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circRNA is a novel class of noncoding RNA with closed-loop structure. Increasing biological experiments have shown that
circRNAs play an important role in many diseases by acting as a miRNA sponge to indirectly regulate the expression of miRNA
target genes. -erefore, predicting associations between circRNAs and miRNAs can promote the understanding of pathogenesis
of disease. In this paper, we propose a new computational method, NECMA, based on network embedding to predict potential
associations between circRNAs andmiRNAs. In ourmethod, the Gaussian interaction profile (GIP) kernel similarities of circRNA
and miRNA are calculated based on the known circRNA-miRNA associations, respectively. -en, the circRNA-miRNA as-
sociation network, circRNAGIP kernel similarity network, andmiRNAGIP kernel similarity network are utilized to construct the
heterogeneous network. Furthermore, the network embedding algorithm is used to extract potential features of circRNA and
miRNA from the heterogeneous network, respectively. Finally, the associations between circRNAs and miRNAs are predicted by
using neighborhood regularization logic matrix decomposition and inner product. -e performance of NECMA is evaluated by
using ten-fold cross-validation. -e results show that this method has better prediction accuracy than other state-of-the-
art methods.

1. Introduction

circRNA is a new group of endogenous noncoding RNA that
is highly represented in the mammalian transcriptome [1].
Compared with other noncoding RNAs (such as lncRNAs
and miRNAs), circRNAs did not receive extensive attention
in the early stage. With the development of high-throughput
biological sequencing technology, more and more circRNA
molecules have been discovered. Increasing studies have
shown that circRNA does not have 5′-terminal cap and
3′-terminal poly (A) tail and can form a closed ring structure
with covalent bonds [2]. Like other noncoding RNAs,

circRNAs are also widely found in eukaryotes’ brains [3],
stomachs [4], and mammary glands [5]. Meanwhile,
circRNAs aremore stable than other linear noncoding RNAs
due to their unique circular structure [6]. In addition, the
unique structure of circRNA enables it to regulate gene
transcription and expression [7]. For example, ciRs7 can
bind related miRNAs and act as a miR-7 sponge to affect
miR-7 binding to the target gene [8]. In addition, it has been
found that circHIPK3 can sponge miR-124 and inhibit the
activity of miR-124 in malignant tumors to achieve the
purpose of regulating cell growth [9]. Numerous evidences
have shown that miRNAs are closely related to a variety of
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diseases [10]. For example, miR-145 inhibits colon cancer
cell growth by targeting the insulin receptor substrate [11].
-erefore, predicting the potential associations between
circRNAs and miRNAs can help biologists to understand
complex pathogenesis of disease and further contribute to
disease diagnoses.

With the continuous development of high-throughput
sequencing technology, a large number of circRNAs have
been discovered. Simultaneously, plenty of databases are
developed to store circRNA-related information such as
circBase [12], circR2Disease [13], circRNADisease [14], and
circ2Disease [15]. circBase is an online database that pro-
vides users with a variety of basic circRNA information such
as circRNA ID, sequence, gene description, and location
[12]. circR2Disease is a public database that stores experi-
mentally verified circRNA-related disease information. -e
database contains 793 circRNA-disease associations in-
cluding 661 circRNAs and 100 diseases [13]. -e circR-
NADisease database contains 354 circRNA-disease
interactions, 330 circRNAs, and 48 diseases [14]. Similar to
circR2Disease and circRNADisease, the circ2Disease data-
base is used to store a vitro-proved circRNA-disease asso-
ciation database through which users can obtain circRNA-
disease associations and the associations between miRNAs
and its targets [15]. -ese databases enable users to identify
potential associations between circRNA and miRNA by
using computational methods.

Compared with traditional biological experiment
methods, the circRNA-miRNA association prediction based
on computational methods can maintain high accuracy and
be less time-consuming.-erefore, more andmore attention
has been paid to circRNA-miRNA association prediction
based on computational methods. At present, a large
number of computational prediction models have been
applied in many fields of biology, for example, predicting
associations between diseases and genes, miRNA-disease
associations [16, 17], circRNA-disease associations [18, 19],
lncRNA-disease associations [20, 21], protein function
[22, 23], drug-target interactions [24, 25], and lncRNA-
miRNA associations [26, 27]. Compared with other fields,
there are few prediction models based on the computational
method in the circRNA-miRNA association prediction.
-erefore, it is urgent to develop an effective computational
method to infer circRNA-miRNA associations.

For the above purposes, in this study, we propose a new
computational algorithm based on network embedding,
NECMA, to predict circRNA-miRNA association. In our
method, the circRNA-miRNA network is constructed based
on experimental verified circRNA-miRNA associations.
-en, based on the circRNA-miRNA associations, the GIP
kernel similarities of circRNA and miRNA are calculated by
using the Gaussian interaction profile kernel similarity,
respectively. Furthermore, the circRNA GIP kernel simi-
larity network, miRNA GIP kernel similarity network, and
circRNA-miRNA association network are integrated to
construct the circRNA-miRNA heterogeneous network. In
addition, the network embedding model is employed to
learn the features of circRNA and miRNA based on the
circRNA-miRNA heterogeneous network, respectively.

Finally, the weighted neighborhood regularized logistic
matrix factorization and inner product are combined to
predict potential circRNA-miRNA associations. -e ten-
fold cross-validation is used to evaluate the performance of
our method. -e experimental results show that NECMA
achieves better performance than other state-of-the-art
methods. In addition, the case study shows that NECMA
could effectively infer potential circRNA-miRNA associa-
tions which are confirmed by the latest literature.

2. Related Work

Numerous experiments have shown that circRNA and
miRNA have a close association with diseases. -e current
circRNA-disease association prediction algorithms are di-
vided into the following categories. (1) Network-based
circRNA-disease association prediction method: Fan et al.
[28] used known circRNA-disease associations, circRNA
expression profile similarities, and disease phenotype sim-
ilarities to construct the circRNA-disease heterogeneous
network and then used KATZ to predict potential associ-
ations between circRNAs and diseases. Li et al. [29] inte-
grated known circRNA-disease associations, circRNA
functional similarities, and disease semantic similarities and
utilized network-consistent projections to identify potential
circRNA-disease associations. Zhao et al. [30] developed an
ensemble learning algorithm to predict the potential asso-
ciation between circRNA and diseases. In this method, the
circRNA-disease heterogeneous network is constructed
from known circRNA-disease association network, circRNA
similarity network, and disease similarity network and
circRNA-disease association is predicted by using KATZ
and bipartite network projections. Lei and Bian [31] used
random walk with restart and KNN algorithms to identify
potential associations between circRNAs and diseases based
on known circRNA-disease associations, circRNA similar-
ities, and disease similarities. Li et al. [32] predicted potential
circRNA-disease associations based on known circRNA-
disease association networks, circRNA similarity, and dis-
ease similarity by using inductive matrix completion. Wei
and Liu [18] reconstructed the circRNA-disease association
network using circRNA similarities and disease similarities
and then used nonnegative matrix factorization to predict
potential associations. (2)Machine learning-based circRNA-
disease association prediction method: Lei and Fang [33]
fused circRNA expression profile similarity network,
circRNA sequence similarity network, and circRNA func-
tional annotation similarity network to construct the
circRNA similarity network. -e disease similarity network
is constructed by integrating the disease functional similarity
network and the disease semantic similarity network. Fi-
nally, based on the known circRNA-disease association
network, circRNA similarity network, and disease similarity
network, the potential feature of circRNA and diseases were
extracted, respectively, and then the gradient boosting de-
cision tree algorithm was used to predict the potential
circRNA-disease associations.

Similarly, miRNA-disease association prediction algo-
rithms can also be classified into the similar categories. Peng
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et al. [34] developed a miRNA-disease association pre-
diction model (-rWRDE) that performs a restart random
walk algorithm on a variety of miRNA-related biological
data and then integrates the results obtained from multiple
restart random walk models. You et al. [35] integrated
known miRNA-disease associations, miRNA similarity,
and disease similarity to construct a miRNA-disease het-
erogeneous network and then used a depth-first search
algorithm to count the path between miRNA and diseases.
Finally, the different pathways between miRNA and dis-
eases are integrated to obtain the predicted association
score between miRNA and diseases. Chen et al. [36]
constructed miRNA similarity and disease similarity by
integrating miRNA functional similarity and miRNA
Gaussian interaction profile kernel similarity and disease
Gaussian interaction profile kernel similarity and disease
semantic similarity, respectively. Finally, the inductive
matrix completion is used to obtain the final predicted
miRNA-disease association. Chen et al. [37] extracted the
potential representations of miRNA and disease, respec-
tively, using a stacked autoencoder and then obtained the
predicted score of miRNA-disease association by using
support vector machine (SVM).

3. Materials and Methods

3.1. Materials. -e circRNA-miRNA associations are
downloaded from circR2Cancer database (http://www.
biobdlab.cn:8000/). -e circR2Cancer database [38] is a
manually curated database which contains not only
circRNA-cancer association data but also circRNA-
miRNA association data and miRNA-cancer association
data. After removing redundant data, 130 circRNAs, 412
miRNAs, and 477 associations are extracted in final.
Furthermore, the adjacent matrix CMm×n is constructed to
represent circRNA-miRNA association, where m repre-
sents the number of circRNAs and n represents the
number of miRNAs. -e value of element CM(i, j) is
equal to 1 when circRNA i is related to miRNA j, oth-
erwise 0.

3.2. circRNA and miRNA Similarity Calculation. In this
study, the Gaussian interaction profile (GIP) kernel simi-
larity is used to calculate similarities of circRNA and
miRNA. Based on the assumption that circRNAs with
similar functions are often associated with similar miRNAs,
circRNA GIP kernel similarity and miRNA GIP kernel
similarity are calculated based on the circRNA-miRNA
interaction network, respectively. For pairwise circRNAs ci

and cj, the GIP kernel similarity CS (ci, cj) between
circRNAs ci and cj is defined as follows:

CS ci, cj􏼐 􏼑 � exp −cc CM ci, :( 􏼁 − CM cj, :􏼐 􏼑
�����

�����
2

􏼒 􏼓, (1)

where CM(ci, :) represents the ci row in the matrix CM and
cc represents the kernel bandwidth, which is defined as
follows:

cc �
1

1/nc 􏽐
nc

i�1 CM ci, :( 􏼁
����

����
2

􏼒 􏼓

,
(2)

where nc represents the number of rows in matrix CM.
Similarly, the miRNAGIP kernel similarity MS (mi, mj)

between miRNA mi and miRNA mj is defined as follows:

MS mi, mj􏼐 􏼑 � exp −cm CM :, mi( 􏼁 − CM :, mi( 􏼁
����

����
2

􏼒 􏼓,

(3)

where CM(:, mi) represents mi column of matrix CM and
cm represents the kernel bandwidth, which is defined as
follows:

cm �
1

1/nm 􏽐
nm

i�1 CM :, mi( 􏼁
����

����
2

􏼒 􏼓

,
(4)

where nm represents the number of columns in the inter-
action matrix CM.

3.3. Construction of Heterogeneous Network. -e heteroge-
neous network used for circRNA-miRNA association pre-
diction is composed of three subnetworks including
circRNA-miRNA interaction network, circRNA GIP kernel
similarity network, and miRNA GIP kernel similarity net-
work. Based on the above three subnetworks, the hetero-
geneous network H is constructed as follows:

H �
CS CM

CM
T

MS
􏼢 􏼣, (5)

where CM represents the circRNA-miRNA interaction
network, CMT represents the transpose of the circRNA-
miRNA interaction network,CS represents the circRNAGIP
kernel similarity network, and MS represents the miRNA
GIP kernel similarity network.

3.4.3e Feature Extraction Based onNetMF. After obtaining
the heterogeneous network H, the network embedding as
matrix factorization (NetMF) algorithm [39] is used to
extract the potential features of circRNA and miRNA on the
heterogeneous network, respectively. NetMF is a matrix
factorization framework based on the original DeepWalk
algorithm. To be specific, the NetMF model is the matrix
factorization form of DeepWalk algorithm derived from the
implicit decomposition model of the skip-gram with neg-
ative-sampling model (SGNS) [40, 41]. It can reduce the
noise information in the matrix H and improve the per-
formance of the prediction model. -e NetMF model is
defined as the probability distribution of truncated random
walk, which is calculated as

Pro � D
−1

· H, (6)

where D denotes a diagonal matrix and the elements in D

represent the generalized degree of nodes in the matrix H.
-en, we conducted w times random walk on the het-

erogeneous network H according to the probability
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distribution calculated before. It is used to sample the nodes
in the heterogeneous network to obtain the transfer matrix
trans H which is defined as follows:

trans H � 􏽘
w

m�1
Pro. (7)

After obtaining the transition matrix trans H, the
DeepWalk matrix is obtained as

HDeepWalk �
􏽐

n
i�1 􏽐

n
j�1 H(i, j)

bw
· trans H · D

−1
, (8)

where n represents the dimension of heterogeneous network
H and b represents the number of negative samples.

Since the density of HDeepWalk increases the time com-
plexity of subsequent calculations, the approximate matrix
HDeepWalk′ is defined as follows:

HDeepWalk′ � max HDeepWalk, 1􏼐 􏼑. (9)

After obtaining the matrix HDeepWalk of the circRNA-
miRNA heterogeneous network H, the low-dimensional
space feature vectors of circRNA and miRNA are obtained
by using the singular value decomposition (SVD) model
[42–44], which is defined as follows:

Ud 􏽘
d

V
T
d � log HDeepWalk′ , (10)

where d represents the dimension of a low-dimensional
space.

Finally, the eigenmatrix eigen matrix is calculated:

eigen matrix � Ud􏽘
d

. (11)

-e dimension of eigen matrix is m + n and d. -is
matrix is composed of circRNA feature vectors u and
miRNA feature vectors v, in which the dimensions arem and
n, respectively.

3.5. circRNA-miRNA Association Prediction. -e potential
eigenvectors of circRNA andmiRNA are obtained by NetMF
on heterogeneous network H. -en, the weighted neigh-
borhood regularized logistic matrix factorization [45] and
inner product are utilized to reconstruct the circRNA-
miRNA association matrix.

-e weighted neighborhood regularized logistic matrix
factorization is defined as follows:

matrix pre(i, j) �
e

(α)ui(1− α)vT
j􏼐 􏼑

1 + e
(α)ui(1−α)vT

j􏼐 􏼑
. (12)

-e inner product is defined as follows:

inner pre(i, j) � uiv
T
j , (13)

where ui represents the feature vector of circRNA i and vj

represents the feature vector of miRNA j. α represents the
weight coefficient to balance the influence of two feature
vectors on the reconstructed matrix.

Finally, the score of circRNA-miRNA association matrix
is defined as follows:

Pre(i, j) � max(matrix pre(i, j), inner pre(i, j)), (14)

where Pre(i, j) denotes the predicted score between
circRNA i and miRNA j.

-e flowchart of NECMA is shown in Figure 1. It
mainly contains the following steps: first, the Gaussian
interaction profile kernel similarity is utilized to calculate
circRNA similarity and miRNA similarity based on the
known circRNA-miRNA associations, respectively. -en,
the heterogeneous network H is constructed based on the
circRNA-miRNA association network, miRNA similarity
network, and circRNA similarity network. Furthermore,
the NetMF is used to extract the low-dimensional features
of circRNA and miRNA on heterogeneous network H,
respectively. Finally, the weighted neighborhood regular-
ized logistic matrix factorization and the inner product are
utilized to reconstruct the circRNA-miRNA association
matrix based on the circRNA feature vector and miRNA
feature vector (Algorithm 1).

4. Result

4.1. Ten-Fold Cross-Validation. In order to evaluate the
performance of NECMA, we conduct the ten-fold cross-
validation in the experiment. In the ten-fold cross-vali-
dation, the known circRNA-miRNA associations are
randomly divided into ten subsets. -en, in each round of
cross-validation experiment, one set is selected as the test
samples and the other nine sets are treated as the training
samples which are used in model training.-e final score of
circRNA-miRNA association is predicted by using the
model. -e higher the score of the association, the higher
the probability of circRNA-miRNA interaction. -en, we
rearranged the score of circRNA-miRNA association in
descending order. Furthermore, the true positive rate
(TPR) and false positive rate (FPR) are calculated by al-
tering the threshold. -e TPR and FPR are defined as
follows:

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
,

(15)

where TP and FP represent true positive and false positive,
respectively, and TN and FN represent true negative and
false negative, respectively. Finally, the receiver operating
characteristics (ROC) curve is plotted based on TPR and
FPR, and the area under ROC curve (AUROC) is calcu-
lated to evaluate the predictive power of the model. -e
higher the AUROC value, the better the performance of
the model.

Similarly, the area under precision-recall (AUPR) curve
based on precision and recall is used to evaluate the per-
formance of prediction model. -e precision and recall are
defined as follows:
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circR2Cancer

miRNA GIP kernel
similarity network MS

circRNA GIP kernel
similarity network CS

Heterogeneous network H

Initial circRNA-miRNA
association matrix CM

CS
CMT

CM
MS

H =

The
eigenvectors

for
circRNA ui

The
eigenvectors

for
miRNA vj

NetMF

The weighted neighborhood regularized
logistic matrix factorization:

matrix_pre (i, j) = 
e((α)ui(1-α)vT)j

1 + e((α)ui(1-α)vT)j

The inner product :

inner_pre (i, j) = uivT j

Predicted circRNA-miRNA association scores

Pre (i, j) = max (matrix_pre (i, j), inner_pre (i, j))

Figure 1: -e flowchart of NECMA.

Input: circRNA-miRNA association matrix CM
Output: Predicted association matrix Pre
(1) Calculate the circRNA GIP kernel similarity CS based on known circRNA-miRNA associations
(2) Calculate the miRNA GIP kernel similarity MS based on known circRNA-miRNA associations
(3) Construct a heterogeneous network H based on CM, CS, and MS
(4) Calculate generalized degree matrix D based on heterogeneous network H
(5) Calculate the probability of truncated random walk Pro � D− 1 · H

(6) Calculate the transition matrix trans_H � 􏽐
w
m�1 Pro

(7) Calculate HDeepWalk � (􏽐
n
i�1 􏽐

n
j�1 H(i, j)/bw) · trans H · D− 1

(8) Calculate HDeepWalk′ � max(HDeepWalk, 1)

(9) Dimensionality reduction through SVD Ud􏽐dVT
d � logHDeepWalk′

(10) Calculate circRNA-miRNA feature matrix eigen_matrix � Ud􏽐d

(11) Extract circRNA feature u and miRNA feature v based on eigen_matrix
(12) Calculate matrix_pre(i, j) � e

((α)ui(1− α)vT
j

)/1 + e
((α)ui(1−α)vT

j
)

(13) Calculate inner pre(i, j) � uiv
T
j

(14) Return: Predicted association matrix: Pre(i, j) � max(matrix pre(i, j), inner pre(i, j))

ALGORITHM 1: NECMA.
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precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

(16)

where precision represents the proportion of positive ex-
amples in the predicted results to the actual positive ex-
amples and recall represents the proportion of all true
positive cases divided into positive cases, whichmeasures the
classifier’s ability to recognize positive cases.

In addition, in order to demonstrate the superiority of
NECMA in predicting the potential association of circRNA-
miRNA. We compare NECMA with three state-of-the-art
algorithms including RWRLncD [46], NCPLDA [47], and
LRLSLDA [48]. Figures 2 and 3 show the AUROC and
AUPR values obtained by different prediction models in ten-
fold cross-validation, respectively. -e results of ten-fold
cross-validation show that the AUROC and AUPR of the
NECMA are better than other three prediction algorithms. It
can be found from Figure 2 that the AUROC value of
NECMA is 0.8264 which is higher than RWRLncD (0.5243),
NCPLDA (0.6985), and LRLSLDA (0.7661). Simultaneously,
it can be observed from Figure 3 that the AUPR value of
NECMA is 0.0048 which is higher than RWRLncD (0.0016),
NCPLDA (0.0011), and LRLSLDA (0.0026). -e overall
results of ten-fold cross-validation are shown in Table 1. It
can be concluded that NECMA is an effective method in
identifying association between circRNA and miRNA.

4.2. Effect of Parameters. -ere are three parameters con-
tained in the NetMF model (context window w, negative
sampling number b, and embedded dimension d).
According to the previous study [39], both the context
window w and the negative sampling number b are set to 1.
To test the effect of embedded dimension d, we set embedded
dimension d ranging from 8 to 128. -e result is shown in
Figure 4. It can be found that the AUROC value of NECMA
is the highest when the embedded dimension d of the NetMF
is set to 8. In addition, we also test the effect of parameter
weight coefficient α in neighborhood regularization logistic
matrix factorization which is used to balance the influence of
two eigenvectors in the process of matrix reconstruction.
-e parameter α ranges from 0.1 to 0.9 with 0.1 increasing in
each time. -e influence of parameter α on the prediction
performance is shown in Figure 5. It can be observed that the
AUROC value obtained is the highest when α� 0.6.

4.3. Case Study. To further illustrate the ability of NECMA
to predict potential circRNA-miRNA associations, we
conduct a case study on miR-130a-3p. We select the top 10
circRNAs predicted by NECMA and prove these associa-
tions by manually retrieving related databases and literature.

-e numerous experiments have shown that miR-130a-
3p is associated with proliferation and migration of many
cancer cells [49]. For example, miR-130a-3p can regulate its
target Smad4 to inhibit migration and invasion of gem-
citabine-resistant (GR) hepatocellular carcinoma (HCC)

cells [50]. -erefore, the correct prediction of the circRNAs
associated with miR-130a-3p is useful for understanding
complex disease mechanisms. -e top 10 predicted
circRNAs of miR-130a-3p are shown in Table 2. -e results
showed that nine circRNAs (hsa_circ_0068942, hsa_-
circ_0089378, hsa_circ_0083357, hsa_circ_0006323,
hsa_circ_0032970, hsa_circ_0051172, hsa_circ_0054537,
hsa_circ_0057576, and hsa_circ_0082824) have been
confirmed in the literature. It has been confirmed that the
moderately upregulated hsa_circ_0068942 ranked at top 1
can serve as miR-130a-3p sponge and the disease marker
for coronary artery disease (CAD) [51]. It has been dem-
onstrated that hsa_circ_0089378 ranked at top 2 can act as
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Figure 2: -e AUROC values of the NECMA model and the other
three algorithms on the ten-fold cross-validation.
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the sponge for miR-130a-3p to affect its target mRNA
expression in coronary artery disease [52]. It has been
demonstrated that hsa_circ_0083357 ranked at top 3 can
play an important role in coronary artery disease through

miR-130a-3p-mediated circRNA-mRNA-competitive en-
dogenous RNA (ceRNA) networks [53]. It has been found
that hsa_circ_0006323 ranked at top 4 can inhibit the
expression of miR-130a-3p in coronary artery disease cells
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Figure 4: -e impact of embedded dimension d.
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Figure 5: -e influence of parameter α.

Table 1: Performance comparison of NECMA with RWRLncD, LRLSLDA, and NCPLDA.

Methods AUC AUPR Precision Recall Accuracy F1-score Specificity
RWRLncD 0.5243 0.0016 0.0013 0.5321 0.4922 0.0026 0.4922
LRLSLDA 0.7661 0.0026 0.0019 0.7720 0.4926 0.0039 0.4924
NCPLDA 0.6958 0.0011 0.0009 0.7005 0.4981 0.0018 0.4979
NECMA 0.8264 0.0048 0.0026 0.8277 0.4993 0.0053 0.4989
-e bold values indicate best performance.

Table 2: Top ten candidate circRNAs for miR-130a-3p.

Rank circRNA Evidence
1 hsa_circ_0068942 PMID: 30159442
2 hsa_circ_0089378 PMID: 31119072
3 hsa_circ_0083357 PMID: 30368217
4 hsa_circ_0006323 PMID: 29730164
5 hsa_circ_0032970 PMID: 28947970
6 hsa_circ_0051172 PMID: 29182528
7 hsa_circ_0054537 PMID: 28947970
8 hsa_circ_0057576 PMID: 28947970
9 hsa_circ_0082824 PMID: 29182528
10 hsa_circ_0005986 Uknown
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[54]. It has been demonstrated that hsa_circ_0032970
ranked at top 5 can bind to miR-130a-3p binding sites in
coronary artery disease cells [55]. It has been demon-
strated that hsa_circ_0051172 ranked at top 6 can regulate
the expression of TRPM3 by targeting miR-130a-3p in
coronary artery disease [56]. In addition, it has been
confirmed that differential expression of hsa_circ_00
54537 ranked at top 7 and hsa_circ_0057576 ranked at top
8 can not only inhibit miR-130a-3p but also lead to
upregulation of TRPM3 [55]. It has been discovered that
hsa_circ_0082824 ranked at top 9 can promote the ex-
pression of TRPM3 in target cells in coronary artery
disease by inhibiting miR-130a-3p [54].

5. Conclusion

Accumulating experiments have shown that predicting
associations between circRNAs and miRNAs not only
helps to understand complex disease mechanisms but
also contributes to prevent and diagnose diseases [57]. In
this study, we propose a computational method,
NECMA, to infer circRNA-miRNA associations. In this
model, we first construct the circRNA-miRNA associa-
tion matrix based on known circRNA-miRNA associa-
tions. -en, the Gaussian interaction profile kernel
similarity is used to calculate circRNA similarity and
miRNA similarity based on known circRNA-miRNA
associations, respectively. Furthermore, the heteroge-
neous network is constructed based on three subnet-
works (circRNA-miRNA association network, circRNA
similarity network, and miRNA similarity network). In
addition, the NetMF is employed to extract the subspace
features of circRNA and miRNA from the heterogeneous
network, respectively. Finally, the scores of circRNA-
miRNA associations are predicted by using weighted
neighborhood regularized logistic matrix factorization
and inner product. In order to show the performance of
NECMA, we compare NECMA with three state-of-the-
art methods (RWRLncD, NCPLDA, and LRLSLDA) in
terms of ten-fold cross-validation. -e experimental
results show that the NECMA achieves a higher AUROC
value (0.8264) than the other three prediction models. In
addition, it is demonstrated that NECMA could correctly
identify potential associations between circRNA and
miRNAs by constructing a case study on miR-130a-3p.

Although the NECMA model can effectively predict the
potential circRNA-miRNA association, there are still many
limitations. First, the NECMA model mainly relies on
known circRNA-miRNA association data and the imbalance
of positive and negative samples will greatly affect the
prediction accuracy of the model. Second, the setting of
parameters will also affect the prediction results of the
model. In addition, the integration of various circRNA and
miRNA information can further improve the predictive
power of the model [58–60]. Moreover, the NECMA model
cannot predict new circRNA-miRNA without any known
association.-erefore, we will integrate more biological data
of circRNA and miRNA in the future, which will make it
more reliable [61–63].
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With the fast development of web 2.0, information generation and propagation among online users become deeply interweaved. How
to effectively and immediately discover the new emerging topic and further how to uncover its evolution law are still wide open and
urgently needed by both research and practical fields. *is paper proposed a novel early emerging topic detection and its evolution
law identification framework based on dynamic community detection method on time-evolving and scalable heterogeneous social
networks. *e framework is composed of three major steps. Firstly, a time-evolving and scalable complex network denoted as
KeyGraph is built up by deeply analyzing the text features of all kinds of data crawled from heterogeneous online social network
platforms; secondly, a novel dynamic community detection method is proposed by which the new emerging topic is detected on the
modeled time-evolving and scalable KeyGraph network; thirdly, a unified directional topic propagation network modeled by a great
number of short texts including microblogs and news titles is set up, and the topic evolution law of the previously detected early
emerging topic is identified by fully utilizing local network variations and modularity optimization of the “time-evolving” and
directional topic propagation network. Our method is proved to yield preferable results on both a huge amount of computer-
generated test data and a great amount of real online network data crawled from mainstream heterogeneous social networks.

1. Introduction

In recent years, with the fast development of web 2.0, social
network sites such as Facebook, Sina microblog, and Twitter
rise in a short time, a huge heterogeneous online social net-
works have gradually formed on which the functional role of
online users is changing from the information consumers to
both diffusers and generators [1]. Information of different
online social networks propagates in a deeply mingled way. For
example, information from news websites is reposted to sites
like personal (micro) blogs that have specific following groups;
BBS (bulletin board system) of which the information bares the
broadcasting attribute is shared to the personal (micro) blogs.
Activities above making the information production and

propagation among various users become a huge data-het-
erogeneous, time-evolving, and scalable complex network.
*us, how to efficiently and timely identify and reveal the new
emerging topic and even its evolution process (law) on this
scalable, time-evolving, and heterogeneous online social net-
work has become the hot research spot in topic detection and
tracking fields lately.

It is widely known that a complex network bears the
community structure, which represents a clustering of
network nodes with densely interweaved edges within
groups but spares connections between them [2]. Com-
munity structure not only reveals the coarse structure of the
network but also plays an important role in the functioning
of the network [3, 4]. For example, community in the social
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network represents the real social groups composed of
people having the same backgrounds or interests; com-
munity in collaboration network represents the related
papers with the same research subject; community in the
biology or circuit network represents nodes group with the
same network function. Deng et al. [5] proposed a hot topic
detection algorithm based on a community of networks. Lin
and Guan-Zhong. [6] also found the forum hot topic using
the community detection concept applied on the BBS net-
work and validated the efficiency and consistency by manual
calibration of the identified topic and the community. Some
researchers [7, 8] discovered the epidemic spreading
mechanism by using the community structure analysis of
complex networks. Identification of community structure in
the complex network usually can realize certain application-
based purposes and thus, the community identification and
topology evolution discovery have become the most sig-
nificant focus in the complex network structure analysis
field. Although community detection/identification in net-
works has been studied for many years, most existed ap-
proaches are designed simply for the static network [9, 10]
and unified homogeneous network [11]. However, in the
real-world and in this paper, the studied social network is
time-evolving and heterogeneous due to the time-varying
social communications and the time-dependent interactions
of different social network platforms.

Although it has been concluded that the traditional static
community detection methods could be applied to the time-
evolving heterogeneous network by converting the time-
evolving network into a series of static snapshots of sub-
networks through rearranging the nodes and links belonging
to the same time stamps, while in this process, the semantic
relationships and dynamic properties of communities may
have violently been damaged or even lost. Another con-
cluded method is to identify network community not from
scratch but by storing and using the historical results of
execution of static community detection algorithm along
with the network evolving process [12, 13]. However, a great
amount of time and space computing costs are needed and
the efficiency of the algorithm becomes slower with time
flying. Lately, community discovery in the time-evolving and
heterogeneous network has emerged as an outstanding
challenge and has attracted much attention of researchers.
Sun et al. [14] proposed a Dirichlet Process Mixture Model
based algorithm to describe the community detection in a
heterogeneous star-model network.

In summary, when applying existing community detection
methods for time-evolving and heterogeneous networks, three
main problems are usually encountered: (1) most existed
community detection methods are proposed simply for the
static and homogeneous network; (2) the semantic relation-
ships and dynamic properties of communities are violently
damaged and even bluntly lost due to the man-made seg-
mentation of network; (3) a great amount of computing time
and space cost is required by storing the historical community
structure information as the initial input values.

Aiming to tackle these problems, we propose an
emerging topic identification and evolution topology dis-
covery framework based on a novel dynamic community

detection method on the time-evolving and heterogeneous
social network. Firstly, a unified short-text network is
constructed by modeling heterogeneous short texts crawled
from different online social networks into a network. It is
denoted as KeyGraph based on the cooccurrence of key-
words of the crawled short texts. Secondly, a novel dynamic
community detection method with a well-known static
community detection algorithm as the Louvain algorithm
corely embedded is proposed and is applied on the Key-
Graph, as a result of which, the new emerging topic in the
form of newborn community is detected. Finally, the topic
evolution topology is discovered by deep analysis of the
community scale and nodes variation with time-evolving of
the detected communities.

*e rest of this paper is presented as follows. We briefly
review the related research work in Section 2, our meth-
odology is presented in Section 3, numerical results and
evaluations are presented in Section 4, and finally, we
conclude and discuss our future work in Section 5.

2. Related Work

Topic detection and tracking (TDT) is firstly put forward by
DARPA in 1996. Its original objective is to automatically
identify online public sentiments in the form of a topic from
the network media stream and further to track the propa-
gation and diffusion process of the previously identified/
detected topic. Later, TDT has become the key technology in
the fields of Internet public opinion/sentiment mining field.
Classic TDT methods include the latent Dirichlet analysis
(LDA) [15] and the probabilistic latent semantic analysis
(PLSA) [16] methods. *eir main concepts are that a topic is
based on the probability distributions of sets of words such
that the probability distribution of word cooccurrences
among sets of words is maximized/optimized.

Community is another important property of a complex
network except for the small-world and scale-free properties.
It not only provides a coarse view of the network structure
but also actually plays and represents certain functions of the
network. Community describes the closeness among nodes
which means that nodes are closely interrelated within
groups, while nodes between different communities are
loosely connected.

Sayyadi and Raschid [17] proposed a graph analytical
method to detect and identify the topic; they proposed the
KeyGraph algorithm to transform original texts data into a
term graph based on properties of cooccurrence relations of
texts data with each other. Furthermore, they utilized a
community detection method to part the constructed
KeyGraph network into community topology and they
deemed each identified community as a detected topic.
Nowadays, community detection is a fundamental technique
of network structure analysis, many creative methods for
discovering communities in a static and homogeneous
network have been deployed in the past decades. It can be
commonly divided into two classes: graph theory-based
algorithm and sociology-based algorithm. Sociology-based
algorithms can be generally divided into division and ag-
gregation methods. *e classical GN algorithm [2] belongs
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to the division method, and its fundamental principle is to
obtain network community by finding the edge with the
highest score of betweenness and by removing it from the
network. Newman proposed a fast aggregation algorithm
[9], which has similar accuracy with GN, but the perfor-
mance has been significantly improved. Blonde et al. [18]
proposed the Louvain algorithm based on the modularity
optimization method, which is a simple, efficient, and easy-
to-implement method for finding community structure in a
large-scale network. *e method is actually a greedy opti-
mization method that attempts to optimize the tag-indexed
“modularity” of every possible partition of the target
network.

However, the resolution limit problem is commonly
encountered using the modularity-based community de-
tection method in a static and homogeneous network.
Here, the “static” mainly refers to both the time and the
whole network structure staying static without variation
with time flying by. *e resolution limit problem means
when the scale of the network is large enough, a small
community in a large network cannot be properly and
efficiently detected, which results in the overlapping
community phenomena. *is phenomenon is called the
resolution limit problem in a large-scale network when
using the modularity method for network community
detection purposes [19, 20]. *ese community detection
methods, however, lack the capability of dealing with time-
evolving and cannot be directly used for heterogeneous
networks. As our problem of identifying and revealing the
emerging topic and its evolution topology on the large-
scale, time-varying, and heterogeneous online social net-
work, the previous and classic community detection
methods face great challenges.

2.1. Dynamic Community Detection of Homogeneous Social
Network. Tracking the evolution topology of detected
community need to take the dynamic property of the time-
evolving network into consideration. A commonly utilized
and concluded framework [21–24] is to apply the static
community detection algorithms for each static snapshots
subnetwork composed of nodes and edges with the same
timestamp of the time-evolving network and then to gen-
erate the evolution of community by computing the com-
munity closeness between two adjacent static snapshots
subnetworks. Toyoda and Kitsuregawa [25] firstly selected
these web pages with high focus numbers (thumb-up
number) as seed web pages and finally obtained the com-
munity including the seed web pages by utilizing the page
closeness calculation algorithm with hyperlink-induced
topic search as core calculation framework. Palla et al. [26]
obtained the community topology of one snapshot using the
clique percolation clustering method and evaluated its
usefulness by applying it to the scientists’ cooperation
network and the telecommunication users network. Chak-
rabarti et al. [27] proposed an evolution clustering model
with k-means and hierarchy clustering method to identify
the community evolution law in the process of dynamic
community detection.

Another policy to track community evolution in the
time-evolving network is by integrating the optimization of
both modularity and the structure of local network varia-
tions into a multiobjective optimization problem. Its main
concept is that treating the community topology of the
previous timestamp t − Δt as baseline network, at the
present time epoch t, the variations of the network during
the time range Δt, i.e., [t − Δt, t] are the main focus other
than the whole network of the present time being t. By
detecting the community topology of the variation part of
the network during the time range Δt while the other part of
the network remains unchanged to improve the whole ef-
ficiency of the community detection algorithm [28–33].
Yang and Liu [28] proposed the physical incremental model
by modeling the relationship between nodes of a network
controlled by attraction force and repulsive force proposed
in Newtonian mechanics. Other incremental dynamic
community detection methods usually utilize the key feature
of the network; these algorithms firstly obtain the com-
munity topology of network at the initial snap shot com-
monly using the static community detection method, then
with time flying by, the variations of network during the
man-set time range is recalculated and its community to-
pology is identified [29–33]. However, these methods are
usually designed for homogeneous networks.

2.2. Dynamic Community Detection of Heterogeneous Social
Network. Lately, community detection in a heterogeneous
network has become a hot research spot. Zhao et al. [34]
proposed a uniform framework for detecting and tracking
community evolution. *ey firstly model the entities and
their relationships with the same timestamp into a het-
erogeneous network. *ey secondly extracted the snapshot-
based feature and delta-based feature by utilizing the
autoregression method to finally obtain the community
topology and its evolution law. Sun et al. [35] introduced the
community evolution in multimode networks and proposed
a framework that partitioned the multimode network into a
set of bipartie networks. Sun et al. used net clusters [14] to
describe the community and proposed the Evo-NetCluster
to detect the community automatically. Wu et al. [36]
proposed a tensor decomposition framework to detect
community in the general time-evolving heterogeneous
network. Nevertheless, these methods either need to know
the topology schema like star or bipartite or need to satisfy
the requirements of tensor factorization, which are intrac-
table/hard to use in real applications. Tang et al. [37] pro-
posed a principal modularity maximization method, in
which they first analyzed the modularity of different rela-
tional dimensions, then according to its eigenvalue and
eigenvector of each relational dimension, the principal
structural feature was extracted; thirdly, they correlated
every network principal structural features to acquire the
shared community topology of the whole network which
would make the whole network modularity optimized.

With the rapid development of web 2.0 and mobile
networks, event detection on heterogeneous data has drawn
more attention in recent years. Yang et al. [38] proposed a
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unifiedmodel to dynamically learn how to represent the data
with different features of a heterogeneous social network. Liu
et al. [39] treated the breaking news as a heterogeneous social
data stream and developed how to extract events from the
dynamic data stream. Liu et al. [40] extended the hetero-
geneous data stream into a multilingual scenario; Cao et al.
[41] developed a knowledge-preserving and incremental
social event detection framework using the GNNs and they
applied it on the heterogeneous social network.

In summation, the TDTmethods given above face three
challenges as follows. Firstly, though most previous topic
detection methods have good results in static online social
networks, they rarely relate to the research of new emerging
topic detection under the time-evolving and dynamic social
network situations. Secondly, topic detection researchers
mainly focus on finding newmethods to detect prominent or
distinct topics. *ey pay little attention to reveal the topic
evolution process with time flying in the meantime of the
topic detection process. *irdly, the resolution limit prob-
lem has still not been well solved in the existing modularity
community detection methods.

In this paper, we propose an original emerging topic
detection and topology evolution identification framework
to firstly detect the newly emerging online topic and sec-
ondly to uncover its evolution topology on the global het-
erogeneous online social networks.

3. Problem Formulation and Method

3.1. KeyGraph Network Modeling. Before introducing our
proposed dynamic community detection method, we firstly
build up the KeyGraph network for short texts crawled from
heterogeneous social networks platforms in two steps.
Firstly, every short text is modeled as a node/vertice of the
key graph network. Connections between any two short texts
are modeled as the edge state between them. Secondly, we
acquire the keywords set corresponding to each short text by
using the word segmentation technology. *us the original
short-text network can be abbreviated as a complex network
based on the closeness of keywords.

In this paper, we denote and name it as KeyGraphG� {Vi,
Eij} in the following way, where i, j represent the ith and jth
short texts crawled from heterogeneous social networks and
marked with a number, Ci is the keyword set of the ith short
text using word segmentation technology, Nij is the count
number of common keywords belonging to keyword sets of
bothCi andCj;Vi is the ith node of the network, Eij represents
the edge between the ith and jth short texts which is closely
related to the common keywords numberNij.*e relationship
of Eij with Nij is shown in the following formula:

Eij � 1, if Nij > 0,

Eij � 0, if Nij � 0, wij � Nij.
(1)

For illustration purposes, 406 short texts containing both
news titles and microblogs are crawled in which the number
of people participating overcomes 1000 in October 1st, the
year 2019. Its KeyGraph in the stochastic and Fruchterman
Reingold distributions is shown in Figure 1. Figure 1(a) is the

random distribution of the KeyGraph, and Figure 1(b) is the
Fruchterman Reingold distribution of the KeyGraph. It
shows a clear community structure.

3.2. Dynamic Community Detection and Topic Detection on
the Time-Evolving KeyGraph Network. Different from the
static network, it should be noticed that the network formed
by short texts crawled from heterogeneous online social
network actually evolves with time flying by in this paper,
and so do the relationships of the network. *us the Key-
graph network modeled in Section 3.1 is actually the time-
evolving and scalable network. In this paper, we denote it as
the time-evolving and scalable network Gt � {Vt, Et}, the
scale of which increases in sizes of either node Vt or edges Et
or even both of them with time flying by.

In this paper, we propose a dynamic community detection
method which not only can effectively alleviate the resolution
limit problem, but also can discover the community structure
of the time-evolving and scalable network Gt. Its main idea is
that at given time epoch t, the community structure of network
at time epoch t − Δt, i.e., Gt−Δt is assumed as clearly detected
using static Louvain algorithm and already known, the part of
network changing/variation during the time interval (t, t + Δt]
rather than the entire network, i.e., Gt+Δt at time t + Δt is our
main focus. By calculating the closeness of local changed
subnetwork during the time interval (t, t + Δt] with historical
communities of network Gt, a local bipartite graph is obtained.
*e local bipartite graph is composed of two groups of nodes.
One is the group of nodes having loose closeness with com-
munities ofGt and is denoted as Bi Gloose,t,t+Δt, and the other is
the group of nodes having close connections with communities
of Gt denoted as Bi Gclose,t,t+Δt. By applying the static com-
munity detection, i.e., Louvain algorithm on subnetwork is
composed of both the Bi Gclose,t,t+Δt and historical commu-
nities of Gt; also by applying the Louvain algorithm on
Bi Gloose,t,t+Δt, the whole new emerging community loosely
connected with historical communities of Gt will be detected.
*e community structure of time-evolving network at time
epoch t + Δt, i.e., Gt+Δt � Vt+Δt, Et+Δt􏼈 􏼉 is discovered by
combining community detection results on these bipartite
graphs during the time range (t, t + Δt]. By simply utilizing the
local changed network property, the complexity and running
time only depend on the local changed part of network rather
than the whole network at t + Δt, i.e., Gt+Δt � Vt+Δt, Et+Δt􏼈 􏼉,
which enables its applications in the large-scale network. *e
flow chart of our proposed dynamic community detection
method is presented in Figure 2.

Before explicitly unfolding the specific dynamic com-
munity detection method, we present some related and
important definitions closely related to our algorithm in
advance as follows.

3.2.1. Related Definitions

Definition 1. Closeness degree of node i with the network at
time epoch t, i.e., Gt is defined as ki.t and is calculated using
the following formula:
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ki.t � 􏽘
Vjt
∈Gt

Aijt
,

(2)

where Aijt
is the adjacent matrix of the network Gt+Δt, jt

means node j belonging to network Gt, and node i belonging
to network Gt+Δt.

Definition 2. Closeness of node i belonging to the local
changed network of time range (t, t + Δt] with networks Gt

and Gt+Δt is defined as r and is calculated using the following
formula:

r � ki.t − ki,t+Δt, (3)

if r> 0, it is believed that the node i during time range (t, t +

Δt] have a close relationship with the historical communities
of network Gt compared with network Gt+Δt, if r≤ 0, then it
is believed that node i during time range (t, t + Δt] have a
loose relationship with the historical communities of Gt

compared with network Gt+Δt.

Definition 3. *e modularity model proposed by Newman
and Girvan is presented in the following formula:

Q �
1
2m

􏽘
i,j∈Ω

Aij −
kikj

2m
􏼠 􏼡δij, (4)

where Aij is the adjacent matrix, δij is the Kronecker
function, δij � 1 when both nodes i and j are in the same
community; otherwise, δij � 0. Ω is the set of total network
nodes, ki, kj is the degree of nodes i and j within the whole
network, m is the total weights of all edges of the whole
network.

By rewriting the Kronecker function δij, the modularity
function Q can be rewritten in the following formula:

Q �
1
2m

􏽘
i,j∈Ω

Aij −
􏽐i∈Ωki􏽐j∈Ωkj

2m
⎛⎝ ⎞⎠

�
1
2m

􏽘 C 􏽘 in −
􏽐 tot( 􏼁

2

2m
􏼠 􏼡,

(5)

where C represents any community of network, 􏽐 in rep-
resents the total edge weights within community C, 􏽐 tot

represents the summation of total edge weights connected
with community C.

In our paper, a modularity gain index is defined as the
modularity difference between the modularity value before
and after reassigning node i into the community where node
j belonging to the modularity gain is calculated using for-
mulae (4) and (6).

ΔQi.j �
􏽐 in + ki.in

2m
−

􏽐 total + ki

2m
􏼠 􏼡

2
⎡⎣ ⎤⎦

−
􏽐 in
2m

−
􏽐 total
2m

􏼠 􏼡

2

−
ki

2m
􏼠 􏼡

2
⎡⎣ ⎤⎦ �

ki.in

2m
−

ki 􏽐 total
2m

2 .

(6)

3.2.2. Dynamic Community Detection Method. After pre-
senting the essential and necessary definitions and formu-
lations, we give the specific framework of our dynamic
community detection method for the time-evolving network
as follows.

Firstly, for time-evolving network Gt formed by short
texts and its relationships crawled from heterogeneous social
network platforms before time epoch t, the static community
detection algorithm here referred to as Louvain algorithm is
utilized to obtain the community structure of Gt. Secondly,
by bisecting the local varied network during the time range
[t, t + Δt] into two groups as a bipartite graph; one is the
subnetwork denoted as Bi Gclose,t,t+Δt composed of the new
emerging nodes that have close relationship/connections
with the historical communities of Gt; the other is the
subnetwork denoted as Bi Gloose,t,t+Δt composed of the new
emerging nodes that have loose relationship with the his-
torical communities of network Gt, and we propose formula
(3) to quantify the closeness of the local varied nodes within
time range [t, t + Δt] with historical communities of net-
work Gt. Finally, by applying the static community detection
method into the local varied networks Bi Gloose,t,t+Δt and
Bi Gclose,t,t+Δt, we can identify the community subordinate
attributes of these new emerging nodes within time range
[t, t + Δt], i.e., which nodes should belong to the historical
communities of network Gt as the new emerging nodes
within historical communities during time range [t, t + Δt],

(a) (b)

Figure 1: Illustration of KeyGraph. (a) Random Distribution. (b) *e Fruchterman Reingold distribution.

Complexity 5



and which nodes should be assumed as the whole new
emerging communities during time range [t, t + Δt],
respectively.

As mentioned above, there is a static community de-
tection algorithm embedded and applied when we identify
the community structure of bipartite networks Bi Gclose,t,t+Δt

and Bi Gloose,t,t+Δt; here the Louvain algorithm is chosen as
the embeded static community detection method. It is well
known that a high value of modularity indicates a good
community partition of the target network. Maximizing this
criterion by utilizing all kinds of optimization algorithms has
always been a popular research focus during the past

Graph Gt at time epoch t

Start

Community detection for 
graph Gt using Louvain algorithm

For the changing part of graph Gt during time range 
(t,t+Δt), i.e. Gt,t+Δt, according to the closeness association 

with graph Gt, i.e. ΔGt,t+Δt is divided into two parts, i.e.
Bi_Gclose,t,t+Δt and Bi_Gloose,t,t+Δt.

Using the k-mediod clustering 
method, rearranging vertex i 
belonging to set Bi_Gclose,t,t+Δt

according to modularity gain ΔQ

Bi_Gloose,t,t+Δt Bi_Gclose,t,t+Δt

Finding the community structure 
of graph Bi_Gloose,t,t+Δt

using louvain algorithm 

r>0

Combing the community 
detection results of the 

above two, and obtain the 
final community detection 

results of Gt+Δt

Yes No

t+Δt

Figure 2: Flow chart of the community detection method based on the Louvain algorithm.
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decades. However, it is intractable to find the exact global
optimal modularity. *us, many approximation optimiza-
tion algorithms have been proposed. Among these algo-
rithms, the greedy concept introduced by Blonde et al. [18]
and called as Louvain algorithm has been proved to be
among the most efficient algorithm with excellent perfor-
mance, especially in large-scale networks. Louvain algorithm
is actually the hierarchical cluster community detection
method and mainly consists of two steps. In the first step,
modularity is optimized locally in the neighborhood of each
node; in the second step, it aggregates the nodes in the same
community into supernodes and thus forms a new coarse-
grained aggregated network. *ese two procedures are it-
eratively performed until the global value of network
modularity stops to increase by any movement of nodes in
the network, specific Louvain algorithm is presented as
follows.

Step 1: treating each node of the targeted network as
every single community
Step 2: for node i and its neighbor node j, we calculate
the modularity gain ΔQi,j and its maximum value
maxΔQi.j, if maxΔQi.j > 0, then we deem that node i
and node j should belong to the same community
Step 3: repeating step 2 for all the node i and its
neighbor node j until there is no community change for
all the nodes of the network
Step 4: compressing the network with the community
as an aggregated node, the degree of the aggregated
node is the original degree of the corresponding
community
Step 5: repeating step 1 to step 4 for the compressed
network until the modularity gain ΔQi.j of the whole
network does not increase, the algorithm stops

*e modularity gain ΔQi.j in step 2 after node i joining
into the communities of its neighbor node j is calculated
using formula (6).

ΔQi.j �
􏽐 in + ki.in

2m
−

􏽐 total + ki

2m
􏼠 􏼡

2
⎡⎣ ⎤⎦

−
􏽐 in
2m

−
􏽐 total
2m

􏼠 􏼡

2

−
ki

2m
􏼠 􏼡

2
⎡⎣ ⎤⎦ �

ki.in

2m
−

ki 􏽐 total
2m

2 .

(7)
*us, we have fully presented the dynamic community

detection algorithm with the Louvain method embedded for
the time-evolving network Gt � Vt, Et􏼈 􏼉.

Its main algorithm is presented as follows:

Step 1: Utilizing Louvain algorithm to obtain the
community structure of network Gt

Step 2: bisecting the local varied network during time
range [t, t + Δt] into two groups as a bipartite graph
using formula (3), denoted as Bi Gclose,t,t+Δt and
Bi Gloose,t,t+Δt;
Step 3: applying the Louvain method for networks
Bi Gclose,t,t+Δt + Gt and Bi Gloose,t,t+Δt, and combining

the community detection results as the final commu-
nity structure of network Gt+Δt.

3.2.3. Topic Detection Method. A more detailed process of
our new emerging topic detection method is presented as
follows. We first construct the named KeyGraph network
using keywords of short texts crawled from heterogeneous
social network platforms according to modeling rule shown
in Section 3.1; secondly, by employing the time-evolving
property of the constructed KeyGraph, we utilize the pro-
posed dynamic community detection method to identify the
community structure of time-evolving KeyGraph network;
thirdly, for each detected community of KeyGraph, we
calculate the total number of people participating in (i.e.,
reviewing, thumbing-up, retweeting) each detected com-
munity, which actually reflects the keywords of the original
short texts belonging to the detected community; finally, we
rank and select the top-N detected communities according
to the sequence of the statistic value. According to the se-
lected top-N communities, the highest frequently mentioned
keywords of the detected community are chosen as the
keywords of the newly detected emerging topic.

Until now, our topic detection method based on the
dynamic community detection method has been fully un-
covered, and its specific algorithm is presented as follows:

Step 1: the KeyGraph model is used to map the original
short-text network into the KeyGraph network, thus
the data set of the short texts before time epoch t is
changing into the KeyGraph network Gt

Step 2: identifying the community structure of network
Gt using Louvain algorithm
Step 3: adding the new emerging short-text data during
time range [t, t + Δt] into the network Gt and forming
the new network at time epoch t + Δt, i.e., Gt+Δt

Step 4: identifying the community structure of network
Gt+Δt using the dynamic community detection method
Step 5: repeating step 3 and step 4 until the community
structure of the short-text formed network Gt+Δt has
been fully identified
Step 6: calculate the total number of people partici-
pating in each detected community belonging to net-
work Gt+Δt

Step 7: selecting the top-N communities which have the
most statistical total number of people participating
Step 8: for the selected top-N communities, calculating
the frequency of keywords subordinating to each
community, chose the top-n keywords with the highest
frequency as the keywords of the corresponding topic

3.3. Method Alleviating Resolution Limit Problem.
Another advantage needs to be pointed out is that our
proposed dynamic community detection method can ef-
fectively alleviate the resolution limit problem commonly
encountered in modularity-based community detection
methods of complex network. For illustration purposes,
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Figure 3 is presented to show how our dynamic community
detection method can alleviate the resolution limit problem
by adaptively presetting the discrete time step
Δt0.i, i � 1, 2, . . . in the proposed dynamic community de-
tection method.

As presented in Figure 3, at the initial time epoch t0, we
set the first discrete time step Δt0.1, during the time range
[t0, t0 + Δt0.1], the local changed networks are composed of
nodes marked in orange circle and are denoted as com-
munity 1, light blue circles are denoted as community 2, and
cyan circles are denoted as community 3; at time epoch
t0 + Δt0.1, we adaptively set the second discrete time step as
Δt0.2, during time range [t0 + Δt0.1, t0 + 􏽐

2
i�1Δt0.i], the cor-

responding local changed networks are composed of nodes
marked as cyan circle, pink circle, and light blue circle, which
are denoted as community 3, community 4, and community
2, respectively, where there are new emerging vertices in
community 2 and community 3 compared with those
communities at the previous time epoch t0 + Δt0.1, and
community 4 is the whole new emerging community during
time range [t0 + Δt0.1, t0 + 􏽐

2
i�1Δt0.i]; also at time epoch

t0 + 􏽐
2
i�1Δt0.i, we set the time step Δt0.3, during time range

[t0 + 􏽐
2
i�1Δt0.i, t0 + 􏽐

3
i�1Δt0.i], the local changed/varied

networks are composed of nodes marked as pink circle, dark
blue circle, where the scale of community 4 enlarges with
new emerging vertices and in the mean time the whole new
emerging community 5 is detected. Following this schema,
this process continues in the nested and recursive way with
time flying by. *us, for the time-evolving and scalable
network, by selecting the proper time step Δt0.i, the reso-
lution limit problem can be effectively alleviated.

3.4. Topic Evolution Law Identification. In this section, we
focus on how to discover the community topology evolution
of the detected topic in Section 3.2.2. It should be noticed
that the constructed KeyGraph network is actually a directed
graph under the topic propagation situation instead of
simply topic detection scenario because the topic propa-
gation commonly reflects information propagation direction
during the topic diffuses process, while our topic detection
method proposed in Section 3.2.2 is illustrated using the
time-evolving, undirected KeyGraph network. *us, in this
section, we should first expand the modularity formula (4)
for undirected networks into the directed network as shown
in the formula.

Q �
1
n

􏽘 aij −
k
in
i k

out
j

n
⎛⎝ ⎞⎠δij, (8)

where n is the total number of edges, aij is the i, j elements
values of adjacent matrix of the directed network, kin

i is the
in-degree of node i, kout

j is the out-degree of node j. δij is the
Kronecker function as defined before.

Also, we expand the modularity gain ΔQ for undirected
graph into the directed graph and present it in the following
formula:

ΔQ �
ki.in

n
−

ki 􏽐 tot
n
2 , (9)

where ki is the degree of node i, and ki � kin
i + kout

i , ki.in
represents a new number of edges connecting the local
changed nodes with historical communities, 􏽐 tot represents
the total number of edges with community C.

Hence, by substituting formulae (8) and (9) into our
dynamic community detection method in Section 3.2.2, we
can propose the algorithm for topic evolution topology
identification purposes.

Step 1: modeling the users at time epoch t participating
in the topic identified Section 3.2 as the directed topic
propagation network Gt;
Step 2: identifying the community structure of the
directed network Gt by utilizing our proposed dynamic
community detection method;
Step 3: adding the local changed users participating into
the directed topic propagation network Gt during time
range [t, t + Δt] and forming the scalable network Gt+Δt;
Step 4: separating the local changed users during time
range [t, t + Δt] into a bipartite graph, the one having a
loose relationship with network Gt, denoted as
Bi Gloose,t,t+Δt, and the other having close relationship
with network Gt, denoted as Bi Gclose,t,t+Δt;
Step 5: for subnetwork composed of Gt and
Bi Gclose,t,t+Δt, employing the proposed dynamic
community detection algorithm, the incremental in-
formation of the historical communities of Gt during
time range [t, t + Δt] is found.
Step 6: for subnetwork composed of Bi Gloose,t,t+Δt, the
whole new emerging community is identified by using
the proposed dynamic community detection algorithm;
Step 7: merging the community detection results of
steps 5 and 6, the community detection results of the
topic propagation network at time epoch t + Δt is
identified;

4. Experiments and Results

To validate the effectiveness of our proposed topic detection
and evolution law identification method, we use both the
artificial complex networks composed of computer-gener-
ated data and the real network constructed by original data
crawled from heterogeneous and popular social media
platforms. By comparison of the community detection re-
sults under the static Louvain algorithm and the proposed
dynamic community detection method with the Louvain
algorithm embedded, our proposed dynamic community
detection method yields better results which validate its
effectiveness and feasibility.

4.1. Experiments on Artificial Computer-Generated Network.
In the artificial complex network composed of computer-
generated data, we generate the artificial complex networks
by choosing the nodes’ connection probability p within the
same community, while the nodes connection probability
between the communities is set as 1-p, and values p and 1-p
satisfying p> 1 − p, which means that the closeness of nodes
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within the community is larger than nodes between com-
munities. Here, the artificial computer-generated network,
which contains 68 nodes in total, with p set as 0.78.
Community detection results using the static Louvain al-
gorithm are presented in Figure 4(a).

While considering the time-evolving property in our
practical situations, properties of nodes and edges of the
artificial computer-generated network remains unchanged.
While we randomly chose part of the nodes with time epoch
t marked, those randomly selected nodes and edges at time
epoch t compose the network Gt, and the remaining nodes
are treated as the new emerging nodes of the network during
time range [t, t + Δt], the community detection results using
our dynamic community detection methods are shown in
Figure 4(b).

Figure 4 shows community detection results of the ar-
tificial computer-generated network with 68 nodes in total
and edges randomly connected with parameter p � 0.78
described (a) using the static Louvain community detection
algorithm and (b) using the proposed dynamic detection
method with Louvain community detection algorithm, re-
spectively. Nodes with the same color represent that they
belong to the same community using corresponding com-
munity detection algorithms.*e blue lines paralleling to the
x-axes are the separating lines of different communities. *e
blue lines paralleling to the y-axes are the separating lines of
time; as can be seen from Figure 4(b), the three blue lines
paralleling to the x-axes separate the three different
communities.

In order to verify the efficiency of the proposed dynamic
community detection method with the Louvain algorithm
embedded, we select five groups of artificial computer-
generated data and use both the static Louvain algorithm
and the dynamic community discovery method with the
Louvain algorithm embedded to detect the communities
structure of the computer-generated artificial network.
Under the same operating environment, the time efficiencies

of these two algorithms are compared and are shown in
Figure 5.

It can be found from Figure 5 that the running time of
the static Louvain algorithm is basically the same as those of
the dynamic community discovery method with Louvain
algorithm embedded when the network scale is relatively
small (the number of vertices and edges of the network is
relatively small), but with the fast growth of the network
scale, the running time of our dynamic community detection
method with Louvain algorithm embedded is far less than
that of simple static Louvain community detection
algorithm.

4.2. Experiments of Topic Detection on Real Short-Text Data
Crawled From Real Social Networks Platforms. In this sec-
tion, we randomly choose 86 short texts from October 1,
2019, to October 3, 2019, from heterogeneous online social
networks for manual annotation. Later, the results of manual
annotation are used to verify results validation of our
proposed dynamic community detection method. Out of the
86 short texts, 46 short texts are crawled from Sina Weibo
social platform, 17 short texts are crwaled from Sina News
site social platform, 15 short texts are crawled from Sohu
News site social platform, and 8 short texts are crawled from
the Fenghuang News site social platform. In the results of
manual annotations, the total 86 short texts are divided into
11 communities, out of which the largest community
contains 28 pieces of short texts, and the smallest com-
munity contains 2 pieces of short texts.

According to the modeling rule of the KeyGraph net-
work, the above-mentioned manual annotation short-text
data are transformed into an undirected KeyGraph network,
which has 86 nodes and 530 edges, among which 244 edges
with a weight of 1 account for 46.04% of the total number of
edges of the whole network. *e weight range of the Key-
Graph network is 0, 1, 2.

Community 4
Community 5

Community 1
Community 2
Community 3

t0 t0+Δt0.1 t0+Δt0.2 t

Figure 3: Illustration of dynamic community detection method to alleviate resolution limit problem.
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As we know that the weight of edge has a great effect on
the final community detection results, and by applying the
proposed dynamic community detection method with the
Louvain algorithm embedded under different edge weights,
the results are compared in Table 1.*e detection ratio is
computed using the following formula:

Ratio �
n − s

n
, (10)

where n is the total number of manual annotation short
texts, and s is the total number of misdetected communities.

From Table 1, it can be found that the community de-
tection ratio of manual annotated short texts is higher, which
means the community detection result is more accurate
when the weight threshold value is set as 1 other than 0 and
2. *us, in the topic identification experiments, we choose
the edge weight threshold as 1.

Except for the pilot experiment to choose the optimal
edge weight threshold, next, we will use the real short-text
data crawled from the Sina Weibo, Sina News site, Sohu
News site, and Fenghuang News site, the mainstream news
publishing sites and microblog platforms which are popular.
We media means citizen Journalism, the mainstream news
publishing sites and microblog platforms which are popular
citizen Journalism nowadays in China. A total of 262246
pieces of short-text data from October 1, 2019, to October 3,
2019, were extracted from the above listed heterogeneous
online social networks as the real experimental data set.

According to the time stamp, the total number of crawled
short texts on October 1 is 85980 pieces, the total number of
crawled short texts on October 2 is 86768 pieces, and the total
number of crawled short texts on October 3 is 89498 pieces.
Chinese word segmentation and keywords extraction are
performed on these crawled original experimental short-text

community 1
community 2
community 3

(a)

t t+Δt

Community 1
Community 2
Community 3

(b)

Figure 4: Community detection results of computer-generated complex network.

Ti
m

e

125721 299832 448899 420800 1506583
5000 10000 30000

Scale of network
85980 172748

Dynamic community detection
Static community detection

Figure 5: Performance comparison of the static Louvain algorithm and dynamic community detection method.
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data, and five keywords are selected to represent the original
short texts for contents of news titles and microblogs.

Here, the time interval is set as 1 day (24 hours) and the
edge weight threshold is set as 1 when we use the dynamic
community detection method with the Louvain algorithm
embedded. Firstly, we construct a network G1 using the
short-text data of October 1, and the network G1 has 85980
nodes and 420800 edges based on the model definition of the
KeyGraph network. Applying the proposed dynamic com-
munity detection method with Louvain algorithm embed-
ded on KeyGraph network G1. Secondly, adding the original
crawled short-text data of October 2, then the network is
denoted as KeyGraph network G2, then the KeygGraph
network G2 has 172748 nodes and 1506583 edges, applying
the proposed dynamic community detection method with
Louvain algorithm embedded on KeyGraph network G2;
thirdly, adding the crawled original short-text data of Oc-
tober 3 into the KeyGraph network G2, then the newly varied
KeyGraph network is denoted as G3, KeyGraph network G3
has 262246 nodes and 3250235 edges. We apply the pro-
posed dynamic community detection method with Louvain
algorithm embeded on KeyGraph network G3. *e number
of nodes corresponding to each community is shown in
Figure 6, in which the abscissa represents the total detected
community number and the ordinate represents the number
of nodes belonging to each corresponding community.

*e modularity of the KeyGraph network G3 is 0.886,
and 222133 communities are discovered by using the dy-
namic community detection method with the Louvain al-
gorithm embedded; nodes contained in each corresponding
community are shown in Figure 6. *e abscissa represents
the total detected number of communities, and the ordinate
represents the number of nodes in each community.

From Figure 6, it can be found that almost all node sizes
of the community are less than 250 and the proportion of
community sizes less than 100 is larger than 99%. From the
community discovery results, we can find the sparsity of the
information distribution of the online social networks of
different sources (222133 communities are found out of
262246 short texts), and the scale of the communities is
generally small.

According to our proposed dynamic community detection
method with Louvain algorithm embedded, we then calculate
the total number of people participating in (replying, retweeting,
thumbs-up) each short text (corresponding to each commu-
nity); we rank it and choose the community in which the total
number of people participants are larger than 100000; then we
calculate the frequency of the keywords of each community,

rank them, and obtain the top 5 keywords as the representative
keywords of our detected topic, as shown in Table 2.

As shown in Table 2, the top 5 keywords of the 5 short-
text communities are presented in the first column, the
selected keywords are assumed as the keywords of topic
detected as shown in the second column, and the total
number of people participating in the short texts in ways
either discussing, retweeting, or thumbs-up is shown in the
third column.

It can be seen fromTable 2, the top 5 keywords baring the
highest appearing frequency in the short-text community
are “Men’s basketball, Asian championships, Iran, Chinese
team, Asia;” they form the detected topic as “China Men’s
basketball Asian Championship;” the total number of people
participating are the highest, about 391238 online users from
heterogeneous social network platforms.

4.3. Validation of Topic Evolution Law. In this section, the
detected topic “China men’s basketball Asian Champion,”
which has the highest number of people participating, is
chosen to validate our topic topology evolution identifica-
tion purpose. 368 pieces of related news and microblogs are
obtained, in which the participating people are 141318 in
summation, out of which there are 1324 people on October
1, 8045 people on October 2, and 3872 people on October 3
in the year 2019.

After modeling the related data of the detected topic
“China men’s basketball Asian Champion” into the directed
topic propagation network as the definition is shown in
Section 3.4, there are 14318 nodes and 14962 edges in total.
*e community detection result of our dynamic community
detection method on the directed topic propagation network
is shown in Figure 7.

336 communities are detected and the modularity value
is 0.514 by setting the time step as one day (24 hours). *e
dynamic properties of the topic propagation network is
shown in Table 3. It can be found that until October 3, about
92.48% of users have already participated in the topic while
about 56.19% users are added just on October 2 and about
258 on October 2 are new emerging communities.

From Figure 8, we can see that the scale of the node be-
longing to the community in each day corresponding to the
detected topic “China Men’s Basketball Asian Champion”
reaches its peak at October 2 and gradually recedes to zero until
October 6. *e detected topic topology evolution is changing
from October 1 as zero, reaches its peak value on October 2,
and gradually recedes to zero from October 3 to October 6.

Table 1: Community detection ratio under different edge weights.

Weight Community detected Misdetected community Detection ratio
0 10 3 0.965
1 12 1 0.988
2 24 22 0.744
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Table 2: Topic detection results.

Top-5 keywords Topic detected People
participating

Men’s basketball, Asian championships, Iran, Chinese team,
Asia, China men’s basketball Asian championship 391238

Liucheng county, Booming, Guangxi, package, express *e express package booms in Liucheng county, Guangxi 240673

Jewelry store, servant, Hongkong, customer, the worst Hongkong jewelry store’s servants provide the worst
customer 195265

Commit adultery, condom, office, Hunan, Leiyang Officer of Leiyang, Hunan commit adultery 167413
Innocent, Chinese, police, shoot, postgraduate Japanese police shoot Chinese and is proved to be innocent 130957
National flag, broken, hung, county A county in Jiangxi hang the broken national flag 123441

Figure 7: Community detection results of topic “China men’s basketball Asian Champion.”

Table 3: Properties of topic propagation network.

Day Nodes Edges Value of modularity Community detected
2019-10-01 1324 1451 0.558 12
2019-10-02 9369 9882 0.388 78
2019-10-03 13241 13881 0.457 336
2019-10-04 14318 14962 0.514 336
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Figure 6: Size distribution of communities detected in the illustrated example.

12 Complexity



5. Conclusions and Prospects

In this paper, we propose a topic detection and topology
evolution identification framework based on the dynamic
community detection method. Firstly, a unified time-
evolving KeyGraph network is constructed based on the
cooccurrence of keywords of short texts crawled from
heterogeneous online social network platforms. Secondly, a
dynamic community detection method for time-evolving
network is proposed and the topic is detected by its utili-
zation on the constructed KeyGraph network. *irdly, for
the detected topic in the previous step, a directional topic
propagation network is built based on the short texts related
to the detected topic, and the topic evolution topology is
mainly reflected as the nodes scale of community is
discovered.
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Vehicular ad hoc network (VANET) is a multihop mobile wireless communication network that can realize many vehicle-related
applications through multitop communication. In the open wireless communication environment, security and privacy pro-
tection are important contents of VANET research. )e most basic method of VANET privacy protection is anonymous au-
thentication. Even through, there are many existing schemes to provide anonymous authentication for VANETs. Many existing
schemes suffer from high computational cost by using bilinear pairing operation or need the assistance of the trust authorities
(TAs) during the authentication process or rely on an ideal tamper-proof device (TPD), which requires very strong security
assumption. In this study, an anonymous authentication and key negotiation scheme by using private key and group key is
proposed, which is based on pseudonym using the nonsingular elliptic curve. In this scheme, there is no third party trust center to
participate in the authentication, there is no need to query the database, and there is no need of the local database to save the
identity information of many vehicles, which reduce the storage space and the authentication time compared with other schemes.
)e proposed scheme only needs realistic TPDs. In the proposed scheme, TPDs do not need to preinstall the system key as many
other schemes do; hence, the failure of a single TPD does not affect the security of the entire system. )e security of the scheme is
proved under the random oracle model. Compared with the related schemes using bilinear pairings, the computational cost and
communication cost of the proposed scheme are reduced by 82% and 50%, respectively.

1. Introduction

With the development of network technology, there are
many forms of network and new technologies [1, 2]. Ve-
hicular ad hoc network (VANET) is a highly mobile self-
organizing wireless communication network. By using
VANET, vehicles in front can in a timely manner report the
road condition information to the rear vehicles; this can
improve the travel efficiency and reduce road congestion and
traffic accidents. VANET plays a significant role in traffic
optimization and safety [3]. Since VANETmainly adopts a
wireless communication mode, messages are vulnerable to
various attacks, such as counterfeiting, interception, tam-
pering, tracking, and other attacks [4, 5]. )ese attacks
seriously threaten the safety of vehicles and the privacy of

users. )erefore, security authentication and privacy pro-
tection are important research directions of VANET.
VANETgenerally has the following main components: road
side unit (RSU), trust agency (TA), and on-board unit
(OBU) [6]. OBU is installed in the vehicle and can realize the
communication between the vehicle and RSU or other ve-
hicles. )e communication between OBU and RSU adopts
dedicated short range communication (DSRC) [7]. )e
communication with vehicles requires authenticating one
another and negotiating the communication key to prevent
attacks such as tracking, privacy exposure, and message
counterfeiting. Authentication and key agreement in
VANETs are anonymous. Hence, even if an attacker in-
tercepts the message, the specific source of the message
cannot be determined. Additionally, the authority of
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VANET can identify every message sent by vehicles, and
this can prevent vehicles from sending false messages
maliciously.

1.1. Related Works. In recent years, some authentication
protocols based on public key infrastructure (PKI) [8–10]
have been proposed. In these works, some anonymous
authentication and key agreement schemes are proposed, in
which a large number of certificates are assigned to vehicles.
However, these schemes require vehicles to be equipped with
many anonymous certificates in advance; this leads to many
problems such as certificate storage and certificate man-
agement. Lu et al. [11] proposed a key agreement and au-
thentication scheme for generating a short-term key and
certificate between the vehicle and RSU. However, the
communication efficiency of the scheme is low due to the
frequent interaction between the vehicle and RSU for
changing the authenticated group. Rajput et al. [12] pro-
posed an anonymous authentication scheme with hierar-
chical privacy protection to solve the defects based on PKI.
)is protocol does not need to manage the certificate rev-
ocation list (CRL), and each vehicle uses two pseudonyms to
complete anonymous authentication, but once the pseu-
donym expires, the vehicle needs to acquire the pseudonym
from TA or RSU again; this increased the number of
communications. Wang [13] proposed a local identity-based
anonymous authentication protocol for VANET (LIAP). In
this method, each vehicle and RSU are assigned a unique
long-term certificate from the certification authority (CA) in
the registration phase.)e vehicle and RSU complete mutual
authentication through certificates. After successful au-
thentication, RSU distributes a local-master key to the ve-
hicle. )e vehicle randomly generates a pseudonym to
communicate with the RSU through the local-master key.
)e use of the local-master key improves the communica-
tion efficiency and system security. But this scheme needs to
manage CRL.

)e storage and management of certificates restrict the
development of authentication schemes based on PKI. To
overcome the problems caused by authentication certifi-
cates, some identity-based public key cryptosystems are
introduced into authentication of VANET [4, 14–19]. In
1984, Miller first proposed an identity cryptosystem [14]. In
this cryptosystem, the user’s public key is calculated by the
user’s identity, and the user’s private key is generated by the
authentication center through the system key according to
the user’s identity. In 2008, Zhang et al. [15] proposed an
authentication protocol for VANETusing the identity of the
vehicle user, solving the certificate storage and management
problem and supporting batch authentication. In 2011,
Huang [16] proposed an anonymous batch authenticated
and key agreement scheme based on identity authentication
for VANET. Shim et al. [17] noted that the scheme [15] was
vulnerable to replay attack and did not achieve the non-
repudiation of signature and proposed a vehicle-to-
infrastructure (V2I) authentication scheme. However, the
scheme is vulnerable to tampering attacks [18] and cannot
satisfy its claimed chosen message attack resistance [17].

Wang et al. [20] mentioned that Huang et al. [16] could not
resist a collusion attack, and therefore, they proposed an
improved scheme. And, in [20], it is indicated that the
scheme [18] cannot resist replay attacks and cannot track the
real identity of the message sender. In 2016, Azees and
Vijayakumar [21] proposed a novel key distribution scheme
for secure group communication using Lagrange polyno-
mials. )e limitation of the scheme is that it only provides
one-way authentication from vehicle to TA. )en, Vijaya-
kumar et al. [22] proposed a privacy-preserving anonymous
mutual and batch authentication scheme for vehicle-
to-vehicle. )is scheme implements the authentication of
message source and message integrity and has the mecha-
nism of tracking and revoking vehicles. In 2017, Azees et al.
[23] proposed an anonymous authentication scheme to
avoid malicious vehicles into the VANET based on bilinear
pairing. Each user computes multiple temporary short time
certificates to realize anonymous authentication in the
scheme. )e scheme has high computing performance and
security. However, the dummy identity (DIUui) in each
certificate is the same, and the scheme does not consider the
unlinkability of different sessions. In 2018, Pournaghi et al.
[24]. proposed an anonymous authentication and key
agreement scheme combining TPD and RSU. )e scheme
saves the systemmaster key in the TPD of RSU instead of the
TPD of each vehicle, which improves the security and au-
thentication efficiency of the system. In 2019, Ikram et al.
[25] proposed a conditional privacy-preserving authenti-
cation scheme for V2I. )is scheme uses general one-way
hash functions instead of map-to-point hash functions to
achieve high efficiency.

)e identity-based authentication schemes for VANET
address the problems presented by the schemes based on
PKI. )e existing schemes [21–25] are novel in design and
have good security. However, the bilinear pairing operations
of elliptic curve are used, and the computational efficiency of
bilinear pairing operation is low. )e works [26–28] based
on pseudonym on elliptic curve, which do not use bilinear
pairing operation and have achieved high computational
efficiency. However, TA is required to participate in au-
thentication, this increases communication times and
communication burden. He et al. [29] proposed a privacy
protection authentication scheme based on identity. )is
scheme also uses elliptic curve instead of bilinear pairing
operations and achieves satisfactory performance in both
computation and communication. However, the scheme is
based on ideal TPD, and the master key is stored on the TPD
of each vehicle. Islam et al. [30] proposed a conditional
privacy-preserving authentication scheme based on hash
function. And the scheme offers group-key generation, user
leaving, user join, and password change facilities. )e
scheme does not need bilinear pairing mapping or elliptic
curve operation and is lightweight in terms computation and
communication. However, TA is required to participate in
each authentication between the vehicle and RSU. Wu et al.
[6] proposed an effective location-based conditional secret
authentication scheme.)e scheme does not require bilinear
pairing operations or TPDs. However, when RSU is certified
by vehicle, TA needs to query the database and return the
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results. Cui et al. [31] proposed a scheme without relying on
any special hardware such as TPD. )e scheme is based on
elliptic discrete logarithm and has high computational
performance. )e cuckoo filter and binary tree search
method are used to achieve a higher success rate in batch
authentication. However, TA is required to generate com-
munication key for the vehicle and RSU. Zhong et al. [32]
proposed an authentication and key agreement scheme
based on hash function and registration list. And the scheme
does not require the strong security assumptions of TPD.
Xiong Li et al. [33] proposed a lightweight authentication
scheme for VANETs with only hash functions and exclusive-
OR operations. Compared with previous schemes, the
computational cost of the schemes [32, 33] has been greatly
improved. However, the schemes also need TA to participate
in the authentication. In recent years, there are some au-
thentication schemes using group key, which can reduce the
authentication burden of TA. )e works [34, 35] introduce
group key management schemes based on Chinese re-
mainder theorem, which reduces computation complexity of
the key server. In 2019, Jing Zhang et al. [36] proposed a
message authentication scheme based on the group key
using Chinese remainder theorem. )e TPD of the vehicle
only save the real identity and the group key. So the pro-
posed scheme only requires realistic TPDs and ensures
higher security for the entire system. In 2020, Wei et al. [37]
proposed tow privacy-preserving multimodal implicit au-
thentication protocols for Internet of connected vehicles.
)e proposed protocols use the password and vehicle
owner’s behavior features as the authentication factors
skillfully and do not reveal any information about vehicle
owner’s behavior. )e protocols have advantages in com-
putational cost and accuracy. However, the protocols do not
consider the unlinkability of sessions. Vinoth et al. [38]
proposed a multifactor authenticated key agreement scheme
for industrial Internet of things (IoT). )e scheme imple-
ments authentication and key agreement between the user
and multiple sensing devices at the same time. )e scheme
only used hash function, bit-wise XOR operation, and
symmetric cryptography. It has less communication cost and
computational cost compared with other correlative
schemes. However, the scheme does not consider internal
attack.

1.2. Our Contributions. In this study, an anonymous au-
thentication and key agreement scheme based on elliptic
curve for VANET is proposed. Each vehicle is equipped with
a TPD. )e TPD saves the private key of the vehicle and the
group key for multivehicle communication. )e vehicle can
authenticate with RSU anonymously by combining a private
key with a group key. After successful authentication, the
session key can be negotiated for both parties. )e scheme
can also implement message signature and anonymous
verification. In this scheme, the TPD only saves the private
key of the vehicle and the group key instead of the system
key. )e attack on the TPD will not affect other nodes in
VANET. So, we only need realistic TPD instead of ideal
TPD.)ere is no need for the third party to participate in the

authentication and key agreement between vehicle and RSU
compared with the works [6, 30–33], and there is no need to
query the database in the scheme. In addition, the use of
group key in this scheme can help RSU resist certain denial
of service (DoS) attacks.

)e main contributions of this study are summarized as
follows.

(1) In order to optimize the computational cost and key
management, we present an efficient anonymous
authentication and key agreement scheme for RSUs
and vehicles using the private key of the vehicle and
the group key

(2) In order to reduce the communication time and
storage space, we implement independent authen-
tication and key agreement between vehicle and
RSU, and RSU does not need to save vehicle in-
formation or query database.

(3) In this scheme, we also implement anonymous
signature and verification of messages

(4) In this scheme, we use realistic TPDs instead of ideal
TPDs, which is more suitable for VANET

1.3. Organization of -is Article. )e rest of the study is
structured as follows: Section 2 describes the preliminaries of
the proposed scheme, Section 3 gives the working of the
proposed scheme, Sections 4 and 5 present a security
analysis and a performance analysis, respectively. Our study
is concluded in Section 6.

2. Preliminaries

In this section, we introduce the related background in-
formation of VANET and the proposed scheme.

2.1. Network Model. As shown in Figure 1, the network
model of VANETmainly includes TA, RSU, OBU, TPD, and
application server (AS). TA is a trusted service center. It is
responsible for generating the private and public keys for
RSU and vehicle and the group key for multivehicle com-
munication. TA is an entity with the highest level of security
protection and is completely trusted. RSU is the commu-
nication equipment installed on both sides of the road, with
high security, thus providing access service for vehicles. )e
RSU communicates with the vehicle using DSRC protocol.
Each vehicle is equipped with an OBU. )e OBU of the
vehicle realizes short distance communication with RSU and
OBUs of other vehicles. TA allocates a TPD to each vehicle.
TPD has high security, and other attackers cannot obtain
sensitive information from the device [39]. AS is an ap-
plication server and provides data service for TA. AS has
high security and is credible.

2.2. Elliptic Curve. Suppose that FP denotes a finite field of
order p, where p is a large prime number. E denotes an
elliptic curve over FP. )e curve E is defined as
y2 � x3 + ax + bmodp, where a, b ∈ Fp. )e group G is a
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cyclic additive group of order q on E, and P is the generator
and O is the infinite point.

)e group G has the following properties:

(1) Additive (±). For P, Q ∈ G, if P ≠Q, R� P+Q, then R
is the intersection point of the straight line passing
through P and Q with E; if P�Q, R� P+Q, then R is
the tangent intersection point of P and Q with E; if
P� -Q, then P+Q� P - P�O.

(2) Scalar multiplication (.). Let m ∈ Z∗q , scalar point
multiplication inG is defined asm. P� P+ P+ . . .+ P
(m times).

Two difficult problems are defined as follows:

Definition 1. Elliptic curve discrete logarithm problem
(ECDLP). Let Q be a random point on G and calculate a
solution x which satisfies Q� xP, where x ∈ Z∗q .

Definition 2. Elliptic curve computational Diffie–Hellman
problem (ECCDH). Assume a generator P of G, aP, bP ∈ G,
where a, b ∈ Z∗q are unknown. )e ECCDH problem is to
compute abP ∈ G.

If ECDLP or ECCDH on a group G cannot be solved
with nonnegligible probability ε in time t, then ECDLP or
ECCDH is said to be a difficult problem on elliptic curve.

2.3. Security Requirements. )e open multihop wireless
network is vulnerable to various attacks. )erefore, the
authentication and key agreement for VANETneed to meet
the following security requirements [29, 39]:

(1) Authentication and integrity. After receiving the
message, VANET needs to determine whether the
source of the message is reliable and whether the
message has been tampered by others

(2) Privacy protection. When users are communicating,
VANET should protect the confidential information

such as user’s identity, session record, location, and
driving path. VANETprovides privacy protection by
imparting anonymity.

(3) Session key agreement. When the vehicle transmits
data with RSU, the session key should be used to
encrypt the data to protect the session privacy

(4) Traceability. To prevent malicious users from
sending false messages by anonymity, the authen-
tication scheme should trace the real identity of the
sender when the message is in dispute

(5) Resistance to attacks. VANET is vulnerable to var-
ious attacks, such as replay attacks and forgery at-
tacks. Authentication and key agreement of VANET
needs to be able to resist all kinds of attacks to ensure
the security and reliability of the scheme.

(6) Unlinkability. In order to protect privacy, attackers
or other vehicles cannot link different sessions of the
same vehicle via the public channel.

3. Proposed Authentication Scheme for VANET

Our scheme includes the following phases: initialization,
RSU and vehicle registration, authentication and commu-
nication key agreement, message signing, signature verifi-
cation, identity extraction, and updating the group key. )e
mutual authentication and the key agreement process be-
tween RSU and the vehicle is shown in Figure 2. )e main
notations used in the scheme are given in Table 1.

3.1. Initialization Phase. TA selects random numbers
s, x ∈ Z∗q , s is the private key of the system, x is the group key
for multivehicle communication, and it can be used to
compute the public key Ppub � sP ∈ G. Furthermore,
Px � xP ∈ G. TA selects five secure hash functions:
h0: 0, 1{ }∗ × G⟶ Z∗q , h1: G⟶ Z∗q , h2: 0, 1{ }∗× 0, 1{ }∗×

G × 0, 1{ }∗ ⟶ Z∗q , h3: 0, 1{ }∗ × 0, 1{ }∗× G × G × 0, 1{ }∗, h4

TA AS

RSU RSU

Vehicle-to-vehicle
communication 

Vehicle-to-RSU
communication 

Figure 1: VANET network model.
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: 0, 1{ }∗ × 0, 1{ } ∗ × G × 0, 1{ }∗ × 0, 1{ }∗ ⟶ Z∗q , and h5:

0, 1{ }∗ × 0, 1{ } ∗ × G × G × G× 0, 1{ }∗ ⟶ Z∗q . TA also
broadcasts the system parameters: Paras � E, a, b, p, q, P,􏼈

Ppub, Px, h0, h1, h2, h3, h4, h5}.

3.2. RSUandVehicle RegistrationPhase. Roadside unit RSUj
applies to TA for registration. After TA verifies the in-
formation of RSUj successfully, it allocates the identity IDj
to RSUj. )en, TA selects a random number rj, computes
hrj � h0(IDj, Rj) and Rj � rjP. TA also generates the
private key sj � rj + hrjs and then returns Rj, sjto RSUj.

RSUj computes Pj � sjP and verifies whether the following
equation holds.

Pj � Rj + hrjPpub,

∵Pj � sjP � rjP + hrjsP � Rj + hrjPpub.
(1)

If (1) holds, RSUj broadcasts Rj, IDj, and Pj. Otherwise,
the message is rejected. After RSU broadcasts the public key
Pj, the vehicle can use Pj to compute the pseudonym of the
vehicle. )e detailed process is shown in Section 3.3.

During the registration process, the vehicle users go to
TA directly. )e vehicle users submit the required infor-
mation such as identification, phone number, and license,
etc., to TA. TA checks whether the vehicle user is qualified. If
the vehicle user is qualified, TA allocates a TPD to the vehicle
Vi and assigns a unique identity RIDi to the vehicle Vi. TA
allows users to set a username and password for TPD. )en,
TA chooses a random number ri and computes Ri � riP,
hvi � h0(RIDi, Ri), si � ri + hvis, and Pi � siP. TA saves si, x,
RIDi, Ri, and Pi in the TPD of the vehicle Vi. At the same
time, the vehicle information such as RIDi, Ri, and Pi is saved
in AS.

3.3. Authentication and Communication Key Agreement
Phase. RSUj broadcasts Rj, IDj and Pj; the OBU of the
vehicle receives them and verifies whether (1) holds. If it
holds, the OBU forwards them to the TPD of the vehicle.)e
TPD selects the random numbers ui, li ∈ Z∗q , and the
timestamp Ti. )e TPD computes the pseudonymPIDi �

RIDi⊕h1(liPj) and generates the signatures δi1 � ui + hi1x

Vehicle RSU

RSU broadcasts 

TPD selects and computes

OBU computes and verifies

RSU verifies

RSU selects and computes

OBU computes and verifies

Pj = Rj + hrjPpub

ui, li∈ Zq
∗, Ti

PIDi = RIDi⊕h1 (liPj)

Rj, IDj, Pj Rj, IDj, Pj

δi2 = li + hi2si
Ui = uiP
Li = liP

PR = Ri + liPj

hi1 = h2 (IDj, PIDi, Ui, Ti)
hi2 = h3 (IDj, PIDi, PR, Li, Ti)

hj = h4 (IDj, RIDi, Uj, sk, Ti)

δjP = hjRj + hjhrjPpub + Uj

hrj = h0 (IDj, Rj)

sk = h2 (IDj, RIDi, uiUj, Ti)

(δi1, δi2, Ui, PIDi, PR, Li, Ti)

(δj, Uj, PIDi, IDj, Rj)

(δi1P = Ui + hi1Px)

(δi2P = Li + hi2Ri + hi2hviPpub)

δi1 = ui + hi1x 

uj∈ Zq
∗

Uj = ujP
hj = h4 (IDj, RIDi, Uj, sk, Ti)

δj = hjsj + uj

sk = h2 (IDj, RIDi, ujUi, Ti)

Figure 2: Mutual authentication and key agreement.

Table 1: Notations used.

Notation Description
E An elliptic curve
G An additive group based on E
P A generator of G
p, q Large prime numbers
s, Ppub Private key and public key pairs of the system
X, Px Group key and group public key pairs
h0, h1, h2, h3, h4, h5 Six secure hash functions
IDj Identity of the RSU
sj, Pj Private key and public key pairs of the RSU
si, Pi Private key and public key pairs of the vehicle
RIDi Real identities of the vehicle
PIDi Pseudonym of the vehicle
Ti, Tm Timestamp
sk Session key between RSU and the vehicle
Mi Traffic-related message
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and δi2 � li + hi2si, where Ui � uiP, hi1 � h2(IDj, PIDi,

Ui, Ti), Li � liP, PR �Ri + liPj, and hi2 � h3(IDj,PIDi,

PR, Li, Ti). It sends (δi1, δi2, Ui, PIDi, PR, Li, Ti) to RSUj
through the OBU.

RSUj receives (δi1, δi2, Ui, PIDi, PR,Li, Ti), and then, it
computes hi1 � h2(IDj,PIDi, Ui, Ti) and verifies whether the
following equation holds.

δi1P � Ui + hi1Px,

∵ δi1P � uiP + hi1xP � Ui + hi1Px.
(2)

If (2) holds, RSUj computes RIDi � PIDi⊕h1(sjLi),
Ri � PR − sjliP � PR − sjLi, hvi � h0(RIDi, Ri), and
hi2 �h3(IDj,PIDi, PR, Li, Ti) and verifies whether the fol-
lowing equation holds.

δi2P � Li + hi2Ri + hi2hviPpub,

∵ δi2P � liP + hi2 riP + hvisP( 􏼁,

� Li + hi2Ri + hi2hviPpub,

(3)

if both (2) and (3) hold, the vehicle is legal. RSUj chooses a
random number uj ∈ Z∗q and computes Uj � ujP,
sk � h2(IDj,RIDi, ujUi, Ti), hj � h4(IDj,RIDi, Uj, sk, Ti),
and δj � hjsj + uj. RSUj sends (δj, Uj, PIDi, IDj, Rj) to the
vehicle Vi.

)e vehicle Vi receives(δj, Uj, PIDi, IDj, Rj), and
then, it computes hrj � h0(IDj, Rj) and hj � h4(IDj,RIDi,

Uj, sk, Ti) and verifies whether the following equation
holds.

δjP � hjRj + hjhrjPpub + Uj,

∵ δjP � hjsjP + ujP � hjPj + Uj,

� hjRj + hjhrjPpub + Uj.

(4)

If (4) holds, the vehicle Vi computes sk �

h2(IDj,RIDi, uiUj, Ti), which is the session key between Vi
and RSUj.

)e process of authentication and key agreement be-
tween vehicle and RSU is shown in Figure 2.

3.4. Message Signing Phase. When a vehicle needs to send a
message Mi in the area covered by the roadside unit RSUj,
the TPD of the vehicle chooses a random number vi ∈ Z∗q
and the timestamp Tm and computes Vi � viP, Pv �

Ri + viPj, the pseudonym PIDi � RIDi⊕h1(viPj), and σi �

hrvh
−1
vi (si + vi) + hmix, where hrv � h2(Mi, PIDi, Rvi, Tm),

Rvi�h−1
vi (Ri + Vi), and hmi � h5(Mi, PIDi, Pv, Vi, Rvi, Tm).

)e TPD then broadcasts the signature (σi, Mi,PIDi,

Vi, Pv, Rvi, Tm).

3.5. Signature Verification. RSUj receives (σi, Mi, PIDi, Vi,

Pv, Rvi, Tm), and then, it checks whether the timestamp Tm is
within the valid time. If it is, RSUj extracts the real identity of
the vehicle RIDi � PIDi ⊕ h1 (sjVi)and computes Ri � Pv −

sj Vi, hvi � h0 (RIDi, Ri), Rvi � h−1
vi (Ri + Vi), hrv � h2(Mi,

PIDi, Rvi, Tm), hmi � h5(Mi, PIDi, Pv, Vi, Rvi, Tm), and ver-
ifies whether (5) holds.

hviσiP � hrv Ri + Vi( 􏼁 + hrvhviPpub + hvihmiPx,

∵ hviσiP � hrv si + vi( 􏼁P + hvihmixP,

� hrv Ri + hvisP + Vi( 􏼁 + hvihmiPx

� hrv Ri + Vi( 􏼁 + hrvhviPpub + hvihmiPx.

(5)

If it holds, RSUj accepts the message. If it does not, it
means that the TPD of the vehicle is damaged. For example,
suppose the attackers stole the private and group keys of the
TPD, faked the identity RIDi

′, generated the pseudonym
PIDi
′, forged the signature (σi, Mi, PIDi

′, Vi
′, Pv
′, Rvi′ , Tm), and

enabled it to satisfy (6). However, according to the TPD
security assumption, this situation is extremely rare. If RSUj
detects that the TPD has been attacked, it immediately
broadcasts that the signature (σi, Mi,PIDi

′, Vi
′, Pv
′, Rvi′ , Tm) is

not valid.
Other vehicles receive (σi, Mi,PIDi, Vi, Pv, Rvi, Tm), and

then, they check whether the timestamp Tm is within the
valid time. If it is, the vehicles compute hrv �

h2(Mi, PIDi, Rvi, Tm) and hmi �h5(Mi, PIDi, Pv, Vi, Rvi, Tm)

and verify whether the following equation holds.

σiP � hrvRvi + hrvPpub + hmiPx,

∵σiP � hrvh
−1
vi si + vi( 􏼁P + hmixP

� hrvh
−1
vi Ri + hvisP + Vi( 􏼁 + hmiPx

� hrvh
−1
vi Ri + Vi( 􏼁 + hrvPpub + hmiPx

� hrvRvi + hrvPpub + hmiPx.

(6)

If it does and the vehicles do not receive an invalid
signature broadcasted by RSUj within the specified time, the
vehicles accept the message Mi.

3.6. Identity Extraction. When a valid message signature
(σi, Mi, PIDi, Vi, Pv, Rvi, Tm) is in dispute, it is necessary to
track the real identity of a vehicle. RSUj can extract the real
identity of the vehicle through computing
RIDi � PIDi⊕h1(sjVi).

3.7. Updating the Group Key Phase. TA chooses a random
number wi ∈ Z∗q and the timestamp Tv and computes
Wi � xwiP, δt � sh0(xwiP, Tv) + xwi, Px � h3(wiP, xP,

Tv)P, where Px is as a new group public key. TA broadcasts
the signature (δt, Wi, Tv, Px).

After the vehicles receive(δt, Wi, Tv, Px), they compute
x− 1Wi and verify whether the following equation holds. If it
does, the vehicles update the group key as
x � h3(x− 1Wi, xP, Tv).

δtP � h0 Wi, Tv( 􏼁Ppub + xWi. (7)

4. Security Analysis

Under the random oracle model, the security model of [39]
is used to prove the security of our scheme.
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4.1. Proof of Safety

Lemma 1. -e authentication request message of the vehicle
cannot be forged. When ECDLP is a difficult problem, our
scheme can resist the forgery attack of adaptive chosen
message.

Proof. We assume that there is an attacker Ad who can
successfully forge the request message of a vehicle in
polynomial time ε. Given an ECDLP instance
(P, Q � xP, P, Q ∈ G, x ∈ Z∗q ), the challenger Ch can solve
the ECDLP in polynomial time ε.

)e challenger Ch sets system parameters para-
s � Ep(a, b), p, q, G, P, Ppub, Px, h0, h1, h2, h3, h4, h5􏽮 􏽯. Ch
randomly chooses RIDi of a vehicle as the identity of the
challenger Ch. Ch builds and maintains six hash lists: Lhl,
where l � 0, 1, 2, . . . , 5. Finally, Ch sends params to Ad.

h1- Oracle. When Ad makes a query with θ, Ch checks
whether the tuple (θ, τh1) is already in Lh1 or not. If it is,
Ch sends τh1 to Ad. Otherwise, Ch randomly selects
τh1 ∈ Z∗q and adds (θ, τh1)to Lh1. Finally, Ch sends τh1 �

h1(θ) to Ad.
h2- Oracle. When Ad makes a query with

(IDj, PIDi, Ui, Ti), Ch checks whether the tuple
(IDj, PIDi, Ui, Ti, τh2) is already in Lh2 or not. If it is, Ch
sends τh2 to Ad. Otherwise, Ch randomly selects τh2 ∈ Z∗q
and adds (IDj, PIDi, Ui, Ti, τh2)to Lh2. Finally, Ch sends
τh2 � h2(IDj, PIDi, Ui, Ti) to Ad.

h3- Oracle. When Ad makes a query with
(IDj, PIDi, PR, Li, Ti), Ch checks whether the tuple
(IDj, PIDi, PR, Li, Ti, τh3) is already in Lh3 or not. If it is, Ch
sends τh3 to Ad. Otherwise, Ch randomly selectsτh3 ∈ Zq∗

and adds (IDj, PIDi, PR, Li, Ti, τh3) to Lh3. Finally, Ch sends
τh3 � h3(IDj, PIDi, PR, Li, Ti) to Ad.

Extract (RIDi). Ch builds and maintains the list
Lv � (RIDi, Ri, si). When Ad makes a query with RIDi and
Ri, Ch checks whether the tuple (RIDi, Ri, si) is in Lv. If it is,
Ch sends sito Ad. Otherwise, Ch randomly selects
si, hvi ∈ Z∗q , lets Ri � siP − hviP, and adds them to Lv. Finally,
Ch sends Lv � (RIDi, Ri, si) to Ad.

Sign-Oracle. When Admakes a query with (PIDi, Ti), Ch
randomly selects hi1, hi2, hvi, δi1, δi2 ∈ Z∗q and sets Ui �

δi1P − hi1Px, Ri � siP − hviP, Li � δi2P − hi2Ri − hi2hviPpub,
and PR � Ri + sjLi. Finally, Ch sends (δi1, δi2, Ui, PIDi,

PR, Li, Ti) to Ad.

Output. Finally, Ad outputs an authentication request
message (δi1, δi2, Ui,PIDi, PR, Li, Ti) with nonnegligible
probability. According to the forgery lemma [40],.Ad chooses
different hi1′ andhvi

′ and generates another valid authentication
request message (δi1′, δi2′, Ui, PIDi, PR, Li, Ti) in polynomial
time. At this time, the two authentication request messages
satisfy the following:

δi1P � Ui + hi1Px, (8)

δi1′ P � Ui + hi1′ Px, (9)

δi2P � hi2Ri + hi2hviPpub + Li, (10)

δi2′P � hi2Ri + hi2hvi
′ Ppub + Li. (11)

From (8)–(11), we can obtain

δi1 − δi1′( 􏼁P � hi1 − hi1′( 􏼁Px, (12)

δi2 − δi2′( 􏼁P � hi2hvi − hi2hvi
′( 􏼁Ppub. (13)

Now, according to (12) and (13), Ad out-
putsx � (δi1 − δi1′)(hi1 − hi2′)

− 1, and s � (δi2 − δi2′)(hi2hvi −

hi2hvi
′)− 1.However, solving x or s is an ECDLP problem.

Furthermore, it is impossible for an adversary to solve the
ECDLP problem in polynomial time. □

Lemma 2. -e authentication response message cannot be
forged. Since ECDLP is difficult to solve, our scheme can resist
the forgery attack of adaptive chosen message.

Proof. We assume that there is an attacker Ad who can
successfully forge an authentication response message in
polynomial time. Given an ECDLP instance
(P, Q � xP, P, Q ∈ G, x ∈ Z∗q ), then the challenger Ch can
solve the ECDLP with nonnegligible probability. )e
challenger Ch sets system parameters paras�

Ep(a, b), p, q, G, P, Ppub, Px, h0, h1, h2, h3, h4, h5􏽮 􏽯. Ch builds
and maintains six lists: Lhl, where l � 0, 1, 2, . . . , 5. Finally,
Ch sends params to Ad.

h1-Oracle. When Ad makes a query with θ, Ch checks
whether the tuple (θ, τh1) is already in Lh1 or not. If it is, Ch
sends τh1 to Ad. Otherwise, Ch randomly selects τh1 ∈ Z∗q
and adds (θ, τh1) to Lh1. Finally, Ch sends τh1 � h1(θ) to Ad.

h2-Oracle. When Ad makes a query with
(IDj,RIDi, ujUi, Ti), Ch checks whether the tuple
(IDj,RIDi, ujUi, Ti, τh2) is already in Lh2 or not. If it is, Ch
sends τh2 to Ad. Otherwise, Ch randomly selects τh2 ∈ Z∗q
and adds (IDj,RIDi, ujUi, Ti, τh2) to hh22. Finally, Ch sends
τh2 � h2(IDj,RIDi, ujUi, Ti) to Ad.

Extract (IDj). Ch builds and maintains the list
LR � (IDj, Rj, sj). When Ad makes a query with IDj, Ch
checks whether the tuple (IDj, Rj, sj) is in LR. If it is, Ch
sends sjto Ad. Otherwise, Ch randomly selectssj, hrj ∈ Z∗q ,
lets Rj � sjP − hrjPpub, and adds (IDj, Rj, sj)to LR. Finally,
Ch sends LR � (IDj, Rj, sj) to Ad.

Sign - Oracle. When Ad makes a query with (PIDi, Ti),
Ch randomly chooses sk, hrj, hj, δj ∈ Z∗qand setsUj � δjP −

hjRj − hjhrjPpub . Finally, Ch sends (δj, Uj, PIDi, IDj, Rj)

to Ad.

Output. Finally, Ad outputs an authentication request
message (δj, Uj, PIDi, IDj, Rj) with nonnegligible proba-
bility. According to the forgery lemma [40].Ad chooses
different hrj

′ and generates another valid authentication
request message (δj

′, Uj, PIDi, IDj, Rj) in polynomial time.
Now, the two authentication request messages satisfy the
following:
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δjP � hjRj + hjhrjPpub + Uj, (14)

δj
′P � hjRj + hjhrj

′ Ppub + Uj. (15)

From (14) and (15), we can deduce the following
expression:

δj − δj
′􏼐 􏼑P � hj hrj − hrj

′􏼐 􏼑Ppub. (16)

Next, Ch can output s � (δj − δj
′)(hj(hrj − hrj

′ ))− 1

mod q. However, solving s is an ECDLP, which is impossible
for an adversary to solve in polynomial time. □

Theorem 1. From Lemma 1 and Lemma 2, we know that
when the ECDLP problem is difficult to solve, and the ad-
versary cannot forge the authentication request message and
response message, that is, our authentication scheme can resist
adaptive chosen message forgery attack.

Theorem 2. -e message signature cannot be forged. Since
ECDLP is hard to solve, our scheme can resist the forgery
attack of adaptive chosen message attack.

Proof. We assume that there is an attacker Ad who can
successfully forge an authentication response message in
polynomial time. Given an ECDLP instance
(P, Q � xP, P, Q ∈ G, x ∈ Z∗q ), the challenger Ch can solve
the ECDLP in polynomial time ε.

)e challenger Ch sets system parameters paras�

Ep(a, b), p, q, G, P, Ppub, Px, h0, h1, h2, h3, h4, h5􏽮 􏽯. Ch ran-
domly chooses IDj as the identity of the challenger Ch. Ch
builds and maintains six lists: Lhl, where l � 0, 1, 2, . . . , 5.
)en, Ad adaptively queries the oracle machine to Ch, and
Ch replies to Ad in the following way.

When Ad makes a query with (PIDi, Mi, Tm), Ch ran-
domly chooses hrv, hmi, σi ∈ Z∗q , and Vi, Pv ∈ G; further-
more, it sets Rvi �h−1

rv (σiP − hrvPpub − hmiPx). Finally, Ch
sends (σi, Mi, Vi, Pv, Rvi, Tm) to Ad.

Subsequently, Ad outputs a valid signature
(σi, Mi, Vi, Pv, Rvi, Tm) with a nonnegligible probability.
According to the forgery lemma [40], Ad chooses different
hmi′ and generates another valid signature
(σi
′, Mi, Vi, Pv, Rvi, Tm) in polynomial time. At this time, the

two signatures satisfy the following relationships:

σiP � hrvRvi + hrvPpub + hmiPx, (17)

σi
′P � hrvRvi + hrvPpub + hmi′ Px. (18)

From (17) and (18), we can obtain the following
equation:

σi − σi
′( 􏼁P � hmi−hmi

′( 􏼁Px. (19)

Now, according to (19), Ch can output x � (σi −

σi
′)(hmi − hmi

′ )− 1mod q. However, solving for x is an ECDLP
problem, which is impossible for an adversary to solve in
polynomial time. )us, our proposed signature scheme
under the random oracle model is resistant against a chosen
adaptive message attack. □

Theorem 3. -e key agreement of our scheme is secure under
the ECCDH problem.

Proof. Given an ECCDH instance, Q1 � x1P, Q2 � x2P,

and Q3 � x1x2P, where x1, x2 ∈ Z∗q . In our key agreement,
we let Q1⟵Ui � uiP, Q2⟵Uj � ujP,Q3⟵uiujP. In this
method, if the attacker Ad gets uiujP according to Ui, Uj,
the key negotiated between the vehicle and RSU can be
obtained. However, it is impossible for the adversary to
solve the ECCDH problem in polynomial time, implying
that the key agreement proposed in this study is
secure. □

Theorem 4. In the random oracle model, we can achieve
conditional anonymity and traceability.

Proof. In the proposed scheme, the authentication request
message uses the pseudonym PIDi � RIDi⊕h1(liPj), where
Li � liP, li ∈ Z∗q . According to ECDLP, it is not feasible for
the adversary to solve liPj without knowing li. )e request
authentication signatures areδi1 � ui + hi1x and
δi2 � hi2si + li, where hi1 � h2(IDj,PIDi, Ui, Ti), hi2 � h3
(IDj,PIDi, PR, Li, Ti), and ui, li ∈ z∗q are the random num-
bers. Every time a vehicle is certified, it can produce un-
related pseudonyms and different authentication requests.
Similarly, the pseudonym is also used in message signature
PIDi � RIDi ⊕ h(viPj), Vi � viP. )e message signature is
(σi, Mi, Vi, Pv, Rvi, Tm), σi � hrv(h−1

vi (si + vi)) + hmix, hrv �

h2(Mi, PIDi, Rvi, Tm), and hmi � h5(Mi, PIDi, Pv, Vi, Rvi,

Tm). )e pseudonym used in the signature is different every
time. )erefore, the scheme can provide anonymity for
vehicle users in authentication and message signature. In
addition, this scheme can also realize the traceability of the
real identity; RSU can calculate the real identity of the ve-
hicle RIDi � PIDi⊕h1(sjLi) through the private key. Simi-
larly, through pseudonym of signature message PIDi �

RIDi⊕h(viPj), RSU can also calculate RIDi � PIDi⊕h1(sjVi)

using the private key. )erefore, this scheme can realize the
traceability of identity. □

Theorem 5. In the proposed scheme, we can achieve
unlinkability.

Proof. In our scheme, the authentication request message of
the vehicle (δi1, δi2, Ui,PIDi, PR, Li, Ti) is different for each
session. Meanwhile, the signature message
(σi, Mi, PIDi, Vi, Pv, Rvi, Tm) is also different for each mes-
sage. )erefore, all elements from the message of the vehicle
are different, and any attacker cannot tell apart if two dif-
ferent messages from the same vehicle. )us, our proposed
scheme supports unlinkability. □

4.2. Other Security Analysis and Feature Comparison.
From )eorem 1 and )eorem 2, it is ascertained that
under the random oracle model, the authentication, key
agreement, and message signature can resist adaptive
chosen message forgery attacks. Additionally, there is no
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need for the certification table or TA to participate in the
certification between vehicle and RSU. Both authentica-
tion and message signature use timestamp, which can
resist replay attack. In the authentication process, RSU
first checks whether the group key signature is legal, and
then, it verifies the vehicle private key signature. If the
group key signature is illegal, the signature is discarded
directly, which can resist DoS attack to a certain extent. In
this scheme, the vehicle is equipped with a TPD, which
stores the private key of the vehicle and the group key.
Even if a single TPD is attacked, the attacker can only
intercept the group key and the private key of the vehicle.
)e authentication, key agreement, and message signature
all need the private key of the vehicle. )us, the attacker
can only forge the signature of a single vehicle, without
affecting the communication security of other VANET
nodes. )e schemes [13, 24] keep the system key in the
TPD of each vehicle; this requires a strong TPD security
assumption. If a single TPD is successfully attacked, the
whole system will not be secure. Table 2 provides the
features comparison with other schemes. It can be seen
from Table 2 that the proposed scheme has strong ad-
vantages in security and communication efficiency.

5. Performance Analysis

In this section, we analyze the computation cost and
communication cost of message authentication.

5.1. Computation Performance Analysis. In this study,
nonsingular elliptic curve cryptography is used, whereas
bilinear pairing construction scheme is utilized in works
[13, 24]. To compare at the same security level, we construct
two 80 bit security level cryptographic operation schemes.
Bilinear pairing cryptographic schemes are set as follows:
e: G1 × G1⟶ G2. E: y2 � x3 + ax + bmodp is a hyper
singular curve with degree 2, where p is a 512 bit prime. G1is
an additive group based on E with order q and P is the
generator of G1 with order q. )e elliptic curve cryptography
of the same security level is set as follows: E: y2 � x3 + ax +

bmodp is a nonsuper singular elliptic curve, where p and q
are 160 bit primes, a, b ∈ Z∗p.G is an additive group on E. P is
the generator of G with order q. Let Tbp, Tbm, andTba denote
the execution time of bilinear pairing operation, scalar
multiplication operation, and scalar addition operation,
respectively. Tem and Tea denote the execution time of scalar
multiplication and scalar addition on elliptic curve cryp-
tography, and TH denotes the hash operation time of map-
to-point. We use MIRACL cryptographic library, an i5-
7200U processor with 2.5GHz clock frequency and 8GB
memory in our experiment. )e operating system is Win-
dows 10. Table 3 provides the average execution time of
cryptographic operations.

Next, we analyze the computation cost of the message
signature and verification with the protocols given in
Table 4. Message signature of LIAP [13] requires five
bilinear scalar multiplication operations, one bilinear
scalar addition operation, and one map-to-point

operation; signature verification requires three bilinear
pair operations, one bilinear scalar multiplication oper-
ation, and one map-to-point operation. Similarly, we can
calculate the computation cost of message signature and
signature verification for NECPPA [24], Wu et al.’ scheme
[6], and our scheme. As given in Table 4, the message
signature cost of the vehicle is 2.475ms in our scheme.
Compared with LIAP and NECPPA, the message signa-
ture computation cost of our scheme is reduced by 74%
and 87%, respectively. However, compared with Wu et al.,
it costs 1.65ms more. Compared with LIAP and NECPPA,
the cost of signature verification is reduced by 69% and
87%, and it is equal to Wu et al.‘s scheme.

Figure 3 presents the comparisons of these computa-
tional costs graphically.

5.2. Communication Overhead. It can be seen from the
analysis in the previous section that p is 64 bytes, G1 is 128
bytes, and p is 20 bytes, G is 40 bytes. Suppose the timestamp
is 4 bytes, the hash function value is 20 bytes, and the other
nongroup elements have a value of 20 bytes. )e signature
message of the proposed method is (σi, Mi, PIDi, Vi,

Pv, Rvi, Tm), and the communication length is 20 + 20 +
20 + 40 + 40 + 40 + 4�184 bytes. )e signature message of
LIAP is (PIDi, Ms, PKRi, σi), and the communication length
is 128 + 20 + 20 + 128 + 128� 424 bytes. )e signature mes-
sage of NECPPA is (PIDi, δi, Mi, IDRSUj

), and the com-
munication length is 128 + 20 + 128 + 20 + 20� 316 bytes.
)e signature message of Wu et al.’ scheme is (mi, PIDvi,

Ti, Tvi, hki, Ri, δi), and the communication length is 20 +
40 + 4 + 4 + 20 + 40 + 20�148 bytes. Compared with LIAP
and NECPPA, the proposed scheme can save 57% and 42%
of the communication cost, respectively. Compared with
Wu et al.’ scheme, the communication length is slightly
increased by 40 bytes. However, in the scheme proposed by
Wu et al., RSU needs to store t pairs of the pseudonyms and
local private keys (PIDvi, kvi) [6] for each vehicle. When
there are too many vehicles, it will cause a heavy burden on
the memory of RSU. Similarly, each TPD also needs addi-
tional 60t bytes of storage space. )e communication cost of
message signature is provided in Table 5.

Figure 4 presents the comparisons graphically.

5.3. Comparison with Other Authentication Protocols.
Wei et al.’ protocols [37] use cosine similarity to realize the
authentication for the intelligent and the authentication
server. )ey have less computation cost and better accuracy
compared with other implicit authentication schemes. )e
optimized computation complexity of two protocols is
3O(n2.3) and 3O(n2.3) + 2Encp +Decp, respectively, where n
is the dimension of the multimodal behavior feature vector,
and Encp and Decp are Pailler operations; our scheme is
based on elliptic curve. Elliptic curve can achieve high se-
curity in 160-bit finite field. )e complex operation used in
our scheme is scalar multiplication operation. )e com-
plexity of scalar multiplication operation can be optimized
to O (k), where k is the length of the coefficient, which is 160-
bit in our scheme. In the process of mutual authentication

Complexity 9



between the vehicle and RSU, there are 15 scalar multipli-
cation operations, and the computation complexity is 15O
(160). It can be seen from the above analysis that when n is
small, the work [37] has an advantage in computation cost,
and when n is large, our scheme is better. In addition, inWei
et al.’ protocols, the identity of the vehicle Ui is the same in
different sessions, so they do not consider the unlinkability

of sessions. In our scheme, we use different pseudonyms to
realize unlinkability of the sessions.

Vinoth et at.’ scheme [38] is a lightweight authentication
and key agreement scheme, which is better than our scheme
in terms of computation cost, communication cost, and
storage cost. However, the scheme does not consider the
internal attack. If one sensing device is attacked, the

Table 2: Features comparison.

Feature LIAP NECPPA Wu et al. Our scheme
Using bilinear paring operation Yes Yes No No
Using ideal TPD Yes Yes No No
Requiring TA to participate in certification Yes Yes Yes No
Searching database Yes Yes Yes No

Table 3: Execution time of cryptographic operations.

Execution time Value (ms)
Tbp 7.142
Tbm 1.445
Tba 0.041
Tem 0.821
Tea 0.006
TH 2.228

Table 4: Computation cost of signature and verification of single message for various schemes.

Schemes Message signature (ms) Signature verification (ms)
LIAP 5Tbm + 1Tba + 1TH≈ 9.494 3Tbp + 1Tbm + 1TH≈ 25.099
NECPPA 4Tbm + 1Tba + 1TH≈ 8.049 3Tbp + 1Tbm +TH≈ 25.099
Wu et al. 1Tem≈ 0.821 4Tem + 2Tea≈ 3.296
Our scheme 3Tem + 2Tea≈ 2.475 4Tem + 2Tea≈ 3.296
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symmetric key KEYGWN-Ui and the session key SK can be
obtained by the attacker. )e attacker can monitor the
communication between the user and the gateway node as
well as between the user and other sensing devices. In our
scheme, the vehicle is equipped with TPD, which stores the
private key of the vehicle and the group key. Even if a single
TPD is attacked, the attacker can only intercept the group
key and the private key of the vehicle. )e authentication,
key agreement, and message signature all need the private
key of the vehicle. )us, the attacker can only forge the
signature of a single vehicle, without affecting the com-
munication security of other VANET nodes.

6. Conclusion

)e instantaneous characteristic of VANETcommunication
requires high efficiency in authentication and key agree-
ment. )erefore, this study proposes an efficient anonymous
authentication and key agreement scheme. )e scheme
includes mutual authentication and key agreement between
vehicle and RSU, as well as signature and verification of the
vehicle message. In the proposed scheme, an elliptic curve is
used to improve the efficiency of computation and com-
munication. Our authentication and key agreement scheme
does not need to communicate with the third party authority
or establish a local database, and furthermore, it avoids
database query operation. It can effectively save the com-
munication time and storage space of related nodes and is
more suitable for VANET. Compared with other schemes,

this scheme also has strong computing and communication
advantages in message authentication. However, we do not
address key negotiation and authentication between vehicles
and vehicles. Lightweight and effective encryption methods
to achieve anonymous authentication and communication
between vehicles and vehicles is a worthy research direction.
)e implementation of anonymous authentication and key
agreement based on channel condition is also one of the
directions worthy of discussion [41, 42].

In this study, the authentication technology combined
with cryptography is mainly presented. At present, deep
learning and cloud computing are increasingly used in
network applications. In the next step, more technologies
such as deep learning [43, 44] and cloud computing can be
combined into authentication and privacy protection of
VANET.
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A session-based recommendation system is designed to predict the user’s next click behavior based on an ongoing session.
Existing session-based recommendation systems usually model a session into a sequence and extract sequence features through
recurrent neural network. Although the performance is greatly improved, these procedures ignore the relationships between items
that contain rich information. In order to obtain rich items embeddings, we propose a novel Recommendation Model based on
Multi-channel Convolutional Neural Network for session-based recommendation, RMMCNN for brevity. Specifically, we capture
items' internal features from three dimensions through multi-channel convolutional neural network firstly. Next, we merge the
internal features with external features obtained by a GRU unit. +en, both internal features and external features are merged by
an attention mechanism together as the input of the transformation function. Finally, the probability distribution is taken as the
output after the softmax function. Experiments on various datasets show that our method's precision and recommendation
performance are better than those of other state-of-the-art approaches.

1. Introduction

With the explosive growth of the information in the Internet
era, recommendation systems have become an effective
solution for users to deal with large amounts of information
[1]. In order to have a better user experience, personalized
recommendation systems have been applied to many sce-
narios, including movie recommendation [2, 3], music
recommendation [4, 5], online shopping [6, 7], and other
settings. In the recommendation scenario, the user behavior
is modelled as a session. +e session consists of the sequence
of clicks performed by the user on items. +e first time the
user clicks on an item is regarded as the beginning of a
session, and the last item of the user’s continuous click
browsing is the end of the session.+us, the session contains
the time series of user behavior and information between
users and items [8, 9].

Traditional recommendation systems are mainly divided
into recommendation systems based on collaborative fil-
tering (CF), content-based recommendation systems (CB),

and hybrid recommendation systems (HRS) [10]. CF-based
recommendation systems build user preference models
through the similarity of users or/and items. In addition, the
CB recommendation systems state recommendations based
on the content of item characteristics [11]. +e former does
not require contextual features; it only needs to train the
matrix factorization model. +e latter has good interpret-
ability. In order to combine the advantages of both, HRS
emerge to extract information from item attributes [12],
users’ social networks [13], and item comments [14].

On the other hand, in recent years, deep learning
technology has been widely used in recommendation sys-
tems [15]. At the same time, powerful cloud computing
capabilities have also laid the cornerstone for the develop-
ment of deep learning [16]. For example, edge computing
technology has made it possible to use machine learning
technology to achieve intelligent network optimization [17].
Among many neural models, the recurrent neural network
[18] approach was the first to be used. Afterwards, the
community took into account the rich features of data.

Hindawi
Complexity
Volume 2021, Article ID 6661901, 10 pages
https://doi.org/10.1155/2021/6661901

mailto:zhyji@bjtu.edu.cn
https://orcid.org/0000-0002-6566-9464
https://orcid.org/0000-0002-3849-4283
https://orcid.org/0000-0002-0912-454X
https://orcid.org/0000-0002-2666-7191
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6661901


Hence, the user temporal behavior is used in data aug-
mentation [19]. Recently, STAMP [20] and SG-RNN [21]
apply graph neural network to capture users’ long-term and
short-term interests as global interests and the last time the
user clicks on the item as the current interest for
recommendation.

Although the aforementioned methods achieve greater
improvements, they still have some limitations. Firstly, a
large number of session recommendation systems are based
on users’ historical behavior information. Without a large
amount of user information, these recommendation systems
are not be able to make proper recommendations. Secondly,
the sequential features thanks to time stamp are fully cap-
tured, but the information between items is ignored.

To overcome the limitations mentioned above, we
propose a Recommendation Model based on Mutichannel
Convolutional Neural Network (RMMCNN). +e main
contributions are as follows:

(i) We introduce a multichannel convolutional neural
network to extract item information in the context
of a session.

(ii) To embed richer features, we use graph neural
network to extract sequence features and internal
features and then combine them as the final em-
bedding vector representation through an adaptive
mechanism.

(iii) Experiments are performed to compare our model
with the baseline models. +e results indicate that
Precision and Mean Average Precision have been
increased by at least 0.37% and 0.52%, respectively.

2. Related Work

Conventional recommendation methods include CF, CB,
and HRS systems. In recent years, neural networks have
greatly improved the performance of recommendation
systems, including recurrent neural network, convolutional
neural network, and graph convolutional neural network.
Recurrent neural network [21–23] can extract users’ his-
torical click sequence features. Convolutional neural net-
work [24, 25] can extract different local features of items and
generate the corresponding item vector. Graph neural
network [21, 26, 27] can learn graph structure data and
capture vector embeddings of different nodes. +ese char-
acteristics enable the neural network to learn more features.
+erefore, the neural network can achieve better recom-
mendation performance than conventional recommenda-
tion methods.

2.1. Conventional Methods

2.1.1. Collaborative Filtering (CF). Sarwar et al. [28] consider
the impact of items on recommendation performance. +is
work analyzes the user-item matrix to identify different
relational items and then uses relational items for indirect
calculations. Cheng et al. [29] propose a collaborative fil-
tering method based on user interest sequences. +ey in-
troduce the similarity of users in the sequence dimension

and extract the length of the user’s longest common sub-
interest sequence and the total number of users. +e number
of common subinterest sequences is used to extract the
information hidden in the sequence.

2.1.2. Content Based Recommendation (CB). Putri et al. [30]
use the supervised learning method to represent and learn
the data of 3700 articles in a vector space and apply a
K-Neighbor algorithm for metrics. In order to alleviate the
cold start problem, Zhang et al. [31] build the learned feature
relationship matrix to extract user preference information
hidden in content features. Trinh et al. [32] construct an
association matrix between events and the user character-
istics content. Concurrently to this, they also combine
temporal and spatial relationships together with user in-
terests to make recommendations to friends of key users.

2.1.3. Hybrid Recommendation. Hybrid recommendation
algorithms aim to inherit the advantages of CF and CB
recommendation algorithms. Rojsattarat and Soon-
thornphisaj [33] improve the recommendation performance
using support vector machines, which map the information
to the Euclidean space in order to extract features. Kiewra
[34] utilizes the similarity between search and recommen-
dation and uses positive and negative feedback to enhance
the range of recommendations. Kolahkaj et al. [35] give
importance to certain features of data such as time, location,
user’s hidden rating, and geographic information location.
+en, it combines this information with collaborative fil-
tering, context awareness, and other methods to make
recommendations dynamically.

2.2. Deep Learning Methods

2.2.1. Recurrent Neural Network (RNN). Based on the RNN
[22], the user’s next clicked item can be predicted through
similarity. Taking into account the essential characteristics of
the item sequence, Long Short-Term Memory (LSTM) is
used to capture the similarity between sequences. Xia et al.
[23] combine RNN and an attention mechanism to learn
about the session, sequence characteristics, and session
context information. +is fully mines the sequence char-
acteristics of user sessions through recurrent neural net-
work. Wu et al. [21] use the GRU unit to capture the
sequence features and combine them with the last item in a
session. +en, they are both generated into potential vectors
for recommendation.

2.2.2. Convolutional Neural Network (CNN). Cai et al. [24]
propose a multi-domain recommendation method based on
CNN. It uses the generated user and item preference vectors
to predict product ratings through a decomposition ma-
chine. Gao et al. [25] establish the CNN to capture the user’s
sequential features as positive feedback information and
obtain negative feedback information through confrontation
training, respectively. Afterwards, it combines both
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feedbacks to generate action value functions for
recommendation.

2.2.3. Graph Neural Network (GNN). GNNs are excellent in
node information and graph structure information extrac-
tion. Fan et al. [26] propose a GNN framework for user-item
graphs and their interactions to model two graphs and
heterogeneous intensities. Xian et al. [27] construct the
framework that combines the GNN with the repetitive ex-
ploration mechanism. It dynamically processes the sequence
in a session through the graph structure and captures the
complexity between items through the graph neural net-
work. Wu et al. [21] use GNN and the GRU unit to generate
a latent vector representation of a session sequence infor-
mation and apply an attentionmechanism to combine global
and local user preferences.

3. The Proposed Model

In this section, we firstly present the proposed
RMMCNN model. +en, we formulate the problem and
introduce the process of our proposed model. Our model
includes five steps: (1) knowledge distillation, (2) ex-
ternal feature extraction, (3) internal feature extraction,
(4) joint feature extraction, and (5) possibility
prediction.

3.1. RMMCNN Framework. Figure 1 introduces the
framework of the proposed RMMCNN method. At first, all
sessions are fed into a vector space via a directed graph. +e
items clicked by the user are nodes of the knowledge graph.
+e direction and connections of nodes in the graph rep-
resent the sequence of users that clicked two adjacent items
consecutively. If we take into consideration the fact that
some users may have clicked the same items in the very same
sequence order, we have normalized each edge. We learn the
latent vector representation of items through a graph neural
network, so that each session will generate the corre-
sponding embedding vector. After the embedding vector
generation through the knowledge graph, the embedding
vector containing the sequence features is generated by
means of the GRU unit. More precisely, the session node
embedding vector is propagated among different nodes
through the GRU, not only extracting the features of
neighboring nodes but also combining these neighboring
features as the input of the graph neural network. Following
that, the reset gate in the GRU determines whether the
information should be kept or dropped, whereas the update
gate refreshes all nodes to ensure the convergence of the
results. +en, we extract external features and internal
features separately for these embedding vectors. Internal
features are extracted through a multi-channel convolu-
tional neural network, which has three channels, where each
channel has its own weight parameter, and we extract
separately the internal features of different dimensions. +e
results of all channels will be combined through the at-
tention mechanism as the final internal embedding. Finally,

the node (resp., item) click probability is generated through
linear and softmax transformations.

3.2. Problem Formulation. +e goal of a session-based
recommendation system is to predict for each session which
item is going to be clicked next. Let V � v1, v2, v3, . . . , vn􏼈 􏼉

denote the set of all unique items in the sessions. All the
sessions are composed of a series of items. Let
s � [vs

1, vs
2, vs

3, . . . , vs
m] represent a history session sorted by

time, where vs
i ∈ V represents that the user clicked the item i

in session s. In this session, our goal is to predict where the
user is going to click next, that is, vs

m+1, in the context of the
session.

Next, we are going to describe the steps that we follow to
obtain the next clicked item in a session.

3.3. Knowledge Distillation. Recall that, within each session
s, each item v is represented as a node in the directed graph
Gs � (Vs, ξs). +e direction of each edge between nodes
represents that the user clicked both items consecutively,
according to the direction of the edge. +us, a user in a
session s firstly clicks item vs

m−1 ∈ V and, immediately after
that, clicks the item vs

m ∈ V, which we denote as
(vs

m−1, vs
m) ∈ ξs. In the directed graph, each item would be

embedded into a unified embedding space. Let
N � n1,n2,n3, . . . ,nn􏼈 􏼉 denote the item embedding vectors,
where n ∈ Rd indicates the vector embedding of item v and
d indicates its dimensionality, respectively. Let
s � [ns

1,ns
2,ns

3, . . . ,ns
m] denote the session s in the graph Gu

s .
For this session s, the proposed RMMCNN will output
probabilities 􏽢y for all the items, where
􏽢y � 􏽢y1, 􏽢y2, 􏽢y3, . . . , 􏽢yn􏼈 􏼉. +e top-K items in 􏽢y will be chosen
as the candidate items.

3.4. External Feature Extraction. +e session contains the
users’ clicked items within a period of time. In order to
predict which item the user will click and the user behavior,
we need to extract the representations of the session. At the
same time, users’ interests will change over time, and the
temporal characteristics of the session should also be
extracted. +erefore, we use the GRU joint attention
mechanism to represent these external features.

GRU controls the flow of information through gates.
GRU uses two gates, combining the input and forget gate of
the LSTM into the update gate. +e update gate determines
the ratio of the previous value and the current one. +e
computation formula of the update gate is as follows:

zs
t � ψ Wnzn

s
t + Whzn

s
t−1( 􏼁, (1)

where ψ(·) denotes the sigmoid function:

ψ(x) �
1

1 + e
− x. (2)

+e reset gate establishes whether the current candidate
state needs to depend on the network previous state and the
weight of this dependency:
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rs
t � ψ Wnrn

s
t + Whrn

s
t−1( 􏼁. (3)

We need to estimate another intermediate value, which
is the memory value. It is defined as

ct � tanh Wnnn
s
t + Wrc AGG ht−1r

s
t( 􏼁􏼈 􏼉( 􏼁( 􏼁, (4)

which is determined by the memory value in the previous
state and the current input value. AGG is the aggregator
function. We have chosen to use element-wise multiplica-
tion of the vectors.+us, the state value of the hidden layer is
defined as

ht � AGG 1 − zs
t( 􏼁ct􏼈 􏼉( 􏼁 + AGG zs

tht−1􏼈 􏼉( 􏼁, (5)

which is the weighted combination of the memory value of
the current moment and the previous state value. It is
important to note that, in the above formulae, W∗∗ is the
corresponding weight matrix.

After the GRU extracts all the features, the session s can
be denoted as vs

t � [vs
1, v

s
2, v

s
3, . . . , vs

m].

3.5. Internal Feature Extraction. Following the notations
used in Section 3, we use N � n1,n2,n3, . . . ,nn􏼈 􏼉 to denote
the raw input items sequence. We use a multi-channel
convolutional neural network to extract the rich internal
item features. Besides, we feed vt into the neural network for
further processing.

We expand the original two-dimension embedding
vector into a higher dimension vector by firstly performing a

convolution operation, which considers the difference of the
internal features extraction with different convolution
kernels. Our approach is loosely based on the RGB image
processing, and we capture the different dimension features
with a multi-channel convolutional neural network that we
use to build the future maps. We set the convolution kernel
to [1, 1, 1, 1], [1, 1, 1, 2], and [1, 3, 1, 1], respectively.+us, the
three convolution channel results can be expressed as 􏽥vt

R, 􏽥v
t
G,

and 􏽥vt
B.

+en we merge these future maps with a linear
transformation.

sc � f 􏽥v
t
R, 􏽥v

t
G, 􏽥v

t
B􏼐 􏼑, (6)

where f(·) is a linear transformation function. Once we
extract the features, we perform a dimension reduction for
subsequent processing to obtain the vector 􏽥sc.

On the other hand, we extract the last item as vs
l , which is

denoted as vs
m; that is, vs

l � vs
m.

3.6. Joint Feature Extraction. In order to maximize the
representation of information, we aggregate the external and
internal features together. Firstly, we aggregate all node
embedding vectors and the last item:

􏽥se � 􏽘
n

i�1
αivi, (7)

where αi � vTσ(ω1vs
l + ω2vs

i + b), i ∈ [1, m], and v ∈ Rd1

controls the weights of item vectors.

So�max transformation

Linear transformation

Internal interestsExternal interests

Internal interests

External interests

GRU units

GRU GRU GRU

Knowledge distillation

Clicked items

At
te

nt
io

n 
ne

t

C
on

ca
t

^y click probability

Figure 1: Illustration of the RMMCNN framework.
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+en, we aggregate the result into the final feature. After
this, we compute the hybrid embedding vector 􏽥sf through
function transformation over the combination of the last
clicked item and the external features:

􏽥sf � β 􏽥se;􏽥sc􏼂 􏼃, (8)

where matrix β compresses two combined embedding
vectors into the latent space Rd.

3.7. Probability Prediction. After obtaining the representa-
tion of the session, we calculate the score 􏽢gs

i as follows:

􏽢g
s
i � 􏽥s

T
fω3v

s
i , (9)

where ω3 is the corresponding conversion dimension matrix
and 􏽢gs

i ∈ R
n represents the similarity scores with regard to

each candidate item.
+e score is transformed through the softmax function

in the following:

􏽢yi � softmax 􏽢g
s
i( 􏼁, (10)

where 􏽢y ∈ Rn denotes the next clicked item probability for a
given user in the context of the given session.

In our work, we adopt the cross-entropy as the loss
function, and it is defined as follows:

Loss(􏽢y) � − 􏽘

n

i�1
yilog 􏽢yi( 􏼁 + 1 − yi( 􏼁log 1 − 􏽢yi( 􏼁, (11)

where y denotes the user actual clicked items in the session.
+e recommendation model can be trained through the

backpropagation algorithm, and then the parameters in the
model can be updated. In this process, we use the Adam
optimizer [36] to train the parameters in the RMMCNN
model.

4. Experiments and Analysis

In this part, we conduct three groups of experiments on two
real world datasets. +e datasets come from the RecSys 2015
Challenge called Yoochoose and CIKM Cup 2016 Challenge
called Diginetica. +e first experimental setup compares the
recommendation performance of different models, whereas
second group experiment compares the recommendation
performance of different session embedding methods. Fi-
nally, the third group compares the recommendation per-
formance of different evaluation criteria. Our experiments
are based on TensorFlow 1.4.0 and Python 3.6.

4.1. Experiment Settings

4.1.1. Datasets. Yoochoose contains a series of click events
of users on e-commerce websites, and these click events can
be used to predict whether the user intends to click a certain
product. Diginetica contains a large amount of information
such as searches, logs, product data, and transaction data. In
this paper, we only use transaction data.

Considering the existence of some noisy data in the
sessions, we will filter out those values whose session length
is 1 and those items that have been clicked fewer than 5
times, following [20, 21]. +en, we separate the two datasets
and divide them into a training dataset and a test dataset,
respectively. +e reader is referred to Table 1 for a more
detailed description. Considering that the Yoochoose dataset
is quite large, we sort the sequences in the Yoochoose dataset
and obtain the latest fractions 1/64 and 1/4 of the entire
sequence according to time. We refer to them as Yoochoose
1/4 and Yoochoose 1/64.

4.1.2. Data Availability Statement. +ere are two datasets
used in this paper: one is Yoochoose and the other is
Diginetica. +e Yoochoose dataset comes from the 2015
ACM RecSys Challenge. +e content is a series of click
events performed by users during a typical session in an
e-commerce website.+e data files include training data files
and test data files. +e former contains click events and
purchase events, and the latter contains files. Each click
event contains the session ID, timestamp, item ID, and item
category. +e Yoochoose dataset can be accessed at https://
2015.recsyschallenge.com/challenge.html. +e Diginetica
dataset comes from CIKM Cup 2016. +e dataset contains
product data and transaction data. In this paper, we only use
transaction data. +e Diginetica dataset can be obtained
from the following link: https://competitions.codalab.org/
competitions/11161#learn_the_details-data2.

4.2. Baselines. In order to measure the performance of the
proposed model, we compare the model with the following
baseline algorithms.

(i) NARM [37] uses an attention mechanism to obtain
the features in the hidden state to enhance the
original information, which emphasizes the main
purpose of the user in the current session. It pro-
poses a neural attention recommender to solve the
problem of lack of user purpose analysis in a ses-
sion-based recommendation setting. NARM pro-
posed a hybrid encoder to simulate the user’s
sequential behavior, capture the user’s main pur-
pose in the conversation, and merge this informa-
tion as the final user behavior information
representation.

(ii) STAMP [20] combines the current session infor-
mation with the last clicked item in the current
session. +is mainly solves the problem of user
behavior prediction based on anonymous sessions.
It considers the impact of the user’s current oper-
ation on the next clicked item as a tradeoff with the
short-term memory model. It combines the short-
term attention model with the original long-term
memory model to extract the current and long-term
user interest and generates the final interest of the
user.

(iii) SRGNN [21] uses graph neural networks and GRU
units to generate node latent vector representations.
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+is approach tries to solve the problem of accurate
user vector generation. SRGNN models user be-
havior as a graph structure data and captures item
conversion information with a graph neural net-
work. +en, the final embedding vector is generated
through a linear transformation and the recom-
mendations are made based on user’s clicked items
sequence and the last clicked item in the session.

4.3. Evaluation Metrics. We use often-used Precision (P)
and Mean Reciprocal Rank (MRR) evaluation metrics to
evaluate the performance of the RMMCNN model.

P@20: P@K measures predictive accuracy in recom-
mendation systems. P@K describes the ranking ratio of
recommended items accuracy in the recommendation lists,
and it is defined as follows:

P@K �
chit

|C|
, (12)

where |C| denotes the total count of test data and chit
represents the count of the hit data in the top-K ranking list.

MRR@20: MRR@K measures the accuracy of recom-
mended clicked items, ordered by the probability of cor-
rectness. Given K� 20, if the right clicked item is suggested
in apposition greater than 20, it will be set to zero:

MRR@K �
1

|C|
􏽘

|C|

i�1

1
ranki

, (13)

where ranki denotes users’ first item ranking position in the
recommendation list.

4.4. Parameter Settings. We set the latent vectors’ dimen-
sionality to d � 100 for the two datasets, like the settings of
[20, 21, 37]. Besides, all parameters are set initially by a
Gaussian distribution N(0, 0.12), where its mean is 0 and
1/

��
d

√
is its standard deviation. +e initial learning rate is set

to 0.001 and the batch size is set to 100. Recall that we use
Adam optimizer [36] to update all parameters. For NARM,
we set the mini-batch size to 512, the learning rate to 0.001,
and the epochs to 30, respectively. For STAMP, the learning
rate decay is set to 1 and the latent vectors’ dimensionality is
set to 100. For SRGNN, we set the learning rate decay to 0.1
behind every 3 epochs and the dimensionality is also 100.
+ese key variables are shown in Table 2.

4.5. Experimental Results. In this section, we compare
RMMCNN in various aspects. Firstly, we compare
RMMCNN with state-of-the-art methods. +en, we

compare the performance of RMMCNN methods with
variants of session embeddings. Finally, we compare the
performance of RMMCNN with different evaluation
metrics.

4.5.1. Comparison with Baseline Methods. To compare the
performance of our proposed model, we compare it with
some baseline models: NARM, STAMP, and SRGNN. +e
results show that RMMCNN outperforms all of them. +e
overall output is given in Figures 2 and 3; further detailed
overview of the results can be seen in Table 3. RMMCNN
aggregates the external and internal features of the session
into the final data and makes recommendations based on
both data. Compared with the current mainstream rec-
ommendation methods based on neural networks,
RMMCNN shows excellent performance. NARM captures
the user’s overall interest through a cyclic neural network,
and STAMP adds the last clicked event to the information
extraction of the recommended item to achieve the purpose
of information enhancement. +ese neural network-based
methods achieve better recommendation performance than
other methods. Figure 2 shows that STAMP is very low on
the Diginetica dataset; this may be due to the fact that
STAMP only uses the transition between users’ last click
item and users’ historical click item. +is information may
not be enough to predict user session behavior. +erefore,
the performance of STAMP in Diginetica dataset is very
poor. SRGNN [21] generally considers the sequence char-
acteristics of the user’s click items and the user’s last click
event, which also combines the global characteristics and the
local characteristics of the last click event for
recommendation.

Our proposed model, RMMCNN, considers not only the
external characteristics but also the internal characteristics
of the session. +erefore, it combines the sequential char-
acteristics of the session, the internal item characteristics of
the session, and the last clicked event of the user to make
recommendations. Simultaneously, RMMCNN uses an at-
tention mechanism to automatically learn the weight

Table 1: +e statistics of the datasets.

Datasets Yoochoose 1/4 Yoochoose 1/64 Diginetica
No. of clicks 7,980,529 565,552 982,961
No. of items 30,660 17,694 43,097
No. of train sessions 5,917,746 369,859 719,470
No. of test sessions 55,898 55,898 60,858
Average length (no. of clicks/session) 5.71 6.16 5.12

Table 2: +e key variables of RMMCNN.

Variables Value
Dimension 100
Learning rate 0.001
Batch size 100
Hidden size 100
Output size 100
L2 penalty 10−5
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representation. +us, RMMCNN has obtained a richer user
session representation and can make better recommenda-
tions for different user behaviors.

4.5.2. Comparison with Variants of Session Embeddings.
We conduct distributed experiments on the model to verify
the rationality of the RMMCNN model connection method

and conduct experiments on the internal and external
recommendation methods. We define the sequence feature
of the session as an external feature and the relationship
between users and items as an internal feature. We call the
two methods RMMCNN-EXTER and RMMCNN-INTER,
respectively.

(i) RMMCNN-EXTER: We first model the session as a
directed graph and then extract the sequence fea-
tures of the session through the GRU unit. Finally,
we obtain different weight representations through
the attention network.

(ii) RMMCNN-INTER: We obtain the embedding
vector of the session to represent the internal re-
lationship through a multichannel convolutional
neural network. After that, we can get richer em-
bedded vector information.

(iii) RMMCNN-JOINT:We combine the external vector
with the internal vector of the session to generate
the final session embedding representation.

+rough Figures 4 and 5, we can see that the recom-
mendation performance of RMMCNN-JOINT is better than
that of the other two recommendation models. +is is be-
cause RMMCNN-JOINT embeds more user information,
and the content representation for recommendation is also
richer. More details can be viewed in Table 4.

4.5.3. Comparison with Different Evaluation Metrics. In
order to further measure the recommendation performance
of different methods, we use different evaluation metrics to
evaluate them. As illustrated in Figure 6, the results show
that as the value of K increases, the recommendation ac-
curacy rate and recommendation performance decrease,
which indicates that the ideal recommendation result
ranking position is not high. On the other hand, from the
results, we can see that the recommendation performance

Table 3: +e performance of different datasets (K � 20).

Datasets Yoochoose 1/4
(%)

Yoochoose 1/64
(%) Diginetica (%)

Measures P@K MRR@K P@K MRR@K P@K MRR@K
NARM 69.73 29.23 68.32 28.63 49.70 16.17
STAMP 70.44 30.00 68.74 29.67 45.64 14.32
SR-GNN 71.36 31.89 70.57 30.94 50.73 17.59
RMMCNN 72.93 35.04 70.94 31.46 51.82 18.19

Yoochoose 1/4 Yoochoose 1/64 Diginetica
45

50

55

60

65

70

75

p@
20

NARM
STAMP

SRGNN
RMMCNN

Figure 2: P@20 of different models.
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improves as the model complexity increases. +is shows that
as the complexity of the model increases, the embedded
information extracted by the model is richer, and the rec-
ommendation results rank higher.

We tested on the Yoochoose dataset and Diginetica
dataset. On the Yoochoose dataset, the result of P@10 is
60.32% and the result of P@20 is 70.94%. +e results are
better than those in other baseline models. On the Diginetica

dataset, the result of P@10 is 36.64%, which is lower than
39.89% of NARM. However, the result of P@20 is 51.82%,
while the result of SRGNN is 50.73%, indicating that the
ranking of RMMCNN recommendation results in Dig-
inetica data is mostly in [10, 20].

In the indicators of P@10 in Table 5, we see that NARM
is superior to other methods. +is is mainly due to the
NARM’s hybrid encoder attention mechanism. In the

Table 4: +e performance of diverse session embeddings (K � 20).

Methods Internal (%) External (%) Joint (%)
Measures P@K MRR@K P@K MRR@K P@K MRR@K
Yoochoose 1/4 57.20 21.96 67.64 34.90 72.93 35.04
Yoochoose 1/64 58.10 22.22 67.87 30.26 70.94 31.46
Diginetica 37.56 12.97 49.71 17.38 51.82 18.19

75

70

65

60

55

50

45

40

35

30

75

70

65

60

55

50

45

40

35

30
STAMP SRGNNNARM RMMCNN

P

M
RR

Different models (NARM, STAMP, SRGNN, RMMCNN)

P@5
P@10
P@20

MRR@5
MRR@10
MRR@20

Yoochoose 1/64

Figure 6: +e Precision and MRR of different K settings on Yoochoose 1/64.

RMMCNN-INTER
RMMCNN-EXTER
RMMCNN-JOINT

10

15

20

25

30

35

40

M
RR

@
20

Yoochoose 1/4 DigineticaYoochoose 1/64

Figure 5: MRR@20 of different connection schemes.

8 Complexity



Diginetica dataset, the attention mechanism is more com-
plex than those in other models. More representation in-
formation is aggregated, so the performance is significantly
better than those of other recommendation models. How-
ever, as the K value increases, the recommendation per-
formance of NARM is not as good as those of other more
complex models. We argue that more complex models in-
troduce more dimensional representation information,
which is much better than simply using the attention
mechanism.

5. Conclusions

In this paper, we first propose a novel multichannel con-
volution model to capture the rich information of items for
recommendation.+en, we use the attention mechanism to
obtain the features of the user clicked items sequence
adaptively and combine the internal and external features
of the session to jointly generate the final users’ session
vector embedding. Once we have the vector, we perform a
linear transformation along with the softmax function. We
convert the result into a probability value between [0, 1].
We have conducted some experimental results with stat-of-
the-art recommender systems with two real datasets and
both Precision and MRR have been improved. In the fu-
ture, we will further study the richer representations of
items’ embedding to make more accurate
recommendations.

Data Availability

+e data used can be found at https://2015.recsyschallenge.
com/challenge.html and https://competitions.codalab.org/
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In organisms, ribonucleic acid (RNA) plays an essential role. Its function is being discoveredmore andmore. Due to the conserved
nature of RNA sequences, its function mainly depends on the RNA secondary structure. ,e discovery of an approximate
relationship between two RNA secondary structures helps to understand their functional relationship better. It is an important
and urgent task to explore structural similarities from the graphical representation of RNA secondary structures. In this paper, a
novel graphical analysis method based on the triple vector curve representation of RNA secondary structures is proposed. A
combinational method involving a discrete wavelet transform (DWT) and fractal dimension with sliding window is introduced to
analyze and compare the graphs derived from feature extraction; after that, the distance matrix is generated. ,en, the distance
matrix is analyzed by clustering and visualized as a clustering tree. RNA virus and noncoding RNA datasets are applied to perform
experiments and analyze the clustering tree. ,e results show that the proposed method yields more accurate results in the
comparison of RNA secondary structures.

1. Introduction

,e secondary structure of RNA is a double-stranded structure
constructed according to the principle of complementary base
pairing. In RNA, U (uracil) is complementary to A (adenine)
and G (guanine) is complementary to C (cytosine). RNA is
usually transcribed from DNA and acts as a bridge between
DNA and proteins [1]. ,e versatility of an RNA molecule
depends on its secondary structure. RNAs with similar struc-
tures tend to have similar functions or properties, but the
opposite does not necessarily hold true. Many RNA molecules
are conserved at the structural level, but they have little sequence
similarity. ,erefore, the comparison of RNA secondary
structures is key to elucidating their functional and evolutionary
relationships.

Most recent studies have focused on RNA secondary
structure prediction [2–4], and comparisons of RNA

secondary structures have not yet been sufficiently studied.
At the present stage, the comparison methods for RNA
secondary structures are mainly divided into two types:
alignment-based methods and alignment-free methods.

Alignment-based methods mainly rely on an RNA
secondary structure represented by a string or tree [5–9].

,e Sankoff algorithm used a free-energy minimization
method to synchronize the folding and alignment of two or
more RNA sequences [9]. Combining the information from
folding and alignment optimizes the objective function
when processing the problem separately, while generalizing
the alignment method to the original sequence recon-
struction problem and selecting appropriate, existing con-
straints for possible solutions. However, this suffers from a
problem. ,e time cost is high and about O (n3kN) (N is the
number of sequences, n is the maximum sequence length,
and the value of k is small enough). In practice, it is
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impossible to solve and satisfy both the time complexity
problem and the larger memory requirements, which, to-
gether with the impractical constraints, are all difficult to
achieve.

,erefore, to be more effective in RNA secondary
structure alignment, a number of improved algorithms were
subsequently developed, such as Consan [10] and, Dynalign
[11], PMcomp [12], Stemloc [13], Foldalign [14], locARNA
[15], SPARSE [16], MARNA [17], FoldAlignM [18], Murlet
[19], CARNA [20], and RAF [21].

Consan is based on Sankoff algorithm and was proposed
by Dowell to address two problems not solved by Sankoff:
the fact that it cannot be generalized to RNA structures of
different lengths and the need to deal with the complexity of
the algorithm. First, the method of modelling secondary
structures and alignments using random context-indepen-
dent grammars (SCFG) [22] is extended to construct pair-
SCFG descriptions and build unconstrained algorithms.
Second, the complete pair-SCFG algorithm is almost in-
feasible due to the O(N4) memory requirement and O(N6)
time consumption. ,e structure algorithm is constrained
by adding pins. Long sequence comparison is achieved using
anchors fixed partial comparison. Also, the time and space
complexity of the algorithm is effectively reduced. However,
it is clear that Consan syntax lacks the handling of more
complex statistical functions [10].

PMcomp used McCaskill’s algorithm to obtain the base-
pairing probability matrix and, next, the alignment proba-
bility matrix. ,is algorithm computes the input pairing
matrix independently, unlike other combinatorial alignment
and folding procedures (e.g., Dynalign and FoldAlign).
Promising candidate sequences are preselected using a
pattern search procedure, and an algebraic dynamic pro-
gramming approach is used to scan the candidate sequences.
It is folded by McCakill’s algorithm, and finally, each in-
dividual is compared with each other separately using fa-
miliar techniques. ,e method reached a lightweight energy
computation and can be described as simplified Sankoff’s
algorithm [12].

LocARNA is a novel RNA local comparison tool that has
achieved high sensitivity in multiple experiments based on
different datasets, but its complexity is still high [15]. For this
feature of LocARNA, a sparsified prediction and alignment
of RNAs based on their structure ensembles (SRARSE) is
introduced. It supports the operation of loop structures for
the first time and retains the full flexibility of Sankoff’s al-
gorithm. In the benchmark test, high accuracy and speed
were both maintained [16].

Non-Sankoff algorithms divide the process into two
parts: folding and alignment. Among them, some tree-based
methods, such as RNAforester [23], RNAdistance [8],
RNAStrAt [24], and RNApdist [25], are widely used.

,e RNAforester tree comparison algorithm computes
the local similarity in RNA secondary structures. ,e
method provides a new representation of RNA secondary
structure in forest representation and provides elaborate
dynamic programming implementations using dense two-
dimensional tables, which can greatly reduce space re-
quirements in practice. RNAdistance calculates the

similarity of the RNA secondary structures by measuring the
editing distance of the tree. RNApdist compares the RNA
secondary structures based on base-pairing probabilities.
,e Vienna RNA package can now be used to implement
both the RNAdistance and RNApdist methods [26, 27].
Considering the structure with pseudoknots, Michela
established ASPRAlign and obtained a method for com-
paring ASPRA distances [28]. A comparison of algebraic
RNA trees and structural RNA trees [29] is made with ig-
noring the primary sequence and considering only the
structure of the molecule. ,e execution time of the
ASPRAlign workbench tool to process molecular pairs was
compared experimentally. ,e experiments show that the
time complexity of the algorithm is O(n2). Notably, these
comparison algorithms have high time complexity. General
alignment-free methods are usually based on the numerical
representations of RNA secondary structures, followed by
the development of the many graphical representations of
RNA secondary structures. ,e visualization of an RNA
secondary structure using a graphical representation is more
intuitive, thus providing a new way of thinking about the
comparison of RNA secondary structures. Previously, re-
searchers used eight symbols to represent RNA, but this
representation was accompanied by a loss of information
[30]. A feature sequence may correspond to diverse RNA
secondary structures. ,at is, the feature sequences obtained
by such a method are not unique. To reduce the loss of
information, based on a 4 × 4 matrix of RNA sequences
proposed by Randic [31], Yao used four horizontal lines and
eight symbols to represent the RNA secondary structure
[32]. ,e method avoids the loss of information due to the
crossover and overlap of curves, but the information loss
caused by the limitations of feature-invariant extraction still
exists. Randic proposed a method to visualize the secondary
structure of RNA without loss of information [33]. ,e
method is based on [30] labeling bases before and after
hydrogen bonds, using 12 symbols to represent bases at
different positions and, in turn, using numbers and graphs to
represent RNA sequences with structural information. To
illustrate the validity of the method, two RNAs that are
similar were selected, and visualization of RNA sequences
using the method enables visual observation of the sequence
differences. In [34], Li proposed a novel graphical repre-
sentation of RNA secondary structures (TV-Curve) and
introduced a wavelet decomposition to compare RNA
secondary structures. Based on the feature representation of
RNA secondary structure with eight symbols proposed in
[30], each character is represented by three vectors, and the
vectors are connected sequentially to generate a unique
graphical representation of RNA secondary structure. After
feature extraction, RNA similarity is estimated using
weighted correlations of wavelet domains at different scales.
,e method integrates the global and local structures. ,e
effect of the program was verified using 100 RNA sequences
from the RFAM database and 9 viruses to obtain a similarity
metric closer to the actual data. Based on the approach of
[34], Li further created a web server for multiscale similarity
RNA secondary structure comparison based on the curve
representation of triple vectors (RNA-TV-curve), including
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RNA visualization, mutation analysis, and multiple RNA
structure comparison [35].

Neutral components (NCs) in the genotype-phenotype
(GP) maps were found in [36] to be able to influence the
biological sequence function. ,us, based on a method that
reveals the hierarchical community structure, which reveals
the hierarchical community structure solely from the se-
quence constraints and composition of the genotypes that
form a given NC, community detection has been used to
analyze RNA secondary structure, and recent works on
community detection have been studied in [37]. Some novel
classifiers and learning models have also been proposed for
multigraph analysis. Multigraph feature-based representa-
tion and learning methods for multigraph classification were
used to achieve an effective learning model for multigraph
classification [38]. Subsequently, to address the complexity
of graph data generalization in multigraph classification,Wu
proposed a boosting-based multigraph classification
framework (bMGC). ,e framework uses a two-level
weighting strategy to balance label ambiguity and introduces
dynamic subgraph selection criteria to solve the structured
data representation problem [39].

Besides, the classification and comparison of noncoding
RNAs is also gaining attention. ,e deep-learning-based
model ncRDeep is a recently proposed tool to efficiently
classify ncRNA families [40]. It uses a simple convolutional
neural network and RNA sequence information only to
predict the class of ncRNAs. ,e experiments in the article
evaluate the performance of ncRDeep using a benchmark
dataset. Ultimately, the method was effective in improving
the accuracy of prediction.

Wavelet analysis is a synthesis of ideas in pure mathe-
matics, physics, and engineering. A commonly used win-
dowed Fourier transform, such as the short-time Fourier
transform (STFT), analyzes the signal with a fixed sliding
window. Obviously, fixed-length sliding window processing
is not suitable for all signals. ,e linear time-frequency
analysis for nonstationary signals should have different
resolutions at different positions in the time-frequency plain;
in other words, it should be a multiresolution analysis
method. Wavelet transform is a multiresolution analysis
method. Furthermore, wavelet is a fairly simple and effective
mathematical tool that has been widely used. A combination
of wavelet transform and neural network has been proposed
to achieve highly accurate machine fault diagnosis [41]. In
[42], wavelet analysis was used to identify membrane protein
types. It was also used to realize RNA secondary structure
similarity analysis. In practical applications, especially when
implementing the wavelet transform on a computer, the
signal must be discretized and analyzed by the discrete
wavelet transform. By detecting and analyzing protein
secondary structures by discrete wavelet transforms, the
correlation of the amino acid sequence and secondary
structure was tested by the hydrophobic value of the amino
acids [43].

,e fractal dimension (FD) reflects the validity of the
space occupied by a complex form, which is a measure of the
irregularity of a complex form [44]. FD acknowledges that
various parts of the world may be similar in some way to the

whole region under certain conditions or processes, and it
recognizes that changes in spatial dimensions can be discrete
and continuous [45]. Reference [46] combines empirical
modal decomposition and multifractal detrended fluctua-
tion analysis to study the fractal characteristics of harmonic
signals. Additionally, the fractal dimension has been in-
troduced in the studies of biological molecules. Yu exploited
the hydrophobicity of amino acids and fractal analysis to
classify the protein structure [47]. In [48], Yang applied the
fractal dimension to protein sequence similarity analysis and
obtained a high degree of similarity. Yang also integrated the
fractal dimension with empirical mode decomposition to
compare protein sequences and optimise the feature ex-
traction process. Experiments show that the combination of
the two methods extracts higher quality features [49]. ,e
fractal dimension has also been recently used to determine
the distribution of purines and pyrimidines in the miRNAs
of humans, gorillas, chimpanzees, mice, and rats [50].

In this paper, we propose a novel combined algorithm.
Based on the characteristics of discrete wavelet transform
(DWT) multiresolution analysis and the universality of FD,
DWT is used to analyze the graphical representation of RNA
secondary structures and FD is used to quantitatively
characterize their geometric structure features. ,e purpose
of this paper is to explore the application of DWTand fractal
dimension in the comparison of RNA secondary structures.

,e paper is organized as follows. We outline the theory
of the fractal dimensions and the graphical characterization
of RNA secondary structure in Section 2. Numerical ex-
periments and the results are then given and discussed in
Section 3. Section 4 is the conclusion.

2. Materials and Methods

In this paper, a combination of the discrete wavelet transform,
detrended fluctuation analysis, and sliding window is proposed
to evaluate the similarity of RNA secondary structures based on
the TV-curve of RNA. ,e TV-curve graphical representation
of RNA is used to construct the feature vector, which is analyzed
by the discrete wavelet transform, and then, the sliding window
is introduced. For a signal of fixed lengthwithin thewindow, the
fractal dimension is calculated using the detrended fluctuation
analysis (DFA) method to obtain the distance matrix. Finally,
the clustering analysis is performed, and the corresponding
cluster analysis graph is obtained. ,e algorithmic process is
shown in Figure 1.

2.1. Basic Concepts of Fractal Dimension

2.1.1. /eoretical Fractal Dimension. ,e German mathe-
matician F. Hausdorff studied the properties and quantities
of singular aggregates and proposed the concept of fractal
dimension called the Hausdorff dimension in 1918 [51]. It is
one of themost important fractal dimensions.,eHausdorff
dimension can be used for any set. ,e theory of the
Hausdorff dimension is as follows:

Suppose a nonempty subset A of an n-dimensional
Euclidean space Rn, where the diameter of A is the maxi-
mum distance of any two points in A; then,
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|A| � sup |x − y|: x, y ∈ A􏼈 􏼉, (1)

where sup ·{ } indicates the supremum of ·{ }. If C ⊂ ∪∞i�1Ai

and 0≤ |Ai|≤ δ, for any i, Ai􏼈 􏼉 is called a δ-cover of C.
Assuming C ⊂ Rn and 0≤ s≤∞, for any δ > 0,

H
s
δ(C) � inf 􏽘

∞

i�1
Ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s
: Ai􏼈 􏼉 is a δ − cover of C

⎧⎨

⎩

⎫⎬

⎭. (2)

,e abovementioned equation refers to the coverage ofC
whose diameter does not exceed δ, and the sum of these
diameters is minimized to the power of s. ,e symbol inf ·{ }

takes the minimum value of ·{ }.
As δ decreases, the clusters covering C in equation (2)

also decreases, and the infimum Hs
δ(C) increases accord-

ingly. Moreover, when δ⟶ 0, it tends to a limit, denoted as

H
s
(C) � lim

δ⟶0
H

s
δ(C). (3)

For any subset C in Rn, the limit exists, and the limiting
value is commonly 0 or ∞, and Hs(C) is called the s-di-
mensional Hausdorff measure of C.

In equation (2), for a given set C ⊂ Rn and δ < 1, Hs
δ(C)

does not increase with respect to s, so it can be shown from
equation (3) that Hs(C) does not increase either. Further-
more, if t> s and Ai􏼈 􏼉 is the δ-cover of C, then

􏽘
i

Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
t ≤ 􏽘

i

Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
t−s

Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s ≤ δt−s

􏽘
i

Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s
. (4)

Taking the infimum,

H
t
δ(C)≤ δt−s

H
s
δ(C). (5)

In the case of t> s, let δ⟶ 0; if Hs(C)<∞,
thenHt(C) � 0; thus, the existence of a critical point of s
makes Hs(C) “jump” from ∞ to 0. ,is critical value is
known as the Hausdorff dimension of F, recorded as dimHC,
and occasionally called the Haus do rff − Basicovitch

dimension.

,e definition is expressed as

dimHC � inf s≥ 0: H
s
(C) � 0􏼈 􏼉,

� sup s: H
s
(C) �∞􏼈 􏼉.

(6)

,erefore,

H
s
(C) �

∞, if 0≤ s< dimHC,

0, if s> dimHC.
􏼨 (7)

In addition, if s � dimHC, Hs(C) satisfies

0≤H
s
(C)≤∞. (8)

2.2. Algorithms of Fractal Dimension Calculation.
Although the fractal dimension is widely defined, it is subject
to some limitations in practical applications. Due to its high
computational complexity and the discrete and finite nature
of the scale factor, we usually use a number of algorithms to
approximate the fractal dimension. To date, many methods
have been developed to compute fractal dimensions, such as
Katz’s algorithm [52], Petrosian’s algorithm [53], Higuchi’s
algorithm [54], multifractal detrended fluctuation analysis
(MFDFA) [55], detrended fluctuation analysis (DFA) [56],
and fluctuation analysis (FA) [57]. In terms of processing
time, Katz’s algorithm and the DFA method are relatively
slow. However, in terms of processing accuracy, Higuchi’s
algorithm, detrended fluctuation analysis (DFA), and fluc-
tuation analysis (FA) are relatively accurate. In the following,
we will introduce Higuchi’s algorithm, fluctuation analysis
(FA), and detrended fluctuation analysis (DFA).

2.2.1. Higuchi’s Algorithm. Treating an RNA sequence as a
one-dimensional signal s1, s2, . . . , sN, we construct a sub-
sequence as

s
k
m � s(m), s(m + k), s(m + 2k), . . . , s m +

N − m

k
􏼖 􏼗k􏼒 􏼓􏼚 􏼛, m � 1, . . . , k, (9)

Original RNA
secondary
structure

Graphical characterization TV-curve Discrete wavelet
tranform

Windowed fractal
dimension

For values in each window

Calculate fractal
dimensionVectors of fractal dimensionGenerate distance

matrixClustering analysis

Figure 1: ,e flowchart of our method.
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where m indicates the starting position of the signal and k is
the measurement scale. ⌊(N − m)/k⌋ means the integer part
of ⌊(N − m)/k⌋, which is the number of terms in sk

m.
We calculate the average length Lm(k) of the curve with

starting position m according to the measurement scale k.
For m � 1, . . . , k,

Lm(k) �
􏽐

⌊(N−m)/k⌋
i�1 |s(m + ik) − s(m +(i − 1)k)|(N − 1)

⌊(N − m/k)⌋
,

(10)

where N is the length of the signal and (N − 1)/(((N −

m)/k) k) is the normalization term. With the given mea-
surement scale, the approximate length of the signal with
starting position m is computed, m � 1, . . . , k.

,us, the approximated signal length can be obtained by

L(k) �
1
k

􏽘

k

m�1
Lm(k), k � 1, . . . , kmax. (11)

Finally, the fractal dimension h∗ of the signal is calcu-
lated by the least-squares method [58]:

h
∗

� argmin
h

􏽘

K

k�1
h∗ log

1
k

􏼒 􏼓 − log(L(k)) + c􏼒 􏼓
2
, (12)

where c is the bias.

2.2.2. Fluctuation Analysis (FA) Method. ,e fluctuation
analysis (FA) method is commonly used to calculate the Hurst
parameter for time series. It works as follows.

Suppose X � Xi, i � 1, 2, . . . , N􏼈 􏼉 is a random process
with a mean value of μ and a variance of σ2. First, we remove
the mean from the signal and represent the new signal as
x � xi, i � 1, 2, . . . , N􏼈 􏼉, where xi � Xi − μ.

,en, we construct a new one-dimensional signal y �

yn, n � 1, 2, . . . , N􏼈 􏼉 with the sum of the first n terms of x,

y(n) � 􏽘
n

i�1
xi. (13)

We test whether the following formula satisfies the
power-law formula:

F
(2)

(m) �〈|y(n + m) − y(n)|
2〉1/2 ∼ m

H
. (14)

,at is, we test whether log2(F(2)(m)) and log2(m) are
satisfied:

log2 F
(2)

(m)􏼐 􏼑 � H∗ log2(m) + c, (15)

where c is a constant.
From the abovementioned equation, we can obtain the

Hurst parameter H.
In the end, we can obtain FD by the following formula:

FD � 2 − H. (16)

2.2.3. Detrended Fluctuation Analysis (DFA) Method.
Owing to the complicated characterization of long-range
correlations and power-law statistics that RNA TV-curves

have, it follows that comprehensively describing and
studying the internal features of nonstationary signals such
as RNA TV-curves by traditional methods is difficult. For
complex, highly nonstationary signals, time series analysis
methods derived from statistical physics are currently used.
,e DFA method can effectively eliminate various unknown
trends in the signal, thus avoiding the interference caused by
noise and signal and instability.

,e DFA method has also been widely used in image
processing and other fields [59]. ,e DFA method has been
proven to be an effective method to analyze nonstationary
signals. In summary, as the FA, the signal xr, r � 1, . . . , N is
preliminarily processed, and the mean value x is removed.
,e summation of i terms before the series xr as the term i in
the new sequence is

Y(i) � 􏽘
i

r�1
xr − <x>􏼂 􏼃, i � 1, 2, . . . , N. (17)

Next, the signal Y(i) is equally split into data boxes of
length k. k, which is the measurement scale, is the number of
points per data box.

In each box of length k, a least-squares line is fit to the
data. As a result, fitting data box yk(j) is obtained. ,en, we
detrend the signal Y.

􏽧Yk(j) � Y(j) − yk(j). (18)

In the end, the different data obtained for each box are
integrated and averaged.

F2(k) �
1
N

􏽘

N

j�1
F
2
DFA(k)⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

, (19)

where F2
DFA(k) � (1/k) 􏽐

k
j�1

􏽦Yk

2
(j).

,e scaling exponent α is the slope of the line of fit of
F2(k) and k.

,e fractal dimension is calculated by

FD � 2 − α. (20)

2.3. Graphical Characterization of RNA Secondary Structure

2.3.1. Dot-Bracket Representation. ,e sequence of RNA
consists of the bases C, G, U, and A. ,e primary sequence
does not contain structural information. During the ex-
ploration of the RNA function, two bases combine with each
other to form base pairs. Typically, the base pairs areA-U,G-
C. ,us, the secondary structure of RNA is formed. Cur-
rently, “the dot-bracket” representation is commonly used to
signify the secondary structure of RNA, and the dissociative
bases and base pairs are indicated by dots and parentheses,
respectively. Among them, open brackets express the base
pairs near the 50-terminal of the RNA chain, while closed
brackets indicate the bases close to the 30-terminal. ,is
representation can be obtained via the Vienna RNA package.
However, this linear representation is degenerate in some
cases in which different RNA secondary structures have the
same characteristic sequence. Nevertheless, this
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circumstance usually occurs in short RNA sequences, which
can be ignored in the analysis of long and complex RNA
secondary structures.

2.3.2. /e TV-Curve Representation of RNA Secondary
Structure. Based on the “dot-bracket” representation in-
troduced previously, in this part, we will show a method for
the feature extraction of RNA secondary structures, called
“RNA triple vector curve” representation. ,is method was
proposed by Li in 2012, as a 2-D graphical representation of
RNA secondary structures, in which RNA sequence infor-
mation and structural information are considered [34]. ,e
bases in the RNA secondary structure are divided into two
types: nucleotide bases paired by hydrogen bonds and un-
paired nucleotide bases. ,e four unpaired nucleotide bases
are denoted by C (cytosine), G (guanine), U (uracil), and A
(adenine); in addition, C′, G′, U′, and A′ denote paired
nucleotide bases. As shown in Figure 2, each of the eight
symbols is described by three vectors.

(1, −1), (1, 1), (1, −1)⇒C, (1, 1), (1, −1), (1, −1)⇒C′,

(1, −1), (1, −1), (1, −1)⇒G, (1, 1), (1, 1), (1, −1)⇒G′,

(1, 1), (1, −1), (1, 1)⇒U, (1, −1), (1, 1), (1, 1)⇒U′,

(1, 1), (1, 1), (1, 1)⇒A, (1, −1), (1, −1), (1, 1)⇒A′.

(21)

,e feature sequence is read from 50-terminal to 30-
terminal, and the vectors are sequentially connected to
obtain the TV-curves. For example, Figure 3 demonstrates
the secondary structure of tRNA_Y00055.1 : 4327–4494 and
the corresponding TV-curve. An RNA sequence of length N
generates a TV-curve with an X-axis length of 3N. An RNA
sequence and its secondary structure may produce only one
TV-Curve, and similarly, a TV-curve may represent only
one RNA secondary structure. Moreover, the TV-curve has
no information missing from the process of feature ex-
traction of the RNA.

2.4. Comparison of RNA Secondary Structures Based on the
RNA TV-Curve by Detrended Fluctuation Analysis

2.4.1. Discrete Wavelet Transform. ,e wavelet transform
decomposes data, functions, or operators into components
of different frequencies and then studies each component on
the corresponding scale [60, 61]. We now study the wavelet
transform within the range of signal analysis. Similar to the
discrete Fourier transform, the discrete wavelet transform is
also a time-frequency description method. ,e signal is
decomposed into two characters: the approximation coef-
ficients (AC) and the detailed coefficients (DC).

For the signal x(t), we use two functions at the same time,
wavelet function Ψ(x) and scaling function Φ(x). Φ(x) for
the s(t) overviews approximation, and Ψ(x) details the
approximate function of x(t). Φ(x) can be formulated as

Φ(x) �
�
2

√
􏽘
n

hnΦ(2x − n), (22)

where hn is the low-pass filter.,e wavelet functionΨ(x) can
be calculated by

Ψ(x) �
�
2

√
􏽘
n

gnΦ(2x − n), (23)

where gn is the high-pass filter
Two sets of orthogonal functions can be extracted from

the wavelet transform: shifted wavelet functions Ψ(x − k)

and scaling functions Φ(x − k).
For any signal x � a

j

k􏽮 􏽯, the approximation coefficients
(AC) and detailed coefficients (DC) in the next level can be
quickly calculated as follows:

a
j+1
k � 􏽘

i∈Z
a

j

i hi−2k, j � 0, 1, 2, . . . ,

d
j+1
k � 􏽘

i∈Z
a

j

i gi−2k, j � 0, 1, 2, . . . .
(24)

,e decomposition is taken level by level. ,e lengths
of AC and DC obtained after the progressive decom-
position are always half the length of the level sequence
antecedently. ,e processing of RNA secondary struc-
tures using DFA allows for the description of the overall
trends and general characteristics of the signal, as well as
the local details.

2.4.2. Windowed Detrended Fluctuation Analysis (DFA)
Method. If the fractal dimension is calculated by the DFA
of the whole signal, only one scalar can be obtained. ,e
sliding window only calculates the signal values in a fixed-
length window [62]. We introduce a sliding window that
moves along the signal and calculates the fractal di-
mension within the window. Calculating the fractal di-
mensions along a set sliding window yields a feature
vector, not just a number. ,e length of this feature vector
is N − k − 1, where N is the signal length and k is the
window width. M indicates the starting position of the
signal. A least-squares line is fit to the data in each
window of length k. As a result, a fitting data box ym

k (j) is
obtained. ,en, we detrend signal Y:

􏽥Yk(j) � Y(j) − y
m
k (j). (25)

For each window, we calculate the following formula:

F
2
DFAm

(k) �
1
k

􏽘

k

j�1

􏽦Yk

2
(j). (26)

Next, the average is calculated:

F2(k) �
1
N

􏽘

N

j�1
F
2
DFAm

(k)⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

. (27)

Transform the value of k, plot the lb-lb graph of F2(k) − k,
fit the straight line, calculate the slope, and obtain the scaling
exponent α. ,e fractal dimension is calculated by
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FD � 2 − α. (28)

3. Results and Discussion

3.1. Results. In this section, the optimal experimental setting
was obtained by the trial-and-errormethod: the level of wavelet
decompositionwas set to 3 and the windowwidthwas set to 17.
Figure 4 shows the DWTand DFA on the TV-curve graphical
representation of a RNA secondary structure using our
method. Nine commonly used viruses were selected in this
experiment. ,ese viruses have conserved secondary struc-
tures, and the differences between them are subtle enough to
verify the effectiveness of the experimental method in the
classification of secondary structures with slight differences.
Information on these nine viruses is presented in Figure 5.,e

nine viruses include the alfalfa mosaic virus (ALMV), apple
mosaic virus (APMV), citrus leaf rugose virus (CiLRV), citrus
variegation virus (CVV), elm mottle virus (EMV), lilac ring
mottle virus (LRMV), prune dwarf ilarvirus (PDV), asparagus
virus II (AVII), and tobacco streak virus (TSV) [63].

,e distance matrix of the nine viruses obtained by the
method of this paper is shown in Table 1. Next, as shown in
Figure 6, the proposed method is compared with the results
obtained by MEGA software [64], while the classification
effect was compared with classical methods such as
RNApdist and the innovative methods ASPRA distance and
Li’s method. ,e cluster analysis graph generated by the
detrended fluctuation analysis method is based on the
distance matrix calculated in MATLAB. In MEGA software,
the maximum likelihood method is used to generate the
cluster analysis graph.
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Figure 2: Graphical representation of the eight nucleotides.
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In addition, an experiment containing 11 noncoding RNAs
is performed to test the applicability of our method in com-
paring the similarities between noncoding RNAs. Eight se-
quences are randomly selected from the ncRNAs in the RFAM
database; additionally, three human ncRNA sequences from the
NONCODE database are randomly sampled for the experi-
ment. ,e information of these ncRNAs is provided in Table 2,
and the distance matrix generated by the experiment is shown
in Table 3. Based on this dataset, the results of the classification
using ncRDeep are shown in Table 4.

Unfortunately, ncRDeep does not provide the corre-
sponding distance matrix as well as the cluster analysis graph
like the other methods, which would not provide a complete
comparison in this paper. ,e remaining experimental

results, including the proposed method, RNApdist,
ASPRAlign, MEGA software, and Li’s method, are shown in
Figure 7.

To get rid of the specificity, we randomly extracted 100
ncRNA sequences from four families in the RFAM database,
including tRNA, RNase P arch, miRNA, and 5s rRNA. We
constructed three cluster analysis graphs using our method,
Li’s method, RNApdist, and ASPRAlign (see Figure 8:
Figure S1, Figure S2, and Figure S3). As shown in Figure 8,
the new dataset was applied to build a cluster analysis graph
using the proposed method. Four branches can be clearly
shown in Figure 8, where the 5 s rRNA family is thoroughly
distinguished, while four ncRNAs in tRNA failed to suc-
cessfully assign with most of the same family. As well, in the
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Figure 4: (a) Graphical representation of RNA secondary structure. (b) ,e third-level discrete wavelet transform. (c) ,e DFA fractal
dimension of (b) obtained with a sliding window width of 17.

A
A C

G
U

GUC
G
C

GA
U
G

G
A

U
G

A
C

U
U

G
G

C
U

U
CUAU

C
U

C
G

UUGAA
G
A
A
C

GCAGUAA
A
GUGCGA

U
A

A G U
G
GUAU C

A
AUUGCA

G
A

A U
C
AU

U
C
A
A

U
U
A

C C GA
A
U

CUU
U

G
A

ACGC
A A A

C
GGCG

C
A
U
G
G
G
A
G
A
A
G
C
U

C U
U
UUG

A
G
U
C
A
U
C
C

C
C
G
U
G
C
A
U
G C C A

U
A
U
U

C
UCAGUG

U
C
G

tRNA_Y00055.1:4327-4494

(a)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90 tRNA_Y00055.1:4327-4494

TV-curve of tRNA_Y00055.1:4327-4494

(b)

Figure 3: ,e TV-curve of tRNA_Y00055.1 : 4327–4494.

8 Complexity



miRNA and RNase P arch families, there are small numbers
of ncRNAs that are distant from their major branches.
However, among the method proposed by us, RNApdist, Li’s
method, and ASPRAlign, the classification effect of the
proposedmethod is clearly superior to that of the other three
methods.

3.2.Discussion. A detailed explanation of the cluster analysis
graphs is given below; it is apparent from Figure 6 that the
cluster analysis graph shown in Figure 6(a) is more similar to
the standard cluster analysis graph (Figure 6(e)) generated
by MEGA software. First, AVII and APMV and ALMV and

PDV have a high similarity, which is also clearly reflected in
Figure 6(a). However, it is not reflected in the other cluster
analysis graphs, such as Figures 6(b)–6(d), and they deviate
from the standard cluster analysis graph generated by
MEGA software. Obviously, there are three branches in
Figure 6(e). CiLRV is closer to LRMV, EMV, and TSV than
the remaining four, and Figures 6(a) and 6(b) have similar
representations which is not reflected in Figures 6(c) and
6(d). In addition, EMV is closer to LRMV and CVV in all
viruses, which is visible at a glance in Figure 6(e), while
Figure 6(a) has the same branch. ,ey are, however, sepa-
rated in Figures 6(b) and 6(c), as well as in Figure 6(d). In
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Figure 5: Secondary structure information of nine viruses.
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conclusion, compared with other methods, the proposed
method can obtain the similarities of RNA secondary
structures more accurately.

,e experimental results of the same dataset, the cluster
analysis graphs, and the distance between them are

measured using the classical Robinson–Foulds (RF) metric
[65]. In [65], the smallest number of steps to transform the
topology of one of the trees into the other tree by the
necessary operation (α or α−1) is noted as the distance
between the two trees.

α is the contraction of disjoint, possibly empty set, or
zero distance nodes with other normal nodes into a single
node while the label changes.

T2 � α T1, prps( 􏼁, (29)

where trees T1 and T2 have the same set of species, prps is the
edge, and T2 is obtained from T1 by shrinking the edge prps.

In turn, α− 1 is the inverse operation of α, which means
dispersing a node into two nodes.

In this paper, the metric was used to calculate the dis-
tance between evolutionary trees. ,us, the classification
efficiency of the method is verified.

,e distance between evolutionary trees generated by the
different methods and those generated by MEGA software is

Table 1: ,e distance matrix of nine viruses generated by our method.

ALMV APMV CiLRV TSV CVV PDV LRMV EMV AVII
ALMV 0 0.718 0.641 0.769 0.667 0.538 0.692 0.846 0.692
APMV 0 0.718 0.718 0.667 0.846 0.718 0.821 0.641
CiLRV 0 0.692 0.462 0.718 0.487 0.718 0.590
TSV 0 0.744 0.795 0.744 0.769 0.769
CVV 0 0.769 0.282 0.615 0.718
PDV 0 0.718 0.744 0.718
LRMV 0 0.590 0.692
EMV 0 0.846
AVII 0

APMV
AVII

TSV
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PDV
CiLRV

EMV
CVV
LRMV

0.05

(a)
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Figure 6: ,e cluster analysis graph of nine virus sequences generated by (a) our method, (b) Li’s method, (c) RNApdist, (d) ASPRAlign,
and (e) MEGA software.

Table 2: 11 noncoding RNA sequences from the RFAM and
NONCODEv5 databases.

Name Length Family
NONHSAT000002.2 1653 NONCODEv5_human
NONHSAT000003.2 1483
NONHSAT000004.2 632
MF489813.1 849 tRNA
MF489812.1 535
MF489811.1 549
MF489810.1 566
MF489809.1 549
MF489808.1 552
MF489806.1 554
NT_033777.3 299 RNase P RNA
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shown in Table 5. Clearly, the cluster analysis graph gen-
erated by our approach is closer to the cluster analysis graph
generated by MEGA software than the other approaches.

In the second experiment, as indicated in Figure 7, the
experimental sequences are accurately divided into three
families in Figure 7(e), tRNA, RNase P RNA, and a group of
human ncRNA in the NONCODE database. Figure 7(e)
shows that the NT_033777.3 sequence has a high similarity
to the tRNA family, which is also reflected in Figure 7(a) and
Table 3. In Figure 7(b), NT_033777.3 and MF489813.1 are
classified into a group, with NT_033777.3 being the most
distant from the other sequences in the tRNA family, which
is unreasonable. NT_033777.3 is mistakenly placed in a

group close to the NONCODE human noncoding RNA in
Figure 7(c). More unreliably, the grouping in Figure 7(d)
does not completely separate the three groups of RNAs. On
analysis of Table 4, it is apparent that ncRDeep did not
succeed in accurately distinguishing ncRNAs. Based on the
abovementioned analysis, the method based on DFA and
DWT is an effective algorithm for RNA secondary structure
similarity analysis. ,e distance between evolutionary trees
generated by the method proposed by us, RNApdist, and Li’s
method, ASPRAlign, and the cluster analysis graph gener-
ated by MEGA software are shown in Table 6. Evidently, the
results obtained by our method in this experiment are more
accurate.

Table 4: ,e classification results of ncRDeep.

Sequence ID Result
NONHSAT000002.2 Ribozymes
NONHSAT000003.2 Ribozymes
NONHSAT000004.2 Ribozymes
MF489813.1 Intron_gpl
MF489812.1 Intron_gpl
MF489811.1 Intron_gpl
MF489810.1 Intron_gpl
MF489809.1 Intron_gpl
MF489808.1 Intron_gpl
MF489806.1 Intron_gpl
NT_033777.3 Ribozymes

MF489812.1
MF489811.1
MF489810.1
MF489809.1
MF489808.1
MF489806.1
NT 033777.3
MF489813.1
NONHSAT000004.2
NONHSAT000002.2
NONHSAT000003.2
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Figure 7: ,e cluster analysis graphs of 11 noncoding RNA sequences generated by (a) our method, (b) Li’s method, (c) RNApdist, (d)
ASPRAlign, and (e) MEGA software.
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4. Conclusions

,is paper proposes a hybrid method for the similarity
comparison of RNA secondary structures. ,e algorithm
is based on the existing RNA triple vector graphical
representation, uses DWT to process the feature se-
quences, and captures the fractal characteristics using the
DFA method. Compared with several commonly used
RNA comparison methods, the approximate relation-
ships between the RNA secondary structures obtained by
the DFA and wavelet transform method are close to the
actual relationships. However, the secondary structures
predicted by the minimum free energy in the Vienna
RNA package are not optimal, and finding the optimal
secondary structure for RNA rapidly and efficiently re-
mains a challenging problem. In addition, the method is
not yet excellent for analyzing shorter RNAs, and sys-
tematic studies will be hoped to be carried out on RNAs of
different lengths and characteristics.
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Supplementary Figure S1: ,e cluster analysis graph of 100
noncoding RNA sequences generated by Li’s method.
Supplementary Figure S2: ,e cluster analysis graph of 100
noncoding RNA sequences generated by RNApdist.
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Figure 8: ,e cluster analysis graph of 100 noncoding RNA sequences generated by our method.

Table 5: ,e Pearson correlation efficiency between the cluster
analysis graphs generated by the different methods and those
generated by MEGA software.

Method RNApdist Our method Li’s method ASPRAlign
Distance 0.1549 0.1288 0.2973 0.4709

Table 6: ,e Pearson correlation efficiency between the cluster
analysis graphs generated by the different methods and those
generated by MEGA software.

Method RNApdist Our method Li’s method ASPRAlign
Distance 0.2494 0.1748 0.2048 0.2722
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Supplementary Figure S3: ,e cluster analysis graph of 100
noncoding RNA sequences generated by ASPRAlign.
(Supplementary Materials)
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Multiplex networks have been widely used in information diffusion, social networks, transport, and biology multiomics. *ey
contain multiple types of relations between nodes, in which each type of the relation is intuitively modeled as one layer. In the real
world, the formation of a type of relations may only depend on some attribute elements of nodes. Most existing multiplex network
embedding methods only focus on intralayer and interlayer structural information while neglecting this dependence between
node attributes and the topology of each layer. Attributes that are irrelevant to the network structure could affect the embedding
quality of multiplex networks. To address this problem, we propose a novel multiplex network embedding model with high-order
node dependence, called HMNE. HMNE simultaneously considers three properties: (1) intralayer high-order proximity of nodes,
(2) interlayer dependence in respect of nodes, and (3) the dependence between node attributes and the topology of each layer. In
the intralayer embedding phase, we present a symmetric graph convolution-deconvolution model to embed high-order proximity
information as the intralayer embedding of nodes in an unsupervised manner. In the interlayer embedding phase, we estimate the
local structural complementarity of nodes as an embedding constraint of interlayer dependence.*rough these two phases, we can
achieve the disentangled representation of node attributes, which can be treated as fined-grained semantic dependence on the
topology of each layer. In the restructure phase of node attributes, we perform a linear fusion of attribute disentangled rep-
resentations for each node as a reconstruction of original attributes. Extensive experiments have been conducted on six real-world
networks. *e experimental results demonstrate that the proposed model outperforms the state-of-the-art methods in cross-
domain link prediction and shared community detection tasks.

1. Introduction

*e abundant relations and views between entities can be
collected from various sources or scenarios, allowing a slew
of problems to be better solved in different application
domains, e.g., information diffusion [1], social network
analysis [2], intelligent transportation [3], biomedicine, and
ecology [4, 5]. Taking together these data may be able to give
a more accurate and nuanced picture of network structure
than the individual network alone [6]. Taking social net-
works as an example, different online social networks show
different views and behavior patterns of people. A user
makes connections to their friends on Facebook or WeChat
but uses Twitter or Weibo to follow people that interested
him/her. *ough different online social networks present

distinct views and aspects of social behavior of one same user
with the consistent feature, abundant user features and social
information can facilitate the construction of a more ac-
curate and nuanced user profile. *erefore, these multiple
sources and views of network data are worth exploring
because they often contain complementary information that
improves the quality of analysis results [7].

Intuitively, modeling the information fusion problem of
nodes as a feature fusion problem is a straightforward way.
Based on the fused features, we can furthermine the network
data for node classification, link prediction, node clustering,
and visualization. Multiple-relation or view network data are
vividly modeled as a multiplex network (also known as
multidimensional, multiview, or multilayer networks)
[8–12] in which the same set of nodes are connected by
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different types of relations. Different from a single network,
multiplex networks reflect more complex topological
properties. Multiplex networks can not only present the
intralayer dependence between nodes but also can well
model the interlayer network dependence. *e analysis of
multiple networks not only needs to consider the interde-
pendence or interaction between nodes at the intralayer and
interlayer but also focus on the dependence of node attri-
butes and the topological structure of nodes. In this paper,
the high-order node dependence of multiplex networks is
defined as intralayer dependence between nodes, interlayer
dependence in respect of anchor nodes, and the dependence
between node attributes and the topology of each layer. In a
multiplex network, the information fusion of multiple layers
of nodes is a significant fundamental issue for the joint
analysis of networks. A multiplex network, as shown in the
middle of Figure 1, is composed of three social networks,
which are Douban (https://www.douban.com/), LinkedIn
(https://www.linkedin.com/), and Weibo (https://weibo.
com/). *ese three social networks are geared towards
different social scenarios; Douban provides books and music
services, LinkedIn serves for social occupation, andWeibo is
geared towards entertainment services. Multiplex network
representation learning (also known as multiplex network
embedding) is an effective method to analyze and mine the
network. It can project the node (or network) into a con-
tinuous low-dimensional space. In this paper, we are mo-
tivated to focus on multiplex network representation
learning considering the high-order dependence.

Recently, existing methods have achieved excellent
performance in the intralayer dependence between nodes.
However, few studies have comprehensively focused on the
properties unique to multiplex networks. *e first challenge
is preserving high-order proximity information of nodes.
Some state-of-the-art models based on the graph neural
network (GNN) [10, 13, 14] take into account both intralayer
and interlayer dependencies of nodes. However, due to the
oversmoothing problem of GNNmodels [15], such methods
cannot effectively preserve high-order proximity informa-
tion. *e second challenge is preserving the interlayer de-
pendence property of multiplex networks. *e layers with
strong interlayer dependence have similar local structure
characteristics, while those with weak interlayer dependence
show obvious differences in the local topology [16]. From
Figure 1, we can see that the nodes in the Douban layer and
the Weibo layer have similar local structures. It indicates the
interlayer dependence property of nodes in these two layers.
*is dependency cannot be preserved by extended random
walk-based methods [17–19] and GNN-based methods
[20–22]. *e extended random walk-based representation
learning method realizes the generation of node sequences
through cross-layer sampling. In the node sampling process,
most of them use random strategy to cross-layer sampling,
but this ignores the similarity between layers. For GNN-
based methods, nodes are embedded independently in in-
terlayer. *e node embedding of each layer is concatenated
in the later stage. Such embedding and fusion processes will
introduce repetitive and redundant information. However,
LinkedIn layer is dissimilar with the other two layers. In this

situation, it makes the fusion embedding of nodes obtained
by methods [23–26] based on the assumption of information
sharing between layers is inaccurate. *e third challenge is
preserving the dependence between node attributes and the
topology of each layer. Previous studies also ignore the
interaction of node attributes with the topology of each layer.
Figure 1 illustrates this important property that different
social scenarios depend on different attribute information of
the user.*e formation of friendship in the Douban network
mainly depends on the user’s preference for music and
books. *e formation of the following relationships in
LinkedIn mainly depends on attributes such as the user’s job
and education level.*e formation of relationships inWeibo
mainly depends on the user’s multiple attributes (books,
sports, and music) besides job and education. In support of
the dependence between the node attributes and the network
structure, the interaction between them has been shown in
several cases [27–29].*erefore, the embedding of multiplex
networks contains not only dependence information be-
tween nodes in each layer (intralayer dependence) but also
local structure similarity information (interlayer depen-
dence) and dependence between node attributes and the
topology of each layer (attribute dependence).

In light of this, we propose a novel and hierarchy rep-
resentation learning model for multiplex networks with
node attributes called HMNE. We propose a symmetric
graph convolution-deconvolution (GCD) method with
multiple convolution layers to embed the intralayer adja-
cency information of a node as a low-dimensional dense
vector in an unsupervised manner. *e graph convolution
module (GCM) preserves high-order proximity informa-
tion, and the graph deconvolution module (GDM) serves as
an embedding restriction to alleviate the oversmoothing
problem of GCM. To preserve interlayer local dependence
information, inspired by Graph Infomax [30], we use the
similarity between the representations obtained by the
multilayer convolution and the entire layer embedding as
the estimation of complementary information. We fit this
estimation of complementary information to actually
quantify the local structural complementarity of nodes. For
the dependence between attributes and the topology of the
layer where the node is located, we treat the output of the
graph deconvolution module as the disentangled repre-
sentation of node attributes. Each disentangled represen-
tation is the result of the interaction between node attributes
and the topology of each layer.

*e main contributions of this paper are summarized as
follows:

(i) We propose a symmetrical graph convolution-
deconvolution neural network model to achieve
intralayer node embedding, which is an unsuper-
vised and general representation learning method.
*is method can not only flexibly adjust the number
of hidden layers to capture the high-order structural
information but also avoid the oversmoothing
problem.

(ii) We present a method to estimate interlayer com-
plementary information. *is method can measure
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the interlayer dependence property [9, 10, 31] in
respect of the topology of the layer where the node is
located and constrain the intralayer embedding.

(iii) We design a disentangled representation learning
architecture to solve the dependence between node
attributes and its local topology. Graph deconvo-
lution component is used to select attribute frag-
ments associated with the semantics of each layer.
We use a linear layer to restructure the original node
attributes.

(iv) Extensive evaluations on real-world datasets have
been conducted, and the experimental results
demonstrate the superiority of the proposed HMNE
model against the state-of-the-art models.

*e rest of the paper is organized as follows. Section 2
describes some related works. Section 3 introduces related
definitions of the data model we use, problem formulation,
and preliminary knowledge. Section 4 presents HMNE’s
core modules. Section 5 shows the experiment results. Fi-
nally, the summary and outlook are described in Section 6.

2. Related Work

In this section, to distinguish from the single-layer network,
we call the traditional representation learning method of one
network as single-layer network embedding and the em-
bedding of multiple networks as multiplex network em-
bedding. Among them, we introduce the related work from
joint embedding and cooperative embedding of multiplex
network embedding. We first describe the ideas of network
embedding for a single-layer network. *en, we, respec-
tively, introduce related works about multiplex network
(mainly involves multiview networks, multirelation net-
works, multidimensional networks, and multilayer net-
works) embedding methods. Finally, we also summarize the

shortcomings of these related works and the similarities and
dissimilarities with the proposed model.

2.1. Single-Layer Network Embedding

2.1.1. Random Walk-Based Methods. Embedding techniques
based on random walk to obtain node representations have
been proposed: DeepWalk [32] is the first algorithm based on
random walk to learn node representation. Based on the
breadth-first search and depth-first search, node2vec [33] was
proposed to replace the node sampling strategy of the Deep-
Walk method. Both algorithms are traditional single-layer
network embedding. Gu et al. [34] proposed an approach based
on the open-flow network model to reveal the underlying flow
structure and its hidden metric space of different random walk
strategies on networks. It shows that the essence of network
embedding by random walk is the latent metric defined on the
open-flow network. In order to learn the representation of
multirelation heterogeneous information networks, the fol-
lowing algorithm is proposed. Dong et al. [35] proposed a
strategy for random walk sampling from heterogeneous net-
works, where the random walk is restricted to transition be-
tween particular types of nodes. *is strategy allows many
methods to be applied to heterogeneous graphs and comple-
ments the idea of taking type-specific encoders and decoders
into account. Ribeiro et al. [36] presented struc2vec, a novel and
flexible framework with the target to learn latent representa-
tions for the structural identity of nodes. *e framework uses a
hierarchy to measure node similarity at different scales and
constructs a multilayer graph to encode structural similarities
and generate a structural context of nodes.

2.1.2. Graph Neural Network-Based Methods. Kipf and
Welling [37] introduced the variational graph autoencoder
(VGAE), a framework for unsupervised learning on graph-
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networks as an example. *e first part on the left presents node attributes. *e second part on the middle indicates the multiplex network
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structured data based on the variational autoencoder (VAE).
*is model makes use of latent variables and is capable of
learning interpretable latent representations for undirected
graphs. Hamilton et al. [38] proposed GraphSAGE, which
uses a two-layer deep neural architecture. In each convo-
lution layer, a node computes its representation as an ag-
gregation of its neighbors’ representations (from the
previous layer). In addition, to achieve unsupervised em-
bedding, the parameters of aggregation functions are learned
using the loss function similar to DeepWalk. GraphSAGE is
incapable of selective neighbor sampling and has a lack of
memory of known nodes that have been trained. To address
these problems, Luo and Zhuo [39] proposed an unsuper-
vised method that samples neighborhood information
attended by co-occurring structures and optimizes a
trainable global bias as a representation expectation for each
node in the given graph. Velickovic et al. [30] presented
Deep Graph Infomax (DGI), a general approach for learning
node representations within graph-structured data in an
unsupervised manner. DGI relies on maximizing mutual
information between patch representations and corre-
sponding high-level summaries of graphs, both derived
using established graph convolution network architectures.
Li et al. [29] proposed a principled unsupervised feature
selection framework ADAPT to find informative features
that can be used to regenerate the observed links and further
characterize the adaptive neighborhood structure of the
network. Yu et al. [15] proposed KS2L, a novel graph
Knowledge distillation regularized Self-Supervised Learning
framework, with two complementary regularization mod-
ules, for intra- and cross-model graph knowledge distilla-
tion. Xiao et al. proposed three rumor propagation models
based on evolutionary game and antirumor [40], data en-
hancement [41], and representation learning [42]. *ey
proved that rumors are not only influenced by antirumor
information but also affected by user behavior and psy-
chological factors. And they studied the user’s network
structure and historical behavior characteristics in the rumor
topic communication space in social networks and predicted
the user behavior in the next time slice based on the current
time slice data. At the same time, they introduced evolu-
tionary game theory and considered the internal and ex-
ternal factors that affect user behavior within rumor
propagation.

2.2. Multiplex Network Embedding. *e goal of multiplex
network embedding methods is to achieve the information
fusion of multiple features of networks, in which these
methods can be divided into joint representation learning
and coordinated representation learning [43] (in Figure 2 of
[44], an illustration of coordinated and joint representation
learning is presented).

2.2.1. Joint Representation Learning. Zhang et al. [24] pro-
posed a scalable multiplex network embedding (MNE)
method, which assumes that the same nodes in multiple
networks preserve certain common features and unique
features of each layer. *us, the common and unique

embedding of nodes in each layer is learned by the DeepWalk
algorithm separately. Ma et al. [25] implemented node em-
bedding for multidimensional networks with hierarchical
structure. *ey simply added up node embedding in multiple
dimensions as the fusion feature of nodes in multiple net-
works. Matsuno and Murata [26] presented a multilayer
network embedding method (MELL) that captures and
characterizes each layer’s connectivity. *e method utilizes
the overall structure to consider the similar or complementary
structure of the layer. Finally, the fusion feature learning of
nodes in multiplex networks is obtained by combining node
embedding in each layer with layer vectors. Cen et al. [9]
focused on embedding learning for attributed multiplex
heterogeneous networks, where different types of nodesmight
be linked withmultiple different types of edges, and each node
is associated with a set of different attributes. GATNE splits
the overall node embedding into three parts: base embedding,
edge embedding, and attribute embedding. GATNE-T con-
tains only the first two parts. Zhao et al. [45] proposed a novel
and principled approach: a multiview adversarial completion
model (MV-ACM). Each relation space is characterized in a
single viewpoint, enabling us to use the topological structural
information in each view. Yuan et al. [46] proposed a novel
multiview network embedding model with node similarity
ensembles. Node similarities are first selected to maximize the
represented network information while minimizing the in-
formation redundancy. For each combination of the selected
node similarities, a latent space is generated as a view of the
network.

2.2.2. Coordinated Representation Learning. In some cases,
graphs have multiple “layers” that contain copies of the same
nodes. *ey can be beneficial to share information across
layers so that a node’s embedding in one layer can be in-
formed by its embedding in other layers. Qu et al. [47]
proposed an attention-based method (MVE) to learn the
weights of views for different nodes with a few labeled data.
MVE can obtain robust node representations across dif-
ferent views by vote strategy. Recently, Liu et al. [17] ex-
tended a standard graph mining into the area of the
multilayer network. *e proposed methods (“network ag-
gregation,” “results’ aggregation,” and “layer coanalysis”)
can project a multilayer network of a continuous vector
space. Zitnik and Leskovec [18] proposed the OhmNet
framework to learn the features of proteins in different
tissues. *ey represented each tissue as a network, where
nodes represent proteins. Individual tissue networks act as
layers in a multilayer network, where they use a hierarchy to
model dependencies between the layers (i.e., tissues).
Schlichtkrull et al. [20] introduced relational graph con-
volution networks (R-GCNs) and applied them to two
standard knowledge base completion tasks: link prediction
(recovery of missing facts, i.e., subject-predicate-object tri-
ples) and entity classification (recovery of missing entity
attributes). Zhiyuli et al. [48] proposed highly scalable node
embedding for link prediction in large-scale networks. *e
method learns node pairs’ co-occurrence features to embed a
node into a vector by a damping-based random walk
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algorithm. In the node sampling process, there is a bias
problem with these existing methods that samples are
trapped in a local structure. In addition, cross-layer sam-
pling heavily depends on fixed parameters, which is in an
inflexible manner. Sun et al. [49] presented a MNGAN
framework for multiview network embedding by the gen-
erative adversarial network, aimed at preserving the infor-
mation from the individual network views while accounting
for connectivity across different views. Wei et al. [50]
proposed an attributed node random walk framework,
which can not only be able to incorporate both topology and
attribute information flexibly but also easily deal with
missing data and is applied to large networks. For the
multiple-network alignment problem, Chu et al. [51] pro-
posed a cross-network embedding method (CrossMNA). It
defines two categories of embedding vectors for each node:
intervector, and intravector. *e idea of CrossMNA is the
same as that of MNE. *ey thought intravector contains
both the commonness among counterparts and the specific
local connections in its selected network due to the se-
mantics. Park et al. [10] presented a simple yet effective
unsupervised network embedding method for the attributed
multiplex network called DMGI, inspired by Deep Graph
Infomax (DGI), which maximizes the mutual information
between local patches of a graph and the global represen-
tation of the entire graph. Vashishth et al. [21] proposed a
novel graph convolutional framework (COMPGCN) which
jointly embeds both nodes and relations in a relational
graph. COMPGCN leverages a variety of entity-relation
composition operations from knowledge graph embedding
techniques and scales with the number of relations. Yu et al.
[22] proposed a novel GEneralized Multirelational Graph
Convolutional Networks framework, which combines the
power of GCNs in graph-based belief propagation and the
strengths of advanced knowledge-based embedding
methods, and goes beyond.

In summary, in response to the challenges presented in
this paper, the single-layer network embedding methods
cannot achieve the preservation of interlayer-dependent
information. *e joint representation learning methods of
multiplex networks assume that nodes have shared em-
beddings in interlayer, and information sharing and transfer
are realized through these embeddings. However, different
levels of dependence between layers will cause this as-
sumption to be invalid (please refer to Figure 3 of literature
[44]). *e existing coordinated representation learning
methods neglect node attributes and their local topology.
Aggregating these coarse-grained attributes in the graph
neural network can include noise and affect the performance
of the model. In order to fill this gap, we propose a hier-
archical multiplex network embedding (HMNE) model with
high-order node dependence. *e specific implementation
will be described in detail in Section 4.

3. Data and Problem Formulations

In this section, we describe related symbols, concepts, and
definitions in detail. Our data model’s basic concepts are
introduced in Section 3.1. *en, we formalize a generalized
node embedding problem of multiplex networks in Section
3.2. *e important notations are summarized in Table 1.

3.1. DataModel. In terms of network data of multiple views
and sources, it is more appropriate to represent such net-
works as multiplex networks. As shown in Figure 1, three
layers of this multiplex network are derived from three
modal data, such as social network, semantic relation net-
work, and co-occurrence network. Multiplex networks can
not only express the intralayer link but also can well model
the dependencies and interactions between networks [44].
*e detailed definitions of multiplex networks are as follows.
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Definition 1 (multiplex network architecture). Given a
multiplex network of N nodes with the sets of layer L, in
which each node can interact with the other ones through |L|

kinds of relations with |L|≥ 2, we denote an aligned mul-
tiplex networkG� {Gl(V,El), l ∈ L} which is made up of |L|

layers with N� |V| nodes and E� |􏽐l∈LE
l| edges.
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Figure 3: *e AMI scores of HMNE in real-world multiplex networks. For the cross-domain link prediction task, AMI is regarded as an
indicator to evaluate the embedding performance. (a) Celegans. (b) CKM. (c) CS-Aarhus. (d) London. (e) Vickers. (f ) Ack-co-author.
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Each layer in multiplex networks has the same node set
and different edge sets, as shown in the middle part of
Figure 1. Let i, j ∈V be two nodes. il denotes node i at layer
l, and el

i,j ∈ E
l denotes the edge to link il and jl in layer l. il

and il are the duplicates of the same node i in different layers.
We assume that nodes il and jl′ can be implicitly linked by
the duplicates of i in layer l′ and el′

i,j cross-layers l and l′.
Figure 1 shows an illustrative example of a multiplex net-
work with |L| � 3-layer network (i.e., L� {Douban, LinkedIn,
Weibo}) and a target node User. *e dotted line represents
an anchor link. eLinkedInUser,A is an edge between node User and
node A in layer LinkedIn. eDouban,LinkedIn

User,A is a cross-layer link
between node UserDouban and node ALinkedIn through an
anchor link.

3.2. Problem Formulation

Definition 2 (multiplex network representation
learning). Suppose the methods make use of a real-valued
superadjacency matrix A, A ∈ R(N×|L|,N×|L|) (e.g., repre-
senting text or metadata associated with nodes). Node
embedding aims at learning a map function f: A⟶H.

f is a function, which maps Ai � A
l1
i , A

l2
i ,􏽮

. . . , A
l|L|

i } ∈ R(N,|L|) to a d-dimensional representation of
node i, and Ai is a group of vectors of node i in the
superadjacency matrix of G, and it can also be under-
stood that it is composed of adjacency matrices of
multiple layers. H is a d-dimensional vector/tensor, and
d≪N. For coordinated representation learning, hi is a
vector for node i. For joint representation learning, hi is a
tensor for node i. Notice that all the aforementioned
definitions can be easily extended to the case of weighted
networks. We only focus on coordinated representation
learning in this paper.

4. Proposed Model

In this section, we introduce the overall model of our HMNE
by addressing the three major challenges mentioned in
Section 1:

(1) Preserving high-order proximity information of
nodes: as shown in Figure 2, a symmetric graph
convolution-deconvolution network (SGCD) model
is designed to solve the oversmoothing problem of
the traditional GCN. GCD includes the graph
convolution component (GCC) and graph decon-
volution component (GDC). We formulate a re-
striction constraint for the GDC to restructure the
original input feature of the GCC.*e output feature
of the GCC with K (graph) convolution layers xk

i in
respect of node i is inputted into the GDC for
reconstructing original input feature xi. Even if
many graph convolution layers are added to the
GCC, the oversmoothing problem can be avoided
because of this reconstruction constraint. *erefore,
we can conveniently preserve high-order proximity
information of nodes by increasing the graph con-
volution layers.

(2) Preserving the interlayer dependence property of
multiplex networks: as shown in Figure 2, there are
two major components to capture the intralayer
dependence property of multiplex networks. We
first utilize a structural similarity metric method to
measure the difference target layer l and the other
layer l′, respectively, in respect of node i. *e result
is served as a structural complementary infor-
mation estimation Ptrue. *en, the similarity
measure between the embedding hl

i of node i in the
target layer l and the global embedding Hl′ in the
other layer l′ is served as the complementary in-
formation Ppred in respect of node i. *rough the
minimization of Ppred and Ptrue, the learned em-
bedding of node i can preserve the dependency
property between layers.

(3) Preserving the dependence of node attributes with
the topology of each layer: as shown in Figure 2, the
input feature is attributes xi of node i. We utilize the
idea of disentanglement learning to disentangle xi as
|L| attribute subsets. *ese attribute subsets depen-
dent on the topology of each layer have different
semantic information. *ree main processes are as
follows: firstly, we use xi of node i as the input of the
GCC. *en, the embedding hl

i of node i with attri-
bute information and structure information is ob-
tained by the GCC in layer l of multiplex networks.
Finally, the disentangled representations of the
node’s attributes are the output of the GDC in each
layer. In the GCC, the attributes associated with the
topology of each layer are preserved. In the GDC, the
structure information is disentangled from hl

i.

Table 1: Notations.

Notation Explanation
G A multiplex network
V,Eα *e sets of nodes and edges in layer α, respectively
Gl, Al A network/adjacency matrix of layer l, respectively
N, El *e node number/edge number of layer l, respectively
X xi | i ∈ V􏼈 􏼉, the set of node attributes
H *e node representations of multiplex networks
i, xi A node and its features, respectively
deg(i) *e degree of node i

el
i,j An edge between i and j in layer l

k *e number of neural network layers
Nl

i Neighbors of node i in layer l

hl
i *e learned representation of node i in layer l

d *e dimension of node representations
Zl, 􏽥Zl *e output of GCC/GDC in layer l of G

Z(k), 􏽥Z(k) *eoutput of the k-th convolution/deconvolution layer
Θ,Θd *e convolution/deconvolution kernel
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4.1. Preserving High-Order Proximity

4.1.1. Graph Convolution. In spectral-based graph convo-
lution models, a mathematical representation of an undi-
rected graph is the normalized graph Laplacian matrix
defined as L � In − D− (1/2)AD− (1/2), where D is a diagonal
matrix of node degrees. *e normalized Laplacian matrix
can be factored as L � UΛUT, where Λ is the diagonal
matrix of eigenvalues. *e eigenvectors of the normalized
Laplacian matrix form an orthonormal space; in mathe-
matical words,UTU � I. In graph signal processing, a feature
vector of node i of a graph is a graph signal xi ∈ RN.

*e graph Fourier transform to a signal xi is defined as
F(xi) �UTxi, and the inverse graph Fourier transform is
defined as F− 1(􏽢xi) �U􏽢xi, where 􏽢xi represents the resulting
signal from the graph Fourier transform. *e graph con-
volution of the input signal xi with a convolution kernel
(filter) g is defined as

xi ∗ Gg � F
− 1

F xi( 􏼁⊙F(g)( 􏼁 � U UTx ⊙UTg􏼐 􏼑, (1)

where ⊙ denotes the Hadamard product. If we denote a
filter as gθ � diag(UTg), then the graph convolution is
simplified as

xi ∗ Gg � UgθU
T
xi. (2)

*e graph convolution component from [52] limits the
layerwise convolution operation to alleviate the problem of
overfitting on local neighborhood structures for graphs with
very wide node degree distributions. *e equation simplifies
to

xi ∗ Gg ≈ θ0′xi + θ1′ L − IN( 􏼁xi � θ0′xi − θ1′D
− (1/2)AD− (1/2)

xi.

(3)

After constraining the number of parameters with
θ� θ0′� − θ1′, we can obtain the following expression:

xi ∗ Gg ≈ θ IN + D− (1/2)AD− (1/2)
􏼐 􏼑xi. (4)

Kipf and Welling [52] introduced the trick:
IN + D− (1/2)AD− (1/2) ≈ 􏽥D− (1/2) 􏽥A 􏽥D− (1/2), where 􏽥A � A + IN

and 􏽥Dii � 􏽐j
􏽥Aij. Finally, we treat Θ as a convolution kernel

(a matrix of filter parameters), a general definition of graph
convolution as follows:

Z � 􏽥D− (1/2) 􏽥A 􏽥D− (1/2)XΘ. (5)

In order to express the following sections more clearly,
we denote Zl as the node embedding of layer l of a multiplex
network G and Z(k) as a node embedding output of the k-th
layer of the graph convolution neural network.

4.1.2. Graph Deconvolution. To capture the high-order
proximity information of the nodes, we can simply stack
multiple convolution layers as our HMNE’s graph convo-
lution component (GCC) based on equation (5). However,
previous studies showed that graph convolution is a type of
Laplacian smoothing. *ey proved that, after repeatedly
applying Laplacian smoothing many times, the features of

the nodes in the (connected) graph would converge to
similar values. To avoid this problem and capture the high-
order proximity of nodes, we design a graph deconvolution
component (GDC). We first take the output Z(k) of the k

(multiple) stacked convolution neural layers as the input of
the GDC.*en, analogous to the definition of deconvolution
in the field of computer vision, according to equation (5), a
graph deconvolution layer with a deconvolution kernelΘd is
defined as

􏽥Z � 􏽥D− (1/2) 􏽥A 􏽥D(1/2)Z(k)Θd, (6)

where A is an adjacency matrix, A ∈ RN×N, 􏽥A � A + IN
􏽥D is a

degree matrix, and 􏽥Dii � 􏽐jAij. *e embedding of nodes
􏽥Z(k) is an output of the k-th layer of the graph deconvolution
neural network.

4.1.3. Intralayer Embedding Loss. In this initialization of the
GDC, the input matrix 􏽥Z(1) is Z(k), where k is the number of
graph convolution layers, and Z(k) is a final node embedding
matrix according to equation (5). To separate the structure
information from the input by the deconvolution kernel, we
propose an intralayer embedding loss formula. We use a
symmetric structure containing k convolution layers and k

deconvolution layers as our graph convolution-deconvo-
lution component (SGCD). *e reconstruction loss formula
of SGCD is

Lintra � 􏽘

(K/2)

j�1

􏽥Z(j)
− Z(K− j)

�����

�����
2

2
. (7)

We assume the input Z(1) of the GCC is the node at-
tributes X so that the output 􏽥Z(k) of the GDC is a recon-
struction matrix in respect ofX. *is reconstruction process
is significant for Section 4.3.

4.1.4. Node Representation Learning. In order to preserve
the attribute and structural information of the node in each
layer, we need to aggregate the embedding hl

i (l ∈ L) of node
i in each layer to obtain a more complementary global node
embedding hi. We use a sum function to integrate the
embeddings of node i in each layer:

hi � 􏽘
l∈L
hl

i. (8)

*en, the final embedding of nodes in multiplex net-
works is

H � 􏽘
l∈L
Zl

. (9)

*e final embedding hl
i ∈ Z

l of node i in layer l obtained
by the GCC, where Zl ∈RN×d and hl

i ∈R
1×d, is a row of Zl.

4.2. Preserving Interlayer Dependence

4.2.1. Interlayer Structure Complementary Information
Estimation. To capture the interlayer dependence between
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layers, we introduce how to get the true sample (l′, l, i),
which indicates layer l′ is complementary for i in l. *is
complementary information computing can effectively
measure the interlayer dependence property. *e basic idea
is that the more dissimilar the local structures in two layers,
the more reason to believe complementary information
exists between these two layers. So, we utilize the structural
similarity between two layers to produce true samples. Let
Ptrue(· | i, l) denote the true underlying connecting distri-
bution of node i in layer l, and we can estimate it as

p(j | i, l) �
e

l
i,j

􏽐v∈Ve
l
i,v

. (10)

*en, the locally topological structural similarity of node
i between layers l′ and l can be calculated by Jensen–
Shannon distance between Pl′ ,i � P(· | i, l′) and
Pl,i � P(· | i, l) as

DJS Pl′ ,i Pl,i

����􏼐 􏼑 �
1
2

DKL Pl,i‖M􏼐 􏼑 + DKL Pl′,i‖M􏼐 􏼑􏽨 􏽩, (11)

where M � ((Pl,i + Pl′,i)/2) and DKL is the Kullback–Leibler
divergence:

DKL(P‖Q) � 􏽘
v

P(v)log
P(v)

Q(v)
. (12)

Note that when the locally topological structures of node
i between layers l′ and l are identical, DJS(Pl′ ,i

����Pl,i) � 0;
otherwise, DJS(Pl′ ,i

����Pl,i) � 1. So, we get Sstruc(l′, l | i) � 1 −

DJS(Pl′,i

����Pl,i) as the locally topological structural similarity
between layers l′ and l regarding node i. Finally, we can
estimate Ptrue(· | l, i) and sample true layers according to the
distribution:

Ptrue(· | l, i) � Δ
l′∈L

Sstruc l′, l | i( 􏼁

􏽐r∈LSstruc(r, l | i)
, l′ ∈ L, (13)

where Δ denotes a function that can concatenate each el-
ement successively. Actually, this structure complementary
information estimation can be served as the similarity of
node i in layer l with respect to the topology of the layer
where the node is located.

4.2.2. =e Interlayer Dependence Estimation of Nodes. In
order to realize the interlayer dependence property, inspired
by the idea of Deep Infomax in [53], we regard the mem-
bership of node i in layer l for layer l′ as a measure of the
interlayer local dependency of node i.*erefore, a layer-level
embeddingHl of layer l in multiplex networks is computed
by employing a readout function Readout: Rn×d⟶Rd.

H
l

� Readout Zl
􏼐 􏼑 � σ

1
N

􏽘

N

i�1
hl

i
⎛⎝ ⎞⎠, (14)

where Zl is a final embedding matrix of layer l in the graph
convolution component, hl

i is an embedding of node i of the l

layer, and σ is a logistic sigmoid nonlinearity function.

Based on the layer-level embedding and the embedding
of each node in this layer, we calculate the measure of the
interlayer dependence property of node i in layer l on layer
l′. In this paper, we apply a simple bilinear scoring function
as it empirically performs the best in our experiments:

Score l′ | l, i( 􏼁 � Score hl
i,H

l′
􏼒 􏼓 � σ hl

iWH
l′

􏼒 􏼓, (15)

where σ is the logistic sigmoid nonlinearity andW ∈Rd×d is
a trainable scoring matrix. We can estimate the interlayer
local dependence measure of the nodes by calculating the
scores of the nodes’ embedding in each layer and the global
embedding of each layer:

Ppred(· | l, i) � Δ
l′∈L

Score l′ | l, i( 􏼁, (16)

where Ppred(· | l, i) denotes a vector of interlayer dependence
of node i in layer l in respect of the duplication of node i in
each layer and Δ denotes a function that can concatenate
each element successively.

4.2.3. Interlayer Dependence Loss. Comparing equation (13)
with (16), we have designed an objective function with
BCELoss loss function for saving the node interlayer de-
pendence property:

Linter �
1
N

􏽘
i∈V

􏽘

L

l′�1

− Ptrue l′ | l, i( 􏼁log􏽥Ppred l′ | l, i( 􏼁􏽨

+ 1 − Ptrue l′ | l, i( 􏼁( 􏼁log 1 − 􏽥Ppred l′ | l, i( 􏼁􏼐 􏼑􏽩.

(17)

4.3. Preserving Dependence between Attributes and Topology.
In order to preserve the dependence between attributes and
the topology of each layer, the original attributes of nodes are
fed into the GCC. We perform GCC and GDC processes to
disentangle the attributes of nodes as different semantic
representations. We believe that the GCC can strengthen the
attribute value related to the layer’s semantic in the node
attributes. GDC can disentangle the attributes of nodes with
structure information of nodes. *is is the main advantage
of our GCD (intralayer embedding) method compared with
the graph autoencoder and variational autoencoder.*en, in
the final graph deconvolution network phase, each final
output embedding of the GDC for each layer of multiplex
networks is aggregated by a concatenate function. A linear
layer is used to reconstruct the original attributes xi, which
makes the overall model framework designed as an
autoencoder architecture. Based on the embedding of node i

in layer l and the embedding of node i in other layers, we
construct a simple nonlinear fusion method to obtain the
reconstruction attributes 􏽥xi of node i:

􏽥xi � σ WΔL
l′�1

􏽥Zl′
i􏼒 􏼓, (18)

where σ is a sigmoid nonlinearity activation function, W is

the trainable parameters, and 􏽥Zl′
i is the output of the GDC of

i node in the l′ layer network. *en, we also utilize the
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BCELoss function to calculate the loss between original
attributes xi and reconstruction attributes 􏽥xi of node i:

Lattr �
1
N

􏽘
i∈V

􏽘
l∈L

− xilog􏽥x
l
i + 1 − xi( 􏼁log 1 − 􏽥x

l
i􏼐 􏼑􏼐 􏼑􏼐 􏼑, (19)

where L is the layer number of multiplex networks and xi is
the attributes of the i node.

Finally, the global loss function of HMNE also considers
the loss of different components. *erefore, we simply sum
all the loss functions as the loss of the entire model and use
Adam optimizer for backpropagation and parameter
learning. *e loss function of HMNE is

L � Linter + Lintra + Lattr. (20)

4.4.=e Optimization and Time Complexity. We present the
node representation learning process (HMNE) for multiplex
networks in Algorithm 1. *e total time complexity of
HMNE is O(TNE|L|2) where T is the number of iterations,
N is the number of nodes in each layer, E is the number of
edges of the multiplex network, and |L| is the number of
layers.

5. Experiment Analysis

In this section, we study the performance of HMNE in
different real-world datasets. We use cross-domain link
prediction and shared community detection tasks to verify
the performance of HMNE.

5.1. Datasets. For our experiments, we conduct HMNE and
compare baseline methods on each of the following mul-
tiplex networks. *ese datasets contain two categories:
public datasets and private dataset. Public datasets are
composed of five multiplex network benchmark datasets
involving social, biological, and transportation. Private
dataset is an interesting semantic network dataset that we
construct. *is dataset is a network of acknowledgment
relationships extracted from the acknowledgment part of
dissertation data and the coauthor network of corresponding
entities from AMiner (https://www.aminer.cn/).*e specific
information about public and private datasets is shown in
Table 2.

5.1.1. Public Datasets. *ese multinetwork datasets were
collected on M. De Domenico’s homepage (https://
comunelab.fbk.eu/manlio/index.php), and the processed
datasets are available (https://github.com/Brian-ning/
HMNE/).

Vickers classroom social multiplex network: this dataset
was collected by Vickers from 29 seventh-grade students in a
school in Victoria, Australia. Students were asked to
nominate their classmates on a number of relations (class,
best friend, and work).

CS-Aarhus social multiplex network: this dataset con-
sists of five kinds of online and offline relationships
(Facebook, leisure, work, coauthorship, and lunch) between

the employees of the computer science department at
Aarhus. *ese variables cover different types of relations
between the actors based on their interactions.

London multiplex transport network: this dataset was
collected in 2013 from the official website of Transport for
London and manually cross-checked. Nodes are train sta-
tions in London, and edges encode existing routes between
stations. Tube, overground, and DLR stations are
considered.

CKM physicians’ innovation multiplex network: this
dataset was collected by Coleman, Katz, and Menzel on
medical innovation, considering physicians in four towns in
Illinois: Peoria, Bloomington, Quincy, and Galesburg. *ey
were concerned with the impact of network ties on the
physicians’ adoption of a new drug, tetracycline.*ese views
are advice, discussion, and friend.

Celegans multiplex connectome network: this dataset
considered different types of genetic interactions for or-
ganisms in the Biological General Repository for Interaction
Datasets (BioGRID, thebiogrid.org), a public database that
archives and disseminates genetic and protein interaction
(ElectrJ, MonoSyn, and PolySyn) data from humans and
model organisms.

*ese networks have been used as benchmark datasets for
evaluating multiplex network analysis methods. In addition,
the CKM dataset has ground-truth information about the
community label of nodes. *erefore, HMNE performs
performance testing of the cross-domain link prediction task
on all datasets and performs performance testing of the shared
community detection task on the CKM dataset.

5.1.2. Private Dataset. *is dataset is a two-layer network
constructed from two views, one of which is a coauthor
network constructed in the form of author co-occurrence
from common paper data (fromAMiner). Another view is to
take the author of the dissertation as the central node from
each acknowledgment chapter of the dissertation data, the
named entity (including tutor, teacher, classmate, or family
member) identified in the acknowledgment text as the
neighbor node, and the co-occurrence of the entity as the
edge constructed from the center network (ego network).
Based on the acknowledgment text of the dissertation and
paper data, the acknowledgment layer network and coauthor
layer network of the Ack-co-author dataset are constructed,
respectively.

5.2. BaselineMethods. In these experiments, we test 14 other
comparison algorithms: 11 baseline methods with the same
parameters and dimensions and 3 traditional methods. *e
explanations of these baseline methods are as follows. Some
of these methods can be used to test two tasks simulta-
neously. Other methods can only be suited for one of two
tasks. *e details of baseline methods are as follows:

(i) CN (common neighbor): it captures the notion
that two nodes that have a common neighbor may
be introduced by that neighbor. It has the effect of
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“closing a triangle” in the graph and likes a
common mechanism in real life.

(ii) JC (Jaccard coefficient): it is a measure used for
gauging the similarity and diversity of sample sets
and is defined as the size of the intersection divided
by the size of the union of the sample sets.

(iii) AA (Adamic/Adar): it is a measure to predict links,
according to the number of shared links between
two nodes. It is defined as the sum of the inverse
logarithmic degree centrality of the neighbors
shared by the two nodes.

(iv) AAMT [54]: it is a link prediction method for
multiplex networks based on the Adamic/Adar
coefficient neighbor similarity, which considers the
intensity and structural overlap of multiplex links
simultaneously.

(v) Node2vec [33]: it adds a pair of parameters to
achieve BFS and DFS sampling process on the
single-layer network. It makes it better for cap-
turing the role of nodes, such as hubs or tail users.

(vi) OhmNet [18]: it is a node embedding method for
multiplex networks, where hierarchy information
is used to model dependencies between the layers.

(vii) PMNE [17]: it has threemethods of node embedding,
each of which generates a common embedding of
each node by merging multiple networks. We
compare these three models with other baseline
methods.We denote “network aggregation,” “results’
aggregation,” and “coanalysis model” as PMNE(n),
PMNE(r), and PMNE(c), respectively.

(viii) MNE [24]: it is a scalable multiplex network
embedding. It contains one high-dimensional
common embedding and a lower-dimensional
additional embedding for each type of relations.
*en, multiple relations can be learned jointly
based on a unified network embedding model.

(ix) MELL [26]: it is a novel embedding method for
multiplex networks, which incorporates an idea of
layer vector that captures and characterizes each
layer’s connectivity. *is method exploits the

Input: graph G � 〈V,E, L,X〉; neural layer number K≥ 3 for GCC and GDC, graph convolution/deconvolution kernel Θ, Θd,
iteration times T.
Output: H: the node embeddings of multiplex network G

(1) begin
(2) Initialize all parameters for GCC and GDC with K neural layers, respectively.
(3) t � 1
(4) while t≥T or not converge do
(5) for l in L do
(6) Sample nodes and calculate P(l,·) in layer l based on equation (15).
(7) Generate convolution embedding Zl using χ and Gl by equation (5)
(8) Readout the embedding Hl of layer l by equation (14)
(9) Generate disentangled embedding 􏽥Zl using Zl and Gl by equation (6).
(10) end
(11) Calculate Ptrue by equations (11) and (13).
(12) Calculate Ppred by equation (16).
(13) Update Θ and Θd by minimizing equations (7) and (17).
(14) Generate the reconstruction attributes 􏽥χ by 􏽥Zl and equation (18).
(15) Update Θ, Θd, and W by minimizing equation (19).
(16) t+ � 1
(17) end
(18) Incorporate node embedding H by equation (9).
(19) end
(20) return the node representation H.

ALGORITHM 1: HMNE model.

Table 2: Basic statistics about different multiplex networks used in this study.

Name Nodes Edges Layers Description
Vickers 29 740 3 Class: 316; best friend: 226; work: 198
CS-Aarhus 61 620 5 Facebook: 193; leisure: 124; work: 21; coauthor: 87; lunch: 195
London 369 441 3 Tube: 312; overground: 82; DLR: 46
CKM 246 1551 3 Advice: 480; discussion: 565; friend: 506
Celegans 279 5863 3 ElectrJ: 1031; MonoSyn: 1639; PolySyn: 3193
Ack-co-author 3383 29128 2 Acknowledgment: 1733; coauthor: 1285
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overall structure effectively and embeds both di-
rected and undirected multiplex networks, whether
their layer structures are similar or complementary.

(x) GraphSAGE [38]: it is a graph neural network
framework for inductive representation learning
on graphs. GraphSAGE is used to generate low-
dimensional vector representations for nodes and
is especially useful for graphs that have rich node
attribute information. We use an unsupervised
learning version of GraphSAGE to serve as a
baseline method of the link prediction task.

(xi) GATNE-T [9]: it considers the network structure and
uses base embeddings and edge embeddings to
capture the influential factors between different edge
types. *e attention mechanism is used to capture
the influential factors between different edge types.

(xii) DMGI [10]: it is a simple yet effective unsupervised
network embedding method for the attributed
multiplex network, inspired by Deep Graph
Infomax (DGI), which maximizes the mutual in-
formation between local patches of a graph and the
global representation of the entire graph.

(xiii) MV-ACM [45]: it is a novel multiview adversarial
completion model (MV-ACM). Each relation
space is characterized in a single viewpoint, en-
abling them to use the topological structural in-
formation in each view.

(xiv) GenLouvain [55]: it is a modularity-based multi-
plex network community detection algorithm. *e
algorithm not only considers the modularity
within the layer but also considers the modularity
between layers. By maximizing the modularity
metrics, the algorithm completes the community
detection task. We only use this algorithm as a
baseline method for the node clustering task.

In this paper, we only apply CN, JC, AA, node2Vec, and
GraphSAGE to link prediction tasks at the single layer where test
edges are located at. For OhmNet, we construct a hierarchy
describing relationships between different layers randomly. We
regard the common embedding in the MNE algorithm as the
global embedding of nodes. For MELL, we add layer-level
embedding as the global-level embedding and then add it to the
node-level embedding of the test node. AAMT uses the mul-
tiplexity property of nodes (interlayer information) and simi-
larity between nodes (intralayer information) to predict the
probability of link. For GATNE-T and MV-ACM, we only use
the homogeneous skip-gram model for node representation
learning.*e categoricalmultislice networkmodel is selected for
GenLouvain. Besides the same walk length, walk times and
embedded dimensions are set as the same parameters ofHMNE,
and we also set other experimental baseline methods using the
default parameters, such as PMNE, MELL, and DMGI.

5.3. Experimental Setup. For implementing the network fea-
ture extraction module, we use representation learning of nodes
to extract the feature of each layer. In these datasets we use, if

nodes in these datasets have no attributes, we use the adjacency
matrix of merged multiplex networks as the attribute infor-
mation of nodes in compared experiments.*e definition of the
matrix is the adjacencymatrix of themultilayer network after the
multilayer network is aggregated or flattened (that is, the union
of edges for each layer). *e matrix can reflect that the topology
of nodes in different networks depends on the network topology.
In other words, neighbor nodes (denote node attributes) are
dependent on the formation of the node topology under dif-
ferent semantics.We set p=2 and q=1 as default parameters in
the biased sample process of the node2vec method. We set the
number of walks to 20 and walk length to 30 for OhmNet,
node2vec, PMNE (n, r, c), MNE, MELL, GraphSAGE (unsu-
pervised vision), GATNE-T, and MV-ACM. *e dimension of
embedding is set to 128 for all methods. For GATNE-T, DMGI,
MV-ACM, and our HMNE, the optimizer of the model is
Adam, the learning rate is selected from {0.0001, 0.002}, and the
batch size is 50 (except for the Vickers dataset). For three
heterogeneous embedding network methods, an edge is usually
input into the model as a meta-path for training. All the ex-
periments are conducted on a Linux server with sixteen logical
CPUs on Intel Xeon E5 CPU and four GTX 1080Ti GPUs.
Notice that, in the community detection task, we uniformly
remove the community label in the node attributes for repre-
sentation learning. Although our model can alleviate the
oversmoothing problem of the current graph neural network
algorithm, to verify this feature of our model, we show the effect
of different layers of the neural network on the model perfor-
mance. According to the experiment results, it is a tradeoff
between the performance and complexity of the model to use a
2-layer graph neural network in both compared experiments.

5.4. Cross-Domain Link Prediction. In this section, we
perform the cross-domain link prediction task on these
multiplex networks. We refer to the experimental settings of
the multiplex networks of literature [45]. For the cross-
domain link prediction task, we remove 20% of edges of each
layer in the original network and use the area under the
curve (AUC) score and adjusted mutual information (AMI)
score to evaluate the performance of these algorithms for
predicting missing edges in each layer. We use the residual
(80%) edges of each layer for training and the 20% of edges
randomly selected from each layer for testing. *ese node
pairs in edge sets of the test set are regarded as positive
examples. *en, we randomly sample an equal number of
node pairs from the test set, in which no edge connecting
node pairs are served as negative examples. AUC is the area
under the receiver operating characteristic (ROC) curve,
which is equal to the probability that a classifier ranks a
randomly chosen positive example higher than a randomly
chosen negative one. With Pos positive examples and Neg
negative examples, AUC can be calculated by

AUC �
􏽐i∈+ranki − (Pos(1 + Pos)/2)

Pos × Neg
. (21)

Mutual information (MI) is also used to measure the
degree of agreement between the two data distributions.
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Assuming that U and Y are the distribution of N sample
labels, the entropy of the two distributions is

P(i) �
Ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N
,

􏽥P(j) �
Yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

N
,

H(U) � 􏽘

|U|

i�1
P(i)log(P(i)),

􏽥H(Y) � 􏽘

|Y|

j�1

􏽥P(j)log(􏽥P(j)),

MI(U, Y) � 􏽘

|U|

i�1
􏽘

|Y|

j�1
P(i, j)log

􏽥P(i, j)

􏽥P(i)􏽥P(j)
􏼠 􏼡,

AMI �
MI − E[MI]

max(H(U), H(V)) − E[MI]
,

(22)

where E[MI] is an expected value of mutual information.
*e range of AMI values is [− 1, 1], and its value is larger,
which means that the result is more consistent with the real
situation.

We calculate the similarity between nodes by CN, JC,
and AA metrics in the layer where the test node pair is
located. For other single-layer network embedding methods,
we train a separate embedding for each relation type of the
network to predict links on the corresponding edges. It
means that they do not have information from other layers
of multiplex networks. We aim to verify the interlayer de-
pendence can provide complementary structure information
from other layers. In terms of node embedding methods, we
use the cosine function of vectors as a similarity metric. *e
larger the similarity scores are, the more likely there exists a
link between them.

From Table 3 and Figure 3, we can know that HMNE is
significantly better than other comparison algorithms. Our
model shows better performance on multiplex network
datasets than single-layer methods such as CN, JC, AA,
node2vec, and GraphSAGE, which directly proves that
fusing different structural information by preserving the
interlayer dependence property can improve the accuracy
of the cross-domain link prediction task. *is property of
the multiplex network can provide critical complementary
information from other layers. We regard OhmNet, PMNE,
MNE, MELL, GATNE-T, DMGI, and HMNE as compar-
ative experimental groups. *ese compared algorithms are
the latest multiplex network representation learning
methods to learn multiplex network representation.
OhmNet and PMNE are extensions of the traditional
single-layer network embedding method, but there is no
direct consideration of the interlayer dependence property
in the final embeddings. It leads to an inevitable loss of
information in the embedding process, so the comple-
mentary information of the interlayer cannot be well
preserving. For MNE and MELL methods, the common (or
layer) embedding is considered based on the assumption

that nodes have similar local structures in different layers.
In fact, this assumption is rare, and it also affects the
generalization ability of the algorithm. *is process of
interlayer node embedding based on common embedding
can lead to distortion and inaccuracy of information.
GATNE-T, DMGI, and MV-ACM are specially designed to
handle such a scenario that the nodes have different types
and attributes in each layer, so they cannot show excellent
performance in the problem we are trying to solve.
Moreover, these three methods ignore the dependence
property between node attributes and the topology of the
layer where the node is located. For our model, HMNE
simultaneously considers intralayer, interlayer, and attri-
bute dependence properties of nodes in the node embed-
ding process.

5.5. Shared Community Detection. Shared community de-
tection task aims to group similar nodes so that nodes in the
same group are more similar to each other than those in
different groups. In other words, each node in a multiplex
network has different relations/views and only belongs to a
unique community. In the CKM dataset, nodes have the
global community label. For this dataset, this task is usually
called a shared community detection task, which is a sig-
nificant mining task in multiplex network analysis. *ere-
fore, we treat the CKM dataset as the benchmark dataset of
the shared community detection task. For these methods
based on node representation learning, we use K-means++
algorithm to calculate the cluster of the final embedding of
nodes. In order to evaluate fairness, we set the number of
communities (clusters) to 2.

5.5.1. Evaluation Metrics. Given the ground-truth com-
munity in the real-world datasets, we use normalized mutual
information (NMI) to evaluate the performance of the
methods:

NMI(X | Y) � 1 −
H(X | Y) + H(Y | X)

2
, (23)

where X and Y denote two partitions of the network and
H(X | Y) denotes the normalized conditional entropy of
partition X with respect to Y shown in the following
equation:

H(X | Y) �
1

|C|
􏽘
k

H Xk | Y( 􏼁

H Xk( 􏼁
, (24)

where |C| denotes the number of communities. *e larger
the NMI is, the better the result is. *e value of NMI takes
from 0 to 1. It is equal to 1 meaning two partitions match
perfectly and is equal to 0 on the contrary.

In the domain of node clustering, the chance-corrected
version of this measure is adjusted Rand index (ARI). It is
known to be less sensitive to the number of parts. It is
possible to say that two elements of Y, i.e., (x, x′), are paired
in P if they belong to the same cluster. Let Q and U be two
partitions of the object set Y. A formally formulation of the
adjusted Rand index is
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ARI �
2(ad − bc)

b
2

+ c
2

+ 2ad + (a + d)(c + b)
, (25)

where a is the number of pairs (y, y′) ∈ Y that are paired in
Q and in U; b is the number of pairs (y, y′) ∈ Y that are
paired in Q but not paired in U; c is the number of pairs
(y, y′) ∈ Y that are not paired inQ but paired in U; and d is
the number of pairs (y, y′) ∈ Y that are neither paired in Q
nor inU. *is index has an upper bound of 1 and takes value
0 when the Rand index is equal to its expected value.

5.5.2. Result Analysis. As shown in Table 4, HMNE shows
excellent performance in the shared community detection
task. Among them, HMNE has obtained the largest NMI and
ARI scores. In terms of other methods, MNE and MELL
learn a representation of a node separately in each layer. We
sum the representations in different layers of nodes as the
global embedding of nodes and compare them with our
model. *erefore, the performance of MNE and MELL in
this task shows that this kind of join representation learning
algorithm cannot well preserve the shared community in-
formation of nodes. Compared with MV-ACM, GATNE-T,
and DMGI that can handle heterogeneous networks, our
model can show more excellent performance in the shared
community detection task. *e comparison with methods
GATNE-T, MV-ACM, and DMGI that can handle het-
erogeneous networks shows that our model also has good
performance. Unlike them, HMNE takes into account the
high-order proximity property of nodes. *e property en-
courages node embeddings for an identical community is
similar. It should be noted that due to the use of the iterative
strategy of maximizing modularity, GenLouvain shows
competitive performance. However, GenLouvain only
considers the topology of the multiplex network. HMNE can
capture fine-grained semantic information by preserving the
dependence property between node attributes and the

topology of each layer. Compared with other algorithms, it is
verified in the shared community detection task that our
model can preserve the global mesoscale information of the
multiplex network more effectively. We further validate that
our model can more fully consider multiple properties of
networks. *e execution time of MV-ACM is more than 24
hours, so it does not show the final results on Celegans and
Ack-co-author datasets. In general, the results of cross-
domain link prediction and shared community detection
tasks prove the effectiveness of our model. For the cross-
domain link prediction task, the graph convolution-
deconvolution component of HMNE guarantees that our
model can save high-order proximity information. When
there is a lack of available information within the layer, the
interlayer dependence component of HMNE can provide
more abundant information. For the shared community
detection task, the component preserving dependence be-
tween node attributes and the topology of the layer where the
node is located can obtain more fine-grained semantic in-
formation related to the layer’s topology by disentangling the
original attribute information.

5.6. Performance Analysis. In this section, we analyze the
results of parameter analysis experiments on the CKM
dataset that affect the performance of the model, mainly (1)
the impact of the number of convolution (deconvolution)
neural network layers on the performance of our model and
(2) the impact of the embedding dimension on the per-
formance of HMNE.

5.6.1. Effect of the Neural Layers’ Number. It can be seen
from the illustration in Figures 4(a) and 4(b) that HMNE can
avoid the smooth transition problem caused by the increase
of the number of convolution layers. For AUC and AMI
scores, it clearly reveals that the performance of HMNE first
increases with the increase of the number of network layers

Table 3: Cross-domain link prediction task. All the results are the averaged AUC scores.

Node type Network type Algorithm
Datasets

Celegans CKM CS-
Aarhus London Vickers Ack-co-

author

Homogeneous network

Single layer

CN 0.7467 0.6517 0.8855 0.5054 0.7932 0.5104
JC 0.7330 0.6526 0.8883 0.5054 0.7864 0.5102
AA 0.7524 0.6523 0.8962 0.5054 0.8145 0.6968

Node2vec 0.7847 0.8021 0.8997 0.6816 0.6667 0.5097
GraphSAGE 0.7629 0.8521 0.7023 0.5160 0.7571 0.3991

Multiple
layers

AAMT 0.8604 0.8239 0.9232 0.5266 0.7389 0.6968
OhmNet 0.8427 0.8576 0.8826 0.3580 0.7841 0.8060
PMNE(n) 0.5012 0.4773 0.5154 0.4993 0.5013 0.4981
PMNE(r) 0.4945 0.5043 0.5205 0.4782 0.5002 0.5076
PMNE(c) 0.5003 0.4757 0.5047 0.5043 0.4955 0.4983
MNE 0.6313 0.7902 0.8842 0.4526 0.7048 0.7093
MELL 0.8085 0.7599 0.9014 0.4991 0.7923 0.7227

Heterogeneous network MV-ACM — 0.8538 0.7966 0.7630 0.7810 —
GATNE-T 0.8142 0.8605 0.8897 0.6631 0.8165 0.8152

Homogeneous and heterogeneous
network DMGI 0.8557 0.8535 0.9275 0.7501 0.8028 0.8203

Homogeneous network HMNE 0.8730 0.8669 0.9252 0.7785 0.8178 0.8223
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Table 4: *e ARI and NMI scores’ performance of our HMNE and baseline methods on the CKM multiplex network dataset.

Algorithm ARI NMI
OhmNet 0.7920 0.7885
PMNE(n) 0.1733 0.1574
PMNE(r) 0.0376 0.0228
PMNE(c) 0.1582 0.1679
MNE 0.1504 0.1550
MELL 0.1728 0.1805
MV-ACM 0.8942 0.7903
GATNE-T 0.8221 0.8196
DMGI 0.8507 0.8519
GenLouvain 0.9750 0.9742
HMNE 0.9790 0.9771
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Figure 4: Impact of different experimental settings on our model’s performance in the link prediction task: (a) the effect of layer’s number
on the AUC value, (b) the effect of layer’s number on the AMI value, and (c) the effect of dimension on the AUC value.
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and then tends to stabilize. In other words, HMNE does not
appear to be oversmoothing as the number of layers in-
creases like other methods [56] based on graph neural
networks. *erefore, our proposed HMNE can not only
preserve the high-level proximity information of nodes but
also avoid oversmoothing problems caused by stacking
multiple neural layers.

5.6.2. Effect of the Embedding Dimension. Figure 4(c) il-
lustrates that AUC scores of HMNE also first increase with
the increase of the number of embedding dimensions and
then tend to stabilize. When the embedding dimension
reaches a certain level, HMNE can capture enough key
information. In a certain embedding range, node embedding
already contains most of the important information that is
needed by some tasks. If the embedding dimension con-
tinues to increase, it will learn higher-order or more abstract
information. *erefore, its performance can show a certain
stable state in an interval. In this state, owing to that HMNE
has similar self-supervised and autocoder structure, we
believe that, with the further increase of dimensions, the
objective function designed by our model will purify the
original information, filter somemeaningless and redundant
information, and preserve fine-grained features. *erefore,
as the dimension increases, the performance of the model
will not show an increasing trend again in a certain di-
mension range.

5.7. Ablation Experiment. In this section, we will verify the
effectiveness of the two properties separately by ablating the
constraints of the corresponding loss function from HMNE.
(1) HMNE-Inter: to verify the effect of the interlayer de-
pendence property on HMNE, we only ablate loss function
equation (17). (2) HMNE-Attr: to verify the dependence
between node attributes and the topology of each layer on
HMNE, we only ablate loss function equation (19). *e
experimental results are shown in Figure 5.

5.7.1. =e Effectiveness of the Interlayer Dependence Property.
As can be seen from Figure 5(a), the interlayer dependence
property is critical for link prediction tasks. After removing
loss function equation (17) (called HMNE-Inter), the per-
formance of HMNE in the cross-domain link prediction task
decreases more significantly than the decrease in the com-
munity detection task. *e reason is that the structure in-
formation of other layers provides effective complementary
information for the node pair prediction of the target layer.

5.7.2. =e Effectiveness of Dependence between Node Attri-
butes and the Topology of Each Layer. After removing loss
function equation (19) (called HMNE-Attr), Figure 5(b)
illustrates that HMNE-Attr decreases significantly in the
community detection task. In the shared community de-
tection task, we believe the performance of HMNE is more
dependent on the attribute information of the node.
However, in the link prediction task, the information pro-
vided by the dependence between node attributes and the
topology of each layer is limited.

6. Conclusion

In this paper, we propose an unsupervised node embedding
model for multiplex networks, called HMNE. HMNE first
addresses the problem of preserving of high-order proximity
information of nodes through the symmetric graph convolu-
tion-deconvolution component (SGCD). SGCD utilizes the
designed graph deconvolution component (GDC) to recon-
struct the input of the graph convolution component (GCC)
with multiple graph convolution neural layers. It can effectively
avoid the oversmoothing problem. Secondly, HMNE preserves
the interlayer dependence property with interlayer comple-
mentary information of multiplex networks by our designed
interlayer dependence component. When there is a lack of
available information within the layer, the interlayer depen-
dence component of HMNE can provide more abundant in-
formation from other layers (e.g., cross-domain link prediction
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Figure 5: *e effectiveness of different dependence properties in cross-domain link prediction and shared community detection tasks:
(a) the effectiveness comparison in cross-domain link prediction; (b) the effectiveness comparison in the shared community detection task.
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scenario). Finally, HMNE preserves the dependence between
the node attributes and the topology of each layer through
disentangled representation of attributes of nodes. It enables
HMNE to have more fine-grained attributes with different
semantic information of nodes associated with each layer
structure. *e final representation of nodes with fine-grained
attribute information can perform better in downstream tasks
(e.g., shared community detection scenario). Systematical ex-
periments on six real-world networks show the excellent per-
formance of HMNE on two downstream tasks compared with
the state-of-the-art baselines. Experiments on large-scale net-
work data based on HMNE will be our future research focus.

Data Availability
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Learning a deep structure representation for complex information networks is a vital research area, and assessing the quality of
stereoscopic images or videos is challenging due to complex 3D quality factors. In this paper, we explore how to extract effective
features to enhance the prediction accuracy of perceptual quality assessment. Inspired by the structure representation of the
human visual system and the machine learning technique, we propose a no-reference quality assessment scheme for stereoscopic
images. More specifically, the statistical features of the gradient magnitude and Laplacian of Gaussian responses are extracted to
form binocular quality-predictive features. After feature extraction, these features of distorted stereoscopic image and its human
perceptual score are used to construct a statistical regression model with the machine learning technique. Experimental results on
the benchmark databases show that the proposed model generates image quality prediction well correlated with the human visual
perception and delivers highly competitive performance with the typical and representative methods.+e proposed scheme can be
further applied to the real-world applications on video broadcasting and 3D multimedia industry.

1. Introduction

During the past few decades, there has been an exponential
increase of stereoscopic images and videos in 3D display
market [1]. However, due to various 3D quality factors [2, 3]
including binocular rivalry, visual comfort, and depth
perception, the visual quality assessment of stereoscopic
images is much more complex and relatively less researched
than the traditional 2D image quality evaluation. To address
these challenges, we require a deeper understanding of
binocular visionmechanisms and interactions for the quality
prediction of distorted stereoscopic images.

+ere are mainly two groups of methods on 3D image
quality assessment (IQA): subjective quality evaluation by
human observer [4] and objective quality evaluation by
devised metric used to simulate human perceptual judge-
ments [5]. Since the human eyes are the final receiver of
visual information, the subjective evaluation can directly
reflect the human visual perception and is accurate and
effective to evaluate the visual quality. However, the

subjective evaluation involves many participants in the
course of experiments, which is time-consuming and costly.
+erefore, it is unrealistic to implement it in many scenarios
like real-time evaluation [6]. As a result, it is in urgent
demand to propose objective methods that can effectively
evaluate the human perceptual quality of stereoscopic
images.

Based on the volume of accessible information in the
images, existing objective quality assessment metrics can be
generally divided into three categories: full-reference (FR)
[7, 8], reduced-reference (RR) [9], and no-reference/blind
(NR) methods [10, 11]. When the reference contents are
accessible, the FR method can offer more accurate quality
assessment. Early approaches for FR 3D-IQA directly
stemmed from 2D quality metrics [12]. Conventionally, a
straightforward way is to apply the 2D-IQA metrics to both
views of a 3D image independently and then integrate the
two 2D quality scores into a final 3D quality score. Several
3D-IQA methods [13, 14] were proposed by introducing the
associated disparity or depth map into the 3D image quality
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model. +ese research findings indicated that a satisfactory
result can be obtained if the disparity images and reference
images are combined appropriately. Afterwards, more so-
phisticated algorithms were developed based on the bin-
ocular vision properties. For example, Lin and Wu [15]
revisited the physiological discoveries of binocular vision
and incorporated the binocular integration into the existing
2D quality metrics for measuring the quality of stereoscopic
images. Shao et al. [16] classified the stereoscopic images into
noncorresponding, binocular fusion, and binocular sup-
pression regions. Each region was evaluated individually
according to its binocular perception property. In our
previous work [17], we proposed a full-reference quality
evaluator by considering the local and global qualities of 3D
images. +e experimental results showed its good perfor-
mance in terms of stereoscopic image quality assessment.

Since pristine reference images are rarely available in
practical applications [18, 19], the NR algorithms are po-
tentially much more feasible solutions. +ey can give quality
evaluation without any information extracted from the
corresponding pristine image. +e NR 3D-IQA is still
preliminary, and a limited number of blind 3D-IQA algo-
rithms have been developed. Inspired by the human visual
system, Chen et al. [20] proposed a no-reference binocular
image quality assessment method for natural stereopairs.
+e proposed method extracted both 2D and 3D natural
statistical features from a stereopair and utilized these sta-
tistical features and the binocular rivalry for 3D image
quality prediction. Ryu and Sohn [21] investigated the re-
lationship between visual information and binocular quality
perception and developed an NR quality evaluation algo-
rithm for 3D images.+e scores of perceptual blockiness and
blurriness were combined into an overall quality index based
on the binocular perception models. Shen et al. [22] devised
a no-reference quality scheme for stereoscopic images based
on the visual perceptual characteristics. +ree types of
features relating to image distortion, depth perception, and
binocular disparity were used to map the human opinion
scores. Other relevant works can be found in references
[23–25].

Recently, machine learning techniques have achieved
great success and been widely applied to various research
fields [26–28]. One of the advantages of applying machine
learning to quality evaluation is that it can directly take
original image data as input and then combine feature
learning with quality regression in the training procedure
[29, 30]. Kang et al. [31] applied convolution neural network
(CNN) to image quality assessment. +ey devised a shallow
network which extracts quality-predictive features from
image patches. Several NR algorithms for 3D-IQA using
deep learning have been developed. Oh et al. [32] reported a
novel deep learningmethod for NR 3D-IQA in terms of local
to global feature aggregation. Zhou et al. [33] proposed a
dual-stream interactive network for stereoscopic image
quality assessment. In our previous work [34], we developed
a no-reference quality prediction scheme for 3D images
based on binocular features and support vector regression
(SVR). +e scheme showed its effectiveness, but the per-
formance in terms of prediction accuracy and time

complexity needs to be further improved. More efficient
methods for stereoscopic image quality assessment should
be explored to address these limitations.

It is challenging for the NR algorithms to have the as-
sessment accuracy as good as can be obtained with the FR
quality evaluation methods. Moreover, 3D image quality
databases generally lack large-scale training images with
subjective quality scores, which limit the performance of
these algorithms using deep neural networks. Other tech-
niques should be explored and worthy of further research.
We are motivated to tackle these limitations for 3D image
quality assessment. In this paper, inspired by the research
findings on the human binocular visual system, we try to
simulate the perceptual mechanism of binocular vision. We
primarily work on extracting certain types of binocular
features from distorted stereoscopic image and constructing
a statistical regression model to map these quality-aware
features to the human perceptual judgements. +e main
contributions of this work are as follows:

(1) Different from other related studies [33, 35], the
novelty of our work lies in that we propose to adopt
the effective binocular statistical features from the
fusion and difference maps of a stereopair for ste-
reoscopic image quality prediction.

(2) We have demonstrated that appropriate combina-
tion of binocular features and binocular energy can
greatly promote the performance of 3D image
quality evaluation.

(3) Compared with other typical and representative
methods, the proposed scheme achieves higher
consistent alignment with human subjective as-
sessment and has lower time complexity. +e ex-
perimental results show that our scheme can
accurately estimate the perceptual quality of dis-
torted stereoscopic images and has promising gen-
eralization ability.

+e remainder of this paper is organized as follows.
Section 2 introduces some fundamental knowledge about
binocular visual perception. Section 3 presents the proposed
quality assessment scheme for stereoscopic images in detail.
Section 4 gives the experimental results and performance
analysis of the proposed scheme and the comparison with
other related algorithms. Finally, Section 5 concludes the
paper with possible ideas for future work.

2. Foundation for Binocular Visual Perception

It has been known that the binocular vision is a complex
visual process that requires the brain and both eyes working
together to produce clear vision. Figure 1 describes a sim-
plified framework of two important visual neural pathways
for the binocular visual system. +e ventral stream starts
from the primary visual cortex V1 and goes through V2 and
V3 to V4 area. +e functions of ventral stream are about the
recognition and perception behaviors. +e dorsal stream
begins from the V1 area, goes through V2 and V3 to V5 area.
+e visual information-guided interactions occur in dorsal
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stream [15]. Regarding the detailed functions of each visual
area, please refer to the binocular visual perception book
[36] for further information.

+e visual cortex plays an important role in our bin-
ocular visual perception, and it has been demonstrated that
the primary visual cortex (V1) is mainly responsible for the
human visual system (HVS) [37]. In the V1, simple and
complex receptive fields are usually characterized to un-
derstand the behavior of visual perception. According to
visual psychophysical study, two visual phenomena usually
occur in the process of binocular visual response: binocular
rivalry and binocular fusion. When the two eyes view
mismatched images at the same retinal location, one ex-
periences binocular rivalry. As a result of competition be-
tween the eyes, binocular rivalry involves reciprocal
inhibition between the monocular channels. When two
slightly different retinal signals can be perceived by two eyes,
one experiences binocular fusion. During fusion, two retinal
points are integrated into one single perception, super-
imposing and combining similar contents from the two
views. +erefore, the binocular vision can be generally
considered as a combination of binocular rivalry and bin-
ocular fusion.

As a significant content of primitives in V1, image
structural information is closely related to image visual
quality. And the degradation of perceptual quality can be
reflected via the change of image structural information.
Previous studies [29, 38] highlighted the significance of
image structural information for image quality assessment.
+e gradient magnitude (GM) and Laplacian of Gaussian
(LOG) are basic elements that are commonly used to rep-
resent image semantic structures [39]. More importantly,
during 3D visual stimuli processing, binocular fusion and
disparity responses are primitively formed in the V1 cortical
area. +e visual signals from the binocular summation and
subtraction channels are multiplexed, and then each neuron
in V1 receives a weighted sum of the visual stimuli from
these two channels [40]. Motivated by these research results,
in this paper, we extract the GM and LOG features from a
stereopair and its fusion and difference maps as binocular
features. In the following section, we will describe our
proposed quality prediction model for distorted stereoscopic
images in detail.

3. The Proposed No-Reference Quality
Assessment Scheme

Figure 2 illustrates the architecture of the proposed scheme
for stereoscopic image quality prediction. Given an original
stereopair, we first generate the fusion map and difference
map and extract the binocular statistical features from them
as basic feature vectors. +en, we calculate the binocular
energy responses from the local amplitude and local phase of
the stereopair as quality-aware features. Finally, we employ
an extreme learning machine method to map these features
of distorted stereopair to its human perceptual quality score.

3.1. Binocular Feature Extraction. As can be seen from
Figure 3, the fusion maps and difference maps of the left-
and right-view images with different distortion types are
discriminative, which can be utilized for extracting effective
quality features. Specifically, the fusion map reflects the
fusion ability of the left and right stereo-halves, while the
difference map reveals the disparity information of a
stereopair.

As discussed in Section 2, the gradient magnitude (GM)
and Laplacian of Gaussian (LOG) features can be adopted to
build the basic elements of image semantic structures, and
they are hence closely related to the perceptual quality of
natural images.+e Gaussian derivative functions canmodel
the receptive field responses of neurons along the visual
pathway [41]. +erefore, we compute the GM and LOG
maps using the first- and second-order derivatives of a
circularly symmetric 2D Gaussian function G defined as
follows:

G(x, y, σ) �
1

2πσ2
exp −

x
2

+ y
2

2σ2
􏼠 􏼡, (1)

where x and y represent the horizontal and vertical di-
rections, respectively. +e parameter σ is the standard de-
viation. +en, we calculate the first-order partial derivative
of G(x, y, σ) with respect to x or y by

zG(x, y, σ)
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� −

1
2πσ2

d
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Figure 1: A simplified illustration of visual cortex with ventral stream and dorsal stream.
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where d ∈ x, y􏼈 􏼉 is the Gaussian partial derivative filter
applied along the horizontal x or vertical y direction. An
image is denoted by I; thus, the GM map of the image I can
be obtained by

GMv �

��������������������

Iv ⊗
zG

zx
􏼠 􏼡

2

+ Iv ⊗
zG

zy
􏼠 􏼡

2

􏽶
􏽴

, (3)
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image
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Feature
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Machine
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Figure 2: +e architecture of our proposed quality assessment scheme for stereoscopic images.

Figure 3: Examples of distorted stereoscopic images with different distortion types and the corresponding fusion and difference maps: the
original stereoscopic image (left), distorted stereoscopic image with Gaussian blur (middle), and distorted stereoscopic image with white
Gaussian noise (right).+e first to the last rows show the left-view images, right-view images, fusionmaps, and differencemaps, respectively.
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where the symbol ⊗ represents the convolution operation.
v ∈ l, r{ }, where l and r refer to the left and right views of a
stereopair, respectively. Similarly, the LOG filter, corre-
sponding to the second-order Gaussian partial derivative, is
defined as follows:

hLOG(x, y, σ) �
z
2
G(x, y, σ)

z
2
x

+
z
2
G(x, y, σ)

z
2
y

�
1

2πσ2
x
2

+ y
2

− 2σ2

σ4
exp −

x
2

+ y
2

2σ2
􏼠 􏼡.

(4)

Accordingly, we estimate the LOG map of the left and
right views by

LOGv � Iv ⊗ hLOG. (5)

Subsequently, a joint adaptive normalization procedure
[39] is employed to normalize the GM and LOG coefficients
for stable statistical image representations. Previous works
[42, 43] have revealed that the overall quality of a distorted
stereopair cannot be accurately calculated by directly av-
eraging the qualities of the left- and right-view images,
especially for an asymmetrically distorted 3D image. In
practical application, to simulate the binocular rivalry (BR)
phenomenon, the basis of weighting factors for the quality-
predictive feature vectors of a stereopair can be defined as
follows:

wl �
el( 􏼁

α

el( 􏼁
α

+ er( 􏼁
α

􏼂 􏼃
,

wr �
er( 􏼁

α

el( 􏼁
α

+ er( 􏼁
α

􏼂 􏼃
,

(6)

where wl and wr denote the weights for the distorted left and
right views, which can reflect the binocular contrast com-
bination to a certain extent. el and er represent the local
energy variances of the left and right images for a stereopair,
respectively. +e intensity adjusting parameter α is empir-
ically set to 3 in the experiment. +erefore, the basic feature
vectors of the gradient magnitude and Laplacian of Gaussian
responses for a stereoscopic image can be calculated by

SGM � 􏽘
x,y

wlGMl(x, y) + 􏽘
x,y

wrGMr(x, y),

SLOG � 􏽘
x,y

wlLOGl(x, y) + 􏽘
x,y

wrLOGr(x, y),
(7)

where GMl/r(x, y) and LOGl/r(x, y) denote the gradient
magnitude and Laplacian of Gaussian for the left and right
image, respectively. +e features of GM and LOG responses
are utilized to represent the visual semantic structures of the
first-order and second-order binocular combination.

Finally, combined with the GM and LOG features of the
fusion and difference maps, the binocular feature vectors
used for further data training can be expressed by

V � SGM, SLOG, FGM, FLOG, DGM, DLOG􏼂 􏼃, (8)

where FGM/LOG and DGM/LOG are the GM/LOG features of
the fusion and difference maps, respectively.

3.2. Binocular Energy Response. +e above extracted features
are mainly utilized to indicate the visual sensitivity of
binocular rivalry. Neurological research has reported that
the human binocular vision phenomenon is a complicated
process with combination of binocular rivalry, binocular
fusion, and other factors [44]. +e binocular fusion also
contributes significantly to human visual perception besides
the binocular rivalry. Previous research findings [45] indi-
cated that the binocular energy responses play critical roles
in representing binocular visual perception, especially for
binocular fusion. In this paper, the binocular energy re-
sponses are obtained from the local magnitude and local
phase of a stereopair.

In the proposed scheme, the left and right images of a
stereopair are first processed using the log-Gabor filter.
Here, we define αs,o to represent the responses on different
scales, where s is the spatial scale index. And we let βs,o

denote the responses along different orientations, where o is
the orientation scale index. +e detailed description of this
log-Gabor filter can be referred to the work in [46].
According to the given scale and orientation, the local
amplitude at location x on scale s and along orientation o

can be defined as

LAs,o(x) �

�������������

α2s,o(x) + β2s,o(x)

􏽱

. (9)

With the sum of the local amplitudes on all the scales
along the orientation om [46], the local amplitude can be
calculated by

LA(x) � 􏽘
s

LAs,om
(x), (10)

where om is a parameter used to indicate the orientation with
the maximum phase congruency value. Similar to the local
amplitude, the local phase can be obtained by the angle along
the orientation [46]:

LP(x) � arctan
􏽐sβs,om

(x)

􏽐sαs,om
(x)

􏼠 􏼡. (11)

Based on previous works on binocular vision energy
[16, 34], the left-view response and right-view response of a
stereopair can be defined as follows:

Cl(x) � LAl(x) · exp LPl(x)( 􏼁,

Cr(x) � LAr(x) · exp LPr(x)( 􏼁.
(12)

+e right-view response Cr(x) usually can be taken as a
shifted transformation of the left-view response Cl(x). +e
disparity d is defined as the difference between the locations
of associated points in the left- and right-view responses. By
considering a simple binocular cell with the left and right
receptive fields, the binocular energy response E for a ste-
reoscopic image pair can be calculated by
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E � 􏽘
x

Cl(x) + Cr(x + d)
����

����
2
. (13)

Finally, combined with the binocular statistical features,
the overall quality-predictive features are F � [V, E], which
are fed into the following quality prediction for model
learning. +e weights among them are determined in the
learning process.

3.3. Quality Prediction Model Learning. A number of
training methods can be utilized to map the quality-pre-
dictive features of a stereopair to its corresponding sub-
jective quality score, such as support vector regression (SVR)
[47] and neural networks (NNs) [48]. SVR requires complex
training algorithms and involves a quadratic programming
problem. Neural networks have the difficulties of local
minima, learning epochs, and slow convergence. An im-
portant question is that neural networks or training-based
methods usually need large quantities of labeled training
samples, while 3D image quality databases generally lack
large-scale training images with subjective quality scores,
which limits the performance of the methods using deep
neural networks. In recent years, the extreme learning
machine (ELM) [49] has attracted considerable attention
and has been demonstrated as an effective and efficient
technique in many applications, such as pattern recognition
[50] and quality evaluation [51]. +e ELM has advantages of
faster learning speed, higher learning accuracy, and im-
proved generalization. +e weights between the input and
hidden layers can be selected randomly and independent of
the training data, and layer-by-layer back propagated tuning
is not required [35]. Motivated by these unique properties,
we try to employ the ELM for feature mapping and re-
gression model learning in 3D image quality prediction.

For a given set of N arbitrary training samples (Fi, yi),
where Fi represents the quality-predictive features of the ith
pair of original/distorted images and yi is the corresponding
subjective quality score, our goal is to find a function which
minimizes the deviation from the subjective quality score for
all the training data.+e function f(Fi) with L hidden nodes
can be mathematically modeled and expressed by

f Fi( 􏼁 � 􏽘
L

j�1
βj · gj Fi( 􏼁 � g Fi( 􏼁 · β, i � 1, . . . , N, (14)

where g(Fi) � [g1(Fi), . . . , gL(Fi)] is the output vector of
the hidden neuron and β � [β1, . . . , βL]T denotes the output
weighting vector between the output node and the hidden
layer of L nodes. +e activation function g(Fi) can ap-
proximate N training samples by minimizing the training
error and can be formulated as

gj Fi( 􏼁 � g wj · Fi + bj􏼐 􏼑, (15)

where wj is the weighing vector which connects the input
layer and the jth hidden node and bj denotes the corre-
sponding threshold of the hidden node. In equation (14), β is
the only parameter to be determined, which leads to fast
learning for ELM [49]. For N training samples (Fi, yi), the

mathematical model for ELM (equation (14)) can be de-
scribed as follows:

YHβ � Y, (16)

where Y represents the target vector and YH is called the
hidden layer output matrix, which can be defined as

YH �

g w1 · F1 + b1( 􏼁 . . . g wL · F1 + bL( 􏼁

⋮ ⋮ ⋮

g w1 · FN + b1( 􏼁 . . . g wL · FN + bL( 􏼁

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

β �

β1
⋮

βL

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

Y �

y1

⋮

yN

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(17)

+eminimal norm least-squares method is used in ELM
tominimize the norm of the output weights.+en, the vector
of the output weights β can be predicted analytically and
expressed by

β � YY†
H, (18)

where Y†
H denotes the Moore–Penrose (MP) generalized

pseudoinverse of the hidden layer output matrix YH. In
practice, the orthogonal projection method [49] can be
efficiently employed to calculate theMoore–Penrose inverse:

Y†
H �

Y
T
HYH􏼐 􏼑

− 1
Y

T
H, if Y

T
HYH is nonsingular,

Y
T
H Y

T
HYH􏼐 􏼑

− 1
, if YHY

T
H is nonsingular.

⎧⎪⎨

⎪⎩
(19)

Based on the ridge regression theory, a positive value 1/λ
is added to the diagonal of YT

HYH or YHYT
H, which makes the

solution more stable. +erefore, with this positive value 1/λ,
we can obtain

β �

YT
H

I

λ
+ YHY

T
H􏼒 􏼓

− 1
Y, if N≤L,

I

λ + YHYT
H( 􏼁

􏼠 􏼡

− 1

Y
T
HY, if N>L,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

where N represents the number of training samples and L

denotes the number of hidden nodes. In this paper, the
number of nodes L is selected to be equal to the number of
training samples N. As a result, the output weight vector β is
determined as YT

H((I/λ) + YHYT
H)− 1Y in the experiments.

More details on the ELM can be found in [49].

4. Experimental Results and Analysis

In the experiments, we first describe the databases and
criteria used for quality assessment. +en, we give the
performance comparison with other related algorithms in
terms of predicting the quality of distorted stereoscopic
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images. Moreover, we show the evaluation results on in-
dividual distortion type. In addition, we investigate the effect
of each component in the proposed metric. Finally, we
perform the cross-database evaluation and analyze the time
complexity in our experiments.

4.1. ExperimentalDatabases and Protocols. In order to verify
and compare the performance of our proposed quality as-
sessment metric, three public and subject-rated benchmark
3D image databases were used as standards: LIVE 3D IQA
database Phase I [52], LIVE 3D IQA database Phase II [20],
and MCL-3D database [53].

(1) LIVE 3D IQA database Phase I [52]: phase I contains
20 reference stereopairs and 365 symmetrically
distorted stereopairs corresponding to five distortion
types: JPEG compression, JPEG2000 (JP2K) com-
pression, additive white noise (WN), Gaussian blur
(GB), and a simulated fast-fading (FF) model. Each
distorted stimulus has been evaluated by human
observers and assigned a difference mean opinion
score (DMOS) value. +e lower DMOS values rep-
resent higher visual quality.

(2) LIVE 3D IQA database Phase II [20]: phase II has 120
symmetrically distorted stimuli and 240 asymmet-
rically distorted stimuli generated from 8 pristine
stereopairs. Each of the five distortion types (JPEG,
JP2K, WN, GB, and FF) is symmetrically and
asymmetrically applied to the pristine stereopairs at
various degradation levels. +e corresponding
DMOS values are also given for the distorted
stereopairs.

(3) +e MCL-3D database [53]: this database consists of
684 stereoscopic image pairs. Nine image-plus-depth
sources are selected, and then a depth-image-based
rendering technique is used to render 3D images.
Four levels of distortions are applied to either the
depth map or texture stereoscopic image prior to 3D
image rendering. +e distortion types are JPEG,
JP2K, WN, Gaussian blur (GBLUR), downsampling
blur (SBLUR), and transmission error (TERROR).
Each distorted stimulus has been scored by human
observers, and a pairwise comparison is used to
obtain reliable mean opinion score (MOS) values.

To benchmark the performance of quality assessment
metrics, three general performance indicators were
employed to provide quantitative performance evaluations:
(1) Pearson’s linear correlation coefficient (PLCC), which
measures the linear dependence between the predicted
quality scores and the ground truth targets, (2) Spearman’s
rank-order correlation coefficient (SRCC), which serves as a
measure of prediction monotonicity, and (3) Kendall’s rank-
order correlation coefficient (KRCC), which is a nonpara-
metric rank-order-based correlation metric. Higher values
of PLCC, SRCC, and KRCC represent good consistency with
human perceptual quality ratings. For the nonlinear re-
gression, a five-parameter logistic function [54] was applied

to fit the predicted quality scores and provided quality
scores.

In the experiments, we randomly split each database into
two nonoverlapping subsets: a training subset and a test
subset. A training process was required to calibrate the
quality prediction model. In each train-test procedure, 80%
of the database content was selected for training and the
remaining 20% for test. After learning the statistical re-
gression model using the training set, the quality prediction
performance was evaluated using the test set. In specific, to
avoid potential performance bias of the proposed scheme,
the train-test iteration was repeated 1000 times, and the
median values of PLCC, SRCC, and KRCC were chosen as
the final validation results for performance evaluation. In the
implementation, a unipolar sigmoidal function
(1/(1 + e− λu)) with λ � 0.1 was used as the ELM nonlinear
activation function.

4.2. Overall Performance Comparison. To comprehensively
investigate the effectiveness and robustness of the proposed
scheme, we have conducted several different experiments to
compare our scheme with the typical and representative
methods. +ese mainly include two 2D-IQA methods
(PSNR and multiscale structural similarity (MS-SSIM) [55]),
two FR 3D-IQA methods (Benoit et al.’s method [13] and
Chen et al.’s method [8]), and three NR 3D-IQA methods
(Zhou and Yu’s method [56], Fan et al.’s method [41], and
Shen et al.’s method [22]). For the previous two 2D-IQA
approaches, the predicted quality score of a stereoscopic
image was obtained by averaging the left and right image
qualities. For Benoit et al.’s approach [13], the disparity
distortion was the global correlation between the original
and distorted disparity maps. For Chen et al.’s approach [8],
we adopted the cyclopeanmetric in terms of multiscale SSIM
described in their paper.

Figure 4 provides the scatter plots of predicted quality
scores against subjective DMOS values for the proposed
scheme and other compared methods on the LIVE 3D IQA
database Phase I. In these figures, the horizontal axis rep-
resents the predicted quality scores and the vertical axis
denotes the subjective DMOS values of the perceived dis-
tortions. Considering performance comparison, a straight-
lined distribution of scatter points is better than other ar-
bitrary shapes. For the PSNR andMS-SSIM [55] approaches,
the performance is worse than most of other methods in
general. +e reason can be attributed to that these methods
treat the left- and right-view images independently and
binocular visual characteristics are not taken into account.
For Benoit et al.’s approach [13], the quality evaluation
accuracy is even lower than the 2D-IQA approaches under
some distortions. One possible explanation is that the 2D
image quality metric for disparity maps does not coincide
with the human perception of disparity. Overall, the pro-
posed scheme has better consistent alignment with human
subjective judgements for stereoscopic 3D images on the
database.

In order to further evaluate the performance comparison
of quality assessment accuracy on the three databases, we
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Figure 4: Continued.
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have given the values of PLCC, SRCC, and KRCC between
the provided and predicted quality scores for the proposed
scheme and the compared methods. Table 1 presents the
performance comparison results in terms of PLCC, SRCC,
and KRCC on the three databases. In each case, the results of
the best-performance metric are marked in bold. According
to the experimental results in this table, Shen et al.’s method
[22] performs best on asymmetrically distorted stereoscopic
images in the LIVE 3D IQA database Phase II, and our
proposed scheme achieves higher consistency with human
opinion scores on the other two databases. Moreover, the
PLCC and SRCC values for our scheme are above 0.912 and
0.907, respectively, on all databases, which demonstrate that
the proposed scheme exhibits a good stability to quantify
and predict the perceptual distortions of 3D images. On the
whole, the proposed scheme has competitive performance
and shows statistically superiority over other typical and
representative methods for 3D image quality prediction.

4.3. Distortion-Specific Performance Evaluation. In this
section, we have investigated the distortion-specific per-
formance of the proposed scheme and other compared
methods for each individual distortion type on the hybrid
distortion databases. +e PLCC, SRCC, and KRCC com-
parison results are summarized in Tables 2–4, respectively.
For reasons of space and for brevity, M[n] is used to rep-
resent the corresponding compared method proposed in
paper [n]. +e top two quality assessment metrics for each
index (PLCC, SRCC, or KRCC) have been highlighted in
bold. From these tables, we can find that our proposed
metric achieves the highest hit-count for each index and is
statistically superior to the compared methods. Some
metrics may have high assessment accuracies for specific
distortion types: Chen et al.’s method [8] shows strong

competitiveness on Gaussian blur, and Shen et al.’s method
[22] has outstanding performance on JPEG compression .
But our method is comparable to the best-performing
metrics for these kinds of distortions. +e proposed scheme
generally outperforms the vast majority of compared
methods by a certain margin for distortion-specific per-
formance evaluation. From these experimental results, it is
worth noting that the quality prediction of our scheme is
basically independent of different sorts of distortions.

4.4. Contribution of Each Component in the Proposed Scheme.
In this section, to understand the respective contributions of
each component to the overall quality score in the proposed
metric, we have devised three different schemes for com-
parison, denoted by scheme A, scheme B, and scheme C,
respectively. For scheme A, the binocular features of GM
response and the binocular energy were used to measure
visual quality. For scheme B, the binocular features of LOG
response and the binocular energy were adopted for quality
prediction. For scheme C, the binocular energy was not
included, and the binocular features of GM and LOG re-
sponses were considered for quality evaluation. +e PLCC,
SRCC, and KRCC results are reported in Table 5. As can be
observed from this table, the binocular features of LOG
response have the most important impact on quality pre-
diction under distortions. It can be inferred that the bin-
ocular features of GM and LOG responses and the binocular
energy are complementary, and only adopting one aspect of
these features cannot obtain the best performance. In ad-
dition, according to the results in the table, scheme B has
higher assessment accuracies than scheme A, which implies
that the LOG features contain more useful visual infor-
mation and contribute more to 3D quality prediction than
the GM features. +e experimental results have also
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Figure 4: Scatter plots of the predicted quality scores against the subjective DMOS values for the eight methods. (a) PSNR. (b) MS-SSIM
[55]. (c) Benoit et al.’s method [13]. (d) Chen et al.’s method [8]. (e) Zhou and Yu’s method [56]. (f ) Fan et al.’s method [41]. (g) Shen et al.’s
method [22]. (h) Proposed scheme.
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demonstrated that the quality assessment performance can
be promoted by appropriate combination of binocular
features and binocular energy.

4.5. Cross-Database Performance Evaluation. In the above
experiments, the training and test subset have the same
distortions selected from the databases. Since the proposed
scheme is based on a learning framework, it is necessary to
ascertain whether the performance is bound to a special
training database on which it is trained. To verify the
generalization ability and stability of our scheme, we have
carried out cross-database experiments for performance
evaluation. In the experiment, we examined whether sat-
isfactory results could be obtained by applying the regression
model trained on one database to the testing set from an-
other database. For brevity, the SRCC results of cross-da-
tabase performance evaluation are given in Table 6. It can be
observed that the proposed metric has comparatively weak
performance in comparison with the evaluation results in
Table 3. +e reason can be mainly attributed to that the
training and test subsets have different types of distortions.

For instance, the LIVE Phase I database only has sym-
metrically distorted images, while the LIVE Phase II data-
base contains both symmetric and asymmetric distortions.
However, the values of corresponding indicators are still
relatively high, which show that our framework can
maintain a satisfying predictive capacity under different
circumstances. Based on the above experimental results, it
can be concluded that a larger training database with more
comprehensive distortion types could probably promote the
prediction accuracy of our scheme.

In this section, we have also compared the cross-database
evaluation of the proposed scheme with other related
methods. +e SRCC results are provided in Table 7, where
the top two metrics have been marked in bold. According to
the experimental results in the table, no matter which
training database is used, the cross-database evaluation of
our scheme is usually stable, and it offers statistically better
quality prediction in line with human perception than the
compared methods on different databases. +ese facts
demonstrate the generalization ability and effectiveness of
the proposed scheme for stereoscopic image quality
assessment.

Table 1: Performance of the proposed scheme and other methods in terms of PLCC, SRCC, and KRCC, using the three databases.

IQA model
LIVE-I LIVE-II MCL-3D

PL SR KR PL SR KR PL SR KR
PSNR 0.852 0.846 0.752 0.809 0.790 0.685 0.837 0.816 0.741
MS-SSIM [55] 0.876 0.872 0.815 0.831 0.839 0.727 0.886 0.891 0.759
Benoit [13] 0.883 0.855 0.776 0.835 0.794 0.715 0.843 0.819 0.746
Chen [8] 0.917 0.916 0.737 0.900 0.889 0.730 0.881 0.884 0.717
Chen [17] 0.939 0.923 0.830 0.865 0.859 0.806 0.903 0.892 0.839
Zhou [56] 0.910 0.901 0.711 0.771 0.770 0.550 0.833 0.831 0.612
Fan [41] 0.928 0.887 0.724 0.861 0.823 0.627 0.865 0.830 0.751
Chen [34] 0.937 0.920 0.826 0.870 0.852 0.729 0.907 0.893 0.765
Shen [22] 0.932 0.925 0.839 0.928 0.920 0.856 0.930 0.922 0.835
Proposed 0.941 0.927 0.861 0.912 0.907 0.858 0.937 0.926 0.852
PL: PLCC, SR: SRCC, KR: KRCC. +e results of the best-performance metric are marked in bold.

Table 2: PLCC comparison for each type of distortion.

Database Distortion PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed

LIVE-I

JPEG 0.521 0.735 0.633 0.837 0.715 0.825 0.840 0.865
JP2K 0.826 0.917 0.930 0.916 0.893 0.909 0.912 0.873
WN 0.895 0.923 0.919 0.943 0.916 0.947 0.935 0.952

GBLUR 0.913 0.936 0.924 0.951 0.912 0.950 0.942 0.958
FF 0.740 0.861 0.893 0.915 0.878 0.882 0.918 0.916

LIVE-II

JPEG 0.726 0.865 0.694 0.820 0.770 0.692 0.871 0.863
JP2K 0.783 0.868 0.826 0.872 0.611 0.735 0.904 0.855
WN 0.905 0.940 0.743 0.902 0.796 0.904 0.920 0.927

GBLUR 0.817 0.793 0.896 0.965 0.872 0.913 0.943 0.946
FF 0.802 0.816 0.851 0.909 0.904 0.851 0.929 0.932

MCL-3D

JPEG 0.651 0.870 0.674 0.861 0.805 0.856 0.859 0.864
JP2K 0.782 0.879 0.906 0.913 0.872 0.910 0.909 0.885
WN 0.886 0.955 0.792 0.892 0.856 0.866 0.935 0.939

GBLUR 0.867 0.914 0.839 0.867 0.757 0.915 0.951 0.954
SBLUR 0.829 0.892 0.815 0.907 0.819 0.924 0.926 0.920
TERROR 0.813 0.867 0.790 0.905 0.743 0.769 0.893 0.927

+e top two quality assessment metrics have been highlighted in bold.
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4.6. Time Complexity Analysis. Time complexity is a sig-
nificant indicator in evaluating the performance of the
proposed scheme, to facilitate its use in real-time applica-
tions such as monitoring and adjustment. We have com-
pared the computational complexity of our proposed
scheme with other related methods. +e experiment was
performed in MATLAB R2014a on a Windows 10 PC with a

2.5GHz Intel Core i7 processor and 8GB RAM. +e results
of time consumption are given in Table 8, which presents the
running time comparison on the LIVE Phase I database with
365 stereopairs. As can be seen from this table, the total
processing time of the proposed scheme is 127 seconds,
which indicates that it takes less than 0.35 seconds to predict
a distorted stereopair. Although it is not the most efficient

Table 3: SRCC comparison for each type of distortion.

Database Distortion PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed

LIVE-I

JPEG 0.507 0.725 0.652 0.816 0.569 0.614 0.845 0.842
JP2K 0.818 0.906 0.897 0.877 0.812 0.824 0.909 0.853
WN 0.902 0.925 0.912 0.895 0.940 0.915 0.937 0.942

GBLUR 0.895 0.933 0.874 0.953 0.860 0.916 0.938 0.963
FF 0.754 0.856 0.860 0.912 0.784 0.867 0.910 0.924

LIVE-II

JPEG 0.696 0.852 0.704 0.822 0.769 0.593 0.843 0.847
JP2K 0.785 0.847 0.819 0.863 0.593 0.717 0.886 0.829
WN 0.873 0.934 0.738 0.889 0.846 0.891 0.936 0.939

GBLUR 0.809 0.803 0.904 0.956 0.862 0.903 0.951 0.932
FF 0.806 0.821 0.836 0.895 0.935 0.891 0.901 0.909

MCL-3D

JPEG 0.645 0.861 0.719 0.857 0.781 0.848 0.863 0.868
JP2K 0.809 0.873 0.843 0.902 0.875 0.927 0.908 0.897
WN 0.891 0.942 0.758 0.899 0.823 0.861 0.912 0.932

GBLUR 0.864 0.906 0.827 0.893 0.705 0.910 0.926 0.945
SBLUR 0.832 0.880 0.796 0.920 0.818 0.951 0.933 0.904
TERROR 0.815 0.852 0.807 0.903 0.609 0.676 0.895 0.907

+e top two quality assessment metrics have been highlighted in bold.

Table 4: KRCC comparison for each type of distortion.

Database Distortion PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed

LIVE-I

JPEG 0.434 0.692 0.558 0.736 0.535 0.601 0.757 0.826
JP2K 0.685 0.826 0.804 0.727 0.793 0.706 0.859 0.803
WN 0.823 0.829 0.811 0.736 0.912 0.835 0.820 0.915

GBLUR 0.806 0.850 0.786 0.863 0.839 0.827 0.858 0.931
FF 0.638 0.729 0.752 0.856 0.706 0.772 0.863 0.882

LIVE-II

JPEG 0.567 0.735 0.591 0.727 0.522 0.571 0.749 0.736
JP2K 0.632 0.783 0.754 0.726 0.537 0.765 0.736 0.725
WN 0.729 0.821 0.695 0.715 0.696 0.619 0.833 0.839

GBLUR 0.656 0.806 0.827 0.862 0.729 0.820 0.881 0.894
FF 0.694 0.715 0.709 0.739 0.853 0.783 0.872 0.851

MCL-3D

JPEG 0.656 0.719 0.682 0.709 0.607 0.552 0.753 0.772
JP2K 0.727 0.753 0.817 0.763 0.715 0.863 0.827 0.846
WN 0.825 0.851 0.786 0.685 0.616 0.639 0.849 0.895

GBLUR 0.796 0.764 0.624 0.690 0.596 0.797 0.886 0.904
SBLUR 0.809 0.766 0.732 0.817 0.775 0.812 0.825 0.813
TERROR 0.751 0.705 0.724 0.761 0.579 0.537 0.758 0.819

+e top two quality assessment metrics have been highlighted in bold.

Table 5: Performance of each component in the proposed scheme.

LIVE-I LIVE-II MCL-3D
PL SR KR PL SR KR PL SR KR

Scheme A 0.832 0.754 0.681 0.724 0.658 0.593 0.761 0.696 0.605
Scheme B 0.879 0.826 0.735 0.803 0.717 0.642 0.829 0.740 0.652
Scheme C 0.851 0.797 0.714 0.750 0.664 0.607 0.785 0.728 0.637
Proposed 0.941 0.927 0.861 0.912 0.907 0.858 0.937 0.926 0.852
PL: PLCC, SR: SRCC, KR: KRCC.

Complexity 11



method, it has the best comprehensive performance in
achieving the balance between accuracy and timeliness. +e
simulation results demonstrate that our proposed scheme
has relatively lower computing complexity than the com-
pared methods.

5. Conclusions

In this paper, we have presented a novel no-reference quality
prediction method for stereoscopic images based on bin-
ocular statistical features and machine learning. +e
framework of the proposed scheme includes a feature ex-
traction stage and a feature mapping stage. +e gradient
magnitude and Laplacian of Gaussian responses from a
stereopair and its fusion and difference maps are utilized as
quality-predictive features. With the extreme learning ma-
chine, a statistical regression model is established to map
these binocular features of a stereopair to its corresponding
perceptual quality score. +e visual quality predictions by
the proposed metric are highly correlated with subjective
quality judgements for distorted image pairs of various
distortion types. More importantly, our method achieves
excellent performance and has a promising generalization
ability. +e proposed scheme can be applied to video
broadcasting and 3Dmultimedia industry for its practicality.

For future work, how to explore deeper structure rep-
resentation for a human visual system and how to design
more efficient machine learning methods for visual quality
prediction should be researched. In addition, more effective
quality features can be considered to simulate the human
perceptual vision. Other 3D quality factors such as depth
perception and visual comfort still deserve further study.
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To identify relationships among entities in natural language texts, extraction of entity relationships technically provides a
fundamental support for knowledge graph, intelligent information retrieval, and semantic analysis, promotes the construction of
knowledge bases, and improves efficiency of searching and semantic analysis. Traditional methods of relationship extraction,
either those proposed at the earlier times or those based on traditional machine learning and deep learning, have focused on
keeping relationships and entities in their own silos: extracting relationships and entities are conducted in steps before obtaining
the mappings. To address this problem, a novel Chinese relationship extraction method is proposed in this paper. Firstly, the triple
is treated as an entity relation chain and can identify the entity before the relationship and predict its corresponding relationship
and the entity after the relationship. Secondly, the Joint Extraction of Entity Mentions and Relations model is based on the
Bidirectional Long Short-Term Memory and Maximum Entropy Markov Model (Bi-MEMM). Experimental results indicate that
the proposed model can achieve a precision of 79.2% which is much higher than that of traditional models.

1. Introduction

In the age of big data, techniques of extracting valuable
information from enormous quantities of texts have drawn
the attention of many researchers. *e extraction of in-
formation includes entity extraction, relationship extraction,
and event extraction. As the key step in information ex-
traction, relationship extraction provides technical foun-
dation for subsequent tasks such as knowledge graphs,
intelligent information retrieval, and semantic analysis.
*erefore, techniques of relationship extraction are bene-
ficial not only for theoretical discussion but also for practical
application.

Research on techniques to extract entities and their
relationships can date back to the 1960s. Among the more
prominent projects is the Linguistic String Project by New

York University, which took the route of constructing
massive language (English) corpora and achieved very sat-
isfactory results when the team used these corpora to extract
information from medical texts. In addition, a systematic
research at Yale University extracted events in domains such
as “earthquake” and “strike” from news texts and promoted
the research and development of entity relationship extrac-
tion. By the late 1980s, with the convening of the Message
Understanding Conference, research on entity relationship
extraction had started to boom. After decades’ development,
theories and techniques of entity relationship extraction, from
earlymodels ofmanual design and rule extraction [1, 2] to late
models based on machine learning [3] and deep learning
[4, 5], are approaching maturity. With constant improve-
ments in model accuracy and recall, extraction models are
more adaptive than ever before.
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However, the most existing extraction techniques either
have been keeping relationships and entities in their own
silos. Extracting relationships and entities was conducted in
separate steps before obtaining the mappings, or tag triples
as a whole used the “proximity principle” of reinforced
learning to extract relationships. Existing extraction tech-
niques fit into three categories. Firstly, the relationship can
be predicted and identified by an entity pair. *e premise of
this idea is that the relationships are already predefined [6].
*e task of relationship extraction then becomes the task of
searching the predefined relationship space for the most
probable relationship between a given entity pair based the
context where the entity pair is located. Secondly texts can be
explored by the relationship of entity pairs. *is method
aims at finding the maximum number of entity pairs
matching the criteria of the given relationship. A common
issue of the two methods mentioned above is the subtasks,
entity identification and relationship identification, are
completely independent of each other, resulting in extra-
neous information such as entities without relationship.
*is, in turn, increases error rates because the entities are
paired up before their relationship is determined; when no
relationship is found for an entity pair, this pair becomes
extraneous. Such extraneous pairs increase error rates of the
subtask and negatively impact the performance of subse-
quent relationship classification. Finally, some studies tag
triples as a whole and use the “proximity principle” of
reinforced learning to extract relationships [7]. *is method
integrates low-level features into more abstract high-level
features to search for distributed feature representations
and, thus, solves the problems of manual feature selection
and the spread of feature extraction error haunting classical
methods.

*e conventional method has two drawbacks. Firstly, for
most of the entity pairs do not hold relationships, numerous
negative cases and imbalanced relationship classification
occur. Secondly, overlapping triples become a critical issue.
*e shared entities or multiple relationships between two
entities make learning more complicated or even impossible,
since adequate training data cannot be obtained. For in-
stance, “Mr. Zhang was born in Hubei, a province in Central
China” could be interpreted into <Mr. Zhang, was born in,
Hubei>, <Mr. Zhang, was born in, China>, and <Hubei, lies
in, China>. *e conventional algorithm cannot identify and
classify properly without sufficient data.

To address these problems, this paper proposes a new
method, entity relation chain. *e head entity before rela-
tionship should be identified firstly, and then, the corre-
sponding relationship and the tail entity can be predicted.
For instance, in the sentence “Mr. Zhang was born in Hubei
province,” E1 “Mr. Zhang” and E2 “Hubei province” are
usually identified firstly and the R “was born in” is recog-
nized secondly. But, in the entity relation chain, E1 “Mr.
Zhang” is firstly identified, and every possible R generated
from E1 is the criterion for E2 “Hubei province.’ In this
entity relation chain, E1 can be taken as head entity, R as
relation chain, and E2 as tail entity.

Experiments on data sets from People’s Daily indicated
that the proposed method can achieve a high performance.

We also evaluated the scalability of the method on English
data sets of the English SemEval 2010 Task 8 which reveal
that the Bi-MEMM also can obtain a better f-score.

*is paper is organized as follows. Starting with the
introduction of the research gap and our research purpose,
we review and discuss the entity relationship extraction and
the particularity of Chinese relation extraction. *en, we
develop the Bi-MiEM method for the entity relation ex-
traction. *e detailed experimental evaluation is illustrated
in Section 4, and Section 5 concludes this work and provides
the future direction for further research.

2. Related Work

2.1. Definition of Entity Relationship Extraction. Entity re-
lationship extraction is usually described as entity rela-
tionship triples <E1, R, E2>, in which E1 and E2 refer to the
entity type and R refers to the relation description type
text. After the preprocessing process of named entity
recognition relation trigger word recognition, the deter-
mined triples <E1, R, E2> are stored for further analysis or
query.

According to the definition, we can divide the entity
relationship extraction tasks into three key parts, name
entity recognition, relation trigger word identification, and
relation extraction. Name entity recognition refers to the
identification of text having a specific meaning of the entity,
mainly including the names of people and places, institu-
tions, and proper nouns. Relation trigger word identification
is to classify the words that trigger entity relationship,
identify whether they are trigger words, and determine
whether the extracted relations are positive. Relation ex-
traction is the extraction of semantic relationships between
entities from identified entities, such as location employee
products.

2.2. Features of Entity Relationship Extraction. Compared
with NLP tasks such as sentiment analysis and news clas-
sification, the extraction of relationship is unique in three
aspects.

Firstly, Entity Relationship Extraction covers diverse
domains. Researchers usually focus on one domain or a
limited number of domains. With limited relationship
categories, traditional techniques are mostly based upon
rules [2, 8–10], dictionaries [1, 11], and ontologies [3, 12].
Machine learning-based techniques include supervised
[6, 13], semisupervised [14, 15], and unsupervised [16, 17]
models. Lately, deep learning-based techniques include
supervised [18, 19] and distant supervised [20] models. All
these models are relatively easy to build, but with poor
portability and extensibility.

Secondly, Entity Relationship Extraction involves het-
erogenous data. Data can come from different sources, and
they can be structured, semistructured, or nonstructured.
Deep learning [21] is usually applied in structured data;
nonsupervised aggregation methods [4] are usually applied
in nonstructured textual data due to unpredictable rela-
tionship categories; semisupervised [17] or distant
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supervised [22] methods are usually applied in semi-
structured data such as Wikipedia.

Lastly, Entity Relationship Extraction needs to handle
various relationships, which easily leads to data noise. Re-
lationships between entities are various, but early research
often ignored such multiple relationships and failed to
handle latent relationships.*e adoption of graph structures
[18] in relationship extraction in recent years ushered in a
new technique for tackling overlaps of entities and rela-
tionships. To tackle data noise [23], it has been discovered
that using a small number of adversarial examples can avoid
model overfitting and proposed to use adversarial training to
improve model performance.

2.3. Particularity of Chinese Relation Extraction.
Relationship extraction of Chinese texts falls behind the
extraction of English because of its complexity and difficulty.
*e following two characteristics of Chinese make it more
challenging for Chinese than English in terms of relationship
extraction.

Chinese trigger words are hard to extract and are in
abundance. *is makes the recall rate of relationship ex-
traction low. In the ACE corpus, Chinese trigger words are
30% more than those in English [24].

For the Chinese language, words are often polysemous,
sentence structures are complex and flexible, and omissions
appear frequently. *e fact that the same word can express
completely different meanings in different contexts or the
same meaning can be represented with many different ex-
pressions makes the identification of relationship types
particularly difficult.

In view of these problems, this paper proposes the
following possible solutions. Firstly, the Joint Extraction
of Entity Mentions and Relations model similar to
Seq2Seq is proposed and the Bidirectional Maximum
Entropy Markov is integrated into the model. Secondly,
different from the existing relationship extraction tech-
niques, relationship triples are treated as an entity rela-
tionship chain, entity E1 is identified first, and then, the
corresponding relationship R and entity E2 based on E1
are predicted. *irdly, the validity of the proposed model
is verified in Chinese data sets and the scalability is
evaluated in English data sets.

3. Extraction Method Based on the Bi-
MEMM Model

*e previous solutions cannot efficiently deal with the entity
relationship extraction entity overlap, relationship cross-
over, and so on. In this paper, a Bi-MEMMmodel similar to
seq2seq simulated probability graph is proposed to solve
such problems. *e seq2seq decoder is modeled in the
following way:

P y1, y2, . . . , yn|x( 􏼁 � P y1|x( 􏼁P y2|x, y1( 􏼁 . . . P

· yn|x, y1, y2, . . . , yn−1( 􏼁.
(1)

In formula (1), the first word is predicted by x and the
second word is predicted if the first word is known and
repeated until the end mark appears. Similarly, the ex-
traction of triples can be modeled in the following way:

P E1, R, E2( 􏼁 � P E1( 􏼁P E2|E1( 􏼁P R|E1t, nE2( 􏼁. (2)

In formula (2), “E1” can be predicted first, and “E2”
corresponding to “E1” can be predicted by passing in “E1”.
*en, E1 and E2 can be introduced to predict the rela-
tionship R between E1 and “E2.” In actual processing, we can
also combine the predictions of E2 and R into one step, so the
total step only needs two steps; the first step is to predict E1,
and then,E1 is introduced to predictE2 and R corresponding
to “E1.”

3.1. Bi-MEMM Model. Figure 1 demonstrates the overall
structure of our Bi-MEMM model. It can be detailed as
follows.

When it comes to techniques for extracting relationships
and entities, character-word embedding is necessary only for
Chinese, as word embedding is sufficient for English. By
means of word segmentation with Chinese texts, we obtain
character embedding and word embedding. *en, we per-
form matrix transformation of word embedding and con-
catenate the transformed word embedding with character
embedding of the word’s constituent characters. *e result
of such concatenation is character-word embedding. For
instance, “中国” has two character-word embedding: one is
the concatenation of the matrix-transformed word em-
bedding with character “中”, and the other is the concate-
nation of the matrix-transformed word embedding with
character “国”.

Firstly, character-word-position embedding is trans-
formed into coding matrix M through the Bi-LSTM Layer
and Tanh Layer/Attention Layer.

Secondly, matrix M is copied into the Bi-MEMM Layer
and Dense Layer. Sigmoid can be used as activation function
for the Dense Layer. *en, a two-dimension vector gener-
ated by each character can be used to predict the head and
tail position of E1.

*irdly, a labelled E1 is randomly picked (randomly pick
E1 when training, and traverse all E1’s when predicting), the
subsequence corresponding to E1 is fed in M into the first
Self Attention Layer, together with the Position Embedding
at corresponding position, and it transformed into a vector
with the same length as the input sequence.

Lastly, matrix M is sent into the Bi-MEMM Layer and
Dense Layer again. For each R corresponding to E1, the head
and tail positions of E2 can be also predicted by the Dense
Layer with the activation function of sigmoid.

From themodel structure of Figure 1, we can figure out it
is similar to the copy mechanism, joint extraction model. In
entity ‘E1’ identification, <E_1, R, E_2>, Bi-MEMM plays
the same role as CRF. In E2 recognition, Bi-MEMM predicts
E2 by every possible R with E1. If there is E2, the corre-
sponding triples are regarded as an option or the triples will
be discarded.
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3.2. Bi-MEMM Construction and the Loss Function. In for-
mula (1), we assume that the dependency occurs only in
adjacent locations, and the following formula is obtained:

P y1, y2, . . . , yn|x( 􏼁 � P y1|x( 􏼁P y2|x, y1( 􏼁P y3|x, y2( 􏼁 . . . P

· yn|x, . . . , yn−1( 􏼁.

(3)

In formula (3), X � (x1, x2, . . . , xn) is the input and Y �

(y1, y2, . . . , yn) is the tag sequence with the same size of X.
According to the design of Linear CRF (Linear Chain
Conditional Random Field), the following formula is ob-
tained from formula (3):

P y1|x( 􏼁 �
e

f y1;x( )

􏽐y1
e

f yk;x( )
,

P yk|x, yk−1( 􏼁 �
e

g yk−1 ,yk( )+f yk;x( )

􏽐yk
e

g yk−1 ,yk( )+f yk;x( )
,

(4)

where g(yk−1, yk) is called the transition matrix. At this
point, this is the MEMM. From equation (4), we can see that
the solution of the MEMM is to decompose the overall
probability distribution into the product of a stepwise dis-
tribution, so to calculate the loss, you only need to sum the
cross entropy of each step.

Substituting equation (4) into equation (3), we can get
the loss of MEMM as follows:

P↼y|x↼ �
e

f y1;x( )+g y1 ,y2( )+ ... +g yn−1 ,yn( )+ f yn;x( )

􏽐y1
e

f y1;x( )􏼒 􏼓 􏽐y2
e

g y1 ,y2( )+ f y2;x( )􏼒 􏼓 . . . 􏽐yn
e

g yn−1 ,yn( )+ f yn;x( )􏼒 􏼓

. (5)

So far, we can see that MEMM, like seq2seq, has one
significant defect: exposure bias [25]. When the model is
trained, the prediction of the current step assumes that the
labels of the previous step are correct and acquired. How-
ever, in the prediction stage, the actual labels of the previous

step are unknown. If the current step is not strengthened
during training, the reliability of the entire data chain will be
greatly reduced.

*e way to calculate the probability of equation (5) is
from left to right. Experiments show that adding a right-to-

E1 head position E1
Tail position

Z1 Z2 Z3 Z4 Zn

Word1 Word2 Word3 Word4 Wordn

0 0 1 0 010

1 0 0 1 000

Input layer

Position embedding
Word embedding
Character embedding

Bi-LSTM layer

Attention layer
Tanh layer

Matrix M

Bi-MEMM layer

Dense layer
(Sigmoid function)

Bi-MEMM layer

Dense layer
(Sigmoid function)

E2 head position
E2 tail position

Self-attention layer

1 0 1 0 000

0 1 0 1 000

Matrix M is copied into training model and an annotated E1 is randomly
extracted and be sent into next step.

For each type of R, the corresponding E2 is extracted in the same way②

②

①

①

Figure 1: *e structure of Bi-MEMM.
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left MEMM during modelling with reference to the LSTM
and Bi-LSTMmodes can improve its effect. *en, we can get
the following loss function.

Finally, the average cross entropy of formulae (5) and (6)
are taken as the final loss. *is can make up for the
shortcomings of its asymmetric behaviour without in-
creasing the parameters, and it can also strengthen the
current training.

P↼y|x↼ �
e

f y1;x( )+g y1 ,y2( )+ ... +g yn−1 ,yn( )+ f yn;x( )

􏽐yn
e

f yn;x( )􏼒 􏼓 􏽐yn−1
e

g yn,yn−1( )+ f yn−1;x( )􏼒 􏼓 . . . 􏽐y1
e

g y2 ,y1( )+ f y1;x( )􏼒 􏼓

. (6)

4. Experimental Design

Experiments are carried out to evaluate the efficiency of
proposed method on Chinese data sets and the scalability on
English data sets. For the Chinese data set, corpus data from
People’s Daily in January in the news field are collected, and
the English data set adopted SemEval 2010 Task 8.

Several similar methods such as Bi-LSTM+CRF [5], Att-
Bi-LSTM+CRF [26], and bert-based [27] were taken as the
base line on the Chinese entity relationship extraction test.
*e proposed joint extraction model is applied to Chinese
data sets to verify its validity. BRNN [28], SDP-BLSTM [29],
CNN [30], Att-RCNN [31], and Hybrid Bi-LSTM-Siamese
[32] are also carried out as the base line for the scalability
evaluation.

4.1. Data Sets. SemEval 2010 Task 8 marks the semantic
relationship between noun pairs in a sentence rather than
entity pairs. *ere are 10 classes (cause-effect, component-
whole, entity-destination, product-producer, entity-origin,
member-collection, message-topic, content-container, in-
strument-agency, and others) in total, among which one
type does not distinguish the sequence of relationship
arguments.

*e corpus of People’s Daily mainly includes three kinds
of entity relations, personal name, place name, and orga-
nization name. In this paper, Spacy [33], PyhanLP [34], and
other natural language processing auxiliary tools [35] are
used in experiments.

4.2. Hyperparameters. Due to differences in the data set of
Chinese and English, for example, factors Embedding of
China Character and Word Embedding of English are not
consistent with some superparameters. In this paper, the
average cross entropy of formula (6) is used as the loss
function to train deep learning network with an Adam
optimizer. *e superparameters are shown in Table 1.

4.3. EvaluationCriteria. Precision, recall, and F-measure are
adopted as the basic evaluation criteria, in which precision
and recall are contradictory and F-measure is taken to

evaluate comprehensively and globally. *eir calculation
formulae are listed, respectively, as follows:

Precision �
True positive

True positive + False positive
, (7)

Recall �
True positive

True positive + False negative
, (8)

F1 �
2∗ Precision∗Recall
Precision + Recall

. (9)

4.4. Experimental Results and Analysis. For the Chinese
entity relationship extraction dataset, Bi-LSTM-CRF, Att-
Bi-LSTM-CRF, and bert-based are applied as benchmark for
performance testing. Precision, recall, and F-score are used
as the evaluation criteria. *e precision of different methods
is shown in Table 2. *eir recall and F-score are displayed in
Figures 2 and 3. For the English entity relationship ex-
traction data set, the F-score of six models is listed in Table 3
for the scalability evaluation of the proposed model.

Table 2 displays the precision of Bi-LSTM-CRF, Att-Bi-
LSTM-CRF, bert-based, and the F-scores of our methods
varying from 72.5% to 79.2%. *e proposed Bi-MEMM
method enjoys the highest precision of 79.2%, while pre-
cision values of the other methods are 72.5%, 73.6% and
75.1%. In terms of recall and F-score shown in Figures 2 and
3, it can be concluded that our model performs efficiently
with a highest recall of 80.4% and a outstanding F-score of
79.8%, while those of other methods are 71.6% and 72.05%
(Bi-LSTM-CRF), 74.3% and 73.94% (Att-Bi-LSTM-CRF),
and 76.3% and 75.69% (bert-based).

Bi-MEMM has some features which can overcome the
pitiful of traditional methods while dealing with Chinese
entity relationship extraction. Firstly, the MEMM model,
like the CRF model, has an attractive feature with the
convexity of its loss function. *e Bi-MEMM model fun-
damentally solves the label bias problem of the MEMM
model and can make full use of context information. It can
use complex, overlapping, and nonindependent information
for its training and inference. Compared with the CRF
model, the performance of feature selection in the Bi-

Table 1: Hyperparameters settings.

Hyperparameters Chinese English
Learning rate 0.0005 0.0005
Hidden neurons size 250 200
Dropout 0.6 0.5
Character embeddings/word embeddings 300 300
Batch size 16 32
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MEMMmodel is no longer directly determining the level of
system performance. Secondly, the entity relationship chain
we proposed can efficiently tackle the problems as entity
overlap and relationship intersection without the following
two shortcomings. *e first is error accumulation and entity
redundancy caused by the mutual influence of entity rec-
ognition and relationship extraction which can lead to the
computational complexity; the second is the lack of inter-
action information caused by ignoring the internal

connection and dependency between the entity recognition
and relationship extraction.

Table 3 reveals the scalability of our proposed method,
which can handle the English entity relationship extraction.
Moreover, our method can reach an outstanding F-score of
84.6% which is overall higher than that of the other five
methods. *e results indicate that the proposed method not
only performs well in dealing with Chinese entity rela-
tionship extraction but also has a superior scalability while
dealing with English.

5. Summary and Future Work

In this paper, a joint extraction model based on joint coding
is proposed, and Bi-MEMM is introduced into the joint
extraction model and applied to entity relationship ex-
traction tasks. Experiments show that the model performs
well in Chinese data sets and has a strong scalability in
English data sets. It owns the ability to learn the internal
structure of a sentence without considering the complexity
of named entities and relationships in the sentence. At the
same time, we also notice that the model is still inadequate in
dealing with the long-distance constraint of sample sen-
tences, the implicit relation in entities, the reasoning of the
same relation such as referential relation, subordination
relation, and date writing format problem. Of course, an-
notation set data is also an important factor that cannot be
ignored. We expect that future work could be carried out
from the following aspects, such as integrating natural
language algorithms (e.g., anaphora resolution into Deep
Learning algorithms) and external knowledge bases (e.g.,
thesaurus, WordNet, HowNet, and knowledge map prior
validation) waiting to be introduced into the model. We
believe that the introduction of these methods in future
modelling will greatly improve their accuracy.

Data Availability

*e data used to support the findings of this study are
available from the following website list: People’s Daily:
https://github.com/buppt/ChineseNER; English SemEval
2010 Task 8: https://www.kaggle.com/drtoshi/semeval2010-
task-8-dataset.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this article.

Table 3: English entity relationship extraction results.

Methods F-score
BRNN [28] 82.5
SDP-BLSTM [29] 83.7
CNN [30] 77.5
Att-RCNN [31] 83.7
Hybrid Bi-LSTM-Siamese [32] 81.8
Our method 84.60
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Figure 2: Recall of different methods.

Table 2: Chinese entity relationship extraction precision.

Methods Precision
Bi-LSTM-CRF [5] 72.5
Att-Bi-LSTM-CRF [26] 73.6
Bert-based [27] 75.1
Our method 79.2
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Figure 3: F-score of different methods.
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Vehicle type recognition algorithms are broadly used in intelligent transportation, but the accuracy of the algorithms cannot meet
the requirements of production application. For the high efficiency of the multilayer perceptive layer of Network in Network
(NIN), the nonlinear features of local receptive field images can be extracted. Global average pooling (GAP) can avoid the network
from overfitting, and small convolution kernel can decrease the dimensionality of the feature map, as well as downregulate the
number of model training parameters. On that basis, the residual error is adopted to build a novel NIN model by altering the size
and layout of the original convolution kernel of NIN.*e feasibility of the algorithm is verified based on the Stanford Cars dataset.
By properly setting weights and learning rates, the accuracy of the NIN model for vehicle type recognition reaches 97.2%.

1. Introduction

Intelligent transportation [1] refers to a research hotspot in
existing society, and vehicle type recognition [2] underpins
and critically impacts intelligent transportation studies. *e
existing algorithms of vehicle type recognition are primarily
classified as manual feature descriptions, 3D model, and
artificial intelligence algorithms. At the early phase, the
manual feature descriptions (e.g., SIFT [3] and HOG [4]) are
adopted to extract vehicle features; subsequently, the algo-
rithms (e.g., SVM and decision tree) are combined for
classification. Since feature extraction and data recon-
struction are difficult to achieve, Hsieh et al. [5] employed
HOG and symmetric SURF descriptor to extract the vehicle
features of mesh generation. Besides, Liao et al. [6] con-
ducted the appearance and semantic segmentation of vehicle
parts to recognize vehicle types. Moreover, Biglari et al. [7]
exploited the overall appearance of the vehicles and the
feature differences of various components to train the SVM
classifier. *e mentioned algorithms are easy to affect by
environmental factors (e.g., light and background), so their

recognition accuracy is relatively low. As impacted by the
random variation in the shooting angle of vehicle images, the
3D model-based vehicle type recognition method was de-
veloped at the right moment. *e 3D model can reflect
spatial relationships between local features and the whole
vehicle. Existing studies [8, 9] effectively performed the 3D
modeling and feature extraction of vehicles. Artificial in-
telligence introduced a novel impetus into vehicle type
recognition, and the features of the vehicle can be auto-
matically extracted. Dong et al. [10] adopted the sparse
Laplace filter and a semisupervised convolution neural
network to extract vehicle features and classify vehicles.
Studies [11–14] employed different methods or optimized
the existing neural network to conduct the vehicle type
recognition, and its effect was significantly improved;
however, for the similar vehicle recognition exhibiting a
remarkably small feature gap (e.g., Volkswagen’s front face is
nearly identical), the room for improvement of classification
accuracy is limited.

In view of the low accuracy of vehicle type recognition, we
propose an improved NIN for vehicle type recognition and get
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high recognition accuracy. In fact, the breakthrough point of
vehicle type recognition refers to the efficient extraction of
nonlinear features of vehicles. NIN [15] exhibits a complex
multilayer perceptron (MLPConv) with a micronetwork
structure and is capable of efficiently and automatically
extracting local nonlinear features of images.*e present study
fully exploits the following features of the NIN model and uses
its 1 × 1 convolution kernel to conduct the dimensionality
reduction of the feature map and downregulate the number of
network parameters.*e global average pooling layer (GAP) is
adopted to effectively combine the features and prevent the
whole network from falling into the overfitting state. *e
improvement measures are as follows: the original large
convolution kernel of NIN is changed into a small convolution
kernel, which increases the depth of convolution neural net-
work and improves the performance of the network. In order
to avoid the gradient loss problem caused by the increase of
depth, residual measures are arranged on the structure to solve
the network degradation problem. *e improved NIN has
high classification effects, and its classification accuracy is better
than VGG and GoogLeNet in vehicle type recognition. By the
verification based on the Stanford Cars dataset and the rea-
sonable weight and learning rate setting, the vehicle type
recognition accuracy of the improved NIN reaches over 97.2%.

2. Related Works

*e 1 × 1 small convolution kernel, GAP, micronetwork
structure, and other measures proposed by NIN underpin
the follow-up deep convolutional neural network (CNN).
CNN [16] automatically extracts image features; thus, the
complex feature extraction and data reconstruction process
of conventional recognition algorithms can be avoided.
AlexNet [17], VGGNet [18–21], GoogLeNet [22, 23], ResNet
[24–27], and other networks can be adopted for vehicle type
recognition, whereas for the limitations of sample quality
and quantity as well as the defects of network feature ex-
traction and classification performance, vehicle recognition
exhibits relatively low accuracy.

Most networks are only capable of extracting linear features
on the images, landing the classification algorithm in confusion
since the linear features are basically consistent (Figure 1(a) and
(b)). For classification, only the overall information built by
linear features can be classified (Figure 1(c)).

In Figure 1, the linear features denoted by (a) and (b) are
consistent, which are both a line segment and a part of an
object without any difference. However, given the overall
information, the information represented by (c) is com-
pletely inconsistent. *us, a question is raised of how to
extract this nonlinear feature effectively. *is question is
determined by the micronetwork [28, 29] structure em-
bedded in NIN, i.e., a full connection layer consisting of two
layers of convolution. In the neural network, two-layer fully
connected hidden neurons are capable of approximating
arbitrary curves.

2.1. “Micronetwork” Structure. In 2013, the proposal of NIN
modified the original idea of network structure, and the

multilayer perceptron was built by replacing the conven-
tional linear perceptron with the embedded “micronet-
work”; as a result, the efficiency of nonlinear feature
extraction of local sensing field of images was significantly
enhanced.

In NIN, “micronetwork” refers to a general nonlinear
function approximator. *e difference between MLPConv
of NIN and linear perceptron of CNN is the method of
image feature extraction. MLPConv consists of several
fully connected nonlinear activation functions, shared by
all local receptive fields. Moreover, by sliding on the input,
the feature map is generated and then outputted to the
next layer. MLPConv can combine different feature maps,
so the network can extract complex and useful nonlinear
image features. Furthermore, the overall structure of NIN
can be superposed by multiple MLPConv.

*ere are two reasons why NIN selects multilayer
perceptron: (1) MLPConv fits the structure of the con-
volutional neural network and (2) MLPConv can act as a
deep model, complying with the spirit of feature reuse
[22]. *e feature map of MLPConv is calculated:

f
1
i,j,k1

� max ω1
k1

T
xi,j + bk1

, 0􏼐 􏼑,

⋮

f
n
i,j,kn

� max ωn
kn

T
f

n−1
i,j + bkn

, 0􏼐 􏼑,

(1)

where n denotes the number of layers of the multilayer
perceptron; (i, j) represents the pixel index in the feature
map; xi,j indicates the input block centred on the position
(i, j); k is the channel index of the feature map; and bk1

is the
bias. ReLU acts as the activation function in MLPConv.

2.2. Global Average Pooling Layer. In the classification,
GAP [30, 31] remedies the defect of the fully connected
layer. At the early phase, the feature map of the final
convolutional layer is vectorized and passed into the fully
connected layer; subsequently, it is inputted to the Soft-
Max layer [32–34]. Since the fully connected layer is easy
to overfit, the whole network exhibits a reduced gener-
alization ability, and the subsequent network conducts a
dropout [24] operation on the fully connected layer,
thereby preventing overfitting significantly. However,
GAP is adopted by NIN to set the last MLPConv feature
map to pertain to the corresponding classification cate-
gory, which can more effectively fit the convolution
structure. *ere are no parameters to be optimized in the
operation, thereby avoiding overfitting. *e regulariza-
tion effect of GAP is more significant than dropout.

(a) (b)

(c)

Figure 1: Schematic diagram of linear features and linear feature
combinations.
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2.3. 1 × 1 Convolution Kernel. *e 1 × 1 convolution was
initially proposed by NIN to make the network exhibit
significantly high network performance. By 1 × 1 convolu-
tion computation, MLPConv reduces the dimension of the
channel parameter pool of convolutional kernel, as well as
downregulating the number of parameters. *e main
functions of 1 × 1 convolution are as follows:

(1) Dimensionality reduction: for instance, if an 500 ×

500 image with a depth of 100 is generated with 1 × 1
convolution on 20 filters, the size of the result is
500 × 500 × 20.

(2) *e nonlinear expression ability is enhanced. After
the convolutional layer passes through the excitation
layer, the 1 × 1 convolution introduces nonlinear
excitation to the learning representation of the
previous layer to enhance the expression ability of
the network.

(3) *e model depth is increased. Accordingly, the
number of the network model parameters can be
reduced, the depth of the network layer can increase,
and the representational capacity of the model can be
enhanced to some extent.

Figure 2 illustrates the NIN structure of 4 MLPConv and
1 GAP. Subsampling layers can be added betweenMLPConv
layers, and the number of layers of the “micronetwork” can
be altered for specific tasks. First, taking the first MLPConv
as an example, the input image is 224 × 224 × 3, 224 rep-
resents the pixel of the input image, and 3 denotes the
channel of the image. Later, the convolution filter is adopted
to slide on the input image and calculate the inner product.
*e size of the convolution filter adopts 11 × 11 × 3, i.e., the
length and width are both 11, and the depth is 3. In the first
layer of MLPConv, 96 convolution filters are adopted. *e
embedded “micronetwork” refers to a fully connected neural
network with a two-layer convolutional kernel, performing
nonlinear feature extraction. *e number of neurons in each
layer reaches 96. Besides, Figure 2 presents one of the models
compared in subsequent experiments, and the specific set-
ting of parameters is presented in the figure.

In the present study, the nonlinear feature extraction
capacity of NIN is exploited to extract the features of vehicles
in the image (e.g., texture and topology structure) to enhance
the efficiency of the vehicle type recognition. On that basis,
by increasing the size, quantity, and layout of the con-
volutional kernel in NIN, as well as the network performance
and convergence speed, the training of NIN for vehicle
sample data is conducted efficiently, and the vehicle rec-
ognition accuracy is enhanced. Subsequently, the residual
thought is adopted to solve gradient dissipation that is at-
tributed to the rising number of network layers.

3. Optimized NIN

At present, network performance can be enhanced primarily
by twomeasures. One is to increase the width or depth of the
network. For instance, VGG enhances network performance
by increasing network depth. *e other refers to optimizing

the network input sample data (e.g., increasing the sample
number, strengthening the texture of the sample, or
transforming the shape of the sample image (inversion and
distortion) to enhance the network performance). For the
deepened or widened network, its defects gradually appear,
the gradient disappears, the number of parameters is huge,
and the extracted features tend to be invalid in the network
transmission. In the present study, NIN is optimized by the
following two means.

3.1. Use of Small Convolution Kernel. *e small convolution
kernel increases the network depth and improves the net-
work performance, as well as significantly downregulates the
number of network parameters. In numerous networks, the
convolution kernel with a size of 3 × 3 and 5 × 5 has been
extensively used, and 3 × 3 refers to the smallest size that can
capture 8 neighbourhood information of pixels.

*e small convolution kernels are stacked to replace the
large convolution kernels, and the size of the receptive field
remains unchanged. Multiple 3 × 3 convolution kernels ex-
hibit more nonlinearities (more layers of nonlinear functions)
than the convolution layer of a large convolution kernel.
Moreover, multiple 3 × 3 convolutional layers have fewer
parameters than a large convolution kernel. If the input and
output feature maps of the convolutional layer are assumed to
have an identical size to C, the number of parameters of the
three convolutional layers is 3 × (3 × 3 × C × C) � 27C2. *e
parameter of one 7 × 7 convolutional layer is 49C2. *us, the
small convolution kernel significantly reduces the number of
network parameters.

At the beginning of AlexNet and NIN training, a large
convolution kernel is employed for calculation, and the
classification accuracy is not significantly enhanced. Even
though NIN employs a micronetwork as a local nonlinear
feature collector, it only increases the convergence speed of
the model. On the whole, the convolution kernel of VGG
uses 3 × 3 convolution kernel, and GoogLeNet contains
3 × 3, 5 × 5, and 1 × 1; the classification effect of VGG and
GoogLeNet models is larger than that of the former two.
Indeed, this is also attributed to the deepening of the number
of network layers. *e function of 1 × 1 convolution kernel
suggested that it exhibits the function of raising and re-
ducing dimension and can downregulate the number of
network parameters in Section 2.

An experiment is performed to verify the influence of
small convolution on the model classification. MINST
dataset is employed in the experiment, and the network
structure is adopted (Figure 3). *e experiment is split into
two groups to verify the effect of 7 × 7, 5 × 5, and 3 × 3
convolution kernels on the network performance, respec-
tively. *e statistics is summarized to the iteration times
under the accuracy of the four models reaching over 0.6, 0.7,
0.8, and 0.9 initially, as well as the iteration times in the
presence of maximum accuracy as well as the maximum
accuracy and time consumed initially. Each model experi-
ment is repeated 50 times, and the average number of
statistical iterations is listed in Table 1.
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Table 2 presents that the small convolution kernel en-
hances the extraction performance of local receptive field
features of the network and increases the classification ac-
curacy of the model. *ree 3 × 3 convolution kernels are
equivalent to a 7 × 7 convolution kernel, and two 3 × 3
convolution kernels are equated with a 5 × 5 convolution
kernel. Under the receptive field of the identical convolution
kernel, it is easy to find by comparison that the recognition
efficiency of the convolution kernel falls to the maximum. In
all effective intervals, the average number of experimental
iterations of 5 × 5 convolution kernel is smaller than that of
3 × 3 and 7 × 7 convolution kernels. 3 × 3 convolution

kernel exhibits the highest accuracy, whereas the accuracy of
5 × 5 convolution kernel is relatively low; however, the
convolution kernel exhibits significantly low accuracy. Ac-
cordingly, in general, 3 × 3 convolution kernel has the
maximum recognition efficiency and the fastest rise in ac-
curacy; that is, 3 × 3 convolution kernel exhibits a better
performance to extract local features of images.

To obtain the vehicle type recognition accuracy, the NIN
structure is optimized. *e size, quantity, and layout of the
convolution kernel of the NIN structure in Section 2 are tuned
in accordance with the advantages of the small convolution
kernel to extract local features of the image and downregulate

First group Second group

7 × 7 convolution

7 × 7 conv, 6

2 × 2 maxpooling

5 × 5 conv, 12

2 × 2 maxpooling 2 × 2 maxpooling

2 × 2 maxpooling

2 × 2 maxpooling

2 × 2 maxpooling

2 × 2 maxpooling

2 × 2 maxpooling

2 × 2 maxpooling

2 × 2 maxpooling

2 × 2 maxpooling

3 × 3 conv, 24

3 × 3 conv, 6 5 × 5 conv, 6

5 × 5 conv, 12

3 × 3 conv, 24

3 × 3 conv, 6

3 × 3 conv, 6

3 × 3 conv, 12

3 × 3 conv, 12

3 × 3 conv, 24

3 × 3 conv, 6

3 × 3 conv, 6

3 × 3 conv, 12

3 × 3 conv, 12

3 × 3 conv, 24

2 × 2 maxpooling

FC

FC

So�max

FC

FC

So�max

FC

FC

So�max FC

FC

So�max

Input, 32 × 32 Input, 32 × 32 Input, 32 × 32 Input, 32 × 32

3 × 3 convolution 5 × 5 convolution 3 × 3 convolution

Figure 3: Network structure of small convolutional kernel experiment.

224

224

3

11 × 11 × 3 × 96

96 96

55

55

96

5 × 5 × 96 × 256

256 256
27

27

256

3 × 3 × 256 × 384

384 384
13

13

384

3 × 3 × 1024 × 1000

1024 1024
6

6

1000

1000

Figure 2: Structure and specific parameter settings of NIN.
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the number of computational parameters of the network.
Figure 4 suggests that the 11 × 11 convolution kernel of the
first layer is converted into 43×3 convolution kernels.

3.2. Use of Residual Blocks. Since AlexNet, the depth of the
most advanced CNN architecture has been increasing,
whereas the depth of the network cannot increase by simply
stacking layers. *e mentioned finding is because the gra-
dient backpropagates to the previous layer, and repeated
multiplication may make the gradient infinitesimal and the
gradient disappear; the deep network is difficult to train, and
the network performance tends to be saturated, or even
drops rapidly. To address this problem, He Kaiming et al.
proposed the residual network ResNet; in 2015, the proposed
network won the first prize in the challenge competition of
ImageNet image recognition and has deeply inspired the
design of the later deep neural network.

He Kaiming considered that the training errors pro-
duced by stacking identity maps on the deep network should
not be higher than those attributed to shallow networks.
According to Figure 5, the residual block can achieve the
mentioned condition, and the input can be spread by cross-
layer data line forward faster. In fact, ResNet is not the first
model exploiting fast connection. Highway networks [35]
and long and short-termmemory network [36] units employ
different gate structures to conduct fast connection.

ResNet (Figure 6) continues to use the design of all 3 × 3
convolution layer of VGG. First, there are two 3 × 3 con-
volutional layers with an identical number of output
channels in the residual block. Each convolutional layer is
followed by a batch normalization layer and ReLU activation
function. Subsequently, the input is directly introduced to
the front of the final ReLU activation function by skipping
the two convolutional operations. In the mentioned design,
the output and input of the two convolutional layers should
exhibit the identical shape, and then they should be added.
To alter the number of channels, an additional 1 × 1 con-
volutional layer should be introduced to transform the input

into the required shape, and then an addition operation is
required.

As impacted by small convolution kernel and residual
concept, the NIN is further optimized, and the convolution
kernel in NIN is replaced by 3 × 3 convolution kernel to
conduct the rapid convergence and training of the network.
*e residual measurement is performed to build data lines
between the front and back layers of the network, so the
feature map can be efficiently transmitted to the front
convolutional layer, thereby eliminating the effect of gra-
dient accumulation and decreasing and avoiding gradient
disappearance. Given the setting requirements of ResNet,
the optimized NIN structure is illustrated in Figure 6.

4. Implementation of Optimized NIN

*e optimized NIN uses 3 × 3 convolution kernel and 1 × 1
convolution kernel [37, 38]. 3 × 3 convolution kernel is used
to increase network depth and improve network perfor-
mance. 1 × 1 convolution kernel is used to enhance the
extraction ability of nonlinear features of the network. In the
optimized NIN structure, GAP is used as a classifier instead
of full connection layer and to improve the generalization
ability of the network and avoid overfitting of the network.
In order to avoid the loss of gradient caused by the increase
of network depth, residual measures are arranged between
consecutive multiple 3 × 3 convolution layers on the opti-
mized NIN to avoid network degradation.*e partial source
code of optimized NIN is as follows: (Algorithm 1)

5. Results and Discussion

*e results and discussion may be presented separately, or in
one combined section, and may optionally be divided into
headed sections. *e representative Stanford Cars dataset is
adopted in the experiment. *e scene with the images lo-
cated varies with different postures [39] and unfixed reso-
lutions. Accordingly, the vehicle type recognition of this
dataset is more challenging. *e Stanford Cars dataset

Table 1: Experimental data of small convolution kernel.

Convolution form
Exceeding the average number of iterations of accuracy for the

first time Maximum accuracy rate Time (h)
0.6 0.7 0.8 0.9 Maximum

(1) 7∗7 100.9 157.1 230.6 320.1 832.2 0.845 1.261
(1) 3∗3 88.4 148 207.6 293.8 799.3 0.965 1.469
(2) 5∗5 75.3 114.5 175.2 252.6 821.6 0.903 1.328
(2) 3∗3 74.4 110.0 172.6 249.8 819.3 0.914 1.409

Table 2: Comparison of experimental results on the Stanford Cars dataset.

Network
name

1 2 3 4 5
Accuracy
rate (%) Iterations Accuracy

rate (%) Iterations Accuracy
rate (%) Iterations Accuracy

rate (%) Iterations Accuracy
rate (%) Iterations

NIN 80.2 5066 88.3 5628 90.4 5822 91.6 5923 91.2 6022
VGG19 83.1 5732 89.1 5913 91.5 6134 92.4 6417 92.7 6982
GoogLeNet 85.1 5522 90.3 5817 92.6 6025 93.0 6120 94.3 6216
New NIN 84.2 4909 90.5 5423 95.5 5781 96.2 5883 97.2 5989
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consists of 196 vehicle types, containing 16,185 images
overall. *e dataset labels consist of the vehicle types and the
location of the vehicles in the image. *e hardware envi-
ronment of the experiment is presented: CPU type is Xeon
W; memory type is DDR4 128GB; graphics card is NVIDIA
RTX 2080Ti, and video memory size is 11GB. All the

experimental networks are achieved by GPU built by An-
aconda 3 +Tensorflow 2.0 + Spyder + Python 3.7 in Win-
dows 10.

To determine the performance of optimized NIN on
vehicle type feature extraction, VGG19 (layer 19), Goo-
gLeNet Inception V1 (layer 22), NIN (layer 12), and

Input:
input_shape: Input shape of network, default as (224,224,3)
nclass: Numbers of class (output shape of network), default as 1000
Output: Optimized NIN model
*e optimized NIN model is established according to the following steps:
Step 1: Build two residual blocks including 384 convolution kernels

Build two 1 × 1 convolution layers
Build Max pool layer

Step 2: Build two residual blocks including 384 convolution kernels
Build two 1 × 1 convolution layers
Build Max pool layer

Step 3: Build residual block including 384 convolution kernels
Build two 1 × 1 convolution layers
Build Max pool layer

Step 4: Build residual block including 1024 convolution kernels
Build two 1 × 1 convolution layers

Step 5: Build GAP layers
return model

ALGORITHM 1: Partial source code of optimized NIN.

VGG

Conv 1 Conv 2Pool 1 Pool 2 Pool 3

GoogLeNet

New NIN

Figure 4: Visualization of activation values in the middle layer of three types of convolutional neural network models.

Weight layer

Weight layer

ReLu

+F (x) + x

F (x)

Figure 5: Schematic diagram of the residual block.
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optimized NIN (layer 20) act as the comparison network
models. GAP+ SoftMax is employed for all the mentioned
network model classifiers, and all network training employs
data input dimensions. *e preprocessing of the dataset, the
splitting of the training set, and the verification set comply
with literature [40]: the image size of the dataset is nor-
malized to 256× 256, 4 corners and the centre part are cut to
generate 5 images with a size of 224× 224, and the mirror
operation is performed to generate 10 training images on the
whole, from which the mean value of the training set image
is subtracted to obtain the training input data. In the present
study, appropriate weights and learning rates are manually
set to achieve initialization. *e training process starts from
the initial weight and learning rate and continues till the
accuracy of the training set stops enhancing, and then the
learning rate reduces to one-tenth of the original. *is
process is repeated five times. *e weight of the model is
updated with the stochastic gradient descent method, and
the initial learning rate is 0.01.

5.1. Vehicle Type Recognition Performance. After repeated
training of several models, the classification accuracy rate
and the number of iterations reached initially are deter-
mined from the Stanford Cars sample data, as listed in
Table 2.

*e optimized NIN has the original MLPConv of NIN.
*e nonlinear features of the image can be approximated
through “micronetwork” structure, so the optimized NIN
has fast convergence. By replacing the large convolution
kernel of the original NIN with the small convolution kernel,
the optimized NIN has deeper layers than the original NIN.
*e computational effect of multiple 3 × 3 convolution
kernels is equivalent to that of a 5 × 5 convolution kernel.
Using this conversion, all the large convolution kernels of
the original NIN are replaced by 3 × 3 small convolution
kernels, which increases the convolution layers of the NIN
and enhances the network performance. *e residuals are
deployed on the NIN structure to avoid the loss of gradient
and restrain the degradation of network performance. It can
be found from Table 2 that the number of iterations of NIN
in each iteration process is less than that of VGG and

GoogLeNet, which indicates that the convergence speed of
NIN is quicker than that of VGG and GoogLeNet. However,
at the end of the experiment, the recognition accuracy of
NIN did not exceed that of VGG and GoogLeNet, even if the
NIN trained too many iterations. However, the optimized
NIN keeps good convergence because the “micronetwork”
structure can extract the nonlinear features of the auto-
mobile image. In addition, the optimized NIN solves the
problem of gradient weakening in the calculation process by
the residual layout and strengthens the feature map for
subsequent calculation.*erefore, the optimized NINmodel
outperforms VGG and GoogLeNet in accuracy and con-
vergence speed, and the final vehicle type recognition ac-
curacy reaches 97.2%.

5.2. Vehicle Feature Extraction Capability. VGG19 and
GoogLeNet only consist of linear perception layer and only
extract linear features [41–45] of vehicles, while NIN and
optimized NIN contain multilayer perception layer, which
can capture nonlinear features of vehicles. Figure 4 draws the
comparison of feature maps of feature extraction of vehicle
images after training of several network models.
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Figure 6: ResNet network structure and optimized NIN structure.
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In Figure 4, Column Conv1 presents the effect of feature
map extraction of the three networks after the first con-
volution kernel operation, column Pool1 refers to the effect
of the first pooling layer processing, and column Conv2
represents the sixth-layer convolution calculation results of
VGG19 and the third inception structure processing result
of GoogLeNet, as well as the second MLPConv processing
result of NIN. As revealed from the figure, the ability of the
optimized NIN model to extract feature map reaches over
those of VGG and GoogLeNet.

5.3. Convergence Effect of Optimized NIN. *e experimental
data of NIN, VGG19, GoogLeNet, and the optimized NIN in
the first 3000 iterations of the third experiment are inter-
cepted, and the training error curves of the sample data of
the four networks are plotted (Figure 7).

Figure 7 suggests that the recognition training error of the
optimized NIN in the training process is significantly lower
than that of the other three networks. In the vicinity of 1300
iterations, the training error of the optimized NIN model did
not continue to decrease. We reduce the learning rate of the
models participating in the comparison to one-tenth of the
original. Each model continued to learn according to the new
learning rate, and the training error had a cliff drop in this case,
which improves the training speed. In the 3000th iteration, it
drops to 19.6%, while the error rate of NIN, VGG19, and
GoogLeNet reduces to 31.2%, 28.9%, and 24.6%, respectively.
*is also indicates that the optimized NIN exhibits good
convergence and accelerates the training speed of vehicle
license plate recognition.

6. Conclusions

In the present study, the structure and vital components of
NIN are analysed, and it is verified that the NIN embedded
micronetwork can efficiently extract the nonlinear features
of vehicle images, and GAP avoids the overfitting of models
and can regularize operation; besides, 1 × 1 small convo-
lution conducts the dimensionality reduction of feature
maps, downregulating the number of model parameters.
Based on the NIN, a novel vehicle type recognition algo-
rithm is built by changing the size and layout of the con-
volution kernel and using residual thought of NIN.
Subsequently, it is verified in the Stanford Cars dataset, and
the result reveals that the algorithm exhibits a better vehicle
type recognition performance and higher recognition ac-
curacy that reaches 97.2%. However, the optimized NIN also
has shortcomings. First, in the same local receptive field, the
large convolution kernel can be replaced by the small
convolution kernel. Although the small convolution kernel
operation reduces the number of variables compared with
the large convolution kernel operation, the training time is
greatly improved, and the efficiency is reduced. Second, the
strategy of optimizing NIN is to deepen the network level. To
some extent, the application of residual can solve the
problem of gradient vanishing and restrain the degradation
of network performance. Whether this network perfor-
mance improvement method can support the further

increase of network depth remains to be studied, which also
points out the direction for our future work.

Data Availability

*e authors used the vehicle dataset provided by Stanford
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In recent years, while extensive researches on various networks properties have been proposed and accomplished, little has been
proposed and done on network robustness and node vulnerability assessment under cascades in directed large-scale online
community networks. In essential, an online directed social network is a group-centered and information spread-dominated
online platform which is very different from the traditional undirected social network. Some further research studies have
indicated that the online social network has high robustness to random removals of nodes but fails to the intentional attacks,
particularly to those attacks based on node betweenness or node directed coefficient. To explore on the robustness of directed
social network, in this article, we have proposed two novel node centralities of ITG (information transfer gain-based probability
clustering coefficient) and IMp(v) (directed path-based node importance centrality). 'ese two new centrality models are
designed to capture this cascading effect in directed online social networks. Furthermore, we also propose a new and highly
efficient computingmethod based on iterations for IMp(v).'en, with the abundant experiments on the synthetic signed network
and real-life networks derived from directed online social media and directed human mobile phone calling network, it has been
proved that our ITG and IMp(v) based on directed social network robustness and node vulnerability assessment method is more
accurate, efficient, and faster than several traditional centrality methods such as degree and betweenness. And we also have
proposed the solid reasoning and proof process of iteration times k in computation of IMp(v). To the best knowledge of us, our
research has drawn some new light on the leading edge of robustness on the directed social network.

1. Introduction

With rapid increasing online social network, the network
structure of online social networks has become more
complicated than before. Analysis and explaining the dy-
namics and properties of social networks has become an
interesting researching task with plenty of applications in
social sciences and many other web application scripts. In
some social networks, it is very common for some users who
decide to leave the network or begin to stop being active in
the activities of their community [1]. 'is phenomenon is
also called as quitting or churn and has absorbed much
research attention in social networks. And how to analyze
and evaluate network robustness and resilience [2–4] after

node departure or removal [5] has always been the hot
research points [2, 6] in the last decade. And online social
network has been classified as a scale-free network for
demonstrating the power-law [7] distribution of degree by
many famous complex network scientists [4, 8].

Some recent research results have also told us that
network nodes which have a large betweenness [8] value are
closely related to swift information and material dissemi-
nation in a graph [9, 10] which is useful for quick network
robustness and node vulnerability assessment. Because the
traditional network robustness and node vulnerability as-
sessment theories are based on undirected and nonweighted
networks, it is necessary to research on the relationship of
resilience of directed social network after node departure
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and the latest found rules of complex network which can be
found in Figure 1 for Toy example. And it would be helpful
to find some new discipline and cast new light on robustness
and vulnerability assessment of directed social network.

In detail, our contributions are as follows:

(1) Basing on classic probability graph theory and
clustering coefficient definition, we have proposed
two new node centralities named ITG (information
transfer gain) and IMp(v) (directed node impor-
tance). It can be used to measure the robustness and
vulnerability in directed networks especially directed
social networks which have been seldom tested
before.

(2) We have proposed enough experiment results on
undirected artificial networks and directed online
social networks to make robustness assessment
comparison of ITG and IMp(v), which was men-
tioned scarcely in former-related works.

(3) Our ITG- and IMp(v)-based centrality has been
proved to be more accurate, efficient, and faster than
classical centrality methods such as degree and be-
tweenness with sufficient experiments results for
node robustness assessment in directed social
networks.

(4) We have firstly proposed a new rigorous proving
process of directed node importance centrality
IMp(v) and its implementation method. We have
found that, in the more densely connected directed
social network, the IMp(v) node removal strategy is
the most harmful to the network connecting
structure. And to the best knowledge of us, we attain
the varying trend of iteration times k to the marginal
difference ε on directed social networks for the first
time based on strict mathematical proof.

'e outline of the paper is as follows: Section 2 introduces
the related work on robustness and resilience of scale-free
network which includes some traditional complex network and
social network. Section 3 presents the definitions of network
structure quantities which we used to evaluate the robustness
and vulnerability of network datasets. And our novel ITG- and
IMp(v)-based directed node centrality will be introduced.
Section 4 proposes the experiments results in synthetic signed
network and real-life large networks derived from directed
online social media and directed human mobile phone calling
network with former undirected node centrality measures and
our directed ITG centrality measure and IMp(v). Section 5
gives the final conclusion of this article and draws some new
light on the future work.

2. Related Work on Network Robustness

'ere have been many important research studies on vul-
nerability assessment and robustness assessment in network
structures [11, 12] after node departure or network attack
and other significant research areas.

'e robustness of ER random network and BA scale-free
network was analyzed firstly by Albert [13] in 2000. He used

the multiple correlation relationship data of l−1 (inverse
geodesic length), S (size of the largest connected subgraph),
and removed node ration under node attack to make vul-
nerability and robustness assessment. He discovered that
collapse of scale-free networkmay reach a high price because
of the selection and removal of a few nodes which play an
important role in maintaining the connectivity of network.

Also, in 2000, Cohen and Callaway [10, 14] observed that
real networks demonstrating power-law degree distribution
are robust against random node removal but easy to crash in
case of attacks to high-degree nodes.

Holme et al. [8] used four different removal strategies which
will be introduced in Section 4 in 2002, and he found details of
the response of networks according to these attacks on vertices
and edges. Holme and his research team observed that the
removals by the recalculated degrees and betweenness cen-
tralities are alwaysmore harmful than the attack strategies based
on degrees and betweenness centralities of the initial network.
But they only use one real communication network and did not
propose some application points.

'en, some researchers have discovered a few valuable
results on directed networks. Xu andWang [6] have done some
experiments on the cascading crash on weighted complex
networks in 2008.Newman andGhoshal [2] found that removal
of some special single node in the network may cause the
bicomponents in the graph to be disconnected.

Malliaros and Vazirgiannis [4] proposed a model to
capture this cascading effect node departure of social net-
work, based on engagement dynamics of social networks in
2015. Fragkiskos introduced a new concept of robustness
assessment method under cascades triggered by the quitting
of nodes based on their engagement level. His results in-
dicated that social networks are very robust and strong
under cascades triggered by randomly selected nodes but
highly vulnerable in cascades caused by targeted departures
of nodes with high engagement level.

In 2016, Gao et al. [10] developed a set of analytical tools
with which to identify the natural control and state parameters
of a multidimensional complex system for stimulation, and it
can attain effective one-dimensional dynamics that can accu-
rately predict the system’s resilience. 'eir proposed analytical
framework tool can systematically separate the roles of the
system’s dynamics and topology, collapsing the behavior of
different networks onto a single universal resilience function.

But in the related research mentioned above, these re-
searchers did not model on the information transfer process
of directed social networks and cannot fulfill the network
robustness and vulnerability assessment requirement of
directed social networks nowadays, and it needs to construct
some newmodel andmethods to bridge the requirement gap
in some efficient ways.

3. Definitions of Network Structure Quantities
and Node Centrality Measures

In a scale-free network which includes undirected and di-
rected ones, after some very important nodes are inten-
tionally selected and removed, the network would suffer a
serious collapse. It is necessary to research on the network
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resilience in directed networks, so we adopted three key
performance quantitative indicators and some famous
centralities indicators to make robust assessment of simu-
lated and real networks.

3.1. Network Structure Quantitative Indicator Definition.
In this paper, we used two types of network which are
undirected and directed networks. On the one hand, for the
undirected networks, the network model is unweighted and
undirected, which can be demonstrated as G � (V, E). V is
the set of nodes with number N � |V|, and E is the set of
edges with number L � |E|. On the other hand, the directed
network model is always defined as G

→
� (V, E) with each

edge having its own weight and direction to supply the
directed vivid information and material spreading.

3.1.1. Average Inverse Geodesic Length. In an undirected
network, average inverse geodesic length l is the important
network structure quantities after node failure. And in the
directed network especially in social networks, the average
inverse geodesic length l can be calculated by removal of the
direction of edges:

l ≡ 〈d(v, w)〉 ≡ 􏽘
v∈V

􏽘
w≠ v∈V

d(v, w). (1)

In formula (1), d(v, w) stands for the geodesic path
length between different nodes v and w. In traditional social
networks of human relationship which is a small-world

network, l is always around 6. In the new social networks
such as Twitter and Facebook, it would decline to 4 which
has been proved by Robert and Sebastiano in Laboratory for
web algorithm [15] in 2015. After some nodes are removed, if
there is no path between nodes v and w, d(v, w) would reach
+∞. And there is another length quantity l−1 instead of l:

l
−1 ≡ 〈d(v, w)〉 ≡

1
N(N − 1)

􏽘
v∈V

􏽘
w≠ v∈V

1
d(v, w)

. (2)

'e value of 1/d(v, w) is zero where there does not exist
path from node v to node w.

3.1.2. Network Average Cluster Coefficient. In most network
models, the node cluster coefficient Ci reflects the density of
connection around some focus nodes. In the whole network,
the network average cluster coefficient CG�(V,E) demon-
strates the macroscopically cluster characteristics of the
whole network to reveal the density of links among neighbor
nodes and the cluster coefficient of node can be found in the
following formula:

Ci �
2Ei

ki ki − 1( 􏼁
, (3)

where ki stands for stands for the neighbor node number of
node i and Ei stands for the actual number of existing links
among neighbor nodes of node i. Network average cluster
coefficient can be found in the following formula:

Current node centralities for network robustness
and node vulnerability assessment

In this article, we proposed two directed node centralities

Seldom focus on
directed network

ITG (Information transfer gain-based node centrality)
Betweeness centrality

Pagerank centrality

Degree centrality

In short of node centralities for directed network
robustness assessmentnetwork

Directed path-based node
importance centrality

Experimental dataset

Artificial simulationnetwork

 Undirected network
Directed network

Real social network

Undirected network modeling Directed network modeling

Experimental results of calculation iteration timesExperimental results of network structure quantities
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PR (A) = (1 – d) + d (PR (t1)/C (t1) +…
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Figure 1: Toy example figure.
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CG�(V,E) ≡
1
N

􏽘

N

vi ∈V,i�1

2Ei

ki ki − 1( 􏼁
. (4)

3.1.3. Relative Size of Largest Connected Subgraph. In some
disconnected large networks, there would exist some sep-
arated subgraphs and cannot connect to each other. Size of
the largest connected subgraph is also called the node
number of the largest connected subgraph in the whole
graph which is important to reveal inner connectivity
characteristics of graph. In the real network, it can assume
that if the connected subgraphs set are
g1, g2, g3, g4, . . . . . . , gn in G � (V, E), then definition of the
relative size of the largest connected subgraph can be found
in the following formula:

S �
Max Vg1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, Vg2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, Vg3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, . . . . . . , Vgn

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛

|V|
.

(5)

3.2. Node Centrality Measures. In network, there are many
node centrality measures to calculate the importance of node
and each node has its own status and influence to its
neighbors. Particularly, in the social relations network, it can
demonstrate the relations among nodes. Based on node
centrality measures, they can be used to analyze the closeness
in the each other dependent relations between different
nodes. Furthermore, node centrality measures can be used to
calculate the role and graph position of every node for
information dissemination influence analysis and other
advancing applications [16–21]. Among these researches,
node centrality is always the focus of analysis and research
results of social network researchers [22] to find the role and
status of node. Among these well-known node centralities,
we have chosen three most common node centrality sta-
tistics and proposed two new node centrality measures
which can be found as follows.

3.2.1. Betweenness Centrality. Betweenness is a very famous
and vital node centrality measure in network statistics
computing. Its detailed definition is as follows: in graph G, if
there exists a path between every node vi and vj while
∀vi, vj ∈ V, G is a connected graph and there must be a
shortest graph to connect vi and vj which is always called the
geodesic path. 'us, we can use the assuming shortest paths
number between two vertices to quantify the importance of a
vertex or an edge in terms of its betweenness centrality [23]
which can be found in the following formula:

Bu � 􏽘
i,j

σ(i, u, j)

σ(i, j)
. (6)

In formula (6), σ(i, u, j) is the number of shortest paths
between vertices vi and vj that pass through vertex u and
σ(i, j) is the total number of shortest paths between nodes vi

and vj.

3.2.2. PageRank Centrality. PageRank is a typical link
analysis centrality measure invented by Larry Page in 1997
with the purpose of “calculating” its relative importance
within the linking data set. And PageRank also can be ap-
plied to calculate node centrality. 'e simple definition of
PageRank can be found in formula (7). In our calculation,
damping factor d equals 0.85 as a constant value. 'e cal-
culation formula of PageRank is as follows.

When page number increases and the damping factor is
used to recalculate the PageRank mark of every page,
damping factor stands for the real mark when one page is
linked to the other page with the range from zero to 1. In our
calculation, the damping factor value equals 0.85 as a
constant value. 'e calculation formula of PageRank is as
follows:

PR(A) � (1 − d) + d
PR t1( 􏼁

C t1( 􏼁
+ · · · +

PR tn( 􏼁

C tn( 􏼁
􏼠 􏼡. (7)

In formula (7), PR(t1) stands for PR (PageRank) marks
in which t1 brings to page A (t1 is linked to A). In the same
way, C(t1) stands for pages which are linked to page t1.

3.2.3. Degree Centrality. In social network, the degree
centrality is that central users have the most ties to other
actors in the network. If the central user is more powerful
and influential in the connecting network, it will have much
more links to other users including in and out links. 'e
number of adjacent edges a node has is defined as a degree.
In graph G, if the degree of node vi is deg(vi) and the total
degree of nodes in the graph is 􏽐vi∈Vdeg(vi), the degree
centrality of node vi is D(vi) which defined in as follows [24]:

D vi( 􏼁 �
deg vi( 􏼁

􏽐vi∈Vdeg vi( 􏼁
. (8)

From the definition above in formula (8), it can be found
that node degree centrality expressed the ratio of degree of
the node u to the total degree in the whole graph and some
nodes with a higher degree centrality reflect that this node
may have some powerful role linking to other node in the
network and it may be the most vital person living in the
focus of attention.

3.2.4. Directed Path-Based Node Importance Centrality.
With the rapid development of information technology, our
life is becoming more and more networked. 'e graph
information is closely related to our daily life, such as the
directed WeChat relation network and directed Facebook
relation network with such complex structures. And most
important of all is that the scale of these graphs is enormous
and it is hard to handle these so complex and massive
graphs. In a directed graph network, how to quantitatively
analyze and calculate the importance of each vertex has
become an important problem to be solved urgently for
those directed graph networks, while they all have some
common features [25, 26]. Among these statistical indicators
for directed graph networks, directed path-based directed
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node importance centrality has become more prominent for
its easy and fast calculation.

In the directed graph network G, if there exists a path
ei � (vi, vj) between nodes vi and vj, directed path-based
directed node importance centrality of node vj can be
expressed by the paths across node vj. 'e more the across
paths are, the more important the node vj is. Directed path-
based node importance centrality IMp(v) of node v has been
posed in the famous book with the name “Computer Science
'eory for the Information Age” by John Hopcroft and
Kannan [27], but this book did not demonstrate some fast
and efficient computing methods of IMp(v) which we have
found in formula (9). And definition of directed path-based
node importance centrality IMp(v) of node v can be found
in formula as follows:

IMp(v) � Ip(v) + Op(v) � 􏽘
u∈I(v)

Ip(u) + 􏽘
u∈O(v)

Op(u).

(9)

In formula (9), Ip(v) stands for the directed paths
number which finally ends in node v where
I(v) � v|(u, v) ∈ E{ } and Op(v) stands for the directed paths
number which starts from node v where O(v) � v|(u, v) ∈ E.
Basing on formula (9), we can calculate the IMp(v) of nodes
in directed networks when we solve two critical problems
first. One problem is that, in complex structured graphs with
huge number nodes, the time complexity of the iterative
calculation will be very high and the other problem is that
the convergence of the calculation process of formula (9)
cannot be reached if we do not use some approximate
calculation methods.

For Ip(v) � 􏽐u∈I(v)Ip(u) in formula (9), it can be
converted to iterative computation in the following formula:

Ip(v)k � 􏽘
u∈I(v)

Ip(u)k−1. (10)

In formula (10), Ip(v)k stands for the kth iteration cal-
culation result, and for any node v, the initial value of Ip(v)k

is Ip(v)0 � 1. For the reason that computation of formula
(10) cannot converge by its diverging computation process,
the iterative results of formula (10) need to be standardized
in formula (11a) in which α is the damping factor with the
value range of 0< α< 1 just like the damping factor in the
PageRank computation model:

Ip(v)k � (1 − α) + α ·
􏽐u∈I(v)Ip(u)k−1

���������������

􏽐u∈I(v) Ip(u)k−1􏼐 􏼑
2

􏽱 . (11a)

For the similar computation principle, the standardized
form of Op(v) in formula (9) can be written as follows:

Op(v)k � (1 − α) + α ·
􏽐u∈I(v)Op(u)k−1

����������������

􏽐u∈I(v) Op(u)k−1􏼐 􏼑
2

􏽱 . (11b)

In computation of formulas (11a) and (11b), we can use
M to stand for the adjacency matrix of directed graph
network G and Ip to stand for the vector composed by all the
Ip(v) values of the node set v ∈ V in G while |v| � n. And Ip

can be expressed by Ip � [Ip(v1), Ip(v2), . . . , Ip(vn)]T, while
formula (11a) can be changed as follows:

Ip � (1 − α) · I + α ·
M · Ip

M · Ip

�����

�����
. (12a)

In formula (12a), I � [1, 1, . . . , 1]T and Ip can be ini-
tialized to Ip � I. For the similar computation principle,
formula (11b) can be changed as follows:

Op � (1 − α) · I + α ·
M · Op

M · Op

�����

�����
. (12b)

By using formulas (12a) and (12b), the computation of
directed path-based node importance centrality IMp(v) of
node v can be transferred to the computation of adjacency
matrix M of directed graph network G with great pro-
motion. Furthermore, we will demonstrate the whole proof
process which using the Power Iteration 'eory [28] to
prove that formulas (12a) and (12b) can converge to a
definite vector by finite times of computations. For the
adjacency matrix M � (mij) ∈ Rn∗n of directed graph
network G, it has the eigenvalue set of λ1, . . . , λn(λi ∈ R),
while λ1 > |λ2|≥ · · · ≥ |λn| and λ1 � 1. At the same time,
Mxi � λixi and eigenvectors set ⟶xi

(i � 1, . . . , n) can
satisfy that ⟶xi

· ⟶xj
� 0 (i≠ j).

We can assure that y(0) � 􏽐
n
i�0 cixi and y(k) can

be expressed as y(k) � 􏽐
n
i�0 ciλ

k
i xi.

Here, [y(0), y(1), . . . , y(k)] can be used to replace Ip �

[Ip(v1), Ip(v2), . . . , Ip(vn)]T or Op � [Op(v1), Op(v2),

. . . , Op(vn)] for formulas (11a) and (11b).
For y(i) ∈ y(0), y(1), . . . , y(k)􏼈 􏼉, 0≤ i< k,

y
(k+1)

− y
(k)

�����

����� � 􏽘
n

i�1
ciλ

k+1
i xi − 􏽘

n

i�1
ciλ

k
i xi

���������

���������
� 􏽘

n

i�2
ciλ

k
i λi − 1( 􏼁xi

���������

���������

≤ 􏽘

n

i�2
ciλ

k
i λi − 1( 􏼁xi

�����

�����≤ (n − 1)|c|max λ2 − 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
k

xi

����
����max≤ a λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
k
,

(13a)
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where a> 0, a � (n − 1)|c|max|λ2 − 1|‖xi‖max. We can also prove that the iteration times k (k � [1, N] of
computation for ‖yk+1 − yk‖) are around a constant level
value in the following formula:

∀ y
(k+1)

− y
(k)

�����

�����< ε⟹ a λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
k < ε(0< ε< 1)⟹ k log λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< log ε − log a⟹ k>

log ε − log a

log λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
. (13b)

And the constant level value of k is

k> η log ε + β η< 0, η �
1

log λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, β � −

log a

log λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡. (13c)

3.2.5. ITG-Based Directed Node Centrality. In most actual
social networks such as Twitter, Facebook, and WeChat, the
two friends of someone can be friends with each other. And
this phenomenon can be found in both undirected networks
and directed networks. So this attribute of social networks
sometimes is called the clustering characteristic of network
[7]. Network average clustering coefficient reflects the mi-
croscopically clustering characteristic of network and has
become the very important measure of adjacent nodes which
are connected closely. 'e definition of network node
clustering coefficient can be found in Section 3.1.2. Based on
the classic probabilistic graphical model (PGM) theory from
Turing Award Owner Pearl [29], we have made a detailed
research on directed node influence clustering coefficient
[30] to propose a new vector influence clustering coefficient
model with both information propagation direction and
information propagation probability. 'e new vector in-
fluence clustering coefficient model starts from the two basic
directed triple forms of vertex i in the directed graph which
can be found in Figure 2.

Basing on deducting from Figures 2(a) and 2(b), we can
get the related edge information propagation probability and
direction of different two types including 36 subgraphs of all
different triples [30]. And then we can calculate all numerical
values of directed ITG node centrality in directed social
networks in all kinds of situations by the following formula:

􏽘 ITG
i⟷j

� ITG
i⟷j

+ ITG
i⟷k⟷j

� ITG
i⟷j

+ ITG
i⟷k

+ ITG
k⟷j

, (14)

􏽘 ITG
i⟷k

� ITG
i⟷k

+ ITG
i⟷j

+ ITG
j⟷k

. (15)

Because there are three possible directional statuses for
each edge in Figures 2(a) and 2(b), the adjacent edge of node
i has three different definitions, which are friends rela-
tionship (i⟷ j), following relationship (i⟶ j), and fan
relationship (i⟵ j). At the same time, the opposite edge
i⟷ k of node i also has three definitions. Furthermore, the
edge j⟷ k has three types of relationships, in which node j

and node k are friends, node j follows node k, and node k

follows node j. We can use 0, 1, and 2 to stand for the
relationships and substitute the three different definitions,
and we obtain the following 27 arrangements in Table 1 [30].

In the above 27 arrangement cases, because node i is the
source node, we can find some symmetry results, and finally,
we can get 15 independent results. And the ITG-based di-
rected node centrality value from information transfer gain
clustering coefficient (ITGC) of node i in a directed network
can be finally summed by the 15 different independent
results in formula (16) as follows:

ITGCi �
􏽐

15
t�1ITGi triangle(t) × Number(t)

􏽐
6
t′�1 ITGi triple t′( 􏼁 × Number t′( 􏼁

. (16)

ITGCi is the ITG value of node i in a directed network.
􏽐

15
t�1ITGi triangle(t) × Number(t) is the weighted number of

triangles which use node i as the top vertex (i.e., the in-
formation transfer source node), and its weight is the ITG
(information transfer gain) contribution ITGi triangle(t)

from the 15 different types of weighted triangles multiplied
by its counted number Number(t). 􏽐

6
t′�1 ITGi triple(t′) ×

Number(t′) is the weighted number of the triples using node
i as the top vertex; its weight is the weighted sum of the six
ITGi triple(t′) values of different types of triples multiplied
by its counted number Number(t′). Similar to undirected
clustering coefficients, ITGC has the same characteristic,
measuring the tightness of the graph to form tight
communities.

4. Experiments on Network
Robustness Assessment

4.1. Simulation of Node Failure Generation Method.
Basing on the importance and connectivity of different
nodes in the network, there are eight node attack strategies
[8] always chosen by researchers to evaluate network ro-
bustness such as follows:

(1) 'e ID removal strategy: the attack starting from the
node with the highest degree and node attack
strategy uses the initial node degree distribution.

(2) 'e IB removal strategy: the attack starting from the
node with the highest betweenness and node attack
strategy uses the initial node betweenness
distribution.

(3) 'e ITG removal strategy: the attack starting from
the node with the highest ITG centrality and node
attack strategy uses the initial node ITG centrality
distribution.

(4) 'e IMP removal strategy: the attack starting from
the node with the highest IMp(v) centrality and
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node attack strategy uses the initial node IMp(v)

centrality distribution.
(5) 'e RD removal strategy: using the recalculated node

degree distribution at every removal step.
(6) 'e RB removal strategy: using the recalculated node

betweenness at every step.
(7) 'e RTG removal strategy: using the recalculated

node ITG centrality distribution at every removal
step.

(8) 'e RIMP removal strategy: using the recalculated
node IMp(v) centrality distribution at every removal
step.

4.2. Experiment Result. Selection of typical and persuasive
dataset is very important to experiment results, and we
selected some classical undirected network and directed
network dataset including synthetic signed network and
real-life large networks used by Albert et al. [13] and Holme
et al. [8]. And these typical datasets can be used to validate
the network robustness and node vulnerability assessment in
undirected and directed networks.

From Figures 3 to 21, all the prominence in experiment
result which was created by ITG, RTG, IMP, and RIMP
strategies have be pointed out by red ellipses and text tag.
Based on these marks, we can easily find the more strong
effects by our proposed ITG and IMp(v) centralities.

4.2.1. Undirected Dataset and Experiment Results. In Ta-
ble 2, the network dataset includes the classical BA scale-free
network (a) proposed by Albert et al. [13] (generation pa-
rameter is m0 � 5, m � 4, pt � 0.8, and n � 490) and the
undirected call community [31] graph (b) from cellphone
calling records in one month in China of a southern city, the
LFR (Lancichinetti Fortunato Radicchi) [32] benchmark
network with generation parameter of N � 1000, kdegree � 2,
Cmin � 20, Cmax � 100, u � 0.3, and Cdegree � 1. For the
reason that the LFR benchmark has presented a much solid
testing dataset for algorithms and having good performance
from other dataset, we used LFR benchmark to generate
testing dataset having typical attributes compared with real
networks, such as real node degree distribution and het-
erogeneous distribution of community size. Because the
above networks are important undirected networks, the
three network datasets are chosen for our research.

Now we will give the brief introduction of vertical and
horizontal coordinates of the graph, in which the x-axis in
Figures 3 to 8 stands for the removed node ration (Nrm: the
number of removed nodes) to initial graph.'e y-axis stands
for the relative value of S and l−1 (the ration of S and l−1 after
every step of node removal to initial S and l−1 in the net-
work). Figures 7 and 11 consist of 400 calculated results each
in 200 networks generated by the four simulated node
generation mechanisms above to avoid random deviation
(every mechanism generated 50 fault nodes).

In calculation of ITG-based node coefficient in undi-
rected networks, all the information transfer gain probability
a between nodes i and j for undirected edges will be equal to
0.5 and we would calculate ITG node centrality coefficient of
each node and the whole graph.

4.2.2. Experiment Results Analysis for Undirected Dataset.
After processing and analyzing the experimental data above,
it can be clearly found in Figures 3, 5, and 7 that the influence
to l−1 is as follows:

(1) When the number of removed nodes is very small
that is to say when 0.0<Nrm/N< 0.005, it is the very

kj

i

(a)

kj

i

(b)

Figure 2: Two triple forms of vertex i in undirected graph.
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Figure 3: l−1&S result of BACSF.

Table 1: Permutation and combination of 27 conditions.

000 001 002 010 011 012 020 021 022
100 101 102 110 111 112 120 121 122
200 201 202 210 211 212 220 221 222
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early stage of collapse time by node removal of the six
different removal strategies and the l−1 curve falls
quickly to make the whole graph shrink with a high
speed.

(2) During the fall process of l−1, the RTG curve, RB
curve, and RD curve look like falling faster than other
three removal strategies.

(3) Among the six different curves of S, the curves of
ITG, IB, and ID are more likely a linear curve than
other ones, and the experimental result has shown
the correctness of ITG in its almost linear curve with
IB and ID.

In the common circumstances, the network will be more
denser while having the larger value. But in generally, the
value of network average cluster coefficient having a sudden
increase after the continuous decreasing trend would tell
that the node removal can make the network suddenly into
disconnected subnetworks. Besides that, Albert et al. [13]
and other researchers have also found that when the node
having a very high betweenness value leaves the network, it
may trigger the huge collapse in the whole network on the
system level with a sudden unpredicted speed. Figures 4, 6,
and 8 demonstrate the corresponding variation trend of
CG�(V,E):

(1) It can be also clearly found in Figures 4, 6, and 8 that,
among the six curves of S, the RTG, ITG, RB, and IB
removal strategies are more harmful than RD and ID
where in some datasets, the RTG removal strategy is
much more harmful than others such as in S and
CG�(V,E) curve of LFR in Figures 7 and 8.

(2) 'ere have been much more rises in ITG and IB
curves than other curves for the reason that it can
break the whole network into disconnected sub-
networks with much higher numbers. It has also
proved that our ITG node centrality is a very good
node centrality by the performance of curve S,
CG�(V,E), and l−1.

4.2.3. Directed Dataset and Experiment Results. Most social
networks are directed networks with directed edges such
as e-mail networks, twitter network, and calling record.
We selected some representative social network dataset in
Table 3. 'e OSLOM (a) dataset was provided by the open
source algorithm OSLOM [33] as an example dataset of
directed social networks. 'e subject reference (b) dataset
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Figure 4: CG�(V,E) result of BACSF.
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Figure 6: CG�(V,E) result of CallCommunity.
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was provided by the INFOMAP algorithm [34] which was
a subject reference network from the research of Physics,
Chemistry, Biology, and Ecology in 6,128 journals con-
nected by 6,434,916 citations. 'e SinaBlog Tweet (c)
dataset came from the tweeting message reposting chain
of one famous Chinese scholar in SinaBlog. 'e Calling
Record (d) dataset was provided by cellphone calling
records from another city in one month in China. All the
above datasets are typical directed social networks.

'e x-axis in Figures 9 to 16 stands for Nrm. 'e y-axis
stands for the relative value of S and l−1. Specially, all the
network datasets in Table 3 would be processed as undirected
graph in calculation of node betweenness and degree for IB, RB,
ID, and RD strategy besides ITG and IMp(v) strategy. But, all
the network datasets in Table 3 would be processed as directed
graph in calculation of ITG node centrality coefficient. For the
reason that there are only 40 nodes in subject reference (b)
dataset, we only calculated the top five nodes.

(1) Experiment Results of ITG with IMp(v) to IB, RB, ID,
and RD.

(2) Experiment Results Analysis for Directed Dataset of
ITG with IMp(v) to IB, RB, ID, and RD. Figures 9 to 16

display the experiment results on directed social network,
and we can find that the ITG, IMP, RTG, and RIMP
strategies have amplified their harm in directed networks:

(1) l−1 and S: ITG, IMP, RTG, and RIMP are most
harmful strategies, and the RIMP strategy is more
powerful than RTG especially in the late stage of
Figures 11, 13, and 15.

(2) CG�(V,E): among the six CG�(V,E) curves, the sudden
rises caused by IMP, ITG, and IB are much more
than the rises caused by other strategies where IMP is
the most, where in Figure 14, we used the Y-axis
logarithmic to show details more clear.'e influence
to CG�(V,E) approximately has shown that
RIMP > IMP > ITG> RTG > IB > RB > ID > RD.

(3) Especially in the sparse directed network of subject
reference, IMDP L−1, ITG L−1, RTG l−1, and RTG CC
curves in Figures 11 and 12 finally reached the finest
experiment result and caused the biggest cascade. In
Figures 13 and 14 of the SinaBlog Tweet network, the
RIMP L−1, RIMP CC, RTG l−1, RTG S, and RTG CC
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Figure 9: l−1&S result of OSLOM.
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Figure 10: CG�(V,E) result of OSLOM.
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curves are the best result of experiment to other
curves. In dense network of Calling Record, the
RIMP S, RIMP CC, RTG S, and RTG CC also showed
the power of IMp(v) and ITG node centrality by the
leading experiment values.

'en, we can summarize from Figures 3 to 16 that the
IMp(v)- and ITG-based strategies have good experiment
result in undirected and directed networks, and it has been
proved for its correctness.

(3) Directed Experiment Dataset of ITG to IMp(v). In this
part, we added two typical directed networks with much
nodes inside which can be found in Table 4.'e first one is the
DBLP directed network dataset which is a famous directed
heterogeneous information network that contains a dataset of
author-centric English literature in the field of computer
science with 14736 papers and 14475 authors [28]. We se-
lected the data related to the field of computer, including
database, data mining, artificial intelligence, and information
retrieval including titles of papers published in various fields,
authors who published more than five papers, abstracts of
papers, and conferences titles. 'e another directed network
dataset is the well-known ENRON e-mail network among
employees of ENRON company from May 11, 1999, to May
21, 2002 (http://www.cs.cmu.edu/∼/enron/). 'is ENRON
e-mail network is divided into small parts by time stamp in
each seven days, and the whole network is composed by 150
persons and 1526 emails among them [35, 36]. Its network
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Figure 12: CG�(V,E) result of subject reference.
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Figure 14: CG�(V,E) result of SinaBlog Tweet.
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Figure 16: CG�(V,E) result of Calling Record.
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structure clearly shows some important moments in the
company’s development, such as the company’s collapse and
the suicide of its former CEO. Dataset C is a Facebook dataset
which was collected from survey participants using Facebook
app. 'e dataset includes node features (profiles), circles, and
ego networks [37]. 'e Facebook dataset has been

anonymously processed by replacing the Facebook-internal
ids for each user with a new value.

(4) Experiment Results for Directed Dataset of ITG to
IMp(v).

Figures 17 and 18 display the experiment results of l−1 and
coefficient on directed social network DBLP and ENRON. For
the reason of the small scale of ENRON network dataset and
very little change in when deleting the top 50 nodes, we only
offered the l−1 and coefficient result of it.

It is obviously that, in these directed networks, the in-
fluence of IB, ITG, and IMp(v) has demonstrated a different
varying trend in the undirected networks from Table 1. 'e
computation of average inverse geodesic length l always
cause high computing costs, while it costs us about 2.4
billion times shortest path search in the dataset of Facebook
which has 4039 nodes and 88234 edges
(4000∗ 4000∗ 3∗ 50 � 2.4∗ 109) and its computation result
only canmake up the three curves of IB l−1, ITG l−1, and IMP
l−1.
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0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Nrm/N

C
oe

ffi
ci

en
t, 

L− 1

Vertex fault vulnerability of ENRON

Coefficient

IMP L−1 prominence start

L−1

IB L−1
IB coefficient
ITG L−1

ITG coefficient
IMP L−1
IMP coefficient

Figure 18: l−1$CG�(V,E) result of ENRON.
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Figure 19: l−1&CG�(V,E) result of Facebook.
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Figures 19 and 20 demonstrate the experiment results of
l−1 and coefficient on directed social network Facebook. In
order to demonstrate more details, the x-axis in Figure 20
used the logarithmic coordinates.

Figure 21 demonstrates the comparison result of it-
eration times in different datasets of Table 4 when
computing the directed path-based node importance
centrality IMp(v). By calculating formula
⟹ k> ((log ε − log a)/log|λ2|) (13b), we attain the varying
curve of iteration times k to the marginal difference ε,
while ε can be calculated by ε≥ ‖y(k+1) − y(k)‖. Further-
more, each largest eigenvalue value λ1 and second largest
eigenvalue value λ2 of dataset DBLP, ENRON, and
Facebook also can be computed.

(5) Experiment Results Analysis for Directed Dataset of
ITG to IMp(v). Figures 16 to 21 display the compared
experiment results of IB, ITG, and IMp(v) node removal
strategies on directed social networks. In addition, we ex-
plore the varying trend of iteration times k to the marginal
difference ε.

(1) Generally after analyzing the demonstrated data in
Figures 17 and 18, we can find that the influence of
node with high ITG values have the most harmful
effect to the l−1 in directed networks with low edge
density such as DBLP. But in directed networks with
high edge density such as ENRON, IB strategy and
ITG strategy are just like doing the same effect.

(2) But in the directed network Facebook with a more
higher edge density, we can find that the ITG node
removal strategy suddenly lost its magic and the
IMp(v) removal strategy does the best harmful effect
to the Facebook network, while the IB removal

strategy followed. And it maybe needs to be varied in
more densely connected directed social networks
such as Twitter and WeChat.

(3) In Figure 21, we can clearly find that the relationship
of k and ε. 'e more densely connected directed
network Facebook has the larger iteration times
number k. And in dataset Facebook, when ε is more
close to zero, iteration times rises to around twenty
which has shown high efficiency of our node IMp(v)

computing algorithm.

5. Conclusion

In this paper, we have proved new information transfer gain-
(ITG-) based probability clustering coefficient and directed
node importance centrality IMp(v) for measuring directed
graph. Our comparisons in the variation trend of some key
performance quantities of network robustness and node vul-
nerability assessment are useful and helpful. Comparison could
help us to capture this cascading effect in directed online social
networks. Experiments results showed that node RIMP and
RTG strategies are more harmful than node betweenness-based
strategies such as RB and IB in directed social networks in-
cluding real Sina Blogging and Calling Record network. With
sufficient experiments in synthetic signed networks and real
networks derived from directed online social media and di-
rected humanmobile phone calling network, it has been proved
that our ITG- and IMp(v)-based directed social network ro-
bustness and node vulnerability assessment method is more
accurate, efficient, and faster than several classical traditional
centrality methods such as degree and betweenness. Further-
more, we will carry out our ITG centrality on more types and
more large-scale directed social networks.

In addition, we propose a new proving process of directed
node importance centrality IMp(v) in Section 3.2.4. By rig-
orous mathematical derivation and approximate calculation, to
the best knowledge of us, we attain the varying trend of iteration
times k to the marginal difference ε on directed social networks
for the first time to our best knowledge.

Table 2: Undirected network dataset.

BACSF (a) Call Community (b) LFR (c)

Number of nodeN 490 284 1000
Number of link L 1892 3030 15384
Edge density (L/N) 3.8612 10.6690 15.3840
N: number of nodes; Kdegree: degree power-law distribution index; Cmin: minimum number of nodes; Cmax: maximum number of nodes; u: mix hybrid
parameter; Cdegree: community size power-law distribution index.

Table 3: Directed network dataset.

OSLOM (a) SubjectReference (b) SinaBlogTweet (c) CallingRecord (d)

Number of nodeN 301 40 1492 286
Number of link L 6234 306 1490 3934
EdgeDensity (L/N) 20.7110 7.6500 0.9987 13.7552

Table 4: Another directed network dataset.

DBLP (a) ENRON (b) Facebook (c)

Number of nodeN 14376 150 4039
Number of link L 14475 1526 88234
EdgeDensity (L/N) 1.0069 10.1733 21.8455
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+e explosion of multiomics data poses new challenges to existing data mining methods. Joint analysis of multiomics data can
make the best of the complementary information that is provided by different types of data. +erefore, they can more accurately
explore the biological mechanism of diseases. In this article, two forms of joint nonnegative matrix factorization based on the
sparse and graph Laplacian regularization (SG-jNMF) method are proposed. In the method, the graph regularization constraint
can preserve the local geometric structure of data. L2,1-norm regularization can enhance the sparsity among the rows and remove
redundant features in the data. First, SG-jNMF1 projects multiomics data into a common subspace and applies the multiomics
fusion characteristic matrix to mine the important information closely related to diseases. Second, multiomics data of the same
disease are mapped into the common sample space by SG-jNMF2, and the cluster structures are detected clearly. Experimental
results show that SG-jNMF can achieve significant improvement in sample clustering compared with existing joint analysis
frameworks. SG-jNMF also effectively integrates multiomics data to identify co-differentially expressed genes (Co-DEGs). SG-
jNMF provides an efficient integrative analysis method for mining the biological information hidden in heterogeneous
multiomics data.

1. Introduction

With the development of state-of-the-art sequencing tech-
nology, a large quantity of effective experimental data has
been collected. +ese data may imply some unknown mo-
lecular mechanisms. Bioinformatics is faced with the task of
analyzing massive omics data. +e Cancer Gene Atlas
(TCGA, https://tcgadata.nci.nih.gov/tcga/) includes gene
expression profile data (GE), DNA methylation data (DM),
copy number variation data (CNV), protein expression data,
and drug sensitivity data.+ese data are from approximately
15,000 clinical samples of more than 30 kinds of cancers [1].
+ese massive data enable researchers to study the mech-
anisms of cancer production, diagnosis, and treatment at
different biological levels.

+e joint analysis of multiomics data can make up for
lost or unreliable information in single omics data. In
recent years, scientists have performed considerable

research on the cancer mechanisms based on the joint
analysis of cancer multiomics data. For example, Christina
et al. integrated the gene expression data and copy number
variations of breast cancer, identified possible pathogenic
genes, and discovered new subtypes of breast cancer [2].
Wang and Wang used similarity network fusion to jointly
analyze mRNA, DM, and microRNA (miRNA) data and
identify cancer subtypes further [3]. In the existing joint
analysis methods, those based on matrix decomposition are
remarkable. Liu et al. integrated mRNA, somatic cell
mutation, DNA methylation, and copy number variation
data. +ey established a block constraint-based RPCA
model to identify differentially expressed genes (DEGs) [4].
Integration and analysis of these heterogeneous multiomics
data provide an in-depth understanding of the patho-
genesis of cancer and promote the development of preci-
sion medicine. Recently, unsupervised integrative methods
based onmatrix decomposition have attracted considerable
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attention among the existing methods for integrating and
analyzing multiomics data. Zhang et al. constructed a joint
matrix factorization framework (jNMF) to discover mul-
tidimensional modules of genomic data [5]. Yang and
Michailidis introduced a new method named integrative
NMF (iNMF) for heterogeneous multiomics data [6].
Strazar et al. incorporated orthogonality regularization into
iNMF (iONMF) to integrate and analyze multiple data
sources [7]. Joint nonnegative matrix decomposition meta-
analysis (jNMFMA) [8], multiomics factor analysis
(MOFA) [9], and Bayesian joint analysis [10] have been
successfully applied to the integration and analysis of
cancer omics data. To avoid the influence of redundant
information, many sparse modeling methods have been
proposed. Typical applications are as follows: +e weighted
sparse representation classifier (WSRC) model combined
with global coding (GE) [11] was used to predict inter-
actions between proteins based on protein sequence in-
formation. +e network regularization sparse logic
regression model (NSLR) [12] was used to predict survival
risk and discover biomarkers. Sparse coregularization
matrix decomposition was used to find mutant driver genes
and so on [13].

In recent years, graph/network-based analysis as a
powerful data representation tool has been applied to the
modeling and analysis of complex systems [14–17]. In
general, entities can be regarded as nodes, and the inter-
action between entities can be regarded as edges in the
graph. Graph-based approaches can explore the local
subspace structure and obtain the low-dimensional rep-
resentation of high-dimensional data. Zhang and Ma
proposed a subspace clustering algorithm based on a graph
to detect the common modules highly correlated with
cancer by jointly analyzing the gene expression and protein
interaction networks [18]. Mixed-norm Laplacian regu-
larized low-rank representation (MLLRR) was used to
cluster samples [19]. Cui proposed an improved graph-
based method to predict drug-target interactions [20]. Liu
et al. introduced the contributions of deep neural networks,
deep graph embedding, and graph neural networks along
with the opportunities and challenges they faced [21]. Wu
et al. proposed a multigraph learning algorithm called
gMGFL that search and choose a group of decision sub-
graphs as features to move bags and bag labels to the in-
stance [22].

Recently, sparse regularization has played a very im-
portant role in data analysis. +e L0-norm, L1-norm,
L2,1-norm, etc. are all typical sparse regularization methods.
Among these many sparse constraints, L2,1-norm regulari-
zation stands out in terms of computational time and
performance. +e L2,1-norm can obtain a sparse projection
matrix in rows to learn discriminative features in the sub-
space. Zhang used the L2,1-norm constraint on the coeffi-
cients to ensure that they are sparse in rows [23]. +e
L2,1-norm was applied to the predictor to ensure that it is
robust to noise and outliers [24].

Considering the role of graph regularizations and L2,1-
norm constraints in matrix factorization, we propose joint
nonnegative matrix factorization based on sparse and graph

Laplacian regularization (SG-jNMF). SG-jNMF can make
the best of the potential associations and complementary
information among multiomics data. +e main highlights of
this approach are as follows.

(1) Graph regularization is incorporated into the joint
nonnegative matrix factorization model, and undi-
rected graphs are constructed for input data in this
method. Local graph regularization can preserve the
local geometrical structure of the data space.
+erefore, SG-jNMF can use the low-dimensional
characteristics of the observed data to find intrinsic
laws and improve the performance of the integrated
analysis method.

(2) L2,1-norm regularization can deal with each row of
the matrix as a whole and can enhance the sparsity
among the rows. +erefore, involving the L2,1-norm
can remove redundant features and noise in the data
and further explore the clear cluster structure.

(3) Two forms of SG-jNMF are proposed. SG-jNMF1
projects multiomics data into a fusion feature
space. +e fusion matrix contains complementary
and differential information provided by multio-
mics data, so that more accurate results can be
obtained when identifying Co-DEGs. SG-jNMF2
projects multiomics data into a common sample
space, which results in more accurate clustering
results.

+e rest of this paper is arranged as follows: In Section 2,
we start with a brief review of jNMF. Next, we introduce the
SG-jNMFmethod, optimization process, and computational
complexity analysis. Section 3 gives out the experimental
results of clustering and feature selection. Finally, we
summarize the whole paper and give some suggestions for
future work in Section 4.

2. Materials and Methods

2.1. Joint Nonnegative Matrix Factorization. +e jNMF
method was first proposed by Zhang et al. [5]. It can project
multiple input data matrices into a common subspace, to
integrate the information of each input data for analysis.
Each type of genomic data as original data can be denoted
as XI ∈ RM×N(I � 1, 2, 3, . . .). W ∈ RM×K is the common
basis matrix, and HI ∈ RK×N is the corresponding coeffi-
cient matrix.+e objective function of jNMF can be written
as

min 􏽘
P

I�1
XI − WHI

����
����
2
F
,

s.t. W≥ 0, HI ≥ 0.

(1)

Obviously, jNMF is the same as NMF when P � 1.
+erefore, jNMF is the generalization model of NMF for
multiple input datasets. Similar to NMF, multiplicative
update rules are used to minimize the objective function. W

and HI are iteratively updated according to the following
rules.
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+e jNMF method can be used to integrate and analyze
multiomics data. It decomposes multiomics data matrices
into multiple independent coefficient matrices and a com-
mon fusion matrix at the same time and projects high-di-
mensional omics data into low-dimensional spaces.
+erefore, the abundant differential and complementary
information of cancer multiomics data can be efficiently
used, and multiomics datasets are analyzed simultaneously
to obtain hidden information with biological significance.

2.2. Joint Nonnegative Matrix Factorization Based on Sparse
and Graph Laplacian Regularization. Manifold learning has
become a popular research topic in the domain of infor-
mation science since it was first proposed in science in 2000
[25, 26]. Assuming that the data are uniformly sampled in a
high-dimensional space, manifold learning can find the low-
dimensional structure in the high-dimensional space and
obtain the corresponding embedding mapping. Manifold
learning looks for the essence of things from observed
phenomena and finds the internal laws of data.+emanifold
assumption states that data points that are geometrically
adjacent usually have similar characteristics. +erefore, an
undirected weighted network/graph G � (V; E; U) is con-
structed. V � 1, 2, . . . , P is the vertex set, E is the edge set,
and U is the weight set. Edge weight Uj,k(1≤ j≠ k≤ q) is
associated with edge(j, k) in E. +e graph regularization
with G is as follows:

􏽘
k

Rk � 􏽘
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T
k LVk � Tr V

T
LV􏼐 􏼑,

(4)

where Tr(·) is the trace of the matrix, L is the graph Lap-
lacian matrix, and L � D − U. D is a diagonal matrix and
Di,j � 􏽐jUi,j. Intuitively, the smaller the Rk value is, the
closer the two data points are. By minimizing Rk, we can
obtain a sufficiently smooth mapping function on the data
manifold.

To decrease the influence of noise and outliers on real
data, sparse regularization is usually used to penalize the
coefficient matrix. +e L0-norm, L1-norm, and L2,1-norm
are all typical sparse regularization methods. +e solution
of L0-norm is a NP-hard problem. L1-norm is widely used
because it has better optimization solution characteristics
than L0-norm. L1-norm will tend to produce a small
number of features, while the other features are all 0.
+erefore, it can be used for feature selection. However,
L1-norm regularization is usually time-consuming.
L2,1-norm regularization on the coefficient matrix can
generate a row sparse result, and the calculation of the
L2,1-norm is simple and convenient [23]. In this article, the
L2,1 penalty is incorporated in SG-jNMF [27]. +e
L2,1-norm of a matrix Z is defined as

‖Z‖2,1 � 􏽘

m

i�1

�����

􏽘

n

j�1
z
2
ij

􏽶
􏽴

� 􏽘

m

i�1
z

i
����

����2. (5)

2.2.1. SG-jNMF1. +ere are two forms of SG-jNMF
methods in this article. As shown in Figure 1, the SG-
jNMF1 method projects multiomics data into a common
feature space. Graph regularization and a sparse penalty
are applied to the fusion feature matrix. +e feature
matrix is constrained by graph regularization, and as

much intrinsic geometric information of the original
multiomics data are preserved as possible. +e L2,1-norm
is used to constrain the feature matrix to reduce the
influence of outliers and noise, and the objective function
of integrating nonnegative matrix decomposition is
constructed. +e optimization problem can be expressed
as

min􏽘
P

I�1
XI − WH

T
I

����
����
2
F

+ 􏽘
P

I�1
λITr WLI1W

T
􏼐 􏼑 + β‖W‖2,1,

s.t. W≥ 0, HI ≥ 0,

(6)
where LI1 is the Laplacian matrix. LI1 � DI1 − UI1, where
UI1 is a symmetric matrix, which is the weight matrix
constructed in graph regularization.DI1 is a diagonal matrix,
and its diagonal elements are equal to the sum of the cor-
responding row elements or the sum of the column elements
of the matrix; i.e., DI1ii � 􏽐

n
j�1(UI1ij).

With randomly positive initializing matrices Wand HI,
the following update rules are executed until the algorithm
converges:

Wia � Wia

􏽐
P
I�1 XIHI + λIUI1W( 􏼁􏼐 􏼑

ia

􏽐
P
I�1 HIH
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,
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T
I W

T
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HIW
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aj

,

(7)

where Q is a diagonal matrix, the diagonal element is
Qjj � 1/

������������
􏽐

m
i�1 (Wij) + ε

􏽱
, and ε is an infinitesimal positive

number.
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2.2.2. SG-jNMF2. As seen from Figure 1, the SG-jNMF2
method projects multiomics data into a common sample
space. Constraints are enforced on the common sample
matrix. +is method can be used to cluster multiomics data.
+e model can be shown by the following expression:

min􏽘
P

I�1
XI − WIH

T
����

����
2
F

+ 􏽘

P

I�1
λITr H

T
LI2H􏼐 􏼑 + β‖H‖2,1,

s.t. WI ≥ 0, H≥ 0.

(8)

Similarly, the algorithm iterates until it converges
according to the following rules:

WIia � WIia

XIH( 􏼁ia

WIH
T
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,
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aj

,

(9)

where LI2 is the Laplacian matrix. LI2 � DI2 − UI2, where
UI2is a symmetric matrix, which is the weight matrix
constructed in graph regularization.DI2 is a diagonal matrix,
and its diagonal elements are equal to the sum of the cor-
responding row elements or the sum of the column elements
of the matrix; i.e., DI2ii � 􏽐

n
j�1(UI2ij). B is a diagonal matrix,

and the diagonal element is Bjj � 1/
������������
􏽐

m
i�1 (Wij) + ε

􏽱
. Ob-

viously, the objective functions of the two kinds of SG-jNMF
method are both nonconvex. We can obtain the optimal
solutions by minimizing the objective functions. +e opti-
mization process is shown as follows.

2.3. Optimization of SG-jNMF. Since the optimization
processes of the two forms of SG-jNMF method are very
similar, we only provide that of the first method. We use the
multivariable alternating update rules to solve the optimi-
zation problem. Specifically, the following update steps are
repeated until the algorithm converges.

2.3.1. Optimization of W. When HI is fixed, the optimi-
zation of W is performed by minimizing the following
objective function:
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+e corresponding Lagrangian function is as follows:
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T
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+ Tr(ΦW) + Tr ΨH
T
I􏼐 􏼑,

(11)

whereΦ � [ϕil] andΨ � [ψIa] are the Lagrangian multipliers
of Wand HI, respectively. Next, we take the first partial
derivative of this Lagrangian function with respect to W:

zl

zW
� 􏽘

P

I�1
−2XHI + 2WH

T
I HI + 2λILI1W􏽨 􏽩 + 2βQW +Φ.

(12)

According to the KKT conditions [28], the following
updating rule can be obtained:

Wia � Wia

􏽐
P
I�1 XIHI + λIUI1W( 􏼁􏼐 􏼑

ia

􏽐
P
I�1 HIH

T
I W + λIDI1W( 􏼁 + βQW􏼐 􏼑

ia

. (13)

2.3.2. Optimization of HI. When W is fixed, the optimi-
zation of HI is performed by minimizing the following
objective function.
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Figure 1: Framework of SG-jNMF.
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+e corresponding Lagrangian function is as follows:
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and HI runs to convergence according to the following
formula:

HIaj � HIaj

X
T
I W

T
􏼐 􏼑

aj

HIW
T
W􏼐 􏼑

aj

. (16)

2.4. Convergence and Running Time. In this paper, we also
demonstrate the convergence of the method through ex-
periments. Taking the pancreatic adenocarcinoma (PAAD)
dataset as an example, the convergence of the five methods is
shown in Figure 2. +e error function used in this article is
defined as follows:

Loss � 􏽘
P

I�1

XI − WH
T
I

����
����
2
F

XI

����
����
2
F

. (17)

Compared with the other four methods, SG-jNMF can
converge to the smallest error value with the fastest speed.

Besides, we also tested the running time of the above
methods on the PAAD dataset. +e means of these five
methods running 10 times on a PC are shown in Table 1. As
seen in Table 1, iGMFNA has the shortest running time,
followed by SG-jNMF. +is is due to the introduction of
sparse constraints in SG-jNMF. +e running time of iNMF,
iGMFNA, jNMF, and SG-jNMF methods is satisfactory.

2.5. Computational Complexity Analysis. In this part, we
discuss the extra computational complexity of SG-jNMF
compared to jNMF. We use big O symbol to represent the
computational complexity of the algorithm. On the basis of
the updating rules (3) and (4), we can easily count the
arithmetic operations of each iteration in jNMF. Obviously,
the cost for each iteration in jNMF is O(MNk). It should be
noted that UI is a sparse matrix for SG-jNMF. In addition to
the multiplicative updates, constructing a K-nearest
neighbor graph requires O(N2M) operations [28]. Assume
that the update stops after t iterations, and the overall cost
for jNMF is O(tMNk). +e overall cost for SG-jNMF is
O(N2M) + O(tPMNk).

3. Results and Discussion

3.1. Data Processing. TCGA project includes a lot of gene
expression profile data, DNA methylation data, copy
number variation data, protein expression data, drug sen-
sitivity data, and so on. In-depth study of these data can help

us to master the mechanism of cancer occurrence and de-
velopment and provide technical support for prevention,
diagnosis, and treatment of cancer. In this article, four
cancer datasets which are all downloaded from TCGA
(https://tcgadata.nci.nih.gov/tcga/), namely, PAAD, esoph-
ageal carcinoma (ESCA), cholangiocarcinoma (CHOL), and
colon adenocarcinoma (COAD), are used in these experi-
ments. Details are listed in Table 2. To avoid the matrix
dimension problem in algorithm execution, the number of
genes in the four datasets is aligned to 19,876. First, RPCA is
used to reduce the effects of noise and redundant infor-
mation [29]. Second, the same number of samples and
characteristics is retained for multiomics data of the same
kind of cancer. +en, the matrices are normalized according
to the standard deviation of the data such that each element
of the matrix is evaluated between 0 and 1.

3.2. Clustering. When SG-jNMF2 method projects multio-
mics data into a common sample space, it contains all the
sample information provided by the input multiomics data.
To assess the clustering performance of this method, SG-
jNMF2 is used to cluster the tumor samples on CHOL,
PAAD, COAD, and ESCA datasets. +ere are four methods
(iNMF, iONMF, iGMFNA, and jNMF) that perform the
same experiments on the same datasets.

3.2.1. Selection of Parameters. For SG-jNMF2, clustering
performance is affected by the regularization parameters. In
this experiment, we empirically set the same value for λI with
different omics data from the same cancer [30]. +erefore,
there are three parameters, λ, β, and K, that need to be
adjusted. λ is the graph regularization parameter, β controls
the sparsity of factorization, and K is the number of nodes in
the undirected graph constructed in the manifold. From
Figure 3, when K is set to 3, the accuracy on the four datasets
reaches a maximum. As seen from Figure 4, λ should be set
to 1,000 on PAAD. When λ is equal to 0.1, the accuracy on
COAD can achieve the maximum. When λ is equal to 10− 3,
10−5, and 1, the accuracy on CHOL can achieve the maxi-
mum. When λ is equal to 104, the accuracy on ESCA can
achieve the maximum. From Figure 5, when β is set from
10−5 to 101 for PAAD, the accuracy reaches the maximum.
For ESCA and COAD, β should be set from 104 to 105. For
CHOL, the value of β does not matter much.

3.2.2. Evaluation Indicators. Several indicators are used to
evaluate the clustering performance of SG-jNMF2: accuracy,
recall, precision, and F1-score. Accuracy is defined as

AC �
􏽐

N
j�1 δ sj,map rj􏼐 􏼑􏼐 􏼑

N
, (18)

where N is the total number of samples in the dataset and
δ(x, y) is a singular function.When x is equal to y, the value
of the function is equal to 1; otherwise, it is equal to 0.
map(rj) maps the clustering label rj to the real label sj. +e
other three indicators used to evaluate clustering perfor-
mance are defined as follows:
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Table 1: Running time on PAAD.

Methods Running times
iNMF 2.4261
iGMFNA 0.1312
jNMF 1.6311
iONMF 46.8843
SG-jNMF 0.5153
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Figure 2: Comparison of convergence of five methods on PAAD dataset.

Table 2: Overview of multiomics datasets.

Multiomics datasets Total number of samples Cancer samples Number of genes
PAAD (GE, ME, CNV) 180 176 19877
CHOL (GE, ME, CNV) 45 36 19876
ESCA (GE, ME, CNV) 192 183 19877
COAD (GE, ME, CNV) 281 262 22723
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Figure 3: Accuracy of SG-jNMF varies with K.
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precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 − score �
2

(1/recall) +(1/precision)
,

(19)

where TP means the number of true positives, FP is the
number of false positives, and FN denotes the number of
false negatives.

3.2.3. Results. In this experiment, each algorithm was run
fifty times to reduce the impact of random initialization on
the clustering results. We compared the accuracy, recall,

precision, and F1-score of the four methods with SG-
jNMF2. +e mean and variance in the results are shown in
Table 3. As seen in Table 3, SG-jNMF2 achieves the highest
values on the four indicators mentioned above, except the
recall value on the ESCA dataset.+e contributions of sparse
and graph regularization constraints of the algorithm are
listed in Table 4. Performance improvements are measured
by Δind � (Indi − Indj)/(Indj), where Indi is the indicator of
SG-jNMF and Indj is that of the comparison method. In
particular, sparse constraints improve accuracy by 49.70%,
and sparse and graph regularization constraints improve
accuracy by 78.87% on the PAAD dataset. Recall and F1-
score achieve more than 50% improvement on the CHOL
dataset. When sparse constraints are introduced, only the
recall on ESCA is reduced by 0.53%. +e results on other
datasets have also improved to varying degrees. In summary,
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Figure 4: Accuracy of SG-jNMF varies with λ.
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the performance of the integrated NMF in analyzing mul-
tiomics data greatly improves by introducing sparse con-
straints and graph regularization constraints.

3.3. Identifying Co-DEGs. First, three matrices (DM, GE, and
CNV of PAAD) are input into the SG-jNMF1 model and are
projected into a common feature space. Second, we sum the
common feature matrix in rows. Finally, we sort the elements in
the sum vector in descending order. +e top 100 genes are
selected as Co-DEGs. +ese 100 genes are compared with
pancreatic cancer genes exported from GeneCards (URL:http://
www.genecards.org). Co-DEGs with relevance scores above 4
are listed in Table 5. CDKN2A is frequently mutated or deleted
in many tumors. It plays an important role as a tumor sup-
pressor gene. Studies have shown that themutation of CDKN2A
is closely related to the development of pancreatic cancer in
families [31]. It is frequently seen in many tumors that mutation
and overexpression of CCDN1 can alter the process of the cell
cycle. Wang et al. identified pancreatitis-associated genes and

found that CCND1 was involved in the pathway of pancreatic
cancer [32]. Research on transcriptome sequencing shows that
PTF1A maintains the expression of genes in all cellular pro-
cesses. Deletion of PTF1A leads to an imbalance, cell damage,
and acinar metaplasia, which is directly related to the devel-
opment of pancreatic cancer [33]. Scientists have explored the
effects of GRP on human intestinal and pancreatic peptides.
+erefore, SG-jNMF1 can effectively integrate the information
of multiomics data to identify Co-DEGs closely related to the
disease.

We also use SG-jNMF1 to integrate three gene ex-
pression datasets from ESCA, CHOL, and COAD to identify
Co-DEGs associated with all three diseases. Partially Co-
DEGs and their relevance scores with ESCA, CHOL, and
COAD are shown in Table 6. +e relevance score of CHEK2
with ESCA is up to 77.66. Allelic variation in CHEK2 has a
strong relationship with the risk of esophageal cancer [34].
Relevance score of CHEK2 with COAD is 29.65. +e
germline variation in CHEK2 is also closely related to the

Table 3: Performance of different analysis methods.

Datasets iNMF iGMFNA jNMF iONMF SG-jNMF

Accuracy

PAAD 53.56 (0.00) 63.44 (3.05) 53.11 (0.01) 56.23 (0.72) 95.00 (0.00)
CHOL 90.22 (1.71) 97.33 (0.04) 93.78 (0.49) 90.04 (0.96) 99.11 (0.00)
ESCA 54.17 (0.00) 54.58 (0.00) 53.96 (0.00) 58.70 (1.46) 66.87 (0.01)
COAD 61.87 (0.01) 63.35 (0.02) 59.15 (0.09) 62.13 (0.22) 68.84 (0.01)

Recall

PAAD 51.47 (4.68) 58.07 (4.84) 53.34 (4.50) 48.44 (1.20) 67.33 (2.26)
CHOL 50.78 (2.01) 56.17 (1.84) 55.39 (2.04) 46.41 (1.49) 88.06 (0.47)
ESCA 50.98 (0.29) 51.31 (0.29) 48.86 (0.27) 51.13 (0.30) 51.04 (0.12)
COAD 49.34 (1.25) 49.15 (1.30) 49.65 (1.28) 46.73 (1.08) 56.18 (1.51)

Precision

PAAD 97.79 (0.05) 98.60 (0.04) 97.52 (0.05) 97.71 (0.05) 99.09 (0.01)
CHOL 58.55 (0.20) 62.21 (0.20) 63.36 (0.21) 60.54 (1.72) 91.00 (0.10)
ESCA 94.40 (0.05) 95.20 (0.07) 95.90 (0.08) 95.67 (0.06) 98.39 (0.02)
COAD 49.34 (1.25) 49.15 (1.30) 49.65 (1.28) 46.73 (1.08) 56.18 (0.51)

F1-score

PAAD 63.54 (3.70) 66.70 (1.29) 67.84 (1.71) 64.42 (1.86) 77.15 (2.12)
CHOL 53.47 (2.01) 58.19 (1.91) 58.03 (2.04) 51.61 (1.63) 89.18 (1.04)
ESCA 66.00 (0.18) 66.47 (0.19) 64.52 (0.18) 66.41 (0.16) 66.96 (0.16)
COAD 63.71 (1.34) 63.56 (1.27) 64.25 (1.30) 61.23 (1.14) 71.11 (0.55)

Table 4: +e contribution of graph regularization and sparse constraints to clustering performance.

Datasets Beta� 0 (%) Lambda� 0, beta� 0 (%)

Accuracy

PAAD 49.70 78.87
CHOL 1.82 5.68
ESCA 22.52 23.93
COAD 8.67 16.38

Recall

PAAD 15.90 26.22
CHOL 56.77 58.98
ESCA −0.53 4.46
COAD 14.30 13.15

Precision

PAAD 0.49 1.60
CHOL 46.28 43.62
ESCA 3.35 2.59
COAD 6.18 4.92

F1-score

PAAD 15.67 13.72
CHOL 53.26 53.68
ESCA 0.70 3.78
COAD 11.88 10.68
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risk of colorectal cancer [35]. Frequent mutations in BRPA
have been widely reported in human malignancies, in-
cluding esophageal cancer, cholangiocarcinoma, and colon
cancer [36–38]. +is provides a computational method for
the study of Co-DEGs in multiple diseases.

4. Conclusions

In this paper, we propose an integrative matrix factorization
method (SG-jNMF) used to analyze heterogeneous multiomics
data. +e novel method jointly projects multiomics data ma-
trices into a common low-dimensional space. Two forms of SG-
jNMF enable multiomics data to be analyzed from both the
sample and feature perspectives. +is integrative analysis
method can consider the local association of data and decrease
the interference of noise and redundant information in the
heterogeneous multiomics data. Experimental results show that
the new method is superior to existing methods in analyzing
heterogeneous multiomics data. Another significant advantage
of SG-jNMF is that it can flexibly handle multiple input data of
various types. +is flexibility means that the input data can be
different types of data (GE, ME, CNV, etc.) for the same disease
or the same type of data for different diseases. We can use this
method to identify Co-DEGs associated with a particular disease
and detect common Co-DEGs associated with several diseases.
+is provides an efficient calculation method for biological and
medical research. Next, we will use the correlation between Co-
DEGs to build a gene coexpression correlation network, and
further study the function of gene modules and related
pathways.
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score Associated diseases Related pathways

CDKN2A 91.19 Melanoma, cutaneous malignant 2, and melanoma-
pancreatic cancer syndrome

Modulation and signaling and cell cycle role of SCF
complex in cell cycle regulation

CCDN1 53.49 Multiple myeloma and Von Hippel–Lindau
syndrome

ATF-2 transcription factor network and DNA damage
response

PTF1A 33.66 Pancreatic and cerebellar agenesis and pancreatic
agenesis 2

Developmental biology and regulation of beta-cell
development

GRP 21.84 Duodenal ulcer and lung disease Peptide ligand-binding receptors and signaling by
GPCR
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Nowadays, people have an increasing interest in fresh products such as new shoes and cosmetics. To this end, an E-commerce
platform Taobao launched a fresh-item hub page on the recommender system, with which customers can freely and exclusively
explore and purchase fresh items, namely, the New Tendency page. In this work, we make a first attempt to tackle the fresh-item
recommendation task with two major challenges. First, a fresh-item recommendation scenario usually faces the challenge that the
training data are highly deficient due to low page views. In this paper, we propose a deep interest-shifting network (DisNet), which
transfers knowledge from a huge number of auxiliary data and then shifts user interests with contextual information. Fur-
thermore, three interpretable interest-shifting operators are introduced. Second, since the items are fresh, many of them have
never been exposed to users, leading to a severe cold-start problem.)ough this problem can be alleviated by knowledge transfer,
we further babysit these fully cold-start items by a relational meta-Id-embedding generator (RM-IdEG). Specifically, it trains the
item id embeddings in a learning-to-learn manner and integrates relational information for better embedding performance. We
conducted comprehensive experiments on both synthetic datasets as well as a real-world dataset. Both DisNet and RM-IdEG
significantly outperform state-of-the-art approaches, respectively. Empirical results clearly verify the effectiveness of the proposed
techniques, which are arguably promising and scalable in real-world applications.

1. Introduction

E-commerce has been prevalent in our daily life. In tradi-
tional online shopping scenarios, all items are mixed up, and
a recommender system predicts users’ preferences on items
based on their past interactions, e.g., click, purchase, and
rating [1–3]. However, this strategy overlooks the influence
of the items’ life periods and causes two problems. First, as
many people have a growing interest in novel, newly released
commodities, their requirements will not be fully satisfied.
Second, popular items have more opportunities to be

exposed, whereas those new products are overwhelmed,
even though with high quality [4–6].

To tackle these problems, one E-commerce platform
Taobao launched a new application, namely, New Tendency
page, aiming to recommend fresh items for users who prefer
new products. As illustrated in Figure 1, a card which
contains a fresh item with its textual descriptions is pushed
to the users. Once a user clicks this card, the New Tendency
page appears, where more items from a predefined fresh
item pool are recommended to this user. As a result, users
who prefer newly released products can freely explore this
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page. However, to achieve high-quality ranking on this page,
two key problems have to be addressed.

1.1. Q1: How to Address the Data-Deficiency Problem?
Recommending fresh items directly on the main entrance
page of the app may cause unpredictable influences. )us,
this page has to be designed as a fresh-item recommendation
scenario. Compared to the main entrance page of the app,
theNew Tendency page is reported to contain less than 5% of
page views. Most of the fresh items only have a few inter-
actions, which make the scenario-specific training data
highly deficient. As a result, we have to collect additional
information to improve the performance.

1.2. Potential Solutions to Q1. We firstly notice that the
clicked card contains rich contextual information, such as
the showpiece and its textual description, which clearly
reflects the user interests. )erefore, we can utilize off-the-
shelf context-aware recommender systems (CARSs) [7],
such as factorization-based approaches [8, 9] and deep
learning-based models [10–15]. However, the model com-
plexity increases owing to the involvement of the context
features, which prevent the model being trained sufficiently.
To deal with this problem, cross-domain recommender
systems (CDRSs) [16–18] seem appealing due to their su-
periority in handling data deficiency. In particular, an
asymmetric CDRS [19–21], which collects a large amount of
context-free data (e.g., data from the main entrance of the
app, namely, auxiliary data), can be designed to improve the
prediction performance. However, existing asymmetric
CDRS models seldom consider the scenario-specific con-
textual information of the target domain.

1.3. Q2: How to Deal with Totally Cold-Start Items? As re-
ported by Taobao, more than 60% of fresh items are newborn
and never interacted by users, which causes a severe cold-
start problem. Note that these newborn items are not the
cause of data deficiency because they are not a part of
training data.

1.4. Potential Solutions to Q2. )e cold-start problem is
usually solved by integrating external information, e.g., item
attributes [22, 23], user attributes [24, 25], relational data
[26], and knowledge from other domains [16]. We note that
this problem can be alleviated by applying the cross-domain
technique because the embeddings of item attributes can be
reused. Nevertheless, since the id of a cold-start item never
appears, its embedding cannot obtain a good initialization.
Pan et al. [27] proposed the meta-Id-embedding generator
(Meta-IdEG), which considers the id embedding initiali-
zation problem and solves it through a learning-to-learn
training manner. However, meta-IdEG only utilizes item
features to generate the id embedding. As a result, it is unable
to explore the community structural information when
initializing id embeddings, which leads to a suboptimal
solution.

1.5. Our Solutions. In this study, we propose two novel
techniques to construct a deep learning-based recommender
system, which simultaneously tackles these above issues.)e
proposed model fully exploits various types of external
information to improve the prediction performance. To
answer Q1, we present a deep interest-shifting network
(DisNet). Specifically, it firstly learns the users’ general in-
terest vectors using a huge number of auxiliary data and then
shifts them to a scenario-specific representation using
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Figure 1: An illustration of fresh item recommended. Once a user clicks the card on the left side, a fresh-item recommendation page (middle
side) appears to achieve interest shifting from users’ history interests to the fresh items, where the recommended fresh items are ranked
using the embeddings of fresh items and relational items (right side). All the fresh items on the recommended page are chosen from a
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contexts. Next, the size of trainable parameters is reduced to
a few neural network layers, which significantly alleviates the
data-deficiency problem. To answer Q2, the transferred
embedding layer of item attributes can be reused, and the
only thing that matters is the item id embedding initiali-
zation problem. Hence, this paper proposes a relational
meta-Id-embedding generator (RM-IdEG), which is trained
in a learning-to-learn manner, aiming to make the model
achieve great generalization ability after few-shot training.
Furthermore, RM-IdEG absorbs the information of relevant
items. )erefore, the community structural information can
be inherently embedded and exploited, which has been
proved beneficial for addressing the cold-start problem [26].

)e main contributions of this work are summarized as
follows:

A novel application, fresh item recommendation, is
studied, which gives new items more opportunities to
be exposed and fully personalizes the recommendations
of those who prefer the novel, innovative products. We
also make a first attempt to address the fresh-item
recommendation task by two novel techniques.
We present a deep interest-shifting network (DisNet)
to deal with the severe data-deficiency problem in a
fresh-item recommendation scenario.
To address the cold-start problem, we propose a re-
lational meta-Id-embedding generator (RM-IdEG) that
involves the relational data into meta-id embedding
initialization, which enables community structural
information to be inherently contained.
Extensive experimental results demonstrate that our
model can effectively handle fresh-item recommen-
dation tasks in both cold-start and warm-start stages.

)e rest of this work is organized as follows. In the next
section, notations and preliminary knowledge are intro-
duced. In Section 3, we provide a detailed description of our
network architecture. After that, the results of empirical
studies are reported. )en, we give the related works of our
method. Further discussion and concluding remarks are
provided in the last section.

2. Notations and Preliminaries

In this section, we firstly discuss a popular architecture of
context-aware recommender systems. )en, we introduce
the training procedure of meta-IdEG and summarize the
notations in Table 1.

2.1. Context-Aware Recommendation. A popular strategy in
existing context-aware recommendation systems is to learn
latent representations for users and items and then make
decisions using these latent vectors.

Formally, given an example, which contains an item t, a
user u, and potentially some contexts, we first feed them into
an embedding layer. )en, their features are transformed
into vector representations by one-hot encoding or multihot
encoding. )e transformed item features consist of an item
id embedding et and other content features vt. For the user,

we combine its id embedding and other features as one
vectorized representation vu. Finally, we denote the trans-
formed context features by c. )e final prediction is made by

􏽢y � g qu, pt, c( 􏼁,

qu � fu vu( 􏼁,

pt � ft et, vt( 􏼁.

(1)

For example, in matrix factorization-based models [28],
qu and pt are exactly their id embeddings, and g is the
context-biased prediction function. State-of-the-art models
[29, 30] also use neural networks to learn user/item rep-
resentation as well as make decisions. )is paper also adopts
neural networks for ft, fu, and g, which lead to a double-
tower model architecture.

It is noteworthy that such a learning paradigm deeply
couples the contextual information in the model architec-
ture. In our cross-domain setting, there are heterogeneous
contexts, i.e., scenario-specific contexts. )erefore, the
trainable parameters of deep neural network models cannot
be reused, which makes them hard to share knowledge
across different domains [31–33].

2.2. Meta-Id Embedding Generator. To babysit newborn
items, the only thing that matters is how to learn the em-
beddings for new items’ ids. A common learning paradigm
first uses an Id embedding generator (IdEG) to initialize a
vector for new ids in the embedding table and then update
them using incoming user interactions. )e most intuitive
way is to output a random embedding initialization. How-
ever, its generalization ability may be restricted due to the
cold-start problem. To this end, Pan et al. [27] proposed to
initialize id embeddings using meta-learning technique, a.k.a.
meta-Id embedding generator (meta-IdEG). By regarding the
recommendation for each item as a task, meta-IdEG ensures
good embedding initialization such that the model achieves
better generalization ability after few-shot training.

Next, we illustrate the workflow of meta-IdEG. For each
task that relates to a specific item, we divide its data examples
(interactions) into two sets: a support setDs and a query set
Dq. We firstly feed the item features into a neural network to
generate an id embedding, e∗t � IdEGmeta(vt). )en, we
optimize IdEGmeta in a learning-to-learnmanner.We denote
the predicted label on the support set as 􏽢y∗ using e∗t . First, we
can obtain the cold-start loss by

lc y, 􏽢y
∗
; e∗t ,D

s
( 􏼁 � − y log 􏽢y

∗
( 􏼁 − (1 − y)log 1 − 􏽢y

∗
( 􏼁. (2)

)en, we update the embedding by one step of gradient
descent:

et
′ � e∗t − α

zlc

ze∗t
, (3)

where α is the learning rate. Since a new embedding is
obtained, we can predict label 􏽢y′ on the query set using et

′.
Next, we define a warmed loss by

lw y, 􏽢y′; et
′,Dq

( 􏼁 � − y log 􏽢y′( 􏼁 − (1 − y)log 1 − 􏽢y′( 􏼁. (4)
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Note that e∗t and et
′ do not have to be explicitly com-

puted, and we are only interested in their gradients on
IdEGmeta. Finally, we sum the two losses to get our meta-loss
function:

lmeta � lc + ηlw. (5)

Here, η is the tradeoff parameter. In other words,
minimizing lmeta simultaneously achieves two goals: (1) the
error in predictions for the new items should be small; (2)
after a small amount of labeled data is collected, a few
gradient descent updates should lead to good generalization
ability.

3. Proposed Model

3.1. Deep Interest-Shifting Network. In this section, we
present DisNet, a learning framework for recommending
items in a fresh-item recommendation page, which usually
contains rich scenario-specific contexts. )e overall network
architecture is shown in Figure 2.

We note that the latent vector of a user actually reflects
his or her interest in a latent space, while the scenario-
specific contexts reflect the interest shifting in the user’s
general interests [34, 35]. For example, there is a boy who is
interested in sports, games, and electronic products. Once he
clicks a fresh item iPhone-11, he may pay more attention to
electronic products with advanced technology, and we can
recommend him newly released smartphones, laptops, and
so on. We assume that such interest shifting will not change
its latent semantics. In other words, the shifted represen-
tations can directly be fed into the decision-making network
g. By this assumption, we can decouple the general interest
of users from the scenario-specific contexts. Denoting the

scenario-specific context by cs, we propose an interest-
shifting operator (ISO) to obtain a shifted user
representation:

qs
u � ISO qu, zs( 􏼁,

zs � h cs( 􏼁,
(6)

where qs
u and qu have the same dimension m. h maps the

contexts to a latent space to extract their critical information.
It is noteworthy that there is a huge amount of auxiliary

data, from which we can model the general interest of
the users.)us, we can pretrain the item/user representation
networks as well as the decision-making network using these
data. We denote the pretrained networks by ft, fu, and
g. )en, the context information can be incorporated to shift
the latent user vector to a scenario-specific one but in
the same interest space. Formally, DisNet makes the decision
by

􏽢y
DN

� g qs
u, pt, c( 􏼁 � g ISO fu vu( 􏼁, zs􏼐 􏼑, ft et, vt( 􏼁, c􏼐 􏼑.

(7)

Such a model not only transfers knowledge from a
general interest domain that has rich data samples but also
reduces the size of the trainable parameters to the ISO(·) and
h functions only. Obviously, the context-aware and data-
deficiency problems can be addressed simultaneously.

Note that c is some contexts shared by the two domains.
However, it is possible that auxiliary data have their own
context as well. We ignore such contextual information and
preserve the common parts only because we are modeling
the general interest of the users. In practice, we also enable
the decision-making network g and the embedding layer to
be fine-tuned.

Table 1: Notations.

Notation Definition or descriptions
(u, t) A pair of user u and item t

et )e id embedding of item t

vt )e embedded features (except id) of item t

vu )e embedded features (include id) of user u

c, cs Common contexts and scenario-specific contexts
ft, fu Item/user representation networks
g Decision-making network
h Context network
qu, pt Latent user/item vectors in the interest space
zs, Zs Output vector/matrix of context network h

e∗t , et′ Cold-start and warmed item id embeddings in the meta-training procedure
Ds, Dq Support and query sets of a cold-start item in Dc

􏽢y∗, 􏽢y′ Predicted labels on Ds and Dq

lc, lw, lmeta Cold-start, warmed, and meta-loss in the meta-training procedure
Da, Dw, Dc Auxiliary, warm-start, and cold-start datasets
y, 􏽢y, 􏽢yDN Ground-truth label and predicted labels of context-aware models and DisNet
ISO(·) Interest-shifting operator
ei
t (i � 1, . . . , k) )e id embeddings of top k relevant items

ai
t (i � 1, . . . , k) Attention scores

Wi, bi (i � 1, 2) Weight matrices and bias vectors of the NN operator
􏽥Wi, 􏽥b1 (i � 1, 2) Weight matrices and bias vector of RM-IdEG
W, h, b Parameters of attentional embedding aggregator
T, Tc Item sets of Dw ∪Dc and Dc
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3.1.1. Interest-Shifting Operators. )e above discussion
provides the overall network architecture. Now, we can
perform any reasonable shifting operation to learn the
context-specific representation of the user. In this work, we
introduce three interest-shifting operators, all of which
relate to very interesting interpretations.

Add Operator. Motivated by the huge success of the
representation learning and knowledge graph, we
adopt a similar strategy as TransR [36]. Specifically, it
embeds each entity and relation by optimizing the
translation principle ea + er ≈ eb if a triplet (a, r, b)

exists in the graph. Recall the example of interest
shifting, i.e., when a boy clicks an item iPhone-11, the
interest representation of this boy goes to the interest of
a boy who has a preference for electronic products with
advanced technology. If we regard the contextual in-
formation as a relation, we obtain our first operator,
which adds up the latent user vector and contextual
vector:

ISO qu, zs( 􏼁 � qu + zs. (8)

)is implies that qu and zs have the same dimension.
)at is, the projection function h directly learns the
discrepancy between the original interest and the
shifted interest, which is similar to the relation em-
bedding in the knowledge graph.

COTOperator. Before introducing the second operator,
we review a popular technique in the context-aware
recommendation, namely, the contextual operation
tensor (COT) [37]. By estimating a contextual opera-
tion matrix, COT maps the original user/item latent
vectors to their context-specific ones. We notice that
COT has three main limitations: (1) it assumes the
context space is fixed and the contextual operation
matrix relates to different context values; (2) it jointly
learns the original latent vectors as well as the con-
textual operationmatrix; and (3) it uses linear mapping,
i.e., a 3D tensor, to obtain the contextual operation
matrix, which leads to degenerated performance. Ob-
viously, COTcannot be applied to our problem directly
because the data-deficiency problem prevents the joint
learning procedure, and cross-domain data have dif-
ferent contexts.
Fortunately, in DisNet, we have decoupled the user’s
general interest from the scenario-specific interest.
)erefore, we can estimate the scenario-specific context
operation matrix using the h function:

ISO qu, Zs( 􏼁 � Z⊤s qu,

Zs � h cs( 􏼁.
(9)

Here, h outputs a d × dmatrix instead of a single vector.
In other words, while COT focuses on different context
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Figure 2: )e model architecture of DisNet and RM-IdEG. )e orange parts are pretrained using the auxiliary dataset. )e blue ones are
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values, our model considers how external contexts
affect the user’s interest.
Neural Network-Based Operator. Yet, we have only
considered linear shifting, while in reality, the trans-
formation may be nonlinear. To bridge this gap, we
propose a neural network-based operator:

ISO qu, zs( 􏼁 � W⊤2 σ W⊤1 qu‖zs􏼂 􏼃 + b1( 􏼁 + b2, (10)

whereWi, bi (i ∈ 1, 2{ }) refer to the weight matrices and bias
vectors. σ is the activation function. [·‖·] denotes the con-
catenation of two vectors. It is worth pointing out that any
network architectures can be used, and this paper considers
a simple multilayer perceptron.

While the add operator regards the contexts as bias and
the COToperator considers the cross-influences between the
user interest and contexts, the NN-based operator achieves
these two goals simultaneously.

3.2. Relational Meta-Id-Embedding Generator. )is section
concentrates on babysitting fresh items in the cold-start
phase, where they suffer from a severe cold-start problem. It
is worth noting that DisNet can reuse the embedding layer
after pretraining. )en, all the attributes except item id
obtain great embeddings. Hence, the only thing that matters
is the item id embedding initialization. Following [27], this
work learns an IdEG in a learning-to-learn manner. Nev-
ertheless, we notice that the vanilla meta-IdEG feeds item
features into a simple neural network to generate embed-
dings. Obviously, meta-IdEG neglects the fact that id em-
bedding reflects the community structural information
between items, exploiting which has been proved beneficial
for alleviating the cold-start problem [26].

To remedy this problem, a novel relational meta-Id
embedding generator (RM-IdEG) is proposed, whereas it
trains the item id embedding in a learning-to-learn manner
and integrates relational information for better embedding
initialization, which further improves the performance of
DisNet on new items. Specifically, we collect a set of warm-
start items that are significantly relevant to the cold-start
item t. Many influential relations can be considered, such as
items from the same seller and the same brand. For instance,
a newly released Nike T-shirt may have similar selling be-
haviors as other items in Nike shops. )en, we construct an
id embedding setIt � e1t , . . . , ek

t􏼈 􏼉. Here, ei
t (i � 1, 2, . . . , k)

denote the id embeddings of top k relevant items. )en, we
output the new embedding via an attentional embedding
aggregator:

e∗t �
1
C

􏽘

k

i�1
a

i
te

i
t,

C � 􏽘
k

i�1
a

i
t.

(11)

Here, C is used for normalization. )e attention score ai
t

is given by a global attention network:

a
i
t � exp hTσ W⊤ei

t + b􏼐 􏼑􏼐 􏼑, (12)

where h,W, and b are shared attention parameters.)en, we
feed the learned attentional id embedding and item features
into a neural network to obtain the final embedding:

et � IdEG
rm

vt,It( 􏼁 � tanh 􏽥W⊤2 σ 􏽥W⊤1 e∗t ‖vt􏼂 􏼃 + 􏽥b1􏼐 􏼑􏼐 􏼑,

(13)

where 􏽥Wi (i ∈ 1, 2{ }) are weight matrices and 􏽥b1 is the bias
vector. To obtain numerically stable outputs, we follow some
tricks in [27]: (1) the bias of the last layer is removed; (2) tanh
activation is applied in the final layer.

Remark 1. )e proposed model fully addresses the cold-start
problem from two aspects: (1) through a learning-to-learn
training procedure, our model achieves better generalization
ability with few training data; (2) by considering influentially
relevant items, RM-IdEG automatically encodes community
structural information into the embedding initialization, and
the predictive accuracy is further improved.

3.3. Training. Now, we describe the training procedure of
our model. Note that the training fresh item set T does not
contain those newborn items. Consequently, we choose an
item subsetTc fromT to simulate the cold-start setting. For
each item inTc, which corresponds to a task, we preserve m

examples for both the support set and the query set (a total of
2m examples). )e remaining examples of these items are
dropped since they should not appear before we train the RM-
IdEG. To avoid the performance of the base model being
decreased, we limit each item in Tc to having less than or
equal to M examples (M> 2m) and obviously, greater or
equal to 2m examples. We denote the constructed cold-start
dataset byDc. )e data examples of the remaining itemsT −

Tc constitute the warm-start dataset Dw. Remark that the
items in T are all warm-start items since they have at least
one data example.We callDc cold-start because they are used
to train RM-IdEG, which is designed for totally cold-start
items. Also, Dw is called warm-start since it is used to train
DisNet, which does not consider the cold-start problem.

In summary, we have three datasets: (1) an auxiliary
dataset Da, having no scenario-specific contexts, collected
from other domains; (2) a warm-start dataset Dw that has
rich contextual information; and (3) a cold-start dataset Dc

that contains few-shot examples. Accordingly, the whole
model is trained in three stages, and we put the details in
Algorithm 1.

4. Experiments

To justify the effectiveness of DisNet and RM-IdEG, we
conduct comprehensive experiments to answer the follow-
ing questions:

RQ1: can DisNet outperform state-of-the-art methods?
RQ2: can RM-IdEG outperform state-of-the-art IdEGs?
RQ3: is our model sensitive to the parameters?
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4.1. Dataset

4.1.1. Dataset Description. We evaluate our methods on two
synthetic datasets and a real-world dataset:

MovieLens (https://grouplens.org/datasets/movielens/)
[38]: it consists of 1.0 million movie-ranking instances
across about 6,000 users and 4,000 movies. )e features
of movies include movie id, title, year of release, and
genres. Titles and genres are lists of tokens.)e features
of users include user id, age, gender, occupation, and
zipcode. To simulate our fresh item setting, we choose
gender, occupation, and zipcode as scenario-specific
context features. We also convert the rating scores to
binary values.)e ratings smaller than 4 are turned into
0, and the others are turned into 0.
Book-Crossing (http://www2.informatik.uni-freiburg.
de/cziegler/BX/) [39]: it is collected by Cai-Nicolas
Ziegler in a one-month crawl from the Book-Crossing
(http://www.bookcrossing.com/) community. It con-
tains 0.27 million users, providing 1.15 million ratings

about 0.28 million books. )e features of books include
ISBN number (book id), book title, year of publication,
and publisher. )e features of users include age and
location. Similar to MovieLens, we select location as a
scenario-specific context feature. )e ratings are con-
verted to 1 if they are at least 4 and 0, otherwise.
Taobao-Fresh: it collects 203.1 million user-item click
interactions produced by the main entrance page of
Taobao’s app as auxiliary data and 4.4 million user-item
click interactions produced by the New Tendency page
as fresh-item recommendation data. A total of 4.8
million users and 1.6 million items are considered, with
71 user features, 17 item features, and 17 contextual
features (auxiliary data have no contexts).

4.1.2. Data Splitting. For MovieLens and Book-Crossing, we
first group the items by their ids.We put those items with the
number of examples less than M + 1 and larger than 2m − 1
in Tc. )en, we construct a cold-start dataset Dc by

Input: Da: auxiliary dataset
Input: Dw: warm-start dataset
Input: Dc: cold-start dataset
Input: (􏽥t, 􏽥u, c, cs ): a testing example
Output: 􏽥yDN: the predicted label of (􏽥t, 􏽥u, c, cs)

1 repeat
2 /∗ the first stage, pretrain the model using auxiliary data ∗/
3 Randomly sample a batch of data from Da

4 Calculate the predicted label 􏽢y by equation (1)
5 Update g, fu, ft by gradient descent
6 until Converge
7 Fix g, fu, ft to g, fu, ft

8 repeat
9 /∗ the second stage, train DisNet using warm-start data ∗/
10 Randomly sample a batch of data from Dw

11 Calculate qu, pt using fu, ft

12 Compute the shifted interest vector qs
u by equation (6)

13 Calculate the predicted label 􏽢yDN using g by equation (7)
14 Update h, ISO(·) by gradient descent
15 until Converge
16 Fix all the trainable parameters except the item id embeddings
17 repeat
18 /∗ the third stage, train RM-IdEG using cold-start data ∗/
19 Randomly sample an item ti and get its support/query sets (Ds

i ,D
q

i ) from Dc

20 Aggregate embeddings of relational items of ti by equation (11)
21 Generate an id embedding e∗t for ti using RM-IdEG
22 Compute the cold-start loss on Ds

i by equation (2)
23 Update the id embedding of ti to et

′ by equation (3)
24 Compute the warmed loss on D

q
i by equation (4)

25 Update RM-IdEG by gradient descent
26 until Converge
27 if 􏽥t is a cold-start item then
28 Generate an id embedding 􏽥et for 􏽥t using RM-IdEG
29 else
30: Get the id embedding 􏽥et of 􏽥t from the embedding layer
31: end if
32: Return a label 􏽥yDN for (􏽥t, 􏽥u, c, cs ) by equation (7) using DisNet

ALGORITHM 1: )e training and testing procedure.
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preserving 2m examples for each item. From the examples of
the remaining items T − Tc, we randomly choose 80% as
auxiliary dataDa and 20% as the warm-start datasetDw. We
set m � 20 and M � 100 for MovieLens. For Book-Crossing,
we notice that a total of 48,434 books are rated by exactly 2
users. Hence, we set m � 1 and M � 2. It enables us to study
an extreme experimental setting, i.e., each cold-start item is
one-shot.

For Taobao-Fresh, the auxiliary data Da have been
collected.We then split the fresh-item recommendation data
into two parts. )e first one is a cold-start datasetDc where
items have greater than or equal to 10 interactions and less
than or equal to 20 interactions. Similarly, each item in Dc

has a support set and a query set, each of which has 5 ex-
amples.)e examples of the remaining items are collected as
the warm-start dataset Dw. )e statistics of these datasets
can be found in Table 2.

4.1.3. Data Generation. To answer RQ1, for each dataset, we
run DisNet on three types of data:

Auxiliary-only data: they contain the auxiliary data and
context-free warm-start data, i.e., the context features
of the warm-start data are removed.
Context-only: it is exactly warm-start data. In other
words, DisNet is run without pretraining.
Full data: they comprise auxiliary data and warm-start
data and are the main setting of this paper.

Note that the three types of data are used to test the
effectiveness of DisNet, while cold-start data are used to
evaluate the superiority of RM-IdEG.

For performance evaluation, we randomly divide the
warm-start and cold-start data into 80% training and 20%
testing. We run the experiments for five times, and the mean
AUC performance on the testing set is reported.

4.2. Baselines. We evaluate the proposed model in two
stages. In the first stage, we compare DisNet with three
context-aware recommendation models:

DeepFM [11]: it feeds embeddings to a factorization
machine model as well as a multilayer perceptron and
then aggregates their outputs and gets the final
prediction.
PNN [13]: the dense embeddings are fed into a dense
layer and a product layer. )en, it concatenates their
outputs together and uses a two-layer neural network to
get the prediction.
CFM [15]: CFM is a recent state-of-the-art CARS
method that explicitly learns second-order feature
interactions. It calculates the pairwise outer product of
dense embeddings and stacks them to obtain an in-
teraction cube. )en, it applies the convolution pooling
technique to get the final prediction.

)e dimension of embedding vectors of each input field
is fixed to 128, and the activation function is chosen as ReLU
for all the models. As suggested in [11], we use three dense

hidden layers as the deep component for both DeepFM and
PNN. For DisNet, the size of the user/item latent repre-
sentation is set as 64. We use two fully connected layers with
a hidden dimension of 64 for user/item representation
networks as well as the decision-making network. We do not
activate the outputs of user/item representation networks.
)e context network of the NN/add ISO and the shifting
network of the NN ISO also comprise two fully connected
layers with hidden size 64 and without activation in the final
layer. For the COT ISO, we linearly learn a contextual
operation matrix of size 64 × 64 from the contexts. Finally,
the learning rate and l2-regularization parameters are fine-
tuned by five-fold cross-validation.

)en, we evaluate the RM-IdEG with two baselines:

Rand-IdEG: the random initialization of id embeddings
is one of the most commonly used strategies in rec-
ommender systems.
Meta-IdEG [27]: the state-of-the-art solution to the
cold-start problem. It firstly feeds the item features into
a simple neural network to generate embeddings and
then trains them in a learning-to-learn manner.

For Rand-IdEG, we initialize the id embeddings with
random values from a standard Gaussian distribution with
standard deviation 0.01. For meta-IdEG, we use the neural
network architecture as suggested in [27]. For RM-IdEG,
we use a two-layer neural network with a hidden size of 128
as the IdEG network. According to Pan et al. [27], the
tradeoff parameter η is robust. Hence, we follow their
experimental setting and set η as 0.1 for meta-IdEG and
RM-IdEG. We also follow their two suggestions that use
tanh as activation and remove the bias of the output layer.
For a target item in the synthetic dataset, we choose
k-nearest neighbors from the previous training dataset, i.e.,
Dw ∪Da, using hamming distance as the relevant items,
where k is chosen by five-fold cross-validation. For Taobao-
Fresh, we randomly select 10 items having the same seller
and 10 items having the same brand as the relevant items.
We choose DisNet-NN as the base model, which has been
pretrained by Da and Dw.

4.3. Empirical Results

4.3.1. Performance Comparison of Context-Aware Models
(RQ1). Tables 3 and 4 report the testing AUC comparison of
three context-aware models on two synthetic datasets and
the Taobao-Fresh dataset. We have the following findings:

All the methods obtain the best performance on the full
data. For example, on Taobao-Fresh, DisNet-NN im-
proves the AUC scores on auxiliary-only and context-
only data by 1.00% and 1.69%, respectively.)is finding
verifies the importance of utilizing auxiliary data and
contexts to alleviate the data-deficiency problem.
On the Taobao-Fresh dataset, all the methods achieve
significantly greater improvement on the context-only
data than the auxiliary-only data. It demonstrates that,
in the fresh-item recommendation task, the context
information highly reflects the user interest.
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On auxiliary-only data, all the models are competitive
with each other. However, on full data, the performance
of baselines shows no significant improvement after the
context features being involved. )e reason is these
baselines deeply couple the context in the model, and
thus, the knowledge of the auxiliary domain cannot be
fully utilized. Take DeepFM as an example; since Da

and Dw have different input formats, the deep com-
ponent cannot be reused. )ough we can reuse the
embedding layer, its predictive performance is limited.
DisNet models with full data significantly outperform
all the baselines as well as their auxiliary-only and
context-only counterparts. )e interest-shifting oper-
ator enables us to completely exploit both context and
cross-domain information.
Different interest-shifting operators show competitive
performance with each other. Moreover, the NN-based
operator obtains the best performance because it en-
ables the user interest to be shifted nonlinearly.
Interestingly, DisNet-COT always underperforms
DisNet-Add on the context-only dataset but is better
than DisNet-Add on the full dataset. We suppose the
reason is the COToperator tends to overfit on context-
only data since it contains more parameters. With the
help of auxiliary data, this problem is alleviated.

4.3.2. Performance Comparison of Different IdEGs (RQ2).
Tables 5 and 6 list the cold-start and warmed-up perfor-
mance of DisNet with different id embedding generators.
Once the IdEG produces the id embeddings, the cold-start
performance is directly evaluated on a meta-testing query
set, where all items are cold-start ones.)en, we perform one
step of gradient descent to update the id embeddings using a
meta-testing support set that contains the same items as the
query set. Finally, the warmed-up performance is evaluated
again on the query set.

From the results, we conclude that

Meta-IdEG and RM-IdEG outperform Rand-IdEG on
both cold-start and warmed-up phases because the
learning-to-learn training procedure guarantees them
to quickly achieve good generalization ability on un-
seen data.
RM-IdEG achieves the best performance on all the
datasets. In particular, even with one-shot training,
RM-IdEG still outperforms on the Book-Crossing
dataset. By integrating information of significantly
relevant items, RM-IdEG inherently models the com-
munity structural information when initializing id
embeddings.

4.3.3. Parameter Sensitivities (RQ3). )e main parameters
are the tradeoff parameter of the meta-loss η and the number
of relevant items k. )e robustness of η has been studied in
[27]. )us, we investigate the sensitivity of k and the results
on Book-Crossing and MovieLens datasets which are shown
in Figure 3.We can see that when k is small, the performance
is close to Meta-IdEG because few relational information is
learned. )e best result is obtained when k � 6, and then the

Table 2: )e statistics of the datasets.

Datasets # users # items # interactions (M)† # auxiliary (M) # warm-start (M) # cold-start‡
Book-Crossing 0.28M 0.27M 1.15 0.75 0.19 48,434
MovieLens 6,040 3,706 1.00 0.76 0.19 30,645
Taobao-Fresh 4.78M 1.61M 207.54 203.13 4.09 0.31M
†)e first three columns list the number of users, items, and data examples of the whole dataset. ‡)e second three columns report the number of data
examples of the preprocessed datasets after splitting.

Table 3: Testing AUC comparison of context-aware models on synthetic datasets.

Methods
Dataset: Book-Crossing Dataset: MovieLens

Auxiliary† Context Full data Auxiliary† Context Full data
DeepFM 0.7836• 0.7741• 0.7840• 0.7284• 0.7586• 0.7654•

PNN 0.7854• 0.7725• 0.7857• 0.7290• 0.7584• 0.7649•

CFM 0.7730• 0.7726• 0.7707• 0.7289• 0.7571• 0.7633•

DisNet-Add – 0.7745° 0.7862• – 0.7576° 0.7660•

DisNet-COT – 0.7733• 0.7864• – 0.7559• 0.7664°
DisNet-NN 0.7858 0.7748 0.7878 0.7287 0.7577 0.7666
•/° indicates whether the DisNet-NN variant is significantly superior to the coupling algorithm or not on each dataset (pairwise t-test at the 0.05 significance
level).†On the auxiliary-only data, the network architecture of DisNet is fixed, and we only report the performance once.

Table 4: Testing AUC comparison of context-aware models on the
Taobao-Fresh dataset.

Methods Auxiliary† Context Full data
DeepFM 0.7367• 0.7449• 0.7362•

PNN 0.7413• 0.7439• 0.7417•

CFM 0.7377• 0.7441• 0.7442•

DisNet-Add – 0.7480° 0.7528•

DisNet-COT – 0.7467• 0.7533°
DisNet-NN 0.7409 0.7483 0.7534
•/° indicates whether the RM-IdEG variant is significantly superior to the
coupling algorithm or not (pairwise t-test at the 0.05 significance level).†On
the auxiliary-only data, the network architecture of DisNet is fixed, and we
only report the performance once.
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performance drops. )e reason is that, as k becomes larger,
the relations become weaker, but the model complexity
increases.

5. Related Work

5.1. Context-Aware Recommendation. Context-aware rec-
ommender systems (CARSs) have attracted considerable
attention in past years [7]. Early work in CARS can be
divided into two categories: (1) prefiltering methods [40],
where context guides the selection of training data; (2)
postfiltering methods [41], where context drives recom-
mendation results’ selection. )e main limitation of these
methods is that they require the supervision and fine-tuning
in all steps of recommendation [42]. To address this
problem, contextual modeling approaches capture the
contextual information directly in model construction.
Some works are based on matrix factorization [8], such as
CAMF [28] and CSLIM [9]. Another group of studies ex-
ploits tensor factorization techniques for modeling user-
item-context relations [43, 44]. Recently, factorization
machines [42, 45, 46] and deep learning [47, 48] based on

CARS become increasingly popular, which directly model
nonlinear interactions between features. Some studies also
use representation learning techniques, e.g., CARS2 [49] and
COT [37], which provide not only a latent vector but also
context-aware representations. In summary, all the above
methods assume the data are sufficient for training, while
severe data-deficiency problem occurs in many fresh-item
recommendation pages.

5.2. Cross-Domain Recommendation. As we have discussed,
data deficiency is one of the most challenging problems for
recommender systems, and it is much more significant in
many fresh-item recommendation scenarios. One promising
solution to this problem is cross-domain recommender
systems (CDRSs) [50]. Existing CDRSs can be categorized
into symmetric and asymmetric ones. Symmetric models
[16, 18, 51, 52] collect sparse data frommultiple domains and
anticipate that these domains can complement each other. In
our task, symmetric strategy is incompatible because the two
domains have heterogeneous data format and imbalance
data size. )us, we consider asymmetric models [19, 20, 21],

Table 5: Testing AUC comparison of different IdEGs on synthetic datasets.

IdEG types
Dataset: Book-Crossing Dataset: MovieLens

Cold-start Warmed-up Cold-start Warmed-up
Rand-IdEG 0.7940 (+0.00%)• 0.7943 (+0.00%)• 0.7065 (+0.00%)• 0.7377 (+0.00%)•
Meta-IdEG 0.7945 (+0.06%)• 0.7948 (+0.06%)• 0.7132 (+0.95%)• 0.7680 (+4.11%)•
RM-IdEG 0.7951 (+0.14%) 0.7955 (+0.15%) 0.7174 (+1.54%) 0.7735 (+4.85%)

•/° indicates whether the DisNet-NN variant is significantly superior to the coupling algorithm or not on each dataset (pairwise t-test at the 0.05 significance
level).
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Figure 3: Parameter sensitivity of k on two datasets. (a) Book-Crossing. (b) MovieLens.

Table 6: Testing AUC comparison of different IdEGs on the Taobao-Fresh dataset. )e best ones are shown in bold.

IdEG types Cold-start Warmed-up
Rand-IdEG 0.5792 (+0.00%)• 0.6042 (+0.00%)•
Meta-IdEG 0.6133 (+5.89%)• 0.6361 (+5.28%)•
RM-IdEG 0.6160 (+6.35%) 0.6382 (+5.63%)

•/° indicates whether RM-IdEG is significantly superior to the coupling algorithm or not (pairwise t-test at the 0.05 significance level).
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which aim to leverage data in an auxiliary domain to alleviate
data deficiency of the target domain. In this way, knowledge
learned from the auxiliary domain is directly transferred to the
target domain, acting as priors or regularization. Nevertheless,
many asymmetric CDRSs adopt shallowmethods and have the
difficulty in learning complex user-item interaction relation-
ship [18, 26]. Moreover, scenario-specific contextual infor-
mation of the target domain has been seldom considered.

5.3. Cold-Start Recommendation. When recommending
cold-start fresh items, a severe cold-start problem occurs. To
handle this problem, it is common to collect information for
the cold item or user, e.g., item attributes [22, 23] and user
attributes [24, 25]. A recent work HERS [26] also utilizes
relational data to boost performance, such as social infor-
mation of users. In [16], the authors explored a symmetric
cross-domain recommender system, where shared knowl-
edge can help alleviate the cold-start problem.

Recently, a series of works [27, 53, 54] also adopt meta-
learning technique [55] which enables the recommender
system to achieve good generalization ability after few-shot
training. From the cold-start user perspective, MeLU [53]
learns a meta-id embedding for the cold-start users and then
predicts the user preference on the items by the norm of
gradients. From the cold-start item perspective, Pan et al.
[27] proposed the meta-Id embedding generator (meta-
IdEG), which also takes id embedding initialization into
account. However, since meta-IdEG only uses item features
to generate id embedding, it ignores the community
structural information concealed in id embedding, which
leads to a suboptimal solution.

6. Discussion and Conclusion

6.1. Further Discussion. In this section, we discuss the sig-
nificance of this work.

6.1.1. Importance of the Application. )e fresh-item rec-
ommendation task reveals a new perspective of personalized
recommendation, i.e., the impact of items’ life period. Some
peoplemay prefer products which stand the test of time, while
some others may be interested in newly released products.
)e New Tendency page enables the latter ones’ recom-
mendation to be fully personalized. From another point of
view, these fresh items also obtain more opportunities to be
exposed. Hence, high-quality and novel products can quickly
become popular. We also address the main difficulties of this
learning task, i.e., data deficiency and cold-start.

6.1.2. Importance of the Techniques. Surprisingly, though the
two techniques DisNet and RM-IdEG are proposed to
handle the fresh-item recommendation task, we find that
both methods have a wide range of applications.

As aforementioned, the DisNet is designed for fresh-
item recommendation pages. Actually, such pages are quite
common in existing E-commerce platforms. For example,
after a bill being paid, the E-commerce platform will

recommend other related items to the customers. It is a
classical fresh-item recommendation scenario. Obviously, a
fresh-item recommendation page usually contains rich
contextual information. )e contexts reflect that the user
interest shifts from a general one to a scenario-specific one.
However, with fewer page views, such pages usually face
severe data-deficiency problems. And this work can address
this issue by giving a novel learning framework, which si-
multaneously transfers knowledge from an auxiliary domain
as well as fully utilizes the context information.

RM-IdEG can also be applied to many real-world ap-
plications. In [27], the authors proposed to learn meta-id-
embeddings for cold-start advertisements. And we can also
collect relevant advertisements by its company, topic, and so
on. As a result, the model can generate better id embeddings.
Furthermore, other relational data can also be considered.
For instance, if we consider the user cold-start problem [53],
we may explore the social networks of a new user so that
RM-IdEG is able to initialize a fast-adapting and relation-
aware id embedding.

6.2. Conclusion. In this work, we address two difficulties of
the fresh-item recommendation task. First, we propose a deep
interest-shifting network to deal with the data-deficiency
problem of fresh item recommendation. Specifically, users’
general interests are learned from a huge number of an
auxiliary dataset. )en, our model shifts the user interest to a
scenario-specific one using context features. Second, we
propose a relational meta-Id-embedding generator (RM-
IdEG) to alleviate the cold-start problem. RM-IdEG is trained
in a learning-to-learn manner with relational information
being integrated. Hence, community structural information
can be inherently embedded in the id embeddings of newborn
items. Extensive experiments on two synthetic datasets and a
real-world dataset clearly identify the effectiveness of our
approaches, which have been already deployed on a large-
scale online fresh-item recommendation application.
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With the rapid increase in the photovoltaic (PV) plants, the real-time operation and maintenance of photovoltaic power
generation equipment is very important. (e maintenance and dispatching of decentralized power stations is still one of the
key issues affecting the operation safety of photovoltaic power stations. However, most of the photovoltaic power stations in
China fail to rationally optimize the utilization of resources and time.(e current study puts forward effort implementation
via genetic algorithm-based multiconstrained optimization methodology. (e proposed study optimally overrides the
traditional PV plant operation and maintenance dispatching operations with automation and reliability. (e proposed
study is also applicable to multiple PV plants, multiple maintainers, multipoint departure, different dispatching conditions,
and cost considerations. We propose an MOOA algorithm to solve this issue, and we strongly believe that, by defining a
suitable fitness function, the convergence speed and optimization ability can be greatly improved, and this study puts a
forward step.

1. Introduction

Photovoltaic (PV) power plants are the core component of
the smart grid [1, 2]. Because of its dispersed geographical
location, complex structure, large number of equipment,
and t complicated daily operation and maintenance pro-
cedures [3, 4], all these routine operations greatly affect the
smooth operation of the smart grid. At present, the main-
tenance of PV plants [5–7] is mainly carried out in accor-
dance with the regular maintenance stipulated by the state.
(ere exist a number of problems which lead to excessive
cost maintenance, such as insufficient maintenance, poor
reliability, wasting of resources, and increasing maintenance
costs. (erefore, operation and maintenance dispatch has
become the core problem of an intelligent operation system
of PV plants [8, 9]. Operation and maintenance assignment
is essentially an extension of the assignment problem. (e
assignment of n tasks to n persons belongs to balanced
assignment; otherwise, it belongs to an unbalanced

assignment [10]. In the process of operation and mainte-
nance of PV plants, the number of maintainers is less than
that of power plants, which leads to the unbalanced as-
signment problem. Balanced assignment problem can be
well solved by the Hungarian algorithm, eliminating heights
and shrinking matrix analysis [11], while unbalanced as-
signment problem is an objective function optimization
problem with constraints, and constraints and objective
functions may not be linearized, so it is difficult to solve the
problem. A couple of research studies have put forward
efforts to solve an unbalanced assignment problem [12, 13],
such as dual transportation method [14–17] and fuzzy
Hungarian algorithm [18]. However, the solving process is
complex and does not have robustness and adaptability. (e
machine learning especially deep learning also provides a
solution to the unbalanced assignment problem [19]. In this
paper, a genetic algorithm is presented to solve the unbal-
anced assignment problem of operation and maintenance
dispatch. (is method can optimize the operation and
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maintenance dispatch of multiple PV plants, multiple
maintainers, and multipoint departure. It can set different
assignment constraints or cost considerations and accelerate
the convergence speed and improve the optimization ability
of the algorithm.

2. Establishment of Operational and
Maintenance Model of PV Plants

(e assignment problem takes the matching of tasks and
maintainers as the research object to optimize the utilization
of resources [20, 21]. (e mathematical model of operation
and maintenance dispatch for PV plants is described as
follows.

Assuming that the number of maintainers is m and the
number of tasks is n at a certain time, it obtains m≤ n by
considering the maintenance cost, and one plant is only
maintained by one maintainer; the maintainers will
perform the next task according to the algorithm hints
after the accomplishment of last PV plant’s maintenance.
In this paper, the optimal path of operation and main-
tenance dispatch is given to minimize the time spent by
maintainers on the road. cij represents the time con-
suming on the road between two maintained PV plants,
i.e.,

cij ≥ 0, i � 1, 2, . . . , m; j � 1, 2, . . . , n. (1)

(en, the mathematical model of multiobjective un-
balanced assignment for m maintainers to n PV plants is as
follows:

min Sk � 􏽘
n

j�1
􏽘

m

i�1
cijxij, i � 1, 2, . . . , m; j � 1, 2, . . . , n;

k � 1, 2, . . . , p,

(2)

s.t.

􏽘

n

j�1
xij � 1, i � 1, 2, . . . , m,

􏽘

n

j�1
􏽘

m

i�1
xij � n, j � 1, 2, . . . , n,

xij � 0 or 1, i � 1, 2, . . . , m; j � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where xij � 1 means that the i maintainer completes the j

task and xij � 0 means that no task is assigned.
In order to solve the unbalanced assignment in (2), it

makes an equivalent exchange for (2), that is, n − m

maintainers are added tomake upm maintainers. In essence,
the added maintainers are only considered in the calculation
and will not be shown in dispatch route planning; moreover,
the added maintainers will not affect the objective function
and constraints, so the essence of the unbalanced assignment
problem has not changed. (e original unbalanced as-
signment problem is equivalent to the balanced assignment
problem, that is, m maintainers are responsible for the
operation and maintenance of n PV plants. (e mathe-
matical model is as follows:

min Sk � 􏽘
n

j�1
􏽘

n

i�1
cijxij, i � 1, 2, . . . , n; j � 1, 2, . . . , n;

k � 1, 2, . . . , p,

(4)

s.t.

􏽘

n

j�1
xij � 1, i � 1, 2, . . . , n,

􏽘

n

j�1
􏽘

n

i�1
xij � 1, j � 1, 2, . . . , n,

xij � 0 or 1, i � 1, 2, · · · , n; j � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where xm+1,1, xm+1,2, . . . xm+1,n, . . . , xn,n attributing 0-1 var-
iables correspond to the task assignment of adding main-
tainers. Obviously, the transformed model is equivalent to
the original model. Equation (4) only corresponds to one
assignment, which satisfies both constraints and objective
optimization. Traditional methods are difficult to solve it.
Essentially, the assignment problem of the operation and
maintenance of PV plants is an NP-complete problem,
which is solved by searching one by one, and time consumed
will be O(n!). In this paper, we have employed a genetic
algorithm to solve the operation and maintenance dispatch
of PV plants.

3. Optimization Algorithm of
Maintainers Dispatching

(e bases of the genetic algorithm for solving the optimal
maintenance strategy of PV plants are as follows: First, the
genetic algorithm solves various TSP problems with many
results [22–24] and is mature and reliable. Second, the
genetic algorithm satisfies the solution of different problems;
for instances, the problem of multipoint departure and
multiperson operation and maintenance can be assigned by
adjusting the chromosome coding method, and the opera-
tion and maintenance strategy with uncertain time con-
straints and cost calculation methods can be made by
adjusting the fitness function. (ird, the genetic algorithm is
easy to iterate, whichmeets the new demands emerging from
the operation and maintenance environment of actual PV
plants [25, 26].

As shown in Figure 1, the fault diagnosis process of PV
array is described. (is paper designs the optimal distri-
bution of voltage sensors according to the distribution of PV
plants by equivalent analysis of the weight matrix. (rough
regression analysis of state data [27, 28], the location of the
fault point is obtained by analyzing the voltage signal de-
tected via the voltage sensor.(e fault diagnosis model of PV
arrays is designed and carried out. (is model classifies the
types of fault points [29–31]. Based on the concept of
equipment lifecycle management [32, 33], this paper es-
tablishes the equipment status data model, obtains the in-
formation of equipment management, establishes the health
history of equipment status, refers to the provisions of
equipment manufacturers on their design life, effective
operation life, maximum allowable life, and the sample
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statistical data of their actual service life, and achieves the
assistant decision making of equipment condition moni-
toring in photovoltaic power plants.

(e following steps are used to optimize the operation
and maintenance dispatch of PV plants:

Step 1. Input the fault information to be solved, in-
cluding the number of faults l, the location of the faulty
power station k, the installed capacity of the faulty
power station c, the fault grade of the faulty power
station g, the remaining maintenance waiting time of
the faulty power station t, and the fault flow number s.
Step 2. (e path optimization algorithm is obtained by
the genetic algorithm.

① Input the traffic cost matrix, that is, the traffic cost
between the fault location and the departure
location.

② Random sequencing of fault pipeline numbers
constitutes the initial gene as follows:

gene � sa1, sa2, · · · , san􏼂 􏼃. (6)

③ Repeat ② for N times to form N initial genes:
gene1, gene2, . . . , genen; N initial genes constitute
the initial population Q.

④ Construct fitness function Ψ(gene):

Ψ(gene) �
a

􏽐
n−1
i�1 Csi,si+1

+
b

􏽐
n
i�1 I si( 􏼁∗ csi

+
c

􏽐
n
i�1 I si( 􏼁∗gsi

+
d

􏽐
n
i�1 I si( 􏼁∗ tsi

,

(7)

where gene represents the gene of fitness function to
evaluate fitness, si represents the fault flow number
in the gene, Csi,si+1

represents the traffic cost between
the two fault locations determined by the fault flow
number and the traffic cost matrix C, 􏽐

n−1
i�1 Csi,si+1

represents the total traffic cost of maintenance in the

order of the intermediate flow number, I(si) rep-
resents the order of si in gene; I(si) � 1, if it ranks
first in gene. csi

denotes the installed capacity of the
faulty power station corresponding to the fault
pipeline number si, gsi

denotes the fault grade of the
faulty plant corresponding to the fault pipeline
number si, and tsi

denotes the remaining mainte-
nance waiting time of the faulty power station
corresponding to the fault pipeline number si. a

represents the penalty coefficient of the traffic cost;
the default is 1000; the larger m is, the lower the
route of the traffic cost will be preferred, and b

represents the penalty coefficient of the installed
capacity; the default is 100; the larger b is, the
preferred choice will be made. For a power station
with large installed capacity, c means the penalty
coefficient of the fault grade. (e bigger c is, the
higher the penalty coefficient of maintenance time
will be. d means the penalty coefficient of main-
tenance time. (e bigger d is, the lower the waiting
time of maintenance will be.

⑤ n1 individuals were randomly selected from the
population Q, and the probability of individual
genei being selected was as follows:

Pi �
Ψ genei( 􏼁

sum(Ψ(gene))
, (8)

that is, the greater the fitness, the higher the
probability of being selected, and the new indi-
viduals selected are inserted into the new pop-
ulation Q′.

⑥ (e probability Pc is used to randomly select n2
individuals from the population Q, which is even
and convenient for crossover operation. (e
crossover operation is carried out by randomly
extracting a number of individual gene fragments
and pairing individuals to form a new individual to
join the population Q′. In the optimization process

Start
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Figure 1: Operation process of fault diagnosis for PV arrays.
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of operation and maintenance of PV plants, Pc is set
to 0.75.
In the new population Q′, the probability Pm is used
to randomly select n3 individuals, which is for
mutation. (at is to say, two gene fragments are
randomly selected, and their positions are ex-
changed to form n3 new individuals to join the
population Q′. In the optimization process of op-
eration and maintenance of PV plants, Pm is set to
0.01. (e crossover method and the mutation
method are shown in Figure 2.
Two individuals were selected randomly with
probability Pc to perform crossover operation. (e
offspring inherited part of the genes from their
parents and kept the same sequence as their parents
are as shown in Figure 2. Some genes of Parent 1,
such as 678, crossed with Parent 2 were selected
randomly, and the crossover results are shown in
Figure 2.
(e probability Pm of mutation occurs. Because
each city only passes through once in TSP problem,
the mutation should not change the value of one
position in the gene sequence (which will cause a
city to pass through twice) but should exchange the
values of two positions randomly, as shown in
Figure 2; the positions of 3 and 8 should be
exchanged.

⑦ Repeat ⑤ and ⑥ until the maximum number of
iterations is reached, or the fitness function of an
individual reaches a given threshold.

⑧ For the individual with the largest output fitness, the
sequence of flow numbers is the maintenance se-
quence given by the algorithm.

Step 3. (e optimal operation and maintenance scheme
is output by the path optimization algorithm.
Step 4. If when the maintainers implement the optimal
path, the operation and maintenance time consuming
does not match the expected time consuming or new
faults occur during the operation and maintenance
period; we need to update the information to solve the
fault and repeat Steps 2–4 again, until the maintainers
successfully implement the optimal path.

4. Experiments and
Implementation Verification

(e experimental environment uses MATLAB 6.0 to con-
struct 36 random points as the distribution of PV plants in
the region and triangulate the points, and the time spent on
the road is the sum of the edge lengths of the triangle ex-
perienced between the two points; construct the weight
matrix of the operation and maintenance process, randomly
select a number of points from the points as maintenance
objects, and set them up again every 1 minute from the
points. Randomly select 0 to 1 point as a new maintenance
object to join the maintenance queue. Suppose a maintainer
is at a fixed speed between the set of points in the operation
and maintenance, and the speed per minute does not exceed
the length of the maximum edge of the triangle. As shown in
Figure 3, randomly generate points, triangulate points, and
construct maintenance site.

In the experiment, the maintenance of PV plants can be
well carried out by implementing one maintainer and three
maintainers, respectively. By implementing a genetic algo-
rithm, the optimal dispatching path of maintainers can be
saved, especially when facing 38 photovoltaic power stations,
no more than three maintainers can be maintained.

In order to better prove the rationality of the optimi-
zation method of operation and maintenance dispatch of PV
plants based on genetic algorithm, random method, greedy
algorithm, and genetic algorithm were used to carry out
experiments. (e time consuming on the road between two
places of a company’s PV plants in Zhejiang province is
shown in Table 1, including Hangzhou, Deqing, Haining,
Huzhou, Jiande, Kaihua, Kecheng, Linan, Linhai, Longquan,
Pan’an, Quzhou, Shangyu, Shaoxing, Shengzhou, Taizhou,
Tiantai, Tonglu, Tongxiang, Yuyao, and Zhuji.(e PV plants
in all areas are repaired and maintained once to find an
appropriate operation and maintenance path. (e average
travel time for each region is 159 minutes, of which

(1) (e average total time of 21 horizons patrol by the
random route method is 3340 minutes.

(2) Using a greedy algorithm (the next destination is the
nearest location from the current location), the route
is selected as follows:

1 2 3 4 5 9

9 8 7 6 5 4 3 2 1

6 7 8

6 7 8

9 5 4 3 2 1

6 7 8

1 2 3 4 5 96

1 2 4 5 968

7

7 3

8

 

Paternal gene
sequence

Post-crossover
results

Postmutation
results

Figure 2: Gene crossover and mutation.
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Hangzhou>Tongxiang> Haining> Shangyu>
Shaoxing>Yuyao> Shengzhou>Tiantai> Lin-
hai>Taizhou >Pan’an>Zhuji > Linan>Deqing>
Huzhou >Tonglu> Jiande >Kecheng>Quzhou
>Kaihua> Longquan>Hangzhou.

(e time series is {61, 35, 65, 45, 40, 86, 69, 54, 68,
144, 99, 98, 73, 58, 140, 66, 71, 13, 61, 217, 313},
totaling 1876 minutes.

(3) (e genetic algorithm is used to optimize the
maintenance path. (e time cost matrix of operation
and maintenance location is shown in Table 1. (e
selected route is as follows:

Hangzhou>Linan>Deqing>Huzhou>Tongxiang >
Haining > Zhuji > Shaoxing>Yuyao > Shangyu>
Shengzhou>Tiantai>Taizhou> Linhai> Pan’an >
Longquan>Kaihua>Kecheng>Quzhou > Jiande>
Tonglu>Hangzhou.

(e time series is {62, 73, 58, 87, 35, 103, 77, 40, 55, 67,
69, 90, 68, 97, 187, 217, 56, 13, 76, 66, 78}, totaling 1278
minutes.

Compared with the optimal path obtained by the ex-
haustive wet method, it is confirmed that the improved
genetic algorithm can obtain the optimal path for 21 op-
eration and maintenance routes.

(e coding method of the genetic algorithm and the
definition of fitness function in [34, 35] were used to solve
the operation and maintenance route planning of PV plants.
Comparing with this algorithm, as shown in Figure 4, [35]
needs 81 iterations, [34] needs 44 iterations, while this al-
gorithm only needs 34 iterations, and the final operation and
maintenance path takes 1278 minutes. By defining an ap-
propriate fitness function, the strategy of a genetic algorithm
to optimize the operation and maintenance path presented
in this paper can accelerate the convergence speed and
searchability of the genetic algorithm.

5. Summary

(is paper presents an optimization method of operation
and maintenance dispatch of PV plants based on the
genetic algorithm. (is method aims at the operation and
maintenance tasks of large-scale distributed PV plants. GA
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for M-TSP is applied to provide an optimal path for
maintainers dispatched for PV plants. It supports the
optimization of operation and maintenance dispatch of
multiple PV plants, multimaintainer, multiobjective, and
multipoint departure. By multitype cost function, different
assignment constraints or cost considerations can be set,
such as arrival within a specified time or minimum time
cost of transportation costs. We ascertain that the pro-
posed model will lead the way.
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With the popularity of community question answering (CQA) sites, the research on identifying the expert users in online
communities attracted increasing attention. We present a novel expert ranking algorithm based on the quality of user posts and
the authority of user in community, and the similarity between the knowledge tags of users and questions in CQA sites is adopted
in our scheme. Experimental results show that our scheme has better performance and accuracy under the same background with
an amount of data samples.

1. Introduction

)e number of Internet users is growing rapidly, along with
the fast development of the network applications and in-
frastructure. In the enjoyment of convenience the network
brings, it becomes difficult for the users to obtain the ef-
fective acquisition and screening of information [1, 2]. It
follows then that community question answering (CQA)
sites spring up [3, 4]. CQA sites are online knowledge
communities, specializing in knowledge sharing and seek-
ing, such as Stack Overflow [5, 6] and Yahoo Answers [7].
CQA sites provide a network platform for users to ask and
answer questions and achieve information transfer and
knowledge sharing among Internet users. Due to various
topics and abundance content in CQA sites, network users
prefer CQA sites to conventional web pages when seeking
topic-specific information or solving problems [8]. )e
quality of information provided by CQA sites has been
greatly improved in recent years. However, with the in-
creasing number of community users, online communities
amass an enormous amount of knowledge, which contains
many useless answers inevitably in the community.
)erefore, it is crucial to identify and recommend the ex-
perts in different fields of the CQA sites for the community

operation and extension services [9–11]. Meanwhile, net-
work users can gain the accurate and high quality experi-
ence.)erefore, expert finding technique is of significance to
improve the accuracy and efficiency of information acqui-
sition in the CQA sites [12–14].

)e existing expert finding techniques [15, 16] are divided
into threemajor categories in generally. A directed graph is built
based on the interaction between network users in the com-
munity, and the users are ranked by adopting the link analysis
algorithm [17, 18] in the first category. In the second category,
the text data in the community is analyzed based on the topic
models [19, 20], and the results are applied to expert recom-
mendation [21, 22]. In the last category, the hybrid models are
built for expert finding with the methods mentioned above. A
number of strategies are proposed unceasingly, but there are still
some imperfections. Most of the traditional expert finding
techniques ignore the user’s activeness in the community. It
may lead to the expert users not providing timely response. In
addition, the comprehensive factors are not considered com-
pletely in some methods when users’ expertise is evaluated.
Finally, it may lead to the limited authority of recommended
experts.

In our study, a more complete expert finding system that
includes the expert ranking and the expert recommendation
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is proposed. A new expert ranking algorithm is presented in
this paper, named as Exp-rank. Exp-rank considers not only
the authority of users in the community but also the quality
of content published by users. On the basis of expert ranking,
we calculate the similarity between the new questions and
the knowledge tags of the users. According to the calculated
results, we recommend experts more accurately to the new
question. )e rest of the paper is organized as follows.
Section 2 briefly introduces the related work. Section 3
presents the proposed Exp-rank algorithm and the expert
recommendation. Section 4 provides the dataset, perfor-
mance evaluation, results, and discussion. Finally, section 5
summarizes the full task.

2. Related Work

)e expert finding in online community is a widely inves-
tigated problem [23, 24]. In the development of CQA sites, a
large number of users register for the community and
participate in topic discussions. Meanwhile, the community
has accumulated a lot of content, including a lot of useless
information. Expert finding techniques can help identify and
recommend the expert users in the CQA sites and avoid the
adverse effects caused by spam and useless information
[25–27]. )e results of expert finding can be applied to the
informationmanagement of the CQA sites and are helpful to
provide users with more efficient and accurate question and
answer service.

Link analysis algorithm is significantly adopted in the
research of the expert ranking [28]. Zhang et al. [29] propose
and evaluate several link-based expert ranking algorithms.
)ey reveal that PageRank-based expert ranking algorithms
outperform other algorithms in the online community. Yang
andWu [30] adopt weighted HITS algorithm to find experts
in CQA sites. Link analysis algorithm can reflect the au-
thority of users in the community. However, the link-based
expert finding techniques focus merely on the link structure
among individuals. )ey ignore the impact of useless replies
and advertising accounts.

Graph-based algorithms are also applied in the research
of expert finding. Zhao et al. [31] consider the problem of
expert finding from the viewpoint of missing value esti-
mation. )e performance of the expert finding in CQA
systems is improved because they employ users’ social
networks for inferring user model. Aslay et al. [32] propose
Competition-Based Expertise Networks (CBEN), a novel
community expertise network structure based on the
principle of competition among the answerers of a question.

On the other hand, some researches reveal experts by
analyzing online community content and user profile. Be-
cause of the complexity and diversity of information, the
related strategies are varied. Shao and Yan [33] propose a
model with two prediction methods that include the tra-
ditional feature-based method and LDA method. Specifi-
cally, when a new question arises, the model adopts LDA
method to label and classify the question according to the
latent semantic and content features. )en, with the tradi-
tional features of the question and the asker information, the
model can recommend the appropriate expert users to

answer this new question. Lu et al. [34] use semantic in-
formation extracted from user interaction to identify expert
users. )ey construct the user question-answer interaction
graph through direct semantic links and potential links
extracted from the records of question session records and
user profiles. After that, they employ the semantic infor-
mation in the propagation link analysis method and in the
language model. Faisal et al. mainly adopt the reputation of
users in the community and the quality of users’ answers as
the main experts’ evaluation indexes. On this basis, they
combine voter reputation, voting rate, and other charac-
teristics to measure the user expertise [35–37]. However, not
every CQA site provides users with services like reputation
system. )erefore, it is not conducive to extend these re-
searches to other network communities.

Expert finding techniques based on social network
features are rare. Most studies take the features of social
network as one of the indicators to evaluate experts and
propose a hybrid model for expert finding [38]. Wang et al.
[39] consider both the relevance of documents and the
authority of users in the community to assess the level of
experts. Rafiei and Kardan [40] propose a hybrid method for
expert finding in online communities, which is about the
content analysis and the social network analysis.)e content
analysis is based on the concept map and the social network
analysis is based on PageRank algorithm. Zhou et al. [41]
present a topic-sensitive probabilistic model, which is an
extension of PageRank algorithm to find experts in CQA.
Compared with the conventional link analysis technology,
their method considers not only the link structure, but also
the topic similarity between different users. In fact, most of
the previous works focus only on the static ranking or
matching of domain experts without considering compre-
hensive factors that influence the user’s expertise. In par-
ticular, our work serves as a method of dynamic expert
finding system that combines expert ranking and expert
recommendation.

3. Materials and Methods

We propose a new expert finding system containing expert
ranking and expert recommendation for CQA sites. We
adopt the cumulative the quality factor and the authority of
users as the expert evaluation indicators and recommend
experts to the new questions. A generic overview of the
proposed scheme is given in Figure 1. In CQA site, a group
of questions are Q � q1, q2, . . . , qn􏼈 􏼉, where the question qi

owns answers A � a1, a2, . . . , am􏼈 􏼉 from users
U � u1, u2, . . . , ui􏼈 􏼉. In particular, we identify the expert
users based on the expertise and the authority from U. In
more detail, we evaluate the expertise of the users by ana-
lyzing their past performance. Meanwhile, the link-based
ranking algorithm is employed to calculate the authority of
the users. )en, we combine the expertise and the authority
of the users to identify expert users. For recommending
experts more accurately for the new questions, we extract the
knowledge tags from top-ranking experts, and obtain ap-
propriate recommended expert users by calculating the
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similarity between the user knowledge tags and the new
questions in the community.

3.1. Expert Authority Ranking Algorithm. We build a par-
ticular network that indicates the interaction of community
members to determine the social influence of the users in the
online community. We adopt Q&A graph to represent a
social network based on the interaction of the users. In Q&A
graph, the nodes represent different users in the community,
and a directed edge is built between two users when they are
the inquirer and the responder about the same question,
respectively, as shown in Figure 2. Q&A graph describes the
interactions of user in the online community. Link analysis
algorithms include PageRank and HITS and the authority of
nodes can be measured by link analysis algorithms based on
Q&A graph. Lü et al. [42] proposed LeaderRank algorithm
based on PageRank. As shown in Figure 3, they consider a
network of N nodes andM directed links. Nodes correspond
to users and links are established according to the relations
among leaders and fans.)e idea of LeaderRank algorithm is
to add a ground node which connects to every user through
bidirectional links (see Figure 3 for an illustration). )e
network thus becomes strongly connected and consists of
N+ 1 nodes and M+ 2N links. )e out-degree or in-degree
of all nodes is greater than zero, which avoids isolated nodes
in complex networks and ensures the convergence of the
algorithm. Moreover, LeaderRank algorithm is an adaptive
parameter free algorithm. Comparing with PageRank,
LeaderRank has higher accuracy and robustness in mining
important network nodes.

Figure 2 illustrates the user relationship in the CQA sites.
Nodes represent users and links are established according to
the relations among inquirer and the responder. In the
discussions of the online community, the question from u1 is
answered by u2, can gain, u2, a vote of support from u1. If u3
and u4 answer the question from u2, the vote of support from
u2 is evenly distributed to them. )e expert authority
ranking algorithm is based on the fact that a user owns more
authority than the user whose question is answered by him.

In particular, the community has some user groups
whose members rarely communicate with users outside the
group, and these user groups usually contribute less to the
mainstream topics in the community. However, more

internal links may exist in these user groups. )ese internal
links are worthful to improve the quality of ranking, but they
are usually ignored in link analysis algorithms. )us, we
propose an expert authority ranking algorithm to measure
the authority of the users based on the above. E consists of
directed links formed by the relationship between question
and answer from users in the community. We present uji to
indicate the contribution of user i to user j:

uji �

0, if (j, i) ∉ E,

n(j, i), if (j, i) ∈ E,

⎧⎪⎨

⎪⎩
(1)

uji
′ � uji − βuij, (2)

aji �
uji
′

􏽐
N
k�1 ujk
′
, (3)

where n(j, i) is the number of times that user i has answered
j. β denotes a damping factor, and the range of β is from 0 to
1.)e value of uji

′ equals the value that the backlinks between
users are subtracted from uji. )is helps to eliminate the
effect of internal links in user groups on ranking. When
uji
′ < 0, we set uji

′ equal to zero. N is the total number of users
that have answered user j, and aji represents the vote of
support from user j to user i. )e authority value of user i at
time t is AUi(t), and we have

AUi(t + 1) � 􏽘
N+1

j�1
ajiAUj(t). (4)

AUi(0) � 1 represents the initial score of all user nodes
except the ground node, and AUg(0) � 0 represents the
initial score of the ground node.AUi tends to be stable at tc,
and the final authority score of user i is

AUi � AUi tc( 􏼁 +
θiAUg tc( 􏼁

N
, (5)

θi � θ∗ e
− d− d0( ). (6)

AUg(tc) is the score of the ground node when it reaches
the steady state. θi is the time attenuation of user i, θ is the
attenuation coefficient, and d0 represents the user’s last post

 Q&A graph
Candidate’s

expertise
document

Ranking users

Link-based
ranking

algorithm

Cumulative
quality factor

Calculating
the similarity
between tags

Tags of new
question

Extracting the
knowledge tags

of the user Predicted
answerers

Figure 1: Architecture of proposed expert finding system.
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before the deadline d. If the last post from the user emerged a
year ago, the attenuation coefficient of the user is 0. We
measure the activity of the user according to the time at-
tenuation and assign the score of the ground node through
the activity of the users. )rough the formula above, we can
get the authority score of the users.

3.2. Cumulative Quality Factor. Most of the online com-
munities possess malicious registered accounts, which are
generally active in the communities, disseminating adver-
tising or spam information. )ese accounts cannot be
screened out when the authorities of users are calculated.
Although some users actively participate in discussions to
improve their authority value, the posts of these users are not
professional and have little reference value for other users.

To solve these problems, we propose the concept of
cumulative quality factor. In the process of data acquisition,
we remove the users that rarely speak. )en, we summarize
the scores or likes (the positive comments) of all the posts
produced by users in the community and calculate the
cumulative quality factor AS of the users:

ASi �
1
N

􏽘

N

j�1
ln δj + 1􏼐 􏼑. (7)

)e total number of answers posted by user i is N. δj

represents the score for the answer from user i, and δj + 1 is
to avoid the situation that the score is zero.

We can estimate the past performance of the users by
calculating the cumulative quality factor. Moreover, it helps

us to remove useless accounts and identify expert users with
the expertise and the continuous excellent performance.

3.3. Exp-Rank. In order to evaluate expert users compre-
hensively, we combine the cumulative quality factor and the
authorities of the users into an expert ranking standard. It is
expressed as follows:

Expi � AUi · AS
λ
i . (8)

)e expert score of user i is calculated with the cumu-
lative quality factor ASi and the authority value AUi of the
user. λ denotes a weighting factor, and the range of λ is from
0 to 1. In the expert finding of knowledge community, we
think that the weight of ASi should be slightly less than AUi ,
and therefore the value of λ is set to 0.9. At last, we rank the
candidates according to their expert scores Exp and obtain
the results of expert ranking.

3.4. Expert Recommendation. We establish user files for the
top ranking candidates. )e user files are composed of
questions and answers posted by users. )e low-score an-
swers posted by users are not adopted in the user files.
Moreover, we extract keywords from user files by applying
RAKE [43] algorithm. RAKE algorithm adopts punctuations
to divide a file into several clauses, and the stop words are as
delimiters to divide the clauses into several phrases, which
are the candidates for the final extracted keywords. Each
phrase can be split into several words by spaces, and every
word can be given a score expressed as follows:

u1

u2 u3

u4

Figure 2: User-user relationship graph.

Ground node

Figure 3: An illustration of the LeaderRank algorithm.
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word Score(w) �
wordDegree(w)

word Frequency(w)
. (9)

In the formula, the value of word Degree (w) consists of
two portions, which are the number of times the word w

forms a phrase with other words and the total number of
times the word w occurs in the file, and word Frequency (w)
represents the total number of times the word w occurs in
the file. )e word Score (w) of each word is calculated by
formula. )e score of every phrase can be obtained by ac-
cumulating the scores of words. RAKE algorithm extracts
phrases that score in the top third as keywords.

As shown in Table 1, we take the keywords of user files as
the knowledge tags of the user. We employ cosine similarity
to calculate the similarity between the knowledge tags of user
and the tags of the new question because all the questions in
Stack Exchange website possess their own tags [44]. )e
expert users are recommended to the new question
according to the similarity scores.

4. Experiments

We adopt the dataset of Stack Exchange website to simulate
and compare the results with other algorithms for verifying
the effectiveness of our proposed method.

4.1. Dataset. Stack Overflow is an online knowledge com-
munity, originally designed for programmers and computer
engineers. It was founded in 2008 by two programmers, Joel
Spolsky and Jeff Atwood. Users can post and answer
questions, discuss with each other, and retrieve information
from previous questions in the website. With the popularity
of Stack Overflow, the founders of the website apply the
same pattern to other fields, such as cooking and photog-
raphy. Each CQA site is called Stack Exchange. Stack Ex-
change covers a wide range of topics.

Stack Exchange owns a large amount of Q&A data, and
website operators regularly expose their data for the purpose
of research. Based on the Q&A datasets, Correa and Sureka’s
[45] study deleted questions in the website to remind
communitymembers not to ask low-quality questions. Beyer
and Pinzger [46] studied Stack Overflow tags and looked for
the similar tags and merging them to avoid tag overflow.
Meanwhile, the datasets from Stack Overflow have been used
in expert finding and expert recommendation research.
Faisal et al. [35] applied the g-index to expert ranking. Yang
et al. [47] propose Topic Expertise Model (TEM) for expert
finding. In order to verify our method, we adopt the dataset
under the coffee topic of Stack Exchange website to simulate.
)e statistics of the dataset are shown in Table 2.

5. Results and Discussion

Stack Exchange possesses a reputation system, and each user
owns a reputation score. Actually, the reputation system of
Stack Exchange community has strict evaluation standards.
Generally, if users want to improve their reputation score,
they need to post valuable questions in their professional
fields for a long time and provide high-quality answers or

comments for other questions. )e reputation system of
Stack Exchange community helps the community to stim-
ulate the potential of users and form a virtuous circle.
)erefore, the reputation score of Stack Exchange com-
munity users has great reference value for evaluating expert
users. Reputation score comes from the comprehensive
performances of the user. We compare and analyze the
results of the experts ranking with reputation scores of the
users.

In the experiment, we choose two expert ranking
techniques for comparison. )e first one is Expertise Rank
[29], which is an expert ranking method based on link
analysis.)e users are ranked in Expertise Rank according to
the Q&A relationship among the users. )e second one is
LeaderRank [42], which is an improvement of Page Rank
algorithm. In addition, LeaderRank is an adaptive param-
eter-free algorithm. We adopt the accuracy P to measure the
difference of expert ranking algorithms. P is calculated as

P �
rlist ∩

​
elist

numlist
, (10)

where rlist denotes the user reputation ranking list, elist
denotes the experts ranking list, and numlist presents the
number of experts in the list. Adopting the reputation
ranking list as a benchmark, we select the top 30, 50, and 100
users respectively from the experts ranking lists obtained by
different methods to calculate the accuracies, the results are
shown in Figure 4. Exp-Rank model combines the persistent
performance and authority of users. )e result shows that
the expert list ranked by Exp-Rank has a high correlation
with the user reputation ranking list. It indicates that expert
users selected by Exp-Rank are generally recognized. In
addition, the performances of both Expertise Rank and
LeaderRank algorithms are not satisfied, principally because
the evaluation indexes of these techniques are not
comprehensive.

In the section of the expert recommendation, we obtain
the top 100 expert users from the expert ranking list of Exp-
rank and extract their knowledge tags. In the Stack Exchange
dataset, more than 90% of the questions possess five answers
at most, and the high-score answers are rare. )erefore, we
select five questions with the most answers as the new
questions, and these questions have their own tags. )ough
comparing the similarity between the new question tags and
the knowledge tags from the top 100 expert users, the expert
users can be further screened according to the similarity
score. We compare the recommended expert users with the
users who actually answered these questions and calculate
the accuracy of the expert recommendation. )e accuracy is
calculated as

P �
Rlist ∩

​
Alist

Rlist
, (11)

P �
􏽐

N
i�1 Pi

N
, (12)

where Rlist indicates recommended list of experts and Alist
indicates the list of users who actually answered the
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Table 2: Stack Exchange dataset statistics.

Users 7510
Questions 1059
Answers 2107
Comments 4602

Table 1: User knowledge Tags descriptions.

User ID User knowledge tags
1 Moka-pot aeropress latte-art bean-varieties egg-coffee
2 Diner-coffee caffeine cholesterol percolator soya-milk
3 French-press latte espresso-machine space kahlúa
4 Cafetiere Indian coffee-maker French-press acidic
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0.44
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Figure 4: Accuracy of the top users.
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Figure 5: Accuracy score of recommended experts.
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Figure 6: Percentage of the score for the expert’s answers.
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question. P is the mean accuracy. As shown in Figure 5, we
recommend experts for the top five questions. )e average
accuracy is 0.44. )at means when we recommend 10 ex-
perts, at least 4 of them will answer questions with high
probability. As shown in Figure 6, for the five questions, the
average proportion of expert users’ answers scores is 0.67,
which indicates that the answers of expert users are rec-
ognized by other users and have a higher professional level.

In conclusion, the experimental results prove that a
better expert ranking result will be obtained by combining
the authority of users with the continuous performance of
users. In addition, recommending experts according to the
similarity of the new questions can improve the accuracy of
expert finding system.

6. Conclusion and Future Work

In order to identify the expert users in the complex online
community, we propose a novel expert finding system based
on the characteristics of the CQA sites. In our scheme, we
propose an expert ranking algorithm named Exp-Rank,
which considers the continuous performance and the au-
thority of users and gives a more objective and compre-
hensive ranking of experts. Furthermore, we recommend
experts according to the similarity between the new question
and the knowledge tags of expert users. In particular, we can
obtain some better results when we recommend 10–20 users.
It should be noted that the evaluation indexes adopted in our
method are common in CQA sites, so it can be widely
applied in different types of online communities, such as
Yahoo Answers and Zhihu. Consequently, we will try to
enhance the performance of schemes with some more
complex factors, including the user activity and the cold start
problems of new users.
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