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Traumatic brain injury (TBI) is a major source of mortality and long-term disability worldwide. The mechanisms associated with
TBI development are poorly understood, and little progress has been made in the treatment of TBI. Tanshinone IIA is an effective
agent to treat a variety of disorders; however, the mechanisms of Tanshinone IIA on TBI remain unclear. The aim of the present
study was to investigate the therapeutic potential of Tanshinone IIA on TBI and its underlying molecular mechanisms. Changes in
microvascular permeability were examined to determine the extent of TBI with Evans blue dye. Brain edema was assessed by
measuring the wet weight to dry weight ratio. The expression levels of CD11, interleukin- (IL-) 1β, and tumor necrosis factor-
(TNF-) α mRNA were determined by reverse transcription-quantitative PCR. Aquaporin-4 (AQP4), glial fibrillary acidic protein
(GFAP), and p47phox protein expression levels were detected by western blotting. Superoxide dismutase (SOD), catalase and
glutathione peroxidase (GSH-PX) activities, and malondialdehyde (MDA) content were determined using commercial kits. Cell
apoptosis was detected by western blotting and TUNEL staining. Tanshinone IIA (10mg/kg/day, intraperitoneal administration)
significantly reduced brain water content and vascular permeability at 12, 24, 48, and 72 h after TBI. Tanshinone IIA
downregulated the mRNA expression levels of various factors induced by TBI, including CD11, IL-1β, and TNF-α. Notably,
CD11 mRNA downregulation suggested that Tanshinone IIA inhibited microglia activation. Further results showed that
Tanshinone IIA treatment significantly downregulated AQP4 and GFAP expression. TBI-induced oxidative stress and apoptosis
were markedly reversed by Tanshinone IIA, with an increase in SOD and GSH-PX activities and a decrease in the MDA
content. Moreover, Tanshinone IIA decreased TBI-induced NADPH oxidase activation via the inhibition of p47phox.
Tanshinone IIA attenuated TBI, and its mechanism of action may involve the inhibition of oxidative stress and apoptosis.

1. Introduction

Traumatic brain injury (TBI) is the most common cause of
mortality and disability worldwide, and the damages
induced by TBI can worsen the quality of life of the patients
[1]. The brain damage following TBI is characterized by two
phases, the initial, or primary, phase is characterized by
direct cerebral tissue damage which results in glutamate
release, calcium homeostasis disruption, N-methyl-D-aspar-
tate receptor activation, permeability increase, and consecu-
tive edema formation, which is an important self-protective

mechanism to minimize the extent of the damage immedi-
ately after TBI. Importantly, the first response phase involves
diverse cellular and molecular mechanisms that are impor-
tant to maintain the homeostasis of the damaged tissue [2].
These events may cause cellular structural damage, neuronal
cell death, oxidative stress, brain edema, blood-brain barrier
(BBB) breakdown, and inflammation [3]. Among these
adverse factors, edema formation is considered to be a key
to the consequences of TBI, which may deteriorate the prog-
nosis. Accumulating evidence from clinical and experimen-
tal studies has expanded the current knowledge of the
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pathophysiological phenomena underlying TBI and may
facilitate the development of novel treatments with neuro-
protective effects [4, 5].

Tanshinone IIA (Figure 1), a derivative of phenan-
threnequinone derived from Salvia miltiorrhiza BUNGE
(Danshen), possesses various pharmacological properties.
A previous study showed that Tanshinone IIA is widely
used in the treatment of cardiovascular and cerebrovascular
diseases, inflammation, cholinesterase, collagenase, platelet
aggregation, and cancer, due to its antioxidative activity
[5–10]. Several previous studies showed that Tanshinone
IIA has a protective effect by scavenging lipid free radicals,
thus decreasing cytotoxicity in vitro and in vivo [11–14].
Further studies confirmed that Tanshinone IIA has signif-
icant protective effects against Aβ-induced neurotoxicity in
cultured cortical neurons and PC12 cells [15, 16]. A recent
study showed that Tanshinone IIA could improve memory
deficits by acting on the hippocampus in STZ-induced dia-
betic mice [17]. However, whether Tanshinone IIA could
mitigate TBI remains unknown. Therefore, the present
study is aimed at investigating the protective roles and
the mechanisms of Tanshinone IIA in a rat model of TBI.

2. Materials and Methods

2.1. Animal Studies and Ethics Statement. Male Sprague-
Dawley rats (weight, 220-250 g) were used in the present
experiments. Animals had free access to food and water
and were maintained in plastic cages at 21 ± 2°C under a
12 h light/dark cycle. All the animal experiments were
approved by Hunan Academy of Chinese Medicine Animal
Care and Use Committee (approval no. Xiang 2019-0013).
The animals were randomly assigned to the following groups:
(i) Sham group (n = 24), (ii) TBI group (n = 24), and (iii) TBI
+Tanshinone IIA (10mg/kg/day) group (n = 24). After TBI,
rats were immediately treated with PBS or 10mg/kg Tanshi-
none IIA intraperitoneally as previously described [18]. At
12, 24, 48, and 72h following trauma, all animals were sacri-
ficed for further analysis. In total, six animals were analyzed
in each group.

2.2. TBI Model Establishment. A traumatic brain injury
model was established as previously described [18]. The rats

were anesthetized and fixed in prone position, and the skull
was cut sagittally. The injury was performed using a weight
to damage the exposed area, 1.5mm behind the coronal
suture. A 2.5mm diameter channel was drilled 2.5mm to
the right of the sagittal suture. The injury was performed
in order to damage the bone window keeping the dura
mater intact. The height of the falling weight was modu-
lated to induce different degrees of contusion in the right
parietal lobe. After TBI, all animals were kept and moni-
tored until spontaneous respiration was reestablished. Sham
group animals underwent anesthesia and scalp incision, but
without TBI.

2.3. Determination of Antioxidant Indices in Tissues. The tis-
sue levels of antioxidant indices including SOD, GSH-PX,
CAT, and MDA were measured by commercial kits accord-
ing to the instruction of manufacturer.

2.4. Determination of Brain Edema. The wet weight (WW) to
dry weight (DW) ratio method was used to evaluate brain
water content, as previously described [19]. The right brain
hemispheres were rapidly removed from all animals post-
mortem at the indicated time points after TBI. Brains were
weighed (to measure the WW), dried at 70°C for 72 h, and
weighed again (to measure the DW). The percentage of tissue
water content was calculated as ðWW −DWÞ/WW× 100%.

2.5. BBB Breakdown Evaluation. Alterations in the microvas-
cular permeability were examined to determine the extent of
TBI by Evans blue dye (0.2ml/100 g), which was injected
through the femoral vein. Following anesthesia with 1%
pentobarbital sodium (30-40mg/kg), the thoracic cavity
was exposed, intracardiac perfusion was performed with hep-
arin saline, and the brain tissue was weighed, cut, and placed
in dimethylformamide for 60 h at 60°C, centrifuged at
1,000 rpm for 5min, and the absorbance at a wavelength of
620 nm was measured with a spectrophotometer. Data anal-
ysis was performed using Origin software (version s7.0),
and the Evans blue content was calculated from the standard
curve previously plotted.

2.6. TUNEL Staining. The formalin-fixed frontal cortex tis-
sues were embedded in paraffin and sectioned (thickness,
4μm). In total, five brain regions from each group were cut
with a microtome. The sections were analyzed by TUNEL
assay to detect the apoptotic rate. The TUNEL assay kit was
purchased from Roche Molecular Biochemicals, and the
experiment was conducted according to the manufacturer’s
protocol. Apoptotic cells with condensed nuclei were stained
green, while normal cells were large, round, and not stained.
The positive cells were analyzed under a fluorescence micro-
scope by a blinded investigator. The extent of brain injury
was evaluated by measuring the rate of TUNEL-positive cells.

2.7. Real-Time PCR. The gene expression level in brain tis-
sues was determined by real-time PCR. Extracted total
RNA was purified with 75% ethanol, and its concentration
was determined by spectrophotometry. Then, the purified
total RNA (200ng) was retrotranscribed using a retrotran-
scription kit (DRR037A; Takara Bio, Inc.) and mixed to

H3C CH3

CH3

O

O

O

Figure 1: Structure of Tanshinone IIA.

2 Oxidative Medicine and Cellular Longevity



obtain the first-strand cDNA template. Subsequently, the
expression levels of CD68, interleukin- (IL-)1β, and tumor
necrosis factor- (TNF-) α were determined quantitatively
by real-time PCR (ABI 7300) using the SYBR Premix Ex
Taq kit (Takara Bio, Inc.).

2.8. Western Blotting. For western blotting analysis, 40μg
protein (from each sample) was separated by SDS-PAGE
(10% gel). The gel was transferred to a PVDF membrane,
which was blocked with 5% milk powder and incubated with
rabbit anti-aquaporin-4 (AQP4), glial fibrillary acidic protein
(GFAP), and anti-p47phox at 4°C overnight. Subsequently,
the membranes were washed and incubated with horseradish
peroxidase-conjugated secondary antibodies, and the protein
bands were developed using an ECL kit (Amersham Biosci-
ences). The expression levels of the proteins were calculated
using a Molecular Imager ChemiDoc XRS System (Bio-Rad
Laboratories, Inc.). The protein expression level was normal-
ized to β-actin.

2.9. Statistical Analysis. For statistical analysis, the SPSS
software (version 21.0) was used. Data are presented as
the mean ± SEM. The data were analyzed by one-way
ANOVA. P < 0:05 was considered to indicate a statistically
significant difference.

3. Results

3.1. Effect of Tanshinone IIA on Brain Tissue Water Content
and Vascular Permeability. To test whether Tanshinone IIA

treatment exhibited neuroprotective effects after TBI, rats
were sacrificed after treatment with or without Tanshinone
IIA. As shown in Figure 2(c), the brain tissue water content
increased significantly at 12, 24, 48, and 72h in the TBI
group, in particular, at 24 h.

The BBB is a specialized structure in the central nervous
system that can block the entry of macromolecular sub-
stances from the peripheral blood into the brain parenchyma,
thus maintaining cerebral homeostasis. The TBI-derived
brain damage may alter the BBB permeability, promoting
inflammation. Therefore, by measuring the amount of
Evans blue dye in the brain, it is possible to assess the
BBB breakdown and the vascular permeability in the brain
tissue. The vascular permeability after TBI was examined
to investigate whether Tanshinone IIA exerted its protective
effect on the integrity of BBB structure and function follow-
ing TBI. As shown in Figures 2(b) and 2(c), compared with
the Sham group, the vascular permeability was significantly
increased in the TBI group, which was reversed by Tanshi-
none IIA treatment.

3.2. Effect of Tanshinone IIA on the Expression Levels of AQP4
and GFAP. As the main water transporter in the central
nervous system, AQP4 is involved in maintaining the water
homeostasis in the BBB, and it is responsible for the forma-
tion of the vasogenic edema following TBI. To determine
the effect of BBB impairment following TBI, the expression
of AQP4 was investigated using western blotting analysis.
As shown in Figure 3, TBI caused significant increases in
AQP4 expression after 12, 24, 48, and 72h. Tanshinone
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IIA treatment significantly decreased the expression level of
AQP4, suggesting that Tanshinone IIA could regulate the
permeability of BBB by regulating the expression levels of
the proteins associated with this process. The present find-
ings suggested that Tanshinone IIA could promote the
repair of the BBB.

GFAP is only expressed in the perinuclear region and
cytoplasm of mature glial cells in the central nervous system
(CNS); it is involved in the formation of astrocyte cytoskele-
ton and has been used as surrogate marker of intracranial
sequelae after TBI [20]. Therefore, the expression levels of
GFAP were assessed by western blotting. As shown in
Figure 3, TBI caused an increase in GFAP expression. Tan-
shinone IIA significantly reversed TBI-induced GFAP upreg-
ulation. The present results suggested that Tanshinone IIA
alleviated TBI-induced injury.

3.3. Effect of Tanshinone IIA on TBI-Induced Microglia
Activation. Microglia activation occurs after TBI and is con-
sidered to be an important factor underlying the damage
induced by TBI. Moreover, microglia activation is associ-
ated with upregulation of IL-1β and TNF-α, thus aggravating
TBI and increasing the risk of stroke. To assess microglia
activation, western blotting was performed on the brain
tissues at 24 h after TBI, and the expression level of the
microglia activation marker CD11 was examined. As shown
in Figure 4, the expression of CD11 mRNA, a marker of
microglia, was increased in the brain tissue after TBI. More-
over, TNF-α and IL-1β mRNA expressions increased. How-
ever, the treatment with Tanshinone IIA downregulated the
mRNA expression levels of CD11, TNF-α, and IL-1β, sug-
gesting that Tanshinone IIA inhibited TBI-induced microg-
lia activation.

3.4. Effect of Tanshinone IIA on TBI-Induced Caspase-3
Activation. Accumulating evidence demonstrated that the
caspase cascade is involved in a variety of biological pro-
cesses, including the initiation of apoptosis. Caspase-3
expression was analyzed to investigate whether caspase-3
was involved in TBI-induced apoptosis in the brain. As
shown in Figures 5(a) and 5(b), TBI caused a significant
increase in caspase-3 activation. By contrast, the caspase-3
level, upregulated by TBI, was downregulated by Tanshinone
IIA treatment.

To further assess the effects of Tanshinone IIA on apo-
ptosis, TUNEL staining was performed. As shown in
Figures 5(c)–5(e), TBI increased cell apoptosis, as assessed
by morphological alterations, including nuclear fragmenta-
tion and apoptotic bodies, typical of cells undergoing apopto-
sis. Tanshinone IIA decreased the number of apoptotic cells.
The present results suggested that Tanshinone IIA exhibited
protective effects on TBI by inhibiting the apoptotic pathway.

3.5. Effect of Tanshinone IIA on TBI-Induced Oxidative Stress.
To determine the protective effect of Tanshinone IIA on TBI
rats, various antioxidant factors, including superoxide dis-
mutase (SOD), catalase (CAT), and glutathione peroxidase
(GSH-PX), were examined. As shown in Figures 6(a)–6(d),
compared with the Sham group, TBI caused decreases in
the expression levels of SOD, CAT, and GSH-PX and an
increase in MDA content. Tanshinone IIA significantly
increased the activities of SOD, CAT, and GSH-PX and
decreased MDA content. The present results suggested that
Tanshinone IIA reduced oxidative stress.

NADPH oxidase activation is one of the main mecha-
nisms underlying brain injury. The temporal pattern of
NADPH oxidase activation and H2O2 generation was
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Figure 3: Effects of Tanshinone IIA on the expression levels of AQP4 and GFAP following TBI. (a) Western blotting analysis of AQP4 and
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vs. Tanshinone IIA group. TBI: traumatic brain injury; AQP4: aquaporin 4; GFAP: glial fibrillary acidic protein.
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examined in the adult rat cerebral tissue samples follow-
ing TBI by controlled cortical contusion. As shown in
Figures 7(a) and 7(b), mild TBI increased NADPH oxidase
activity and H2O2 levels at 24 h, but the trend increased at
48 h-72 h after TBI.

Subsequently, it was investigated whether the increase in
H2O2 generation in neurons following TBI was due to acti-
vation of NADPH oxidase. This phenomenon was exam-
ined by investigating the effect of a NADPH inhibitor,
apocynin (4mg/kg intraperitoneally administered20 min
prior to TBI), on H2O2 generation in brain tissue following
TBI. As shown in Figures 7(c)–7(g), pretreatment with
apocynin markedly attenuated the generation of H2O2 at
24 h after TBI compared with the Sham group, suggesting
that NADPH oxidase served a critical role in H2O2 produc-
tion in neurons following TBI. The present findings sug-
gested that NADPH oxidase was involved in the generation
of H2O2 following TBI.

3.6. Effects of Tanshinone IIA on the Expression Levels of
p47phox, gp91phox, and Rac1 following TBI. A previous
study reported that p47phox is the main subunit of NADPH
oxidase, which is mainly expressed in the nervous system,

particularly in the microglia and the spinal cord, and is
involved in ROS formation. As shown in Figures 8(a) and
8(b), p47phox subunit activation was reduced by Tanshinone
IIA treatment at 24 h after TBI. However, Tanshinone IIA
did not affect the translocation of Rac1 and the level of
gp91phox expression. The present results suggested that
Tanshinone IIA decreased NADPH oxidase activation via
the inhibition of p47phox translocation.

4. Discussion

The present study investigated the effect of Tanshinone IIA
on TBI and its underlying molecular mechanism. The pres-
ent results suggested that Tanshinone IIA treatment signifi-
cantly attenuated edema formation and decreased vascular
permeability, inhibited inflammation, and reduced apopto-
sis, thus alleviating TBI-induced damage (Figure 9). Impor-
tantly, Tanshinone IIA effects were found to be associated
with the inhibition of NADPH oxidase. The present results
provided insight into the mechanisms underlying Tanshi-
none IIA function and indicated that Tanshinone may be a
novel treatment to attenuate TBI.
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Figure 4: Effects of Tanshinone IIA on TBI-induced microglia activation. (a) RT-PCR analysis of the levels of CD11 expression. (b) RT-PCR
analysis of the levels of TNF-α expression. (c) RT-PCR analysis of the levels of IL-1β expression. Data are expressed as themean ± SEM. n = 6
in each group. #P < 0:05 vs. Sham group; ∗P < 0:05 vs. Tanshinone IIA group. TBI: traumatic brain injury; RT: real-time.
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TBI is a leading cause of mortality and disability world-
wide. The outcomes of TBI are often related to excitotoxicity,
inflammation, metabolic dysfunction, oxidative stress, cellu-
lar necrosis, and apoptosis [21, 22]. In addition, its mecha-
nisms are associated with the release of reactive oxygen
species (ROS), edema formation, BBB breakdown, release
of excitatory amino acids, and acute inflammatory response
[23]. Edema formation and brain swelling are considered
the most important symptoms of TBI. Brain tissue edema
contributes to increase brain volume and intracranial pres-
sure, impairing cerebral circulation and oxygenation, thus
worsening ischemic injuries. AQP4 is the main water trans-
porter in the brain and is involved in edema formation in
TBI [24]. Previous studies showed that AQP4 regulates water
homeostasis in BBB and is involved in the formation of the
vasogenic edema, astrocyte migration, and neuronal excit-
ability associated with TBI [25, 26]. Recent studies demon-
strated that AQP4 deletion reduces brain edema formation
after ischemia stroke in mice. AQP4 knockdown showed
improved survival time compared with wide-type mice in a
brain edema model. The use of AQP4-null mice provided
strong evidence for AQP4 involvement in cerebral water bal-

ance. AQP4-null mice are protected from cellular (cytotoxic)
brain edema produced by water intoxication, brain ischemia,
or meningitis [26]. However, AQP4 deletion aggravates
vasogenic (fluid leak) brain edema formed following intra-
parenchymal fluid infusion or brain abscess [25]. These
previous studies suggested that the expression levels of
AQP4 are associated with the integrity of the BBB. In the
present study, Tanshinone IIA was found to exhibit protec-
tive effects on the integrity of BBB structure and function in
an animal model of TBI. The present study found that
AQP4 expression was significantly upregulated following
TBI, and it was associated with an accumulation of Evans
blue in the brain and with impaired BBB function. The
TBI-induced upregulation of AQP4 was significantly attenu-
ated in the presence of Tanshinone IIA. Moreover, previous
studies demonstrated that TBI activates reactive astrogliosis,
which is characterized by rapid synthesis of GFAP [27].
Additional studies demonstrated that GFAP can be used as
a prognostic tool following severe TBI. Based on these previ-
ous studies, GFAP was hypothesized to be involved in the
prediction of TBI severity. In the present study, TBI signifi-
cantly upregulated GFAP. Moreover, the upregulation of
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Figure 6: Effects of Tanshinone IIA on antioxidant levels in brain tissues. Measurement of (a) SOD, (b) GSH-PX, and (c) CAT activity. (d)
MDA content. Data are expressed as the mean ± SEM. n = 6 in each group. #P < 0:05 vs. Sham group; ∗P < 0:05 vs. Tanshinone IIA group.
TBI: traumatic brain injury; SOD: superoxide dismutase; CAT: catalase; GSH-PX: glutathione peroxidase; MDA: malondialdehyde.

7Oxidative Medicine and Cellular Longevity



Fo
ld

 in
cr

ea
se

 v
s S

ha
m

 (H
2O

2) 8

6

4

2

0
Sham 12 h 24 h 48 h 72 h

⁎

⁎
⁎

⁎

(a)

Fo
ld

 in
cr

ea
se

 v
s S

ha
m

(N
A

D
PH

 o
xi

da
se

 ac
tiv

ity
)

5

4

3

2

1

0
Sham 12 h 24 h 48 h 72 h

⁎

⁎

⁎

⁎

(b)

𝛽-Actin

NOX4

NOX2

Sh
am TB

I

+A
po

cy
ni

n

+V
eh

ic
le

(c)

Re
lat

iv
e N

O
X2

/𝛽
-a

ct
in

0.4

0.3

0.2

0.1

0.0

Sh
am TB

I

+A
po

cy
ni

n

+V
eh

ic
le

⁎

#

(d)

Re
lat

iv
e N

O
X4

/𝛽
-a

ct
in

0.3

0.2

0.1

0.0

Sh
am TB

I

+A
po

cy
ni

n

+V
eh

ic
le

⁎

#

(e)

N
A

D
PH

 o
xi

da
se

 ac
tiv

ity
(𝜇

m
ol

/m
in

/n
g)

0.4

0.3

0.2

0.1

0.0

Sh
am TB

I

+A
po

cy
ni

n

+V
eh

ic
le

⁎

#

(f)

H
2O

2 le
ve

l (
𝜇

m
ol

/m
L)

40

30

20

10

0

#

Sh
am TB

I

+A
po

cy
ni

n

+V
eh

ic
le

⁎

(g)

Figure 7: Induction of NADPH oxidase activation and O2
- generation in the brain following TBI. (a) NADPH oxidase activity at 0, 12, 24, 48,

and 72 h after TBI. (b) O2
- production in the cerebral cortex at 0, 12, 24, 48, and 72 h after TBI. (c) Expression levels of NOX2 and NOX4. (d)

Expression levels of NOX2. (e) Expression levels of NOX4. (f) NADPH oxidase activity at 24 h after TBI. (g) O2
- production at 24 h after TBI.

Data are expressed as the mean ± SEM. n = 6 in each group. #P < 0:05 vs. Sham group; ∗P < 0:05 vs. Tanshinone IIA group. TBI: traumatic
brain injury.
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GFAP was decreased by Tanshinone IIA treatment. The
present results suggested the protective effects of Tanshinone
IIA on promoting the recovery of impaired BBB by decreas-
ing the protein expression levels of factors involved in BBB
breakdown following TBI.

Microglia are the most important innate immune cells in
the CNS and are involved in the process of inflammation
serving an important role in nervous system diseases [28,
29]. Microglia respond rapidly to changes in CNS microenvi-
ronment and pathological events, and these immune cells
were shown to exhibit deleterious and beneficial roles in neu-
ronal damage, phagocytizing necrotic cells and tissue frag-

ments, and activating or inhibiting numerous inflammatory
mediators to maintain homeostasis [30]. Previous studies
showed that activated microglia express high levels of
CD11b, inducing the secretion of proinflammatory factors
such as IL-1β and TNF-α [31]. Among the other proinflam-
matory factors released by activated microglia, inducible
nitric oxide synthase, IL-6, and CCL2 aggravate brain dam-
age. Microglia activation is considered as the initiator of the
inflammatory response following brain damage. Several lines
of studies showed that microglia activation is involved in the
mediation of inflammation following TBI, contributing to
neuronal damage via the release of IL-1β, TNF-α, and IL-6.
Previous studies showed that activated microglia exerted
neurotoxicity under certain conditions such as ischemia.
These previous studies demonstrated that microglia activa-
tion increases the releases of IL-1β, TNF-α, and IL-6, further
stimulating the production of matrix metalloproteinases and
influencing the permeability of the BBB, inducing secondary
brain edema. Therefore, these cytokines are considered to
accelerate brain tissue damage following microglia activation.
Inhibition of microglia activation was shown to prevent the
release of inflammatory cytokines. The present study sug-
gested that TBI induced CD11 upregulation and increased
the release of IL-1β, TNF-α, and IL-6, which are neurotoxic.
The present study suggested that microglia activation is signif-
icantly reduced in neurons following TBI and Tanshinone IIA
treatment. These hints suggested that Tanshinone IIA could
directly prevent microglia activation by decreasing apoptosis.
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Figure 8: Effects of Tanshinone IIA on the expression levels of p47phox, gp91phox, and Rac1 following TBI. (a) Western blotting analysis of
p47phox translocation from cytoplasm to membrane. (b) Western blotting analysis of gp91phox and Rac1expressions. β-Actin was used as
the loading control. Bands were analyzed by densitometric analysis. Data are expressed as themean ± SEM. n = 6 in each group. #P < 0:05 vs.
Sham group; ∗P < 0:05 vs. Tanshinone IIA group. TBI: traumatic brain injury.
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Accumulating evidence demonstrated that oxidative
stress is considered the key contributor to secondary injury
in the pathophysiology of TBI and oxidative stress is involved
in the development of cerebral edema, inflammation, and
secondary neuronal damage [32–34]. ROS are considered
double-edged swords, since they can maintain cellular
homeostasis in physiological conditions and aggravate cer-
tain pathological conditions, such as brain injury. NADPH
oxidase is the main source of ROS in the brain tissue, and
the activation of NADPH oxidase can deteriorate the state
of TBI [35]. Overactivation of NADPH oxidase is an impor-
tant mechanism underlying the increase in oxidative stress,
which is associated with the occurrence and development of
various diseases. NADPH oxidase is a multicomponent
enzyme comprising membrane-bound cytochrome b558
(p22phox and gp91phox heterodimer) and cytosolic regu-
latory proteins (p67phox, p47phox, p40phox, and Rac2
GTPase). Under pathophysiological conditions, the activa-
tion of NADPH oxidase mainly relies on the phox subunits
such as p47phox, which translocate to the membrane. Accu-
mulating evidence demonstrated that the NADPH oxidase
activation contributes to aggravate brain injury by mediating
oxidative stress and microglia activation following TBI [36].
Additional studies showed that the inhibition of NADPH
oxidase could decrease excessive ROS production following
TBI, preventing programmed neuronal death and microglia
activation [37]. Present results suggested that the expres-
sion level of p47phox was upregulated following TBI and
the administration of Tanshinone IIA inhibited p47phox
translocation. These results suggested that Tanshinone IIA
reduced the TBI-associated overproduction of ROS through
the inhibition of p47phox translocation.

Numerous studies demonstrated that ROS accumulation
induced by TBI is a critical factor in brain damage [38]. More-
over, ROS overproduction is involved in the initiation of pro-
grammed cell death following TBI. Importantly, neuronal
apoptosis may be a result of oxidative stress [37–39]. Consid-
ering the important role of oxidative stress in TBI, the investi-
gation of ROS antioxidants or scavengers may provide novel
strategies to inhibit TBI-induced cell apoptosis [32]. Tanshi-
none IIA is a potent antioxidant, and it is useful in the treat-
ment of cardiovascular and cerebrovascular diseases. In
particular, Tanshinone IIA can scavenge lipid free radicals,
thus decreasing cytotoxicity in vitro and in vivo. In the present
study, Tanshinone IIA showed antioxidative effects following
TBI, including the increase in SOD, CAT, and GSH-PX activ-
ities, and decrease in MDA content, in line with previous
studies. Furthermore, Tanshinone IIA treatment inhibited
TBI-induced neuronal apoptosis in vivo. The present results
suggested that the protective effects of Tanshinone IIA
against TBI may involve its potent antioxidative activity.

Collectively, the present results suggested that Tanshi-
none IIA had neuroprotective properties including improved
brain tissue edema formation, decreased the release of
inflammatory mediators, and reduced oxidative damage
and apoptosis via the inhibition of NAPDH oxidase activa-
tion. The present results suggested that Tanshinone IIA
may facilitate the development of novel therapeutic and pre-
ventive strategies for the treatment of TBI.
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Oxidative stress and neuroinflammation play essential roles in ischemic stroke-induced brain injury. Previous studies have reported
that Ezetimibe (Eze) exerts antioxidative stress and anti-inflammatory properties in hepatocytes. In the present study, we investigated
the effects of Eze on oxidative stress and neuroinflammation in a rat middle cerebral artery occlusion (MCAO)model. One hundred
andninety-eightmale Sprague-Dawley ratswere used.Animals assigned toMCAOwere given either Eze or its control. To explore the
downstream signaling of Eze, the following interventions were given: AMPK inhibitor dorsomorphin and nuclear factor erythroid 2-
related factor 2 (Nrf2) siRNA. Intranasal administration of Eze, 1 h post-MCAO, further increased the endogenous p-AMPK
expression, reducing brain infarction, neurologic deficits, neutrophil infiltration, microglia/macrophage activation, number of
dihydroethidium- (DHE-) positive cells, and malonaldehyde (MDA) levels. Specifically, treatment with Eze increased the
expression of p-AMPK, Nrf2, and HO-1; Romo-1, thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3
(NLRP3), Cleaved Caspase-1, and IL-1β were reduced. Dorsomorphin and Nrf2 siRNA reversed the protective effects of Eze. In
summary, Eze decreases oxidative stress and subsequent neuroinflammation via activation of the AMPK/Nrf2/TXNIP pathway
after MCAO in rats. Therefore, Eze may be a potential therapeutic approach for ischemic stroke patients.

1. Introduction

Stroke accounts for 10% of all deaths worldwide [1]. The
pathophysiology of stroke is composed of complex sequelae
of cellular processes: oxidative stress, apoptosis, blood-brain
barrier disruption, and inflammation [2–7]. Although the
majority of ischemic strokes occur from embolic arterial
occlusion, oxidative stress and neuroinflammation play sig-
nificant roles in transient ischemic stroke and the reperfusion
process [8, 9]. For example, neuroinflammatory responses to
ischemic stroke are characterized by astrocyte activation and
microglial resident, peripheral leukocyte infiltration, and
proinflammatory mediator release. Moreover, infiltrated
neutrophils and activated microglia produce free radicals

and oxidants that damage the central nervous system
tissue, leading to long-term disabilities and death in stroke
patients [10]. Therefore, developing a protective strategy
against oxidative stress and subsequent neuroinflammation
may be an effective approach for the treatment of ischemic
stroke patients.

Ezetimibe (Eze) is a new lipid-lowering agent that
inhibits Niemann-Pick disease type C1-like 1- (NPC1L1-)
dependent cholesterol absorption [11, 12]; however, studies
have shown Eze to exert pleiotropic effects independent of
NPC1L1 [13–15]. For example, we have previously demon-
strated that intranasal administration of Eze attenuated neu-
ronal apoptosis through the activation of AMPK-dependent
autophagy after MCAO in rats [16]. In a rat liver
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ischemia/reperfusion model, Eze therapeutically exerted
antioxidation effects by modulating glutathione and gluta-
thione peroxidase [14]. In an Alzheimer mouse model,
researchers reported that treatment with Eze reduced the
memory dysfunctions associated with dementia [17]. Of
importance, a randomized and placebo-controlled clinical
study reported that treatment with Eze prevented the pro-
gression of the deleterious symptoms associated with acute
stroke [18]. Lastly, in hepatocyte mouse models, studies have
shown that the anti-inflammatory effects of Eze were depen-
dent on AMPK autophagic induction and NLRP3 inflamma-
some inhibition [19, 20].

Mechanistically, AMPK phosphorylation promotes the
activation of the master antioxidant regulator, nuclear factor
erythroid 2-related factor 2 (Nrf2) [21], and reduces free
radicals by increasing heme oxygenase 1 (HO-1), a down-
stream factor of Nrf2, which decreases proinflammatory
cytokines [22]. Linking oxidative stress to inflammation in
ischemic stroke, the inhibition of thioredoxin-interacting
protein (TXNIP) was shown to decrease the activation of
inflammasome-dependent pathways [23–25]. For example,
in an acute cerebral ischemic injury model, activation of
Nrf2 attenuated TXNIP and NOD-like receptor protein
3 (NLRP3) inflammasomes [26]. Taken together, Eze
exerts its pleiotropic effects through activation of Nrf2 via
AMPK-dependent pathways [20].

Therefore, in the current study, we assessed the hypothe-
sis that intranasal administration of Eze may attenuate oxida-
tive stress and neuroinflammation in a rat model of MCAO
via the AMPK/Nrf2/TXNIP pathway.

2. Materials and Methods

2.1. Animals. All experiments were approved by the Insti-
tutional Animal Care and Use Committee of Loma Linda
University in accordance with the NIH Guide for the Care
and Use of Laboratory Animals (NIH Publications No.
8023, revised 1978) and the ARRIVE2009 Guidelines for
Reporting Animal Research [27]. A total of 198 adult male
Sprague-Dawley rats (260-280 g) were obtained from the
Experimental Animal Center of Loma Linda University.
Rats were housed in a controlled humidity and tempera-
ture room with a 12 h light/dark cycle and free access to
water and food.

2.2. MCAO Model. The transient MCAO model was used in
male Sprague-Dawley rats as previously described [28].
Briefly, anesthesia was induced intraperitoneally with a mix-
ture of ketamine (80mg/kg, K2573; Sigma-Aldrich, St. Louis,
MO, USA) and xylazine (10mg/kg, X1126; Sigma-Aldrich,
St. Louis, MO, USA). Next, atropine was administered
(0.1mg/kg) subcutaneously. The depth of anesthesia was
checked by pinch-paw reflex. The right common carotid
artery (CCA), internal carotid artery (ICA), and external
carotid artery (ECA) were surgically exposed. The ECA was
ligated, and a 4–0 nylon suture with a silicon tip was then
inserted through the ECA stump into the ICA, occluding
the MCA, approximately 18 to 22mm from the insertion
point. After 2 h of MCAO, the suture was removed to begin

reperfusion. Sham rats underwent the same protocol without
occlusion of the MCA.

2.3. Experimental Design. Animals were divided into groups
for three experimental studies in a randomized fashion by
generating random numbers using Excel, and experiments
were performed in a blinded manner (Figure 1): the experi-
mental groups and sample size are listed in Table 1.

2.3.1. Experiment 1. To determine the time course of endog-
enous AMPK and phosphorylated AMPK (p-AMPK) after
MCAO or MCAO+Eze, 54 rats were randomly divided into
9 groups (n = 6 per group): sham, MCAO 6h, MCAO 12h,
MCAO 24h, MCAO 72h, MCAO+Eze 6 h, MCAO+Eze
12 h, MCAO+Eze 24 h, and MCAO+Eze 72 h. Western blot
analysis was used to detect the expression of p-AMPK in
the ipsilateral/right hemisphere of each group.

2.3.2. Experiment 2. To evaluate the neuroprotective effects of
intranasal administration of Eze at 1 h after MCAO, 30 rats
were randomly assigned into the following five groups
(n = 6 per group): (1) sham group, (2) MCAO+vehicle
(10% dimethyl sulfoxide (DMSO) in phosphate-buffered
saline (PBS)), (3) MCAO+Eze (250μg/kg), (4) MCAO+Eze
(500μg/kg), and (5) MCAO+Eze (1mg/kg). Infarction vol-
ume, modified Garcia, and beam walking scores were
assessed at 24 h after MCAO (n = 6 per group). After 2,3,5-
triphenyltetrazolium chloride (TTC) staining, the ipsilater-
al/right brain samples were collected for additional western
blots (n = 6 per group). According to our infarction volume
and neurobehavioral results, Eze at a dose of 500μg/kg had
the highest efficacy and was used for the subsequent
experiments.

To explore the effects of Eze treatment on neutrophil
infiltration and microglia/macrophage activation at 24h after
MCAO, 18 rats were randomly divided into sham, MCAO
+vehicle, and MCAO+Eze 500μg/kg groups (n = 6 per
group). Immunofluorescence staining of myeloperoxidase
(MPO) and Iba-1 was performed, and quantitative analyses
of MPO and Iba-1-positive cells were counted in the ischemic
penumbra at 24h after MCAO. The expression of MPO and
Iba-1 among the three groups was measured by western blot
at 24 h after MCAO.

To explore the effects of Eze treatment on oxidative stress
at 24 h after MCAO, another 18 rats from sham, MCAO
+vehicle, and MCAO+Eze 500μg/kg were used to measure
malonaldehyde (MDA) levels (n = 6 per group). Dihy-
droethidium (DHE) staining was performed, and the number
of DHE-positive cells was counted in the ischemic penumbra
at 24h after MCAO (shared with the immunofluorescence-
stained samples). The expression of Romo-1 among the three
groups was measured by western blot at 24 h after MCAO.

2.3.3. Experiment 3. To explore the underlying mechanisms
of Eze-mediated antioxidation and anti-inflammatory effects
after MCAO, dorsomorphin, a selective AMPK inhibitor,
was administered intracerebroventricularly (i.c.v.) 30min
before MCAO; Nrf2 small interfering RNA (Nrf2 siRNA)
was administered i.c.v. at 48 h before MCAO, followed by
administration of Eze (500μg/kg) at 1 h after MCAO. Rats
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Table 1: Summary of experimental groups and mortality rate in the study. A total of 198 rats were used in the following groups: naive (24),
sham (24), and MCAO (150). Each experiment utilized a predefined exclusion criterion: no infarction volume after MCAO (n = 6).

Groups
Neuroscore
TTC staining

IHC
DHE

MDA WB Mortality Exclusion Subtotal

Experiment 1

Sham 6 0 0 6

MCAO (6 h, 12 h, 24 h, and 72 h) 8 ∗ 6 10 (17.2%) 3 61

Experiment 2

Sham 6 6 6 6 0 0 18

MCAO+vehicle 6 6 6 6 5 (21.7%) 1 24

MCAO+Eze (250 μg/kg) 6 1 (14.3%) 0 7

MCAO+Eze (500 μg/kg) 6 6 6 6 3 (14.3%) 0 21

MCAO+Eze (1mg/kg) 6 1 (14.3%) 1 8

Experiment 3

Naive+DMSO 6 0 0 6

Naive+dorsomorphin 6 0 0 6

Naive+Eze+DMSO 6 0 0 6

Naive+Eze+dorsomorphin 6 0 0 6

MCAO+Eze+DMSO 6 6 1 (14.3%) 0 7

MCAO+Eze+dorsomorphin 6 6 2 (25%) 0 8

MCAO+Eze+Scr siRNA 6 6 0 0 6

MCAO+Eze+Nrf2 siRNA 6 6 1 (14.3%) 1 8

Total 54 18 18 78 (+42) 24 (16.7%) 6 198

Experiment 1: time course of endogenous p-AMPK Groups:
(1) Sham        (n = 6)
(2) MCAO  6 h (n = 6)   (6) MCAO+Eze    6 h  (n =6)
(3) MCAO 12 h (n = 6)  (7) MCAO+Eze  12 h  (n = 6)
(4) MCAO 24 h (n = 6)  (8) MCAO+Eze  24 h  (n = 6)
(5) MCAO 72 h (n = 6)  (9) MCAO+Eze  72 h  (n = 6)

Experiment 2: the effects of Eze on oxidative stress and neuroinflammation
Groups:
(1) Sham (n = 6)
(2) MCAO+vehicle (n =6)
(3) MCAO+Eze 250 𝜇g/kg    (n = 6)
(4) MCAO+Eze 500 𝜇g/kg    (n = 6)
(5) MCAO+Eze 1 mg/kg        (n = 6)

Experiment 3: dorsomorphin and Nrf2 siRNA reversed the neuroprotective effects of Eze
Groups:
(1)MCAO+Eze+DMSO (n = 6)

(n = 6)(2)MCAO+Eze+dorsomorphin
(3) MCAO+Eze+ScrsiRNA (n = 6)
(4) MCAO+Eze+Nrf2siRNA (n = 6)1 h 24 h

Eze Neuroscore, TTC, WB

−48 h

Dorsomorphin
MCAO

Nrf2 siRNA

−30 min

MCAO

1 h 24 h

Eze IHC, DHE 

MCAO

1 h 24 h

Eze MDA

(1) Sham (n = 6)
(2) MCAO+vehicle (n = 6)
(3) MCAO+Eze 500 𝜇g/kg (n = 6)

(1) Sham (n = 6)
(2) MCAO+vehicle (n = 6)
(3) MCAO+Eze 500 𝜇g/kg (n = 6)

MCAO

1 h 24 h

Eze Neuroscore, TTC, WB

6 h 24 h12 h 72 h

WB WB WB, IHC WBMCAO

Figure 1: Experimental design and animal groups. DHE: dihydroethidium; DMSO: dimethyl sulfoxide; dorsomorphin: AMPK inhibitor;
Eze: Ezetimibe; IHC: immunohistochemistry; MCAO: middle cerebral artery occlusion; MDA: malonaldehyde; Scr siRNA: scramble
siRNA; TTC: 2,3,5-triphenyltetrazolium chloride; WB: western blot.
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were randomly divided into seven groups (n = 6 per group):
sham, MCAO+vehicle, MCAO+Eze, MCAO+Eze+DMSO,
MCAO+Eze+dorsomorphin, MCAO+Eze+scramble siRNA
(Scr siRNA), and MCAO+Eze+Nrf2 siRNA. Ipsilateral brain
samples were collected for TTC staining and western blots at
24 h after MCAO (sham, MCAO+vehicle, and MCAO+Eze
were shared with experiment 2; n = 6 per group). Infarction
volume, neurobehavioral tests, and western blot analyses
were performed at 24 h after MCAO.

Additionally, to evaluate the effects of AMPK inhibition
via dorsomorphin, 24 rats were randomly divided into
four groups: naive+DMSO, naive+dorsomorphin, naive
+Eze+DMSO, and naive+Eze+dorsomorphin. The expres-
sion of phosphorylated AMPKwas evaluated by western blot.

2.4. Intranasal Administration of Eze. Intranasal administra-
tion was performed as previously described [29]. Briefly, rats
were treated 1 h after MCAO with DMSO or Eze (250μg/kg,
500μg/kg, and 1mg/kg dissolved in 10%DMSO, purity ≥
98%, SML-1629, Sigma-Aldrich, St. Louis, MO, USA) in a
supine position under 2% isoflurane anesthesia. A total vol-
ume of 25μl was delivered into the bilateral nares, alternating
one naris at a time, every 5min over a period of 20min.

2.5. Intracerebroventricular Injection. Intracerebroventricu-
lar (i.c.v.) administration was performed as previously
described [28]. Briefly, rats were placed in a stereotaxic appa-
ratus under 2.5% isoflurane anesthesia. A scalp incision was
made along the midline, and a 1mm burr hole was drilled
into the skull. The stereotactic i.c.v. injection site was relative
to the bregma: anteroposterior 1mm, right lateral 1.5mm,
and depth 3.5mm. The AMPK-specific inhibitor, dorsomor-
phin (0.1μmol, purity ≥ 98%, P5499, Sigma-Aldrich, St.
Louis, MO, USA), was dissolved in 20% DMSO in PBS, and
10μl was delivered into the ipsilateral ventricle with a
Hamilton syringe (Microliter 701; Hamilton Company,
USA) 30min before MCAO [30]. The same volume of
DMSO was used as a negative control. Nrf2 siRNA
(SR508224; OriGene, Rockville, MD, USA) and scrambled
siRNA (SR30004; OriGene) were prepared at 500 pmol in
RNAse free suspension buffer and administered (5μl of the
siRNAs) 48h before MCAO [31]. Lastly, the burr hole was
sealed with bone wax, and the dissection was sutured.

2.6. Neurobehavioral Function Assessment. Neurobehavioral
function was assessed with the modified Garcia and beam
walking tests by an independent, blinded researcher at 24 h
after MCAO, as previously described [32]. To understand
the effect of neuronal lesions on sensorimotor areas, the
modified Garcia test was used to measure hemiplegia, motor
performance deficits, and abnormal postures [33]. The mod-
ified Garcia scoring system consisted of 6 tests covering
spontaneous activity, symmetry in the movement of four
limbs, forepaw outstretching, climbing, body proprioception,
and response to vibrissae touch, with a maximum score of 18,
higher scores indicating better performance. In addition, to
better asses cortical motor injury, the beam walking test
was used to measure dysfunction in memory, motivation,
attention, somatomotor, and locomotor functions [34]. The

beam walking test was performed with a 0-5-point scale as
previously described [35].

2.7. Cerebral Infarction Volume Assessment. Under deep
anesthesia, animals were perfused with cold PBS (0.1M,
pH7.4) as previously described [36]. Brains were removed
and coronally sliced into 2mm thick sections. Brain slices
were incubated in 2% 2,3,5 triphenyltetrazolium chloride
(TTC, Sigma-Aldrich, St. Louis, MO, USA) for 15min at
37°C. The infarcted brain tissue appeared white, whereas
the noninfarcted region appeared red. The infarct and
total hemispheric areas of each slice were measured using
ImageJ (ImageJ 1.5; NIH, Bethesda, MD, USA). The area
of each slice was calculated using the following formula:
ððarea of contralateral − area of noninf arcted ipsilateral
tissueÞ/2 ∗ ðarea of contralateralÞÞ ∗ 100%. The area was
calculated for each slice, and the average was taken to repre-
sent the percentage of infarcted area for that animal [37, 38].

2.8. Immunofluorescence Staining. Twenty-four hours after
MCAO, under deep anesthesia, rats were perfused with ice-
cold PBS and then 10% formalin. The brains were removed
and fixed in formalin and then dehydrated with 30% sucrose.
Next, brain samples were snap-frozen and cut into 10μm
thick coronal sections using a cryostat (LM3050S; Leica
Microsystems, Bannockburn, Germany). Immunofluores-
cence staining was performed as previously described [39].
Briefly, brain samples were incubated overnight at 4°C with
primary antibodies including anti-Iba-1 (1 : 100, Abcam,
ab5076) and anti-MPO (1 : 500, Abcam, ab65871). The
sections were then incubated with the appropriate
fluorescence-conjugated secondary antibodies (1 : 200,
Jackson ImmunoResearch) for 1 h at room temperature and
then visualized with a fluorescence microscope (DMi8, Leica
Microsystems, Germany).

2.9. Measurement of Oxidative Stress

2.9.1. MDA Assay. Malonaldehyde (MDA), as an oxidative
damage marker, was determined using the MDA assay kits
(MAK805, Sigma-Aldrich, St. Louis, MO, USA) as per the
manufacturer’s protocols.

2.9.2. DHE Staining. Dihydroethidium (DHE) staining was
performed as previously described [40]. Briefly, 10μm thick
frozen brain sections were incubated with 2μmol/l fluores-
cent dye DHE (D1168, Thermo Fisher Scientific, Waltham,
MA, USA) at 37°C for 30min in a humidified chamber and
protected from light. The DHE-positive cells were observed
under a fluorescence microscope (DMi8, Leica Microsys-
tems, Germany), and the positive cells were counted by using
ImageJ software (ImageJ 1.5; NIH, Bethesda, MD, USA).

2.10. Western Blot Analysis. After TTC staining at 24 h after
MCAO, brain slices were separated into the contralateral
and ipsilateral hemispheres, flash frozen in liquid nitrogen,
and then stored at −80°C freezer. Western blot was per-
formed as previously described [41]. Nuclear proteins were
extracted from tissue homogenates using a nuclear extraction
kit (ab113474, Abcam, Cambridge, MA, USA) according to
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the manufacture’s protocol. Equal amounts of protein
samples from the ipsilateral hemispheres were separated by
10% SDS-PAGE and transferred onto nitrocellulose mem-
branes. After blocking with 5% nonfat milk at 20–25°C for
1 h, samples were incubated overnight at 4°C with primary
antibodies against AMPK (1 : 1000, CST, 5832), phosphory-
lated AMPK (p-AMPK, 1 : 1000, CST, 2535), Nrf2 (1 : 1000,
Abcam, ab31163), HO-1 (1 : 1000, Abcam, ab13248), TXNIP
(1 : 500, Proteintech, 18243-1-AP), NLRP3 (1 : 500, Abcam,
ab214185), Caspase-1 (1 : 500, NOVUS, NBP1-45433), Inter-
leukin- (IL-) 1β (1 : 500, Abcam, ab9787), Romo-1 (1 : 200,
AVIVA Systems Biology, ARP58431_P050), Iba-1 (1 : 1000,
Abcam, ab5076), MPO (1 : 500, Abcam, ab65871); Lamin B1
(1 : 1000, Proteintech, 12987-1-AP), and β-actin (1 : 4000,
Santa Cruz Biotechnology, sc-47778). Appropriate secondary
antibodies (1 : 4000, Santa Cruz Biotechnology) were selected
for the incubatedmembrane the following day for 1 h at room
temperature. Immunoblots were then visualized with an ECL
Plus chemiluminescence reagent kit (RPN3243; Amersham
Bioscience, Bensenville, IL, USA) and quantified with opti-
cal methods using the ImageJ software (ImageJ 1.5; NIH,
Bethesda, MD, USA). The results were normalized using
β-actin or Lamin B1 as an internal control.

2.11. Statistical Analysis. All data were expressed as the mean
and standard deviation (mean ± SD). Statistical analysis was
performed with GraphPad Prism 6 software (La Jolla, CA,
USA). Before analysis, the Shapiro-Wilk test was used to test
normality. For parametric data, one-way ANOVA with post
hoc Tukey test was used to test for differences among groups.
p < 0:05 was considered statistically significant.

3. Results

3.1. Mortality and Exclusion. Of the 198 total animals used,
144 were subjected to MCAO, and the overall mortality was
16.7% (24/144). No significant difference was observed in
mortality between the MCAO groups (p > 0:05). No rats died
in the sham and naive groups. Six animals were excluded

from this study due to no infarction volume after MCAO
(Table 1).

3.2. Time-Course of Endogenous p-AMPK after MCAO. The
expression of endogenous p-AMPK in the ipsilateral/right
cerebral hemispheres after MCAO was assessed by western
blot. As shown in Figure 2(a), the expression of p-AMPK
increased at 6 h, reaching its peak at 24 h, and decreased by
72 h after MCAO compared to the sham group (p < 0:05).
After Eze treatment, the endogenous p-AMPK expression
further increased at 6, 12, 24, and 72 h after MCAO com-
pared to the sham group (p < 0:05, Figure 2(b)).

3.3. Eze Treatment Reduced Brain Infraction and
Ameliorated Neurobehavioral Deficiency at 24 h after
MCAO. In the vehicle group, infarction volume was signifi-
cantly increased, while Garcia scores were significantly
decreased compared to the sham group (p < 0:05, Figure 3).
Intranasally administered Eze 500μg/kg and Eze 1mg/kg sig-
nificantly reduced the infarction volume and improved
neurological outcomes at 24 h after MCAO compared to
the vehicle group (p < 0:05, Figures 3(a)–3(c)). With no addi-
tional therapeutic effects observed with Eze 1mg/kg treat-
ments, we used Eze 500μg/kg for the subsequent studies.
There were no significant differences in beam walking scores
between the MCAO groups (Figure 3(d)).

3.4. Eze Treatment Inhibited Neutrophil Infiltration and
Microglia/Macrophage Activation at 24 h after MCAO.
MPO levels were used to assess neutrophil infiltration [8].
Iba-1 levels were used to evaluate microglia/macrophage
activation in the brain tissue [42]. Immunofluorescence
staining and western blot were used to evaluate whether the
anti-inflammatory effects of Eze were caused by a reduction
of neutrophil infiltration or microglia/macrophage activation
in the ischemic penumbra at 24h after MCAO. The immu-
nofluorescence staining results showed that Eze treatment
significantly decreased the number of MPO and Iba-1-
positive cells in the ischemic penumbra compared to the
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Figure 2: Expression of endogenous p-AMPK after MCAO. (a) Representative western blot bands and quantitative analysis of p-AMPK
expression in the ipsilateral hemisphere after MCAO. (b) Representative western blot band and quantitative analysis of p-AMPK
expression after treatment with Ezetimibe. The dose of Ezetimibe was 500μg/kg. ∗p < 0:05 vs. sham. n = 6 per group.
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vehicle group (p < 0:05, Figures 4(a) and 4(c)). Paralleling
these findings, western blot results reported a decrease in
expression of MPO and Iba-1 in the ipsilateral hemisphere
after Eze treatment compared to the vehicle group (p < 0:05,
Figures 4(b) and 4(d)).

3.5. Eze Treatment Reduced Oxidative Stress Injury at 24 h
after MCAO. Oxidative stress levels of the ipsilateral
hemisphere after MCAO were measured by MDA levels,
DHE staining, and Romo-1 expression. At 24h after MCAO,
DHE-positive cells and MDA levels were higher in the
vehicle group compared to the sham group (p < 0:05,
Figures 5(a)–5(c)); however, after intranasal administration
of Eze, DHE-positive cells and MDA levels were significantly
reduced compared to the vehicle group (p < 0:05,
Figures 5(a)–5(c)). In the vehicle group, Romo-1, a marker
of oxidative stress [43], was increased compared to that in
the sham group (p < 0:05, Figure 5(d)), while treatment with
Eze significantly reduced the expression of Romo-1 at 24 h

after MCAO (p < 0:05, Figure 5(d)). Nrf2 is a transcription
factor involved in the endogenous antioxidant stress system
[26]. Our results showed no significant difference in total-
Nrf2; however, the nuclear-Nrf2 expression increased in the
vehicle group compared to the sham group (Figures 5(e)
and 5(f)). Treatment with Eze significantly increased total-
Nrf2 expression and further increased the expression of
nuclear-Nrf2 at 24 h after MCAO compared to the vehicle
group (p < 0:05, Figures 5(e) and 5(f)).

3.6. Dorsomorphin and Nrf2 siRNA Abolished the
Neuroprotective Effects of Eze at 24 h after MCAO. Treatment
with Eze reduced infarction volume and increased Garcia
scores at 24 h after MCAO; however, this effect was reversed
with the administration of both dorsomorphin (p < 0:05,
Figures 6(a)–6(c)) and Nrf2 siRNA (p < 0:05, Figures 6(a)–
6(c)). No significant differences were observed in beam
walking scores between MCAO groups (Figure 6(d)).
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Figure 3: Eze reduced brain infraction and improved neurological outcomes at 24 h after MCAO. (a–c) Intranasal administration of Eze
reduced infarction volume and improved the Garcia score at 24 h after MCAO. (d) There were no differences in beam walking scores
between the MCAO groups. ∗p < 0:05 vs. sham, #p < 0:05 vs. vehicle, and &p < 0:05 vs. Eze 250 μg/kg. n = 6 per group. Eze: Ezetimibe.
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Figure 4: Continued.

7Oxidative Medicine and Cellular Longevity



3.7. Eze Treatment Attenuated Oxidative Stress and
Neuroinflammation via Activation of the AMPK/Nrf2/TXNIP
Pathway after MCAO in Rats. In the naive rat, the endog-
enous p-AMPK expression was significantly increased in
the ipsilateral cortex after Eze treatment. Inhibition of AMPK
with dorsomorphin significantly decreased the expression of
p-AMPK in both naive and Eze-treated animals (p < 0:05,
Figure S1).

In the vehicle group at 24h, the expression of p-AMPK,
HO-1, TXNIP, NLRP3, Cleaved Caspase-1, and IL-1β
increased compared to that in the sham group (p < 0:05,
Figures 7(a) and 7(b) and 7(d)–7(h)). Intranasal administra-
tion of Eze increased the protein expression of total-Nrf2 and
further increased p-AMPK and HO-1, while TXNIP, NLRP3,
Cleaved Caspase-1, and IL-1β were reduced compared to
that in the vehicle group (p < 0:05, Figures 7(a)–7(h)). How-
ever, inhibition of AMPK with dorsomorphin significantly
decreased the protein expression of p-AMPK, Nrf2, and
HO-1, while TXNIP, NLRP3, Cleaved Caspase-1, and IL-1β
were increased compared to that in the MCAO+Eze+DMSO
group at 24 h after MCAO (p < 0:05, Figures 7(a)–7(h)).
Consistently, knockdown of endogenous Nrf2 with Nrf2
siRNA significantly decreased the protein expression of
Nrf2 and HO-1, while TXNIP, NLRP3, Cleaved Caspase-1,
and IL-1β were increased compared to that in the MCAO
+Eze+Scr siRNA group at 24 h after MCAO (p < 0:05,
Figures 7(a) and 7(c)–7(h)).

4. Discussion

In the present study, we demonstrated that Eze attenuated
oxidative stress and neuroinflammation after MCAO. We
made the following novel observations: (1) Eze further
increased the endogenous p-AMPK expression after MCAO;
(2) intranasal administration of Eze significantly reduced
the infarction volume and improved neurological outcomes

after MCAO; (3) Eze treatment inhibited neutrophil infiltra-
tion, microglia/macrophage activation, and oxidative stress-
associated injuries in the ischemic penumbra regions after
MCAO; (4) the antioxidative stress and anti-inflammatory
effects of Eze were facilitated through the increased expres-
sion of p-AMPK, Nrf2, and HO-1, while Romo-1, TXNIP,
NLRP3, Cleaved Caspase-1, and IL-1β were reduced follow-
ing MCAO; and (5) pretreatment with dorsomorphin and
Nrf2 siRNA reversed the beneficial effects of Eze on brain
infarction, neurobehavioral function, and inflammatory
protein expression. Taken together, our findings suggest that
Eze attenuated oxidative stress and neuroinflammatory
sequelae of MCAO via activation of the AMPK/Nrf2/TXNIP
signaling pathway (Figure 8).

Accumulating scientific evidence suggests that neuroin-
flammation and oxidative stress are the main pathological
processes responsible for the impairment of neurological
function in MCAO [26, 29, 44, 45]. Clinically, Eze, a NPC1L1
inhibitor, is mainly used as a treatment for hypercholesterol-
emia; however, in addition to its lipid-lowering activity,
several studies have reported that Eze may attenuate
ischemic-related oxidative stress and inflammation [14, 19].
For example, in a rat liver ischemia/reperfusion model, Eze
was reported to attenuate oxidative radicals, modulate NO
production, and increase eNOS activity [13]. Independent
of cholesterol regulation, other studies have shown that
treatment with Eze improved renal injury outcomes in nondi-
abetic chronic kidney disease patients with dyslipidemia, which
may be explained by the asymmetric dimethylarginine-
lowering and antioxidative effects of Eze [46]. In a clinical
study evaluating the neurological deterioration after embolic
stroke resulting from atrial fibrillation in older patients,
Lappegard et al. demonstrated that anti-inflammatory
therapy with Eze may ameliorate the deterioration of neuro-
cognitive function and loss of volume in cerebral areas [47].
Consistent with these findings, we demonstrated that
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Figure 4: Eze inhibited microglia/macrophage activation and neutrophil infiltration at 24 h after MCAO. (a, c) Immunofluorescence revealed
that treatment with Eze reduced the number of MPO-positive cells and Iba-1-positive cells in the ischemic penumbra region. (b, d)
Representative western blot bands and quantitative analyses of MPO and Iba-1 protein levels at 24 h after MCAO. ∗p < 0:05 vs. sham;
#p < 0:05 vs. vehicle. n = 6 per group. Eze: Ezetimibe. Scale bar = 100 μm.
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treatment with Eze reduced brain infarction, neutrophil infil-
tration, microglia/macrophage activation, MDA levels, and
DHE-positive cell numbers. Specifically, Eze treatment
reduced the protein expression of Romo-1 (oxidative stress
marker) and IL-1β (inflammatory marker). Congruently,
neurological outcomes were improved after Eze administra-
tion at 24 h after MCAO.

Given that studies have reported Eze treatment to
increase AMPK phosphorylation, novel and unique mecha-
nistic endpoints are being investigated around AMPK regula-
tion [16, 19, 20]. According to literature, Eze increases the
oxygen consumption rate (OCR) and decreases the amount
of ATP [48], which causes an elevation of ADP/ATP ratio
that subsequently activates AMPK [20]. Therefore, Eze main-
tains cellular energy by regulating ATP consumption and

generation via phosphorylation of AMPK [19]. Confirming
this mechanistic link, our results showed that the endogenous
p-AMPK expression was acutely increased after MCAO, and
it was further increased after Eze treatment. To confirm that
Eze regulates AMPK, a specific inhibitor of AMPK was
administered with Eze. This intervention reversed the neu-
roprotective effects of Eze, increasing the infraction volume
and neurobehavioral deficits; reducing the expression of
p-AMPK, Nrf-2, and HO-1; and upregulating the expression
of TXNIP, NLRP3, Cleaved Caspase-1, and IL-1β. This
mechanistic study confirms a link between Eze and AMPK.

Nrf2 has traditionally been involved in upregulating anti-
oxidant systems to reduce oxidative stress in the brain [49].
Under oxidative stress conditions, Nrf2 dissociates from
Kelch-like ECH-associatedprotein 1 (Keap1) and translocates
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Figure 5: Eze reduced oxidative stress injury at 24 h after MCAO. (a) Representative microphotograph of DHE staining in the ischemic
penumbra region. (b) Quantitative analysis of DHE-positive cells in the ischemic penumbra region. (c) The MDA level in the ischemic
penumbra region. (d) Representative western blot band and quantitative analysis of Romo-1 expression. (e, f) Representative western blot
bands and quantitative analyses of total-Nrf2 and nuclear-Nrf2 expression. ∗p < 0:05 vs. sham; #p < 0:05 vs. vehicle. n = 6 per group. DHE:
dihydroethidium; Eze: Ezetimibe; MDA: malonaldehyde. Scale bar = 100 μm.
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into the nucleus to bind to antioxidant response elements
(ARE), which activates downstream antioxidant defense
enzymes, such as HO-1 [50]. NLRP3 is an inflammasome
protein complex located in the cell that binds to pro-
Caspase-1 to cause neuronal apoptosis and inflammation in
ischemic injuries [51]. Activation of AMPK and downstream
inhibition of both NLRP3 inflammasomes and IL-1β medi-
ates the anti-inflammatory effects of Eze [19]. Therefore,
inhibition of NLRP3 inflammasomes via the AMPK pathway

is neuroprotective in ischemic stroke [45]. Of importance,
TXNIP, a redox-regulated protein, can bind to and activate
the NLRP3 inflammasome in response to the oxidative stress
associated with stroke [23], and when TXNIP is inhibited,
Nrf2 acts as a negative regulator of the NLRP3 inflammasome
[26]. Our results showed that Eze significantly enhanced the
phosphorylation of AMPK; increased the expression of Nrf2
and HO-1; and subsequently decreased the expression of
TXNIP, NLRP3, Cleaved Caspase-1, and IL-1β. Similarly,
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Figure 6: Dorsomorphin and Nrf2 siRNA reversed the neuroprotective effects of Eze after MCAO. (a) Representative image of TTC-staining
brain slices, (b) quantified infarction volumes, (c) modified Garcia scores, and (d) beam walking scores at 24 h after MCAO. ∗p < 0:05 vs.
sham, #p < 0:05 vs. vehicle, &p < 0:05 vs. Eze+DMSO, and @p < 0:05 vs. Eze+Scr siRNA. n = 6 per group. Dorso: dorsomorphin; Eze:
Ezetimibe; Scr siRNA: scramble siRNA.
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Figure 7: Eze attenuated oxidative stress and neuroinflammation via the AMPK/Nrf2/TXNIP pathway after MCAO. (a) Representative
western blot bands. (b–h) Quantitative analyses of p-AMPK, Nrf2, HO-1, TXNIP, NLRP3, Cleaved Caspase-1, and IL-1β in the ipsilateral
hemisphere at 24 h after MCAO. ∗p < 0:05 vs. sham, #p < 0:05 vs. vehicle, &p < 0:05 vs. Eze+DMSO, and @p < 0:05 vs. Eze+Scr siRNA. n = 6
per group. Eze: Ezetimibe; Scr siRNA: scramble siRNA.
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when knocking down the endogenous Nrf2 with Nrf2 siRNA,
the protective effects of Eze were reversed: the intervention
increased infarction volumes and neurobehavioral deficits,
reducing the activation of Nrf2 and HO-1, with an associated
increase in the levels of TXNIP, NLRP3, Cleaved Caspase-1,
and IL-1β. Taken together, we can conclude that Eze exerts
antioxidative and anti-inflammatory effects via activation of
the AMPK/Nrf2/TXNIP signaling pathway.

There were some limitations in our study. First, due to
the limited nature of this pilot study, we only evaluated a
one-time window target for Eze treatment after MCAO.
Second, our results do not fully exclude the possibility of
alternative pathways that modulate the inflammasome
pathway; thus, further research will need to investigate
the relationship between other inflammasome activators
(e.g., NF-κB [52]) and the proposed pathway of Eze to fully
exclude or incorporate alternative pathways. Finally, we have
previously reported that Eze attenuates neuronal apoptosis
via AMPK-induced autophagy [16]. In addition to these
downstream targets, in the present study, Eze also decreased
oxidative stress and subsequent neuroinflammation via acti-
vation of the AMPK/Nrf2/TXNIP pathway. Therefore, Eze
may exert these effects by increasing the oxygen consumption
rate, which then decreases the amount of ATP and phosphor-
ylates AMPK, activating other downstream targets such as
autophagy. However, since lowering cholesterol may also
contribute to AMPK activation [16], NPC1L1 may have
played a role in our proposed pathway. In sum, further

research is needed to better understand the pleiotropic effects
of Eze.

5. Conclusion

In summary, our findings suggest that intranasal adminis-
tration of Eze reduced brain infarction, oxidative stress,
and neuroinflammation, while neurological outcomes were
improved after transient MCAO in rats. Mechanistically,
the neuroprotective effects of Eze were mediated through
activation of the AMPK/Nrf2/TXNIP pathway. This research
supports the continued investigation of Eze as a potential
therapy for the treatment of patients with ischemic stroke.
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Neuronal injury is the primary cause of poor outcome after subarachnoid hemorrhage (SAH). The apolipoprotein E (APOE) gene
has been suggested to be involved in the prognosis of SAH patients. However, the role of APOE in neuronal injury after SAH has
not been well studied. In this study, SAH was induced in APOE-knockout (APOE-/-) and wild-type (WT) mice to investigate the
impact of APOE deficiency on neuronal injury in the early phase of SAH. The experiments of this study were performed in murine
SAH models in vivo and primary cultured microglia and neurons in vitro. The SAH model was induced by endovascular
perforation in APOE-/- and APOE WT mice. The mortality rate, weight loss, and neurological deficits were recorded within 72 h
after SAH. The neuronal injury was assessed by detecting the neuronal apoptosis and axonal injury. The activation of microglia
was assessed by immunofluorescent staining of Iba-1, and clodronate liposomes were used for inhibiting microglial activation.
The expression of JNK/c-Jun was evaluated by immunofluorescent staining or western blotting. The expression of TNF-α,
IL-1β, and IL-6 was evaluated by ELISA. Primary cultured microglia were treated with hemoglobin (Hb) in vitro for simulating
the pathological process of SAH. SP600125, a JNK inhibitor, was used for evaluating the role of JNK in neuroinflammation.
Nitrite production was detected for microglial activation, and flow cytometry was performed to detect apoptosis in vitro. The
results suggested that SAH induced early neuronal injury and neurological deficits in mice. APOE deficiency resulted in more
severe neurological deficits after SAH in mice. The neurological deficits were associated with exacerbation of neuronal injury,
including neuronal apoptosis and axonal injury. Moreover, APOE deficiency enhanced microglial activation and related
inflammatory injury on neurons. Inhibition of microglia attenuated neuronal injury in mice, whereas inhibition of JNK
inhibited microglia-mediated inflammatory response in vitro. Taken together, JNK/c-Jun was involved in the enhancement of
microglia-mediated inflammatory injury in APOE-/- mice. APOE deficiency aggravates neuronal injury which may account for
the poor neurological outcomes of APOE-/- mice. The possible protective role of APOE against EBI via the modulation of
inflammatory response indicates its potential treatment for SAH.

1. Introduction

Subarachnoid hemorrhage (SAH) is a fatal neurovascular
disease with an overall mortality of approximately 50%, and
more than 30% of survivors remain severely disabled [1].
Over the past decade, more efforts have been made to eluci-

date the pathophysiological processes of early brain injury
(EBI) which is widely accepted as one of the primary causes
of poor outcome of SAH [2]. Acute neuronal injury is the
core issue of EBI. Integrity of neurons is the basis of intact
neurological functions. SAH induces complicated pathologi-
cal processes including neuroinflammation, oxidative stress,
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and blood-brain barrier (BBB) interruption, which ultimately
aggravate neuronal injury [2]. Therefore, these processes are
potential targets for preservation of neuronal function.

Experimental and clinical studies suggest that inflam-
matory response is a major cause of brain injury after SAH
[3–5]. Microglia are primary mediators of the immunological
system in the central nervous system (CNS), which rapidly
respond to injury and initiate an inflammatory effect [6, 7].
SAH induces activation of resident microglia [8], thereby
exerting inflammatory responses in the brain. The roles of
microglia in neurological diseases are complicated [9, 10],
and whether this cell group is beneficial or harmful is still
unclear in the early phase of SAH. Therefore, revealing the role
of microglia following SAH provides evidence for targeting
immunological cells and their consequent neuroinflammation
as a potential treatment for neuronal injury after SAH.

Apolipoprotein E (APOE for gene, ApoE for protein), the
major apolipoprotein in the CNS, is a multifunctional pro-
tein that is predominantly involved in the transportation of
cholesterol and lipid. APOE has been suggested to influence
the pathological process of SAH. We have previously found
that APOE exerts neuroprotective effects via BBB preserva-
tion after SAH [11]. An exogenous ApoE peptide has been
demonstrated to improve the neurological functions of
SAHmice [12]. Furthermore, in a model of microglial activa-
tion, exogenous ApoE inhibited microglial activation and the
release of proinflammatory chemicals [13]. Nevertheless, the
role of APOE in the process of EBI has not yet been explored.
Furthermore, the modulation of SAH-induced inflammatory
responses by APOE remains unclear.

Based on the previous reports, we hypothesized that
APOE protects against neuronal injury after SAH in an

anti-inflammatory manner. To investigate the hypothesis,
the impacts of APOE on the neurological outcomes, neuronal
damage, and inflammatory responses were assessed in a
mouse model of SAH.

2. Materials and Methods

2.1. Animals. All experiments were conducted in strict
accordance with the recommendations of the Guide for
the Care and Use of Laboratory Animals of China. The pro-
tocol was approved by the committee on the Ethics of Ani-
mal Experiments of Chongqing Medical University. Adult
(8-12 weeks) male wild-type (WT) C57BL/6J mice and
APOE-knockout (APOE-/-) mice on a C57BL/6J back-
ground were obtained from the Laboratory Animal Center
of Chongqing Medical University. The design of the
in vivo study is revealed in Figure 1.

2.2. Induction of SAH. SAH induction was performed as pre-
viously described [14]. Briefly, animals were anesthetized
with an intraperitoneal injection of pentobarbital sodium
(50mg/kg). The right common carotid artery (CCA), exter-
nal carotid artery (ECA), and internal carotid artery (ICA)
were exposed. A 5-0 Prolene filament (Ethicon, Somerville,
USA) was advanced into the anterior cerebral artery (ACA)
via the ECA and ICA. After a subtle resistance was encoun-
tered, the filament was advanced 2mm further to perforate
the ACA. Subsequently, the filament was immediately with-
drawn. In the sham operation group, the same procedure
was performed with the exception of the perforation of
the ACA. The body temperature was maintained at 37:5 ±
0:5°C during the operation. The SAH score is assessed
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according to a previously reported grading system [15]. Since
SAH induces a high mortality rate, mice that died within 72 h
were excluded and relevant mice were supplemented.

2.3. Rotarod Test and Weight Loss. The rotarod test (TME,
Chengdu, China) was used to evaluate the motor deficits of
the SAH mice according to the method reported by Hamm
et al. [16]. Briefly, all mice were trained at a speed of
16 rpm three times a day for three days prior to SAH induc-
tion. Before SAH induction, the baseline of rotarod latency of
each mouse was examined with an accelerating speed (start-
ing from 0 rpm, accelerated by 3 rpm every 10 seconds until
the rotating speed reached 30 rpm). The accelerating test
was repeated at 24 h after SAH induction. Every test was
repeated three times. The test ended when mice fell from
the rod, and the latencies were recorded. The weight of
each mouse was recorded before the rotarod test, and the
weight loss was calculated according to the original weight
of animals.

2.4. Clodronate Liposome Administration. Clodronate lipo-
somes (FormuMax Scientific, Inc., Palo Alto, CA, USA) were
injected intracerebroventricularly 1 day prior to SAH induc-
tion. Briefly, after mice were anesthetized, a burr hole was
drilled 0.22mm posterior to the bregma, 1mm lateral, and
2.25mm in depth to enter the bilateral ventricle. PBS lipo-
somes which do not contain clodronate were used as controls.
The dose of clodronate liposomes was adjusted according to
the instructions (0.2ml/20 g).

2.5. Cell Culture and Treatment Protocols. Primary microglia
were prepared from postnatal day 1 C57BL/6J mice as previ-
ously reported [13]. Primary neurons were prepared from a
day 15 embryonic cortex obtained from the pregnant
C57BL/6J mice as previously reported [17]. All experiments
were carried out 24h after cells were seeded. The cells were
treated with hemoglobin (Hb) (Sigma, St. Louis, MO, USA)
diluted in culture medium or combined with SP600125
(Abcam, Cambridge, USA) diluted in DMSO for 24 h. The
vehicle was used as the control. The supernatants were
removed and replaced with fresh DMEM for another 24h.
Then, microglia were collected for assays. The conditioned
medium of microglia was collected and added to neurons
which were cultured in DMEM/F12 supplemented with 10%
FBS for 24 h. Then, the cells were harvested for experiments.

2.6. Nitrite Quantification. The production of NO was
assessed as the accumulation of nitrite from the spontaneous
oxidation of NO in conditioned media after 24 h. Accumula-
tion of nitrite was quantified using a colorimetric reaction
with the Griess reagent (Invitrogen, Waltham, MA, USA).
Absorbance was measured at 570nm by spectrophotometry.

2.7. Enzyme-Linked Immunosorbent Assay. Quantification of
the protein levels of TNF-α, IL-1β, and IL-6 was performed
by the enzyme-linked immunosorbent assay (ELISA).
Homogenates of the brain of mice or cultured medium of
microglia were prepared for detection according to the man-
ufacturer’s instructions of the ELISA kits (Boster, Wuhan,
China). The protein content of each sample was detected

with a BCA kit (Beyotime, Haimen, China). The results were
normalized to protein levels.

2.8. Immunofluorescence Staining. Brain samples were fixed
with 4% paraformaldehyde for 4 h, followed by overnight
immersion in phosphate buffer containing 30% sucrose.
The brain samples then were embedded in OCT solution,
and coronal frozen sections (10μm) were prepared. The
sections were incubated with primary antibodies at 4°C over-
night, including anti-β-APP (1 : 100, Abcam, Cambridge,
USA), anti-ApoE (1 : 100, Abcam, Cambridge, USA), anti-
NeuN (Abcam, Cambridge, USA), anti-Iba-1 (1 : 200, Wako,
Osaka, Japan), and anti-P-JNK (Abcam, Cambridge, USA).
Sections were then incubated with DyLight 488-conjugated
goat anti-rabbit and DyLight 549-conjugated goat anti-
mouse secondary antibodies (Abbkine, Redlands, USA).
DAPI was used for nuclear staining. The number of positive
cells was counted with Image-Pro Plus 6.0 software (Media
Cybernetics, Bethesda, USA).

2.9. Apoptosis Assay. Coronal frozen sections of around the
layer of ICA bifurcation were prepared. A NeuN primary
antibody (1 : 100, Abcam, Cambridge, USA) was incubated
overnight using the sections prior to TUNEL. TUNEL stain-
ing was performed as per the instructions of an in situ cell
death detection kit (Roche, Indianapolis, USA). DAPI was
used for nuclear staining. TUNEL-NeuN-costained cells
were identified as apoptotic neurons with a fluorescence
microscope (Leica, Wetzlar, Germany).

2.10. MRI Scan. Magnetic resonance imaging (MRI) was per-
formed on a 7.0T animal scanner (Bruker Biospin, Germany).
Mice were anesthetized with 1.5% isoflurane in a mixture of
30% O2 and 70% N2O and fixed on a holder. Diffusion tensor
imaging (DTI) images were acquired using RARE (repetition
time = 3000ms, echo time = 25ms, field of view = 2:5 cm,
and slice thickness = 0:5mm). A voxel-weighted fractional
anisotropy (FA) measure was calculated for the region of
the corpus callosum. All images were calculated with
Bruker ParaVision 6.0 software (Bruker Biospin, Germany).

2.11. Western Blots. Brain hemispheres of mice were homog-
enized with RIPA (Beyotime, Haimen, Jiangsu, China) plus
protease inhibitor cocktail (Roche, Indianapolis, IN, USA)
and phosphatase inhibitors (Boster, Wuhan, Hubei, China).
Prepared protein extracts were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and transferred
to polyvinylidene difluoride membranes. The membranes
were probed overnight at 4°C with the following primary
antibodies: anti-ApoE (1 : 500, Abcam, Cambridge, USA),
anti-Iba-1 (1 : 500, Wako, Osaka, Japan), anti-P-JNK
(1 : 1000, CST, Danvers, MA, USA), anti-JNK (1 : 500, Santa
Cruz, Dallas, TX, USA), anti-P-c-Jun (1 : 1000, CST, Danvers,
MA,USA), and anti-c-Jun (1 : 1000, CST, Danvers,MA,USA)
followed by incubation with secondary antibodies conjugated
with horseradish peroxidase. The bands were revealed using
an ECL western blotting kit (Thermo Scientific, Pittsburgh,
PA, USA) and photographed with a chemiluminescence
imaging system (Bio-Rad, Hercules, CA, USA). The amount
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of protein in each band was quantified using Image Lab
Software (Bio-Rad, Hercules, CA, USA).

2.12. Flow Cytometry. For apoptotic detection, cultured neu-
rons were harvested after treatment. Neurons were prepared
according to the introduction of an apoptosis detection kit
(BD, San Jose, CA, USA). Briefly, cells were incubated with
5μl of Annexin V-FITC dye solution for 15min at 4°C and
10μl of PI dye solution for 5min at room temperature.
Then, the cells were subjected to flow cytometry. Annexin
V-FITC+PI+ and Annexin V-FITC+PI- cells were deemed
apoptotic cells.

2.13. Statistical Analysis. Parametric values were expressed as
the mean ± standard deviation (SD). Two-tailed Student’s
t-test was used for comparison between two groups, and
one-way analysis of variance (ANOVA) was applied for
multiple comparisons. Bonferroni’s post hoc method was
applied for comparison among groups. The Fisher exact
test was used in two-group comparisons for mortality analy-

sis. All statistic values were calculated using SPSS 19.0 (SPSS,
Inc., Chicago, USA). Significance was assumed at P < 0:05.

3. Results

3.1. APOE Deficiency Aggravated Neurological Deficits in the
Early Phase of SAH. In order to investigate the impact of
APOE deficiency on early neurological dysfunction after
SAH, the mortality rates, rotarod test, and weight loss were
assessed in APOE-/- and WT mice. No animal died in the
sham-operated group. The overall mortality rate of the WT
group within 72 h after SAH was 29.4% (10 of 34), whereas
43.2% of the APOE-/- mice (19 of 44) died within 72h after
SAH (Figure 2(a)). However, the mortality exhibited no sig-
nificant difference betweenWT and APOE-/- mice after SAH.

The rotarod latencies of both the APOE-/- and WT mice
decreased drastically 24 h after SAH relative to the sham-
operated mice, and the neurological functions recovered
gradually at 48 h and 72h after SAH. Meanwhile, APOE-/-

mice exhibited worse motor function as indicated by shorter
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Figure 2: APOE deficiency aggravated neurological deficit within 72 h after SAH. (a) APOE-/- SAH mice exhibited a lower tendency of
survival percentage than WT mice. However, the difference was nonsignificant. (b) APOE-/- mice exhibited a more severe motor deficit
than WT mice at both time points (∗P < 0:05, ∗∗P < 0:01; n = 6 for each group). (c) SAH induced weight loss of all mice (∗∗P < 0:01,
compared to sham). Weight loss of APOE-/- mice exceeded that of WT mice at 48 h and 72 h after SAH (#P < 0:05, ##P < 0:01; n = 6 for
each group). (d) No difference was observed between APOE-/- and WT mice in the SAH grade.
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rotarod latencies, relative to WT mice at 24 h, 48 h, and 72 h
after SAH (Figure 2(b)). SAH induced weight loss of all mice.
Weight loss of APOE-/- mice exceeded that of WT mice at
48 h and 72h after SAH (Figure 2(c)). No difference was
observed between APOE-/- and WT mice in the SAH grade
score (Figure 2(d)).

These results revealed that APOE deficiency aggravates
neurological deficits in the early phase of SAH. Hence, lack-
ing APOE may cause more severe neuronal damage. To
investigate the hypothesis, we further test the neuronal
damage in APOE-/- and WT mice after SAH.

3.2. APOE Deficiency Aggravated Neuronal Apoptosis and
White Matter Injury in the Early Phase of SAH. To reveal the
mechanism underlying the varying degrees of neurological
deficits between APOE-/- andWTmice, the neuronal damage
was investigated. As the neuronal function relies on the integ-
rity of neuronal cell bodies and axons, we further tested neu-
ronal apoptosis and white matter injury in APOE-/- and WT
mice at 24 h after SAH. SAH induced evident neuronal apo-
ptosis (Figure 3(a)), while the apoptotic neurons of APOE-/-

mice outnumbered those ofWTmice (Figure 3(d)). Accumu-
lation of β-APP is usually deemed a mark of axonal injury
[18]. SAH induced axonal injury in the early phase of SAH,
while APOE-/- mice exhibited more severe damage than WT
mice after insult (Figure 3(b)). These results provide patho-
logical evidence that APOE-/- mice are more vulnerable in
SAH-induced axonal injury. To confirm the pathological
findings, the FA in the injured white matter regions was
determined with 7.0T MRI at 24 h after SAH. SAH caused
FA decrease in white matter regions (Figure 3(c)), while
APOE-/- mice exhibited a greater degree of FA decrease
than WT mice (Figure 3(e)).

These results suggested that APOE deficiency exacerbates
neuronal damage, including injuries of neuronal cell bodies
and axons, which may explain the worse neurological func-
tion of APOE-/- mice in the early phase of SAH. We further
investigated the mechanisms behind the different degrees of
neuronal injury between APOE-/- and WT mice. Based on a
previous report, APOE is associated with mediation of
microglial activation [13]. Thus, the number of microglia
was detected after SAH.

3.3. APOE Deficiency Aggravated Microglial Activation.
Microglia-mediated neuroinflammation is associated with
neuronal damage in neurological diseases. A previous report
suggests that ApoE inhibits microglial activation in vitro
[13]. Our results showed a significant increase in microglia
in both the cortex and white matter after SAH. APOE defi-
ciency promoted microglial activation manifesting as more
Iba-1-positive cells detected in cortex and white matter
SAH (Figure 4(a)). Western blotting confirmed a more active
microglial response after SAH (Figure 4(b)).

These results indicated that APOE deficiency aggravated
microglial activation, which may exacerbate inflammatory
damage of neurons. To verify whether microglial activation
is associated with neuronal injury, we further applied clodro-
nate liposome to deplete microglia and detected the neuronal
damage after SAH.

3.4. Microglial Depletion Alleviated Neuronal Damage.
Clodronate liposome is widely used to deplete microglia
and macrophages [9, 19]. A SAH model was applied in WT
mice to test the influence of clodronate liposome on neuronal
damage. Systemic administration of clodronate liposome
reduced the number of microglia in the brain (Figure 5(a)).
Clodronate liposome inhibited neuronal apoptosis after
SAH (Figures 5(b) and 5(d)). Additionally, clodronate lipo-
some ameliorated β-APP accumulation in the white matter
after SAH (Figure 5(e)). A DTI image exhibited that clo-
dronate liposome reserved FA (Figures 5(c) and 5(f)),
indicating the protection for the white matter by clodro-
nate liposome.

These results showed that microglial depletion allevi-
ates neuronal injury after SAH, which indicates that
microglia may mediate inflammatory injury of neurons.
To investigate the influence of APOE on microglial
inflammatory response, we further detected the expression
of inflammation-relative molecules, JNK/c-Jun, and proin-
flammatory cytokines.

3.5. APOE Deficiency Promoted JNK-Mediated
Neuroinflammation. The findings above indicate that APOE
deficiency may aggravate neuronal injury via overactivation
of microglia after SAH. The previous report suggests that
APOE inhibits microglial activation in vitro via inhibiting
the JNK pathway through binding to LRP1, a receptor of
ApoE on microglia [20]. Therefore, we evaluated the
JNK/c-Jun pathway in SAH mice. SAH promoted JNK and
c-Jun phosphorylation, and the phosphorylation levels of
JNK and c-Jun in APOE-/- mice were higher than those in
WT mice (Figures 6(a) and 6(b)). Costaining was applied to
confirm the expression of JNK/c-Jun in microglia. The
microglia in sham mice barely expressed P-JNK. SAH
promoted JNK phosphorylation in microglia, while APOE
deficiency stimulated JNK phosphorylation in microglia after
SAH (Figure 6(c)). The expression of downstream proinflam-
matory cytokines of JNK/c-Jun, TNF-α, IL-1β, and IL-6,
exhibited that APOE deficiency promoted proinflammatory
cytokine expression after SAH (Figures 6(d)–6(f)).

These results showed that APOE deficiency promotes
JNK/c-Jun activation in microglia and its expression of pro-
inflammatory cytokines after SAH, indicating that APOE
may inhibit microglia-induced inflammatory injury on
neurons via JNK/c-Jun. To test this hypothesis, we further
investigated the role of JNK/c-Jun in inflammatory neuronal
injury in vitro.

3.6. Microglia Exerted Neuronal Injury via JNK/c-Jun In
Vitro. Hb is one of the major proinflammatory gradients
released in the subarachnoid space after SAH [21]. To test
the neuronal injury by activated microglia, cultured
microglia were treated with Hb or vehicle for 24 h. The
supernatants were removed and replaced with fresh
DMEM for another 24 h, and then, the cultured medium
was collected, respectively, to treat cultured neurons for 24h
(Figure 7(a)). Hb treatment induced microglial activation
manifested by the release of the proinflammatory reagent
nitrite (Figure 7(b)). Hb treatment stimulated JNK/c-Jun
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Figure 3: APOE deficiency aggravated neuronal damage in the early phase of SAH. (a) Costaining of TUNEL and NeuN showing apoptotic
neurons. (d) SAH induced neuronal apoptosis in the cortex (∗∗P < 0:01, compared to sham, n = 5), while the number of apoptotic neurons of
APOE-/- mice was more than that of WT mice (##P < 0:01). (b) APOE deficiency aggravated β-APP accumulation in the white matter after
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(∗P < 0:05, ∗∗P < 0:01, compared to sham, n = 4), while the FA of APOE-/- mice in the white matter was lower than that of WT mice
(##P < 0:01). Bar = 50 μM.
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Figure 6: APOE deficiency enhanced JNK-mediated neuroinflammation. (a) SAH promoted JNK phosphorylation (∗P < 0:05, ∗∗P < 0:01,
compared to sham, n = 5), while P-JNK level was higher in APOE-/- mice than in WT mice (##P < 0:01). (b) SAH promoted c-JUN
phosphorylation (∗∗P < 0:01, compared to sham, n = 5), while P-c-Jun level was higher in APOE-/- mice than in WT mice (##P < 0:01).
(c) Immunofluorescence showing higher level of JNK phosphorylation in microglia in APOE-/- mice than in WT mice. (d–f) ELISA
showing that SAH promoted cytokine expression including TNF-α, IL-1β, and IL-6 (∗P < 0:05,, compared to sham, n = 5), while the
levels of these cytokines were higher in APOE-/- mice than in WT mice (#P < 0:05, ##P < 0:01). Bar = 50 μM.
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activation, while SP600125, a JNK inhibitor, inhibited the
effect of Hb (Figure 7(c)). Additionally, Hb promoted the
release of downstream cytokines, TNF-α and IL-1β, in the
medium, while SP600125 reduced cytokine release by
microglia (Figures 7(d)–7(f)). These results suggest that
microglia-mediated inflammatory response depends on the
activation of JNK/c-Jun.

We further investigated the effect of microglia-mediated
inflammatory response onneurons by treating themwith con-
ditioned medium. Conditioned medium from Hb- (10μM)
treated microglia induced neuronal apoptosis. In contrast,
conditioned medium from microglia treated with Hb
(10μM) and SP600125 (10μM) combination ameliorated
neuronal apoptosis (Figure 7(g)). These results showed that

BV-2 Microglia BV-2 Microglia BV-2 Microglia HT-22 Neuron

Assay
(1)Hb (2)Ctrl. Change medium Medium

24 h 24 h 24 h

(a)

201051.25

60

40

20

0
Ctrl.

Hb (𝜇M)

⁎⁎⁎⁎

⁎⁎

⁎⁎

N
itr

ite
 (𝜇

M
)

(b)

Ct
rl.

H
b

SP
. 1

0 
𝜇

M

P-c-Jun

c-Jun

SP
. 5

 𝜇
M

1.5

1.0

0.5

0.0
Hb (10 𝜇M) + + +

10

##

##

⁎⁎

5SP600125 (𝜇M)
–

– –

Pr
ot

ei
n 

le
ve

l o
f c

-J
un

(r
el

at
iv

e b
an

d 
de

ns
ity

)

(c)

150

100

50

0

##
#

Hb (10 𝜇M) + + +
105SP600125 (𝜇M)

–

– –

Pr
ot

ei
n 

le
ve

l o
f T

N
F-
𝛼

 (p
g/

/m
l) ⁎⁎

(d)

200

150

100

50

0

##

#

Hb (10 𝜇M) + + +
105SP600125 (𝜇M)

–

– –

Pr
ot

ei
n 

le
ve

l o
f I

L-
𝛽

 (p
g/

/m
l) ⁎⁎

(e)

150

100

50

0

##

#

Hb (10 𝜇M) + + +
105SP600125 (𝜇M)

–

– –

Pr
ot

ei
n 

le
ve

l o
f I

L-
6 

(p
g/

/m
l)

⁎⁎

(f)

Ctrl. Hb Hb+SP600125

60P2-Q1 P2-Q2P2-Q1 P2-Q2P2-Q1 P2-Q2

P2-Q3P2-Q3

530/40 [488]-Annexin V FITC530/40 [488]-Annexin V FITC

67
0/

30
 [5

61
]-

PI

67
0/

30
 [5

61
]-

PI

67
0/

30
 [5

61
]-

PI

530/40 [488]-Annexin V FITC
104103102101100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104103102101100104103102101100

P2-Q4P2-Q4P2-Q3P2-Q4

40

20

0

Ct
rl. H
b

H
b+

SP
60

01
25

#

A
po

pt
ot

ic
 ra

te
 (%

)

⁎⁎

(g)

Figure 7: Involvement of JNK in microglial inflammation and neuronal injury. (a) In vitro experiment using cultured microglia incubated
with Hb or vehicle control for 24 h. The conditioned medium was applied for incubation of neurons for 24 h. (b) Hb stimulated nitrite
expression in microglia. As the doses of Hb increased, the nitrite expression elevated in microglia (∗∗P < 0:01, n = 3). (c) Hb induced
phosphorylation of c-Jun in microglia (∗∗P < 0:01, n = 3). SP600125 attenuated c-Jun phosphorylation after Hb incubation (##P < 0:01,
n = 3). (d–f) Hb induced cytokine expression including TNF-α, IL-1β, and IL-6 in microglia (∗∗P < 0:01, compared to ctrl.), while
SP600125 inhibited cytokine expression stimulated by Hb (#P < 0:05, ##P < 0:01, n = 3). (g) Conditioned medium of Hb-treated
microglia induced neuronal apoptosis (∗∗P < 0:01, n = 3), while conditioned medium from SP600125-treated microglia attenuated
neuronal apoptosis (#P < 0:05). Bar = 50 μM.
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JNK/c-Jun was involved in microglia-mediated inflammation
which subsequently exerted neuronal injury.

3.7. Potential Implication of APOE in Brain Injury in the
Early Phase of SAH. To examine the expression features of
ApoE protein after SAH, we further tested the time course
of ApoE expression within 72 h after SAH. The results
showed an elevation of ApoE expression and peaked at 24 h
after SAH, while APOE-/- mice did not express ApoE protein
(Figure 8(a)). Costaining of cell markers and ApoE exhibited
that ApoE was expressed dominantly in astrocytes and partly
in neurons after SAH (Figure 8(b)). Although microglia were
not the major source of endogenous ApoE, abundant LRP1, a
major receptor of ApoE mediating a JNK/c-Jun signal, was
observed in microglia (Figure 8(c)).

Combined with the findings above, APOE deficiency may
enhance the JNK/c-Jun activation after SAH, which pro-
motes the microglial inflammatory response. The enhanced
neuroinflammation then aggravates neuronal injury and sub-
sequently deteriorates the neurological deficits of APOE-/-

mice. In contrast, APOE may exert protection in WT mice
after SAH (Figure 8(d)).

4. Discussion

In summary, SAH induced neuronal injury and neurological
deficits in mice in the early phase. APOE deficiency resulted
in more severe neurological deficits after SAH in mice.
These deficits were associated with exacerbation of neuro-
nal injury, including neuronal apoptosis and axonal injury.
Moreover, APOE deficiency enhanced microglial activation
and related inflammatory injury. JNK/c-Jun was involved
in the enhancement of inflammatory injury in APOE-/-

mice. These results indicate that APOE may exert a pro-
tective role against neuronal injury via the suppression of
the inflammatory response.

The impact of APOE on the neurological outcomes of
SAH animals has been observed in a previous report [22].
The evidence suggests that APOE is involved in the brain
injury after SAH. For better understanding of this question,
the role of APOE (e.g., protective or damaging) in SAH needs
proving. Our results showed that APOE deficiency depleted
the endogenous ApoE and its subsequent signaling modu-
lation, which eventually resulted in the aggravation of
brain injury. Reversely, we previously found that exoge-
nous ApoE exerts protective effects in SAH mice [12].
These findings suggest that the downstream signaling effect
of APOE is protective after SAH. Moreover, it is reported
that the different impacts of APOE subtypes on the outcomes
of SAH may be due to their diverse affinity to the func-
tional receptors [23, 24]. From this perspective, we specu-
late that the influence of APOE polymorphisms on the
outcomes of SAH may depend on the degrees of neuro-
protective effects of different APOE alleles. Combined with
the present work, APOE mediates beneficial effects in the
early phase of SAH.

SAH has long been discovered to induce neuroinflamma-
tory response [2]. We observed that APOE deficiency
increased the microglial count in the brain early after SAH.

Microglia play important roles in immunological surveil-
lance and homeostasis maintenance in CNS. Resting microg-
lia that are stimulated by blood cells and lysate transform into
an activated phenotype, thereby exerting immunological
responses after SAH [8]. It remains unclear whether the
microglia in the early phase of SAH are beneficial or harmful.
The role of microglia varies in different phases of neurologi-
cal diseases, which may be due to the complex activating fea-
tures of these cells [25]. Microglia are observed to transform
into different phenotypes which possess totally different bio-
logical nature, referred to as microglial polarization. Modula-
tion of microglial polarization is reported to protect against
neuronal injury [26]. However, queries suggest that microglia
demonstrate a dynamic phenotype determined by the local
environment [27]. A black box model may avoid the contro-
versy and assess the comprehensive effect of microglia
directly. Hanafy [9] reported that depleting resident microg-
lia by clodronate liposome in mice attenuates neural apopto-
sis after SAH. In the present study, neuronal injury including
apoptosis and white matter injury was attenuated by micro-
glial depletion, indicating that microglia exert a comprehen-
sive harmful effect on neurons in the early phase of SAH.

Elevated levels of inflammatory cytokines are associated
with poor outcome of SAH patients in the early phase of
SAH [1], suggesting the damaging role of inflammation in
SAH. The present findings were consistent with the clinical
observation that neuroinflammation contributes to brain
injury after SAH. The suppression of the inflammatory
response is considered an important aspect of the neuropro-
tective effects of APOE [28]. For instance, exogenous ApoE
attenuates microglial activation and its subsequent inflam-
matory response in vitro [13]. Additionally, our previous
study demonstrated that ApoE inhibits microglial activation
and alleviates neuronal damage in EBI [12]. It was observed
that the major cellular source of ApoE in the brain is astro-
cytes, and neurons partly express ApoE. Although microglia
barely express ApoE, they are abundant in ApoE receptors.
ApoE binds to the functional receptors expressed on the cel-
lular membrane of microglia [29], which may explain the
modulation of microglial function by APOE. Besides inflam-
matory response, oxidative stress may also contribute to the
neuronal injury after SAH. Tu et al. [30] reported that
ApoE-derived peptide reduces oxidative stress and improves
outcome in an ischemic stroke mouse model, indicating
that APOE may also regulate oxidative stress in the acute
brain pathological process. Chen et al. [31] reported that
oxidative stress is related to ROS/JNK signaling pathway
acute stress-induced kidney injury. Our study revealed a
regulation of the JNK pathway by APOE, which indicates
that APOE may modulate oxidative stress via the JNK sig-
naling pathway. The role of oxidative stress in SAH and
the possible influence of APOE on oxidative stress need
further exploration.

Previous reports have shown that JNK/c-Jun contributes
to EBI after SAH [32]. JNK is activated early after SAH, and
the inhibition of JNK attenuates apoptosis and BBB interrup-
tion. APOE has been demonstrated to suppress microglial
activation by inhibiting the JNK pathway in vitro [13]. In
the present study, the activation of JNK/c-Jun in microglia
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was enhanced by APOE deficiency in vivo, while inhibition
of JNK phosphorylation alleviated neuronal injury, thereby
indicating that APOE attenuates microglia-mediated inflam-
mation, at least in part, via the suppression of the JNK path-
way after SAH. Pocivavsek et al. [20] reported that the
modulation of microglial inflammation via JNK/c-Jun and
the effect are predominantly mediated by LRP1. Moreover,
Zhu et al. [33] revealed that ApoE binding to cell surface
receptors and the consequential inhibition of JNK/c-Jun acti-
vation are required for IL-6, IL-1β, and TNF-α secretion in
macrophages. Higher levels of cytokine production were
observed in APOE-/- mice. These cytokines exert inflamma-
tory brain injury in the early phase of SAH. TNF-α has been
demonstrated to initiate apoptosis by triggering the caspase
cascade [27] and mediate myelin and neuronal damage
[34]. Microglia are the major source of IL-1 following SAH
[35]. IL-1β is reported to participate in EBI via activating
JNK and MMP-9 [36]. Combined with this evidence,
JNK/c-Jun is a key signal in APOE-mediated microglial
inflammation after SAH.

Neuronal injury is the major cause of neurological defi-
cits in SAH mice. Axons in the white matter consist in the
integrity of neuronal function. White matter injury has
recently been reported in SAH mice [37, 38]. Nevertheless,
information on how these changes occur is lacking. Mechan-
ical insult from sudden arterial rupture is thought to play a
pivotal role in SAH-induced white matter injury, especially
in the region distant from the rupture point [38]. More
recently, Egashira et al. [39] reported that MMP-9-induced
BBB disruption contributes to white matter injury after
SAH. Consistent with the study, we found that endogenous
ApoE increased as early as 6 h after SAH, and APOE defi-
ciency induced a greater production of IL-1β which was pre-
viously shown to activate MMP-9 and cause BBB disruption
[36]. In the present study, we observed that microglia exert a
damaging effect on neurons after Hb treatment, which sug-
gests that inflammation may be responsible for white matter
injury after SAH. Wang et al. [10] reported that microglia
mediate axonal damage after experimental TBI, which indi-
cates that microglia play important roles in white matter
injury. Moreover, we previously observed that microglial
response is associated with white matter injury after SAH
[40]. Besides the fact that microglia secreting nitrite and cyto-
kines to induce neuronal injury were observed in the present
study, it is suggested that microglia may exert direct injury on
axons by physical cell-cell interactions [41]. Therefore, we
favor the hypothesis that neuroinflammation also contrib-
utes to white matter injury, which may be a novel explanation
for the vulnerability of APOE-/- mice in SAH, and indicate
the prospect of treatment targeting white matter injury.

There are several limitations to the current study. The
influence of APOE on brain injury was only tested in the
acute-phase post-SAH. APOE may also be involved in the
later course of the condition. Therefore, long-term observa-
tions should be applied in the future. The semiquantitative
nature of the in vivo measurement of microglia is a further
limitation. Future in vivo stereological quantifications should
be considered. White matter injury was observed in the pres-
ent study. The mechanisms by which these insults result in

EBI and their influences on neurological functions require
further exploration.

In conclusion, APOE deficiency aggravates neurological
deficits of SAH mice, which may be due to the exacerbation
of neuronal apoptosis and white matter injury in the early
phase. The aggravated neuronal damage is associated with
enhanced microglial activation, which is mediated by APOE
via the JNK/c-Jun signal. These results demonstrate the pro-
tective role of the APOE gene against neuronal injury and
provide evidence for the exploration of APOE-based treat-
ments for SAH.
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There are still unknownmechanisms involved in the development of Parkinson’s disease (PD), which elucidating them can assist in
developing efficient therapies. Recently, studies showed that genes located on the human chromosomal location 22q11.2 might be
involved in the development of PD. Therefore, the present study was designed to evaluate the role of two genes located on the
chromosomal location (miR-185 and SEPT5), which were the most probable candidates based on our bibliography. In vivo and
in vitro models of PD were developed using male Wistar rats and SHSY-5Y cell line, respectively. The expression levels of miR-
185, SEPT5, LRRK2, and PARK2 genes were measured at a mRNA level in dopaminergic areas of rats’ brains and SHSY-5Y
cells using the SYBR Green Real-Time PCR Method. Additionally, the effect of inhibition on the genes or their products on cell
viability and gene expression pattern in SHSY-5Y cells was investigated. The level of miR-185 gene expression was significantly
decreased in the substantia nigra (SN) and striatum (ST) of the rotenone-treated group (control group) compared to the healthy
normal group (P < 0:05). In addition, there was a significant difference in the expression of SEPT5 gene (P < 0:05) in the
substantia nigra between two studied groups. The results of an in vitro study showed no significant change in the expression of
the genes; however, the inhibition on miR-185 gene expression led to the increase in LRRK2 gene expression in SHSY-5Y cells.
The inhibition on LRRK2 protein also decreased the cellular toxicity effect of rotenone on SHSY-5Y cells. The results suggested
the protective role of miR-185 gene in preventing the development of PD.

1. Introduction

Parkinson’s disease (PD) is a prevalent central nervous sys-
tem (CNS) disorder, which develops due to the loss of
nigrostriatal dopaminergic neurons in the midbrain [1].
Whereupon, movement (resting tremor, muscular rigidity,
bradykinesia, gait impairment, etc.) and behavioral (cogni-
tive impairment and dementia) disorders appeared [2]. The
prevalence of PD is about 1-2% in people older than 65 years
old, 4% in people older than 85 years old, and 0.3% in total

population [3]. About one million people suffer from PD in
United States of America and 50,000 to 60,000 new cases are
diagnosed every year. The prevalence of PD is estimated to
increase two folds until 2030 [4]. The economic burden of
PD is estimated to be 10.8 billion dollars annually only in
the United States; out of which, 58% is directly related to
the medical care services [4]. Furthermore, PD is a chronic
and progressive disease, lasting for years and decreasing life
quality of the patients intensely [5]. Thus, finding factors
causing PD has a great importance, since it can help
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uncovering the nature of the disease and developing more
efficient therapies.

Researchers have determined many factors for the
development of PD, including environmental toxins (e.g.,
pesticides and herbicides), genetic background (mutations
in particular genes such as SNCA, PINK1, Parkin, LRRK2,
and DJ-1), certain viruses and/or a combination of all [6,
7]. Importantly, most of the recent studies show that no
matter what the cause is, oxidative stress and inflammation
always play a key role in the death of the dopaminergic cells
of substantia nigra (SN) [8, 9]. Oxidative stress is caused by
many external and internal sources, such as certain toxins
and pathogens, dopamine metabolism, mitochondrial
impairment, and reactive iron stored in neuromelanin [10].
Numerous studies frequently reported the increase in the
inflammatory factors, such as TNF-α, NF-κB, IL-6, and IL-
2 in the SN of PD patients and PD animal models [11, 12].
Indubitably, PD is a multifactorial disease, which many
factors can contribute in its development, either alone or
accompanied with other factors, although neither all causing
factors are discovered yet nor complete molecular mecha-
nism of the disease is known.

Recently, researchers discovered a locus on human chro-
mosome 22 (22q11.1), which its congenital absence due to
the microdeletion (DiGeorge syndrome) could lead to the
early onset of PD [13]. The locus is consisted of about 30
genes; none of them are among the genes known to be
involved in the development of PD [13, 14]. Interestingly, it
appears that some of the genes in 22q11.2 locus are probable
candidates involving in the molecular mechanisms of the
development and progression of PD. miR-185 is one of those
genes predicted to target LRRK2 [15, 16]. SEPT5 is another
gene located on 22q11.2 locus, which its protein product
interacts with the products of certain genes such as PARK2
and catechol-O-methyltransferase (COMT) [14]. LRRK2 is
a kinase present in cytoplasm and outer membrane of mito-
chondria. Mutations or overexpressions of LRRK2 gene are
strongly associated with development of Parkinson’s disease
[17]. PARK2 is a ligase which assist proteasome complexes
to degrade misfolded proteins. Mutations or overexpressions
of PARK2 gene are also strongly associated with develop-
ment of Parkinson’s disease [18].

On the other hand, some researchers believe that disor-
ders such as epilepsy, schizophrenia, and failure of certain
internal secretory glands (thyroid, parathyroid, and thymus)
are more straightforward consequences of 22q11.2 microde-
letion. They suggest that PD is caused as a result of the psy-
chological drugs, consumed by the patients with DiGeorge
syndrome [19]. However, more recent studies challenge this
belief, since it is observed that the patients with DiGeorge
syndrome show movement disorders even in their child-
hood. Additionally, PD develops in those adult patients with
DiGeorge syndrome, who are not under the treatment with
psychological drug regimens [13, 20]. Therefore, PD can be
considered to be an independent aspect of 22q11.2 microde-
letion, not a result of psychological drug consumption.

Despite the potential role of those two genes (miR-185
and SEPT5), only a few studies showed the possible role of
the genes in the development of PD. Therefore, evaluation

regarding the expression of these genes can provide a new
and important insight into the pathogenesis of PD.

In order to investigate the possible role of miR-185 and
SEPT5 genes in the pathogenesis of PD, their transcript
expression level was assessed in SHSY-5Y cell line (a human
cell line) treated by rotenone (in vitromodel of PD) and brain
tissues (substantia nigra and striatum) of male Wistar rat as
the in vivo model of PD (induced by rotenone). The expres-
sion of two molecular targets of miR-185 and SEPT5 (i.e.,
LRRK2 and PARK2) was assessed to determine whether
there is a presumptive relation among the two genes (miR-
185 and SEPT5) and the known genes causing PD.

2. Materials and Methods

2.1. Chemicals. Rotenone, sunflower oil and DMSO were
purchased from Sigma-Aldrich Company (St. Louis, MO,
USA). HG-10-102-01 (LRRK2 inhibitor) was purchased
from Cayman Chemical Company (New York, NY, USA).
miRZip-185 was purchased from Sanbio Company (Uden,
Netherlands).

2.2. Animals. Sixteen male Wistar rats (Pasteur Institute of
Iran) weighing 300 ± 25 g and aged 5 months were selected
randomly. Animals were housed in polycarbonate cages (2
rats per cage) under controlled conditions, including 12h
light/dark cycles, the environment temperature of 23 ± 2°C,
and the environment humidity of 60 ± 5%. Standard food
and water were accessible for the animals ad libitum. All
experiments were performed, while considering the Guide
for the Care and Use of Laboratory Animals (National
Institutes of Health Publication No. 85-23, revised 1985).
The research ethics committee of Kurdistan University of
Medical Sciences also approved all experiments in this study.

2.3. Experimental Groups. Animals were randomly divided
into two groups (n = 8), which are as follows:

(i) The control group consisting of the rats received
rotenone (1.5mg/kg/24 h, SC)

(ii) The healthy normal group consisting of the rats
received rotenone vehicle (1ml/kg/24 h, SC)

The sample size was calculated by G power software.

2.4. Method Used for Induction of Parkinson’s Disease in
Animals. Rotenone solution was freshly prepared before
injections. So that, it was dissolved in dimethyl sulfoxide.
Then, sunflower oil was added to the solution to dilute it
and reach a final concentration of 1.5mg/ml of rotenone.
The ratio of dimethyl sulfoxide to sunflower oil in the final
solution was equal to 2 : 98. In order to induce Parkinson’s
disease, animals received rotenone at a concentration of
1.5mg/kg each for 24h. The injections continued until motor
dysfunction was declared on all behavioral tests (rotarod test,
bar test, and rearing test) in the control group. Animals were
tested every 5 days, before daily injection of rotenone. The
day in which the significant decrease was observed in all
behavioral tests was considered as the day of model
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development of Parkinson’s disease (46th day since the first
injection). On the last day, all the behavioral tests were
repeated 10min after injection of apomorphine (1mg/kg,
SC), to confirm whether the motor dysfunctions were
dopamine-dependent and not a result of the unspecific
consequences of rotenone treatment on peripheral organs.
This protocol was a modified protocol based on our previous
studies and was conducted several times as pilot, in order to
be optimized in our lab [21]. The methods used for perform-
ing behavioral tests are presented in details in one of our
previous studies [22].

2.5. Body Weight Measurement. Animals were weighted
every 48 h before the injections, and it was done to be an
index for monitoring the health condition and possible
peripheral toxicity induced by rotenone. Indeed, a significant
decrease in the body weight shows the unspecific effects of
rotenone treatment [23].

2.6. Tissue Collection. At the end of the motor and behavioral
assessments (46th day), the animals were sacrificed by decap-
itation under deep anesthesia using ketamine/xylazine
cocktail. The substantia nigra and striatum were removed,
cleaned, and frozen in liquid nitrogen and then were stored
at −80°C until use.

2.7. Extraction of Total RNA, cDNA Synthesis, and Real-Time
PCR. Total RNA was extracted from the frozen tissues of ani-
mals or isolated cells obtained from cell cultures within 2
weeks after collecting samples, using the total RNA extrac-
tion kit (Favorgen, Thailand). Briefly, approximately 50mg
of frozen brain tissue was homogenized by an ultrasound
homogenizer on ice in a cold anti-RNase-containing buffer,
and extraction processing was carried out according to the
manufacturer’s instructions. RNA concentration and purity
was determined by the absorbance at 230, 260, and 280nm.

Reverse transcription was conducted by the cDNA syn-
thesis kit (Favorgen, Thailand). Briefly, 1 μg of RNA, 1μl of
random hexamer primer, and appropriate amount of
DEPC-treated water up to 13.5 μl were mixed in a 0.2ml
microtube. Then, the mixture was incubated at 70°C for

5min and was chilled on ice. Next, 4 μl of 5x first-strand
buffer, 1μl of dNTPs (10mM each), 0.5μl of RNasin
(40U/μl), and 1μl of M-MLV enzyme were added, and
reverse transcription was performed at 37°C for 60min.
Finally, the reaction was terminated at 70°C for 5min.

Real-Time PCR was done using the Corbett Rotor
Gene 6000 Real-Time PCR system (Corbett Research,
Australia) and SYBR Green Real-Time PCR super master
mix (Favorgen, Thailand). The total volume was equal to
20 μl containing 2μl of cDNA, 10μM of forward primer
(1μl), 10μM of reverse primer (1μl), 10μl of 2x SYBR
Green PCR super master mix, and 5.8μl of dH2O. Condi-
tions for PCR included denaturation at 95°C for 3min, 40
cycles of 10 sec at 95°C, 10 sec at 55-59°C (depending on
the primer type), 20 sec at 72°C, and final extension at
72°C for 5min. The housekeeping gene β-actin was used
as internal control for protein-coding genes. U67 gene
was used as internal control for miR-185 gene. The gene
expression ratio was obtained by LinRegPCR software
version 2017.0, based on the ΔΔCT method. In order to
avoid nonspecific products and primer-dimer products,
all PCR products were evaluated by melting curve analysis
of the rotor gene. The primer sequences are shown in
Table 1.

2.8. Cell Culture and Development of PD for the In Vitro
Model. SHSY-5Y cells obtained from the Institute Pasteur
of Iran (IPI) were cultured in DMEM/F12 medium (Invitro-
gen), supplied with 10% of fetal bovine serum (Invitrogen)
and 1% of GlutaMax (Invitrogen), in a humidified atmo-
sphere containing 5% of CO2 at 37°C. Rotenone was
dissolved in dimethyl sulfoxide (DMSO, final concentration
of DMSO was equal to 0.01%). Rotenone (500 nM) was used
for 24h to induce cell damage [24]. In this stage, we wanted
to evaluate the changes in the expression level of miR-185,
SEPT5, PARK2, and LRRK2 genes in response to rotenone
treatment. We also wanted to know if inhibiting each one
of the above genes or their products could affect their
predicted molecular targets or cellular viability. To address
these questions, we designed an experiment on SHSY-5Y

Table 1: The primer pairs used for the gene amplifications.

Primers Sequence (5′ → 3′) GC% Tm (°C) PCR product length (n)

SEPT5 (forward) GCTGAGGAACGCATCAAC 55.6% 56.5°C
167

SEPT5 (reverse) AACTGCTGGTCTACATAGTC 45.0% 55.2°C

LRRK2 (forward) CCTGGATTGCTGGAGATTG 52.6% 57.3°C
175

LRRK2 (reverse) GAATGGTGAGCCTTGGTTG 52.6% 56.5°C

PARK2 (forward) GACGCTCAACTTGGCTACTC 55.0% 57.1°C
131

PARK2 (reverse) CACTCCTCGGCACCATAC 61.0% 57.6°C

β-act (forward) CGTGCGTGACATTAAAGAGAAG 45.5% 58.5°C
134

β-act (reverse) CATTGCCGATAGTGATGACC 50.0% 57.6°C

miR-185 (forward) Exclusively designed by Bon Yakhteh Company, Tehran, Iran — —
—

miR-185 (reverse) Exclusively designed by Bon Yakhteh Company, Tehran, Iran — —

U67 (forward) Exclusively designed by Bon Yakhteh Company, Tehran, Iran — —
—

U67 (reverse) Exclusively designed by Bon Yakhteh Company, Tehran, Iran — —
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cells with eight different treatments. Each experiment was
repeated three times.

(1) Control positive group (SHSY-5Y cells treated with
rotenone for 24 h)

(2) Control negative group (SHSY-5Y cells with no
treatment)

(3) Vehicle group (SHSY-5Y cells treated with rotenone
vehicle for 24 h)

(4) LRRK2 inhibitor+rotenone group (SHSY-5Y cells
pretreated with HG-10-102-01 (50 nM) for 1 h
followed by treatment with rotenone for 24h)

(5) LRRK2 inhibitor group (treated with HG-10-102-01
(50 nM))

(6) miR-185 inhibitor group (SHSY-5Y cells transfected
with a plasmid containing siRNA sequence for
inhibiting miR-185 transcript)

(7) SEPT5 inhibitor group (SHSY-5Y cells transfected
with a plasmid containing siRNA sequence for
inhibiting SEPT5 gene transcript)

(8) SEPT5 inhibitor+rotenone group (transfected with a
plasmid containing siRNA sequence for inhibiting
SEPT5 gene transcript, followed by treatment with
rotenone for 24 h)

2.9. Transfection of SHSY-5Y Cells. Cells at the logarithmic
growth phase were plated into 96-well microtiter plates 24 h
before transfection, in order to reach 60-80% of confluency.
Plasmid DNA (containing SEPT-5 siRNA or miR-185
siRNA) was transiently transfected using FuGENE® reagent
(Promega, Madison, WI, USA), according to the manufac-
turer’s protocol. Briefly, 0.1 μl of the FuGENE® 6 Transfec-
tion Reagent was mixed into 10μl of serum-free medium
(Opti-MEM® I reduced serum medium) and was incubated
for 5 minutes at room temperature. Then, 10μl of the
FuGENE® 6/Opti-MEM® I mixture was added to each well
of cells to be transfected and was incubated at 37°C for 48
hours. There was no need to remove serum or change culture
conditions or remove the transfection complex. Cells were
collected and used in further experiments, 48 hours after
transfection.

2.10. MTT Assay. Cell viability was measured by the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) method [27, 28]. As a colorimetric assay, MTT assay
can measure the activity of NAD(P)H-dependent cellular
oxidoreductase enzyme, so that the enzyme reduces the tetra-
zolium dye, MTT, into insoluble formazan crystals which has
a purple color. Briefly, SHSY-5Y cells were plated at a density
of 1 × 104 cells per well in 96-well plates. After exposure to
the treatments, 20 μl of MTT (5mg/ml, Sigma-Aldrich) was
added into each well and the cell culture plates were incu-
bated in a humidified incubator at 37°C for 4 hours to allow
the formation of purple formazan crystal. Next, 100μl of
the solubilization reagent (0.1N HCl in anhydrous isopropa-

nol, Sigma-Aldrich) was added into each well, and cell lysates
were assessed by spectrophotometric assays, so that the opti-
cal density was read at λ 570 nm and background was sub-
tracted at 690nm. Cell viability was shown as a percentage
of the value in untreated control cells [24]. All samples were
run in triplicate.

2.11. Data Analysis. Data were presented by themean ± SEM
of eight rats per group. The dependent t-test and one-way
ANOVA followed by Tukey’s test were used to analyze the
statistical significance in two and multiple comparisons,
respectively. SPSS software version 23 was used to conduct
statistical analyses. P values at <0.05 were considered to be
significant in all analyses.

3. Results

3.1. Behavioral Assessment of the Rotenone Model of
Parkinson’s Disease. The results of three behavioral tests
(Rotarod, rearing, and bar tests) showed significant decreases
in the muscle strength and balance in the control group
compared to both baseline and healthy normal groups
(P < 0:001) (see Figure 1). Additionally, treatment with
apomorphine could reverse the decrease in motor perfor-
mance on three behavioral tests (rotenone-treated vs.
rotenone-treated+apomorphine; (P < 0:001) see Figure 1).
Furthermore, the body weight analysis showed a moderate
weight loss in rotenone-treated groups. Weight difference
was statistically significant in the control group compared
to baseline and healthy normal groups (P < 0:001). However,
the decrease in body weight was observed to be only 8.2%
compared to the baseline group and 13.2% compared to the
healthy normal group.

3.2. Gene Expression Analysis of Brain Tissues. Figure 2(a)
shows the results of the gene expression analysis in the tran-
scription level demonstrating that miR-185 (P < 0:01) and
PARK2 (P < 0:05) gene expression significantly decreased
in the SN of the control group, compared to the healthy nor-
mal group. Furthermore, mRNA of SEPT5 and LRRK2 genes
significantly increased in the SN of the control group, com-
pared to the healthy normal group (P < 0:05).

In addition, the analysis of the genes’ transcripts in the ST
of the control group showed a significant decrease in the gene
expression of miR-185 (P < 0:05) and LRRK2 (P < 0:05),
compared to the healthy normal group. However, there was
no significant difference in the expression of SEPT5 and
PARK2 genes between two groups (Figure 2(b)).

3.3. Analysis of Gene Expression of SHSY-5Y Cells and Their
Viability. The results of MTT assay showed that the cell via-
bility rate significantly decreased in SHSY-5Y cells treated by
rotenone (control group), compared to the control negative
(vehicle) group (P < 0:001) (see Figure 3). However, there
was no significant difference in the expression of miR-185,
LRRK2, SEPT5, and PARK2 genes in rotenone (control
group) compared to the control negative (vehicle) group
(see Figure 3). The cell viability rate significantly increased
due to the inhibition on LRRK2 protein in cells treated by
HG-10-102-01 (50 nM) compared to the control group
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(P < 0:001) (see Figure 3). Additionally, the expression of
miR-185 gene (P < 0:001) decreased and the expression of
LRRK2 (P < 0:001) gene increased, simultaneously due to
the inhibition on miR-185 transcript by its exclusive siRNA
(see Figure 4). However, inhibition on SEPT5 transcript by
its exclusive siRNA decreased the SEPT5 mRNA level, while
could not affect the levels of PARK2, LRRK2, or miR-185
transcripts significantly (see Figure 4).

4. Discussion

Results of the movement assessments showed a significant
decrease in the performance of the control group indicating

that the animal model of PD has been well developed regard-
ing the previous studies [22]. Additionally, apomorphine
injection could relieve the signs of the behavioral impair-
ments significantly. Thus, treatment with rotenone could
specifically induce dopaminergic cell death in the SN of rats’
brain, with the least peripheral effects.

The results of this study showed that the level of miR-185
and PARK2 transcripts significantly decreased in the SN of
the control group, while mRNA of SEPT5 and LRRK2 genes
significantly increased in the SN of the group, compared to
the healthy normal group. Furthermore, the analysis of the
genes’ transcripts in the ST of the control group showed
significant decreases in miR-185 and LRRK2 expressions,
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Figure 2: Comparison of the gene expression in the substantia nigra (a) and striatum (b) of the experimental groups. The bands were
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compared to the healthy normal group. However, there was
no significant difference in the expression of SEPT5 and
PARK2 genes in the ST between two groups. These results
show the possible role of all the four genes in the develop-
ment of the PD model and dopaminergic cell death in the

SN. However, there was no significant difference in the
PARK2 and SEPT5 transcript level in the ST between two
groups, which is probably due to the less density of dopami-
nergic neurons. Additionally, it appears that miR-185 and
PARK2 genes play a neuroprotective role in the SN, which
lack of them can contribute in dopaminergic cell death and
the development of PD. In this regard, Wen et al. reported
that the overexpression of miR-185 gene can lead to the
inhibition on apoptosis of dopaminergic neurons through
regulating the mTOR-dependent autophagy pathway [25].
Furthermore, Elmazoglu et al. reported a decrease in the
PARK2 gene expression level in an in vitro model of PD
induced by rotenone [26]. The increase in the PARK2 gene
expression level was also observed in clinical cases of PD or
PD models occurred through certain epigenetic processes.
For example, certain mutation or decrease in the expression
in midnolin (MIDN) gene, observed in almost 10.5% of so-
called sporadic PD, can lead to the decrease in PARK2
mRNA [27].

Additionally, previous studies show that the increase in
SEPT5 gene expression can lead in dopaminergic cell death
through the formation of the Lewy bodies [28, 29]. In current
study, the expression of normal LRRK2 increased, while most
of other studies only show the increase in the kinase activity
of LRRK2 due to the certain mutations [30]. Indeed, those
studies neither confirm nor deny the increase in the LRRK2
gene expression level. However, some studies showed the
increase in the LRRK2 gene expression level in the microglia
present at the SN of the brain in patients with PD occurred
due to the inflammation which is an inevitable phenomenon
inside the brains of the patients with PD [31, 32]. This reason
may be the cause of what was observed about the LRRK2
gene expression level in the current study.

Assessments on SHSY-5Y cells showed no significant
difference in all of the four genes between the control group
(rotenone-treated group) and the vehicle-treated group.
However, the cell viability rate significantly decreased in the
control group. These results were not surprising, since we
do not expect a perfect similarity in gene expression pattern
between in vitro and in vivo models. The results also showed
that inhibition on miR-185 caused by specific siRNA led to
the significant increase in the expression level of LRRK2
gene. However, the analysis of gene expression in the SN of
rats’ brains also showed that there was an inverse relation
between miR-185 and LRRK2, but we could not interpret it
as a real reliable relation, since we performed no intervention
and genetic manipulation on animals. More reliable straight-
forward results were obtained by assessment of the gene
expression level in genetically manipulated SHSY-5Y cells
indicating that miR-185 could target LRRK2 mRNA and
reduce its expression level. Dweep et al. previously predicted
that miR-185 targets LRRK2 mRNA; however, there was no
experimental study to confirm the results of their in silico
study [33]. Current study for the first time showed that
LRRK2 could probably be a target for miR-185 transcript.
Additionally, the results of this study revealed that inhibition
on LRRK2 protein by its specific inhibitor (HG-10-102-01)
could prevent rotenone toxicity and lead to the increase in
the cell viability rate. In this regard, previous studies showed
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that the increase in the kinase activity of LRRK2 protein
occurred due to the certain mutations (e.g., G2019S) or
simply the increase in LRRK2 gene expression can influence
its molecular target at least through three pathways: (1)
implying the synaptic dysfunction due to the phosphoryla-
tion of endothelin A (EndoA), which is a direct target of
LRRK2 [34], (2) uncontrolled translation and consequently
a bulk increase in protein synthesis through phosphoryla-
tion of eukaryotic initiation factor 4E- (eIF4E-) binding
protein (4E-BP) and ribosomal protein S15 (RPS15),
which induce the formation of the Lewy bodies [35], and
(3) deregulation of autophagy processes through influenc-
ing Rab7-dependent perinuclear lysosome clustering and
lysosomal degradation [36, 37]. Therefore, it appears that
the present study found a missing link located in the
upstream of the LRRK2-related pathophysiological process.
Accordingly, miR-185 gene is likely a noteworthy molecular
target, which would be considered in designing upcoming
preclinical and clinical therapeutic approaches. It is notewor-
thy that the increase in LRRK2 gene expression due to the
inhibition on miR-185 gene expression could not lead to
the decrease in the cell viability rate. However, it is difficult
to interpret this finding and further experiments are needed
to elaborate this finding, but probably it results from the
multifactorial nature of PD, so that only the increase in
LRRK2 expression cannot imply enough pressure to induce
SHSY-5Y cell death.

The results of the current study showed that inhibition on
the expression of SEPT5 gene could neither influence the
expression of the other three genes nor prevent the toxicity
of rotenone on SHSY-5Y cells. However, it was predictable
that SEPT5 gene cannot influence the expression of miR-
185, LRRK2, or PARK2, since there was no accordant report
or prediction in this regard. Indeed, SEPT5 protein is a
molecular target of PARK2, so that a decrease in the expres-
sion level of PARK2 can lead to the high cellular amount of
SEPT5, contributing in the formation of the Lewy bodies
[38]. Thus, we did not manipulate the expression level of
PARK2 to evaluate the changes in the expression of SEPT5
gene, since it was predictable based on the previous studies.

5. Conclusion

The findings of the study recommended the protective role of
miR-185 gene in preventing the development of the PD
model, although further preclinical and clinical studies are
needed to confirm the findings and to develop novel
therapeutic approaches for the treatment of PD based on this
finding. SEPT5 gene is also probably involved in the patho-
physiological mechanisms of PD. In addition, further studies
are recommended to evaluate the probable associations
between oxidative stress pathways and miR-185 and SEPT5.
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