , κN) is put
into classification modules identifying 1, 2, 3, . . ., N con-
currence diseases successively.

Example 5. Suppose that a patient has two or three diseases,
and these diseases belong to different disease subtypes. Case 1:
If the diseases belong to digestive diseases, identify it as a
concurrence case of intestinal disease, and hepatic and gall
disease, a concurrence case of intestinal disease and stomach
disease, or a concurrence case of stomach disease, and hepatic

Table 2: Diagnosis of main disease categories.

Number of test samples Wrong
identified samples Methods

169 9 SVM
169 9 Neural network

Table 3: Disease triage.

Cases Number of test samples Wrong identified samples Methods

Case 1 76 15 SVM
76 15 Neural network

Case 2 60 12 SVM
60 11 Neural network

Case 3 32 4 SVM
32 4 Neural network

Table 4: Diagnosis of specific diseases in binary classifications.

Cases Accuracy (%) Methods

Case 1 80.48 SVM
82.93 Neural network

Case 2 85.36 SVM
85.36 Neural network

Case 3 91.43 SVM
88.57 Neural network

Case 4 97.14 SVM
97.14 Neural network

Case 5 88.00 SVM
88.00 Neural network

Case 6 80.00 SVM
84.00 Neural network

Case 7 80.00 SVM
80.00 Neural network

Case 8 86.00 SVM
86.00 Neural network

Case 9 88.00 SVM
90.00 Neural network

Case 10 95.00 SVM
93.33 Neural network

Case 11 83.33 SVM
83.33 Neural network
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and gall disease. Case 2: If the diseases belong to respiratory
diseases, identify it as a concurrence case of pulmonary
disease and chest disease, a concurrence case of chest disease
and respiratory tract infection, or a concurrence case of
pulmonary disease and respiratory tract infection. Case 3: If
the diseases belong to respiratory diseases, identify it as a
concurrence case of pulmonary disease, upper respiratory
tract disease, and trachea and bronchi disease, a concurrence
case of pulmonary disease, upper respiratory tract disease, and
pleura and chest disease, or a concurrence case of pulmonary
disease, trachea and bronchi disease, and pleura and chest
disease. Case 4: If the diseases belong to digestive diseases,
identify it as a concurrence case of intestinal disease, hepatic
and gall disease, and epityphlon and pancreas disease, a
concurrence case of stomach disease, intestinal disease, and
hepatic and gall disease, or a concurrence case of epityphlon
and pancreas disease, stomach disease, and intestinal disease.
)e above cases are about disease subtype identifications, and
the results are shown in Table 6.

From the results in Table 6, it can be seen that, in the
identification of concurrence of multiple disease types, the
accuracy of machine learning methods is dropping. When
there is a concurrence of more than three disease types, the
identification accuracy would be much lower.

6.4. Discussion on Test Results

(1) For lacking pathologic support, the accuracy of the
GP diagnosis methods based on symptoms for
specific diseases is limited. In our tests, it is shown
that this kind of methods can be used in the diagnosis
of common diseases, such as cold, enteritis, and
rhinitis, and for specialized diseases such as asthma,
liver cancer, and psoriasis, thesemethods can be used
to predict disease types and provide disease triage.
Diagnosis methods, which identify disease types in
this paper, can also be used in hospital guides.

(2) In consideration of sample characteristics, the
neutral network and SVM machine learning
methods are appropriate choices for the automatic

prediagnosis problem in this paper. In our experi-
ments, the accuracy of the neural network is close to
that of SVM. Sometimes, the neutral network per-
forms a litter better, and sometimes, it is the SVM. A
corollary is that the accuracy of this kind of diagnosis
methods is limited by the problem itself, and even
another practicable machine learning method is
adopted, and the performance is also similar with the
neutral network and SVM method.

(3) From the experiment results, it can be seen that
automatic prediagnosis methods only based on
symptom data are suitable for single disease type
identification, and it is also not difficult to infer that
these methods are also only suitable for a specific
common disease identification. If a symptom record
is related to multiple disease types or multitype
diseases, the availability is low.

(4) In our experiments, the feasibilities of diagnosis only
based on symptoms using machine learningmethods
are tested. Even tests are carried out in digestive
diseases, respiratory diseases, and urinary diseases,
and without loss of generality, it can be deduced that
this kind of diagnosis methods can be used in other
disease categories. Test results would also be ob-
served further in more kinds of disease types except
for the cases in this paper.

7. Conclusions

In this paper, neural network and SVM machine learning
methods are given to solve the automatic disease diagnosis
problem only based on symptoms. In our methods, each
symptom is a feature. )e methods work in three layers,
which are main disease category identification, subclass
disease type identification, and specific disease identifi-
cation. )e methods are suitable for the diagnosis of
common diseases and disease triage for specialized dis-
eases. )e availability in practice is proved and analyzed in
the experiments of this paper. In addition, future research

Table 5: Diagnosis of specific diseases in multiple classifications.

Cases Accuracy (%) Methods

Case 1 41.46 SVM
34.15 Neural network

Case 2 78.00 SVM
70.00 Neural network

Case 3 66.67 SVM
63.33 Neural network

Case 4 60.00 SVM
56.00 Neural network

Case 5 76.00 SVM
70.00 Neural network

Case 6 70.00 SVM
60.00 Neural network

Table 6: Diagnosis of multiple diseases.

Cases Number of test
samples

Wrong identified
samples Methods

Case 1
150 54 SVM

150 52 Neural
network

Case 2
150 36 SVM

150 36 Neural
network

Case 3
180 135 SVM

180 133 Neural
network

Case 4
200 134 SVM

200 136 Neural
network
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is also required to investigate automatic symptom ex-
traction and discuss the maximum number size of
symptoms.
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