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Completely monotonic and related functions are important
function classes inmathematical analysis. It was Bernstein [1]
who in 1914 first introduced the notion of completely mono-
tonic function. This year we celebrate its 100th anniversary. In
1921, Hausdorff [2] gave the notion of completely monotonic
sequence, which is related to the notion of completely mono-
tonic function. Widder [3] in 1931 introduced the notion of
minimal completely monotonic sequence. The terminology:
logarithmically completely monotonic function, was first used
in [4] in 1988. In 1989, the authors [5] introduced the notion
of strongly completelymonotonic function. In 2009, the authors
[6] introduced the notion of strongly logarithmically com-
pletely monotonic function. Also, the terminology: almost
strongly completely monotonic function, was introduced in [6]
in order to simplify the statement of the main results of the
article [6]. In 2012, the terminology of almost completely
monotonic function was defined and used in [7] in order to
simplify the statement of the main results of the article [7].
Researchers did a lot of investigations, in both theory and
applications, on these functions. More recently, for example,
the authors [6] showed that a strongly logarithmically com-
pletely monotonic function must be almost strongly com-
pletely monotonic. Also, in [6], the following fact that a
strongly logarithmically completely monotonic function
cannot be strongly completely monotonic, or, equiva-
lently, a strongly completely monotonic function cannot be
strongly logarithmically completely monotonic was estab-
lished. Figure 1 illustrates the inclusion relationships among

these classes of functions on (0,∞). In these inclusion rela-
tionships, the fact that a logarithmically completely mono-
tonic function must be completely monotonic was, in fact,
first proved in [8] although the author did not use the
terminology of logarithmically completelymonotonic function;
all others are from [6] or directly from their definitions. Also
note that in [6] counter examples were presented to show that
some function classes are not included in someother function
classes or to show that the intersection sets of two function
classes are not empty.

We invited investigators to contribute original research
articles as well as comprehensive review articles to this special
issue which will stimulate the continuing efforts to under-
stand these functions.This special issuemainly focuses on the
applications, in all fields, of completelymonotonic and related
functions. The topics included in this special issue are as
follows:

(i) completely monotonic functions and their applica-
tions,

(ii) almost completely monotonic functions and their
applications,

(iii) logarithmically completely monotonic functions and
their applications,

(iv) strongly logarithmically completely monotonic func-
tions and their applications,
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Figure 1: Inclusion relationships among classes of completely mon-
otonic and related functions on (0,∞). (A) Almost completely
monotonic function class. (B) Completelymonotonic function class.
(C) Logarithmically completely monotonic function class. (D)
Almost strongly completely monotonic function class. (E) Strongly
logarithmically completely monotonic function class. (F) Strongly
completely monotonic function class.

(v) strongly completely monotonic functions and their
applications,

(vi) almost strongly completely monotonic functions and
their applications,

(vii) absolutely monotonic functions and their applica-
tions,

(viii) Bernstein functions and their applications,
(ix) completely convex functions and their applications,
(x) moment sequences and their applications,
(xi) Laplace (Stieltjes) transforms associated with com-

pletely monotonic or related functions,
(xii) interpolation or fitting of data by completely mono-

tonic or related functions,
(xiii) approximation of (by) completely monotonic or

related functions,
(xiv) analytic inequalities associated with completely mon-

otonic or related functions,
(xv) numerical methods for completely monotonic or

related functions, explicit and implicit,
(xvi) ordinary, partial, and fractional differential equations

and difference equations related to completely mono-
tonic or related functions,

(xvii) mathematical modeling using completely monotonic
or related functions.

Dozens of manuscripts were received for this special
issue, but only a few peer-reviewed, high-quality articles were
published. We hope that the interested readers will continue

to investigate the applications of completely monotonic and
related functions in probability and statistics, numerical and
asymptotic analysis, statistical physics, physical chemistry,
and so forth.
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analytiques d’une variable réelle,” Mathematische Annalen, vol.
75, no. 4, pp. 449–468, 1914.

[2] F. Hausdorff, “Summationsmethoden und momentfolgen I,”
Mathematische Zeitschrift, vol. 9, no. 1-2, pp. 74–109, 1921.

[3] D. V. Widder, “Necessary and sufficient conditions for the rep-
resentation of a function as a Laplace integral,” Transactions of
American Mathematical Society, vol. 33, pp. 851–892, 1931.

[4] R. D. Atanassov and U. V. Tsoukrovski, “Some properties of a
class of logarithmically completelymonotonic functions,”Com-
ptes Rendus de l’Academie Bulgare des Sciences, vol. 41, no. 2, pp.
21–23, 1988.

[5] S. Y. Trimble, J.Wells, and F. T.Wright, “Superadditive functions
and a statistical application,” SIAM Journal on Mathematical
Analysis, vol. 20, no. 5, pp. 1255–1259, 1989.

[6] S. Guo and H. M. Srivastava, “A certain function class related to
the class of logarithmically completely monotonic functions,”
Mathematical and Computer Modelling, vol. 49, no. 9-10, pp.
2073–2079, 2009.

[7] H. M. Srivastava, S. Guo, and F. Qi, “Some properties of a class
of functions related to completely monotonic functions,” Com-
puters and Mathematics with Applications, vol. 64, no. 6, pp.
1649–1654, 2012.

[8] R. A. Horn, “On infinitely divisible matrices, kernels, and func-
tions,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebi ete, vol. 8, pp. 219–230, 1967.



Research Article
Existence of Solutions for a Baby-Skyrme Model

Hongan Hu1 and Kunlin Hu2

1 Department of Mathematics, Zhoukou Normal University, Zhoukou 466000, China
2 College of Mathematics and Information Science, Henan University, Kaifeng 475001, China

Correspondence should be addressed to Kunlin Hu; hukunling1987@163.com

Received 11 April 2014; Accepted 2 July 2014; Published 15 July 2014

Academic Editor: Senlin Guo

Copyright © 2014 H. Hu and K. Hu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existence of the energy-minimizing solutions for a baby-Skyrmemodel on the sphere is proved using variational method. Some
properties of the solutions are also established.

1. Introduction

Half a century ago, Skyrme [1] firstly suggested that the
soliton in the nonlinear 𝜎-model [2] may be explained by
the baryon number, which is corresponding to the winding
number of soliton.

The Skyrmions were originally introduced to describe
baryons in three spatial dimensions [1]. In a nonlinear scalar
field theory, a Skyrmion is a classical static field configuration
of minimal energy. The scalar field is the pion field, and
the Skyrmion represents a baryon. The Skyrmion has a
topological chargewhich prevents continuously deforming to
the vacuum field configuration.This charge is identified with
the conserved baryon number which prevents a baryon from
decaying into pions [1, 3].

Skyrmions have been shown to exist for a very wide class
of geometries [4], which are now playing an increasing role
in other areas of physics as well. For example, in certain
condense matter systems, Skyrmions are used to model the
bubbles that appear in the presence of an external magnetic
field in two dimensions; they could provide a mechanism
associated with the disappearance of antiferromagnetism, the
onset of HTc superconductivity, and so on. In condensed
matter physics [5], the model [6] has direct applications
which may give an effective description in quantum Hall
systems. In the context of condensed matter physics [7,
8], direct experimental observations can be made. In three
spatial dimensions [6], baby Skyrmions have been studied
in the context of strong interactions as a toy-model in

order to understand the more complicated dynamics of usual
Skyrmions which live.

In the present paper we consider a baby-Skyrme model,
that is, Skyrmional model in two spatial dimensions, which
was introduced in [9]. Our purpose of this paper is to
establish the existence of the energy-minimizing solutions
for this baby-Skyrme model rigorously by the variational
method. In Section 2, we will present the mathematical
structure of the model and the main existence theorem.
In Section 3, we will show the existence of the energy-
minimizing solutions by the variationalmethod and establish
some properties of the solutions.

2. The Mathematical Structure
and Existence Theorem

Baby Skyrmions are obtained as the nontrivial solutions of
the well-known nonlinear𝑂(3)model.Themodel consists of
three real scalars 𝜙

𝑎
(𝑎 = 1, 2, 3) subject to the constraint

⃗𝜙 ⋅ ⃗𝜙 = 1. (1)

The equation of motion admits solutions with finite energy
which represents a mapping of R2spat into S2int. They are
characterized by the density 𝜌,

𝜌 ≡ 𝜖
𝑖𝑗

⃗𝜙 ⋅ (𝜕
𝑖

⃗𝜙 × 𝜕
𝑖 ⃗𝜙) , (2)
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and the winding number 𝑊,

𝑊 =
1

8𝜋
∫𝑑
2

𝑟𝜌. (3)

The energy functional of this model is as follows:

𝐸 = 𝐸
(2)

+ 𝐸
(4)

+ 𝐸
(𝑝)

, (4)

with

𝐸
(2)

=
1

2
∫ 𝜕
𝑖

⃗𝜙𝜕
𝑖 ⃗𝜙𝑑
2

𝑟,

𝐸
(4)

=
1

8
∫𝜌𝜌𝑑

2

𝑟,

𝐸
(𝑝)

=
𝛼

2
∫ (𝑛
3
− ⃗𝜙)
2

𝑑
2

𝑟,

(5)

where 𝑛
3
is a unit vector in the third derivation in internal

space and 𝛼 is a parameter that is assumed positive.
By using the inequality

0 ≤ ∫{
1

4
(𝜕
𝑖

⃗𝜙 ± 𝜖
𝑖𝑗

⃗𝜙 × 𝜕
𝑗 ⃗𝜙)
2

+
1

2
(
1

2
𝜖
𝑖𝑗
𝜕
𝑖 ⃗𝜙 × 𝜕

𝑗 ⃗𝜙 ± √𝛼 (𝑛
3
− ⃗𝜙))

2

}𝑑
2

𝑟,

(6)

we may find the Bogomol’nyi bound

𝐸 ≥ 4𝜋𝑘 (1 + √𝛼) . (7)

We are to extend the model above by going from R2sp to
S2sp(𝐿) where 𝐿 is the radius of the two-sphere. By the polar
coordinates 𝜃, 𝜑(0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜑 ≤ 2𝜋),

𝑥 = 𝐿 sin 𝜃 cos𝜑; 𝑦 = 𝐿 sin 𝜃 sin𝜑. (8)

And the Jacobian of the transformation and the metric
associated with the polar coordinates are

𝐽 = −𝐿
2 sin 𝜃,

𝑑𝑠
2

= 𝐿
2

(sin2𝜃𝑑𝜑2 + 𝑑𝜃
2

) .
(9)

In order to obtain explicit static solutions in the winding
number 𝑊 = 𝑘 sector, we introduce the hedgehog parame-
terization

𝜙
1
= sin𝑓 cos 𝑘𝜑;

𝜙
2
= sin𝑓 sin 𝑘𝜑;

𝜙
3
= cos𝑓,

(10)

where

𝑓 = 𝑓 (𝜃) , (11)

is subject to the boundary conditions

𝑓 (0) = 𝜋, 𝑓 (𝜋) = 0. (12)

The energy functional is as follows:

𝐸
𝑘
(𝑓)

=
1

4𝑘
∫
𝜋

0

𝑑𝜃 sin 𝜃{𝑓
󸀠2

+ 𝑘
2

(
sin𝑓

sin 𝜃
)

2

+
𝑘2

𝐿2
𝑓
󸀠2

(
sin𝑓

sin 𝜃
)

2

+ 2𝛼𝐿
2

(1 − cos𝑓)} ,

(13)

while the winding number density results in

𝜌
𝑘
= −

2𝑘

𝐿2
𝑓
󸀠
sin𝑓

sin 𝜃
. (14)

It is not difficult to show that the Euler-Lagrange equation
of (13) is

[1 +
𝑘
2

𝐿2
(
sin𝑓

sin 𝜃
)

2

]𝑓
󸀠󸀠

+ [𝑓
󸀠

− 𝑘
2
sin 2𝑓

sin 2𝜃
+

𝑘
2

𝐿2
𝑓
󸀠
sin𝑓

sin 𝜃
(𝑓
󸀠
cos𝑓
cos 𝜃

−
sin𝑓

sin 𝜃
)]

× cot 𝜃 − 𝛼𝐿
2 sin𝑓 = 0.

(15)

Next we are to find a solution of the boundary problem
(15) and (12). We will establish the existence of solutions by
the indirect variational method.

Here is our main existence theorem, which solves the
above problem.

Theorem 1. The boundary value problem (15) and (12) has a
solution 𝑓(𝜃) such that

0 < 𝑓 (𝜃) < 𝜋, ∀𝜃 ∈ (0, 𝜋) , (16)

and there hold the sharp asymptotic estimates

𝜋 − 𝑓 (𝜃) = 𝑂 (𝜃
3/2

) (𝑎𝑠 𝜃 󳨀→ 0) ,

𝑓 (𝜃) = 𝑂 ((𝜋 − 𝜃)
3/2

) (𝑎𝑠 𝜃 󳨀→ 𝜋) .

(17)

3. The Proof of Theorem 1

In this section, we will divide the proof ofTheorem 1 into two
lemmas.

Lemma 2. The boundary value problem (15) and (12) has a
solution 𝑓(𝜃) such that

𝜋 − 𝑓 (𝜃) = 𝑂 (𝜃
3/2

) (𝑎𝑠 𝜃 󳨀→ 0) ,

𝑓 (𝜃) = 𝑂 ((𝜋 − 𝜃)
3/2

) (𝑎𝑠 𝜃 󳨀→ 𝜋) .

(18)

Proof. In order to get a solution of (15) with the boundary
condition (12), we may look for the minimizers of the
functional (13).
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We first introduce the admissible space

A = {𝑓 | 𝑓 (𝜃) is continuous on [0, 𝜋]

and absolutely continuous on every compact

subinterval of [0, 𝜋] such that it satisfies

the boundary condition (12) and 𝐸
𝑘
(𝑓) < ∞} .

(19)

Obviously the setA is not empty.
We intend to find a solution of (15) and (12) by solving the

minimization problem:

𝜂 ≡ min {𝐸
𝑘
(𝑓) | 𝑓 ∈ A} . (20)

Let {𝑓
𝑛
(𝜃)} be aminimizing sequence of (20).Without loss of

generality, we may assume that

0 ≤ 𝑓
𝑛
(𝜃) ≤ 𝜋, 0 < 𝜃 < 𝜋. (21)

Otherwise, we may modify the sequence to fulfill (21) mean-
while without enlarging the energy. From the inequality

󵄨󵄨󵄨󵄨1 + cos𝑓
𝑛
(𝜃)

󵄨󵄨󵄨󵄨

≤ ∫
𝜃

0

󵄨󵄨󵄨󵄨󵄨
(− sin𝑓

𝑛
(𝑠)) 𝑓

󸀠

𝑛
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ ∫
𝜃

0

|sin 𝑠| ⋅

󵄨󵄨󵄨󵄨󵄨
sin𝑓
𝑛
(𝑠) ⋅ 𝑓

󸀠

𝑛
(𝑠)

󵄨󵄨󵄨󵄨󵄨

|sin 𝑠|
𝑑𝑠

≤ (∫
𝜃

0

|sin 𝑠|
2

𝑑𝑠)

1/2

(∫
𝜃

0

(𝑓
󸀠

𝑛
(𝑠))
2

(
sin𝑓
𝑛
(𝑠)

sin 𝑠
)

2

𝑑𝑠)

1/2

≤
𝐿

√3𝑘
𝜃
3/2

(𝐸
𝑘
(𝑓
𝑛
))
1/2

= 𝐶
1
𝜃
3/2

, 𝐶
1
> 0,

(22)

we may see that 𝑓
𝑛
(𝜃) → 𝜋 uniformly as 𝜃 → 0.

Similarly, we have
󵄨󵄨󵄨󵄨1 − cos𝑓

𝑛
(𝜃)

󵄨󵄨󵄨󵄨

≤ ∫
𝜋

𝜃

󵄨󵄨󵄨󵄨󵄨
sin𝑓
𝑛
(𝑠) 𝑓
󸀠

𝑛
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ ∫
𝜋

𝜃

|sin 𝑠| ⋅

󵄨󵄨󵄨󵄨󵄨
sin𝑓
𝑛
(𝑠) ⋅ 𝑓

󸀠

𝑛
(𝑠)

󵄨󵄨󵄨󵄨󵄨

|sin 𝑠|
𝑑𝑠

≤ (∫
𝜃

0

|sin 𝑠|
2

𝑑𝑠)

1/2

(∫
𝜃

0

(𝑓
󸀠

𝑛
(𝑠))
2

(
sin𝑓
𝑛
(𝑠)

sin 𝑠
)

2

𝑑𝑠)

1/2

≤
𝐿

√3𝑘
(𝜋 − 𝜃)

3/2

(𝐸
𝑘
(𝑓
𝑛
))
1/2

= 𝐶
2
(𝜋 − 𝜃)

3/2

, 𝐶
2
> 0.

(23)

Then, we may find that 𝑓
𝑛
(𝜃) → 0 uniformly as 𝜃 → 𝜋.

In view of (22) and (23), letting 𝑛 → ∞, we have

𝑓
𝑛
(𝜃) 󳨀→ 𝜋 (as 𝜃 󳨀→ 0) ,

𝑓
𝑛
(𝜃) 󳨀→ 0 (as 𝜃 󳨀→ 𝜋) ,

𝜋 − 𝑓 (𝜃) = 𝑂 (𝜃
3/2

) (as 𝜃 󳨀→ 0) ,

𝑓 (𝜃) = 𝑂 ((𝜋 − 𝜃)
3/2

) (as 𝜃 󳨀→ 𝜋) .

(24)

We may get that the sequence {𝑓
𝑛
(𝜃)} is bounded in

𝑊1,2(𝑎, 𝑏) for any

0 < 𝑎 < 𝑏 < 𝜋. (25)

Using weak compactness, we may assume that {𝑓
𝑛
(𝜃)} (in

fact, a subsequence in it) is weakly convergent in 𝑊1,2(𝑎, 𝑏).
Applying a diagonal subsequence argument, we may assume
there is an

𝑓 (𝜃) ∈ 𝑊
1,2

loc (𝑜, 𝜋) , (26)

such that

𝑓
𝑛
(𝜃) 󳨀→ 𝑓 (𝜃) as 𝑛 󳨀→ ∞, (27)

weakly in 𝑊1,2(𝑎, 𝑏). In view of the compact embedding
theorem, we may get

𝑊
1,2

(𝑎, 𝑏) 󳨅→ 𝐶 [𝑎, 𝑏] . (28)

That is, 𝑊1,2(𝑎, 𝑏) can be compactly embedded into 𝐶[𝑎, 𝑏].
So we see that the convergence (27) is strong in 𝐶[𝑎, 𝑏].
Consequently, we know that 𝑓

𝑛
(𝜃) is absolutely continuous

in any compact subinterval of (𝑎, 𝑏) and continuous on (0, 𝜋).
Let

𝐹 =
1

4𝑘
sin 𝜃 [𝑓

󸀠2

+ 𝑘
2

(
sin𝑓

sin 𝜃
)

2

+
𝑘2

𝐿2
𝑓
󸀠2

(
sin𝑓

sin 𝜃
)

2

+ 2𝛼𝐿
2

(1 − cos𝑓) ] .

(29)

Using the weak lower semicontinuity property of the func-
tional, we obtain the inequality

∫
𝑏

𝑎

𝐹 (𝑓 (𝜃)) ≤ lim inf
𝑛→∞

∫
𝑏

𝑎

𝐹 (𝑓
𝑛
(𝜃)) 𝑑𝜃 ≤ lim inf

𝑛→∞

𝐸
𝑘
(𝑓
𝑛
) = 𝜂,

(30)

for any

0 < 𝑎 < 𝑏 < 𝜋. (31)

Letting

𝑎 󳨀→ 0
+

, 𝑏 󳨀→ 𝜋
−

, (32)

we have

𝐸 (𝑓) = ∫
𝜋

0

𝐹 (𝑓) 𝑑𝜃 ≤ 𝜂 ≤ 𝐸 (𝑓) . (33)
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Thus we see that 𝑓(𝜃) fulfills the complete boundary
conditions (12). Therefore

𝑓 (𝜃) ∈ A, (34)

and (30) allows us to obtain

𝐸 (𝑓) = 𝜂. (35)

That is, 𝑓 is found to be a solution of (20). As a consequence,
𝑓 is a finite-energy solution of (12) and (15).

Next we will establish some properties of the energy-
minimizing solutions.

Lemma 3. Let 𝑓 be the energy-minimizing solution obtained
in Lemma 2. Then

0 < 𝑓 (𝜃) < 𝜋, ∀𝜃 ∈ (0, 𝜋) . (36)

Proof. Evidently, 𝑓(𝜃) ≡ 0 is an equilibrium point of (15). We
assume that there is 𝜃

0
such that

𝑓 (𝜃
0
) = 0. (37)

Hence, 𝑓(𝜃) attains its global minimum, so

𝑓
󸀠

(𝜃
0
) = 0. (38)

Using the uniqueness theorem for the initial value problem
of ordinary differential equations, we can get

𝑓 (𝜃) ≡ 0, (39)

which contradicts

𝑓 (0) = 𝜋, (40)

so

𝑓 (𝜃) > 0, ∀𝜃 ∈ (0, 𝜋) . (41)

Similarly, we may find that

𝑓 (𝜃) < 𝜋, ∀𝜃 ∈ (0, 𝜋) . (42)

Combining Lemmas 2 and 3, we complete the proof of
Theorem 1.
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We study the recent investigations on a class of functions which are logarithmically completely monotonic. Two open problems are
also presented.

1. Introduction

Recall [1] that a positive function 𝑓 is said to be logarithmi-
cally completely monotonic (LCM) on an open interval 𝐼 if
𝑓 has derivatives of all orders on 𝐼 and for all 𝑛 ∈ N :=

{1, 2, 3, . . .},

(−1)
𝑛

[ln𝑓 (𝑥)](𝑛) ≥ 0. (1)

LCM functions are related to completely monotonic
(CM) functions [2], strongly logarithmically completely
monotonic (SLCM) functions [3], almost strongly completely
monotonic (ASCM) functions [3], almost completely mono-
tonic (ACM) functions [4], Laplace transforms, and Stieltjes
transforms and have wide applications. It is evident that the
set of SLCM functions is a nontrivial subset of the set of
LCM functions, which is a nontrivial subset of the set of CM
functions, and that the set of CM functions is a nontrivial
subset of the set of ACM functions. It was established [3] that
the set of SLCM functions is a nontrivial subset of the set of
ASCM functions and that the set of SLCM functions on the
interval (0,∞) is disjoint with the set of strongly completely
monotonic (SCM) functions (see [5] for its definition) on the
interval (0,∞).

It is well known that the classical Euler gamma function
is defined for 𝑥 > 0 by

Γ (𝑧) = ∫
∞

0

𝑡
𝑥−1

𝑒
−𝑡d𝑡. (2)

The logarithmic derivative of Γ(𝑧), denoted by

𝜓 (𝑧) =
Γ
󸀠

(𝑧)

Γ (𝑧)
, (3)

is called psi function, and𝜓(𝑘) for 𝑘 ∈ N are called polygamma
functions.

For 𝛼, 𝛾 ∈ R and 𝛽 ≥ 0, define

𝑓
𝛼,𝛽,𝛾

(𝑥) := [
𝑒
𝑥Γ (𝑥 + 𝛽)

𝑥𝑥+𝛽−𝛼
]

𝛾

, 𝑥 ∈ (0,∞) , (4)

which is encountered in probability and statistics.
Since 𝑓

𝛼,𝛽,𝛾
(𝑥) (𝛾 > 0) is logarithmically completely

monotonic if and only if 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically com-
pletely monotonic and 𝑓

𝛼,𝛽,𝛾
(𝑥) (𝛾 < 0) is logarithmically

completely monotonic if and only if 𝑓
𝛼,𝛽,−1

(𝑥) is logarith-
mically completely monotonic, we only need to study the
logarithmically complete monotonicity of the function

𝑓
𝛼,𝛽,±1

(𝑥) = [
𝑒𝑥Γ (𝑥 + 𝛽)

𝑥𝑥+𝛽−𝛼
]

±1

, 𝑥 ∈ (0,∞) . (5)

In [6, Theorem 3.2], it was proved that the function
𝑓
1/2,0,1

(𝑥) is decreasing and logarithmically convex from
(0,∞) onto (√2𝜋,∞) and that the function 𝑓

1,0,1
(𝑥) is

increasing and logarithmically concave from (0,∞) onto
(1,∞).
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In [7, Theorem 1], for showing

𝑏𝑏−1

𝑎𝑎−1
𝑒
𝑎−𝑏

<
Γ (𝑏)

Γ (𝑎)
<
𝑏𝑏−1/2

𝑎𝑎−1/2
𝑒
𝑎−𝑏 (6)

for

𝑏 > 𝑎 > 1, (7)

monotonic properties of the functions ln𝑓
𝛼,0,1

(𝑥) and
ln𝑓
𝛼,0,1

(𝑥) on the interval (1,∞) were obtained.
In [8, Theorem 2], it was presented that the function

𝑓
𝛼,0,1

(𝑥) is decreasing on the interval (𝑐,∞) for 𝑐 ≥ 0 if and
only if

𝛼 ≤
1

2
(8)

and increasing on the interval (𝑐,∞) if and only if

𝛼 ≥ {
𝑐 [ln 𝑐 − 𝜓 (𝑐)] if 𝑐 > 0,
1 if 𝑐 = 0.

(9)

In [9], after proving the logarithmically completely
monotonic property of the functions𝑓

1/2,0,1
(𝑥) and𝑓

1,0,−1
(𝑥),

in virtue of Jensen’s inequality for convex functions, the upper
and lower bounds for the Gurland’s ratio were established: for
positive numbers 𝑥 and 𝑦, the inequality

𝑥
𝑥−1/2

𝑦
𝑦−1/2

[(𝑥 + 𝑦) /2]
𝑥+𝑦−1

≤
Γ (𝑥) Γ (𝑦)

[Γ((𝑥 + 𝑦)/2)]
2
≤

𝑥
𝑥−1

𝑦
𝑦−1

[(𝑥 + 𝑦)/2]
𝑥+𝑦−2

(10)

holds true, where the middle term in (10) is called Gurland’s
ratio [10].

In [11] the authors proved the following result.

Theorem 1 (see [11]). If

2𝛼 ≤ 1 ≤ 𝛽, (11)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

The necessary and sufficient conditions for the func-
tions 𝑓

𝛼,0,1
(𝑥) and 𝑓

𝛼,0,−1
(𝑥) to be logarithmically completely

monotonic on the interval (0,∞) were also given in [11].
Using monotonic properties of the functions 𝑓

1/2,0,1
(𝑥)

and 𝑓
1,0,−1

(𝑥), the inequality (6) was extended (see [11,
Remark 1]) from

𝑏 > 𝑎 > 1 (12)

to

𝑏 > 𝑎 > 0. (13)

In [12] the authors proved the following results.

Theorem 2 (see [12]). If 𝛽 > 0 and 𝛼 ≤ 0, then the
function 𝑓

𝛼,𝛽,1
(𝑥) is logarithmically completely monotonic on

the interval (0,∞).

Theorem 3 (see [12]). For 𝛽 > 0, a necessary condition for the
function 𝑓

𝛼,𝛽,1
(𝑥) to be logarithmically completely monotonic

on the interval (0,∞) is that

𝛼 ≤ min {𝛽, 1
2
} . (14)

Theorem 4 (see [12]). For 𝛽 ≥ 1, a necessary and sufficient
condition for the function 𝑓

𝛼,𝛽,1
(𝑥) to be logarithmically

completely monotonic on the interval (0,∞) is that

𝛼 ≤
1

2
. (15)

As direct consequences of the above results, the following
Kečkić-Vasić-type inequality is deduced.

Theorem 5 (see [12]). Let 𝑥 and 𝑦 be positive numbers with
𝑥 ̸=𝑦.

(1) For 𝛽 ≥ 1, the following inequality

𝐼 (𝑥, 𝑦) > [(
𝑥

𝑦
)

𝛼−𝛽 Γ (𝑥 + 𝛽)

Γ (𝑦 + 𝛽)
]

1/(𝑥−𝑦)

(16)

holds true if and only if 𝛼 ≤ 1/2, where

𝐼 (𝑎, 𝑏) =
1

𝑒
(
𝑏
𝑏

𝑎𝑎
)

1/(𝑏−𝑎)

(𝑎 > 0, 𝑏 > 0, 𝑎 ̸= 𝑏) (17)

is the identric or exponential mean.
(2) For 𝛽 > 0, the inequality (16) holds true also if 𝛼 ≤ 0.

In [13], the following result was established.

Theorem 6 (see [13]). (1) For 𝛽 ∈ [0, 1/2), if

𝛼 ≤ 𝛽 − 𝑒
−4

(1 − 𝛽)
2 exp( 2

1 − 𝛽
) , (18)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

(2) For 𝛽 ∈ [1/2, 1], if

𝛼 ≤ min {3𝛽2 − 3𝛽 + 1, 1
2
} , (19)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

FromTheorem6we can directly obtain the following new
result.

Corollary 7. (1) For 𝛽 ∈ [1/4, 1/2], if

𝛼 ≤ 𝛽 −
1

4
, (20)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).
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(2) For 𝛽 ∈ (1/2, 3/4], if

𝛼 ≤ 𝛽 −
1

3
, (21)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

(3) For 𝛽 ∈ (3/4, 1], if

𝛼 ≤ 𝛽 −
1

2
, (22)

then the function 𝑓
𝛼,𝛽,1

(𝑥) is logarithmically completely mono-
tonic on the interval (0,∞).

A necessary and sufficient condition is obtained in [13] as
follows.

Theorem 8 (see [13]). For

𝛽 ∈ {0} ∪ [
1

2
+
√3

6
,∞) , (23)

a necessary and sufficient condition for the function𝑓
𝛼,𝛽,1

(𝑥) to
be logarithmically completely monotonic on the interval (0,∞)

is that

𝛼 ≤
1

2
. (24)

Regarding the logarithmically complete monotonicity for
the function 𝑓

𝛼,𝛽,−1
(𝑥) and their applications. In [14], the

authors proved the following results.

Theorem 9 (see [14]). If the function 𝑓
𝛼,𝛽,−1

(𝑥) is logarithmi-
cally completely monotonic on the interval (0,∞), then either

𝛽 > 0, 𝛼 ≥ max {𝛽, 1
2
} (25)

or

𝛽 = 0, 𝛼 ≥ 1. (26)

Theorem 10 (see [14]). For

𝛽 ≥
1

2
, (27)

the necessary and sufficient condition for the function𝑓
𝛼,𝛽,−1

(𝑥)

to be logarithmically completely monotonic on the interval
(0,∞) is that

𝛼 ≥ 𝛽. (28)

As first application, the following inequalities are derived
by using logarithmically completely monotonic properties of
the function 𝑓

𝛼,𝛽,±1
(𝑥) on the interval (0,∞).

Theorem 11 (see [14]). (1) For 𝑘 ∈ N, double inequalities

ln𝑥 − 1

𝑥
≤ 𝜓 (𝑥) ≤ ln𝑥 − 1

2𝑥
,

(𝑘 − 1)!

𝑥𝑘
+

𝑘!

2𝑥𝑘+1
≤ (−1)

𝑘+1

𝜓
(𝑘)

(𝑥) ≤
(𝑘 − 1)!

𝑥𝑘
+

𝑘!

𝑥𝑘+1

(29)

hold true on the interval (0,∞).

(2)When 𝛽 > 0, inequalities

𝜓 (𝑥 + 𝛽) ≤ ln𝑥 +
𝛽

𝑥
,

(−1)
𝑘

𝜓
(𝑘−1)

(𝑥 + 𝛽) ≥
(𝑘 − 2)!

𝑥𝑘−1
−
𝛽 (𝑘 − 1)!

𝑥𝑘

(30)

hold true on the interval (0,∞) for 𝑘 ≥ 2.
(3)When 𝛽 ≥ 1/2, inequalities

𝜓 (𝑥 + 𝛽) ≥ ln𝑥,

(−1)
𝑘

𝜓
(𝑘−1)

(𝑥 + 𝛽) ≤
(𝑘 − 2)!

𝑥𝑘−1

(31)

hold true on the interval (0,∞) for 𝑘 ≥ 2.
(4)When 𝛽 ≥ 1, inequalities

𝜓 (𝑥 + 𝛽) ≤ ln𝑥 +
𝛽 − 1/2

𝑥
,

(−1)
𝑘

𝜓
(𝑘−1)

(𝑥 + 𝛽) ≥
(𝑘 − 2)!

𝑥𝑘−1
−
(𝛽 − 1/2) (𝑘 − 1)!

𝑥𝑘

(32)

hold true on the interval (0,∞) for 𝑘 ≥ 2.

As second application, the following inequalities are
derived by using logarithmically convex properties of the
function 𝑓

𝛼,𝛽,±1
(𝑥) on (0,∞).

Theorem 12 (see [14]). Let 𝑛 ∈ N and

𝑥
𝑘
> 0 (1 ≤ 𝑘 ≤ 𝑛) . (33)

Suppose also that
𝑛

∑
𝑘=1

𝑝
𝑘
= 1 (𝑝

𝑘
≥ 0) . (34)

If either

𝛽 > 0, 𝛼 ≤ 0 (35)

or

𝛽 ≥ 1, 𝛼 ≤
1

2
, (36)

then

∏
𝑛

𝑘=1
[Γ(𝑥
𝑘
+ 𝛽)]
𝑝𝑘

Γ (∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
+ 𝛽)

≥
∏
𝑛

𝑘=1
𝑥
𝑝𝑘(𝑥𝑘+𝛽−𝛼)

𝑘

(∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
)
∑
𝑛

𝑘=1
𝑝𝑘𝑥𝑘+𝛽−𝛼

. (37)

If

𝛼 ≥ 𝛽 ≥
1

2
, (38)

then the inequality (37) reverses.

As final application, the following inequality can be
derived by using the decreasingly monotonic property of the
function 𝑓

𝛼,𝛽,−1
(𝑥) on (0,∞).
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Theorem 13 (see [14]). If

𝛼 ≥ 𝛽 ≥
1

2
, (39)

then

𝐼 (𝑥, 𝑦) < [(
𝑥

𝑦
)

𝛼−𝛽 Γ (𝑥 + 𝛽)

Γ (𝑦 + 𝛽)
]

1/(𝑥−𝑦)

(40)

holds true for 𝑥, 𝑦 ∈ (0,∞) with 𝑥 ̸=𝑦, where 𝐼(𝑥, 𝑦), defined
by (17), is the identric or exponential mean.

The following results were shown in [15].

Theorem 14 (see [15]). For

𝛽 ≥ 0, (41)

a sufficient condition for the function 𝑓
𝛼,𝛽,−1

(𝑥) to be logarith-
mically completely monotonic on the interval (0,∞) is that

𝛼 ≥ max {1
2
, 𝛽, 3𝛽

2

− 3𝛽 + 1} . (42)

Remark 15. FromTheorems 9 and 14we see that the necessary
and sufficient condition for the function 𝑓

𝛼,0,−1
(𝑥) to be

logarithmically completely monotonic on the interval (0,∞)

is that

𝛼 ≥ 1. (43)

This result is Theorem 2 in [11]. Here we recovered it.

Theorem 16 (see [15]). Let

𝛽 ∈ [
1

2
−
√3

6
,
1

2
] . (44)

Then the necessary and sufficient condition for the function
𝑓
𝛼,𝛽,−1

(𝑥) to be logarithmically completely monotonic on the
interval (0,∞) is that

𝛼 ≥
1

2
. (45)

The following results are applications of the above theo-
rems.

Theorem 17 (see [15]). When

1

2
−
√3

6
≤ 𝛽 ≤

1

2
, (46)

the following inequalities

𝜓 (𝑥 + 𝛽) ≥ ln𝑥 −
1/2 − 𝛽

𝑥
,

(−1)
𝑘

𝜓
(𝑘−1)

(𝑥 + 𝛽) ≤
(𝑘 − 2)!

𝑥𝑘−1
+
(1/2 − 𝛽) (𝑘 − 1)!

𝑥𝑘

(𝑘 ≥ 2)

(47)

hold true on the interval (0,∞).

Theorem 18 (see [15]). Let 𝑛 ∈ N and

𝑥
𝑘
> 0 (1 ≤ 𝑘 ≤ 𝑛) . (48)

Suppose also that

𝑛

∑
𝑘=1

𝑝
𝑘
= 1 (𝑝

𝑘
≥ 0) . (49)

If

0 ≤ 𝛽 ≤
1

2
,

𝛼 ≥ max {1
2
, 3𝛽
2

− 3𝛽 + 1} ,

(50)

then

∏
𝑛

𝑘=1
[Γ(𝑥
𝑘
+ 𝛽)]
𝑝𝑘

Γ (∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
+ 𝛽)

≤
∏
𝑛

𝑘=1
𝑥
𝑝𝑘(𝑥𝑘+𝛽−𝛼)

𝑘

(∑
𝑛

𝑘=1
𝑝
𝑘
𝑥
𝑘
)
∑
𝑛

𝑘=1
𝑝𝑘𝑥𝑘+𝛽−𝛼

. (51)

Theorem 19 (see [15]). If

0 ≤ 𝛽 ≤
1

2
,

𝛼 ≥ max {1
2
, 3𝛽
2

− 3𝛽 + 1} ,

(52)

then

𝐼 (𝑥, 𝑦) < [(
𝑥

𝑦
)

𝛼−𝛽 Γ (𝑥 + 𝛽)

Γ (𝑦 + 𝛽)
]

1/(𝑥−𝑦)

(𝑥 > 0; 𝑦 > 0; 𝑥 ̸=𝑦) ,

(53)

where in (53) 𝐼(𝑥, 𝑦), defined by (17), is the identric or
exponential mean.

2. Open Problems

2.1. Open Problem 1. From Theorem 8 we have already
known, for

𝛽 ∈ {0} ∪ [
1

2
+
√3

6
,∞) , (54)

a necessary and sufficient condition for the function 𝑓
𝛼,𝛽,1

(𝑥)

to be logarithmically completely monotonic on the interval
(0,∞).

For

𝛽 ∈ (0,
1

2
+
√3

6
) , (55)

what is a necessary and sufficient condition for the function
𝑓
𝛼,𝛽,1

(𝑥) to be logarithmically completely monotonic on the
interval (0,∞)?

Already Known. Theorem 3 gave a necessary condition;
Theorem 6 provided a sufficient condition.
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2.2. Open Problem 2. From Remark 15, Theorems 10 and 16
we have already known, for

𝛽 ∈ {0} ∪ [
1

2
−
√3

6
,∞) , (56)

a necessary and sufficient condition for the function𝑓
𝛼,𝛽,−1

(𝑥)

to be logarithmically completely monotonic on the interval
(0,∞).

For

𝛽 ∈ (0,
1

2
−
√3

6
) , (57)

what is a necessary and sufficient condition for the function
𝑓
𝛼,𝛽,−1

(𝑥) to be logarithmically completely monotonic on the
interval (0,∞)?

Already Known. Theorem 9 gave a necessary condition;
Theorem 14 provided a sufficient condition.
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This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations
(SDDEs). Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions
under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the
theoretical results proposed.

1. Introduction

Stochastic differential delay equations (SDDEs) are the pro-
motion of stochastic differential equations (SDEs) and dif-
ferential delay equations (DDEs). These kinds of equations
consider not only the stochastic factors in the process of the
development of a system, but also the impact of the delay. As
an important mathematical model, SDDEs have been applied
widely in many areas, such as stochastic control, economics,
and biology. Since it is difficult to find the analytic solutions to
SDDEs, to get the numerical solutions to SDDEs generated by
some numerical methods is commonly used. For a numerical
method, it is important to analyze its stability.

The general form of SDDEs with Gaussian white noise is

d𝑋(𝑡) = 𝑓 (𝑡, 𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏)) d𝑡

+ 𝑔 (𝑡, 𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏)) d𝑊(𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑋 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝜏 > 0, 𝜑(𝑡) ∈ C([−𝜏, 0],R𝑚), 𝑓 : R+ × R𝑚 × R𝑚 →

R𝑚, 𝑔 : R+ × R𝑚 × R𝑚 → R𝑚×𝑑, and 𝑊(𝑡) is a standard
𝑑-dimensional Wiener process. Equation (1) has a unique

solution if 𝑓 and 𝑔 are sufficiently smooth and satisfy the
following conditions:

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)
󵄨󵄨󵄨󵄨 ∨

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥1, 𝑦1) − 𝑔 (𝑡, 𝑥2, 𝑦2)
󵄨󵄨󵄨󵄨

≤ 𝐿 (
󵄨󵄨󵄨󵄨𝑥1 − 𝑥2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨) ,

(2)

󵄨󵄨󵄨󵄨𝑓(𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨
2

∨
󵄨󵄨󵄨󵄨𝑔(𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨
2

≤ 𝐾 (1 + |𝑥|
2

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
2

) , (3)

where 𝑡 ≥ 0, 𝑥, 𝑦, 𝑥
1
, 𝑦
1
, 𝑥
2
, 𝑦
2
∈ R𝑚, and 𝐿 and 𝐾 are

constants. The condition in (2) is called Lipschitz condition,
and the condition in (3) is called the linear growth condition.

The main numerical methods for SDDEs are Euler-
Maruyama method [1, 2] and Milstein method [3] at present.
The mean square stability of these methods for SDDEs has
been well studied. Cao et al. [1] studied the mean square
stability of Euler-Maruyama method for linear SDDEs. Liu
et al. [2] studied the mean square stability of the semi-
implicit Euler method for linear SDDEs. Wang and Zhang
[3] discussed themean square stability ofMilsteinmethod for
linear SDDEs.Wang and Chen [4, 5] studied themean square
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stability of semi-implicit Euler method for nonlinear neutral
SDDEs and that of Heun methods for nonlinear SDDEs. Tan
et al. [6] discussed the mean square stability of balanced
methods for SDDEs. T-stability is introduced by Saito et al.
in [7–9], and it is another kind of stability with respect to
the approximate sequence of sample path. Cao [10] studied
the T-stability of the semi-implicit Euler method for delay
differential equations with multiplicative noise. Rathinasamy
and Balachandran [11] studied the T-stability of the split-step
𝜃-methods for linear SDDEs. Yang and Liu [12] discussed
the T-stability of the 𝜃-method for a stochastic pantograph
differential equation.

Applying the Heun method [5] to (1) gives

𝑋
𝑛+1

= 𝑋
𝑛
+
1

2
[𝑓 (𝑡
𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

)

+ 𝑓 (𝑡
𝑛+1

, 𝑋
𝑛
+ ℎ 𝑓 (𝑡

𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) , 𝑋
𝑛−𝑚+1

)] ℎ

+ 𝑔 (𝑡
𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) Δ𝑊
𝑛
,

(4)

where ℎ > 0 is a step size with 𝜏 = 𝑚ℎ for a positive integer𝑚
and 𝑡
𝑛
= 𝑛ℎ.𝑋

𝑛
is an approximation of𝑋(𝑡

𝑛
), and𝑋

𝑛
= 𝜑(𝑡
𝑛
)

if 𝑡
𝑛
≤ 0. Δ𝑊

𝑛
= 𝑊(𝑡

𝑛+1
) − 𝑊(𝑡

𝑛
) ∼ 𝑁(0, ℎ).

The mean square stability of the Heun method in (4) was
studied in [5], but there is no result about T-stability of the
method at present. This paper gives two T-stable conditions
of the Heun method (4) for two kinds of linear SDDEs.

The balanced method for solving (1) is

𝑋
𝑛+1

= 𝑋
𝑛
+ 𝑓 (𝑡

𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) ℎ + 𝑔 (𝑡
𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) Δ𝑊
𝑛

+ 𝐶 (𝑋
𝑛
, 𝑋
𝑛−𝑚

) (𝑋
𝑛
− 𝑋
𝑛+1

) ,

(5)

where 𝐶(𝑋
𝑛
, 𝑋
𝑛−𝑚

) = 𝐶
0
(𝑋
𝑛
, 𝑋
𝑛−𝑚

)ℎ + 𝐶
1
(𝑋
𝑛
, 𝑋
𝑛−𝑚

)|Δ𝑊
𝑛
|

and 𝐶
0
, 𝐶
1
are 𝑑 × 𝑑 real matrix functions.

Let 𝑀(𝑥, 𝑦) = 𝐼 + 𝛽
0
𝐶
0
(𝑥, 𝑦) + 𝛽

1
𝐶
1
(𝑥, 𝑦), where 𝐼 is a

unit matrix, 𝛽
0
∈ [0, 𝛼], 𝛼 ≥ ℎ, 𝛽

1
≥ 0, and (𝑥, 𝑦) ∈ 𝑅𝑑 × 𝑅𝑑.

Assume that𝑀(𝑥, 𝑦) is invertible with |(𝑀(𝑥, 𝑦))
−1

| ≤ 𝐾 <

∞.
The mean square stability of the balanced method for

SDEs and SDEs with jumps was studied in [13, 14], respec-
tively. In 2011, Tan et al. [6] applied the balanced method
to SDDEs and discussed the mean square convergence and
stability of this method. However, there is no research result
about T-stability of the balancedmethod (5) at present. In this
paper, the conditions under which the balanced method (5)
is T-stable are obtained for two kinds of linear SDDEs.

Section 2 introduces the stochastically asymptotically
stable conditions in the large for two kinds of linear SDDEs.
In Section 3, T-stability of the Heun method equipped with a
specified driving process is discussed and the corresponding
step size range is given. Section 4 studies T-stability of
the balanced method, and Section 5 uses some numerical
examples to verify the results given in this paper.

2. Asymptotic Stability of Analytical Solution

Consider the following two scalar linear test equations:

d𝑋 (𝑡) = [𝑎𝑋 (𝑡) + 𝑏𝑋 (𝑡 − 𝜏)] d𝑡

+ 𝑐𝑋 (𝑡) d𝑊(𝑡) , 𝑡 ∈ [0, 𝑇]

𝑋 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(6)

d𝑋 (𝑡) = [𝑎𝑋 (𝑡) + 𝑏𝑋 (𝑡 − 𝜏)] d𝑡

+ [𝑐𝑋 (𝑡) + 𝑑𝑋 (𝑡 − 𝜏)] d𝑊(𝑡) , 𝑡 ∈ [0, 𝑇]

𝑋 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(7)

Let (Ω, F, {𝐹
𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with

a filtration {𝐹
𝑡
}
𝑡≥0

, which is right continuous, and each 𝐹
𝑡

contains all 𝑃-null sets in F. In (6) and (7), 𝑎, 𝑏, 𝑐, 𝑑 ∈

R; 𝜏 > 0;𝑊(𝑡) is a one-dimensional standardWiener process;
initial function 𝜑(𝑡) ∈ C([−𝜏, 0], R𝑚) is 𝐹

0
-measurable and

𝐸‖𝜑‖
2

< ∞. Equations (6) and (7) have unique strong
solution if (6) and (7) meet Lipschitz condition in (2) and the
linear growth condition in (3).

Definition 1 (see [10]). The solution of (1) is stochastically
asymptotically stable in the large if

𝑃( lim
𝑡→∞

󵄨󵄨󵄨󵄨𝑋 (𝑡, 𝜑)
󵄨󵄨󵄨󵄨 = 0) = 1 (8)

for all initial functions 𝜑.

From Corollary 3.2 in [15], we get Lemmas 2 and 3 as
follows.

Lemma 2. The solution of (6) is stochastically asymptotically
stable in the large if parameters 𝑎, 𝑏, and 𝑐 in (6) satisfy

𝑎 < − |𝑏| −
1

2
𝑐
2

. (9)

Lemma 3. The solution of (7) is stochastically asymptotically
stable in the large if parameters 𝑎, 𝑏, 𝑐, and 𝑑 in (7) satisfy

𝑎 < − |𝑏| −
1

2
(|𝑐| + |𝑑|)

2

. (10)

3. T-Stability of the Heun Method

Definition 4 (see [10]). Suppose that the condition in (9) or in
(10) is fulfilled. Anumerical scheme equippedwith a specified
driving process is said to be T-stable if

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 󳨀→ 0 a.s. (11)

for the driving process, where 𝑋
𝑛
is the numerical solution

generated by the numerical scheme applied to the test
equation (6) or (7).

For analyzing T-stability, we focus our attention on
the trajectory of numerical solution. A specified driving
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process proposed in Definition 4 is used to approximate the
Wiener incrementΔ𝑊

𝑛
of the numericalmethods.This paper

analyzes the Heun method equipped with two-point random
variables for the driving process. SoΔ𝑊

𝑛
:= 𝜂
𝑛
√ℎ and𝑃(𝜂

𝑛
=

±1) = 1/2, where 𝑃 denotes the probability.
The Heun method applied to (6) and (7), respectively,

gives

𝑋
𝑛+1

= (1 + 𝑎ℎ +
1

2
𝑎
2

ℎ
2

+ 𝑐Δ𝑊
𝑛
)𝑋
𝑛

+
1

2
𝑏ℎ (1 + 𝑎ℎ)𝑋

𝑛−𝑚
+
1

2
𝑏ℎ𝑋
𝑛−𝑚+1

,

(12)

𝑋
𝑛+1

= (1 + 𝑎ℎ +
1

2
𝑎
2

ℎ
2

+ 𝑐Δ𝑊
𝑛
)𝑋
𝑛

+ [
1

2
𝑏ℎ (1 + 𝑎ℎ) + 𝑑Δ𝑊

𝑛
]𝑋
𝑛−𝑚

+
1

2
𝑏ℎ𝑋
𝑛−𝑚+1

,

(13)

where ℎ > 0 is a step size with 𝜏 = 𝑚ℎ for a positive integer
𝑚 and 𝑡

𝑛
= 𝑛ℎ,𝑋

𝑛
≈ 𝑋(𝑡

𝑛
) if 𝑡
𝑛
≤ 0,𝑋

𝑛
= 𝜑(𝑡
𝑛
).

For the Heun method in (12), we have

󵄨󵄨󵄨󵄨𝑋𝑛+1
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 + 𝑎ℎ +

1

2
𝑎
2

ℎ
2

+ 𝑐Δ𝑊
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

×max {󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚+1

󵄨󵄨󵄨󵄨}

= (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐𝜂
𝑛

√ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

×max {󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚+1

󵄨󵄨󵄨󵄨} .

(14)

Let

𝑅 (ℎ, 𝑎, 𝑏, 𝑐) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐𝜂
𝑛

√ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(15)

It is clear that |𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑃(𝑅(ℎ, 𝑎, 𝑏, 𝑐) <

1) = 1, and therefore the Heun method in (12) is T-stable.
Denote

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐)

= (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

(16)

Since 𝜂
𝑛
’s follow two-point distribution, we get |𝑋

𝑛
| →

0, a.s. (𝑛 → ∞) if 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) < 1, which means that the

Heun method in (12) is T-stable.
Similarly, for the Heun method in (13), we can get

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) as follows:

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

= (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) + 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) − 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) ,

(17)

and |𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑅̃

𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1, which

means that the Heun method in (13) is T-stable.

Theorem 5. Suppose (6)meets the condition in (9). The Heun
method in (12) is T-stable if ℎ < 𝐻, where

𝐻 = min{ 2

|𝑏| − 𝑎
,
1

4𝑐2
} . (18)

Proof. The condition in (9) gives 𝑎 < 0. Denote

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑅
2
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(∗)

and 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐)𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐).

For 𝑏 ̸= 0, we have 𝑎 + 𝑏 < 0, 𝑎 − 𝑏 < 0 from the condition
in (9). Let

ℎ
1
= −

1

𝑎
, ℎ
2
= min {−1

𝑎
,
1

4𝑐2
} . (19)

Only the conclusion of the theorem when 𝑏 < 0, 𝑐 > 0

is proven, and that of the theorem when 𝑏 < 0, 𝑐 < 0 or 𝑏 >
0, 𝑐 > 0 or 𝑏 > 0, 𝑐 < 0 can be proven similarly.

If ℎ < ℎ
2
, then ℎ < −1/𝑎 and ℎ < 1/4𝑐2, and we have

1 + 𝑎ℎ > 0 and (1/2) − 𝑐√ℎ > 0. Hence

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

= −𝑏ℎ (1 + 𝑎ℎ) − 𝑏ℎ + (1 + 𝑎ℎ)
2

+ 1

= (𝑎 − 𝑏) (𝑎ℎ + 2) ℎ + 2.

(20)

Since 𝑎ℎ + 1 > 0 and 𝑎 − 𝑏 < 0, we have 𝑎ℎ + 2 > 0 and

0 < 𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) < 2. (21)
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Consequently,

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

≤ [
𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

2
]

2

< 1,

(22)

which means that the Heun method (12) is T-stable if ℎ < ℎ
2
.

(a) When ℎ
1
= −1/𝑎 < 𝐻, if 𝐻 = 1/4𝑐2, then ℎ

2
=

min{−1/𝑎, 1/4𝑐2} = −1/𝑎 = ℎ
1
.

If 𝐻 = 2/(|𝑏| − 𝑎), then 𝐻 ≤ 1/4𝑐2, which yields ℎ
1
=

−1/𝑎 < 𝐻 ≤ 1/4𝑐2, and ℎ
2
= −1/𝑎 = ℎ

1
. Hence ℎ

2
= ℎ
1
if

ℎ
1
< 𝐻.
For obtaining the result of this theorem in this case, the

left work is to prove the method is T-stable for ℎ
1
≤ ℎ < 𝐻.

If ℎ
1
≤ ℎ < 𝐻, then −1/𝑎 ≤ ℎ < 1/4𝑐2, ℎ < 2/(|𝑏| − 𝑎);

that is,

1 + 𝑎ℎ ≤ 0,
1

2
− 𝑐√ℎ > 0, (𝑎 − |𝑏|) ℎ + 2 > 0. (23)

Since 𝑎 − |𝑏| ≤ 𝑎 + 𝑏, we get (𝑎 + 𝑏)ℎ + 2 ≥ (𝑎 − |𝑏|)ℎ + 2 > 0.
Since

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

= 𝑏ℎ (1 + 𝑎ℎ) − 𝑏ℎ + (1 + 𝑎ℎ)
2

+ 1

= 𝑎ℎ [(𝑎 + 𝑏) ℎ + 2] + 2,

(24)

we have 0 < 𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) < 2 from 𝑎 < 0 and

(∗), and therefore

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

≤ [
𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

2
]

2

< 1,

(25)

which means that the Heun method (12) is T-stable if ℎ < 𝐻.
(b) When ℎ

1
= 𝐻, it is easy to know ℎ

2
= ℎ
1
, and the

Heun method (12) is T-stable if ℎ < ℎ
2
= 𝐻.

(c) When ℎ
1
= −1/𝑎 > 𝐻, if 𝐻 = 1/4𝑐2, then ℎ

2
=

min{−1/𝑎, 1/4𝑐2} = 1/4𝑐2 = 𝐻. If 𝐻 = 2/(|𝑏| − 𝑎), then
−1/𝑎 > 2/(|𝑏| − 𝑎). Solving this gives 𝑎 > −|𝑏|, which
contradicts the condition in (9). So ℎ

2
= 𝐻 if ℎ

1
> 𝐻. Hence

the Heun method in (12) is T-stable if ℎ < ℎ
2
= 𝐻.

The discussion above shows that the Heunmethod in (12)
is T-stable provided that ℎ < 𝐻, which completes the proof.

Theorem6. Suppose (7)meets the condition in (10).TheHeun
method in (13) is T-stable if𝐻

1
< ℎ < 𝐻

2
, where

𝐻
1
=

4𝑑2

(𝑎 + |𝑏|)
2
, 𝐻

2
= min{−1

𝑎
,
1

4𝑐2
,
4𝑑2

𝑏2
} . (26)

Proof. The condition in (10) gives 𝑎 < 0. Denote

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) + 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) − 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(∗∗)

and then 𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

from (17).
(a) Suppose 𝑏 < 0, 𝑐 > 0, 𝑑 > 0, and 𝐻

1
< 𝐻
2
. With

ℎ < 𝐻
2
, we have

1 + 𝑎ℎ > 0,
1

2
𝑏ℎ + 𝑑√ℎ > 0,

1

2
− 𝑐√ℎ > 0, (27)

and 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = (2𝑎 − 𝑏)ℎ + 2𝑑√ℎ +

𝑎2ℎ2 + 2 from (∗∗). With ℎ > 𝐻
1
, we have ℎ > 4𝑑2/(𝑎 − 𝑏)

2;
that is, (2𝑎− 𝑏)ℎ+ 2𝑑√ℎ < 𝑎ℎ. The inequality 1+𝑎ℎ > 0with
𝑎 < 0 gives 𝑎ℎ < −𝑎2ℎ2, and therefore (2𝑎 − 𝑏)ℎ + 2𝑑√ℎ <

−𝑎2ℎ2. With this and (∗∗), we get 0 < 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) +

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2. Consequently,

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

< [
𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

2
]

2

< 1,

(28)

which means the Heun method in (13) is T-stable.
In the same way, we can prove that the Heun method in

(13) is T-stable when 𝑏 < 0, 𝑐 > 0, 𝑑 < 0 or 𝑏 < 0, 𝑐 < 0, 𝑑 > 0
or 𝑏 < 0, 𝑐 < 0, 𝑑 < 0.

(b) Suppose 𝑏 > 0, 𝑐 > 0, 𝑑 > 0, and 𝐻
1
< 𝐻
2
. With

ℎ < 𝐻
2
, we get

1 + 𝑎ℎ > 0,
1

2
𝑏ℎ − 𝑑√ℎ < 0,

1

2
− 𝑐√ℎ > 0, (29)

and 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = (2𝑎 + 𝑏)ℎ + 2𝑑√ℎ +

𝑎2ℎ2 + 2 from (∗∗). With ℎ > 𝐻
1
, we have ℎ > 4𝑑2/(𝑎 + 𝑏)

2;
that is, (2𝑎+ 𝑏)ℎ+ 2𝑑√ℎ < 𝑎ℎ. The inequality 1+𝑎ℎ > 0with
𝑎 < 0 gives 𝑎ℎ < −𝑎2ℎ2, and therefore (2𝑎 + 𝑏)ℎ + 2𝑑√ℎ <

−𝑎2ℎ2. With this and (∗∗), we get 0 < 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) +

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2. Consequently,

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

< [
𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

2
]

2

< 1,

(30)

which means that the Heun method in (13) is T-stable.
In the same way, we can prove that the Heun method in

(13) is T-stable when 𝑏 > 0, 𝑐 > 0, 𝑑 < 0 or 𝑏 > 0, 𝑐 < 0, 𝑑 > 0
or 𝑏 > 0, 𝑐 < 0, 𝑑 < 0.

The proof of the theorem is complete.
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4. T-Stability of the Balanced Method

The balanced method applied to (6) and (7), respectively,
gives

𝑋
𝑛+1

= (1 +
𝑎ℎ + 𝑐Δ𝑊

𝑛

1 + 𝐶
)𝑋
𝑛
+ (

𝑏ℎ

1 + 𝐶
)𝑋
𝑛−𝑚

, (31)

𝑋
𝑛+1

= (1 +
𝑎ℎ + 𝑐Δ𝑊

𝑛

1 + 𝐶
)𝑋
𝑛
+ (

𝑏ℎ + 𝑑Δ𝑊
𝑛

1 + 𝐶
)𝑋
𝑛−𝑚

, (32)

where 𝐶 = 𝐶
0
ℎ + 𝐶

1
|Δ𝑊
𝑛
| and 𝐶

0
and 𝐶

1
are real numbers.

In the analysis of T-stability of balanced method, we also use
two-point random variables for the driving process.

For the balanced method in (31), we have

󵄨󵄨󵄨󵄨𝑋𝑛+1
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ + 𝑐Δ𝑊
𝑛

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨Δ𝑊𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨Δ𝑊𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)max {󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚

󵄨󵄨󵄨󵄨} .

(33)

Denote

𝑅 (ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ + 𝑐𝜂

𝑛
√ℎ

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨𝜂𝑛
󵄨󵄨󵄨󵄨
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨𝜂𝑛
󵄨󵄨󵄨󵄨
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) .

(34)

The discussion about the Heun method in Section 3 implies
|𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑅

𝑇
(ℎ, 𝑎, 𝑏, 𝑐) < 1, which means

that the balanced method in (31) is T-stable if 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) <

1.
Similarly, for the balanced method in (32), we get

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

= (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ + 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ − 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) ,

(35)

and |𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑅̃

𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1,

which means that the Heun method in (32) is T-stable if
𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1.

Theorem 7. Suppose (6) meets the condition in (9). The
balanced method in (31) is T-stable if 𝐹(ℎ) ≥ 0, where

𝐹 (ℎ) = (𝐶
0
+ 𝑎) ℎ + (𝐶

1
− |𝑐|)√ℎ. (36)

Proof. The condition in (9) gives 𝑎 < 0. Denote

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑅
2
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(∗ ∗ ∗)

and 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐)𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) from (34). It is

easy to know 𝑎 + 𝑏 < 0, 𝑎 − 𝑏 < 0 for 𝑏 ̸= 0.
If 𝑐 > 0, 𝑏 > 0, we have

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ − 𝑐√ℎ ≥ 0,

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ + 𝑐√ℎ ≥ 0,

(37)

from the assumption 𝐹(ℎ) ≥ 0, which applies 1 + 𝐶
0
ℎ +

𝐶
1
√ℎ > 0. Then 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) and 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) in (∗ ∗ ∗)

become

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ + 𝑐√ℎ + 𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅
2
(ℎ, 𝑎, 𝑏, 𝑐) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ − 𝑐√ℎ + 𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) = 2 +

2 (𝑎 + 𝑏) ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

.

(38)

Since 𝑎 + 𝑏 < 0, 1 + 𝐶
0
ℎ + 𝐶

1
√ℎ > 0, we have 0 <

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) < 2 and

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

< [
𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

2
]

2

< 1,

(39)

which means that balanced method in (31) is T-stable.
In the same way, we can prove that the balanced method

in (31) is T-stable when

𝑐 > 0, 𝑏 < 0 or 𝑐 < 0, 𝑏 > 0,

or 𝑐 < 0, 𝑏 < 0.
(40)

The proof of the theorem is complete.

Theorem 8. Suppose (7) meets the condition in (10). The
balanced method in (32) is T-stable if ℎ > 𝐻 and 𝐹(ℎ) ≥ 0,
where

𝐻 =
𝑑
2

𝑏2
, 𝐹 (ℎ) = (𝐶

0
+ 𝑎) ℎ + (𝐶

1
− |𝑐|)√ℎ. (41)
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Figure 1: Simulations with the Heun method for (6) with 𝑎 = −7, 𝑏 = 1, and 𝑐 = 1. (a1) ℎ = 1

9
, (b1) ℎ = 1

7
, (c1) ℎ = 1

5
, and (d1) ℎ = 1/3.

Proof. The condition in (10) gives 𝑎 < 0. Denote

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ + 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ − 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(∗ ∗ ∗∗)

and then 𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

from (35). It is easy to know 𝑎 + 𝑏 < 0, 𝑎 − 𝑏 < 0 for 𝑏 ̸= 0.

If 𝑐 > 0, 𝑏 > 0, 𝑑 > 0, we have 𝑏ℎ − 𝑑√ℎ > 0 from ℎ > 𝐻

and

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ − 𝑐√ℎ ≥ 0,

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ + 𝑐√ℎ ≥ 0,

(42)

from the assumption 𝐹(ℎ) ≥ 0, which yields 1 + 𝐶
0
ℎ +

𝐶
1
√ℎ > 0. Then 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) and 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) in

(∗ ∗ ∗∗) become

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ + 𝑐√ℎ + 𝑏ℎ + 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ − 𝑐√ℎ + 𝑏ℎ − 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 2 +

2 (𝑎 + 𝑏) ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

.

(43)
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Figure 2: Simulations with the Heun method for (7) with 𝑎 = −9, 𝑏 = −1, 𝑐 = 1.1, and 𝑑 = 0.9. (a2) ℎ = 1/19, (b2) ℎ = 1/15, (c2) ℎ = 1/11,
and (d2) ℎ = 1/3.

Since 𝑎 + 𝑏 < 0, 1 + 𝐶
0
ℎ + 𝐶

1
√ℎ > 0, we have 0 <

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2, and 𝑅̃

𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1, which means that the

balanced method in (32) is T-stable.
In the same way, we can prove that the balanced method

in (32) is T-stable when

𝑐 > 0, 𝑏 > 0, 𝑑 < 0 or 𝑐 > 0, 𝑏 < 0, 𝑑 > 0

or 𝑐 > 0, 𝑏 < 0, 𝑑 < 0.
(44)

If 𝑐 < 0, 𝑏 > 0, 𝑑 > 0, we get 𝑏ℎ − 𝑑√ℎ > 0 from ℎ > 𝐻

and

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ + 𝑐√ℎ ≥ 0,

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ − 𝑐√ℎ ≥ 0

(45)

from the assumption𝐹(ℎ) ≥ 0, which applies 1+𝐶
0
ℎ+𝐶
1
√ℎ >

0. Then

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 2 +

2 (𝑎 + 𝑏) ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

(46)

from (∗ ∗ ∗∗). Since 𝑎 + 𝑏 < 0, 1 + 𝐶
0
ℎ + 𝐶
1
√ℎ > 0, we have

0 < 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2; (47)

consequently, 𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1, which means that the

balanced method in (32) is T-stable.
In the same way, we can prove that the balanced method

in (32) is T-stable when

𝑐 < 0, 𝑏 > 0, 𝑑 < 0 or 𝑐 < 0, 𝑏 < 0, 𝑑 > 0

or 𝑐 < 0, 𝑏 < 0, 𝑑 < 0.
(48)

The proof of Theorem 8 is complete.
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Figure 3: Simulations with the balanced method for (6) with 𝑎 = −3, 𝑏 = 2, and 𝑐 = 1. (a3) ℎ = 1/22, (b3) ℎ = 1/16, (c3) ℎ = 1/10, and
(d3) ℎ = 1/4.

5. Numerical Examples

Consider test equations (6) and (7) with 𝜏 = 1, 𝜑(𝑡) = 𝑡 +

1, 𝑡 ∈ [−1, 0]. In the following figures 𝑡
𝑛
’s are nodes, and 𝑋

𝑛

denotes the numerical solution at 𝑡 = 𝑡
𝑛
.

Take 𝑎 = −7, 𝑏 = 1, and 𝑐 = 1 in (6). From (18), we get
𝐻 = 1/4, which means that the Heun method in (12) is T-
stable if ℎ < 1/4. Figure 1 shows that the Heun method in
(12) is T-stable when ℎ = 1/9, ℎ = 1/7, and ℎ = 1/5 but is
unstable when ℎ = 1/3, since ℎ = 1/3 exceeds the range of ℎ
in Theorem 5, which verifies Theorem 5.

Take 𝑎 = −9, 𝑏 = −1, 𝑐 = 1.1, and 𝑑 = 0.9 in (7).
From (26), we get 𝐻

1
≈ 1/20, 𝐻

2
= 1/9, which means that

the Heun method in (13) is T-stable if 1/20 < ℎ < 1/9.
Figure 2 shows that the Heunmethod in (13) is T-stable when
ℎ = 1/19, ℎ = 1/15, and ℎ = 1/11, but it is unstable when
ℎ = 1/3, since ℎ = 1/3 exceeds the range of ℎ in Theorem 6,
which verifies Theorem 6.

Take 𝑎 = −3, 𝑏 = 2, and 𝑐 = 1 in (6) and 𝐶
0
= 1, 𝐶

1
= 2

in the balanced method in (31).Then the balanced method in
(31) is T-stable if ℎ ≤ 1/4 from Theorem 7. Figure 3 shows
that the balanced method in (31) is T-stable when ℎ = 1/22,
ℎ = 1/16, ℎ = 1/10, and ℎ = 1/4, since these h’s are in the
range of ℎ in Theorem 7, which verifies Theorem 7.

Take 𝑎 = −5, 𝑏 = 1, 𝑐 = 1, and 𝑑 = 0.2 in (7) and 𝐶
0
=

2, 𝐶
1
= 2 in the balanced method (32). Then the balanced

method in (32) is T-stable if 1/25 < ℎ ≤ 1/9 fromTheorem 8.
Figure 4 shows that the balanced method in (32) is T-stable
when ℎ = 1/15, ℎ = 1/13, ℎ = 1/11, and ℎ = 1/9, since
these h’s are in the range of ℎ in Theorem 8, which verifies
Theorem 8.

6. Conclusion

In this paper, T-stability of the Heun methods and the
balanced methods for two kinds of linear SDDEs is studied.
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Figure 4: Simulations with the balanced method for (7) with 𝑎 = −5, 𝑏 = 1, 𝑐 = 1, and 𝑑 = 0.2. (a4) ℎ = 1/15, (b4) ℎ = 1/13, (c4) ℎ = 1/11,
and (d4) ℎ = 1/9.

TheWiener increment of the numericalmethods in this paper
is approximated by a discrete random variable with two-
point distribution in the process of the study of T-stability.
The T-stable conditions for the Heun methods and balanced
methods are given, respectively, and are verified by some
numerical examples.
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We obtain some new generating functions for 𝑞-Hahn polynomials and give their proofs based on the homogeneous 𝑞-difference
operator.

1. Introduction

Throughout this paper we suppose that 𝑞 ∈ C, |𝑞| < 1, and
the 𝑞-shifted factorials are defined by

(𝑎; 𝑞)
0
= 1, (𝑎; 𝑞)

𝑛
=

𝑛−1

∏
𝑘=0

(1 − 𝑎𝑞
𝑘

) ,

(𝑎; 𝑞)
∞

=

∞

∏
𝑘=0

(1 − 𝑎𝑞
𝑘

) , 𝑛 ≥ 1.

(1)

Clearly,

(𝑎; 𝑞)
𝑛
=

(𝑎; 𝑞)
∞

(𝑎𝑞𝑛; 𝑞)
∞

. (2)

We also adopt the following compact notation for the multi-
ple 𝑞-shifted factorials:

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
; 𝑞)
𝑛
= (𝑎
1
; 𝑞)
𝑛
(𝑎
2
; 𝑞)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑚
; 𝑞)
𝑛
,

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
; 𝑞)
∞

= (𝑎
1
; 𝑞)
∞

(𝑎
2
; 𝑞)
∞

⋅ ⋅ ⋅ (𝑎
𝑚
; 𝑞)
∞

.
(3)

The basic hypergeometric series or 𝑞-series
𝑟
𝜙
𝑠
are defined

by

𝑟
𝜙
𝑠
(

𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑟

𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑠
;

𝑞, 𝑧)

=

∞

∑
𝑛=0

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑟
; 𝑞)
𝑛

(𝑞, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑠
; 𝑞)
𝑛

[(−1)
𝑛

𝑞(
𝑛

2
)]
1+𝑠−𝑟

𝑧
𝑛

.

(4)

Euler identity is as follows:

∞

∑
𝑛=0

𝑡𝑛

(𝑞; 𝑞)
𝑛

=
1

(𝑡; 𝑞)
∞

. (5)

The 𝑞-binomial theorem is as follows:

∞

∑
𝑛=0

(𝑎; 𝑞)
𝑛

(𝑞; 𝑞)
𝑛

𝑥
𝑛

=
(𝑎𝑥; 𝑞)

∞

(𝑥; 𝑞)
∞

. (6)

The usual 𝑞-differential operator or 𝑞-derivative operator 𝐷
𝑞

is defined by (see [1, Page 177, (2.1)])

𝐷
𝑞
{𝑓 (𝑎)} =

𝑓 (𝑎) − 𝑓 (𝑎𝑞)

𝑎
,

𝐷
𝑛

𝑞
{𝑓 (𝑎)} = 𝐷

𝑞
{𝐷
𝑛−1

𝑞
{𝑓 (𝑎)}} .

(7)

In [1], Chen and Liu introduced the 𝑞-exponential 𝑇(𝑏𝐷
𝑞
)

operator as follows (see [1, Page 17, (2.5)]):

𝑇 (𝑏𝐷
𝑞
) =

∞

∑
𝑛=0

(𝑏𝐷
𝑞
)
𝑛

(𝑞; 𝑞)
𝑛

, (8)
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and they get the 𝑞-operator identity of 𝑇(𝑏𝐷
𝑞
) (see [1, Page

178, Theorems 2.2 and 2.3]) as follows:

𝑇 (𝑏𝐷
𝑞
) {

1

(𝑎𝑡; 𝑞)
∞

} =
1

(𝑎𝑡, 𝑏𝑡; 𝑞)
∞

|𝑏𝑡| < 1,

𝑇 (𝑏𝐷
𝑞
) {

1

(𝑎𝑠, 𝑎𝑡; 𝑞)
∞

} =
(𝑎𝑏𝑠𝑡; 𝑞)

∞

(𝑎𝑠, 𝑎𝑡, 𝑏𝑠, 𝑏𝑡; 𝑞)
∞

|𝑏𝑡| < 1.

(9)

Recently Chen et al. [2] introduced the following homoge-
neous 𝑞-difference 𝐷

𝑥𝑦

𝐷
𝑥𝑦

{𝑓 (𝑥, 𝑦)} =
𝑓 (𝑥, 𝑞−1𝑦) − 𝑓 (𝑞𝑥, 𝑦)

𝑥 − 𝑞−1𝑦
(10)

and the homogeneous 𝑞-difference operator 𝐸(𝐷
𝑥𝑦

):

𝐸 (𝐷
𝑥𝑦

) =

∞

∑
𝑘=0

𝐷𝑘
𝑥𝑦

(𝑞; 𝑞)
𝑘

. (11)

They obtained some properties of 𝐷
𝑥𝑦

as follows:

𝐷
𝑥𝑦

{𝑃
𝑛
(𝑥, 𝑦)} = (1 − 𝑞

𝑛

) 𝑃
𝑛−1

(𝑥, 𝑦) ,

𝐷
𝑥𝑦

{
(𝑦𝑡; 𝑞)

∞

(𝑥𝑡; 𝑞)
∞

} = 𝑡
(𝑦𝑡; 𝑞)

∞

(𝑥𝑡; 𝑞)
∞

,

𝐷
𝑘

𝑥𝑦
{

(𝑦𝑡; 𝑞)
∞

(𝑥𝑡; 𝑞)
∞

} = 𝑡
𝑘
(𝑦𝑡; 𝑞)

∞

(𝑥𝑡; 𝑞)
∞

,

𝐸 (𝐷
𝑥𝑦

) {
(𝑦𝑡; 𝑞)

∞

(𝑥𝑡; 𝑞)
∞

} =
(𝑦𝑡; 𝑞)

∞

(𝑡, 𝑥𝑡; 𝑞)
∞

.

(12)

The classical Rogers-Szegö polynomial is defined bymeans of
the generating function:

∞

∑
𝑛=0

ℎ
𝑛
(𝑥 | 𝑞)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=
1

(𝑡, 𝑥𝑡; 𝑞)
∞

, |𝑡| < 1; (13)

obviously, we have

𝑇 (𝐷
𝑞
) {𝑥
𝑛

} = ℎ
𝑛
(𝑥 | 𝑞) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
] 𝑥
𝑘

. (14)

The homogeneous Rogers-Szegö polynomial is defined by

ℎ
𝑛
(𝑥, 𝑦 | 𝑞) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
]𝑃
𝑘
(𝑥, 𝑦) , (15)

where 𝑃
𝑛
(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥 − 𝑦𝑞) ⋅ ⋅ ⋅ (𝑥 − 𝑦𝑞𝑛−1). Clearly,

ℎ
𝑛
(𝑥, 𝑦 | 𝑞) = Φ(𝑦/𝑥)

𝑛
(𝑥) are the Cauchy polynomials with

the following generating function:

∞

∑
𝑘=0

𝑃
𝑘
(𝑥, 𝑦)

𝑧𝑘

(𝑞; 𝑞)
𝑘

=
(𝑦𝑧; 𝑞)

∞

(𝑥𝑧; 𝑞)
∞

, |𝑥𝑧| < 1. (16)

From the above properties, we have

𝐸 (𝐷
𝑥𝑦

) {𝑃
𝑛
(𝑥, 𝑦)} = ℎ

𝑛
(𝑥, 𝑦 | 𝑞) , (17)

∞

∑
𝑛=0

ℎ
𝑛
(𝑥, 𝑦 | 𝑞)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=
(𝑦𝑡; 𝑞)

∞

(𝑡, 𝑥𝑡; 𝑞)
∞

. (18)

Lemma 1 (see [3, Lemma 2.3]). For |𝑡|, |𝑥𝑡| < 1,

𝐸 (𝐷
𝑥𝑦

) {
(𝑦𝑡; 𝑞)

∞

(𝑥𝑡; 𝑞)
∞

𝑃
𝑛
(𝑥, 𝑦)

(𝑦𝑡; 𝑞)
𝑛

}

=
(𝑦𝑡; 𝑞)

∞

(𝑡, 𝑥𝑡; 𝑞)
∞

𝑛

∑
𝑘=0

[
𝑛

𝑘
]

(𝑦, 𝑥𝑡; 𝑞)
𝑘

(𝑦𝑡; 𝑞)
𝑘

𝑥
𝑛−𝑘

.

(19)

𝑞-Hahn polynomial is defined by [4]

∞

∑
𝑛=0

Φ
(𝑎)

𝑛
(𝑥)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=
(𝑎𝑥𝑡; 𝑞)

∞

(𝑡, 𝑥𝑡; 𝑞)
∞

. (20)

We have

Φ
(𝑎)

𝑛
(𝑥) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
] (𝑎; 𝑞)

𝑘
𝑥
𝑘

. (21)

Clearly, Φ(0)
𝑛

(𝑥) = ℎ
𝑛
(𝑥 | 𝑞).

Recently, Chen et al. [3] gave some new proofs of the
following results based on the method of homogeneous 𝑞-
difference operator 𝐸(𝐷

𝑥𝑦
).

Theorem 2. Consider the following:

∞

∑
𝑛=0

Φ
(𝑎)

𝑛
(𝑥)Φ
(𝑏)

𝑛
(𝑦)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=
(𝑥𝑎𝑡, 𝑦𝑏𝑡; 𝑞)

∞

(𝑡, 𝑥𝑡, 𝑦𝑡; 𝑞)
∞

3
𝜙
2
(

𝑡, 𝑎, 𝑏

𝑥𝑎𝑡, 𝑦𝑏𝑡;
𝑞, 𝑥𝑦𝑡) .

(22)

Theorem 3. Consider the following:

∞

∑
𝑛=0

∞

∑
𝑚=0

Φ
(𝑎)

𝑚+𝑛
(𝑥)

𝑡𝑛

(𝑞; 𝑞)
𝑛

𝑠𝑚

(𝑞; 𝑞)
𝑚

=
(𝑥𝑎𝑠; 𝑞)

∞

(𝑠, 𝑥𝑠, 𝑥𝑡; 𝑞)
∞

2
𝜙
1
(

𝑥𝑎, 𝑥𝑠

𝑥𝑎𝑠;
𝑞, 𝑡) .

(23)

For more references on the 𝑞-difference operators, see [1,
5–16].

In the present paper, we obtain some new generating
functions for 𝑞-Hahnpolynomials and give their proofs based
on the homogeneous 𝑞-difference operator.

2. Some New Generating Functions for 𝑞-Hahn
Polynomial

In the present section we obtain the following new generating
functions of 𝑞-Hahn polynomial.
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Theorem 4. For |𝑧| < 1,

∞

∑
𝑘=0

Φ
(𝑎)

𝑛+𝑘
(𝑥)

𝑧
𝑘

(𝑞; 𝑞)
𝑘

=
(𝑎𝑥𝑧; 𝑞)

∞

(𝑧, 𝑥𝑧; 𝑞)
∞

𝑛

∑
𝑘=0

[
𝑛

𝑘
]

(𝑎, 𝑧; 𝑞)
𝑘

(𝑎𝑥𝑧; 𝑞)
𝑘

𝑥
𝑘

.

(24)

Proof. Let 𝑥 󳨃→ 𝑦 and 𝑎 󳨃→ 𝑏 in (21), we have

∞

∑
𝑛=0

Φ
(𝑎)

𝑛
(𝑥)Φ
(𝑏)

𝑛
(𝑦)

𝑧𝑛

(𝑞; 𝑞)
𝑛

=

∞

∑
𝑛=0

Φ
(𝑎)

𝑛
(𝑥)

𝑛

∑
𝑘=0

[
𝑛

𝑘
] (𝑏; 𝑞)

𝑘
𝑦
𝑘

𝑧𝑛

(𝑞; 𝑞)
𝑛

=

∞

∑
𝑘,𝑛=0

Φ
(𝑎)

𝑛+𝑘
(𝑥)

(𝑏; 𝑞)
𝑘
𝑧𝑛

(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑘

(𝑦𝑧)
𝑘

.

(25)

By the 𝑞-binomial theorem (6) and noting that (𝑏; 𝑞)
𝑛+𝑘

=

(𝑏𝑞𝑘; 𝑞)
𝑛
(𝑏; 𝑞)
𝑘
, we have

(𝑥𝑎𝑧, 𝑦𝑏𝑧; 𝑞)
∞

(𝑧, 𝑥𝑧, 𝑦𝑧; 𝑞)
∞

∞

∑
𝑘=0

(𝑎, 𝑏, 𝑧; 𝑞)
𝑘

(𝑎𝑥𝑧, 𝑏𝑦𝑧, 𝑞; 𝑞)
𝑘

(𝑥𝑦𝑧)
𝑘

=
(𝑥𝑎𝑧; 𝑞)

∞

(𝑧, 𝑥𝑧; 𝑞)
∞

∞

∑
𝑘=0

(𝑎, 𝑏, 𝑧; 𝑞)
𝑘

(𝑎𝑥𝑧, 𝑞; 𝑞)
𝑘

(𝑥𝑦𝑧)
𝑘
(𝑏𝑦𝑧𝑞𝑘; 𝑞)

∞

(𝑦𝑧; 𝑞)
∞

=
(𝑥𝑎𝑧; 𝑞)

∞

(𝑧, 𝑥𝑧; 𝑞)
∞

∞

∑
𝑘=0

(𝑎, 𝑏, 𝑧; 𝑞)
𝑘

(𝑎𝑥𝑧, 𝑞; 𝑞)
𝑘

(𝑥𝑦𝑧)
𝑘

∞

∑
𝑛=0

(𝑏𝑞𝑘; 𝑞)
𝑛

(𝑞; 𝑞)
𝑛

(𝑦𝑧)
𝑛

=
(𝑥𝑎𝑧; 𝑞)

∞

(𝑧, 𝑥𝑧; 𝑞)
∞

∞

∑
𝑛,𝑘=0

(𝑎, 𝑧; 𝑞)
𝑘

(𝑎𝑥𝑧, 𝑞; 𝑞)
𝑘

(𝑏; 𝑞)
𝑛+𝑘

(𝑞; 𝑞)
𝑛

𝑥
𝑘

(𝑦𝑧)
𝑛+𝑘

.

(26)

By (17), (25), and (26), we obtain

∞

∑
𝑘,𝑛=0

Φ
(𝑎)

𝑛+𝑘
(𝑥)

(𝑏; 𝑞)
𝑘
𝑧𝑛

(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑘

(𝑦𝑧)
𝑘

=
(𝑥𝑎𝑧; 𝑞)

∞

(𝑧, 𝑥𝑧; 𝑞)
∞

∞

∑
𝑛,𝑘=0

(𝑎, 𝑧; 𝑞)
𝑘

(𝑎𝑥𝑧, 𝑞; 𝑞)
𝑘

(𝑏; 𝑞)
𝑛+𝑘

(𝑞; 𝑞)
𝑛

𝑥
𝑘

(𝑦𝑧)
𝑛+𝑘

.

(27)

Comparing the coefficients of 𝑦𝑘/(𝑞; 𝑞)
𝑘
on both sides of

(27), we obtain the formula (24) immediately. This proof is
complete.

Theorem 5. For |𝑡| < 1,

∞

∑
𝑛=0

Φ
(𝑎)

𝑚+𝑛
(𝑥)Φ
(𝑏)

𝑛
(𝑦)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=
(𝑥𝑎𝑡; 𝑞)

∞

(𝑡, 𝑥𝑡; 𝑞)
∞

∞

∑
𝑘=0

(𝑏; 𝑞)
𝑘
(𝑥𝑦𝑡)
𝑘

(𝑞; 𝑞)
𝑘

𝑚+𝑘

∑
𝑗=0

[
𝑚 + 𝑘

𝑗
]

(𝑥𝑎, 𝑥𝑡; 𝑞)
𝑗

(𝑥𝑎𝑡; 𝑞)
𝑗

𝑥
𝑚−𝑗

.

(28)

Proof. By (17) and (19), we have
∞

∑
𝑛=0

ℎ
𝑚+𝑛

(𝑥, 𝑦 | 𝑞) ℎ
𝑛
(𝑢, V | 𝑞)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=

∞

∑
𝑛=0

𝐸 (𝐷
𝑥𝑦

) {𝑃
𝑚+𝑛

(𝑥, 𝑦)} ℎ
𝑛
(𝑢, V | 𝑞)

𝑡𝑛

(𝑞; 𝑞)
𝑛

= 𝐸 (𝐷
𝑥𝑦

){

∞

∑
𝑛=0

𝑃
𝑚+𝑛

(𝑥, 𝑦)

𝑛

∑
𝑘=0

[
𝑛

𝑘
]𝑃
𝑘
(𝑢, V)

𝑡𝑛

(𝑞; 𝑞)
𝑛

}

= 𝐸 (𝐷
𝑥𝑦

){

∞

∑
𝑘=0

∞

∑
𝑛=0

𝑃
𝑚+𝑛+𝑘

(𝑥, 𝑦) 𝑃
𝑘
(𝑢, V) 𝑡𝑛+𝑘

(𝑞; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛

}

= 𝐸 (𝐷
𝑥𝑦

){

∞

∑
𝑘=0

𝑃
𝑚+𝑘

(𝑥, 𝑦) 𝑃
𝑘
(𝑢, V) 𝑡𝑘

(𝑞; 𝑞)
𝑘

∞

∑
𝑛=0

𝑃
𝑛
(𝑥, 𝑦𝑞𝑚+𝑘) 𝑡𝑛

(𝑞; 𝑞)
𝑛

}

= 𝐸 (𝐷
𝑥𝑦

){

∞

∑
𝑘=0

𝑃
𝑚+𝑘

(𝑥, 𝑦) 𝑃
𝑘
(𝑢, V) 𝑡𝑘

(𝑞; 𝑞)
𝑘

(𝑦𝑡; 𝑞)
∞

(𝑥𝑡; 𝑞)
∞

(𝑦𝑡; 𝑞)
𝑚+𝑘

}

=

∞

∑
𝑘=0

𝑃
𝑘
(𝑢, V) 𝑡𝑘

(𝑞; 𝑞)
𝑘

𝐸 (𝐷
𝑥𝑦

) {
(𝑦𝑡; 𝑞)

∞
𝑃
𝑚+𝑘

(𝑥, 𝑦)

(𝑥𝑡; 𝑞)
∞

(𝑦𝑡; 𝑞)
𝑚+𝑘

}

=

∞

∑
𝑘=0

𝑃
𝑘
(𝑢, V) 𝑡𝑘

(𝑞; 𝑞)
𝑘

(𝑦𝑡; 𝑞)
∞

(𝑡, 𝑥𝑡; 𝑞)
∞

𝑚+𝑘

∑
𝑗=0

[
𝑚 + 𝑘

𝑗
]

(𝑦, 𝑥𝑡; 𝑞)
𝑗

(𝑦𝑡; 𝑞)
𝑗

𝑥
𝑚+𝑘−𝑗

=
(𝑦𝑡; 𝑞)

∞

(𝑡, 𝑥𝑡; 𝑞)
∞

∞

∑
𝑘=0

(V/𝑢; 𝑞)
𝑘
(𝑢𝑡𝑥)
𝑘

(𝑞; 𝑞)
𝑘

×

𝑚+𝑘

∑
𝑗=0

[
𝑚 + 𝑘

𝑗
]

(𝑦, 𝑥𝑡; 𝑞)
𝑗

(𝑦𝑡; 𝑞)
𝑗

𝑥
𝑚−𝑗

.

(29)

Setting 𝑦/𝑥 = 𝑎, V/𝑢 = 𝑏, 𝑢 = 𝑦 in the last sum, we obtain the
formula (28) of Theorem 5. This proof is complete.

Theorem 6. For |𝑙| < 1, |𝑠| < 1, |𝑡| < 1,
∞

∑
𝑚,𝑛,𝑘=0

Φ
(𝑎)

𝑚+𝑘
(𝑥)Φ
(𝑏)

𝑛+𝑘
(𝑦)

𝑙𝑚𝑠𝑛𝑡𝑘

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑘

=
(𝑥𝑎𝑙, 𝑦𝑏𝑠; 𝑞)

∞

(𝑙, 𝑥𝑙, 𝑠, 𝑦𝑠; 𝑞)
∞

∞

∑
𝑘=0

𝑡𝑘

(𝑞; 𝑞)
𝑘

×

∞

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
]

(𝑥𝑎, 𝑥𝑙; 𝑞)
𝑖

(𝑥𝑎𝑙; 𝑞)
𝑖

(𝑦𝑏, 𝑦𝑠; 𝑞)
𝑗

(𝑦𝑏𝑠; 𝑞)
𝑗

𝑥
𝑘−𝑖

𝑦
𝑘−𝑗

.

(30)

Proof. By (17) and (19), we have
∞

∑
𝑚,𝑛,𝑘=0

ℎ
𝑚+𝑘

(𝑥, 𝑦 | 𝑞) ℎ
𝑛+𝑘

(𝑢, V | 𝑞)

×
𝑙𝑚𝑠𝑛𝑡𝑘

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑘
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=

∞

∑
𝑚,𝑛,𝑘=0

𝐸 (𝐷
𝑥𝑦

) {𝑃
𝑚+𝑘

(𝑥, 𝑦)} 𝐸 (𝐷
𝑢V) {𝑃𝑛+𝑘 (𝑢, V)}

×
𝑙𝑚𝑠𝑛𝑡𝑘

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑘

= 𝐸 (𝐷
𝑥𝑦

) 𝐸 (𝐷
𝑢V) {

∞

∑
𝑚,𝑛,𝑘=0

𝑃
𝑚+𝑘

(𝑥, 𝑦) 𝑃
𝑛+𝑘

(𝑢, V) 𝑙𝑚𝑠𝑛𝑡𝑘

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑘

}

= 𝐸 (𝐷
𝑥𝑦

) 𝐸 (𝐷
𝑢V) {

∞

∑
𝑘=0

𝑃
𝑘
(𝑥, 𝑦) 𝑃

𝑘
(𝑢, V) 𝑡𝑘

(𝑞; 𝑞)
𝑘

×

∞

∑
𝑚=0

𝑃
𝑚

(𝑥, 𝑦𝑞𝑘) 𝑙𝑚

(𝑞; 𝑞)
𝑚

∞

∑
𝑛=0

𝑃
𝑛
(𝑢, V𝑞𝑘) 𝑠𝑛

(𝑞; 𝑞)
𝑛

}

= 𝐸 (𝐷
𝑥𝑦

) 𝐸 (𝐷
𝑢V)

{

{

{

∞

∑
𝑘=0

𝑃
𝑘
(𝑥, 𝑦) 𝑃

𝑘
(𝑢, V) 𝑡𝑘

(𝑞; 𝑞)
𝑘

×
(𝑦𝑙𝑞𝑘; 𝑞)

∞

(𝑥𝑙; 𝑞)
∞

(V𝑠𝑞𝑘; 𝑞)
∞

(𝑢𝑠; 𝑞)
∞

}

}

}

=

∞

∑
𝑘=0

𝐸 (𝐷
𝑥𝑦

) {
(𝑦𝑙; 𝑞)

∞
𝑃
𝑘
(𝑥, 𝑦)

(𝑥𝑙; 𝑞)
∞

(𝑦𝑙; 𝑞)
𝑘

}

× 𝐸 (𝐷
𝑢V) {

(V𝑠; 𝑞)
∞

𝑃
𝑘
(𝑢, V)

(𝑢𝑠; 𝑞)
∞

(V𝑠; 𝑞)
𝑘

}
𝑡𝑘

(𝑞; 𝑞)
𝑘

=

∞

∑
𝑘=0

{
(𝑦𝑙; 𝑞)

∞

(𝑙, 𝑥𝑙; 𝑞)
∞

𝑘

∑
𝑖=0

[
𝑘

𝑖
]

(𝑦, 𝑥𝑙; 𝑞)
𝑖

(𝑦𝑙; 𝑞)
𝑖

𝑥
𝑘−𝑖

}

×
{

{

{

(V𝑠; 𝑞)
∞

(𝑠, 𝑢𝑠; 𝑞)
∞

𝑘

∑
𝑗=0

[
𝑘

𝑗
]

(V, 𝑢𝑠; 𝑞)
𝑗

(V𝑠; 𝑞)
𝑗

𝑢
𝑘−𝑗

}

}

}

𝑡𝑘

(𝑞; 𝑞)
𝑘

=
(𝑦𝑙, V𝑠; 𝑞)

∞

(𝑙, 𝑠, 𝑥𝑙, 𝑢𝑠; 𝑞)
∞

×

∞

∑
𝑘=0

𝑘

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
]

(𝑦, 𝑥𝑙; 𝑞)
𝑖
(V, 𝑢𝑠; 𝑞)

𝑗
𝑥𝑘−𝑖𝑢𝑘−𝑗𝑡𝑘

(𝑦𝑙; 𝑞)
𝑖
(V𝑠; 𝑞)

𝑗
(𝑞; 𝑞)
𝑘

.

(31)

Setting 𝑦/𝑥 = 𝑎, V/𝑢 = 𝑏, 𝑢 = 𝑦 in the last sum, we obtain the
formula (30) of Theorem 6. This proof is complete.

Theorem 7. For |𝑡| < 1,

∞

∑
𝑘=0

Φ
(𝑎)

𝑚+𝑘
(𝑥)Φ
(𝑏)

𝑛+𝑘
(𝑦)

𝑡𝑘

(𝑞; 𝑞)
𝑘

=

∞

∑
𝑘=0

𝑡𝑘

(𝑞; 𝑞)
𝑘

∞

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
] (𝑥𝑎; 𝑞)

𝑖
(𝑏𝑦; 𝑞)

𝑗

× 𝑥
𝑘−𝑖

𝑦
𝑘−𝑗

Φ
(𝑎)

𝑚
(𝑥𝑞
𝑖

)Φ
(𝑏)

𝑛
(𝑦𝑞
𝑗

) .

(32)

Proof. Applying (2) and the Euler identity (5) and noting (21),
then the right-hand side is equal to (30) as follows:

(𝑥𝑎𝑙, 𝑦𝑏𝑠; 𝑞)
∞

(𝑙, 𝑥𝑙, 𝑠, 𝑦𝑠; 𝑞)
∞

∞

∑
𝑘=0

𝑡
𝑘

(𝑞; 𝑞)
𝑘

×

∞

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
]

(𝑥𝑎, 𝑥𝑙; 𝑞)
𝑖

(𝑥𝑎𝑙; 𝑞)
𝑖

(𝑦𝑏, 𝑦𝑠; 𝑞)
𝑗

(𝑦𝑏𝑠; 𝑞)
𝑗

𝑥
𝑘−𝑖

𝑦
𝑘−𝑗

=

∞

∑
𝑘=0

𝑡𝑘

(𝑞; 𝑞)
𝑘

𝑘

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
] (𝑥𝑎; 𝑞)

𝑖
(𝑦𝑏; 𝑞)

𝑗
𝑥
𝑘−𝑖

𝑦
𝑘−𝑗

×
(𝑥𝑎𝑙𝑞𝑖, 𝑦𝑏𝑠𝑞𝑗; 𝑞)

∞

(𝑙, 𝑠, 𝑥𝑙𝑞𝑖, 𝑦𝑠𝑞𝑗; 𝑞)
∞

=

∞

∑
𝑘=0

𝑡𝑘

(𝑞; 𝑞)
𝑘

𝑘

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
] (𝑥𝑎; 𝑞)

𝑖
(𝑦𝑏; 𝑞)

𝑗
𝑥
𝑘−𝑖

𝑦
𝑘−𝑗

×

∞

∑
𝑢,V,𝑚,𝑛=0

(𝑎; 𝑞)
𝑚
(𝑏; 𝑞)
𝑛
(𝑥𝑙𝑞𝑖)

𝑚

(𝑦𝑠𝑞𝑗)
𝑛

𝑙𝑢𝑠V

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑢
(𝑞; 𝑞)V

=

∞

∑
𝑘=0

𝑡𝑘

(𝑞; 𝑞)
𝑘

𝑘

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
] (𝑥𝑎; 𝑞)

𝑖
(𝑦𝑏; 𝑞)

𝑗
𝑥
𝑘−𝑖

𝑦
𝑘−𝑗

×

∞

∑
𝑢,V,𝑚,𝑛=0

(𝑎; 𝑞)
𝑚
(𝑏; 𝑞)
𝑛
(𝑥𝑙𝑞𝑖)

𝑚

(𝑦𝑠𝑞𝑗)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑢
(𝑞; 𝑞)V

𝑙
𝑚+𝑢

𝑠
𝑛+V

.

(33)

By (30) and (33), we have
∞

∑
𝑚,𝑛,𝑘=0

Φ
(𝑎)

𝑚+𝑘
(𝑥)Φ
(𝑏)

𝑛+𝑘
(𝑦)

𝑙𝑚𝑠𝑛𝑡𝑘

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑘

=

∞

∑
𝑘=0

𝑡
𝑘

(𝑞; 𝑞)
𝑘

𝑘

∑
𝑖,𝑗=0

[
𝑘

𝑖
] [

𝑘

𝑗
] (𝑥𝑎; 𝑞)

𝑖
(𝑦𝑏; 𝑞)

𝑗
𝑥
𝑘−𝑖

𝑦
𝑘−𝑗

×

∞

∑
𝑢,V,𝑚,𝑛=0

(𝑎; 𝑞)
𝑚
(𝑏; 𝑞)
𝑛
(𝑥𝑙𝑞𝑖)

𝑚

(𝑦𝑠𝑞𝑗)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑢
(𝑞; 𝑞)V

𝑙
𝑚+𝑢

𝑠
𝑛+V

.

(34)

Comparing the coefficients of 𝑙𝑚𝑠𝑛/(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
on both

sides of (34), we obtain the formula (32) immediately.

Theorem 8. For |𝑡| < 1,
∞

∑
𝑛=0

Φ
(𝑎)

𝑚+𝑛
(𝑥)Φ
(𝑏)

𝑛
(𝑦)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=
(𝑥𝑦𝑎𝑡, 𝑥𝑦𝑏𝑡; 𝑞)

∞

(𝑥𝑦𝑡, 𝑥𝑡, 𝑦𝑡; 𝑞)
∞

×

𝑚

∑
𝑠=0

[
𝑚

𝑠
] (𝑎; 𝑞)

𝑠
𝑥
𝑠

(𝑦𝑡; 𝑞)
𝑠

(𝑥𝑦𝑎𝑡; 𝑞)
𝑠

×
3
𝜙
2
(

𝑥𝑦𝑡, 𝑥𝑎, 𝑦𝑏

𝑥𝑦𝑎𝑡𝑞
𝑠, 𝑥𝑦𝑏𝑡;

𝑞, 𝑡𝑞𝑠) .

(35)
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Proof. Set 𝑛 = 0 and then let 𝑘 󳨃→ 𝑛 in (32) and note that
Φ
(𝑏)

0
(𝑥) = 1; by (21) and (22), we obtain
∞

∑
𝑛=0

Φ
(𝑎)

𝑚+𝑛
(𝑥)Φ
(𝑏)

𝑛
(𝑦)

𝑡𝑛

(𝑞; 𝑞)
𝑛

=

∞

∑
𝑛=0

𝑡𝑛

(𝑞; 𝑞)
𝑛

𝑛

∑
𝑖,𝑗=0

[
𝑛

𝑖
] [

𝑛

𝑗
] (𝑥𝑎; 𝑞)

𝑖

× (𝑦𝑏; 𝑞)
𝑗
𝑥
𝑛−𝑖

𝑦
𝑛−𝑗

Φ
(𝑎)

𝑚
(𝑥𝑞
𝑖

)

=

∞

∑
𝑛=0

𝑡𝑛

(𝑞; 𝑞)
𝑛

𝑛

∑
𝑖,𝑗=0

[
𝑛

𝑖
] [

𝑛

𝑗
] (𝑥𝑎; 𝑞)

𝑖
(𝑦𝑏; 𝑞)

𝑗
𝑥
𝑛−𝑖

𝑦
𝑛−𝑗

×

𝑚

∑
𝑠=0

[
𝑚

𝑠
] (𝑎; 𝑞)

𝑠
(𝑥𝑞
𝑖

)
𝑠

=

∞

∑
𝑛=0

𝑡𝑛

(𝑞; 𝑞)
𝑛

𝑚

∑
𝑠=0

[
𝑚

𝑠
] (𝑎; 𝑞)

𝑠
𝑦
𝑛

×

𝑛

∑
𝑖=0

[
𝑛

𝑖
] (𝑎𝑥; 𝑞)

𝑖
𝑥
𝑠+𝑛

(
𝑞𝑠

𝑥
)

𝑖 𝑛

∑
𝑗=0

[
𝑛

𝑗
] (𝑏𝑦; 𝑞)

𝑗
(

1

𝑦
)

𝑗

=

∞

∑
𝑛=0

𝑡𝑛

(𝑞; 𝑞)
𝑛

𝑚

∑
𝑠=0

[
𝑚

𝑠
] (𝑎; 𝑞)

𝑠
𝑥
𝑠+𝑛

𝑦
𝑛

Φ
(𝑥𝑎)

𝑛
(
𝑞𝑠

𝑥
)Φ
(𝑦𝑏)

𝑛
(

1

𝑦
)

=

𝑚

∑
𝑠=0

[
𝑚

𝑠
] (𝑎; 𝑞)

𝑠
𝑥
𝑠

∞

∑
𝑛=0

Φ
(𝑥𝑎)

𝑛
(
𝑞𝑠

𝑥
)Φ
(𝑦𝑏)

𝑛
(

1

𝑦
)

(𝑥𝑦𝑡)
𝑛

(𝑞; 𝑞)
𝑛

=

𝑚

∑
𝑠=0

[
𝑚

𝑠
] (𝑎; 𝑞)

𝑠
𝑥
𝑠
(𝑥𝑦𝑡𝑎𝑞𝑠, 𝑥𝑦𝑏𝑡; 𝑞)

∞

(𝑥𝑦𝑡, 𝑦𝑡𝑞𝑠, 𝑥𝑡; 𝑞)
∞

×
3
𝜙
2
(

𝑥𝑦𝑡, 𝑥𝑎, 𝑦𝑏

𝑥𝑦𝑎𝑡𝑞
𝑠, 𝑥𝑦𝑏𝑡;

𝑞, 𝑡𝑞𝑠)

=
(𝑥𝑦𝑎𝑡, 𝑥𝑦𝑏𝑡; 𝑞)

∞

(𝑥𝑦𝑡, 𝑥𝑡, 𝑦𝑡; 𝑞)
∞

𝑚

∑
𝑠=0

[
𝑚

𝑠
] (𝑎; 𝑞)

𝑠
𝑥
𝑠

(𝑦𝑡; 𝑞)
𝑠

(𝑥𝑦𝑎𝑡; 𝑞)
𝑠

×
3
𝜙
2
(

𝑥𝑦𝑡, 𝑥𝑎, 𝑦𝑏

𝑥𝑦𝑎𝑡𝑞
𝑠, 𝑥𝑦𝑏𝑡;

𝑞, 𝑡𝑞𝑠) .

(36)

This proof is complete.
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Orthogonalsystemen angehören,” Mathematische Nachrichten,
vol. 2, pp. 263–278, 1949.

[5] D. Bowman, “𝑞-difference operators, orthogonal polynomials,
and symmetric expansions,” Memoirs of the American Mathe-
matical Society, vol. 159, no. 757, 2002.

[6] J. Cao, “A note on moment integrals and some applications,”
Journal of Mathematical Analysis and Applications, vol. 410, no.
1, pp. 348–360, 2014.

[7] J. Cao, “A note on 𝑞-integrals and certain generating functions,”
Studies in Applied Mathematics, vol. 131, no. 2, pp. 105–118, 2013.

[8] J. Cao, “A note on generating functions for Rogers-Szegö
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Under a constraint between the potentials and eigenfunctions, the nonlinearization of the Lax pairs associated with the discrete
hierarchy of a generalization of the Toda lattice equation is proposed, which leads to a new symplectic map and a class of finite-
dimensional Hamiltonian systems. The generating function of the integrals of motion is presented, by which the symplectic map
and these finite-dimensional Hamiltonian systems are further proved to be completely integrable in the Liouville sense. Finally, the
representation of solutions for a lattice equation in the discrete hierarchy is obtained.

1. Introduction

Differential difference equations have very remarkable appli-
cations in modern mathematics and physics; they can model
a number of physically interesting phenomena, such as the
vibration of particle in lattice [1], the quantum spin chains
[2, 3], the Toda lattice [4], the vibration of pulse [5, 6],
the nonlinear self-dual network [7], and others. After Toda
[8] showed that the Toda lattice was associated with a
discretization of the Schrödinger spectral problem, various
discrete soliton equations are found, for instance, the discrete
nonlinear Schrödinger equation [9], the discrete sine-Gordon
equation [10], the discrete KdV equation [11], the discrete
mKdV equation [12], and so forth. Recently, the authors have
obtained a new discrete hierarchy associated with fourth-
order discrete spectral problem, in which a typical member
is a generalization of the Toda lattice equation [13].

It has been known that the key to complete integrability
of a finite-dimensional Hamiltonian system is the existence
of an involutive system of conserved integrals according
to the Liouville-Arnold theorem. Many researchers have
tried to construct complete integrable Hamiltonian systems.
Recently, there are active researches on soliton hierarchies
associated with so (3,R) [14]. However, it is a difficult work
to search for an involutive system of conserved integrals for
a given finite-dimensional Hamiltonian system. An effective
method, the nonlinearization of Lax pairs [15, 16], has

been developed and applied to various soliton hierarchies
associated with 2 × 2 matrix spectral problems to get finite-
dimensional completely integrable systems many years ago,
such as the nonlinearization of the AKNS hierarchy [15],
the coupled KdV hierarchy [17], the discrete Ablowitz-Ladik
hierarchy [18], the Heisenberg hierarchy [19], and the Kac-
van Moerbeke hierarchy [20]. Subsequently, this method
has been generalized to discuss the nonlinearization of Lax
pairs and adjoint Lax pairs of soliton hierarchies [21–23].
Moreover, there are attempts to apply the nonlinearization
method to the Lax pairs and adjoint Lax pairs of (2 +
1)-dimensional soliton systems, such as the Kadomtsev-
Petviashvili equation and the Davey-Stewartson equation, in
order to get (1+1)-dimensional integrable systems [24]. And
it is proved that the binary nonlinearization will be more
natural to carry out in the case of higher-ordermatrix spectral
problems [25].

Discrete versions of classical integrable systems have
become the focus of common concern in recent years because
of their importance. However, the known discrete integrable
systems are few compared with the continuous case. In the
present paper, the nonlinearization approach is developed
and applied to the discrete hierarchy associated with a 4 ×
4 discrete eigenvalue problem. Such transformations are
adjoint symmetry constraints [26] and a general scheme
for doing nonlinearization for lattice soliton hierarchies was
presented in [27]. We propose a constraint between the
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potentials and eigenfunctions. The nonlinearization of the
Lax pairs for the discrete hierarchy leads to a new integrable
symplectic map and a class of finite-dimensional integrable
Hamiltonian systems.

The outline of this paper is as follows. In Section 2,
depending on the spectral problems given in [13], the
Bargmann constraint between the potentials and eigenfunc-
tions is introduced, from which a new symplectic map and a
class of finite-dimensionalHamiltonian systems are obtained.
In Section 3, the generating function approach is used to
calculate the involutivity of integrals, by which the symplectic
map and these finite-dimensional Hamiltonian systems are
further proved to be completely integrable in the Liouville
sense. Finally, in Section 4, the representation of solutions for
a lattice equation in the discrete hierarchy is obtained.

2. A New Symplectic Map

Consider the discrete 4 × 4 spectral problem given in [13]

𝐸𝜓
𝑛
= 𝑈
𝑛
𝜓
𝑛
, 𝑈

𝑛
=(

−
𝑎
𝑛

𝑐
𝑛

−
1

𝑐
𝑛

0
𝜆 − 𝑏
𝑛

𝑐
𝑛

0 0 1 𝑎
𝑛

0 0 0 𝑐
𝑛

1 0 0 0

),

𝜓 =(

(

𝜓1
𝑛

𝜓2
𝑛

𝜓3
𝑛

𝜓4
𝑛

)

)

,

(1)

where 𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
are three potentials and𝜆 is a constant spectral

parameter; 𝐸 is a translation operator defined by 𝐸𝑓
𝑛
= 𝑓
𝑛+1

.
For the sake of convenience, we usually denote 𝑓

𝑛+𝑘
= 𝐸𝑘𝑓

𝑛
,

𝑓
𝑛−𝑘
= 𝐸−𝑘𝑓

𝑛
. In order to derive the hierarchy of Lattice

equations associated with (1), authors of [13] first solve the
stationary discrete zero-curvature equation:

𝑉
𝑛+1
𝑈
𝑛
− 𝑈
𝑛
𝑉
𝑛
= 0, 𝑉

𝑛
= (𝑉
𝑛,𝑖𝑗
)
4×4

, (2)

where the entries 𝑉
𝑖𝑗
of the matrix 𝑉

𝑛
are Laurent expansions

of 𝜆. Let 𝜓
𝑛
satisfy the spectral problem (1) and its auxiliary

problem:

𝜓
𝑛,𝑡
= 𝑉
(𝑚)

𝑛
𝜓
𝑛
, 𝑉

(𝑚)

𝑛
= (𝜆
𝑚

𝑉
𝑛
)
+
; (3)

then the zero-curvature equation 𝑈
𝑛,𝑡
= 𝑉
(𝑚)

𝑛+1
𝑈
𝑛
− 𝑈
𝑛
𝑉(𝑚)
𝑛

yields the discrete hierarchy of a generalization of Toda lat-
tices.The first system of evolution equations in this hierarchy
is

𝑎
𝑛,𝑡
=
1

2
𝑎
𝑛
(𝑏
𝑛
− 𝑏
𝑛+1
) + 𝑎
𝑛−1
𝑐
𝑛−1
− 𝑎
𝑛+1
𝑐
𝑛
,

𝑏
𝑛,𝑡
= 𝑎
2

𝑛−1
− 𝑎
2

𝑛
+ 𝑐
2

𝑛−2
− 𝑐
2

𝑛
,

𝑐
𝑛,𝑡
=
1

2
𝑐
𝑛
(𝑏
𝑛
− 𝑏
𝑛+2
) ,

(4)

which is a generalization of Toda lattice equation.

Let 𝜆
1
, . . . , 𝜆

𝑁
be 𝑁 distinct nonzero eigenvalues of (1),

and the associated eigenfunctions are denoted by

𝑞
1

𝑗
= 𝜓
3

𝑛
(𝜆
𝑗
) , 𝑞

2

𝑗
= 𝜓
2

𝑛
(𝜆
𝑗
) ,

𝑝
1

𝑗
= 𝜓
1

𝑛
(𝜆
𝑗
) , 𝑝

2

𝑗
= 𝜓
4

𝑛
(𝜆
𝑗
) ,

(5)

where we denote 𝑞𝑘
𝑗
= 𝑞𝑘
𝑗
(𝑛) and 𝑝𝑘

𝑗
= 𝑝𝑘
𝑗
(𝑛) (𝑘 = 1, 2)

for convenience. Then the system associated with (1) can be
written in the form

𝐸𝑞
1

𝑗
= 𝑐
𝑛
𝑝
2

𝑗
, 𝐸𝑞

2

𝑗
= 𝑞
1

𝑗
+ 𝑎
𝑛
𝑝
2

𝑗
,

𝐸𝑝
1

𝑗
= −
1

𝑐
𝑛

(𝑎
𝑛
𝑝
1

𝑗
+ 𝑞
2

𝑗
− 𝜆
𝑗
𝑝
2

𝑗
+ 𝑏
𝑛
𝑝
2

𝑗
) , 𝐸𝑝

2

𝑗
= 𝑝
1

𝑗
.
(6)

Now we consider the Bargmann constraint
𝑁

∑
𝑗=1

∇𝜆
𝑗
= 𝐺
(0)

𝑛
, (7)

where𝐺(0)
𝑛
= (2𝑎
𝑛
, 𝑏
𝑛
, 2𝑐
𝑛
)
T and∇𝜆

𝑗
is the functional gradient

of the eigenvalue 𝜆
𝑗
with regard to the potentials 𝑎

𝑛
, 𝑏
𝑛
, and

𝑐
𝑛
; that is,

∇𝜆
𝑗
=
(
(
(

(

𝛿𝜆
𝑗

𝛿𝑎
𝑛

𝛿𝜆
𝑗

𝛿𝑏
𝑛

𝛿𝜆
𝑗

𝛿𝑐
𝑛

)
)
)

)

=(

2𝑝1
𝑗
𝑝2
𝑗

𝑝2
𝑗
𝑝2
𝑗

−
2

𝑐
𝑛

[𝑎
𝑛
𝑝1
𝑗
𝑝2
𝑗
+ 𝑞2
𝑗
𝑝2
𝑗
+ (𝜆
𝑗
− 𝑏
𝑛
) 𝑝2
𝑗
𝑝2
𝑗
]

).

(8)

Combining (7) and (8), it is easy to see that

𝑎
𝑛
= ⟨𝑝
1

, 𝑝
2

⟩, 𝑏
𝑛
= ⟨𝑝
2

, 𝑝
2

⟩,

𝑐
𝑛
= (−⟨𝑝

1

, 𝑝
2

⟩
2

− ⟨𝑞
2

, 𝑝
2

⟩ + ⟨Λ𝑝
2

, 𝑝
2

⟩ − ⟨𝑝
2

, 𝑝
2

⟩
2

)
1/2

,

(9)

where Λ = diag(𝜆
1
, . . . , 𝜆

𝑁
) and ⟨⋅, ⋅⟩ is the standard inner-

product in R𝑁, 𝑞𝑖 = (𝑞𝑖
1
, . . . , 𝑞𝑖

𝑁
)
T and 𝑝𝑖 = (𝑝𝑖

1
, . . . , 𝑝𝑖

𝑁
)
T.

Substituting (9) into (6), we can get the following system:

𝐸𝑞
1

𝑗
= (−⟨𝑝

1

, 𝑝
2

⟩
2

− ⟨𝑞
2

, 𝑝
2

⟩+⟨Λ𝑝
2

, 𝑝
2

⟩−⟨𝑝
2

, 𝑝
2

⟩
2

)
1/2

𝑝
2

𝑗
,

𝐸𝑞
2

𝑗
= 𝑞
1

𝑗
+ ⟨𝑝
1

, 𝑝
2

⟩𝑝
2

𝑗
,

𝐸𝑝
1

𝑗
= −(−⟨𝑝

1

, 𝑝
2

⟩
2

− ⟨𝑞
2

, 𝑝
2

⟩+⟨Λ𝑝
2

, 𝑝
2

⟩−⟨𝑝
2

, 𝑝
2

⟩
2

)
−1/2

× (⟨𝑝
1

, 𝑝
2

⟩𝑝
1

𝑗
+ 𝑞
2

𝑗
− 𝜆
𝑗
𝑝
2

𝑗
+ ⟨𝑝
2

, 𝑝
2

⟩𝑝
2

𝑗
) ,

𝐸𝑝
2

𝑗
= 𝑝
1

𝑗
.

(10)
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Through tedious calculations one infers

𝑁

∑
𝑗=1

2

∑
𝑖=1

𝑑 (𝐸𝑞
𝑖

𝑗
) ∧ 𝑑 (𝐸𝑞

𝑖

𝑗
) =

𝑁

∑
𝑗=1

2

∑
𝑖=1

𝑑𝑞
𝑖

𝑗
∧ 𝑑𝑞
𝑖

𝑗
.

(11)

Therefore, (10) determines a symplectic map 𝐻 of the
Bargmann type:

(𝐸𝑞
1

, 𝐸𝑞
2

, 𝐸𝑝
1

, 𝐸𝑝
2

) = 𝐻(𝑞
1

, 𝑞
2

, 𝑝
1

, 𝑝
2

) . (12)

3. Liouville Integrability

Introducing a matrixV
𝜆
,

V
𝜆
= (V

𝑖𝑗

𝜆
)
4×4

=
(
(
(

(

−𝑄
𝜆
(𝑞1, 𝑝1) −

𝜆

2
𝑄
𝜆
(𝑝1, 𝑝2) 𝑄

𝜆
(𝑝1, 𝑝1) + 1 −𝑄

𝜆
(𝑞2, 𝑝1)

−𝑄
𝜆
(𝑞1, 𝑞2) − ⟨𝑞1, 𝑝2⟩ 𝑄

𝜆
(𝑞2, 𝑝2) +

𝜆

2
𝑄
𝜆
(𝑞2, 𝑝1) −𝑄

𝜆
(𝑞2, 𝑞2) − ⟨𝑞2, 𝑝2⟩

−𝑄
𝜆
(𝑞1, 𝑞1) − ⟨𝑞1, 𝑝1⟩ 𝑄

𝜆
(𝑞1, 𝑝2) 𝑄

𝜆
(𝑞1, 𝑝1) +

𝜆

2
−𝑄
𝜆
(𝑞1, 𝑞2) − ⟨𝑞1, 𝑝2⟩

−𝑄
𝜆
(𝑞1, 𝑝2) 𝑄

𝜆
(𝑝2, 𝑝2) + 1 𝑄

𝜆
(𝑝1, 𝑝2) −𝑄

𝜆
(𝑞2, 𝑝2) −

𝜆

2

)
)
)

)

, (13)

where

𝑄
𝜆
(𝑞
𝑖

, 𝑝
𝑗

) =

𝑁

∑
𝑘=1

𝑞𝑖
𝑘
𝑝
𝑗

𝑘

𝜆 − 𝜆
𝑘

, 𝑄
𝜆
(𝑝
𝑖

, 𝑝
𝑗

) =

𝑁

∑
𝑘=1

𝑝𝑖
𝑘
𝑝
𝑗

𝑘

𝜆 − 𝜆
𝑘

,

𝑄
𝜆
(𝑞
𝑖

, 𝑞
𝑗

) =

𝑁

∑
𝑘=1

𝑞𝑖
𝑘
𝑞
𝑗

𝑘

𝜆 − 𝜆
𝑘

.

(14)

We can find that V
𝜆
and 𝜇𝐼 − V

𝜆
are two solutions of

the stationary discrete zero-curvature equation (2) under the
Bargmann constraint (7), where 𝜇 is a parameter and 𝐼 is a
4×4 unitmatrix.Thenwe assert that detV

𝜆
and det(𝜇𝐼−V

𝜆
)

are independent constants of the discrete variable 𝑛. On the
other hand,

det (𝜇𝐼 −V
𝜆
) = 𝜇
4

+F
(1)

𝜆
𝜇
2

+F
(2)

𝜆
, (15)

where

F
(1)

𝜆
= ∑
1≤𝑖<𝑗≤4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V𝑖𝑖
𝜆

V
𝑖𝑗

𝜆

V
𝑗𝑖

𝜆
V
𝑗𝑗

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, F
(2)

𝜆
= detV

𝜆
. (16)

Substituting the Laurent expansion of 𝑄
𝜆
(𝑞𝑖, 𝑝𝑗), 𝑄

𝜆
(𝑝𝑖, 𝑝𝑗),

𝑄
𝜆
(𝑞𝑖, 𝑞𝑗) into (16) we have

F
(1)

𝜆
= −
1

2
𝜆
2

+ ∑
𝑚≥1

𝐹
(1)

𝑚
𝜆
−𝑚

, F̂
(2)

𝜆
= ∑
𝑚≥1

𝐹
(2)

𝑚
𝜆
−𝑚

, (17)

where

F̂
(2)

𝜆
= F
(2)

𝜆
+
1

4
F
(1)

𝜆
𝜆
2

+
1

16
𝜆
4

,

𝐹
(1)

𝑚

= ∑
𝑙+𝑘=𝑚−2

𝑙,𝑘≥0

(− ⟨Λ
𝑗

𝑞
1

, 𝑝
1

⟩⟨Λ
𝑘

𝑞
1

, 𝑝
1

⟩ − ⟨Λ
𝑗

𝑞
2

, 𝑝
2

⟩⟨Λ
𝑘

𝑞
2

, 𝑝
2

⟩

+ ⟨Λ
𝑗

𝑝
1

, 𝑝
1

⟩ ⟨Λ
𝑘

𝑝
1

, 𝑝
1

⟩

+ ⟨Λ
𝑗

𝑝
2

, 𝑝
1

⟩ ⟨Λ
𝑘

𝑞
2

, 𝑞
2

⟩ + 2 ⟨Λ
𝑗

𝑝
1

, 𝑝
2

⟩

× ⟨Λ
𝑘

𝑞
1

, 𝑞
2

⟩ − 2 ⟨Λ
𝑗

𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑘

𝑞
2

, 𝑝
1

⟩)

+ ⟨𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑚−1

𝑝
1

, 𝑝
1

⟩ + ⟨𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑚−1

𝑝
2

, 𝑝
2

⟩

+ 2 ⟨𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑚−1

𝑝
1

, 𝑝
2

⟩ + ⟨Λ
𝑚−1

𝑞
1

, 𝑞
1

⟩

+ ⟨Λ
𝑚−1

𝑞
2

, 𝑞
2

⟩ − ⟨Λ
𝑚

𝑞
1

, 𝑝
2

⟩ − ⟨Λ
𝑚

𝑞
2

, 𝑝
2

⟩ ,

𝐹
(2)

𝑚

= ∑
𝑘+𝑗+𝑠+𝑖=𝑚−4

𝑗,𝑘,𝑠,𝑖≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑘𝑞1, 𝑝1⟩ ⟨Λ𝑘𝑝1, 𝑝2⟩ ⟨Λ𝑘𝑝1, 𝑝1⟩ ⟨Λ𝑘𝑞2, 𝑝1⟩

⟨Λ
𝑗

𝑞
1

, 𝑞
2

⟩ ⟨Λ
𝑗

𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑗

𝑞
2

, 𝑝
1

⟩ ⟨Λ
𝑗

𝑞
2

, 𝑞
2

⟩

⟨Λ
𝑖

𝑞
1

, 𝑞
1

⟩ ⟨Λ
𝑖

𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑖

𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑖

𝑞
1

, 𝑞
2

⟩

⟨Λ
𝑠

𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑝
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
2

⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
𝑘+𝑗+𝑠=𝑚−2

𝑗,𝑘,𝑠≥0

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑗𝑞2, 𝑝2⟩ ⟨Λ𝑗𝑞2, 𝑝1⟩ ⟨Λ𝑗𝑞2, 𝑞2⟩

⟨Λ𝑘𝑞1, 𝑝2⟩ ⟨Λ𝑘𝑞1, 𝑝1⟩ ⟨Λ𝑘𝑞1, 𝑞2⟩

⟨Λ𝑠𝑝2, 𝑝2⟩ ⟨Λ𝑠𝑝1, 𝑝2⟩ ⟨Λ𝑠𝑞2, 𝑝2⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑘𝑞1, 𝑝1⟩ ⟨Λ𝑘𝑝1, 𝑝1⟩ ⟨Λ𝑘𝑞2, 𝑝1⟩

⟨Λ𝑗𝑞1, 𝑞1⟩ ⟨Λ𝑗𝑞1, 𝑝1⟩ ⟨Λ𝑗𝑞1, 𝑞2⟩

⟨Λ𝑠𝑞1, 𝑝2⟩ ⟨Λ𝑠𝑝1, 𝑝2⟩ ⟨Λ𝑠𝑞2, 𝑝2⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)
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+ ∑
𝑘+𝑗+𝑠=𝑚−3

𝑗,𝑘,𝑠≥0

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑗𝑞1, 𝑞2⟩ ⟨Λ𝑗𝑞2, 𝑝2⟩ ⟨Λ𝑗𝑞2, 𝑞2⟩

⟨Λ𝑘𝑞1, 𝑞1⟩ ⟨Λ𝑘𝑞1, 𝑝2⟩ ⟨Λ𝑘𝑞1, 𝑞2⟩

⟨Λ
𝑠

𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
2

⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑘𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑘

𝑝
1

, 𝑝
1

⟩ ⟨Λ
𝑘

𝑞
2

, 𝑝
1

⟩

⟨Λ𝑗𝑞1, 𝑞2⟩ ⟨Λ𝑗𝑞2, 𝑝1⟩ ⟨Λ𝑗𝑞2, 𝑞2⟩

⟨Λ𝑠𝑞1, 𝑞1⟩ ⟨Λ𝑠𝑞1, 𝑝1⟩ ⟨Λ𝑠𝑞1, 𝑞2⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ⟨𝑞
2

, 𝑝
2

⟩

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑘𝑞1, 𝑝1⟩ ⟨Λ𝑘𝑝1, 𝑝2⟩ ⟨Λ𝑘𝑝1, 𝑝1⟩

⟨Λ𝑗𝑞1, 𝑞1⟩ ⟨Λ𝑗𝑞1, 𝑝2⟩ ⟨Λ𝑗𝑞1, 𝑝1⟩

⟨Λ𝑠𝑞1, 𝑝2⟩ ⟨Λ𝑠𝑝2, 𝑝2⟩ ⟨Λ𝑠𝑝1, 𝑝2⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ⟨𝑞
1

, 𝑝
1

⟩

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑘𝑝1, 𝑝2⟩ ⟨Λ𝑘𝑝1, 𝑝1⟩ ⟨Λ𝑘𝑞2, 𝑝1⟩

⟨Λ𝑗𝑞2, 𝑝2⟩ ⟨Λ𝑗𝑞2, 𝑝1⟩ ⟨Λ𝑗𝑞2, 𝑞2⟩

⟨Λ𝑠𝑝2, 𝑝2⟩ ⟨Λ𝑠𝑝1, 𝑝2⟩ ⟨Λ𝑠𝑞2, 𝑝2⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 2 ⟨𝑞
1

, 𝑝
2

⟩

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑘𝑝1, 𝑝2⟩ ⟨Λ𝑘𝑝1, 𝑝1⟩ ⟨Λ𝑘𝑞2, 𝑝1⟩

⟨Λ𝑗𝑞1, 𝑝2⟩ ⟨Λ𝑗𝑞1, 𝑝1⟩ ⟨Λ𝑗𝑞1, 𝑞2⟩

⟨Λ𝑠𝑝2, 𝑝2⟩ ⟨Λ𝑠𝑝1, 𝑝2⟩ ⟨Λ𝑠𝑞2, 𝑝2⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

+ ∑
𝑘+𝑠=𝑚−2

𝑘,𝑠≥0

[⟨Λ
𝑘

𝑞
1

, 𝑞
1

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑞
1

⟩

− ⟨Λ
𝑘

𝑞
1

, 𝑞
2

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑞
2

⟩ + 2 ⟨𝑞
1

, 𝑝
2

⟩

× (⟨Λ
𝑘

𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
1

⟩ − ⟨Λ
𝑘

𝑝
1

, 𝑝
1

⟩

×⟨Λ
𝑠

𝑞
1

, 𝑞
2

⟩+⟨Λ
𝑘

𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑝
2

⟩

−⟨Λ
𝑘

𝑞
1

, 𝑞
2

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩) − ⟨𝑞
1

, 𝑝
1

⟩

× (⟨Λ
𝑘

𝑞
2

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
1

⟩ − ⟨Λ
𝑘

𝑝
1

, 𝑝
1

⟩

× ⟨Λ
𝑠

𝑞
2

, 𝑞
2

⟩ + ⟨Λ
𝑘

𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
2

⟩

−⟨Λ
𝑘

𝑞
2

, 𝑞
2

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩) − ⟨𝑞
2

, 𝑝
2

⟩

× (⟨Λ
𝑘

𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑝
1

⟩ − ⟨Λ
𝑘

𝑝
1

, 𝑝
1

⟩

× ⟨Λ
𝑠

𝑞
1

, 𝑞
1

⟩ + ⟨Λ
𝑘

𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑝
2

⟩

−⟨Λ
𝑘

𝑞
1

, 𝑞
1

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩)

+ (⟨𝑞
1

, 𝑝
2

⟩
2

− ⟨𝑞
1

, 𝑝
1

⟩ ⟨𝑞
2

, 𝑞
2

⟩)

× (⟨Λ
𝑘

𝑝
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑝
1

, 𝑝
2

⟩

−⟨Λ
𝑘

𝑝
1

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩)]

+ ∑
𝑘+𝑠=𝑚−1

𝑘,𝑠≥0

[⟨Λ
𝑘

𝑞
1

, 𝑞
2

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
1

⟩

− ⟨Λ
𝑘

𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑞
2

⟩

+ ⟨Λ
𝑘

𝑞
1

, 𝑞
2

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑝
2

⟩

− ⟨Λ
𝑘

𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑞
1

⟩ + ⟨𝑞
1

, 𝑝
2

⟩

× (⟨Λ
𝑘

𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑝
1

, 𝑝
1

⟩

− ⟨Λ
𝑘

𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑝
1

, 𝑝
2

⟩

+ ⟨Λ
𝑘

𝑞
2

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩

−⟨Λ
𝑘

𝑝
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑝
1

, 𝑝
2

⟩)

− ⟨𝑞
1

, 𝑝
1

⟩ (⟨Λ
𝑘

𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑝
1

, 𝑝
1

⟩

−⟨Λ
𝑘

𝑝
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
1

⟩)

+ ⟨𝑞
2

, 𝑝
2

⟩ (⟨Λ
𝑘

𝑝
1

, 𝑝
2

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑝
2

⟩

−⟨Λ
𝑘

𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑝
2

, 𝑝
2

⟩)]

+ ∑
𝑘+𝑠=𝑚

𝑘,𝑠≥0

(⟨Λ
𝑘

𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑞
2

, 𝑝
2

⟩

−⟨Λ
𝑘

𝑞
2

, 𝑝
1

⟩ ⟨Λ
𝑠

𝑞
1

, 𝑝
2

⟩)

+ ⟨𝑞
1

, 𝑝
2

⟩ (⟨Λ
𝑚

𝑞
1

, 𝑝
2

⟩ − ⟨Λ
𝑚

𝑞
2

, 𝑝
1

⟩)

− ⟨𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑚

𝑞
2

, 𝑝
2

⟩ − ⟨𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑚

𝑞
1

, 𝑝
1

⟩

− 2 ⟨𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑚−1

𝑞
1

, 𝑝
2

⟩ − ⟨Λ
𝑚

𝑞
1

, 𝑞
2

⟩

+ ⟨𝑞
1

, 𝑝
1

⟩ ⟨Λ
𝑚−1

𝑞
2

, 𝑞
2

⟩ + ⟨𝑞
2

, 𝑝
2

⟩ ⟨Λ
𝑚−1

𝑞
1

, 𝑞
1

⟩

− (⟨𝑞
1

, 𝑝
2

⟩
2

− ⟨𝑞
1

, 𝑝
1

⟩ ⟨𝑞
2

, 𝑞
2

⟩)

× (⟨Λ
𝑚−1

𝑝
1

, 𝑝
1

⟩ + ⟨Λ
𝑚−1

𝑝
2

, 𝑝
2

⟩) , 𝑚 ≥ 1.

(18)

In the above equations, the Poisson bracket of two functions
is defined as

{𝑓, 𝑔} =

𝑁

∑
𝑗=1

2

∑
𝑖=1

(
𝜕𝑓

𝜕𝑞𝑖
𝑗

𝜕𝑔

𝜕𝑝𝑖
𝑗

−
𝜕𝑔

𝜕𝑞𝑖
𝑗

𝜕𝑓

𝜕𝑝𝑖
𝑗

)

=

2

∑
𝑖=1

(⟨
𝜕𝑓

𝜕𝑞𝑖
,
𝜕𝑔

𝜕𝑝𝑖
⟩ −⟨

𝜕𝑔

𝜕𝑞𝑖
,
𝜕𝑓

𝜕𝑝𝑖
⟩) .

(19)

Then we can prove the following assertions.
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Proposition 1. The functions {𝐹(𝑖)
𝑚
| 𝑖 = 1, 2, 𝑚 ≥ 1} are in

involution in pairs; that is,

{𝐹
(𝑖)

𝑚
, 𝐹
(𝑗)

𝑙
} = 0, ∀𝑚, 𝑙 ≥ 1, 1 ≤ 𝑖, 𝑗 ≤ 2. (20)

Proof. Through tedious calculation we can obtain

{F
(1)

𝜆
,F
(1)

𝜇
} = {F

(1)

𝜆
,F
(2)

𝜇
} = {F

(2)

𝜆
,F
(2)

𝜇
} = 0,

∀𝜆, 𝜇 ∈ C.

(21)

Then we have

{F
(1)

𝜆
,F
(1)

𝜇
} = {F

(1)

𝜆
, F̂
(2)

𝜇
} = {F̂

(2)

𝜆
, F̂
(2)

𝜇
} = 0,

∀𝜆, 𝜇 ∈ C.

(22)

Then relation (20) follows by comparison of power of 𝜆𝑁 in
(22) with (17) taken into account.

Proposition 2. The 2𝑁 1-forms 𝑑𝐹(𝑖)
𝑗
(1 ≤ 𝑗 ≤ 𝑁, 𝑖 = 1, 2)

are linearly independent.

Proof. Assuming that there exist 2𝑁 constants 𝑏(𝑖)
𝑙
, so that

𝑁

∑
𝑗=1

(𝑏
(1)

𝑗

𝜕𝐹
(1)

𝑗

𝜕𝑞𝑖
+ 𝑏
(2)

𝑗

𝜕𝐹
(2)

𝑗

𝜕𝑞𝑖
) = 0, 𝑖 = 1, 2. (23)

It is easy to obtain

𝜕𝐹
(1)

𝑗

𝜕𝑞1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝1,𝑝2,𝑞2)=0

= 2Λ
𝑗−1

𝑞
1

,
𝜕𝐹
(2)

𝑗

𝜕𝑞1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝1 ,𝑝2,𝑞2)=0

= 0,

1 ≤ 𝑗 ≤ 𝑁.

(24)

Then we have
𝑁

∑
𝑗=1

𝑏
(1)

𝑗
𝜆
𝑗−1

𝑘
= 0, 1 ≤ 𝑘 ≤ 𝑁, (25)

which gives rise to 𝑏(1)
𝑗
= 0, 1 ≤ 𝑗 ≤ 𝑁, by utilizing the fact

that the Vandermonde determinant is not zero. Therefore,
(23) is reduced to

𝑁

∑
𝑗=1

𝑏
(2)

𝑗

𝜕𝐹
(2)

𝑗

𝜕𝑞𝑖
= 0, 𝑖 = 1, 2. (26)

Take 𝑃
0
∈ R4𝑁 with the coordinates 𝑞2 = 𝑝1 = 0, 𝑞1 = 𝑂(𝜀),

and 𝑝2 = 𝑂(𝜀), where 𝜀 is a small real number. Then, at 𝑃
0
,

𝜕𝐹
(1)

𝑗

𝜕𝑞1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃0

= ⟨Λ
𝑗

𝑞
1

, 𝑝
2

⟩𝑝
2

+ ⟨𝑞
1

, 𝑝
2

⟩Λ
𝑗

𝑝
2

− 2 ⟨𝑞
1

, 𝑝
2

⟩ ⟨Λ
𝑗−1

𝑝
2

, 𝑝
2

⟩𝑝
2

= ⟨Λ
𝑗

𝑞
1

, 𝑝
2

⟩𝑝
2

+ ⟨𝑞
1

, 𝑝
2

⟩Λ
𝑗

𝑝
2

+ 𝑂 (𝜀
5

) ,

(27)

and the determinant of the coefficients of the linear system of
equations

𝑁

∑
𝑗=1

𝑏
(2)

𝑗

𝜕𝐹
(2)

𝑗

𝜕𝑞1
𝑘

= 0, 1 ≤ 𝑘 ≤ 𝑁, (28)

is

𝐴 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑞1, 𝑝2⟩𝑝2
1
+ ⟨𝑞1, 𝑝2⟩ 𝜆

1
𝑝2
1
⟨Λ2𝑞1, 𝑝2⟩𝑝2

1
+ ⟨𝑞1, 𝑝2⟩ 𝜆2

1
𝑝2
1
⋅ ⋅ ⋅ ⟨Λ𝑁𝑞1, 𝑝2⟩𝑝2

1
+ ⟨𝑞1, 𝑝2⟩ 𝜆𝑁

1
𝑝2
1

⟨Λ𝑞1, 𝑝2⟩𝑝2
2
+ ⟨𝑞1, 𝑝2⟩ 𝜆

2
𝑝2
2
⟨Λ2𝑞1, 𝑝2⟩𝑝2

2
+ ⟨𝑞1, 𝑝2⟩ 𝜆2

2
𝑝2
2
⋅ ⋅ ⋅ ⟨Λ𝑁𝑞1, 𝑝2⟩𝑝2

2
+ ⟨𝑞1, 𝑝2⟩ 𝜆𝑁

2
𝑝2
2

...
... d

...

⟨Λ𝑞
1

, 𝑝
2

⟩𝑝
2

𝑁
+ ⟨𝑞
1

, 𝑝
2

⟩ 𝜆
𝑁
𝑝
2

𝑁
⟨Λ
2

𝑞
1

, 𝑝
2

⟩𝑝
2

𝑁
+ ⟨𝑞
1

, 𝑝
2

⟩ 𝜆
2

𝑁
𝑝
2

𝑁
⋅ ⋅ ⋅ ⟨Λ

𝑁

𝑞
1

, 𝑝
2

⟩𝑝
2

𝑁
+ ⟨𝑞
1

, 𝑝
2

⟩ 𝜆
𝑁

𝑁
𝑝
2

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑂 (𝜀
5𝑁

)

=

𝑁

∏
𝑗=1

𝑝
2

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑞1, 𝑝2⟩ + ⟨𝑞1, 𝑝2⟩ 𝜆
1
⟨Λ2𝑞1, 𝑝2⟩ + ⟨𝑞1, 𝑝2⟩ 𝜆2

1
⋅ ⋅ ⋅ ⟨Λ𝑁𝑞1, 𝑝2⟩ + ⟨𝑞1, 𝑝2⟩ 𝜆𝑁

1

⟨𝑞1, 𝑝2⟩ (𝜆
2
− 𝜆
1
) ⟨𝑞1, 𝑝2⟩ (𝜆2

2
− 𝜆2
1
) ⋅ ⋅ ⋅ ⟨𝑞1, 𝑝2⟩ (𝜆𝑁

2
− 𝜆𝑁
1
)

...
... d

...

⟨𝑞1, 𝑝2⟩ (𝜆
𝑁
− 𝜆
1
) ⟨𝑞1, 𝑝2⟩ (𝜆2

𝑁
− 𝜆2
1
) ⋅ ⋅ ⋅ ⟨𝑞1, 𝑝2⟩ (𝜆𝑁

𝑁
− 𝜆𝑁
1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑂 (𝜀
5𝑁

)
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=

𝑁

∏
𝑗=1

𝑝
2

𝑗
(⟨𝑞

1

, 𝑝
2

⟩
𝑁−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑞1, 𝑝2⟩ ⟨Λ2𝑞1, 𝑝2⟩ ⋅ ⋅ ⋅ ⟨Λ𝑁𝑞1, 𝑝2⟩

𝜆
2
− 𝜆
1
𝜆2
2
− 𝜆2
1
⋅ ⋅ ⋅ 𝜆𝑁

2
− 𝜆𝑁
1

...
... d

...
𝜆
𝑁
− 𝜆
1
𝜆2
𝑁
− 𝜆2
1
⋅ ⋅ ⋅ 𝜆𝑁

𝑁
− 𝜆𝑁
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ⟨𝑞
1

, 𝑝
2

⟩
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
1
𝜆2
1
⋅ ⋅ ⋅ 𝜆𝑁
1

𝜆
2
𝜆2
2
⋅ ⋅ ⋅ 𝜆𝑁
2

...
... d

...
𝜆
𝑁
𝜆2
𝑁
⋅ ⋅ ⋅ 𝜆𝑁
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + 𝑂(𝜀
5𝑁

) ,

(29)

where

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨Λ𝑞1, 𝑝2⟩ ⟨Λ2𝑞1, 𝑝2⟩ ⋅ ⋅ ⋅ ⟨Λ𝑁𝑞1, 𝑝2⟩

𝜆
2
− 𝜆
1
𝜆2
2
− 𝜆2
1
⋅ ⋅ ⋅ 𝜆𝑁

2
− 𝜆𝑁
1

...
... d

...
𝜆
𝑁
− 𝜆
1
𝜆2
𝑁
− 𝜆2
1
⋅ ⋅ ⋅ 𝜆𝑁

𝑁
− 𝜆𝑁
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜆
1

𝜆2
1
⋅ ⋅ ⋅ 𝜆𝑁

1

0 ⟨Λ𝑞1, 𝑝2⟩ ⟨Λ2𝑞1, 𝑝2⟩ ⋅ ⋅ ⋅ ⟨Λ𝑁𝑞1, 𝑝2⟩

1 𝜆
2

𝜆2
2
⋅ ⋅ ⋅ 𝜆𝑁

2

...
...

... d
...

1 𝜆
𝑁

𝜆2
𝑁

⋅ ⋅ ⋅ 𝜆𝑁
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜆
1
𝜆2
1
⋅ ⋅ ⋅ 𝜆𝑁
1

−⟨𝑞1, 𝑝2⟩ 0 0 ⋅ ⋅ ⋅ 0

1 𝜆
2
𝜆2
2
⋅ ⋅ ⋅ 𝜆𝑁
2

...
...

... d
...

1 𝜆
𝑁
𝜆2
𝑁
⋅ ⋅ ⋅ 𝜆𝑁
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ⟨𝑞
1

, 𝑝
2

⟩

𝑁

∏
𝑖,𝑗=1

𝑖>𝑗

(𝜆
𝑖
− 𝜆
𝑗
) .

(30)

Therefore,

𝐴 = 2⟨𝑞
1

, 𝑝
2

⟩
𝑁

(

𝑁

∏
𝑗=1

𝑝
2

𝑗
)(

𝑁

∏
𝑖,𝑗=1

𝑖>𝑗

(𝜆
𝑖
− 𝜆
𝑗
)) + 𝑂(𝜀

5𝑁

) ̸= 0.

(31)

Then we obtain 𝑏(2)
𝑗
= 0, 1 ≤ 𝑗 ≤ 𝑁. The proof is complete.

Combining Propositions 1 and 2, we have immediately the
following conclusions.

Proposition 3. The symplectic map of the Bargmann type
defined by (10) is completely integrable in the Liouville sense.

Proposition 4. The systems defined as follows are completely
integrable in the Liouville sense:

𝜕𝑞𝑖

𝜕𝑡
=
𝜕𝐹
(1)

𝑚

𝜕𝑝𝑖
,
𝜕𝑝𝑖

𝜕𝑡
= −
𝜕𝐹
(1)

𝑚

𝜕𝑞𝑖
, 𝑚 ≥ 1, 𝑖 = 1, 2. (32)

4. The Representation of Solutions

Consider the following initial value problem:

𝑞
𝑖

𝑡
=
𝜕𝐻
1

𝜕𝑝𝑖
, 𝑝

𝑖

𝑡
= −
𝜕𝐻
1

𝜕𝑞𝑖
,

(𝑞
𝑖

, 𝑝
𝑖

)
󵄨󵄨󵄨󵄨󵄨𝑡=0
= (𝑞
𝑖

(0) , 𝑝
𝑖

(0)) ,

𝑖 = 1, 2,

(33)

where𝐻
1
= −(1/2)𝐹

(1)

1
. In fact, the first two equations in (33)

are

𝑞
1

𝑡
=
1

2
(Λ − ⟨𝑝

1

, 𝑝
1

⟩) 𝑞
1

− ⟨𝑞
1

, 𝑝
1

⟩𝑝
1

− ⟨𝑞
1

, 𝑝
2

⟩𝑝
2

,

𝑞
2

𝑡
= −⟨𝑝

1

, 𝑝
2

⟩ 𝑞
1

+
1

2
(Λ − ⟨𝑝

2

, 𝑝
2

⟩) 𝑞
2

− ⟨𝑞
1

, 𝑝
2

⟩𝑝
1

− ⟨𝑞
2

, 𝑝
2

⟩𝑝
2

,

𝑝
1

𝑡
= 𝑞
1

+
1

2
(⟨𝑝
1

, 𝑝
1

⟩ − Λ)𝑝
1

+ ⟨𝑝
1

, 𝑝
2

⟩𝑝
2

,

𝑝
2

𝑡
= 𝑞
2

+
1

2
(⟨𝑝
2

, 𝑝
2

⟩ − Λ)𝑝
2

.

(34)

Thenwe can obtain the presentation of solutions for the lattice
equation (4).

Proposition 5. Let 𝑞𝑖(𝑡) and 𝑝𝑖(𝑡) (1 ≤ 𝑖 ≤ 3) be a solution of
(33); define

(𝑞
1

(𝑛, 𝑡) , 𝑞
2

(𝑛, 𝑡) , 𝑝
1

(𝑛, 𝑡) , 𝑝
2

(𝑛, 𝑡))

= 𝐻
𝑛

(𝑞
1

(𝑡) , 𝑞
2

(𝑡) , 𝑝
1

(𝑡) , 𝑝
2

(𝑡)) .

(35)

Then

𝑎
𝑛
= ⟨𝑝
1

, 𝑝
2

⟩ , 𝑏
𝑛
= ⟨𝑝
2

, 𝑝
2

⟩ ,

𝑐
𝑛
= (−⟨𝑝

1

, 𝑝
2

⟩
2

− ⟨𝑞
2

, 𝑝
2

⟩ + ⟨Λ𝑝
2

, 𝑝
2

⟩ − ⟨𝑝
2

, 𝑝
2

⟩
2

)
1/2

,

(36)

and solve the lattice equation (4).
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Proof. It is easy to see that (35) is equivalent to (12), that is,
(10) with (𝑞𝑖(0, 𝑡), 𝑝𝑖(0, 𝑡)) = (𝑞𝑖(𝑡), 𝑝𝑖(𝑡)). Using (33), (36),
and (10), a direct calculation shows that

𝑎
𝑛,𝑡
=
1

2
⟨𝑝
1

, 𝑝
2

⟩ (⟨𝑝
1

, 𝑝
1

⟩ + ⟨𝑝
2

, 𝑝
2

⟩)+⟨𝑝
2

, 𝑝
2

⟩ ⟨𝑝
1

, 𝑝
2

⟩

+ ⟨𝑞
1

, 𝑝
2

⟩ + ⟨𝑞
2

, 𝑝
1

⟩ − ⟨Λ𝑝
1

, 𝑝
2

⟩

=
1

2
(𝐸
−1

𝑐
𝑛
− 𝑐
𝑛
𝐸) (2⟨𝑝

1

, 𝑝
2

⟩) +
1

2
𝑎
𝑛
(1 − 𝐸) ⟨𝑝

2

, 𝑝
2

⟩ ,

𝑏
𝑛,𝑡
= ⟨𝑝
2

, 𝑝
2

⟩ ⟨𝑝
2

, 𝑝
2

⟩ + 2 ⟨Λ𝑞
2

, 𝑝
2

⟩ − ⟨𝑝
2

, 𝑝
2

⟩

=
1

2
(𝐸
−1

− 1) 𝑎
𝑛
(2 ⟨𝑝
1

, 𝑝
2

⟩) + (𝐸
−2

− 1)

×(−𝑎
𝑛
⟨𝑝
1

, 𝑝
2

⟩−⟨𝑞
2

, 𝑝
2

⟩+⟨Λ𝑝
2

, 𝑝
2

⟩ − 𝑏
𝑛
⟨𝑝
2

, 𝑝
2

⟩) ,

𝑐
𝑛,𝑡
=
1

2
(−⟨𝑝
1

, 𝑝
2

⟩
2

− ⟨𝑞
2

, 𝑝
2

⟩+⟨Λ𝑝
2

, 𝑝
2

⟩−⟨𝑝
2

, 𝑝
2

⟩
2

)
−1/2

× [− ⟨𝑝
2

, 𝑝
2

⟩ (⟨𝑝
1

, 𝑝
2

⟩
2

+ ⟨𝑞
2

, 𝑝
2

⟩ − ⟨Λ𝑝
2

, 𝑝
2

⟩

+2⟨𝑝
2

, 𝑝
2

⟩
2

) − ⟨𝑝
1

, 𝑝
2

⟩

× (⟨𝑝
1

, 𝑝
2

⟩ ⟨𝑝
1

, 𝑝
1

⟩ + 2 ⟨𝑝
2

, 𝑝
2

⟩ ⟨𝑝
1

, 𝑝
2

⟩

−2 ⟨Λ𝑝
1

, 𝑝
2

⟩ + 2 ⟨𝑞
2

, 𝑝
1

⟩) − 2 ⟨𝑝
2

, 𝑝
2

⟩

× (⟨Λ𝑞
2

, 𝑝
2

⟩ − ⟨Λ𝑝
2

, 𝑝
2

⟩)

− ⟨𝑞
2

, 𝑞
2

⟩ + 2 ⟨Λ𝑞
2

, 𝑝
2

⟩ − ⟨Λ
2

𝑝
2

, 𝑝
2

⟩]

=
1

2
𝑐
𝑛
(1 − 𝐸

2

) ⟨𝑝
2

, 𝑝
2

⟩ .

(37)

Therefore, we have

𝜕

𝜕𝑡
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)
T
= 𝐽
𝑛

𝑁

∑
𝑗=1

∇𝜆
𝑗
= 𝐽
𝑛
𝐺
(0)

𝑛
, (38)

where

𝐽
𝑛
=(

1

2
(𝐸
−1

𝑐
𝑛
− 𝑐
𝑛
𝐸)
1

2
𝑎
𝑛
(1 − 𝐸) 0

1

2
(𝐸−1 − 1) 𝑎

𝑛
0

1

2
(𝐸−2 − 1) 𝑐

𝑛

0
1

2
𝑐
𝑛
(1 − 𝐸

2

) 0

).

(39)

Then (38) is equivalent to the generalization of Toda lattice
equation (4). This proves Proposition 5.
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The aim of this work is to introduce an extension for 𝑞-standard notations.The 𝑞-Apostol type polynomials and study some of their
properties. Besides, some relations between the mentioned polynomials and some other known polynomials are obtained.

1. Introduction, Preliminaries, and Definitions

Throughout this research we always apply the following
notations.N indicates the set of natural numbers,N

0
indicates

the set of nonnegative integers, R indicates the set of all real
numbers, andCdenotes the set of complex numbers.We refer
the readers to [1] for all the following 𝑞-standard notations.
The 𝑞-shifted factorial is defined as

(𝑎; 𝑞)
0
= 1,

(𝑎; 𝑞)
𝑛
=

𝑛−1

∏
𝑗=0

(1 − 𝑞
𝑗

𝑎) , 𝑛 ∈ N,

(𝑎; 𝑞)
∞
=

∞

∏
𝑗=0

(1 − 𝑞
𝑗

𝑎) ,

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 < 1, 𝑎 ∈ C.

(1)

The 𝑞-numbers and 𝑞-factorials are defined by

[𝑎]
𝑞
=
1 − 𝑞𝑎

1 − 𝑞
(𝑞 ̸= 1) ;

[0]! = 1;

[𝑛]
𝑞
! = [1]

𝑞
[2]
𝑞
⋅ ⋅ ⋅ [𝑛]

𝑞
,

𝑛 ∈ N, 𝑎 ∈ C,

(2)

respectively. The 𝑞-polynomial coefficient is defined by

[
𝑛

𝑘
]
𝑞

=
[𝑛]
𝑞
!

[𝑘]
𝑞
![𝑛 − 𝑘]

𝑞
!
. (3)

The 𝑞-analogue of the function (𝑥 + 𝑦)𝑛 is defined by

(𝑥 + 𝑦)
𝑛

𝑞
:=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝑞
(1/2)𝑘(𝑘−1)

𝑥
𝑛−𝑘

𝑦
𝑘

, 𝑛 ∈ N
0
. (4)

The 𝑞-binomial formula is known as

(1 − 𝑎)
𝑛

𝑞
=

𝑛−1

∏
𝑗=0

(1 − 𝑞
𝑗

𝑎) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝑞
(1/2)𝑘(𝑘−1)

(−1)
𝑘

𝑎
𝑘

. (5)

In the standard approach to the 𝑞-calculus, two exponential
functions are used:

𝑒
𝑞
(𝑧) =

∞

∑
𝑛=0

𝑧𝑛

[𝑛]
𝑞
!
=

∞

∏
𝑗=0

1

(1 − (1 − 𝑞) 𝑞𝑗𝑧)
,

0 <
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 < 1, |𝑧| <

1
󵄨󵄨󵄨󵄨1 − 𝑞

󵄨󵄨󵄨󵄨
,

(6)

𝐸
𝑞
(𝑧) =

∞

∑
𝑘=0

𝑞(1/2)𝑘(𝑘−1)𝑧𝑘

[𝑘]
𝑞
!

=

∞

∏
𝑗=0

(1 + (1 − 𝑞) 𝑞
𝑗

𝑧) ,

0 <
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 < 1, 𝑧 ∈ C.

(7)
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As an immediate result of these two definitions, we have
𝑒
𝑞
(𝑧)𝐸
𝑞
(−𝑧) = 1.

Recently, Luo and Srivastava [2] introduced and studied
the generalized Apostol-Bernoulli polynomials 𝐵𝛼

𝑛
(𝑥; 𝜆) and

the generalized Apostol-Euler polynomials 𝐸𝛼
𝑛
(𝑥; 𝜆). Kurt

[3] gave the generalization of the Bernoulli polynomials
𝐵[𝑚−1,𝛼]
𝑛

(𝑥) of order 𝛼 and studied their properties. They also
studied these polynomials systematically; see [2, 4–9]. There
are numerous recent investigations on this subject by many
other authors; see [3, 10–20]. More recently, Tremblay et al.
[10] further gave the definition of 𝐵[𝑚−1,𝛼]

𝑛
(𝑥; 𝜆) and studied

their properties. On the other hand, Mahmudov and Kelesh-
teri [21, 22] studied various two dimensional 𝑞-polynomials.
Motivated by these papers, we define generalized Apostol
type 𝑞-polynomials as follows.

Definition 1. Let 𝑞, 𝛼 ∈ C, 𝑚 ∈ N, and 0 < |𝑞| < 1.
The generalized 𝑞-Apostol-Bernoulli numbers 𝐵[𝑚−1,𝛼]

𝑛,𝑞
and

polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) in 𝑥, 𝑦 of order 𝛼 are defined, in
a suitable neighborhood of 𝑡 = 0, by means of the generating
functions:

(
𝑡𝑚

𝜆𝑒
𝑞
(𝑡) − 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

=

∞

∑
𝑛=0

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(𝜆)

𝑡𝑛

[𝑛]
𝑞
!
,

(
𝑡
𝑚

𝜆𝑒
𝑞
(𝑡) − 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

=

∞

∑
𝑛=0

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!
,

(8)

where 𝑇
𝑚−1,𝑞

(𝑡) = ∑
𝑚−1

𝑘=0
(𝑡𝑘/[𝑘]𝑞!).

Definition 2. Let 𝑞, 𝛼 ∈ C, 0 < |𝑞| < 1, and 𝑚 ∈

N. The generalized 𝑞-Apostol-Euler numbers 𝐸[𝑚−1,𝛼]
𝑛,𝑞

and
polynomials 𝐸[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) in 𝑥, 𝑦 of order 𝛼 are defined, in

a suitable neighborhood of 𝑡 = 0, by means of the generating
functions:

(
2𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

=

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝜆)

𝑡𝑛

[𝑛]
𝑞
!
,

(
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

=

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!
.

(9)

Definition 3. Let 𝑞, 𝛼 ∈ C, 0 < |𝑞| < 1, and 𝑚 ∈ N.
The generalized 𝑞-Apostol-Genocchi numbers 𝐺[𝑚−1,𝛼]

𝑛,𝑞
and

polynomials𝐺[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) in 𝑥, 𝑦 of order 𝛼 are defined, in

a suitable neighborhood of 𝑡 = 0, by means of the generating
functions:

(
2
𝑚𝑡𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

=

∞

∑
𝑛=0

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(𝜆)

𝑡𝑛

[𝑛]
𝑞
!
,

(
2𝑚𝑡𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

=

∞

∑
𝑛=0

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!
.

(10)

Clearly, for𝑚 = 1, one has

𝐵
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) = 𝐵

(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) ,

𝐸
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) = 𝐸

(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) ,

𝐺
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) = 𝐺

(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) .

(11)

For𝑚 = 1 and 𝜆 = 1, one has

𝐵
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 1) = 𝐵

(𝛼)

𝑛,𝑞
(𝑥, 𝑦) ,

𝐸
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 1) = 𝐸

(𝛼)

𝑛,𝑞
(𝑥, 𝑦) ,

𝐺
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 1) = 𝐺

(𝛼)

𝑛,𝑞
(𝑥, 𝑦) .

(12)

For 𝑥 = 𝑦 = 0, one has

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(0, 0; 𝜆) = 𝐵

[𝑚−1,𝛼]

𝑛,𝑞
(𝜆) ,

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(0, 0; 𝜆) = 𝐸

[𝑚−1,𝛼]

𝑛,𝑞
(𝜆) ,

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(0, 0; 𝜆) = 𝐺

[𝑚−1,𝛼]

𝑛,𝑞
(𝜆) .

(13)

2. Properties of the Apostol
Type 𝑞-Polynomials

In this section, we show some basic properties of the general-
ized 𝑞-polynomials. We only prove the facts for one of them.
Obviously, by applying the similar technique, other ones can
be proved.
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Proposition 4. The generalized 𝑞-polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥,

𝑦; 𝜆), 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆), and𝐺[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) satisfy the follow-
ing relations:

𝐵
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐵
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆)

× 𝐵
[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆) ,

𝐸
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆)

× 𝐸
[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆) ,

𝐺
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐺
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆)

× 𝐺
[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆) .

(14)

Proof. We only prove the second identity. By using
Definition 2, we have

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼+𝛽

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥)

× (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛽

𝐸
𝑞
(𝑡𝑦)

=

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 0; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!

×

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛽]

𝑛,𝑞
(0, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!

=

∞

∑
𝑛=0

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!
.

(15)

Comparing the coefficients of the term 𝑡𝑛/[𝑛]
𝑞
! in both sides

gives the result.

Corollary 5. The generalized 𝑞-polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆),
𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆), and 𝐺[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) satisfy the following
relations:

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐵
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝑥

𝑛−𝑘

,

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝑥

𝑛−𝑘

,

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐺
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝑥

𝑛−𝑘

.

(16)

Proposition 6. The generalized 𝑞-polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦;

𝜆), 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆), and 𝐺[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) satisfy the following
relations:

𝜆𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) − 𝐵

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

[𝑘]
𝑞
𝐵
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐵

[0,−1]

𝑛−𝑘,𝑞
(𝜆) , for 𝑛 ≥ 1,

(17)

𝜆𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) + 𝐸

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

= 2

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐸

[0,−1]

𝑛−𝑘,𝑞
(𝜆) ,

(18)

𝜆𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) + 𝐺

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

= 2

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

[𝑘]
𝑞
𝐺
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐺

[0,−1]

𝑛−𝑘,𝑞
(𝜆) , for 𝑛 ≥ 1.

(19)

Proof. We only prove (18). By using Definition 2 and starting
from the left hand side of the relation (18), we have
∞

∑
𝑛=0

(𝜆𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) + 𝐸

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆))

𝑡𝑛

[𝑛]
𝑞
!

= 𝜆(
2𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡) 𝐸
𝑞
(𝑡𝑦)

+ (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦)

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦) (𝜆𝑒

𝑞
(𝑡) + 1)

= 2(
2𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦) (

2

𝜆𝑒
𝑞
(𝑡) + 1

)

−1

= 2

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!

∞

∑
𝑛=0

𝐸
[0,−1]

𝑛,𝑞
(𝜆)

𝑡𝑛

[𝑛]
𝑞
!
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= 2

∞

∑
𝑛=0

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐸

[0,−1]

𝑛−𝑘,𝑞
(𝜆)

𝑡𝑛

[𝑛]
𝑞
!
.

(20)

Comparing the coefficients of the term 𝑡
𝑛

/[𝑛]
𝑞
! in both sides

gives the result.

3. 𝑞-Analogue of the Luo-Srivastava
Addition Theorem

In this section, we state and prove a 𝑞-generalization of the
Luo-Srivastava addition theorem.

Theorem 7. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Apostol-Bernoulli polynomials:

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑
𝑗=0

1

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

× (𝜆

𝑛−𝑗+1

∑
𝑘=0

1

[𝑛 + 1]
𝑞

[
𝑛 − 𝑗 + 1

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼−1]

𝑘,𝑞
(0, 𝑦; 𝜆)

− 𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) +

𝜆 − 1

[𝑛 + 1]
𝑞

× (
2𝑚

𝜆 + 1
)

𝛼

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) .

(21)

Proof. We take aid of the following identity to prove (21):

𝜆
𝑡

𝜆𝑒
𝑞
(𝑡) − 1

𝑒
𝑞
(𝑡𝑥) 𝑒
𝑞
(𝑡) −

𝑡

𝜆𝑒
𝑞
(𝑡) − 1

𝑒
𝑞
(𝑡𝑥)

=
𝑡𝑒
𝑞
(𝑡𝑥)

𝜆𝑒
𝑞
(𝑡) − 1

(𝜆𝑒
𝑞
(𝑡) − 1) = 𝑡𝑒

𝑞
(𝑡𝑥) .

(22)

Therefore, we can write

𝜆

∞

∑
𝑛=0

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐵
𝑘,𝑞
(𝑥, 0; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!
−

∞

∑
𝑛=0

𝐵
𝑛,𝑞
(𝑥, 0; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!

=

∞

∑
𝑛=0

𝑥
𝑛

𝑡𝑛+1

[𝑛 + 1]
𝑞
!
[𝑛 + 1]

𝑞

=

∞

∑
𝑛=0

[𝑛]
𝑞
𝑥
𝑛−1

𝑡𝑛

[𝑛]
𝑞
!
.

(23)

From that we can conclude the following:

𝜆

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐵
𝑘,𝑞
(𝑥, 0; 𝜆) − 𝐵

𝑛,𝑞
(𝑥, 0; 𝜆) = [𝑛]

𝑞
𝑥
𝑛−1

. (24)

That is,

𝑥
𝑛

=
1

[𝑛 + 1]
𝑞

(𝜆

𝑛+1

∑
𝑘=0

[
𝑛 + 1

𝑘
]
𝑞

𝐵
𝑘,𝑞
(𝑥, 0; 𝜆) − 𝐵

𝑛+1,𝑞
(𝑥, 0; 𝜆)) .

(25)

Substituting (25) into the right hand side of (16), we obtain

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

1

[𝑛 − 𝑘 + 1]
𝑞

× (𝜆

𝑛−𝑘+1

∑
𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

−𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆))

=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

1

[𝑛 − 𝑘 + 1]
𝑞

× (𝜆

𝑛−𝑘

∑
𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

+ (𝜆 − 1) 𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆))

=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆

[𝑛 − 𝑘 + 1]
𝑞

×

𝑛−𝑘

∑
𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

+

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆 − 1

[𝑛 − 𝑘 + 1]
𝑞

× 𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆) := 𝐼
1
+ 𝐼
2
.

(26)

Thus, from one hand, we can write

𝐼
1
=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆

[𝑛 − 𝑘 + 1]
𝑞

×

𝑛−𝑘

∑
𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

=

𝑛

∑
𝑗=0

𝑛−𝑗

∑
𝑘=0

𝜆

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑛 − 𝑘 + 1
]
𝑞

[
𝑛 − 𝑘 + 1

𝑗
]
𝑞

× 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐵

𝑗,𝑞
(𝑥, 0; 𝜆) .

(27)

As we know that

[
𝑚

𝑙
]
𝑞

[
𝑙

𝑛
]
𝑞

= [
𝑚

𝑛
]
𝑞

[
𝑚 − 𝑛

𝑚 − 𝑙
]
𝑞

, for 𝑚 ≥ 𝑙 ≥ 𝑛, (28)
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we can continue as

𝐼
1
=

𝑛

∑
𝑗=0

𝑛−𝑗

∑
𝑘=0

𝜆

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

[
𝑛 − 𝑗 + 1

𝑘
]
𝑞

× 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐵

𝑗,𝑞
(𝑥, 0; 𝜆)

=

𝑛

∑
𝑗=0

𝜆

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

×

𝑛−𝑗

∑
𝑘=0

[
𝑛 − 𝑗 + 1

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑
𝑗=0

𝜆

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

× (𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)) .

(29)

On the other hand, for 𝐼
2
, we can write

𝐼
2
=

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆 − 1

[𝑛 − 𝑘 + 1]
𝑞

𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆)

=

𝑛

∑
𝑘=0

[
𝑛 + 1

𝑘
]
𝑞

𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

=

𝑛+1

∑
𝑘=0

[
𝑛 + 1

𝑘
]
𝑞

𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

−
𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
0,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) ,

(30)

and, as 𝐵
0,𝑞
(𝑥, 0; 𝜆) = 0, we have

𝐼
2
=

𝑛+1

∑
𝑘=0

[
𝑛 + 1

𝑘
]
𝑞

𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

=

𝑛+1

∑
𝑗=0

[
𝑛 + 1

𝑗
]
𝑞

𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑
𝑗=0

[
𝑛 + 1

𝑗
]
𝑞

𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

+
𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆) .

(31)

Adding 𝐼
2
to 𝐼
1
we obtain

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

= 𝐼
1
+ 𝐼
2

=

𝑛

∑
𝑗=0

𝜆

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

× (𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

+

𝑛

∑
𝑗=0

[
𝑛 + 1

𝑗
]
𝑞

𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

+
𝜆 − 1

[𝑛 + 1]
𝑞

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆) .

(32)

Consequently,

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑
𝑗=0

1

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

× (𝜆𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝜆𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

+ (𝜆 − 1) 𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) +

𝜆 − 1

[𝑛 + 1]
𝑞

× 𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑
𝑗=0

1

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

× (𝜆𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) +

(𝜆 − 1)

[𝑛 + 1]
𝑞

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆)

× 𝐸
[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑
𝑗=0

1

[𝑛 + 1]
𝑞

[
𝑛 + 1

𝑗
]
𝑞

× (𝜆

𝑛−𝑗+1

∑
𝑘=0

[
𝑛 − 𝑗 + 1

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

−𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) +

(𝜆 − 1)

[𝑛 + 1]
𝑞

(
2𝑚

𝜆 + 1
)

𝛼

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) .

(33)
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Taking 𝑚 = 1 in Theorem 7, we get a 𝑞-generalization of
the Luo-Srivastava addition theorem [2].

Corollary 8. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Apostol-Bernoulli polynomials:

𝐸
(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑
𝑗=0

2

[𝑗 + 1]
𝑞

[
𝑛

𝑗
]
𝑞

× (𝐸
(𝛼)

𝑗+1,𝑞
(0, 𝑦; 𝜆) − 𝐸

(𝛼)

𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑛−𝑗,𝑞

(𝑥, 0; 𝜆) +
𝜆 − 1

[𝑛 + 1]
𝑞

(
2

𝜆 + 1
)
𝛼

× 𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) .

(34)

Letting 𝑞 ↑ 1, we get the Luo-Srivastava addition theorem
(see [12]):

𝐸
(𝛼)

𝑛
(𝑥 + 𝑦; 𝜆) =

𝑛

∑
𝑗=0

2

𝑗 + 1
(
𝑛

𝑗
)

× (𝐸
(𝛼)

𝑗+1
(𝑦; 𝜆) − 𝐸

(𝛼)

𝑗+1
(𝑦; 𝜆))

× 𝐵
𝑛−𝑗,𝑞

(𝑥; 𝜆) +
𝜆 − 1

𝑛 + 1
(

2

𝜆 + 1
)
𝛼

× 𝐵
𝑛+1
(𝑥; 𝜆) .

(35)

Next theorem gives relationship between 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆)

and 𝐺
𝑛,𝑞
(𝑥, 0).

Theorem 9. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Apostol-Genocchi polynomials:

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

1

2

𝑛

∑
𝑘=0

1

[𝑘 + 1]
𝑞

× (𝜆

𝑛

∑
𝑗=𝑘

[
𝑛

𝑗
]
𝑞

[
𝑗

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑛−𝑗,𝑞
(0, 𝑦; 𝜆)

+

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆))

× 𝐺
𝑘+1,𝑞

(𝑥, 0) .

(36)

Proof. The proof follows from the following identity:

(
2𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

= (
2𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦)

2𝑡

𝑒
𝑞
(𝑡) + 1

× 𝑒
𝑞
(𝑡𝑥)

𝑒
𝑞
(𝑡) + 1

2𝑡
.

(37)

Theorem 10. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Stirling polynomials 𝑆

𝑞
(𝑖, 𝑗) of the sec-

ond kind:

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑
𝑘=0

𝑛

∑
𝑗=𝑘

[
𝑛

𝑛 − 𝑗
]
𝑞

× 𝐸
[𝑚−1,𝛼]

𝑛−𝑗,𝑞
(0, 𝑦; 𝜆) 𝑆

𝑞
(𝑗, 𝑘) 𝑥

𝑘
(𝑥) .

(38)

Proof. The 𝑞-Stirling polynomials 𝑆
𝑞
(𝑛, 𝑘) of the second kind

are defined by means of the following generating function:

𝑥
𝑛

=

𝑛

∑
𝑘=0

𝑆
𝑞
(𝑛, 𝑘) 𝑥

𝑘
(𝑥) , (39)

where 𝑥
𝑘
(𝑥) = 𝑥(𝑥− [1]

𝑞
)(𝑥− [2]

𝑞
) ⋅ ⋅ ⋅ (𝑥− [𝑘−1]

𝑞
); see [23].

Replacing identity (39) in the right hand side of (16), we have

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑
𝑘=0

[
𝑛

𝑘
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

×

𝑛−𝑘

∑
𝑘=0

𝑆
𝑞
(𝑛 − 𝑘, 𝑘) 𝑥

𝑘
(𝑥)

=

𝑛

∑
𝑘=0

𝑛

∑
𝑗=𝑘

[
𝑛

𝑛 − 𝑗
]
𝑞

× 𝐸
[𝑚−1,𝛼]

𝑛−𝑗,𝑞
(0, 𝑦; 𝜆) 𝑆

𝑞
(𝑗, 𝑘) 𝑥

𝑘
(𝑥) .

(40)

Theorem 11. The relationship

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

[𝑛/2]

∑
𝑘=0

𝑛−2𝑘

∑
𝑗=0

[
𝑛

𝑘
]
𝑞

[
𝑛 − 2𝑘

𝑗
]
𝑞

[𝑘]
𝑞
!

[2]
𝑛

𝑞
[𝑘]
𝑞
2 !

× 𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−2𝑘−𝑗,𝑞
(𝑥)

(41)

holds between the polynomials 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) and the 𝑞-
Hermite polynomials defined by (see [24])

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
2 (−

𝑡2

[2]
𝑞

) =

∞

∑
𝑛=0

𝐻
𝑛,𝑞
(𝑥)

𝑡𝑛

[𝑛]
𝑞
!
. (42)
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Proof. Indeed,

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!

= (
2𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

= (
2𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦) 𝑒
𝑞
(𝑡𝑥)

× 𝐸
𝑞
2 (−

𝑡2

[2]
𝑞

) 𝑒
𝑞
2 (

𝑡2

[2]
𝑞

)

=

∞

∑
𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

𝑡𝑛

[𝑛]
𝑞
!

×

∞

∑
𝑛=0

𝐻
𝑛,𝑞
(𝑥)

𝑡𝑛

[𝑛]
𝑞
!

∞

∑
𝑛=0

𝑡2𝑛

[2]
𝑛

𝑞
[𝑛]
𝑞
2 !

=

∞

∑
𝑛=0

𝑛

∑
𝑗=0

[
𝑛

𝑗
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−𝑗,𝑞
(𝑥)

𝑡𝑛

[𝑛]
𝑞
!

×

∞

∑
𝑛=0

𝑡2𝑛

[2]
𝑛

𝑞
[𝑛]
𝑞
2 !

=

∞

∑
𝑛=0

[𝑛/2]

∑
𝑘=0

[𝑛]
𝑞
!

[2]
𝑛

𝑞
[𝑘]
𝑞
2 ![𝑛 − 2𝑘]

𝑞
!

×

𝑛−2𝑘

∑
𝑗=0

[
𝑛 − 2𝑘

𝑗
]
𝑞

𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−2𝑘−𝑗,𝑞
(𝑥)

𝑡𝑛

[𝑛]
𝑞
!

=

∞

∑
𝑛=0

[𝑛/2]

∑
𝑘=0

𝑛−2𝑘

∑
𝑗=0

[
𝑛

𝑘
]
𝑞

[
𝑛 − 2𝑘

𝑗
]
𝑞

[𝑘]
𝑞
!

[2]
𝑛

𝑞
[𝑘]
𝑞
2 !

× 𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−2𝑘−𝑗,𝑞
(𝑥)

𝑡𝑛

[𝑛]
𝑞
!
.

(43)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, vol. 71
of Encyclopedia of Mathematics and its Applications, Cambridge
University Press, Cambridge, UK, 1999.

[2] Q.-M. Luo and H. M. Srivastava, “Some generalizations of the
Apostol-Bernoulli and Apostol-Euler polynomials,” Journal of
Mathematical Analysis and Applications, vol. 308, no. 1, pp. 290–
302, 2005.

[3] B. Kurt, “A further generalization of the Bernoulli polynomials
and on the 2𝐷-Bernoulli polynomials 𝐵2

𝑛
(𝑥, 𝑦),” Applied Math-

ematics, vol. 233, pp. 3005–3017, 2010.
[4] Q.-M. Luo, “𝑞-extensions for the Apostol-Genocchi polynomi-

als,” General Mathematics, vol. 17, no. 2, pp. 113–125, 2009.
[5] Q.-M. Luo, “Some results for the 𝑞-Bernoulli and 𝑞-Euler poly-

nomials,” Journal of Mathematical Analysis and Applications,
vol. 363, no. 1, pp. 7–18, 2010.

[6] Q.-M. Luo, “𝑞-analogues of some results for the Apostol-Euler
polynomials,” Advanced Studies in Contemporary Mathematics,
vol. 20, no. 1, pp. 103–113, 2010.

[7] Q.-M. Luo and H. M. Srivastava, “Some relationships between
the Apostol-Bernoulli and Apostol-Euler polynomials,” Com-
puters &Mathematics with Applications, vol. 51, no. 3-4, pp. 631–
642, 2006.

[8] Q.-M. Luo and H. M. Srivastava, “Some generalizations of the
Apostol-Genocchi polynomials and the Stirling numbers of the
second kind,” Applied Mathematics and Computation, vol. 217,
no. 12, pp. 5702–5728, 2011.

[9] Q.-M. Luo, “An explicit relationship between the generalized
Apostol-Bernoulli and Apostol-Euler polynomials associated
with 𝜆-Stirling numbers of the second kind,” Houston Journal
of Mathematics, vol. 36, no. 4, pp. 1159–1171, 2010.

[10] R. Tremblay, S. Gaboury, and B.-J. Fugère, “A new class of gen-
eralized Apostol-Bernoulli polynomials and some analogues of
the Srivastava-Pintér addition theorem,” Applied Mathematics
Letters of Rapid Publication, vol. 24, no. 11, pp. 1888–1893, 2011.

[11] H. Ozden, Y. Simsek, and H. M. Srivastava, “A unified presen-
tation of the generating functions of the generalized Bernoulli,
Euler and Genocchi polynomials,” Computers & Mathematics
with Applications, vol. 60, no. 10, pp. 2779–2787, 2010.

[12] D.-Q. Lu andH.M. Srivastava, “Some series identities involving
the generalizedApostol type and related polynomials,”Comput-
ers & Mathematics with Applications, vol. 62, no. 9, pp. 3591–
3602, 2011.

[13] H.M. Srivastava and J. Choi, Series Associated with the Zeta and
Related Functions, Kluwer Academic, Dodrecht, The Nether-
lands, 2001.

[14] P. Natalini and A. Bernardini, “A generalization of the Bernoulli
polynomials,” Journal of Applied Mathematics, vol. 2003, no. 3,
pp. 155–163, 2003.

[15] W. Wang, C. Jia, and T. Wang, “Some results on the Apostol-
Bernoulli and Apostol-Euler polynomials,” Computers &Math-
ematics with Applications, vol. 55, no. 6, pp. 1322–1332, 2008.

[16] J. Choi, D. S. Jang, andH.M. Srivastava, “A generalization of the
Hurwitz-Lerch Zeta function,” Integral Transforms and Special
Functions, vol. 19, no. 1-2, pp. 65–79, 2008.

[17] M. Garg, K. Jain, and H. M. Srivastava, “Some relationships
between the generalized Apostol-Bernoulli polynomials and
Hurwitz-Lerch Zeta functions,” Integral Transforms and Special
Functions, vol. 17, no. 11, pp. 803–815, 2006.
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We are concerned with the singularly perturbed Boussinesq-type equation including the singularly perturbed sixth-order
Boussinesq equation, which describes the bidirectional propagation of small amplitude and long capillary-gravity waves on the
surface of shallow water for bond number (surface tension parameter) less than but very close to 1/3. The nonexistence of global
solution to the initial boundary value problem for the singularly perturbed Boussinesq-type equation is discussed and two examples
are given.

1. Introduction

In the numerical study of the ill-posed Boussinesq equation,

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ (𝑢
2

)
𝑥𝑥

+ 𝑢
𝑥𝑥𝑥𝑥

. (1)

Darapi and Hua [1] proposed the singularly perturbed
Boussinesq equation

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ (𝑢
2

)
𝑥𝑥

+ 𝑢
𝑥𝑥𝑥𝑥

+ 𝛿𝑢
𝑥𝑥𝑥𝑥𝑥𝑥

(2)

as a dispersive regularization of the ill-posed classical Boussi-
nesq equation (1), where 𝛿 > 0 is a small parameter.
The authors use both filtering and regularization techniques
to control growth of the errors and to provide better
approximate solutions of this equation. Dash and Daripa [2]
presented a formal derivation of (2) from two-dimensional
potential flow equations for water waves through an asymp-
totic series expansion for small amplitude and long wave
length. The physical relevance of (2) in the context of water
waves was also addressed in [2]; it was shown that (2) actually
describes the bidirectional propagation of small amplitude
and long capillary-gravity waves on the surface of shallow
water for bond number (surface tension parameter) less than
but very close to 1/3. On the basis of far-field analysis and

heuristic arguments, Daripa and Dash [3] proved that the
traveling wave solutions of (2) are weakly nonlocal solitary
waves characterized by small amplitude fast oscillations in the
far-field and obtainedweakly nonlocal solitarywave solutions
of (2). Feng [4] investigated the generalized Boussinesq equa-
tion including the singularly perturbed Boussinesq equation

𝑢
𝑡𝑡
= [𝑄 (𝑢)]

𝑥𝑥
+

𝑛

∑
𝑖=1

𝑏
𝑖
𝑢
(2𝑖+2)𝑥

, (3)

where 𝑄(𝑢) = 𝑢 + 𝑏
0
𝑢𝑟, 𝑢
(2𝑖+2)𝑥

= (𝜕2𝑖+2𝑢)/(𝜕𝑥2𝑖+2), 𝑟
and 𝑏

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are all real constants. It is easily

seen that the choices 𝑏
0
= 1, 𝑟 = 2, 𝑛 = 2, 𝑏

1
= 1,

and 𝑏
2
= 𝛿 lead (3) to the singularly perturbed Boussinesq

equation (2). By the means of two proper ansatzs, the author
obtained explicit traveling solitary wave solutions of the
generalized Boussinesq equation (3). To the best of our
knowledge, however, there have not been any discussions on
global solutions of the initial boundary value problem for
(2) in the literature; recently, Song et al. [5] discussed the
initial boundary value problem for the singularly perturbed
Boussinesq-type equation

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ 𝜎(𝑢)

𝑥𝑥
+ 𝛼𝑢
𝑥
4 + 𝛽𝑢

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0, (4)
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with the initial boundary value conditions

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(1, 𝑡) = 𝑢

𝑥
3 (0, 𝑡) = 𝑢

𝑥
3 (1, 𝑡) = 𝑢

𝑥
5 (0, 𝑡)

= 𝑢
𝑥
5 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(5)

or with

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝑢
𝑥𝑥
(0, 𝑡) = 𝑢

𝑥𝑥
(1, 𝑡) = 𝑢

𝑥
4 (0, 𝑡)

= 𝑢
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(6)

where, and in the sequel 𝑢
𝑥
𝑖 = 𝜕𝑖𝑢/𝜕𝑥𝑖, 𝜎(𝑠) is a given

nonlinear function, 𝛼 > 0 and 𝛽 > 0 are real numbers, 𝑢
0
(𝑥)

and 𝑢
1
(𝑥) are given initial value functions, and Ω = (0, 1).

By virtue of the Galerkin method and prior estimates, under
the assumption “𝜎󸀠(𝑠) is bounded below and 𝜎(𝑠) satisfies
some smooth condition,” the existence and uniqueness of the
global generalized solution and the global classical solution
of the initial boundary value problem (4), (5) and (4), (6)
are proved, respectively. But if 𝜎󸀠(𝑠) is not bounded below,
does the above-mentioned problem have any global solution?
In this paper, we employ the energy method and the Jensen
inequality to prove that the global solutions of the initial
boundary value problem (4), (5) and (4), (6) cease to exist
in a finite time, respectively. At last, we show that the global
solution of the initial boundary value problem (2), (6) blows
up in a finite time.

The paper is organized as follows. In Section 2, the main
results are stated. The nonexistence of global solution of
problem (4), (5) and (4), (6) is discussed in Section 3. In
Section 4, we study the initial boundary problem (2), (6) and
give two examples satisfying the theorems (Theorems 1–6).

2. Main Theorems

Throughout this paper, we use the abbreviations ‖ ⋅ ‖ =

‖ ⋅ ‖
𝐿
2
(Ω)

. In the following we state the main results of this
paper, where the existence of Theorems 1–4 has been proved
in [5].

Theorem 1 (see [5]). Assume that 𝑢
0
∈ 𝐻6(Ω), 𝑢

1
∈ 𝐻3(Ω),

∫
1

0

𝑢
0
(𝑥)𝑑𝑥 = ∫

1

0

𝑢
1
(𝑥)𝑑𝑥 = 0, 𝑢

0𝑥
2𝑘+1(0, 𝑡) = 𝑢

0𝑥
2𝑘+1(1, 𝑡) =

𝑢
1𝑥
2𝑘+1(0, 𝑡) = 𝑢

1𝑥
2𝑘+1(1, 𝑡) = 0 (𝑘 = 0, 1, 2), 𝜎 ∈ 𝐶

5

(R), and
𝜎󸀠(𝑠) is bounded below; namely, there exists a constant 𝐶

0
such

that 𝜎󸀠(𝑠) ≥ 𝐶
0
, for any 𝑠 ∈ R. Then, for any 𝑇 > 0, the

initial boundary value problem (4), (5) admits a unique global
generalized solution 𝑢(𝑥, 𝑡) with

𝑢 ∈ 𝐶 ([0, 𝑇] ;𝐻
6

(Ω)) ∩ 𝐶
1

([0, 𝑇] ;𝐻
3

(Ω))

∩ 𝐶
2

([0, 𝑇] ; 𝐿
2

(Ω)) .

(7)

Theorem 2 (see [5]). Assume that the assumptions of
Theorem 1 hold, 𝑢

0
∈ 𝐻10(Ω), 𝑢

1
∈ 𝐻7(Ω), and 𝜎 ∈ 𝐶9(R).

Then, the initial boundary value problem (4), (5) admits a
unique global classical solution 𝑢(𝑥, 𝑡).

Theorem 3 (see [5]). Assume that 𝑢
0
∈ 𝐻6(Ω), 𝑢

1
∈ 𝐻3(Ω),

𝑢
0𝑥
2𝑘(0, 𝑡) = 𝑢

0𝑥
2𝑘(1, 𝑡) = 𝑢

1𝑥
2𝑘(0, 𝑡) = 𝑢

1𝑥
2𝑘(1, 𝑡) = 0 (𝑘 =

0, 1, 2), 𝜎 ∈ 𝐶5(R), 𝜎(2𝑖)(0) = 0 (𝑖 = 1, 2), and 𝜎󸀠(𝑠) is bounded
below.Then, for any 𝑇 > 0, the initial boundary value problem
(4), (6) admits a unique global generalized solution 𝑢(𝑥, 𝑡)with

𝑢 ∈ 𝐶 ([0, 𝑇] ;𝐻
6

(Ω)) ∩ 𝐶
1

([0, 𝑇] ;𝐻
3

(Ω))

∩ 𝐶
2

([0, 𝑇] ; 𝐿
2

(Ω)) .

(8)

Theorem 4 (see [5]). Assume that the assumptions of
Theorem 3 hold, 𝑢

0
∈ 𝐻10(Ω), 𝑢

1
∈ 𝐻7(Ω), 𝜎 ∈ 𝐶9(R), and

𝜎(2𝑖)(0) = 0 (𝑖 = 3, 4).Then, the initial boundary value problem
(4), (6) admits a unique global classical solution 𝑢(𝑥, 𝑡).

Theorem 5. Assume that (1) 𝜎(𝑠)𝑠 ≤ 𝜇Γ(𝑠), Γ(𝑠) ≤ −𝛾|𝑠|
𝑚+1,

where Γ(𝑠) = ∫𝑠
0

𝜎(𝜏)𝑑𝜏, 𝜇 > 2, 𝛾 > 0, and𝑚 > 1 are constants,
and (2) 𝑢

0
∈ 𝐻2, 𝑢

1
∈ 𝐿2, ∫1

0

𝑢
0
(𝑥)𝑑𝑥 = ∫

1

0

𝑢
1
(𝑥)𝑑𝑥 = 0, and

𝐸
0
= ∫
1

0

(∫
𝑥

0

𝑢
1
(𝜉) 𝑑𝜉)

2

𝑑𝑥 +
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
2

− 𝛼
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠

0

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠

0

󵄩󵄩󵄩󵄩󵄩

2

+ 2∫
1

0

∫
𝑢0

0

𝜎 (𝑠) 𝑑𝑠 𝑑𝑥 ≤ −[
2

𝐷(1 − 𝑒(1−𝑚)/4)
2
]

2/(𝑚−1)

,

(9)

where𝐷 = 𝛾(𝜇−2)/[2(𝑚−7)/2(𝑚+3)].Then the solution 𝑢(𝑥, 𝑡)
of initial boundary value problem (4), (5) blows up in a finite
time 𝑇

0
; namely,

‖𝑢(𝑡)‖
2

𝐿
1
(Ω)

+ ∫
𝑡

0

‖𝑢(𝜏)‖
2

𝑑𝜏 󳨀→ +∞ as 𝑡 󳨀→ 𝑇
−

0
, (10)

where 𝑇
0
is defined in the proof.

Theorem 6. Assume that (1) 𝜎 ∈ 𝐶2(R), 𝜎(0) = 0, and
one of the following conditions holds: (i) 𝜎(𝑠) is a convex
and even function, 𝜎(𝑠) ≥ 𝑎𝑠

𝑚, where 𝑎 > 0 and 𝑚 >

1 are real numbers, (ii) 𝜎(𝑠) is a convex function, 𝜎(𝑠) ≥

𝑎𝑠
𝑚, where 𝑎 > 0 is a real number and 𝑚 ≥ 2 is an

even number, and (2) −(𝜋/2) ∫1
0

𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥 > max{0,

((𝛽𝜋
4

− 𝛼𝜋
2

+ 1)/𝑎)
1/(𝑚−1)

}, −(𝜋/2) ∫1
0

𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 > 0.

Then the solution 𝑢(𝑥, 𝑡) of the initial boundary value problem
(4), (6) blows up in a finite time 𝑇

1
; namely,

‖𝑢 (𝑡)‖ 󳨀→ +∞, as 𝑡 󳨀→ 𝑇
−

1
, (11)

where 𝑇
1
is defined in the proof.

3. Nonexistence of Global Solutions of
Problem (4), (5) and (4), (6)

We first quote the following lemmas.
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Lemma 7 (see Li [6]). Assume that ̇𝑢 = 𝐺(𝑡, 𝑢), ̇V ≥ 𝐺(𝑡, V),
𝐺 ∈ 𝐶([0, +∞) × R), 𝑡

0
≤ 𝑡 < +∞, and 𝑢(𝑡

0
) = V(𝑡

0
). Then

𝑢(𝑡) ≥ V(𝑡) as 𝑡 ≥ 𝑡
0
.

Lemma 8 (Jensen inequality [7]). Assume that 𝜑(𝑢) : 𝑢 ∈

[𝛼, 𝛽] 󳨃→ R is a convex function,𝑓 : 𝑥 ∈ Ω 󳨃→ [𝛼, 𝛽], and 𝑃(𝑥)
is a continuous function, 𝑃(𝑥) ≥ 0, 𝑃(𝑥) ̸≡ 0. Then

𝜑(
∫
Ω

𝑓 (𝑥) 𝑃 (𝑥) 𝑑𝑥

∫
Ω

𝑃 (𝑥) 𝑑𝑥
) ≤

∫
Ω

𝜑 (𝑓 (𝑥)) 𝑃 (𝑥) 𝑑𝑥

∫
Ω

𝑃 (𝑥) 𝑑𝑥
. (12)

Integrating both sides of (4) over (0, 1) and using (5) and
the assumption ofTheorem 1, we obtain∫1

0

𝑢(𝑥, 𝑡)𝑑𝑥 = 0, 𝑡 ≥ 0.
Let V(𝑥, 𝑡) = ∫𝑥

0

𝑢(𝜉, 𝑡)𝑑𝜉; then 𝑢 = V
𝑥
and V satisfies

V
𝑡𝑡
= V
𝑥𝑥
+ 𝜎(V
𝑥
)
𝑥
+ 𝛼V
𝑥
4 + 𝛽V

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0, (13)

V (0, 𝑡) = V (1, 𝑡) = V
𝑥𝑥
(0, 𝑡) = V

𝑥𝑥
(1, 𝑡) = V

𝑥
4 (0, 𝑡)

= V
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

(14)

V (𝑥, 0) = V
0
(𝑥) , V

𝑡
(𝑥, 0) = V

1
(𝑥) , 𝑥 ∈ Ω, (15)

where V
0
(𝑥) = ∫

𝑥

0

𝑢
0
(𝜉)𝑑𝜉 and V

1
(𝑥) = ∫

𝑥

0

𝑢
1
(𝜉)𝑑𝜉.

Proof of Theorem 5. Multiplying both sides of (13) by 2V
𝑡
,

integrating by parts, and using condition (2) of Theorem 5,
we have

̇𝐸 (𝑡) = 0, 𝐸 (𝑡) = 𝐸 (0) = 𝐸
0
< 0, 𝑡 > 0, (16)

where

𝐸 (𝑡) =
󵄩󵄩󵄩󵄩V𝑡(𝑡)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩V𝑥(𝑡)

󵄩󵄩󵄩󵄩
2

− 𝛼
󵄩󵄩󵄩󵄩V𝑥𝑥(𝑡)

󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩V𝑥3(𝑡)

󵄩󵄩󵄩󵄩
2

+ 2∫
1

0

Γ (V
𝑥
(𝑥, 𝑡)) 𝑑𝑥.

(17)

Let

𝐹 (𝑡) = ‖V (𝑡)‖2 + ∫
𝑡

0

∫
𝜏

0

󵄩󵄩󵄩󵄩V𝑥 (𝑠)
󵄩󵄩󵄩󵄩
2

𝑑𝑠 𝑑𝜏. (18)

By virtue of condition (1) of Theorem 5 and noting that

𝜇∫
1

0

Γ (V
𝑥
(𝑥, 𝑡)) 𝑑𝑥 = 𝐸

0
−
󵄩󵄩󵄩󵄩V𝑡(𝑡)

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩V𝑥(𝑡)

󵄩󵄩󵄩󵄩
2

+ 𝛼
󵄩󵄩󵄩󵄩V𝑥𝑥(𝑡)

󵄩󵄩󵄩󵄩
2

− 𝛽
󵄩󵄩󵄩󵄩V𝑥3(𝑡)

󵄩󵄩󵄩󵄩
2

+ (𝜇 − 2)∫
1

0

Γ (V
𝑥
) 𝑑𝑥,

(19)

we obtain

̈𝐹 (𝑡) = 2∫
1

0

VV
𝑡𝑡
𝑑𝑥 + 2

󵄩󵄩󵄩󵄩V𝑡(𝑡)
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩V𝑥(𝑡)

󵄩󵄩󵄩󵄩
2

= −2∫
1

0

(V2
𝑥
− 𝛼V2
𝑥𝑥
+ 𝛽V2
𝑥
3 + 𝜎 (V

𝑥
) V
𝑥
) 𝑑𝑥

+ 2
󵄩󵄩󵄩󵄩V𝑡(𝑡)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩V𝑥(𝑡)

󵄩󵄩󵄩󵄩
2

≥ −2𝐸
0
+
󵄩󵄩󵄩󵄩V𝑥(𝑡)

󵄩󵄩󵄩󵄩
2

+ 4
󵄩󵄩󵄩󵄩V𝑡(𝑡)

󵄩󵄩󵄩󵄩
2

− 2 (𝜇 − 2)∫
1

0

Γ (V
𝑥
) 𝑑𝑥

≥ −2𝐸
0
+ 2𝛾 (𝜇 − 2) ∫

1

0

󵄨󵄨󵄨󵄨V𝑥
󵄨󵄨󵄨󵄨
𝑚+1

𝑑𝑥.

(20)

It follows from (20) that

̇𝐹 (𝑡) ≥ −2𝐸
0
𝑡 + 2𝛾 (𝜇 − 2)∫

𝑡

0

∫
1

0

󵄨󵄨󵄨󵄨V𝑥 (𝑥, 𝜏)
󵄨󵄨󵄨󵄨
𝑚+1

𝑑𝑥 𝑑𝜏 + ̇𝐹 (0) ,

(21)

𝐹 (𝑡) ≥ −𝐸
0
𝑡
2

+ 2𝛾 (𝜇 − 2)∫
𝑡

0

∫
𝜏

0

∫
1

0

󵄨󵄨󵄨󵄨V𝑥 (𝑥, 𝑠)
󵄨󵄨󵄨󵄨
𝑚+1

𝑑𝑥 𝑑𝑠 𝑑𝜏

+ ̇𝐹 (0) 𝑡 + 𝐹 (0) ,

(22)

where ̇𝐹(0) = 2 ∫
1

0

(∫
𝑥

0

𝑢
0
(𝜉)𝑑𝜉 ∫

𝑥

0

𝑢
1
(𝜉)𝑑𝜉)𝑑𝑥 and 𝐹(0) =

‖ ∫
𝑥

0

𝑢
0
(𝜉)𝑑𝜉‖

2

. Combining (20) with (22) leads to

̈𝐹 (𝑡) + 𝐹 (𝑡)

≥ −𝐸
0
𝑡
2

+ ̇𝐹 (0) 𝑡 + 𝐹 (0) − 2𝐸
0

+ 2𝛾 (𝜇 − 2) (∫
1

0

󵄨󵄨󵄨󵄨V𝑥
󵄨󵄨󵄨󵄨
𝑚+1

𝑑𝑥

+∫
𝑡

0

∫
𝜏

0

∫
1

0

󵄨󵄨󵄨󵄨V𝑥 (𝑥, 𝑠)
󵄨󵄨󵄨󵄨
𝑚+1

𝑑𝑥 𝑑𝑠 𝑑𝜏) .

(23)

Making use of the Hölder inequality, we get

∫
1

0

󵄨󵄨󵄨󵄨V𝑥
󵄨󵄨󵄨󵄨
𝑚+1

𝑑𝑥 ≥
󵄩󵄩󵄩󵄩V𝑥(𝑡)

󵄩󵄩󵄩󵄩
𝑚+1

,

∫
𝑡

0

∫
𝜏

0

∫
1

0

󵄨󵄨󵄨󵄨V𝑥 (𝑥, 𝑠)
󵄨󵄨󵄨󵄨
𝑚+1

𝑑𝑥 𝑑𝑠 𝑑𝜏

≥ (
𝑡2

2
)

(1−𝑚)/2

(∫
𝑡

0

∫
𝜏

0

∫
1

0

󵄨󵄨󵄨󵄨V𝑥 (𝑥, 𝑠)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑠 𝑑𝜏)

(1+𝑚)/2

.

(24)
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Substituting (24) into (23) and using the Poincaré inequality
(‖V
𝑥
(𝑡)‖ ≥ ‖V(𝑡)‖) and the inequality 𝑎𝑛 + 𝑏𝑛 ≥ 2

1−𝑛

(𝑎 + 𝑏)
𝑛

(𝑎, 𝑏 ≥ 0, 𝑛 ≥ 1), we conclude that when 𝑡 ≥ 1,
̈𝐹 (𝑡) + 𝐹 (𝑡)

≥ 2𝛾 (𝜇 − 2) 𝑡
1−𝑚

× [(
󵄩󵄩󵄩󵄩V𝑥 (𝑡)

󵄩󵄩󵄩󵄩
2

)
(𝑚+1)/2

+ (∫
𝑡

0

∫
𝜏

0

∫
1

0

󵄨󵄨󵄨󵄨V𝑥 (𝑥, 𝑠)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑠 𝑑𝜏)

(𝑚+1)/2

]

− 𝐸
0
𝑡
2

+ ̇𝐹 (0) 𝑡 + 𝐹 (0) − 2𝐸
0

≥ 2
(3−𝑚)/2

𝛾 (𝜇 − 2) 𝑡
1−𝑚

𝐹
(1+𝑚)/2

(𝑡)

− 𝐸
0
𝑡
2

+ ̇𝐹 (0) 𝑡 + 𝐹 (0) − 2𝐸
0
.

(25)

Choose 𝑡
0
≥ 1 such that

−2𝐸
0
𝑡
0
+ ̇𝐹 (0) ≥ 0, −𝐸

0
𝑡
2

0
+ ̇𝐹 (0) 𝑡

0
+ 𝐹 (0) − 2𝐸

0
≥ 0,

(26)

and thus (21) and (22) imply that ̇𝐹(𝑡) ≥ 0 and 𝐹(𝑡) ≥ 0, as
𝑡 ≥ 𝑡
0
. Multiplying both sides of (25) by 2 ̇𝐹(𝑡), we have

𝑑

𝑑𝑡
[ ̇𝐹
2

(𝑡) + 𝐹
2

(𝑡)] ≥ 𝐷𝑡
1−𝑚

𝑑

𝑑𝑡
𝐹
(𝑚+3)/2

(𝑡) + 𝐻 (𝑡) , 𝑡 ≥ 𝑡
0
,

(27)

where

𝐷 =
𝛾 (𝜇 − 2)

2(𝑚−7)/2 (𝑚 + 3)
,

𝐻 (𝑡) = 2 ̇𝐹 (𝑡) (−𝐸
0
𝑡
2

+ ̇𝐹 (0) 𝑡 + 𝐹 (0) − 2𝐸
0
) .

(28)

Equation (27) implies that
𝑑

𝑑𝑡
[𝑡
𝑚−1

( ̇𝐹
2

(𝑡) + 𝐹
2

(𝑡)) − 𝐷𝐹
(𝑚+3)/2

(𝑡)] ≥ 𝑡
𝑚−1

𝐻(𝑡) ,

𝑡 ≥ 𝑡
0
.

(29)

Since

∫
𝑡

𝑡0

𝜏
𝑚−1

𝐻(𝜏) 𝑑𝜏

≥ ∫
𝑡

𝑡0

2 (−2𝐸
0
𝜏 + ̇𝐹 (0)) (−𝐸

0
𝜏
2

+ ̇𝐹 (0) 𝜏 + 𝐹 (0)

−2𝐸
0
) 𝑑𝜏 󳨀→ +∞, 𝑡 󳨀→ +∞,

(30)

there exists a 𝑡
1
> 𝑡
0
such that

∫
𝑡

𝑡0

𝜏
𝑚−1

𝐻(𝜏) 𝑑𝜏 + 𝑡
𝑚−1

0
( ̇𝐹
2

(𝑡
0
) + 𝐹
2

(𝑡
0
))

− 𝐷𝐹
(𝑚+3)/2

(𝑡
0
) ≥ 0, 𝑡 > 𝑡

1
.

(31)

By (31), integrating both sides of (29) over (𝑡
0
, 𝑡), we obtain

𝑡
𝑚−1

[ ̇𝐹
2

(𝑡) + 𝐹
2

(𝑡)] ≥ 𝐷𝐹
(𝑚+3)/2

(𝑡) , 𝑡 ≥ 𝑡
1
. (32)

Namely,

̇𝐹 (𝑡) + 𝐹 (𝑡) ≥ √2𝐷𝑡
(1−𝑚)/2

𝐹
(𝑚+3)/4

(𝑡) , 𝑡 ≥ 𝑡
1
. (33)

In order to use Lemma 7, we consider the following initial
value problem of the Bernoulli equation:

𝑋 + 𝑋 = √2𝐷𝑡
(1−𝑚)/2

𝑋
(𝑚+3)/4

, 𝑡 > 𝑡
1
,

𝑋 (𝑡
1
) = 𝐹 (𝑡

1
) .

(34)

We can obtain the solution of the initial value problem (34)
as follows:

𝑋 (𝑡) = 𝑒
−(𝑡−𝑡1) [𝐹

(1−𝑚)/4

(𝑡
1
) −

𝑚 − 1

4
√2𝐷

× ∫
𝑡

𝑡1

𝜏
(1−𝑚)/2

𝑒
((1−𝑚)/4)(𝜏−𝑡1)𝑑𝜏]

4/(1−𝑚)

= 𝑒
−(𝑡−𝑡1)𝐹 (𝑡

1
) 𝐼
4/(1−𝑚)

(𝑡) , 𝑡 ≥ 𝑡
1
,

(35)

where

𝐼 (𝑡) = 1 −
𝑚 − 1

4
√2𝐷𝐹

(𝑚−1)/4

(𝑡
1
)

× ∫
𝑡

𝑡1

𝜏
(1−𝑚)/2

𝑒
((1−𝑚)/4)(𝜏−𝑡1)𝑑𝜏.

(36)

By (36), we know that 𝐼(𝑡
1
) = 1 > 0 and

𝐽 (𝑡) =
𝑚 − 1

4
√2𝐷𝐹

(𝑚−1)/4

(𝑡
1
) ∫
𝑡

𝑡1

𝜏
(1−𝑚)/2

𝑒
((1−𝑚)/4)(𝜏−𝑡1)𝑑𝜏

≥
𝑚 − 1

4
√2𝐷𝐹

(𝑚−1)/4

(𝑡
1
) (1 + 𝑡

1
)
(1−𝑚)/2

× ∫
𝑡1+1

𝑡1

𝑒
((1−𝑚)/4)(𝜏−𝑡1)𝑑𝜏

= √2𝐷𝐹
(𝑚−1)/4

(𝑡
1
) (1 + 𝑡

1
)
(1−𝑚)/2

× (1 − 𝑒
−(𝑚−1)/4

) , 𝑡 ≥ 𝑡
1
+ 1.

(37)

It follows from (22) that

𝐹
(𝑚−1)/4

(𝑡) (1 + 𝑡)
(1−𝑚)/2

≥ [
−𝐸
0
𝑡2 + ̇𝐹 (0) 𝑡 + 𝐹 (0)

(𝑡 + 1)
2

]

(𝑚−1)/4

󳨀→ (−𝐸
0
)
(𝑚−1)/4

,

𝑡 󳨀→ +∞.

(38)
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Choose 𝑡
1

sufficiently large such that 𝐹(𝑚−1)/4(𝑡
1
)(1 +

𝑡
1
)
(1−𝑚)/2

≥ (−𝐸
0
)
(𝑚−1)/4

/2. Combining (37) with (9), we
obtain

𝐽 (𝑡) ≥
1

2
√2𝐷(−𝐸

0
)
(𝑚−1)/4

(1 − 𝑒
(1−𝑚)/4

) ≥ 1,

𝑡 ≥ 𝑡
1
+ 1.

(39)

Hence

𝐼 (𝑡) = 1 − 𝐽 (𝑡) ≤ 0, 𝑡 ≥ 𝑡
1
+ 1. (40)

By using the continuity of 𝐼(𝑡), there exists a finite time 𝑇
0
,

𝑡
1
< 𝑇
0
≤ 𝑡
1
+ 1 such that 𝐼(𝑇

0
) = 0. Therefore, 𝑋(𝑡) → +∞

as 𝑡 → 𝑇−
0
. By virtue of Lemma 7, we deduce that 𝐹(𝑡) ≥

𝑋(𝑡), 𝑡 ≥ 𝑡
1
. Hence

𝐹 (𝑡) = ∫
1

0

(∫
𝑥

0

𝑢 (𝜉, 𝑡) 𝑑𝜉)

2

𝑑𝑥

+ ∫
𝑡

0

∫
𝜏

0

∫
1

0

𝑢
2

(𝜉, 𝑠) 𝑑𝜉 𝑑𝑠 𝑑𝜏 󳨀→ +∞

(41)

as 𝑡 → 𝑇−
0
. It follows from (41) that

𝐹 (𝑡) ≤ (∫
1

0

󵄨󵄨󵄨󵄨𝑢 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜉)

2

+ 𝑡∫
𝑡

0

‖𝑢(𝜏)‖
2

𝑑𝜏. (42)

Therefore,

‖𝑢(𝑡)‖
2

𝐿
1
(Ω)

+ ∫
𝑡

0

‖𝑢(𝜏)‖
2

𝑑𝜏 󳨀→ +∞ as 𝑡 󳨀→ 𝑇
−

0
. (43)

Theorem 5 is proved.

Proof of Theorem 6. Let

𝑦 (𝑡) = −
𝜋

2
∫
1

0

𝑢 (𝑥, 𝑡) sin𝜋𝑥𝑑𝑥. (44)

Multiplying both sides of (4) by (𝜋/2) sin𝜋𝑥, integrating by
parts over [0, 1], and making use of the Jensen inequality and
condition (1) of Theorem 6, we have

̈𝑦 + (𝜋
2

− 𝛼𝜋
4

+ 𝛽𝜋
6

) 𝑦 =
𝜋3

2
∫
1

0

𝜎 (𝑢) sin𝜋𝑥𝑑𝑥

≥ 𝜋
2

𝜎(
𝜋

2
∫
1

0

𝑢 (𝑥, 𝑡) sin𝜋𝑥𝑑𝑥)

≥ 𝑎𝜋
2

𝑦
𝑚

, 𝑡 > 0,

(45)

and, from (6) and condition (2) of Theorem 6, we get

𝑦 (0) = −
𝜋

2
∫
1

0

𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥 = 𝑦

0
> 0,

̇𝑦 (0) = −
𝜋

2
∫
1

0

𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 = 𝑦

1
> 0.

(46)

Thus, we claim that

𝑦 (𝑡) > 0, ̇𝑦 (𝑡) > 0, 𝑡 > 0. (47)

In fact, if it is not true, then there exists a 𝑡∗ such that
̇𝑦(𝑡) > 0, 𝑡 ∈ [0, 𝑡∗) and ̇𝑦(𝑡∗) = 0.Then 𝑦(𝑡) is monotonically

increasing on [0, 𝑡∗]; that is, 𝑦(𝑡) ≥ 𝑦
0
, 𝑡 ∈ [0, 𝑡∗]. By using

(45) and condition (2) of Theorem 6, we obtain

̈𝑦 (𝑡) ≥ 𝜋
2

𝑦 (𝑎𝑦
𝑚−1

− 𝛽𝜋
4

+ 𝛼𝜋
2

− 1)

> 𝜋
2

𝑦
0
(𝑎𝑦
𝑚−1

0
− 𝛽𝜋
4

+ 𝛼𝜋
2

− 1) > 0, (0, 𝑡
∗

] ,

(48)

and hence ̇𝑦(𝑡) is monotonically increasing on [0, 𝑡∗], which
contradicts the assumption 𝑦(𝑡∗) = 0. So claim (47) is valid.

Multiplying both sides of (45) by 2 ̇𝑦 and integrating the
product over [0, 𝑡] lead to

̇𝑦
2

≥
2𝑎𝜋2

𝑚 + 1
(𝑦
𝑚+1

− 𝑦
𝑚+1

0
)

− (𝜋
2

− 𝛼𝜋
4

+ 𝛽𝜋
6

) (𝑦
2

− 𝑦
2

0
) + 𝑦
2

1
= 𝐺 (𝑦) .

(49)

Since 𝐺(𝑦
0
) = 𝑦2
1
> 0 and

𝐺
󸀠

(𝑦) = 2𝜋
2

𝑦 [𝑎𝑦
𝑚−1

− (1 − 𝛼𝜋
2

+ 𝛽𝜋
4

)]

≥ 2𝜋
2

𝑦
0
[𝑎𝑦
𝑚−1

0
− (1 − 𝛼𝜋

2

+ 𝛽𝜋
4

)] ≥ 0,

(50)

𝐺(𝑦) > 𝐺(𝑦
0
) > 0, 𝑡 > 0. It follows from (49) that

̇𝑦 ≥ [
2𝑎𝜋
2

𝑚 + 1
(𝑦
𝑚+1

− 𝑦
𝑚+1

0
)

− (𝜋
2

− 𝛼𝜋
4

+ 𝛽𝜋
6

) (𝑦
2

− 𝑦
2

0
) + 𝑦
2

1
]

1/2

, 𝑡 > 0,

(51)

and (51) implies that the interval [0, 𝑇
1
) of the existence of

𝑦(𝑡) is finite; namely,

𝑇
1
≤ ∫
+∞

𝑦0

[
2𝑎𝜋2

𝑚 + 1
(𝑦
𝑚+1

− 𝑦
𝑚+1

0
)

− (𝜋
2

− 𝛼𝜋
4

+ 𝛽𝜋
6

) (𝑦
2

− 𝑦
2

0
) + 𝑦
2

1
]

−1/2

𝑑𝑦

< +∞,

(52)

and 𝑦(𝑡) → +∞ as 𝑡 → 𝑇−
1
; that is, ∫1

0

𝑢(𝑥, 𝑡) sin𝜋𝑥𝑑𝑥 →

−∞ as 𝑡 → 𝑇−
1
. By the Hölder inequality, we have ‖𝑢(𝑡)‖ →

+∞, as 𝑡 → 𝑇−
1
. Theorem 6 is proved.

4. Initial Boundary Value Problem (2), (6) and
Some Examples

By virtue of the Galerkin method [8] we can prove that
initial boundary value problem (2), (6) admits a unique local
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generalized solution and a unique local classical solution.
Moreover, by using Theorem 6, we obtain the following
theorem.

Theorem 9. Assume that 𝑢(𝑥, 𝑡) is the generalized solution
of initial boundary value problem (2), (6) and the following
condition holds:

𝑦
0
= −

𝜋

2
∫
1

0

𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥 > max {0, (𝛿𝜋4 − 𝜋2 + 1)} ,

𝑦
1
= −

𝜋

2
∫
1

0

𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 > 0.

(53)

Then

‖𝑢 (𝑡)‖ 󳨀→ +∞, as 𝑡 󳨀→ 𝑇
−

2
, (54)

where

𝑇
2
≤ ∫
+∞

𝑦0

[
2𝜋2

3
(𝑦
3

− 𝑦
3

0
)

−(𝜋
2

− 𝜋
4

+ 𝛿𝜋
6

)(𝑦
2

− 𝑦
2

0
) + 𝑦
2

1
]

−1/2

𝑑𝑦 < +∞.

(55)

Proof. A simple verification shows that all conditions of
Theorem 6 are satisfied and thusTheorem 9 is proved imme-
diately.

Example 1. We consider the following equation:

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ 𝑎(|𝑢|

𝑚−1

𝑢)
𝑥𝑥

+ 𝛼𝑢
𝑥
4 + 𝛽𝑢

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0,

(56)

with the initial boundary value conditions

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(1, 𝑡) = 𝑢

𝑥
3 (0, 𝑡) = 𝑢

𝑥
3 (1, 𝑡) = 𝑢

𝑥
5 (0, 𝑡)

= 𝑢
𝑥
5 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(57)

or with

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝑢
𝑥𝑥
(0, 𝑡) = 𝑢

𝑥𝑥
(1, 𝑡) = 𝑢

𝑥
4 (0, 𝑡)

= 𝑢
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(58)

where 𝑎 ̸= 0 and 𝑚 > 1 are all real numbers, 𝑢
0
(𝑥) = 𝑢

1
(𝑥) =

𝐾
0
cos𝜋𝑥, and𝐾

0
> 0 is a constant.

(1) If 𝑎 > 0 and 𝑚 ≥ 9, a simple calculation shows that
𝜎(= 𝑎|𝑠|

𝑚−1

𝑠) ∈ 𝐶9(R), 𝜎(2𝑖)(0) = 0 (𝑖 = 1, 2, 3, 4), and 𝜎󸀠(𝑠) =
𝑎𝑚|𝑠|
𝑚−1

≥ 0; that is, 𝜎󸀠(𝑠) is bounded below. And 𝑢
0
(𝑥) and

𝑢
1
(𝑥) satisfy the conditions ofTheorems 2 and 4, respectively;

then byTheorems 2 and 4 we know that the initial boundary

value problem (56), (57) and (56), (58) admits a unique global
classical solution, respectively.

(2) If 𝑎 < 0 and 𝑚 > 1, we have 𝜎(𝑠)𝑠 = 𝑎|𝑠|
𝑚−1, Γ(𝑠) =

𝑎|𝑠|
𝑚−1

/(𝑚+1); taking 𝜇 = 𝑚+1 > 2 and 𝛾 = −𝑎/(𝑚+1), then
𝜎(𝑠)𝑠 = 𝜇Γ(𝑠), Γ(𝑠) = −𝛾|𝑠|

𝑚−1; obviously, 𝑢
0
∈ 𝐻2, 𝑢

1
∈ 𝐿2,

∫
1

0

𝑢
0
(𝑥)𝑑𝑥 = ∫

1

0

𝑢
1
(𝑥)𝑑𝑥 = 0, and

𝐸
0
= ∫
1

0

(∫
𝑥

0

𝑢
1
(𝜉) 𝑑𝜉)

2

𝑑𝑥 +
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
2

− 𝛼
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠

0

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠

0

󵄩󵄩󵄩󵄩󵄩

2

+
2𝑎

𝑚 + 1

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
𝑚+1

𝐿
𝑚+1
(Ω)

= (
1

𝜋2
+ 1 − 𝛼𝜋

2

+ 𝛽𝜋
4

)
𝐾2
0

2

+
2𝑎𝐾
𝑚+1

0

𝑚 + 1
∫
1

0

|cos𝜋𝑥|𝑚+1𝑑𝑥.

(59)

We can take𝐾
0
suitable large such that

𝐸
0
≤ −[

2

𝐷(1 − 𝑒(1−𝑚)/4)
2
]

2/(𝑚−1)

, (60)

where 𝐷 = −𝑎(𝑚 − 1)/[2(𝑚−7)/2(𝑚 + 1)(𝑚 + 3)]. Thus, all
assumptions ofTheorem 5 are satisfied; then byTheorem 5we
conclude that the solution of initial boundary value problem
(56), (57) must blow up in a finite time 𝑇

0
; namely,

‖𝑢(𝑡)‖
𝐿
1
(Ω)

+ ∫
𝑡

0

‖𝑢(𝜏)‖
2

𝑑𝜏 󳨀→ +∞ as 𝑡 󳨀→ 𝑇
−

0
. (61)

Example 2. We consider the following equation:

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ 𝑎 (𝑢

𝑚

)
𝑥𝑥
+ 𝛼𝑢
𝑥
4 + 𝛽𝑢

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0,

(62)

with the initial boundary value conditions

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(1, 𝑡) = 𝑢

𝑥
3 (0, 𝑡) = 𝑢

𝑥
3 (1, 𝑡) = 𝑢

𝑥
5 (0, 𝑡)

= 𝑢
𝑥
5 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(63)

or with

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝑢
𝑥𝑥
(0, 𝑡) = 𝑢

𝑥𝑥
(1, 𝑡) = 𝑢

𝑥
4 (0, 𝑡)

= 𝑢
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(64)

where 𝑎 > 0 is a real number and 𝑚 > 1 is a positive integer,
𝑢
0
(𝑥) = 𝑢

1
(𝑥) = −𝐾

1
, and𝐾

1
> 0 is a constant.

(1) If 𝑎 > 0 and𝑚 is an odd number, a simple verification
shows that all conditions of Theorems 2 and 4 are satisfied;
then byTheorems 2 and 4 we know that the initial boundary
value problem (62), (63) and (62), (64) admits a unique global
classical solution, respectively.
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(2) If 𝑎 > 0 and𝑚 is an even number, then 𝜎(𝑠) (= 𝑎𝑠𝑚) is
a convex and even function, and we can take𝐾

1
suitable large

such that

−
𝜋

2
∫
1

0

𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥

= 𝐾
1
> max{0, (

𝛽𝜋4 − 𝛼𝜋2 + 1

𝑎
)

1/(𝑚−1)

} ,

−
𝜋

2
∫
1

0

𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 = 𝐾

1
> 0.

(65)

Thus, by Theorem 6, we deduce that the solution of initial
boundary value problem (62), (64) must blow up in a finite
time 𝑇

1
; namely,

‖𝑢 (𝑡)‖ 󳨀→ +∞, as 𝑡 󳨀→ 𝑇
−

1
. (66)
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A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf
bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The
stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.

1. Introduction

Vector-borne diseases are an important public health prob-
lem. Vector-borne diseases are infectious diseases caused by
virus, bacteria, and so on which are primarily transmitted by
disease biological agents, called vector carrying the disease.

Malaria is themost prevalent vector-borne disease, which
is transmitted to the human host through a bite by an
infected mosquito. It can lead to serous affecting the brain,
lungs, kidneys, and other organs, and it caused the greatest
number of deaths. Approximately, 40 percent of the world’s
population is at risk, and 2 million deaths per year can be
attributed to malaria, half of those in children under 5 years
old. Especially in Africa, more than one million children
mostly under 5 years die each year. No effective vaccines are
available for the disease. In many years, the effective way to
prevent the malaria and other mosquito-borne disease is to
control mosquito.

Several theoretical studies have proposed vector-borne
models. Reference [1] used a mathematical model to show
that bringing a mosquito population below a certain thresh-
old was sufficient to eliminate malaria. Reference [2] studied
both a baseline ODE version of the model and a model
with a discrete time delay and gave the conditions under
which equilibrium is globally stable and the disease dies
out. Reference [3] showed that reducing the number of

mosquitoes is an inefficient control strategy that would
have little effect on the epidemiology of malaria in areas
of intense transmission. Reference [4] used a mathemat-
ical model to evaluate the impact from the programs
of selective mass drug administration and vector control
through mosquito nets. References [5, 6] models took
into account the acquired immunity to malaria depends
on exposure (i.e., that immunity is boosted by additional
infections).

For a long time, it has been recognized that delay may
have very complicated impact on the dynamics of a system.
Delay can cause the loss of stability and can bifurcate various
periodic solutions. Recently, there has been extensive work
dealing with time delay systems (see, e.g., [7–11]). As far as
we know, there are few works on the delayed vector-borne
system, let alone the existence of Hopf bifurcation, and the
stability and direction of bifurcating periodic solutions. In
this paper, we focus on investigating these problems.

This paper is organized as follows. In Section 2, we
provide a vector-bornemodel and analyze the property of the
nonnegative equilibria. In Section 3, we get the existence of
the Hopf bifurcation. In Section 4, the stability and direction
of periodic solutions bifurcating from the Hopf bifurcation
are determined by using the normal form theory and center
manifold argument introduced by Hassard et al. [12].
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2. Property of the Nonnegative Equilibria

We can describe the dynamics of the disease in the host
population as follows:

̇𝑆 (𝑡) = 𝑏
1
− 𝜆
1
𝑆 (𝑡) 𝐼 (𝑡) − 𝜆

2
𝑆 (𝑡) 𝑉 (𝑡) − 𝜇

1
𝑆 (𝑡) ,

̇𝐼 (𝑡) = 𝜆
1
𝑆 (𝑡) 𝐼 (𝑡) + 𝜆

2
𝑆 (𝑡) 𝑉 (𝑡) − 𝛾𝐼 (𝑡) − 𝜇

1
𝐼 (𝑡) ,

̇𝑅 (𝑡) = 𝛾𝐼 (𝑡) − 𝜇
1
𝑅 (𝑡) .

(1)

Here 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the population density of
susceptible, infectious, and recovered at time 𝑡, respectively.
The total host population size at time 𝑡 is given by 𝑁

1
(𝑡).

The host population dies at a natural rate 𝜇
1
, and the host

grows with intrinsic growth rate 𝑏
1
. 𝜆
1
is the rate of direct

transmission, while 𝜆
2
is the biting rate of a pathogen-

carrier vector. The host recovers at the rate 𝛾. The recovered
individuals are assumed to acquire permanent immunity.

The system that describes the dynamics of the vector is
given by

𝑀(𝑡) = 𝑏
2
− 𝜆
3
𝑀(𝑡) 𝐼 (𝑡) − 𝜇

2
𝑀(𝑡) ,

𝑉 (𝑡) = 𝜆
3
𝑀(𝑡) 𝐼 (𝑡) − 𝜇

2
𝑉 (𝑡) .

(2)

Here, 𝑉(𝑡) is the number of vectors at time 𝑡 carrying the
pathogen at time 𝑡, and 𝑀(𝑡) represents the population
density of pathogen-free vector at time 𝑡. The total vectors
population size at time 𝑡 is given by 𝑁

2
(𝑡). 𝑏
2
and 𝜇

2
are the

birth rate and death rate of vector population, respectively.
Suspectable vectors start carrying the pathogen after getting
into contact with an infective host at a rate𝜆

3
.We assume that

the vectors carry the microparasite for life once they became
carrier of it.

The time delay 𝜏 > 0 is introduced in the system (2) to
describe the dynamics of the vector. At time 𝑡, the susceptible
vectors bite the host 𝜏 time ago, and the vector became
infectious. The delay model of the system takes the following
form:

𝑀(𝑡) = 𝑏
2
− 𝜆
3
𝑀(𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

2
𝑀(𝑡) ,

𝑉 (𝑡) = 𝜆
3
𝑀(𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

2
𝑉 (𝑡) .

(3)

The systems (1) and (3) satisfy the initial conditions: 𝑆(𝜃) = 𝑆
0
,

𝐼(𝜃) = 𝐼
0
, 𝑅(𝜃) = 𝑅

0
,𝑀(𝜃) = 𝑀

0
, 𝑉(𝜃) = 𝑉

0
, and 𝜃 ∈ [−𝜏, 0).

The total host population size 𝑁
1
(𝑡) can be determined by

𝑁
1
(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) or

𝑁
1
(𝑡) = 𝑏

1
− 𝜇
1
𝑁
1
(𝑡) . (4)

The total number of vectors 𝑁
2
(𝑡) can be determined by

𝑁
2
(𝑡) = 𝑀(𝑡) + 𝑉(𝑡) or

𝑁
2
(𝑡) = 𝑏

2
− 𝜇
2
𝑁
2
(𝑡) . (5)

The total population size of both host and vector populations
are asymptotically constant; that is, lim

𝑡→∞
𝑁
1
(𝑡) = 𝑏

1
/𝜇
1

and lim
𝑡→∞

𝑁
2
(𝑡) = 𝑏

2
/𝜇
2
. Without loss of generality, we

assume that 𝑁
1
(𝑡) = 𝑏

1
/𝜇
1
and 𝑁

2
(𝑡) = 𝑏

2
/𝜇
2
for all 𝑡 ≥ 0

provided that 𝑆
0
+ 𝐼
0
+ 𝑅
0
= 𝑏
1
/𝜇
1
and𝑀

0
+ 𝑉
0
= 𝑏
2
/𝜇
2
.

The systems (1) and (3) are equivalent to the dynamics of
the following system:

̇𝑆 (𝑡) = 𝑏
1
− 𝜆
1
𝑆 (𝑡) 𝐼 (𝑡) − 𝜆

2
𝑆 (𝑡) 𝑉 (𝑡) − 𝜇

1
𝑆 (𝑡) ,

̇𝐼 (𝑡) = 𝜆
1
𝑆 (𝑡) 𝐼 (𝑡) + 𝜆

2
𝑆 (𝑡) 𝑉 (𝑡) − 𝛾𝐼 (𝑡) − 𝜇

1
𝐼 (𝑡) ,

𝑉 (𝑡) = 𝜆
3
(
𝑏
2

𝜇
2

− 𝑉 (𝑡)) 𝐼 (𝑡 − 𝜏) − 𝜇
2
𝑉 (𝑡) .

(6)

The initial condition of system (6) is

(𝑆 (𝜃) , 𝐼 (𝜃) , 𝑉 (𝜃) ∈ 𝐶
+
= 𝐶 ((−𝜏, 0] , 𝑅

3

+
)) , 𝑆

0
, 𝐼
0
, 𝑉
0
> 0.

(7)

System (6) has two equilibria 𝐸
10

= (𝑏
1
/𝜇
1
, 0, 0) and 𝐸∗ =

(𝑆∗, 𝐼∗, 𝑉∗), where

𝑆
∗

=
𝑏
1
− (𝛾 + 𝜇

1
) 𝐼∗

𝜇
1

, 𝑉
∗

=
𝜆
3
𝑏
2
𝐼∗

𝜇
2
(𝜇
2
+ 𝜆
3
𝐼∗)

. (8)

𝐼∗ is determined by the following equation:

𝑏
1
− (𝛾 + 𝜇

1
) 𝐼

𝜇
1

(𝜆
1
+

𝜆
2
𝜆
3
𝑏
2

𝜇
2
(𝜆
3
𝐼 + 𝜇
2
)
) = 𝛾 + 𝜇

1
. (9)

Equation (9) has a unique positive root, when (𝛾 + 𝜇
1
)𝜇
1
𝜇2
2
<

𝑏
1
(𝜆
1
𝜇2
2
+ 𝜆
2
𝜆
3
𝑏
2
).

For the equilibrium 𝐸
10
, the characteristic equation is

(𝜇
1
+ 𝜆) (𝛾 + 𝜇

1
−
𝜆
1
𝑏
1

𝜇
1

+ 𝜆) (𝜇
2
+ 𝜆) = 0. (10)

We can easily get the following theorem by some calculation.

Theorem 1. 𝐸
10
is asymptotically stable if 𝜆

1
𝑏
1
/𝜇
1
−𝛾−𝜇

1
< 0;

it is unstable if 𝜆
1
𝑏
1
/𝜇
1
− 𝛾 − 𝜇

1
> 0.

3. Existence of Hopf Bifurcation

We study 𝐸∗ under the condition (𝛾 + 𝜇
1
)𝜇
1
𝜇2
2
< 𝑏
1
(𝜆
1
𝜇2
2
+

𝜆
2
𝜆
3
𝑏
2
). The characteristic equation of 𝐸∗ is

𝜆
3

+ (2𝜇
1
+ 𝜇
2
+ 𝛾 + 𝜆

1
𝐼
∗

+ 𝜆
3
𝐼
∗

+ 𝜆
2
𝑉
∗

− 𝜆
1
𝑆
∗

) 𝜆
2

+ [(𝜇
2
+ 𝜆
3
𝐼
∗

) (2𝜇
1
+ 𝛾 + 𝜆

1
𝐼
∗

+ 𝜆
2
𝑉
∗

− 𝜆
1
𝑆
∗

)

+𝜇
1
(𝜇
1
+ 𝛾 − 𝜆

1
𝑆
∗

) + (𝜆
1
𝐼
∗

+ 𝜆
2
𝑉
∗

) (𝜇
1
+ 𝛾)] 𝜆

+ (𝜇
2
+ 𝜆
3
𝐼
∗

) [𝜇
1
(𝜇
1
+ 𝛾 − 𝜆

1
𝑆
∗

)

+ (𝜆
1
𝐼
∗

+ 𝜆
2
𝑉
∗

) (𝜇
1
+ 𝛾)]

+ 𝜆
2
𝜆
3
𝑆
∗

𝑉
∗

(𝜆 + 𝜇
1
) 𝑒
−𝜆𝜏

= 0.

(11)
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Let

𝐴 = 2𝜇
1
+ 𝜇
2
+ 𝛾 + 𝜆

1
𝐼
∗

+ 𝜆
3
𝐼
∗

+ 𝜆
2
𝑉
∗

− 𝜆
1
𝑆
∗

, (12)

𝐵 = (𝜇
2
+ 𝜆
3
𝐼
∗

) (2𝜇
1
+ 𝛾 + 𝜆

1
𝐼
∗

+ 𝜆
2
𝑉
∗

− 𝜆
1
𝑆
∗

)

+ 𝜇
1
(𝜇
1
+ 𝛾 − 𝜆

1
𝑆
∗

) + (𝜆
1
𝐼
∗

+ 𝜆
2
𝑉
∗

) (𝜇
1
+ 𝛾) ,

(13)

𝐶 = 𝜇
1
(𝜇
2
− 𝜆
3
𝐼
∗

) (𝜇
1
+ 𝛾 − 𝜆

1
𝑆
∗

)

+ (𝜆
1
𝐼
∗

+ 𝜆
2
𝑉
∗

) (𝜇
2
− 𝜆
3
𝐼
∗

) ,
(14)

𝐷 = 𝜆
2
𝜆
3
𝑆
∗

𝑉
∗

, 𝐸 = 𝜇
1
𝜆
2
𝜆
3
𝑆
∗

𝑉
∗

. (15)

Then (11) can be rewritten as

𝜆
3

+ 𝐴𝜆
2

+ 𝐵𝜆 + 𝐶 + [𝐷𝜆 + 𝐸] 𝑒
−𝜆𝜏

= 0. (16)

Lemma2. Equation (11) has a unique pair of purely imaginary
roots if 𝐴2 − 2𝐵 > 0 and 𝐶2 − 𝐸2 < 0.

Proof. If 𝜆 = 𝑖𝑤, 𝑤 > 0 is a root of (16), separating real and
imaginary parts, we have the following:

𝐴𝑤
2

− 𝐶 = 𝐸 cos𝑤𝜏 + 𝐷𝑤 sin𝑤𝜏,

𝑤
3

− 𝐵𝑤 = 𝐷𝑤 cos𝑤𝜏 − 𝐸 sin𝑤𝜏.
(17)

Squaring and adding both equations, we have

𝑤
6

+ 𝑄
1
𝑤
4

+ 𝑄
2
𝑤
2

+ 𝑄
3
= 0, (18)

where

𝑄
1
= 𝐴
2

− 2𝐵, 𝑄
2
= 𝐵
2

− 2𝐴𝐶 − 𝐷
2

, 𝑄
3
=𝐶
2

− 𝐸
2

.

(19)

We know that

𝑄
1
= 𝐴
2

− 2𝐵 > 0, (20)

𝑄
3
= 𝐶
2

− 𝐸
2

< 0. (21)

Then this lemma implies that there is a unique positive root
𝑤
0
satisfying (16). That is, (11) has a unique pair of purely

imaginary roots ±𝑖𝑤
0
.

From (17), 𝜏
𝑛
can be obtained:

𝜏
𝑛
=

1

𝑤
0

cos−1
𝐷𝑤4
0
+ (𝐴𝐸 − 𝐵𝐷)𝑤

2

0
− 𝐸𝐶

𝐸2 + 𝐷2𝑤2
0

+
2𝑛𝜋

𝑤
0

,

𝑛 = 0, 1, 2, . . . .

(22)

Theorem 3. If the following conditions

𝐴
2

− 2𝐵 > 0, 𝐶
2

− 𝐸
2

< 0, 𝐴 (𝐵 + 𝐷) > 𝐶 + 𝐸,

(23)

(𝐵
2

− 2𝐴𝐶)𝐸
2

> 𝐶
2

𝐷
2 (24)

are satisfied, system (3) undergoes Hopf bifurcation at 𝐸∗ when
𝜏 = 𝜏
𝑛
, 𝑛 = 0, 1, 2, . . .; furthermore,𝐸∗ is locally asymptotically

stable if 𝜏 ∈ [0, 𝜏
0
) and unstable if 𝜏 > 𝜏

0
.

Proof. Differentiating (16) with respect to 𝜏, we get

[3𝜆
2

+ 2𝐴𝜆 + 𝐵 + 𝐷𝑒
−𝜆𝜏

− 𝜏 (𝐷𝜆 + 𝐸) 𝑒
−𝜆𝜏

]
𝑑𝜆

𝑑𝜏

= 𝜆 (𝐷𝜆 + 𝐸) 𝑒
−𝜆𝜏.

(25)

That is

(
𝑑𝜆

𝑑𝜏
)

−1

= −
3𝜆2 + 2𝐴𝜆 + 𝐵

𝜆 (𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶)
+

𝐷

𝜆 (𝐷𝜆 + 𝐸)
−
𝜏

𝜆
.

(26)

Thus,

Re(𝑑𝜆
𝑑𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=𝑖𝑤0

= Re(−
𝐵 − 3𝑤2

0
+ 𝑖2𝐴𝑤

0

𝑖𝑤
0
[(𝐶 − 𝐴𝑤2

0
)+𝑖𝑤
0
(𝐵 − 𝑤2

0
)]
+

𝐷

𝑖𝑤
0
(𝑖𝐷𝑤
0
+ 𝐸)

)

= (2𝐷
2

𝑤
6

0
+ (3𝐸

2

+ 𝐴
2

𝐷
2

− 2𝐵𝐷
2

)𝑤
4

0
+ (2𝐴

2

− 4𝐵)𝐸
2

𝑤
2

0

+ (𝐵
2

𝐸
2

− 𝐶
2

𝐷
2

− 2𝐴𝐶𝐸
2

))

× ([𝑤
2

0
(𝐵 − 𝑤

2

0
)
2

+ (𝐶 − 𝐴𝑤
2

0
)
2

] [(𝐷𝑤
0
)
2

+ 𝐸
2

])
−1

.

(27)

We can rewrite the numerator as follows. Let

𝑉 = 𝑤
2

,

𝑓 (𝑤) = 2𝐷
2

𝑤
6

+ (3𝐸
2

+ 𝐴
2

𝐷
2

− 2𝐵𝐷
2

)𝑤
4

+ (2𝐴
2

− 4𝐵)𝐸
2

𝑤
2

+ (𝐵
2

𝐸
2

− 𝐶
2

𝐷
2

− 2𝐴𝐶𝐸
2

) ,

(28)

and then

𝐺 (𝑉) = 𝑓 (𝑤)

= 2𝐷
2

𝑉
3

+ (3𝐸
2

+ 𝐴
2

𝐷
2

− 2𝐵𝐷
2

)𝑉
2

+ (2𝐴
2

− 4𝐵)𝐸
2

𝑉 + (𝐵
2

𝐸
2

− 𝐶
2

𝐷
2

− 2𝐴𝐶𝐸
2

) ,

𝐺
󸀠

= 2 [3𝐷
2

𝑉
2

+(3𝐸
2

+ (𝐴
2

− 2𝐵)𝐷
2

)𝑉+(𝐴
2

− 2𝐵)𝐸
2

] .

(29)

For 𝐺󸀠,

Δ = (3𝐸
2

+ 𝐴
2

𝐷
2

− 2𝐵𝐷
2

)
2

− 12 (𝐴
2

− 2𝐵)𝐷
2

𝐸
2

= [3𝐸
2

− (𝐴
2

− 2𝐵)𝐷
2

]
2

≥ 0.

(30)

𝐺󸀠 has two real roots, which take the form

𝑉
1
=
− (3𝐸2 + (𝐴2 − 2𝐵)𝐷2) + √Δ

6𝐷2
< 0,

𝑉
2
=
− (3𝐸

2

+ (𝐴
2

− 2𝐵)𝐷
2

) − √Δ

6𝐷2
< 0.

(31)
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Then we know that 𝐺(𝑉) monotonously increases in
(𝑉
1
, +∞), that is to say, that 𝑓(𝑤)monotonously increases in

(0, +∞). And as we know 𝑓(0) = 𝐵2𝐸2 −𝐶2𝐷2 − 2𝐴𝐶𝐸2 > 0,
we have 𝑓(𝑤) > 0 for 𝑤 > 0. Then we obtain

sign 𝑑 (Re 𝜆 (𝜏))
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏𝑛
= signRe(𝑑𝜆

𝑑𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=𝑖𝑤0

> 0. (32)

Therefore, the transversality condition holds and hence Hopf
bifurcation occurs. For (16), when 𝜏 = 0, the characteristic
equation is

𝜆
3

+ 𝐴𝜆
2

+ (𝐵 + 𝐷) 𝜆 + 𝐶 + 𝐸 = 0. (33)

Under the conditions of the theorem, 𝐴(𝐵 + 𝐷) > 𝐶 + 𝐸 and
Routh-Hurwitz criterion, we know that all roots of (16) have
negative real part; that is to say, the equilibrium 𝐸

∗ is locally
stable for 𝜏 = 0, while 𝜏

0
is the minimum 𝜏

𝑛
at which the real

parts of these roots are zero. So, 𝐸∗ is locally asymptotically
stable if 𝜏 ∈ [0, 𝜏

0
) and unstable if 𝜏 > 𝜏

0
.

4. Direction and Stability of
the Hopf Bifurcation

In the previous section, we obtain the conditions that a family
periodic solutions bifurcate from the steady state 𝐸∗ at the
critical value 𝜏

𝑛
. Throughout this section, we assume that

these conditions hold. As pointed by Hassard et al. [12], it is
interesting to determine the direction, stability, and period of
these periodic solutions bifurcating from the steady state. In
this section, we will follow the idea of Ross [1] to derive the
explicit formulas determining these factors. Let 𝑢

1
= 𝑆 − 𝑆∗,

𝑢
2
= 𝐼 − 𝐼∗, and 𝑢

3
= 𝑉 − 𝑉∗. Equation (3) becomes

̇𝑆 (𝑡) = 𝑏
1
− 𝜆
1
(𝑢
1
+ 𝑆
∗

) (𝑢
2
+ 𝐼
∗

)

− 𝜆
2
(𝑢
1
+ 𝑆
∗

) (𝑢
3
+ 𝑉
∗

) − 𝜇
1
(𝑢
1
+ 𝑆
∗

) ,

̇𝐼 (𝑡) = 𝜆
1
(𝑢
1
+ 𝑆
∗

) (𝑢
2
+ 𝐼
∗

) + 𝜆
2
(𝑢
1
+ 𝑆
∗

) (𝑢
3
+ 𝑉
∗

)

− 𝛾 (𝑢
2
+ 𝐼
∗

) − 𝜇
1
(𝑢
2
+ 𝐼
∗

) ,

𝑉 (𝑡) = 𝜆
3
(
𝑏
2

𝜇
2

− 𝑢
3
− 𝑉
∗

) (𝑢
2
(𝑡 − 𝜏) + 𝐼

∗

)

− 𝜇
2
(𝑢
3
+ 𝑉
∗

) .

(34)

The linearization of (34) at 𝑢 = (𝑢
1
, 𝑢
2
, 𝑢
3
) = (0, 0, 0) is

̇𝑢
1
= −𝑙
1
𝑢
1
− 𝑙
2
𝑢
2
− 𝑙
3
𝑢
3
,

̇𝑢
2
= 𝑙
1
𝑢
1
+ 𝑚
2
𝑢
2
+ 𝑚
3
𝑢
3
,

̇𝑢
3
= −𝑛
2
𝑢
2
(𝑡 − 𝜏) − 𝑛

3
𝑢
3
,

(35)

where 𝑙
1
= 𝜆
1
𝐼
∗

+ 𝜆
2
𝑉
∗

+ 𝜇
1
, 𝑙
2
= 𝜆
1
𝑆
∗,𝑚
2
= 𝜆
1
𝑆
∗

− 𝛾 − 𝜇
1
,

𝑚
3
= 𝜆
2
𝑆∗, 𝑛
2
= 𝜆
3
(𝑏
2
/𝜇
2
− 𝑉∗), and 𝑛

3
= 𝜆
3
𝐼∗ − 𝜇

2
. Let

𝑥
𝑖
(𝑡) = 𝑢

𝑖
(𝑡𝜏) and 𝜏 = 𝜏

𝑛
+𝜇 (𝑛 = 0, 1, 2, . . .) and 𝜏

𝑛
is defined

in (22) and 𝜇 ∈ 𝑅, and the system (34) can be written as FDE
in 𝐶 = 𝐶([−1, 0], 𝑅3) as

̇𝑥 (𝑡) = 𝐿
𝜇
(𝑥
𝑡
) + 𝐹 (𝜇, 𝑥

𝑡
) , (36)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) ∈ 𝐶, 𝐿

𝜇
: 𝐶 → 𝑅, 𝐹 : 𝑅 × 𝐶 → 𝑅

are given, respectively, by

𝐿
𝜇
(𝜙) = (𝜏

𝑛
+ 𝜇)(

−𝑙
1
−𝑙
2
−𝑙
3

𝑙
1

𝑚
2
𝑚
3

0 0 −𝑛
3

)(

𝜙
1
(0)

𝜙
2
(0)

𝜙
3
(0)

)

+ (𝜏
𝑛
+ 𝜇)(

0 0 0

0 0 0

0 −𝑛
2
0

)(

𝜙
1
(−1)

𝜙
2
(−1)

𝜙
3
(−1)

) ,

𝐹 (𝜇, 𝑥
𝑡
) = (𝜏

𝑛
+ 𝜇)(

−𝜆
1
𝜙
1
(0) 𝜙
2
(0) − 𝜆

2
𝜙
1
(0) 𝜙
3
(0)

𝜆
1
𝜙
1
(0) 𝜙
2
(0) + 𝜆

2
𝜙
1
(0) 𝜙
3
(0)

−𝜆
3
𝜙
2
(−1) 𝜙

3
(0)

) ,

(37)

where 𝜙(𝜃) = (𝜙
1
(𝜃), 𝜙
2
(𝜃), 𝜙
3
(𝜃))
𝑇

∈ 𝐶. By the Riezs rep-
resentation theorem, there exists a function 𝜂(𝜃, 𝜇) of
bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 0) 𝜙 (𝜃) , 𝜙 ∈ 𝐶. (38)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏
𝑛
+ 𝜇)(

−𝑙
1
−𝑙
2
−𝑙
3

𝑙
1

𝑚
2
𝑚
3

0 0 −𝑛
3

)𝛿 (𝜃)

− (𝜏
𝑛
+ 𝜇)(

0 0 0

0 0 0

0 −𝑛
2
0

)𝛿 (𝜃 + 1) ,

(39)

where 𝛿 is Dirac delta function.
For 𝜙 ∈ 𝐶1([−1, 0], 𝑅3), define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
𝜃 ∈ [−1, 0) ,

∫
0

−1

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, 𝜃 ∈ [−1, 0) ,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(40)

Then system (36) is equivalent to

̇𝑥
𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (41)

where

𝑥
𝑡
(𝜃) = 𝑥 (𝑡 + 𝜃) 𝜃 ∈ [−1, 0) . (42)

For 𝜑 ∈ 𝐶1([0, 1], (𝑅3)∗), define

𝐴
∗

𝜓 (𝑠) =

{{

{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ [0, 1) ,

∫
0

−1

𝑑𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(43)

and bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝑠)⟩ = 𝜓𝑇 (0) 𝜙 (0)

− ∫
0

−1

∫
𝜃

𝜉=0

𝜓𝑇 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(44)
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where 𝜂(𝜃) = 𝜂(𝜃, 0).Then𝐴(0) and𝐴∗ are adjoint operators.
From Section 3, we know that ±𝑖𝑤

0
are eigenvalues of 𝐴(0).

Thu,s they are eigenvalues of 𝐴∗. We need to compute the
eigenvector of 𝐴(0) and 𝐴∗ corresponding to 𝑖𝑤

0
and −𝑖𝑤

0
,

respectively.
Suppose 𝑞(𝜃) = (1, 𝛼, 𝛽)𝑇𝑒𝑖𝜃𝑤0𝜏𝑛 is the eigenvector of𝐴(0)

corresponding to 𝑖𝑤
0
. Then 𝐴(0)𝑞(𝜃) = 𝑖𝑤

0
𝜏
𝑛
𝑞(𝜃). It follows

from the definition of 𝐴(0) and 𝜂(𝜃, 𝜇) that

𝜏
𝑛
(

−𝑙
1
− 𝑖𝑤
0

−𝑙
2

−𝑙
3

𝑙
1

𝑚
2
− 𝑖𝑤
0

𝑚
3

0 −𝑛
2
𝑒
−𝑖𝑤0𝜏𝑛 −𝑛

3
− 𝑖𝑤
0

)𝑞 (0) = (

0

0

0

) . (45)

Then we can get

𝑞 (0) = (1, 𝛼, 𝛽)

= (1,
𝑙
1
𝑛
3

𝑙
3
𝑛
2
𝑒−𝑖𝑤0𝜏𝑛 − 𝑙

2
𝑛
3

,
−𝑙
1
𝑛
2

𝑙
3
𝑛
2
𝑒−𝑖𝑤0𝜏𝑛 − 𝑙

2
𝑛
3

𝑒−𝑖𝑤0𝜏𝑛)

𝑇

.

(46)

We can suppose that 𝑞∗(𝑠) = 𝐷(1, 𝛼∗, 𝛽∗)𝑒𝑖𝑠𝑤0𝜏𝑛 is the
eigenvector of 𝐴∗ corresponding to −𝑖𝑤

0
𝜏
𝑛
, and similarly we

can obtain

𝜏
𝑛
(

−𝑙
1
+ 𝑖𝑤
0

𝑙
1

0

−𝑙
2

𝑚
2
+ 𝑖𝑤
0
−𝑛
2
𝑒𝑖𝑤0𝜏𝑛

−𝑙
3

𝑚
3

−𝑛
3
+ 𝑖𝑤
0

)𝑞
∗

(0) = (

0

0

0

) ,

𝛼
∗

=
𝑙
1
− 𝑖𝑤
0

𝑙
1

, 𝛽
∗

=
𝑙
1
𝑚
2
+ 𝑤2
0
− 𝑙
1
𝑙
2
− 𝑖𝑤
0
(𝑚
2
− 𝑙
1
)

𝑙
1
𝑛
2
𝑒𝑖𝑤0𝜏𝑛

.

(47)

By (44), we get

⟨𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩

= 𝐷(1, 𝛼
∗

, 𝛽
∗

) (1, 𝛼, 𝛽)
𝑇

− ∫
0

−1

∫
𝜃

𝜉=0

𝐷(1, 𝛼
∗

, 𝛽
∗

) 𝑒
−𝑖𝑤0(𝜉−𝜃)𝑑𝜂 (𝜃) (1, 𝛼, 𝛽)

𝑇

𝑒
𝑖𝑤0𝜉𝑑𝜉

= 𝐷{1+𝛼
∗

𝛼+𝛽
∗

𝛽−∫
0

−1

(1, 𝛼
∗

, 𝛽
∗

) 𝜃𝑒
𝑖𝑤0𝜃𝑑𝜂 (𝜃) (1, 𝛼, 𝛽)

𝑇

}

= 𝐷{1 + 𝛼
∗

𝛼 + 𝛽
∗

𝛽 − 𝜏
𝑛
𝑛
2
𝛼𝛽
∗

𝑒
−𝑖𝑤0𝜏𝑛} .

(48)

Then we choose

𝐷 =
1

1 + 𝛼
∗

𝛼 + 𝛽
∗

𝛽 − 𝜏
𝑛
𝑛
2
𝛼𝛽
∗

𝑒−𝑖𝑤0𝜏𝑛
, (49)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
In the following, we use the ideas by Ross [1] to compute

the coordinates describing center manifold 𝐶
0
at 𝜇 = 0.

Define

𝑧 (𝑡) = ⟨𝑞
∗

, 𝑥
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑥

𝑡
− 2Re 𝑧 (𝑡) 𝑞 (𝜃) . (50)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊
20
(𝜃)

𝑧2

2
+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

(51)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0

in the direction of 𝑞∗ and 𝑞∗. Note that𝑊 is real if 𝑥
𝑡
is real.

We can only consider real solutions. For the solution 𝑥
𝑡
∈ 𝐶
0
,

since 𝜇 = 0 and (41), we have

̇𝑧 = 𝑖𝑤
0
𝜏
𝑛
𝑧 + ⟨𝑞

∗

(𝜃) , 𝐹 (0,𝑊 (𝑧, 𝑧, 𝜃) + 2Re 𝑧𝑞 (𝜃))⟩

= 𝑖𝑤
0
𝜏
𝑛
𝑧 + 𝑞
∗

(0) 𝐹 (0,𝑊 (𝑧, 𝑧, 0) + 2Re 𝑧𝑞 (0))

def
= 𝑖𝑤
0
𝜏
𝑛
𝑧 + 𝑞
∗

(0) 𝐹
0
(𝑧, 𝑧)

= 𝑖𝑤
0
𝜏
𝑛
𝑧 + 𝑔 (𝑧, 𝑧) ,

(52)

where

𝑔 (𝑧, 𝑧) = 𝑞
∗

(0) 𝐹
0
(𝑧, 𝑧)

= 𝑔
20

𝑧2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔
21

𝑧2𝑧

2
+ ⋅ ⋅ ⋅ .

(53)

From (50), we have 𝑥
𝑡
= (𝑥
1𝑡
(𝜃), 𝑥
2𝑡
(𝜃), 𝑥
3𝑡
(𝜃)) = 𝑊(𝑡, 𝜃) +

𝑧𝑞(𝜃) + 𝑧𝑞(𝜃) and 𝑞(𝜃) = (1, 𝛼, 𝛽)𝑇𝑒𝑖𝑤0𝜏𝑛 , and then

𝑥
1𝑡
(0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧2

2
+𝑊
(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ 𝑂 (|(𝑧, 𝑧)|

3

) ,

𝑥
2𝑡
(0) = 𝑧𝛼 + 𝑧𝛼 +𝑊

(2)

20
(0)

𝑧2

2
+𝑊
(2)

11
(0) 𝑧𝑧

+𝑊
(2)

02
(0)

𝑧
2

2
+ 𝑂 (|(𝑧, 𝑧)|

3

) ,

𝑥
3𝑡
(0) = 𝑧𝛽 + 𝑧𝛽 +𝑊

(3)

20
(0)

𝑧2

2
+𝑊
(3)

11
(0) 𝑧𝑧

+𝑊
(3)

02
(0)

𝑧
2

2
+ 𝑂 (|(𝑧, 𝑧)|

3

) ,

𝑥
2𝑡
(−1) = 𝑧𝛼𝑒

−𝑖𝑤0𝜏𝑛 + 𝑧𝛼𝑒
𝑖𝑤0𝜏𝑛 +𝑊

(2)

20
(−1)

𝑧2

2

+𝑊
(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧
2

2
+ 𝑂 (|(𝑧, 𝑧)|

3

) .

(54)
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From the definition of 𝐹(𝜇, 𝑥
𝑡
), we have

𝑔 (𝑧, 𝑧)

= 𝑞
∗

(0) 𝐹
0
(𝑧, 𝑧)

= 𝐷𝜏
𝑛
(1, 𝛼
∗

, 𝛽
∗

)(

−𝜆
1
𝑥
1𝑡
(0) 𝑥
2𝑡
(0)−𝜆

2
𝑥
1𝑡
(0) 𝑥
3𝑡
(0)

𝜆
1
𝑥
1𝑡
(0) 𝑥
2𝑡
(0)+𝜆

2
𝑥
1𝑡
(0) 𝑥
3𝑡
(0)

−𝜆
3
𝑥
2𝑡
(−1) 𝑥

3𝑡
(0)

)

= 𝐷𝜏
𝑛
{𝑧
2

[𝛼 (𝛼
∗

− 1) (𝜆
1
+ 𝛽𝜆
2
) − 𝜆
3
𝛼𝛽𝛽
∗

𝑒
−𝑖𝑤0𝜏𝑛]

+ 2𝑧𝑧 [𝜆
1
Re {𝛼} (𝛼∗ − 1) + 𝜆

2
Re {𝛼𝛽} (𝛼∗ − 1)

−𝜆
3
𝛽
∗

Re {𝛽𝛼𝑒−𝑖𝑤0𝜏𝑛}]

+ 𝑧
2

[𝜆
1
𝛼 (𝛼
∗

−1)+𝜆
2
𝛼𝛽 (𝛼
∗

−1)−𝜆
3
𝛼𝛽𝛽∗𝑒

𝑖𝑤0𝜏𝑛]

+ 𝑧
2

𝑧 [𝜆
1
(𝛼
∗

− 1) (𝑊
(2)

11
(0) +

1

2
𝑊
(2)

20
(0)

+
𝛼

2
𝑊
(1)

20
(0) + 𝛼𝑊

(1)

11
(0))

+ 𝜆
2
(𝛼
∗

− 1)(𝛼𝑊
(3)

11
(0) +

𝛼

2
𝑊
(3)

20
(0)

+
𝛽

2
𝑊
(2)

20
(0) + 𝛽𝑊

(2)

11
(0))

− 𝜆
3
𝛽
∗

(𝛽𝑊
(2)

11
(−1) +

𝛽

2
𝑊
(2)

20
(−1)

+
𝛼

2
𝑊
(3)

20
(0) 𝑒
𝑖𝑤0𝜏𝑛

+𝛼𝑊
(3)

11
(0) 𝑒
−𝑖𝑤0𝜏𝑛)] + ⋅ ⋅ ⋅ } .

(55)

Comparing the coefficients with (53), we obtain

𝑔
20
= 2𝐷𝜏

𝑛
[𝛼 (𝛼
∗

− 1) (𝜆
1
+ 𝛽𝜆
2
) − 𝜆
3
𝛼𝛽𝛽
∗

𝑒
−𝑖𝑤0𝜏𝑛] ,

𝑔
11
= 2𝐷𝜏

𝑛
[𝜆
1
Re {𝛼} (𝛼∗ − 1) + 𝜆

2
Re {𝛼𝛽} (𝛼∗ − 1)

−𝜆
3
𝛽
∗

Re {𝛽𝛼𝑒−𝑖𝑤0𝜏𝑛}] ,

𝑔
02

= 2𝐷𝜏
𝑛
[𝜆
1
𝛼 (𝛼
∗

−1)+𝜆
2
𝛼𝛽 (𝛼
∗

−1)−𝜆
3
𝛼𝛽𝛽∗𝑒

𝑖𝑤0𝜏𝑛] ,

𝑔
21
= 2𝐷𝜏

𝑛
[𝜆
1
(𝛼
∗

− 1) (𝑊
(2)

11
(0)+

1

2
𝑊
(2)

20
(0) +

𝛼

2
𝑊
(1)

20
(0)

+𝛼𝑊
(1)

11
(0) )

+ 𝜆
2
(𝛼
∗

− 1)(𝛼𝑊
(3)

11
(0) +

𝛼

2
𝑊
(3)

20
(0)

+
𝛽

2
𝑊
(2)

20
(0) + 𝛽𝑊

(2)

11
(0))

− 𝜆
3
𝛽
∗

(𝛽𝑊
(2)

11
(−1) +

𝛽

2
𝑊
(2)

20
(−1)

+
𝛼

2
𝑊
(3)

20
(0) 𝑒
𝑖𝑤0𝜏𝑛

+𝛼𝑊
(3)

11
(0) 𝑒
−𝑖𝑤0𝜏𝑛)] .

(56)

In order to determine 𝑔
21
, we need to compute 𝑊

20
(𝜃) and

𝑊
11
(𝜃). From (41) and (50), we have

𝑊 = ̇𝑥
𝑡
− ̇𝑧𝑞 − ̇𝑧 𝑞

= {
𝐴𝑊 − 2Re {𝑞∗ (0) 𝐹

0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝐹
0
𝑞 (𝜃)} + 𝐹

0
, 𝜃 = 0,

def
= 𝐴𝑊 +𝐻(𝑧, 𝑧, 𝜃) ,

(57)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧2

2
+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02

𝑧
2

2
+ ⋅ ⋅ ⋅ . (58)

Note that, on the center manifold 𝐶
0
near to the origin,

𝑊 = 𝑊
𝑧
̇𝑧 +𝑊
𝑧

̇𝑧. (59)

Thus we obtain

(𝐴 − 2𝑖𝑤
0
𝜏
𝑛
)𝑊
20
(𝜃)=−𝐻

20
(𝜃) , 𝐴𝑊

11
(𝜃)=−𝐻

11
(𝜃) .

(60)

By (57), we know that, for 𝜃 ∈ [−1, 0),

𝐻(𝑧, 𝑧, 𝜃) = −𝑞
∗

(0) 𝐹
0
𝑞 (𝜃) − 𝑞

∗

(0) 𝐹
0
𝑞 (𝜃)

= −𝑔𝑞 (𝜃) − 𝑔𝑞 (𝜃) .
(61)

Comparing the coefficients with (58), we can get

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(62)

From (60), (62), and the definition of 𝐴, we have

𝑊
20
(𝜃) = 2𝑖𝑤

0
𝜏
𝑛
𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (63)

Noticing 𝑞(𝜃) = 𝑞(0)𝑒𝑖𝜃𝑤0𝜏𝑛 , we have

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜏
𝑛
𝑤
0

𝑞 (0) 𝑒
𝑖𝜏𝑛𝑤0𝜃+

𝑖𝑔
02

3𝜏
𝑛
𝑤
0

𝑞 (0) 𝑒
−𝑖𝜏𝑛𝑤0𝜃+𝐸

1
𝑒
2𝑖𝜏𝑛𝑤0𝜃,

(64)
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where 𝐸
1
= (𝐸

(1)

1
, 𝐸
(2)

1
, 𝐸
(3)

1
) ∈ 𝑅3 is a constant vector.

Similarly, we can have

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜏
𝑛
𝑤
0

𝑞 (0) 𝑒
𝑖𝜏𝑛𝑤0𝜃 +

𝑖𝑔
11

𝜏
𝑛
𝑤
0

𝑞 (0) 𝑒
−𝑖𝜏𝑛𝑤0𝜃 + 𝐸

2
,

(65)

where 𝐸
2
= (𝐸
(1)

2
, 𝐸
(2)

2
, 𝐸
(3)

2
) ∈ 𝑅3 is a constant vector.

In the following, we wiiill find out 𝐸
1
and 𝐸

2
. From the

definition of 𝐴 and (60), we can obtain

∫
0

−1

𝑑𝜂 (𝜃)𝑊
20
(𝜃) = 2𝑖𝑤

0
𝜏
𝑛
𝑊
20
(0) − 𝐻

20
(0) , (66)

∫
0

−1

𝑑𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(0) , (67)

where 𝜂(𝜃) = 𝜂(0, 𝜃). From (57) and (58), we have

𝐻
20
(0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0) + 2𝜏

𝑛
(

−𝜆
1
𝛼 − 𝜆
2
𝛼𝛽

𝜆
1
𝛼 + 𝜆
2
𝛼𝛽

−𝜆
3
𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛

),

(68)

𝐻
11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0)

+ 2𝜏
𝑛
(

−2𝜆
1
Re (𝛼) − 2𝜆

2
Re (𝛼𝛽)

2𝜆
1
Re (𝛼) + 2𝜆

2
Re (𝛼𝛽)

−2𝜆
3
Re (𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛)

) .
(69)

Substituting (68) into (66) and noticing that

(𝑖𝑤
0
𝜏
𝑛
𝐼 − ∫
0

−1

𝑒
𝑖𝜃𝑤0𝜏𝑛𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝑤
0
𝜏
𝑛
𝐼 − ∫
0

−1

𝑒
−𝑖𝜃𝑤0𝜏𝑛𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(70)

we then obtain

(2𝑖𝜏𝑤
0
𝐼 − ∫
0

−1

𝑒
2𝑖𝜃𝜏𝑤0𝑑𝜂 (𝜃))𝐸

1
= 2𝜏
𝑛
(

−𝜆
1
𝛼 − 𝜆
2
𝛼𝛽

𝜆
1
𝛼 + 𝜆
2
𝛼𝛽

−𝜆
3
𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛

) ,

(71)

which is

(

2𝑖𝑤
0
+ 𝑙
1

𝑙
2

𝑙
3

−𝑙
1

2𝑖𝑤
0
− 𝑚
2

−𝑚
3

0 𝑛
2
𝑒−2𝑖𝑤0𝜏𝑛 2𝑖𝑤

0
+ 𝑛
3

)𝐸
1
=2(

−𝜆
1
𝛼 − 𝜆
2
𝛼𝛽

𝜆
1
𝛼 + 𝜆
2
𝛼𝛽

−𝜆
3
𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛

).

(72)

Solving the equation, we get

𝐸
(1)

1
=
2

𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝜆
1
𝛼 − 𝜆
2
𝛼𝛽 𝑙

2
𝑙
3

𝜆
1
𝛼 + 𝜆
2
𝛼𝛽 2𝑖𝑤

0
− 𝑚
2

−𝑚
3

−𝜆
3
𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛 𝑛

2
𝑒−2𝑖𝑤0𝜏𝑛 2𝑖𝑤

0
+ 𝑛
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐸
(2)

1
=
2

𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑖𝑤
0
+ 𝑙
1
−𝜆
1
𝛼 − 𝜆
2
𝛼𝛽 𝑙

3

−𝑙
1

𝜆
1
𝛼 + 𝜆
2
𝛼𝛽 −𝑚

3

0 −𝜆
3
𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛 2𝑖𝑤

0
+ 𝑛
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐸
(3)

1
=
2

𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑖𝑤
0
+ 𝑙
1

𝑙
2

−𝜆
1
𝛼 − 𝜆
2
𝛼𝛽

−𝑙
1

2𝑖𝑤
0
− 𝑚
2

𝜆
1
𝛼 + 𝜆
2
𝛼𝛽

0 𝑛
2
𝑒−2𝑖𝑤0𝜏𝑛 −𝜆

3
𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(73)

where

𝑅 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝜆
1
𝛼 − 𝜆
2
𝛼𝛽 𝑙

2
𝑙
3

𝜆
1
𝛼 + 𝜆
2
𝛼𝛽 2𝑖𝑤

0
− 𝑚
2

−𝑚
3

−𝜆
3
𝛼𝛽𝑒−𝑖𝑤0𝜏𝑛 𝑛

2
𝑒−2𝑖𝑤0𝜏𝑛 2𝑖𝑤

0
+ 𝑛
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (74)

Similarly, we can get 𝐸
2
:

(

−𝑙
1
−𝑙
2

−𝑙
3

𝑙
1

𝑚
2

𝑚
3

0 −𝑛
2
−𝑛
3

)𝐸
2
= 4(

𝜆
1
Re (𝛼) + 𝜆

2
Re (𝛼𝛽)

−𝜆
1
Re (𝛼) − 𝜆

2
Re (𝛼𝛽)

𝜆
3
Re (𝛼𝛽𝑒𝑖𝑤0𝜏𝑛)

) ,

𝐸
(1)

2
=
4

𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
1
Re (𝛼) + 𝜆

2
Re (𝛼𝛽) −𝑙

2
−𝑙
3

−𝜆
1
Re (𝛼) − 𝜆

2
Re (𝛼𝛽) 𝑚

2
𝑚
3

𝜆
3
Re (𝛼𝛽𝑒𝑖𝑤0𝜏𝑛) −𝑛

2
−𝑛
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐸
(2)

2
=
4

𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑙
1

𝜆
1
Re (𝛼) + 𝜆

2
Re (𝛼𝛽) −𝑙

3

𝑙
1

−𝜆
1
Re (𝛼) − 𝜆

2
Re (𝛼𝛽) 𝑚

3

0 𝜆
3
Re (𝛼𝛽𝑒𝑖𝑤0𝜏𝑛) −𝑛

3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐸
(3)

2
=
4

𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑙
1
−𝑙
2

𝜆
1
Re (𝛼) + 𝜆

2
Re (𝛼𝛽)

𝑙
1

𝑚
2
−𝜆
1
Re (𝛼) − 𝜆

2
Re (𝛼𝛽)

0 −𝑛
2

𝜆
3
Re (𝛼𝛽𝑒𝑖𝑤0𝜏𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(75)

where

𝑆 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑙
1
−𝑙
2

−𝑙
3

𝑙
1

𝑚
2

𝑚
3

0 −𝑛
2
−𝑛
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (76)

Therefor, all 𝑔
𝑖𝑗
have been expressed in terms of parameters.

And we can compute the following values:

𝑐
1
(0) =

𝑖

2𝜏
𝑛
𝑤
0

(𝑔
11
𝑔
20
− 2

󵄨󵄨󵄨󵄨𝑔11
󵄨󵄨󵄨󵄨
2

−

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨
2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝑐
1
(0)}

Re {𝜆󸀠 (𝜏
𝑛
)}
,

𝛽
2
= 2Re {𝑐

1
(0)} ,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im 𝜆󸀠 (𝜏

𝑛
)

𝜏
𝑛
𝑤
0

,

(77)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

𝑛
; 𝜇
2

determines the direction of the Hopf bifurcation. If 𝜇
2
>

0 (𝜇
2

< 0), then the Hopf bifurcation is supercritical
(subcritical); 𝛽

2
determines the stability of the bifurcating

periodic solutions: the periodic solutions are stable (unstable)
if𝛽
2
< 0 (𝛽

2
> 0);𝑇

2
determines the period of the bifurcating

solutions: the periodic increases (decreases) if 𝑇
2
> 0 (< 0).
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