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Background. BRCA1 interacting helicase 1 (BRIP1), an ATP-dependent DNA helicase which belongs to an Iron-Sulfur (Fe-S)
helicase cluster family with a DEAH domain, plays a key role in DNA damage and repair, Fanconi anemia, and development of
several cancers including breast and ovarian cancer. However, its role in pan-cancer remains largely unknown. Methods. BRIP1
expression data of tumor and normal tissues were downloaded from the Cancer Genome Atlas, Genotype-Tissue Expression, and
Human Protein Atlas databases. Correlation between BRIP1 and prognosis, genomic alterations, and copy number variation
(CNV) as well as methylation in pan-cancer were further analyzed. Protein-protein interaction (PPI) and gene set enrichment and
variation analysis (GSEA and GSVA) were performed to identify the potential pathways and functions of BRIP1. Besides, BRIP1
correlations with tumor microenvironment (TME), immune infltration, immune-related genes, tumor mutation burden (TMB),
microsatellite instability (MSI), and immunotherapy as well as antitumor drugs were explored in pan-cancer. Results. Diferential
analyses showed an increased expression of BRIP1 in 28 cancer types and its aberrant expression could be an indicator for
prognosis in most cancers. Among the various mutation types of BRIP1 in pan-cancer, amplifcation was the most common type.
BRIP1 expression had a signifcant correlation with CNV and DNA methylation in 23 tumor types and 16 tumor types, re-
spectively. PPI, GSEA, and GSVA results validated the association between BRIP1 and DNA damage and repair, cell cycle, and
metabolism. In addition, the expression of BRIP1 and its correlation with TME, immune-infltrating cells, immune-related genes,
TMB, and MSI as well as a variety of antitumor drugs and immunotherapy were confrmed. Conclusions. Our study indicates that
BRIP1 plays an imperative role in the tumorigenesis and immunity of various tumors. It may not only serve as a diagnostic and
prognostic biomarker but also can be a predictor for drug sensitivity and immunoreaction during antitumor treatment in pan-
cancer.

1. Introduction

Cancer remains a thorny problem which brings immense
sufering to individual health and fnancial burden. Despite
the tremendous advances in the detection of novel bio-
markers and development of targeted drugs as well as im-
munotherapies in recent decades, the high morbidity and
mortality of cancer is still frustrating. According to the

GLOBOCAN 2020 statistics, there were approximately 19.3
million new cases and 10.0 million deaths related to cancer
worldwide in 2020, and the global cancer burden was ex-
pected to reach 28.4 million cases in 2040 with a rise of 47%
from 2020 [1]. Terefore, persistent eforts are urgently
needed to understand the complex mechanisms of tumor-
igenesis and identify novel biomarkers for early diagnosis,
clinical prognosis, and therapy response. Tanks to various
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public databases, valuable data can be mined and pan-cancer
analysis can be conducted for a comprehensive investigation
of extracted genes.

BRIP1 (BRCA1 interacting helicase 1), also known as
FANCJ (as the gene mutated in the J complementation group
of Fanconi anemia) or BACH1 (BRCA1-associated C-
terminal helicase), was frst discovered in 2001 by its in-
teraction with BRCA1 [2]. BRIP1 is a protein coding gene
which encodes for homologous recombination repair (HRR)-
related protein and facilitates DNA single-strand break (SSB)
and DNA double-strand break (DSB) repair during vital
biological processes including DNA replication, transcrip-
tional regulation, and overall metabolic health [3]. BRIP1,
whose encoded protein belongs to an Iron-Sulfur (Fe-S)
helicase cluster family with a DEAH domain, helps to pre-
serve chromatin structure and function and may also
maintain genomic and epigenetic stability. Besides its col-
laboration with numerous DNA metabolizing proteins im-
plicated in the detection and repair of DNA damage, BRIP1
also participates in cell cycle checkpoint control [4]. Recent
studies manifest that BRIP1 took part in miscellaneous tu-
morigeneses and pathological conditions. Te National
Comprehensive Cancer Network (NCCN) guidelines iden-
tifed BRIP1 as a potential risk factor for breast cancer, es-
pecially for triple negative breast cancers [5]. In ovarian
cancer, a deleterious mutation of BRIP1 was associated with
low-grade histology and led to an increased risk of the disease
[6]. In endometrial cancer, BRIP1 correlated to tumor re-
currence and patients with mutations in BRIP1 might beneft
from poly ADP-ribose polymerase (PARP) inhibitors [7].
Mikaeel et al. reported that BRIP1 might be a cancer-
predisposing gene in young-onset colorectal cancer [8].
Mani et al. suggested that BRIP1 was of the imperative role in
maintaining neuronal cell health and homeostasis by sup-
pressing oxidative stress, excitotoxicity induced DNA dam-
age, and protecting mitochondrial integrity [3]. However,
there is a lack of a comprehensive pan-cancer analysis of
BRIP1. Hence, we extracted diverse data from Te Cancer
Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx),
Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas
(HPA), cBioPortal and GeneMANIA databases and evaluated
the expression, prognosis, and mutation as well as function of
BRIP1 in various cancer types. We further carried out im-
mune infltration analysis, and the relationships between
BRIP1 and immune-related genes and tumor mutation
burden (TMB)-microsatellite instability (MSI) as well as
immunotherapy and targeted drug responses were sub-
sequently analyzed. Tis in-depth data-mining based study
helped us understand the role of BRIP1 in tumorigenesis,
provided evidence for its diagnostic and prognostic evaluation
in the clinic, and shed light on the novel targeted treatment as
well as immunotherapy in pan-cancer.

2. Materials and Methods

2.1. RawData Collection andDiferential ExpressionAnalysis.
Te mRNA expression profles and related clinical in-
formation of 33 human cancers and their corresponding
normal samples were, respectively, downloaded from TCGA

via the UCSC Xena platform (https://xena.ucsc.edu/) [9].
Additional gene expression data were also retrieved from
GTEx (https://gtexportal.org/home/datasets) and CCLE
(https://sites.broadinstitute.org/ccle). BRIP1 expression was
transferred to transcripts per million (TPM) and then
evaluated by log2 transformation. T-test was carried out to
identify its diferent expression between tumor and normal
tissues as well as between diferent TNM stages. R software
(Version 4.0.3, https://www.Rproject.org) and the “ggplot2”
R package (Version 3.3.3) were applied to analyze the data
and draw box diagrams. Te abbreviations and full names of
the various cancer types were listed in Table 1. Besides, to
evaluate the diferential expression of BRIP1 at the protein
level, immunohistochemistry (IHC) images in multiple
tumors and normal tissues were downloaded from HPA
(https://www.proteinatlas.org/). Te antibody used for IHC
was HPA005474.

2.2. Prognostic Value of BRIP1 in Pan-Cancer. Overall sur-
vival (OS), disease-specifc survival (DSS), disease-free in-
terval (DFI), and progression-free interval (PFI) were of vital
importance in exploring the association between BRIP1
expression and prognosis. Related survival data were
downloaded from the UCSC Xena platform. Te
Kaplan–Meier (KM) method and log-rank test were utilized
to carry out survival analyses in each cancer with the best
cut-of value of BRIP1 expression by using R packages
“survminer” and “survival.” Univariate Cox regression and
R package “forestplot” were also used to identify the rele-
vancy between BRIP1 expression and survival in pan-cancer.
Te hazard ratio (HR) and Cox’s regression P values were
shown in the plot.

2.3. BRIP1 Mutation and Its Correlation with Copy Number
Variation and DNA Methylation. To further investigate the
modifcation of BRIP1 gene in pan-cancer, we used the
cBioPortal database (https://cbioportal.org) to explore its
mutation, structural variant, amplifcation, deep deletion,
and multiple alterations [10]. As copy number variation
(CNV) and copy number alteration (CNA) played a critical
role in cancer initiation and progression, and promoter
methylation was critical in gene silencing and inactivation,
related data were downloaded from cBioPortal for further
analyses. Association between the expression of BRIP1 and
CNV as well as promoter methylation was further evaluated
by carrying out Pearson correlation analysis. R software and
the “ggplot2” R package were acquired to analyze the data
and draw lollipop plots.

2.4. Gene Interaction of BRIP1 and Its Enrichment and
Variation Analysis. Te GeneMANIA database (https://
www.genemania.org) was applied to detect functionally
similar genes to BRIP1 and construct the protein-protein
interaction (PPI) network [11, 12]. Subsequently, gene set
enrichment analysis (GSEA) was performed in pan-cancer
based on the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) database to explore the
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biological signalling pathway by using R package “cluster-
Profler,” and R package “ridgeplot” was used to draw the
ridge plot [13, 14]. We further downloaded the “gmt” fle of
the 50 hallmark gene sets from the Molecular Signatures
Database (MSigDB, via https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) [15, 16] and performed gene set variation
analysis (GSVA) using the “GSVA” R package to explore the
correlation between BRIP1 expression and 50 hallmark
pathways. Pearson correlation analysis was conducted, and
the “pheatmap” R package was used to turn the results into
heatmap.

2.5. BRIP1 Expression and Its Relationship with Immunity.
Tumor microenvironment (TME), a crucial element of tu-
mor, has been reported to play a decisive role in cancer
development and therapeutic responses. Hence, we carried
out evaluation of the association between BRIP1 expression

and the proportion of immune-stromal component in pan-
cancer. Data were downloaded from TCGA via the UCSC
Xena platform, while R package “ESTIMATE” was used to
evaluate the immune score, stromal score, and tumor purity
score. Subsequently, the specifc tumor-infltrating immune
cells (TIICs) and its correlation to BRIP1 expression were
assessed via Tumor Immune Estimation Resource (TIMER)
database (https://timer.cistrome.org/) [17]. Te TIMER,
EPIC, MCPCOUNTER, CIBERSORT, CIBERSORT_ABS,
XCELL, and QUANTISEQ algorithms were utilized to es-
timate the immune infltration of the 21 TIICs. Relationship
between BRIP1 expression and immune-related genes was
also evaluated at the pan-cancer level. Te visualization of
the results was implemented with R packages “ggplot2” and
“pheatmap.” Besides, TMB, which refects cancer mutation
quantity, has been considered as a leading candidate bio-
marker for immune checkpoint blockade (ICB) [18].

Table 1: Full names and abbreviations of the tumor types from TCGA and CCLE.

Abbreviation Full name
ACC Adrenocortical carcinoma
ALL Acute lymphoblastic leukemia
BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma
CLL Chronic lymphoblastic leukemia
COAD Colon adenocarcinoma
DLBC Lymphoid neoplasm difuse large B-cell lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and neck squamous cell carcinoma kidney
KICH Kidney chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute myeloid leukemia
LCML Chronic myeloid leukemia
LGG Brain lower grade glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MB Medulloblastoma
MESO Mesothelioma
MM Multiple myeloma
NB Neuroblastoma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SCLC Small cell lung cancer
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
TGCT Testicular germ cell tumor
THCA Tyroid carcinoma
THYM Tymoma
UCEC Uterine corpus endometrial carcinoma uterine
UCS Uterine carcinosarcoma
UVM Uveal melanoma
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Meanwhile, MSI, which facilitates mutation and acts as
a biomarker of response to immune checkpoint inhibitors
(ICPis), plays an important role in improving the possibility
of a favorable response to immunotherapy [19]. We thus
analyzed the TMB-MSI association with BRIP1 in pan-
cancer by Pearson correlation using Sangerbox tools
(https://vip.sangerbox.com/home.html), and the results
were shown in radar maps.

2.6. BRIP1 Expression and Diferent Terapies. To further
validate the relationship between BRIP1 and ICB therapy re-
sponse, data from the IMvigor210 cohort, which contains 298
metastatic urothelial cancer cases treated by atezolizumab (an
antiprogrammed cell death ligand 1, anti-PD-L1 agent), were
obtained and analyzed [20]. Patients were divided into two
subgroups, one with a low level of BRIP1 and the other with
a high level of BRIP1, according to the best cut-of value
identifed by the “survminer” R package, and immunotherapy
response of BRIP1 was then validated. A chi-square test was
carried out to assess the proportion diferences of responses
between subgroups. Furthermore, relationships between BRIP1
and IC50 of numerous antitumor drugs were explored via the
Genomics of Drug Sensitivity in Cancer (GDSC) database
(https://www.cancerrxgene.org). A Spearman correlation was
used to evaluate the drug resistance.

3. Results and Discussion

3.1. BRIP1 Expression Profle. Te expression level of BRIP1
explored via the GTEx transcriptomics dataset indicated it
was low in most normal tissues under physiological cir-
cumstances, whereas higher in bone marrow than other 30
tissues (Figure 1(a)). Results from CCLE revealed that its
expression level was generally increased in various cancer
cell lines as the highest expression was in NB, ALL, and
SCLC (Figure 1(b)). TCGA data showed a similar expression
tendency to that of CCLE, and the highest expression level of
BRIP1 was in LAML and genital cancers such as CESC and
TGCT (Figure 1(c)). Comparison of the expression level
between cancer and normal tissues combing TCGA and
GTEx data manifested that BRIP1 was signifcantly upre-
gulated in 7 digestive tumors (including CHOL, COAD,
ESCA, LIHC, PAAD, READ, and STAD) and other 21 tu-
mors (including ACC, BLCA, BRCA, CESC, DLBC, GBM,
HNSC, KIRC, KIRP, LGG, LUAD, LUSC, OV, PCPG,
PRAD, SARC, SKCM, THCA, THYM, UCEC, and UCS)
and downregulated in TGCT (Figure 1(d)), indicating that
BRIP1 might play an oncogenic role during carcinogenesis
and may function as a potential diagnostic biomarker.
Moreover, a noteworthy increase in the expression of BRIP1
was detected in 16 cancers (including BLCA, BRCA, CESC,
CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD,
LUSC, READ, STAD, THCA, and UCEC) between paired
tumor tissues and their corresponding normal tissues
(Figure S1). When further seeking for the association be-
tween BRIP1 expression and diferent tumor stages, we
found that there was a signifcant diference between stage I,
II and stage III, IV in ACC, KIRP, LUAD, and OV

(Figure S2). Subsequently, the protein level of BRIP1 was
explored in multiple tumor and normal tissues. Represen-
tative IHC images showed that BRIP1 was mostly enriched
in the nucleoplasm and nuclear membrane and had a low
expression level in normal tissues than that of tumor tissues
in breast, cerebellum, cervix, colon, endometrium, kidney,
liver, lung, lymph node, ovary, pancreas, prostate, skin,
stomach, thyroid gland, and urinary bladder, while high in
normal testis tissues than tumor tissues (Figure 2).

3.2. Prognostic Value of BRIP1 across Cancers. Given the
aberrant expression of BRIP1 observed in pan-cancer, we
wonder its role within prognosis. Terefore, we analyzed the
expression of BRIP1 and its association with OS, DSS, DFI,
and PFI, respectively. Cox proportional hazards model
analysis elucidated BRIP1 expression was correlated with OS
in LGG (P< 0.001), MESO (P< 0.001), KIRP (P< 0.001),
KICH (P< 0.001), ACC (P< 0.001), PAAD (P � 0.003),
LUAD (P � 0.005), READ (P � 0.011), PRAD (P � 0.012),
and THYM (P � 0.044). BRIP1 was a high-risk factor in
LGG, MESO, KIRP, KICH, ACC, PAAD, LUAD, and
PRAD, while it was a low-risk factor in READ and THYM.
Tese results are shown in forestplot in Figure 3(a). KM
survival analyses illustrated that upregulated BRIP1 was
associated with poor OS in ACC, CHOL, KICH, KIRC,
KIRP, LGG, LIHC, LUAD, MESO, PAAD, PCPG, PRAD,
SKCM, UCEC, and UVM, while downregulated BRIP1 had
shorter survival times in BLCA, CESC, COAD, HNSC, OV,
READ, SARC, STAD, and THYM (Figures 3(b)–3(y)).

As for DSS, it was associated with BRIP1 in LGG
(P< 0.001), KIRP (P< 0.001), MESO (P< 0.001), KICH
(P< 0.001), ACC (P � 0.001), PAAD (P � 0.002), PRAD
(P � 0.002), LUAD (P � 0.013), OV (P � 0.015), PCPG
(P � 0.029), and LIHC (P � 0.031), among which BRIP1 was
considered as a low-risk factor in OV and a high-risk factor
in other cancer types (Figure 4(a)). Besides, worse DSS was
found in ACC, BLCA, KICH, KIRC, KIRP, LGG, LIHC,
LUAD, MESO, PAAD, PCPG, PRAD, SKCM, and UCEC
with the increased expression level of BRIP1, while in CESC,
COAD, DLBC, HNSC, OV, STAD, THYM and UCS with
the decreased expression level of BRIP1 (Figures 4(b)–4(w)).

When considering the relationship between BRIP1 ex-
pression and DFI, there was a signifcant association be-
tween them in KIRP (P< 0.001), THCA (P � 0.002), PAAD
(P � 0.003), and LIHC (P � 0.026). Moreover, BRIP1 was
a high-risk factor in all of these four cancers (Figure 5(a)). In
addition, poor DFI was perceived in BLCA, KIRP, LIHC,
LUAD, LUSC, MESO, PAAD, SARC, and THCA as BRIP1
upregulated in these tumors, while in COAD, DLBC, KIRC,
READ, STAD, UCEC, and UCS as BRIP1 downregulated
(Figures 5(b)–5(q)).

Regarding PFI, it was correlated with BRIP1 in LGG
(P< 0.001), KIRP (P< 0.001), KICH (P< 0.001), ACC
(P< 0.001), MESO (P< 0.001), LIHC (P< 0.001), PAAD
(P � 0.001), UVM (P � 0.007), PRAD (P�0.017), OV
(P � 0.040), and LUAD (P � 0.048), among which BRIP1
was regarded as a low-risk factor in OV but a high-risk factor
in others (Figure 6(a)). Additionally, increased expression of
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Figure 1: Continued.
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Figure 1: Diferential expression level of BRIP1. (a) Expression of BRIP1 in 31 normal tissues from GTEx database. (b) Expression of BRIP1
in 30 cancer cell lines from CCLE database. (c) Expression of BRIP1 in 33 types of cancer from TCGA database. (d) Comparison between
tumor and normal tissues of the BRIP1 expression from TCGA and GTEx database. Normalized expression levels of BRIP1 were changed by
log2(TPM+0.001). ∗ represents P< 0.05, ∗∗ represents P< 0.01, ∗∗∗ represents P< 0.001, and ∗∗∗∗ represents P< 0.0001. Expression levels of
BRIP1 in the frst three fgures are arranged in ascending order.

breast breast cancer-1 breast cancer-2 cerebellum glioma-1 glioma-2 cervix cervical cancer-1 cervical cancer-2

colon colon cancer-2colon cancer-1 endometrial cancer-1 endometrial cancer-2endometrium kidney renal cancer-1 renal cancer-2

liver liver cancer-1 liver cancer-2 lung lung cancer-1 lung cancer-2 lymph node lymphoma-1 lymphoma-2

ovary ovary cancer-1 ovary cancer-2 pancreas pancreatic cancer-1 pancreatic cancer-2 prostate prostate cancer-1 prostate cancer-2

skin skin cancer-1 skin cancer-2 stomach gastric cancer-1 gastric cancer-2 testis testis cancer-1 testis cancer-2

thyroid gland thyroid cancer-1 thyroid cancer-2 urinary bladder urothelial cancer-1 urothelial cancer-2

Figure 2: Representative IHC images of BRIP1 in normal and tumor tissues from HPA database.
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BRIP1 was associated with poor PFI in ACC, BLCA, HNSC,
KICH, KIRP, LGG, LIHC, LUAD, MESO, PAAD, PCPG,
PRAD, SARC, SKCM, THCA, and UVM, while its decreased
expression was correlated to poor PFI in CESC, COAD,
GBM, OV, READ, STAD, and UCEC (Figures 6(b)–6(x)).

In general, BRIP1 expression level was a vital factor
infuencing the survival of various cancers and it played an
important role in the tumor progression and recurrence.

3.3. Correlation betweenBRIP1Expression andCNVaswell as
DNA Methylation in Pan-Cancer. Te previous fndings
indicated that BRIP1 might play a role in the carcinogeneses
and it was widely accepted that the genomic mutation was
associated with tumorigenesis. Terefore, a comparative
analysis of genomic mutations of BRIP1 in pan-cancer was
conducted. Results from the cBioPortal database consisting
of 32 cancer types and 10953 tumor samples showed that the
amplifcation of BRIP1 was one of the most vital single
factors for alteration. It accounted for 6.92%, 4.6%, and
3.14% in BRCA, MESO, and sarcoma, respectively, as the
largest proportion of all mutation types among these tumors
(Figure 7(a)). Meanwhile, mutation of BRIP1 became the
most important single factor for alteration in UCEC (8.88%),
SKCM (5.86%), and BLCA (3.89%). Moreover, there was

a signifcant positive correlation between CNV and BRIP1
expression in 5 digestive tumors (COAD, ESCA, LIHC,
STAD, and READ) and other 18 tumors (UCS, BRCA,
LUSC, CESC, OV, BLCA, LUAD, SKCM, UCEC, PRAD,
LAML, PCPG, LGG, MESO, KIRC, HNSC, SARC, and
KIRP), as shown in the lollipop chart (Figure 7(b)), and the
correlation in each specifc tumor type was summarized in
Figure S3. As for promoter methylation, it was signifcantly
negatively associated with the expression level of BRIP1 in 4
digestive tumors (COAD, ESCA, LIHC, and STAD) and
other 12 tumors (LUAD, HNSC, BLCA, SKCM, CESC,
UCEC, BRCA, LUSC, SARC, THYM, TGCT, and DLBC)
(Figures 7(c) and S4).

3.4. Interacting Genes of BRIP1 and Its Enrichment and
Variation Analysis. Te PPI network for BRIP1 and its
coexpressed as well as colocalized genes were constructed by
GeneMANIA. Te results showed the 20 most frequently
altered proteins closely linked to BRIP1, in which BRCA1
had the most prominent correlation with BRIP1 as expected.
Besides, the functional analysis indicated that BRIP1 and its
similar genes had a signifcant association with DNA re-
combination, double-strand break repair, and re-
combinational repair (Figure 8). To uncover the function of

(a)

(b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 3: Correlation between BRIP1 expression and overall survival (OS). (a) Forest plot of associations between BRIP1 and OS in 33
cancer types. (b–y) KM analysis results of the relationship between BRIP1 level and OS. Te high and low expression level of BRIP1 was
divided by the best cut-of value.
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BRIP1, we carried out GSEA in 33 cancer types, and the
results suggested that the top 6 signalling pathways corre-
lated with BRIP1 among all cancers based on KEGG were
DNA replication, cell cycle, spliceosome, nucleocytoplasmic
transport, homologous recombination, and Fanconi anemia
pathway. Te specifc 20 signalling pathways associated with
BRIP1 in each type of tumor are summarized in Figure S5.

As for GSVA, the relationship between BRIP1 and
various hallmark pathways in pan-cancer is shown in the
heatmap (Figure 9). It was obvious that BRIP1 had the most
signifcantly positive correlation with G2M checkpoint and
E2F targets in ACC, BLCA, LGG, LUSC, PCPG, and THYM,
with mitotic spindle and G2M checkpoint in BRCA, ESCA,
MESO, OV, PAAD, and PRAD, with mitotic spindle in
CESC, CHOL, DLBC, SARC, TGCT, and UCS, with G2M
checkpoint in COAD, GBM, STAD, and THCA, with mi-
totic spindle, G2M checkpoint, and E2F targets in HNSC,
KIRC, KIRP, LAML, LIHC, and LUAD, with G2M check-
point andMYC targets V1 in KICH, withMYC targets V1 in
READ and UCEC, with mitotic spindle and MYC targets V1
in SKCM, and with MYC targets V1 and protein secretion in

UVM. Moreover, the most prominently negative correlation
between BRIP1 and xenobiotic metabolism lay in ACC,
BLCA, DLBC, READ, SARC, and UCEC, between BRIP1
and xenobiotic metabolism as well as myogenesis lay in
BRCA, between BRIP1 and coagulation as well as KRAS
signalling upregulation lay in CESC, between BRIP1 and
xenobiotic metabolism and myogenesis as well as P53
pathway lay in COAD, between BRIP1 and xenobiotic
metabolism and adipogenesis as well as complement lay in
ESCA, between BRIP1 and xenobiotic metabolism as well as
adipogenesis lay in GBM, between BRIP1 and KRAS sig-
nalling downregulation lay in HNSC, KICH, and UVM,
between BRIP1 and KRAS signalling downregulation as well
as oxidative phosphorylation lay in KIRC, between BRIP1
and xenobiotic metabolism as well as oxidative phosphor-
ylation lay in KIRP, between BRIP1 and coagulation as well
as P53 pathway lay in LAML, between BRIP1 and bile acid
metabolism as well as heme metabolism lay in LGG, be-
tween BRIP1 and myogenesis lay in LIHC and STAD,
between BRIP1 and bile acid metabolism as well as fatty
acid metabolism lay in LUAD, between BRIP1 and

Figure 4: Correlation between BRIP1 expression and disease-specifc survival (DSS). (a) Forest plot of associations between BRIP1 and DSS
in 33 cancer types. (b–w) KM analysis results of the relationship between BRIP1 level and DSS. Te high and low expression level of BRIP1
was divided by the best cut-of value.
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coagulation as well as adipogenesis lay in LUSC, between
BRIP1 and xenobiotic metabolism and bile acid meta-
bolism as well as fatty acid metabolism lay in MESO, be-
tween BRIP1 and bile acid metabolism lay in OV, between
BRIP1 and pancreas beta cells lay in PAAD, between BRIP1
and apical surface lay in PCPG, between BRIP1 and xe-
nobiotic metabolism as well as KRAS signalling down-
regulation lay in PRAD, between BRIP1 and xenobiotic
metabolism, myogenesis as well as KRAS signalling
downregulation lay in SKCM, between BRIP1 and P53
pathway lay in TGCT, between BRIP1 and fatty acid
metabolism lay in THCA, and between BRIP1 and xeno-
biotic metabolism, myogenesis, and P53 pathway as well
apical junction lay in THYM. In summary, the previous
results elucidated the hallmark pathways and potential
mechanisms of BRIP1 in pan-cancer. In essence, BRIP1
kept an intimate relationship with HRR, cell cycle, and
varied metabolism in diferent cancers.

3.5. BRIP1 Expression and Its Correlation with TME and
Immune Infltration. Along with the above coexpressed
genes and signalling pathways, TME and immune in-
fltration also take part in the regulation of tumorigenesis. As
part of the complex microenvironment, TIICs have a crucial
role in cancer progression and therapeutic responses. Ac-
cordingly, we explored the correlation between BRIP1

expression and TME by ESTIMATE and evaluated the co-
efcient of BRIP1 expression and immune infltration level via
TIMER.Te results revealed that the expression of BRIP1 had
signifcant correlations with tumor purity and ESTIMATE-
Score in 19 cancer types (Figure 10). Te top three most
signifcant cancers associated with BRIP1 expression were
GBM, SARC, and LUSC based on ImmuneScore, Stromal-
Score, and ESTIMATEScore. Te higher the level of BRIP1 as
these three tumors expressed, the less stromal and immune
cells as these tumors had. On the contrary, the higher level of
BRIP1 as these tumors expressed, the higher purity as these
tumors had. Results of ESTIMATEScore for all tumor types
are listed in Figure S6. In addition, BRIP1 expression and its
association with TIICs were signifcant in most cancer types
(Figure 11). Especially in THYM, BRIP1 had a positive
correlation with B cells, memory and naive CD4+ T cells,
CD8+ T cells, myeloid dendritic cells, neutrophils (by
CIBERSORT, CIBERSORT_ABS, and TIMER algorithm),
common lymphoid progenitor, granulocyte and monocyte
progenitor, and a negative correlation with fbroblast, en-
dothelial cell, eosinophil, macrophage, mast cell, monocyte,
neutrophil (by XCELL and MCPCOUNTER algorithm), NK
cell, and common myeloid progenitor. As for those digestive
tumors, the most signifcant association between BRIP1 and
TIICs was found in STAD. A signifcantly negative correlation
was found between BRIP1 and fbroblast as well as hema-
topoietic stem cell in STAD.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o) (p) (q)

Figure 5: Correlation between BRIP1 expression and disease-free interval (DFI). (a) Forest plot of associations between BRIP1 and DFI in
33 cancer types. (b–q) KM analysis results of the relationship between BRIP1 level and DFI.Te high and low expression level of BRIP1 was
divided by the best cut-of value.
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Moreover, the association between the expression of
BRIP1 and immune-related genes including immune-
activating genes, immunosuppressive genes, mismatch re-
pair (MMR) genes, and genes encoding the major histo-
compatibility complex (MHC), chemokine, and chemokine
receptor proteins is evaluated (Figure 12). Results indicated
that BRIP1 was positively correlated with the majority of
immune-activating genes as well as immunosuppressive
genes in UVM, KIRC, THCA, KICH, PAAD, HNSC, PRAD,
and OV. In HNSC, OV, PRAD, UVM, LAML, TGCT,
UCEC, READ, SKCM, LIHC, ESCA, DLBC, LUSC, BLCA,
GBM, BRCA, CESC, KICH, STAD, SARC, LGG, PAAD,
PCPG, and KIRC, the expression of BRIP1 was positively
correlated with most of the MMR genes. As for the corre-
lation between BRIP1 and the majority of genes encoding
the chemokine and chemokine receptor proteins, a positive
correlation was found in THCA for the former and in KIRC
and PRAD for the latter. Besides, there was a positive
correlation between BRIP1 and most of the MHC-related
genes in KIRC, PAAD, UVM, and THCA, and a negative
correlation between BRIP1 and most of the MHC-related
genes in THYM, GBM, and LUSC.

3.6. Correlation between BRIP1, TMB/MSI, and Immuno-
therapy Response. To discover the role of BRIP1 in pre-
dicting the response to ICPis, we assessed the correlation
between BRIP1 expression and the two famous biomarkers,
TMB andMSI. BRIP1 was positively associated with TMB in
2 digestive tumors (COAD and STAD) and other 7 tumors
including KICH, LUAD, ACC, OV, PRAD, KIRC, and
SKCM (Figures 13(a) and S7). As for MSI, it was negatively
correlated with BRIP1 in DLBC and positively correlated
with BRIP1 in 3 digestive tumors (COAD, READ, and
STAD) and other 4 tumors including GBM, LUSC, KIRC,
and LUAD (Figures 13(b) and S8). As indicated by previous
studies that high TMB/MSI-H increased patients’ response
to ICPis and was correlated to better immunotherapy
outcomes, we therefore, downloaded data of the IMvigor210
cohort to investigate the correlation between BRIP1 and
treatment response. Results showed that in this urothelial
cancer cohort, patients with a high level of BRIP1 had
a better response to the treatment and a more favorable
survival rate (Figures 13(c) and 13(d)). Moreover, the anti-
PD-L1 response rate was 49% among patients with a high
expression level of BRIP1, while there were only 19% of the

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o) (p) (q)

(u) (v) (w) (x)(r) (s) (t)

(a)

Figure 6: Correlation between BRIP1 expression and progression-free interval (PFI). (a) Forest plot of associations between BRIP1 and PFI
in 33 cancer types. (b–x) KM analysis results of the relationship between BRIP1 level and PFI. Te high and low expression level of BRIP1
was divided by the best cut-of value.
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low-BRIP1 patients responding to the treatment
(Figure 13(e)). Tese results showed the potential of BRIP1
in predicting immunotherapy response and BRIP1 could be
a promising candidate biomarker for immunotherapy of
various cancers.

3.7. BRIP1 and Antitumor Drugs. Other than immunother-
apy, the relationships between BRIP1 and IC50 of numerous
antitumor drugs are also evaluated (Table S1). Among the 192
antitumor drugs, 141 of them including Olaparib and Nir-
aparib (two PARP inhibitors) were negatively correlated with
BRIP1, which indicated a promising response in these
treatments. Besides, 7 drugs including Trametinib,
SCH772984, ERK_2440, ERK_6604, Selumetinib, Ulixertinib,
and VX-11e were positively correlated with BRIP1 which
indicated a potential resistance during treatment.

4. Discussion

Cancer is a complex polyfactorial disease with high mor-
bidity and mortality, remaining as an unsolved threaten to
human health. Tus, research of efective diagnostic bio-
markers and therapeutic targets for tumors has always been
a heated focus. With the availability of public databases,
cancer-related data can be mined to explore novel bio-
markers.Trough pan-cancer analysis, BRIP1 emerged from
a bunch of candidate genes who were applicable for broad-
spectrum tumor diagnosis as it signifcantly upregulated in
most tumors. Herein, we conducted a systematic and
comprehensive analysis of BRIP1 in pan-cancer. We vali-
dated its diferential expression in various cancers between
tumor and normal tissues at transcriptional and protein
levels. Subsequently, we elucidated its role in prognosis, gene
function, and regulatory pathways, and we discovered its
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Figure 7: Genetic mutation of BRIP1 and its correlation with CNV and DNAmethylation. (a) BRIP1 alteration frequency in pan-cancer. (b)
Correlation between BRIP1 expression and CNV. (c) Correlation between BRIP1 expression and methylation.
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association with TME, immune infltration, immune-related
genes, and treatment responses.

BRIP1, with a length of more than 180 kb, is located on
chromosome 17q23.2 and encodes a protein of 1249 amino
acids. Previous studies regarded BRIP1 as a tumor sup-
pressor gene and revealed its diagnostic role in various types
of cancer, such as breast cancer, ovarian cancer, cervical
cancer, and colon cancer [21–24]. In our comprehensive
data mining-based analysis, by analyzing data from the
GTEx, CCLE, and TCGA databases, we revealed that BRIP1
expression was higher in 28 types of cancer tissues (in-
cluding BRCA, CESC, COAD, and OV, in consistence with
previous study results) and only lower in TGCT than in
normal tissues. Furthermore, our results of diferential ex-
pression analysis of paired samples and the results of IHC
analysis also confrmed the diagnostic role of BRIP1 in pan-

cancer. Unfortunately, due to the lack of normal sample
data, diferential expression analysis could not be conducted
in MESO and UVM. Accumulating evidence will be needed
for further exploration in these two tumors. Besides, we
found a signifcant diferential expression between tumor
stage I, II and stage III, IV in ACC, KIRP, LUAD, and OV,
suggesting the predicting role of BRIP1 in early diagnosis of
these cancers is worth looking forward to. Along with its
predicting role in diagnosis, we also performed prognostic
analyses in pan-cancer based on data from TCGA. Either
from OS or DSS, as well as from DFI and PFI, we found
a signifcant correlation between BRIP1 expression and
survival probability in various cancers, among which, BRIP1
was basically a high-risk factor. Whether it be OS, DSS, DFI,
or PFI, BRIP1 remained as a high-risk factor in KIRP and
PAAD. Although our results from TCGA database did not

Networks
Physical Interactions
Co-expression

Genetic Interactions
Pathway

Co-localization
Predicted

Shared protein domains

Functions
DNA recombination
double-strand break repair
recombinational repair
catalytic activity, acting on DNA
DNA-dependent ATPase activity

positive regulation of DNA metabolic process

Figure 8: Te PPI network and function analysis of BRIP1 from GeneMANIA.
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fnd a correlation between BRIP1 expression and prognosis
of breast cancer patients, a study based specifcally on several
breast cancer databases exhibited that higher BRIP1 ex-
pression was correlated with poor OS, DSS, DFI, and PFI
[25]. Another study mining data of LUAD patients from the
Genomic Data Commons (GDC) Data Portal indicated that
BRIP1 might regulate fbroblast growth factor 22 and afect

MAPK as well as Rap 1 signalling pathways in all tumor
stages of LUAD, and a high level of BRIP1 showed boundary
signifcance on OS [26], in consistence with our results.
Synthesizing the previous results, we believed that the high
expression of BRIP1 could hamper cancer patients’ survival
and it might be an independent prognostic factor for various
tumors. Although BRIP1 seemed to be a novel biomarker of
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vital clinical utility in predicting diagnosis and prognosis in
pan-cancer, the distinct efects of the diferential expression
of BRIP1 on protein function in various cancer types remain
largely unknown. Previously, a meta-analysis based on
29400 patients with 116000 controls from 63 studies found
BRIP1 was associated with a high risk of ovarian cancer and
the HRR pathway might be involved [27, 28]. A cohort of
more than 117000 patients elucidated themissense variant of
BRIP1 conferred risk for ovarian and breast cancer. Re-
searchers further studied the functional characterization of
BRIP1, revealing an impaired interstrand crosslink (ICL)
repair of DNA due to the missense variants of BRIP1 [29]. In
an Asian esophageal squamous cell carcinoma cohort, re-
searchers found that BRIP1 mutant was an adverse factor for
OS and the cohort harboured TP53 signalling pathway al-
terations altered NOTCH, RTK-RAS, and cell cycle pathway,
which might explain the phenomenon [30]. As reported by
Singh, via quantitative real-time polymerase chain reaction
(qRT-PCR) and Caspase-3 immunostaining, they found that
the loss of DNA repair genes expression including BRIP1 in
testis correlated with increased apoptosis [31]. To sum up,
the distinct efects of the diferential expression of BRIP1 in
various cancer types may rely on diferent signalling path-
ways. Furthermore, in vivo and in vitro experiments are
needed to validate the above fndings and elucidate the
specifc underlying mechanisms of BRIP1 in diferent types
of cancer.

Te genomic mutation analysis revealed that the am-
plifcation of BRIP1 was one of the most vital single factors
for alteration. Interestingly, previous studies reported that
amplifcation of the 17q23 region led to a gain of function in
lung cancer, liver cancer, pancreatic cancer, bladder cancer,
testis cancer, and ovarian cancer [32]. Since this is the region
where BRIP1 locates and with our fnding of BRIP1 am-
plifcation and its role in pan-cancer, the phenomenon shall
be explained to some extent. In addition, PPI analysis
revealed that BRIP1 was mainly associated with DNA re-
combination, double-strand break repair, and re-
combinational repair. Enrichment analysis uncovered its
correlation with homologous recombination, DNA repli-
cation, cell cycle, and Fanconi anemia. As indicated by
previous studies, BRIP1 took part in HRR and helped in
reducing the occurrence and persistence of DSB which was

regarded as the last defense against feasibly mutagenic and
carcinogenic injury [33].Tese might explain the underlying
mechanisms of BRIP1 in tumorigenesis and provide a the-
oretical foundation for the discovery and development of
targeted drugs. For example, Hodgson et al. illuminated in
their study that ovarian cancer patients with loss-of-function
mutations in HRR genes, including BRIP1, would beneft
from Olaparib treatment [34]. Our study has evaluated the
association between BRIP1 and IC50 of various antitumor
drugs via GDSC database and found the same promising
response to Olaparib. Except a few of antitumor drugs, there
were 141 drugs negatively correlated with BRIP1, which
indicated a promising treatment response. Furthermore,
clinical trials with diferent drugs in diverse cancers and
research on their targeted signalling pathways are urgently
needed to validate efective targeted-therapies.

Te cancer-related immune microenvironment was
sophisticated and was regarded as the seventh marker fea-
ture of cancer [35]. Under normal circumstances, the im-
mune system would recognize and eliminate tumor cells,
preventing the invasion and metastasis of tumor cells.
However, cancer cells could be subtle and survive the im-
mune supervision by integrating with immune cells, thus
restraining the immune system. Under this condition, im-
munotherapy would restore the normal antitumor immune
response. Specifcally, ICB therapy showed a remarkable
clinical beneft in prolonging patient survival [36]. Immune
checkpoints maintained a close correlation with immune
cells in TME. Programmed death 1 (PD-1)/PD-L1 was one
of the most vital immune checkpoint signalling pathways.
Elevated expression of PD-1 and PD-L1 by TIICs was as-
sociated with suppression of T cell immune function and
poor prognosis in cancer patients [37]. Besides, TMB and
MSI were both considered as potential biomarkers for
predicting ICB response. In this study, we systematically
evaluated the correlation between BRIP1 and TME, TIICs,
immune-related genes, as well as TMB-MSI. Results showed
that there were close relationships between BRIP1 and
various TIICs as well as immune-related genes. Additionally,
BRIP1 was intimately correlated with the ESTIMATEScore
in 19 cancers and positively associated with TMB in 9
cancers with MSI in 7 cancers, indicating a promising re-
sponse to ICB therapy in these tumors. Especially in
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Figure 11: BRIP1 expression and its association with TIICs from TIMER database.
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Figure 12: Correlation between BRIP1 and immune-related genes in pan-cancer. (a) Association between expression of BRIP1 and
immune-activating genes. (b) Correlation between BRIP1 expression and immunosuppressive genes. (c) BRIP1 expression and its re-
lationship with MMR genes. (d) BRIP1 expression and correlation with genes encoding MHC. (e) Association between BRIP1 expression
and chemokine. (f ) Correlation between expression of BRIP1 and chemokine receptor proteins. ∗ represents P< 0.05, ∗∗ represents P< 0.01,
∗∗∗ represents P< 0.001, and ∗∗∗∗ represents P< 0.0001.
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urothelial cancer, patients with a high level of BRIP1 had
a better response to anti-PD-L1 treatment and a more fa-
vorable survival rate. Our research shed light on BRIP1 as
a latent immunotherapy biomarker.

5. Conclusions

Tis study highlights the potential role of BRIP1 in pan-
cancer as a predictor for diagnosis, prognosis, and treatment
response through in-depth analyses of diferential expres-
sion, relationships between BRIP1 and diferent prognostic
parameters, gene functions, regulatory pathways, TME,
TIICs, immune-related genes, and TMB-MSI as well as
anticarcinogen. Furthermore, functional and mechanistic
experiments are needed to elucidate the role of BRIP1 in
specifc cancers.
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between BRIP1 expression and ESTIMATEScore in UCEC,
UCS, and UVM, respectively. Figure S7. Correlation between
BRIP1 and TMB in 9 tumors including digestive cancers
such as COAD and STAD. Figure S8. Association between
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as COAD, READ, and STAD. Table S1. Relationship be-
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Background. Hepatocellular carcinoma (HCC), ranking as one of the most commonmalignant tumors, is one of the leading causes
of cancer death, with a poor prognosis. Cuproptosis, a novel programmed cell death modality that has just been confrmed
recently, may play an important role in HCC prognosis. Long noncoding RNA (LncRNA) is a key participant in tumorigenesis
and immune responses. It may be of great signifcance to predict HCC based on cuproptosis genes and their related LncRNA.
Methods. Te sample data on HCC patients were obtained from Te Cancer Genome Atlas (TCGA) database. Combined with
cuproptosis-related genes collected from the literature search, expression analysis was carried out to fnd cuproptosis genes and
their related LncRNAs signifcantly expressed in HCC. Te prognostic model was constructed by least absolute shrinkage and
selection operator (LASSO) regression and multivariate Cox regression. Te feasibility of these signature LncRNAs used for the
evaluation of the overall survival rate in HCC patients as independent factors was investigated. Te expression profle of
cuproptosis, immune cell infltration, and the status of somatic mutation were analyzed and compared. Results. A prognostic
model of HCC consisting of seven cuproptosis gene-related LncRNA signatures was constructed. Multiple verifcation methods
have showed that this model can accurately predict the prognosis of HCC patients. It was showed that the classifed high-risk
group under the risk score of this model had worse survival status, more signifcant expression of the immune function, and higher
mutation frequency. During the analysis, the cuproptosis gene CDKN2Awas found to bemost closely related to LncRNADDX11-
AS1 in the expression profle of HCC patients. Conclusion. Te cuproptosis-related signature LncRNA in HCC was identifed, on
the basis of which a model was constructed, and it was verifed that it can be used to predict the prognosis of HCC patients. Te
potential role of these cuproptosis-related signature LncRNAs as new targets for disease therapy in antagonizing HCC de-
velopment was discussed.

1. Introduction

Te incidence of liver cancer is increasing year by year [1].
About 1 million people sufer from this disease every year
worldwide [2, 3]. Among them, hepatocellular carcinoma
(HCC), accounting for 75% to 90%, is the tumor ranking the
third in mortality globally [4, 5]. Currently, radiotherapy,

chemotherapy, and surgery are often adopted for early HCC,
and systemic treatment is used for advanced HCC in clinical
practice [6, 7]. However, the early diagnosis of HCC is
difcult. Most HCC patients are diagnosed in the late stage,
and it is difcult to cure them [8, 9]. Terefore, fnding new
targets for diagnosis and treatment is crucial for the efective
management of HCC.
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Cuproptosis is a recently confrmed cell death modality.
Copper is one of the essential trace elements for living
organisms. It is mainly absorbed through the small intestine
and metabolized in the liver and in turn transported to
various tissues and organs with the blood for use by cells.
Generally, cuproptosis exists widely in body cells in the form
of reduced cuprous ions (Cu+) and oxidized cupric ions
(Cu2+), and also it is ingested by the copper transporter
(hCtrl) and efuxed by adenosine triphosphatase (ATPase)
to its intracellular levels in the body [10, 11]. Te homeo-
stasis of copper in the body is associated with many diseases.
Existing studies have shown that the destruction of copper
homeostasis can lead to the occurrence of multisystem
diseases such as anemia [11], Wilson’s disease [12], Menkes
disease [13, 14], brain disease [15–17], immune system
disease [18, 19], and tumors [20, 21]. When the copper ion
concentration in the body cells exceeds the threshold of
maintaining the homeostasis mechanism, it can directly
combine with the fatty acylation components of the tri-
carboxylic acid cycle, which results in the aggregation of
fatty acylated proteins and the loss of iron-sulfur cluster
protein, and in turn trigger protein toxic stress and also
ultimately cause cell death [22–24].

Te long noncoding RNA(LncRNA) is a noncoding
RNA with a length of N200 nucleotides. Recent studies have
shown that LncRNA plays an important role in the oc-
currence and development of cancer, and the abnormal
expression of LncRNA is associated with malignant tumors,
tumor autophagy, tumor resistance, and tumor immunity
[25, 26]. So far, it has been found that LncRNA is abnormally
expressed in HCC [27], which can play a role in the for-
mation of HCC and themigration of cancer cells, and in turn
afect the occurrence, metastasis, and prognosis of HCC.
Terefore, many scholars have focused on the value of
lncRNA in tumor prognosis, building prognosis models, and
developing new diagnostic targets based on the unique
expression profle of lncRNA [28, 29]. Te development and
progression of HCC is a cumulative efect of genetic changes
that afect the expression of tumor-related genes [30].
However, as a new mechanism involved in tumor cell death,
it is worth paying attention to and discussing whether the
infuence of the changes of related genes on HCC has far-
reaching signifcance and value.

Terefore, in this study, we used bioinformatics
methods, sample data from TCGA public database, com-
bined with cuproptosis-related genes collected by the lit-
erature search, to construct a unique expression profle of
cuproptosis-related lncRNA, and usedmachine learning and
other methods to screen out lncRNA which is of the great
value to the prognosis of HCC and construct a prognosis
model. Te purpose of this study is to provide more pre-
dictive methods for diagnosing and evaluating the prognosis
of patients with HCC, and to provide new ideas and support
for the development of cuproptosis in HCC.

2. Materials and Methods

2.1. Te Collection of Samples and CRGs. Te public data on
HCC came from Te Cancer Genome Atlas (TCGA)

database, including the RNA sequence data, clinical in-
formation, and tumor mutation data on 424 patients (50
normal and 374 tumor patients). Te R language was used to
classify protein-coding genes and lncRNAs in RNA se-
quences. Te clinical information collection included gen-
der, age, stage, grade, TNM, survival time, and status. For the
accuracy of the study, the unknown part of clinical in-
formation was marked uniformly. A total of 19 CRGs were
collected through the literature search. Te research process
is shown in Figure 1.

2.2. Coexpression Analysis of Cuproptosis-Related LncRNAs.
Te “limma” package in R language was used to extract the
expression levels of CRGs and LncRNA from HCC samples.
Te LncRNAs associated with these CRGs were obtained by
coexpression analysis, and also their relationship with HCC
was tested by correlation analysis. Te absolute value of the
correlation coefcient was set to >0.5 and p value
<0.001(p< 0.001). Te Sankey diagram is a diagram used to
describe the fow direction of values from one group to
another. In order to more intuitively show the relationship
between CRGs and its related lncRNA, we used dplyr,
ggalluvial, and ggplot2 packages in R language to draw the
Sankey diagram to visualize the coexpression results.

2.3. Screening and Construction of a Prognostic Cuproptosis-
Related lncRNAs Signature. Te expression of lncRNA re-
lated to cuproptosis in the same sample of patients with
HCC was combined with their survival status and survival
time data.Te lncRNAs related to cuproptosis was randomly
divided into a training set (the train group) and a testing set
(the test group) (n� 1) by the random forest algorithm, and
the ratio of the training set to testing set was set to 1 :1. Te
cuproptosis-related lncRNAs were fltered using univariate
Cox regression analysis for genes that signifcantly afected
the overall survival of patients with HCC (p-value <0.05).
Te univariate COX results were screened using a least
absolute shrinkage and selection operators (LASSO) re-
gression analysis. Te multivariate COX regression analysis
can detect whether multiple features are related to survival at
the same time. In order to make the screened prognosis
lncRNAs results more accurate, we further screened it by
using multivariate COX regression based on the results of
LASSO regression analysis. Te screening result was
a prognostic lncRNA associated with cuproptosis in HCC.
We also constructed a prognostic model based on these key
lncRNAs for evaluating the prognostic survival of patients
with HCC. Te model calculation formula is as follows:

risk score � 
n

i�1
βi × xi. (1)

βi represents the regression coefcient of each LncRNA,
and Xi the expression level of each LncRNA.

Te risk scores of the train and test groups were pre-
dicted according to the model, and the samples were divided
into the high- and low-risk groups according to the median
value of the risk scores.
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2.4. Survival and Independent Prognostic Analyses. Te
survival analysis of patients in high- and low-risk groups was
performed by models. Progression-free-survival (PFS) is an
important index commonly used in clinical practice to judge
the survival of malignant tumor patients in addition to OS. It
represents the time period from the initial treatment of
cancer patients to disease progression or death. Te longer
the PFS time is, the longer the survival cycle of this patient
will be. In this study, the survival analysis was separately
performed from two aspects of OS and PFS to evaluate the
value of these cuproptosis-related LncRNAmarkers in HCC
survival and prognosis.

Trough independent prognostic analysis, it is possible to
observe whether the prediction model constructed by us can
be used as an independent prognostic factor independently of
other clinical traits. Te unifactor analysis was adopted to
compare each clinical factor with survival time and status, and
also the multifactor analysis of the efect on the survival status
was analyzed under the interaction of multiple factors. Te
correlation between CRGs and prognosis-related LncRNA
was verifed, with the correlation heat map.

In order to verify the accuracy of the prediction model
constructed by us, the receiver operating characteristic
(ROC) curve of 1-, 3-, and 5-year survival in HCC patients

19 copper death-related genes (CRGs)
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Co-expression analysis to find lncRNAs
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Univariate COX regression analysis to
screen survival-related lncRNAs (n=50)
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Figure 1: Process fow diagram.
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under the prediction of this model and that under the
prediction of it combined with other clinical traits were
plotted, respectively. Te prediction accuracy of this model
was confrmed by interpreting the area under the curve
(AUC). Additionally, the concordance index (C-index)
curve was plotted to evaluate the probability of consistency
between the predicted and actual results. Principal com-
ponent analysis (PCA) is a multivariate statistical method
that can help us to evaluate the expression diferences of four
variables: whole genes, CRGS, CRGs-related lncRNAs, and
characteristic lncRNAs for constructing models.

2.5. Te Construction of a Prediction Nomogram. Based on
the multifactor regression analysis, scores were assigned to
each clinical factor according to the efect of various clinical
traits in the prediction model on OS. Te 1-, 3-, and 5-year
OS of HCC patients was estimated through the relationship
between the total score and the probability of outcome event
occurrence and displayed in the form of a nomogram.

2.6. Model Validation for Clinical Grouping. By grouping
clinical information, it was verifed whether our prediction
model is suitable for patients with diferent clinical straits from
three aspects of tumor: grade, stage and age. According to the
degree of tumor diferentiation, G1-G2 patients with a relatively
lowmalignant degree ofHCCwere grouped into one group, and
G3-G4 patients with a highmalignant degree were grouped into
one group; the early patients in stages I and II were grouped into
a group, and the late patients in stage III and IV were grouped
one group; they were divided into two groups according to the
age of <65 and ≥65, and the survival curve was plotted.

2.7. Risk Diferentially Expressed Genes and Teir Functional
Enrichment Analysis. Trough the “limma” package, the gene
expression levels of high- and low-risk groups from the sample
data were extracted and compared to fnd the genes with the
diferential expression between high- and low-risk groups
(logFC >1, FDR >0.05). Tese risks diferentially expressed
genes may provide new ideas for explaining the HCC pro-
gression. Trough gene ontology (GO) analysis, these risk
diferentially expressed genes that are involved in the biological
processes of the body could be enriched and found. Te bi-
ological processes included three aspects, the biological function
(BP), cell component (CC), and molecular function (MF).
Trough the analysis of the Kyoto Encyclopedia of Genes and
Genomes (KEGG), the signal pathways related to these dif-
ferentially expressed genes could be enriched and found.

2.8. Tumor Mutation Analysis. By sorting and analyzing
the mutation information in high- and low-risk groups,
the genes mutated in the two groups of samples and their
mutation frequency could be obtained. Also, the difer-
ential analysis of tumor mutation burden between the two
groups of HCC patients was performed. It was observed
whether the tumor mutations between the two groups
were signifcantly diferent, and the 15 genes with the

highest mutation frequency in HCC were further found
for visualization, observation, and interpretation.

2.9. Analysis of the Immune-Related Function. Trough gene
set variation analysis (GSVA), the immune-related function
gene set enriched by a single gene can be used as a signature
expression matrix. Also, the diference in the immune function
between the two groups by comparing the diference in the gene
set expression between high- and low-risk groups was inferred.
Te diference analysis of immune checkpoint genes can help us
observe which immune checkpoint genes are diferent in high-
and low-risk patients to further fnd the relationship between
cuproptosis genes and immune checkpoints.

3. Research Results

3.1.Te Consistency Test of Clinical Traits in Patients between
the Train and Test Group Cohorts. According to the clinical
information, the consistency test on the clinical traits of
patients in the train and test groups was carried out. Te
missing unknown parts of the clinical information were
uniformly marked with “unknown.” A total of 370 HCC
patients were included. Te test results are shown in Table 1.
It was seen that after the included sample data were ran-
domly assigned to two groups of cohorts, there was no
signifcant diference in clinical traits between the two
groups (p> 0.05), with the better-randomized grouping.

3.2. Te Screening of Cuproptosis-Related LncRNAs and
Prognosis-Related LncRNAs in HCC Patients. Te bio-
markers play an important role in tumor detection and
treatment.Te risk stratifcation for screening can be increased
by fnding new biomarkers that may identify susceptibility or
early stages of the disease, either alone or as a complement to
existing tests. [15, 30] Te cuproptosis-related LncRNAs
predicted by coexpression were screened according to the
correlation coefcient (>0.5), and fnally, 15 CRGs and 336
LncRNAs related to them were obtained (Table S1 and
Figure 2(a)). After merging the survival information, 50
lncRNAs with the signifcant correlation and the overall
survival rate of patients were obtained by univariate Cox
regression analysis H, and the forest plot of survival results was
drawn thereby (Figure 2(b)). Te 12 features with the smallest
error from the 50 signifcant lncRNs were screened out by
LASSO regression analysis as key lncRNAs (see Figures 2(c)
and 2(d)). Finally, further screening by multivariate Cox re-
gression identifed seven cuproptosis-related prognostic
lncRNAs (lncRNA AC026412.3, PICSAR, AC021188.1,
LINC00702, LINC00426, AL031985.3, and DDX11-AS1). Te
risk score was calculated for the prognostic model construc-
tion according to the formula in the Section 2. According to
the median value of the risk score, the samples were divided
into 191 cases in the high-risk group (92 cases in the train
group and 99 cases in the test group) and 179 cases in the low-
risk group (93 cases in the train group and 86 cases in the test
group). Te correlation analysis between CRGs and their
related signature LncRNAs showed that there was a signifcant
positive correlation between cyclin-dependent kinase inhibitor
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2A (CDKN2A) and LncRNADDX11-AS1, and a close positive
correlation between NACHT, LRR, and PYD domains-
containing protein 3 (NLRP3) and the LncRNA-
s(AC02118.1, LINC00426, LINC00702, and PICSAR), while
there was a close negative correlation between FDX1 and
LncRNA DDX11-AS1 (Figure 3).

3.3. Te Survival Outcome and Multifactor Test. Te survival
curve can show the diference inmodel prediction of patient OS
between the high- and low-risk groups.TeOS ofHCCpatients
in the high-risk group was generally lower within ten years, but
after ten years, the OS was more stable than that in the low-risk
group (Figure 4(a)). PFS analysis shows that the signifcant
expression of prognosis-related lncRNA in the high-risk group
is related to the poor survival of patients (P< 0.001), as shown
in Figure 4(b). Additionally, by the risk distribution of HCC
patients and the corresponding survival status chart, it was
found that the survival status of patients in the high-risk group
was worse and their survival time was shorter than that in the
low-risk group (Figures 4(c) and 4(d)). By the heat map of the
prognostic LncRNA expression in high- and low-risk groups, it
was found that the LncRNAs(AC026412.3, AL031985.3, and
DDX11-AS1) were positively correlated with the risk score,
while the LncRNAs (AC021188.1, LINC00702, and
LINC00426) were negatively correlated with the risk score
(Figure 4(e)).

Te forest diagram of unifactor and multifactor analyses
of independent prognosis showed that the prediction model
constructed by us could be used as an independent factor to

evaluate the HCC prognosis just like the tumor grade
(Figures 5(a) and 5(b); p< 0.001). Both the ROC curve and
the area under curve (AUC) showed that this prediction
model had relatively high accuracy in predicting the
prognosis and survival of patients, which is signifcantly
better than the prediction ability of other clinical traits
(Figure 5(d)). Te time-dependent receiver operating
characteristic (ROC) and C-index curves also showed that
this model had a good prediction efect, with more sensi-
tivity in the prediction of early HCC patients (Figures 5(c)
and 5(e)).

Trough principal component analysis (PCA), the
ability of cuproptosis genes, cuproptosis-related
LncRNAs, and the signature LncRNAs used for model
construction in classifying high- and low-risk patients
could be judged. Te results showed that the classifcation
ability of signature LncRNAs was much better
(Figure 6(d)), which demonstrated that it has a good
value in prognostic risk prediction of hepatocellular
carcinoma(HCC) patients.

3.4. Te Nomogram of Prognostic Models. Based on the
constructed prediction model based on the cuproptosis-related
signature LncRNA and the efects of each clinical trait in the
model on HCC, a nomogram was made to evaluate the
prognosis of HCC patients for clinical management of HCC
patients.Te ordinate of the nomogram represents the variables
in the prediction model and the abscissa represents the range of
values that can be taken for each variable. According to the

Table 1: Te consistency test results of HCC clinical traits.

Covariates Types Total Test group Train group p value

Age ≤65 232 (62.7%) 107 (57.84%) 125 (67.57%) 0.0676>65 138 (37.3%) 78 (42.16%) 60 (32.43%)

Gender Female 121 (32.7%) 60 (32.43%) 61 (32.97%) 1Male 249 (67.3%) 125 (67.57%) 124 (67.03%)

Grades

G1 55 (14.86%) 24 (12.97%) 31 (16.76%)

0.7163
G2 177 (47.84%) 93 (50.27%) 84 (45.41%)
G3 121 (32.7%) 60 (32.43%) 61 (32.97%)
G4 12 (3.24%) 6 (3.24%) 6 (3.24%)

Unknow 5 (1.35%) 2 (1.08%) 3 (1.62%)

Stages

Stage I 171 (46.22%) 87 (47.03%) 84 (45.41%)

0.7738
Stage II 85 (22.97%) 42 (22.7%) 43 (23.24%)
Stage III 85 (22.97%) 38 (20.54%) 47 (25.41%)
Stage IV 5 (1.35%) 3 (1.62%) 2 (1.08%)
Unknow 24 (6.49%) 15 (8.11%) 9 (4.86%)

T

T1 181 (48.92%) 93 (50.27%) 88 (47.57%)

0.7336
T2 93 (25.14%) 49 (26.49%) 44 (23.78%)
T3 80 (21.62%) 36 (19.46%) 44 (23.78%)
T4 13 (3.51%) 6 (3.24%) 7 (3.78%)

Unknow 3 (0.81%) 1 (0.54%) 2 (1.08%)

M
M0 266 (71.89%) 137 (74.05%) 129 (69.73%)

1M1 4 (1.08%) 2 (1.08%) 2 (1.08%)
Unknow 100 (27.03%) 46 (24.86%) 54 (29.19%)

N
N0 252 (68.11%) 120 (64.86%) 132 (71.35%)

0.5598N1 4 (1.08%) 3 (1.62%) 1 (0.54%)
Unknow 114 (30.81%) 62 (33.51%) 52 (28.11%)
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Figure 5: Te group diagram for testing prognostic models. (a) Te forest diagram of unifactor analysis of independent prognosis; (b) the
forest diagram of multifactor analysis of independent prognosis; (c) the time-dependent receiver operating characteristic (ROC) curve
diagram for validation of prognostic model risk scores; (d) the receiver operating characteristic (ROC) curve diagram of the accuracy of
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number of the sample data above the vertical corresponding
scale point on the horizontal axis of the variable, the score of the
single variable of the sample can be obtained. Te vertically
correspond survival probability value can be found by calcu-
lating that total score of variable, thereby judging the survival
condition of the patient. One patient sample was randomly
selected from the samples for prediction, and its 1-, 3-and 5-year
prediction scores are shown in Figure 7.Temodel showed that
the total score of the patient was 391, and the survival prob-
ability was 93.6% after one year, 89.6% after three years, and
82.0% after fve years after the diagnosis of HCC.

3.5. Clinical Grouping for Model Verifcation. As shown in
Figure 5, this prediction model can be used as an independent
factor to evaluate the prognosis of HCC and has better

prediction ability compared with tumor staging. Te samples
were grouped according to the clinical information, and the
performance of the prognostic model was verifed by grouping
in terms of stage, age, and grade. According to the clinical
information, the samples were separately grouped from three
aspects of grade, stage, and age to verify the accuracy of the
model in predicting the prognosis of patients. In the survival
curve drawn according to tumor stage factors, it can be seen that
the patients in the high-risk group divided by themodel showed
worse survival status in both early and late stages of the tumor
(Figures 8(a) and 8(b)).Te same situation also appeared in the
survival curves obtained by age grouping (Figures 8(c) and
8(d)). However, the results of grouping verifcation according to
tumor diferentiation levels were slightly diferent. According to
the results of the C-index curve, we can fnd that the tumor
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Figure 6: Te group diagram of principal component analysis (PCA). (a) Te whole gene expression in hepatocellular carcinoma (HCC)
patients in two high- and low-risk groups; (b) the expression of cuproptosis genes; (c) the expression of cuproptosis-related long noncoding
RNAs (LncRNAs); and (d) the expression of signature long noncoding RNAs(LncRNAs) for model construction.
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grade (grade) has poor ability to judge the prognosis and
survival of patients with HCC. Patients with high- and low-risk
scores showed signifcant diferences between the G1-G2
groups (P < 0.001), as shown in Figure 8(e). However, among
the more diferentiated G3-G4 groups, there was no signifcant
diference in survival condition between the high- and low-risk
groups (P > 0.05). Te Kaplan–Meier curve shows that our
model still has good discrimination ability in the early stage of
the disease in patients with poorly diferentiatedHCC, as shown
in Figure 8(f). However, it lacks sensitivity in the long-term
prediction in patients with poorly diferentiated HCC. We
believe that although the public database contains data on all
stages of the tumor, the prognosis of HCC patients with low
diferentiation and high malignancy is often worse, and their
long-term survival performance is unoptimistic. Terefore,
there is a lack of long-term survival data from poorly difer-
entiated patients, resulting in a mediocre performance of the
model in patients during this period.Tis suggests that in order
to increase the credibility of the model, more sample data
should be included in future research.

3.6. Analysis of Risk-Diferential Genes and Teir Functional
Enrichment. Trough risk diferential analysis, a total of
598 genes with the diferential expression were screened in

high- and low-risk groups. Te top ten with the highest
signifcance among the gene ontology (GO) enrichment
analysis results were selected and sorted according to the
number of target genes enriched in them, and they were
integrated into a classifcation histogram (Figure 9(a)). As
can be seen in the fgures, in BP, these diferential genes
were mainly involved in these biological functions such as
lymphocyte-mediated immunity, B cell-mediated im-
munity, immunoglobulin-mediated immune responses,
regulation of B cell activation, the B cell receptor signaling
pathway, complement activation, humoral immune re-
sponse mediated by circulating immunoglobulin,
phagocytosis recognition, and complement activation of
the classical pathways; in CC, cell components such as the
immunoglobulin complex, external side of the plasma
membrane and the plasma membrane signaling receptor
complex, and blood microparticles were involved; in MF,
these risk diferentially expressed genes were mainly in-
volved in molecular functions such as antigen binding,
immunoglobulin receptor binding, glycosaminoglycan
binding, heparin-binding, immune receptor activity,
chemokine receptor binding, chemokine activity, CCR
chemokine receptor binding, chemokine binding, and
C–C chemokine binding.
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Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis showed that the pathways
closely related to these risk diferentially expressed genes
included those such as hsa04060 cytokine-cytokine receptor
interaction, hsa04640 hematopoietic cell lineage, hsa04061
viral protein interaction with cytokine, and cytokine and
hsa05340 primary immunodefciency (Figure 9(b); supple-
mentary Table S2).

3.7. Mutation Gene Analysis. After analyzing mutation in-
formation between the high-risk group and the low-risk
group, we found that there was no signifcant diference in
the tumor mutation load between these two groups, which
meant that the diference in the number of gene mutation
sites in HCC cells between these two groups was insignifcant,
as shown in Figure 10(a).Te survival analysis was performed
according to the mutation burden, and it can be seen from
Figure 10(b) that the survival status of patients in the high
burden group was worse (P < 0.05). From the survival
analysis results based on tumor mutation burden combined
with the patient risk, it can be seen that there were signifcant
diferences between all the four groups (P < 0.001), and the
patients in the high-risk group all showed a poor survival
status regardless of the high or low level of the tumor mu-
tation burden.Tis indicates from the side that the prediction
model we constructed has a certain value in the analysis of
patient survival prognosis (Figure 10(c)).

Te waterfall plot of the two groups of mutated genes
shows that they had a higher mutation frequency in the
high-risk group. Among them, the genes such as TP53
(cellular tumor antigen p53), CTNNB1 (catenin beta-1),

TTN (titin), and MUC16 (mucin-16) had a very high
mutation rate in HCC, with their mutation methods all
mainly missense mutation, and some genes were also
mutated by such methods as frame shift mutation and
nonsense mutation. Among them, the variation frequency
of GTNNB1, TTN, and MUC16 in the low-risk group was
higher than that in the high-risk group, and on the con-
trary, TP53 is more prone to mutation in the high-risk
group (Figures 10(d) and 10(e)).

3.8. Te Analysis of Immune-Related Functions. Tumor
immunotherapy is considered as a promising method for
tumor treatment, and it has become an important method
and research focus of tumor treatment [31, 32]. Trough
the analysis of immune-related functions, it could be
found that the expression of these 13 immune-related
functions was all signifcantly diferent between high- and
low-risk groups (P < 0.01), and they consistently showed
a negative correlation in the high-risk groups (Fig-
ure 11(a)). Due to the importance of checkpoint
inhibitor-based immunotherapy, the diferences in the
immune checkpoint gene expression in high- and low-
risk groups of HCC patients were investigated
(Figure 11(b)). Te 25 immune checkpoint genes such as
CD276, CD44, PDCD1, and TNFSF4 were closely related
to HCC (P < 0.001). Combined with the expression of
cuproptosis genes in HCC (Figure 12), CDKN2A, the
most signifcantly expressed cuproptosis gene, taken as an
example, the correlation between it and 8 immune
checkpoint genes was explored and also a scatter plot was
drawn (Figure 11). Te blue line in the fgure represents
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Figure 8: Te Kaplan–Meier curve of verifcation of model-predicted overall survival by grouping according to clinical trait. (a, b) the
survival analysis curve of high- and low-risk groups grouped according to the tumor stage, I-II (early stage) and III-IV (latestage). (c, d) the
survival analysis curve of high- and low-risk groups grouped according to age. (e, f ) the survival analysis curve of high- and low-risk groups
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the trend of the correlation between CDKN2A and the
corresponding immune checkpoint genes, indicating that
all eight immune checkpoint genes were positively cor-
related with CDKN2A.

4. Discussion

Although cuproptosis was formally put forward as a newly
defned programmed cell death [24], the role of copper in body
cells has long been mentioned in studies by many scholars.
Copper can induce various forms of cell death through various
mechanisms, including apoptosis and autophagy [33] and can
play a role of interfering with the progression of tumors and
improving the therapeutic efect in tumors [20, 21, 34–36].
Studies have showed that tumor cells have a higher demand for
copper than normal cells [37]. Tis phenomenon has been
confrmed at the sites of many tumors, including breast cancer
[38, 39], lung cancer [40], gastrointestinal tumors [41, 42], and
oral cancer [43, 44]. Copper can afect the vascular endothelial
growth factor [45, 46], fbroblast growth factor [47], and tumor
necrosis factor [48] and also promote angiogenesis, which is
conducive to the occurrence, development, and metastasis of

tumors. However, when the concentration of copper at the
tumor site is abnormal, copper can regulate autophagy
through ULK1 and ULK2 [49], and control protein quality
through UBE2D2, which in turn afects the growth and
progression of the tumor [49–51].

Terefore, in this study, bioinformatic methods were
used to explore the potential role of copper and its CRGs in
HCC from the perspective of cuproptosis. Te expression of
CRGs in HCC was determined, and 15 target genes with the
signifcant correlation were obtained by screening. Te
expression levels of all LncRNAs in HCC samples were
extracted, and 336 LncRNAs related to these CRGs were
found through coexpression analysis. Univariate Cox re-
gression, LASSO regression analyses, and multivariate Cox
regression analysis were used to further screen out the
LncRNAs (AC026412.3, AL031985.3, DDX11-AS1,
AC021188.1, LINC00702, and LINC00426) with the signa-
ture expression. A prognostic model consisting of these
signature LncRNAs was further constructed.

In order to verify the applicability and accuracy of this
prognostic model, the sample patients were divided into high-
and low-risk groups according to the risk score. By evaluating
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Figure 9: Te enrichment analysis diagram of diferential genes in high- and low-risk groups. (a) Te color bar diagram of gene ontology
(GO) analysis of risk diferential genes, with colors representing biological function (BP, in BLUE), cell component (CC, in RED), and
molecular function (MF, in GREEN), respectively (b) the circle diagram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
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Figure 10: Te group diagram of analysis of immune-related functions and mutated genes. (a) Te violin diagram of mutation burden
comparison in the high- and low-risk groups of hepatocellular carcinoma (HCC) patients; (b) the Kaplan–Meier curve for survival analysis
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combined with high- and low-risk groups; (d, e) the waterfall diagram of the mutation frequency of HCC tumors in both low- and high-risk
groups, which shows the 15 genes with the highest mutation frequency in HCC patients, with diferent colors representing the mutation
method of this gene.
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the survival status of patients in the high and low risk groups
divided by the model, we can verify the clinical predictive
ability of the model and compare the diferences in immune
function and tumor mutations between the two groups of
patients. In the analysis of survival results of the high-risk
group and the low-risk group, OS shows that the low-risk
group performs better in the early years, andwe think that this
result is related to the insufcient sample size. HCC, as
a malignant tumor with high mortality, is often found to be
advanced, and because of the difculty in treatment, the
prognosis of patients is often unsatisfactory. It is found that
the average life span of patients with HCC after diagnosis is
only 4.9 years [52]. In order to verify the value of the prog-
nostic model in survival, we supplemented PFS analysis. It
was confrmed that this model with a good predicative ability
can not only accurately predict the survival status of HCC
patients, but also is more sensitive in the prediction of early
HCC patients. Liu et al. have also paid attention to the sig-
nifcance of cuproptosis-related genes in the prognosis of liver
cancer in their research, and their research samples are the
same as ours. However, their research pays more attention to
the analysis of cuproptosis-related immune functions,
hypoxia-related genes, and tumor mutation load and drug
sensitivity. Nevertheless, their research results are consistent
with ours, which can prove the reliability of our conclusion to
a certain extent [28].

During the analysis, it was found that the expression of the
cuproptosis gene CDKN2A was the most signifcant in HCC
and that it was closely and positively correlated with LncRNA
DDX11-AS1. Studies have showed that CDKN2A is signif-
cantly expressed in multiple cancer tissues, thus afecting the
prognosis of a variety of cancers. CDKN2A is negatively
correlated with serosal invasion in the cervical cancer tissue
[53]. Also, it can promote the angiogenic phenotype of
esophageal squamous cell carcinoma and predict a poor
prognosis [54]. Luo et al. reported that there is a certain
correlation between the CDKN2A expression as well as im-
mune invasion and the risk of HCC occurrence and that the

high expression of CDKN2A is negatively correlated with the
overall survival rate and prognosis of patients [55], which may
be related to the participation of CDKN2A in the MAPK
signaling pathway and the diversity of liver cancer [56]. Ad-
ditionally, Luo et al. believed that the expression of CDKN2A
may help to regulate tumor-related macrophages, dendritic
cells, and Tcells and that CDKN2Amay play an important role
in immune infltrating cells and also can be used as one of the
prognostic biomarkers of HCC patients [55].

DDX11-AS1 is a newly discovered LncRNA, which is ab-
normally highly expressed in multiple malignant tumors [57],
such asHCC, colorectal cancer, and gastric cancer. DDX11-AS1
plays its carcinogenic role by regulating the expression of related
genes directly or indirectly, with the following examples given:
DDX11-AS1 can bind to HNRNPC to promote the pro-
liferation and migration of glioma cells [58] and silencing
DDX11-AS1 can inhibit the growth of HCC cells by upregu-
lating TRAF5 [59]. Tese results have suggested that DDX11-
AS1 may play a signifcant regulatory role in tumors. So far,
there has been no research on the relationship between
CDKN2A and DDX11-AS1. We boldly inferred that there may
be a positive regulatory relationship between CDKN2A and
DDX11-AS1, and that silencing DDX11-AS1 can indirectly
inhibit the CDKN2A expression, thereby increasing the role of
copper loading in tumor cells, promoting cuproptosis, and
increasing tumor cell apoptosis. However, more in-depth re-
search and practices are still required for proving whether the
fact is as we speculated.

In conclusion, a cuproptosis-related LncRNA model
was constructed, which can be used for the prediction of
HCC prognosis. However, there are also some limitations
of this study. First, due to the currently incomplete
understanding of cuproptosis, in this study, there was no
guarantee that all landmark components were only re-
lated to cuproptosis, and the specifc role of cuproptosis
in HCC could not be independently assessed. Addi-
tionally, the prognostic ability of cuproptosis-related
LncRNA in HCC was made statistically and analyzed
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Figure 12: Te scatter plot of correlation between the key cuproptosis gene CDKN2A and immune checkpoint genes with signifcant
expression diferences.
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only through the samples in the database, but it still needs
the support of massive clinical data and the verifcation of
basic research. Nevertheless, we believe that this study
may provide more ideas for improving the prognosis
prediction of HCC patients.
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Background. Cuproptosis, a recently discovered form of cell death, is caused by copper levels exceeding homeostasis thresholds.
Although Cu has a potential role in colon adenocarcinoma (COAD), its role in the development of COAD remains unclear.
Methods. In this study, 426 patients with COAD were extracted from the Cancer Genome Atlas (TCGA) database. Te Pearson
correlation algorithm was used to identify cuproptosis-related lncRNAs. Using the univariate Cox regression analysis, the least
absolute shrinkage and selection operator (LASSO) was used to select cuproptosis-related lncRNAs associated with COAD overall
survival (OS). A risk model was established based on the multivariate Cox regression analysis. A nomogram model was used to
evaluate the prognostic signature based on the risk model. Finally, mutational burden and sensitivity analyses of chemotherapy
drugs were performed for COAD patients in the low- and high-risk groups. Result. Ten cuproptosis-related lncRNAs were
identifed and a novel risk model was constructed. A signature based on ten cuproptosis-related lncRNAs was an independent
prognostic predictor for COAD. Mutational burden analysis suggested that patients with high-risk scores had higher mutation
frequency and shorter survival. Conclusion. Constructing a risk model based on the ten cuproptosis-related lncRNAs could
accurately predict the prognosis of COAD patients, providing a fresh perspective for future research on COAD.

1. Introduction

Colonic adenocarcinoma (COAD) is the most common
histological subtype of colorectal cancer and is one of the
leading causes of cancer mortality [1]. With the devel-
opment of substantive treatment strategies, including
surgery, neoadjuvant therapy, and targeted therapy, the
overall prognosis for patients with COAD has signif-
cantly improved [2]. At the same time, the importance of
early diagnosis of COAD for prognosis is being in-
creasingly recognized. Te 5-year survival rate of patients
with early diagnosis is approximately 90%, but only 10%
for patients diagnosed with advanced metastatic disease
[1]. Identifying novel biomarkers for tumor diagnosis and
prognosis has been shown to beneft the treatment of
diverse tumor types [3–6]. Terefore, there is still an
urgent need to identify novel prognostic biomarkers as-
sociated with metastasis to facilitate the timely diagnosis

and earlier application of appropriate, individualized
therapy.

Long noncoding RNAs (lncRNAs) are transcripts over
200 nucleotides in length with no signifcant protein-coding
function [7]. By modulating gene expression, lncRNAs have
been reported to play important roles in many physiological
processes and disease progression [8]. In COAD, a variety of
lncRNAs have been reported to be highly expressed and have
been associated with multiple tumor-related biological
processes, including proliferation, chemical resistance, and
epithelial-mesenchymal transformation [9–12]. Tese
lncRNAs have been associated with the activation of mul-
tiple signaling pathways, including WNT, PI3K/Akt, and
PPAR [13]. Considering the roles of these pathways in the
occurrence and development of COAD [14, 15], lncRNAs
are likely to be signifcant factors in tailoring individualized
therapies. Several studies have identifed lncRNAs as po-
tential therapeutic targets [16–18]. Overexpression of
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LINC00152 has been shown to promote the expression of
fascin actin-binding protein 1 (FSCN1) by binding mir-632
and mir-185-3p, leading to proliferation and metastasis [19].
As reviewed in 2022, lncRNAs including DCST1-AS1,
LINC01569, KCNQ1OT1, and LINC00997 were considered
to take an active part in carcinogenesis by infuencing cell
metastasis, drug resistance, radio-resistance, and tumor
microenvironment interaction [20]. However, the role of
lncRNAs in COAD has not been completely elucidated.

Cu levels are elevated in the serum and tissues of
multiple solid tumors, including colorectal tumors [21].
However, its role is not fully understood. On one hand, in
addition to acting as a cofactor for key metabolic enzymes,
Cu also directly promotes tumor growth by acting as a co-
factor for signaling molecules such as MEK1, which
transduces carcinogenic BRAF signals to ERK1/2 [22],
suggesting that it may have a key role in cancer progression.
On the other hand, the ion carrier elesclomol mediates
copper overload in colorectal cancer cells and induces
copper-dependent cell death by degrading ATP7A [23].

Tis cell death pathway, caused by copper levels ex-
ceeding homeostasis thresholds, is called copper death or
cuproptosis [24]. It relies on mitochondrial respiration [25].
Copper binds directly to the lipid components of the tri-
carboxylic acid (TCA) cycle, resulting in the accumulation of
lipoacylated proteins, followed by the loss of iron-sulfur
cluster proteins, resulting in proteotoxic stress and cell death
[26]. Cuproptosis caused by copper overload has been
shown to predict tumor prognosis and judge immune and
drug responses in a variety of tumors, including head and
neck squamous cell carcinoma, breast cancer, and cervical
cancer [27–30]. However, there is no relevant report found
in COAD. Terefore, the double-edged role of copper in
colorectal cancer and its infuence on prognosis need to be
further analyzed and understood.

In this study, we examined cuproptosis-associated
lncRNAs in the clinical context of COAD using the Can-
cer Genome Atlas (TCGA) database. We constructed a risk
model to evaluate the prognostic ability of cuproptosis-
associated lncRNAs in patients with COAD. Te tumor
mutational burden and sensitivity analysis of chemotherapy
drugs were also assessed. Taken together, our fndings
provide new insights into potential therapeutic strategies for
patients with COAD.

2. Materials and Methods

2.1. Data Collection. Gene expression matrices and clinical
information for patients with COADwere obtained from the
Cancer Genome Atlas database (https://portal.gdc.cancer.
gov/). We identifed 426 such samples for inclusion. Te
gene expression matrices were merged using a Perl script for
further analysis. Genes encoding lncRNAs andmRNAs were
annotated and classifed using the Human Genome Browser,
GRCh38.p13 (https://asia.ensembl.org/index.html). Survival
time, survival status, age, sex, stage, and TNM stage were
extracted from the TCGA database using Perl scripts. All
data and clinical information used in this study were ob-
tained from a public database; therefore, neither approval

from the ethics committee nor written informed consent
from patients was required.

2.2. Identifcation of Cuproptosis-Related lncRNAs.
Expression data for cuproptosis-related genes were obtained
from a previous study [26]. Expression data were extracted
using Perl scripts, and Pearson’s correlation algorithm was
used to identify cuproptosis-related lncRNAs. With the
threshold setting at |correlation coefcient|> 0.4, Pvalue
<0.001 (r> 0.4, P< 0.001), 870 lncRNAs were identifed as
cuproptosis-related lncRNAs for further analysis (Supple-
mentary Table 1).

2.3. Prognostic Signature Construction. Based on univariate
Cox regression analysis, the least absolute shrinkage and
selection operator (LASSO) algorithm was performed using
the R package “glmnet.” Te multivariate Cox regression
analysis was used to evaluate the lncRNA signature as an
independent prognostic factor for patient survival. Risk
scores for each patient were calculated using the following
formula: risk scores� 

n
i�1Coef(i) × x(i), where Coef(i)

represents the correlation regression coefcient and x(i) is
the expression level of cuproptosis-related lncRNAs. Pa-
tients with COAD were divided into low- and high-risk
groups based on median risk scores. Kaplan–Meier survival
analysis was employed to assess the diference in OS rates in
the low- and high-risk groups using the log-rank algorithm.
A 3D principal component analysis (3D-PCA) was con-
ducted to assess the diference in signatures between low-
and high-risk patients using the R package “ggplot2.”

2.4. Consensus Clustering Analysis. According to the prog-
nostic cuproptosis-related genes, consensus clustering was
performed using the R package “ConsensusClusterPlus.”
Te clustering was established on the grounds of partitioning
around medoids with “Euclidean” distances, and 1,000
verifcations were performed. Finally, with the optimal
classifcation of K� 2–9, the patients with COAD were
clustered into two subtypes for further analysis.

2.5. Risk Model Independence. Te univariate and multi-
variate Cox regression analyses were used to assess risk scores
as independent prognostic factors for COAD. A subtype
analysis was conducted to confrm the independence of the
risk model. To further determine whether the risk score was
independent of other clinical variables, including age, Gleason
score, PSA value, and T stage, patients were regrouped into
new subtypes based on diferent clinical characteristics.
According to median risk scores, patients in each subtype
were stratifed into low- and high-risk groups.

2.6. Somatic Mutation Analysis. Data from the COAD
samples were obtained from TCGA in “maf” format using
Perl scripts. A waterfall diagram was constructed using the
“Maftools” package in the R software.
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2.7. Drug Sensitivity Analysis. Based on the Genomics of
Drug Sensitivity Genomics in Cancer (GDSC), the drug
treatment response of each patient with COAD was pre-
dicted using the R package “pRRophetic.” Diferences in IC50
values between low- and high-risk groups were analyzed
using the “ggplot2” R package.

2.8. Gene Set Enrichment Analysis (GSEA). For the low- and
high-risk groups, 1,000 permutations were used and
screened using the largest and smallest gene set flters of 500
and 15 genes, respectively. P values less than 0.05 were
considered to be signifcantly diferent.

2.9. Statistical Analysis. All analyses were performed using
the R software (version 3.6.0) and Perl scripts.TeWilcoxon
rank sum test was applied to separately conduct group
comparisons with P values less than 0.05, which was con-
sidered to be statistically signifcant.

3. Results and Discussion

3.1. Identifcation of Cuproptosis-Related lncRNAs. A total of
14,142 lncRNAs were collected from the TGCA COAD
RNA-Seq matrix. To identify lncRNAs related to cuprop-
tosis, correlations between the expression of cuproptosis
genes and lncRNAs were calculated, yielding a total of 870
candidate lncRNAs. Using the univariate Cox regression
analysis, 15 cuproptosis-related lncRNAs associated with OS
were selected using the least absolute shrinkage and selection
operator (LASSO) algorithm (Figure 1, Supplementary
Table 2).

3.2. Risk Model Construction. From the multivariate Cox
regression analysis, 10 cuproptosis-related lncRNAs were
selected to construct a risk model. Risk scores for each
patient were calculated using the following formula: risk
scores� (0.24× expression level of AL161729.4) +
(0.35× expression level of AC068580.3) + (0.19× expression
level of AL138756.1) + (0.1× expression level of MIR210HG)
+ (0.38× expression level of EIF3J-DT) + (0.17× expression
level of LINC02381) + (0.42× expression level of AC010
973.2) + (−0.15× expression level of TNFRSF10A-AS1) +
(0.42× expression level of ZEB1-AS1) + (0.31× expression
level of AC073957.3). Using the median risk score, the
COAD patients were divided into the following two groups:
213 patients in the low-risk group and 213 patients in the
high-risk group. Patients were ranked according to the
cuproptosis-related prognostic signature; the resulting
scatter dot plot indicated that survival time was inversely
correlated with risk score (Figures 2(a) and 2(b)). Te
Kaplan–Meier survival analysis showed that the OS of pa-
tients with high-risk scores was signifcantly shorter than
that of those with low-risk scores (P � 1.553E − 08,
Figure 2(c)). A 3D principal component analysis (3D-PCA)
produced a clear separation between low- and high-risk
groups based on the selected lncRNAs (Figure 2(d)). Of
the ten prognostic cuproptosis-related lncRNAs,

AL161729.4, AC068580.3, AL138756.1, MIR210HG, EIF3J-
DT, LINC02381, AC010973.2, ZEB1-AS1, and AC073957.3
were expressed at higher levels in the high-risk group,
whereas TNFRSF10A-AS1 was expressed at higher levels in
the low-risk group (Figure 2(e)). Tese results suggested that
constructing a risk model based on the ten cuproptosis-
related lncRNAs is prognostic for patients with COAD.

3.3. Training and Validation Cohorts. Te COAD patients
were randomly classifed into training and validation co-
horts. In both cohorts, patients were ranked by median risk
score. A scatter dot plot showed that survival times of COAD
patients in the training and validation cohorts were con-
versely associated with risk scores (Figures 3(a) and 3(b)).
Te survival of patients with low-risk scores was higher than
that of patients with high-risk scores in both cohorts
(P< 0.001, Figures 3(c) and 3(d)). Tese results demon-
strated that our risk model is accurate and reliable.

3.4. Independent Prognostic Analyses. Univariate analysis
indicated that age (hazard ratio (HR)� 1.028, P � 0.009),
stage (HR� 2.415, P< 0.001), T stage (HR� 3.379, P< 0.001),
M stage (HR� 4.854, P< 0.001), N stage (HR� 2.083,
P< 0.001), and the risk score (HR� 1.167, P< 0.001) were
associated with OS (Figure 4(a)). Multivariate analysis in-
dicated that age (HR� 1.051, P< 0.001), T stage (HR� 1.849,
P � 0.031), and risk score (HR� 1.181, P< 0.001) were sig-
nifcantly associated with OS in patients with COAD
(Figure 4(b)). Te AUC of the signature was 0.704
(Figure 4(c)). Taken together, these results indicate that
prognostic signatures based on cuproptosis-related lncRNAs
are independent prognostic factors in patients with COAD.

3.5. Correlations between lncRNA Risk Scores and Clinico-
pathological Characteristics. Patients were classifed by sex,
M stage (M 0 vs.M 1), N stage (N 0 vs. N 1-2), S stage (S 1-2 vs.
S 3-4), T stage (T 1-2 vs. T 3-4), and age (≥65 vs. <65).
Kaplan–Meier analysis showed that survival of patients
with low-risk scores was higher than that of patients with high-
risk scores, based on the prognostic signature among females
(P � 5.847e − 04), males (P � 1.28e − 03), M 0 (P � 2.879e

−04), M 1(P � 9.833e − 03), N 0 (P � 8.82e − 04), N 1-2
(P � 5.014e − 04), S 1-2 (P � 6.347e − 04), S 3-4
(P � 1.833e − 04), T 3-4 (P � 1.668e − 06), ≥65
(P � 2.7e − 05), and <65 (P � 2.61e − 03). However, the
survival rate was similar between T-stage groups (Figure 5).
Tese results indicate that the prognostic signature based on
cuproptosis-related lncRNAs accurately predicts prognosis
relative to clinicopathological characteristics.

3.6. Consensus Clustering Analysis for Cuproptosis-Related
lncRNAs associated with COAD. Tereafter, consensus
clustering analysis was utilized to cluster the patients with
COAD into diferent subgroups, and the result revealed an
optimal classifcation for consensus clustering with K� 2
(Figures 6(a)–6(c)). Based on the prognostic cuproptosis-
related lncRNAs, the patients with COAD were successfully
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divided into two subgroups, with 323 patients in Cluster A
and 103 patients in Cluster B. Te principal component
analysis result illustrated a clear separation between Cluster
A and Cluster B according to the prognostic cuproptosis-
related lncRNAs (Figure 6(d)). Te Kaplan–Meier survival
curve analysis suggested that the patients in Cluster A had
a higher OS rate than those in Cluster B (Figure 6(e)). Tese
results demonstrate that the cuproptosis-related lncRNAs
are associated with the prognosis of COAD.

3.7.NomogramConstruction. A nomogram was constructed
to confrm the accuracy of the prognostic signature and
clinicopathological characteristics (Figure 7(a)). It yielded
a consistency index (C-index) of 0.727. Calibration curves
indicated that the nomogram-predicted 1, 3, and 5-year
survival rates were consistent with actual survival times

(Figure 7(b)). Time-dependent ROC curves revealed that the
AUCs of 1-, 3-, and 5-year were 0.704, 0.731, and 0.775,
respectively, indicating satisfactory accuracy of the model
(Figure 7(c)).

3.8. TumorMutational Burden (TMB)Analysis. TMB indices
for high-risk and low-risk genes were calculated. As shown in
Figure 8(a), patients with high TMB had lower survival rates
than those with low TMB (P � 0.025). Te mutation fre-
quencies of high-risk genes were higher than those of low-risk
genes. Survival of the high-TMB+high-risk panel was the
lowest, followed by the low-TMB+high-risk, high-
TMB+ low-risk, and low-TMB+ low-risk panels (Figure 8(b),
P< 0.001). A waterfall diagram (Figure 8(c)) shows the top 30
mutation frequencies. In the low-risk group, mutations were
detected in 194 out of 195 samples; APC (72%), TP53 (48%),
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Figure 1: Identifcation and analysis of cuproptosis-related lncRNAs: (a) univariate Cox regression for 15 cuproptosis-related lncRNAs
associations with COAD OS. (b-c) LASSO regression model showing coefcients and minimal lambda values.
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Figure 2: Risk model based on expression levels of ten cuproptosis-related lncRNAs: (a) distribution of risk scores; (b) scatter dot plot
showing correlation of survival time and risk score; (c) Kaplan–Meier survival analysis; (d) principal component analysis (PCA) showing
signifcant separation between low- and high-risk groups; (e) boxplot of expression levels of the ten selected lncRNAs.
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Figure 3: Testing of training and validation cohorts: (a-b) distribution of risk scores and scatter dot plots; (c-d) survival curves for training
and validation cohorts.
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Figure 4: Independent prognostic analyses of the cuproptosis-related lncRNA signature: (a) univariate Cox regression showing the
correlation between overall survival and clinicopathological characteristics; (b) multivariate Cox regression showing that age, T stage, and
risk score are independent prognostic indicators for the overall survival; (c) receiver operating characteristic (ROC) curve analysis showing
the prognostic accuracy for age, sex, stage, T stage, M stage, N stage, and risk score.
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Figure 5: Continued.
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Figure 5: Kaplan–Meier analyses stratifed by (a-b) sex, (c-d) M stage, (e-f) N stage, (g-h) S stage, (i-j) T stage, and (k-l) age.
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Figure 6: Consensus clustering analysis of patients with CM based on the ICD-related genes: (a) consensus clustering heatmap of the group
at k� 2; (b) cumulative distribution function (CDF) curve for k� 2–9; (c) relative change in area under CDF curve for k� 2–9; (d) principal
components analysis (PCA) shows a signifcant distribution pattern between cluster A and cluster B; (e) the Kaplan–Meier survival curve
analysis reveals that the OS rate of patients in cluster A is higher than those in cluster B.
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Figure 7: Prognostic nomogram: (a) nomogram using risk scores and clinical characteristics to predict 1-, 3-, and 5-year survival; (b)
calibration curve to assess accuracy between predictive power and actual survival rates; (c) receiver operating characteristic (ROC) curve
assessment of prognostic accuracy.
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TTN (46%), and KRAS (47%) had the highest mutation fre-
quencies. In the high-risk group, mutations were detected in
185 out of 196 samples. Te mutated genes with the highest
frequency in the mutation map showed no signifcant difer-
ence compared with the previous group (Figure 8(d)).

3.9. Sensitivity to Chemotherapeutic Agents. As chemother-
apy is the primary treatment for newly diagnosed COAD, we
compared IC50 values for several commonly used drugs
between the low- and high-risk groups. IC50 values for high-
risk COAD patients for nilotinib, rapamycin, geftinib,
salubrinal, GSK.650394, shikonin, lenalidomide, tipifarnib,
and vinblastine were all lower (P< 0.05), while the IC50 for

bicalutamide was higher in the high-risk group (Figure 9).
Tese results provide preliminary evidence for clinical drug-
use guidance.

3.10. Gene Set Enrichment Analysis (GSEA). We found
multiple KEGG signaling pathways that were dynamically
enriched in the low-risk group compared to the high-risk
group, including those involved in the citrate cycle of the
TCA cycle; propanoate metabolism, arginine, and proline
metabolism; alanine, aspartate, and glutamate metabolism;
proteasome; and valine, leucine, and isoleucine degradation.
Notably, the expression of components of the mTOR sig-
naling pathway was signifcantly increased in the high-risk
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Figure 8: Tumor mutational burden analysis: (a) genes with the highest mutation rates in high-risk patients; (b) genes with the highest
mutation rates in high-risk patients; (c) overall survival of patients with H-TMB and L-TMB; (d) overall survival of patients with L-TMB and
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group (Figure 10). Tese results indicate that metabolic
processes and cancer-related pathways may mediate the role
of cuproptosis-related lncRNAs in patients with COAD.

4. Conclusions

Despite signifcant improvements in surgery, radiotherapy,
chemotherapy, and immunotherapy, the 5-year COAD
survival rate remains very low [1]. Terefore, it is important
to identify potential biomarkers for diagnosis and treatment.
In this study, we identifed and validated a ten-gene feature
that predicted survival in patients with COAD. Tis risk
model may be clinically valuable for identifying patients for
individualized, cuproptosis-inducing therapy.

Gene expression is regulated by the interaction of
lncRNAs with RNA, DNA, and proteins through a variety of
mechanisms, including regulation of transcription, mRNA
stability, and translation [31]. In colon cancer, lncRNAs have
been implicated in regulating cell proliferation, apoptosis,
the cell cycle, cell migration and invasiveness, epithelial-
mesenchymal transformation (EMT), cancer stem cells, and
drug resistance [32]. Multiple types of lncRNAs have been
correlated with COAD prognosis [33]. Copper-based
therapies are considered to have great potential in cancer
treatment; some are already in clinical trials. However, their
anticancer potential has not been fully elucidated [34].
Cuproptosis is a newly discovered form of cell death that
involves mitochondrial metabolic activity and has not been
thoroughly studied in tumors [26]. In the current study, ten
lncRNAs associated with cuproptosis were identifed and
included in a risk model. Te Kaplan–Meier curve, time-
dependent ROC curve, and Cox regression analysis all
demonstrated the predictive ability of the risk model, in-
dicating an independent predictor of COAD prognosis.

Progressive preclinical and clinical evidence suggests that
targeting mitochondrial metabolism has anticancer efects
[35, 36]. Cuproptosis is associated with highly reactive
mitochondrial oxidative phosphorylation (OXPHOS) [26].
Despite an increasing reliance on glycolysis, cells from many
cancer types still exhibit functional OXPHOS [37]. In colon
adenocarcinomas, stem cells have been reported to use
mitochondrial OXPHOS to produce ATP and maintain
mitochondrial function via the FOXM1/PRDX3 pathway,
thereby maintaining their survival and stem-cell
characteristics [38].

Among the lncRNAs screened,MIR210HG, EIF3J-DT, and
ZEB1-AS1 have been extensively studied in tumors.
MIR210HG promotes breast cancer progression through m6A
modifcation mediated by IGF2BP1 [39]. IGF2BP1 also plays
an important role in COAD pathogenesis. Its deletion
downregulates k-RAS expression downstream of β-catenin and
simultaneously inhibits colon cancer cell proliferation, whereas
IGF2BP1 overexpression increases c-MYC and K-RAS ex-
pression and promotes colon cancer cell proliferation [40].
Whether MIR210HG is involved in this pathway in COAD
requires further investigation. In gastric cancer, EIF3J-DT is
involved in the regulation of autophagy and chemical re-
sistance of gastric cancer cells by targeting ATG14 [41], while
autophagy-dependent apoptosis has been shown to be
a promising therapeutic target in COAD [42]. ZEB1-AS1 is
involved in the regulation of the ZEB1 pathway; its activation
has been reported to promote the stem characteristics and
invasiveness of COAD cells [32, 43]. Te aforementioned
evidence suggests functional mechanisms by which the
lncRNAs we identifedmay be involved in COAD and suggests
ways for improving chemotherapy sensitivity and prognosis.
Considering our insufcient understanding of these lncRNAs,
further studies on them are of clear clinical value.
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Figure 10: Gene set enrichment analyses: (a) mTOR signaling pathway; (b) citrate cycle TCCA cycle; (c) arginine and proline metabolism;
(d) alanine, aspartate, and glutamate metabolism; (e) propanoate metabolism; (f ) proteasome; (g) valine, leucine, and isoleucine
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We found decreased sensitivity to multiple chemother-
apeutic agents in the high-risk group stratifed by CPR-related
prognosis. Te development of chemoresistance is an im-
portant factor that limits the therapeutic efcacy of anticancer
drugs and ultimately leads to the failure of COAD chemo-
therapy [44]. Transport-based mechanisms of cellular drug
resistance play important roles [45, 46]. Trough the control
of entry and exit of substrates through the cell membrane by
membrane transporters, such as P-gp, multiple drugs can
escape from cancer cells, decreasing their intracellular ac-
cumulation, resulting in multidrug resistance (MDR) that is
not limited to a specifc type and confers resistance tomultiple
drugs [47]. Studies on MDR mechanisms and strategies for
their reversal play an important role in the success of che-
motherapy [48–50]. Tere have been studies showing that
a new class of thiosemicarbazone compounds, the copper-
binding di-2-pyridyl ketone thiosemicarbazones, has great
promise. Trough a unique mechanism, they form redox-
active complexes with copper in the lysosomes of cancer cells
to reduce the amount of copper in the body, thereby over-
coming P-gp-mediated MDR [51]. Terefore, chelators that
bind copper have been developed as anticancer agents [51].
Our data on decreased sensitivity to multiple chemothera-
peutic agents in patients with COAD in the lncRNA-
stratifedhigh-risk group may also be due to higher Cu
concentrations. Te targeted application of chelators that
bind copper to fght cancer progression and chemoresistance
has signifcant clinical potential.

In conclusion, we identifed ten cuproptosis-related
lncRNAs using the multivariate Cox regression analysis
and constructed a risk model that can accurately predict
COAD prognosis. Tis evidence provides a foundation for
future research on COAD. Our study had some limitations.
All analyses were performed using a TCGA-COAD cohort
and have not been validated against other databases. Ad-
ditionally, in vivo and in vitro experiments should be per-
formed for further validation. Further exploration of the
impact of cuproptosis on prognosis and chemotherapy re-
sistance in COAD may provide new ideas for further study
and clinical applications.
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Background. Gastrointestinal stromal tumor (GIST) originates from a pacemaker cell, the Cajal cell. However, little is known
about the cancer neuroscience in GIST. In this study, we aimed to elucidate the clinical and biological roles of adrenoceptor beta 2
(ADRB2) in GIST.Methods. Immunohistochemistry was used to evaluate the expression of ADRB2 in GIST tissues.Te biological
efects of ADRB2 on GIST cell proliferation, migration, invasion, and apoptosis were explored using Cell Counting Kit −8, plate
colony formation assay, transwell invasion assay, and fow cytometry. We also explored the growth and metastasis of xenograft
tumors in nude mice. Western blotting was used to quantify protein expression and phosphorylation. Results. ADRB2 is generally
highly expressed in GIST. High ADRB2 expression was signifcantly associated with risk level, tumor size, mitotic count, and
metastasis. Overexpression of ADRB2 promoted GIST cell proliferation, migration, invasion, and apoptosis, while silencing
ADRB2 expression showed the opposite efects. Furthermore, we found that silencing endogenous ADRB2 inhibited GIST
progression and metastasis in nude mice. ADRB2-induced ETV1 upregulation enhanced the activation of c-KIT. Conclusion.
ADRB2 plays an important role in the proliferation and metastasis of GIST and is expected to be a potential target for the
treatment of GIST.

1. Introduction

Gastrointestinal stromal tumor (GIST), which is the most
common mesenchymal tumor of the gastrointestinal tract,
originates from the interstitial Cajal cells or their precursors
[1, 2]. GIST usually occurs in the stomach (60%–70%) and
small intestine (20%–25%) [3]. People between the ages of 50
and 70 are high-risk individuals [4]. At present, the main
treatment methods for GIST are surgical resection and bi-
ological therapies, such as imatinib. However, GISTpatients
with recurrence and metastasis still lack efective treatments
[5, 6]. Terefore, it is imperative to explore the biological

mechanism, fnd new biomarkers, and provide new strate-
gies for the diagnosis and treatment of GIST.

Multiple studies have shown that tumor progression is
associated with chronic stress [7–10]. Te sympathetic
nervous system plays an important role in chronic stress
[11]. Its nerve fbers act on adrenergic receptors by releasing
catechol neurotransmitters to regulate cellular function
[12, 13]. Te gastrointestinal tract is often injured under
stress in the human body [14], such as by stress ulcers.
Adrenoceptor beta 2 (ADRB2) is an important member of
seven transmembrane G protein-coupled receptors that can
be activated by β-agonists such as epinephrine,
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norepinephrine, and isoproterenol [15]. Recent studies have
found that ADRB2 signaling can regulate a variety of cells in
the tumor microenvironment and activate cancer-related
signaling pathways [16]. However, the role of ADRB2 sig-
naling in gastrointestinal stromal tumors remains unclear.

In this study, we found that patients with high ADRB2
expression had a worse prognosis. We also showed that
ADRB2 could promote GISTcell growth and apoptosis both
in vitro and in vivo. In addition, ADRB2 enhances the
ETV1-c-KIT signaling [17] by inducing ETV1.

2. Materials and Methods

2.1. Cell Lines and Cell Culture. Te GIST-882 human
GIST cell line was obtained from Lonza, and the GIST-T1
human GIST cell line was purchased from Cosmo Bio. Te
cells were incubated in RPMI 1640 (Gibco, NY, USA),
supplemented with 10% FBS (Invitrogen, Life Technology,
CA, USA) and 1% penicillin-streptomycin (Sigma, St. Louis,
USA). All cell lines were cultured at 37°C with 5% CO2 in an
incubator.

2.2. Patients and Tissue Microarray (TMA). Te GIST tissue
samples used to construct the tissue microarray were col-
lected from 122 GIST patients who underwent radical re-
section at the Afliated Hospital of Nantong University
(Nantong, China) from 2010 to 2018. Besides, we also
collected 22 liver metastatic samples from advanced GIST
patients who underwent palliative surgery. All tissue samples
were identifed by HE staining and immunohistochemical
staining (CD117, CD34, SMA, and Desmin4). Immuno-
histochemical analysis and scoring were performed as
previously described [18]. All participants obtained in-
formed consent, and this study was approved by the Ethical
Committee of the Afliated Hospital of Nantong University.
All experiments strictly followed the principles of the
Declaration of Helsinki.

2.3. qRT-PCR. Total cellular RNA from human tissues was
extracted using TRIzol (Takara, Shiga, Japan), and cDNAs
were generated using PrimeScript RT reagent (Takara,
Dalian, China). Subsequently, qRT-PCR was performed
using the Power SYBR Green PCR master mix (Applied
Biosystems, Foster City, USA) according to the manufac-
turer’s instructions.Te results were normalized to the levels
of GAPDH. Te primers used were as follows: ADRB2:
forward 5′-AGAGCCTGCTGACCAAGAAT-3′ and reverse
5′-TAGCAGTTGATGGCTTCCTG-3′; β-actin: forward 5′-
TCACCCACACTGTGCCCATCTACGA-3′ and reverse 5′-
CAGCGGAACCGCTCATTGCCAATGG-3′.

2.4. Western Blotting. Total protein extraction from cells
using lysis bufer (absin, Shanghai, China). Cellular proteins
were separated by electrophoresis on a 10% SDS-
polyacrylamide gel and then transferred to a poly-
vinylidene fuoride membrane by electroblotting. Following
blocking with a 5% nonfat dry milk solution for 2 hours, the

membrane was incubated overnight at 4°C with the ap-
propriate primary antibody (1 :1000 dilution). Finally, the
membrane was incubated with the corresponding secondary
antibody (1 : 5000 dilution) for 2 h at room temperature. Te
anti-c-KIT antibody was obtained from Invitrogen. Anti-
p-ERK (Y204), anti-ERK, and anti-GAPDH were obtained
from Cell Signaling Technology. Anti-ETV1 was obtained
from Abcam. Secondary antibodies were purchased from
Absin.

2.5. Cell Proliferation and Colony Formation Assay. Cells
were seeded into 96-well plates at a density of 2000 cells/well
and stained with Cell Counting Kit-8 (CCK-8, Dojindo,
Kumamoto, Japan) according to the manufacturer’s in-
structions. Cell viability was detected by measuring the
absorbance at 450 nm. Cells (1,000 cells/well) were seeded
into complete medium in 6-well plates and cultured in the
incubator for 14–20 days. Ten, the cells were fxed with
methanol and stained with a crystal violet solution. After
drying, the stained colonies in the 6-well plate were pho-
tographed and counted.

2.6. Wound Healing Assay. Cells were seeded in FBS-free
medium in 6-well plates at a concentration of 5×105 cells
per well. After the cells have flled the entire area, a yellow
pipette tip was used to make a horizontal wound. PBS was
used to wash the cells to remove the foating cells. Following
that, the wounds were photographed using an inverted
microscope at 0 and 24 h of incubation.

2.7. Transwell Invasion Assays. Transwell assays were con-
ducted to assess cell invasion and migration capacity.
Matrigel matrix (Corning, MA, USA) was placed in the
upper chamber. Ten, the cells were seeded into FBS-free
medium in the upper chambers. A complete medium with
20% FBS was added to the lower chamber as an inducer.
After 24 hours, cells were fxed with methanol and stained
with a crystal violet solution. Cells on the upper surface were
erased, and cells on the lower surface were photographed
and counted.

2.8. Cell Apoptosis Analysis. Annexin V-FITC apoptosis
assay kit (Absin, Shanghai, China) and fow cytometry were
used to analyze cell apoptosis. Cells were stained with
Annexin V-FITC and propidium iodide following the
manufacturer’s instructions. Subsequently, the cells were
examined on a fow cytometer (BD Biosciences).

2.9. Cell Transfection. Full-length Small hairpin RNAs
(shRNA) for ADRB2 and their corresponding negative
controls were obtained from Shanghai Genechem Co. Ltd
(Shanghai, China). Sequence for shRNA1 is as follows: 5′
GGACCTGAGTCTGCTATATTT 3′; Sequence for shRNA2
is as follows: 5′ AGGTACTGTGCCTAGCGATAA 3′. Se-
quence for negative control is as follows: 5′ GTTCTCCGA
ACGTGTCACGT 3′. GIST cells were incubated with

2 Journal of Oncology



retroviral in six-well plates according to the manufacturer’s
instructions. Stable cell lines expressing ADRB2 or those
with ADRB2 silenced were selected using puromycin.

2.10. Immunohistochemistry. Tissue sections were baked at
60°C for 1 h, followed by immersion into xylene, 100%
ethanol, and then decreasing concentrations of ethanol.
Antigen retrieval was done with a citric acid bufer. Sections
were then blocked with 5% FBS and stained with frst an-
tibodies against ADRB2, c-KIT, and Ki67, followed by in-
cubation with biotinylated secondary antibody and
visualized by the standard avidin-biotinylated peroxidase
complex method. Lastly, the tissue was counterstained with
hematoxylin.

Immunoreactivity scores were assessed by the intensity
of staining and percentage of positive area: − (negative
staining or weak intensity under 10% aera), + (weak in-
tensity between 10% and 100% or moderate intensity under
10%), ++ (moderate intensity over 10% or strong intensity
under 90% aera), and +++ (strong intensity over 90% aera).
Tissues with ++/+++ were considered as high expression,
while tissues with −/+ were considered as low expression.

2.11. Animal Studies. BALB/c nude mice were provided by
the Laboratory Animal Center of Nantong University. All
animals were raised under pathogen-free conditions and had
free access to water and food. GIST cells were injected
subcutaneously into the axilla of nude mice (approximately
106 cells in 100 μl PBS per mouse). Tumor fragments were
transplanted into the gastric wall of nude mice as previously
described [18]. Tumor volume was calculated every 6 days
using the following formula: Volume� (width2 × length)/2.
Te experimental protocols were approved by the Animal
Care and Use Committee of the Laboratory Animal Center
of Nantong University.

2.12. Statistical Analysis. All experiments were repeated at
least three times. Te data were expressed as the mean± SD.
Two-tailed Student’s t-test was employed to calculate the
diference between two groups. Te χ2 test was performed to
determine the association between patient clinical charac-
teristics and ADRB2 expression. Spearman’s correlation was
used to analyze the expression of ADRB2 and c-KIT in
tumor tissue samples. All statistical analyses were performed
using GraphPad Prism 8.0 software and SPSS 25.0 statistical
software. Two-tailed P< 0.05 was considered statistically
signifcant.

3. Results

3.1.Te Expression of ADRB2 Correlates with the Prognosis of
Patients. To explore the expression and clinical signifcance
of ADRB2 in GISTs, we constructed TMAs from 122 GIST
patients and examined the expression of ADRB2 by im-
munohistochemical staining. Among 122 GIST patients, 96
(78.7%) patients had high (++/+++) ADRB2 expression in
tumor tissue. Kaplan–Meier survival analysis showed that

patients with high ADRB2 expression had a worse prognosis
(P � 0.036; Figure 1(a)). In addition, the expression levels of
ADRB2 were related to risk level, tumor size, and nuclear
mitotic count (Table 1). We also analyzed the diferences of
ADRB2 expression between radical resection samples and
palliative resection samples. As shown in Table 2, high
expression level of ADRB2 was signifcantly correlated with
liver metastasis. Subsequently, we detected mRNA levels of
ADRB2 in GIST frozen samples. Te high
immunoreactivity-score group showed signifcantly higher
levels of ADRB2 mRNA compared to the low
immunoreactivity-score group (Figure 1(b)). Te mRNA
levels of ADRB2 were also correlated with risk level, tumor
size, nuclear mitotic count, and liver metastasis (Figures
1(c)–1(f)). Tese data suggested that ADRB2 may be as-
sociated with the progression of GISTs. Interestingly, we also
found that ADRB2 expression showed a signifcant corre-
lation with c-KIT levels (Figure 1(g)). Spearman’s correla-
tion analysis showed that ADRB2 expression was positively
correlated with c-KITexpression in GISTtumors (R2 � 0.581;
P< 0.001; Table 3).

3.2. ADRB2 Modulates GIST Cell Proliferation. To further
explore the function of ADRB2 in GIST cells, we ectopically
overexpressed ADRB2 in GIST-882 and GIST-T1 cells
(Figure 2(a)). CCK-8 assays showed that overexpression of
ADRB2 promoted the proliferation of GIST-882 and
GIST-T1 compared with vector-transfected cells
(Figure 2(b)). Colony formation assays also indicated the
similar result to the CCK-8 assays (Figure 2(c)). Further-
more, GIST-882 and GIST-T1 cells were transfected with
ADRB2-sh1, ADRB2-sh2, or negative control (shNC,
Figure 2(a)). Because ADRB2-sh1 has a more pronounced
efect, it was selected for the following experiments. Both
CCK-8 and colony formation assays suggested that
knockdown of ADRB2 signifcantly reduced the pro-
liferation of GIST cells (Figures 2(b) and 2(c)). Tese results
illustrate the critical role of ADRB2 in GIST cell
proliferation.

3.3. ADRB2 Promotes GIST Cell Migration and Invasion.
Wound-healing assays and transwell assays were performed
to analyze the efect of ADRB2 on GIST cell migration and
invasion.Te wound healing assay results demonstrated that
overexpression of ADRB2 enhanced the migratory ability of
GIST cells, whereas silencing of ADRB2 signifcantly re-
duced the migratory ability (Figure 3(a)). Transwell assays
also indicated that overexpression of ADRB2 increases the
number of migrating and invading GIST cells, whereas
knockdown of ADRB2 had the opposite efect on GIST cells
(Figure 3(b)). Overall, these data suggested that ADRB2
promotes cell migration and invasion.

3.4. ADRB2 Reduces the Process of Apoptosis. Tumor cells
become resistant to apoptosis, allowing them to survive
longer. Flow cytometry analysis showed that silencing
ADRB2 in GIST cells resulted in a signifcant increase in
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Figure 1: High ADRB2 expression is associated with prognosis in patients with gastrointestinal stromal tumors. (a) Kaplan–Meier disease-
free survival curves for 122 patients with gastrointestinal stromal tumor stratifed by high and low expression of ADRB2. (b) Real-time PCR
was used to detect the mRNA levels of ADRB2 in high immunoreactivity-score group compared to low immunoreactivity-score group. (c–f)
Te mRNA levels of ADRB2 correlate with risk level, tumor size, mitotic count and liver metastasis. (g) Representative staining of ADRB2
and c-KIT in GIST tissues. Magnifcation: 400×; ∗∗∗P< 0.001.
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apoptotic cell death (Figure 3(c)) while the number of ap-
optotic GIST cells overexpressing ADRB2 was reduced
compared to vector-transfected cells.

3.5. ADRB2 Promotes Tumor Proliferation and Metastasis In
Vivo. We performed a subcutaneous xenograft tumor
model, an orthotopic gastric tumor model, and an in-
travenous injection model to evaluate the role of ADRB2
in vivo. In the subcutaneous xenograft tumor model,
ADRB2-silenced cells had signifcantly reduced ability to

form tumors in nude mice compared with the NC group
(Figures 4(a) and 4(b)). Similar results were observed in the
orthotopic gastric tumor model (Figures 4(c)–4(e)). In
addition, we found that the orthotopic tumors developed
fewer liver metastatic nodes in the ADRB2-knockdown
group (Figures 4(f )–4(h)). Furthermore, ADRB2-
knockdown also decreased lung metastatic burden in the
intravenous injection model (Figures 4(i) and 4(j)). To
confrm the ability of cell proliferation, we detect Ki67 in
GIST tumors with IHC. As shown in Figure 4(k), knock
down of ADRB2 signifcantly reduced ability of tumor cell
proliferation compared with the NC group.

3.6. ADRB2 Enhances the ETV1-c-KIT Signaling. We further
explored the molecular mechanism of ADRB2 signaling-
mediated efects. ETV1-c-KIT signaling is a key positive
feedback to promote GIST progression [19]. In ADRB2-
overexpressing GIST cells, ETV1, c-KIT, and p-ERK(Y204)
expression were increased (Figure 5(a)). Silencing ADRB2
showed the opposite trend. When ADRB2-overexpressing
GIST cells were inhibited by a c-KIT inhibitor (imatinib
mesylate), it abolished the efect of ADRB2 on promoting
ETV1, c-KIT, and p-ERK (Figure 5(b)). Tese results
demonstrate that ADRB2 enhances the ETV1-c-KIT sig-
naling by inducing ETV1 (Figure 6).

Table 1: Relations between ADRB2 expression and clinicopathologic characteristics of GIST patients who underwent radical surgery.

Clinicopathologic characteristics n
ADRB2 expression

χ2 P
High Low

Ages (years)
<60 71 59 12 1.970 0.161≥60 51 37 14
Gender
Female 67 56 11 2.122 0.145Male 55 40 15
Tumor location
Stomach 74 60 14 0.642 0.432Other locations 48 36 12
Risk level
Very low/low 39 24 15 10.054 0.002High/intermediate 83 72 11
Tumor size
<5 cm 50 33 17 8.134 0.004≥5 cm 72 63 9
Mitotic count (50HPF)
<5 71 49 20 5.578 0.018≥5 51 47 6

Table 2: Correlation between ADRB2 expression and liver metastasis.

Clinicopathologic characteristics n
ADRB2 expression

χ2 P
High Low

Metastasis
No 122 93 29 4.177 0.041Yes 22 21 1

Table 3: Correlation of ADRB2 expression with c-KIT level in
GISTs.

ADRB2 c-KIT No. of cases P R2

−/+ −/+ 15 <0.001 0.573
−/+ ++ 9
−/+ +++ 2
++ −/+ 7
++ ++ 23
++ +++ 12
+++ −/+ 3
+++ ++ 13
+++ +++ 38
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Figure 2: ADRB2 regulates tumor proliferation in gastrointestinal stromal tumors. (a) Western blot and real-time PCR confrmed
overexpression and knockdown of ADRB2 in GIST-882 and GIST-T1 cells. (b, c) Cell proliferation abilities were detected by CCK-8 assay
and colony formation assay. Data are presented as the mean± SD. ∗∗P< 0.01; ∗∗∗P< 0.001.
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Figure 3: ADRB2 regulates GIST cell migration, invasion, and apoptosis. (a) Cell migration ability was determined by the wound healing
assay; (b) transwell assay was used to determine cell invasion ability; (c) cell apoptosis was examined by staining with Annexin V/PI. Data are
presented as the mean± SD. ∗∗P< 0.01; ∗∗∗P< 0.001.
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Figure 4: ADRB2 promotes the proliferation andmetastasis of gastrointestinal stromal tumors in animal experiments. (a) Images of excised
tumors from nudemice. (b) Tumor growth curves were used to evaluate the growth of xenograft tumors. (c) Representative images of gastric
orthotopic tumors. (d) H&E staining of gastric orthotopic tumors. (e) Tumor volume of gastric orthotopic tumors. (f ) Representative images
of live metastasis form gastric orthotopic tumors. (g) H&E staining of liver metastasis. (h) Number of metastatic nodes. (i, j) In vivo image
system was used to show the metastasis in intravenous injection model. (k) Ki67 expression was detected by IHC. Data are presented as the
mean± SD. ∗∗P< 0.01; ∗∗∗P< 0.001.
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Figure 5: ADRB2 enhances the ETV1-c-KITsignaling. (a) Western blotting was used to detect the expression levels of ETV1, c-KIT, and p-
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detected by western blotting.
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Figure 6: Schematic representation shows ADRB2 enhancing ETV1-c-KIT signaling by inducing ETV1.
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4. Discussion

In this study, we found that ADRB2 was highly expressed in
78.7% of GIST tissues and co-expressed with c-KIT by TMA
and immunohistochemical staining. Te expression levels of
ADRB2 are signifcantly correlated with the clinical char-
acteristics and prognosis of GIST patients. In vivo and
in vitro experiments indicated that overexpression of
ADRB2 promoted GIST proliferation and metastasis, while
silencing ADRB2 expression showed the opposite trend.
Taken together, ADRB2 is a potential target for the treat-
ment of GIST.

In recent years, the infuence of the nervous system on
tumors has gradually attracted attention [20–22]. Several
studies have found that neuron-like structures exist in
tumor tissue [13, 23], and the density of nerve fbers is
related to the degree of tumor diferentiation [24].
Sympathetic nerves release neurotransmitters such as
norepinephrine, which activates receptors and then
causes downstream signal transduction by binding to
specifc receptors on the cell surface [25]. Previous
studies have found that ADRB2 is the primary receptor
mediating sympathetic signaling, and ADRB2 can acti-
vate multiple downstream signaling pathways in tumors
[26–28]. Te crosstalk of these diferent signaling path-
ways makes the single-targeted therapies currently used
in the clinic more prone to failure. Terefore, it is es-
sential to explore new therapeutic targets for the treat-
ment of GIST.

Te ETV1-c-KITsignaling is the key positive feedback to
promote GIST progression [19]. Our study reveals that
ADRB2 is essential for ETV1-c-KIT feedback in GISTs.
Recently, ETV1 transcription factor was found to be a major
regulator of GIST-specifc transcription networks, and it is
highly expressed in GISTs but not in other sarcomas. More
importantly, ETV1 is upregulated by MAPK-ERK signaling,
which is activated by c-KIT [29, 30]. In the present study, we
found that the ERK pathway is activated by ADRB2, and
ETV1 expression is increased in ADRB2-overexpression
cells. Te efects of ADRB2 on promoting ETV1-c-KIT
signaling can be abolished by the c-KIT inhibitor imatinib.
Tese data suggest that ADRB2 plays a vital role in GIST-
specifc transcription networks.

Te expression levels of ADRB2 vary in diferent cancers.
Here, we show that most GIST tissues have a high expression
level of ADRB2. Besides, high levels of ADRB2 are correlated
with risk level, tumor size, nuclear mitotic count, and liver
metastasis. Kaplan–Meier survival analysis also shows that
patients with high ADRB2 expression have a worse prognosis.
Tese data indicate that ADRB2might be a new target for GIST
treatment. Te sympathetic signaling can be abnormally acti-
vated by a variety of stimuli such as chronic stress. Activation of
adrenergic signaling by chronic stress leads to sympathetic and
adrenal medulla secretion of catecholamines [31, 32]. ADRB2
mediates most of the efects of catecholamines in tumors. Long-
term elevated catecholamine levels can also have an impact on
cancer progression [33]. Terefore, the combination of ADRB2
antagonists with existing GIST treatments may have clinical
implications.

In conclusion, our study confrms that ADRB2 signaling
promotes GIST proliferation and metastasis in vitro and
in vivo. ETV1-c-KIT feedback is regulated by ADRB2-ERK
signaling. ADRB2 is a potential prognostic marker and thus
may serve as a new therapeutic target for GISTs.
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Background. Te relationship between H. pylori infection and gastric cancer (GC) has been widely studied, and H. pylori is
considered as the main factor. Utilizing bioinformatics analysis, this study examined gene signatures related to progressing
H. pylori-associated GC. Materials and Methods. Te dataset GSE13195 was chosen to search for abnormally expressed genes in
H. pylori-associated GC and normal tissues. Te TCGA-STAD database was chosen to verify the expression of key genes in GC
and normal tissues. Results. In GSE13195, a total of 332 diferential expression genes (DEGs) were screened. Te results of
weighted gene co-expression network analysis showed that the light cyan, plum2, black, and magenta4 modules were associated
with stages (T3, T2, and T4), while the orangered4, salmon2, pink, and navajowhite2 modules were correlated with lymph node
metastasis (N3, N2, and N0). Based on the results of DEGs and hub genes, a total of 7 key genes (ADAM28, FCER1G, MRPL14,
SOSTDC1, TYROBP, C1QC, and C3) were screened out. Tese gene mRNA levels were able to distinguish between normal and
H. pylori-associated GC tissue using receiver operating characteristic curves. After transcriptional level verifcation and survival
analysis, ADAM28 and C1QC were excluded. An immune infltration study revealed that key genes were involved in regulating
the infltration levels of cells associated with innate immune response, antigen presentation process, humoral immune response,
or Tcell-mediated immune response. In addition, drugs targeting FCER1G and TYROBP have been approved and are under
investigation. Conclusion. Our study identifed fve key genes involved in H. pylori-associated GC tumorigenesis. Patients with
higher levels of C3 expression had a poorer prognosis than those with lower levels. In addition, these key genes may serve as
biomarkers and therapeutic targets for H. pylori-associated GC diagnosis, targeted therapy, and immunotherapy in the future.

1. Introduction

Incidence of gastric cancer (GC) is the sixth highest of all
cancer types, with approximately 1,089,103 cases worldwide.
GC is also the third leading cause of cancer death, with
approximately 769,000 deaths each year [1]. Te number of
new cases of GC in China approaches 0.5 million each year
[2]. Currently, the 5-year survival rate of GC patients is 32%,
and more than 50% of patients are diagnosed with advanced

cancer [3]. So far, surgery remains the only cure for GC [4].
Te Human Genome Project is nearing completion and
next-generation sequencing is being widely applied; re-
searchers have made great progress in the study of the
mechanism of GC occurrence and development [5].Te new
medical model of the cross-development of sequencing
technology and bioinformatics utilizes genomics and pro-
teomics to guide targeted therapy, enabling GC patients to
receive individualized and precise treatment [6]. To decrease
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the high incidence and mortality of GC, early detection and
diagnosis are urgently needed, as well as new biomarkers for
the disease. Although technology has advanced consider-
ably, there is still an urgent need for efcient and timely
diagnostic methods and new GC-specifc biomarkers.

Various risk factors afect the incidence of GC, in-
cluding Helicobacter pylori (H. pylori) infection, gender,
poor dietary habits, and smoking [7]. Of these, H. pylori
infection, which often leads to gastritis, followed by
gastric atrophy and gastrointestinal metaplasia, is most
closely related to GC [8]. Currently, the detection of
H. pylori and its eradication therapy can reduce the risk
of GC [9]. Mechanistically, the toxic efects of H. pylori-
producedcytotoxicity-associated gene A (CagA) and
vacuolar cytotoxicity A (VacA) proteins on gastric
mucosal cells can trigger a series of complex biological
efects, including release of proinfammatory cytokines,
recruitment of immune cells, and stimulation of the
survival of gastric epithelial cells [10, 11]. H. pylori in-
hibits phagocytic activity and T cell function during
infection, while catalyzing the formation of urea to
ensure its survival in harsh low pH conditions. Fur-
thermore, H. pylori metabolism byproducts damage
epithelial cells of the host and contribute to the carci-
nogenesis of H. pylori infection [12]. Despite numerous
studies on H. pylori, it remains unclear whether H. pylori
is only involved in the initiation of gastric tumor pro-
cesses, or whether it afects the mechanisms of tumor
progression.

In recent years, immunotherapy, as a novel treatment
method, mainly induces antitumor efects by modulating the
immune system and has made revolutionary progress in the
treatment of gastric cancer [13]. Te tumor microenviron-
ment (TME) is a complex ecosystem consisting of immune
cells coming in many forms and other acellular components
of the extracellular matrix with marked heterogeneity. In the
TME, tumor cells and immunomodulators interact dy-
namically to produce positive immunotherapy responses
[14]. Te immune microenvironment of GC itself is in
a dynamic change, and whether the addition ofH. pylori will
make it more complicated.

In this article, based on the GSE13195 dataset and the
TCGA-STAD dataset, we used a series of bioinformatics
research methods to explore the dysregulated genes and
mechanisms in H. pylori-associated GC tissues and to fnd
possible biomarkers and targeted drugs.

2. Materials and Methods

2.1. Data Collection and Analysis. We selected the dataset
GSE13195 from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) for our study [15]. Te
dataset was derived from GPL5175 (Afymetrix Human
Exon 1.0 ST Array) and contained H. pylori-associated GC
and normal tissues from 25 patients. Te dataset also in-
cluded patients’ pathological information, tumor stages (T2,
T3, and T4), and lymph node metastasis (N0, N2, and N3).
Subsequently, Sangerbox Tools (https://www.sangerbox.
com/) were used for normalized raw data as well as

multiarray analysis (“lima” package) [16]. Finally, 134
downregulated genes and 198 upregulated genes were ob-
tained according to the screening conditions of P value
<0.05 and |logFC|> 1.

2.2. Functional and Pathway Enrichment Analysis. Genes
diferentially expressed were functionally enriched using DA-
VID v6.8 (Database of Annotations, Visualization, and In-
tegrated Discovery, https://david.ncifcrf.gov/home.jsp) [17].
Tese include Gene Ontology (GO) enrichment analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis.

2.3. Gene Set Enrichment Analysis (GSEA). To more accu-
rately determine the functions of diferential genes, we per-
formed GSEA using Sangerbox Tools on the basis of normal
tissues and H. pylori-associated GC tissues [16]. Te reference
gene set is c2.cp.kegg.v7.0.

2.4. Screen for Tumor Progression-Related Modules and
Central Genes by Weighted Gene Co-Expression Network
Analysis (WGCNA). Gene co-expression networks in
H. pylori-associated GC tissues were constructed using San-
gerbox Tools [16]. First, based on Pearson correlation analysis,
25 samples were clustered to identify outliers. Ten, we set the
soft threshold to 5 to achieve a scale-free topology. Subsequently,
using a dynamic tree-cut approach, the genes were classifed into
diferent modules based on gene expression correlations. Te
expression similarity of module eigen genes was further used to
cluster similar modules with a height of 0.85. Module mem-
bership (MM) is the correlation of gene expression profles with
module characteristic genes, and genes with MM≥ 0.8 are
considered hub genes [18].Te protein interaction network was
mapped using the String online website (https://string-db.org/).

2.5. Validation of Key Genes. Key genes were selected from
abnormally expressed genes and hub genes. Receiver operating
characteristic (ROC) curves were drawn to calculate specifcity
and sensitivity. In order to verify the accuracy and reliability of
the screened key genes, the gene expression data of GC patients
in the TCGA-STAD dataset (including 34 normal samples,
20 H. pylori-associated GC samples, 157 H. pylori-unassociated
GC samples, and 153 other samples) were used for validation
(including mRNA expression level and survival analysis) in
UALCAN online website (https://ualcan.path.uab.edu/) [19].

2.6. Immune Infltration Analysis. According to the calcu-
lation method of the immune microenvironment score of
CIBERSORT, the immune microenvironment analysis of
H. pylori-associated GC tissues and normal tissues was
performed [20]. We calculated enrichment scores for each
immune-related cell population using ssGSEA to examine
the relationship between key genes and immune infltration.
In addition, Spearman correlations between each hub gene
expression and immune enrichment scores were calculated
and tested.
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2.7. Target Drug. Te DrugBank online analysis website
(https://go.drugbank.com/) was used to fnd compounds
that might act on key genes [21].Te fowchart of the study is
provided in Figure 1.

3. Results

3.1. Data Collection and Acquisition of Diferential Genes.
Te dataset GSE13195 from GEO was selected for this study.
According to the screening conditions of P< 0.05 and
|logFC|> 1, we found 332 diferentially expressed genes
(DEGs), including 198 that were upregulated and 134 that
were downregulated (Figures 2(a) and 2(b)).

3.2. Functional and Pathway Enrichment Analysis.
DAVID v6.8 was used for GO and KEGG enrichment
analysis in order to better elucidate the functional and bi-
ological signifcance of the modules identifed. GO biological
process analysis showed that in terms of biological process,
these diferential genes were mainly related with cell ad-
hesion, collagen fbril organization, response to drug,
maintenance of gastrointestinal epithelium and de-
toxifcation of copper ion; in terms of cellular components,
these diferential genes were mainly located in extracellular
space, extracellular exosome, extracellular region, cell sur-
face, and basolateral plasmmembrane; in terms of molecular
functions, these diferential genes mainly participated in
extracellular matrix structural constituent, identical protein
binding, protein binding, integrin binding, and collagen
binding (Figure 2(c)). Furthermore, KEGG analysis revealed
that these diferential genes were highly involved in the
regulation of gastric acid secretion, mineral absorption,
protein digestion and absorption, ECM-receptor in-
teraction, and cell cycle (Figure 2(d)).

3.3. Diferential Gene Set Enrichment Analysis. GSEA was
conducted to better elucidate how diferential genes func-
tion. Te eight KEGG pathways associated with DEGs are
shown in Figure 2(e). Tey were melanogenesis, thyroid
cancer, bladder cancer, P53 signaling pathway, glyco-
sphingolipid biosynthesis, renal cell carcinoma, basal cell
carcinoma, and endometrial cancer. Moreover, compared
with normal tissues, these related pathways were hyper-
activated in H. pylori-associated GC tissues.

3.4. Co-Expression Network Construction and Module
Detection. To fnd modules highly correlated with the
progression of H. pylori-associated GC, samples of cancer
tissues were used to construct a network of co-expression.
We investigated the relationship between the scale-free
topological ft index R2 and the soft threshold (power) in
order to make the network scale-free. As shown in
Figures 3(a) and 3(b), we chose a soft threshold (power) of 5
when R2 reached 0.85 for the frst time. After the adjacency
matrix was constructed, we transformed it into a topological
overlap matrix. Genes were then sorted into diferent
modules, performing a dynamic tree-cutting method.

Diferent genes would be categorized into the same module
if their expressions were signifcantly correlated. Finally, we
got 66 modules; the module feature vector and clustering
dendrogram are shown in Figures 3(c) and 3(d). Ten, to
identify modules that were highly correlated with the pro-
gression of H. pylori-associated GC, the correlation between
tumor characteristics and each module was examined. As
shown in Figure 3(e), among the 66 modules, modules light
cyan, plum2, black, and magenta4 were most associated with
stage (T3, T2, and T4) with P values below 0.05; modules
orangered4, salmon2, pink, and navajowhite2 were associ-
ated with lymph node metastasis (N3, N2, and N0) were
most correlated withP values below 0.05.We calculatedMM
and defned genes with MM≥ 0.8 as central genes among the
genes in selected modules and obtained a total of 318 hub
genes. Te protein interaction networks of these 318 hub
genes in their respective categories are shown in Figure 4.

3.5. Acquisition and Specifcity Analysis of Key Genes.
Seven genes obtained by intersecting the diferential genes
and hub genes were defned as key genes, namely, ADAM28,
FCER1G, MRPL14, SOSTDC1, TYROBP, C1QC, and C3
(Figure 5(a)).Teir expression in the tissues of the GSE13195
dataset is shown in Figure 5(b). Among them, FCER1G,
MRPL14, TYROBP, C1QC, and C3 were signifcantly highly
expressed in H. pylori-associated GC tissues compared with
normal tissues, while ADAM28 and SOSTDC1 were com-
pletely opposite. In addition, the ROC curves showed that
the key genes were well predicted (AUC values: 0.957, 0.902,
0.934, 0.925, 0.862, 0.826, and 0.726, respectively)
(Figure 5(c)). Tis suggested that seven key genes had the
potential to be diagnostic markers for H. pylori-
associated GC.

3.6. Validation and Survival Analysis of Key Genes. Based on
the TCGA database, boxplots of tumor samples and normal
samples (including 34 normal samples, 20 H. pylori-asso-
ciated GC samples, 157 H. pylori-unassociated GC samples,
and 153 other samples) were generated for further validation
of the key genes. As shown in Figure 6(a), the mRNA ex-
pression levels of the fve key genes (FCER1G, MRPL14, C3,
SOSTDC1, and TYROBP) were signifcantly diferent be-
tween tumor tissues and normal tissues, while ADAM28 and
C1QC showed no signifcant diferences. In addition,
FCER1G, MRPL14, and C3 were abnormally high in
H. pylori-associated and H. pylori-unassociated GC tissues
compared to normal tissues; SOSTDC1 was abnormally low
in H. pylori-associated and H. pylori-unassociated GC tis-
sues. Interestingly, TYROBPHP was abnormally high in
H. pylori-associated GC tissues compared to normal tissues
but not in H. pylori-unassociated GC tissues. Furthermore,
the expression of TYROBP was signifcantly increased in
H. pylori-associated GC tissues relative to H. pylori-un-
associated GC tissues. Te expression levels of key genes
were correlated with the prognosis of GC patients through
survival analysis. According to the median expression value,
GC patients were divided into a high expression group and
low expression group. We found that patients with GC who
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expressed high levels of C3 had poorer overall survival, while
the results of survival analysis of other genes were not
statistically signifcant (Figures 6(b) and S1). Terefore, we
removed ADAM28 and C1QC from the key genes.

3.7. Immune Infltration Analysis. We performed immune
microenvironment analysis on H. pylori-associated GC
and normal tissues according to the CIBERSORT’s cal-
culation method of the immune microenvironment
score. As shown in Figures 7(a) and 7(b), compared with
normal tissues, H. pylori-associated GC tissues had
stronger infltration of activated NK cells, M0 macro-
phages, M1 macrophages, and M2 macrophages, but less
infltration of plasma cells and CD8 T cells, others are no
diferent. We used ssGSEA to determine enrichment
scores for immune-related cells. Spearman correlations

between gene expression and immune enrichment scores
for each hub were calculated and tested (Figure 7(c)). Te
results showed that FCER1G positively correlated with
the infltration of M2 macrophages, M1 macrophages,
resting mast cells and resting dendritic cells, and neg-
atively correlated with the infltration of plasma cells and
CD8 T cells. MRPL14 positively correlated with in-
fltration of M1 macrophages, M2 macrophages, M0
macrophages and resting dendritic cells, and negatively
correlated with infltration of plasma cells, CD8 T cells,
and memory B cells. SOSTDC1 positively correlated with
infltration of plasma cells and CD8 T cells, and nega-
tively correlated with infltration of M0 macrophages,
M1 macrophages, M2 macrophages, and activated NK
cells. TYROBP was positively correlated with M2 mac-
rophages, M1 macrophages, resting mast cells, and delta
gamma T cell infltration, and negatively correlated with

GEO

GSE13195, 25 paired tissues

Limma packages

134 down-regulated genes and
198 up-regulated genes

GO and KEGG enrichment analysis

Gene set enrichment
analysis (GSEA)

PPI network

Hub genes

Weighted gene co-expression
network analysis (WGCNA)

Tumor stage (T2, T3 and T4), and
lymph node metastasis (N0, N2

and N3)

Key genes

Validation of the key genes

mRNA expression level in H. pylori-
associated GC and normal tissues

ROC curves

Drugbank database

Survival analysis

mRNA expression level in TCGA-
STAD dataset

Figure 1: Flowchart of the study. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 4: Protein-protein interaction (PPI) networks. (a) T3-related hub genes. (b) T2-related hub genes. (c) T4-related hub genes.
(d) N3-related hub genes. (e) N2-related hub genes. (f ) N0-related hub genes.
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Figure 5: Validation of key genes in GSE13195. (a) Venn diagram. (b) mRNA expressions of key genes in GSE13195. (c) ROC curves of key
genes in the diagnosis of H. pylori-associated GC. ROC: receiver operating characteristic. GC: gastric cancer.
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Figure 7: Immune infltration analysis. Te color means spearman correlation between the hub gene and the immune-related cell.
(a) Correlationmatrix of all 22 immune cells proportions. (b) Violin plot showed the proportions of 22 immune cells between normal tissues
with H. pylori-associated GC tissues. (c) Infuence of key genes on infltration of 22 immune cells.
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plasma cell infltration. C3 was positively correlated with
infltration of M2 macrophages, delta gamma T cells and
M1 macrophages, and negatively correlated with in-
fltration of monocytes and plasma cells.

3.8. Possible Targeted Drugs. We used the DrugBank online
website to search for possible targeted drugs in key genes. As
shown in Table 1, for FCER1G, currently approved and
under investigation drugs were benzylpenicilloyl polylysine
and fostamatinib. Among them, benzylpenicilloyl polylysine
acted as an agonist, while fostamatinib functioned as an
inhibitor. For TYROBP, the currently approved and
understudied drug was dasatinib, but it played a multi-
targeted role, and the specifc mechanism remained to be
further studied. Te remaining compounds targeting key
genes were poorly studied.

4. Discussion

Globally, GC is the third most common malignancy as well
as the sixth most common cause of death [1]. Te recent
research showed that more than half of newly diagnosed
patients were from developing countries (Eastern Europe,
East Asia, and Central and South America) [22]. GC can
occur due to a number of risk factors, including exposure to
chemical carcinogens, environmental factors, genetic sus-
ceptibility, poor diet, and excessive alcohol intake [23].
However, infection withH. pylori remains the main cause of
GC induction [24]. Despite the rapid development of tar-
geted therapies and immunotherapies in recent years, there
was still a lack of clinical efectiveness in treating some
patients with GC [25]. It would be benefcial if more
methods and targets could be found for treating GC. Based
on transcriptome data analysis, our study identifed DEGs
associated with the occurrence and progression of H. pylori-
associated GC, and provided some potential targets for the
treatment of H. pylori-associated GC. Based on the
GSE13195 and TCGA-STAD datasets, we identifed fve key
genes, FCER1G, MRPL14, SOSTDC1, TYROBP, and C3,
which presented diferent expression patterns in H. pylori-
associated GC and normal tissues, where C3 may afect the
prognosis of GC patients.

FCER1G is located on chromosome 1q23.3 and encodes
the gamma subunit of the crystalline (Fc) region (Fc R) of an
immunoglobulin fragment involved in various immune
responses such as phagocytosis and cytokine release [26, 27].
Cellular efector functions are activated by the interaction
between the Fc of immunoglobulins and the Fc R of immune
cells, which in turn trigger destructive infammation, im-
mune cell activation, phagocytosis, oxidative burst, and
cytokine release [28, 29]. FCER1G was implicated in the
progression of several cancers, such as squamous cell car-
cinoma, multiple myeloma, and clear cell renal cell carci-
noma [27, 29, 30]. In renal cancer, the high expression of
FCER1G may be a functional basis for the induction of M2
macrophages by the increased secretion of IL-4. In addition,

M2 macrophages can acquire their tumor suppressor
function in part by suppressing cytotoxic T cells. Tis may
explain the relevance of FCER1G to macrophage and T cell
function [31].Tese fndings were consistent with our results
that high expression of FCER1G was positively correlated
with infltration of M2 macrophages and negatively corre-
lated with CD8 T cells.

MRPL14 is a highly conserved protein. One protein-
binding site and two RNA-binding sites are located in the C-
terminal region of MRPL14, which consists of a fve-
stranded beta barrel and two small alpha helices [32].
MRPL14 was found to be closely related to mitochondrial
metabolism [33]. Te conserved interaction of C7orf30 with
MRPL14 promoted biogenesis of the mitochondrial large
ribosomal subunit and mitochondrial translation [32].
However, research on the role of MRPL14 in cancers is
currently still blank.

SOSTDC1 is a secreted protein with a glycosylated N-
terminus that contains a C-terminal cysteine knot domain
[34]. SOSTDC1 negatively regulates BMP (bone morpho-
genetic protein) signaling during cell proliferation, difer-
entiation, and apoptosis, and also regulates various processes
in development and cancer by regulating the Wnt pathway
[35, 36]. Researchers have found that a lack of SOSTDC1 in
GC patients was associated with a shorter survival rate. In
gastric cancer, SOSTDC1 acts like a tumor suppressor, and
its silencing can promote tumor growth and lung metastasis.
SOSTDC1 signifcantly inhibits the SMAD-dependent BMP
pathway, c-Jun activation, and transcription of c-Jun
downstream targets [37]. In addition, SOSTDC1 regulates
NK cell maturation and Ly49 receptor expression from
nonhematopoietic and hematopoietic sources in a cellular-
exogenous manner [38]. Tis seems to be contrary to the
results we obtained inH. pylori-associated GC tissues, which
needs to be further explored in the follow-up studies.

TYROBP, also known as DAP12, can noncovalently bind
to activating receptors on the surface of various immune cells
and mediate signal transduction and cell activation [39, 40].
Tere was evidence that patients with GC who overexpressed
TYROBP had a poorer survival rate. Furthermore, TYROBP
can stimulate macrophage activation, regulate tumor necrosis
factor production, and induce tolerance [41]. TYROBP is
involved in the interaction between tumor cells and mac-
rophage M2 to enhance TGF-β secretion in vitro [42]. Our
research partially confrmed this, but this part of the results
still needs to be verifed with large samples later.

Complement is an important part of the innate immune
system. Previously, it was thought to be a network of pro-
teins that released infammatory mediators in response to
microbial invasion [43]. A growing number of studies have
shown that complement activation in the tumor microen-
vironment can delay local T-cell immunosuppression and
chronic infammation, thereby promoting tumor-promoting
efects, ultimately promoting tumor immune escape, growth,
and distant metastasis [44, 45]. C3 and downstream sig-
naling molecules are involved in multiple biological pro-
cesses of tumor cells, including tumor cell anchoring,
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proliferation, tumor-associated angiogenesis, matrix
remodeling, migration, and invasion [46–48]. In GC,
monocytes, TAMs, M2 macrophages, DCs, Tregs, and T cell
exhaustion were signifcantly associated with C3 expression.
An immunotherapeutic approach based on C3 could pro-
vide a potential biological target for GC [49].

Although we identifed and confrmed 5 key genes that
were highly correlated with the progression of H. pylori-
associated GC, we were unable to perform multifaceted
validation due to the small sample size of GSE13195 and the
lack of studies of the same type. In addition, we did not
perform experimental tests on key genes. It is critical to
conduct larger sample studies as well as multicenter clinical
trials to gain a deeper understanding of how genes are in-
volved in H. pylori-associated gastric cancer.

5. Conclusion

In conclusion, we identifed fve key genes, FCER1G,
MRPL14, SOSTDC1, TYROBP, and C3, associated with the
occurrence of GC in H. pylori infection. Among them,
H. pylori-associated GC patients with higher C3 expression
had worse prognosis than those with lower expression. In
addition, in the future, H. pylori-associated GC may be
diagnosed and treated precisely by biomarkers and thera-
peutic targets related to these key genes.
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Background and aims. Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide.
/e role of leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) in HCC remains unclear. Metformin can prevent
and control the development of a variety of cancers, especially in HCC. Alternative splicing (AS) can producemany cancer-driving
genes. We aim to uncover that metformin regulates HCC development through alternative splicing of LGR4. Methods. First, the
expression of LGR4 in HCC tumor tissues and cell lines was detected by western blotting and immunofluorescence. /e ability of
cell proliferation, migration, and invasion was detected with CCK8, wound-healing, and transwell assays when overexpressing
LGR4 or treating with metformin. /e β-catenin expression was detected by immunofluorescence. In order to investigate novel
AS-associated LGR4, we discarded LGR4 isoforms from GSO databases. We used siRNA to knock down the specific isoform to
check the cell proliferation, migration, and invasion when treated with metformin. Results. /e level of LGR4 expression was
higher in HCC cell lines and tumor tissues. /e HCC cell proliferation, migration, and invasion were increased when over-
expressing LGR4, which could be reduced by metformin treatment. /e GEO database (GSE190076) showed that LGR4 had
switching properties in HCC cell lines treated with metformin. We used siRNA to knock down the specific isoform, and the result
showed that the specific isoform siRNA could promote the inhibition of cell invasion caused by metformin treatment. Con-
clusions. LGR4 could promote the ability of cell proliferation, migration, and invasion in HCC, which could be reduced by
metformin through alternative splicing.

1. Background

Hepatocellular carcinoma is the most common type of liver
cancer all over the world, especially in China [1, 2], although
the treatment is still developing and includes surgery,
transplantation, and local therapies. Drug therapy is also
applied in clinics [2, 3]. However, the mechanism of HCC is
still unclear. Metformin is a dimethyl biguanide to treat type
2 diabetes mellitus (T2DM) with few side effects. Metformin
can be used to treat many types of cancer, including co-
lorectal [4] and prostate cancers [5]. In HCC, metformin

could regulate the expression of FOXO3 by apoptosis and
pyroptosis to inhibit the development of hepatocellular
carcinoma [6].

LGR4 belongs to the GPCRs superfamily and is recog-
nized as a trans-membrane receptor of the LGR family.
Recently, a study indicated that LGR4 could interact with
PrPc to promote tumorigenesis and liver metastasis by
stemness of colorectal cancer stem cells [7]. In acute myeloid
leukemia, RSPO3-LGR4 signaling could be recognized as
a target for treatment [8]. It also can be related to poor
prognosis in ovarian cancer [9]. However, the function of
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LGR4 is still unclear. Alternative splicing could produce
multiple transcripts of mRNA to regulate the gene ex-
pression. An MTA1 splicing switch can be regulated by
RALY to activate the cholesterol-related pathway in hepa-
tocellular carcinoma [10]. /e alternative splicing could also
be regulated by DDX17 and produce a PXN-AS1 isoform in
HCC. However, whether metformin could regulate gene
alternative splicing is still unclear.

In our research, we investigated the function of LGR4 in
the HCC, and we also found that metformin could reduce
the expression of LGR4.We also indicated the mechanism of
the regulatory effect of metformin. /e study could provide
evidence of LGR4 function, which could be recognized as
a target for HCC treatment.

2. Methods

2.1. Cell Culture and Treatment. Normal cell lines (L02) and
Huh-7 and HepG3B cell lines were obtained from the
American Type Culture Collection (ATCC). All cells were
cultured in DMEM (Invitrogen, USA) with FBS (10%), in an
atmosphere containing 5% CO2 at 37°C. /e HCC cell lines
were treated with metformin (20 μM) [6]./e HCC cell lines
were transfected with PcDNA-LGR4 (Genewiz, China) and
siRNA-LGR4 (GenePharma, China) by using Lipo 3000
(/ermo, USA). siRNA-LGR4 sequence: UGGAUGCCG
CUCAUCCUAAAG.

2.2. CCK-8 Assay. According to the previous procedure [11],
the treated cells were added into wells with a proper density.
Two days later, the cell counting kit-8 (CCK-8) reagent was
added to the wells for 2 hours. We determined the optical
density (OD) at 450 nm using amultimodemicroplate reader.

2.3. Cell Invasion Assay. /e treated cells were digested and
added into the top chambers of transwell inserts with FBS-
free DMEM. /e cell density is 2×105 cells per well. And
DMEM (10% FBS) was cultured in the bottom chambers.
After 6 hours, 4% paraformaldehyde was used to fix the
inserts and stain them with 0.1% crystal violet solution. Also,
the images were obtained under a microscope.

2.4. Wound Healing Assay. /e treated cells were digested
and cultured in 6-well plates. After treatment, a 200 μL
pipette tip was used to scratch, cells were washed, and the
cell was incubated with DMEM for another 12 hours. /ree
random areas were photographed to assess the distance of
migration.

2.5. Western Blotting. According to the previous procedure
[11], proteins were isolated in RIPA buffer containing
phosphatase and protease inhibitors (Roche, US). Equal total
proteins were separated by SDS/PAGE gels to blot onto
PVDF membranes (Millipore, USA). After blocking, the
bands were incubated with an anti- LGR4 antibody
(ab75501; Abcam). Finally, the blot was observed via the ECL
detection system.

2.6. Immunofluorescence Assay. For β-catenin staining, the
treated cells were washed with PBS three times and fixed,
then treated with 0.1% Triton X (Beyotime, China). Sub-
sequently, a blocking buffer was added and the primary
antibody was incubated overnight at 4°C. /e next day, the
treated cells were incubated with a secondary antibody, then
treated with DAPI. Finally, the images were captured by
a microscope.

2.7.BioinformaticAnalysis. /eGEO database (GSE190076)
was used to indicate the different gene expressions./en, the
transcript was analyzed with an isoform switch analyser. A
total of 480 genes underwent isoform switching. KEGG
pathway analysis was also used to analyze the genes’
function.

2.8. StatisticalAnalysis. All measurements were presented as
the mean± standard deviations (SD) from three in-
dependent experiments. Statistical significance was defined
as a p value < 0.05. Differences were determined using a two-
way analysis of variance (ANOVA) or unpaired Student’s t-
test by Prism software.

3. Results

3.1. LGR4 was Increased in HCC Tissues and Cell Lines.
First, the level of LGR4 expression was detected in HCC
tissues. It showed that LGR4 expression was increased in the
tumor tissues (Figure 1(a)). We also used immunofluores-
cence to check the expression of LGR4, and it showed the
same results (Figure 1(b)). /en, we checked the LGR4 ex-
pression in the HCC cell lines. /e LGR4 expression was
increased in Huh-7 and HepG3B cell lines (Figure 1(c)). It
indicated that LGR4 expression was upregulated in tissues
and at cell levels. Multivariate Cox analysis revealed that the
expression of LGR4 in HCC tissues could be acting as an
independent prognostic factor in HCC patients (Figure 1(d)).

3.2. LGR4 Promoted Cell Proliferation, Migration, and
Invasion. To explore the role of LGR4 in HCC cell lines, we
overexpressed LGR4 to check cell proliferation, migration,
and invasion in HCC cell lines. First, we used RT-qPCR to
check the expression of LGR4 in overexpressed cell lines
(Figure 2(a)). It demonstrated that the level of LGR4 ex-
pression was much higher, indicating the successful trans-
fection. /en, a CCK8 assay was carried out to check the cell
viability, and the result demonstrated that LGR4 could
promote cell proliferation (Figure 2(b)). /e wound healing
assay and a transwell assay also indicated the LGR4 over-
expression promoted cell migration and invasion
(Figures 2(c) and 2(d)). /e above result showed that LGR4
could act as an oncogene in the HCC. LGR4 could activate
the wnt/β-catenin pathway in many cancers. So, the im-
munofluorescence indicated that the β-catenin expression
was higher in the LGR4 overexpressed cells (Figure 2(e)). It
indicated that the LGR4 could activate the wnt/β-catenin
pathway in HCC.
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3.3.MetforminCouldReduce theCell Proliferation,Migration,
and Invasion through LGR4. Metformin, an oral hypogly-
cemic drug, exerts anticancer effects in many cancers, es-
pecially in HCC. To explore the effect of metformin on LGR
expression, we checked LGR4 expression in HCC cell lines
treated with metformin. It showed that metformin could
reduce the LGR4 expression (Figure 3(a)). /en, we over-
expressed LGR4 when treated with metformin to check the
proliferation, migration, and invasion of cells. /e results
showed that metformin could reduce cell proliferation,
migration, and invasion, which are counteracted by LGR4
overexpression (Figures 3(b)–3(d)). /en, we detected the
expression of catenin, and it showed that metformin reduced
the catenin pathway through LGR4 (Figure 3(e)).

3.4. Metformin Decreased the LGR4 Expression by Alternative
Splicing. To identify the mechanism by which LGR4 ex-
pression is regulated by metformin. We used the GEO
database (GSE190076) to indicate the different gene

expressions. It showed the mRNA level of LGR4 had no
difference between the two groups, which meant it may be
regulated by alternative splicing. /en, we analyzed tran-
script usage with an isoform switch analyser. A total of 480
genes underwent isoform switching (Figure 4(a)). KEGG
pathway analysis also showed that the genes were enriched
in spliceosome (Figure 4(b)). Interestingly, the transcript
ENST00000379214 of the LGR4 gene decreased in HCC cell
lines (Figure 4(c)). It indicated that metformin could re-
duce the level of LGR4 expression through alternative
splicing.

3.5. LGR4 Switching Genes RNAi Reduce the Antitumor Effect
Caused by Metformin. Finally, we used siRNA to knock
down the isoforms to observe the phenotypic change in the
metformin treatment. In the CCK8 assay, it showed that
metformin treatment could reduce cell proliferation, which
was promoted by RNAi (Figure 5(a)). We also used the
wound healing assay and the transwell assay to show that
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a specific isoform siRNA could promote the inhibition of cell
migration and invasion caused by metformin treatment
(Figures 5(b) and 5(c)). We also detect the β-catenin ex-
pression. It indicated that the specific isoform siRNA could
also reduce the expression of catenin in response to met-
formin treatment (Figure 5(d)).

4. Discussion

Despite the application of surgery, transplantation, and local
therapies in HCC treatment, the rate of death caused by
HCC remains high. Recently, metformin, which is recog-
nized to treat T2DM, was shown that to have antitumor
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effects. In colorectal cancer (CRC), the use of metformin
may improve disease-free survival and overall survival in
CRC patients with T2DM [12]. In bladder cancer cells,
metformin improves the antitumor effect of Olaparib
through the STAT3/C-MYC pathway [13]. In HCC, met-
formin could regulate the Hippo signaling pathway to re-
duce interleukin-22-induced hepatocellular carcinoma [14].
Metformin could also sensitize sorafenib-resistant HCC cells

through autophagy by AMPK activation [15]. However, the
mechanism of the antitumor effect of metformin is still to be
explored.

LGR4 belongs to the GPCRs superfamily and is recog-
nized as a trans-membrane receptor of the LGR family. In
this study, we found that the level of LGR4 in Huh-7 and
HepG3B cell lines was much higher than that in L02 cell
lines. It indicated that the LGR4 expression was increased in
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HCC tissues and at cell levels. LGR4 overexpression could
promote the processes of proliferation, migration, and in-
vasion. Although the study indicated that Hsa_circ_0003945
could regulate the miR-34c-5p/LGR4/β-catenin axis to
promote the progression of hepatocellular carcinoma [16],
the exact role of LGR4 is still unclear. Mechanistically, LGR4
can activate wnt/β-catenin signaling in many diseases
[16–18]. So, we detected the expression of catenin through
immunofluorescence. It indicated that LGR4 overexpression
could promote the catenin expression in the nucleus.
Metformin treatment could inhibit the HCC tumorigenesis
caused by LGR4 and also reduce the expression of β-catenin.

Alternative splicing could produce multiple transcripts
of mRNA to regulate the gene expression [19]. /en, we
investigated the mechanism of how metformin regulated the
expression of LGR4 in HCC. We used GEO to analyze the
alternative splicing. /e result showed that the LGR4 gene
was characterized by 3′UTR shortening upon metformin
treatment in HCC cell lines. It indicated that metformin
could reduce the level of LGR4 expression through alter-
native splicing. Finally, we used siRNA to knock down the
isoforms to observe the phenotypic change in the metformin
treatment. /e results also showed that a specific isoform
siRNA could promote the inhibition of tumorigenesis
caused by metformin treatment, as well as β-catenin ex-
pression. Apart from alternative splicing, the genes also
focus on sulfur metabolism pathways, and the study also
indicated that sulfane sulfur metabolism could be used to
treat cancers. We will also analyze sulfur metabolism in the
future.

In conclusion, we demonstrated that LGR4 could pro-
mote the proliferation, migration, and invasion of HCC,
which could be reduced by metformin through alternative
splicing.
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Purpose. Hepatocellular carcinoma (HCC) has poor prognosis and high mortality among gastrointestinal tumors because of its
insidious onset and strong invasiveness. However, there was little understanding of their pathogenesis. The purpose of this
study was to use bioinformatics analysis to identify genes associated with the immune microenvironment in HBV-related HCC
and to develop new therapeutic targets to prevent and treat cancer. Methods. RNA-seq data of HBV-related HCC cases were
downloaded from TCGA-LIHC database. ESTIMATE and Deseq2 algorithms were used to screen out differentially expressed
genes (DEGs). WGCNA was used to construct gene coexpression networks. In key modules, functional enrichment analysis
was performed. Protein-protein interaction (PPI) was used to screen hub genes, and survival analysis was conducted to assess
their prognostic significance. Following, we search for key genes differentially expressed between cancerous and paracancerous
tissues in GSE136247 and GSE121248 datasets. Reveal the potential links between key genes in immune infiltration by using
TIMER. Finally, in TCGA-LIHC database, integration of key genes with clinical data were used to further validate their
correlation with prognosis. Results. In the cohort of HBV-related HCC patients, immune/stromal/ESTIMATE scores were not
significantly associated with patient prognosis. After bioinformatics analysis, screening out five key genes was significantly
related to the prognosis of HBV-related HCC. Downregulation of SLAMF1 and TRAF3IP3 suggested poor prognosis and was
related to a variety of immune cell infiltration. Furthermore, compared with adjacent nontumor tissues, TRAF3IP3 and
SLAMF1 were highly expressed in tumor tissues and were linked to tumor recurrences. Conclusion. In conclusion, SLAMF1
and TRAF3IP3 were identified with higher expression in tumor tissues and associated with tumor recurrence. It will be a new
research direction of tumor progress and treatment.

1. Introduction

About 90% of the pathological types of liver cancer were
hepatocellular carcinoma (HCC) in clinical. Both morbidity
and mortality are far higher than other types of tumors [1].
Gender differences (predominant in males) and geographic
differences (mainly East Asia) influence the incidence of
HCC [2]. The main causative factors associated with HCC

are virus (chronic hepatitis B and C), metabolism (diabetes
and nonalcoholic fatty liver disease), toxicity (alcohol and
aflatoxins), and immune system-related diseases [3].
Affected by these factors, the morbidity of HCC is rising
continuously year by year. According to statistics data, more
than half of HCC patients in the world are infected with
hepatitis B virus (HBV). It is the main risk factor for human
[4]. Mortality associated with HCC is also increasing. Recent
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studies have shown that there were 85% of patients with cir-
rhosis infected with HBV, and less than 20% of people sur-
vived more than five years [5]. Reassuringly, the incidence
of HCC was significantly reduced in the middle-aged popu-
lation aged 30-59, largely due to the global hepatitis B virus
vaccination program [6]. Liver transplantation and surgical
resection are treatment options for HCC in early-stage
HCC and when the tumor size is <5 cm [7]. However,
because the disease is mostly asymptomatic in its early
stages, most symptomatic patients are diagnosed at an
advanced stage. Currently, patients with advanced HCC
are mostly treated with radiofrequency ablation (RFA),
transhepatic arterial chemotherapy and embolization
(TACE), tyrosine kinase inhibitor (TKI), and immunother-
apy, but with the emergence of drug resistance and disease
recurrence, these modalities do not significantly prolong life-
span [8]. As research progresses in depth, new and diverse
avenues for the treatment of HCC are being discovered.

The current study suggests that HCC is caused by
HBV-induced DNA damage that triggers hepatocyte
regeneration and chronic inflammation in the liver [9,
10]. The nucleocapsid of HBV-infected hepatocytes allows
the virus to replicate stealthily without being recognized
by type I IFN [11]. It is now widely believed that the

immune pathogenic mechanism of HCC is mainly that
HBV, as a noncytopathic virus, promotes the disorder of
the liver immune system and causes liver damage through
abnormal immune attack. It is increasingly believed that
immune pathogenesis significantly influenced the develop-
ment of HBV-related HCC [12]. Although HBV was
thought to contribute to HCC, there was still no clear
understanding of the mechanism.

In this study, RNA-seq data and clinical feature informa-
tion of HBV-related HCC patients were accessed by TCGA-
LIHC. The prognosis-related DEGs and modules were
screened by Sangerbox and WGCNA. In addition, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were enriched for these DEGs
and module genes and construct the PPI network to search
the prognosis-related hub genes. Through the gene expres-
sion information of GSE136247 and GSE121248 in the
GEO database, the possible key genes (SLAMF1 and TRA-
F3IP3) were finally locked. Through the TIMER database,
the association between SLAMF1 and TRAF3IP3 and
immune cell infiltration was analyzed. Finally, by analyzing
the clinical characteristics of HBV-related HCC patients, it
was confirmed that SLAMF1 and TRAF3IP3 were negatively
correlated with the recurrence of patients.

TCGA-LIHC

104 HBV-related HCC patients

Immune score Stromal score Estimate score

DEGs (up-regulated and down-regulated

GO and KEGG pathway analysis WGCNA

PPI network

GO and KEGG pathway analysis Hub genes

Survival analysis

Validation in GSE136247 and GSE121248

TIMER analysis TIMER analysisKey genes

Figure 1: Flow chart of the study.
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2. Methods and Materials

2.1. Data Acquisition. We gathered gene expression RNA-
seq and accompanying medical data of HBV-related HCC
patients from TCGA-LIHC database (https://portal.gdc

.cancer.gov/) [13]. HBV-infected and noninfected patients
were differentiated based on the patient’s past infection his-
tory. Download gene expression data from GSE136247 and
GSE121248 datasets from GEO database (https://www.ncbi
.nlm.nih.gov/geo/) [14]. The GSE136247 dataset contained
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39 HCC tissues (25 with HBV infection) and 30 noncancer-
ous normal tissues (19 with HBV infection) [15]. The
GSE121248 dataset contained cancer and normal tissues
from 37 HCC cases, and these patients had a history of
HBV infection [16].

2.2. ESTIMATE Scores. The amount of tumor cells, immune
cells, and stromal cells was determined using ESTIMATE
(Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data) based on the tran-
scriptional profile of cancer samples. According to the stro-
mal signature (stromal signature gene) and immune
signature (immune cell signature gene), the stromal score
and immune score were calculated by ssGSEA, respectively.
Finally, the two scores were combined to generate an ESTI-
MATE score, which was used to analyze tumor purity. From
the official website (https://bioinformatics.mdanderson.org/
estimate/), matrix, immune, and ESTIMATE scores were
downloaded for each sample in TCGA-LIHC cohort, and
non-HBV-infected samples were excluded. In addition, this
score was compared with tumor patient survival in a corre-
lation analysis.

2.3. Acquisition of DEGs Based on Immune and Matrix
Scores. All HBV-related HCC patients were divided into
two groups (high vs. low) with positive and negative values.

Data analysis was performed on Sangerbox [17] using the
“Deseq2” package. The filter range for DEGs were deter-
mined to be log jFCj > 1, P < 0:05.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Function Analysis. Analyze the bio-
logical functions of DEGs by using the GO enrichment anal-
ysis (including BP, CC, and MF) and KEGG pathway
enrichment analysis from DAVID online website tools
(database annotation, visualization, and comprehensive dis-
covery, https://david.ncifcrf.gov/tools.jsp) [18].

2.5. Weighted Correlation Network Analysis (WGCNA).
WGCNA is an analytical method for analyzing gene expres-
sion patterns of multiple samples, which can cluster the sim-
ilar expression gene and investigate the association between
specific traits and phenotypes in modules. It will help us find
relevant biomarker genes and therapeutic targets. The
“WGCNA” package was used to build the DEGs coexpres-
sion network on Sangerbox to identify the modules related
to prognosis.

2.6. Construction of PPI Network and Filtration of Hub Gene.
The protein information and PPI network information of
key modules were analyzed using String database (https://
cn.string-db.org/) [19]. MCODE was a plugin for
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constructing functional modules of gene (protein) network
clustering in Cytoscape 3.8.0. According to the analysis
results, the hub gene can be determined [20].

2.7. Survival Analysis. Plot the Kaplan-Meier survival curves
of these hub genes, and screen out the hub genes significantly
correlated with overall survival (P < 0:05) by log-rank test.

2.8. Verification of the Expression of Hub Genes. Compare
the previous hub genes with the expression data in

GSE136247 and GSE121248 datasets to obtain the final key
genes. We used “TIMER” in Sangerbox to analyze the corre-
lation of key genes with 6 tumor-infiltrating immune cells in
HBV-related HCC tissues.

2.9. Clinical Features in Patients with HBC-Related HCC. For
comparison, the basic information and medical data of
HBV-related HCC patients were separated into high and
low groups based on the expression of key genes.
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2.10. Statistical Analysis. Analysis in the present study were
conducted using the R package on Sangerbox and GraphPad
prism 8.0.2. We used log-rank tests and chi-square tests for
data analysis. A statistically significant difference was con-
sidered to be less than 0.05. The whole process of bioinfor-
matics analysis was shown in Figure 1.

3. Results

3.1. Scores of the Immune System and Stroma Correlated with
Overall Survival. Based on TCGA database, the statistical
data of 104 HBV-related HCC patients were gained. Patients
ranged from 23 to 83 years of age. 85 (81.7%) were male, and
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19 (19.3%) were female. For each sample, ESTIMATE scores
were calculated based on matrix, immune, and ESTIMATE
scores. Stromal scores ranged from -1731.43 to 261.96,
immune scores ranged from -964.97 to 2311.6, and ESTI-
MATE scores ranged from -2488.91 to 2306.2. In order to
probe the possibility of the connection between immune/
stromal/ESTIMATE scores and patient survival, we catego-
rize HBV-related HCC patients into low and high groups
on the basis of 0 scores. There were no positive results
between the two groups (Figures S1A, S1B, and S1C).

3.2. Identification of DEGs in HBV-Related HCC. For
expounding the connection between gene expression profiles
and immune status, we used “DESeq2” package to identify.
Genes were significantly differential expression among the
three groups of scores. jlog ðFCÞj > 1 and P < 0:05 were as
screening criteria. As shown in Figure 2(a), 571 downregu-
lated genes and 1,845 upregulated genes were detected in

the immune score group; in the stromal score group, 1,457
downregulated genes and 1,014 upregulated genes were
detected; in the ESTIMATE score group, 1,052 were detected
downregulated genes and 1,584 upregulated genes. Accord-
ing to the heat map, there were significant differences
between the three groups in the differential genes
(Figure 2(b)). Through further data screening, the differen-
tial express gene in all three groups were obtained, including
111 upregulated genes and 322 downregulated genes as
shown in Figures 2(c) and 2(d).

3.3. Functional Enrichment Analysis. DAVID website was
used for GO and KEGG analyses. As a result of the enrich-
ment analysis, cellular components (CC), molecular func-
tions (MF), and biological processes (BP) were enriched by
GO enrichment analysis (Figure S2). For BP, DEGs were
mainly enriched in external encapsulating structure
organization, biological adhesion, and collagen fibril
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organization. For CC, DEGs were mainly enriched in
collagen containing extracellular matrix, external
encapsulating structure, and T cell receptor complex. For
MF, DEGs were mainly enriched in extracellular matrix
structural constituents, glycosaminoglycan binding, and
heparin binding. For KEGG, DEGs were mainly enriched
in the regulation of hematopoietic cell lineage, cytokine-
cytokine receptor interaction, and viral protein interaction
with cytokine-cytokine receptor (Figure S2).

3.4. Weighted Correlation Network Analysis. The role net-
work of DEGs was constructed by WGCNA analysis. With
the network’s soft threshold set at 16, coexpression networks
resembled scale-free networks most closely (Figures 3(a)–
3(c)). According to different functions, DEGs can be divided
into 7 modules. Turquoise was the module with the highest
significant difference over survival (OS time) (Figure 3(d)).
The module contained a total of 50 genes.

3.5. Functional Enrichment Analysis of Genes in Turquoise.
These genes were mostly associated with T cell activation,
lymphocyte activation, and leukocyte differentiation in BP,
based on GO enrichment analysis (Figure 4(a)). For CC,
these genes were mainly enriched in immunological synapse,
external side of plasma membrane, and side of membrane
(Figure 4(b)). For MF, these genes were mainly enriched in
cytokine receptor activity, immune receptor activity, and
C-C chemokine binding (Figure 4(c)). For KEGG, these

genes were mainly involved in the regulation of T cell recep-
tor signaling pathway, cytokine-cytokine receptor interac-
tion, and primary immunodeficiency (Figure 4(d)).

3.6. Filtration of PPI Network and Identification of
Prognostic-Related Genes. Through the String database, a
PPI network was constructed using 50 genes (Figure 5(a)).
Then, use Cytoscape 3.8.0 to further optimize the obtained
PPI network, and use the MCODE plugin to draw important
subnetworks (Figures 5(b) and 5(c)). There were 16 central
genes (CD53, TAGAP, IKZF1, CARD11, WDFY4, PTPRC,
PTPN22, CYTIP, TRAF3IP3, CCR7, ITK, IL7R, CD40LG,
SLAMF1, CD5, and SPN) in the protein interaction network.

3.7. Survival Analysis in Blue Module. Identifying genes asso-
ciated with overall survival in patients with HBV-related
HCC was the purpose of this research. We constructed
Kaplan-Meier survival curves of these genes using the prog-
nostic information in TCGA-LIHC. Among them, the
expression levels of CCR7, CD5, SLAMF1, SPN, and TRA-
F3IP3 were significantly associated with the prognosis of
patients (Figure 6 and Figure S3).

3.8. Validation of the Analysis in the GEO Database. In addi-
tion, we determined the use of GSE136247 and GSE121248
to explore the expression of these genes in cancerous and
paracancerous tissues. As shown in Figure 7(a), in
GSE136247, CCR7 was expressed significantly upregulated
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Figure 7: Hub genes were validated in the GEO database. (a) The expression levels of CCR7, CD5, SLAMF1, and SPN in GSE136247. (b)
The expression levels of CCR7, CD5, SLAMF1, and SPN in GSE121248. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001; ns: not significantly.
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in cancer tissues (whether or not infected with HBV) relative
to adjacent tissues, whereas TRAF3IP3 was completely the
opposite. In HBV-related HCC patients, SLAMF1 and SPN
in cancer tissues were significantly decreased, but this phe-
nomenon was not observed in patients without HBV infec-
tion. In addition, the expression of CD5 was significantly
decreased in cancer tissues relative to adjacent tissues of
HBV-uninfected patients, while in HBV-related HCC
patients, the two groups did not differ significantly. As
shown in Figure 7(b), in GSE121248, the expressions of
SLAMF1 and TRAF3IP3 were significantly decreased in
HBV-related HCC tissues relative to paracancerous tissues,
while the expressions of CCR7, CD5, and SPN were not sig-
nificantly different. Based on the above results, we defined
SLAMF1 and TRAF3IP3 as key genes for follow-up studies.

3.9. Connection between Key Genes and Immune Infiltration.
In the present study, we explored possible associations
between key gene expression and the infiltration of immune
cells using TIMER. A positive correlation was found
between SLAMF1 and TRAF3IP3, but not between neutro-
phils and macrophages, with the infiltration of B cells,
CD4+ T cells, CD8+ T cells, and dendritic cells (Figure 8).
In light of this, key genes may play an important role in reg-
ulating immune cells.

3.10. Relationship between Key Genes and Clinical Features.
Based on TCGA-LIHC database, we examined the relation-
ship between SLAMF1 and TRAF3IP3 and HBV-related
HCC clinical characteristics. The results showed that
SLAMF1 and TRAF3IP3 were inversely associated with
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Figure 8: The correlation between key genes and 6 immune cell types. (a) SLAMF1; (b) TRAF3IP3.
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tumor recurrence, regardless of gender, age, tumor stage (T),
lymph node stage (N), and metastasis stage (M) (Table 1).

4. Discussion

HCC has a poor prognosis, killing more than 800,000 people
worldwide each year [21]. In European and American coun-
tries, the prevalence of nonalcoholic fatty liver disease is ris-
ing rapidly every year, leading to the subsequent
development of HCC and HCC-related death; while in
developing countries in Asia, hepatitis and cirrhosis caused
by viral infection are the main causes of HCC [22]. As most
HCC cases are secondary to hepatitis (hepatitis B, hepatitis
C, or alcoholic and nonalcoholic liver disease) or cirrhosis,
HCC is now gradually considered to be the inflammatory
cancer induced by chronic liver injury [23–26]. Patients with
advanced HCC lack access to surgery and rely mainly on
immunization or chemotherapy, example for sorafenib, a
kind of the tyrosine kinase inhibitor. In recent years, several
treatment options (lenvatinib, regorafenib, cabozantinib,
and ramucirumab) have emerged for the various aspects’
treatment of advanced HCC [27].

Cellular components of the HCC immune microenvi-
ronment (tumor cells, immune cells, stromal cells, endothe-
lial cells, and cancer-associated fibroblasts) are critical for
the response to immunotherapy [28]. Through the portal
vein, antigen-rich blood from the gut is constantly exposed
to the liver, which acts as a central immune organ. In order

to reduce inflammatory stimulation and tissue damage from
the blood and the liver, establish an immune-tolerant micro-
environment which has a strong resistance to hit and self-
cleaning ability. The homeostasis of this immune microenvi-
ronment is also disrupted when hepatitis or cirrhosis or even
HCC develops [29]. The TME in HCC is the hallmark of
tumor, which has an important influence on tumor growth,
invasion, and drug resistance [30, 31].

First, we screened out HCC patients with HBV infection
from TCGA-LIHC. In the immune microenvironment of
HBV-related HCC, DEGs were identified based on immu-
nity, stroma, and ESTIMATE scores. Activation of CD4+ T
cells, CD8+ T cells, NK cells, NKT cells, monocytes/macro-
phages, and HSCs occurs in chronic hepatitis caused by
HBV. Hepatitis is further aggravated, and HCC is further
encouraged by the simultaneous production of TNF-α,
IFN-γ, IL-12, IL-4, and IL-13 [32, 33]. Additionally, several
immunosuppressive cells, including Treg, Breg, MDSC,
and Kupffer cells, inhibit immune cell activity by producing
cytokines such as TGF-β and IL-10 and inducing key factors
in CD8+ T and NK cell depletion, leading to immune escape
of HBV and HCC tumor cell [34–37].

Additionally, we analyzed DEG enrichment. These
DEGs have various biological properties and participate in
various signaling pathways, such as external encapsulating
structure organization, biological adhesion, T cell receptor
complex, cytokine-cytokine receptor interaction, and viral
protein interaction with cytokine-cytokine receptor. All of
these confirmed that their involvement was in the regulation
of the immune microenvironment in HBV-related HCC [38,
39]. Coexpression networks were constructed, with tur-
quoise modules identified as key modules by WGCNA.
Their main functions are to activate T cells, activate lympho-
cytes, and differentiate leukocytes; they are mainly located at
the immune synapse, the outer and membrane sides of the
plasma membrane; they mainly regulate cytokine receptor
activity, immune receptor activity, and C-C chemokine
binding. They are also involved in the regulation of T cell
receptor signaling pathway cytokine-cytokine receptor inter-
actions and primary immunodeficiency. A close correlation
can be found between the immune regulation of HBV-
related HCC and the genes of this module.

Through the PPI construction and prognostic-related
genes analysis of this module, we identified five HBV-
related hub genes for the prognosis of HCC patients,
namely, CCR7, CD5, SLAMF1, SPN, and TRAF3IP3. On
the basis of GSE136247 and GSE121248, the expression of
each gene in cancer tissue and normal tissue was verified,
and two key genes were finally obtained, namely, SLAMF1
and TRAF3IP3.

The SLAMF1/CD150 receptor is a member of the cell
surface receptor signaling lymphocyte activation molecule
(SLAM) family and is considered a marker of activated
T cells, B cells, monocytes, and DCs [40, 41]. SLAMF1 is
actively involved in the regulation of different types of
immune responses as well as keeping the tissue microenvi-
ronment [42]. Recent studies have demonstrated that the
expression level of SLAMF1 is significantly increased in
liver tissue of NASH compared with non-NASH controls

Table 1: SLAMF1 and TRAF3IP3 expression and
clinicopathological features in HBV-related HCC.

Variables n
SLAMF1
expression P value

TRAF3IP3
expression P value

Low High Low High

Gender

Male 85 42 43 0.636 42 43 0.636

Female 19 10 9 10 9

Age

>60 33 20 13 0.140 20 13 0.140

≤60 71 32 39 32 39

T

T1-T2 91 44 47 0.374 44 47 0.374

T3-T4 13 8 5 8 5

N

N0 94 49 45 0.318 50 44 0.096

Nx 10 3 7 2 8

M

M0 89 45 44 0.780 46 43 0.402

Mx 15 7 8 6 9

Recurrence

Yes 44 27 17 0.047∗ 28 16 0.017∗

No 60 25 35 24 36
∗ represents P < 0:05; T: tumor stage; N: lymph node stage; M: metastasis
stage.

12 Journal of Oncology



and that the level of SLAMF1 was dramatically related to
the seriousness of the NASH phenotype. This study was
the first to identify the role of SLAMF1 in the mediating
of hepatocyte death in NASH and as a measure of NASH
in humans [43]. In another study, the concentration of
SLAMF1 has a profound effect on the formation of cirrho-
sis in the plasma. But no significant difference was found
between HCC and cirrhosis [44]. TRAF3IP3 (TRAF3-
interacting protein 3) was identified as a TRAF3-
interacting protein in original [45]. Recent studies have
shown that TRAF3IP3 is involved in B and T cell develop-
ment and for maintaining the functional stability of regu-
latory T cells [46, 47]. TRAF3IP3 has been shown to
function as an oncogene in melanoma and glioma [48,
49].

Our study showed that SLAMF1 and TRAF3IP3 were
lowly expressed in HBV-related HCC and positively related
with the infiltration of B cells, CD4+ T cells, CD8+ T cells,
and dendritic cells, but not neutrophils and macrophages.
Taken together, SLAMF1 and TRAF3IP3 may contribute
to the pathogenesis of HBV-related HCC. Through their
effect on the immune-suppressive microenvironment, fur-
thermore, we found that SLAMF1 and TRAF3IP3 were also
associated with the recurrence of HBV-related HCC.

5. Conclusion

We used bioinformatics to comprehensively analyze the
expression of immune microenvironment-related genes in
HBV-associated HCC patients in TCGA. Further study of
the screened DEGs yielded two genes related with prognosis.
We explained that SLAMF1 and TRAF3IP3 were low-
expressed in HBV-associated HCC tissues and were corre-
lated with tumor recurrence. Our findings had clear implica-
tions for SLAMF1 and TRAF3IP3 as biomarkers for
predicting the prognosis of HBV-related HCC patients and
provide new research directions and diagnosis and treat-
ment options for HBV-related HCC. However, follow-up
clinical studies are required to confirm these opinions.
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Background. Stomach adenocarcinoma (STAD) is a kind of cancer that begins in the stomach cells and has a poor overall survival
rate. Following resection surgery, chemotherapy has been suggested as a curative method for stomach cancer. However, it is
ineffective. Pyroptosis, a kind of inflammatory programmed cell death, has been shown to play a significant role in the
development and progression of STAD. However, whether pyroptosis-related genes (PRGs) can be utilized to predict the
diagnosis and prognosis of gastric cancer remains unknown. Method. The research measured at predictive PRGs in STAD
samples from TCGA and GEO. Lasso regression was used to build the prediction model. Coexpression analysis revealed that
gene expression was linked to pyroptosis. PRGs were found to be overexpressed in high-risk individuals, implying that they
could be used in a model to predict STAD prognosis. Result. Immunological and tumor-related pathways were discovered
using GSEA. In STAD patients, the genes GPX3, PDGFRL, RGS2, and SERPINE1 may be connected to the cancer process. The
levels of expression also differed between the two risk groups. Conclusion. The purpose of this study is to identify and verify
STAD-associated PRGs that can effectively guide prognosis and the immunological milieu in STAD patients as well as offer
evidence for the development of pyroptosis-related molecularly targeted therapeutics. Therefore, PRGs and the link between
immunological and PRGs in STAD may be therapeutic targets.

1. Introduction

Gastric cancer (GC), a disease with a wide range of manifes-
tations, is the fifth most frequent cancer and the third biggest
cause of cancer-related deaths globally. The most frequent

histologic form of gastric cancer, stomach adenocarcinoma
(STAD), is a fast developing, aggressive, and malignant GC
that accounts for 95 percent of all gastric tumors. Several pre-
vious studies have found that Helicobacter pylori infection
causes 90% of STAD cases [1]. Many researchers have

Hindawi
Journal of Oncology
Volume 2022, Article ID 3102743, 17 pages
https://doi.org/10.1155/2022/3102743

https://orcid.org/0000-0002-3503-6375
https://orcid.org/0000-0002-2993-9949
https://orcid.org/0000-0003-1626-2593
https://orcid.org/0000-0001-6379-5208
https://orcid.org/0000-0003-2790-8206
https://orcid.org/0000-0001-6558-9088
https://orcid.org/0000-0002-1067-8347
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3102743


recently proposed that STAD could also be brought about by
autoimmunity, other bacteria, and their metabolites (such as
N-nitroso compounds or acetaldehyde) [2]. STAD research
has advanced to the point where it may be regarded as a col-
lection of uncommon illnesses that risk human health [3].
Currently, the treatment of this disease is as important in
the field of tumor research [4]. Chemotherapy is a significant
factor of tumor treatment, but because chemotherapy drugs
are cytotoxic and seem to have a lot of side effects, long-
term use will cause major problems for patients. Repeated
use can easily result in tumor cell drug resistance, reducing
the curative effect [5]. Despite this, the absence of precise bio-
markers for early tumor diagnosis, as well as restricted pre-
clinical models, has impeded successful STAD therapeutic
treatment [6, 7]. As a result, there is an urgent need to iden-
tify novel and reliable biomarkers for the early identification
and prognosis of STAD. Finding treatment targets for STAD
and elucidating the molecular identification of diagnostic
biomarkers are critical for basic and clinical STAD research.

One of life’s most fundamental challenges is cell death.
The capacity to avoid cell death, which is a characteristic

of cancer, not only contributes to the formation of cancer
but also plays a significant role in the development of thera-
peutic resistance, recurrence, and metastasis [8]. The ulti-
mate objective of cancer therapies like radiation,
chemotherapy, and immunotherapy, which has recently
made great progress, is to maximize tumor cell death while
causing the least amount of injury to normal tissues. Tumor
cells’ innate genetic and epigenetic heterogeneity, as well as
metabolic flexibility and other variables, provide greater
adaptability to adverse tumor settings, resulting in treatment
resistance and spread potential [9]. Pyroptosis is a double-
edged sword that plays a twofold role in modifying tumor
growth due to the ongoing activation of the inflammasome.
Pyroptosis aids in the formation of a tumor-suppressive
immunological milieu by unleashing inflammatory chemi-
cals capable of directly destroying cancer cells and galvaniz-
ing an anticancer immune response [10]. Pyroptosis, a
highly immunogenic form of cell death, induces local
inflammation and draws inflammatory cell infiltration,
offering a good chance to reduce immunosuppression of
tumor microenvironments (TME) and stimulate a systemic
immune response in the treatment of solid tumors [11]. In
rare cases, triggering pyroptosis can directly kill tumor cells.
According to new study, pyroptosis has a role in cancer for-
mation, differentiation, invasion, and late metastasis as well
as tumor sensitivity to immune medication therapy [12].
Pyroptosis-related chemicals have a crucial oncogenic func-
tion in the development of gastric cancer.

Immune checkpoint inhibitor (ICI) profiles in STAD
patients may aid in diagnosing, analyzing, and anticipating
therapy results [13]. The reason and methods of STAD’s
aberrant gene expression and pyroptosis remain unclear at
this time. Understanding how PRGs regulate STAD produc-
tion might result in the development of an indicator that can
be employed as a therapeutic strategy.

2. Materials and Methods

We used the approaches proposed by Zi-Xuan Wu, et al.
2021 [14].

2.1. Datasets and PRGs. The Cancer Genome Atlas was used
to collect STAD gene expression patterns and clinical data
(TCGA) [15]. 375 STADs and 32 normal data were regis-
tered in the TCGA on May 6, 2022. The Gene Expression
Omnibus (GEO) was searched for mRNA expression on
May 6, 2022. Series: GSE84437. Platform: GPL6947-13512.
The GEO was used to maintain 433 STAD cases
[16](Table 1). We also identified 52 PRGs in total [17]
(Table S1).

2.2. DEGs Linked to Pyroptosis and Mutation Rates. Perl
matched and sorted transcription data and human configu-
ration files to acquire exact mRNA data. The gene IDs were
converted into gene names using information from the
ensemble database. The R Limma was utilized to get the
expression data for the PRGs. FDR < 0:05 and jlog 2FCj ≥
1 were used to evaluate if there was a significant change in
PRG expression [18]. The role of differentially expressed

Table 1: Patients’ clinical features.

Variable Number of samples

TCGA

Gender

Male/female 285/158

Age at diagnosis

≤65/>65/NA 197/241/5

Grade

G1/G2/G3/G4/NA Unknown

Stage

I/II/III/IV/NA 59/130/183/44/27

T

T1/T2/T3/T4/NA 23/93/198/119/10

M

M0/M1/NA 391/30/22

N

N0/N1/N2/N3/NA 132/119/85/88/19

GEO

Gender

Male/female 296/137

Age at diagnosis

≤65/>65 283/150

Grade

G1/G2/G3/G4/NA Unknown

Stage

I/II/III/IV/NA Unknown

T

T1/T2/T3/T4 11/38/92/292

M

M0/M1/NA Unknown

N

N0/N1/N2/N3 80/188/132/33
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PRGs that were both up- and down-regulated was investi-
gated (DEGs). We also explored the genetic alterations in
these genes. Cbioportal was used to estimate DEG mutation
frequencies.

2.3. Tumor Classification Based on the DEGs. First, we used
the Limma and ConsensusClusterPlus package to do cluster
analysis, and we separated the prognosis-related PRGs into
two clusters: cluster 1 and 2. Survminer was being used to
study the survival of PRG subgroups, and survival was used
to evaluate PRG’s predictive validity. The pheat map was
used to generate a heat map of the differential gene expres-
sion of prognosis-related PRGs, and the relationship
between PRGs and clinicopathological features was
explored. The limma was used to identify differences in tar-
get gene expression across categories. To study the gene
interaction between STAD target genes and prognostic
PRGs, the limma and corrplot programs were utilized.

2.4. Development of PRGs Prognostic Signature. Every STAD
patient’s risk score was also evaluated. The DEGs were
divided into two groups based on their support for the
median score: low-risk and high-risk. Lasso regression was
shown to be associated with two risk classifications. The
boldness interval and risk ratio were estimated after seeing
the image, and the forest diagram was created as a conse-

quence. Survival curves for the two groups were developed
and compared. To test the model’s accuracy in predicting
survival in STAD, the timeROC was used to generate a com-
parable receiver-operating characteristics (ROC) curve. The
risk and survival status of PRGs were explored using the risk
score’s probability curve. The link between two PRGs
patients was established, as was the relationship between
clinical characteristics and the risk prediction model. Risk
and clinical association analyses were distributed. T-
distributed Neighbor Embedding (T-SNE) and Principal
Component Analysis (PCA) were also examined. To deter-
mine if the prognostic model correctly classified patients
into two risk groups, a representation was constructed to
predict the 1-, 3-, and 5-year OS of STAD patients by the
desegregation of prognosticative signals.

2.5. Functional Enrichment. The associated biological path-
ways were then examined using Gene Ontology (GO). BP,
MF, and CC are controlled by differentially expressed PRGs.
PRGs were further investigated using R based on KEGG
dataset [19]. Filterpvalue < 0:05 was used to evaluate if there
was a significant change in GO and KEGG.

2.6. GSEA Enrichment Analyses. GSEA was used to find
related functions and route alterations in a variety of sam-
ples, while Perl was used to input data. The accompanying
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Figure 1: PRGs’ expressions and interactions. (a) Heat map. (b) PPI network. (c) Correlation network. (d) Mutations.
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score and graphs were used to assess whether the activities
and routes within the different risk categories were dynamic
or not. Each sample was assigned a ‘H’ or ‘L’ label based on
whether it included a high-risk cluster of prognosis-related
PRGs.

2.7. Comparison of the Immune Activity. We examined the
enriched score of immune cells and activities in two risk
groups using the ssGSEA in both the TCGA and GEO
cohorts. We also explored the connection between PRGs,
checkpoints, and m6a.

3. Results

3.1. PRGs That Differ in Expression. Twenty-nine DEGs have
been linked to pyroptosis (23 upregulated, 6 downregulated;
Table S2). (Figure 1(a)). We conducted a protein-protein

interaction (PPI) research, the results of which are given in
Figure 1(b). By setting the minimum required interaction
value to 0.4, we identified that TNF, CASP8, IL18, CASP3,
IL1A, CASP9, PYCARD, HMGB1, GSDMD, and TP53 were
hub genes (Table S3). These genes might be utilized to
create independent STAD prognostic indicators. The
correlation network, seen in Figure 1(c), is made up. We
discovered that the gene mutations were truncating and
missense variants (Figure 1(d)). 15 genes had a 10%
mutation rate, with COL12A1 being the commonly altered
(16%).

3.2. Drug Prediction Models and Sensitivity Analysis. The
drug prediction of the model showed that there were some
genes with significant differences (Figure 2). Furthermore,
the association analysis between DEG expression in the
prognostic model revealed that several genes were
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Figure 2: Drug prediction models.
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substantially linked with medication sensitivity. For exam-
ple, there was a strong association between SERPINE1
expression and Tamoxifen, Simvastatin, Lenvatinib, Niloti-
nib, Dasatinib, Vorinostat, Midostaurin, Bleomycin, and
Pazopanib. These findings suggest possible future medica-
tion development paths (Figure 3).

3.3. Tumor Classification. In TCGA cohort, we conducted a
consensus clustering analysis on 375 STAD sufferers to
investigate the relationships between PRGs and STAD sub-
groups. The intragroup correlations were highest and the
intergroup correlations were weakest when the clustering
variable (k) was adjusted to 2. (Figure 4(a)). A heat map
reflects both the gene expression patterns and clinical char-
acteristics (Figure 4(b), Table S4). PRG subgroups were
used in a survival study to explore the predictive capacity
of PRGs, and cluster 1 had a higher survival rate
(P = 0:005; Figure 4(c)), as shown in Figure 4(c).

3.4. In the TCGA Cohort, a Prognostic Gene Model Was
Developed. Seven important PRGs were found throughout
the COX investigation. These PRGs (GPX3, CD36,
PDGFRL, EGFLAM, RGS2, CYTL1, and SERPINE1) were
found as independent STAD prognostic markers
(Figure 5(a)). The most minor absolute shrinkage and choice
operator Cox regression analysis (LASSO) and the optimal
value were used to build a gene signature (Figures 5(b) and
5(c)). We observed that a patient’s risk score was negatively
connected to STAD patients’ survival using a risk survival

standing plot. The presence of high-risk PRG signatures
was linked to a reduced chance of survival (P < 0:001,
Figure 5(e)). For 1-, 3-, and 5-year survival rates, the AUC
of the unique PRGs signature was 0.631, 0.664, and 0.735,
respectively (Figure 5(f)). Our data analysis revealed that
the great majority of STAD patients lived for less than 5
years, therefore the AUC of less than 0.6 in the fifth year is
a result of this. PCA and t-SNE results indicated that
patients with varying risks were divided into two groups
(Figures 5(g) and 5(h)).

3.5. The Risk Signature Is Externally Validated. We observed
that a patient’s risk score was adversely related to STAD
patient survival. Surprisingly, majority of the novel PRGs
discovered during this research were adversely related with
our risk model, comparable to the TCGA findings
(Figure 6(a)). High-risk PRG signatures were related with a
lower likelihood of survival (P = 0:011, Figure 6(b)). The
AUC of the distinctive PRGs signature was 0.594, 0.613,
and 0.602 for 1-, 3-, and 5-year survival rates, respectively
(Figures 6(c)). Our data analysis found that the vast majority
of STAD patients lived for more than 1 years, resulting in an
AUC of less than 0.7 in the fifth year. The PCA and t-SNE
findings showed that patients with variable risks were effi-
ciently sorted into two different groups (Figures 6(d) and
6(e)). We also created a heat map (Figure 6(e)).

3.6. Independent Prognostic Value of the Risk Model. In
TCGA cohort, COX analysis demonstrated that the PRGs
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signature (HR: 9.629, 95CI: 2.818-32.903), Age (HR: 1.034,
95CI: 1.015-1.053), M stage (HR: 2.212, 95CI: 1.189-
4.115), and N stage (HR: 1.281, 95CI: 1.088-1.508) were pri-
marily independent predictive variables for the OS of STAD
patients (Figures 7(a) and 7(b)). In GEO cohort, COX anal-
ysis demonstrated that Age (HR: 1.022, 95CI: 1.009-1.034),
T stage (HR: 1.609, 95CI: 1.262-2.051), and N stage (HR:
1.526, 95CI: 1.298-1.792) were primarily independent pre-
dictive variables for the OS of STAD patients (Figures 7(c)
and 7(d)). In addition, for the TCGA cohort, we con-
structed a heat map of clinical characteristics (Figure 7(e))
(Table S5-6).

3.7. Enrichment Analysis of Pyroptosis-Related Genes. GO
enrichment analysis revealed 550 core targets, including Bio-
logical processes (BP), molecular functions (MF), and cellu-
lar components (CC). The MF mainly involves actin–
binding (GO:0003779) and enzyme inhibitor activity
(GO:0004857). The CC mainly involves focal adhesion
(GO:0005925) and cell leading edge (GO:0031252). The BP
mainly involves skeletal system development
(GO:0001501), cell growth (GO:0016049), and negative reg-

ulation of hydrolase activity (GO:0051346). In addition, the
main signaling pathways were identified by KEGG enrich-
ment analysis, it revealed the over-expressed genes were
mainly involved in PI3K-Akt signaling pathway
(hsa04151), Proteoglycans in cancer (hsa05205), Focal adhe-
sion (hsa04510), Vascular smooth muscle contraction
(hsa04270), Protein digestion and absorption (hsa04974),
and Amoebiasis (hsa05146) (Figure 8 and Table S7a-b).

3.8. Analyses of GSEA. According to GSEA, the majority of
PRG prognostic signatures controlled immunological and
tumor-related pathways—ecm receptor interaction, comple-
ment and coagulation cascades, hedgehog, tgf beta, jak stat,
and chemokine signaling pathway, etc. Each cluster’s top
six enriched functions or pathways are displayed (Figure 9,
Table 2). The “hedgehog signaling pathway” was the most
enriched, and some of the genes were shown to be positively
associated to H or L. (Table S8a-b).

3.9. Immune Activity Comparisons. We investigated the
enrichment scores of 16 kinds of immune cells and the activ-
ity of 13 immune-related activities in both the TCGA and
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GEO cohorts using the single-sample gene set enrichment
approach (ssGSEA). In the TCGA cohort, IDCs, NK cells,
and Th2 cells did not differ significantly between the two
groups (P > 0:05). Other immune cells generally show
higher levels of infiltration in the high-risk grouping
(Figure 10(a)). APC coinhibition and MHC class I did not
differ significantly between the two groups (P > 0:05). Other
immune-related function generally show higher levels in the
high-risk grouping (Figure 10(b)). When assessing the
immune status in the GEO cohort, similar conclusions were
drawn (Figures 10(c) and 10(d)).

3.10. An Examination of the Relationship between PRGs and
Immunological Checkpoints and m6a. LAIR1, CD274,
HAVCR2, PDCD1LG2, TNFRSF4, and other genes were
expressed differently (Figure 11(a)). When PRG expression
levels were compared between the two-risk groups, FTO
was significantly higher in the high-risk group. While
YTHDF2, RBM15, ZC3H13, METTL3, HNRNPC, and
YTHDC1 were shown to be much more significant in the
low-risk group (Figure 11(b)). The expression of FTO asso-
ciated with m6a modification was higher in the high risk
group, indicating that it may be linked to the malignancy
activity in STAD sufferers. While YTHDF2, RBM15,
ZC3H13, METTL3, HNRNPC, YTHDC1 with m6a modifica-
tions had higher expression in the low risk group, indicating
that they might be tumor suppressors.

4. Discussion

Treating STAD is a severe clinical issue because of its
advanced stage and terrible prognosis. The current state of
precision medicine for STAD is limited by a scarcity of pow-
erful tumor-killing initiators and selective tumor-targeting
therapeutic agents. Recent study has shown that the focused
therapeutic impact of STAD may be successfully increased
by modifying the process of programmed tumor cell death
[20]. Pyroptosis, a recently identified process of pro-
grammed cell death, is gaining prominence in the context

of innate immunity, carcinogenesis, and patient responses
to anticancer therapy [21, 22]. Pyroptosis occurs in
pathogen-infected cells, causing an inflammatory reaction
and cell lysis within the host body [23]. Pyroptosis manifests
itself in malignancies in two ways. On the one hand, the
inflammasome can efficiently promote tumor cell death by
activating the pyroptosis pathway, therefore reducing tumor
cell growth and invasion [24]. It is unknown how it impacts
STAD development by modifying PRGs. We studied the
function of critical proteins and processes in STAD progno-
sis and established a suitable biomarker and anticancer
activity.

In a university Cox regression investigation, PRGs were
found to be strongly linked with STAD prognosis. The
researchers discovered four prognostic PRGs that have been
expressed differently in two-risk persons. Some PRGs were
identified to be highly expressed in high-risk, whereas others
were seen to be differentially expressed in low-risk (P < 0:05
). A survival analysis was used to find the prognostic capac-
ity of PRGs after additional examination into their influence.
Individuals with STAD who had low-risk PRGs survived
longer. The markers GPX3, PDGFRL, RGS2, and SERPINE1
were found to be significantly increased in the high-risk
group, suggesting that all of these markers may be implica-
ted in the malignancy processes for STAD patients and
may be cancer-promoting factors. The findings of the
above-mentioned biomarker suggest some suggestions for
future work, but concrete evidence that they will be respon-
sible for the synthesis of important transcription factors
associated with pyroptosis regulation, such as PD-L1,
GSDMB, and ROS-NLRP3 [25–27], is lacking, necessitating
further exploration.

Compared to normal tissues and cells, Gpx3 expression
was lower in gastric cancer (GC) patients and GC cell lines.
Cai et al. believes that Gpx3 inhibits gastric cancer migration
and invasion by targeting NFкB/Wnt5a/JNK signaling [28].
When GPX3 expression in breast cancer cells and tissues
was compared to normal controls, it was shown to be low.
GPX3 overexpression inhibited breast cancer growth, colony
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formation, migration, and invasion in vitro. Furthermore,
hypermethylation of the GPX3 promoter and suppression
of hsa-miR-324-5p release have been identified as probable
pathways for GPX3 downregulation in breast cancer [29].
Through bioinformatics analysis, Huo et al. discovered

PDGFRL was one of the tumor-associated macrophages
(TAMs). It is vital in the progression of malignant tumors
and performed well in predicting overall survival (OS) in
GC [30]. Cancer cell dormancy and tumor relapse are medi-
ated by RGS2-mediated translational control [31].
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SERPINE1 was found to be significantly upregulated in gas-
tric tissues and associated with poor outcomes in a genome-
scale analysis. As a result, Liao et al. thought of SERPINE1 as
a diagnostic and prognostic biomarker in GC [32]. Because
these PRGs appear to be associated with cancer processes
in STAD patients, these studies highlight the validity and
plausibility of our findings. According to the OS and ROC
analyses of the GSE84437 KM-curves, a PRGs-signature
might be employed as a viable predictive predictor. Only a
few investigations on the gene alterations associated with
pyroptosis have been conducted. More research is needed
to fully understand the mechanics of PRG alteration and
classification, as well as to validate our findings.

KEGG analysis found that the genes were primarily
involved in PI3K-Akt signaling pathway. DHA protects
against hepatic ischemia reperfusion injury by inhibiting
pyrolysis and activating the PI3K/Akt signaling pathway
[33]. Pioglitazone Provides Neuroprotection Against
Ischemia-Induced Pyroptosis by inhibiting the RAGE path-
way by Activating PPAR-ɤ [34]. Consequently, Pyroptosis

is crucial in STAD. In GSEA, the hedgehog signaling path-
way was found to be the most significantly enriched path-
way. Smo and Gli1 genes are components of the hedgehog
signaling pathway, and their over expression can cause
STAD. The degree of expression is linked to the stage and
severity of STAD [35]. Furthermore, studies have shown that
Hedgehog-interactingprotein (HHIP) may inhibit the
growth and proliferation of STAD cell lines by blocking
Hedgehog signal transduction, which may become a new
biological marker for STAD and a new approach for STAD
treatment by targeting the drug target of HHIP formation
[36]. Overactivation of the hedgehog pathway is linked to
the occurrence and progression of STAD, and specific tar-
geted therapy targeting this pathway may become an effec-
tive new measure for clinical treatment of STAD [37].
Taking the aforementioned properties into account, PRGs
may influence STAD cell migration and proliferation via
modulating the nod like receptor signaling pathway.

Furthermore, our technique accurately predicts STAD
patients’ survival. Increases in risk score are linked to higher
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Table 2: The top six enriched functions or pathways.

NAME ES NES NOM p value FDR q value

DNA replication 0.6792336 1.622164 0.054435484 0.67065173

Mismatch repair 0.67632705 1.6375834 0.04192872 0.75468564

Spliceosome 0.6235964 1.8821576 0.014522822 0.47306138

Homologous recombination 0.5929925 1.5829824 0.06329114 0.42215267

Cell cycle 0.5691944 1.8317317 0.024896266 0.3576104

Proteasome 0.557963 1.4626185 0.13636364 0.3447309

Other glycan degradation -0.664515 -1.7258755 0.018480493 0.226103

Alpha linolenic acid metabolism -0.64434105 -1.8918467 0.004106776 0.10805818

Ribosome -0.61395043 -1.4429549 0.18145162 0.4314213

Fructose and mannose metabolism -0.58743125 -1.8711866 0.006085193 0.08654529

Fatty acid metabolism -0.5829716 -1.9166667 0.006097561 0.16615777

Glycosaminoglycan degradation -0.5582348 -1.6052122 0.046511628 0.2974447
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Figure 10: The ssGSEA scores for immune cells and immune function. (a,b) TCGA cohort. (c,d) GEO cohort.
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death rates and a higher high-risk ratio. Based on our find-
ings and data from the literature, PRGs appear to be signif-
icant biomarkers for predicting STAD patient outcomes.
Recent research has discovered a link between several cell
death mechanisms and anticancer immunity. Even in ICI-
resistant tumors, pyroptosis, ferroptosis, and necroptosis
activation in conjunction with ICIs resulted in synergistically
improved anticancer efficacy [38, 39]. De novo pyroptosis in
ICI-resistant cancers can produce an inflammatory milieu
that mediates tumor susceptibility to immune checkpoint
inhibitors (ICI), promoting pyroptosis and inhibiting tumor
growth in autochthonous tumors [40]. Despite the fact that
there has been minimal study on PRGs and STAD, based
on the evidence presented above, it is reasonable to believe
that PRG changes were associated with the onset and devel-
opment of STAD.

There have been a number of publications published in
recent years that examine the association between pyroptosis
and STAD [41, 42]. However, when compared to other stud-
ies, the approach used in this study is novel. To begin, PRGs

in the TCGA database are routinely updated. We have made
further additions to previous articles. Second, TCGA data
were used as the primary analysis, with GEO data included
into the common pattern for model validation. Third, GO
and KEGG analyses, as well as a GSEA analysis, were per-
formed. The conclusions of the two investigations coincided,
which increased trust. Fourth, to increase the trustworthi-
ness of the results, we employed different databases to quan-
tify immune cells and functions.

Our analysis has the following limitations: (1) we will be
unable to obtain sufficient different data sources from other
publically available sites to validate the model’s trustworthi-
ness. (2) We investigated the functional enrichment pro-
cesses engaged in the regulatory networks of distinct risk
groups; however, their particular mechanisms in enabling
pyroptosis require more exploration to corroborate our find-
ings. (3) Although the model was validated in the GEO data-
set, the prediction model developed in this work still has to
be externally and practically verified before it can be used
on clinical patients.
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Figure 11: (a) Expression of immune checkpoints and (b) the expression of m6a-related genes.
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5. Conclusions

In STAD sufferers, 4 expected PRGs were discovered. The
findings contribute to a better understanding of the immu-
nological system’s role in pyroptosis, perhaps paving the
way for new effective treatments and prognostic biomarkers.
Pyroptosis regulation may be a promising therapeutic tech-
nique for improving the result of STAD immunotherapy
and providing a tailored prognostic tool for prognosis and
immune response.
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Cyclin-dependent kinase 1 (CDK1) plays an important role in cancer development, progression, and the overall process of
tumorigenesis. However, no pan-cancer analysis has been reported for CDK1, and the predictive role of CDK1 in immune
checkpoint inhibitors (ICIs) therapy response remains unexplored. us, in this study, we �rst investigated the potential on-
cogenic role of CDK1 in 33 tumors by multidimensional bioinformatics analysis based one Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) datasets. Bioinformatic analysis and immunohistochemical experiments con�rmed that CDK1
is signi�cantly upregulated in most common cancers and is strongly associated with prognosis. Further analysis indicated that
CDK1 may in�uence tumor immunity mainly by mediating the degree of tumor in�ltration of immune-associated cells, and the
e�ect of CDK1 on immunity is diverse across tumor types in tumor microenvironment. CDK1 was also positively correlated with
tumor mutational burden (TMB) and microsatellite instability (MSI) in certain cancer types, linking its expression to the as-
sessment of possible treatment response. e results of the pan-cancer analysis study showed that the CDK1 gene was positively
associated with the expression of three classes of RNA methylation regulatory proteins, and a�ects RNA function through
multiple mechanisms of action and plays an important role in the posttranscriptional regulation of the tumor microenvironment.
ese �ndings shed light on the role of the CDK1 gene in cancer progression and provide information to further study the CDK1
gene as a potential target for pan-cancer.

1. Introduction

Cancer is the leading cause of human mortality worldwide
and a signi�cant barrier to a long life. e health and
economic burdens associated with its high incidence and
mortality are rapidly increasing [1, 2]. Cancer is a malignant
disease and is caused by a heterogeneous population of cells
with di�erent tumorigenic abilities, phenotypes, and func-
tions. Dysregulation of the cell cycle resulting in un-
controlled cell proliferation and genomic and chromosomal
instability are common in human cancers [3–5]. Cyclins and
cyclin-dependent kinases (CDKs) are the central compo-
nents of the cell cycle regulatory machinery [6].

CDKs belong to the serine/threonine-speci�c protein
kinase family, which are essential for normal cell cycle

progression and are the key regulatory enzymes that drive all
cell cycle transitions and coordinate the progression of the
entire cell cycle in all eukaryotic cells [6–8]. Additionally,
CDKs are also involved in gene transcription, mRNA
processing, and cell di�erentiation [9, 10]. Dysregulation of
CDKs leads to the sustained or spontaneous proliferation of
tumor cells and accelerates the malignant growth of tumors.
To date, 21 CDK and 5 CDK-like genes have been identi�ed
in the human genome based on their homologous sequences
[11]. Among them, CDK1, also known as cell division cycle 2
(CDC2), is the only essential CDK in human cells. CDK1 can
replace other CDKs and e�ectively drive the mammalian cell
cycle, controlling the transition of cells from the G2 phase to
the M phase [12–14]. Moreover, in malignant tumor cells,
the altered expression of CDK1 and its regulators can lead to
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uncontrolled CDK1 activity, which can cause uncontrolled
proliferation of tumor cells and aggravate the malignancy of
the tumor. Hence, CDK1 is a potential target for tumor
therapy.

In advanced gastrointestinal stromal tumors [15],
bladder cancer [16], non-small cell lung cancer [17], and
melanoma [18], high CDK1 expression promotes the pro-
gression of malignant tumors and exacerbates the degree of
proliferation of malignant tumor cells. However, current
CDK1-based studies are limited to a single tumor type, and
the role of the CDK1 gene in human cancers and the overall
CDK1 tumor landscape are still unknown. ,us, its re-
lationship with human cancers needs further investigation.
In recent years, pan-cancer analysis has been widely used in
cancer research, providing unique, detailed, and compre-
hensive insights into human cancers to improve the quality
of cancer analysis [19–21]. Given the complexity of tu-
morigenesis, it is extremely important to analyze the CDK1
gene for pan-cancer expression and to assess its relationship
with clinical prognosis and its relevance to the underlying
molecular mechanisms.

In this study, a pan-cancer analysis of CDK1 was per-
formed using the TCGA project and the GEO database to
explore the potential molecular mechanisms of the action of
CDK1 in tumorigenesis and clinical prognosis in terms of
gene expression, survival status, genetic alterations, protein
phosphorylation, methylation levels, immune infiltration,
pan-cancer correlation with three classes of RNA methyl-
ation regulatory proteins and related cellular pathways, and
to lay the foundation for future research on CDK1-based
antitumor therapy.

2. Materials and Methods

2.1. Ethical Statement. ,is study was approved by the
clinical trial ethics committee of the Affiliated Hospital of
SouthwestMedical University, China (ethics review number:
KY2019276). Following the approval of the ethics com-
mittee, the volunteers signed the informed consent before
samples were collected, and all methods were performed as
per the relevant guidelines and regulations. ,is study was
compliant with the Declaration of Helsinki.

2.2. Gene Expression Analysis. Oncomine, the classic sample
database in oncology, is the largest oncogene chip database
and integrated data-mining platform. It contains 86,733
samples and 715 gene expression datasets, which can be
accessed to mine information related to cancer genes and
can assist in screening tumor-related target molecules or
predicting phenotypes [22]. ,erefore, we used this online
database (https://www.oncomine.org) to assess the mRNA
expression levels of CDK1 in different tumors. In this study,
P values lesser than 0.01 in the Oncomine database, a fold
change of 2, and a gene ranking at 10% were set as the
thresholds of significance. Additionally, we used the
“Gene_DE” module of the TIMER2 [23] web server (https://
timer.cistrome.org/) to determine the differences in CDK1
expression between cancer tissue and adjacent normal

tissues in TCGA tumors. We downloaded RNA-seq se-
quencing data from the TCGA and Genotype-Tissue Ex-
pression (GTEx) datasets from the UCSC XENA portal
(https://xenabrowser.net/datapages/). ,e downloaded data
were uniformly processed by the Toil process [24] and log2
(TPM+1) transformed for analysis to compare the CDK1
gene expression between tumor and normal tissue in
multiple types of tumor.

UALCAN (https://ualcan.path.uab.edu) is a compre-
hensive, interactive web portal for a detailed analysis of the
TCGA gene expression data [25]. We performed expression
analysis on the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) dataset through this interactive web re-
source. ,e expression levels of CDK1 (NP_001307847.1) in
total or phosphorylated proteins in primary tumors and
normal tissues were explored. Valid datasets were selected
from six tumors, including breast cancer, ovarian cancer,
colon cancer, renal clear cell carcinoma (RCC), uterine
corpus endometrial carcinoma (UCEC), and lung adeno-
carcinoma (LUAD). A violin plot of CDK1 expression in all
TCGA tumors at different pathological stages (stages I, II,
III, and IV) was obtained using the “Pathological stage map”
module of the GEPIA2 web server (https://gepia2.cancer-
pku.cn/#index) [26]. ,e log2 (TPM+1)-transformed ex-
pression data were visualized and analyzed in the form of
violin plots to determine the expression of CDK1 in different
pathological stages of different tumors.

2.3. Survival Prognosis Analysis. To elucidate the relation-
ship between CDK1 regulatory genes and tumor survival
prognosis, we used the “survival map” module of GEPIA2
[26] to obtain overall survival (OS) and disease-free survival
(DFS) significance map data of CDK1 in all TCGA tumors.
High and low cut-off (>50% or <50%, respectively) values
were used as the expression thresholds for creating high-
expression and low-expression cohorts. Hypothesis testing
was performed using the log-rank test, and survival curves
were obtained using the “survival analysis” module of
GEPIA2. We used the online survival analysis tool Kaplan-
Meier plotter (https://kmplot.com/analysis/) [27] to analyze
the 5-year survival of patients with different tumor types
using publicly available pan-cancerRNA-seq datasets to
determine the effect of CDK1 gene mRNA expression levels
on the OS (n� 7,462) and recurrence-free survival (RFS)
(n� 4,420) of the patients.

,e PronoScan database was used to determine the re-
lationship between gene expression and patient clinical
prognosis through a large collection of publicly available
cancer chip datasets [28]. We used the web server of this
database (https://www.abren.net/PrognoScan/) to analyze the
relationship between CDK1 expression in different types of
cancer and survival, such as disease-specific survival (DSS),
RFS, distant recurrence-free survival (DRFS), DFS,metastasis-
free survival (MFS), and distant metastasis-free survival
(DMFS). ,e threshold was adjusted to a Cox P value <0.05.

2.4. Gene Mutation Analysis. ,e cBioPortal database
contains the genomic characteristics of tumors at the DNA
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level. It provides visual and multidimensional genomic data
that can be used to study mechanism of tumorigenesis [29].
We performed a pan-cancer mapping study of CDK1
through the online web platform of this database (https://
www.cbioportal.org/), looking at the results of mutation
frequency, mutation type, and copy number alteration
(CNA) in all TCGA tumors. ,e information on CDK1
mutation sites can be shown in protein structure schematics
or 3D structures through the “Mutations” module of this
database. Also, we analyzed the correlation between CDK1
gene expression and TMB and MSI in 33 tumor types using
Spearman’s correlation. Paired mRNA expression data for
33 tumor types (n� 10,201) were downloaded from the
genomic data commons (GDC) data portal (https://portal.
gdc.cancer.gov/) and statistically analyzed using the R
package (v4.0.3); P< 0.05 was considered statistically
significant.

2.5. Immune Infiltration Analysis. ,e relationship between
CDK1 expression and immune infiltration in all TCGA
tumors was determined using the “Immune Gene” module
of the TIMER2 database web server. Tumor-associated fi-
broblasts, CD8+ Tcells, CD4+ Tcells, B cells, dendritic cells
(DC), and macrophages were selected for immune in-
filtration assessment based on different algorithms such as
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
XCELL, MCPCOUNTER, and EPIC. ,e P values and
partial correlation coefficients (COR) were calculated by
Spearman’s correlation and visualized in the form of heat
maps and scatter plots.

2.6. Pan-Cancer Correlation Analysis of CDK1 and RNA
Methylation Regulatory Proteins. Several modified ribonu-
cleosides including 6-methyladenosine (m6A), 5-
methylcytidine (m5C), and 1-methyladenosine (m1A)
have recently been shown to occur in messenger (m)RNAs
and to affect their biogenesis, translation, and stability. We
downloaded the uniformly normalized pan-cancer dataset
from the UCSC (https://xenabrowser.net/) database. We
further extracted the expression data of ENSG00000170312
(CDK1) gene and 44 regulatory proteins involved three types
(m1A, m5C, m6A) of RNA methylation modifications in
each sample, and further we filtered the samples from the
following sources: primary solid tumor, primary blood
derived cancer—bone marrow, primary blood derived
cancer—peripheral blood. We also filtered all normal
samples, and further performed log2 (x+ 0.001) trans-
formation for each expression value. Next, we calculated the
Pearson’s correlation between CDK1 and three types of RNA
methylation regulatory proteins. Visual analysis was carried
out in the form of heat maps.

2.7.MethylationAnalysis. Methylation of DNA and histones
can alter the structure of the DNA. Moreover, epigenetic
regulation of gene expression might be assessed by the
methylation level of the promoters. We used the TCGA
dataset from the UCLAN database to analyze the CDK1

promoter DNA methylation levels in various tumors to
determine the differences in the methylation levels between
tumors and normal tissues.,e results are presented as a box
plot; P< 0.05 was considered statistically significant.

2.8. CDK1-Related Gene Enrichment Analysis. STRING
(https://string-db.org/) is a database for predicting protein
interactions. Currently the STRING database (v11.0) con-
tains information on more than 5,000 species, more than 20
million proteins, and more than 3 billion interactions. ,e
database can be used to understand the complex regulatory
networks in living organisms [30]. We first investigated the
protein-protein interactions of CDK1-binding proteins
using this database, with the main parameter settings, in-
cluding the meaning of the network edge (“evidence”), the
active interaction sources (“experiment”), the minimum
interaction required score (“low confidence [0.150]”), and
the maximum number of interactors to be shown (“no more
than 50 interactors”). Finally, an interaction network of 50
experimentally identified CDK1-binding proteins was
obtained.

We obtained the top 100 target genes associated with
CDK1 from all the TCGA tumor and normal tissue datasets
using the “similar gene detection” module of the GEPIA2
database. Jvenn, an interactive Venn diagram viewer [31],
was used to analyze and visualize the interactions between
CDK1-interacting genes and related genes. Moreover, we
combined these two sets of gene data for the KEGG pathway
analysis by uploading the gene list to the web server of the
DAVID database (https://david.ncifcrf.gov) with selected
identifiers (“OFFICIAL_GENE_SYMBOL”) and species
(“Homo sapiens”). ,e Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis was performed to ob-
tain the relevant KEGG data, and finally, using the “tidyr”
and “ggplot2” R packages, the data were visualized. We also
performed Gene Ontology (GO) functional enrichment
analysis of the above genes using the Metascape database
(https://metascape.org/).,e data of BP (Biological process),
CC (Cellular Component), and MF (Molecular Function)
enrichment items were downloaded, and the results of the
analysis were visualized in the form of chord and bubble
diagrams.

2.9. Immunohistochemical Techniques.
Immunohistochemistry was performed as described pre-
viously [32]. ,e cancer tissues and paraneoplastic tissues of
human lung, breast, and liver cancers were fixed, dehy-
drated, embedded, and sectioned. ,e dewaxed sections
were placed in hydrogen peroxide (containing 3%methanol)
for 10min at room temperature and washed with 1× PBS.
,e tissue sections were immersed in a 0.01M citrate buffer
solution (pH 6.0) and boiled. After cooling, the sections were
washed with 1× PBS. A blocking solution (goat serum) was
added dropwise for 20min at room temperature. ,e CDK1
experimental group was incubated with recombinant anti-
CDK1 rabbit monoclonal antibody (Abcam, Cat No.
ab133327, Cambridge, UK) as a primary antibody, and the
isotype control group was incubated with rabbit IgG1
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antibody (Shanghaiyuanye Biotechnology, Cat No. S25766,
Shanghai, China) overnight at 4°C. ,e goat anti-rabbit
antibody (Zhongshan Jinqiao, Cat No. ZDR5306, Beijing,
China) was added dropwise as a secondary antibody, in-
cubated for 90min at 37°C, and washed with 1× PBS after
incubation. A DAB chromogenic reagent kit (Zhongshan
Jinqiao, Cat No. K135925C, Beijing, China) was used to stain
at room temperature. After hematoxylin counterstaining
and dehydration, the sections were sealed with neutral gum.
Semi-quantitative immunohistochemical detection was used
to determine the CDK1 protein levels in different cancer
tissues. ,e integrated optical density and corresponding
area of the CDK1-positive region in the acquired immu-
nohistochemical sections were determined using the Image-
Pro Plus 6.0 image analysis system, and the mean optical
density of the positive region in each immunohistochemical
section was calculated. ,e measurements were repeated
three times per section and averaged to accurately compare
the difference in mean optical density between cancerous
and normal tissues. (Ten cancer tissue sections and 10
normal tissue sections from patients with different tumors
were stained for each cancer species, respectively. ,e iso-
type control group was also set up, and the number of
normal and cancer tissue sections stained was five.)

2.10. Statistical Analysis. ,e statistical analysis was per-
formed using Prism 8 (GraphPad Software). Data are pre-
sented as mean± SD. Statistically significant differences
between the two groups were calculated using Student’s
t test. For P> 0.05, the differences were considered to be
statistically not significant (ns); ∗P< 0.05; ∗∗P< 0.01; and
∗∗∗P< 0.001.

3. Results

3.1. CDK1 Is Significantly Upregulated Expression in Most
Common Cancers. To investigate the expression of the
CDK1 gene in various tumors, we analyzed the mRNA
expression of the CDK1 gene using the Oncomine database
(Figure 1(a)). Based on the analysis of the Oncomine da-
tabase, we found that the CDK1 gene expression was higher
in a variety of malignancies than in normal tissues (Fig-
ure 1(a)): these malignancies included bladder cancer, brain
and CNS cancers, breast cancer, cervical cancer, colon
cancer, esophageal cancer, gastric cancer, head and neck
cancer, lymphoma, liver cancer, lung cancer, melanoma,
ovarian cancer, and sarcoma. However, CDK1 gene ex-
pression was lower in leukemia andmyeloma than in normal
tissues (Figure 1(a)). We also specifically investigated the
expression of the CDK1 gene in highly prevalent malig-
nancies such as lung, gastric, liver, colon, breast, esophageal,
and pancreatic cancers (Supplementary Table 1). ,ere was
a significant upregulation of CDK1 gene expression in lung
cancer tissues than in normal tissues, and the results from
the TCGA dataset showed a fold change of 6.939
(P � 4.26E − 24) (Supplementary Table 1). ,e over-
expression of the CDK1 gene in gastric cancer tissues
showed a fold change of 2.544 (P � 7.42E − 13) compared to

the expression of the gene in normal tissues. Similarly, the
expression levels of CDK1 gene were significantly higher in
liver cancer (fold change of 5.573, P � 1.05E − 84), colon
cancer (fold change of 2.274, P � 6.34E − 13), breast cancer
(fold change of 2.325, P � 2.36E − 48), esophageal cancer
(fold change of 2.929, P � 1.54E − 26), and pancreatic
cancer (fold change of 3.888, P � 1.37E − 7) than in the
adjacent normal tissues (Supplementary Table 1).

To further evaluate the expression of CDK1 in human
cancers, we used the TIMER2 database to analyze the ex-
pression of CDK1 in different types of TCGA tumors. ,e
differential expression of CDK1 in all TCGA tumors versus
adjacent normal tissues is shown in Figure 1(b). In bladder
urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney renal clear cell
carcinoma (KIRC), liver hepatocellular carcinoma (LIHC),
LUAD, lung squamous cell carcinoma (LUSC), pheochro-
mocytoma and paraganglioma (PCPG), prostate adeno-
carcinoma (PRAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), thyroid carcinoma
(THCA), and UCEC, among different malignancies, the
expression of CDK1 in cancer tissues was significantly
higher than that in the adjacent normal tissues (all P values
<0.05). However, in kidney chromophobe (KICH), the
expression of CDK1 in cancer tissues was significantly lower
than that in the adjacent normal tissues. We compared the
expression levels of the CDK1 gene in the TCGA and GTEx
database integrated datasets, considering the limited para-
cancerous normal tissue of some cancer species in the TCGA
database (Figure 1(b)). ,e analysis showed that CDK1
expression was significantly upregulated in various tumor
tissues compared to the expression in the adjacent normal
tissues (Figure 1(c)).

,e results of the CPTAC database showed that the
expression of total CDK1 protein in breast cancer, renal clear
cell carcinoma, colon cancer, lung adenocarcinoma, and
UCEC tissues was higher than that in the adjacent normal
tissues (P< 0.0001; Figure 1(d)). We then evaluated the
relationship between CDK1 expression and clinicopatho-
logical staging of patients with different tumors
(Figure 1(e)). ,e results suggested that CDK1 expression
plays an important role in the clinical progression of dif-
ferent malignancies such as BRCA, COAD, LUAD, and
LUSC, this expression pattern is associated with good
clinical application prospects.

,e differential overexpression of CDK1 gene in TCGA
tumors lays the foundation for its potential as a tumor
therapeutic target, and this differential overexpression in-
volves more tumor types than other tumor targets, which
validates its importance at the pan-cancer level.

3.2.High Expression of CDK1 inTumors Significantly Reduced
the Survival and Prognosis of Tumor Patients. We divided
tumor cases into high- and low-expression groups according
to CDK1 expression levels and investigated the correlation
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Figure 1: Expression levels of the CDK1 gene in different tumors and pathological stages. (a) Increase or decrease in the CDK1 levels in datasets of
different cancers compared to the CDK1 levels in normal tissues in the Oncomine database. (b) CDK1 expression levels in different tumor types
from the TCGA database were analyzed by TIMER2.0 (∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001). (c) Comparison of CDK1 expression levels between
tumor tissues from the TCGA database and normal tissues from the GTEx database (∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001). (d) Based on the
CPTAC dataset, the expression levels of total CDK1 protein were analyzed in normal and primary tissues of breast cancer, colon cancer, clear cell
kidney cancer, and UCEC (∗∗∗∗P< 0.0001). (e) Correlations between CDK1 expression and tumor stage in BRCA, COAD, LUAD, and LUSC
patients (Log2 (TPM+1) was applied for log scale).
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between CDK1 expression and the prognosis of patients
with different tumors using the TCGA dataset. As shown in
Figure 2, the OS analysis data showed that high expression of
CDK1 was associated with poor prognosis of TCGA tumors
(Figure 2(a)). Tumor types involved adrenocortical carci-
noma (ACC, P � 7e − 08), KIRC (P � 0.033), kidney renal
papillary cell carcinoma (KIRP, P � 0.017), brain lower
grade glioma (LGG, P � 76e − 07), LIHC (P � 0.00017),
LUAD (P � 2.6e − 05), mesothelioma (MESO,
P � 7.6e − 07), pancreatic adenocarcinoma (PAAD,
P � 6e − 04), sarcoma (SARC, P � 0.0063), and skin cuta-
neous melanoma (SKCM, P � 0.037). Data from DFS
analysis showed that in TCGA tumors, ACC (P � 0.00019),
HNSC (P � 0.019), KIRC (P � 0.045), KIRP (P � 7.1e − 05),
LGG (P � 0.00014), LIHC (P � 0.00057), LUAD
(P � 0.027), PAAD (P � 0.0041), PRAD (P � 0.0014),
SARC (P � 0.0022), and uveal melanoma (UVM,
P � 0.00071) and high CDK1 expression were associated
with poor prognosis (Figure 2(b)).

We determined the association between CDK1 expres-
sion and prognosis of cancer patients using the Pronoscan
database. Sixteen cohorts (GSE5287 [33], GSE13507 [34, 35],
GSE2658 [36], GSE4475 [37], GSE12417-GPL97 [38],
GSE4271-GPL96 [39], GSE4412-GPL96 [40], GSE1456-
GPL96 [41], GSE12093 [42], GSE12276 [43], GSE12945 [44],
GSE17537 [45], GSE9891 [46], GSE16560 [47], GSE19234
[48], and GSE30929 [49]) of the analytical data suggested
that high CDK1 expression was significantly correlated with
poor prognosis (CoxP< 0.05, Supplementary Figure 1A).
,e types of tumors included bladder cancer, blood cancer,
brain cancer, breast cancer, colon cancer, lung cancer,
ovarian cancer, prostate cancer, skin cancer, and soft tissue
cancer. ,e impact on patient survival involved OS, DFS,
DMFS, RFS, DRFS, DSS, and MFS. Notably, high expression
of the CDK1 gene can be a protective factor for DFS in
colorectal cancer patients. Additionally, we used the Kaplan-
Meier plotter database to assess the prognostic relationship
of CDK1 expression with a range of cancer types. ,e results
showed that high expression of CDK1 significantly affected
OS and RFS in tumor patients (Supplementary Figure 1B).
In conclusion, these analyses consistently showed that the
CDK1 gene is significantly associated with the prognosis of
patients with different cancer types and can significantly
influence the survival of patients with these tumors. First, we
concluded that the CDK1 gene was differentially overex-
pressed in TCGA tumors. Meanwhile, this high expression
status of CDK1 gene can significantly reduce survival time of
tumor patients as revealed at the pan-cancer level. ,e above
study lays the foundation for anti-CDK1 oncology therapy
to extend the median survival time of tumor patients.

3.3. �e Genetic and Epigenetic Features of CDK1 in Pan-
Cancer. Oncogenic mutations mainly include single-gene
mutations (amplifications, insertions, deletions, etc.) and
translocations (fusions). We investigated the alterations of
the CDK1 gene in different tumor samples from the TCGA
cohort. As shown in Figure 3(a), the highest frequency of
CDK1 gene alterations (>6%) was found in uterine

carcinosarcomas with “amplification” as the mutation type.
“Amplification” was also the main type of mutation in
cholangiocarcinoma (>2%), pancreatic adenocarcinoma
(<1%), stomach adenocarcinoma (<2%), breast invasive
carcinoma (<2%), and esophageal adenocarcinoma (<2%).
“Amplification” also occurred in lung squamous cell car-
cinoma (<1%), bladder urothelial carcinoma (<1%), prostate
adenocarcinoma (<1%), ovarian serous cystadenocarcinoma
(<1%), and head and neck squamous cell carcinoma (<1%).
,e “mutation” type of alteration was mainly seen in skin
cutaneous melanoma (>2%) and colorectal adenocarcinoma
(<2%). Kidney chromophobe, sarcoma, testicular germ cell
tumors, and thyroid carcinoma were predominantly of the
“deep deletion” type, with a frequency of less than 2%.
Figure 3(b) shows the types and loci of CDK1 gene alter-
ations. We found that the “missense” mutation of CDK1 is
the main type of genetic alteration. Changes in the Pkinase
domain (R275Q) detected in colorectal cancer (COAD-
READ), BRCA, and GBM can induce a transcoding mu-
tation of the CDK1 gene, which translates CDK1 from
arginine (R) to glutamine (Q) at position 275. Subsequently,
missense changes were found in CDK1 protein. ,e 3D
structure of CDK1 showed the R275 site (Figure 3(c)).

We also analyzed the correlation between CDK1 ex-
pression and TMB and MSI in all TCGA tumors. As shown
in Figure 3(d), ACC (P � 1.01E − 06), BLCA
(P � 7.20E − 07), CHOL (P � 0.0447), COAD (P � 0.0025),
HNSC (P � 0.0137), KICH (P � 0.0036), KIRC
(P � 0.0048), acute myeloid leukemia (LAML, P � 0.0237),
LGG (P � 4.13E − 16), LUSC (P � 1.15E − 05), PAAD
(P � 1.71E − 08), SARC (P � 5.50E − 06), SKCM
(P � 1.31E − 06), UCEC (P � 0.0099), and uterine carci-
nosarcoma (UCS, P � 0.0021) in CDK1 expression were
positively correlated with TMB, while CDK1 expression in
thymoma (THYM, P � 4.71E − 11) was negatively corre-
lated with TMB. As shown in Figure 3(e), CDK1 expression
in HNSC (P � 0.0210), MESO (P � 0.0307), READ
(P � 9.94E − 05), SARC (P � 0.0043), STAD
(P � 1.53E − 13), and UCEC (P � 2.06E − 10) was positively
correlated with MSI, while lymphoid neoplasm diffuse large
B-cell lymphoma (DLBC, P � 0.0330) showed a negative
correlation between CDK1 expression and MSI.

Pan-cancer analysis of genetic and epigenetic charac-
teristics of CDK1 gene revealed differential mutations of
CDK1 in different TCGA tumors. ,e correlation of CDK1
with TMB and MSI in different tumors was also analyzed to
provide a basis for ICIs-based therapy.

3.4. �e Phosphorylation of CDK1 Protein in TCGA Tumor
Tissues Was Higher than �at in Normal Tissues. We com-
pared the differences in CDK1 phosphorylation levels in
normal and primary tumor tissues using the CPTAC dataset
analysis in the UALCAN database. Figure 4(a) summarizes
the phosphorylation loci of CDK1 and the phosphorylation
levels in specific cancer types. ,e phosphorylation loci with
differences in the CDK1 S_TKc domain mainly included
T14, Y15, and T161. Notably, analysis of the CDK1 amino
acid sequence using the bioinformatics tool PhosphoNET
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Figure 2: Survival analysis comparing the high and low expression of CDK1 in different types of cancer in the TCGA dataset. We used the
GEPIA2 tool to perform (a) overall survival analysis and (b) disease-free survival analysis of different tumors in TCGA by CDK1 gene
expression. ,e survival map and Kaplan-Meier curves with positive results are shown.
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Figure 3: Continued.
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(https://www.phosphonet.ca) also identified T14, Y15, and
T161 as potential phosphorylation loci. Further analysis of
the above loci suggested that the phosphorylation levels of
the Y15 locus were higher in primary tumor tissues than in
normal tissues in ovarian, breast, LUAD, and colon cancers
(all P< 0.05) (Figure 4(b)). ,e phosphorylation level of the
T14 locus was also significantly higher in primary tumor
tissue than in normal tissue in LUAD and colon cancer.
Considering that the phosphorylation levels of the Y15 locus
were significantly elevated in several primary tumor tissues,
further molecular testing might help to determine the po-
tential role of Y15 phosphorylation in tumorigenesis.

Protein phosphorylation is a common process that
regulates the activity of oncogenic and tumor suppressor
proteins; dysregulated protein phosphorylation is often
a predisposing factor for a variety of diseases. Our results
showed that protein phosphorylation levels in tumor tissues
were significantly higher than those in normal tissues;
dysregulation of CDK1 protein phosphorylation may alter
the activity of oncogenic-related signaling pathways and
contribute to the formation of associated tumor phenotypes.

3.5. Different Methylation Levels of CDK1 in Different TCGA
Tumor Tissues. DNA methylation directly affects cancer
development, and hence, we investigated the DNA meth-
ylation levels of CDK1 in different tumors using the TCGA

dataset in the UCLAN database. As shown in Figure 5, the
methylation levels of CDK1 were significantly lower in
CHOL, LIHC, READ, testis germ cell tumor, and THCA
tumor tissues compared to that in the normal tissues (all P

values <0.05), whereas the methylation levels of CDK1 in
COAD, ESCA, HNSC, KIRC, KIRP, LUSC, PAAD, and
SARC tumor tissues were significantly higher (all P values
<0.05). Due to the lack of CDK1 expression data, we did not
analyze the relationship between DNA methylation and
CDK1 expression. Related studies show that tumor sup-
pressor genes can be suppressed by hypermethylation and
oncogenes can be activated by hypomethylation, the dif-
ferential expression of CDK1 phosphorylation in different
TCGA tumors leads to genomic instability and accelerated
tumor progression. Hypomethylation status of CDK1 in
some tumors may lead to activation of other oncogenes,
while hypermethylation status in other tumors may further
exacerbate carcinogenesis by silencing tumor-associated
suppressor genes.

3.6. CDK1 Expression Level Was Related to the Level of Im-
mune Infiltration. Tumor-infiltrating immune cells are an
important component of the tumor microenvironment, and
they play an important role in tumor growth, development,
and drug resistance [50]. Tumor-associated fibroblasts are
one of the important cells associated with tumor malignancy

THYM
ESCA

UVM
CESC
LIHC
KIRP

READ
PCPG

OV
GBM

HNSC
UCEC
MESO

COAD
TGCT
DLBC
LUSC

LAML
SKCM
BLCA
SARC

CHOL
LGG

KICH
BRCA
LUAD

UCS
PRAD
PAAD
STAD
ACC

−0.6 −0.3 0.0 0.3
Correlation (TMB)

Correlation
0.1
0.2
0.3
0.4
0.5

5
10
15

−log10 (p-value)
KIRC

THCA

(d)

DLBC
LUAD
KICH
BRCA
PAAD

LGG
OV

LUSC
THCA
CESC

SKCM
ESCA

THYM
PRAD
LAML
BLCA

COAD
KIRP
GBM
KIRC
LIHC

HNSC
PCPG

UCS
TGCT
UVM

CHOL
SARC
ACC

MESO
UCEC
READ
STAD

−0.2 0.0 0.2 0.4
Correlation (MSI)

2.5
5.0
7.5
10.0
12.5

−log10 (p−value)

Correlation
0.1
0.2
0.3

(e)

Figure 3: CDK1 mutation landscape. (a) ,e CDK1 mutation frequency in multiple TCGA pan-cancer studies according to the cBioPortal
database. (b)Mutation diagram of CDK1 in different cancer types across protein domains. (c) Illustration of the three-dimensional structure
of the CDK1 protein (containing the R275 mutation site). (d) Correlation between CDK1 gene expression and TCGA tumor mutation load
(TMB). (e) Correlation between CDK1 gene expression and TCGA tumor microsatellite instability (MSI).
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and are the most prominent stromal component and key
players in tumor progression [51]. We used TIDE, XCELL,
MCPCOUNTER, and EPIC algorithms to investigate the
relationship between the level of tumor-associated fibroblast
infiltration and CDK1 gene expression in different types of
TCGA tumors (Figure 6(a)). Based on all or most of the
algorithms, we observed a negative correlation between
CDK1 expression and the infiltration values of tumor-
associated fibroblasts in COAD, BRCA-Basal, THYM,
HNSC, HNSC (human papillomavirus [HPV+]), LUSC,
PRAD, and STAD tumors. ,ere was a positive correlation
in KICH, KIRC, KIRP, MESO, and testicular germ cell
tumor (TGCT).

We also investigated the relationship between CDK1 and
other immune infiltrating cells using different algorithms
such as EPIC, TIMER, QUANTISEQ, XCELL, CIBERSORT,
and CIBERSORT-ABS to analyze the relationship between
CDK1 expression and the infiltration levels of CD4+ Tcells,

CD8+ T cells, B cells, DC, and macrophages in different
TCGA tumors. Specifically, as shown in Figure 6(b), CDK1
expression in BLCA and STAD was negatively correlated
with the infiltration value of CD4+ T cells, whereas it was
positively correlated in HNSC and HNSC-HPV F02D.
Notably, in all TCGA tumors, based on the XCELL algo-
rithm, we found a positive correlation between the in-
filtration values of,2-type CD4+ Tcells and the expression
of CDK1. As shown in Supplementary Figure 2A, CDK1
expression in different TCGA tumors of BRCA, BRCA-
lumB, HNSC, HNSC-HPV+, KIRC, LIHC, LUAD, LUSC,
THCA, and THYM showed a positive correlation with the
infiltration value of CD8+ T cells, while a negative corre-
lation was observed in PAAD and UCEC. We found
a positive correlation between CDK1 expression and B-cell
infiltration values in HNSC, HNSC-HPV+, KIRC, LIHC,
PRAD, THCA, and THYM, while CDK1 expression was
negatively correlated with B-cell infiltration values in LUAD,
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Figure 4: Phosphorylation analysis of CDK1 protein in different tumors. (a) Based on the CPTAC dataset, we analyzed the expression level
of CDK1 phosphoprotein (NP_001307847.1, T14, Y15, and T161 sites) between normal tissue and primary tissue of selected tumors via the
UALCAN. ,e phosphoprotein sites with positive results are displayed in the schematic diagram of the CDK1 protein. (b) Box plots of
CDK1 protein phosphorylation in different tumors.
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MESO, PAAD, STAD, and TGCT (Supplementary
Figure 2B). As shown in Supplementary Figure 2C, based on
most algorithms, CDK1 expression in KIRC, LGG, and
THYM was positively correlated with DC cell infiltration

values, while it was negatively correlated in STAD and
TGCT. We also observed a positive correlation between
CDK1 expression and macrophage infiltration values in
BLCA, BRCA, KIRC, PRAD, and THCA tumors, and
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Figure 5: Methylation analysis of the CDK1 gene in different tumors. Box plots of methylation in different tumors, including CHOL,
COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUSC, PAAD, READ, SARC, THCA, and testis germ tumor.
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Figure 6: Correlation analysis between CDK1 expression and immune infiltration of tumor-associated fibroblasts and CD4+ T cells.
(a) Different algorithms were used to determine the correlation between the expression level of the CDK1 gene and the infiltration level of
tumor-associated fibroblasts across all types of cancer in TCGA. (b) Correlation of CDK1 expression with infiltrating levels of CD4+ Tcells
in different types of cancer.

Journal of Oncology 13



a negative correlation in CESC, KIRP, LIHC, STAD, TGCT,
and THYM tumors (Supplementary Figure 2D). ,ese re-
sults provide strong evidence that the CDK1 gene might play
an important role in tumor immunemicroenvironment, and
CDK1might be involved in the migration of immune cells to
the tumor microenvironment. To analyze the correlation
between CDK1 gene expression and tumor-infiltrating
immune cells and to lay the foundation for the next anti-
tumor immunotherapy based on CDK1 tumor targets.

3.7. �e Level of CDK1 Was Positively Correlated with the
Expression of RNAMethylation Regulatory Proteins in TCGA
Tumors. RNA plays essential roles in not only translating
nucleic acids into proteins, but also in gene regulation,
environmental interactions, and many human diseases. A
growing number of studies have shown that RNA methyl-
ation modification-related proteins are critical in tumor
development. Our pan-cancer analysis showed (Figure 7)
a significant positive correlation with expression between the
CDK1 gene and three classes (m1A, m5C, m6A) of RNA
methylation regulatory proteins. ,e positive pan-cancer
correlations with m1A RNA methylation regulatory pro-
teins YTHDF2 and ALKBH1, m5C methylation regulatory
proteins DNMT1, DNMT3B, and ALYREF, and m6C RNA
methylation regulatory proteins HNRNPC, HNRNPA2B1,
and ELAVL1 were particularly significant. Our study reveals
a significant positive correlation between CDK1 and RNA
methylation regulatory proteins at the pan-cancer level of
expression. CDK1 participates in RNA metabolic processes
by affecting the expression levels of related RNAmethylation
regulatory proteins, this may be one of the potential
mechanisms by which CDK1 exerts its corresponding on-
cogenic effects. Up- or downregulating the expression level
of RNA methylation regulatory proteins by targeting CDK1
may become a new approach for tumor prevention and
treatment.

3.8. Enrichment Analysis of CDK1-Related Partners. To
further investigate the mechanism of action of the CDK1
gene in tumorigenesis, we performed functional enrichment
analysis of CDK1-related binding proteins and
CDK1 expression-related genes. Based on the STRING tool,
we obtained 50 experimentally validated CDK1-related
binding proteins and constructed a protein-protein in-
teraction (PPI) network for these proteins (Figure 8(a)).
Additionally, we obtained the top 100 genes associated with
CDK1 expression using the GEPIA2 database, and a cross-
tabulation analysis of the two gene sets showed that 11 genes
overlapped, which included CKS1B, CDC20, CCNB1,
CCNA2, CDC25C, PCNA, BUB1, CCNF, AURKA, CKS2,
and CCNB2 (Figure 8(b)). We also performed a pan-cancer
expression correlation analysis of CDK1 and the 11 genes
using the TIMER2 database and showed a positive corre-
lation between CDK1 and the expression of these molecules
in TCGA tumors (Figure 8(c)).

We combined these two gene datasets for the KEGG and
GO enrichment analysis. ,e results of the KEGG analysis
suggested that CDK1 might be involved in different

pathways such as mismatch repair, cell cycle, progesterone-
mediated oocyte maturation, oocyte meiosis, DNA repli-
cation, HTLV-I infection, and pathways associated with
cancer (Figure 8(d)). We found that CDK1-related genes
were enriched in different pathways such as cell division,
mitotic nuclear division, G1/S transition of the mitotic cell
cycle, DNA repair, and G2/M transition of the mitotic cell
cycle in the GO enrichment analysis category of “biological
processes” (Figure 8(f)). ,is suggested that CDK1 plays an
important role in cell cycle progression. In the GO en-
richment analysis category “cellular components,” CDK1-
related genes were significantly enriched in different cellular
components such as the nucleus, nucleoplasm, condensed
chromosome kinetochore, membrane, and cytoplasm
(Figure 8(g)). In the GO enrichment analysis category of
“molecular function,” the role of CDK1 in tumor patho-
genesis might be related to protein binding, protein kinase
binding, and ATP binding (Figure 8(h)). We have shown the
relevant functional pathways involved in the top 20 genes
associated with CDK1 as a chord plot (Figure 8(e)). ,e
corresponding enrichment analysis of CDK1 further
revealed the molecular mechanisms involved in its onco-
genic role, which is involved in the malignant progression of
tumors by affecting related signaling pathways or cellular
functions.

3.9. In Vitro Experiments Verify the High Expression of CDK1
in Tumor Tissues. To further elucidate the difference of
CDK1 gene expression in tumor tissues and normal tissues,
we collected human lung cancer, liver cancer, and breast
cancer tissues along with the adjacent normal tissues from
the Affiliated Hospital of Southwest Medical University and
conducted experimental studies on human lung cancer, liver
cancer, and breast cancer tissue samples using immuno-
histochemical methods.,e Image-pro Plus6.0 software was
used for the semiquantitative analysis of different tissue
specimens. Using the area of the whole image for mea-
surement, the mean optical density values of CDK1-positive
expression in the corresponding cancer tissues of lung
cancer, liver cancer, and breast cancer, as well as the normal
tissues, were calculated. ,e results showed that CDK1 was
highly expressed in lung cancer tissues (Figure 9(a)), liver
cancer tissues (Figure 9(b)), and breast cancer tissues
(Figure 9(c)), and the difference in expression between the
cancer tissues and normal tissues was significant. In contrast,
there was no obvious positive staining in the rabbit IgG
isotype control group. In vitro experiments confirmed the
high expression status of CDK1 in tumor tissues, adding
credibility to its use as a potential therapeutic target for
differentially highly expressed tumors.

4. Discussion

As an important member of the cyclin-dependent kinase
family, CDK1 plays a critical role in cell cycle regulation,
immune checkpoint activation, and DNA damage repair. As
an important locus of signaling pathways, the CDK1 gene is
essential for tumor initiation and progression in different

14 Journal of Oncology



types of cancer, promoting the progression of malignancy
through different signaling pathways [52, 53]. ,e CDK1
protein structure is conserved from yeast to humans, sug-
gesting that similar mechanisms may exist for the normal
physiological roles of CDK1. Whether CDK1 plays a role in
the pathogenesis of different tumors through some common
molecular mechanisms is unknown. ,ere are no reports of
pan-cancer analysis of CDK1 from an overall perspective.
,erefore, using data from various databases such as TCGA,
GEO, and CPTAC, we revealed the molecular characteristics
of the CDK1 gene at multiple levels, including gene ex-
pression, gene alteration, DNA methylation, and protein
phosphorylation. We conducted a comprehensive in-
vestigation on the bioinformatics of the CDK1 gene in 33
tumors to elucidate its functions in the development of
different tumors and potential regulatory pathways.

In this study, we first investigated the expression of
CDK1 in the pan-cancer dataset (Figures 1(a)–1(d)), Sup-
plementary Table 1). ,e results of the analysis of different
datasets showed that the CDK1 gene was highly expressed in
most tumors. CDK1 expression in different tumors was
analyzed using the Oncomine database, the TIMER data-
base, and the combined TCGA and GTEx datasets to avoid
bias in the results of single dataset analysis. We also con-
ducted in vitro experiments to select human lung, liver, and
breast cancer tissues for immunohistochemical semi-
quantitative analysis to further validate our findings (Fig-
ure 9). Tumorigenesis is usually accompanied by abnormal
gene expression, and this altered expression contributes to
the development of tumors [54]. CDK1 expression and
subcellular localization are regulated by RARc and its ex-
pression level is usually positively correlated with the
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activation of Wnt/β-catenin [55–57]. We also found that
high CDK1 expression was associated with the clinico-
pathological staging of BRCA, COAD, LUAD, and LUSC
(Figure 1(e)).

In this study, we used independent datasets from TCGA,
Kaplan-Meier plotter, and PrognoScan to determine the
relationship between CDK1 expression levels and pan-
cancer prognosis (Figure 2, Supplementary Figure 1). In
different datasets, based on all or most tumor types, high
CDK1 expression levels suggested a poor prognosis for
tumor patients, affecting OS, DFS, DMFS, RFS, DRFS, DSS,
and MFS survival progression in tumor patients. Previous
studies have shown that high CDK1 expression is

significantly associated with reduced overall survival in
patients with colon cancer [58] and hepatocellular carci-
noma [59]. ,ese results are consistent with our current
findings. Notably, analysis from the Kaplan-Meier plotter
dataset showed that high CDK1 expression was significantly
associated with improved OS in blood cancers and improved
DFS in colorectal cancers.,e results of PrognoScan analysis
suggested that patients with CDK1-positive esophageal
squamous cell carcinoma had better OS and RFS.,ere were
no reports on the effect of CDK1 on survival progression in
blood cancer, colorectal cancer, and esophageal squamous
cell carcinoma. In our study, high expression of CDK1, as
a protective factor, was found to prolong the survival of
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Figure 8: CDK1-related gene enrichment analysis. (a) PPI network analysis of CDK1-related genes. ,e visualizing interaction network of
CDK1-binding proteins was obtained based on the STRING database. (b) Venn diagram of 50 CDK1-interacting proteins and 100 CDK1-
associated genes. (c) Heat map of the gene correlation analysis. (d) KEGG analysis of CDK1-binding and interacted genes. (e) GO en-
richment chord plot for the top 20 genes associated with CDK1. (f ) GO-BP analysis of CDK1-binding and interacted genes. (g) GO-CC
analysis of CDK1-binding and interacted genes. (h) GO-MF analysis of CDK1-binding and interacted genes.

18 Journal of Oncology



CDK1

Isotype

Normal Cancer

0.06

0.04

0.02

0.00

***

M
ea

n 
op

tic
al

 d
en

sit
y 

va
lu

e

Normal Cancer

(a)

CDK1

Isotype

Normal Cancer

0.08

0.06

0.04

0.02

0.00

***

M
ea

n 
op

tic
al

 d
en

sit
y 

va
lu

e

Normal Cancer

(b)

CDK1

Isotype

Normal Cancer

0.08

0.06

0.04

0.02

0.00

***

M
ea

n 
op

tic
al

 d
en

sit
y 

va
lu

e

Normal Cancer

(c)

Figure 9: IHC verification of CDK1 gene expression in tumor tissues and normal tissues. (a) Expression of CDK1 gene in lung cancer tissues
and normal tissues. (b) Expression of CDK1 gene in hepatocellular carcinoma tissues and normal tissues. (c) Expression of CDK1 gene in
breast cancer tissues and normal tissues (n� 10 per CDK1 experiment group, n� 5 per isotype group; ns, not statistically significant;
∗P< 0.05; ∗∗P< 0.01; and ∗∗∗P< 0.001. ,e Student’s t test was used for statistical analysis).

Journal of Oncology 19



patients with these tumors. However, this observation needs
to be confirmed with larger sample size and through other
clinical characteristics of the tumor patients. Taken together,
these findings provide insights into the application of CDK1
as a prognostic marker for pan-cancer in the context of
immuno-oncology, thus contributing to the potential de-
velopment of research on CDK1 gene-targeted therapy.

TMB refers to the number of nonsynonymous mutations
in somatic cells within a given genome, which can indirectly
reflect the ability and extent of neoantigen production by
tumors. TMB is a potential biomarker of response to ICIs
and can predict the efficacy of immunotherapy for a variety
of tumors [60]. Clinical studies have shown that high TMB is
associated with improved responses and survival benefits in
cancer patients after ICI treatment [61–63]. In tumors, MSI
is a relatively common phenomenon. ,e status of MSI
predicts the cause and development of tumors and also plays
an important role in different cancer types as an aid to
diagnosis and drug guidance. A comprehensive MSI
screening study showed that the degree ofMSI was positively
correlated with survival in cancer patients and that MSI-
positive tumors generally had a better prognosis than MSI-
negative tumors [64, 65]. We found that CDK1 expression
was positively correlated with TMB in 15 cancers and with
MSI in five cancers (Figure 3(d)). ,erefore, we hypothe-
sized that tumors with high CDK1 expression and positive
TMB and MSI might have a greater survival benefit after
treatment with immune checkpoint inhibitors (Figure 3(e)).

,e survival, growth, migration, and dormancy of tumor
cells are influenced by the surrounding tumor microenvi-
ronment, which is important for tumor progression [66–68].
In the tumor microenvironment, tumor-associated fibro-
blasts are a major component of the tumor stroma and are
currently considered to be one of the most active cell types in
the tumor microenvironment, playing a central role in tu-
morigenesis, progression, and metastasis [69–71]. Tumor-
associated fibroblasts accumulated in the tumor microen-
vironment might promote the growth and migration of
a variety of solid malignancies, including breast cancer [72],
esophageal cancer [73], bladder cancer [74], gallbladder
cancer [75], and bile duct cancer [76]. We found that CDK1
expression was negatively correlated with infiltration values
of tumor-associated fibroblasts in COAD, BRCA-Basal,
THYM, HNSC, HNSC-HPV+, LUSC, PRAD, and STAD
tumors, whereas it was positively correlated in KICH, KIRC,
KIRP, MESO, and TGCT. Meanwhile, we demonstrated the
high expression status of the CDK1 gene in COAD, THYM,
HNSC, HNSC-HPV+, LUSC, PRAD, STAD, KICH, KIRC,
KIRP, MESO, and TGCT tumors (Figure 6(a)). Whether the
CDK1 gene and tumor-associated fibroblasts have com-
petitive inhibitory or synergistic effects on promoting tumor
cell proliferation and the progression of malignancy in these
tumors is unclear, and the mechanism of action between the
two needs a detailed investigation.

Interestingly, we found a positive correlation between
the infiltration values of ,2-type CD4+ T cells and CDK1
expression in all TCGA tumors (Figure 6(b)). ,ere is
growing evidence that CD4+ Tcells play a central role in the
initiation and maintenance of the immune response against

cancer or autoimmune diseases [77, 78]. As an essential
component of the tumor microenvironment, it exerts
powerful antitumor effects by recognizing tumor-associated
MHC class II molecules. However, most solid tumors do not
express MHC class II molecules, which limit the ability of
CD4+ T cells to act at the tumor site [79]. CD4+ T cells are
mainly composed of different cell subsets such as ,1, ,2,
,17, and Treg. Among them,,1 cells assist CD8+ Tcells in
mediating immunity against tumors and viruses [80]. ,2
cells are best known for enhancing immunity against par-
asites, and their pathogenic role in allergic diseases has been
well documented [81, 82]. However, the role of ,2 cells in
the antitumor immune response is not well-understood.,2
cells mainly secrete IL-4, IL-5, IL-6, and IL-10 cytokines
[83]. IL-10 cytokines produced by ,2 cells directly inhibit
,1 cells and indirectly inhibit the activity of ,2 cells
[84, 85]. Whether the high expression of CDK1 breaks the
,1/,2 balance and increases ,2-type CD4+ T cells,
leading to immune dysfunction and the suppression of the
antitumor effects of ,1, needs further investigation. Our
study did not find a significant effect of CDK1 expression on
tumor infiltration in ,1-type CD4+ T cells. Additionally,
we found that CDK1 gene expression in different tumors
correlated with the infiltration of CD8+ T cells, B cells, DC
cells, and macrophages. ,is association between CDK1 and
the tumor microenvironment might be another reason for
the prognostic significance of CDK1 in various cancers,
where the aberrant expression of CDK1 could play a dom-
inant role in the tumor microenvironment.

Some studies have reported that targeting CDK1 can
improve the effectiveness of antitumor immunotherapy or
reverse chemotherapy resistance and prolong survival time.
,e results of Jin Huang et al. showed that CDK1 kinase
activity plays an important role in IFNG-mediated tumor
immune escape. Inhibition of the kinase activity of CDK1
can prevents the expression of relevant immune check-
points, alters the tumor microenvironment, and can sig-
nificantly improve the overall survival rate in a mouse
pancreatic cancer tumor model [86]. A recent report also
showed that ATR inhibits CDK1-SPOP signaling and thus
enhances anti-PD-L1 cytotoxicity in prostate cancer.
Combination of ATR inhibitor and anti-PD-L1 therapy
produces potent innate immune activation and a synergistic
T-cell-dependent therapeutic response [87]. Meanwhile,
CDK1 plays an important role in reversing chemotherapy
resistance and improving the effectiveness of chemothera-
peutic drugs. ,e application of CDK1 inhibitors has been
reported to improve the efficacy of the chemotherapeutic
drug sorafenib targeting tumor stem cells in the treatment of
hepatocellular carcinoma, anti-CDK1 combination che-
motherapy significantly inhibits tumor growth in hepato-
cellular carcinoma, while being able to overcome resistance
to sorafenib [59]. Also, it has been shown that the use of
CDK1 inhibitors can interfere with the proliferation of
gastrointestinal mesenchymal tumor cells with high CDK1
expression. More importantly, anti-CDK1 inhibitor treat-
ment reduced tumor growth in imatinib-resistant and
imatinib-sensitive gastrointestinal mesenchymal tumor xe-
nograft mice models, reversing the chemoresistant and
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sensitive situation [15]. Based on the importance of CDK1 in
antitumor immunotherapy and reversal of chemotherapy
resistance, CDK1 can be an important factor in measuring
the efficacy of tumor immunotherapy and chemotherapy.

We investigated the function of differentially expressed
CDK1 by GO enrichment analysis and KEGG pathway
enrichment analysis (Figures 8(d)–8(h)). We found that
differentially expressed CDK1 is mainly associated with the
regulation of the cell cycle, mismatch repair, DNA repli-
cation, G1/S and G2/M transitions of the mitotic cell cycle,
protein binding, protein kinase binding, and ATP binding.
Previously, CDK1 was shown to play a key role in cell cycle
progression [85], which was consistent with our findings. By
analyzing CDK1-related genes, we found that the positive
association of CKS1B, CDC20, CCNB1, CCNA2, CDC25C,
PCNA, BUB1, CCNF, AURKA, CKS2, and CCNB2 with the
CDK1 gene was consistent in all TCGA tumors (Figure 8(c)).
,is suggested that CDK1-related enrichment pathways
could serve as the underlying markers to identify patients in
need of therapy.

In summary, our pan-cancer analysis of CDK1 showed
a significant correlation between CDK1 expression and
clinical prognosis, DNA methylation, protein phosphory-
lation, immune cell infiltration, RNAmethylation regulatory
proteins, tumor mutational load, and microsatellite in-
stability in multiple tumors. In this study, we determined the
role of CDK1 in tumorigenesis from the perspective of
clinical tumor samples. Based on our established findings,
the expression pattern as well as the functional importance
of CDK1 make it a promising target for clinical antitumor
therapy.,e inclusion of CDK1 in tumormarker testing is of
great significance, as well as the development of new anti-
CDK1 drugs targeting CDK1, anti-CDK1 combined with
immunotherapy or combined with chemotherapy, making it
possible to extend the median survival time of tumor
patients.
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The first lncRNA discovered, H19, has been found to participate in the regulation of diverse biological processes, including the
pathogenesis of stomach adenocarcinoma. In addition to its oncogenic function in tumor formation, a high level of H19 in tumor
tissues has also been reported to be an indicator for poor prognosis. However, although many previous works have investigated
the level of H19 as an independent indicator for prognosis, the real value of H19 in predicting survival has rarely been evaluated. In
this study, we established a prognostic model and nomogram for stomach adenocarcinoma by combining the expression level of
H19 with traditional indices, which showed the value of H19 in predicting the survival rates of patients. In addition, we in-
vestigated the mechanism underlying the correlation of the H19 level in cancer tissue with poor prognosis in patients. Our results
showed that H19 could function as ceRNA by sponging five miRNAs, which may promote the progression of cancer.

1. Introduction

Gastric cancer is a prominent cancer worldwide and was
responsible for over 1,000,000 new cases and estimated
783,000 deaths in 2018, making it the third leading cause of
cancer death [1]. A higher incidence of gastric cancer was
observed in Eastern Europe, Eastern Asia, and South
America [2]. Among gastric cancers, stomach adenocarci-
noma (STAD) is the most common subtype and accounts for
95% of the total number of malignancies [3]. The overall
survival (OS) rate of advanced STAD remains low, with a 5-

year survival rate of approximately 30% [4]. The detection of
the disease at an early stage and treatment with surgical
resection remains to be the optimal choice for STAD like
many other kinds of cancer [5,6]. For advanced STAD,
cytotoxic chemotherapy remains the main first-line treat-
ment strategy [7,8]. Although the addition of targeted
therapy in later-line treatment was proven to be beneficial
when compared with chemotherapy alone [9–11], thera-
peutic targets for advanced gastric cancer are exceedingly
rare. Therefore, the discovery of new biomarkers is likely to
brew new precision treatments for treatment of STAD in the
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future [12,13], and investigation into the mechanisms un-
derlying STAD may become the key to finding novel ap-
proaches for prognosis improvement and drug
development.

In recent years, long noncoding RNAs (lncRNAs) have
attracted considerable attention for their role in regulating
cancer-related processes such as carcinogenesis, recurrence,
metastasis, and drug resistance [14–16]. However, the
clinical value of lncRNAs in STAD is very incompletely
understood. In this study, we used both bioinformatic and
experimental approaches to identify lncRNAs with dra-
matically changed expression and found that H19 was
dramatically upregulated in STAD tissues. Next, we analyzed
the potential pathological mechanism of H19 and high-
lighted its interactions with five candidate miRNAs in
MKN-45 cells. Additionally, we demonstrated that the in-
teractions between H19 and these miRNAs could promote
migration, invasion, and drug resistance of STAD cells and
analyzed the potential downstream target genes of miRNAs.
Furthermore, we discovered that H19 is an index for poor
prognosis in STAD patients and functions as an important
oncogenic ceRNA during the pathological process of STAD.
Our findings may identify novel targets for drug develop-
ment or predictive biomarkers for the prognosis of STAD
patients.

2. Materials and Methods

2.1. Cell Culture. The human gastric cancer cell line
MKN-45 was purchased from iCell Bioscience Inc, which
was authenticated by short tandem repeats (STR) profiling
and confirmed to be mycoplasma-free. MKN-45 cells were
cultured in the RPMI-1640 medium (Invitrogen, CA, USA)
supplemented with 10% fetal bovine serum (Gibco, Aus-
tralia) and penicillin/streptomycin (Gibco, MA, USA) at
37°C in a 5% CO2 water-saturated atmosphere. 3.

2.2. Transfection of Gastric Adenocarcinoma Cells. MKN-45
cells (5×105) were cultured in a 6-well plate. At 60%
confluence, 6 μg of each type of RNA oligo/plasmid was
utilized to transfect MKN-45 cells using Lipofectamine 2000
transfection reagent (Invitrogen, CA, USA). After 24 hours,
the cells were evaluated for successful transfection.

2.3. Cell Migration Assay. MKN-45 cells were cultured in 6-
well plates at a density of 2×105 cells/well. At 90% con-
fluence, the cell layer was scratched with a sterile yellow
200 μL pipette tip and then washed three times in PBS. Fresh
RPMI-1640 medium containing 2% FBS was then added to
the cells. Three random fields of view were selected and
imaged using an inverted microscope.

2.4. Cell Invasion Assay. The cell invasion assay was per-
formed in transwell chambers. The transwell chambers were
placed in a 24-well plate, and each chamber contained an
insert with an 8 μm pore size polyethylene terephthalate
membrane (Corning Life Sciences, MA, USA). The treated

MKN-45 cells were resuspended and seeded in the upper
chambers in a serum-free medium. Cells at a density of
5×104 cells/well (in 200 μL) were seeded in the upper
transwell chambers, in which the membrane was coated with
Matrigel (BD Biosciences, MA, USA) and 500 μL of com-
plete growth medium was added to the bottom chambers.
The noninvaded cells in the upper chamber were removed
with cotton swabs. Invaded cells on the bottom surface of the
membrane were fixed, stained with crystal violet, and ob-
served using a microscope.

2.5. Flow Cytometry. MKN-45 cells were washed twice in
cold PBS and resuspended in Annexin V binding buffer at
a concentration of 1× 106 cells/mL. Then, 100 μL of the cell
suspension (1× 105 cells) was incubated with 5 μL of FITC-
Annexin V and 5 μL of propidium iodide using an Apoptosis
Detection Kit (BD Biosciences, CA, USA). Then, 400 μL of
binding buffer was added. The flow cytometry was used to
determine the apoptosis rate.

2.6. Quantitative Real-Time PCR (RT-qPCR). The TRIzol
reagent (Invitrogen, CA, USA) was used to extract the total
RNA from the cells. One microgram of total RNA was
reverse-transcribed into cDNA using HiScript III RT
SuperMix for qPCR (+gDNA wiper) (R323-01, Vazyme).
RT-qPCR was performed in a 20 μL reaction volume.
Quantitative real-time PCR was performed with ChamQ
Universal SYBR qPCR Master Mix (Q711-02, Vazyme) in
a LightCycler 96 instrument (Roche). The relative gene
expression was normalized to GAPDH and calculated by the
2−ΔΔCT method.

RT-qPCR for microRNAs was performed using
a miRNA 1st Strand cDNA Synthesis Kit (MR101-01,
Vazyme). Quantitative real-time PCR analysis was per-
formed with miRNA Universal SYBR qPCR Master Mix
(MQ101-01, Vazyme). The RT-qPCR was performed in
a LightCycler 96 system (Roche). The primer sequences used
for RT-qPCR are given in Table S2. All experiments were
conducted in triplicate.

2.7. RNA Pulldown Assay. The RNA pulldown assay was
performed as previously described. Briefly, biotin-labeled
RNAs (antisense RNAs) were transcribed using Biotin RNA
LabelingMix (Promega Corporation). Biotinylated anti-H19
probes (5′-CTGCTGTTCCGATGGTGTCTTTGATGT
TGGGCTGATGAGGTCTGGTTCCT-3′) were dissolved in
binding and washing buffer and incubated with streptavidin
agarose resin (Thermo Fisher Scientific Inc.).Then, MKN-45
cell lysates were incubated with probe-coated streptavidin
beads and the precipitated RNAs were extracted using the
TRIzol reagent. The samples were prepared for RT-qPCR
analysis.

2.8. Luciferase Reporter Assay. The lncRNA H19 sequence
was inserted into the pMIR-REPORT plasmid (Ambion,
Austin, TX, USA). In themutant H19 plasmid, the sequences
binding to the seed sequence were mutated (Table S3) and
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inserted into the pMIR-REPORT plasmid. The HEK293
T cells were seeded in 24-well plates and transfected with
0.5 µg of this plasmid, 0.25 µg of β-galactosidase (β-gal)
plasmid, and 50 pmol of the miRNA mimic or scrambled
miRNA. β-Gal expression was used for normalization. After
24 h, cells were harvested and analyzed for luciferase activity
using the luciferase assay kits (Promega, WI, USA).

2.9. PublicData. Data on STAD were downloaded fromThe
Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.
gov/, project: TCGA-STAD). We downloaded the expres-
sion matrices and clinical information for 442 STAD
samples and removed 37 samples of cystic, mucinous, and
serous neoplasms. The human gastric tissue data were
downloaded from the Genotype-Tissue Expression (GTEx;
https://gtexportal.org/) database.

2.10. Pancancer Analysis. The expression level of the
lncRNA H19 and the correlations between the lncRNA H19
expression level and the cancer outcomes across cancer types
were downloaded from the TIMER (Tumor IMmune Esti-
mation Resource; version 2) web resource (https://timer.
comp-genomics.org/) using the “Gene_DE” module and the
“Gene_outcome” module.

2.11. Analysis of Differentially Expressed Genes (DEGs). A
total of 379 patients included in the TCGA-STAD project
were divided into an H19-high group and an H19-low group
based on the median expression level of H19. DEGs between
the two groups were identified using the DESeq2 package.
The DEGs with log2FC≥ 1 and P adj <0.05 were considered
significant.

2.12. Enrichment Analyses. The DEGs were subjected to
KEGG/GO (Kyoto Encyclopedia of Genes and Genomes/
Gene Ontology) enrichment analyses and GSEA (gene set
enrichment analysis) using the clusterProfiler package and
the org. Hs. eg. db package.

2.13. Prognosis Prediction. First, we integrated the disease-
specific survival (DSS) times of 379 STAD patients with
their clinical information. Then, we calculated the corre-
lations of these variables with the DSS time of STAD pa-
tients with a univariate Cox proportional hazards
regression model. Risk-related factors with P< 0.1 were
included as variables in the multivariate Cox proportional
hazards regression analysis. Finally, we established
a prognosis prediction model for STAD by constructing
a nomogram based on the results of the multivariate Cox
proportional hazards regression analysis. The sensitivity of
the nomogram model was evaluated with time-dependent
ROC analysis using the roc package, the accuracy was
evaluated with a calibration plot using the rms package, and
the predictive value was evaluated by DCA (decision curve
analysis) using the stdca.R function (https://www.mskcc.
org/departm-ents/epidemiology-biostatistics/biostatistics/
decision-curve-analysis).

2.14. Target Prediction. We used the “Custom Prediction”
module of the miRDB web interface (https://mirdb.org/) to
predict the miRNAs that bind to H19 [17]. Then, we
intersected the results of the miRDB prediction with the
downregulated miRNAs in the STAD datasets GSE62254
and GSE15459 to obtain the target miRNAs of H19 in STAD.
To predict the target genes of the H19-targeted miRNAs, we
used the “Target Search” module of themiRDBweb interface
and the TargetScan Human online database (https://www.
targetscan.org/vert_80/) [18]. We intersected the outputs of
the miRDB and TargetScan predictions with the upregulated
DEGs in TCGA-STAD to obtain the target genes of the
predicted miRNAs in STAD. Finally, we calculated the
correlation coefficients and significance between each target
gene and H19 in STAD.

2.15. Statistical Analysis. All statistical analyses were per-
formed using GraphPad Prism 8. Data were first checked for
normal distribution and differences among groups were
then compared by one-way ANOVA with Dunnett’s test to
correct for multiple comparisons. Data are shown as the
means with error bars showing the SEMs. Significance was
assumed for ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.005.

3. Results

3.1. Identification of Differentially Expressed lncRNAs in GC.
We downloaded STAD transcriptome data from the TCGA
database and analyzed the differentially expressed lncRNAs
with the DESeq2 package. The screening thresholds for
differentially expressed lncRNAs (DELs) were |log2FC|> 1
and adjusted as P< 0.05, and the DELs are shown in volcano
plots (Figure 1(a)). Among the 3669 differentially expressed
lncRNAs, 2760 were upregulated, whereas 909 were
downregulated. To better visualize the relative expression
levels of DELs in tumor tissues, the changes in the nor-
malized counts of these lncRNA transcripts were calculated
(Figure 1(b)). The results showed that among all the
lncRNAs, lncRNA H19 was strikingly overexpressed and
significantly upregulated in STAD tissues. Next, we analyzed
the level of H19 with transcriptome data from both the
TCGA and GTEx databases (Figures 1(c) and 1(d)). The
results showed that H19 was significantly overexpressed in
STAD tissues in comparison with normal adjacent tissues
(NATs). The TCGA dataset analysis also showed that the
H19 level was significantly higher in STAD tissues. By an-
alyzing tumors of different stages, we found that the ex-
pression level of H19 increased moderately with increasing
tumor stage (Figure S1). By applying TIMER2, we analyzed
the expression level of H19 across various cancer types, and
the results also indicated that upregulation of H19 was
obvious in STAD in comparison with other cancer subtypes
(Figure 1(e)). Based on the TCGA data, we divided the
patients with each cancer subtype into the high-expression
and low-expression groups according to the level of H19 and
analyzed the correlation of the H19 level with prognosis
(Figure 1(f )).The results indicated a strong correlation of the
H19 level with prognosis in STAD patients. Kaplan–Meier
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analyses of STAD patients were also performed with data
from the TARGET database. Analysis of disease-specific
survival (DSS) further showed that the survival rate in the
H19-high group was significantly lower than that in the
H19-low group (Figure 1(g)). Interestingly, in STAD pa-
tients that experienced progression after receiving adjuvant
or neoadjuvant chemotherapy, the H19 level was an even
more significant indicator for DSS, with a HR of 2.15
(1.16–4.00) (Figure 1(h)). These results indicated the uni-
versal overexpression of H19 in STAD and its correlation
with poor prognosis in patients.

3.2. Inclusion ofH19 inaNomogramtoPredict thePrognosis of
GC. To further explore the prognostic value of H19, we
developed a statistical model to predict the survival of STAD
patients. The univariate Cox regression analysis was utilized
to screen variables that correlated with prognosis using
a threshold of P< 0.1. Univariate analysis indicated that
TNM stage, age, histologic type, radiotherapy status, and
H19 level were significantly associated with OS. After Cox
multivariate regression analysis, four traditional clinical
variables and the expression level of H19 achieved signifi-
cance of P< 0.05 and were identified as prognostic factors
(Table S1). Next, these factors were incorporated into no-
mograms for predicting the survival probability of STAD
patients at 1, 2, and 4 years (Figure 2(a)). The nomogram
identified TNM stage as having the largest contribution to
prognosis, followed by age, histologic type, radiotherapy
status, and H19 level. Each value for these variables was
assigned a score on a point scale. By adding up the total score
and locating it on the total point scale, we estimated the
probability of survival at each time point. Then, the no-
mogram was validated internally using the TCGA dataset.
Time-dependent ROC curves for the prognostic evaluation
nomogram model were generated, and the AUCs of the
nomogram for predicting 1, 2, and 4-year overall survival
(OS) was 0.691, 0.658, and 0.799, respectively (Figure 2(b)).
As shown in Figure 2(c), the calibration plots for prediction
of 1, 2, and 4-year OS in both the training and validation sets
indicated excellent agreement. These findings indicate that
the nomogram including H19 can accurately predict OS in
STAD patients. Furthermore, the DCA curves for the STAD
survival assessment model with and without incorporation
of the H19 expression level are shown. Although the model
including the H19 expression level had little benefit for
assessing the survival of STAD patients in the first year
(Figure 2(d)), an obvious positive benefit for assessing two
and four- year survival was shown (Figures 2(e) and 2(f)).
Altogether, our results indicated that H19 may be a prom-
ising prognostic biomarker for survival in STAD patients.

3.3. Potential Biological Function of H19 in STAD. Since an
obvious correlation between the H19 level and the prognosis
of STAD was shown by our results, we further investigated
the potential underlying mechanism by investigating the
biological function of H19 in STAD. According to the level
of H19 expression, transcriptome data for STAD samples
from TCGA were used to divide the corresponding patients

into an H19-high group and an H19-low group according to
the median expression level of H19. Then, the differentially
expressed genes between these two groups were analyzed
with the DESeq2 package with a threshold of |log2FC|> 1
and adjusted P< 0.05. As shown in the volcano plots in
Figure 3(a), 596 genes were upregulated, whereas 173 genes
were downregulated. Next, we performed KEGG and
GO enrichment analyses, and the corresponding network
diagrams are shown (Figures 3(b)–3(e)). As shown in the
results, the biological processes “signal release,” “collagen-
containing extracellular matrix,” “receptor ligand activity,”
and neuroactive ligand-receptor investigation’ were en-
hanced in the H19-high group, while “digestion,” “apical
part of cell,” “endopeptidase activity,” and “pancreatic se-
cretion” were suppressed. GSEA showed different gene
expression patterns between the H19-high and H19-low
groups (Figure 3(f )). The expression levels of genes re-
lated to the cell cycle, DNA replication, EMT, GC, and
cancer pathways were positively correlated with the ex-
pression level of H19. All these pathways are related to the
proliferation (cell cycle and DNA replication), invasion or
migration (EMT), or maintenance (GC and cancer path-
ways) of malignant GC cells. These results reflected the
biological effect of H19 on the transcriptome profile and
justified the correlation between the H19 level and poor
prognosis in STAD.

3.4. The Potential Function of H19 as a ceRNA in STAD.
According to the normalized counts of H19 transcripts in
STAD tissues (Figure 1(b)), the expression level of H19 in
STAD tissues should be strikingly high, indicating that it is
likely to act as a molecular sponge for miRNAs. Bio-
informatics analysis revealed that lncRNA H19 has putative
miRNA recognition sequences for 9 miRNAs (Figure 4(a)).
The minimum free energy of hybridization between each
miRNA and H19 was calculated by RNAhybrid. The pre-
dicted interactions between these miRNAs and the target
sites in H19 are shown in Figure S2, and all of the minimum
free energies of hybridization were less than −25 kcal/mol.
The RNA pulldown assay showed that the lncRNA H19
binds to miR-361, miR-519a, miR-541a, miR-516b, and miR-
193a in theMKN-45 gastric cancer cell line (Figures 4(b) and
S3). The knockdown of H19 expression in MKN-45 cells
significantly increased the cellular levels of all 5 candidate
miRNAs (Figure S4). Next, we designed luciferase reporter
plasmids containing H19 with wild-type (WT) or mutant
(MUT) miRNA binding sites to verify the binding capacity
between H19 and the candidate miRNAs (Figure 4(c)). The
luciferase assay results showed that the mimics of all five
miRNAs significantly inhibited the activity of the WT lu-
ciferase reporter but not the MUT reporter. These results
indicated that H19 can directly bind to these miRNAs at the
predicted binding sites in gastric cancer cells.

To further validate the biological function of H19 as
a ceRNA, we explored whether modulating H19/miRNA
regulation affects the characteristics of gastric cancer cells.
First, we investigated the influence of the H19/miRNA in-
teractions on the invasion ability (Figures 4(d) and 4(e)).The
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Figure 1: The expression of H19 in STAD and its correlation with prognosis. (a)The volcano plot of DELs between STAD and normal
tissues. (b) Normalized transcript counts of significantly differentially expressed lncRNAs between STAD and normal tissues. (c) The
expression level of lncRNAH19 in 379 STAD tissues and 26 normal tissues based on the TCGA database analysis. (d)The expression level of
lncRNA H19 in 379 STAD tissues from the TCGA database and 174 normal tissues from the GTEx database. (e)The expression status of
lncRNA H19 in different cancers and specific cancer subtypes analyzed with TIMER2. (f ) The significant correlations of lncRNA H19
expression with outcomes across various cancer types visualized in the heatmap, which shows the normalized coefficient of lncRNA H19 in
the Cox model. (g-h). The Kaplan–Meier curves for the DSS (c) and PD (d) of STAD patients stratified by the H19 expression level.
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Figure 2: Continued.
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Figure 2: The prognostic value of H19 in STAD. (a) Prognostic nomogram for patients with STAD based on the H19 expression level. (b)
Verification of the nomogram by time-dependent ROC curve analysis. (c) Calibration curves for predicting patient survival at each time
point. (d–f) DCA curves showing the benefit gained from incorporation of H19 in predicting 1 (d), 2 (e), and 4 (f) year survival outcomes.
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transwell assay showed that knockdown of H19 significantly
inhibited MKN-45 cell invasion, while inhibition of these
miRNAs significantly enhanced the invasion ability. When
H19 and these miRNAs were inhibited simultaneously, the
effects canceled each other out. Similar results were also
observed in the scratch assay to assess the migration ability
(Figures 4(f ) and 4(g)). The knockdown of H19 attenuated
the migration ability of MKN-45 cells, while inhibition of
miRNAs promoted it. Simultaneous inhibition of H19 and
the miRNAs resulted in almost complete elimination of the
independent effects. Next, we evaluated the effects of H19/
miRNA interactions on drug resistance in gastric cancer
cells. Gemcitabine, a commonly used chemotherapeutic
drug for treating STAD, was used to induce apoptosis in
MKN-45 cells. The transfection of H19 siRNA significantly
increased the apoptosis of MKN-45 cells and depletion of the
miRNAs with inhibitors reduced apoptosis (Figure 4(h) and
4(i)). After cotransfection of H19 siRNA and miRNA in-
hibitors, apoptosis remained at the baseline level. These
experiments covered the invasion, migration, and drug
resistance properties of cancer cells and proved that H19
performed an oncogenic function by sponging these five
miRNAs, which may result in the poor prognosis of STAD
patients with a high H19 level. To further identify the po-
tential target genes of these five miRNAs, we predicted their
binding sites for the 3′UTRs of mRNAs in the human
transcriptome with both TargetScan and miRDB
(Figures 4(j)–4(n)). Then, we intersected the prediction
results with the downregulated genes in H19-high tissues
compared with H19-low tissues and obtained the potential
genes that are affected by the overexpression of H19 in
gastric cancer tissues through its action as a miRNA sponge.
The lncRNA–miRNA–mRNA network was constructed to
demonstrate the regulatory relationships between the
miRNAs and key genes, as well as the enriched pathways and
annotations of the key genes (Figure S5).

4. Discussion

In recent years, the importance of noncoding RNAs as
clinical biomarkers for cancer diagnosis and prognosis has

been widely recognized [19–21]. Among the numerous
noncoding RNAs, lncRNA H19 is one of the most fre-
quently studied. Chen et al. measured the expression level
of H19 in 128 pairs of STAD and adjacent normal tissues
and generated ROC curves and Kaplan–Meier curves to
prove its diagnostic or prognostic value [22]. Other studies
have also supported H19 as a diagnostic biomarker for
STAD [23,24]. However, most of these studies investigated
lncRNAs as independent novel biomarkers and did not
combine them with traditional variables for diagnosis.
Here, we showed the real value of H19 by developing
a model including relevant clinical variables for STAD
prognosis. The contribution of H19 in comparison with
other indices was clearly shown in the nomogram. In
addition, since all the data included in the model are
publicly available, the model is unbiased compared with
most studies conducted with a limited cohort of samples.
Our results demonstrated that H19 should be used in
combination with traditional clinical indices such as TNM
stage or histological grade to predict STAD prognosis. The
incorporation of H19 into the model showed clear benefit
for predicting the survival prognosis at 2 and 4 years and
did not decrease the performance of the model in pre-
dicting 1-year survival. To our knowledge, this is the first
study to integrate the clinical factors and H19 to construct
a nomogram to predict the prognosis of STAD patients.

Second, we also investigated the potential biological
mechanism underlying the prognostic value of H19.
Through analysis of DEGs in H19-high STAD samples
compared with H19-low STAD samples, we highlighted the
possible biological processes and gene sets related to the
poor prognosis of STAD patients.The gene sets related to the
invasion, migration, and malignancy of STADwere found to
be differentially regulated by H19 upregulation.These results
were also supported by our in vitro experiments. Our results
showed that H19 influences classical tumorigenic processes
such as invasion, migration, and drug resistance. We vali-
dated the ceRNA function of H19 in MKN-45 cells and
identified a panel of fivemiRNAs that directly bind to H19 in
MKN-45 cells. Potential downstream targets were identified
by combining the miRNA target prediction tools and
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analysis of DEGs in the TCGA database, which provided
insights for further studies.

Overall, our study verified the prognostic value of H19 in
STAD and established a nomogram for predicting the
survival rate of STAD patients. The validation of the no-
mogram demonstrated the contribution of the H19 level to
increasing the accuracy of the prediction model in-
corporating only traditional clinical indices. We also
highlighted the mechanism underlying the positive corre-
lation between the H19 level and poor prognosis in STAD
patients. Our results indicated the interactions between H19
and five miRNAs and identified candidate downstream
target genes for further study of the role of H19 in STAD
pathogenesis.
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Colorectal cancer (CRC) is signi�cantly correlated with in�ammatory bowel disease, which usually manifests as chronic relapsing-
remitting colitis. Phosphofructo-2-kinase/fructose-2,6-biophosphatase 3 (PFKFB3) can catalyze to produce fructose-2,6-
bisphosphate and function as an oncogene. In this study, we revealed the function of PFKFB3 in colitis-associated CRC (CAC) and
the potential mechanism. RT-qPCR and Western blot were utilized to detect the level of PFKFB3 expression. Increased PFKFB3
expression was observed in the mouse CAC model and CAC patient samples. We identi�ed that overexpression of PFKFB3 in
intestinal epithelial cells (IECs) could increase the proliferation, migration, and invasion of CRC cells by the coculture system.
Mechanistically, overexpression of PFKFB3 induced phospho-p65 and promoted the expression of IL-1β and tumor necrosis
factor alpha (TNF-α) in the development of colitis and CAC. In addition, PFK158, the PFKFB3 inhibitor, could reduce the CRC
cell viability, migration, and invasion caused by PFKFB3 overexpression. In conclusion, overexpression of PFKFB3 promoted
tumorigenesis in CAC by inducing phospho-p65 and expression of IL-1β and TNF-α. Our study suggested that PFKFB3 acted as
a potential treatment target for CAC.

1. Introduction

Colorectal cancer (CRC) is becoming the third most com-
mon cancer in the world with high mortality [1]. Multistep
processes are involved in colorectal carcinogenesis, in-
cluding a serrated pathway, carcinoma sequential pathway,
and in�ammatory pathway [2]. �e mechanism of the in-
�ammatory pathway is that the in�ammation process could
promote cell mutation and accelerate the cycle of wounding
and repair in epithelial cells, resulting in colitis-associated
cancer (CAC) [3, 4].

During the pathophysiological process of CAC, the
immune cells were in�ltrated and the proin�ammatory and
anti-in�ammatory cytokines secretion are imbalanced. �e
single cell analysis of IBD patient tissues indicated that Tand
B lymphocytes, activated dendritic cells, and macrophages
consist of the network in the in�ammatory process [5]. It
demonstrated that macrophages could secrete a range of
proin�ammatory cytokines during the progression of CAC,
such as IL-1α, IL-1β, and tumor necrosis factor alpha (TNF-

α). However, it has also been reported that intestinal epi-
thelial cells expressed immunomodulatory cytokines during
active ulcerative colitis and Crohn’s disease. �ese signal
pathways could activate intestinal epithelial cells (IECs)
activity to induce a microenvironment transformation to
develop tumor formation. It indicated that LPS-induced
epithelial barrier dysfunction could be abolished by
DNMT3a silencing or TNFSF13 overexpression, as well as
abrogated the e¥ect of IEC-regulated B cell di¥erentiation
[6], which indicated that LPS could induce epithelial
dysfunction.

PFKFB3 (phosphofructo-2-kinase/fructose-2,6-bio-
phosphatase 3) is an enzyme to produce fructose-2,6-
bisphosphate (F-2,6-BP), involved in glycolytic activation
[7]. PFKFB3 has been identi�ed in many cancers, including
breast cancer [8], pancreatic cancer [9], and gastric cancer
[10]. PFKFB3 can promote cell proliferation through
upregulation of cyclin-dependent kinase-1 (CDK1) and p27
[11]. Although the function of PFKFB3 in CRC cell lines has
been demonstrated [12], the function of PFKFB3 in CAC

Hindawi
Journal of Oncology
Volume 2022, Article ID 6367437, 8 pages
https://doi.org/10.1155/2022/6367437

https://orcid.org/0000-0003-2789-6858
https://orcid.org/0000-0002-9379-0819
https://orcid.org/0000-0002-8807-0032
https://orcid.org/0000-0002-8299-9625
https://orcid.org/0000-0002-5732-6672
mailto:wangchunhui@zjhu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6367437


remains unclear. NF-κB plays a crucial role in inflammatory
responses via regulating the synthesis and release of cyto-
kines/chemokines, like tumor necrosis factor (TNF)-α and
interleukin (IL)-1β, to promote the inflammatory responses.
PFKFB3 could regulate endothelial and myocardial in-
flammation through the NF-κB signaling pathway [13].
From our study, the expression of PFKFB3 level in IECs was
increased to exacerbate tumorigenesis. We identified over-
expression of PFKFB3 in IECs could increase proliferation,
migration, and invasion of CRC cells by the coculture
system. Mechanistically, overexpression of PFKFB3 induced
phospho-p65 and promoted the expression of IL-1β and
TNF-α in the development of colitis and CAC.

2. Materials and Methods

2.1.Clinical Samples andAnimal Study. A total of 20 samples
were collected from patients with CAC who accepted sur-
gery. Fresh tumor and adjacent nontumor tissue samples
were blindly collected. All patients signed the consent form.
,e study was approved by the Ethics Committee of First
People’s Hospital affiliated to Huzhou Normal College.

Eight weeks old C57BL/6 mice were injected with
azoxymethane intraperitoneally and treated with water
containing 1.5% dextran sulfate sodium (DSS) and with
regular water for 2 weeks. All animal experiments were
performed according to the National Institutes of Health
guide for the care and use of laboratory animals (NIH
Publications, revised 1978). ,e study was approved by the
Institutional Animal Care and Use Committee of Huzhou
Normal College.

2.2. Cell Culture and Cell Transfection. CRC cell lines
(Caco2) and HIEC-6 cell lines were obtained fromAmerican
Type Culture Collection (ATCC). All cells were cultured in
DMEM (Invitrogen, USA) with 10% FBS, with a humidified
atmosphere containing 5% CO2 at 37°C. ,e HIEC-6 cell
lines were transfected with pcDNA-PFKFB3 (Genewiz,
China) and siRNA-PFKFB3 (GenePharma, China) by using
Lipo 3000 (,ermo, USA). siRNA-PFKFB3 sequence: CGC
AGCAAGCAUGGCAGAAU.

2.3. CCK-8 Assay. ,e treated cell was digested and added
with a density of 10,000 cells per well added into the top
chambers of transwell inserts with FBS-free DMEM. Two
days later, the cell counting kit-8 (CCK-8) reagent was added
in the bottom chambers and incubated for 2 hours. We
determined the optical density (OD) at 450 nm using
a multimode microplate reader.

2.4. Cell Invasion Assay. ,e treated cells were digested and
added into the top chambers of transwell inserts with FBS-
free DMEM.,e cell density is 2×105 cells per well. DMEM
with 10% FBS was added to the bottom chambers. After
6 hours, 4% paraformaldehyde was used to fix the inserts,
and 0.1% crystal violet solution was used to stain cells. ,e
images were obtained under a microscope.

2.5. Wound Healing Assay. ,e treated cells were digested
and cultured in 6-well plates. After coculture, a scratch was
made with a 200 μL pipette tip. ,e debris was washed with
PBS, and cell was incubated with DMEM for another
12 hours. At least 3 random areas were photographed to
assess the closure of the gap.

2.6. RNA Extraction and RT-qPCR. TRIzol (Takara, Japan)
reagent was utilized to isolate the RNA in cells and tissue.
,e SuperScript™ RT reagent kit (Takara, Japan) was used.
Total RNA was used to reserve to synthesise cDNA tem-
plates. Expression of the mRNAs was detected with SYBR
green according to the standard protocol. ,e primer se-
quences were listed: PFKFB3 forward TTGGCGTCCCCA
CAAAAGT, reverse AGTTGTAGGAGCTGTACTGCTT;
IL-1β forward ATGATGGCTTATTACAGTGGCAA, re-
verse CGTCGGAGATTCGTAGCTGGA; TNF-α forward
ATGACACCACCTGAACGTCTC, reverse CTCTCCAGA
GCAGTGAGTTCT; GAPDH forward TGGATTTGGACG
CATTGGTC, reverse TTTGCACTGGT ACGTGTTGAT.

2.7.Western Blotting. Proteins were isolated by RIPA buffer
containing phosphatase and protease inhibitors (Roche, US).
Equal total proteins were separated by SDS/PAGE gels and
blotted onto PVDF membranes (Millipore, USA), followed
by 5% milk blocking. ,e membranes were incubated
overnight at 4°C with anti-phospho-NF-κB p65 antibody
(#3033; Cell Signaling Technology), anti-NF-κB p65 anti-
body (#8242; Cell Signaling Technology), anti-PFKFB3
antibody (#13123S; Cell Signaling Technology), or anti-
GAPDH antibody (60004-1-Ig; Proteintech). Finally, the
blot was observed via the ECL detection system.

2.8. ImmunofluorescenceAssay. For p65 staining, the treated
cells were washed with PBS and treated with 0.1% Triton X
(Beyotime, China). Subsequently, blocking buffer was added
and the primary antibody was incubated overnight at 4°C.
,en, cells were treated with secondary antibody and DAPI.
Images were captured by a microscope.

2.9. StatisticalAnalysis. All measurements were presented as
the mean± standard deviation (SD) from three independent
experiments. Differences were determined using a two-way
analysis of variance (ANOVA) or unpaired Student’s t-test
by Prism software. Statistical significance was defined as a P

value < 0.05.

3. Results

3.1. PFKFB3 Expression Is Increased during Colitis and Co-
lorectal Tumorigenesis. In order to detect the expression of
PFKFB3 in colitis-associated cancer, we used RT-qPCR and
Western blot to observe the PFKFB3 level in colitis-
associated cancer (CAC) patient samples. It demonstrated
that PFKFB3 expression was upregulated in CAC
(Figures 1(a) and 1(b)). Additionally, the level of IL-1β and
TNF-α was also increased in colitis-associated cancer
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(Figures 1(c) and 1(d)). ,en, a mouse CAC model was
established to detect the level of PFKFB3, and significantly
increased PFKFB3 expression was detected in the inflamed,
dysplastic, and carcinoma tissues (Figure 1(e)).

3.2. PFKFB3 Overexpression in IECs Exacerbates CAC
Development. As we know, IL-1β and TNF-α are important
in the tumor microenvironment. First, we overexpressed or
knocked down PFKFB3 in the IECs. It showed that over-
expressed PFKFB3 could increase the expression of IL-1β
and TNF-α (Figures 2(a) and 2(b)). ,en, we established
a coculture system to observe the effect of PFKFB3 in IECs
on CRC cell lines (Figure 2(c)). We overexpressed or
knocked down PFKFB3 in IECs and detected proliferation of
CRC cell lines by CCK-8 cell lines. It showed that PFKFB3
overexpression in IECs could increase the proliferation
ability of CRC cell lines (Figure 2(d)). We also detected the
cell migration and invasion after PFKFB3 overexpression in
IECs.,e wound healing assay and transwell assay indicated
that PFKFB3 overexpression in IECs could enhance the cell
migration and invasion in CRC cell lines, while PFKFB3
knockdown could reduce the effect (Figures 2(e) and 2(f)).
,e results indicated that the PFKFB3 in IECs could induce
the proliferation, migration, and invasion ability of CRC
cell lines.

3.3. PFKFB3 Activated the NF-κB Signal Pathway to Induce
IL-1β andTNF-α in IECs. We detected the signal pathway in
the PFKFB3 overexpressed IECs. Previously, it demon-
strated that overexpression of PFKFB3 could increase the
phosphorylation of p65. So, we detected the level of p65
phosphorylation in IECs. It indicated that overexpressed
PFKFB3 could upregulate the phosphorylation of p65, while
PFKFB3 knockdown could reduce the effect (Figure 3(a)).
,en, the immunofluorescence assay was performed to
reveal the p65 nuclear translocation (Figure 3(b)). It also
demonstrated that PFKFB3 overexpression could increase
p65 nuclear translocation. It also showed that PFKFB3
overexpression increased the level of IL-1β and TNF-α.
However, the knockdown of PFKFB3 decreased the IL-1β
and TNF-α levels (Figures 3(c) and 3(d)). ,en, we also
knocked down p65 in PFKFB3 overexpressed cells. It in-
dicated that PFKFB3 could promote the CRC cell pro-
liferation, migration, and invasion through NF-KB
activation (Figures 3(e) and 3(f)).

3.4. PFK158 Ameliorates CAC Development. PFK158,
a PFKFB3 inhibitor, was indicated to suppress the tumor
development. ,en, we used LPS to treat IECs, followed by
PFK158 treatment. It showed that PFK158 could decrease
the evaluated IL-1β and TNF-α caused by LPS induction
(Figures 4(a) and 4(b)). ,en, we used the coculture system
to check cell proliferation, migration, and invasion of CRC
cell lines. It observed that LPS-treated IECs could enhance

cell proliferation, migration, and invasion of CRC cells,
which was inhibited by PFK158 (Figures 4(c)–4(e)). Finally,
we detected phosphorylation of p65, and it showed that
PFK158 reduced phosphorylation of p65 caused by LPS
treatment (Figure 4(f )).

4. Discussion

Nowadays, more and more attention has been paid to the
immunity cells in the development of CAC, such as mac-
rophages [14]. However, the tumor microenvironment
consists of many types of cells. In our study, we focused on
the role of IECs in the tumor microenvironment. It was
observed that the PFKFB3 level was increased in colitis-
associated cancer. ,e abnormal interaction between IECs
and CRC is unclear, and an imbalance of inflammatory
cytokines has not been demonstrated clearly in CAC pro-
gression. It showed that the level of IL-1β and TNF-α was
also increased in colitis-associated cancer.

PFKFB3 functions as an oncogene to enhance the gly-
colytic activity for production of fructose-2,6-biphosphate,
which activates 6-phosphofructo-1-kinase [15]. ,e role of
PFKFB3 has been reported in many cancers, including breast
cancer, pancreatic cancer, and gastric cancer. ,e role of
PFKFB3 has been reported in CRC. However, its role in CAC
remains unclear. We focus on the role of PFKFB3 in IECs to
regulate the tumor microenvironment. ,e results indicated
that PFKFB3 in IECs could induce proliferation, migration,
and invasion ability of CRC cells. NF-κB plays a crucial role in
inflammatory responses via regulating the synthesis and re-
lease of cytokines/chemokines, like tumor necrosis factor
(TNF)-α and interleukin (IL)-1β, to promote the in-
flammatory responses. PFKFB3 could regulate endothelial
and myocardial inflammation through the NF-κB signaling
pathway. A recent study indicated that PFKFB3 over-
expression could increase immune evasion and tumorigenesis
in hepatocellular carcinoma byNF-κB activation and enhance
PDL1 expression [16] and could regulate the NF-κB pathways
in ovarian cancer [17]. So, we detected the level of p65
phosphorylation in IECs. It indicated that overexpressed
PFKFB3 could upregulate phosphorylation of p65, while
PFKFB3 knockdown could reduce the effect. ,en, the im-
munofluorescence assay was performed to release p65 nuclear
translocation. It also demonstrated that PFKFB3 over-
expression could increase p65 nuclear translocation.

We further assessed the therapeutic function of PFKFB3.
PFK158, the PFKFB3 inhibitor, has been approved by the
FDA in clinical trials with pancreatic cancers and breast
cancers, as well as many other cancers. It has been reported
that PFK158 could decrease tumor growth in melanoma
[18]. We used LPS to treat IECs, followed by PFK158
treatment. It showed that PFK158 could decrease the ele-
vated IL-1β and TNF-α caused by LPS induction. ,e co-
culture system indicated that LPS-treated IECs could
enhance cell proliferation, migration, and invasion of CRC
cell lines through phosphorylation of p65, which was
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Figure 1: ,e level of PFKFB3 expression in CAC. (a),e expression of PFKFB3 mRNA in CRC tumor. (b),e protein level of PFKFB3 in
CRC tumor. (c)-(d),e level of IL-1β and TNF-α detected in tumor by RT-qPCR. (e) Relative expression of PFKFB3 in colonic tissues from
AOM/DSS-treated mice. ∗P< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.
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Figure 2: ,e role of PFKFB3 in CAC. (a)-(b) ,e expression of IL-1β and TNF-α level detected in PFKFB3 overexpression and
knockdown. (c) ,e coculture assay detecting the influence of IECs on CRC cell. (d) ,e proliferation of CRC by PFKFB3 overexpression
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Figure 3: ,e p65 activation in CAC. (a) ,e phosphorylation of p65 detected in PFKFB3 overexpression and knockdown. (b) ,e nuclear
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Figure 4:,e PFK158 reduces cell proliferation, migration, and invasion. (a)-(b),e IL-1β and TNF-α expression level detected in PFK158
treatment. (c) ,e proliferation of CRC by LPS stimulation and PFK158 treatment in IECs. (d) ,e migration of CRC by LPS stimulation
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inhibited by PFK158. ,e results indicated that PFK158 was
a potential candidate to treat CAC.

5. Conclusion

In conclusion, the level of PFKFB3 in intestinal epithelial
cells (IECs) was increased to exacerbate tumorigenesis in
mice.We identified overexpression of PFKFB3 in IECs could
increase the viability, migration, and invasion of CRC cells
by the coculture system. Mechanistically, overexpression of
PFKFB3 induced phospho-p65 and promoted the expres-
sion of IL-1β and TNF-α in the development of colitis
and CAC.
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Gastric cancer (GC) is one of the most common malignancies, and novel prognostic biomarkers for it are urgently required. �is
study is aimed at screening a group of immune-related lncRNAs (IRLs) in predicting the prognosis of GC patients. Genetic and
clinical information from the 360 GC patients was included in this study. Eight IRLs in lncRNA-miRNA-mRNA network were
screened out according to di�erential expression analysis. A novel risk score model with three IRLs (MIR4435-1HG, UCA1, and
RP11-617F23.1) were identi�ed, and patients were assigned to a high-risk group and a low-risk group. Patients in the low-risk
group had a better prognosis. In addition, two nomograms were developed to predict the prognosis of GC. We evaluated the
correlation between IRLs and the immune in�ltration level of GC using TIMER. Furthermore, we veri�ed that RP11-617F23.1 was
signi�cantly upregulated in human GC tissues compared with their adjacent tissues. And, patients with high RP11-617F23.1
expression in tumor tissues had poorer survival. In conclusion, we established a novel risk model based on IRLs for predicting the
prognosis of GC. Meanwhile, a novel IRL, RP11-617F23.1, could serve as a predictor of prognosis for patients with GC.

1. Introduction

Gastric cancer (GC) is one of the commonest malignancies
all over the world, with nearly one million new cases each
year, accounting for 5.7% of all malignant tumors [1]. �e
incidence andmortality rate of GC, respectively, rank the 5th
and 3rd among malignant tumors, and the incidence in Asia
ranks the �rst [2]. At present, radical resection is still the
most e¢cient option for early GC patients with low risk of
lymph node metastasis. However, most patients are in
moderate and advanced stages when they are diagnosed, and
some patients already have local or distant metastasis be-
cause the early GC is not obvious [3,4]. Most of them are
intolerance of operation, and even if they could be excised
surgically, they would be prone to relapse and metastasis,
with a poor prognosis, and the 5-year survival rate only
reaches 30% [5,6]. �erefore, the identi�cation of key reg-
ulators and the elucidation of the potential mechanisms for

initiating and promoting the occurrence and metastasis of
GC are conducive to the formulation of a reasonable
postoperative follow-up plan and the adoption of targeted
interventions to improve the survival rate. It is urgently
required to clarify the molecular mechanism of GC and to
�nd ideal markers for early diagnosis and speci�c thera-
peutic targets.

As far back as 1909, Ehrlich demonstrated that the
immune balance had the e�ect of inhibiting most tumors
and played a signi�cant role in preventing tumor progres-
sion [7]. �e immune cells can speci�cally recognize anti-
gens expressed on the tumor cell surface and generate
immune responses via releasing cytokines to act directly on
the tumor cells and inhibit tumor growth [8]. Although
tumor-related immune cells within the tumor microenvi-
ronment (TME) play a role in eliminating tumor cells in the
anti-tumor process, some tumor cells still escape under
immune surveillance [9]. It is increasingly recognized that
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the TME has an important role in tumor progression [10].
-ese tumor-associated immune cells may have antitumor
or protumor effects. Immune escape as a new marker of
cancer provides opportunities for new strategies for cancer
treatment. As RNA sequencing developed, novel therapeutic
biomarkers at the gene level in the TME were unearthed in
abundance [11].

Long noncoding RNA (lncRNA) is a kind of RNA with a
structure of more than 200 nucleotides and no functional
open reading frame. Research showed that lncRNA was
involved in various biological functions, including the
regulation of growth, aging, differentiation, pyroptosis,
apoptosis, and tumorigenesis [12]. Various lncRNAs have
been found to affect tumor growth and invasion and im-
mune response. For example, lncRNA SATB2-AS1 has been
clarified to inhibit tumor metastasis and affect the TME in
colorectal cancer by targeting SATB2 [13]. Mesenchymal
stem cells can induce liver cancer through lncRNA-MUF
interaction with miR-34a and ANXA2 [14]. LncRNA
SNHG1 has been demonstrated to regulate the differenti-
ation of regulatory T cells, thus affecting immune escape of
breast cancer by targeting miR-448/IDO [15]. LncRNAs can
regulate TME and have significant role in immunotherapy.
However, research on immune-related lncRNA (IRL) in GC
has been relatively sparse.

-e purpose of our research was to screen novel im-
mune-related lncRNAs, which might serve as predictors and
therapeutic targets in GC. We performed differential ex-
pression analysis, univariate andmultivariate Cox regression
analysis, Kaplan–Meier survival analysis, TIMER database
analysis, and other analysis to identify IRLs and evaluate the
predictive ability and therapeutic potential.

2. Methods

-is study was approved by the Ethics Review Committee of
Wujin Hospital affiliated with Jiangsu University (no.
202121).

2.1. Data Acquisition and Preprocessing. GPL16956 Agilent-
045997 Arraystar human lncRNA microarray V3 (Probe
Name Version) platform was used to obtain the microarray
dataset GSE122530 which was pretreated and standardized
from the Gene Expression Omnibus (GEO) repository [16].
-ere were six paired GC and normal tissue samples. -e
expression of RNA sequencing and clinical data associated
with GC were collected from -e Cancer Genome Atlas
(TCGA) [17], which included 354 GC and 41 paracancer
tissue samples. Clinical information in TCGA was collected,
including age, gender, tumor stage, and differentiated
degree.

2.2. Data Annotation. Download the human reference ge-
nome sequence file (GRCh38.p2.genome.fa) from the
GENCODE database [18]. Seqmap software was applied to
match all probe sequences to the reference genome [19]. We

kept the unique mapped reads and obtained the corre-
sponding genes of each probe. We annotate these probes
according to GENCODE by using the information of the
probes on chromosomes. Finally, the probes were paired
with Gene Symbols, and the unpaired probes were removed.

2.3. Differential Expression Analysis. After obtaining the
gene expression matrix through the previous gene anno-
tation, Limma package [20] was used to obtain the adjusted
P value and |logFC| by empirical Bayes and linear regression
along with Benjamini and Hochberg multiple comparison
methods. Differentially expressed mRNAs and lncRNAs
were identified, while adjusted P value <0.05 and |logFC|
>0.585; differentially expressed miRNAs were identified,
while adjusted P value <0.05 and |logFC| >1. After the above
difference analysis, we select the intersection of differentially
expressed mRNA and lncRNA in the two groups according
to upregulation and downregulation to explore the common
differentially expressed lncRNAs and mRNAs.

2.4. Building the ceRNA Network. -e lncRNA-miRNA-
mRNA network was built according to the ceRNA hy-
pothesis [21]. In the miRNA module of miRWalk 3.0, input
the miRNA list, set the species to “human,” set the score
value >0.85, and run to obtain the predicted miRNA-mRNA
regulatory relationship pairs, which also appeared in Tar-
getScan [22], miRDB [23], and miRTarBase [24] databases.
-e miRNA-related lncRNAs were predicted using Pre-
diction Module of DIANA-LncBase Predicted v.2 database,
and the regulation relationship of score greater than 0.6 was
selected. According to the common differentially expressed
miRNAs and miRNA-mRNA and lncRNA-miRNA regu-
latory relationship pairs obtained above, we built the
lncRNA-miRNA-mRNA network.

2.5. Immune-Related ceRNA Network. Download the im-
mune genes in the Immunology Database and Analysis
Portal (ImmPort) from the InnateDB database [25] and
match them with the ceRNA network to obtain the immune-
related ceRNA network. -e lncRNAs in the immune-re-
lated ceRNA network were identified as IRLs.

2.6. Univariate and Multivariate Cox Regression and
Kaplan–Meier Survival Analysis. Preprocessing of survival
data: to ensure the accuracy of survival time, samples with a
survival status of 0 (survival) and survival time <1 month
were considered a failure of follow-up in this analysis, and
these samples were removed from the total samples. Finally,
339 samples were retained for overall survival (OS) data and
266 samples for disease-free survival (DFS) data. Univariate
analyses from the survival package (version 3.2-7) were
performed with Cox regression analysis for IRLs. After
univariate Cox analysis, lncRNAs with P value <0.05 were
screened out.
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A novel risk model was developed for predicting the
prognosis. -e risk score (RS) was calculated as follows:

RS � βgene1 × Exprgene1 + βgene2 × Exprgene2 + . . . + βgenen × Exprgenen, (1)

where βgene indicated the regression coefficient β for each
gene and Exprgene indicated the expression value of the
corresponding gene for each sample.

-e appellate formula was used to calculate the RS of
each sample. -e optimal cut-off RS point was determined
using maximally selected rank statistics according to the risk
model. Two groups (low-risk and high-risk groups) of pa-
tients were divided according to the optimal cut-off RS
point. -e two groups were used to compared by
Kaplan–Meier survival analysis.

2.7. Nomogram Model Construction. Univariate Cox re-
gression analyses were used to sift out risk factors, based on
RS, age, gender, tumor stage, and differentiated degree.
Multivariate analyses were used to screen out independent
risk factors with P< 0.05. -e nomograms were constructed
by using the rms package (version 6.1-0) with factors ob-
tained above.

2.8. TIMER Database Analysis. We analyzed the expression
of IRLs obtained above in different types of cancer and the
correlation with the degree of immune infiltrates, including
B cells, CD8+ T cells, CD4+ T cells, macrophages, neutro-
phils, and dendritic cells, via TIMER database [26].

2.9. Patients and Samples. -e present study included 64
patients with gastric cancer. All patients underwent radical
open gastrectomy in Wujin Hospital from January 2014 to
October 2014. -e inclusion criteria were as follows: [1] had
detailed history, examination, and laboratory investigations;
[2] did not have distant metastases; [3] no antitumor therapy
was performed before surgery; and [4] complete follow-up
data were available. -e adjacent normal tissues were also
collected 3–5 cm away from the edge of the tumor.

2.10. Quantitative Real-Time Polymerase Chain Reaction.
Total RNAwas extracted using Trizol® reagent (Shanghai PufeiBiotech Co., Ltd.) based on the supplier’s instruction. M-MLV
kit (Promega Biotech Co., Ltd) was used to obtained cDNA by
reverse transcription. qPCR was conducted using the SYBr
Master Mix (Takara Biomedical Technology Co., Ltd.) and the
Real-Time PCR System (LightCycler 480 II) in the 12μl re-
action mixture with the following conditions: initial dena-
turation at 95°C for 30 sec, followed by 40 cycles of 95°C for
5 sec, 60°C for 30 sec, then followed by one cycle of 95°C for
15 sec, 60°C for 30 sec, and 95°C for 15 sec. -e following
primer information was used for qPCR: ACTB forward, 5′-
GCGTGACATTAAGGAGAAGC-3′ and reverse, 5′-
CCACGTCACACTTCATGATGG-3′; RP11-617F23.1

forward, 5′-ACCGCAGGCACTTGTGAAGA-3′ and reverse,
5′-AAGGGACATGCAGAGGGGAG-3′. For quantification of
RNA levels, the ΔΔCT method was applied, and the internal
reference gene ACTB was used for normalization.

2.11. Statistical Analysis. Group differences for continuous
variables were analyzed by t-test or one-factor analysis of
variance (one-way ANOVA). Group differences in the
distribution of categorical variables were analyzed by the
chi-square test. Survival analysis was conducted by log-rank
tests. Survival curves were drawn using the Kaplan–Meier
method. All statistical analyses were calculated with Prism
9.0 (GraphPad Software, LLC).

3. Results

3.1. Differential Analysis of Genes. According to the differ-
ential analysis method described in the method, the results
are shown in Table 1. -e volcano map of the differential
genes is shown in Figures 1(a)–1(d). After intersection
analysis, a total of 392 common differential mRNAs and 26
common differential lncRNAs were achieved, as shown in
Figures 1(e)–1(h).

3.2. Construction of Immune-Related ceRNA Network.
-e target gene prediction tool miRWalk3.0 was used to
predict the common differential mRNAs associated
with differential miRNAs, and a total of 29 pairs miRNA-
mRNA were obtained, including 14 miRNAs and 17
mRNAs. Furthermore, according to LncBase Predicted
v.2 database, 12 lncRNAs were predicted associated
with differential miRNAs. Based on the obtained
lncRNA-miRNA and miRNA-mRNA relationship pairs,
Cytoscape was used to construct the ceRNA network.
Finally, 13 miRNAs, 12 lncRNAs, and 16 mRNAs were
obtained, with a total of 58 regulatory pairs. With
InnateDB database matching, we obtained 4 immune-
related mRNAs (CDH11, RGMB, SOX4, and ABL2). By
matching the above network, an immune-related ceRNA
network was built, including 8 lncRNAs, 7 miRNAs, and 4
mRNAs, with a total of 21 regulatory pairs (Figure 2).
-ese 8 lncRNAs were identified as immune-related
lncRNAs.

3.3. Development of the OS and RFS Nomograms. One
lncRNA associated with overall survival and three lncRNAs
associated with disease-free survival were identified using
univariate Cox analysis, and the results are shown in Table 2.
-e regression coefficient β was used to calculate the RS of
each sample. -e optimal cutoff RS points are shown in
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Figure 3. -e patients were separated into a high-risk group
and a low-risk group with the cut-off value. By survival
analysis, the patients in low-risk group had significantly
better OS and DFS as shown in Figure 4.

-e RS was combined with clinical characteristics for
univariate and multivariate regression analyses. Multivariate
analysis showed that tumor stage (P< 0.01) and age
(P � 0.01) were closely related to OS (Table 3), while tumor
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Figure 1: Volcano map and Venn diagram of differential genes. -e volcano map of differential (a) lncRNA and (b) mRNA in GSE122530;
the volcano map of differential (c) lncRNA and (d) mRNA in TCGA; (e) upregulated and (f) downregulated lncRNAs; and (g) upregulated
and (h) downregulated mRNAs.

Table 1: -e number of differential genes.

GSE122530 TCGA
Up Down Total Up Down Total

mRNA 852 936 1788 2821 1048 3869
LncRNA 277 292 569 219 62 281
miRNA — — — 71 10 81
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stage (P � 0.02) and RS (P< 0.01) were closely related to
DFS (Table 4).

-e multivariate analyses identified that tumor stage,
RS, and age were independent risk factors for GC pa-
tients. To better predict the prognosis at 1-, 3-, and 5-year
OS and DFS of GC patients, we constructed nomograms
of the variables above (Figures 5(a) and 5(b)). -e cali-
bration plot for the probability of OS and DFS had an
optimal agreement between the two nomograms for
probabilities and actual observation, respectively
(Figures 5(c)–5(h)).

3.4. TIMER Database Analysis. -e correlation between
lncRNAs (MIR4435-1HG, UCA1, and RP11-617F23.1) and
the infiltration degree of immune cells was described
using TIMER database. However, only UCA1 was
recorded in TIMER database. -e expression levels of
UCA1 in normal and primary tumor samples in all TCGA
tumors are shown in Figure 6(a). -e expression level of
UCA1 was significantly higher in bladder urothelial
carcinoma (BLCA), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), esophageal carcinoma (ESCA),
lung adenocarcinoma (LUAD), lung squamous cell car-
cinoma (LUSC), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), and thyroid carcinoma
(THCA) compared with adjacent normal tissues. How-
ever, UCA1 expression was significantly lower in kidney
chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), liver hepatocellular carcinoma (LIHC), and
prostate adenocarcinoma (PRAD) compared with adja-
cent normal tissues. -en, we assessed the association
between the immune infiltration level and the UCA1
expression level in stomach adenocarcinoma using

TIMER. -e results showed that the expression level of
UCA1 was closely related to the infiltrating levels of CD8+
T cells, CD4+ T cells, macrophages, and dendritic cells, as
shown in Figure 6(b). And, UCA1 had the highest copy
number in DC cells in stomach adenocarcinoma, as shown
in Figure 6(c).

3.5. 'e Verification of Clinical Role of RP11-617F23.1 in
Gastric Cancer. Based on the three prognostic related IRLs
(MIR4435-1HG, UCA1, and RP11-617F23.1) obtained
above were analyzed further. As the function of MIR4435-
1HG and UCA1 has been verified before [27,28], we only
tested the effect of RP11-617F23.1. First, we detected the
relative expression levels of RP11-617F23.1 in GC tissues
and adjacent tissues, as well as four cell lines (GES-1, NCI-
N87, MKN-45, and HGC-27). As shown in Figure 7(a),
RP11-617F23.1 was significantly upregulated in human GC
tissues (n � 64) compared with their corresponding adja-
cent tissues (n � 64). Similarly, it was significantly upre-
gulated in gastric cancer cell line (NCI-N87, MKN-45, and
HGC-27) compared with gastric mucosa cell (GES-1), as
shown in Figure 7(b). To further validate its clinical effect,
we compared it with clinical features and survival data.
Patients were separated into two groups (high and low)
based on the median of the relative expression of RP11-
617F23.1 in tumor tissues. As shown in Table 5, patients
with higher expression of RP11-617F23.1 in tumor tissues
had higher NRL value (P< 0.001), more advanced T stage
(P � 0.004) and poorer tumor differentiation (P � 0.039)
and a higher probability of lymph node metastasis
(P � 0.044). Additionally, the prognostic value of RP11-
617F23.1 for patients with GC was assessed by
Kaplan–Meier survival analysis. -e results identified that
patients with high RP11-617F23.1 expression in tumor
tissues had poorer OS and DFS than patients with low
RP11-617F23.1 expression (OS :P � 0.021, Figure 7(c);
DFS :P � 0.004, Figure 7(d)). -us, our data suggested that
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hsa-miR-17-5p

hsa-miR-106b-5pSOX4
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hsa-miR-200c-3p

Figure 2: Immune-related lncRNA-miRNA-mRNA network.
-e pink circle stands for upregulated mRNA, the green circle
stands for downregulated mRNA, the yellow triangle stands for
upregulated miRNA, the blue triangle stands for downregulated
miRNA, the red square stands for upregulated lncRNA, and the
dark green square stands for downregulated lncRNA.

Table 2: Univariate analysis of overall survival and disease-free
survival.

Overall survival Disease-free survival

HR 95% CI P

value HR 95% CI P

value
MIR4435-
1HG 1.34 [1.03–1.76] 0.03∗ 1.44 [1.04–1.97] 0.03∗

H19 1.06 [0.98–1.14] 0.15 1.04 [0.96–1.14] 0.34
RP11-
617F23.1 0.87 [0.71–1.06] 0.16 0.77 [0.59–0.99] 0.04∗

FLJ22763 0.83 [0.61–1.14] 0.26 0.84 [0.58–1.22] 0.36
RP11-
253E3.3 0.9 [0.63–1.28] 0.55 0.9 [0.57–1.41] 0.64

UCA1 1.02 [0.94–1.12] 0.58 1.11 [1.01–1.23] 0.03∗
LINC00152 1.07 [0.83–1.37] 0.61 1.14 [0.85–1.54] 0.38
RP1-
302G2.5 1.01 [0.74–1.38] 0.94 1.08 [0.76–1.54] 0.67

Note: overall survival, βMIR4435-1HG � 0.29; disease-free survival, βMIR4435-

1HG � 0.22, βUCA1 � 0.08, and βRP11-617F23.1 � −0.16; ∗statistically
significant.
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RP11-617F23.1 was a novel marker indicating poor GC
prognosis.

4. Discussion

In the current study, a total of 360 GC and 47 peri-
carcinomatous tissues derived from two datasets (TCGA and
GSE122530) were incorporated into the calculation of the
differential expression lncRNAs in patients with GC.
Overall, 4723 immune-related mRNAs were downloaded
from the InnateDB.-ree IRLs (MIR4435-1HG, UCA1, and
RP11-617F23.1) were confirmed to be significantly associ-
ated with the prognosis of GC. GC patients could be sep-
arated into two groups by the risk model based on the three
IRLs. -e regression analyses of clinical information and RS
were performed to identify the independent prognostic
factors (tumor stage, age, and RS). -e nomograms were
constructed based on tumor stage, age, and RS to predict OS
and DFS for GC patients visually. -en, the calibration plot

identified that the two nomograms had high prediction
accuracy. We also found that UCA1 expression was sig-
nificantly associated with various immune cells, while the
other two IRLs were not recorded in the TIMER database.

In our study, MIR4435-1HG and UCA1 were identified
to exhibit cancer-promoting activity, while the clinical effect
of RP11-617F23.1 was contradictory. Both UCA1 and
MIR4435-1HG had been previously reported in GC. In the
previous study, the expression of serum UCA1 was sug-
gested to be closely associated with the differentiation of
cancer cells in GC [29]. Additionally, UCA1 could promote
cell proliferation and invasion of GC by regulating the miR-
590-3p/CREB1 signal pathway [30]. -e upregulation of
UCA1 could promote the invasion and migration in GC
[31]. Recent research has shown that UCA1 would act as an
antitumor miRNA inhibitor to facilitate proliferation, mi-
gration, and immune escape and inhibit apoptosis in GC
[28]. And, UCA1 could increase resistance to cisplatin in GC
via recruiting EZH2 and activating the PI3K/AKT pathway
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[32]. MIR4435-1HG was also known as LINC00978,
MIR4435-2HG, and AWPPH. In the previous study, the
expression level of LINC00978 has been suggested to be
significantly related to tumor size, lymphatic metastasis, and
tumor stage [33]. Additionally, lncRNA LINC00978 could

contribute to tumor development by regulating the
microRNA-497/NTRK3 axis in GC [27]. However, the
upregulation of lncRNA AWPPH was demonstrated to
inhibit the proliferation and invasion of gastric cancer cells
via the miR-203a/DKK2 axis in another study [34]. Recent
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Figure 4: Survival analysis. (a) -e Kaplan–Meier survival curves of OS according to RS. (b) -e Kaplan–Meier survival curves of DFS
according to RS (OS� overall survival; DFS� disease-free survival; and RS� risk score).

Table 3: Univariate and multivariate analysis of overall survival.

Univariate analysis Multivariate analysis
HR 95% CI P value HR 95% CI P value

Tumor stage (early vs. advance) 0.553 [0.382–0.800] 0.002∗ 0.511 [0.355–0.736] <0.001∗
Risk score (low vs. high) 0.654 [0.434–0.985] 0.042∗ 0.642 [0.428–0.964] 0.033∗
Age (years) 1.026 [1.008–1.044] 0.004∗ 1.023 [1.005–1.040] 0.011∗
Differentiated degree (low vs. high) 0.744 [0.511–1.083] 0.122 — — —
Gender (female vs. male) 1.211 [0.830–1.768] 0.321 — — —
Note: HR� hazard ratio; CI� confidence interval; ∗statistically significant.
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study has shown that MIR4435-2HG could promote tumor
metastasis in GC via targeting Wnt/β-catenin and desmo-
plakin. By contrast, there no reports concerning RP11-
617F23.1 in GC so far. RP11-617F23.1 was also known as
ZNF710-AS1-201 according to Ensembl database. Only one
report concerning ZNF710-AS1-201, which demonstrated
that the overexpression of ZNF710-AS1-201 was correlated
with poor prognosis for patients with clear cell renal cell

carcinoma [35]. -is conclusion was consistent with our
verification result.

Recently, a few studies of the influence of lncRNAs on
the tumor immune microenvironment of GC have been
reported. HOTAIR was found to upregulate COL5A1, which
was correlated with immune infiltration and promote the
growth andmetastasis of GC by spongingmiR-1277-5p [36].
LINC00941 was correlated with the immune environment in

Table 4: Univariate and multivariate analysis of disease-free survival.

Univariate analysis Multivariate analysis
HR Upper 95 P value HR Upper 95 P value

Tumor stage (early vs. advance) 0.477 [0.298–0.763] 0.010∗ 0.549 [0.357–0.843] 0.006∗
Risk score (low vs. high) 0.563 [0.364–0.871] 0.002∗ 0.492 [0.308–0.785] 0.003∗
Age (years) 1.671 [1.025–2.723] 0.040∗ 1.647 [1.014–2.674] 0.044∗
Differentiated degree (low vs. high) 0.851 [0.548–1.322] 0.472 — — —
Gender (female vs. male) 1.001 [0.981–1.021] 0.945 — — —
Note: HR� hazard ratio; CI� confidence interval; ∗statistically significant.
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Figure 5: Nomograms for patients with gastric cancer. (a) -e 1-, 3-, and 5-year overall survival nomogram. (b) -e 1-, 3-, and 5-year
disease-free survival nomogram.-e calibration curves for predicting the (c–e) 1-, 3-, and 5-year overall survival and (f–h) 1-, 3-, and 5-year
disease-free survival rates by nomogram prediction and actual observation in patients with gastric cancer.
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GC [37]. LINC00963 promoted the development of GC by
targeting miR-612/CDC5L axis and mediated dendritic cell-
related antitumor immune response [38]. CXXC finger
protein 4 inhibited the immune escape of GC cells by acting
on the ELK1/MIR100HG pathway [39]. MALAT1, as a

sponge for miR-125a, regulates IL-21R signaling, partici-
pates in immune regulation of immune cells and tumor
progression, and is a risk factor for survival and recurrence
in GC [40]. Interestingly, RP11-617F23.1 was closely related
to neutrophil-to-lymphocyte ratio (NLR) in the present
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study, which reflected the immune status of patients. In
addition, previous studies have identified that NRL was also
significantly associated with the prognosis of GC [41].
-erefore, the molecular mechanism of RP11-617F23.1 as an
IRL deserves further study, including immunoassay and
immune escape.

In contrast to the previous research on IRLs in GC
[42–44], the current study comprehensively evaluated the

immune-related ceRNA network for the first time, estab-
lished the risk model, and preliminarily validated the related
lncRNAs. Additionally, the finding also suggested that
RP11-617F23.1 may be used as a prognostic predictor for
GC. However, the present study still had a few limitations.
First, the sample size of survival analysis was not large
enough. And, the detailed molecular mechanisms of RP11-
617F23.1 require further investigation.
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Figure 7: -e verification of clinical role of RP11-617F23.1 in gastric cancer. (a) RP11-617F23.1 was significantly upregulated in human GC
tissues (n� 64) compared with their corresponding adjacent tissues (n� 64). (b) RP11-617F23.1 was upregulated in gastric cancer cell lines
compared with gastric epithelial cell. (c, d) Patients with high RP11-617F23.1 expression in tumor tissues had poorer overall survival (OS)
and disease-free survival (DFS) than patients with low RP11-617F23.1 expression (∗P< 0.05, ∗∗∗P< 0.001).

Table 5: Comparation of the clinicopathological characteristics between low and high expression groups.

Variables
RP11-617F23.1

P value
Low expression (n� 32) High expression (n� 32)

Age, years 65.94± 6.90 67.84± 8.49 0.329
Sex, male 17 (53.1%) 22 (68.8%) 0.200
CEA, U/ml 20.54± 72.16 7.31± 20.63 0.692#
NLR 2.00± 0.76 3.81± 2.34 <0.001#∗
Tumor differentiation, poor 16 (50.0%) 24 (75.0%) 0.039∗
T stage, III-IV 15 (46.9%) 26 (81.3%) 0.004∗
Lymphatic invasion, positive 14 (43.8%) 22 (68.8%) 0.044∗

Note: mean± standard deviation, number (percent); NLR: neutrophil lymphocyte ratio; #Mann–Whitney test; ∗statistically significant.
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5. Conclusion

We established a novel risk model based on IRLs for pre-
dicting the prognosis of GC. Meanwhile, a novel IRL, RP11-
617F23.1, could act as a predictor of prognosis for patients
with GC. -is provided a theoretical basis for tumor pre-
vention and immunotherapy.
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