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The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes,
hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress
appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still
far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the
functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at
least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on
ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the
important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize
the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant
mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections
in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral
immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The
understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.

1. Introduction

Patients with pneumonia of unknown etiology had been
diagnosed in mid-December 2019 in Wuhan (Hubei prov-
ince, China). Later, the SARS-CoV-2 (severe acute respira-
tory syndrome) coronavirus started to spread all over the
world, without any exemptions. As for today, more than
182 million of patients have been infected, and more than
3.9 million died due to COVID-19 [1], providing an estimate
of the mortality rate at 3.3%. When compared to the sea-
sonal flu, COVID-19 related mortality is at least 60 times
higher. Seasonal flu outbreak annually causes the infection
of 3 to 5 million people, both asymptomatic and symptom-
atic, with mortality rate not exceeding 0.05% [2]. Clinical
course of COVID-19 may, in most cases, consist of three
periods [3]. After a short incubation period lasting from 2
to 5 days, patients become symptomatic, with the loss of
sense of taste and olfactory dysfunction, dry cough, fever
exceeding 38°C, and dyspnoea. Other symptoms, including
headache, fatigue, diarrhoea, and conjunctivitis, are less

frequent. Additionally, most patients develop a bilateral
interstitial pneumonia [4]. After 7-10 days, dyspnoea
decreases in majority of patients, inflammatory changes in
the lungs resolving to some extent, and the patients are free
from the virus in most cases. In severe COVID-19, the pneu-
monia causes a rapid drop in arterial pO2 levels with the trans-
cutaneous saturation measurement, usually below 60% when
breathing ambient air. The progressive respiratory failure due
to the loss of lung active surface of gas exchange and vascular
abnormalities leads to the need of noninvasive ventilation
support. Inmost severe cases, patients suffer from disseminated
intravascular coagulation (DIC) or a septic shock and have to
be sedated and undergo ventilation support [5].

Some experimental data available so far has suggested
that the severe COVID-19 course might be related to the
viral load during the SARS-CoV-2 exposure [6]. A recent
study performed in 1145 patients suggested a significant
independent association between viral load and mortality
(with the hazard ratio of 1.07 [95% CI 1.03–1.11], p = 0•
0014) implying that the 7% increase in mortality risk was
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present for each log transformed copy of viral RNA per mL
of nasopharyngeal swab sample [7]. Another important
factor, probably protecting from the development of severe
COVID-19, is a normal to high level of serum vitamin D
[8, 9]. Smoking cigarettes, however, may increase the risk
of severe course of the disease, even in the absence of
smoking-related disease [10–12]. The well-known and
widely accepted hypothesis is that the male sex, hyperten-
sion, COPD, diabetes, or cancer may deeply influence the
severity of the disease [13–16].

Today, it is not clear whether bronchial asthma may
have any effect on the infection rate or the severity of
COVID-19. Moreover, the question of how and why the
viral pneumonia leads to DIC and septic shock with cytokine
and bradykinin storms remains to be elucidated. ROS and
RNS play an important role in the innate immune response,
which is also directed against viruses [17]. In this review, we
focus on the possible role of ROS and RNS in severe
COVID-19 pathogenesis.

2. Antiviral Immune Response Mechanisms

The immune system has the potential to effectively control
viral infections, and thus, it can limit their effect on the host
organism. The processes of virus entry into the host cell, its
replication, stimulation, and regulation of the antiviral
immune response trigger a complex series of interactions
between the virus and the host [18] (Figure 1(a)). There
are two defense mechanisms: specific, acquired immunity
and nonspecific, innate immunity. Nonspecific immunity is
the first line of defense against infection and does not
depend on prior contact with the pathogen. Mast cells, NK
(natural killers), NKT (natural killer T cells), NHC (natural
helper cells), natural lymphoid cells, granulocytes, macro-
phages, and monocytes are responsible for innate immunity.
The pathophysiology of the extremely high pathogenicity of
coronaviruses is not fully understood [19, 20]. It is worth
noting that the immune system must develop a specific cyto-
toxic T cell (CTL) response. CTLs have the ability to recog-
nize the viral-derived peptide on the surface of the infected
cell, specifically in the MHC (the major histocompatibility
complex) class I binding groove. Then, lymphocytes recog-
nize the infected cell and destroy it by secreting cytolytic
granules or activating programmed death in the cell through
receptors such as FAS. In parallel with the development of
the cellular response, a humoral immune response develop-
s—associated with the activation of B cells and the subse-
quent release of specific antibodies. The helper T cells are
at the center of the activation of adaptive immunity.

The lung epithelium is the largest surface that comes into
contact with the environment. In the airways, viruses are
detected by airway epithelial cells, mast cells, and cells of
the mononuclear phagocyte system. The sensor cells are
equipped with pattern recognition receptors such as Toll-
like receptors (TLR). PAMPs (pathogen associated molecu-
lar patterns), derived from viruses, trigger a specific
combination of PRRs (pattern recognition receptors) and
adapter molecules, leading to the immune response
adapted to the pathogen [21]. Coronavirus replication

leads to, e.g., disruption of lysosomes, damage of mito-
chondria or/and imbalanced ion concentrations [22, 23].
As a consequence, pyroptosis occurs, which initiates the
secretion of proinflammatory molecules of the interleukin-1
family [24, 25] (Figure 1(b)). Coronavirus SARS-CoV-2-
induced cell death releases histones and a high-mobility
group box 1, which are normally hidden from recognition
by PRRs. Then, additional proinflammatory cytokines and
chemokines are produced, e.g., IL-6, IP-10, MIP1αβ (macro-
phage inflammatory proteins-1αβ), and MCP1 (monocyte
chemoattractant protein-1). Only in theory, detection of
CoVs by pattern recognition receptors triggers an innate
immune response that would be effective to limit viral repli-
cation. Interferons (IFN)-α, β, and type III are released to
help control/eliminate viral infection. Their function is to
remove the virus from infected cells by activating ISGs
(IFN-stimulated genes) which exert direct antiviral effects,
i.e., recruit antiviral immune effector cells. It has been
observed that during zoonosis, the antiviral immune
response can be detrimental to the body if the timing and
target tissue of the immune response are inadequate [26].

The mechanism of innate immunity leads to inflamma-
tion, release of IFN-αβ, and activation of NK cells, which
allows the suppression of local infection. Unfortunately,
coronaviruses have developed strategies to protect them-
selves or their by-products from being recognized by the
host [27]. In addition, viruses inhibit interferon induction
and block IFN signaling. For example, SARS-CoV-1 (the
coronavirus emerged in 2003, causing severe acute respira-
tory syndrome coronavirus) can effectively suppress inter-
feron expression by nonstructural and structural proteins
[28]. Coronaviruses circumvent the early phase of the innate
immune response. Generalizing, the virus is recognized due
to the stimulation of Toll-like receptors located on the epi-
thelium and on dendritic cells, which are designed to inform
B and T lymphocytes about the invasion of the pathogen. In
the case of coronaviruses, these are Toll-like receptors 7 and
TLR8 receptors that recognize viral RNA. Viral proteins are
recognized by TLR2 and TLR4 receptors. During SARS-
CoV-2 infection, the level of these receptors decreases, and
their expression is lower in the elderly. SARS-CoV-2 infec-
tion is dangerous when a patient lacks specific antibodies
and specific CTLs, because it can progress to severe pneu-
monia and ARDS [29].

3. The Role of ROS and RNS in
Antiviral Response

The generation of ROS is one of the major mechanisms lead-
ing to infected cell death through apoptosis or necrosis, specif-
ically during the very early stages of the immune response
[30]. Both ROS and RNS also play an important role in signal
transduction. Viral proteins or nucleic acids triggering the pat-
tern recognition receptors lead to activating the interferon
response through TIR-domain-containing adapter-inducing
interferon (TRIF) and interferon regulatory factors (IRFs) as
well to increasing in the inducible nitric oxide synthase (iNOS)
expression and activity through the myeloid differentiation
primary response-88 (MyD-88) adapter protein [31]. These
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processes lead to an increase in the RNS production. The
RNS might inhibit viral proliferation in infected cells [32,
33]. Similarly, both PRRs and interferon type I pathways
lead to an increase in ROS production from the xanthine
oxidase, nitric oxide synthase, or the mitochondrial respira-
tory reactions. These processes have been crucial in the
innate immune response to various viruses including
human respiratory viruses (influenza viruses, HRSV
(human respiratory syncytial virus), and rhinoviruses).

ROS are signaling molecules regulating a wide variety of
physiological functions. ROS are a part of the mechanisms
leading to the elimination of virus-infected cells and patient
recovery. In some rare cases, specifically in the case of influ-
enza infection, a severe course of the disease develops, lead-
ing to a severe adult respiratory distress syndrome (ARDS)
with significant mortality [34]. Why ARDS is more frequent
in some coronavirus infections (SARS, MERS (Middle East
respiratory syndrome coronavirus), and SARS-CoV-2)

Virus recognition through PRRs

Ab synthesis

ADCC

Infected
cell

B cell activation Complement activation
T cell activation

Tc cell activation

Intracellular
ROS
NOS

ROS
NOS

IFN TYPE I, III

MØ activation

Infected
cell killed

Normal anti-viral response

(a)

No Tc cell activation No EFFECTIVEAb synthesis

Ineffective killing

T cell depletion
B cell depletion

Infected
cell

survival
Virus recognition thru PRRs

Complement activation

IFN type I, III

MØ activation

Anti-oxidants depletion

ROS
NOS

Viral load

Bystander cells killing-organ damage Coagulation activation

Ineffective anti-viral response

(b)

Figure 1: Normal (a) and ineffective (b) antiviral response. Under normal conditions, the presence of a virus activates various pathways
leading to its killing by killing the infected cell: activation of complement, B and T lymphocytes, secretion of interferons, antibodies
production, and macrophages activation, which result in an increase in ROS and NOS concentrations that help kill the infected cell. An
ineffective antiviral response may occur when the responses to the presence of the virus are unnaturally enhanced, resulting in damage
to surrounding tissues and as a consequence, organ damage. ADCC: Antibody-dependent cellular cytotoxicity.
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remains unknown. Therefore, ROS and RNS might be at
least one of the important diseases modifying pathways in
severe COVID-19.

The effects caused by the reactive forms of oxygen and
nitrogen might depend on the source of their origin. For
instance, many RNA viruses activate endosomal NADPH
(nicotinamide adenine dinucleotide phosphate hydrogen)
oxidase via Toll-like receptor 7 mechanism, activated in turn
by binding to single-stranded RNA [35, 36]. This is likely
because these viruses, when attached to the cell, are built into
the endosomes and their RNA can interact with TLR7; SARS-
CoV-2 might activate Nox2 (NADPH oxidase 2) through
TLR7 and that might have a negative impact on the defense
mechanism against viruses. This is due to the fact that
Nox2 activation is used by viruses in order to restrain
immune reactions and develop the infection [36, 37].

Overproduction of toxic ROS and excessive inflamma-
tion are harmful for tissues and may cause their damage
[38–41]. As a result of an uncontrolled inflammatory
response, oxidative stress (an imbalance between oxidants
and antioxidants) arises, which in turn stimulates inflamma-
tory cells to further produce cytokines and a “vicious circle”
occurs (Figure 2).

The characteristic features of the severe form of COVID-
19 include, but are not limited to, severe lymphopenia, lung
tissue damage, and a “cytokine storm” leading to acute respi-
ratory distress and multiorgan failure. Despite a central role
of mitochondria in ROS generation, many questions remain
unanswered about their role during the “cytokine storm”
and pathogenesis of infections with coronaviruses. Lympho-
penia causes, among others, a defect in the regulation of anti-
viral immunity. The cytokine storm begins with the intense
activation of cytokine-secreting cells with innate and acquired
immune mechanisms [42] (Figure 3). It should be pointed out
that in the case of a “cytokine storm”, neutrophil apoptosis
does not occur. Patients have a huge amount of neutrophils
that have undergone NETosis (NET-neutrophil extracellular
traps). During NETosis, neutrophil extracellular trap is
formed, and along with the “spilling out” of neutrophil DNA
outside the cell, toxic enzymes are released, such as elastase,
which damages lung tissue [43]. Moreover, microclots in the
pulmonary circulation are formed. In the blood of COVID-
19 patients, immune changes characteristic of viral infections
were observed, i.e., increased levels of ASC-producing cells,
activated CD4+ T cells and CD8+ T cells and IgM and IgG
antibodies [44, 45]. Importantly, “cytokine storm”may occur,
responsible for lung tissue damage during viral respiratory
infections [46, 47]. Such sustained ROS production leads to
the vicious circle that results in inflammatory damage but also
hinders treatment of damage [48].

4. ROS and RNS Generation in SARS, MERS,
and COVID-19

The high mortality rates of SARS-CoV-1, SARS-CoV-2, and
MERS motivate scientists to study these infections in a
variety of ways to find any effective therapeutic options.
While numerous studies confirm a strong association
between oxidative and nitrosative stress and severity of

various viral infections (HCV (hepatitis C virus) [49], HBV
(Hepatitis B virus) [50], and HRSV [51]), there is still
limited clinical data showing such dependence in case of
the SARS-CoV, SARS-CoV-2, and MERS infection—their
severity or progression [52]. Previous research demonstrated
that in SARS-CoV-infected human lung samples, explicit
production of oxidized phospholipids followed by ROS
generations was observed in the injured air spaces, pneumo-
cytes, and alveolar macrophages [53]. Moreover, in macro-
phages, the oxidized phospholipids have been shown to
modulate lung injury severity by TLR4-TRIF-TRAF6
expression and trigger cytokine production [22]. Lin et al.
published a study showing that the ROS-activated NF-κB
(nuclear factor kappa-light-chain-enhancer of activated B
cells) signal transduction pathway is induced by SARS-
CoV-1 protease-3CLpro and therefore might be involved
in the SARS-CoV infection development [54].

Angiotensin converting enzyme-2 (ACE2), known as the
cell entry receptor of the SARS-CoV-2, is a multifunctional
transmembrane protein. ACE2 plays a double-edged role
in SARS-CoV-2 infection, and apart from being the cellular
receptor for SARS-CoV-2 spike proteins, it is the critical
molecule in combating inflammatory and oxidative damage
of tissues by COVID-19. This enzyme decreases angiotensin
II which is stimulant of NADPH oxidase. In addition, the
product of ACE2 enzymatic activity, angiotensin 1-7, has a
strong antioxidant effect [55, 56].

The virus binding to ACE2 receptor initiates its entry to
the cell, and after attachment and virion-membrane fusion,
ACE2 expression is downregulated [57, 58]. The viral

Chronic or
excessive

inflammation

Overproduction
of ROS

Overproduction of
proinflammatory

cytokines

SARS-CoV-2

Oxidative stress Antioxidants level↓

Figure 2: Molecular vicious circle of SARS-CoV-2 infection.
Chronic or excessive inflammation damages tissues due to huge
amounts of various toxic substances mainly ROS overproduced
by cells of the immune system (neutrophils and macrophages).
Activated phagocytes can also release prooxidant cytokines, e.g.,
TNF-α (tumor necrosis factor-alpha) and IL-1, which promote
iron uptake by the reticuloendothelial system. The consequence of
an uncontrolled inflammatory reaction is oxidative stress, which
in turn, stimulates the inflammatory cells to further produce
cytokines. Release of interleukins, e.g., 1β, 2, 6, 7, 12, 17, and
TNF-α has been observed in COVID-19 [13], resulting in a
vicious circle.
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protein Spike interaction with ACE2 leads to an excessive
production of angiotensin II (Ang II) and activation of
NADPH oxidase which subsequently results in enhancing
oxidative stress mechanisms (in contrast to what happens
during other viral infections) but also releasing inflamma-
tory molecules [59]. In the course of SARS-CoV-2 infection,
angiontensin II availability is increased through the high
affinity and resulting binding the virus to ACE2 [60].
ACE2 in SARS-CoV-infected cells has been shown to be also
involved in postinfection regulation, including immune
response, viral genome replication, and cytokine secretion
[61]. A previous study demonstrated that overexpression of
ACE2 prevents Ang II-induced Nox2 expression and ROS
generation in endothelium [62]. In healthy individuals,
ACE2 supports lung homeostasis via the production of
angiotensin 1–7 and controls inflammation and blood pres-
sure. However, ACE2 downregulation may prevent SARS-
CoV-2 host cell interaction in chronic respiratory conditions
[63]. ACE2 is expressed in a variety of cells. It has been
shown that many factors can influence the changes in
ACE2 expression and the progression of COVID-19, includ-
ing gender and age [64].

The severity of coronavirus infections is generally age
related [65], which might be attributed to a disruption in
the redox balance, i.e., accumulated oxidative damage and
a deteriorated antioxidative defense system followed by
increased reactive oxygen species [66]. As a consequence,
induction of proinflammatory cytokine expression occurs
(such as TNF-α, interleukin (IL) 6, IL-8, and IL-1β), via
redox-sensitive transcription factors, e.g., NF-κB [67, 68].
Previous genomic analyses of SARS-CoV-1 on aged
macaques demonstrated that old subjects presented stronger
host response to virus and more severe infection pathology
than young ones; this was associated with a reduced expres-
sion of type I interferon and an increase in the differential
expression of inflammatory genes related to NF-κB [66].

Recent study demonstrated that patients suffering from
severe COVID-19 disease, requiring intensive care unit

treatment, presented higher levels of Nox2 activation, and
thus, Nox2 seems to be a pivotal agent in COVID-19 aggra-
vation [37]. However, Li et al. published data suggesting that
the SARS-CoV nonstructural protein nsp10 might impair
the redox system in the mitochondria, another ROS source,
by a loss in the cellular inner mitochondrial membrane
potential. This effect probably enhanced the cytopathic effect
of SARS-CoV-1 [69]. Interestingly, it has been shown
recently that coronaviruses, thanks to the protein nsp10 in
combination with nsp16, can methylate the 5 ′ends of their
mRNAs, thus resembling the host mRNA and protecting
them from the innate immune response [70].

Moreover, inflammatory cytokines-TNF-α and IL-6,
which may initiate mitochondrial ROS production and are
associated with ATP production, were found in COVID-19
serum (Figure 4) [71, 72]. In fact, Saleh et al. proposed
recently a hypothesis that, apart from the intracellular mito-
chondria failure that plays a key role in COVID-19 disease,
the extracellular mitochondria are important mediators
[73–76]. They provoke the immune response, regulate cell-
to-cell communication, and danger sensing [77]. According
to the authors, this complex interplay between platelet mito-
chondrial dysfunction, oxidative stress, and mitophagy
would provide useful therapeutic strategies [73]. The excess
of ROS can oxidize biomolecules (lipids, proteins, and
DNA) or it can structurally modify proteins and genes to
trigger signaling cascades that can lead to an inflammatory
response. SARS-CoV-2 infection intensifies the already
existing oxidative stress in patients of older age with comor-
bidities, e.g., diabetes, hypertension, and cardiovascular dis-
eases and that is one of the possible explanations for the
severity of COVID-19 in these categories of patients [52, 78].

The above mentioned Nox2 is a multisubunit protein,
and its activation requires translocation of the cytosolic sub-
units—p47phox, p67phox, and Rac to the NOX/p22phox
membrane complex [79]. Superoxide produced by Nox2 is
implicated in influenza-mediated lung pathology [80]. Tang
et al. published studies suggesting that endosomes are the
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Inefficient T cell
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Figure 3: Immune changes characteristic of serve COVID-19. Deregulation of cytokines and influx of inflammatory cells can lead to lung
infiltration and critical symptoms; a “cytokine storm” may lead to a dramatic disruption of the homeodynamics of the whole organism and,
consequently, even death of the patient [24].
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main site of ROS production under the influenza virus infec-
tion [46]. In addition, the authors indicated that ROS gener-
ation might be triggered by influenza virus in endosome via
four different ways, one of which is TLR7 activation through
the single-stranded RNA and protein kinase C activation.
This results in phosphorylation of p47phox and by the
assembly of the Nox2 oxidase complex at the endosomal
membrane. The importance of Nox2 in influenza A infec-
tion was confirmed by literature, showing that in the absence
of Nox2, influenza A virus results in lower viral burden and
consequently results in significantly less lung injury, suggest-
ing that ROS generated by Nox2 promotes rather than
inhibits viral infection [80–83] (Figure 5.).

As mentioned earlier, apart from Nox2, also Nox1, Nox
4, and Duox2 might play a role in the ROS formation of viral
infections [84–86]. Nox1 was shown to critically inhibit the
early burst of proinflammatory cytokine expression in the
lung and subsequently—oxidative stress followed by influ-
enza A virus infection [85]. Nox1 oxidase has been proved
to suppress early proinflammatory cytokine expression
burst. Taking into consideration that ROS contribute to dys-
function and injury of the lung during influenza virus infec-
tion, this role of Nox1 seems surprising [85]. On the
contrary, the study of Hofstetter et al. demonstrated that
Nox1 presents activity promoting mortality during the peak

of influenza infection, through restrain of the early phase of
the adaptive immune response [87].

One of the key mediators of cytokines/chemokines
induction is NF-κB. The pathway of this transcription factor
is directly activated by ROS and by certain proinflammatory
cytokines, such as TNF-α and IL-1β. A wide spectrum of
cytokines and chemokines may be expressed as a conse-
quence of NF-κB action, including IL-1β, IL-6, and IL-8,
produced by most viruses (e.g., influenza virus, HBV, HIV
(human immunodeficiency virus), EBV, SARS-CoV-2, and
MERS); moreover, many respiratory viruses induce NF-κB
signaling both in vitro and in vivo in a ROS-dependent fash-
ion [88–92]. During viral infections, NF-κB binds to distinct
sites of the iNOS promoter, causing iNOS enhanced expres-
sion. NO overproduction is predominantly caused by iNOS,
which might be expressed, e.g., by inflammatory phagocytic
cells [93–95]. Reactive nitrogen species play an important
role in viral infections, in fact, some viruses, e.g., HCV,
HRSV, or HIV, might upregulate the expression of iNOS
[96–98]. On the other hand, IL-10, produced by many
viruses (e.g., EBCV, HBV, HIV, SARS-CoV-2, and MERS),
indirectly inhibits iNOS by inducing arginase, which reduces
the availability of L-arginine, the substrate of iNOS [99, 100].
A previous study shows that HRSV directly upregulated
iNOS in human type 2 alveolar epithelial cells, suggesting
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Figure 4: Action of SARS-CoV-2 in proposed mechanisms in the context of reactive oxygen and nitrogen species. SARS-Cov-2 may affect
the induction of reactive oxygen species by inducing both of their sources—NADPH oxidase and mitochondria. The increase in Nox2
activity in COVID-19 patients may be related to the activation of this enzyme by TLR7 (1), as is the case with other RNA viruses.
Activated NADPH oxidase is responsible for the production of ROS (2), which are related to the activation of NF-κB (3). The activity of
this transcription factor results in the expression of proinflammatory cytokines like IL-6 and-1β (4), which in turn can induce the
production of mitochondrial ROS (5). On the other hand, ROS, if produced in excess, regardless of the source, may cause cell damage,
enzymatic protein activity failure, virus mutation, and nucleic acid damage (6). NF-κB, activated by ROS, has been proved to induce the
expression of iNOS (7). The enzyme, responsible for the production of nitric oxide (8), has been shown to inhibit SARS-Cov virus
replication (the coronavirus causing severe acute respiratory syndrome coronavirus, emerged in 2003), (9). Based on the analogy and
similarity between SARS-Cov and SARS-Cov-2, it may be assumed that the nonstructural protein nsp10 causes mitochondrial
impairment (10). Additionally, extracellular mitochondria, which are also ROS source, are able to provoke the immune response,
regulate cell-to-cell communication and danger sensing (11). Peroxynitrite is formed by the reaction of nitrite (NO•) and hydrogen
peroxide (12), and it has been proved to damage lung tissue and thus playing an important role in lung destruction in viral infections.
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that the expression increase might be associated with inter-
feron regulatory factor 1, instead of cytokines [101]. The reg-
ulatory factor mentioned has been involved in iNOS
expression activation together with NF-κB and double-
stranded RNA-activated protein kinase, as shown previously
in influenza virus infection [102].

5. Molecular Mechanisms of ROS and RNS
Generation in Response to Viruses

Reactive oxygen and nitrogen radicals are generated, among
others, in viral infections. In conditions of infection, ROS
and RNS production might be activated either by viral com-
ponents or by cytokines, in response to the pathogen. Apart
from the influenza virus, several viruses are associated with
ROS generation. Epstein-Barr virus (EBV) may induce gen-
eration of ROS by NADPH oxidase in B lymphocytes
through upregulating Nox2 [103]. In turn, Nox4 is activated
by core protein of HCV, but this oxidase initiates mitochon-
drial ROS production, showing that this virus induces other
proteins to trigger ROS generation [104, 105]. Mitochondrial
ROS generation pathway is activated by viruses in various
ways—the rubella virus produces N protein which induces
the production of ROS by increasing the activity of mito-
chondrial respiratory chain [106]. Yuan et al. demonstrated

that hepatitis B virus increases mitochondrial ROS genera-
tion resulting in the elevated IL-6 expression [107].

Apart from mitochondrial source, ROS are produced by
enzymatic activity of NADPH oxidases in a highly regulated
manner and play roles in both physiology and disease [108].
Out of seven NADPH oxidase homologs, four are implicated
in ROS generation under viral infections: Nox1, Nox2,
Nox4, and Duox2, but the primary source of inflammatory
cell ROS is the Nox2 oxidase enzyme [36, 109, 110].
Although Nox2 is a phagocytic enzyme playing a role in
killing bacteria and fungi, it is also known for contributing
to virus-induced ROS production during viral infections,
e.g., with IV (Influenza virus) [111], HRSV [91], HRV
(human rhinovirus) [112], SARS-CoV-2 [37], and SeV
(sendai virus) [91, 92].

In severe COVID-19, the major cytokines generated as
part of immune response are IL-1β, IL-2, IL-6, and TNF.
Also, IFN-ϒ seems to play an important role in antiviral
response, although the data may suggest some defective
interferon synthesis and release in severe patients infected
with SARS-CoV-2. IL-1β is a well-known ROS and RNS
generation activator [113]. Similarly, IL-2 stimulates RNS
to generate nitrogen radicals [114]. Interleukin-6 activates
human neutrophils and monocytes increasing the genera-
tion of free oxygen radicals [115]. Similarly, IFN-ϒ and
TNF stimulate the generation of RNS in human [114]. On
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Figure 5: Chosen features of ROS/RNS metabolism during the COVID-19 in comparison to other viral infections. Nox 2, as the reactive
oxygen species source, has been reported to be increased in COVID-19 patients [46], and, hydroxychloroquine (HCQ), the antimalarial
drug, was demonstrated to inhibit Nox2 activity [48]. Nox increased activity is also a common feature of EBV and influenza virus
infection, and Nox2 inhibition in IV infection lowers viral burden. On the basis of feedback, viruses (HRSV, HRV, and SeV), cause ROS
induction via Nox2 [45, 74–76, 86]. In serum of COVD-19 patients, inflammatory cytokines (TNF-α and IL-6) were increased, possibly
taking part in the initiation of mitochondrial ROS production [52, 53] (thick grey lines). Coronavirus SARS-CoV-2 protease–3CLpro has
been shown to act through mitochondrial ROS, inducing NF-κB signal transduction pathway [20]. This pathway is closely related to
many other viral infections, e.g., SeV, HRV, IV, and SARS-Cov (via S protein) [74–76, 89]. The latter virus, by induction of ROS, and
subsequent generation of oxidized phospholipids, may not only modulate the severity of acute lung injury but also directly induce
inflammatory cytokine production in macrophages [19] (black, dotted line). Mitochondria are proved to be important ROS source in
rubella and HBV infection [79, 80], as they induce ROS production, either directly, or via viral N protein (in case of rubella, black
thick lines).
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the other hand, free oxygen radicals may increase IL-6 pro-
duction and free nitrogen radicals are responsible, at least
in part for its synthesis [116, 117]. Moreover, high levels of
IL-6 are associated with the higher mortality rate in ICU-
(intensive care unit-) treated COVID-19 patients [118, 119].

The effects of the antiviral potential of nitric oxide (NO)
against SARS coronavirus have been described in Vero E6
cells and revealed, that NO donor, S-nitroso-N-acetylpeni-
cillamine inhibited the replication cycle of SARS-CoV in a
dose-dependent manner [67]. In patients with SARS, NO
was associated with oxygenation amelioration. Moreover,
endogenous but also exogenous NO inhibited SARS-CoV
viral replication [120–122]. NO reacts with superoxide radi-
cals yielding peroxynitrite, and both peroxynitrite and NO
are toxic to mitochondria.

Apart from iNOS induction in response to viruses and
viral components, interferon gamma has been reported as
a major cytokine to induce iNOS and NO overproduction
in the pathogenesis of virus infection [123, 124]. This cyto-
kine is associated to Th1 cell response, as it is acknowledged
that antiviral adaptive response is Th1 type [125]. Neverthe-
less, some viruses (such as influenza virus and HSV) might
inhibit Th1 response through downregulation of interferons
production. This type of immune response manipulation
may prominently influence the consequence of the infection
[126, 127]. Moreover, produced in excess during viral infec-
tion, reactive nitrogen species, are likely to influence muta-
genesis in the virus [128].

6. The Possible Therapeutic Approach
Related to Oxidative Stress
Tampering in COVID-19

Several strategies for treating the SARS-CoV-2 infection are
currently under consideration. Scientists and doctors have
developed therapies based on the use of interferons, anti-
bodies, inhibitors of viral/host proteases, and host-directed
therapies. To date, no clinically effective antiviral therapy
against SARS-CoV-2 has been confirmed; therefore, patients
receive mainly supportive treatment which is often supple-
mented with various drug combinations. Many authors have
documented elevated chemokines and interleukins levels in
COVID-19 patients, so future efforts should focus inter alia
on drugs that can be rapidly deployed and have immuno-
modulatory properties [129–132]. The use of interleukin 1
receptor antagonist in nine patients with moderate to severe
COVID-19 pneumonia was effective in improving clinical
and biological indices [133]. IL-1 receptor blocker reduced
the need for invasive mechanical ventilation in the intensive
care unit as well as mortality in patients with severe COVID-
19 [134]. Shakoory et al. [135] in their randomized con-
trolled trial confirmed that the inhibition of IL-1 receptor
significantly decreased mortality in sepsis patients with fea-
tures of macrophage activation syndrome. Patients who
received IL-6 receptor antagonists had a marked reduction
in pyrexia within days after treatment and a reduction in
oxygen demand [136]. In the TESEO (the tocilizumab in
patients with severe COVID-19 pneumonia) study, the use

of a recombinant humanized antihuman IL-6 receptor
monoclonal antibody (i.v. or s.c.) was associated with a
reduced risk of mechanical ventilation and death [137].
Another IL-6 receptor blocker was effective only in critically
ill COVID-19 patients requiring mechanical ventilation or
high-flow oxygenation or requiring intensive care treatment
[138]. Recent studies have highlighted the role of optimal
nutritional status in boosting the immune system, focusing
on the most important ingredients that reduce inflammation
and oxidative stress parameters [139]. Interestingly,
hydroxychloroquine (HCQ), the antimalarial drug, used to
treat COVID-19, has been recently demonstrated to inhibit
Nox2 activity through the ability to alkalize endosomes
and therefore impedes antiphospholipd antibody activity
(aPL) [35, 140]. The aPL, as a proinflammatory factor, has
been proved to act via the pathway in which NADPH
oxidase takes part [141]. There are many mechanisms for
neutralizing free radicals, e. g., glutathione which is capable
of affecting viral replication; the glutathione peroxidase/
reductase enzyme system that allows reduced glutathione
to bind to free radicals to produce oxidized glutathione,
which is then regenerated to GSH; peroxyredoxin system
that neutralizes lipid peroxidation; superoxide dismutase
neutralizing superoxide anion; catalase eliminating hydro-
gen peroxide; carotenoids and polyphenols with scavenging
effects; vitamins E and C; and finally, zinc and selenium,
which have antioxidant properties as cofactors of antioxi-
dant enzymes [142]. Providing substances that strengthen
the antioxidant system will reduce the level of oxidative
stress parameters during infection. Moreover, the use of
molecular techniques to target antioxidants to organs of
interest is an approach that might enhance the effectiveness
of the antioxidant and circumvent toxicity [143].

Resveratrol is a wide studied antioxidative agent, which
plays a role in mitochondria-derived ROS [144] but also
down regulates the expression and activity of the NADPH
oxidase [145]. In the case of MERS-CoV, resveratrol
appeared to inhibit MERS-CoV infection. Moreover, the
authors of a recently published study point out that as
MERS-CoV infection leads to inflammatory cytokines pro-
duction, resveratrol, via hindering NF-κB pathway, may
reduce the inflammation [146–148]. They also found that
the expression of the nucleocapsid (N), which is essential for
MERS-CoV replication, was decreased after resveratrol
treatment [61]. MERS-CoV next to SARS-CoV-1 and SARS-
CoV-2 has been demonstrated to depend on TMPRSS2 (trans-
membrane serine protease 2) which plays an important role
during the virus entry to the cell. Presumably, TMPRSS2
might regulate mitochondrial function [149–151].

Recently, many others antioxidants have been tested for
the highly conserved SARS-CoV-2 main protease using
molecular docking. Of all the compounds that were investi-
gated, the lowest predicted IC50 value was observed for taxifo-
lin. Moreover, taxifolin along with other compounds such as
eriodictyol did not show any toxicity against the toxicity
parameters used in the experiment [152]. This flavonoid was
found to be a powerful antiradical and antioxidant activities
in different in vitro bioassays when compared with standard
antioxidant compounds [153]. This compound inhibits NF-
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κB pathway and downregulates STAT3 of the JAK/STAT
pathway [154]. Thus, taxifolin could be a potential inhibitor
against Mpro but further in vivo studies are needed [155].
Another analyzes also point to the natural compounds, taxifolin
and rhamnetin, as potential inhibitors of Mpro [156]. Rutin (a
polyphenolic flavonoid) may able a potential inhibitor as it is
able to form several hydrogen bonds and σ-π stacking interac-
tions with various amino acids ofMpro in anchoring and block-
ing the substrate into the active pocket of the catalytic center
[157]. In vivo and in silico studies have demonstrated that sily-
marin and its derivative silybin (a flavonoid from the group of
flavonolignans) are able to inhibit SARS-CoV-2 main protease
[158]. Another authors found luteolin to be effective in blocking
the S2 protein of SARS-CoV [159]. It is already known that the
SARS-CoV and SARS-CoV-2 S proteins share about 76%
amino acid similarity [142]. Several other herbal compounds
like quercetin, naringenin, kaempferol, allicin, demethoxycur-
cumin, catechin, apigenin-7-glucoside, oleuropein, curcumin,
zingerol or gingerol have been also investigated [57].

The approach of using antioxidants both to reduce viral
replication and to reduce viral-induced oxidative damage
may prove to be particularly useful for those viruses, which
have thus far eluded attempts at antiviral therapies.

7. Conclusion

In conclusion, the literature demonstrates an important role
of reactive oxygen and nitrogen species during SARS-CoV-2
infections, associated with a weakened antioxidant defense.
Nevertheless, it must be noted that some of the understand-
ing, background, and supporting data presented in the
current review come from the experience with other human
coronaviruses or viruses, such as RSV/HBV/HCV, and may
not necessarily be known to be appropriate with respect to
SARS-CoV-2.

The oxidative stress mechanism coupled with innate
immunity activates transcription factors, such as NF-κB,
which results in an exacerbated proinflammatory host
response. The importance of ROS and RNS is also connected
with the fact that this virus is especially dangerous for the
elderly, and their deteriorated antioxidative/nitrosative
defense system affected by increased reactive oxygen and
nitrogen species. Moreover, only treatments diminishing
the ROS and RNS production such as dexamethasone and
tocilizumab deliver substantial benefits to severe COVID-
19 patients. Therefore, there is a strong need to deeply
investigate this issue, as it would be of interest to use the
antioxidants as potential therapeutic tools.
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Introduction. Health care workers have had a challenging task since the COVID-19 outbreak. Prompt and effective predictors of
clinical outcomes are crucial to recognize potentially critically ill patients and improve the management of COVID-19 patients.
The aim of this study was to identify potential predictors of clinical outcomes in critically ill COVID-19 patients. Methods. The
study was designed as a retrospective cohort study, which included 318 patients treated from June 2020 to January 2021 in the
Intensive Care Unit (ICU) of the Clinical Hospital Center “Bezanijska Kosa” in Belgrade, Serbia. The verified diagnosis of
COVID-19 disease, patients over 18 years of age, and the hospitalization in ICU were the criteria for inclusion in the study.
The optimal cutoff value of D-dimer, CRP, IL-6, and PCT for predicting hospital mortality was determined using the ROC
curve, while the Kaplan-Meier method and log-rank test were used to assess survival. Results. The study included 318 patients:
219 (68.9%) were male and 99 (31.1%) female. The median age of patients was 69 (60-77) years. During the treatment, 195
(61.3%) patients died, thereof 130 male (66.7%) and 65 female (33.3%). 123 (38.7%) patients were discharged from hospital
treatment. The cutoff value of IL-6 for in-hospital death prediction was 74.98 pg/mL (Sn 69.7%, Sp 62.7%); cutoff value of CRP
was 81mg/L (Sn 60.7%, Sp 60%); cutoff value of procalcitonin was 0.56 ng/mL (Sn 81.1%, Sp 76%); and cutoff value of D-
dimer was 760 ng/mL FEU (Sn 63.4%, Sp 57.1%). IL-6 ≥ 74:98 pg/mL, CRP ≥ 81mg/L, PCT ≥ 0:56 ng/mL, and D-dimer ≥ 760
ng/mL were statistically significant predictors of in-hospital mortality. Conclusion. IL-6 ≥ 74:98 pg/mL, CRP values ≥ 81mg/L,
procalcitonin ≥ 0:56 ng/mL, and D-dimer ≥ 760 ng/mL could effectively predict in-hospital mortality in COVID-19 patients.

1. Introduction

In December 2019, SARS-CoV-2 was identified for the first
time as a cause of COVID-19 disease by Chinese scientists
[1]. However, after more than a year since the pandemic’s

beginning, we still do not have a complete picture of the dis-
ease itself.

Initially, COVID-19 was considered a respiratory dis-
ease, with pneumonia being the most common and deadliest
complication. However, SARS-CoV-2 has been shown to
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trigger an excessive and uncontrolled immune-hemostasis
response that causes many complications, such as thrombo-
sis, tissue damage, ARDS, DIC, and MODS; therefore, not
only it is necessary to understand COVID-19 as a respira-
tory, but also as a potential multisystem disease [2, 3].

Studies from the beginning of pandemic estimated over-
all hospital mortality from COVID-19 are approximately
15% to 20%, but up to 40% among patients requiring ICU
admission; however, mortality rates vary across age cohorts,
from 5% among patients younger than 40 years to greater
than 60% for patients aged 80 to 89 years [4]. In contrast,
a recent study suggested lower mortality due to the presence
of appropriate treatment and vaccination [5].

It is well known that thrombosis is an important compli-
cation that significantly increases the risk of a deadly
outcome. A great number of thrombosis was verified in
SARS-COV2-positive patients [6–8]. Even, despite standard
thromboprophylaxis doses of LMWH, 31% of individuals
with proven COVID-19 pneumonia developed thrombosis
in ICU [9]. Significant changes in coagulation parameters
were verified in patients with COVID-19. Concerning the
patients, higher values of D-dimer were observed in persons
requiring treatment in ICU [10]. Consequently, higher D-
dimer values were associated with severe clinical presenta-
tion of COVID-19 disease, as mentioned above [11–14].

Considering all of this, D-dimer and other inflammatory
parameters such as IL-6, CRP, and PCT might be used to
predict mortality. Predictors of mortality among laboratory
parameters are important as they can reflect possible mech-
anisms of disease progression and give important informa-
tion on potentially useful therapeutic modalities [15].
Adequate and precise predictors are crucial, especially in
the pandemics era.

The aim of this study was to identify potential biochem-
ical predictors of in-hospital mortality among COVID-19
patients and to determine their predictive cutoff values.

2. Methods

2.1. Study Design and Participants. The study was designed as
a retrospective cohort study, which included 318 patients
treated from June 2020 to January 2021 in the Clinical Hospi-
tal Center “Bezanijska Kosa” ICU in Belgrade. The criteria for
inclusion in the study were the verified diagnosis of COVID-
19 disease, patients over 18 years of age, and hospitalization
in the ICU. The criteria for excluding patients from the study
were incomplete data, the patient’s stay in the ICU for some
other reasons not due to complications of COVID-19 (e.g.,
postoperative treatment of patients), and transfer of patients
to other medical institutions for COVID-19 treatment.

2.2. Definitions, Diagnosis, and Outcomes. COVID-19 diag-
nosis was made based on the clinical symptoms and signs
of the disease, with/without a positive radiological finding
(X-ray, CT), and a positive result of the nasopharyngeal
swab SARS-CoV-2, detected by the RT-PCR method. The
main clinical criteria for Respiratory ICU admission was
radiographic or CT scan severity score progression, periph-
eral oxygen saturation (Sp02) below 93% despite maximal

conventional supportive oxygen therapy (up to 15L/min
through a nasal cannula, conventional oxygen, or nonre-
breather mask), laboratory test results, mainly an increase
of inflammatory parameters after repeated controls, and
arterial blood gas test. Critically ill patients on invasive, non-
invasive ventilation and high flow oxygen therapy with mod-
erate and severe ARDS were selected for the study according
to the Berlin definition of ARDS [16]. The primary outcome
of interest was in-hospital mortality and was stratified as
deceased or discharged from the hospital. Survivors refer
to participants who were discharged from the hospital, and
no survivors refer to deceased participants. All patients were
followed until their outcomes.

2.3. Treatment. During the hospitalization, patients were
treated according to the adjusted National protocol of the
Republic of Serbia to treat COVID-19 infection [17]. Antivi-
ral agents (favipiravir, remdesivir) were used 5-7 days from
symptom onset in patients on supportive oxygen therapy
and with radiographically verified severe bilateral pneumo-
nia. Corticosteroids (prednisone 0.5mg/kg in two doses,
methylprednisolone 1-2mg/kg, and dexamethasone 6mg/
day) were used in patients with moderate to severe clinical
image with signs of clinical deterioration or in patients with
incipient or developed ARDS. Anticoagulant therapy was
used in the standard prophylactic dose of LMWH for
patients with multiple risk factors and conventional oxygen
therapy. According to the anti-Xa levels, therapeutical doses
were used for patients in the ICU requiring mechanical ven-
tilation or high-flow oxygen therapy, those on long-term
anticoagulant therapy, or those with suspectable or con-
firmed thrombosis. Antibiotics were used empirically or
according to the antibiogram. The main criteria for toci-
lizumab administration were an increase in IL-6 values
above 40 pg/mL and CRP values above 50mg/L or a three-
fold increase during the last 48 h in patients with clinical
worsening with more than 25 resp/min, saturation below
93%, and partial presure of oxygen below 8.66 kPa without
supportive oxygen therapy. Convalescent plasma was used
in patients with rapid worsening, positive PCR test for
SARS-CoV-2 virus, in the first two weeks from symptom
onset. The indication was established according to the spe-
cific scoring system with different variables, including the
patient’s clinical status, a form of the disease, time from
symptom onset, respiratory status, radiographic findings,
comorbidities, and applied therapy. Inotropic agents, nor-
adrenaline, dobutamine, vasopressin, and adrenaline were
used in a standard dosage.

2.4. Data Collection. The necessary data were obtained from
the health information system of the Clinical Hospital Cen-
ter “Bezanijska Kosa” (Heliant, v7.3, r48602). The data
includes demographic data (age, gender), laboratory values
(IL-6, CRP, PCT, ferritin, D-dimer, lymphocytes, thrombo-
cytes, PT, aPTT, and fibrinogen), and the outcome of the
treatment. Past medical history (hypertension, diabetes mel-
litus, COPD, coronary heart disease, obesity, heart failure,
cardiomyopathy, and chronic kidney disease) was obtained
from participants’ medical documentations and was filed in
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the health information system. Clinical and laboratory
parameters were followed upon admission to the hospital
and ICU, with specific parameters followed during
hospitalization.

2.5. Statistical Analysis. Descriptive statistics methods were
used to process and present the results. Continuous variables
were presented as the median and IQR and as the frequency
(%) for categorical variables. The Mann–Whitney U test and
Pearson’s chi-square test were used to compare the data. The
optimal cutoff value of D-dimer, CRP, IL-6, and PCT for
predicting hospital mortality was determined using the
ROC curve, while the Kaplan-Meier method and log-rank
test were used to assess survival. A value of p < 0:05 was con-
sidered statistically significant.

3. Results

The study included 318 patients, 219 (68.9%) male and 99
(31.1%) female. The median age of patients was 69 (60-77)
years. During the treatment, 195 (61.3%) patients died:
thereof 130 were male (66.7%), and 65 were female
(33.3%). 123 (38.7%) patients were discharged from the
treatment. Age, gender, comorbidities, laboratory parame-
ters, and CT score of patients are shown in Table 1.

C-indices for IL-6, CRP, PCT, and D-dimer are pre-
sented in Table 2. PCT has the highest C-index (0.77) to pre-
dict in-hospital mortality in COVID-19 patients.

Cutoff values of the analyzed parameters were obtained
using the ROC curve. The cutoff value of IL-6 for in-hospital
death prediction was 74.98pg/mL (Sn 69.7%, Sp 62.7%); cutoff
value of CRP was 81mg/L (Sn 60.7%, Sp 60%); cutoff value of
PCT was 0.56ng/mL (Sn 81.1%, Sp 76%); and cutoff value of
D-dimer was 760ng/mL FEU (Sn 63.4%, Sp 57.1%). ROC
curves are presented in Figure 1.

Using the Kaplan-Meier survival curve and log-rank test,
it was shown that IL-6 higher or equal to 74.98 pg/mL was a
statistically significant predictor of in-hospital mortality
(p = 0:04). In addition, CRP values higher or equal than
CRP 81mg/L, PCT higher or equal than 0.56 ng/mL, and
D-dimer higher or equal than 760ng/mL FEU represent sig-
nificant predictors of in-hospital mortality (CRP, p = 0:02;
PCT, p < 0:001; and D-dimer, p = 0:04) (Figure 2).

4. Discussion

First, our National protocol is mainly following the WHO
treatment guidelines [18]. However, we would like to
address a few differences between our National protocol
and the WHO treatment guidelines. According to our
National protocol, the main difference is the usage of favipir-
avir and remdesivir. The use of systemic corticosteroids,
monoclonal antibodies, and IL-6 receptor blockers was in
accordance with the WHO treatment guidelines. This slight
discordance between protocols should not affect the discus-
sion of our results with results in the literature.

The study indicated significant disorders of laboratory
parameters in patients with COVID-19 treated in ICU. Ele-
vated levels of IL-6, CRP, PCT, D-dimer, and lower serum

albumin levels were detected in subjects with fatal disease
outcomes during treatment. Significantly higher in-hospital
mortality was observed in individuals whose IL-6 values
were equal to or higher than 74.98 pg/mL, followed by
CRP values higher than 81mg/L, PCT values equal to or
higher than 0.56 ng/mL, and D-dimer values equal to or
higher than 760ng/mL FEU. However, 5 out of 318 partici-
pants with IL-6, CRP, PCT, and D-dimer values above cutoff
value survived. These findings suggest a good prediction of
in-hospital mortality in patients with COVID-19 who
require admission to the ICU, especially when jointly using
all four cutoff values.

The cytokine storm is one of the most critical factors
contributing to COVID-19 mortality. Elevated values of var-
ious cytokines, such as IL-1, IL-2, IL-6, IL-7, IL-8, IL-12,
IFN, MCP-1, and TNF-α, were observed. In SARS-CoV-2-
positive patients, cytokine storm is characterized by high
serum concentrations of IL-6 and TNF-α predominantly
[19, 20]. Our study observed higher mortality in patients
with IL-6 concentrations higher than 74.98 pg/mL. In addi-
tion, other studies also favoured a more severe form of the
disease and higher mortality of patients with higher values
of IL-6 [21–23]. Patients whose maximum IL-6 values
exceeded 80 pg/mL had a significantly higher probability of
need of invasive mechanical ventilation. Hyperinflammatory
response in the setting of COVID-19 could also be responsi-
ble for the potential multiorgan failure and various life-
threatening complications, including ARDS, myocardial
damage, and kidney and liver failure. Also, a significant pre-
dictor was elevated values of CRP [24].

In addition to IL-6, CRP is a significant marker of
COVID-19 inflammation. Higher levels of serum CRP are
associated with higher mortality in people with severe
COVID-19 disease [25], more specifically, CRP values above
77.35mg/L [26]. On the other hand, the CRP threshold,
which was found as a predictor of in-hospital mortality by
Du et al., was lower, and it was 10mg/L [27]. Wang con-
firmed a positive correlation between CRP values and CT
findings in the lungs in the initial stages of the disease. Their
findings could give grounds for the connection between high
CRP values and a more severe form of the disease [28]. Fur-
thermore, CRP had a significantly better effect in predicting
death than age, neutrophil count, and platelet count [29].

Therefore, it is essential to recognize the hyperinflamma-
tory syndrome in COVID-19 patients, primarily over the
previous quoted inflammatory parameters, and apply the
anti-inflammatory therapy right on time. Corticosteroids,
as anti-inflammatory drugs, have shown significant positive
effects in patients with a hyperinflammatory response to
SARS-CoV2 by reducing mortality, decreasing hospital stay,
and increasing ventilator-free days [30, 31]. The anti-
inflammatory effects of corticosteroids are proven by
inducing the synthesis of anti-inflammatory proteins and,
on the other hand, by inhibiting the synthesis of proin-
flammatory proteins [32]. It is crucial to start corticoste-
roid treatment at the right time and in the right patient
since early administration and administration to patients
with asymptomatic and milder forms of the disease may
have adverse effects [33].
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Elevated PCT has been detected in individuals treated
for COVID-19 disease. PCT equal to or higher than
0.56 ng/mL is associated with higher mortality. Elevated
PCT levels in individuals are primarily caused by bacterial
coinfections, showing a good role in detecting bacterial coin-
fections and consequently initiating an antibiotic therapy
[34]. A meta-analysis that analyzed four studies proved that
an increase in PCT is associated with a five times higher risk
of a more severe COVID-19 presentation (OR, 4.76; 95% CI,
2.74–8.29) [35]. Furthermore, another meta-analysis, which
included over 10 thousand patients, indicated the impor-
tance of elevated PCT values as a predictor of fatal disease
outcomes. The same study showed that lymphopenia,
thrombocytopenia, elevated D-dimer, elevated CRP, then
elevated CK, AST, ALT, LDH, and creatinine are indepen-
dent predictors of deadly disease outcomes [36].

Our study proved that the concentration of D-dimer
above 760ng/mL FEU, measured on admission to the ICU,
was associated with a higher risk of death during hospitaliza-
tion. High values of D-dimer in COVID-19 patients are
associated with local pulmonary thrombosis, which occurs
as an immune-hemostatic response to prevent and limit fur-
ther spread of the virus. The elevated D-dimer values exist
due to a breakdown of these microthrombi [37, 38]. Eleva-
tion of D-dimer during the disease carries a higher risk of
progression to severe form and mortality [3]. In particular,
elevated values of D-dimer and fibrin degradation products
and prolonged prothrombin time were measured at admis-
sion in the deceased subjects compared to the cured ones
[39]. The study by Klok et al. [9] demonstrated that D-
dimer values above 1μg/mL, measured on admission to
COVID-19 treatment facilities, were associated with an eigh-
teen times higher risk of death. Further, any increase in D-
dimer values by 1μg/mL on admission is associated with
an increase in the risk of death by 6%, as well as an increase
in the probability (8%) of treatment with mechanical venti-
lation [40]. Creel-Bulos et al. showed a variation in D-
dimer values in the first twenty-five days of hospitalization
[41]. There is an almost linear trend of D-dimer increase
in the first ten days of treatment, after which D-dimer levels
are flattened. Moreover, a steeper D-dimer growth curve was
observed in individuals with detected deep vein thrombosis

Table 1: Age, comorbidities, laboratory parameters, and CT score of patients participated in the study. Results are expressed in n (%) and
median (IQR).

Total (n = 318) No survivor (n = 195) Survivor (n = 123) p value

Age (years) 69 (60-77) 72 (64-79) 63 (51-73) <0.001
Males, n (%) 219 (68.9) 130 (59.4) 89 (40.6)

0.286
Females, n (%) 99 (31.1) 65 (65.7) 34 (34.3)

Comorbidities

Hypertension, n (%) 223 (70.1) 140 (71.8) 83 (67.5)

Diabetes mellitus, n (%) 100 (31.4) 54 (27.7) 46 (37.4)

Coronary disease, n (%) 62 (19.5) 37 (19) 25 (20.3)

Obesity, n (%) 40 (12.6) 21 (10.8) 19 (15.4)

Cardiomyopathy, n (%) 27 (8.5) 18 (9.2) 9 (7.3)

COPD, n (%) 19 (6) 13 (6.7) 6 (4.9)

Asthma, n (%) 14 (4.4) 9 (4.6) 5 (4.1)

Laboratory parameters

IL-6 (pg/L) 110.8 (44.1-399.6) 160.7 (71.4-812.3) 66.8 (29.7-239) <0.001
CRP (mg/L) 88 (53.8-191.5) 103.4 (61.1-210.1) 75.5 (41.7-177.2) <0.001
Lymphocyte (%) 0.7 (0.5-1.1) 0.7 (0.5-1) 0.8 (0.5-1.2) 0.063

Serum ferritin (μg/L) 822 (415.5-1478) 766.5 (374-1409.2) 760.5 (306.7-1416) 0.673

PCT (ng/mL) 1.1 (0.2-9) 3.27 (0.8-17.9) 0.2 (0.1-0.7) <0.001
D-dimer (ng/mL) 829 (497-2759.5) 1121.5 (594-3212.2) 666 (353.5-1317) <0.001
Platelet count (×109/L) 225 (161.5-303) 204.5 (146-281) 234 (179.7-339.5) 0.022

INR 1.1 (1-1.3) 1.1 (1-1.3) 1.1 (1-1.2) 0.341

aPTT (s) 25.6 (22.5-30.3) 26 (22.7-30.3) 24.6 (22.4-28.4) 0.073

Fibrinogen (g/L) 4.1 (3.5-4.9) 4.1 (3.5-5) 4.2 (3.4-5.1) 0.921

Albumin (g/L) 32 (29-35) 31 (27.5-33) 35 (32-38) <0.001
CT score 17 (5-22) 17 (1.5-22) 17 (8-22) 0.96

Table 2: C-statistic of IL-6, CRP, PCT, and D-dimer to predict
mortality in patients with COVID-19.

Predictor value C-index 95% confidence interval

IL-6 0.64 0.57–0.71

CRP 0.62 0.56–0.69

PCT 0.77 0.71–0.83

D-dimer 0.64 0.57–0.7
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during treatment. In contrast, differences in D-dimer growth
curves were not seen in the deceased and those discharged
from treatment. Zhang et al. [42] concluded that a D-
dimer higher than 2μg/mL on admission could be consid-
ered a predictor of mortality during hospitalization. On the
other hand, the study by Soni et al. did not prove that the
values of the same parameter above 2μg/mL measured at
admission were mortality predictors [43]. Still, it demon-
strated that D-dimer higher than 2μg/mL during hospitali-
zation is a mortality predictor if the highest measured
values are viewed.

The literature has scarce data regarding IL-6, CRP, PCT,
and D-dimer values variance in COVID-19 pneumonia and

non-COVID pneumonia. Currently, the best-compared var-
iance of mentioned parameters is between patients with
COVID-19 and patients with influenza. Therefore, signifi-
cantly higher CRP values on hospital admission were
detected in influenza-positive subjects after comparing those
groups of patients [44]. In their study, Kuang et al. have
evinced the higher incidence of influenza patients detected
on admission with CRP value above 10mg/dl and PCT value
above 0.5 ng/mL, compared to COVID-19 patients [45]. On
the other hand, a significant increase in IL-6 level was
observed in COVID-19 patients compared to patients with
influenza [46]. Values of D-dimer were high on admission
in both groups, COVID-19 and influenza [47]. During the
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Figure 1: Receiver operator characteristic curve for (a) IL-6, (b) CRP, (c) PCT, and (d) D-dimer to predict deaths. The optimum cutoff
point, identified as the point closest to the upper left corner, was for IL-6 (74.98 pg/mL), CRP (81mg/L), PCT (0.56 ng/mL), and D-
dimer (760 ng/mL FEU).
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14-day monitoring of D-dimer values, a significant increase
was detected in COVID-19 patients in comparison to influ-
enza patients [48]. Considering everything, COVID-19 and
influenza present a potentially life-threatening disease, and
therefore, both should be treated with caution. D-dimer
dynamics measurement may be used to distinguish
COVID-19 infection and influenza infection.

The impact of gender on survival is still debated. Males
have a higher chance for severe pneumonia, and therefore,
they have a greater chance to be admitted to the ICU [49].
Potential gender-specific mechanisms modulating the course
of the disease Gebhard et al. explain with a hormone-
regulated expression of genes encoding for the SARS-CoV2
entry receptors ACE 2 receptor and TMPRSS2 as well as
sex hormone-driven innate and adaptive immune responses
and immunoaging [50]. They stressed out also elucidating
the impact of gender-specific lifestyle, health behaviour, psy-
chological stress, and socioeconomic conditions on COVID-
19 [50]. Our study included 318 patients, 68.9% male and
31.1% female, admitted to ICU. These findings are in obedi-
ence to the previous study. On the contrary, we did not find

a statistically significant difference between genders regard-
ing in-hospital mortality; this statement is supported by
the result in Zhou et al.’s study [11]. This can imply that bio-
chemical parameters on admission to the ICU as predictors
of in-hospital mortality should be used in all patients with
the same prognostic value.

This study has several limitations that should be
addressed. First, it is a single-center, retrospective study.
The sample size is relatively small. Therefore, the study has
limited power to detect the difference between groups. Selec-
tion bias is also presented due to the exclusion of patients
without D-dimer level on admission to the ICU. Another
limitation is the lack of inclusion of some data in the study,
such as partial pressure of O2, CO2, BMI, etc. The reason for
this is their absence in the health information system.
Furthermore, we did not perform dynamic D-dimer, CRP,
IL-6, and PCT measurements because of the study’s retro-
spective design. Incorporating these data might disclose
more information and give more power to our study.
Unmeasured confounders such as therapy delay, previous
corticosteroids use, and BMI could give us residual
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Figure 2: Kaplan-Meier survival curves for (a) IL-6, (b) CRP, (c) PCT, and (d) D-dimer levels on admission to the ICU.
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confounding. Finally, performing a multiple-parameter pre-
diction model including D-dimer, CRP, IL-6, and PCT could
better predict in-hospital mortality.

5. Conclusion

This study supported a growing body of literature regard-
ing hyperinflammatory syndrome and diffuse microvascu-
lar thrombosis as predictors of poor clinical outcomes in
COVID-19 patients. Proper and on-time differentiation
patients with lower survival chances may be crucial for
starting anti-inflammatory therapy such as corticosteroids,
which may reduce in-hospital mortality. In particular, IL-
6 ≥ 74:98pg/mL, CRP ≥ 81mg/L, PCT ≥ 0:56ng/mL, and
D-dimer ≥ 760ng/mL on admission to the ICU could
effectively predict in-hospital mortality in COVID-19
patients. Using these laboratory parameters single or in
combination may help identify patients with lower survival
chances and, on time, improve further treatment. Further
prospective multicenter studies are necessary to confirm
our findings.
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COVID-19 is a widespread global pandemic with nearly 185 million confirmed cases and about four million deaths. It is caused by
an infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which primarily affects the alveolar type II
pneumocytes. The infection induces pathological responses including increased inflammation, oxidative stress, and apoptosis.
This situation results in impaired gas exchange, hypoxia, and other sequelae that lead to multisystem organ failure and death.
As summarized in this article, many interventions and therapeutics have been proposed and investigated to combat the viral
infection-induced inflammation and oxidative stress that contributes to the etiology and pathogenesis of COVID-19. However,
these methods have not significantly improved treatment outcomes. This may partly be attributable to their inability at
restoring redox and inflammatory homeostasis, for which molecular hydrogen (H2), an emerging novel medical gas, may
complement. Herein, we systematically review the antioxidative, anti-inflammatory, and antiapoptotic mechanisms of H2. Its
small molecular size and nonpolarity allow H2 to rapidly diffuse through cell membranes and penetrate cellular organelles. H2
has been demonstrated to suppress NF-κB inflammatory signaling and induce the Nrf2/Keap1 antioxidant pathway, as well as
to improve mitochondrial function and enhance cellular bioenergetics. Many preclinical and clinical studies have demonstrated
the beneficial effects of H2 in varying diseases, including COVID-19. However, the exact mechanisms, primary modes of
action, and its true clinical effects remain to be delineated and verified. Accordingly, additional mechanistic and clinical
research into this novel medical gas to combat COVID-19 complications is warranted.

1. Introduction: Clinical Challenges and
Dilemma of COVID-19 Treatments

COVID-19 (initially named 2019 novel coronavirus, or
2019-nCoV disease, after the first reported outbreak in
2019) has become the most widely spread global pandemic
in the past century [1]. It has affected 189 countries and

regions with nearly 185 million confirmed cases and about
four million reported deaths worldwide as of current statis-
tics [2]. The novel coronavirus responsible for this disease
was named by the World Health Organization the Severe
Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)
for its genetic similarity to the coronavirus that caused the
SARS outbreak in 2003 (SARS-CoV) [1]. While not
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ominously fatal as contracting SARS-CoV, COVID-19’s
mild symptoms and asymptomatic transmission, coupled
with long incubation time and long fomite survival time of
the virus have complicated epidemic control globally.

Most COVID-19 cases manifest as a respiratory illness
with vague symptomatology, starting with a fever, dry
cough, and fatigue, followed by shortness of breath with
worsening disease. About 80% of infected people may
recover from the illness without hospitalization; yet, the
remainder (20%) progress to pneumonia and severe acute
respiratory distress syndrome (ARDS) [3]. An estimated
5% of patients require treatment in an intensive care unit
(ICU), requiring ventilation for oxygenation and intubation
to support life [3]. Of these critically ill patients in ICU,
approximately half eventually die of infection-associated
complications, typically following multiple organ injury
and failure [3]. COVID-19 complications have been corre-
lated to underlying medical conditions, particularly older
adults with hypertension, diabetes, and/or other cardiovas-
cular diseases.

In contrast, cytokine storms, caused by an overactive host
immune system to any infection, are most responsible for
mortality in young and middle-aged patients without medical
histories. Current treatment modalities, including antiviral,
anti-inflammatory (Figure 1), antimalarial, immunoregulatory
therapeutics, ventilation, and extracorporeal membrane oxy-
genation (ECMO), attempt to mitigate the sequelae caused
by infection (Table 1), but they cannot fully address the
upstream factors that lead to “cytokine storms,” which con-
tribute to multiple organ failure and sudden deaths.

The coronavirus appears to exploit angiotensin-
converting enzyme II (ACE2) as a receptor for cell binding
and entry. ACE2 is expressed abundantly on epithelial cells
in certain mucosal tissues [6]. Of note, the oral and nasal
mucosa, eyes, and upper respiratory tract are the primary
anatomical inoculation points for viruses that are mainly
transmitted via aerosol droplets, propagated from human
carriers in close proximity. The infection progresses to lower
airways, particularly to alveolar epithelial cells that are sus-
ceptible to viral entry. When this occurs, alveolar macro-
phages and infiltrated immune cells are activated, which
then increases oxygen consumption exacerbating alveolar
hypoxia [7]. Activated alveolar macrophages also release
proinflammatory cytokines within alveoli and pulmonary
microvessels, which then enter the systemic circulation.
Because injured lungs cannot effectively deliver oxygen or
eliminate carbon dioxide from the bloodstream, systemic
hypoxia (namely, hypoxemia) and hypercapnia develop.
Both alveolar hypoxia and hypoxemia further induce inflam-
matory cascades, leading to the production of excess reactive
oxygen species (ROS) and activation of hypoxia-inducible
factors (HIF-1α), nuclear factor-kappa-light-chain-enhancer
of activated B cells (NF-κB), and proinflammatory cytokines
[7]. Thus, oxygen inhalation and anti-inflammatory therapy
are considered essential for severe COVID-19, in addition to
other potentially useful therapies.

However, in severe COVID-19 pneumonia, inflamma-
tion of the respiratory tract and exudation of viscous mucus
in bronchioles and alveoli make oxygenation of blood ineffi-
cient. Despite high-speed oxygen ventilation, oxygen cannot
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Figure 1: Illustration of various pharmacological therapies proposed and investigated to treat COVID-19 patients classified as two
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that inhibit various inflammatory pathways, reduce cytokine production, and block cytokine receptors. Reproduced with permission
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Table 1: Selected treatments investigated in clinical trials for COVID-19.∗.

Antiviral Anti-inflammatory Anticoagulation and antivasculopathy

Arbidol Acalabrutinib Argatroban

Azithromycin (antibiotic) Anakinra Alteplase

Camostat mesilate (reduce viral infection) Aviptadil Alteplase

Chloroquine or hydroxychloroquine Baricitinib (janus kinase (JAK) inhibitor) Acetylsalicylic acid

Clevudine Chlorpromazine Atorvastatin (HMG-CoA inhibitor)

Darunavir/Cobicistat (Prezcobix; Rezolsta) Colchicine
Bevacizumab (antivascular endothelial

growth factors (VEGF))

Favipiravir (Avigan®) Deferoxamine Clopidogrel

Interferon Dexamethasone Crizanlizumab (vasculopathy)

Ivermectin plus nitazoxanide Dornase alfa (Pulmozyme®)
Dapagliflozin (sodium-glucose

transporter-2 inhibitor)

Lactoferrin Duvelisib Enoxaparin

Lopinavir-ritonavir (Kaletra®) Eculizumab Fondaparinux

Nafamostat (blocks TMPRSS2 activation
and SARS-CoV-2 cell entry)

Famotidine Heparin

Oseltamivir Hydrocortisone
Losartan (angiotensin II receptor

blocker (ARB))

Remdesivir Imatinib
Nitric oxide (inhalation)

Nicotine

Umifenovir

Infliximab
Ramipril (angiotensin-converting

enzyme inhibitor (ACEi))

Isotretinoin
Rivaroxaban (direct oral anticoagulant

(DOAC))

Leflunomide Sulodexide

Methylprednisolone
Morphine

Telmisartan (ARB)

Ozanimod

Valsartan (ARB)

Plitidepsin

Prednisolone

Ruxolitinib (JAK inhibitor)

Sarilumab

Sirolimus

Tocilizumab (IL-6 inhibitor)

Tofacitinib (JAK inhibitor)

Antioxidant treatment Traditional Chinese medicine Oxygen therapy

Vitamin A Single herbs Oxygen inhalation

Vitamin C Chinese patent formulas Mechanical ventilation

Vitamin D

Chinese herbal compounds

Prone position ventilation

Vitamin E Hyperbaric oxygen therapy

Glutathione

Oxyhydrogen inhalation via a nebulizer
N-Acetyl-L-cysteine (NAC)

Melatonin

Zinc

Vaccine and antibodies Extracorporeal membrane oxygenation support

mRNA, recombinant protein, vector
Oxygenation, removal of CO2, filtrating
proinflammatory cytokines via a filter

Pamrevlumab

Anti-SARS-CoV-2 convalescent plasma
∗Selected from 9149 total COVID-19 studies, including 6115 from COVID-19 NIH registered clinical trials [5] and the rest registered outside of the USA
found from WHO International Clinical Trials Registry Platform (ICTRP) database [6–8].
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easily penetrate mucus plugs; in fact, high airflow may
instead further condense the plugs. It is also speculated that
the positive pressure of ventilation may break the already-
fragile alveolar sacs [9]. Moreover, ventilation of highly con-
centrated oxygen in patients with low SpO2 levels may pro-
duce harmful superoxide free radicals like what happens in
ischemia reperfusion.

2. Treatments Proposed and
Investigated for COVID-19

Current guidelines for COVID-19 critical care involve gen-
eral supportive measures such as hemodynamic support
with a vasopressor (usually norepinephrine), corticosteroids
to treat refractory shock, continuous renal replacement ther-
apy (CRRT) or intermittent renal replacement (IRR) for
acute renal failure, and mechanical ventilation to treat severe
ARDS. However, the clinical benefit for patients with severe
disease that requires aggressive oxygen management, such as
invasive or noninvasive mechanical ventilation, high-flow
oxygen, or ECMO, is uncertain. Given the high cost, pro-
curement hurdles, and pending research, health agencies
have restricted distribution to hospital systems for patients
12 years of age or older requiring supplemental oxygen with-
out aggressive oxygen management [10].

No single pharmacotherapy has shown sufficient clinical
efficacy for routine use; at the clinician’s discretion, however,
select patients with severe disease may receive a trial of
remdesivir and/or immunomodulatory therapy (such as cor-
ticosteroids) [10].

2.1. Antiviral Therapies. Some preliminary studies suggest
that antiretroviral remdesivir (Veklury™) may modestly
shorten recovery time. However, despite its in vitro activity
against SARS-CoV-2, its effect on mortality rate for patients
with severe COVID-19 is uncertain [11–13]. Remdesivir, an
adenosine analog, purportedly targets viral RNA to cause
premature termination of reverse transcription [13]
(Figure 1).

Other antivirals, such as lopinavir/ritonavir (Kaletra®),
oseltamivir, or ribavirin, showed no clinical benefit in mor-
tality [14–16]. Some studies combining lopinavir/ritonavir
and ribavirin, however, have suggested a reduction in mortal-
ity and ARDS risk [14, 15]. Anti-infectives chloroquine and
hydroxychloroquine have been studied exhaustively with clin-
ical evidence suggesting no mortality benefit yet potential
harm due to cardiac conduction abnormalities [17]. These
results were negative despite their potent in vitro inhibitory
effect on SARS-CoV-2 by raising host endosomal pH and
preventing viral entry [13], though a study exploring their
prophylactic role in healthcare workers is currently ongoing
(NCT04334148). With similar publicity, the role of azithro-
mycin remains contentious with the COALITION II trial,
suggesting no clinical benefit when combined with hydroxy-
chloroquine [18].

2.2. Immunomodulatory Therapies. Given the lack of effec-
tive antiviral treatments, some groups have investigated con-
valescent plasma (CP) as an interim treatment. Historically,

CP has been used for various other infections (such as
diphtheria, hepatitis A and B, rabies, or polio) for which
at some time periods, like COVID-19, lacked any suitable
pharmacological treatment [19]. In theory, immunocompe-
tent COVID-19 survivors could produce immunoglobins
as part of acquired immunity, which can then be purified
and transfused. Its efficacy is heralded by reports that rein-
fection with COVID-19 is rare, indicating that these anti-
bodies may be highly effective in preventing or treating
severe COVID-19 [20]. While some preliminary studies
have demonstrated reduced mortality, reduced oxygen
requirements, and reduced viral load, with mostly minor
adverse events, large-scale and high-quality clinical research
is lacking [20]. Furthermore, some hypothesize that, as with
infections similar to SARS and Middle East respiratory syn-
drome (MERS) [21, 22], conferred immunity will only last
for a limited number of months and may not be effective
in the long term. With the lack of viral-targeted treatments,
the clinical focus has since shifted more towards preventing
complications in advanced disease, with promise in treating
with corticosteroids.

Corticosteroids were previously avoided due to the
potential decrease in immune responses and viral clearance
and increase in osteopenia and osteoporosis observed in
patients with SARS and MERS [23]. Preliminary studies,
however, have suggested that corticosteroids may mitigate
the sequelae that lead to multisystem organ failure and lung
injury observed in severe COVID-19. In particular, clini-
cians have closely observed the preliminary results of an
open-label trial, RECOVERY (n = 4321), which suggested a
clinically significant decrease in mortality for patients
requiring oxygen and ventilation when treated with a 10-
day course of dexamethasone 6mg (NNT = 8 for ventilated
patients, 34 for nonventilated oxygen therapy). No mortality
benefit was observed for patients with early disease, or mild
to moderate disease not requiring oxygen therapy, suggest-
ing that dexamethasone works against the inflammatory
response in later stages of disease rather than reducing the
viral load [24]. Other corticosteroids were also briefly stud-
ied and are used clinically with benefit [25], but were
stopped early pending the RECOVERY trial publication:
these included hydrocortisone in the REMAP-CAP and
CAPE COVID trials [26] and methylprednisolone [27].
Given the promiscuous anti-inflammatory nature and risks
of corticosteroids, including dysglycemia, immunosuppres-
sion, latent infection reactivation particularly with Strongy-
loides [28], and agitation, research interest blossomed in
pharmacotherapies that target specific anti-inflammatory
pathways.

Clinicians have reported cytokine storms manifesting in
patients with severe COVID-19, which has promoted addi-
tional research into molecules that target proinflammatory
pathways to treat ARDS and multiorgan sequelae [29]. Some
of these molecules include interleukins, such as anakinra
(anti-IL-1), aviptadil (anti-IL-6 and antitumor necrosis fac-
tor (TNF)), monoclonal antibodies (anti-IL-6; tocilizumab,
sarilumab, and siltuximab), and JAK inhibitors (anti-IL-6;
ruxolitinib baricitinib); general anti-inflammatories such as
colchicine; and steroid-sparing immunosuppressives such
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as sirolimus and tacrolimus. Some of these studies have sug-
gested potential clinical benefit in COVID-19. For instance,
anakinra 5mg/kg twice daily may improve survival for
patients with moderate to severe ARDS compared to a his-
torical cohort [30]. Similarly, studies with tocilizumab for
patients experiencing cytokine storms have suggested poten-
tial benefit with one or two doses of 400 to 800mg [31, 32].
However, treatment with tocilizumab in some cases wors-
ened COVID-19 infections, likely because of immunosup-
pression [33]. Similarly, studies with other molecules have
suggested no clinical effect or potential harm due to immu-
nosuppression (such as with sarilumab) [34], or insufficient
power of statistical analysis to measure a mortality benefit
(such as with colchicine) [35].

2.3. Therapies with Ancillary Benefits from Other
Mechanisms of Action. Molecules targeting other host path-
ways are also being investigated, and many studies, as shown
in Table 1, are still ongoing. Murine studies have suggested,
for instance, that lung sequelae such as leukocyte infiltration
and acute lung failure from the related SARS-CoV from the
2003 pandemic could be reduced with angiotensin II receptor
blocker (ARB) losartan 15mg/kg, secondarily to inhibiting
ACE2 binding of viral Spike-Fc [36]. Similarly, famotidine, a
histamine 2-receptor blocker used for treating acid reflux dis-
ease, may inhibit viral replication by a mechanism still being
investigated. Famotidine therapy was correlated with reduced
inpatient mortality or intubation [37], with some cases of
reduced outpatient symptom severity reported [38]. Further-
more, recent developments in coagulopathy secondarily to
cytokine storms that expose the basementmembrane and acti-
vate coagulation cascades have honed research in targeting
VEGF (with bevacizumab), tissue plasminogen activators
(alteplase) [39], and anticoagulants (argatroban, enoxaparin,
fondaparinux, heparin, and rivaroxaban) [40].

Interestingly, some molecules have been investigated
based on retrospective observations of patients with polyphar-
macy. Many of which seem to correlate with drugs that reduce
inflammation and oxidative stress. For instance, some studies
have suggested that sodium-glucose cotransporter-2 (SGLT2)
inhibitors, a class of multifunctional antihyperglycemics, may
prevent respiratory failure associated with endothelial disrup-
tion, inflammation, and oxidative stress by purportedly reduc-
ing serum lactate production and cytokines. Studies with
dapagliflozin in patients with or without diabetes are currently
underway (NCT04350593) [41]. Additionally, past studies
with antilipidemic “statin” drugs (e.g., atorvastatin) have sug-
gested improved symptom management in patients with con-
current viral infections with the annual avian influenza and
the 2009 H1N1. These effects may be ascribed to their anti-
inflammatory, antioxidant, and ACE2-downregulatory effects,
which have prompted further clinical studies with atorvastatin
[42]. In fact, this projection may be supported by observations
from the use of statins in, for instance, the prevention of cyto-
kine and oxidative stress-mediated iodinated contrast-induced
nephrotoxicity [43].

Some think tanks have considered incidental findings of
morphine and its inhibitory effects on cytokine production,
particularly in dyspneic patients. Studies have found

decreased levels of IL-12, TNF, and interferons, albeit
inconsistently, when morphine is used in patients with
chronic obstructive pulmonary disease (COPD) [44]. Other
effects observed from morphine use may be translatable to
similar features in the collection of syndromes related to
COVID-19. One such study explored the prevention of
mitochondrial-related reperfusion injury secondarily to post-
myocardial infarction percutaneous intervention. By pre-
venting the influx of reactive oxygen species and eventual
cell death, morphine could have some effect in preventing
damage after restoration of oxygen status to cells [45]. Stud-
ies with the use of morphine in dyspnea have been recruiting
at the time of this article (NCT04522037).

Despite the current developments outlined, and over
9100 registered clinical trials to date [5–7], the vast research
vision has tunneled to individual mechanisms that include
viral entry, replication inhibition, or cytokine attenua-
tion [46].

3. Importance and Possible Mechanisms of
Molecular Hydrogen in COVID-
19 Treatment

Alveolar hypoxia, alveolar macrophages, and reactive oxy-
gen species (ROS) cause an inflammatory response which
may lead to ARDS. Excess proinflammatory cytokine secre-
tion may further damage multiple organs. To address all of
these contributing factors to cytokine storm in COVID-19,
inhalation of molecular hydrogen may offer an effective
solution to tackle both hypoxia and oxidative stress, thereby
reducing downstream cytokine secretion. Many reports
described possible mechanisms of molecular hydrogen
actions against different diseases [47–60]. The majority of
these reports revealed three main effects of molecular
hydrogen in pathophysiology: antioxidative stress, anti-
inflammatory, and antiapoptotic effects. However, these
three categories also include many subgroups of different
effects of molecular hydrogen observed in various studies,
for example, the regulation of oxidative stress, regulation
of endoplasmic reticulum stress, regulation of mitochon-
dria, inhibition of overactivation of the immune system,
prevention of apoptosis, regulation of autophagy, reduction
of pyroptosis-related inflammation, protection of cells from
pyroptosis, positive regulation of ferroptosis, and potential
regulation of the circadian clock. In 2020, Yang et al. listed
the possible mechanisms of molecular hydrogen in 10 main
disease systems [48]. In 2011, Ohta summarized the diseases
and the organs targeted by molecular hydrogen treatment.
After the appearance of the COVID-19 disease, many global
efforts were applied to fight this pandemic [61]. In China, the
famous epidemiologist Dr. Zhong Nanshan has applied
H2/O2 inhalation for treating more than 2000 COVID-19
patients with very positive and effective outcomes [62, 63].
Additionally, a global scientific discussion has been launched
on the ResearchGate platform about the possibility of the use
of molecular hydrogen in COVID-19 treatment [64]. Several
articles have been published about the potential benefits of
molecular hydrogen therapy for COVID-19 [48, 65, 66],
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including its ability to combat effects of fatigue [67]. Although
its beneficial effects have been reported in the literature and
demonstrated in some clinical trials, a systemic review of the
properties and underlyingmechanisms ofmolecular hydrogen
is necessary to broaden the utility of its positive effects in treat-
ing COVID-19. Currently, there is no report that fully eluci-
dates the mechanisms behind the positive influence of
molecular hydrogen in COVID-19 treatment.

4. Physical, Chemical, and Biological Properties
and Safety of Molecular Hydrogen

4.1. Physical Properties of Molecular Hydrogen. Hydrogen is
the most abundant element in the universe especially in
stars. It combines with another hydrogen atom to form
molecular hydrogen, with the chemical symbol of H2. H2 is
the smallest and lightest molecule with a density of
0.08988 g/L at standard temperature and pressure (STP).
However, molecular hydrogen is rare in Earth’s atmosphere
at a level of about 0.53 ppm [68]. Hydrogen is physically
characterized as a nontoxic, colorless, odorless, tasteless,
and nonmetallic gas at standard temperature and pressure.
H2 has a lower solubility in water compared to oxygen and
carbon dioxide with 0.8, 1.3, and 34.0mmol/L at 20°C,
respectively [69]. The hydrogen-saturated water contains
0.78mM (1.6mg/L) of hydrogen at 25°C. It was estimated
that 2–5% of H2 is lost every 3min when hydrogen-rich
water is kept in an open container [70]. To preserve the
levels of hydrogen in hydrogen-rich water during storage,
the product must be filled in a metal package such as alumi-
num as plastics are permeable to H2 [51].

4.2. Chemical Properties of Molecular Hydrogen. The earliest
known chemical property of hydrogen is that it burns with
oxygen to form water. Under ordinary conditions, hydrogen
gas is a loose aggregation of hydrogen molecules, each mol-
ecule consisting of a pair of hydrogen atoms, to form the
diatomic molecule, H2 [71]. Additionally, molecular hydro-
gen can react with many elements and compounds, but at
room temperature, the reaction rates are usually so low as
to be negligible due to its very high dissociation energy [72].

In food processing, H2 is classified as a food additive
with E949, and in the European Union (EU), it is permitted
in part C group I of regulation 1129/2011 additives permit-
ted at quantum satis [73]. At normal temperature and pres-
sure, H2 is considered a noncorrosive and not very reactive
substance (inert gas). It is used to store foodstuffs in pack-
ages under modified atmosphere beside CO2 and N2, and
so protects them from undesirable chemical reactions such
as food spoilage and oxidation during subsequent transport
and storage [74, 75]. The addition of molecular hydrogen,
i.e., hydrogenation, is used to produce margarine and vege-
table shortening by converting unsaturated liquid animal
and vegetable oils and fats to a saturated solid form. These
processes require a catalyst, and high temperatures and pres-
sures to overcome the activation energy of the stable nonpo-
lar covalent bond that holds the hydrogen atoms together.
Moreover, hydrogen is used to reduce aldehydes, fatty acids,
and esters to the corresponding alcohols.

4.3. Biological Properties of Molecular Hydrogen. Intestinal
bacteria in humans naturally produce hydrogen at about
50 to 1,000mg/day [76, 77] via degradation of oligosaccha-
rides [78]. However, the amount of H2 produced by colonic
fermentation is partially consumed by bacterial flora in the
colon [70]. The ingestion of hydrogen-rich water was
reported to increase both hydrogen peaks and the area under
the curve (AUC) of breath hydrogen in a dose-dependent
manner [79] within 10min of ingestion [70]. It was esti-
mated that approximately 41% of ingested H2 via
hydrogen-rich water was kept in the body [70]. The loss of
H2 from the skin surface is negligible (less than 0.1%).
Hydrogen may be transferred to the milk when the mother
drinks hydrogen-rich water [80]. H2 has no adverse effects
on the saturation level of arterial oxygen (SpO2) and hemo-
dynamic parameters [81]. The inhalation of H2/O2 mixed
gas did not interfere with any vital signs of the body includ-
ing respiratory rate, heart rate, blood pressure, and pulse
oximetry [82].

4.4. Safety Property of Molecular Hydrogen. The American
Conference of Governmental Industrial Hygienists classifies
hydrogen as a simple asphyxiant and describes its major
hazard due to its flammable and explosive properties [83].
Hydrogen is highly flammable at a range of 4-75% (v/v) in
air, and it explodes in the air at the range of 18.3-59% (v/v
) [84, 85]. However, the dilution of hydrogen with nitrogen
lowers the risk of explosion [86]. Additionally, the autoigni-
tion temperature (the temperature at which spontaneous
combustion will occur) of hydrogen is quite high, i.e., 500°C.

5. Redox-Related Mechanisms in the
Pathophysiology of COVID-19

The cellular redox status can affect the structural composi-
tion of various sensitive components found inside or on
the surface of the cell. These redox-sensitive components
include many proteins/enzymes composed of sulfur-
containing amino acids/peptides (SH and S-S) making them
sensitive to the redox state of the environment. Methionine,
cysteine (Cys), cystine, homocysteine, glutathione, and
hydrogen sulfide are the common sulfur-containing com-
pounds impacting protein regulation and cell signaling. Fur-
thermore, the cofactors such as Fe, Zn, Mg, and Cu found in
their oxidized or reduced form, make the cellular enzymes
susceptible to the redox change in the environment. In the
same manner, we can discuss the effect of redox value on
various redox-sensitive molecules located on the surface of
the cell such as enzymes, proteins, phospholipids, and satu-
rated and unsaturated fatty acids, which could become tar-
gets for the redox change in the environment/cytoplasm.
The modification in the structure of these components can
directly affect different functional and structural cellular sys-
tems such as cellular transport and bioenergetics.

The cell possesses a redox homeostasis system that regu-
lates many key functions such as protein synthesis, enzyme
activity, metabolic pathways, and transport across the mem-
brane. This redox homeostasis can be regulated by different
factors such as oxidoreductases (catalase (CAT), superoxide
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dismutase (SODs), and glutathione peroxidase (GPXs)),
metallic ions (Fe, Cu, Mg, etc.), metabolites (adenosine tri-
phosphate/adenosine monophosphate (ATP/AMP), glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH), and
tricarboxylic acid cycle (TCA) intermediates), gaseous-
signaling molecules (ROS, H2, H2S, CO, NO

•, etc.), and
internal antioxidants (ascorbate, vitamin E, β-carotene,
urate, and thiols). Amino acids and their macromolecules,
i.e., peptides and proteins, can affect and be affected by the
redox state of the cytoplasm and environment. The amino
acids, peptides, and proteins containing thiols (SH) form
the targets for oxidants such as ROS [49]. The production
of ROS and/or the change in the thiols/disulfide ratio lead
to the perturbation of the intracellular redox homeostasis.
This critical situation leads the cell to sense redox signaling,
and thus regulate the cellular redox state [49]. When the
levels of the generated ROS are high, the cell can use the
redox-sensitive signaling pathways and transcription factors
to upregulate genes encoding reductants such as thiols,
enzymes, thioredoxin (Trxs), and glutaredoxins (Glrxs) that
will reset redox homeostasis [49]. However, when the situa-
tion is more severe with very high levels of ROS, for exam-
ple, during acute injury or inflammation, damage occurs to
various macromolecules and cellular structures and func-
tions, which can lead to irreversible injury and cell death.
The presence of molecular hydrogen in the last case can mit-
igate the cytotoxic effects of ROS by reducing only the most
aggressive ones, i.e., •OH and ONOO–, without affecting the
physiologically beneficial ROS-dependent signaling mole-
cules, i.e., O2

•−, H2O2, and
•NO, and thus, maintaining

redox homeostasis of the cell [52].
The modification of the structural composition of pro-

teins due to the change of thiol (SH) to the disulfide (S-S)
form impairs molecular chaperoning, translation, metabo-
lism, cytoskeletal structure, cell growth, and signal transduc-
tion. Additionally, the formation of disulfide bonds affects
the conformation of redox-sensitive proteins [58]. It was
reported that in an oxidizing medium, the sulfur group in
cysteine can form intramolecular disulfide bonds creating a
reversible cross-link that can be broken in the presence of
a reducing agent [87]. Oxidative stress conditions are char-
acterized by a high generation of ROS and are related to
many diseases involving disulfide bond formation [87].
Thiol-disulfide reactions follow an exchangeable and rate-
dependent bond rupture mechanism [87].

5.1. Importance of Thiols for Cellular Redox Status. Thiols
have been shown to play a key role in many functional pro-
cesses in cellular physiology. Glutathione (GSH), for exam-
ple, was identified as a crucial intracellular antioxidant
thiol that plays an essential role in protection against envi-
ronmental oxidant-mediated injury in addition to its role
in the redox signaling process [88]. The increase in the intra-
cellular content of GSH leads to a decrease in the release of
cytokines and chemokines from lung cells by decreasing
NF-κB activation. This property was related to the antioxi-
dant activity of GSH [88]. Normally, glutathione disulfide
(GSSG) represents less than 1% of the total cellular GSH
pool. The perturbation to the GSH/GSSG ratio due to the

excessive generation of ROS can alter signaling pathways
that play key roles in many physiological responses such as
cell proliferation, autophagy, apoptosis, and gene expression.

It was reported that the activation of redox-sensitive
transcription factors such as nuclear factor erythroid 2-
related factor 2 (Nrf2), NF-κB, and activator protein 1
(AP-1) differentially regulate the genes for proinflammatory
cytokines as well as the protective antioxidant genes [88].
Moreover, GSH is considered a crucial factor for the enzy-
matic activity of GPx, which is a major contributor to the
cellular enzymatic antioxidant defense [89]. Sustained oxida-
tive challenge leads to depletion of lung GSH along with
other antioxidants forming the main reasons for many lung
diseases, e.g., ARDS, chronic obstructive pulmonary disease
(COPD), asthma, cystic fibrosis (CF), idiopathic pulmonary
fibrosis (IPF), and neonatal lung disease [88]. Moreover,
GSH levels were found to be depleted in several viral infec-
tions such as infection with HIV, influenza A virus, hepatitis
C virus, and herpes simplex virus-1 [90]. On the other hand,
the decrease in the levels of GSH in the lung lining fluid have
been shown in various pulmonary diseases such as IPF,
ARDS, CF, lung allograft patients, and patients with human
immunodeficiency virus (HIV) [88]. This observation was
explained by the formation of disulfide bonds due to the
huge generation of ROS. Accordingly, several approaches
have been studied to increase the cellular GSH levels to
improve the cell’s ability to cope with the increased ROS
production. The administration of GSH itself has been
shown to have limited therapeutic value due to its short
plasma half-life, i.e., <30min, and its inability to pass the cell
membrane. Therefore, other strategies have been evaluated
to increase intracellular GSH pools.

One of the most studied pro-GSH molecules is N-acetyl-
L-cysteine (NAC). Roederer et al. demonstrated in 1992 that
NAC inhibited HIV replication in vitro [91]. NAC, ascorbic
acid, and vitamin E were reported to decrease both viral rep-
lication and inflammation in cells of mice infected with
influenza (IV) and/or human respiratory syncytial (HRSV)
respiratory viruses [92]. Although the treatment of NAC
in vitro and in vivo experiments showed an increase in
GSH levels that reduced the viral load by inhibiting viral rep-
lication in several viruses, e.g., influenza A (H3N2 and
H5N1), the protective effect of NAC alone appeared weak
or null in some models with a variation in its efficacy
depending on the infecting viral strain [93]. Based on a trial
study of 198 patients with COVID-19, a noticeable increase
of glutathione reductase levels occurred in around 40% of
COVID-19 patients [93] suggesting an increase in GSH
metabolism. However, although NAC may be effective in
this case, its antioxidant and therapeutic benefits may be
strain specific. Therefore, clinical evidence is required before
NAC supplementation can be recommended. Moreover,
there is currently no COVID-specific evidence for the use
of NAC [93].

5.2. Potential Use of Molecular Hydrogen to Improve Cellular
Redox Status. A favorable GSH balance was reported to ame-
liorate bronchial asthma by suppressing chemokine produc-
tion and eosinophil migration itself [88]. The latter authors
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Table 2: Summary of some possible mechanisms related to the positive effects of molecular hydrogen in different diseases and COVID-19
treatment.

Possible Mechanism
Type of
Study

Principle Reference

Molecular properties-related
mechanisms

In vivo

Unlike most antioxidants, can penetrate biomembranes and diffuse into the
cytosol, mitochondria and nucleus and reach cell organelles

[50]

Has a rapid gaseous diffusion rate making it highly effective for reducing
cytotoxic radicals

Redox-related mechanisms

Regulates the redox homeostasis after a ROS-related dissipation stage

Mild enough not to disrupt metabolic oxidoreduction reactions or interrupt
ROS-induced disruption of cell signaling

Selectively reduce the strongest cytotoxic oxidants, •OH and ONOO–; whereas,
the biological useful oxidants such as superoxide, hydrogen peroxide, nitric

oxide are not altered

Protects nuclear DNA and mitochondria

Protects cells and tissues against strong oxidative stress

Decreases production of ROS

in silico
Reduces the reversible cross-linked intramolecular disulfide bonds formed after

an oxidative stress e.g. ROS [86]
Decreases the energy barrier of disulfide rupture

In vivo

Balances the S-S/SH in favor of thiols

[58]

Protects Inositol 1, 4, 5-trisphosphate receptors (IP3Rs) function

Protects the ATP-induced Ca2+ signal by reducing the H2O2-induced disulfide
bonds in IP3Rs and restores protein function

Activates glutathione/thioredoxin systems involved in the modulation
of disulfide bond formation during oxidative stress leading to reduced

H2O2-induced disulfide bond formation

Repairs the processes of cell injury produced through high ROS generation

Animal

Mitigates the oxidative damage

[98]

selectively reduces •OH attenuating ischemia/reperfusion-Induced organ
damage

Increases superoxide dismutase (SOD) activity against ROS-mediated cellular
damage

Increases activities of antioxidant enzymes

Can significantly decrease levels of oxidative products

Human Induces superoxide dismutases (SODs) activity to quench ROS production [99]

Human
Decreases ROS levels via upregulating superoxide dismutase (SOD) and
glutathione (GSH) as well as downregulating NADPH oxidase (NOX 2)

expression
[100]

Animal Decreases oxidative damage [98]

Inflammatory reactions and
apoptosis-related mechanisms

Animal

Inhibits the over-expression of inflammatory factors (IL-6, IL-8 and TNF-α)

[98]

Downregulates the expression of proapoptotic Fas proteins

Up-regulates the expression of the anti-apoptotic protein Bcl2

Ameliorates LPS-induced bronchopulmonary dysplasia

Reduces LPS-induced oxidative stress production

Lung and alveoli-related
mechanisms

Animal

Ameliorates LPS-induced suppression of genes encoding fibroblast growth
factor receptor 4 (FGFR4), VEGFR2, and HO-1, as well as LPS-induced

overexpression of inflammatory marker proteins (TNFα and IL-6)
[79]

Suppresses the induced expressions of inflammatory marker proteins
(TNFα and IL-6)

Reduces ROS production in alveolar epithelial cells

Animal
Attenuates septic shock-induced organ injury

[98]
Decreases neutrophil infiltrate in the alveoli
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revealed that small changes in the cellular redox status may
alter signaling pathways, and the GSH/GSSG ratio can serve
as a good indicator of the cellular redox state. While the
increase in the GSH/GSSG leads to proliferation, the decrease
in the GSH/GSSG causes apoptosis. GSH/GSSG and Cys/CySS
were found to be decreased in some oxidative-related diseases
such as smoking, diabetes, obesity, and pneumonia [94].
Those most susceptible to developing COVID-19 and serious
illness are those with underlying pathologies such as obesity,
which is associated with impaired redox and inflammatory
homeostasis [95]. Another beneficial role of hydrogen in oxi-
dative stress-related diseases may be attributed to balancing
the S-S/SH in favor of thiols. Previous reports indicate that
the presence of reducing agents decreased the number of
disulfide bonds, resulting in a loss of cross-link-induced stabil-
ity produced by the chemical microenvironment [58]. In 2012,
Keten et al. reported that the stability of the disulfide bond
may mildly be influenced by the redox value of the chemical
microenvironment where the concentration of reducing
agents can trigger various fractures in the protein by decreas-

ing the energy barrier of disulfide rupture [87]. They per-
formed a simulation of disulfide rupture in the presence of a
hydrogen molecule, illustrating the reduction mechanism of
the disulfide bond. This phenomenon was explained by the
elongation of the disulfide bond leading to a weakening of
the bond followed by a reduction of the sulfur atoms and frac-
ture of the protein at the S-S bond. The authors assumed that
the reaction of the hydrogen molecule with a disulfide bond
occurs violently once they are near each other [87] (Table 2).
However, there is no evidence that this hypothetical mecha-
nism is responsible for the observed biological effects of
molecular hydrogen at improving the GSH/GSSG ratio. How-
ever, H2 can increase GSH levels [96] by activating the Nrf2
pathway [97]. A nonsignificant increase in GSH, GSH/GSSG,
and GSH peroxidase combined with a decrease in GSSG levels
in rat livers fed with hydrogen-rich water compared to control
was reported [98].

Interestingly, both endogenous and exogenous oxidants
have been shown to need hours to significantly affect GSH
levels in the majority of cells [88]. This is a double-edged

Table 2: Continued.

Possible Mechanism
Type of
Study

Principle Reference

Reduces alveolar damage

Reduces levels of high-mobility group box 1 in serum and lung tissue
improving the survival rate of mice with sepsis

Reduces the levels of IL-6, IL-8 and TNF-α

Down-regulates the levels of Fas protein and up-regulates the levels of Bcl2
protein, which may inhibit ALI by inducing apoptosis, and may protect lung

function

Effectively prevents enterogenous sepsis

Significantly decreases the level of MDA and MPO

Animal

Protects against the alveolar destruction attenuating oxidative DNA damage
and SIPS in the lungs

[101]

Decreases the markers of oxidative DNA damage such as phosphorylated
histone H2AX and 8-hydroxydeoxyguanosine, and senescence markers such as
cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1,

and b-galactosidase

Restores static lung compliance

Reduces airspace enlargement and parenchymal destruction

Attenuates cigarette smoke-induced oxidative DNA damage and premature
senescence in the lungs

Animal
Enhances phagocytic activity of alveolar macrophages

[102]
Attenuates lung injury

Animal

Attenuates alveolar epithelial barrier damage

[60]
Improves alveolar gas exchange

Reduces cell damage caused by alveolar epithelial cell apoptosis and
excessive autophagy

Human
H2/O2 mixture relieves dyspnea and alleviates patient discomfort

during the perioperative period
[81]

Small intestine injury-related
mechanisms

Animal

Protects the intestinal mucosa from mechanical injury

[98]
Reduces the pathological changes of the small intestine

Inhibits bacterial translocation

Protects the function of other organs in the body
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sword because, on the one hand, the redox status stays in the
range of homeostasis despite a significant amount of oxida-
tive stress. On the other hand, by the time the GSH/GSSG
ratio has changed enough to be detected, it may be too late
and/or too difficult to reestablish homeostasis by pharmaco-
logical interventions. Once the GSH levels are depleted, the
antioxidant redox cycling is also negatively impacted, poten-
tially rendering pharmacological interventions or antioxi-
dant supplementation less effective. However, premature
ingestion of reducing substances either orally or intrave-
nously may exacerbate the redox condition. In contrast,
molecular hydrogen is capable of reaching any organelle in
the cell within minutes and does not perturb the GSH/GSSH
ratio from optimal homeostasis. Instead, H2 modulates sig-
nal transduction and maintains optimal redox homeostasis
within the cell (Table 2). In this way, H2 has the ability to

act as a reducing agent at low concentration with the ability
to antagonize the ROS-induced deleterious effects on cell
signaling [50]. H2 has been characterized by its ability to
decrease ROS levels via upregulating superoxide dismutase
(SOD) and glutathione (GSH) as well as downregulating
NADPH oxidase (NOX 2) expression in a rat model [101]
(Table 2 and Figure 2).

An additional but crucial role of hydrogen was found in
repair processes of cell injury produced through high ROS
generation. H2 can induce heat shock proteins (HSPs) and
suppress ROS production [58]. For example, the activation
of glutathione/thioredoxin systems, which reduces H2O2-
induced disulfide bond formation, is another possible mech-
anism underlying the H2-induced elimination of ROS dam-
age of inositol 1,4,5-trisphosphate receptors (IP3Rs) [58].
H2O2 is a highly reactive molecule capable of oxidizing

H H

HH

H2O2

O2
–

OH

ONOO–

Anti-oxidant

PI3KMAPKAMPK

KEAP1 Nrf2

Nrf2

Nrf2+MAF

ARE
SOD, CAT,
GPx

NF-κB
Anti-

inflammation
IL-1b, IL-6, IL-5,
IL-12, TNF-α,
NF-κB

Apoptosis

Anti-
apoptosis

Cytochrome C
Caspase-3

Caspase-12
Caspase-8

P53
Bax
Bcl-2
Bcl-xL

ATP production
Membrane potential
Mitochondrial swelling

Improved
bioenergetics

NOX

Figure 2: Possible mechanisms of alleviation properties of molecular hydrogen on COVID-19 patients. •OH: hydroxyl radical; O2
-:

superoxide anion; ONOO-: peroxynitrite anion; H2O2: hydrogen peroxide; H2: molecular hydrogen; NOX: nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase; AMPK: 5′ adenosine monophosphate- (AMP-) activated protein kinase; MAPK: mitogen-
activated protein kinase; PI3K: phosphatidylinositol 3-kinase; Keap1: Kelch-like ECH-associated protein 1; Nrf2: nuclear factor erythroid
2-related factor 2; MAF: small MAF protein; ARE: Nrf2-antioxidant response element; SOD: superoxide dismutase; CAT: catalase; GPx:
glutathione peroxidase; P53: tumor protein; Bax: BCL2-associated X protein; Bcl-2: B-cell lymphoma 2 protein; Bcl-XL: B-cell
lymphoma–extra-large protein; IL-12: interleukin 12; IL-1β: interleukin 1-beta; IL-6: interleukin 6; IL-8: interleukin 8; TNF-α: tumor
necrosis factor α; NF-κB: nuclear factor-kappa-light-chain-enhancer of activated B cells.
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sulfhydryl groups of cysteine and methionine in proteins
and forming sulfenic acid or disulfide [49, 58]. This modifi-
cation in the structure induces dysfunction of proteins lead-
ing to the impairment of many physiological processes. By
this phenomenon, H2O2 was able to decrease the Ca

2+ signal
by triggering IP3R disulfide bond formation. However, the
IP3R function was partially protected by treatment with H2
[58]. In other words, the H2-containing medium protected
the ATP-induced Ca2+ signal by reducing the H2O2-induced
disulfide bonds in IP3Rs.

SARS-CoV-2 infection was reported to evoke free
radical-associated damage in the body by targeting different
molecules. Therefore, all therapeutic means that can alleviate
free radicals may be considered for COVID-19 patients to
conquer the inflammation-induced burst of free radicals
[104]. The rapid gaseous diffusion of H2 makes it highly
effective for penetrating the subcellular compartments of
the body. Importantly, H2 was identified as clinically more
effective than two ROS scavengers for the treatment of cere-
bral infarction, i.e., edaravone and FK506, in alleviating oxi-
dative injury [105]. In addition to the greater benefit
compared to other ROS scavengers, H2 is considered mild
enough not to affect the ROS that play essential roles in sig-
nal transduction such as H2O2, NO

•, and O2
–• [50]. H2 can

react with only the strongest oxidants, i.e., •OH and
ONOO–, which are considered the most reactive ROS
(Figure 2). Additionally, H2 does not reduce the oxidized
form of some biomolecules/cofactors involved in metabolic
oxidoreduction reactions, e.g., NAD+, FAD, or the oxidized
form of cytochrome C [50] (Table 2).

5.3. Alveolus-Related Mechanism of Molecular Hydrogen-
Based COVID-19 Treatment. Pulmonary surfactants play
various crucial roles in the function of alveoli. The surfac-
tants prevent lung collapse, increase the gas exchange, and
contribute to the elastic properties of the lungs. These func-
tions of surfactants can be accomplished due to their ability
to reduce the surface tension inside the alveoli. These surfac-
tants are composed of lipids, phospholipids, and proteins
synthesized and secreted by alveolar type II cells that line
the alveolar surfaces of the lungs [106]. The fluid lining
alveolar surfaces contains different antioxidants such as
GSH, vitamin C, and ceruloplasmin, which can quench free
radicals [106]. The content of GSH in the respiratory tract
lining fluids (RTLFs) was reported to be subnormal in var-
ious diseases such as acute immunodeficiency syndrome
(AIDS), idiopathic pulmonary fibrosis, cystic fibrosis, acute
respiratory disease syndrome, and in lung allograft patients
[107]. The SOD and CAT were reported to be found in
both surfactant and lung epithelial lining fluid, and take
part in the regulation of postnatal lung vascular develop-
ment and the protection of microvasculature from ROS-
induced injury [108].

The oxidative modification of surfactants due to the
effect of ROS on phospholipids, lipids, proteins, and bio-
physical activity can lead to dysfunction and several lung
diseases such as acute lung injury and acute respiratory dis-
tress syndrome [109]. ROS production can lead to an
increased lipid peroxidation and destruction of the cell

membrane of the alveolar epithelial cells, and an increased
membrane permeability [99].

Two factors were reported to promote the oxidation of
surfactant lipids. First, the excessive production of ROS
makes the antioxidant defenses incapable of providing pro-
tection. Secondly, the major antioxidants in the alveoli may
be excluded from the microenvironment [106]. The ROS
or reactive nitrogen species (RNS), especially ONOO−, pro-
duced during lung injury can cause surfactant inactivation
leading to increased leakage of proteins into the alveoli
[110]. This latter situation prolongs the need for supplemen-
tal oxygen and assisted ventilation. It was reported that, once
the SARS-CoV-2 enters the respiratory tract, it reaches the
alveoli where its primary target is the type II pneumocyte,
thus impairing surfactant production [111]. It was reported
that both SARS-CoV-2 and SARS-CoV-1 viruses perturb
alveoli to produce the major pathology in the lung, resulting
in increased fluid entry, cell death, and inflammation, along
with a reduction in gas exchange and levels of surfactant
[112] (Figure 3).

Different antioxidants were proposed to prevent lipid
peroxidation of lung surfactants such as melatonin-ebselen
and vitamin E [106]. Importantly, it was reported that the
continuous exposure (24 hours) to 10% hydrogen decreased
the production of ROS in A549 human lung epithelial cells
[80]. It was also revealed that inhalation of 2% hydrogen
attenuated septic shock-induced organ injury and decreased
neutrophil infiltrate in the alveoli, and reduced alveolar
damage [99]. On the other hand, inhalation of H2/O2 mixed
gas has been shown to reduce the inspiratory effort in
patients with acute severe tracheal stenosis [82]. Moreover,
hydrogen-rich water was reported to protect against the
alveolar destruction attenuating the oxidative DNA damage
and swimming-induced pulmonary edema (SIPS) in the
lungs of COPD model mice [102]. Furthermore, hydrogen-
rich water was found to attenuate lung injury by inhibiting
lipid peroxidation [103]. Hydrogen-rich saline was also
reported to reduce ROS production in alveolar epithelial
cells, attenuate the alveolar epithelial barrier damage,
improve alveolar gas exchange, and reduce cell damage
caused by alveolar epithelial cell apoptosis and excessive
autophagy [60] (Table 2).

6. Conclusion and Perspectives

An explanation for the advantageous effects of molecular
hydrogen in COVID-19 treatment is related to the different
properties of molecular hydrogen: (1) the small molecular
size and nonpolarity of H2 allow it to rapidly permeate the
tissues and cells, (2) it can selectively reduce only the cyto-
toxic ROS, (3) it can suppress the excessive production of
otherwise good ROS, (4) it can suppress proinflammatory
cytokines, (5) it can induce cytoprotective heat shock pro-
teins, (6) it can improve mitochondrial bioenergetics, and
(7) it has no known toxic effects even at very high levels
[114]. These properties may explain the improvement in
the conditions of COVID-19 patients treated by inhalation
of H2/O2 mixed gas (67% H2/33% O2), who felt reduction
in chest pain and cough, and easier deeper breathing and
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comfort sensation [62, 63]. The positive results of the pilot
study led Dr. Zhong Nanshan, the epidemiologist who dis-
covered the SARS virus (SARS-CoV-1) in 2003, to recom-

mend the H2/O2 inhalation therapy for COVID-19 patients
[115] and prompted more clinical trials using H2/O2 mixed
gas [116–118].
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Figure 3: Alveolar changes due to SARS-CoV-2 infection in severe COVID-19 cytokine syndrome-induced acute respiratory distress
syndrome (ARDS). Reproduced and modified from [113].
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Currently, there are twenty registered clinical trials on
the use of H2 for COVID-19. Of these, four are registered
at the Centre for Evidence-Based Medicine (Oxford) using
H2/O2 mixed gas inhalation [116], five clinical trials are reg-
istered at ClinicalTrials.gov of the US National Library of
Medicine for inhalation [118], eight clinical trials are regis-
tered at ICTRP (WHO) with six for inhalation and two trials
for hydrogen-rich water [8], and three clinical trials, related
to the use of either inhalation or ingestion of hydrogen-rich
water, are registered at the Chinese Clinical Trial Registry
center [117]. Up to date, the reported benefits of H2 therapy
in COVID-19 patients are limited to the symptomatic
description. To expand the utility of H2 therapy in
COVID-19, more thorough understanding of the underlying
mechanism of H2 in patients is required. Therefore, accurate
analysis of a broad spectrum of biomarkers is highly recom-
mended to delineate the correlation between clinical and
biochemical presentations and the proposed biological effect
of H2.

According to the report of WHO, data from China and
around the world suggest that the majority of people with
COVID-19 have a mild illness, about 15% of them have a
severe illness requiring oxygen therapy, and 5% are critically
ill requiring mechanical ventilation. Owing to the wide-
spread transmissibility and emergence of more infectious
variants of SARS-CoV-2, many hospitals have been over-
whelmed by the crush of new COVID-19 patients and have
exhausted ICU beds and ventilators in some regions. There-
fore, an alternative yet effective treatment, e.g., H2/O2 gas
inhalation, would ease the pressure on hospitals and prevent
severe illness of COVID-19 patients.

The medical model of H2/O2 mixed gas machine is
small, portable, and safe [119]. It costs about one-tenth of
the price of a ventilator. The H2/O2 inhalation treatment
may be performed in regular wards or by outpatients at
home isolation using a portable H2/O2 generating and inha-
lation device. This kind of treatment may reduce hospitaliza-
tion time for a high number of patients. This strategy could
decrease the pressure of massive patient numbers on hospi-
tals. It is important to mention that, although molecular
hydrogen is not considered a drug, its intake in different
ways such as drinking hydrogen-rich water or inhaling
H2/O2 gas may be beneficial in preventive medical health
in addition to its therapeutic use. Due to the high safety pro-
file and favorable preliminary results in preclinical and clin-
ical studies, application and additional research of molecular
hydrogen therapy for COVID-19 are encouraged.
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Objective. Aminothiols (glutathione (GSH), cysteinylglycine (CG)) may play an important role in the pathogenesis of coronavirus
disease 2019 (COVID-19), but the possible association of these indicators with the severity of COVID-19 has not yet been
investigated. Methods. The total content (t) and reduced forms (r) of aminothiols were determined in patients with COVID-19
(n = 59) on admission. Lung injury was characterized by computed tomography (CT) findings in accordance with the CT0-4
classification. Results. Low tGSH level was associated with the risk of severe COVID-19 (tGSH ≤ 1:5μM, mild vs.
moderate/severe: risk ratio ðRRÞ = 3:09, p = 0:007) and degree of lung damage (tGSH ≤ 1:8μM, CT < 2 vs. CT ≥ 2: RR = 2:14,
p = 0:0094). The rGSH level showed a negative association with D-dimer levels (ρ = −0:599, p = 0:014). Low rCG level was
also associated with the risk of lung damage (rCG ≤ 1:3 μM, CT < 2 vs. CT ≥ 2: RR = 2:28, p = 0:001). Levels of rCG
(ρ = −0:339, p = 0:012) and especially tCG (ρ = −0:551, p = 0:004) were negatively associated with platelet count. In addition, a
significant relationship was found between the advanced oxidation protein product level and tGSH in patients with moderate or
severe but not in patients with mild COVID-19. Conclusion. Thus, tGSH and rCG can be seen as potential markers for the risk
of severe COVID-19. GSH appears to be an important factor to oxidative damage prevention as infection progresses. This
suggests the potential clinical efficacy of correcting glutathione metabolism as an adjunct therapy for COVID-19.

1. Introduction

The treatment of coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) has become a focus of medical research since
2020. Endothelial dysfunction plays a key role in the patho-
genesis of this condition, and the disease develops as a result
of the disruption of the surface protein angiotensin II-
converting enzyme (ACE II). This triggers numerous path-

ways that dysregulate the homeostasis of vascular tone and
permeability and leads to impaired lung function and in
some cases to multiple organ failure [1].

Markers of COVID-19 severity and prognosis are being
actively studied. Several studies have suggested that a precise
disulfide-thiol balance is crucial for viral entry and fusion to
the host cell and that oxidative stress generated from free
radicals can affect this balance [2]. Low molecular weight
aminothiols (LMWTs: cysteine (Cys), cysteinylglycine
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(CG), glutathione (GSH), and homocysteine (Hcy)) play an
important role in biochemical processes involved in the
key mechanisms of the body’s response to COVID-19; there-
fore, they can also be considered potential biomarkers of the
severity of COVID-19. GSH is the main intracellular antiox-
idant, and glutathionylation of proteins is one of the impor-
tant mechanisms of posttranslational regulation of their
function [3]. Low GSH levels are associated with a predispo-
sition to respiratory tract infections and cardiometabolic dis-
orders [4, 5]. GSH and Cys were found as independent
factors of atherothrombotic events [6]. In plasma, GSH is
hydrolyzed to CG. For the synthesis of GSH, Cys is required,
which can be formed as a result of hydrolytic cleavage of
proteins, acquired from the extracellular environment or
synthesized from Hcy by the so-called transsulfuration path-
way. Hcy is formed from methionine via the intermediates
S-adenosylmethionine and S-adenosylhomocysteine. Due
to the fact that all transmethylation reactions use S-
adenosylmethionine as a methyl group donor, Hcy has an
impact on many vital processes, including the regulation of
gene expression for cytokines, inflammatory proteins, and
proliferation of viral particles.

Elevated Hcy levels (hyperhomocysteinemia (HHcy))
may be an important factor affecting the negative course of
COVID-19 since it affects key pathophysiological mecha-
nisms: oxidative stress (OS), endothelial dysfunction, throm-
bosis, and activation of type 1 receptors to angiotensin II
(AT1R) [7–9]. In contrast, OS, which is characteristic of sys-
temic inflammatory diseases, negatively affects the basic
pathways of Hcy utilization (methionine synthase and beta-
ine homocysteine methyltransferase activity, which can lead
to an increase in Hcy plasma levels [10–12]. In blood
plasma, LMWTs exist mainly in the oxidized form, and only
a small proportion is in the reduced (r) form [13]. The sum
of these forms is the total (t) content of LMWTs.

Despite the high interest in COVID-19, its effects on the
LMWT system have not yet been reported. Several studies
have suggested that high Hcy and especially a GSH deficit
are risk factors for the severity of COVID-19 or its compli-
cations [2, 14–20]. One study demonstrated that a high tHcy
can predict severe pneumonia on chest CT in COVID-19
patients [21]. The same study found that a tHcy level
exceeding 15.4μM increases the probability of COVID-19
progression to extremely severe forms of severe acute respi-
ratory syndrome by 3.2–3.5-fold.

In this study, we investigated the plasma levels of the r-
and t-forms of Hcy, Cys, CG, and GSH in COVID-19
patients, in order to identify their associations with tradi-
tionally used laboratory parameters and advanced oxidation
protein products (AOPP, a marker of oxidative stress (OS))
and to identify the possible impact of these LMWTs on
COVID-19 severity and level of lung injury.

2. Methods

2.1. Patients. This study included 59 COVID-19 patients
who were admitted to the pulmonary department of the
Burdenko Main Military Clinical Hospital from August 24
to November 13, 2020. The study was approved by the local

institutional ethics committee. Informed written consent
was obtained from each patient. A graphical scheme of study
design is presented in Figure 1.

The patients were diagnosed according to the World
Health Organization interim guidance for COVID-19. The
main inclusion criterion was a confirmed primary SARS-
CoV-2 infection. Exclusion criteria included the following:
exacerbations of cardiovascular disease, HIV infection, hep-
atitis B and C, terminal cancer, and decompensated renal
failure. All patients included in the study were discharged
with recovery from infection and improvement in their gen-
eral condition.

Chest CT scans were performed on the 48 h of patients’
admission using the Optima CT660 tomograph (GE Health-
care, USA), from the level of the thoracic entrance to the
level of the diaphragm, and completed at the end of inspira-
tion. The scanning parameters were as follows: tube voltage
120 kV, tube current 114~ 350mA, and layer thickness
5mm. At the end of scanning, a thin layer image with a layer
thickness of 2.5mm is automatically reconstructed and
recorded as DICOM image data. The reconstruction algo-
rithm used is with a field of view of 360mm × 360mm and
a matrix of 512 × 512. Image browsing and multiplane
reconstruction were performed using GE AW VolumeShare
software v.4.6; images of the lungs (window width 1500,
window level 500) and the mediastinum (window width
350, window level 35-40) were also observed using the same
software. Image analysis was performed based on the stan-
dard protocol as described elsewere [22]. The degree of lung
damage then was assessed using the following scoring sys-
tem based on percentage of lobar involvement: <5% (CT0),
5-25% (CT1), 26-49% (CT2), 50-75% (CT3), and >75%
(CT4) [23]. Based on the data of an objective study, respira-
tory function, and blood oxygen saturation, patients were
categorized as having mild, moderate, or severe COVID-19
using previously described criteria above [24].

2.2. Laboratory Procedures. Venous blood samples were col-
lected upon admission in tubes containing sodium citrate
(0.105M) and centrifuged at 3000g for 15 minutes. Then,
plasma (1450μl) was mixed with 3M acetic acid (50μl)
and samples were frozen at -80°C and stored until LMWTs
determination.

All patients were confirmed by viral detections using the
SARS-CoV-2 nucleic acid detection kit “AmpliPrime®
SARS-CoV-2 DUO” (Next Bio, Russia) and PCR analyzer
RotorGene Q (Qiagen, Germany). Hematology analyzer
MD-7600 (Meredith Diagnostics, United Kingdom), auto-
matic biochemistry analyzer Ellipse (Analyzer Medical Sys-
tem, Italy), Biosen C line (EKF Diagnostics, Germany),
express immunochemiluminescent analyzer PATHFAST
(Mitsubishi Chemical Medience Corporation, Japan), and
erythrocyte sedimentation rate analyzer ESR 3000 (SFRI,
France) were used for routine blood analysis.

LMWTs were determined by liquid chromatography as
described early with some modifications [25]. An UPLC
ACQUITY system (Waters, Milford, MA) with a PDAλ
UV-detector (λ = 330 nm) and FTN Sample manager was
used.
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For total LMWT determination, we mixed 5μl of 1mM
penicillamine (internal standard), 5μl of 0.2M dithiothrei-
tol, and 10μl of 0.4M Na-phosphate buffer pH8.0, contain-
ing 50mM ethylenediaminetetraacetic acid disodium salt,
with 50μl of blood plasma. These mixtures were incubated
for 30 minutes at 37°C, and 200μl of 5,5′-dithiobis(2-nitro-
benzoic) acid (DTNB) in acetonitrile was added. Probes
were mixed intensively and centrifuged for 5 minutes at
15,000g. We then added 10μl of 1M HCl and 200μl CHCl3
to each supernatant. Probes were mixed intensively and cen-
trifuged for 1min at 4,000g. The upper phase was diluted 3
times and injected (10μl) in chromatograph. A Zorbax
Eclipse Plus C18 Rapid Resolution HD 100 × 2mm and
1.8μm column (Agilent, Santa Clara, CA) was used for
quantitation of total LMWTs. The flow rate was
0.15ml/min, and t = 35°C. Mobile phases were 0.15M NH4
acetate with 0.075% (v/v) formic acid and acetonitrile. Chro-
matography was performed using a linear acetonitrile gradi-
ent (3%–13%) for 4.5 minutes. The column was regenerated
with 50% acetonitrile for 0.5 minute and equilibrated with
3% acetonitrile for 6.5 minutes.

For reduced LMWT determination, 200μl of plasma
was mixed with 400μl 2.5mM DTNB in acetonitrile and
12μl of 1.5M NaOH. Afret 5 sec 20μl of 0.1M iodoaceta-
mide was added. After 10 minutes, incubation samples
were centrifuged for 5 minutes at 15,000g. Then, the
supernatant (200μl) was mixed with 50μl of internal stan-
dard (10μM penicillamine+200μM DTNB) and 1200μl
water, and the mixture was passed through a diethylami-
noethyl cellulose column (40mg). The column was flushed
with 2ml water, and analytes were eluted with 400μl
0.2M HCl with 0.2M NaCl. A Zorbax Eclipse Plus C18
Rapid Resolution HD 150 × 3mm and 1.8μm column

(Agilent, Santa Clara, CA) was used for quantitation of
reduced LMWTs. The flow rate was 0.4ml/min, and t =
40°C. Mobile phases were 0.05M NH4 acetate with
0.15% (v/v) formic acid and acetonitrile. Chromatography
was performed using a linear acetonitrile gradient (4%–
11.5%) for 3 minutes. The column was regenerated with
50% acetonitrile for 0.5 minute and equilibrated with 4%
acetonitrile for 4.2 minutes.

Advanced oxidation protein product (AOPP) level in
plasma was determined by the Witko-Sarsat method [26]
with little modifications. After centrifugation (1min, 1000g),
the plasma sample (80μl) was mixed with PBS+0.05% Noni-
det P40 (320μl), KI (1.16M, 20μl), and acetic acid (40μl).
Optical density (OD) was immediately measured at 340nm
against a blank sample (PBS with KI and acetic acid) in a
1 cm path cuvette. Chloramine B (0–62.5μM) in PBS was used
as calibration standards. Its absorbance was linear within this
range (OD= 0:0156·Cchloramine+0.0059, R2 = 0:999).

2.3. Statistical Analysis. Data collection and primary process-
ing (identification and integration of the chromatographic
peaks) were performed in MassLynx v4.1 (Waters, USA).
Statistical data analysis was performed using SPSS Statistics
v. 22 (IBM, USA). Data on age, clinical findings, biochemical
tests, and LMWT levels were expressed as medians (1st; 3rd
quartile). Differences in the levels of these parameters
between the patient groups were determined using the
Mann–Whitney U tests. Spearman’s correlation coefficient
(ρ) was used to measure the degree of association between
two variables. Binomial indicators (bivariable analysis) were
compared by calculating the relative risk (RR) and odds ratio
(OR). A p value < 0.05 was considered to indicate a signifi-
cant difference.

59 patients with confirmed COVID-19, 
CT and LMWTs biomarkers available

Patients, with unavailable data (n = 11)
Excluded:

Patients, with exclusion criteria (n = 1)

Data available for analysis
ALT, AST 33 17 
Creatinine 34 16 

10 7
CRP 36 18 
IL-6 20 16

71 patients were admitted
with suspected COVID-19 

(from August 24, 2020 to November 13, 2020)

37 patients with mild
COVID-19 

22 patients with moderate or severe
COVID-19 

D-dimer 

Figure 1: Patient flow diagram.
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3. Results

The general characteristics of patients are presented in
Table 1. Most patients (46 of 59) were men. We found no
statistically significant difference in sex distribution in the
mild and moderate/severe groups. The median patient age
was 61 (range, 20–88) years. No smokers or regular users
of alcohol or drugs were identified. Most of the admitted
patients had mild COVID-19 (68%) and no more than
50% lung damage (75%). Only three (5%) patients had
severe COVID-19, and two of them had a degree of lung
damage that corresponded to CT4. Therefore, the groups
with moderate and severe COVID-19 and CT3 and CT4
were subsequently merged. On admission, two patients
underwent resuscitation/intensive therapy. A significant
proportion of patients were previously diagnosed with arte-
rial hypertension (24 out of 59, 41%) and atherosclerosis
(17 out of 59, 29%). Sixteen (27%) patients were diagnosed
with HHcy (tHcy > 10μM), mostly mild (<15μM). Only 6
patients had a tHcy level > 15 μM.

Spearman’s rank correlation revealed a number of asso-
ciations between clinical laboratory parameters and LMWTs
in all the patients. The tCys level had a negative impact on
hemoglobin (HGB) level (ρ = −0:330, p = 0:0093, n = 59).
The tCG level was positively associated with hematocrit
(HCT: ρ = 0:395, p = 0:0128, n = 39) and had a rather sig-
nificant negative effect on platelet count (PLT: ρ = −0:551,
p = 0:00041, n = 37). Level of rCG was also negatively asso-
ciated with PLT (ρ = −0:339, p = 0:0121, n = 54). A negative
relationship was found between tGSH levels and mean
erythrocyte volume (MCV: ρ = −0:425, p = 0:0011, n = 56)
and mean erythrocyte hemoglobin (MCH: ρ = −0:449, p =
0:00051, n = 56). Interestingly, a fairly close negative associ-
ation was observed between D-dimer and rGSH levels
(ρ = −0:599, p = 0:0142, n = 16), although D-dimer level
determination was performed in a limited number of patients
(n = 16).

Since there were only 3 patients with severe infection in
the cohort, the patients were stratified into two groups based
on disease severity (mild and moderate+severe). No signifi-
cant differences in age and sex were found in these groups.
As shown in Table 2, patients with moderate or severe dis-
ease were characterized by increased incidence of severe lung
injury (CT3-4), hemoconcentration (increased HCT),
increase in the leukocyte index, and decrease in tGSH levels.

When comparing patients with different degrees of lung
damage, significant differences were observed in a number of
indicators (Table 3). The erythrocyte sedimentation rate
(ESR) and C-reactive protein (CRP) level significantly
increased in the CT0-CT4 series. Among LMWTs, it can
be noted that tGSH and rCG levels were lower in CT2-4
patients than in CT0-1 patients.

The impact of LMWTs (tGSH, rCG) as risk factors for
the severity of COVID-19 and lung injury is presented in
Tables 4 and 5. As shown in Table 4, tGSH levels ≤ 1:5 μΜ
corresponded to 3-fold higher risk of moderate/severe
COVID-19. Approximately 80% of patients with moderate/-
severe COVID-19 had tGSH levels ≤ 1:5 μM. Low levels of
rCG (≤1.3μM) and tGSH (≤1.8μM) were also associated

Table 1: General characteristics of patients∗.

N 59

Age, y 61 [51; 67.5]

Sex, man (%) 46 (78%)

Condition upon admission

Mild 40 (68%)

Moderate 16 (27%)

Severe 3 (5%)

Severity of the infection:

Mild 37 (63%)

Moderate 19 (32%)

Severe 3 (5%)

Arterial hypertension (%) 24 (41%)

Diabetes mellitus (%) 7 (12%)

Atherosclerosis (%) 17 (29%)

Lung CT level:

0 2

1 24

2 17

3 13

4 2

HHcy: tHcy > 10μM (%) 16 (27%)

HGB (g/l) 144 [126; 154]

HCT (%) 42 [36.9; 44.5]

RBC (1012/l) 4.97 [4.16; 5.20]

MCV (fl) 86 [83; 89]

MCH (pg) 30.0 [28.6; 30.7]

MCHC (g/dl) 346.5 [335.0; 358.5]

PLT (109/l) 260 [204; 312]

WBC (109/l) 5.8 [3.9; 8.8]

LI 3.2 [1.9; 4.9]

ESR (mm/h) 46 [21; 76]

Glucose (mM) 5.55 [4.68; 7.03]

Creatinine (μM) 93 [84; 112]

D-dimer (mg/l) 0.83 [0.48; 1.53]

CRB (mg/l) 23.5 [3.7; 55.7]

IL-6 (ng/l) 7.4 [2.9; 22.9]

LMWTs

tCys (μM) 227 [205; 249]

tCG (μM) 13.6 [11.0; 16.3]

tGSH (μM) 1.24 [0.92; 1.94]

tHcy (μM) 7.9 [6.2; 10.4]

rCys (μM) 14.8 [9.5; 16.9]

rCG (μM) 1.43 [1.18; 1.90]

rGSH (nM) 163 [90; 223]

rHcy (nM) 93 [74; 127]

AOPP (μM chloramine B equivalents) 41.8 [31.7; 60.7]
∗Data are presented as median [Q1; Q3].
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with at least the double risk of moderate-to-severe lung
damage (Table 5). Most of the CT2-4 patients (83%) had
low tGSH and rCG levels. The RR of high lung damage
(CT3-4) in patients with low tGSH and rCG levels was 3-
fold higher than that in patients with tGSH > 1:8 μM or
rCG > 1:3 μM.

We did not find any significant differences in AOPP
levels when comparing patients with different severity or

degrees of lung injury. We also did not find any significant
association of this indicator with r- and t-forms of LMWTs
and their r/t ratio in the entire cohort of patients. However,
it was found that in patients with severe lung injury (CT3,4),
there is a strong negative association between AOPP and r/t
of the GSH ratio (i.e., its redox status), which is absent in
patients with moderate lung injury CT0-2 (Figure 2(a)). In
addition, a negative association of AOPP with tGSH was

Table 2: Comparative characteristics of patients with different severity of the course of coronavirus infection∗.

Mild Moderate+severe p

N 37 22

Age, y 63 [53; 68] 57.5 [50.5; 64.0] 0.373

Sex, man (%) 27 19 0.308

HHcy (tHcy > 10μM) 8 8 0.219

Arterial hypertension (%) 14 (38%) 10 (45%) 0.562

Diabetes mellitus (%) 3 (8%) 4 (18%) 0.246

Atherosclerosis (%) 11 (30%) 6 (27%) 0.84

Lung CT:

0,1 19 7 0.144

2 12 6 0.67

3,4 6 9 0.045

HCT (%) 41 [33; 44] 43 [42; 45] 0.006

HGB (g/l) 138 [122; 152] 149 [141; 154] 0.038

LI 2.6 [1.6; 3.3] 4.1 [2.6; 5.7] 0.011

tGSH (μM) 1.72 [1.10; 2.29] 0.99 [0.68; 1.40] 0.008
∗Data are presented as median [Q1; Q3].

Table 3: Comparative characteristics of patients with different degrees of lung damage.

CT0, 1 CT2 CT3,4

N 26 18 15

Age, y 64.5 [51.3; 71.8] 60.5 [53.0; 66.5] 57.0 [49.5; 63.5]

Sex, man (%) 18 (69%) 13 (72%) 15 (100%)‡

HHcy: tHcy > 10 μM (%) 4 (15%) 6 (33%) 6 (40%)

Arterial hypertension (%) 13 (50%) 6 (33%) 5 (33%)

Diabetes mellitus (%) 3 (12%) 2 (11%) 2 (13%)

Atherosclerosis (%) 9 (35%) 3 (17%) 5 (33%)

HGB (g/l) 140 [128; 161] 130 [120; 161] 147 [142; 149]

HCT (%) 42 [37; 45] 41 [36; 46] 42 [41; 43]

RBC (1012/l) 5.0 [4.3; 5.2] 5.0 [3.8; 5.3] 4.9 [4.5; 5.1]

PLT (109/l) 261 [216; 326] 237 [169; 286] 271 [214; 317]

WBC (109/l) 6.14 [4.68; 8.88] 5.2 [3.6; 5.9] 7.7 [4.1; 10.9]

ESR (mm/h) 34 [19; 52] 46 [27; 72] 82 [76; 86] ‡,£,∗ ,∗∗

D-dimer (mg/l) 0.93 [0.51; 1.53] 0.71 [0.46; 0.82] 1.23 [0.83; 1.53]

CRB (mg/l) 7.4 [1.8; 24.0] 38.9 [6.6; 56.0]‡ 61.1 [32.0; 117]‡,∗ ,∗∗

IL-6 (ng/l) 4.85 [3.00; 18.5] 6.40 [3.48; 26.0] 13.97 [5.34; 50.6]

tGSH (μM) 1.81 [1.04; 2.34] 1.15 [0.85; 1.76] 1.22 [0.76; 1.42]∗

rCG (μM) 1.59 [1.31; 1.98] 1.30 [1.12; 1.78] 1.29 [1.08; 1.81]∗

AOPP (μM chloramine B equivalents) 39.7 [29.5; 53.2] 42.0 [30.0; 61.1] 47.1 [34.3; 71.8]
∗CT0, 1 vs. CT2-4, ∗∗CT0-2 vs. CT3,4, ‡p < 0:05 compared with the “CT0,1” group. £p < 0:05 compared with the “CT2” group.
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observed in the group of patients with moderate or severe
infection, which was not observed in patients with mild
COVID-19 (Figure 2(b)).

4. Discussion

In a previous large study of 273 patients with COVID-19,
negative progression in the lungs on CT was associated with
the level of tHcy and the role of HHcy as a factor for pro-
gression to severe COVID-19 [21]. In contrast, in our work,
there was no significant effect of tHcy and rHcy on the
severity of infection, and there was no significant association
of these parameters with the results of a clinical blood test.
However, it is worth noting that the frequency of HHcy in
patients with moderate/severe COVID-19 at admission was
twice as high as that in patients with mild COVID-19 (42
vs. 20%, p = 0:075), but the sample size was not large enough
for this difference to be significant. In addition, there were
no patients in our sample whose disease progressed and
who did not recover.

OS plays an important role in the pathogenesis of ath-
erosclerosis and inflammatory lung diseases. Although the
details of GSH involvement in these processes are not yet
fully understood, the importance of the protective function
of this aminothiol is emphasized both by its direct antioxi-
dant activity and the key role of GSH-dependent enzymes
that carry out (de)glutathionylation of proteins and the
GSH hydrolysis. The role of glutathione S-transferase
(GST) P1, glutathione transferase omega 1 (GSTO1-1), γ-
glutamyl transpeptidase (GGT), and glutaredoxin in the
activation of endothelial cells, smooth muscle cells, and mac-
rophages is being actively studied [27–30]. The deficiency of
the GSH redox cycle (GSH-peroxidase and GST) enzymes
observed in the atherosclerotic plaques area contributes to
the creation of a prooxidant environment within the vascu-
lar wall [31]. The protective role of GST P1 was also demon-
strated in a model of endotoxinemia, where it was shown

that activation of this enzyme causes inhibition of MAPKs
and NFκB, which leads to suppression of the expression of
proinflammatory factors TNFα, IL-1β, MCP-1, and over-
production of NO [32].

In addition, it was found that the effect of oxidized low-
density lipoproteins (LDL) in macrophages leads to an
increase in the level of glutathionylation of their proteins
and promotes cell death [33]. It was revealed that GSTO1-
1 plays an important role in the activation of macrophages
by deglutathionylation of proteins such as caspase-1,
STAT3, and hypoxia-inducible factor 1α [28], and GSH pro-
tects macrophages from oxidized LDL-induced cell injury
[31]. On the other hand, the ApoB100 protein, which is part
of LDL, is itself a target of glutathionylation, but the patho-
logical significance of this modification has not yet been ade-
quately studied. Glutathionylation of proteins is a
mechanism actively involved in the formation of atheroscle-
rotic plaque and ED in general, including oxidation of LDL,
modulates cell response to OS in key events of plaque initi-
ation (monocyte recruitment and differentiation), and pro-
gression (macrophage activation and death) [31, 33]. This
is confirmed by a clinical study in which the positive corre-
lation between atherosclerosis progression and the level of
protein glutathionylation was found [34]. Among the
numerous targets, one can distinguish Ca+2 ATPase, whose
glutathionylation is a cGMP-independent mechanism of
vasodilation, impaired in atherosclerosis [35]; the regulatory
protein Ras is activated upon glutathionylation under the
action of various atherogenic stimuli (angiotensin II, perox-
ynitrile, and oxidized LDL) and triggers the activation of Akt
and ERK [33]. Interestingly, the Ras mutation, which pre-
vents its glutathionylation, blocks the development of OS
mediated by angiotensin II [36]. Glutathionylation of
glutaredoxin-1 is also likely to be involved in the regulation
of the Akt-dependent signaling pathway and is important
for maintaining the physiological level of vascular perme-
ability [33, 37]. In addition, the disturbance of laminar flow,
observed in the areas most susceptible to atherosclerotic
changes, negatively affects the activity of glutaredoxin-1
[30].

Our results showed that low tGSH levels could be con-
sidered a marker for the risk of developing severe COVID-
19, severity of lung damage, and course of COVID-19.
Although there is very little data on the role of GSH during
COVID-19, there are some reasons that this metabolite may

Table 4: Effect of rCG and tGSH levels on the severity of lung injury.

rCG (μM) N total NCT2-4 w (%) RR p OR 95% CI

≤1.3 23 18 78
2.28 0.001 6.9 2.05-23.2

>1.3 35 12 34

tGSH (μM)

≤1.8 40 27 68
2.14 0.0094 4.5 1.39-14.5

>1.8 19 6 32

N total NCT3-4

tGSH ≤ 1:8 and rCG ≤ 1:3μM 18 8 44
3.04 0.0132 4.67 1.3-16.6

tGSH>1.8 or rCG> 1.3 μM 41 6 15

Table 5: Influence of tGSH level on the severity of the course of
coronavirus infection.

tGSH (μM) N total N∗ w (%) RR p OR 95% CI

≤1.5 35 18 51
3.09 0.0068 5.29 1.50-18.7

>1.5 24 4 17
∗Moderate+severe COVID-19.
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play an important role in viral replication and resistance to
infection [20]. It is known that loss of GSH affects the Na+

H+ membrane antiport with the decrease in intracellular
pH, which facilitates both virus endocytosis and its replica-
tion [5]. It has been concluded from previously published lit-
erature that various risk factors associated with high
mortality rates of COVID-19 are usually associated with
low baseline GSH levels or impaired GSH metabolism; thus,
GSH depletion may play a central role in COVID-19 mortal-
ity and pathophysiology [19]. The role of GSH in the protec-
tion of DNA from peroxynitrile-mediated damage, which is
characteristic of acute inflammatory reactions, has been
shown early [16].

AOPP was proposed in 1996 by Witko-Sarsat et al. as a
surrogate marker of OS [26]. AOPP are formed mainly due
to the oxidation of tyrosine residues and SH-groups of
plasma proteins by hypochlorous acid (HClO), which, in
turn, is formed by the reaction of H2O2 with Cl-, catalyzed
by myeloperoxidase. The appearance of a close negative
association of this indicator with the level of plasma tGSH
and GSH redox status in patients with high level of lung
injury indicates that GSH is becoming a really important
determinant that prevents oxidative damage to proteins.
An indirect confirmation of the results obtained is the close
correlation between the level of rGSH in blood and the level
of SH-groups of proteins in critically ill adult patients hospi-
talized for severe COVID-19 [38].

With COVID-19, there is a shift in the balance between
angiotensin II, which has a prooxidant effect, and angioten-
sin 1-7, the ACEII-mediated product of angiotensin II cleav-
age, which inhibits reactive oxygen species (ROS)
generation. Overall, the formation of OS is favored. This
can enhance the invasion of SARS-CoV-2 due to the oxida-
tion of cysteine residues in ACE-II and the virus’s spike gly-

coproteins [39]. Angiotensin II-mediated activation of
NADPH oxidase can have a profound effect on GSH homeo-
stasis, since the restoration of GSH by GSH reductase
requires NADPH. It is interesting to note that in addition
to these, in principle, nonspecific mechanisms, two more
mechanisms related to GSH metabolism, specific for
COVID-19, have been suggested [17]. First, it was hypothe-
sized that the major protease SARS-CoV-2 has the ability to
break down GSH peroxidase, the main enzyme that GSH
uses to detoxify cells from ROS. Second, it has been sug-
gested that this major protease can cleave glutamate-
cysteine ligase, which is necessary for the synthesis of GSH.
In addition, SARS-CoV-2-mediated activation of tumor
growth factor (TGF-β) suppresses the expression of
glutamate-cysteine ligase [40]. Finally, it is known that many
viruses are capable of activating mechanisms aimed at
reducing the synthesis and redox status of GSH by increas-
ing the expression of NADPH oxidases, NF-κB, and inhibi-
tion of NRF2 expression [5].

Low GSH levels inhibit T lymphocyte proliferation and
subsequently disrupt the immune response [41, 42]. GSH
depletion is necessary for apoptosis to be triggered in lympho-
cytes, regardless of the presence of ROS [43]. GSH may also
contribute to the increased risk of severe COVID-19 with
age, since in the elderly, there is a decrease in the GSH level
in erythrocytes, lymphocytes, and plasma [44–46].

Although the results of studies on the role of vitamin D
deficiency in the severity of COVID-19 are ambiguous [47,
48], it has been shown that SARS-CoV-2 infection can inhibit
the activity of the vitamin D receptor [49]. GSH deficiency can
alter genes that work together to synthesize vitaminD, vitamin
D-binding proteins, and receptors, but supplementation with
L-cystine, a precursor for GSH, increases the levels of vitamin
D and its binding proteins [20, 50].
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Figure 2: Association of AOPP with GSH redox status (a) and tGSH level (b).
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The importance of the protective role of GSH in the
development of SARS is confirmed by a number of works
that show the effectiveness of the use of the GSH precursor
N-acetylcysteine for the prevention of this complication in
patients at high risk [51, 52]. Experimental work has also
shown that GSH/N-acetylcysteine has antiviral activity
toward a wide range of viruses [19, 20].

Numerous studies show that the fibrin degradation frag-
ment, D-dimer, is a useful clinical indicator of thromboem-
bolism, predictor of mortality, and marker for the
progression of COVID-19 [20, 53, 54]. In this regard, it is
interesting to identify a rather close negative association of
rGSH with the D-dimer level, which may indicate a signifi-
cant effect of GSH in the regulation of blood coagulation
activity in COVID-19.

To date, data on the possibility of using GSH as a diag-
nostic marker or therapeutic target in COVID-19 are scarce.
The first study that proposed a negative role of GSH defi-
ciency in COVID-19 included a sample of only four patients,
two of whom had severe and moderate-to-severe disease
[18]. It was reported that these patients had a decreased
plasma GSH/ROS ratios, but the method used to determine
these values was not described. In patients in the intensive
care unit (ICU), the level of rGSH in whole blood was
reduced, and the GPX activity, on the contrary, was
increased compared with reference levels [38]. So far, there
are several reports of the successful use of N-acetylcysteine
or GSH in patients with COVID-19 [55, 56].

In addition, of interest is the negative association of
tGSH level with MCV and MCH in COVID-19 patients. In
the literature, we did not find data on whether such an asso-
ciation exists in healthy individuals; therefore, we cannot
argue that this relationship is a characteristic feature of
COVID-19. However, it was previously shown that MCVs
were significantly higher in COVID-19 nonsurvivors than
in survivors, which indicates the importance of GSH as a
protective factor [57].

The present study also found that patients with lung
damage > 25% (CT2-4) had low plasma rCG levels. CG is a
product of plasma GSH cleavage by the surface protein
GGT. Decreases in rCG levels may be due to a shift in the
redox status of LMWTs, a decrease in plasma rGSH (or
tGSH) levels, a decrease in GGT activity, or an increase in
dipeptidase levels. According to our data, nothing is cur-
rently known about changes in the activity of GGT and
dipeptidase in COVID-19. Some clinical studies have
revealed a positive association of GGT with the arterial
hypertension, risk for cardiovascular diseases, and mortality
[29]. Apparently, an increase in GGT activity is the body’s
response to OS [58], which is confirmed by the close rela-
tionship between the GGT level and CRP [59]. The level of
Cys in the plasma and thus the synthesis of GSH largely
depend on the activity of GGT and dipeptidase, since neither
GSH itself nor CG is transported into cells. However, CG
also has prooxidant properties, since, being a strong reduc-
ing agent, it is able to reduce Fe+3 to Fe+2. Oxidation of
Fe+2, in turn, causes the appearance of ROS (superoxide
anion, H2O2). It is with this mechanism that the participa-
tion of CG and GGT in atherosclerosis is associated [29].

It is also difficult to explain the negative association of rCG
and tCG levels with PLT, especially in the latter case. It
can be assumed that the activation of hemostasis, leading
to a decrease in the PLT level, is accompanied by the release
of GSH from platelets, which is rapidly metabolized to CG.
Thus, the question of the association of CG with platelet
functions requires additional research.

5. Conclusions

In the present work, it was shown that the levels of tGSH
and rCG can be considered potential risk markers for the
severity of COVID-19 and lung damage upon admission.
GSH appears to be an important factor to oxidative damage
prevention as infection progresses. Further, the association
of GSH and CG with hematological parameters and D-
dimer levels indicates the potential clinical efficacy of cor-
recting GSH metabolism as an adjunct therapy for
COVID-19. Since a decrease in GSH levels is characteristic
of aging and comorbidities (diabetes mellitus, obesity, and
hypertension), which can have a major impact on the devel-
opment of COVID-19 severity [5], targeted studies of ami-
nothiols among such patient groups are of interest.
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The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is posing a great threat to the global economy and public health security. Together with the acknowledged
angiotensin-converting enzyme 2, glucose-regulated protein 78, transferrin receptor, AXL, kidney injury molecule-1, and
neuropilin 1 are also identified as potential receptors to mediate SARS-CoV-2 infection. Therefore, how to inhibit or delay
the binding of SARS-CoV-2 with the abovementioned receptors is a key step for the prevention and treatment of COVID-
19. As the third gasotransmitter, hydrogen sulfide (H2S) plays an important role in many physiological and
pathophysiological processes. Recently, survivors were reported to have significantly higher H2S levels in COVID-19
patients, and mortality was significantly greater among patients with decreased H2S levels. Considering that the beneficial
role of H2S against COVID-19 and COVID-19-induced comorbidities and multiorgan damage has been well-examined and
reported in some excellent reviews, this review will discuss the recent findings on the potential receptors of SARS-CoV-2
and how H2S modulates the above receptors, in turn blocking SARS-CoV-2 entry into host cells.

1. Introduction

The ongoing coronavirus disease 2019 (COVID-19) pandemic
has now spread worldwide tomore than 200 countries/regions
and has caused over 180 million infections, and over 4 million
deaths globally (as of 10 July 2021), which continues to rise
rapidly. It is posing a great threat to the global economy and
public health security. The current pandemic is caused by
the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), a lipid-enveloped positive-sense RNA virus
belonging to the β-coronavirus genus. Similar to other β-cor-
onaviruses, spike (S) protein mediates attachment and
membrane fusion of virus particles with target cells in SARS-
CoV-2 infection [1]. The S protein is a typical type I fusion
protein and is composed of two functional subunits: S1, which

contains the receptor binding domain (RBD) to mediate
receptor binding, and S2, which contains the transmembrane
domain to mediate virus-cell fusion [2]. Together with the
acknowledged angiotensin-converting enzyme 2 (ACE2), [3]
glucose-regulated protein 78 (GRP78), [4] transferrin receptor
(TFR), [5] AXL, [6] kidney injury molecule-1 (KIM-1) [7],
and neuropilin 1 (NRP1) [8] are identified as additional
potential receptors to mediate SARS-CoV-2 infection. The
first step of SARS-CoV-2 infection in humans is the binding
of RBD in the S1 subunit to the host’s cell surface receptors,
which plays a decisive role in the invasion and spread of
viruses, and, in turn, affects the clinical symptoms of patients.
Therefore, how to inhibit or delay the binding of RBDwith the
abovementioned receptors is a key step for the prevention and
treatment of COVID-19.
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For a long time, hydrogen sulfide (H2S) was known as a
poisonous gas to life and the environment. However, since
the pioneering work by Abe and Kimura in which it was
reported as a neuromodulator, H2S has been recognized
as the third gasotransmitter akin to nitric oxide and carbon
monoxide [9]. In biologic systems, H2S is endogenously
synthesized by three enzymes, namely, cystathionine γ-
lyase (CSE), cystathionine β-synthase (CBS), and 3-
mercaptopyruvate sulfurtransferase (3-MST) and elicits its
effect through four distinct pathways: (1) scavenging reac-
tive oxygen species (ROS); (2) posttranslational modifica-
tion, termed S-sulfhydration or persulfidation, on protein
cysteine residues; (3) binding of metalloprotein centers;
and (4) interaction with inter- or intramolecular disulfide
bonds. [10–12] It is becoming increasingly clear that H2S
plays an important role in many physiological processes,
and disturbances of the endogenous H2S production are
associated with the onset of several diseases, such as hyper-
tension, diabetes, cancer, and viral infection. [13–15]
Recently, Renieris et al. found that survivors had significantly
higherH2S levels in COVID-19 patients andmortality was sig-
nificantly greater among patients with a decrease of H2S levels.
[16] Combined application of N-acetylcysteine, a potential
H2S-releasing donor, improved the symptoms in COVID-19
patients [17]. Furthermore, a beneficial role of H2S against
COVID-19 and COVID-19-induced comorbidities andmulti-
organ damage had been well examined and reported in some
excellent reviews [18, 19]. Here, this review will discuss the
recent findings on the potential receptors of SARS-CoV-2
and how H2S modulates the abovementioned receptors, in
turn blocking SARS-CoV-2 entry into host cells.

2. Organ Damage of the SARS-CoV-2 and the
Protective Effect of H2S

Similar to other coronaviruses, direct organ damage will be
induced by the SARS-CoV-2 replication once it has invaded
the host cell. [20–22] Then, it also can induce organ damage
indirectly by the systemic inflammatory response (also called
as cytokine storm) [23], endothelial dysfunction, [24]
hypoxia, [25] and sympathetic overactivation. [26] Although
high H2S concentration is cytotoxic by inhibition of mito-
chondrial respiration, the physiological concentration of
H2S has been reported to protect multiple organs from
injury by its broad spectra of bioactivities, including antivi-
ral, alleviation of inflammation, restoration of endothelial
function, inhibition of the hypoxia or ischemia injury, and
normalization of sympathetic activities. [19, 27–29] Firstly,
accumulated evidence has demonstrated that H2S signifi-
cantly decreased viral replication and improved lung func-
tions in mice, while blockage of CSE activity or knockout
of CSE expression increased viral replication and enhanced
lung damage. [30] H2S also upregulated ACE2 expression
to reduce organ damages that were exacerbated by Ang II
accumulation after ACE2 internalizaion [31]. Secondly, after
being released, viral RNA, as a pathogen-associated molecu-
lar pattern, was recognized by a variety of pattern recogni-
tion receptors (PRRs) including Toll-like receptors (TLRs)
in an immune cell. Then, large amounts of proinflammatory

cytokines and chemokines were secreted in an unrestrained
way causing a cytokine storm and serious organ damage
[32]. H2S was found to reduce the expression of TLRs to pre-
vent TLR-mediated inflammatory response. [33] H2S was
also found to inhibit the secretion of virus-induced chemo-
kines and cytokines by inhibiting the activation and nuclear
translocation of NF-κB and then reducing the transcription
of proinflammatory genes [34]. Thirdly, Varga et al. verified
that endothelial cells were directly infected by SARS-CoV-2
and caused diffuse endothelial inflammation, which induced
endothelial dysfunction, thereby worsening organ damage.
[35] H2S was reported in various studies to ameliorate endo-
thelial dysfunction in cardiovascular disorders such as
hypertension, atherosclerosis, and metabolic syndrome,
[13, 27] which would be beneficial for COVID-19 treatment.
Fourthly, in addition to virus-related lung damage, macro-
and microvascular thrombosis induced by inflammation
and endothelial dysfunction could cause tissue hypoxia and
aggravate organ damage [36]. It was worthy of mentioning
that H2S has been identified as an excitatory mediator of
hypoxic sensing in the carotid bodies to elicit its protective
roles under hypoxic conditions. [37] H2S was also found to
attenuate ferric chloride-induced arterial thrombosis and
enhance the blood flow. [38] In addition, it promoted angio-
genesis and increased capillary density to limit damages in
the ischemic tissues. [39] Finally, it was indicated that
patients with preexisting cardiovascular diseases, including
hypertension, diabetes mellitus, and ischemic heart disease,
which were characterized by increased sympathetic activity,
seem to have a higher risk of morbidity and mortality in
COVID-19. Conversely, COVID-19 also increased sympa-
thetic overactivation inducing organ damage. [40] The
vicious circle between COVID-19 and sympathetic overacti-
vation might exacerbate the organ damage and comorbidi-
ties. However, H2S could break this vicious circle by
inhibiting sympathetic activation in the significant central
sympathetic sites [41, 42].

3. The Potential Receptors of SARS-CoV-2
and H2S

The virus-induced organ damage as described above is initi-
ated by the binding of S protein with the host’s cell surface
receptors. Here, the important entry receptors including
ACE2, GRP78, TFR, AXL, KIM-1, and NRP1 have been
outlined, and the possible mechanism of H2S in blocking
SARS-CoV-2 entry has been discussed (Table 1).

4. ACE2 and H2S

ACE2, a type I integral membrane glycoprotein composed of
a single extracellular N-terminal domain containing the
active catalytic site domain, a C-terminal membrane anchor,
and a HEXXH zinc-binding domain, is widely expressed in a
variety of tissues and cell types, including those in the lungs,
heart, kidneys, gut, and brain [86]. Known as a typical zinc
metallopeptidase, ACE2 counterregulates the renin-
angiotensin-aldosterone system (RAAS) by converting Ang
II to Ang 1-7 or Ang I to Ang 1-9, thus maintaining blood
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pressure homeostasis and fluid and salt balance. It also func-
tions as an amino acid transporter or a functional receptor
for MERS-CoV and SARS-CoV. [87] Like in SARS-CoV
infections, ACE2 serves as a major entry receptor for
SARS-CoV-2 in humans by binding to its S protein. [88]
ACE2 has a 10- to 20-fold higher affinity for SARS-CoV-2
S than for SARS-CoV, which results in a higher SARS-
CoV-2 infection efficiency. [89] Recent evidence in the liter-
ature indicated that intra- and intermolecular disulfides in
both ACE2 and SARS-CoV-2 S protein had an important
role for the binding process, which was regulated by the
thiol-disulfide balance of the extracellular environment.
[43, 44] Using molecular dynamics simulations revealed that
the reduction of all disulfides into the sulfydryl groups
completely impaired the binding of the SARS-CoV-2 S pro-
tein to ACE2. When the disulfides of only ACE2 were
reduced to sulfydryl groups, the binding became weaker,
while the reduction of disulfides of the SARS-CoV-2 S pro-
tein had a comparatively less effect [45]. Recently, several
reducing agents including N-acetylcysteine amide and L-
ascorbic acid were reported to inhibit viral entry by the
disruption of disulfides [46]. As a weak reducing agent,
H2S activated vascular endothelial growth factor receptor 2
(VEGFR2) to promote angiogenesis by breaking the
Cys1045-Cys1024 disulfide bond within the receptor [47].
H2S also targeted the Cys320/Cys529 motif and broke the
disulfide bonds in Kv4.2 to inhibit Ito potassium channels
in cardiomyocytes and regularize fatal arrhythmia in myo-
cardial infarction [48]. Moreover, H2S was used to break
mucin disulfide bonds, making the mucus less viscous and
easier to be expelled by the respiratory ciliary apparatus,
facilitating the elimination of potentially harmful viruses or
extraneous particle [49]. Thus, H2S is hypothesized to
exhibit antiviral activity by interfering with the combination
of ACE2 and SARS-CoV-2.

5. CS-GRP78 and H2S

GRP78, also known as immunoglobulin heavy-chain-
binding protein (BiP) or heat shock protein A5 (HSPA5),

is a well-characterized endoplasmic reticulum (ER) chaper-
one protein whose function is to translocate nascent poly-
peptides across the ER membrane and facilitates the
correct folding and assembly of proteins in normal cells.
When misfolded proteins accumulate in the ER following
ER stress, GRP78 is upregulated and plays a pivotal role in
the unfolded protein response (UPR) by binding to mis-
folded proteins initiating the refolding or degradation mech-
anisms [90]. Conversely, under the ER stress, overexpressed
GRP78 can escape the ER retention and translocate to the cell
surface, termed cell surface CS-GRP78, where it functions as
a multifunctional receptor to regulate cellular signaling, pro-
liferation, migration, invasion, apoptosis, inflammation, and
immunity [91]. CS-GRP78 is also reported to play a critical
role in viral and fungal infections. Viruses including Cox-
sackie virus, Zika virus, dengue virus, and Borna disease virus
recognize CS-GRP78 for entry or invasion into the host cells.
[92] CS-GRP78 was reported to facilitate MERS-CoV entry
into permissive cells by augmenting virus attachment in the
presence of DPP4 [93]. Recently, a molecular dynamics study
combined with molecular docking revealed the existence of
H-bonds or hydrophobic contacts between GRP78 and
C480-C488 of SARS-CoV-2 S protein [4, 94], which might
be related to viral infection. A better binding was also found
between GRP78 and the new UK variant of SARS-CoV-2.
[95] In addition, COVID-19 patients had higher gene expres-
sion and serum concentrations of GRP78 [96]. Considering
that virus invasion was associated with elevated levels of
CS-GRP78 expression, inhibiting overexpressed GRP78
would be a promising strategy to reduce virus infection.
H2S has been reported to downregulate the expressions of
ER stress-related proteins, including GRP78, in multiple
diseases by different pathways. Our study found that the ER
stress markers, including GRP78, CHOP, and active
caspase-12 levels, were significantly elevated in the calcified
rat aorta and H2S alleviated vascular calcification by inhibit-
ing ERS through the Akt signaling pathway activation [50].
In uranium-treated kidney cells, H2S downregulated the
expressions of GRP78 and CHOP and attenuated ER stress
via 20S proteasome involved in Akt/GSK-3β/Fyn-Nrf2

Table 1: Potential host receptors and possible mechanism of H2S in blocking SARS-CoV-2 entry.

Potential receptors Possible regulatory mechanism of H2S Key references

ACE2 Interaction with intramolecular disulfide bonds [43–49]

GRP78 Downregulation of its expression by inhibiting the related signal pathways [50–53]

TFR
Downregulation of its expression at transcriptional levels [54–56]

Downregulation of its expression at posttranscriptional levels [57–60]

AXL

Downregulation of its expression by S-sulfhydrating its transcription factor [61, 62]

Downregulation of its expression by inhibiting its transcription factor translocation [63–65]

Downregulation of its expression by histone acetylation of its promoter [66–68]

KIM-1
Downregulation of its expression by reducing the phosphorylation of its transcription factor [69–72]

Downregulation of its expression by reducing ROS or ERK1/2 pathway [73–75]

NRP1

Downregulation of its expression by S-sulfhydrating its transcription factor [62, 76]

Downregulation of its expression by inhibiting its transcription factor translocation [64, 65, 77]

Inhibition of cytokines [78–81]

Downregulation of its expression by inhibiting the related signal pathways [82–85]
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signaling axis. [51] In hyperhomocysteinemia-induced
cardiomyocyte injury, H2S supplementation decreased the
expressions of ER stress-associated proteins, including
GRP78, while the inhibition of endogenous H2S production
further increased the expressions of those proteins [52].
H2S was also reported to inhibit cigarette smoke-induced
overexpression of ER stress-associated proteins in bronchial
epithelial cells [53]. Therefore, H2S may block the SARS-
CoV-2 from entering the host cells by inhibiting the ES stress
and reducing the expression of CS-GRP78.

6. TFR and H2S

TFR is a membrane receptor playing a critical role in the
maintenance of body iron homeostasis. The TFRs have two
subtypes: TFR1 and TFR2. TFR1 is ubiquitously expressed
at different levels on normal cells and serves as a gatekeeper
regulating the cellular uptake of iron from transferrin, while
TFR2 is specially expressed in hepatocytes and serves as an
iron sensor [97]. TFR1 has attracted more attention than
TFR2 by having diverse functions. TFR1, also known as clus-
ter of differentiation 71 (CD71), is a homodimeric type II
transmembrane glycoprotein involved in the cellular iron
uptake through a constitutive clathrin-dependent endocyto-
sis mechanism. It is expressed at low levels in most normal
cells and at greater levels in rapidly proliferating cells and
energy-requiring cells owing to the increased iron require-
ments. So, it may play additional roles in cell growth and
proliferation [98]. Given that it is a ubiquitously and abun-
dantly expressed cell surface membrane protein, TFR1 is a
vulnerable target for pathogens to initiate host cell infection.
It has been documented that multiple viruses, including New
World hemorrhagic arenaviruses, hepatitis C virus, and
human adenoviruses, recognize and bind with the apical
domain of TFR1 to enter cells without interfering with iron
delivery. [99] In this way, the viruses infect rapidly prolifer-
ating and iron-acquiring cells, which can facilitate their rep-
lication. Furthermore, endocytosed TRF1 recycles back to
the cell surface in a constitutive manner but is not downreg-
ulated by viruses’ infection, which may cause the superinfec-
tion. [100] Recently, it was reported that TFR1 directly
interacted with the S protein of SARS-CoV-2 to mediate
virus entry, while it was blocked by interfering TFR-spike
interaction. Furthermore, anti-TFR antibody showed the
promising antiviral effects in mouse model. [5] Considering
that it is another receptor for SARS-CoV-2 entry, downreg-
ulating the expression of TFR1 or preventing the transloca-
tion of TFR1 to plasma membrane may be effective
strategies to prevent virus invasion. Various molecular
mechanisms are involved in the regulation of its expression
at both the transcriptional and posttranscriptional levels.
At the transcriptional level, TFR1 gene transcription has
been shown to be stimulated by the transcription factor c-
Myc. [54] However, the impact of H2S on the c-Myc remains
controversial. Zhang et al. reported that exogenous H2S
activated the ERK1/2/c-Myc pathways and restored
postconditioning-mediated cardioprotection in the aged car-
diomyocytes [101]. Contrastingly, Song et al. reported that
H2S donor inhibited the cell proliferation by downregulating

the expression of proliferation-related proteins including c-
Myc. [55] Moreover, diallyl disulfide, a potential H2S donor,
decreased telomerase activity in U937 cells by reduced
binding of c-Myc to their respective binding sites on the pro-
moter. [56] At the posttranscriptional level, TFR1 expression
is finely regulated in an intracellular iron-dependent manner
by the iron-responsive element/iron-regulated protein
(IRE/IRP) system. [57] In case of cellular iron deficiency,
the two IRPs (IRP1 and IRP2) bind to the multiple IRE
motifs by the -SH residues in the 3′ untranslated region of
TFR1 mRNA and inhibit their degradation by a steric
hindrance mechanism, thus increasing TFR1 protein expres-
sion. Conversely, in the presence of excess iron, IRP1
becomes an aconitase with the binding of a 4Fe-4S cluster,
while IRP2 is degraded after ubiquitination, leading to the
disappearance of IRE binding activity and degradation of
TFR1 mRNA. Reactive oxygen species (ROS), including
superoxide anion and hydrogen peroxide, was found to pro-
mote the loss of the 4Fe-4S cluster and enhance the IRE
binding activity of IRP1, resulting in TFR1 translation [58].
Since it has long been assumed to be an antioxidant, H2S
may inhibit the IRP binding activity and downregulated
TFR1 protein by scavenging ROS. H2S was also reported to
regulate the bioactivities of multiple proteins via S-
sulfhydration of cysteine residues, [59] so H2S might S-
sulfhydrate cysteine residues of IRP1 to prevent its IRE bind-
ing activity, thus downregulating TFR1 protein. In addition,
the Na+/H+ exchanger enhanced TFR1 translocation to the
membrane of microvascular endothelial cells at the blood-
brain barrier, [60] which might be inhibited by H2S [102].

7. AXL and H2S

AXL, also known as UFO, ARK, Tyro7, or JTK11, belongs to
the tumor-associated macrophage (TYRO3, AXL, and
MERTK) family receptor tyrosine kinases (RTKs). After
binding with its ligand, growth arrest-specific protein 6
(GAS6), it leads to the activation of several downstream sig-
naling pathways, including the Ras/Raf/MEK/ERK cascade
and PI3K/Akt signaling pathways, and transduces signals
from the extracellular matrix into the cytoplasm. [103]
AXL has been originally detected as an unidentified trans-
forming gene in chronic myeloid leukemia. Since then,
AXL is found to be overexpressed in many types of cancer
and is associated with therapy resistance, adverse prognosis,
and worse outcome [104]. Under normal physiologic condi-
tions, AXL is ubiquitously expressed in a wide variety of
organs and cells originating from hematopoietic, epithelial,
and mesenchymal sources and regulates many important
physiological processes, including taming inflammation,
clearing apoptotic cells, maintaining vascular integrity, and
regulating cell survival, proliferation, and differentiation.
Moreover, AXL has been found to be a candidate entry
receptor for West Nile, Ebola, and Zika viral infections and
its specific inhibitors reduced viral infectivity [105]. Most
recently, Wang et al. found that AXL specifically interacted
with the N-terminal domain of the spike glycoprotein in
SARS-CoV-2, which colocalized mainly to the cell mem-
brane, and it was a novel entry receptor for SARS-CoV-2

4 Oxidative Medicine and Cellular Longevity



which played an important role in promoting viral infection
to the human respiratory system. [6] In line with it, gilteriti-
nib, an AXL inhibitor for acute myeloid leukemia treatment,
was recently demonstrated to possess antiviral efficacy
against SARS-CoV-2 infection in Vero E6 cells [106]. After
virus infection, the TLR-mediated immune network is stim-
ulated by viral particles, and then, the consequent type I
interferon (IFN) antiviral response upregulates AXL expres-
sion, [107] which further promotes virus infectivity. Huang
et al. reported that H2S downregulated TLR4, inhibited its
downstream NLRP3 inflammasome activation, and allevi-
ated high glucose-induced cardiac injury [108]. H2S was also
able to ameliorate LPS-induced inflammation through
TLR4/NF-κB signaling pathway inhibition [109]. In addi-
tion, polysulfide donors were reported to protect the mice
from lethal endotoxin shock by inhibiting TLR signaling.
[110] Several transcription factors, including specificity pro-
tein 1 (Sp1) [61] and hypoxia-inducible factor 1α (HIF-1α),
[63] have been shown to directly upregulate AXL expression
at transcriptional levels. H2S-mediated S-sulfhydration of
the Sp1 has been shown to decrease its binding activity to
the gene promoter region, thus preventing myocardial
hypertrophy [62]. H2S also suppressed HIF-1α translation
or activation under hypoxia [64, 65]. Conversely, reduced
H2S levels increased the levels of HIF-1α via increased ROI
levels in infected CSE KO macrophages [111]. Histone acet-
ylation can also affect AXL transcript levels. Reduced histone
acetylation of the AXL promoter led to the upregulation of
AXL expression that correlated with therapy resistance and
adverse prognosis in some types of cancers [66]. AOAA,
the inhibitor of endogenous H2S production, has been
reported to reduce histone acetylation, and H2S donor
increased H3 and H4 acetylation in LPS-treated cell [67].
H2S also suppressed the endothelial dysfunction and pre-
vented the occurrence of hypertension by inhibiting HDAC6
expression that removes acetyl groups from lysine residues
of histone to reverse histone acetylation [68]. In addition,
AXL mRNA expression is inhibited by miR-34a which has
identified target sequences in the AXL 3′ untranslated
region. [112] miR-34a expression was found to upregulate
diallyl disulfide-treated MDA-MB-231 cells [113].

8. KIM-1 and H2S

KIM-1, also known as TIM-1, is a single-pass type I cell
membrane glycoprotein with an extracellular six-cysteine
immunoglobulin-like (Ig V) domain topping a domain
characteristic of mucin-like O-glycosylated proteins. It is
virtually undetectable in normal kidney tissues, but its
expression is dramatically upregulated in the apical mem-
brane of the proximal tubule to reduce the innate immune
response and regulate the regeneration and repair of the
damaged epithelial cells after acute ischemic or toxic kidney
injury. However, prolonged KIM-1 expression may be
maladaptive and may lead to interstitial inflammation and
fibrosis in chronic kidney disease. Therefore, it is recognized
as a robust and reliable biomarker for early diagnosis, prog-
nosis, and monitoring of therapeutic effects in various
kidney diseases [114]. Moreover, KIM-1 is also identified

as a hepatitis A virus cell receptor 1 (HAVCR-1) that is
expressed by on the surface of different epithelial cells and
facilitates cellular entry of several viruses, including Ebola
virus, dengue virus, West Nile virus, and hepatitis A virus,
via the IgV domain [115]. A recent report suggested that
KIM-1 was not only a biomarker for COVID-19-associated
acute kidney injury (AKI) [116] but also a potential receptor
for SARS-CoV-2. [7] SARS-CoV-2 was reported to directly
infect the renal tubules by ACE2 and induced AKI, which
is one of the most prevalent complications among hospital-
ized COVID-19 patients [117]. After upregulated expression
induced by AKI, KIM-1 could directly bind to SARS-CoV-2
S protein which was inhibited both by anti-KIM-1 antibod-
ies and TW-37, an inhibitor of KIM-1 [118]. Another study
suggested that SARS-CoV-2 RBD bind with KIM-1 and
ACE2 via two distinct pockets, implicating that KIM-1 and
ACE2 may synergistically mediate the invasion of SARS-
CoV-2 in kidney cells [119]. The above “vicious cycle” exac-
erbates SARS-CoV-2 infection and KIM-1 may offer a new
therapeutic target that can minimize injuries due to SARS-
CoV-2. It was reported that H2S treatment downregulated
KIM-1 expression in hyperglycemic condition by inhibiting
Ca2+-induced mitochondrial permeability transition pore
opening [120]. Dopamine decreased KIM-1 levels and
preserved renal integrity during deep hypothermia and
rewarming likely by maintaining the expression of renal
H2S-producing enzymes and serum H2S. [121] A previous
report had shown that nuclear signal transducer and activa-
tor of transcription 3 (STAT3) could bind to the KIM-1 pro-
moter and increased its mRNA and protein levels. [69] In
our study, PPG, the inhibitor of endogenous H2S produc-
tion, increased phosphorylation of STAT3 and aggravated
vascular remodeling, while NaHS decreased phosphoryla-
tion of STAT3 and improved vascular remodeling [70].
The AMPK pathway might mediate the inhibition of STAT3
phosphorylation by H2S during inflammation [71]. Recently,
polysulfides were also reported to attenuate diabetic renal
lesions via the inactivation of STAT3 phosphorylation/ace-
tylation through S-sulfhydrating SIRT1. [72] In addition,
the increased KIM-1 expression was also mediated by the
ROS or ERK1/2 pathway, [73, 74] whereas H2S not only
attenuated ROS production but also abolished ERK1/2 acti-
vation, which possibly decreased KIM-1 expression. [75]

9. NRP1 and H2S

Neuropilins (NRPs) are highly conserved single-pass trans-
membrane glycoproteins that are expressed by a wide variety
of cell types, including neurons, blood vessels, immune cells,
and multiple tumor cells in mammals. To date, two homol-
ogous NRP isoforms have been identified, namely, NRP1
and NRP2, which share 44% sequence homology and have
a similar domain structure. The NRPs are composed of a
large extracellular domain, a transmembrane domain, and
a short cytoplasmic domain that lacks enzymatic activity.
Despite being devoid of an intracellular kinase domain,
NRPs act predominantly as a multifunctional coreceptor to
bind with various ligands including class 3 semaphorins
(SEMA3s), vascular endothelial growth factor, fibroblast
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growth factor, and transforming growth factor-β1 (TGF-β1)
by their well-structured extracellular part. As such, NRPs
mediate a wide range of signaling pathways and play critical
roles in the physiological and pathological processes, includ-
ing nervous and vascular development, immune response,
and tumor progression. [122] Moreover, NRPs have been
shown to mediate cellular entry and infectivity of viruses
such as Epstein-Barr virus (EBV), human T cell lymphotro-
pic virus-1 (HTLV-1), and murine cytomegalovirus
(MCMV) [123–125]. Recent literature has established
NRP1 as a coreceptor that facilitated SARS-CoV-2 cell entry
and infectivity, and NRP1 mRNA expression was elevated in
SARS-CoV-2-infected cells, but not in uninfected cells from
severe COVID-19 patients [126]. Studies based on X-ray
crystallography and biochemical approaches also showed
that the SARS-CoV-2 S proteins directly bind with extracel-
lular domain of NRP1 by electrostatic attraction and
infected human cells. [8] So NRP1 could be an ideal thera-
peutic target against SARS-CoV-2 infections. Although it
lacks a direct study, H2S may indirectly regulate NRP1
expression by affecting its transcription factors or some
cytokines. It had been demonstrated that NRP1 was the
downstream target of transcription factor Sp1 or HIF-1α
[76, 77]. However, as mentioned above, H2S inhibited the
downstream protein expression by regulating these two
transcription factors [62, 64, 65]. Cytokines, such as TNF-α
and TGF-β, were reported to induce NRP1 mRNA and pro-
tein expressions, [78, 79] while, as indicated by the plethora
of evidence, H2S downregulated TNF-α and TGF-β expres-
sions in a variety of pathological conditions [80, 81]. In
addition, NRP1 was upregulated by Wnt/β-catenin signal-
ing and sonic hedgehog (SHH)/GLI1 signaling in mam-
mary development and tumorigenesis [82, 83]. However,
diallyl trisulfide, a H2S donor, was found to inhibit breast
cancer stem cells via suppression of the Wnt/β-catenin
pathway, and sulforaphane, another H2S donor, signifi-
cantly inhibited the SHH/GLI1 pathway and its down-
stream target gene expression to regulate self-renewal of
pancreatic cancer stem cells [84, 85].

10. Conclusion

This review summarizes the potential receptors for entry of
SARS-CoV-2, including GRP78, TFR, AXL, KIM-1, and
NRP1, in addition to ACE2. Meanwhile, the potential mech-
anism by which H2S regulates the abovementioned receptors
to block the binding of SARS-CoV-2 has been discussed.
Although inorganic sulfide salts (NaHS and Na2S) have been
the most widely employed in biological and preclinical stud-
ies, none of them are unlikely to be a suitable clinical option
for a number of reasons, including poor water solubility, fast
and uncontrollable release, and unpleasant odor. Given that
it is not trivial to synthesize a clinically suitable H2S donor in
a short time, three types of potential H2S donors or drugs
should be considered to block viral entry: (1) natural H2S
donors (e.g., garlic and onions) [127, 128] or dietary micro-
nutrients (e.g., L-cysteine and taurine) [129, 130], (2) H2S-
donating derivatives of clinically used drugs that link various
H2S donating groups to clinically used drugs (e.g., ATB-346

[131] and GIC-1001 [132] which has completed phase 2 clin-
ical trial), and (3) several clinically used drugs that have been
verified to increase H2S levels (e.g., α-lipoic acid, [133] sodium
thiosulfate, [134] zofenoprilat, [135] and N-acetylcysteine
[136]). Sodium thiosulfate has been proposed as an inhalation
therapy for COVID-19, [137] and it was confirmed that the
combined application of N-acetylcysteine improved the symp-
toms in COVID-19 patient. [17] However, the abovemen-
tioned is just a stopgap; developing new clinically suitable
H2S donor drugs is necessary, and the clinical application of
H2S-targeted therapeutics to fight against diseases that are
not limited to COVID-19 should advance.
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The pandemic of the coronavirus disease 2019 (COVID-19) has posed huge threats to healthcare systems and the global economy.
However, the host response towards COVID-19 on the molecular and cellular levels still lacks full understanding and effective
therapies are in urgent need. Here, we integrate three datasets, GSE152641, GSE161777, and GSE157103. Compared to healthy
people, 314 differentially expressed genes were identified, which were mostly involved in neutrophil degranulation and cell
division. The protein-protein network was established and two significant subsets were filtered by MCODE: ssGSEA and
CIBERSORT, which comprehensively revealed the alternation of immune cell abundance. Weighted gene coexpression network
analysis (WGCNA) as well as GO and KEGG analyses unveiled the role of neutrophils and T cells during the progress of the
disease. Based on the hospital-free days after 45 days of follow-up and statistical methods such as nonnegative matrix
factorization (NMF), submap, and linear correlation analysis, 31 genes were regarded as the signature of the peripheral blood
of COVID-19. Various immune cells were identified to be related to the prognosis of the patients. Drugs were predicted for the
genes in the signature by DGIdb. Overall, our study comprehensively revealed the relationship between the inflammatory
response and the disease course, which provided strategies for the treatment of COVID-19.

1. Introduction

The global pandemic of the coronavirus disease 2019
(COVID-19), caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), exhibits high levels of
mortality and morbidity and has posed huge threats to
healthcare systems and the global economy [1, 2]. The cur-
rent COVID-19 pandemic is unprecedented; globally, there
have been over 108 million confirmed cases of COVID-19
that have led to over 2.37 million deaths, released by the
World Health Organization (WHO) on February 14, 2021
(https://www.worldometers.info/coronavirus/). It is urgent

to understand the molecular mechanisms of COVID-19
and identify the patients’ susceptibilities so as to find thera-
peutic interventions.

SARS-CoV-2 belongs to the family of single-stranded
RNA viruses known as coronavirus. Its cellular entry
requires angiotensin-converting enzyme 2 (ACE2) and
transmembrane protease serine 2 (TMPRSS2) for membrane
fusion or through the endosomal pathway to infect the host
[3–5]. With an oxidative stress and excessive inflammatory
response, COVID-19 is being regarded as a systemic disease.
With diverse clinical manifestations, COVID-19 patients
may present as asymptomatic, with mild respiratory tract
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infection, acute respiratory distress syndrome, respiratory
failure, or even death [6–8]. The imbalance of host immune
response and the activation of inflammatory cytokines are
called “cytokine storm,” which is related to the severity of
the disease and poor prognosis [9].

So far, several immunological characteristics of COVID-
19 patients have been demonstrated. Serum c-reactive pro-
tein (CRP) and interleukin-6 (IL-6) will increase, while
CD4+ and CD8+ T lymphocytes decrease [10–12]. Elevated
levels of other inflammatory cytokines and chemokines such
as interleukin-2 (IL-2) and interleukin-8 (IL-8), accompa-
nied by increased neutrophils and eosinophils, may also lead
to abnormal immune function in COVID-19 patients, fur-
ther causing more immune cells to be activated and
recruited into the lungs, causing “cytokine release syn-
drome” (CRS) [13–15]. The ratio of macrophages and
CD14+ monocytes in PBMC increased, especially in patients
with severe COVID-19 in the disease progression stage [16].
At the same time, the number of B cells in the peripheral
blood of patients with severe COVID-19 increased signifi-
cantly but the number of T cells and DC decreased [17].
With a lower baseline levels and functionally exhausted in
CD8+ T cells and NK cells, the imbalance of patients in
the intensive care unit (ICU) is more prominent [18].
Inflammation is further aggravated by the activation of
humoral immunity and the complement system, and the
weakening of some classical immune negative signals exacer-
bates inflammation [9, 19, 20].

Furthermore, several analyses of the transcriptome with
high throughput have been conducted to identify the molec-
ular signature of COVID-19 patients [21–25]. However, dif-
ferent studies may have distinct results due to the cohort size
and sample heterogeneity. In our study, we aimed to inte-
grate different high-throughput studies to unveil the tran-
scriptomic alterations and differences of immune cell
infiltration in the peripheral blood of COVID-19 patients.
We uncovered the differentially expressed genes between
the healthy people and patients, as well as the DEGs between
non-ICU and ICU patients, which underwent comprehen-
sive functional annotation and PPI network construction.
We applied ssGSEA and CIBERSORT to evaluate the
immune cell infiltration, and the DGIdb database was uti-
lized to predict the drug-gene interaction. By profiling the
characteristics of COVID-19 patients with different courses,
we hoped to provide new insights into molecular pathogen-
esis and potential therapeutic targets of COVID-19.

2. Materials and Methods

The workflow of the study was shown in Figure 1.

2.1. Data Processing. Two gene expression series, GSE152641
and GSE161777 [26, 27], which contained blood samples
from healthy controls and patients, were downloaded from
the Gene Expression Omnibus (GEO) (https://www.ncbi
.nlm.nih.gov/geo/) database on January 3rd and February
23 publicly. GSE152641 contained RNA sequencing data
from 62 COVID-19 patients and 24 healthy controls in the
form of count. 27 samples of GSE161777 were selected in

the form of count, including 13 patients (the first blood sam-
ple collection after diagnosis) and 14 healthy controls. Fur-
thermore, GSE157103 [28], another RNA-seq profile in the
form of TPM (trans per million), containing peripheral
blood leukocyte samples as well as various clinical informa-
tion from 50 ICU and 50 non-ICU COVID-19 patients was
also downloaded from the GEO database publicly for further
exploration on January 26.

2.2. Identification of Differentially Expressed Genes (DEGs).
The limma [29], limma_voom [30], and edgeR [31] package
of R were employed to perform the identification of DEGs;
the first one was for data in the TPM format and the latter
two were for data in the count format. We consider genes
with ∣log2 fold change ðFCÞ ∣ >1 and an adjusted p value<
0.05 is differentially expressed between two groups. These
genes were counted and included in the Venn diagram by
the Venndiagram [32] package of R to distinguish the
repeated ones.

2.3. Pathway and Functional Enrichment Analyses. The clus-
terProfiler [33] package of R was applied to perform the
pathway and functional enrichment analyses, based on the
Gene Ontology (GO) database [34] (http://geneontology
.org/) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [35] (https://www.genome.jp/kegg/). GO
is a platform constructed from the cellular component
(CC), molecular function (MF), and biological process
(BP). KEGG is a database widely used to carry out the bio-
logical pathway enrichment. Reactome [36] enrichment
and UniProt [37] database annotation are directly available
on Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING, http://string.embl.de/) online database for
further functional and pathway enrichment analyses.

2.4. Protein-Protein Interaction (PPI) Network Generation
and MCODE Analysis. The Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) was also exploited to
generate a protein-protein interaction (PPI) network, for
the online biological database is based on known and poten-
tial protein-protein interaction [38]. Only those genes with
interaction scores higher than 0.7 would be picked up and
put into Cytoscape software [39] for further visualization anal-
ysis. The plug-in Molecular Complex Detection (MCODE)
[40] was designed to seek subnets of PPI networks from the
STRING online database, and we set all the parameters to
default to identify significant subnets.

2.5. Evaluation of Immune Cell Abundance. Single-sample
gene set enrichment analysis (ssGSEA) was applied to quan-
tify the abundance of infiltration of different types of
immune cells through the GVSA [41] package of R. For
every single sample, we conducted standardization in order
of the gene expression amount and calculated the enrich-
ment scores (ES) by empirical cumulative distribution func-
tion, which can finally be transformed into the abundance of
infiltration of 28 types of immune cell, and the immune cells
gene sets were obtained from a recent study [42]. CIBER-
SORT [43] (https://cibersort.stanford.edu/), an analytical
tool (R script version was utilized) which can estimate the
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abundances of certain cell types in a mixed cell population,
was employed to reveal the proportion of 22 types of
immune cells.

2.6.Weighted Gene Coexpression Network Analysis (WGCNA).
Weighted gene coexpression network analysis (WGCNA)
was aimed at seeking for coexpressed gene modules and
exploring the connection between gene networks and the
traits being studied. First, according to the expression of
genes in different samples, the correlation between any two
genes, calculated by Pearson correlation analysis [44], was
collected to form a similarity matrix. At the same time, the
topological overlap matrix (TOM) method was employed to
take both direct and indirect relationships into account.
Then, the hierarchical cluster tree would generate whose
division of gene modules was based on the TOM value
between genes [45]. The module with the highest correlation
with sample characteristics was selected for further analysis.

2.7. Clustering and Subclass Mapping. Nonnegative matrix
factorization (NMF) clustering was conducted by the NMF
package in R [46]. Briefly, the best number of clusters was
chosen according to the cophenetic value. Then, NMF was
conducted with the best rank and the method set to “bru-
net.” Submap [47] in the GenePattern online tool (https://
cloud.genepattern.org/gp) was applied to evaluate the simi-
larities between the clusters identified by NMF and the
clinical traits. Patients were classified into 4 groups (divided
by the median and the upper and lower quantiles) accord-
ing to the hospital-free days, which were named B1, B2, B3,
and B4. The p value in the result was corrected by the
Bonferroni method.

2.8. Drug-Gene Interaction Prediction. The open-source
database named the Drug Gene Interaction Database
(DGIdb, https://dgidb.genome.wustl.edu) [48] was utilized
to show the known or potential interaction between drugs
and genes by entering a list of genes. DGIdb covers over
100000 drug-gene interactions and 42 potentially druggable

gene categories involving more than 40000 kinds of genes
and 10000 types of drugs, based on PharmGKB, DrugBank,
Chembl, TTD, Drug Target Commons, and others. Here, we
only included the drug which had been approved and had a
certain interaction (activator or inhibitor) with the gene.
Then, the interaction network downloaded was visualized
by Cytoscape.

2.9. Statistical Analysis. The Wilcoxon test was applied to
judge whether a statistically significant difference exists
among groups. Pearson correlation analysis was employed
to conduct the correlation analysis in WGCNA and Spear-
man correlation coefficient to evaluate the correlation
between genes, immune cells, and hospital-free days. All of
these statistical analysis were performed in R 4.0.3 version.

3. Result

3.1. Transcriptomic Alternations and Functional Enrichment
in COVID-19 Patients. Firstly, GSE152641, containing blood
samples from 62 COVID-19 patients and 24 healthy con-
trols, were obtained from the GEO database in the form of
count. Then, the result of featureCounts of GSE161777 pro-
vided by the authors was merged, in which blood samples of
14 healthy people and 13 patients (first blood collection in
the trial) were selected for subsequent analysis. We applied
limma_voom and edgeR for each of the two datasets to
increase the reliability of differentially expressed analysis.
Totally, 253 genes were found to be upregulated after inter-
section of 4 DEG results, and 61 genes were downregulated
(Figure 2(a)). GO analysis revealed that the 253 upregulated
genes were enriched in the different process associated with
neutrophil activation and miosis in the BP module, which
was validated in the CC and MF module (Figure 2(b)). Sim-
ilar results were gained in KEGG enrichment (Figure S1a).
However, not significant pathways were enriched in GO
and KEGG for the 61 downregulated genes (Figure S1b-c).
In all, peripheral blood of COVID-19 patients might be

GSE152641

GSE161777
Differentially Expressed Genes (DEGs) Functional enrichment 

PPI network
Immune cells infiltration

GSE157103

Immune cells infiltration

DEGs 31-gene signature Drug-gene
interaction

WGCNA

Hospital-
free days

MCODEssGSEA, CIBERSORT

Limma_voom, edgeR

Limma
DGIdbNMF submap

Figure 1: Workflow in the present study.
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characterized by neutrophil activation and cells were in a
state of hyperproliferation.

3.2. Protein-Protein Interaction (PPI) Network for the DEGs.
To explore the important genetic interaction of the occur-

rence of COVID-19, we utilized the STRING database to
construct the PPI network of the 314 DEGs and only the genes
with interaction scores larger than 0.7 were extracted, which
was then put into Cytoscape. The PPI network was visualized
containing 153 nodes and 1253 edges (Figure S2). The size and
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color of the nodes as well as edges had been mapped according
to the statistic results by NetworkAnalyzer. Furthermore,
MCODE was used to identify the key subnets, with all the
parameters set to default. We then presented the first two
significant clusters, which were again put into STRING for
the functional enrichment. Genes in cluster1 (score: 34.3,
37 nodes, and 618 edges) mostly involved in the cell cycle
according to Reactome Pathway enrichment; protein-
annotated keyword by UniProt showed the similar results
(Figures 3(a)–3(b)). Genes in cluster2 (score: 13.5, 14
nodes, and 88 edges) involved in Neutrophil degranulation,
which are mostly secretory protein and signaling protein
(Figures 3(c)–3(d)). Totally, there is more evidence to
support that neutrophil degranulation and the strong cell
proliferation status were the significant characteristics of
the infection of SARS-CoV-2 (early stage).

3.3. Difference of Immune Cell Abundance between COVID-
19 Patients and Healthy People. In order to clarify the alter-
ation of infiltration of different types of immune cells in the
peripheral blood, we applied ssGSEA and CIBERSORT to
evaluate the immune cell abundance. For both of the two
datasets, ssGSEA identified the increase of activated CD4 T
cell, gamma delta T cell, type 2 T helper cell, activated den-
dritic cell, macrophage, and neutrophil (Wilcox test, p
value< 0.05) in COVID-19 patients compared to healthy
people. ssGSEA also identified the decrease of activated B
cell, activated CD8 T cell, immature B cell, and natural killer
cell (Figures 4(a) and 4(c)). As for CIBERSORT, for both of
the two datasets, plasma cells, macrophages M0, and neutro-
phils were identified to be upregulated in COVID-19
patients significantly (Wilcox test, p value< 0.05) but naïve
B cells; T cells CD8 were detected to be downregulated
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Figure 3: Protein-protein interaction (PPI) network for the DEGs. (a) Cluster 1 (score = 34:3, node = 37, and edge = 618) detected by
molecular complex detection (MCODE) of Cytoscape. (b) Reactome pathway enrichment and UniProt database annotation for the genes
in cluster1; line represented strength value. (c) Cluster2 (score = 13:5, node = 14, edge = 88) identified by MCODE. (c) Reactome pathway
enrichment and UniProt database annotation for the genes in cluster2.
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(Figures 4(b) and 4(d)). Overall, we supposed that the occur-
rence of COVID-19 was accompanied by activation of neu-
trophil and macrophage, especially neutrophil. However,
there was a dramatic alteration of lymphocytes, CD 8 cells,
and naïve B cells that were considered to be downregulated
in the COVID-19 patients.

3.4. Relationship between Transcriptomic Alternations and
Severity of Patients. The transcriptomic and immune cell
infiltration alternations during the occurrence of the disease
have been revealed in the above study, but we wondered the
immunological factors in disease progression. GSE157103,
containing RNA-Seq data of peripheral blood leukocyte
samples and various clinical data from 50 ICU and 50
non-ICU COVID-19 patients, was downloaded from the
GEO database in the form of TPM. Limma package for
DEG analysis identified 376 DEGs, including 67 upregulated
genes and 309 downregulated genes, which were enriched in
neutrophil degranulation and T cell activation in BP of GO,
respectively (Figures 5(a) and 5(b)). To verify the DEGs, next,
WGCNA was conducted on the top 5000 genes with the max
median absolute deviation. 7 modules were clustered under
the power value set to 30 (Figure 5(c), 1, Figure S3a). The
grey module presented the highest correlation with the
clinical traits (correlation efficient = 0:65) (Figure 5(c), 2).
Thus, genes in the grey module were extracted for GO
and KEGG analysis, which still showed that neutrophil
degranulation and neutrophil activation involved in immune
response played a crucial role (Figure 5(d), Figure S3).

3.5. Drug-Gene Interaction Analysis for Genes Related with
Hospital-Free Days. In order to establish a gene signature
representing the occurrence and development of COVID-
19, we designed a pipeline for constructing the signature
(Figure 6(a)). Firstly, we intersected the 314 and 376 DEGs
gained from the above analysis. The 42 genes represented
the molecule made sense both in the occurrence and prog-
ress of the disease. Then, the correlation coefficients between
the 42 genes and the hospital-free days during 45 days of
follow-up were calculated. And 31 genes with the coefficient
larger than 0.4 or smaller than −0.4 were selected, which
were considered as the factors that had influence on the clin-
ical outcome. We regarded the 31 genes as a “signature”
always active in COVID-19 (Table 1).

Next, the DGIdb database was used to predict the drug-
gene interaction. All of the 31 genes were input and only
drugs that had been approved and had a clear pharmacolog-
ical effect (inhibitor or activator) were included. Drugs tar-
geting 5 of the 31 genes, including CA4, S100A12, MMP8,
MMP9, and FCER1A were identified (Figure 6(b)). We
had gotten that CA4, S100A12, MMP8, and MMP9 were
related to a longer hospital day (inhibitor needed) while
FCER1A was related to a longer hospital-free days (activator
needed). For CA4, 16 kinds of inhibitors were found. Tri-
chlormethiazide and bendroflumethiazide were the top two
with the highest query score and interaction score. For
S100A12, olopatadine and amlexanox tended to be the
inhibitors. Doxycycline and doxycycline calcium were found
to target MMP8, while glucosamine, minocycline, and cap-

topril targeted MMP9, and benzylpenicilloyl polylysine can
act as an agonist for FCER1A.

3.6. Difference of Immune Cell Abundance between ICU
Patients and Non-ICU Patients and Immune Subtypes. To
explore the immunological changes during the progress of
the disease, we again utilized the ssGSEA and CIBERSORT
for the evaluation of immune cell infiltration on GSE157103.
Interestingly, we observed a significant decline of different
types of immune cells in the ICU patients based on ssGSEA.
CIBERSORT also implicated the decrease of different types
of immune cells, including T cell CD8 and T cell CD4
memory-activated and NK cells resting, but showed an
increase of neutrophils (Wilcox test, p value<0.05). Therefore,
the COVID-19 patients in the ICU might show less activation
of the immune system (Figures 7(a)–7(b)).

Next, to preliminarily demonstrate the impact of
immune cells on clinical prognosis, we utilized the ssGSEA
result to conduct the NMF clustering. 4 clusters were identi-
fied as shown in the heat map (Figure 7(c), 1). We noticed
that only plasmacytoid dendritic cell, neutrophil, activated
dendritic cell, MDSC, monocyte, activated CD8 T cell, acti-
vated B cell, and immature B cell were included in the clus-
tering. Cluster3 was the subtype abundant of the first 3 cells
and poor of the latter 5 cells, and cluster4 was opposite
(Figure 7(c), 2). Then, patients were divided into 4 groups
according to the hospital-free days during the 45 days of fol-
low-up: 0 days (always in hospital), 0–26 days, 26–38 days,
and 38–45days. Submap was applied to evaluate the similar-
ity of gene expression characteristics between cluster1–4
and B1–4. Interestingly, the Bonferroni-corrected p value
hinted that cluster3 (subtype of abundant plasmacytoid
dendritic cell, neutrophil, and activated dendritic cell but
poor of others) could be mapped to the patients with short
hospital-free days (Bonferroni corrected p = 0:02), while
cluster4 could be mapped to the patients with a relatively
good prognosis (Figure 7(d)).

3.7. Immune Cell Abundance Was Closely Related with
Hospital-Free Days and Gene Signature. The correlation
coefficient between different types of immune cell infiltra-
tion and the hospital-free days during 45-day follow-up
was calculated; ssGSEA identified 10 types of immune
cells which could ameliorate the patient’s hospitalization
(Figure 8(a)). Unfortunately, most of them degraded in the
ICU patients compared to non-ICU patients. Furthermore,
CIBERSORT identified a negative impact of neutrophils on
the hospital days (Figure 8(b)). Integrated with the previous
analysis, it was credible that lymphocytes, especially CD8 T
cells, were a protective factor of COVID-19 and the neutro-
phil could be a risk factor. Additionally, to understand the
mechanism of the effect of the immune cells, we listed the
correlation between the immune cells and the 31-gene sig-
nature as well as the correlation between the cells and the
5 genes with targeted drugs (Figure S4a-b). Whether in
ssGSEA or CIBERSORT, it was implicated that CA4,
S100A12, MMP8, and MMP9 were related with the
regression of lymphocytes, especially CD8 T cells, while
related with the activation of neutrophil. Conversely,
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Figure 4: Difference of immune cell abundance between COVID-19 patients and healthy people (a) ssGSEA for evaluation of 28 immune
cell infiltration in GSE152641. (b) CIBERSORT for evaluation of 22 immune cell infiltration in GSE152641. (c) SsGSEA for evaluation of 28
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Figure 5: Relationship between transcriptomic alternations with severity of patients. (a) Biological process (BP) of GO analysis for genes
upregulated (n = 67) in ICU patients compared to non-ICU patients in GSE157103. (b) BP of GO analysis for genes downregulated
(n = 309) in the ICU patients. (c) Modules clustering and their relationship with clinical traits in WGCNA. (d) BP of GO analyses for
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8 Oxidative Medicine and Cellular Longevity



FCER1A was related to the activation of various kinds of
immune cells but was negatively correlated with neutrophil
infiltration (Figure 8(c)). In short, studies at the level of
transcriptome and immune cells can be integrated, which
also provided an explanation for the predicted drugs.

4. Discussion

Although the pandemic of COVID-19 has threatened the
health of the world, the host immune response to SARS-
CoV-2 infection still lacks full demonstration. Up to now,

evidence showed that an imbalanced immune response to
inflammation is a major trigger of COVID-19 and the dys-
function of local and systemic immune responses had been
implicated in the disease outcome and prognosis. Thus,
identifying transcriptomic and immunological alternations
may not only be significant for a better comprehensive
understanding of the mechanisms of the disease but also
help to effective therapy excavation and individualized
management.

In the present study, we paid close attention to both the
occurrence (comparison1: healthy vs. patients) and the
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progress (comparison2: non-ICUers vs. ICUers) of COVID-
19. 253 upregulated genes and 61 downregulated genes were
identified to be differentially expressed during the occur-
rence of the disease. GO, KEGG, Reactome, and UniProt
were used to annotate the function of DEGs, and the PPI
network was constructed, with 2 crucial subnets identified.
WGCNA was used to find the significant gene modules.
ssGSEA and CIBERSORT revealed that neutrophil activation
and CD8+ T cell downregulations were two reliable changes
in both of the comparisons. Novelly, several drugs were pre-
dicted and the pharmacological effects were understood.

Combined with the enrichment result and the evaluation
of immune cells, it was clear that peripheral blood of the
COVID-19 patients was in a state of hyperproliferation
and immune cells show overall activation. Such changes
had been considered to be strongly related to oxidative
stress, which strengthened the immune system but could
also cause excessive inflammatory and respiratory failure
[49, 50]. Inferred from two comparisons, the beneficial

immune defense gradually transformed into an excessive
inflammatory response, while the immune system would
be in a state of exhaustion. On the other hand, neutrophils,
which was believed to play a key role during the disease
course in the present study, could also lead to damage
through oxygen species (ROS) [51].

Here, we will review the genes that had potential drugs,
which owned a close relationship with oxidative stress and
inflammation. CAs, which catalyze the interconversion of
water and carbon dioxide into dissociated ions of carbonic
acid, are a kind of zinc metalloenzymes broadly engaged in
various biological processes [52–54]. There are 14 isozymes
of CAs altered genetically in the pathological status in
human [55], and CA4 is the most widely distributed one
[56]. CA4 plays an important role in the bicarbonate reab-
sorption of the kidney [57]. During acidosis, its competence
is enhanced to generate more H+ to relay the acidosis [58].
We assume that CA4 on blood cells can act likely in the aci-
dotic status resulting from hypoxia created by COVID-19.
And CA4 may affect the function of neutrophils by modulat-
ing altering pH [59].

Next, MMPs are an enzyme family majorly correlated
with the remodeling of extracellular matrix (ECM) compo-
nents [60]. MMP9 (or gelatinase B) is one of the main types
of MMPs and can be found in diverse cells like monocytes,
macrophages, and neutrophils. MMP9 are highly expressed
in pathological processes including inflammation [61], as is
also discovered in this study. MMP9 is an inflammatory
cytokine, acting as a regulator to promote the secretion of
other cytokines by leukocytes. Besides, MMP9 itself is also
regulated by the degranulation from neutrophils, which is
induced by other various types of chemotactic factors. More-
over, MMP9 can truncate IL-8, the major human neutrophil
chemoattractant, into a tenfold more potent form, creating a
positive feedback loop for neutrophil activation and chemo-
taxis [62]. MMP8 is majorly synthesized and archived in
neutrophils [63]. Circulating MMP8 has been found to
closely related with lung fibrosis in COVID-19 patients
[64] and serves as member of a 5-protein classifier to predict
the prognosis of idiopathic pulmonary fibrosis (IPF) [65].

Besides, S100A12 is a member of the S100 protein family
of calcium-binding ability and is predominantly secreted by
neutrophils [66, 67]. As an emerging biomarker for inflamma-
tory diseases, the level of S100A12 in serum can reflect the
systemic inflammatory status in acute otitis media, cystic
fibrosis, respiratory distress syndrome, and dermatomyositis-
associated interstitial lung disease [67, 68]. Besides, S100A12
is also found to herald worse cardiac output and mortality in
pulmonary hypertension [69], which is also common in
COVID-19 [70]. Moreover, SA100A12, together with
S100A8 and S100A9, which are also both released by neutro-
phils, can activate airway epithelial cells to produceMUC5AC,
a major mucin protein in the respiratory tract [71], partly
interoperating the excessive mucus discovered in the necropsy
of COVID-19 patients [72]. And compared with S100A8 and
S100A9, SA100A12 is more considered as a marker for respi-
ratory diseases with neutrophilic inflammation [73].

Furthermore, FCER1A encodes a subunit of FcεR that
can bind with IgE [74] and can be found on the surface of

Table 1: 31 Genes in the signature of COVID-19.

Gene Correlation coefficient p value

PID1 0.693520919 1.27E−15
P2RY10 0.679852476 7.38E−15
CD40LG 0.668959371 2.81E−14
FCER1A 0.654672468 1.49E−13
CD5 0.645849101 4.00E−13
TCF7 0.636922512 1.05E−12
FAM102A 0.624610777 3.80E−12
TRABD2A 0.623338096 4.32E−12
NELL2 0.618426883 7.08E−12
CPA3 0.593173164 7.88E−11
TPPP3 0.584820798 1.67E−10
HDC 0.57412751 4.24E−10
MAL 0.536815499 8.54E−09
PRSS33 0.521039587 2.73E−08
ALOX15 0.516734511 3.72E−08
VSIG4 −0.429548434 8.21E−06
MMP8 −0.472200179 7.05E−07
ANXA3 −0.517766599 3.46E−08
CHIT1 −0.529930553 1.43E−08
ADAMTS2 −0.53487937 9.89E−09
PCOLCE2 −0.544461309 4.76E−09
TPST1 −0.551635666 2.71E−09
WFDC1 −0.555936581 1.92E−09
IL18R1 −0.561055133 1.27E−09
CA4 −0.581762072 2.19E−10
MMP9 −0.583963653 1.80E−10
CD177 −0.594606481 6.91E−11
ARG1 −0.60433151 2.79E−11
OLAH −0.619818119 6.16E−12
S100A12 −0.646161289 3.87E−13
MCEMP1 −0.683772837 4.50E−15
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Figure 7: Difference of immune cell abundance between ICU patients and non-ICU patients and immune subtypes. (a) ssGSEA for
evaluation of 28 immune cell infiltration in GSE157103. (b) CIBERSORT for evaluation of 22 immune cell infiltration in GSE157103. (c)
4 clusters were identified in the NMF clustering using the ssGSEA result. (d) Bonferroni-corrected and nominal p value of the submap result.
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Figure 8: Immune cell abundance was closely related with hospital-free days and gene signature. (a) Immune cells were significantly related
with hospital-free days ð∣Spearman correlation coefficient∣>0:4Þ in ssGSEA. (b) Immune cells were significantly related with hospital-free
days ð∣correlation coefficient∣>0:4Þ in CIBERSORT. (c) Correlation between the expression level of CA4, S100A12, MMP8, MMP9, and
FCER1A and immune cell infiltration evaluated by ssGSEA. (d) Correlation between the expression levels of CA4, S100A12, MMP8,
MMP9, and FCER1A and immune cell infiltration evaluated by CIBERSORT.
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various kind of cells like basophils, mast cells, monocytes,
dendritic cells, and neutrophils [75]. Studies looking into
FCER1A in the respiratory system mainly focus on mast cell
and basophils, two major cells involved in allergy [76]. But
the decreased level of FCER1A in COVID-19 patients
seemed to not explain the potential role of the activation of
mast cell or that basophil plays in hyperinflammation with
patients [77, 78], which deserves to be further studied.

With regard to the immune cell infiltration of the blood,
the elevation of the abundance of neutrophils is universally
observed in various studies [79]. This study also suggested
the important role of neutrophils in the pathological process
of COVID-19. Infected lung cells are found to express
neutrophil-attracting chemokines, and attracted neutrophils
can attract even more neutrophils that might finally result in
the excessive activation and degranulation of neutrophils,
contributing to neutrophil-related lung damage [80, 81].
Several possible mechanisms concerning neutrophils are
proposed. Neutrophil extracellular traps (NETs), which refer
to web-like chromatin structures derived from dead neutro-
phils [82], might be one of the most prevalent ones [83].
MMP8, MMP9, and S100A12, three genes that we found sig-
nificantly upregulated in COVID-19 patient, are also common
components in NETs [84–86], which further demonstrates the
vital roles of NETs in COVID-19 development.

On the other hand, the abundance of CD8+ T cells was
reported to decrease in COVID-19 patients and exhibit
functional exhaustion molecules, such as NKG2A, PD-1,
and TIM-3 [87]. And neutrophil-to-lymphocyte can also
increase as a result of systemic inflammation serving as a
prognostic marker [88]. Single-cell RNA sequencing of
bronchoalveolar cells depicted a more complicated land-
scape of CD8+ T cells in COVID-19 patients, further point-
ing out the heterogeneity of cell numbers and clonal
expansion of different CD8+ T cell clusters [89].

Herein, we can understand the mechanisms of the drugs
which were predicted in the present study based on the
above discussion. Trichlormethiazide and bendroflumethia-
zide are both inhibitors for CAs [90, 91]. Application of
CA inhibitors in COVID-19 individuals can block the dis-
charge of H+ in the kidney and worsen the acidotic status
in patients [92]. Besides, application of the CA inhibitor
can rescue the decrease of IL-8, the most important chemo-
tactic for neutrophils in hypercarbia, which might deterio-
rate the overactivation of neutrophils [59]. Olopatadine is
an antiallergic drug antagonizing the histamine H(1) recep-
tor [93]. Amlexanox is a small-molecule targeted therapy
used to treat atopic diseases [94]. Both olopatadine and
amlexanox were found to have the ability to suppress the
migration of monocytes induced by proinflammatory
S100A12 [95]. Doxycycline has antimicrobial effect as well
as potent anti-inflammatory activity [96]. And doxycycline
can downregulate MMP8 both in mRNA and protein levels
[97]. Minocycline is another kind of common antibiotic
used in bedside and it was found to reduce the level of
MMP9 [98, 99]. Captopril is one of angiotensin-converting
enzyme inhibitors (ACEIs) usually used to relieve hyperten-
sion [100] and can also downregulate the expression of
MMP9 and reactive oxygen species (ROS) [101].

5. Conclusion

Based on 3 dependent RNA-seq of COVID-19 patients, we
learned that the neutrophil degranulation was significant in
the occurrence of the disease, during which the peripheral
blood was in a hyperproliferative state. Neutrophil activation
and the inactivation of CD8+ T cells played a key role during
the progress of the disease and 4 immune subtypes were
identified. A 31-gene composed signature was established
which was crucial during the course of the disease. Several
drugs were predicted for the therapies of COVID-19 based
on the prognostic value of the genes in the signature. In
short, we believe that our study shed light on the under-
standing and treatment of COVID-19.
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The outbreak of the COVID-19 pandemic represents an ongoing healthcare emergency responsible for more than 3.4 million
deaths worldwide. COVID-19 is the disease caused by SARS-CoV-2, a virus that targets not only the lungs but also the
cardiovascular system. COVID-19 can manifest with a wide range of clinical manifestations, from mild symptoms to severe
forms of the disease, characterized by respiratory failure due to severe alveolar damage. Several studies investigated the
underlying mechanisms of the severe lung damage associated with SARS-CoV-2 infection and revealed that the respiratory
failure associated with COVID-19 is the consequence not only of acute respiratory distress syndrome but also of macro- and
microvascular involvement. New observations show that COVID-19 is an endothelial disease, and the consequent
endotheliopathy is responsible for inflammation, cytokine storm, oxidative stress, and coagulopathy. In this review, we show the
central role of endothelial dysfunction, inflammation, and oxidative stress in the COVID-19 pathogenesis and present the
therapeutic targets deriving from this endotheliopathy.

1. Introduction

The SARS-CoV-2 virus, responsible for COVID-19 disease,
can evolve with a wide range of clinical manifestations, from
mild forms manifesting as fever, dyspnea, cough, and loss of
smell and taste to severe forms, especially in the elderly with
comorbidities, characterized by respiratory failure due to
severe alveolar damage [1]. In the extremely severe forms

of the disease, rapidly progressive multiple organ failure
occurs, which manifests through complications such as
shock, acute cardiac injury, acute respiratory distress
syndrome (ARDS), disseminated intravascular coagulopathy
(DIC), and acute kidney injury, which may ultimately prove
fatal [2]. Recent studies have demonstrated that respiratory
failure occurring in COVID-19 is due not only to acute
respiratory distress syndrome but also to macro- and
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microvascular involvement [3–5], a particular role being
played by vascular endothelial damage [6, 7]. New observa-
tions show that COVID-19 is an endothelial disease [8]
and that endotheliopathy is responsible for inflammation,
cytokine storm, oxidative stress, and coagulopathy. An argu-
ment of this theory is the fact that patients who have endo-
thelial dysfunction due to various comorbidities (obesity,
hypertension, and diabetes) develop more severe forms of
COVID-19, explained by an additional alteration of the
already dysfunctional vascular endothelium [7].

In this review, we show the central role of endothelial
dysfunction, inflammation, and oxidative stress in the devel-
opment of complications of SARS-CoV-2 infection and their
pathophysiological consequences, and examine the main
therapeutic targets deriving from this endotheliopathy.

The endothelium, one of the largest organs of the human
body, is capable of producing a wide variety of molecules,
with effects that are often contradictory, with a role in
maintaining homeostasis, such as vasodilator and vasocon-
strictor, procoagulant and anticoagulant, inflammatory and
anti-inflammatory, fibrinolytic and antifibrinolytic, and oxi-
dant and antioxidant substances [9].

The normal endothelium regulates vascular homeostasis
through six major functions: (1) modulation of vascular
permeability, (2) modulation of vasomotor tone, (3) mod-

ulation of coagulation homeostasis, (4) regulation of
inflammation and immunity, (5) regulation of cell growth,
and (6) oxidation of LDL cholesterol (Figure 1). These
functions are achieved through numerous mediators, of
which the most studied is nitric oxide (NO) [9].

Nitric oxide is the most important vasodilator substance
produced by endothelial cells. NO also has an antithrom-
botic action, inhibiting the fibrotic properties of angiotensin
II and endothelin I by downregulating the receptors for these
molecules. NO is synthesized in endothelial cells from L-
arginin under the action of the endothelial NO synthase
(eNOS) [10]. This reaction requires the presence of molecu-
lar oxygen and certain cofactors, including calmodulin,
tetrahydrobiopterin (THB4), NADPH (adenine dinucleotide
phosphate), flavin adenine dinucleotide, and flavin mononu-
cleotide. From this reaction, L-citrulline as a by-product
results [11].

Endothelial dysfunction is defined as a reduction in the
bioavailability of vasodilator substances, especially NO, and
an increase in vasoconstrictor substances.

The reduction of NO bioavailability can be due to a
decrease in eNOS production (lack of cofactors necessary
for eNOS synthesis) on the one hand, and to an increase in
excessive NO degradation or inactivation by reactive oxygen
species (ROS), on the other hand [12]. The increase in the

Vasodilatators factors Vasoconstrictors factors

Vasomotor tone

Normal endothelium

Cell growth and
angiogenesis

Oxidation of LDL
cholesterol

Procoagulant factors
Anticoagulant factors

Inflammation and 
Immunity

Vascular permeability
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NO, H2S, PG-E2, D2, I2,
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Figure 1: Functions of vascular endothelium. Endothelium cells produced some vascular mediators/factors that accomplished the six major
functions of normal endothelium (modulation of vascular permeability and vasomotor tone modulation, coagulation homeostasis,
inflammation and immunity regulation, cell growth regulation, and oxidation of LDL cholesterol) by which the vascular homeostasis is
maintained (adapted after [9]).
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production of ROS, such as superoxide anion (O2
-), hydro-

gen peroxide (H2O2), hydroxyl radical (HO•), hypochlorous
acid (HOCl), and lipid superoxide radical, represents the
main cause of the decrease in NO bioavailability in car-
diovascular diseases [13]. Under physiological conditions,
ROS production is controlled by an effective system of
antioxidants, molecules that are capable of neutralizing
ROS, thus preventing oxidative stress. In tissues, natural
enzymatic antioxidants, such as superoxide dismutase
(SOD), glutathione peroxidase, and catalase, play an impor-
tant role in the conversion of ROS to oxygen and water. In
pathological conditions, ROS can be present in excess rela-
tively to the existing antioxidant capacity. This alteration of
the balance in favor of oxidation termed “oxidative stress”
may have negative effects on cell and tissue function [9].

Endothelial cells (EC) possess a number of mecha-
nisms that reduce local oxidative stress. When subjected
to shear stress, the endothelium produces SOD, which
eliminates ROS [14]. The endothelial cell can also express
glutathione peroxidase, which can mitigate oxidative stress
[15]. Similarly, haem-oxygenase provides another mecha-
nism by which the endothelial cell can resist to local oxi-
dative stress [16, 17].

In contrast, proinflammatory cytokines can stimulate
endothelial cells to mobilize NADPH-oxidase that generates
superoxide anions, amplifying local oxidative stress [18, 19].

2. COVID-19-Associated Endotheliopathy and
Oxidative Stress

Endothelial dysfunction or endotheliopathy is an important
pathological characteristic in COVID-19 [20]. Electron
microscopy of blood vessels in autopsy samples from
patients with COVID-19 revealed the presence of endothe-
lial cell degradation and apoptosis [21, 22]. Endothelial
dysfunction biomarkers, such as thrombomodulin, von
Willebrand factor (vWF), angiopoietin 2, and PAI-1, are fre-
quently increased in patients with COVID-19 compared to
healthy persons and seem to have prognostic significance,
being associated with more severe forms of the disease and
high mortality [23, 24]. Endothelial dysfunction is an impor-
tant factor in the pathophysiology of thrombotic complica-
tions associated with COVID-19, including myocardial
infarction and stroke [23, 24].

At present, it is uncertain whether endotheliopathy asso-
ciated with COVID-19 is the result of direct endothelial cell
viral infection, as reported in some autopsy studies [21, 25]
or is a consequence of the inflammatory response induced
by the virus.

Many pathophysiological mechanisms have been described
which explain the implication of endothelial dysfunction in
the occurrence of microvascular involvement in COVID-19
infection. Microvascular cerebral involvement in COVID-
19 as a result of age-related endothelial dysfunction is an
important challenge for research [20]. Overactivation of
poly-(ADP-ribose) polymerase 1, as can be observed in viral
infections, can lead to NAD+ depletion and subsequent
endothelial dysfunction [26, 27]. In addition, the dysfunc-
tion of the nuclear factor erythroid 2-related factor 2

(NRF2) antioxidant defense pathway in endothelial cells
might also play a role in the COVID-19 associated endothe-
liopathy [28]. The pharmacological activators of NRF2 were
proposed as potential treatment options for COVID-19
[29]. NRF2 has strong anti-inflammatory and antiapoptotic
effects in endothelial cells. It should be noted that NRF2
dysfunction exacerbates the deleterious effect of hyperten-
sion and diabetes on the endothelium, conditions known
for the increase in the COVID-19-related risk of death [29].

Oxidative stress is generated by high Ang II concentra-
tions and low Ang 1-7 concentrations (Figure 2). These
ROS can oxidize cysteine residues in the peptidase domain
of receptors ACE2 and RBD of proteins SARS-CoV and
SARS-CoV-2, maintaining them in oxidized forms (disul-
fide), unlike reduced forms (thiol) [30]. It is possible that
oxidation of these thiols to disulfides, through an oxidative
stress mechanism, may increase the affinity of proteins
SARS-CoV and SARS-CoV-2 S for ACE2 receptors and,
consequently, increase the severity of COVID-19 infec-
tion [31].

The relationship between Ang II and NADPH-oxidase
was investigated using murine smooth vascular muscle cells.
When the cells were exposed to Ang II, the researchers
observed an increased activity of NADPH-oxidase, as well
as an increased production of superoxide anions. The exact
mechanisms for the stimulation of NADPH-oxidase are
complex, genetically mediated, at transcriptional and post-
transcriptional level, and involve numerous signaling mole-
cules and scaffolding proteins/platforms [32]. Inactive
NADPH-oxidase contains two subunits: glycoprotein (gp)
91phox and p22phox. In the presence of Ang II, NADPH-
oxidase is activated through the involvement of additional
subunits p67phox, p47phox, p40phox, and Rac1. Activated
NADPH-oxidase can generate superoxide anions. Studies
in mice have shown that increased NADPH-oxidase activity
can be found even in the absence of ACE2 [33, 34]. Since
binding of SARS-CoV-2 to ACE2 receptor inhibits the
catalytic activity of the enzyme, i.e., the conversion of Ang
II to Ang 1-7, the activity of NADPH-oxidase increases in
patients with SARS-CoV-2, subsequently leading to an
increase in oxidative stress [35].

In a recently published study [36], the long-term effects
of SARS-CoV-2 virus on oxidative stress and vascular
endothelium were discussed. Thus, it was proposed that
SARS-CoV-2, by inducing mitochondrial dysfunction and
oxidative stress, can initiate a feedback loop promoting a
chronic state of inflammation and endothelial dysfunction
even after the viral particles have been eliminated from the
body. In this proposed mechanism, SARS-CoV-2 first
induces activation of NADPH-oxidase, which produces
superoxide (O2

–), a ROS that is involved in reactions which
deteriorate the electron transport chain (ETC) [32, 37].

Increased oxidative stress and inflammation resulting
from this mitochondrial dysfunction subsequently initiate a
feedback loop that perpetuates NADPH-oxidase activation,
mitochondrial dysfunction, inflammatory cytokine produc-
tion and loss of identity of EC [36]. Considering these hypo-
thetical long-term consequences of SARS-CoV-2 infection
on blood vessels, the treatment of chronic oxidative stress
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and inflammation in EC can be essential in preventing
future complications among millions of persons currently
diagnosed with COVID-19 [38].

3. COVID-19 Endotheliitis

Numerous postmortem histopathological examinations in
patients who died of COVID-19 not only revealed the
presence of endotheliitis in the key organs affected by
SARS-CoV-2, but also demonstrated the presence of viral
structures within the endothelial cells by electron micros-
copy [21, 25, 39, 40]. By analyzing samples from the trans-
planted kidney in a COVID-19 patient who developed
multiorgan failure, Varga et al. [25] demonstrated the capac-
ity of the virus to invade endothelial cells. In the same
patient, histological findings showed the inflammatory infil-
trate of the endothelium and the morphological changes that
occur during apoptosis in the heart, small bowel, and lungs.
Furthermore, they proved the presence of endotheliitis in the
lung, heart, kidney, liver, and small intestine of two other
COVID-19 patients by postmortem analysis [25]. The wide
distribution of ACE2 receptor in endothelial cells explains
the multiorgan affinity of the virus, confirmed once more
in a study by Puelles et al. The presence of viral particles
in the pharynx, lungs, heart, blood, liver, kidneys, and brain
was established despite the level of viral load [39].

The electron microscopy studies performed by Ackermann
et al. [21] proved the presence of SARS-CoV-2 within the
endothelial cells and in the extracellular space; further-
more, ultrastructural injury of the endothelium was also

present. The authors of the aforementioned study com-
pared the histological changes that occur in the lungs of
SARS-CoV-2 patients with those occurring in acute respi-
ratory distress syndrome caused by influenza A (H1N1)
and ten uninfected control lungs. The results revealed that
the lungs of COVID-19 patients presented disseminated
alveolar injury associated with necrosis, lymphocytic
inflammation, and microthrombosis. In addition, the
expression of angiotensin-converting enzyme 2 (ACE2)
investigated by immunohistochemical analysis was present
in lymphocytes only in the COVID-19 and influenza
groups [21].

The postmortem electron microscopy analysis of the
kidney tissue of 26 patients with COVID-19 from China
revealed the presence of coronavirus-like particles in the
renal tissue. Furthermore, the SARS-CoV-2 receptor ACE2
was upregulated in these patients. This study conducted by
Su et al. confirms once more the virus tropism for kidney
tissue [40].

Menter et al. identified in patients who died with
COVID-19 the presence of capillaritis and microthrombi
in the lungs, and showed diffuse vascular damage in other
organs highly suggestive of vascular dysfunction [41].

Cutaneous biopsies from the skin lesions associated with
SARS-CoV-2 were also performed. The optical microscopy
findings of a biopsy from a chilblain-like lesion in a 23-
year-old patient diagnosed with coronavirus disease revealed
the presence of inflammatory infiltrate, consisting espe-
cially of lymphocytes, which were “tightly cuffing the
vessels” [42]. Kanitakis et al. accomplished histological,
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Figure 2: SARS-CoV-2 enters the human body by binding to ACE2. Activation of RAAS produced a cytokine storm, resulting in the
secretion of proinflammatory cytokines/chemokines such as interleukins (ILs), interferon-gamma (IFN-γ), monocyte chemoattractant
protein-1 (MCP1), and tumor necrosis factor-alpha (TNF-α). This storm produces a pleiades of phenomena which is associated with
preexistent comorbidities that lead to an increase in disease severity (adapted after [31]).
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immunofluorescence, and immunohistochemical studies in
seventeen cases of acral chilblain-like skin lesions in patients
with suspected, but not confirmed, coronavirus disease, and
endotheliitis was present in 65% of cases [43]. The association
of COVID-19 with chilblain-like skin lesions is still conflict-
ing. Initially, acral lesions were thought to be related to
SARS-CoV-2 infection, but more recent case studies could
not sustain an association between them [43, 44].

All data collected from the autopsies indicate that
changes in the endothelium are not limited to the lungs
and suggest that COVID-19 is a whole-body disease.

Numerous symptoms of SARS-CoV-2-positive patients
could be assigned to multiorgan endotheliitis and subse-
quent endothelial dysfunction.

As mentioned above, tropism for the kidneys, lungs, and
cardiovascular system of the novel coronavirus was demon-
strated. This explains the respiratory and cardiocirculatory
events associated with the disease. Several hypotheses were
proposed in order to explain other organ specific symptoms.
The early neurological manifestations (hyposmia, anosmia,
dysgeusia, or hypogeusia) which have been frequently
described in these patients together with life threatening
events such as stroke and intracerebral or subarachnoid
hemorrhage could represent a consequence of endotheliitis
[45]. In a short communication, Benger et al. made a
detailed analysis of 5 patients with COVID-19 and intracere-
bral hemorrhage. They suggest that endothelial damage and
endotheliitis along with a prothrombotic state and proin-
flammatory cytokine production are responsible for intrace-
rebral hemorrhage, which occurred in younger individuals.
Hemorrhage affected the anterior cerebral circulation [46].

In addition to the detrimental effect on blood vessels, the
heart also represents a target for SARS-CoV-2. The main car-
diovascular manifestations of COVID-19 are cardiac arrhyth-
mias, caused by the inflammation of the myocardium and
metabolic dysregulation [47]. It has been suggested that both
direct and indirect viral injury is responsible for COVID-19-
associated myocarditis [48].

The emerging evidence recognizes the endothelium as a
key factor in the pathophysiological chain in COVID-19
[49]. Therefore, arterial and venous thrombosis, pulmonary
embolism [49], central nervous system acute hemorrhagic
events, and multiorgan failure associated with SARS-CoV-2
infection [50] might be the aftermath of subsequent endothe-
liitis and endothelial dysfunction associated with a procoagu-
lant state. Endothelial cell damage together with endotheliitis
also explains the predisposition for severe manifestations of
the disease in patients with preexisting endothelial dysfunc-
tion caused by chronic pathologies such as hypertension [47].

While the major role of endothelial cells in the patho-
physiology of COVID-19 is a compelling subject for ongoing
research projects, the hypothesis according to which the
endothelium could represent a therapeutic target in critically
ill patients is intensely analyzed [49].

4. COVID-19-Renin-Angiotensin System

The role of the renin-angiotensin-aldosterone system
(RAAS) in COVID-19 infection has been taken into consid-

eration from the beginning of the pandemic, since one of the
first known facts was that ACE2 (angiotensin-converting
enzyme 2) is the receptor that allows SARS-CoV-2 to enter
human cells.

RAAS is a natural protective mechanism for maintaining
circulatory volume. Renal hypoperfusion stimulates renin
release from the juxtaglomerular apparatus. Renin cleaves
angiotensinogen to angiotensinogen I, and ACE hydrolyzes
Ang I to Ang II. Ang II binds to angiotensin II type 1 recep-
tor (AT1R) and promotes aldosterone production, leading to
sodium retention, water reabsorption, and vasoconstriction.
On the other arm of the cascade, ACE2 is maintaining the
equilibrium by converting Ang II to angiotensin 1-7. Angio-
tensin 1-7 binds to the Mas receptor and mediates anti-
inflammatory, antioxidative, and vasodilatory effects. In the
case of insufficient ACE2, Ang II binding AT1R prevails
and exerts vasoconstrictive and proinflammatory effects [51].

Angiotensin-converting enzyme 2 (ACE2) is expressed
in the human vascular endothelium, respiratory epithelium,
and other types of cells, and represents a primary mecha-
nism for the entry and infection of SARS-CoV-2 virus. In a
physiological state, ACE2 through the activity of carboxy-
peptidase generates angiotensin fragments (Ang 1-9 and
Ang 1-7) and plays an essential role in the renin-
angiotensin system (RAS), which is an important regulator
of cardiovascular homeostasis. SARS-CoV-2 through its sur-
face glycoprotein interacts with ACE2 and invades the host
cells.

For SARS-CoV-2 infection, in addition to ACE2, one or
more proteases including transmembrane protease serine 2
(TMPRSS2), basigin (also known as CD147), and potentially
cathepsin B or cathepsin L are required [52].

ACE2 is expressed as a transmembrane protein whose
active site is exposed at the extracellular surface and resides
in the lung alveolar epithelial cells, heart, kidneys, vessels,
and gastrointestinal system [53]. ACE2 can be cleaved and
circulates in small amounts in the blood stream, but its role
is uncertain [54–57].

While ACE2 is clearly responsible for facilitating cell
insertion, it may also be the cause of individual variation
in disease severity. The polymorphism of ACE2 in the pop-
ulation could impact the affinity for the virus’s spike protein
and make the infection more likely or more severe [57].
Also, the ACE2 gene is X-linked, and this could explain
the slight protective effect in the female sex observed in
COVID-19. Besides these genetic variations, ACE2 gene
expression is increased in diabetes, CVD, and hypertension
[58]. Several researches indicate that RAAS-modulating
drugs could also modulate ACE2 expression and activity
in various ways. Animal model studies have shown that
ACE inhibitors (ACEIs) and angiotensin II receptor
blockers (ARBs) upregulate ACE2 cell expression, and
ARBs and mineralocorticoid receptor antagonists (MRA)
increase ACE2 activity, [59, 60]. However, simultaneously,
ACEIs reduce Ang II synthesis, and consequently, in the
absence of excess Ang II, AT1R is thought to interact with
ACE2 [61]. This interaction could reduce the affinity of
COVID S protein to ACE2 and then reduce COVID-19
viral entry [61].
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SARS-CoV-2 spike protein binding to ACE2 in alveolar
epithelial cells downregulates ACE2 expression. Without
ACE2 to lead Ang II to angiotensin 1-7, Ang II binds to
AT1R, leading to a hyperaldosteronism state, materialized
as hypokalemia in severe cases of COVID-19 infection
[62], vasoconstriction, fibrosis, and inflammatory cell prolif-
eration [63]. Murine studies proved that loss of ACE2
expression enhances vascular permeability, increases lung
edema and neutrophil accumulation, and hence worsening
lung function [64].

One of the earliest researches of Chinese scientists
empowers the theory that excessive Ang II leads to a bad
outcome. Liu et al. observed in a small cohort of COVID-
19 patients that the plasma concentrations of Ang II were
significantly higher than in healthy individuals and also that
Ang II levels in COVID-19 patients were correlated with
viral load and lung injury [65].

Besides exacerbated inflammation and hypoxemia
through vasoconstriction in small pulmonary vessels, Ang
II induces plasminogen activator inhibitor-1 (PAI-1) expres-
sion in endothelial cells via the AT1 receptor. PAI-1 leads to
unresolved fibrin deposits in the alveoli of patients with both
SARS and COVID-19 infection [51]. Also, excessive Ang II
can be metabolized to angiotensin IV [66], which enhances
thrombosis development [67, 68]; since hypercoagulability
has been noticed in many severe cases, it can be hypothe-
sized that a reduction in ACE2 contributes to increasing
thrombotic risk.

Since ACE2 has been recognized as the gate of SARS-
CoV-2, worldwide medical boards raised the question if
RAAS modulators—ACEIs and ARBs—increase the risk of
developing severe forms of COVID-19 infection. The ratio-
nale behind this concern was based on some experimental
animal models which have shown increasing numbers of
ACE2 after intravenous infusion of ACEIs and ARBs [59].

In order to establish whether RAAS modulators are
harmful or not, scientists firstly compared the outcomes of
COVID-19 patients with arterial hypertension and different
treatments. Shyh et al. found that those on ARBs are signif-
icantly less likely to develop COVID-19, while ACEIs did
not show a similar effect, considering that they do not
directly affect ACE2 activity [69]. On the other hand,
patients taking calcium channel-blockers (CCBs) had a
significantly increased risk of manifesting symptoms of
COVID-19.

Several other retrospective multicenter studies [63, 70]
looked for an association between in-hospital use of ACEIs/
ARBs and all-cause mortality of COVID-19 among patients
with hypertension. Their results show that COVID-19 hyper-
tensive patients treated with ACEIs/ARBs had a better
outcome than COVID-19 patients without ACEIs/ARBs or
treated with a different class of other antihypertensive agents.
On a molecular basis, they identified that patients on ACEIs/
ARBs had lower levels of IL-6, decreased cytokine produc-
tion, and decreased viral load during hospitalization, and
peripheral T cells were significantly higher than in the non-
ACEI/ARB group [70].

Researchers’ restless work not only offered substantial
information about the role of ACE2 in COVID-19 infection,

but also brought up several potential therapeutic approaches:
spike protein-based vaccine, inhibition of transmembrane
protease serine 2 (TMPRSS2-human proteinase which facili-
tates viral spike protein binding to ACE2) activity, blocking
ACE2 receptor, and delivering an excessive soluble form of
ACE2 [71]. It was postulated that delivering excessive soluble
ACE2 would capture most of the viral load, restricting their
fixation on cell membrane ACE2, and therefore limit the
infection and also keep the balance of the 2 RAAS arms, pre-
venting severe inflammatory tissue lesions [72, 73]. Most of
these theories are based on animal model or in vitro studies
and, needless to say, require extensive research and trials
before becoming available therapies.

5. Cytokine Storm Associated with
SARS-CoV-2 Infection

About 5% of the patients infected with SARS-CoV-2 develop
critical disease forms manifesting by respiratory failure,
shock, or multiple organ failure [74]. The presence of these
disease forms does not seem to be correlated with viral load.
Although these patients have a high viral load, the same load
is found in patients having mild forms of the disease and
even in asymptomatic persons [75]. Thus, the hypothesis
was advanced that abnormal immune response, manifesting
as a “cytokine storm,” is the main determining factor of dis-
ease severity [76].

Cytokine storm associated with COVID-19 is similar to
other clinical entities, such as cytokine release syndrome
observed following CAR-T cell therapy [77], primary or sec-
ondary hemophagocytic lymphohistiocytosis (HLH), sepsis
caused by Herpesviridae and other pathogens [78], and mac-
rophage activation syndrome that occurs in various autoim-
mune diseases [79].

This progressive systemic inflammation leads to the loss
of vascular tone clinically manifesting by a decrease in blood
pressure, vasodilatory shock, and progressive organ failure.
In the context of cytokine storms associated with highly
pathogenic viruses such as SARS-CoV-2, SARS-CoV, and
MERS-CoV, the greatest impact is on the lungs, where acute
respiratory distress syndrome (ARDS) occurs which is the
main cause of death. The effects are not limited to the lungs;
cardiac, renal, and central nervous system damage is also
involved [80].

After receptor binding and complex internalization, the
viral RNA is released into the cell cytosol, replicated, and
finally removed by exocytosis.

Intracellular viral RNA is identified by the recognition
mechanisms of the innate immune response through specific
receptors: PRRs (pattern recognition receptors), TLRs
(toll-like receptors), and NLRs (NOD-like receptors). The
recognition of viral RNA by these receptors determines
the activation of intracellular signaling pathways, such as
NF-κB and IRF 3/7. NF-κB stimulates the transcription of
proinflammatory cytokines such as TNF-alpha, IL-6, and
IL-1 and activates the immune response mediated by T
helper 1 and 17 lymphocytes. IRF 3/7 stimulates the produc-
tion of type 1 IFN, which induces activation of the JAK1/
TYK2-STAT1/2 pathway, the effect being the transcription
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of interferon-stimulated genes (ISG), with a role in the secre-
tion of cytokines and the activation of other immune system
components to stop viral replication [81, 82].

Previous studies have shown that in some cases, corona-
viruses can delay type I IFN response through various mech-
anisms, the result being a more severe form of the disease
caused by ineffective viral replication control and paradoxi-
cal hyperinflammation caused by type I IFN. In the case of
SARS-CoV-2, an altered response of type I IFN seems to
occur. A study showed that serum IFN activity was signifi-
cantly lower in patients with severe or critical forms of the
disease compared to those with mild-moderate forms. More-
over, serum ISG and type I IFN values in patients who sub-
sequently developed ARDS with the need for invasive
ventilation indicated that a mitigated type I IFN response
precedes clinical deterioration [83].

This abnormal response of interferon leads to a massive
inflow of neutrophils and monocytes, which are a major
source of proinflammatory cytokines, apoptosis of T lym-
phocytes, and epithelial and endothelial cells [81].

Lymphopenia occurs in about 80% of the patients
infected with SARS-CoV-2 and is more marked in the severe
forms of the disease. There are many causal hypotheses
explaining this process. Firstly, the virus can directly infect
T lymphocytes but cannot replicate inside these, thus leading
to cell death through apoptosis, necrosis, or pyroptosis. Sec-
ondly, the first wave of cytokines released, described above,
includes anti-inflammatory cytokines such as TNF-alpha
and IL-10, which cause apoptosis, exhaustion, and inhibition
of TL proliferation. Not the least, lymphopenia could be
the result of redistribution in the lungs and lymphoid
organs [81, 84].

In the most severe disease cases, a sudden and rapid clin-
ical deterioration occurs, which is associated with increased
levels of acute phase reactants, coagulopathy, and cell lysis,
and high proinflammatory cytokine levels, suggesting a sec-
ond wave of cytokines, responsible for the so-called cytokine
storm [81].

The triggering factor of the cytokine storm seems to be
immunodeficiency caused by the decrease in the number
and the dysfunction of T lymphocytes. Although other
innate immunity hyperactivation mechanisms are supposed
to be responsible, the cytokine storm is much more likely to
occur as a result of a delayed response of innate immunity,
followed by persistent hypercytokinemia and an abnormal
response of the acquired immune system through T lympho-
cytes. The result is the failure to eliminate apoptotic cells or
macrophages migrated to the site of inflammation and con-
tinuous antigenic stimulation by failure of viral clearance.
These cells will continue to secrete proinflammatory cyto-
kines, of which the most important are IL-18 and IFN-γ,
which restimulate macrophage activation. Thus, a vicious
circle is created which culminates in cytokine secretion,
hemophagocytosis, coagulopathy, and ARDS [82, 85].

5.1. Cytokines and the Correlation with the Severity of the
Disease. The first evidence of this correlation comes from
the study conducted by Huang et al. in a sample of 41
patients who had the plasma levels of several cytokines and

chemokines measured. The authors observed that the initial
plasma levels of IL-1B, IL-1RA, IL-7, IL-8, IL-9, IL-10, FGF,
GCSF, GMCSF, IFN-γ, IP-10, MCP1, MIP1A, MIP1B,
PDGF, TNF-α, and VEGF were higher in all COVID-19
patients compared to healthy persons, the plasma concentra-
tions of IL-5, IL-12p70, IL-15, eotaxin, and RANTES were
similar in patients infected with SARS-CoV-2 and healthy
persons, and the levels of IL-2, IL-7, IL-10, GCSF, IP-10,
MCP1, MIP1A, and TNF-α were significantly higher in
patients with severe forms of the disease requiring intensive
therapy compared to those with mild or moderate forms
[86]. Since then, many studies have been conducted in the
attempt to elucidate the pathogenic mechanisms of the exac-
erbated immune response associated with SARS-CoV-2
infection and in the attempt to identify laboratory markers
that correlate with the severity and prognosis of the disease
in order to achieve a stratification of patients for adequate
management based on early therapeutic intervention.

A recently published meta-analysis of 50 studies showed
statistically significantly higher values of IL-2, IL-2R, IL-4,
IL-6, IL-8, IL-10, TNF-α, and INF-γ in patients with severe
forms of the disease compared to the others. In contrast,
there were no significant differences between IL-17 and IL-
1β values. As it can be seen, in some cases, there is an
excessive production of proinflammatory as well as anti-
inflammatory cytokines (IL-2R, IL-10), which highlights
the dual pathogenic mechanism responsible for the occur-
rence of the cytokine storm [87]. Another meta-analysis
and extensive systematic analysis shows that in patients with
severe forms of the disease, lymphocytopenia (decreased
CD3, CD4, and CD8 T lymphocytes), leukocytosis, high
values of ESR, procalcitonin, LDH, and ALT occur more
frequently. The levels of inflammatory cytokines, especially
IL-6, 8, 10, and 2R and TNF-alpha, were significantly
increased [88].

Regarding the profile of leukocytes, both meta-
analyses evidenced a significant decrease in CD4 and
CD8 T lymphocytes in the group of patients with severe
disease forms [87, 88].

The most studied interleukin is perhaps IL-6, given that
tocilizumab, a monoclonal antibody directed against the IL-
6 receptor, can be used as therapy for COVID-19 patients
who present signs of hyperinflammation. Mojtabavi et al.
show in their analysis of 11 studies that IL-6 values are
significantly higher in patients with severe forms of
COVID-19 compared to those with mild or moderate forms
[89]. Furthermore, Laguna-Goya et al. elaborated a model
for predicting the risk of mortality in hospitalized COVID-
19 patients based on IL-6 values. This includes 5 parameters:
FiO2/SatO2 ratio, neutrophil/lymphocyte ratio, IL-6 value,
LDH value, and age. This model might help to stratify
patients into more uniform groups from a clinical and bio-
logical point of view before their inclusion in randomized
clinical trials evaluating the efficacy of tocilizumab or other
drugs. Until completion of clinical trials, this model could
be used to select patients that would benefit the most from
immunomodulatory therapy [90].

The prognostic value of IL-6 was also demonstrated
in another study, where it was incorporated along with
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CD8+ TL into a prognostic model. The authors of the
study showed that IL − 6 values > 20 pg/mL and CD8 + TL
values < 165 cells/μL are correlated with mortality, being a
better indicator of in-hospital mortality than the CURB-65
score [91].

Other cytokines were studied in the attempt to identify
the prognostic factors of disease severity and prove their use-
fulness. An example is represented by IL-2R, included in
several prognostic models such as the IL-2R/lymphocyte
ratio, as demonstrated in the study conducted by Hou
et al. [92], or the model developed by another group which
incorporates IL-2R, the values of neutrophils, lymphocytes,
and thrombocytes [93]. Another study proposes to monitor
IP-10 and MCP-3 values early during the course of the
disease in order to identify patients at risk for hyperin-
flammation and implicitly for more severe forms of the
disease [94].

6. Therapeutic Targets for the
Treatment of COVID-19

Numerous therapeutic targets (Figure 3) have been proposed
taking into consideration the various mechanisms of action
of SARS-CoV-2 on the endothelium. Regarding the key role
of oxidative stress, endotheliopathy, and inflammatory
mediators in the COVID-19 pathogenesis [8], we will fur-
ther present the therapies that counteract the SARS-CoV-
2-induced disturbances.

6.1. Interleukin-6 Inhibitors. As shown above, IL-6 plays an
extremely important role in the occurrence and maintenance
of the cytokine storm associated with COVID-19 and is cor-
related with disease severity, and thus it is an important
therapeutic target. In addition, the inhibitors of IL-6 or its
receptor proved to be effective in the treatment of other
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initiate viral endocytosis in the EC. This increases the amount of binding of Ang II to AT1R, which in turn activates NADPH-oxidase and
subsequently induces an increased production of ROS. These excess ROS mediate signaling pathways that increase the production of
inflammatory cytokines (such as IL-1β, IL-6, and TNF), decrease the bioavailability of NO and PGI2, and induce endothelial cell
apoptosis, leading to endothelial damage and dysfunction. Furthermore, the release of proinflammatory and prothrombotic factors can
lead to vascular inflammation, platelet aggregation, and thrombosis. These interactions increase the risk of thrombosis and lung damage
in people infected with SARS-CoV-2. ROS also induce an overflow of NETs. There may be several positive feedback loops between
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similar syndromes such as HLH associated with Still’s dis-
ease [95] or in the cytokine storm secondary to CAR-T cell
therapy [96]. Regarding their use in COVID-19 patients,
only data from case-control studies or case reports are cur-
rently available. It should be taken into consideration that
these studies were extremely heterogeneous, performed on
small samples, with divergent results concerning the moni-
tored indicators (e.g., the need for invasive ventilation and
the length of hospital stay). With respect to mortality, the
majority showed an increase in survival or at least a favor-
able trend. Currently, many clinical trials are in progress to
evaluate the efficacy and safety of using IL-6 inhibitors
in this context. Experimental studies have shown that IL-
6 can have a dual effect, both facilitating and suppressing
viral replication [23], so that the optimal time of adminis-
tration is another question that these clinical trials should
answer [82, 97–100].

Tocilizumab, sarilumab, and siltuximab are Food and
Drug Administration- (FDA-) approved IL-6 inhibitors
evaluated for the management of patients with COVID-19
who have systemic inflammation. Tocilizumab is a recombi-
nant humanized anti-IL-6 receptor monoclonal antibody
that is approved by the FDA for use in patients with rheu-
matologic disorders and cytokine release syndrome (CRS)
induced by chimeric antigen receptor T cell (CAR-T cell)
therapy. Tocilizumab in combination with dexamethasone
are indicated in certain hospitalized patients who are exhi-
biting rapid respiratory decompensation due to COVID-19
[101]. Further findings from REMAP-CAP and the RECOV-
ERY study justify the use of tocilizumab in certain hospital-
ized patients with rapid respiratory decompensation due to
COVID-19 [102].

Sarilumab is a recombinant humanized anti-IL-6 receptor
monoclonal antibody that is approved by the FDA for use in
patients with rheumatoid arthritis. It is available as an SQ for-
mulation and is not approved for the treatment of CRS [101].
Preliminary efficacy results from REMAP-CAP for sarilumab
were similar to those for tocilizumab. Compared to placebo,
sarilumab reduced both mortality and time to ICU discharge,
and increased the number of organ support-free days; how-
ever, the number of participants who received sarilumab in
this trial was relatively small, limiting the conclusions and
implications of these findings [102].

Siltuximab is a recombinant human-mouse chimeric
monoclonal antibody that binds IL-6 and is approved by
the FDA for use in patients with multicentric Castleman’s
disease. Siltuximab prevents the binding of IL-6 to both sol-
uble and membrane-bound IL-6 receptors, inhibiting IL-6
signaling. Siltuximab is dosed as an IV infusion [103]. There
are limited data describing the efficacy of siltuximab in
patients with COVID-19 [104].

6.2. Interleukin-1 Inhibitors. Anakinra is a recombinant IL-1
receptor antagonist, currently approved in the treatment of a
number of autoimmune diseases induced by excessive IL-1
secretion, with the aim of reducing inflammation and com-
plications such as ARDS [105].

Starting from the data obtained from the use of anakinra
in other similar syndromes such as secondary HLH or mac-

rophage activation syndrome [105] and taking into consid-
eration the high values of this interleukin reported in
persons infected with SARS-CoV-2, it was supposed that
IL-1 could be an important target in the management of
the cytokine storm associated with SARS-CoV-2 as well. A
retrospective study showed a clinical improvement in 72%
of COVID-19 and ARDS patients treated with this drug
[106]. Several randomized clinical trials that test anakinra
in COVID-19 patients are underway.

Aside from anakinra, canakinumab, a high-affinity human
monoclonal antibody [101], and rilonacept, a soluble IL-1
trap, represent therapeutic options for IL-1 inhibition [107].

Canakinumab counteracts the activity of IL-1 by block-
ing the interaction between IL-1β and its receptor [108].
The beneficial effect of canakinumab for COVID-19 patients
results from the improvement of clinical status and reduc-
tion of invasive mechanical ventilation needed in these
patients together with a prompt amelioration and mainte-
nance in oxygenation levels [109, 110]. Furthermore, canaki-
numab ameliorates the prognosis of COVID-19 patients and
prevents the clinical degradation by blocking the cytokine
storm [110].

6.3. Anti-TNF-α. TNF-α is another cytokine with important
inflammatory effects, whose increased serum values were
also demonstrated in COVID-19 patients. Opinions diverge
on the usefulness of anti-TNF-α monoclonal antibodies in
this context. Infliximab, adalimumab, etanercept, certolizu-
mab, and golimumab are the 5 most commonly prescribed
TNFs inhibitors. On the one hand, TNF-α inhibition
decreases IL-6 and IL-1 concentrations and reduces capillary
permeability [111], and studies on animals have shown that
the inhibition of this cytokine confers protection against
SARS-CoV-2 infection. On the other hand, studies in which
TNF-α inhibitors were used in syndromes similar to the
cytokine storm have reported divergent results, some of
them even demonstrating an aggravation of the disease [112].

6.4. Type I IFN. Considering the key role of IFN in antiviral
response and its immunomodulatory effect, type I IFN
seems to be an important potential therapeutic target. Type
I IFN was studied both in vivo and in vitro, as monotherapy
or in combination with antiviral drugs, in the treatment of
SARS-CoV and MERS-CoV infection. Although interferon
treatment was demonstrated to be efficient in vitro and in
some studies on animals, in human studies the results were
divergent. These results can be explained by the limited
number of patients included and the heterogeneity of the
studies, by the different inhibition mechanisms of the IFN
signaling pathway used by the two viruses, as well as by
the difficulty in assessing whether the clinical benefit
observed was due to IFN or to the drugs with which it was
used as part of combined therapy [113].

Another explanation for these results could be the
subtype of IFN used as a therapeutic target. Compared to
IFN-α, IFN-β seems to be a much more potent inhibitor
of coronaviruses [114]. The time of administration seems
to be an important element. Early administration was
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associated with favorable results, while late administration
was associated with significant adverse reactions without
an effect on viral replication [115]. In addition, in vitro
studies report viral replication inhibition by administration
of prophylactic IFN in the case of SARS-CoV-2, while the
same strategy is ineffective in the case of SARS-CoV and
MERS-CoV [116–118]. A prospective study conducted in
China on a sample of 2944 persons working in the health
care system showed that interferon administered as a nasal
spray is effective in the prophylaxis of SARS-CoV-2 infec-
tion [119].

Starting from the information obtained from previous
studies on SARS-CoV and MERS-CoV and from the data
regarding the pathology of SARS-CoV-2 infection, a number
of clinical trials are in progress to test the efficacy of type I
IFN in patients infected with SARS-CoV-2.

6.5. Inhibitor of Synthetic Serine Protease. Transmembrane
protease serine 2 (TMPRSS2) represents the cornerstone in
the SARS-CoV-2 S protein interaction with the endothelial
cell [120]. TMPRSS2 is a protease that proved its capacity
of preventing the cell invasion by SARS-CoV-2 in vitro [52].

Camostat mesylate, an inhibitor of synthetic serine
protease infection, could block SARS-CoV-2 spreading in
human tissue [120]. Taking into consideration the desirable
effects in COVID-19 patients, TMPRSS2 has been approved
for clinical use [52].

6.6. Recombinant Human ACE2 Protein (rhACE2). Taking
into consideration that SARS-CoV-2 infection induces the
depletion of ACE2 receptors, which contributes to systemic
and especially pulmonary inflammation, the hypothesis
was advanced that administration of recombinant human
ACE2 protein can represent a therapeutic target. The causal
mechanisms of immune dysfunction and hyperinflamma-
tion are multiple, so that the use of rhACE2 as monotherapy
is probably insufficient, as demonstrated in patients infected
with SARS-CoV in 2017 [76]. There is currently a clinical
trial that studies the therapeutic efficacy of this molecule in
COVID-19 patients.

6.7. JAK Inhibitors. The activated type I IFN JAK1/TYK2-
STAT1/2 intracellular signaling pathway plays an important
role in cytokine production, so that its inhibition might have
a therapeutic effect in the cytokine storm associated with
SARS-CoV-2.

Baricitinib is an inhibitor of JAK kinase currently used in
the treatment of rheumatoid arthritis, which by selective and
reversible binding to JAK receptors disrupts the transduc-
tion of the intracellular signal mediated by cytokines and
thus attenuates the inflammatory response [121]. In addi-
tion, this compound is supposed to inhibit AAK1 receptor,
required for viral endocytosis, also inhibiting in this way
the entrance of the virus into the host cell [122].

At present, there are several ongoing clinical trials that
investigate the efficacy of different JAK inhibitors in
COVID-19 patients. An important aspect should be taken
into account: the fact that SARS-CoV-2 infection predis-
poses to coagulopathy and formation of thrombi, and treat-

ment with JAK inhibitors has been associated with an
increase in thromboembolic risk [123].

6.8. Nitric Oxide. Inhaled nitric oxide (NO) proved its anti-
viral effects against various coronavirus strains together with
the pulmonary vasodilation activity. Of great interest is the
ability of NO in the prevention of the development of severe
forms of the disease, if administrated at the proper time, at
the early stage of COVID-19 [101].

6.9. Iloprost. The prostacyclin (PGI2) analogue, iloprost,
showed beneficial effects in COVID-19 patients. Iloprost
might represent a valuable therapeutic option for respiratory
performance improvement [124]. Synthesized in the vascu-
lar endothelium, PGI2 plays a role not only in the endothe-
lial barrier homeostasis and platelet aggregation, but it also
has anti-inflammatory and vasodilatory effects. [125, 126].

In COVID-19 patients, iloprost could prevent the associ-
ated thrombotic events through its protective effects on the
endothelium and the antithrombotic activity [124].

6.10. The Glycosaminoglycans. Another valuable therapeutic
approach is represented by the glycosaminoglycans (GAGs),
taking into consideration the double role they play in
COVID-19 pathogenesis, their interaction with the chemo-
kines, and the SARS-CoV-2 coreceptor function. Thus, the
chemokine interaction with GAGs together with SARS-
CoV-2 GAG-mediated cell entry might represent important
targets in COVID-19 therapy [127].

6.11. Chemokine Receptor 5 Antagonism. The chemokine
receptor 5 (CCR5) is a transmembrane structure expressed
by several cells, including the endothelial cells [128], and it
might be implicated in the SARS-CoV-2 invasion of the
endothelial cells. By preventing the SARS-CoV-2 from enter-
ing the cell, the CCR5 antagonism could represent a valuable
tool in preventing the severe inflammatory response charac-
teristic for COVID-19-associated acute respiratory distress
syndrome (ARDS) [127]. CCR5 antagonists proved their effi-
ciency for preventing HIV-1 entry into the cells [129]. Mara-
viroc, a CCR5 antagonist, blocks the SARS-CoV-2 fusion
with other cells (via S protein) and prevents its multiplication
[130]. Leronlimab is a monoclonal IgG4 antibody which also
has CCR5 as a therapeutic target. Leronlimab successfully
reduced the IL-6 levels in patients with severe COVID 19
manifestations [131]. Taking into consideration the role of
CCR5 in the COVID-19 pathogenesis and their expression
by the endothelial cells, the CCR5 antagonismmight represent
a therapeutic option in the treatment of SARS-CoV-2-induced
endotheliopathy.

6.12. The CXCL-8 Pathway. CXCL-8/IL-8 is an inflamma-
tory chemokine that promotes the angiogenesis on endothe-
lial cells via VEGF [132, 133]. The implication of the CXCL-
8 pathway in SARS-CoV-2 infection pathogenesis results
from its increased circulating levels identified in COVID-
19 patients [134]. CXCL-8 is a powerful neutrophil chemo-
tactic factor [135] and its high serum levels in COVID-19
patients might explain the associated neutrophilia. The
neutralizing IL-8 antibody therapy and CXCL-8 receptor
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(CXCR-2) antagonists might represent a therapeutic option
for hospitalized COVID-19 patients [127].

7. Conclusions

This review summarized the relationship between COVID-
19, endothelial dysfunction, inflammation, and oxidative
stress. The implication of endothelium in SARS-CoV-2
pathogenesis remains a subject of interest which is intensely
researched in current studies. Even though several studies
place the endothelial dysfunction and oxidative stress as
the main factors responsible for microvascular COVID-19-
associated complications, the direct invasion of endothelial
cells by SARS-CoV-2 remains disputable. An explanation
for the severe COVID-19 manifestations in patients suffer-
ing from cardiovascular and metabolic comorbidities might
be the endothelial dysfunction associated with the aforemen-
tioned conditions; thus, those patients are at high risk for
developing pulmonary and extrapulmonary complications.
The central role of endothelium in the COVID-19 pathogen-
esis remains of great interest particularly for its role as a
valuable therapeutic target for the prevention and/or treat-
ment of vascular complications in SARS-CoV-2 patients.
With a plethora of physiopathological mechanisms, the
SARS-CoV-2-induced endotheliopathy appears to play a
central role in COVID-19 pathogenesis.
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