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Federated learning (FL) is an emerging collaborative machine learning method. In FL processing, the data quality shared by users
directly affects the accuracy of the federated learning model, and how to encourage more data owners to share data is crucial. In
other words, how to design a good incentive mechanism is the key problem in FL. In this paper, we propose an incentive
mechanism based on the enhanced Shapley value method for FL. In the proposed mechanism, the enhanced Shapley value
method is proposed to measure income distribution, which takes multiple influence factors as weights. The analytic hierarchy
process (AHP) is used to find the corresponding weight value of the influence factors. Finally, the numerical experiments are
carried to verify the performance of the proposed incentive mechanism. The results show that compared with the Shapley value
method considering the single factor, the income distribution of all participants can better reflect multiple factor contribution
when using the enhanced Shapley value method.

1. Introduction

With the rapid development of the artificial intelligence
technology, it is quite common for cross-organizational
and cross-institutional data use. How to ensure data privacy
and security while realizing data sharing [1, 2] have attracted
extensive attention, which is a fundamental challenge in the
era of artificial intelligence [3–6]. Federated learning (FL) is
a new distributed machine learning method to address the
data island problem, and it was first proposed by Google in
2016 [7–9], which can be applied to the Android phone
user’s local model updating and training between multiple
participants or multiple computing nodes. Nowadays, it
has been used in all walks of life widely.

In the process of FL, the incentive mechanism is an
important research topic [10–12]. To make all data owners
contribute their data for model training actively, it is neces-
sary to establish a reasonable incentive mechanism to
encourage data owners to share valuable data. A valuable
incentive mechanism can enable all participants to continu-

ously and carry out efficient model training and improve the
final trained federated model more accuracy. When there is
no a meaningful incentive mechanism, all participants do
not update data in real time in the process of data federation
and do not contribute to FL actively, which will not obtain
the accurate training model, and all participants dare not
use the trained model. It will also cause a waste of time
and economic investment of all participants.

Recently, there are a series of research results about the
incentive mechanism of FL. In [11], the authors proposed
an incentive scheme for a local, client machine learning
model for FL, which solves the problem that participants
may opt out of the federated system and provides useless
information to the federated system without satisfactory
incentives. To facilitate collaborative machine learning
among multiple model owners, the work in [12] proposed
a hierarchical incentive mechanism framework, which solves
the problem of hierarchical structure within federated sys-
tems. Zhan et al. [13] designed a deep reinforcement
learning-based incentive mechanism, which solves unique
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the nonsharing of data and difficult contribution evaluation.
Yu et al. [14] proposed a divide budget incentive method,
which solves the restriction of temporary mismatch between
contribution and reward in FL. From these researches, we
note that participant’s submodel influences the quality of
trained model generated from FL. Generally, the participants
have an enthusiasm to cooperate with each other for
improving the quality of model. In [15, 16], all participants
in FL are considered as having equivalent contributions.
However, the contributions of participants have distinct in
some cases. For example, the FL model is applied in
WeBank, which has cooperated with such financial institu-
tions, insurance companies, and enterprises.

In these existing works, they do not take multiple distri-
bution factors such as cost input, risk factor, and data quality
that affect the distribution of benefits. To obtain income dis-
tribution fair and just, we proposed an incentive mechanism
based on the enhanced Shapley value method for FL. In the
proposed method, all federated participants get different fed-
erated incomes according the contribution in model train-
ing, and there is no free-riding among all participants.

The major contributions of this paper are summarized as
the threefold:

(1) We construct the federated incentive model for mul-
tiple participants, introduce the cooperative game to
the incentive model in FL, and consider multiple fac-
tors that affect the income distribution of partici-
pants in the FL system

(2) To allocate the income for the federated participants
more fair, we propose the analytic hierarchy process
(AHP) to construct the expert judgment matrix
according the multiple contribution factors, which
achieves the corresponding weights of all the
influencing factors

(3) The effectiveness of this incentive mechanism is veri-
fied through numerical experiments. Experimental
results show that the income distribution of all partic-
ipants can better reflect multiple factor contribution

The rest of this paper is organized as follows: The related
work and our main contribution of this paper are introduced
in Section 2. The definition of FL, cooperative games, Shap-
ley value, and the AHP are introduced in Section 3. The fair
federated model and incentive enhanced Shapley value
method are established in Section 4. The rationality of the
method is verified by numerical experiments and numerical
comparison in Section 5. The conclusion and future work
are drawn in Section 6.

2. Related Work

The model training accuracy of FL is affected by incentive
mechanism, which has been widely concerned at present
[15–17]. In [18, 19], the authors proposed an incentive
mechanism which combined the contract and reputation
can improve the efficiency of federated model training. In
[20], an optimization method in the FL wireless networks

was formulated, which captures two trade-offs and obtains
the global optimal solution by characterizing the closed-
form solutions to all subproblems. In [21, 22], within the
Stackelberg framework, a motivation-based interaction
model was established between global servers and participat-
ing devices to encourage participants taking part in cooper-
ation. Based on fair allocation for wireless network
resources, Li et al. [23] proposed a new objective of resource
optimization, which promote a fair society from the perspec-
tive of fairness, flexibility, and efficiency. For the linear
regression model, the work [24] designed an incentive pay-
ment structure to encourage agents provide high-quality
data, which can describe the impact of data points on the
loss function of the model. The game framework was pro-
posed in [25, 26] to solve the efficiency problem of multi-
party model.

In the incentive mechanism, the return fairness is a wor-
thy studying problem. The work of [27] studied the dynam-
ics of coalition formation under the bounded rationality
condition, which considers the situation that the profit of
each team is given by the submodular function, and pro-
posed a profit distribution scheme based on the concept of
marginal utility. Xiong et al. [28] proposed an incentive
mechanism for the multiattribute user selection, which effec-
tively improves sensing user quality for mobile crowdsen-
sing. The Shapley value method is used to distribute fair
the benefits generated in the process of the coalition [29],
which is the most widely used method to evaluate fairness
[30, 31]. In [32], the authors combined the quality estima-
tion with a monetary incentive and used the Shapley value
method to determine the cost of each household, which
was based on the effect of goodness in saving and remaining
points. In [33], a repertoire of efficient algorithms was
proposed to meet the time-consuming challenge in the
Shapley value requiring process. Liu et al. [34] proposed a
blockchain-based FedCoin peer-to-peer payment incentive
mechanism for FL and used the Shapley value method to
distribute federated revenue.

In the existing works, they do not take multiple related
factors such as cost input, risk factor, and data quality that
affect the distribution of benefits. In order to fully consider
the impact of multiple factors on the fairness of distribution,
an incentive mechanism for the FL system is proposed to
achieve fairness and justice, which uses the enhanced Shap-
ley value method. The proposed incentive mechanism intro-
duces the cooperative game to the incentive model and
considers multiple factors that affect the income distribution
of participants. The analytic hierarchy process (AHP) is used
to construct the expert judgment matrix, which achieves the
corresponding weights of all the influencing factors.

3. Preliminaries

3.1. Definition of Federated Learning. Let f1, 2,⋯,Ng be
defined as N data owners, and they all hope to merge their
respective data fD1,D2,⋯,DNg to train a machine learning
model. A model MSUM is trained by a traditional method,
which puts all data D =D1 ∪D2 ∪⋯∪DN together. A model
MFED can be cooperatively trained by the data owners of
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claimed FL system in learning process, which the data Di
never leaked to other participant via any data owner i in this
process. Moreover, the precision of MFED, defined as VFED,
should be pretty close to the property of MSUM and VSUM.
Generally, if there is a δ ≥ 0 satisfies the condition

VFED −VSUMj j < δ, ð1Þ

we say that the FL algorithm has δ-accuracy loss [4].

3.2. Cooperative Games. The GðN , vÞ is defined cooperative
game and satisfies two conditions as follows [29, 35, 36]:

v S1ð Þ + v S2ð Þ ≤ v S1 ∪ S2ð Þ, ð2Þ

S1 ∩ S2 =∅,v ∅ð Þ = 0, ð3Þ
where N is a finite set of participants, S1, S2 ∈ 2N , v : 2N
⟶ R is characteristic function, 2N is the set of all the sub-
sets of N . Let vðSÞ is participants’ income function, vðNÞ
indicates the coalition income and φiðvÞ (defined in formula
(6)) is the income of participant i in vðNÞ, which satisfy two
constraints:

v Nð Þ = 〠
n

i=1
φi vð Þ, ð4Þ

v Sð Þ ≤〠
i∈S
φi vð Þ, ð5Þ

Formula (4) is named as collective rationality, which
indicates that the sum of all participants’ incomes from the
maximum income in GðN , vÞ should be equivalent to vðNÞ
, and formula (5) is claimed coalition rationality, which
shows that the sum of profit allocated to all probable
coalitions must be greater than or equivalent to vðSÞ. When
jSj = 1, the formula (5) is individual rationality.

3.3. Shapley Value. Shapley value was presented by Shapley
[29, 37] in the cooperative game theory, which can effec-
tively solve the problem of cooperative income distribution
and define as the following equation:

φi vð Þ = 〠
i∈S,S⊂N

w Sj jð Þ v Sð Þ − v S \ ið Þ½ �, ð6Þ

w Sj jð Þ = n − Sj jð Þ! Sj j − 1ð Þ!
n!

, ð7Þ

where S ⊂N , i = 1, 2,⋯, n, jSj is the quantity of participants
in subset S, wðjSjÞ is weight coefficient, vðSÞ is the income of
subset S and satisfies Equations (2) and (3), the term
vðSÞ − vðS \ iÞ evaluates the marginal contribution of i
to the coalition S, and vðS \ iÞ shows the benefit of
other players in subset S other than i.

4. Federated Learning Incentive Mechanism

Before establishing the FL incentive model, we make the fol-
lowing assumptions:

(1) All participants have the ability to pay for FL, and in
the process of income distribution, they adopt the
best income distribution scheme.

(2) All participants are willing to participate in the coa-
lition and do not withdraw from each sub-coalition,
and all parties are very satisfied with the final income
distribution scheme.

(3) All participants are completely trustworthy, and
there is no cheating.

(4) FL should adopt multiparty agreement to recognize
the income distribution scheme to ensure the
smooth implementation of the strategy.

4.1. FL Incentive Model. The proposed FL incentive model is
as shown in Figure 1, and in this model, we assume that
there are n factors and n participants and establish their
federated models. We use different colors to represent the
process of different factors for different participants, the
direction of model updating, and income distribution in
the whole FL process.

Step 1. Under the influence of factor 1, factor 2,…, and factor
n on the federated income, we distribute model 1, model
2,…, and model n to participant 1, participant 2,…, and
participant n and then train the n submodels respective
of data participants. The data of the n participants do
not leave the local, to protect the privacy of the data in
their respective databases.

Step 2. Every time the model runs, the parameters of the n
submodels are updated, until the end of the model run,
and the models are aggregating to get the federated aggrega-
tion model we need.

Step 3. Every time the model runs, using formula (19), each
participant i will receive the income ~φiðv, tÞ from the feder-
ated expected to cost bðtÞ in round t.

Step 4. When the model is running finished, the parameters
of all submodels are aggregating to get the final aggregated
federated model. Finally, the federated income is allocated
according to the enhanced Shapley value method, and each
participant i will achieve income φi ′ðv, tÞ from formula (20).

The income distribution of each participant i is affected
by n factors, which are allocated to rely on the contribution
of each participant i to the whole federation. This design
makes participants get the distributed federated benefits
more fairly and get an accurate federated model. Because
the influencing factors impact income of participants, the
enthusiasm of participants will be affected and, finally,
impact the accuracy of the federated model. If each partici-
pant i actively cooperates in the federated process and tries
to take part in the FL model to update data in the local data-
base in real time, the parameters of the model training will
also be updated, and the final federated aggregation model
will also be updated. This cycle will continue until the end
of the whole model training. Finally, the total federated
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income generated is distributed according to the enhanced
Shapley value method.

4.2. Contribution Assessment. To encourage the participants
to actively participate in the FL, we set each participant to be
treated fairly based on their contribution and meet three fair
conditions at the same time:

(1) Contribution Fairness. Each participant’s income is
related to its contribution to the federation.

(2) Expectation Fairness of Risk-Taking. The expected
risk and time risk between each participant are
minimized.

(3) Expectation Fairness. The expected and time risks
taken from each participant vary as little as possible.

We denote ciðtÞ the cost of participant i and qiðtÞ the
contribution, and qiðtÞ ≥ 0 includes risk-taking, data quality,
effort degree, and cost input. And we shall use the procure-
ment auction method [41] to estimate ciðtÞ. Further, we
define the expected risk f iðtÞ and time risk giðtÞ by the fol-
lowing dynamic system:

f i t + 1ð Þ =max f i tð Þ + ci tð Þ − φi
′ v, tð Þ, 0

h i
,

gi t + 1ð Þ =max gi tð Þ + μi tð Þ − φi′ v, tð Þ, 0
h i

,
ð8Þ

where μiðtÞ represents an indicator function is

μi tð Þ =
~ci tð Þ, f i tð Þ > 0,

0, f i tð Þ ≤ 0:

(
ð9Þ

Here, when f iðtÞ > 0, the time series giðtÞ will increase,
and ~ciðtÞ shows that participant i is the average cost of con-
tribution for the federation. So we have a federally maxi-
mized H.

H =
1
T
〠
T

t=1
〠
N

i=1
qi tð Þφi′ v, tð Þ
h i

, ð10Þ

satisfying fair condition (1), where T is the total quantity of
runs of the model and qiðtÞ represents the contribution
made by participant i to the federation. We should treat all
participants fairly to minimize their expected loss and distri-
bution. Therefore, we introduce the Lyapunov function for-
mulated as follows [42]:

L tð Þ = 1
2
〠
N

i=1
f 2i tð Þ + g2i tð Þ� �

: ð11Þ

For the convenience of calculation, the root operator is
omitted calculation, which will not change the good proper-
ties of formula (11). With the change of time, the expected
risk deviation of the participants is as follows:

Factor 1

Factor 2

...

Factor n

...

Participants Influence
factors

Model of
participants

Income
distribution

Federated
model

Income of
participants

Aggregation
model 

Enhanced
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...
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...

Aggregation
model
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Figure 1: Federated learning incentive model.
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ΔL tð Þ = 1
T
〠
T

t=1
L t + 1ð Þ − L tð Þ½ �

=
1
T
〠
T

t=1
〠
N

i=1

1
2
f 2i t + 1ð Þ − 1

2
f 2i tð Þ + 1

2
g2i t + 1ð Þ − 1

2
g2i tð Þ

� �

≤
1
T
〠
T

t=1
〠
N

i=1
f i tð Þci tð Þ − f i tð Þφi

′ v, tð Þ + 1
2
c2i tð Þ

�

− ci tð Þφi
′ v, tð Þ + 1

2
φi
′2 v, tð Þ + gi tð Þμi tð Þ

− gi tð Þφi
′ v, tð Þ + 1

2
μ2i tð Þ − μi tð Þφi

′ v, tð Þ + 1
2
φi
′2 v, tð Þ

�
:

ð12Þ

Since φi ′ðv, tÞ is a control variable of the income func-
tion of the participant i, we extract the formula containing
it from formula (12) and get the following result:

ΔL tð Þ ≤ 1
T
〠
T

t=1
〠
N

i=1
φ′2i v, tð Þ − φi

′ v, tð Þ f i tð Þ + ci tð Þ + gi tð Þ + μi tð Þ½ �
n o

:

ð13Þ

The expected loss ΔLðtÞ is the distribution function of
f iðtÞ and giðtÞ. If ΔLðtÞ is minimized and fair conditions
(2) and (3) are satisfied, the expected loss will gradually
decrease with time. Let

F tð Þ = εH − ΔL tð Þ, ð14Þ

is the target number, which indicates the inequality of
expected loss and waiting time between participants,
and it should be minimized, where ε is a federated reg-
ularization term to constraint the equilibrium between
the two targets. Therefore, the federation is aimed at
the following function:

F tð Þ = 1
T
〠
T

t=1
〠
N

i=1
φi
′ v, tð Þ εqi tð Þ + f i tð Þ + ci tð Þ + gi tð Þ + μi tð Þ½ � − φ′2i v, tð Þ

n o
,

ð15Þ

and the constraint condition is

〠
N

i=1
~φi v, tð Þ ≤ b tð Þ, ~φi v, tð Þ ≥ 0, for∀i, t, ð16Þ

where bðtÞ means the cost of participants in the current
payment budget, which is determined by their expected
loss and the time they spend waiting for the reward to
be fully paid, and the ~φiðtÞ represents the income that
participant i received from the federation in round t.
Let us take the derivative of formula (15) with respect
to φi′ðv, tÞ, and set the first derivative equal to 0 to
obtain φi′ðv, tÞ:

φi
′ v, tð Þ = 1

2
εqi tð Þ + f i tð Þ + ci tð Þ + gi tð Þ + μi tð Þ½ �: ð17Þ

Moreover, by using the second derivatives of (15)
with respect to φi

′ðtÞ, we obtain the following result:

d2

φ′2i v, tð Þ
F tð Þ = −1 < 0: ð18Þ

When the federated model runs in the round t, the
contribution of the participants to the federation is qiðtÞ,
and the total compensation of the participants i is φi

′ðv, tÞ =
1/2½εqiðtÞ + f iðtÞ + ciðtÞ + giðtÞ + μiðtÞ�. If budget bðtÞ is not
enough to fully pay all participants’ compensation in round
i, the federated organization will pay them in installments
within a certain period. The federated organization will
pay ~φiðv, tÞ in installments in round i according to the fol-
lowing equation:

~φi v, tð Þ = φi
′ v, tð Þ

∑N
i=1φi′ v, tð Þ

b tð Þ: ð19Þ

For the income distribution scheme in Figure 1, when
f iðtÞ and giðtÞ are equal to 0, this is a very important
condition, and participant i does not invest extra cost; then,
φi′ðv, tÞ = εqiðtÞ. After that, participant i will use the
enhanced Shapley value method to evaluate its contribution
based on the federation and allocate the future income.
This income allocation method will first consider the par-
ticipants whose expected risk is not equal to 0 and also
consider the contributions of other participants to the fed-
eration. According to Figure 1 and the above theoretical
analysis, we present the pseudo-code of FL incentive in
Algorithm 1.

4.3. The Enhanced Shapley Value Method. To ensure that all
participants are satisfied with the federated income distribu-
tion scheme and make the distribution mechanism play an
incentive role, all participants can actively contribute to the
federated model. The Shapley value method considers that
the contribution degree of each participant as 1/n ignores
the influence of other factors. Therefore, it is necessary to
consider the effects of multiple factors on federal income dis-
tribution, by taking multiple influence factors as weights,
and the enhanced Shapley value method is proposed to mea-
sure income distribution [28, 40].

φi
′ v, tð Þ = φi v, tð Þ + v Nð Þ × ΔPi, ΔPi = Pi −

1
n
, i = 1, 2,⋯, n,

ð20Þ

Pi = αi1, αi2,⋯, αinð Þ w1,w2,⋯,wnð ÞT , i = 1, 2,⋯, n,
ð21Þ

where φi
′ðv, tÞ shows the anticipated income for federated

model i after improvement and under a federated game
condition in the t round, vðNÞ is the revenue of the grand
coalition, φiðv, tÞ is the income distribution of participant i
using the Shapley value method in the t round of FL. In par-
ticular, when t = 1, φi

′ðv, tÞ is calculated using formula 6, and
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ΔPi indicates the difference between the comprehensive eval-
uation factor Pi and the average factor 1/n introduced by par-
ticipant i, and it refers to the comprehensive factor as an
incentive factor in the federated distribution of incomes.

ΔPi =
Participant i should be encouraged, Pi −

1
n
> 0,

Participant i should be punished, Pi −
1
n
< 0:

8>><
>>:

ð22Þ

Pi is the sum of the product of the measured values αi1,
αi2,…, αin of the n factors and the corresponding factor
weight w1, w2,…,wn, and ∑n

i=1Pi = 1. Thus, we have

〠
n

i=1
ΔPi = 0,

〠
i∈S
ΔPi ≥

v Sð Þ −∑i∈S φi v, tð Þ
v Sð Þ :

8>>>><
>>>>:

ð23Þ

We solve these weights of n influence factors αi1, αi2,…,
αin with the AHP. It is easy to verify that formula (20) sat-
isfies formulas (4) and (5).

Proof. According to formulas (4) and (23), formula (20) can
be proofed as follows:

〠
n

i=1
φi
′ v, tð Þ = 〠

n

i=1
φi v, tð Þ + v Nð Þ × ΔPi½ �

= 〠
n

i=1
φi v, tð Þ + v Nð Þ〠

n

i=1
ΔPi

= v Nð Þ:

ð24Þ

Hence, formula (20) satisfies formula (4). In addition,
according to formulas (5) and (23), formula (20) is proofed
as the following:

〠
i∈S
φi′ v, tð Þ =〠

i∈S
φi v, tð Þ + v Sð Þ × ΔPi½ �

=〠
i∈S
φi v, tð Þ + v Sð Þ〠

i∈S
ΔPi

≥ v Sð Þ:

ð25Þ

Hence, formula (20) satisfies formula (5).

To solve the Shapley value correction factor of the feder-
ated income distribution, the AHP is used to assign the
importance degree according to the scale of 1-9. The expla-
nation of scale 1-9 is presented in Table 1 [39].

In Table 1, index indicates the intensity of importance
on an absolute scale. The judgment matrix in this paper is
constructed by the joint score of the expert group, and they
score according to the rules in Table 1. These experts have a
strong background in economics, computer, and mathemat-
ics. Hence, according to the joint score of the expert group,
the judgment matrix AðaijÞn×n is obtained.

A =

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋮ ⋮

an1 an2 ⋯ ann

2
666664

3
777775
, ð26Þ

and satisfied aij > 0, aji = 1/aij, and aii = 1. The matrix B
ðbijÞn×n is given by normalizing, and according to each
column of the matrix AðaijÞn×n, bij = aij/∑

n
i,j=1aij, αi1, αi2,⋯,

αin, comes from each i-th row element of matrix BðbijÞn×n

Input: ε and bðtÞ are given by the federated system administrator. f iðtÞ and giðtÞ) are the expected risk of all participants and the
income of all participants respectively in round t.
Output: f~φ1ðv, tÞ, ~φ2ðv, tÞ,⋯, ~φNðv, tÞg
1: Initialization hðtÞ⟵ 0; To stores the sum of all φi

′ðv, tÞ values.
2: for i = 1, 2,⋯,N do
3: if diðtÞ > 0 then; diðtÞ represents the contribution scale value of participant i to the federated model.
4: Calculation ciðtÞ;
5: Calculation qiðtÞ;
6: else
7: ciðtÞ = 0;

8: φi′ðv, tÞ⟵
1
2
½εqiðtÞ + f iðtÞ + ciðtÞ + giðtÞ + μiðtÞ�;

9: hðtÞ⟵ hðtÞ + φi
′ðv, tÞ;

10: if i = 1, 2,⋯,N then

11: ~φiðv, tÞ⟵
φi
′ðv, tÞ
hðtÞ bðtÞ

12: f iðt + 1Þ =max ½ f iðtÞ + ciðtÞ − ~φiðv, tÞ, 0�;
13: giðt + 1Þ =max ½giðtÞ + μiðtÞ − ~φiðv, tÞ, 0�;
14: return f~φ1ðv, tÞ, ~φ2ðv, tÞ,⋯, ~φNðv, tÞg

Algorithm 1: FL incentive mechanism via enhanced Shapley value method.
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and represents the measurement value of n factors affecting
federated revenue; αij represents the j-th factor affecting the
individual’s federated income, and ∑n

i,j=1αij = 1.

B =

b11 b12 ⋯ b1n

b21 b22 ⋯ b2n

⋮ ⋮ ⋮ ⋮

bn1 bn2 ⋯ bnn

2
666664

3
777775
: ð27Þ

Sum matrix BðbijÞn×n is according to row vector,
ci =∑n

i,j=1bij, and achieves the vector C.

C = c1, c2,⋯, cnð Þ, ð28Þ

and then, normalizing the vector C, wi = ci/∑
n
i=1ci.

Consequently, the weight value w of judgment matrix
AðaijÞn×n is obtained.

w = w1,w2,⋯,wnð ÞT , 〠
n

i=1
wi = 1: ð29Þ

Since the judgment matrix AðaijÞn×n is established based
on the experience and estimation of experts, some differences
will appear between the judgment matrix A and the real situ-
ation, and it needs to test the consistency of the matrix A
ðaijÞn×n. If the matrix AðaijÞn×n is consistent, its eigenvector

w = ðw1,w2,⋯,wnÞT can truly reflect the reasons that affect
federated income. In this case, we can use the random consis-
tency index (RI) [38, 39] in Table 2.

λmax = 〠
n

i=1

Awið Þ
nwi

,

CI =
λmax − nð Þ
n − 1ð Þ ,

CR =
CI
RI

,

8>>>>>>>><
>>>>>>>>:

ð30Þ

where λmax is the largest eigenvalue of the matrix AðaijÞn×n,
the CI represents public consistency index, RI is the average

random consistency index, and CR is the consistency ratio.
As we refer to Table 2, matrix AðaijÞn×n needs to be satisfied
with the consistency.

CR =
ThematrixA aij

� �
n×n is just what we need,

CI
RI

< 0:1,

ThematrixA aij
� �

n×n needs to be adjusted,
CI
RI

> 0:1:

8>><
>>:

ð31Þ

5. Numerical Results

We assume that there are three banks: bank 1, bank 2, and
bank 3, which are taking part in the FL model. The incomes
of three banks not participating in FL are vð1Þ = 150,
vð2Þ = 250, and vð3Þ = 350. If bank 1 and bank 2 coalition
can make income vð1, 2Þ = 400, bank 1 and bank 3 coalition
can make income vð1, 3Þ = 800, bank 2 and bank 3 coalition
can make income vð2, 3Þ = 700, and banks 1, 2, and 3 coali-
tion can make income vð1, 2, 3Þ = 1500. After the three banks
unite together, the income distribution of each bank is solved.

5.1. Illustrating Result of the Shapley Value Method. In this
subsection, the Shapley value method does not consider
any factors to the federated income but distribute the
income according to the average distribution method.
Therefore, we can calculate the income distribution value
of three banks after FL according to the relevant knowledge
of cooperative game theory and Equations (6) and (7). The
details are shown in Table 3.

Therefore, add the last row of Table 3, and we achieve
the federated income value allocated by bank 1 which is
the following: φ1ðv, tÞ = 416:67; similarly, the federated
income value allocated by bank 2 is as follows: φ2ðv, tÞ =
416:67, and the federated income value allocated by bank 3
is as follows: φ3ðv, tÞ = 666:67.

5.2. Illustrating Result of the Enhanced Shapley Value
Method. In the FL incentive model, the income distribution
of the federated bank depends not only on the marginal con-
tribution but also on other factors that affect the total
income. In this example, we mainly consider the risk factor,
data quality, effort degree, and cost input. For banks with
higher risk, higher input data quality, higher level of cooper-
ation, and perhaps higher-cost investment, the weight of
benefit distribution should be appropriately increased.
According to the enhanced Shapley value model and the
following AHP flow chart in Figure 2, experts give scores
to the influence factors according to Table 1, and we achieve
the judgment matrix A, B1, B2, B3, B4. Here, matrix A is the
weight matrix of reference layer B to target layer.

Through the weight matrix A, the weight value of refer-
ence layer B to target layer A can be calculated. Similarly, we

Table 1: The explanation of index in expert judgment matrix.

Index Explanation

1 The factors i and j are equally essential

2 The factor i is more essential than j slightly

3 The factor i is more essential than j obviously

4 The factor i is more essential than j strongly

5 The factor i is more essential than j extremely

2, 4, 6, 8 The index between adjacent indexes above

Reciprocal

The value aij is obtained by factor i and factor j,
and the value aji = 1/aij is obtained by j

comparing factor with factor i

Table 2: Random consistency index.

Order 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.4 1.45
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can obtain the weight matrix B1, B2, B3, B4 of scheme layer C
to reference layer B and the corresponding weight. These
weight values of influence factors and the corresponding
λmax, and CR values are solved in the following sheet.

Suppose three banks construct judgment matrix accord-
ing to their own actual situation, and applying to formulas
(20)–(31), we achieve the following conclusions:

(1) Expert judgment matrix A − B and weight w

A B
1

B
1

B
2

B
2

B
3

B
3

1

1

3

1

1

4

1/3
,

w =

0.0918

0.2546

0.1040

, 𝜆max = 4.2556, CI = 0.0852, CR = 0.0957 < 0.1;

0.5496

1/4

1

B
3

1/5

1/3

1/4

B
4

5 3 4 1

(2) Expert judgment matrix B1 − C and weight w1
ð1Þ

B
1

C
1

C
1

C
2

C
2

C
3

C
3

1

1/5

1/3

5

1

4

3
, w1 (1) =

0.6267

0.0936 , 𝜆max = 3.0858, CI = 0.0429, CR = 0.0825 < 0.1;
0.2797

1/4

1

(3) Expert judgment matrix B2 − C and weight w2
ð1Þ

B
2

C
1

C
1

C
2

C
2

C
3

C
3

1

1/7

1/7

7

1

1/2

7
, w2 (1) =

0.7732

0.1392 , 𝜆max = 3.0536, CI = 0.0268, CR = 0.0516 < 0.1;
0.0877

2

1

(4) Expert judgment matrix B3 − C and weight w3
ð1Þ

B
3

C
1

C
1

C
2

C
2

C
3

C
3

1

1/9

2

9

1

8

1/2
, w3 (1) =

0.3743

0.0545 , 𝜆max = 3.0735, CI = 0.03675, CR = 0.0707 < 0.1;
0.5712

1/8

1

(5) Expert judgment matrix B4 − C and weight w4
ð1Þ

B
4

C
1

C
1

C
2

C
2

C
3

C
3

1

1/3

1

3

1

4

1
, w4 (1) =

0.4161

0.1260 , 𝜆max = 3.0092, CI = 0.0046, CR = 0.0088 < 0.1.
0.4579

1/4

1

Consequently, we let

w 1ð Þ = w1
1ð Þ,w2

1ð Þ,w3
1ð Þ,w4

1ð Þ
� 	

=

α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

2
664

3
775,

ð32Þ

and then, using formula (30), we can calculate

P =w 1ð Þw

=

0:6267 0:7732 0:3747 0:4161

0:0936 0:1392 0:0545 0:1260

0:2797 0:0877 0:5712 0:4579

2
6664

3
7775

0:0918

0:1040

0:2546

0:5496

2
6666664

3
7777775

=

0:4620

0:1062

0:4319

2
6664

3
7775,

ð33Þ

and ΔPi = Pi − 1/n = ð0:4620, 0:1062, 0:4319ÞT − 1/3 =
ð0:1287,−0:2271, 0:0986ÞT : According to formula (22),
ΔP2 < 0 means that the second bank’s enthusiasm in the
FL process is significantly lower than the average level of
the federated banks and should be punished. Therefore, using
formulas (20) and (21) can calculate the income distribution
of the three banks in FL as follows:

φ1′ v, tð Þ = 2500
6

+ 1500 × 0:1287 = 609:72,

φ2′ v, tð Þ = 2500
6

+ 1500 × −0:2271ð Þ = 76:02,

φ3′ v, tð Þ = 4000
6

+ 1500 × 0:0986 = 814:57:

ð34Þ

Through the numerical calculation of the enhanced
Shapley method, we achieve the expected result which is
the following:

〠
3

i=1
φi
′ v, tð Þ = 609:72 + 76:02 + 814:57 ≈ 1500: ð35Þ

After verification, it is not difficult to find that in the case
of the income distribution scheme of the enhanced Shapley
value method, the income of the three banks is consistent
with the theory.

5.3. Numerical Comparison. In this subsection, we compare
the results of income distribution using the Shapley value

Table 3: Bank 1 federated income calculation.

S 1f g 1, 2f g 1, 3f g 1, 2, 3f g
v Sð Þ 150 400 800 1500

v S \ 1f gð Þ 0 250 350 700

v Sð Þ − v S \ 1f gð Þ 150 150 450 800

Sj j 1 2 2 3

w Sj jð Þ 1/3 1/6 1/6 1/3

w Sj jð Þ v Sð Þ − v S \ 1f gð Þ½ � 150/3 150/6 450/6 800/3
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method with the results of income distribution using the
enhanced Shapley value method [40] in Table 4 and simulate
their values in Figure 3.

Table 4 indicates that the Shapley value method does not
consider any factors and the corresponding weights in the
income distribution; however, in the enhanced Shapley value
method, we consider the factors that affect income distribu-
tion and the corresponding weights. It is not difficult to find
out bank 1 has the largest weight, indicating that bank 1 is

the most positive in the whole FL process, followed by the
third bank, and the second bank is the worst, which should
be punished.

From Figure 3, we can clearly see that income allocated
by the Shapley value method shows that the first bank and
the second bank have the same income. However, relying
on the enhanced Shapley value method, it is easy to find that
the second bank is the least profitable.

6. Conclusion and Future Work

Federated learning (FL) is a distributed machine learning
framework, and how to design an incentive mechanism for
federated participants to sustain participate in model train-
ing is very important to train an accurate federated model.
In this paper, we propose an incentive mechanism using
the enhanced Shapley value method, and this incentive
mechanism considers four factors that affect the federated
income distribution, which can better reflect the fairness of
income distribution. Further, the analytic hierarchy process
is used to calculate the corresponding weight of four factors.
Numerical results verify that the income distribution of all
participants can better reflect multiple factor contribution
when using the incentive mechanism with the enhanced
Shapley value method, which gets a better incentive for fed-
erated participants.

In the next step, we will apply the proposed incentive
mechanism to solve the problem of participants’ income dis-
tribution in FL train models. This incentive mechanism can
be applied in WeBank, such as financial institutions, insur-
ance companies, and enterprises, for reducing loan risks
and improving economic earning significantly in practice.

Federal income distribution

Data quality B2Risk factor B1 Effort degree B3 Cost input B4

Income of Bank 2 C2 Income of Bank 3 C3Income of Bank 1 C1

Target layer A

Scheme layer C

Criterion layer B

Figure 2: AHP flow chart.

Table 4: Income comparison.

Participant
Shapley value method Enhanced Shapley value method

Average weight Income distribution Enhanced weight Income distribution

Bank 1 0.3333 416.67 0.4620 609.72

Bank 2 0.3333 416.67 0.1062 76.02

Bank 3 0.3333 666.67 0.4319 814.57

1 2 3
Bank

0

100

200
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Shapley Value method

Enhanced Shapley Value method

Figure 3: Income histogram of federated model.
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Federated learning is a new framework of machine learning, it trains models locally on multiple clients and then uploads local
models to the server for model aggregation iteratively until the model converges. In most cases, the local epochs of all clients
are set to the same value in federated learning. In practice, the clients are usually heterogeneous, which leads to the
inconsistent training speed of clients. The faster clients will remain idle for a long time to wait for the slower clients, which
prolongs the model training time. As the time cost of clients’ local training can reflect the clients’ training speed, and it can be
used to guide the dynamic setting of local epochs, we propose a method based on deep learning to predict the training time of
models on heterogeneous clients. First, a neural network is designed to extract the influence of different model features on
training time. Second, we propose a dimensionality reduction rule to extract the key features which have a great impact on
training time based on the influence of model features. Finally, we use the key features extracted by the dimensionality
reduction rule to train the time prediction model. Our experiments show that, compared with the current prediction method,
our method reduces 30% of model features and 25% of training data for the convolutional layer, 20% of model features and
20% of training data for the dense layer, while maintaining the same level of prediction error.

1. Introduction

In recent years, with the rapid development of 5G, “Intercon-
nection of All Things” has become a trend of information
technology. The speed of information circulation on the Inter-
net has reached an unprecedented level. The rapid informa-
tion circulation has brought a dramatic increase in data and
promoted the development of big data and artificial intelli-
gence technology. However, the interconnection of more
devices brings higher security risks. How to enjoy the benefits
brought by artificial intelligence on the premise of ensuring
data privacy has become a challenge.

In 2016, McMahan et al. [1] first proposed the concept of
federated learning to respond to the challenge. Multiple cli-
ents can jointly train the model under the coordination of
a central server or service provider in federated learning.
Each client uses its data to train the local model and uploads

the parameters of local model to the server for model aggre-
gation to achieve the global model. Therefore, the original
data of each client is stored locally without exchange or
transmission. At present, federated learning has been widely
applied to optimize the user experience on the premise of
protecting privacy in Google, Apple, and other enterprises.
For example, Google has widely used federated learning in
Gboard [2], Pixel mobile phone [3], and Android Message
[4], so as IOS13 [5] of Apple.

In the FedAvg algorithm proposed by McMahan et al.,
the central server generates a global model after aggregation
in each synchronization and then distributes the global
model to some clients which are selected randomly. When
the clients received the global model, they use their own data
to train their local models with the parameters of global
model in the specified epochs. After the local models are
trained, the clients will send them to the server, and the
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server will execute model aggregation with the weighted
average strategy. The global model will gradually converge
after several synchronizations. According to the FedAvg,
the update of global model in each synchronization can be

expressed by formula (1), where xðtÞg represents the parame-
ters of the global model in the t-th synchronization of model
aggregation, ni is the amount of client i’s data, and n denotes
the amount of all clients’ data. η is the client learning rate, τi
represents the number of client i’s local updates, which can
be obtained by bE∙ni/Bc, E is the number of local epochs,

B is the mini-batch size of the client, xðt,kÞi represents the
parameters of local model in k-th local update on i-th client
after the t − th synchronization, and gi denotes the local
model’s parameters gradient of client i.

x t+1ð Þ
g − x tð Þ

g = −〠
m

i=1

ni
n
∙η 〠

τi−1

k=0
gi x t,kð Þ

i

� �
, where τi =

E∙ni
B

� �
:

ð1Þ

In each synchronization of global model updating,
FedAvg sets the same number of local epochs E for all clients
participating in model aggregation, which will lead to ineffi-
cient training as the difference in training speed. A lot of
other federated learning algorithms are also set in the same
way, such as FedProx [6]. Although FedNova [7] has imple-
mented the training of the global model under the situation
of different local epochs, it randomly sets the number of
local epochs, which may set a small number of local epochs
for clients with high training speed, and leads to the idling
problem. But, FedNova gives us an inspiration: if we can
predict the model training time of clients, the local epochs
will be dynamically set according to the predicted training
time, which can reflect the training speed of clients.

As the idling of faster clients in federated learning will
prolong the training of global model, we propose to predict
the training time of deep learning models on heterogeneous
clients to guide dynamically set the number of local epochs.
In the deep learning task, the training time may be affected
by the amount of training data and the setting of hyperpara-
meters. We call the factors in training data and hyperpara-
meters that may affect the training time as model features.
Justus et al. [8] have trained a multilayer perceptron
(MLP) to predict the training time of layers in the neural
network using the model features and training time collected
on different GPUs. They divide model features into layer
features and predict the training time of the complete model
by accumulating the prediction results of multiple layers.
However, when the structure of the model is very complex
or the number of layers is very large, collecting many fea-
tures in each layer will increase the burden of the system
and hinder the convergence progress of global model. What
is more, when a new device is added to the federated learn-
ing system, it is necessary to collect a large amount of high
dimension training data on this device to tune the current
prediction model, which is very time-consuming and will
lead to long-term failure of training time prediction for the
new device.

To solve these problems, we propose a method based on
deep learning to reduce the number of model features and
the amount of training data required by training time pre-
diction. We first design a neural network to extract the influ-
ence of model features on training time, which can
accurately interpret the relationship between model features
and training time. Then, we propose a dimensionality reduc-
tion rule to extract the key features based on the influence of
model features on training time. A large number of experi-
ments show that compared with the current prediction
method, the features of the convolutional layer and dense
layer can be reduced by 30% and 20%, respectively, and
the error of training time prediction still maintains the orig-
inal level. At the same time, 25% convolutional layer training
data and 20% dense layer training data are reduced, which
speeds up the adaptation of the time prediction model to
the new device.

The rest of this paper is arranged as follows: in Section 2,
we discuss the related work in time prediction; in Section 3,
we introduce the method proposed in this work, including
our neural network and dimensionality reduction rule. We
also provide an algorithm to dynamically set the number
of local epochs in this section. To verify our work, we set
up a large number of experiments and interpret the experi-
mental results in Section 4. Finally, we provide the summary
of all work in Section 5.

2. Related Work

At first, machine learning regression algorithms are often
used to predict time series, such as linear regression, random
forest, and GBDT. Edelman et al. [9] use a linear regression
model to predict the execution time of surgery; Wang et al.
[10] train regression decision trees to predict the arrival time
of buses by using the nearest neighbor-based random forest
algorithm; Cheng et al. [11] use GBDT to predict traffic time
in different time ranges and find the variables which have a
great impact on prediction error. These regression methods
have good universality, and they can be used in many fields.
But, the error range of their prediction is very large, so they
can only be applied to scenarios with low sensitivity to time
fluctuations.

To narrow the error range of time series prediction,
some scholars have proposed the method with specific
domain knowledge to predict time series. It constructs math-
ematical models to achieve time series prediction, by study-
ing the calculation characteristics of the specific domain
such as PALEO [12] and Optimus [13] method. PALEO is
a method to predict the computing time by counting the
number of floating-point operations. It counts the number
of floating-point operations required in a model training
epoch and multiplies the number by a scale factor to predict
the training time. However, PALEO assumes that the whole
training process of the model is linearly related to the num-
ber of floating-point operations, ignoring some operations
that are not, such as parameter transmission. Unlike
PALEO, Optimus mathematically summarizes the factors
that affect model training, establishes a performance model
to evaluate the training speed, and can predict the model
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convergence according to online resources. Compared with
the regression methods, these works reduce the prediction
error range of model training time to a certain extent, but
the mathematical model established for the training is fuzzy
and it ignores some factors which contribute greatly to the
training time, resulting in instability of the prediction.

Because of the excellent performance of deep learning
models, researchers began to use deep learning methods
for predicting time series, and trying to further reduce the
error of time series prediction. Xu et al. [14] creatively com-
bine linear regression and deep belief network (DBN) to pre-
dict time series; PreVIous [15] trains the MLP model to
predict the inference time of convolutional neural networks
according to the throughput and energy consumption of
the Internet of Things vision device; Petersen et al. [16]
design a neural network mixed with convolutional layers
and LSTM layers to accurately predict the bus arrival time.
These works have achieved high prediction accuracy, but
their application in the training time prediction of deep
learning models is limited by the specific model structure.
Their time prediction models can only predict those network
structures contained in their training data (such as VGG
[17], ResNet [18], or user-defined network). When a net-
work with a new structure is encountered, their models need
to be retrained, that is, they cannot apply to other new deep
learning models. Although Fathom [19] has proved that the
inference time of a model can be estimated by another
model with a similar structure and known performance, its
prediction is very rough, and it is still to be proved that
whether this method can be used in the prediction of train-
ing time. In order to accurately predict the training time of
networks with different structures, Justus et al. divide the
neural network into layers and classify these layers (such as
convolutional layer and dense layer) according to the struc-
tural characteristics, then collect the layer features and train
an MLP model to predict the training time of a single layer
in the neural network, which can achieve high prediction
accuracy. This method has good generality. When a network
with a new structure is encountered, it only needs to predict
the training time of layers according to the layer model fea-
tures, and then the training time of the whole model can be
predicted by accumulating the training time of layers. How-
ever, there are some problems when Daniel Justus’method is
applied to federated learning: (1) the relationship between
model features and training time is not accurate. They
assumed that almost every model feature is necessary for
training time prediction, including features that have no or
little impact on the final result. (2) Too many unimportant
features need to be collected. When the neural network is
very deep, collecting features in every layer will increase
the burden of the federated learning system, and it is usually
difficult to obtain all details of clients’ models. (3) High
training cost caused by too much redundant training data.
Unimportant features produce a lot of redundant training
data, which increases the transfer training cost of the time
prediction model on the newly added device and reduces
the training efficiency of the global model.

To solve the above problems, we propose a training time
prediction method based on deep learning, which can reduce

the required model features and training data on the premise
of ensuring low prediction error and improve the feasibility
of practical application in federated learning. The contribu-
tions of this paper are as follows:

(1) We design a neural network to extract the influence
of model features on training time according to the
characteristics of the deep learning model, which
provides an effective analysis of the relationship
between model features and training time

(2) We propose a dimensionality reduction rule to
extract the key features that have a great impact on
training time according to the influence of features,
which can reduce the number of features required
for predicting model training time without loss of
prediction accuracy. By using the dimensionality
reduction rule, 7 dimensions are extracted from con-
volutional layer features (10 dimensions in total),
and 4 dimensions are extracted from dense layer fea-
tures (5 dimensions in total)

(3) We train the time prediction model using
dimension-reduced datasets. Compared with the
method of Justus et al., the training data of the con-
volutional layer is reduced by 25%, and the training
data of the dense layer is reduced by 20%, with the
error of prediction remaining at the same level

3. Methodology

In this section, we will introduce the overall process and
technical details of extracting the influence of model features
on training time, dimensionality reduction, and the algo-
rithm of dynamically setting the number of local epochs.
First, we prove the feasibility of accumulating the layers’
training time for the prediction of the whole network by
interpreting the calculation process of training. And we
describe the layer features based on the work of Justus
et al. in detail. Second, we introduce the structure of the neu-
ral network (Here we name our neural network weights
model), which is designed for extracting the influence of
model features on the training time. Third, we propose the
dimensionality reduction rule to extract the key features
which have a great impact on training time, based on the
influence of model features. Finally, we provide a representa-
tive algorithm for dynamically setting the number of local
epochs.

3.1. Feature Analysis. One training of neural network con-
sists of forward propagation and backward propagation.
With the widespread use of Batch Normalization [20] which
can speed up the convergence of neural networks, it usually
has to perform a batch of forward propagation before one
backward propagation. A complete round of training
(including multiple batches) of a neural network in the
training set is called an epoch. Generally, a model with high
accuracy needs to be trained many epochs until the model
converges. At present, the method of setting the number of
epochs is based on the experience of deep learning engineers.
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It needs to set the different number of epochs for different
models to achieve the specified accuracy. Therefore, it
becomes a challenge to accurately predict the training time
of models with the different number of epochs. In addition,
since the structures of models are heterogeneous, the train-
ing time will be significantly different. For example, the
training of the convolutional layer is usually more time-
consuming than the dense layer. Therefore, it is also a chal-
lenge to accurately predict the training time for models with
different structures. To solve these problems, Justus et al.
proposed a method to predict the training time of different
layers in a batch. The training time of the whole model in
one batch can be obtained by accumulating the prediction
results of layers. And the total training time can be predicted
by accumulating the training time in batches. Ulteriorly, we
prove the feasibility of predicting the whole model’s training
time through layers combined with the training characteris-
tics and structural characteristics of the deep learning model.

Usually, a neural network needs to be trained repeatedly
on the training set many times, which has obvious iteration
characteristics. According to the iteration, the time required
for model training can be expressed as formula (2), where E
represents the number of epochs, M represents the number
of batches in an epoch, and Tb denotes the training time in
a batch. The total number of batches in E epochs can be
obtained by bE∙n/Bc, n is the amount of training data, and
B is the size of a batch (i.e., batch size).

T = E∙M∙Tb =
E∙n
B

� �
∙Tb: ð2Þ

One training of the neural network consists of a batch of
forward propagation and one backward propagation. There-
fore, the time cost of the propagation can be expressed as
formula (3), tforward represents the time cost of forward prop-

agation, tbackward represents the time cost of backward prop-
agation, and xi is the i-th training data in a batch.

Tb = 〠
B

i=1
tforward xið Þ

 !
+ tbackward: ð3Þ

Combining formula (2) and formula (3), the training
time of a deep learning model can be described as the follow-
ing formula:

T = E∙
n
B

j k
∙ 〠

B

i=1
tforward xið Þ

 !
+ tbackward

" #
: ð4Þ

A neural network is composed of many layers, and the
output of the current layer is used as the input of the next
layer. Besides the iteration characteristic of the training pro-
cess, the neural network also has obvious hierarchical struc-
ture characteristics. According to this hierarchy
characteristic, a complete neural network can be divided into
layers, and its forward and backward propagation can be
expressed as formulas (5) and (6) on layer level. tlforward
and tlbackward, respectively, represent the time cost of layer l
’s forward and backward propagation, and m denotes the
number of model layers.

tforward xið Þ = 〠
m

l=1
tlforward xið Þ, ð5Þ

tbackward = 〠
m

l=1
tlbackward: ð6Þ

Combining formula (4) with formulas (5) and (6), the
training time formula of the complete model with the layer’s

Table 1: The description of layer features.

Kind of features Features Description

Common features
Activation function

The activation function of neuron output, the common ones
are sigmoid, tanh, and relu, etc.

Optimizer
The optimization method of the model, the common ones are SGD,

Adadelta, Adagrad, momentum, Adam, and RMS prop, etc.

Dense features
Number of inputs

Since the MLP layers are fully connected, the input of each layer comes
from the output of the previous layer.

Number of neurons The number of neurons.

Convolutional features

Matrix size The size of the input data.

Kernel size The size of convolutional kernel.

Input depth The number of input channels.

Output depth The number of output channels.

Stride size The convolution step size of convolution kernel.

Input padding The number of edge padding after convolution.

Hardware features

GPU clock speed GPU clock cycle speed.

GPU memory bandwidth GPU bandwidth.

GPU core count
The number of GPU processing units, which represents

the number of CUDA cores in NVIDIA GPU.
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training time as the unit can be derived, as shown in the fol-
lowing formula.

T = E∙
n
B

j k
∙ 〠

B

i=1
〠
m

l=1
tlforward xið Þ

 !
+ 〠

m

l=1
tlbackward

" #
: ð7Þ

In summary, the training time of a single layer can be
used as the basic unit of the whole model’s training time.
Therefore, for models with number of different epochs, the
total training time of the model can be obtained by accumu-
lating training time in a batch; for models with different
structures, one batch training of the model can be obtained
by accumulating the forward and backward propagation
time of layers, well solved the two challenges in training time
prediction of models.

In order to predict the training time of a single layer, it is
necessary to analyze the layer features of neural networks.
First of all, we classify the layer features into common fea-
tures, dense features, convolutional features, and hardware
features according to the device characteristics and comput-
ing characteristics. And then we extract the features accord-
ing to the categories. The layer features are shown in Table 1.
Since the deep learning model contains a large number of
convolutional layers and dense layers, we mainly focus on
the convolutional layer and dense layer in this paper. And
we trained the time prediction model for the convolutional
layer and the dense layer, respectively, based on the data of

layer features and training time, which are collected on six
different types of GPUs (P100, V100, K40, K80, M60, and
1080ti).

3.2. Model Design. In the previous section, we analyzed the
layer features which may affect the training time of neural
networks by parsing the structure of different layers. How-
ever, we find that collecting layer features will increase the
system overhead for deep-seated neural networks. For exam-
ple, in terms of the ReNet101 with 100 convolutional layers
and 1 dense layer, if we collect 10 features of the convolu-
tional layer and 5 features of the dense layer, we finally need
to collect 1005 features to predict the training time of
ResNet101. For clients with low computing power, the pro-
cess of predicting will take a lot of time.

What is more, since there are a large-scale of heteroge-
neous devices in federated learning, we cannot use the time
prediction model to predict the training time of models for
newly added devices whose types are not in the set of preset
device types. To predict the training time for the new device,
we need to tune the parameters of the time prediction model
based on the training data collected on this device. But it
needs a long time to collect a large number of high dimen-
sion training data for tuning the time prediction model.
The prediction model cannot quickly adapt to the new
device, and the number of local epochs is set to be a fixed
value for a long time, which may lead to the clients remain-
ing idle with high training speed.

For cutting down the time cost of predicting and accel-
erating the adaptation of the time prediction model to new
devices, it is necessary to reduce the dimension of layer
features and redundant training data. In the case of ensur-
ing high prediction accuracy, we choose to exclude the
features that have no or little impact on training time.
So, the influence of model features on training time needs
to be analyzed.

In order to extract the influence of features, we abstract
the relationship between model features and training time
as f ðxÞ =wx, where x represents the model features, f ðxÞ
denotes the training time of a single layer, and w denotes
the weights of features which can be treated as the influence
of features. It should be noted that due to different value
ranges of features, and w cannot represent the real influence

N: Number of features

features

ReLu ReLu
ReLu&
dropoutReLuReLu

ReLu

It's Output: 1
Time cost of trainning

Input NInput N Weights: N

Layer n: 128Layer 3: 128Layer 2: 64
Layer 1: 32

Figure 1: The structure of weights model.

Table 2: Hyperparameter settings.

Hyperparameter Value

Initial learning rate 0.1

The decay period of learning rate 40

The decay ratio of learning rate 2− epoch/40b c

L2 regularization 0.00001

Dropout 0.2

Batchsize 128

Epoch 300

Activation ReLu

Optimizer Adam

Loss Mean squared error
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of features when simply taking the original feature data as x.
The value of x should be the standardized feature data.

In related work, we introduced some machine learning
regression models, including linear models and nonlinear
models. The linear regression model can directly extract
the features’ weights w, but it underperforms in time predic-
tion. The nonlinear models are difficult to extract w since
their weights are implicitly dispersed in the model parame-

ters. To get the weights of features accurately, we design a
weights model which can use a neural network to explicitly
extract features. The structure of the weights model is shown
in Figure 1. See Table 2 for the hyperparameter settings of
weights model.

As can be seen from Figure 1, the input of the weights
model is the standardized feature data, and the output is
the predicted training time. Each neuron of layers is

Input:W weights model, N the number of dataset, F feature set, Xk dataset k, Md the amount of dataset d
Output:Θ the set of key features
1: Initialize Θ
2: For each dataset
3: wi,j ⟵GetWeights ðW, XkÞ
4: ri,j ⟵rank ðwi,jÞ
5: End for
6: Forj in Fdo
7: meanrankj ⟵ ð1/NÞ∑N

d=1ð1/MdÞ∑Md
i=1ri,j

8: meanstdj ⟵ ð1/NÞ∑N
d=1RankStdðd, jÞ

9: Ifmeanrankj > s andmeanstdj < rthen
10: AddNewFeature ðΘ, jÞ
11: End if
12: End for
13: ReturnΘ

Algorithm 1: Dimensionality reduction.

Input: The K clients are indexed by i; B local minibatch size, T Coomunication time window, M time prediction model.
1: Server executes:

2: initialize xð0Þg

3: for each round t, t =1,2,…,Ndo
4: m⟵Max ðC∙K , 1Þ
5: St ⟵ ðrandom set of m clientsÞ
6: for each client i ∈ St in parallel: do

7: ηdðtÞi ⟵ClientUpdateði, xðtÞg ,MÞ
8: end for

9: xðt+1Þg ⟵ xðtÞg − τðtÞef f∑
m
i=1ðni/nÞηdðtÞi

10: end for

11: ClientUpdateði, xðtÞg ,MÞ:
12: xðtÞi ⟵ xðtÞg // Client receives the global model
13: Ni ⟵ (number of batches per epoch divided by B)

14: f ⟵GetFeaturesði, xðtÞi Þ
15: Ttrain ⟵ GetTrainingTime(M, f)
16: Ei ⟵ bT/Ttrainc
17: for each epoch from e to Eido
18: for each batch from k to Nido

19: xðt+1,kÞi ⟵ xðt,kÞi − ηgðt,kÞi

20: dðt,kÞi ⟵ dðt,kÞi + ð1/Ei ∗NiÞgiðxðt,kÞi Þ
21: dðtÞi ⟵ dðtÞi + dðt,kÞi
22: end for
23: end for

24: returnηdðtÞi to the Server

Algorithm 2: Dynamically set number of local epochs.
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activated by ReLu and then output. For ensuring the conver-
gence of the model, the settings of layer 1 to layer N are con-
sistent with the hidden layers of Justus et al.’s time
prediction model. In order to learn the weights of features,
we multiply the output of the weights layer and the input
layer, and then output after ReLu activation. The weights
of features w calculated from layer 1 to weights layer is mul-
tiplied by the feature data x to form f ðxÞ =wx.

Different from the simple linear model whose w is fixed,
the weight extracted by weights model will change with the
input data, which can fit the training data better. In weights
model, for each input data xi, the output is f ðxiÞ = gðxiÞxi,
where gðxiÞ is a weight function that the weight will change
with the input data. It can be obviously found that the
weight gðxiÞ is obtained by the deep learning model, which
means that it can not only benefit from the high accuracy
of the nonlinear model but also use the output of weight
layer to obtain the weight data explicitly. Justus et al. have
proved that their MLP model has higher prediction accuracy
than the linear regression model, but it cannot characterize
the performance of our weights model, which is the recon-
structed MLP. Therefore, we conduct the comparative
experiments to prove the superiority of weights model (see
Section 4.2 for the results).

3.3. Dimensionality Reduction Rule. We have introduced the
weights model gðxiÞ which used to extract the weights of
features in the last section. As the weights gðxiÞ will change
with the input data xi, the order of features’ influence (i.e.,
weights ranking) may fluctuate. For example, for input data
x1, the feature batchsize has the greatest influence, but for
data x2, its influence may be the smallest. The prediction
error will be further expanded and the influence of features
cannot be measured uniformly because of the fluctuation
of ðxiÞ. Therefore, we use the average ranking of feature
weights and the average standard deviation of weights rank-
ing to comprehensively analyze the influence of features.
The average ranking of feature weights can represent the
overall contribution of features to training time and the
average standard deviation of weights ranking can measure
the fluctuation of weights. According to these two metrics,
we propose a dimensionality reduction rule to extract the

Table 3: The description of datasets.

Datasets Description

P100_Conv Convolutional layer feature dataset of P100.

P100_Dense Dense layer feature dataset of P100.

V100_Conv Convolutional layer feature dataset of V100.

V100_Dense Dense layer feature dataset of V100.

K40_Conv Convolutional layer feature dataset of K40.

K40_Dense Dense layer feature dataset of K40.

All_Conv
Convolutional layer feature datasets of six

different types of GPUs, including P100, V100,
K40, K80, M60, and 1080ti (stacked dataset).

All_Dense
Dense layer feature datasets of six different
types of GPUs, including P100, V100, K40,
K80, M60, and 1080ti (stacked dataset).

Table 4: Layer features in the convolutional layer.

Features Description

Batchsize The size of a batch.

Elements_matrix The number of elements of input.

Elements_kernel
The number of elements of

convolutional kernel.

Channels_in The number of input channels.

Channels_out The number of output channels.

Padding The number of edge padding.

Strides The step size of convolution.

Use_bias Whether to use bias, 0: not use 1: use.

Opt_SGD
Whether to use SGD optimizer,

0: not use 1: use.

Opt_Adadelta
Whether to use Adadelta optimizer,

0: not use 1: use.

Opt_Adagrad
Whether to use Adagrad optimizer,

0: not use 1: use.

Opt_Momentum
Whether to use momentum optimizer,

0: not use 1: use.

Opt_Adam
Whether to use Adam optimizer,

0: not use 1: use.

Opt_RMSProp
Whether to use RMSProp optimizer,

0: not use 1: use.

Act_relu
Whether to use ReLu activation,

0: not use 1: use.

Act_tanh
Whether to use tanh activation,

0: not use 1: use.

Act_sigmoid
Whether to use sigmoid activation,

0: not use 1: use.

Table 5: Layer features in the dense layer.

Features Description

Batchsize The size of a batch.

Dim_input The dimension of input.

Dim_output The dimension of output.

Opt_SGD
Whether to use SGD optimizer,

0: not use 1: use.

Opt_Adadelta
Whether to use Adadelta optimizer,

0: not use 1: use.

Opt_Adagrad
Whether to use Adagrad optimizer,

0: not use 1: use.

Opt_Momentum
Whether to use momentum optimizer,

0: not use 1: use.

Opt_Adam
Whether to use Adam optimizer,

0: not use 1: use.

Opt_RMSProp
Whether to use RMSProp optimizer,

0: not use 1: use.

Act_relu
Whether to use ReLu activation,

0: not use 1: use.

Act_tanh
Whether to use tanh activation,

0: not use 1: use.

Act_sigmoid
Whether to use sigmoid activation,

0: not use 1: use.
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key features that have a great overall influence on training
time. Our analysis method and dimensionality reduction
rule will be introduced in detail as follows.

Before analyzing the influence of feature weights, we first
need to extract the weights of features by weights model
based on multiple datasets described in Section 3.1. Then,
we use formula (8) to calculate the ranking of the j-th fea-
ture’s weight in weights data i, where wi,k represents the
weight of the k-th feature in the weight data i, and n repre-
sents the total number of features.

Rank i, jð Þ = 1 + 〠
n

k=1
max

wi,k
�� �� − wi,j

�� ���� ��
wi,k
�� �� − wi,j

�� �� , 0
 !

: ð8Þ

The standard deviation is an indicator which can reflect
the extent of data dispersion. For measuring the fluctuation
of the ranking of feature weights, we calculate the standard
deviation of weights’ ranking, and use RankStdðd, jÞ to rep-
resent the standard deviation of the j-th feature weight’s
ranking of dataset d.

Because of the device heterogeneity in federated learn-
ing, it is not universal to extract key features based only on
the dataset generated by a single device. Therefore, we ana-

lyze the weights of features in many datasets collected from
different GPUs. We use formula (9) to calculate the aver-
age ranking of feature weights to represent the overall
contribution of features on heterogeneous devices and
use formula (10) to obtain the average standard deviation
of weights ranking for measuring the overall fluctuation
extent of the weights ranking. Where N represents the
number of datasets, and Md represents the data volume
of dataset d.

MeanRank jð Þ = 1
N
〠
N

d=1

1
Md

〠
Md

i=1
Rank i, jð Þ, ð9Þ

MeanRankStd jð Þ = 1
N
〠
N

d=1
RankStd d, jð Þ: ð10Þ

MeanRank and MeanRankStd reflect the overall influ-
ence of features on training time from the perspective of
contribution and fluctuation. In order to reduce the fea-
ture dimension, we formulate a unified dimensionality
reduction rule according to MeanRank and MeanRankStd
for extracting the key features which have a great overall
impact on training time. The dimensionality reduction
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Figure 2: (a) The structures of baseline and weights model for single-GPU datasets. (b) The structures of baseline and weights model for
stacked datasets.
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rule can be expressed as formula (11), Θ represents the set
of key features, F is the collection of all features, and s and
r are constants, whose values need to be set according to
the MeanRank and MeanRankStd. Note that the values
of s and r are set empirically. After many experiments,
we found that the effect of dimensionality reduction is
the best when s is set to 1.55 and r is set to 8 for convo-
lutional layers in this paper. And for dense layers, s should
be set to 2 and r should be set to 8.

Θ = j ∣MeanRank Std jð Þ > s ∪MeanRank jð Þ < r, jϵFf g:
ð11Þ

The selection of key features by dimensionality reduc-
tion rule can be divided into the following two steps:

(1) Select the features with greater MeanRankStd
(greater than s)

From the metrics of MeanRankStd, the overall stability
of weights ranking can be intuitively judged. Features with
smaller MeanRankStd have a relatively stable overall influ-
ence on training time, while others with greater
MeanRankStd usually fluctuate wildly. As for features with

strong ranking fluctuations, we find that they may have a
small influence on some input data, but have a large influ-
ence on other data. It will cause serious deviations in the pre-
diction of training time without such features. So, we choose
to extract features with greater MeanRankStd.

(2) Select the features with smaller MeanRank (smaller
than r)

After screening in (1), there are some features with stable
rankings (smaller MeanRankStd) in the feature collection.
These features contain the ones with smaller MeanRank
which have a greater overall impact on training time, such
as the feature input channels whose influence is the largest
for almost every input data. Therefore, we select the features
with smaller MeanRank from the rest of the feature
collection.

The process of extracting key features using the dimen-
sionality reduction rule can be described by Algorithm 1.

By using the dimensionality reduction rule, the layer fea-
tures with no or little impact on training time will be elimi-
nated and the high prediction accuracy will be kept.
Therefore, the dimension of layer features and redundant
training data for the time prediction model will be reduced.
Such as the feature dimension and training data are reduced
by 30% and 25% for the convolutional layer, and they are
both reduced by 20% for the dense layer. We take Justus
et al.’s time prediction model as the baseline to verify the
accuracy of our dimensionality reduction rule. Then, we
retrain the baseline with the dimension-reduced dataset
and compare it with the original baseline. The results show
that the prediction error of the model trained with the
dimension-reduced dataset remains at the same level as the
original baseline. See the experimental analysis in Section
4.3 for details.
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Figure 3: Predicted time vs. observed time. The upper of the figure: predicted time vs. observed time on the convolutional feature datasets,
from left to right, is the results on P100_Conv, V100_Conv, K40_Conv, and All_Conv; the lower of the figure: predicted time vs. observed
time on the dense feature datasets, from left to right, is the results on P100_Dense, V100_Dense, K40_Dense, and All_Dense.

Table 6: Weights model vs. linear regression model on P100, V100,
and K40.

Datasets
RMSE

Weights model Linear regression model

P100_Conv 3.09ms 12.59ms

V100_Conv 1.85ms 9.46ms

K40_Conv 11.67ms 47.41ms
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3.4. Dynamically Setting Number of Local Epochs. In feder-
ated learning, each client only uses its own data for model
training. And most of the training data are generated by
the client itself. Due to the different characteristics of clients,
the distribution of data generated by different client is usu-
ally different. Therefore, the training data of federated learn-
ing is nonindependent and identically distributed (Non-
IID). Unfortunately, Non-IID will cause the divergence
between the local model and the global model, resulting in
the error convergence of the local model. If the number of
local epochs set for each client is different, it will undoubt-
edly aggravate the divergence of the local model. Therefore,
FedNova can eliminate the fast error convergence by nor-
malized averaging the gradients of local models and ensure
the convergence of the global model when set different num-
ber of local epochs for clients. The update of the global
model in FedNova can be described by the following for-
mula:

x t+1ð Þ
g − x tð Þ

g = −τ tð Þ
ef f 〠

m

i=1

ni
n
∙ηd tð Þ

i , where τi =
E∙ni
B

� �
: ð12Þ

Compared with the update of global model in FedAvg
(formula (1)), FedNova uses the normalized averaging gradi-

ent dðtÞi to replace the accumulation of the local model’s gra-

dient∑τi−1
k=0 giðxðt,kÞi Þ, which can restrict the error convergence

of local models. τðtÞef f in formula (11) can be treated as the
learning rate of the global model. It turns out that compared
with FedAvg, FedNova can improve the performance of the
global model while reducing the number of communications
between the clients and the server.

Although we can set different number of local epochs for
clients while ensuring good performance of the global model
by using FedNova, the problem of the clients with high train-
ing speed waiting for the clients with low training speed still
exists. This is because FedNova adopts a random sampling
method within a given value range to set the number of local
epochs, which may set a small number of epochs for the faster
clients and set a large number of epochs for the slower clients.

In order to solve the idling problem and improve the
training efficiency of global model, we predict the training
time of local models in FedNova for guiding the dynamic
setting of local epochs. It should be noted that training time
prediction can be combined with any algorithm that sup-
ports setting different numbers of local epochs for clients.
And we choose FedNova for its excellent performance. We
use the time prediction model trained with dimension-
reduced datasets to predict the training time of one epoch
of local models, and then we calculate the number of local
epochs for each client according to the time window of com-
munication between the client and the server. There are
many ways to combine FedNova and training time predic-
tion. For example, you can choose to predict the training
time of local models on the server side and calculate the
number of local epochs, or you can choose to send the time
prediction model to clients and let clients calculate the num-
ber of local epochs by themselves. In actual scenarios, the

Table 7: Weights model vs. baseline.

Datasets Model Test RMSE Test MAPE Validation RMSE Validation MAPE

P100_Conv
Baseline 2.962ms 14.36% 3.455ms 15.17%

Weights model 2.894ms 15.24% 3.091ms 14.58%

V100_Conv
Baseline 1.722ms 11.44% 1.547ms 11.13%

Weights model 1.660ms 11.03% 1.850ms 11.49%

K40_Conv
Baseline 10.136ms 15.59% 10.361ms 16.39%

Weights model 9.051ms 15.14% 11.675ms 15.16%

P100_Dense
Baseline 0.033ms 3.15% 0.032ms 3.04%

Weights model 0.032ms 3.05% 0.032ms 3.02%

V100_Dense
Baseline 0.051ms 6.26% 0.046ms 5.84%

Weights model 0.046ms 6.07% 0.047ms 6.10%

K40_Dense
Baseline 0.157ms 7.57% 0.179ms 7.92%

Weights model 0.159ms 7.11% 0.150ms 7.07%

All_Conv
Baseline 4.079ms 11.44% 4.021ms 11.16%

Weights model 4.273ms 10.40% 3.893ms 10.39%

All_Dense
Baseline 0.077ms 4.70% 0.074ms 4.68%

Weights model 0.077ms 4.72% 0.076ms 4.73%

Influence

Channels_in

Elements_kernal

Value

Figure 4: Nonlinear influence.
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way of dynamically setting the number of local epochs needs
to be determined according to specific needs. Next, we will
introduce the method based on the FedNova and training
time prediction algorithm, and the details are described in
Algorithm 2.

First, the server randomly selects some clients according
to proportion C and collects their model updates. Second,
the server aggregates the updates of the local models to the
global model and prepares the time prediction model for cli-
ents. Third, the client obtains the global model and time pre-
diction model from the server, divides the local dataset into
batches, and extracts the features required for time predic-
tion. Then, the client uses the time prediction model to pre-
dict the training time of one epoch of the local model and
calculates the number of local epochs according to the preset
communication time window T . Finally, the client uses Fed-
Nova to update the local model and send it to the server.

4. Experiments

In this section, we arrange experiments to verify the effec-
tiveness of our work, including the weights model and the
dimension reduction rule. First, the experimental settings
are introduced, including the selection and description of
datasets, the setting of model structure, the evaluation met-
rics, and the introduction of the experimental environment.
Second, we use the datasets collected on heterogeneous
GPUs to train the weights model for verifying its conver-
gence, and then we conduct a large number of comparative
experiments to compare the prediction error between
weights model and baseline. We also compare the perfor-
mance of weights model and linear regression model to
prove the superiority of our weights model. Finally, for ver-
ifying the effectiveness of the dimensionality reduction rule,
we train the baseline based on the complete dataset and the
dimension-reduced dataset, respectively, and then compare
the error level of prediction between them.

4.1. Experiment Settings

4.1.1. Datasets. We use the layer features described in Section
3.1 and use 8 different datasets for experiments. There are 6
datasets composed of common features, convolutional features,
dense features, and training time collected on different GPUs,
which we called single-GPU datasets. The other 2 datasets are
the stacking of these 6 datasets, which we called stacked data-
sets. In order to distinguish different types of GPU, we add three
hardware features to the stacked datasets: GPU bandwidth,
GPU processing units’ number, and GPU clock cycle speed.
See Table 3 for the description of the datasets.

The layer features selected in the convolutional layer are
shown in Table 4. One-hot encoding is used to represent dif-
ferent optimizers and activation functions for more appro-
priately measuring the feature distance.

The number of features in the dense layer is less than
that in the convolutional layer, and some features are differ-
ent, such as the dimension of input and the dimension of
output. The features selected in the dense layer are shown
in Table 5.

4.1.2. Model Settings. Compared with the baseline, we only
add a weights layer at the end of hidden layers for extracting
the weights of features, and the rest of the layers are the same
as the baseline. Note that the data volume of the stacked
datasets (All_Conv and All_Dense) is larger than single-
GPU datasets, and three more hardware features are added
to distinguish the GPUs. Therefore, for the single-GPU data-
sets and stacked datasets, the number of weights model’s
layers are different. Figure 2 shows the settings of the

Table 8: The standard deviation of convolutional feature weights
ranking.

Features
P100_
Conv

V100_
Conv

K40_
Conv

MeanRankStd

Batchsize 1.7653 1.3045 1.4026 1.4908

Elements_
matrix

2.3233 2.0775 1.1578 1.8529

Elements_
kernel

1.7904 2.2949 1.4356 1.8403

Channels_in 0.4440 0.4218 0.7599 0.5419

Channels_out 3.0549 2.1915 2.1091 2.4518

Padding 1.6192 1.8036 1.2830 1.5686

Strides 2.4347 2.0012 3.2603 2.5654

Use_bias 1.2580 1.5514 1.3097 1.3730

Opt_SGD 2.3229 3.0940 1.6340 2.3503

Opt_Adadelta 2.2164 2.8144 1.9606 2.3305

Opt_Adagrad 2.7459 2.4789 1.1959 2.1402

Opt_
Momentum

2.6090 2.1952 1.1699 1.9914

Opt_Adam 1.4019 2.1550 2.4311 1.9960

Opt_RMSProp 2.0723 2.3218 0.9707 1.7883

Act_relu 1.5234 1.0455 0.9251 1.1647

Act_tanh 1.7225 1.1762 1.4122 1.4370

Act_sigmoid 1.3042 1.1182 1.1107 1.1777

Table 9: The standard deviation of dense feature weight ranking.

Features
P100_
Dense

V100_
Dense

K40_
Dense

MeanRankStd

Batchsize 1.8927 1.4465 1.5556 1.6316

Dim_input 3.3842 2.2099 2.3296 2.6412

Dim_output 2.4491 2.7088 1.7920 2.3166

Opt_SGD 2.8395 2.9443 2.1840 2.6559

Opt_Adadelta 3.3851 2.9903 1.3891 2.5882

Opt_Adagrad 2.0481 3.0305 2.0840 2.3875

Opt_
Momentum

2.8527 2.9168 1.9885 2.5860

Opt_Adam 2.7488 2.9804 2.4706 2.7333

Opt_
RMSProp

3.4788 1.7232 2.0469 2.4163

Act_relu 1.8273 1.4856 1.0920 1.4683

Act_tanh 2.1289 2.2291 0.7319 1.6966

Act_sigmoid 2.2241 2.1797 1.1457 1.8498
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baseline and weights model for the single-GPU datasets and
the stacked datasets.

4.1.3. Metrics. We use the root mean square error (RMSE)
and mean absolute percentage error (MAPE) to measure
the error between predicted training time and observed
training time. The calculation formula of RMSE is shown
in equation (13), and the unit is milliseconds (ms); the calcu-
lation formula of MAPE is shown in equation (14). Yobs,i
represents the observed training time of the i-th input data,
and Ypred,i represents the predicted training time of the
model of the i-th input data.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 Yobs,i − Ypred,i
� 	2

n

s
, ð13Þ

MAPE = 100
n


 �
〠
n

i=1

Yobs,i − Ypred,i
Yobs,i

����
����: ð14Þ

4.1.4. Experimental Environment. The hardware environ-
ment of our experiments is a stand-alone machine, using a
CPU for training which contains 6 cores and 12 threads,
the main frequency of this CPU is 3.1GHz, and the memory
is 16G. And we use TensorFlow 1.13.2 framework on 64-bit
Windows 10 operating system to finish this program.

4.2. Analysis of Weights Model

4.2.1. Convergence Verification of Weights Model. In the con-
vergence verification of weights model, we train the weights
model using all datasets. Figure 3 shows the comparison of

predicted time and observed time on different datasets. On
the P100_Conv, V100_Conv, K40_Conv, and All_Conv, the
RMSE of weights model is 2.894ms, 1.660ms, 9.051ms,
and 4.273ms, respectively; on the P100_Dense, V100_Dense,
K40_Dense, and All_Dense, the RMSE of weights model is
0.032ms, 0.046ms, 0.159ms, and 0.077ms, respectively.
Therefore, the weights model has good convergence whether
based on single-GPU datasets (P100, V100, and K40) or
stacked datasets (All_Conv and All_Dense).

4.2.2. Weights Model vs. Linear Regression Model. In order
to verify the comparative analysis of the weights model
and linear regression model in Section 3.2, we use P100_
Conv, V100_ Conv, and K40_ Conv datasets to train the
weights model and linear regression model, respectively.
Table 6 shows the RMSE comparison between the linear
model and weights model. It can be seen that the error
of weights model is far lower than that of the linear
regression model. On the P100_ Conv, V100_ Conv, and
K40_ Conv datasets, the RMSE of the linear regression
model is 9.5ms, 7.61ms, and 35.74ms larger than the
weighted model, respectively.

4.2.3. Weights Model vs. Baseline. Since the training time
prediction accuracy of the weights model determines the
authenticity of feature weights extracted by weights model,
we divide the dataset into the training set, test set, and vali-
dation set according to the ratio of 8 : 1 : 1 and calculate the
test error and the validation error of the weights model to
prove the accuracy of weights model. The comparison of test
error and verification error between weights model and
baseline shows that weights model reaches the same error
level as the baseline on P100, V100, K40, and stacked data-
sets (see Table 7). It is worth mentioning that on the test sets
of K40_Conv, K40_Dense, P100_Dense, and All_Conv, the
MAPE of weights model is lower than baseline by 0.1%,
0.19%, 0.46%, and 1.04%, respectively, and on the test sets

Table 11: The mean ranking of dense feature weights.

Features
P100_
Dense

V100_
Dense

K40_
Dense

MeanRank

Batchsize 10.3196 10.6268 9.5132 10.1532

Dim_input 6.0088 4.9544 3.854 4.939066667

Dim_output 7.1052 4.882 5.9032 5.963466667

Opt_SGD 4.7872 7.2696 3.9624 5.339733333

Opt_Adadelta 4.396 4.2684 2.2148 3.6264

Opt_Adagrad 5.1912 6.3724 7.1868 6.250133333

Opt_
Momentum

8.072 7.9004 3.562 6.511466667

Opt_Adam 5.4128 3.7576 5.1504 4.7736

Opt_
RMSProp

7.35 2.5372 5.1288 5.005333333

Act_relu 6.0432 10.2896 9.9068 8.746533333

Act_tanh 5.6348 7.3096 11.452 8.132133333

Act_sigmoid 7.6792 7.832 10.1656 8.558933333

Table 10: The mean ranking of convolutional feature weights.

Features
P100_
Conv

V100_
Conv

K40_
Conv

MeanRank

Batchsize 8.692 9.574 5.702 7.989333333

Elements_
matrix

5.8396 8.6824 7.5608 7.360933333

Elements_
kernel

11.2952 11.7014 10.1 11.0322

Channels_in 1.09 1.0334 1.0112 1.044866667

Channels_out 7.0608 5.6072 12.0992 8.255733333

Padding 14.1344 13.7096 13.9144 13.91946667

Strides 8.9108 9.8826 8.4852 9.092866667

Use_bias 14.5956 14.595 15.7176 14.9694

Opt_SGD 6.3264 6.853 4.2328 5.804066667

Opt_Adadelta 3.764 7.3048 7.0828 6.050533333

Opt_Adagrad 7.732 5.3538 6.3752 6.487

Opt_
Momentum

5.2476 5.3584 11.0724 7.226133333

Opt_Adam 10.1944 3.6814 5.1448 6.3402

Opt_RMSProp 2.9736 4.107 5.9512 4.343933333

Act_relu 15.8232 15.6576 7.3332 12.938

Act_tanh 14.0576 15.8164 15.514 15.12933333

Act_sigmoid 15.2628 14.082 15.7032 15.016
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and validation sets of P100_Conv, the RMSE of weights
model is lower than baseline by 0.068ms and 0.364ms.

4.3. Analysis of Dimensionality Reduction Rule. In 4.2, we
proved that the weights model has good convergence and
has a high prediction accuracy that is not lower than base-
line. In this section, we will verify the effectiveness of the
dimensionality reduction rule. We use the weights model
to extract feature weights of different test sets to form the
weights datasets, then we use the dimensionality reduction
rule described in Section 3.3 to reduce the dimension of fea-
tures. After that, we compare the prediction error of the
model trained based on dimensionality-reduced data with
the original baseline.

In our experiments, we found that the ranking of feature
weights may fluctuate significantly for different input feature
data. We think it is because the influence of layer features on
training time does not necessarily change linearly. Assuming
the influence of channels_in and elements_kernel on the final
training time is shown in Figure 4, when the value of chan-
nels_in gradually decreases, its influence on the final result
is not necessarily greater than the elements_kernel.

Before using the dimensionality reduction rule, we use
formula (8) to calculate the ranking of feature weights in
each weights dataset. According to the first step of the
dimensionality reduction rule, we need to measure the fluc-
tuation of each feature weight, that is, the standard devia-
tion. Therefore, the standard deviation of weights ranking
and the average standard deviation of weights ranking are
calculated, see Tables 8 and 9. For the second step of the
dimensionality reduction rule, we calculate the average rank-
ing of each feature’s weight on all weights datasets and
obtain the overall average ranking on all datasets according
to formula (9). Tables 10 and 11, respectively, show the aver-

age ranking of feature weights on each dataset, as well as the
overall average ranking MeanRank.

Taking the convolutional features as an example, since
the optimizers and activation functions are represented by
one-hot encoding, we regard all optimizer fields (feature
name starting with opt_) as one feature opt and all activation
function fields (feature name starting with act_) as one fea-
ture act.

According to step 1 of the dimensionality reduction rule,
we select features with MeanRankStd greater than 1.55, the
results are elements_matrix, elements_kernel, channels_in,
channels_out, strides, and opt (all optimizer fields). The
remaining features with small MeanRankStd are batchsize,
channels_in, padding, use_bias, and act (all activation fields).

According to step 2 of the dimensionality reduction rule,
we select features with MeanRank less than 8 in batchsize,
channels, padding, use_bias, and act, and the results are
batchsize and channels_in.

Finally, by using the dimensionality reduction rule, we
get batchsize, channels_in, elements_matrix, elements_kernel,
channels_in, channels_out, strides, and opt. The convolu-
tional layer features are reduced by 3 dimensions (padding,
use_bias, and act), and the training data is reduced by 5
dimensions (padding, use_bias, act_relu, act_tanh, and act_
sigmoid).

For the dense layer features, we use the same method.
According to the dimensionality reduction rule, we exclude
features that have less influence on training time, including
act_relu, act_tanh, act_sigmoid, and batchsize. It should be
noted that the dense layer has the parameter-intensive char-
acteristic, which means that the transmission of parameters
takes a long time. However, the time overhead of parameter
transmission was ignored in our datasets. According to the
forward propagation process of the neural network, the
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Figure 5: Predicted time vs. observed time. The upper of the figure: predicted time vs. observed time on the convolutional feature
dimension-reduced datasets, from left to right, is the results on P100_Conv_small, V100_Conv_small, K40_Conv_small, and All_Conv_
small; the lower of the figure: predicted time vs. observed time on the dense feature dimension-reduced datasets, from left to right, is the
results on P100_Dense_small, V100_Dense_small, K40_Dense_small, and All_Dense_small.
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dense layer must perform one forward propagation calcula-
tion for one input data, and it must perform a batch of for-
ward propagation for a batch of input data. Therefore, the
batchsize determines the number of times the parameters
are transmitted, which should not be excluded.

After extracting key features by dimensionality reduction
rule, we filter the training sets and get the dimension-
reduced datasets on P100_Conv, V100_Conv, K40_Conv,
All_Conv, P100_Dense, V100_Dense, K40_Dense, and All_
Dense (We add _ small represents the dimension-reduced
datasets. For example, the dimension-reduced dataset of
P100_Conv is P100_ Conv_ small). For verifying the validity
of dimension-reduced datasets, we use the dimension-
reduced datasets to train the baseline, and the trained model
is called baseline_small. And our experiments have proved
that baseline_small also has good convergence. Figure 5
shows the comparison of predicted time and observed time
of baseline_small on the test sets.

For determining whether the dimension-reduced data-
sets caused the loss of prediction accuracy, we calculated
the RMSE and MAPE of baseline and baseline_small on all
datasets. The results are shown in Table 12. For the convolu-
tional layer datasets, the baseline_small test RMSE is
0.1385ms lower than the baseline on average, the verification
RMSE is 0.3664ms higher than the baseline on average; for
the dense layer datasets, the baseline_small test RMSE is
0.0078ms lower than the baseline on average, and the verifi-
cation RMSE is 0.015ms lower than the baseline. It is worth
mentioning that for the dense layer datasets, both RMSE and
MAPE of baseline_small are lower than baseline. We con-
sider it is because there are some features in the dense layer
that have no contribution to the training time. These features
will disturb the data distribution and increase the prediction
error of the model.

The experiments show that after reducing the convolu-
tional layer features by 30% and the training data by 25%,

the error level of prediction is still consistent with the origi-
nal baseline; after reducing the dense layer features by 20%
and the training data by 20%, the error level is generally
lower than the baseline, which proves the effectiveness of
our weights model and dimensionality reduction rule.

5. Conclusion

For the problem of setting the number of local epochs for
heterogeneous clients in federated learning, we propose a
solution of predicting the training time of deep learning
tasks on clients to guide the dynamic setting number of local
epochs. We design the weights model to extract the weights
of features and accurately interpret the relationship between
model features and training time. This paper focuses on the
combination of weights model and dimensionality reduction
rule to extract the key features for reducing the dimension of
features and redundant training data required by the time
prediction model. The purpose of our work is to improve
the feasibility of predicting the training time of deep learning
models on heterogeneous clients in federated learning, so as
to dynamically set the number of local epochs for clients.
Compared with the existing methods, the results of our
experiments show that (1) the weights model has good con-
vergence on heterogeneous devices; (2) the predicted train-
ing time of weights model reaches the same error level as
baseline; (3) the dimensionality reduction rule in this paper
can reduce 30% features and 25% redundant data for the
convolutional layer and reduce 20% features and 20% redun-
dant data for the dense layer, while maintaining high predic-
tion accuracy.

Data Availability

Previously reported [Model Features] data were used to sup-
port this study and are available at [10.1109/

Table 12: Baseline vs. baseline_small.

Datasets Model Test RMSE Test MAPE Validation RMSE Validation MAPE

P100_Conv
Baseline 2.962ms 14.36% 3.455ms 15.17%

Baseline_small 2.838ms 15.27% 3.0948ms 15.47%

V100_Conv
Baseline 1.722ms 11.44% 1.547ms 11.13%

Baseline_small 1.762ms 11.80% 1.791ms 11.80%

K40_Conv
Baseline 10.136ms 15.59% 10.361ms 16.39%

Baseline_small 9.882ms 16.01% 11.508ms 16.68%

P100_Dense
Baseline 0.033ms 3.15% 0.032ms 3.04%

Baseline_small 0.027ms 2.86% 0.031ms 2.92%

V100_Dense
Baseline 0.051ms 6.26% 0.046ms 5.84%

Baseline_small 0.044ms 5.49% 0.045ms 5.45%

K40_Dense
Baseline 0.157ms 7.57% 0.179ms 7.92%

Baseline_small 0.154ms 6.60% 0.140ms 6.60%

All_Conv
Baseline 4.079ms 11.44% 4.021ms 11.16%

Baseline_small 4.001ms 11.89% 4.090ms 12.10%

All_Dense
Baseline 0.077ms 4.70% 0.074ms 4.68%

Baseline_small 0.069ms 4.70% 0.070ms 4.75%
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BigData.2018.8622396]. These prior studies (and datasets)
are cited at relevant places within the text as references [8].
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Crossdomain collaboration allows smart devices work together in different Internet of Things (IoT) domains. Trusted third party-
based solutions require to fully understand the access information of the collaboration participants to implement crossdomain
access control, which brings privacy risk. In this paper, we propose a federated learning-based crossdomain access decision-
making method (FCAD), which builds a crossdomain access decision-making model without sharing privacy information of
collaboration participants. Crossdomain access logs are extracted to construct a training dataset. Data enhancement method is
used to address the uneven distribution of the dataset. Federated learning and gradient aggregation methods are used to
prevent privacy leaks. The experiments on the public dataset show that FCAD obtains a prediction accuracy of 83.6% in the
existing crossdomain access system.

1. Introduction

Internet of Things (IoT) allows connections of heteroge-
neous smart devices. More than 25 billion smart devices will
be connected through IoT by 2025 [1]. Some IoT service
providers support heterogeneous devices collaboration cross
their domains. For example, IFTTT provides a platform
where users can defined multidevice connection rules [2].
It allows devices in multiple domains to work together by
translating user rules to requests in these domains. Suppose
that a user defines a rule “if the door is open, then open the
house lights.” The smart door lock is provided by Philips,
and the smart lights are provided by Samsung. They are
managed by different domain, which are the IoT platforms
named Philips Hue and SmartThings. IFTTT sends requests
to the two IoT platforms to make the rule effective. The
crossdomain collaboration makes some IoT operations be
more convenient.

Crossdomain access control is used to prevent unautho-
rized access in crossdomain collaboration. The “domain” in
crossdomain collaboration means domain, and the “cross-
domain collaboration” is to describe the collaboration of
devices belong to different managers. Existing crossdomain
access control methods often rely on a trusted third party
(TTP). The TTP verifies the requests legality and makes
crossdomain access decisions. For example, the National
Health Information Network (NHIN) [3] unites IoT
domains of multiple hospitals by providing a trusted third
party platform, to form a virtual alliance of medical systems.
This alliance guarantees the freedom of information flowing
between doctors and patients and implements the crossdo-
main access control. In the meantime, many companies are
providing crossplatform access services, such as Smart-
Things [4] and Google Home [5]. The IoT platform makes
access decision and translates user rules to requests in differ-
ent domains, to achieve crossdomain collaboration.
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However, the trusted third party-based solutions lack
secure access control policies for crossdomain collaboration.
Access control policies are the rules which are used to make
an Allow or Deny decision for an access request [6]. Access
control policies are mainly configured by experts or gener-
ated by policy mining [7, 8]. In policy mining, logs are used
as input of policy mining algorithm, to automatically mine
access control policies. However, to protect user’s privacy,
participants are often unwilling to share access logs, which
make it difficult for IoT platforms to get the access logs of
collaboration participants among different domains. Then,
the IoT platform can only use the incomplete information
to mine access control policies. This brings many prob-
lems like credential leakage, incomplete revocation, and
incorrect policy enforcement [9, 10]. The lack of secure
crossdomain access control methods puts collaboration
participants at risk of being attacked. A security crossdo-
main collaboration solution is needed that shares no
access logs of participants but completes the crossdomain
access decision-making.

In this paper, we propose a crossdomain access decision-
making method based on federated learning to solve above
problems. Federated learning allows users to train their
machine learning model locally and then builds a global
model by aggregating the shared local model gradients. In
the crossdomain collaboration system using federated learn-
ing, local access logs will not be shared. Participants use their
local access logs to train their own models. Then, gradients
of models are exchanged and aggregated in multiple rounds.
Finally, we will obtain a global crossdomain access decision-
making model to make decisions for crossdomain access
requests. Our contributions are as follows:

(i) We propose a log preprocessing method to address
uneven distribution of crossdomain access logs. By
using a data enhancement algorithm, the logs are
transformed as the input of learning algorithms

(ii) We propose a federated learning-based crossdo-
main access decision-making method (FCAD), to
build a crossdomain access decision-making model.
The model can decide whether to allow or deny the
crossdomain access requests without sharing pri-
vacy information of collaboration participants

(iii) We evaluate the effectiveness of FCAD on a public
dataset. The experimental results show that FCAD
can obtain a prediction accuracy of 83.6% in a
crossdomain collaboration system

The rest of this paper is organized as follows. In section
2, we describe related works. The system design is given in
Section 3. Section 4 shows the experiments of FCAD. Section
5 summarizes our work.

2. Related Works

We divide existing access decision-making methods into
policy-based methods and learning-based methods.

2.1. Policy-Based Methods. The policy-based methods make
access decisions by the access control policies, which are
used to describe the system security constraint. Traditional
works rely on field expert knowledge. Neumann et al. [11]
use role engineering based on professional knowledge to
define roles, permissions, constraints, and role hierarchies
for the role-based access control (RBAC), but the limited
expert knowledge causes the unstable quality of mined poli-
cies. Automatic mining access control policies from the
existing access control information are the focus of most
researches. Iyer et al. [8] propose an attribute-based access
control (ABAC) policy generation method, which can
extract positive and negative authorization rules from given
access control information, and then mine policy entries. Xu
et al. [12] propose an ABAC policy mining method based on
access logs and attribute information. They convert access
logs into user-authority mappings and iteratively obtain a
policy set equivalent to the original access control system.
Access control policy mining based on algorithm is also a
feasible method. Carlos et al. [13] propose UNICORN,
which uses the deterministic annealing and mean-field
approximation to achieve a universal access control policy
mining.

2.2. Learning-Based Methods. The powerful effect of deep
learning on distinguishing normal and abnormal behaviors
makes it widely used in IoT access decision-making [14].
Narouei et al. [15] use natural language processing (NLP)
to analyze system documents, which contains security infor-
mation. Access control content is identified in the docu-
ments written with natural language for access decision-
making. Mocanu et al. [16] propose a neural network-
based ABAC policy mining method. The method adds attri-
bute data to the access log and converts them into a vector,
thereby using them as the input of the neural network
model. This method can discover the hidden distribution
of the data. Karimi et al. [17] propose a policy mining
method based on unsupervised learning algorithm, which
mines policies from the extracted policy rule pattern. Jabal
et al. [18] propose a framework for learning ABAC policies
from examples and context information. The framework
achieves good results in both real logs and synthetic logs.
Xiang et al. [7] propose time changing decision tree to pro-
cess the existing access logs. The time changing decision tree
records and continuously monitors the current access con-
trol constraints of the system. When a new access request
does not meet the constraints, the administrator will be noti-
fied of risks.

These works use the access control information to mine
policies or train a learning model, which are designed for the
access decision-making in a single system. In the crossdo-
main collaboration system, the access control information
is protected strictly due to the privacy risk, which leads to
the loss effectiveness of these methods. A new crossdomain
collaboration solution is needed, which can make access
decisions without sharing access information of participants.
In this paper, we propose a federated learning-based cross-
domain access decision-making method (FCAD). The feder-
ated learning enables the crossdomain central server to get
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the decision-making model without obtaining participants
logs. This eliminates the privacy risk caused by the shared
access information.

3. System Design

The workflow of FCAD is shown in Figure 1. In access log
preprocessing, the crossdomain access logs are structured
to get the access information in a key-value format. The
information will be used as the training set of FCAD. Each
participant generates its own model and shares the gradients
of the model weights. After model generation, the central
server collects the gradients from participants and updates
the global model. The operation will be repeated until the
loss function of the global model is satisfactory.

The system design of FCAD will be introduced in this
section, including access log preprocessing, model genera-
tion, and federated learning.

3.1. Access Log Preprocessing. The crossdomain access logs
are generated by different devices and systems, which causes
their different formats. We propose an access log prepro-
cessing method to regular the access logs. These logs are
mainly generated with the information in crossdomain
access requests, which can be defined as a four-tuple <Sub-
ject, Object, Operation, Parameters>. Subject represents the
initiator of the access request. Object represents the resource
or service being accessed. Operation represents the operation
such as reading and writing. Parameters represents the addi-
tional information of the access request, such as the time
when the smart door lock is requested to be opened, or the
temperature that you want to set when the smart air condi-
tioner is turned on. Logs are generally recorded by natural
language in systems. The method of converting natural lan-
guage logs into key value has been introduced in many
works [19]. In FCAD, the crossdomain access logs used for
training have been transfer to key-value format by default.
A log format example is shown in Figure 2.

Subject and Object represent the identifications of the
requests source and destination. A comprehensive and accu-
rate identity definition enhances the accuracy of the learning

model, since the probability of being attacked and the prior-
ity of each participant are different. Operation and Parame-
ters define an operation together. The security levels of
operations are diverse, and the environment context infor-
mation and command parameters existing in the Parameters
also affect the decision-making results. Extracting these
effective information is necessary to improving the accuracy
of the decision-making model.

Most of these valid information are saved by natural lan-
guage. The extracted information can be expressed as [Char-
acter Types Data, Numerical Data, Label]. The information
in Character Types Data is discrete, which cannot be directly
used in training. Text vectorization methods are needed in
FCAD to transform information into numerical data. On
the other hand, the access logs provided by each participant
often have different labels. For example, if the participant
provides an anomaly detection dataset generated by itself,
the data labels may be DosAttack, ForgeryAttack, etc. Encod-
ing these labels into numerical values directly will compli-
cate model training and affects the effective of the learning
algorithm. To address the problem, we transform the label
into <0, 1>. 0 and 1 mean that the access request is allowed
or denied, so as to simplify the model training.

3.2. Model Generation

3.2.1. Model Training. We design the FCAD model training
process to get a high-accuracy access decision-making
model. Based on the features of training dataset, we design
a binary classifier based on supervised learning. There are
many machine learning models that can achieve good binary
classification results, such as random forest and gradient
boosting machine [20]. The sequential model is used in
FCAD to achieve a model aggregation. Multiple fully con-
nected network structures are stack to complete the classifi-
cation. The model structure of FCAD is shown in Figure 3.
Four fully connected layers are used in FCAD. The activa-
tion function of the first three layers is Relu, which is the
widely used rectified linear units [21]. The Sigmoid function
is added in the last layer, which decides whether the access
request is allowed according to the prediction result. Binary
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Figure 1: The workflow of FCAD.
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crossentropy is used as the loss function [22]. The global
average pooling [23] can be used to replace the fully con-
nected layer, to reduce the number of parameters and the
communication overhead in federated learning.

3.2.2. Data Enhancement. In access logs of crossdomain col-
laboration, the number of allowed requests is much more
than denied requests, which will lead to imbalance of the
dataset. For example, on the DS2OS dataset, the average
malicious access rate of each participant is only 2%. This
makes the model trained by participants overfitting easily.
To address the problem, we resample the dataset to improve
the effectiveness. The rare class samples and part of the
abundant class samples on the original dataset are combined
as the resampled dataset, and the preduction accuracy is
used as the weight for model averaging. The model averag-
ing process can be expressed as follows:

Wkg =Mk rk ∪ skg
� �

,

mk = 〠
G

g=1
pkgWkg,

ð1Þ

where Wkg is the weight matrix of the g -th model
trained by the k -th participant, Mk is the model trained by
the k -th participant, rk is the k -th rare class samples, skg
is the k -th abundant class samples selected for the g -th
round, mk is the combined weight, and pkg is the prediction
accuracy of Mkg. In FCAD, for a dataset with 2% of mali-
cious access, we randomly generate 50 resampled datasets.
The 50 models obtained will be aggregated with their predic-
tion accuracy weights to eliminate the imbalance of the orig-
inal dataset.

3.3. Federated Learning. Although an access decision-
making model for a single participant can be obtained, it
brings privacy risk in crossdomain access decision-making.
We use federated learning solve this problem.

3.3.1. Workflow. The workflow of federated learning in
FCAD is as following. First, the central server counts the

templates of the local datasets of each participant and per-
forms parameter division and data alignment according to
the format of <Subject, Object, Operation, Parameters>.
The learning model will be selected according to the result.
Each participant performs data preprocessing on its local
dataset and trains model. The data enhancement is indepen-
dently implemented by participants. Then, the participant
encrypts the model weight gradients and transmits it to the
central server. Like an adaptive process [24], the central
server obtains the updated model parameters by using the
gradient aggregation scheme, broadcasts the updated model
gradient to the newly selected participant, and iterates above
operations until the loss function of the model is satisfactory.

3.3.2. Gradient Aggregation. The weights of local models are
determined by the participant’s data size and the prediction
accuracy. We use the impact factor δ to measure the contri-
bution of each participant’s model, which can be expressed
as

δk =
nk/nð ÞPk

∑K
k=1 nk/nð ÞPk

= nkPk

∑K
k=1nkPk

,

ωt+1 = 〠
K

k=1
δkωt,k,

ð2Þ

where δk is the model contribution of the k -th partici-
pant, and nk is the size of the k -th local dataset. We obtain
the model contribution by calculating the contribution of the
dataset and the prediction accuracy Pk. The model contribu-
tion is used to measure the importance of the participant. It
directly affects the update of the global model ∑K

k=1δkωt,k
⟶ ωt+1. The global model continues to iterate until it sat-
isfies the iteration termination condition, which can be
expressed as

loss ot , Ltð Þ = −
1
n
〠
i

Lt i½ � ∗ log ot i½ �ð Þ + 1 − Lt i½ �ð Þ ∗ log 1 − ot i½ �ð Þð Þ < θ:

ð3Þ

Among them, lossðot , LtÞ is the loss function of the
global model. Lt½i� is the prediction result of the i -th label
of the t -th iteration. ot½i� is the i -th input of the t -th itera-
tion, which is the predicted value in [0,1]. We set lossðot ,
LtÞ < θ as the termination condition, which represents that
the model is considered to have converged.

3.3.3. Privacy and Security. It is worth to discuss privacy and
security problems in federated learning-based methods [25,
26]. To prevent problems such as model leakage, data poi-
soning, and sample exposure, methods such as homomor-
phic encryption can be used to ensure the safety of
learning and data exchanging [27]. Although there are many
methods to ensure the data security, side-channel attacks are
difficult to defend [28]. For example, we can predict whether
the house access logs have been changed by comparing the
new model with the old one, so as to predict the activity time
of the house owner. In FCAD, the aggregated model

SourceID: Heatingcontrol4
SourceAddress: /agent25/heatingcontrol4
SourceType: /thermostat
SourceLocation: Room_6
DestinationServiceAddress: /agent20/tempin20
DestinationServiceType: /sensorService
DestinationLocation: Room_1
AccessedNodeAddress: /agent20/tempin20
AccessedNodeType: /sensorService
Operation: Read
Parameters: 20
Normality: Normal

Figure 2: Example of the log format on the used DS2OS dataset.
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returned to participant changes almost every time, which is
used as the old model in the next training round. Since the
old model changes, the new participant model will also
change, even if the same local access logs are used for train-
ing. This prevents the performing of side-channel attacks on
FCAD.

4. Experimental Evaluation

We evaluate the prediction accuracy of FCAD in a public
dataset to verify the effectiveness.

4.1. Dataset. We perform our experiment with the DS2OS
traffic traces dataset [29]. The dataset contains access logs
obtained in the IoT environment DS2OS. The crossdomain
information are generated in application layers from four
different simulated IoT sites. They provide different services,
such as light controller, thermometer, movement sensors,

washing machines, batteries, thermostats, smart doors, and
smart phones. All the devices are implemented in 21 differ-
ent locations. Each location is regarded as an independent
domain. We count the percentage of crossdomain abnormal
accesses on the DS2OS dataset, and the results are shown in
Figure 4. Among the multiple domains existing in a smart
home IoT environment, the percentage of crossdomain
abnormal access is 72.4%. In the meantime, more than
7,000 abnormal crossdomain accesses have been made
among the 350,000 access entries. The result shows that
the DS2OS dataset is close to the real IoT crossdomain col-
laboration environment.

4.2. Implementation. After we extract the log key of DS2OS,
the access log entries can be expressed as

<Subject>: {SourceAddress, SourceType, SourceLocation}.
<Object>: {SestinationServiceAddress, DestinationServi-

ceType, DestinationLocation}.

Relu⁎3

Sigmod⁎1

Loss = Binary cross entropy

Lp
(Deny or allow)

Structured dataset

log entry1 label 
log entry2 label 
log entry3 label 
log entry4 label 
log entry5 label 

…

Coding Prediction

Figure 3: The model generation of FCAD.
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<Operation>: {Operation}.
<Parameters>: {Value, Timestamp}.
Since DS2OS has already identified the normality of

access, we set the label of the normal access logs to 1, and
the abnormal access logs to 0. We assume that all the normal
access should be allowed, and all the abnormal access should
be denied. The different locations are considered to be differ-
ent domains and finally get 21 domains. We use two
methods to obtain the local dataset of each domain. (i)
Count entries with the same {DestinationLocation} as the
local dataset and (ii) count the access logs within each
domain as the local dataset (when
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Figure 5: Model parameters of FCAD with the complete DS2OS dataset as the training set.
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Table 1: All the chosen proportions in new system and existing
system.

Locations Existing system New system

Waterroom 3.155% 3.614%

Room_9 3.015% 7.517%

Bathroom 20.495% 0.723%

BedroomChildren 21.703% 72.280%

Entrance 9.334% 1.518%

Showerroom 19.856% 6.288%

Total 77.56% 85.65%
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{SourceLocation} = {DestinationLocation}). The two methods
are designed to simulate two actual scenarios: the existing
crossdomain collaboration system (which has crossdomain
access logs) and the new crossdomain collaboration system
(which has no crossdomain access logs). The first method
is suitable for long-running crossdomain systems, since
there are already a sufficient number of crossdomain access
logs as the training set. The second method is suitable for
newly constructed crossdomain systems, because there is
no crossdomain access request as the training set. We use
30% of entries on the local dataset as the testing set. The
dataset preprocessing algorithm is written in Python 3.5.
The model training is completed by a laptop computer with
a 1.60Hz CPU (Intel i5-8250U) and 8GB RAM.

4.3. Experiments and Evaluation

4.3.1. Baseline.We use all the entries in our dataset to obtain
the model training effect as our baseline. The result is shown
in Figure 5. We find that the model converged when it iter-
ates 1500 times, and it obtains a prediction accuracy of
99.14%. It shows the effectiveness of the neural network used
by FCAD in predicting crossdomain access decisions.

4.3.2. Model Averaging Effectiveness. We choose Bedroom-
Children as an example to evaluate the model averaging
effectiveness. The obtained local dataset in existing system
has 12768 entries, including 10594 positive samples and
2174 negative samples. The total proportion of negative
examples is 17.02%. There are a total of 12,524 entries in
the new system dataset, which has 10,524 positive samples
and 2000 negative samples. The total proportion of negative
examples is 15.96%. We generate 6 resampled datasets and
use the same neural network for training. The result is
shown in Figure 6. The numbers 1~ 6 represent the 6
resampled datasets, Averaging is the accuracy of the model,

and All is the accuracy of the model trained on the original
dataset without resampling.

We find that the model trained by single participant is
far less effective than the model trained on the entire
dataset. Although we have selected a participant with an
even distribution, the model is still overfitting. The pre-
diction accuracy is about 80%. Although the prediction
accuracy of All is the highest, it is close to the original
sample distribution. It shows that the model overfitting
of All may be serious. For the existing system, the predic-
tion accuracy is higher than that of single resampling
data, because crossdomain access logs exist on the local
dataset. It shows that the data enhancement method is
effective to deal with uneven distribution. For the new
system, it is difficult to get a good result based on intra-
domain access logs; so, the prediction accuracy of the
averaged model is greatly reduced.

4.3.3. Gradient Aggregation Effectiveness. We choose 6 par-
ticipants with more negative samples for gradient aggrega-
tion. The result is shown in Table 1. For the existing
system, the negative samples owned by these 6 participants
accounted for 77.56% of all the negative samples. For the
new system, it accounted for 85.65%. It is due to a more bal-
anced occurrence of crossdomain abnormal access. We use
the proportion of negative samples and the accuracy as the
weight of the gradient aggregation.

The prediction accuracy of the access decision-making
model after gradient aggregation is evaluated. The result is
shown in Figure 7. For the existing system, the accuracy of
the model will increase with the number of iterations, which
can reach 83.6%. For the new system, the prediction accu-
racy is about 55%. The reason is that due to the lack of cross-
domain access samples in the training dataset, the
aggregated model is difficult to predict the decision-making
results and almost loses its effect. It shows that FDAC is
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Figure 7: Effectiveness of gradient aggregation in FCAD.
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more suitable for the existing crossdomain collaboration
system.

5. Conclusion

In this paper, we propose a federated learning-based cross-
domain access decision-making method FCAD. The
designed log preprocessing method structures the crossdo-
main access logs to obtain the training dataset. Data
enhancement method is used to address the distribution het-
erogeneity of the dataset which can be directly used in learn-
ing algorithms. Federated learning is used to prevent access
logs sharing in crossdomain access decision model establish-
ing. FCAD can obtain information highly relevant to the
access decision from access logs and has a prediction accu-
racy of 83.6% in the existing crossdomain access system.
The results show that making an access decision based on
the access information obtained by the application layer is
a feasible method in crossdomain collaboration. Since the
decision made by the learning model can hardly be
explained, and it is difficult to deal with updates of the access
control policies, FCAD is more likely to be a supplement
when access control policies are lacking.
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With the collaborative collection of the Internet of Things (IoT) in multidomain, the collected data contains richer background
knowledge. However, this puts forward new requirements for the security of data publishing. Furthermore, traditional
statistical methods ignore the attributes sensitivity and the relationship between attributes, which makes multimodal statistics
among attributes in multidomain fusion data set based on sensitivity difficult. To solve the above problems, this paper
proposes a multidomain fusion data privacy security framework. First, based on attributes recognition, classification, and
grading model, determine the attributes sensitivity and relationship between attributes to realize the multimode data statistics.
Second, combine them with the different modal histograms to build multimodal histograms. Finally, we propose a privacy
protection model to ensure the security of data publishing. The experimental analysis shows that the framework can not only
build multimodal histograms of different microdomain attribute sets but also effectively reduce frequency query error.

1. Introduction

The Internet of Things (IoT) is widely used in data collection
in various fields [1–3] and integrates them to apply data
analysis in different fields. Therefore, in the development
of 5G, 6G wireless networks, and IoT [4, 5], a lightweight,
reliable, and intelligent security privacy protection frame-
work is extremely important [6, 7]. The multidomain fusion
data set collected by IoT contains strong background knowl-
edge, and it leads to the higher risk of privacy leakage when
data publishing [8, 9]. The issue of personal privacy leakage
causes security risk to many aspects such as personal life,
property, and family. Early research focuses on the improve-
ment of the privacy protection model based on K-anonymity
[10–14] and l-diversity [15, 16], but these improved models
cannot entirely resist the strong knowledge attacks and new
attack methods. Differential privacy proposed is effectively
solving privacy leakage caused by background knowledge
and is widely used in the domain of data publishing.
Although the paper [16–20] fully improved the histogram
data publishing algorithm based on differential privacy, the
data availability after privacy protection is not better when
publishing multimodal histograms. The paper [21] proposes
a personalized privacy protection model that supports the

privacy protection needs of publishing histograms, but it is
still challenging to balance data privacy and data availability.

Histogram data publishing based on data records is
widely used in the domain of data publishing [22]. For
example, in the medical data set, we count the number of
people suffering from heart disease in different age groups.
When facing the multidomain fusion data set, although the
histogram data publishing based on data records can provide
good data, it is difficult to realize multimode data statistics
due to ignoring the attributes sensitivity and relationship
between attributes. Therefore, data publishing based on data
records cannot publish the relationship between attributes
and attribute sensitivity in the multidomain fusion data set.
At present, the research on data attributes recognition, clas-
sification, grading, and sensitivity focuses on data mining
analysis. The domain of data publishing concerns the
research of data privacy protection but ignoring the study
of data attributes sensitivity and relationship between
attributes.

To solve the two problems proposed above, this paper
presents a multidomain fusion statistical data publishing pri-
vacy protection framework. For the multimode data statis-
tics, we offer two definitions that are microdomain and
microdomain attribute set. It applies to the microdomain
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recognition of the multidomain personal privacy fusion data
set, and the microdomain attribute set is obtained. After-
wards, we take the information gain and attribute sensitivity
to implement the classification and grading for microdo-
main attribute set. Finally, we build the unattributed histo-
gram and universal histogram for microdomain attribute
set. For the data publishing personalized privacy protection
problem, this paper combined the constraint inference algo-
rithm with grouping reconstruction algorithm to solve per-
sonalized privacy protection [23] for the multimodal
histogram. Therefore, the contribution of this paper is as
follows:

(1) We propose the multidomain fusion data privacy
security framework to solve the multimode data sta-
tistics difficult and data publishing privacy security
problem.

(2) We determine the attributes sensitivity and relation-
ship between attributes, through the attributes recog-
nition, classification, and grading model. On this
basis, we realize multimode data statistics for multi-
domain fusion data sets and combine them with the
multimodal histogram building model to build mul-
timodal histograms, by the multimodal histogram
data publishing privacy protection model to realize
the privacy protection of published unattributed his-
togram and universal histogram.

(3) The multidomain fusion data privacy security frame-
work can not only build multimodal histograms but
also improve the availability of data in long-range
queries and small privacy budgets while ensuring
privacy security.

In this paper, Section 2 discusses the related work for
attributes recognition, classification, grading, and differential
privacy. In the following section, we introduce the study of
information theory and differential privacy. Section 4 intro-
duces the multimodal histogram data publishing framework.
In Section 5, we analyze the experimental results. The last
section is the conclusions and future work of this paper.

2. Relate Work

2.1. Data Privacy Security Framework. With the increasingly
serious problem of privacy leakage, a friendly data privacy
security framework is a prerequisite to ensure data sharing,
publishing, and mining. The core of the data privacy security
framework is the targeted privacy protection methods.

Xiong et al. [6] proposed a data privacy security frame-
work. First, the P-CNN model is implemented based on
two ciphertexts, and then, P-CNN is deployed with two edge
servers to collaboratively solve the problem of original data
sharing among connected and autonomous vehicle informa-
tion leakage. Xiong et al. [7] proposed a personalized privacy
protection framework based on game theory and data
encryption. This framework solves the problem of QoCS
protection imbalance in MCS caused by the unified privacy
policy of sensor data. Wu et al. [24] proposed a PETA

framework that not only considers the privacy protection
of MCS but also uses powerful edge servers deployed
between users and platforms to cluster and manage users
based on user attributes. Xiong et al. [12] proposed an
ATG framework based on the MCS privacy protection
framework, which uses AI technology and game theory to
solve the problem of public data privacy leakage in MECS.

At present, the data security frameworks are all based on
encryption algorithms. This paper exploits differential pri-
vacy algorithms to achieve data publishing privacy protec-
tion. The purpose is to improve data availability while
ensuring that privacy is not leaked.

2.2. Attributes Recognition, Classification, and Grading.
Attributes recognition, classification, and grading are impor-
tant support for data mining, analysis, sharing, and other
applications based on data publishing. In contrast to the
domain of data publishing, there are relatively few studies
on attributes recognition, classification, and grading [25].
The attribute privacy measurement is the key to classifica-
tion, grading, and privacy protection. The information
entropy is one of the effective methods to calculate the
amount of information. Therefore, Diaz et al. [26] and Ser-
jantov and Danezis [27] proposed earlier fusion information
entropy and other relevant information theory into attribute
measurement.

Peng et al. [28] proposed some information entropy pri-
vacy protection models based on the Shannon information
theory communication framework and solved the problem
of privacy measurement from attribute characteristics, back-
ground knowledge, and multiple data sources. However,
these models ignore the sensitivity between attributes. Yu
et al. [29] used the Shannon information theory to measure
privacy data and combined it with the BP neural networks to
implement privacy data grading. Still this computational
cost of this model is larger, and the grading result of BP neu-
ral network depends on samples. Krishnamurthy and Wills
[30] calculate the privacy leakage amount of the social net-
work attributes to determine the scope of attribute privacy
leakage and propose a privacy protection method, but this
paper does not consider attributes recognition, classification,
and grading. He and Pen [25] put forward a sensitive attri-
bute classification and grading algorithm for structured data
set. First, calculate the privacy attribute sensitivity by cluster-
ing information entropy and association rule. Second, calcu-
late the attribute sensitivity average to implement attributes
classification and grading. However, the clustering result
based on K-means depends on the choice of K value. If the
selected K value is not appropriate, it will form a local opti-
mal solution leading to inaccurate classification.

The idea of this paper is inspired by the paper [25]. We
implement the microdomain recognition of the data set by
the proposed definitions for microdomain and microdomain
attribute set. Then, we adopt the information gain and attri-
bute sensitivity to represent attributes classification and
grading.

2.3. Data Publishing Privacy Protection. Data publishing pri-
vacy protection is aimed at protecting privacy information
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security in the process of data publishing [31]. Though the
traditional access control and encryption technology have a
better privacy protection effect, the availability of the pro-
tected data is insufficient, which defeats the purpose of data
publishing. Differential privacy is widely used because it can
solve the problem of privacy protection models such as K-
anonymity [10–14], L-diversity [15, 16], and T-tight [32],
which cannot resist the privacy leakage caused by strong
background knowledge.

Dwork [33, 34] proposed a differential privacy method
based on Laplace and exponential mechanism in 2006 and
2008. Though this method effectively resists the privacy
leakage caused by background knowledge, the error between
protected data and original data is large. Dwork et al. [35]
proposed an equal-width histogram privacy protection
method based on differential privacy that is called LP algo-
rithm, and the performance is better in small noise and small
range query. However, when the noise is larger or long-
range query, too much noise accumulation leads to poor
data availability. To improve the accuracy of long-range
query, Xu et al. [36, 37] proposed a differential privacy pro-
tection method based on Noise First and Structure First, as
well as used the idea of V-optimization histogram to opti-
mize the noise histogram and obtain the high accuracy query
results. Whatever, this method cannot balance the noise
error and reconstruction error, meanwhile the high compu-
tation cost of the postoptimization process. Xiao et al. [38]
transformed the original histogram into a binary tree of
wavelet coefficient to support long-range query. However,
this algorithm is not conducive to the practical application
due to the high sensitivity of query. Hay et al. [39] proposed
a personalized privacy protection method based on con-
straint inference for unattributed histogram and universal
histogram. The histogram with noise is optimized by con-
straint inference, but the data accuracy does not have an
advantage in low noise and small-range query. Piao et al.
[18] proposed the MDHP algorithm to implement privacy
protection of governmental data publishing. The MDHP
algorithm combined the LP algorithm with the grouping
reconstruction algorithm based on the maximum difference
scaling to achieve privacy protection which satisfies ε-dif-
ferential privacy. The MDHP algorithm effectively improved
the published data availability for small-range query and low
noise. However, the performance of data availability was
poor in the large noise or long-range query.

This paper is inspired by the paper [18, 39]. We improve
the MDHP algorithm by the order inference and linear esti-
mation. The algorithm in this paper not only satisfies the
privacy requirement of the published multimodal histogram
but also effectively balances the privacy and availability of
the published data.

3. Preliminaries

3.1. Information Entropy

Definition 1 Information entropy [25]. The information
entropy is the self-information expected value for each dis-

crete event and is denoted by HðXÞ.

H Xð Þ = −〠
n

i=1
p xið Þ log p xið Þ: ð1Þ

pðxiÞ is probability when X is equal to xi.

Definition 2 Maximum entropy [25]. The maximum entropy
is when the probability of each discrete event xi is equal. The
maximum entropy formula is as follows. n is the number of
discrete events.

Hmax Xð Þ = log n: ð2Þ

Definition 3 Conditional entropy [25]. When we set the con-
dition X and the uncertainty of the random variable Y , pðx
, yÞ is joint distribution n probability, and pðy ∣ xÞ is condi-
tional probability.

Hn Y ∣ X = xð Þ = −〠
x∈X

〠
y∈Y

p x, yð Þ log p y ∣ xð Þ: ð3Þ

Definition 4 Information gain. The information gain is when
we give the condition X, calculating the reduction in the
uncertainty of Y . The information gain formula is as follows.
HðYÞ is information entropy, and HðY ∣ XÞ is conditional
entropy.

IGi =H Yð Þ −H Y ∣ Xð Þ: ð4Þ

3.2. Differential Privacy

Definition 5 ε-Differential privacy [30]. A randomized mech-
anism S is differentially private for any pair of neighboring
data set I and I‘ and for any set of possible sanitized output
R.

Pr S Ið Þ ∈ R½ � ≤ exp εð Þ × Pr S I‘
� �

∈ R
h i

: ð5Þ

The privacy budget is denoted by ε which used to represent
the privacy level. The smaller ε represents the higher privacy
protection level. The privacy level is inversely proportional
to privacy budget ε(ε ∈ ½0, 1�).

Definition 6 Global sensitivity [30]. Given a random query
function f : D⟶ Rd , D1 and D2 are neighbor data sets at
most one different data record. The global sensitivity for-
mula is as follows:

Δf = max
D1;D2

f D1ð Þ − f D2ð Þk k1: ð6Þ

Definition 7 Laplace mechanism [38]. Suppose a random
query sequence f with a query of length n. Given a function
f : D⟶ Rn, the global sensitivity is Δf and the privacy
budget is ε. The formula for ε-differential privacy is as
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Figure 1: Multidomain fusion data privacy security framework.
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Figure 2: Recognition results of the multidomain data set for campus.

Table 1: Attribute sensitivity level table.

Grade Value range

Higher 0 < SV Attið Þ < 0:6
Moderate 0:6 ≤ SV Attið Þ < 0:8
Low SV Attið Þ ≥ 0:8

Table 2: Grading condition table for SPA sets.

Grade Condition

Higher 1/2 < Num IG Xnð Þ > γ ×H Xið Þð Þ/Num DMAð Þ ≤ 1
Moderate 1/3 ≤Num IG Xnð Þ > γ ×H Xið Þð Þ/Num DMAð Þ ≤ 1/2
Low 0 < Num IG Xnð Þ > γ ×H Xið Þð Þ/Num DMAð Þ < 1/3
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follows:

gf Dð Þ = f Dð Þ + <Lap Δf
ε

� �
>n: ð7Þ

4. Multidomain Fusion Data Privacy
Security Framework

To solve the personal privacy security problem caused by
multidomain personal privacy fusion data set containing
strong background knowledge, we proposed a multidomain
fusion data privacy security framework shown in Figure 1
and the framework includes four models: (1) the input
model includes multidomain fusion data sets and expert
knowledge; (2) Multidomain Fusion Data Recognition, Clas-
sification, and Grading model (MRCG); (3) Multimodal
Histogram Building model (MHB) according to the result
of recognition, classification, and grading builds multimodal
histograms; and (4) Multimodal Histogram Publishing Pri-
vacy Protection model (MHPP), through constraint infer-
ence algorithm and grouping reconstruction algorithm to
achieve the multimodal publishing histogram privacy
protection.

4.1. Multidomain Fusion Data Recognition Classification
Grading Model. In the MRCG model, we present the defini-
tion of microdomain and microdomain attribute set and
combine them with expert knowledge, information entropy,

condition entropy, information gain to realize recognition
classification and grading for the multidomain fusion data.

4.1.1. Microdomain Attribute Recognition Module. If data set
D contains communication, location tracking, personal
information, health and other personal privacy information,
we call data set D multidomain personal privacy fusion data
set. The different domains’ personal privacy information in
data set D is called microdomain of the multidomain fusion
data set. The set of attributes that make up a microdomain is
called microdomain attribute set. The definition is as
follows.

Definition 8 Microdomain. Define a multidomain personal
privacy fusion data set D = fAtt1 ⋯Attngðn > 0Þ and a
domain expert knowledge set ES = fF1 ⋯ Fng. According
to the domain expert knowledge ES, the data set D is trans-
formed into D = fF1 ⋯ FngðFðk∈nÞ ∈ ES, n > 1Þ, which is a
collection of different subfields. In this case, any subdomain
Fm∈n in D is called the microdomain, i.e., D̂ = fMF1,⋯,
MFngðMFm∈n = Fm∈nÞ.

Definition 9 Microdomain attribute set. Define a multido-
main personal privacy fusion data set D = fAtt1 ⋯Attngðn
> 0Þ. By Definition 8, get D̂ = fMF1 ⋯MFn−1,MFng, and
the set of attributes that make up microdomain MFk∈D is
called microdomain attribute set, i.e., MFASk = fAttm ⋯
Attm−1, AttmgðAttm ∈D, 0 ≤m ≤ nÞ:

Histogram
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Add Noise to
unattributed

histogram

Add Noise to
universal
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Figure 3: Privacy protection model for multimodal histogram data publishing.
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In this section, take the multidomain personal privacy
fusion data set for the campus as an example. The data set
contains seven attributes: grade, absences, phone, E-mail,
address, health, and personal basic information. Figure 2
shows the recognition result of data attributes based on Def-
initions 9 and 10 and expert knowledge.

4.1.2. Microdomain Attribute Set Classification Module.
When we select any microdomain attribute set MFASk to
publishing, the personal privacy in MFASk can directly rep-
resent the privacy characteristics of the microdomain MFk.

Therefore, the attributes of the published microdomain attri-
bute set MFASk are called direct privacy attribute. The defi-
nition is as follows.

Definition 10 Direct privacy attribute (DPA). Set the data
attribute recognition result is D̂ = fMF1 ⋯MFn−1,MFng,
MFASk = fAttm ⋯Attm−1, Attmg. When we select the attri-
bute set MFASk of any microdomain MFk in D̂ to publish,
the attribute in MFASk is called the direct privacy attribute
of microdomain MFk.

Input: fSQ[i]: the noise frequency;
Output: SQ: the constraint inference frequency
1 define listB, array[i], flag=flase, start =0, end=0, sum=0, avg=0;

2 for i ∈ ½0, iÞ // Line2-13 Judgment whether fSQ½i� is a order query sequence
3 if i=0

4 listB ⟵fSQ½i�; //add the fSQ½i� to listB
5 else

6 listB ⟵fSQ½i�;
7 if fSQ½i� < listB:getði − 1Þ
8 if flag = false;
9 start = i-1;
10 end = i;
11 flag =!flag;
12 else
13 End = i;
14 Handle(); //The recursive method of the order inference
15 end for
16 Handle() // Lines16-26 the order inference
17 for i∈[start,end]
18 sum=sum+listB.get(i);
19 end for
20 avg = sum/(end – start +1);
21 for i∈[start,end]
22 listB.set(i,avg);
23 end for
24 if start >=1 && listB.get(start-1)>avg;
25 start = start – 1;
26 Handle();
27 SQ½i�⟵ arr½i�;
28 return the constraint inference frequency SQ½i�;

Algorithm 1: Constraint inference for unattributed histogram.

(0.2-1)

(0.2-0.6) (0.6-1)

(0.2-0.3) (0..4-0.5)(0.3-0.4) (0.5-0.6) (0.6-0.7) (0.8-0.9)(0.7-0.8) (0.9-1)

(0.2-0.4) (0.4-0.6) [0.6-0.8) (0.8-1)

Figure 4: Query sequence tree based on the full binary tree.
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We get the DPA set through Definition 10, and the rest
of the microdomain attributes set up other attribute set ð
OA, DPA ∪OA =D), by calculating information gain
between each attribute in OA and each attribute in DPA to
implement attribute classification in OA. When the infor-
mation gain is larger, it means that attributes in OA are
more important to the attributes of the DPA; otherwise, it
less important to attributes in DPA. The attributes in OA
are classified as sensitive privacy attributes and implicit pri-
vacy attributes for DPA set.

According to Definition 10, the microdomain is divided
into DPA set and other attribute sets ðOA, DPA ∪OA =DÞ.
This section introduces information entropy and personali-
zation parameter γ to realize the attribute classification in
the OA set. The value of parameter γ is any value within
the range of effective classification. The larger the informa-
tion gain value, the stronger the correlation between the
attributes in OA and the attributes in DPA. Therefore, the
attributes in OA include two categories: sensitive privacy
attributes (SPAs) and implicit privacy attributes (IPAs).
The definitions are as follows.

Definition 11 Sensitive privacy attribute (SPA). If IGðXnÞ ≥
γ ×HðXiÞðXi ∈DPA, Xn ∈OAÞ, the attributes in the MFAS
are called sensitive privacy attribute, where the parameter γ
is threshold.

Definition 12 Implicit privacy attribute (IPA). If IGðXnÞ < γ
×HðXiÞðXi ∈DPA, Xn ∈OAÞ, the attributes in the MFAS
are called implicit privacy attribute, where the parameter γ
is a threshold.

For example, let the data set be D = fAtt1, Att2, Att3,
Att4, Att5g. Firstly, according to Definitions 9 and 10, get
D̂ = fMF1,MF2g, MFAS1 = fAtt1, Att5g, and MFAS2 = f
Att2, Att3, Att4g and choose published microdomain attrib-
uted set MFAS1: Secondly, we combine with Definition 11
to get DPA = fAtt1, Att5g and OA = fAtt2, Att3, Att4g, and

then, according to Definition 4, calculate the information
gain. Finally, based on Definitions 11 and 12, realize the
attribute classification.

4.1.3. Microdomain Attribute Set Grading Module. Informa-
tion entropy can measure the expectation of the amount of
data attribute information. The maximum entropy reflects
the data attribute maximum information expectation, so
we denote the sensitivity of the attributes by the relative rate
of attributes information entropy and maximum entropy.
The formula for attribute sensitivity is as follows.

SV Attið Þ = H Attið Þ
Hmax Attið Þ SV Attið Þ ∈ 0, 1ð �ð Þ: ð8Þ

As the formula is known, the smaller distance between
the information entropy and maximum entropy, the stron-
ger attribute sensitivity, otherwise the less sensitive of the
attribute.

Sensitivity can effectively describe the importance of
attribute privacy. In this section, we use the attributes sensi-
tivity level table to achieve grading of attributes. Based on
the personal privacy level grading in Personal Privacy Pro-
tection Law, we propose the sensitivity level table for the
microdomain attribute set, as shown in Table 1.

Because there is a strong correlation between the attri-
butes in the SPA set and the DPA set, we propose the attri-
bute grading process in the SPA set from the perspective of
information gain. And the grading condition for SPA sets
as shown in Table 2.

(1) Count the number of attributes satisfying IGðXnÞ >
γ ×HðXiÞ in SPA set, denoted as NumðIGðXnÞ > γ
×HðXiÞÞ

(2) Count the number of attributes in DPA set, denoted
by NumðDMAÞ;

(3) We implement the attribute grading in SPA set
according to the following conditions

Input: fNL [i]: the noise frequency array, h[i]: the height of each node in the tree array
Output: NL: the constraint inference frequency
1 define array CV[j] storing the estimated value;
2 for each i in fNL // The full binary tree from the bottom-up
3 if (h[i]=0) i is the leaf node
4 CV½j�⟵ fNL½i�;
5 else
6 calculating CV½j� according to formula (11);
7 end for
8 for each j in CV[j] // The full binary tree from the top-down
9 if (h[j]=log2n+1) j is the root node;
10 NL½i� = CV½j� ;
11 else
12 calculating NL½i� according to formula (12);
13 end for;
14 return NL;

Algorithm 2: Constraint inference for universal histogram.
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Finally, according to the results of recognition, classifica-
tion, and grading, combine the unattributed histogram and
universal histogram [37] to realize multimodal mathematical
statistics based on attribute sensitivity for multidomain
fusion data sets.

4.2. Multimodal Histogram Publishing Privacy Protection
Model. To solve the problem of privacy leakage caused by
strong background knowledge in multidomain personal pri-
vacy fusion data set, in this section, we propose a privacy
protection model for multimodal histogram publishing.
According to the differences between the unattributed histo-
gram and the universal histogram in paper [39], we use the
two different constraint inference algorithms and combine
them with grouping reconstruction algorithm to achieve
multimodal histogram data publishing privacy protection
[35, 36].

4.2.1. Model Overview. Figure 3 shows the privacy protection
model in this paper, including added noise, constraint infer-
ence, and grouping reconstruction.

(1) Added Noise. Firstly, we classify histograms by step
① in Figure 3 and add the Laplace noise to histo-
grams by step ②.

(2) Constraint Inference for Differential Privacy (CDP).
We use positive-order inference and linear estima-
tion for unattributed histogram and universal histo-
gram with noise through step ③.

Input: NL½i�: the constraint inference frequency, L[i]: the original histogram frequency;
Output:the grouping reconstruction result;
1 define an array DV[i] to store ∣NL½i� −NL½i + 1� ∣ ;
2 define the SS, SSEr, SSEl store the error between the grouped histogram and the original histogram;
3 define avgR, avgL, avg store the average of the group histogram;
4 for i∈[0,k] // Lines 4-6 calculate the absolute value of the difference between adjacent numbers;
5 Dv[i]=abs(NL½i� ]- NL½i + 1�);
6 end for
7 avg =∑i

1NL½i�/∣NL½i� ∣ ; // Calculate the average frequency when all buckets are combined into a group;
8 calculate the SSE after merging a group;
9 for each i in Dv[i] // Line 9-28 Group reconstruction based on SSE
10 if (sum(DV[i]))= − ∣Dv½i� ∣ ; // group terminal condition;
11 break;
12 else
13 mid = getMaxId(); // get the max DV location value
14 DV[mid]=-1;
15 left ⟵ getLeft(mid); // get the left boundary according to the max DV
16 right ⟵getRighr(mid); // get the right boundary according to the max DV
17 flag[mid]=true;
18 for i∈[left, mid]
19 avgR = ∑mid

i=leftNL½i�/∣mid − left + 1 ∣ ;
20 SSEr = (L[i]-avgR)2;
21 end for
22 for i∈[mid+1,right];

23 avgL = ∑right
i=mid+1NL½i�/∣mid − right + 2 ∣ ;

24 SSEl = (L[i]-avgL)2;
25 end for
26 SSE[i] ⟵ SSEr+SSEl;
27 record the result of the current grouping reconstruction;
28 end for
29 sort(SSE[i]) and select the minimum SSE;
30 return the grouping reconstruction of the minimum SSE

Algorithm 3: Group reconstruction.

Table 3: Microdomain recognition results.

Microdomain Attribute

Personal Sex, age, school, guardian, Addresstype

Family
Pastatus, Fedu, Medu, Fjob, Mjob, Famrel,

Famsize

Entertainment Internet, activities, Freetime, Dalc, Walc, Goout

Campus Higher, Schoolreason, G1, G2, G3, absence

After-school Studytime, Schoolsup, paid, Famsup

Health Health

Spatial Traveltime

Emotion Romantic

8 Wireless Communications and Mobile Computing



0.310 0.315 0.320 0.325 0.330 0.335 0.340
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Parameter γ

(a) Personal

0.310 0.315 0.320 0.325 0.330 0.335 0.340

0.0

0.2

0.4

0.6

0.8

1.0

Parameter γ

(b) Family

0.310 0.315 0.320 0.325 0.330 0.335 0.340

0.2

0.4

0.6

0.8

1.0

Parameter γ

(c) After-school

0.310 0.315 0.320 0.325 0.330 0.335 0.340

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Parameter γ

(d) Campus

Figure 5: Continued.

9Wireless Communications and Mobile Computing



(3) Grouping Reconstruction Based on Constraint Infer-
ence (CDPR). According to the grouping reconstruc-
tion algorithm of step ④, obtain the best grouping of
histogram publishing.

4.2.2. Constraint Inference for Differential Privacy. Con-
straint inference makes noise data approach actual data by
query constraint conditions such as order and nonnegative.
Firstly, add Laplace noise to original query sequence Q,
which has constraint inference CQ to obtain the query
sequence q1 =Q1ðIÞ. Then, by the constraint inference rules
and L2 distance, calculate q2, which is closest to q1. The min-
imum L2 solution is defined as follows.

Definition 13 Minimum L2 solution [39]. Let Q be a query
sequence with constraints CQ. Given a noisy query sequence
q1 =Q1ðIÞ, a minimum L2 solution and denoted q1, that is a
vector, satisfy the constraints CQ and at the same time min-
imize kq1 − qk2.

(1) Unattributed Histogram
Add Noise. Define the original unattributed histogram

query sequence Q. Since we only care about the frequency
distribution of the unattributed histogram. Therefore, any
sort of query sequence is equivalent. In this section, we use
the positive-order query sequence SQ to replace the original
query sequence Q. For example, if the original query
sequence Q = f5,10,2, 3, 9g, then the positive-order query
sequence SQ = f2, 3, 5, 9, 10g.

According to Definitions 6 and 7, the global sensitivity of
the query sequence is Δf = 1, and the randomized algorithm

0.310 0.315 0.320 0.325 0.330 0.335 0.340

0.0
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(e) Entertainment
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Recall
Precision
Weight average

(f) Weight average

Figure 5: The recall rate and precision rate under different parameter values in 5 microdomains.

Table 4: Attribute sensitivity.

Microdomain Attribute Sensitivity

Personal

Sex
Age

School
Addresstype
Guardian

0.997960
0.962287
0.519086
0.765220
0.724476

Family

Pastatus
Fedu
Medu
Fjob
Mjob
Famrel
Famsize

0.480919
0.872324
0.860186
0.726524
0.928905
0.760564
0.866916

Entertainment

Internet
Activities
Freetime
Dalc
Walc
Goout

0.651001
0.999773
0.869073
0.569988
0.915546
0.921601

Campus

Higher
Schoolreason

G1
G2
G3

Absence

0.289079
0.933194
0.735019
0.735018
0.739303
0.965337

After-school

Studytime
Schoolsup

Paid
Famsup

0.850267
0.555003
0.994959
0.963063
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Figure 6: Continued.
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Figure 6: Continued.
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fSQ, which satisfies ε-differential privacy, is as follows.

fSQ = SQ + <Lap 1
ε

� �
>n: ð9Þ

The query sequence SQ satisfies SQ½i� ≤ SQ½i + 1�, 1 ≤ i
< n.

Positive-Order Inference. Given a query sequence eS =fSQðIÞ, this algorithm is aimed at finding a query sequence
�S that satisfies constraint condition �S½i� ≤ �S½i + 1�, 1 ≤ i < n
and minimizes ||~S − �S||2.

Theorem 14. Let Ln =minj∈½n,k� maxi∈½1,j�M½i, j� and Un =
maxi∈½1,n� minj∈½i,k�M½i, j�; then, the result satisfies the

positive-order constraint condition is ~S½k� = Ln =Un. M½i, j�
=∑ j

k=i
~S½k�/j − k + 1.

We use the two cases to expound. The first case assumes
the noise sequence is ~S = f2, 6, 8g, it satisfies the positive-
order constraint condition, and the final constraint inference
sequence result is ~S = �S. In the second case, if the query
sequence ~S = f2, 8, 6g is unordered, according to Theorem
14, get the �S = f2, 7, 7g. The constraint inference is described
in detail in Algorithm 1.

Algorithm 1 is a constraint inference for unattributed his-
tograms. Line 1 defines list B, the array arr½k�, the sum variable
sum, and the average variable avg in the recursive method.
Lines 2-15 are the sequential check and positive-order con-
straint inference of the current noise sequence. Lines 7 to 13

are used to check whether the noise sequence is order. In line
14, we use the recursive method of the order inference to real-
ize the order of the sequence. Lines 16 to 26 are the implemen-
tation of the order inference. Finally, we obtain an inference
query sequence SQ½i� that satisfies constraint condition �S½i� ≤
�S½i + 1�, 1 ≤ i < n and minimizes k~S − �Sk2.

(2) Universal Histogram
Add Noise. Define the original universal histogram query

sequence L. The unit interval of the universal histogram has
meaningful. Therefore, overmuch noise accumulation in
long-range queries leads to low accuracy and poor availabil-
ity of the query sequence results. In order to reduce the
cumulative error, this section replaces the original query
sequence L by creating a query sequence that supports
long-range queries.

Universal histograms support any interval frequency
queries, and the query of any interval frequency is based
on unit interval frequency statistics. The frequency of the
unit interval is the same as the leaf nodes of the tree, and
any other interval is the same as other nodes of the tree. In
this section, we use the full binary tree to create a long-
range sequence NL replace the original query sequence.

Building a full binary tree of height h, the node set V
includes the leaf node set lv and the other node set v. In a full
binary tree, the parent nodes in each layer calculates from the
query interval of the corresponding child nodes and the leaf
nodes are the unit interval in the original query sequence L.

For example, the original query sequence is replaced by the
full binary tree with k = 2 and h = 4 as shown in Figure 4. The
original query sequence is L = f½0:2‐0:3�, ½0:3‐0:4�, ½0:4‐0:5�, ½
0:5‐0:6�, ½0:6‐0:7�, ½0:7‐0:8�, ½0:8‐0:9�, ½0:9‐1:0�g and the
replace query sequence is NL = f½0:2‐1:0�, ½0:2‐0:6�, ½0:6‐1:0�

Sex
Age

Famsize
Paid

Grade1

Schoolreason 
Traveltime 

Higher Famsup
Health Absences
Internet Goout

Addresstype
Guardian

Activities
Romantic

Famrel
Freetime

PastatusSchool

Studytime
Schoolsup 
Dalc Walc

Grade2 Grade3
Medu Fedu Mjob Fjob

DPA SPA HPA

Higher

Low

Moderate

(e) Personal

Figure 6: Grading results in campus, entertainment, after-school, family, and personal.
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, ½0:2‐0:4�, ½0:4‐0:6�, ½0:6‐0:8�, ½0:8‐1:0�, ½0:2‐0:3�, ½0:3‐0:4�, ½
0:4‐0:5�, ½0:5‐0:6�, ½0:6‐0:7�, ½0:7‐0:8�, ½0:8‐0:9�, ½0:9‐1:0�g.

According to Definition 6, the global sensitivity of the
query sequence NL is the height of the full binary tree, and
we get the randomized algorithm fNL which satisfies ε-dif-
ferential privacy by Definition 7.

fNL =NL + <Lap h
ε

� �
>n: ð10Þ

Linear Estimation. After noise added to query sequence
NL, the parent node frequency is not equal to the sum of
corresponding child node frequency in the full binary tree,
so we use linear estimation to constraint inference. Finally,

we find a query sequence NL, which satisfies the constraint
condition and minimizes ||fNL −NL||2.

Firstly, we calculate the linear estimate of the full binary
tree from the bottom-up. If the node is leaf node eðvÞ = fNL
ðlvÞ and if it is not leaf nodes use the current node noise
value fNLðvÞ and its child node linear estimate eðvÞ recursive
computation, the linear estimation formula is shown below.

e vð Þ =
fNL lvð Þ if lv is leaf node,

kh − kh−1

kh − 1
gNL vð Þ + kh−1 − 1

kh − 1
〠

m∈s vpð Þ
e mð Þ v =V − lv:

8>>><
>>>:

ð11Þ
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Figure 7: Unattributed histograms in campus, entertainment, and family.
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Figure 8: Universal histograms in campus, entertainment, and family.
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In the formula, the k denotes full binary tree fan-out, h is
the height of the current node vp, and the sðvpÞ represents
the child node set of the current node vp.

Based on the current estimate eðvÞ, we adopt the top-
down linear estimation calculation to full binary tree, if the
current node is root node NLðvrootÞ = eðvrootÞ. In the top-

down traversal, if the parent node frequency is not equal to
the sum of child node frequency, we use the following for-
mula for linear estimation to constraint inference. The
details of the algorithm are shown in Algorithm 2.

Defining the noise query sequence fNL=fNLðIÞ, the
bottom-up estimation value is eðvÞ; then, the bottom-up
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Figure 9: Frequency query results in campus, entertainment, and family.
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linear estimation formula is as follows.

NL vð Þ =
e vrootð Þ, if v is the root,

e vð Þ + 1
k

NL vð Þ − 〠
m∈s vpð Þ

e mð Þ
2
4

3
5, v =V − vroot:

8>>><
>>>:

ð12Þ

Algorithm 2 is a constraint inference for universal histo-
grams. The formulas in lines 1 and 2 are the core of Algo-
rithm 2. Line 3 defines an array CV to store the estimates
by the formula on line 1. Lines 4 to 9 are the bottom-up cal-
culation of the linear estimation and the top-down linear
estimation calculation in lines 10 through 15. Finally, we
get a query sequence NL that satisfies the constraint condi-
tion and minimizes ||fNL −NL||2.

4.2.3. Grouping Reconstruction Algorithm Based on
Constraint Inference. After constraint inference, the pub-
lished histogram error is caused by noise error (NE), and
the total error of grouping reconstruction based on con-
straint inference includes noise error (NE) and reconstruc-
tion error (CE). The sum of squares due to error (SSE) can
measure the total error between the published histogram
with privacy protection and the original histogram. The
sum of squares error (SSE) formula is as follows:

SSE = 〠
n

i=1
〠
n

j=1
Di −NDj

� �2
: ð13Þ

Di is the original data and the NDj is the noise data.
When the SSE is smaller, the absolute error value becomes
smaller and the published histogram data availability
becomes better. We find the minimum SSE to implement
the best the grouping reconstruction. The core steps of
grouping reconstruction algorithm are as follows.

The idea of this algorithm is to find the best grouping
strategy by calculating the SSE between the group recon-
struction histogram and the original histogram. The input
is constrained inference sequence NL½i� and the original
query sequence L½i�. The output is the best group strategy
and minimum SSE. Lines 1 to 3 define some variables to
support the algorithm. According to lines 4-6, we calculate
the absolute value of the difference values between adjacent
buckets for the constraint inference result NL½i� and stored

in DV½i�. Lines 7 and 8 calculate the SSE when all buckets
are combined into a group. The core algorithm of grouping
reconstruction was based on SSE from lines 9 to 28. From
lines 13-17, find the maximum value of the DV to group
the sequence; then, according to lines 18-28, calculate the
SSE of the current grouped sequence until satisfied condi-
tions of the lines 10 and 11 to stop grouping. We sort the
results of SSE to find the minimum SSE and get the best
group strategy in lines 29 and 30.

The CDPR algorithm includes the CDP algorithm and
the grouping reconstruction algorithm. In the CDP algo-
rithm, both the attribute-free histogram and the general his-
togram are added with Lap ðΔf /εÞ noise through
mathematical inferences based on conditional constraints
to improve data availability. The grouping reconstruction
algorithm structurally optimizes the data availability of the
published histogram based on the CDP algorithm and still
satisfies the ε-differential privacy. The grouping reconstruc-
tion algorithm realizes data optimization and improves the
availability of the published histogram data based on the his-
togram structural characteristics. Moreover, the grouping
reconstruction algorithm also satisfies ε-differential privacy.

In group reconstruction based on constraint inference
algorithm, the time complexity of the histogram group
reconstruction algorithm is Oðn2Þ. Although the CDPR
algorithm has a high time complexity, the time complexity
is within an acceptable range, and the CDPR algorithm can
improve long-distance query accuracy and data availability.

5. Experimental Results and Analysis

In this section, we use the real data set to analyze the multi-
modal histogram data publishing framework experiment.
Firstly, we analyze the microdomain recognition experi-
ments and the microdomain classification grading experi-
ments. Secondly, we build multimodal histograms based on
three microdomain and analyze the risk of histograms.
Moreover, we use the multimodal histograms for the com-
parison experiment of the privacy protection model. Finally,
comparing the LP algorithm and MDHP algorithm to prove
the MHPP model has the advantage of low data error.

5.1. Experimental Setting

5.1.1. Experimental Data Set. The experimental data comes
from a questionnaire filled out by 788 students [40], which
contains 37 questions, and the final data set consists of 32
attributes. In the preprocessing of the data set, a valueless
attribute was deleted, and the value in the attributes grade
1, grade 2, and grade 3 was converted into five levels: A, B,
C, D, and F. Finally, after preprocessing and recognition
processing, the data set contains 8 microdomains, 31 attri-
butes, and 395 records.

Table 3 shows the 8 microdomains included in the mul-
tidomain fusion data set are as follows: personal, family,
entertainment, campus, after-school, health, spatial, and
emotion. Among them, campus is the performance of stu-
dents in school and after-school is the content related to stu-
dents’ spare time.

Table 5: Mean absolute error table.

Privacy budget Algorithm Campus Entertainment Family

ε = 1 CDP 0.6665 0.8331 0.5713

LP 0.9919 0.9976 1.0017

ε = 0:1 CDP 8.3316 7.1652 6.4272

LP 9.9958 9.9897 9.9796

ε = 0:01 CDP 58.9882 46.1574 44.8481

LP 99.7955 99.1678 100.1241
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There is only one attribute in the three microdomains of
health, spatial, and emotion which leads to low experimental
significance. Therefore, the following experiments in this
paper select personal, family, entertainment, campus, and
after-school for experimental analysis.

5.1.2. Experimental Parameter Set

(1) Parameter γ Set. In this section, we compare and analyze
the recall rate and precision rate of five microdomains (per-
sonal, family, after-school, campus, and entertainment) at
different parameters to determine the range of experimental
parameters. The value range of the experimental parameters
in this section is [0.31, 0.34].

Figures 5(a)–5(e) show the recall rate and precision rate
under different parameter values in 5 microdomains. When
the parameter γ = 0:31, the recall rate in the five microdo-
mains is 100%. The reason for this problem is that the recall
rate is to calculate how many positive samples in the original
sample are predicted correctly. Assume that the SPA set is a
positive sample, and the HPA set is a negative sample, when
the parameter γ = 0:31, the attributes in the five microdo-
mains are basically classified into the positive sample SPA
set. However, the HPA set cannot be effectively classified
from the OA set under the parameter γ = 0:31. When the
parameter γ = 0:335, the precision rate is 0 in the two micro-
domains of family and entertainment. At the same time,

when the value range is [0.335, 0.34], the recall rate is stored
as 0, which indicates that the parameter γ = 0:335 cannot
effectively classify the OA set. In summary, when the param-
eter γ ∈ ð0, 0:31� or γ ∈ ½0:335, 1Þ, the OA set cannot be effec-
tively classified into the SPA set and the HPA set. Therefore,
the experimental parameter γ ∈ ð0:31, 0:335Þ in this paper
can effectively classify the OA set into SPA set and HPA
set. In the classification process, the recall rate and the preci-
sion rate have the same importance. This section realizes the
weighted average calculation of different parameter γ based
on the average recall rate and average precision rate of differ-
ent parameter γ in 5 microdomains. According to the
weighted average curve shown in Figure 5(f), it can be seen
that the weighted average of the parameter γ = 0:315 per-
forms better within the effective value range. Therefore, the
experimental parameter γ in this paper will be 0.315.

(2) Parameter ε Set. This experiment uses the LP algorithm
[25] and the MDHP algorithm [18] to compare and analyze
the privacy protection model for multimodal histogram data
publishing. In this experiment, we set the privacy budget ε to
0.01, 01, and 1 [30] based on ensuring a reasonable alloca-
tion of the privacy budget.

5.2. Multidomain Attribute Set Classification and Grading
Results. We calculate the attribute sensitivity (SVðAttiÞ) in
the microdomain attribute set by the attribute sensitivity for-
mula (X). When the SVðAttiÞ is larger, the uncertainty of the
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Figure 10: Mean absolute error under different privacy budgets.

18 Wireless Communications and Mobile Computing



information is more substantial and the information value of
the attribute is greater. The attribute sensitivity results are
shown in Table 4.

Figure 6 shows the classification results of DPA, SPA,
and IPA attribute sets for different microdomains. The attri-
bute set of DPA and IPA is graded by the attribute sensitivity
of Table 4 and the attribute sensitivity level of Table 1 in Sec-
tion 4.1.3. In contrast, the SPA attribute set uses the grading
condition of Table 2 in Section 4.1.3.

5.3. Multimodal Histogram Building. In the multimodal his-
togram building experiment, we select campus, entertain-
ment, and family to build multimodal histograms. In

addition, we also analyze the risk of privacy leakage in the
multimodal histogram.

5.3.1. Unattributed Histogram. Figure 7 shows the frequency
of attribute distribution that satisfies IGðAttiÞ > 0:315 ×Hð
Attx ∈DPAÞ and SVðAtti ∈ SPAÞ ≥ 0:8 in the SPA set of the
campus, entertainment, and family. In the histogram, the
abscissa is the attribute of the DPA set, and the ordinate is
the frequency distribution of highly sensitive attributes in the
DPA attribute sets and give the following formal conditions.

Atti ∈ SPA ∣ SV Attið Þ ≥ 0:8 ∩ IG Attið Þ > 0:315 × H Attx ∈DPAð Þf g:
ð14Þ
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Figure 11: Mean absolute error of unattributed histograms in campus, entertainment, and family.
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Take Figure 7(a) as an example, if the attacker grasps the
total number of highly sensitive attributes in the DPA attribute
sets of campus is 14. Moreover, we still know the 13 attributes
in the DPA attribute set and the highly sensitive attributes in
higher attribute set. Then, the attacker can infer the remaining
highly sensitive attributes by combining the attribute sensitiv-
ity in Table 4. At this time, the highly sensitive attributes are
not only leaked, but also lead to privacy leaks and even mali-
cious recommendations through the attacker’s data mining.

5.3.2. Universal Histogram. We select campus, entertain-
ment, and family to build universal histograms. Figure 8
shows the distribution of attributes with a sensitivity level
of higher and over 0.6 in the SPA attribute set. The sensitiv-
ity range of the abscissa in the universal histogram is [0.6, 1],

and the ordinate is the number of SPA collection attributes
satisfying the level of higher in the corresponding sensitivity
range.

In Figure 8(a), assume that the attacker knows the fre-
quency of campus in the sensitivity range of [0.9, 1] is 5
and knows the names of the 4 attributes. At this time, the
attacker combines the attributes of the higher level in the
SPA set with the attribute sensitivity in Table 4 can infer
more private information and lead to private leaks. Due to
the microdomain attribute set contains strong privacy infor-
mation, they face a greater risk of privacy leakage.

5.4. Microdomain Privacy Data Publishing of Privacy
Protection Result Analysis. In this experiment, the mean
absolute error (MAE) is used to calculate the error between
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Figure 12: Family frequency query results in campus, entertainment, and family.
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the original frequency and the frequency after privacy pro-
tection. The MAE can reflect the frequency availability of
multimodal histograms published after privacy protection.
The formula of MAE is as follows.

MAE = 1
n
〠
n

i=1
Qi mð Þ − ~Qi mð Þ�� ��2: ð15Þ

In the formula, n is the number of buckets of the histo-
gram, QiðmÞ represents the original histogram frequency,
and ~QiðmÞ is the histogram frequency value after privacy
protection. According to the formula, if the value of MAE
is smaller, the distance between the histogram frequency
value after privacy protection and the original histogram fre-
quency value is closer, which shows that the availability of
frequency data is better.

5.4.1. Unattributed Histogram. The core algorithms of the
privacy protection model for multimodal publishing histo-
grams proposed in this paper are the constraint inference
for differential privacy algorithm (CDP) and the grouping
reconstruction based on constraint inference (CDPR). First,
we compare and analyze the query accuracy and the mean
absolute error of the CDP algorithm and the LP algorithm
in this section experiment. Second, we choose the LP algo-
rithm, the MDHP algorithm, and the CDPR algorithm pro-
posed in this paper to compare and analyze the mean
absolute error of the query. Through the analysis of the
above comparative experiments, it proved that the privacy
protection model for multimodal publishing histograms
proposed in this paper can not only effectively guarantee
the privacy of publishing histograms but also improve the
availability of data.

(1) Analysis of the Query Results. In this experiment, the
original unattributed histogram frequency set L is used as
the baseline, and observe the distance from the baseline L.
In the differential privacy protection process, since the noise
added to the frequency is random with negative numbers
and decimals, this experiment uses nonnegative processing
and rounding processing for the noise frequency. In the
experiment, the privacy budget ε is set to 1, 0.1, and 0.01.
As the privacy budget ε decreases, the requirement for pri-
vacy protection is stronger, and it shows that more random
noise was added. We define the frequency results of the CDP
algorithm and the LP algorithm as CDP-L and LP-L.

Figure 9 shows the frequency query results of unattrib-
uted histograms protected by CDP and LP algorithms in dif-
ferent microdomains. We observe that under different
privacy budget ε, and the frequency of unattributed histo-
grams published based on the CDP algorithm is closer to
the baseline L. By observing that when the privacy budget
ε = 1, the CDP-L and the LP-L are both close to the baseline
L. The reason is that when ε = 1, there is less random noise
added, which makes the frequency disturbance of the origi-
nal histogram smaller. With the privacy budget ε decreases,
the distance of CDP-L and LP-L from the baseline L

increases. When the privacy budget is 0.1 and 0.01, the noise
added to the original frequency gradually increases, causing
the deviation between the query result after privacy protec-
tion and the baseline L to gradually increase. As the privacy
budget decreases, the histogram frequency published by the
CDP algorithm is closer to the baseline L than the LP
algorithm.

(2) Analysis of the CDP Algorithm. In this experiment, the
value of the privacy budget ε is still 1, 0.1, and 0.01. Then,
take the mean absolute error of 100 random queries under
different privacy budgets and calculate the average value
after repeating the experiment 50 times. Finally, we obtain
the mean absolute error table and histogram shown in
Table 5 and Figure 10.

Figures 10(a)–10(c), respectively, show the mean abso-
lute error of the CDP algorithm and the LP algorithm under
different privacy budgets for campus, entertainment, and
family. From the analysis of the mean absolute error results
in Table 5, there are two reasons for the closer error when
the privacy budget ε = 1. One is that the added noise is small,
resulting in small frequency disturbance of the original his-
togram, and the other is that the frequency of the buckets
in the original histogram is relatively close, and the number
of buckets is small. From the mean absolute error and pri-
vacy budget, the noise error in the CDP algorithm is signif-
icantly smaller than the error in the LP algorithm with the
privacy budget decreases. It shows that the unattributed his-
tograms published by the CDP algorithm have more higher
accuracy under the same privacy budget.

(3) Analysis of the CDPR Algorithm. In the experiment, we
take the mean absolute error of 50 samples under the same
query range to calculate the average, and the privacy budget
is set to 1, 0.1, and 0.01.

Figures 11(a)–11(c), respectively, show the mean abso-
lute error trend of the CDPR algorithm, MDHP algorithm,
and LP algorithm under different privacy budgets for cam-
pus, entertainment, and family. As the query range increases
under the same privacy budget, the CDPR algorithm has a
lower error than the MDHP algorithm and the LP algo-
rithm, which shows that the CDPR algorithm proposed in
this paper satisfies the ε-differential privacy and improves
the data availability. By observing the average absolute error
curves under three different privacy budgets, it is found that

Table 6: Mean absolute error table.

Privacy budget Algorithm Campus Entertainment Family

ε = 1 CDP 2.1547 2.1127 2.1518

LP 3.9398 3.9252 3.9509

ε = 0:1 CDP 21.3226 21.2638 21.1145

LP 39.5529 39.8937 39.1742

ε = 0:01 CDP 214.8347 211.2819 212.6625

LP 391.8511 396.3250 388.6677
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when the privacy budget decreases, the random noise
increases, which leads to the increase of the mean absolute
error of the CDPR algorithm, MDHP algorithm, and LP
algorithm. However, the mean absolute error of the CDPR
algorithm is still smaller than the mean absolute error of
the MDHP algorithm and the LP algorithm. When the pri-
vacy budget decreases or the number of queries increases,
the CDPR algorithm not only satisfies the ε-differential pri-
vacy but also publishes unattributed histograms with low
error.

It can be observed from Figure 11 that there are two
reasons why the CDPR algorithm proposed in this paper
has no obvious advantages compared with the LP algo-
rithm and the MDHP algorithm in a small range of
queries. One reason is due to the frequency of the unat-
tributed histogram experimental cases is similar, and the
number of buckets is fewer, and when adding small ran-
dom noise to the unattributed histogram, the frequency
values of the unattributed histograms published by the
CDP algorithm and the LP algorithm are similar. On the
other hand, since the frequency of the unattributed histo-
gram fluctuates greatly after noise is added, there may be
cases of no merging in the grouping reconstruction stage,
causing the results of the CDPR algorithm to be similar
to the LP results. The last reason is that the frequency of
adjacent buckets in the unattributed histogram published
by the CDP algorithm is the same, which causes the
CDPR algorithm to directly merge adjacent buckets with
the same frequency.

5.4.2. Universal Histograms

(1) Analysis of the Query Results. In this experiment, the uni-
versal histogram original frequency set S used as the base-
line. The histogram frequency sets published by the CDP
algorithm and the LP algorithm are defined as CDP-S and
LP-S. The accuracy of histogram data published based on
the CDP algorithm was verified by comparing the distance
between CDP-S, LP-S, and the baseline S when the privacy
budget ε is 1, 0.1, and 0.01.

Figure 12 shows the results of frequency query under dif-
ferent privacy budgets. When the privacy budget ε = 1, the
noise added to the original frequency is small, making the
frequency inferred by the CDP algorithm similar to the fre-
quency published by the LP algorithm, so the distance
advantage between CDP-S and baseline S is not apparent.
With the privacy budget is set to 0.1 and 0.01, the noise con-
tent of the original frequency increases. The frequency set
CDP-S is closer to the baseline S than the frequency set
LP-S, which shows that the CDP algorithm has lower error
than the LP algorithm.

(2) Analysis of the CDP Algorithm. According to the mean
absolute error results in Table 6, we draw the mean absolute
error distribution as shown in Figure 13. In this experiment,
the privacy budget ε is still selected as 1, 0.1, and 0.01, and
take the average of the mean absolute error after 100 random
queries for the count results of any interval. The whole
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Figure 13: Mean absolute error under different privacy budgets.
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experiment was repeated 50 times, and the average value was
taken.

According to the Table 6 and Figure 13, in the same
microdomain, no matter the privacy budget is 1, 0.1, or
0.01, the average absolute error produced by the CDP algo-
rithm is smaller than the average absolute error produced
by the LP algorithm. However, since the random noise
added by ε = 1 is small, and the original frequency value in
the experimental case is small, resulting in a small frequency
fluctuation range after adding noise, the mean absolute error
of the CDP algorithm is close to that of the LP algorithm.
When the privacy budget is 0.1 or 0.01, more noise will be

added to the original frequency. The mean absolute error
of the CDP algorithm is significantly smaller than that of
the LP algorithm. With the privacy budget decreases, the
histogram published by the CDP algorithm has a lower error
than the histogram published based on the LP algorithm.

(3) Analysis of the CDPR Algorithm. The long-range query
frequency results of the general histogram are to calculate
the mean absolute error of the CDPR algorithm, MDHP
algorithm, and LP algorithm under different privacy budgets
and compare and analyze the three algorithms. During the
experiment, the interval size taken as 2h, where h is the tree’s
height. For the same interval size, we take the average of the
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Figure 14: Mean absolute error of universal histograms in campus, entertainment, and family.
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same number of times and repeat the entire experiment 50
times to get the average.

Observing Figures 14(a)–14(c), it is found that under the
same privacy budget, as the query range increases, the mean
absolute error curve of the CDPR algorithm is lower than
the mean absolute error curve of the LP algorithm and the
MDHP algorithm. When the privacy budget decreases, the
mean absolute error curve of the CDPR algorithm is still
lower than the mean absolute error curve of the LP algo-
rithm and the MDHP algorithm. It shows that the universal
histogram published based on the CDPR algorithm not only
supports long-range queries, but also with the privacy bud-
get decreases, the CDPR algorithm has lower error than
the LP algorithm and the MDHP algorithm.

From the trend of the mean absolute error curve in
Figure 14, it was found that the mean absolute error curve
of the LP algorithm increases sharply with the increase of
the query number. The reason is that due to the increase
in the number of queries, too much noise is accumulated
in the frequency of the unit interval, so more noise is accu-
mulated when calculating the frequency of any interval.
With the query range increases, the mean absolute error
curve of the MDHP algorithm compared to the LP algo-
rithm does not have a sharp increase significantly. Although
the MDHP algorithm optimizes the noise error accumulated
in the unit interval by merging adjacent buckets, the other
arbitrary interval frequency is still calculated based on the
unit interval frequency, so more errors are accumulated in
the face of long-range queries or small privacy budgets.
However, this paper replaces the original query sequence
by building a full binary tree before adding noise, to avoid
the noise accumulated in the unit interval from affecting
the frequency of other arbitrary intervals.

(4) CDPR Algorithm Time Complexity. The CDPR algorithm
is composed of constraint inference for differential privacy
algorithm and group reconstruction based on constraint
inference algorithm. In constraint inference for differential
privacy algorithm, the time complexity of the differential
privacy algorithm is OðnÞ. Then, execute the constraint
inference algorithm, where the time complexity of the unat-
tributed histogram positive sequence inference algorithm is
Oðn2Þ, and the time complexity of the linear inference algo-
rithm of the universal histogram is Oðlog 2nÞ. In group
reconstruction based on constraint inference algorithm, the
time complexity of the histogram group reconstruction algo-
rithm is Oðn2Þ.

In summary, the algorithm proposed in this paper has
high time complexity, but the time complexity is within an
acceptable range. At the same time, the method proposed
in this paper can support long-range queries and improve
the availability of data. The method proposed in this paper
is suitable for small-scale, small-span, and small-change
statistical data, such as government statistics, traffic statis-
tics, and other related data. It is reasonable to improve the
availability of data by sacrificing acceptable time
complexity.

6. Conclusions

Due to the multidomain fusion data based on the collabora-
tive collection of the IoT has rich background knowledge
and attribute characteristics, it causes problems such as pri-
vacy leakage based on background knowledge and difficulty
in multimodal data publishing. To address these problems,
we propose a multidomain fusion data privacy security
framework that includes three models such as the MRCG
model, MHB model, and MHPP model. In the MRCG, first,
we perform microdomain recognition through the proposed
microdomain and microdomain attribute set definitions.
Second, we use information entropy, conditional entropy,
and information gain to realize the microdomain attribute
set classification and grading. Finally, based on the results
of MRCG, determine the attributes sensitivity and relation-
ship between attributes to solve the problem of multimodal
data statistics difficulties in multidomain fusion data sets.
In the MHB, according to the results of multimode data sta-
tistics, combine unattributed histogram and universal histo-
gram to build multimodal histograms for multidomain
fusion data set. In the MHPP, we improve the MDHP algo-
rithm by positive-order inference and linear estimation to
implement privacy protection for multimodal histogram
data publishing.

Based on the real data set, the experimental results show
that the multidomain fusion data privacy security frame-
work not only realizes the recognition, classification, and
grading of microdomain attribute set but also builds multi-
modal histograms by combining multimode data statistics
with the unattributed histogram and the universal histo-
gram. Furthermore, the CDPR algorithm in the MHPP
model ensures the privacy security of the published multi-
modal histogram data. Compared with the LP algorithm
and the MDHP algorithm, the CDPR algorithm has a lower
frequency query error and improves the data availability of
the published histogram.

In the future, we will research the recognition, classifica-
tion, and grading model for streamed data and the privacy
protection model for dynamic data publishing.
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The emergence of poison attack brings a serious risk to deep neural networks (DNNs). Specifically, an adversary can poison
the training dataset to train a backdoor model, which behaves fine on clean data but induces targeted misclassification on
arbitrary data with the crafted trigger. However, previous defense methods have to purify the backdoor model with the
compromising degradation of performance. In this paper, to relieve the problem, a novel defense method VarDefense is
proposed, which leverages an effective metric, i.e., variance, and purifying strategy. In detail, variance is adopted to
distinguish the bad neurons that play a core role in poison attack and then purifying the bad neurons. Moreover, we find
that the bad neurons are generally located in the later layers of the backdoor model because the earlier layers only extract
general features. Based on it, we design a proper purifying strategy where only later layers of the backdoor model are
purified and in this way, the degradation of performance is greatly reduced, compared to previous defense methods.
Extensive experiments show that the performance of VarDefense significantly surpasses state-of-the-art defense methods.

1. Introduction

Recently, deep neural networks (DNNs) have obtained
impressing achievements over a broad spectrum of domains,
such as image recognition [1], natural language process [2],
recommendation system [3], and others [4–6]. Unfortu-
nately, when DNNs are used in security-critical or data-
sensitive scenarios, potential benefits arouse the adversaries
to attack the models.

Over the past decade, many attack methods have been
developed. For example, model extraction attacks [7] expose
the valuable information of the model, model inversion
attacks [8] reconstruct the secret data, and evasion attack
[9] makes the model output false predicts. Despite the fact
that those attacks are dangerous, poison attack still is the
most threatening attack due to its high attack feasibility
compared to those attacks. Poison attack can be effortlessly
conducted by mixing a small volume of poison data into
the training dataset, and a backdoor will be planted in any
model trained with the poison dataset. Subsequently, this
backdoor is activated during model inference by a trigger
crafted by the attacker which, whenever and wherever pres-
ent in a given image, enforces the DNN to predict the poison

label. The capacity of manipulating the output of the DNN
can produce a severe consequence in many fields. For
instance, it is extremely terrible that the autopilot system
[10] mistakenly recognizes the pedestrian as something else
and similar events happen in face recognition [11], etc. In
short, poison attack makes DNNs unreliable and greatly
drags the application of DNNs in the physical world.

For promoting applications of DNNs in scenarios with
high-security requirements, several relatively effective
defense approaches have been proposed to conquer poison
attack over the past years. These defense methods generally
are two-stage methods, including the detection stage and
purifying stage. The detection stage is aimed at determining
whether a DNN contains a backdoor. In detail, optimization
is adopted to derive a trigger for each class and then inspect-
ing if there is a trigger with exceptional distinctness than
other triggers. The existence of a trigger with exceptional
distinctness probably suggests that the model is poisoned.
By adopting the idea, the detection stage obtains an impres-
sive capacity of detecting the backdoor. In contrast, the per-
formance of such methods focused on purifying stage is
disappointing. Specifically, with such methods, despite the
backdoor being fairly erased from the model, the induced
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loss in performance of the model is always compromising,
extremely lowering the effectiveness of such approaches.
This paper proposes a novel defense method, dubbed
variance-based defense against poison attack (VarDefense),
to reduce the impairment induced by removing the back-
door from the model.

VarDefense is motivated by the fact that the backdoor
embedded in the model essentially is the neurons respond-
ing strongly to the trigger (named bad neurons), which con-
tribute the most of the attack effectiveness. Hence, we desire
to identify and then remove the bad neurons, and in this
way, the performance of the model can be reserved as possi-
ble while the backdoor is quite removed. However, the infor-
mation about the trigger pattern does not access in advance,
and then, it is intractable to recognize the bad neurons
directly. To circumvent the problem, we embrace the
approach with a similar function that reserves the neurons
that produce a great effect for clean data (named benign
neurons). Moreover, in Approach, it is intuitively justified
that the way can achieve the identical performance to the
method of directly identifying the poison neurons. Extensive
experiments show that the performance of VarDefense sig-
nificantly surpasses state-of-the-art defense methods. Our
contributions are summarized as follows:

(i) We suggest adopting variance as the purifying met-
ric, which is more efficient compared to previous
purifying metrics. Then, based on the variance, we
propose a novel defense method VarDefense against
the poison attack

(ii) We propose an insightful perspective to understand
the mechanism of the poison attack and design a
simple yet efficient purifying strategy that can
greatly reduce the degradation of the model’s
performance

(iii) We conduct extensive experiments on four widely
used benchmark datasets, i.e., MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100, to validate
the effectiveness of VarDefense, where the experi-
ment results demonstrate the superior performance
of VarDefense than state-of-the-art defense
methods

2. Related Works

2.1. Backdoor Attack. In the life cycle of DNNs, there are
many potential threat factors used to attack, and poison
attack is conducted during the training process. The seminal
work of poison attack was proposed by Gu et al. [12], where
authors just added a simple trigger pattern, e.g., a small
white rect, into a small portion of training data, and then a
backdoor is strongly injected into the model. Specifically,
the model trained with the poison dataset classified poison
input into a poison label over 99% success rate, without deg-
radation of performance. Following Gu et al. [12], Chen
et al. [13] argued that, for a practical attack, the images with
the crafted trigger should be indistinguishable compared to
its benign version. To do so, Chen et al. [13] proposed a

blended strategy in which poison inputs are produced by
blending the specific random noise with clean images. It
greatly decreases the risk of being checked out by humans.
Xie et al. [14] and Bhagoji et al. [15] extend the poison attack
into the federated learning scenario, which further increases
the threat of poison attack.

2.2. Backdoor Defense. With the emergence of poison
attacks, several countermeasures were proposed, and such
countermeasures can be roughly classified as detection
methods and purifying methods.

Detection methods focus on recognizing whether a
model is poisoned. Neural cleanse [16] has taken the first
step for detecting whether a model contains a backdoor. In
detail, the possible triggers for each class are reversed and
then L1 norm as the metric to inspect the trigger with excep-
tional features. The model is infected if there is a trigger with
exceptional features. Despite the impressive performance of
neural cleanse, it still requires a clean dataset. To further
alleviate the constraint, Chen et al. [17] proposed DeepIn-
spect to detect the backdoor without resort to a clean data-
set, which obtains competitive performance compared to
neural cleanse. There are some ambiguous approaches that
are aimed at detecting the poison examples, and we also clas-
sify the approaches into the detection methods. For example,
Gao et al. [18] proposed to filter poison examples through
overlapping example patterns and inspect the output. If the
randomness of the output is too small, the examples proba-
bly are poisoned.

In contrast to detection methods, purifying methods are
aimed at removing the backdoor while maintaining the per-
formance as possible. Liu et al. [19] proposed a simple way
against poison attack, where the model is fine-tuning with
benign examples. But the performance of the method is
fairly low. Similar to it, Qiao et al. [20] proposed fine-
tuning the model with the mixed dataset, which consisted
of the clean data and the poison data (synthesized by the
generative model) with the clean label other than the poison
label. To remove the backdoor, Liu et al. [21] proposed fine-
pruning, a model compression method. Fine-pruning is
done by removing the neurons with low activation value
w.r.t. clean data, but some bad neurons remain in the model.
Besides, based on the idea that the model is not poisoned,
definitely, if it is trained from scratch over clean data,
Yoshida and Fujino [22] proposed knowledge distillation
for removing backdoor, where clean labels can be predicted
by the teacher (poison) model. Furthermore, Li et al. [23]
proposed neural attention distillation to improve the effec-
tiveness of vanilla knowledge distillation, becoming the
state-of-the-art purifying method currently. However, the
effectiveness of such methods heavily depends on the num-
ber of clean data and performs unstably over different
datasets.

3. Scenario

This section gives an overview of the attack and defense sce-
nario, beginning with attack scenario, followed by defense
assumptions and goals.
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3.1. Attack Scenario. We assume that attackers poison the
training dataset in some certain ways, and then, the model
is trained with the poison dataset, as shown in Figure 1(a).
Then, the (poisoned) model performs well on clean data
but exhibits targeted misclassification on the presence of
poison data, i.e., a backdoor is injected into the model. This
attack scenario is fairly common in practice because the
training dataset is always not fully controlled by users. To
illustrate, there are three typical cases. The first case is that
the collected dataset may contain poison data crafted and
spread by the attackers. Another case is that, in federated
learning, the malicious participants are desired to poison
their own dataset to manipulate the shared model. The third
case is that, due to deficiency of computing resource, the
users outsource the training process to an untrusted party
and the party probably poisons the dataset to potential ben-
efits. In short, the assumed attack scenario covers most of
the attack scenario of the poison attack.

3.2. Defense Scenario. Now, the defenders (users) receive the
(poisoned) model and there are two required tasks for
defenders: validating the performance and detecting whether
the model is poisoned. To validate the performance of the
model, it is commonly supposed that the defenders have a
small volume of clean data, i.e., test set. Moreover, we highlight
that the test set is identically distributed with the test size,
which is a widely used assumption in most backdoor defense
papers [19–23] because it is impossible to adopt a test set out-
side the distribution of training set to measure the perfor-
mance of the model. Then, as demonstrated in Figure 1(b),
the defender attempt begins to validate the performance and
the model produces desired performance on the dataset avail-
able to the defenders. Besides, we assume that the defenders
has been ensured that a backdoor is embedded into the model
(the step can be smoothly implemented with previous detec-
tion methods), and the remaining problem is how to purify
the model. Specifically, the purifying method should fulfill
two goals: (1) rendering the backdoor disable with slight per-
formance loss and (2) without resort any extra resources
except the holding dataset. In the next section, we will develop
a method to meet the two goals.

3.3. Approach. In this section, we design the purifying
approach VarDefense to address the poison attack, starting

with the core idea of VarDefense; implementation details
are revealed subsequently.

3.4. Overview. The backdoor embedded in the model essen-
tially is the bad neurons that are implicitly coopted by the
attack to recognize the crafted trigger. According to the idea,
removing the backdoor from the model basically equals
removing those bad neurons. Besides, the bad neurons are
dormant in the presence of clean data, suggesting that recog-
nizing the bad neurons can be realized by using clean data.
Therefore, we assume that the defenders possess a small vol-
ume of clean data, which also is a widely used hypothesis in
most defense scenarios as forementioned in Scenario. The
leaving problem is how to implement the idea leveraging
the clean data. Intuitively, the idea can be implemented as
follows: (1) feeding a batch of clean data into the network,
(2) adopting a certain predefined selection metric to measure
the importance of neurons to the data, and (3) based on it,
determining the neurons that should be purified, i.e., recog-
nizing the bad neurons. In the next paragraphs, we first
define the selection metric and then introduce the purifying
strategy and implement details.

3.5. Variance-Based Selection Metric. In general, there are
two types of selection metrics that are available to evaluate
the importance of neurons: weight-based metrics and
output-based metrics. Weight-based metrics utilize the
weights of neurons for assessing the importance of neurons,
while output-based metrics adopt the outputs of neurons to
evaluate the importance of neurons. However, weight-based
metrics are unsuitable to our method. Specifically, notice
that the bad neurons must not be associated with small
weights, which implies only removing the neurons with
small weight being not enough to erase the backdoor.

In contrast to weight-based metrics, output-based met-
rics are favorable. In fact, the neurons of the outputs with
the relatively small change to the deviation of the clean data
generally contribute less in terms of clean data, since the out-
puts are approximately constant to the variation in the
inputs, suggesting the neurons are probably redundant, i.e.,
the bad neurons. Hence, such metrics based on sensitivity
can be exploited to distinguish the beneficial neurons from
the bad neurons. There are two such representative metrics:
variance and information entropy. Variance assesses how
divergent a set of contiguous numbers is while information
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Figure 1: The illustration of the attack and defense scenario.
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entropy measures the redundancy of a set of numbers. But,
when vanilla information entropy is adopted to measure
the divergence of contiguous data, discretization is the nec-
essary data preprocessing procedure. Discretization involves
how to bin that is not being well-handled till now. In sharp
contrast, variance can inherently estimate the divergence of
the contiguous variables without resort to any preprocessing
trick. Moreover, the computation overhead required to var-
iance is significantly lower than information entropy, con-
sidering the complicated process flow and log function
being the high computation cost involved in information
entropy. Therefore, variance is a better metric than informa-
tion entropy.

3.6. Purifying Strategy and Implementation Details

3.6.1. Purifying Strategy. Recall that our goal is removing the
backdoor while maintaining the performance as possible,
and to fulfill the goal as possible, we have to bespeak a
proper purifying strategy. The purifying strategy can be
divided based on four factors: (1) the number of purifying
layers, (2) purifying earlier layers or later layers, and (3)
layer-wise purifying or network-wise purifying. It should
be clarified that layer-wise purifying and network-wise puri-
fying differ in purifying the neurons with the metric below
the predetermined threshold within one certain layer or
the network. For VarDefense, purifying multiple and later
layers, and layer-wise purifying are shown in Figure 2. There
are reasons for it. A piece of shared knowledge is that shal-
low and deep layers of DNNs are responsible for recognizing
general and specific features, respectively. Besides, the trigger
is a specific feature, which implies the backdoor is the neu-
rons located in later layers. Therefore, purifying the later
layers is enough for fairly removing the backdoor. Another
benefit is to avoid the huge damage to the model induced
by pruning earlier layers (all of the general features matter).
For the third question, layer-wise purifying is advisable
because the weights and outputs of neurons in different
layers generally have different orders of magnitude. In other
words, network-wise purifying is prone to purify the neu-
rons in the layers with higher output magnitude.

3.6.2. Implementation Details. Now, the remaining problem
is to determine the threshold for classifying neurons and
how to purify the neurons below the threshold. We begin
with solving the first problem. Intuitively, the fixed threshold
strategy is not feasible since it is difficult to ensure a specified
threshold where the backdoor is completely removed with
desired loss of performance of the model. To conquer the
dilemma, the dynamic incremental threshold strategy is
introduced in VarDefense: initializing the threshold from a
small value and iteratively raising it, until the threshold
meets the predetermined maximum value. To overcome
the second problem, we design an appropriate loss function
involving crossentropy loss and L1 regularization term-
associated weights of neurons for purifying the bad neurons.
On the one hand, the regularization term is adopted to
remove the backdoor fairly. On the other hand, the crossen-
tropy loss function is aimed at fine-tuning for decreasing the

damage induced by purifying, i.e., avoiding compromising
performance loss. Specifically, the loss function is defined
as follows:

L = 1
n
〠
n

i=1
α∙Cross yi, F xið Þð Þ + 〠

j∈M
wj�
�
�
�
1

 !

, ð1Þ

where α is the hyperparameter that balances two loss terms,
M is purifying layers set, and wj denotes all parameters of
the jth layer.

3.6.3. Momentum Trick. The effectiveness of VarDefense
heavily depends on the quality of clean data. In fact, to accu-
rately evaluate the effect of a neuron for clean data, the
importance of the neuron should be measured by all clean
data simultaneously. But the solution has to consume a huge
cost and requires advanced equipment, which is a harsh con-
dition to normal users. To overcome the issue, we utilize the
widely used momentum trick. In detail, by accumulating the
previous values, the momentum trick can effectively reduce
the bias of minibatch data, greatly improving the effective-
ness of the purifying process.

4. Experiments

4.1. Experiment Setting

4.1.1. Attacks. Poison attacks mainly differ in the character-
istic of the crafted trigger, e.g., size and position. To compre-
hensively evaluate the effectiveness of VarDefense to various
poison attacks, both the size and position of the crafted trig-
ger are covered in the experiments. For trigger size, we con-
sider the four classic forms, including 3 × 3, 5 × 5, 7 × 7, and
global noise. Meanwhile, for trigger position, the fixed posi-
tion and random position are involved. Finally, the poison
ratio is set to widely used 0.05, which is the fraction of poi-
son data added per minibatch.

4.1.2. Baselines. To validate the performance of VarDefense,
three mainstream types of state-of-the-art defense method is
considered, including fine-pruning [21], GAN-based defense
(the authors did not name their defense method, and thus,
we use GAN-based defense to denote it) [20], and neural
attention distillation (NAD) [23].

4.1.3. Datasets and Model Architecture. The performance of
defense methods against attacks is measured in four bench-
mark datasets, i.e., MNIST, Fashion-MNIST, CIFAR-10, and
CIFAR-100, while ResNet18 is the base model throughout
the experiments.

4.1.4. Evaluation Metric. Followed by previous studies [20,
21, 23], we adopt the two widely used metrics to evaluate
the effectiveness of VarDefense, i.e., accuracy (ACC) and
attack success rate (ASR). ACC refers to the accuracy of
the model to clean data, measuring the degradation of the
performance of the model. ASR is the portion of poison data
classified into the poison label, evaluating the attack effec-
tiveness. In short, the higher the ACC is, the lower the
ASR is, and the better the defense method is.
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4.1.5. Others. Following the standard setup, we used SGD
with a learning rate of 0.01 and batch size 128. All experi-
ments were conducted in one machine with Ubuntu 18.04
system equipped with two Tesla V100s.

4.2. Comparison with State-of-the-Arts. Tables 1 and 2 sum-
marizes the detailed performance of four defense methods
over attacks with varying trigger sizes and positions on four
datasets (CIFAR-10, CIFAR-100, MNIST, and Fashion-
MNIST).

Overall, VarDefense dominates the previous state-of-
the-art defense approaches in most settings (demonstrated
in Tables 1 and 2). For instance, for VarDefense, ASR drops
dramatically by more than 99% with negligible degradation
of ACC (less than 1%) in MNIST, while other defense

methods, e.g., fine-pruning and GAN, only obtain about
90% drop, implying the superior performance of VarDefense
compared to other methods. Besides, it is illustrated in
Tables 1 and 2 that either of ACC and ASR to NAD is lightly
better than VarDefense (≈1% in such cases). But, it is high-
lighted that VarDefense still achieves better performance
compared to NAD. In such cases, compared to VarDefense,
NAD only obtains fairly minimal improvement (≈1%) in
either of ACC or ASR, whereas VarDefense attains notable
improvement ð≈10% on ACC and ≈2% on ASR) in another
metric compared to NAD.

As introduced earlier, trigger is the most critical factor in
poison attack, and hence, we investigate the effectiveness of
VarDefense to varying triggers as demonstrated in
Figure 3. The surprising aspect is that the lines in Figure 3

Table 1: The performance of four defense methods against different attack settings in MNIST and Fashion-MNIST. The numbers in italic
are the best result.

Dataset Trigger size Position
Before Fine-pruning NAD

GAN-based
defense

VarDefense

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

MNIST

3 × 3 Fixed 99.05 98.67 11.47 96.70 1.86 98.24 7.48 97.59 0.58 97.25

Random 99.52 98.87 11.53 96.42 2.14 98.05 7.36 98.00 0.54 98.52

5 × 5 Fixed 99.24 98.74 10.95 97.52 2.43 97.74 6.79 96.08 0.57 97.91

Random 99.53 98.59 11.02 97.33 3.11 97.13 6.66 96.31 1.10 97.16

7 × 7 Fixed 99.17 99.72 13.70 96.94 2.26 97.36 11.75 95.54 0.71 98.06

Random 99.87 99.00 13.98 97.42 2.64 97.35 11.32 95.01 0.80 97.60

Global noise — 98.75 98.83 10.33 97.19 2.65 98.12 7.13 95.91 0.93 97.79

Fashion-MNIST

3 × 3 Fixed 99.57 99.02 16.86 94.32 2.81 97.77 11.65 96.41 0.57 98.30

Random 99.86 99.25 16.42 95.12 2.23 97.61 11.32 96.31 1.28 98.08

5 × 5 Fixed 99.68 99.23 14.25 95.24 1.95 97.60 12.40 95.80 0.33 98.19

Random 99.14 99.49 15.10 94.67 1.69 97.06 12.35 96.02 1.95 98.97

7 × 7 Fixed 98.94 99.83 17.85 94.30 3.53 95.78 14.32 95.63 0.92 98.46

Random 99.08 99.15 18.32 94.51 3.51 96.34 13.57 96.52 0.41 98.51

Global noise — 99.12 99.23 18.79 94.48 4.14 96.70 13.07 97.06 1.14 98.36

Clean data
Normal convolution layers

Beneficial filters

Bad filters

Purifying
process Poison convolution layers Softmax layer

Recover

The flat the curve is,
The less the contributions is

Adding cross-entropy loss to
maintaining performance

Adding L1 regularization
for purifying the backdoor

Distinguish poison
convolution kernels

Figure 2: The running process of VarDefense. The images (clean data) are extracted from public dataset CIFAR-10 that can be referred to
http://www.cs.toronto.edu/~kriz/cifar.html.
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are fairly flattened, which suggests excellent and consistent
resistance of VarDefense over various triggers.

In practice, the stability of performance over different
tasks (i.e., datasets) is crucial and Figure 4 shows the average
performance of different defense methods over various data-
sets. For ACC, we observed that VarDefense consistently
performs well over four datasets, and the NAD performs
unsteadily over four datasets. Meanwhile, for ASR, both
fine-pruning and GAN have quite a few fluctuations over
four datasets, and VarDefense still consistently works well.
In a nutshell, the consistent and great performance of Var-
Defense over various datasets is more favored in practice.

4.3. Further Exploration to VarDefense

4.3.1. Impact of α. We are also interested in hyperparameter
α that controls the purifying magnitude, and Table 3 dem-
onstrates the results of coarse tuning α in four benchmark
datasets.

It is noticed that lower α induces lower ASR, i.e., more
effective against poison attack, but, lower α also results in big-
ger degradation of ACC. For instance, in CIFAR-10, when α
= 0:0001, despite the fact that the ASR drops to 4.5%, the
ACC also degrade minimum (76.47%) and such cases also
happen in MNIST, Fashion-MNIST, and CIFAR-100. In
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Figure 3: The performance of VarDefense over various trigger settings in four datasets. The f and r in this figure denote the fixed and
random position while 3, 5, and 7 denote the trigger with 3 × 3, 5 × 5, and 7 × 7 resolution, respectively. The global means that the
trigger is global imperceptible noise.

Table 2: The performance of four defense methods against different attack settings in CIFAR-10 and CIFAR-100.

Dataset Trigger size Position
Before Fine-pruning NAD

GAN-based
defense

VarDefense

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

CIFAR-10

3 × 3 Fixed 98.36 83.33 32.51 78.54 11.65 69.48 10.21 78.97 8.46 80.41

Random 98.80 83.81 32.07 77.96 11.24 69.00 9.52 78.95 8.70 80.34

5 × 5 Fixed 97.28 83.28 37.25 78.33 7.98 69.58 9.29 78.46 9.10 80.27

Random 97.99 83.64 37.41 78.34 7.68 69.25 9.32 78.51 8.83 79.88

7 × 7 Fixed 98.93 82.96 35.15 76.32 8.92 70.63 10.79 78.30 8.15 80.44

Random 98.01 82.89 35.24 76.29 8.95 70.49 10.77 78.32 8.68 81.02

Global noise — 98.08 84.27 33.08 78.76 12.33 70.00 10.42 78.58 8.01 79.83

CIFAR-100

3 × 3 Fixed 97.77 54.98 47.06 47.69 2.56 33.51 19.88 46.93 2.14 46.23

Random 98.06 54.40 47.58 48.12 3.09 33.33 20.19 47.37 2.75 46.45

5 × 5 Fixed 97.65 54.87 51.07 44.24 4.75 31.95 13.84 46.91 1.93 46.83

Random 98.44 54.79 51.28 44.64 4.56 31.89 13.75 46.98 1.78 46.45

7 × 7 Fixed 97.60 55.65 46.93 43.51 5.36 34.52 18.13 46.05 2.27 47.83

Random 97.94 55.17 46.31 43.57 4.73 34.27 17.71 46.11 1.81 46.98

Global noise — 97.38 54.34 47.79 48.80 2.60 32.94 20.24 47.88 2.66 46.02

The numbers in bold mean that this method is the best compared with other methods, under the corresponding experiment settings.
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Table 3: The performance of VarDefense over different α.

α
MNIST Fashion-MNIST CIFAR-10 CIFAR-100

ACC ASR ACC ASR ACC ASR ACC ASR

0.0001 95.96 0.22 95.96 0.19 76.47 4.50 45.96 0.50

0.001 96.15 0.28 96.15 0.21 80.25 4.90 46.04 0.94

0.01 97.37 0.28 96.37 0.22 80.27 5.80 46.05 1.01

0.1 97.85 0.39 96.85 0.38 80.29 7.59 46.05 1.19

1 98.30 0.57 97.25 0.58 80.41 8.46 46.23 2.14

10 97.43 0.59 97.47 0.56 80.97 12.50 46.29 3.03

100 97.52 0.63 97.79 0.67 81.03 15.53 46.80 3.73

1000 97.95 0.69 97.88 0.63 81.04 16.85 46.92 5.07

10000 98.06 0.77 98.02 0.83 81.59 17.50 47.97 5.65

100000 98.19 1.92 98.07 1.87 81.72 19.41 48.27 5.84

The numbers in bold mean that this method is the best compared with other methods, under the corresponding experiment settings.
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Figure 4: Average performance of four defense methods on CIFAR-10, CIFAR-100, MNIST, and Fashion-MNIST.
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Figure 5: The performance of VarDefense with different purified layers.
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short, there is a trade-off between maintaining model perfor-
mance and removing the backdoor, and α can control the
trade-off. In practice, to search proper α, it is suitable that α
iteratively increases from the small value until the ACC
degrades below a predetermined threshold.

4.3.2. Impact of Purifying Layers. Selecting which layers to
purify also is a critical factor, and Figure 5 presents the per-
formance of VarDefense with purifying different layers. The
layer index n denotes purifying the last 2 × n convolutional
layers. We observe that, as the number of convolutional
layers being purified (layer index) increases, the trend of per-
formance change (ACC and ASR) is consistent with the
inference as mentioned in Approach: purifying more layers
induces lower ASR but with raising performance loss.

In conclusion, purifying layers play a similar role to α, in
which both of them adjust the balance between ACC and
ASR. Therefore, the defenders should carefully tune the layer
index and α to achieve the desired trade-off between ACC
and ASR.

5. Conclusions

In this paper, we point out the existence of bad neurons that
causes the poison attack and identify removing the bad neu-
rons as the main challenge in backdoor defense. Moreover,
we design an effective defense method VarDefense which
distinguishes the bad neurons based on variance and adopts
a great purifying strategy. To solve unstable training of Var-
Defense, the momentum trick is introduced in VarDefense,
remarkably increasing the efficiency of purifying. Extensive
evaluations on four benchmark datasets show that the pro-
posed defense method can reliably remove the backdoor
with a slight performance loss compared to three state-of-
the-art defense methods.

Data Availability

The dataset of MNIST is available on the site http://yann.lecun
.com/exdb/mnist/. The dataset of Fashion-MNIST is available
on the site https://github.com/zalandoresearch/fashion-mnist.
The dataset of CIFAR-10 and CIFAR-100 is available on the
site http://www.cs.toronto.edu/~kriz/cifar.html.
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Wi-Fi device authentication is crucial for defending against impersonation attacks and information forgery attacks. Most of the
existing authentication technologies rely on complex cryptographic algorithms. However, they cannot be supported well on the
devices with limited hardware resources. A fine-grained device authentication technology based on channel state information
(CSI) provides a noncryptographic method, which uses the CSI fingerprints for authentication since CSI can uniquely identify
the devices. But long-term authentication based on CSI fingerprints is a challenging work. First, the CSI fingerprints are
environment-sensitive, which means that the local authenticator should be updated to adapt to the changing channel state.
Second, the local authenticator trained with old CSI fingerprints is outdated when users reconnect to the network after being
offline for a long time, thus, it needs to be retrained in the access phase with new fingerprints. To tackle these challenges, we
propose a CSI-based enhancing Wi-Fi device authentication protocol and an authentication framework. The protocol helps to
collect new CSI fingerprints for authenticator’s training in access phase and performs the fingerprints’ dispersion analysis for
authentication. In the association phase, it provides packet-level authentication and updates the authenticator with valid CSI
fingerprints. The authenticator consists of an ensemble of small-scale autoencoders, which has high enough time efficiency for
packet-level authentication and authenticator’s update. Experiments show that the accuracy of the framework is up to 98.7%,
and the authenticator updating method can help the framework maintains high accuracy.

1. Introduction

Nowadays, Wi-Fi has become one of the most important
wireless associated technologies [1]. However, there are seri-
ous security issues with Wi-Fi networks. Attackers can
obtain the identity information of a valid device through
wireless sniffing and then use this information to disguise
themselves as legitimate devices [2, 3]. Attackers can steal
confidential data or attack the internal websites after getting
authorization [4, 5], or they can control other devices by
sending spurious instructions [6]. Due to the widespread
use of Wi-Fi networks in a range of critical services such as
financial transactions and business management, attackers
based on the identity of Wi-Fi networks can cause damage

to public and private property and disrupt social order.
Therefore, device authentication for Wi-Fi network security
is indispensable [7, 8]. IEEE 802.11i provides cryptographic-
based device authentication methods, but it has been proven
to lack security [9–12]. What is more, Wi-Fi devices with
limited hardware resources cannot support these authentica-
tion schemes well, which brings challenges to the usage of
cryptographic-based device authentication technology.

In recent years, attempts have been made to use wireless
channel characteristics for device authentication. One
approach is to extract fine-grained fingerprints that can
identify the device from the CSI and use fingerprint match-
ing to authenticate the device [3, 13–16]. CSI refers to the
channel frequency response (CFR) of a wireless multipath
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channel, including the amplitude attenuation and phase shift
of the channel. In a fast fading channel for indoor wireless
communication, each radio path has different amplitude
attenuation and time delay. As the radio signals arrive at
the receiver along different paths, signals of different ampli-
tudes and phases are superimposed to form the final signal,
and the CSI reflects the amplitude fading and phase shift
of the multipath channel. Because CSI reflects the amplitude
and phase on all subcarriers, fine-grained device fingerprints
can be generated with CSI. In a complex indoor environ-
ment, devices in different locations have different multipath
channel states, and CSI is also expected to be different
accordingly [17–23]. This feature allows CSI to be used for
fingerprint extraction and device identification.

However, there are challenges to the application of this
technology. It is well known that device authentication is usu-
ally a long-term task, and the channel state tends to change
over time during the authentication process. As a result, the
CSI fingerprint of the target device can also change, rendering
the local authenticator ineffective. This will result in the rejec-
tion of legitimate devices. Therefore, it is significant to main-
tain a valid authenticator in an authenticated device during
long-term operation for device authentication. More impor-
tantly, the authenticator often fails when a user logs back into
the network after a long absence. This means that an alterna-
tive authentication method should be found to authenticate
users at the access stage.

What is more, packet-level device authentication has
high requirements on the computational complexity of the
authentication algorithms. Packet-level device authentication
requires extracting CSI fingerprints from each new data
packet, data preprocessing, and fingerprint matching. Most
of the CSI-based authentication technologies use large-scale
neural networks such as ANN and CNN for fingerprint
matching. Clustering algorithms such as K-means and
SVM with high computational complexity are also used in
authentication. Although these machine learning frame-
works improve the accuracy of fingerprint matching, they
are hard to apply for packet-level authentication in high
throughput networks.

In this paper, we propose an enhanced Wi-Fi device
authentication protocol based on CSI and authentication
framework. We focus our attention on two working phases,
including authentication in the access phase and authentica-
tion in the association phase. The protocol helps to collect
CSI fingerprints in the access phase, and our framework per-
forms fingerprint dispersion analysis for authentication. If
the authentication in the access phase is successful, the newly
collected CSI fingerprints are used to retrain the local authen-
ticator. In the association phase, it provides packet-level
authentication and updates the authenticator with valid CSI
fingerprints. The local authenticator consists of a small-
scale autoencoder rather than a neural network with high
input dimensionality, which is computationally small enough
for packet-level authentication and authenticator updates.

The main contributions of this paper are as follows:

(i) We propose an enhancing Wi-Fi device authentica-
tion protocol based on CSI, including the authenti-

cation procedure in access phase and association
phase. It combines our authentication technology
with the Wi-Fi communication protocol so that it
can be applied in the existing Wi-Fi networks

(ii) We develop a Wi-Fi device authentication frame-
work. In access phase, the framework is capable of
the device authentication and the authenticator’s
retraining. In the association phase, it offers
packet-level authentication service and updates the
authenticator to make it fits the current channel state

(iii) We present an authentication method based on the
CSI measurements’ dispersion degree in access
phase. We also provide a novel machine learning
architecture for packet-level authentication in asso-
ciation phase. It consists of an ensemble of small-
scale autoencoders, which has high enough time
efficiency and accuracy for authentication and
updating authenticator at a packet level

(iv) We implement our framework on Raspberry Pi and
conduct real experiments in laboratory. Experimen-
tal results show that our framework can detect
attackers and authenticate Wi-Fi devices with high
accuracy under prolonged authentication. We also
verify the effectiveness of the authenticator update
method by conducting comparison tests

This paper is organized as follows: Section 2 shows the
related work. Section 3 gives an overview of the authentica-
tion framework. Section 4 provides the authentication
methods in access phase and association phase based on
CSI fingerprints. Section 5 introduces the enhancing Wi-Fi
device authentication protocol. Section 6 gives the evalua-
tion. Section 7 concludes the paper.

2. Related Work

Recently, many wireless device authentication schemes based
on CSI have been proposed. [17] applies K-means algorithm
for authentication in access phase. It uses the number of clus-
ters in the CSI fingerprints for judging whether there are fin-
gerprints from attackers. [21] uses the correlation of
neighbouring CSI fingerprints to determine whether the
new CSI fingerprint comes from the valid device. [19] com-
bined MIMO with CSI-based wireless device authentication
technology, trying to use higher-dimensional CSI to improve
authentication accuracy. Similarly, [18] also uses MIMO-CSI
as the device fingerprint, but it proposes an authentication
algorithm with a higher accuracy rate based on the LOF algo-
rithm, which can achieve good accuracy even in an environ-
ment with low SNR.

Machine learning is widely used in wireless device
authentication systems based on CSI. [13] uses CNN to clas-
sify new fingerprints and uses the classification results for
subsequent device authentication. [17] uses K-means algo-
rithm for access phase authentication. [24] leverages the
SVM to obtain the similarity between the unknown CSI
fingerprint and the local user profile, and the similarity is
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used to determine whether the unknown fingerprint comes
from a legitimate device. In addition, data dimensionality
reduction algorithms are also used for the classification of
high-dimensional data. Principal component analysis can
extract the main feature components of high-dimensional
data, thus, reducing the computational complexity of
subsequent machine learning by downscaling the high-
dimensional data to a low-dimensional space with the best
linear combination. T-distributed stochastic neighbour
embedding is also a dimensionality reduction algorithm. It
can reduce the dimensionality of high-dimensional data to
below 3 dimensions for data visualization.

However, all the abovementioned authentication systems
do not provide a method for updating the authenticator
during the authentication process. In this paper, we provide
a method for updating the authenticator in real time, which
can improve the performance of the authentication frame-
work in the long run. In addition, none of the systems men-
tioned above show the time complexity of the authentication
algorithms, and there is no guarantee that these techniques
can be applied to high-throughput networks. However, the
ensemble learning-based authenticator provided in this
paper improves the time efficiency of authentication.

3. Framework Overview

We design a Wi-Fi device authentication framework that
provides device authentication services in both the access
phase and association phase, as shown in Figure 1. The
framework can be implemented at the Wi-Fi access point
(AP). Some work steps that require signaling interaction
between the access point and the workstation (STA) can be
accomplished by installing our authentication protocol on
both devices, which will be shown in Section 5.

As shown in Figure 1, the Wi-Fi device authentication
framework consists of two main parts, including authentica-
tion in the access phase and authentication in the association
phase. The authenticator in between plays an important role
in these two parts. The authentication framework will be
described in terms of the device authentication workflow
in the access phase and association phase as follows.

3.1. Authentication Workflow in Access Phase. According to
the access process of the Wi-Fi device, STA needs to send an
authentication request to AP. AP starts the CSI collection
after receiving the request by sending a collection request
(named collection REQ) to STA. STA then returns M mea-
suring packets, which are used to extract CSI fingerprints.
After extracting M CSI fingerprints, AP analyzes the disper-
sion degree of the fingerprints and judges whether the
fingerprints are valid. If the fingerprints are invalid, the
access request of STA will be rejected. Otherwise, the finger-
prints are used to train the local authenticator for packet-
level authentication in association phase. Before training
the authenticator, the fingerprints should be preprocessed
for noise reduction, which includes outlier elimination and
smoothing. AP uses the processed fingerprints to train the
local authenticator.

3.2. Authentication Workflow in Association Phase. For each
data packet from STA, AP extracts the CSI fingerprint and
sends it to the local authenticator. Then, AP judges whether
the fingerprint is valid according to the output of the
authenticator. It can be seen from Figure 1 that if the CSI
fingerprint is judged to be valid, the AP accepts this data
packet and uses the CSI fingerprint to train the authentica-
tor. If the fingerprint fails the authentication, the data packet
is dropped.

AP keeps a counter called F-Counter. It records the
number of the packets that continuously fail the authentica-
tion. When the authentication fails, the F-Counter is incre-
mented, and AP determines whether the connection
should continue according to whether the threshold f is
reached. Otherwise, the F-Counter will be cleared.

4. Authentication Leveraging CSI Fingerprints

In this section, we focus on the device authentication based
on CSI fingerprints. We first explain the basic idea of how
to do authentication using CSI fingerprints, and then we
describe the device authentication algorithms used in access
phase and association phase.

4.1. Basic Idea. CSI is the CFR of a wireless multipath chan-
nel, including the amplitude attenuation and phase shift. In
a Wi-Fi network, the wireless channel between each STA
and AP is unique, which means that the CSI of the channel
between each STA and AP is also unique. In the light of this
idea, the AP can uniquely mark a STA through the CSI
obtained from the packets sent by this device. Therefore,
we refer to the CSI collected from the STA as CSI finger-
prints. Figure 2 shows the amplitude image of the CSI finger-
prints obtained from four STA placed in different positions.
We can see that the fingerprints’ distributions of the same
device are concentrated, while the fingerprints’ distributions
between different devices are different. Considering that
there is often interference in real environment, we collected
CSI fingerprints under three interference conditions, and the
results are shown in Figure 3. Even if there is interference,
the CSI fingerprint is still stable. Therefore, it is reasonable
to use CSI fingerprints for Wi-Fi device authentication.

In access phase, AP sends CSI fingerprints collecting
requests to the target STA. If there is no attacker or the
attacker does not do any response, the fingerprint set will
only contain fingerprints with the same distribution, which
belong to the target STA. However, if the identity-based
attackers make response to AP, the fingerprint set will con-
tain fingerprints of at least two different distributions. The
framework takes advantage of this distinction to perform
authentication. The framework quantifies the number of
distributions by the dispersion degree of the fingerprint set.

In the association phase, the authenticator has been
trained with new CSI fingerprints obtained in access phase.
Our framework extracts CSI fingerprint from each packet
received and perform authentication at the packet level.
Autoencoders are used to build the local authenticator. The
trained autoencoder is expected to rebuild the fingerprints
of the target STA with low error, but it cannot rebuild the
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unknown fingerprints collected from the attackers well. The
framework makes use of this characteristic for authentica-
tion. To keep the authenticator adapt to the channel state,
each valid fingerprint is used to train the authenticator.
Moreover, we use an ensemble of small-scale autoencoders
instead of a large-scale autoencoder, because the time effi-
ciency of training and executing an ensemble of small-scale
autoencoders is higher than that of a large-scale autoenco-
der. It is confirmed in Section 4.4 by theoretical derivation
and Section 6.2 by evaluation results.

4.2. Authentication Scheme in Access Phase

4.2.1. Dispersion Analysis. Let CD stands for the fingerprints
set collected from the STA D and the k-th CSI fingerprint in
CD indicated by Ck

D = fCk
D,1,⋯, Ck

D,Ng ðk = 1,⋯, KÞ, where
N is the number of subcarrier, and K is the number of
samples obtained from D.

After collecting CSI fingerprints from STA, the frame-
work uses standard deviation of CD to quantify the
dispersion degree:

σ =
1
K
〠
K

k=1
Ck
D − �CD

� �2 !1/2

, ð1Þ

where �CD is the mean of the fingerprints in CD.
If the standard deviation exceeds the predefined thresh-

old, the STA is judged to be invalid and denied access to
the network. Otherwise, the STA successfully access to the
network, and the fingerprints are used for training the local
authenticator. We designate the threshold as thresholdac,
which means the threshold used in access phase.

4.2.2. Fingerprint Preprocessing. We found that there are
often fingerprints that far exceed the expected numerical
fluctuation range, as shown in Figure 4(a). They do not
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Figure 1: The framework of our Wi-Fi device authentication system.
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Figure 2: The amplitude of CSI collected in different locations. (a) Location 1. (b) Location 2. (c) Location 3. (d) Location 4.
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contain any information of device identity and will reduce
the accuracy of system. Therefore, we use the Hampel
identifier to exclude these outliers. In addition, the CSI
fingerprints of the same device will change under noise
interference. Even though the CSI images of the same device
still have the same trend, but the dispersion increases. The
local outlier factor describes the difference between finger-
prints based on the Euclidean distance. It means the noise
will cause the reference sample group become discrete and
reduce the probability of abnormal CSI being detected.

Therefore, we smooth the CSI fingerprints in the time
domain. The fingerprint preprocessing consists of two
stages, including the outlier elimination and the smoothing.

(1) Outlier Elimination. We perform outlier detection on
each subcarrier individually. First, we arrange the ampli-
tude samples of n-th subcarrier in chronological order,
which can be presented as LD,n = ðC1

D,n,⋯, CK
D,nÞ. Then,

Ci
D,n ði = l + 1,⋯, K − lÞ and its 2l surrounding amplitude

samples form a window Wi. In Wi, the absolute deviation
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Figure 3: The amplitude of CSI collected in different interference environments. (a) Non-interference. (b) Interference -1m. (c) Interference
-2m. (d) Interference -3m.
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Figure 4: The amplitude of CSI in different preprocessing stages. (a) Before preprocessing. (b) After removing outliers. (c) After smoothing.
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of each amplitude sample is used to estimate the standard
deviation of the amplitude samples. The standard devia-
tion is shown as follows:

σID,n =
1
γ
median Ci

D,n − CI
D,n

�� ��� �
, ð2Þ

where CI
D,n indicates the median of Wi and γ =

ffiffiffi
2

p
erfinv

ð0:5Þ, erfinv on behalf of the inverse error function.

We then perform the following numerical substitution
on each amplitude sample in Wi to exclude the outlier:

Ci
D,n =

Ci
D,n, C

i
D,n − CI

D,n
�� �� ≤ ησI

D,n,

CI
D,n, C

i
D,n − CI

D,n
�� �� > ησI

D,n,

(
ð3Þ

where η is a threshold used to judge whether the sample
is an outlier.

We repeat the above work for Wi ði = l + 1,⋯, K − lÞ on
each subcarrier. Figure 4(b) shows the CSI fingerprints
without the outliers.

(2) Smoothing. We smooth the amplitude of each subcarrier
in the time domain to reduce this effect. The smoothing
process is described as follows:

~C
k
D,n =

1
ω

〠
min K ,k+ ω−1

2b cð Þ

max 0,k− ω
2b cð Þ

Ck
D,n, ð4Þ

where ω indicates the length of smoothing window.
Figure 4(c) shows the CSI fingerprints after smoothing.

4.3. Packet-Level Authentication Scheme in Association
Phase. We assume that the STA has been successfully con-
nected and starts to transmit data. The successful access of
the STA means that the fingerprints collected by the AP is
valid, which means that we can successfully authenticate
the data sent by the STA in association phase.

Before authenticating the STA in association phase, the
authenticator should be trained with the processed finger-
prints obtained in access phase.

4.3.1. Authenticator Training. Figure 5 shows the organiza-
tion of the authenticator. The authenticator consists of two
layers, including split layer and merged layer. We can see
from Figure 5 that the basic functional unit of each layer is
autoencoder, which is shown on the right of Figure 5. It con-
sists of three layers of fully connected neurons. The input
and output layers have the same number of neurons, and
the middle layer, named hidden layer, has a smaller number
of neurons. The autoencoder first compresses the input
samples and then reconstructs them into the original dimen-
sions. It tries to learn the distribution characteristics of the
input sample set for reducing the reconstruction error.

In this paper, the autoencoders in split layer learn the
distribution characteristics of the input CSI fingerprints

and reconstruct them. The reconstruction error of each
autoencoders is sent to the output autoencoder in merged
layer. The root mean squared error (RMSE) between input
and output is used for indicating the reconstruction error.

Before entering a new CSI fingerprint into split layer,
authenticator first normalizes the fingerprint. The normali-
zation algorithm is shown as follows:

SkD,i =
Ck
D,i − Ck

D,min

Ck
D,max − Ck

D,min
, ð5Þ

where Ck
D,min and Ck

D,max represent the minimum and
maximum values of Ck

D,i ði = 1,⋯,NÞ.
The normalized fingerprints SkD are equally divided

into I subfingerprints (SkD = fSkð1ÞD ,⋯, SkðIÞD g), and they are
sent to the autoencoders in split layer in order (pictured
in Figure 5). Next, we focus on the training process of a
single autoencoder.

Next, we focus on the training process of the authentica-
tor. We initialize each autoencoder in two layers with
random numbers with the distribution Uð−1/dim ðxÞ, 1/
dim ðxÞÞ (x is the input of the autoencoder) before train-
ing. For clearly presenting the training process, we use L
1 and L2 to represent split layer and merged layer. We
use θi for the i-th autoencoder L1 and θ0 for the autoen-
coder in L2. The training algorithm is shown in Algo-

rithm 1, where v is the input of θ0, S
kðiÞ
D ′ is the output

of θi , and w′ is the output of θ0.
Authenticator’s update is important in association phase,

because if the authenticator become outmoded, the data
packets sent from STA will be refused. The updating method
of the authenticator presented in this paper can improve this
problem without compromising the safety of the system.

4.3.2. Packet-Level Authentication. For a new data packet
from the STA, the framework first extracts the CSI finger-
print CD from the packet and then normalizes it using
equation (5). The normalized CSI fingerprint SD is sent
to the local authenticator, and the authentication algo-
rithm is shown in Algorithm 2, where v is the input of

θ0, S
ðiÞ
D ′ is the output of θi and w′ is the output of θ0.

If the CSI fingerprint is judged to be valid, it will be used
to train the local authenticator.

4.4. Packet-Level Authentication Complexity. This subsection
shows the time complexity of the packet-level authentication
in association phase. To show the improvement of ensemble
learning on time efficiency, we make a comparison between
the time complexity of our authenticator (an ensemble of
small-scale autoencoders) and a single large-scale autoenco-
der by mathematical calculations.

In the authentication framework, N is the number of
subcarriers, and the number of subfingerprints (also the
number of autoencoders in split layer) is I. Thus, the input
dimension of the autoencoder in L1 and L2 is, respectively,
equal to N/I and I. We use α as the dimensionality reduction
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ratio of the autoencoder’s middle layer, thus, the neurons’
number in the middle layer in L1 and L2 are αN/I and αI.

If the input of an autoencoder is u and the dimensional-
ity reduction ratio is α, the activation of the middle layer and
the output layer both requires u∙αu = αu2 calculations.

Therefore, the complexity of the activation is Oðαu2Þ =O
ðu2Þ. The backward propagation has the same complexity.
Before calculating the complexity of the authenticator, we
assume that the autoencoders in split layer operate serially
in the framework. Therefore, the complexity of the
authenticator’s training is OðN2/I + I2Þ. Let N = βI, where
β is the length of the subfingerprint. If we limit the size
of the autoencoder in split layer to 6 and below, then, β
can be regarded as a constant. Thus, the complexity is O
ðβ2I + I2Þ =OðI2Þ. In the association phase, we assume
that all packets are authenticated successfully and the
authenticator needs to be updated every time. Then, the
complexity of the authenticator is OðI2Þ.

If we use a single autoencoder instead, the complexity
becomes OðN2Þ. Our authenticator based on ensemble
learning reduces the time complexity of the framework from
OðN2Þ to OðI2Þ.

5. The CSI-Based Authentication Protocol

It can be seen from the previous section that the association
and cooperation between the AP and the STA are the key to
do device authentication and fingerprint database update in
both the access and the association phase. Therefore, we
present an enhancing Wi-Fi device authentication protocol
in this section, which is designed based on the existing Wi-
Fi association process.

5.1. Authentication Procedure in Access Phase. This subsec-
tion describes the authentication procedure in access phase,
which is shown in Figure 6(a). The steps are shown as
follows:

(i) STA sends probe request to request access to the
network. AP responds with probe response after lis-
tening to the request, indicating that it can provide
access service

(ii) STA then sends authentication request for the
authentication. AP returns collection request to
inform STA that it is ready for CSI collection
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Figure 5: The local authenticator for authentication in association phase.

Input: SkD
1: v⟵ zerosðIÞ

//t rain Split layer
2: For θi in L1 do

3: θi, S
kðiÞ
D ′ ⟵ SGDðSkðiÞD Þ

4: v½i�⟵ RMSEðSkðiÞD , SkðiÞD ′Þ
5: End for

//train merged layer
6: w⟵ norm0−1ðvÞ
7: θ0,w′ ⟵ SGDðwÞ
8: Return RMSEðw,w′Þ

Algorithm 1: The authenticator training algorithm.

Input: SD
1: v⟵ zerosðIÞ
2: For θi in L1 do

3: SðiÞD ′ ⟵ hθiðS
ðiÞ
D Þ

4: v½i�⟵ RMSEðSðiÞD , SðiÞD ′Þ
5: End for
6: w⟵ norm0−1ðvÞ
7: w′ ⟵ hθiðwÞ
8: If RMSEðw,w′Þ < thresholdas then

//train Split layer and merged layer
9: For θi in L1 do

10: θi ⟵ SGDðSðiÞD Þ
11: End for
12: θ0 ⟵ SGDðwÞ
13: End if
14: Return RMSEðw,w′Þ

Algorithm 2: The authenticator execution algorithm.
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(iii) After receiving collection request, STA starts to
send measuring packets with a fixed data length of
24 bytes. After receiving the data packets, AP
responds with ACK to tell STA to continue or stop

(iv) After collecting enough CSI fingerprints, AP
authenticates the target STA and judges whether
the STA is valid. The authenticating result is sent
to the target STA through authentication response

5.2. Packet-Level Authentication Procedure in Association
Phase. Figure 6(b) shows the packet-level authentication in
association phase. In Wi-Fi association, CSMA/CA is used
to avoid the collisions among packets. The STA exchanges
RTS/CTS with the AP before starting to transmit data to
inform other devices to remain silent. After exchanging
RTS/CTS, the AP performs CSI matching on each received
data frame, judges whether the current connection is valid

according to the matching situation, and decides whether
to continue association or not (as shown in section 2).

The real-time update of the authenticator is based on the
active communication between the AP and the STA. When
the STA is in sleeping mode, keeping the CSI collection will
cause greater power consumption and increase the network
burden, so this is not recommended. After a device returns
to be active, the local authenticator may become outmoded.
To retrain the authenticator, we disconnect after threshold f

consecutive data packets fail the authentication (see section
2); then, the authentication process will return to access phase.

In addition, we must also consider the existence of the
attacker. When an attacker uses a forged identity to send a
data packet, the AP will get the failed authentication result
and discard the packet. If the AP continuously receives
thresholdf packets from the attacker, the connection is bro-
ken. We can find that the attacker cannot attack the AP
effectively during this whole process.

(a)

STA AP

RTS

CTS

Data packet 1
Authentication

ACK 1

Data packet 2
Authentication

ACK 2

Disassociation

•••

Send data

Start
communication

Authentication
succeeds : 

S-counter ++
clear F-counter

Authentication
 fails :

F-counter ++

If F-counter ≥ threshold
f

(b)

Figure 6: The procedure of CSI-based authentication protocol. (a) Access phase. (b) Association phase.
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(i) STA sends RTS to tell AP that it is going to send
data. AP responds with CTS after receiving the
request, indicating that it is ready receiving and
clearing the channel

(ii) STA starts to send data packets. When AP receives a
data packet, it responds with ACK. AP extracts the
CSI of the packet and performs authentication. If
the authentication is successful, the S-Counter is
increased by 1, and the F-Counter is cleared. Other-
wise, the F-Counter is increased by 1

(iii) If F-Counter reaches threshold f , AP sends disasso-
ciation to STA for disconnection

6. Performance Evaluation

In this section, we make an evaluation on the performance of
our authentication framework.

6.1. Experiment Setup and Metrics. To simulate real applica-
tion scenarios, we conducted experiments in both apartment
and laboratory, which are complex multipath environments
and in public networks with high traffic.

A commercial Wi-Fi device, HUAWEI TAS-AN00,
works as STA transmits data packets at a rate of 100 pkt/
sec in 20MHz Wi-Fi channel on 2.4GHz, which runs EMUI
11.0.0. We use the Raspberry Pi 3b+ as AP, which runs
Raspbian Buster Lite 4.19.97 and is equipped with
BCM43455c0 Wi-Fi card. By modifying the Wi-Fi card
driver, it can pack the CSI fingerprints extracted from the
specified devices’ data packets in UDP datagrams and send
it to the application layer. We then use TCPDump to grab
the UDP datagrams and read the CSI fingerprints. The
plug-in used to extract CSI from the Wi-Fi card of Raspberry
Pi 3b+ is available in [25].

In the experiments performed in apartment, we place the
STA in four locations fixedly, which is shown in Figure 7(a).
The first three locations are distributed in the apartment at
different distances, and the fourth location is in the corridor
outside the apartment. We use these experiments to analyze
the impact of distance on the performance of the authentica-
tion framework. In the experiments performed in laboratory,
we put the AP and STA in fixed locations and walk back and
forth in the positions shown in Figure 7(b). These three

modes of movement interfere with the collection of CSI to
different degrees. These experiments help us observe the
effects of different levels’ interference on the authentication
framework’s performance.

In the apartment experiments, we collect 10,000 CSI fin-
gerprints at each location, and each CSI fingerprint contains
52 subcarrier amplitudes. These datasets serve to evaluate
the performance of our authentication framework in access
phase and association phase. In the laboratory experiments,
the same number of fingerprints is obtained in three modes
of movement, which are used for evaluation in association
phase. Since the AP will receive irrelevant frames from other
unknown Wi-Fi devices, we record the MAC of each STA
and filter the frames by MAC checking. For each valid frame
received, the AP extracts CSI fingerprint and saves it locally.

To evaluate the performance of the authentication
framework, we use the true positive rate (TPR) as the spe-
cific criteria for judging. TPR is calculated as TP/ðTP +
FNÞ, where TP is the number of true positive samples,
and FN is the number of false negative samples.
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Figure 7: The test scenarios used in the evaluation. (a) Apartment. (b) Laboratory.
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6.2. Authentication Performance. In access phase, we need to
determine the decision threshold for dispersion analysis. To
this end, we use the CSI fingerprints obtained in the apart-
ment experiments to test the degree of dispersion with and
without the attacker. The test result is shown in Figure 8.
Among them, the blue plus sign marks the standard devia-
tion of the CSI fingerprints when only STA1 requests access,
and the red plus sign marks the standard deviation when
four STA request access at the same time. X represents the
length of the detection window. Different detection window
lengths have a stable standard deviation, and the standard
deviation of a single STA is much lower than that of mul-
tiple STAs. Therefore, we set the decision threshold to 0.5,
which can be used for access phase’s authentication in the
apartment experiments with an accuracy of 1. We set the
detection window length to 100. Because on the one hand
it can shorten the CSI collecting time compared with a
longer window, on the other hand, it can reduce the prob-
ability of misjudgment caused by channel noise compared
with a shorter window.

The number of autoencoders used in the authenticator’s
split layer and merged layer is an important factor affecting
the overall performance of the authentication framework.
We choose 5 different specifications of authenticators for
performance evaluation, their I are 13, 6, 4, 2, and 1.
Figure 9 shows the TPR of each specification. We can see

that the TPR increases from 93.278% to 99.278% as the
number of autoencoders in split layer increases. However,
the increase in I means that the number of neurons in auto-
encoder increases, and the time efficiency of the authentica-
tor will decrease, as analyzed in Section 4.4. To prove our
theoretical analysis, we recorded the packet-level authentica-
tion time of 10,000 data packets under 5 different specifica-
tions and plotted the density map, which is shown in
Figure 10. As we can see in the figure, the packet-level
authenticating time is around 150usec when I = 13. How-
ever, the authenticating time up to 660 usec when I = 1,
which is 4.4 times as many as the former. Based on the above
factors, we choose to use the third specification authentica-
tor (I = 4) for the following evaluation.

In the apartment experiments, the authentication results
of the first three locations are similar, and their TPR is
higher than 98.6% (depicted in Figure 11(a)). However, the
TPR of the position 4 drops to 97.87%. The CSI fingerprints’
variance of location is up to 3:985 × 103 (as shown in
Figure 7(a)), which is much higher than the variance of the
first three locations. This shows that the distance between
AP and STA is not an essential factor affecting the stability
of CSI fingerprints. Although the increase of the distance
will increase the possibility of interference, the distance has
little effect on the stability of the CSI fingerprint in a stable
indoor environment and will not affect the authentication
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framework’s performance. In the corridor, the CSI finger-
prints show relatively poor stability, because in the absence
of line of sight (LOS), any small disturbance will have a
greater impact on the multipath channel state.

In the laboratory experiments, the third device with the
least disturbance has the largest TPR, which is 97.53%.
Meanwhile, the first device with the most interference had
a TPR of 94.36% (as shown in Figure 11(b)). This is in line
with our expectations. The CSI sample variances of the three
interference environments are 10:084 × 103, 7:099 × 103, and
6:941 × 103 (Figure 7(b)). We can see that noise will reduce
the stability of CSI fingerprints collected from Wi-Fi devices
and then decrease the accuracy of the authentication frame-
work. However, the results show that the accuracy of the
authentication framework can still reach more than 94%
even when there are disturbances such as people walking
and objects moving at 1m, which means that our authenti-
cation framework has strong robustness.

In each performance evaluation, we used two different
methods for authentication. The first method is updating
the authenticator with the update scheme shown in Section
4.3. The other one is keeping a static authenticator in the
AP. In the environments with less interference such as loca-
tions 1, 2, and 3 in the apartment, the minimum TPR when
using the static authenticator is 72.91%,which is 25.77% lower
than using the updated authenticator; the maximum is
89.69% and is 9% lower than the second method
(Figure 11(a)). In the environments with interference (loca-
tion 4 in the apartment and laboratory), the minimum TPR
when using the first authentication method is 17.37%, which
is 80.5% lower than using the updated authenticator; themax-
imum is 71.49% and is 26.04% lower than the second method
(depicted in Figures 11(a) and 11(b)). Therefore, the authen-
ticator update scheme presented in this paper can improve
the performance of the authentication framework, and the
effect is more significant under interference environment.

However, there are some shortcomings in this scheme.
First, because CSI is highly dependent on the environment
in which the device is located, it faces frequent disconnec-
tions if the device moves quickly. Second, the scheme
requires that the legitimate device is always within the
range of the wireless network; otherwise, it will not be able
to prevent effectively when the attacker appears. We will
continue to study and overcome these possible problems
in the future work.

7. Conclusion

In this paper, we propose an enhancing Wi-Fi device
authentication protocol. We also give a complete Wi-Fi
device authentication framework. The framework mainly
contains two parts, including the authentication in access
phase and the authentication in association phase. We pro-
vide different authenticating algorithms for both authentica-
tion phases. What is more, we present an authenticator
composed of small-scale autoencoders and the authenticator
update method. The evaluation shows that our authentica-
tion methods in both authentication phases have good
performance. Also, our authenticator has a higher time effi-

ciency than a single neural network, which can help our
framework to do packet-level authentication.

Data Availability

The data set in this paper includes CSI samples collected
in two experiment scenarios, which is available from the
corresponding author upon request. The code of our
authentication framework is available in https://github
.com/Chinmize/CSIAuthenticator.
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Signal modulation recognition is widely utilized in the field of spectrum detection, channel estimation, and interference
recognition. With the development of artificial intelligence, substantial advances in signal recognition utilizing deep learning
approaches have been achieved. However, a huge amount of data is required for deep learning. With increasing focus on
privacy and security, barriers between data sources are sometimes difficult to break. This limits the data and renders them
weak, so that deep learning is not sufficient. Federated learning can be a viable way of solving this challenge. In this article, we
will examine the recognition of signal modulation based on federated learning with differential privacy, and the results show
that the recognition rate is acceptable while data protection and security are being met.

1. Introduction

At a time when the volume of information is rapidly increas-
ing, various modulation methods are commonly employed to
fully utilize the channel’s ability to carry data swiftly and
effectively. The modulation method has therefore become
one of the essential features to differentiate different sorts of
communications. In the military sector, the identification of
signal modulation offers an essential basis for information
interception and for selecting the best possible interference
in electronic warfare systems. It is mostly apparent in the
detection of hostile radar types, in the interception of the
intelligence of the adversary, and in the recognition of enemy
radio sources. In civil matters, modulation recognition is
mostly utilized for radio station monitoring and radio plat-
form usage monitoring, and also information provided by
nonpartner signals is utilized for monitoring communication
spectrum effectively. Wireless communication settings are
diverse nowadays, as are modulation schemes. An essential
research subject for military and civic usage is how to accu-
rately detect the modular type of a signal in diverse wireless
communications settings. Investigations into effective
modulation-type recognition algorithms are very important
in both the civil and military domains. The modulation rec-

ognition is considered to be an issue with the test of modula-
tion, as long as the density of probability function of the
signal is known and classified by comparing the probability
function with a set threshold. In recent decades, similar
approaches, such as mixed probability ratio tests and mean
probability ratio tests, have emerged. Although they are
straightforward to implement and function well for clear
and well-known signals, the practice of this approach is con-
tinually constrained by updated communications technolo-
gies and complicated communication settings. Data-driven
Chinese learning in the field of signal modulation has
recently been actively utilized, and considerable progress
has been made. For example, Reference [1] uses GNU radio
to create a dataset containing 11 modulation radio signals
with ½−20,+18� dB SNR (each dataset sample has two raw
data channels (I/Q) in size 2 × 128), and different profounder
neural networks including CNN, SVM, and deep neural net-
works (DNN) are being tested in this set. Reference [2] com-
bines the generation countermeasure network (GAN) with
the semisupervised learning network in order to get a more
efficient modulation recognition classification. [3] applies
robust RPCA to a random forest and obtains the maximum
recognition rate of 90%. RPCA is applied to random forests.
A deep learning approach which trains and merges two CNN

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 2537546, 13 pages
https://doi.org/10.1155/2021/2537546

https://orcid.org/0000-0001-9694-0790
https://orcid.org/0000-0002-5817-5108
https://orcid.org/0000-0003-1379-9301
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2537546


on distinct training sets has been suggested in [4]. Reference
[5] is classified by CV-SVM and achieved by a rate of recog-
nition of 90%. [6] used the RadioML2016.10a dataset to com-
pare and study three different neural network models and
their complex-valued counterparts. Their results verified
the excellent performance of complex-valued networks in
AMC. Reference [7] has developed a framework to convert
complex-valued signal waveforms into statistically significant
images, called Contour Star Images (CSI), which can convey
deep statistical information from the original wireless signal
waveforms and represent them in an image data format. Ref-
erence [8] proposes a new filter-level pruning technique
based on activation maximization (AM) that omits the less
important convolutional filter. Semisupervised AMC (TL-
AMC) based on transfer learning (TL) is proposed in zero
forcing-assisted multiple input multiple output (zf-mimo)
systems in [9]. Compared with CNN-based AMC trained
on a large number of labeled samples, tl-amc also achieves
similar classification accuracy under relatively high signal-
to-noise ratio. Reference [10] presents a signal classifica-
tion method of industrial Internet of things based on fea-
ture fusion.

Wireless communication has permeated every part of
the work and life of people, and its safety problems cannot
be disregarded. Reference [11] and Reference [12] discuss
the opportunities and challenges of wireless communication
in the 6G era. Because the physiothermal channel of wireless
communications is open, the modulation signal containing
important information is fully exposed and an attacker can
retrieve important signal information by utilizing a blind
signal processing technology, which poses a serious threat
to legal communication that makes signal data available.
For this issue, Reference [13] discusses the performance of
a modulation recognition attack method, measures the effec-
tiveness of adversarial attack on signal, and empirically eval-
uates the reliability of CNN. In particular, privacy and safety
are crucial. In parallel, the world is starting to pay more and
more attention to data privacy and security through the con-
tinuous development of machine learning. In many nations,
the security of the data protection has been unparalleled,
making it harder to collect data and presenting machine
learning with unprecedented problems. No good answers
to these issues are available now. Google suggested a distrib-
uted learning-federated learning in order to tackle these
challenges.

A central server stores and starts sharing global data in a
federated learning architecture. The local information is
secured, and the local study model is trained based on local
data by each client (participant, edge devise). Clicking on a
specific communication mechanism, the client transfers data
like model settings to the central server (the original data of
the entire client are not sent). In order to create a global
model, the central server collects the data each client
uploads. In the whole federated learning process, each client
has the same status.

Federated learning has many advantages. First, model
training is spread among customers inside the federated
learning framework, and each client group updates the gra-
dient autonomously according to their local training data

to reflect the learning model. Based on the fact that the orig-
inal data is not sent but only the model parameters are chan-
ged throughout the training process, federated learning
provides data privacy and security, which is also an excellent
factor. Secondly, federated learning with the aid of edge
computing devices may be deployed with the constant
growth of big data and edge computing, which allows the full
use of numerous data at the edge without the need for a cen-
tralized and efficient data center. And because the model is
trained on the user terminal, local data does not leave the
“house,” reducing communication delay and communica-
tion costs due to original data transfer.

These reasons are hot subject federated learning, and
several studies about federated learning have been written
by various researchers. Reference [14] outlined the notion
and application in many sectors of federated learning,
defined the forms of federated learning, and forecasted fed-
erated learning prospects. Federated learning is influenced
by wireless channel uncertainty, and an optimisation
approach is provided in [15]. Reference [16] explores the
way to improve the effectiveness of federated learning com-
munication and to reduce communications costs. In [17], a
new model aggregation approach is presented based on the
superpositional features of wireless multiple access channels.
This demonstrates the enormous potential and development
area for federated learning. However, current privacy protec-
tion technologies can provide the privacy protection of fed-
erated learning. Common technologies such as anonymity,
anonymity, 1-diversity, and t-closeness cannot withstand
background know-how assaults and offer security. Differen-
tial privacy is a common and efficient data security technol-
ogy, which can quantify the degree of data privacy
protection. The establishment of an adequate budget for pri-
vacy helps create a fair balance between data access and pri-
vacy protection. In the privacy protection of training AI
model data that can offer significant protection of privacy
for federal education, differential privacy is commonly
employed.

In 2006, Dwork et al. first suggested differential privacy
[18]. This approach of privacy security can prevent leaking
of private. This technique is used primarily to tackle two pri-
vacy protection concerns. The first difficulty is how data
sharing should be carefully configured for confidentiality,
and the second is how to guarantee the availability of data
protection. A mathematical model for the preservation of
privacy is constructed on the basis of the two concerns.
Benefiting from the prior knowledge of attackers, the con-
cept of differential privacy is regarded as an efficient privacy
security method and is widely utilized in data mining,
machine learning, and other disciplines. Many literatures
employ differing privacy techniques to secure and enhance
the security of model training data.

Differential network privacy (DP-GAN) was proposed
by Xie et al. [19] and others in 2018, which might safeguard
GAN’s privacy by introducing a gradient in the training pro-
cess and could produce high-quality “fake” ages. The authors
offer strict mathematical evidence that DP-GAN meets the
confidential privacy criteria. During the same year, Lee and
Kifer [20] presented a method for adaptive downward
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gradient descent that could change the noise in line with the
gradient. Yan et al. [21] suggested a multiposition data pub-
lication adaptive sampling mechanism and privacy protec-
tion technique and constructed a proportional integral
differential (PID) controller-based adaptive sample mecha-
nism. They also developed a quadtree distribution method
and the corresponding approach for the allocation of the pri-
vacy budget to secure the privacy of the released data. In
2020, they also provided a forecast for centralized posting
of large-scale location data on the basis of the potential pro-
found learning paradigm [22].

The RML2016.10a dataset is used in our study to recog-
nize signal modulation based on federal learning and exam-
ines training performance. This article is based on our
previous work [23], and the contribution is summarized as
follows:

(1) In order to solve the problem of data privacy security
in modulation recognition, we apply federated learn-
ing to modulation recognition. Different situations
are considered to verify the performance of signal
modulation recognition based on federated learning

(2) In view of the lack of defense methods against data
attacks on clients in a federated learning framework,
this paper introduces differential privacy technology,
proposes a differential privacy-driven federated
learning method, which is applied to the field of sig-
nal modulation recognition, and verifies the perfor-
mance of signal modulation recognition under
different privacy budgets

The rest of this paper is organized as follows. In Section
2, we introduced in detail the principles of federated learn-
ing, differential privacy, and convolutional neural networks.
After we describe the proposed system model and its imple-
mentation process in Section 3, the simulation results are
presented in Section 4. This paper is summarized in Section
5, and finally we pointed out the shortcomings of this article
and future work.

2. Preliminary

We will explain the federated learning framework, differen-
tial privacy, and locally trained models in this part.

2.1. Federated Learning Framework. As shown in Figure 1,
the federated learning system consists of a central server
and a large number of remote devices. The central server
picks first of all a set of devices St ⊆ f1, 2,⋯Tg that fulfills
the demands of all devices as training devices. We suppose
that there are T devices in the federated learning system.
For example, these criteria include connectivity capabilities
of the device, computational power, and whether or not fed-
erated learning may take advantage of local data acquired by
the device. A global model is then sent to each training
device from the central server. Every trainers train a local
network using the raw data gathered. After the local model
has been trained by each device, updated model parameters
are delivered encrypted to the central server and raw data

from the trainer does not fluctuate. We take the loss function
of the local model, and the updated parameters sent by
device i are

f i = li m ; ai, bið Þ, ð1Þ

where li is the input and output data loss function which
refers to ðai, biÞ the local models and m is the global model.

Once all the devices are updated on the central server,
the aggregation operation is performed. In [24], which is
termed secure aggregation, an aggregation approach is pro-
posed. This aggregation procedure ensures the privacy and
security of original data, and the attacker is not going to
reverse the original data via the training device model
update, preventing private data from leaking.

Next, the central server updates a global model by com-
puting the average of local model updates and then sends the
global updated model for the next training cycle to each
device. The following may be stated in this connected learn-
ing model:

min
m∈ℝd

f mð Þ = 1
N
〠
N

i=1
f i mð Þ, ð2Þ

where N is the number of trainers.
Although the most important advantage of federated

learning is the privacy protection of raw data, the size of
the transmitted update parameters is significantly smaller

Broadcast Broadcast

Aggregation

Train Train Train Train

Client 1 Client 2 Client 3 Client N

Dataset 1 Dataset 2 Dataset 3 Dataset N

Sever

Figure 1: Federated learning system.

Input layer Hidden layers Output layers

Figure 2: Typical convolutional neural network.
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than that of the original data during the process of federated
learning and training, so communication costs and delays
between devices and central servers are greatly reduced.

The convergence of the algorithm is an important char-
acteristic of federated learning like virtually all algorithms
which are distributed. However, federated learning’s loss
function does not ensure that it converges always. Reference

[25] studies the convergence of the loss function in the fed-
erated learning model on a theoretical basis. We discover
that the loss function may be reduced and the precise accu-
racy can be greater if the local model is CNN with random
gradient descent (SGD). We thus pick the locale training
model CNN (SGD) and present the local training model in
the next section.
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Figure 3: System model based on federated learning with differential privacy.
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Figure 4: Local convolutional neural network.

1: initialization.
2: for each round t = 1, 2,⋯do
3: St ⟵ Select a subset of N devices
4: Broadcast global model mt−1 to each device in St
5: Do differential privacy processing to get fD1′ ,D2′ ,⋯DK ′g.
6: for each device k ∈ St in paralled
7: Mt

k ⟵ LocalUpdateðk,Mt−1Þ
8: end for
9: Transmit fP1

t , P2
t ,⋯, PK

t g
10: Aggregation PGlobal

t+1 = 1/Kð∑K
k=1P

k
t Þ

11: end for

Algorithm 1: Federated averaging algorithm.
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2.2. Differential Privacy. In 2006, Dwork et al. first proposed
the concept of differential privacy (DP). Differential privacy
mainly protects personal information [26]. In other words,
after differential privacy processing, if a personal record is
not in a dataset, the attacker can obtain almost the same
information. The concept of differential privacy proposed
by Dwork et al. is powerful enough to protect data privacy.
Moreover, differential privacy is in line with people’s under-
standing of the protection of personal privacy information.
No matter whether a record exists in a dataset, the attacker
cannot get more information about the record, even if the
attacker has other external information. Differential privacy
can resist background knowledge attack. After differential
privacy processing, each personal information of the dataset
is independent of the output of the dataset query. What can
be guaranteed is that personal privacy information will not
be infringed.

The implementation process of differential privacy is to
add noise and introduce randomness into the data. The pur-
pose of introducing randomness is to reduce the risk of pri-
vacy leakage to the greatest extent when querying data, while
ensuring certain query accuracy. This can bring a benefit,
which can add noise quantitatively and achieve a good bal-
ance between data availability and privacy protection.

If the two probability output results of a given random
function K on an adjacent dataset D1 and D2 satisfy the fol-
lowing inequality, then the random function K satisfies the
differential privacy:

Pr K D1ð Þ ∈ S½ � ≤ exp εð Þ Pr K D2ð Þ ∈ S½ � + δ: ð3Þ

Adjacent datasets refer to two datasets with one record
difference at most; that is, one dataset is generated by adding
or deleting one record from another dataset. In equation (3),
Pr ½KðD1Þ ∈ S� represents the probability of the output of
function K on D1 in the range S, and the ratio of the two
probability values is less than or equal to eε. ε is called pri-
vacy budget or privacy parameter, which is used to balance
the degree of privacy protection and data utility. It can be
seen from equation (3) that the smaller ε, the more consis-
tent the two probability values tend to be; that is, the exis-
tence of a single record does not affect the output result;
the higher the degree of privacy protection; and correspond-
ingly, the lower the data utility. Similarly, the larger ε, the
lower the degree of privacy protection and the higher the
data utility. When ε = 0, the adjacent datasets are output
with the same probability distribution, which, of course,
completely loses the data availability.

2.3. Convolution Neural Network. The CNN is a classic and
frequently used deep learning structure that tackles some
of the issues that were difficult to overcome in prior artificial
intelligence [27]. Great breakthroughs were made in image
processing, video recognition, and other domains, which
might contribute to the present deep learning boom exactly
because of these successes. Figure 2 illustrates the CNN
structure.

CNN has a convolution structure and a deep neural net-
work. In order to ease the model problem, convolution

structure can reduce the number of network parameters.
Hidden layers are an important element of convolution neu-
ral networks. Normally, common CNN architectures con-
tain input, convolution, fully connected, pooling, and
output layers. CNN generally consists of many layers of con-
volution and pooling.

The preceding layer’s feature mapping employs the
learning convolution kernel to finish the convolution pro-
cess. It is highly necessary to convert the kernel to a convo-
lution layer. Functional extractor is the heart of the
convolution kernel. Its major task is to automatically extract
the deep data from the input signal. With the activation
function, the output of the convolution result produces the
neurons of this layer and therefore generates the functional
map of this layer known as the functional extraction layer.
In order to extract the local area properties, the local recep-
tive zone of the former layer is linked to the input of every
neuron.

The fully connected layer is the last layer of the network.
The preceding layer-by-layer transformation and map
extraction features conduct redynamic categorization and
other processing. Usually, the ReLU function is the activa-
tion function of each neuron in the all linked layers. In order
to achieve the classification function, the final output layer
might employ SoftMax activation.

Current networks can learn a great deal of input-output
mapping, understanding the exact mathematical connection
between input and output. There are far more unlabeled
data than labeled data in real applications. Simultaneously,
manual data labelling also needs considerable effort. How-
ever, a number of labeled training data are necessary, which
restrict the practical use of CNN to a certain degree in order
to completely train the supervised CNN and to have higher
generalizing capacities.

3. System Model

Considering the privacy security problems in the field of
modulation recognition, we propose a modulation
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recognition method based on federated learning under dif-
ferential privacy protection.

Our differential privacy federated learning framework is
shown in Figure 3. Each user has its own dataset; after differ-
ential privacy processing, each user updates the model
locally. The cloud platform server collects the model param-
eters of users, updates and integrates the global model, and
then sends the updated global model to users. Due to the
equal amount of data for each user, the local model training
process is basically consistent. The specific process is as
follows:

(1) Suppose there are K users, and each user has its own
collected dataset fD1,D2,⋯,DKg. Then, each user
performs differential privacy processing on their
own dataset to get fD1′ ,D2′ ,⋯DK ′g. Finally, each
user conducts the training of the deep learning

model locally. The trained deep learning models
are denoted as fM1,M2,⋯,Mkg

(2) After each user trains locally, they can upload the
model parameter fP1

t , P2
t ,⋯, PK

t g to the cloud plat-
form server, where t represents the t round of inter-
action between the user and the cloud platform
server and K represents the K-th user

(3) The cloud platform server aggregates and integrates
the parameter updates from each user to obtain

PGlobal
t+1 = 1

K
〠
K

k=1
Pk
t

 !
: ð4Þ

The significance of aggregation is to integrate the
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parameters of each user, which is more helpful for model
optimization.

(4) The cloud platform server transmits the aggregated
and integrated global model parameters PGlobal

t+1 back
to each user, and each user loads the updated model
parameters into the deep learning model for the next
round of training.

3.1. Differential Privacy Implementation. The implementa-
tion of differential privacy requires the introduction of a
noise disturbance dataset. How much noise is added is
related to the antinoise ability of the dataset. This antinoise
ability is called global sensitivity (GS).

For any given query function, the sensitivity of function
f is

Δf =max f D1ð Þ − f D2ð Þk k1, ð5Þ

where f : D⟶ Rd represents mapping D to the d
-dimensional real number domain space and D is the data-
set. In equation (5), D1 and D2 are the adjacent datasets
mentioned above or called sibling datasets, and j‖j1 is the 1
-norm. To put it vividly, the global sensitivity represents
the biggest difference obtained after adding or deleting a cer-
tain dataset; that is, it measures the sensitivity of the dataset
to its modification. At present, the common mechanisms to
realize differential privacy include the Laplace mechanism,
Gaussian mechanism, and exponential mechanism. The
Gaussian mechanism and Laplace mechanism are mainly
aimed at numerical data, and the latter is mainly aimed at
protecting labelled classified data. This paper uses the
Laplace mechanism to make differential privacy dataset.
The specific principles are as follows:

Laplace mechanism: for any given query function f : D
⟶ Rd , if MðdÞ satisfies the output result of the following
equation, the Laplace mechanism meets differential privacy:

M Dð Þ = f Dð Þ + Laplace Δf
ε

� �� �d

, ð6Þ

where Laplaceð·Þd is the d-dimensional Laplace distribution.
It can be seen that the added noise level is proportional to Δf
and inversely proportional to the privacy budget.

3.2. Local Deep Learning Model. The federated learning sys-
tem’s local training model structure is illustrated in Figure 4.
The CNN network we employ is a four-layer network with
two convolution layers. Other layers also employ the ReLU
activation algorithm in addition to the final output layer
with SoftMax. The data dimensions of the network are 2 ×
128, as illustrated in Figure 4. The size of the kernel utilized
in the first convolution layer is 1 × 13 with 256 kernels. The
second layer of the convolution layer utilizes a bigger 2 × 13
kernel with 80 kernels.

After two layers of convolution, the complete connection
layer, which includes 256 neurons, extracts additional global
characteristics. Finally, for categorization, the final

completely linked layer is employed. Since we utilize 11
modulation types in our dataset, we have 11 classification
neurons in the output layer. The last neuron output is the
probability in the current category of this input. The output
with the highest probability is the outcome of categorization
of current data after calculation of SoftMax activation
function.

Algorithm 1 shows the above-mentioned federated
training framework.

4. Simulation Results

We conducted several simulated tests in this section utilizing
Google’s federal learning framework (TFF) to assess the
availability of signal modulation recognition based on feder-
ated learning. TensorFlow Federated (TFF) is an open-
source framework for machine learning and other computa-
tions on decentralized data. In terms of hardware support,
the CPU we use is Intel (R) core (TM) i7-9700 CPU @
3.00GHz, the memory is 32.0GB, and the graphics card is
NVIDIA geforce RTX 2080. We utilize the dataset suggested
in [1] including 11 modulated ½−20,+18� DB radio signals
(each data sample has two raw I/Q channels data with a size
2 × 128). Under the federated learning framework, 20 local
trainings are conducted in each round, and such a round
takes about 100 s. In numerous situations, simulations have
been evaluated for signal modulation identification.

4.1. Performance of Training Signals with Different SNRs.We
initially evaluated when there are 10 training equipment and
all modulation kinds are contained in the data taught by
each device. There are 900 signals in the same number of
training data for each device. After 20 training rounds, fed-
erated learning loss curves on data with the SNRs -10 dB,
0 dB, +10 dB, and +18dB are obtained, as illustrated in
Figure 5.
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We demonstrate that the loss of training is significantly
greater and constant at 2.39 under the conditions of low
SNR. The training loss is comparable, at at least 0.44, in high
SNR circumstances. The training loss can reach at least 0.54
in the 0 dB SNR situation. This shows that in the low SNR
setting, the training performance is poor. Noise and interfer-
ence can be caused by disguising the signal properties in a
low SNR situation. But our system training performance
has increased significantly in the 0 dB SNR or greater SNR
environment.

4.2. Recognition Accuracy of Test Data with Different SNRs.
Consider that 10 training devices are available, and the train-
ing data of each device contains all modulation types. Each

device has 900 signals and is adjusted to +18 dB for the
quantity of training data. Following 20 training rounds, the
accuracy of the test data accuracy of various SNRs is dis-
played in Figure 6.

Experimental results indicate that the accuracy of the
modulation recognition is 62.96% at 0 dB SNR, and the
accuracy of the identification drops quickly at the SNR of
0 dB. The accuracy of identification may reach 70.61% in
the high-SNR situation. This is equivalent to the results of
the proposed approach [1].

4.3. The Impact of Different Numbers of the Training Device
on Federated Learning Performance. We assume next that
each device’s training data includes all modulation modules
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while each device has the same quantity of training data and
the SNR is set at +18 dB. The number of trainers is 5, 10, and
20, and the accuracy of the detection curve is given in
Figure 7 after 20 training rounds. The accuracy curve of rec-
ognition shows that the training performance of a federated
learning system with diverse training equipment ranges
from -20 dB to +12dB of SNR which is practically equal.
The federated learning system with five training devices is
subject to SNR = +6 dB and has the best accuracy in accu-
racy which is 71.98%.

With SNR +18dB, the 20 training devices in the feder-
ated learning system had the highest accuracy (69.19%). This
demonstrates that the higher the training devices, the better
the training performance; the varied number of equipment
may be employed for training in various settings. For exam-
ple, five equipment can be selected for training in an envi-
ronment where the SNR is +6 dB, to minimize the training
costs while obtaining greater precision. If greater precision
is needed at higher SNRs, 20 training devices will be selected.
If the criteria for precision are not severe, 5 equipment can
be taught to attain the necessary precision.

4.4. The Impact of Different Amounts of Training Data on
Performance. Next, we investigate a case in which each
device’s training data covers all forms of modulation and
sets the SNR at +18 dB. However, there is no difference in
the amount of data on the devices. The loss curves and the
detection precision curves under different SNRs are, respec-
tively, presented in Figures 8 and 9 after 20 rounds on 10
devices.

The results of the simulation show that if the quantity of
training data from the device is identical, the formation loss
is smaller, because the local model update is comparable in

this scenario. The accuracy of recognition obtained by feder-
ated learning systems with diverse training data, however, is
considerably higher than that of the former low SNR cir-
cumstances. The discrepancies between the training data
can be caused. Some data, for example, have fewer character-
istics while some have more features. Thus, it can increase
the performance of federated learning to choose how much
training data is.

4.5. Performance Comparison of Differential Privacy
Centralized CNN and Differential Privacy Federated CNN

4.5.1. Performance of Differential Privacy Centralized CNN.
According to the global sensitivity definition mentioned
above, the global sensitivity of the original dataset used in

–20–18–16–14–12–10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18

SNR (dB)

0.6

0.5

0.4

0.3

0.2

0.1

Te
st 

ac
cu

ra
cy

Test accuracy under different privacy budget

ε = 0.1
ε = 0.01
ε = 0.001

Figure 11: Test accuracy under different privacy budgets.

0 10 20 30 40 50

Round

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

Lo
ss

Fenderated training loss under different privacy budget

ε = 0.1
ε = 0.01
ε = 0.001

Figure 12: Federated training loss under different privacy budgets.

9Wireless Communications and Mobile Computing



this article is 0.417. For the convenience of calculation, we
take the global sensitivity as 0.5. When ε is 0.1, 0.01, and
0.001, the differential privacy budgets are 5, 50, and 500,

respectively. We first conducted experiments on the differ-
ential privacy dataset on a centralized CNN. The training
loss curve and test accuracy curve under different privacy
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budgets after 400-round training are shown in Figures 10
and 11, respectively.

It can be seen from the experimental results that as the
privacy budget increases, the performance of the centralized
CNN improves, but when the privacy budget is 5 and 50, the
performance of the centralized CNN is very poor; that is, the
utility of the dataset is very low. When the privacy budget is

500, the performance of the centralized CNN is acceptable,
with the highest recognition accuracy rate of 63.9%.

4.5.2. Performance of Differential Privacy Federated CNN.
Next, we conducted a differential privacy dataset experiment
on federated CNN. The same as above, when epsilon is 0.1,
0.01, and 0.001, the differential privacy budget is 5, 50, and
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500, respectively. Based on the above experimental results,
we fixed the number of devices in the federated learning
framework to 5, and each device dataset has the same size.
After 50 rounds of federated training, the differential privacy
federated training loss curve and test accuracy curve are
shown in Figures 12 and 13, respectively.

The experimental results show that when the privacy
budget is 50, the performance of the differential privacy fed-
erated CNN is the best, with the highest test accuracy rate of
69.9%. The performance when the privacy budget is 5 and
500 is close to the performance when the privacy budget is
50. Among them, the performance of the two at a low
signal-to-noise ratio is better than the performance of pri-
vacy budget of 50, and at a high signal-to-noise ratio, the
performance of the former two is slightly worse than the
performance of privacy budget of 50.It proves that the differ-
ential privacy dataset has high data utility in the federated
learning framework.

4.5.3. Performance of Differential Privacy Federated CNN.
Finally, we compare the performance of federated CNN
and centralized CNN under different privacy budgets. When
the privacy budget is 5, 50, and 500, the test accuracy curves
of federated CNN and centralized CNN are shown in
Figures 14–16, respectively.

From the experimental results, it can be found that the
differential privacy federated learning framework proposed
in this paper has better performance than centralized differ-
ential privacy learning. When the privacy budget is 5 and 50,
the performance of differential privacy federated learning is
significantly higher than that of centralized differential pri-
vacy learning. Compared with nondifferential privacy feder-
ated learning, differential privacy federated learning can
effectively protect data privacy and security, while also
achieving a comparable recognition accuracy rate, ensuring
high data utility.

5. Conclusion

In this article, we examined the federated learning and the
feasibility of federated learning-based signal modulation
recognition. On this basis, the signal modulation recogni-
tion based on differential privacy federated learning is
studied. Federated learning performance has been assessed
via simulation in five situations. It obtained a recognition
rate of more than 70% under the premise of safeguarding
privacy and security. This demonstrates the enormous
potential of federated learning for signal processing. Feder-
ated learning is being implemented in more areas with
more and more emphasis devoted to the security of data
privacy worldwide.
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The firefighting IoT platform links multiple firefighting subsystems. The data of each subsystem belongs to the sensitive data of the
profession. Failure prediction is a crucial topic for firefighting IoT platforms, because failures may cause equipment injuries.
Currently, in the maintenance of fire IoT terminal equipment, fault prediction based on equipment time series has not been
included. The use of intelligent technology to continuously predict the failure of firefighting IoT equipment can not only
eliminate the intervention of regular maintenance but also provide early warning of upcoming failures. In order to solve this
problem, we propose a vertical federated learning framework based on LSTM fault classification network (LstFcFedLear). The
advantage of this framework is that it can encrypt and integrate the data on the entire firefighting IoT platform to form a new
dataset. After the synthesized data is trained through each model, the optimal model parameters can be finally updated. At the
same time, it can ensure that the data of each business system is not leaked. The framework can predict when IoT equipment
will fail in the future and then provide what measures should be used. The experimental results show that the LstFcFedLear
model provides an effective method for fault prediction, and its results are comparable to the baseline.

1. Introduction

The firefighting IoT platform is one of the key safeguards for
enterprise fire safety. However, the current fire Internet of
things platform has low accuracy in identifying various types
of alarm information. How to effectively identify the false
alarm information of the fire Internet of things platform is
very important. The current firefighting IoT platform is
linked to multiple firefighting subsystems, such as smoke
and sprinkler sensors in the office area and power environ-
ment monitoring in the substation. Since the data belongs
to different business departments, the data of each depart-
ment is expected to run on their own independent systems,
which requires that each data cannot interact with other data.
However, in order to improve the accuracy of the false alarm
prediction of the fire Internet of things platform, it is neces-
sary to use all the business data to train the network model.
Based on this, we introduced a federated learning framework

and proposed the LstFcFedLear network. The accuracy of
fault prediction is one of the keys to ensure the normal oper-
ation of the fire IoT. Predictive science is a discipline that
analyzes a large amount of data and discovers some potential
relevance among them. This provides an important basis for
industry equipment failure prediction [1, 2]. In order to
further improve the accuracy of various failure predictions,
many new technologies (for example, artificial intelligence,
big data, and blockchain) have been gradually applied to
factories [3, 4].

In essence, failure prediction is to correlate the occur-
rence of failure events with the failures that may occur in
the future. Failure prediction has made important develop-
ments in 1979. The corresponding mathematics of fault
prediction is to use input to predict output. Due to the wide-
spread existence of nonlinearity and uncertainty, it is more
difficult to establish an efficient system model in mathemat-
ics, which is also one of the objective reasons for missed
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detection and false alarms. Later, Box et al. proposed the
application of time series to forecasts, which greatly
improved the accuracy. The characteristic of the neural net-
work is that it can perform nonlinear mapping, so it is widely
used in the field of prediction. Unfortunately, neural net-
works need to be data-driven, and the biggest thing is that
they need to manually set the network model parameters.

From the current enterprise monitoring system, it is rel-
atively easy to obtain a large amount of historical equipment
data and operating data. Therefore, it is feasible to use histor-
ical data to predict failures. With the rapid development of
new technologies, it is also feasible to use artificial intelli-
gence, big data, and other technologies to assist in forecast-
ing. At present, in the use of artificial intelligence for fault
prediction research, a supervised or unsupervised method is
one of the two most common methods. For the design of
the network structure, the designer can only rely on experi-
ence to subjectively design the depth of the network, the
number of neurons, and other parameters. Designers with
different experience design different networks. This leads to
a problem, and the same problem may have different solu-
tions. Among the many algorithmmodels, the support vector
machine algorithm is more widely used.

If the condition of all equipment in the factory can be
monitored and the failure can be alerted in advance, the reli-
ability and stability of the entire factory can be greatly
increased. In recent years, in the field of PHM, a lot of
research on these fault topics has been carried out, which
greatly reduces the cost of fault maintenance of factory
equipment and also improves the efficiency of the factory
[5]. The key function of PHM is to diagnose equipment fail-
ures and discover the causes of equipment failures [6]. Equip-
ment failure prediction is very challenging, and the main
reason is the need to consider both the maintenance plan
and the type of failure. Over the years, the forecasting model
has been continuously developed and improved. But so far,
the complex algorithm model [7, 8] still has many limita-
tions. In order to overcome these shortcomings, some studies
have adopted machine learning algorithms, such as neural
networks [4] and support vector machines (SVM) [5] to pre-
dict failure types. These studies have promoted the develop-
ment of probabilistic models to a certain extent [9, 10], but
probabilistic models lack clear physical meaning in fault
prediction.

Compared with traditional machine learning algorithms
that cannot process time series data, the advantage of the
LstFcFedLear method is that it can predict the sequence of
future data through learning from historical experience.
The main contributions of this article to our work are sum-
marized as follows:

(1) We propose a vertical federated learning framework
based on LSTM fault classification network (LstFcFe-
dLear). The advantage of this framework is that it can
encrypt and integrate the data on the entire firefight-
ing IoT platform to form a new dataset

(2) The LstFcFedLear model can ensure that the data of
each business system is not leaked. This framework
can predict the probability of future failure of the fire

IoT and can provide corresponding measures to solve
the failure

The structure of this article is as follows: Section 2 intro-
duces related research. Section 3 introduces the new frame-
work method. Section 4 shows the experimental verification
results. Section 5 is the conclusion and future work.

2. Related Works

VSC and MMC lack the ability to regulate DC short-circuit
current during DC faults. For multiterminal DC system fault
detection, the calculation of short-circuit current during the
discharge phase of the DC fault capacitor is crucial. Li et al.
proposed a transient equivalent model suitable for fault anal-
ysis of multiterminal DC systems. This model only retained
the high-frequency components in the original fault network,
which greatly simplified the circuit analysis at the initial stage
of the fault [11]. Since the current waveform when the arc
fault occurs is very similar to the current waveform of some
loads, it is difficult to detect arc faults through simple current
characteristics. Aiming at this problem, Lin et al. proposed an
arc fault detection method combining a self-organizing fea-
ture mapping network and a sliding window method [12].
On the basis of autonomously mining the inherent character-
istics of current data, the current signal is continuously
detected by using the correlation and continuity between
adjacent periodic current samples. The proposed method
can effectively realize arc fault detection, and the accuracy
of arc fault detection can reach 99%.

The existing bearing fault alarm system is mainly based
on the rule diagnosis of a single shaft temperature variable,
and the alarm is not timely. In response to the above prob-
lems, Liu et al. combined the correlation of the multiaxis axle
temperature of the same car and proposed a data-driven
method for detecting and positioning train bearing faults
[13]. The proposed DiCCA modeling method is verified by
using the axle temperature data of a train in actual operation,
and the results show the effectiveness of the proposed
method. Based on a data-driven approach, Xiong et al. pro-
posed an edge-assisted privacy protection original data shar-
ing framework, which ensures that the data connected to
autonomous vehicles will not be destroyed [14].

Using the sensor data of the traction system, Chen et al.
proposed an optimal data-driven fault detection method to
solve the fault problem of the dynamic traction system
[15]. And based on the improved SVM, the optimal data-
driven fault diagnosis problem is studied. Finally, through
the actual high-speed train experimental platform, the ratio-
nality and effectiveness of the proposed method are verified.
Yang et al. proposed a data-driven soft closed-loop fault-
tolerant control strategy for the voltage sensor failure of
the DC side capacitor in the H-bridge structure of STAT-
COM [16]. This method selected capacitor voltage and sys-
tem output current as original signals and established the
MLS-SVM prediction model based on historical operating
data [17]. The predictive output of the MLS-SVM model
and the residual signal output by the actual sensor are used
to establish a sensor fault detection and judgment mechanism.
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The test results showed that the method has good accuracy
and real-time performance [18].

Condition monitoring and fault diagnosis are necessary
means to ensure the safe and stable operation of mechanical
equipment. Wang et al. proposed a deep learning framework
based on ABiLSTM for intelligent fault diagnosis of mechan-
ical equipment [19]. The framework first preprocesses the
raw data collected by the sensor and divides it into a training
sample set and a test sample set. Secondly, Oramas and
Tuytelaars extracted features of the original time-domain sig-
nal by training multiple bidirectional LSTM networks of dif-
ferent scales and obtained multiscale features of equipment
failures [20]. The experimental results show that the
ABiLSTM model can achieve multiscale feature extraction
of the original signal. By comparing with methods such as
CNN, DAE, and SVM, the fault recognition performance of
the ABiLSTM model is better than that of various common
models [21, 22]. The results of generalization performance
experiments on the ABiLSTM model show that the fault rec-
ognition accuracy of samples under off-changing conditions
can still reach more than 95%; the LSTM network architec-
ture is shown in Figure 1.

3. Materials and Methods

3.1. LSTM Network. A Recurrent Neural Network (RNN) is a
type of neural network specially used to process time series
data samples. Each layer of RNN not only outputs to the next
layer but also outputs a hidden state. RNN’s convolutional
neural network can be easily extended to images with a large
width and height, and some convolutional neural networks
can also handle images of different sizes. RNN can be
extended to longer sequence data, and most RNNs can han-
dle data with different sequence lengths. It can be seen as a
fully connected neural network with self-loop feedback. In
forward propagation, the hyperbolic tangent activation func-
tion is generally used from the input layer to the hidden layer
[23]. The hidden layer to the output layer uses softmax to
map the output to a probability distribution of ð0, 1Þ. We will
see that the output value of the hidden layer at the current
moment is affected not only by the input at the current
moment but also by the input at all times in the past. In this
way, the output value of the hidden layer can be regarded as
the memory of the network, which makes it very suitable for
processing data samples that have dependencies before and
after [24, 25]. An important feature of RNN is that the
parameters of the model are shared at different times. This
allows us to share the statistical strength of different locations
over time. When some parts of the sequence data appear in
multiple locations, this parameter sharing mechanism
becomes particularly important [26, 27]. LSTM is a type of
RNN. The timing backpropagation algorithm transmits the
error information step by step in the reverse order of time.
When the length of each time series training data is large or
the time is small, the gradient of the loss function with
respect to the hidden layer variable at a certain time is more
likely to disappear or explode.

The input vector of a standard RNN network is x = ðx1,
⋯, xTÞ. The RNN network uses equations (1) and (2) to solve

the hidden vector h = ðh1,⋯, hTÞ and the output vector y =
ðy1,⋯, yTÞ.

ht = σ Wih xt +Whh ht−1 + bhð Þ, ð1Þ

yt =Whoht + bo: ð2Þ
Among them,Wih refers to the input weight matrix.Whh

refers to the weight of the hidden layer.Who refers to the cal-
culated output matrix of the hidden layer. bh and bo refer to
all bias vectors, and σ is usually set as a sigmoid function σ
ðxÞ = 1/ð1 + exp ð−xÞÞ.

The biggest problem encountered by RNN is the gradient
problem of gradient disappearance and gradient explosion.
LSTM is one of the RNN architectures, essentially using
memory cells and gate cells to solve the problem of gradient
disappearance and gradient explosion. The memory cell
function of LSTM focuses on the input gate unit, which can

Concatenated
hidden states

LSTMB LSTMB LSTMB

LSTMFLSTMF

LSTM

LSTMF

Max over time
Pooling layer
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Figure 1: The LSTM network architecture.
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make the state of each memory cell free from external inter-
ference. Each multiplication forget gate allows the memory to
filter out irrelevant storage contents. The activation function
of each multiplication forget gate is essentially an application
program, which is mainly used for the calculation of the state
of the internal memory unit. This article uses the LSTM
structure proposed by Gers et al. The results of the memory
unit and gate unit are shown in

it = σ Wxi xt +Whi ht−1 +Wcict−1 + bið Þ, ð3Þ

f t = σ Wxf xt +Whf ht−1 +Wcf ct−1 + bf
� �

, ð4Þ
ct = f tct−1 + it tan h Wxcxt +Whcht−1 + bcð Þ, ð5Þ
ot = σ Wxo xt +Who ht−1 +Wco ct + boð Þ, ð6Þ
ht = ot tanh ctð Þ: ð7Þ

Among them, the input vectors are f t , ot , and ct , which
correspond to the vectors of the input gate, forget gate, and
output gate at time t. It is worth noting that we regard the
vector with the same size as the hidden vector ht . The weight
matrixW refers to the connection coefficient matrix between
two different bodies.

The LSTM network is mainly composed of 32 bidirec-
tional units, followed by the 50% discard layer and the sig-
moid activation function. This uses L2 regularization to
prevent network overfitting. In the model training, the
cross-entropy loss function and Adam optimizer are used
to train and solidify each LSTM network. When a fault is
evaluated, LSTM divides the output fault into 5 levels, from
small to large (0-4).

The performance of the pure LSTM model is better than
that of the hybrid model [28]. Figure 2 shows the structure of
the proposed model. By extracting the characteristics of the
sequence data and using them as the input of the convolu-
tional neural network model, the spatial characteristics of
the data can be obtained. In order to prevent overfitting,
Figure 3 adds a layer to prevent overfitting.

3.2. Data Preprocessing. In this article, the premise is that we
predict daily failures. To this end, we focus on the cluster
location and date of occurrence. This turns the research ques-

tion into determining when a failure occurs. Since we are
solving two different prediction problems here, namely,
binary classification and regression, we consider the produc-
tion process of each type of prediction input dataset.

To address the problem of fault type classification for fire
facility, we used the Fault Type of Fire Facility (FTFF) dataset
from the Firefighting Internet of Things platform database of
China State Grid Gansu Electric Power Company. This data-
set contains two subdatasets, namely, FTFF1 and FTFF2.

We study the real dataset of 15084 alarm records of
power firefighting equipment recorded between 2019 and
2020 from fault in power fire facility maintenance. All the
FTFF datasets contain Alarm Time (AT), Fault Type (FT),
Failure Equipment (FE), Fault Location (FL), Municipal
Units (MU), and Level 2 Units (L2U). Considering the large
number of subjects in each of these two datasets, we used the
FTFF1 dataset for training and the FTFF2 dataset for testing.

The problem of fault type classification was approached
as a five-class classification problem, with the following clas-
ses: 0 for the Overdue Fault (OF), 1 for the Offline Fault
(OLF), 2 for the Power Failure (PF), 3 for the Equipment
Damage (ED), and 4 for the False Alarm (FA). For each input
data from one discrete time point, if the classification model
identified this input as being of class 0–4, then the fault type
of this discrete time point would be set to 0–4 (i.e., the fault
type was predicted every time point).

The original fault dataset is first transformed into a fault
vector, vR = ðvR1,⋯, vRTÞ. In the regression algorithmmodel,
for the fault at a certain time t, the text is expressed as
vRt = ðvt1,⋯VtsÞ. Among them, vts refers to the fault in the
s-th space at a certain time t. In the simplified neural net-
work, the sigmoid and hyperbolic tangent function are usu-
ally integrated in the gate and used as the activation
function. The purpose is to convert the input value to
between 0 and 1, where 1 means it is worth paying attention
to and 0 means not needing attention. On the other hand, the
role of the tanh function is to adjust the network perfor-
mance by compressing the value to between -1 and 1.
LSTM-FC is very sensitive to causality.

3.3. Prediction Models. In the design of this article, we design
two types of fault diagnosis models: binary classification and
prediction. In this research, we develop two types of failure
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Figure 2: The process of the LstFcFedLear network.
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prediction models, namely, binary classification and predic-
tion. In addition, we also focus on evaluating the relationship
between spatial clusters to judge the impact on the prediction
results. In this article, we have designed four types of failure
prediction models, as shown in Table 1. In the second sec-
tion, we introduced that the RNN model can receive delay
information and has the ability to judge whether this infor-
mation has an impact on the storage unit. The proposed
LSTM-FC model is shown in Figures 1 and 4. It can be seen
that these two models use different types of input data, and
the activation functions in the output layer are also different.
It is worth noting that it expresses faults through weighting
factors, and these weights are determined by the following
equation:

et = htwa, ð8Þ

at =
exp etð Þ

∑T
i=1exp etð Þ

, ð9Þ

v = 〠
T

i=1
aihi: ð10Þ

In these equations, ht refers to the fault that occurs at
time t. wa is the weight matrix set by the attention layer. at
refers to the probability of possible failure at time t. v refers
to the weighted summation of the probabilities at all times t.

By converting the input into a fault sequence, X = fx1,
x2,⋯, xNg. xt refers to the fault that occurs at time t calcu-
lated by the LSTM model. At each time step, we first use

the forward LSTM to predict the probability of the next fail-
ure. The overall goal is to minimize the following objective
functions:

Lf = −
1
N
〠
N

t=1
log Pr Xt+1 X1,⋯, Xtjð Þ: ð11Þ

Among them, Lf refers to all the parameters of the model
in forward prediction. The Pr ð·Þ function in the LSTM
model is calculated as xt+1, which mainly depends on the pre-
vious probability.

After getting a set of fault history data, the probability of
the next fault can also be predicted through the reverse
sequence. Therefore, we have also established a backward
LSTM, the purpose of which is to predict the previous failure
probability based on the later occurrence probability.

LA = −
1
N

〠
0

t=N−1
log Pr at aN ,⋯, at+1jð Þ: ð12Þ

Finally, we analyze and classify the fault types and incor-
porate the key information into the whole process of LSTM
training.

In summary, by using the optimized model, that is, equa-
tion (13), the parameters of the algorithm model can be
obtained. After that, the corresponding topological quantities
can be calculated.

3.4. LstFcFedLear Model. LSTM-FC can calculate the topo-
logical value of the genetic network. Using this advantage of
LSTM-FC, the LSTM-FC network algorithm can be iterated
repeatedly to obtain the most reasonable parameter matrix.
In Algorithm 1, we show the algorithms of the LSTM-FC
method one by one.

In order to be able to encrypt and integrate the data on
the entire fire IoT platform to form a new dataset and to
ensure that the data of each business system is not leaked,
we have designed the following framework, as shown in
Figure 5. Then, the new dataset is fed into the LstFcFedLear
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Figure 3: The proposed method for data preprocessing.

Table 1: The results of the forecasting model.

Model Results

Specificity = TN
TN + FPð Þ MAE RMSE SDE

KNN 0.323 0.823 0.763

SVM 0.301 0.743 0.692

CNN 0.287 0.665 0.662

LstFcFedLear 0.226 0.619 0.634
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model for training as a training set. The LstFcFedLear sub-
model corresponds to each fire subdata. The LstFcFedLear
submodel is responsible for training each subdata to obtain
the corresponding training parameters. Finally, all LstFcFe-
dLear submodels update their parameters to a unified model.
Specific steps are as follows:

Step 1. The central server sends the public key to the
LstFcFedLear1, LstFcFedLear2, LstFcFedLear3,…, LstFcFe-
dLearn models and uses the Paillier partial homomorphic
encryption algorithm to align the encrypted samples. The
Paillier encryption algorithm is mainly divided into three
steps. The first is to generate a key according to the Paillier
encryption algorithm. Then, use the generated key to encrypt
each part of the data. Finally, after the model training is com-
pleted, the model is decrypted [29].

Step 2. The encrypted samples are fed to the LstFcFe-
dLear1, LstFcFedLear2, LstFcFedLear3,…, LstFcFedLearn
models for iterative training, and the local parameter gradi-
ents of the models are calculated, respectively.

Step 3. LstFcFedLear1, LstFcFedLear2, LstFcFedLear3,…,
LstFcFedLearn models push the gradient and loss calculated
by each to the central server. The central server uses the pri-
vate key to decrypt.

Step 4. The central server sends the decrypted gradient
and loss back to the LstFcFedLear1, LstFcFedLear2, LstFcFe-
dLear3,…, LstFcFedLearn models.

Step 5. LstFcFedLear1, LstFcFedLear2, LstFcFedLear3,…,
LstFcFedLearn models update the model parameters.

Step 6. LstFcFedLear1, LstFcFedLear2, LstFcFedLear3,…,
LstFcFedLearn models are iteratively trained to generate a
joint model.

4. Experiment Results

4.1. Dataset. To address the problem of fault type classifica-
tion for fire facility, we used the Fault Type of Fire Facility
(FTFF) dataset from the Firefighting Internet of Things plat-
form database of China State Grid Gansu Electric Power
Company. This dataset contains two subdatasets, namely,
FTFF1 and FTFF2.

We study the real dataset of 15084 alarm records of
power firefighting equipment recorded between 2019 and
2020 from fault in power fire facility maintenance. All the
FTFF datasets contain Alarm Time (AT), Fault Type (FT),
Failure Equipment (FE), Fault Location (FL), Municipal
Units (MU), and Level 2 Units (L2U). Considering the
large number of subjects in each of these two datasets, we
used the FTFF1 dataset for training and the FTFF2 dataset
for testing.

The problem of fault type classification was approached
as a five-class classification problem, with the following clas-
ses: 0 for the Overdue Fault (OF), 1 for the Offline Fault
(OLF), 2 for the Power Failure (PF), 3 for the Equipment
Damage (ED), and 4 for the False Alarm (FA). For each input
data from one discrete time point, if the classification model
identified this input as being of class 0–4, then the fault type
of this discrete time point would be set to 0–4 (i.e., the fault
type was predicted every time point) [30–32].
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Figure 4: The prediction with LstFcFedLear from the dataset.

INPUT PARAMETERS: Reasonable labeling T+,T−
Label labeling is not reasonable ˜ T+, ˜ T−
Maximum number of pre-training
Maximum number of training
OUTPUT VALUE: Train well-performing models
1: d, c ←0
2: get x on T
3: while d < preEpoch do
4: for each fault i in T do
5: get ˜r+ i ,˜r−i in L
6: get L by (9) on i;
7: update θ;
8: compute Lf
9: update θ;
10: end for 11 j ← j +1; 12 end while
13: while k < trainEpoch do
15: for each fault xi in T do
16: compute xi;
17: compute yi;
18: compute LA;
19: update θ;
20: end for
21: k ← k +1;
22: end while

Algorithm 1: LSTM-FC network algorithm.
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4.2. Prediction by LstFcFedLear. It is easy to see that display-
ing a certain vector in a sequence or a certain sequence in a
sequence is basically the same as the training process of the
LstFcFedLear algorithm. The following figure illustrates the
training progress curve of the LstFcFedLear and SVM algo-
rithm in detail. It can be clearly seen from the figure that
the loss and root mean square error performance of the two
algorithm models in the training process are very similar.
The loss curve can explain that the learning speed of SVM
is relatively slow at the beginning of training. But it is worth
noting that as time goes by, the learning curve of SVM is
close to a certain value, and it has gradually stabilized. It
can be inferred from these data that LstFcFedLear did not
learn enough knowledge at the beginning, but over time, this
problem was solved. In general, the performance of LTSM is
slightly better than that of LstFcFedLear.

In order to further demonstrate the accuracy and gener-
alization ability of LstFcFedLear, we compare its accuracy
with the other three methods in [7–9]. In order to show the
awareness of the results of the experiment, we use the method
in [10]. The simulated test data was obtained using SynT-
ReN, an environment frequently used in the industry.
Figure 1 illustrates the operational characteristics (ROC) of
the new data generated by LstFcFedLear and CNN. Obvi-
ously, on the synthesized test data, the accuracy of LstFcFe-
dLear is better than that of the CNN method. As shown in
Figure 6(b), compared with the FDR performance of SVM,
KNN, and CNN methods, the error rate of LstFcFedLear
is the lowest. This result clearly shows that for the genetic
disease dataset, LstFcFedLear is better than SVM, KNN,
and CNN.

As shown in Figure 6(c), the comparison between the
positive prediction curve of LstFcFedLear and the PPV of
SVM, KNN, and CNN shows that the LstFcFedLear method
is optimal. This also further shows that LstFcFedLear is also
superior to SVM, KNN, and CNN in terms of synthesizing
genetic test data.

In this experiment, the LstFcFedLear model has 16 to
100 storage units. The training time interval of the model
is ½16, 100�, and the unit is s. Throughout the experiment,
the mean square error is the only indicator that measures
the performance of binary classification and regression

models in the learning phase. In order to reduce the loss
and increase the learning rate, the Adam optimizer is used
in the LstFcFedLear model with the parameters beta1 = 0:9
and beta2 = 0:999. In order to prevent overfitting in the
learning phase, a total of 3 times of cross-validation were
used in this experiment. The pros and cons of the model’s
hyperparameters are the key to whether a model can
achieve the best performance. In this experiment, we
repeatedly test the hyperparameters of the LstFcFedLear
model, such as the model’s backtracking situation, the
number of storage units, and the loss rate. The backtrack-
ing rate indicates how large the time interval to consider
[33]. Table 2 shows the different dropout probability
values in the experiment. What we want to explain here
is that the loss function in the article represents the mean
square error between the training value and the predicted
value. In addition, it can be clearly seen from Table 2 that
the accuracy of LstFcFedLear is as high as 94.6, which is
8.03% higher than the average of KNN, SVM, and CNN.
The sensitivity of LstFcFedLear is as high as 93.4, which
is 7.77% higher than the average of KNN, SVM, and
CNN. The specificity of LstFcFedLear is as high as 95.1,
which is 8.37% higher than the average of KNN, SVM,
and CNN. These three indicators also show that LstFcFe-
dLear is the best.

4.3. Performance Comparison. Here, we compare the perfor-
mance of SVM, KNN, and CNN in detail with the perfor-
mance of the LstFcFedLear model proposed in this paper.
The experiment uses the scikit-learn package in Python for
testing. In order to be able to make a thorough comparison
with the performance of the LstFcFedLear model, a 3-fold
cross-validation was specifically used in the experiment. For
the best training parameters, grid search technology is also
used in the experiment. It can be seen from the experimental
results that for SVM, the value of the penalty parameter is set
to c = 0:1. In Tables 1–3, we, respectively, compared the fault
classification performance of KNN, SVM, CNN, and
LstFcFedLear in detail. The comparison results show that
the LstFcFedLear model has the best performance. In terms
of accuracy and recall, LstFcFedLear is the best among these
three. The second place is the CNN model. Table 2 mainly

Joint model

Updating parameters

Iterative training

LstFcFedLear1 LstFcFedLear2 LstFcFedLear3

Encrypted sample alignment

Paillier homorphic encryption
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Figure 5: LstFcFedLear model framework.
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compares the comparison results between the traditional
fault prediction method and the method proposed in the
article.

The measurement indicators used in the experiment are
sensitivity, accuracy, and Youden index scale, that is, true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) [28–31]. TP represents the number of
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Figure 6: Accuracy and precision for prediction/classification among LstFcFedLear and different competitors based on fault datasets: (a)
ROC diagram, (b) FDR chart, and (c) PPV graph.

Table 2: The comparison results between the traditional fault
prediction method and the method proposed.

Method Accuracy (%) Sensitivity (%) Specificity (%)

KNN 84.2 81.3 83.3

SVM 86.3 87.3 87. 7

CNN 89.2 88.3 89.2

LstFcFedLear 94.6 93.4 95.1

Table 3: The running time of the different models in this paper
between LstFcFedLear from SVM, KNN, and CNN.

Method KNN SVM CNN LstFcFedLear

Training time 4.209 8.703 787.342 983.306

Running time 2.217 4.332 9.243 7.276
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Figure 7: Graph of AUC box plot for LstFcFedLear.
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samples classified as correct. TN represents the number of
samples judged to be false. FP represents the number of sam-
ples classified as incorrect. FN represents the number of sam-
ples classified as correct. The specific judgment formula is as
follows:

Accuracy = TP + TNð Þ
TP + TN + FP + FNð Þ , ð13Þ

Sensitivity =
TP

TP + FNð Þ , ð14Þ

Specificity =
TN

TN + FPð Þ : ð15Þ

As shown in Figure 6, the area enclosed by the curve has
shown that LstFcFedLear is larger than the other three types.
That can show that in terms of accuracy, LstFcFedLear is def-
initely better than the other algorithms. It can be seen from
Figure 6 that the value of LstFcFedLear actually reaches the
maximum average number AUC, about 0.84. But the AUC
values of SVM, KNN, and CNN are 0.47, 0.78, and 0.59,
respectively. The rankings are LstFcFedLear, KNN, CNN,
and SVM. In addition, we calculated and visualized the area
enclosed under the curve in Figure 6 in order to highlight
the accuracy of all query methods. The AUC value obtained
by the LstFcFedLear model is about 0.84, which can also indi-
cate that the model is the best. More importantly, the average
AUC owned by GlobalMIT is about 0.47, which is obviously
much lower than that of LstFcFedLear.

As shown in Figure 7, the LstFcFedLear model has the
best performance in classifying all faults into positive proba-
bility because the area under the ROC curve corresponding
to LstFcFedLear is the largest. According to the area ranking
under the ROC curve, it can be seen that the ranking of SVM
is only lower than that of LstFcFedLear but is better than that
of CNN and KNN in turn. It is worth noting that the ROC
area of the LstFcFedLear model is 10 times that of KNN, 6
times that of SVM, and 3 times that of CNN. The huge area
difference once again illustrates the excellent accuracy of
the LstFcFedLear model.

Table 1 characterizes the accuracy of these algorithm
models from another level. The MAE value of LstFcFedLear
is 0.226, which is 0.075 lower than the average of KNN,
SVM, and CNN. The test results show that the MAE value
of KNN is the largest, indicating that the effect of the model
is the worst. The ranking of other models from good to bad
is CNN, SVM, and KNN. In terms of RMSE, the RMAE value
of LstFcFedLear is 0.619, which is 0.123 lower than the aver-
age of KNN, SVM, and CNN. The test results show that the
RMAE value of KNN is the largest, indicating that the effect
of the model is the worst, which is consistent with the perfor-
mance on the MAE value. The ranking of other models from
good to bad is CNN, SVM, and KNN. In terms of SDE, the
SDE value of LstFcFedLear is 0.634, which is 0.072 lower than
the average of KNN, SVM, and CNN. The test results show
that the SDE value of KNN is the largest, 0.763, indicating
that the effect of the model is the worst, which is consistent
with the performance on the MAE and RMSE values. The

ranking of other models from good to bad is CNN, SVM,
and KNN.

In Table 3, we compare the running time of the LstFcFe-
dLear, KNN, SVM, and CNN models. It can be seen that
although LstFcFedLear is indeed superior in various perfor-
mances, it pays relatively high in training time and running
time costs. As can be seen in Table 3, in terms of training time
cost, the time-consuming order is KNN, SVM, CNN, and
LstFcFedLear from least to more. KNN is indeed very time-
consuming, but its performance is too poor to be suitable
for promotion and application in the industry. LstFcFedLear
may take a little longer time, but it is relatively stable in terms
of performance.

5. Conclusion

In short, we propose a vertical federated learning framework
based on LSTM fault classification network to predict the
failure of the fire IoT platform. The advantage of this frame-
work is that it can encrypt and integrate the data on the entire
firefighting IoT platform to form a new dataset. After the
synthesized data is trained through each model, the optimal
model parameters can be finally updated. At the same time,
it can ensure that the data of each business system is not
leaked. The experimental results showed that the LstFcFe-
dLear model provides an effective method for fault predic-
tion, and its results are comparable to the baseline. And the
results among LstFcFedLear and SVM, KNN, and CNN
methods showed that LstFcFedLear performs better than all
methods in RMSE prediction, with the improvement being
9.8% and 24.3%, respectively. In the future, we plan to apply
the LstFcFedLear model to power production application
scenarios and then further optimize the robustness and other
performance of the model.

Data Availability

We used the Fault Type of Fire Facility (FTFF) dataset from
the Firefighting Internet of Things platform database of
China State Grid Gansu Electric Power Company. This data-
set contains two subdatasets, namely, FTFF1 and FTFF2.
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Network traffic classification technologies could be used by attackers to implement network monitoring and then launch
traffic analysis attacks or website fingerprint attacks. In order to prevent such attacks, a novel way to generate adversarial
samples of network traffic from the perspective of the defender is proposed. By adding perturbation to the normal
network traffic, a kind of adversarial network traffic is formed, which will cause misclassification when the attackers are
implementing network traffic classification with deep convolutional neural networks (CNN) as a classification model. The
paper uses the concept of adversarial samples in image recognition for reference to the field of network traffic classification
and chooses several different methods to generate adversarial samples of network traffic. The experiment, in which the
LeNet-5 CNN is selected as a classification model used by attackers and Vgg16 CNN is selected as the model to test the
transferability of the adversarial network traffic generated, shows the effect of the adversarial network traffic samples.

1. Introduction

As a basic technology for enhancing network controllability,
network traffic classification technology helps researchers
understand traffic distribution, optimize network transmis-
sion, and improve network service quality; however, it is
often leveraged by attackers for monitoring network traffic
against the network targets and classifying the application
types (such as mail, multimedia, and websites) the network
traffic belong to. Based on the classification results, network
traffic interception is implemented and a possible website
fingerprint attack may be followed [1]. In particular, the net-
work traffic classification, in which area machine learning
and deep learning are applied, provides attackers easier con-
ditions that result in extremely high classification accuracy.
A typical scenario for a network traffic classification method
based on deep learning that is used by attackers is shown in
Figure 1.

Although the application of deep learning in network traf-
fic classification can improve the accuracy of classification and
has demonstrated huge potential in areas such as image recog-
nition and natural language processing, adversaries against the

deep learning models including the convolutional neural net-
works (CNN) have raised the interest of scholars on the con-
cept of “Adversarial Sample” that was introduced to the area
of computer vision by Szegedy et al. [2].

In the study of image recognition, Szegedy has found
that CNN tends to give an error output with high confidence
degrees when intentionally adding some undetectable and
tiny perturbations to the input samples of the learning
models. For deep learning models, these are called “Adver-
sarial Samples” that are crafted by these tiny perturbations
to the original dataset. From the perspective of attack, the
most direct application of adversarial samples is in the area
of computer vision, including face identification and auto-
matic driving. By adding perturbation undetected by eyes
to the image, failures in face identification and traffic signs
[3] are triggered and damages from misclassification are
then caused. In the area of information security, it can also
lead to detection avoidance [4] by deceiving the malware
detection models based on neural network. However, on
the contrary, the adversarial samples, from the perspective
of defense, are also of high value. First, it can improve the
robustness of deep learning models in responding to possible
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adversarial sample attack by being trained with adversarial
samples generated in advance [5]. Second, the adversarial
samples can be leveraged to deceive the classification models
by attackers using the deep learning network, which results
in misclassification and increase of attack cost, thus cancel-
ling the attacks. From the second view above, this paper is
designed for defenders to trigger errors in attackers’ network
classification by crafting adversarial samples for network
traffic with the addition of perturbation and thus forming
deceptive network traffic against attackers’ network traffic
classification attacks.

In this paper, the concept of adversarial samples is intro-
duced to defend the network traffic classification attacks ini-
tiated by attackers. Adversarial samples of network traffic are
generated to deceive network traffic classification models
based on deep learning network used by the attackers, result-
ing in misclassification and attack failure. The contributions
of the paper are as follows: firstly, the concept of adversarial
samples is introduced into network traffic as a view of active
defense, and deceptive effects initiated by different adversar-
ial samples are compared. Secondly, contrary to the fact that
attackers initiate attacks with adversarial samples in other
areas, the adversarial samples of a network are considered
as a defensive way to confuse the attackers’ classification
models, that can be regarded as “attacks in active defense.”
Finally, the LeNet-5 CNN is selected as a network traffic
classification model used by attackers to be deceived, and

Vgg16 CNN is chosen as the model to test the transferability
of the adversarial network traffic generated.

2. Related Work

2.1. Network Traffic Classification. Based on the granularity
of network traffic, the study in network traffic classification
is mainly for the following three levels [6]: packet, flow,
and stream. In the three levels mentioned above, the flow
level includes five types of flow network traffic according to
different granularities [7] as shown in Table 1, which are
the most widely used.

In this paper, flow network traffic is used as the original
data. By crafting adversarial samples of network traffic, the
defenders deceive the attackers who use deep learning
methods as their classification models. The classification
methods based on deep learning assume that the statistical
characteristics (such as flow duration distribution) of the
network layers for some types of applications are unique.
These methods, including Decision Tree, Naive Bayes, Sup-
port Vector Machine, Association Rules Learning, Neural
Network, and Genetic Algorithm, are applied in the classifi-
cation model’s construction to classify, with such character-
istics as broad scenarios, high classification accuracy, and
ability in encrypted data traffic classification.

For studies of traffic classification based on machine
learning, the main idea is to construct united statistical
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Figure 1: A typical scenario for network traffic classification method based on deep learning.

Table 1: Five types of flow in network traffic classification.

Flow granularity Points of interest

TCP connections
Heuristics based on the observation of some TCP flags (i.e., SYN, FIN, and RST) or
TCP state machines are used to identify the start and the end of each connection.

Flow
A typical flow definition uses the 5-tuple {source (IP), source (port), destination (IP),

destination (port), and transport-level protocol}.

Bidirectional flows
Same as above, but includes both directions of traffic, assuming both directions of flows

can be observed (especially challenging on backbones where internet routing is often asymmetric).

Services Typically defined as all traffic generated by an IP-port pair.

Hosts
Some approaches classify a host by the predominant traffic it generates, assuming both

directions of traffic (to and from the host) can be observed.
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attributes of traffic as the fingerprint to classify. Ref. [8]
applies for the first time machine learning into network traf-
fic and assumes the fact that the bytes in flow can be
regarded as pixels in images, and the deep learning method
with excellent performance in image recognition can be used
for network classification. Ref. [9] integrates feature extrac-
tion, feature selection, and classification into an end-to-end
framework and calculates the load bytes of different behav-
iours by first-order CNN to construct fingerprints. Ref.
[10] leverages characteristics of anonymized TOR (The
Onion Router) network and applies the direction of the
length sequence as the input for deep learning networks
including SAE (Stacked Auto Encode), CNN, and LSTM
(Long Short-Term Memory), to classify the webpage access.
Ref. [11] applies for the first time the method of representa-
tion learning into the area of malicious network traffic clas-

sification, which regards the original traffic data as images,
then it conducts classification with CNN that does well in
image classification tasks, and finally, it achieves the purpose
of classifying the malicious network traffic. These studies
have proven the feasibility of deep learning in traffic classifi-
cation and at the same time, provided targets for adversarial
samples of network traffic classification based on deep
learning.

For studies in adversarial network traffic classification
based on deep learning, Ref. [12] proposes a defense method
loading background network traffic and validates the Tor
and JAP (Java Anon Proxy) anonymized network. Ref. [13]
has validated the effects of encrypted network traffic classifi-
cation adversary filled by encrypted protocol bytes. Ref. [14]
applies different real traffic as noise during website access.
Ref. [15] proposes that Walkie-talkie loads a website in

Table 2: Notations of attack model.

Notation Description Remark

TF Network traffic observed by attackers

X Feature set of traffic TF X = x1, x2, x3 ⋯ xmf g

C
Application type set corresponding to

network traffic TF
C = c1, c2, c3 ⋯ ci,⋯cnf g

F xð Þ Classification function of the classification
model

Input value is traffic TF, output value is the probability of the ith application type
in application set C

Table 3: Notations of defense model.

Notation Description Remarks

P Perturbation

TA
The network traffic adversarial samples that are created by
defenders with addition of perturbation P into traffic TF

X ′ Feature set of traffic TA X ′ = x1′ , x2′ , x3′⋯ xm′
n o

F x′
� �

Classification function of the classification model
Input value is traffic TA, output value is the probability of

type i′th of C traffic whereTA belongs to

Input:Normal Network Traffic TF
Output:Adversarial Samples of Network Traffic TA
BEGIN.
1.Preprocess (TF); //Pre-process TF and Extract characteristic X;
2.TranspPcapToIDX (TF); //Transform TF from pcap format to IDX format;
3.Normalized (); //Delaminate each characteristic dimension and normalize into section [0,255];
4.Reshape (TF); //Reshape each characteristic value of multiple types of characteristic as a grey value;
5.Visualization (TF); //Form a 28 × 28 matrix and visualize the network traffic;
6.Training (TF, mode); //Train CNN models
7.Test (TF); //Test the accuracy of normal network traffic;
8.CraftingPerturbation (method); //use different methods of perturbation crafting to craft perturbation;
9.TA=GenerateAdvSample (); //TA = TF + P, overlay the perturbation and original traffic to craft adversarial samples of network
traffic TA
10.Visualization (TA); //Compare TA and results from Step 5
11.Evaluate (TA); //evaluate adversarial samples of traffic network TA being crafted
12.Return TA; //output adversarial samples of traffic network.
END

Algorithm 1: Adversarial samples of network traffic crafting algorithm.
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simplex mode to confuse the burst feature. The abovemen-
tioned studies have mainly achieved the goal of modifying
the communication characteristics of the traffic and have
proposed methods that mostly focus on how to avoid
being detected, which are of limited ability to disguise
and deceive, and with an insufficient adversary. At present,
the studies close to our work are those on network traffic
disguise and confusion in the area of privacy protection, in
which TOR releases obfsproxy, an obfuscated proxy soft-
ware [16] that makes the encrypted traffic of SSL (Secure
Socket Layer) or TLS (Transport Layer Security) look like
unencrypted HTTP or instance communication traffic. Ref.
[17] releases TOR’s transmission layer plug-in, Skype-
Morph, to fill the communication traffic between a TOR
client and a network bridge to Skype video communica-
tion traffic for statistical analysis of adversarial traffic.
Ref. [18] proposes the method of analysis of traffic classi-
fication rules in a black box, which can infer traffic analy-
sis identification rules through tests and thus modify the
communication packet to avoid being detected. However,
all these studies neither apply the concept of adversarial
samples into those on adversarial traffic analysis nor dis-
cuss it as a method of defense for defenders, which, how-
ever are the focus of this paper.

2.2. Adversarial Samples. The key of adversarial samples is to
craft adversarial perturbation. In the area of computer vision,
it is essential for perturbation tomeet the requirement of being

invisible to human eyes after addition of original images and
be able to confuse original classification models. In this paper,
the deception for traffic classification models still have to meet
certain requirements (e.g., bandwidth), though it is not neces-
sary for the perturbation being crafted to meet the require-
ment of “being invisible to human eyes.”

Now, the majority of studies are focused on crafting the
adversarial perturbation to misclassify an image. Szegedy et al.
[2] discovered the weakness of the deep neural network in the
area of image classification, proposed the concept of adversarial
samples, and described the perturbation crafting as an opti-
mized issue for the first time. Goodfellow et al. [19] proposed
an optimal method of max norm constrained perturbation,
which is called the Fast Gradient Sign Method (FGSM), to
improve the computational efficiency and proved that high
dimension linearity is the primary reason to make adversarial
samples better. Kurakin et al. [20] proposed a basic iteration
method that leverages FGSM in iteratively crafting perturba-
tion. Moosavi-Dezfooli et al. [21] discovered adversarial pertur-
bation irrelevant to particular images in image classification
models, that is, the existence of universal perturbations, which
can lead the classification models to misclassify any image with
the addition of this perturbation. Athalye et al. [22] have discov-
ered that the deep network classifier could also be deceived by
objects in the real world printed by 3D printers. DeepFool
[23] further improved the effectiveness of adversarial perturba-
tion. Metzen et al. [24] introduced Universal Adversarial Per-
turbation (UAP) for semantic segmentation tasks and
extended the iterative FGSM attack of [21] and changed the
labels for prediction of each pixel. Mopuri et al. sought data-
free universal perturbation without any sample data distribu-
tion. They proposed a new algorithm without target data to
craft universal adversarial perturbation called FFF [25]. Their
later work, GDUAP [26], has improved the attack effect to
cause misclassification for different structures and parameter
classification models and validated the validity of the method
in tasks across computer visions. Furthermore, attacks in other
areas are studied besides those on classification and recognition
tasks in computer visions, and there is presently no research on
attacks against network traffic classification.

Defender

Streaming media

 

E-mail

E-commence
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Database

Streaming media
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Figure 2: Attack and defense scenario.

Table 4: Experiment’s environment and parameters.

Environment Parameters

OS Win10,64bit

Processor
CPU: Intel Core i5-7200U;

GPU: NVIDIA GeForce 940MX

Memory 8GB, LPDDR3, 2133MHz

Pycharm Community Edition 2019.3.1

Tensorflow Ver. 2.1.0

Library support Cleverhans 3.0.1 [32]

4 Wireless Communications and Mobile Computing



3. Security Models

3.1. Attack Model. This paper assumes that attackers can
observe the flow-level network traffic between host nodes
and extract features such as packet size and internal packet
arrive time. By training on classification models with these
network traffic, attackers could infer the application types
to thus conduct classification. From [27, 28], we build an

attack model, which is specifically described as follows:
attackers attempt to classify the network traffic TF being
observed into type i of application set C, in
which:C = fc1, c2, c3 ⋯ ci,⋯cng. The feature set of network
traffic TF is X, X = fx1, x2, x3 ⋯ xmg. FðxÞ is the classifica-
tion function of the model, and the output value is the
probability of type i in C. Related notations are shown
in Table 2.
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Figure 3: Statistical chart of USTC-TFC2016 dataset distribution.
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Figure 5: Network structure and parameters of LeNet-5 CNN.
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3.2. Defense Model. Defenders, according to network traffic
TF, generate network traffic adversarial samples TA by add-
ing perturbation P. This paper will generate different adver-
sarial samples of network traffic TA by different methods of
crafting perturbation, from which the feature set X ′ = fx1′ ,
x2′ , x3′⋯ xm′ g is extracted, which will make the output of
the attackers’ classification function Fðx′Þ different from
the original output FðxÞ. That is to say, the attackers will
misclassify the traffic into the type i′th rather than type i
th. Related notations are shown in Table 3.

3.3. Methods of Generating Perturbation. Ref. [29] summa-
rizes the perturbation crafting into full-pixel perturbation and
partial-pixel perturbation, on the basis of which there are
three secondary types including target/nontarget, black box/-
white box, and visible/invisible. In collaboration with charac-
teristics of network traffic classification, the methods of
crafting perturbation introduced in this paper are just like
those of the full-pixel perturbation in image classification;
that is, adversarial samples are crafted under the context that
the parameters and internal structure of the classifier used
(such as LeNet-5) by attackers are known. These adversarial
samples are required to lead the attackers’ classifier to mis-
classify into not only target label but also nontarget label.
Based on the abovementioned, the four perturbation crafting
methods introduced in this paper are as follows:

(1) L-BFGS

L-BFGS is introduced by Szegedy [2] when he proposed the
concept of adversarial samples. L-BFGS generates adversarial
samples based on optimization, and is described as follows:

min c × x − x′
�� ��

2 + lossF,t x′
� �

, s:t:x′ ∈ 0, 1½ �n: ð1Þ

(2) FGSM

As one of the basic methods in crafting adversarial sam-
ples, FGSM, proposed by Goodfellow et al. [19], induces a
network to misclassify the image generated by adding incre-
ments into the direction of a gradient based on the principle
of gradient descent. FGSM calculates perturbation by using
the following:

P = ε sign ∇I θ, x, yð Þð Þ: ð2Þ

(3) JSMA

JSMA is a typical white box and targeted attack algo-
rithm constrained by l0 norm proposed by Papernot et al.
in 2016, which is aimed at computing a direct mapping from
the input to the output to achieve an explicit adversarial
goal. JSMA algorithm mainly includes three processes: cal-
culating forward derivative of a deep neural network, calcu-
lating adversarial saliency maps, and modifying samples by
adding perturbation [30].

(4) C&W Method

Table 5: Network parameters of LeNet-5 CNN.

Name Parameters

Input layer 28 × 28

C1 convolution layer
Convolution core 32 × 3 × 3ð Þ

Output 32 × 26 × 26ð Þ

S2 pooling layer
Sampling window 2 × 2

Output 32 × 13 × 13ð Þ

C3 convolution layer
Convolution core 64 × 3 × 3ð Þ

Output 64 × 11 × 11ð Þ

S4 max pooling layer
Sampling window 2 × 2

Output 64 × 5 × 5ð Þ
Full connection layer 1600 × 1

Full connection layer 64 × 1

Output layer 20 × 1

Table 6: Network structure and parameters of Vgg-16 CNN.

Name Parameters

Input layer 28 × 28

Convolution layer
Convolution core 32 × 3 × 3ð Þ

Output 32 × 26 × 26ð Þ
Batch normalization layer Output 32 × 26 × 26ð Þ

Convolution layer
Convolution core 32 × 3 × 3ð Þ

Output 32 × 24 × 24ð Þ
Batch normalization layer Output 32 × 24 × 24ð Þ

Max pooling layer
Sampling window 2 × 2

Output 32 × 12 × 12ð Þ

Convolution layer
Convolution core 64 × 3 × 3ð Þ

Output 64 × 10 × 10ð Þ
Batch normalization layer Output 64 × 10 × 10ð Þ

Convolution layer
Convolution core 64 × 3 × 3ð Þ

Output 64 × 8 × 8ð Þ
Batch normalization layer Output 64 × 8 × 8ð Þ

Max pooling layer
Sampling window 2 × 2

Output 64 × 5 × 5ð Þ

Convolution layer
Convolution core 128 × 3 × 3ð Þ

Output 128 × 3 × 3ð Þ
Batch normalization layer Output 128 × 3 × 3ð Þ
Flatten layer Output 1152 × 1

Full connection layer dense 1 Output 64 × 1

Full connection layer dense 2 Output 20 × 1
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C&W is proposed by Carlini and Wagner [31] based on
FGSM, L-BFGS, and JSMA, which improves greatly in norm
l0, l2, l∞. The method with norm l2 as an example is shown
in equation (3). C&W can produce strong adversarial sam-
ples, enhance its adversarial transferability, and achieve the
ability of black box attacks.

where

min∥
1
2

tanh wð Þ + 1ð Þð − x∥2 + c ⋅ f
1
2

tanh wð Þ + 1ð Þ
� �

,

f x′
� �

=max max Z x′
� �

i
: i ≠ t

n o
− Z x′

� �
i
− k

� �
:

ð3Þ

3.4. Adversarial Samples of Network Traffic Crafting
Algorithm. Based on the abovementioned analysis and per-
turbation crafting algorithm, this paper has designed the
adversarial samples of a network traffic crafting algorithm.
The details are as follows:

In Algorithm 1, the real traffic needs to be preprocessed
and normalized first. And then, each characteristic value of
multiple types of characteristics is reshaped as a grey value
in 0-255 and the network traffic is visualized. Next, the
CNN model selected by attackers is constructed and trained.

The function Training (TF, mode) enables it to classify the
traffic data visualized and test the accuracy of classification.
At the same time, different methods of crafting perturbation
are used to generate perturbation, which will be overlayed
with original traffic to be adversarial samples of network
traffic TA. Finally, by comparing TA and TF, adversarial
samples of traffic network will be evaluated.

4. Experiments

This paper constructs an attack and defense scenario shown
in Figure 2, in which attackers are assumed to be able to
observe the flow-level network traffic of different applica-
tions between host nodes and use the classification models
based on deep learning for further attacks. Defenders use
the adversarial samples of network traffic crafting method
proposed in this paper to add a different perturbation to lead
attackers to misclassify during network traffic classification
and thus achieve the purpose of defense.

Environment and parameters required by the experi-
ment are shown in Table 4.

4.1. Dataset. The USTC-TFC2016 dataset [11] used in this
paper is as the flow traffic observed by attackers which is
commonly used by network traffic classification. This dataset
includes ten types of malware traffic captured from the real
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Figure 6: Classification train and test on the UST-TFC2016 dataset.
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network environment by CTU researchers from 2011 to
2015 and ten types of normal traffic data simulated by pro-
fessional tools. To reflect more kinds of traffic as possible,
ten kinds of traffic contain eight classes of common applica-
tions. The size of the USTC-TFC2016 dataset is 3.71GB, and
the format is pcap.

4.2. Data Preprocessing. In this part, with the toolkit
USTC-TK2016, raw traffic data (pcap format) is converted
to CNN’s input data (idx format). The whole process
includes traffic split, traffic clear, image generation, and
IDX conversion [11]. After preprocessing, 20 types of dif-
ferent applications of network traffic are formed, including
10 types of 243761 normal traffic flows and 10 types of
179252 malicious traffic flows, in which 90% (379812
flows) are used as training dataset and 10% (42201 flows)
as test dataset. The statistical chart of dataset distribution
is showed in Figure 3.

Each of the 20 types of network traffic can be visualized
to grey image with 784 (28 ∗ 28) bytes. The visualization
results are shown in Figure 4. In Figure 4, the left group
shows the visualization result of all 20 types of traffic and
the right group shows the consistency in the same traffic
type. It is obvious that these images visualized from network
traffic have obvious discrimination degree, and each type of
traffic has high consistency.

4.3. Attacker Classification Model. It is assumed that the
attacker uses LeNet-5 CNN as his classification model,
which is widely used in classification of network traffic appli-

cations [33]. Ref. [34] has improved the LeNet-5 CNN
model with its network structure, and the network structure
and parameters of LeNet-5 CNN are shown in Figure 5 and
parameters in Table 5.

To validate the transferability of the adversarial samples
of network traffic generated, the Vgg-16 CNN model is
selected as the classification model to test adversarial sam-
ples crafted for LeNet-5. The parameters of the network
structure of Vgg-16 are shown in Table 6.

4.4. Classification Test. Without the defense of adversarial
samples of network traffic, the effect of classification of
LeNet-5 and Vgg-16 used by the attacker is perfect. The clas-
sification test is shown in Figure 6 and Table 7 with three
evaluation metrics: accuracy, precision, and F1 score.

4.5. Perturbation Crafting. With Algorithm 1 and four
methods of perturbation crafting, adversarial samples of net-
work traffic TD of the defender model are crafted for LeNet-
5 CNN. Taking with Geodo type as the example, perturba-
tions crafted by different methods are shown in Figure 7.
In Figure 7, the column “Perturbation” shows the difference
of perturbations generated by four methods, in which the
brightness of the perturbation pixel corresponds to the value
of the heat map. The value “1” and value “-1” of the heat
map mean the strongest “positive” and “negative” perturba-
tions after standardization. For example, perturbations gen-
erated by JASM are stronger than the perturbations
generated by C&W.

Table 7: Classification test on the UST-TFC2016 dataset.

Application type
Accuracy Precision F1_score

LeNet-5 Vgg-16 LeNet-5 Vgg-16 LeNet-5 Vgg-16

BitTorrent 1.00 1.00 1.00 1.00 1.00 1.00

Cridex 1.00 1.00 1.00 1.00 1.00 1.00

Facetime 1.00 1.00 1.00 1.00 1.00 1.00

FTP 1.00 1.00 1.00 1.00 1.00 1.00

Geodo 1.00 1.00 1.00 1.00 1.00 1.00

Gmail 0.99 0.99 0.99 1.00 0.99 0.99

Htbot 1.00 1.00 1.00 1.00 1.00 1.00

Miuref 1.00 1.00 1.00 1.00 1.00 1.00

MySQL 1.00 1.00 1.00 1.00 1.00 1.00

Neris 0.99 1.00 0.99 1.00 0.99 1.00

Nsis-ay 0.99 1.00 1.00 0.99 0.99 1.00

Outlook 0.98 1.00 1.00 0.99 0.99 0.99

Shifu 1.00 1.00 1.00 0.99 1.00 1.00

Skype 1.00 0.98 1.00 1.00 1.00 0.99

SMB 1.00 1.00 1.00 1.00 1.00 1.00

Tinba 1.00 1.00 1.00 1.00 1.00 1.00

Virut 0.99 1.00 0.99 1.00 0.99 1.00

Weibo 1.00 1.00 1.00 1.00 1.00 1.00

WOW 1.00 1.00 1.00 0.99 1.00 1.00

Zeus 1.00 1.00 1.00 1.00 1.00 1.00
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4.6. Comparison and Analysis. The comparison of the exper-
iment consists of two parts: (1) The defender carries out
untargeted defense to the attacker, which means the purpose
of defender is make the attacker misclassify the application
class to another but no particular class. For example, the
attacker misclassifies the Outlook network traffic to any
other class such as Gmail and FTP. (2) The defender carries
out targeted defense to the attacker, which means the pur-
pose of the defender is to make the attacker misclassify the
application class to a particular class. For example, the
attacker misclassifies the Outlook network traffic to MySQL.
In each part, after the test of the effect of the adversarial sam-
ples for LetNet-5 CNN, the transferability is validated, which
means the defender uses adversarial samples generated for
LeNet-5 CNN to deceive Vgg-16 CNN. To evaluate the effect
of deceiving in untargeted defense, deceiving rate (DR) is
used as shown in equation (4). And in targeted defense,
matching rate (MR) [35] is defined as that which describes
the percentage of the adversarial examples generated for
the source model that is misclassified as the target label by
the target model.

DR = 1 − TPi
TPi + FNi

: ð4Þ

To evaluate the quality of adversarial samples generated,
l0 norm, l2 norm, and Structural Similarity Index (SSIM) are
used. The comparison of the experiment is shown in Table 8
and Table 9:

From the comparison in Tables 8 and 9, we can vali-
date the effect of adversarial samples of network traffic
generated by four different methods. In the untargeted
defense group, the adversarial samples crafted by C&W
perform best on deceiving LeNet-5 CNN with low change
to original but with disadvantages of slow to crafting per-
turbation and low transferability to other CNN models,
which could be used in an application field that could pro-
vide high computation ability and demand for high
deceiving rate. FGSM could craft perturbation quickly
and transfer the deception to other CNNs. However, the
change is to the original image of perturbation by FGSM
which is much more than other methods. In the targeted
defense group, C&W is also the best to perform the ability
of deceiving LeNet-5 but has no effect of transferability to
Vgg-16, and neither are other methods. Contrary to L-
BFGS performing better in this part than in the untargeted
part, FGSM performs worse in contrast to the perfor-
mance in the untargeted part. About the transferability
of the adversarial samples of network traffic, only JASM
performs a little bit of transferability.
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Figure 7: Comparison of adversarial samples of network traffic crafted by different methods.
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Table 8: Untargeted defense on LeNet-5 and transferability on Vgg-16.

Methods of crafting
perturbation

Traffic
application class

Deceiving rate on
LeNet-5

L2
norm

L0
norm

SSIM
Time consuming

(second)
Transferability deceiving

rate on Vgg-16

L-BFGS

Geodo 6.40% 8.31% 73.28% 74.86% 13 31.25%

Neris 53.60% 2.58% 65.20% 91.04% 13 62.31%

Virut 46.00% 2.71% 68.96% 93.72% 13 60.87%

Cridex 0.20% 5.00% 81.00% 86.53% 15 100.00%

Average 26.55% 4.65% 72.11% 86.54% 14 63.61%

FGSM

Geodo 100.00% 10.83% 51.24% 38.28% 2 38.28%

Neris 90.20% 8.79% 60.45% 54.64% 2 98.00%

Virut 95.40% 7.74% 70.86% 77.97% 2 58.91%

Cridex 90.80% 8.26% 76.53% 76.33% 2 44.05%

Average 94.10% 8.91% 64.77% 61.81% 2 59.81%

C&W

Geodo 100.00% 1.00% 50.00% 99.59% 151 0.00%

Neris 100.00% 1.00% 42.00% 99.99% 89 0.40%

Virut 100.00% 1.00% 58.00% 99.98% 110 1.20%

Cridex 100.00% 1.00% 75.00% 99.88% 134 0.20%

Average 100.00% 1.00% 56.25% 99.86% 121 0.45%

JASM

Geodo 99.80% 11.38% 4.52% 63.30% 135 61.12%

Neris 96.40% 10.12% 5.36% 65.20% 137 62.24%

Virut 86.20% 8.91% 5.86% 71.04% 135 36.19%

Cridex 99.80% 7.89% 5.26% 72.98% 136 31.66%

Average 95.55% 9.56% 5.25% 68.10% 136 47.80%

Table 9: Targeted defense (MySql as the targeted class) on LeNet-5 and transferability on Vgg-16.

Methods of crafting
perturbation

Traffic
application class

Matching rate on
LeNet-5

L2
norm

L0
norm

SSIM
Time consuming

(second)
Transferability deceiving

rate on Vgg-16

L-BFGS

Geodo 100.00% 1.07% 66.19% 98.65% 68 0.00%

Neris 100.00% 1.24% 72.76% 97.71% 69 0.00%

Virut 94.60% 1.15% 75.26% 99.21% 68 0.00%

Cridex 100.00% 1.11% 78.59% 99.66% 66 0.00%

Average 98.65% 1.14% 73.20% 98.80% 68 0.00%

FGSM

Geodo 10.60% 10.54% 46.00% 36.26% 2 0.00%

Neris 0.20% 8.00% 72.00% 78.37% 2 0.00%

Virut 1.80% 8.33% 67.22% 76.67% 2 0.00%

Cridex 2.20% 8.27% 76.27% 80.75% 2 0.00%

Average 3.70% 8.79% 67.37% 68.01% 2 0.00%

C&W

Geodo 100.00% 1.00% 51.00% 99.71% 174 0.00%

Neris 100.00% 1.00% 55.00% 99.86% 135 0.00%

Virut 100.00% 1.00% 66.00% 99.89% 139 0.00%

Cridex 100.00% 1.00% 76.00% 99.73% 167 0.00%

Average 100.00% 1.00% 62.00% 99.80% 154 0.00%

JASM

Geodo 93.60% 7.43% 2.62% 75.24% 136 0.00%

Neris 61.40% 11.10% 5.24% 59.74% 135 0.33%

Virut 28.80% 10.27% 6.06% 64.65% 135 0.69%

Cridex 69.80% 8.62% 5.65% 70.47% 135 0.00%

Average 63.40% 9.36% 4.87% 67.53% 135 0.26%
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5. Conclusion and Further Work

This paper first describes the current research status in the
area of network traffic classification. Then, from the per-
spective of defenders and based on researches related, it
introduces the concept of adversarial samples to network
traffic and raises a novel way to generate adversarial sam-
ples of network traffic. After the models of attack and
defense are described, experiments are conducted with
four methods of crafting perturbation. In the experiments,
LeNet-5 CNN is considered as the classification model
used by the attacker to be deceived. By adding perturba-
tion generated by different methods to grey images trans-
formed from normal network traffic, the adversarial
samples of network traffic are formed, respectively, to con-
fuse the target model. The experiments not only compared
the effect of adversarial samples generated on LeNet-5
CNN but also validated the transferability of adversarial
samples of network traffic on Vgg-16 CNN.

There are three limitations and related future work
about this work. First, the main goal of this paper is to
show the effect of adversarial samples of network traffic,
so only the basic methods of crafting perturbation are
used and compared. The effect of other methods should
also be considered. Secondly, it is assumed that the classi-
fication model used by the attacker in the experiment is
LeNet-5. However, in the real attack and defense, other
CNNs may be selected as the classification model too.
So, the effect on other CNNs will be validated next. Lastly,
our work in this paper only performs the transformation
from the network traffic to grey images, but how to
change the image to network traffic and how to keep the
integrity of the original network traffic during transform-
ing need to be studied carefully in further work.
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The mobile social network contains a large amount of information in a form of commentary. Effective analysis of the sentiment in
the comments would help improve the recommendations in the mobile network. With the development of well-performing
pretrained language models, the performance of sentiment classification task based on deep learning has seen new
breakthroughs in the past decade. However, deep learning models suffer from poor interpretability, making it difficult to
integrate sentiment knowledge into the model. This paper proposes a sentiment classification model based on the cascade of the
BERT model and the adaptive sentiment dictionary. First, the pretrained BERT model is used to fine-tune with the training
corpus, and the probability of sentiment classification in different categories is obtained through the softmax layer. Next, to
allow a more effective comparison between the probabilities for the two classes, a nonlinearity is introduced in a form of
positive-negative probability ratio, using the rule method based on sentiment dictionary to deal with the probability ratio below
the threshold. This method of cascading the pretrained model and the semantic rules of the sentiment dictionary allows to
utilize the advantages of both models. Different sized Chnsenticorp data sets are used to train the proposed model. Experimental
results show that the Dict-BERT model is better than the BERT-only model, especially when the training set is relatively small.
The improvement is obvious with the accuracy increase of 0.8%.

1. Introduction

Mobile social networking has emerged and spread widely
with the development of Internet applications. Its main goal
is to provide an online platform for sharing interests,
hobbies, comments, and other information for the general
population, and it contains a large amount of information
in a form of business reviews. Expressing users’ feelings about
products (such as hotels and movies) is becoming increas-
ingly common through sentiment comments on various e-
commerce websites, forums, WeChat, and other platforms.
Extracting user preferences from big data [1] and completing
the sentiment analysis do not only serve as a reference for

other users but also provide valuable directions for improve-
ment for businesses. Sentiment analysis is one of the impor-
tant research tasks in the field of natural language processing,
and it helps to complete recommendations in mobile social
networks and has become a current research hotspot.

Early sentiment analysis was mostly based on artificially
constructed sentiment dictionary design rules for sentiment
discrimination [2, 3]. This method had the benefits of inher-
ent simplicity and strong interpretability. However, since
human emotional expressions are rich and diverse, and it is
immensely difficult to create a complete set of rules capable
of judging all complex emotional expressions. Therefore,
people gradually adopted data-driven statistical machine
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learning methods. Traditional classifiers, such as naive Bayes
and support vector machines (SVMs), were used for senti-
ment analysis [4, 5], but these methods had the disadvantage
of relying on hand-crafted features.

In recent years, deep learning has been successfully
applied to the fields of image and speech recognition and nat-
ural language processing with its powerful representation
learning ability, and it has also greatly promoted the research
progress of sentiment analysis. Models such as LSTM [6] and
BERT [7] were used to construct sentiment analysis algo-
rithms, demonstrating the potential of deep learning models
to improve sentiment analysis.

However, the deep learning models suffer from poor
interpretability. Integration of sentiment dictionary informa-
tion with better interpretability into the BERT characteriza-
tion model and further performance improvement of the
BERT model’s sentiment analysis requires further research.

To this end, this paper proposes a sentiment analysis
algorithm Dict-BERT, which is a cascade of deep learning
BERT model and a sentiment dictionary. The concept of
positive-negative probability ratio is proposed in this work
and used alongside a threshold for deciding whether the
BERT model is confident about the prediction, or the sample
needs to be cascaded to the rule algorithm of the adaptive
sentiment dictionary, and yields superior performance on
sentiment classification. The Dict-BERT model combines
the advantages of the BERT model and the sentiment dictio-
nary and yields superior performance on sentiment classifi-
cation. The Dict-BERT algorithm based on BERT and
sentiment dictionary cascade performance on sentiment
analysis task is evaluated on the Chnsenticorp data set. With
the training corpus size of 2000, the Dict-BERT model dem-
onstrates improved performance on the Chnsenticorp data
set than just using BERT. The performance improved by
0.8 percentage points, with the achieved correct rate and F1
value reaching 0.9517 and 0.9520, respectively.

2. Related Works

There are three main methods of text sentiment analysis,
namely, based on sentiment dictionaries, traditional machine
learning, and deep learning algorithms.

Sentiment analysis based on sentiment dictionaries [8] is
the most direct method. Generally, a heuristic-discriminative
sentiment analysis algorithm is designed using a manually
labelled sentiment dictionary, combined with adverbs and
negative words. However, due to the continuous emergence
of new words on the Internet, it is difficult for sentiment dic-
tionaries to include all words referring to emotion. Moreover,
human natural language is highly flexible, and it is difficult to
design a discriminative sentiment analysis algorithm to deter-
mine the sentiment category of the text. In addition, the
domain adaptability of the sentiment analysis algorithm based
on the sentiment dictionary is very poor, and it is necessary to
design a proprietary discriminant function for different sce-
narios, meaning this method has significant limitations.

A sentiment analysis method based on machine learning,
proposed by Pang et al. [9] in 2002, used two text features of
N-gram and part-of-speech and compared the effects of three

machine learning algorithms, namely, Naive Bayes, Maxi-
mum Entropy, and SVM, on sentiment analysis tasks. Kim
and Hoyy [10] proposed quoting location features and eval-
uating word features to achieve sentiment classification. Xie
et al. [11] proposed a new type of multistrategy fusion senti-
ment feature extraction technology, by constructing three
different sentiment analysis models based on three levels of
sentiment dictionary, emoticons, and SVM, and studied the
fusion effects of different methods. Z. M. Liu and L. Liu
[12] used the SVM algorithm, information gain, TF-IDF,
and other feature weight calculation methods to improve
the performance of sentiment analysis algorithm.

Deep learning models typically are a multilayer neural
network, where the representation of the language model is
obtained from large-scale data. The deep learning model ini-
tially used Google’s Word2vec [13] to learn the representa-
tion of words, and its features were put into machine
learning models, such as SVM, to perform sentiment classifi-
cation. In addition to improving word representation accu-
racy, in order to benefit from valuable context information,
a deep learning long short-term memory (LSTM) model
was used to learn long-distance dependent information and
enhance the semantic representation ability. Hu et al. [14]
proposed building a related word lexicon on the basis of
LSTM, which further improved the accuracy of text senti-
ment analysis. In recent years, models such as pretrained
BERT and ALBERT [15] have emerged. These models are
based on a multilayer Transformer model with a multilayer
attention mechanism to complete semantic coding and con-
tributed to the important breakthroughs in multiple natural
language processing tasks, including sentiment analysis.

Since deep learning has gradually become a research hot-
spot in the field of natural language processing, technologies
related to privacy protection [16] and the approach to solving
sentiment analysis problems using deep learning methods
of sentiment dictionary matching have also developed rap-
idly. Many scholars have attempted optimization of the text
sentiment analysis algorithm using a sentiment dictionary
[17]. Combining it with emotion distribution learning,
Zhang et al. [18] proposed an end-to-end framework based
on a multitask convolutional neural network, which can
learn the sentiment distribution and classification simulta-
neously. Zhang et al. [19] proposed a Chinese microblog
sentiment analysis algorithm based on sentiment dictio-
nary, in which the sentiment value of the microblog text
is obtained by the method of weight calculation, to realize
the sentiment classification.

Wu et al. [20] proposed a slang sentiment word dictio-
nary that is easy to maintain and expand, which is con-
structed using network resources, which demonstrated the
advantages of using slang sentiment dictionary for sentiment
classification. However, the sentiment dictionary-based clas-
sification algorithm is heavily related to the content of the
sentiment dictionary and the weight of the sentiment word.
Using only the sentiment dictionary appears to yield notice-
ably poorer performance, achieving 10% lower than the sen-
timent classification model based on deep learning. The effect
of combined two approaches, sentiment dictionary, and deep
learning algorithm requires further research.
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3. Dict-BERT Model

3.1. Dict-BERT Model Framework. Dict-BERT is a sentiment
analysis model based on cascaded BERT algorithm and adap-
tive sentiment dictionary. The flowchart of the Dict-BERT
framework can be seen in Figure 1. The part of the algorithm
containing the BERT model is mainly composed of an
embedding layer, an encoder layer, two fully connected
layers, and a softmax layer. The positive and negative senti-
ment judgments are completed through the two fully con-
nected layers and the softmax layer. The softmax layer
returns the probability of a positive and a negative sentiment.
If the probability of the positive sentiment and the negative
sentiment of the sample is ½0:9,0:1�, then it can be determined
that the sample belongs to the positive sentiment.

In order to better quantify the model’s prediction ability,
this paper proposes the concept of positive-negative proba-
bility ratio.

Positive‐negative probability ratio

=

Ppos
Pneg

, if Ppos > Pnegð Þ,

Pneg
Ppos

, if Pneg > Pposð Þ,

8
>>><

>>>:

ð1Þ

where Ppos represents the probability of a positive sentiment,
Pneg represents the probability of a negative sentiment, and
the sum of Ppos and Pneg is always 1. According to the def-
inition, it can be seen that the positive-negative probability
ratio must be greater than 1. When Ppos is larger than Pneg,
the model determines that the sample belongs to positive
sentiment class, and vice versa. If the positive and negative
sentiment probabilities of the two samples are ½0:9,0:1� and
½0:55,0:45�, then the probability of the positive sentiment
of the two documents is higher than the probability of
the negative sentiment, so the model judges that these two
documents are positive sentiment. However, the positive-
negative probability ratios of the two articles are significantly
different. The positive-negative probability ratio of the first
document is 9, and the second one is 1.22. The higher the
positive-negative probability ratio is, the higher the model’s
confidence in sentiment classification is. If the value of the
positive-negative probability ratio is relatively low, it means
that the model is struggling to correctly distinguish the senti-
ment tendency of the sample. In such cases the sentiment
dictionary with the discriminant function are used to deter-
mine the sentiment of the sample.

This paper proposes a sentiment analysis model that
combines a BERT model and an adaptive sentiment dictio-
nary. The greater the value of the positive-negative probabil-
ity ratio is, the greater the difference between the probabilities
of the two categories of sentiment classification is, and there-
fore, the higher the credibility of the sentiment classification
prediction is. On the contrary, when the positive and nega-
tive probability ratio is lower than the threshold, it indicates
that the pretrained model cannot distinguish the sentiment
categories. If the positive-negative probability ratio is higher
than the predefined threshold, the output of the BERT classi-

fication model is directly used as the final sentiment classifi-
cation. If the positive-negative probability ratio is lower than
the set threshold, the discrimination function of the adaptive
sentiment dictionary is used to complete the sentiment
classification. In the next section, the effects of models with
different thresholds will be introduced. The positive and neg-
ative probability ratio thresholds were selected as 1.2, 1.4, 1.6,
2.0, 3.0, and other values, respectively.

3.2. BERT Sentiment Classification

3.2.1. Overview of the BERT Model. The BERT (Bidirectional
Encoder Representation from Transformers) model is a pre-
trained model proposed by Google in 2018. The main goal of
this model is to use large-scale unlabelled corpus for unsu-
pervised training, so as to obtain a word embedding repre-
sentation containing rich semantic information. The BERT
model is internally composed of a two-way multilayer Trans-
former model. The Transformer model uses a multihead
attention layer to encode contextual information. The input
and output dimensions of each layer of the Transformer
model remain unchanged, and the superposition of multiple
layers of Transformer model can better realize the semantic
encoding of the context.

3.2.2. BERT Model for Sentiment Classification. The flow-
chart of the BERT model for sentiment classification is
shown in Figure 2. The embedding layer of the BERT model
is composed of three parts, the word vector, the segment
vector, and the position vector. Three different embedding
functions are applied to transform word, segment, and posi-
tion vectors. Each of the word, segment, and position vec-
tors is in dimension 768 after the embedding processing.
To represent the sentiment documents with all the word,
segment, and position information, we add the values of
the corresponding dimensions for all the three vectors.
The word vector is obtained from the pretrained model.
The segment vector is composed of 0 or 1. If the sentiment
document length is shorter than max sentiment length, then
the corresponding dimension is represented by 0; otherwise
it is represented by 1. The position vector represents the word
position in the sentiment document; it is indexed from 1 to
max length. If the document is short, then 255 is filled in
the position vector. The encoder layer of BERT is composed
of a 12-layer Transformer model, which completes the
semantic encoding of the context. Add two fully connected
layers behind the encoder model to complete the conversion
from the hidden layer to the hidden layer and the hidden

BERT
Sentiment classification

Sentiment discrimination function
based on adaptive dictionary

Merged sentiment classification

Figure 1: The framework of the Dict-BERT model.
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layer to the sentiment category. Finally, the softmax layer is
used to calculate the probability of each sentiment category
to complete the classification.

3.3. Sentiment Discrimination Function Based on Adaptive
Dictionary. The sentiment analysis method based on senti-
ment dictionary generally adopts manually annotated senti-
ment dictionary (including positive and negative sentiment
words), combined with adverbs and negative words, to
design a heuristic discriminative sentiment analysis algo-
rithm. Some sentiment dictionaries use numerical values to
express the intensity of positive and negative emotions. How-
ever, the sentiment intensity of general sentiment dictionar-
ies often cannot be consistent with the sentiment intensity
of sentiment words for the test corpus. To solve this problem,
this paper proposes a method of constructing a sentiment
dictionary adaptively based on test corpus.

3.3.1. Building an Adaptive Sentiment Dictionary. In this
paper, we construct a sentiment dictionary based on the
HowNet sentiment dictionary and including the sentiment
words frequency. The size of the sentiment dictionary is
shown in Table 1. The frequency of different sentiment
words in the corpus varies greatly. For example, the senti-
ment word “not bad” appears 211 times in the training set
of the Chnsenticorp corpus, while the number of occurrences
of “not occupying space” only 1 time. Obviously, the higher
the frequency of sentiment words is, the stronger the emo-
tional classification ability of sentiment words. In a corpus,
the contribution of each sentiment word to the sentiment
tendency is different. According to the number of occur-
rences of sentiment words, the sigmoid function is used to
quantify the contribution of sentiment words to emotional
tendency, where count represents the number of occur-
rences.

Contribution = sigmoid countð Þ: ð2Þ

The calculation of contribution depends on the corpus,
so the sentiment dictionary constructed in this paper is a
kind of sentiment dictionary adaptive to the corpus.

3.3.2. Sentiment Computing Based on Semantic Rules. It is
difficult to correctly judge the sentiment tendency of the text
by relying solely on the sentiment dictionary. For example,
when a negative word such as “not” or “no” accompany the
sentiment word, the sentiment tendency will change.
Adverbs of degree also have a great influence on the judg-
ment of sentiment tendency. In text analysis degree, adverbs
and negative words have a great influence on sentiment
tendency, so this article mainly combines these two types of
words and sentiment dictionary to design the discriminant
function of sentiment analysis.

Next, we introduce how the judgment process of senti-
ment analysis is completed. First, the Peking University word
segmentation tool PKUSEG is used to segment the classified
text used for training and classification (in order to avoid
splitting the sentiment words, you need to pass the sentiment
word list to the segmentation tool) and then adjust the emo-
tion according to the context of the emotional word, whether
there are negative words or the degree adverbs. There is a
contribution of words to the emotional tendency of the entire
text. If the score of the positive sentiment of the text is higher
than the score of the negative sentiment, it is judged that the
text belongs to the positive sentiment; otherwise, it is judged
to be the negative sentiment.

Positive sentiment score = 〠
N

i=1
gi × f i × ci: ð3Þ

gi represents the contribution of adverb words. If the
adverb of degree appears in the context of positive sentiment
words (the window is set to 4), then gi is set to 2; otherwise, it
is set to 1. f i represents the contribution of negative words. If
the negative words such as “no” or “not” appear in the con-
text of positive sentiment words (the window is set to 3), f i
is set to 1; otherwise, f i is set to -1. N indicates the number
of positive sentiment words contained in the text. ci repre-
sents the contribution of sentiment words which is defined
in equation (2). Using the same method, the negative senti-
ment score of the text is calculated by using the context of
negative sentiment words.

Using the obtained sentiment score, the emotional ten-
dency of the text is finally determined.

4. Results and Discussion

4.1. Experimental Environment and Parameter Selection. For
this study, The Pytorch was used for creating and training the
classification models, using a GPU (Tesla P100) on
Ubuntu16.04 system. In the experiment, the dimension of
the word vector is set to 768, the maximum length of text is
set to 256, and the number of Transformer layers in BERT

BERT
sentiment

classification

BERT embedding

BERT encoder

Fully connected Layer

Input

Fully connected layer

So�max

Figure 2: The flow chart of the BERT model for sentiment
classification.

Table 1: Number of Chinese sentiment words.

Vocabulary category Number of word

Positive sentiment word 3638

Negative sentiment word 4401
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is set to 12. The following parameters were used to train the
model: the dimension of hidden layer is 768, the size of mini-
batch is set to 16, dropout is 0.1, warm up is 0.1, we use Adam
optimization, epoch number is set to 5, and the learning rate
lr is 2 × e − 5.

4.2. Data Set. Chnsenticorp data set [21] is a Chinese senti-
ment analysis data set. This corpus was compiled and pub-
lished by Dr. Tan Songbo from Fudan University, which
contains hotel reviews collected both from online and from
review books, as well as labelled positive and negative senti-
ment polarities. Each sample is a short comment containing
a few dozens of words. The data set consists of three parts,
namely, the training set, verification set, and test set, in which
the training set contains 9600 samples, the verification set
contains 1200 samples, and test set contains 1200 samples.
The data set details are shown in Table 2. In order to verify
the effect, the sizes of the training sets are set to 2000, 4000,
and 6000 samples, respectively. The results were evaluated
on the test set.

4.3. Evaluation Indicators

4.3.1. Accuracy and F1. Accuracy is used for the evaluation of
the trained models, which is defined as a ratio of correctly
classified samples to the total number of samples. Generally
speaking, the higher the accuracy, the better. The formula is
described as follows:

Accuracy = TP + TN
TP + TN + FP + FN

, ð4Þ

where TN is true negative, FN is false negative, FP is true pos-
itive, and FP is false positive. In addition to accuracy, F1 value
is used for the evaluation of classifier performance in this
study.

4.4. Baseline Model. The baseline model is BERT. In the
BERT model, the dimension of word vector is 768, the
dimension of hidden layer is 768, the number of Transformer
layers in BERT is 12, the size of minibatch is 16, the optimi-
zation function is Adam, and the drop out is 0.1. The output
of the BERT model is input into two fully connected layers
and a Softmax layer to complete sentiment classification.
The parameters of the Dict-BERT model are the same as
those of the BERT model.

4.4.1. Performance of Sentiment Discrimination Function
Based on Adaptive Dictionary. The method of adaptive senti-
ment discrimination function was evaluated on the Chnsen-
ticorp data set. The obtained results are shown in Table 3. In
order to verify the effect of including adverbs and making the
sentiment dictionary adaptive, the performance of the model
was evaluated both with and without the adverbs and the
adaptive capability of the sentiment dictionary.

From the experimental results in Table 3, it can be seen
that the performance of the approach which uses only senti-
ment dictionary yield inferior performance with the accuracy
under 80%. In the next experiment, we explain how to cas-
cade the pretrained model with the low-accuracy method

based on sentiment dictionary with the ultimate goal of
improving the overall performance of the model.

4.4.2. Verification of Model Convergence. The semantic repre-
sentation of each word can be obtained by pretraining the
BERT model, and then, the model is fine-tuned by utilizing
the training set of sentiment analysis. The cross entropy loss
function is used to calculate the loss, and the parameters are
updated using back propagation. Figure 3 demonstrates the
convergence of the model on the Chnsenticorp data set (in
2000 samples, batch size is 16, so for each epoch, the training
is done 2000/16 = 125 times, and epoch is 5). When the iter-
ation times reach 625 (125 ∗ 5), the model converged.

4.4.3. Comparison of Effects between the BERT Model and the
Dict-BERT Model. To verify the effectiveness of the model
proposed in this paper, we conducted lots of experimental
on Chnsenticorp data set.

Figure 4 and Table 4 show the accuracy of the classifier
on the test set of Chnsenticorp data set with the training set
size of 2000, when the positive and negative probability ratio
thresholds of the BERT model are set to be 1.2, 1.4, 1.6, 1.8, 2,
and 3, respectively. It can be seen from Figure 4 that when the

Table 2: Chnsenticorp data set.

Data set
Sentiment
category

Positive
sentiment
corpus

Negative
sentiment
corpus

Chnsenticorp 2 4798 4802

Chnsenticorp2000 2 996 1004

Chnsenticorp4000 2 2009 1991

Chnsenticorp6000 2 2986 3014

Chnsenticorp validation set 2 590 610

Chnsenticorp test set 2 602 598

Table 3: Performance analysis of sentiment discrimination module.

Model Accuracy

Sentiment analysis model based on traditional
sentiment dictionary

77.5%

Sentiment analysis model based on adaptive
sentiment dictionary

81.5%

Adaptive affective analysis model-adverb of degree 81.33%

0.9
Loss
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Figure 3: Verification of model convergence.
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training set size is only 2000, the accuracy of BERT model is
only 0.9438. The Dict-BERT model combines the adaptive
sentiment discrimination function with the BERT model.
Although the accuracy rate of the model based on sentiment
discrimination function is only 0.815, applying the positive
and negative probability ratio method with the Dict-Bert
model results in the accuracy improvement with the metric
rising above 0.95. This approach makes full use of the advan-
tages of pretraining the BERT model and the model based on
emotion dictionary. When the threshold value is 1.2, 1.4, and
1.6, the accuracy rate increases to 0.9517, showing the total

accuracy increased by 0.8% and the F1 value increased by
0.4%.

Table 5 lists the accuracy and F1 value of the BERTmodel
and Dict-BERT model with different positive and negative
probability ratio thresholds with 4000 samples in the training
set in Chnsenticorp data set.

Figure 5 shows the comparison between the accuracies
obtained using two models. It can be seen that with the
increase of training set, the accuracy of both models can be
improved. The highest accuracy achieved by Dict-BERT
model is 0.9558. The accuracy of Dict-BERT is better than
that of the BERT model, improved by 0.5%.

In order to study the effect of training set size on the Dict-
BERT model, Figure 6 compares the accuracies obtained
using Dict-BERT and BERT models with varying positive
and negative probability ratios with the training set size of
2000, 4000, and 9600. It can be seen that increasing the train-
ing set to 9600, the accuracy of Dict-BERT model slightly is
higher than that of the BERT model, with a 0.08% difference.
It is apparent that the accuracy of Dict-BERT and BERT is
increasing with the increase of the training corpus Under
the condition of insufficient size of the training corpus, the
Dict-BERT model has added semantic rules based on the
emotion dictionary to make up for the insufficient training
of the pretrained model. However, it appears that for the
sufficient size of the training corpus the advantages of Dict-
BERT model are reduced.

The higher the positive and negative probability ratio
is, the higher the reliability of the pretrained model. When
the positive-negative probability ratio is low, the credibility
of the pretrained model is low, which means that the
semantic information can be effectively used to improve
the overall performance of the model. However, with the
increase of the threshold, the amount of data used for
classification using semantic rules based on sentiment dic-
tionary increases. Since the accuracy of this method is low,
the total accuracy of the model therefore decreases. It can
be seen from Figure 6 that with the increase of the thresh-
old of positive-negative probability ratio, the accuracy of
the cascade model first increases, followed by a decrease.
Enlarging the training set results in a steady improvement
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Figure 4: Dict-BERT and BERT models. Comparison of accuracy on Chnsenticorp2000 data set.

Table 4: Comparison of accuracy of each model in
Chnsenticorp2000 data set and F1 score.

Model (threshold value of
positive-negative probability ratio)

Accuracy F1

BERT 0.9438 0.948

Dict-BERT(1.2) 0.9517 0.9520

Dict-BERT(1.4) 0.9517 0.9520

Dict-BERT(1.6) 0.9517 0.9520

Dict-BERT(1.8) 0.9508 0.9515

Dict-BERT(2.0) 0.9508 0.9515

Dict-BERT(3.0) 0.9500 0.9500

Table 5: Comparison of accuracy of each model in
Chnsenticorp4000 data set and F1.

Model (threshold value of positive
and negative probability ratio)

Accuracy F1

BERT 0.9508 0.9515

Dict-BERT(1.2) 0.9558 0.956

Dict-BERT(1.4) 0.9558 0.956

Dict-BERT(1.6) 0.9542 0.954

Dict-BERT(1.8) 0.9533 0.9535

Dict-BERT(2.0) 0.9508 0.9525

Dict-BERT(3.0) 0.9500 0.956
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of the accuracies of BERT and Dict-BERT models, with the
accuracy of the Dict-BERT model higher than the accuracy
of the BERT model. The smaller the training corpus is, the
greater the improvement offered by the Dict-BERT model
over the BERT model is.

5. Conclusion

In this paper, a sentiment analysis algorithm is proposed
which is a cascade made of a pretrained deep learning
BERT model and a semantic rule model. The accuracy rate
of sentiment analysis based on the discriminant function
of sentiment dictionary is only 81%, which is lower than
the accuracy of the pretrained model. However, by cascading
the pretrained model and the model based on sentiment dic-

tionary and introducing the concept of positive-negative
probability ratio, the performance is further improved. The
smaller the training corpus is, the more prominent the
advantages of the proposed model are. If the training corpus
of a task is insufficient, the cascade method proposed in this
paper can be used to introduce more data knowledge to
improve the performance of the system.

There are many discriminant models based on sentiment
dictionary to solve the task of sentiment analysis. In the
future, we would like to consider cascading these improved
sentiment analysis models with improved pretrained models
such as Roberta, BERT-wwm, XLNet, and ALBERT, to fur-
ther improve the performance of sentiment analysis. Besides,
privacy protection should also be considered in future senti-
ment analysis [22].
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Figure 5: Dict-BERT and BERT model. Comparison of accuracy on Chnsenticorp4000 data set.

Accuracy on different size of data set
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Social and information networks such as Facebook, Twitter, and Weibo have become the main social platforms for the public to
share and exchange information, where we can easily access friends’ activities and in turn be influenced by them. Consequently,
the analysis and modeling of user retweet behavior prediction have an important application value, such as information
dissemination, public opinion monitoring, and product recommendation. Most of the existing solutions for user retweeting
behavior prediction are usually based on network topology maps of information dissemination or designing various handcrafted
rules to extract user-specific and network-specific features. However, these methods are very complex or heavily dependent on
the knowledge of domain experts. Inspired by the successful use of neural networks in representation learning, we design a
framework, UserRBPM, to explore potential driving factors and predictable signals in user retweet behavior. We use the graph
embedding technology to extract the structural attributes of the ego network, consider the drivers of social influence from the
spatial and temporal levels, and use graph convolutional networks and the graph attention mechanism to learn its potential
social representation and predictive signals. Experimental results show that our proposed UserRBPM framework can
significantly improve prediction performance and express social influence better than traditional feature engineering-based
approaches.

1. Introduction

Due to their convenient capability to share real-time infor-
mation, social media sites (e.g., Weibo, Facebook, and Twit-
ter) have grown rapidly in recent years. They have become
the main platforms for the public to share and exchange
information and to a great extent meet the social needs of
users. Under normal circumstances, online social networks
will record a large amount of information generated by peo-
ple through interactive activities, including various user
behavior data. User behaviors (also called actions) in online
social networks consist of posting messages, purchasing
products, retweeting information, and establishing friend-
ships. By analyzing the distribution and causality of these
behaviors, we can evaluate the influence of the initiator and
the communicator of the behavior, we can predict people’s
behaviors on social networks, and we can deepen our under-

standing of human social behavior [1, 2]. Till now, there is lit-
tle doubt that the large amount of data generated by user
interaction provides an opportunity to study user behavior
patterns, and the analysis and modeling of retweet behavior
prediction have become a research hotspot. In addition to
analyzing the retweeting behavior itself, retweeting can also
help with a variety of tasks such as information spreading
prediction [3, 4], popularity prediction [5, 6], and precision
marketing [7, 8].

Owing to the enormous usefulness of prediction, a variety
of studies have been conducted on the task of automatic pre-
diction in social networks. Previous researches investigated
the problem of user retweet behavior prediction from differ-
ent points of view. On the first approach, some researchers
build retweet behavior prediction models through network
topology maps of information dissemination. Matsubara
et al. [9] studied the dynamics of information diffusion in
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social media by extending an analysis model for information
dissemination from the classic “Susceptible-Infected” (SI)
model. Wang and Wang [10] proposed an improved SIR
model, which used the mean field theory to study the
dynamic behavior in uniform and heterogeneous network
models. Their experiment showed that the existence of the
network would influence information communication. This
kind of research method studied retweeting behavior by
modeling the propagation path of the message from a global
perspective. The other approach is the machine learning
method based on feature engineering. Liu et al. [11] proposed
a retweeting behavior prediction model based on fuzzy the-
ory and neural network algorithm, which can effectively pre-
dict the user retweeting behavior and dynamically perceive
the changes in hotspot topics. This research method relies
on the knowledge of domain experts, and the process of fea-
ture selection may take a long time. The methods above build
user behavior prediction models from different perspectives.
The main purpose is to collect user behavior data in social
networks, cluster and label user behavior data, and then
exploit machine learning models to predict the retweeting
behavior. However, in many online applications, such as per-
sonalized recommendation [12, 13] and advertising [8], or
personalized services [14], it is critical to effectively analyze
the social influence of each individual and further predict
the retweeting behavior of users.

In this paper, we focus on user-level social influence. We
aim to predict the action statuses of the target user according
to the action statuses of her near neighbors and her local
structural information. For example, in social networks, a
person’s behavior will be affected by her neighbors. As shown
in Figure 1, for the central user u, if some friends (red node)
around her posted a microblog and other friends (white
node) did not post it, whether the action statuses of user u
will be affected by the surrounding friends and forward this
tweet can be regarded as a user retweeting behavior predic-
tion problem. The social influence hidden behind the
retweeting behavior not only depends on the number of
active users, but may also be related to the local network
structure formed by “active” users. The problem mentioned
above are common in practical applications, such as presi-
dential elections [15], innovation adoption [16], and e-
commerce [17]. Therefore, it has inspired many research
work on user-level influence models, most of which [18–20]
consider complicated handcrafted features, which require
extensive knowledge of specific domains.

In recent years, graph convolution networks (GCN) [21,
22] are the best choice for graph data learning tasks. Inspired
by the successful application of neural networks [23] in rep-
resentation learning [24, 25], we designed an end-to-end
framework UserRBPM to explore potential driving factors
and predictive signals in user retweeting behaviors. We
expect deep learning frameworks to have better expressive
capability and prediction performance. The designed solu-
tion is to represent both influence driving factors and net-
work structures into a latent space, and then use graph
neural networks to effectively extract spatial features for
learning, and further construct a user retweet behavior pre-
diction model. To predict the status of a target user u, we first

sample her k-order local neighbors through random walks
with restart. After obtaining the r-ego network as shown in
Figure 1, we leverage both graph convolution and attention
mechanism to learn latent predictive signals. We demon-
strate the effectiveness and efficiency of our proposed frame-
work on Weibo social networks. We compare UserRBPM
with several conventional methods, and experiment results
show that the UserRBPM framework can significantly
improve the prediction performance. The main contribu-
tions of this work can be summarized as follows:

(i) We designed an end-to-end learning framework
UserRBPM to explore potential driving factors and
predictive signals in user retweeting behaviors

(ii) We convert the retweeting behavior prediction into
a binary graph classification, which is more operable
and comprehensible

(iii) Experiment results demonstrate that the UserRBPM
framework can achieve better prediction perfor-
mance than existing methods

The rest of this paper is organized as follows. Section 2
summarizes related work. Section 3 formulates the user
retweet behavior prediction problem. We detail the proposed
framework in Section 4. In Section 5 and Section 6, we con-
duct extensive experiments and analyze the results. Finally,
we conclude our work in Section 7.

2. Related Work

2.1. User Retweet Behavior Prediction. Many studies on user
retweet behavior in social networks are based on the analysis
and modeling of the dynamics in the process of information
dissemination. Currently, researches on user behavior pre-
diction in social networks take primarily two approaches.
On the first approach, Ota et al. [26] constructed the user
topology network based on the user’s following relationship
and discovered users who retweeted many tweets by overlap-
ping propagation paths of retweeting. Yuan et al. [27] inves-
tigated the dynamics of friend relationships through online
social interaction and proposed a model to predict repliers
or retweeters according to a particular tweet posted at a cer-
tain time in online social networks. Tang et al. [28] studied
the conformity phenomenon of user behavior in social net-
works and proposed a probabilistic model called Confluence

v1

v2

v3

v4

v5

v6v7

u

Figure 1: A motivating example of user retweet behavior
prediction.
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to predict user behavior. This model can distinguish and
quantify the effects of the different types of conformity.
Zhang et al. [29] proposed three metrics, namely, user enthu-
siasm, user engine, and user duration, to describe the user
retweet behavior in the message spreading process and stud-
ied the relationship between these three metrics and the
influence obtained by the user retweet behavior.

The other approach is the machine learning method
based on feature engineering, which solved the problem of
user behavior analysis and prediction by manually formulat-
ing rules to extract the basic features of users and network
structural features. Luo et al. [30] explored features such as
followers’ status, retweet history, followers’ interests, and fol-
lowers’ active time with a learning-to-rank framework to dis-
cover who would retweet a tweet poster on Twitter. Zhang
et al. [18] analyzed the influence of the number of active
neighbors of a user on retweeting behavior, proposed two
instantiation functions based on structural diversity and
pairwise influence, and applied a classifier based on logistic
regression to predict users’ retweet behaviors. Jiang et al.
[19] pointed out that the retweeting prediction is a sing-
type setting problem. By analyzing the basic influence factors
of retweet behavior in Weibo, the sing-type collaborative fil-
tering method is used to measure users’ personal preferences
and social influence to predict retweet behavior.

Recently, there have been efforts to detect those global
patterns using deep learning. Li et al. [31] proposed an end-
to-end predictor that incorporated recurrent neural network
(RNN) and representation learning to infer the cascade size.
This method significantly improved the performance of cas-
cade prediction. Zhang et al. [32] proposed a novel attention-
based deep neural network to obtain the user’s attention
interests from an attention-based neural network. Wang
et al. [33] transformed the social influence prediction prob-
lem into a neural network multilabel classification problem
and proposed the NNMLInf social influence prediction
model. The experimental results showed that the node2vec
method is more effective than the traditional manual feature
extraction method in obtaining representative features of the
network structure.

2.2. Graph Representation Learning. Graph representation
learning has emerged as a powerful technique for solving
real-world problems. Various downstream graph learning
tasks have benefited from its recent developments, such as
node classification [34], similarity search [35], and graph
classification [36, 37]. Network embedding is a bridge con-
necting the original data of the network and network applica-
tion tasks. It is aimed at representing the nodes in the
network as low-dimensional, real-valued, and dense vectors.
The resulting vectors can be represented and reasoned in
the vector space. Therefore, the primary challenge in this
field is to find a way to represent or encode the structure of
graphs so that they can be easily exploited by machine learn-
ing models.

Traditional machine learning approaches relied on user-
defined heuristics to extract features encoding structural
information about a graph (e.g., degree statistics or kernel
functions). However, recent years have seen a surge in

approaches for automatically learning to encode a graph
structure into low-dimensional embedding using techniques
based on deep learning and nonlinear dimension reduction.
Chen et al. [38] exploited graph attention networks (GAT)
to learn user node representation by spreading information
in heterogeneous graphs and then leveraged limited labels
of users to build end-to-end semisupervised user profiling
predictor. Zhang et al. [25] introduced the problem of het-
erogeneous graph representation learning and proposed a
heterogeneous graph neural networks model HetGNN.
Extensive experiments on various graph mining tasks, i.e.,
link prediction, recommendation, and node classification,
demonstrated that HetGNN can outperform state-of-the-
art methods. Fan et al. [39] first provided a principled
approach to jointly capture interaction and opinions in the
user-item graph, and then presented a Graph Network model
(GraphRec) to model social recommendation for rating
prediction.

3. Problem Formulation

In this section, we introduce necessary definitions and then
formulate the problem of user retweet behavior prediction.

Definition 1 (ego network). The ego network model is one of
the important tools for studying human social behavior and
social networks. Compared with the global network version,
the research version of the ego network pays more attention
to individual users, and it is in line with the need for person-
alized services in actual application systems. The research
version of this paper can also be extended to other scenarios
that include network relationships.

(r -neighbors) Let G = ðV , EÞ denote a social network,
where V is a set of users’ nodes and E ⊆V × V is a set of rela-
tionships between users. We use vi ∈ V to represent a user
and eij ∈ E to represent a relationship between vi and vj. In
this work, we consider undirected relationships. For a user
u, its r-neighbors’ nodes are defined as Γr

u = fv : dðu, vÞ ≤ rg,
where dðu, vÞ is the shortest path distance (in terms of the
number of hops) between u and v in the network G, and r ≥ 1
is a tunable integer parameter to control the scale of the ego
network.

(r -ego network) The r-ego network of user u is the sub-
network induced by Γr

u, denoted by Gr
u.

Definition 2 (social action). In sociology, social action is an
act that takes into account the actions and reactions of indi-
viduals. Users in social networks perform social actions, such
as retweeting behaviors and citation behaviors. At each time
stamp t, we observe a binary action status of user u, stu ∈ f0, 1g,
where stu = 1 indicates that user u has performed this action
before or on the timestamp t, and stu = 0 indicates that the user
has not performed this action yet.

Definition 3 (historical behavior). Let L denote a stream of
action logs, where each log entry l ∈ L is a triple ðv, a, tÞ,
representing user u ∈ Vperformed action a ∈ A before or on
the timestamp t. Here, A is a set of action types, A = fðvi, a,
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tÞ ∣ t ∈ ψ, vi ∈ Vg, and ψ denotes the time scope of historical
behavior. For example, a retweeting behavior is an action in
Twitter, and a citation is an action in academic social
networks.

In this paper, our research motivation of the user retweet-
ing behavior prediction problem can be vividly illustrated
through the example shown in Figure 1. For a user u in her
2-ego network (i.e., r = 2), if some users retweet the message
m before or on the timestamp t, they are considered to be
active. We can observe the action statuses of u’s neighbors,
such as stv1 = 1, stv2 = 1, and stv5 = 0. Moreover, the set of active
neighbors of user u is represented by ψt

u = fv1, v2, v3, v4, v6g.
As shown in Figure 1, we study whether the action statuses of
user u will be influenced by the surrounding friends and for-
ward this message. Next, we will formalize the problem of
user retweet behavior prediction.

Problem 1 (user retweet behavior prediction, [18]). User
retweet behavior prediction models the probability of u’s
action states conditioned on her r-ego network and the
action states of her r-neighbors. More formally, given Gr

u
and Stu = fstv : v ∈ Γr

u/fugg , it can be concluded that the user
retweet behavior prediction formula of user u after a given
time interval Δt is as follows:

Av = P st+Δtu ∣Gr
u,S

t
u

� �
: ð1Þ

Practically, Av denotes the predicted social action status of
user u. Suppose we have N instances, and each instance is a
3-tuple ðu, a, tÞ, where u is a user, a is a social action, and t
is a timestamp. For such a 3-tuple ðu, a, tÞ, we also know
u’s r-ego network Gr

u, the action states of u’s r-neighbors
Stu, and u’s future action states at t + Δt, i.e., st+Δtu . We then
formulate user retweet behavior prediction as a binary graph
classification problem which can be solved by minimizing the
following negative log-likelihood objective w.r.t. model
parameter θ:

L θð Þ = −〠
n

i=1
log PΘ st+Δtu ∣Gr

u, Stu
� �� �

: ð2Þ

4. Model Framework

In this paper, we formally propose the UserRBPM to address
the problem of user retweet behavior prediction. The frame-
work is based on graph neural networks to parameterize the
probability in equation (2) and automatically detect the
potential driving factors and predictive signals of user retweet
behavior prediction. As shown in Figure 2, UserRBPM con-
sists of the pretrained network embedding layer, the input
layer, the GCN/GAT layer, and the output layer.

4.1. Sampling Near Neighbors. Given a user u, the most
straightforward way to extract its r-ego network is to perform
a Breadth-First-Search (BFS) starting from user u. However,
for different users, the r-ego network scale (regarding the
number of nodes) may vary greatly. Meanwhile, the size of

user u’s r-ego network can be very large due to the small-
world property in social networks [40]. In real-world applica-
tion scenarios, when sampling neighbor nodes of an ego user
node, the problem that may arise is that each node has a dif-
ferent number of neighbors. Specifically, because of the
small-world phenomenon in social networks, the size of user
u’s r-ego network may be relatively very large or small. In
addition, these different sizes of data are not suitable for most
deep learning models.

In order to address the above problem, we select to per-
form random walk with restart (RWR) [41] from the original
r-ego network to fix the sample size. Inspired by [42, 43]
which suggested that people are more susceptible to be influ-
enced by active neighbors than inactive ones, we start a ran-
dom walk on from user u or its active neighbors. The walk
iteratively travels to its neighborhood with a probability pro-
portional to the weight of each edge. Besides, the walk returns
back to the starting vertex uwith a positive probability at each
step. In this way, a fixed number of vertices can be collected,
denoted by Γu

⟶r with jΓu
⟶r j = n. We then regard the

subnetwork Gu
⟶r induced by Γu

⟶r as a proxy of the r-ego
network Gr

u, and denote Su
⟶t = fStv : v ∈ Γu

⟶t \ fugg to
be the action statuses of u’s sampled neighbors.

When we use RWR, the starting node can be an ego user
or its active neighbors. Firstly, the purpose of setting as
described above is to make the starting node in the sequence
obtained by walking as much as possible to keep in touch
with surrounding neighbors, instead of being relatively sin-
gle. Thus, it can further support that people are more suscep-
tible to active neighbors. Accordingly, the random walk with
a restart strategy can meet this requirement. Secondly, the
starting nodes include ego users and active neighbors. This
setting allows ego users and active neighbors to participate
in the next embedding process as much as possible, which
also shows that active neighbors will affect its surrounding
nodes.

4.2. Graph Neural Network Model. We design an effective
graph neural network model to incorporate both the struc-
tural properties in Gu

⟶r and action statuses in Su
⟶r , learn

a hidden embedding vector for each ego user, then use it to
predict the action statuses St+Δtu of the ego user in the next
period of time. As shown in Figure 2, the graph neural net-
work model includes the embedding layer, instance normal-
ization layers, the input layer, the graph neural network layer,
and the output layer.

4.2.1. Embedding Layer. Representation learning [44, 45] has
been a hot topic in the academic community in recent years.
In the context of graph mining, there have been many studies
on graph representation learning. For graph structure data
such as social networks, we want to learn the users’ social
representation from users’ relationship network data, that
is, our main purpose is to discover the network structural
properties and encode them into low-dimensional latent
space. More formally, network embedding learns an embed-
ding matrix X ∈ Rd×jV j, with each column corresponding to
the representation of a vertex (user) in network G. In our
scheme, we learn a low-dimensional dense real number
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vector xv ∈ Rd for each node v in the network, where d≪N .
The process of network representation learning can be unsu-
pervised or semisupervised.

In social networks, when considering the structural infor-
mation, we can take the triadic closure patterns with strong
ties as an example [46]. As shown in Figure 3, there will be
such a case: the figure on the left contains a triadic closure.
For the green node, it is equivalent to a different tree struc-
ture on the right (there is no triadic closure) after two neigh-
borhood aggregations, which ignore the structural
information of triadic closure. Therefore, there is a need for
a method of graph representation learning that can adapt to
different local structures.

In our work, we utilize the GraLSP model [47] for
graph representation learning, which explicitly incorpo-
rates local structural patterns into the neighborhood aggre-
gation through random anonymous walks. Specifically, the
framework captures the local structural patterns via ran-
dom anonymous walks, and then these walk sequences
are fed into the feature aggregation, where various mecha-
nisms are designed to address the impact of structural fea-
tures, including adaptive receptive radius, attention, and
amplification. In addition, GraLSP can capture similarities
between structures and are optimized jointly with near
objectives of nodes. The process of the GraLSP model
for graph representation learning is shown in Figure 4.
In the case of making full use of the structural model,
GraLSP can outperform competitors in various prediction
tasks in multiple datasets.

4.2.2. Instance Normalization Layer. In the training process
of the UserRBPM model, we applied Instance Normalization
(IN) [48] to prevent overfitting, which is a regularization
technique that loosens the model and allows for greater gen-
eralization. And for such tasks that focus on each sample, the
information from each sample is very important. Therefore,
we adopt such a technique in the task of retweet behavior
prediction. After original data is normalized, the indicators
are between ½0, 1�, which is suitable for comprehensive com-
parative analysis. Furthermore, it helps to speed up learning
and also reduces overfitting.

As illustrated in Figure 2(c), for each user v ∈ Γu
⟶r after

retrieving her representation xv from the embedding layer,

the instance normalization yv is given by

yvd =
xvd − μdffiffiffiffiffiffiffiffiffiffiffiffi
σ2d + ε

p , ð3Þ

for each embedding dimension d = 1, 2,⋯,D, where

μd =
1
n

〠
v∈ Γu

⟶r

xvd , ð4Þ

σ2d =
1
n

〠

v∈ Γu

⟶d

xvd − μdð Þ2: ð5Þ

Here, μd and σd are the mean and variance, respectively, and
ε is a small number for numerical stability. Intuitively, such
normalization can remove instance-specific mean and vari-
ance, which encourages the downstream model to focus on
relative positions of users in latent embedding space rather
than their absolute positions. As we will see later in Section
6, instance normalization can indeed help avoid overfitting
during training.

4.2.3. Input Layer. As claimed in Figure 2(d), the input layer
constructs a feature vector for each user. The feature vector
considered in our work consists of three parts: (1) The nor-
malized low-dimensional embedding comes from the
upstream instance normalization layer. (2) Two binary vari-
ables are also considered: the first variable represents the
user’s action statuses and the second variable represents
whether the user is an ego user. (3) The input layer also
includes other personalized vertex features, such as spatial-
level features (e.g., social roles) and temporal-level features
(e.g., similarity, exposure, and retweet rate.)

4.2.4. GCN Layer. Social networks can be regarded as graph
structure data, where users represent nodes and the connec-
tion relationships between users represent edges in the graph.
The characteristics of users can no longer fully represent all
the information of the individual. It may be due to the loss
of errors in the data collection process or the disguise of some
individuals, causing some important features to be biased in
the training process. Thus, we need the information of its

A B
C D

E F G H

Graph

Extract structural patterns

RW1 RW2 RWk

AW1 AWm

hA

Aggeregation of
structural patterns

Combined loss
optimization

Representation

Graph: LSP

Vertex
features Ego

Action
status

yv

yu

M
M M

Input layer GCN/GAT
layer

Output
layer

2
Minibatch
of size M

Raw input

(a) (b) (c) (d) (e) (f)

Embedding
layer

Instance
normalization

v

u

d

xv

xu avu
avu

Figure 2: Our proposed framework of UserRBPM (User Retweet Behavior Prediction Model).
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neighbor nodes to supplement the information of the current
node. In this way, we can get more complete information
than a single individual characteristic. Therefore, how to
combine the characteristics of neighbors with the current
node is a critical part of its realization.

The recently developed GCN is a successful attempt to
generalize the convolutional neural networks used in Euclid-
ean space to graph structure data modeling. The GCN model
naturally integrates the connection mode and feature attri-
butes of graph structure data, and it is much better than
many state-of-the-art methods on benchmarks. GCN is a
semisupervised learning algorithm for graph structure data,
which can effectively extract spatial features for machine
learning on such a network topology. Simultaneously, it can
perform end-to-end learning of node feature and structure
information, which is one of the best choices for graph data
learning tasks at present.

Suppose an undirected graph has n nodes, each node has
d-dimensional features, the adjacency matrix of the graph is
denoted as A, and the matrix composed of all node features
is denoted as X, where X = ½x1, x2,⋯, xn�T ∈ Rn×d and xi ∈
Rd is the d-dimensional feature vector of node i. If the labels
of a set of nodes are given, our goal is to predict the labels of
the remaining nodes. Thus, for the GCN network, the input
is a node feature matrix X ∈ Rn×d and the propagation
between layers can be expressed as follows:

Hl+1 = σ L Gð ÞHlWl
� �

, ð6Þ

where Hl is the lth activation matrix, Wl is the trainable
weight matrix of the lth layer, and this layer functions as a
feature map. σ is a nonlinear activation function, LðGÞ is a
n × n matrix that can capture the structure information of
graph G, and GCN uses symmetric normalization to perform
aggregation operations. The conventional graph convolution
operation is as follows:

L Gð Þ =D−1/2 ~AD−1/2, ð7Þ

where A = ½aij� ∈ Rn×n is a nonnegative adjacency matrix,
~A =A + I, I is the identity matrix, D = diag ðd1, d2,⋯, dnÞ
is the degree matrix of A, di =∑ jaij is the degree of node i.

We can divide the above learning process into three parts.
The first part is transformation: transform and learn the cur-
rent node features. The second part is aggregation: aggregate
the features of neighboring nodes to get the new features. The
third part is activation: use an activation function to increase
nonlinearity.

4.2.5. GAT Layer. Essentially, both GCN and GAT are aggre-
gation operations that aggregate the characteristics of neigh-
bor nodes into the central node. GCN uses the Laplacian
matrix to perform graph convolution operations, while
GAT introduces the attention mechanism into GCN, which
can add weight to the influence of neighboring nodes,
thereby differentiating the influence of neighboring nodes.
GAT assigns different weights to each node, paying attention
to those nodes with greater effects, while ignoring some
nodes with smaller effects. To a certain extent, the perfor-
mance ability of GAT will be stronger, because the correla-
tion between node features will be better integrated into the
model.

4.2.6. Output Layer. In the output layer, each node corre-
sponds to a two-dimensional representation, which is used
to represent the behavior state (retweet/unretweet, cite/un-
cite, etc.). The calculation process is shown in equation (8).
By comparing the representation of the ego user with ground
truth, we then optimize the log-likelihood loss:

Ŷ = logsoftmax H′Θ + b
� �

, ð8Þ

where Θ is a weight matrix, b represents the bias term.

5. Experiment Setup

In this section, we first introduce the construction process of
the dataset and the experimental hypothesis. Then, we
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Figure 3: Computational tree of a triadic closure graph.
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present the existing representative methods and evaluation
metrics. Finally, we introduce the implementation details of
the UserRBPM framework.

5.1. Dataset Presentation and Processing

5.1.1. The Presentation of Raw Datasets. We use real-world
datasets to quantitatively and qualitatively evaluate the
proposed UserRBPM framework. We used the Weibo
dataset in the work of Zhang et al. and Qiu et al. [18,
49], and Ulyanov et al. [48] also used the Weibo dataset
in their work, and then we performed data preprocessing
according to our research question. The microblogging
network used in our research work is used to crawl data
from Sina Weibo, similar to Twitter social media, which
is a broadcast-style social network platform that shares
brief real-time information through the follow mechanism.
The follow mechanism of Weibo is divided into one-way
following and mutual following. Particularly, when user
u1 follows user u2, u2’s activities (such as tweet and
retweet) will be visible to u1. User u1 can choose to tweet
or retweet useru2. User u1 is called the follower of user u2,
and user u2 is called the followee of user u1.The dataset
was crawled in the following ways. To start with, 100 users
are randomly selected as seed users, and then user infor-
mation of their followers and followees was collected. A
total of about 1.8 million users and 300 million social rela-
tionships were obtained during the crawling process. A
total of 1 billion microblogs were generated in this pro-
cess, and all user profiles were also crawled which contain
the name, gender, verification status, #bifollowing, #fol-
lowers, #followees, and #microblogs. Besides that, to pro-
tect the privacy of users, we have desensitized the user
id. The statistical information of raw data is shown in
Table 1.

5.1.2. The Assumption of Experiments. The main problem
studied in our paper is as follows: when a certain microblog
is visible to a certain user, we predict whether the user will
retweet the microblog within a certain period, which is a
supervised binary classification problem. The experiments
in our work are based on the following assumption:

(i) The assumption of visibility: as long as a user sends
(an original post or retweeted) a microblog, all his
followers will see the microblog

(ii) We aim to predict the action status of users at a spe-
cific time

(iii) The assumption of timeliness: if the retweeting time
of a user is more than 72 hours from the time that a
microblog was first sent out, the sample will be
discarded

(iv) For a microblog, only when a user has active neigh-
bors, that is, the user has followed the original crea-
tor or his followers have retweeted the microblog, we
only consider whether the user will retweet this
microblog

(v) For a microblog, if a user has appeared as a positive
sample at time t, we will not predict the action status
after time t

Specifically, the assumption of Weibo Visibility is set
because, with more than 100 million daily active users of Sina
Weibo, each user receives a large amount of information
every day. If a user follows a large number of users, some
microblogs will likely be overwhelmed by other messages
before the user can decide whether to retweet them.

We give a restriction on whether a microblog will be
retweeted at a certain time. Because for a user and a micro-
blog, the user may not retweet the microblog when he saw
it for the first time. At this time, we generate a negative sam-
ple. When he retweeted the microblog the second time he
saw it, we create a positive sample. In other words, users have
different action statuses in different periods. For users who
did not retweet, they were regarded as negative samples since
the first time they saw a microblog. If the status of each time
is retained and predicted, there will be many negative sam-
ples generated. Therefore, we give the second assumption.
Besides, as Zhang et al. [18] pointed out that for most micro-
blogs, 72 hours after their first posting, the number of
retweets drops dramatically, and there will be almost no user
retweeting. So, we set up the third assumption.

Sina Weibo does not restrict users from retweeting mes-
sages sent by users who have not followed them in real appli-
cation scenarios. There are often phenomena that users
actively search for microblogs and retweet them or retweet
popular microblogs. This situation is beyond the scope of
our work, so we set up the fourth assumption. The last
assumption is that once a user has a retweeting behavior, it
will be regarded as a positive sample at every subsequent time
point. Repeated predictions in the experiment are of little
significance.

5.1.3. The Generation of Samples. In retweeting behavior pre-
diction, since we can directly learn from the microblogs’
record which users have retweeted the microblogs, the
extraction process of positive samples is relatively simple.
Thus, for a user v who is affected by others, he performs a
social action at a certain timestamp t, then we generate a pos-
itive sample. Compared with the extraction of positive sam-
ples, it is impossible to directly know from the microblogs’
records which users saw the message but did not retweet
the microblogs. Therefore, the extraction method of negative
samples is much more complicated. Our work is based on the
assumption of visibility. We suppose that after a user posts a
microblog, all of her followers can see the microblog. If some-
one saw the microblog but did not retweet it, we create a neg-
ative sample.

Through the analysis of the experimental data, we found
that about 1.25% are original microblogs, most of which were
retweeted microblogs, and 85.39% of the microblogs have
been retweeted at least ten times, verifying that the retweeting
behavior of users is pervasive. However, for our research sce-
narios, in the process of solving research problems, there are
two data imbalance problems in our dataset. The first one
comes from the number of active neighbors. As Zhang et al.
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[18] observed, structural features are significantly related to
user retweeting behavior when the ego user has a relatively
large number of active neighbors. However, in most social
influence datasets, although retweeting behavior is ubiqui-
tous, the ratio between the number of active neighbors and
the number of inactive neighbors is not balanced. For exam-
ple, in the Weibo dataset, 80% of users have only one active
neighbor and users with more than 3 active neighbors
account for only 8.57%. Therefore, when we train our model
on such an imbalanced dataset, the model will be controlled
by observation samples with few active neighbors. To address
the issues caused by data imbalance and to illustrate the supe-
riority of our proposed model in capturing local structural
information, we established a balanced subdataset Edata (as
shown in Table 2) for fair data analysis and a further
training-test scheme. Specifically, we filter out samples in
which the followers or followees did not have Weibo content.
Besides, we only considered samples in which ego users have
at least 3 active neighbors.

Imbalanced labels are the second problem. For instance,
in ourWeibo data set, the ratio between positive and negative
instances is about 1 : 300. Normally, the model is trained to
optimize the overall accuracy, and the weights of different
types of misclassification are the same when calculating the
overall error. As a result, the trained model tends to judge
samples belonging to the minority classification as the sam-
ples of the majority classification. Moreover, the generaliza-
tion ability of the model is poor and the minority
classification cannot be accurately judged. Our goal is to find
out those users who will retweet, rather than pay attention to
those who do not retweet. Therefore, the datasets need to be
balanced.

To address the above problem, the most direct way is to
select a relatively balanced dataset, that is, set the ratio of pos-
itive samples and negative samples to 1 : 3. In addition, we
also used the global random downsampling method and
microblog granularity-based downsampling method to pro-
cess imbalanced datasets. Among them, when we use the
global random downsampling method, the number of micro-
blogs involved in the negative samples in the obtained dataset
is small, and there is a case where only positive samples of the
same microblog are not sampled to their corresponding neg-
ative samples. The downsampling method based on micro-
blog granularity can try its best to ensure that the number
of positive and negative samples of the same microblog is also
the same. The data statistics of the balanced sample set are
shown in Table 3. To visually verify from the results that
the downsampling strategy adopted in our work is more suit-
able for our research scenarios, we conducted a comparative
analysis in Section 6.

5.1.4. The Features of Our Design. We made detailed data
observations and analyzed how the characteristics of users

at the spatial and temporal levels influence users’ retweeting
behavior in addition to the structural attributes of social net-
works. To visualize the observation results, we design several
examples of statistical information, which, respectively, rep-
resent spatial-level features and temporal-level features.
These characteristics can be regarded as user node features.
In our work, the spatial-level features are specifically ana-
lyzed in terms of social roles. We studied the influence of
social roles played by different users on the prediction perfor-
mance of retweeting behavior. Inspired by the previous
research work of Wu et al. [50] and Yang et al. [51], we divide
users into three groups according to their network attributes:
opinion leaders (OpnLdr), structural hole spanners
(StrHole), and ordinary users (OrdUsr). Specifically, we con-
sider that 5% of users with the highest PageRank score are
opinion leaders, 5% of users with the lowest Burts Constraint
score are structural hole spanners, and the rest are ordinary
users. A detailed analysis of users’ social roles and social
behaviors is shown in Table 4. For the temporal-level feature,
we mainly analyzed the content of the messages posted by
users, and we defined the following features:

(i) Similarity: the TF-IDF similarity between ego user’s
and followees’ post content within a month

(ii) Exposure: the number of microblogs posted by follo-
wees within a month

(iii) Retweet rate: the retweet rate of ego users to their
followees

5.2. Comparison Methods. In order to verify the effectiveness
of our proposed framework, we compared the prediction per-
formance of UserRBPM in this paper with existing represen-
tative methods. Firstly, we compared UserRBPM with
previous retweeting behavior prediction methods which usu-
ally extract rule-based features. Secondly, by comparing the
GraLSP method with other network embedding methods, it
is verified that the local structure information plays a more
important role in the prediction of retweeting behavior than
the global information. The comparison method is as follows:

(i) Handcrafted features + Logistic Regression (LR): we
use the logistic method to train the classification
model. The features we constructed manually
include two categories: one is the user node features
designed in our work, including spatial-level and
temporal-level features; the other is the ego network
features designed by Qiu et al. [49]. The features we
used are listed in Table 5

(ii) Handcrafted features + Support Vector Machine
(SVM): we also use SVM as the classification model.
The model uses the same features as the LR method

Table 1: Statistics of raw data.

Dataset #users #followrelationship #original microblogs #retweet #ego users

Weibo 1,776,950 308,489,736 300,000 23,755,810 779,164
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(iii) DeepWalk: DeepWalk [52] is a network embedding
method that learns a social representation of a net-
work by truncated random walks to obtain the struc-
tural information of each vertex. It can get better
results even though there are few vertices in the
network

(iv) Node2vec: Node2vec [53] further extends the Deep-
Walk method by changing the way that the random
walk sequence is generated. This is a network
embedding method that designs a biased random
walk that can tradeoff between homophily and struc-
tural equivalence of the network

(v) Our proposed method: in our proposed UserRBPM
framework, we use GraLSP to extract the structural
attributes of the r-ego network, design the user node
features at the spatial level and temporal level, and
finally apply GCN and GAT to learn latent predic-
tive signals

5.3. Evaluation Metrics

5.3.1. Performance Metrics. In order to quantitatively evalu-
ate our proposed framework, we use the following metrics
to evaluate the performance of retweeting behavior predic-
tion. Specifically, we evaluate the performance of the
UserRBPM in terms of Area Under Curve (AUC) [35], Pre-
cision, Recall, and F1-score.

(i) Precision: it is for the predicted result. It measures
the probability that a predicted positive instance
would be the true positive

(ii) Recall: it is for the original sample. It measures the
probability that the true positive would be predicted
to be the positive instance

(iii) Area Under ROC Curve (AUC): it measures the
probability that a classifier will rank a randomly cho-
sen positive instance higher than a randomly chosen
negative one.

(iv) F1-score: it is a comprehensive evaluation metric
that integrates precision and recall

5.3.2. Parameter Sensitivity. In addition, parameter sensitiv-
ity is also considered in our work.We analyzed several hyper-
parameters in the model and tested how different
hyperparameter choices affect the prediction performance.

5.4. Implementation Details. There are two stages for training
our UserRBPM framework. In the first stage, we pretrain
each module of UserRBPM, and in the second stage, we inte-
grate the three modules of UserRBPM for fine-tuning.

5.4.1. Stage I: Pretraining of Each Module. For our frame-
work, UserRBPM, we first perform a random walk with a
restart probability of 0.8 and set the size of the sampled sub-
network to be 30. For the embedding layer, the embedding
dimension of the GraLSP model is set to three dimensions
of 32, 64, and 128, and we train GraLSP for 1000 epochs.
Then, we choose to use a three-layer GCN or GAT network
structure; the first and second GCN/GAT layers both contain
128 hidden units, while the third layer (output layer) con-
tains 2 hidden units for binary prediction. In particular, for
UserRBPM with multihead graph attention, both the first
and second layers consist of K = 8 attention heads, and each
attention head computes 16 hidden units (total 8 × 16 = 128
hidden units). The network is optimized by the Adam opti-
mizer with a learning rate of 0.1, a weight decay of 5e‐4,
and a dropout rate of 0.2. To evaluate the model performance
and prevent information leakage, we performed fivefold
cross-validation on our datasets. Specifically, we select 75%
instances for training, 12.5% instances for validation, and
12.5% instances for testing. In addition, the minibatch size
is set to be 1024 in our experiments.

5.4.2. Stage II: Global Fine-Tuning. In the global fine-tuning
stage, if the dimension of an embedding layer is set too large,
then the training process will be too slow, while a small set-
ting will affect the performance of our model. After fine-
tuning the model, we found that the model performance is
relatively stable when the embedding dimension is set to
64. Then, we fix the parameters of the pretrained embedding
module, and train the GCN/GAT layer with the Adam opti-
mizer for 1000 epochs, with a learning rate of 0.001. A larger
learning rate can make the model learn faster, thereby accel-
erating the convergence speed, but the performance of the
model will be affected to some extent. Therefore, we set a rel-
atively large learning rate at the beginning, and then we grad-
ually decrease it during training. Finally, we choose the best
model by stopping using the loss on the validation sets as
early as possible. The training process of the UserRBPM
model is shown in Algorithm 1.

Table 2: Statistics of subdataset Edata.

Subdataset #users #followrelationship #original microblogs #retweet #ego users

Weibo 1,500,290 20,297,550 274,150 15,755,810 151,300

Table 3: Data statistics of the balanced sample set.

Methods
The size of

negative samples
The number of
tweets involved

Before subsampling 32,855,360 189,163

Subsampling of
microblog granularity

899,756 122,568

Global random
subsampling

899,756 109,330
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6. Experiment Results

In this section, we give the quantitative and qualitative results
of retweeting behavior prediction, then analyze the structural
attributes and the interaction between spatial-level features
and temporal-level features. Finally, the robustness of the
UserRBPM framework is verified.

6.1. Prediction Performance Analysis

6.1.1. Overall Performance Analysis. To verify the influence of
the structural attributes of users’ ego network and the charac-
teristics of user nodes (extracted from the spatial and tempo-
ral levels) on the prediction performance, as well as the
interaction between features at different levels, we made the

Table 4: The statistics of social roles and relation statuses.

Social role OrdUsr OpnLdr StrHole Sum

Retweet behavior 6,617,440 (42%) 3,623,836 (23%) 5,514,534 (35%) 15,755,810

Original post 68,537 (25%) 123,367 (45%) 82,245 (30%) 274,150

Sum 1,125,217 (75%) 150,029 (10%) 225,043 (15%) 1,500,290

Table 5: List of features used in this work.

Name Description

Spatial-level features

Social role_Opinion leader (OpnLdr)

Social role_Structure hole (StrHole)

Social role_Ordinary users (OrdUsr)

Temporal-level features

The TF-IDF similarity between an ego user and its followees’ post content
within a month (similarity)

The number of microblogs posted by the followees within a month (exposure)

The retweet rate of ego users to their followees (retweet rate)

Handcrafted ego network features [49]

The number/ratio of active neighbors

Density of subnetwork induced by active neighbors

Connected components formed by active neighbors

Input: Datasets(train_loader, valid_loader, test_loader),
Learning rate, Weight decay, Epochs, Batch size.

Output: The predictive value of the test samples and the prediction performance of the model.
1: Training process:
2: Define the model: Three layers of GCN (two hidden layers and one output layer)
3: Load the datasets: train_loader, valid_loader
4: # model.train()
5: for epoch = 1 to Epochs do:
6: All data is propagated forward, and the activation function uses Leaky ReLU
7: Use cross-entropy loss function to calculate the loss value
8: Clear the gradient: optimizer.zero_grad()
9: Backpropagate and calculate the gradient of the parameter
10: Use Adam optimizer to update the gradient: optimizer.step()
11: Calculate the accuracy of the current model on the training set
12: Calculate the accuracy of the current model on validation set
13: end for
14: Test process:
15: # model.test()
16: Load the trained model
17: Load the dataset: test_loader
18: Calculate the predicted value y_pred of the test samples
19: Evaluate the model performance: Precision, Recall, F1-score, AUC

Algorithm 1: The training process of UserRBPM model.
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following comparison. The prediction performance of differ-
ent models is shown in Table 6.

Based on the analysis of four evaluation metrics used in
our work, the performance of UserRBPM is better than the
abovementioned benchmark methods, which demonstrate
the effectiveness of our proposed framework. From the com-
parison among DeepWalk + ST&HC + GAT, Node2vec +
ST&HC + GAT, and UserRBPM, we can observe that the
GraLSP model we leverage in the embedding layer can
indeed capture local structural patterns and significantly out-
performs the first two methods in the experiment, confirm-
ing that the GraLSP can indeed capture local structural
patterns in retweeting behavior prediction. Experiment
results show that UserRBPM outperforms DeepWalk + ST
+ GAT by 3.76% in terms of precision and by 0.40% in terms
of AUC. Moreover, the performance is also better from the
perspective of Recall and F1-score. Meanwhile, from the
comparison among ST&HC + LR, ST&HC + SVM, and
UserRBPM, we notice that UserRBPM achieve an improve-
ment of 13.59% in terms of precision. Such improvement
verifies that the end-to-end learning framework UserRBPM
can effectively detect potential driving factors and predictive
signals in retweeting behavior prediction.

Comparing the first four methods (HC + LR, ST&HC +
LR, HC + SVM, and ST&HC + SVM) with our proposed
UserRBPM, it can be shown that the model which takes
handcrafted features as input hardly represents interaction
effects, while network embedding technology and graph
attention can effectively extract high-dimensional structural
attributes and can express highly nonlinear interaction
mechanisms. Furthermore, from the comparison between
HC + LR and ST&HC + LR (HC + SVM and ST&HC +
SVM), Figure 5 shows that ST&HC + LR is notably better
than HC + LR for retweeting behavior prediction. It reveals
that users’ spatial-level features and temporal-level features
are the potential driving factors of retweeting behavior in
social networks. Additionally, we observe that ST&HC + LR
performs 4.42% better than HC + LR in terms of precision,
verifying that the spatial-level and temporal-level features
we designed have improved the prediction performance to
a certain extent.

From the comprehensive analysis of the part to the
whole, the space-level features and time-level features we
designed have improved prediction performance. The com-
bination of structural attributes and node features can further

improve prediction performance. Therefore, it demonstrates
the effectiveness of our UserRBPM framework for retweeting
behavior prediction.

6.1.2. Prediction Performance of Different Sampling
Strategies. When dealing with data imbalance, we apply
downsampling based on microblog granularity, instead of
completely random downsampling. This sampling method
would ensure that the number of positive and negative sam-
ples covered by the same microblog is the same, and the
number of microblogs covered by negative samples is
sufficient.

We use three sampling methods to obtain different train-
ing models. Among them, the directly sampling method
(DSM) represents that we directly extract relatively balanced
samples based on the ratio of the original positive and nega-
tive samples, that is, the ratio between positive and negative
samples is set to 1 : 3. The number of positive samples and
negative samples in completely random downsampling
(CRDM) and our downsampling method (ODM) is the
same. Experiment results are illustrated in Figure 6. Com-
pared to the completely random downsampling method,
the model trained with the samples obtained by our down-
sampling method has better prediction performance. The
better the prediction effect of the model obtained by the
training data training, the more it shows that the dataset
has universal significance and the learned model has a
stronger generalization ability. In the original imbalanced
datasets, the direct extraction of positive and negative
samples with a ratio of 1 : 3 is simple, but the difference
in the number of microblogs covered by the positive and
negative samples is ignored. Therefore, the downsampling
method based on microblog granularity is more suitable
for the user retweeting behavior prediction problem that
we researched.

6.1.3. Comparative Analysis of Graph Convolution and Graph
Attention. Table 7 is the prediction performance of two var-
iants of graph deep learning, that is, the experimental results
of using graph convolutional network (GCN) and graph
attention mechanism (GAT) to build models, respectively.
In previous research work, we have seen the success of
GCN in classification tasks. However, in the application sce-
narios of our work, we observe that the performance of GCN
in models constructed by different graph embedding

Table 6: Prediction performance of different methods for retweeting behavior (%).

Methods Precision Recall F1-score AUC

Spatial- & Temporal-level & Handcrafted features + LR (ST&HC+LR) 69.74 71.58 70.65 77.27

Spatial- & Temporal-level & Handcrafted features + SVM (ST&HC+SVM) 68.38 69.15 68.76 78.01

DeepWalk + ST + GAT 78.21 78.46 78.28 82.81

DeepWalk + ST&HC + GAT 79.68 80.24 79.96 82.75

Node2vec + ST + GAT 78.54 81.50 79.99 82.53

Node2vec + ST&HC + GAT 79.88 81.25 80.55 82.96

Our method (UserRBPM) 81.97 82.58 82.27 83.21
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technologies is generally worse than that of GAT. We attri-
bute its disadvantage to the homophily assumption of
GCN, that is, connected vertices tend to be similar (for exam-
ple, have the same label). Under such assumption, for a spe-
cific vertex, GCN computes its hidden representation by
taking an unweighted average over its neighbors’ representa-
tion. This homophily exists in many real networks, but in our
research scenario, different neighbor nodes may have differ-
ent importance. Therefore, the graph attention mechanism
(GAT) is introduced to assign different weights to different
neighboring nodes. In essence, GAT is an aggregation func-

tion that focuses on the differences between neighbor nodes,
rather than simple mean aggregation.

Besides, we wanted to avoid using handcrafted features
and make UserRBPM a pure end-to-end learning frame-
work, so we compared the prediction performance with addi-
tional vertex features and without additional vertex features.
Comparison results of prediction performance with or with-
out vertex features are presented in Table 8. It is observed
that UserRBPM_GCN with handcrafted vertex features
achieved an improvement of 2.18% in terms of precision,
1.46% in terms of recall, 0.44% in terms of F1-score, and
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Figure 5: Prediction performance of different features.
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0.59% in terms of AUC. UserRBPM_GAT with handcrafted
vertex features outperforms UserRBPM_GAT without hand-
crafted vertex features by 1.48% in terms of precision, 0.81%
in terms of recall, 1.15% in terms of F1-score, and 1.29% in
terms of AUC. Experiment results demonstrate that, in addi-
tion to the pretrained network embedding, we can still obtain
comparable performance even without considering hand-
crafted features.

6.2. Parameter Sensitivity Analysis. In addition, we consider
parameter sensitivity in our work. We analyzed several hyper
parameters in the model and tested how different hyperpara-
meter choices affect the prediction performance.

6.2.1. Robustness Analysis. To verify the robustness of the
UserRBPM framework, we changed the proportion of the
training set, validation set, and test set and then redo the
experiments. The results in Figure 7 show that the model is
effective under limited training data size. Even with a small
size of the training set (20%-40%), our model can still have
an acceptable and steady performance.

6.2.2. Effect of Instance Normalization. As mentioned in
Section 4, this paper studied the technique used to accel-
erate model learning called Instance Normalization (IN).
This technique provides benefits to improve the classifica-
tion performance. For instance, it can learn faster while
maintaining or even increasing accuracy. Moreover, it
also partially serves as a parameter tuning method.
Therefore, we applied IN and obtained a boost in both
performance and generalization. Figure 8 shows the
changes in the training loss of UserRBPM_GAT with or
without the IN layer during training. We can see that
when there is an instance normalization layer, as the
number of epochs increases, the training loss first drops
rapidly and then remains stable. Instance normalization
significantly avoids overfitting and makes the training
process more stable.

However, as shown in Figure 9, we observe that the
model without the IN layer takes about 1011 seconds per
epoch during the training process, while the model with the
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Figure 6: Prediction performance of different sampling strategies.

Table 7: Prediction performance of variants of UserRBPM (%).

Methods Precision Recall F1-score AUC

DeepWalk + ST&HC + GCN 77.49 79.28 78.37 74.89

DeepWalk + ST&HC + GAT 79.68 80.24 79.96 82.75

Node2vec + ST&HC + GCN 78.56 80.07 79.31 79.64

Node2vec + ST&HC + GAT 79.88 81.25 80.55 82.96

UserRBPM_GCN 80.82 80.58 80.70 82.23

UserRBPM_GAT 81.97 82.58 82.27 83.21

Table 8: The effect of handcrafted vertex features on prediction
performance (%).

Methods
Handcrafted
vertex features

Precision Recall
F1-
score

AUC

UserRBPM_
GCN

Y 80.82 80.58 80.70 82.23

N 78.64 79.12 80.26 81.64

UserRBPM_
GAT

Y 81.97 82.58 82.27 83.21

N 80.49 81.77 81.12 81.92

13Wireless Communications and Mobile Computing



IN layer takes about 1892 seconds per epoch. It was calcu-
lated that the model with the IN layer increased the training
time for each epoch by about 87% compared to the model
without the IN layer. Yet, we believe it is worthwhile to apply

IN, as the additional training time is compensated with a fas-
ter learning rate (it requires less number of epochs to reach
the same level of precision) and can ultimately achieve higher
testing precision.
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7. Conclusion

In this work, we focus on user-level social influence in social
networks and formulate the problem of user retweet behavior
prediction from a deep learning perspective. Unlike previous
work that built a prediction model of retweet behavior based
on network topology maps of information dissemination or
feature engineering-based approaches, we proposed a
UserRBPM framework to predict the action status of a user
given the action statuses of her near neighbors and her local
structural information. Experiments on a large-scale real-
world dataset have shown that the UserRBPM significantly
outperforms baselines with handcrafted features in user
retweet behavior prediction. This work explores the potential
driving factors and predictable signals in user retweet behav-
ior in hope that the deep learning framework has the better
expressive ability and prediction performance.

For future research, experimental datasets related to this
research field still contain rich social dynamics, which are
worth further exploration. We can study user behavior in a
semisupervised manner, develop a generic solution based
on heterogeneous graph learning, and then extend it to many
network mining tasks, such as link prediction, social recom-
mendation, and similarity search. Through such a learning
scheme, we can leverage both unsupervised information
and limited labels of users to build the predictor, and verify
the effectiveness and rationality of user behavior analysis on
real-world datasets.

Data Availability
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The requirement for data sharing and privacy has brought increasing attention to federated learning. However, the existing
aggregation models are too specialized and deal less with users’ withdrawal issue. Moreover, protocols for multiparty entity
matching are rarely covered. Thus, there is no systematic framework to perform federated learning tasks. In this paper, we
systematically propose a privacy-preserving federated learning framework (PFLF) where we first construct a general secure
aggregation model in federated learning scenarios by combining the Shamir secret sharing with homomorphic cryptography to
ensure that the aggregated value can be decrypted correctly only when the number of participants is greater than t.
Furthermore, we propose a multiparty entity matching protocol by employing secure multiparty computing to solve the entity
alignment problems and a logistic regression algorithm to achieve privacy-preserving model training and support the
withdrawal of users in vertical federated learning (VFL) scenarios. Finally, the security analyses prove that PFLF preserves the
data privacy in the honest-but-curious model, and the experimental evaluations show PFLF attains consistent accuracy with the
original model and demonstrates the practical feasibility.

1. Introduction

In 2016, AlphaGo used 300,000 sets of flag games as training
data and beat the world’s top professional go players. Artifi-
cial intelligence (AI) has shown great potential and is
expected to show itself in many fields and make important
contributions [1]. In traditional AI, data processing needs
to aggregate a large amount of data for model training. How-
ever, due to industry competition, privacy protection
requirements, business management, and other issues, data
of various industries forms islands, which are difficult to
share. Therefore, data quality and availability is one of the
constraints on AI development [2]. On the other hand, data
privacy and security have become the focus of the world’s
attention [3] following the devastating losses caused by data
leaks in recent years. The European Union recently intro-
duced a new law—General Data Protection Regulations
(GDPR) [4]—that shows the increasingly strict management
of user data privacy and security will be the world trend. So

the enactment of laws and regulations also brings new chal-
lenges to the traditional AI processing mode.

How to solve the problem of data isolation and data
fusion on the premise of protecting users’ privacy has become
an urgent task for the development of AI. The federated
learning (FL) framework, first proposed by Google in 2016
[5, 6], well meets those requirements. In the FL model, each
participant keeps the local data training model, only trans-
mits the parameters of each model to an aggregation server
using the new cryptography technology, and the server
returns the aggregation parameters to each participant for
updating after the completion of parameter aggregation [7].
In the end, establishing the virtual common model, using
the encryption mechanism to complete the parameter
exchange is consistent with the optimal model trained from
the data aggregation [8] under the traditional model.
Recently, research of the federated learning has become a
hot topic, and a lot of deep learning works focusing on pri-
vacy protecting have been done. In 2019, Yang et al.
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systematically introduced the federated learning framework,
application, and research direction [9], which helps us to con-
trol and understand federated learning as a whole. The feder-
ated learning framework has been applied and extended to
Deep Neural Networks (DNN), eXtreme Gradient Boosting
(XGBoost), Random Forest (RF), and other algorithms [2, 10,
11], of which the used techniques include secret sharing [12],
differential privacy [13], and homomorphic cryptography [14].

At present, there are still the following problems about
privacy-protecting FL. First, there are few protocols that
involve multiple user entity matching [15] and ensuring their
privacy in concurrent mode. In addition, too much interac-
tion between users is required when encrypted gradients or
parameters are passed to the server. Furthermore, the proto-
col only considers that all users participate online throughout
the training cycle without going offline or that the recovery of
correct data requires the assistance of other participants
when one participant goes offline. Finally, the existing
schemes are of poor generality and are often only for specific
machine learning algorithms and application scenarios.

To solve the above problems, we propose a novel PFLF
with general aggregation and multiparty entity matching. In
this framework, we propose a general aggregation model
(GAM) that can be used in many applications where aggrega-
tion is required and privacy is protected. Under our GAM, we
construct a multiparty entity matching protocol (MEMP),
which can complete the confirmation of the common user
data without leaking any disjoint entity information. In addi-
tion, we design the vertical federated logistic regression
(VFLR) algorithm while keeping the data in the local data-
base. In summary, our contributions can be summarized as
follows:

(i) We propose a PFLF that includes the GAM, MEMP,
and VFLR to achieve multiscenario data aggrega-
tion, multiparty matching, and privacy protections

(ii) We exploit the homomorphic encryption and the
improved Shamir secret reconstruction to ensure
that only the aggregator receives messages from at
least t participants; it can recover the secret and
remove mask to acquire correct parameters or prod-
uct. In the GAM, there is little interaction with other
participants

(iii) We propose MEMP to confirm common entities
based on GAM and the multiplicative homomor-
phism of RSA. It can enable participants with differ-
ent data characteristics to determine common
entities without leaking or inferring other useful
information

(iv) We design a privacy-preserving VFLR by using Pail-
lier homomorphic encryption and merging GAM
and LR. It can train a secure VFLR and support the
withdrawal of participants. In addition, the predic-
tion accuracy of the model is not affected

(v) We give a comprehensive security analysis for our
framework. We claim that the attackers will not
acquire any useful information even if there is no

more than t participant collusion. Besides, extensive
experiments are operated to confirm that our frame-
work is effective and efficient

The rest of the paper is organized as follows. In Section 2,
we describe the preliminaries and the main technology. In
Section 3, we describe the system architecture, security
model, and problem description. In Section 4, we describe
the algorithm details of our GAM with privacy protection
and construct the secure MEMP and VFLR model. In Section
5, we demonstrate the security analysis of framework. Exper-
imental evaluation and related work are discussed in Sections
6 and 7, respectively. Finally, we give the conclusion of the
paper in Section 8.

2. Preliminary

2.1. Logistic Regression Algorithm. Consider a dataset

fxðiÞ, yðiÞgmi=1 with d dimension, in which xðiÞ = ðxðiÞ1 , xðiÞ2 ,⋯,
xðiÞd Þ ∈ Rd , yx

ðiÞ ∈ ð0, 1Þ. The predicted value is mapped

between 0 and 1 by the sigmoid function [16] hθðxÞ = 1/ð1
+ e−θ

TxÞ, where θTx =∑d
j=0θ jxj and x0 = 1. The objective

function is defined as follows:

L θð Þ = 1
m
〠
m

i=1
−y ið Þ log hθ x ið Þ

� �� �
− 1 − y ið Þ
� �

log 1 − hθ x ið Þ
� �� �h i

+ λ

2m〠
d

j=1
θ2j :

ð1Þ

The gradient descent method is used to minimize the
value of the objective function, and the model parameters
are updated as follows:

θ j = θj −
α

m
〠
m

i=0
hθ x ið Þ
� �

− y ið Þ
� �

x ið Þ
j −

λ

m
θ j: ð2Þ

When given a new data xnew, the predictive value of logis-
tic regression is set to

ynew =
1 hθ xnewð Þ ≥ 0:5,
0 hθ xnewð Þ < 0:5:

(
ð3Þ

2.2. Homomorphic Encryption. The Paillier scheme satisfying
the additive homomorphism [17] is as follows: p, q are large
primes of equal length chosen randomly; n = pq, φðnÞ = ðp
− 1Þðq − 1Þ are calculated. Given the random number g ∈
ℤ∗

n2 , then we have the public key pk = ðn, gÞ and the private
key sk = ðφðnÞ, φðnÞ−1 mod nÞ. For the encryption, given
the random number r satisfying 0 < r < n, r ∈ℤ∗

n2 , we have
the ciphertext C = gmrn mod n2, where M is the plaintext.
In the decryption phase, m is obtained by computing m = L
ðcφðnÞ mod n2ÞφðnÞ−1, where LðxÞ = ðx − 1Þ/n.
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We mainly use the following properties of Paillier homo-
morphic encryption. Additivity can be indicated as DðEðm1
, r1ÞEðm2, r2Þ mod n2Þ =m1 +m2.

2.3. Secret Sharing. The secret sharing (SS) scheme [18]
adopted in our scheme is used to mask the data ciphertext
transmitted by participants, but ensures that the aggregator
recovers the ciphertext product and it also helps the scheme
support the withdrawal of participants. For ðt, nÞ SS scheme,
the secret s is split into n shares. s can be recovered only if at
least t random shares are provided. The share generation
algorithm is illustrated as SS:shareðs, t, nÞ = fðu, suÞ ∣ u ∈Ug
, in which n represents the number of participants involved
in SS and U = f1, 2,⋯, ng is the set of participants and su is
the share for each user u. The secret can be recovered by at
least t participants contained in U ′ðU ′ ⊆UÞ using Lagrange
interpolation base SS:reconðfðu, suÞ ∣ u ∈U ′g, tÞ as follows:

s = 〠
U ′j j

i=1
siιi 0ð Þ, ð4Þ

where ιið0Þ =
QjU ′j

j=1,i≠jidi/ðidj − idiÞ is computed. Here, we can
use idi representing the identity of the ith participant.

3. System Architecture

In this section, we introduce the system architecture, illus-
trated in Figure 1. Some frequently used notations of the
paper are listed in Table 1.

3.1. System Model. Our framework involves three types of
participating entities: a key generation center (KGC), a center
server (CS), and a set of average participants (AP). Details are
presented as follows.

Key Generation Center. KGC primarily performs key
generation and distribution. Its main purpose is to initialize
the system, generate public and private keys for homomor-
phic encryption, generate subsecrets based on Shamir secret
sharing, assign corresponding public and private keys to
CS, and distribute subsecrets to each general participant.
Afterwards, it will go offline.

Center Server. CS is often the initiator of a federated
learning mission. It is the one who has data labels, coordinat-
ing the execution of the entire process. It aggregates the
parameters uploaded by all online participants. In MEMP,
it calculates the user intersection and returns the common
entity. In VFLR, it returns the calculated sample error. In
the process, we hope that CS can infer nothing except the
uploaded ciphertext and the final result.

Average Participants. AP refers to participants who par-
ticipate in model training without tags. It involves multiple
average participants, namely, AP = fU1,U2,⋯,Ung. In the
aggregation framework, they are usually done with local
encryption and send values for aggregation.

3.2. Security Model. Based on [19], in our scheme, we assume
that the interaction channels through CS and AP are secure
and not subject to risks such as tampering, and all partici-

pants except KGC are considered to be honest-but-curious.
KGC is a trusted party which always performs its tasks hon-
estly and does not collude with any entity. CS and AP hon-
estly follow the agreed process, but may try to learn all
possible information that is of interest to them from their
received messages. We define a threat model with an
honest-but-curious adversary A who can corrupt at most t
− 1 parties and obtain their inputs or other private informa-
tion. In the entity matching protocol, what A wants to know
is users’ information and CS’s private key. In the model
building and prediction phase, A makes full use of the infor-
mation it holds to learn about the data including data charac-
teristics and weights of other honest parties. Our model
needs to meet the following security requirements.

Data Privacy. CS cannot recognize any private data
uploaded by Ui, and other U j (j ≠ i) cannot infer the private
data of others. For example, mark matrix and model param-
eters must not be exposed.

Secure Withdrawal. CS andUi cannot continue to use the
information of the exiting participants for subsequent calcu-
lations, and the process of recovering the aggregated value
cannot reveal the parameters of the exiting participants if
any participant drops in a round. There should be a safe
way to deal with delayed transmissions and not be mistaken
for offline.

3.3. Problem Description. In order to achieve a GAM that can
enable aggregated messages to be decrypted only if they come
from at least t participants, while ensuring that individual
parameter ciphertext is not exposed, we introduce some
cryptographic tools. For example, the transformed Shamir
secret sharing scheme helps achieve threshold aggregation
and cover the homomorphic ciphertext of each participant.
Homomorphic encryption features facilitate obtaining the
product or sum of parameter plaintext through ciphertext

AP

CSKGC

...

Encryption parameters

Expected results

Figure 1: System architecture.
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aggregation. Furthermore, the same entity between different
participants needs to be determined for multiple participants
with different characteristics in the vertical federated mode.
Firstly, we should design a MEMP with privacy protection,
through which multiple participants obtain their overlapping
entity IDs without exposing their respective data. After then,
we use these common entities’ data with different character-
istics to train the learning model while ensuring local data
privacy. To achieve these two goals, under our aggregation
model, we use RSA blind signature to generate data identity
libraries, record the matching results by token matrix, and
use RSA and Paillier as homomorphic encryption for specific
functional requirements. In particular, the prediction accu-
racy of VFLR realized by the framework is unchanged, and
it can support the withdrawal of participants.

4. Construction of PFLF

Our PFLF implements a systematic FL process, including
three main functions. Firstly, it can realize multiparty data
aggregation without data leakage. Secondly, it can find the
common set of entities of multiple participants without
revealing useful information. For VFL scenarios, subsequent
joint training can only be completed if the common entities
are identified. When using logistic regression algorithm in
VFL scenario, secure data aggregation is necessary after
entity matching is completed. So, thirdly, we design the
VFLR. In particular, the aggregation in our framework is
generic, not only for a specific machine learning algorithm
but also for all application scenarios based on thresholds. In
this section, we present the details of our GAM and its role
in constructing MEMP and VFLR.

4.1. A Novel GAM. A common aggregation model is suitable
for such application scenarios where the aggregation server
CS can decrypt and obtain the desired results through homo-
morphic encryption only when messages received are from at
least t participants. Through this model, the participants’ pri-
vate data is fully protected in the process of achieving the
interaction purpose according to the protocol, and when
there are participants offline, the aggregated messages that
do not involve the offline information can be recovered
quickly. Here, firstly, based on the mentioned SS scheme,
we can make the following transformation.

Each user Ui chooses a random number βik, where i = f
1, 2,⋯, tg is the number of participants who reconstructed
the secret and k is the number of samples. For the secret

reconstruction formula s =∑jU ′j
i=1 siιið0Þ, let us multiply both

sides of this equation by random numbers βik and the equa-
tion is transformed into the following form:

β1ks = β1k s1ι1 0ð Þ + s2ι2 0ð Þ+⋯+st ιt 0ð Þð Þ,
β2ks = β2k s1ι1 0ð Þ + s2ι2 0ð Þ+⋯+st ιt 0ð Þð Þ,

⋯

βtks = βtk s1ι1 0ð Þ + s2ι2 0ð Þ+⋯+st ιt 0ð Þð Þ:

ð5Þ

We can sum both sides of this equation and get

〠
t

i=1
βiks = 〠

t

i=1
βiks1ι1 0ð Þ + 〠

t

i=1
βiks2ι2 0ð Þ+⋯+〠

t

i=1
βikβikst ιt 0ð Þ:

ð6Þ

When used for threshold encryption, it converts to

g
〠
t

i=1
βiks1ι1 0ð Þ

Ek m1kð Þ

8>>><
>>>:

9>>>=
>>>;

g
〠
t

i=1
βiks2ι2 0ð Þ

Ek m2kð Þ

8>>><
>>>:

9>>>=
>>>;

⋯ g
〠
t

i=1
βikst ιt 0ð Þ

Ek mtkð Þ

8>>><
>>>:

9>>>=
>>>;

= g
〠
t

i=1
βiks1ι1 0ð Þ+〠

t

i=1
βiks2ι2 0ð Þ+⋯+〠

t

i=1
βikst ιt 0ð Þ

8>>><
>>>:

9>>>=
>>>;
Yt
i=1

Ek mikð Þ

= g
〠
t

i=1
βiks

8>>><
>>>:

9>>>=
>>>;
Yt
i=1

Ek mikð Þ:

ð7Þ

We assume that in such a scenario, each participant Ui
having a message mik needs to ask CS to help calculate ∑n

i=1
mik, but does not want to disclosemik to others and also does
not want CS to infer some private data through the message
sent by themselves to carry out various possible calculations.
Figure 2 shows its workflow. In this way, they can do it like
this: Ui first computes g∑

t
i=1βiksi ιið0ÞEkðmikÞ and sends it to

CS according to the above equation, the receiver with the pri-
vate key ks can decrypt and get ∑t

i=1mik when each partici-
pant makes public the value gβik corresponding to βik, and
there exists the secret s = kp and the public key k = kp. Besides,
EkðÞ satisfies homomorphic encryption which refers to mul-
tiplicative homomorphism in our entity matching protocol
and additive homomorphism in our joint model training.
How the model supports users’ withdrawal is described in
detail in Section 4.3. If the model is used for horizontal feder-
ated learning, mik can be gradient and other important
parameters. Later in the VFLR section, we will focus on using
logistic regression to explain the framework.

4.2. Secure Multiparty Entity Matching. As shown in Algo-
rithm 1, the secure multiparty entity matching protocol

Table 1: Notation table.

Notation Description

Ekp The homomorphic encryption with public key kp

e, d The public key and private key for RSA

ℤ∗
P A cyclic group of order P, primitive g

si The secret share distributed to the participants Ui

Xi
k The kth sample of the ith participant

Θi The characteristic weight of the ith participant

HðÞ A hash function

hθðÞ Function prediction of logistic regression
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completes the confirmation of the common entity of multiple
participants under the premise of protecting privacy. In the
protocol, there is a CS with data sample identity usk and a
set of average participants U = fU1,U2,⋯,Ung with their
own data sample uik, which represents the identity of the k
th sample for the ith participant. Note that we briefly describe
the situation of sending a message M from A to B as A⇒ B
: M. The protocol workflow is shown in Figure 3. The process
of the protocol is shown as below.

In the initial parameter setting phase, the CS sets the pen-
alty term, coefficient λ, and maximum iteration number ma
xiter of the model. T generates a public-private key ðkp, ksÞ
for homomorphic encryption of the later model building
and predicting. The algorithm introduces an RSA encryption
with a blind factor to mask confidential information, so the
public-private key ððN , eÞ, dÞ, ððN , eiÞ, diÞ, ði ∈ ð1, 2,⋯, nÞÞ
are generated by T . In the following, we omit the modulus
N for RSA. In addition, T also generates subshares si and si′
of the public key kp and e for Ui based on the identity of Ui

using SS:shareðkp, t, nÞ or SS:shareðe, t, nÞ.
In the exchange of information phase, each participant

Ui chooses a random number ri, computes vik = ðriÞeðH
ðuikÞdiÞ, and sends it to CS. CS chooses a random number
rsi to reflect the randomness of the interaction and uses the

private key d for signature ðvikÞdrcs and sends disturbed cik
= riðHðuikÞÞdidrcs to Ui. Disturbing the order of ci1, ci2,⋯,
cik can eliminate the correspondence between cik and uik so
that Ui cannot lock the IDs corresponding to the intersection
of Ui and CS in the comparison phase. Furthermore, CS cal-
culates random identifiers of each entity for different partic-
ipants: dij =HðHðusjÞdreisi Þ. Then, CS sends
½d11, d12,⋯, d1j�,⋯, ½dn1, dn2,⋯, dnj� to corresponding par-
ticipants U1,U2,⋯,Un−1 for comparison.

In the comparison phase, each participant Ui eliminates
the blind factor and opens its signature for cik to obtain
ðHðuikÞÞdreisi and uses the hash function to compute gik =H

ððHðuikÞÞdreisi Þ. By comparing them with dij, CS gets an l
-dimensional matrix ½bi1, bi2,⋯, bij�. bij = 1 if dij belongs to
gik. If not, bij = aij, where aij is a random number and aij >
1. In this way, each participant creates a comparison matrix.

In the solution phase, each participant Ui chooses a set of
random number pij
(i.e., fp11, p12,⋯, p1j,g,⋯, fpn1, pn2,⋯, pnj,g) and encrypts

its matrix by computing gsi′ιið0Þ∑
n
i=1pijðbijÞe with RSA.

After then, Ui sends their encrypted matrix to CS for
aggregation. At last, CS aggregates matrix values of n partic-
ipants by computing

Qn,j
i=1,jg

si′ ιið0Þ∑n
i=1pijðbijÞe and uses its pri-

vate key d to decrypt, obtaining
Qn,j

i=1,jbij. Because CS can

recover the secret e by computing ∑si′
i=1ιið0Þ. Specific analysis

can refer to Secure Model Building.
In the identification phase, CS finds the corresponding

entity by the value of
Qn,j

i=1,jbij. Because each dij comes from
CS, then if it is 1, it means that each participant has a corre-
sponding dij, and if not, it means that at least one participant

does not have dij. Therefore, CS can find the right entity usj
based on

Qn,j
i=1,jbij. In the end, CS broadcasts common entity

IDs to other participants for following model training.

4.3. Secure Model Building

4.3.1. Secure Training. For logistic regression to find the bet-
ter model with gradient descent method, the part that needs
to be computed jointly is error using the predicted value
and the sample label. It is better for CS to do the aggregation
and calculation since sample labels are mastered by CS. The
workflow is shown in Figure 4. To protect the confidentiality
of each participant’s data, the aggregated data is received in
ciphertext. Consequently, we chose to use Paillier homomor-
phic encryption to do the computation. However, each par-
ticipant’s data cannot be decrypted separately by CS; for
this reason, we apply Shamir secret sharing scheme such as
Formula (7) to ensure that CS could decrypt only after the
aggregation operation was completed. The detailed process
is shown in Algorithm 2.

The number of common entities of all participants is m,
the average participants in the joint modeling are UiðUi ∈
UÞ, and each average participant secretly keeps a subsecret
as si. Now given a cyclic group G and its primitive g, Uiði ∈
½1, n�Þ computes Di

k =ΘiX
i
k, in which Xi

k is the kth sample
for the ith participant Ui. With subsecret si and identities,
Ui can compute its own siιið0Þ. In order to keep the subsecret
si dynamic, for each sample, Ui adds a random factor or the
time stamp βik to calculate Ci

k = gsi ιið0Þ∑
n
i=1βikEkp

ðDi
kÞ and

sends it to CS after other participants release their gβik . At
this point, although CS gets the ciphertext of each partici-
pant, he cannot decrypt it because he cannot get the subsecret
si. Only when messages are received from at least t partici-
pants can aggregation

Qn
i=1C

i
k that can be generated, i.e.,

Yn
i=1

Ci
k =
Yn
i=1

g
si ιi 0ð Þ〠

n

i=1
βik

Ekp
Di
k

� �
= g

〠
n

i=1
siιi 0ð Þ〠

n

i=1
βik

( )
Ekp

〠
n

i=1
Di
k

 !
,

ð8Þ

Figure 2: Workflow of the GAM.
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Input: a central server CS, a set of participants U = fU1,U2,⋯,Ung, and a trusted party T .
Output: common entity IDs.
1: CS sets the parameters for model training penalty, λ, maxiter.
2: T generates a public-private key ðkp, ksÞ for homomorphic encryption, a public-private key ððN , eÞ, dÞ for RSA encryption for CS,
also generates average participants’ public-private keys ððN , eiÞ, diÞ and subshares of the public key kp and e based on the identity
of the participants, i.e., T ⇒U : fðu, suÞ ∣ u ∈Ug = SS:shareðkp, t, nÞ. Here, U1,U2,⋯,Un get subshares fs1, s2,⋯, sng for kp and sub-
shares fs1′, s2′,⋯, sn′g for e.
3: Each participant Ui chooses a random number ri, computes vik = ðriÞeðHðuikÞdiÞ, and operates U ⇒ CS : vik.
4: CS chooses a random number rsi , uses the private key for signature ðvikÞ

drsi , gets each cik = riðHðuikÞÞdidrsi , and returns them to Ui

after disturbing the order of cik.
5: fori = 1⟶ ndo
6: forj = 1⟶ ldo
7: CS computes for the l entities: dij =HðHðusjÞdreisi Þ.
8: CS sends ½d11, d12,⋯, d1j�,⋯, ½dn1, dn2,⋯, dnj� to corresponding participants U1,U2,⋯,Un−1.
9: fori = 1⟶ ndo
10: Each participant Ui eliminates the blind factor and di for cik, obtains ðHðuikÞÞdreisi , and computes their hash values gik =Hð
ðHðuikÞÞdreisi Þ.
11: forj = 1⟶ ldo
12: Each participant generates its own l-dimensional matrix ½bi1, bi2,⋯, bij� by determining whether dij belongs to its gik.
13: ifdij ∈ gikthen
14: bij = 1.
15: else
16: bij = aij, where aij is a random number and aij > 1.
17: Each participant Ui chooses a set of random number pij and encrypts its matrix with gsi′ ιið0Þ∑n

i=1pijðbijÞe, operating Ui ⇒ CS
: encryptedmatrix.
18: CS aggregates matrix values by computing

Qn,j
i=1,jg

si′ ιið0Þ∑n
i=1pijðbijÞe and obtains

Qn,j
i=1,jbij by decrypting.

19: if
Qn,j

i=1,jbij == 1then
20: CS finds the corresponding usj.
21: CS broadcasts usj to other participants U1,U2,⋯,Un−1.
22: return common entity IDs: usj.

Algorithm 1: MEMP.

Figure 3: Workflow of the MEMP.
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where g∑n
i=1fsiιið0Þ∑n

i=1βikg = g∑n
i=1βikkp . Because kp and g∑

n
i=1βik are

public to CS, CS can decrypt and get ∑n
i=1ΘiX

i
k to compute

errork. The next step, CS will broadcast errork to current par-
ticipants U ′ðU ′ ⊆UÞ. Each participant and CS can update
weight parameter by computing Θi =Θi + ðα/mÞ∑m

k=1errork
Xi
k − ðλ/mÞΘi. All steps are repeated until the maximum

number of iterations is reached.

4.3.2. Withdrawal of Participants. Some participants may
withdraw from federated learning, such as being unwilling
to contribute models or dropping offline. In order to deal
with the above situation, we can make a contract to reduce
the occurrence of withdrawal. It is assumed that each average
participant Ui will be paid a certain amount based on their
contribution in each iteration. The total expenditure and
maximum number of iterations set by CS are Amounts and
t. The contract signed by all participants is as follows: (1) n
average participants submit a deposit to CS, and the deposit

is Amounts/t. (2) In the FL, if CS receives all the messages
within the maximum allowable period, the errors will be
returned normally to all participants according to the proto-
col. (3) Else, CS will send withdrawal confirmation request to
participants who did not send the message. If they report it is
delayed, the delayed messages can still be used to compute
the aggregated value. But these delayed participants will not
get paid this round. (4) Once the participant reports with-
drawal, the deposit will be distributed to other online partic-
ipants, including CS. Rational participants generally do not
withdraw in order to maximize their own interests. (5) Upon
completion of the FL, deposits will be returned to all the
online participants. Particularly, if some participants with-
draw during training, CS requires each participant to resend
the message without the identity of the quitters in order to
decrypt. Because of the randomness of Ci

k, CS cannot use
the message sent twice to perform comparison calculation
and get useful data. The reason is that CS still cannot get
the subsecret to reconstruct the polynomial.

Figure 4: Workflow of the VFLR.

Input: a central server CS, a set of participants U = fU1,U2,⋯,Ung, instance space of m samples of each participants, subshares f
s1, s2,⋯, sng, cyclic group G, and its primitive g.
Output: federated logistic regression model.
1: fork = 1⟶mdo
2: fori = 1⟶ ndo
3: Ui computes Di

k =ΘiX
i
k.

4: Ui chooses random number βik and makes public its gβik .
5: Ui uses others’ g

βik to compute Ci
k = gsi ιið0Þ∑

n
i=1βik Ekp

ðDi
kÞ and sends it to CS.

6: fork = 1⟶mdo
7: if someone exits then
8: CS eliminates the value involving information of quitters in ιið0Þ.
9: CS performs the aggregation

Qn
i=1C

i
k and decrypts to get ∑n

i=1ΘiX
i
k.

10: CS computes errork = yðkÞ − 1/ð1 + e−ð∑
n
i=1ΘiX

i
k+ΘsX

s
kÞÞ.

11: broadcasts errork.
12: Each participant and CS can update weight parameter by computing Θi =Θi + ðα/mÞ∑m

k=1errorkXi
k − ðλ/mÞΘi.

13: Repeat all until reaching the termination condition.
14: return built model.

Algorithm 2: VFLR.
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4.4. Secure Predicting. Secure prediction should ensure that
user data privacy is not compromised and that model param-
eters are not exposed. As described by Algorithm 3, results
inquirer R intends to provide a set of data for prediction
without privacy leakage and all data characteristics corre-
spond to all participants in the current model. First, R,
respectively, encrypts the data with Ekp′ðXi

kÞ, for example, ð
Xi
kÞ belongs to a characteristic that corresponds to Ui. Each

participant computes ðEkp′ðXi
kÞÞΘi through R’s public key kp

′ and communicates it to CS. The aggregation operation is
still done by CS to protect the parameters Θi from being

exposed. Then, CS computes ðEkp′ðXs
kÞÞΘs

Qn
i=1ðEkp′ðXi

kÞÞΘi

and returns it to R. The joint value ΘiX
i
k could be get with

private key ks′ by R, which computes predicted results h
using hθðxÞ = 1/ð1 + e−θ

TxÞ.

5. Security Analysis

In this section, we prove that our scheme is secure based on
the simulator under the honest-but-curious setting. Recall
that the involved parties are n participants U1,U2,⋯,Un
and the CS. We assume an honest-but-curious adversary A

who can corrupt participants but at most t − 1. According
to [20], we define the security of our framework by compar-
ing the real interaction and ideal interaction. In the real inter-
action, there is an environment Z which chooses inputs and
receives outputs of uncorrupted participants. The adversary
A who can interact arbitrarily with the environment Z for-
wards all received messages to Z and acts as instructed by
Z . We let REAL½Z ,A , π� represent the view of A . Similarly,
we let IDEAL½Z , S ,F� represent the view of S where adver-
sary S and honest participants interact with the environment
Z running the dummy protocol in the presence of function-
ality F .

Definition 1. A protocol π is secure if for every admissible
adversary A attacks the real interaction, there exists a simu-
lator S = ½Su, Scs� attacking the ideal interaction, such that
the environment Z cannot distinguish between the ideal
view of S and the real view of A .

5.1. Security of GAM. In the GAM, although CS can collude
with at most t − 1 participants to obtain the privacy of honest
participants, they get nothing but aggregated results. Since
each participant’s data is encrypted as g∑

t
i=1βiks1ιið0ÞEkðmikÞ,

based on the security of Shamir secret sharing and homo-
morphic encryption, only the privacy ofmik is discussed here.

Theorem 2. For secure aggregated framework, there exists a
PPT simulator Su or Scs that can simulate the ideal view
IDEAL½Z , S ,Fgam� which is computationally indistinguish-
able from the real view of Au or ACS. Fgam is illustrated as
Table 2, where a subsetW ⊆U ∪ CS represents joint attackers.

According to whether CS is involved in collusion, the dis-
cussion is divided into two situations.

Case 1. Excluding CS from W.

Proof. Since CS is not compromised, the view constructed by
simulator Su is independent of the input of CS. So the simu-
lator Su can execute a simulation by asking Fgam to generate
fake data as inputs of the honest users, but the true inputs for
honest-but-curious users. When sending bðriÞf kðxiÞ, the
simulator utilizes random number instead of true data. As
aggregating and decrypting, CS returns aggregated result that
does not indicate which special participants’ bðriÞf kðxiÞ are
aggregated. Hence, the ideal view simulated by Su is indistin-
guishable from the real view of Au since it is impossible to

determine that ∑jU⊇Wj
i=1 xi is obtained from real data. ☐

Case 2. Including CS in W.

Proof. To prove the indistinguishability of the views in Case
2, the simulator gradually makes some improvements to the
protocol. There exists hyb1, hyb2 that imply secure modifica-
tion to the original protocol, ensuring the indistinguishability
of the changed protocol from the original protocol, in our
hybrid argument.

hyb1: in this hybrid, the simulator SCS generates the
masked input for honest participants as below:

yi = riEk mikð Þ, ð9Þ

Input: federated logistic regression model, results inquirer R, and its instance space.
Output: predicted results.
1: fori = 1⟶ ndo
2: R, respectively, encrypts the data Ekp′ðXi

kÞ belonging to the characteristics of different participants including CS.

3: Each participant computes ðEkp′ðXi
kÞÞΘi and communicates it to CS.

4: CS does an aggregate operation ðEkp′ðXs
kÞÞΘs

Qn
i=1ðEkp′ðXi

kÞÞΘi and returns it to R.

5: R decrypts and gets ΘiX
i
k.

6: R gets predicted results h by hθðxÞ = 1/ð1 + e−θ
TxÞ.

7: return result h.

Algorithm 3: Secure predicting.
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instead of utilizing

yi = g
〠
t

i=1
βiksiιi 0ð Þ

Ek mikð Þ: ð10Þ

Because g∑t
i=1βik is a random number, we can get

g∑
t
i=1βiksiιið0Þ is also a random value. The DDH assumption

ensures that it is easy to infer they are indistinguishable.
hyb2: in this hybrid, the simulator generates encrypted

EkðtiÞ by replacing mik with a random number ti. The secu-
rity of the encryption algorithm ensures the indistinguish-
ability of the two ciphertexts. Therefore, the simulator
submits

yi = riti, ð11Þ

instead of sending

yi = riEk mikð Þ: ð12Þ

Accordingly, the simulation has been completed since
SCS successfully simulates the real view without acquiring
xi(mik) and subsecret si and we can infer that the output of
this hybrid is indistinguished from the real one. ☐

5.2. Security of MEMP. In the process of confirming the iden-
tity of the common entity, no entity information other than a
common identity is available between participants. Thus, not
only can the true identity of the entity not be exposed but its
hash value cannot be either. The reason is that some honest-
but-curious participants can calculate the hash value of a pos-
sible identifier to determine whether it belongs to Ui. It is
necessary to cover the confidential information with a ran-
dom factor similar to a blind signature. We prove the follow-
ing two theorems by constructing two separate simulators Su
and Scs to show that the real views and ideal views are com-
putationally indistinguishable.

Theorem 3. For group entity matching, there exists a PPT
simulator Su or Scs that can simulate the ideal view IDEAL½
Z , S ,Fem� which is computationally indistinguishable from
the real view of Au or A cs.

Let us divide Fem into two parts, such asFem1 andFem2.
Fem1 is the process from the beginning to the establishment
of the comparison matrix, and Fem2 means the process from
the encrypted comparison matrix to the end, similar to the
previous Fgam. The description of Fem1 is shown in Table 3.

Here, we only complete the proof of the ideal view
IDEAL½Z , S ,Fem1� which is computationally indistinguish-
able from the real view ofAu orA cs. There are still two cases
to prove.

Case 1 (excluding CS fromW). Just consider the average par-
ticipants Ui that are compromised.

Proof. Suppose a group of participants is corrupted in the
beginning. Because the views of corrupted participants and
the inputs of honest participants are irrelevant and the values
of all honest participants are meaningless for corrupted par-
ticipants according to the real protocol πem, so the simulator
Su first can run the protocol with the true inputs while using
dummy data as the inputs of honest participants, namely, Su
asksFem1 to generate random numbers as the inputs of hon-
est particpants. After the blind signature is executed, the
value returned from CS is added with a random number of

Table 2: Definition of Fgam.

Give function f k x1, x2,⋯xnð Þ = k−1
Qn

i=1b rið Þf k xið Þ with
homomorphic encryption function f k and

Qn
i=1b rið Þ = k when i ≥ t

.
Fgam’s operation is as follows:
(1) On input (Input, sid,mi) from Ui, set xi =mi and send (Input,
sid,Ui, mij j) to adversary A .
(2) On input (Compute, sid,Ui) fromUi, choose ri∈RZ

∗
P randomly,

compute b rið Þf k xið Þ, and send them to CS if i ≥ t. If Ui ∈W ⊆U is
corrupted, send (xi, ri) to it.
(3) On input (Aggregate, sid, CS), compute f −1k
k−1
Qn

i=1b rið Þf k xið Þ� �
and send it to CS.

Table 3: Definition of Fem1.

Fem1’s operation is as follows:
(1) On input (Init, sid, idi, IDi1, IDi2,⋯, IDikð Þ) from Ui, generate
random numbers hi1, hi2,⋯, hikð Þ for the corresponding IDi1, I
Di2,⋯, IDik, store (idi, IDi1, hi1ð Þ, IDi2, hi2ð Þ,…), and send
(idi, IDi1, hi1ð Þ, IDi2, hi2ð Þ,…) to corrupted adversary A.
(2) On input (Init, sid, CS, IDs1, IDs2,⋯, IDslð Þ) from CS, generate
l random numbers hs1, hs2,⋯, hslð Þ.
Once the IDs of the CS and Ui are equal, there sets hsj = hit ,
j ∈ 1, k½ �, t ∈ 1, l½ �ð Þ.
For corrupted CS, send (ids, IDs1, hs1ð Þ, IDs2, hs2ð Þ,⋯) to it. Store
them.
(3) On input (signature, sid,Ui, di) from Ui, choose ri∈RZ

∗
P

randomly, and compute sign di, reei hitð Þ.
Send them to CS and store (Ui, sid, ri).
(4) On input (Bsignature, sid, CS, d, sign di, reei hitð Þ) from CS,
compute sign d, sign di, reei hitð Þð Þ.
Send rsi sign d, sign di, reei hitð Þð Þ to Ui, where rsi are random
numbers.
(5) On input (Open, sid,Ui, sign d, sign di, reei hitð Þð Þ) from Ui.
Check whether there exists (Ui, sid, ri).
If exiting, hditr

ei
si can be got, or abandon it. Generate randomHit and

store (Ui, sid, hditr
ei
si ,Hit

� �
).

(6) On input (Sign, sid, CS,Ui, d), compute (sign d, hsjr
eei
si

� �
).

Generate random Hsj for every sign d, hsjr
eei
si

� �
.

If existing sign d, hsjr
eei
si

� �
= hditr

ei
si

� �
, setting Hsj =Hit and storing

(CS, sid, hditr
ei
si ,Hsj

� �
). Send (CS, sid,Hsj) to the corresponding Ui.

(7) On input (Compare, Ui, sid, CS), generate the l − dimensional
comparison matrix using 1 and random numbers, where there

exist Hsj in (Ui, sid, hditr
ei
si ,Hit

� �
), 1 will be set, or a random

number will be set.
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CS so that Su cannot distinguish whether the values are gen-
erated from real data. Then, an l-dimensional matrix is gen-
erated by comparing dummy data with a set of generated
comparative values from CS. Since the participant’s entity
data does not leave the local, the generated matrix is derived
from random numbers. Hence, the simulated l-dimensional
matrix is indistinguishable from the one that is using true
data for comparison. ☐

Case 2 (including CS in W). Namely, consider the corrupted
CS and Ui.

Proof. For the corrupted CS and Su, denote the views of CS
and participants Ui as VCS = viewCS and Vu = fviewu1

, vie
wu2

,⋯, viewun
g. Based on the process of the MEMP, we

can derive viewCS = fvik, cik, dijg and viewui
= fvik, cik, gikg,

where i ∈ ½1, n�, j ∈ ½1, l� and ik refers to the kth entity’s iden-
tity of the ith participants. It can be found that the elements
belonging to viewCS and viewui

can be treated as random
values. Therefore, we can infer that viewCS and viewui

are
simulatable for SCS and Su, and the simulated views cannot
be distinguished computationally by the adversary.

The proof of the second part about Fem2 is similar to
Theorem 2, so we will not go into details.

5.3. Security of VFLR. In the model training, CS needs to get
messages sent by at least t participants to decrypt the correct
value so that the data for each participant cannot be retrieved
and messages retrieved by CS can only be aggregated values
without revealing anything else due to the combination of
homomorphic encryption and threshold methods. The fol-
lowing theorem will be proved to show the security of the
VFLR model.

Theorem 4. For secure VFLR model, there exists a PPT simu-
lator Su or Scs that can simulate the ideal view IDEAL½Z , S
,Fml� which is computationally indistinguishable from the
real view of Au or A cs.

Our VFLR calls the previous aggregation framework, and
its security is based on the proof of Theorem 2. Since Theo-
rem 2 has been proved, here we only do a simple description
for VFLR.

Proof. Similar to the proof of Theorem 2, for a group of cor-
rupted participants, Su can run them using their local data
while for honest participants Su simulate them with dummy
data. Therefore, Su run Fml to generate random values to
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replace the maskedΘiX
i
k as the inputs of honest participants.

In the model building, what the honest-but-curious partici-
pants get is the errors rather than some information that
reflects real data and they cannot identify whether the aggre-
gated values used to calculate the errors are based on real
data. Therefore, the view of Su is indistinguishable from a
real one. ☐

Considering the corrupted CS, SCS run Fml to generate
dummy labels, with which Fml computes the errors after
obtaining the aggregation. Because local data are within hon-
est participants, the outputs cannot reveal specific informa-
tion. Therefore, there exist a PPT simulator Scs that can
simulate the ideal view which is computationally indistin-
guishable from the real view of A cs.

6. Performance Evaluation

In this section, the effectiveness and efficiency of the experi-
ment are presented.

6.1. Experiment Configuration. Four clients A, B, C, andD are
built to simulate the feasibility and performance, in which A,
B, and C refer to the average participants and D means the
aggregator with sample labels. We carry out our experiments

on the device with CPU i7-6700, 3.2GHz, and Memory 24G.
The programs in the experiments are implemented in
Python, and the length of p and q are set to 512 bits for
RSA and Paillier. We adopt a finite field ℤ∗

P with P = 211
and the standard Shamir’s ðt − nÞ secret sharing to generate
the shares of secret.

In the MEMP, we generated different random values
between 52252800000000000000 and 52252800000000000550
as identification of user samples for A, B, C, andD, respectively,
satisfying that the number of intersection ofA, B,C, andD is 60,
120, 180, and 240. In VFLR, we selected 300 digits from the
handwritten digits dataset (handwritten digit dataset: https://
scikit-learn.org/stable/modules/generated/sklearn.datasets
.load_digits.html), which contains 64 features. A, B, and C,
respectively, hold 20 features in these samples, whileD contains
4 features and 1 label. Since the dataset is multiclassified, we set
0 to 4 as category 1 and 5 to 9 as category 2.

6.2. Performance Analysis of the MEMP. For the MEMP, in
the simulations, we get the execution time of Ui (A, B, C)
and the CS (D) when increasing the amount of data from
100 to 500. Note that the time to initialize the system ignored
in all experiments and jAj represents the size of samples in A,
the same thing for B, C,D. Ui (A, B, C) first calculates the
median value for comparison through CS, the computation
of which is related to the amount of their own data, and then
the size of the calculated comparison matrix is related to the
amount of CS’s data. When the number of samples’ identifi-
cation of A, B, and C increases, the increase of computation
time of A, B, or C is mainly reflected in generating sample
identification library, and the most time-consuming in D is
the blind signature. Figure 5 shows the calculation time of
A and D when the number of samples in D is 100 and the
samples in Ui (A, B, C) fluctuate from 100 to 500. Figures 6
and 7 show the changing trend of running time of A and D
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Table 4: Comparison of functionality.

Scheme GAM M-p EM WP

Cheng et al.’s scheme [30] × √ × ×
Fu et al.’s scheme [31] √ √ × ×
Our scheme √ √ √ √
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with the increase of jDj when the amounts of A, B, and C are
all 100. As the sample amount of D is increasing, the encryp-
tion time is proportional to the data volume ofD. Because the
time of aggregation and decryption is related to its own data
volume, its identification volume affects the size of an identi-
fication matrix, thereby affecting the aggregation volume,
resulting in a linear increase in the time of aggregation and
decryption. However, changes in the intersection of A, B, C,
and D will not affect the respective calculation time that is
only related to the amount of data of all parties, as is shown
in Figures 8 and 9.

6.3. Performance Analysis of the VFLR. In the VFLR, there is
no approximation algorithm applied here so that the updated
parameters in our VFLR are exactly the same as those in the
traditional logistic regression. Therefore, the training accu-
racy is also consistent. The main observation here is the run-
ning time of the VFLR. The extra cost in training is mainly
from power exponent and homomorphism. In the training
phase, te represents the time of a complete encryption and
ts represents the time of an aggregation and decryption for
n paticipants. When the sample size is m, complexity time
of encryption and aggregation, respectively, is oðte ·mÞ and
oðts ·mÞ. We selected 400 samples and set the number of fea-
tures at each end to 20. When the number of data amount is
100, 200, 300, and 400, respectively, the time for a single end
to complete an iteration and the time for D to complete
aggregation and decryption are captured. (See Figures 10
and 11.) As the figures show, we gradually adjust the data vol-
ume from 100 to 400, and the running time increases approx-
imately linearly.

6.4. Communication Overhead. Since the establishment of the
user identification library and the generation of the compar-
ison matrix can be done offline in the MEMP, we discuss the
communication overhead of the MEMP from the perspective
of the proposed aggregation model. The same is true for the
VFLR, because its execution process is completely consistent
with the GAM. Let the length of the ciphertext of each partic-
ipant be cl and the length of the HðÞ and error, respectively,
be jHj and jerrorj where cl > jHj and cl > jerrorj. In the
MEMP, it only takes one turn to complete the comparison
and identify the common entity. If CS sends l entity mask,
the communication load for each participant is l · cl. In order
for participants to complete the comparison, the CS needs to
send corresponding entity mask for n participants so that the
communication load of CS is jHj · l · n + n · jIDj. In the
VFLR, we just consider the communication load for one iter-
ation. Each participant sends ciphertext of size cl ·m. The CS
just needs to return errors of m samples, so the communica-
tion load of CS ism · jerrorj. In this way, the total space com-

plexity of MEMP and VFLR can be expressed as oðn · l · clÞ
and oðn ·m · clÞ. We can see that as the number of partici-
pants or samples increases, the total communication over-
head also grows linearly.

7. Related Work

Many privacy-preserving models for specific machine learn-
ing algorithms have emerged. There mainly exist two kinds
of technologies adopted in the privacy-preserving training,
i.e., differential privacy [21] and cryptography-based
approaches. Differential privacy applied to FL can prevent
clients from trying to reconstruct the private data of other cli-
ents by exploiting the global model, as done in [13, 22]. It
adds noise to the original dataset or gradient parameters
while ensuring the availability of the data. But it brings low
accuracy. The cryptographic technologies can provide pri-
vacy protection while ensuring accuracy. Secure multiparty
computation, secret sharing, and homomorphic encryption
are the common methods. For example, Aono et al. [23] used
homomorphic encryption to improve the logistic regression
algorithm ensuring the security of the training and predicting
data. Liu et al. [24] propose a secret sharing-based federated
extreme boosting learning framework to achieve privacy-
preserving model training for mobile crowdsensing. Xu
et al. [25] proposed a privacy-preserving and verifiable feder-
ated learning framework based on homomorphic hash func-
tions, in which clients can verify whether the result returned
by cloud server is correct.

Some previous works with privacy preserving over verti-
cal data partition are discussed in [26, 27]. However, there
exist potential privacy risks as a result of revealing class dis-
tribution over the given attributes. Research on VFL is first
proposed in [28], where a federated logistic regression
scheme is designed through an additively homomorphic
scheme. Nock et al. [29] then provide a formal assessment
of how errors in entity resolution impact learning. Cheng
et al. [30] propose a novel lossless privacy-preserving tree-
boosting system, which conducts a learning process on mul-
tiple parties with partially common user samples but differ-
ent feature sets. Fu et al. [31] combines Lagrange
interpolation and Chinese remainder theorem to realize the
secure aggregation of gradients. But some works assume
sample entities already being matched or they only deal with
two VFL participants. The proposed framework is more
advantages than those approaches as it can support multipar-
ticipant VFL by taking into account entity matching and
model training with withdrawal of participants. Table 4
shows the functional comparison between our framework
and existing two main works from GAM, multiparticipants
(M-p), entity matching (EM), withdrawal of participants

Table 5: Comparison of computation and communication.

Scheme Participant Aggregator Comm-rounds Mask number

Xu et al.’s scheme [25] 1R + 2SC tSC 2 n · t + 1
Fu et al.’s scheme [31] 2SC + 2CR 1CR 1 n

Our scheme 1R + 1HE + 1P 1HE + 1P 1 n

12 Wireless Communications and Mobile Computing



(WP). Table 5 shows the comparison of computation and
communication mainly for secure aggregation from the par-
ticipant and aggregator’s main function operation, commu-
nication rounds (Comm-rounds), and mask number (i.e.,
the number of message received by the aggregator), where
SC represents the times of secret reconstruction, CR repre-
sents the times of calculation of Chinese residual theorem,
HE represents the times of homomorphic encryption, R rep-
resents the times of pseudorandom generator, and P repre-
sents the times of calculation of the power exponent. It can
be seen from Table 5 that our scheme has advantages over
reference [25] in terms of calculation and communication
overhead. Compared with [25, 31], although our scheme
applies the principle of secret sharing, it does not need to
spend the overhead of secret reconstruction.

8. Conclusion

For privacy protection of data aggregation and joint training
in federated learning, as well as entity matching, we designed
a PFLF where we proposed a general aggregation model and
designed a multiparty entity matching protocol, which can
find the common entity of multiple participants without data
disclosure. In addition, our GAM was used to improve logis-
tic regression algorithm to ensure the confidentiality of data
samples during training and support the withdrawal of par-
ticipants over VFL. The security analysis of the scheme was
given based on the simulator, and the performance of the sys-
tem was tested with the experimental data. The next research
will focus on optimizing the operating load of the system and
considering cases where the participants are malicious to
construct a verifiable federated learning framework and
design incentives to facilitate federated learning.
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