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Mechanical stress promotes human ligamentum flavum cells (LFCs) to synthesize multitype collagens, leading to ligamentum
flavum hypertrophy (LFH). However, the mechanism of mechanical stress in the formation of collagen remains unclear.
Therefore, we investigated the relationship between mechanical stress and collagen synthesis in the present study. First, LFCs
were isolated from 9 patients and cultured with or without mechanical stress exposure for different times. IGF-1, collagen I
(col-I), and collagen III (col-III) protein and mRNA levels were then detected via ELISA and qPCR, respectively. Moreover,
the activation of pIGF-1R, pAKT, and pS6 was examined by Western blot analysis. To further explore the underlying
mechanism, an IGF-1 neutralizing antibody, NVP-AEW541, and rapamycin were used. IGF-1, col-I, and col-III were
significantly increased in stressed LFCs compared to nonstressed LFCs. In addition, the activation of pIGF-1R, pAKT, and pS6
was obviously enhanced in stressed LFCs. Interestingly, col-I protein, col-I mRNA, col-III protein, col-III mRNA, and IGF-1
protein, but not IGF-1 mRNA, were inhibited by IGF-1 neutralizing antibody. In addition, col-I and col-III protein and
mRNA, but not IGF-1, were inhibited by both NVP-AEW541 and rapamycin. Moreover, the activation of pIGF-1R, pAKT,
and pS6 was reduced by the IGF-1 neutralizing antibody and NVP-AEW541, and the activation of pS6 was reduced by
rapamycin. In summary, these results suggested that mechanical stress promotes LFCs to produce IGF-1, which facilitates col-I
and col-III synthesis via the IGF-1R/AKT/mTORC1 signaling pathway.

1. Introduction

Currently, an increasing number of elderly individuals have
lumbar spinal stenosis (LSS) [1, 2]. The clinical symptoms of
LSS include lower limb numbness with pain, low back pain,
and claudication [3]. LSS causes tremendous discomfort for
patients, and LSS is often caused by ligamentum flavum hyper-
trophy (LFH) [4, 5]. Previous studies [6–9] have shown that
mechanical stress promotes collagen I (col-I) and collagen III

(col-III) synthesis which contributes to LFH. However, the
exact mechanisms remain unclear.

According to a previous study [10], IGF-1 is important
for anabolism and stimulates the IGF-1R/AKT/mTORC1
signaling pathway, resulting in muscle or bone formation
[11–13]. Moreover, increased IGF-1 promotes hypertrophy
of various tissues [14–17], and mechanical stress plays a vital
role in IGF-1 formation [18, 19]. We have previously
reported that [20] exogenous IGF-1 promotes col-I and
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col-III synthesis in LFCs, which are fibrous connective tissue
stem cells. However, in LFH, the relationship of mechanical
stress and IGF-1 has not been sufficiently studied.

In the present study, we hypothesized that mechanical
stress plays a pivotal role in IGF-1 synthesis. In addition,
IGF-1 may promote col-I and col-III synthesis by the IGF-
1R/AKT/mTORC1 signaling pathway. To test these hypoth-
eses, col-I and col-III as the important indicator of LFH were
detected, and related marker activation of the IGF-1R/AKT/
mTORC1 signaling pathway was examined. In addition, the
relationship of mechanical stress and IGF-1 in LFH as well
as the potential mechanism involved was investigated.

2. Materials and Methods

2.1. LFC Cultivation and Identification. First, nonthickened
ligamentum flavum (LF) samples were aseptically obtained
from 9 lumbar surgery patients (5 males and 4 females with
an average age of 47.2 years). The LF samples were washed
with physiological saline 3 times before being minced into
0.5mm3 pieces. The LF samples were then digested with
0.2% collagenase-I for 1.5 h at 37°C and washed 2 times with
PBS. The LF samples were centrifuged 3 times at 1000 r/min
for 5min before being placed in cell culture plates with
DMEM containing 20% fetal bovine serum (FBS). Subse-
quently, The LF samples were incubated, and the medium
was changed every 3 days. Approximately one week later,
LFCs migrated out from the LF samples. When the LFCs
reached 80% confluence, they were passaged 1 : 2. Moreover,
some of the LFCs were cryopreserved in media
(10%DMSO + 20%FBS + 70%DMEM) at -80°C. LFC mor-
phology was inspected, and the expression of vimentin and
col-I in LFCs was detected by immunostaining [21].

2.2. Mechanical Stress Application. Experiments were
performed with LFCs from each individual patient. The
LFCs were grouped into experimental and control groups,
and they were cultured in BioFlex I 6-well plates at 1 × 105
cells per well. After LFCs reached 80% confluence, they were
subjected to serum starvation (DMEM with 0.2% FBS) for
12 h. The experimental groups were subjected to cycles of
relaxation for 10 s and 20% elongation for 10 s by a tension
system (FX5K, Flexcell International Corporation, USA)
[22–25] for 6 h, 12 h, and 24 h. Control groups were cultured
in the same environment without mechanical stress.

2.3. IGF-1 Neutralizing Antibody Treatment. LFCs were
grouped into the following 3 groups: nonstress group, stress
group, and stress+IGF-1 neutralizing antibody (10μg/ml,
Abcam, Cambridge, UK) group. LFCs in the stress group
and the stress+IGF-1 neutralizing antibody group were
subjected to cycles of relaxation for 10 s and 20% elongation
for 10 s by the tension system for 24 h, and LFCs in the nons-
tress group were not subjected to mechanical stress. IGF-1,
col-I and col-III protein, and mRNA levels were detected
by ELISA and RT-qPCR, respectively, in each group. In
addition, the activation of pIGF-1R, pAKT, and pS6 in each
group was evaluated by Western blot analysis.

2.4. NVP-AEW541 Treatment. LFCs were grouped into the
following 3 groups: nonstress group, stress group, and
stress+100ng/ml NVP-AEW541 (a specific inhibitor of
IGF-1R, dissolved in DMSO, MedChem Express, Mon-
mouth Junction, NJ) group. LFCs in the stress group and
the stress+100 ng/ml NVP-AEW541 group were subjected
to cycles of relaxation for 10 s and 20% elongation for 10 s
by the tension system for 24h, and LFCs in the nonstress
group were not subjected to mechanical stress. IGF-1, col-I
and col-III protein, and mRNA levels were detected by
ELISA and RT-qPCR, respectively, in each group. Moreover,
the activation of pIGF-1R, pAKT, and pS6 in each group was
evaluated by Western blot analysis.

2.5. Rapamycin Treatment. LFCs were grouped into the
following 3 groups: nonstress group, stress group, and
stress+10ng/ml rapamycin (a specific inhibitor of mTORC1,
dissolved in DMSO, Alexis Biochemicals, Lausen, Switzer-
land) group. LFCs in the stress group and the stress+10 ng/
ml rapamycin group were subjected to cycles of relaxation
for 10 s and 20% elongation for 10 s by the tension system
for 24h, and LFCs in the nonstress group were not subjected
to mechanical stress. IGF-1, col-I and col-III protein, and
mRNA levels were detected by ELISA and RT-qPCR, respec-
tively, in each group. Moreover, the activation of pS6 in each
group was evaluated by Western blot analysis.

2.6. RT-qPCR Analysis. IGF-1, col-I, and col-III mRNA was
measured by RT-qPCR in each group. First, we extracted
total RNA from LFCs and detected its concentration and
purity. Reverse transcription was then performed followed
by qPCR. The primer sequences used in the present study
are listed in Table 1 [21]. Sangon Biotech (Sangon Biotech,
China) synthesized all primers in the study. All assays in
the study were performed in triplicate. The samples were
normalized to GAPDH and analyzed by the 2-ΔΔCq

method [26].

2.7. Enzyme-Linked Immunosorbent Assay. Culture superna-
tants from LFCs in each group were collected. To remove
insoluble impurities and cell debris, the supernatants were
centrifuged at 1000 g at 4°C for 20min. The cleared superna-
tants were immediately used to measure IGF-1, col-I, and
col-III protein levels by a Human IGF-1 ELISA Kit
(Elabscience Biotechnology, China), Collagen I ELISA Kit
(Elabscience Biotechnology, China), and Collagen III ELISA
Kit (Elabscience Biotechnology), respectively.

2.8. Western Blot Assays. LFCs from each group were lysed
on ice in lysis buffer, and the lysates were then added to
Laemmli buffer at 100°C for 10min. The LFC lysates were
separated by electrophoresis, and the proteins were then
transferred to nitrocellulose membranes. The membranes
were blocked with TBS containing 5% nonfat milk for 2 h
at 25°C. Subsequently, the membranes were incubated with
primary antibodies for 12 h at 4°C followed by incubation
with secondary antibodies for 1.5 h at 25°C. Finally, a chemi-
luminescence kit (Beyotime, China) was used to visualize the
nitrocellulose membranes.
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2.9. Statistical Analyses. Data were statistically analyzed and
graphed using GraphPad Prism 5.01 (GraphPad Software
Inc., San Diego, CA, USA). Protein and mRNA changes with
or without mechanical stress at different times were analyzed
by one-way ANOVA, and Tukey’ s honestly significant
difference was used as the post hoc method. The remaining
data were analyzed by Student’s t-test. The results were con-
sidered significant when P < 0:05, and the data are presented
as the mean ± SD.

3. Results

3.1. Identification and Morphology of LFCs with or without
Mechanical Stress. Immunofluorescence staining showed that
LFCs expressed high levels of col-I and vimentin (Figure 1),
which indicated that highly purified LFCs were cultured.
Without mechanical stress, most LFCs were polygonal
(Figure 2(a)). Under mechanical stress, LFCs became fusiform
and arranged along the direction of stress (Figure 2(b)).

3.2. Mechanical Stress Promotes IGF-1, col-I, and col-III
Protein and mRNA Production as well as Activation of
pIGF-1R, pAKT, and pS6. IGF-1, col-I, and col-III mRNA
was examined via RT-qPCR in the stress group and the
nonstress group at 6 h, 12 h, and 24h. Mechanical stress
upregulated IGF-1, col-I, and col-III mRNA production in
a time-dependent manner (Figures 3(e)–3(g)). Moreover,
IGF-1, col-I, and col-III protein levels were examined by
ELISA at 6 h, 12 h, and 24h. Mechanical stress increased
IGF-1, col-I, and col-III protein production in a time-
dependent manner (Figures 3(h)–3(j)). The activation of
pIGF-1R, pAKT, and pS6 was evaluated in the stress group
and the nonstress group by Western blot analysis at 6 h,
12 h, and 24 h. Mechanical stress increased the activation
of pIGF-1R (Figures 3(a) and 3(b)), pAKT (Figures 3(a)
and 3(c)), and pS6 (Figures 3(a) and 3(d)) in a time-
dependent manner.

3.3. IGF-1 Neutralizing Antibody Reduces col-I and col-III
mRNA Production; Reduces IGF-1, col-I, and col-III Protein
Production; and Suppresses the Activation of pIGF-1R,
pAKT, and pS6. IGF-1, col-I, and col-III mRNA and protein
levels were examined by RT-qPCR and ELISA, respectively,
at 24 h for the nonstress group, the stress group, and the
stress+10μg/ml IGF-1 neutralizing antibody group. The

IGF-1 neutralizing antibody reduced the mRNA levels of
col-I/col-III (Figures 4(f) and 4(g)), but not IGF-1
(Figure 4(e)). Moreover, IGF-1, col-I, and col-III protein
levels were reduced by the IGF-1 neutralizing antibody
(Figures 4(h)–4(j)). Furthermore, IGF-1 neutralizing anti-
body suppressed the activation of pIGF-1R (Figures 4(a)
and 4(b)), pAKT (Figures 4(a) and 4(c)), and pS6
(Figures 4(a) and 4(d)).

3.4. NVP-AEW541 Reduces IGF-1, col-I, and col-III Protein
and mRNA Production and Suppresses the Activation of
pIGF-1R, pAKT, and pS6. IGF-1, col-I, and col-III mRNA
and protein levels were examined by RT-qPCR and ELISA,
respectively, at 24 h in the nonstress group, the stress group,
and the stress+100 ng/ml NVP-AEW541 group. NVP-
AEW541 reduced the mRNA levels of col-I/col-III mRNA
(Figures 5(f) and 5(g)), but not IGF-1 (Figure 5(e)), and it
reduced the protein levels of col-I/col-III protein
(Figures 5(i) and 5(j)), but not IGF-1 (Figure 5(h)). In addi-
tion, the activation of pIGF-1R (Figures 5(a) and 5(b)),
pAKT (Figures 5(a) and 5(c)), and pS6 (Figures 5(a) and
5(d)) was reduced by NVP-AEW541.

3.5. Rapamycin Reduces IGF-1, col-I, and col-III Protein and
mRNA Production and Suppresses the Activation of pS6.
IGF-1, col-I, and col-III mRNA and protein levels were
detected by RT-qPCR and ELISA, respectively, at 24 h in
the nonstress group, the stress group, and the stress+10 ng/
ml rapamycin group. Rapamycin decreased the mRNA levels
of col-I/col-III (Figures 6(d) and 6(e)), but not IGF-1
(Figure 6(c)), and it reduced the protein levels of col-I/col-
III (Figures 6(g) and 6(h)), but not IGF-1 (Figure 6(f)). In
addition, the induction of pS6 was suppressed by rapamycin
(Figures 6(a) and 6(b)).

4. Discussion

In previous studies, LFH has been identified as a common
cause of LSS [3–5]. LFH is caused by increased collagen
levels, mainly col-I and col-III [8, 21, 27–29]. Many inflam-
matory and growth factors such as IL-1, IL-6, TGF-β1,
VEGF, PDGF-BB, CTGF, and TNF-α have been reported
to promote col-I and col-III production, eventually leading
to LFH [8, 21, 27, 30–36]. Chuang et al. [37] showed that
oxidative stress activates the Akt and MAPK pathways to
upregulate inflammatory mediator (iNOS and NF-κB) and
fibrotic marker (TGF-β, β-catenin, α-SMA, and vimentin)
expression levels, thereby contributing to LFH. Habibi
et al. [38] confirmed that acidic fibroblast growth factor
(FGF-1) expression is higher in LSS patient tissues than in
nonhypertrophied ligamentum flavum tissues.

IGF-1 is a vital growth factor that promotes collagen
production via the mTORC1 signaling pathway [11–13].
According to previous studies [14–17], IGF-1 is released by
various types of cells under mechanical stress and IGF-1
increases collagen expression levels, which contributes to
the hypertrophy of various tissues. Some studies have also
reported [6–9] that mechanical stress may play a vital role
in LFH. Nakatani et al. [8] indicated that mechanical stress

Table 1: Primers used in the study.

Gene Sequence (5′ to 3′)

IGF-1
Forward GTG TTG CTT CCG GAG CTG TG

Reverse CAA ATG TAC TTC CTT CTG AGT C

Collagen I
Forward GTC GAG GGC CAA GAC GAA G

Reverse CAG ATC ACG TCA TCG CAC AAC

Collagen III
Forward ATG TTC CAC GGA AAC ACT GG

Reverse GGA GAG AAG TCG AAG GAA TGC

GAPDH
Forward ACA CCC ACT CCT CCA CCT TT

Reverse TTA CTC CTT GGA GGC CAT GT
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stimulates LFCs to produce TGF-βl, which increases the
synthesis of collagens, resulting in LFH. Hayashi et al. [9]
reported that fibroblast growth factor 9 (FGF9) and its path-
way contribute to LFH under mechanical stress. Reijnders
et al. [18] reported that mechanical stress results in IGF-1
mRNA upregulation in osteocytes of rat tibia and that
IGF-1 is involved in the translation of mechanical stress to
bone formation. Juffer et al. [19] showed that mechanical
stress stimulates MLO-Y4 osteocytes to express IGF-1 iso-
form, which is an important factor in anabolism and metab-

olism in muscle, at the mRNA and protein levels. However,
the interaction between mechanical stress and IGF-1 has not
been previously studied in LFH. In the present study, we
researched the correlation of mechanical stress, IGF-1, and
the IGF-1R/AKT/mTORC1 signaling pathway in LFH.

First, we isolated primary LFCs from 9 patients who
underwent lumbar spinal surgery. LFCs are fibrous connec-
tive tissue stem cells. According to the study conducted by
Zhong and Chen [39], LFCs can be identified by detecting
col-I and vimentin expression. Therefore, in the present

(a) (b)

Figure 2: Morphology of LFCs with or without mechanical stress. LFCs were cultured without mechanical stress (a). LFCs were subjected to
cycles of relaxation for 10 s and 20% elongation for 10 s (b). LFCs: ligamentum flavum cells. Scale bar = 100μm.

(a) (b) (c)

(d) (e) (f)

Figure 1: Identification of LFCs. Collagen I (a) and vimentin (d) immunofluorescence staining. Immunofluorescence is shown in green (a,
d), and DAPI-stained nuclei are shown in blue (b, e). Merged pictures are shown (c, f). LFCs: ligamentum flavum cells; DAPI: 4′,6-
diamidino-2-phenylindole. Scale bar = 50 μm.
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Figure 3: IGF-1R/AKT/mTORC1 signaling pathway-related mRNA and protein changes in LFCs with or without mechanical stress.
Mechanical stress upregulated the activation of pIGF-1R (a, b), pAKT (a, c), and pS6 (a, d), as well as the mRNA levels of IGF-1 (e), col-
I (f), and col-III (g) and the protein levels of IGF-1 (h), col-I (i), and col-III (j) in a time-dependent manner. Columns represent the
mean ± SD of 3 samples, and each experiment was performed in triplicate. LFCs: ligamentum flavum cells; IGF-1: insulin-like growth
factor 1; col-I: collagen I; col-III: collagen III. “∗” represents P < 0:05; “ns” indicates P > 0:05.
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Figure 4: IGF-1 neutralizing antibody treatment. Mechanical stress in the nonstress group, the stress group, and the stress+10 μg/ml IGF-1
neutralizing antibody group. The IGF-1 neutralizing antibody reduced the mRNA levels of col-I (f) and col-III (g), but not IGF-1 (e). The
IGF-1 neutralizing antibody also reduced the protein expression of IGF-1 (h), col-I (i), and col-III (j). In addition, the activation of pIGF-1R
(a, b), pAKT (a, c), and pS6 (a, d) was reduced by the IGF-1 neutralizing antibody. Columns represent themean ± SD of 3 samples, and each
experiment was performed in triplicate. LFCs: ligamentum flavum cells; IGF-1: insulin-like growth factor 1; col-I: collagen I; col-III: collagen
III. “∗” represents P < 0:05; “ns” indicates P > 0:05.
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Figure 5: NVP-AEW541 treatment. Mechanical stress in the nonstress group, the stress group, and the stress+100 ng/ml NVP-AEW541 group.
NVP-AEW541 reduced the mRNA levels of col-I (f) and col-III (g), but not IGF-1 (e). col-I (i) and col-III (j) protein levels, but not IGF-1 (h)
protein levels, were attenuated by NVP-AEW541. In addition, NVP-AEW541 reduced the activation of pIGF-1R (a, b), pAKT (a, c), and pS6 (a,
d). Columns represent the mean ± SD of 3 samples, and each experiment was performed in triplicate. LFCs: ligamentum flavum cells; IGF-1:
insulin-like growth factor 1; col-I: collagen I; col-III: collagen III. “∗” represents P < 0:05; “ns” indicates P > 0:05.
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study, LFC purity was examined by col-I and vimentin
expression. Immunofluorescence results showed that the
LFCs were of high purity (Figure 1). In addition, LFC viabil-
ity was evaluated by the MTT assay (Solarbio, China), which
demonstrated that there were no changes in LFC viability in
each group.

LFCs were also subjected to cyclic mechanical stress at
different times. Compared to nonstressed cells, cyclic
mechanical stress promoted the synthesis of IGF-1 in LFCs

in a time-dependent manner, which eventually led to col-I/
col-III accumulation via the IGF-1R/AKT/mTORC1 signal-
ing pathway. To understand the molecular mechanism
involved, we used an IGF-1 neutralizing antibody.
Compared to the nonstress group, IGF-1, col-I, and col-III
protein and mRNA levels were increased in the stress group.
In addition, col-I and col-III protein and mRNA levels were
significantly reduced in the stress+IGF-1 neutralizing anti-
body group compared to the stress group. Interestingly,

𝛽-Actin

S6 

pS6

42 kDa

35 kDa

35 kDa

Mechanical stress
 Rapamycin 100 ng/ml

–
–

+
–

+
+

(a)

0.0

pS
6 

pr
ot

ei
n 

fo
ld

 ch
an

ge

0.5

1.0

1.5

2.5

2.0

⁎
⁎

Non-stress
Stress
Stress+Rapamycin

(b)

0IG
F-

1 
m

RN
A

 fo
ld

 ch
an

ge

1

2

3 ns
⁎

⁎

Non-stress
Stress
Stress+Rapamycin

(c)

0C
ol

la
ge

n 
I m

RN
A

 fo
ld

 ch
an

ge

2

4

6
⁎

⁎
⁎

Non-stress
Stress
Stress+Rapamycin

(d)

0

C
ol

la
ge

n 
II

I m
RN

A
fo

ld
 ch

an
ge

2

3

4

1

⁎

⁎
⁎

Non-stress
Stress
Stress+Rapamycin

(e)

ns

0

IG
F-

1 
pr

ot
ei

n 
(n

g/
m

l)

40

60

20

⁎

⁎

Non-stress
Stress
Stress+Rapamycin

(f)

0C
ol

la
ge

n 
I p

ro
te

in
 (n

g/
m

l)

20

30

10

⁎

⁎⁎

Non-stress
Stress
Stress+Rapamycin

(g)

0C
ol

la
ge

n 
II

I p
ro

te
in

 (n
g/

m
l)

10

15

20

5

⁎

⁎⁎

Non-stress
Stress
Stress+Rapamycin

(h)

Figure 6: Rapamycin treatment. Mechanical stress in the nonstress group, the stress group, and the stress+rapamycin group. Rapamycin
reduced the mRNA levels of col-I (d) and col-III (e), but not IGF-1 (c). Rapamycin reduced the protein levels of col-I (g) and col-III (h),
but not IGF-1 (f). In addition, rapamycin reduced the activation of pS6 (a, b). Columns represent the mean ± SD of 3 samples, and each
experiment was performed in triplicate. LFCs: ligamentum flavum cells; IGF-1: insulin-like growth factor 1; col-I: collagen I; col-III:
collagen III. “∗” represents P < 0:05; “ns” indicates P > 0:05.
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IGF-1 protein expression, but not mRNA expression, was
reduced in the stress+IGF-1 neutralizing antibody group
compared to the stress group. Correspondingly, the activa-
tion of pIGF-1R, pAKT, and pS6 was decreased in the
stress+IGF-1 neutralizing antibody group compared to the
stress group. For further investigation, NVP-AEW541 (a
specific inhibitor of IGF-1R) and rapamycin (a specific
inhibitor of mTORC1) were used in the present study.
Although 100ng/ml NVP-AEW541 and 10ng/ml rapamy-
cin almost completely blocked the IGF-1R/AKT/mTORC1
signaling pathway, col-I and col-III protein and mRNA
levels were only partially reduced. col-I and col-III protein
and mRNA levels were still higher in both groups compared
to the nonstress group. Moreover, neither NVP-AEW541
nor rapamycin reversed IGF-1 expression, which was
induced by mechanical stress.

Based on the above findings, we hypothesized that
mechanical stress may promote col-I and col-III production
via other signaling pathways, and the potential mechanism
involved requires further study. In addition, due to the lack
of an animal model of LFH, only cytological experiments
were performed in the present study. Thus, it is necessary
to build an effective animal model for further research.

5. Conclusion

In summary, the present study showed that mechanical
stress upregulated IGF-1, col-I, and col-III protein and
mRNA production. The IGF-1 neutralizing antibody,
NVP-AEW541, and rapamycin blocked the IGF-1R/AKT/

mTORC1 signaling pathway and reduced col-I and col-III
production in LFCs. These findings demonstrated that cyclic
mechanical stress promotes LFCs to secrete IGF-1, which
induces col-I and col-III synthesis via the IGF-1R/AKT/
mTORC1 signaling pathway (Figure 7). These results pro-
vide a new understanding of LFH and may facilitate the
development of novel methods to treat LSS.
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Dental pulp stem cells (DPSCs) must undergo odontoblastic differentiation in order to facilitate the process of dentin-pulp
complex repair. Herein, we sought to explore the ability of Neu5Ac (one form of sialic acid) to influence DPSC osteo-
/odontoblastic differentiation via modulating mitogen-activated protein kinase (MAPK) signaling. Methodology. DPSCs were
isolated from human third permanent teeth and were grown in vitro. Fluorescent microscopy was used to detect the existence
of sialic acid on the DPSC membrane. Following the treatment of different concentrations of Neu5Ac and removing sialic acid
from the cell surface by neuraminidase, the osteo-/odontoblastic differentiation of these cells was evaluated via mineralization,
alkaline phosphatase, and in vivo assays. In addition, the expression of genes related to osteo-/odontoblastic differentiation and
MAPK signaling at different stages of this differentiation process was analyzed in the presence or absence of Neu5Ac. Results.
The existence of sialic acid on the DPSC membrane was confirmed by fluorescent microscopy, and the ability of osteo-
/odontoblastic differentiation was decreased after removing sialic acid by neuraminidase. Treatment of DPSCs with Neu5Ac
(0.1mM or 1mM) significantly enhanced their mineralization ability and alkaline phosphatase activity. The expression levels
of DMP1, DSPP, BSP, and RUNX2 were also increased. Treatment of nude mice with ManNAc (the prerequisite form of
Neu5Ac) also enhanced DPSC mineralization activity in vivo. Furthermore, Neu5Ac treatment enhanced p-ERK expression in
DPSCs, while ERK pathway inhibition disrupted the ability of Neu5Ac to enhance the osteo-/odontoblastic differentiation of
these cells. Conclusions. Neu5Ac can promote DPSC osteo-/odontoblastic differentiation through a process associated with the
modulation of the ERK signaling pathway activity.

1. Introduction

Stem cells from oral cavity are easily harvestable and have
shown a great plasticity towards the main lineages, specifically
towards bone tissues [1]. Dental pulp stem cells (DPSCs) are
the most investigated and commonly evaluated in the context

of tissue engineering and regenerative medicine [2]. Their
clinical utility, however, is limited by the fact that relatively
few of these cells are available, and they lose their ability to dif-
ferentiate over the course of in vitro expansion [3]. Enhancing
the utility of these cells in clinical tissue engineering contexts
will therefore necessitate the development of novel approaches
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to improving DPSC osteo-/odontoblastic differentiation
capacity. Many factors to date have been found to impact this
differentiation capacity, such as proinflammatory cytokines
[4], growth factors [5], mechanical stretch, bioscaffolds/bio-
materials [6, 7], and donor age [8]. Previous studies suggested
that tissue inflammation may act against the tooth/bone for-
mation/repair, and some natural compounds may be useful
to alleviate this effect [9, 10]. These findings underscore the
fact that the external microenvironment is a key determinant
of DPSC fate, indicating that accurately recapitulating these
conditionsmay represent a viable approach to apply these cells
in the context of tissue regeneration.

Sialic acid (SA) is a component of cell surface sugar moi-
eties that are associated with N- and O-glycan chains and
glycolipids wherein it can be attached via α2-3, α2-6, and
α2-8 linkages [11]. SA expression is evident across vertebrate
and nonvertebrate species and in mammals. It was primarily
found in two major forms: N-acetylneuraminic acid
(Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) [12].
Of these forms, only Neu5Ac is found in healthy humans
[13], wherein it serves as an important regulator of interac-
tions between cells and of signaling, enzymatic, and
antibody-related activities [14].

The functional roles of sialic acid in many experimental
contexts are well understood. Li et al. explored its role in the
context of tumor cell proliferation and migration by remov-
ing sialic acid from the AGS gastric cancer cell line [15]. This
led these authors to discover that MAL-II could specifically
recognize and interact with terminal sialic acid residues
within glycoprotein chains. Furthermore, they found that
the treatment of AGS cells with α2,3-neuraminidase, which
cleaved cell surface sialic acid, enhanced the repair and
migratory capabilities of these cells, highlighting the ability
of sialic acid to drive cell-related signaling and behavior.
Xu et al. further found that reductions in the SA expression
on an osteoblast cell line were associated with decreases in
both bone mineralization and the expression of bone sialo-
protein (BSP), osteoprotegerin (OPG), and vitamin D recep-
tor, indicating that SA plays key roles in the context of
osteogenesis [16]. SA is closely related to many oral diseases
such as recurrent aphthous ulcer, oral potentially malignant
disorders (OPMD), and oral cancers [17]. Patients with
OPMD and oral cancers exhibit a high SA concentration
in the serum and saliva [17], while patients with recurrent
aphthous stomatitis and other oral inflammations exhibit a
low concentration of sialic acid [18]. As a kind of mesenchy-
mal stem cells, DPSC has a great potential in oral clinical
treatment. The specific role played by sialic acid in the con-
text of DPSC osteo-/odontoblastic differentiation, however,
has yet to be explored.

The present study was thus designed to assess whether
Neu5Ac treatment was sufficient to enhance DPSC osteo-
/odontoblastic differentiation, and if so, what signaling path-
ways and molecular mechanisms underlie such enhancement.

2. Methodology

2.1. DPSC Isolation and Culture. Caries-free third molars
from 10 healthy patients (20–24 years old) were collected

immediately following the extraction and were used to iso-
late DPSCs. Dental pulp was isolated under sterile condi-
tions and rinsed with PBS, after which they were minced
using a ophthalmological scissors, and pulp aliquots were
transferred into 6-well plates containing general medium
(GM) composed of α-MEM containing 10% FBS and 1%
penicillin-streptomycin (Gibco, USA). Cells were cultured
in a 37°C with 5% CO2 incubator, with media being changed
every other day until cells reached confluence, at which time
cells were passaged. Cells were used for experimentation fol-
lowing 3-5 passages. Osteo-/odontoblastic differentiation
was induced in GM supplemented with 50mg/ml ascorbic
acid, 10mM β-glycerol phosphates, and 10−7 mol/l dexa-
methasone. DPSC cell surface expression of stem cell
markers (CD29, CD31, CD34, CD44, CD45, CD90, and
CD105) was assessed via flow cytometry using antibodies
from BD Biosciences (USA). The ethics committee of the
Stomatological Hospital of Southern Medical University
approved this study.

2.2. Treatment of DPSC with Neuraminidase or Neu5Ac. To
evaluate the role of cell surface sialic acid in the odontoblas-
tic differentiation process, DPSCs were treated with Neu5Ac
or neuraminidase, which desialylated cell surface glycocon-
jugates. The impact of Neu5Ac on DPSCs was assessed by
treating them with 0mM, 0.1mM, or 1mM of Neu5Ac
(Sigma-Aldrich, St Louis, MO, USA) added to the cell cul-
ture media. With regard to neuraminidase, DPSCs were
exposed to neuraminidase (0mU/ml, 1mU/ml, 10mU/ml,
or 100mU/ml, Sigma-Aldrich).

2.3. Cell Viability Assay (CCK-8 Assay). The cell viability was
detected by Cell Counting Kit-8 (CCK-8) (Dojindo Labora-
tories, Kumamoto, Japan). Briefly, the cells were exposed
to 0mM, 0.1mM, or 1mM of Neu5Ac or 0mU/ml,
1mU/ml, 10mU/ml, or 100mU/ml of neuraminidase in
96-well plates for 1, 3, 5, or 7 days, and six wells were pre-
pared for each dose of Neu5Ac and neuraminidase. After
treatment, 10μl of CCK-8 solution was added to each well,
and the 96-well plate was continuously incubated at 37°C
for 1 hour; then, the OD value for each well was read at
wavelength 450 nm to determine the cell viability on a
microplate reader (Multiskan, Thermo, USA).

2.4. qRT-PCR. Cells were plated at 2 × 105 cells/well and
were treated for 4, 7, or 14 days with neuraminidase (0
mU/ml, 1 mU/ml, 10 mU/ml, or 100 mU/ml) or Neu5Ac
(0 mM, 0.1 mM, or 1 mM), after which TRIzol (Invitrogen,
CA, USA) was used to extract total cell RNA based on pro-
vided instructions. A First-Strand cDNA Synthesis Kit
(Gibco, USA) was then used to prepare cDNA from 1 g of
total RNA per sample, after which qRT-PCR was conducted
with SYBR green (Takara, Japan) and a thermocycler instru-
ment (ABI7500, Applied Biosystems, USA). The 2-ΔΔCt

method was employed to evaluate relative gene expression,
with GAPDH being used as a normalization control.
Primers used in this analysis are shown in Table 1.

2.5. Western Blotting. Western blotting was used to assess
the MAPK signaling pathway and odontoblastic
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differentiation-related protein expression in DPSCs that
were (1) treated with neuraminidase (0, 1, 10, or
100mU/ml) for 4 days; (2) treated with Neu5Ac (0, 0.1, or
1mM) for 4, 7, or 14 days; (3) treated with Neu5Ac
(1mM) for 0, 10, 30, 60, 90 minutes or for 3 days; and (4)
pretreated with the extracellular signal-related kinase
(ERK) inhibitor cobimetinib (1μM) for 4 hours and then
treated with or without Neu5Ac (1mM) for 4 days.

Following the above treatments, DPSCs were washed
twice with PBS before resuspension in lysis buffer (Cell Sig-
naling Technology, MA, USA) supplemented with phenyl-
methylsulfonyl fluoride (R&D Systems, Minneapolis, MN,
USA) to facilitate protein extraction. A BCA assay was used
to quantify protein levels in these extracts, after which sam-
ples were separated via SDS-PAGE and transferred to PVDF
membranes. Blots were blocked for 1 hour with 5% nonfat
milk, after which they were probed overnight with anti-
DSPP, anti-DMP1, anti-RUNX2, anti-phospho-ERK, anti-
ERK, anti-phospho-p38, anti-p38, anti-phospho-JNK, or
anti-JNK (Cell Signaling Technology, MA, USA) at 4°C.
Blots were then probed with appropriate secondary antibod-
ies for 1 hour, after which protein bands were detected via a
chemiluminescent approach.

2.6. ALP Staining. DPSCs were initially cultured in 6-well
plates (1 × 105/well) in the presence or absence of Neu5Ac
or neuraminidase for 7 days. Culture media were then
removed, and cells were fixed for 1 hour with 70% ethanol,
after which they were stained with 300μl of ALP staining
reagent (1-Step NBT/BCIP solution, Thermo Fisher Scien-
tific) per well. Water was then added to terminate staining,
and the stain was extracted via the addition of 10% (w/v)
cetylpyridinium chloride (Sigma-Aldrich) for 15 minutes.
Staining intensity was then quantified using a VERSA max
Multiplate Reader by assessing absorbance at 540nm.

2.7. Alizarin Red Staining. DPSCs were initially grown for 21
days in the presence of neuraminidase, Neu5Ac and/or cobi-
metinib, after which culture media were removed and cells
were rinsed with PBS. Cells were then fixed for 1 hour using
70% chilled ethanol, followed by staining for 15 minutes
with 40mM Alizarin S (pH4.2) at room temperature with

gentle stirring. Cells were then washed five times using
PBS, after which staining was quantified via extracting the
stain for 15 minutes with 10% (w/v) cetylpyridinium chlo-
ride (Sigma-Aldrich, St. Louis, MO, USA) and evaluating
absorbance at 540 nm with a VERSA max Multiplate Reader.

2.8. Fluorescent Microscopy. The existence of sialic acid on
the DPSC membrane was detected as described previously
[19]. Neuraminidase-treated (100mU/ml, 3 hour) and
untreated DPSCs were washed with PBS three times, fixed
with 4% paraformaldehyde for 30 minutes at room temper-
ature (RT), rinsed with PBS for three times, and then
blocked with 3% bovine serum albumin (BSA; Solarbio) for
1 hour. Washed with PBS three times, incubated with
10μg/ml fluorescein isothiocyanate- (FITC-) labeled lectin
A. hypogaea (PNA) (Sigma-Aldrich, St. Louis, MO, USA)
overnight in a moist chamber at 4°C. PNA can bind to the
galactose moiety exposed on cell surface glycoconjugates
after removing the terminal sialic acid. The next day, sam-
ples were incubated with DAPI (1 : 200) for 15 minutes at
room temperature. Fluorescence microscopy images were
captured under a fluorescence microscope (IX71 FL,
Olympus).

2.9. In Vivo Osteogenesis Assay. In vivo ectopic osteogenesis
was evaluated by subcutaneously implanting passage 3
DPSCs that had been mixed with 40mg of 1.0mm hydro-
xyapatite/β-tricalcium phosphate (HA/β-TCP) particles
(ratio 3 : 8; Sichuan University Biomaterials Engineering
Research Center, Chengdu, China) into the backs of nude
mice (BALB/c, 6-weeks-old; Bianco, Kuznetsov, Riminucci,
& Gehron Robey, 2006). A total of 8 mice were randomly
divided into two groups with 4 mice per group; each group
contains 2 female mice and 2 male mice. Mice were gavaged
for 6 consecutive weeks with ManNAc (2 g/kg/animal/day)
every day. The reason for choosing ManNAc over Neu5Ac
is because ManNAc is the prerequisite form of Neu5Ac
and can only transform to Neu5Ac in the animal organism.
In addition, the absorption of ManNAc in vivo is better than
that of Neu5Ac [20], beginning on day 2 following implan-
tation. Control animals were administered PBS in lieu of
ManNAc every day. Following the 6-week treatment period,
the transplanted region was fixed, demineralized with 10%
EDTA solution for 7 days, paraffin-embedded, and cut into
2μm sections that were then subjected to hematoxylin and
eosin staining. DSPP and RUNX2 were then detected via
immunohistochemical (IHC) staining with an appropriate
antibody (1 : 50; ab122321; Abcam). The immunostained
images were analyzed and scored by two pathologists inde-
pendently in a blinded manner, based on the H-score
method, which considers the percentage of cells staining
positively together with the staining intensity [21, 22]. 10
fields at 400x magnification were chosen randomly. The
staining intensity of weak, intermediate, and strong staining
was scored as 0, 1, 2, and 3, corresponding to the negative
control. The total number of cells and cells stained at each
intensity were counted in each field. The H-score was calcu-
lated according to the formula: ð%of cells stained at
intensity category 1 × 1Þ + ð%of cells stained at intensity

Table 1: RT-PCR primers for the target genes.

Target gene Primer sequence (5′ to 3′)
DMP1 F: TGAGTGAGTCCAGGGGAGATAA

DMP1 R: TTTTGAGTGGGAGAGTGTGTG C

DSPP F: TTAAATGCCAGTGGAACCAT

DSPP R: ATTCCCTTCTCCCTTGTGAC

BSP F: CCCCACCTTTTGGGAAAACCA

BSP R: TCCCCGTTCTCACTTTCATAGAT

RUNX2 F:TGGTTACTGTCATGGCGGGTA

RUNX2 R: TCTCAGATCGTTGAACCTTGCTA

GAPDH F: TGTTCGTCATGGGTGTGAAC

GAPDH R: ATGGCATGGACTGTGGTCAT

F: forward; R: reverse.
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category 2 × 2Þ + ð%of cells stained at intensity category 3 × 3
Þ. H-scores ranged from 0 to 300 where 300 indicated 100%
of cells strongly stained (3+). H-scores of cells ≥200 were
defined as a high expression. The Ethics Committee of
Southern Medical University approved these animal studies.
In vivo cell viability assay, KI67 was detected via immuno-
histochemical (IHC) staining with an appropriate antibody

(1 : 50; ab122321; Abcam). The immunostained images were
analyzed and scored by two pathologists independently in a
blinded manner based on the H-score method which has
mentioned above.

2.10. Statistical Analysis. Experiments were conducted in
triplicate, and data are means ± SD. SPSS v17.0 was

(a)

0.95%

CD31

C
ou

nt

(b)

0.98%

CD34

C
ou

nt

(c)

0.20%

CD45
C

ou
nt

(d)

99.5%

CD29

C
ou

nt

Control

DPSC

(e)

99.84%

CD44

C
ou

nt

(f)

97.4%

CD90

C
ou

nt

(g)

99.2%

CD105

C
ou

nt

(h)

Figure 1: Primary human DPSC identification. (a) Primary DPSCs were isolated from dental pulp tissue. (b–h) Isolated DPSCs were CD29,
CD44, CD90, and CD105 positive and were CD31, CD34, and CD45 negative in flow cytometry analyses. All the experiments were repeated
at least three times independently. Scale bar = 100 μm.
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used for all statistical testing. Data were statistically ana-
lyzed using Student’s t-test, with p < 0:05 as the signifi-
cance threshold. All graphs were plotted using
GraphPad Prism 8 (GraphPad Software, Inc., La Jolla,
CA, USA).

3. Results

3.1. DPSC Identification. We first validated the identity of
the DPSCs used in the present study via flow cytometry.
This analysis confirmed that these cells were positive for
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Figure 2: The effect of neuraminidase on DPSC osteo-/odontoblastic differentiation. (a) FITC-PNA lectin staining of DPSCs with or
without neuraminidase (100mU/ml) treatment. (b) CCK-8 assay results of neuraminidase-treated DPSC. (c) mRNA expression of
DMP1, DSPP, BSP, and RUNX2 in DPSCs treated with neuraminidase (0, 1, 10, and 100mU/ml) for 4 days. (d) Protein expression of
DSPP, DMP1, and RUNX2 in DPSCs treated with neuraminidase (0, 1, 10, and 100mU/ml) for 4 days. (e) ALP activity and Alizarin red
staining after DPSCs were treated with neuraminidase (0, 1, 10, and 100mU/ml). Scale bars = 50 μm. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p <
0:001. All the experiments were repeated at least three times independently.
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Figure 3: Continued.
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mesenchymal stem cell markers CD29, CD44, CD90, and
CD105 while negative for the hematopoietic stem cell
markers CD31, CD34, and CD45. These results suggested
that we successfully isolated and cultured the DPSCs
(Figure 1).

3.2. Desialylation of DPSC by Neuraminidase Inhibits Osteo-
/Odontoblastic Differentiation of DPSC. FITC-PNA fluores-
cent staining was used to detect the existence of sialic acid
on the DPSC surface. We observed no FITC-PNA fluores-
cent staining in untreated DPSCs, while FITC-PNA fluores-
cent staining was significant enhanced in neuraminidase-
treated DPSCs (Figure 2(a)). This proved that neuramini-
dase can effectively remove the sialic acid on the DPSC sur-
face and indirectly proved the existence of sialic acid on the
DPSC membrane. After we treated DPSC with different con-
centrations (0, 1, 10, and 100mU/ml) of neuraminidase for
1, 3, 5, or 7 days, the CCK-8 assay showed that there was
no significant difference in the OD value of each group of
cells, indicating that the concentrations of neuraminidase
used in this study had no significant effect on the viability
of DPSC (Figure 2(b)). Removing sialic acid from the DPSC
membrane by neuraminidase reduced the mRNA expression
levels of osteo-/odontogenic markers DMP1, DSPP, BSP,

and RUNX2 (Figure 2(c)). Western blot analysis showed
that neuraminidase also inhibited the protein levels of
RUNX2, DMP1, and DSPP (Figure 2(d)). Consistent with
the results of protein and mRNA expressions, neuramini-
dase could reduce the staining of ALP and Alizarin red, as
indicated that neuraminidase could inhibit the formation
of calcified nodules (Figure 2(e)). Together, these results
suggested that DPSC odontoblastic differentiation was
decreased in the absence of Neu5Ac.

3.3. The Impact of Neu5Ac on DPSC Odontoblastic
Differentiation. In order to evaluate the impact of Neu5Ac
on DPSC odontoblastic differentiation, we firstly treated
DPSC with different concentrations (0, 0.1, or 1mM) of
Neu5Ac for an indicated time point, and the CCK-8 assay
showed that the concentrations of Neu5Ac used in this
study had no significant effect on the viability of DPSC
(Figure 3(a)). Next, we assessed the expression of key osteo-
/odontogenic marker genes in cells. The data revealed that
Neu5Ac treatment was associated with significant increases
in the mRNA expressions of DSPP, DMP1, BSP, and RUNX2
(Figure 3(b)). This was further supported by the protein level
expressions of DMP1, DSPP, and RUNX2 in Neu5Ac-treated
cells (Figure 3(c)).
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Figure 3: The impact of Neu5Ac on DPSC osteo-/odotoblastic differentiation. (a) CCK-8 assay results of Neu5Ac-treated DPSC. (b) qRT-
PCR detected the expressions of DMP1, DSPP, BSP, and RUNX2 after treating DPSCs with Neu5Ac (0.1 or 1 mM) for 4, 7, or 14 days, with
GAPDH used as a normalization control. (c) DMP1, DSPP, and RUNX2 protein expressions were detected by western blotting. (d) The
ability of DPSC with Neu5Ac treatment (0.1 and 1 mM) assessed via ALP activity and Alizarin red staining. Data are means ± SD. ∗p <
0:05, ∗∗p < 0:01, or ∗∗∗p < 0:001. All the experiments were repeated at least three times independently.
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We additionally observed clear evidence of dose-
dependent enhancement of ALP activity in Neu5Ac-
treated cells on day 7 after the induction of osteo-/odon-
toblastic differentiation. Additionally, Alizarin red stain-
ing conducted on day 14 was used to evaluate the
impact of Neu5Ac on mineralization activity. The result
exhibited enhanced mineralization activity in response
to Neu5Ac treatment at this time point compared to
control treatment (Figure 3(d)). Furthermore, we con-
ducted in vivo osteogenesis assays and observed
enhanced osteogenesis in ManNAc-treated mice com-
pared to control animals, determined by HE staining
and IHC staining with DSPP and RUNX2. Notably,
KI67 immunohistochemistry showed no significant differ-
ence in cell viability between the two groups (Figure 4).
Taken together, in vitro and in vivo experiments indi-
cated that Neu5Ac positively correlated with the osteo-
/odontoblastic differentiation of DPSCs.

3.4. Neu5Ac Activates ERK Signaling to Drive DPSC
Mineralization. Lastly, we evaluated the relationship
between the MAPK signaling pathway and Neu5Ac-
mediated enhancement of DPSC osteo-/odontoblastic dif-
ferentiation. We observed no changes in the protein level
expressions of total ERK, JNK, or p38 following Neu5Ac
treatment. Interestingly, we observed significant increases
in p-ERK levels that peaked at 30 minutes post-Neu5Ac
treatment and remained elevated for at least 90 minutes.
Even on day 3 posttreatment, the p-ERK/ERK ratio was
obviously higher for cells treated with Neu5Ac (0.1 and
1mM) relative to that in untreated control cells
(Figures 5(a) and 5(b)). No changes in p-JNK or p-p38
levels were detected throughout treatment. To evaluate
the role of ERK pathway signaling on Neu5Ac-mediated
enhancement of DPSC mineralization, we next pretreated
DPSCs with the ERK inhibitor cobimetinib. This analysis
revealed that ERK inhibition abrogated the Neu5Ac-
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Figure 4: The method and impact of the ManNAc on DPSCs in vivo. (a) Flow chart of in vivo ectopic osteogenesis of DPSCs. (b) Hematoxylin
and eosin stain showed enhanced osteogenesis in the ManNAc group than in the control group. (c, d) Immunohistochemistry and statistical
analysis of the average H-score showed the effect of ManNAc on proliferation and differentiation of DPSCs. Scale bar = 100 μm, ∗∗p < 0:01.
All the experiments were repeated at least three times independently.
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induced upregulation of DMP1, DSPP, and RUNX2 in
these DPSCs (Figures 5(c) and 5(d)). These findings indi-
cated that Neu5Ac influences DPSC differentiation mainly
via the ERK pathway.

4. Discussion

In recent years, with the in-depth studies of stem cells, many
types of stem cells have shown their clinical therapeutic
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Figure 5: Neu5Ac enhances DPSC osteo-/odontoblastic differentiation via activating ERK signaling. (a) ERK, p-ERK, p38, p-p38, JNK, and
p-JNK levels in DPSCs were evaluated following a 3-day treatment with Neu5Ac (0, 0.1, or 1mM) via Western blotting. (b) The p-ERK/total
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potential [23–27]. The stable and reliable sources of stem
cells is particularly important [28]. DPSCs can be readily iso-
lated following the extraction of healthy teeth, and these cells
are highly amenable to proliferating and differentiating into
osteo-/odontoblasts [29], making them ideally suited to use
in bone and dental tissue engineering. However, the clinical
applicability of these cells has been limited to date because
they rapidly lose their ability to proliferate and undergo mul-
tipotent differentiation throughout prolonged in vitro cul-
ture [30]. Therefore, it is vital that novel strategies capable
of stimulating prolonged DPSC proliferation and differenti-
ation be developed. As such, we herein evaluated the ability
of Neu5Ac to enhance DPSC odontoblastic differentiation.
To determine whether there is SA on the surface of DPSCs,
we firstly assumed that there was SA on the surface of the
cells. After treatment with neuraminidase, FITC-PNA fluo-
rescent staining was significantly enhanced. This proved that
neuraminidase can effectively remove the sialic acid on the
DPSC surface and indirectly proved the existence of sialic
acid on the DPSC membrane.

ALP activity and expression are an early indicator of
osteoblastogenesis [31], whereas Alizarin red staining can
reliably detect mineralized nodules [32]. We found that
treating DPSCs with Neu5Ac was sufficient to enhance both
ALP activity and the formation of mineralized nodules. We
also evaluated the expression of key odontoblastic
differentiation-related genes, including the dentin-specific
DSPP [33], and the osteogenesis marker genes DMP1, BSP,
and RUNX2 [34]. We observed clear increases in DSPP,
DMP1, and RUNX2 protein levels as well as BSP mRNA
level in DPSCs that had been treated with Neu5Ac, thus
emphasizing the ability of Neu5Ac to enhance the osteo-
/odontoblastic differentiation of these cells.

The results of the present study suggested that sialic acid
played an important role in DPSC odontoblast differentia-
tion. Removing SA from cell surface appeared to strongly
inhibit odontoblast differentiation, while treatment with a
high concentration of Neu5Ac presented the opposite ten-
dency. These data indicated that SA was involved in the
DPSC odontoblast differentiation process. Considering that
SA played an important role in the cell-cell adhesion process
[35, 36], SA may influence the DPSC odontoblast differenti-
ation through cell-cell fusion.

MAPK are cytoplasmic serine/threonine kinases that are
universally expressed in mammalian cells. Many cytokines
and other stimuli can induce ERK1/2 activation, thereby
modulating cellular proliferation and division. Owing to
the ability of ERK pathway signaling to enhance tumor cell
proliferation, ERK inhibitors have been considered potential
anticancer drugs [37]. p38 MAPK serves as a regulator of
cytokine expression and is in turn activated in response to
inflammatory cytokine signaling [38]. As such, p38 is a cen-
tral regulator of the immune system activity in pathological
and physiological contexts. JNKs are stress-activated kinases
that control cell survival or apoptotic death in response to
diverse stress-related stimuli [37]. MAPK pathway activa-
tion has been shown to be a key regulator of mesenchymal
stem cell differentiation [39]. Treatment of human DPSCs
with LPS induced p38 and ERK activation and downstream

IL-8 production [40], and ERK activity is also vital for
DMP1, DSPP, and RUNX2 activation within DPSCs [41].
Previous research suggested that sialic acid-binding lectin
can induce the intracellular activation of signaling cascades,
including the MAPK cascades [42]. We speculated that SA-
binding lectin and SA may have something in common, so
we tested whether sialic acid (Neu5Ac) affected the MAPK
pathway. Herein, we observed no changes in total ERK,
JNK, or p38 levels in Neu5Ac-treated DPSCs, whereas p-
ERK expression was significantly enhanced in these cells.
This suggests that ERK pathway activation is crucial for
the SA treatment of DPSCs. We detected no changes in
p38 or JNK phosphorylation as a function of Neu5Ac treat-
ment, indicating that these pathways were unaffected by
Neu5Ac. To further confirm the relevance of ERK signaling
in the context of Neu5Ac-induced DPSC osteo-/odontoblas-
tic differentiation, we treated these cells with the ERK inhib-
itor cobimetinib. Inhibition of ERK activity reduced DSPP,
DMP1, and RUNX2 protein expressions compared to the
Neu5Ac group, thus confirming that ERK pathway activa-
tion is necessary in order for Neu5Ac to enhance DPSC
odontoblastic differentiation.

In summary, the results of the present study revealed
that desialylation of DPSC by neuraminidase inhibited
osteo-/odontoblastic differentiation while Neu5Ac treatment
was able to enhance DPSC osteo-/odontoblastic differentia-
tion. We further determined that ERK signaling was neces-
sary for Neu5Ac to mediate such enhanced differentiation
in DPSCs. However, this research only studied the effect of
Neu5Ac on the osteo-/odontoblastic differentiation of
DPSC. Investigations of Neu5Ac on the development and
clinical values of the teeth require further scrutiny.
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Anterior cruciate ligament (ACL) reconstruction was realized using a combination of bone mesenchymal stem cells (BMSCs) and
silk–collagen scaffold, and an in vivo evaluation of this combination was performed. By combining type I collagen and degummed
silk fibroin mesh, silk–collagen scaffolds were prepared to simulate ligament components. BMSCs isolated from bone marrow of
rabbits were cultured for a homogenous population and seeded on the silk–collagen scaffold. In the scaffold and BMSC (S/C)
group, scaffolds were seeded with BMSCs for 72 h and then rolled and used to replace the ACL in 20 rabbits. In the scaffold (S)
group, scaffolds immersed only in culture medium for 72 h were used for ACL reconstruction. Specimens were collected at 4
and 16 weeks postoperatively to assess ligament regeneration and bone integration. HE and immunohistochemical staining
(IHC) were performed to assess ligament regeneration in the knee cavity. To assess bone integration at the graft–bone interface,
HE, Russell–Movat staining, micro-CT, and biomechanical tests were performed. After 4 weeks, vigorous cell proliferation was
observed in the core part of the scaffold in the S/C group, and a quantity of fibroblast-like cells and extracellular matrix (ECM)
was observed in the center part of the graft at 16 weeks after surgery. At 4 and 16 weeks postoperatively, the tenascin-C
expression in the S/C group was considerably higher than that in the S group (4 w, p < 0:01; 16 w, p < 0:01). Furthermore, bone
integration was better in the S/C group than in the S group, with histological observation of trabecular bone growth into the
graft and more mineralized tissue formation detected by micro-CT (4 w, bone volume fraction (BV/TV), p = 0:0169, bone
mineral density (BMD), p = 0:0001; 16 w, BV/TV, p = 0:1233, BMD, p = 0:0494). These results indicate that BMSCs promote
ligament regeneration in the knee cavity and bone integration at the graft–bone interface. Silk–collagen scaffolds and BMSCs
will likely be combined for clinical practice in the future.

1. Introduction

The anterior cruciate ligament (ACL) is a main structure that
maintains stability of the knee [1]. As a common athletic
injury, ACL rupture can cause serious damage such as knee
joint instability, injury to other ligaments, dislocation, and
osteoarthritis [2, 3]. ACL reconstruction is currently consid-

ered the gold standard for treating ACL rupture, and grafts
including autografts, allografts, and synthetic grafts are used
for this purpose [4–6]. However, these grafts have some lim-
itations. Shortcomings of autografts include long surgery
time, donor site complications, long rehabilitation time,
and decrease in knee range of motion [7]. Disadvantages of
allografts include higher cost, higher infection rates, and a
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higher failure rate compared to autografts [8]. The complica-
tions of permanent synthetic grafts include osteoarthritis,
chronic synovitis, foreign-body response, and long-term rup-
ture [9]. Bone mesenchymal stem cells (BMSCs) and liga-
ment tissue engineering have become promising techniques
for addressing these drawbacks.

To reconstruct the ACL well, tissue engineering needs to
meet the following criteria: provide immediate joint stability
after surgery, assure good ligament regeneration in the knee
cavity as the engineered tissue gradually degrades and dimin-
ishes, and establish good bone integration at the graft–bone
interface for long-term stability after surgery [10]. In a previ-
ous study, we designed a graft by combining collagen matrix
with knitted degummed silk fibroin to reconstruct the ACL
in a rabbit model [11]. The silk–collagen scaffold was discov-
ered to have good biocompatibility and biomechanical prop-
erties [12]. However, in the early postoperative period,
limited ingrowth of the newly regenerated connective tissue
in the knee cavity restricted ligament regeneration, and bone
tissue in the bone tunnel disrupted graft–bone healing [13,
14].

BMSCs are pluripotent cells and have become a very
important source of cells for cell therapy and engineered tis-
sue repair [15]. Their multiple differentiation potential for
therapeutic application when implanted with biodegradable
scaffolds has been demonstrated in several previous studies
[16–19]. Although which cell types initiate and regulate the
ligament regeneration and graft-bone healing process has
not been clarified [20], it seems that BMSCs in the marrow
from the bone tunnel promote ligament regeneration and
repair at the graft–bone interface [21]. Lim et al. demon-
strated that the failure load and stiffness of MSC-enhanced
hamstring tendons were obviously greater at 8 weeks after
ACL reconstruction surgery in a rabbit model [22]. Accord-
ing to Soon et al., MSCs may form an intermediate fibrocar-
tilage zone between bone and the allograft tendon after
reconstruction surgery [23].

No unified and widely accepted approach has been avail-
able to guide how BMSCs are applied. BMSC application
approaches include local injection [24], BMSCs sheet tech-
nology [25], combination with fibrin glue or collagen gel
[17, 26], and implantation on a scaffold for tissue engineering
[27, 28]. Implanting BMSCs on a tissue-engineering scaffold
seems more reliable because of its small distraction on the
growing status and environment of BMSCs. Based on this
background, we seeded BMSCs on a silk–collagen scaffold,
attempting to determine whether BMSCs could promote lig-
ament regeneration in the knee cavity and graft–bone heal-
ing. In the present study, a rabbit ACL reconstruction
model with silk–collagen scaffold with or without BMSCs
was established. We hypothesized that BMSCs could
improve knee ligament regeneration and bone integration
at the graft–bone interface, as demonstrated by histological
assessment, micro-CT, and a biomechanical test.

2. Materials and Methods

2.1. Scaffold Preparation. The raw silk fibers were provided by
Zhejiang Cathaya International, Ltd. The degumming pro-

cess was completed using 0.02M Na2CO3 (100°C for
60min, 3 times) to extract sericin, as described in a previous
study [11]. Isolation and purification of the collagen matrix
from pigs’ Achilles tendons were performed with dilute acid
and neutral salt extractions [29]. The knitted silk mesh
extracted from sericin was soaked in acidic collagen solution
(type I, pH 3.2, w/v 1%), freeze-dried (–80°C for 12 h
followed by Heto PowerDry LL1500 for 24h), and subjected
to dehydrothermal crosslinking in a vacuum oven (30 mTorr,
105°C for 24 h) [11]. Observation of the surface microstruc-
tures of the raw silk, degummed silk, and silk–collagen scaf-
fold was performed using a scanning electron microscope
(SEM). Finally, cobalt-60-sterilized silk–collagen scaffolds
were prepared for the following evaluations.

2.2. Isolation, Culture, and Identification of BMSCs. Bone
marrow aspirates extracted from New Zealand White rabbits
(2:5 ± 0:2 kg, 12 weeks old) were used to isolate and culture
BMSCs, as previously described [17]. Mononuclear cells were
gathered in Ficoll–Hypaque gradient (Sigma) after centrifu-
gation and then suspended in cell culture medium containing
10% fetal bovine serum (FBS, Gibco). As the culture medium
changed, the suspended cells were removed after culture at
37°C in 5% CO2 for 72h. When the adherent cells reached
70–80% confluence, subculture was performed. After culture
for 2 weeks, a homogenous BMSC population was obtained,
and the third passage was collected and seeded on the silk–
collagen scaffold. BMSCs adherent on the scaffold were
observed by SEM after being seeded for 72 h. The osteogenic,
adipogenic, and chondrogenic differentiation abilities of pas-
sage 3 cells were identified after culture with special inducing
media (Gibco) for 3 weeks. Finally, alizarin red (Sangon), oil
red O (Sangon), and alcian blue staining (Sangon) were per-
formed according to the manufacturer’s protocols.

2.3. Flow Cytometry. To confirm the homogeneous property
of passage 3 BMSCs cultured at 2 weeks, a characterization
for stemness markers was performed. Sheep anti-rabbit anti-
bodies of CD29, CD73, CD105, and phycoerythrin-(PE-)
labeled IgG secondary antibody were purchased from the
eBioscience (San Diego, CA). Approximately 3 × 105 cells
were harvested and resuspended in 100μL phosphate-
buffered saline (PBS). Cells were incubated with primary
antibodies of CD29 (1 : 100), CD73 (1 : 100), and CD105
(1 : 100) for 1 hour at 4°C. Subsequently, the cells were
washed with PBS for 3 times, and the supernatant was dis-
carded by centrifugation at 250 × g for 5 minutes. And the
cells were resuspended in 100μL PBS and incubated with
PE-labeled secondary sheep antibody (1 : 200) for 40 minutes
at 4°C in the dark. The cells were washed with PBS for 3
times, and the supernatant was discarded by centrifugation
at 250× g for 5 minutes. The cells were immediately tested
on the machine (BD LSRFortessa) after resuspended with
400μL PBS. The data were analyzed with FlowJo 10.0
software.

2.4. Animal Model Study Design. The present study used 40
male New Zealand white rabbits provided by Hualan
Biology (2.5–3.0 kg, 12 weeks old, certification No.:

2 Stem Cells International



SYDW20190409). The ethics committee of the First Affili-
ated Hospital of Zhengzhou University approved the
experimental protocol (ethics review No.: 2020-KY-012).
Two equal-numbered groups (scaffold group, S; scaffold
and BMSCs group, S/C) were formed by dividing the rab-
bits at random, and ACL reconstruction was carried out in
the knee of the left hind leg. In the S group, silk scaffolds
were immersed in culture medium for 72 h, whereas in the
S/C group, silk scaffolds were seeded with BMSCs for 72 h;
then both types of scaffold were rolled and used for ACL
reconstruction (Figure 1(a)). At 4 and 16 weeks after the
operation, 10 rabbits from each group were sacrificed. Five
specimens in each group were assessed for ligament regen-
eration by hematoxylin and eosin (HE) staining and
immunohistochemical (IHC) staining and for bone inte-
gration at the graft–bone interface by HE and Russell–
Movat (RM) staining. Graft–bone healing was assessed in
the remaining specimens (n = 5) using micro-CT and the
biomechanical test.

2.5. Surgical Procedure. ACL reconstruction was carried out
under strict aseptic conditions, and all operations were per-
formed by one person (Bi). After general anesthesia was
achieved by pentobarbital (Kyoritsu-seiyaku, 30mg/kg body
weight), the surgical area was shaved, disinfected, and cov-
ered. Exposure of the knee cavity was achieved by a 3 cm inci-
sion along the patellar tendon, and then the native ACL was
removed (Figure 1(b)). A 2.0mm Kirschner wire was used to
make tunnels in the femur and tibia. The graft was inserted
through the bone tunnels, and its ends were attached to the

surrounding soft tissue and the periosteum with 1–0 Ethi-
bond suture (Figure 1(c)). Then, the rabbits were raised in
their cages without restriction after surgery.

2.6. Ligament Regeneration Assessment. After collection, the
tibia–graft–femur complexes (n = 5 per group at each point
in time) were immediately put in paraformaldehyde (4%;
Sangon) for 24h. The graft in the knee cavity was collected,
dehydrated, and embedded. After sectioning, the slices were
stained with HE. Ligament regeneration was analyzed by
immunohistochemistry staining for tenascin-C. Image-Pro
Plus 6.0 software (IPP6.0) was used to calculate the average
immunoreactivity density of tenacin-C in the graft.

2.7. Graft–Bone Healing Assessment. After the graft was dis-
sected from the tibia–graft–femur complex, bone integration
at the graft–bone interface was assessed using the remaining
bone samples. The bone samples were decalcified by ethyl-
enediaminetetraacetic acid (EDTA; 10%) until they could
be easily sectioned with a blade. The samples were sectioned
after dehydration and embedding, and the slices were stained
with HE and RM to evaluate bone integration.

2.8. Micro-CT Evaluations. The tibia–graft–femur complexes
(n = 5 per group at each point in time) were prepared for
micro-CT scan (36μm thickness; Skyscan 1176, Bruker, Ant-
werp, Belgium) and immediately stored at –80°C after collec-
tion. The specimens were placed in a refrigerator (4°C)
overnight to thaw before testing. Detection of mineralized
tissue regeneration at the graft–bone interface was

(a) (b) (c)

Figure 1: (a) After coculture with BMSCs in the S/C group and immersion only in culture medium in the S group for 72 h, the scaffold was
rolled for use as a graft to replace the native ACL in a rabbit model. (b) General observation of the native ACL: the arrow points to the native
ACL. (c) General observation of the knee after ACL reconstruction with the scaffold: the arrow points to the implanted graft.
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performed using radiograph images. Calculation of the
bone mineral density (BMD), trabecular number (Tb.N),
bone volume fraction (BV/TV), trabecular thickness
(Tb.Th), and trabecular separation (Tb.Sp) of a 2.0mm
diameter cylinder scope including the graft–bone interface
was carried out by 3-dimensional standard microstructural
analyses [30].

2.9. Biomechanical Test. The next step was to carry out the
biomechanical test. The tibia–graft–femur complex (n = 5
per group at each point in time) was created by dissecting
all soft tissue around the knee joint except for the graft. The
femur and tibia were screwed into custom-made steel pipes,
and the steel pipes were secured to an Instron 553A biome-
chanical testing system (Instron). The crosshead speed of
the tensile load during the biomechanical test was 5mm/min.
The elongation (mm) and failure load (N) were documented,
and the slope of the recorded curve indicated stiffness

(N/mm). The tibia–graft–femur complexes were kept moist
with normal saline.

2.10. Statistical Analyses. The data collected in the present
study are expressed asmean ± standard deviation (SD). SPSS
16.0 software was used for the statistical analyses. Differences
were considered statistically significant at p < 0:05.
Independent-sample t-tests were used to detect differences
between groups.

3. Results

3.1. SEMObservation. The surface of raw silk fibers was irreg-
ular due to the sericin coating on the silk fibroin
(Figure 2(a)). The silk fibroins, which were about 10μm in
diameter and had a smooth surface, were visible after com-
plete degumming (Figure 2(b)). After the process of freeze-
drying and dehydrothermal crosslinking, the collagen sponge

18 KV 1.00 KX KYKY-EM3200 SN:331410 𝜇m

(a)

18 KV 1.00 KX KYKY-EM3200 SN:330210 𝜇m

(b)

16 KV 200 X KYKY-EM3200 SN:0755100 𝜇m

(c) (d)

200 𝜇m

(e)

20 𝜇m

(f)

Figure 2: (a) The microstructure of silk fibers before degumming: the surface is coated with the glue-like protein sericin. (b) Under SEM, the
surface of silk fibroins becomes smooth after complete degumming; the average diameter is about 10 μm. (c) The microstructure of silk-
collagen scaffold after the dehydrothermal crosslinking process: the collagen sponge permeated into the rings of knitted mesh. (d) BMSCs
were seeded on the scaffold and cocultured for 72 h for further use. (e) BMSCs exhibited vigorous proliferation on the scaffold. (f) BMSCs
retained good cellular morphology on the scaffold observed by SEM.
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distributed on the silk fibroin surface entered into the
rings of knitted mesh, resulting in a fuzzier surface
(Figure 2(c)). BMSCs adhered to the collagen surface after
being seeded onto the scaffold for 72 h in Petri dishes
(Figure 2(d)) and maintained good cellular morphology
(Figures 2(e) and 2(f)).

3.2. Identification of BMSCs. Alizarin red, oil red O, and
alcian blue staining were performed after cells were cultured
in the inducing medium for 3 weeks. Mineralized nodules,
lipid droplets, and green cytoplasm were observed under
the microscope after staining with alizarin red, oil red O,
and alcian blue (Figure 3). The results of flow cytometry
showed that the third passage cells had high expression of

CD29 (71.7%), CD73 (98.9%), and CD105 (98.1%)
(Figure 4).

3.3. Ligament Regeneration Assessment. Cellular infiltration
and tenascin-C production were evaluated by HE and immu-
nohistochemical staining. In the S/C group, considerable
cells were observed in the core part of the graft, whereas in
the S group, only a few cells could be observed in the graft
at 4 weeks postoperatively (Figures 5(a) and 5(b)). At 16
weeks after surgery, fibroblast-like cells became more regular
and denser in the S/C than in the S group (Figures 5(c) and
5(d)). The tenascin-C expression in the S group was obvi-
ously lower than that in the S/C group at 4 and 16 weeks after
surgery (Figures 6(a) and 6(b)).

(a) (b)

50 𝜇m

(c)

Figure 3: Representative images from alizarin red (a), oil red O (b), and alcian blue (c) staining to detect the osteogenic, adipogenic, and
chondrogenic differentiation abilities of passage 3 cells.
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Figure 4: The third passage cells had high expression of CD29 (71.7%), CD73 (98.9%), and CD105 (98.1%).
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3.4. Graft–Bone Healing Assessment. Histological staining
revealed connective tissue with a thin chondrocyte layer at
the graft–bone interface at 4 weeks after the reconstruction
surgery. No obvious bone integration was noticed in the
two groups; although, more cells were distributed in the core
part in the S/C group than in the S group (Figures 7(a) and
7(b); Figure 8(a) and 8(b)). By 16 weeks after surgery, the
mature trabecular bone and considerable cell invasion in

the scaffold could be noticed at the graft–bone interface in
the S group, while integration with the trabecular bone in
the graft was observed in the S/C group (Figures 7(c) and
7(d); Figures 8(c) and 8(d)).

3.5. Micro-CT Evaluations. Micro-CT reconstructed the
high-resolution transverse sectional images of the tibia and
femur. The formation of the mineralized tissue at the graft–

4w
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Figure 5: At 4 weeks after surgery, HE staining of grafts in the knee cavity in the S group (a) revealed few cells, whereas considerable cells were
observed in the core part of the graft in the S/C group (b). At 16 weeks after surgery, fibroblast-like cells became more regular and denser in
the S/C group (d) than in the S group (c).
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Figure 6: Immunohistochemistry staining of grafts in the knee cavity specific for tenascin-C in the S group and S/C group to assess ligament
regeneration: the density mean of immunoreactivity was higher in the S/C group than in the S group at 4 weeks (a) and 16 weeks (b) after the
operation.
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bone interface could be easily observed. In both groups, few
mineralized tissues were detected at the graft–bone interface
at 4 weeks postoperatively (Figures 9(a) and 9(b)). BV/TV,
Tb. Th, and BMD values were increased significantly more
in the S/C than in the S group (Table 1). However, at 16

weeks after reconstruction surgery, distinct signals appeared
indicating new mineralized tissue regeneration at the graft–
bone interface in both groups (Figures 9(c) and 9(d)), with
greater increases in Tb.Th and BMD observed in the S/C than
in the S group (Table 1).

3.6. Biomechanical Test. All grafts in both groups failed
through rupture in the knee cavity or pullout from the bone
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Figure 7: HE staining of the graft–bone interface for histological
observation. At 4 weeks after the reconstruction surgery, no
obvious bone integration was noticed in the two groups; although,
more cells were distributed in the core part in the S/C group (b)
than in the S group (a). At week 16, mature trabecular bone and
considerable cell invasion in the scaffold could be noticed at the
graft–bone interface in the S group (c). In the S/C group,
integration of the trabecular bone into the graft was observed (d).
g: graft; b: bone; if: interface.
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Figure 8: Russell–Movat staining of the graft–bone interface. At 4
weeks after the reconstruction surgery, no obvious bone
integration was noticed in the two groups (a, b). At week 16, the
mature trabecular bone could be noticed at the graft–bone
interface in the S group (c), whereas in the S/C group,
osteointegration with the trabecular bone into the graft was
observed (d). g: graft; b: bone; if: interface.
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(c) (d)
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Figure 9: Representative micro-CT images. Few mineralized tissues
were detected at the graft–bone interface at 4 weeks postoperatively
(a, S group; b, S/C group). At 16 weeks postoperatively, distinct
signals appeared indicating new mineralized tissue regeneration at
the graft–bone interface of each group (c, S group; d, S/C group).
The mineralized tissue signal and average bone tunnel area may
indicate bone integration at the graft–bone interface.

Table 1: Micro-CT evaluations (mean ± SD). BV/TV, Tb.Th, and
BMD increased significantly more in the S/C group than in the S
group at 4 weeks after reconstruction surgery. Significant increases
in Tb.Th and BMD were observed in the S/C group relative to the
S group. ∗ indicates a notable distinction between the two
comparison groups.

Time point Items S S/C p value

4 w

BV/TV (%) 14:04 ± 0:41 15:53 ± 0:90 0.0169∗

Tb.Th (mm) 0:27 ± 0:02 0:32 ± 0:02 0.0198∗

Tb.N (1/mm) 0:24 ± 0:07 0:30 ± 0:01 0.0883

Tb.Sp (mm) 1:21 ± 0:01 1:13 ± 0:07 0.0426∗

BMD (mg/cm3) 0:08 ± 0:01 0:10 ± 0:00 0.0001∗

16 w

BV/TV (%) 22:29 ± 1:01 23:50 ± 0:98 0.1233

Tb.Th (mm) 0:29 ± 0:05 0:36 ± 0:03 0.0406∗

Tb.N (1/mm) 0:39 ± 0:10 0:47 ± 0:07 0.2725

Tb.Sp (mm) 0:91 ± 0:03 0:83 ± 0:07 0.0887

BMD (mg/cm3) 0:19 ± 0:02 0:22 ± 0:02 0.0494∗
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tunnel. No obvious differences in the failure load were found
between the two groups at 4 and 16 weeks after surgery (4 w,
S 23:24 ± 2:18 vs. S/C 28:38 ± 4:07, p = 0:06; 16 w, S 31:85
± 4:24 vs. 36:36 ± 2:58, p = 0:11; Figure 10(a)). Stiffness was
calculated by recording the displacement and failure load
from the load–deformation curve. The stiffness was not con-
siderably different between the groups at 4 and 16 weeks after
surgery (4 w, S 4:71 ± 1:42 vs. S/C 4:71 ± 1:42, p = 0:21; 16 w,
S 6:18 ± 1:17 vs. 7:52 ± 1:31, p = 0:16; Figure 10(b)).

4. Discussion

Tissue engineering grafts for ACL reconstruction have
focused on ligament regeneration in the knee cavity and bone
integration at the graft–bone interface [31]. The present
study revealed that BMSCs promoted ligament regeneration
and graft–bone healing after reconstruction surgery using a
silk–collagen scaffold. The scaffold was infiltrated by great
many fibroblast-like cells and tenascin-C depositions at 4
and 16 weeks after surgery. The graft–bone interface exhib-
ited good bone integration at 16 weeks after surgery. The
results showed that BMSCs combined with silk–collagen
scaffolds represent a good prospect in ACL tissue engineering
and future clinical use.

Ideally, a tissue engineering scaffold for ACL reconstruc-
tion needs to simulate biological functions as well as the geo-
metric structures of ligaments [32]. The ECM is important in
guiding tissue ingrowth, maintaining homeostasis, and pro-
viding mechanical support during the ligament regeneration
process. The silk–collagen scaffold takes advantage of silk’s
inherent mechanical properties and its suitability for knitting
as well as the favorable biocompatibility of collagen matrix.
Collagen matrix dominated the space between the silk
fibroins and provided an attachment point for seeded cells.

The synovium layer covers the knee cavity, providing a
less vascular microenvironment. At 4 and 16 weeks after sur-
gery, fewer cells were attracted into the scaffold, and less
ECM deposition occurred in the S group compared to the
S/C group. According to the results, few cells migrated from
surrounding tissues into the scaffold, and implanted BMSCs
contributed proliferated cells to the scaffold and regenerated

ECM. Fan and colleagues found that the production of tenas-
cin-C, collagen-II, and collagen-I from stem cells was greatly
improved after cocultivation with silk scaffolds after 7 and 14
days [33]. Tenascin-C, one of the extracellular matrix glyco-
proteins in intra-articular grafts, is always expressed in the
actively remodeling tissue and has a highly restricted gene
expression model [34]. The tenascin-C expression in the S
group was obviously lower than that in the S/C group at 4
and 16 weeks postoperatively. Results demonstrated that
grafts in the S/C group exhibited more vibrant ligament
regeneration than did those in the S group, and implanted
BMSCs contributed to cell proliferation and ECM
deposition.

Successful ACL reconstruction requires solid graft–
bone healing [17]. Graft–bone healing in the bone tunnel
requires that bone grow inward into the graft–bone inter-
face. Kanaya and colleagues [35] reported that transected
sections shrank over time, and the interface in the
MSC(-) group still lacked tissue at all points in time post-
operatively, whereas in the MSC(+) group, GFP-positive
cells were found at 2 and 4 weeks postoperatively in heal-
ing tissues covering the transected section. The histologic
score of the MSC(+) group was obviously better than that
of the MSC(-) group. As reported by Hong and colleagues,
BMSCs may promote the graft–bone healing process, as
cartilage-like cells proliferated and perpendicular collagen
fibers increasingly formed at 4 weeks postoperatively in a
rabbit model [36]. In the present study, cartilage-like cells
proliferated, and less fibrocartilage-like tissue formed at
the graft–bone interface in the S group than in the S/C
group at 4 weeks after surgery. The mature trabecular
bone was found in the core part of the graft in the S/C
group at 16 weeks postoperatively, whereas only the
mature trabecular bone was found at the interface in the
S group. The graft–bone healing process may be promoted
by the host stem cells from the circumambient bone mar-
row in the bone tunnel [37–39], but the host cell infiltra-
tion into the graft might take more than 4 weeks after
surgery [20]. Based on the present study, it is considered
that the implanted BMSCs mostly promoted bone integra-
tion between the graft and bone.
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Figure 10: No significant differences were found in failure load (a) or stiffness (b) between the S group and S/C group at 4 and 16 weeks after
the reconstruction surgery. NS indicates no significant difference between groups.
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Oka and colleagues found that bone integration at the
graft–bone interface determined micro-CT parameters [40].
Micro-CT could discern subtle changes in bone tunnels and
collect gross information of newly formed mineralized tissue
through imaging [41]. This study evaluated bone integration
using micro-CT. More mineralized tissues were detected in
the bone tunnel in the S/C group than in the S group at 4
and 16 weeks postoperatively; this finding corresponded to
the histological findings.

The two main parameters of a ligament regenerated by
tissue engineering are failure load and stiffness. Previous
studies have shown that silk degraded via proteolytic degra-
dation, resulting in a decrease in the scaffold mechanical
strength [42, 43]. The speed of decrease in mechanical
strength depends primarily on the physiological status,
mechanical environment, implantation site, and scaffold
structure. ECM including collagen fibers and proteoglycans
could be produced by the infiltrated cells, which makes up
for the mechanical strength decrease due to degradation.
The mean failure load and stiffness in the S/C group were
greater than those in the S group at 4 and 16 weeks after
the procedure. The absence of a notable distinction between
the two might be attributable to the small specimen
dimensions.

One limitation of the present study was that we did not
quantify the number of BMSCs implanted on the silk–colla-
gen scaffold, and the optimal number of implanted cells
remains unknown. Furthermore, the seeded BMSCs were
not labeled and tracked, which represents another limitation.
Although BMSCs seeded on the scaffold maintained good
cellular morphology in vitro, the environments of the joint
cavity and bone tunnel are different from that of a Petri dish.
In a previous study, autologous BMSCs transfected with len-
tivirus vector expressing enhanced green fluorescent protein
(Lv-eGFP) were seeded on a decellularized semitendinous
tendon graft for ACL reconstruction [44]. The eGFP-
positive cells could be observed at 12 weeks postoperatively;
although, the eGFP-positive cell number at week 12 was sig-
nificantly lower than that at week 4. The conclusions of the
present study were based on cell infiltration and tenascin-C
deposition and on graft–bone healing observed histologi-
cally. More data will be needed to confirm the fate of the
implanted cells in a future study.

5. Conclusion

BMSCs may promote ligament regeneration in the cavity and
bone integration at the graft–bone interface. Silk–collagen
scaffold and BMSCs are very likely to be combined for clini-
cal practice in the future.
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Rheumatoid arthritis (RA) is an autoimmune syndrome affecting joint spaces, leading to the disabled state. Currently, there is no
optimal therapy for RA except for systemic immunosuppressants that have variable undesirable effects after long-term use. Hence,
the need for other treatment modalities has emerged in an attempt to develop a treating agent that is effective but without bad
effects. Bone marrow-derived mesenchymal stem cells (BM-MSCs) may be an alternative medicine since they may differentiate
into a variety of mesenchymal tissues including bone and cartilage. Indomethacin (IMC) could be suggested as an analgesic,
anti-inflammatory, and antirheumatic potential agent against the course of RA since it possesses significant palliative effects and
antipyretic properties. Therefore, our target of this study was to explore and compare the effect of BM-MSCs (1 × 106 cells/rat at
the 1st, 6th, 12th, and 18th days) and IMC (2mg/kg b.w./day for 3 weeks) either alone or in combination on arthritic rats. The
model of rheumatoid arthritis in rats was induced by subcutaneous injection of 0.1mL/rat CFA into the footpad of the right
hind paw. The BM-MSC intravenous injection and IMC oral administration significantly reduced the elevated right hind leg
paw diameter and circumference, serum anti-CCP, and ankle joint articular tissue expressions of TNF-α, iNOS, MMP-9, and
TGF-β1 while they significantly increased the lowered articular IL-10 expression in CFA-induced arthritic rats. The
combinatory effect of the two treatments was the most potent. In conclusion, the treatment of RA with BM-MSCs and IMC
together is more effective than the treatment with either BM-MSCs or IMC. The Th1 cytokine (TNF-α), Th2 cytokine (IL-10),
iNOS, MMP-9, and TGF-β1 are important targets for mediating the antiarthritic effects of BM-MSCs and IMC in CFA-induced
arthritis in rats.

1. Introduction

Rheumatoid arthritis (RA) is a syndrome of ongoing inflam-
mation that is categorized with joint rubefaction, edema, and
impairment of synovial joints. Such phase is correlated with
inflammatory cell proliferation and penetration of the syno-
vium, in addition to bone as well as pariarticular cartilage

dysfunction [1]. RA is considered a chief cause of permanent
disability, augmented mortality, and socioeconomic costs [2].
Its prevalence is around 1% of the global population and is in
continuous increase with time [3] and propagates in females
3 times more than males which could be attributed to sex
hormones. It is also linked with the extra-articular manifes-
tations involving renal, pulmonary, and cardiovascular
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problems [4]. Former research and studies suggested that the
imbalanced immunological responses in addition to genetic
factors play a fundamental role in RA development. The
mechanism of RA pathogenesis and its etiology remains gen-
erally indefinite. However, it primarily is activated by T cell
immunological responses that release various proinflamma-
tory mediators [5] such as tumor necrosis factor-alpha
(TNF-α), matrix metalloproteinase-9 (MMP-9), inducible
nitric oxide synthase (iNOS), and transforming growth
factor-beta-1 (TGF-β1). Also, the anticyclic citrullinated
protein antibodies (anti-CCP) are subsequently produced
inducing local edema, inflammation, and ultimately joint
destruction [6]. In comparison, a compensatory anti-
inflammatory response in the RA synovia is also evidenced
by producing anti-inflammatory cytokines such as IL-10 that
is believed to suppress RA progression [7]. Accordingly, it
became so critical to explore promising mechanisms and seek
potential safer alternative therapies to improve the inflam-
matory pathological progress in RA patients [8].

There are many common drugs administered for pain
relief and delay of RA progression including traditional non-
steroidal anti-inflammatory drugs (NSAIDs) combined with
those steroids or disease-modifying antirheumatic drugs
(DMARDs), also hormonal-based drugs or corticosteroids,
and the novel biological therapeutic agents, such as the tumor
necrosis factor-α (TNF-α) antibody and the decoy TNF-α
receptor [9]. However, the application of these available
medicines is frequently limited and undesired by patients
due to their high costs, and their administration for a long
time is accompanied by the incidence of harm and extensive
side effects [10]. In this regard, unconventional therapies or
anti-inflammatory substances from other different sources
that provide an effective but safer treatment of arthritis have
aroused great public interest in recent years [11]. Various
experimental animal models have been well known in rats
to study the disease initiation and propagation as well as
determine the probable efficacy of antiarthritic and anti-
inflammatory agents [12]. The arthritis model induced via
complete Freund’s adjuvant (CFA) reagent is one of the best
available models for chronic inflammation and polyarthritis
with features that resemble human RA and is still widely used
in the preclinical testing of arthritis [13–15]. Mesenchymal
stem cells (MSCs) are multipotent cells that differentiate into
various kinds of cells including adipocytes, osteoclasts, and
chondrocytes. They could be extracted from numerous
mesodermal tissues such as the dental pulp, placenta, umbil-
ical cord blood, menstrual fluid, umbilical cord, adipose tis-
sue, and bone marrow [16]. They were found to exert
immunosuppressive purposes on both the innate and adap-
tive immune cells [17]. Consequently, MSCs have an inter-
esting therapeutic cell candidate for tissue engineering and
repair of damaged structures in autoimmune diseases such
as RA. This could be attributed to their anti-inflammatory
and regenerative functions besides their capacity to attenuate
the exacerbated pathogenic immune response observed in
these patients [17].

Moreover, indomethacin (IMC), 1-(p-chlorobenzoyl)-5-
methoxy-2-methylindole-3-acetic acid, is considered a non-
steroidal indole derivative with anti-inflammatory activity

and chemopreventive properties. As a nonsteroidal anti-
inflammatory drug (NSAID), indomethacin reduces prosta-
glandins by inhibiting cyclooxygenase (COX) enzymes,
COX-1 and COX-2, with greater selectivity for COX-1.
IMC inhibits COX enzymes by binding to them, forming
COX-IMC complexes [18, 19]. Also, IMC exhibits potent
antipyretic effects and analgesic properties that may enable
it to relieve the pain of patients and overcome the inflamma-
tory reactions of the disease. The Food and Drug Administra-
tion (FDA) approved its use for many diseases including
primary dysmenorrhea, pericarditis, juvenile arthritis, pseu-
dogout, and Paget’s disease [20]. It has acquired an estab-
lished place in the treatment of osteoarthrosis of the hip. It
was introduced in 1963 for the treatment of ankylosing spon-
dylitis and seems to be effective in degenerative joint diseases.
Also, it showed benefit in treating acute gout and musculo-
skeletal disorders, inflammation, and edema [21]. Addition-
ally, IMC has been used by clinicians in treating RA and
preventing its progression. However, it is rarely used solely
but usually showed greater efficacy in conjunction with
DMARDs such as adalimumab, etanercept, infliximab, and
methotrexate [20].

In conductance with the previous publications, this study
was designed to evaluate the convenience and bioavailability
of BM-MSCs and IMC administered in combination to asso-
ciate the advantages of both of them in relation to each treat-
ment (BM-MSCs or IMC) alone, via their role in suppressing
the Th1 (TNF-α, iNOS, MMP-9, and TGF-β1) pathway
while promoting the Th2 (IL-10) pathway and subsequently
overcoming the course of the disease in the CFA-arthritic
rat model.

2. Materials and Methods

2.1. Animal Procurement and Maintenance. Our experiment
included 50 male Wistar rats (120-150 g, weight; 10-12
weeks, specific pathogen-free) that were obtained from VAC-
SERA (Helwan Station, Cairo, Egypt). The animals were kept
in an animal facility at temperature 22 ± 2°C, relative humid-
ity 55 ± 5%, and 12-hour (h)/12 h light/dark cycle. The ani-
mal experiment was approved by the local committee for
animal experimentation, Faculty of Science, Beni-Suef Uni-
versity, Egypt (ethical approval number: BSU/FS/2017/11).

2.1.1. Induction of Arthritis. For arthritis induction, animals
were inoculated by subcutaneous injection of 0.1mL/rat
CFA solution (Sigma Chemical Co., St. Louis, MO, USA) into
the footpad of the right hind paw as described by Ahmed
et al. [13] for two consecutive days. Each 1mL of CFA
contains 1mg of Mycobacterium tuberculosis, heat-killed
and dried, 0.85mL paraffin oil, and 0.15mL mannide
monooleate.

2.1.2. Animal Grouping. The experimental model was
designed as described in our recent study [22] as follows:

Group 1 (normal). It consists of healthy rats that were
given the equivalent volumes of carboxymethylcellulose
(CMC) daily and orally for 3 weeks and Dulbecco’s modified
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Eagle’s medium (DMEM) intravenously at the 1st, 6th, 12th,
and 18th days.

Group 2 (CFA). It is composed of CFA-induced arthritic
rats and was orally given the equivalent volumes of CMC
daily and orally for 3 weeks and DMEM intravenously at
the 1st, 6th, 12th, and 18th days.

Group 3 (CFA+BM-MSCs). This group consists of CFA-
induced arthritic rats that received four doses of BM-MSCs
(1 × 106 cells/rat/dose) by intravenous injection through the
lateral tail vein per rat [23]. Each dose was suspended in
0.2mL DMEM (Dulbecco’s modified Eagle’s medium).
Doses were given on the 1st, 6th, 12th, and 18th days after
CFA injection.

Group 4 (CFA+IMC). This group is composed of CFA-
induced arthritic rats supplemented orally with IMC in a
dose of 2mg/kg body weight (b.w.)/day for 3 weeks after
CFA injection. IMC was freshly prepared immediately before
administration by dissolving in 5mL of 1% CMC for three
weeks. IMC was acquired from Sigma Chemical Company
(Sigma Chemical Co., St. Louis, MO, USA).

Group 5 (CFA+BM-MSCs+IMC). This group consists of
CFA-induced arthritic rats that were concurrently supple-
mented with BM-MSCs and IMC as described in groups 3
and 4.

2.2. Isolation and Culture of BM-MSCs. The isolating and
culturing technique of the BM-MSCs is established on the
approach of Chaudhary and Rath [24] and our former publi-
cations [22, 25].

2.3. Evaluation of Paw Edema and Swelling Rate in Arthritis.
In the present study, for evaluating the arthritis development,
the paw circumference (cm) and the paw diameter (mm) of
the right hind paw were used as indicators of the rate of swell-
ing and joint edema. Measurements were obtained at various
times on days 0, 7, 14, and 21 after CFA induction. The joint
diameter was recorded with a microtome screw gauge [26],
while the paw circumference was evaluated by wrapping a
string around the paw and then measuring its length on a
ruler. Edema and the swelling rate for the CFA rats were
compared to those for a normal control group, while those
for the treated rats were compared to those for the CFA
group. The rats were anesthetized by ether inhalation before
measurement.

2.4. Measurement of Anti-CCP and IL-10 Using the ELISA
Technique. Serum anti-CCP and IL-10 levels were deter-
mined in different groups using specific enzyme-linked
immunosorbent assay (ELISA) kits purchased from R&D
Systems (R&D Systems, Inc., Minneapolis, MN, USA)
according to the manufacturer’s instructions.

2.5. Determination of the Expression of Various Genes by
RT-PCR. The mRNA expression levels of TNF-α, MMP-9,
and iNOS in relation to the housekeeping gene beta-actin
(β-actin) were determined using reverse transcription poly-
merase chain reaction (RT-PCR).

2.5.1. Ribonucleic Acid (RNA) Isolation. The RNA product
was extracted totally from ankle joints using the Thermo Sci-

entific GeneJET RNA extraction kit purchased from Thermo
Fisher Scientific Inc., Rochester, New York, USA [27]. In liq-
uid nitrogen, samples were homogenized and then lysed
using a lysis buffer solution that consists of guanidine thiocy-
anate and a chaotropic salt which protects RNA from endog-
enous RNases. The lysate was then mixed with ethyl alcohol
and mounted on a purification column. Both the chaotropic
salt and the ethyl alcohol made RNA bind to the silica mem-
brane as the lysate is spun through the column. Impurities
were subsequently removed away from the membrane by
washing the column with a washing buffer solution. Then,
pure RNA was eluted with a nuclease-free water reagent in
low-ionic strength conditions. And the amount of purified
RNA was quantified by using a UV spectrophotometer
according to the following formula: RNA μg/μL = O:D:260
nm × ð40 μg RNA/mLÞ × dilution factor/1000. To ensure the
high purity of the isolated RNA, we checked the purity of
RNA that ranged between 1.8 and 2.0. By the end, 0.5μg of
purified RNA was used for the production of complementary
deoxyribonucleic acid (cDNA) that was kept at -20°C, for
further assay of the mRNA.

2.5.2. Reverse Transcription Polymerase Chain Reaction (RT-
PCR) Analysis. RT-PCR analysis was performed as described
in Ahmed et al.’s [22] research work, and the relative expres-
sion level of TNF-α, iNOS, and MMP-9 was normalized to
the β-actin housekeeping gene. All the primers used in this
experiment were synthesized by Sangon Biotech (Shanghai,
China) (Table 1).

2.6. Western Blot Analysis. The amount of TGF-β1 protein
was assayed using the Western blot technique. Briefly, we
used the ice-cold RIPA lysis buffer to extract the proteins
from joint tissue. The Bradford Protein Assay Kit (SK3041)
for quantitative protein analysis was provided by Bio Basic
Inc. (Markham, Ontario, L3R 8T4, Canada). A Bradford
assay was performed according to the manufacturer’s
instructions to determine protein concentration in each sam-
ple. Equivalent amounts (30μg) of protein were divided
using 10% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE). Next, the proteins loaded on the
gel were shifted onto membranes of polyvinylidene fluoride
(PVDF). Then, overnight, the membrane was probed at 4°C
with the TGF-β1-specific primary antibody (cat. no. 9574;
Thermo Fisher Scientific). After washing with Tris-buffered
saline with Tween 20 (TBST) three times, the blots were pre-
pared for incubation with horseradish peroxidase-conjugated
secondary antibodies (1 : 5000, Santa Cruz Biotechnology,
CA) at RT 25°C for 30 minutes. The blots were washed again,
and then, the signal of the chemiluminescence was visualized
with an X-ray film [22, 28].

2.7. Histopathological Examination. On day 21 of arthritis
induction and after euthanization, the right hind leg ankle
joints of 4 rats from each group were detached and conserved
for 48 hours in 10% buffered formalin. Decalcification of the
sample tissues was performed using paraffin blocks with 10%
nitric acid for 2 weeks. Finally, 5μm thick cross sections of
these blocks were dyed with hematoxylin-eosin and viewed
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using a light microscope to determine the histopathological
changes and severity of arthritis.

2.8. Statistical Analysis. Statistical tests were performed uti-
lizing IBM SPSS Statistics program version 22.0 (IBM,
Armonk, NY, USA). All values were represented as the mean
and standard error of the mean (mean ± SE). Differences
among groups were estimated for statistical significance
using the one-way analysis of variance (ANOVA) test
followed by the Tukey–Kramer post hoc test for comparisons
between groups, and p < 0:05 was considered the minimal
level of significance [29].

3. Results

3.1. Effect of Treatments on Paw Edema. All rats developed
arthritis after adjuvant injection. The CFA-induced arthritic
rats showed a statistically significant (p < 0:05) increase in
the paw diameter and circumference (edema) that was main-
tained for 21 days compared with a normal control group
(Figures 1 and 2). However, the arthritic treated rats admin-
istered with BM-MSCs and/or IMC showed a significant
(p < 0:05) decrease in those parameters by the end of the
experiment with inhibition percentages of 8.10, 14.83, and
16.30% and 12.07, 14.60, and 13.72% for the paw diameter
and circumference, respectively, in comparison with CFA
rats.

3.2. Effect of Treatments on Anti-CCP and IL-10
Concentrations. Levels of anti-CCP and IL-10 were detected
in serum using a standard ELISA technique (Figures 3 and
4), respectively. Rats immunized with CFA exhibited a signif-
icant (p < 0:05) increase in the anti-CCP autoantibody
(631.71%) but a marked reduction in anti-inflammatory IL-
10 cytokine levels (-51.29) compared with the normal control
group. Conversely, administration of BM-MSCs, IMC, and
BM-MSCs+IMC each, respectively, successfully decreased
the anti-CCP level (-75.33, -73.50, and -83.33) and promoted
IL-10 production (64.95, 39.55, and 78.43%) as well when
compared to the normal group.

3.3. Evaluation of TNF-α, iNOS, and MMP-9 mRNA
Expression Level and Protein Level of TGF-β1 in Ankle Joint
Articular Tissues. As represented in Figures 5–7, the TNF-
α, MMP-9, and iNOS mRNA expression levels, respectively,

in ankle joint articular tissues, were determined by the PCR
technique. The arthritic untreated rats noticeably showed
upregulation of their mRNA expression levels as compared
to the normal ones. On the other hand, the rats treated with
BM-MSCs and/or IMC showed apparent downregulation of
their levels. Likewise, the TFG-β1 protein level was highly
elevated in the arthritic group with a change percentage of
512.87% when compared with the normal control. However,
the animals treated with BM-MSCs, IMC, and BM-MSCs
+IMC, respectively, showed a significant reduction of its level
with a change percentage of -56.22%, -51.53%, and -70.92%,
respectively, concerning the arthritic control group
(Figure 8).

3.4. Effect of Treatments on Gross Lesions (Macroscopic
Changes) of the Right Hind Paw and Ankle Joint. Macro-
scopic changes such as edema and the swelling rate of the
right hind paw and ankle joints acted as external features
and inflammatory signs for evaluating the arthritic inflam-
matory model intensity. The CFA control group showed
severe inflammation as well as paw and ankle joint swelling;
on the other side, both of which gradually decreased follow-
ing BM-MSC and/or IMC treatments by the end of the
experiment (on day 21 post-CFA injection) (Figure 9).

3.5. Histopathological (Microscopic) Changes. Histological
sections of the right hind ankle joint obtained from normal
rats showed a clear and complete histological architecture
with the normal synovial membrane and normal articular
(cartilage and bone) surfaces. The CFA-induced arthritic rats
exhibited severe histological alterations including focal pro-
liferation and degeneration of the synovial membrane form-
ing the pannus that infiltrated with a massive number of
mononuclear inflammatory cells, extensive and widespread
erosion in the cartilage surface, and hypercellularity and
hyperplasia of myeloid cells of the bone. On the contrary, sec-
tions of the CFA-induced arthritic rats treated with BM-
MSCs and/or IMC presented highly improved histological
configuration with nearly normal cartilage and bone surfaces
except for slight inflammation of synovia that was moderate
in IMC-treated rats and mild in both groups treated with
BM-MSCs and those concurrently administered rats (BM-
MSCs+IMC) (Figure 10).

Table 1: The forward and reverse primer sequences of various mRNA genes.

Gene Primer sequence Amplicon size (bp)

β-Actin (housekeeping gene)
F: 5′-TCACCCTGAAGTACCCCATGGAG-3′

151
R: 5′-TTGGCCTTGGGGTTCAGGGGG-3′

TNF-α
F: 5′-AAAATCCTGCCCTGTCACAC-3′

323
R: 5′-GCTGAGGTTGGACGGATAAA-3′

iNOS
F: 5′-ATGGAACAGTATAAGGCAAACACC-3′

220
R: 5-′GTTTCTGGTCGATGTCATGAGCAAAGG-3′

MMP-9
F: 5′-CTGGGCTTGATGCCTGTTT-3′

331
R: 5′-TTGTGGTGGTGCCACTTGA-3′
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4. Discussion

RA is regarded as a disabling autoimmune syndrome that is
related to long-lasting joint inflammation besides extensive
cartilage and bone impairment [30]. CFA is a widely used
animal model for both researching pathogenesis and discov-
ering novel therapies to treat RA in humans [31]. In the CFA-
induced arthritis model, rats experience persistent swelling in
several joints followed by inflammatory cell inflow, joint car-
tilage degradation, and bone integrity erosion and dysfunc-
tion. Herein, the diameter and the circumference of the
right hind paw were estimated weekly and for 3 weeks as an
index of the joint swelling, subsequently monitoring disease

development besides the response to the tested drugs. In
complete agreement with the study of Nagai et al. [32], our
data displayed that paw edema and swelling reached the
maximum on day 7 of arthritis induction in the acute phase
(primary inflammation) and gradually declined until day 14
and then began the chronic phase of arthritis (secondary
inflammation). By the end of the experiment (3rd week), the
arthritic control rats exhibited a significant increase in the
paw diameter and circumference comparable to the normal
rats. On the contrary, the BM-MSC- and/or IMC-treated rats
efficiently inhibited the elevation about the arthritic control
rats and were approximated to normal ranges. Consistent
with our findings, the study of Porth [33] reported that
edema of the right hind foot of adjuvant and arthritic rats
immunized with low-dose IMC nanoparticle (0.4mg/kg) oral
administration was significantly lower regarding those
immunized with a vehicle. Furthermore, these outcomes
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were strongly supported by the results of biochemical assays
and revealed the anti-inflammatory efficacy of the tested
drugs against CFA-induced arthritis.

Preceding research papers revealed that RA is initiated
chiefly through immunological responses of T cells which
induce cytokine release [33] and facilitate the development
of autoantibodies, leading to joint destruction. Concerning
the autoantibodies formed during the course of the disease,
the anticitrullinated protein antibodies (ACPA) are the most
common RA biomarker for diagnostics. It is produced as a
response to the occurrence of autoantigens, named citrulli-
nated peptides. These autoantigens could prompt local
edema and inflammation via developing an immune
response within the localized region of the joint [6]. Besides,

the presence of ACPA is predictive for the development of a
worse disease effect with more joint erosions along with time
[34]. The recent investigation demonstrated that the sera of
arthritic control rats showed a remarkable increase in the
anti-CCP concentration level as compared to the normal
group. Principally, the BM-MSC+IMC group besides BM-
MSC- and IMC-supplemented rats clearly declined the ele-
vated anti-CCP level compared to the arthritic control rats.
Such an anti-CCP level proves the capabilities of the tested
agents to modulate immune responses induced in RA, hence
recommending them as promising antirheumatic drugs.

Similarly, RA is considered an autoimmune disorder
characterized by infiltration of immune cells (monocytes
and lymphocytes). These inflammatory cells are deemed sub-
stantial in initiating and perpetuating RA as represented in
Figure 11; it produces interleukins (ILs), as well as inflamma-
tory mediators such as tumor necrosis factor-alpha (TNF-α),
nitric oxide (NO), MMP-9, and prostaglandin E2 (PGE2)
[35]. Those mediators are implicated in the inflammatory
response and have various roles through many pathways.
Therefore, modulating or blocking these pathways became
the target of the new therapeutic tested drugs against the dis-
ease. In this study, we focused on TNF-α, iNOS, MMPs, and
TGF-1β as originators of inflammation besides IL-10 as an
inhibitor of inflammation within tissues.

Specifically, TNF-α is a principal cytokine that induces
apoptosis in some cells and proliferative reactions in others
and plays a crucial role in both acute and chronic inflamma-
tion [36]. It prompts the production of inducible nitric oxide
synthase (iNOS) that in turn enhances the release of matrix
metalloproteinases (MMPs). MMPs are a family of inflam-
matory mediators (MMP-3, MMP-13, and MMP-9) respon-
sible for promoting extracellular matrix degradation and
cartilage damage [37]. Therefore, when the TNF-α pathway
is specifically blocked, the severity of inflammation is accord-
ingly reduced; that is why it became a key therapeutic target
to cease the evolution toward the chronic form of the disease
[38]. In parallel, transforming growth factor-β1 (TGF-β1) is
a component of the TGF-β superfamily of cytokines con-
tributing to various cellular responses, such as apoptosis,
proliferation, differentiation, and extracellular matrix pro-
duction [39]. TGF-β1 is essential for the induction of RA-
related fibrosis [40]. On the contrary, a compensatory
anti-inflammatory response is also observed in RA synovial
membranes. IL-10 is an upstream regulator and anti-
inflammatory marker that is thought to control the progres-
sion of RA negatively. Several animal model studies of arthri-
tis have illustrated the beneficial impact of IL-10 on reducing
arthritis severity [7]. Similar to the explanation displayed in
Figure 11 illustrating the IL-10 role in the course of the dis-
ease, Hisadome et al. [41] demonstrated that it controls the
functioning of APCs and prevents cytokine release from acti-
vated macrophages. Also, van Roon et al. [42] established
that IL-10 suppresses the production of protein lysing
enzymes via monocytes that produced the inhibitor of
metalloproteinase-1 (TIMP-1). Furthermore, it antagonized
osteoclast formation (osteoclastogenesis) by suppressing the
production of IL-6 in osteoclast precursors, hence overcom-
ing the bone resorption induced by arthritis [43].
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In addition to the former measurements, the anti-
inflammatory impact of treatments on the CFA-induced
arthritis model was more investigated macroscopically via
evaluating the gross lesion changes and microscopically by
demonstrating the histopathological changes on the right
hind paw and ankle joint. Initially, histopathological or
microscopic lesions of rats in the CFA control group exhib-
ited an obvious synovial degradation and proliferation
accompanied by cartilage erosion and bone mas resorption.
Conversely, the BM-MSC-treated arthritic group and BM-

MSC+IMC-treated arthritic group afforded significant pro-
tection against those alterations and exhibited a mild stage
of inflammation while those supplemented by IMC displayed
a moderate stage of inflammation. Correspondingly, the
macroscopic lesions displayed intensive edema and paw
swelling in the CFA-induced control rats that were interest-
ingly improved in the BM-MSC+IMC-, BM-MSC-, and
IMC-treated groups in respect to CFA.

Overall, in the current research, our data demonstrated a
marked elevation of the proinflammatory TNF-α cytokine as
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well as the iNOS, MMP-9, and TGF-β1 gene expression
levels in paw tissues of CFA-induced rats; however, the
anti-inflammatory IL-10 levels in sera conversely declined
as compared with the normal rats. As exhibited schematically
in Figure 11, BM-MSC and IMC therapies either concur-
rently or alone received by the rats essentially downregulated

the reported proinflammatory cytokines whereas promoted
evidently the anti-inflammatory cytokine (IL-10) in compar-
ison with the CFA-induced arthritic group. These results
illustrated the ability of BM-MSCs and IMC to protect
against cartilage and bone destruction, preventing further
development of the disease through such immunoregulatory

(a) (b)

(c) (d)

(e)

Figure 9: Effect of BM-MSCs and/or IMC on gross lesions on the right hind leg paw and ankle joint on day 21 post-CFA induction showing
(a) normal rats, (b) CFA-induced arthritic control rats, (c) CFA+BM-MSC-treated rats, (d) CFA+IMC-treated rats, and (e) CFA+BM-MSC
+IMC-treated rats.
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pathways. In the same regard, the findings of the present
study were strongly approved by Abo-Aziza et al. [44] that
documented a marked decrease in serum TNF-α levels at
week 2 and week 4, respectively, of transplantation with
BM-MSC+albendazole (ABZ) therapy, whereas the level of
IL-10 was considerably elevated only at week 4 after trans-
plantation. Additionally, our outcomes are inconsistent with

Wei et al. [45] who revealed that BM-MSCs successfully low-
ered the expression level of TNF-α as well as other inflamma-
tory cytokines in blood and hippocampus tissues. Overall, the
results of the current study provide evidence for the success-
ful effects of BM-MSCs and IMC in downregulating Th1
cytokine (TNF-α), iNOS, MMP-9, and TGF-β1 and upregu-
lating Th2 cytokine (IL-10), and all of these effects may have
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important roles in relieving the manifestations of the experi-
mentally induced rheumatoid arthritis in Wistar rats
(Figure 11).

5. Summary and Conclusion

Generally, all preceding data proved the validity of BM-MSC
+IMC as a promising therapy for RA more than each treat-
ment alone. This was evidenced by their effectiveness in inhi-
biting paw swelling, reducing anti-CCP concentration,
downregulating the proinflammatory Th1 cytokine (TNF-
α), iNOS, MMP-9, and TGF-β1, and upregulating the anti-
inflammatory Th2 cytokine (IL-10). Th1 cytokine (TNF-α),
Th2 cytokine (IL-10), iNOS, MMP-9, and TGF-β1 are possi-
ble targets of BM-MSCs and IMC to mediate the antiarthritic
effects in CFA-induced arthritic rats.
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Injury of articular cartilage can cause osteoarthritis and seriously affect the physical and mental health of patients. Unfortunately,
current surgical treatment techniques that are commonly used in the clinic cannot regenerate articular cartilage. Regenerative
medicine involving stem cells has entered a new stage and is considered the most promising way to regenerate articular
cartilage. In terms of theories on the mechanism, it was thought that stem cell-mediated articular cartilage regeneration was
achieved through the directional differentiation of stem cells into chondrocytes. However, recent evidence has shown that the
stem cell secretome plays an important role in biological processes such as the immune response, inflammation regulation, and
drug delivery. At the same time, the stem cell secretome can effectively mediate the process of tissue regeneration. This new
theory has attributed the therapeutic effect of stem cells to their paracrine effects. The application of stem cells is not limited to
exogenous stem cell transplantation. Endogenous stem cell homing and in situ regeneration strategies have received extensive
attention. The application of stem cell derivatives, such as conditioned media, extracellular vesicles, and extracellular matrix, is
an extension of stem cell paracrine theory. On the other hand, stem cell pretreatment strategies have also shown promising
therapeutic effects. This article will systematically review the latest developments in these areas, summarize challenges in
articular cartilage regeneration strategies involving stem cells, and describe prospects for future development.

1. Introduction

Articular cartilage is an important weight-bearing tissue of
synovial joints. Due to the lack of blood vessels, nerves, and
lymphatic vessels and the restriction of the dense extracellu-
lar matrix (ECM) on cartilage cells, the self-healing ability of
articular cartilage after injury is very limited. If left untreated,
damage to articular cartilage can lead to osteoarthritis (OA)
[1]. OA has a high incidence and disability rate, affecting

250 million patients worldwide [2]. Unfortunately, none of
the cartilage repair techniques currently in clinical use can
completely regenerate hyaline cartilage [3].

Stem cells are an important milestone in the field of tissue
engineering and regenerative medicine. Stem cell therapy is
considered to be a promising method to solve the regenera-
tion of articular cartilage [4, 5]. A large number of preclinical
and clinical studies have shown that compared with tradi-
tional repair techniques such as microfractures, stem cell
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therapy can form more typical hyaline cartilage and can bet-
ter control symptoms [6–8]. On the other hand, compared
with autologous chondrocytes, stem cells have a wider source
and stronger ability to expand in vitro, which makes tissue-
engineered cartilage involving stem cells more advantageous
than tissue-engineered cartilage involving autologous chon-
drocytes. Tissue engineering strategies involving stem cells
involve the implantation of exogenous stem cells and homing
of endogenous stem cells to achieve cartilage regeneration in
situ. The basis of the exogenous stem cell implantation strat-
egy is finding suitable types of stem cells. Mesenchymal stem
cells (MSCs) derived from various tissues are currently the
most studied tissue engineering articular cartilage seed cell
type [9]. Embryonic stem cells (ESCs) have the potential to
differentiate into any cell type, but due to ethical disputes,
ESCs are in only the preclinical experimental stage. Induced
pluripotent stem cells (iPSCs) can theoretically be obtained
by reprogramming any type of terminally differentiated cell,
removing limitations of the cell source and reducing ethical
disputes, thus becoming a new type of seed cell that is grad-
ually emerging. However, stem cell transplantation also poses
the risk of tumorigenesis, immune rejection, disease trans-
mission, and the functional heterogeneity of cells from differ-
ent individuals [10–13].

In this review, we first introduced the two main theories of
stem cell-mediated articular cartilage regeneration and then
reviewed the application of exogenous stem cell implantation
strategies and endogenous stem cell homing and in situ carti-
lage regeneration strategies. Second, we reviewed the research
progress of stem cell pretreatment strategies, derivatives, and
delivery scaffolds. Finally, we summarized problems in stem
cell research related to articular cartilage regeneration and
looked toward the future directions of this field.

2. Theories on Cartilage Regeneration Involving
Stem Cells

As immature tissue precursor cells, stem cells can self-renew
and have the ability to form clonal cell populations and dif-
ferentiate into multiple cell lineages [14]. These special prop-
erties are particularly attractive for restoring the functions of
a variety of organs. At present, stem cells can be divided into
three general categories: (1) ESCs derived from early
embryos, (2) iPSCs, and (3) adult stem cells, including hema-
topoietic stem cells, neural stem cells, and MSCs. A large
number of studies have confirmed the beneficial role of stem
cells in the regeneration of articular cartilage, and their
potential mechanisms are mainly divided into two theories
(Figure 1): the first is the “differentiation theory,” which
states that stem cells directly differentiate into chondrocytes
and repair damaged cartilage by adding or replacing chon-
drocytes [15]. The other is the “paracrine theory,” in which
stem cells secrete bioactive factors, extracellular vesicles
(EVs), and ECM [16], changing the biological behavior of
receptor cells (including endogenous stem cells, chondro-
cytes, and macrophages), such as proliferation, differentia-
tion, migration, polarization, metabolism, and apoptosis,
and regulating the local microenvironment to repair and
regenerate articular cartilage. Early studies focused on the

direct differentiation and replacement of stem cells. In recent
years, there has been an increasing amount of evidence that
the therapeutic benefits of stem cells may be attributed to
their paracrine effects.

2.1. Differentiation Theory. From the perspective of chondro-
genesis, cartilage formation begins with mesenchymal con-
densation, which causes MSCs to differentiate into cartilage.
Then, a dense matrix forms, which serves as a template for
the subsequent formation of subchondral bone and cartilage
[17]. In addition, a large number of studies have indicated
that MSCs maintain pluripotency after repeated proliferation
cycles in vitro and can differentiate into matrix-producing
chondrocytes [18, 19]. Based on these findings, most previ-
ous studies attributed the role of stem cells in regenerating
articular cartilage to their ability to differentiate into multiple
lineages [20, 21]. A large number of studies focused on the
development of materials and methods to induce stem cells
to differentiate into cells with a chondrocyte phenotype
[22]. Abir and colleagues demonstrated that autologous
MSCs that were intra-articularly injected differentiated into
mature chondrocyte-like cells [23]. This conclusion strongly
supports this theory. Researchers suspended donkey autolo-
gous bone marrow-derived MSCs (BMSCs) labeled with
green fluorescent protein (GFP) in hyaluronic acid (HA)
for intra-articular injections in an attempt to treat wrist OA
induced by amphotericin B. The results of up to 6 months
of follow-up showed that the intra-articular injection of
autologous BMSCs combined with HA resulted in an
improved therapeutic effect compared with that of HA injec-
tions alone. GFP-labeled MSCs were detected in all the exam-
ined articular cartilage. Some cells showed a chondrocyte-like
phenotype (round and surrounded by cavities), which
proved that the injected MSCs differentiated into chondro-
cytes. To further verify this conclusion, similar work in a
dog knee cartilage defect model also proved that injected
MSCs differentiated into mature chondrocytes [24]. The
same results were obtained in a study by Kotaka et al., who
found that human iPSCs can repair knee cartilage defects in
nude mice. The immunofluorescence of antihuman mito-
chondrial antibodies was found in newborn chondrocytes,
which suggested that implanted iPSCs differentiated into
chondrocytes [25]. In a recent study in a rat KOA model,
researchers injected fluorescein-labeled human adipose-
derived MSCs (ADSCs) into the articular cavity and found
that the injected cells had a good therapeutic effect on OA.
The existence of human cells in the rat meniscus and cartilage
was confirmed by immunohistochemistry with antihuman
mitochondria and antihuman Ki67 antibodies, and some of
the cells were in the proliferative phase [26]. Although this
study did not explore whether injected cells differentiated into
mature chondrocytes, the fluorescence signal in OA rats lasted
for approximately 10 weeks, which at least indicated that the
implanted stem cells could be retained in the articular cavity
for a long time. The above studies provide strong evidence
for the “differentiation theory” of stem cells.

2.2. Paracrine Theory. Researchers have long known that the
conditioned medium (CM) of stem cells can promote cell
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proliferation and differentiation in vitro and can promote
tissue repair and regeneration in vivo [27]. It has been
shown that stem cells secrete many cytokines and proteins.
The synergistic effect of small molecules secreted by MSCs
can reduce cell damage and improve the repair ability of
tissue [28]. Second, the immunomodulatory effect of stem
cells has been increasingly reported. Stem cells can regulate
the immune microenvironment during the process of tissue
repair and provide a good environment for tissue regenera-
tion [29]. MSCs in the immune microenvironment can pro-
mote chondrogenesis through immune regulation [30]. At
the same time, a large number of studies on the coculture
of MSCs and chondrocytes in vitro have proven that para-
crine signaling is an important feature of MSCs [31–33].
The nutritional function of MSCs has led researchers to
increasingly regard them as therapeutic delivery agents,
and it has been recommended to rename them “medicinal
signaling cells” [34]. Their paracrine signaling drives the
endogenous response [35]. On the other hand, some
in vitro studies [36–38] found that the differentiation of
MSCs is not as strong as originally thought, and it is diffi-
cult to achieve stable and effective differentiation. Especially
in the case of differentiation into chondrocytes, the progres-

sion of stem cells to terminal hypertrophy is a frustrating
problem [39]. Early in vivo follow-up studies showed that
few cells can survive for more than a few weeks after
implantation [40, 41]. A recent clinical study described
the ultimate results of stem cell implantation. Tommy
et al. implanted allogeneic MSCs into full-thickness femoral
cartilage defects. After a 12-month repair period, histologi-
cal samples were examined, and no allogeneic MSC DNA
was detected in the repaired tissue. This indicated that
implanted MSCs provided the initial stimulation but then
died and were cleared from the tissue [42]. The above stud-
ies suggest that the function of stem cells in tissue repair
and regeneration is mediated by active components
secreted by stem cells rather than by their direct differenti-
ation into target cells.

At present, the mechanism of stem cell-mediated carti-
lage regeneration is still unclear, and the above theory pro-
vides some insights. The complete regeneration process
may be coordinated by multiple mechanisms, and stem cells
may play different roles in different stages of the actual repair
process. The precise control of the changing roles of stem
cells may be an effective way to achieve the desired regenera-
tion effect.

(a)

(b)

�eories and mechanisms of articular cartilage regeneration based on stem cells

Exposure to the microenvironment

Affected by the microenvironment

Growth factors

EVs

ECM

ChondrocyteStem cell

Endogenous stem cells migration/cell homing

Macrophages polarized to M2 type

IL-1
TNF-𝛼

IL-6

IL-10
IL-4

Regulate the microenvironment

Exposure to the microenvironment

Stem cell Stem cell

Endogenous stem cells differentiation

Cell proliferation

Figure 1: Two theories of articular cartilage regeneration involving stem cells. (a) Stem cell differentiation theory. Stem cells are affected by
the microenvironment and directly differentiate into chondrocytes. (b) Paracrine theory of stem cells. Stem cells are affected by the
microenvironment and secrete various derivatives, including growth factors, EVs, and ECM. These derivatives have been proven to induce
homing of endogenous stem cells, promote the differentiation of endogenous stem cells into chondrocytes, promote the proliferation of
chondrocytes, induce macrophages to polarize to the M2 type, and regulate the level of inflammatory factors to exert anti-inflammatory
effects. EVs: extracellular vesicles; ECM: extracellular matrix.
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3. Cartilage Regeneration Strategies Involving
Stem Cells

Stem cells used for tissue engineering and cell therapy are
usually obtained from four basic sources: (1) embryonic tis-
sue; (2) fetal tissue, such as fetus, amniotic fluid, and umbil-
ical cord (Wharton jelly, blood); (3) a specific location in
adult organisms (such as fat, bone marrow, and synovium);
and (4) somatic cells after genetic reprogramming, i.e., iPSC
[43, 44]. Among the sources of stem cells, adipose tissue
seems to be the most promising choice. It have many unpar-
alleled advantages. Specifically, adipose tissue is available in
relatively high quantity in many patients and can be collected
by “waste tissue” produced by surgical procedures (such as
liposuction or abdominal plastic surgery), which can effec-
tively solve problems with local morbidity, safety, and ethical
issues. Moreover, compared with other tissues, adipose tissue
produces a large number of living stem cells. Studies have
shown that ADSCs in lipoaspiration account for 2% of
nuclear cells, and the output per gram of adipose tissue is
approximately 5000 fibroblast colony forming units (CFU-
F). In contrast, the production of bone marrow MSCs
(BMSCs) is only 100–1000CFU-F/ml bone marrow [45].
Due to the tissue diversity and individual differences of
MSC sources, the MSC population has obvious heterogene-
ity. Adult MSCs have obvious differences in their cartilage
differentiation ability due to their different inherent tissue
sources. Studies have compared adult MSCs derived from
different tissues, and the results show that MSCs derived
from joint synovium (SMSCs) have the strongest cartilage
differentiation ability, which may be determined by their
inherent cell characteristics and growth characteristics [46].
Researchers found high expression of proline arginine-rich
end leucine-rich repeat protein (PRELP) in SMSCs, which
is a glycoprotein rich in cartilage, but little or no content in
stem cells outside the joints [47]. In addition, SMSCs
remained multidirectional in 10 generations in vitro, and cell
senescence was limited [48]. However, the acquisition of
synovium is accompanied by invasive operation of the joint
cavity, and the source of synovium is limited, which greatly
limits the application of SMSCs. Compared with cells isolated
from adult tissues, embryonic or neonatal-derived stem cells
are characterized by faster proliferation and more passages
in vitro before aging [49]. There is no study to compare the
chondrogenic differentiation ability of neonatal/ESCs and
adult stem cells, but studies have shown that single-cell-
derived colonies of marrow stromal cells contained three
morphologically distinct cell types: spindle-shaped cells,
large flat cells, and very small round cells, and the small cells
had a greater potential for multipotential differentiation [50].

With the development of high-throughput analysis tech-
nology, the heterogeneity of stem cells has become more
obvious at the genetic molecular level [51]. Cell surface mol-
ecules that may be markers of stem cell pluripotency have
been identified including but not limited to CD34 [52],
CD146 [53], and CD49f [54]. Animal experiments show that
CD146+ ADSCs can inhibit the inflammation of the joint
cavity and promote the regeneration of articular cartilage
[55]. Although no studies have confirmed the special role of

CD34 and CD49f-specific stem cells in cartilage regeneration,
the beneficial effects of CD34+ stem cells on cardiac repair
and regeneration have been confirmed [56]. Studies have also
found that the CM of CD34+ stem cells contains 32 soluble
factors related to cell proliferation, survival, tissue repair,
and wound healing, which can promote liver repair and
regeneration in vivo [57]. MSCs with high expression of
CD49f play an important role in the maintenance of hair fol-
licle epithelial cells [58]. Directly implanting exogenous stem
cells into joint cavities or articular cartilage defects seems to
be the most direct stem cell application strategy. However,
the strategy of stem cell homing and in situ regeneration
was the first to be applied. Its history can even be traced back
to 1959. Pridie [59] reported for the first time the subchon-
dral bone drilling method used to treat cartilage injury. The
bone marrow (containing BMSCs) was drained to the carti-
lage defect to form a blood clot, and then, cartilage tissue
formed. However, there was no concept of “homing” stem
cells at that time. This chapter will discuss these two strate-
gies in detail.

3.1. Exogenous Stem Cell Implantation Strategy.We searched
for studies applying exogenous stem cell implantation strate-
gies to treat articular cartilage defects or OA on PubMed
from the past 4 years (2017-2020) and summarized the rep-
resentative studies in Table 1 (animal experiments) and
Table 2 (clinical research). According to the search results,
most studies showed good therapeutic effects. Most of the
animal models used in animal experiments involved rats,
rabbits, pigs, sheep, and horses. The pathological process of
OA in these quadrupeds may be quite different from that in
humans. One study used a model of OA in primates (rhesus
monkeys) [60]. Encouragingly, the results of this study
showed that both xenogenic ESC-derived MSCs (EMSCs)
and allogeneic BMSC transplantation had therapeutic effects
on knee joint OA in rhesus monkeys, and the results were
better than those in the control group. There are relatively
few clinical studies, and there are only 2 clinical studies with
a large sample (more than 100 cases) [61, 62]. In terms of the
follow-up time, the evaluation time for animal experiments
ranged from 3 weeks to 64 weeks. The shortest follow-up
time for a clinical study was 6 months, and the longest
follow-up time was more than 36 months. Because articular
cartilage is in an ischemic and hypoxic environment that
relies on only synovial fluid to supply nutrients, the regener-
ation of articular cartilage often takes a long time [63]. There-
fore, long-term follow-up has more reference value. In terms
of the stem cell dose, the single dose used in most studies was
106-107 cells. Although a higher number of cells would theo-
retically increase the number of successful stem cell trans-
plants, there may be a plateau, beyond which the results
will not continue to improve. For example, a study by Wu
et al. confirmed that the intravenous injection of 1 × 106
MSCs improved the neurological function of rats with brain
injury, but increasing the dose to 3 × 106 cells did not lead
to a greater improvement in function [64]. In addition, some
studies have shown that the repeated delivery of stem cells
can have a better therapeutic effect [65], and no serious
adverse events, such as tumorigenesis, were found during
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the 2-year follow-up. However, increased treatment costs,
tedious cell culture and expansion procedures, and potential
infection risks are problems that cannot be ignored. The
delivery mode of stem cells determines the success rate of
stem cell transplantation to some extent. We summarize
the commonly used delivery methods in Figure 2. Because
of the lack of blood vessels in articular cartilage, it is difficult
to deliver drugs through the intravenous or arterial system.
Most studies directly inject stem cells into the articular cavity,
usually using normal saline, phosphate-buffered saline (PBS),
or HA as cell carriers. After the direct injection of stem cells
into the articular cavity, it is impossible to accurately target
the area of cartilage injury. Although studies by Xia et al.
[66] and others have shown that superparamagnetic iron
oxide-labeled BMSCs gather at the location of cartilage
defects after injection into the articular cavity, the practica-
bility of the technique needs to be further verified. Magnetic
targeted delivery and cell-scaffold constructs may solve this
problem, but magnetic targeted delivery is still in the preclin-
ical research stage [25], and the long-term effect of magnetic
iron particles on cell and tissue regeneration is unclear. The
cell-scaffold construct strategy has been used in the clinic.
According to the search results, three commercial scaffold
products have been used [62, 67, 68]. This may be due to
the incomplete supervision and management policies of var-

ious countries on cell products, especially stem cell prod-
ucts, which restricts the translation of related products
into clinical practice. Although there are still few commer-
cial products of stem cell-scaffold constructs at present,
commercial products of autologous chondrocyte-scaffold
constructs have been widely used, and their therapeutic
effects are ideal [69]. We have reason to believe that stem
cells with stronger proliferation and differentiation ability
have better application prospects.

A large amount of clinical follow-up evidence has proven
that MF, cartilage transplantation, ACI, etc., can regenerate
fibrocartilage, but the long-term treatment effects are not
good. An increasing number of scholars have attempted to
combine stem cell transplantation with these traditional
repair methods. Song et al. [62] combined human umbilical
cord blood-derived MSC transplantation with MF, and Kim
et al. [67] combined autologous ADSC transplantation with
allogeneic cartilage transplantation (MegaCartilage, particu-
late allogenic cartilage, L&CBio, Seoul, KR), which signifi-
cantly improved the clinical symptoms of OA patients.
These results provide a reference for the combined use of
stem cells and traditional cartilage repair techniques.

However, the limitations of exogenous stem cell implan-
tation strategies cannot be ignored, such as the risk of tumor-
igenesis, the risk of disease transmission, the risk of immune

Delivery methods of stem cells in the field of articular cartilage regeneration

Scaffold
(a)

(c) (d) (e)

(b)
Stem cells

Cell-scaffold
construct

Carrier+stem cells

Chondropellets derived
from stem cells

Hydrogel Stem cells

Magnetically labeled
stem cells

Stem cellsNanoscale
iron particles

HA
PBS
Saline
PRFr
etc.

Figure 2: Stem cell delivery for repairing articular cartilage defects or treating OA. (a) Cell-scaffold construct. Stem cells are planted on a
tissue engineering scaffold, cultured in vitro until the cells adhere to the scaffold, and then, the cell-scaffold construct is implanted into the
cartilage defect. (b) Magnetic targeting. Place a magnet on the back of the cartilage defect (popliteal fossa), use nanoiron particles to label
stem cells, and then implant the stem cells into the cartilage defect. Under the attraction of the magnet, the stem cells are tightly fixed to
the bottom of the cartilage defect. (c) Intra-articular injection. The stem cells are resuspended in hyaluronic acid (HA), phosphate-
buffered saline (PBS), physiological saline or platelet-rich fibrin releasate (PRFr), and other carriers and then injected into the joint cavity.
(d) Chondrocyte pellets. The stem cells are cultured and differentiated in vitro to form cartilage pellets, and then, the cartilage pellets are
implanted into the cartilage defect. (e) Cell-hydrogel construct. The stem cells are mixed into the injectable hydrogel material, and then,
the cell-hydrogel construct is injected into the cartilage defect.

11Stem Cells International



rejection, and the restrictions on stem cell regulatory policies
in different countries.

3.2. Stem Cell Homing and In Situ Regeneration Strategy. The
term “homing” was first proposed by Gallatin et al. [92] in
1983. It was first used to describe the phenomenon in which
lymphocytes in circulating blood tend to migrate to the sites
that they were originally derived from, such as lymph nodes,
which is referred to as “lymphocyte homing,” and then was
gradually extended to stem cells. The term has recently been
used to emphasize the ability of stem cells to respond to
extracellular signals, such as migration stimuli and guidance
cues, for targeted transport and migration [93]. Most tissues
initiate the recruitment of stem cells to a certain extent when
they are injured or inflamed, which promotes the homing of
stem cells to the damaged area and exerts the potential for a
variety of repair types, including ECM reconstruction and
microenvironment regulation [94, 95]. Recruited stem cells
can come directly from the stem cell pool of the tissue around
the injury or be recruited from the circulatory system. As
endogenous stem cells/progenitor cells do not need to be cul-
tured and expanded in vitro and there is no risk of immuno-
genicity and disease transmission, researchers have focused
on in situ cartilage regeneration by triggering endogenous
stem cells/progenitor cells to undergo “homing” [96].

To enhance the homing behavior of stem cells,
researchers tested the following strategies.

3.2.1. Artificially Increasing the Concentration of Chemokines
in the Injured Site. For example, the stromal cell-derived fac-
tor (SDF-1)/CXCR4 signaling pathway has been shown to
play a key role in endogenous stem cell homing [97, 98].
Zhang et al. successfully repaired part of a thickness cartilage
defect in a rabbit knee joint with a type I collagen scaffold
containing SDF-1 and confirmed that increasing the con-
centration of chemokines at the injured site promoted
the homing of endogenous stem cells and mediated carti-
lage regeneration [99]. In another recent study, researchers
embedded transforming growth factor β1 (TGF-β1) in
photocrosslinked glycidyl methacrylate (GM-HPCH) to
repair articular cartilage defects in rats. The results showed
that compared with GM-HPCH alone, GM-HPCH+TGF-
β1 could repair cartilage defects more effectively through its
ability to recruit stem cells [100]. In similar studies, increases
in interleukin 8 (IL-8) and macrophage inflammatory pro-
tein 3α (MIP-3α) were shown to promote stem cell homing
to articular cartilage injury sites and mediate articular carti-
lage regeneration [101].

3.2.2. Increasing the Number of Stem Cells in the Damaged
Local Microenvironment. For example, MF can stimulate
and release BMSCs. Min and others demonstrated that the
MF channel caused by the hollow cone is more unobstructed
than that caused by a traditional blunt cone and can mobilize
more BMSCs to the location of a cartilage defect [102].
Baboolal et al. stirred joint synovium with a special stem cell
mobilization device (StemDevice) for 1 minute and collected
joint cavity lavage fluid for cell culture. Compared with ordi-
nary cytological brushes, this stem cell mobilization device

greatly increased the number of synovial stem cells in the
lavage fluid [103]. Encouragingly, both of these techniques
have been applied in the clinic, and both are arthroscopic-
assisted operations with the advantages of being minimally
invasive.

3.2.3. Construct Scaffolds Conducive to Stem Cell Homing,
Adhesion, Proliferation, and Differentiation. For example,
Sun et al. combined self-assembled peptide nanofiber hydro-
gels (RAD/SKP) with acellular cartilage matrix (DCM) scaf-
folds. It was confirmed in animal experiments that the
DCM-RAD/SKP functional scaffold system significantly pro-
moted the recruitment of endogenous stem cells and regener-
ated hyaline cartilage [104].

It is worth noting that at present, many studies are not
limited to the application of one of these strategies, but a vari-
ety of strategies can be combined to improve the repair effect.
In a recent study, researchers first used 3D-bioprinting tech-
nology to construct a silk fibroin-gelatin composite scaffold
(SFG), which had a porous structure suitable for cell adhe-
sion and good mechanical strength. The scaffold was then
combined with a BMSC-specific affinity peptide (E7), which
was shown to have the ability to recruit BMSCs. In the rabbit
knee articular cartilage defect model, the SFG-E7 composite
scaffold was combined with MF. After 24 weeks, the cartilage
defect was completely filled, and the new tissue had obvious
characteristics of hyaline cartilage [105]. The research team
modified the acellular porcine peritoneal matrix (APM) scaf-
fold with the E7 polypeptide, which had good biocompatibil-
ity and a surface suitable for cell growth. The combined
application of the APM-E7 scaffold andMF greatly enhanced
the recruitment of endogenous stem cells and regenerated
rabbit knee cartilage [106].

Endogenous stem cell recruitment and in situ regenera-
tion strategies also face many limitations. The biologically
active ingredients used to recruit stem cells often require high
synthesis techniques and conditions. At the same time, in
order to exert a sustained recruitment effect, the delivery
materials need to have a slow-release function.

4. Stem Cell Pretreatment Strategy

The microenvironment of damaged articular cartilage is
adverse, with inflammation, hypoxia, and insufficient blood
supply. In addition, most stem cells used in clinical applica-
tions come from adults, and the functions of these cells are
compromised. The above factors lead to a very low survival
rate of transplanted cells [107], and the use of stem cells
for cartilage regeneration has not yet achieved the desired
effect. Studies have shown that pretreatment is an effective
way to enhance the ability of stem cells to resist adverse
microenvironments. Stem cell pretreatment can improve cell
survival and differentiation potential, regulate the immune
response, inhibit fibrosis, and enhance cell secretion of
anti-inflammatory factors. These effects promote the regen-
eration and functional recovery of organs and tissues after
cell implantation [108, 109]. Stem cell pretreatment strate-
gies reported in the field of cartilage regeneration mainly
include the following aspects:
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4.1. Hypoxia. In natural cartilage, cells are exposed to very
low oxygen pressure: approximately 7% (53mmHg) in the
superficial area and only 1% (5-8mmHg) in the deep area
[110]. Hypoxic pretreatment not only enhances the survival
and migration ability of stem cells after implantation but also
promotes the proliferation and differentiation of stem cells
[111]. Under the same conditions for cartilage-induced dif-
ferentiation, compared with MSCs without hypoxia pretreat-
ment, MSCs with hypoxia pretreatment have been shown to
enhance matrix deposition and reduce the expression of
hypertrophy markers such as type X collagen [112]. Addi-
tionally, hypoxic pretreatment can also upregulate genes
related to growth, cell signaling, metabolism, and cellular
stress response pathways [113]. In a rabbit knee joint trauma
and focal early OA model, hypoxia-pretreated MSC+HA
hydrogel caused a significant improvement in the cartilage
repair score [114]. The mechanism through which hypoxia
affects cells is mainly regulated by HIF-1. The latest evidence
shows that HIF-1α promotes cartilage matrix gene expres-
sion and upregulation and that HIF-3α can help stabilize
the cartilage phenotype. In contrast, HIF-2α upregulates
hypertrophy genes and matrix-degrading enzymes [112].
Some studies have explored the specific mechanism of hyp-
oxia that regulates HIF. Studies have shown that hypoxia
can induce an increase in phosphorylated AKT and p38
MAPK to stabilize HIF-1α [115], resulting in the upregula-
tion of the glucose-6-phosphate transporter and an increase
in the MSC survival rate [116].

4.2. Pharmacological or Chemical Agents. The use of pharma-
cological or chemical reagents to protect stem cells and
improve the effect of stem cells on cartilage regeneration is
another pretreatment strategy. For example, vitamin E pre-
treatment can make MSCs resistant to H2O2-induced oxida-
tive stress, upregulate the expression of proliferation markers
and transforming growth factor-β (TGF-β), and downregu-
late the expression of apoptosis-related genes. After the above
pretreatment, MSCs increased the content of proteoglycan in
the cartilage matrix in a surgically induced OA rat model,
upregulated a chondrogenesis marker, and promoted the dif-
ferentiation of MSCs into cartilage [117]. Kartogenin (KGN)
has been proven to be a chondrogenesis and cartilage protec-
tive agent that is more effective in inducing cartilage regener-
ation than growth factors [118]. Jing and colleagues found
that KGN pretreatment may improve the chondrogenesis
and differentiation of humanWJMSCs by promoting human
WJMSCs to enter the prechondral phase, enhancing JNK
phosphorylation and inhibiting dicatenin [119]. A recent
study found that EVs derived from human WJMSCs pre-
treated with KGN contain a unique miRNA, miR-381-3p.
Researchers found that miR-381-3p directly inhibited
TAOK1 by targeting the 3′ untranslated region of TAOK1,
thus inhibiting the Hippo signaling pathway and mediating
cartilage formation [120].

4.3. Trophic Factors and Cytokines. The interaction between
specific nutritional factors and their receptors can activate
downstream signal transduction and promote cell survival
and differentiation. Therefore, the pretreatment of stem cells

with nutritional factors and cytokines is a promising strategy
for improving the therapeutic effect of stem cells. Stem cells
pretreated with FGF-2 have been shown to have an enhanced
proliferation ability and to retain the potential to differentiate
into cartilage after 30 population doublings, while stem cells
that were not pretreated lost their ability to differentiate into
cartilage after approximately 20 doublings [121]. The pre-
treatment of stem cells with specific growth factors can pro-
mote their chondrogenic differentiation potential and their
ability to repair cartilage defects in vivo [111]. For example,
pretreatment with an appropriate concentration of IL-1β
can not only promote proliferation but also enhance the
chondrogenic potential of synovial MSCs. However, high
concentrations of IL-1β adversely affected synovial MSCs
by reducing their adhesion and pluripotency [122]. BMSCs
pretreated with soluble IL-6R effectively repaired articular
cartilage defects in vivo [123].

4.4. Physical Factors. Articular cartilage is a load-bearing tis-
sue, so mechanical stimulation is very important for the
development and maintenance of articular cartilage. A 3D
culture model can mimic the natural growth state of cells
in vivo, provide enough space for stem cell proliferation,
and produce more biochemical and biomechanical clues by
providing intensive cell-to-cell interactions. Therefore, with
these advantages, a variety of physical factors can be applied
to the 3D microenvironment in vitro or in vivo to improve
the performance of stem cells [124]. For example, Zhang
et al. found that radial shock waves not only significantly
improved the proliferation and self-renewal ability of MSCs
in vitro but also safely promoted the repair cartilage defects
byMSCs in vivo [125]. The articular cartilage matrix contains
a large amount of collagen type II (COLII), and the expres-
sion of the SOX9 gene is positively correlated with COLII.
Continuous low-intensity ultrasound pretreatment upregu-
lated SOX9 gene expression and enhanced the nuclear local-
ization of SOX9 protein in MSCs compared with control
stimulation by discontinuous low-intensity ultrasound
[126]. In addition, a new method involves combining cells
with carriers/scaffolds before physical stimulation. To date,
researchers have designed different types of cell carriers with
appropriate physical and chemical properties for cell trans-
plantation, such as injectable hydrogels, large scaffolds,
microcarriers, and microspheres [127]. Cheng et al. loaded
BMSCs onto an autologous platelet-rich fibrin (PRF) mem-
brane scaffold and applied hydrostatic pressure to the cell-
scaffold construct before transplantation. The results showed
that the cell scaffold pretreated by hydrostatic pressure signif-
icantly increased the formation rate and matrix content of
new cartilage and enhanced its mechanical properties [128].

4.5. Genetic Modification. A large number of studies have
genetically engineered stem cells to reduce their tendency to
differentiate into a hypertrophic phenotype or to induce the
overexpression of transcription factors and growth factors
to promote the formation of new cartilage in vivo [129,
130]. The overexpression of specific growth factors before
implantation is a controllable and effective way to improve
the efficacy of stem cell therapy. Genes for specific factors
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can be introduced into cells by nonviral or viral techniques.
For example, compared with simple cellular or acellular
scaffolds, BMSCs overexpressing TGF-β1 can be implanted
into polylactic acid (PLA) scaffolds to achieve good carti-
lage tissue repair in a rabbit knee osteochondral defect
model [131]. With regard to the specific progress of gene
modification in cartilage repair, please refer to relevant
reviews [129, 130].

There are still few in vivo animal experiments on stem
cell pretreatment strategies, and there is currently a lack of
standard protocols. The optimal length and dosage of stem
cells need to be explored in depth. At the same time, it is nec-
essary to clarify the molecular mechanism of physical, chem-
ical, and genetic processing methods to promote cartilage
regeneration.

5. Composition and Characteristics of Stem Cell
Derivatives for Cartilage Regeneration

Stem cell derivatives are an extension of the paracrine theory
of stem cells (Figure 1), in which the secretome is considered
to be the mechanism through which stem cells exert their tis-
sue repair and regeneration effects [132]. The secretome is a
general term for bioactive factors and EVs secreted from
the cell to the extracellular space. The secretome of cells is
specific but changes in physiological or pathological condi-
tions that directly affect it [133]. Bioactive factors include
growth factors, cytokines, chemokines, and enzymes [134].
EVs are considered an important component of the thera-
peutic efficacy of MSCs. According to the size, composition,
and origin of EVs, they can be divided into three types: apo-
ptotic bodies, microvesicles, and exosomes [135, 136]. There
are relatively few studies on apoptotic bodies, which are gen-
erated only during apoptosis, have a diameter of 50-5000nm,
and carry nuclear fragments and organelles. Microvesicles
are small vesicles with a diameter of 50-1000nm released
by cells in the form of budding, which can be obtained by
10,000-20,000 g centrifugation. Exosomes are formed by the
multivesicular endosomal pathway and are usually a complex
of proteins, nucleic acids, and lipids with a diameter of 50-
200nm that can be obtained from very high-speed centrifu-
gation at or above 100,000 g. Although stem cells have
become powerful tools for clinical applications, they still have
limitations in terms of delivery, safety, and the heterogeneity
of therapeutic responses. The secretome composed of cyto-
kines, chemokines, growth factors, proteins, and EVs may
represent an effective alternative [16]. Notably, MSC-
derived EVs (MSC-EVs) have been demonstrated to have a
similar effect to MSCs and may have advantages over parent
cells because of their specific miRNA load [135]. The focus of
current research has shifted from stem cells to their secre-
tome while attempting to overcome the limitations of cell-
based therapies.

In addition, stem cell-derived ECM can be obtained by
decellularizing stem cells cultured in vitro, and the ECM is
a noncellular component that contains macromolecules
secreted by various cells. The ECMmay vary among cell type
sources, but it is mainly composed of proteoglycans, such as
growth factors, glycosaminoglycan (GAG), and matrix pro-

teins, as well as collagen, fibronectin, elastin, vitronectin,
and laminin [137]. After removing cellular components, such
as DNA and cellular components that trigger an immune
response, the ECM retains natural biochemical and biophys-
ical signals [138]. Recent studies have shown that the ECM
can promote cell proliferation and chondrogenic potential
and is a potential biomaterial for tissue-engineered articular
cartilage [139, 140].

The following sections will discuss in detail three aspects
of the application of stem cell derivatives in cartilage regener-
ation and OA treatment: stem cell-derived CM, purified EVs
(microvesicles and exosomes), and stem cell-derived ECM.

5.1. Stem Cell-Derived CM. Compared with stem cells, CM
can be stored in a low-temperature environment, which is
convenient for transportation, and does not have the risk of
tumorigenesis. Compared with EVs and certain growth fac-
tors, CM components are more complex, including all com-
ponents of the cell secretome, and do not need to be
isolated and extracted, making it is convenient to use.
Recently, Islam et al. studied the secretome of stromal cells
obtained from the Hoffa fat pad (HFPSCs), synovial
(SMSCs), umbilical cord (UCSCs), and cartilage (ACs) by
quantitative liquid chromatography-mass spectrometry
(LC-MS/MS) proteomics [141]. They identified more than
1000 proteins in each type of cell-derived CM. The secretome
contained a large number of growth factors and cytokines.
More importantly, compared with stromal cells from adult
tissues, UCSCs had stronger anti-inflammatory and immu-
nosuppressive properties. Recent studies reported that stem
cell-derived CM plays a role in anti-inflammation and
immune regulation and increases the synthesis of cartilage
matrix in arthritis and osteochondral defect models. Ishi-
kawa et al. intravenously injected CM derived from human
dental pulp stem cells into the joint cavity of rheumatoid
arthritis mice and found that CM relieved joint symptoms
and synovial inflammation. The histological scores of bone
erosion and cartilage damage in the CM group were signifi-
cantly better than those in the control group, and the gene
expression levels of proinflammatory cytokines were signifi-
cantly reduced [142]. Alasdair found that the intra-articular
injection of MSC-CM reduced cartilage damage and inhib-
ited the immune response by reducing the cleavage of aggre-
can, enhancing Treg function, and regulating the ratio of
Treg : Th17 [143]. In addition, the application of BMSC-
CM in a rat model of antigen-induced arthritis significantly
reduced edema and thermal hyperalgesia as well as serum
levels of TNF-α [144]. The anti-inflammatory effect of CM
is related to its various immunomodulatory factors, includ-
ing TGF-β, thrombospondin 1 (TSP1), and prostaglandin
E2 (PGE2) [134]. Moreover, MSC-CM can also inhibit the
progression of OA by balancing the ratio of MMP-13 to
TIMP-1 in cartilage, inhibiting chondrocyte apoptosis and
enhancing autophagy [145]. In a rabbit osteochondral
defect repair experiment, the application of BMSC-CM
led to only fibrocartilage regeneration [146]. Widhiyanto
et al. composited ADSC-CM into porous scaffolds to repair
rabbit trochlear cartilage defects, and new hyaline cartilage
was observed at 12 weeks [147]. Interestingly, contradictory
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results were reported in a rabbit ear cartilage regeneration
study. Researchers subcutaneously injected ADSCs, ADSC-
CM, and PBS and found that there was no significant differ-
ence between the ADSC-CM and PBS groups at 4 or 8 weeks
[148]. The above studies preliminarily proved that stem cell-
derived CM repaired articular cartilage defects and relieved
OA. The differences in experimental results in vivo may be
related to the application method. When using scaffolds as
carriers, CM can be retained in the defect area and gradually
released. Stem cell-derived CM contains the whole secre-
tome, and different stem cells and pretreatments can signifi-
cantly affect the composition of CM. Researchers need to find
more effective CM collection conditions to promote cartilage
regeneration and to ensure that there are effective concentra-
tions of effector substances at the target location to achieve
better cartilage regeneration. Researchers also need to deter-
mine the exact biological mechanism of CM in vivo.

5.2. Stem Cell-Derived EVs. Unlike the direct use of stem cell-
derived CM, EVs need to be separated and purified. The cur-
rent methods used to obtain EVs include but are not limited
to ultrafiltration and size-exclusion chromatography [149,
150], ultracentrifugation [151], and immunoaffinity [152].
Recently, an increasing number of reports have indicated that
exosomes are the main therapeutic agents secreted by MSCs
that enhance the regeneration and immunomodulatory abil-
ity of MSCs during tissue repair [135]. It has been reported
that stem cell-derived EVs can promote cartilage regenera-
tion and prevent cartilage degeneration induced by OA
[153–156]. In a rat model of osteochondral defects, the
weekly injection of human ESC-derived exosomes into the
joint cavity induced cartilage and subchondral bone tissue
regeneration within 2 weeks, and the orderly regeneration
of the two tissues was observed at 12 weeks [153]. Compared
with MSC injection, a single intra-articular injection of exo-
somes or microvesicles derived frommouse BMSCs had sim-
ilar effects in preventing the development of collagenase-
induced OA in mice [154]. Exosomes derived from human
ESCs also showed cartilage protective effects in a mouse
OA model [155]. Another study compared the therapeutic
effects of iPSC-derived exosomes and synovial-derived exo-
somes in a collagenase-induced mouse OA model. The
results showed that iPSC-derived exosomes could more effec-
tively delay the progression of OA [157]. The biodistribution
of EVs after intra-articular injection is not clear. Encapsu-
lating EVs in a suitable biomaterial can prevent the rapid
clearance of EVs and achieve a sustained release effect.
Liu et al. encapsulated hiPSC-MSC-derived exosomes in
a photocrosslinked hydrogel, which resulted in the reten-
tion of exosomes in vitro and achieved cartilage regenera-
tion and repair in a rabbit femoral condylar cartilage defect
model [63]. Chen et al. used desktop stereolithography to
fabricate 3D-printed cartilage ECM/methacrylic acid gelatin
(GelMA)/exosome scaffolds with radial channels. In vivo
experiments showed that the 3D-printed scaffolds signifi-
cantly promoted cartilage regeneration [158]. In vitro mech-
anistic studies showed that EVs derived from MSCs mediate
cartilage repair by enhancing proliferation, reducing cell apo-
ptosis, and regulating the immune response [159].

With the in-depth study of the therapeutic mechanism of
EVs, the anti-inflammatory effects of EVs have been
reviewed in detail [160, 161]. A growing number of scholars
believe that the therapeutic efficacy of EVs can be attributed
to their nucleic acid composition [162]. An increasing num-
ber of studies have described a complex picture of how
miRNA regulates or influences OA [163]. Wu et al. reported
that ADSC-derived exosomes from the human subpatellar fat
pad protected articular cartilage from damage and improved
gait abnormalities in OA mice by maintaining cartilage
homeostasis, which may have been related to the inhibition
of the mTOR autophagy pathway regulated by miR100-5p
[156]. Another study proved that exosomes derived from
SMSCs with high miR-140 expression promoted articular
cartilage regeneration in rats [164]. In addition, early molec-
ular mechanism studies showed that miR-92a regulates the
PI3K/AKT/mTOR signaling pathway by targeting noggin3,
thus upregulating chondrocyte proliferation and matrix syn-
thesis [165, 166]. Exosome miR-23b induced human MSCs
to differentiate into chondrocytes by inhibiting the protein
kinase A (PKA) signaling pathway [167]. On the other hand,
miR-125b and miR-320 reduced ECM damage by downregu-
lating the expression of aggrecanase-1 (ADAMTS-4) and
MMP-13, while these two ECM proteases were significantly
upregulated in human OA chondrocytes [168]. Recently,
Enrico et al. conducted high-throughput screening of the
human adipose-derived MSC secretome and identified 60
kinds of miRNAs that can protect cartilage and induce mac-
rophages to polarize to an M2 phenotype through bioinfor-
matics analysis [169]. Increasing evidence indicates that
stem cell-derived EVs may promote cartilage regeneration
and treat OA by regulating a complex miRNA network
[163]. Finally, the application of stem cell-derived EVs in
treatment may have more advantages than using stem cells
alone, mainly for the following reasons: (1) they cannot pro-
liferate and are easy to preserve and transport [170]; (2) EVs
are nontoxic, have no risk of tumorigenesis, low immunoge-
nicity, and higher safety [171]; and (3) compared with the
regulatory and ethical restrictions on stem cell products, the
application of EVs is less restricted. However, in the field of
cartilage repair, there are still many questions about the ther-
apeutic effect, biodynamics, biodistribution, and delivery
methods of stem cell-derived EVs that need to be answered
in large animal experiments.

5.3. Stem Cell-Derived ECM. Stem cell-derived ECM is a nat-
ural biomaterial with strong biological activity and good bio-
compatibility. A large number of studies have shown that
stem cell-derived ECM can enhance cell proliferation, pre-
vent chondrocyte dedifferentiation, and maintain the stem-
ness of stem cells [172, 173]. Stem cell-derived ECM
provides a better platform for the expansion of chondrocy-
tes/stem cells in vitro. Many studies have shown that com-
pared with tissue culture polystyrene (TCPS), stem cell-
derived ECM can significantly improve the proliferation of
chondrogenic cells. At the same time, chondrogenic cells
expanded on stem cell-derived ECM have stronger chondro-
genic potential [174, 175]. Pei et al. showed that compared
with cell culture plates, porcine synovial stem cell-derived
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ECM increased the proliferation of chondrocytes and
delayed the dedifferentiation of porcine chondrocytes [174].
At the same time, stem cell-derived ECM can be used as a
substrate for stem cell culture in vitro, which can restore
the lineage differentiation ability of stem cells in aging mice
[176]. Research by Yang et al. showed that compared with
chondrocytes grown on TCP, chondrocytes inoculated on
human BMSC-ECM showed a significantly increased prolif-
eration rate and maintained a better cartilage phenotype.
After expanding to the same number of cells and placing
them in high-density micromass culture, chondrocytes from
the BMSC-ECM group showed better cartilage differentia-
tion characteristics than those from the TCP group [175].
Interestingly, the age of host that cells were derived from
and different cell sources seem to be important factors affect-
ing the ECM. Chee et al. found that fetal BMSC-ECM was
superior to adult BMSC-ECM or human neonatal dermal
fibroblasts in promoting the proliferation and pluripotency
of adult BMSCs [177]. In addition to promoting cell prolifer-
ation and lineage-specific differentiation, recent studies have
shown that SMSC-ECM enhanced the anti-inflammatory
properties of rabbit articular chondrocytes through the
SIRT1 pathway [178].

In addition to being used as a cell culture substrate, stem
cell ECM can also be used alone or in combination with poly-
mer materials to make 3D scaffolds to promote cartilage for-
mation in vivo/in vitro. Tang et al. evaluated the cartilage
repair ability of autologous BMSC-derived ECM scaffolds
in two kinds of cartilage defect animal models. Six months
after surgery, the histological characteristics and biochemical
content of the bone marrow stimulation + ECM group were
similar to those of normal hyaline cartilage [179]. Makiko
et al. inoculated human amniotic MSCs on PLGA, success-
fully prepared an ECM-PLGA scaffold by removing cellular
components, and implanted the scaffold into an osteochon-
dral defect in the rat femoral trochlea. The results showed
that ECM-PLGA induced gradual tissue regeneration and
resulted in hyaline cartilage repair that was superior to that
in the empty control group [180].

Current research shows that various stem cell derivatives
play beneficial roles in cartilage regeneration and OA treat-
ment. However, compared with the direct application of stem
cells, the most substantial problem faced by stem cell deriva-
tives is the cumbersome collection process, which undoubt-
edly increases the cost of treatment. In addition, how to
increase the yield of exosomes and other derivatives and
ensure the unity between batches is an urgent problem to
be solved.

6. Stem Cell Delivery Biomaterials and Scaffolds

The key factor determining the effectiveness of stem cell ther-
apy is the survival rate of stem cells during and after trans-
plantation. Biomaterials used for cartilage repair not only
provide mechanical support for cartilage defects but also pro-
vide support matrix for stem cells to induce cell growth, dif-
fusion, and differentiation [181]. Biomaterial-based cell
delivery systems can be extracted from naturally occurring
materials, such as HA [182], gelatin [183], alginate [184], col-

lagen, and decellularized matrix [185, 186] or based on syn-
thetic materials, such as poly(ethylene glycol) (PEG) [187],
poly(N-isopropylacrylamide) (PNIPAM) [188], poly(lactic-
co-glycolic acid) (PLGA) [189], and polycaprolactone
(PCL) [190]. The material is usually made into a porous
structure to facilitate cell inoculation or hydrated polymeric
networks, hydrogels for cell encapsulation [191]. Natural
materials have better biological effects such as promoting cell
adhesion, proliferation, and cartilage differentiation [192].
However, the mechanical properties and degradation rate of
synthetic materials are more adjustable, and it is easier to cus-
tomize according to cartilage or bone cartilage [193]. By
combining biomaterials or natural ECM components with
synthetic polymers, it is beneficial to highlight their respec-
tive advantages while limiting their disadvantages [194–197].

Early researchers used the material as a stem cell delivery
platform to ensure the survival rate of stem cell transplanta-
tion to the defect and enhance the cell retention and thera-
peutic effect at the local administration site. Vahedi et al.
inoculated adipose-derived stem cells into PCL scaffolds,
and the ASC-PCL construct treated with low-intensity ultra-
sound achieved effective cartilage regeneration in a sheep
model of a femoral condylar cartilage defect [198]. Collagen
exists widely in a variety of biological tissues, has good bio-
compatibility and biodegradability, and has good plasticity
[199]. Shi et al. successfully fabricated silk-fibroin-gelatin
composite scaffolds using 3D printing technology and intro-
duced BMSC-specific-affinity peptide [105]. This composite
scaffold not only provides a suitable three-dimensional
structure for stem cell proliferation, differentiation, and
extracellular matrix synthesis but also achieves articular car-
tilage regeneration by recruiting endogenous BMSCs. In car-
tilage tissue engineering, the use of decellularized ECM is a
relatively new concept. Our study group has proven that
decellularized cartilage ECM porous scaffolds can promote
stem cell adhesion, proliferation, and cartilage differentia-
tion. At the same time, preclinical studies have proven that
decellularized cartilage scaffolds have an excellent cartilage
repair effect [200–203].

Although collagen type II and HA are key components of
cartilage ECM, mainly type I collagen and HA have been
developed as hydrogels for experimental and clinical cartilage
repair [204]. To develop injectable scaffolds for the treatment
of cartilage, the effects of HA hydrogel on chondrogenic dif-
ferentiation and cartilage repair of hMSCs have been evalu-
ated in vitro and in vivo. Result showed that the hydrogels
reduce the fast leakage of the encapsulated growth factors,
leading to the enhanced chondrogenesis of hMSCs and neo-
cartilage formation [205]. Hydrogel can also achieve better
cartilage repair by encapsulating functional biological small
molecules. Xu et al. demonstrated that hydrogel encapsula-
tion resulted in more sustained release of kartogenin and
TGF-β1, which led to enhanced chondrogenesis of encapsu-
lated human bone marrow MSCs in vitro and in vivo [206].
For the treatment of cartilage and osteochondral defects,
the exact size and shape can be determined only after
debridement. Therefore, methods such as in situ 3D bio-
printing or hydrogel application are the most appropriate
procedures for providing personalized treatment. The
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customizability of traditional solid scaffolds is weak, while
the limitations of hydrogels include poor mechanical integ-
rity and rapid degradation when exposed to inflammatory
environment [207]. With the deepening of the intersection
of biology and material manufacturing disciplines, any strat-
egy aimed at imitating the composition and regional organi-
zation of articular cartilage will be more likely to reconstruct
engineering tissue with the potential for successful clinical
application [208].

The current biomaterials and scaffolds used for the deliv-
ery of stem cells still have many problems to be solved. For
example, the biocompatibility of polymer materials is poor,
and their degradation products may cause changes in the
pH of the microenvironment. The mechanical properties
and degradation rate of natural biomaterials are difficult to
control, and its activity and functionality in the body are still
to be clarified.

7. Conclusions and Future Perspectives

In the field of articular cartilage regeneration and OA treat-
ment, research involving stem cells has moved from the lab-
oratory to the clinic [209, 210]. However, several problems
remain that restrict the application of tissue-engineered car-
tilage involving stem cells.

First, the functional heterogeneity of stem cells is a sub-
stantial obstacle to their clinical transformation [211].
Therefore, before using stem cells, it is necessary to screen
out specific subgroups to more accurately explore the molec-
ular mechanism of cartilage regeneration. Second, the prob-
lem of premature differentiation of stem cells in vitro
expansion has not been resolved. Finding specific targets
that regulate stem cell differentiation may solve this prob-
lem. For example, methyltransferase inhibitors can inhibit
Setd7 protein, prevent cell differentiation, and maintain cell
division. Researchers used stem cells containing methyl-
transferase inhibitors to treat muscle atrophy mice, and the

results showed that the strength of regenerating muscle
was significantly improved [212]. Finally, standard animal
models of articular cartilage defects and OA have not yet
been established [213]. Rodents such as mice and rats main-
tain open endochondral ossification throughout their lives,
and the healing of cartilage defects may be greatly affected
by spontaneous internal healing [214]. Using large animals
such as pigs and horses often limits the number of samples
due to high prices. Therefore, finding a balance between
effectiveness and economic benefits is necessary in the
choice of animal models.

The use of stem cell derivatives to regenerate articular
cartilage is a promising development direction [133]. miRNA
is considered to be the main component that mediates the
biological effects of EVs. However, the main problem cur-
rently encountered is that it is technically challenging to pro-
duce a sufficient number of EVs, and the amount of nucleic
acid packages for EVs is too low [215, 216]. Cell nanopora-
tion biochips can not only increase the production of exo-
somes but also realize the encapsulation of specific miRNAs
[217]. This new technology may help translate the EV-
based cartilage regeneration strategy into clinical practice.

The treatment of articular cartilage defects has gone
through several stages of development: drug treatment can
only relieve symptoms (Figures 3(a) and 3(b)). MF and other
techniques often use fibrocartilage to temporarily fill carti-
lage defects (Figures 3(b) and 3(c)) [218]. Artificial joint
replacement surgery temporarily restores the smooth joint
surface, but the artificial material has a limited life span
(Figures 3(b) and 3(d)). The use of hyaline cartilage to restore
the joint surface (Figure 3(e)) is the consummate appeal
[219]. A recent study suggested that we might not consider
hyaline cartilage as a “final” goal, but as an intermediate stage
(Figures 3(e) and 3(f)), and try to stay at this stage. The cells
go through the hyaline cartilage stage before forming bone
tissue [220]. Researchers used bone morphogenetic protein
2 (BMP2) to initiate the bone formation process after MF

(a) (b) (e) (f)

(c)

(d)

Fibrocartilage Hyaline
cartilage Bone

Arthroplasty

Treatment methods and new idea for articular cartilage injury 

Figure 3: Treatment methods and new idea for articular cartilage injury. (a) Joint cartilage defects cause joint inflammation. (b) Medication
can relieve symptoms. (c) Traditional repair techniques such as MF form fibrocartilage. (d) Artificial joint replacement surgery reconstructs
the articular surface. (e) Ideal form of cartilage regeneration. (f) New ideas for cartilage regeneration.
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and then used an antagonist (VEGFR1) to block the vascular
endothelial growth factor, thereby stopping the bone forma-
tion process and leaving the new tissue in the hyaline carti-
lage stage [221].

In summary, the articular cartilage regeneration strategy
involving stem cells has achieved encouraging results. The
joint cooperation of practitioners from multiple disciplines
and fields will help overcome current challenges, and the
change in thinking style may open up new strategies for artic-
ular cartilage regeneration.
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The osteochondral tissue is an interface between articular cartilage and bone. The diverse composition, mechanical properties, and
cell phenotype in these two tissues pose a big challenge for the reconstruction of the defected interface. Due to the availability and
inherent regenerative therapeutic properties, stem cells provide tremendous promise to repair osteochondral defect. This review is
aimed at highlighting recent progress in utilizing bioengineering approaches to improve stem cell therapies for osteochondral
diseases, which include microgel encapsulation, adhesive bioinks, and bioprinting to control the administration and distribution.
We will also explore utilizing synthetic biology tools to control the differentiation fate and deliver therapeutic biomolecules to
modulate the immune response. Finally, future directions and opportunities in the development of more potent and predictable
stem cell therapies for osteochondral repair are discussed.

1. Introduction

Despite four decades of advances and achievements in the
field of tissue engineering, reconstructing interfacial tissues
such as bone-articular cartilage remains a significant chal-
lenge. Bone-articular cartilage, also known as osteochondral
tissue, consists of cartilage, a calcified cartilage layer, and
the subchondral bone with a proportion of 90%, 5%, and
5%, respectively. In severe traumatic incidents, both the car-
tilage and the subchondral bone are affected. Due to the
ready availability and multipotent character, stem cells,
especially mesenchymal stem cells, have become a focus in
the field of osteochondral tissue engineering. However, the
major obstacles to the construction of clinically useful
osteochondral tissue are our inability to control the stem
cell fate, differentiation to the extent needed, and the poor
integration between engineered and host tissues after con-
struct implantation.

In this review, we explore major clinical challenges for
stem cell therapies toward joint preservation including
administration and distribution, control of stem cell differen-
tiation, and modulating a regenerative microenvironment.
Under these challenges, we discuss several examples that

leverage bioengineering approaches to improve stem cell
therapies for osteochondral diseases. We will first discuss
approaches of engineering biomimetic microenvironments
to improve cell delivery and patterning, which include micro-
gel encapsulation, bioadhesive inks, and 3D bioprinting to
achieve accurate cell deposition and gradient living con-
structs. We will then discuss several examples of bioengineer-
ing strategies to engineer cells to control the differentiation
fate and deliver therapeutic biomolecules to modulate the
immune response. Finally, we will share our perspectives on
the future endeavor to develop more potent and predictable
MSC therapies.

2. Overcoming Clinical Challenges from
Administration and Distribution

2.1. Challenges Associated with Local Administration and
Distribution. The damage of osteochondral tissue is one of
the major causes of osteoarthritis (OA), which is affecting
the life quality of ~61.2 million people in China alone [1].
To repair and reconstruct osteochondral lesions for prevent-
ing OA progression, the replication of the innate physiologi-
cal structure, function, and living milieu of cartilage and the
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subchondral bone is of significant importance. Currently,
clinical strategies for the regeneration of osteochondral tissue
such as abrasion arthroplasty, microfracture, and articular
chondrocyte transplantation have received positive results
in midterm follow-up periods. However, the long-term
efficacy of these approaches is still unsatisfying due to the
generation of fibrocartilage and poor integration between
transplants and resident tissue [2]. In addition, adult cell-
based therapies, such as autologous chondrocyte implanta-
tion (ACI), are restricted by cell availability and expansion
potency. Stem cells, most commonly found in the embryo,
bone marrow, adipose tissue, and synovium, have differenti-
ation capability toward chondrocytes and osteoblasts under
specific biochemical and biomechanical stimulation, which
have offered a new platform for osteochondral regeneration
and OA treatment in both preclinical and clinical situations.
Local administration of MSCs, providing a straight path to
the target site, is commonly utilized in OA clinical indica-
tions. For example, Mayo Clinic is using single and multiple
injections of the culture-expanded autologous adipose-
derived mesenchymal stromal cells (AMSCs) for investigat-
ing the safety and feasibility of treatment in mild to severe
knee OA, which is currently in Phase I of the interventional
clinical trial. Researchers from Ren Ji Hospital and the coop-
erating unit established a preclinical study to explore the effi-
cacy and safety of human AMSC injection in intra-articular
cartilage for the relief of OA symptoms (5 ∗ 107 MSCs
showed the best improvement) [3]. However, the therapeutic
efficacy is still hampered; the dominant barriers are (1) the
need for large dosages of cells (the dose normally ranges from
106 to 109 cells/injection), partly because of the short resi-
dence time after depositing to tissue sites [4, 5], and (2) the
low cell survival rate caused by multireasons, including
severe shear stress formed in the process of viscous hydrogel
precursor injection [6, 7], hostile and immune microenviron-
ment at the disease site, and insufficient nutrients and oxygen
supply, which have been reviewed elsewhere [8]. In this sec-
tion, we will first discuss different bioengineering strategies
used to improve the survival rate and retention of stem cells
in osteochondral lesions and further discuss the potential of
employing various biomanufacture systems, such as 3D bio-
printing, to accurately deposit stem cells and form gradient
complex tissues.

2.2. Strategies to Improve Viability of MSCs by Encapsulation.
Local administration of MSCs is a favored delivery approach
compared to systemic delivery as it is easier to access the dis-
ease site and results in better therapeutic outcomes. How-
ever, insufficient retention and survival of transplanted
MSCs at the diseased sites hampered its therapeutic efficacy.
Using biomaterials to encapsulate MSCs is a promising
approach to increase the retention and viability at the infarc-
tion site [9].

Cell encapsulation within microgels (~1-1000μm) offers
many advantages compared to encapsulation in bulk hydro-
gels [10] as it can supply an ECM-like 3D milieu for cell cul-
ture and expansion [11]; the micrometer-sized pockets of
interstitial space between microgels can provide good diffu-
sion of nutrients and oxygen [12]; most importantly, it can

physically protect encapsulated cells from shear stress during
injection. For example, under the same injection rate
(15ml/h), cell viability of BMSCs encapsulated in gelatin/-
hyaluronic acid hybrid microgels (67.5%) was higher than
the medium suspended one (15%), meanwhile maintaining
normal cellular functions, such as cell proliferation and
chondrogenic abilities (Figures 1(a) and 1(b)) [13]. Similar
phenomena were also observed in the bone regeneration
study. In Hou and coworkers’ work, poly(vinyl alcohol)-
based microgels were developed for encapsulating MSCs
and BMP-2 growth factor (GF) to induce osteogenic differen-
tiation; high cell bioactivity and sustained release of GF were
obtained by optimizing the crosslinking conditions of micro-
gels, which ensured a specific and upregulated osteogenic dif-
ferentiation and hence more efficient bone regeneration [14].
In terms of immune response, one interesting study found
that geometry of implanted microgels could affect foreign
body immune response and fibrosis in rodent and nonhu-
man primate models [15].

Although microgels can improve stem cell viability and
enhance regeneration efficacy of cartilage and bone through
physical protection and increased nutrition diffusion, the
mechanical properties of assembled microgels are usually
weak which cannot withstand physiological mechanical loads
in osteochondral interfaces. Researchers recently reported a
new strategy called triggered micropore-forming bioprinting
(Figure 1(c)), to improve cell viability through microscopic
pore formation in bulk hydrogel while preserving superior
mechanical robustness (Figure 1(d)) [16]. The micropores
were formed by temperature-triggered microphase separa-
tion and stabilized by hydrogen bonds of chitosan. Without
sacrificing mechanical robustness, the bioprinted scaffold
with interconnected pores (~17.8μm) supports cell spread-
ing, migration, and proliferation. Impressively, the stiffness
and viscoelasticity of the scaffold can be orthogonally con-
trolled through a slight change of pH and the amount of
PEG in the bioink. Though this system is yet to be applied
in cartilage or osteochondral regeneration, it demonstrated
potential of improving stem cell viability and maintaining
mechanical robustness of porous hydrogel simultaneously.

Collectively, the approaches of microencapsulation and
micropore-forming bioprinting may promote the efficacy of
stem cell therapy via increasing the survival rate and reducing
needed dosages of stem cells.

2.3. Strategies to Improve the Persistence of MSCs in the Host.
Cartilage is surrounded by synovial fluid and acts as a load-
bearing buffer which protects the bone and disperses shock
and stress. To achieve the regenerative properties of stem
cells, retention of injected stem cells at the dynamic defect
site is vital for successful tissue regeneration. Strategies have
been developed to improve stem cell retention in situ through
different forms and types of biomaterials [17].

One strategy is to incorporate mussel-inspired adhesives
into the stem cell-based grafts. For example, Han et al. devel-
oped a polydopamine (PDA) modified chondroitin sulfate-
(CS-) polyacrylamide (PAM) hydrogels with tissue adhesive-
ness for cartilage regeneration (see Figures 2(a) and 2(b)).
The composite hydrogel exhibited good resilience and
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toughness because of the noncovalent interaction between
PDA and CS and covalently crosslinked PAM network [18].

Similar to mussel-inspired catechol chemistry, gallol
moieties which possess aromatic rings with three hydroxyl
groups have recently been incorporated into cell-carrying
hydrogels to achieve adhesive property. Shin et al. [19] devel-
oped gallol-modified ECM hydrogel inks which exhibited
fast covalent crosslinking and tissue adhesion. The manufac-
tured bioink maintained ~95% of cell viability after printing
and can be printed on tissue substrates due to the adhesion
of gallol groups to ECM. However, the mechanical property
of gallol modified ECM hydrogel is much lower than the
native cartilage. Furthermore, a high dose of the gallol group
is cytotoxic to cells, which has been reported in previous
research by the same research group [20]. Thus, the usage
of gallol to synthesizing adhesive cell-loading inks should
be further carefully evaluated in preclinical studies.

Another mechanism employed to prolong the residence
time of stem cells is to develop a cell carrier with specific
functional groups (e.g., aldehyde) which could react with
amino groups on the surface of cartilage tissue. Zhou et al.
studied an oxidized dextran- (ODex-) based construct for
cartilage defect repair [21]. In this study, ODex not only
make up the scaffold network via reacting with gelatin for
superior mechanical performance but also formed good tis-
sue adhesion by reacting with amino groups existing on the
cartilage, which further promoted the integration of trans-
plants and host osteochondral lesions. However, a high
degree of aldehyde substitution to the dextran backbone is
harmful to cells; thus, it is essential to shorten the duration
of stem cells in the aldehyde environment. Yang et al. and
colleagues prepared a novel phototriggered imine reaction

to resolve the above limitations (see Figure 2(c)). In this sys-
tem, o-nitrosobenzene (NB) can be transferred to NB-
aldehyde under the exposure of 365 nm light and immedi-
ately crosslink with -NH2 in the polymer or surface of sur-
rounding tissue [22]. This kind of phototriggered adhesive
mechanism offers a good spatiotemporal control on cell via-
bility, tissue adhesion, and tissue integration, providing a
new strategy to prolong the retention time of stem cells in
host tissue and facilitate seamless tissue integration for osteo-
chondral regeneration.

In the future, there are opportunities to endow adhesive
features to the microgel systems. It would be interesting
and meaningful for endogenous repair as the adhesive micro-
gels could adhere to the target tissue while facilitating endog-
enous cell infiltration to the microgel scaffold.

2.4. Accurate Cell Patterning to Improve Osteochondral Tissue
Regeneration. Osteochondral tissue exhibits spatial gradients
from the articulating surface to the underlying bone, with
graded densities of chondrocytes, hypertrophic chondro-
cytes, and osteoblasts. These graded cell populations in
osteochondral tissue secrete different ECM components that
provide the tissue with spatial gradient mechanical proper-
ties to withstand the dynamic load-bearing environment.
Thus, fabricating biomaterials and cell gradients to replicate
the native gradient structures of osteochondral tissue is of
critical importance in functional osteochondral tissue engi-
neering [5].

3D bioprinting (3DBP), in which cells can be printed in
either biomaterial-based or biomaterial-free bioink, has
been extensively investigated in manufacturing desired
topographies of osteochondral tissues [23, 24]. 3DBP uses
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multiheads to precisely deposit multibioinks; thus, diverse
growth factors and cell types can be printed to the defect site
according to the defined pattern and layer. For instance, a
specific amount of MSCs and chondrocytes were accurately
deposited in well-designed and printed microchambers to
form cartilage, which possess comparable architecture,
composition, and biomechanical performances to the native
cartilage tissue according to histological, immunohisto-
chemical, and mechanical analysis. Furthermore, this system
was also applied in the building of entire artificial osteo-
chondral tissue based on the construct of endochondral
bone, which showed a stratified region of cartilage and
bone by significant distinct content of GAG and calcium
deposition [25].

The inclusion of cells within the bioink is capable of
directly fabricating defined cellular gradients, although spa-
tiotemporal control of cell differentiation toward chondro-
cytes and osteoblast in bioink is still a big challenge. As an
alternative, MSCs can be first differentiated into chondro-
genic and osteogenic spheroids, respectively, and then accu-
rately positioned to mimic the osteochondral structure.
Ayan and coworkers recently developed a scaffold-free bio-
printing approach to fabricate a dual-layered fused osteo-
chondral interface through a homemade aspiration-assisted
bioprinting (AAB) apparatus (Figure 3(a)) [26]. To recon-
struct the osteochondral tissue, osteogenic spheroids and
chondrogenic spheroids were first separately generated by
the differentiation of human adipose-derived stem cells
(ADSCs) in 3D culture. The OC interface was then bio-
printed by first deposition of a layer of osteogenic spheroids
onto a sacrificial support material (alginate crosslinked by
CaCl2 vapor). Subsequently, another layer of chondrogenic
spheroids was deposited onto a previous osteogenic layer. It
is worth noting that the spheroids in individual layers can
fuse together and the phenotypes in both zones can maintain
through the study (Figure 3(b)) [27]. Similar to cell spher-
oids, different microgels encapsulating stem cells can be uti-
lized as building blocks to form a predefined tissue with a
spatial controlled cell type and gradient structure [12, 28, 29].

In short, biomaterial-based or biomaterial-free 3D bio-
printing is promising in recreating gradient biochemical or
biomechanical structures of osteochondral tissues. However,
few challenges remain for applications of these artificial
osteochondral constructs in the clinic. For example, Young’s

modulus [13] of most biomaterial-based stem cell implants is
significantly lower than the natural articular cartilage (0.5-
1.5MPa) and bone tissue (15-20MPa) [30, 31]. Integration
force between engineered cartilage and subchondral bone as
well as engineered osteochondral tissue with underlying
native tissue is insufficient. In addition, facile and large-
scale stem cell assembly techniques need to be developed
for the creation of personalized constructs in clinic. Never-
theless, the precise assembly of stem cells with or without
the aid of biomaterial provides a promising means to mimic
the spatial complexity of the osteochondral tissue, which can
be utilized not only in tissue engineering but also in drug test-
ing and disease modeling.

3. Overcoming Clinical Challenges from
Controlling Stem Cell Differentiation

3.1. Challenges Associated with Stem Cell Differentiation. The
multidirectional differentiation potential makes MSCs
become a sufficient source of seed cells for osteochondral tis-
sue engineering and other disease therapies, but the precise
control of cell differentiation in vitro and in vivo has been a
huge challenge [32, 33]. The successful differentiation of stem
cells involves many aspects, such as the interactions of MSCs
to biomaterial scaffold, which we discussed in Section 2, bio-
molecular cues (growth factors, cytokines, trophic factors,
etc.), and the applied culture systems [34, 35]. During devel-
oping an integrated multiphase tissue, crosstalk of signaling
or potential interference between the different phases has a
significant impact on the quality of engineered tissue. For
instance, codelivery of genes of BMP-2 and TGF-β3 and to
build an osteochondral construct may obtain insufficient
cartilage forming or calcium deposition compared to indi-
vidual delivery, because there can be antagonistic effects
between chondrogenic and osteogenic growth factors [36].
In this regard, cellular engineering approaches including
spatiotemporal control of transgene overexpression play
increasing roles to control cell growth and differentiation,
and we will examine few examples below to address these
important questions.

3.2. Precise Control of MSC Differentiation with Spatial Gene
Delivery for Osteochondral Regeneration. The repair of osteo-
chondral defects involves the simultaneous regeneration of
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bone and cartilage. Correspondingly, MSCs need to be differ-
entiated into chondrocytes and osteocytes. Traditionally,
MSCs were, respectively, predifferentiated by the culture
media containing specific growth factors. More recently,
these bioactive proteins that drive the MSCs toward specific
cell types have been directly embedded into the biomaterial
scaffold. However, it is difficult to control the dose and spatial
distribution of the growth factor in the scaffold device, and
the proteins have a relatively short half-life in vivo [37, 38].

Therefore, gene delivery via viral or nonviral approaches has
attracted considerable attention. Such genetic modification
has the potential to produce high levels of expression of
growth and transcription factors over long periods [39]. It is
still difficult to, respectively, direct cell fate into certain line-
ages (i.e., cartilage and bone) using only one biomaterial scaf-
fold from the same cell source, in a single culture system. To
address this challenge, Huynh et al. [40] developed a method
to induce osteogenic and chondrogenic differentiation of
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MSCs on two independent 3D woven PCL scaffolds in one
single culture system. In general, TGF-β3 and BMP-2 are
used to induce MSC chondrogenesis and osteogenesis,
respectively [41, 42]. However, mothers against DPP homo-
log 3 (SMAD3) downstream of the TGF-β3 signaling path-
way can repress Runt-related transcription factor (Runx2),
which has great osteogenic capacity [43, 44]. Therefore, in
this study, TGF-β3 was supplemented in a specific chondro-
genic environment to promote the production of GAG and
COL II on one scaffold. On the other scaffold, to inhibit the
effects of chondrogenic-inducing TGF-β3 signaling, engi-
neered MSCs overexpressing RUNX2 with knockdown of
SMAD3 genes were prepared to generate a mineralized
matrix in the same culture condition. This method could
develop a bilayered scaffold with a layer of cartilage on top
of a layer of bone below. In theory, the delivery of DNA plas-
mids coding tissue-specific inducing factors from multi-
phasic scaffold may be able to spatially facilitate cellular
differentiation processes and further the regeneration of
complex tissue structures [45]. Another research showed that
the MSCs in different layers could also be induced to differ-
entiate into chondrocytes and osteoblasts to form a bilayered
osteochondral structure in vitro. This scaffold consists of one
chitosan-gelatin scaffold layer activated by plasmid TGF-β1
for chondrogenic and the other hydroxyapatite/chitosan-
gelatin scaffold layer activated by plasmid BMP-2 for oste-
ogenic, respectively. And it was able to facilitate the regen-
eration of articular cartilage and subchondral bone in vivo
simultaneously [46].

As a further attempt to spatially and temporally control
the presentation of therapeutic genes to stem cells,
Gonzalez-Fernandez and colleagues [47] developed a new
pore-forming bioink combined with DNA plasmids encod-
ing for either chondrogenic or osteogenic genes. By blending
fast and slow degrading hydrogels, bioinks with increased
porosity over time were achieved. The researchers found that
the release rate of encapsulated pDNA in pore-forming
bioink was higher than in solid inks; thus, it was possible to
achieve transfection of transfected or host cells in either rapid
and transient manner or slower and more sustained manner
by modulating the porosity of these bioinks. Furthermore,

these 3D bioprinted tissues could form a vascularized,
bilayered, and stable osteochondral implant in vivo.

Another major challenge in developing successful
constructs for osteochondral defect repair is to match the
scaffold degradation rate with the neotissue formation.
Toward this objective, Rowland and colleagues [48] recently
developed constructs to suppress abnormal inflammatory
response induced by the cytokine interleukin-1 (IL-1). They
developed fusing concentric cartilage-derived matrix (CDM)
hemispheres seeded with MSCs, respectively, overexpressing
BMP-2 and TGF-β3 in addition with a doxycycline-
inducible IL-1 receptor antagonist (IL-1Ra) transgene via
the delivery of lentiviral particles. Their findings demon-
strated that the gene delivery and the release of IL-1Ra effec-
tively promoted the osteochondral tissue formation and
protected the structure from degradation caused by the aber-
rant inflammation (Figure 4).

In summary, spatiotemporal delivery of therapeutic
genes to locally control the differentiation of stem cells
in vivo is a promising approach for the regeneration of osteo-
chondral tissue. However, further effort needs to be focused
on improving the transfection efficiency of the transfected
cells and their immobilization at the site of action. Besides,
the transgene combination and control of gene delivery need
to be optimized to obtain better results during the tissue
regeneration processes [49, 50].

4. Overcoming Clinical Challenges from
Modulating a Regenerating
Microenvironment

4.1. Challenges Associated with Host Factors. Although the
administration and engineering of stem cells themselves are
important to cell therapies, the host factors (local or system-
atic cytotoxic response, inflammation conditions, microenvi-
ronment, etc.) have also been shown to have a considerable
influence on the biological fate and efficacy of stem cells in
clinical trials [51]. For example, recipient cytotoxic response
against the infused MSCs plays an important role in mediat-
ing the cell therapies. A study showed that hMSCs were
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Figure 4: Osteochondral constructs. (a) Schematic diagram of fusing concentric hemispheres with embedded lentivirus of TGF-β3 and BMP-
2. (b) Pictures of eGFP-transduced or TGF-β3+BMP-2-transduced constructs from 3 different angles. Scale: 2mm. Reproduced with
permission [48].
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phagocytized by monocytes after injected into a mouse
model after 24 h, and this further promoted the immunoto-
lerance by systemic immunoregulatory phenotype in the host
[52]. The different stages and microenvironments of disease
progression also can lead to the different effects of MSC ther-
apies. During the progression of the disease, the internal
microenvironment of inflammation, hypoxia, and many
other pathological factors are dynamic, and it is difficult to
take samples routinely from acutely ill patients [53]. There-
fore, it is necessary to fully consider the impact of the host
dynamic microenvironment on MSCs when applying them
in therapies.

4.2. MSC Priming to Boost Their Potency toward Therapeutic
Applications. Many studies have demonstrated that in order
to exogenously boost the immunomodulatory function and
clinical potency, MSC can be primed with proinflammatory
cytokines or growth factors [54, 55]. For example, a soluble
proinflammatory cytokine IFN-γ may affect adipogenesis
and osteogenesis of MSCs [56]. Several IFN-γ-inducible
genes such as Runx2 were found to upregulate during the
early stage of osteogenic differentiation of BMSCs [57].
Besides, IFN-γ plays an important role in promoting the
anti-inflammatory activity of MSCs. As reported, priming
with IFN-γ, mouse MSCs (mMSCs) upregulated the expres-
sion of enzyme indolamine 2,3-dioxygenase (IDO), which
has been shown to suppress T-cell activity in the early stage.
And some important immunomodulatory molecules, includ-
ing CCL2 PGE2, TGF-β, and HGF, were secreted from the
primed mMSCs [58]. Another research suggested that the
activation of the STAT1/STAT3 signaling pathway and inhi-
bition of the mTOR signaling pathway facilitated the immu-
nosuppressive properties of mMSC primed with IFN-γ. Also,
the immunoregulatory ability was enhanced by the repres-
sion of the mTOR pathway in hMSCs [59]. As for the other
cytokines, the alkaline phosphate activity and bone mineral-
ization of MSCs were promoted when primed with
LPS/TNF-α [60, 61]. Redondo-Castro et al. found that when
treated with conditioned media of IL-1 primed MSC, murine
BV2 cells secreted more trophic factors such as G-CSF and
anti-inflammatory mediators such as IL-10, but less proin-
flammatory cytokines such as IL-6 and TNF-α [62]. More-
over, MSCs derived from AT, BM, or foreskin exhibited
different expression levels of the immunoregulatory genes
(IDO1, SEMA4D, FGL2, SEMA7A, and GAL) when primed
with a proinflammatory cytokine mixture (IFN-γ, IL-1β,
IFN-α, and TNF-α) [63, 64].

Since MSCs are highly sensitive to the harsh environment
and will get function loss after cryopreservation during the
preclinical or clinical trials, priming may help to improve
the therapeutic potential of MSCs to target the biological
properties of MSCs. In clinical translation, MSC priming still
has many limitations, such as high costs, the harm of immu-
nogenicity, unstable effects depending on the source and
donor of MSCs, and the tumorigenic potential effect of MSCs
treated with priming approaches during the long-term trials.

4.3. Engineered Stem Cells for Self-Regulated Drug Delivery
Responding to an Inflammatory Environment. In addition

to the osteochondral defect, both systemic and local inflam-
mations may also have a profound impact on the pathogen-
esis of OA and other diseases. Although the proper
pretreating with cytokines is beneficial to the immunomodu-
latory effect of MSCs, aberrant and continuously increased
levels of proinflammatory cytokines such as interleukin-1
(IL-1), IL-6, IL-17, and tumor necrosis factor (TNF) can lead
to the suppression of cartilage-specific genes and proteogly-
can formation, in addition to the degeneration of the
extracellular matrix (ECM). Furthermore, IL-1-mediated
inflammatory environment inhibits chondrogenic differenti-
ation of stem cells and leads to rapid degradation of cartilage
derived from stem cells [65, 66]. Hence, there has been
increasing investigations into therapeutics that may be bene-
ficial in an inflammatory environment. Given the successful
framework of a variety of protein therapies that are devel-
oped and applied in rheumatoid arthritis (RA), new
approaches that edit the key transcripts of anticytokine mol-
ecules under endogenous promoter sequences have been
applied to control the cellular response to inflammatory sig-
nals in the surrounding microenvironment dynamically.
Pferdehirt et al. [67] developed a synthetic system using a
designed promoter with several recognition elements of the
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) to amplify and induce the expression and
release of anticytokine protein IL-1Ra. Transfecting the gene
circuit into induced pluripotent stem cells (iPSCs) through
lentiviral delivery, the engineered cells were capable of differ-
entiating into engineered cartilage for the regeneration of dis-
eased tissue and mitigating the inflammation in response to
IL-1 in a self-regulated manner (Figure 5(a)). In recent stud-
ies, due to the highly targeted character and the low risks of
tumorigenicity, the CRISPR-Cas9 system has revolutionized
the applicability to mammalian cells [68]. A research showed
that murine induced pluripotent stem cells (iPSCs) were
engineered to functionally delete the IL-1 receptor I (Il1r1)
using the CRISPR-Cas9 system. These modified cells pro-
duced more proteoglycan matrix and exhibited significant
protection from the inflammation-induced tissue degrada-
tion compared to the wild-type cells [69]. Another similarly
engineered iPSCs containing feedback-controlled gene cir-
cuits could be induced to produce bioactive drugs. Similarly,
the base sequences expressing IL-1Ra or soluble TNFR1
(sTNFR1) were inserted downstream of the promoter of gene
CCL2 to construct a dynamic negative feedback circuit
activated by IL-1 or TNF using CRISPR gene editing
(Figure 5(b)) [70]. During the latter research, the iPSCs in
combination with a 3D PCL woven scaffolds were engineered
to form a stable cartilaginous implant to alleviate the inflam-
mation in a RA model [71]. The union of tissue engineering
and synthetic biology promises a wide range of potential
therapeutic applications for treating chronic diseases such
as OA and RA by producing specially designed stem cells that
not only can differentiate into tissue-specific cell types but
can also regulate the expression of transgene molecules in
direct response to dynamically changing pathologic signals
in vivo. In the future, this highly responsive and self-
regulated therapeutic strategy using designer stem cells for
OA treatment could potentially overcome the limitations of
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traditional biologic anticytokine drugs or therapies and
ultimately reduce the risk of adverse events in patients.

5. Conclusion and Future Perspective

Despite the fact that stem cells have provided tremendous
promise to treat orthopedic diseases due to their inherent
regenerative therapeutic and immunoregulatory properties,

there still remain many challenges to realize their full thera-
peutic outcome, as increasing evidence indicated that in
many cases, stem cells in their original state may not achieve
the desired effect. Continued bioengineering approaches
have improved the therapeutic efficacy; in particular, micro-
gel assembly and 3D bioprinting techniques enable efficient
cell encapsulation and improve cell survival and retention
at the target site and precise cell patterning which mimics
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the gradient structure of the osteochondral interface.
Coupled with other technologies such as transgene delivery,
CRISPR-Cas9-based gene editing, designer stem cells that
can dynamically modulate the extracellular environment
can be functionally achieved. In addition, for successful
applications of MSCs in clinic, certain biosafety concerns
such as genetic abnormality, tumor formation, and induction
of host immune response need to be carefully addressed. It is
reported that genomic instability and mutation may be
induced during continuous and long-term cell expansion.
The potential tumorigenic risk of MSC treatments may be
related to the aberrant cell phenotype and malignant trans-
formation [72]. Besides, some MSCs may undergo malignant
transformation in the recipients with immune deficiency or
special tumor environment [73, 74]. Therefore, it is impor-
tant to optimize culture duration and monitor the chromo-
somal karyotype and cell growth kinetics strictly during the
manufacturing of MSCs using advanced cytogenetic tech-
niques and miRNA analysis to avoid the risk of tumorigenic-
ity. At last, MSC-related clinical trials should be based on
substantial animal experimental studies confirming its safety
and effectiveness.

In the future, we believe that bioengineering approaches
will continue to profoundly influence the application of stem
cell therapies for osteochondral and joint relevant diseases.
Intelligent stem cell therapies with self-regulating capabilities
for biologic drug delivery will be widely applied in OA and
many other chronic diseases.
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