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In order to build high-quality concrete, it is imperative to know the rawmaterials in advance. It is possible to accurately predict the
quality of concrete and the amount of raw materials used using machine learning-enhanced methods. An automated process
based on machine learning strategies is proposed in this paper for predicting the compressive strength of concrete. Fusion-
learning-based optimization is used in the proposed approach to generate a strong learner by pooling support vector regression
models. *e SVR technique proposes an optimization method for finding the kernel radial basis function (RBF) parameters based
on improving the innovative gunner algorithm (AIG). As a result of AIG’s diverse solutions, local optima are effectively avoided.
*erefore, the novelty of our research is that, in solving the uncertainty of predicted outputs based on integrated models, we use
fusion-learning-based optimization to improve regression discrimination. We also collected a standard dataset to analyze the
proposed algorithm, and subsequently, the dataset was designed from concrete laboratory tests on 244 samples, seven features,
and three outputs. Different regression intensities are determined by correlation analysis of responses. Regression fusion is
sufficiently accurate to estimate the number of desired outcomes examined based on the appropriate input data sample. *e best
quality concrete can be achieved with an error rate of less than 5%.

1. Introduction

*e structural materials of concrete and the reaction be-
tween these materials play a critical and decisive role in
explaining high-strength concrete’s mechanical properties.
*erefore, concrete designers and engineers seek to gain an
accurate and thorough understanding of the relationship
between the appropriate choice of type and amount of
materials for concrete construction [1]. Concrete is a mix-
ture of water, cement, and other materials, and from a
chemical perspective, the strength of this material depends
more than anything on cement and water [2]. High-strength
concrete must exhibit resistance and flexibility against
various forces and environmental factors. Hence, the proper
mixture of raw materials can enhance the strength and
quality of the concrete.*e compressive strength of concrete

depends on various factors, including mixing properties,
mixing methods, mixing conditions, transport, and concrete
[3]. Sometimes the concrete design engineer knows the
initial composition and the estimated percentage of material
mixing; however, the importance of an accurate estimate
cannot be overestimated. *erefore, the concrete quality can
only be assessed after making efficient concrete, and the
elapse of a specific period, often a long interval (usually one
month) using special tests [4]. Consequently, making quality
concrete is conducted based on resembles a trial and error
approach and may lead to extensive raw materials loss. By
observing the falling slope in concrete, helpful information
about the concrete performance can be obtained [5].

In addition, due to the great importance of concrete in
structures and the significant growth of urbanization, the
increase in demand for high-quality concrete is substantial
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[6]. In many developing countries, such as China, the ready-
mixed concrete, prepared by mixing concrete, dominates the
entire concrete market [7]. As an advanced industry, the
ready-mixed concrete trade is of utmost importance in
significant sectors of industry and construction, trans-
portation, and after-sales service. However, the current
concrete industry management is still at the fundamental
information management level because the knowledge
generated during the management process is too complex to
be used [8]. A goal-oriented and efficient way to address this
problem is knowledge management and the adoption of
artificial intelligence technology [9].

In recent decades, due to the proliferation of con-
struction globally, a significant body of research has
attempted to optimize the quality of concrete. *erefore,
artificial intelligence (AI) has received growing attention as
an analyzer of information in this field.*emain application
of soft computing-based methods is to determine concrete
strength [10–18]. Most researchers focus on accurate esti-
mation of raw materials based on artificial neural networks
(ANNs) ability to estimate correct regression outputs
[19–21]. Some researchers have also used ANN and clus-
tering methods such as adaptive neuro-fuzzy inference
system (ANFIS) [22]. In other studies, rapid learning and its
combination with Cascade-forward neural network (CfNN)
have been highlighted, which has led to the decreased
processing time of concrete ingredients and achievement of
the desired output [23]. Some investigations have utilized a
combination of neural networks and evolutionary algo-
rithms or metaheuristic (MH) to improve the precision of
obtaining desired outcome [24, 25]. Combination with
evolutionary algorithms (EA) is typically intended to amend
inherent defects of ANN or other regression-based esti-
mation methods. *ese algorithms are extensively used in
ANN training for accurate error estimation. *ese include
the genetic algorithm (GA) [26, 27], particle swarm opti-
mization (PSO) [28], or simulated annealing (SA) [29]. *e
genetic algorithm can find global and local optimums and
may be even trapped in local optimums, but it has rapid
convergence [26, 27]. A growing number of studies have
recently adopted ANN [27, 28, 30] and SVR [29] as a model
for regression network estimation. *e utilization of
methods such as deep learning to estimate the quality of
concrete has drawn considerable attention, urging re-
searchers to adopt different deep learningmodels to improve
the quality of concrete [31–33]. Sadrossadat and others. [34]
have developed an evolutionary-based prediction model of
the 28-day compressive strength of high-performance
concrete containing cementitious materials.

Estimating the concrete performance is an essential
process in ensuring the quality of various concrete com-
ponents. Concrete testing is a method that measures near-
performance parameters and provides valuable information
about these parameters. *e methods currently used in the
world measure the stability of concrete in the laboratory or
on-site. In some experiments, a kind of failure is estimated
by measuring the reduction in the upper surface of freshly
crushed concrete. Low accuracy, uncertainty, computational
complexity, and the lack of a generalized method in the

automatic determination of concrete raw materials in pre-
vious strategies have led us to look for more appropriate and
accurate solutions.

Given that specific percentages of materials need to be
combined to produce concrete of varying grades, this
process is usually based on personal experience, and trial and
error deems necessary to avoid wasting materials. For this to
happen, an automated method is required for the analysis of
raw materials. *e importance of research becomes more
apparent, knowing that a significant portion of its constit-
uents include water, cement, and sand and are among finite
resources that are rapidly depleted. *erefore, either one
must possess exceptional skills and expertise, or a solution
must be found to estimate the precise percentage of in-
gredients. *us, the previous automated models are highly
dependent on the optimized regression-learning model and
the input components selection. Concrete design decisions
on the component level must be correlated to operational
cost and emissions on the supply chain level to evaluate
commercial and environmental influence [35]. *e main
difficulty is finding a qualified approach to produce proper
outputs on concrete designing in the real world. Fitting
outputs are achieved by relying on appropriate learning
methods. Recently, the relevant studies have considered
optimization algorithms based on support vector models for
high-quality concrete design [36–40].

Although both SVR and ANN models can map input
data to a higher dimensional space to determine the decision
boundary, NNs require numerous data input than SVR to
better training. In addition, SVRs need minimal or more
negligible processing of input data, which saves a lot of time.
Besides, the ANN model usually necessitates much more
modification, cleaning, data processing, etc. Typically the
ANNs involve batch conversion to numbers, feature scaling,
etc.

In the current study, we present an effective prediction
design of concrete structure based on the proper fusion
model of Support Vector Regression (SVR) learner and
innovative gunner algorithm (AIG). Also, the AIG algorithm
is described by a significant search space exploration, owing
to solution vectors, typical for swarming techniques. *us,
the AIG algorithm achieves diverse solutions, which pro-
vides it high efficiency in avoiding local optima [41]. Besides,
it can be utilized successfully to determine target functions of
different shapes and with multiple optima and multidi-
mensional functions.

*e proposed method can remarkably reduce the clas-
sification error in regression mode to design lightweight and
high-performance concrete. Our model has produced de-
sirable results for predicting 28-day compressive strength
and helps save the raw materials for concrete production.
*e method has been applied to a set of laboratory data
collected by the authors. Similarly, attempts have been made
for innovation to generate actual data in the laboratory
within three months and fabricate different concrete types
with varying qualities.

*e remainder of this paper is organized as follows: the
method components are described in Section 3. Section 4
introduces the proposed model, including the used
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optimization algorithm and the regression learner. Section 5
presents the results and interpretations of the classification
under various conditions. Finally, the paper is concluded by
summarizing the key points in Section 6.

2. Contribution and Learning Structure

In this section, the components we utilized to optimize the
concrete quality prediction based on learning process are
described. As shown in Figure 1, the significant contribu-
tions of designing lightweight and high-performance con-
crete have been related to data development, automated
analysis of outputs (i.e., effective design), and best learning
to discriminate concrete quality.

2.1. Regression Learning. Assuming that one training data is
available, if each input has D attributes (i.e., belongs to the
D-dimensional space), and each point is assumed to have Y
corresponding special, a function can be found that relates
the input to the output [42]:

f(x, w) � w
T
x + b. (1)

To obtain the function f, the values of w and b in the
following equation must be minimized:

R �
1
2
‖w‖

2
+ C1

1
l



l

i�1
Lε yi, fi(x, w)( , (2)

where C1 is a constant value, the value of which is set by the
user. *e C1 value is intended to create balance and change
the weights of the penalty due to the omission of the variable
ε and, at the same time, maximize the margin for dis-
crimination. Accordingly, function Lε is introduced
according to

|y − f(x, w)|ε �
0, |y − f(x, w)|≤ ε,

|y − f(x, w)| − ε, otherwise.


(3)

*e equation is rewritten as a maximum of the following
equation [43]:

LP ai, a
∗
i(  � −

1
2



l

j�1
ai − a

∗
i(  aj − a

∗
j x

T
i xj − ε

l

i�1
ai + a

∗
i( 

+ 
l

i�1
ai − a

∗
i( yi,

(4)

where conditions are defined based on

Condition:



l

j�1
ai − a

∗
i(  � 0,

0≤ ai ≤C, i � 1, . . . , l,

0≤ a
∗
i ≤C, i � 1, . . . , l.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

By solving the above equations, the SVR function, i.e., f
in (1), can be obtained using the kernel function:

f(x, w) � w
T
0 x + b � 

l

j�1
ai − a

∗
i( x

T
i x + b. (6)

2.2. Innovative Gunner Algorithm (AIG). According to
Newton’s law, a projectile’s motion can be directed vertically
in a homogeneous gravitational field where the initial ve-
locity in the horizontal direction is not zero [41]. A projectile
is thrown with the initial velocity v0 at an angle δ, and its
horizontal surface is assumed to be perpendicular to the
direction of gravity. It has a parabolic motion in a frame with
dimensions d and h. *is equation is defined according to
(7), where g denotes the acceleration caused by the gravi-
tational force:

h � tan δ.d −
g.d

2

2.v
2
0. cos

2 δ
. (7)

Computations will be more complicated if drag forces
are involved. For the simplest model, where the tensile force
is assumed to be proportional to the velocity of the projectile,
(7) will be significantly complicated because [41]

h � tan δ +
g

k.v0. cos δ
 .d +

g

k
2 . ln 1 −

d.k

v0. cos δ
 , (8)

where k is defined as drag coefficient (unit 1/s), and its value
depends on weight and air resistance. Several analytical and
experimental methods have been proposed to ensure the
accuracy of the projectiles equations based on ballistics.
Figure 2 shows the bullet motion curve for three different
angles.

However, it should be noted that the actual projectile
curve can be expressed as

h � tan δ +
g

k.v0. cos δ
 .d +

g

k
2. ln 1 −

d.k

v0. cos δ
  + fh(ξ),

(9)

where fh(ξ) is a function influenced by interfering factors,
including changes in air resistance, temperature, wind,
shape, and motion of the Earth. In this case, the angle δ can
be assumed as a decision variable for the optimization
process, whose objective function is as follows:

Fobj(δ) � |h(δ)|↦min . (10)

Given the complex form of equation (10) and the un-
certainty of the function fh (ξ), a metaheuristic method could
be used to calculate the value of angle and firing.

3. Proposed Method

Figure 3 shows the overall steps for the suggested imple-
mentation of concrete designing.

Complexity 3



3.1. Preprocessing. First, as shown in Figure 4, we shuffled
the data in the preprocessing step to prevent overtraining of
the automatic classification procedure. Although the sam-
ples are randomly mixed, the label’s position changes reg-
ularly according to the classes of each received sample. We
are applying such a method to prevent overfitting, leading to
a considerable increase in classification accuracy. Because
each data’s concrete is intrinsically highly distributed and

uses numerous diverse samples in a wide range, they must be
normalized in the next step of the preprocessing step.
Normalization of samples reduces the processing cost and
positively affects the optimization of concrete quality pre-
diction [44].

Ynorm �
Ys − Ysmin

Ysmax
− Ysmin

. (11)

1 2 3

4 5

Data collecting and 
examining the conditions 
of concrete performance 

evaluation in reality
Step 1 

Data preprocessing and 
analysis in comparison 

with recorded labels
Step 2 

Data shuffling and first 
regression fitting

Step 3 

Optimization of learning 
parameters to improve 
the performance of the 

regression 
Step 4 

Estimating results and 
comparing software 

outputs with real 
concrete quality

Step 5 

Figure 1: A general schematic of the main contributions in concrete quality prediction.
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Figure 3: *is diagram shows the overall design for the proposed implementation method.
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Ynorm is considered the normalized value, and the
variables Ysmin and YSmax

are the minimum and maximum
values, respectively. Besides, Ys is the current value of the
concrete sample under study.

3.2. FusionRegression. In the first step, data normalization is
performed. *is process is conducted using the Min-Max
method to reduce excessive dispersion of data.*emain goal
of support vector machines is to find an optimal hyper-plane
as a decision-making level that maximizes the margin be-
tween two classes. *e data are moved to a considerably
larger space by the Φ kernel function to classify highly
complex data. *e kernel function maps data from the input
space on a space with higher dimensions, so that it is possible
to separate the data in that space linearly. In the first part, the
SVR regression learning pool as regression fusion model is
used by applying training data. *e general diagram is
shown in Figure 5 and depicts the general learning frame-
work. *e initialization of c and s for each regression
classifier is initially randomized. *e change interval for
these two parameters varies from zero to 20. By applying the
training data, the structure with the lowest mean square
error (MSE) is selected, and its parameters ? and s are given
to input to the AIG algorithm. In this way, convergence
towards the optimal response is faster and more accurate.
*e regression fusion of pool structure is evaluated by five
repetitions, averaging accuracy, and finding the best cor-
responding parameters. *e best matching parameter is a
grid with the highest accuracy rate. In addition, finding the
best RBF kernel values facilitates the search for the global
optimum in the modified AIG algorithm.

3.3. Improving the Best Model. In order to optimize the
model parameters, various methods can be used. *e space
networked with RBF kernel was identified as the best kernel
for the data [45, 46]. *is kernel can be expressed for two
variables and b:

K(a, b) � exp −c‖a − b‖
2

  � exp −
‖a − b‖

2

2σ2
 , (12)

where the parameter c corresponds to the square of the
width of Gaussian kernel. By finding the initial values c and
C in the classification pool, the modified AIG algorithm is
used by accounting for air resistant. *is constraint is
considered more than other constraints for fh(ξ) because
other constraints do not always exist in real conditions, but
air resistance is present under almost any condition.

*e most typical case of air resistance, for Reynolds
numbers above 1000, is Newton drag with a drag force
proportional to the speed squared, Fair � -kv2. In air, which

has a kinematic viscosity around 0.15 cm2/s, this means that
the product of speed and diameter must be greater than
about 0.015m2/s. Unfortunately, the equations of motion
cannot be easily solved analytically for this case. *erefore, a
numerical solution will be examined.

FD � −
1
2

c ρA v V, (13)

where FD, c, ρ and A are defined as drag force, drag coef-
ficient, air density, and cross sectional area of the projectile,
respectively, and μ is defined according to

μ �
k

m
�

cρA

(2m)
. (14)

In light of these limitations and initialization in the
previous step, the fitness function is defined in the meta-
heuristic algorithm, according to MSE. *e termination
condition of the algorithm is based on calculating the
minimum error of MSE. Suppose that the algorithm is not
realized in a certain number of iterations. In that case, the
parameters matching the best regression network are se-
lected, which produce a more significant effect on regression
learning than other SVR structures do. On the other hand,
considering the drag conditions and air resistance, the shot
angle widens, and the best angle is set between 30 and 80°.
According to the calculations, the best shot angle is 45°, but
in changing the initial velocity of the bullet, the optimal
angle is altered considering air resistance.

4. Experimental Results

*e proposed method was implemented by MATLAB
R2019b in Windows 10 operating system. *e hardware
platform used for simulation was an Intel® Core ™ i5-8500
system with 8GB of RAM, plus 16GB of SSD RAM. Other
complementary software such as SPSS was also used. *e
input data were incorporated into an integrated algorithm,
and the inputs were normalized in the first step.Mean square
error (MSE) and mean absolute percentage error (MAPE)
are expressed in (15) and (16), respectively. *ey were tested
using adaptive algorithms in input analysis.

MAPE �
1
N



N

i�1

Ti − Pi




Ti

. (15)

MSE �
1
N



N

i�1
Ti − P( 

2
. (16)

In these equations, Ti, Pi, and N are the actual output
values, the values predicted by the algorithm, and all
specimens. In addition to the MSE and MAPE calculation,
the maximum andminimum errors were also estimated, and
the results of the K-fold cross-validation were calculated for
each test.

4.1. Dataset. Data were obtained from the concrete testing
laboratory at Imam Khomeini University of Sabzevar, Iran,
over six months.*e data consists of seven inputs and three

1 2Data shuffling 3 4 1 2 3 4

4 3 2 2 1 4 3 1

Figure 4: Data shuffling in preprocessing step.
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outputs, including cement, slag, fly ash, water, super-
plasticizers, coarse aggregate, and fine aggregate. All of
these inputs are in component kg in one M3 concrete.
Besides, the outputs of this dataset are SLUMP (cm),
FLOW (cm), and 28-day Compressive Strength (Mpa). *e
number of constructed specimens is higher than the first
data samples (243 specimens), and the number of feature
inputs and outputs is equal. *e necessary information of
this dataset is shown in Table 1.

4.2. Assessments. As presented in Table 2, regression
predictions for datasets are a combination of different

algorithms at the time of testing by selection K value equal
to 5. Changing the values of RBF parameters and pre-
venting overfitting in many repetitions, the SVRs pool as
regression fusion was used to find the lowest amount of
MSE among the five structures in each pool.

If the MSE is less than 5% of the total error in the sample
data in this structure, the corresponding SVR is selected as
the base network. Otherwise, the minimum MSE and the
corresponding network structure should be chosen. Figure 6
shows the results of the RMSE convergence and corre-
sponding Loss function of the algorithm set to reach the
minimum value. When the algorithm tries to achieve the
optimal value in the training step, more satisfactory outputs

Xn X1X2X3

. . .

. . .

. . . Pooling of SVRs:
Regression fusion 

MSE evaluation

SVR (m) SVR (3) SVR (2) SVR (1)

MSE (m) MSE (3) MSE (2) MSE (1)

Figure 5: Regression fusion based on pooling the SVRs models.

Table 1: Practical data collected from the concrete laboratory of Imam Khomeini University of Sabzevar.

Data Components Max Min Average Standard deviation Variance (×10−3)

Input (Kg in M3)

Cement 383 142 240.40 79.02 6.24
Water 199 0 73.14 60.52 3.66
Fly ash 287 3.5 152.47 85.55 7.32

Fine aggregate 244.35 176 200.83 20.35 0.423
Coarse aggregate 25 3.12 12.92 3.73 0.134
Superplasticizers 1118 631 887.13 88.37 7.839

Slag 943 543.12 744.08 63.98 4.12

Output
FLOW (cm) 34.87 0 22.43 9.124 0.0831
SLUMP (cm) 96 21 54.514 17.82 0.317

28-day compressive (Mpa) 66.34 18.56 40.82 8.233 0.678

Table 2: Calculation of MSE, MAPE average, minimum, and maximum error for predicting high-strength lightweight concrete by the
proposed regression fusion based on pool of SVRs and modified AIG algorithm. In this table, the K value in K-fold CV is considered to be
equal to 5.

K-fold
Minimum error Maximum error MSE MAPE

Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 Output 1 Output 2 Output 3
5-Fold (1) 0.273 0.383 0.317 14.31 21.18 9.53 1.73 4.59 1.24 0.965 1.53 0.894
5-Fold (2) 0.206 0.412 0.237 12.73 14.31 13.12 1.39 5.03 1.08 0.524 0.823 0.776
5-Fold (3) 0.229 0.374 0.365 10.33 28.73 14.43 1.58 4.87 1.44 0.947 1.34 0.739
5-Fold (4) 0.441 0.480 0.594 16.43 19.17 11.29 2.65 6.27 1.57 0.731 1.13 0.947
5-Fold (5) 0.202 0.711 0.254 15.45 29.83 16.56 2.61 9.07 0.794 0.575 0.767 0.722
5-Fold (6) 0.503 0.308 0.408 15.32 11.43 0.08 1.14 8.24 0.647 0.995 1.42 18.1
5-Fold (7) 0.153 0.494 0.211 17.40 15.87 9.86 1.09 9.01 0.733 0.673 0.865 0.712
5-Fold (8) 0.328 0.487 0.264 17.73 28.65 7.22 1.76 7.11 0.851 0.801 0.915 0.834
5-Fold (9) 0.162 0.374 0.183 16.56 26.73 13.25 2.11 8.14 0.578 0.787 1.27 0.912
5-Fold
(10) 0.258 0.448 0.379 16.30 34.19 9.45 1.39 8.76 0.476 0.413 0.873 0.748

Avg. 0.347 16.248 3.262 1.4576
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can be obtained in the experimental section by increasing the
number of search alterations of the AIG algorithm or in-
creasing the number of SVRs.

*e change in evaluation criteria is not significant due to
the change in K, and thus, Table 3 shows that a slight im-
provement in K accompanies the experiment.

However, although the training phase results are done
offline, due to the numerous repetitions in finding the best
SVR structure of the learning pool and the time-consuming
AIG optimization algorithm, computational complexity is
observed, especially in the training step. A similar

implementation for random data in convergence to the
optimal value for four validation data is shown in Figure 7.
In these plots, a limited number of repetitions are seen, and
the level of error originates from the training stage.

On average, for each run of the algorithm, the average
value of correlation is greater than 0.9 and, in some cases,
reaches as high as 0.98. Assuming that, in the prediction of
concrete quality regression, yt and xt are static variables in
the detection or estimation of parameters and T and F tests,
the results were used by increasing the sample size, and
sample variance to population variance was used to
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Figure 6: RMSE convergence and corresponding Loss function in training step.

Table 3: Calculation of MSE, MAPE average, minimum, and maximum error for predicting high-strength lightweight concrete by the
proposed regression fusion based on pool of SVRs and modified AIG algorithm. In this table, the K value in K-fold CV is considered to be
equal to 10.

K-fold
Minimum error Maximum error MSE MAPE

Output
1

Output
2

Output
3

Output
1

Output
2

Output
3

Output
1

Output
2

Output
3

Output
1

Output
2

Output
3

10-Fold (1) 0.254 0.418 0.339 13.74 20.23 10.65 1.80 4.53 1.28 0.932 1.41 0.844
10-Fold (2) 0.211 0.467 0.166 11.53 13.56 7.83 1.64 5.17 1.12 0.556 0.794 0.760
10-Fold (3) 0.287 0.456 0.373 11.76 27.31 5.22 1.48 4.75 0.98 0.971 1.11 0.734
10-Fold (4) 0.411 0.434 0.622 16.05 17.37 10.09 2.23 6.31 1.01 0.754 1.32 0.978
10-Fold (5) 0.228 0.773 0.267 14.37 24.13 5.76 2.42 8.94 0.765 0.543 0.732 0.651
10-Fold (6) 0.537 0.491 0.418 16.29 19.29 8.53 1.06 8.07 0.678 0.986 1.20 1.12
10-Fold (7) 0.243 0.565 0.467 15.81 13.91 11.51 1.12 9.12 0.743 0.640 0.876 0.793
10-Fold (8) 0.375 0.437 0.241 16.29 26.44 8.97 1.43 6.88 0.876 0.813 0.967 0.867
10-Fold (9) 0.291 0.414 0.212 18.16 29.23 6.13 2.08 7.95 0.561 0.804 1.13 0.946
10-Fold
(10) 0.243 0.473 0.356 15.27 30.89 7.38 1.51 8.37 0.441 0.587 0.663 0.331

Avg. 0.382 12.387 3.148 0.8637
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demonstrate minimal normal consistency. Estimating the
MES for an estimate of the predicted time sequence with
dynamic properties may suggest that the variance has not
been well defined. *erefore, this value will not fluctuate
around a specific mean. To further explain the variables yt
and xt, it was assumed that the regression trend was defined
as the quality prediction trend in a random step:

yt � yt−1 + ε1t (t � 1, . . . , N),

xt � xt−1 + ε2t (t � 1, . . . , N),
(17)

where ε1t and ε2t had independent distribution functions,
and the relationship between the variables yt and xt was not
justifiable.

To perform a regression analysis, we first assumed a
relationship between the two variables selected from the
seven input variables. Based on the assumption that there is a
linear relationship between the two variables, quantitative
data was collected from both variables, and the data were
plotted as points on a two-dimensional map. As shown in
Figure 8, the difference between the main and predicted
outputs is small, and the variances between them are neg-
ligible. Table 4 shows the calculated variances of ten ex-
periments. Variances indicate great independence of the
features selected by SPSS software. *erefore, using the
output quality, a small portion of the low-impact features
can be distinguished from the others.

As noted earlier, concrete strength is defined in terms of
its ingredients, weight, and specific properties. Data were
obtained under laboratory conditions based on real con-
ditions. Other factors such as data collection, mixing, and
other parameters affecting concrete strength are also

included in this section. Although the laboratory data
presented in some studies offer valuable information on this
subject, there were essential details, the absence of which
could significantly predict performance in many cases.

5. Discussion

In concrete preparation by learning-based methods, the
most crucial design issue is the lack of significant differences
between the predicted outputs and the actual output. Hence,
the R-Squared is considered as one of the most specific
criteria for comparison between methods, where y, y, and y

are the main, mean, and predicted values, respectively. *e
R-Squared is expressed as (19):

R
2
(y, y) � 1 −


n
i�1 yi − y( 

2


n
i�1 yi − y( 

2. (18)

In these experiments, different test conditions are
investigated:

(1) When SVR is used alone in estimating outputs
(Model 1).

(2) When fusion between SVRs is used in estimation
(Model 2).

(3) When the fusion between SVRs is combined with the
genetic algorithm in the analysis (Model 3).

(4) When the fusion between SVRs is combined with the
PSO algorithm in the estimation (Model 4).

(5) When the fusion between SVRs is combined with the
AIG algorithm in the estimate (Model 5).
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Figure 7: Algorithm convergence to minimum error for four random validation data with limited number of iterations.
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(6) When the fusion between SVRs is combined with the
modified AIG algorithm in the estimation (Model 6).

Experimental representations for five different and
random types of data are shown in Figure 9 separately for
each of the six models. *e p-value in the proposed algo-
rithm indicated a significant relationship between the
proposed algorithm’s output and regression values. For this
reason, we rounded the outputs (p< 0.05), which manifest
the significance of outputs. *e comparison with other
similar outputs and methods provides a valid justification
for rejecting the null hypothesis (H0). *is is because the test
result was not in the acceptable range of H0 and thus H0 was
not confirmed (α� 0.05) and therefore -Zα-1 is equal to -1.65.
*is meant that the confidence interval was greater than 95%
and the outputs more accurately resembled reality, as in-
dicated by the studied samples and K-equal validation. To
test the claims regarding the correlation of concrete prop-
erties, aside from selection by the genetic algorithms, SPSS
software was used to analyze the correlation factor between
the measured properties. *e results were significantly
identical and except for the fifth feature (which had a lower
correlation compared to other coefficients), features with
100% correlation were selected correctly.

However, as noted in Abrams’ law, in real weather
conditions, other factors may also affect the mixture of
substances. *is rule, which predicts concrete performance
based on a combination of water-cement mixture, indicated
a slight error for the coefficient of determination. *is could
be attributed to water interference in the hydration process
of cement, which can cause changes in the molecular
structure of cement material and thus affect the process of
achieving optimal concrete performance.

We know that concreting at a temperature of less than 5
°C slows down the hydration process, and the process of
obtaining concrete strength practically stops. As the tem-
perature of concrete decreases, its hardening and achieving
strength decreases, and at the temperature below freezing
point, the chemical process of hardening of concrete stops.
In general, at low temperatures, the rate of gain of concrete
strength decreases. Experiments were performed after
producing the concrete, which was considered for the built

concretes according to the regional conditions and the
occurrence of frost.

In the experiments, the decrease of temperature and
change of each of the outputs is considered noise, and the
algorithm’s resistance to change of each of the concrete
components is investigated. *e effect of freezing is mea-
sured, and the temperature drop is considered as the fourth
output. It was found that, among the primary materials,
changes in some of them can significantly prevent concrete
from freezing. In general, for a given degree of hydration, the
higher the water-to-cement ratio, or for an offered water-to-
cement rate, the lower the degree of hydration, and the larger
the pore volume in the hydrated cement paste. Since freezing
water settles quickly in large pores, it can be hypothesized
that the amount of freezing water for water-to-cement ratios
is higher and, in the early processing times at a given freezing
temperature, will be more. By performing the above software
tests on typical weight concretes exposed to freezing and
thawing in wet conditions, the maximum water-to-cement
ratio should be considered for tabulations, water ducts, and
guardrails, or parts thereof equal to 0.45 and equal to 0.5 for
the remaining pieces. It is clear that these water limits to
cement ratio are based on the assumption of sufficient
hydration of cement. In other words, the amount of water
that can freeze in concrete with a specific rate of water to
cement increases with decreasing temperature, and the
amount of water that freezes at a particular temperature
increases with an increasing ratio of water to cement. Based
on this, it was concluded that as the temperature decreases,
the water-to-cement rate should be considered, and the
combination of some slags should be used more sensitively.

High error, computational complexity, and uncertainty
challenges in algorithms are common problems in quality
recognition optimization methods. Table 5 presents the
analytical comparison between the former techniques and
the proposed approach. *ey also tried to predict the
compressive strength of lightweight structural concrete.

Future designs should incorporate deep learning models
that are transferable, such as transfer learning structures
[55, 56]. Optimization algorithms as well as deep learning
based on neural networks have a major impact on the clas-
sification process. Except for the optimization method

Table 4: Computed variances in 10 experiments: blue arrows indicate that the final variance between the main outputs and the forecast is
small compared to experts’ opinions. Red arrows also denote higher variance compared to experts’ opinions.

Experiments Expert 1 Expert 2 Simple
SVR

Fusion-SVRs
(linear)

Fusion- SVRs
(RBF)

Fusion- SVRs (RBF)-
AIG Fusion-SVRs-(RBF)-mAIG

1 ±1.18 ±1.67 ±3.03 ±2.27 ±2.04 ±1.29 ±0.96 ↑
2 ±1.43 ±1.28 ±4.17 ±3.83 ±2.46 ±1.13 ±0.85 ↑
3 ±1.83 ±1.65 ±4.22 ±3.47 ±2.72 ±2.57 ±1.39 ↑
4 ±2.11 ±1.68 ±5.84 ±3.13 ±2.51 ±1.21 ±0.75 ↑
5 ±1.78 ±2.07 ±5.12 ±4.73 ±3.62 ±3.16 ±2.11 ↓
6 ±1.91 ±1.69 ±3.19 ±2.48 ±2.92 ±1.94 ±1.06 ↑
7 ±1.44 ±1.73 ±4.41 ±2.36 ±2.08 ±1.37 ±0.84 ↑
8 ±2.33 ±2.27 ±5.93 ±4.27 ±3.63 ±2.71 ±1.48 ↑
9 ±1.76 ±2.44 ±5.51 ±3.26 ±2.71 ±1.28 ±1.02 ↑
10 ±1.45 ±1.61 ±4.31 ±3.44 ±2.59 ±2.42 ±1.76 ↓
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employed in the paper, some of the most representative
computational intelligence algorithms can be utilized to solve
the challenges of high-quality concrete prediction. Some
recent optimization algorithms include monarch butterfly

optimization (MBO) [57], earthworm optimization algorithm
(EWA) [58], elephant herding optimization (EHO) [59],
moth search (MS) algorithm [60], Slime mould algorithm
(SMA) [61], and Harris hawks optimization (HHO) [62].
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Figure 9: R-Squared estimation in six different models for all three outputs in concrete production and display of experiments for 5 random
types of data.
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6. Conclusion

Predicting the quality of high-strength concrete is a critical
issue in the concrete industry. Our investigations in this paper
showed that using an improvedmodel, including the fusion of
multiple SVR networks and the modified AIG algorithm, can
produce satisfactory outcomes in predicting 28-day com-
pressive strength. Unlike previous methods, which only work
in fabricating concrete compositions, the estimator model
utilizes a fast yet efficient model and facilitates the regression
classification process. *e research results suggest that the
degree of complexity in the sample data can be reduced to
establish a correlation in a standard pattern between the
features. Accordingly, it can be concluded that employing the
proposed method as an automated method can facilitate the
analysis of concrete data and, therefore, offers an accurate
estimation of the quality of high-strength concrete. In the
future, the authors will use several statistical criteria and
various machine learning models for further and more ex-
tensive investigation. Furthermore, the use of fusion between
neural networks (considering the challenge of uncertainty)
and support vectors can be effective in mapping input data
and extracting the appropriate pattern.
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Table 5: Comparison of the proposed algorithm to similar approaches based on used assessments.

Method Optimization
technique Learning model Dataset Results

Atici [11] - Multivariate regression analysis
and artificial neural network Collected data Optimal accuracy in regression analysis

(90%)
Rahchamani
et al. [14] GBMO ANFIS regression learner UCI and collected

data
MSEs for testing step were 1.065 to 3.16

respectively
Sadowski et al.
[21] CCA Neural networks regression

analysis Collected data MSE in the training and testing were
0.157 and 0.024 respectively

Zarandi et al [22] - Fuzzy neural network regression
analysis Collected data

Correlation factor in training and
testing steps was 90% and 96%

respectively
Chandwani et al.
[26] GA Regression analysis of neural

network Collected data MAPE for training and testing was 4%
to 19% respectively

Nikoo et al. [27] GA Multilayer neural networks
regression analysis Collected data MSE for training and testing was 0.09 to

0.813 respectively
Sadowski et al.
[47] PCA and GA Neural Networks/Self-

Organizing maps (SOM) Collected data MSE in the training and testing were
0.006 and 0.007 respectively

Behnood et al.
[48]

Multi-objective
grey wolves

Neural networks regression
analysis Collected data Correlation coefficient is 0.96

Yaman et al [49] - Self-compacting concrete using
artificial neural network Collected data R2 is 0.65 to 1

Alshihri et al.
[50] - Neural network regression

analysis Collected data MAE for training and testing was 1%
and 3% respectively.

Tsai et al. [51] PSO Cascaded neural network
regression analysis Collected data Index values were not computed

Madandoust
et al. [52] GA Regression analysis of neural

network Collected data Maximum error in the training and
testing was 9% to 13% respectively

Yeh et al. [53] - Second-order neural network
regression analysis

UCI database [54]
(103 samples)

RMSE for training and testing was 5% to
10% respectively

Proposed Modified AIG Regression fusion based on pool
of SVRs Collected data MSEs for testing step were 0.7 to 3.2
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In this paper, a mathematical model for large deformation of a cantilever beam subjected to tip-concentrated load is presented.
+e model is governed by nonlinear differential equations. Large deformation of a cantilever beam has number of applications is
structural engineering. Since finding an exact solution to such nonlinear models is difficult task, this paper focuses on developing
soft computing technique based on artificial neural networks (ANNs), generalized normal distribution optimization (GNDO)
algorithm, and sequential quadratic programming (SQP).+e strength of ANNmodeling for governing the equation of cantilever
beam is exploited by the global search ability of GNDO and further explored by the local search mechanism of SQP. Design
scheme is evaluated for different cases depending on variations in dimensionless end-point load (ρ). Furthermore, to validate the
effectiveness and convergence of algorithm proposed technique, the results of the differential transformation method (DTM) and
exact solutions are compared.+e statistical analysis of performance indicators in terms of mean, median, and standard deviations
further establishes the worth of ANN-GNDO-SQP algorithm.

1. Introduction

Mechanical systems, which involve nonlinearity due to large
deflection of compliant mechanism, continue to be an in-
teresting problem. Since large deformation phenomena
occur often in various geotechnical practices [1]. +erefore,
this topic is of practical interest and has been widely studied
bymany researchers. In past decades, a number of numerical
methods have been developed to solve large deformation
problems. +e large deflection of cantilever beams was
studied by Wang [2]. +ey developed nonlinear differential
equations for postbuckling loads on the basis of Eringen’s
nonlocal constitutive relation. Shooting method was used to
obtain postbuckling load and the buckled shape of the beam.
Framework of arbitrary Lagrangian–Eulerian (ALE) is
commonly used approach to study large deformation in geo-
technical engineering [3]. Based on ALE three different
approaches named as the efficient ALE approach (EALE)
[4, 5], interpolation technique by small strain (RITSS) [6, 7]
and the Abaqus built-in coupled Eulerian–Lagrangian (CEL)

method [8]. Modified Chebyshev’s polynomial is used by
Schmidt and Dadeppo [9] to study large deflection of beam.
Large deformation of a spring-hinged beam was investigated
by Nageswara Rao [10, 11] subjected to a tip rotational
concentrated and distributed load.

Ludwick’s large deformation was studied by Lee [12] to
made cantilever beams with a combined loading effect of a
focused load at the tip and a uniformly dispersed load over
the beam length. Phungpaigram and Chucheepsakul [13, 14]
used elliptic integrals to calculate exact solutions for large
deflection in elastic beams with variations in arc length and
inclined force. Dado and Al-Sadder [15, 16] investigated the
behaviour of large deformation of prismatic and non-
prismatic cantilever beams under various type of loadings.
Wang [17, 18] used homotopy perturbation method (HPM)
to obtain analytical solution for large deformation of beam
under point load with free tip. References [19, 20] studied the
longitudinal vibration analysis for microbars based on strain
gradient elasticity theory. Feasibility of Adomian decom-
position method for such complex nonlinear problems was
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studied by Tolou and Herder [21]. Mutyalarao [22] studied
large deflections of a uniform cantilever beam with con-
centrated load at tip and having normal inclination to the
deflected axis of the beam. All these recently introduced
techniques have their own grains and limitations in terms of
accuracy, robustness, convergence, and applicability, but
they are based on well-established deterministic procedures.
Complex nonlinear differential equation of large deforma-
tion of beams subjected to a concentrated load is of great
interest in scientific and engineering field. +e quest of
finding analytical solution for the problem motivates the
author to develop a soft computing technique based on feed
forward artificial neural networks (ANNs).

Stochastic solvers based on computational intelligence
methods using artificial neural networks (ANNs) are
considered to be fundamental in pattern recognition and
machine learning. In general, neural networks are widely
used to solve fractional differential equations, integro-
differential equations (IDEs), partial differential equations
(PDEs), and ordinary differential equations (ODEs). In
ANN modeling, the optimization procedure is carried by
using combination of global and local search algorithms.
Some recent application of stochastic algorithm are
multiphase flow through porous media for imbibition
phenomena [23], eye model [24], wire coating dynamics
[25, 26], optimal design and temperature distribution of
heat fin [27, 28], beam-column design [29], and hybrid
feature analysis for diabetic retinopathy classification
using fundus images [30].

In the present study, a novel soft computing technique is
applied to find analytical series solution for large defor-
mation of cantilever beam subjected to point load by using
ANN models optimized globally with generalized normal
distribution optimization (GNDO) algorithm hybrid with
sequential quadratic programming (SQP) for rapid local
convergence. +e prominent features of the present study
are given as follows.

(i) Mathematical model for large deformation of
cantilever beam under end point load is formulated
and analyzed to study the influence of variations in
dimensionless end point load (ρ).

(ii) A novel soft computing paradigm is developed to
model series solutions based on artificial neural
networks with the generalized normal distribution
optimization algorithm and the sequential quadratic
programming. Our approach is named as ANN-
GNDO-SQP algorithm.

(iii) To validate the efficiency of the proposed technique,
four cases of large deformation cantilever beam are
considered.+e statistical results are compared with
differential transformation method (DTM) and
analytical solutions.

(iv) Statistical analysis of absolute errors (AE), fitness
evaluation (Fit), mean absolute deviation (MAD),
+eil’s inequality coefficient (TIC), root mean
square error (RMSE), Nash–Sutcliffe efficiency
(NSE), and error in Nash–Sutcliffe efficiency

(ENSE) are presented in terms of minimum, mean,
median, and standard deviation.

(v) Provision of continuous solutions, computational
complexity, convergence, and easy execution of the
proposed methodology show the robustness and
correctness of the ANN-GNDO-SQP algorithm.

2. Problem Formulation

Consider a cantilever beam with a large deformation due to
end point load as shown is Figure 1. By Euler–Bernoulli
beam theory, the curvature (κ) of the beam can be given as

κ �
dθ
ds

�
M

EI
, (1)

where θ represents the slope or rotation of a beam, s is the
natural distance from the fixed end, E is Young’s modulus,
M is bending moment, I is moment of inertia, and EI is the
bending stiffness of cantilever beam. From Figure 1,
moment (M) for the deflected beam under end point load
is given as

M � F L − δh − x( , (2)

where concentrated load at end point is denoted by F, δh is
the horizontal deflection, and L is the distance of deflected
beam from fixed point. Hence, bending equation of uniform
cross sectional beam for large deformation is written as

dθ
ds

�
F

EI
L − δh − x( , θ(0) � 0, θ′(L) � 0. (3)

If F � 0, then concentrated force is a dead force such as
gravity, and if F � 1, then the concentrated force is per-
pendicular to the deflected beam at the end [31] (Figure 1).

Differentiation of (1) with respect to s is given as

d2θ
ds

2 �
dM/ds

EI
, (4)

considering a dimensionless parameter ξ � s/L. Differenti-
ating (2) with respect to s and substituting cos(θ) � dx/ds in
(4) will result in governing second-order differential
equation for large deformation of continuer beam with end
point load as

d2θ
dξ2

+ ρ cos θ � 0, (5)

with boundary conditions

at ξ � 0, θ � 0, (6)

at ξ � 1,
dθ
dξ

� 0, (7)

where ρ � FL2/EI, and it represents the dimensionless load at
end point. Angle of rotation of the beam at free end is
denoted by θtip(1) � 1. Furthermore, dimensionless hori-
zontal displacement (δh) of the free end is given by
[17, 32, 33] as
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L − δh

L
�

����������

2EI sin θtip 

FL2



�

�������
2 sin θtip

ρ



, (8)

then, the dimensionless horizontal displacement of the free
tip is

δh

L
� 1 −

1
�ρ√

�������
2 sin θtip


. (9)

For large deformation equation (5) along with boundary
conditions, (6) and (7) are given as

d2θ
dξ2

+ ρ � 0,

at ξ � 0, θ � 0,

at ξ � 1,
dθ
dξ

� 0.

(10)

+e analytical solution for the problem is given as

θ(ξ) �
ρ
2

(2 − ξ)ξ, (11)

at the tip ξ � 1.

θ(ξ) �
ρ
2
. (12)

3. Proposed Methodology

+e proposed soft computing paradigm for calculating
approximate solutions for mathematical model of large
deformation of cantilever beam consists of two parts. In the
first part, an unsupervised ANNs model is constructed in
terms of input, hidden, and output layers for governing
differential equation. In the second part, neurons in ANN
structure are trained or tuned by hybridizing generalized
normal distribution optimization (GNDO) algorithm and
sequential quadratic programming (SQP).

3.1. Construction of ANN Model. Feedforward artificial
neural networks (ANNs) are used to model series solu-
tions for governing equation of large deformation of

cantilever beam with end point loading. Neural network
model for (5)–(7) are formulated using continuous
mapping approach for the solution θ(ξ) and its respective
derivatives in terms of input, hidden, and output layer are
given as follows:

θ(ξ) � 
k

i�1
ϕif ωiξ + βi( , (13)

θ′(ξ) � 
k

i�1
ϕif′ ωiξ + βi( , (14)

θ″(ξ) � 
k

i�1
ϕif″ ωiξ + βi( , (15)

where ϕ � [ϕ1,ϕ2, ϕ3, . . . , ϕm], ω � [ω1,ω2,ω3, . . . ,ωm], and
β � [β1, β2, β3, . . . , βm] are real-valued vectors and are
bounded, f is the activation function, and i represents the
number of neurons in ANN structure. In the hidden layer,
(13)–(15) used log sigmoid as an activation function, and
then, the updated form of solution and its derivatives is given
as

θ(ξ) � 
k

i�1
ϕiωi

1

1 + e
− ωiξ+βi( )

 ,

θ′(ξ) � 
k

i�1
ϕiωi

e
− ωiξ+βi( )

1 + e
− ωiξ+βi( ) 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

θ″(ξ) � 
k

i�1
ϕiω

2
i

2e
− ωiξ+βi( )

1 + e
− ωiξ+βi( ) 

3 −
e

− ωiξ+βi( )

1 + e
− ωiξ+βi( ) 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(16)

3.2. Formulation of Fitness Function. Fitness function or
objective function for mathematical model of large defor-
mation in cantilever beam is developed as a sum of twomean
square error (MSE):

Fixed End Free End

S
U
P
P
O
R
T

Y-
ax

is

X-axis

δh

L – δh

δv
Fs

θ

θtip

Figure 1: Large deformation of a cantilever beam under end point loading.
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MinimizeE � E1 + E2, (17)

where E1 and E2 are MSE of (5) and (6) and (7), respectively,
which are defined as

E1 �
1
N



N

m�1

d2θ
dξ2

+ ρ 

2

,

E2 �
1
2

(θ(0) − 0)
2

+
dθ(1)

dξ
− 0 

2

⎛⎝ ⎞⎠.

(18)

For the approximate solution of (5), fitness function
equation (17) is optimized by training neurons in such a way
that MSEs, E1 and E2, should approach to zero, and con-
sequently, the approximate solution by proposed method
will converge to exact solution.

3.3. Training of Neurons. Methodologies adopted for
training of unknown neurons in ANNs structure for opti-
mization of fitness function equation (17) are presented,
which is based on hybridization of unsupervised and su-
pervised learning of GNDO and SQP, respectively. +e
working mechanism of the proposed algorithm is provided
in Figure 2.

3.4. Generalized Normal Distribution Optimization.
Generalized normal distribution optimization (GNDO) al-
gorithm is a novel metaheuristic technique presented by
Zhang et al. [34], inspired by generalized normal distribu-
tion theory. GNDO algorithm is widely used for parameter
extraction of model, unlike other metaheuristic algorithms;
GNDO is easy to implement, and it only requires the es-
sential population size and termination criteria. GNDOhas a
simple structure, where the position of each individual is
updated by using normal distribution curve. +e working
strategy of GNDO algorithm is subdivided into two phases,
exploitation and exploration.

3.4.1. Exploitation. Exploitation is a process of finding
best solution around the search space consisting of the
current positions of all individuals. Initially, model for
optimization by generalized distribution model is given
as

v
t
i � μi + δi × η, i � 1, 2, 3, . . . , N, (19)

where vt
i , μi, δi, and η, are trial vector, generalized mean

position, generalized standard variance, and penalty
factor, respectively. Moreover, η, δi, and μi are formu-
lated as

η �

��������
− log ζ1( 


× cos 2πζ2( , if a≤ b,

��������
− log ζ1( 


× cos 2πζ2 + π( , otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

δi �

�������������������������������
1
3

x
t
i − μ 

2
+ x

t
Best − μ 

2
+(M − μ)

2
 



,

μi �
1
3

xt
i + xt

Best + M ,

M �


N
i�1 x

t
i

N
,

(20)

where M is the mean position, xt
Best is the current best so

far, and a, b, ζ1, and ζ2 are the random numbers between 0
and 1. Furthermore, η, δi, and μi are discussed in the ex-
ploration phase.

3.4.2. Exploration. Exploration refers to the searching of
population space to get best solution. Exploration of
GNDO is based on three randomly selected individuals as
follows:

vt
i � xt

i + β × ζ3


 × v1 
√√√√√√√√√√√√

Local information sharing

+(1 − β) × ζ4


 × v2 
√√√√√√√√√√√√√√√√
Global information sharing

,
(21)

where v1 and v2 are the trail vectors, β is the adjustment
parameter, and ζ3 and ζ4 are the random numbers between 0
and 1, which are subjected to the standard normal distri-
bution. Trail vectors are computed as follows:

v1 �
xt

i − xt
p1, if f xt

i <f xt
p1 ,

xt
pl − xt

i , otherwise,

⎧⎪⎨

⎪⎩

v2 �
xt

p2 − xt
p3, if f xt

p2 <f xt
p3 ,

xt
p3 − xt

p2, otherwise,

⎧⎪⎨

⎪⎩

(22)

where p1, p2, and p3 are integers. It is worth mentioning
that GNDO algorithm is inspired by the relationship be-
tween normal distribution law and traditional teaching
phenomena, search process of metaheuristics, and group
teaching phenomena, respectively. GNDO has been applied
to study the parameter extraction of photovoltaic models
[34].

3.5. Sequential Quadratic Programming. +e best perfor-
mance (weights) obtained by GNDO algorithm is refined
by the process of hybridization with efficient local search
technique known as sequential quadratic programming
using MATLAB toolbox setting. SQP is one of the pow-
erful methods for numerical solution of constrained
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nonlinear optimization problems. It was developed in
1963 and further refined in 1970 [35]. SQP has been
applied to a number of problems, which proves its power,
accuracy, and efficiency. Nocedal and Wright [35] discuss
SQP in detail and also give a mathematical formulation for
various large-scale numerical optimization problems.
Some recent applications of SQP are numerical solution
for transient heat conduction problem [36], profile error
evaluation of free-form surface [37], nonlinear model
predictive control [38], OPF problem in DC grids [39],
Bagley–Torvik systems arising in fluid mechanics [40],
and optimal design of heating system in rapid thermal
cycling blow mold [41].

3.6. Hybrid ANN-GNDO-SQP Algorithm. Necessary details
of the procedural steps for proposed algorithm are given as
follows.

Step 1. Initialization of GNDO: Initial weights are
created randomly from population space with number
of entries equal to number of neurons in ANN
structure. Mathematical formulation is given as

C � [(ϕ,ω, β)]
T

�

ϕ1 ω1 β1
ϕ2 ω2 β2
⋮ ⋮ ⋮

ϕm ωm βm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

Model Large Deformation Analysis of Cantilever Beam Under point Load

Mathematical model

d2θ/dξ2 + ρ = 0, θ (0) = 0, θ′ (1) = 0,

Cases
I II III IV

ρ = 2.0ρ = 1.5ρ = 1.0ρ = 0.5

Optimization Network
Start

GNDO

Initialization of 
population space

Calculate the fitness value 
using Eq (21) to obtain xBest 

Generate
α є (0,1)

Exploitation

If α > 0.5

Exploration

Select (xBest ) and 
calculate M, μ, δ and η 

to perform local 
exploitation

Update the current best 
position by performing 
global search using Eq 

(28) –Eq (30).

t = t + 1

Global best solution

SQP Initialize global 
best weights Fitness calculation

Significant 
progress?

Weights are updated as 
per steps in SQP

Stopping criteria 
achieved

Display best 
results

End

Yes

No

Yes

No

No

Yes

Figure 2: Graphical overview of the model, cases studies, and flow chart of the ANN-GNDO-SQP algorithm.
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where ϕ, ω, and β are the real values of unknown
neurons in ANN model. Parameter setting for GNDO
algorithm is given in Table 1.
Step 2. Fitness evaluation: Objective function equation
(17) is evaluated to calculate the fitness value for the
problem using the weights generated in the previous
step.
Step 3. Criteria for termination: Execution of GNDO is
stopped when any of the following criteria is satisfied.

Objective value ie ε⟶ 10− 15

Function tolerance ie ′Fun′TOL⟶ 10− 15

Predefined number of iterations is achieved

If stopping criteria are fulfilled, then go to step V
otherwise continue.
Step 4. Storage: Store the global best weight corre-
sponding to minimum fitness value and time taken for
the execution.
Step 5. Hybridization: Global best weights obtained by
GNDO for minimization of (21) are considered as an
initial guess for SQP to start the procedure.

Step 6. Fitness evaluation: SQP starts the supervised
learning, update the weights, and evaluate the fitness
function until the following terminations conditions
are satisfied.
Objective value, i.e., ε⟶ 10− 15.
Predefined number of iterations is achieved.
Step 7. Storage: Store the best weight, minimum fitness
value, and time taken for the execution by SQP and the
total time by GNDO-SQP in seconds.

Repeat the procedure from steps I–VII for a sufficient
large number of independent runs to generate a large dataset
for reliable statistical analysis.

4. Performance Indices

In this section, the performance of design scheme for solving
mathematical model of large deformation of cantilever beam
is examined by incorporating performance indicators in
terms of mean absolute deviation (MAD), +eil’s inequality
coefficient (TIC), root mean square error (RMSE), and
Nash–Sutcliffe efficiency (NSE). Mathematical formulations
of these indicators are given as follows [23].

MAD �
1
N



N

m�1
θm(ξ) − θm(ξ)



,

TIC �

������������������������

(1/N) 
N
n�1 θm(ξ) − θm(ξ) 

2


������������������

(1/N) 
N
m�1 θm(ξ)( 

2


+

�����������������

(1/N) 
N
m�1

θm(ξ) 
2



 

,

RMSE �
1
N

������������������



N

m�1
θm(ξ) − θm(ξ) 

2




,

NSE � 1 −


N
m�1 θm(ξ) − θm(ξ) 

2


N
m�1 θm(ξ) − θm(ξ) 

2,
θm(ξ) �

1
N



N

m�1

θ(ξ),
⎧⎪⎨

⎪⎩

ENSE � (1 − NSE),

(24)

where θm is the analytical solution and θm represents the
approximate solution by proposed algorithm. N denotes the
grid points.

5. Numerical Simulation and Discussion

In this section, different cases of (5) are considered to study
the effect of variations in dimensionless end point load (ρ)

on large deflection of cantilever beam. +e following cases
are considered. Case I: ρ � 0.5, Case II: ρ � 1.0, Case III:
ρ � 1.5, and Case IV: ρ � 2.0. +e formulation of fitness
functions for each case is given as follows:

Minimize E �
1
N


N

m�1

d2θ
dξ2

+ 0.5 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 ,

(25)

Minimize E �
1
N



N

m�1

d2θ
dξ2

+ 1.0 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 ,

(26)

Minimize E �
1
N



N

m�1

d2θ
dξ2

+ 1.5 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 ,

(27)
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Minimize E �
1
N



N

m�1

d2θ
dξ2

+ 2.0 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 .

(28)

In this paper, the mathematical model of large deflected
cantilever beam under end point load is investigated by
developing soft computing technique. ANNs-based fitness
function is constructed to model approximate solutions,
which are further optimized by using hybridization of
GNDO and SQP algorithms. To briefly study the efficiency
and behaviour of proposed technique, it is executed for 100
times. Results obtained by ANN-GDDO-SQP algorithm are
compared with exact solution and differential transforma-
tion method [33]. Approximate solutions along with ab-
solute errors obtained by the proposed algorithm for
different cases of deflected cantilever beam are shown in
Figure 3. Figures 4(a) and 4(b) illustrate the influence of
variations in dimensionless end point load (ρ) on horizontal
distance (δh/L) and rotational angle (θtip) of the beam at the
tip or free end, respectively. Convergence of fitness values,
MAD, TIC, RMSE, and ENSE for each case of large deflected
cantilever beam during 100 independent runs is shown in
Figures 5 and 6. Figure 7 represents the boxplots analysis for
each case of deflected cantilever beam. +e graphical

illustration of mean absolute values, global values for fitness
function, and performance indicators for each case study are
presented in Figure 8.

It can be seen that the approximate solutions overlap
the exact solution with minimum errors that show the
accuracy of proposed technique. Table 2 dictates the
comparison of approximate solutions and analytical so-
lutions for different cases depending on variations in di-
mensionless point load at free end. Tables 3 and 4 show that
absolute errors in best solutions for case I-IV lie around
1.51E − 10 to 2.83E − 12, 1.36E − 10 to 5.72E − 13, 1.35E −

09 to 9.89E − 12 and 1.08E − 09 to 1.50E − 12 with standard
deviations 10− 9 to 10− 10, 10− 9 to 10− 11, 10− 8 to 10− 10 and
10− 8 to 10− 9, respectively. Table 5 dictates that mean or
global values of fitness function for each case study are
1.80E − 08, 5.18E − 08, 1.10E − 07, and 1.60E − 07. Also,
minimum values of MAD, TIC, RMSE, and ENSE lie
around 10− 6, 10− 7, 10− 6, and 10− 10 with standard devia-
tions around 1.80E − 05 to 4.94E − 06, 4.27E − 06 to
1.59E − 06, 1.50E − 05 to 4.13E − 06 and 2.35E − 08 to
7.74E − 09, respectively. Analyses based on the computa-
tional complexity of the design scheme for obtaining so-
lution to equations (25)–(28) are dictated in Table 6.
Weights in ANN structure for best solution of each case
obtained by proposed algorithm are presented in Table 7
and graphically shown in Figure 9.

Table 1: Setting of parameters for GNDO and SQP algorithm.

Method Parameters Settings Parameters Settings

GNDO
Initialization Random search Bounds (Lb, Ub) [− 1, 1]
Search agents 70 Max. iterations 2000

Function tolerance 10− 15 Fitness limit 10− 15

SQP
Initiation Global best of GNDO Bounds (Lb, Ub) [− 1, 1]

Max. iterations 1500 X-tolerance 10− 15

Function tolerance 10− 15 Fitness limit 10− 15
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Figure 3: (a) Comparison of approximate solutions obtained by ANN-GNDO-SQP algorithm with analytical solution for each case.
(b) Absolute errors in solutions of proposed algorithm for different cases.
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Figure 4: Comparison between the (a) dimensionless horizontal distance and (b) rotational angle of the beam obtained by analytical
method, DTM, and proposed algorithm for variations in dimensionless end-point load.

0 10 20 30 40 50 60 70 80 90 100
Number of Independent Runs

Fi
tn

es
s V

al
ue

Case I
Case II

Case III
Case IV

10-6

10-7

10-8

(a)

Case I Case II Case III Case IV

10-9

10-10

10-11

10-12

Fi
tn

es
s V

al
ue

(b)

Figure 5: (a) Convergence of fitness value. (b) Box plot analysis for each case during 100 independent runs of ANN-GNDO-SQP algorithm.
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Figure 6: Convergence analysis of (a) MAD, (b) TIC, (c) RMSE, and (d) ENSE during 100 independent runs for each case of large deflected
beam.
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Figure 7: (a–d) represents the boxplot analysis for each case of large deflected cantilever beam under end-point load during 100 in-
dependent executions. (a) MAD, (b) TIC, (c) RMSE, and (d) ENSE.
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Figure 8: (a) +e global values of fitness function and performance indicators obtained during multiple execution of ANN-GNDO-SQP
algorithm. (b) Mean absolute errors in the solutions of proposed algorithm for different cases of large deflected cantilever beam.

Table 2: Comparison of the approximate solution obtained by ANN-GNDO-SQP algorithm with analytical solution for different variations
is dimensionless end point load of large deflected cantilever beam.

ξ
ρ � 0.5 ρ � 1.0 ρ � 1.5 ρ � 2.0

Exact ANN-GNDO-SQP Exact ANN-GNDO-SQP Exact ANN-GNDO-SQP Exact ANN-GNDO-SQP
0.0 0 2.02E − 09 0 − 5.11E − 08 0 − 5.70E − 09 0 6.07E − 07
0.1 0.0475 0.04750000 0.0950 0.09500000 0.1425 0.14250000 0.1900 0.19000004
0.2 0.0900 0.09000000 0.1800 0.18000000 0.2700 0.27000000 0.3600 0.36000005
0.3 0.1275 0.12750000 0.2550 0.25500000 0.3825 0.38250000 0.5100 0.51000000
0.4 0.1600 0.16000000 0.3200 0.32000000 0.4800 0.48000000 0.6400 0.64000000
0.5 0.1875 0.18750000 0.3750 0.37500000 0.5625 0.56250000 0.7500 0.75000008
0.6 0.2100 0.21000000 0.4200 0.42000000 0.6300 0.63000364 0.8400 0.84000000
0.7 0.2275 0.22750000 0.4550 0.45500000 0.6825 0.68250000 0.9100 0.91000000
0.8 0.2400 0.24000188 0.4800 0.48000000 0.7200 0.72000000 0.9600 0.96000004
0.9 0.2475 0.24750207 0.4950 0.49500000 0.7425 0.74250001 0.9900 0.99000006
1.0 0.2500 0.25000192 0.5000 0.50000000 0.7500 0.75000000 1.0000 1.00000001

Table 3: Maximum and minimum absolute errors obtained in ANN-GNDO-SQP solutions for different cases of large deflection of
cantilever beam.

ξ
ρ � 0.5 ρ � 1.0 ρ � 1.5 ρ � 2.0

Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE
0.0 1.07E − 08 2.16E − 10 2.54E − 08 9.14E − 11 1.28E − 07 1.30E − 10 1.24E − 07 2.18E − 09
0.1 1.03E − 08 1.67E − 10 2.18E − 08 1.36E − 10 1.06E − 07 6.97E − 10 1.46E − 07 1.48E − 09
0.2 1.02E − 08 1.82E − 10 2.46E − 08 3.53E − 11 1.27E − 07 9.89E − 12 1.41E − 07 1.72E − 09
0.3 2.23E − 10 6.59E − 12 1.20E − 09 5.38E − 12 7.64E− 09 4.03E− 10 2.14E − 09 8.42E − 11
0.4 4.76E − 09 7.30E − 11 8.77E − 09 5.44E − 11 4.32E− 08 3.40E− 10 8.23E − 08 6.09E − 10
0.5 9.86E − 09 1.73E − 10 2.25E − 08 8.30E − 11 1.20E− 07 1.10E− 11 1.75E− 07 1.58E− 09
0.6 3.79E − 09 8.09E − 11 1.11E − 08 4.73E − 11 6.36E− 08 5.62E− 10 7.28E− 08 8.51E− 10
0.7 5.26E − 10 2.83E − 12 3.14E − 10 5.72E − 13 1.06E− 09 4.32E− 10 8.63E − 09 1.50E − 12
0.8 1.02E − 08 1.53E − 10 2.09E − 08 1.46E − 10 1.14E− 07 9.45E− 11 2.06E − 07 1.08E − 09
0.9 8.53E − 09 1.56E − 10 2.22E − 08 2.44E − 10 1.28E− 07 1.35E− 09 1.93E − 07 1.22E − 09
1.0 1.04E − 08 1.51E − 10 2.07E − 08 2.99E − 10 1.20E− 07 4.76E− 10 2.30E − 07 1.24E − 09
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6. Conclusion

In this paper, we have analyzed the mathematical model of
large deflected beam under variational point load and the
free end. Furthermore, we present a new soft computing
technique to calculate approximate solution for different
cases depending on variations in end point load. We con-
clude our finding as follows.

(i) A new soft computing evolutionary algorithm is
developed in which the strength of artificial neural
networks are utilized to model an approximate
series solution and combined with hybridization of
generalized normal distribution optimization al-
gorithm and sequential quadratic programming.
+e proposed algorithm is named as ANN-GNDO-
SQP algorithm.
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Figure 9: Unknown neurons in ANN structure corresponding to best solutions for each case large deflected cantilever beam. (a) Case
I. (b) Case II. (c) Case III. (d) Case IV.
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(ii) ANNs-based fitness functions are constructed and
optimize with the ANN-GNDO-SQP algorithm to
obtain an overlapping solutions with minimum
absolute errors as shown in Figure 3.

(iii) It can be seen that increasing end-point load in-
creases the angle of deflection, horizontal distance,
and rotational angle of the cantilever beam.

(iv) Convergence graphs and boxplots of 100 inde-
pendent executions for fitness evaluation, MAD,

TIC, RMSE, and ENSE show the stability of pro-
posed algorithm.

(v) Extensive graphical and statistical analysis along
with complexity analysis of the proposed algorithm
for solving large deflected cantilever beam shows the
correctness and robustness of ANN-GNDO-SQP
algorithm.

Approximate solutions for cases I–IV are as follows:

θ(ξ)

− 2.9962626
1 + e

− (− 0.65813310t− 1.9949390)
+

− 2.8313012
1 + e

− (0.59715086t− 2.4652621)
,

+
− 2.8313010

1 + e
− (0.59715056− 2.4652635)

+
0.2424393

1 + e
(0.81624788t+0.9989734)

,

+
− 2.9962567

1 + e
− (− 0.65820220t− 1.9949300)

+
0.6959822

1 + e
− (0.58787992t+1.7968609)

,

+
0.6315080

1 + e
− (− 0.39080880t+2.1960290)

+
1.2045178

1 + e
(0.65966357t− 0.7020318)

,

+
− 2.8312966

1 + e
− (0.59714525t− 2.4652530)

+
− 2.9962649

1 + e
− (− 0.65808110t− 1.9949521)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(ξ)

1.48586354
1 + e

− (− 0.7044589t+2.44833643)
+

− 2.29465530
1 + e

− (− 0.9937027t− 1.48608260)
,

+
2.40794827

1 + e
− (− 1.1209820+3.41884685)

+
− 2.29465550

1 + e
(− 0.9937063t− 1.48608340)

,

+
− 2.29465580

1 + e
− (− 0.9937174t− 1.48607800)

+
− 1.48607800

1 + e
− (− 0.9937021t− 1.48608350)

,

+
2.40797982

1 + e
− (− 1.1206391t+3.41897235)

+
− 1.14915000

1 + e
(1.5518567t+1.25665993)

,

+
− 3.73471870

1 + e
− (0.2862061t+1.44003308)

+
− 2.29465600

1 + e
− (− 0.9936976t− 1.48608900)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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θ(ξ)

− 2.0618838
1 + e

− (− 0.2837740t+2.30806094)
+

1.4326512
1 + e

− (1.2909630t+0.41306818)
,

+
− 5.1431940

1 + e
− (− 0.9214788− 2.53963320)

+
− 5.1431899

1 + e
(− 0.9214561t− 2.53962473)

,

+
0.9891961

1 + e
− (0.5095847t+3.05528986)

+
0.9883707

1 + e
− (0.5164401t+3.07199558)

,

+
− 5.1431949

1 + e
− (− 0.9214901t− 2.53962702)

+
− 8.4468052

1 + e
(1.1202166t− 3.24654750)

,

+
0.9883813

1 + e
− (0.5164715t+3.07202476)

+
− 5.1431979

1 + e
− (− 0.9214801t− 2.53963468)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(ξ)

− 6.06573860
1 + e

− (0.86825787t− 2.33438240)
+

− 8.68057533
1 + e

− (− 0.61741762t− 1.96299418)
,

+
− 6.06575258

1 + e
− (0.86882569− 2.33421836)

+
− 8.68058082

1 + e
(− 0.61739784t− 1.96303574)

,

+
1.88766152

1 + e
− (− 1.93692688t+5.66526002)

+
− 8.68057978

1 + e
− (− 0.61743654t− 1.96298424)

,

+
− 8.68057609

1 + e
− (− 0.61744398t− 1.96300933)

+
2.29100504

1 + e
(− 0.70151323t+4.57057840)

,

+
2.29100362

1 + e
− (− 0.70152426t+4.57058216)

+
− 8.68057385

1 + e
− (− 0.61743850t− 1.96300282)

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Abbreviations

ANNs: Artificial neural networks
GNDO: Generalized normal distribution optimization
MAD: Mean absolute deviation
TIC: +eil’s inequality coefficient
NSE: Nash–Sutcliffe efficiency
ENSE: Error in Nash–Sutcliffe efficiency
SQP: Sequential quadratic programming
RMSE: Root mean square error
DTM: Differential transform method
L: Distance of deflected beam
F: Concentrated load
ϕn,ωn, βn: Unknown real valued neurons in ANNs
ρ: End-point load
κ: Curvature
θ: Rotation of beam
s: Distance from fix point
I: Inertia
M: Bending moment
EL: Bending stiffness
δh: Horizontal deflection of beam
ξ: Dimensionless parameter
vt

i : Trail vector
μi: Mean position
δi: Standard variance
vt

i : Trail vector
μi: Mean position
δi: Standard variance.
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In order to prevent the occurrence of traffic accidents, drivers always focus on the running conditions of the preceding and
rear vehicles to change their driving behavior. By taking into the “backward-looking” effect and the driver’s anticipation
effect of flux difference consideration at the same time, a novel two-lane lattice hydrodynamic model is proposed to reveal
driving characteristics. +e corresponding stability conditions are derived through a linear stability analysis. +en, the
nonlinear theory is also applied to derive the mKdV equation describing traffic congestion near the critical point. Linear and
nonlinear analyses of the proposed model show that how the “backward-looking” effect and the driver’s anticipation
behavior comprehensively affect the traffic flow stability. +e results show that the positive constant c, the driver’s an-
ticipation time τ, and the sensitivity coefficient p play significant roles in the improvement of traffic flow stability and the
alleviation of the traffic congestion. Furthermore, the effectiveness of linear stability analysis and nonlinear analysis results is
demonstrated by numerical simulations.

1. Introduction

With the rapid development of wireless technologies and
intelligent vehicles in the past years, the vehicle-to-vehicle
(V2V) communication [1, 2] can not only alleviate the
congested traffic flow but also provide pleasurable driving
experiences. To reveal the realistic traffic phenomena, there
have emerged various traffic models such as car-following
models [3–10], cellular automation models [11, 12], mac-
rotraffic models [13–15], lattice hydrodynamic models
[16–21], continuum models [22–24], and gas kinetic models
[25].

By incorporating the ideas of car-following as well as
continuum models, the first lattice hydrodynamic model
[26] with a conservation equation (1) and a flow equation (2)
was proposed in 1998.

ztρj + ρ0 ρjvj − ρj−1vj−1  � 0, (1)

zt ρjvj  � a ρ0V ρj+1  − ρjvj , (2)

where ρ0V(ρj+1) and ρjvj denote the optimal flow and the
actual flow, respectively. ρ0 is the average density, and a

refers to the driver’s sensitivity. +en, the stability condition
and mKdV equation can be, respectively, obtained with the
linear analysis and nonlinear analysis methods. Subse-
quently, many extended works have been developed by
taking different factors into accounts, such as driver’s
memory [27–31], driver’s anticipation effect [32–34], density
difference [35], traffic interruption probability [36–38], and
“backward-looking” effect [39–41].

In addition to the information from the preceding ve-
hicle, drivers always focus on the running conditions of the
rear vehicles from the rear-view mirror to change their
driving behavior. By considering the “backward-looking”
effect, Ge and Cheng [39] presented the BL-LV model as
follows:

ρj(t + τ)vj(t + τ) � ρ0VF ρj+1(t) 

+ H ρ − ρj−1(t)  · H ρj−1(t) − ρc ρ0VB ρj−1(t) ,
(3)
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where H(·) and ρc represent the Heaviside function and the
safety density, respectively. ρ denotes a parameter close to 1.
VF(·) is the optimal velocity function for “forward-looking.”
While VB(·) is the optimal velocity function for “backward-
looking,” which works if and only if ρc ≤ ρj−1(t)≤ ρ holds.
Functions VF(·) and VB(·) have exactly the opposite effects
and are defined as

VF ρj+1  � tanh
2
ρ0

−
ρj+1

ρ20
−
1
ρc

  + tanh
1
ρc

 ,

VB ρj−1  � c −tanh
2
ρ0

−
ρj−1

ρ20
−
1
ρc

  + tanh
1
ρc

  ,

(4)

where c is a positive constant that represents the relative role
of the “backward-looking.”

For the sake of safe and comfortable driving, drivers always
predict the velocity of the preceding vehicles so that they can
adjust their driving velocity at the next moment. +is driving
behavior is known as the anticipation effect [42] or predictive
effect [43, 44]. Wang et al. [43] added the driver’s anticipation
effect into the optimal velocity (OV) function in a single-lane
lattice model. Later, Kaur and Sharma [44] extended the single-
lane model [43] to the two-lane case along with the optimal
current difference (OCD) effect. By considering the anticipation
effects in theOCD term as well as theOV function, Sharma [45]
constructed a new lattice hydrodynamic model with an an-
ticipation coefficient α, where the positive α represents the
anticipation effect while the negative α represents the delay
effect. +en, Li et al. [32] adopted this anticipation effect to the
multiple optimal current differences’ anticipation version.
Meanwhile, numerical results indicated that only the infor-
mation of three preceding lattices [46] was enough for the
improvement of traffic stability. In view of the anticipation effect
of flux difference, Chang and Cheng [47] proposed a new lattice
model as follows:

zt ρjvj  � aρ0V ρj+1  − a 1 + k1( ρjvj

+ k2 ρj+1(t + τ)vj+1(t + τ) − ρjvj ,
(5)

where τ represents the driver’s anticipation time and k1 and
k2 denote the deviation degree of speed vj and the feedback
gain, respectively. Some previous studies have considered
the “backward-looking” effect and the anticipation effect of
flux difference separately. In a real traffic system, the velocity
of the current vehicles is not only affected by the preceding
vehicles but also affected by the rear vehicles. Generally, the
information of the rear vehicles could be received by the
rear-view mirror. According to the information, drivers
could change their driving behavior to avoid the traffic
accidents. Meanwhile, the velocity of the preceding vehicles
could be predicted by drivers on the basis of the vehicle
distance information, so that they can adjust their driving
velocity in a period of anticipation time. However, the above
two factors have never been considered simultaneously in
the existing lattice models. +is motivates us to develop a
new lattice model by incorporating the “backward-looking”
effect with the anticipation effect of flux difference.

+e outline of this paper is organized as follows. In
Section 2, we introduce a new lattice hydrodynamic model
considering the flux anticipation difference effect and the
“backward-looking” effect and use the linear stability theory
to derive the stability condition of the traffic flow. In Section
3, the propagation behavior of traffic density waves is
presented by means of the nonlinear analysis method. In
Section 4, numerical simulations are carried out to validate
the results of linear and nonlinear stability analyses. At last,
the conclusions are drawn in Section 5.

2. The Extended Lattice Hydrodynamic Model
and Linear Stability Analysis

In light of the aforementioned facts, a novel lattice model is
presented by taking the flux anticipation difference effect
and the “backward-looking” effect (FADBE) into account as
follows:

zt ρjvj  � a ρ0VF ρj+1(t)  + H ρ − ρj−1(t)  · H ρj−1(t) − ρc ρ0VB ρj−1(t)  

− aρjvj + ap ρj+1(t + τ)vj+1(t + τ) − ρjvj ,
(6)

where p is the sensitivity coefficient of the anticipation flux
difference. +e greater p is, the stronger the driver’s an-
ticipation effect is. τ means the anticipation time, and
ρj+1(t + τ)vj+1(t + τ) − ρjvj represents the anticipation flux
difference between the preceding lattice j + 1 and the

current lattice j. +e optimal velocity functions and the
functionH(·) are the same as those in Ge and Cheng’s model
[39].

After eliminating the velocity term vj in equations (1)
and (6), the following density equation can be derived:
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z
2
t ρj(t) + aρ20 V ρj+1(t)  − VF ρj(t)  + VB ρj−1(t)  − VB ρj−2(t)  

+ aztρj + ap ztρj − ztρj+1(t + τ)  � 0.
(7)

When p � 0, the model reduces to Ge and Cheng’s
model [39]. In addition, the lattice model coincides with
Nagatani’s model [26] when p � 0 and τ � 0.

+e influence of the “backward-looking” effect and the
anticipation effect has been studied by linear stability
analysis. +e uniform traffic stream with the fixed density ρ0
and the optimal velocity V(ρ0) is defined as the stable state.
One can obtain the solution of the steady-state vehicular
system as follows:

ρj(t) � ρ0,

v(j) � VF(ρ) + VB(ρ).
(8)

+en, yj is supposed as a small perturbation added into
the steady-state solution at lattice j, and the perturbed so-
lution is

ρj(t) � ρ0 + yi(t). (9)

Equation (9) is substituted into equation (7), and the
derived equation is linearized. +e equation is obtained as

z
2
t yj(t) + aρ20VF

′ ρ0(  yj+1(t) − yj(t) 

+ aρ20VB
′ ρ0(  yj−1(t) − yj−2(t) 

− apztyj+1(t + τ) +(ap + a)ztyj � 0.

(10)

Let the small perturbation yj(t) � exp(ikj + zt), and
inserting it into equation (10), we gain

z
2

+ aρ20 VF
′ ρ0(  e

ik
− 1  + VB

′ ρ0(  e
ik

− e
− 2ik

  

− apze
zτ+ik

+(ap + a)z � 0.
(11)

Assuming z � z1(ik) + z2(ik)2 + · · · and putting it into
equation (11), we reserve the first-order and second-order
terms of ik by neglecting higher-order terms. +en, one can
get

z1 � −ρ20 VF
′ ρ0(  + VB

′ ρ0( ( ,

z2 �
2apz1 − 2z

2
1 + 2apz

2
1τ − aVF

′ ρ0( ρ20 + 3aVB
′ ρ0( ρ20

2a
.

(12)

+e uniform steady-state flow remains stable as z2 is pos-
itive. On the contrary, the uniform flow tends to be unstable if
the value of z2 is negative.When z2 is equal to zero, the formula
of the neutral stability condition is acquired as

a �
2 VF
′ ρ0(  + VB

′ ρ0( ( 
2ρ20

M
, (13)

where M � −VF
′(ρ0) + 3VB

′(ρ0) − 2(VF
′ (ρ0) + VB

′(ρ0))p + 2
(VF
′(ρ0) + VB

′(ρ0))
2pτρ20. +e stability condition for the

uniform traffic flow is obtained as

a>
2 VF
′ ρ0(  + VB

′ ρ0( ( 
2ρ20

M
. (14)

It is obvious that the stable condition (14) is reduced to
that of Ge and Cheng’s model [39] when p � 0. Equation
(14) shows that the parameters p, τ, and c play important
roles in the performance of the traffic system.

+e phase diagram of (ρ, a) is shown in Figure 1, where ρ
is density and a denotes sensitivity. Note that c denotes a
positive constant considering the “backward-looking” effect
[40, 41]. +ree solid curves in each pattern of Figure 1
represent the neutral stability curves under c � 0.1. +e
phase diagram is divided into two regions: the stable and
unstable regions are above and below the solid neutral
stability curve, respectively. In the stable region, the traffic
flow will remain stable with a perturbation. In the unstable
region, the congested traffic will happen even with a small
perturbation. Figure 1 depicts the neutral stability curves of
the FADBE model for different values of driver’s anticipa-
tion time τ and the sensitivity coefficient p of the antici-
pation flux difference when c � 0.1. As shown in Figure 1,
the corresponding stable region expands gradually with the
increasing values of τ and p, which means that the driver’s
anticipation effect can contribute to the stabilization of
traffic flow obviously.

Figure 2 demonstrates the neutral stability curves of the
FADBE model for different values of τ and c when p � 0.1.
As shown in Figure 2, the corresponding neutral stability
curves and critical points decrease gradually with the in-
creasing values of τ and c. When the value of c is fixed in
each pattern of Figure 2, the stability of the traffic flow can be
improved efficiently with the increasing value of anticipation
time τ.

Figure 3 exhibits that the phase diagram of (ρ, a) of the
FADBE model for different values of the positive constant
c (c � 0.05, 0.1, 0.15, 0.2) and the sensitivity coefficient
p (p � 0.1, 0.2, 0.3) when τ � 1.5. With the increasing value
of the positive constant c in each pattern of Figure 3, the
amplitudes of neutral stability curves all fall down gradually
when the value of the parameter p is fixed. For different
values of c, it can be seen from each pattern of Figure 3 that
the corresponding peak value of solid curves lowers down
with the increasing value of p. +ese phenomena demon-
strate that when the value of c or p increases, the area of the
stable region becomes larger. +us, it can be concluded that
the traffic flow stability can be improved by incorporating
the positive constant c and the sensitivity coefficient p.

3. Nonlinear Stability Analysis

To investigate the influence of the “backward-looking” effect
and the anticipation effect of flux difference, we carried out
the reduction perturbation method to obtain the mKdV
equation. +e slow variables X and T are defined as follows:
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X � ε(j + bt),

T � ε3t,

ρj � ρc + εR(X, T),

(15)

where ε (0< ε≪ 1) is a small positive scaling parameter.
Substituting equation (15) into equation (7), each term of

equation (7) is expanded up to the fifth-order of ε with the
Taylor expansion technique as follows:
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Figure 1: +e neutral stability curves for c � 0.1 for different values of p and τ: (a) p � 0.1; (b) p � 0.2; (c) p � 0.3; (d) p � 0.4.
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Figure 2: +e neutral stability curves for p � 0.1 for different values of τ and c: (a) τ � 0.5; (b) τ � 1.5; (c) τ � 2.5; (d) τ � 3.5.
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where
VF
′ � (dV(ρ)/dρ)|ρ�ρc

V
′″
F � (d3V(ρ)/dρ3)|ρ�ρc

⎧⎨

⎩ and

VB
′ � (dV(ρ)/dρ)|ρ�ρc

V
′″
B � (d3V(ρ)/dρ3)|ρ�ρc

⎧⎨

⎩ . Near the critical point (ρc, ac),

the value of ac is defined as ac � a(1 + ε2). +e squared and
cubic terms of ε are eliminated in equation (16) with the

consideration of b � −ρ2c(VF
′ + VB
′). One can get the sim-

plified equation as follows:
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Figure 3: +e neutral stability curves for τ � 1.5 for different values of c and p: (a) c � 0.05; (b) c � 0.1; (c) c � 0.15; (d) c � 0.2.
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To derive the standard mKdV equation, the following
transformations are applied:

T �
1
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(19)

+us, equation (17) is converted into the standardmKdV
equation as follows:
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When the term O(ε) is ignored, the kink-antikink sol-
iton solution of the mKdV equation can be rewritten as

R0′ X, T′(  �
�
c

√
tanh

�
c

2



X − cT′(  , (21)

where c represents the propagation velocity. +e specific
value of c can be provided only when the following solv-
ability condition is satisfied:

R0′, M R0′ (  ≡ 
∞

−∞
dXR0′M R0′  � 0, (22)

where M[R0′] � (1/g1)[g3z
2
XR′ + g4z

4
XR′ + (g1g5/g2)

z2XR′
3
]. By solving equation (22), the general solution of

propagation velocity c can be calculated as

c �
5g2g3

2g2g4 − 3g1g5
. (23)

Hence, the corresponding kink-antikink solution is
derived as

ρj � ρc + ε
���
g1c

g2



tanh
�
c

2



X − cg1T(  , (24)

where ε2 � ((ac/a) − 1), and the amplitude of the density
wave A is defined as

����������
(g1ε2C/g2)


. According to the kink-

antikink solution equation (24), one can get the coexisting

phases which include the freely moving phase with low
density (ρj � ρc − A) and the congested phase with high
density (ρj � ρc + A).

Based on the linear and nonlinear theory analyses,
numerical simulations are carried out with the compre-
hensive consideration of the anticipation effect of flux dif-
ference and the “backward-looking” effect.

4. Numerical Simulations

As a positive constant c considering the “backward-looking”
effect has been studied fully in some previous studies
[36, 40, 41], this paper will focus on the effects of parameters
p and τ in this part. Periodic boundary conditions are
adopted by a step function as follows:

ρj(0) � ρ0 � 0.25, j ∈ [1, N],

ρj(1) �

ρ0; j≠
N

2
,
N

2
− 1,

ρ0 + Δρ; j �
N

2
− 1,

ρ0 − Δρ; j �
N

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where Δρ � 0.01 is the initial perturbation and other pa-
rameters are set as N � 200, a � 1.2, and ρ0 � ρc � 0.25.

4.1.$e Effect of Anticipation Time τ. In order to analyze the
anticipation time’s influence on the stability of the traffic
system, the temporal and spatial evolution of density waves
between time t � 10000 − 10200 s is depicted in Figure 4 for
different anticipation time τ with fixed parameters p � 0.1
and c � 0.05. Since the given parameters in Figures 4(a)–4(c)
do not satisfy the linear stable condition equation (14), kink-
antikink density waves appear and the initial stable traffic
flow evolves into nonuniform traffic flow with the added
perturbation. To reveal the amplitude of the density wave
more clearly, Figure 5 describes the density profile of each
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Figure 4: +e evolution of the traffic densities for different values of parameter τ: (a) τ � 1.0; (b) τ � 1.5; (c) τ � 2.0; (d) τ � 2.5.
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Figure 5: +e density profile at t � 10200 with different values of τ: (a) τ � 1.0; (b) τ � 1.5; (c) τ � 2.0; (d) τ � 2.5.
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Figure 6: +e evolution of the traffic densities for different values of parameter p: (a) p � 0; (b) p � 0.05; (c) p � 0.1; (d) p � 0.15.
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Figure 7: Continued.
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subfigure shown in Figure 4 at t� 10200. Moreover,
Figures 5(a)–5(c) reveal that the amplitudes of density waves
corresponding to Figures 4(a)–4(c) weaken as the antici-
pation time τ increases. When τ � 2.5, i.e., the parameters in
Figure 4(d) satisfy the linear stability condition, the added
perturbation will disappear, and the traffic flow will even-
tually return to a uniform state. Figure 5(d) can get results
similar to Figure 4(d). +is phenomenon indicates that
driver’s anticipation effect of flux difference could signifi-
cantly promote the stabilization of traffic flow.

4.2. $e Effect of Sensitivity Coefficient p. To expose the
sensitivity coefficient’s influence on the stability of the traffic
system, the temporal and spatial evolution of density waves
between time t � 10000 − 10200 s is exhibited in Figure 6 for
different values of p with fixed c � 0.05 and τ � 2. When
p � 0, the FADBE model degrades into Ge and Cheng’s
model [39]. Note that the parameters in Figures 6(a)–6(c) do

not satisfy the linear stable condition equation (14).
+erefore, the stop-go traffic density waves occur with the
small added perturbation in Figures 6(a)–6(c). Meanwhile,
the amplitude of the density wave decreases gradually as the
value of p increases. Especially in Figure 6(d), the congested
state entirely disappears when p � 0.15. +e relationship
between Figures 6 and 7 is similar to the relationship be-
tween Figures 4 and 5. Figure 7 describes the density profile
of each subfigure shown in Figure 6 at t� 10200. As pa-
rameter p increases, the traffic flow becomes more gentle
and stable. +is indicates that the sensitivity coefficient p

contributes to suppressing the traffic congestion.
Figures 8(a) and 8(b) describe the flux against the density

with different parameters corresponding to the traffic flow in
Figures 4 and 6, respectively. In Figure 8, the amplitude of
the hysteresis loops reduced with the increasing value of τ or
p. When the corresponding parameter τ ≥ 2.5 or p≥ 0.15,
the hysteresis loop turns into a stable point, which means
that the traffic flow eventually becomes stable even with the
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Figure 7: +e density profile at t � 10200 with different values of p: (a) p � 0; (b) p � 0.05; (c) p � 0.1; (d) p � 0.15.
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added small perturbation. To sum up, as the anticipation
time τ or the sensitivity coefficient p increases, the stability
of the system can be enhanced by incorporating the driver’s
anticipation effect and the “backward-looking” effect.

5. Conclusion

In this paper, a novel lattice hydrodynamic model with the
anticipation effect of flux difference and the “backward-
looking” effect is constructed to explore the traffic driving
behavior for a single-lane traffic system. +e stability con-
ditions and the solution of the mKdV equation are deduced,
respectively, based on the linear stability analysis and
nonlinear theory. +e results of the theoretical analysis
display that the increasing values of both the driver’s an-
ticipation time and the sensitivity coefficient of the antici-
pation flux difference can contribute to enlarging the stable
region. Numerical simulations reveal that the FADBE model
is effective in stabilizing traffic flow even with perturbations.
By considering the anticipation effect of flux difference and
the “backward-looking” effect simultaneously, the traffic
congestion can be alleviated effectively, which is in accor-
dance with the conclusions of the theoretical analysis. Future
work will focus on solving the traffic congestion onmultilane
road problem, the automation for longitudinal driving, and
the vehicular emergency warning system.
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Received 23 April 2021; Revised 5 September 2021; Accepted 16 September 2021; Published 29 September 2021

Academic Editor: Atila Bueno
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Corrosion is one of the main concerns in the field of structural engineering due to its effect on steel buried in soil. Currently, there
is no clearly established method that allows its calculation with precision and ensures the durability of this type of structures.
Qualitative methods are commonly used rather than quantitative methods. .e objective of this research is the development of a
multivariate quantitative predictive model for estimating the loss of thickness that will occur in buried hot-dip galvanized steel as a
function of time. .e technique used in the modelling is the Adaptive Regression of Multivariate Splines (MARS). .e main
drawback of this kind of studies is the lack of data since it is not possible to have a priori the corrosive behaviour that the buried
material will have as a function of time. To solve this issue, a solid and reliable database was built from the analysis and treatment
of the existing literature and with the results obtained from a predictive model to estimate the thickness loss of ungalvanized steel.
.e input variables of the model are 5 characteristics of the soil, the useful life of the structure, and the loss of corroded
ungalvanized steel in the soil. .is last data is the output variable of another previous predictive model to estimate the loss of
thickness of bare steel in a soil. .e objective variable of the model is the loss of thickness that hot-dip galvanized steel will
experience buried in the ground and expressed in g/m2. To evaluate the performance and applicability of the proposed model, the
statistical metrics RMSE, R2, MAE, and RAE and the graphs of standardized residuals were used. .e results indicated that the
model offers a very high prediction performance. Specifically, the mean square error was 290.6 g/m2 (range of the objective
variable is from 51.787 g/m2 to 5950.5 g/m2), R2 was 0.96, and from a relative error of 0.14, the success of the estimate was 100%.
.erefore, the use of the proposed predictive model optimizes the relationship between the amount of hot-dip galvanized steel and
the useful life of the buried metal structure.

1. Introduction

Soil is a complex and highly heterogeneous environment
whose local characteristics damage buried or semiburied
steel structures [1]. .e main cause of failure of this type of
structure is the corrosion [2, 3]. Corrosion is a mechanism of
steel degradation that deteriorates the metal until it ends up
causing the failure of the infrastructure [4, 5]. .roughout
history, there have been numerous environmental disasters
and risks to human health derived from this type of
structural failure [6, 7]. In addition to its consequences on
the resistance of structures, it also has an economic impact

[8]. .e corrosion that occurs in buried steel represents a
serious economic and environmental problem [9]. In 2016,
the National Association of Corrosion Engineers Interna-
tional revealed that the global cost triggered by corrosion in
2013 represented 3.4 of world Gross Domestic Product [10].

In the design of buried steel structures, it is intended to
define the appropriate amount of steel in accordance with
the required guarantees that ensure its useful life. Currently,
many infrastructure projects are being undertaken that
require a buried structure for which a long-term guarantee is
required, such as solar plants. .ese kinds of projects are
usually performed under the form of EPC (engineering,
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procurement, and construction) contracts. .e contractor
usually has to offer a long-life guaranty of the facility (e.g.,
solar plants could be more than 25 years). Under this
context, it is not enough following the existing standards for
the design of the structure, but they need to determine the
thickness of coating to have enough chance of accomplishing
the guaranty avoiding the expensive penalties. To achieve the
optimal trade-off between safety and cost of buried steel
structures, it is vital to provide designers with the optimal
tools [11]. .e problem is that there is no clearly established
method that provides quantitative values for the loss of
thickness that galvanized steel will experience over time
[12, 13]. .e engineer/designer has to study in depth the
effect of soil corrosion to size this type of infrastructure and
then look at the reference guides published by lobby of the
relevant industry sector and select the option that best fits
the calculation.

.emost accepted methodology for the evaluation of the
corrosive nature consists of using qualitative guidelines to
predict the aggressiveness of the soil on the metal and using
extrathicknesses to ensure the durability and safety of the
structure [14]. .ese methodologies are tables that relate the
fundamental variables that intervene in the loss of thickness
of the material with points. Depending on the result ob-
tained, they classify the soils according to their aggres-
siveness into generic groups, without distinguishing the
specific characteristics of each place or determining quan-
titative data that facilitate the design. Based on these
guidelines, the responsible engineer must decide the
thickness that will guarantee the useful life of the infra-
structure and that will not cause its collapse and its serious
consequences for humans, the environment, and the
economy.

.e most widespread qualitative techniques are the
standards developed by the American Society for Testing
andMaterials (ASTMG187-18), the National Association of
Corrosion Engineers (NACE), and the American Associa-
tion of Works of Water (ANSI/AWWA C105) [15–17]. .e
NACE and ASTM methods are tables that relate soil re-
sistivity with the severity of corrosion. Depending on the
values presented by the soil, five corrosive degrees are dif-
ferentiated: negligible, mild, moderate, severe, and extreme.
.eir main drawback is that they only consider one pa-
rameter. .erefore, its applicability is very limited since the
final corrosion is due to the combined effect of several
factors [18, 19]. .e AWWA standard is the most widely
used method to predict the corrosive behaviour of buried
galvanized steel [20]. It consists of a point system that
qualitatively classifies corrosive behaviour. Each type of soil
is obtaining different qualifications depending on the re-
sistivity, the pH, and the redox power. Total amount of these
variables is classified into four corrosive categories: mild,
moderate, appreciable, and severe. Although it considers
more soil characteristics than the NACE and ASTM
methods, they are still few compared to the variables in-
volved in corrosion.

Although the most widely used methodologies are those
cited above, there are more studies that develop this qual-
itative approach of classifying the degree of soil corrosion

based on the factors that they consider to be the most in-
fluential in corrosion [21–23]. .e main advantage of all of
them is that they are generally simple formatting and
handling tables or diagrams. .is simplicity that allows an
agile use of the tool is also associated with its main disad-
vantage since it does not provide a numerical value.
.erefore, the engineer who uses this type of technique
obtains information on the rate of corrosivity of the soil that
will affect the buried metallic structure, but it is the designer
who decides the thickness of the galvanized steel. .ey are
methods strongly subject to interpretation and do not help
to decide optimal galvanized steel thicknesses based on the
lifetime of the structure.

.e work developed by Romanoff for the United States
National Standards Office (NBS) is one of the most out-
standing studies in the field of quantifying the loss of
thickness experienced by metals buried in the soil. In 1910,
this revolutionary scientist led the most comprehensive and
exemplary quantitative study on the corrosion experienced
by galvanized steel buried in the soil..e project consisted of
burying thousands of galvanized steel strips in soils with
different corrosive characteristics and analysing their evo-
lution over approximately 20 years. As a result, in 1957
Romanoff published a series of tables detailing the char-
acteristics of the soils and the evolution of the thickness loss
that had occurred in metals [24]. Later, he carried out an-
other series of works that supplemented his initial research
[25]. .e reason that it is considered the most important
study in the field of engineering related to corrosion is due to
the duration of the tests, the large number of samples, the
number of soils with different characteristics, and that it was
an experiment carried out in a real environment. However,
the project had the drawback that it focused especially on
bare steel and the number of samples dedicated to galvanized
steel being much smaller.

Subsequent quantitative studies have been carried out
based on burying galvanized steel samples in the soil and
periodically digging them up to calculate their mass loss
[26, 27]. .e main disadvantages that they present in
comparison to Romanoff tables are short duration of the test,
use of simulated environments in the laboratory, small
number of samples, small number of soils, or study of few
corrosive factors.

In recent years, a new quantitative approach has been
initiated in the field of soil corrosion, which consists of
modelling the results obtained in real or laboratory tests of
the evolution of corrosion over time. Several methods have
been used for modelling, mainly neural networks, genetic
algorithms, and fuzzy adaptive systems [28–32]. .e
problem is that these methods require very large databases,
and in most studies, the raw data tend to respond to tests of
short duration, with few soils or in simulated environments
that do not allow its use to be extrapolated to other locations.
In this study, the Multivariate Adaptive Regression Splines
(MARS) method has been used. It is a nonparametric re-
gression technique that provides optimal results when there
is a limited number of cases.

When comparing quantitative and qualitative methods,
it is evident that the first are a more precise tool in the design
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of buried steel structures. However, the use of the qualitative
approach is much more extended. .e main reason is that
there is no clearly established quantitative method and those
that do exist are complex and require more time to use. In
addition, the most important quantitative research led by
Romanoff are data tables published in 1952 that describe the
effect of corrosion over time of steels and steel alloys that
were used at that time in the construction of buried metal
structures.

In this sense, the predictive model developed in this
research allows to automatically obtain the loss of thickness
of the buried material. It is a model fed by a database created
from the tests that Romanoff carried out in a real envi-
ronment and for more than 20 years with galvanized steel.
.e database includes the physical, chemical, granulometric,
and climatological characteristics of the soil that influence
the rate of corrosion and the real effect that they caused on
the metal. To complete this information, the output variable
of another predictive model on the loss of thickness of bare
steel in the soil due to corrosion has been introduced as an
input variable, for which there is a more extensive database
[33]. Once these data have been processed, the duration and
number of soils analysed allows the results to be extrapolated
to any type of soil.

.e material used in the development of this work is a
reference steel in construction models: hot galvanized steel.
Currently, it is used in partially or fully buried in soil in
power transmission and distribution structures, solar
projects, or storage of different chemicals [34–36]. Metallic
coatings of zinc and their alloys are widely used to protect
the base steel against corrosion phenomena that can take
place in the steel/environment interaction [37, 38]. In 2003,
the International Lead Zinc Research Organization led a
project that concluded that zinc coatings reduce corrosion
rates, promote uniform attack, and ultimately increase the
life of structures in the ground [39]. .e hot galvanizing
technique consists of immersing a suitably conditioned steel
strip in a bath of molten zinc [40]. .us, a rapid reaction is
generated between the molten zinc and the steel, producing
an intimate union (intermetallic layer) between both ma-
terials. Control of the thickness of the intermetallic layer is
done by adding aluminium to the bath.

A fact that Romanoff himself was able to conclude in his
research was the existence of similar behaviours in terms of
corrosion experienced by galvanized steel in the different
groups of soils (reducing, oxidizing, alkaline, acidic, etc.),
being the behaviours between groups much more diverse
than in the case of bare steel, while within each group they
are more homogeneous. For instance, on acid-oxidizing
inorganic soils, the galvanized coating remained virtually
intact even after 13 years of exposure. On the contrary, acid-
reducing organic soils presented a more heterogeneous
behaviour in terms of their corrosion rate, although in all
cases, the galvanized coating used in the tests (with a
thickness of 3 oz/ft2, which is equivalent to about 915 g/m2)
ends up being consumed at the end of the tests.

.ese behaviours show that the oxidizing or reducing,
acidic to alkaline, and organic or inorganic nature of the soil
where the structure is buried plays a very important role.

.erefore, it is possible to draw conclusions by classifying
soils based on three main variables: if the soil was organic or
inorganic, if the soil was acidic or alkaline, and if the en-
vironment was oxidizing or reducing. Based on these three
characteristics, the soils have been classified as follows:
Cinders (Cin), Acid Oxidizing Inorganic (AOI) soils, In-
organic Oxidizing Alkaline (IOA) soils, Acid Reducing
Inorganic (ARI) soils, Inorganic Alkaline Reducing (IAR)
soils, and Acid Reducing Organic (ARO) soils. It should be
noted that, for the rest of the possible combinations of values
of these variables, there was no soil among those studied by
Romanoff that fulfilled them. To determine the group to
which the case under study belongs, the factors, degree of
soil aeration, organic or inorganic nature, pH value (acidic
or basic nature), and whether the water table is reached must
be studied.

.e objective of this study is the construction of a
quantitative predictive model that estimates the thickness of
hot-dip galvanized steel buried in the soil that will be lost
over time due to the effect of corrosion. In this way, the
engineer in charge of the design of this type of the structure
will have a quantitative value of the loss of the material that
the buried galvanized steel will experience as a function of
time.

.e paper is organized as follows. First, the composition
of the studied galvanized steel is presented. .en, the steps
for the construction of the database were described and how
the model was built using the MARS technique. Finally, the
results are presented and discussed, and the conclusions
obtained in the investigation are detailed.

2. Materials and Methods

Starting from the data collected in the literature, a solid and
robust database of hot-dip galvanized steel samples has been
analysed, transformed, and prepared. Finally, a model has
been developed to quantitatively estimate the loss of
thickness that will occur in buried galvanized steel. .e
process is detailed below.

2.1. Hot-Dip Galvanized Steel. .e material studied in this
research is hot-dip galvanized steel. .e approximate
composition of steel (wt. %) is 0.09% carbon, 0.39% man-
ganese, 0.08% phosphorus, and 0.04% sulphur, and its
density is greater than that attributed to iron, reaching
7850 kg/m3. .e galvanized coating used has a thickness of 3
oz/ft2 equivalent to about 915 g/m2 and consists of a con-
tinuous zinc coating with a density of 7140 kg/m3.

2.2. Database. .e database that feeds the models has been
constituted from two different sources: on the one hand,
from the values compiled in the tables prepared by Romanoff
andDenison [24, 25]; on the other hand, from the results of a
predictive model that estimates the corrosion of buried bare
steel. To continue, it is detailed how the data collected in the
literature has been analysed and refined. .en, the intro-
duction of the output variable of the other model in the
database is explained.

Complexity 3



Romanoff led a project that studied the corrosion of
galvanized steel in 62 different soils. In 47 of them, only a
point value of the loss of thickness of galvanized steel is
available, which was taken around 10 years after burial. In
the remaining 15 soils, various corrosion measurements are
available at different times between the start of the exper-
iment and its completion. .e collection of these data
provides much information on the evolution of corrosion
over time and provides a detailed characterization of the soil
variables involved in corrosion.

Once the raw data was configured, the next step was to
assess the quality of the information contained in that set.
After an exhaustive analysis, it was determined that there
were deficiencies in the set that had to be solved for the
database to be solid and reliable. .ese limitations had al-
ready been previously detected in other publications [41]. All
of them are summarized in two groups: lack of data for some
variables in the original trials and identification of unusual
values.

To detect unusual values, the dispersion of each variable
in each soil was studied. For instance, Figure 1 shows the
scatter plot of the total acidity variable where the 62 soils
studied by Romanoff are located on the x-axis and the y-axis
showing its total acidity value. As can be seen, there is a value
that is far to the rest of the values that the variable usually
takes..ese results that come out of the range of usual values
of the variables have been defined as outliers.

After its identification, each specific outlier was studied,
grouping its causes into two types: on the one hand, strange
values due to errors in measurement, annotation, or tran-
scription in the original tests; on the other hand, rare data
due to real measurements in soils with special characteristics
and, therefore, not caused by measurement or transcription
errors.

.e solution that has been adopted for the problem of
the absence of data is not to fill in empty values by cases. .e
reason is that entering new data would distort the initial
information. For unusual values, only cases where they have
been shown with certainty to be errors have been removed.
.e selection of the MARS algorithm as a prediction
technique has allowed working with a limited set of samples
since this technique adjusts to this type of dataset better than
other modelling techniques that require a more abundant
dataset.

In summary, the treatment of the Romanoff data that has
been carried out to achieve a reliable and representative
database is described in Table 1.

Once the limitations of Romanoff’s research were re-
solved, the way to solve the problem of data scarcity was
studied. After multiple tests, it was concluded that the only
possible way to generate a reliable model to predict the
corrosion of galvanized steel was to add to the database the
parameter thickness loss in g/m2 experienced by bare steel
buried in the ground..e problem is that when a soil is to be
studied to bury a galvanized steel structure, the loss of
thickness that bare steel will experience in that same soil is
not available. .e decision taken to compensate for the lack
of information was to enter into the database the infor-
mation on the estimate of the loss of thickness of bare steel

provided by the basic predictive model of a previous study
[33].

Once the modifications explained have been made, a
reliable dataset is available which constitutes a firm foun-
dation to feed the predictive models.

2.3. Predictive Model. .e technique used for the develop-
ment of the predictive corrosion estimation model is the
MARS algorithm. .is algorithm was designed by Friedman
in 1991 to solve difficult, multivariate regression problems
with complex nonlinear relationships. Regression problems
are those in which a model must predict a numerical value.
Its selection is based on its predictive capacity, its multi-
dimensional adjustment, its robustness, and that once
trained, it can be easily implemented in an application [42].

.e MARS algorithm consists of finding a set of simple
linear functions (splines) that characterize the data and uses
them together to obtain the best predictive performance..e
procedure consists of partitioning the definition domain of
the function into different regions and adjusting each of
them to a spline-type function. .e MARS algorithm gen-
erates many of these simple linear functions, called base
functions for one or more input variables.

.e construction of the MARS model to fit the data is
carried out in two phases [43]. In the first, an algorithm is
used to select the base functions and the nodes. In the
second, an algorithm is used to eliminate base functions,
until the best set of these is found. At each step, the base
function is suppressed, the elimination of which improves
the degree of fit or causes the least loss of information. .e
purpose of this last stage is to reduce the degree of com-
plexity of the model and significantly reduce the high di-
mensionality of the problem.
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Figure 1: Scatter plot of the total acidity variable.

Table 1: Treatment of the database.

Database problems Solution
Empty values Not to falsify data
Outliers:

Errors Elimination
Soil with special characteristics Not worked
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MARS is a multidimensional fitting method, and its
objective is to approximate an unknown function f defined
in a domainD contained in the vector space Rn, to a domain
D′ defined in R, from the projection of a sample of data
from the input space onto the space of exit. For this, the
algorithm looks for the approximation function f ″(x1, x2,
. . ., xn), by means of the linear combination of a set of base
functions Bi (x) parameterized by the position of the nodes.

.e final approximation provided by MARS is in the
form of the following equation:

f′ x1, x2, . . . , xn(  � 
M

i�1
aiBi(x), (1)

where x belongs to D′ contained in Rm and 1≤m≤ n is the
number of variables involved in the construction of the base
function Bi.

.e coefficients of the base functions Bi are ai variables,
and M is the number of base functions of the model.

.e base functions used by MARS are built as products
of base functions:

bk(x) � x − tk( + � Max 0, x − tk( , (2)

where tk is the position of node k and the subscript “+”
denotes the positive part of the affected parentheses.

.e maximum number of base functions involved in the
construction (number of products) is called the number of
interactions between the variables. .e value of this pa-
rameter is set by the user, and it remains fixed during al-
gorithm training.

.us, the base functions used by the MARS algorithm
have the following form:

Bi(x) �

1, i � 1,



Ji

j�1
Sji · xv(j,i) − tji  

+
, i � 2, 3, . . . ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where Ji is the degree of interaction of the Bi functions, Sji is
the sign indicator (±1), v (j, i) is the index of the independent
variable that is being divided, and tji the position of the
division and is called the node.

In this paper, the input variables of the algorithm are 7,
and they are detailed in Table 2. .e output of the model is
the loss of mass due to corrosion that galvanized steel will
experience on the soil, expressed in g/cm2.

.e performance of this tool for the design of a galva-
nized steel structure on a soil consists in introducing in the
model the 7 input variables of Table 2. .en, the developed
model provides a quantitative value in g/m2 of the loss of
thickness that the material will experience.

3. Results and Discussion

A key phase in the development of a predictive model is the
evaluation of the reliability of its predictions. .e aim is to
compare the estimates proposed by the model with the real
corrosion values in the training and test phases of the model.

.e problem is that it is not possible to have a priori the
corrosive behaviour that galvanized steel buried in soil will
suffer over time. .erefore, the only way to evaluate the
accuracy of the model is by dividing the database created
with the actual values of thickness loss of galvanized steel
due to corrosion in training and test patterns.

It was decided to allocate 90% of the cases to training
patterns and 10% to test patterns. .e reason for choosing a
90/10 ratio is based on the fact that removing more than 10%
of the information that feeds the model in the training phase
could distort the results due to the loss of relevant information.

.e model has been trained with the degree of inter-
action between variables equal to 2 and maximum number
of model terms before pruning, i.e., the maximum number
of terms created by the forward pass equal to 35.

.e following sections detail the evaluation of the pre-
dictive model. In addition, an analysis of the results
according to the type of soil has been carried out to study the
homogeneity of the corrosive behaviour in soils with the
same typology.

3.1. PredictiveModel. .e statistical metrics used to evaluate
the goodness of the model are Root Mean Square Error
(RMSE), Coefficient of Determination (R2), Mean Absolute
Error (MAE), and Relate Absolute Error (RAE).

In addition, a graphic study of standardized residuals has
been carried out..e residual concept refers to the difference
between the real value and the result predicted by the model
and is therefore the estimation error. .e graphs that have
been used in this paper were regression error characteristic
curve (REC), observed vs predicted, density of residuals,
normal Q-Q, and scale location.

3.1.1. RMSE and R2. It is important to highlight that the
object variable has a variation interval between 51.87 and
5950.5 g/m2. .e RMSE and R2 results obtained in the
training and the model test are shown in Table 3.

An RMSE (train)� 280.43 and RMSE (test)� 290.60
have been obtained. As the variation range of the object
variable is from 51.87 to 5950.5, the errors generated by the
model in both cases are low for the slack experienced by the
variable. .e behaviour in both phases is very similar, so we
can conclude that the model is stable.

.e R2 value is very close to 1 in themodel in the training
phase and in the test phase. In the latter case, the result is
slightly higher due to the smaller number of cases.

Table 2: Input variables for the predictive model of galvanized
steel.

Input variables Unit
Resistivity Ohm m
Temperature °C
Precipitation mm/year
Soil moisture %
pH —
Time years
Loss of mass due to corrosion of bare steel g/m2
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3.1.2. REC. .e purpose of Regression Error Characteristic
curves is to compare different regression models. To do this,
they plot the tolerance for error on the x-axis versus the
precision of a regression model on the y-axis [44]. .is
accuracy value is calculated as the percentage of cases that fit
each relative error tolerance.

Figure 2 shows the REC curve that results from com-
paring the training model (green line) and the test model
(blue line). In addition, a control model (red line) has been
considered that corresponds to the mean value of the cor-
roded thickness. .e quick rising of the curve to the top
entails that the model provides correct predictions.

Table 4 shows the relationship between the RAE and the
precision of the estimate in a quantitative way. In addition, it
adds the MAE metric that expresses the loss of thickness in
g/m2 that each percentage of relative error supposes.

As we can see in Table 4, the test phase and the training
have a similar behaviour, which makes the model stable.
Furthermore, for a relative error of 0.1, a precision of 0.95
over 1 is reached, and from a relative error of 0.14, the
precision is maximum. In addition, it provides a significant
improvement over the defined control.

3.1.3. Predicted vs Predicted Plot. Figure 3 reflects the results
obtained when comparing the real corrosion values of
galvanized steel with the values estimated by the model. In
Figure 3(a), we can see the result of the training model, and
in 3(b), the behaviour in the test phase. .e blue line cor-
responds to the theoretical evolution of the model, and the
points are the estimates it provides. .e further the pre-
dictions are from the blue reference line, the points are
represented by colours ranging from green (optimal) to red
(maximum error).

.e only difference between the behaviour in the
training phase and in the test phase is the amount of data. In
both cases, the points are adjusted to the theoretical evo-
lution of the model, indicating an optimal behaviour of the
predictive model.

3.1.4. Density of Residuals’ Plot. .e density plot detects the
incorrect behaviour of the residuals and shows us the shape
of the distribution of the relative error of the model. .e
peaks of the function reflect where the error values are
concentrated.

Figure 4 shows the density plot of the predictive model in
the training phase and in the test phase. As we can see, in
both cases, the model of the relative error distribution is
adjusted to the normal distribution.

.e curves are highly centred on the mean errors, in-
dicating that there are few modelling failures.

3.1.5. Normal Q-Q. A Q-Q graph has been made to know
the distribution of the error in the model. As we can see in
Figure 5, both in the case of training and in the test, the
points fall on the diagonal. .is means that the model error
follows a normal distribution.

.e training phase and the test phase indicate that the
predictive model follows a normal error distribution.
.erefore, for errors that are associated with randomness,
there is no cause of failure in the model.

3.1.6. Scale-Location Plot. Scale location plot is used to
assess the independence of the model residuals. For a correct
functioning of the model, they must respond to a cloud of
points without any pattern. In Figure 6 we see that, in both
the training and test models, there is no pattern in the
placement of the points.

In this graph, the model in the training phase and the test
phase do not follow any pattern; therefore, no anomalies are
detected.

.e statistical values RMSE, R2, MAE, and RAE that have
been obtained in the training and test models are very
similar and reflect a stable and precise behaviour of the
model. .e standardized residual plots confirm that there
are no anomalies in the performance and that the distri-
bution of the errors adjusts to the normal distribution, which
show the success of the estimates.

.erefore, according to the comparative evaluation of
the training and testing phase carried out in this study, the
results obtained show that the predictive model developed in
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Figure 2: REC plot of the predictive model.

Table 4: RAE, MAE, and model accuracy training results.

RAE (%) MAE (g/m2) Accuracy
0.01 59 0.11
0.05 295 0.75
0.10 590 0.95
0.14 826 1
0.20 1180 1
0.25 1475 1

Table 3: RMSE and R2 of the model in the training and analysis
phase.

Phase RMSE (g/m2) R2

Train analysis 280.43 0.93
Test analysis 290.60 0.96
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this paper allows to successfully estimate the loss of thickness
of hot-dip galvanized steel buried in a soil. .e main ad-
vantage of the developed model is that it provides the
quantitative value of the thickness that will be lost due to the
corrosion of the steel in the useful life of the structure. In this
way, the quantity of the material is optimized with its service
time. In addition, it eliminates the subjectivity in the

dimensioning of the structure, avoiding an excess of
thickness that increases the cost of the structures.

3.2. Study of the Influence of the Type of Soil. As already
mentioned in this paper, the existing literature in the field of
corrosion corroborates similar behaviours of galvanized
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Figure 3: Real value vs estimate in the training phase (a) and in the test phase (b).
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Figure 4: Density plot of the model in the training phase (a) and in the test phase (b).
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Figure 5: Normal Q-Q plot of the predictive model in training (a) and in test (b).
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Figure 6: Scale-location plot in the training phase (a) and in the test (b).

Table 5: Analysis of the number of cases and the average thickness loss by soil type.

Soil group Number of cases (%) Average thickness loss
Cin 4.39 2704.31
AOI 28.95 247.07
IOA 9.65 469.66
ARI 18.42 664.98
IAR 18.42 1114.37
ARO 20.17 1918.90
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Figure 7: Predicted vs actual plot for each soil type.
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steel buried in soils of the same typology. For this reason, the
study of the object variable, metal thickness loss, has been
considered relevant, depending on the soil groups. Re-
member that the soils collected in the database are divided
into Cin, AOI, IOA, ARI, IAR, and ARO.

Table 5 shows the amount of data available for each of
them and the average loss of thickness of galvanized steel
buried in each type of soil.

Figure 7 shows the progression of the model results in
the optimal case (blue line) and the predictions made by the
model for each of the soil types (points).

In all types of soil, the trend of the points is close to the
main diagonal that represents the theoretical behaviour of
the model; therefore, the behaviour is stable.

.e distribution of the results for each type of soil is
grouped in different areas of the main diagonal; accordingly,
it is evident that the loss of thickness is similar to each type of
soil.

.e density graph has been constructed for each one of
the soils to detect if there is any anomalous behaviour of the
errors (Figure 8).

.e functions are highly centred on the mean of the
errors, which indicates the goodness of the model. .ere is
an anomalous behaviour in the case of the Cin soil type, and
the reason is that, of this soil, we have very few cases in the
database (less than 5%).

.e analysis of results by type of soil shows similar
behaviours for soils belonging to the same typology, as
shown in the existing bibliography.

4. Conclusions

.e most widely used methods to estimate the thickness
loss suffered by steel buried in a soil are qualitative
guidelines that provide information on the aggressiveness
of the corrosion. .erefore, the dimensioning of the
structure depends on the responsible engineer. .e pre-
dictive model developed in this paper consists of a mul-
tivariate quantitative model that provides the loss of
thickness in g/m2 as a function of the useful life of the
structure. .e model is fed from a database consisting of
real tests that Romanoff carried out for more than 20 years
and is completed with the results of a multivariate pre-
dictive model that estimates the loss of ungalvanized steel
in the soil due to corrosion.

One of the most remarkable points of the model is that
we are introducing as input of the model the output given by
other model that predicts the loss of thickness that a bare
steel will experience in the same conditions. So, with this
information, the model is able to learn the inherent relations
and extrapolate all this information to forecast the loss of
thickness of the galvanized steel.

.e use of the model makes the dimensioning of the
structure independent of the engineer, and an efficient re-
lationship between the amount of material and durability is
achieved. .e results were evaluated through a comparative
statistical analysis between the model in the training and
testing phase, which confirmed the reliability of the esti-
mates and the good performance of themodel. In addition, it
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shows the homogeneity of the corrosion behaviour in soils of
similar typologies.

.e major limitation of this study is the lack of data.
Accordingly, the recommendations for future research are to
carry out new tests in the areas of the multidimensional
space that present lower density of points in order to achieve
a more representative dataset. Due to the large time frames
required to carry out representative tests on the evolution of
corrosion over time, the database can be supplemented with
accelerated corrosion tests to study the effect of specific
conditions on the metal. Furthermore, a limitation of the
research is that it responds to a single construction material.
.erefore, the introduction of other reference materials in
the field of structural engineering is proposed as a future line
of research.

Data Availability

.e data supporting this research are from previously re-
ported studies and datasets, which have been cited.
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Project cost prediction is one of the key elements in the civil engineering activities development. Project cost is a highly sensitive
component to diverse parameters and hence it is associated with complex trends that make it difficult to be predicted and fully
understood. Due to the massive advancement of soft computing (SC) and Internet of things (IoT), the main research objective of
the current study was initiative. Several machine learning (ML) models including extreme learning machine (ELM), multivariate
adaptive regression spline (MARS), and partial least square regression (PLS) were adopted to predict field canal cost. Several
essential predictors were used to develop the prediction network “the learning process” including the total length of the PVC
pipeline, served area, geographical zone, construction year, and cost and duration of field canal improvement projects (FCIP)
construction. Data were collected from the open source published literature. *e modeling results evidenced the potential of the
applied SC models in predicting the FCIP cost. In numerical magnitude evaluation, MARS model indicated the least value for the
root mean square error (RMSE� 27422.7), mean absolute error (MAE� 19761.8), and mean absolute percentage error
(MAPE� 0.05454) with Nash–Sutcliffe efficiency (NSE� 0.94), agreement index (MD� 0.89), and coefficient of determination
(R2 � 0.94), with best precision of prediction using all predictors, except geographical zone parameter in which less influence on
the cost construction is presented. In general, the research outcome gave an informative primary cost initiative for cost civil
engineering project.

1. Introduction

*e scarcity of freshwater has been a global problem
recently and expected to worsen in the future due to the
increasing human population and decline in annual water
allocation per capita [1, 2]. *e present scenario portrays
water unsustainability due to the drastic increase in water
utilization (>6 folds) in the 20th century [3]. It is presently
estimated that about 1.2 billion people globally have no
access to a clean water supply [4]. Hence, several policies
and projects are being implemented globally to ensure
water sustainability. One of such projects aimed at water
sustainability is the FCIP which aims at increasing the
conveyance efficiency of field canals by about 25% via
improvement of the field canals during irrigation

processes in farmlands [5]. *e project requires the
construction of a burden PVC pipeline rather than re-
lying on earthen field canals for the reduction of water
seepage or losses during field operations [6]. FCIP is
comprised of several simple components and structures
which include concrete pain intakes for water collection
from the source; water is channelled through the suction
pipes to a plain concrete sump [7]. Water is first accu-
mulated in the sump before being pumped by the
pumping sets through the PVC pipelines by the irrigation
valves. *e FCIPs are comprised of civil works, me-
chanical components, and electrical components as the
major components. *e components of the civil works are
the pump house, pipelines, suction pipes, intake, and
sump structure while the mechanical components are the
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irrigation valves, pump sets, and mechanical connections.
*e electrical boards and connections make up the
electrical components of FCIPs [8].

*e most interesting part of FCIPs is the cost estimation
aspect that must be performed; manual cost estimation
processes are time-consuming [9]. However, in some cases,
scan be attained based on personal engineering and deci-
sion-makers’ expertise. Cost estimation is highly associated
with bias and inaccuracy and to overcome these issues of bias
and inaccuracy during cost estimation [10]. *erefore, SC
models have been proposed as the potential solution. In line
with this, the aim of this work is to come up with a robust
ML-based SC model for FCIP cost estimation. *e proposed
models are expected to help decision-makers and man-
agement engineers in making decisions from the perspective
of the stockholders.

Literature review studies suggested that numerous re-
searches have focused on the development of reliable regression
and mathematical techniques that can be used for cost esti-
mation in civil engineering projects [11–16]. *e nagging
problem in this domain still relates to the performance accuracy
of these models as the predicted cost is required to be highly
accurate before the conception of the project. *e weighted
ANN has been developed for unit cost prediction in highway
projects by [16], while a parametric cost model was developed
based on a questionnaire survey for the estimation of the final
cost of pump stations by [17]. A fuzzy logic- (FL-) based
parametric cost estimate model has been presented by [18], for
the prediction of the cost of building projects in the Gaza Strip.
*e study by [19] presented a hybrid ANN-FL model for cost
prediction of water infrastructure. *e prediction of the unit
cost of the highway project in Libya using the ANN model has
been presented by [20] and the performance of the ANNmodel
was excellent. A conceptual cost model for the German resi-
dential building project was developed by [21] using historical
data for 75 residential projects sourced from the building cost
information center. *e use of ANN to determine the relevant
parameters for cost prediction during tunnel construction in
Greece was reported by [22] based on survey questionnaires.
*e survey was based on expert opinions and interviews in
relation to the key cost drivers.

*e reviewed literature suggests the need for intelligence
models that are robust and capable of understanding the
civil engineering complexity in more realistic manners.
Several ML models have been reported recently, such as
ANN [23], SVM [24], ANFIS [25], genetic programming
[26], decision tree [27], and gradient boosting [28], and
several others were reported in the latest review [29].
However, the fact remains that each of these models behaves
differently in terms of prediction accuracy. Some existing
models are also capable of providing accurate results in-
terpretation; for instance, the variable coefficients of the
regression models can explain the influence of each variable
on the response of the model.

Numerous studies have focused on building projects
without giving much attention to the conceptual cost of FCIPs.
Hence, the attention of this study is on the pipeline construction
projects which have not attracted appropriate research atten-
tion, especially on the provision of detailed model development

steps in terms of sample size, multicollinearity, outliers, and
singularity. For instance, the study by [16] only applied 14 and 4
cases for the training and validation of their neural network
model.*is may have elicited concerns about the sample size in
this study as stated by [30].*e motivation of the current study
was inspired from the exhibited literature on the prediction of
the FCIP cost using newly explored machine learning models
including ELM,MARS, and PLS.*esemodels are proven to be
advantageous as they have very quick learning speeds with good
performances and are useful in capturing complicated data
mapping in very high set of predictors which produces inter-
pretative results [31–34]. Modeling structure was adopted based
on the correlation statistic to identify the input predictors for the
built ML models. Based on the reported modeling results,
comprehensive comparative analytical aspects were reported
and discussed.

2. Soft Computing Models

2.1. Extreme LearningMachine. ELMmodel is one of the new
methods of training recently developed single-layer feedforward
neural networks [35]. *e traditional ELM, as shown in Fig-
ure 1, has one input layer, one hidden layer, and one output
layer; each of these layers has a specific number of neurons.*e
linear function is generally selected as the activation function of
the input and output layers of ELM while the sigmoid function
is selected for the hidden layer [36].*e first step of the standard
ELM is a random input weight and hidden biases determi-
nation, followed by the determination of the hidden weights
using the Moore–Penrose generalized inverse method to
achieve the optimal solution of the linear system [37]. *e
advantages of the ELM over the other gradient-based methods
are its strong generalization capability, no parameter tuning,
and fast learning; these have made ELM more popular in
numerous engineering tasks [38–40]. Consider a training
dataset with N samples; the first process is to linearly map the
input vectors into an L-dimensional feature space via nonlinear
transformation; the expression of the simulated values of the
ELM model is as follows:

ti � 
L

l�1
βl · g wl · xi + bl( , i � 1, 2, . . . , N, (1)

where N represents the number of samples for training, ti

represents the output vectors that are associated with the
input vector xi; βl stands for the weight vectors that connect
the hidden neuron to the output layer; wl is the weight
vectors that connect the hidden neuron with the input layer;
bl is the bias; and g is the activation function.

In the ELM, the idea is that the classical single-layer
ANN can approach all the samples with zero deviation as
mathematically expressed in the relation:


N

i�1
ti − tt � 

N

i�1
ti − 

L

l�1
βl · g wl · xi + bl( 

���������

���������
� 0, (2)

where ti is the target output vector that is related to the input
vector xi. *e reconstruction of the above expression gives
the following:
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Hβ � T, (3)

where

H �

g w1 · x1 + b1(  · · · g wL · x1 + bL( 

⋮ ⋱ ⋮

g w1 · xN + b1(  · · · g wL · xN + bL( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×L

,

β �

β1,1 · · · β1,m

⋮ ⋱ ⋮

βL,1 · · · βL,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×m

,

T �

t1,1 · · · t1,m

⋮ ⋱ ⋮

tN,1 · · · tN,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×m

,

(4)

where β is the weight of the matrix that connects the hidden
and output layers; H is the hidden layer output matrix based
on N samples; and T is the target output matrix based on N
samples.

Assume that the hidden biases and input weights are
constant; it implies that the model may be considered a
special linear system in which H and T are equal to the
matrixes of the known dependent and independent pa-
rameters, while β is considered the coefficient matrix that
should be optimized. Hence, the least-squares solution of the
represented linear systemmentioned above can be derived as

β � H
†
T, (5)

where H† is the Moore–Penrose generalized inverse matrix
of H.

2.2. Multivariate Adaptive Regression Spline Model.
MARS algorithms are nonlinear-nonparametric flexible
regression models that were first developed by [41] and have
found application in many fields of engineering due to their
robustness [42]. *is model is built with three major
components, which are the basis functions (BFs), the knots,
and the spline function [43]. *e role of the BFs is to capture

the relationship between the predictands and the predicted
variables, amounting max (0, c − x) or max (0, x − c), where
x is the threshold value, while c is the input variable value.
*e knots also represent the function of the base and base
endpoints. A regression model is developed for each node by
applying a spline function that consists of 1 or more BFs,
followed by the substitution of the principal predictors [44].
In the MARS model, the predicted value is based mainly on
linear BF elements combination. *e MARS model can be
reviewed as follows: consider Y as the target variable and
X � (X1, X2, . . . , XP) as the P input variable matrix; then,
the equation of the MARS model can be as follows:

Y � f(X) � β0 + 
M

m�1
β0BFm(X), (6)

where β0 is the initial fixed value; BFm is the applied BF for
the fitting of the MARS model; andM is the total number of
BFs [45]. *e two major phases of the MARS model are the
selection phase (or forward search) and the reversal pruning
phase, as seen in Figure 2. *e forward phase or selection
phase can be regarded as a set of optimum input parameters.
A complicated over fitted model normally results from an
excessive forward stepwise selection process due to a series
of splits and such models cannot perform well predictively
despite fitting the data perfectly. Hence, the backward
procedure is normally applied to improve the predictive
performance of the model by removing the unwanted
variables that have been selected in the selection phase. *e
generalized cross-validation (GCV) is calculated as the
deletion criterion as it is the basis for the backward pruning
process [46, 47].

GCV(M) �
(1/N) 

N
i�1 Oi − f xi( ( 

2

(1 − (C(M)/N))
2 ,

C(M) � (d + 1) × M,

(7)

where Oi is the observed values; N is the number of data;
f(xi) is the predicted values for pattern i;M is the number of
BFs; and C(M) is the penalty factor. In equation (7), the
quantity of parameter d significantly impacts the procedure
as it is the optimization cost of each BF; its range is 2≤ d≤ 4.
*e inclusion of several BFs can result in overfitting;
therefore, it is important to omit some BFs during the
pruning phase to enable the emergence of a well-fitted model
with the least GCV value [48].

2.3. Partial Least Square Regression (PLS) Model. *e first
application of the PLS regression model was introduced over
the literature by [49], and since then the model has been
widely considered a new multivariate analysis technique in
many fields [50, 51]. It combined the features of principal
components, typical multiple regression, and linear re-
gression analyses; hence, it is suitable for finding the solution
to numerous problems, especially problems that cannot be
solved using the conventional multiple regression methods
and problems with multiple correlations [52]. *e efficiency
of PLS in such cases is based on its ability to decompose and

Input vector {xi}, i = 1,2, ··· , N

Input layer

Hidden Layer

Output layer

h1 h2

x1 x2 x3 x4 xn

t1 t2 x3 t4 tm

h3 h4 h5 hL

ti = ∑i=1
L~ βi · g (wl · xi + bl) 

Figure 1: *e extreme learning machine model paradigm.
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screen the variables that mostly explain the dependent
variables [53]. *e first step of the PLS method is to extract
the new variable called the component which serves as the
independent variable, followed by the determination and
establishment of the linear relationship between the de-
pendent and independent variables [54]. After calculating
the coefficient using PLS, the next step is the construction of
the regression equation of the dependent variable. *e re-
gression model developed by using the PLS method is
represented as

ym � a0m + a1mx1 + · · · + aPmxp, (m � 1, 2, . . . , p),

(8)

where x1, . . . , xp represents the linear combinations of
the remote sensing variables and a0m, a1m, . . . , aPm are the
PLS-computed regression model parameters. A higher
number of principal components in the established model
by PLS translates to better model accuracy; however, an
excessive number of principal components results in
overfitting and higher error. *us, the optimal number of
principal components must be determined to achieve a
balanced PLS model. *e cross-validation method was
used to calculate the sum of squared residuals in this
study. *e prediction ability of the resulting model is a
function of the extent of predictive residual errors sum of
square (PRESS) value. So, the optimal number of prin-
cipal components can be determined based on the
minimum PRESS value and this PRESS value can be
calculated as

PRESS � 
k

i�1
yi − yi,− 1 

2
, (9)

where yi, yi,− i represent the measured value of the ith sample
and the estimated value upon exclusion of the ith sample and
k is the number of iterations for validation.

3. Case Study and Data Explanation

For the modeling purpose, datasets were collected from the
open source of literature [7]. *e datasets are explained the
key cost derived from the FCIPs.*e data were including P1,
the served area; P2, the total length of the PVC pipeline; P3,
irrigation valve number; P4, construction year; P5, geo-
graphical zone; and cost and duration of field canal im-
provement projects (FCIP) construction. *e significance of
the dataset is contributing to the best knowledge of irrigation
authorities and decision makers to have a prior under-
standing on the FCIP cost. *e biodata of the current re-
search were collected from the survey conducted for Soltani
Canal, Egypt. *e quantitative costs are related to con-
struction sites recorded between 2011 and 2018. *e poly-
vinyl chloride (PVC) pipeline system is explained in Figure 3
with diameter ranging between 22.5 and 35 cm. *e sta-
tistical properties of the dataset over the training and testing
phases are reported in Tables 1 and 2. It is seen that all
together of 228 data were taken for both training and testing
phase. In Tables 1 and 2, the parameters that are collected for
training and test phase are mean, standard error, median,
mode, standard deviation, sample variance, kurtosis,

Over-fitted input
data

Backward
phase Apply

GCV

Output: Summation of the BF

t (knot)

(x–t)+ (x–t)+

BF(X3)BF(X2)BF(X1)

Piecewise linear/piecewise cubic equation

Feature identification

X1 X2 X3 X4 Xn

Input parameters

Forward phase BF 
identification

t (knot)

(x–t)+ (x–t)+

t (knot)

(x–t)+

max(0,x–c) = 
x–c,
0,

if c≥t
otherwis

(x–t)+

Figure 2: *e systematic structure of the MARS model.
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skewness, range, minimum and maximum, sum, count, and
confidence interval from C to P5. *e mean value of FCIP
cost is 353463.0 for training modeling phase whilst a mean
cost of 352714.35 was taken for testing phase. From Tables 1
and 2, it can be seen that the duration for FCIP construction
ranges from 58 days to 127 days in the trainingmodel dataset
while it ranges from 59 days to 126 days in the testing model
dataset. *e datasets in both training model and testing
model are well distributed and almost resemble a normal
distribution, as for most of the datasets, the mean and
median are very close to each other.

4. Application Results and Analysis

*e feasibility of threemachine learningmodels (ELM,MARS,
and PLS) was evaluated to predict cost of FCIP construction.
*e models were built based on different input combinations,
as reported in Table 3. Based on the correlation statistics, the
input combinations were constructed as shown in Figure 4.

Based on the tabulated input parameters, it can be
recognized that the total length of the PVC pipeline has the
substantial correlation to the construction cost followed by
the time duration, served area, irrigation valve number, and
geographical zone.

Different statistical performance metrics including de-
termination coefficient (R2), root mean square error
(RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), Nash–Sutcliffe efficiency (NSE), and
agreement index (MD) were calculated to validate the ap-
plied models statistically [55, 56].
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i�1
yp − yo 

2
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Pump House
10 Feddans

Branch Canal

Figure 3: *e Soltani Canal FCIP planning.

Table 1: *e statistical properties of the dataset selected for the training modeling phase.

Parameter C D P1 P2 P3 P4 P5

Parameter name Cost of FCIP Duration of FCIP
construction

Area
served

Total length of
PVC pipeline

Number of
irrigation values

Construction
year

Geographical
zone

Unit LE/FCIP Day Hectare Meter Number Year Zone
Mean 353463.30 76.34 49.41 813.83 8.18 2013.20 0.00
Standard error 7539.45 0.78 1.28 26.10 0.23 0.10 0.00
Median 320292.58 75.00 45.90 753.75 8.00 2014.00 0.00
Mode 514778.00 64.00 51.00 530.00 5.00 2014.00 0.00
Standard
deviation 113843.24 11.71 19.31 394.03 3.52 1.48 0.00

Sample variance 12960283390.67 137.20 372.83 155258.84 12.36 2.18 0.00
Kurtosis − 0.22 1.90 − 0.07 − 0.24 2.72 − 0.13 − 1.18
Skewness 0.77 1.04 0.75 0.60 0.94 − 1.05 − 0.58
Range 518824.50 69.00 85.00 1956.45 26.00 5.00 0.00
Minimum 186825.98 58.00 19.00 119.00 1.00 2010.00 0.00
Maximum 705650.48 127.00 104.00 2075.45 27.00 2015.00 0.00
Sum 80589633.51 17405.00 11265.43 185554.07 1866.02 459010.00 0.00
Count 228.00 228.00 228.00 228.00 228.00 228.00 228.00
Confidence level
(95.0%) 14856.26 1.53 2.52 51.42 0.46 0.19 0.00
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j
, (15)

where yo and yp are the observed and predicted values of the
FCIP cost;yo and yp are the mean values of the observed and
predicted values of the FCIP cost; N is the number of ob-
servations; and j is the exponent term.

Tables 4 and 5 report the statistical measures over the
training and testing phases, respectively. In general, pre-
diction performance of themodels indicated less accuracy by
using few predictors. However, MARS model exhibited
better predictability performance over both the training and
testing phases. It has been noticed that the maximum de-
termination coefficient was achieved for model M6
(R2 � 0.94) with a minimum RMSE of 28458.17 in the
training phase while 27422.7 in the testing phase using all the

predictor parameters, excluding the geographical zone in
which less influence on the cost phenomena was revealed
when compared to ELM and PLS whose coefficient of de-
termination (R2) maxed out at 0.90 with RMSE of 36011.43
and 36013.16, respectively, for model M6 in the training
phase. Similarly, in testing phase ELM and PLS, coefficient of
determination (R2) maxed out at 0.89 with RMSE of 37141.8
and 37140.3 for model M6. In addition, it is seen that the
ratio of the MSE and the potential error which is denoted by
MD is 0.89 for MARS M6 model on both cases, i.e., training
and testing phases.

*e model performances were assessed using graphical
presentations such as scatter plots and Taylor diagram.
Figure 5 shows the scatter plots between the actual obser-
vations and the predicted values. Among the three applied
prediction models, MARS model is indicated as the best

Table 2: *e statistical properties of the dataset selected for the testing modeling phase.

Parameter C D P1 P2 P3 P4 P5

Parameter name Cost of FCIP Duration of FCIP
construction

Area
served

Total length of
PVC pipeline

Number of
irrigation values

Construction
year

Geographical
zone

Unit LE/FCIP Day Hectare Meter Number Year Zone
Mean 352714.35 77.00 48.46 807.57 8.41 2013.23 1.29
Standard error 7469.77 0.81 1.24 27.65 0.26 0.09 0.05
Median 318652.92 76.00 45.68 720.82 7.46 2014.00 2.00
Mode 201587.44 66.00 51.00 630.00 5.00 2014.00 2.00
Standard
deviation 112791.09 12.19 18.79 417.58 3.96 1.41 0.79

Sample variance 12721830134.86 148.62 352.92 174372.83 15.71 1.99 0.63
Kurtosis 0.05 2.09 0.21 0.06 6.34 0.12 − 1.18
Skewness 0.88 1.22 0.84 0.76 1.72 − 1.14 − 0.58
Range 503217.10 67.00 86.00 1916.15 27.87 5.00 2.00
Minimum 198035.54 59.00 19.00 119.00 1.02 2010.00 0.00
Maximum 701252.64 126.00 105.00 2035.15 28.89 2015.00 2.00
Sum 80418872.53 17556.00 11049.13 184125.65 1917.50 459016.00 295.00
Count 228.00 228.00 228.00 228.00 228.00 228.00 228.00
Confidence level
(95.0%) 14718.96 1.59 2.45 54.49 0.52 0.18 0.10

Table 3:*emodeling input combinations for the adopted dataset.

M1 P2
M2 P2 D
M3 P2 D P1
M4 P2 D P1 P3
M5 P2 D P1 P3 P4
M6 P2 D P1 P3 P4 P5
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Figure 4: *e correlation matrix between the predictors and the
FCIP cost.
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identical match with high correlation value. On the other
hand, Figure 6 shows the Taylor diagram map in which the
prediction models were evaluated based on the distance
coordination in accordance with multiple statistical metrics
(i.e., standard deviation, RMSE, and correlation value).

5. Discussion

Various studies have been conducted to estimate a reli-
able parametric cost model, but there is no available study

carried out for FCIP [5]. However, prediction of cost is
not new; a simplex optimization of ANN weights was
used to create a model for estimating the unit cost of
highway projects with a mean absolute percentage error
(MAPE) of 1% [16]. Another study used a combination of
ANN and fuzzy logic to create a high-precision cost
prediction model for water infrastructure based on the
sum of squares of mistakes. During the validation phase,
the researchers produced multiple prediction models
with perceptions ranging from 4.6 percent to 0.6 percent

Table 4: Prediction performance results over the training phase.

R2 RMSE MAE MAPE Nash MD
MARS model
M1 0.76 57097.21 40090.04 0.11 0.76 0.78
M2 0.79 52443.11 35922.94 0.10 0.79 0.80
M3 0.83 46957.45 35377.61 0.10 0.83 0.81
M4 0.87 41427.33 31383.75 0.09 0.87 0.83
M5 0.94 28458.17 20444.55 0.06 0.94 0.89
M6 0.94 28458.17 20444.55 0.06 0.94 0.89
ELM model
M1 0.72 61144.00 42644.28 0.12 0.72 0.76
M2 0.75 58309.91 40861.50 0.12 0.75 0.77
M3 0.79 52776.65 40372.48 0.11 0.79 0.78
M4 0.81 50951.98 39296.32 0.11 0.81 0.79
M5 0.90 36019.94 24352.69 0.07 0.90 0.87
M6 0.90 36011.43 24362.29 0.07 0.90 0.87
PLS model
M1 0.72 61182.31 43650.76 0.12 0.72 0.75
M2 0.73 59634.10 42063.22 0.12 0.73 0.76
M3 0.79 52816.73 40059.10 0.11 0.79 0.78
M4 0.81 50951.98 39297.60 0.11 0.81 0.79
M5 0.90 36026.97 24406.13 0.07 0.90 0.87
M6 0.90 36013.16 24393.67 0.07 0.90 0.87

Table 5: Prediction performance results over the testing phase.

R2 RMSE MAE MAPE Nash MD
MARS model
M1 0.75562 55636.4 39175.3 0.11317 0.75561 0.77964
M2 0.78542 52169 36042.4 0.10461 0.78513 0.79856
M3 0.81853 47949.3 36928.8 0.10698 0.81848 0.79537
M4 0.86669 41152.6 32861.1 0.09655 0.86629 0.82096
M5 0.94125 27422.7 19761.8 0.05454 0.94063 0.89374
M6 0.94125 27422.7 19761.8 0.05454 0.94063 0.89374
ELM model
M1 0.70389 61662 43434.8 0.12204 0.69981 0.75368
M2 0.72687 59271.2 41879.9 0.11948 0.72264 0.76358
M3 0.77521 53666.1 41776.6 0.11991 0.77262 0.76784
M4 0.80047 50554.1 40050.8 0.11642 0.79822 0.77885
M5 0.894 37239.8 25507.3 0.06922 0.89051 0.86168
M6 0.89463 37141.8 25376.6 0.06887 0.89109 0.86241
PLS model
M1 0.6997 62852.2 45250.3 0.12747 0.68811 0.74448
M2 0.71411 60628.3 43182.2 0.12358 0.70979 0.75411
M3 0.77381 53854.1 41631.9 0.11941 0.77102 0.76864
M4 0.80047 50554.3 40051.8 0.11643 0.79822 0.77884
M5 0.8941 37229.5 25541 0.06928 0.89057 0.86148
M6 0.89464 37140.3 25418.7 0.06898 0.89109 0.86217
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Figure 5:*e scatter plots between the observed and predicted values of the cost over the testing phase for all tested input combinations and
applied predictive models.
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[19]. Furthermore, by varying the ANN structure,
training function, and training algorithm until an opti-
mum model was found, a researcher built a prediction
model with a MAPE of 1.4 percent for the unit cost of the

highway project in Libya [20].It is seen that, in this study,
the value of MAPE for MARS model M6 in both training
and testing phases ranges from 5% to 6% when compared
with other models.
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Figure 6: *e Taylor diagram for the adopted modeling scenarios and the established machine learning models over the testing phase.
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6. Conclusion and Remarks

*e prediction of cost related to civil engineering project is
considered as vital topic to be studied comprehensively. In
this study, couple of machine learning models including
extreme learning machine (ELM), multivariate adaptive
regression spline (MARS), and partial least square regression
(PLS) were developed to predict field canal improvement
project (FCIP) cost. For the purpose of the modeling de-
velopment, datasets related to irrigation projects were col-
lected from the open source published literature. Input
combinations were initiated based on the total length of the
PVC pipeline, served area, geographical zone, construction
year, and cost and duration of FCIP construction. *e
prediction results showed that MARS and ELMmodels were
presented positively in comparison with the PLS model.
However, MARS model reported the superior results. Also,
the research finding exhibited that all the predictors are
substantial toward the cost calculation with almost no in-
fluence for the geographical zone of the pipeline network.

Nomenclature

ANFIS: Adaptive neuro-fuzzy inference system
MD: Agreement index
ANN: Artificial neural network
BF: Basic function
R2: Determination coefficient
ELM: Extreme learning machine
FCIP: Field canal improvement project
FL: Fuzzy logic
GCV: Generalized cross validation
IoT: Internet of things
NSE: Nash–Sutcliffe efficiency
ML: Machine learning
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MARS: Multivariate adaptive regression spline
PLS: Partial least square regression
PVC: Polyvinyl chloride
PRESS: Predictive residual errors sum of square
RMSE: Root mean square error
SC: Soft computing
SVM: Support vector machine.
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*e data used in this study can be provided upon request
from the authors.
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,e accurate and rapid prediction of ticket prices for a public-private partnership (PPP) subway system, which is an important
research topic in the field of civil engineering management, is of critical importance to ensure its smooth operation. To effectively
cope with the effects of multiple influencing factors and strong nonlinearity among them, the mean impact value (MIV) method
and the back-propagation (BP) feed-forward neural network improved by the sparrow search algorithm (SSA) are used in this
study to develop an intelligent predictionmodel. First, we considered the relationship of the supply and the subway system service,
which is a typical quasi-public product, and analyzed the relevant factors affecting its price adjustment. ,en, we developed an
intelligent method for the prediction of ticket prices based on the SSA-BP. ,is model not only makes full use of the powerful
nonlinear modeling ability of the BP algorithm, but also takes advantage of the strong optimization ability and fast convergence
speed of the SSA. Finally, this study screened out the key input factors by adopting theMIVmethod to simplify the structure of the
BP algorithm and achieve a high prediction accuracy. In this study, Beijing Subway Line 4, Wuhan Metro Line 2, and Chengdu
Metro Line 1 were selected as case study sites.,e results showed that the linear correlations between influencing factors and ticket
price for the PPP subway system service were weak, which indicated the need for using nonlinear analysis methods such as the BP
algorithm. Compared with other prediction methods (the price adjustment method based on PPP contract, the traditional BP
algorithm, the BP neural network improved by the genetic algorithm, the BP algorithm improved by the particle swarm op-
timization, and the support vector machine), the model proposed in this paper showed better prediction accuracy and
calculation stability.

1. Introduction

Currently, numerous subway systems are being built around
the world to meet the needs of rapid urban development [1].
As an important infrastructure, a subway system has the
characteristics of large initial investment, high operating
cost, and long payback period, which drive decision-makers
to often use the public-private partnership (PPP) to build
subway systems [2, 3]. Under the PPP mode, the private
sector cooperates with the government to participate in the
construction and operation of subway systems. ,e private
sector is mainly responsible for the financing, construction,
operation, and maintenance of subway systems. Govern-
ment departments mainly provide policy support, land, and

operating subsidies. For the government, the goal is the
construction of a subway system that is compatible with the
sustainable development of the country, and the charging
price for the subway system service needs to maintain its
public welfare attribute. For the private sector, investing in
the construction of PPP subway system projects can generate
considerable investment income during the operation pe-
riod. For the public (customers), the charging price for the
subway system service needs to meet their ability to pay. If
the price is too high, it will be unbearable for the customers,
which will lead them to choose other means of transport for
competitive services. If the price is too low, the return on the
private sector investment will not be sufficient to grow their
assets. ,erefore, predicting the ticket price rapidly and
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accurately is of critical importance to ensure an acceptable
return on the funds invested by the private sector and the
welfare level of the public, which decide whether the subway
system could be implemented smoothly.

At present, subway systems mainly adopt either a single
fare system or a mileage-based pricing system, of which the
latter is the most common, and this is adopted by this study.
,e ticket price in this study is the price per kilometre and is
also the price for the cooperation game between the gov-
ernment agencies and the private sector during the opera-
tion period of the PPP subway system. If the traditional
financial calculation method is adopted, the ticket price
studied in this paper is the ticket price per kilometre in order
to achieve the predetermined revenue target. With this price,
which is the research object of this paper, the subway op-
erating company is able to further put forward the actual
selling price for the public. In addition, the determination of
the final price for the customer is a more complicated issue,
which is not the content of this paper.

In terms of research objects, relevant scholars have
conducted some research on the PPP subway systems, but
the related research results mainly focused on the concept of
PPP, risk sharing, performance management, and driving
force [4]. Chang [5] analyzed the driving force and feasibility
of adopting the PPP mode in Beijing Metro Line 4 (Beijing,
China). Sturup [6] took Copenhagen’s Metro System
(Copenhagen, Denmark) and Melbourne City Link (Mel-
bourne, Australia) as examples and analyzed the problems
that might arise in the implementation of the PPP subway
system projects. Gordon et al. [7] studied the performance
management of the PPP subway system in the Sydney Metro
(Sydney, Australia). Li and Love [8] evaluated the impact of
land appreciation on the economic feasibility of the Delhi
Airport Metro Express Line (New Delhi, India). Cohen and
Boast [9] studied the game between social capital and
government of Milan Metro Line 4 (Milan, Italy). However,
it was not difficult to find that most of this research was
focused on the field of public administration or sociology,
and there was almost no research on the operation and
management contents, such as price prediction of PPP
subway systems.,emain reasons for this situationmight be
as follows: (1) ,e research on PPP subway systems is still at
a theoretical stage, and the pertaining research has not yet
reached the stage of operation management. (2) ,e PPP
subway system is too complicated, which requires a lot of
effort and time to obtain enough engineering data to support
the related research on price adjustment.

In terms of research methods, the PPP subway system
has many participants, many years of operation, and
complex management; as a result, there are many factors
that affect the price of PPP subway system service [10].
,erefore, in engineering practice and scientific research,
there is no universal and unified PPP subway system service
price adjustment or prediction mechanism. Currently, in the
practice of the PPP subway systemmanagement, the price of
the subway ticket is often adjusted according to the price
adjustment conditions agreed on in the PPP contract. ,is
method has the disadvantages of slow prediction speed and
unstable prediction results, which easily leads to the

instability of the subway operating income and ultimately
results in bad consequences, such as the failure of the PPP
subway system cooperation [11]. In addition, the multiple
regression method is also a commonly used mathematical
method [12, 13], but it has the shortcomings of low pre-
diction accuracy and narrow application range. ,e main
reason for these deficiencies is that these methods cannot
capture the possible and complex nonlinear relationships
between multiple factors.

,e artificial neural network (ANN) is a common ar-
tificial intelligence prediction model. In recent years, it has
gradually replaced the linear modeling method in the fields
of financial time series prediction [14], machine failure
prediction [15], and rainfall prediction [16]. An ANNmodel
can determine the complex nonlinear mapping relationship
between different variables through data training and then
complete the prediction work. When an ANN model is
applied to the subway ticket price prediction, a prediction
model can be established using the factors influencing ticket
price as the input and the fare as the output. ,e back-
propagation (BP) feed-forward neural network can ap-
proximate any nonlinear function, so it is the most com-
monly used ANN algorithm [17]. However, in the process of
using the BP neural network, there are often some problems,
such as slow convergence speed, ease of falling into local
minima, and poor robustness [18, 19].

At present, with the aim of addressing the above
shortcomings of the BP algorithm, the genetic algorithm
(GA), the particle swarm optimization (PSO), and other
metaheuristic algorithms are often used to optimize the
weights and thresholds of the BP neural network. Zou et al.
[20] used the BP algorithm, optimized by the GA, to ef-
fectively identify the shear parameters of lunar rock mass.
However, such study did not compare the calculation results
of the GA with other optimization algorithms and did not
conduct further research and analysis on the shortcomings
of the GA, such as complex programming, complex pa-
rameter setting, and slow convergence speed [21]. Nasimi
et al. [22] predicted the bottomhole pressure of drilling
facilities by using the BP algorithm optimized by the PSO
algorithm. Another study did not analyze the premature
convergence and convergence to the local optimal solution
of the PSO algorithm [23]. In 2020, Xu and Shen [24]
proposed the sparrow search algorithm (SSA) referring to
the biological phenomenon of the sparrow population
foraging. ,e SSA can achieve higher global exploration
ability and local development ability with the help of a
flexible foraging and antipredation mechanism in the
sparrow population.

As the SSA is quite new, there are few reports on its
application in engineering problems and theoretical analysis.
Xue and Shen [24] used the SSA, grey wolf optimizer
(GWO), gravitational search algorithm (GSA), and PSO
algorithms to calculate and analyze 19 typical optimization
functions and two engineering problems. ,e calculation
results showed that the SSA had the advantages of good
stability, strong global search ability, and few parameters
compared with other optimization algorithms. Lv et al. [25]
solved the image segmentation problem by using the SSA
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method. ,eir case study showed that the SSA method had
better definition than the classical image segmentation
methods. Tang et al. [26] used the improved SSA algorithm
to study the path planning of an unmanned aerial vehicle
(UAV). ,eir study showed that the improved SSA algo-
rithm was superior to the PSO algorithm, the beetle an-
tennae search (BA), the whale optimization algorithm
(WOA), and the GWO. According to the no-free-lunch
(NFL) theory [27], the expected performance of each al-
gorithm is the same for solving all optimization problems. In
other words, the computing performance of the same op-
timization algorithm in different optimization problems
may be quite different. ,erefore, this study will use the SSA
to optimize the BP model to test the optimization perfor-
mance of the SSA in the BP model. To the best of our
knowledge, there has been no study published on the op-
timization of the BP model using the SSA.

Besides the optimization of model parameters, the se-
lection of the input characteristic variables is also a key factor
to determine the prediction accuracy of the BP neural
network model [28, 29]. In order to reduce the number of
input variables of the BP neural network, Mao et al. [30] used
principal component analysis (PCA) to screen 10 key factors
affecting magnesite grade. ,e PCA is used to integrate the
original influencing factors into a small number of irrelevant
variables by linear combination. Xu et al. [31] used a re-
gression model to select the variables with high correlation
as the input variables to predict the snow surface reflectance
spectra at different depths during snow melting. Xu et al.
[32] obtained the key input variables for the BP prediction
model of chlorophyll in water by the multiple linear re-
gression method. ,eir research results were based on the
correlation between variables and screening of the key input
variables of the BP neural network prediction model, and
there were the following drawbacks. (1) ,e variable
screening results of these methods might not be ideal. When
choosing input variables, the researchers often chose in-
dependent variables to avoid the correlation of variables,
which made the screening effect of multivariate regression
analysis and PCAwith the correlation of variables as the core
likely not good. (2) ,e variable screening results of these
methods were not easily interpretable. ,ey studied the data
relationship of variables, which could well explain the linear
or nonlinear relationship between variables but could not
clearly evaluate the influence of the linear or nonlinear
relationship between variables on the prediction results.

In view of the above shortcomings, the mean impact
value (MIV) has been increasingly widely used in input
variable screening in recent years. ,eMIV is used to screen
the key input variables by evaluating the extent of the in-
fluence of each input variable relative to the output variable,
which has a great influence on the output variable. Li et al.
[33] used the MIV to effectively identify the key factors
affecting the soil corrosion of carbon steel in China. ,eir
case study showed that the key factors identified based on
MIV were consistent with the actual situation of soil cor-
rosion of carbon steel in China, and the prediction of soil
corrosion of carbon steel based on MIV-BP had a good
accuracy. However, this study did not compare the

calculation results of the BP algorithm with those of other
intelligent algorithms. Considering the numerous evaluation
indexes of pollutants in bus stations, Xu et al. [34] screened
the indexes by the MIV method to reduce the number of
input variables for the subsequent BP neural network. Dai
et al. [35] developed a MIV-GA-BP model to calculate the
optimal values of coal pillars. In their model, the MIV was
used to identify the key factors affecting the optimal solution
of the coal pillar.,eir case study showed that the prediction
error of this model was less than 5%, and the calculation
accuracy was higher than that of other common artificial
intelligence algorithms.

By summarizing the existing research, in this paper we
put forward the following key issues that need to be studied.
(1) To date, most of the research results on PPP subway
systems have been in the field of public management, and
there has been almost no research on the prediction of the
price for the PPP subway service, which is a typical operation
and management problem. Rapid and accurate price pre-
diction is crucial for the smooth operation of the PPP
subway system. (2) In the study to determine the key input
variables of the BP model, researchers often used multiple
regression analysis or PCA methods to obtain the key input
variables by analyzing the correlation between input vari-
ables. ,ese selection methods are subjective, and the cal-
culation results are not easily interpretable. Choosing
quantitative analysis methods, such as the MIV method,
might be a reasonable approach to effectively deal with the
deficiency that there are many factors affecting the pre-
diction of the fare for the PPP subway system service. (3) At
present, the commonly used prediction methods based on
contract price adjustment, regression analysis and BP, GA-
BP, and PSO-BP models have many shortcomings, such as
low prediction accuracy and being time-consuming. Using
the SSA method to optimize the BP model provides a new
idea for accurately and rapidly predicting the ticket price for
the PPP subway system service.

Based on the above literature, this paper used the MIV
method, the SSA, and the BP model to develop an intelligent
prediction method of the ticket price for the PPP subway
system, which had the following literature contributions. (1)
Previous related studies rarely predicted the ticket price for
the PPP subway system. In this paper, the conducted in-
depth theoretical and case studies provided new insights into
the operation and management of the PPP subway system.
(2) Starting from the relationship between the subway ticket
price and the supply and demand of the subway service, this
study analyzed the related factors affecting its price ad-
justment and produced the data acquisition and processing
methods of each input variable. ,e MIV method was used
to determine the key factors affecting the ticket prices for
Beijing Subway Line 4, Wuhan Metro Line 2, and Chengdu
Metro Line 1. ,e investment return rate, the local GDP, the
number of similar vehicles, the financial subsidies, and the
loan interest rates were key factors for these three systems.
,is processing method also reduced the number of input
variables for subsequent BP models. (3) Considering the
shortcomings of BP neural network model, such as its slow
convergence speed and ease of falling into local optimum,
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this study, for the first time, used the SSA to optimize initial
weights and thresholds and effectively solved these prob-
lems. (4) ,e case study showed that, compared with the
traditional prediction method (the price adjustment method
based on the PPP contract, the multiple regression analysis,
the traditional BP, the GA-BP, and the PSO-BP), the cal-
culation results of the model proposed in this paper had
better prediction accuracy and stability.

,e remainder of this paper is arranged as follows. In
Section 2, the input variable system and the prediction
model of the ticket price for the PPP subway system service
are studied in detail. In Section 3, the prediction model is
applied to Beijing Subway Line 4, Wuhan Metro Line 2, and
Chengdu Metro Line 1. In addition, Section 3 describes the
analysis of the nonlinear relationship between the variables
to highlight the need to use the BP model. In Section 4, the
calculation results of the different prediction models are
compared, and the analysis of the key parameters of the MIV
method is described. Section 5 summarizes the study and
gives the research directions that warrant further study.

2. Materials and Methods

2.1. Input Variable System for Price Prediction of the PPP
Subway System

2.1.1. Analysis of Factors Influencing the Ticket Price for the
PPP Subway System. According to the definition and
classification of public goods in economics, subway service
belongs to quasi-public goods [36]. Under the PPP mode,
the public (customer) can be regarded as the demand side of
the subway service, while the supply side is the government
departments and private investors who partnered with each
other through concession contracts. Discussing the factors
that affect the ticket price for the PPP subway service from
the perspective of supply and demand can comprehensively
consider the interests of the public, government depart-
ments, and private investors, which is more conducive to the
smooth operation of the PPP subway system [37].

,e greater the demand by the public for the subway
service, the greater the transportation volume of the subway
system, and the lower the ticket price. From the perspective
of the demand of the subway service, there are three main
factors that may affect the ticket price for the PPP subway
service. (1) ,e number of potential subway passengers is
determined by the number of urban residents and the local
gross domestic product (GDP), and its size change has a
great impact on subway service demand. ,e greater the
number of urban residents, the greater the local GDP and the
greater the subway demand. (2) ,e existence of similar
means of transportation will divert to a certain extent the
number of subway passengers, who will choose according to
the change of the transportation price. Generally speaking,
the lower the price of subway tickets, the fewer the similar
means of transportation and the greater the demand for the
subway service. (3) ,e satisfaction of the public with the
subway service quality will also affect the demand for the
subway service, such as subway congestion, on-time de-
parture, on-time arrival, and safety.

From the perspective of the supply side, the ticket
price for the PPP subway service is the result of the co-
operation and game between government agencies and
private investors [38]. ,is study does not delve into the
complex game process between the two sides but rather
analyzes the factors that may affect the ticket price for the
PPP subway service from the following three perspectives.
(1) Due to the public welfare aspect of the subway service,
the government has strict supervision over subway service
prices, and it is impossible for private investors to recover
their investment through ticket revenue, thus subsidies
have a great impact on the revenue of private investors
[39]. In general, the greater the government subsidy, the
lower the fare of the PPP subway system. (2) ,e con-
struction and operation costs of the subway project have a
direct impact on the revenue of the system. As the co-
operation period of the PPP subway system is often as long
as 30 years, the loan interest rate of construction loans
[40] and inflation during the operation period [41] have a
great impact on the cost of PPP subway systems. When the
project cost increases, the private capital will increase the
price of the ticket to ensure the revenue of system. (3) ,e
expectation of investment revenue from the PPP subway
system by the private investors also has great influence on
ticket price. ,e higher the expected return on the in-
vestment, the higher the price of the ticket. Moreover,
from the macro environment, due to the long operation
period of the PPP subway system, the introduction of
relevant national policies and laws will cause changes in
the demand or supply of the PPP subway service during
the operation period [41]. ,erefore, it will cause fluc-
tuations in subway ticket prices.

2.1.2. Selection and QuantificationMethod of Input Variables
for the Prediction of Prices for the PPP Subway Service.
According to the research results of Section 2.1.2, based on
the scientificity, representativeness, and independence
provisions and taking into account the availability and
operability data of the PPP subway system, the following
eight variables are selected as the input variables for the
prediction of the ticket price for the PPP subway service, as
shown in Table 1.

,e value of X8 was obtained through a questionnaire
survey. In the questionnaire for X8, [0, 25) indicated
dissatisfaction, [25, 50) indicated dissatisfaction, [50, 75)

indicated basic satisfaction, and [75, 100) indicated sat-
isfaction. ,e X2, X4, and the output variable can be in the
same currency unit, such as RMB, USD, or EUR.

Each input variable in Table 1 is normalized based on (1)
to ensure the calculation accuracy of the subsequent pre-
diction model, as reported in [31].

x∗
i �

xi − xmin

xmax − xmin
, (1)

where x∗i is the normalized value, xi is the i-th value of
input variable x, xmax is the maximum value of input
variable x, and xmin is the minimum value of input var-
iable x.
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2.2. Intelligent Prediction Method of Ticket Price for the PPP
Subway Service

2.2.1. Introduction to the BP Model. As a typical feed-for-
ward neural network, the BP neural network is mainly used
in nonlinear learning, pattern recognition and classification,
system control, and other fields [15]. ,e BP neural network
takes the input data as learning samples, adjusts the weights
and thresholds of the whole network by the back-propa-
gation algorithm, constructs a mapping relationship be-
tween input and output that is closest to the sample, and uses
this mapping relationship to predict the output value. Based
on the black box theory, this method simulates the structure
and function of a neural network in the human brain and
can solve any nonlinear mapping process without con-
structing a specific mathematical formula, which has the
characteristics of good adaptability, high fault tolerance, and
strong nonlinear processing ability [15, 16].

MLP is a multilayer fully connected feed-forward
network, which is only an algorithm structure. After the
samples are input, the samples are fed forward layer by
layer in the MLP network (from the input layer to the
hidden layer and to the output layer, the results are
calculated layer by layer, that is, the so-called feed-for-
ward), and the final output value is obtained. However,
the connection coefficients and offsets of neurons in each
layer of MLP need training and optimization, and the BP
is often used to get the coefficients and offsets in the
model. Strictly from the field of algorithm research, the
reviewer’s statement is more accurate. ,e neural network
is MLP, and the BP neural network (BP-MLP) is an MLP
network optimized by BP algorithm.

A complete BP neural network model usually includes
three basic network structures, namely, the input layer,
hidden layer, and output layer [15]. Taking the process of
ticket price prediction for the PPP subway service as an
example, the basic structure of the BP neural network model
is shown in Figure 1.

Combined with the diagram shown in Figure 1, the
construction process of the BP neural network in this paper
is as follows.

,e input vector X � (x1, x2, . . . , xn) and the output
variable Y � (y) are brought into the BP neural network,
and the output values of each unit in the hidden layer [15]
are

Zj � F 
n

i�1
wijxi − bj ⎛⎝ ⎞⎠, (2)

where Zj is the input value of the hidden layer; wij and bj

are, respectively, the connection weights and thresholds of
input layer and hidden layer; i is the dimension of the input
layer, i � 1, 2, . . . , n; and j is the dimension of hidden layer,
j � 1, 2, . . . , n. F is the activation function of the hidden
layer.

,e output value of each unit in the output layer is
calculated by using the connection weight wij and threshold
bj of the hidden layer and the output layer as reported in
[15]:

Ot � G 
m

j�1
wtjF 

n

i�1
wijxi − bj ⎛⎝ ⎞⎠ − bt

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (3)

where Ot is the output value of the output layer, t is the
dimension of the output layer, j � 1, 2, . . . , l, and G are the
activation functions of the output layer.

,erefore, the sum of the error squares of the output
vector O and the actual value Y of the ticket price is as
previously reported [15, 16]:

E �
1
2



l

t�1
yt − Ot( 

2
. (4)

Gradually extending backward to the hidden layer and
the input layer, we can further calculate and obtain (5) as
reported in [14, 15]:

E �
1
2



l

t�1
yt − G‘ 

m

j�1
wjtF‘ 

n

i�1
wijxi − bj ⎛⎝ ⎞⎠ − bt

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2

,

(5)

where F‘ and G‘ are the inverse functions of activation
functions F and G, respectively.

According to the principle of minimum error, the
gradient descent method is adopted, and through iterative
solution, connection weights, and thresholds of the input
layer and hidden layer, the hidden layer and output layer are
corrected item by item, so that the final output result of the
neural network approaches the expected output value, thus
reaching the preset value of the error square sum E.

Table 1: Input variables for the prediction of the ticket for the PPP subway systems.

Input variable No. Unit Data acquisition method
Number of local people X1 Million Access to government notices
Total local GDP X2 Billion Access to government notices
Number of similar vehicles X3 — On-site investigation or access to government announcements
Financial subsidy X4 Million Access to government notices
Loan interest rate X5 % Check on the project management data
Inflation rate X6 % Access to statistical data
Rate of return on investment X7 % Check on the project management data
Public satisfaction X8 RMB/km Questionnaire survey
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2.2.2. Introduction to SSA. ,e SSA was proposed in 2020.
SSA is mainly inspired by the sparrows’ foraging behavior
and antipredation behavior. ,is is a novel algorithm that
has the advantages of strong optimization ability and fast
convergence speed. ,e SSA is used to optimize the initial
weights of the BP neural network and develop the SSA-BP
model, which not only makes full use of the mapping ability
of the BP neural network, but also has the rapid global
convergence and learning ability of the SSA.

Considering that the SSA is quite new, this paper in-
troduces the main rules of the SSA in detail as reported in
[24], so that the readers can better understand the research
content of this paper:

Rule (1). ,e discoverer usually has a high energy re-
serve and is responsible for searching for areas rich in
food in the whole environment, providing foraging
areas and directions for all participants. In the devel-
opment of the model, the level of energy reserve de-
pends on the fitness value of sparrows.

Rule (2). Once sparrows find predators, individuals
start to sing as alarm signals. When the alarm value is
greater than the safe value, the discoverer will take the
participants to other safe areas for foraging.
Rule (3). ,e identities of the discoverers and entrants
are dynamically changing. As long as we can find a
better food source, every sparrow can become a dis-
coverer, but the proportion of discoverers and entrants
in the total population remains unchanged.
Rule (4). ,e lower the energy of the participants, the
worse their foraging position in the whole population.
Some hungry entrants are more likely to fly to other
places to find food for more energy.
Rule (5). In the process of foraging, participants can
always search for the discoverer that provides the best

food and then get food from the best food source or
forage around the discoverer. At the same time, in
order to increase their predation rate, some participants
may constantly monitor the discoverers and compete
for food resources.
Rule (6). When being aware of the danger, sparrows at
the edge of the population will quickly move to a safe
area to get a better position, while sparrows in the
middle of the population will fly randomly to get close
to other sparrows.

According to the above rules, when using virtual spar-
rows to search for food, the population composed of n

sparrows can be expressed [24] as follows:

X �

x11 x12 · · · x1d

x21 x22 · · · x2d

· · · · · · · · · · · ·

xn1 xn2 · · · xnd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where d denotes the dimension of the problem variable to be
optimized and n is the number of sparrows.

,e fitness values of all sparrows can be expressed [24] as
follows:

Fx �

f x11 x12 · · · x1d ( 

f x21 x22 · · · x2d ( 

· · ·

f xn1 xn2 · · · xnd ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where f denotes fitness.
In the SSA, the discoverer with better fitness value will

get food first during the search process. In addition, the
discoverer is responsible for finding food for the whole
sparrow population and providing foraging directions for all
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Figure 1: Structure diagram of the neural network.
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participants. ,erefore, the discoverer can obtain a larger
foraging search range than the entrant. According to Rule (1)
and Rule (2), R2 < ST means that there are no predators
around the foraging environment at that time and the
discoverer can perform extensive search operations. R2 ≥ ST
means that some sparrows in the population have found
predators and sent an alarm to other sparrows in the
population. At this time, all sparrows need to rapidly fly to
other safe places for foraging.

During each iteration, the location update of the dis-
coverer is described [25] as follows:

Xt+1
i,j �

exp −
1

α∗ itemmax
 ∗Xt

i,j, if R2 < ST,

Xt
i,j + Q∗L, if R2 ≥ ST,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where t represents the current iteration number,
j � 1, 2, 3, . . . , d, and itemmax denotes the maximum itera-
tion number. Xt

i,j indicates the position information of the
i-th sparrow in the j-th dimension in the t-th iteration, and α
represents a random number less than or equal to 1 but
greater than 0. R2(R2 ∈ [0, 1]) and ST(ST ∈ [0.5, 1]) rep-
resent the warning value and the safety value, respectively. Q
is a random number that obeys normal distribution. L
denotes a 1 × d matrix, in which every element in the matrix
is 1.

For the participants, they need to execute Rule (3) and
Rule (4). As described above, during the foraging process,
some participants will keep an eye on the discoverer. Once
they perceive that the discoverer has found better food, they
will immediately leave their present position to compete for
food. If they win, they can get the food of the discoverer
immediately; otherwise, they need to continue to execute
Rule (4). When i> 0.5n, this indicates that the i-th partic-
ipant with low fitness value does not have food and is in a
very hungry state. At this time, it is necessary to fly to other
places for food to get more energy. ,e location update of
the enrolee is described [24, 25] as follows:

Xt+1
i,j �

Q∗ exp
Xworst − Xt

i,j

i
2

⎛⎝ ⎞⎠, if i> 0.5n,

Xt+1
P + Xi,j − Xt+1

P



 · A+
· L, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where XP is the best position occupied by the discoverer at
the moment and Xworst represents the worst position in the
world at the moment. A represents a 1 × d matrix, in which
each element is randomly assigned 1 or −1, and
A+ � AT(AAT)−1.

In the simulation experiment, we assume that the
sparrows aware of danger account for 10% to 20% of the total
population. ,e initial positions of these sparrows are
randomly generated in the population. According to Rule
(5), fi >fg means that the sparrows are at the edge of the
population at that time and are extremely vulnerable to
predators. Xbest indicates that the sparrow at that position is

at the best position in the population and is very safe. When
fi � fg, it shows that sparrows in the middle of the pop-
ulation are aware of the danger and need to approach other
sparrows to minimize the risk of predation.

,e specific mathematical expression can be written
[24, 26] as follows:

Xt+1
i,j �

Xt
best + β∗ Xt

i,j − Xt
best



, if fi >fg,

Xt
i,j + K∗

Xt
i,j − Xt

worst





fi − fw(  + ε
⎛⎝ ⎞⎠, if fi � fg,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

whereXt
best is the current global optimal position. β, as a step

control parameter, is a random number that obeys the
standard normal distribution. K ∈ [0, 1] is a random
number, which indicates the moving direction of sparrows
and is also a step control parameter. fi is the fitness value of
individual sparrows. fg and fw are the best and worst fitness
values, in the world, respectively. ε is used to avoid having
zero in the denominator.

2.2.3. Introduction to the MIV Method. ,e MIV method
proposed by Dombi et al. [42] is considered as one of the best
indexes to evaluate the correlation of variables in neural
networks. ,e basic idea of applying the MIV method to the
model developed in this study is to take the variables with a
significant impact on the price of the ticket for the PPP
subway system as the input parameters of the prediction
model and to eliminate the variables that have less impact.

,e specific implementation method of the MIVmethod
is as follows:

Step 1.,e training samples to train the SSA-BP neural
network are selected, and the prediction model
Ptrain is obtained .
Step 2. Each characteristic variable in sample T is in-
creased or decreased by 10%, and the new samples T1
and T2 are obtained. SamplesT1 and T2 are then
regressed with the aid of the model Ptrain, and the
regression results A1 and A2 are obtained.
Step 3. E � A1 − A2 is taken as the change value that
influences the output result after the characteristic
variable changes, and the MIV is obtained by averaging
E according to the number of samples. According to the
MIV value, the extent of the influence of each char-
acteristic variable on ticket price is obtained.
Step 4.,e relative contribution rate of each variable αi

is calculated [24] as follows:

αi �
MIVi





n
i�1 MIVi



, (11)

where MIVi is the MIV value of the i-th index.
Step 5. Input variables with relative contribution rate
greater than 10% are selected as key input variables.

Complexity 7



2.2.4. PredictionModel Based on theMIV-SSA-BP. ,e basic
flow chart of the SSA-BPmodel is shown in Figure 2, and the
input variable screening method based on the MIV is shown
in Figure 3. ,e prediction model proposed in this paper is
mainly divided into three parts. (1) All input variables are
brought into the fare prediction model based on the SSA-BP.
(2) ,e MIV method is used to obtain the key variables. (3)
,e key variables are brought into the SSA-BP to predict the
ticket price again.

It should be emphasized that the mathematical model
constructed in this paper can be applied to the study of
complex and nonlinear data prediction. If the input and
output variable system constructed in this paper is adopted,
the model proposed in this paper can quickly and accurately
predict the price of subway PPP project.

,e calculation steps of the intelligent predictionmethod
proposed in this paper are as follows:

Step 1. ,e input data is normalized by (1).
Step 2. ,e learning parameters of the SSA and BP
algorithm are determined according to the size and
characteristics of the learning samples. Equation (6) is
used to initialize the predator and joiner. ,en, (2)–(5)
are used to initialize the BP neural network. ,e de-
tailed construction process of the BP neural network is
shown in Section 2.2.1.
Step 3. ,e fitness value of each virtual sparrow is
calculated by (7) and then sorted. ,e positions of the
discoverer, joiner, and watcher are updated with
(8)–(10), respectively.
Step 4. ,e fitness value is calculated and the sparrow
position is updated.
Step 5. Whether the stop condition is met is deter-
mined; if yes, then exit and output the result. Other-
wise, Steps 3–4 are repeated.
Step 6. ,e MIV method described in Section 2.2.3 is
used to calculate and obtain the key input variables.
Step 7. Finally, Steps 2–5 are reexecuted, and the ob-
tained key input variables are brought into the SSA-BP
model to obtain the final output result.

3. Case Study

3.1. Data Sources. In this paper, Beijing Subway Line 4,
Wuhan Metro Line 2, and Chengdu Metro Line 1, three
typical PPP subway systems, were selected as case studies.
Beijing Metro Line 4 was put into trial operation on Sep-
tember 28, 2009. As of October 1, 2020, the private capital
investors and government agency have adjusted the price 10
times. Wuhan Metro Line 2 was put into operation on
December 28, 2012. As of October 1, 2020, Wuhan Metro
Line 2 has a total length of 60.8 kilometres, with an average
daily passenger flow of more than 150,000 passengers.
During the operation period, the private capital investors
and government agency have adjusted the price six times.
ChengduMetro Line 1 was put into operation on September
27, 2010. As of October 1, 2020, ChengduMetro Line 1 has a
total length of 41 kilometres, with a total of 35 stations, with

the highest single-day passenger traffic of 1,091,900 pas-
sengers on February 19, 2019. During the operation of
Chengdu Metro Line 1, the private capital investors and the
government agency adjusted the price nine times.

Using the index acquisition method of each input var-
iable shown in Table 1, the 25 price adjustment data sets of
the three PPP subway systems are obtained as shown in
Table 2.

In Table 2, the monetary unit of X1, X2, and X4 is RMB.
,e X5 loan interest rate is the five-year national debt in-
terest rate issued by the Chinese government. ,e X6 is
expressed by the consumer price index (CPI) published by
the Chinese government. ,e X8 data is directly derived
from the questionnaire survey results provided by the PPP
Project Company of Metro.

3.2. Correlation Analysis of Various Variables. In order to
study the linear correlation between the input variables and
the output variable (the ticket price), the Pearson corre-
lation analysis method is used to quantitatively describe the
degree of linear correlation between the parameters [43].
,e detailed calculation principle and method used have
been previously reported [43]. ,e closer the Pearson
correlation coefficient (r) is to 1, the stronger the linear
correlation between the two indicators. When the r is equal
to 0, there is no linear correlation between the two indi-
cators. When the r is positive, the indicators are positively
correlated, and when r is negative, they are negatively
correlated; r is defined as

r �


n
i�1 xi − x(  yi − y( 

��������������������


n
i�1 xi − x( 

2
yi − y( 

2
 , (12)

where xi is the value of an input variable, x is the average
value of an input variable, yi is the value of another input
variable, and y is the average value of another input variable.

Substituting the data in Table 2 into (12), the obtained
calculation results are shown in Table 3. In Table 3, the
absolute value of the values in bold is greater than 0.8, which
indicates that there is a significant correlation between these
two indicators.

According to the calculation results listed in Table 3,
among the 8 input variables of the ticket price prediction of
the PPP subway system, the linear relationship between the
indexes is mostly weak. However, X2 and X4 have a cor-
relation coefficient of 0.812, X4 and X7 have a correlation
coefficient of 0.857, and X5 and X6 have a correlation co-
efficient of 0.894, which indicates that these variables have a
certain positive linear correlation between them. ,e cor-
relation coefficient between X5 and X7 is −0.840, and the
correlation coefficient between X6 and X7 is −0.913, which
indicates that there is a certain negative linear correlation
between these variables. ,e absolute values of other cor-
relation coefficients are all lower than 0.8, indicating that
their linear correlation is quite weak. ,erefore, when using
the input variables constructed in Section 2.1 of this paper to
predict the PPP subway tickets, the nonlinear modeling
method should be favored [28].
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3.3. Ticket Price Forecast Based on SSA-BP. In the modeling
process of the SSA-BP, data sets can be divided into
training sets and test sets. Among them, the training data
set is used to train the model, while the test data set is used
to evaluate the model. ,e ratio between the common

training data set and test set is 90 : 10%, 80 : 20%, or 70 :
30% [44]. Considering that there are 25 data sets in this
paper, the first 20 samples are set as the training data set,
and the last 5 samples are set as the test data set. In other
words, the ratio between training data set and test data set
in this paper is 75 : 25%.

In this study, three indexes, namely, the mean absolute
percentage error (MAPE), the root mean square error
(RMSE), and the coefficient of determination (R2), are
used to evaluate the calculation accuracy of the prediction
model.

,e value of the MAPE is 0%, indicating that the pre-
diction result is perfect [45]. If the MAPE is greater than
100%, it is generally considered that the prediction result is
unavailable. MAPE is defined as follows:

MAPE �
1
n



n

i�1
yi − _yi


, (13)

where n is the number of sample points, yi is the predicted
value of the ticket price of the PPP subway system, and _yi is
the actual value.

,e RMSE [46] can directly reveal the average error
between the predicted value and the true value, and when the
predicted value is completely consistent with the true value,
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Figure 2: Flow chart of the SSA-BP model.
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Complexity 9



it is equal to 0, that is, the perfect model.,e larger the error,
the larger the value. ,e RMSE is defined as shown in (14),
which can be used to calculate it, as follows:

RMSE �

������������

1
n



n

i�1
yi − _yi( 

2




. (14)

,e closer the value of R2 [47] is to 1, the better the
prediction result is. ,e result obtained here is 0, indicating
that the model fitting effect is very poor.

R
2

� 1 −


n
i�1 yi − _yi( 

2


n
i�1 yi − yi( 

2, (15)

where yi is the average value of the predicted values.
In the SSA proposed in this paper, the population size is

set to n� 50, the maximum number of iterations is 200, the
safety threshold ST� 0.8, discoverers account for 20% of the
population size, and the number of sparrows aware of
danger SD� 5. ,e experimental environment is as follows:
the simulation experiment was performed in the Matlab
2016a on a 3.40GHz Intel i7 processor and a computer with
16GB memory.

In this study, the BP neural network is trained by the
Levenberg–Marquardt algorithm. ,e maximum training
times are 200, the coefficient of motion vector is 0.3, and the
minimum mean square error is 10−5.

,e activation functions of the hidden layer and output
layer, respectively, adopt the logsin function F(x) and
purelin linear function G(x), shown as follows:

F(x) �
1

1 + e
−x,

G(x) � x.

(16)

,enumber of nodes in different hidden layers may have
an impact on the BP prediction results. ,erefore, this study
calculates the calculation error of the prediction model
under different hidden layer nodes. According to past re-
search studies [20, 22], the number m of hidden layer nodes
is selected according to the following empirical equation:

m �
����
n + l

√
+ δ, (17)

where δ is a constant in the range of 1–10, n is the dimension
of hidden layer, and l is the dimension of the output layer.

Substituting n � 8 and l � 1 into (17), we can obtain
m � 4, 5, . . . , 13. In order to find the optimal value of the
hidden layer node m, the SSA-BP neural network is trained
with m � 4, 5, . . . , 13, and the training results are compared.
,e calculation results are shown in Table 4. In Table 4, the
values in bold indicate the calculation results with the
highest calculation accuracy.

,e data in Table 4 reveal that when the number of
hidden layer neuron nodes is m� 6, the MAPE and RMSE
are the smallest and R2 is the largest, and the BP neural
network is the most accurate algorithm to predict the ticket
price for the PPP subway service. ,erefore, the number of
hidden layer nodes in the SSA-BP model is ultimately de-
termined to be 6.

,e data in Table 4 show that when all variables affecting
the prediction of the ticket price for the PPP subway service
are taken as the input parameters of the SSA-BP neural
network model, the calculation accuracy reaches 95.59%,
which still does not meet the practical application re-
quirements. Considering that the input variables may have
influence on the prediction accuracy of the BP neural
network model, the key variables are screened out by this
method, and the calculation results are shown in Table 5.

,e data in Table 5 reveal that 8 input variables have
different effects on the prediction of the ticket price for the

Table 2: Engineering data.

No. (unit) X1 (million) X2 (billion) X3 X4 (million) X5 (%) X6 (%) X7 (%) X8 Y (RMB/km)
1 19.612 1411.360 4 138.800 4.39 2.9 8 77 0.37
2 20.186 1625.190 5 156.000 4.40 1.3 7 60 0.37
3 20.693 1780.102 5 173.200 4.42 1.4 6.8 82 0.38
4 20.693 1780.102 6 178.800 4.42 1.7 7 83 0.42
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

24 16.330 1534.277 7 217.000 4.40 4.5 5.5 87 0.48
25 16.581 1701.265 9 223.500 4.42 4.9 6.5 80 0.50

Table 3: Pearson correlation coefficient between indexes.

Factor X1 X2 X3 X4 X5 X6 X7 X8
X1 1.000 0.514 0.231 0.423 0.123 −0.362 0.378 0.271
X2 — 1.000 0.482 0.812 −0.381 −0.575 0.432 0.154
X3 — — 1.000 −0.834 0.041 0.234 0.340 0.299
X4 — — — 1.000 0.104 0.246 0.857 0.430
X5 — — — — 1.000 0.894 −0.840 0.255
X6 — — — — — 1.000 −0.913 0.129
X7 — — — — — — 1.000 −0.311
X8 — — — — — — — 1.000
Bold values mean that the absolute value is greater than 0.8.
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PPP subway service.,eMIV values ofX2,X5, andX1 are all
negative, which indicates that these three input variables are
negatively correlated with the ticket price. Other indicators
are positively correlated with the ticket price. ,e relative
contribution rates of X7, X2, X3, X4, and X5 are all higher
than 10%, while the relative contribution rates of the
remaining input variables are lower than 10%. ,erefore, in
this case study, X7, X2, X3, X4, and X5 are selected as the key
input variables for the prediction of the ticket price for the
PPP subway service.

,e X7, X2, X3, X4, and X5 are brought back into the
prediction model based on the SSA-BP model, and some pa-
rameter settings are almost unchanged. However, since the
input variables have changed, the number of hidden layer nodes
needs to be redetermined. According to empirical equation (17),
when the number of hidden layer neuron nodes is m � 5, the
MAPE (2.381%) and RMSE (1.4780) are the smallest and R2

(97.31) is the largest, and the BP neural network is the most
accurate to predict the ticket price for the PPP subway service.
,e chart of the error loss function is shown in Figure 4.

To further clarify the optimization calculation process of
SSA, detailed optimization calculation process is shown in
Table 6.

According to the calculation results shown in Figure 4
and Table 6, the fitness of the SSA rapidly decreases in the
initial stage (about 20–55 generations). ,en, with the in-
crease of the number of iterations, the fitness eventually
converges to 45.31411. ,is shows that the SSA effectively
optimizes the BP model. Comparison with the convergence
curves of the GA and PSO algorithm indicates that the SSA
has faster convergence speed. ,e analysis of the calculation
results of the different algorithms will be shown in detail in
Section 4.1.

,e Bland–Altman analysis of the predicted and mea-
sured ticket prices [48], shown in Figure 5, reveals that the
predicted values of five groups of ticket prices are within
(−1.96SD, +1.96SD). ,us, according to the Bland–Altman
analysis method, 95% of the predicted points are within the
consistent range. ,erefore, considering the application of
ticket price prediction, the prediction method developed in
this study is feasible.

,e 10-fold cross-validation method is often used to test
the accuracy of algorithms. ,e basic idea is to divide the
data set into ten parts, and take turns to take 9 parts as

Table 5: Calculation results of the input variables based on MIV.

Variables MIV Order Relative contribution rate (%) Cumulative contribution rate (%)
X7 0.071 1 28.63 28.63
X2 −0.053 2 21.37 50.00
X3 0.046 3 18.55 68.55
X4 0.032 4 12.90 81.45
X5 −0.027 5 10.89 92.34
X6 0.014 6 5.65 97.98
X1 −0.003 7 1.21 99.19
X8 0.002 8 0.81 100.00

Table 4: Effect of the number of nodes in different hidden layers on the prediction.

Number of hidden layer nodes MAPE (%) RMSE R2 (%)
4 4.213 0.029 93.23
5 3.487 0.022 94.31
6 2.912 0.018 95.59
7 4.781 0.027 92.65
8 6.573 0.029 90.46
9 7.378 0.023 88.10
10 9.958 0.030 86.02
11 8.260 0.0300 88.35
12 6.317 0.026 91.13
13 4.098 0.023 93.49
,e numerical value in bold represents the calculation result with the highest calculation accuracy.
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training data and 1 part as test data for experiments. In this
paper, the 10-fold cross-validation method is used to test the
accuracy of the proposed model, and the calculation results
are shown in Table 7.

,e calculation data in Table 7 indicate that the ten
prediction results have good prediction accuracy and cal-
culation stability. ,ese findings show that the calculation
results of the case analysis are accurate and no overfitting
phenomenon occurs.

4. Discussion

Based on the MIV method, the SSA, and the BP algorithm,
this study developed an intelligent prediction method of the
ticket price for a PPP subway system. However, this study
has the following three limitations: (1) ,e definition of the
ticket price for the PPP subway system in the introduction of
this paper is the ticket price when the government and
private capital investors play a game, not the actual ticket
price for the customers. Different definitions of the ticket
price may influence the research results of this study. (2)
More novel algorithms, such as chaotic local search-based
differential evolution algorithm (CLSDEA) [49], can be used
to optimize the BP model. (3) ,e calculation parameter

setting of optimization algorithm has obvious influence on
the calculation efficiency of optimization algorithm [50, 51],
but this paper has not completed the relevant analysis.

4.1. Analysis of the Calculation Accuracy of Different Pre-
dictionModels. ,e research results in the third section of this
paper show that the prediction model proposed in this paper
has high accuracy and stability. However, these research results
can only confirm the validity of the model proposed in this
paper. In order to further analyze the advancement of the
model proposed in this paper, in this section we compare
various prediction methods, including price adjustment
method based on PPP contract, multiple regression, BP, GA-
BP, PSO-BP, and support vector machine (SVM).

According to the historical data of three subway station
projects, the price adjustment results based on the PPP
contract were obtained and are shown in Table 8. In en-
gineering practice, every price adjustment based on contract
took about 1-2 months.

Whenmultiple regression analysis was adopted, the first 20
groups of data of 8 input variables were all brought in.
According to the calculation of Excel 2016 software, the re-
lationship between 8 input variables and output variable was

Table 6: Detailed optimization calculation process.

Iteration (n) Fitness (n−1) Fitness (n) Fitness (n)–fitness (n−1) Result
56 46.39730 46.03623 0< 0.00001 Continue
57 46.03623 45.31411 0.361063611> 0.0001 Continue
58 45.31411 45.31411 0< 0.0001 Continue
200 45.31411 45.31411 0< 0.0001 Stop
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Figure 5: Bland–Altman analysis of the predicted values and actual values.

Table 7: Calculation results of the 10-fold cross-validation.

No. 1 2 3 4 5 6 7 8 9 10
MAPE (%) 2.38 2.45 2.94 2.57 2.01 2.50 1.95 2.48 3.14 2.63
RMSE 0.014 0.015 0.015 0.015 0.014 0.015 0.014 0.014 0.015 0.015
R2 (%) 97.31 96.45 97.58 96.85 95.97 96.79 97.30 96.43 97.52 97.93
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Y � −0.000265∗X2 + 0.043352∗X3 − 0.026143∗X5

+ 0.002107∗X7.

(18)

,e last five groups of data were brought into (18), and
the calculation results are shown in Table 8. In addition,
according to (18), it was not difficult to find that the output
variable only had linear relationships with X2, X3, X5, and
X7. ,is was basically similar to the analysis results in
Section 3.2.

,e calculation parameters of BPmodel were the same as
those in Section 3.3. In the GA [20], the learning step was 0.1,
the number of genetic iterations was 200, the initial pop-
ulation number was 20, and the classification error was
0.00001. In the PSO [22], inertia weight was 0.6, learning
factors C1 and C2 were 2, initial population number was 20,
and maximum iteration number was 200. In the SVM [52],
the range of penalty variable was [1, 1000], and the range of
width parameter was [0.1, 10]. ,e related calculation results
are shown in Table 8.

From the convergence curves of the GA and the PSO in
Figure 4, it is not difficult to find that GA converges in
120–150 generations, while the PSO converges in 80–100
generations. However, the SSA had faster convergence speed
than the GA or the PSO.

In this paper, the MIV method was used to screen the
input variables of the SSA-BP model, which might affect the
calculation results. ,erefore, the MIV method was used to
screen the input variables of the BP, GA-BP, PSO-BP, and
SVM, and the key input variables with relative contribution
rate greater than 10% were selected. ,e calculation results
are shown in Table 9.

4.2. Stability Analysis of Different Prediction Models. In
addition to the calculation accuracy, the stability of the
calculation results of the model is another factor that affects
its application and popularization. In this paper, the BP, the

GA-BP, the PSO-BP, the SVM, and the SSA-BP were used
for repeated calculation 100 times, and the standard devi-
ations of R2 are shown in Table 10.

It can be seen from the calculation results in Table 10 that
the standard deviation of R2 of SSA-BP model is the smallest
(0.001398) and its calculation result is the most stable. ,e
stabilities of the PSO-BP, the GA-BP, and the BP decreased
in turn. ,is showed that the computational stabilities of
these metaheuristic algorithms were SSA (0.001398)> PSO
(0.008376)>GA (0.023339), which was the same as the
previous results [24, 25, 53]. In addition, the standard de-
viation of R2 of BP was obviously larger than SSA-BP, PSO-
BP, and GA-BP. ,is indicates that the optimization algo-
rithm is reasonable and effective in improving the BPmodel.
It is worth mentioning that Wu [53] used the SSA to find the
optimal parameters of the Least Squares Support Vector
Machine (LSSVM) and achieved good results. ,is further
proves the superiority of the SSA, which is a novel meta-
heuristic optimization algorithm.

4.3. Comparison of the Prediction Results of Different Relative
Contribution Rates. Relative contribution rate is an im-
portant concept in the MIV model, which is the threshold
for selecting key input variables. At present, the selection of
this threshold is artificial and subjective [33, 34]. In Section
3, the variables whose relative contribution rates were
greater than 10% were selected as the key variables. In order
to discuss the rationality of this approach, this paper made a
parametric analysis of the relative contribution rate in the
MIV. When the relative contribution rate was 5%, 15%, and
20%, the prediction results of the model were calculated and
are shown in Table 11.

In this section, the relative contribution rate was
analyzed by parameters, and the influence of different
input variables on the calculation results was actually
analyzed. According to the calculation results in Table 11,
when αi � 10%, the model has the best calculation accu-
racy and calculation time. ,is shows that the artificial

Table 8: Comparison of calculation results of different models with 8 input variables.

Error representations MAPE (%) RMSE R2 (%)
Price adjustment method based on PPP contract 49.375 0.052 65.12
Multiple regression 37.421 0.091 46.43
BP 12.684 0.043 80.92
GA-BP 7.471 0.029 88.39
PSO-BP 3.070 0.018 92.50
SVM 3.467 0.016 93.45
SSA-BP 2.912 0.015 95.59

Table 9: Comparison of the results of different models after processing by the MIV method.

Error representations Number of input variables MAPE (%) RMSE R2 (%)
BP 6 13.403 0.042 82.50
GA-BP 5 7.849 0.024 84.62
PSO-BP 5 3.345 0.019 93.36
SVM 5 2.762 0.016 94.93
SSA-BP 5 2.380 0.014 97.31
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selection of 10% in most studies using MIV is reasonable.
With the increase of the value of αi, the number of input
variables becomes less and less, the calculation error
becomes larger and larger, and the calculation time be-
comes shorter.

When αi � 25%, only one input variable, X7, is selected.
At this time, the problem degenerates into studying the
mapping relationship between an input variable (X7) and an
output variable (Y). ,erefore, this paper did not discuss the
calculation accuracy and time when the value of αi was
larger.

5. Conclusions

It is critically important to rapidly and accurately predict
the ticket price to protect the interests of the customer, the
private capital investors, and the government. In order to
deal with the complexity and nonlinear relationship of the
PPP subway system ticket prediction, a new intelligent
prediction method is proposed in this paper. ,e model
combines the global convergence of the SSA and the
nonlinear analysis ability of a neural network algorithm
and improves the accuracy and stability of the neural
network training. ,is study shows that, for Beijing
Subway Line 4, Wuhan Metro Line 2, and Chengdu Metro
Line 1, the linear relationship between most input vari-
ables is not adequate. Among all pairwise correspon-
dences, only three groups of correspondences have
significant linear correlation. A nonlinear modeling
method should be given priority in the prediction of ticket
price for PPP subway system. ,e MIV method is used to
screen the characteristic variables of the ticket price
prediction for the PPP subway system, and it is found that
the rate of return on investment, total local GDP, number
of similar vehicles X3, financial subordinate X4, and loan
interest rate X5 can be used as key input variables.
Compared with other prediction methods (the price ad-
justment method based on PPP contract, the traditional
BP, the BP improved by the GA, the BP improved by the
PSO algorithm, and the SVM), the model proposed in this
paper had better prediction accuracy and calculation
stability. How to predict the actual fare of subway
according to the results of this study is the direction of
further research in the future.
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Streamflow is associated with several sources on nonstationaries and hence developing machine learning (ML) models is always the
motive to provide a reliable methodology to understand the actual mechanism of streamflow. *e current research was devoted to
generating monthly streamflows from annual streamflow. In this study, three different ML models were applied for this purpose,
including Multiple Additive Regression Trees (MART), Group Methods of Data Handling (GMDH), and Gene Expression Pro-
gramming (GEP). *e models were developed based on annual streamflow and monthly time index of three rivers (i.e., Upper Zab,
Lower Zab, andDiyala) located in the north region of Iraq.*emodeling results indicated an optimistic simulation for generating the
monthly streamflow time series from annual streamflow time series. *e potential of the MARTmodel was superior to the GMDH
and GEP models for Upper Zab River (R2 0.84, 0.64, and 0.47), Lower Zab River (R2 0.75, 0.46, and 0.40), and Diyala River (R2 0.78,
0.42, and 0.5).*e results of RMSEwere 113, 169, and 208 for Upper Zab River, 95, 149, and 0.5 for Lower Zab River, and 73, 118, and
109 for Diyala River. *e results have proved the possibility of changing the timescale in generating streamflow data.

1. Introduction

*e hydrological processes are associated with several ele-
ments such as evaporation, evapotranspiration, precipita-
tion, runoff, river flow, infiltration, and groundwater. In
nature, the hydrological cycle is featured by high stochas-
ticity, nonstationarity, and nonlinearity [1], and thus
studying the hydrological process is one of the significant
topics in the field of water resources engineering. Over the
past literature, several models have been introduced for
modeling hydrology cycle processes and evidently proofed
their capacity [2–4]. Between several components of the
hydrology cycle, streamflow is a very important process and
has received major interest by the hydrologists and com-
puter scientists [1]. *e establishment of accurate and re-
liable models “forecasting, prediction, or optimization” for

the long scale, such as yearly, seasonally, or monthly, is very
magnificent for reliable water resources management and
planning [5]. In addition, for short scale like day, hour, and
minutes, streamflow recording is very essential for flooding
warning andmonitoring in order to lessen andmitigate their
effects on various structure and human well-being [6].

*e data-driven streamflow models are regression-based
where the relationships between model inputs and output are
directly defined [7, 8]. With the advances of computer aided
models, ML models such as fuzzy logic, neural network,
nature-based algorithm, support vector machine, decision
tree, and optimizers have been successfully implemented for
modeling streamflow patterns. *ese models can help in
detecting the nonlinear, dispensable, and dynamic pattern of
the time series [9–12]. However, a number of problems are
associated with most of the ML-based techniques due to their
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inherent limitations [13]. *e ML-based models need pre-
vious information of the stochastic behavior of the addressed
research issue (i.e., hydrology or climatology processes or
water quality data) [14, 15]. Hence, it is essential to configure
reliably in terms of learning process to obtain the important
information from the chronological data of streamflow. In
addition, it is required to optimize a number ofmodel internal
parameters [16, 17]. Over the time, many hybrid models have
been also implemented such as fractionally autoregressive
integrated moving average (FARIMA) and self-exciting
threshold autoregressive (SETAR) with GEP, MARS, and
MLR [18]. Similarly, another authors used autoregressive
conditional heteroscedasticity (ARCH) to hybridized GEP
and MARS models [19]. In particular, the conventional ML-
based models need numerous trial-and-error processes to
determine the optimum architecture design. For example,
hydrological models using neural network require optimi-
zation of the number of hidden layers, the type of the transfer
function, and the number of neurons in a hidden layer’s
choices [20]. Hybrid models are one of the updated models
that have started to be used extensively in hydrology science
[21]. Correspondingly, fuzzy models are one of the traditional
models that lack handling complex problems and too many
rules [22] and same goes for MLR model when dealing with
multiple output and complexity [23]. *e highlighted limi-
tations of the existing ML-based streamflow forecasting
models have necessitated the search for more sophisticated
ML-based modeling techniques.

Streamflow forecasting plays an essential role for the
researchers and engineers to better understand the river
pattern which in turn helps to design more sustainable and
efficient infrastructure and management project. Streamflow
data is important yet presents itself with various issues such as
missing data, noncontinuous data, nonlinearity, and extreme
events [24, 25]. Researchers have devised various techniques
and tools to overcome them, yet to grasp the full scope of such
data in terms of seasonality, point source pollution, and
sudden changes due to event of heavy rain or other calamities,
and more work is needed to be done. Disaggregating
streamflow can sever an essential procedure for reservoir
operation and river basin management in general [26, 27].
*is topic has received an extensive capacity by several hy-
drology scholars. Stedinger andVogel [28] developed a simple
class of a disaggregation model that can reproduce a co-
variance matrix of streamflow and reasonable approximation
to the lead times that should be imposed for the disaggre-
gation approach. Of recent advanced computer models, the
disaggregation procedure was investigated by several scholars.
A stochastic model was proposed to disaggregate streamflow
at multiple sites preserving their temporal and spatial de-
pendencies [29]. An integrated nonparametric model with
genetic algorithm was to simulate seasonal streamflow dis-
aggregating [30]. Monthly streamflow scale was disaggregated
into daily scale using simple stochastic, as conducted in [31].
Various other research studies were conducted on the
streamflow disaggregation [32–35]. All the reported research
over the literature evidenced the capacity of studying the
streamflow disaggregation. However, the implementation of
the ML models for the streamflow disaggregation is limited

and needs to be investigated. ML models such as Multiple
Additive Regression Trees (MART), Group Methods of Data
Handling (GMDH), and Gene Expression Programming
(GEP) are yet to be explored for the generating monthly
streamflow time series from annual streamflow time series.
*ere was no established research over the literature using
those models yet to be tested.

*e main objective of the current research is to inves-
tigate the feasibility of MART, GMDH, and GEP models for
generating monthly streamflow time series from annual
streamflow time series.*e proposed models represent three
different types of MLmodels. *eMARTmodel is one of the
most popular decision tree models that strengthen the weak
learning, which results in strong learning process and better
generalization [36], while the GMDH model is chosen to
represent self-learning models. *e GEP model was applied
as revolutionary model. *e proposed models were evalu-
ated statistically among each other and analyzed based on
their predictability capacity. *e study aims to demonstrate
the possibility of changing the timescale in generating
streamflow. *is is the first application of using the GMDH,
GEP, and MART models to generate monthly streamflow
data from annual monthly streamflow data without using
method of fragments which is usually used to disaggregate
the annual streamflow to monthly streamflow.

2. Materials and Models

2.1. Study Area andData. Upper Zab, Lower Zab, and Diyala
Rivers are the major tributaries of Tigris River in Iraq, which
were selected for the case study in this research. *e Tigris
River is one of the largest rivers in theMiddle East.*e river is
about 1718 km long that goes through Turkey then Syria then
Iraq. However, the major percentage (253,000 km) of about
85% of the river travels through Iraq region. *e Tigris River
along with the Euphrates River contributes to the Iraqi region
as the main natural resources of fresh water that is required for
diverse necessity of water usages. *e Upper Zab River
headwaters are located in Turkey’s territory, while the head-
waters of the Lower Zab and Diyala rivers are located in Iran’s
territory [37]. Figure 1 shows the location of Upper Zab, Lower
Zab, and Diyala Rivers in Iran. Table 1 summarizes the
morphological and flow data characteristics for the Upper Zab,
Lower Zab, and Diyala upstream Bekhme, Dokan, and Der-
bindi-Khan flow gauging stations, respectively. *e climate of
the basin is predominantly semiarid. *e temperature in the
basin varies from maximum 45°C during summer to mini-
mum 10°C in winter. *e mean monthly discharge and the
standard deviation of Tigris River flow at Baghdad station are
411.35m3/s and 234.52m3/s, respectively. Monthly flow data
for the period 1932–2004 were selected. *is period was se-
lected because there was no missing data during this period.
*e first 70%of datawas selected for training themodels, while
the second 30% of data was selected to validate the models.

2.2. Introduction to the Gene Expression Programming (GEP)
Model. GEP was invented by Ferreira as an extension of
traditional genetic programming. *e program is developed

2 Complexity



as linear strings of fixed chromosome’s length and then
encoded as a nonlinear form with different dimensions [38].
In GEP, expressions are generated automatically by
encoding the expression in the form of a tree consisting of
nodes representing functions and leaves (terminal) repre-
senting constants and variables. *e generated candidates
were evaluated by a fitness function. *e genes included two
parts: tail that includes variables and head that includes
variables and constants [39]. Five steps are used to develop
the GEP model: (i) selecting a set of predictor variables,
which can be used in discrete programs; (ii) selecting the
specific functions and arithmetic operations; (iii) choosing
the fitness measure; (iv) selecting the appropriate head
length, quantity of genes, and the linking function; and (v)

selecting the genetic operators which include inversion rate
and mutation rate [40]. More details for GEP are found in
[41]. Figure 2 shows the flowchart of gene expression
programming algorithm.

2.3. Introduction to the Multiple Additive Regression Trees
(MART) Model. MART was developed by Derrig and
Francis [42] to increase the accuracy of the traditional de-
cision tree model result. *e researchers found that the
models developed using MARTare more accurate models in
comparison with any known modeling methodologies. *e
model can handle categorical and continuous inputs and
target variables. *e model is more stable due to the use of
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Figure 1: Upper Zab, Lower Zab, and Diyala Rivers’ location.
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Table 1: Morphological and flow data characteristics.

Upper Zab Lower Zab Diyala
Basin area (km2) 16863 11706 15765
Basin slope (m/m) 0.350 0.265 0.252
Average over land flow (m) 5.878 6.05 6.92
Perimeter (km) 1141.2 1053 1368.16
Basin length (km) 189.9 125 165.76
Mean basin elevation (m) 1870 1381.60 1551.15
Flow data record 1932–2004 1932–2004 1932–2004
Maximum flow (m3/s) 1681 1135 947
Minimum flow (m3/s) 32 9 3
Standard deviation (m3/s) 277 180 148
Mean (m3/s) 369 193 150

End

Create chromosomes of initial population

Express chromosomes as computer program

Execute each computer

Programs selection

Keep best program

Selected fitness function and evaluate fitness of each computer

Reproduction

Terminate

Iterate

Mutation

RIS transposition

IS transposition

Gene transposition

1 point recombination

2 point recombination

Gene recombination

Prepare new programs of next generation

Iterate or
terminate

Figure 2: Flowchart of gene expression programming algorithm (Ferreira, 2001).
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the Humber M-regression loss function in its algorithm.
MART algorithm is started by fitting the inputs to first tree
and then the biases from the first tree are inserted to the next
tree to minimize the error [43]. *is procedure is repeated
through a series of following trees. *e final results are
adjusted by adding contribution weight of each tree. *e
MART algorithm can be expressed as [36]

Target � S + C1 × T1(N) + C2 × T2(N) + · · · + Cn × Tn(N),

(1)

where S is the mean value of the target variable; N is a
pseudoresidual as set value’s vector, T1 (N), T2 (N), . . . Tn (N)
is tree fixed to the pseudoresiduals, and C1, C2, . . ., Cn are the
tree node predicted coefficients. Figure 3 shows a simple
MART structure and Figure 4 shows the flowchart of ran-
dom trees algorithm.

2.4. Introduction to the Group Method of Data Handling
(GMDH). GMDH was developed to solve the problems of
predication, complex system, and optimization by using a
nonlinear regression algorithm. GMDH structure is classi-
fied as a self-organizing polynomial neural network’s
method [44]. GMDH is a specific type of supervised artificial
neural network.*e algorithm of GMDHuses the concept of
natural selection to control the network size, complexity,
and accuracy [45].*e GMDHmodel starts by selecting a set
of functions that showed highest prediction accuracy at
previously unseen data. In GMDH model, layers of neurons
are created using one or more inputs. *e connections
between neurons in the network are self-selected during
training phase. *e determination of number of layers and
neurons in the network is automatic. *e GMDH solutions
are subsets of functions called partial models [46]. *e best
model is reached by gradually increasing the number of
partial models.*e GMDH algorithm uses the two variables’
quadratic equation to develop the model.

y � a1 + a2x1 + a3x
1
2 + +a4x2 + a5x

2
2 + a6x1x2 ,

A � X
T
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− 1
X

T
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(2)

where Y� [y1, y2, . . ., yn]T and A� [a1, a2, a3, a4, a5].
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, (3)

where m presents the number of variables, (x1, x2, x6) are
vectors of input variables, and (a1, a2, . . ., a6) are vectors of
parameters. Figure 5 shows the structure of GMHD and
Figure 6 shows the flowchart of GMDH algorithm. More
details of GMHD are found in [44].

2.5. Performance Evaluation. In this research, two different
performance metrics were selected to evaluate the proposed
models: coefficient of determination (R2) and root mean
square error (RMSE) [47].

R
2

�


n
i�1 Q° − Qo  Qp − Qp 

i�����������������������


n
i�1 Q° − Qo 

2
Qp − Qp 

2
i


⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

,

RMSE �

��������������

1
n



n

i�1
Qo − QP( 

2




,

(4)

where Qio and Qip are the observed and generated
streamflow values, respectively, Qo is the observed
streamflowmean value, and n is the data record number.*e
best models are those which showed low RMSE and are close
to 1 value for R2.

3. Modeling Results and Discussion

In this study, the three ML models were applied to develop
the best models to generate monthly streamflow from annual
streamflow. *e models were developed using monthly
streamflow as a target variable while the annual streamflow
and monthly time index as predictor variables. *e time
index is an index that represents the monthly sequence
within a year, and its values range from 1 (January) to 12
(December). Selecting the best model for predicting the
monthly streamflow of the three proposed rivers requires
choosing the best model settings for theMART, GMDH, and
GEP models. *e best MART model requires selecting the
best settings for the three parameters in the model that
includes the amount of trees in series, depth of discrete trees,
and number of splits (least size). *ese values for the three
rivers are 600, 5, and 10 for the Upper Zab River, 800, 5, and
10 for the Lower Zab River, and 300, 5, and 10 for Diyala
River. *e best GMDH model requires selecting the best
settings for the four parameters in the model that include
maximum network layers, maximum polynomial order,
number of neurons per layer, and network layer connections
type. *e optimum parameter’s settings of the GMDH
model for the three rivers in this study are 20 for maximum
network layers and 16 for maximum polynomial order, same
number of neurons as inputs’ option for the number of
neurons per layer, and previous layer and original input
variables for the network layer connections’ type. *ere are
five major steps for GEP modeling in this study: (1) selecting
the set of functions to be used: 5 basic mathematical
functions were used: +; −; ×; ÷; and power; (2) selecting the

Dataset 1

Dataset 2

Dataset n

Tree 1

Tree 2

Tree n

Linear
combination Output

Figure 3: *e structure of the MART model.
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fitness function: the root relative square error (RRSE) was
selected; (3) choosing the optimum general parameters:
here, population size, genes per chromosomes, and gene
head length were chosen; (4) choosing linking function:
addition was chosen; and (5) we selected genetic operators,
mutation rate of 0.044, and inversion rate of 0.1. Table 2
summarizes the best GEP model setting for the three rivers.

*e results of the optimum symbolic fit regression functions
from GEP model are explained in the following generated
expressions for the Upper Zab, Lower Zab, and Diyala
Rivers, respectively:

Qm �
−90151.84

T
− 0.0012708T

2
+ 80992.678

+ Qa +
89130.39

T
,

Qm � 167.44 − T + Qa − 16.4182T − T,

Qm � 262.276 − 22.8876T + Qa

+
���
Qa


+ 383.9346 +

64.230
T − 2.6546

,

(5)

where Qm is a monthly flow, Qa is an annual flow, and T is a
time index (1, 2, 3, . . ., 12).*e values of monthly streamflow
change with the change in the value of the time index in the
previous functions. *e performance of the proposed
models was evaluated utilizing the couple of statistical
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Figure 4: Flowchart of random trees algorithm.
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Figure 5: *e structure of the GMDH model.
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metrics and graphical visualization. Based on the reported
statistical result in Table 3, the Upper Zab River simulation
has shown that the performance of the MART model is
superior over the performance of GMDH and GEP models.
*e R2 values are 0.93, 0.81, and 0.53 for the training phase
and 0.84, 0.64, and 0.47 in the validating phase for MART,
GMDH, and GEP models, respectively. On the other hand,
and using the absolute error measures, the results of RMSE
have proved the accuracy of MART model in comparison
with the other models, which can be due to the model of
learning used by MART model where weak learning is

boosted by regression learning leading to higher accuracy.
*e RMSE values are 85, 141, and 222m3/s in training phase
and 113, 169, and 208m3/s in the validating phase for the
MART, GMDH, and GEP models, respectively. For the
Lower Zab River, R2 values are 0.90, 0.47, and 0.41 in training
phase and 0.75, 0.46, and with lowest of 0.40 through the
validating phase for the MART, GMDH, and GEP models,
respectively. *e RMSE results have also proved the per-
formance of MARTmodel in comparison with the GMDH
and GEP models. *e RMSE values during the validating
phase are 62, 144, and 151m3/s, and during the training
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Figure 6: Flowchart of GMDH algorithm.
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phase the errors produced are 95, 149, and 157m3/s for the
MART, GMDH, and GEP models, respectively. *e R2

values are 0.85, 0.51, and 0.50 in training phase and 0.78,
0.42, and 0.50 in the validating phase.

*e RMSE values in the validating period are 66, 120,
and 121m3/s in the training phase and 73, 118, and 109m3/s
for the MART, GMDH, and GEP models, respectively, for
the Diyala River. Both the R2 and RMSE metrics results have
proved the accuracy of the MART model to disaggregate
annual flows to monthly streamflow in comparison with the
GMDH and GEP models. *e quality of the proposed
models was measured by equating between the three sta-
tistical time series parameters which are maximum flow,
standard deviation, and mean. Table 4 exhibits the results of
these parameters. In accordance with the reported results in
Table 4, it is apparent that the performance capacity of the
MART model was superior to the performance of GMDH
and GEP models. *e observed data of the maximum
monthly streamflow with the results of the applied models
shows that the maximum monthly streamflow values in the
validating phase were 1631, 1486, 1435, and 885m3/s for the
Upper Zab River, 1569, 1215, 769, and 588m3/s for the
Lower Zab River, and 864, 769, 626, and 570m3/s for the
Diyala River of the observed, MART, GMDH, and GEP
models, respectively. Comparing the results of the statistical
parameters, standard deviation, and the mean of the ob-
served monthly streamflow with the results of the applied
models as in Table 4 shows improved competence of the
MART model compared to the GMDH and GEP models.

*e predicted monthly streamflow over the validating
period was assessed using the scatter plots variation as il-
lustrated in Figures 7(a)–7(c). *e plots in Figure 7 dem-
onstrated a good relationship between the observed value
and the generated monthly streamflow using the potential of
the MART model in comparing to the other models. Also,
the efficiency of the applied models was evaluated by
comparing monthly statistical parameters for each month.
*e models’ capability to handle streamflow data decreases
with increased stochasticity of the data; however, the results
depict that MART is more capable of predicting such data.
*e results of the maximum monthly flow, mean flow, and
standard deviation for each month were compared with the
results of observed monthly streamflow in the validating
phase. *e comparisons were made by plotting the maxi-
mum monthly flow, mean flow, and standard deviation
against the months; see Figure 8. *e results of Figure 8 also
demonstrated that MART model is accurate and thus su-
perior with respect to the GMDH and GEP models’ per-
formance to generate monthly streamflow from annual
streamflow. As per the results of the statistical parameters, it
is apparent that the MART model performance is accurate
when compared to the observed data for the three studied
rivers (Figure 8). It is apparent that rivers have diverging
hydrological characteristics and model behavior and per-
formance can change greatly according to that. As per the
figure, it can be observed that each river presents different
seasonality and deviation over the time period because of
which models generate more error during modeling.

Table 2: Model setting.

Upper Zab Lower Zab Diyala
Function set
Addition + + +
Subtraction − − −

Multiplication × × ×

Division ÷ ÷ ÷
Power ∗∗ ∗∗ ∗∗

General parameters
Population size 50 100 100
Genes per chromosomes 4 4 4
Gene head length 8 8 8
Fitness function RRSE RRSE RRSE
Linking function Addition Addition Addition
Genetic operators
Mutation rate 0.044 0.044 0.044
Inversion rate 0.1 0.1 0.1

Table 3:*e performance metrics of the applied ML predictive models through the training and validating phases when modeling the three
investigated rivers.

Model
Upper Zab Lower Zab Diyala

Training Validating Training Validating Training Validating
R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s)

MART 0.93 85 0.84 113 0.90 62 0.75 95 0.85 66 0.78 73
GMDH 0.81 141 0.64 169 0.47 144 0.46 149 0.51 120 0.42 118
GEP 0.53 222 0.47 208 0.41 151 0.40 157 0.50 121 0.5 109
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Table 4: Statistical analysis of observed and modeling results of the monthly streamflow values.

River name Observed MART GMDH GEP
Training

Upper Zab
Maximum flow (m3/s) 1681 1558 1897 993

Standard deviation (m3/s) 326 303 293 229
Mean (m3/s) 397 393 393 402

Lower Zab
Maximum flow (m3/s) 1406 1215 827 628

Standard deviation (m3/s) 198 179 131 125
Mean (m3/s) 198 196 199 203

Diyala
Maximum flow (m3/s) 1451 850 908 617

Standard deviation (m3/s) 171 134 119 113
Mean (m3/s) 156 150 154 160

Validating

Upper Zab
Maximum flow (m3/s) 1631 1486 1435 885

Standard deviation (m3/s) 286 287 282 228
Mean (m3/s) 353 364 388 370

Lower Zab
Maximum flow (m3/s) 1569 1215 769 588

Standard deviation (m3/s) 205 201 149 129
Mean (m3/s) 198 201 195 207

Diyala
Maximum flow (m3/s) 864 769 626 570

Standard deviation (m3/s) 150 145 111 116
Mean (m3/s) 150 148 157 160

R2 = 0.8511
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Figure 7:*e scatter plots between the observed and predicted streamflow values for all applied predictive models. (a) Upper Zab River, (b)
Lower Zab River, and (c) Diyala River.
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Figure 8: Continued.
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Figure 8: Results of the statistical parameters against the months.
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Figure 9:*e graphs show the yearly time series flow of the three rivers and observed and generatedmonthly streamflow after application of
MART model during the validating phase.
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Figure 9 shows a comparison between the observed and
generated monthly streamflow generated using MART
model during the validation phase for the three rivers in this
study and it also shows how the monthly flows were gen-
erated from the annual flows data. *e results in Figure 9
show the proximity of the observed value and generated
monthly streamflow which also evidenced that the MART
model performance is able to produce monthly streamflow
time series from annual monthly streamflow time series
data.

*e results indicated the efficiency of MART model in
generating monthly flow data from annual flow data and this
is due to MART model’s structure, which enables the
building of robust models with a limited number of inputs
(the inputs included only the annual flow and time index).
*e results also showed the weakness of revolutionary and
self-learningmodels in creating robust models with a limited
number of inputs.

*e results indicated the efficiency of usingMARTmodel
to generate monthly streamflow from annual streamflow.
*is is the first application of usingMARTmodel to generate
the monthly streamflow from annual streamflow.*e results
showed the importance of using time index to improve the
accuracy of generating monthly streamflow from annual
streamflow. *e results of this paper are encouraging to
develop newmodels for generating monthly streamflow data
instead of the data of fragment method which is usually used
for this purpose.

4. Conclusions

In this study, three different ML models were used to
generate monthly streamflow time series from annual
streamflow time series. *e models included MART,
GMDH, and GEP. *e models input only included the
annual streamflows and monthly time index. *e results
showed that the MARTmodel is superior to the GMDH and
GEPmodels in producingmonthly streamflow time series by
applying annual monthly streamflow time series data. *e
results indicated that the structure of MARTmodel is better
than the structure of polynomial neural networks or revo-
lutionary models in generating modeling. *e efficiency of
MARTmodel was better than the results of GMDH and GEP
models for Upper Zab (R2 0.84, 0.64, and 0.47), Lower Zab
(R2 0.75, 0.46, and 0.40), and Diyala (R2 0.78, 0.42, and 0.5).
*e MART model accuracy is relating to its specific archi-
tecture, which may include number of trees growing in
equivalence in addition to the use of boosting technique
which helped to improve the prediction function.*e results
demonstrated the possibility of changing the timescale in
generating streamflow. *e application of MART model is
easier than the method of data of fragment that is usually
used to disaggregate the annual streamflow to monthly
streamflow.
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'e shear and bending are the actions that are experienced in the beam owing to the fact that the beam is a flexural member due to
the load in the transverse direction to their longitudinal axis. 'e shear strength (Vs) computation of reinforced concrete (RC)
beams has been a major topic in the field of structural engineering. 'ere have been several methodologies introduced for the Vs
prediction; however, the modeling accuracy is relatively low owing to the complex characteristic of the resistance mechanism
involving dowel effect of longitudinal reinforcement, concrete in the compression zone, contribution of the stirrups if existed, and
the aggregate interlock. Hence, the current research proposed a new soft computingmodel called random forest (RF) to predictVs.
Experimental datasets were collected from the open-source literature including the related geometric properties and concrete
characteristics of beam specimens. Nine input combinations were constructed based on the statistical correlation to be supplied
for the proposed predictive model. 'e prediction accuracy of the RF model was validated against the Support Vector Machine
(SVM), and several other empirical formulations have been adopted in the literature. 'e proposed RF model revealed better
prediction accuracy in addition the model structure emphasis in the incorporation of seven predictors by excluding (beam flange
thickness and coefficient). In the quantitative term, the minimal root mean square error value was attained (RMSE� 89.68 kN).

1. Introduction

During the design of reinforced concrete (RC) beams, one of
the important parameters considered is the shear behaviour of
the concrete structural members [1]. 'is is because shear
failure normally occurs as a combined action of shearing forces
and a bendingmoment; shear failure is mostly characterized by
a lack of ductility and minor deflections and occurs suddenly
without any notification [2, 3]. Shear failure is a complex
process that involves several parameters whose impact makes
the mechanism of shear failure a debatable matter. Until now,
empirical methods are being used to derive the guidelines and
design codes for the shear strength of RC beams [4]; such
empirical methods are limited in physical simulation as
practice, paving the way for the development of an effective
mathematical technique that will provide better estimates of the
accuracy of the shear strength of RC beams [5, 6].

Empirical-based prediction of the shear strength of RC
beams has been the focus of various studies since the 1960s
[7, 8]. When using the ACI code for the prediction of the
shear capacity of RC beams with steel stirrups, the output is
normally the sum of the concrete and stirrup contributions
[4]; however, during this simple addition, the interaction
between the stirrups is normally ignored [9]. Studies have
reported the prediction of the shear strength of RCmembers
without stirrups using a mechanics-based segmental ap-
proach [10, 11]. Various attempts have been made in this
field towards the provision of simple predictive shear
mechanism-based equations that will enable new ways of
designing concrete structures [12]. Despite the convenience
of these methods, there is still the issue of accuracy due to the
shear action-induced masking of the sudden and brittle
failure of RC beams; hence, most of the relevant building
codes are devoid of rational design equations. It is important
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to improve the predictive performance during the design of
RC beams to enable the accurate prediction of the shear
strength of different types of RC beams. Several proposals
have been made in recent years regarding the use of ad-
vanced machine learning (ML) models for shear strength
prediction [13, 14].

In the field of structural engineering, some of the nag-
ging problems encountered are the analysis of beam be-
haviour, beam response to loading, and analysis of beam
shear failure; these problems require the prediction of the
behaviour of the system using few laboratory observations
[15–17]. Most of the time, mathematical models are de-
veloped for the prediction and analysis of the performance of
the system through scientific extrapolation of the laboratory
test results on an undefined system [18]. 'ese problems can
be solved using artificial intelligence- (AI-) based machine
learning algorithms which are mathematical tools that can
detect patterns in a given dataset and extract such patterns
for analysis purposes.

AI models have profound application in structural en-
gineering owing to the ability to provide remarkable solu-
tions [19–21]. AI models can provide solutions to problems
associated with high stochasticity, nonlinearity, and non-
stationarity. 'ey can be used to map incomplete system
data into a description state of the system [13]. In structural
engineering, incomplete and unorganized datasets are
interpreted and recognized for the formulation of problems.
One common example is the detection of damage in a
structure with numerous components via the collection of
data at different locations on the structure [22, 23]. 'is is
considered an inverse problem and requires that a state
should be determined from the observed system behaviour
[24]. 'e problems are first analyzed before finding the
solution that will aid in achieving the desired system be-
havior, while those that will not improve performance are
filtered out [21]. AI models can be used to map the behavior
of a given system to a space of system attributes that can
guarantee the expected behavior. Hence, it is required that
system engineers be able to predict the behavior of the
complex systems based on the known system configuration
and the external loads that the system is subjected to. 'is
implies a problem of mapping the cause to effect, and this is
achievable using AI models.

One important area of AI model’s application is the
evaluation of the set of potential solutions to a given problem
and the determination of the most appropriate solution from
the pool of available alternatives via the estimation of the
values of evaluation criteria from a known set of attributes.
Beam shear strength was first investigated by Adhikary and
Mutsuyoshi [25] using the artificial neural network (ANN).
Adaptive neuro fuzzy inference system (ANFIS) model was
developed for the wrapped shear deficient RC beams [26].'e
development of hybridized response surface method (RSM)
with support vector regression (SVR) model to predict shear
strength of steel fiber-reinforced concrete beam (SFRCB) [27].
'e integration of SVR model with firefly algorithm for the
sake of prediction accuracy of SFRCB shear strength [28].'e
hybrid least squares support vector regression-smart firefly

algorithm (LSSVR-SFA) model was established for shear
strength prediction of RC beams [29]. A new novel AI model
based on the hybridization of ANN model with atom search
optimization (ASO) algorithm for SFRCB shear strength [30].
It can be observed that several versions of AI models for
modeling beam shear strength. However, the introduced
models have demonstrated limitations in the prediction
performance.

To the best of the knowledge of the current study, the
feasibility of the newly explored machine learning model
called RF was tested to predict Vs of reinforced concrete
beams. 'e validation of the proposed model was conducted
in comparison with SVM and empirical formulations [31]. A
deep analysis and prediction accuracy comparison were
performed. 'e rest of the manuscript was structured,
second section reports the methodology, third section
presents the dataset, and fourth section exhibits the dis-
cussion and analysis of the studied predictive models.
Section 5 explains the validation against the literature em-
pirical; finally, Section 5 displays the research conclusion
and recommended future research.

2. Methods and Materials

2.1. Random Forest. 'e random forest (RF) model was
developed by Breiman [32] as a nonparametric ensemble
classifier; the development of the RF was based on the flexible
decision tree algorithm; hence, it is an extension of the
classification and regression tree. 'e RF is comprised of a
combination of different trees, with each tree being generated
using bootstrap samples [33, 34]. For the model construction,
the selected algorithm will perform auto-selection of the
random parts of the training data, while the tree branch at
each node will be determined from a subset of randomized
variables during the training process. Classification error is
minimized by expanding each individual tree, but the
problem is that the result of this process is affected by the
random selection step. 'e RF was mainly developed for the
determination of the extent of increase in the prediction error
upon the permutation of the data output for specific variables.
Hence, the relevance of each variable can be determined with
this approach as long as all the variables are adequate [35].'e
training phase of RF generates loads of de-correlated re-
gression trees, and each of these trees is grown in a randomly
selected subset of the training set before combining them
using a bagging method [36]. Bagging is used in this process
to reduce the prediction-related variances and improve the
prediction accuracy. To detail the process, assume n number
of randomly selected samples from Sn, each having a selective
probability of 1/n. In this case, these n samples that are
randomly selected are called a bootstrap sample Sθn, with θ
being a vector distributed independently. Also, assume that
the bagging algorithm has been used to select q number of
bootstrap samples (Sθ1n , S

θ2
n , . . . , S

θn
n ), and q number of re-

gression trees have been trained on these subsets h(X, S
θ1
n ),

h(X, S
θ2
n ),. . ., h(X, S

θn
n ). 'en, the trained q number of re-

gression trees generates q number of outputs Y1 � h(X, S
θ1
n ),
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Y2 � h (X, S
θ2
n ),. . ., Yq � h(X, S

θq

n ); then, the values of the y

outputs are averaged to obtain the final output of the system.
Figure 1 presents the RF model structure.

2.2. Dataset Explanation andModeling Development. In this
study, the publicly available dataset on the experimental
calculation of shear strength of the reinforced concrete beam
was considered; this comprised of 349 samples collected
from the open-source literature [37–56]. Among the con-
sidered dataset are bw: beam width, d: effective depth, fc

′:
concrete compressive strength, hf: thickness of the flange, b:
flange width, a/d: wide range of shear span ratio to the
effective depth, ρsl: flexural reinforcement ratio of the
existing steel bar, ρst: transverse reinforcement ratio of the
existing steel bar, fst,y: the yield stress of steel stirrups, and
Kf: flange coefficient. 'ese parameters were engaged during
the development of the predictive models for the determi-
nation of Vs. 'e statistical pattern of the input parameters
and the predicted Vs is presented in Table 1. 'e observed
maximum and minimum Vs values over the training dataset
were 2237 kN and 22 kN, respectively. An instance of
reinforced concrete beams under the condition of shear
strength is presented in Figure 2. 'e correlation matrix
between the predictors and predictand was presented in
Figure 3. 'e modeling procedure was established based on
the correlation statistic to identify the input combinations as
reported in Table 1. Several performance metrics were
calculated to evaluate the predictive models as reported in
the appendix [24].

3. Models’ Prediction Results and Analysis

Among several machine learning models that have been
established for shear strength prediction, the SVM model
was predominately adopted [57–61]. Hence, the current
proposed model (i.e., RF) was validated against the SVM
model. 'e evaluation of the statistical performance of the
applied RF predictive model for shear strength prediction is
presented in this section. 'e statistical performance was
computed based on some performance metrics over the
training and testing phases. 'ese performance metrics were
considered to achieve a better assessment and justification of
the developedmodel in terms of the accuracy level since each
of the statistical metrics is associated with certain limita-
tions. 'e observed prediction accuracy for the training and
testing phases of the RF model are shown in Tables 2 (RMSE
for RF model� 77.13 kN, MAE� 26.17 kN, MAPE� 0.08,
Nash� 0.94, and MD� 0.92); these metrics were computed
using the nine input combination as all the input parameters
were considered during the simulation step. For the testing
phase, the RF model achieved the best results with
the same ninth input combination (RMSE� 89.66 kN,
MAE� 36.03 kN, MAPE� 0.17, Nash� 0.92, and
MD� 0.88). Observably, the models achieved reasonable
levels of learning accuracies. 'e predictive performance of
the RF model was superior owing to its understanding of the
internal relationship between the shear strength and the
geometric/concrete properties of beams.

'e prediction accuracies of the SVMduring the training
and testing phase are presented in Tables 3. 'e SVMmodel
was attained during the training phase minimum RMSE
value of 167.05 kN and MAE value of 43.83 kN using six
input combinations after excluding a/d, hf, and kf parameters
from the predictionmatrix. On the contrary, the SVMmodel
during the testing phase exhibited the minimum RMSE
value of 163.06 kN, an MAE value of 50.03 kN, a MAPE
value of 0.30, Nash value of 0.72, and MD value of 0.84.
Based on the reported numerical results, it is essential to
present the degree of prediction accuracy enhancement. 'e
RMSE metric was selected to verify the degree of en-
hancement in which it obtained 82% accuracy improvement
using the RF model over SVM during the test modeling
phase.

Figure 4 shows the Taylor diagram of the comparison for
the applied prediction models. 'is diagram eliminated the
redundancy of the statistical indicators as it is generated
using three statistical indicators which are correlation,
RMSE, and standard deviation [62]. 'e figure shows that
the RFmodel achieved the nearest value to the shear strength
benchmark possibly due to the incorporation of all the
predictors “for example M9.” In other manner, the relative
error of the first and the last input combination is drawn in
Figure 5. It is clear that Model 9 reports the lower values of
the relative error.

'e scatter plot is one of the graphical forms of sta-
tistical visualization of the accuracy of machine learning
models as it reveals the level of closeness of the observed
and predicted values. 'e closeness of the observed and
predicted shear strength of RC beams in this study is
presented in Figures 6 and 7 for the training and testing
phases, respectively. 'e figures indicate the regression
equation and the determination coefficient (R2) values for
the model assessments. 'e scatter plots were generated for
all input combinations. From the figures’ presentation, the
RF model achieved the closest level agreement between the
observed and predicted shear strength values over the
training and testing phases of the models. Based on the
reported results explained in the scatter plots, the optimal
prediction accuracy that has been attained using the
proposed RF model are perfectly fitted for all the obser-
vations’ magnitudes. It can be observed that Model 8 and
Model 9 were reported identical prediction accuracy in
which explained the unnecessary the of the flange coeffi-
cient information as predictor for the prediction matrix.

4. Validation against the Literature

Despite the ease of solving various structural engineering
problems, their performance is yet to be validated against
the available empirical formulations or the standard ma-
chine learning models available in the literature. 'e ap-
plied machine learning models for beam shear strength
prediction in this study were validated using five empirical
formulations pooled from the established dataset (served as
the benchmark for the validation processes). 'e testing
phase results were also considered for the comparison after
conducting several reviews in this domain. Correlation was
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Figure 2: 'e studied reinforced concrete beam example experienced the shear strength case.

Input data

Tree 1

Prediction 1 Prediction 2 Prediction n

Average all predictions

Final predictions

Tree 2 Tree n

Figure 1: 'e random forest model structure.

Table 1: 'e initiated predictors’ codes for the applied predictive models based on the statistical correlation.

Input codes Associate parameters
M1 ρst × fst,y

M2 ρst × fst,y d
M3 ρst × fst,y d ρsl

M4 ρst × fst,y d ρsl fc
′

M5 ρst × fst,y d ρsl fc
′ b

M6 ρst × fst,y d ρsl fc
′ b bw

M7 ρst × fst,y d ρsl fc
′ b bw a/d

M8 ρst × fst,y d ρsl fc
′ b bw a/d hf

M9 ρst × fst,y d ρsl fc
′ b bw a/d hf kf
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Table 2:'e prediction results for the investigated nine input combinations over the training and testing phases for the proposed RFmodel.

Models combinations R2 RMSE (kN) MAE (kN) MAPE Nash MD
Training phase
M1 0.79 144.44 74.52 0.41 0.79 0.78
M2 0.94 85.88 35.73 0.12 0.93 0.90
M3 0.93 88.28 35.58 0.12 0.92 0.90
M4 0.95 80.34 0.09 0.93 0.92
M5 0.95 79.58 0.09 0.94 0.92
M6 0.95 74.69 28.89 0.08 0.94 0.93
M7 0.96 71.01 27.82 0.08 0.95 0.93
M8 0.96 74.81 25.67 0.08 0.94 0.93
M9 0.95 77.13 26.17 0.08 0.94 0.92
Testing phase
M1 0.68 175.71 93.44 0.55 0.68 0.70
M2 0.83 129.69 59.14 0.27 0.83 0.82
M3 0.82 132.38 56.07 0.23 0.82 0.83
M4 0.92 103.61 43.98 0.23 0.89 0.86
M5 0.92 97.94 41.55 0.22 0.90 0.87
M6 0.93 92.57 35.60 0.16 0.91 0.89
M7 0.94 89.68 35.59 0.16 0.92 0.89
M8 0.95 89.66 36.03 0.17 0.92 0.88
M9 0.95 89.66 36.03 0.17 0.92 0.88

Table 3: 'e prediction results for the investigated nine input combinations over the training and testing phases for the proposed
SVM model.

Input combinations R2 RMSE (kN) MAE (kN) MAPE Nash MD
Training phase
M1 0.47 227.60 132.75 0.66 0.47 0.57
M2 0.63 209.86 75.61 0.27 0.55 0.76
M3 0.67 200.84 72.76 0.27 0.59 0.77
M4 0.77 174.56 60.52 0.28 0.68 0.80
M5 0.73 178.07 53.14 0.20 0.68 0.84
M6 0.76 167.05 43.83 0.18 0.72 0.87
M7 0.75 169.92 44.85 0.17 0.71 0.87
M8 0.74 170.11 45.06 0.18 0.71 0.87
M9 0.74 171.37 45.11 0.18 0.70 0.87
Testing phase
M1 0.59 226.27 106.65 0.49 0.47 0.62
M2 0.64 197.63 78.41 0.36 0.59 0.74
M3 0.72 187.49 72.20 0.37 0.63 0.76
M4 0.75 177.63 68.11 0.37 0.67 0.77
M5 0.77 174.56 60.52 0.28 0.68 0.80
M6 0.77 167.65 50.01 0.25 0.71 0.83
M7 0.78 166.61 49.59 0.29 0.71 0.84
M8 0.79 163.06 50.03 0.30 0.72 0.84
M9 0.79 163.17 51.20 0.34 0.72 0.83
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Figure 4: Taylor diagram presentation for the applied and comparable predictive models (RF and SVM). (a) Model 1 training. (b) Model 1
testing. (c) Model 9 training. (d) Model 9 testing.
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Figure 6: 'e scatter plots of the RF and SVM models over the training phase for all investigated input combinations.
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used as a statistical metric for the comparison. 'e cor-
relation statistics were reported following standard codes
and empirical formulations as follows: ACI 446 [63]
(R � 0.65), ASCE-ACI 445 [64] (R � 0.79), CSA [65]
(R � 0.66), NZS 3101 [66] (R � 0.61), and EC2 [67]
(R � 0.84). Machine learning models have been noted to
exhibit good performances in the previous studies; for
example, the linear genetic programming (LGP) model has
been used by Gandomi et al. [68] for shear strength pre-
diction; the model achieved a maximum R value of 0.92.
However, the proposed RF model in this study achieved
better prediction performance (R� 0.97), meaning that the
applied RF model can achieve better similarity between the
experimental and predicted shear strength values. Fur-
thermore, the proposed model can perform a better gen-
eralization of the internal mechanism between the physical
properties of concrete and shear phenomenon.

5. Conclusion

Various limitations have been observed in the empirical
formulation for the design of the shear strength of RC beams
as evidenced in the literature; hence, efforts have been
dedicated to the development of computer-aided models
that can serve as alternatives. 'is work aims to develop the
RF model as a robust machine learning approach to the
prediction of the shear strength of RC beams. For this
course, the parameters of the concrete and geometric
properties of the beam were collected from previous studies
and used for the model development. Nine input combi-
nations of the “predictors for the models’ matrix” were
constructed, while the performance of the proposed model
was validated against SVM and other empirical formula-
tions. 'e modeling results showed that the proposed RF
model is a robust approach to the modeling of Vs of RC
beams. SVM achieved a comparable performance as well but
not to the level of performance of the proposed RF model.
'e prediction results generally showed that the proposed

RF model achieved better performance accuracy than the
empirical formulas. 'e model findings also suggested the
relevance of the parameters of the geometric and concrete
properties of beams on the learning process. Finally, a re-
liable and robust soft computing model has been developed
in this study for the prediction of the Vs value of RC beams;
hence, a significant contribution has been made to the basic
knowledge of structural engineering design and sustain-
ability. Future research direction is recommended to be
devoted on the uncertainty analysis of model, data, and
input parameters. In addition, there is a possibility to in-
vestigate the feature selection approach in which the re-
dundant predictors can be eliminated.

Abbreviations

Vs: Shear strength
RC: Reinforced concrete
RF: Random forest
SVM: Support vector machine
R2: Determination coefficient
RMSE: Root mean square error
MAE: Mean absolute error
MAPE: Mean absolute percentage error
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ML: Machine learning
MD: Modified index of agreement
LGP: Linear genetic programming.

Appendix

'e mathematical expression of the computed performance
metrics including determination coefficient (R2), root mean
square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), Nash–Sutcliffe efficiency
(NSE), and modified index of agreement (MD) is expressed
as follows:
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In the above equations,N is the number of the dataset, y0
and yp are the observed and predicted shear strength, yo

′ and
yp
′ are the mean values of the observed and predicted shear

strength, and j is the exponent term.
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Castellated steel beams (CSB) are an attractive option for the steel construction industry thanks to outstanding advantages, such as
the ability to exceed large span, lightweight, and allowing flexible arrangement of the technical pipes through beams. In addition,
the complex localized and global failures characterizing these structural members have led researchers to focus on the devel-
opment of efficient design guidelines. )is paper aims to propose an artificial neural network (ANN) model with optimal
architecture to predict the load-carrying capacity of CSB with a scheme of the simple beam bearing load located at the center of the
beam.)e ANNmodel is built with 9 input variables, which are essential parameters equivalent to the geometrical properties and
mechanical properties of the material, such as the overall depth of the castellated beam, the vertical projection of the inclined side
of the opening, the web thickness, the flange width, the flange thickness, the width of web post at middepth, the horizontal
projection of inclined side of the opening, the minimumweb yield stress, and the minimum flange yield stress.)e output variable
is the load-carrying capacity of the CSB.With the optimal ANN architecture [9-1-1] containing one hidden layer, the performance
of the ANN model is evaluated based on statistical criteria such as R2, RMSE, and MAE. )e results show that the optimal ANN
model is a highly effective predictor of the load-carrying capacity of the CSB with the best value of R2 � 0.989, RMSE� 3.328, and
MAE� 2.620 for the testing part.)e ANNmodel seems to be the best algorithm of machine learning for predicting the CSB load-
carrying capacity.

1. Introduction

In modern construction, steel structures are used for
abundant structures, including heavy industrial buildings,
high-rise buildings, equipment support systems, infra-
structure, bridges, towers, and racking systems [1]. )e steel
structure has numerous advantages such as large bearing
capacity thanks to the high strength steel material, high
reliability thanks to the uniformmaterial, and the elastic and
ductile capacity of steel, making it easy to transport and
assemble [2]. Due to the high cost of steel, many structural
engineers have worked hard to find ways to reduce costs for
steel structures [3, 4]. )erefore, several solutions have been
proposed to increase the rigidity or load capacity of the
structure without increasing the weight of steel. Castellated
steel beams (CSB) with web openings are among the first

suggestions of these solutions [5]. )is type of beam is made
from wide flange I-beams, then cutting the belly plate in a
zigzag line, welding the two halves on top of each other, and
welding by vertical welding seams along the beam [3, 4, 6, 7].
)is increases the section height but does not increase
weight compared to the original solid beam; thus, bending
resistance characteristics such as the moment of inertia,
sectionmodulus, and the radius of inertia are higher, and the
beam stiffness and flexural resistance of sections are en-
hanced [3, 7, 8]. )erefore, the beam bearing capacity in-
creases, the deflection is small, and the beam is able to exceed
the large aperture [7].

However, the web openings will change the stress dis-
tribution on the bending sections [4]. Near the web open-
ings, the stress distribution is quite complex, and stress
concentration occurs. Moreover, due to the bending

Hindawi
Complexity
Volume 2021, Article ID 6697923, 14 pages
https://doi.org/10.1155/2021/6697923

mailto:banglh@utt.edu.vn
https://orcid.org/0000-0003-4266-1707
https://orcid.org/0000-0002-8038-2381
https://orcid.org/0000-0002-4157-7717
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6697923


moment effect, this area is also subjected to the torsion force
[9]. )erefore, the critical loads of the structures are
changed compared with the conventional beam [5]. So far,
many experimental investigations, as well as numerical
analyses, have been carried out to determine the behavior
of the castellated beams under different loads. )e beam
failure is caused by numerous damage caused by overall
bending, Vierendeel mechanism formation, welded joint
rupture in the web, web post shear bucking, and web post-
compression buckling [10–13]. )e damage is affected by
numerous factors, including geometrical dimensions of
beams, loading type, and position, beam boundary con-
ditions, material properties, as well as the distribution of
residual stresses and geometric imperfections [14, 15].
Konstantinos and Mello [16] investigated the CSB be-
havior with close web openings by studying seven ex-
perimental samples and fourteen numerical simulation
samples. )e aim is to study the effects of different hole
shapes and sizes on the bearing capacity and critical load
of the CSB. )e CSB finite element models with hexagonal
and circular web openings are developed and analyzed
using ANSYS. )e results are compared with seven ex-
periments test samples, thereby proposing an experi-
mental formula to predict the load capacity of castellated
beams. A numerical model studies the behavior of CSB
with hexagonal and octagonal web openings up to failure
developed by Soltani et al. [17]. )e main purpose is to
study and determine the instability in the position of web
openings. In the work of Jamadar and Kumbhar [18], the
authors used finite element models to determine the
optimal hole size for CSB. In general, the numerical ap-
proach or laboratory experiments can only be applied to a
limited number of cases, not enough to apply for general
web openings beams. Furthermore, the cost of the ex-
periment is high and requires a considerable amount of
time [5]. )erefore, it is necessary to develop an efficient
and universal model to study the behavior of CSB or
estimate the load-carrying capacity of the CSB.

In recent years, with the rapid development of artificial
intelligence technology, machine learning algorithms have
been popularized in all areas of life [19–21]. Among AI
algorithms, ANN is currently effective algorithms to sim-
ulate complex technical problems [22, 23]. ANN model is
capable of solving complex, nonlinear problems, especially
in problems where the relationship between the inputs and
outputs cannot be established explicitly. An outstanding
advantage of the neural network algorithm is the ability to
self-study and adjust the weights. )us, the calculation
results are consistent without depending on mechanical
equations, physical chemistry, or subjective opinion. Many
complex problems related to structural engineering
[24–26], geotechnical engineering [26–28], and materials
science [29–31] have been successfully solved. In detail,
Abdalla et al. [27] successfully predicted the minimum
factor of safety against slope failure in clayey soils using the
ANN model. )e mechanical properties of FRP concrete
are also predicted by the ANN model with high accuracy
[32, 33]. In the field of calculating steel beams using neural
networks, a number of studies have been published, such as

the study of Guzelbey et al. [34] and Fonseca et al. [35]. In
these studies, a backpropagation (BP) neural network is
used to predict the load-carrying capacity of steel beams.
)e results show that the BP network is more accurate than
the numerical result, practical and fast, compared to the FE
model. Recently, Amayreh and Saka [36] and Gholizadeh
et al. [37] used ANN to predict load failure of the CSB. In
the study of Amayreh and Saka, 47 experimental data are
collected, the ANN model is built with 8 input parameters,
the predicted results are compared with the Blodgett
method, and BS Code shows the neural network provides
an effective alternative to predicting the failure loads of
CSB. In the investigation of Gholizadeh et al., 140 finite
element models of the web post are analyzed with 7 input
parameters related to geometry size. )e BP networks and
ANFIS are used to predict the load-carrying capacity of the
CSB. )e results show that the machine learning method
provides better accuracy than the equations proposed in the
document. Besides, methods such as genetic algorithm
(GP) and an integrated search algorithm of genetic pro-
gramming and simulated annealing (GSA) are also used to
predict the load-carrying capacity of the CSB.)e efficiency
of the ANN model shows that it is an excellent choice to
develop a numerical tool for engineers to predict the
loading carrying capacity of CSB, which could help to
reduce experimental time consumption and cost. )ere-
fore, the main purpose of this investigation is to propose an
efficient ANN model with a more general number of input
parameters and to increase the accuracy in predicting the
load-carrying capacity of the CSB.

In this work, the ANN model’s performance will be
studied to predict the load-carrying capacity of the CSB. One
of the factors affecting the model performance is to finely
determine the ANN architecture. )erefore, the first goal of
this work is to identify and optimize the ANN architecture to
predict the load-carrying capacity of CSB. To achieve this
goal, 500 simulations taking into account a data random
sampling effect are performed for each model to verify the
convergence and feasibility of the proposed model by Monte
Carlo simulation (MSC). )en, with the optimal ANN ar-
chitecture, the performance evaluation of the model is
performed based on three statistical criteria, including the
Coefficient of Determination (R2), Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE).

2. Significance of the Research Study

Accurately predicting the load-carrying capacity of the CSB
is of crucial importance because of many possible advantages
and contributions to construction design. Available nu-
merical or experimental approaches in the literature still face
several limitations, for instance, the limitation of data
(Amayreh and Saka [36] with 47 samples; Gholizadeh et al.
[37] with 140 samples; Gandomi et al. [38] with 47 samples;
and Aminian et al. [39] with 142 samples), accuracy eval-
uation of the ANN model, or comparison with different
prediction results in the literature. )ereby, the contribution
of the present investigation could be highlighted via the
following ideas:
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(1) )e largest dataset, to the best of the author’s
knowledge, is used for the construction of ANN
models, including 150 experimental results

(2) )e reliability of ANNmodels is evaluated by Monte
Carlo simulations

(3) )e best ANN architecture is determined by the
performance evaluation of 240 ANN architectures,
including 15 architectures using one hidden layer,
and 225 architectures with two hidden layers

(4) )e performance of the best ANN architecture is
compared with four studies published in the liter-
ature and confirmed the highest accuracy of the
proposed ANN model in the present study

3. Database Construction

To construct a model to predict the load capacity of the CSB,
a database of 150 experimental data is collected, in which 140
beam samples are simulated from the validated finite ele-
ment model introduced in document [37], and 10 beam
samples are tested directly for bearing capacity published in
document [13]. )e beams are simulated and tested under
concentrated loads placed in the center of the beam until
failure. )e basic parameters determining the beam failure
load equivalent to the nine input variables and one output
variable used in this study are as follows.

Seven parameters related to the size of the CSB are used:
the overall depth of castellated beam (I1, mm); the vertical
projection of inclined side of opening (I2, mm); the web
thickness (I3, mm); the flange width (I4, mm); the flange
thickness (I5, mm); the width of web post at mi depth (I6,
mm); the horizontal projection of inclined side of the
opening (I7, mm), where I1 varies from 180.00mm to
550.00mm (mean of 335.92mm and standard deviation of
99.60mm), I2 ranges from 50.00mm to 250.00mm (mean of
103.36mm and standard deviation of 40.15mm), I3 has
values between 2.00mm and 5.00mm (mean value is
3.65mm and standard deviation 0.88mm), I4 ranges from
58.42mm to 78.49mm (the mean value is 68.39mm and
standard deviation of 3.54mm), the value of I5 is between
3.99mm and 6.90mm (the mean is 5.34mm and the
standard deviation is 1.03mm), I6 ranges from 30.00mm to
95.00mm (mean 53.75mm and standard deviation
19.26mm), and I7 ranges from 30.00mm to 149.35mm
(mean value is 59.23mm and the standard deviation is
22.75mm). )e remaining two parameters are related to the
mechanical properties of the material, including the mini-
mum web yield stress (I8, MPa) and the minimum flange
yield stress (I9, MPa). For I8, the value varies from
311.65MPa to 374.40MPa (mean is 351.36mm and the
standard deviation is 7.12mm), and I9 ranges from
307.52MPa to 383.54Mpa (mean is 350.97mm and the
standard deviation is 8.25mm). )e detailed statistical in-
formation of these variables is shown in Table 1. )e ge-
ometry and dimensions of the CSB are shown in Figure 1.

)e dataset is randomly divided into two subsets using a
uniform distribution, in which 70% of the data (corre-
sponding to 105 data) is used to train ANNmodels, and 30%

of the remaining data (corresponding to 45 data) is used for
model verification. )is means that the control data (30%) is
entirely unknown to the ANN model. )erefore, the fore-
casting capacity of the ANN model can be assessed objec-
tively and most accurately through the verification section.
All data are normalized to the range of [0, 1] for reducing the
number of errors in processing by ANN, according to the
recommendations of [40]. )is process ensures that the
training phase of ANN models can be carried out with
functional generalization capabilities. Such proportions are
expressed using the following equation:

χscaled �
2(χ − λ)

μ − χ
− 1, (1)

where λ and μ are the minimum and maximum values of
given variables and χ is the value of the variable to be scaled.

In addition, a correlation analysis between the input and
output parameters is performed and shown in Figure 2.
Figure 2 is created to find a linear statistical correlation
between parameters in the database. )erefore, a 10×10
matrix is established, where the upper triangle represents the
values of the correlation coefficient, while the lower triangle
shows a scatter plot between the two related variables. )e
diagonal of the matrix indicates the name of the parameter.
)e maximum value of the correlation coefficient (R)
compared to Y is calculated by 0.52 (for variable I3), followed
by 0.39 (for variable I2), 0.28 (for variable I4), 0.24 (for
variable I7), 0.23 (for variable I8), 0.21 (for variable I9), 0.12
(for variable I6), 0.09 (for variable I5), and 0.04 (for variable
I1).

4. Methods

4.1. Artificial Neural Network. )e ANN artificial neural
network is a mathematical and statistical model based on the
working mechanism of the biological nervous system [41].
ANN does not attempt to simulate the delicate workings of
the brain, but they try to replicate the logical activity of the
brain by gathering a lot of input in the form of neurons to
perform computational or cognitive processes. )e purpose
of ANN is to define the relationship between the input
parameters and the output parameters of the model.
However, ANN only uses datasets without prespecifying the
math functions that determine the relationship between the
input and output parameters of the model. )is is an ef-
fective soft computation method to solve too complex
problems compared to classical mathematics and traditional
methods [42].

In this study, a feedforward neural network trained by
the backpropagation algorithm is used [43]. )is neural
network is made up of a series of processing elements, which
can be called neurons or nodes. )ese neurons are partially
or wholly connected through weights (wji) and are divided
into 3 layers: input layer, output layer, and hidden layers.

During the learning process, the backpropagation al-
gorithm uses the gradient descent search method to adjust
the connection weight. )e learning process starts from the
input data (the input parameter vectors are entered into the
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Figure 1: Castellated steel beams and opening geometry.

Table 1: Summary of the input and output variables of CSB beams used in this study.

Symbol Unit Min Median Mean Max StD∗ SK∗∗

)e overall depth of the castellated beam I1 mm 180.000 380.500 335.921 550.000 99.597 −0.244
)e vertical projection of inclined side of opening I2 mm 50.000 110.000 103.358 250.000 40.154 0.389
)e web thickness I3 mm 2.000 3.560 3.647 5.000 0.883 −0.576
)e flange width I4 mm 58.420 66.900 68.386 78.486 3.538 0.590
)e flange thickness I5 mm 3.988 4.590 5.344 6.900 1.032 0.666
)e width of web post at middepth I6 mm 30.000 50.000 53.753 95.000 19.262 0.235
)e horizontal projection of inclined side of opening I7 mm 30.000 55.000 59.230 149.352 22.754 1.128
)e minimum web yield stress I8 MPa 311.654 352.000 351.360 374.400 7.123 −4.195
)e minimum flange yield stress I9 MPa 307.517 352.000 350.968 383.540 8.251 −3.137
)e load-carrying capacity Y kN 20.370 74.068 73.524 138.880 27.676 0.251
∗StD� standard deviation; ∗∗SK�skewness.
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Figure 2: Correlation graphs between input and output variables used in this study.
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input layer’s neurons). At the j hidden layer neuron, the
signal value received from the input layer will be composed
of a total input value according to the following formula:

Ij � θj + 
n

i�1
wjixi, (2)

in which xi are the input parameters and weights (wji) and
bias (θj) will be randomly generated.

)e pass function will then be used to calculate the
output value using the following formula:

yj � f Ij . (3)

)is output value again serves as the input to the next
layer neuron. As it continues, this value is passed to the
neuron in the output layer. For a hidden single-layer net-
work, this step will move to reverse propagation. )e dif-
ference between the output value (yj) and the actual value (tj)
is called the cost function, calculated as follows:

J � tj − yj. (4)

From the cost function, compute the weight derivative of
the entered and hidden classes. From there, adjust the
weights and bias variables to make the predicted output of
the network closer to expected:

Δwji �
zJ

zwji

,

Δθj �
zJ

zθj

,

wji(new) � wji(old) − ηΔwji,

θj(new) � θj(old) − ηΔθj,

(5)

where wji(new), θj(new)are weight value and bias value
after adjustment; wji(old), θj(old) are weight value and
previous bias values; and η is the learning rate.

Learning speed is the optimal algorithm parameter
(gradient descent). If this parameter is small, it will take
many iterations for the function to reach its minimum.
Conversely, if this parameter is large, the algorithm will need
fewer iterations, but then it is possible that the function will
ignore the minima and cannot converge.

To overcome the weights (wji) and bias values (θj) of the
next iteration step that do not fall into a local minimum
point, the momentum algorithm is used [44]. )is algorithm
calculates the amount of change of the variables at time t (vt)
to update the new value:

wji(new) � wji(old) − c]w
t−1 − ηΔwji,

θj(new) � θj(old) − c]w
t−1 − ηΔθj,

(6)

where c is the momentum term.
With multiple hidden layers, the algorithm formulas

perform the same steps. After the learning process, the
model will be verified by an independent testing database.

4.2. Performance Criteria. During the training of ANN
models, it is necessary to quantify the performance of the
model to be able to repeat the hyperparameter adjustment to
choose the best model possible. Standard quantitative per-
formance measures for a regression model include the
Coefficient of Determination (R2), Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE) [45, 46]. )e
R2 criterion is widely used in regression problems to estimate
the correlation between the actual value and the predicted
results [47].)e value of R2 is in the range [0; 1]. In addition,
RMSE andMAEmeasure the mean error between actual and
predicted outputs [48]. Quantitatively, RMSE and MAE
values are closer to 0, and the closer the value of R2 is to 1, the
more accurate the machine learning model is. )e following
equations represent these values:

R
2

� 1 −


N
j�1 Pj − Pj 


N
j�1 Pj − P 

,

RMSE �

�������������


N
j�1 Pj − Pj 

2

N



,

MAE �


N
j�1 Pj − Pj





N
,

(7)

in which Pj is the actual jth output, Pj is the predicted jth
output, P is the average of the Pj, and N is the number of the
samples.

5. Methodology Flow Chart

)e methodology of developing artificial neural networks to
predict the load-carrying capacity of the CSB includes four
primary steps as follows (as shown in Figure 3):

Step 1. Database preparation: in this step, a database of
140 finite element simulation beam samples and 10
direct test beam samples is collected to build the ANN
model. )e basic parameters to predict the load-car-
rying capacity of the CSB include 9 input variables
divided into two groups of variables: the geometric size
group and the physical properties of the material. )e
dataset is randomly divided into two parts, of which
70% of the data is used to train the ANNmodel and the
remaining 30% is used to validate the built model.
Step 2. Determination of the optimum of ANN ar-
chitecture: in this step, the construction of the optimum
of ANN architecture based on the training dataset is
carried out. )e criteria used to validate the optimal
ANN model include R2, RMSE, and MAE.
Step 3. Training the optimal model: in this step, the
ANN model with the optimum architecture is trained
using the training dataset.
Step 4. Validating the model: in this step, the testing
dataset is used to test and confirm the trained ANN
model. )e performance of the ANN model is evalu-
ated by statistical criteria: R2, RMSE, and MAE.
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6. Results and Discussion

6.1. Investigation of Model Convergence. In this section, the
determination of the ANN architecture and optimization of
the ANN parameters are performed using the gradient de-
scent algorithm. Parameters of the ANN model used in this
study are given in Table 2, in which there are eight fixed
parameters, and two parameters are subjected to a parametric
study, namely, the number of hidden layers and the number
of neurons in each hidden layer. In general, choosing the
number of hidden layers and neurons in each layer is a trial-
and-error test, needed to find the best configuration of the
network [23]. In this study, ANN models containing one and
two hidden layers are analyzed and tested. )e number of
neurons in each hidden layer is varied from 1 to 15. Regarding
each network topology, the network training process is
performed. In essence, network training is the process of
adjusting the link weights and biases. )ese weight values are
randomly taken initially, and then the network algorithm
adjusts the values during the training phase. To build the
network with the highest accuracy, optimization is performed
with 1000 epochs to adjust the weights for each given ANN
structure. In addition, in order to generalize the ANNmodel,
500 simulations are performed for each of the analyzed ANN
structures. A total of 120,000 simulations are performed,
corresponding to 15 architectures for one hidden layer and
225 architectures for two hidden layers.

)e optimization process for the training and testing parts is
evaluated by three statistical criteria, namely, R2, RMSE and
MAE, presented above and shown in Figure 4. Specifically,
Figures 4(a), 4(c), and 4(e) represent the values of the three
criteria for the training part, while Figures 4(b), 4(d), and 4(f)
represent the testing part. )anks to MCS, Figure 4 shows that,
with 100 simulations, the values of the three criteria converge in

about 10% of the corresponding average values. When the
number of simulations increases to 400, the convergence of the
ANNmodel improves (i.e., lower than 5% of the corresponding
average values).)erefore, it could be stated that the simulations
performed with 500 runs give reliable results. Overall, all in-
vestigations and results in the next sections are given by av-
eraging the results of 500 simulations for each ANN structure.

6.2. Prediction Performance of Different ANN Architectures.
In this section, the performance of different ANN archi-
tectures is presented to find the best ANN architecture. )e
performance evaluation is calculated for both the training
and the testing parts by the mean and standard deviation
values (StD) of the three statistical criteria (i.e., R2, RMSE,
and MAE). Figures 5(a), 5(b), and 5(c) depict the mean
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Input parameters (overall depth of 

castellated beam (I1); vertical projection 
of inclined side of opening (I2); web 

thickness (I3); flange width (I4); flange 
thickness (I5); width of web post at 
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inclined side of opening (I7); minimum 
web yield stress (I8); minimum flange 
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Figure 3: Methodology flowchart of the present study.

Table 2: Summary of different ANN characteristics and investi-
gation parameters in this study.

Parameter Parameter Description

Fix

Neurons in input layer 9
Neurons in output layer 1
Hidden layer activation

function Sigmoid

Output layer activation
function Linear

Cost function Mean Square Error
(MSE)

Number of epochs 1000
Number of simulations 500
Training algorithm Gradient descent

Varying Number of hidden layers Varying from 1 to 2
Neurons in hidden layer Varying from 1 to 15
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values of R2, RMSE, and MAE of all the analyzed ANN
structures for both the training and testing parts.

In Figure 5, it worth noting that the first edge of R2, RMSE,
and MAE mean value curve is the performance of the ANN
model containing 1 hidden layer, with the neuron number
varying from 1 to 15.)e second edge corresponds to the ANN
architecture with 2 hidden layers. )e first point of the second
edge starts with the performance of the ANNmodel containing
1 neuron for the first hidden layer and 1 neuron for the second
hidden layer or ANN architecture [9-1-1-1]. Each point of the
remaining edges corresponds to the performance of ANN
architecture containing 1 neuron in the first hidden layer, and
the following points are results with 1 to 15 neurons in the
second hidden layer. It means that the last point of the second
edge corresponds to the performance of ANN architecture [9-
1-15-1]. Overall, one edge is shown for ANN architecture
containing 1 hidden layer, and 15 edges are shown for ANN

architecture containing 2 hidden layers (Figure 5). Precisely,
the 225 performance values of different ANN architectures can
also be shown by color-map in Figures 6 and 7 for the training
part and testing part, respectively. Besides, Figures 6 and 7 also
show the StD values of R2, RMSE, and MAE. Figures 6(a) and
7(a) show that the value of R2 is relatively greater than 0.9 and
0.8 for the training and testing dataset, respectively, for ANN
architectures with more than 3 neurons in the first hidden
layer. Similar observations are remarked with a specific zone
with low values of RMSE and MAE for both the training and
testing parts (Figures 6(c), 6(e), 7(c), and 7(e)).

)e performance values presented in Figure 5 show that
the highest mean value of R2 � 0.923 and the lowest mean
values of RMSE� 7.225, MAE� 5.047 for the testing part,
correspond to the ANN architecture containing 1 hidden
layer [9-1-1]. )erefore, this ANN architecture has the best
performance.
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Figure 4: Convergence analysis for different ANN architecture with respect to (a) R2 of the training parts; (b) R2 of the testing part;
(c) RMSE of the training part; (d) RMSE of the testing part; (e) MAE of the training part; and (f ) MAE of the testing part.
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Figure 5: Performance of the ANN in the function of neuron number in 2 hidden layers, with respect to (a) mean value of R2 for the training
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Figure 6: Color-map of ANNwith 2 hidden layers in the function of the neuron of hidden layer for the training part with respect to (a) mean
values of R2; (b) StD of R2; (c) mean of RMSE; (d) StD of RMSE; (e) mean of MAE; and (f) StD of MAE.
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Furthermore, the results of Figures 5–7 also confirm that the
ANN architecture [9-1-15-1] containing 2 hidden layers has the
lowest performance, reflected by the lowest mean value of R2,
and the highest mean values of RMSE,MAE for the testing part.
)e lowest performance is also shown by the highest StD values
ofR2, RMSE, andMAE, whichmeans that theANNarchitecture
[9-1-15-1] is not stable to estimate a reliable result. Besides, with
a higher neuron number of the second hidden layer, the per-
formance of theANNmodel decreaseswith decreasingR2 values
and increasing RMSE, MAE, and StD values. )e best archi-
tecture of 2 hidden layers corresponds to the case [9-11-1-1]with
performance through the mean value of R2, RMSE, andMAE of
0.914, 7.883, and 5.233, respectively. However, these values are
lower than those of the ANN architecture [9-1-1]. )erefore,
such an architecture is used to predict the load-carrying capacity
of CSB in the next section.

6.3. Load-Carrying Capacity Prediction of Best ANN
Architecture. )e optimal architecture of the ANN model is
[9-1-1] applied for this section. In this section, the predictive
capacity of the best performance [9-1-1] of the ANN model is
presented. Specifically, the ANN architecture’s prediction re-
sults [9-1-1] with the highest predictive capacity among 500

simulations are presented. )e comparison between experi-
mental critical load and predicted value by the ANN model is
shown in Figure 8 for the training and testing parts. )e
comparison shows that the predicted values are very close to the
experimental ones. )e model errors are plotted between the
predicted and the experimental values for the training
(Figure 9(a)) and the testing parts (Figure 9(b)).)e error values
corresponding to the training and testing databases are small.
Based on the cumulative distribution (black line), the per-
centage error of samples within a range can be determined. For
example, with the training database, the percentage of samples
with errors in the range [−5; 5] kN is about 85%. Similarly, 90%
of the error of the testing set are in the range of [−5; 5] kN.

Finally, a regression model in Figures 10(a) and 10(b)
shows the correlation between the actual and predicted
values for the training and testing datasets, respectively. A
linear fit is also applied and plotted in each case. It is observed
that the linear regression lines are very close to the diagonal
lines, which confirms the close correlation between the actual
and predicted load-carrying capacity. )e calculated values of
R2 for the training dataset and the testing dataset are 0.959 and
0.989, respectively. )e values of RMSE and MAE for the
training dataset are 5.405 kN and 3.718 kN. For the testing
dataset, these values are 3.328 kN and 2.622 kN, respectively.
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Figure 7: Color-map of ANN with 2 hidden layers in the function of neuron number of the hidden layer for the testing part with respect to
(a) mean values of R2; (b) StD of R2; (c) mean of RMSE; (d) StD of RMSE; (e) mean of MAE; and (f) StD of MAE.
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)e results of the statistical criteria show that the ANN model
with the [9-1-1] architecture can accurately predict the load-
carrying capacity of the CSB.

For the sake of comparison, Table 3 shows the results of
this investigation compared with different results available
in the literature. For the database, the number of samples in

140

120

100

80

60

40

20
0 50

Y 
(k

N
)

100
Sample index

150

Train targets
Train outputs

Test targets
Test outputs

Figure 8: Experimental and predicted load-carrying capacity in function of sample index for the training and testing datasets.
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Figure 9: Experimental and predicted load-carrying capacity in function of the sample index for the training and testing datasets.
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Figure 10: Regression graphs for the case of the best ANN architecture [9-1-1]: (a) training dataset and (b) testing dataset.
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this investigation is the highest with 150 samples. )e
number of inputs for the ANNmodel is 9 inputs. Overall, the
best ANN architecture in the present study is able to predict
the load-carrying capacity of CSB with the highest accuracy,
comparing with the other investigations.

7. Conclusion

)is investigation aims to develop a simple but effective
ANNmodel to predict the load-carrying capacity of CSB. To
achieve this purpose, the determination of optimal ANN
architecture is carried out, with two cases of hidden layers
number varying from 1 to 2. Regarding each case, the neuron
number in each hidden layer is varied from 1 to 15. Overall,
240 cases of ANN architectures consisting of 15 cases of 1
hidden layer and 225 cases of 2 hidden layers are proposed.
Based on 150 data collected from published studies, 70% of
the data are randomly selected and used for the training
dataset, whereas the remaining 30% are selected for the
testing dataset. A number of 500 simulations are performed
for each ANN architecture. )e performance of each ANN
architecture is evaluated by commonly used statistical cri-
teria, such as Determination Coefficient (R2), Root Mean
Square Error (RMSE), andMean Absolute Error (MAE).)e

ANN architecture containing 1 hidden layer and 1 neuron is
found as the best structure for predicting the load-carrying
capacity of the CSB, with excellent agreement between
model and experimental results (i.e., values of R2, RMSE, and
MAE are 0.989, 3.328, and 2.622, resp., for the testing
dataset). )e results of this investigation can help build a
reliable soft computation tool to accurately and quickly
predict the load-carrying capacity of CSB. It is important
noticing that a parametric design-oriented study of CSB
could be conducted in future works, thanks to the excellent
accuracy of the proposed ANN model. In this case, Partial
Dependence Plots analysis or parametric studies on the
geometry parameters could be used to design CSB with
targeted load-carrying capacity.

Data Availability

)e data supporting this manuscript are from previously
reported studies and datasets, which have been cited. )e
processed data are available from the corresponding author
upon request.
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Table 3: Results comparison with currently popular AI techniques.

Reference Number of data
samples Method and input

Performance criteria for
testing part

R2 RMSE
(kN) MAE (kN)

Amayreh and
Saka [36] 47

8 inputs (minimum web yield stress, span of the castellated beam,
overall depth, minimum width of the web post, web thickness, flange

thickness, width of flange, loading condition)
Method: backpropagation network

0.995 Not
provided

Not
provided

Gholizadeh et al.
[37] 140

Geometrical inputs only (the overall depth of castellated beam; the
vertical projection of inclined side of opening; the web thickness; the
flange width; the flange thickness; the width of web post at middepth;

the horizontal projection of inclined side of opening)
BP1 4.0625
BP2 3.5611

ANFIS1 2.7276
ANFIS2 2.0631

Gandomi et al.
[38] 47

8 inputs (minimum web yield stress, span of the castellated beam,
overall depth, minimum width of the web post, web thickness, flange

thickness, width of flange, loading condition)
Methods

Genetic programming 0.817 32.33
Least-squares regression (LSR) 0.682 36.60

Aminian et al.
[39] 142

5 inputs (the overall depth of castellated beam, the vertical projection
of inclined side of opening, the web thickness, the minimum web

yield stress, and the width of web post at middepth)
Linear genetic programming 0.960 4.62

GSA algorithm 0.952 4.95

)is investigation 150

9 inputs (the overall depth of castellated beam, the vertical projection
of inclined side of opening, the web thickness, the flange width, the
flange thickness, the width of web post at middepth, the horizontal
projection of inclined side of opening, the minimumweb yield stress,

the minimum flange yield stress)

0.989 3.328 2.622
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,is paper chooses car travel and bus travel as the research objects, establishes a dual-mode equilibrium model based on the
bottleneck model, and compares the travel characteristics of the no-toll and fine-toll schemes. We find that the fine-toll scheme
can eliminate the queuing time at the bottleneck, but it also increases the congestion risk cost of bus travel. In order to eliminate
the queuing time at the bottleneck and reduce the congestion risk cost of bus travel without increasing the car travel cost and bus
travel cost, we propose an optimization scheme of fine toll and bus departure quantity and analyze its travel characteristics
theoretically.,rough the numerical example, we calculate and analyze the equilibrium results of no-toll scheme, fine-toll scheme,
and optimization scheme of fine toll and bus departure quantity. ,e results indicate that the optimization scheme of fine toll and
bus departure quantity can help travelers to choose a reasonable travel mode and travel time to travel in the rush hour.

1. Introduction

It is a worldwide management problem to change the
phenomenon of traffic congestion in the rush hour. Espe-
cially in the central area of the city, a large number of
commuting individuals gather together to form a com-
muting bottleneck. Vickrey [1] first proposed a bottleneck
model to describe commuting behavior in the rush hour.
According to the delay penalty and queuing time, travelers
determine the departure time to minimize the travel cost in
this model. Moreover, all individuals have the same travel
cost in equilibrium. ,e bottleneck model can clearly reveal
the formation and dissipation process of traffic congestion.
On this basis, many researchers have carried out the research
of commuting bottleneck management (e.g., Xiao et al. [2],
Chen et al. [3], Khan and Amin [4], Guo and Sun [5], and
Zhu et al. [6]). Li et al. [7] pointed out that the research on
the bottleneck model in the past 50 years mainly focuses on
travel behavior analysis, demand-side strategies, supply-side
strategies, and joint strategies of demand and supply sides.
,e purpose of travel behavior analysis is to reveal the nature

of congestion dynamics at the bottleneck. Relevant
achievements include considerations of other travel choice
dimensions (e.g., Kim [8] and Zhang et al. [9]), time-varying
scheduling preferences (e.g., Abegaz et al. [10]), and vehicle
physical length in queue and hypercongestion (e.g., Lamotte
and Geroliminis [11]). ,e purpose of demand-side strat-
egies is to reduce travel demand or redistribute the demand
in space and time at the bottleneck. Relevant achievements
include congestion pricing (e.g., Fosgerau and Van Dender
[12]), emission pricing (e.g., Bulteau [13]), and public transit
services (e.g., de Palma et al. [14]). ,e purpose of supply-
side strategies is to determine the optimal capacity or service
level of infrastructure elements. Relevant achievements in-
clude bottleneck capacity allocation (e.g., Lamotte et al. [15])
and capacity design (e.g., Qian et al. [16]).,e joint strategies
are the hybrid of demand-side and supply-side strategies.

From the perspective of the travel mode, the current
research on commuting bottleneck management based on
the bottleneck model mainly focuses on single-mode bot-
tleneck management and multimode bottleneck manage-
ment. We have summarized some research results of
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commuting bottleneck management in Table 1. ,e single-
mode bottleneck management based on the bottleneck
model mostly regards car as the research object and guides
some travelers to change their departure time by some
strategies, so as to eliminate the queuing time at the com-
muting bottleneck. Xiao andHuang [27] pointed out that the
single-step coarse toll can advance or postpone the earliest
departure time and proved that their proposed piecewise
time-varying toll can effectively reduce or eliminate the
queues behind the bottleneck. Li et al. [28] presented the step
tolling models with homogeneous and heterogeneous
preferences and analyzed the optimal step toll schemes with
constant and linear time-varying marginal activity utilities.
Miralinaghi et al. [29] investigated the impact of a tradable
credit scheme on managing morning commute congestion
and proved that if commuters are equally sensitive to gain
and loss, the credit allocation method does not affect the
equilibrium departure rate and credit price. Wang et al. [30]
proved that the total travel cost can be effectively reduced by
properly allocating the capacity of high-occupancy vehicle
lane and derived the optimal capacity of high-occupancy
vehicle lane for minimizing the system total cost. Yu et al.
[31] investigated the effect of carpooling with heterogeneous
users in the bottleneck model and pointed out that if drivers
choose carpooling, road capacity will be released, and this
will reduce road congestion. Zhong et al. [32] believed that
the high-occupancy vehicle lane can promote carpooling
and the high-occupancy toll lane can bring additional
welfare gains with a modest level of toll.

,e multimode bottleneck management based on the
bottleneck model generally takes car and public transport as
the research object and guides some car travelers to take
high-capacity public transport. Mirabel and Reymond [33]
pointed out that the toll policy will be more efficient as long
as the toll revenue is directed towards public transport when
the railroad fare is equal to the average cost. Tian et al. [34]
proposed a tradable credit scheme for managing bottleneck
congestion and modal split and analyzed the efficiency of the
tradable travel credit scheme in the highway and transit
network. Li and Zhang [35] proved the critical condition for
some passengers’ transfer from one mode to another with
congestion charging schemes and analyzed the impact of
congestion charging schemes with or without internalizing
the bus-related congestion externalities on the bottleneck
system. At present, most of the research studies on the
multimode bottleneck management based on the bottleneck
model relax the interaction between car travel and public
transport travel and the constraints of public transport
capacity. In reality, some travelers may not be able to take the
first public transport due to the difference between the limit
of public transport capacity and the arrival rate of travelers,
but can only wait for the next public transport. At this time,
all waiting travelers need to bear the congestion risk cost of
public transport.

Lin and Yang [36] assumed that the car and bus travel on
the same bottleneck road and the transportation capacity of
bus is limited, proposed a travel-mode equilibrium model
under the condition of mixed traffic, and pointed out that
the fine-toll scheme can eliminate the queuing time, but

greatly increase the congestion risk cost of bus travel.
Aiming at this problem, we try to guide some car travelers to
choose bus travel by the fine toll and reduce the congestion
risk cost of bus travel by optimizing the bus departure
quantity. However, the fine toll can eliminate the queuing
time of car and bus travel and also can guide some car
travelers to travel by bus, but it will increase the congestion
risk cost of bus travel. Increasing the bus departure quantity
may extend the length of the rush hour and increase the car
travel cost on the bottleneck road. ,erefore, the key to the
optimization scheme design of fine toll and bus departure
quantity is how to ensure that it cannot only eliminate the
queuing time of car and bus travel but also reduce the
congestion risk cost of bus travel without increasing the
travel cost of travelers.

In order to design the optimization scheme of fine toll
and bus departure quantity, we take car and bus travel as the
research objects and establish a dual-mode equilibrium
model based on the bottleneck model in Section 2. Section 3
analyzes the travel characteristics of the no-toll and fine-toll
schemes. Section 4 designs and analyzes the optimization
scheme of fine-toll and bus departure quantity. In Section 5,
a numerical example is presented to validate the theoretical
results. Finally, conclusions are given in Section 6.

2. Dual-Mode Equilibrium Model

To analyze the influence of fine toll and bus departure
quantity on travelers’ travel mode choice at the bottleneck,
we suppose that there is a bottleneck road with limited
capacity at the entrance of living area O to work area D, the
maximum capacity of the bottleneck road is s, the bus
departure quantity on the bottleneck road is f0, the max-
imum passenger capacity of the unit bus is d, and travelers
are completely rational, have complete traffic information,
and can only choose to travel by car or bus on the bottleneck
road. Suppose that the travel time for an individual who
leaves living area O at time t is T(t), the free-flow travel time
from living area O to work area D is Tf, the queuing time
from living area O to work area D at time t is Tw(t),
T(t) � Tf + Tw(t), the departure time at which an indi-
vidual arrives at work area D at time t∗ is t0,
t0 + Tf + Tw(t0) � t∗, the car departure time at which the
queue begins is t1e, the car departure time at which the queue
ends is t1l, the bus departure time at which the queue begins
is t2e, the bus departure time at which the queue ends is t2l,
the congestion risk cost of bus travel at time t is R(t), the bus
ticket price is p, the unit cost of car travel time is α1, the unit
cost of bus travel time is α2, the unit cost of an early arrival is
β, the unit cost of a late arrival is c, c> α1 > α2 > β, ϕ and θ are
the weight coefficient, the number of travelers departing
from living area O to work area D every morning is N, the
number of travelers who choose to go to work area D by car
is N1, the number of travelers who choose to go to work area
D by bus is N2, and all travelers expect to arrive at work area
D at time t∗.

Considering that the fuel cost is related to travel time, we
convert it into the travel time T. Based on this, we suppose
that the car travel cost C1 is the weighted sum of free-flow
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travel time, queuing time, and delay time of early or late
arrival. ,is can be expressed as

C1(t) �
α1T(t) + β t

∗
− T(t) − t( , ∀t ∈ t1e, t0 ,

α1T(t) + c t − t
∗

+ T(t)( , ∀t ∈ t0, t1l( .

⎧⎨

⎩

(1)

We define the bus travel cost C2 as the weighted sum of
walking time, waiting time, free-flow travel time, queuing
time, delay time of early or late arrival, congestion risk cost,
bus ticket price, and discomfort cost caused by physical
contact. Assume that the walking time is constant, we
convert it into the bus ticket price p. ,e waiting time is only
the time to wait for the first bus to arrive. ,e waiting time
for the next bus caused by the congestion in the first bus is
represented by the congestion risk cost. As the bus timetable
is known, travelers will reduce their waiting time as much as
possible. For this reason, we assume that the waiting time is
equal to zero. Meanwhile, if travelers choose to travel in the
rush hour, they have fully considered that the bus is crowded
with a large number of passengers. For this reason, we as-
sume that the discomfort cost caused by physical contact is
constant and convert it into the bus ticket price p. Based on
these assumptions, the bus travel cost C2 can be expressed as

C2(t) �
α2T(t) + β t

∗
− T(t) − t(  + ϕR(t) + p, ∀t ∈ t2e, t0 ,

α2T(t) + c t − t
∗

+ T(t)(  + θR(t) + p, ∀t ∈ t0t2l( .

⎧⎨

⎩

(2)

In order to reduce individual travel cost, travelers choose
departure time by weighing travel time and delay cost. For
car travelers, there are not queues at time t1e and t1l, and the
queuing time Tw(t1e) � Tw(t1l) � 0. When no traveler can
reduce the travel cost by changing the departure time, the
traffic flow on the road reaches equilibrium. At equilibrium,
all travelers have the same travel cost. It can be expressed as

C1 t1e(  � C1 t1l(  � α1Tf + β t
∗

− Tf − t1e 

� α1Tf + c t1l − t
∗

+ Tf .
(3)

Since cars and buses run on the same route, the length of
the rush hour is affected by both individual car travelers and
individual bus travelers. Hence, the length of the rush hour
on the car travel route can be expressed as

t1l − t1e �
N1 + λ t1l − t1e( f0

s
. (4)

Evidently,

t1l − t1e �
N1

s − λf0
, (5)

where λ represents the conversion coefficient between a bus
and an equivalent car.

When the car travel reaches equilibrium, we can obtain
the car travel cost C1, the car departure time t1e at which the
queue begins, and the car departure time t1l at which the
queue ends by formulas (1), (3), and (5). It can be expressed
as

C1 � α1Tf +
βc

β + c

N1

s − λf0
, (6)

t1e � t
∗

− Tf −
c

β + c

N1

s − λf0
, (7)

t1l � t
∗

− Tf +
β

β + c

N1

s − λf0
, (8)

t0 � t
∗

− Tf −
βc

α1(β + c)

N1

s − λf0
. (9)

For bus travelers at time t2e and t2l, they do not queue up,
their queuing time Tw(t2e) � Tw(t2l) � 0, and the conges-
tion risk cost R(t2e) � R(t2l) � 0, but the delay cost of early
or late arrival is higher. For bus travelers between time t2e

and t2l, their delay cost of early or late arrival is decreased,
but their queuing time and congestion risk cost are increased
as congestion. When the equilibrium is reached, the bus
travel cost is equal at all times. It can be expressed as

Table 1: Some research results of commuting bottleneck management.

Literatures Type of travel
mode Decision variable Target

Ge et al. [17] Single mode Toll Minimum generalized cost
Lindsey et al. [18] Single mode Step toll Toll levels and tolling periods optimal
Laih [19] Single mode Step toll Eliminate queuing time
Miralinaghi and Peeta
[20] Single mode Tradable credit Minimize emissions

Ma and Zhang [21] Single mode Ridesharing payment and
parking charge Eliminate queuing time

Liu and Li [22] Single mode Toll System optimal
Xiao et al. [23] Multimode Tradable parking permit System optimal
Chen et al. [24] Multimode Vehicle lane Minimize social cost
Seilabi et al. [25] Multimode Tradable credit Minimize total travel time
Holguı́n-Veras and
Cetin [26] Multimode Toll Maximize collective welfare

,is paper Multimode Fine toll and bus departure
quantity

Eliminate queuing time and reduce congestion risk cost
without increasing travel cost
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C2 t2e(  � C2 t2l(  � α2Tf + β t
∗

− Tf − t2e  + p

� α2Tf + c t2l − t
∗

+ Tf  + p.

(10)

Since the bus passenger capacity is limited, we have

t2e − t2l �
N2

f0d
. (11)

When the bus travel reaches equilibrium, we can obtain
the bus travel cost C2, the bus departure time t2e at which the
queue begins, and the bus departure time t2l at which the
rush hour queue ends by formulas (10) and (11). It can be
expressed as

C2 � α2Tf + p +
βc

β + c

N2

f0d
, (12)

t2e � t
∗

− Tf −
c

β + c

N2

f0d
, (13)

t2l � t
∗

− Tf +
β

β + c

N2

f0d
. (14)

3. Travel Characteristics under No Toll and
Fine Toll

3.1. Travel Characteristics under No Toll. If there is no one
traveler who can change his travel mode or departure
time to reduce travel cost, the road traffic flow reaches the
equilibrium state. At this time, the car travel cost is equal
to the bus travel cost, that is, C1 � C2. Hence, we can
obtain the travel distribution of the car and bus by
formulas (6) and (12) at equilibrium. It can be expressed
as

N1 �
s − λf0

s +(d − λ)f0
N −

f0d(β + c)

βc
α1Tf − α2Tf − p  ,

N2 � N − N1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

,e system total travel cost SC can be expressed as

SC � α1Tf +
βc

β + c

N1

s − λf0
 N. (16)

Since cars and buses share the same route at the bot-
tleneck, they have to bear the same queuing time when they
start at the same time. According to formulas (1), (6), and
(7), the queuing time Tw(t) can be written as

Tw(t) �

0, ∀t ∈ t2e, t1e ,

β
α1 − β

t − t1e( , ∀t ∈ t1e, t0( ,

c

α1 + c
t1l − t( , ∀t ∈ t0, t1l( ,

0, ∀t ∈ t1l, t2l( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Using formulas (2), (12)–(14), and (17), the congestion
risk cost R(t) of bus travel can be expressed as

R(t) �

β
ϕ

t − t2e( , ∀t ∈ t2e, t1e ,

β α1 − α2( 

ϕ α1 − β( 
t −

β
ϕ

t2e +
β α2 − β( 

ϕ α1 − β( 
t1e, ∀t ∈ t1e, t0( ,

c

θ
t2l −

c α2 + c( 

θ α1 + c( 
t1l −

c α1 − α2( 

θ α1 + c( 
t, ∀t ∈ t0, t1l( ,

c

θ
t2l − t( , ∀t ∈ t1l, t2l( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

3.2. Travel Characteristics under Fine Toll. ,e fine-toll
scheme is a dynamic charging strategy, which is actually
collecting the road usage toll converted by queuing time
from car travelers and achieving the social optimal state by
changing the time distribution of car travel. ,e fine toll π
can be written as follows (Arnott et al. [37]):

π(t) �

βc

β + c

N1

s − λf0
− β t
∗

− Tf − t , ∀t ∈ t1e, t
∗

− Tf ,

βc

β + c

N1

s − λf0
− c t − t

∗
+ Tf , ∀t ∈ t

∗
− Tf, t1l .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

Since the fine-toll scheme does not increase the car travel
cost, the demand distribution of car travel and bus travel
under the fine-toll scheme is the same as that of the no-toll
scheme. In addition, the system total travel cost SC under the
fine-toll scheme can be written as

SC � α1Tf +
βc

β + c

N1

s − λf0
 N. (20)

,e fine-toll scheme eliminates the queuing time of car
and bus travel on the road (Tw(t) � 0), but the congestion
risk cost of bus travel is different from that of the no-toll
scheme. According to formulas (2) and (12)–(14), the
congestion risk cost R(t) of bus travel can be expressed as
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R(t) �

β
ϕ

t − t2e( , ∀t ∈ t2e, t
∗

− Tf ,

c

θ
t2l − t( , ∀t ∈ t

∗
− Tf, t2l .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

4. Optimization Scheme of Fine Toll and Bus
Departure Quantity

Comparing formulas (18) and (21), it is not difficult to find
that the fine-toll scheme increases the congestion risk cost of
bus travel from t1e to t1l. To overcome this problem, this
section attempts to find an optimization scheme of fine toll
and bus departure quantity, which cannot only eliminate the
queuing time of car and bus travel on the road but also
reduce the congestion risk cost of bus travel without in-
creasing the travel cost of travelers.

4.1. Scheme Formulation. In the whole rush hour, the bot-
tleneck road is operating at full capacity; then, the total cost
TC1 of car travel can be expressed as

TC1 � 
t1l

t1e

s − λf0( C1(t)dt. (22)

By substituting formula (1) into formula (22), we can
obtain the total cost TC1 of car travel under the no-toll
scheme when the queuing time Tw(t) � 0. It can be written
as

TC1 � 
t∗−Tf

t1e

s − λf0(  α1Tf + β t
∗

− Tf − t  dt

+ 
t1l

t∗−Tf

s − λf0(  α1Tf + c t − t
∗

+ Tf  dt

� α1TfN1 +
βc

2(β + c)

N
2
1

s − λf0
.

(23)

According to formula (23), we can obtain the average car
travel cost C1 under the no-toll scheme when the queuing
time Tw(t) � 0. It can be expressed as

C1 �
TC1

N1
� α1Tf +

βc

2(β + c)

N1

s − λf0
. (24)

Suppose that the bus departure quantity is f0 (fb >f0)
and the fine toll is π′(t) under the optimization scheme of
fine toll and bus departure quantity.,en, formula (1) can be
rewritten as

C1′(t) �
α1Tf + β t

∗
− Tf − t  + π′(t), ∀t ∈ t1e

′ , t
∗

− Tf ,

α1Tf + c t − t
∗

+ Tf  + π′(t), ∀t ∈ t
∗

− Tf, t1l
′ .

⎧⎪⎨

⎪⎩

(25)

For car travelers at time t1e
′ and t1l

′, they do not have to
pay a fine toll, that is, π′(t1l

′) � π′(t1l
′) � 0. Referring to the

solution steps under the no-toll scheme, it is not difficult to
get the car travel cost C1′ and the bus travel cost C2′ at
equilibrium. It can be expressed as

C1′ � α1Tf +
βc

β + c

N1′

s − λfb

, (26)

C2′ � α2Tf + p +
βc

β + c

N2′

fbd
, (27)

where N1′ represents the number of travelers who choose to
go to work area D by car and N2′ is the number of travelers
who choose to go to work area D by bus. According to
formulas (26) and (27), we have

N1′ �
s − λfb

s +(d − λ)fb

N −
fbd(β + c)

βc
α1Tf − α2Tf − p  ,

N2′ � N − N1′.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

In order to ensure that the optimization scheme of fine
toll and bus departure quantity does not increase the travel
cost of travelers, we suppose that C1′ � C1. According to
formulas (24) and (26), we know

1
2

N1

s − λf0
�

N1′

s − λfb

. (29)

According to formulas (15), (28), and (29), we have

fb �
s + 2f0(d − λ) βcN + sf0d(β + c) α1Tf − α2Tf − p 

(d − λ)βcN + d 2s + f0(d − λ) (β + c) α1Tf − α2Tf − p 
.

(30)

According to formulas (25), (26), and (29), we have

π′(t) �

βc

2(β + c)

N1

s − λf0
− β t
∗

− Tf − t , ∀t ∈ t1e
′, t
∗

− Tf ,

βc

2(β + c)

N1

s − λf0
− c t − t

∗
+ Tf , ∀t ∈ t

∗
− Tf, t1l

′ .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(31)

4.2. Travel Characteristics’ Analysis. From the scheme for-
mulation in the previous section, we can know that the
optimization scheme of fine toll and bus departure quantity
eliminates the queuing time of car and bus travel on the road
and also changes the demand distribution of car and bus
travel. Next, we will analyze these travel characteristics of
this proposed scheme including the length of the rush hour,
congestion risk cost, and system total travel cost.

4.2.1. 6e Length of the Rush Hour. Referring to the solution
steps of the car departure time at which the queue begins and
ends under the no-toll scheme, it is not difficult to get the car
departure time t1e

′ at which the queue begins, the car de-
parture time t1l

′ at which the queue ends, the bus departure

Complexity 5



time t2e
′ at which the queue begins, and the bus departure

time t2l
′ at which the queue ends. It can be expressed as

t1e
′ � t
∗

− Tf −
c

β + c

N1′

s − λfb

,

t1l
′ � t
∗

− Tf +
β

β + c

N1′

s − λfb

,

(32)

t2e
′ � t
∗

− Tf −
c

β + c

N2′

fbd
,

t2l
′ � t
∗

− Tf +
β

β + c

N2′

fbd
.

(33)

According to formula (28), we can know thatN1′ <N1. In
addition, since fb >f0, then N1′/s − λfb <N1/s − λf0.
Comparing formulas (7), (8), and (32), we can know that
t1e
′ > t1e and t1l

′ < t1l, that is, t1l
′ − t1e
′ < t1l − t1e.

Moreover, according to formulas (6), (12), (26), (27), and
(29), we have

α1Tf +
βc

β + c

N1

s − λf0
� α2Tf + p +

βc

β + c

N2

f0d
, (34)

α1Tf +
βc

2(β + c)

N1

s − λf0
� α2Tf + p +

βc

β + c

N2′

fbd
. (35)

By substracting formula (35) from formula (34), we have

N2′

fbd
<

N2

f0d
. (36)

Comparing formulas (13), (14), and (33), we can know
that t2e
′ > t2e and t2l

′ < t2l, that is, t2l
′ − t2e
′ < t2l − t2e.

To sum up, it can be seen that the optimization scheme of
fine toll and bus departure quantity reduces the length of the
rush hour on the bottleneck road. ,is shows that the op-
timization scheme of fine toll and bus departure quantity can
change the travel time distribution of car travelers and bus
travelers.

4.2.2. Congestion Risk Cost. Referring to the solution steps of
the congestion risk cost under the no-toll scheme, the
congestion risk cost R′ of bus travel can be expressed as

R′(t) �

β
ϕ

t − t2e
′( , ∀t ∈ t2e

′ , t
∗

− Tf ,

c

θ
t2l
′ − t( , ∀t ∈ t

∗
− Tf, t2l
′ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(37)

Comparing formulas (21) and (37), we can know that the
congestion risk cost of bus travel under the optimization
scheme of fine toll and bus departure quantity is smaller than
that of the fine-toll scheme. ,is also reflects that appro-
priately increasing the bus departure quantity in the rush
hour can effectively reduce the congestion risk cost of bus
travel.

4.2.3. System Total Travel Cost. According to formulas (26)
and (29), the system total travel cost SC′ under the opti-
mization scheme of fine toll and bus departure quantity can
be written as

SC′ � α1Tf +
βc

2(β + c)

N1

s − λf0
 N. (38)

Comparing formulas (16), (20), and (38), we can find
that the system total travel cost under the optimization
scheme of fine toll and bus departure quantity is smaller than
that of the fine-toll scheme and the no-toll scheme. ,is also
reflects that the optimization scheme of fine toll and bus
departure quantity can help travelers to choose a reasonable
travel mode and travel time to travel in the rush hour.

5. Numerical Experiments

To verify the validity of the proposed optimization scheme,
we suppose that there is a bottleneck road with limited
capacity at the entrance of living area O to work area D, the
maximum bottleneck capacity s � 2000 vehicle/hour, 6000
(N � 6000) travelers departing from living area O to work
area D every morning, and all travelers expect to arrive at
work area D at 8 a.m. (t∗ � 8). Meanwhile, we suppose that
the free-flow travel time Tf � 0.5 hour from living area O to
work area D, the maximum passenger capacity d � 40 of the
unit bus, the bus departure quantity f0 � 50, the bus ticket
price p � 1, and the system parameter λ � 2, α1 � 7, α2 � 4,
β � 0.6, c � 9, ϕ � 1, and θ � 1, and the fine toll at the
bottleneck road is realized by the electronic toll collection
system.

Next, we will calculate and analyze these schemes in-
cluding the no-toll scheme (NT), fine-toll scheme (FT), and
optimization scheme of fine toll and bus departure quantity
(FT-BDQ). For the ease of comparison, some formulas for
NT, FT, and FT-BDQ schemes are listed in Table 2. ,e
results of calculation are as follows.

In Table 3, we can observe that travel cost and system
total travel cost under the optimization scheme of fine toll
and bus departure quantity are smaller than that of the fine-
toll scheme and the no-toll scheme. ,is reflects that the
optimization scheme of fine toll and bus departure quantity
can reduce travelers’ travel cost. Comparing the equilibrium
results of the 2nd column and 3rd column in Table 3, we can
know that appropriately increasing the bus departure
quantity in the rush hour can attract some travelers to travel
by bus. ,is means that the optimization scheme of fine toll
and bus departure quantity can effectively guide travelers to
choose a reasonable travel mode to travel in the rush hour.

In Figure 1, we can observe that the congestion risk cost
of bus travel under the optimization scheme of fine toll and
bus departure quantity may be higher than that of the no-toll
scheme in some times of the rush hour, but it is lower than
that of the fine-toll scheme in the rush hour.,is also reflects
that appropriately increasing the bus departure quantity on
the basis of the fine toll can effectively reduce the congestion
risk cost of bus travel.
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In Table 4, we can observe that the car and bus departure
time at which the queue begins under the optimization
scheme of fine toll and bus departure quantity are later than
that of the fine-toll scheme and the no-toll scheme; the car
and bus departure time at which the queue ends under the
optimization scheme of fine toll and bus departure quantity
are earlier than that of the fine-toll scheme and the no-toll
scheme.,is also shows that the optimization scheme of fine
toll and bus departure quantity cannot only help travelers to
choose a reasonable travel time to travel in the rush hour but
also shorten the rush hour of car and bus travel.

6. Conclusions

In this paper, we established a dual-mode equilibriummodel
based on the bottleneck model. In order to overcome the
problem that the fine-toll scheme increases the congestion
risk cost of bus travel, we proposed an optimization scheme
of fine toll and bus departure quantity and demonstrated its
travel characteristics from the perspective of theoretical
analysis and numerical simulation. ,e findings from these
experiments are summarized as follows:

(1) ,e optimization scheme of fine toll and bus de-
parture quantity can reduce the system total travel
cost and travelers’ travel cost and help travelers to
choose a reasonable travel mode to travel in the rush
hour.

(2) ,e congestion risk cost of bus travel under the
optimization scheme of fine toll and bus departure
quantity is lower than that of the fine-toll scheme in
the rush hour. Appropriately increasing the bus
departure quantity can effectively reduce the con-
gestion risk cost of bus travel.

(3) ,e optimization scheme of fine toll and bus de-
parture quantity cannot only guide travelers to
choose a reasonable travel time to travel in the rush
hour but also shorten the rush hour of car and bus
travel.

,e bottleneck of road and public transportation is the
key point to traffic congestion.,erefore, this study can help
alleviate the urban traffic congestion and promote the de-
velopment of urban traffic demand management methods.

With regard to the above finding, it is worth further
looking at how to find the ‘‘best’’ simple scheme of fine toll
and bus departure quantity under uncertain demand. An-
other interesting direction for further research is how to
consider the influence of travel-mode choice behavior
heterogeneity on the optimization scheme of fine toll and
bus departure quantity. Additionally, the measurement of
the congestion risk cost is also our future research direction.
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+e study of water surface profiles is beneficial to various applications in water resources management. In this study, two artificial
intelligence (AI) models named the artificial neural network (ANN) and genetic programming (GP) were employed to estimate
the length of six steady GVF profiles for the first time. +e AI models were trained using a database consisting of 5154 di-
mensionless cases. A comparison was carried out to assess the performances of the AI techniques for estimating lengths of 330
GVF profiles in bothmild and steep slopes in trapezoidal channels.+e corresponding GVF lengths were also calculated by 1-step,
3-step, and 5-step direct step methods for comparison purposes. Based on six metrics used for the comparative analysis, GP and
the ANN improve five out of six metrics computed by the 1-step direct step method for both mild and steep slopes. Moreover, GP
enhanced GVF lengths estimated by the 3-step direct step method based on three out of six accuracy indices when the channel
slope is higher and lower than the critical slope. Additionally, the performances of the AI techniques were also investigated
depending on comparing the water depth of each case and the corresponding normal and critical grade lines. Furthermore, the
results show that the more the number of subreaches considered in the direct method, the better the results will be achieved with
the compensation of much more computational efforts. +e achieved improvements can be used in further studies to improve
modeling water surface profiles in channel networks and hydraulic structure designs.

1. Introduction

Gradually varied flow (GVF) is a nonuniform flow in natural
and man-made canals. +e study of GVF is crucial to water
resources management as it may not only be categorized as
one of the most common flow conditions in an open channel
but also play a key role in various hydraulic projects. Some
examples of the occurrence of GVF include flow through a
change in channel bottom slope, canal constrictions and
transitions, a variation of channel geometries, flow under the
infection of hydraulic structures, and flow from a large
reservoir to a canal. In such situations, flow variables, i.e.,
water depth and flow velocity, vary gradually in each cross-
section along a channel.

+e governing equation for computing GVF profiles in
prismatic canals is shown in equation (1). It is basically a
combination of energy (or momentum) equation and a

resistance equation.+e former presents the spatial variation
of water depth in GVF profiles, while the latter relates
friction slope (Sf) with flow and channel geometries of the
canal under consideration:

dy

dx
� S0

1 − yn/y( 
N

1 − yc/y( 
M

, (1)

where y is the water depth, x is the longitudinal distance
along the channel, dy/dx is the water surface slope, yn and
yc are the normal and critical water depths, respectively, S0 is
the channel bottom slope, and M and N are the hydraulic
components for critical and uniform flows, respectively.

One of typical problem statements in GVF profiles is
computation of the distance between two specific water
depths. In other words, water depths at two cross-sections of
the same profile are given while the distance between these
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two sections (L) is unknown. According to the literature
review, various attempts for solving this problem may be
categorized into several groups based on their methods: (1)
semianalytical methods [1, 2], (2) analytical solutions [3–7],
(3) numerical schemes [8–11], (4) artificial intelligence (AI)
models [12], and (5) optimization techniques [13–15].

+e disadvantages of semianalytical and analytical solu-
tions include (1) some of them are only applicable to specific
conditions such as Bresse’s analytical solution for wide
rectangular channel and Chezy’s equation and (2) the ana-
lytical solutions with a wide of range of applicability mostly
have complex relations. On the other hand, the numerical
schemes basically march on space between the two water
depths are given. Additionally, they have been known to be
susceptible to stability problems [16], while they may
sometimes achieve different results [17]. Although analytical
solutions are error-free, the accuracy of numerical solutions
depends on several factors including the spatial interval (Δx)

and the round-off characteristics of the method, which may
lead to discretization and truncation errors, respectively [11].
Based on the current literature, application of AI models to
GVF computation is limited. For instance, Sivapragasam et al.
[12] utilized genetic programming (GP) and the artificial
neural network (ANN) to predict water surface profile as a
steady flow with different discharges passes over a rectangular
notch. Although AI models have been successfully used for
solving numerous problems in water resources management
and hydraulic engineering [18–21], it has not been applied to
estimate the length of GVF profiles.

In this study, two AI models were employed to predict
the distance between two cross-sections with known water
depths in the same GVF profile. A large database was
provided for different flow conditions in rectangular and
trapezoidal cross-sections. +e performances of these
models in estimating length of GVF profiles were also
compared with those of the most common numerical
method available in the literature.

2. Methods and Materials

2.1. Problem Statement of GVF Profile Length. Steady GVF is
one of the most common time-independent flow conditions
occurred in open channels, while length of GVF profiles is
necessary to channel design, design of hydraulic structures,
and budget estimation of open-channel water conveyance
projects [1, 22]. In the current literature, Swamee [1] pre-
sented empirical relations between the control section and
the section with 0.99yn or 1.01yn for triangular, wide, and
narrow rectangular. However, in this study, the distance
between two arbitraries but known water depths (y1 and y2)
within the same profile in trapezoidal sections is of interest.

In addition to equation (1), Manning’s equation, which is
the most widely used resistance equation in open-channel
hydraulics [23], governs the flow filed in GVF profiles:

Q �
1
n

AR
2/3

S
1/2

, (2)

where Q is the discharge, n is Manning’s coefficient, A is the
flow area, R � A/P is the hydraulic radius, P is the wetter

perimeter, and S is the channel slope.When S � S0, the water
depth in equation (2) exclusively corresponds to yn, while it
can be any other water depth for S � Sf.

In the problem statement of computing the length of
GVF profiles, Q channel geometries including canal bottom
width (b), channel side slope (z), S0, and n are the given
information, while L is meant to be estimated.

+e distance of varied flows is a determinant parameter
in various water engineering problems, such as determining
the location of hydraulic jump [13], predicting budget of
channel design [24, 25], and estimating backwater impacts
on hydraulic structures [26]. For instance, the influence
length of GVF profiles propagating from a uniform or
critical depth has been investigated in the literature [11, 27].
In modeling water surface of GVF profiles in real-life
projects, the routine procedure in professional hydraulic
software, such as HEC-RAS, is to divide the canal under
consideration into several parts so called reaches so that each
reach as similar flow conditions and channel geometries
[28]. Due to spatial variation of channel geometries along
natural streams, a reach-average value has been frequently
designated to canal characteristics such as b, z, S0, and n

[28, 29]. As n is known to be a flow-dependent parameter
and is not a measurable parameter [26, 30], a flow-inde-
pendent bed roughness predictor may be utilized to estimate
a reach-average value for steady GVF.

Steady GVF profiles is generally categorized based on the
comparison between yn and yc: (1) when yn � yc, the
channel slope is called critical slope (S0 � Sc), (2) if yn >yc,
the channel slope is mild slope (S0 < Sc), and (3) steep
channel occurs (S0 > Sc) when yn <yc. In this classification,
when water depth is higher than both yn and yc, it is located
in M1 or S1 zone if the channel slope is mild or steep,
respectively. Furthermore, when water depth is located
between yn and yc, it may be called either M2 or S2 for mild
or steep slope, respectively. Finally, M3 or S3 profile happens
when the water depth is lower than both yn and yc in mild or
steep slope, respectively.

2.2. Varied Flow Function. In this method, it is commonly
assumed that M and N that appeared in equation (1) are the
flow invariants for simplicity. In other words, the variation
of M and N with water depth can be neglected in engi-
neering application [31]. Using the substitution of u � y/yn,
equation (1) is rewritten:

x �
yn

S0
u − 

u

0

du

1 − u
N

+
yc

yn

 

M


u

0

u
N− Mdu

1 − u
N

⎡⎣ ⎤⎦ + c, (3)

where x is the location of a specific cross-section along the
channel, M � 3[1 + 2z(y/b)]2 − 2z(y/b)[1 + z(y/b)]/[1+

2z(y/b)][1 + z(y/b)], N � (10/3)(1 + 2z(y/b)/1 + z(y /b))

− (8/3)(
�����
1 + z2

√
(y/b)/1 + 2

�����
1 + z2

√
(y/b)) for trapezoidal

cross-sections, and c is a constant.
+e first integral term in equation (3) is called varied

flow function (F(u, N) � 
u

0 du/1 − uN), which depends on
two parameters u and N. +e second integral in equation (3)
can be turned into a varied flow function by setting υ � uN/J,
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where J � (N/N − M + 1). By further manipulating equa-
tion (3), the distance between two cross-sections 1 and 2

with known water depths is achieved by the following
equation:

L �
yn

S0
u2 − u1 + F u1, N(  − F u2, N(  +

J

N

yc

yn

 

M

F υ2, J(  − F υ1, J(  
⎧⎨

⎩

⎫⎬

⎭, (4)

where 1 and 2 subscripts correspond to the first and second
cross-sections in the channel reach.

Traditionally, magnitudes of the varied flow function are
provided in tables covering numerous values of state vari-
ables [6]. Although this method has been introduced as a
standard approach in hydraulic engineering texts [31, 32], its
major drawback is determination of the varied flow function
[6, 33]. +e reasons for which this method is not suitable in
practice may be as follows: (1) the varied flow function is
relatively complicated to be solved by the hand, (2)
according to equation (4), four integrals (F(u1, N),
F(u2, N), F(υ2, J), and F(υ1, J)) need to be computed to
determine L, and (3) the tables provided for varied flow
function can only be exploited for a set of discrete values of
state variables. Consequently, an interpolation may be re-
quired for intermittent values, which produces inevitable
errors. On the other hand, when varied flow function is
calculated without interpolation, the obtained results may be
used as benchmark since it considers no approximate
assumption.

2.3. Simple Direct Method. In this method, the distance
between two cross-sections 1 and 2 is computed by using
finite difference:

L �
1

S0 − Sf

y2 +
Q

2

2gA
2
2

  − y1 +
Q

2

2gA
2
1

  , (5)

where g is the gravitational acceleration.
As shown equation (5), L can be computed directly when

Q and channel properties are known, while Sf in equation
(5) is substituted with the reach-average friction slopes using
the first and second cross-sections. In this study, the direct
method is utilized for calculating GVF profile length using
(1) one-spatial step, (2) three-spatial steps, and (3) five-
spatial steps. In the one-step version, equation (5) is
exploited only one time to obtain L between the two water
depths given in the problem statement, while the whole
distance between sections 1 and 2 is divided into three and
five subreaches in the three-step and five-step versions,
respectively. For the better clarification, Figure 1 depicts
schematic division of a channel reach into five subreaches in
the five-step scenario. As shown, yn and yc are the same for
all five subreaches in the five-step direct method. According
to Figure 1, four additional water depths are required to be
used between the first and second sections in the five-step
direct method. For y1 >y2, the four additional water depths
are y3 � y1 − (y1 − y2/5), y4 � y3 − (y1 − y2/5), y5 � y4−

(y1 − y2/5), and y6 � y5 − (y1 − y2/5). +erefore, when y1

and y2 are given, the additional water depths can be cal-
culated one after another from y3 to y6. In the five-step
direct method, the distance between two consecutive sec-
tions, such as L13 between sections 1 and 3, is computed
using equation (5). Finally, the algebraic summation of the
distances between the successive cross-sections is computed,
which is equal to L as shown in Figure 1.

2.4. Artificial Neural Network. Artificial neural network
(ANN) is a well-documented AI model and has been suc-
cessfully applied to various problems in water resources and
hydraulic engineering [34, 35]. Basically, it consists of three
layers, named as input, hidden, and output layers, while each
layer includes some components called neurons. +e
number and objective of neurons are defined based on the
layer to which they belong. For instance, the neurons of the
input layer take the vector of input data. +e structure of the
ANN provides connections between neurons of two suc-
cessive layers, while there is no connection between the
neurons within a layer. Using these connections, the data
flow through the network until an adequate relation between
the input and output data is achieved [30].

Predicting the length of GVF profiles using the ANN is
conducted for the first time in this study, based on authors’
knowledge. +e input data include the dimensionless u and
N, while the output data are dimensionless F(u, N). Fur-
thermore, there is a trade-off between the number of neu-
rons in the hidden layer in the ANN and the computational
efforts. To be more specific, the more the number of neurons
in the hidden layer is used, the more accurate results may be
obtained. In this study, several hidden layers with four to ten
neurons were tested, while a seven-neuron hidden layer was
selected. After the ANN completed the prediction process,
the estimated varied flow functions were substituted into
equation (4) to compute the corresponding length of GVF
profiles. As shown in equation (4), four F(u, N) are required
to determine the length between two specified water depths.

2.5. Genetic Programming. Genetic programming (GP) is
one of AI models that employs the genetic algorithm to
create a powerful prediction tool. In essence, GP is an
improved version of the genetic algorithm which is capable
of finding a relation between two vectors of variables re-
gardless of the physical background of those data. GP begins
with creation of a random population comprising of random
functions and coefficients [36]. It also uses the genetic al-
gorithm features such as crossover and mutation to improve
the fitness of new generations in light of minimizing an
objective function. +e objective function basically reflects
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the errors between the input and output data. +is process
continues until an expression with a desirable error is
achieved. Such correlations may further be used for esti-
mation purposes [25].

GP has a tree-like structure in which a variety of
mathematical functions and variables may be adopted to
seek for an appropriate relationship between the input and
output data. As a result of these characteristics, Discipulus
[37] software, which has been used for applying GP in the
literature [35], was exploited to many problems in the fields’
water resources and hydraulic engineering. +e input data
given to this program include u and N, while the output data
were F(u, N). +e latter values were exploited to estimate L

for each data point.

2.6.4e Database. +e data considered in this study consist
of two parts: (1) train data and (2) test data. +e former
includes 5154 rows of u, N (input data), and F(u, N) (output
data).+ey were basically gathered from the tables presented
in engineering text books [31, 38]. +ese data were used for
training the ANN and GP. On the other hand, the second
part of data consists of 165 data for mild slope and 165 data
for steep slope. To be more specific, the test data contain 70
data of M1, 54 data of M2, 41 data of M3, 48 data of S1, 51
data of S2, and 66 data of S3 profile. Furthermore, the values
of Q, b, z, S0, n, y1, and y2 of the test data were generated by
the random function embedded in Excel [39]. Finally, yn and
yc can be computed when Q and the reach-average values of
n and S0 are given.

Since the test data were developed randomly, they need
to be checked. In this regard, three requirements were
considered: (1) channel geometries andQ of each row should
be practically feasible, (2) each row of data should only have
one type of channel slope (i.e., mild or steep slope), and (3)
each row of data should belong to one specific type of flow
profile. For instance, the GVF profile is M1 or M2 or M3
when the channel slope is mild. In case a row of data did not
satisfy the mentioned requirements, it was replaced with
another randomly generated row of data to keep 330 rows of
data, which correspond to 1320 pairs of u and N.

After checking each row of the developed data, u and N

were determined for the specified water depths (y1 and y2).
+ey were used to compute the corresponding F(u, N)

without interpolation. Table 1 presents the ranges of dif-
ferent parameters in the test data. As shown, the train data
have a wider range of values than that of the test data.
According to Table 1, the test data include a wide range of
values for each parameter involved.

As previously mentioned, four F(u, N) are required to
calculate L for each row of data. +us, the calculated values
of F(u, N) were substituted into equation (4) to give the
benchmark distance between y1 and y2 for each row of the
test data. Finally, the test data were also solved by other
methods considered in this study for comparison purposes.

2.7. Performance Evaluation Criteria. Six evaluation criteria
were selected from the literature to compare the perfor-
mances of different methods in estimation of the length of
GVF profiles between two specified water depths [40, 41].
+ese indices are (1) root mean square error (RMSE), (2)
mean absolute relative error (MARE), (3) mean absolute
error (MAE), (4) relative absolute error (RAE), (5) relative
squared error (RSE), and (6) coefficient of determination
(R2). +ese criteria are presented in equations (6)–(11),
respectively:
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Figure 1: Schematic division of a channel reach into several subreaches.
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where Lestimated is the estimated length, i is a counter, and N

is the number of data.

3. Results and Discussion

+e ANN, GP, varied flow function, and 1-step direct
method compute the length of GVF profile between y1 and
y2 by considering one channel reach. However, 3-step and 5-
step direct methods divided the channel reach into 3 and 5
subreaches, respectively. +ese methods were used for es-
timation of GVF profile length between two specified water
depths. For comparison purposes, the test data consist of
different GVF profiles to investigate performances of dif-
ferent methods in prediction of L between y1 and y2 of each
row of the test data.

+e performances of the methods described for calcu-
lating GVF profile lengths were compared for the test data
with mild slopes shown in Table 2. As shown, the 5-step
direct method achieved the closet results to the benchmark
solutions in comparison with 1-step and 3-step direct
methods. +us, the accuracy of the direct step method
enhances with the increase of the number of spatial intervals
considered. Additionally, Table 2 depicts that the ANN
obtained better RMSE, RAE, MAE, RSE, and R2 than the 1-
step direct method, while the latter achieved a better MARE
than the former. Based on Table 2, GP performed better than
1-step and 3-step direct methods in terms of RMSE and RSE,
while it yields to the same R2 as the 3-step direct method.
According to Table 2, the 5-step direct method out-
performed others for estimating the length of GVF profiles

having mild slopes, while GP performs similar to the 3-step
direct method.

+e improvement obtained by the AI techniques may be
interpreted in the light of the connectivity topic. In a holistic
point of view, a better understanding of connectivity may be
beneficial to develop better schemes for modeling water
resources. To be more specific, estimating the distance be-
tween two known water depths in a GVF profile may im-
prove modeling of water movement through a man-made
canal or a natural stream. +is may help river engineering,
which includes dam construction/removal, river restoration,
and channel regulations. Since, river engineering is con-
nected with channel processes and geomorphic channel
response in small- to meso-scale fluvial systems [42].
+erefore, the improvement provided by the AI techniques
in this specific application does not confine in design of open
channels, particularly when catchment connectivity is
assessed [43].

Table 3 compares different methods for calculating L for
trapezoidal sections with steep slopes. As shown, the best
RMSE, RSE, and R2 were achieved by GP. Moreover, RMSE
obtained by the ANN was lower than that of all direct step
methods, while R2 calculated by the ANN was equal to the
best R2 computed by the latter. According to Table 3, the 5-
step direct method achieved better metrics than the 3-step
direct method, while the latter reached better results than the
1-step direct method. +us, Tables 2 and 3 imply that the
fewer the spatial interval (Δx) is considered in a typical
numerical scheme, the more accurate the results achieve and
the more the computational efforts are required. Further-
more, the comparisons carried out in Tables 2 and 3 indicate
that GP is an accurate method for computing the length of
GVF profiles, particularly when channel has a mild slope.

Although Tables 2 and 3 compared the performances of
different methods in estimation of L, they do not provide
clearly how each considered method performs in each of
GVF profiles. In this regard, six indices were separately
calculated by each method for each GVF profiles. +e ob-
tained results are depicted in Figure 2, which provide a better
detailed perspective required for comparison purposes.
Figure 2 shows that RMSE values achieved for mild slopes,
particularly M2 profile, are larger than that of steep slopes.
+is clearly addresses why RMSE values of mild slope shown
in Tables 2 and 3 are relatively larger than that of steep
slopes. According to Figures 2(a) and 2(b), RMSE values of
M2 profile are relatively higher than RMSE of other mild and

Table 1: Range of different parameters in the database.

Parameter Mean Maximum Minimum Standard deviation
Train data
u 1.48 20.00 0.00 2.19
N 5.25 9.80 2.20 2.37
F (u, N) 0.49 3.52 0.00 0.50

Test data
u 2.10 19.75 0.00 3.24
N 3.04 5.88 2.41 0.42
F (u, N) 0.42 2.98 0.00 0.42
Q 104.57 494.00 1.00 70.68
b 30.40 95.00 3.00 14.41
z 1.23 3.50 0.00 0.95
S 0.01 0.10 0.00 0.01
n 0.02 0.05 0.01 0.01
yn 1.61 10.13 0.05 1.31
y1 1.95 20.00 0.02 2.42
y2 2.11 17.00 0.01 2.35
yc 1.13 6.41 0.06 0.76

Table 2: Comparison of different methods for calculating distance
of GVFs with mild slopes.
Method RMSE MARE R2 RAE MAE RSE
Direct method (1-
step) 2068.69 0.25 0.89 0.18 735.29 0.12

Direct method (3-
step) 799.92 0.07 0.99 0.06 242.64 0.02

Direct method (5-
step) 429.3 0.04 1 0.03 132.61 0.01

ANN (this study) 1139.68 4.36 0.97 0.15 627.09 0.04
GP (this study) 710.16 1.21 0.99 0.08 321.89 0.01
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steep profiles. Also, RMSE values decrease with the increase
of number of intervals in the step direct method for all GVF
profiles, while this reduction is significant for M1, M2, S1,
and S3 profiles. Based on Figures 2(a) and 2(b), the lowest
RMSE was achieved by GP for S1 and S3 profiles and by the
5-step direct method for M1, M2, and M3 profiles. On the
other hand, RMSE values computed by all methods for S2
profiles are close to one another. MARE values depicted in
Figures 2(c) and 2(d) indicate that the ANN and GP
achieved close values to different versions of direct step
methods, whereas they obtained higherMARE values forM3
and S2 profiles. Moreover, MARE decreases with the in-
crease of number of subreach considered in the direct
method. According to Figures 2(c) and 2(d), the ANN and
GP yield to better MARE than the 1-step direct method for
M1 and S3 profiles, while they perform better than the 5-step
direct method for S1 profile based on MARE criterion. +e
comparison of R2 values shown in Figures 2(e) and 2(f)
implies that the accuracy of estimation of L increases
considering more intervals in direct step methods. More-
over, the 1-step direct method did not achieve acceptable R2

for M2 and S1 profiles. Based on Figures 2(e) and 2(f ), the
ANN and GP resulted in promising R2 values for M1, M2,
S1, and S3 profiles, while their R2 forM3 profile is lower than
that of direct step methods. Finally, MARE values computed
by all methods for S2 profile are comparable and relatively
low.

Figure 3 depicts percentages of estimated L in error
ranges for different GVF profiles. +is figure provides a
suitable opportunity for detailed accurate comparison so
that a swift glance reveals which method performs well for
each specific GVF profile. According to Figure 3, the per-
centages may increase with the increase of error ranges;
while themore the percentage in one specific error range, the
more precise the results are. For M1 profile, Figure 3(a)
shows that all methods reach closer results to the benchmark
solutions in comparison with the 1-step direct method.
Based on Figure 3(b), estimated L by the 1-step method and
the ANN for M2 profile contains significant errors, while GP
results are relatively better. In addition, 3-step and 5-step
direct methods reach more accurate solutions than the rest
for M2 profile. Figures 3(c) and 3(e) depict the poor per-
formance of the ANN and GP in predicting L of M3 and S2
profiles, while it also manifests inadequate performance of
the 1-step direct method in comparison with 3-step and 5-
step direct methods for M3 profile. On the contrary,
Figure 3(d) clearly demonstrates the improvement achieved
by both the ANN and GP in computation of L in S1 profile
compared to all direct step methods. Figure 2(e) demon-
strates the impact on considering more subreaches in direct

stepmethods since it shows that the 5-step direct method has
better results than the 3-step direct method and 3-step better
than the 1-step direct method, as well. Moreover, the error
ranges shown in Figure 2(e) imply that ANN estimations are
much closer to the benchmark solutions in each error range
considered. Furthermore, Figure 2(e) indicates that GP is
capable of accurate prediction of L in S3 profile, even better
than direct step methods. In summary, GP was found to
compute lengths of M1, S1, and S3 profiles with high ac-
curacy, while the ANN performs well in prediction of L in
M1 and S1 profiles.

Confidence limits of the lengths of GVF profiles using all
considered methods are shown in Figure 4. It clearly shows
that considering more intervals in the direct step method
makes the estimated confidence limit closer to that of the
benchmark solution for each and every GVF profile.
According to Figure 4, all methods exploited for estimation
of L yielded to close confidence limits as that of the
benchmark solutions for M1 and S1 profiles. However, the
confidence limits achieved for M2 and S3 profiles are dif-
ferent, while GP and the 5-step direct method reach to the
closest confidence limits to that of the benchmark solutions.
Figure 4(c) manifests the poor performance of the ANN in
estimating L of M3 profile, while GP replicates the confi-
dence limit of the benchmark solution with high accuracy
for this GVF profile. Moreover, the comparison of the
confidence limits shown in Figure 4(e) reveals that all
methods failed to achieve the whole range of the confidence
limit of the benchmark solution, while all confidence limits
are within the minimum and maximum points of the
benchmark confidence limit. In summary, Figures 2–4 in-
dicate that GP computed the lengths of M1, S1, and S3
profiles with high accuracy compared, while the ANN was
successful in estimation of M1 and S1 profile lengths.

According to the comparative analysis conducted in this
study, the obtained results show that AI models can improve
the prediction of the distance between two water depths
specified when they both belong to M1, S1, and S3 profiles.
+erefore, one of themain advantages of the AI techniques is
that they can improve the accuracy of estimating lengths of
gradually varied flow profiles, particularly when the com-
mon numerical modeling produces errors, e.g., when the
water depth approaches either the normal or critical depth.
Additionally, the AI methods, when they are trained, can
give estimations with a less computational effort than the
benchmark solution and numerical schemes. +e two latter
methods required integration calculations and marching on
space to compute a length of a gradually varied flow profile.
+ese benefits may attract attention toward using the AI
techniques in this specific application. In conclusion, the AI

Table 3: Comparison of different methods for calculating distance of GVFs with steep slopes.
Method RMSE MARE R2 RAE MAE RSE
Direct method (1-step) 191.75 0.26 0.96 0.18 735.29 0.12
Direct method (3-step) 142.51 0.1 0.97 0.06 242.64 0.02
Direct method (5-step) 135.56 0.07 0.98 0.03 132.61 0.01
ANN (this study) 110.17 0.73 0.98 0.15 627.09 0.04
GP (this study) 54.05 0.27 1 0.08 321.89 0.01

6 Complexity



0

500

1000

1500

2000

2500

3000

3500

4000

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN
(this

study)

GP (this
study)

RM
SE

M1
M2
M3

(a)

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN
(this

study)

GP (this
study)

0

50

100

150

200

250

300

RM
SE

S1
S2
S3

(b)

0
2
4
6
8

10
12
14
16
18

M
A

RE

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN
(this

study)

GP (this
study)

M1
M2
M3

(c)

0.0

0.5

1.0

1.5

2.0

2.5

M
A

RE

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN
(this

study)

GP (this
study)

S1
S2
S3

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R2

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN
(this

study)

GP (this
study)

M1
M2
M3

(e)

R2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN
(this

study)

GP (this
study)

S1
S2
S3

(f )

Figure 2: Performances of different methods for calculating distance of different GVF profiles: (a) RMSE for mild slopes, (b) RMSE for steep
slopes, (c) MARE for mild slopes, (d) MARE for steep slopes, (e)R2 for mild slopes, and (f)R2 for steep slopes.
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Figure 3: Percentages of estimated distance in error ranges for different GVF profiles: (a) M1, (b) M2, (c) M3, (d) S1, (e) S2, and (f) S3.
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Figure 4: Confidence limits of estimated distances for different GVF profiles: (a) M1, (b) M2, (c) M3, (d) S1, (e) S2, and (f) S3.

Complexity 9



models perform much better in many cases in comparison
with other methods considered in this study.

4. Conclusions

Although varied flow function provides accurate estimation
of the lengths between any pair of known water depths in
steady GVF profiles, it requires four complicated integral
forms to be calculated which makes it inadequate in practice
in comparison to numerical methods such as the direct step
method. In this regard, two AI models called the ANN and
GP were trained with 5154 data that contained varied flow
function. +e performances of the ANN and GP in pre-
dicting the length between two specified water depths were
compared with the direct method having one, three, and five
steps, while the results of varied flow function were set as
benchmark solutions. +e test data consist of 165 data for
mild slope and 165 data for steep slope. According to the
results, the accuracy of the direct method increases con-
sidering more number of intervals considered by the
compensation of increasing computational efforts. Also, the
comparison clearly demonstrates that GP outperformed
others for M1, S1, and S3 profiles. Furthermore, high ac-
curate results were obtained by the ANN for M1 and S1
profiles. However, the results reveal better performance of 3-
step and 5-step direct methods for M2, M3, and S2 profiles,
while the 1-step direct method failed to estimate precise
lengths for M2, M3, and S3 profiles. Finally, GP and the
ANN are suggested for estimation of GVF lengths when
water depth is larger than normal and critical depths in mild
and steep slopes, respectively. +e shortcomings and im-
provements of the AI models in estimating GVF lengths can
be beneficial to water surface modeling in future studies.
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Accurate and reliable prediction of Perfobond Rib Shear Strength Connector (PRSC) is considered as a major issue in the structural
engineering sector. Besides, selecting the most significant variables that have a major influence on PRSC in every important step for
attaining economic and more accurate predictive models, this study investigates the capacity of deep learning neural network
(DLNN) for shear strength prediction of PRSC. -e proposed DLNN model is validated against support vector regression (SVR),
artificial neural network (ANN), and M5 tree model. In the second scenario, a comparable AI model hybridized with genetic
algorithm (GA) as a robust bioinspired optimization approach for optimizing the related predictors for the PRSC is proposed.
Hybridizing AI models with GA as a selector tool is an attempt to acquire the best accuracy of predictions with the fewest possible
related parameters. In accordance with quantitative analysis, it can be observed that the GA-DLNN models required only 7 input
parameters and yielded the best prediction accuracy with highest correlation coefficient (R� 0.96) and lowest value root mean square
error (RMSE� 0.03936KN). However, the other comparable models such as GA-M5Tree, GA-ANN, and GA-SVR required 10 input
parameters to obtain a relatively acceptable level of accuracy. Employing GA as a feature parameter selection technique improves the
precision of almost all hybrid models by optimally removing redundant variables which decrease the efficiency of the model.

1. Introduction

Steel-concrete composite/hybrid systems have found wide
application in several engineering works, due to the recent
advancements in structural engineering. In this regard, the
shear connector serves as an important component that
ensures the development of composite actions by facilitating

the shear transfer between the concrete slab and the steel
profile [1–3]. At the site, conventional shear connectors (i.e.,
Nelson stud) are beneficial owing to their high level of
automation; meanwhile, they are prone to certain problems,
especially, in structures that are subjected to stress [3–5].
When compared with other connectors, Nelson stud
somehow exhibits low resistance which can lead to the
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design of girders with partial interaction. Considering this
fact, many research studies have focused on how to improve
the shear connector for hybrid composite systems [6, 7],
with the first work dated back to the 1980s.-e development
of Perfobond, another form of a connector with higher
resistance, was reported by Leonhardt, Andra, and Partners
in 1987, when working on the third bridge that crossed the
Caroni River in Venezuela [3, 6, 8]. A study by Vianna et al.
[9] compared the economic costs of steel girders
manufacturing using different types of connectors. From the
outcome of the study, it was observed that Perfobond con-
nectors are more cost-efficient to be used in the steel-concrete
composite. Later, Vianna et al. reported another study on
Perfobond and T-Perfobond rib shear connectors in terms of
their ductility, resistance, and collapse modes [3]. -e results
showed that PRSC is both structurally efficient and eco-
nomical in terms of shear transfer in hybrid and composite
structures. Other research studies focused on the numerical
and parametric evaluation of PRSC on 40 pushout samples
[2, 10]. -e study of a simple perforated plate PRSC contains
several holes and transverse rebars; the sample also exhibited
varying concrete compressive strengths. -e study reported
two major findings as it involved finite element (FE) method
and regression analysis during the prediction of the PRSC
shear capacity [11, 12]. Another experimental study on the
structural response of PRSC was performed by [4]. -e study
reported an increase in the resistance of PRSC with increases
in the number of holes, and based on this outcome, it was
submitted that the resistance and ductility of PRSC can be
increased by passing the reinforcement bars through the holes
while reducing the upward displacement. Rodrigues and
Láım focused on the influence of the holes number, rib holes,
and transverse reinforcement, as well as the doubled PRSC at
both ambient and high temperatures [6]. From the outcomes,
higher temperatures significantly impacted PRSC in terms of
its load-carrying capacity, especially the doubled PRSC. -e
study further showed that transverse reinforcement bars,
when present in rib holes, cause a reduction in the capacity of
PRSC to carry a load, especially at high temperatures. A
parametric study on PRSC shear strength based on the FE
method has been reported [13]. -e developed model in this
study was verified using experimental pushout tests, and from
the results, a mathematical model was developed for the
estimation of the shear capacity of PRSC. -e shear behavior
of PRSC has been investigated by [14], under both cyclic and
static loadings. Based on the static tests, the results showed the
shear capacity of pure concrete-based specimens to be about
65% of that of specimens with both concrete end-bearing
zone and concrete dowels. Specimens with transverse rebars
in holes exhibited shear capacity of about two times that of
specimens with transverse rebars. From the cyclic tests,
samples without transverse rebars showed a significant de-
crease in residual shear capacity compared to that of static
shear capacity. Hence, specimens with transverse rebars
exhibited residual shear capacity that was almost similar to
their static shear capacity.

A parametric study has been reported on the circular-hole
and long-hole PRSC [15]. From the outcome of the study, a
relationship was established between the failure mode of both

long-hole and circular-hole PRSC and the concrete failure. It
was also reported that the increase in both height and diameter
increases the shear stiffness of PRSC. Steel-concrete decks with
PRSC have been investigated for dynamic characteristics in
[16, 17]. -e study considered PRSC with both normal-weight
high-strength concrete and lightweight high-strength concrete.
-e considered characteristics include the natural frequencies,
frequency response functions, and damping ratio; these were
evaluated using a nondestructive approach. -e experimental
outcomes of natural frequencies were also compared using the
FE model. From the results, the first mode with a damping
ratio of almost 0.5% was found to be the most effective mode
for both concrete types. Relying on these studies, it is evident
that several factors influence the structural behavior of PRSC.
Such factors include end-bearing force, rib spacing, rib ar-
rangement, and concrete compressive strength, as well as the
yield and area strength of the transverse rebars [18]. Having
identified these factors that govern the behavior of PRSC, it
becomes necessary that the resistance of PRSC should be
predicted for proper implementation by the decision makers
[19, 20]. -e quantification of the PRSC resistance based on
analytical methodologies has been introduced; however, there
are certain limitations of such methods [21].

According to several studies published in the literature,
their behavior of PRSC is affected by various contributing
factors, including the area and the yield strength of trans-
verse rears, the end-bearing force, the concrete compressive
strength, the rib spacing, and the rib arrangement. In ad-
dition, several analytical and empirical models were de-
veloped to predict the resistance of PRSC; however, it
provided undesirable predictions with an increase in cal-
culated errors as well.

-e advancements in technology have made computer-
aid methods some of the optimistic alternatives for mod-
elling several structural engineering-related problems, and
the most famous among them is the artificial intelligence
models which are easy, applicable, convenient, and strong
predictive models [22–25]. AI models are beneficial as they
can solve nonlinear, stochastic, and nonstationary problems
that may not be addressed when the classical regression
models are used [26–29]. Several AI models have been
developed to determine the actual relationship between the
predictors and perfobond rib shear strength. For instance,
Köroğlu et al. [30] investigated the genetic programming
(GP) model for ultimate shear capacity prediction in
composite beams with profiled steel sheeting. -e study
compared the model’s accuracy in an ultimate shear capacity
prediction of the composite beams to that of the proposed
GPmodel based on the employed test data. From the results,
it was submitted that the new GP performed more accurate
ultimate shear capacity prediction of the composite beams
compared to the building codes. Another study by Ali [31]
focused on the prediction of the shear strength of channel
shear connectors in a composite beam that consists of
concrete and steel sections based on adaptive neuro-fuzzy
inference system (ANFIS) and linear regression (LR) which
are nonlinear and linear modelling tools, respectively. From
the results, ANFIS performed more accurate and precise
predictions than LR. Although, there have been several
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explorations of AI models for modelling shear strength-
related structure and material problems [32, 33]. It can be
observed for the existing approaches that the capacity of the
used model is mainly influenced by the structure of the used
approach and the selection of input parameters. Based on
that, introducing a novel approach has capabilities to dis-
cover the complex relationship between predictors and
target which is very important to increase the prediction
precession [34]. Moreover, incorporating that approach with
a novel algorithm to select the most important input pa-
rameters and accurately predict the Perfobond Rib Shear
Strength Connector with high accuracy is very significant for
structural engineering.

-e research scope of computer aid is still limited, and
the exploration of newly developed AI models is still on-
going research motivation. -e DLNN model is a newly
explored AI version that demonstrates a reliable machine
learning model for solving nonlinear regression problems
[35–39] and yet to be developed for the PRSC shear strength
prediction. -e current research is conducted based on the
implementation of the deep learning model for predicting
PRSC shear strength modelling. Prior to the step, to predict
the PRSC shear strength, genetic algorithm is used with the
DNN model to select the most important input parameters
and then introduce these factors to the adopted approach.
-e proposed DLNN model is validated against several
well-established machine learning models including
M5Tree, ANN, and SVR.-e investigation is extended with
the integration of the genetic algorithm as a robust nature-
inspired optimization algorithm for input parameters’
selection. -e obtained results are assessed and discussed
comprehensively.

2. Experimental Dataset Description

To evaluate the shear strength capacity of a Perfobond
connector (see Figure 1), data included 90 records related to
the shear connector of steel-concrete structures. -ese
records were collected from eight databases published in
literature studies.-ese studies comprised data was collected
from [1–5, 10, 40]. -e input variables included concrete
compressive strength (fc), area of concrete dowels (AD), rib
holes number (n), area of cross reinforcement bars and yield
stress of reinforcement bars (Atr,rfy,r), area of cross rein-
forcement bars and the tensile strength of cross rebar
(Atrfy), area of the connector at the end-bearing zone (Ab),
the ratio between the thickness of the concrete slab to
connector height (b/hsc), connector height (hsc), the contact
area between the connector and concrete (AF), and coef-
ficient of end-bearing force (α). -ese parameters were
entered to the hybrid model to predict shear of Perfobond
connector Qexp. -e description statistics of the experi-
mental dataset are shown in Table 1.-e data were separated
into groups: training dataset 85% and testing dataset 15%.

3. Methodology Overview

3.1. ArtificialNeuralNetwork (ANN). In the last few decades,
artificial networks, such as neural networks, social networks,

and other algorithms, have established. -e main merit of
these technologies is their abilities to predict data and deal
with complex systems. Neural network is a mathematical
model applied to make the decision in the right way by
mimicking the neurons in the biological brain [41]. -e
construction of a neural network is depending on the con-
nection of several layers called neurons. Feedforward neural
network with backpropagation learning algorithm is widely
used by researchers. Backpropagation is a common algorithm
in neural network applications due to its ability in training the
network based on the supervised learningmethod [42]. In this
algorithm, the predicted value is compared with the original
variable to compute the error between them. -e algorithm
modified the weights in the neural network to decrease the
error value to a small amount. -e structure of the algorithm
is explained as follows:

N − H1 − H2 − · · · − HNHL − M, (1)

where N represents the input neuron, H is the number of
hidden layers in the neural network, and M is the output
variable. -e construction of a feedforward neural network
contains at least an input variable, output, and hidden layer.
In this network, the information is transferred in one di-
rection from input to hidden and output layer without loops
in the network. -e number of input variables and predicted
labels are corresponded to the number of neurons in the input
and output layer, respectively. Neurons in hidden layers are
used for nonlinear transformation of the input variables.
Hidden layers in the neural network are calculated by

vi � 1 + exp − 1 × 
1

i�1
xiwij

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

− 1

, (2)

where vi refers to the hidden layer, xi is the input variable,
and wij represents the weight between the layers. -e value
of the output layer can be computed as below:

y � 1 + exp − 1 × 
1

j�1
vjwij

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

− 1

. (3)

To design the network, a number of nodes and hidden
layers are required. Various studies stated that one or two
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Figure 1: -e systematic framework of the Perfobond rib shear
strength connector.
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layers are enough to achieve better prediction performance
[43, 44].-e best performance of the training process is based
on the good selection of inputs’ network. During this process,
the relations between inputs and outputs are designed by the
neural network. In every iteration phase, the modification of
weights and biases is done by decreasing the error measure
between actual and predicted outcomes. -e error between
actual and predicted values is presented below:

Error � 0.5(d − y)
2
, (4)

where d represents the real value and y is the estimated value
obtained from the algorithm. In this study, one hidden layer
was used with sigmoid activation function due to its validity
in the regression process. Figure 2 shows the structure of the
neural network.

3.2. Deep Learning Neural Networks (DLNN). Recently, the
study of neural network application is based on the concept
of deep learning technique. -e structure of deep neural
network is an extension of classical neural network with the
addition of extra hidden layer(s) to the network. Deep
learning was introduced by Hinton et al. through proposing
the layerwise greedy-learning method. By this method, the
neural network is pretrained by unsupervised learning
technique before the training process layer by layer. Deep
learning technique is popular due to two reasons: (i) de-
veloping of huge technical data, which can solve the problem
of overfitting and (ii) assigning of nonrandom value to the
neural network before the unsupervised learning process
[45]. -us, better performance can be reached after the
training phase. -ere are various types of deep learning
tools, and in this study, the backpropagation neural network
was used.

-is approach is used in many types of application, the
same multihidden layers’ approach, and trained via back-
propagation with gradient descent algorithm. -e network
contains input, output, and large numbers of neurons and
hidden layers. -e algorithm is worked based on the con-
nection between the first layer and hidden layers which leads
to yielding of a new variable that is transferred to the output
layer. -en, the output layer predicts the result of the
process. -e specific thing in deep learning is the nonlinear

relations between the multiple layers in the network that
gave them the ability to deal with different nonlinear
functions. -is deep network can recognize complex pat-
terns used in a complicated process. Figure 3 describes the
general structure of a deep neural network with input,
output, and multiple hidden layers. -e mathematical
process can be discussed as follows:

M
I

� f w
IφI− 1

+ b
I

 , for 0< I<L, (5)

where f represents the activation function, w is the weight
matrix and, b is the bias. -e input variable is denoted by 0
layer and L represents the output layer. In this research,
hyperbolic tangent function is utilized as an activation
function due to its ability to obtain better performance in the
study problem.

3.3. M5 Rule Model. M5 rule algorithm was developed by
Holmes et al. [35] to forecast the numeric and nominal data.
Building of theM5 rule is based onM5 tree by using the trees
to build the model.-e popular technique of M5Model Tree
(MT) works with classification cum regression principle. MT
propounded by Quinlan [46] divides the complete domain

Table 1: Descriptive statistics of experimental data.

fc AD n Atr,rfy,r Atrfy Ab� tSChSC b/hSC hSC AF α qexp

Training phase QUOTE hsc
Max 52.6 9817.48 5 281486.7 876251.51 1950 3.6 150 112993.4 1 774.2
Min 20.91 0 0 0 0 137.5 1.2 25 8831.77 0 13.14
Mean 30.60 3601.63 2.2 33955.61 417272.072 1325.95 1.65 107.16 69384 0.85 387.15
SD 8.84 3100.35 1.37 74153.85 328887.75 566.76 0.84 38.06 31925.45 0.35 181.96
CV 0.28 0.86 0.62 2.18 0.79 0.42 0.51 0.36 0.46 0.42 0.47
Testing phase
Max 52.6 9817.48 5 281486.7 876251.51 1950 3.6 150 112993.4 1 774.2
Min 26.6 0 0 0 302378.29 612 1.2 102 45500 1 282
Mean 30.07 5628.68 2.86 60056.78 799735.0807 1068.4 1.67 115.06 74868.07 1 505.94
SD 8.84 3646.44 1.85 103972.06 195079.3831 454.23 0.76 17.41 18781.76 0 174.36
CV 0.29 0.65 0.64 1.731 0.243930006 0.43 0.45 0.15 0.25 0 0.34
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Figure 2: -e schematic structure of the applied ANN predictive
model.
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into many subdomains, and multiple linear regression
models are developed for each of them. In this case, non-
linear input-output relationships are approximated by a
number of linear models.

Rule generation depended on the partial and regression
tree (PART) model developed by [47]. -e work of the al-
gorithm depends on iterating model constructing and
choosing the rule which has a good result at each iteration. In
the training phase, theM5model is applied, and then, the best
leaf is chosen as a rule. -e process continues until all in-
stances are tested and utilized by the rules. -e main merit in
this approach is that the algorithm builds full trees and de-
velops a small amount of dataset at the testing phase [48, 49].
In the first stage, in the development of the MT model, a
decision tree is developed following a division criterion. Based
on the criterion used for dividing the domain, a number of
variants of model trees are available, and the one which
follows standard deviation reduction (SDR) as the criterion is
known as an M5 Model Tree [42, 43]. -e SDR quantifies the
reduction in error at each node while testing of attributes, and
its computation can be made as follows:

σR
� σ(N) − 

Ti




|N|
σ Ti( , (6)

where σR � standard deviation reduction, N is the number
of training samples, Ti is the training samples of ith sub-
domain, and � σ(N) and σ(Ti) are the SDs of total samples
and ith subdomain sample. -e resulting model for the
subdomain can be represented asO � a0 + a1x1 + a2x2 + · · ·,
where O is the output, a1,a2. . .. are the coefficients of linear
regression, and x1, x2. . . are the inputs. -e procedure of
computation is illustrated in Figure 4, which shows the
division to the number of subdomains followed by devel-
opment of different models considering x1 and x2 as inputs.

-e partitioning process should be continued till the
variation in the class values of all the instances that are
associated with a node becomes negligible. -en, the models
are refined by the “pruning” and “smoothing” processes,
which may help to alleviate the “overfitting” and abrupt

changes between individual subclasses [50]. -e complete
theoretical description of M5 model trees is available in
literature [43, 51].-is method does not demand any control
parameter settings, while on the contrary, its application
results in more user friendly linear models [45, 48].

3.4. Support Vector Regression (SVR). Support vector re-
gression has been developed by [52] as an algorithm based
on using a hyperplane to separate a dataset and calculate the
distance from the hyperplane and the nearest variable. In
recent year, SVR algorithm has been intensively used by
many researchers for solving different engineering problems
and shown better prediction than other machine learning
algorithms [53, 54]. SVR estimates the error between the
input and output variable in the regression process by
computing the distance from SVR margin. -e mathe-
matical expression of the SVR model is shown as follows:

M � x1, y1, x2, y2, . . . , xnyn , (7)

where M denotes the dataset training and x and y represent
the input and output variables. -e SVR function that ap-
plied to the training dataset is

f(x) � w · φ(x) + b, (8)

where w represents the weight vector and φ(x) refers to the
high dimension of input space, whereas b represents the
scalar vector. In the regression problem, error deviation can
be calculated by the following optimization algorithm:

minφ(w, ξ) � 0.5w
2

+ C 
n

i�1
ξi

⎛⎝ ⎞⎠φ xi(  + b

subjected to Mi w
M

xi + b ≥ 1 − ξi, ξ ≥ 0,

(9)

where ξ represents the slag variable and C is equal to the error
between regularization and empirical error. To optimize the
SVR model, Lagrange multipliers and sequential minimal
optimization were used. Figure 5 illustrates SVR regression
with ε-insensitive loss function. In this study, the predicted
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Bias
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Figure 3: -e systematic structure of the developed DLNN model.
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problem is characterized by a nonlinear relationship between
input and output variables, in which the nonlinear mapping
of SVR can be suitable to calculate the data correlation. In the
SVR model, 4 kernel functions can be used for nonlinear
mapping during the training phase. -ese kernels include
linear, sigmoid, polynomial, and radial basis functions [53].
Radial basis function is applied due to its efficiency and ability
to deal with complex regression problems [55].

3.5. Hybridized Genetic Algorithm (GA) with AI Models.
Genetic algorithm is an evolutionary algorithm used to
optimize solutions in complicated systems by finding on
biological selections [56]. GA has been employed in
various research areas such as pattern recognition, image
processing, and control system [57]. In several research
studies in engineering and science applications, GA
demonstrated a reliable method in feature selection than
other selection tools [58, 59]. -e efficiency of GA can be

discussed by its ability to explore the search space and
concentration on the global optimization which led to a
better investigation, utilizing the search space. -e main
idea included the application of natural selection, such as
the creation of chromosomes, crossover, and mutation in
solving complex processes. -ese processes are employed
to reduce the features which are transferred to binary
string [60, 61].

-ere are three main phases at natural selection (see
Figure 6). Firstly, use crossover to produce offspring, then
mutation may occur to the generated individuals and,
finally, the fittest individual is selected. -e first step in
genetic programming is the population initialization. In
this step, many individuals are generated randomly. -en,
the fittest individual is chosen to produce the offspring.
-is phenomenon can be applied for search space. We
produce many solutions to the study problem and the best
solution is selected from them. In this study, a genetic
algorithm is employed to choose the highly correlated
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variables and the process is begun from two variables.
-en, the models ANN, DLNN, SVR, and M5 rule are
applied [62, 63].

3.6. Performance Metrics. In order to select the best pre-
dictive modelling approaches, five statistical indicators are
used in this study which are root mean square error (RMSE),
mean absolute (MAE), mean absolute percentage error
(MAPE), relative root mean squared error (RRMSE), relative
error (RE), mean relative error (MRE), Nash–Sutcliffe ef-
ficiency (NSE), and BIAS. -e mathematical expressions of
these measures can be seen below [64–66]:

RMSE �

������������������

1
N



N

i�1
Qi exp − Qipre 

2




,

MAE �
1
N



n

i�1
Qi exp − Qipre 



,

MAPE% �
1
N



n

i�1

Qi exp − Qipre 

Qi exp




∗ 100,

RRMSE �
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N
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i�1
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Qi exp




,

(10)

where Qi expand Qipre are the observed and predicted ith
values of PRSC capacity, Qexp represents the average values
of PRSC, and N is the total number of experimental samples.
In this regard, eight statistical measures have been used to
assess the performances of the adopted models. -e men-
tioned measures are commonly used to assess the efficiency
of AI models, including statistical parameter (i.e., RMSE and
MAE) used for evaluating the forecasted error between
actual and predictive values. Besides, the other measures
such as NSE are employed to compute the degree of cor-
relation between the predictive and actual points.

4. Results and Discussion

-is section describes the results obtained from standard AI
models according to all available data. -e other scenario of
this part of the study shows the incorporation of genetic
algorithm as a tool used for selecting the most significant
input parameters for adopted AI models. In both scenarios,
the performance of each model is assessed based on
quantitative assessment, using different statistical criteria,
and visualized assessments, using different plots and figures.

4.1. First Scenario: Applying the Standard Models. -e mo-
tivation of this current study is to accurately predict the
shear strength of PRSC using different AI modelling ap-
proaches, including DLNN, SVR, ANN, andM5 Tree. In this
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Figure 6: Process of selecting best input variables of each AI modelling using GA algorithm.
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scenario, all mentioned predictive models have been
established based on ten predictors (fc, ADn, Atr,rfy,r,
Atrfy, Ab, b/hsc, connector height hsc,AF, and α). -e
collected experimental samples were divided into two sets,
during the stage of developed standalone AI models. -e
majority of samples (85%) were used for modelling con-
struction, whereas the rest was used for validation purposes.
In order, to evaluate the performance accuracy of each
modelling technique separately, ten statistical metrics were
used, including correlation measures and error measures.
Simulated results obtained by four predictive models for
both training and testing stages were illustrated in Table 2. It
can be clearly seen that all models during the training stage
yielded unpromising accuracy except DLNN models which
provided the best accuracy of predictions and produced the
highest values of NSE (0.957) and the lowest values of RMSE
(0.047KN), MAE (0.033KN), and RMSRE (0.914). How-
ever, the testing phase is the most important stage in the
evaluation of the accuracy of the predictive models.
According to Table 2, the superiority of DLNN over other AI
models can be easily observed during the testing phase.
Moreover, DLNN models generated the highest accuracy of
predicted shear strength values with the shortest magnitudes
of RMSE (0.045KN), MAE (0.020KN), RRMSE (0.092), and
the highest values of NSE (0.888).

To evaluate the performance of each developed model
during the testing phase in a more rigorous way, several
graphical visualizations were established including scatter
plots, relative error plots, and Taylor diagram.-e scatter plot
is considered a very important figure in the evaluation of the
variance between the predicted and the actual shear strength
values. Based on Figure 7, DLNNmodes presented less scatter
and recorded a higher value of correlation coefficient
(R� 0.96) than the other comparable models (R of 0.95, 0.95,
and 0.94, respectively, for M5Tree, ANN, and SVR). Besides,
among all AI models, the DLNN modelling approaches
produced fewer relative error percentages (see Figure 8).
Figure 8 clearly indicates that except for one sample (sample
12), the relative error of predictions by DLNN is ±20% in-
dicating a success rate of 92%, while by other AI methods,
multiple samples surpass the relative error limits of even 40%.

For better visual comparison, the Taylor diagram was
established because it can summarize different statistical
measures (correlation coefficient and standard deviation) in
one figure thereby, facilitating the process of selecting the
best model accuracy.

Taylor diagrams are polar plots that present the simi-
larity between observed and predicted data based on the
correlation coefficient and standard deviation in a 2D plane.
From Figure 9, it is evident that the point corresponding to
DLNN predictions is the closest to the point corresponding
to the observed dataset, indicating the best performance by
the standalone DNN model, i.e., DLNN generated more
accurate predicted values and closer to the actual ones. Based
on the mentioned result, DLNN models showed better
generalization capabilities in comparison with the other AI
models during training and testing phases. Conversely, SVR
modelling approach exhibited the lowest level of prediction
accuracy in comparison with all AI predictive models.

4.2. Second Scenario: Applying the Hybrid Models. -is
section of the paper investigates the capability of using GA as
a bioinspired algorithm for assisting the four AI models in
selecting the best combination of input parameters, which
importantly affects the PRSC. As the AI models can effi-
ciently learn from the behavior of the datasets, it is very
essential to minimize the model complexity. -us, any
improvement in the model performance with the use of
minimal input parameters can be considered as economical
in the modelling process. With this objective, the potential of
GA was used for developing hybrid models with different AI
methods in this study. Accordingly, eight different combi-
nation models were developed by hybridizing different AI
methods with GA (GA-ANN, GA-SVR, GA-DLNN, and
GA-M5Tree. -e model combinations for different hybrid
methods were designated as M1 toM8 in this paper, whereas
the number of input parameters varied from 2 to 9 as
presented in Tables 3–6.

-e performance of prediction abilities over the training
and the testing phases for the hybrid models are summarized
in Tables 7–10. -e most remarkable note can be observed
that the GA improved the performance of the most predictive
models in comparison with pure AI models, which have been
carried out in the first scenario of this paper. For instance, the
hybrid (GA-M5Tree-M8) recorded good accuracy of pre-
dictions compared with standard (M5Tree) model and the
statistical measures, such as RMSE and MAE reduced by
8.55% and 3.77%, respectively, during the testing phase. -e
robustness of GA in properly selecting the optimal input
parameters can be clearly seen when GA-M5Tree-M6 (with
seven parameters) model generated slightly higher predicting
accuracy than standard M5Tree model (with ten input var-
iables). For more comparative analysis, GA-ANN-M6 (with 7
input variables) performed better than the best standalone
DLNN and GA-M5Tree-M6, respectively. With respect to
SVR-GA models, they were slightly improved in comparison
with standard SVR. Moreover, all these GA-SVR models (8
models) showed the lowest accuracy and none of them could
outperform the standard DLNN. On top of that, GA-SVR
models scored the highest values of relative error (ranging
from 20.25 to 25.44%) in comparison with other modelling
approaches. Although all GA-SVR models performed the
lowest accuracy of performances in comparison with other
hybrid models in this scenario, they also showed lower
prediction accuracy than standard SVR models which have
been carried out in the first scenario. -erefore, it can be
concluded that there was no specific advantage in the hy-
bridization of SVR with GA for this problem and dataset. On
the contrary, the hybridization of GA with DLNN provided
more excellent predicted results than all standalone models
which performed in the first scenario.

Among the different hybrid DLNN models, the hybrid
GA-DLNN- M6 model performed very well (with NSE of
0.914, RMSE of 0.039KN, MAPE of 0.052, and MAE of
0.021KN). Furthermore, it was noted that very fewer bias
indicators were generated in GA-DLNN-M6, GA-DLNN-M7,
and GA-DLNN-M8 (− 0.0004, -0.0004, and -0.01) than
standalone DLNN model (-0.011). It was evident that GA-
based hybrid models can improve the performance when
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Table 2: -e performance prediction skills for the standalone predictive models over the training and testing phase.

AI model MAPE RMSE (KN) MAE (KN) RRMSE (KN) MRE BIAS NSE
Training phase
DLNN 0.173 0.047 0.033 0.914 0.163 − 0.026 0.957
M5Tree 0.636 0.089 0.064 4.176 0.528 0.000 0.848
ANN 0.283 0.090 0.065 1.312 0.178 0.000 0.845
SVR 1.235 0.108 0.086 8.377 1.120 0.000 0.776
Testing phase
DLNN 0.047 0.045 0.020 0.093 0.027 − 0.011 0.888
M5Tree 0.062 0.047 0.023 0.129 0.041 − 0.005 0.880
ANN 0.064 0.047 0.023 0.130 − 0.009 − 0.003 0.878
SVR 0.096 0.052 0.023 0.252 0.096 − 0.007 0.853
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Table 3: -e abstraction of the influential input parameters using GA-DLNN for building the prediction process for the shear strength.

Inputs Models
2 M1: Qexp � f(AD, α)

3 M2: Qexp � f(AD, AF, α)

4 M3: Qexp � f(AD, n, Atr,r, fy,r,hSC)

5 M4: Qexp � f(AD, n, Atr,rfy,r,hSC, α)

6 M5: Qexp � f(AD, n, Atr,rfy,r, Atrfy, Ab � tSChSC, AF)

7 M6: Qexp � f(fc, n, Atr,rfy,r, Atrfy, b/hSC, hSC, α)

8 M7: Qexp � f(fc, AD, Atr,rfy,r, Atrfy, b/hSC, hSC, AF, α)

9 M8: Qexp � f(fc, n, Atr,rfy,r, Atrfy, Ab � tSChSC, b/hSC, hSC, AF, α)

Table 4: -e abstraction of the influential input parameters using GA-M5tree for building the prediction process for the shear strength.

Inputs Combinations
2 M1: Qexp � f(AD, α)

3 M2: Qexp � f(AD, AF, α)

4 M3: Qexp � f(fC, n, Atrfy, AF)

5 M4: Qexp � f(AD, n, Atr,rfy,r,hSC, α)

6 M5: Qexp � f(AD, n, Atr,rfy,r, b/hSC, AF, α)

7 M6: Qexp � f(fc, AD, Atr,rfy,r, Atrfy, Ab � tSChSC, b/hSC, hSC)

8 M7: Qexp � f(fc, n, Atr,rfy,r, Atrfy, b/hSC, hSC, AF, α)

9 M8: Qexp � f(fc, n, Atr,rfy,r, Atrfy, Ab � tSChSC, b/hSC, hSC, AF, α)

Table 5: -e abstraction of the influential input parameters using GA-ANN for building the prediction process for the shear strength.

Inputs Combinations
2 M1: Qexp � f(AD,Ab � tschsc)

3 M2: Qexp � f(AD, Atr,r, fy,r, α)

4 M3: Qexp � f(n, Atr,rfy,r,Ab � tschsc, hsc)

5 M4: Qexp � f(fc, AD, n, Atr,rfy,r,hsc)

6 M5: Qexp � f(fC, n, Atr,rfy,r, Atrfy,Ab � tSChSC, hSC)

7 M6: Qexp � f(fC, n, Atr,rfy,r, Atrfy, Ab � tSChSC, AF, α)

8 M7: Qexp � f(fc, AD, n, Atr,rfy,r, Atrfy, b/hSC, AF, α)

9 M8: Qexp � f(fc, AD, n, Atr,rfy,r, Atrfy, Ab � tSChSC, b/hSC, hSC, α)
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hybridized with DLNN, NN, andM5Model Tree with a fewer
number of input parameters for this dataset. Moreover, the
GA-DLNN-M6 was considered very simply when compared
to the other models because fewer input parameters are
needed, and it can achieve a significant improvement

compared to the standard DLNN, in which the RMSE and the
RMSRE reduced by 12.62% and 6.06%, respectively, whereas
the NSEwas increased by 2.98%.-e superiority of this model
(GA-DLNN) did not only appear in comparison to simple
models, but also appeared when compared to hybrid models

Table 6: -e abstraction of the influential input parameters using GA-SVR for building the prediction process for the shear strength.

Inputs Combinations
2 M1: Qexp � f(AD, α)

3 M2: Qexp � f(fc, AD, AF)

4 M3: Qexp � f(Atr,rfy,r, Atrfy, b/hSC, hsc)

5 M4: Qexp � f(fc, AD, n, Atrfy, Ab � tSChSC, α)

6 M5: Qexp � f(fc, AD, Atr,rfy,r, Atrfy, AF, α)

7 M6: Qexp � f(fc, n, Atr,rfy,r, Atrfy, Ab � tSChSC, b/hSC, α)

8 M7: Qexp � f(fc, AD, Atr,rfy,r, Atrfy, Ab � tSChSC,hSC, AF, α)

9 M8: Qexp � f(fc, n, Atr,rfy,r, Atrfy, Ab � tSChSC, b/hSC, hSC, AF, α)

Table 7: -e performance prediction skills for the hybrid GA-DLNN predictive model over the training and testing phases.

MAPE RMSE (kN) MAE (kN) RRMSE (kN) MRE BIAS NSE
Training phase
GA-DLNN-M1 0.675 0.123 0.094 4.025 0.506 − 0.006 0.710
GA-DLNN-M2 1.099 0.122 0.097 7.470 0.955 − 0.001 0.714
GA-DLNN-M3 0.823 0.115 0.089 5.415 0.693 − 0.002 0.746
GA-DLNN-M4 0.414 0.110 0.086 2.100 0.275 0.005 0.766
GA-DLNN-M5 0.862 0.102 0.074 6.117 0.734 0.002 0.800
GA-DLNN-M6 0.519 0.086 0.064 3.388 0.407 0.001 0.859
GA-DLNN-M7 0.501 0.086 0.064 3.079 0.374 − 0.001 0.859
GA-DLNN-M8 0.239 0.046 0.030 1.462 0.228 − 0.022 0.959
Testing phase
GA-DLNN-M1 0.117 0.084 0.039 0.256 − 0.018 − 0.004 0.611
GA-DLNN-M2 0.097 0.078 0.034 0.222 0.037 − 0.005 0.663
GA-DLNN-M3 0.081 0.071 0.032 0.187 0.051 − 0.006 0.718
GA-DLNN-M4 0.059 0.064 0.027 0.160 0.028 − 0.005 0.776
GA-DLNN-M5 0.054 0.051 0.024 0.121 0.021 − 0.003 0.858
GA-DLNN-M6 0.052 0.039 0.021 0.087 − 0.013 0.000 0.914
GA-DLNN-M7 0.044 0.042 0.020 0.090 0.010 0.000 0.903
GA-DLNN-M8 0.042 0.040 0.019 0.082 0.011 − 0.007 0.912

Table 8: -e performance prediction skills for the hybrid GA-M5Tree predictive model over the training and testing phases.

MAPE RMSE (kN) MAE (kN) RRMSE (kN) MRE BIAS NSE
Training phase
GA-M5Tree-M1 0.674 0.121 0.095 4.023 0.522 0.000 0.718
GA-M5Tree-M2 0.319 0.123 0.095 0.978 0.153 0.006 0.706
GA-M5Tree-M3 0.409 0.111 0.086 1.350 0.275 0.000 0.762
GA-M5Tree-M4 1.365 0.123 0.096 9.442 1.221 0.000 0.710
GA-M5Tree-M5 0.465 0.115 0.090 2.353 0.323 0.000 0.743
GA-M5Tree-M6 0.636 0.089 0.064 4.176 0.528 0.000 0.848
GA-M5Tree-M7 1.178 0.110 0.087 8.547 1.018 − 0.002 0.765
GA-M5Tree-M8 0.769 0.094 0.069 5.262 0.637 − 0.001 0.830
Testing phase
GA-M5Tree-M1 0.097 0.079 0.035 0.227 − 0.006 − 0.002 0.653
GA-M5Tree-M2 0.114 0.085 0.039 0.246 − 0.031 0.003 0.605
GA-M5Tree-M3 0.107 0.080 0.041 0.208 0.004 − 0.003 0.650
GA-M5Tree-M4 0.134 0.083 0.039 0.306 0.104 − 0.006 0.616
GA-M5Tree-M5 0.072 0.073 0.030 0.188 0.044 − 0.006 0.705
GA-M5Tree-M6 0.062 0.047 0.023 0.129 0.041 − 0.005 0.880
GA-M5Tree-M7 0.096 0.063 0.028 0.236 − 0.027 − 0.005 0.781
GA-M5Tree-M8 0.071 0.043 0.024 0.129 − 0.005 − 0.004 0.900
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(GA-SVR, GA-ANN, and GA-M5Tree). Generally, the best
input parameters improved the models
comprisingfc, n, Atr,rfy,r, Atrfy, b/hsc, hsc, and α. -ese in-
put combinations are considered the most efficient param-
eters which significantly affect the PRSC.

For visualization assessment, scatter plots for each hy-
brid model were shown in Figures 10–13. -ese figures are
very important in evaluating the performance of each
predictive model. Besides, the best model should be estab-
lished based on fewer input variables as well as generating
predicted values with less diversion from the actual ones. It
can be seen from these figures that GA-DLNN-M6 produced
the highest accuracy performance with R of 0.96 with respect
to other hybrid models, they generated lower accuracy of
performances, and, in most cases, they required many input
parameters to gain slight improvements.

Figure 14 portrays more concrete and convincing sta-
tistical relationship between the forecasted and the actual
shear strength, using the Taylor diagram. A visual com-
parison of the four plots shows that the points corre-
sponding to the high-end hybrid models M6–M8 resulted in
points closer to the point corresponding to the actual data.
Among these models, M6 (7 input model) lies much closer
except for the SVR-based hybrid model. Also, it is clearly
evident that the GA-DLNN-M6 hybrid model recorded
the closer predicted values to the actual ones. -is also
supported the selection of the adopted model (GA-DLNN-
M6), which has been considered in this study, and its
assessment was very consistent with other quantitative
and visualized assessments which performed previously.
Furthermore, it can be noted that the GA-DLNN-M6
model presented fewer input parameters with the best

Table 9: -e performance prediction skills for the hybrid GA-ANN predictive model over the training and testing phases.

MAPE RMSE (kN) MAE (kN) RRMSE (kN) MRE BIAS NSE
Training phase
GA-ANN-M1 1.895 0.127 0.098 13.468 1.733 0.000 0.687
GA-ANN-M2 0.622 0.117 0.096 3.617 0.469 0.000 0.734
GA-ANN-M3 0.529 0.124 0.098 2.162 0.378 0.000 0.705
GA-ANN-M4 1.218 0.112 0.085 8.436 1.089 0.000 0.758
GA-ANN-M5 0.311 0.095 0.069 1.374 − 0.105 0.000 0.826
GA-ANN-M6 0.701 0.093 0.070 4.675 − 0.518 0.000 0.833
GA-ANN-M7 0.204 0.099 0.079 0.454 0.078 0.000 0.811
GA-ANN-M8 0.209 0.091 0.066 0.690 0.102 0.000 0.842
Testing phase
GA-ANN-M1 0.167 0.094 0.045 0.400 0.137 − 0.007 0.514
GA-ANN-M2 0.077 0.073 0.030 0.190 0.016 − 0.003 0.706
GA-ANN-M3 0.106 0.076 0.033 0.247 0.088 − 0.008 0.685
GA-ANN-M4 0.104 0.074 0.034 0.241 0.066 − 0.005 0.696
GA-ANN-M5 0.066 0.051 0.026 0.125 0.001 − 0.005 0.857
GA-ANN-M6 0.083 0.044 0.024 0.181 − 0.035 − 0.003 0.893
GA-ANN-M7 0.072 0.049 0.024 0.149 − 0.018 − 0.002 0.867
GA-NN-M8 0.065 0.048 0.023 0.133 − 0.008 − 0.004 0.874

Table 10: -e performance prediction skills for the hybrid GA-SVR predictive model over the training and testing phases.

MAPE RMSE (kN) MAE (kN) RRMSE (kN) MRE BIAS NSE
Training phase
GA-SVR-M1 4.123 0.154 0.132 30.498 3.949 − 0.002 0.544
GA-SVR-M2 5.964 0.169 0.135 44.736 5.805 − 0.016 0.447
GA-SVR-M3 3.415 0.159 0.134 25.019 3.225 0.010 0.513
GA-SVR-M4 2.398 0.122 0.102 17.574 2.250 0.008 0.713
GA-SVR-M5 2.621 0.122 0.103 19.240 2.487 − 0.003 0.713
GA-SVR-M6 1.689 0.121 0.100 11.560 1.551 0.005 0.715
GA-SVR-M7 1.691 0.111 0.087 12.229 1.575 0.000 0.760
GA-SVR-M8 1.483 0.122 0.099 9.990 1.349 0.003 0.712
Testing phase
GA-SVR-M1 0.312 0.086 0.041 0.972 0.379 − 0.018 0.589
GA-SVR-M2 0.465 0.112 0.049 1.525 0.593 − 0.028 0.306
GA-SVR-M3 0.269 0.071 0.038 0.822 0.320 − 0.014 0.719
GA-SVR-M4 0.157 0.054 0.026 0.471 0.176 − 0.008 0.841
GA-SVR-M5 0.185 0.057 0.029 0.558 0.217 − 0.011 0.822
GA-SVR-M6 0.148 0.050 0.026 0.413 0.164 − 0.008 0.859
GA-SVR-M7 0.115 0.051 0.025 0.310 0.118 − 0.007 0.854
GA-SVR-M8 0.124 0.050 0.024 0.340 0.138 − 0.009 0.863
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Figure 10: -e scatter plots graphical presentation over the testing modelling phase: hybrid GA-DLNN models.
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Figure 11: -e scatter plots graphical presentation over the testing modelling phase: hybrid GA-M5Tree models.
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Figure 12: -e scatter plots graphical presentation over the testing modelling phase: hybrid GA-ANN models.

Complexity 15



0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Qexp

GA-SVR-M1

R = 0.85, p = 0.00024

Pr
ed

ic
te

d

(a)

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ed

ic
te

d

Qexp

GA-SVR-M2

R = 0.81, p = 0.0008

(b)

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Qexp

GA-SVR-M3

R = 0.93, p = 4.4e – 06

Pr
ed

ic
te

d

(c)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ed

ic
te

d

Qexp

GA-SVR-M4

R = 0.94, p = 2.5e – 06

(d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Qexp

GA-SVR-M5

R = 0.94, p = 1.9e – 06

Pr
ed

ic
te

d

(e)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ed

ic
te

d

Qexp

GA-SVR-M6

R = 0.95, p = 9.4e – 07

(f )

Pr
ed

ic
te

d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Qexp

GA-SVR-M7

R = 0.93, p = 3.9e – 06

(g)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ed

ic
te

d

Qexp

GA-SVR-M8

R = 0.94, p = 1.6e – 06

(h)

Figure 13: -e scatter plots graphical presentation over the testing modelling phase: hybrid GA-SVR models.
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accuracy in comparison with other comparable AI models
and yielded more accurate predictions of PRSC values
based on all quantitative and visualized assessments. -e
adopted technique for the selection of the best and most

suitable input parameters for suggested approaches has in
general a significant influence on the predictive models’
performances by removing the redundant information
and hence producing sufficient and clean data to the

Standard deviation (normalized)

St
an

da
rd

 d
ev

ia
tio

n 
(n

or
m

al
iz

ed
)

Correlation

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

0.1 0.2 0.3
0.4

0.5
0.6

0.7

0.8

0.9

0.95

0.99

M6
M7
M8
Actual

M1
M2
M3
M4
M5

1.5

1

0.5

(a)

Standard deviation (normalized)

St
an

da
rd

 d
ev

ia
tio

n 
(n

or
m

al
iz

ed
)

Correlation

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

M6
M7
M8
Actual

M1
M2
M3
M4
M5

1.5

1

0.5

(b)

Standard deviation (normalized)

St
an

da
rd

 d
ev

ia
tio

n 
(n

or
m

al
iz

ed
)

Correlation

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

0.1 0.2 0.3
0.4

0.5
0.6

0.7

0.8

0.9

0.95

0.99

M6
M7
M8
Actual

M1
M2
M3
M4
M5

1.5

1

0.5

(c)

Standard deviation (normalized)

St
an

da
rd

 d
ev

ia
tio

n 
(n

or
m

al
iz

ed
)

Correlation

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5 0.1 0.2 0.3
0.4

0.5
0.6

0.7

0.8

0.9

0.95

0.99

M6
M7
M8
Actual

M1
M2
M3
M4
M5

1.5

1

0.5

(d)

Figure 14: Taylor diagram graphical presentations over the testing phase by different hybrid models. (a) GA-ANN models. (b) GA-DLNN
models. (c) GA-M5Tree models. (d) GA-SVR models.
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predictive models [67]. Finally, the integration of GA with
a deep learning model was found to produce the best
model in terms of minimizing the forecasted errors
according to assessments carried out using different sta-
tistical measures.

In this study, a novel hybrid modelling framework for
the Perfobond rib connectors based on several AI methods
has been presented. -is study performed rigorous sensi-
tivity by considering eight different combination models, in
which the input parameter is optimally selected by the
effective utilization of GA and the following four AI
methods (DLNN, M5Tree, ANN, and SVR) as prediction
tools. -e use of GA was very successful in selecting the
optimal number and combination of the predictor dataset,
which considerably reduced the model complexity. In-
creasing the number of input parameters alone will not help
in improving the predictive power of AI models; instead a
recognition of appropriate predictor dataset is very im-
portant. -e DLNN displayed excellent generalization
capabilities in understanding the nonlinear relationships
between the candidate variables and PRSC. Hybridizing
DLNN with GA successful in identifying the 7-input model
(M6) was found to be the best for shear strength predic-
tions, i.e., it was found to be successful in identifying the
best model with the least number of input parameters with
excellent prediction skill for the shear strength predictions
of PRSCs. A multitude of statistical performance evaluation
measures and graphical representations confirmed the
robustness of the DLNN-GA hybrid model for prediction
of shear strength of Perfobond rib connectors. -is could
solve many complexities and problems in structural
engineering.

4.3. Validating the Proposed Model against Several Models
Conducted in the Previous Research Studies. It is an im-
portant aspect to validate the reliability and accuracy of the
suggested GA-DLNN model in predicting the PRSC ca-
pacity against the recognized researches over the literature
studies. Herein, the results obtained by the GA-DLNN
model over the testing phase are validated against some
predictive models which were described in the literature.

Allahyari et al. [16] developed several models based on
ANN approaches trained by Bayesian Regularization (BR)
backpropagation algorithm to predict the capacity of PRSC.
-e main challenge was to probably select the best input
combinations; therefore, they adopted classical and sta-
tistical methods.-e adopted approaches may lead to select
redundant information and decrease the efficiency of the
predictive models. Subsequently, this study revealed that
the best models were GA-DLNN based on 7 input pa-
rameters; therefore, we compared the proposed model
(GA-DLNN) with several models established in [16]
depending on 7 to 10 parameters (i.e., 7-BR1 and 8-BR1).
-e comparison assessment, as shown in Figure 15, reveals
that the proposed model in this study outperformed the
comparable models. Moreover, Oguejiofort and Hosaint
[2] utilized empirical models to predict the shear strength
capacity and yielded good accuracy of prediction with R2 of
0.8577, as shown in Figure 15. In accordance with these
comparative analyses, it can be observed that the adopted
models of this study shows better performance prediction
and yielded a higher value of R2 than the comparable
models.

5. Conclusions

Accurate prediction of Perfobond Rib Shear Strength is
very important in structural engineering sectors. In this
investigation, four AI approaches comprising ANN, SVR,
DLNN, and M5Tree were developed using 90 experimental
samples collected from previous studies. Ten input pa-
rameters were used in this current study including concrete
compressive strength (fc), area of concrete dowels (AD),
rib holes number (n), area of cross reinforcement bars and
yield stress of reinforcement bars (Atr,rfy,r), area of cross
reinforcement bars and the tensile strength of cross
rebar(Atrfy), area of the connector at the end-bearing zone
(Ab), the ratio between the thickness of the concrete slab to
connector height (b/hsc), connector height (hsc), the
contact area between the connector and the concrete (AF),
and coefficient of end-bearing force (α). -e simulated
result revealed that the DLNN model achieved a high
prediction accuracy and outperformed the comparable
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Figure 15: Validating the proposed GA-DLNN model against several models developed in the previous studies.
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models based on ten input variables. Moreover, the SVR
models were the worst predicted models during the
training and the testing phases. In order to reduce the
number of input parameters, we hybridized the AI models
with a bioinspired natural optimization approach called a
genetic algorithm (GA) for properly selecting the best input
parameters for each AI model separately. Optimal selection
of input combinations can effectively reduce the complexity
of the model, thereby, obtaining better generalization ca-
pabilities, decreasing the computational cost, and in-
creasing the quality of predictions, as well as removing the
redundant information. -e obtained results showed that
the hybridization of AI models with GA importantly im-
proved the prediction accuracy for all predicted models
(GA-ANN, GA-M5Tree, and GA-DLNN) except the GA-
SVR model. Moreover, the GA-DLNN produced a higher
accuracy of performance than other hybrid modelling
approaches. -e obtained result revealed that the GA-
DLNN models required only 7 input parameters to gen-
erate the best result accuracy in comparing other hybrid
models and classical AI models (DLNN, ANN, SVR, and
M5Tree) which were developed based on ten input pa-
rameters. Additionally, the outcomes of this study illus-
trated that removing three input parameters (area of the
connector at the end-bearing zone, connector height, and
concrete slab thickness) efficiently improved the prediction
accuracy of GA-DLNN. -e remarkable observation in this
study is that is possible to accurately predict the Perfobond
rib shear strength with fewer input parameters. -is study
found that the proper selection of input parameters has a
great influence on the performances of AI models. Ac-
cordingly, the recommendations for future studies are to
intensify the use of GA as a feature selection and combine
that algorithm with different AI models to address the most
difficult issues related to structural and material
engineering.

Abbreviations

PRSC: Perfobond rib shear strength connector
DLNN: Deep learning neural network
SVR: Support vector regression
ANN: Artificial neural network
GA: Genetic algorithm
FE: Finite element method
GP: Genetic programming
ANFIS: Adaptive neuro-fuzzy inference system
LR: Linear regression
(fc): Concrete compressive strength
(AD): Area of concrete dowels
(n): Rib holes number
(Atr,rfy,r): Area of cross reinforcement bars and yield

stress of reinforcement bars
(Atrfy): Area of cross reinforcement bars and the tensile

strength of cross rebar
(Ab): Area of the connector at the end-bearing zone
(b/hsc): -e ratio between the thickness of the concrete

slab to connector height
(hsc): Connector height

(AF): -e contact area between the connector and
concrete

(α): Coefficient of end-bearing force
(MT): Model tree
PART: Partial and regression tree
SDR: Standard deviation reduction
RMSE: Root mean square error
MAE: Mean absolute
MAPE: Mean absolute percentage error
RRMSE: Relative root mean squared error
RE: Relative error
MRE: Mean relative error
NSE: Nash–Sutcliffe efficiency.
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Predicting suspended sediment load (SSL) in water resource management requires efficient and reliable predicted models. (is
study considers the support vector regression (SVR) method to predict daily suspended sediment load. Since the SVR has
unknown parameters, the observer-teacher-learner-based Optimization (OTLBO) method is integrated with the SVR model to
provide a novel hybrid predictive model.(e SVR combined with the genetic algorithm (SVR-GA) is used as an alternative model.
To explore the performance and application of the proposed models, five input combinations of rainfall and discharge data of
Cham Siah River catchment are provided. (e predictive models are assessed using various numerical and visual indicators. (e
results indicate that the SVR-OTLBO model offers a higher prediction performance than other models employed in the current
study. Specifically, SVR-OTLBOmodel offers highest Pearson correlation coefficient (R� 0.9768),Willmott’s Index (WI� 0.9812),
ratio of performance to IQ (RPIQ� 0.9201), and modified index of agreement (md� 0.7411) and the lowest relative root mean
square error (RRMSE� 0.5371) in comparison with SVR-GA (R� 0.9704, WI� 0.9794, RPIQ� 0.8521, and md� 0.7323, 0.5617)
and SVR (R� 0.9501, WI� 0.9734, RPIQ� 0.3229, md� 0.4338, and RRMSE� 1.0829) models, respectively.

1. Introduction

Proper estimate of sediment transport load is highly essential
in water engineering purposes such as the design and op-
eration of dams, flood control structures, water conveyance
channels, and other hydraulic structures [1]. In this context,
forecasting and evaluating the suspended sediment load
(SSL) in the catchment scale is a vital hydroenvironmental
issue [2, 3]. Despite the importance of SSL, due to the de-
pendency of the multiple hydrological, metrological, and
hydraulic variables, the evaluation process is too compli-
cated [4–6].

So far, various SSL prediction models such as physical,
numerical, and empirical models are applied. Physical
models are formed based on the theoretical governing
equations of sediment transport composed of the partial

differential equation of mass and flow transport. Although
the physical models are the most accurate predictionmodels,
the complexity in governing equations solution and in-
corporation and dependency on the various simplifying
assumptions confines their application to practical engi-
neering problems [7]. (e numerical models, which are
almost the most widespread approach in recent years, are
built on solving the mass and flow transport using numerical
calculus approaches and computer programming [8, 9].
Despite the popularity of this approach, especially in recent
years, these models’ main drawback is the demand for
knowledge in the application, limitations, and abilities of
various numerical schemes and techniques. Furthermore,
the numerical models require high intelligence in compli-
cated computer programming and high computing speed
[10].
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Another class of SSL prediction approach depends on the
experimental measurement and is known as empirical
methods. In the middle of this approach, the most popular
one is sediment rating curves. In this approach, a regression
model is usually employed to develop a relationship between
discharge and SSL [11, 12]. However, the sediment rating
curves method has some methodological constraints. Also,
an essential requirement for this approach is the availability
of high-quality experimental data used in the curve fitting
process [13].

Data-driven models are also efficient tools for predicting
the SSL. (is approach could draw on the causal factors and
consequences of an event without any necessity of a deep
understanding of a complex phenomenon process [14].
Data-drivenmodels, which simulate a system using observed
data in real life of the system, include a broad range of
models such as regression-based models, time series models,
and artificial intelligence (AI) models. (e regression-based
models evaluate the relationship of a dependent variable and
several independent variables. In previous water resource
engineering studies, the regression-based models have been
applied to explore different sediment load, water level, en-
ergy dissipation, and similar essential hydrological param-
eters [15–17]. Demirci and Baltaci [18] assessed three models
based on the fuzzy logic approach (FL), sediment rating
curves (SRC), and multilinear regression models. (e
models’ performance is investigated, and the FL model
provided better performance in calculating the SSL than the
other models. Singh et al. [19] evaluated different heuristic
methods for predicting the SSL. (e results show that
multilayer perceptron (MLP) offered the best performance.
(e time series models, which are based on processing se-
quence inputs data, consist of statistical methods such as
autoregressive (AR) and autoregressive moving average
(ARMA) models, autoregressive integrated moving average
(ARIMA) model, and autoregressive moving average with
exogenous (ARMAX) data [20]. However, Moeeni and
Bonakdari [21] indicated that the time series models are
inadequate for nonlinear hydrological problems such as
suspended sediment load modeling.

(e AI models are a fast, cost-effective, and appropriate
predicting approach that does not require detailed physical
information. (eir process for obtaining and loading the
data is partly simple with high predicting accuracy [22]. In
recent years, artificial neural networks (ANNs), fuzzy-based
models, support vector machine (SVM), and support vector
regression (SVR) have been employed for predicting the SSL
[23–25]. Mustafa et al. [26] used a multilayer perceptron
(MLP) with four different training algorithms to forecast the
suspended sediment discharge. Results showed that the
Levenberg–Marquardt (LM) indicated a better performance
than other training algorithms.

Despite such broad usage of ANN models, the models
provided unsatisfactory results in some engineering prob-
lems. In previous studies, the combined form of AANs,
known as hybrid ANNs, has been extensively employed to
solve such problems. ARMAX-ANN was used to estimate
SSL. (e proposed model provided better accuracy in
comparison with the ARMAX and ANN models [27]. Adib

and Mahmodi [28] predicted SSL by incorporating the ANN
and genetic algorithm (GA). (ey found that the hybrid
model is more effective than the ANN.

In the case of the predicting SSL models, it has been
observed that a sort of models such as fuzzy logic [29–31] or
linear genetic programming (LPG) [32, 33] can solely
predict the SSL with high accuracy. Despite applying these
models in the SSL prediction, to improve the prediction
accuracy and quality, similar to the artificial neural net-
works, the other AI methods can be employed in the hybrid
form. Generally, the hybrid models based on the fuzzy logic
and ANNs could be trained faster and adaptive than the solo
application of the ANNs or fuzzy logic. Samet et al. [34]
investigated the prediction performance of the ANN,
adaptive neuro-fuzzy inference system (ANFIS), and AAN-
GA in forecasting SSL. Results indicated that the ANFIS
model indicated the best prediction performance compared
to other models.

In addition to the hybrid fuzzy logic and ANN model, it
is common to use support vector machine (SVM). (e SVR
method structure is more straightforward than fuzzy and
ANN models that enhance the predicting model [35, 36]. As
a result, the SVR method can solve problems across hy-
drological datasets such as small sample sizes, nonlinearity,
and high dimensionality [37, 38]. (ese profits of SVR make
the method a popular option for simulating and predicting
the SSL in river and sediment transport studies. (e sum-
mary of studies that used the support vector machine model
to predict suspended sediment load is given in Table 1.

Although the SVR application has various advantages, it
has some unknown parameters in its structure, which
drastically affect SSL prediction accuracy. To solve this
fundamental limitation of SVR, a method is required to
apply the optimization algorithm [50, 51]. Due to this fact,
researchers are still looking for a robust, reliable model that
can solve the complex problem of suspended sediment
transport using AI models. In this way, this study enhances
the SVR model’s performance by combining the SVR and
observer-teacher-learner-based optimization (OTLBO). (e
optimization algorithm (OTLBO) is employed to determine
the optimal parameters of the support vector machine.
OTBLO is a heuristic algorithm introduced by Shahrouzi
et al. [52]. Furthermore, the second model based on genetic
algorithm and SVR is developed and named SVR-GA. Fi-
nally, the models are employed to evaluate the SSL of at
Cham Siah River catchment in Iran.

Although an increasing trend is observed in applying
artificial intelligence models in the literature to estimate the
SSL, as far as authors know, the model developed in the
present study, SVR-OTLBO, has not been used in water
engineering concerns and estimation of SSL in particular.

Due to the lack of information on suspended sediment load
data in watersheds of Iran, continuous sediment data are not
available. However, the rainfall and river discharge data are
available in the form of time series. Hence, a dataset of rainfall
and river discharge with different lead times is employed as
predictors to simulate SSLs selected based on available observed
events. Hence, the model, which is developed based on
available observed SSL events, simulates the daily sediment.
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(e main objectives of this study are as follows: (i)
considering a new hybrid intelligence model (SVR-OTLBO
model) for the suspended sediment load estimation, (ii)
evaluation of the predictability of the developed model in
one of the Iranian rivers (i.e., Cham Siah River) despite the
lack of the sediment information, and (iii) developing a
predictive model using river discharge and rainfall as the
main factors in the sediment suspension load.

2. Case Study and Data Collection

To examine the proposed models’ performance, the Cham
Siah River catchment in Kohgiluyeh and Boyer-Ahmad
Province, southwest of Iran, is used as a case study area.
Cham Siah River catchment, which is shown in Figure 1,
covers an area of 793 km2. (e average annual rainfall and
river discharge of the catchment are 623.5mm and 8.02m3/
s. Its minimum and maximum heights are 600 to 1500
meters; the average slope of the subbasin is 26.9%, and the
annual sediment volume is 328711 tons/year.

(e daily hydrological data of the catchment, including
the discharge, rainfall, and SSL recorded from 1986 to 2015,
are used for prediction modeling. (e daily rainfall data are
obtained from two rain gauges, namely, Saeed Abad, which
is located at 50°43ʹ05ʺE, 30°41ʹ 34ʺN with an altitude of
690m, and Dehdasht, which is located at 50°34ʹ27ʺE,
30°47ʹ24ʺN with an altitude of 840m. Besides, the daily river
discharge and event-based sediment data are provided from
the Saeed Abad station, which is located at 50°43ʹ37ʺE,
30°43ʹ21ʺN with an altitude of 663m.

To provide the predictive models, observational data are
divided into training dataset (68%) and testing dataset
(32%). In this study, to ensure that all variables receive equal
consideration during the training of the models, all the
variables are rescaled from xε[a b] to x′ε[−1 1] and their
dimensions are removed [14] using the following equation:

x′ � 2 ×
x − a

b − a
− 1. (1)

3. Methods

3.1. Support Vector Regression. Support vector regression
(SVR) can be used for classification and regression problems
[53]. SVR can perform a linear classification for two-
dimensional space. Moreover, the data with higher SVR
variables can be implicitly mapped into higher-dimensional
space using a nonlinear map function. In this context, the
main equation of the method is as follows:

f(x) � W
Tφ(x) + b, (2)

where f(x) indicates the function between target and input
variables, WT is them-dimensional weight vector, φ(.) is the
mapping function that maps x into the m-dimensional
feature vector, and b is the bias term.

SVR investigates a hard margin for a classifier. Using the
following equation (i.e., equation (2), which is called primal
problem), the hardmargin can be converted to a soft margin.
(e objective function of SVR converts to a minimizing
problem.

minimize:
1
2
W

2
+ C 

m

i�1
ξ−

i + ξ+
i( 

subject to wi.φ xi(  + byi
  − yi ≤ ε + ξ+

i , i � 1, 2, ..., m

yi − wi.φ xi(  + byi
 ≤ ε + ξ−

i , i � 1, 2, ..., m

ξ−
i , ξ+

i ≥ 0, i � 1, 2, ..., m.

(3)

where C is the penalty,ξ+
i and ξ−

i are slack variables,W is the
weight of vector, m is the number of inputs, x is the input
variables, yi is the observational target variable, and ε is the
insensitive loss function.

As the results show a rational value, avoiding inap-
propriate results, some constraints could be inserted into the
above equation’s objective function. To consider the con-
straints, the primal problem alters to the following equation:

Table 1: (e summary of support vector machine models for predicting suspended sediment load.

Scholars Predictive model Input variables Study area Time scale
Kisi [7] LSSVM Discharge, SL USA Daily
He et al. [35] SVR Discharge China Daily
Sadeghpourhaji et al. [39] WSVM Discharge UAS Daily
Nourani and Andalib [40] WLSSVM Discharge, SL USA Daily, monthly
Kumar et al. [41] LSSVM Discharge, rainfall India Daily
Nourani et al. [42] SVM Discharge, SL Iran Monthly
Rashidi et al. [43] GT-SVM Discharge, SL Iran Monthly
Buyukyildiz and Kumcu [23] SVR Discharge, SL Turkey Daily
Himanshu et al. [44] WLSSVM Discharge, rainfall, SL India Daily
Himanshu et al. [45] WLSSVM Discharge, rainfall, SL India Daily, monthly
Hssanpour et al. [46] FCM-SVR Discharge, SL Iran Daily
Malik et al. [47] LSSVR Discharge, SL India Daily
Rahgoshay et al. [48] SVR-GA Discharge, SL Iran Daily
Al-Mukhtar [49] SVM Discharge Iraq Daily
LSSVM: least square support vector machine; SVR: support vector regression; WSVM: wavelet support vector machine; WLSSVM: wavelet least square
support vector machine; SVM: support vector machine; GT-SVM: gamma test support vector machine; FCM-SVR: fuzzy C-mean clustering-support vector
regression.
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minimize: L w, b, ∝ +
i , ∝ −

i(  �
1
2
W

2
+ C 

m

i�1
ξ−

i + ξ+
i( 

− 
m

i�1
∝ +

i wi.φ xi(  + byi
− yi + ε + ξ+

i 

− 
m

i�1
∝ −

i yi − wi.φ xi(  − byi
+ ε + ξ−

i  − 
m

i�1
ηiξ

+
i + η∗i ξ

−
i( ,

(4)

where ∝ +, ∝ − , ηi, and η∗i are Lagrange coefficients, which
are multiplied by the constraints. (rough applying the
Lagrange function and KKT condition, equation (3) can be
converted to the dual problem as equation (5) where the
terms b, w, ∝ − , and ∝ + are neglected:

maximize LD � −
1
2


i


j

αi − α−
i(  αj − α−

j .k xi, xj 

− 
m

i�1
yi αi − α−

i(  + 
m

i�1
ε αi + α−

i( ,

(5)

subject to
m

i�1
αi − α−

i(  � 0,

k xi, xj  � φ xi( .φ xj ,

(6)

In equation (4), k(xi, xj) is the kernel function. (us,
equation (1) can be rewritten as follows:

f(x) � 
m

i�1
αi − α−

i( k xi, xj  + b. (7)

(e output values are computed based on the values of
the obtained parameters, i.e., b, w, α, C, and the kernel
function parameters. In this study, a radial basis function
(RBF) in the form of equation (8) has been chosen as the
kernel function:

k xi, xj  � exp
−x − xi

2σ2
 , (8)

where σ is the kernel parameter.

3.2. Description of Optimization Methods. To obtain the
optimistic values of the SVR parameters (e.g., ε, σ, and C),
the observer-teacher-learner-based optimization (OTLBO)
and genetic algorithm (GA) methods are used. OTLBO is a
powerful metaheuristic optimization method that was firstly
introduced by Shahrouzi et al. [52]. (e OTLBO is worked
based on the impact of teacher and observer on the learners
in a class. Precisely, the method consists of the three primary
phases of the education: (i) via teacher (known as teacher
stage), (ii) via interplay with observer (known as observer
stage), and (iii) via interplay with the other learners (known
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Figure 1: Schematic of the catchment of Cham Siah in Iran.
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as learner stage) [54]. In OTLBO, a set of learners is con-
sidered as population. (is means that all comparatively
designed variables are supposed to class members in this
optimization algorithm. Furthered details of OTLBO were
given by Shahrouzi et al. [52].

(e GA, which is employed in this study, is a popular
method in evolutionary computation studies to solve op-
timization problems.(e GA has an initial population that is
randomly generated, and each population member includes
chromosome. (e chromosome represents a possible so-
lution, including genes. Also, the method has a step, which is
known as the iteration loop. In the iteration loop, a new
population is generated using selection, crossover, and
mutation operations. At each stage, the new and old pop-
ulations are selected based on the objective function’s value
[55].

3.3. Description ofHybrid SVRModels. As mentioned above,
the SVR parameters, including the value of ε, σ, and C, are
considered decision variables, which require to be optimized
through OTLBO or GA in an objective function. In the case
of SVR-OTLBO, the development of the process is com-
posed of the following steps:

(i) (e initial values of the decision variables (e.g., ε, σ,

and C) are randomly determined.
(ii) (e SVR model predicts the initial target values

based on the training data.(e value of the objective
function, which is the correlation coefficient be-
tween observed and predicted target values in this
study, is computed.

(iii) (e teacher or observer phase is randomly selected
to determine the SVR parameters: ε, σ, and C.
Consequently, the objective function is calculated
and learner phase is started, and the objective
function is evaluated as the same as the previous
randomly selected phase.

(iv) (e best solution is updated.
(v )(e steps mentioned above are repeated to satisfy

the termination criterion.

(e above step-by-step algorithm of the SVR-OTLBO
model for predicting the SSL is presented in Figure 2.

(e second hybrid model is based on the SVR-GA
method. (e following steps are used to develop the model:

(i) (e initial decision variables (first population) are
randomly determined.

(ii) (e SVR model computes the initial target variable;
consequently, the initial value of the objective
function is calculated.

(iii) (e crossover operator is used to generate the
offspring and new parameters of SVR. Later, the
SVR model is employed to predict the target vari-
able and evaluate the offspring according to ob-
jective function values.

(iv) (e mutation operator is applied to generate the
mutant population. (e SVR model is then used to
simulate the target variable and assess the mutant
population based on objective function values.

(v) (e population is sorted, and the repository of the
member is updated.

(vi )(e steps mentioned above are repeated to satisfy
the termination criterion.

(e SVR-GA modeling to predict the SSL is shown in
Figure 3.

3.4. Assessing the Prediction Performance. Five indices are
used to evaluate the prediction performance of the SVR, GA-
SVR, and OTLBO-SVR models. (ese indices are composed
of Pearson correlation coefficient (R) [56], relative root mean
squared error (RRMSE) [57, 58],Willmott’s Index (WI) [59],
ratio of performance to IQ (RPIQ) [60], and modified index
of agreement (md) [61] as follows:
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(9)

where the Oi and Xi are the observed SSL and predicted SSL,
O is the average of the observed SSL and X is the average of
the predicted SSL, Q1 and Q3 are the first (25%) and third
(75%) values of the samples, andm is the number of samples.

3.5. Uncertainty Analysis. To evaluate the uncertainty of the
models (SVR, SVR-GA, and SVR-OTLBO), the confidence
limits of prediction errors (CL ±e ) are described as follows
[62]:

CL
±

e � μe ± Zα × Se, (10)

where μe and Se are the mean and standard deviation of
prediction errors, respectively. Zα is the standard normal
variable at the α% of significant level. A predictive model
with a positive value of μe provides overestimated prediction
while a negative value of μe indicates the underestimated
result.
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4. Results and Discussion

4.1. Description of the Input Combinations. It is essential to
explore the best input combinations for predicting the target
variable as a first step. A number of feature selection
methods including Pearson correlation, autocorrelation
function (ACF), partial autocorrelation function (PACF),
and cross-correlation function (CCF) can be used to obtain
the optimal predictive variables [23, 63]. However, the
Pearson correlation is a simple and effective method to
estimate appropriate input variables [64–66]. Herein, the
input combinations are identified by calculating the cor-
relation between the SSL on the origin day (t) and inputs
variables, including the river discharge (Qs) from origin day
to four days earlier (t− 4) and the rainfall depth (Rs and Rd)
from origin day to six days earlier (t− 6).

Table 2 presents the correlation coefficients obtained
between the SSL(t) and the input variables.

As shown in the table, the highest correlation between
the SSL(t) and input variables are found in five variables
including Rs(t), Rd(t), Qs(t), Rd(t− 1), and Rs(t− 1). Moreover, a
decreasing trend is observed between the lag time of

predictive variables and correlation coefficients. For in-
stance, the correlation coefficients obtained by Rs(t) and
Rs(t− 4) are 0.59 and 0.01, respectively.

Several input combinations are adopted using the var-
iables nominated by correlation analysis, namely, M1 to M5
(Table 3). (e river discharge is ignored through two
combinations (M1 and M2) to assess the impact of the other
predictive variables on prediction performance. It should be
highlighted that, as explained in the methodology, the input
combinations and output data are normalized using equa-
tion (1).

4.2. Assessment of the Models’ Performance. To compare the
prediction performance of the models used in this study
(e.g., SVR, SVR-OTLBO, and SVR-GA), their metric indices
obtained for different input combinations over the testing
phase are presented in Table 4. From the table, it is evident
that, for the SVR models, SVR-M4 provides better perfor-
mance (RRMSE: 1.08, R: 0.95, RPIQ: 0.3229, md: 0.4338, and
WI: 0.97). In the case of SVR-OTLBO models, the lowest
RRMSE (0.537) is observed in the SVR-OTLBO-M4. (e
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Maximum iteration = MI 

Find out combinations of input 
data and predicted models 

I = 1

I = MI
Testing phase is started

The SSL is calculated based on best 
extracted parameters of SVR

End

NoI = I + 1 Yes

The training phase is started
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Parameters of SVR are obtained based on the selected phase
Estimate SSL and objective function using SVR model
The best solution is updated

(i)
(ii)

(iii)
(iv)
(v)

The learner phase is applied 
Parameters of SVR are obtained based on learner phase
Estimate SSL and objective function using SVR model
The best solution is updated

(i)
(ii)

(iii)
(iv)

Initialization population 
Calculate the value of SSL and first set objective function

(i)
(ii)

Figure 2: Algorithm of the SVR-OTLBO model.
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highest value of R (0.9769) is found in the SVR-OTLBO-M3,
while the SVR-OTLBO-M4 provides the highest WI
(0.9812), RPIQ (0.9201), and md (0.7411). In general, the
SVR-OTLBO-M4 offers better prediction performance
compared to other SVR-OTOBO models. Regarding the
SVR-GA, values reported in Table 4 indicate that the lowest
RRMSE (0.562) is seen in the SVR-GA-M4 model while the
highest R (0.97) and WI (0.979), RPIQ (0.8521), and md
(0.7323) are observed, respectively, in the SVR-GA-M5 and
SVR-GA-M4 models.

(e metrics obtained from different predictive models
(e.g., SVR, SVR-OTLBO, and SVR-GAmodels) confirm that
the M4 input combination, which comprises the Rs(t), Rd(t),
Qs(t), and Rd(t− 1), is the best combination for predicting the
SSL(t). Hence, the predictive models, including SVR-M4,
SVR-OTLBO-M4, and SVR-GA-M4, are nominated for
further assessment.

To find out the best-fit model among all the models
nominated in the present study, the heat map diagram
(Figure 4) is used as a visual comparing tool. (e diagram

employed the different normalized metrics to compare the
cells with one and zero values, respectively, indicating the
highest and lowest performance. Figure 4 demonstrates that
the SVR-OTLBO-M4 has the best performance in both
training and testing phases.

To further explore the performance of the models, the
scatter plots of the estimated SSL using the models and the
measured SSL are shown in Figure 5 for both training and
testing phases. Also, the values of R2 for the selected models
have been reported. Based on Figure 5, it is clear that the
proposed hybrid models are generally closer to the best line
than the SVR model. Furthermore, the SVR-OTLBO-M4
provides the highest values of the R2 in both training
(R2 � 0.958) and testing (R2 � 0.953) phases.

To investigate the simulated data changes, the box plot is
employed. (e box plot of the simulated SSL for the selected
models is shown in Figure 6. As some can see, the minimum
and maximum of the SSL50 are, respectively, in the observed
data (SSL50% � 91mg/l ) and SVR − M4 model
(SSL50% � 287mg/l). (e relative difference between the
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(ii)
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The crossover operator is applied
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Figure 3: Algorithm of the SVR-GA model.
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observed data and the selected models is 215%, 56%, and
47%, respectively, associated with the SVR-M4, SVR-
OTLBO-M4, and SVR-GA-M4 models. (ese values dem-
onstrate that the hybrid models are closer to the observed
data compared to the SVR model. Moreover, Figure 6 shows

that the minimum and maximum IQR measurements are
referred to the observed data (81.5mg/l) and SVR-GA-M4
model (112.95mg/l). (e relative difference in the observed
data and the SVR-M4, SVR-OTLBO-M4, and SVR-GA-M4
models is, respectively, 13.8%, 12.5%, and 38.5%. (is

Table 2: (e correlation obtained between the input variables and SSL.

Input variable R
Qs(t) 0.53
Qs(t− 1) 0.28
Qs(t− 2) 0.21
Qs(t− 3) 0.07
Qs(t− 4) 0.07
Rd(t) 0.58
Rd(t− 1) 0.37
Rd(t− 2) 0.14
Rd(t− 3) 0.11
Rd(t− 4) 0.06
Rd(t− 5) 0.01
Rd(t− 6) 0.02
Rs(t) 0.59
Rs(t− 1) 0.34
Rs(t− 2) 0.24
Rs(t− 3) 0.08
Rs(t− 4) 0.01
Rs(t− 5) −0.03
Rs(t− 6) 0.04
Rd refers to Dehdasht rain gauge station and Rs refers to Saeed Abad rain gauge station.

Table 3: (e input combinations used for the development of prediction models.

Input combination Input variables
M1 Rs(t) — — — —
M2 Rs(t) Rd(t) — — —
M3 Rs(t) Rd(t) Qs(t) — —
M4 Rs(t) Rd(t) Qs(t) Rd(t− 1) —
M5 Rs(t) Rd(t) Qs(t) Rd(t− 1) Rs(t− 1)

Table 4: (e performance indices of the predictive models obtained in the testing phase.

Model RRMSE CC WI RPIQ md
SVR-M1 6.550506 0.8115 0.232189 0.0 0.1051
SVR-M2 2.233665 0.9455 0.719599 0.0 0.2645
SVR-M3 1.122063 0.9321 0.963375 0.2599 0.426
SVR-M4 1.082923 0.9502 0.973483 0.3229 0.4338
SVR-M5 2.244611 0.9482 0.719599 0.0763 0.2616
SVR-OTLBO-M1 0.683569 0.9716 0.967713 0.0 0.5776
SVR-OTLBO-M2 0.741011 0.9729 0.963401 0.0 0.5382
SVR-OTLBO-M3 0.542558 0.9769 0.980796 0.7656 0.7208
SVR-OTLBO-M4 0.537165 0.9761 0.981207 0.9201 0.7411
SVR-OTLBO-M5 0.539417 0.9741 0.981165 0.8753 0.7379
SVR-GA-M1 0.722344 0.9674 0.964097 0.0 0.5694
SVR-GA-M2 1.146802 0.9684 0.912041 0.0 0.4142
SVR-GA-M3 0.689017 0.9649 0.969368 0.5517 0.64
SVR-GA-M4 0.561758 0.96961 0.979467 0.8521 0.7323
SVR-GA-M5 1.025376 0.9704 0.930302 0.2313 0.4493
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observation depicts that the SVR-OTLBO has minimum
changes compared to the other models.

In this study, the Taylor diagram is applied to combine
several statistical criteria, including the standard deviation,
correlation coefficient, and RSME [67]. Indeed, themain aim
of the Taylor diagram is to discover the nearest predictive
model with benchmark record data (in the present study, the
observed SSL). (e Taylor diagrams of the selected models
are shown in Figure 7. Figure 7 shows that the simulated data
by the SVR-OTLOB-M4 model is nearer to the observed
data compared to the SVR-M4 or SVR-GAmodel in both the
training and testing phases. Hence, the performance of the
SVR-OTLBO model is higher compared to the other pre-
dictive models.

Previous studies have been widely used the SSL with
different lags as input features to predict the SSL. However,
providing a predictive model based on the other hydro-
logical variables such as discharge or rainfall depth is more
efficient due to the simplicity in measuring discharge and
rainfall. To confirm this fact, the hybrid model proposed in
the current study effectively estimates the suspended sedi-
ment load based on the rainfall and discharge data as input
features.

4.3. Assessment of the Models’ Uncertainty. To measure the
uncertainty of selected models in the present study, CL ±e
values at the 5% of significant level over the testing phase are
presented in Table 5.
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Figure 5: Scatter plots of observed and estimated suspended sediment load (mg/lit): (a) training phase and (b) testing phase.
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Figure 4: (e performance of the selected models: (a) training phase and (b) testing phase.
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Table 5 shows that the models provide the under-
estimated prediction values of suspended sediment load.
Further, the lowest uncertainty band (312.0) is detected in
the results gained by the SVR-OTLBO model. Mutually, the
SVR model offers the highest uncertainty (369.2). (is
finding is consistent with the results attained from the
performance metric that the SVR-OTLBO model has the
highest advantage compared to other models used in the
present study.

4.4. Assessment of the Proposed Models against Literature
Models. Although the newly developed hybrid model in the
current study, SVR-OTLBO, successfully predicts SSL, it is

interesting to compare its performance with those obtained
in the other studies. Sadeghpourhaji et al. [39] investigated
WSVM and SVM models for forecasting SSL, obtaining
R2 � 0.838 and 0.327, respectively. Rashidi et al. [43] de-
veloped two predictive models GT-SVM and SVM (RBF
kernel), gaining R2 � 0.88 and 0.79, respectively. Nourani
et al. [42] executed SVM for forecasting SSL, gaining
R2 � 0.91. Kumar et al. [41] applied ANN, LASVR, multi-
linear regression (MLR), classification and regression tree
(CART), and M5 to predict SSL, obtaining
R2 � 0.919, 0.923, 0.91, 0.91, and 0.92, respectively. Buyu-
kyildiz and Kumcu [23] predicted daily SSL using scaled
conjugate gradient (SCG) algorithm, radial basis neural
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Figure 7: Taylor diagram of the observed and the predicted SSL (mg/lit) for the SVR, SVR-OTLBO, and SVR-GA models in (a) training
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network (RBNN), generalized regression neural network
(GRNN), ANFIS-GP, ANFIS-GC, and SVR, obtaining
R2 � 0.879, 0.864, 0.862, 0.861, 0.847, and 0.868, respec-
tively. Hssanpour et al. [46] developed a hybrid model based
on FCM-SVR for predicting SSL, achieving R2 � 0.91.
(erefore, it can be found that the hybrid models reported in
this research have better predictive performance compared
to the SVR-based models in the literature.

5. Summary and Conclusions

(e present study focused on the development of a hybrid
model to estimate the suspended sediment load. For this
purpose, the hydrometry and hydroclimatology data of the
Cham Siah basin composed of river discharge, SSL, and
rainfall depth data are employed. (e support vector re-
gression method is used to predict the SSL. As a number of
parameters in the SVR are unknown, two hybrid models are
developed. (ese hybrid models are composed of SVR-GA
and SVR-OTLBO. In this study, five input variables are
investigated. Also, five predictive models are designed for
each SVR, SVR-GA, and SVR-OTLBO model. (e corre-
lation of SSL and the inputs variable is evaluated to identify
the most significant input variables. Furthermore, five in-
dices of RRMSE, R, WI, RPIQ, and md are employed to
determine the best performance of models.

In general, the following findings are obtained in this
study:

(i) Among all the SVR models, the performance of
SVR-M4 is the highest. (e SVR-OTLBO-M4 has
the best performance compared with the other SVR-
OTLBO models, and SVR-GA-M4 is the best-fit
model among all the SVR-GA models.

(ii) Among those models with the highest performance,
the SVR-OTLBO-M4 has the highest performance
in both testing and training phases.

(iii) (e hybrid models’ predicted data are closer to
observational data compared with the SVR model’s
output data. Besides, the SVR-OTLBO-M4 is the
nearest predicted model with observational data.

(iv) Feature selection based on correlationmethods is an
inadequate approach due to the complexity of hy-
drological phenomena such as sediment. Using
metaheuristic algorithms is an appropriate method
in selecting features and finding the best input
combinations. (is limitation can be solved in the
future by developing a multiobjective optimization
model based on the OTLBO algorithm.
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Suspended sediment modeling is an important subject for decision-makers at the catchment level. Accurate and reliable modeling
of suspended sediment load (SSL) is important for planning, managing, and designing of water resource structures and river
systems.)e objective of this study was to develop artificial intelligence- (AI-) based ensemble methods for modeling SSL in Katar
catchment, Ethiopia. In this paper, three single AI-based models, that is, support vector machine (SVM), adaptive neurofuzzy
inference system (ANFIS), feed-forward neural network (FFNN), and one conventional multilinear regression (MLR) modes,
were used for SSL modeling. Besides, four different ensemble methods, neural network ensemble (NNE), ANFIS ensemble (AE),
weighted average ensemble (WAE), and simple average ensemble (SAE), were developed by combining the outputs of the four
single models to improve their predictive performance. )e study used two-year (2016-2017) discharge and SSL data for training
and verification of the applied models. Determination coefficient (DC) and root mean square error (RMSE) were used to evaluate
the performances of the developed models. Based on the performance measure results, the ANFIS model provides higher ef-
ficiency than the other developed single models. Out of all developed ensemble models, the nonlinear ANFIS model combination
method was found to be the most accurate method and could increase the efficiency of SVM, MLR, ANFIS, and FFNNmodels by
19.02%, 37%, 9.73%, and 16.3%, respectively, at the verification stage. Overall, the proposed ensemble models in general and the
AI-based ensemble in particular provide excellent performance in SSL estimation.

1. Introduction

Accurate modeling of the suspended sediment transported by
a river is of great importance in environmental and water
resources engineering, as it directly affects the design,
planning, operation, and management of water resources [1].
Moreover, modeling of suspended sediment is crucial because
it has a major effect on the reservoir capacity and dam op-
eration [2], water quality, and contaminant transport [3, 4].
However, suspended sediment estimation is a challenging
task for hydrologists as its interaction with geomorphological
characteristics of the catchment and the streamflow is highly
complex and nonlinear. Suspended sediment transport in the
river is a function of meteorological and hydrological pa-
rameters as a complicated process [5].

For the last decades, several studies were conducted to
model the relationship between river flow and suspend
sediment amount [1]. However, none of the developed
models has gotten universal acceptance for application in all
cases. So far, several researchers have proposedmanymodels
to estimate this complex process ranging from simple sta-
tistical, physical, and black-box models. In earlier decades,
modeling suspended sediment load using mathematical
models was a common task. However, their application was
limited because of the significant time required to set up the
model [6] and the large number of variables involved in the
equations [7].

)e physically based models are reliable methods for
assessing the actual physics of a phenomenon. Physically
based models for suspended sediment load (SSL) modeling
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are usually based on the simplified equitation of sediment
and discharge as well as on the relationship between the
erosive effect of flow and rainfall (e.g., [8–10]). Such physical
and conceptual models can take into account the effect of
catchment property and uneven distribution evapotrans-
piration and rainfall on the catchment [1]. However, using
physically based models for hydrological modeling is rather
complex as they require detailed temporal and spatial data,
which are not easily available. Estimating suspended sedi-
ment load using a physically based model is a very difficult
task due to its requirement of high-resolution sediment and
discharge data which are not often available [11]. Moreover,
direct measurement of high-resolution sediment concen-
tration and discharge is expensive and any error in mea-
surement of these variables also influences the modeling of
suspended sediment load. When accurate estimation is more
important than the physical understanding of the phe-
nomenon, the application of black-box modeling is helpful.

To overcome the limitation of the physical-basedmodels,
black-box artificial intelligence- (AI-) based approaches
which are reliable methods in dealing with nonlinear and
complex phenomena have been employed in different fields
of water resources engineering. Examples of this include
modeling suspended sediment load of the rivers (e.g., see
[12, 13]), rainfall-runoff process (e.g., see [14, 15]), longi-
tudinal dispersion coefficient of water pipeline (e.g., see
[16]), and estimation of overtopping flow the incipient
motion of riprap stones (e.g., see, [17]). )e AI methods
applied for the modeling of SSL include artificial neural
network (ANN), adaptive neurofuzzy inference system
(ANFIS), and support vector machine (SVM). ANFIS model
is an AI-based model appropriate for modeling nonlinear
and complex processes like suspended sediment load (e.g.,
[1, 12–18]). So far, different works have been reported in the
literature on the application of ANN in SSL modeling (e.g.,
[19–21]). SVM is another AI-based model capable of giving a
reliable estimation of suspended sediment load (e.g.,
[1, 4, 22]). In addition to AI-based models, conventional
multilinear regression (MLR) was used in this study. Because
of some difficulties in working with AI-based models, some
researchers applied straightforward, simple, and fast mod-
eling tools such as MLR to describe the linear relationship
between the response and one or more independent vari-
ables [23]. MLR has been successfully applied in modeling
different hydrological problems like evapotranspiration [23],
rainfall-runoff process [14], and suspended sediment load
[20, 24].

Although the abovementioned AI-based models can
give reasonable results, it is clear that one model may show
higher performance than the others for a given data set and
when different data sets are used, the results may entirely be
different [25]. No single model is superior in providing a
hydrological process forecast for any kind of watershed in
all conditions compared to those of other competing
models [26]. )erefore, combining the outputs of different
models using different ensemble techniques was believed to
give high predictive performance results and low error by
taking the advantages of different models. In this regard,
Bates and Granger [27] approved that combining the

outputs from several models using ensemble techniques
would lead to results that outperform the individual
forecasts. )e thought behind the model combination is to
make use of the exclusive characteristics of the single
models in a unique framework that would improve the
modeling accuracy [28]. )e combination of different
model outputs using several ensemble techniques has be-
come a common practice for the improvement of pre-
diction accuracy in different fields [29–31]. In the field of
hydrology, the first ensemble method was examined by
Cavadias and Morin [32]. Since then, the advantages of
ensemble techniques for improving modeling efficiency
have been proven in modeling several hydrological pro-
cesses (e.g., see [26, 33, 34]). However, to date and based on
our knowledge, there is no study done so far showing the
application of AI-based model combination methods for
suspended sediment load simulation. )e main objective of
this work was to develop AI-based ensemble methods for
daily suspended sediment load estimation in Katar
catchment, Ethiopia. )ree steps were followed to achieve
this objective. Sensitivity analysis was made to select sig-
nificant and relevant inputs in the first step. Secondly, four
black-box models, namely, ANFIS, ANN, SVM, and MLR
models, were developed to estimate suspended sediment
load. )ese AI-based (ANFIS, FFNN, and SVM) models are
chosen in this study because of their fast convergence time,
simplicity, and reliable estimation performance for com-
plex hydrological processes like SSL. Finally, the four en-
semble models (ANFIS ensemble (AE), neural network
ensemble (NNE), simple average ensemble (SAE), and
weighted average ensemble (WAE)) were created to in-
crease the predicting performance of the single black-box
models in forecasting suspended sediment. AE and NNE
were chosen as the nonlinear ensemble method over the
other AI-based models because of their compatibility,
popularity, and also their high performance reported in
model combination studies in other different fields [25, 35].
Moreover, the AE was introduced in this study due to the
robustness of the model observed in the single models.
)ese ensemble techniques have the potential to provide
researchers, decision-makers, and river and watershed
managers with accurate and fast methods for SSL
estimation.

)e models were examined for modeling SSL of Katar
catchment containing Katar River that drains into Lake
Ziway which supports the lives of millions of people. )e
catchment is characterized by intensive agriculture where
both rainfed and irrigated crops are grown. Because of
sediment deposition attributed to periodic flooding together
with improper agriculture, floodplains are formed along the
bank of the lake and the river. Moreover, this sediment
transported through the river causes siltation of irrigation
canals and Lake Ziway. )us, in this study, the Katar
catchment is chosen as the case study due to the availability
of discharge and SSL data (even though it is only two years)
and also for challenging problems associated with sedi-
mentation.)erefore, the Katar catchment represents a good
case study to assess the SSL estimation accuracy of the
proposed single and ensemble models.
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2. Materials and Methods

2.1. Study Area Description. )e study area, the Katar River
catchment, is a subcatchment of the Ethiopian central rift
valley basin. )is watershed is located in the Oromia Re-
gional State of Ethiopia and the northern part of the central
rift valley basin as part of the Ziway-Shala basin. Geo-
graphically, the catchment lies between 7°21’34’’ and 8°9’55’’
north latitudes and 38°53’57’’ and 39°24’46’’ east longitude
(see Figure 1). )e topography of the Katar catchment is
complex, with elevations ranging from 1673m (Abura) to
4181m above sea level. )e total area of the watershed,
upstream, of the Abura gauging station is estimated to be
3350 km2. )e climate of the catchment is characterized by a
semiarid to subhumid climate with minimum and maxi-
mum annual precipitation values of 731.8mm and
1229.7mm, respectively. )e mean annual temperature
ranges between 16°C and 20°C. )e dry season occurs from
October to May, and more than 70% of the rain falls during
the summer season. )e catchment attained a maximum
discharge of 116.32m3/s in August and a minimum dis-
charge of 0.115m3/s in January. Runoff from Katar catch-
ment drains into the Lake Ziway. )e land use of the study
area is characterized dominantly by intensive agriculture
where both rainfed and irrigated crops are grown.

Regarding soil type, Katar catchment consists of six
major soil types as vertisols, andosols, leptosols, fluvisols,
cambisols, and luvisols (see Figure 2).

2.1.1. Sedimentation Problem in the Study Area. Katar
catchment is one of the data-scarce areas of the country
where there is very limited historical measured suspended
sediment data. )erefore, studying suspended sediment of
the catchment is important to obtain accurate information
about the siltation rate and the resulted reservoir storage loss
over time. )e catchment attains a maximum SSL of
57335.524 ton/day in August and a minimum SSL of 0 ton/
day in January. )e catchment is one of the degraded areas
with intensive agriculture and farming on steep slopes.
Furthermore, the dense population together with improper
agricultural activity and rolling topography makes the
catchment susceptible to soil erosion. )e Katar River joins
Lake Ziway and according to Aga et al. [36], there is a
proposed dam on this river for multiple uses. Soil erosion
due to poor management and heavy rainfall is common
phenomena occurring upstream. )e sediment is trans-
ported and deposited at the mouth of the stream channel
(see Figure 3). Despite the aforementioned problems, little
attention was given to the catchment in the field of sus-
pended sediment load modeling and management. )ere-
fore, it is necessary to study the SSL of the catchment using
an effective technique to obtain better information about the
sediment condition of the area to have reliable management
projects.

2.2. Data Used in the Study. In this study, the daily SSL and
discharge data of Katar River catchment at Abura station for
two years (2016-2017) were used for training and verification

of the developed models. )e data were divided into two
subsets: the first 70% were used for training and 30% of the
data were used for verification purposes. Table 1 presents the
descriptive statistics (minimum, average, maximum, and
standard deviation) of the used data.

)e time series plot of daily SSL and discharge values of
Katar catchment at Abura station throughout the study
period is shown in Figure 4. )e data from 1 January 2016 to
25 May 2017 were used for training and the remaining data
(from 26 May to 31 December 2017) served for verification
of the applied models.

2.3. Proposed Methodology. In this paper, three AI (SVM,
ANFIS, and FFNN) and one MLR were used for modeling
suspended sediment load in the Katar catchment. )e input
data used were normalized and classified into training and
verification sets. )e study was conducted via three stages
(see Figure 5). In the first stage, the selection of the most
relevant and dominant inputs for suspended sediment load
estimation was conducted through nonlinear sensitivity
analysis. Secondly, four black-box models, namely, FFNN,
SVM, NFIS, and MLR, models were applied for the esti-
mation of suspended sediment. Finally, four ensemble
techniques, namely, AE, NNE, SAE, and WAE, were de-
veloped. In this stage, the outputs from single black-box
models were used as the inputs for the ensemble process.)e
obtained suspended sediment load from the last stage was
compared with the results obtained from individual models
in the second step.

2.3.1. Feed-Forward Neural Network (FFNN). ANN is
among the extensively applied AI techniques in hydrological
modeling which works based on simulation of the structure
and operational performance of a biological neural network.
In recent years, ANN as a self-adaptive and self-learning
simulation function has shown great ability in forecasting
and modeling complex hydrological processes. Its ability to
learn from example makes ANN more efficient and appli-
cable in many fields of science, economics, engineering, etc.
[35]. According to [37], the advantage of the ANN model is
that it establishes a relationship between the dependent and
predicted variables by training the neural network without
detailed knowledge of the characteristics of the catchment.
Among different ANN forms, FFNNwith a backpropagation
algorithm was used for this study because of its simplicity
and extraordinary preferred position of giving exceptional
answers for different problems without prior knowledge of
the process.

)e FFNN consists of interconnected processing ele-
ments known as nodes with unique characteristics of in-
formation processing such as learning, nonlinearity, noise
tolerance, and generalization capability.

FFNN structure contains three layers, namely, the input,
hidden, and output layer (see Figure 6). In the FFNN, the
inputs presented to the input layers’ neuron are propagated
in a forward direction and a nonlinear function known as
activation function is used to compute the output vector.
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2.3.2. Adaptive Neurofuzzy Inference System (ANFIS).
ANFIS developed by Jang [38] is a universal approximator to
overcome the limitations of both ANN and fuzzy inference
system. ANFIS is an amalgamation of both ANN and fuzzy
inference systems (FIS) that has a strong capability to handle
the uncertainty of dynamic and complex interactions that
exist between the input and output variables.

Every fuzzy system has three different parts, namely,
defuzzifier, fuzzifier, and fuzzy database. )e fuzzy rule base
consists of rules which are fuzzy proposition related as is
demonstrated by Jang et al. [39]. As a result, the fuzzy in-
ference is applied in the operational analysis.)is goal can be
achieved by employing different fuzzy inference engine. )e
most famous FIS are Tsukamoto’s system [40], Sugeno’s
system [41], and Mamdani’s system [42]. )ese three types
are different from each other. Sugeno’s approach uses
constant functions, whereas fuzzy membership functions
(MFs) are used in Mamdani’s approach.

)eANFISmodel architecture consists of five layers with
layer 1 representing the input layer; layer 2 representing the
input membership function; layer 3 representing rules; layer
4 representing the output MFs; and layer 5 representing the
output configured as illustrated in Figure 7.

Once the fuzzy system has been built, the relation be-
tween fuzzy variables is specified using if-then fuzzy rules.
Assuming that FIS contains two inputs (x and y) and output
(f ), a first-order Sugeno fuzzy has the following rules:

Rule(1): if μ(x) isA1 and μ(y) isB1: thenf1 � p1x + q1y + r1,

Rule(2): if μ(x) isA2 and μ(y) isB2: thenf2 � p2x + q2y + r2,

(1)

where A1 and A2 are MF parameters for input x and B1 and
B2 are MFs for the inputs y, respectively, whereas p1, q1, r1,
p2, q2, and r2 are outlet functions’ parameters. )e ar-
rangement and structural formula of ANFIS layers are as
follows:

Layer 1: every node i is an adaptive node in this layer,
which has a node function as equation (2).

Q
1
i � μAi(x), for i � 1, 2

orQ
1
i � μBi(x), for i � 3, 4,

(2)

where Q1
i represents the membership grade for inputs x

and y. Gaussian MF was chosen due to its lowest
prediction error.
Layer 2: every rule between inputs in this layer is
connected by the T-Norm operator which is performed
with “and” operator as in equation (3).

Q
2
i � wi � μAi(x) · μBi(y), for i � 1, 2. (3)

Layer 3: the output in this layer is normalized firing
strength and calculated as

Q
3
i � w �

wi

w1 + w2
, i � 1, 2. (4)

Layer 4: each node i in this layer calculates the con-
sequence of the rules on the output of the model:

Q
4
i � w pix + qiy + ri(  � wfi. (5)
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w is the layer 3 output and p1, q1, and r1 are consequent
parameters.
Layer 5: the overall ANFIS output is calculated by
adding all of the incoming signals to this layer as

Q
5
i � w pix + qiy + ri(   wifi �



wifi



wi

. (6)

2.3.3. Support Vector Machine (SVM). It is an artificial
intelligence model that can be used for both regression and
classification tasks [43]. SVM is a relatively new approach
that can successfully be applied in the modeling of nonlinear
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Figure 2: Soil map of the study area.

Figure 3: Siltation along the riverbank [36].
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and complex real-world problems. )e regression estima-
tion with SVM is to estimate a function according to a given
data set, (xi, di) 

n
i where xi denotes the input vector, di

denotes the actual value, and n is the total number of data
sets. )e general SVM regression function is formulated as

y � f(x) � ωφ xi(  + b, (7)

where φ is nonlinear mapping function and ω and b are
regression function parameters and determined by assigning
positive values for the slack parameters of ξ and ξ∗ and
minimization of the objective function as shown in

Minimize
1
2
‖w‖

2
+ c⎛⎝ 

n

i

ξi + ξ∗i( ⎞⎠

Subjected to

wiϕ xi(  + bi − di ≤ ε + ξ∗i
di − wiϕ xi(  + bi ≤ ε + ξ∗i , i � 1, 2, . . . n

ξiξ
∗
i

,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where (1/2)‖w‖2 is the weights vector norm and C is the
regularized constant; the general conceptual model structure
of SVM is illustrated in Figure 8.

By defining Lagrange multipliers αi and α∗i , the opti-
mization problem shown above can be changed to a dual
quadratic optimization problem. )e vector w can be de-
termined after finding the problem solution of optimization
[44].

w
∗

� 
n

i

αi − α∗i( φ xi( . (9)

)erefore, the general form of SVM can be in the form as

f x, αi, α
∗
i(  � 

n

i�1
αi − α∗i( K x, xi(  + b, (10)

where k(xi, xj) is the kernel function and b is the bias term.
)e radial basis function (Gaussian) is the most common
kernel function [45] and is expressed as

k x1, x2(  � exp −c x1 − x2
����

����
2

 , (11)

Table 1: Descriptive statistics of daily runoff and sediment data.

Data set Period
Statistical parameters

Min Mean Max Standard deviation Coefficient of variation

Discharge (m3/s)
Training 0.115 8.862 116.32 15.3016 1.727

Verification 0.8 17.338 111.32 20.062 1.157
Whole 0.115 11.401 116.32 17.31 1.518

SSL (ton/day)
Training 0 1760.29 57335.524 5102.626 2.899

Verification 0 3391.356 52947.35 5850.01 1.725
Whole 0 2248.94 57335.52 5389.566 2.397
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Figure 4: Time series of suspended sediment load and river discharge observed at Katar catchment (Abura station) for a period of two years
(2016-2017).
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where c is the kernel parameter.

2.3.4. Multilinear Regression (MLR). MLR is one of the most
commonly used mathematical modeling techniques to an-
alyze the linear relationship that exists between the

dependent and one or more independent variables. )is
method is based on the assumption that the dependent
variable Y is affected by predictor variables X1, X2, . . . , Xn

and then a linear equation is selected for the relationship
between the dependent and independent variables [14].
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error

WAE

Modeling

Comparison
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Figure 5: Schematic of the proposed methodology.
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Generally, the regression equation for the dependent vari-
able (Y) can be written as

Y � b0 + b1x1 + b2x2 + · · · bnxn, (12)

where xn is the value of the nth predictor, b0 is the regression
constant, and bn is the coefficient of the nth predictor.

2.4. Ensemble Techniques. Ensemble modeling is a type of
machine learning in which the outputs of different
models are combined to improve the final model

performance [46]. Even though it is a complex process
and consumes a long time for designing and computa-
tion, an amalgamation of the outputs of several models
produces results that are more accurate than the indi-
vidual models [47]. )is is because one of the used
techniques for a given data set may perform better than
the others and when different data sets are used, the
result may become the opposite. )erefore, an ensemble
technique may be developed to get benefit from the
advantages of all single models. Ensemble method uti-
lizes output from every single method with a certain
priority level assigned to each with the help of arbitrator,
providing the output [28]. For this study, two nonlinear
(AE and NNE) and two linear (WAE and SAE) ensemble
models were used for enhancing the performance of the
single models.

Multimodel combination methods have already been
applied in various forecasting applications such as cluster-
ing, classification, time series, regression and web ranking
[48], weather and economic forecasting in the early 1960s
[49], rainfall-runoff [26], dissolved oxygen concentration
modeling [50], groundwater level prediction [34], river
water quality index prediction [30], and wastewater effluent
quality modeling [31]. However, no study is reported on the
applicability of ensemble modeling in suspended sediment
load modeling to the best of our knowledge. )us, this study
employed four ensemble methods (two nonlinear and two
linear) to enhance the accuracy of the single models in the
estimation of SSL.

2.4.1. Linear Ensemble Methods. Simple average ensemble
(SAM): in this ensemble technique, the arithmetic average of
outputs (suspended sediment load) of SVM, ANFIS, FFNN,
and MLR models was calculated as the final computed
suspended sediment load value as

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

x

y

x, y f

A1
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W2 W2

W1 Wif1
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Figure 7: Structure of equivalent ANFIS.
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Figure 8: )e architecture of SVM algorithms.
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SS �
1
N



N

i�1
SSi, (13)

where SS is the output of the SAMmodel, SSi is the output of
the ith single model (i.e., ANFIS, FFNN, SVM, and MLR),
and N is the number of single models (here, N� 4).

Weighted average ensemble (WAE): in this method, the
prediction is made by assigning different weight to each
output based on the relative importance of the outputs as

SS � 
N

i�1
wiSSi, (14)

where wi stands for weight on the output of the ith method
and it is computed based on the performance measure of the
ith method as

wi �
DCi


N
i�1 DCi

, (15)

where DCi represents the determination coefficient of the ith

model.

2.4.2. Nonlinear Ensemble Methods. In the nonlinear en-
semble methods, the nonlinear averaging is performed by
training an AI nonlinear model such as ANFIS and FFNN
using suspended sediment values obtained from the single
models. In the nonlinear ensemble modeling, the outputs of
individual ANFIS, SVM, MLR, and FFNN models are
combined and used as new inputs for the nonlinear en-
semble models (AE and NNE) to get the overall ensemble
output.

Neural network ensemble (NNE): in this technique, a
nonlinear ensemble is made by training another FFNN by
feeding the outputs of single models as inputs. )en, the
maximum number of epochs and hidden layers’ neurons is
determined by trial and error.

ANFIS ensemble (AE): in this method, the suspended
sediment load values obtained from single SVM, FFNN,
MLR, and ANFIS models are fed to train a new ANFIS
model using various numbers of epochs and membership
functions. )e general procedure used in the ensemble
process is presented in Figure 9.

2.5. Data Normalization and Model Evaluation Criteria.
)e input and output data should be first normalized before
the model is trained to remove their dimensions and to
ensure that equal attention is given to all variables [25, 47].
Data normalization helps to avoid numerical calculation
difficulty. To bring the data in a range of [0, 1], the dataset
should be normalized as

SSn �
SSi − SSmin

SSmax − SSmin
, (16)

where SSn, SSmax, SSmin, and SSi represent the normalized,
maximum, minimum, and actual suspended sediment load
values, respectively.

In forecasting hydrological parameters, Dawson et al.
[51] discussed and explained 20 frequently used model
performance indicators. As indicated in the previous parts,
three AI-based models (ANFIS, ANN, and SVM) and a
commonly used linear model (MLR) were used in this study.
)e performance of hydrological and climatological time
series forecasting models must be evaluated in both training
and verification phases. )e model that yields the best
modeling result on the training and verification steps is
determined by trial and error. For better evaluation of model
performance, at least one absolute error measure and one
good of fit should be used [47]. For this study, Root Mean
Square Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) or
Determination Coefficient (DC) were used to evaluate the
performance and efficiency of the developed models. DC has
values between -∞ and 1 and measures how well the pre-
dicted value fits with the observed data. Higher model
performance is obtained when the DC value is closed to 1,
and vice versa [52]. )e other performance measure used in
this study is RMSE. It measures the deviation of the com-
puted from the observed values. )e best model is the model
that gives the least RMSE and the highest DC values, as
calculated by equations (17) and (18), respectively.

RMSE �

������������������

1
N



N

i�1
SSobsi − SSprei 

2




, (17)

DC � 1 −


N
i�1 SSobsi − SSprei 

2


N
i�1 SSobsi − S�Sobs( 

2,
(18)

where SSobsi, SSprei, S�Sobs, and N are observed, predicted, and
average of the observed SSL values and number of obser-
vations, respectively.

3. Results and Discussion

All of the used models, namely, SVM, FFNN, ANFIS, and
MLR, were trained and tested for modeling suspended
sediment load in Katar catchment. )e results of sensitivity
analysis to select dominant inputs, single black-box mod-
eling, and ensemble models for suspended sediment load are
presented in the following subsections.

3.1. Results of Inputs Selection. )e effect of several factors,
for example, runoff, precipitation, and catchment charac-
teristics, are involved in the suspended sediment load
modeling [5]. )erefore, careful selection of the most rel-
evant and significant factors as inputs in any AI-based
modeling is an important step to obtain the optimum result.
Previous studies indicated that there exists the highest
correlation between the present value of suspended sediment
load and its previous values. )e influence of different
factors can indirectly be considered by the antecedent SSL
values [53]. To estimate the current SSL (SSt), different lag
time series of discharge (Q) and SSL were used in previous
researches [4, 18]. )us, the value of suspended sediment
load at the current time step (SSt) would be the function of
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the sediment values up to time step n and also runoff (Q)
values at present and up to time step m as

SSt � f Qt, Qt−1, Qt−2, . . . , Qm, SSt−1, SSt−2, . . . , SSn( .

(19)

Selection of the most relevant input variables and correct
network parameter adjustment (e.g., number of training
iterations, hidden neurons, and transfer function) in any AI-
based modeling is a crucial step in attaining the most op-
timal result [35, 54]. Linear sensitivity analysis methods (e.g.,
Pearson correlation) have previously been used for the se-
lection of the dominant input variable in suspended sedi-
ment modeling (e.g., see [6, 21, 22, 55]). However, the
application of linear Pearson correlation analysis for
selecting the dominant input variables has been criticized by
previous works (e.g., [35, 56]) since, for a complex nonlinear
hydrological process like SSL, there may exist a stronger
nonlinear relationship between the predictor and predicted
variables than a weak linear relationship. Because of this,
sensitivity analysis of input variables for suspended sediment
load estimation using nonlinear FFNNwas conducted in this
work to determine the most relevant inputs. To predict
current-day suspended sediment load (SSt), different lags
(up to 5 past days) of suspended sediment and discharge data
were evaluated as sole input and ranked based on the
verification phase DC values of the modeling. )e ranking
results based on sensitivity analysis of input variables to
predict SSt are presented in Table 2.

In Table 2, t stands for the present time step and the
corresponding output is the current suspended sediment
load (SSt). In the table, the highest DC value implies themost
dominant input variable. )us, Qt is the first most dominant
and SSt−1 is the second, and Qt−1 is the third dominant input
parameter. Insufficient input variables cannot give accurate
results whereas including too many input variables makes
the modeling process complex and may cause overfitting
issues [35]. )us, after ranking the input variables based on
their verification DC value, the Student t-test was performed
to identify the dominant inputs and remove those which do
not have a significant impact on the estimation results. Based
on the result of the Student t-test, Qt−4, Qt−5, SSt−4, and SSt−5
were found less relevant and not included in the inputs
combination set. After the selection of the dominant inputs
and removal of less relevant inputs, different input com-
binations using the remaining parameters, that is, SSt−1,
SSt−2, SSt−3, Qt, Qt−1, Qt−2, and Qt−3, were examined to
predict the SSL by the proposed models.

3.2. Results of SS Modeling Using Single Models. For each
input combination, the ANFIS, SVM, FFNN, and MLR
models were trained and tested where the best results of each
model are presented in Table 3. )e FFNN model with five
inputs and one hidden layer trained by the Levenberg-
Marquardt algorithm was developed for suspended sedi-
ment load estimation in the Katar catchment. Determination
of the optimal model structure (e.g., number of the hidden
neurons) is an important step in FFNN modeling to obtain
the best result. )is is because too small neurons may
capture unacceptable information while too many neurons
may cause overfitting A trial and error method by assessing
the accuracy of different models trained with varying hidden
neuron number was used to determine the best structure of
the model. For the best input combination, 8 hidden neu-
rons were found as the optimum structure of the hidden
layer.

)e second AI applied in this study was SVM. Radial
basis function (RBF) kernel was used to create the SVM
model for all input combinations. )is kernel was selected
because it provides better performance and contains fewer
tuning parameters than polynomial and sigmoidal kernels
[44].

)e third AI-based model used was the ANFIS model
that is known for its ability to handle the uncertainty of
complex and nonlinear processes via a fuzzy concept. In this
way for the ANFIS model, Sugeno fuzzy inference system
using a hybrid algorithm was used to calibrate the MF
parameters.)e study also used a trial and error approach by
changing the types of MFs to obtain the best result. Trap-
ezoidal, triangular, and Gaussian-shaped MFs were exam-
ined because of their suitability in modeling the
hydroclimatic process [25]. As well, the trial and error
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Figure 9: Schematic view of the ensemble process.

Table 2: Sensitivity analysis results.

Inputs Verification DC Rank
Qt 0.8208 1
SSt−1 0.7964 2
Qt−1 0.7605 3
SSt−2 0.6338 4
Qt−2 0.60438 5
Qt−3 0.5188 6
SSt−3 0.4966 7
Qt−4 0.3594 8
SSt−4 0.3027 9
Qt−5 0.2934 10
SSt−5 0.2134 11
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method was used to determine the number of membership
functions and to determine the best ANFIS construction.
ANFIS model with Gaussian MFs trained by 55 epochs gave
the best result among the others. Lastly, MLR that expresses
the linear relationship between the predictor (independent)
and output (dependent) variables was also applied for SSL
modeling. )e obtained results of the developed AI-based
and MLR models to predicted suspended sediment load in
Katar catchment for the best input combination are pre-
sented in Table 3. )e numbering of a-b-c in the FFNN
(Table 3) stands for the number of input, hidden, and output
neuron layers. Similarly, the numbering y-z in the structure
of MLR in Table 3 represents the number of inputs and
output parameters.

Table 3 shows that the ANFIS model having the highest
DC and lowest RMSE outperformed all developed AI and
MLR models in suspended sediment load estimation fol-
lowed by FFNN, SVM, and MLR. )e result is confirmed by
previous studies about the performance of ANFIS and ANN
models in suspended sediment load estimation [12, 13]. )e
MLR which measures the linear relationship between the
inputs and output led to less accurate results than the AI-
basedmodels.)is is because the suspended sediment load is
a dynamic, nonlinear, and complex process and hence a
nonlinear model may be used to accurately model it instead
of a linear technique.

From the results of single models shown in Table 4, the
application of the best model (ANFIS) could increase the
performances (based on DC value) of FNNN, SVM, and
MLR by 6%, 8.47%, and 24.86%, respectively. In addition to
statistical performance measures, different visual indicators
like scatter plots, boxplot, and Taylor diagram were used in
this study to obtain a better view of the estimation per-
formances of the employed models. )e scatter plots of
single AI-based and MLR model result against the observed
value in the verification phase are presented in Figure 10.

According to Sharafati et al. [31], a scatter plot shows the
possible pattern similarity between the observed and esti-
mated data. Figure 10 compares the estimation performance
of FFNN, MLR, SVM, and ANFIS models in the estimation
of SSL on scatter plots. )e figure reveals less spread of
points for predicted and observed SSL in the ANFIS model
than other computing single models. )is could be due to
the ability of the ANFIS model to handle the uncertainties of
the SSL process.

In Figure 11, the median (Q50%) value for ANFIS
model� 1,497.3 ton/day, MLR� 2014.4 ton/day, SVM� 1,
672.7, FFNN� 1,562.8 ton/day, and observed� 1,482 ton/
day. )is indicates the ANFIS model performs better than

the other models with FFNN being the second while MLR
provides the worst estimation. )e reasonable performance
of the ANFIS model is because of its ability to handle the
uncertainty of complex SSL process. Kumar et al. [12] ap-
plied ANFIS and ANN to model the current-day suspended
sediment and runoff in the Godavari basin using the pre-
vious period discharge and SSL data as input. )ey found
that the ANFIS model gave a better performance than ANN
in suspended sediment prediction. Nourani and Andalib [4]
employed the least squares support vector regression
(LSSVR) and ANN for monthly and daily SSL prediction.
)e result showed that LSSVR has a better predictive per-
formance than ANN. Buyukyildiz and Kumcu [18] applied
SVM, ANFIS, and SVM to estimate the current-day SSL of
Coruh River using a different combination of lag time series
of Q and SSL as input. )ey found that ANN performed
better than the other models. From the comparison with the
reported studies in the literature, it can be observed that the
estimation accuracy of AI-based models varies for different
case studies. According to Salih et al. [2], it is because of SSL
data stochasticity of each considered catchment and also the
capacity of the constructed AI-based models to handle the
nonstationarity and nonlinearity in the data set.

Figure 12(a) shows the time series plot of observed
versus computed suspended sediment load in the verifica-
tion phase of Abura station for the applied MLR, SVM,
FFNN, and ANFIS models. Figure 12(b) shows a section of
modeling of SSL time series by MLR, SVM, FFNN, and
ANFIS models. For better visibility of predicted values of
SSL by each model, only a 51-day period (from July 26 to
September 14, 2017) has been focused on in Figure 12(b).

As shown in Figure 12(b), the date of July 29, August 08,
August 24, and August 31 are marked as points 1, 2, 3, and 4,
respectively. With regard to point 1, ANFIS� 5752.136 ton/
day, MLR� 3857.018 ton/day, FFNN� 4620.326 ton/day,
SVM� 6573.967 ton/day, and observed� 3831.348 ton/day.
)is indicates that the MLR value is more close to the actual
value than the other models. )is, in turn, shows that even
the least accurate model at a certain point in the time series
could give the best result. With regard to point 2,
ANFIS� 6313.366 ton/day, MLR� 4563.506 ton/day,
SVM� 8595.878 ton/day, FFNN� 6695.642 ton/day, and
observed� 6245.252 ton/day. )is implies that the ANFIS
model performs better than other models. At point 3,
ANFIS� 6181.81 ton/day, MLR� 4190.825 ton/day,
SVM� 6270.75 ton/day, FFNN� 5424.629 ton/day, and
observed� 5249.579 ton/day. )is indicates that the FFNN
value has less deviation from the observed SSL value than the
other competing models. At the final point (point 4), SVM

Table 3: Results of single black-box models for SSL modeling by the best input combination.

Model Input combination Best structure
Training Verification

DC RMSE DC RMSE
FFNN Qt, Qt−1, Qt−2, SSt−1, SSt−2 5-8-1 0.876 0.03134 0.834 0.04155
ANFIS Qt, Qt−1, Qt−2, SSt−1, SSt−2 Gaussian 0.918 0.0255 0.884 0.0339
SVM Qt, Qt−1, Qt−2, SSt−1, SSt−2 RBF 0.867 0.0324 0.815 0.0439
MLR Qt, Qt−1, Qt−2, SSt−1, SSt−2 5-1 0.755 0.0441 0.708 0.0553
RMSE has no unit as the data are normalized.
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performs better than the other models. From the results of
the selected points, it is clear that different models at dif-
ferent time points could lead to different performances
(from different data aspects). )us, the objective of more
accurate SSL estimation can be better achieved through an
ensemble method. In this regard, WAE, SAE, NNE, and AE
ensemble methods were developed for SSL modeling to
improve the overall performance of the modeling.

3.3. Results of Ensemble Techniques. In order to increase the
estimation efficiency of single AI-based and MLR models,
the outputs of ANFIS, SVM, MLR, and FFNN models were

used as inputs for the four ensemble techniques as a novel
ensemble method for SSL modeling.)e results of linear and
nonlinear ensemble models for suspended sediment esti-
mation are presented in Table 4.

Table 4 shows the performances of WAE, SAE, AE, and
NNE for the estimation of SSL. In the SAE structure, a-b is
used to show the number of inputs and outputs (SSt). In
WAE structure, w, x, y, and z denote the weights of FFNN,
ANFIS, SVM, and MLR models, respectively. In Table 4, it
can be seen that AE outperformed all the competing model
combination techniques because of its robustness by com-
bining the advantages of both ANN and fuzzy concepts via
the ANFIS framework.

Table 4: Results of the proposed ensemble methods for SSL modeling.

Ensemble method Best structure
Calibration Verification

DC RMSE DC RMSE
SAE 4-1 0.922 0.0249 0.8793 0.0349
WAE 0.257, 0.274, 0.251, 0.218 0.9257 0.0243 0.888 0.0327
AE Gausian-3 0.9804 0.0125 0.97 0.0176
NNE 4-7-1 0.953 0.0193 0.924 0.0281
RMSE has no unit as the data used is normalized.
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Figure 10: Scatter plots showing the actual and predicted SSL, at verification phase by (a) MLR, (b) SVM, (c) FFNN, and (d) ANFIS.
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Figure 12: Observed versus predicted suspended sediment load value in the verification stage of Abura station in (a) January
2016–December 2019 and (b) July 26 up to September 14, 2017.
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)e linear ensemble (SAE) performed better than all the
single models except the ANFIS model. It is known that
linear averaging usually gives values higher than the min-
imum value and lesser than the highest value in the data set
[35]. Even from the nonlinear ensemble methods, WAE
gives a slightly better performance than SAE. )is could be
due to the assigned weights on the parameter based on their
relative importance.

NNE model was trained by the Levenberg-Marquardt
algorithm similar to the single FFNN model and the tan-
gent sigmoid activation function was utilized for both
output and hidden layers. In this study, the Levenberg-
Marquardt algorithm was selected among different ANN
training algorithms because of its fastest convergence
ability as reported by Sahoo et al [57]. A trial and error
process was used to determine the best epoch number and
the appropriate number of hidden neurons. NNE has been
successfully used as multimodel combination techniques in
hydrological modeling (e.g., [25, 46, 52]). Similar to the
ANFIS single model, Sugeno fuzzy inference system using a
hybrid training algorithm was used to calibrate the MFs
parameters in AE. )e AE model has greatly enhanced the
accuracy of single models in previous studies in another
field [35].

)e result in Table 5 shows the capability of ensemble
techniques to improve the prediction performance of
single AI and MLR models based on their DC values. )e
results in Table 5 show that all used ensemble methods can
be applied to improve single model performance in SSL
modeling. However, nonlinear ensemble techniques show
superiority over the linear ensemble models. )is could be
because of the incapability of linear ensemble methods to
undergo another black-box learning process unlike the
nonlinear ensemble methods (AE and NNE). )e NNE
increased the performance of SVM, FFNN, ANFIS, and
MLR models by 12%, 12.8%, 6.6%, and 28.4%, respectively
in the verification stage. In the AE model, the performance
of SVM, FFNN, ANFIS, and MLRmodels was increased by
16.4%, 17.3%, 10.9%, and 33.5%, respectively, in the
verification stage. Also, from the obtained results shown
in Table 4, the AE performed better than the other three
ensemble methods because of its robustness to handle the
complex nonlinear process between outputs and inputs.
)e performance accuracy of the ANFIS model over AI-
based and MLR single models applied in modeling sus-
pended sediment load was also confirmed by the AE
model.

)e scatter plots of the ensemble methods result and the
observed suspended sediment load values in the verification
phase are presented in Figure 13.

In Figure 13, the scatter plots of the developed ensemble
models for SSL estimation in the verification are compared.
As indicated in the figure, the AE is seen to have less spread
estimation and the points were closer to the best line
compared to the other ensemble models, while the linear
ensemble methods (SAE andWAE) show the most scattered
estimation.

)e boxplot is also another graph commonly used to
make a comparison between the observed value and esti-
mated outputs obtain by different models [6, 31]. )e
variability of observed SSL values versus those obtained by
the developed ensemble models was compared using dif-
ferent quartiles and interquartile range (IQR) through
boxplots in Figure 14. In this figure, the median (Q50%) value
for SAE� 1,681.1 ton/day, WAE� 1, 678 ton/day,
NNE� 1,212.4 ton/day, AE� 1,636.4 ton/day, and observ-
ed� 1, 482 ton/day. )is shows that AE outperforms the
other ensemble techniques. Moreover, Figure 14 depicts that
the most consistency is found between the output obtained
by AE (IQR� 4,968.3 ton/day) and observed value
(IQR� 4,929.8 ton/day).

Figure 15 shows the time series of observed versus
predicted SSL in the verification phase of Abura station
SSL modeling for the applied ensemble methods (SAE,
WAE, NNE, and AE). From Figure 15, it is clear that the
WAE and SAE methods were less accurate than AE and
NNE. )e values of AE were more fitted with the observed
data, whereas there is a wider fluctuation between ob-
served data and the values obtained by WAE and SAM
ensembles.

Alternatively, four ensemble methods (SAE, WAE,
AE, and NNE) were also assessed using the Taylor dia-
gram (two-dimensional diagram), which shows the pre-
dicted and observed values. Taylor’s diagram could be
used as a successful diagram for comparison of model
performances in different fields [2, 6, 58–60]. Taylor’s
diagram was used to construct and graphically visualize
the combination of two performance indicators, namely,
correlation (r) and standard deviation (SD) [61] (Fig-
ure 16). )e key objective of using this diagram is to
combine different models performances indicators in one
graph and it can also statistically quantify the level of
resemblance between the predicted and observed values.
From Figure 16, it is seen that the best ensemble method is
AE (r � 0.985) and SAE is the least with the r-value of
0.927. From the ensemble result comparisons, the men-
tioned performance metrics indicate the degree of pre-
diction accuracy of AE. )e AE outperformed the other
ensemble methods as the predicted values are more close
to the observed values. )is can be additionally confirmed
by considering the high SD value which could be credited
to the AE.

Table 5: )e comparison of the nonlinear ensemble models using
single AI and MLR models.

Model Training (%) Verification (%)
AE vs MLR 29.85 37
AE vs FFNN 11.9 16.3
AE vs SVM 13.08 19.02
AE vs ANFIS 6.8 9.73
NNE vs MLR 26.22 30.5
NNE vs SVM 9.92 13.37
NNE vs FFNN 8.8 10.79
NNE vs ANFIS 3.8 4.5
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Figure 13: Scatter plots showing observed versus predicted suspended sediment load by (a) SAE, (b) WAE, (c) NNE, and (d) AE, in the
verification phase.
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Figure 14: Boxplot of observed versus predicted values by ensemble models in the verification phase.
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4. Conclusions

In this study, the capability of ANFIS, SVR, FFNN, andMLR
models was examined for modeling daily SSL of Katar
catchment, Ethiopia. Before the development of suspended
sediment load estimation using single AI andMLRmodels, a
nonlinear sensitivity analysis was conducted for selecting the
relevant inputs. After conducting the Student t-test, some
irrelevant and less significant input variables were removed

and only the dominant inputs were used in different
combinations to predict SSL.

By comparing the results obtained from the single
models, it was demonstrated that the ANFIS model could
lead to the highest prediction performance over the other
competing models because of its strength in dealing with the
dynamic, nonlinear, and complex process via fuzzy concept.
After developing single AI and conventional MLR models,
four ensemble methods that combine the outputs from every
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single back box models were created to improve the per-
formances of the individual models. Combining the results
of individual models enhanced the accuracy of single models
in the estimation of suspended sediment. Nonlinear en-
semble techniques (AE and NNE) showed the highest
performance because of their capability of handling the
uncertainty of complex and nonstationary processes such as
the suspended sediment process. AE method showed su-
periority over the other ensemble methods by increasing the
predictive performance of FFNN, ANFIS, MLR, and SVM
models in the testing phase by 16.3%, 9.73%, 37%, and
19.02%, respectively. )e performance of the nonlinear
ensemble (SAE) showed higher efficiency compared to the
single black-box models except the ANFIS model. )is is
because linear averaging always gives a result that is higher
than the minimum value and lesser than the maximum value
in the set. In this study, the linear ensemble provides less
performance than the ANFIS model because of the lower
performance of the conventional MLR. )erefore, the
limitation of the linear ensemble method is that the least
performed single models may lead to performance lower
than that of the most accurate model.

)e result of this study generally revealed the promising
power of ensemble methods in SSL modeling. )e ensemble
outputs obtained specifically by the AE technique revealed
that better SSL forecasting accuracy could be achieved via a
combination of individual model outputs rather than the use
of single models. )is study is limited to the application of
black-box models for ensemble SSL modeling. Hence, the
inclusion of physically based models in the ensemble unit
should be tested for future study. Moreover, this study used
only two years of daily SSL and discharge data for suspended
sediment load estimation due to the data limitation. )us,
more data and input parameters can be tested for future
studies.
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