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Drivers’ decisions to either slow and stop or go at the onset of yellow signal impact on intersection safety. +is novel study
contributes to the new classification scheme for drivers. Two driving style indexes (i.e., the driving reliability index and
dangerous driving index) are adopted, along with other known factors to analyze stop/go decision-making. Initially, the driving
reliability index is extracted using a Hidden Markov Model (HMM). +e dangerous driving index is calculated based on
statistics extracted from dangerous driving records. A latent class logit model is then proposed to explore the factors which
influence drivers’ decisions. Drivers are classified for analytical purposes into “low-risk” and “high-risk” categories according
to driving styles and age. Results indicate that those considering “low-risk” tend to stop, while drivers considering “high-risk”
are inclined to pass intersections. Furthermore, distractions from cell phones have different influences on each group of drivers.
+ese findings help to determine driver preferences and may be used to formulate strategies to reduce unsafe driving occurring
at signalized intersections.

1. Introduction

Signalized intersections are areas where traffic accidents
occur frequently. In 2017, there were 34,247 fatal traffic
accidents in the United States, involving 52,274 drivers and
37,133 deaths [1]. Over 50 percent of all injuries and fa-
talities occur at or near signalized intersections [2] and
driver errors are the leading cause of intersection-related
crashes [3]. At the onset of yellow signal, it is a challenge for
drivers to make immediate decisions, especially in yellow
light dilemma zones, which are where drivers may neither
stop safely nor pass through intersections [4, 5]. Unfor-
tunately, the decision to either stop or go may increase the
number of angle crashes and rear-end collisions, as well as
injuries and fatalities, which necessitates research into
stop/go decision-making at the onset of yellow at signalized
intersections.

In order to understand drivers’ stop/go decision-making
completely, researchers have tried to find demographic at-
tributes besides age and gender. For example, Elhenawy et al.
proposed a variable to measure drivers’ aggressiveness level
at the onset of yellow signal [6]. In this study, we adopt two
new variables, i.e., the driving reliability index and dan-
gerous driving index to develop this further. It is hoped that
implementing these two new variables will provide a more
comprehensive understanding of driving styles. We also
conduct sophisticated analysis of heterogeneity, which is
necessary considering diversity within any sample involving
human participants.

In the past, researchers have used various statistical
approaches to gain insight into driving heterogeneity. For
example, Savolainen [7] adopted the latent class logit model
instead of the fixed logit model. Constant terms were used to
formulate classification probabilities. In this study, we
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adopted a latent class model with newly proposed variables
which contributes in three aspects: (1) involving heteroge-
neity into drivers’ decisions; (2) evaluating the impact of
factors on different-class drivers; (3) analyzing the rela-
tionship between decision property and driving styles.

+e contribution of this study is twofold. Firstly, to
uncover class features of drivers’ behavior, two novel indexes
associated with driving styles (i.e., the driving reliability
index and dangerous driving index) are proposed. Unlike
previously considered factors (i.e., drivers’ demographic
attributes, speed, accelerate, and distant to stop line), these
two factors are extracted from historic driving records and
able to reflect driving styles. Secondly, the latent class logit
model categorizes drivers into two groups according to
driving style indexes. Compared with traditional logit
models, this model considers the group heterogeneity of
drivers and thus can distinguish their choice-preference
differences.

+e remainder part of this paper is organized as follows:
Section 2 presents relevant research around factors which
influence stop/go decision-making and driving heteroge-
neity. Section 3 introduces experimental data and provides a
description of the analytical dataset. Section 4 provides a
detailed description of the methodologies adopted in this
study. Section 5 presents model results and the quantified
impact of variables. Section 6 discusses the driving risks,
distracted driving behavior among different driver classes,
and comparative results. +e final section, Section 7, pro-
vides our conclusions based upon the findings.

2. Literature Review

2.1. Indicators Influencing Driver Decisions. Previous re-
searches focusing on driver decisions at the onset of yellow
signal have adopted various data-gathering methods, such as
field studies [8, 9], driving simulator studies [6, 10], and
video-capture studies [11–14]. Researchers have identified a
number of factors that influence driver decisions, such as
age, gender, and time to the stop line. +e dilemma zone is
one of the most important factors involved in stop/go de-
cisions in this scenario.

Type I dilemma zone describes the region where drivers
can neither stop safely nor pass through intersections. It has
been postulated that this occurs due to insufficient yellow
light time caused through high approaching speeds [15].
Type I dilemma zone is therefore formulated using vehicular
information and intersection data, such as approach speed,
acceleration, and yellow interval [4, 16].

Type II dilemma zone is defined as the zone in which
drivers may have trouble making stop/go decisions at the
onset of yellow signal [17]. +is area can be thought of as a
corridor of uncertainty, which is the area ahead of the stop
line between the point where 90 percent of drivers will stop
and the point where 90 percent of drivers will continue [18].
+e existence of what has been described as Types I and II of
dilemma zones which occur as drivers approach intersec-
tions adds to the complexity of driver’s decision-making.
However, Types I and II of dilemma zones are not the only

situations that increase cognitive load, clouding decision-
making.

Distractions are another factor that may influence
driving behaviors at the onset of yellow signals. In 2017 in
the United States, 3,166 lives were claimed related to driving
distractions. Of this total number, 434 people died in fatal
crashes involving cell phone use or other cell phone related
behaviors [1]. By splitting visual, manual, and cognitive
attention, speaking on the phone distracts drivers from the
road and therefore increases the likelihood of having an
accident and risk of injury to drivers, passengers, and pe-
destrians [19, 20]. Interestingly, drivers appear more likely to
stop when using handheld and hands-free devices, but less
likely to stop when using headsets [7].

Several studies have examined other factors associated
with drivers’ decisions at the onset of yellow, including
demographic characteristics such as age and gender, and
vehicular conditions such as speed, distance to the stop line,
and time to the intersection [6, 12, 21, 22]. Savolainen [7]
found that driver decisions are mainly determined by the
estimated time to the stop line.

2.2. Driving Heterogeneity. Previous researches have used
the binary logit model to analyze drivers’ behaviors at sig-
nalized intersections. Köll et al. [12], for example, adopted a
binary logit model to examine the effect of speed, distance,
and potential time at the point at which drivers decide to
either stop or proceed.+ey found that both high speeds and
short distances to the stop line decreased the probability of
stopping. Papaioannou [23] extended the binary logit model
intercalating gender, and evidence suggests that female
drivers were less aggressive and more likely to stop when
encountering yellow signals. Gates et al. [24] discovered that
heavy vehicles were more likely to pass the intersection than
passenger vehicles.

Further research has also looked to analyze the influence
of the traffic environment, such as pavements and traffic
control devices. For example, Yan et al. [25] examined the
impact of pavement markings and found that they appear to
reduce the probability of both conservative-stop and risky-
go decisions. Long et al. [26] employed a binary logit model
to identify the influence of countdown devices, which in-
creased the probability of passing the stop line after the onset
of yellow signal. Importantly, in the conventional binary
logit model, utilities of indicators remain constant across
individuals, which means the logit model is incapable of
accommodating unobserved heterogeneity between indi-
viduals. +erefore, alternative analytical methods which are
capable of intercalating individual heterogeneity should be
considered.

Latent class analysis was proposed to overcome the
limitations of the fixed model [27–29]. +e latent class logit
model is a semiparametric extension of the logit model
which accommodates heterogeneity across individuals with
a set of classes and without parametric distribution defi-
nition [30]. Various fields of study have adopted this model
to evaluate human preferences [31–33]. In the field of
transportation, Hess et al. [34] employed the latent class
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model to analyze rail and bus travel behavior. Shen [35] used
the latent class logit model to predict transport mode
choices.

In this study, we make an initial attempt to introduce
driving style indexes (i.e., the driving reliability index and
dangerous driving index) to examine drivers’ stop/go de-
cision-making. A latent class logit model with these new
indicators is developed to investigate the influence of each
factor on driver subgroups. Also, each class is labeled with a
unique driving style, which is necessary for analyzing the
relationship between decision preference and driving styles.

3. Data and Analysis

+e dataset was collected through the National Advanced
Driving Simulator (NADS) at the University of Iowa [10]. In
driving simulations, each driver partook in three “drives,”
where each “drive” consisted of three “segments.” Each
“segment” contained one rural zone and one urban zone.
Each driver encountered five signal-controlled intersections
in each “segment,” only two of which triggered yellow
signals when the driver was approaching. Each driver
therefore encountered 18 points which required stop/go
decisions. In each “segment,” every driver accomplished one
of the following three tasks: baseline (no phone call), out-
going (making calls), or incoming (answering calls). +ese
tasks were randomly arranged within each driving “seg-
ment” and began prior to the arrival at each segment. +is
simulation experiment focused on identifying differences in
driver decisions at the onset of yellow signal with and
without cell phone distractions.

Data were recorded from 49 participants and contained
1157 trials across 17 variables. After deleting the missing and
invalid data which were beyond predefined ranges, the final
dataset included 829 complete runs. Deleted trials were
consistent across age, gender, drive number, and phone
status due to the simulator settings. +e description of
variables in the final dataset is presented in Tables 1 and 2.

According to the data in Table 1, most drivers decided to
stop in the simulation experiment. +e number of trials in the
old age group was the least among all the ages with 304 oc-
curring in the young age group, 295 in the middle-aged group,
and 230 in the old age group. Trials with male drivers (n� 432)
slightly outnumbered those of female drivers (n� 397). Also,
the 829 trials were roughly balanced in the drive number and
phone status. Stop times increased as the number of trials
increased with 162 in the first drive, 176 in the second drive,
and 194 in the third drive. In addition, the number of stop
times under incoming (n� 181) or outgoing calls (n� 178) was
slightly larger than under baseline conditions (n� 173).

In Table 2, speeds at the onset of yellow ranged from
11m/s to 24.12m/s. +e distance to the stop line also ranged
from 33.49m to 86.76m. Under experimental settings, the
duration of the yellow light was triggered at either 3 seconds
or 3.75 seconds from the stop line [36]. Given variations in
the simulator algorithm, the yellow time varied from 2.78
seconds to 4.38 seconds.

4. Methodology

A Hidden Markov Model (HMM) and a latent class logit
model are devised to analyze drivers’ decisions at the onset of
yellow at signalized intersections. Initially, the HMM was
established to compute a driving reliability index. +en, the
dangerous driving index was obtained from the driving
records. Finally, a latent class logit model was developed and
calibrated based on age and the newly acquired factors of
driving styles (i.e., driving reliability index and dangerous
driving index). A complete description of model develop-
ment is provided in Figure 1.

4.1. Hidden Markov Model. During simulations, driver be-
haviors were continuously tracked to contain a full set of
stop/go decisions. Each driver made 18 decisions, where
each decision was related to the previous one. +e HMM is
therefore the rational model to analyze drivers’ stop/go
decisions because each driver’s decision regarding stop and
go is unobservable and is therefore a constituent of a hidden
state. Obtained vehicular data is denoted as an observable
variable.

+e HMM is a statistical model, which consists of N
hidden states,M observable states, an initial state probability
distribution π, a state transition probability matrix A, and an
emission matrix B [37]. Model details are described as
follows:

A � aij􏽨 􏽩
N×N

,

aij � P it+1 � qj

􏼌􏼌􏼌􏼌􏼌 it � qi􏼒 􏼓, i � 1, 2, . . . , N; j � 1, 2, . . . , N,

(1)

where q represents the individual state, it is the state symbol
at time t, and aij represents the transitional probability from
state qi to state qj:

B � bjk􏽨 􏽩
N×M

,

bjk � P ot � vk

􏼌􏼌􏼌􏼌 it � qj􏼐 􏼑, j � 1, 2, . . . , N; k � 1, 2, . . . , M,

(2)

Table 1: Distribution of category variables by drivers’ decisions in
the dataset.

Variables Go Stop Total

Age
Young group (18–25 years) 100 204 304
Middle group (30–45 years) 98 197 295
Old group (50–60 years) 99 131 230

Gender Male 142 290 432
Female 155 242 397

Drive number
First drive 114 162 276

Second drive 98 176 274
+ird drive 85 194 279

Phone status
Baseline 105 173 278
Incoming 96 181 277
Outgoing 96 178 274

Journal of Advanced Transportation 3



where v is the possible observation state, ot is the observation
symbol at time t, and bjk represents the probability of the
state qj at time t with the observation vk:

π � πi( 􏼁,

πi � P i1 � qi( 􏼁, i � 1, 2, . . . , N,
(3)

where πi is the probability of qi being the state at time t� 1. π
and A produce the state sequence, and B derives the ob-
servation sequence. HMM can be described as π, A, and B.
Although in an HMM, the hidden state cannot be observed
directly, the output, derived from the state, can be observed.
State estimation is therefore derived through a probability
distribution across the full range of possible outputs. In
HMM, the sequence of outputs provides essential infor-
mation for model estimations [38]. +ere are two kinds of
methods to estimate π, A, and B: the supervised learning
algorithm and the unsupervised learning algorithm. In this
study, the parameters (π, A, and B) were estimated using an
unsupervised approach, known as the expectation maxi-
mization (EM) algorithm.

4.2. Indicators Associated with Driving Styles

4.2.1. Driving Reliability Index. In order to account for the
level of driving reliability, we use driving reliability index to
characterize driving styles. When encountering yellow

signals, driver’s manipulation (e.g., acceleration and decel-
eration) appears similar, which means that his or her be-
havior is relatively stable and predictable.

An HMM was employed to calculate the driving reli-
ability index. Each row of the estimated emission probability
matrix B represents the probabilities of each observation
state under one hidden state. +erefore, if a single driver
presented many driving states in the same traffic scene, this
would mean that his/her behavior was unstable, and the
corresponding Bwould become a dense matrix.+e denser a
matrix B is, the larger the driver’s driving reliability index
would be. Information entropy within each row of a matrix
was used to describe the sparsity of matrix B.+e normalized
entropy of the matrix B was calculated as follows:

Hj � − log2 M( 􏼁
− 1

􏽘

M

k�1
bjk
′ × log2 bjk

′􏼐 􏼑􏼐 􏼑,

bjk
′ �

bjk, bjk ≠ 0

1, bjk � 0

⎧⎪⎨

⎪⎩
,

j � 1, 2, . . . , N; k � 1, 2, . . . , M,

(4)

whereHj is the entropy of row j in matrix B and bjk stands for
the probability of the observation state k under the hidden
state j in B. Although each driver had more than one hidden

HMM

Latent class logit model

Dataset

Discretize

Observation 
state

Estimate 
parameters

π, A, B

Compute the 
entropy of matrix B

Driving 
reliability index

Define the dangerous 
driving behavior

Dangerous 
driving index

Age

Driving styles

Estimate 
parametersHidden state

Gender

Classification 
variables

Time to stop line

Phone status

Drive number

Parameters

Odds ratios

Partial effects

Figure 1: Model development flow chart.

Table 2: Descriptive statistics for continuous variables in the dataset.

Variables Min. Max. Mean Std. dev.
Speed at the stop line (m/s) 0.09 23.17 6.79 7.25
Speed at the onset of red signal (m/s) 0 23.26 8.10 6.71
Speed at the onset of yellow signal (m/s) 11.00 24.12 19.01 2.24
Distance to stop line at the onset of yellow signal (m) 33.49 86.76 62.22 10.20
Time to stop line at the onset of yellow signal (s) 2.48 3.81 3.27 0.38
Yellow signal duration (s) 2.78 4.08 4.00 0.22
Average acceleration rate (m/s2) −7.13 3.33 −1.37 1.95
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state (i.e., a decision), the driving reliability index was de-
fined according to arithmetic means of the entropy of each
row in matrix B:

driving reliability index �
1
N

􏽘

N

j�1
Hj. (5)

4.2.2. Dangerous Driving Index. Dangerous driving index is
proposed to represent the level of driving risk, which is also
an indicator of driving style. Traffic records imply that
drivers’ accident proneness exists, and the proneness ap-
pears to be sustainable under various traffic circumstances
[39].+erefore, the risk of drivers’ behavior can be identified
by examining driving records. According to Farmer and
Chambers [39], one drive trial can be categorized as either
dangerous or safe. Dangerous driving behavior is more likely
to result in traffic accidents, and therefore driver behavior
can be evaluated by the probability of dangerous driving
using driving histories found within records, which creates
the dangerous driving index.

In this study, the dangerous driving index was defined as
the probability of their dangerous behavior during the ex-
periment, which was computed as follows:

dangerous driving index �
1
h

􏽘

h

d�1
xd
′, (6)

where h represents the number of trials for each driver and
xd equals 1 when the driver’s behavior in the dth trial is
considered dangerous and 0 when the behavior is relatively
safe.

4.3. Latent Class Logit Model. +e binary logit model is a
classical method used to study drivers stop/go decisions.
While in the conventional binary logit model, there is a
potential problem with the estimation of parameters. +e
impact of heterogeneity makes drivers more likely to either
stop or go at the onset of yellow signal. Also, this hidden
heterogeneity can lead to biased parameter estimations.
Hence, the latent class logit model was proposed to inter-
calate heterogeneity across individuals.

+e latent class logit model is an improved model of the
conventional logit model. +e utility function of the logit
model is written as

Sij � β′xij
′ + εij, (7)

where Sij is the utility function that determines the proba-
bility of decision outcome j for individual i; β′ is a vector of
parameters; xij

′ is a vector of observed variables; and εij is the
error term, which is independent and follows Gumbel
distribution. +e probability (Pij) of one alternative j (stop/
go) for individual i is defined as

Pij �
exp β′xij

′􏼐 􏼑

1 + exp β′xij
′􏼐 􏼑

. (8)

+e logit model was estimated with maximum likelihood
estimation (MLE) procedures.

In the latent class model, heterogeneity is modeled using
a set of groups, otherwise known as classes. Specifically, each
individual is distributed to a “latent” class. It is assumed that
parameters within each class contain the same effects, but
there are different effects across classes. Model estimations
are split into parameters related to each class, and a set of
class probabilities [40]. Within the class, choice probabilities
are calculated using the multinomial logit model:

Pj|q �
exp βq
′xij
′􏼐 􏼑

􏽐
J
j�1 exp βq

′xij
′􏼐 􏼑

, q � 1, 2, . . . , Q, (9)

where Q is the number of latent classes, J represents the
alternatives, xij

′ is the vector of all variables in the utility
function, and βq

′ is the class-specific parameter vector. +e
class for a specific individual is unobservable. Class prob-
abilities are therefore generated using the multinomial logit
form, as follows:

Ciq �
exp θq
′zi
′􏼐 􏼑

􏽐
Q
q�1 exp θq

′zi
′􏼐 􏼑

, θQ
′ � 0, (10)

where zi is an optional set of personal invariant charac-
teristics. In this study, zi denotes demographic and driving
styles. For estimation, the last of parameter θQ was fixed as
zero. For an individual, the estimation of the probability of a
specific choice is the expected value (over classes) of the
class-specific probabilities:

Pij � 􏽘

Q

q�1
CiqPj|q. (11)

+e number of classes, Q, is fixed, which is generally
determined by setting an initial value and adjusting it.
However, extended classes may not yield the best estima-
tions and can sometimes create model instability and di-
vergence [30]. In this study, the latent class logit model
provides the best fit when Q was set to 2.

4.4. Model Development

4.4.1. HMM Estimates. HMM was established to extract the
driving reliability index, one of driving style indexes. To
establish the observation sequence, three variables were
selected: speed, average acceleration rate, and phone status,
which are proven to influence drivers’ decision-making
behaviors [41–44]. As illustrated in Table 3, the data of
observed variables were discretized into three categories.
Discretization thresholds for speed and average acceleration
rate were the 50th and 85th percentiles. +e observable state
in HMM was the combination of the discrete data including
27 values, signed by a number from 1 to 27, respectively.
Table 4 shows part of the ordered sequence of this observed
data combination. Each trial was denoted with a corre-
sponding figure which created a sequence. After coding the
input sequence, the HMM for each driver was estimated
using the EM algorithm.
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4.4.2. Calculate Indicators Associated with Driving Styles.
After estimating HMM, it becomes possible to calculate the
driving reliability index. Before calculating the dangerous
driving index, the dangerous drive needs to be identified.
Telephone conversations (i.e., incoming calls or outgoing
calls) and sudden braking/accelerating (i.e., average accel-
eration rate greater than 1.34m/s2 or less than −2.24m/s2)
were distinguished as dangerous behaviors. +ere were 12
dangerous states described with the observation combina-
tion sequence as shown in Table 4: (1, 2, 2), (1, 2, 3), (1, 3, 2),
(1, 3, 3), (2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 2, 2), (3, 2, 3),
(3, 3, 2), and (3, 3, 3). Corresponding sequence numbers
were 5, 6, 8, 9, 14, 15, 17, 18, 23, 24, 26, and 27. +erefore
each trial which involved dangerous behavior was identified.
+is key analytical step is the basis of calculating the dan-
gerous driving index.

4.4.3. Estimation of the Latent Class Logit Model. Table 5
presents variables in the latent class logit model, including
drivers’ decisions, basic demographics (i.e., gender and
age), driving styles (i.e., driving reliability index and
dangerous driving index), and experimental variables
such as drive number, phone status, and predicted time to
stop line. It should be noted that the “predicted time to the
stop line” was calculated by dividing the current distance
from the stop line with the instant speed at the onset of
yellow signal. According to the definition of the latent
class logit model, variables for latent classification need to
present demographics and driving characteristics. In this
study, three variables were selected for latent classi-
fication–age, driving reliability index, and dangerous
driving index.

5. Results

Table 6 provides estimates for the two new indicators of
driving styles. +e driving reliability index ranged from
0.465 to 0.692, while the dangerous driving index fluctuated
from 0 to 0.611. For instance, the driving reliability index for
Driver #2 had a maximum value of 0.692 which means that
his/her driving decision was relatively unpredictable. Driver
#2’s dangerous driving index was 0.222 which was lower
than the average. +is means the probability of dangerous
driving behavior was only 22.2%; therefore it can be un-
derstood that this driver’s behavior in these trials was
comparatively safe. Given that each indicator was different
across drivers, these two indicators can be regarded as driver
identifiers and further used for latent classification.

Estimation results are provided in Table 7, including a
binary logit model without new indicators, a binary logit
model with new indicators, and a latent class logit model
with new indicators. When investigating fitting criterion
indicators, the latent class model got 0.105 for theMcFadden
R-squared and 996.3 for the Akaike information criterion
(AIC). +ese suggest that the latent class model provides the
best fit and additionally explained attributes for each of the
members within the class. Also, the McFadden R-squared of
the binary logit model without the new predictors was 0.02,
while this figure rose to 0.028 after adding the new indi-
cators. +e AIC of the binary logit model without new
indicators is 1076.1, and it drops to 1071 after adding the new
indicators. +is suggests the derived estimations validate the
precision of two indicators.

5.1. Direction and Magnitude of Parameters. When consid-
ering the results in Table 7, one might conclude that di-
rections of parameters in both binary logit models and the
latent class logit model are generally consistent. However,
there are significant differences in the magnitude of these
effects. Parameter estimations for the latent class model
highlight the differences between drivers. Statistically sig-
nificant parameters of the latent classification variables (i.e.,
age and dangerous driving index) indicate that these indi-
cators influenced class probabilities. Also, the indicator,
“DrR_Index,” derived using HMM is statistically significant
(α� 0.01) in the binary logit model, which indicates that this
is an additional attribute to affect the decision-making
process of the participants.

+e directions of most parameter estimation in two
classes are opposing, which highlights the differences be-
tween groups. Class I accounts for 53.3% of all participants.
Visually, the parameter of the indicator “Time” is negative.
+e parameter of “Time_Baseline” (−2.395) is less than that
of “Time_Income” (−2.468) or “Time_Outgo” (−2.493).
+is may have occurred because nonsignificant parameters
for the second/third driving experiment had no apparent
inclination of stopping or going as the experiment
commenced.

Class II accounted for 46.7% of the participants. +e
parameter of indicator “Time” is positive and the parameters
for “Time” under different conditions are almost the same

Table 4: Rules of the observed combination sequence (partial).

Sequence
number Speed Average acceleration

rate
Phone
status

1 1 1 1
2 1 1 2
3 1 1 3
4 1 2 1
5 1 2 2
6 1 2 3
7 1 3 1
8 1 3 2
9 1 3 3

Table 3: Rules of data discretization.

Speed Average acceleration rate Phone status
Before
(m/s) After Before (m/s2) After Before After

[11, 19.49) 1 (−2.24, 1.34] 1 Baseline 1
[19.49,
21.14) 2 (−4.02, −2.24], (1.34,

2.24] 2 Incoming 2

[21.14,
24.12] 3 [−7.13, −4.02], (2.24,

3.33] 3 Outgoing 3
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(1.578, 1.560, and 1.594). Drivers in Class II were perhaps
influenced by the simulator environment because
“2nd_drive” and “3rd_drive” indicators were significant at
α� 0.05 and 0.01, respectively.

5.2. Quantified Impact of Variables. To quantify the impact
of these variables, partial effects were calculated as follows:

zE[y | x]

zx
�

zF(β′x)

zx
�
dF(β′x)

dβ′x
β � f(β′x)β, (12)

Table 5: Descriptions for selected variables.

Variables Description Values
Dependent variables

Drivers’ decisions Stop 0� stop
Go 1� go

Independent variables

Gender Male 0�male
Female 1� female

Age
Young group (18–25 years)

Middle-aged group (30–45 years) 0� young and middle-aged groups
Old group (50–60 years) 1� old group

2nd_drive Driver’s second “drive” experiment 0� others
1� the second “drive” experiment

3rd_drive Driver’s third “drive” experiment 0� others
1� the third “drive” experiment

Time_Baseline Expected time to stop line without phone calls Continuous
Time_Income Expected time to stop line with incoming phone calls Continuous
Time_Outgo Expected time to stop line with outgoing phone calls Continuous
DrR_Index Driving reliability index Continuous
Ddr_Index Dangerous driving index Continuous

Table 6: Indicators associated with driving styles (partial).

Min. Max. Mean
Driver ID

1 2 3 4 5 6 7 8 9 10
Driving reliability index 0.465 0.692 0.601 0.558 0.692 0.619 0.533 0.560 0.649 0.603 0.686 0.465 0.587
Dangerous driving index 0 0.611 0.233 0.167 0.222 0.154 0.056 0.111 0.529 0.167 0.471 0 0.118

Table 7: Parameter estimation results for models.

Parameter Binary logit model without new
indicators

Binary logit model with new
indicators

Latent class logit model
Class I Class II

Constant 0.460 (0.651) −2.504 (1.214)∗∗ 1.498 (2.419) 2.695 (2.755)

Gender 0.306 (0.147)∗∗ 0.388 (0.151)∗∗ 2.038 (0.551)∗∗∗ −1.303
(0.325)∗∗∗

2nd_drive −0.233 (0.177) −0.252 (0.178) 0.002 (0.355) −0.709 (0.334)∗∗

3rd_drive −0.465 (0.180)∗∗∗ −0.474 (0.181)∗∗∗ −0.142 (0.362) −0.996
(0.349)∗∗∗

Time_Baseline −0.316 (0.196) −0.328 (0.198)∗ −2.395 (0.688)∗∗∗ 1.578 (0.424)∗∗∗
Time_Income −0.353 (0.198)∗ -0.367 (0.199)∗ −2.493 (0.719)∗∗∗ 1.560 (0.430)∗∗∗
Time_Outgo −0.340 (0.198)∗ −0.353 (0.199)∗ −2.468 (0.705)∗∗∗ 1.594 (0.433)∗∗∗
Age 0.460 (0.161)∗∗∗ 0.553 (0.165)∗∗∗ −3.889 (1.480)∗∗∗ 0
DrR_Index — 5.144 (1.837)∗∗∗ −10.479 (8.695) 0

Ddr_Index — −0.630 (0.597) −11.513
(3.486)∗∗∗ 0

Constant_Class — — 10.186 (6.019)∗ 0
Class probabilities — — 0.533 (0.403) 0.467 (0.403)
Log likelihood −530.06 −525.50 −478.17
McFadden R-
squared 0.020 0.028 0.105

AIC 1076.1 1071.0 996.3
Tabular values indicate parameter estimates (standard errors) for each model. +e symbols ∗∗∗ , ∗∗, and ∗ mean statistical significance at α� 0.01, 0.05, 0.1,
respectively.
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where f(β′x) is the density function of x. When the variable
in x is a dummy variable, the alternative method is

ΔFxk
� Prob y � 1 | xk � 1􏼂 􏼃 − Prob y � 1 | xk � 0􏼂 􏼃

� F β′x + αxk

􏼌􏼌􏼌􏼌􏼌 xk � 1􏼒 􏼓 − F β′x + αxk

􏼌􏼌􏼌􏼌􏼌 xk � 0􏼒 􏼓

� F(β′x + α) − F(β′x).

(13)

Partial effects were calculated by averaging the function
over the sample observations. Findings suggest an average
change in the probability of going for a 1-unit change in scale
factor, or the change in the probability of going compared
with the baseline category in dummy factor. Table 8 presents
partial effects and odds ratios for each model.

From Table 8, the effects of indicators on different classes
can be identified. In Class I, the odds ratios of “Time” in-
dicators which ranged from 0.08 to 0.09, are all less than 1.
+is means that these drivers were more likely to stop, as the
time to the stop line increases. Odds ratios of women in Class
I making the “go” decision were 7.68 times those of men in
the same class.

In Class II, odds ratios of “Time” indicators ranged from
4.76 to 4.92 and were larger than 1. +is suggests that these
drivers tend to pass the intersection as the time to stop line
increases. Odds ratios for “go” during the 2nd experimental
phase were 0.49 times those during the first one, and this
figure decreased to 0.37 in the 3rd experiment. +is suggests
that drivers in Class II generally prefer to stop as experiment
proceeds. Odds ratios for women in Class II making the “go”
decision were 0.27 times those of men in the same class.

In terms of partial effects of three models, several
conclusions can be made. Female drivers are 6.9%–10.1%
more likely to choose to go compared to male drivers. Old
drivers are 10.6%–12.6% more likely to choose to go than
young and middle-aged drivers. Compared with 1st “drive,”
drivers were 5.2%–7.0% and 10.2%–11.5% less likely to
choose to go in their 2nd and 3rd “drive” experience. +ere
was also a 114% increase in the probability of going which
was estimated with every 1-unit increase in the driving
reliability index. Each 1-second increase in the time to stop
line manifested in a 7.1%–12.7% decreased probability of
going.

Considering the phone as a distraction related to stop/go
behavior in these circumstances, there was relative con-
formity with empirical judgment. Partial effects of the three
models suggest that compared with uninterrupted driving,
incoming/outgoing calls increase the probability of stopping
slightly. When investigating the effect on drivers in a specific
class, the odds ratios of “Time” under different calling tasks
were almost equivalent. Further details about the effect of
phone distractions will be critically discussed in the fol-
lowing section.

6. Discussion

6.1. Driving Risk of Different Classes. Analysis using the la-
tent class model indicates that two classes of drivers with
different driving styles exist. +e negative parameters of

latent classification variables (−3.889 for “Age” and −11.513
for “Ddr_Index,” significant at α� 0.01) in Table 7 suggest
that increasing these values contributes to a higher proba-
bility of Class II categorization. Additionally, the data
provided in Figure 2 validates that as drivers’ age or the value
of drivers’ dangerous driving index increases, the probability
of Class II increases. Ultimately, this means that those who
were categorized as Class II were old and more likely to
display risky behaviors, such as sudden acceleration and
braking.

Before discussing drivers’ decision properties, experi-
mental settings of triggering yellow signals need to be
specified. As drivers approached simulated intersections,
traffic signal began to change to yellow at one of the two
preset intervals (i.e., 3 seconds or about 3.75 seconds). From
the designers’ perspective, the first interval of 3 seconds was
intended to elicit a “go” response from the participant,
whereas the second interval of 3.75 seconds was intended to
elicit a “stop” response. In other words, the probability of
going at around 3 seconds was expected to be larger than that
at 3.75 seconds. +is enabled us to determine what was
considered safe decisions.

Drivers’ decision properties can be identified and
evaluated using data provided in Figure 3. +e distribution
of dots for Class I individuals shows that these drivers are
more likely to go through the intersection when the time to
stop line is less than 3 seconds. Although the same drivers
are also more likely to halt further when the time to stop
line is 3.75 seconds, this decision appears identical to the
expected safe decision probably because these drivers ap-
pear to prefer the low-risk choice. Decisions of Class II
drivers are comparatively inconsistent. +e probability of
going under the 3.75 seconds interval is equal or larger than
that observed in the 3-second interval. +is result may be
interpreted according to their respective high-risk driving
characteristics.

Considering driving styles and stop/go decision property
discussed above, drivers in Class I can be confirmed as “low-
risk drivers,” while drivers in Class II are defined as “high-
risk drivers.”

6.2. Distraction Effects onDifferent Classes. +e effects of cell
phone distractions on stop/go decisions were evaluated
using changes in probability. For instance, when drivers
were near the intersection with a time to the stop line of
fewer than 3 seconds, the probability of going with an in-
coming call decreased compared with no call scenarios. +is
would suggest that drivers receiving a call are more likely to
slow and stop even though passing the intersection was
actually the safer choice.

Figure 4 demonstrates the effects of calling distraction on
drivers’ decisions. “Low-risk” drivers, categorized as Class I,
were disturbed only when the time to stop line was less than
3 seconds. Compared with uninterrupted driving, drivers in
Class I with phone calls appeared to prefer to stop, which
may actually be improper because passing the intersection
was the safer choice at this point. +is effect was the same
under both incoming and outgoing calls. +e influence of
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phone calls on “high-risk” drivers in Class II changed under
different circumstances. When they were close to the stop
line with less than 2.95 seconds, both incoming and outgoing
calls increased the likelihood probability of slowing and
stopping, compared with uninterrupted driving. Although
when the time to stop line was 3 seconds, incoming calls
resulted in a greater decrease in the probability of going,
compared to outgoing calls. While drivers were still at a
distance from the stop line, with times longer than 3.6
seconds, both incoming and outgoing calls increase the
probability of deciding to go, compared with uninterrupted
driving.

It could be concluded that taking a phone call can initiate
unsafe decisions in both Classes I and II. +is could be in
terms of both slowing unnecessarily and deciding to go when
the time does not permit. Results show that Class II is more
sensitive to this distraction having a greater change in the
probability of deciding to go.+is analysis suggests therefore
that higher-risk drivers are more likely to respond

frivolously to distractions such as an incoming or outgoing
phone call.

6.3. Results ComparisonwithPreviousResearch. +e findings
of this study add to the growing evidence base. For example,
we find age and gender influence drivers’ stop/go decision-
making, which agrees with previous studies [7, 45–47]. +e
results also suggest that most female drivers are more likely
to run the yellow signal, compared with their male coun-
terparts. Additionally, compared with adolescent and
middle-aged drivers, old drivers (over 50 years old) are more
likely to make unsafe decisions, which may be due to the
long perception-reaction time.

+e results agree with the research which suggests that
drivers’ decisions are influenced by their familiarity with the
traffic environment [7]. We further find that most drivers
have no apparent inclination of stopping or going as the
simulation experiment carries on, while a small portion of

Table 8: Quantified impact of variables.

Variables

Binary logit model without new
indicators

Binary logit model with new
indicators Latent class logit model

Partial effect (%) Odds ratio Partial effect (%) Odds ratio Partial effect (%)
Odds ratio

Class I Class II
Gender +6.9 1.36 +8.6 1.47 +10.1 7.68 0.27
2nd_drive −5.2 0.79 −5.5 0.78 −7.0 1.00 0.49
3rd_drive −10.2 0.63 −10.3 0.62 −11.5 0.87 0.37
Time_Baseline −7.1 0.73 −7.3 0.72 −11.4 0.09 4.85
Time_Income −7.9 0.70 −8.1 0.69 −12.7 0.08 4.76
Time_Outgo −7.6 0.71 −7.8 0.70 −12.1 0.08 4.92
Age +10.6 1.58 +12.6 1.74 — — —
DrR_Index — — +114.0 171.40 — — —
Ddr_Index — — −14.0 0.53 — — —
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Figure 2: Effect of driving styles on the probability of Classes I and II.
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drivers tend to stop as the experiment proceeds. +is may
reflect that part drivers are more accustomed to the simu-
lation environment and anticipate signal changes as the
experiment commences.

+e findings confirm that cell phone talk can induce
drivers tomake unsafe decisions [7, 10, 47]. Furthermore, we
find drivers’ behavioral differences in decision-making
under distractions. Only close to the stop line are most
drivers disturbed to make unsafe decisions. A small portion
of drivers in distractions will make unsafe decisions

wherever they were, which may be due to their oldness and
high-risk driving style.

7. Conclusions

Drivers’ improper stop/go decisions at the onset of yellow
signals may cause numerous problems at intersections.
Improper decisions may lead to rear-end collisions or red-
light running violations. To address the decision issues and
accommodate group heterogeneity, a latent class logit model
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Figure 3: Decision properties for Classes I and II of drivers.
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was used to analyze drivers’ decision-making processes in
this study.

We explored two new variables associated with driving
styles (i.e., the driving reliability index and dangerous
driving index), which further calibrated the class proba-
bilities in the latent class model. Indicators for the goodness
of fit demonstrate that our model with driving styles is
superior to binary logit models. +erefore, the latent class
model considering driving styles can accurately evaluate
drivers’ decisions at the onset of yellow signal.

Drivers are classified into “low-risk” and “high-risk”
categories according to driving styles. +e driving reliability
index appears to influence drivers’ stop/go decision-making
whereas the dangerous driving index influences the pro-
portion of two categories. Results indicate that “low-risk”
drivers are less likely to make risky decisions, while “high-
risk” drivers are more likely to make improper decisions.

Similar with previous research, we found that driving
while talking on the phone may cause drivers’ inappropriate
decisions at the onset of yellow signal. +e effects of cell
phone distractions were inconsistent within our sample of
drivers. For “low-risk” drivers, it seemed that they were only
slightly disturbed by the phone calls and more prone to stop
when close to the stop line. However, there was little dif-
ference in the effect of incoming or outgoing calls. “High-
risk” drivers presented obvious differences in the decision
when using cell phones. +is group appeared to behave
completely differently to “low-risk” drivers meaning that our
classification was meaningful.

Drivers in different groups have different preferences in
stop/go decision-making. To improve safety at signalized
intersections, policy-makers need to pay more attention to
“high-risk” drivers, although critically speaking risking
driving may be an impulse rather than a consistent factor.
Nevertheless, “high-risk” drivers might be more intensively
observed to ensure there are fewer risky behaviors. Imposing
higher fines, reeducation, and higher charge rates of in-
surance may incentivize changes. Once the “high-risk”
drivers develop stable and safe driving habits, the intensity of
observation might be reduced.

Data Availability

+e data used for this study are from experiments conducted
at the University of Iowa-National Advanced Driving
Simulator (NADS), which can be accessed from the fol-
lowing website: http://depts.washington.edu/hfsm/upload.
php.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is research was supported by the Fundamental Research
Funds for the Central Universities (no. 2019JBM036).

References

[1] National Center for Statistics and Analysis, “Distracted
driving in fatal crashes, 2017,” Report No. DOT HS 812 700,
National Highway Traffic Safety Administration,Washington,
DC, USA, 2019.

[2] +e Federal Highway Administration (FHWA), Intersection
Safety: Background and Objectives, +e Federal Highway Ad-
ministration (FHWA), Washington, DC, USA, 2018, https://
highways.dot.gov/research-programs/safety/intersection-safety.

[3] E.-H. Choi, “Crash factors in intersection-related crashes: An
on-scene perspective (No. HS-811366),” National Center for
Statistics and Analysis, National Highway Traffic Safety Ad-
ministration, US Department of Transportation, Washington,
DC, USA, 2010, https://crashstats.nhtsa.dot.gov/Api/Public/
ViewPublication/811366.

[4] D. Gazis, R. Herman, and A. Maradudin, “+e problem of the
amber signal light in traffic flow,” Operations Research, vol. 8,
no. 1, pp. 112–132, 1960.

[5] C. Liu, R. Herman, and D. C. Gazis, “A review of the yellow
interval dilemma,” Transportation Research Part A: Policy and
Practice, vol. 30, no. 5, pp. 333–348, 1996.

[6] M. Elhenawy, A. Jahangiri, H. A. Rakha, and I. El-Shawarby,
“Modeling driver stop/run behavior at the onset of a yellow
indication considering driver run tendency and roadway
surface conditions,” Accident Analysis and Prevention, vol. 83,
pp. 90–100, 2015.

[7] P. T. Savolainen, “Examining driver behavior at the onset of
yellow in a traffic simulator environment: comparisons be-
tween random parameters and latent class logit models,”
Accident Analysis and Prevention, vol. 96, pp. 300–307, 2016.

[8] K. L. Young, P. M. Salmon, and M. Cornelissen, “Distraction-
induced driving error: an on-road examination of the errors
made by distracted and undistracted drivers,” Accident
Analysis and Prevention, vol. 58, pp. 218–225, 2013.

[9] S. G. Klauer, F. Guo, B. G. Simons-Morton, M. C. Ouimet,
S. E. Lee, and T. A. Dingus, “Distracted driving and risk of
road crashes among novice and experienced drivers,”DeNew
England Journal of Medicine, vol. 370, no. 1, pp. 54–59, 2014.

[10] A. D. Ohlhauser, L. N. Boyle, D. Marshall, and O. Ahmad,
“Drivers’ behavior through a yellow light: effects of distraction
and age,” Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 55, no. 1, pp. 1919–1923, 2011.

[11] B. E. Porter and K. J. England, “Predicting red-light running
behavior: a traffic safety study in three urban settings,” Journal
of Safety Research, vol. 31, no. 1, pp. 1–8, 2000.
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)ere is currently much debate regarding the effectiveness of the driver license system in South Korea, due to the numerous traffic
crashes caused by drivers who are suspected of having insufficient physical and mental abilities. )rough the present system, it is
quite difficult to identify such drivers indirectly through physical tests, such as visual acuity tests, since the correlation of such
results with driving performance remains unclear. )e objective of this study was to investigate the relationship between driving
performance and visual acuities for improving the South Korean driver license system. In this study, two investigations were
conducted: static and dynamic visual acuity examinations and driving performance tests based on a virtual reality (VR) system.
)e driving performance was evaluated with a driving simulator, based on driving behaviors in different experimental scenarios,
including daytime and nighttime driving on a rural highway, and unexpected incident situations. Here, we produce statistically
significant evidence that reduced visual acuity impairs driving performance, and driving behaviors differ significantly among
groups with different vision capabilities, especially dynamic vision. Visual acuities, typically dynamic visual acuity, greatly
influenced driving behavior, as measured by the standard deviation of speeds and vehicle LPs, and this was especially notable in
curved road segments in daytime experiment. )ese experimental results revealed that the driving performance of participants
with impaired dynamic visual acuity was deficient and unsafe. )is confirmed that dynamic visual acuity levels are significant
determinants of driving behavior, and they well explain driver performance levels. )ese findings suggest that the South Korean
driver license system should include a test of dynamic visual acuity to create better and safer driving.

1. Introduction

)ere are many ways to improve transportation safety,
including improving geometric conditions, increasing ed-
ucation, publicizing campaigns, and taking other approaches
to improve traffic safety. However, in the context of traffic
safety, one of the most important steps is to evaluate whether
drivers have adequate capabilities for driving. Driver per-
formance evaluations are critical for identifying individuals
who are not qualified to drive because such drivers can
seriously affect safety on the road.

Generally, the driver license system is the first stage of
preventing traffic crashes, as it evaluates driver performance

to identify drivers with inadequate physical abilities.
However, there have recently been many arguments re-
garding the effectiveness of the driver license system in
South Korea, due to the many traffic crashes caused by
drivers with insufficient physical and mental abilities. )e
current system in South Korea does not identify such drivers
because some of the tests are rather cursory, such as vision
and hearing tests. In contrast, many other countries, in-
cluding Germany, France, Japan, the US, and the UK, have
implemented a variety of tests to regularly identify un-
qualified drivers, including high-level standards for vision
tests, viewing angle tests, cognitive ability tests, and other
standard medical tests. However, driving performance tests
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cannot be conducted on real roads. It is also quite difficult to
evaluate driving performance indirectly through physical
tests, such as visual acuity and muscle performance tests,
since the correlation of their results with driving perfor-
mance is unclear. )us, to improve traffic safety, a new
method of accurately evaluating driving performance must
be developed.

In this study, driving performance was evaluated
through virtual reality (VR) technology to identify un-
qualified drivers. Recently, VR technology has been used in
many areas of transportation engineering, such as driver
education, primary driving testing, and driver behavior
studies. Such technology has also been used to evaluate
driver performance in many studies, due to the difficulty of
performing real-time road tests.

)e objectives of this study were to determine the re-
lationships between driving performance and physical
abilities based on driving simulator experiments and to
develop an appropriate method of evaluating driver per-
formance. Physical abilities that are easily measurable and
closely related to driver performance were used to develop
the evaluation method. Among various physical abilities, the
visual acuity levels in different age groups were used to
evaluate driving performance, since drivers generally obtain
the information needed to safely operate their vehicles
through vision, for example, road alignments, road signs,
and other driving environments. After visual acuity was
examined and driving simulator experiments were con-
ducted, driving behaviors and performance characteristics
were analyzed by a statistical modeling process to determine
those influencing factors on reaction time which signifi-
cantly affect traffic crashes.

2. Literature Review

It is generally known that drivers get most of the information
they need to drive through vision [1], making vision themost
important ability for driving. Visual acuity is a measure of
the spatial resolution of the visual processing system, and a
visual acuity test is an eye exam that checks how well a
person sees the details of an object from a specific distance
[2, 3]. )ere are different types of visual acuities related to
driving such as static and dynamic visual acuity.

Visual acuity normally declines with age, as shown in
several studies that investigated the relationship between age
and visual acuities [4–7]. Another study of vision tests for
drivers found that the number of drivers with visual acuity
loss was four times greater among those aged 65 years or
older than in younger drivers [8]. )ose researchers con-
ducted an automated visual inspection on 10,000 drivers and
found that only 3% to 3.5% of those who were aged 16 to 60
years had impaired vision, whereas 13% of those who were
aged 65 years and over had vision problems.

Insufficient visual acuity may cause poor driving per-
formance, as evidenced by driving violations and traffic
crashes [8–12]. Burg investigated the relationship between
visual acuity, driving violations, and traffic crashes in Cal-
ifornia, USA, and found a slight correlation among them [9],
and a similar analysis [10] indicated that measures of visual

performance, such as static and dynamic visual acuity,
correlated significantly with the crash rate of drivers over the
age of 54. In another related study of the visual acuity levels
(static and dynamic) of 12,400 drivers and their traffic
crashes and law violations, it was found that drivers over the
age of 66 had a higher risk of crashes [11]. However, those
previous studies indirectly analyzed the relationship be-
tween a visual acuity and driving performance by tracking
the number of violations and traffic crashes. In this study, the
influence factors on driving violations and traffic crashes
were driving distance, age, gender, and visual acuity (static
and dynamic).

Among the various types of visual acuities, dynamic
visual acuity is known to significantly affect recognition of
traffic ahead and road conditions [13–19]. Hofstetter [14]
found a meaningful relationship between dynamic visual
acuity and recognition of moving objects, and Long and
Kearns [15] also revealed similar results regarding the re-
lationship between traffic sign recognition and dynamic
visual acuity. Higgins and Wood [17] tested the effects of
visual acuity against measures for driving performance,
including gap perception, total driving time, and sign rec-
ognition, using a lens designed with different visual acuity
levels (ranging from 0.1 to 1.5). )ey observed poor driving
performance based on those measures in participants with
lower dynamic visual acuity. )ese results also revealed that
vision tests for only static vision acuity (not for dynamic
vision acuity) are of limited usefulness in this context. Be-
cause the relationship between such tests and driving per-
formance was not really proven statistically, there is still
needed to develop effective and reliable methods that can
precisely correlate visual acuity and driver performance
[12, 20].

Several previous studies used a driving simulator to
investigate driver behaviors and performance, due to real-
time road test limitations such as safety hazards and diffi-
culty in preparing designed situations for experiments
[16, 21–24, 25–27]. Only a few studies have used a driving
simulator to directly investigate the relationship between
visual acuity and driving performance. Wilkins [16] con-
ducted a driving simulator test to measure brake response
rates in hazardous situations and found that drivers with
better dynamic visual acuity had better risk detection rec-
ords. In another study on the effects of visual acuity on the
driving ability of multiple sclerosis patients, a driving
simulator was used to evaluate the subjects’ driving per-
formance [28].

)ere have also been studies recommending the im-
provement of driver license systems [29, 30]. For example,
Owsley and McGwin [21] suggested that it is necessary to
measure visual acuity more precisely in the driver licensing
system of England, but they failed to find clear evidence that
an improved driver licensing system would reduce traffic
crashes.

Our reviews of the relevant literature found the following
meaningful issues. First, visual acuity, which is highly im-
portant for safe driving, normally weakens with age, and this
deterioration of vision may cause driving violations and
traffic crashes.)us, declining visual acuity is a critical safety
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problem. Second, dynamic visual acuity is known to sig-
nificantly affect driving performance, but it is hard to
measure it and to prove a statistically relevant relationship
between dynamic visual acuity and driving performance.
)erefore, more precise methods to measure visual acuities
should be developed, and studies to investigate the rela-
tionship between visual acuity and driving performance
need to be conducted.

3. Methodology

In this study, two different investigations were conducted: a
visual acuity test and a driving performance test utilizing a
VR system. )e relationship between driving performance
and physical abilities was determined using that VR driving
simulator in a series of experiments. Figure 1 illustrates the
detailed study flows.

3.1. Visual Acuity Evaluation. For visual acuity evaluations,
different types of visual acuities were examined, including
static and dynamic visual acuity, because dynamic visual
acuity are known to have greater effects on driving per-
formance than static visual acuity [1]. Our visual acuity
evaluations were conducted with the Multifunctional Vision
Test System developed and verified by the Korea Road Traffic
Authority. First, we reanalyzed the visual acuity evaluations
results examined by this test system in a previous study [31].
)is study was conducted only to evaluate the performance
of the vision test system; the data used for verification in that
study were used in this study to investigate the reduction in
visual acuity performance with aging. Second, the same test
system was used to evaluate the visual acuity of the par-
ticipants in this study, so that subject driving performance
could be compared according to visual acuity level. )e
purpose of this visual acuity test was to evaluate subjects’
ability to identify fixed and moving objects. )e test results
were scored from 0.1 to 1.5, and subjects with scores greater
than 0.5 were judged as having passed the vision test, while
the rest were judged as having failed. )ese criteria were
based on the standards of the driving aptitude test used by
driving license institutes in South Korea. )ese thresholds
were applied for evaluation of static and dynamic visual
acuity.

3.2. Driving Simulator Experiments. We conducted driving
simulator experiments to measure various driving behaviors
under many different driving conditions. In total, 65 par-
ticipants (35 younger drivers and 30 older drivers, 49 male
and 16 female drivers) who drove at least three or four times
in every week with an active driver’s license were involved in
the experiments. Among the younger drivers, there were 11
participants in their twenties, 9 participants in their thirties,
8 participants in their forties, and 7 participants in their
fifties; the older drivers were those older than 65 years.

)e experiments to evaluate driving performance were
conducted in two designed scenarios based on rural highway
driving: daytime (scenario 1) and nighttime (scenario 2).
Unexpected incident situations, as shown in Figure 2, were

created in a driving simulator based on VR technology. )e
unexpected incident #1 was a dog that suddenly ran into the
driving lane, and the driver had to stop to avoid hitting it. In
incident #2, a vehicle in the adjacent lane suddenly cut into
the driving lane. In the last incident, a heavy vehicle was
approaching from a cross road to an unsignalized
intersection.

)e visual acuity of each participant was first tested by
the vision test system, and then, the driving simulator ex-
periments were conducted. )e two different scenarios were
presented in random order to each participant to prevent
any learning or familiarity effects in the experiments.)eVR
images in the driving simulator were implemented by the
UC-WinRoad program (ver. 12.0) by Forum8 Corp which is
in Anyang city, South Korea. Prior to the main test, a
predriving test was administered so that participants would
become familiar with the driving simulator.

3.3. Statistical Analysis. Correlation analysis is a method to
investigate the degree and direction of a relationship be-
tween two variables [32], and we conducted it to determine
whether visual acuity level influenced driving behavior and
performance measures, including variations of speed,
braking force, and lateral placement during driving. )e
Kruskal–Wallis test is a rank-based nonparametric test that
can be used to determine whether there is a statistically
significant difference between continuous or ordinal de-
pendent variables in two or more groups [33]. We used this

Literature review

Research method development

Investigation of age-vision performance

Driving-simulation experiments

Data analysis

Conclusion

Analysis of vision test in various age groups
Visual acuity evaluations
(static and dynamic visual acuity)

(i)
(ii)

Experiments for daytime and nighttime
driving in urban roads
Experiments for unexpected incident
situations
Analyses of observed various driving
behavior element

(i)

(ii)

(iii)

Statistical analyses

Conflict analyses
Abnormal driving behavior analysis

(correlation test, Kruskal–Wallis test,
Regression modeling)

(i)

(ii)
(iii)

Figure 1: Flowchart of this study.
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test to determine whether the occurrence of traffic conflicts
in each scenario differed significantly among the groups
classified according to visual acuity level. A traffic conflict is
an observable event which would result in a crash if drivers
do not act appropriately, such as by slowing down, changing
lanes, or accelerating to avoid a collision. In this study,
conflicts were measured as near-collisions with incident
objects, such as a dog, a lane-changing vehicle, or an
approaching heavy vehicle, by analysis of videos recorded in
the experiment. )e number of actual collisions was also
included in the number of conflicts here for the purpose of
the analysis. Finally, we used regression analysis to deter-
mine whether visual acuity levels and age had a significant
effect on perception reaction time (PRT) in the unexpected
incident situations. )is analysis was conducted to deter-
mine whether lately perceiving and identifying ahead risky
events can increase the probability of traffic crashes and
whether the driver’s age and visual acuity level are the main
influencing factors for those unsafe driving behaviors.

4. Results

4.1. Vision Test Results. In agreement with the general
knowledge that static visual acuity and dynamic visual acuity
decline with aging, our investigation of visual acuity revealed
that participants over age 40 had significantly lower visual
acuity levels, typically in dynamic visual acuity, than younger
participants. In a previous study [31], static and dynamic
visual acuities were measured for 276 participants using the
same vision measurement device used in this study; we
reanalyzed those results to investigate the declination of
vision with age. We found large decreases in vision test
passing rates among older drivers, especially for dynamic
visual acuity, using the Korean standard of static vision
acuity in its driver license system, 0.5 points (20/40), as

shown in Table 1. Even though the threshold of dynamic
visual acuity can be different from that of static visual acuity,
we applied the same threshold for dynamic vision.

In our evaluation of these data, 75.4% (56.9%+ 18.5%) of
the participants had adequate static visual acuity, as shown
in Table 2, while 28 participants (12 + 16 participants) failed
the dynamic visual acuity test and 16 participants failed both
the dynamic and static visual acuity tests. Such individuals
should not drive, considering their insufficient physical
performance in terms of dynamic visual ability. As dem-
onstrated here, vision performance typically declines much
more rapidly after the age of 50; therefore, driving in-
spections should be improved for those over the age of 50.

4.2. Driving Simulator Experiment Results

4.2.1. Visual Acuities and Driving Behaviors. In the driving
simulator experiments, many participants with lower visual
acuity levels drove with higher variations in speed, as can be
seen in Figure 3. )e data in Figure 3 and Tables 3 and 4 are
from the experimental highway segments where no unex-
pected incidents occurred, meaning these results represent
general driving conditions without any effects from inci-
dents. As can be seen in Figures 3(a)–3(c), the standard
deviation of driving behavior measures the driving perfor-
mance, including speed, brake force, and vehicle lateral
placement (LP), which were all relatively higher in drivers
with lower visual acuities. )ese trends were slightly more
obvious in the dynamic visual acuity results.

Tables 3 and 4 display the correlation results for the
daytime (scenario 1) and nighttime (scenario 2) experi-
ments, respectively. )ese results indicate that in the day-
time, visual acuities greatly influenced driving behavior, as
measured by the standard deviation of speeds and vehicle

Scenario1-#1 Scenario1-#2 Scenario1-#3

Scenario2-#1 Scenario2-#2 Scenario2-#3

Figure 2: Images of experimental scenarios.
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Table 1: Results of the vision test in different age groups.

Age
Static visual acuity

(people)
Dynamic visual acuity

(people) Total
(people)

Pass (%) Fail (%) Pass (%) Fail (%)
20–29 4 (100%) 0 4 (100%) 0 4
30–39 57 (98%) 1 (2%) 57 (98%) 1 (2%) 58
40–49 121(97%) 4 (3%) 115(92%) 10 (8%) 125
50–59 24 (71%) 10 (29%) 14 (41%) 20 (59%) 34
65–69 27 (69%) 12 (31%) 11 (28%) 28 (72%) 39
Over 70 11 (69%) 5 (31%) 5 (31%) 11 (69%) 16
Total 244 (88%) 32 (12%) 206 (75%) 70 (25%) 276
Source: these data are from the Korea Agency for Infrastructure Technology Advancement (2017) [25] to determine whether different age groups passed or
failed using the Korean standard for static visual acuity in its driver license system for all visual acuities. )e original study merely examined those visual
acuities to verify the Multifunctional Vision Test System developed by the study.

Table 2: Visual acuity evaluation results.

Groups categorized by visual acuities
No. of participants (%)

No.
Static Dynamic

Result Mean SD Result Mean SD
1 Pass 0.95 0.36 Pass 0.86 0.29 37 (56.9%)
2 Pass 0.57 0.08 Fail 0.33 0.09 12 (18.5%)
3 Fail 0.26 0.12 Fail 0.21 0.09 16 (24.6%)

Total 65 (100%)
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Figure 3: Continued.
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LPs, and this was especially notable in curved road segments.
Again, these results were more obvious for dynamic visual
acuity. Of these driving behavior measures, the standard
deviation of vehicle LPs had a stronger correlation with
visual acuities, typically dynamic visual acuity. )e Krus-
kal–Wallis test results showed that the differences in the
correlations of static and dynamic visual acuities with the
standard deviation of vehicle LPs only in the tangent road

section, and the standard deviation of speed and vehicle LPs
in the curved road section were statistically significant.

Meanwhile, in scenario 2 (nighttime), the correlations
between visual acuities and driver behavior measures were
less significant than those in the daytime (Table 4). )e
Kruskal–Wallis test results showed that differences of these
correlations of driving behavior measures with static and
dynamic visual acuity were not statistically significant in the
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Figure 3: Comparison of driving behaviors according to visual acuity. Comparison of SD of (a) speed, (b) brake force, and (c) lateral
placement according to visual acuity.

Table 3: Correlation analyses and Kruskal–Wallis tests in scenario 1 (daytime).

Categories SD of running speed SD of brake force SD of LP

Correlation test

Tangent road section
Static visual acuity −0.131

(p � 0.299)
−0.180

(p � 0.150)
−0.235

(p � 0.059)

Dynamic visual acuity −0.198
(p � 0.114)

−0.183
(p � 0.145)

−0.327∗
(p � 0.008)

Curved road section
Static visual acuity −0.253∗

(p � 0.042)
−0.127

(p � 0.312)
−0.253∗

(p � 0.042)

Dynamic visual acuity −0.356∗
(p � 0.004)

−0.183
(p � 0.145)

−0.352∗
(p � 0.004)

Kruskal–Wallis test
Tangent road section χ2 � 2.543

(p � 0.280)
χ2 � 0.156
(p � 0.925)

χ2 � 7.223∗
(p � 0.027)

Curved road section χ2 � 7.586∗
(p � 0.023)

χ2 �1.315
(p � 0.518)

χ2 � 6.754∗
(p � 0.034)

∗p value <0.05 (statistically significant).

Table 4: Correlation analyses and Kruskal–Wallis tests in scenario 2 (nighttime).

Categories SD of running speed SD of brake force SD of LP

Correlation test

Tangent road section
A static visual acuity −0.036

(p � 0.775)
0.079

(p � 0.532)
−0.065

(p � 0.606)

A dynamic visual acuity −0.069
(p � 0.587)

0.063
(p � 0.620)

−0.062
(p � 0.626)

Curved road section
A static visual acuity −0.210

(p � 0.093)
−0.149

(p � 0.236)
−0.160

(p � 0.202)

A dynamic visual acuity −0.241∗
(p � 0.050)

−0.142
(p � 0.258)

−0.251∗
(p � 0.043)

Kruskal–Wallis test
Tangent road section χ2 �1.533

(p � 0.465)
χ2 � 3.065
(p � 0.216)

χ2 � 0.073
(p � 0.964)

Curved road section χ2 � 4.471
(p � 0.107)

χ2 � 0.158
(p � 0.924)

χ2 � 4.049
(p � 0.132)

∗p value <0.05 (statistically significant).
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nighttime. )is indicates that there might be other influ-
encing factors that were not considered in this study, such as
nighttime visual acuity.

4.2.2. Visual Acuity and Driving Conflicts. Traffic conflicts
while driving in unexpected incident situations in the
daytime were used for comparing the groups divided
according to the determined visual acuity level. Table 5
displays the average number of conflicts for each group.
)e largest number of conflicts (3.3) was recorded for those
who passed the static acuity test but failed the dynamic
acuity test. Fewer conflicts (2.1) were observed for those who
passed all the acuity tests than for those who failed all of the
tests (2.2). Participants who failed the dynamic vision test
had more conflicts during the experiments, as can be seen in
Table 5.

)ese conflict results showed that the drivers with in-
sufficient dynamic visual acuity (even if they had acceptable
static visual acuity) were more frequently involved in traffic
accidents. )is confirms that dynamic visual acuity levels
strongly affect driving behavior and help to determine the
driving performance level. )ese findings suggest that the
driver license system in South Korea should include tests of
dynamic visual acuity to create safer driving conditions.

4.2.3. Analysis of the Effects of Visual Acuities on Reaction
Time. When a driver is slow to perceive and identify up-
coming dangerous situations, the risk of a collision increases.
For this reason, analyzing the effects of visual acuities on the
time needed for perceiving and identifying can be mean-
ingful. However, because it is generally quite difficult to
measure exact time for perceiving and identifying
approaching objects in the VR simulator experiment, we
used the entire perception reaction time (PRT) instead of
just time to perceive and identify ahead the object. )e
reaction time used in this study was derived from the fol-
lowing equation:

measured PRT � T1 − T2, (1)

Measured PRT (T1 and T2 were measured using raw data
related to driving behaviors that the driving simulator au-
tomatically produced.): time difference between time (T1)
when a driver starts to step on the brake and time (T2) when
the hazard obstacle appears ahead.

)e results showed a significant correlation between the
measured PRT and actual conflicts for incidents 1 and 3 in
both the daytime and nighttime experiments, as shown in
Table 6. However, results for incident 2 in the daytime and
nighttime experiments were not significant. )is might be
explained that incidents 1 and 3 occurred some distance
ahead and were completely unexpected, but incident 2, in
which a vehicle in the adjacent lane suddenly cut into the
driving lane, occurred in front of participants’ very eyes.
)erefore, incident 2 might have been relatively less affected
by the driver’s visual acuity. )ese results demonstrate that
PRT has a significant relationship with conflicts and possibly
with traffic accidents.

A regression analysis was conducted to investigate the
significant visual acuities that affected the measured PRT
(Table 7). Dynamic visual acuity had statistically significant
effects in both daytime and nighttime situations, but static
visual acuity was not statistically significant. )e PRT de-
creased as the dynamic visual acuity decreased, as the co-
efficient of the dynamic visual acuity was negative.)ere was
little difference in the coefficient values between daytime and
nighttime conditions. )is result confirms that dynamic
visual acuity, which measures how accurately a moving
object is observed, is an important driver aptitude in both
daytime and nighttime conditions.

4.2.4. Ability to Cope with Incidents according to Visual
Acuities. Generally, drivers with vision problems do not
cope well with sudden incidents, due the association of poor
vision with impaired cognitive capacity to respond quickly
and accurately. )e experiments in this study confirmed this
general tendency, as shown in Figure 4. Old drivers and non-
old drivers who passed the static and dynamic visual acuity
levels (Group 1) had similar speed and brake force patterns
(Figure 4(a)), but those who passed the static visual acuity
test but failed the dynamic visual acuity test (Group 2) had
different speed and brake force patterns. For example, to
cope with incident #3, non-old drivers started to brake and
reduced speed at the appropriate time, but old drivers started
to brake and reduced speed too late (Figure 4(b)). As
mentioned previously, about 70% of the old participants and
about 30% of the non-old participants in this experiment
failed in the dynamic vision test. In sudden incident events,
the worst behaviors were observed in participants with
insufficient dynamic vision acuity (about 10% of the drivers),
including sudden harsh braking due to late identification of
the incident. However, this difference was smaller in par-
ticipants who failed both static and dynamic vision tests
(Group 3) as can be seen in Figure 4(c). It might be because
drivers with poor static vision performance usually more
concentrate on ahead conditions in driving and are ready to
cope with them.

Figure 5 shows two examples of those extreme cases. )e
first case involved a 50-year-old female participant with 20
years of driving experience; she had driven five times per
week but failed both the static and dynamic visual acuity
tests.)e other case was an older male driver with 30 years of
driving experience who had driven every day. He failed the
dynamic visual acuity tests, although he passed the static
visual acuity test. Neither subject identified sudden events
fast enough to successfully respond. When the woman

Table 5: Comparison of driving conflicts according to visual acuity
performance.

Groups by determined visual
acuities Average conflicts of groups

Group no. Static Dynamic
1 Pass Pass 2.1
2 Pass Fail 3.3
3 Fail Fail 2.2
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Table 6: Correlation analyses between reaction time and conflicts in three incidents.

Categories Conflicts
Scenario 1 (daytime) Scenario 2 (nighttime)

Reaction time

Incident #1
(dog runs into road)

0.462∗
(p< 0.001)

0.564∗
(p< 0.001)

Incident #2
(car in adjacent lane veers)

0.063
(p � 0.666)

0.331∗
(p � 0.020)

Incident #3
(heavy vehicle approaches)

0.653∗
(p< 0.001)

0.632∗
(p< 0.001)

∗p value <0.05 (statistically significant).

Table 7: Regression models for conflicts using visual acuities.

Model Variable
Unstandardized coefficients

t Sig.
B Std. error

Daytime Constant 5.827∗ 0.417 13.986 0.000
Dynamic visual acuity −1.560∗ 0.638 −2.447 0.018

Nighttime Constant 2.644∗ 0.421 6.279 0.000
Dynamic visual acuity −1.658∗ 0.645 −2.572 0.013

∗p value <0.05 (statistically significant).
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identified a sudden event too late, she braked suddenly with
great force, demonstrating how in real-life situations, severe
crashes can be caused by low visual acuity. Figure 5 illus-
trates these participants’ behaviors.

5. Conclusions

For the sake of traffic safety, it is of vital importance to
determine whether drivers have adequate capabilities for
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Figure 4: Comparison of driving behaviors according to age for incident #3 in the daytime experiment. (a) Group 1 (passed both static and
dynamic vision tests). (b) Group 2 (passed the static vision test but failed the dynamic vision test). (c) Group 3 (failed both static and
dynamic vision tests).
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driving and to keep unqualified drivers off the roads.
)erefore, driver performance evaluations are essential for
identifying those not qualified to drive. However, there is
currently much debate regarding the effectiveness of the
driver license system in South Korea, due to the many traffic
crashes caused by drivers with insufficient physical and
mental abilities [34–39]. It is also quite difficult to assess
driving performance indirectly through physical tests, such
as visual acuity and muscle performance tests, because the
correlation of those results with driving performance is to
date unclear. )us, we conducted a driving performance
evaluation to improve traffic safety based on VR technology.

In the driving simulator experiments, many participants
with lower visual acuity levels drove with greater variations
in speed, failed to brake appropriately when confronted with
sudden incidents, and failed to avoid crashes. Here, we
produce statistically significant evidence that reduced visual
acuity impairs driving performance, and through designed
VR experiments, we demonstrate that the driving perfor-
mance of participants with insufficient dynamic visual acuity
can cause unsafe situations. We also found that dynamic
acuity has a great deal of influence on driving performance
in both the daytime and nighttime, and it can be an effective
criterion for driver qualification. )ese findings suggest that
the driver license system in South Korea should consider
including dynamic visual acuity testing for better and safer
driving.

However, there were some limitations to this study. )e
number of participants was only 65, not enough for ana-
lyzing the trends of declining visual acuity. Also, driving in
virtual scenarios is different from driving on real roads.
Nevertheless, this pioneering study shows how dynamic
visual acuity can explain driving performance; more sci-
entific studies are needed to prove that dynamic visual acuity
is a reliable screening factor which does not change easily
according to external circumstances or conditions. Also,
further studies with larger sample sizes are needed to analyze
more precisely the trends of visual acuity with aging, as well
as more detailed physical and mental criteria for driving,
such as hand-eye coordination, with the goal of finding
clearer correlations between age and driving performance. It
is necessary to test the driving performance of these same 65
participants on real roads to assess the similarity with the
findings of this study. And finally, as noted earlier, this study
applied the same threshold for both static and dynamic
visual acuities, even though they can be different. To address
this study limitation, more precise criteria and thresholds for
dynamic visual acuity should be determined through more
scientific driving performance studies.
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Human errors cause approximately 90 percent of traffic accidents, and drivers with risky driving behaviors are involved in about
52 percent of severe traffic crashes. Driver education using driving simulators has been used extensively to obtain a quantitative
evaluation of driving behaviors without causing drivers to be at risk for physical injuries. However, since many driver education
programs that use simulators have limits on realistic interactions with surrounding vehicles, they are limited in reducing risky
driving behaviors associated with surrounding vehicles. )is study introduces surrogate safety measures (SSMs) into simulator-
based training in order to evaluate the potential for crashes and to reduce risky driving behaviors in driving situations that include
surrounding vehicles. A preliminary experiment was conducted with 31 drivers to analyze whether the SSMs could identify risky
driving behaviors. )e results showed that 15 SSMs were statistically significant measures to capture risky driving behaviors. )is
study used simulator-based training with 21 novice drivers, 16 elderly drivers, and 21 commercial drivers to determine whether a
simulator-based training program using the SSMs is effective in reducing risky driving behaviors. )e risky driving behaviors by
novice drivers were reduced significantly with the exception of erratic lane-changing. In the case of elderly drivers, speeding was
the only risky driving behavior that was reduced; the others were not reduced because of their difficulty with manipulating the
pedals in the driving simulator and their defensive driving. Risky driving behaviors by commercial drivers were reduced overall.
)e results of this study indicated that the SSMs can be used to enhance drivers’ safety, to evaluate the safety of trafficmanagement
strategies as well as to reduce risky driving behaviors in simulator-based training.

1. Introduction

)e worldwide number of annual fatalities in traffic crashes
reached 1.35million each year, and this number continues to
increase steadily in the world [1]. Human errors cause about
90 percent of all road accidents [2], and the majority of
human errors involve risky driving. Drivers with risky
driving behaviors such as speeding, following other vehicles
too closely (tailgating), erratic driving, and violation of
traffic laws accounted for about 52% of severe traffic acci-
dents [3]. Moderating risky driving behaviors have been
achieved successfully using a variety of approaches that

combine education, engineering, and enforcement; this
approach to safety is known as the 3E principle [4]. Driver
education has been used extensively to reduce risky driving
behaviors. It has been reported to be an effective way to
reduce traffic accidents by detecting risky driving behaviors
and providing appropriate feedback to reduce these be-
haviors [5]. Risky driving behaviors should be measured and
evaluated quantitatively to give appropriate feedback to
drivers in order to reduce risky driving behaviors.

Current driver education programs have focused on
educating drivers about the skills and attitudes necessary to
become a safe driver. Videos and lectures about traffic
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regulations and automobile-related knowledge, on-road
training, and simulator-based training generally have been
used in driver education programs. Videos and lectures help
drivers acquire knowledge about driving safely by providing
information about traffic regulations and the appropriate
operation of automobiles. However, these approaches to
teaching drivers have limitations in that they do not help
improve the practical skills that are required in on-road
driving [6]. On-road training with a driving instructor is an
effective method to educate drivers to drive more safely on
the road. However, even professional instruction and on-
road training cannot address all of the potential crashes of
driving because they cannot expose drivers to the various
potential collision situations that can occur on the road.

Driving simulators are used extensively as a tool to
instruct drivers to drive in a common driving environment
as well as in collision situations that would be too dan-
gerous to create in actual on-road driving [7]. )e in-
structor can design various driving scenarios including
myriads of road and traffic environments, movements of
surrounding vehicles, and collision scenarios. )erefore,
driving simulators can be used to give risky drivers re-
peated training with various collision situations. Driving
simulators can be used to measure driving behaviors
quantitatively as well as to acquire the trajectory data for
surrounding vehicles [8]. However, there are issues con-
cerning the validity of virtual simulations of real driving
environments. Current studies have shown that they have
similar patterns, but the driving behaviors in driving
simulators and on-road driving may not be the same [7, 9].
In other words, driving simulators can be useful tools for
educational purposes in driver education programs. In fact,
the driving instructors involved in a previous study thought
that one-hour simulator training was as effective as three
hours of on-road training [10].

Most research on reducing risky driving behaviors based
on driving simulators has been conducted with a focus on
drivers’ eye movements and the movements of the subject
vehicle, i.e., movements such as erratic acceleration and
deceleration, speed variation, and lane deviation [11–14].
Since risky driving behaviors cause severe road crashes, it is
necessary to evaluate the crash potential in the interactions
between the subject vehicle and surrounding vehicles, such
as following leading vehicles (car-following) and changing
lanes (lane-changing). However, few studies have evaluated
the crash potential between the subject vehicle and sur-
rounding vehicles, which would address the interactions
between vehicles [15]. )is study implemented realistic
interactions between the subject vehicle and surrounding
vehicles in a driving simulator by applying traffic flow
models to the movements of surrounding vehicles. In ad-
dition, we examined surrogate safety measures (SSMs),
which are used extensively in the field of road safety as useful
measures for assessing crash potential or severity even on
roads where no actual collisions have occurred. )e SSMs
can increase our understanding of the situations that cause
collisions. In this study, the SSMs were used to evaluate risky
driving behaviors in order to evaluate vehicles’ crash
potentials.

)e aim of this study was to determine whether the SSMs
can identify risky driving behaviors in driving simulators
and whether the SSMs are effective in improving drivers’
behaviors when the SSMs are used as evaluation measures in
the simulator-based training.

2. Literature Review

Risky driving behaviors are defined differently by many
organizations and in many studies. Since the motivation of a
driver is difficult to determine, risky driving behaviors can
only be judged and evaluated based on the motions of ve-
hicles [16, 17]. Risky driving behaviors mean taking risks
that endanger the safety of both the driver and other road
users [18]. Generally, risky driving behaviors include
speeding, noncompliance with traffic laws, tailgating,
reckless changing speeds, erratic lane-changing, and threats
to other drivers (yelling and horn honking) [3, 16, 19].

Driving simulators have been used increasingly for
driver education because of the advantages they provide,
including the freedom to present drivers with a wide variety
of scenarios without any threat to their safety or the safety of
other people [20]. Studies on reducing or evaluating risky
driving behaviors using driving simulators have investigated
mainly risky driving behaviors in terms of the drivers’ re-
actions and the movements of vehicles. Studies of drivers’
reactions have used the movements of the eyes, the focus of
gazes, the duration of glances, and the number of fixations as
measures to evaluate drivers’ physical responses to collision
situations [11, 14, 21].)ese studies have shown that drivers’
perceptions of conflict situations improve after they have
had driver education in which eye-tracking systems to
improve the ability of novice drivers and older drivers to
recognize situations where collisions could occur. Various
studies have used response time, pressure on the accelerator,
and pressure on the brake pedal to measure drivers’ re-
sponses to collision situations and red lights at intersections
[12, 13, 22]. Measures related to drivers’ reactions were used
mainly to evaluate risk perception rather than to reduce
risky driving behaviors.

Most of the studies related to the movements of vehicles
have focused on the movements of the subject vehicle, and
they evaluated primarily the risky behaviors of the drivers of
the subject vehicle, e.g., erratic steering control, speeding,
and tailgating. Erratic steering control involves the driver’s
sudden and unexpected changes in steering the vehicle or
how far the driver allows the vehicle to deviate from the
center of its lane. )e steering angle, steering reversal rate,
lane deviation, and mean lane position have been used in
assessing erratic steering control [13, 14, 22–24]. Velocity,
mean speed, speed variation, speeding, and acceleration are
speeding-related measures that can be used to determine the
driver’s compliance with the speed limit and the reckless
changing of speed [13, 14, 22, 25]. Evaluations of the gap
distance between vehicles and time-to-collision (TTC) with
a leading vehicle were made mainly in a car-following sit-
uation [15, 22]. However, the gap distance between vehicles
and the TTC between the subject vehicle and the leading
vehicle cannot take into consideration the accelerations and
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decelerations of either vehicle. Also, few studies have con-
sidered the potential for crashes between vehicles when they
are changing lanes [26].

Most studies have attempted to evaluate the effects of
simulator-based training on risky driving behaviors. )ese
studies focused principally on risky driving behaviors related
to the movements of the subject vehicle. Since most risky
driving behaviors require consideration of the subject ve-
hicle’s interactions with surrounding vehicles, it is essential
to evaluate the crash potential with one or more of the
surrounding vehicles. However, research considering the
interactions between vehicles has rarely been conducted
because the movements of surrounding vehicles would not
be implemented realistically. )is study attempted to in-
troduce the SSMs into a simulator-based training program
to evaluate the crash potential between vehicles and to re-
duce the risky driving behaviors associated with the sur-
rounding vehicles.

3. Methodology

3.1. Framework. )is study consisted of three parts: a survey
of SSMs and scenario design, a preliminary experiment, and
a simulator-based training program (see Figure 1).)e SSMs
can be classified into measures that consider only the subject
vehicle and measures that consider both the subject vehicle
and surrounding vehicles. Before the SSMs were used as
measures of driving behaviors, it was necessary to test
whether the SSMs could detect risky driving behaviors and
conservative driving behaviors in a driving simulator. )is
study conducted a preliminary experiment for the sensitivity
analysis of SSMs. )e purpose of the sensitivity analysis of
SSMs was to ensure that SSMs could detect extreme driving
behaviors, i.e., normal, conservative, and risky driving. In a
preliminary experiment, each driver was required to engage
in one of the three types of driving behaviors (normal,
conservative, and risky) in the driving simulator. Finally, this
study used a quantitative evaluation based on the SSMs to
analyze whether drivers reduced their risky driving be-
haviors after engaging in the simulator-based training
program.

3.2. Survey of Surrogate Safety Measures. Since a simulator-
based training requires immediate feedback concerning
which driving behaviors are risky in the various driving
scenarios, it is crucial to be able to calculate the SSMs used in
the simulator-based training within a short time after
driving in the driving simulators. )is study reviewed nu-
merous studies about road safety in order to investigate the
SSMs that can be used in simulator-based training, and 31
SSMs were selected as alternatives. Since 11 of the SSMs were
challenging to calculate instantaneously in driving simula-
tors or unsuitable in evaluating driving behaviors, 20 out of
the 31 SSMs were selected as implementable SSMs. For
example, the Crash Index is a measure concerning the se-
verity of a potential crash, and it is presented in the form of
the kinetic energy of the crash [27]. It is challenging to
translate kinetic energy values into an easily understandable

account of the risk associated with a given participant’s
driving behaviors. )us, this study excluded the Crash Index
from the implementable SSMs and selected implementable
SSMs as measures that can be explained easily to the drivers
in simulator-based training.

)e implementable SSMs were divided into “Relating to
the subject vehicle” and “Relating to surrounding vehicles,”
depending on whether or not the SSMs related to interac-
tions with surrounding vehicles. )e SSMs relating to the
subject vehicle can be calculated without any interactions
with surrounding vehicles (nos. 1 to 9 in Table 1). )e SSMs
relating to surrounding vehicles consider interactions with
surrounding vehicles, such as car-following situations and
lane-changing situations (nos. 10 to 20 in Table 1). )e gap
distance in the car-following situation (no. 10) was used to
confirm the validation of driving errors between the driving
simulator and on-road driving [7]. )e time-to-collision
(TTC, no. 12) was used for studies in which driving be-
haviors in critical situations were compared [15, 22, 35].
However, the gap distance and the TTC between the subject
vehicle and the leading vehicle have the limitation that the
difference between the acceleration of the subject vehicle and
the deceleration of the leading vehicle cannot be considered.
)is study used modified TTC (no. 13) and deceleration rate
to avoid crash (no. 14) to evaluate the crash potential by
considering the difference between the acceleration of the
subject vehicle and the deceleration of the leading vehicle in
situations where the subject vehicle is following the leading
vehicle. )e study in which the driving behaviors were
analyzed in the lane-changing situation used the gap dis-
tance (no. 16 and no. 17) with the surrounding vehicles in a
target lane [26].)is study adopted the SSMs (nos. 13, 14, 19,
and 20) that had not been used to reduce risky driving
behaviors in existing driving education programs to assess
the crash potential between the subject vehicle and sur-
rounding vehicles properly. )e contribution of this study is
to secure the effectiveness of driver education by capturing
interactions between a subject vehicle and surrounding
vehicles based on the simulator-based training using SSMs
and then ultimately induce the prevention and reduction of
road accidents.

)e SSMs consist of measures with a single outcome for
the dataset and measures with continuous outcomes cal-
culated at every time step of the dataset. Accumulated
speeding (AS), speed uniformity (SU), speed variation (SV),
acceleration noise (AN), and lane deviation were measured
with a single outcome and calculated after completing the
driving scenarios. Measures with continuous outcomes
should be transformed into a single representative value in
order to evaluate how risky the drivers’ driving behaviors
were.

A single representative value of SSMs can be obtained
either as the maximum (minimum) value of total outcomes,
such as Max S, i.e., the maximum velocity in a conflict
situation [33] or as the ratio of conflicts defined as exceeding
the threshold value of each measure [27, 36]. )is study
adopted the minimum value as the representative value for
SSMs related to lane-changing situations (see nos. 15 to 20 in
Table 1). )e method to define the threshold value for
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3.2 Survey of surrogate
safety measures

Subject vehicle
Subject vehicle and
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(i)
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31 drivers (preliminary
experiment)
58 drivers (simulator-
based training)

(i)

(ii)
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(i)
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3.3 Driving simulator
and scenario design
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(i)
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Driving before
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Intervention (feedback)
Driving after
intervention

(i)

(ii)
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3.5 Simulator-based
training

3.6 Participants

Figure 1: Framework of the study.

Table 1: Description of implementable surrogate safety measures.

Relation with
surrounding vehicles No. Surrogate safety measure Unit Description

Relating to the subject
vehicle

1 Accumulated speeding (AS) kph
)e normalized relative area (per unit length) bounded between the
speed profile values higher than the speed limit and the speed limit

line [28]

2 Speed uniformity (SU) kph )e normalized relative area (per unit length) bounded between the
speed profile and the average speed line [28]

3 Speed variation (SV) kph )e standard deviation of the speed
4 Acceleration (%) m/s2 )e acceleration of the subject vehicle
5 Deceleration (%) m/s2 )e deceleration of the subject vehicle
6 Acceleration noise (AN) m/s2 )e root mean square deviation of the acceleration [29]
7 Lane deviation m )e standard deviation of lane position [30]
8 Yaw rate (%) °/s )e rotational velocity around the z-axis of the subject vehicle [31]
9 Lane change (%) — )e number of lane change manoeuvres completed

Relating to
surrounding vehicles

10 Gap distance (%) (GD) m )e longitudinal distance along a travelled way between one vehicle’s
leading surface and another vehicle’s trailing surface [32]

11 Proportion of stopping
distance (%) (PSD) — )e ratio of the distance available for manoeuvring to that of the

necessary stopping distance to a projected point of collision [33]

12 Time-to-collision (%) (TTC) sec
)e time interval required for one vehicle to strike another object if
both objects continue on their current paths at their current speed

[32]

13 Modified TTC (%) (MTTC) sec
)e time interval required for one vehicle to strike another object if
both objects continue on their current paths at their current speed

and acceleration [32]

14 Deceleration rate to avoid
crash (%) (DRAC) m/s2

)e deceleration required by the following vehicle to come to a timely
stop or attain a matching lead vehicle speed to avoid a rear-end crash

[34]

15 Min_Front_GD m )e minimum value of gap distance (GD) with leading vehicle of
current lane in lane-changing situation

16 Min_Lag_GD m )e minimum value of gap distance (GD) with lag vehicle of target
lane in lane-changing situation

17 Min_Lead_GD m )e minimum value of gap distance (GD) with leading vehicle of
target lane in lane-changing situation

18 Min_Front_TTC sec )e minimum value of time-to-collision (TTC) with leading vehicle
of current lane in lane-changing situation

19 Min_Lag_TTC sec )e minimum value of time-to-collision (TTC) with lag vehicle of
target lane in lane-changing situation

20 Min_Lead_TTC sec )e minimum value of time-to-collision (TTC) with leading vehicle
of target lane in lane-changing situation
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counting the number of conflicts in each of the SSMs was
derived from the existing literature [37]. )e 85th percentile
value of total participants’ driving data distribution was used
as the threshold for SSMs for which higher values indicated
more risky driving behaviors (acceleration (%), yaw rate (%),
lane change (%), gap distance (%), and proportion of
stopping distance (%)). For SSMs for which lower values
indicated more risky driving behaviors (deceleration (%),
time-to-collision (%), modified TTC (%), and deceleration
rate to avoid crash (%)), the 15th percentile value of total
participants’ driving data distribution was used as the
threshold.

3.3. Driving Simulator and Scenario Design. )e driving
simulator used in this study was mounted on a six-degree-
of-freedom motion system, with a size of
3500× 3500× 3500mm. )e visual system for the driving
simulator consisted of three 43-inch full HD LED monitors,
providing a 150-degree field of view with a resolution of
5760×1080 pixels and a 60Hz refresh rate. )e virtual
environment with various driving conditions was repre-
sented through the three monitors, with rear-view and side-
view mirrors visible on the center monitor and side mon-
itors, respectively (Figure 2(a)). )e vehicle dynamics were
validated based on the real motion of the Hyundai Sonata.

A part of the street grid in Seoul was implemented in a
virtual environment in order to enhance the reality of the
driving environment. )e total length of the designed route
in the scenario was 10.1 km, including freeway (2.3 km),
urban roads (6.0 km), and rural roads (1.8 km) (Figure 2(b)).
)e freeway consisted of the main freeway segment with a
posted speed limit of 110 kph and an off-ramp. )e urban
roads included ten signal intersections located every
200–400m on a four-lane two-way road with a speed limit of
60 kph. )e rural roads were either two- or four-lane, two-
way roads with a speed limit of 80 kph.

)e movements of surrounding vehicles significantly
determine the mental load and ability to drive a vehicle. If
the movements of the surrounding vehicles were not real
enough, there is a possibility that drivers will drive a vehicle
differently than they would in actual driving, meaning that
the results and conclusions obtained from the simulation
would not be applicable in actual driving. Many studies
using driving simulators have been limited in expressing
realistic movements because the movements of the vehicles
were very strictly controlled to assess the drivers’ abilities in
certain crash situations [38]. )erefore, if the movements of
the surrounding vehicle are unrealistic and strictly con-
trolled irrespective of the movements of the subject vehicle,
it would be difficult to expect the reduction of risky driving
behaviors in actual driving on the road through simulator-
based training. In order to implement the realistic inter-
actions with surrounding vehicles, traffic flow models (i.e., a
car-following model, a lane-changing model, and a gap-
acceptance model) were modeled based on video data and
vehicle trajectory data, and then, they were applied to the
movements of the surrounding vehicles. Using the traffic
flow models had the additional benefit of showing different

movements in each trial, thereby increasing the sense of
reality and preventing participants from adapting to the
scenario [38]. )e generalized model of car-following was
estimated with data obtained from random vehicles on the
West-Hanam IC and the West-Icheon IC of the Jungbu
Highway [39]. )e lane-changing model was implemented
based on the vehicle trajectory data measured by nine video
cameras in the upper 400m section of the Middle East IC of
the Seoul Ring Expressway for discretionary and mandatory
lane-changing. )e parameters of a logit model were esti-
mated with the gap distance and the speed of the subject
vehicle as independent variables. )e logit model was es-
timated for the gap-acceptance model at the intersection.
Data were collected using video cameras at six intersections
in Seoul to estimate the parameters of the gap-acceptance
model, and the data included the time gap, type of vehicle,
and traffic volume. )is study estimated the parameters of
the logit models for an unprotected left turn, an unprotected
right turn, and a roundabout using collected data.

3.4. Preliminary Experiment for Extreme Driving Behaviors
with SSMs. )is study conducted a preliminary experiment
to analyze the sensitivity of SSMs for extreme driving be-
haviors. Before participating in the preliminary experiment,
the participants were shown how to control a driving
simulator and performed one to three minutes of practice
driving to prevent simulator sickness and to adapt to the
virtual environment of the driving simulator. To use the
SSMs that could measure the crash potential of surrounding
vehicles in a driving simulator, the sensitivity analysis of the
SSMs was required to determine whether they could capture
risky driving behaviors. In this study, the experimental
methods that had been used in previous studies were used to
analyze the sensitivity of the SSMs to extreme driving be-
haviors. Past participants were involved in a study of ex-
treme driving behaviors that compared the difference in fuel
consumption depending on driving behaviors and com-
pared the difference in the performance of an urban network
on driving behaviors [40, 41].

Participants in the preliminary experiment were asked to
drive “normally,” “conservatively,” or “riskily.” In normal
driving, the participants drove the way they usually drive. In
the conservative driving condition, the participants were
asked to maintain a greater safe following distance, accel-
erate and decelerate as gently as possible, and keep their
speed under the speed limit. In risky driving, the participants
were required to complete their driving route within 10
minutes rather than the typical 15 minutes, to follow the
leading vehicle more closely than the recommended safe
distance, and to change lanes and the speed of the vehicle
erratically.

3.5. Simulator-Based Training to Improve Driving Behaviors.
)is study used SSMs that statistically could capture risky
and conservative driving within the simulator-based train-
ing conducted by the Korea Transportation Safety Authority
(KOTSA). )e simulator-based training consisted of three
parts, i.e., driving before the intervention, intervention
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(feedback based on results of driving behaviors), and driving
after the intervention.

Before the intervention, the participants drove an in-
troduction drive for 1 to 3 minutes to become accustomed to
the control of the driving simulator and the virtual envi-
ronment. Subsequently, they drove the driving scenario as
they usually would do, allowing the instructor to examine
the extent of their risky driving behaviors.

)e intervention consisted of two parts: feedback with a
video replay of the driver’s driving and a commentary video.
)e instructors provided feedback to the participants con-
cerning how risky they drove in terms of six risky driving
behaviors, i.e., speeding, reckless changing speed, rapid
acceleration and deceleration, erratic steering control, tail-
gating, and erratic lane-changing. )e speeding, reckless
changing speeds, rapid acceleration and deceleration, and
erratic steering control only assessed the movements of the
subject vehicle. In contrast, the tailgating and erratic lane-
changing assessed the crash potential with the surrounding
vehicles in the normal driving environment. In typical
drivers’ education programs, the instructor evaluates the
drivers’ driving behaviors based on the movements of the
subject vehicle and the crash potential with the surrounding
vehicles in specific situations (i.e., speeding, reckless
changing speeds, rapid acceleration and deceleration, and
erratic steering control). In the simulator-based training
using the SSMs of this study, the instructor informed the
drivers the risky driving behaviors, including situations in
which they were following a vehicle and changing lanes in a
common driving environment and were riskier than other
drivers. In other words, the contribution of this study is to
evaluate the movements of the subject vehicle as well as the
interactions between vehicles by identifying the risky driving
behaviors such as tailgating in car-following situations and
erratic lane-changing in lane-changing situations. Also, the
instructor educated the drivers about safe methods for
driving on the road to reduce the crash potential between the
vehicles. In the commentary video, videos of actual crashes

attributable to each of the six risky driving behaviors were
shown to encourage safe driving.

After the feedback session at the end of the intervention,
the drivers were asked to drive again so that their driving
behaviors could be observed in order to determine whether
their driving behaviors had been improved; i.e., whether
their risky driving behaviors were reduced. )e instructor
showed the participants how much their driving had im-
proved in terms of the frequency of six risky driving be-
haviors and to encourage safe driving.

3.6. Participants. For this study, we posted advertisements
and recruited 43 participants for the preliminary study. Out
of the 43 participants, 12 participants dropped out of the
experiment due to simulator sickness, leaving 31 partici-
pants, i.e., 21 males and 10 females. )e average age of the
participants was about 36 years old, and the average driving
experience of participants was almost 13 years.

Existing research on simulator-based training was
mainly conducted with novice, elderly, and commercial
drivers [13, 20, 23, 42, 43] because drivers in these three
groups tend to have higher accident rates, making them the
primary targets for improving risky driving [44–46]. Par-
ticipants in the simulator-based training were recruited
separately from the three driver groups by posted adver-
tisements. Out of 69 participants, 11 participants dropped
out of the experiment due to simulator sickness, leaving 58
participants, i.e., 21 novice drivers, 16 elderly drivers, and 21
commercial drivers. )e average age of the participants was
approximately 46 years old, and the average driving expe-
rience of participants was slightly more than 20 years. )e
demographic statistics of the participants are provided in
Table 2.

4. Results

4.1. Results of the Sensitivity Analysis for Extreme Driving
Behaviors with SSMs. In this study, we conducted a

(a)

Freeway (2.3km)
Urban (6.0km)

Rural (1.8km)
Toll plaza

Finish

Start

(b)

Figure 2: Driving simulator and scenario in this study: (a) the driving simulator set-up; (b) the designed route in the scenario.
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sensitivity analysis for extreme driving behaviors to test
whether SSMs could significantly distinguish between
normal, conservative, and risky driving. Twenty SSMs
were analyzed for extreme driving behaviors for 31
drivers. )e SSMs were analyzed for the entire road
section and the freeway section because the lane-changing
in the urban road section was forced due to the direction
of the designed travel route, in contrast to the discre-
tionary lane changes in the freeway section. In this study,
driving behaviors except lane-changing were evaluated
over the entire road section, but lane-changing was
evaluated only for the freeway section. Also, an ANOVA
test and a post-hoc test (Tukey HSD) at the 95% signif-
icance level were performed to evaluate whether the SSMs
could detect significant differences in extreme driving
behaviors across the different conditions.

Differences were not statistically significant for five SSMs,
i.e., lane deviation, DRAC, Min_Front_GD, Min_Lead_GD,
and Min_Lag_TTC (Table 3). Lane deviation and DRAC,
which evaluate driving behavior over the entire road section,
did not exhibit significant differences. Few studies have
compared lane deviations for different degrees of extreme
driving behaviors. However, one previous study found that
there was no significant difference in the mean of lane de-
viation before and after training [25]. In contrast to GD, TTC,
and DRAC, the measure of minimum deceleration to avoid a
collision has been known to be limited to reflect a conflict
situation, and drivers may fail to adjust DRAC to avoid a
conflict situation [47].

When a driver changes lanes on the freeway, the
subject vehicle enters the target lane at a higher speed than

the front vehicle in the current lane and the lead vehicle in
the target lane. Min_Front_GD and Min_Lead_GD be-
come shortened when changing lanes, and the driver
changed lanes in a situation in which the driver main-
tained the distance between the surrounding vehicles
necessary for changing lanes. Regardless of the driver’s
extreme driving behaviors, Min_Front_GD and Min_-
Lead_GD were not significantly different. However,
Min_Front_TTC and Min_Lead_TTC, which reflect the
relative speed differences between vehicles, showed sta-
tistically significant differences because the entry speed in
risky driving is higher than that in conservative driving.
Min_Lag_GD showed a statistically significant difference
because drivers changed lanes at a shorter gap distance in
risky driving and a longer gap distance in conservative
driving than in normal driving. In the scenario of this
study, the lag vehicle in the target lane decelerated when
the subject vehicle entered the target lane because the car-
following model was applied to the movements of sur-
rounding vehicles. )erefore, there was no statistically
significant difference between the extreme driving be-
haviors of Min_Lag_TTC due to the decrease in the speed
of the lag vehicle even though the distance between the
subject vehicle and the lag vehicle in the target lane was
shorter in risky driving.

4.2. Results of Improvement for Risky Driving Behaviors with
SSMs. In this study, we classified 15 SSMs into six types of
risky driving behaviors to improve the driver’s under-
standing of SSMs in an intervention of simulator-based

Table 2: Demographics of the participants in this study.

Type
Preliminary experiment (n� 31) Simulator-based training (n� 58)

N Percent (%) N Percent (%)
Age
20–29 13 41.94 20 34.48
30–39 7 22.58 2 3.44
40–49 6 19.35 4 6.90
50–59 2 6.45 16 27.59
≥60 3 9.68 16 27.59

Gender
Male 21 67.74 43 74.14
Female 10 32.36 15 25.86

Driving years
≤2 years 6 19.35 21 36.21
3–20 years 16 51.61 5 8.62
21–39 years 8 25.81 25 43.10
≥40 years 1 3.23 7 12.07

Crash experience
None 26 83.87 42 72.41
1 2 6.45 4 6.90
2 3 9.68 11 18.97
≥3 0 0.00 1 1.72

Traffic violation
None 24 77.41 37 63.79
1 5 16.13 13 22.41
2 1 3.23 4 6.90
≥3 1 3.23 4 6.90
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training. Fifty-eight drivers were provided with feedback on
their driving behaviors based on 15 SSMs in simulator-based
training, and they were taught how to reduce their risky
driving behaviors.

4.2.1. Comparison among Novice, Elderly, Commercial, and
Typical Drivers. Before analyzing the effect of simulator-
based training using SSMs on the improvement of driving
behaviors, it was necessary to identify how risky the drivers
participating in the simulator-based training were. )is is
because drivers who had safe driving behaviors were less likely
to improve their driving behaviors, even though they were
trained. In this study, 31 drivers who participated in the
sensitivity analysis experiment were selected as typical drivers
to compare with the three driver groups, i.e., novice, elderly,
and commercial drivers. Because the 31 drivers were recruited
randomly irrespective of gender, age, and driving experience,
the risky driving behaviors of the three driver groups before
the intervention were analyzed and compared based on the
normal driving of typical drivers. )e larger the values of
Min_Lag_GD, Min_Front_TTC, and Min_Lead_TTC were,
the safer the drivers’ driving behaviors drivers were. )e
smaller the values of the other SSMswere, the safer the driving
behaviors of the drivers were (see Figure 3).

Novice drivers were found to be riskier than typical
drivers except for Min_Lag_GD and Min_Lead_TTC (see
Figure 3). Novice drivers have poor driving skills because of
low driving experience [48]. Since novice drivers have diffi-
culty in maintaining a safe distance from a leading vehicle
because of their lack of driving experience, they were inclined
to tailgate leading vehicles to a greater extent than typical
drivers. Also, novice drivers had limited in-advance per-
ception of dangerous situations, and therefore, it also was
difficult for them to maintain a constant speed [43].

Elderly drivers were found to be riskier than typical
drivers in the cases of deceleration, AN, and yaw rate. In
contrast, other measures of elderly drivers were similar to or
safer than that of typical drivers (see Figure 3). )ese results
were consistent with the results that elderly drivers do not
perceive the brake pedal pressure in the driving simulator as
accurately as young drivers [43].

Commercial drivers were found to be riskier than
typical drivers except for lane change and four SSMs
related to tailgating (see Figure 3). )is suggests that
commercial drivers tend to be more risky drivers than
typical drivers to save time, but maintaining a safe dis-
tance from a leading vehicle is essential for drivers of
heavy trucks and buses [42].

4.2.2. Comparison of before and after Intervention by Driver
Group. )e SSMs used as evaluation measures were sta-
tistically tested at the 95% significance level with paired t-
tests to determine whether drivers’ behaviors improved
before and after the training in simulator-based training (see
Table 4). In the case of novice drivers, Min_Lag_GD and
Min_Front_TTC in lane-changing situations showed that
the improvement before and after the training was not
statistically significant. With the exception of AS, acceler-
ation, deceleration, and AN, elderly drivers did not show
statistically significant improvements after the training. In
the case of commercial drivers, there were statistically sig-
nificant differences for all measures except for Min_-
Front_TTC in lane-changing situations. )e improvement
in driving behaviors after the training was the greatest in
commercial drivers and the least in elderly drivers.

In the case of novice drivers, the improvements in
speeding, rapid acceleration and deceleration, and tailgating

Table 3: Summary of statistics for surrogate safety measures in sensitivity analysis.

No. SSMs
Entire road section Freeway section

ANOVA Post-hoc ANOVA Post-hoc
F-value p-value p-value F-value p-value p-value

1 AS F(2, 90)� 33.12 0.00 0.00
2 SU F(2, 90)� 35.73 0.00 0.00
3 SV F(2, 90)� 37.69 0.00 0.00
4 Acceleration F(2, 90)� 16.80 0.00 0.00
5 Deceleration F(2, 90)� 39.24 0.00 0.00
6 AN F(2, 90)� 28.41 0.00 0.00
7 Lane deviation F(2, 90)� 0.41 0.66 —
8 Yaw rate F(2, 90)� 30.77 0.00 0.00
9 Lane change F(2, 90)� 7.71 0.00 0.00
10 GD F(2, 90)� 29.05 0.00 0.00
11 PSD F(2, 90)� 29.58 0.00 0.00
12 TTC F(2, 90)� 16.22 0.00 0.00
13 MTTC F(2, 90)� 14.28 0.00 0.00
14 DRAC F(2, 90)� 2.91 0.06 —
15 Min_Front_GD F(2, 90)� 2.95 0.06 —
16 Min_Lag_GD F(2, 90)� 11.74 0.00 0.00
17 Min_Lead_GD F(2, 90)� 2.76 0.07 —
18 Min_Front_TTC F(2, 90)� 6.33 0.00 0.04
19 Min_Lag_TTC F(2, 90)� 0.16 0.85 —
20 Min_Lead_TTC F(2, 90)� 8.87 0.00 0.01
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Figure 3: Comparison of surrogate safety measures by driver group: (a) AS (speeding); (b) SU (reckless changing speeds); (c) SV (reckless
changing speeds); (d) acceleration (rapid acc. and dec.); (e) deceleration (rapid acc. and dec.); (f) AN (rapid acc. and dec.); (g) yaw rate (erratic
steering control); (h) lane change (erratic steering control); (i) GD (tailgating); (j) PSD (tailgating); (k) TTC (tailgating); (l) MTTC (tailgating); (m)
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were significant, but no significant improvements were
observed in erratic lane-changing (see Table 4). )rough the
simulator-based training, most novice drivers improved
their ability to maintain a safe distance from the leading
vehicle. However, they did not show improvement in
keeping a safe distance from adjacent vehicles in lane-
changing situations. )erefore, although novice drivers
improved following the simulator training in the car-fol-
lowing situation, additional training should be provided for
maintaining a safe distance between vehicles when changing
lanes.

Elderly drivers showed improvement in speeding, rapid
acceleration, and deceleration (see Table 4). Since elderly
drivers tend to be more defensive than other driver groups,
they showed the least improvement in risky driving be-
haviors of the three driver groups. Compared to the
younger drivers, elderly drivers were less aware of the brake
pedal pressure in a driving simulator during deceleration.
)ey showed a tendency to decrease speed rapidly in the
driving simulator before the intervention. After the in-
tervention, the deceleration behavior of elderly drivers was
improved because the instructors requested that they begin
their deceleration earlier to prevent erratic deceleration.
However, there is a limit to the conclusions that the
simulator-based training improved the erratic decelerating
behavior of elderly drivers since their erratic deceleration
behavior may have resulted from their use of the driving
simulator.

After the intervention, the driving behaviors of com-
mercial drivers were improved in all 15 SSMs. )e im-
provements in speeding, rapid acceleration, rapid
deceleration, and tailgating were more significant than the
other risky driving behaviors (see Table 4). Since the
commercial drivers had shown more risky driving behaviors
than other groups of drivers, their driving behaviors were
improved to a greater extent by the simulator-based training
than driving behaviors of drivers for other groups. )ese

results showed that the simulator-based training program is
effective in reducing risky driving behaviors of various driver
groups by providing feedback on how risky their driving
behaviors are.

5. Conclusions

)is study implemented SSMs in a simulator-based
training program to evaluate the crash potential with
surrounding vehicles. )e movements of surrounding
vehicles need to be realistic to consider the interactions
with surrounding vehicles in driver education. Traffic flow
models developed from data collected on real roads were
implemented for the movements of surrounding vehicles
(car-following, lane-changing, and gap-acceptance at
intersection). Twenty SSMs were implemented in the
driving simulator. )e preliminary experiment that was
conducted with 31 participants verified that 15 SSMs
could be used to capture risky driving behaviors. )e 15
selected SSMs were used as the measure for current
simulator-based training in the Republic of Korea to
evaluate the driving behaviors of novice, elderly, and
commercial drivers.

After the intervention of the simulator-based training,
the risky driving behaviors of novice drivers, elderly
drivers, and commercial drivers were reduced in different
ways. In the case of novice drivers, additional on-road
training was required to reduce risky driving behaviors in
lane-changing situations. For elderly drivers, the speeding
and rapid acceleration behaviors were improved. However,
other risky driving behaviors were not statistically reduced
because elderly drivers already drive vehicles safely so that
there was nothing to improve significantly except for
speeding, rapid acceleration, and deceleration. )e training
using the driving simulator reduced the risky driving be-
haviors of commercial drivers. )e reason that simulator-

Table 4: Summary of statistics for surrogate safety measures in before and after intervention.

Types of risky driving
behaviors SSMs

Novice Elderly Commercial
(n� 21) (n� 16) (n� 21)

μbefore μafter t-stat μbefore μafter t-stat μbefore μafter t-stat
(p-value) (p-value) (p-value)

Speeding AS 3.54 1.48 5.41 (0.00) 0.71 0.29 2.46 (0.03) 2.83 0.42 5.54 (0.00)

Reckless changing speeds SU 15.03 12.97 4.10 (0.00) 13.51 12.73 1.29 (0.22) 15.50 13.37 5.20 (0.00)
SV 30.62 25.53 6.34 (0.00) 23.00 21.86 1.92 (0.07) 28.70 23.50 9.19 (0.00)

Rapid acceleration and
deceleration

Acceleration 0.24 0.15 6.94 (0.00) 0.21 0.17 2.28 (0.04) 0.24 0.14 8.70 (0.00)
Deceleration 0.17 0.11 6.07 (0.00) 0.14 0.12 2.46 (0.03) 0.17 0.10 7.01 (0.00)

AN 2.97 2.27 6.20 (0.00) 2.80 2.49 3.19 (0.01) 2.95 2.04 8.54 (0.00)

Erratic steering control Yaw rate 0.14 0.12 2.85 (0.01) 0.13 0.12 1.95 (0.07) 0.14 0.12 3.57 (0.00)
Lane change 39.38 36.43 1.89 (0.07) 35.94 33.69 1.35 (0.20) 37.10 33.90 3.36 (0.00)

Tailgating

GD 0.14 0.07 3.84 (0.00) 0.02 0.02 0.08 (0.94) 0.09 0.04 4.32 (0.00)
PSD 0.19 0.10 4.42 (0.00) 0.04 0.03 0.56 (0.58) 0.12 0.06 5.07 (0.00)
TTC 0.21 0.17 2.51 (0.02) 0.07 0.06 1.04 (0.31) 0.14 0.10 4.39 (0.00)
MTTC 0.24 0.15 4.39 (0.00) 0.17 0.14 1.77 (0.10) 0.18 0.10 4.67 (0.00)

Erratic lane-changing
Min_Lag_GD 27.75 49.99 −0.88 (0.39) 79.01 90.95 −0.29 (0.78) 5.42 84.24 −2.45 (0.02)

Min_Front_TTC 76.71 91.01 −0.30 (0.77) 117.18 76.87 0.89 (0.39) 27.97 127.39 −2.78 (0.05)
Min_Lead_TTC 17.09 41.00 −2.66 (0.02) 58.17 60.47 −0.15 (0.88) 16.38 48.78 −2.78 (0.01)
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based training was most effective for reducing the risky
driving behaviors for commercial drivers was that their
behaviors were risky compared to the behaviors of other
groups of drivers.

)e results of this study showed that SSMs could be used
both for road safety and traffic management strategies and
for the evaluation of individual drivers’ driving behaviors in
driver education. However, there were two limitations in this
study that should be addressed in future research. First, the
possibility that adaptation to manipulating a driving sim-
ulator after the intervention has a positive effect on reducing
risky driving behaviors cannot be ruled out. )is study did
not compare drivers trained in simulator-based training
using SSMs with drivers trained in the previous simulator-
based training. In this study, there are improvements in
various driving behaviors by giving the drivers feedback
using SSMs, but it is possible that intervention without SSMs
also could contribute to reducing risky driving behaviors.
)erefore, future research should determine the extent to
which the intervention based on feedback using SSMs
contributes to reducing risky driving behavior compared to
existing simulator-based training. Second, it is unclear
whether simulator-based training using SSMs will result in
the reduction of risky driving behaviors in actual driving.
)is study only analyzed instantaneous training effects in
simulator driving. Future research should examine how
simulator-based training using SSMs reduces risky driving
behaviors in actual driving.)erefore, it is necessary to study
whether the trends of SSMs are the same by comparing
drivers in the existing simulator-based training with those in
the simulator-based training proposed in this study by
comparing actual driving data with data from the driving
simulator.
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Driving simulation is an efficient, safe, and data-collection-friendly method to examine driving behavior in a controlled en-
vironment. However, the validity of a driving simulator is inconsistent when the type of the driving simulator or the driving
scenario is different.)e purpose of this research is to verify driving simulator validity in driving behavior research in work zones.
A field experiment and a corresponding simulation experiment were conducted to collect behavioral data. Indicators such as
speed, car-following distance, and reaction delay time were chosen to examine the absolute and relative validity of the driving
simulator. In particular, a survival analysis method was proposed in this research to examine the validity of reaction delay time.
)e result indicates the following: (1) most indicators are valid in driving behavior research in the work zone. For example, spot
speed, car-following distance, headway, and reaction delay time show absolute validity. (2) Standard deviation of the car-following
distance shows relative validity. Consistent with previous researches, some driving behaviors appear to be more aggressive in the
simulation environment.

1. Introduction

Driving simulation has been increasingly popular in trans-
portation research because of its efficiency, safety, and con-
trollability. By using driving simulation, researchers can design a
specific driving scenario, conduct experiments in a closed and
safe environment, and collect precise and diverse data through
sensors.)ese advantages are prominent when driving behavior
occurs in a scenario that is dangerous or difficult to reproduce.

For simulation experiments, simulator validity is an
unavoidable issue; it refers to the ability of a simulator to
reproduce real-world driving accurately [1]. However,
simulator validity is inconsistent when the type of the
driving simulator or the driving scenario is different, and
there is no standardized method for assessing simulator
validity [1]. )erefore, it is appropriate to verify the validity
of the apparatus before conducting a simulation experiment.

Many driving scenarios need to be verified; one of them
is driving in work zones. Work zones are considered to have
a negative impact on traffic safety and mobility because of

lane closure and lower speed limits [2]. )e vehicle speed at
the beginning of the work zone always exceeds the speed
limit, and the deceleration before the work zone is high [3].
At the same time, the risk of rear-end crash is higher than in
nonwork zones [4–6]. It is dangerous to reproduce these
driving scenarios in the real world, which makes the driving
simulator a perfect tool for relevant researches.

)e primary objective of this research is to verify the
validity of behavioral research in the work zone. A field
experiment and a corresponding simulation experiment
were conducted here to collect behavioral data. Indicators
were chosen to identify simulator validity. Moreover, a
survival analysis method was proposed here to analyze the
validity of reaction delay time.

)e arrangement of this paper is presented as follows.
Section 2 is an overview of the current literature. In the next
section, the apparatus, participants, and experiment process
are provided. Section 4 is the definition of indicators and the
survival analysis method. )e rest of the sections are the
results, discussion, and conclusion.
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2. Literature Review

Driving simulator validity is a prerequisite of simulation-
based research. )ere are different classifications of simu-
lator validity. One of the widely used simulator validity is
absolute-relative validity. Absolute validity indicates that no
significant differences between real-world driving and
simulated driving. Relative validity indicates that simulated
driving shows the same patterns as real-world driving.
However, there are a limited number of research studies that
validate a driving simulator by directly comparing simulated
and real driving [1]. In these studies, statistical tests are a
common method to verify absolute validity. In the mean-
time, direct comparison and regression models are methods
to verify relative validity. Tornros [7] used the Tukey test to
verify the absolute validity of speed behavior and lateral
behavior in the tunnel driving. Helland et al. [8] and
Meuleners and Fraser [9] used the paired sample t-test to
verify the absolute validity in drunk driving and driving
errors, respectively. ANOVA was used to identify the sig-
nificant difference between real driving and simulated
driving, too [10–12]. As for relative validity, Helland et al. [8]
used the linear mixed model to verify the relative validity of
drunk driving, while Riener [13] verified the relative validity
of drivers’ reaction delay time by direct comparison.

Data collected from real-world driving and simulated
driving are the foundation of driving simulator validity
verification. )ese data always presented in the form of
behavioral indicators. )erefore, driving simulator valida-
tion research studies can be classified by the type of indi-
cator. Common types of behavioral data are speed [11, 14],
lateral position [10, 15], lane-changing behavior [16–18],
driving errors [9], and others [19]. It is worth noting that
validation research for car-following behavior is rarely
mentioned in the review of simulator validation studies
[1, 20]. In the above cases, indicators are related to the
research topic. For example, Branzi [14] used the average
speed for speed behavior research. Davenne [16] used in-
appropriate line crossing time, self-fatigue, and sleepiness
for lane-changing behavior and driving fatigue research.
Meuleners and Fraser [9] studied driving error with mirror
checking, four-direction observations, the speed at inter-
actions, obeying traffic lights, and obeying stop signs.

Speed behavior [21–23] and rear-end-crash-related be-
havior [6, 24–30] (merging behavior and car-following
behavior) have been a primary concern of researchers be-
cause of the traffic feature of work zones. Besides naturalistic
driving and field experiments, self-report and driving
simulation are also used in the research studies for data
collection. Debnath [21] compared self-nominated speeds
and actual speeds in work zones, finding that participants
generally underestimate the speed in work zones. Dome-
nichini [22] conducted a simulation experiment and found
that drivers always exceed the speed limit of work zones.
)ese research studies used behavioral indicators to describe
driving behaviors. Paolo and Sar [3] used spot speed and
deceleration for speed behavior research in work zones.
Lochrane et al. [27] used car-following distance and relative
speed for car-following behavior research.

)e existing studies show that driving simulators have
been used in driving behavior research. Some validation
research studies corresponding to the particular driving
scenario have been proposed. However, there is a gap in
simulator validity research for driving in work zones. In
particular, simulator validity research for car-following
behavior. )e validity verification method is not stan-
dardized; the direct comparison is still a common method to
verify relative validity. )is research examines the simulator
validity of driving in work zones, including the free-flow
scenario and car-following scenario. Statistical methods and
regression models are proposed here for validity verification.
Especially, a survival analysis method is proposed here for
time-event data like reaction delay time.

3. Experimental

3.1. Apparatus. A field experiment and a simulation ex-
periment were conducted in this research. )e field ex-
periment data were collected by instrumented vehicles. )e
on-board data processing system integrated the data and
output it at a frequency of 10Hz. )e driving simulator used
in the simulation experiment consisted of an eight degree-
of-freedommotion system, a fully instrumented vehicle, and
a high-fidelity visual system. )e motion system provided
drivers with driving force feedback. Sensors of the instru-
mented vehicle collected data while driving. )e visual
system consisted of five simulation projectors; the projectors
produced a view of horizontal 250 degrees and vertical 40
degrees. LCD monitors provided a view of rearview mirrors.
SCANeR™ software was used to edit driving scenarios and
integrate experiment data. Simulation data were also output
at a frequency of 10Hz. )e apparatuses are shown in
Figure 1.

3.2. Participants. )e recruitment method of this research
followed the method in Davenne et al.’s research [16]. 36
healthy men were recruited; all of them held a valid driving
license and had daily-driving experience for at least one year.
)ere were 20 drivers for the field experiment (mean
age± SD� 25.4± 3.5 years; mean driving age± SD� 3.3± 1.5
years) and 16 matched drivers for the simulation experiment
(mean age± SD� 25.6± 2.4 years; mean driving
age± SD� 3.7± 1.1 years). A pretest was provided to ensure
every participant is familiar with the requirement of ex-
periments and the operation method of apparatus.

3.3. Experiment Tasks. )e free-flow scenario and car-fol-
lowing scenario were chosen in this research. )ese sce-
narios were the same both in the field and simulation
experiments. )e field experiment was conducted on a two-
way four-lane highway in Shandong Province, China. )e
length of the test section was 10 km, and the speed limit of
the test section was 100 km/h.)e road section in the driving
simulator is shown in Figure 2. )e speed limit sign and
other essential preinformation signs were installed in the
simulation experiment to reproduce the road section in the
field experiment. To verify the relative validity, 2×N design
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with driving environments and other factors were employed
in the study.

For the free-flow scenario, the factor was the lane closure
type. Two tests were contained in the free-flow scenario; one
of them closed the passing lane, and another closed the
emergency lane. )ere were four work zones in each test.

For the car-following scenario, the factor was the leading
vehicle’s speed. )e car-following scenario was designed as
follows to reproduce the rapid deceleration at the beginning
of work zones [3] and acceleration at the end of work zones.
)e driver of the following vehicle was required to follow the
leading vehicle and keep it in the same lane for the whole
test. )e driver of the leading vehicle kept driving at a stable
speed before accelerating or decelerating. )e upper and
lower bounds of the leading vehicle’s speed were 40 km/h
and 80 km/h; the gradient of speed changing was 20 km/h.

4. Indicators and Validation Methods

4.1. Driving Behavior Indicators. Free-flow indicators are
spot speed, speed reduction, and speed reduction rate. )e
spots include the beginning of deceleration (BD) and the end
of deceleration (ED). Speed reduction rate refers to the
deceleration at the beginning of the work zone. )e cal-
culation method is shown in the following equation:

SRR �
vBD − vED

tD
, (1)

where SRR is the speed reduction rate. vBD is the speed at BD.
vED is the speed at ED. tD is the time for the vehicle to drive

from BD to ED. )e algorithm to identify the speed change
point follows the method in Zhang’s research [31].

Car-following indicators include car-following distance
(average and standard deviations when speed is stable),
headway (average and standard deviations when speed is
stable), and reaction delay time. )e standard deviation of
the car-following distance represents the stability of car-
following behavior. Define A as the acceleration/decelera-
tion point of the leading vehicle and B as the acceleration/
deceleration point of the following vehicle. )e time interval
between A and B is regarded as the reaction delay time.

4.2. Survival Analysis Method. )e validation methods for
nontime data are the Wilcoxon test and linear regression. In
the meantime, a survival analysis method is proposed for
time-event data such as reaction delay time. Survival analysis
is a collection of statistical procedures for data analysis for
which the outcome variable of interest is time until an event
occurs [32]. According to the basic concept of survival
analysis, the key elements of survival analysis include events,
survival time t, the consequence of event (failure) δ, survivor
functions of the event S(t), and hazard function of the event
h(t).

In this study, an event refers to the following vehicle’s
response to the leading vehicle’s speed change. Survival time
is the reaction delay time. An event will be referred to as a
failure if the following vehicle does not respond to the
leading vehicle’s speed change or the reaction delay time
exceed the threshold. S(t) represents the probability that the

(a) (b)

Figure 1: Experimental apparatuses: (a) the instrumented vehicle; (b) the driving simulator.

(a) (b)

Figure 2: Road section in the driving simulator.
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survival time (reaction delay time) T exceeds the specified
time t. Survivor function is a basic component of the survival
analysis, and it obtains survival probabilities for different
values of t, summarizing key information from survival data
[32]. A nonparametric method called the Kaplan-Meier
method is used in this study to estimate S(t). )e formula of
the Kaplan–Meier method is shown in the following
equations:

􏽢S t(j)􏼐 􏼑 � 􏽢S t(j−1)􏼐 􏼑 × 􏽢P T> t(j) T≥ t(j)

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (2)

Iterating equation (2), we have the following:

􏽢S t(j)􏼐 􏼑 � 􏽙

j

i�1

􏽢P T> t(i) T≥ t(j)

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (3)

Data used for the Kaplan–Meier method is arranged in
the ascending order of reaction delay time. t(j) is the j-th
shortest reaction delay time. 􏽢S(t(j)) is the estimation of S(t)

at time t(j). 􏽢P(T> t(j) | T≥ t(j)) is the probability that T is
larger than t(j) when reaction delay T is larger or equal to t(j).
􏽢S(t(j)) is a step function.

Hazard function represents the instantaneous potential
per unit time for the event to occur, under the premise that
the following vehicle has not reacted to the change at time t.
Instead of focusing on the continuity of the event, the hazard
function focuses on the failure of the event. )e hazard
function is also called the conditional failure rate, and it is a
regressionmodel for survival analysis.)e formula of hazard
function h(t) is shown in the following equation:

h(t) � lim
Δt⟶0

P(t≤T< t + Δt | T≥ t)

Δt
. (4)

)e proportional hazards model (Cox model) is used to
estimate h(t). )e formula of Cox model is shown in the
following equation:

h t1( 􏼁 � h0(t)exp 􏽘
n

i�1
βiXi

⎡⎣ ⎤⎦, (5)

where X is the vector of independent variables. In most
cases, X is a discrete variable. βi is the coefficient of Xi. h0(t)

is the nonparametric part of the Coxmodel, and it represents
the baseline version of the hazard function.

For reaction delay time, the absolute validity is verified
by comparing the difference of S(t) between real-world
driving and simulated driving. A chi-square test named Log-
Rank test is used in this research. )e relative validity is
verified by comparing the coefficients of the Cox model.

5. Results

5.1. Free-Flow Validation

5.1.1. Spot Speed. )e statistical result of spot speed is shown
in Figures 3(a) and 3(b). For the beginning of deceleration,
spot speeds in the simulation experiment are higher than in
the field experiment (passing lane� 6.25 km/h, emergency
lane� 3.63 km/h). Driving environments significantly affect
spot speed when the passing lane is closed (p � 0.0289);

driving environments do not affect spot speed when the
emergency lane is closed (p � 0.1397). Regarding lane
closure type as the independent variable (passing lane� 0,
emergency lane� 1), linear regression results show that lane
closure type has the same effect for real-world driving
(β � 5.91, p � 0.0164) and simulated driving (β � 3.29,
p � 0.1370). However, the coefficient for the simulation
model is not significant.

For the end of deceleration, spot speeds in the simulation
experiment are lower than in the field experiment (passing
lane� 2.71 km/h, emergency lane� 2.79 km/h). However,
driving environments have no significant effect on spot
speed regardless of the lane closure type (passing lane:
p � 0.2209; emergency lane: p � 0.2290). Linear regression
results show that the lane closure type has the same effect for
real-world driving (β � −7.30, p � 0.0056) and simulated
driving (β � −7.22, p � 0.0139). Except for one spot (BD,
passing lane), the result shows strong evidence of absolute
validity.

5.1.2. Speed Reduction. )e statistical result of speed re-
duction is shown in Figure 3(c). Speed reductions in the
simulation experiment are higher than in the field experi-
ment (passing lane� 8.96 km/h, emergency lane� 6.42 km/
h). Driving environments have a significant effect on speed
reduction (passing lane: p � 0.0001; emergency lane:
p � 0.0002). Linear regression results show that the lane
closure type has the same effect for real-world driving
(β � 1.39, p � 0.3270) and simulated driving (β � 3.93,
p � 0.0807). However, the coefficients of both driving en-
vironments are not significant. )e result can be a sign of
lacking simulator validity.

5.1.3. Speed Reduction Rate. )e statistical result of the
speed reduction rate is shown in Figure 3(d). Speed re-
duction rates in the simulation experiment are higher than
in the field experiment (passing lane� 0.51m/s2, emergency
lane� 0.29m/s2). Driving environments have a significant
effect on the speed reduction rate (passing lane: p< 0.0001;
emergency lane: p< 0.0001). Linear regression results show
that the lane closure type has the same effect for real-world
driving (β � −0.0070, p � 0.8020) and simulated driving
(β � −0.2298, p � 0.0196). )e coefficient for the real-world
model is not significant. )e result indicates that the speed
reduction rate shows no simulator validity.

5.2. Car-Following Validation

5.2.1. Car-Following Distance. )e statistical result of car-
following distance is shown in Figures 4(a) and 4(b). For the
average of the car-following distance, there is no significant
difference between field experiment and simulation exper-
iment (40 km/h: p � 0.5318; 60 km/h: p � 0.6144; 80 km/h:
p � 0.8845). Leading vehicle’s speed has the same effect for
real-world driving (β � 1.09, p< 0.0001) and simulated
driving (β � 0.91, p< 0.0001). )e average of the car-fol-
lowing distance shows absolute validity.
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For the standard deviation of the car-following distance,
the values in the simulation experiment are higher than in
the field experiment (40 km/h: 0.39m; 60 km/h: 1.79m;
80 km/h: 3.93m). Driving environments have a significant
effect on the indicator (40 km/h: p � 0.0009; 60 km/h:
p � 0.0059; 80 km/h: p � 0.0136). Leading vehicle’s speed
has the same effect for real-world driving (β � 0.06,

p � 0.0078) and simulated driving (β � 0.12, p< 0.0001).
)e result shows the relative validity of the indicator.

5.2.2. Headway. )e statistical result of the headway is
shown in Figures 4(c) and 4(d). For the average of the
headway, there is no significant difference between field
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Figure 3: Statistic results of free-flow indicators: (a) spot speed at the beginning of deceleration; (b) spot speed at the end of deceleration; (c)
speed reduction; (d) speed reduction rate. )e error bars represent the standard deviation of indicators.
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experiment and simulation experiment (40 km/h:
p � 0.8668; 60 km/h: p � 0.4406; 80 km/h: p � 0.7996).
Leading vehicle’s speed affects headway in the same pattern.
)e average of the headway shows absolute validity.

For the standard deviation of the headway, the values in the
simulation experiment are higher than in the field experiment
(40 km/h: 0.15 s; 60 km/h: 0.10 s; 80 km/h: 0.19 s). Driving

environments have a significant effect on the indicator (40 km/
h: p< 0.0001; 60 km/h: p � 0.0065; 80 km/h: p � 0.0049).
Figure 4(d) shows that the relationship between the leading
vehicle’s speed and the indicator is not linear. ANOVA result
shows that the leading vehicle’s speed (p � 0.5987) and the
interaction (p � 0.8927) do not affect the indicator. )erefore
the indicator shows no simulator validity.
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Figure 4: Statistic results of nontime car-following indicators: (a) car-following distance; (b) standard deviation of the car-following
distance; (c) headway; (d) standard deviation of the headway. )e error bars represent the standard deviation of indicators.
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5.2.3. Reaction Delay Time. )e statistical result of the re-
action delay time is shown in Figure 5. )e driving envi-
ronment has no significant effect on the reaction delay time
(overall: p � 0.8000; 40 km/h: p � 0.9000; 60 km/h:
p � 0.2000; 80 km/h: p � 0.0200). Regarding leading vehi-
cle’s speed (1 for speed <50 km/h; 2 for speed <70 km/h; 3 for
speed ≥70 km/h), leading vehicle’s acceleration (0 for ac-
celeration <0m/s2; 1 for acceleration ≥0m/s2), and car-
following distance as the independent variable, the result of
Cox model is shown in Table 1. )e result shows that in the
real-world model, the leading vehicle’s acceleration and car-
following distance affect reaction delay time significantly.
)e hazard ratio of the leading vehicle’s acceleration is equal
to 0.6014. It means when the leading vehicle is accelerating,
the hazard function value of reaction delay decreases by
39.86% and the reaction delay time is longer. )e hazard
ratio of relative distance is equal to 0.9911. It means the
hazard function value of reaction delay decreases by 8.55%

for every 10 meters increase in the car-following distance.
)e reaction delay time is longer. In the simulation model,
no independent variable affects the reaction delay time
significantly. )e survival analysis result shows that the
reaction delay time has absolute validity.

6. Discussion and Conclusion

)is research shows that for driving behavior in work zones,
most of the indicators are valid. In the simulation experi-
ment, the speed behavior in the free-flow scenario and the
car-following behavior in the car-following scenario are
consistent with which in the field experiment. For the speed
behavior, vehicle dropping speed rapidly at the beginning of
work zones, which is consistent with the study by Paolo and
Sar [3]. Taylor et al. [33] pointed out that additional design
features like temporary traffic barriers, reduced lane width,
and crossover sections may influence vehicle speeds in work
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Figure 5: Results of reaction delay time. )e leading vehicle’s speed: (a) 40 km/h; (b) 60 km/h; (c) 80 km/h; (d) overall.
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zones. For this research, lane closure is the main feature to
affect vehicle speeds. In particular, the vehicle speed is lower
and drops more rapidly when the passing lane is closed. As
for the car-following behavior, car-following distance has a
linear relationship with the leading vehicle’s speed. Drivers
prefer to keep a longer distance when the speed is higher.
)is behavior shows strong consistency between the field
experiment and simulation experiment. )e result of the
Cox model indicates that reaction delay time is not a
constant but an unfix value related to car-following distance
and the leading vehicle’s acceleration. )is finding is proved
by previous research studies [34–37]. Instead of treating the
relationship between reaction delay time and independent
variables as linear [34–36], this study uses a proportional
hazards model to describe the probability distribution of
reaction delay time. However, the model result for the
simulation experiment is not significant. Perhaps further
research is needed to find out the reason.

Past researches reported that driving simulators have
relative validity, but do not exactly replicate the driving
behavior of the real world [38]. Driving behaviors in the
simulation experiment are more aggressive than in the field
experiment. For example, vehicle speed in the simulation
experiment is higher, and the deceleration at the beginning
of the work zone is higher, too. )ese behaviors can
conduct to a high probability of traffic crash [3]. Similar
results were reported by previous researches [7, 14, 39–41].
)e standard deviation of the car-following distance and
standard deviation of the headway are higher in the sim-
ulation experiment, which means the car-following process
is more stable in real-world driving. )e safety of driving
simulators may be an explanation of aggressive behaviors.
Helland et al.[8, 15] reported that the aggressive driving
behaviors in the simulation experiment can be explained by
an enhanced perception of real danger in real-world driving
compared to the simulator. Bella [41] conducted a similar
conclusion.

Overall, the simulator validity of driving behaviors in
work zones is verified.)e speed behavior and car-following
behavior in the simulation environment show a similar
pattern as which in the real-world environment. A survival
analysis method is proposed to replace the direct compar-
ison method for simulator validity verification of the time-
event data. Comparing to linear regression models, the
proposed model can describe the probability distribution of
reaction delay time. )e result of this research can be
theoretical support for simulation-based research, especially
for driving behavior research in work zones. Consistent with
previous researches, some behaviors are more aggressive in

the simulation experiment, which needs further research to
explain the mechanism.

)is study deals with one critical issue of driving be-
havior research based on the driving simulator. )e survival
analysis method proposed in the study provides an effective
way to verify time-event data. However, this study still has
some limitations. First, in the free-flow validation study, the
deceleration behavior is presented by spot speed. Although
the spot speed can represent the deceleration behavior
feature, it still should be noticed that this behavior is con-
tinuous. )us in future research, the driving simulation
validation based on speed profile should be discussed.
Second, merging behavior or lane-changing behavior also is
important in the work zone area [6, 28, 29]. )e driving
simulator validity of merging behavior will be an interesting
topic. It should be mentioned that collecting merging be-
havior in real-world driving situations is a challenging job;
advanced technology and method should be proposed to
deal with it.
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Speeding is a major risk factor for traffic-related injuries. As a countermeasure against speeding, automated speed enforcement
systems (ASES) have been deployed in many countries. However, drivers’ awareness of enforcement locations allows themselves
to adjust vehicle speeds in the vicinity of the enforcement locations. )is enforcement avoidance behavior leads to a criticism of
the effectiveness of ASES, in which the system promotes abrupt changes in vehicle speed near enforcement locations, increasing
crash risk as a side effect. To address this issue, the section speed enforcement system (SSES), which enforces overspeeding vehicles
by their average travel speed over a section, has been devised. In this study, we evaluate traffic speed and safety data that were
collected from sections with SSES on Korean expressways.)e speed analysis showed that the vehicles reduced their speeds inside
the enforcement section, and this reduction in speed variations across vehicles was also noticeable, signifying that the risk of traffic
crash should be lower. In view of this, we have performed before and after comparative analysis using the empirical Bayes method
with the comparison group. )e outcomes estimate 43% reduction in crash occurrence after installation of SSES. Furthermore,
turning point analysis confirmed that the reduction in crash occurrence ensued immediately after installation of SSES.

1. Introduction

Automated speed enforcement systems (ASES) have been
introduced to mitigate speeding and are widely deployed in
many countries. )is type of enforcement system is installed
to reduce traffic speed upstream of certain locations, es-
pecially where speeding-related crashes frequently occur.
However, the local law often mandates informing drivers of
enforcement locations, thereby drivers with that informa-
tion naturally adjust their speeds to avoid enforcement:
drivers tend to slow their speeds when approaching en-
forcement locations and return to their original speeds
shortly after passing the locations [1–3]. )is enforcement
avoidance behavior leads to a criticism of the effectiveness of
ASES, in which the system promotes abrupt changes in

vehicle speed near enforcement locations, increasing crash
risk as a side effect.

Hence, the section speed enforcement system (SSES) was
devised to induce this enforcement avoidance behavior over
elongated distance (i.e., make drivers maintain lower speeds
over the section to avoid the enforcement) and to induce
synchronicity of speed across vehicles over the roadway
section. SSES employs a pair of cameras that are mounted at
two ends of a section.)e system records each vehicle’s plate
number and entry and exit times of the section and com-
putes the vehicle’s average travel speed over the section
(Figure 1). If the average travel speed exceeds the speed limit
of the section, the corresponding vehicle is automatically
fined. )is system was first adopted in the late 1990s, and
many countries have implemented the system under various
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names, including trajectory control in the Netherlands,
average speed enforcement in the U.K., Tutor in Italy, point-
to-point speed enforcement in Australia, and section control
in the OECD [4].

Previous studies in various countries have reported that
average speeds and crash occurrence diminished in roadway
sections with SSES in operation [5–15]. Despite the con-
sistency of outcomes across these studies, most of the studies
were performed without comprehensive statistical analysis
and, therefore, were unable to control for confounding
factors and regression-to-the-mean [16]. Recently, some
studies have employed the empirical Bayes (EB) approach to
evaluate the safety benefits of SSES. Montella et al. [17]
showed that total crashes after SSES installation diminished
by 31.2%. Høye [2] performed meta-analysis based on
outcomes across four different study sites and concluded
with a summary effect of 20% reduction in crash occurrence.
Using EB analysis, Høye [18] found 49% reduction in crashes
with fatal and severe injuries after the installation of SSES.
However, these studies did not investigate the specific effect
of SSES on vehicle speed, the key antecedent for crash re-
duction as induced by SSES.

)ese studies evaluated crash occurrence using the EB
method, which is widely used in controlling for confounding
and regression-to-the-mean issues in the before-and-after
study [19]. )e EB method divides the entire period of
evaluation into two separate time intervals, before and after
the installation of the SSES. )is is based on the assumption
that the installation of SSES was the only intervention to
reduce crash occurrence. However, if there were other
unobserved factors, the inferences drawn from the EB could
be invalid [20, 21]. )us, it is necessary to evaluate the actual
turning point in the trend of crash occurrence. An alter-
native method to validate or reinforce the causal inference
from the EB method is turning point (TP) analysis, which
can statistically identify changes in time-series data [22, 23].

In this context, we have collected vehicle speed and crash
data from expressway sections where SSESs were in

operation (Section 2).We examined speed profiles from loop
detectors installed along three sections and compared
outcomes with those from neighboring sections (Section 3).
For all nine study sites, we performed EB and TP analyses to
evaluate the effect of SSES on safety performance (Section 4).
Finally, we explain the comprehensive effectiveness of SSES
and discuss implications (Section 5).

2. Descriptions of Site and Data

2.1. Study Sites. In South Korea, ASES has since its inception
in 1997 been deployed at more than 5,500 locations on
roadways. In 2007, SSESs were first introduced on Korean
expressways, and 48 SSESs were in operation over the
network of Korean expressways as of 2018. Nine study sites,
as listed in Table 1, were selected because SSESs were first
installed at those sites such that sufficient observation of
crash occurrence was possible.

2.2. Data for Speed Analysis. For cross-sectional speed
analysis, three study sites out of nine were selected using the
following criteria: (i) sites do not contain any attributes such
as tunnels, bridges, or vertical and horizontal curves that
may influence driving patterns compared to comparison
sections and (ii) loop detector data were available. Only three
study sites (ID 6, 8, and 9) were used for the speed analysis
because we were unable to set up the comparison sections
with the similar attributes and geometry in other six study
sites. )e selected sites comprise 36.6 lane-kilometers of
100 km/h zones and 28.2 lane-kilometers of 110 km/h zones.
Loop detector data were obtained from all three study sites
for all days (both weekdays and weekends). A year of speed
data were obtained from each of the three study sites, while
the SSESs were in effect.

2.3. Data for Safety Analysis. For the safety analysis, crash
data and annual average daily traffic (AADT) were obtained
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Figure 1: Illustration of section speed enforcement system.
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for the periods before and after SSES installation. )e
number of crashes is used in the EB method and TPA; the
AADT data were used to construct a prediction model for
the safety performance function (SPF), which is input to the
EB method. In the safety analysis, we analyzed crash data for
all nine study sites. A longitudinal before-and-after analysis
was conducted in the safety analysis. SSESs for all nine study
sites went into effect prior to 2011, and, therefore, long-
duration observation of crash occurrence was possible. )e
study period is set from 2007 to 2013 because there were
changes in geometry of some of our study sites after 2014,
which may have affected crash occurrence. Details on each
study site are furnished in Table 1.

3. Speed Profile Analysis

3.1. Cross-Sectional Analysis with Comparison Sections.
Two groups were used for the comparative analysis. One
group is the enforcement sections shown in Table 1, and the
other group is a comparison section where the site attributes
are almost identical to the enforcement sections except for
the existence of enforcement. )e comparison sections are
selected as upstream and downstream sections surrounding
the enforcement section because the same groups of drivers
traveling in those sections and geometric and local char-
acteristics are similar. Figure 2 illustrates the layouts of the
enforcement and comparison sections in all three selected
study sites. )e sections are two-lanes along their length
except auxiliary lanes in the vicinity of merging and di-
verging areas. To this end, only traffic data that were col-
lected from mainline areas (i.e., lanes 1 and 2) are used in
this study. In the case of the Yeongdong Expressway (ID 9),
only one comparison section was used, unlike other sites.
)is is because the enforcement section is at the end of the
Yeongdong Expressway, and, therefore, the downstream
section was too short to be used as a comparison section.

3.2. Data Filtering. To enhance the comparability and to
unveil changes in driving patterns along the sections, the
collected loop detector data were filtered to include data only
from unconstrained, free-flow travel conditions when
drivers could travel at their desired speeds, and thus over-
speeding could occur. In Figure 3, the fundamental diagram
illustrates a relation between traffic flow and density. Al-
though scatter plots of flow vs. density data could form
various shapes such as reverse lambda, parabolic, and tri-
angular, the diagram in any shape exhibits two distinguished
regimes–free-flow and congested. On the left-side branch,
the traffic is in the free-flow regime where speed remains at
free-flow without any constraint, and the right-side branch
presents congested regime where the flow is constrained.

Figure 3 displays scatter plots of flow versus density at
one of the detectors among the study sites. Firstly, abnormal
loop detector data were filtered out by using daily statistics
algorithm by Chen [24]. To ensure that the values were from
traffic that was not constrained, we secondly filtered out the
data from periods when vehicular interactions occurred and
thus obscured overspeeding patterns: data points associated

with densities lower than 10 vehicles/km/lane, which cor-
respond to approximately half of the density at capacity,
were used in the present study [25]. )e analysis of speed
profile is intended to inspect changes in vehicle speeds solely
due to the installation of SSES. If the data contain traffic
conditions that constrained vehicle speeds (i.e., congestion),
it is hard to distinguish whether the speed changes, if any,
was due to the changes in drivers’ speed-taking behavior that
was induced by effect of SSES.

3.3. Effects of SSES on Vehicle Speed. To compare speed
profiles between enforcement and comparison sections,
descriptive summary statistics of each section were evaluated
using a box-and-whisker plot (Figure 4). Bottom and top of
box indicate first and third quartiles, respectively. Horizontal
line in the middle of the box is the median. Top and bottom
ends of the vertical line traversing the box are boundaries of
data, excluding outliers. It is notable that boxes from the
enforcement section are narrower and lower than those from
the comparison sections. )is means that vehicles traversed
the enforcement section under more stable condition, as can
be inferred from the lower mean and variance of speed in the
enforcement section.

As shown in Figure 4, the three study sites showed the
same speed analysis results that the average speed was lower
than the speed limit throughout the enforcement section. One
of the possible negative sides of SSES is the higher variance of
speed at the beginning and the end of the enforcement
section. Because SSES enforces vehicles by the average speed,
there could be vehicles that move at high speeds in the be-
ginning and lowered the speeds in the end or vice versa.
However, this phenomenon was not observed in this study.

T-test and F-test were performed to statistically validate
the differences of mean and variance between enforcement
and comparison sections. )e test results confirm that the
differences are statistically significant at 5% significance
level, and the speed variance is reduced not only along the
enforcement section but also across vehicles.

4. Safety Analysis

In this section, we evaluate the effect of installing SSES on
traffic safety. )e EB method is applied to compare changes
in crash occurrence before and after SSES installation
(Section 4.1).)en, a comprehensive inference was drawn by
applying meta-analysis to the outcome of the EB method at
each site (Section 4.2). To validate that, if they exist, changes
in crash occurrence happened prior to and near the in-
stallation of SSES, we performed TPA to statistically identify
turning points in time-series crash occurrences (Section 4.3)
and to compare turning points with the installation of SSES
(Section 4.4).

4.1. EBMethodwithComparisonGroup. In this study, the EB
method with a comparison group was adapted to compare
the safety performance before and after installation of SSESs.
Because it employs a crash prediction model, the EB method
can adjust regression-to-the-mean (RTM) bias [19] and can
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address changes in traffic volume. However, the effect of
general changes (i.e., temporal trend) in traffic crashes from
the before to after periods still exists. To adjust this issue, the
comparison group method is combined for estimating the
predicted number of crashes.

Generally, the treatment group is composed of the
limited number of samples, and it can hardly incorporate the

effect of temporal trend in crash occurrences. Meanwhile,
the comparison group can affect the term, 􏽢mb

i , the predicted
number of crashes that is estimated based on the infor-
mation on the crash occurrences in the entire area as well as
the SSES area. Hence, the EB method with the comparison
group can account for the effect of temporal trend in crash
occurrences in the area.
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Figure 2: Illustrations of layouts of study and control sections: (a) Jungbunaeruk, (b) Daejeon-Tongyeong, and (c) Yeongdong III (not to
scale).
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Figure 4: Speed distributions at loop detectors of three different study sites: (a) Jungbunaeruk Expressway (ID 6), (b) Daejeon–Tongyeong
Expressway (ID 8), and (c) Yongdong Expressway (ID 9).
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)e effectiveness (ei) is measured by comparing the
numbers of crashes at a site i before and after the installation
of SSES:

ei �
xa

i

􏽢mb
i · Ca

i /Cb
i( 􏼁

, (1)

where xa
i is the observed number of crash occurrences in the

period after SSES went in effect and 􏽢mb
i is the expected

number of crashes that would have occurred in the same
period if SSES had not been implemented. To consider the
trend in crash occurrence that would have been expected
regardless of SSES (i.e., changes that naturally occur), we
adjusted 􏽢mb

i by Ca/Cb. )e numerator, Ca, is the observed
number of crashes in the control group in the period
after installing SSES, and Cb is the observed number of
crashes in the control group in the period before installing
SSES. All variables to compute ei are observable, except
for 􏽢mb

i .
􏽢mb

i is estimated as the weighted sum of the predicted
number of crashes in the before-period (Pb

i ) and the ob-
served number of crashes in the before-period (xb

i ):

􏽢m
b
i � w

b
· P

b
i + 1 − w

b
􏼐 􏼑 · x

b
i , (2)

where the weight, wb, is derived based on estimated out-
comes of the prediction model:

w
b

�
1

1 + α · Pb
i( 􏼁

. (3)

In general, the prediction model is estimated using a
negative binomial (NB) regression; the parameters in
equation (3) are the estimated outcomes: α is the over-
dispersion parameter, and Pb

i is the expected number of
crashes estimated from the prediction model. For the crash
prediction model, we have used the crash data for four
years (2007–2010) and the annual average daily traffic data
from 1,128 roadway segments of Korean expressways. In
this study, we adopted the prediction model that was
previously specified for the same coverage of Korean ex-
pressways in Shim et al. [3]. )e prediction model is
crashes/year � l × exp(0.225 + 1.45 ∗10− 5∗AADT), where
l is the length of the section and AADT is the average
annual daily traffic for the section. )e estimated over-
dispersion parameter k is 0.183.

4.2. Results: EB Method and Meta-Analysis. )e descriptive
statistics of crash data are summarized in Table 2. Also,
the results of the EB analysis are summarized in Table 3
and show that crash occurrence diminished at eight out of
the nine study sites. However, the reductions were sta-
tistically significant only at three sites (ID 5, 8, and 9) due
to lack of crash occurrence, and the outcomes were found
to vary widely across sites. )is phenomenon often arises
because crash occurrences are by nature rare events, and,
therefore, only a few crashes were observed during the
observation period. For more comprehensive evaluation
of the overall effect of SSES, we performed meta-analysis

with the outcomes from all nine study sites. Meta-analysis
is a statistical approach that combines outcomes from
multiple study sites. )is study adapted a fixed-effect
meta-analysis by Fleiss et al. [26] that combines the ef-
fectiveness (ei) across the sites by assigning the inverse of
variance as a weight factor. As a result, an overall index of
effectiveness (􏽢E) and confidence interval were derived as
follows:

􏽢E � exp
􏽐

n
i�1 fi ∗ ln ei( 􏼁

􏽐
n
i�1 fi

􏼢 􏼣,

95%C.I. � exp
􏽐

n
i�1 fi ∗ ln ei( 􏼁

􏽐
n
i�1 fi

±
1.96

������
􏽐

n
i�1 fi

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(4)

where the weight factor (fi) is estimated based on the
variance of ei and s2i at each site.

fi �
1
s2i

, where s
2
i �

1
ma

i

+
1

􏽢mb
i

+
1

Ca
+

1
Cb

. (5)

As a result, 􏽢E is 0.57, meaning that the number of crashes
decreased by 43% for all study sites. )e confidence interval
of 􏽢E ranges from 0.44 to 0.73—the upper level is well below
one—implying that the overall effect of SSES reduces crash
occurrences at 95% confidence level.

4.3. Turning Point Analysis. We employed statistical ex-
amination using TPA to determine whether turning points
in crash occurrence were temporally consistent with the
installation of SSESs [22]. TPA was performed based on the
assumption that crash occurrences in n time intervals,
xi: i � 1, . . . , m, . . . , n􏼈 􏼉, during our observation period
were from two different distributions before and after an
unknown turning point at m (m < n). )e Poisson distri-
bution was naturally the choice because crash occurrences
are rare and discrete events over time. However, over-
dispersion (i.e., variance greater than the mean) often
estimate plagues using the Poisson regression, which was
also the case for our study.

)is study generalized the application of TPA by using
negative binomial (NB) distributions, which have two pa-
rameters in the probability mass function (PMF). )erefore,
instead of computing Maximum a Posteriori, we used the
Newton–Raphson method to search for the turning point,
m, where two NB distributions are most likely to be different
from a statistical perspective.

)e two NB distributions (p0 andp1) with a conjugate
prior distribution as a beta distribution have shaper pa-
rameters (α0, α1) and rater parameters (b0, b1), and turning
point m is equally likely over time. )us, p0 ∼ Beta(α0, β0),
p1 ∼ Beta(α1, β1), and m ∼ Uniform(0, n). We set α0 � α1 �

xi (mean of xi ) and β0 � β1 � 1. )e posterior
function, f(m, p0, p1 | x1: n), the likelihood function,
L(x1: n | m, p0, p1), and the prior function, f(m, p0, p1), are
as follows:
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f m, p0, p1 x1: n

􏼌􏼌􏼌􏼌􏼐 􏼑∝L x1: n

􏼌􏼌􏼌􏼌 mp0 , p1􏼐 􏼑 · f m, p0 , p1( 􏼁
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xi
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r1 ·

Γ α0 + β0( 􏼁
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0 1 − p0( 􏼁
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α1− 1
1 1 − p1( 􏼁
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.

(6)

Table 3: Effectiveness of SSES at all study sites.

Site ID Route name (section ID) Index of effectiveness (ei) 95% confidence interval Standard error Effectiveness
(1 − ei) (%)

1 Seohaean Expressway (I) 0.58 [0.24; 1.38] 0.10 42
2 Seohaean Expressway (II) 0.96 [0.50; 1.86] 0.06 4
3 Pyeongtaek–-Jecheon Expressway 0.93 [0.29; 3.00] 0.19 7
4 Yeongdong Expressway (I) 0.52 [0.24; 1.10] 0.07 48
5 Yeongdong Expressway (II) 0.43 [0.26; 0.70] 0.03 57
6 Jungbunaeruk Expressway 1.01 [0.51; 1.98] 0.06 − 1
7 Jungang Expressway 0.54 [0.13; 2.18] 0.29 46
8 Daejeon–Tongyeong Expressway 0.37 [0.17; 0.81] 0.07 63
9 Yeongdong Expressway (III) 0.35 [0.16; 0.73] 0.08 65
Overall index of effectiveness (􏽢E) 0.57 [0.44; 0.73] 43

Table 2: Descriptive statistics for crashes in both the treated group and the comparison group.

Group Period Mean Standard deviation Min Max

Treated group (SSES) Before 19.1 15.03 3 54
After 11.4 6.97 3 25

Comparison group Before 22.0 14.66 10 47
After 22.6 11.19 13 40
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We have four unknown parameters r0, r1, p0, andp1.
Starting from m � 1, we solve equations (8) and (9) using the
Newton–Raphson method (for r0 and r1). Outcomes from
these equations were then input to solve equations (10) and

(11) (for p0 and p1). Using those four parameters, we
updated ln(f). We iterate this procedure until m � n, and
we search for m that will maximize ln(f).

ln(f) � 􏽘
m

x�1
ln Γ xi + r0( 􏼁( 􏼁 − 􏽘

m

i�1
ln Γ xi + 1( 􏼁( 􏼁 − m · ln Γ r0( 􏼁( 􏼁

+ 􏽘
n

i�m+1
ln Γ xi + r1( 􏼁( 􏼁 − 􏽘

n

i�m+1
ln Γ xi + 1( 􏼁( 􏼁 − (n − m) · ln Γ r1( 􏼁( 􏼁

+ α0 − 1 + 􏽘
m

i�1
x1

⎛⎝ ⎞⎠ · ln p0( 􏼁 + m · r0 + β0 − 1( 􏼁 · ln 1 − p0( 􏼁

+ α1 − 1 + 􏽘
m

i�m+1
xi

⎛⎝ ⎞⎠ · ln p1( 􏼁 + (n − m) · r1 + β01 − 1( 􏼁 · ln 1 − p1( 􏼁,

(7)

z ln(f)

z r0
� 􏽘

m

i�1
φ xi + r0( 􏼁 − mφ r0( 􏼁 + m · ln 1 − p0( 􏼁 � 0, (8)
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z r1
� 􏽘

n

i�m+1
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4.4. Results: Turning Point Analysis. We have aggregated the
outcomes from nine study sites to draw a more general
inference about the temporal trend of crash occurrence as
well as to compensate for the insufficient observation of
crash occurrences. To this end, we counted crash occur-
rences in a quarter-year time interval and aggregated across
sites with respect to the installation of SSESs. )e x-axis in
Figure 5 indicates the number of quarters relative to the time
of SSES installation—the installation of SSESs is 0 and the
month with SSES installed is not included in the analysis.
Log-posteriori values are shown as a line along the primary
y-axis, while the numbers of crashes are displayed as a bar
graph along the secondary y-axis. Log-posteriori value
continuously increases until 0 (i.e., installation of SSES) and
gradually diminishes thereafter. Note how the maximum
log-posteriori turning point temporally matches the in-
stallation of SSESs. )is means that the most prominent
statistical change in crash occurrence was observed after
installation of SSES.

Figure 6 shows probability mass functions (PMF) of the
two NB distributions—dividing the time period with respect
to the turning point (i.e., before and after installation). )e
grey and black distributions are NB distributions before and

after the turning point, respectively. )e after-distribution is
skewed to the left compared to the before-distribution,
meaning that the probability of crash occurrence after the
turning point is relatively low. In other words, the reduction
in crash occurrence was statistically significant immediately
after installation of SSES.

5. Conclusion

SSESs have been introduced to control speeding over roadway
stretches and to remedy the enforcement avoidance behavior
prevalent for ASES, including momentary slowing only at
locations of enforcement [3]. In this study, based on data from
nine Korean expressway sections where SSESs had been in-
stalled, we evaluate the effectiveness of SSES on reducing
vehicle speed and crash occurrence. Speed distributions were
constructed using vehicle speed data from loop detectors
along the monitored expressway stretches. )e distributions
showed that both the mean and the variance of the speeds
were lower inside the enforcement sections than in neigh-
boring sections; especially, reductions in variances were
pronounced.)is implies that SSES can reduce vehicle speeds
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as well as speed variation across enforcement sections and,
consequently, lowers the risk of crash occurrence.

To validate this conjecture, we performed in-depth
analysis of crash data. First, we divided our observations into
two time periods—before and after—and compared crash
occurrences between the two time periods using the EB
method. )e outcomes indicated that crash occurrence
decreased in eight of the nine study sites, and an overall 43%
reduction was estimated when we combined the outcomes
across sites using meta-analysis. TPA outcomes supple-
mented these findings and ensured that reductions in crash
occurrence corresponded temporally to (i.e., happened
shortly after) the installation of SSESs.

)ere are limitations when interpreting the results of
safety analysis at each individual site because the effec-
tiveness index may be affected by unobserved factors that
reside in particular study sites. )is becomes more pro-
nounced at the sites with small samples. To compensate for
this phenomenon, we performed meta-analysis, which
allowed the evaluation of the comprehensive effect of SSES
on the crash occurrences.

)e findings from these analyses of traffic speed and safety
suggest that SSES can stabilize traffic flow (reduce mean and
variance of speeds) where it is installed and thereby have a
positive effect on traffic safety. We reached this conclusion
because averages and variations of vehicle speed are pro-
portional to risk of crash [27–33], though observations of
traffic flow and safety were performed separately. )is sep-
arate observation was inevitable because observation of traffic
crashes, which are rare as statistical events, generally requires
substantial time. Because this study is based purely on ob-
servations, it is difficult to draw causal relationship between
traffic conditions and safety effects. Furthermore, the period

of data collection was limited. Studies based on long-term
observations still remain a challenge for future research.

)e present study demonstrated that SSES could stabilize
vehicle speed over long distances because drivers tend naturally
to avoid enforcement and, therefore, comply with the speed
limit over monitored sections. It is evident from these ob-
servations that, unlike ASES, there were no momentary and
abrupt speed reductions along sections with SSES. Further-
more, the 43% reduction in crash occurrence in the sections
with SSES is 5.6 times greater than the reduction with ASES,
which showed only a 7.6% reduction, as reported in a previous
study also performedwith data fromKorean expressways [3]. It
is manifested that SSES has more favorable effects on traffic
safety and constant vehicle speed than does conventional ASES.
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Currently, research on road traffic safety is mostly focused on traffic safety evaluations based on statistical indices for accidents.
-ere is still a need for in-depth investigation on preaccident identification of safety risks. In this study, the correlations between
high-incidence locations for aberrant driving behaviors and locations of road traffic accidents are analyzed based on vehicle OBD
data. A road traffic safety risk estimation index system with road traffic safety entropy (RTSE) as the primary index and rapid
acceleration frequency, rapid deceleration frequency, rapid turning frequency, speeding frequency, and high-speed neutral
coasting frequency as secondary indices is established. A calculation method of RTSE is proposed based on an improved entropy
weight method. -is method involves three aspects, namely, optimization of the base of the logarithm, processing of zero-value
secondary indices, and piecewise calculation of the weight of each index. Additionally, a safety risk level determination method
based on two-step clustering (density and k-means clustering) is also proposed, which prevents isolated data points from affecting
safety risk classification. A risk classification threshold calculation method is formulated based on k-mean clustering. -e results
show that high-incidence locations for aberrant driving behaviors are consistent with the locations of traffic accidents. -e
proposed methods are validated through a case study on four roads in Chongqing with a total length of approximately 38 km.-e
results show that the road traffic safety trends characterized by road safety entropy and traffic accidents are consistent.

1. Introduction

With the rapid development of urban road traffic sys-
tems, traffic accidents have become a serious social
problem that poses a grave threat to the safety of human
lives and property. In the period from 2011 to 2017, the
number of traffic accident casualties in China decreased
each year but was still very high. On average, approxi-
mately 60,000 people died from traffic accidents each
year. Research has shown that more than 95% of traffic
accidents are caused by driver cognitive and behavior
decision errors [1]. -erefore, studying road traffic ac-
cidents and safety risks from a driving behavior per-
spective can effectively support prevention and early
warning for traffic accidents and improve road passing
efficiencies and service levels.

Currently, road traffic safety risk is extensively studied. In
general, the relevant research can be divided into three cat-
egories, including research that evaluates road traffic safety
based on statistical indices for traffic accidents utilizing
methods such as Bayesian networks (BNs) and accident rate
methods; research that establishes an evaluation index system
considering the different characteristics of people, vehicles,
roads, and environment and evaluates road traffic safety using
methods like analytic hierarchy processes (AHPs) and fuzzy
evaluation; and research that evaluates road traffic safety
based on driving behavior and traffic accident data.

Regarding the evaluation of road traffic safety based on
statistical indices for traffic accidents, by analyzing methods
for identifying accident-prone locations in China and else-
where, Fang et al. proposed a level-based identification al-
gorithm applicable to road traffic in China and a new
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microevaluation method (the cumulative frequency curve
method) for identifying accident-prone locations [2]. Xin
comprehensively evaluated the road traffic safety state using
the entropy weight-technique for order preference by simi-
larity to ideal solution (TOPSIS) method based on five
evaluation indices, namely, the number of traffic accident
deaths, average number of deaths per accident, fatality rate,
number of deaths per 10,000 vehicles, and number of deaths
per 100,000 people [3]. Mbakwe et al. evaluated national
highway traffic safety using the Delphi technique in con-
junction with a BN model based on highway traffic accident
data [4]. Mohan et al. and Wang et al. studied urban traffic
safety evaluation methods based on accident rates [5, 6].
Sandhu et al. evaluated road traffic accident black spots using
the kernel density estimation method based on road traffic
accident data [7]. Dang et al. established a regional road traffic
safety evaluation index system bymultiple correlation analysis
of traffic accident data [8]; similarly, these researchers eval-
uated urban road traffic safety based on accident rates. Wang
et al. and Elvik et al. evaluated urban road traffic safety using
BNs based on traffic accident data [9, 10]. From a traffic
management perspective, Eusofe et al. and Gomes et al.
evaluated road traffic safety based on traffic accident data
[11, 12]. Zhang et al. established an equivalent accident
frequency model based on the absolute accident frequency,
accident consequences, and impact on traffic [13]; addi-
tionally, these researchers used this model in a combined
location safety evaluation method for urban expressways.

Regarding establishment of road traffic safety evaluation
indices based on the different characteristics of people,
vehicles, road, and environment, Wang et al. used an eight-
degree-of-freedom driving simulator to replicate the full
range of combined alignments used on a mountainous
freeway in China [14]; additionally, multiple linear regres-
sion models were developed to estimate the effects of the
combined alignments on the lateral acceleration. Li et al.
examined the effects of subjective and objective safety in-
dices on road safety and analyzed the relationships between
an objective safety index, which comprises road linearity,
pavement, traffic facilities, and natural environment and
road safety [15]. Sun et al. evaluated the traffic safety state of
interwoven areas using indices such as the number of traffic
conflicts, traffic count, and the length of the interwoven area
[16]. Niu et al. evaluated the road traffic safety state using
two indices, namely, the road conditions and traffic acci-
dents [17]. Cheng et al. evaluated road traffic safety with road
conditions as evaluation index [18]. Luo et al. established an
urban traffic safety state evaluation model using a fuzzy
algorithm with people, vehicles, roads, and environment as
evaluation indices [19]. Li created a multilevel safety eval-
uation index system based on expressway linearity and
established a comprehensive linear safety evaluation model
for expressways based on the extension theory; additionally,
Li determined the weights of indices using the entropy
weight method and classified safety levels [20].

Regarding research on road traffic safety risks based on
driving behavior, traffic flow, and traffic accident data, Gao
et al. studied and analyzed a road traffic accident risk pre-
diction model for the technical environment of continuous

urban traffic observation and dynamic control (continuous
data environment for short) based on logistic regression and
random forests [21]. Chen et al. proposed a new hotspot
identification method based on quantitative risk assessment
and used this method to identify potential accident-prone
locations on highways [22]. Yu et al. proposed a hybrid latent
class analysis modeling approach to consider the heteroge-
neous effects of geometric features in accident risk analysis;
additionally, these researchers established traffic accident risk
analysis models using a Bayesian random parameter logistic
regression algorithm [23]. Sun and Sun conducted modeling
analysis on the real-time traffic flow parameters of express-
ways in Shanghai and the accident risk based on coil detector
and accident data in combination with a BN model [24]. Xu
and Shao established a dynamic whole-vehicle model for a
certain microvehicle and a road model using the multibody
dynamic software Automated Dynamic Analysis of Me-
chanical Systems (ADAMS); subsequently, these researchers
used the models to conduct virtual simulations to quantita-
tively analyze the effects of driver behaviors on brake safety
[25]. Based on driving behavior data, Min determined the
road traffic safety state using an AHP and a comprehensive
fuzzy evaluation method [26]. Li et al. and Qu et al. for-
mulated road traffic safety evaluationmethods based on traffic
accident and driving behavior data [27, 28].

As mentioned above, the relevant research on road
traffic safety evaluation has accumulated rich results but is
still deficient to a certain extent due to the different
evaluation methods and data involved. (1) -e evaluation
based on statistical indices for traffic accidents is performed
after the occurrence of traffic accidents. It does not consider
the fundamental causes of traffic accidents, including the
aberrant driving behaviors, road, weather, and traffic
conditions. -erefore, it is important to estimate road
traffic safety risk in advance for accidents prevention;
however, existing research is insufficient for preassessment
of road traffic safety risk. (2) -e research that establishes
an evaluation index system considering the different
characteristics of people, vehicles, roads, and environment
is short of intermediate feature data for describing driving
behaviors; thus, it is difficult to accurately predict road
traffic safety risk. (3) Driving behavior data provides
support for exploring the intrinsic causes of accidents;
unfortunately, up to now most researches employ a small
amount of driving behavior data which covers a few be-
havior patterns. As a result, it is difficult to depict traffic
safety risk under various road conditions when driving
behavior data is inadequate.

Hence, based mainly on onboard diagnostic (OBD)
driving behavior data and the information entropy theory,
this study establishes an urban road traffic safety risk
evaluation index system and a relevant calculation method,
investigates a traffic safety risk estimation method, and
classifies road traffic safety risks.

2. Data Preprocessing

2.1. Brief Introduction to Vehicle OBD Data. In the main
urban area of Chongqing, there are approximately 100,000
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private vehicles with OBD devices installed. An OBD device
updates and records 13 types of vehicle data (including
global positioning system (GPS), driving behavior, and se-
curity alarm data) every 2–10 s. Based on a preliminary
analysis of original data, two types of vehicle data, namely,
GPS and driving behavior data, are primarily used in this
study for analysis. Vehicle GPS data consist of 27 fields,
including data type, vehicle identification number (ID),
time, longitude, latitude, and speed. Driving behavior data
consist of four fields, namely, data type, vehicle ID, time, and
driving behavior type. Because an OBD device transmits
data independently based on the type of data, it is necessary
to match a vehicle’s GPS and driving behavior data to obtain
driving behavior and relevant information.

2.2. Driving Behavior and GPS DataMatching. Based on the
vehicle ID and time fields in the GPS and driving behavior
data collected by the OBD device onboard a vehicle, the
vehicle’s GPS and driving behavior data are matched to
obtain aberrant driving behavior and relevant longitude and
latitude information. Table 1 summarizes the driving be-
havior data obtained after data matching.

2.3. Classification of Road Sections. Vehicle driving behav-
iors are, to a relatively large extent, affected by road con-
ditions. To accurately evaluate road traffic safety risk under
different road conditions based on aberrant driving be-
haviors, road sections are classified into eight categories,
according to three characteristic parameters (the slope
gradient, radii of turns, and presence of openings). -e
classification standard of road sections is shown in Table 2.

3. Establishment of a Road Traffic Safety Risk
Evaluation Index System Based on Aberrant
Driving Behaviors

3.1. Correlation Analysis of Aberrant Driving Behaviors and
Traffic Accidents. In actual traffic, aberrant vehicle driving
behaviors, such as rapid acceleration, rapid deceleration, and
rapid turning, can easily occur as a result of road, climate,
and traffic conditions. When a vehicle exhibits an aberrant
driving behavior, this behavior alone may result in an ac-
cident or may have a relatively significant impact on the
surrounding vehicles, causing a multivehicle traffic accident.
-erefore, there may be a relatively high probability of traffic
accidents at high-incidence locations for aberrant driving
behaviors.

To verify the above inference, a case study of Xuefu
Avenue in Chongqing (sections between Si Gongli and Liu
Gongli) was performed. Based on the aberrant driving be-
havior data of 8,486 vehicles in a 6-consecutive-day period
(231 rapid acceleration data items, 416 rapid deceleration
data items, 99 rapid turning data items, 12 speeding data
items, and 87 high-speed neutral coasting data items), an
aberrant driving behavior distribution heat map was pro-
duced using ArcGIS, as shown in Figure 1(a). Additionally,
1-month traffic accident data (23 accidents) for Xuefu
Avenue were obtained from Chongqing municipal traffic

management authorities. Figure 1(b) shows the location of
each accident. As demonstrated in Figure 1, spatially, the
locations of traffic accidents agreed well with the sections
with high incidence of aberrant driving behaviors.

Additionally, 6-day aberrant driving behavior data
(10,715 aberrant driving behavior data items for 42,558
vehicles) and traffic accident data in a month (302 traffic
accidents) for two other roads, including Longteng Avenue
and Shi Xiaolu Avenue, were gathered and processed. A
matching analysis of these data, similar to that shown in
Figure 1, was performed in Figures 2 and 3.

Accidents number and aberrant driving behavior fre-
quency of each road section on the three avenues mentioned
above were calculated, and their distribution curves were as
shown in Figure 4.

Results show that, in most cases for the three avenues,
when aberrant driving behavior frequency rises, accidents
number increases, which infers that trends of aberrant
driving behavior frequency and accident frequency are
basically consistent with each other. -ere may be a few
exceptions, where drivers can perceive a potential high safety
risk and take corresponding precautions to avoid accidents
as field survey implies. Nevertheless, aberrant driving be-
havior data can represent the risk of road traffic safety in
general.

3.2. Selection of Road Traffic Safety Risk Evaluation Indices.
For any road sections, the lower the aberrant driving be-
havior frequencies are, the more orderly the traffic flow is
and the lower the probability of traffic accidents is, and vice
versa. -is phenomenon is very similar to the disorderliness
of a system described by information entropy. In 1865,
German physicist Rudolf Clausius proposed the concept of
entropy. In 1948, Shannon quantified entropy to reflect the
orderliness of a system [29]. -e more orderly a system is,
the lower the information entropy of the system is, and vice
versa.

-erefore, a road traffic safety risk evaluation index
system is established with the road traffic safety entropy
(RTSE) as the primary index and the frequencies of various
aberrant driving behaviors affecting the road traffic safety as
the secondary indices (Table 3).

4. RTSE Calculation Method Based on an
Improved Entropy Weight Method

4.1. Calculation Process for RTSE. Overall, the RTSE cal-
culation method involves two steps, namely, calculating the
values of the secondary evaluation indices and calculating
the weights of the secondary indices and the value of RTSE.

-e value of a secondary index (aberrant driving be-
havior frequency), Pk

ij, is calculated as follows:

P
k
ij �

Ak
ij

Zk
ij

, (1)

where i is the sections number, k is the time, j is the index
number, Ak

ij is the aberrant driving behavior frequency for
the road sections i corresponding to the index j within time
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Table 1: Samples of driving behavior data.

Vehicle ID Time Direction angle Speed Altitude Latitude Longitude Driving behavior type
fdc14ca4. . .bb4b130 2018/5/16 07:37:20 306 28 72 29.622507 106.522736 Rapid acceleration
fdc14ca4. . .bb4b130 2018/5/16 07:37:30 313 26 70 29.622723 106.52349 Rapid deceleration
fdc14ca4. . .bb4b130 2018/5/16 07:38:00 337 0 69 29.622875 106.52382 Rapid turning

Table 2: Classifications of example road sections.

Road condition
Bend Straight line

With openings Without openings With openings Without openings
Flat Type I Type II Type III Type IV
Sloped Type V Type VI Type VII Type VIII

No. 7
No. 6 No. 5 No. 4

No. 3
No. 2

No. 1

0–3,334,441,556
3,334,441.557–6,668,883.111
6,668,883.112–10,003,324.67
10,003,324.68–13,337,766.22
13,337,766.23–16,672,207.78

16,672,207.79–20,006,649.33
20,006,649.34–23,341,090.89
23,341,090.90–26,675,532.44
26,675,532.45–30,009,974

N

(a)

No. 7
No. 6 No. 5 No. 4

No. 3
No. 2

No. 1

Accident location

N

(b)

Figure 1: Aberrant driving behaviors and traffic accidents on Xuefu Avenue.

No. 7

No. 6
No. 5

No. 4

No. 3No. 2

No. 1

0–18,500,481.78
18,500,481.79–37,000,963.56
37,000,963.57–55,501,445.33
55,501,445.34–74,001,927.11
74,001,927.12–92,502,408.89
92,502,408.90–111,002,890.7
111,002,890.8–129,503,372.4
129,503,372.5–148,003,854.2
148,003,854.3–166,504,336

N

(a)

Figure 2: Continued.
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No. 7

No. 6
No. 5

No. 4

No. 3
No. 2

No. 1

Accident location

N

(b)

Figure 2: Aberrant driving behavior and traffic accidents on Longteng Avenue.

No. 7

No. 6

No. 5

No. 4

No. 3

No. 2

0–7,048,190.222
7,048,190.233–14,096,380.44
14,096,380.45–21,144,570.67
21,144,570.68–28,192,760.89
28,192,760.9–35,240,951.11
35,240,951.12–42,289,141.33
42,289,141,34–49,337,331.56
49,337,331.57–56,385,521.78
56,385,521.79–63,433,712

No. 1

N

(a)

No. 7

No. 6

No. 5

No. 4

No. 3

No. 2

Accident location

N

No. 1

(b)

Figure 3: Aberrant driving behavior and traffic accidents on Shi Xiaolu Avenue.
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k, and Zk
ij is the number of OBD-equipped vehicles that

travel through the road sections i within time k.
Several methods are available for calculating the weight

of an index, including the entropy weight method, AHP,
and principal component analysis. -e entropy weight
method determines the weight of an index based on the
difference of the index from the other indices. -e more
significantly an index differs from other indices, the greater
the weight of the index is. -e entropy weight method is
relatively applicable to description of the effects of aberrant
driving behaviors on the road traffic safety risk level. For
example, for several road sections differing in traffic ac-
cident frequency, if there is a relatively significant change in
the frequency of a certain aberrant driving behavior and the
frequencies of other aberrant driving behaviors remain
basically unchanged, then the frequency of the aberrant
driving behavior in question results in a difference in the
accident frequency. -erefore, the aberrant driving be-
havior in question can be assigned a relatively large weight.
-e entropy weight method calculates the weight of an
index in the following process:

(1) Data standardization:

λk
ij �

Pk
ij − P0

P1 − P0
, (2)

where P0 � Min(P1
ij, P2

ij, . . . , P
q
ij) and P1 � Max(P1

ij,

P2
ij, . . . , P

q
ij).

(2) Calculation of the entropy value of the index hj:

hj � 􏽘

n

i�1
􏽘

q

k�1
− λk

ij􏼐 􏼑logaλ
k
ij, (3)

where n is the total number of road sections, q is the
number of time periods, and a, the base of the
logarithm, is set to 2.

(3) Calculation of the weight of the index wj:

wj �
1 − hj

􏽐
m
j�1 1 − hj􏼐 􏼑

, (4)

where m is the total number of indices.
-e entropy weight method can objectively calculate the

weight of an index. However, when using this method in
practice, optimization and demonstration are required. For
example, setting the base a of the logarithm to an unsuitable
value may result in a negative weight. It is impossible to
calculate the entropy value of a zero-value index. Addi-
tionally, when the entropy values of all the indices are close
to 1, the difference between the indices may be greater.

4.2. Improvement of the Entropy Weight Method

4.2.1. Optimization of the Base of the Logarithm a. When
calculating the entropy value of an index, a used in the
original entropy weight method is set to 2. In certain studies,
a is set to 10 or the number of objects evaluated. -is as-
signment may lead to an unreasonable weight for the index.
-us, it is proposed that a be set to the number of secondary
evaluation indices. -e reason is discussed below.

-e information entropy proposed by Shannon pri-
marily solves communication problems. -ere are only two
basic computer storage units (binary), 0 and 1. When an
event may have two consequences, each of which has a
probability of 50%, the system results are the most random;
that is, the level of disorderliness is the highest. Under this
condition, the entropy value of the system is 1 when the
logarithm of a is 2. Based on (4), when calculating the
entropy values of indices, a needs to ensure that the max-
imum entropy is 1 and the weights of the indices are rea-
sonably allocated when the indices have the same probability
of occurrence.

Here, 2,000 groups of random numbers (including
data groups in which each index has a value of 0.2) are
generated under the following conditions: number of
indices, 5; sum of indices, 1. A plot is created with the
variance of each group of numbers as the x-axis and the
product of each group of numbers as the y-axis, as shown
in Figure 5. Evidently, the smaller the variance is, the
greater the product is. -e product reaches the maximum
value of 3.2 ×10− 4 at a variance of 0 (i.e., all the indices
have a value of 0.2).
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Figure 4: Distribution of frequencies of aberrant driving behaviors
and traffic accidents.

Table 3: Evaluation index system.

Primary evaluation
index Secondary evaluation index

Road traffic safety
entropy (RTSE)

Rapid acceleration frequency, rapid
deceleration frequency, rapid turning
frequency, speeding frequency, and

high-speed neutral coasting frequency
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-en, the entropy value of the system is calculated with a
of 2, 5, and 10 and the product of each group of data as the
input. -e relationship between the product of the indices
and the entropy value of the system is shown in Figure 6.

-e entropy value increases with the product of the
indices. -e entropy reaches the maximum value of 1 at a
product of indices of 3.2×10− 4 (i.e., all the indices have the
same probability of occurrence) and a of 5.-is result agrees
with the information entropy theory. -erefore, when cal-
culating the entropy value of an index, it is recommended
that a be equal to the number of evaluation indices.

4.2.2. Zero-Value Processing of Secondary Indices. -e
original entropy weight method is unable to calculate the
entropy value for zero-value data. -e available studies
mainly use two methods for processing zero-value data,
namely, by directly discarding the group of zero-value data
and adding an increment of 1 to the zero-value data. Here,
an alternative method for processing zero-value data is
proposed. When a certain evaluation index in a group has a
zero value, 0.00001 is added to each index in the group. -e
reason is discussed below.

-e aberrant driving behavior frequency varies rela-
tively significantly between different road conditions. For
upslope or long straight road sections, the probability of
high-speed neutral coasting is almost 0. -is result is an
objectively existent phenomenon. Discarding the group of
data in question leads to a deficient description of the
objective phenomenon. Adding an increment of 1 to all
the data accounts for this limitation. However, the slope of
the logarithmic function for calculating the entropy value
of an index continuously decreases as the value of the
independent variable increases. If an increment of 1 is
added to all the data, the difference in the entropy values
between the other nonzero-value indices decreases, which
relatively significantly affects the allocation of weights to
the indices. -erefore, when a secondary index has a value
of 0, it is recommended that a minor increment be added
to all the index data and that the addition of this incre-
ment have a nonsignificant impact on the difference be-
tween indices.

Here, an example is given.-ere is a group of five indices
with values of 0.23, 0.27, 0.21, 0.10, and 0.19. -e weight of
each index is calculated. -en, an increment ΔP ranging
from 0.00000001 to 1 is added to each index. Subsequently,
the change in the weight of each index is calculated. -e
relationship between the increment added to each index and
the change in its weight is shown in Figure 7.

As demonstrated in Figure 4, when the increment ΔP is
less than 0.00001, there is almost no change in the weight of
each index.-erefore, when a secondary index has a value of
0, an increment of 0.00001 could be uniformly added to this
group of data.

4.2.3. Weight Calculation Method. When the entropy values
of all the indices are close to 1 and have a very slight difference,
the weights calculated may differ multifold. -us, a piecewise
calculation method for the weights of the indices based on their
entropy value distribution is proposed, as shown in

wj
″ �

1 + h − hj􏼐 􏼑

􏽐
m
j�1,hj ≠ 1 1 + h − hj􏼐 􏼑􏼔 􏼕

, Case1,

1 − hj􏼐 􏼑

􏽐
m
j�1 1 − hj􏼐 􏼑􏽨 􏽩

, Case2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where case 1 describes a situation where there is a relatively
small difference in the entropy values or indices and all
entropy values are distributed in the range of (0.8, 0.91) or
(0.95, 1); case 2 describes other situations.

When using (4) to calculate weights, if the entropy values
of all the indices are close to 1 and differ nonsignificantly,
then the weights calculated may differ multifold [30, 31].
Here, an example is given. Five indices are selected. Cor-
respondingly, a group of data is selected as the entropy
values for the indices. -e maximum difference between the
data in this group does not exceed 0.04. Additionally, the
data in this group vary in the range close to [0.6, 1]. -e
weight of each index is calculated using (4). Moreover, the
product of the weights of the indices is calculated. A plot is
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created with the values close to the entropy values of the
indices as the x-axis and the product of the weights of the
indices as the y-axis, as shown in Figure 8.

As mentioned previously, the product of a group of data
increases as its variance decreases. As demonstrated in
Figure 5, when the entropy values of all the indices are
distributed in the range of (0.8, 0.91) or (0.95, 1), the variance
of the weights of the indices is relatively large; that is, the
difference between the weights of the indices is relatively
large. Ouyang proposed an improved weight calculation
method [32], as shown in

wj
′ �

1 + h − hj

􏽐
m
j�1,hj ≠ 1 1 + h − hj􏼐 􏼑

. (6)

In this study, the weights of the indices are calculated
using (6). -e relationship between the values close to the
entropy values of the indices and the product of the weights
of the indices is shown in Figure 8. -is method effectively
addresses the problem of the entropy values of the indices
differing nonsignificantly.

4.3. Calculation of RTSE. Based on the calculation of the
weights of aberrant driving behavior frequencies on various
types of road sections, the aberrant driving behavior fre-
quencies pij for any road section and the RTSE value SHi of
the section i are calculated. One has

pij � 􏽘

q

k�1

Pk
ij

q
, (7)

SHi � 􏽘
m

j�1
wj
″ × − pij􏼐 􏼑logm pij􏼐 􏼑, (8)

where the value of Pij is set to 0.00001 when Pij � 0.

4.4. Road Traffic Safety Risk Classification Based on
Cluster Analysis

4.4.1. Road Traffic Safety Risk Level Determination Based on
Two-Step Clustering. A high traffic safety risk does not

necessarily translate to a large number of traffic accidents.
-e RTSE values of different type sections are not absolutely
correlated with the number of traffic accidents.

Density-based spatial clustering of applications with
noise (DBSCAN) is able to identify data points distrib-
uted in a relatively isolated manner based on the data
distribution density, thereby preventing isolated data
points from affecting classification. -en, k-means
clustering is conducted based on various numbers of
clusters to calculate the silhouette coefficients for various
numbers of clusters (the higher the coefficient is, the
better the cluster separation is). -e optimum number of
clusters is selected as the number of road safety risk
classification levels.

4.4.2. Road Traffic Safety Risk Level =reshold Optimization
Algorithm Based on k-Means Clustering. Level thresholds
are calculated based on optimum k-means clustering re-
sults. It is assumed that there is a number of levels r. -e
number of classification level thresholds (r − 1) is calcu-
lated. -e pseudocode of the algorithm (Algorithm 1) is as
follows:

5. Validation Case Study

5.1. Selection of Example Roads. Chongqing, a typical
mountainous city in China, has multiple centers and
cluster-typed urban space. -e clusters in Chongqing are
connected only by expressways and arterial roads. In this
study, the road traffic safety risks of Longteng Avenue
(Road A, approximately 4.4 km long), Hongshi Avenue
(Road B, approximately 2.5 km long), the Inner Ring Ex-
pressway and Airport Expressway (Road C, approximately
27 km long), and Xuefu Avenue (Road D, approximately
4.5 km long) in Chongqing are evaluated, as shown in
Figure 9.

5.2. Data Preprocessing. By the OBD data processing
method, the GPS and driving behavior data for 13,004
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vehicles on Road A, 8,474 vehicles on Section B, 21,080
vehicles on Road C, and 8,486 vehicles on Road D, extracted
from the OBD data, were matched each other.

By the classification standard of road section, the four
road sections were divided into a total of 46 sections, each of
which was 0.2–0.8 km long, as shown in Figure 10.

5.3. Calculation of RTSE Value

5.3.1. Calculation of the Weights of Secondary Indices for the
Road Sections. By the improved entropy weight method, the
weights of aberrant driving behavior frequencies for various
types of road sections were calculated. Table 4 summarizes
the results.

5.3.2. Calculation of the RTSE Values of the Road Sections.
Based on the calculated weights for various types of road
sections, the safety entropy values of the 46 road sections
were calculated using (7) and (8). For example, the eight
sections of road A have safety entropy values of 0.0436,
0.0278, 0.0318, 0.0385, 0.0439, 0.0358, 0.0277, and
0.0204.

5.3.3. Comparative Analysis of RTSE and Number of Traffic
Accidents. -ere are obvious differences in traffic safety
between signal-controlled urban arterial roads and ex-
pressways with and without openings. Twelve road sections
of three types were selected from the example roads. -e
RTSE value of each road section was calculated and then
compared with the number of traffic accidents during one
month. Figure 11 shows the results.

As demonstrated in Figure 11, road safety entropy values
are consistent with the change trend of traffic accidents,
indicating that road safety entropy values can effectively
represent road traffic safety risks.

5.4. Classification of Road Traffic Safety Risk

5.4.1. Determination of the Number of Risk Levels. -e RTSE
values and traffic accident data for 12 sections of signal-
controlled arterial roads, 12 sections of expressways with
openings, and 12 sections of expressways without openings
(a total of 36 road sections) were selected. -ese data were
then subjected to a DBSCAN analysis to remove the data
points distributed in a relatively isolated manner. -e
remaining data points were subsequently subjected to k-
means clustering analysis.

In MATLAB, the numbers of clusters obtained from 2-
(Figure 12), 3-, and 4-means clustering were analyzed.
Additionally, the silhouette coefficients for various
numbers of clusters were calculated. -e silhouette co-
efficients for k of 2, 3, and 4 were found to be 0.44, 0.37,

(1) int r⟵ k-means number of clusters
(2) For int t� 1 to r − 1
(3) int at⟵ Safety entropy value of the center of the tth cluster
(4) int bt⟵ Safety entropy value of the center of the (t+ 1)th cluster
(5) int st⟵ Sum of the data in the tth and (t+ 1)th clusters
(6) int f� 1
(7) For float etf � at to bt
(8) int ctf⟵Volume of data in the tth cluster that is misclassified
(9) int dtf⟵Volume of data in the (t+ 1)th cluster that is misclassified
(10) gtf � 1 − ((ctf+ dtf )/st)//Calculation of accuracy
(11) etf � etf + 0.01
(12) Bt (f, 1: 2)� [etf, gtf]//-e threshold and accuracy are stored in the matrix Bt
(13) f� f+ 1
(14) End for
(15) Ct⟵Generation of the threshold corresponding to the highest accuracy
(16) End for
(17) C� [C1, C2, . . ., Cr − 1]//A number of thresholds (r − 1) is successively stored in the vector C

ALGORITHM 1: Level threshold optimization algorithm (“⟵” represents value assignment).

Airport Expressway

Longteng Avenue

Hongshi Avenue

Xuefu Avenue

Inner Ring
Expressway

N

Figure 9: Example roads.
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and 0.39, respectively. Evidently, 2-means clustering
produced the best results. -us, in this study, the road
traffic safety risks are classified into two levels, namely,
high and low risk.
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Figure 10: Classification of road section.

Table 4: Weights of aberrant driving behavior frequencies.

Road section
types

Rapid acceleration
frequency

Rapid deceleration
frequency

Rapid turning
frequency

Speeding
frequency

High-speed neutral coasting
frequency

I 0.19 0.19 0.16 0.30 0.18
II 0.18 0.23 0.18 0.26 0.21
III 0.16 0.21 0.18 0.33 0.16
IV 0.21 0.11 0.28 0.25 0.18
V 0.20 0.16 0.32 0.12 0.17
VI 0.25 0.14 0.27 0.24 0.14
VII 0.15 0.09 0.20 0.45 0.15
VIII 0.24 0.16 0.34 0.12 0.07
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Figure 11: Comparative analysis of RTSE value and number of
road traffic accidents.
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5.4.2. Calculation of Road Traffic Safety Risk Level Classifi-
cation =reshold. In this part, k-means clustering, fuzzy
clustering, and support vector machine were used to cal-
culate risk classification thresholds and corresponding ac-
curacies, on the basis of the 36 road sections’ data as
described in 4.4.1.

(1) k-Means Clustering. -e RTSE values of all the road
sections in class 1 and class 2 obtained from k-means
clustering were sorted in an ascending order. Figure 13
shows the sorted data.

-e classification accuracies of different RTSE threshold
values for road traffic safety grading were calculated. -e
potential thresholds range from RTSE of clustering center of
class 1 to that of clustering center in class 2. Figure 14 shows
the threshold calculation result.

Evidently, the accuracy is the highest (87.88%) when the
traffic safety risk level classification threshold for the road
sections is 0.042.

(2) Fuzzy Clustering. Fuzzy clustering was conducted to
separate data points of RTSE values and accident numbers
into 2 classes, and the result was presented in Figure 15 and
Table 5.

-e RTSE values of all the road sections in class 1 and 2
obtained from Fuzzy clustering were sorted in an ascending
order, and classification accuracies of different RTSE
threshold values for road traffic safety grading were cal-
culated. -e potential thresholds range from RTSE of
clustering center of class 1 to that of clustering center in
class 2. -e threshold calculation result was shown in
Figure 16.

As the result of fuzzy clustering shows, traffic safety risk
classification accuracy achieves the best (87.88%) when
RTSE threshold is 0.041 or 0.042.

(3) Support Vector Machine. 15 road sections’ RTSE values
and accident numbers were selected for training support
vector machine, and then it was used to classify traffic safety
risk levels of all the road sections into two classes. -e result
shows that when the accuracy reaches the best (87.88%), the
RTSE threshold is 0.041 or 0.042.
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Table 5: Clustering centers of fuzzy clustering.

Class Number of accidents (month) RTSE values
Class 1 3.0 0.039
Class 2 11.6 0.053
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Figure 16: Fuzzy clustering calculation of road traffic safety en-
tropy threshold and accuracy.
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As we can see, classification accuracy achieves the
highest as 87.88% when RTSE threshold is 0.042 for each of
the three methods. -erefore, RTSE threshold is recom-
mended to be 0.042 to identify road traffic safety risk level;
that is to say, the road traffic safety is at a low level if RTSE is
less than 0.042; otherwise, it is of high safety risk if RTSE is
greater than 0.042.

6. Concluding Remarks

In this study, based on OBD vehicle driving behavior data,
the correlation between aberrant driving behaviors and
traffic accidents is analyzed. On this basis, a road traffic
safety risk evaluation index system and an index calculation
method are established based on information entropy the-
ory. Additionally, based on traffic accident data, a road traffic
safety risk estimation method is established through cluster
analysis.

-e validation case study demonstrates that the road
traffic safety condition depicted by the RTSE value exhibits
the same trend as that depicted by the number of traffic
accidents. -e road traffic safety risk prediction method
established based on driving behavior data is able to ef-
fectively and objectively evaluate road traffic safety risk. -e
results derived from this study can effectively support
identification of high road traffic safety risk locations,
prevention, and early warning of traffic accidents. Addi-
tionally, these results can provide decision-making reference
for traffic operation control in the collaborative vehicle-road
environment.

Road traffic safety is affected by a multitude of factors,
including the characteristics of road, driver, weather, and
traffic conditions.-is study is conducted primarily from the
perspectives of driving behaviors and road conditions. As
data continue to accumulate, it is necessary to conduct a
classification study on the road traffic safety risk while
considering more influencing factors.
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.is study proposes an integrated driving control strategy by taking advantage of the automated driving technology at the individual
vehicle level and the traffic signal preemption strategy at the traffic infrastructure level. .is aims to facilitate an automated driving-
based emergency vehicle control and ultimately to achieve efficient and safe control of emergency vehicles. To this end, this study
developed the integrated emergency vehicle control logic, implemented the logic in the microscopic traffic simulation environment
using the simulation software’s application programming interface capability, and evaluated the impacts of the proposed emergency
vehicle control logic in the aspects of mobility and safety with different driving aggressiveness and preemption initiation settings..e
study’s results show that the proposed emergency vehicle control logic achieved benefits on mobility and safety and the benefits of
emergency vehicle control strategy can be maximized when the signal preemption and the automated driving control operate in
collaboration. .erefore, the proposed integrated approach of automated driving controls and signal preemption will be a great
reference for enhancing automated driving technologies supporting a safe and fast mobility solution.

1. Introduction

Automated driving technologies have been spotlighted in
recent years. Safety systems and applications are the core of
the automated driving technology because safety is a critical
value when a new transportation mode is deployed in reality.
.is emphasis on safety could reduce mobility on roadways
due to frequent decelerations against projected dangers,
indicating that there is a tradeoff between safety and mo-
bility. To reduce this tradeoff and enhance the performance
of automated driving technology in both safety andmobility,
this study adopts an emergency vehicle (hereafter “EMV”) as
a representative traffic application that needs to achieve both
mobility and safety at the same time..e emergency vehicles

such as ambulances and police vehicles should reach the
designated destinations fast and safe.

By focusing on the importance of EMVs, some previous
studies developed traffic signal preemption strategies by
manipulating traffic signal parameters in order to provide an
exclusive passage to EMVs [1–4]. .e recent studies took
advantage of the wireless communications technology such
as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications (hereinafter “V2X”) in order to
transmit the EMV’s location information to traffic signal
controllers in advance to reach the intersections. Based on
these examples, it is expected that support from road in-
frastructure such as V2X communications and traffic signal
controls can facilitate the operation of EMVs [5–8].
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To sum up, this study takes advantage of the automated
driving technology at the individual vehicle level and the
traffic signal preemption strategy at the traffic infrastructure
level in order to develop the automated EMV control
strategy and ultimately to facilitate mobile and safe control
of automated vehicles. Hence, this study develops the in-
tegrated EMV control algorithm and investigates the im-
pacts of the EMV algorithm on mobility and safety using
multiple driving aggressiveness scenarios. Furthermore, this
study takes the optimum driving parameters set concerning
mobility and safety performance measures into
consideration.

2. Literature Review

2.1. Automated Vehicle Control Models. Vehicle automation
has seen unprecedented development in the recent years.
Levinson et al. [9] have shown the system structure and
control algorithms of an automated vehicle. In order to
simulate it in a microscopic traffic simulation context, the
simulated vehicle has to imitate the automated vehicle’s
longitudinal and lateral movement behavior. In terms of
longitudinal control or car-following behavior, unlike a
human driver, who has a control variance, often modeled by
Wiedemann74 model [10] or Gipps model [11], automated
vehicles have almost zero latency and control variance.
Kesting et al. [12] have presented the Enhanced Intelligent
Driver Model (EIDM), which represents the car-following
behavior of a vehicle with adaptive cruise control (ACC).
Based on Kesting et al.’s EIDM, the following vehicle adjusts
its acceleration based on the leading vehicle’s speed, ac-
celeration, distance, and its own speed, maintaining an
acceptable following distance.

In terms of lateral control or lane change behavior, there
are less intensive researches on this topic. Within traffic
simulations, lane changes are modeled using a rule-based
decision process [13], which looks into the necessity, possi-
bility, and benefit of a proposed lane change action. Kesting
et al. [14] proposed another gap based lane change model,
which aims at minimizing breaking distance. .is model,
though, assumes that other vehicles in the vicinity follow the
Intelligent Driver Model [15]; thus it is unsuitable for lane
change decision-making, where nearby vehicles adopt a car-
following behavior based on the Wiedemann model. Naranjo
et al. [16] have presented a lane change mechanism based on
fuzzy logic; it provides a smooth transition from one lane to
another, whereas it assumes a relatively static nearby vehicle
movement. Recent studies have moved to using neural net-
works to address this issue; Ulbrich and Maurer [17] propose
a probabilistic decision network for the tactical lane change
decision process. Two independent signal processing net-
works have been proposed to assess the nearby vehicles in
different regions of interests (ROI). .e output is the prob-
ability for whether a lane change is possible and the proba-
bility for whether a lane change is beneficial.

2.2. Traffic Signal Preemption. .e first electric traffic signal
was installed in 1914 in Cleveland and was equipped with a

manual switch for firemen, which led to red signals in all
approaches to facilitate the passage of the fire engine [18].
Beyond this manual signal preemption operation, three
main technologies for automatic detection of emergency
vehicles at signalized intersections have evolved and are used
in practice. .e first technology in use is based on the siren
sound that is detected with directional microphones in order
to determine the direction from which the emergency ve-
hicle is approaching [3]. .e second technology is based on
emission of light or infrared strobes by the emergency ve-
hicles that are detected by dedicated detectors located at the
signal head. A third technology is based on radio trans-
mission, which requires a separate technology for the po-
sitioning of the vehicle such as GPS or infrared beacons.

With Dedicated Short Range Communication (DSRC), a
new technology is arising, which takes the radio based
communication to a new level with higher bandwidths
allowing an exchange of information with increasing vol-
ume. .e evolving standards [19, 20] foresee data elements
for Signal Request Messages (SRM) as well as a Signal Status
Message (SSM) acknowledging the request. Furthermore,
Emergency Vehicle Alerts (EVA) can be broadcasted by
emergency vehicles to other road users in the vicinity in
order to raise their awareness.

.ese novel functionalities are investigated in several
research projects with different signal control algorithms
including ImFlow [21] and Multi-Modal Intelligent Trans-
portation Signal System (MMITSS) with its application
Emergency Vehicle Priority (PRE-EMPT) [22].

3. Methodology

3.1. StudyAssumption. .is study develops the EMV control
strategy by integrating automated driving technology and
the existing traffic signal preemption strategy. While the
EMV control strategy proposed in this study adopts state-of-
the-art technologies, some technical assumptions are made
in this study as follows:

(i) .e EMV is equipped with a GPS device, capable of
positioning the vehicle’s location

(ii) .e EMV is equipped with an on-board unit (OBU),
capable of V2X communication

(iii) .e EMV is equipped with vehicle sensors, capable
of detecting adjacent vehicles

(iv) Traffic signal controllers in this road network are
equipped with roadside units (RSU), capable of
receiving the EMV’s wireless transmission

In addition to the assumptions on technical requirements,
further assumptions weremade in terms of the EMV’s driving
maneuver as follows: the EMV has a desired speed of 100 km/
h; the EMV drives within a normal driving concept, and no
special right-of-way (ROW) is allowed to the EMV. For
example, the EMV follows traffic signals, drives only within a
lane, and is not allowed to drive on a contraflow lane; and
adjacent vehicles respond to the EMV in a normal way based
on the VISSIM’s off-the-shelf car-following behaviors and do
not take evasive maneuvers (e.g., stopping and evasive road
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departure) against the EMV..is is because this study focuses
on the utilization of automated driving controls for the
purposes of both mobility and safety, rather than the specific
driving maneuvers of EMV. In other words, this study
removes other external impacts such as the EMV’s special
ROW and the normal vehicles’ evasive maneuvers and only
investigated the EMV’s maneuver scenarios by different
setting of automated driving control parameters.

3.2. Automated Driving Controls. An Enhanced Intelligent
Driver Model (EIDM) is used for the vehicle’s longitudinal
control; for the vehicle’s lateral control, a probabilistic lane
change decision process is implemented. A set of aggres-
siveness levels are defined in order to evaluate the mobility
and safety impact of driving strategies according to these
levels.

3.2.1. Longitudinal Behavior Model. In order to model the
car-following behavior of an automated vehicle, one needs to

be aware of the significant differences from a human driver.
Automated vehicles, compared to cars with human drivers,
can be assumed to have zero reaction time, zero control
variance, and no loss of attention.

.e EIDM [17] is a time-continuous car-following
model representing the ACC driving behavior; it also serves
as the basis of an ACC implementation of real vehicles. .e
model extends the Intelligent Driver Model (IDM) pre-
sented by Treiber et al. [15] with a constant-acceleration
heuristic (CAH). .is avoids the formerly observed,
sometimes unrealistic, behaviors in noncritical braking
situations, for example, when a car changes lanes in front of
another vehicle, causing the gap to be less than desired. .e
EIDM has inherited IDM’s intuitive behavioral parameters:
desired velocity, acceleration, comfortable deceleration, and
desired minimum time headway.

.e CAH and EIDM are given in the following
equations:

aCAH s, v, vl, al( 􏼁 �

v2􏽥al

v2l − 2s􏽥al + ε
, if vl v − vl( 􏼁≤ − 2s􏽥al,

􏽥al −
v − vl( 􏼁

2Θ v − vl( 􏼁

2s
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

aEIDM �

aIDM, if aIDM ≥ aCAH,

(1 − c)aIDM + c aCAH + b tanh
aIDM − aCAH

b
􏼔 􏼕, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(2)

.e CAH determines the maximum acceleration aCAH
leading to no crashes. “.e condition vl(v − vl)≤ − 2svl(v −

vl)≤ − 2s 􏽥al is true if the vehicles have stopped at the time the
minimum gap s� 0 is reached” [12]. .e Heaviside step
function Θ(x) is used for eliminating negative approaching
rates..e term 􏽥a is the minimum value of a and al, which are
the accelerations of the subject vehicle and the leading ve-
hicle, respectively, and ε is an extremely small number to
prevent the denominator from being equal to zero. .e
acceleration of the ACC vehicle is expressed by aEIDM. .is
again has two cases; only if the acceleration computed by the
IDM is unrealistic is the second term in equation (2) used.
.e parameter c of this formula is a “coolness factor,” which
determines the weights placed on CAH and IDM.

Finally, the parameters are set as follows:

(i) Desired speed (v0): 100 km/h
(ii) Free acceleration exponent (δ): 3
(iii) Desired time gap (T): 0.5 s
(iv) Minimum standing distance (s0): 2.0m
(v) Maximum acceleration (a): 4.2m/s2

(vi) Desired deceleration (b): 4.0m/s2

(vii) Coolness factor (c): 0.99

In order to demonstrate the difference between the
EIDM and the Wiedemann model, which is the default car-
following model in VISSIM, a testing scenario is created to
reveal the responses given by the two models to a leading
vehicle. .e leading vehicle in this case uses the Wiedemann
model and is placed 100 meters ahead of the subject vehicle
to test the behavior in car following. .e leading vehicle
would undergo several changes of desired speeds. .e re-
actions of the subject vehicle using different models are
illustrated in Figure 1. .e EIDM vehicle indicates higher
maximum speeds and smoother accelerations/decelerations.

3.2.2. Lateral Behavior Model. As in Ulrich andMaurer [17],
two signal processing networks are used to determine if a
lane change is possible and beneficial with probabilistic
outputs. .ese two signal processing networks were used as
part of a neural network model; however, in this paper, the
signal processing networks are implemented as the solo
criteria for lane changing decisions with predefined
thresholds.

.e signal processing networks comprise two parts: a
network for “lane change possible” decision process and a
network for “lane change benefit” decision process. .e lane
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change possibility is based on the dynamic vehicle in front of
the subject vehicle on its own lane, the vehicle in front of the
subject vehicle on its neighbor lane, and the vehicle behind
the subject vehicle on its neighbor lane. .e lane change
benefit considers the direct front vehicle on the same lane
and the front vehicle on the neighbor lane. If any front
vehicle does not exist, then the benefit probability is set to
zero directly. Note that only a 2-lane street is considered in
the case study.

A threshold for each signal network is given based on
aggressiveness levels, which dictates when a lane change
action should be executed. .is signal network considers
relative distances, relative velocities, and time to collision
with nearby vehicles around the subject vehicle.

.e signal processing network for calculating an ag-
gregated probability measurement to determine whether a
lane change is possible is a mathematical calculation, ag-
gregating each situation in the regions of interest (ROI).
Each situation expresses its own possibility of performing a
lane change on a scale from zero to one. .e final result
indicates the aggregated possibility. If no object exists in the
ROI, the likeliness that a lane change is possible is directly set
to 1. If an object does exist, then a series of cumulative
Gaussian distributions translate the numeric values of the
object attributes into a specific number value in the scale of
zero and one, based on µ and σ given in each distribution.
Object attributes include speed, distance, time gap
(t � distance/vego), and time to collision (TTC � distance/
(vobj − vego)). After calculating all the cumulative distribu-
tion functions, the intermediate results are aggregated into
one measurement to represent a particular ROI, and finally a
minimal value is selected from all ROI as the final probability
for “lane change possible.”

3.2.3. Driving Aggressiveness Settings. Driving aggressive-
ness can be defined with different parameter sets for the car-
following and lane change models. .e strategy in defining
these driving aggressiveness levels was to make the EMV
proactively take lane changes under maximum allowable
maneuvering capacity. .erefore, the car-following pa-
rameters (i.e., desired time gap λT, maximum acceleration

rate λa, and desired deceleration rate λb) were set at max-
imum as follows in order to allow a full driving capacity of
the EMV:

(i) Desired time gap (λT): 0.5 seconds
(ii) Maximum acceleration rate (λa): 4.2m/s2

(iii) Desired deceleration rate (λb): 4.0m/s2

.e aggressiveness levels were thus defined with different
lane change criteria (i.e., lane change possibility and benefit
probabilities), and the lane change possibility and benefit
probabilities were assumed to be realistic in the range of 20%
and 80%. .e rationale of this boundary is based on the
following assumptions: lane changes happen too frequently
if the lane change criteria are set to happen when both the
possibility and benefit probabilities are lower than 20%, and,
in contrast, no lane changes would occur if the lane change
criteria are set to happen when both the possibility and
benefit probabilities are higher than 80%. .erefore, the
driving aggressiveness levels were set with 16 different
combinations of four different lane change possibility
probability criteria (20%, 40%, 60%, and 80%) and four
different lane change benefit possibility criteria (20%, 40%,
60%, and 80%). Figure 2 shows the selection concept of
driving aggressiveness levels. .e “20% of possibility
probability and 20% of benefit probability” criteria scenario
represents the most aggressive driving maneuver, while lane
changes happen in the most conservative manner in the
“80% of possibility probability and 80% of benefit proba-
bility” criteria scenario.

3.3. Signal Preemption. An emergency vehicle signal pre-
emption (EVSP) strategy is designed to provide a signal
priority to EMVs approaching a signalized intersection. .e
general logic of EVSP operates with the following processes:
a request for preferential signal is transmitted to a traffic
signal controller located at a specific intersection, when an
EMV approaches the signalized intersection; once the signal
controller receives the signal from the EMV including its
location, the controller initiates the preset EVSP program;
the EVSP program estimates the appropriate timing for
green indication by estimating the queue discharge time and
the arrival time of the EMV based on the EMV’s location
information; and the EVSP program provides green signal to
the EMV’s approach at the estimated timing in order for the
EMV to pass through the intersection without delay.

.is study adopted a coordinated dynamic traffic signal
preemption strategy taking advantage of Intelligent Trans-
portation Systems (ITS) technologies [2]. Basic criteria of
EVSP are to make EMVs pass through a signalized inter-
section without delay and to minimize the side effect of
EVSP on the other traffic. To meet these criteria, the green
signal should be indicated at the effective timing after the
queued vehicles and the moving vehicles are discharged..e
EVSP in this study utilizes the dynamic notification time
concept as shown in Figure 3 by estimating the remaining
time for the EMV to arrive at the intersection.

To this end, the notification time is estimated based on
switchover time, queue discharge time, and safety time
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interval, as shown in equation (3)..e switchover time is the
sum of inter-green time and minimum green time; the
discharge time is the amount of time required for queued
traffic to be discharged; and the safety time interval is a time
interval between the last queued vehicle and the EMV as-
suring a fluent passage and safety of the EMV. .e safety
time interval is assumed to be 3 seconds in this study.

Notification time � switchover time + discharge time

+ safety time interval.
(3)

3.4. Simulation Implementation

3.4.1. Traffic Simulation Model. To implement and evaluate
the EMV control strategy proposed in this study, a micro-
scopic traffic simulation approach is applied. VISSIM 10.0
[23] was selected due to its extensive capability of modeling
traffic situations and implementing automated vehicle

controls. VISSIM provides a component object model (COM)
interface, which facilitates traffic controls based on the user’s
specific logic using programming languages. In addition,
VISSIM also provides a driver model DLL file enabling users
to interrupt off-the-shelf driver behavior logics in VISSIM
and control vehicles as programmed and a vehicle actuated
programming (VAP) module to manipulate traffic signal
timings based on the detectors’ information and the user’s
logic. Regarding the fact that the EMV control strategy in this
study requires not only modeling of base traffic situations but
also signal preemption and automated driving controls,
VISSIM is an appropriate simulation software for the ex-
periments in this study.

3.4.2. Network Modeling. .e EMV control strategy pro-
posed in this study was implemented and tested in a mi-
croscopic traffic simulation network representing the
Frankfurter Ring road section, located in the city of Munich,
Germany. .e selected road section has three signalized
intersections where Schleissheimer Str., Knorrstr., and
Ingolstaedter Str. (from left) intersect. .e stretch of this
simulation network is 4.18 km from the west-most point to
the east-most point, and the network was built using VISSIM
as shown in Figure 4.

Data collection was made by Automatic Number Plate
Recognition (ANPR) and manual measurements in order to
build and calibrate a simulation network..emeasurements
took place from 8 AM to 9 AM on October 27, 2014, and
each ANPR camera was located on the Frankfurter Ring
road, while the other side roads were manually observed. In
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addition, road geometry and traffic signal timing plan data
were provided by the city of Munich. Finally, traffic volume,
speed, travel time, and signal timing parameter data were
collected, and these were used to build and calibrate the
VISSIM network [24].

.e model was calibrated and validated by adjusting car-
following parameters in order to assure the model’s reli-
ability representing actual traffic situations in reality. For the
calibrated parameters, standstill distance (CC0), headway
time (CC1), following variation (CC2), negative following
threshold (CC4), and positive following threshold (CC5) are
used and adjusted based on turning counts, queue lengths,
and travel times collected in the field [25]. .e final model
was satisfied with the calibration stopping criteria, since R2

values were higher than 0.90 in the all measurements (i.e.,
turning volumes, queue lengths, and travel times) [24]. In
addition, the model was fine-tuned using reduced speed
areas and desired speed distributions in VISSIM in order to
enhance the model’s reliability.

3.4.3. Simulation Settings. Twelve simulation runs were
made to capture variability in the simulation runs. .e
number of simulation runs was determined based on the
computed sample size, and twelve simulation runs were
statistically sufficient to cover the variability of this simu-
lation at a 95% confidence level [26]. .e entire simulation
period was set to 1,800 seconds, while first 1,200 seconds of
warm-up time were used to fill up the network with vehicles
and the remaining 600 seconds of simulation period were
used to evaluate the impact of the EMV.

3.4.4. Evaluation Settings. A total of 18 scenarios were set to
assess the impact of the EMV control proposed in this study
as shown in Table 1. Scenario 1 (base) does not implement
any special treatment for EMVs, but the EMV is set to drive
at 100 km/h by desire. Scenario 2 reflects a treatment at the
infrastructure level and utilizes signal preemption for the
EMV to pass through intersections without delay.

.is scenario represents a conventional signal pre-
emption strategy, which is the state-of-the-art treatment for
EMVs in the past years. .e other 16 scenarios utilize both

signal preemption and automated controls and are set with
different driving aggressiveness levels based on the lane
change possibility and benefit probabilities, as defined in the
previous section.

3.4.5. Driving Aggressiveness Settings. Scenario 3 reflects the
most aggressive driving maneuver, which triggers lane
changes if both the estimated lane change possibility and
benefit probabilities are more than 20%. Scenario 18 rep-
resents the most conservative driving maneuver, which
triggers lane changes only if the two probabilities are more
than 80%. In addition, the EMV entered into the network at
a different state of the traffic signal by increasing 10 seconds
in each scenario in order to consider the influence of in-
terruption timing in the signal cycle length. Since the in-
tersections in the test-bed network operate with 90 seconds
of cycle length, nine times of simulation run were imple-
mented for each evaluation scenario.

3.4.6. Measures of Effectiveness. .e impact of the EMV
control proposed in this study was evaluated in terms of
mobility and safety. .e mobility impact was evaluated at
both the network-wide level and the individual EMV level;
the network-wide average delay was measured for the
network-wide impact assessment; and travel time, average
speed, and average delay were measured for the individual
EMV. For the safety impact assessment, traffic conflicts, a
probability of crashes, were estimated using vehicle trajec-
tories extracted from VISSIM. A surrogate safety assessment
model (SSAM) [27] is used to compute surrogate safety
measures such as time-to-collision (TTC) and post-
encroachment time (PET) and estimate traffic conflicts. A
TTC value of less than or equal to 1.5 seconds and a PET
value of less than or equal to 5.0 seconds were used as the
thresholds for identifying traffic conflicts.

4. Analysis and Evaluation

4.1. DrivingManeuver. Average 0.5 lane change occurred in
the base and 4 lane changes occurred in the signal pre-
emption scenario. .is shows that signal preemption was
effective by providing green signal to EMV, while less than
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one lane change occurs if there is no interruption on traffic
signal and driving behavior parameters (i.e., base scenario).
For the automated control scenarios, 7 lane changes oc-
curred when the lane change criteria were 20% of possibility
and 20% of benefit; only 1 lane change occurred when either
the lane change possibility criteria or the lane change benefit
criteria were 80%; and the other automated control scenarios
were between these two cases in the range from 1 time to 7
times, as shown in Figure 5(a). .e results seem reasonable
because lane changes would hardly occur if the lane change
criteria are high (i.e., the most conservative behavior) and
frequently occur if the lane change criteria are low (i.e., the
most aggressive behavior).

.e average speed of the EMV (Figure 5(b)) was the
lowest in the base scenario because the EMVhad to frequently
stop due to red signals (no preemption). Average speed in the
preemption scenario was higher than that of the base scenario
because of the effective passage by the benefit of signal
preemption. In the automated-control-integrated scenarios
(i.e., integration of the automated control and the signal
preemption), most scenarios showed higher average speed
compared to the signal-preemption-only scenario, while the
average speed in the conservative driving aggressiveness
scenarios, in which the lane change criteria are higher than
60% in either possibility or benefit, was similar to the signal-
preemption-only scenario in the range of 5%. .is indicates
that EMVs can drive faster with reasonable lane changes (i.e.,
neither too many nor too few lane changes).

.e average acceleration rates (Figure 5(c)) were similar
in all scenarios, but the ranges of acceleration rates in the
base and signal preemption scenarios were a bit smaller than
those in the other automated control scenarios. .is is
because the maximum acceleration rate and the desired
deceleration rate were set at maximum in the automated
control scenarios in order to allow a full driving capacity of
EMV.

4.2. Mobility Impact. Based on delay and travel time mea-
surements (Figures 6(a) and 6(b)), the EMV was faster than
the other normal vehicles (i.e., black dots mean average delay
of normal vehicles) in the range from 66.7% to 87.7%.
Particularly, the “p2b4” scenario was the best and had 35.2%
less delay compared to normal vehicles; the “p2b2,” “p2b6,”
“p2b8,” and “p4b2” scenarios followed (less delay in the
range from 35.3% to 40.8% compared to normal vehicles);
and the EMVs of the automated control scenarios that were
set with 80% of lane change possibility or benefit criteria
showed a better performance than the base scenario in terms
of delay and travel time, but the performance was not
significant compared to the other automated control sce-
narios. .is is because EMV was relatively steady in the
conservative scenarios and travelled with less lane changes in
response to sluggish vehicles in forward.

4.3. Safety Impact. Traffic conflicts varied in the range from
1,184 to 1,438 in the network as shown in Figure 6(c), and
the impact of automated vehicle control in the entire net-
work appeared to be insignificant in terms of safety.
Meanwhile, the automated vehicle control decreased traffic
conflicts, since the numbers of conflicts involving EMV
ranged from 4.4 to 7.6 in the automated control scenarios,
while 8.9 conflicts were found in the base scenario.

4.4. Discussion. .e findings based on the mobility and
safety impact assessment results are discussed as follows:

(i) Increasing desired speed is effective to improve
mobility of EMV by approximately 10% (i.e., base);
signal preemption is effective for the mobility of
EMV; and the integration of a signal preemption
(treatment at road infrastructure) and an automated
vehicle control (treatment at individual vehicle)

Table 1: Evaluation scenarios.

Scenarios Scenario code Signal preemption
Automated driving

LC possibility
criteria (%)

LC benefit
criteria (%)

Scenario 1 (base) Base Not applied — —
Scenario 2 (signal preemption only) SP Applied — —

Signal preemption +
automated control

Scenario 3 p2b2 Applied 20 20
Scenario 4 p2b4 Applied 20 40
Scenario 5 p2b6 Applied 20 60
Scenario 6 p2b8 Applied 20 80
Scenario 7 p4b2 Applied 40 20
Scenario 8 p4b4 Applied 40 40
Scenario 9 p4b6 Applied 40 60
Scenario 10 p4b8 Applied 40 80
Scenario 11 p6b2 Applied 60 20
Scenario 12 p6b4 Applied 60 40
Scenario 13 p6b6 Applied 60 60
Scenario 14 p6b8 Applied 60 80
Scenario 15 p8b2 Applied 80 20
Scenario 16 p8b4 Applied 80 40
Scenario 17 p8b6 Applied 80 60
Scenario 18 p8b8 Applied 80 80
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significantly enhances the mobility of EMV by
decreasing delay.

(ii) An integrated approach of an automated vehicle
control and a signal preemption is beneficial for
EMVs to reduce conflicts involving adjacent vehi-
cles, while it does not provide significant side impact
in the entire network.

(iii) A signal preemption is beneficial for EMV in terms
of mobility and safety, but the impact can be
maximized in integration with an automated vehicle
control at the individual vehicle level.

(iv) .e impact of automated vehicle control varies by
different driving aggressiveness levels in terms of
mobility and safety. For example, the most ag-
gressive setting resulting in many lane changes
performs well in terms of the mobility measures
such as travel time and delay, while the most
conservative setting resulting in few lane changes
performs well in terms of safety. .erefore, the
impact of automated vehicle control can be maxi-
mized with reasonable level of the driving aggres-
siveness setting (i.e., lane change criteria in this
study) in consideration of both mobility and safety.
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(v) .e impacts on mobility and safety do not seem
perfectly linear by the lane change parameter sce-
narios (16 parameter settings). .is is because lane
changes barely occurred when either the “benefit”
parameter or the “possibility” parameter was set as
80%, which is conservative. On the other hand, lane
changes frequently occurred when either the
“benefit” parameter or the “possibility” parameter
was set as 20%. .is is the main reason behind the
relationship between the parameter settings and the
performance measures, but the other scenarios
except the extreme settings appeared somewhat
linear in the mobility and safety measures.

In order to find the reasonable level of the driving ag-
gressiveness setting following the last finding in the above
discussion, the optimum driving aggressiveness setting of
EMV was captured in terms of mobility and safety. Figure 7
shows the performances of different EMV driving aggres-
siveness settings in two dimensions with the mobility and
safety measures. Each data point represents the performance
of each evaluation scenario including base, signal preemp-
tion, and 16 automated-control-integrated scenarios having
different driving aggressiveness levels. In the most aggressive
setting, the EMV can save approximately 20% of travel time
compared to the p8b8 scenario (the most conservative
setting), but 50% of traffic conflicts more occurred in the
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Figure 6: Safety and mobility assessment results. (a) Mobility measure, delay. (b) Mobility measure, travel time. (c) Safety measure,
network-wide. (d) Safety measure, only EMV.
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p2b2 scenario (the most aggressive setting) compared to the
most conservative setting. Although it could be still disputed
what setting would be relevant for EMV, “p2b4” and “p2b6”
settings (i.e., automated control in cooperation with signal
preemption) appeared to be the most effective driving ag-
gressiveness settings for EMV as the optimum driving ag-
gressiveness setting in terms of both mobility and safety,
which is the main objective of this study.

5. Conclusions

.is study proposed an integrated approach of a signal
preemption as the infrastructure-level traffic treatment and
an automated driving control as the vehicle-level treatment
in order to maximize the utilities of vehicle control including
mobility and safety. Emergency vehicles (EMVs) such as
ambulances and police vehicles were selected to implement
this integrated vehicle control approach because the EMVs
primarily need to reach their destinations fast and safe.
.erefore, the integrated EMV control approach was de-
veloped based on the V2X wireless communications-based
signal preemption strategy and the EIDM-based automated
driving control, and the impacts of this automated EMV
application were assessed with 16 different lane change
aggressiveness levels (i.e., 16 different combinations of four
lane change possibility criteria and four lane change benefit
criteria) using a microscopic traffic simulation model. .e
measures of effectiveness included the driving maneuvers
(lane change frequency, speed, and acceleration rate), the
mobility measures (i.e., delay and travel time), and the safety
measure (i.e., traffic conflicts).

.e results showed that both the signal preemption and
the automated driving control were beneficial to facilitate the
EMV control in terms of mobility and safety, while they did
not significantly provide negative impacts on adjacent
normal vehicles. Importantly, the performance of the EMV
was maximized when these two approaches were

implemented at the same time. .e results showed that the
integrated approach was effective for the EMV to maintain
its preset desired speed (i.e., 100 km/h) by providing a green
passage at the signalized intersections and overtaking the
lead vehicles driving in front of the EMV. In addition, the
impact of automated vehicle control varies by different
driving aggressiveness levels in terms of mobility and safety;
aggressive settings having many lane changes performed
well in terms of mobility, and the case was the opposite in
terms of safety; and conservative settings having few lane
changes were beneficial for safety, and the case was the
opposite in terms of mobility. .erefore, these study results
emphasize that the benefit of emergency vehicle control
strategy can be maximized when the signal preemption and
the reasonable levels of automated driving control settings
operate in collaboration.

Nevertheless, this study should be enhanced with real-
istic behaviors of EMV and the other adjacent behaviors.
Due to technical limitations on simulation modeling, this
study was made with some assumptions that no special
right-of-way (e.g., passing on red and driving on a con-
traflow lane) is allowed for EMV and adjacent vehicles do
not take evasive maneuvers such as stopping and evasive
road departure. Furthermore, the reasonable aggressiveness
settings of automated driving control should be more in-
vestigated and validated through further studies. Besides,
experimenting with additional scenarios including different
traffic conditions and different penetration rates of other/
adjacent vehicles would help to validate the results and
findings of this study.

However, this study showed benefits of the integrated
approach of the automated driving technology at the in-
dividual vehicle level and the traffic signal preemption
strategy at the traffic infrastructure level. In addition, this
study showed potentials of automated driving controls: not
only the safety aspect but also the mobility aspect. .erefore,
this study will be a great reference and a starting point of
discussion toward advanced automated driving technologies
supporting not only safe but also fast mobility solution.
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In the aging society, reducing vehicle crashes caused by elderly drivers has become a crucial issue. To find effective methods to
reduce these vehicle crashes, it is necessary to give some insights into the characteristics of vehicle crashes and those of traffic
violations caused by elderly drivers. However, multiple significant factors associated with crossing crashes due to elderly drivers
were not extensively observed in previous studies. To fill this research gap, this study identifies the crash pattern and examines the
environmental, vehicle, and driver factors associated with crossing crashes due to elderly drivers. (e 5-year crash data in Toyota
City, Japan, are used for empirical analysis. (e emerging data mining method called association rules mining is applied to
discover various factors associated with crossing crashes of elderly and nonelderly drivers, respectively. (e significant findings
indicate that (1) elderly drivers are more likely to lead to crossing or right-turn crashes, compared with nonelderly drivers; (2)
there are more factors including crash location (intersection without signal), lighting (daylight), road condition (dry and other),
weather condition (clear and raining), vehicle type (light motor truck), and traffic violation (fail to confirm safety) associated with
the large proportion of crossing crashes due to elderly drivers. (e findings of this study can be used by traffic safety professionals
to implement some countermeasures to reduce the crossing crashes due to elderly drivers.

1. Introduction

Vehicle crashes due to elderly drivers have been a significant
concern for roadway traffic safety issues in Japan. (e pro-
portion of vehicle crashes due to elderly drivers has been
increased by up to 20%, although the number of vehicle
crashes has a trend to decrease from 2005 to 2015 [1].
Moreover, it is reported that population distribution in Japan
is shifting toward a more significant representation of elderly
people. It is estimated that the proportion of elderly people
(≥65 years) is up to 31.6% in 2030, although this figure was
26.8% in 2013 [2]. It is expected that the number of elderly
drivers will increase continuously over the next two decades.

Some incentive measures are implemented to ensure the
driving safety of elderly drivers in Japan. For example, some

local government distributes discount coupons for public
facilities or free bus tickets to the elderly drivers who have
returned their licenses voluntarily. However, it is reported
that elderly drivers are unwilling to return licenses when there
are not sufficient public transportation facilities near home,
and private cars are indispensable for their daily life. As a
result, the return rates of licenses in the metropolis, such as
Tokyo and Osaka, are more significant than those in local
cities in Japan, where the public transportation system is not
sufficient, and many residents are living in suburban areas.

To reduce vehicle crashes due to elderly drivers, Japan
National Police Agency has revised the Road Traffic Law and
requires drivers older than 74 years who made some par-
ticular types of traffic violations to go to hospital for
checking their cognitive ability to judge whether they are still
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suitable for safety driving or not [3].(ese particular types of
traffic violations are related to the cognitive problem of
elderly drivers. However, it is reported that the number of
doctors cannot fulfill the massive demand for cognitive
ability diagnosis for elderly drivers, and this demand will
increase continuously in the next decade.

As one traditional measure for preventing and reducing
vehicle crashes due to elderly drivers, an education program
is considered as an ideal and effective way. To make the
education program more effective, it is necessary to un-
derstand the distinctive crash pattern of elderly drivers
compared with nonelderly drivers.

(is study aimed to identify the distinctive crash pattern
due to elderly drivers compared with nonelderly drivers and
examine the environmental, vehicle, and driver factors asso-
ciated with crossing crashes due to elderly drivers. Here, a
crossing crash indicates a broadside collision where the side of
one vehicle is impacted by the front or rear of another vehicle,
which accounted for the most significant ratio of vehicle
crashes due to elderly drivers. (e 5-year vehicle crash data
from 2009 to 2013 in Toyota City, Japan, are used for empirical
analysis. One emerging data mining method called association
rules mining is applied to discover various factors associated
with crossing crashes of elderly and nonelderly drivers, re-
spectively. Based on the findings of this study, knowledge of
crash characteristics such as environmental, vehicle, and driver
factors can be used to guide the design of countermeasures to
improve the driving safety of elderly drivers.

(e remainder of this article is organized as follows. Section
2 gives a brief literature review concerning the crash pattern
analysis of elderly drivers and the data mining methodology,
including classification trees and association rules mining.
Section 3 introduces the association rules mining methodology
implemented in this study. Section 4 describes the dataset used
for empirical study and the results of fundamental statistical
analysis of the different crash patterns between elderly and
nonelderly drivers. Section 5 reports the results of association
rules mining and discusses the different characteristics of as-
sociation rules related to elderly and nonelderly drivers. Finally,
this study is concluded in Section 6.

2. Literature Review

To propose effective countermeasures to reduce vehicle
crashes due to elderly drivers, it is essential to understand the
crash types in which they are involved and the circumstances
that lead to their crashes. It is known that elderly drivers are
overinvolved in angle, overtaking, merging, and intersection
crashes, especially on the occasions when elderly drivers
were turning left [4]. Meanwhile, elderly drivers are sig-
nificantly overrepresented in intersection-related crashes.
For example, it is reported that between 48% and 55% of fatal
crashes involving drivers aged 80 years or older occurred in
intersections, more than twice the driver aged 50 or less
(23%) [5]. (is might result from the fact that age-related
cognitive, visual, and physical can impact their ability to
perform driving tasks and navigate the types of complicated
roadway situations where crashes due to elderly drivers often
occur [6].

To propose an effective education program for elderly
drivers to prevent vehicle crashes, it is crucial to understand the
distinctive crash pattern of elderly drivers compared with
nonelderly drivers. Previous studies have indicated that the crash
pattern involving elderly drivers is different from that of non-
elderly drivers [7, 8]. Elderly drivers are more likely to be in-
volved in the crashes occurring in the intersections without
signals, and crossing crashes take themost significant proportion
among the crash types. It is well recognized that crossing crashes
usually cause severe injury for drivers. To know the reasons for
crossing crashes, previous studies have investigated the associ-
ated factors of crossing crashes [8–10]. (ese studies used the
crash data to reveal the associated factors of crossing crashes.
Based on these findings, we can give some countermeasures to
prevent crossing crashes due to elderly drivers.

However, these previous studies were based on the tra-
ditional statistical methodology, which has a limited ability to
reveal the associated relation between multiple factors and
crash patterns. In this study, we are aiming to investigate
various factors associated with crossing crashes due to elderly
drivers rather than the frequency of crossing crashes. Liter-
ature reviews of previous studies using count data models,
such as the poison regression or negative binomial regression
model, were not illustrated because we are focusing on data
mining methodologies used for crash pattern analysis in this
study. One vehicle crash is defined as a rare, random, mul-
tifactor event always preceded by a state in which road users
fail to cope with the current environment, and one crash
results from a series of directly or indirectly associated events
[11]. (erefore, the emerging data mining methodologies can
help us find some valuable insights into the research field of
vehicle crash pattern analysis by performing knowledge
discovery from a large vehicle crash dataset compared with
the traditional statistical methodology.

(ere are mainly two types of data mining methodol-
ogies used in previous studies for crash pattern analysis,
namely the classification trees and association rules analysis.
(e research works using the classification trees can be
found in some previous studies [12, 13]. One recent research
work implemented by Montella et al. has indicated that from
the methodological point of view, both the classification
trees and association rules analysis were useful in providing
nontrivial and unsuspected relations in vehicle crash anal-
ysis. (at study concluded that classification trees structure
allowed a straightforward understanding of the phenome-
non under study. Meanwhile, association rules analysis
provided new information hidden in the sample data [14].
(erefore, association rules mining is an ideal methodology
because it might help us discover new dependence between
various factors and crash patterns based on the vehicle crash
data.

Research works applying the association rules mining
method to roadway traffic safety problems can be found in
some previous studies. For example, Pande and Abdel-Aty
developed closely associated crash characteristics in the form
of rules based on the association rules mining methodology
[15]. Mirabadi and Sharifian applied this methodology to
extend knowledge discovery and reveal association patterns
of railway crashes in Iran [16]. Montella applied this
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methodology to investigate the contributing factors to dif-
ferent crash patterns at urban roundabouts [11]. Based on
the literature review, we found that this methodology is
seldom applied in the field of crash pattern analysis of elderly
drivers.

To find the countermeasures to reduce vehicle crashes
due to elderly drivers, it is necessary to investigate the
characteristics of the crash pattern of elderly drivers from
various viewpoints by the association rules mining meth-
odology, which can help us discover the knowledge behind
the crash dataset. For this research motivation, this study
applies the association rules mining method to investigate
various factors related to crossing crashes of elderly drivers,
which was not extensively investigated in most previous
studies.(e findings of this study can give some insights into
significant factors associated with crossing crashes, which
can be used in the education program for elderly drivers
when they renew driver licenses.

3. Methodology

(is study used association rules mining technology to
perform the empirical analysis. Recently, this methodology
is prevailed and is applied in the research field of traffic safety
in previous studies [17, 18]. A brief introduction to this
methodology is described here. A more detailed introduc-
tion to this methodology can be found in the study proposed
by Hahsler et al. [19].

(e data mining methodology on the transaction data
using the association rules mining was proposed by Agrawal
et al. [20]. (is methodology is an association discovery
approach used to discover the relative frequency of sets of
items (i.e., crossing crash in this study) occurring alone and
together in a given event (i.e., a crash observation in this
study). (e rules have the form “X⟶ Y” in which X is the
antecedent and Y is the consequent. In association rules,
each rule can be expressed by three indexes: support,
confidence, and lift. Support is the percentage of this rule
existing in the dataset. Confidence is the ratio of support to
the percentage of the antecedent in the dataset. Lift is a
mathematical measurement to quantify the statistical de-
pendence of a rule by the ratio of confidence to the per-
centage of the consequent. (e computation methods of
these indexes related to association rules are listed as follows:

S(X) �
σ(X)

N
,

S(Y) �
σ(Y)

N
,

S(X⟶ Y) �
σ(X∩Y)

N
,

C(X⟶ Y) �
σ(X∩Y)

S(X)
,

L(X⟶ Y) �
σ(X∩Y)

S(Y)
,

(1)

where S(X) is the support of the antecedent X, σ(X) is the
number of observations with the antecedent X, S(Y) is the
support of the consequent Y, σ(Y) is the number of ob-
servations with the consequent Y, S(X⟶ Y) is the support
of the association rule X⟶ Y{ }, σ(X⟶ Y) is the number
of observations with the antecedent X and consequent Y, N

is the total number of observations in the dataset,
C(X⟶ Y) is the confidence of the association rule
X⟶ Y{ }, and L(X⟶ Y) is the lift of the association rule
X⟶ Y{ }.

(e lift of rule indicates the frequency of co-occurrence
of the antecedent and the consequent to the expected co-
occurrence under the assumption that they are independent.
A value smaller than one indicates the contrary between
them. A value equal to one indicates independence, and a
value more significant than one indicates positive depen-
dence. (e higher value of lift indicates greater dependence
[21]. (e association rule in this study might involve
multiple explanatory variables being set as antecedents. As a
result, it can discover many valuable relations between single
or multiple factors related to crossing crashes due to elderly
drivers. A rule with one antecedent and one consequent is
defined as a 2-product rule. Just like this, a rule with two
antecedents and one consequent is defined as a 3-product
rule.

For example, in a rule “violation � disobey stop
sign⟶ crossing crash” (support � 2%, confidence � 70%,
lift � 3.5), support indicates that percentage of observa-
tions, including both violation called disobey stop sign
and crossing crash, is 2% in the whole dataset; confidence
indicates that the percentage of observations, including
both the violation called disobey stop sign and crossing
crash, is 70% of the dataset; and lift indicates that vio-
lation called disobey stop sign is positively associated
with crossing crash.

To implement this data mining technology, the apriori
algorithm proposed by Agrawal and Srikant is applied in this
study, which is a level-wise, breadth-first algorithm counting
transactions [22]. Free statistical software R has a package
called “arules” to make an analysis of association rules
mining using this algorithm.

4. Data Preparation

(is study used 5-year of vehicle crash records
(2009–2013) obtained from the Traffic Safety and Crime
Prevention Division, Social Affairs Department of Toyota
City. (e data were stored in a sorted format by occurring
time in Microsoft Excel worksheet tables. Vehicle crash
records in this study are the injured crash data, in which
there was at least one person involved was injured. In the
sample data, a vehicle crash is indicated in two rows in a
table, in which each row records one actor in a vehicle
crash. Here, the definition of one actor indicates a driver, a
pedestrian, or an object. Meanwhile, two records are
sorted by the severe level of fault: the order of the first
actor and the second one. Each crash record had many
attributes describing timestamp, environmental factors,
traffic conditions, and driver characteristics. (is study
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only prepared a dataset, including the crash record of the
driver who had higher faults, i.e., records of the first actor.
Here, data of the second actor were excluded from the
sample data because this study aimed to investigate the
main contributor (the driver with a higher fault level) to a
vehicle crash. Meanwhile, only crashes occurring in in-
tersections or segments were used in this study because
crossing crashes rarely occur in other locations such as the
parking lot or square.

(e total number of the sample data in this study is 9,706
(from 2009 to 2013), including 1,313 crashes due to elderly
drivers (≥65 years old) and 8,393 crashed due to nonelderly
drivers (<65 years old). Figure 1 illustrates the spatial dis-
tribution of vehicle crashes in Toyota City due to elderly and
nonelderly drivers, respectively. It indicates that most
crashes occurred in the urban area of Toyota City.(ismight
indicate the trend that the level of social activities is higher in
areas with a dense population, which leads to an increased
risk of accidents [23].

(e vehicle crash database contains many attributes
related to the detail of crashes. We conducted a detailed
literature review to investigate significant factors associated
with the traffic violation and the crash type. Vehicle crashes
of elderly and nonelderly drivers were examined in terms of
frequency of the location, environmental, vehicle, and
driver factors that were involved to know which factors
were more likely to characterize the crash pattern of elderly
drivers. Table 1 lists descriptive statistics of significant
variables.

Location: Elderly drivers were not surprisingly, signifi-
cantly more likely to crash in intersections without signal,
consistent with the fact that they are the dangerous parts of
the network because they present a driver with many points
for possible conflict with other road users, often at high
speeds and with minimal time to respond, and a lack of
adequate in-vehicle crashworthiness opportunities [24]. By
contrast, nonelderly drivers were significantly involved in
crashes occurring in the segment. It might indicate that the
driving region of nonelderly drivers is broader than that of
elderly ones, and the risk of crashes occurring in the segment
is increased.

Environmental factors: Elderly drivers were signifi-
cantly more likely to crash in the lighting of daylight,
whereas nonelderly drivers were more likely to crash in the
lighting of night. Meanwhile, there were no significant
differences between elderly and nonelderly drivers in the
road condition or weather conditions being present when
crashes occurred.

Vehicle factor: Elderly drivers were significantly more
likely to cause crashes of light motor trucks, whereas
nonelderly drivers were significantly more likely to cause
crashes of ordinary motor trucks. (is significant difference
between elderly and nonelderly drivers might indicate that
the primary purpose of driving ordinary motor trucks is
transporting industrial commodities, which are seldom used
by elderly drivers after retirement. By contrast, it is inferred
that elderly drivers are more likely to drive light motor
trucks for agricultural works in suburban areas of Toyota
compared with nonelderly drivers.

Driver factor: For the traffic violation that was attributed
to the cause of crashes, elderly drivers were significantly
likely to fail to confirm safety, while nonelderly drivers were
likely to be inattention.(ese differences might indicate that
elderly drivers are paying attention to drive. However, they
are likely to fail to confirm safety due to aging effects. For the
type of crashes, elderly drivers were significantly likely to
cause crossing or right-turn crashes, whereas nonelderly
drivers were likely to cause rear-end crashes, consistent with
the previous study [8].

To summarize, the crashes of elderly and nonelderly
drivers differenced in location, lighting, vehicle type, traffic
violation, and the type of crash. Elderly drivers are more
likely to crash in intersections without signals and in the
lighting level of daylight. (ey are also more likely to cause
crashes of light motor trucks, make traffic violations in
which they failed to confirm safety and be involved in
crossing, and right-turn crashes.

5. Results and Discussion

(is study used a package of “arules” in open-source
statistical software R to conduct the association analysis
[19]. To understand the difference between elderly and
nonelderly drivers, we applied this methodology to sample
data of them. (e association rules of environmental, ve-
hicle, and driver factors with crossing crashes are extracted
from the generated rules using the apriori algorithm.
Creating association rules for elderly and nonelderly
drivers includes 5 steps: (1) generate rules with equal to or
more than 2 items, (2) determine threshold values, (3)
eliminate the rules with lift values outside the threshold, (4)
eliminate the rules that have both support and confidence
values lower than the thresholds, and (5) eliminate the
redundant rules referring to the items of the antecedent. To
find the association rules highly related to crossing crashes
of elderly and nonelderly drivers, the threshold value for
support is set to be 1% and that for confidence is set to
be 70%.

(e association rules of environmental, vehicle, and
driver factors and crossing associated with crashes for el-
derly and nonelderly drivers are listed in Table 2. As the first
rule related to elderly drivers, traffic violation of disobey stop
sign was highly associated with crossing crashes
(support� 0.023, confidence� 1.000, lift� 3.446). (e ex-
planation of the first rule is 2.3% of vehicle crashes were
because of disobeying the stop sign and led to crossing crash;
of traffic violation of disobey stop sign, 100% was crossing
crashes; the proportion of crossing crashes with disobey stop
sign was 3.446 times the proportion of crossing crashes in
the complete dataset.

For elderly drivers, there were two rules having the
highest lift value (3.446): “Violation �Disobey stop
sign⟶Crossing crash” and “Violation �Disobey traffic
lights, Location � Intersection with signal,
Lighting �Daylight⟶Crossing crash.” (ese two rules
indicated the single factor or combination of factors that
had the most significant proportion of crossing
crash inside the crash type for elderly drivers. For
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nonelderly drivers, the highest lift value (lift � 4.355) is
found for a two-product rule: “Violation �Disobey stop
sign⟶Crossing crash,” indicating that the proportion
of crossing crashes involving disobey stop sign is more
than four times for proportion of crossing crash inside
the crash type.

Compared with data mining results related to nonelderly
drivers, different factors associated with relatively large
proportion of crossing crashes included location (intersec-
tion without signal), lighting (daylight), road condition (dry
or other), weather (clear or raining), vehicle type (light
motor truck), and traffic violation (fail to confirm safety).
(ese different factors might indicate different character-
istics between elderly and nonelderly drivers, and elderly
drivers might lead to crossing crashes associated with more
factors compared with nonelderly drivers. Findings in this
study can help us make some countermeasures to improve
traffic safety by educating them. An interesting finding was
that the traffic violation involving fail to confirm safety was
highly associated with crossing crashes on some occasions,
and these occasions should be set as the education targets for
elderly drivers because elderly drivers were likely to make a
traffic violation involving fail to confirm safety shown in
Table 1.

(e reasons for the different association rules extracted
from vehicle crash data of elderly and nonelderly drivers are
listed as follows:

(1) (e proportion of crossing crashes concerning el-
derly drivers (29.0%) is significantly more than that

of nonelderly drivers (23.0%) as shown in Table 1.
(e threshold value of confidence applied to asso-
ciation rules mining in this study is set as 70%.
(erefore, the association rules concerning non-
elderly drivers cannot be extracted from the dataset.

(2) Elderly drivers are likely to cause vehicle crashes in
the daylight condition, which might indicate life and
activity patterns of elderly people that they would
like to go shopping or for leisure in the daytime
reported in one previous study [25].

(3) Elderly drivers have a higher ratio of vehicle crashes
caused by light motor trucks because households
with elderly owners are more likely to own light
motor trucks compared with that with nonelderly
owners [26]. It might result from the fact that light
motor trucks are helpful for farm or transportation
works in Toyota City.

(4) Elderly drivers have a large proportion of traffic
violations called fail to confirm safety. Here, the
violation called fail to confirm safety is highly related
to the crossing crashes, which is concluded in one
previous study [8].

(e strength of this study is that it can help us extend
the knowledge to driving safety issues of elderly drivers.
(e crucial factors leading to crossing crashes of elderly
drivers were indicated in this study, which was not ob-
served in most previous studies. (e findings from this
study can give us some policy implications for elderly

Driver type
Elderly
Nonelderly

0 5 10km

Figure 1: Vehicle crashes due to elderly and nonelderly drivers in Toyota City.
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drivers’ safety issues. To reduce the crossing crashes due to
elderly drivers, an adequate education program for elderly
drivers can be proposed to indicate risk factors such as the
location, time period, and traffic violation. Meanwhile, the
development of an advanced driving assistant system is
crucial to supplement the traffic violation called fail to
confirm safety, which is highly related to crossing crashes.
In addition, it might be more necessary for the drivers of
light motor trucks because this type of vehicle is related to
crossing crashes, indicated by the results of the association
rules applying to elderly drivers.

(e limitations of this study are listed as follows:
First, vehicle crash data used in this study were the

vehicle crashes in which at least one person (a passenger or
a driver) was injured. (erefore, property-only crash data
were not included in the sample, which might indicate
different results of crash analysis studies, including both

property-only and injured crashes. We have interviewed
the researcher in the National Research Institute of Police
Science, Japan, to understand the reason why property-
only crashes are not included in the electrical data. (e
answer to this question is that the number of property-
only crashes is vast, and policemen did not record this
type of vehicle crashes in the Microsoft Office Excel
worksheet.

Second, this study did not consider the factor of re-
gional characteristics, such as the difference in urban and
suburban areas. (is factor might be related to crossing
crashes in the sample data because this type of crashes
usually occurs in an intersection without signal control. In
this study, the association rules mining method was applied
in the vehicle crash data collected in the region of Toyota.
Here, Figure 1 illustrates that the east part of Toyota with a
sparse road network and the west part of Toyota with a

Table 1: Descriptive statistics of significant variables.

Elderly drivers Nonelderly drivers
Percentage 99% CIs Percentage 99% CIs

Crash location

Intersection with signal 22.2 19.2–25.1 19.0 17.9–20.2
Intersection without signal 39.2 35.7–42.7 34.1 32.8–35.4

Segment 38.6 35.1–42.1 46.9 45.5–48.3
Total 100.0 100.0

Lighting

Daylight 61.5 58.0–64.9 50.0 48.6–51.4
Dawn 24.1 21.1–27.2 21.3 20.2–22.5
Night 14.4 11.9–16.9 28.7 27.4–29.9
Total 100.0 100.0

Road condition
Dry 89.5 87.3–91.7 87.0 86.1–88.0
Other 10.5 8.3–12.7 13.0 12.0–13.9
Total 100.0 100.0

Weather condition

Clear 77.1 74.2–80.1 74.5 73.3–75.7
Raining 10.3 8.1–12.4 11.8 10.9–12.7
Other 12.6 10.2–14.9 13.7 12.7–14.6
Total 100.0 100.0

Vehicle type

Light motor truck 17.1 14.4–19.7 4.5 3.9–5.0
Light motor car 18.1 15.3–20.8 21.9 20.7–23.1

Ordinary motor truck 4.6 3.1–6.1 10.2 9.4–11.1
Ordinary motor car 60.2 56.8–63.7 63.4 62.0–64.8

Total 100.0 100.0

Traffic violation

Inattention 22.0 19.1–25.0 30.8 29.5–32.1
Fail to confirm safety 60.9 57.5–64.4 55.1 53.7–56.5
Incorrect operation 5.6 4.0–7.3 5.6 4.9–6.2

Fail to observe objects 2.5 1.4–3.6 2.8 2.3–3.3
Disobey traffic lights 3.0 1.8–4.2 2.2 1.8–2.6
Disobey stop sign 2.3 1.2–3.3 1.3 1.0–1.6

Other 3.7 2.3–5.0 2.2 1.8–2.6
Total 100.0 100.0

Crash type

With a pedestrian 8.1 6.1–10.0 5.5 4.8–6.1
Single-vehicle 4.8 3.3–6.3 2.9 2.4–3.3

Head-on 5.2 3.6–6.8 3.3 2.8–3.8
Rear-end 24.6 21.5–27.7 44.1 42.7–45.5
Crossing 29.0 25.8–32.2 23.0 21.8–24.1
Right-turn 10.4 8.3–12.6 7.0 6.3–7.7
Others 17.9 15.2–20.6 14.3 13.3–15.3
Total 100.0 100.0

Note. (1) Rows in bold indicates statistical significance (i.e., no overlap in the 99% confidence level). (2) Two-vehicle crashes are classified to head-on, rear-end,
crossing, right-turn, and others in this study.
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dense road network. (erefore, results based on vehicle
crash data, in general, cannot reflect the impact of regional
characteristics on vehicle crash types.

6. Conclusions and Future Tasks

(e current study used the crash data due to elderly and
nonelderly drivers for five years (2009–2013) in Toyota City
to identify the crash pattern and investigate the significant
environmental, vehicle, and driver factors associated with
crossing crashes of elderly drivers. A data mining technology
called association rules mining is applied in this study, which
can identify the valid and understandable pattern underlying
in a massive crash dataset. (e association rules mining is
implemented using a package “arules” included in statistical
software R.

Results of fundamental statistical analysis have indicated
that elderly drivers are more likely to crash in the inter-
sections without signals and in the lighting of daylight. (ey
are also more likely to cause crashes of the light motor truck,
make traffic violations in which they failed to confirm safety,
and be involved in crossing, and right-turn crashes. Results
of association rules mining have indicated that there are
more factors associated with crossing crashes of elderly
drivers than nonelderly drivers. (ese factors include the
crash location (intersection without signal), lighting (day-
light), road condition (dry and other), weather condition
(clear and raining), vehicle type (light motor truck), and
traffic violation (fail to confirm safety). (ese results might
reveal the different characteristics of the crash pattern of
elderly drivers due to their aging effects.

For one future task of this study, we will incorporate
the factor of regional characteristics, i.e., the difference in

urban and suburban areas indicated in the limitation of
this study. (erefore, we will divide the sample data into
two categories, namely, the category in urban areas and
that in suburban areas. (e association rules mining
method will be applied to two data categories, respectively.
Meanwhile, it is expected that extracted association rules
are different for these two categories because the occur-
rence of crossing crashes have a higher probability in
urban areas with a high density of intersections, compared
to suburban areas.

Data Availability

(e vehicle crash data were provided by the Traffic Safety
and Crime Prevention Division, Social Affairs Department
of Toyota City. Meanwhile, these data in Toyota City are
collected and recorded by the Aichi Prefectural Police in
Japan.
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Table 2: Association rules of crossing crashes for elderly and nonelderly drivers.

Antecedent Types Support Confidence Lift
Elderly drivers
Violation� disobey stop sign 2-product 0.023 1.000 3.446
Violation� disobey traffic lights 2-product 0.027 0.897 3.093
Location� intersection with signal 3-product 0.027 0.972 3.350
Lighting� daylight 4-product 0.023 1.000 3.446

Lighting� daylight 3-product 0.023 0.938 3.231
Weather� clear 4-product 0.018 0.958 3.303

Vehicle� ordinary motor car 3-product 0.014 0.900 3.102
Weather� clear 4-product 0.011 0.933 3.216

Lighting� daylight and location� intersection
without signal
Type� light motor truck 4-product 0.037 0.738 2.545

Violation� fail to confirm safety 5-product 0.033 0.754 2.600
Road� dry 5-product 0.033 0.741 2.555

Road� other 4-product 0.017 0.710 2.446
Violation� fail to confirm safety 5-product 0.014 0.731 2.518

Weather� raining 4-product 0.024 0.705 2.428
Violation� fail to confirm safety 5-product 0.021 0.730 2.515

Nonelderly drivers
Violation� disobey stop sign 2-product 0.013 1.000 4.355
Violation� disobey traffic lights 2-product 0.020 0.904 3.936
Vehicle� ordinary motor car 3-product 0.011 0.914 3.982
Location� intersection with signal 3-product 0.020 0.908 3.955

Note. One 6-product rule related to elderly drivers was not shown in Table 2.
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�e complex environment at grade crossings and the severe collision consequences give rise to the concern of safety condition at
crossings among tra�c control authorities. Optimizing conventional devices and applying emerging technologies are worthwhile
measures to improve the safety conditions at grade crossings. In this study, a �ashing-light running (FLR) warning system was
proposed to reduce crossing violation and improve performances of drivers at �ashing-light-controlled grade crossings (FLCGCs).
Forty-four fully licensed drivers aged between 30 and 48 years participated in a driving simulator study to investigate the e�cacy of
two countermeasures of the system: proposed design of signs and pavement markings (PSM) for grade crossing, and two-stage in-
vehicle audio warning (IVAW) technology. A range of �ashing light trigger timing and two foggy conditions were designed in this
experiment to test the system applicability. Drivers’ gender and vocation were considered as well to examine drivers’ adaptation to the
new proposed system. Five variables were collected and analyzed in this study to investigate the e�ectiveness of the system, i.e.,
drivers’ compliance, approaching mean speed, brake reaction time, deceleration, and red-to-crossing time. Results showed that
drivers’ driving performances were improved in both PSM only condition and PSM+W condition. �e FLR warning system could
eliminate the negative e�ects of foggy weather and reduce gender di�erences in driver behaviors to some extent. �ese �ndings
suggested that the FLR warning system has a potential to reduce the probability of grade crossing collisions.

1. Introduction

Grade crossings where the roadway and railroad tracks
intersect have created serious con�icts between trains and
vehicles. In 2004, 729 accidents involving grade crossings
occurred in China, with a total of 513 casualties and 2292
hours of interruption on the main line operation, resulting
in direct economic losses of up to ¥12 million (around 1.68
million USD) [1]. Similar �gures have been observed in
other countries as well. In Europe, grade crossing crashes led
to 604 fatalities and casualties in 2011, which accounted for

more than one quarter of all railway crashes [2]. In the US,
collisions at grade crossings are frequent, with 267 fatalities
and 826 injuries related to grade crossings in 2018 [3].
�erefore, grade crossing safety has been one of the top
worldwide issues that attracts the attention of relevant
transport authorities and the public [4, 5]. Among all the
causes of grade crossing collisions, driver behavior on
approaching to grade crossings is one of the main con-
tributors [6], indicating the need for countermeasures tar-
geting at drivers to improve the safety condition at grade
crossings.
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In China, the grade crossings could be divided into
guarded crossings and nonguarded crossings, and about
62% of them are nonguarded crossings [7], where more
driver errors and violations could be observed. Regarding
the nonguarded crossings, two kinds of crossings can be
defined according to the warning devices provided, e.g.,
passive crossings and active crossings. Passive crossings
provide static warning devices only, e.g., STOP signs,
pavement markings, and advanced warning signs. Drivers
are required to observe the crossing and check if there are
trains approaching before they cross. Different from passive
crossings, active crossings provide active warning devices
that can be real-time adjusted, e.g., flashing light or a gate
with flashing light. Drivers are not allowed to enter the
crossing if the gate is dropped down and/or the red lights are
flashing. Compared with passive control, lower crash rates
and greater compliance at grade crossings with active
control devices have been reported in both historical crash
data analyses and driving simulator studies [5, 8, 9].
However, drivers may fail to comply with active grade
crossing control for a variety of reasons. For flashing-light-
controlled crossings, driver errors and violations have been
frequently observed due to the absence of physical ob-
structions [10]. However, little attention has been paid to
such kind of grade crossings. Ideally, grade separation is the
most effective solution for avoiding grade crossing conflicts,
but it cannot be widely applied due to the high cost involved
[11]. -erefore, there is a large demand to develop lower-
cost technologies or devices to improve drivers’ compliance
and behavior at flashing-light-controlled grade crossings
(FLCGCs).

When developing effective FLCGCs, a thorough un-
derstanding of drivers’ crossing behavior is of great im-
portance. Due to the overestimated remaining time and
misunderstanding of the warning information, at least 55%
of drivers still chose to cross the tracks even when the red
lights were flashing [10, 12]. -ough without yellow signal,
there is a region of roadway existing upstream of crossings at
the onset of flashing light, which is similar to the “dilemma
zone” of roadway intersections. When the driver encounters
a signal change, he or she may neither stop nor cross
successfully due to a high approaching speed, under-
estimating the required braking distance or exercising an
aggressive behavior [13]. Drivers’ incorrect decisions at the
onset of flashing light may lead to flashing-light running
(FLR) violations, and drivers’ sudden stop action in front of
the crossings may result in rear-end collisions with the
vehicles behind them. Furthermore, instead of waiting for
the end of the flashing lights, some drivers tended to cross
the track once the train left the crossing while the red lights
were still flashing. -is kind of behavior may put the drivers
in great risk if a second train was approaching [14].

Many safety approaches to decrease FLR violations at
grade crossings have focused on countermeasures applied
either on the intersecting road or the grade crossing itself
(e.g. signs, pavement markings, and flashing lights’ warning
time). It can be inferred that drivers can perceive hazards
associated with a grade crossing by signs and markings, and
thus change their travel speeds to achieve a safe and smooth

driving process [15–18]. However, static signs and markings
provide limited help in assisting drivers to make stop/go
decisions. Meanwhile, the role of signs and markings is
degraded under adverse weather conditions, such as foggy
weather. In-vehicle audio warning (IVAW) countermeasure
based on intelligent vehicle infrastructure cooperative
(IVIC) technology can make up for the defects of static signs
andmarkings [19]. Many studies have confirmed that IVAW
can improve driver behavior. However, the lack of the ability
to inform drivers about failures of the IVAW could coun-
terbalance the safety benefits. -ere is no doubt that the
reliability of traditional signs and markings is irreplaceable
in comparison to the IVAW. Nevertheless, few research
studies to date have considered the mutual assistance of
these two countermeasures to improve the safety condition
of grade crossings.

2. Literature Review

-is paper proposed two novel low-cost grade crossing
treatments. Traffic signs and pavement markings are the
basis of traditional traffic management. IVAW is an
emerging and popular intelligent management technique.
-is paper aims to propose a more reasonable design and
placement of signs and markings and, on this basis, propose
a matched IVAW program. It is assumed that the mutual
assistance of these two countermeasures can improve the
reliability and effectiveness of the flashing-light running
(FLR) warning system.

2.1. A Series of Signs and Pavement Marking Countermeasures.
In China, there is a lack of grade crossings design standards
to match the information requirement of drivers. -e
shortcomings of signs and markings practice have not been
adequately addressed. -e Manual on Uniform Traffic
Control Devices (MUTCD, USA) [20] suggests that all grade
crossings (unless a four-quadrant gate system) should install
the dynamic envelope markings (DEMs) to indicate the
clearance requirement of the train. -e DEMs are used to
depict dangerous areas where the vehicles and the train may
collide. Moreover, if automatic gates are not presented and if
there are two or more tracks at one grade crossing, a sup-
plemental number of tracks plaque should be mounted
below the crossbuck sign to indicate the possibility of
multiple trains crossing. However, no similar requirements
were applied in Chinese relevant standards.

In general, grade crossing warning sign is placed near the
grade crossings to remind drivers of a potential stop. Drivers
may understand that the sign is associated with a crossing,
but they might not understand its behavioral implications
[21]. -e information required by the driver depends on the
nature of the crossing. In the case of FLCGCs, drivers do not
need to recognize the hazard, but they do need to prepare to
slow down and pay attention to the change of flashing light.
-erefore, it is necessary to provide drivers with the in-
formation about the type of crossing ahead. -e ‘Signal
Ahead’ sign and pavement marking (see Figures 1(a) and
1(b)) have been listed in the MUTCD to alert drivers of a
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signalized intersection in front. Previous studies have shown
that these could help drivers make proper stop/go decision
and reduce the dilemma zone effect [22]. Flashing-light
ahead sign has been widely adopted in New Zealand and
Australia (see Figure 1(c)). However, it is not yet very clear
where the sign should be positioned at grade crossings and
how the sign can impact drivers’ crossing behavior.

-e advance placement distance of grade crossing warning
signs can be calculated based on the design speed. In China,
signal ahead and grade crossing warning sign are typical signs
that warn drivers of the potential stop situation. -e advance
placement distance is based on the 2011 AASHTO Policy with
the stopping sight distance (as shown in the following equation
(1)) subtracting the sign legibility distance of 55m.

SSD � 0.278Vt + 0.039
V2

a
, (1)

where SSD is the stopping sight distance (m); V is the design
speed (km/h); t is the brake reaction time (2.5 s); and a is the
deceleration rate (3.4m/s2).

Another typical condition in MUTCD is absent in the
Chinese standard. -e condition considers locations where
the road user must spend some time to adjust speed and
change lanes in heavy traffic because of a complex driving
situation. -e distances are determined by providing the
driver with a premaneuver time of 14.0 to 14.5 seconds for
vehicle maneuvers (2011 AASHTO Policy, decision sight
distance as shown in equation (2)). Similarly, a sign legibility
distance of 55m is considered.

DSD � 0.278Vt + 0.039
V2

a
, (2)

where DSD is the decision sight distance (m); V is the design
speed (km/h); t is the premaneuver time (between 14.0 s and
14.5 s); and a is the deceleration rate (3.4m/s2).

It should be noted that MUTCD does not specify how to
optimize the warning sign placement in terms of traffic
safety and operation. -is paper proposed the application of
a series of signs and pavement markings for FLCGCs.

2.2. In-Vehicle Audio Warning Countermeasure.
Considerable research and innovation has occurred on
IVAW countermeasure for crossing safety. Larue et al. [23]
found that IVAW resulted in higher compliance rates when
a train was approaching the passive crossing.-e IVAW also
resulted in lower speeds closer to the crossing, faster brake

response times, and larger safety margins at passive cross-
ings [24, 25]. However, the IVAWhad limited effect at active
crossings, and an important reason is that the verbal warning
was provided when the flashing lights were activated and it
was hard for drivers to collect sufficient information and
make a quick response [23]. -erefore, the delivery time of
warning messages could seriously influence the effectiveness
of the warning system [26, 27]. In fact, drivers could avoid
most violations if the warning messages were delivered in
advance of the flashing light activation, especially in the case
of short time to stop line when the flashing light was ac-
tivated. In terms of the warning systems proposed in prior
studies, auditory warning messages are usually used to re-
mind drivers of train approaching and require drivers to take
appropriate actions immediately. -e system that only
provides an emergency warning message is called single-
stage advance warning systems (SSAWS). -e SSAWS only
published the warning once, but it left drivers with little time
to identify and respond to the possible hazardous situation.
Nevertheless, the two-stage advance warning system can
help drivers maintain safer driving conditions by providing a
piece of forecast information that draws drivers’ attention at
the first stage [28, 29]. -e considerable lower cost of IVAW
application compared to conventional active devices pro-
vides extra motivation for their use [30, 31], and their ef-
fectiveness will be examined in this study.

2.3. Impacts of Foggy Conditions on Driver Behavior. -e
effects of different weather conditions on traffic crashes have
been paid much attention in the field of transportation
research [32, 33]. Among the adverse weather conditions,
fog is the most hazardous one, which is more likely to result
in high crash frequency (19.54%) and severe crash outcome
[34, 35]. Driving in fog can be risky for drivers of all levels of
abilities as the fog leads to a substantial reduction in visibility
[36]. Among all the adaptions of driving behaviors in fog,
changing speed is the most typical one. Drivers tended to
approach a grade crossing at speeds that were too high for
them to stop and, therefore, high speed has become a major
contributing factor in many of the crashes that occurred in
foggy conditions [37]. Although driving behaviors in fog
weather have been investigated in many studies, few of them
have addressed how drivers’ behaviors at highway-rail grade
crossings were affected by fog. Additionally, it is expected
that the proposed countermeasures at grade crossings could
offset the negative impacts of fog weather and provide more

(a) (b) (c)

Figure 1: Signal ahead sign and marking at a signalized intersection, flashing-light ahead sign at a grade crossing. (a) Signal ahead sign
(MUTCD); (b) signal ahead marking (MUTCD); and (c) flashing-light ahead sign (New Zealand, Australia).
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safety benefits for drivers. -e common negative impact of
various adverse weather conditions mainly comes from the
impairment on drivers’ visibility and the increased mental
workload while driving. -erefore, the investigation of the
effectiveness and reliability of the proposed countermea-
sures in fog could also indicate their applicability potential in
other adverse weather conditions.

2.4. Impacts of Driver Characteristics on Driver Behavior.
Driver characteristics have been found to be related to
unintended human errors, intentional actions, and risk-
seeking behaviors on road [38–40]. Among driver char-
acteristics, gender [5, 41] and vocation [42, 43] were ac-
knowledged to differentiate drivers’ performances with a
great variance. Several studies reported that female drivers
committed fewer violations than male drivers [41, 44, 45].
-e violation behaviors were strongly related to collision
likelihood and consequently, male drivers were more likely
to be involved in injuries and fatalities crashes compared to
females [46, 47]. Besides, drivers’ vocation was another
factor related to traffic violations and road crashes [48].
Professional drivers (such as taxi, bus, or truck drivers) had
a high probability of traffic crashes due to a high exposure
on road and the high possibility of fatigue driving [49].
Moreover, professional drivers may perform differently
from nonprofessional drivers because of different levels of
driving skills. Generally, taxi drivers were more experi-
enced, more sensitive to the impending changes in the road
geometry, and behaved more skillfully in both longitudinal
and lateral vehicle control than private car drivers [50].
Although many previous studies analyzed drivers’ gender
and vocation characteristics in traffic violations and crash-
involvement risk, it is still not clear whether there are
gender and vocation differences on driving behaviors in the
process of approaching a grade crossing.

2.5. Objectives of:is Study. In summary, the current traffic
signs and pavement markings for FLCGCs of China provide
insufficient information to drivers, and the design of the
United States and Australia is worth learning. For IVAW,
the existing literature rarely referred to two-stage IVAW,
especially when it is used with traffic signs. Additionally,
drivers’ characteristics and foggy conditions contribute to
different driving behavior patterns. However, their effects on
driver behavior in the process of approaching a grade
crossing remain unclear. Toward this end, this paper
presents a driving simulator experiment study that aims at
investigating the effectiveness of the lower-cost FLR warning
system at the flashing-lights-controlled grade crossings. -e
research framework of the study is presented in Figure 2.
Compared with previous studies, this paper improves cur-
rent knowledge in four aspects: (1) this paper proposes a
flashing-light running (FLR) warning system that includes
improved signs and markings (PSM) design and a two-stage
IVAW; (2) instead of designing some flashing light trigger
timing (FLTT), this study focuses on drivers’ stop/go de-
cisions under a set of continuously scattering points within
the predefined range of FLTT; (3) a range of FLTT is

designed in combination with a binary choice of heavy fog
conditions to test the applicability of FLR warning system in
adverse visibility condition; and (4) driver characteristics,
e.g., gender and vocation, are considered in this study to
examine different drivers’ adaptation to the new proposed
PSM and IVAW.

3. Method

3.1. Participants. Forty-seven full-licensed participants were
recruited to participate in this driving simulator study.-ree
participants experienced simulator discomfort and were not
able to complete the experiment. -erefore, a total of 44
participants aging from 30 to 48 years (Mean� 37.2,
S.D.� 26.1) were included in the experiment. -ey com-
prised 21 professional drivers (14 male and 7 female) and 23
nonprofessional drivers (10 male and 13 female). -e pro-
fessional drivers were full-time taxi drivers with an average
driving experience of 17.7 years and an average annual
driving distance of 94.7 thousand kilometers. -e non-
professional drivers were from different occupations and
drove for daily purposes only. -eir average driving expe-
rience was 9.7 years, with an average annual driving distance
of 19.2 thousand kilometers.

3.2. Apparatus. In this study, driving simulation experiment
and data collection were carried out using the Beijing
Jiaotong University (BJTU) driving simulator (as shown in
Figure 3). -e high-fidelity driving simulator consists of a
one degree-of-freedom motion base platform, an environ-
mental noise simulation system, a digital video replay sys-
tem, and a curved projection screen providing a 300 degrees
front/peripheral field of view at a resolution of 1400×1050
pixels. -e full-size vehicle cockpit (Ford Focus) in the
simulator is designed in full accordance with a real vehicle
and the inside components include the steering wheel,
dashboard, brake pedal, throttle, and seats, etc. Meanwhile, it
also provides a set of software programs for driving scenario
design, virtual traffic environment simulation, virtual road
design, and scenario presentation. -e sampling frequency
of the driving data was 60Hz.

3.3. Scenario Design. -e experiment was a 3 (crossing
type)× 5 (FLTT)× 2 (foggy condition) within-subjects re-
peated-measures design.-e three crossing types considered
the design of the signs and pavement markings for grade
crossings and the presence or absence of two-stage warning.
Detailed explanations of the three crossing types are:

(i) Baseline: conventional design of signs and pave-
ment markings for grade crossing in China;

(ii) PSM: the proposed design of signs and pavement
markings for grade crossing without warning:

(iii) PSM+W: the proposed design of signs and pave-
ment markings for grade crossing with warning.

FLTTdepended on the time of the vehicle arriving at the
stop line. Five kinds of FLTTthat varied from 2 s to 6 s with 1 s
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interval were designed in this study. In addition, two foggy
conditions including clear and heavy fog were considered to
test the effect of PSM and IVAWon drivers’ crossing behavior
under different foggy conditions. -e visibility in heavy fog
scenario was 50m. -us, a total of 30 different types of ex-
perimental scenarios were performed in this study.

-e road designed in this experiment was a two-lane,
two-way road with lane width of 3.5m per lane and the speed
limit was 70 km/h. All grade crossings were evenly

distributed on the road, with each two of them connected by
an 800m straight road segment.-e flashing-light signal was
activated when the time for the vehicle to arrive at the stop
line met the FLTT. Once activated, the red light started
flashing at a rate of 60Hz, accompanied by an audible
warning beep (60 dB) ringing at a rate of 60Hz. -e signal
duration was 15 s.

-e baseline grade crossing followed Chinese design
standards and required signage are displayed in Figure 4(a).

Signs and markings design

Two-stage IVAW design

FLCGC scenario design

Participants recruitment

Driving simulation experiment

Data collection and analysis

Baseline

PSM

PSM + W

2s

3s
4s
5s
6s

No fog

Heavy fog

Compliance

Approach mean speed

Brake reaction time

Deceleration

Red crossing time

Hierarchical tree-based 
regression

ANOVA

Crossing 
type FLTT Foggy 

condition

Independent variables

Dependent variables

Vocation Gender

21 professional 14 male and 7 female

10 male and 13 female23 non-professional

Figure 2: Research framework.

(a) (b)

Figure 3: Illustration of BJTU driving simulator system. (a) Driving simulator; (b) monitoring and controlling systems.
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-e stop line and flashing-light signal were placed 5m in
advance of the crossing railway.-e flashing-light signal was
assembled on the side of the road together with a crossbuck
sign and a “STOP ON RED, DISABLE IF LIGHTS OFF”
sign. Meanwhile, a nonguarded grade crossing with multiple
tracks sign was positioned on the right side of the road 50m
prior to the railway. -e proposed design of traffic control
devices for grade crossing was adjusted based on the baseline
design (Figure 4(b)). For the flashing lights, a supplemental
number of tracks plaque was mounted below the crossbuck
sign. DEMs (dynamic envelope markings) were recom-
mended to place on the road 2m in advance and parallel to
the railway. Nonguarded grade crossing with multiple tracks
signs were moved to 220m away from the stop line. In
addition, a flashing-light ahead sign was installed 50m in
front of the crossing to provide information to drivers re-
garding whether they should prepare to stop or go through.

-e IVAW triggered verbal cautions: “Flashing lights
controlled grade crossing at 300meters ahead, please be careful!”
and “-e flashing lights are about to turn red, please slow
down!.” -e initial warning was released when the vehicle was
300m away from the stop line, and the secondwas released at 3 s
prior to the flashing lights activation, as shown in Figure 4(c).

In this study, two sets of experimental driving routes
were designed to test participants’ driving performances

during the process of approaching grade crossings. One
route composed of eight baseline grade crossings and it was
6.4 km in length. In order to minimize drivers’ adaptability,
memorability, and predictive probability to the repeated
tests, five grade crossings with different FLTT were ran-
domly selected as the test grade crossings. -e other two
grade crossing types were grouped together. -e route
consisted of fourteen grade crossings designed according to
the recommended signs and pavement markings, and the
length was 11.2 km. Ten test grade crossings (2 (PSM and
PSM+W) × 5 FLTT) were randomly selected from the
route. -en, the test crossings of each route were randomly
sorted to form three sequences of FLTT. -e route of each
driver for each driving was randomly selected, so that each
driver experienced thirty test grade crossings in different
orders.

3.4. Procedure. All participants were briefed about the
experiment upon their arrivals. Before formal experiment,
all participants were given at least 5min of training so that
they could familiarize with the virtual driving environment
and the simulated driving operation. Participants were
instructed to practice accelerating and braking gently and
to practice maintaining the speed and steering wheel.
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light off
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Figure 4: Standard and proposed design of signs and pavement markings for grade crossing of China. (a) Standard design of signs and
pavement markings for grade crossing of China; (b) proposed design of signs and pavement markings for grade crossing; (c) diagram of the
grade crossing with warning.
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Before the experiment, each participant was asked to sign
an informed consent form and fill out demographics and
general driving questionnaires. In the formal test, they were
required to drive and behave as they normally would. -e
participants were also notified that they could quit the
experiment at any time in case of motion sickness or any
kind of discomfort. -en, participants drove each scenario
under two foggy conditions (clear and heavy fog) in a
random sequence to counterbalance the order effect. Each
of them was given a break between the tests. One session
lasted approximately 1 h for each participant and a com-
pensation of 200 Chinese RMB (about 30 U.S. dollars) was
provided for their successful completion.

3.5.DataAnalysis. As Figure 5 shows, the factors considered
in this study included foggy conditions, gender, vocation,
crossing type, and FLTT. Five dependent variables were
collected and used to test the effect of PSM and IVAW on
drivers’ crossing behavior, e.g., compliance or not,
approaching mean speed, brake reaction time, red crossing
time, and deceleration. Detailed definitions of the above
dependent measures were explained as follows:

Compliance or not (Yes� 1; No� 0): the variable
represents whether the driver complied with the traffic
rules at the grade crossing.
Approaching mean speed: mean speed on approach to
the crossing was measured at five distances in front of
the crossing: 300m, 220m, 100m, 50m, and 20m.
Brake response time (BRT): the time was determined by
measuring the time at which the subject vehicle trig-
gered a train crossing “event” (a “warning” or 3 s prior
to a “flashing red light”) to the time at which the
participant first depressed the brake pedal. It was for
those approaches where participants did not violate the
grade crossing controls.
Deceleration: the change rate of velocity during the
period from the time of brake to the time when a
maximum brake was reached. It was for those ap-
proaches where participants did not violate the grade
crossing controls.
Red crossing time (RCT): the time was measured from
the time at which the flashing light was activated to the
time at which the subject vehicle arrived at the stop line.
It reflects the severity of the driver’s violation. It was for
those approaches where participants violated the grade
crossing controls.

-e compliance variable was analyzed using hierarchical
tree-based regression. -e specifications for tree construction
include: CHAID algorithm was applied; the maximum tree
depth was set as 3 levels; and the significance values for splitting
nodes and merging categories were set as 0.05. -e minimum
number of cases for parent nodes was set as 100 and the
minimum number of cases for child nodes was set as 50. Other
measures of driving performancewere analyzed usingANOVA
and used an α-level of 0.05 to determine statistical significance.
All analyses were carried out using IBM SPSS Statistics 22.

4. Results

4.1.Compliance. Table 1 lists compliance rates with different
factors, including foggy condition, gender, vocation,
crossing type, and FLTT. Results of hierarchical tree-based
regression are shown in Figure 6. -e final tree structure for
compliance involved three splitting variables, including
gender, crossing type, and FLTT. It means that the afore-
mentioned three variables significantly influenced drivers’
compliance, among which FLTT was the most important
factor, followed by gender and crossing type. No statistically
significant effect of vocation and foggy conditions was found
on drivers’ compliance.

As shown in Figure 6, the tree contains three levels. In
the first level, the compliance (Node 0) was divided into
three child nodes (Node 1–3) according to FLTT. In the
second level, Node 1 was divided into two child nodes (Node
4-5) by gender, whereas Node 2 and Node 3 were both
divided into two child nodes (Nodes 6-7 and Nodes 8-9,
respectively) by crossing type. In the third level, Node 4 and
Node 5 were divided into two child nodes (Nodes 10-11 and
Nodes 12-13) by crossing type. -e detailed characteristics
could be identified as follows:

In the first level: it was found that FLTT was the most
important influencing factor on compliance. For earlier
FLTT (4 s, 90.2%; 5 s, 93.6%; 6 s, 93.9%), 92.6% of
drivers complied with the rules, which was much
higher than the proportion of drivers under the 2 s
(34.5%) and 3 s (75.0%) conditions.
In the second level: in the condition of earlier FLTT
(4–6 s), gender was the most influencing factor for
compliance. 96.7% of female drivers chose to comply
with the rules, which was 7.6% higher than the pro-
portion of male drivers. However, for the later FLTTs,
e.g., 2 s and 3 s, crossing type was the significant factor
among all the factors and no statistically significant
effect of gender was found on drivers’ compliance. -e
baseline and PSM were classified into the same sub-
group, which means that drivers tended to make the
same choice of whether to comply with the rules. -e
interaction effect of crossing type and FLTT can be
more intuitively observed in Figure 7. When the FLTT
was 2 s, the compliance rate of PSM+W crossings
(65.9%) was found to be significantly higher than that
of PSM crossings and baseline (12.5%). When the FLTT
was 3 s, 94.3% of drivers who drove in PSM+W sce-
narios chose to comply with the rules, which was much
higher than drivers in baseline and PSM scenarios
(65.3%).
In the third level: when the FLTT varied from 4 s to 6 s,
both male and female drivers’ compliance rates were
significantly influenced by crossing type. For female
drivers, the baseline and PSM were classified into the
same subgroup which means that female drivers tended
to make the same choice of whether to comply with the
rules. 95% of female drivers tended to comply with the
rules in the condition of baseline and PSM, whereas the
compliance rate of female drivers in the condition of
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PSM+W reached 100%. For male drivers, 91.7% of
drivers under the PSM and PSM+W conditions
complied with the rules, which was 7.7% higher than
those under baseline condition.

4.2. Approaching Mean Speed. For drivers who complied
with the rules, their speed profiles while approaching
different types of grade crossings were calculated. Figure 8
presents the approaching mean speed (AMS) profiles for
different FLTTs. Each subfigure provides the mean speed of
subject vehicle from 400m in front of a crossing to 10m
behind it (the stop line is considered as 0m from the grade
crossing). It can be found that for all three types of

crossings, drivers almost kept a constant approaching
speed. In baseline, drivers approached the crossing at a
higher speed until they observed the warning sign at 45m
distance and then started to slow down. However, drivers
started to slow down earlier at PSM crossings than baseline.
As the warning signs were 220m ahead of crossings, drivers
approached the crossing at a lower speed. At PSM+W
crossings, drivers received a voice message when they were
300m in front of the crossing, which prompted them to
slow down earlier and approach at lower speeds compared
with the other conditions.

Effects of foggy condition, gender, vocation, crossing
type, and FLTT on drivers’ approaching speed were further
analyzed at five distances of interest: 300m to the crossing

Brake reaction time

Deceleration

Red crossing time

Approach mean speed

Compliance

Gender/
vocation

Crossing type/
FLTT Weather

The 300m prior to the crossing

Warning time to the crossing

Braking time to the crossing

300m 0m

Brake reaction time Deceleration

Compliance samples Noncompliance samples

Flashing light trigger time to the crossing

Red crossing time
Largest braking

Approach mean speed at 300m, 220m, 100m, 50m and 20m to the crossing

All samples

Figure 5: Dependent and independent variables in this study.

Table 1: Basic description for compliance rates.

Effect Classification
Yes No Total

Count N% Count N% Count

Foggy condition Clear 502 76.1 158 23.9 660
Fog 520 78.8 140 21.2 660

Gender Male 538 74.7 182 25.3 720
Female 484 80.7 116 19.3 600

Vocation P 478 75.9 152 24.1 630
NP 544 78.8 146 21.2 690

Crossing type
Baseline 307 69.8 133 30.2 440
PSM 309 70.2 131 29.8 440

PSM+W 406 92.3 34 7.7 440

FLTT (s)

2 91 34.5 173 65.5 264
3 198 75.0 66 25.0 264
4 238 90.2 26 9.8 264
5 247 93.6 17 6.4 264
6 248 93.9 16 6.1 264

Total 1022 77.4 298 22.6 1320
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(the initial warning occurred at this position under PSM+W
condition), 220m to the crossings (a nonguarded grade
crossing with multiple tracks sign was adopted under PSM
and PSM+W conditions), 100m to the crossing, 50m to the
crossing (a flashing-light ahead sign was adopted under PSM
and PSM+W conditions), and 20m to the crossing. Table 2

shows the mean speed within different categories under
different factors conditions, and Table 3 summarizes the
ANOVA results for these measures.

At 300m to the grade crossing, mean speed was sig-
nificantly affected by foggy conditions (F � 187.055, P<
0.001) and gender (F � 5.583, P � 0.018). -e mean speed
in no fog was significantly higher than that in heavy fog
and male drivers’ mean speed was higher than that of
female drivers. However, no significant effect was found
for all the other factors on speed at 300m to the crossing.

ANOVA analysis (as shown in Table 3) showed that
drivers’ approaching speed at 220m to the crossing was
significantly affected by foggy conditions (F � 179.128,
P< 0.001) and crossing type (F � 35.005, P< 0.001). Similar
to the mean speed at 300m to the crossing, the mean speed
at 220m in no fog was also significantly higher than that in
heavy fog. As for three kinds of crossing types, smallest
speed could be found at PSM+W crossings, while no
obvious difference between PSM crossings and baseline was
observed.

At 100m to the grade crossing, crossing type (F� 85.097,
P< 0.001), foggy conditions (F� 11.610, P � 0.001), and
their interaction effect (F� 3.238, P � 0.040) had significant
influence on the mean speed. As Figure 9 illustrated, drivers
tended to keep a lower speed at 100m to PSM crossings
than in baseline. -e mean speed at PSM+W crossings was
lowest among all the three crossing types. Moreover, the
mean speed in no fog was larger than that in heavy fog
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Figure 7: Proportions of drivers who compliant after the flashing
light triggered.
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under both PSM and PSM+W conditions, whereas for
baseline, no difference was found between clear and heavy
fog conditions.

At 50m to the grade crossing, foggy conditions exhibited
a significant impact on mean speed (F� 5.080, P � 0.024)
and drivers maintained a higher speed in heavy fog than that
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in no fog (42.44 km/h vs. 41.00 km/h). FLTT (F� 30.888,
P< 0.001) and crossing type (F� 138.235, P< 0.001) were
also significant factors of mean speed. Drivers’ mean speed
gradually decreased with the increase of FLTT. For three
crossings, significant speed reduction could be found at
PSM+W crossings, whereas no obvious difference between
PSM crossings and baseline was found.

Finally, ANOVA analysis showed that at 20m to the
crossing, gender had a significant impact on mean speed
(F� 14.530, P< 0.001) and male drivers kept a smaller mean

speed than female drivers. Furthermore, the mean speed was
also significantly affected by crossing type (F� 136.307,
P< 0.001), FLTT (F� 124.173, P< 0.001), and their inter-
action (F� 14.872, P< 0.001). Figure 10 shows drivers’ mean
speed under different crossing types and foggy conditions in
each FLTTcondition. Generally, drivers’ approaching speed
decreased with the increase of FLTT for all crossings. -e
mean approaching speed at PSM+W crossing was signifi-
cantly lower than that of PSM crossing and baseline. With
the increase of FLTT, the difference of speed between

Table 2: Mean speed within different categories of factors.

Effect Classification Parameter Speed 300 Speed 220 Speed 100 Speed 50 Speed 20

Foggy condition
Clear Mean 63.41 60.95 52.00 41.00 25.04

S.D. 67.35 77.72 116.85 165.93 262.75

Fog Mean 55.94 53.36 50.07 42.44 25.53
S.D. 130.66 147.83 139.57 153.25 208.01

Gender
Male Mean 60.19 57.55 51.34 41.28 24.07

S.D. 124.19 139.93 145.29 178.89 261.02

Female Mean 59.00 56.62 50.66 42.25 26.75
S.D. 99.22 112.07 109.71 136.93 200.35

Vocation
P Mean 59.57 56.88 51.19 41.65 24.86

S.D. 121.40 138.89 129.91 177.84 276.51

NP Mean 59.71 57.35 50.88 41.79 25.68
S.D. 105.69 116.96 128.57 143.81 197.23

Crossing type

Baseline Mean 59.86 59.14 55.30 46.18 28.82
S.D. 114.47 108.86 113.43 149.87 250.92

PSM Mean 60.08 58.43 51.78 46.18 29.56
S.D. 108.58 118.27 128.76 155.25 273.12

PSM+W Mean 58.99 53.81 46.01 34.62 17.48
S.D. 116.13 138.87 101.77 97.94 90.29

FLTT (s)

2 Mean 59.34 56.98 50.92 45.40 36.98
S.D. 129.46 136.37 137.35 161.25 292.17

3 Mean 60.64 58.03 51.48 44.23 30.54
S.D. 105.66 118.53 123.11 156.10 235.84

4 Mean 59.02 56.39 51.02 43.15 23.09
S.D. 111.92 128.76 134.80 175.54 166.92

5 Mean 60.16 57.83 51.12 39.77 18.43
S.D. 100.65 111.68 120.38 129.66 100.78

6 Mean 59.07 56.40 50.61 36.08 17.40
S.D. 117.49 141.11 131.59 121.83 103.77

Table 3: ANOVA summary table of the effect of factors on approaching mean speed.

Source d.f.
F-ratio

Speed 300 Speed 220 Speed 100 Speed 50 Speed 20
Foggy condition 1 187.055∗ 179.128∗ 11.610∗ 5.080∗ 0.458
Gender 1 5.583∗ 3.768 1.141 2.537 14.530∗
Vocation 1 0.485 1.340 0.090 0.020 0.094
Crossing type 2 1.578 35.005∗ 85.097∗ 138.235∗ 136.307∗
FLTT 4 1.385 1.483 0.231 30.888∗ 124.173∗
Crossing type× foggy condition 2 1.382 0.749 3.238∗ 1.520 0.171
Crossing type× gender 2 0.540 0.569 0.058 0.681 0.237
Crossing type× vocation 2 0.576 1.036 0.043 0.180 1.698
FLTT× crossing type 8 0.304 0.739 0.578 1.754 14.872∗
FLTT× foggy condition 4 0.842 1.196 0.546 2.262 7.451∗
FLTT× gender 4 0.179 0.213 0.095 0.521 0.874
FLTT× vocation 4 0.043 0.207 0.332 0.573 0.196
∗Significant at the 0.05 level.
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PSM+W crossing and the other two crossing types became
smaller. For foggy conditions (as shown in Figure 10(b)),
different patterns could be found for different FLTTs. Gen-
erally, when FLTTwas late, e.g., 2 s and 3 s, drivers maintained
a larger speed in clear weather than in heavy fog. However, for
early FLTTs, the results were quite opposite as drivers’ mean
speed was larger in heavy fog than in clear weather.

4.3. Brake Response Time. Table 4 lists driving performance
with different factors, including foggy condition, gender,
vocation, crossing types, and FLTTs. According to the
ANOVA results (Table 5), foggy conditions (F� 35.269,
P< 0.001), gender (F� 6.625, P � 0.001), crossing type
(F� 305.019, P< 0.001), and FLTT (F� 25.587, P< 0.001) all
had significant impacts on BRT. Regardless of the crossings
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types, drivers’ BRTs in clear weather were smaller than that
in heavy fog and male drivers tended to brake earlier than
female drivers. However, no statistically significant differ-
ence was found between professional and nonprofessional
drivers. For crossing types, drivers braked earlier at PSM
crossing and PSM+W crossing compared to baseline, es-
pecially at PSM+W crossing. For different FLTTs, drivers’
BRTs were larger in the condition of earlier FLTTs.

Moreover, three significant interaction effects were
found, e.g., crossing type× foggy conditions (F� 7.037,
P � 0.001), crossing type× gender (F� 4.533, P � 0.011),
and FLTT× foggy conditions (F� 4.554, P � 0.001).
Figure 11 presents the mean BRT for different combinations
of crossing types and gender. It could be noted that male and
female drivers had significant differences in BRT at baseline
crossings. However, the gender difference in BRT was de-
graded when PSM was applied, especially for the PSM+W
condition. Figure 12 presents drivers’ BRT for different
combinations of FLTT and foggy conditions. It could be
found that the difference of BRTs between clear and heavy
fog became larger as the FLTT increased.

4.4. Deceleration. -e ANOVA results for deceleration in-
dicate the significant impacts of foggy condition (F� 3.924,
P � 0.048) and vocation (F� 8.673, P � 0.003). Drivers’
decelerations in clear weather were smaller than that in
heavy fog, and professional drivers tended to brake with
larger deceleration than nonprofessional drivers. Similar to
the BRT, deceleration was also influenced by crossing type
(F� 84.017, P< 0.001), FLTT (F� 22.208, P< 0.001), and
their interaction (F� 2.341, P � 0.017). According to Table 4,
drivers’ deceleration in the PSM conditions was slightly
reduced compared with the baseline. In the PSM+W
condition, the deceleration was further reduced, which
demonstrates that warning messages enabled drivers to
brake with a more comfortable deceleration with least
fluctuations. Figure 13 presents the mean deceleration for
different FLTTs. -e FLTT varied from 3 s to 6 s and, for the
earlier FLTTs, the deceleration gradually reduced as well as
the standard deviation. However, the deceleration of the
latest FLTT (2 s) was not the largest, because drivers were
more likely to go through the crossings and less likely to
brake in such situation. When the PSM was used, the de-
celeration rate was largest for the latest FLTT (2 s), especially
for the PSM+W condition, which implies that drivers re-
lying on the IVAW may take an emergent brake.

Moreover, the interaction of crossing type× foggy
condition (F� 5.733, P � 0.003) also illustrated a significant
impact on deceleration. Figure 14(a) presents the mean
deceleration for different combinations of crossing types and
foggy conditions. In no fog, the deceleration for PSM
showed no significant differences in comparison to the
group of baseline, whereas the deceleration under the
PSM+W condition reduced significantly. Differently in
heavy fog, the deceleration significantly reduced under both
PSM and PSM+W conditions. Moreover, for baseline,
drivers’ deceleration in fog was much greater than that in
clear weather. However, in PSM and PSM+W conditions,

the difference of deceleration between fog and clear weather
was reduced.

Although gender (F� 0.215, P � 0.643) did not show
significant impact on deceleration, the interaction effect
between crossing type and gender (F� 2.998, P � 0.050) was
significant. As illustrated in Figure 14(b), female drivers
were more likely to exhibit a larger deceleration than male
drivers under the baseline condition. On the contrary, fe-
male drivers’ deceleration was smaller than that of male
drivers at PSM and PSM+W crossings, indicating that male
drivers could control the vehicles more smoothly whereas
female drivers were more sensitive to the changes in signs
and warning messages.

4.5. Red Crossing Time. According to the ANOVA results
(Table 5), both gender (F� 8.918, P � 0.003) and vocation
(F� 4.523, P � 0.034) exhibited significant impacts on RCT.
Male drivers’ RCTs were significantly longer than female
drivers’ (5.81 s vs 3.64 s). Similarly, nonprofessional drivers
also spent more time during approaching than professional
drivers. -e main effect of FLTT (F� 11.706, P< 0.001) and
its interaction effect with vocation (F� 3.912, P � 0.004) on
RCTs were also significant. As illustrated in Figure 15, as the
FLTT increased, nonprofessional drivers’ RCTs increased
rapidly, whereas professional drivers’ RCTs increased rela-
tively slowly with fewer fluctuations. In this experiment, no
clear impact of crossing types (F� 0.304, P � 0.738) and
foggy conditions (F� 0.352, P � 0.553) on RCTs was found.

5. Discussion

5.1. Influencing Mechanism of PSM and IVAW on Driving
Behavior. -e study conducted a simulator-based experi-
ment to examine the effects of PSM and IVAW on drivers’
driving performances during the process of approaching
grade crossings controlled by flashing light. In addition,
whether the effects of PSM and IVAW varied with drivers’
gender, vocation, and foggy conditions was tested in this
study as well.

Generally, users’ compliance rate can be used to evaluate
system effectiveness in varying safety countermeasures
[5, 23]. -e hypothesis that PSM is associated with safer
driver behavior compared with current signs and markings
is not supported by the compliance data. 70.2% of partici-
pants successfully stopped at the PSM grade crossing,
whereas 69.8% of participants successfully stopped at the
baseline grade crossing. -e similar proportion of partici-
pants who made compliances at both crossings may be due
to the similarity in perceptual cues provided by passive
traffic control devices. Both signs and marking designs
provided drivers with a “soundless” warning of the non-
guarded grade crossings in front. For crossing with flashing
light but without IVAW, drivers are not informed whether
the flashing light is about to turn red. If the flashing light is
activated when the vehicle is close to the crossing, drivers
may make hasty and incorrect stop/go decisions. At both
“soundless” crossings, over one-third of drivers made a
violation when the FLTT was 3 s, and the violation rate
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Table 4: Mean driving performance within different categories of factors.

Effect Classification BRT (s) Decelerate (m/s/s) RCT (s)

Foggy condition Clear 2.17± 2.48 2.09± 1.49 4.67± 20.49
Fog 2.69± 2.53 2.25± 1.35 5.28± 29.02

Gender Male 2.33± 2.40 2.18± 1.43 5.81± 27.39
Female 2.57± 2.72 2.17± 1.42 3.64± 17.67

Vocation P 2.41± 2.54 2.27± 1.45 4.73± 21.57
NP 2.47± 2.60 2.09± 1.39 5.21± 27.90

Crossing type
Baseline 3.50± 1.80 2.62± 1.69 4.88± 22.63
PSM 3.32± 1.82 2.37± 1.80 4.74± 26.29

PSM+W 1.29± 1.01 1.69± 0.53 6.16± 26.05

FLTT (s)

2 0.97± 0.68 2.33± 1.10 3.70± 22.42
3 1.87± 1.95 2.51± 2.05 4.99± 18.75
4 2.48± 2.30 2.40± 1.92 7.35± 18.09
5 2.70± 2.55 1.99± 1.00 10.09± 31.98
6 3.10± 2.48 1.82± 0.71 9.22± 8.17

Total 2.44± 2.57 2.17± 1.42 4.96± 24.65

Table 5: Results of ANOVA for dependent measures.

Source d.f.
F-ratio

BRT Deceleration RCT
Foggy condition 1 35.269∗ 3.924∗ 0.352
Gender 1 6.625∗ 0.215 8.918∗
Vocation 1 0.020 8.673∗ 4.523∗
Crossing type 2 305.019∗ 84.017∗ 0.304
FLTT 4 25.587∗ 22.208∗ 11.706∗
Crossing type× foggy condition 2 7.037∗ 5.733∗ 0.184
Crossing type× gender 2 4.533∗ 2.998∗ 0.388
Crossing type× vocation 2 0.783 0.811 2.977
FLTT× crossing type 8 1.640 2.341∗ 0.358
FLTT× foggy condition 4 4.554∗ 1.178 0.632
FLTT× gender 4 1.158 0.490 1.087
FLTT× vocation 4 0.243 0.184 3.912∗
∗significant at the 0.05 level.
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reached 87.5% when the FLTT was 2 s. -is result is also
supported by the approaching mean speed (AMS) profile of
those drivers who chose to violate the flashing lights.

Figure 16 illustrates an example and shows a tendency for
drivers to reduce speed before subsequently accelerating to
pass through the grade crossing. It is possible that some
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drivers crossed the grade crossings because they felt it hard
to stop, or they did not see a train coming [4, 51]. As ex-
pected, the additional IVAW resulted in a higher compliance
rate (92.3%) as compared to the conventional signage in-
tervention. In particular, the IVAW sharply reduced the
number of participants deciding to go through the crossing
at late FLTTs.

Although the system seems to affect the compliance rate,
drivers’ speed change patterns should also be investigated to
better understand the performance of the system. -e mean
speed reduction on approach to a crossing can highlight the
safety benefit and it has been investigated in various studies
[5, 52, 53]. In this study, it is found that the speed patterns at
different types of crossings were significantly different.
Compared to baseline crossings, PSM led to an earlier
slowing down before 220 meters to the crossings. -e speed
reduction from 220 meters to 50 meters can possibly be
explained by the placement of nonguarded grade crossing
signs and grade crossing signal ahead signs. -e finding
confirms that drivers would pay attention to signs and take
corresponding action when approaching the grade crossings.
However, the speed profiles of both PSM crossings and
baseline were highly coincident as drivers got closer to the
crossings. It is likely that the presence of advance warning
signs merely affected the perception of crossing, instead of
drivers’ stop-go decisions. After receiving the first-stage
warning information at PSM+W crossings, drivers had
obvious deceleration behavior. Meanwhile, compared with
the other two types of grade crossings, the brake for stop
appeared earlier at PSM+W crossings and the whole de-
celeration process was smoother owing to the second-stage
warning.

In addition, the safety improvement of PSM and
PSM+W is supported by shorter BRT and smaller

deceleration (see Figure 17). Overall, the BRT and decel-
eration at PSM crossings were slightly smaller than that of
baseline. Specifically, drivers under the PSM+W condition
responded to the events earlier with least fluctuations.
Drivers’ BRT was longer and their deceleration was smaller
in the condition of earlier FLTTs. -is indicates that drivers
would slow down in advance to deal with the change of
flashing light when they were closer to the grade crossing
and then make well-prepared actions. -us, they had suf-
ficient time to move to the brake pedal and pressed slowly
and continuously until stopping in front of the stop line.
Moreover, the deceleration of the latest FLTT (2 s) was not
the largest, because drivers were more likely to go through
the crossings. -us, the mean speed at 20m to the PSM
crossings was higher than that of baseline.

5.2. Applicability of the System in Foggy Weather.
Reduced visibility in fog increases the risk of collision to
some extent, and most drivers are likely to perform safety-
related adaptations [54, 55]. In this study, the heavy fog
resulted in a late response to the change of flashing light at
baseline crossings. Especially at earlier FLTTs, the BRT in
heavy fog condition was obviously longer than that in no fog
condition. It was hard for drivers to detect and respond to
the flashing light in fog until the vehicle was 50m to the
crossing. In such case, drivers had to take a greater decel-
eration, which may increase their involvement in rear-end
crash. Moving the warnings upstream in foggy weather
could enhance drivers’ situation awareness in advance, and
this is supported by a lower approaching speed and decel-
eration and a shorter reaction time. In no fog, the PSM did
not show benefit in improving reaction time as drivers can
easily detect the crossings. When the IVAWwas applied, the
reaction time and deceleration in both foggy conditions were
greatly reduced, suggesting the advantages of IVAW over
PSM and baseline. -e finding shows that the system can
compensate for the insufficient visibility in fog. Additionally,
the study shows that foggy conditions have no significant
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impact on the compliance rate. -e result implies that the
possibility for intentional violation should be higher than the
unintentional violation in the study, as the visibility con-
dition in fog is more likely to increase unintentional vio-
lation rate.

5.3. Adaptability of Drivers with Different Characteristics to
the System. Drivers’ characteristics played an important role
in perception, decision-making, and reaction during the
process of approaching grade crossings. For example,
compared with female drivers, male drivers were more likely
to violate the flashing light, which is consistent with the
previous observations [45, 56]. Especially in the case of
earlier FLTTs, gender was a key demographic variable
influencing compliance rate, and thus it was preferentially
used to examine the effectiveness of the system. Female
drivers were not sensitive to the change of signs and
markings design, but the additional IVAW could increase
the compliance rate to 100%. Furthermore, our findings
indicated that compared with female drivers, male drivers
tended to brake earlier, but the application of two coun-
termeasures narrowed the gap of BRTs between different
genders. On the other hand, the RCT of male drivers was
2.2 s (59.6%) longer than that of female drivers, which
implies that male drivers tended to be more cautious and
conservative in dealing with dangerous situations. However,
no gender effect was observed on the approaching speed and
deceleration in this study, and this is consistent with pre-
vious studies [57]. It is speculated that male drivers and
female drivers are similar in vehicle control abilities when
approaching a grade crossing.

As for vocation, professional drivers were more likely
to cross the crossing with short RCTs than nonprofessional
drivers. Especially when the FLTT increased, professional
drivers tended to act faster and thus had a smaller risk of
vehicle-train crash. It is confirmed that professional

drivers have more driving experience and are more skillful
in crash avoidance [58, 59]. However, for those profes-
sional drivers who made stop decisions, they had more
abrupt deceleration than nonprofessional drivers (as il-
lustrated in Figure 18). A possible explanation is that those
drivers had actually prepared to accelerate to pass through
the crossings before light flashing. -e two countermea-
sures investigated in the study did not discriminate the
effect on deceleration of professional and nonprofessional
drivers. Although vocation did not have significant im-
pacts on the compliance rate and approaching speed, it was
found that nonprofessional drivers drove slightly higher
speeds than professional drivers when approaching the
grade crossings. A similar finding has been reported in the
prior study, with nonprofessional drivers driving faster
than professional drivers when approaching the inter-
sections [42]. In the baseline condition, professional
drivers (35.24%) have a larger violation rate than non-
professional drivers (25.65%). Similarly, previous studies
have reported that professional drivers were more inclined
to cross the intersection during the yellow indication
period because they had a higher economic pressure and
need to save time while driving [57, 60]. Many professional
drivers have formed the habit of accelerating during the
yellow light interval [61]. -us, when they encountered a
flashing light change at grade crossings, they were less
willing to wait for the train. -e phenomenon was most
evident when the FLTTwas 4 s. In this case, the compliance
rate of professional drivers (86.51%) was 6.97% lower than
that of nonprofessional drivers (93.48%). -e PSM and
PSM+W narrowed the difference in compliance rates
between different vocations. Furthermore, there was no
difference between professional drivers and nonprofes-
sional drivers on BRT. It implied that drivers’ perceptual
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response largely depend on the drivers’ physiological
character, instead of the drivers’ skill and personal habit.

6. Conclusion

-e driving simulator experiment illustrates the effects of
crossing types on driver behavior in a range of FLTTs. -e
study contributes to a better understanding of the ef-
fectiveness of conventional devices and advanced
warning technology used at grade crossings. -e results
suggest that PSM could offer limited safety benefits. To
some extent, the PSM resulted in lower AMS, shorter
BRT, smaller deceleration, and shorter RCT, whereas no
evident difference in compliance rate was observed
compared with baseline. When the IVAW was in use, the
compliance rate was improved remarkably, especially
under late FLTTs (i.e., 2 s, 3 s). In addition, the ASM, BRT,
and deceleration were substantially reduced with small
fluctuations. In general, the positive effect of PSM was
most obvious when the FLTT was 3 s, whereas the IVAW
enhanced driving performances under various condi-
tions. -e study reveals that the countermeasure com-
bining PSM and IVAW can be developed as a safety tool
for assisting in drivers’ stop/go decision and safe driving
at grade crossings.

-e study also demonstrates the negative impact of foggy
weather on driving behavior, though the impact could be
remedied by both PSM and IVAW. It could be expected that
the intervention system should have comparable effectives in
other adverse conditions with impaired visibility, such as
rainy weather or night condition.

-e analysis of driver characteristics suggests that gender
should be considered as an important factor for predicting
the grade-crossing-crash risk. Overall, male drivers showed
better performance than female drivers, but the gender
difference was reduced by using PSM and IVAW. -e
system seems to be more effective for professional drivers,
whereas nonprofessional drivers who made a go decision
showed more hesitation and increased the likelihood of
vehicle-train crash.

In summary, the study explored how foggy condition,
gender, vocation, and FLTT affected drivers’ performance
at flashing-light-controlled grade crossings. -e results
prove the effectiveness of traffic signs design and IVAW,
and suggest the combination use of countermeasures to
maximize the safety benefits. -e FLR warning system
designed in the study was effective in enhancing drivers’
performances and assisting drivers to safely pass through
the grade crossings. It implies that the two-stage IVAW
matched with PSM not only provides real-time and higher
security, but also enhances the reliability of the system by
PSM. Moreover, the system was capable to mitigate the
negative effects of foggy weather and reduce drivers’ in-
dividual difference during the crossing process, which
indicates that the system has good applicability and
adaptability. Findings of the study provide important
guidance for the traffic control, infrastructure design, and
driver assistance system development regarding grade
crossings in China.

7. Limitations and Future Research

-e study provided a pioneer research toward the under-
standing of grade-crossing-approaching behaviors under
different factors’ effect. A main limitation of the current
study is that the BRT and RCT are relative values, which
cannot be directly used as a reference for engineering
standards. -e limitation could be compromised by using
supplementary measures, e.g., eye movement to detect the
time when drivers actually perceive the traffic signs and
flashing lights. Although the IVAW provides a positive
impact on driver behavior over conventional flashing lights,
the detailed design features need further modification/es-
tablishment before more concrete conclusions can be drawn.
Examples of design features include the choice of words and
delivery time of audio warning messages. Additionally, we
did not consider the effect of age on driving performance in
the experiment design. Previous studies sufficiently proved
that aging affects the injury severity rate and driving per-
formance [46, 62, 63]. -us, it is suggested to explore the
effects of age on grade-crossing-approaching behaviors in
future research.

Data Availability

-ebehavioral data used to support the findings of this study
are restricted by the independent ethics committee (IRB) in
order to protect the privacy of participants.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work is financially supported by National Natural
Science Foundation of China (71771014, 71621001).

References

[1] Publishing House of Yearbook of China Transportation &
Communications, Yearbook of China Transportation &
Communications, Publishing House of Year Book of China
Transportation & Communications, Beijing, China, 2005.

[2] European Railway Agency, Intermediate Report on the De-
velopment of Railway Safety in the European Union, European
Railway Agency Safety Unit, Valenciennes, France, 2013.

[3] FRA, Total Highway-Rail Crossing Incidents Casualties by
State, FRA, Mumbai, India, 2019, http://safetydata.fra.dot.
gov/officeofsafety/publicsite/summary.aspx.

[4] C. M. Rudin-Brown, M. G. Lenné, J. Edquist, and J. Navarro,
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