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Complex engineering analyses usually require the use of numerical methods to provide accu-
rate data. Although nowadays there are several powerful numerical techniques available,
such as the Finite Element Method, the Finite Volume Method, the Boundary Element Meth-
od, and Meshless Methods, none of them can be considered most appropriate for all kinds
of analysis, and usually the coupling of different numerical methodologies is necessary to
analyze complex problems more effectively. In this context, several coupling procedures have
been proposed over the last decades considering different numerical methods, in order to
profit from their respective advantages. The papers selected for this special issue represent
a good panel for addressing this challenging theme. Although different kinds of coupling
procedures and hybrid formulations are presented here to analyze multiphysics behavior, of
course, they are not an exhaustive representation of the vast area of coupled numerical meth-
ods in engineering analysis. Nonetheless, they represent the rich and many-faceted know-
ledge, that we have the pleasure of sharing with the readers. Therefore, we would like to
thank the authors for their contributions and the reviewers for all their fundamental work on
these papers.

This special issue contains twelve papers, which are organized considering firstly
interface coupled analyses and, later on, domain coupled models. Considering interface
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coupling procedures, initially, papers discussing fluid-solid coupled systems are presented,
being, in the sequence, papers based on solid-solid coupled models enumerated. Regarding
domain coupled analyses, the papers presented here are mostly related to computational
fluid models. It is important to remark that several coupled numerical procedures, taking into
account a vast game of numerical techniques, are discussed in this issue, highlighting the
richness and variety of the theme.

In the paper entitled “Coupled numerical methods to analyze interacting acoustic-dynamic
models by multidomain decomposition techniques,” several numerical methods, such as the Finite
Difference Method, the Finite Element Method, the Boundary Element Method, and Meshless
Methods, are considered to model each subdomain of the fluid-solid coupled model, and
multidomain decomposition techniques are applied to deal with the coupling relations. In
this case, completely independent spatial and temporal discretizations among the interacting
subdomains are permitted and coupling algorithms based on explicit and implicit time-
marching techniques are discussed.

In the paper entitled “Finite element analysis of dam-reservoir interaction using high-order
doubly asymptotic open boundary,” direct and partitioned coupled methods are developed to
analyze a dam-reservoir system, which is divided into the near-field, modeled by the finite
element method, and the far-field, modeled by the high-order doubly asymptotic open
boundary (DAOB). In the direct coupled method, a symmetric monolithic governing equa-
tion is formulated by incorporating the DAOB with the finite element equation, which is
solved using standard time-integration methods. In the partitioned coupled method, the
near-field finite element equation and the far-field DAOB condition are separately solved
and coupling is achieved by applying the interaction force on the truncated boundary, taking
into account an iteration strategy, which is employed to improve the numerical stability and
accuracy of the methodology.

In the paper entitled “Coupling the BEM/TBEM and the MFS for the numerical simulation
of wave propagation in heterogeneous fluid-solid media,” wave propagation in an elastic medium
containing elastic, fluid, rigid and empty heterogeneities is simulated, taking into account
frequency-domain analyses. In this case, a coupling formulation between the boundary ele-
ment method (BEM)/the traction boundary element method (TBEM) and the method of
fundamental solutions (MFS) is employed. Thus, the full domain is divided into subdomains,
which are handled separately by the BEM/TBEM or the MFS, being the coupling enforced by
applying the prescribed boundary conditions at all medium interfaces.

In the paper entitled “A hybrid analytical-numerical model based on the method of
fundamental solutions for the analysis of sound scattering by buried shell structures,” a hybrid nu-
merical-analytical model is proposed to address the problem of underwater sound scattering
by an elastic circular shell structure that is buried in a fluid seabed, below a water waveguide.
In this case, the coupling between the analytical solutions developed both for sound
propagation in the waveguide and in the vicinity of the circular hollow shell is performed
using the Method of Fundamental Solutions; the proposed strategy allows a compact
description of the propagation medium and claims to be accurate and efficient from the
computational point of view.

In the paper entitled “Dynamic analysis of partially embedded structures considering soil-
structure interaction in time domain,” the substructure method, using the dynamic stiffness of
soil, is used to analyze soil-structure systems. In this case, a time-domain coupled model
based on the finite element method and on the scaled boundary finite element method is
applied, where the finite element method is used to analyze the structure and the scaled
boundary finite element method is applied in the analysis of the unbounded soil region.
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In the paper entitled “Stress analysis of three-dimensional media containing localized zone by
FEM-SGBEM coupling,” an efficient numerical technique for three-dimensional stress analysis
of an infinite medium containing a line of singularity introduced by dislocations and cracks
and a localized region exhibiting complex behaviors (e.g., material nonlinearities and materi-
al inhomogeneities) is proposed. In this case, a coupling procedure exploiting positive fea-
tures of both standard finite element method (FEM) and symmetric Galerkin boundary ele-
ment method (SGBEM) is considered. Thus, an infinite medium is decomposed into two
subdomains such that a finite subdomain that is of small size and may contain a region
exhibiting complex behavior is modeled by the FEM while the other (compliment) un-
bounded subdomain that may contain cracks is treated by the weakly singular SGBEM.

In the paper entitled “A corotational finite element method combined with floating frame
method for large steady-state deformation and free vibration analysis of a rotating-sinclined beam,”
large steady-state deformation and infinitesimal-free vibration around the steady state defor-
mation of a rotating-inclined Euler beam at constant angular velocity are analyzed. In this
analysis, the authors take into account the corotational finite element method combined with
the floating frame method.

In the paper entitled “Interior noise prediction of the automobile based on hybrid FE-SEA
method,” a hybrid FE-SEA method (where FE stands for Finite Element and SEA stands for
Statistical Energy Analysis) is employed to predict the interior noise of the automobile in the
low- and middle-frequency band in the design and development stage. This is based on the
prediction of parameters, which include modal density, damping loss factor and coupling
loss factor, and excitations, which incorporate sound excitation of engine cabin, excitation of
engine mounts, excitation of road roughness, and wind excitations.

In the paper entitled “A new reduced stabilized mixed finite-element method based on proper
orthogonal decomposition for the transient Navier-Stokes equation,” a reduced stabilized mixed
finite element (RSMFE) formulation based on proper orthogonal decomposition (POD) for
the transient Navier Stokes equations is presented. In this case, by combining the POD with
the SMFE formulation, a new low dimensional and highly accurate SMFE method for the
transient Navier Stokes equations is obtained, which not only reduces the degrees of freedom
but also circumvents the constraint of inf-sup stability condition.

In the paper entitled “A fully discrete Galerkin method for a nonlinear space-fractional diffu-
sion equation,” a fully discrete scheme for a type of nonlinear space-fractional anomalous
advection-diffusion equation is presented, where, in the spatial direction, the finite ele-
ment method is used, whereas, in the temporal direction, the modified Crank-Nicolson ap-
proximation is employed.

In the paper entitled “A numerical treatment of nondimensional form of water quality mod-
el in a nonuniform flow stream using Saulyev scheme,” mathematical models are used to simulate
pollution due to sewage effluent and a finite difference scheme for solving the advection-
dispersion-reaction equations (ADRE) of the uniform flow model is considered, as well as
the effect of nonuniform water flows in a stream.

Finally, in the paper entitled “Modeling and simulation of fiber orientation in injection
molding of polymer composites,” the fundamental modeling and numerical simulation for a pre-
diction of fiber orientation during injection molding process of polymer composite is re-
viewed. In general, the simulation of fiber orientation involves coupled analysis of flow, tem-
perature, moving-free surface, and fiber kinematics. Therefore, coupled numerical methods
are needed to analyze these complex problems. Thus, in this last paper, several well-estab-
lished methods, such as the finite-element/finite-different hybrid scheme for the Hele-Shaw
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flow model and the finite element method for the general three-dimensional flow model, are
reviewed.

Delfim Soares Jr.
Otto von Estorff

Jan Sladek
Luis Godinho



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 702082, 27 pages
doi:10.1155/2011/702082

Research Article
Stress Analysis of Three-Dimensional
Media Containing Localized Zone by FEM-SGBEM
Coupling

Jaroon Rungamornrat and Sakravee Sripirom

Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University,
Bangkok 10330, Thailand

Correspondence should be addressed to Jaroon Rungamornrat, jaroon.r@chula.ac.th

Received 24 May 2011; Accepted 5 August 2011

Academic Editor: Delfim Soares Jr.

Copyright q 2011 J. Rungamornrat and S. Sripirom. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

This paper presents an efficient numerical technique for stress analysis of three-dimensional
infinite media containing cracks and localized complex regions. To enhance the computational
efficiency of the boundary element methods generally found inefficient to treat nonlinearities and
non-homogeneous data present within a domain and the finite element method (FEM) potentially
demanding substantial computational cost in the modeling of an unbounded medium containing
cracks, a coupling procedure exploiting positive features of both the FEM and a symmetric
Galerkin boundary element method (SGBEM) is proposed. The former is utilized to model a
finite, small part of the domain containing a complex region whereas the latter is employed to treat
the remaining unbounded part possibly containing cracks. Use of boundary integral equations to
form the key governing equation for the unbounded region offers essential benefits including the
reduction of the spatial dimension and the corresponding discretization effort without the domain
truncation. In addition, all involved boundary integral equations contain only weakly singular
kernels thus allowing continuous interpolation functions to be utilized in the approximation and
also easing the numerical integration. Nonlinearities and other complex behaviors within the
localized regions are efficiently modeled by utilizing vast features of the FEM. A selected set of
results is then reported to demonstrate the accuracy and capability of the technique.

1. Introduction

A physical modeling of three-dimensional solid media by an idealized mathematical domain
that occupies the full space is standard and widely used when inputs and responses of
interest are only localized in a zone with its length scale much smaller than that of the body.
Influence of the remote boundary of a domain on such responses is generally insignificant
for this particular case and can, therefore, be discarded in the modeling without loss of
accuracy of the predicted solutions. Such situations arise in various engineering applications
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such as the simulation of crack growth in hydraulic fracturing process in which the fracture
is generally treated as an isolated crack in an infinite medium, the evaluation and assessment
of service life of large-scale structures in which the influence of embedded initial defects can
be characterized by small pre-existing flaws, and the determination of effective properties
of materials possessing a microstructure such as cracks, voids, inclusions, and localized
inelastic zones. Unlike the stress analysis of linear elasticity problems, complexity of a
mathematical model can substantially increase when an infinite body contains additionally a
line of singularity and/or a localized nonlinear region. The former situation arises naturally
when a surface of displacement discontinuities (e.g., cracks and dislocations) is present
whereas the latter may result from applications of high-intensity loads, complex constitutive
laws, containment of small defects and inhomogeneities, and localized non-mechanical
effects (such as temperature change). Besides various practical applications, such present
complexity renders the modeling itself theoretically and computationally challenging.

Various analytical techniques (e.g., integral transform methods, methods based on
stress and displacement representations, techniques related to potential theories, etc.) have
been proposed and used extensively in the stress analysis of solid media (e.g., [1–5]).
However, their applications are very limited to either two-dimensional boundary value
problems involving simple data or three-dimensional problems with extremely idealized
settings. Such limitation becomes more apparent when complexity of involved physical
phenomena increases (e.g., complexity introduced by the presence of material nonlinearities,
inhomogeneities, and embedded singularities). For those particular situations, a more
sophisticated mathematical model is generally required in order to accurately predict
responses of interest, and, as a major consequence, an analytical or closed-form solution of the
corresponding boundary value problem cannot readily be obtained and numerical techniques
offer better alternatives in the solution procedure.

The finite element method (FEM) and the boundary element method (BEM) are two
robust numerical techniques extensively used in the modeling of various field problems. Both
techniques possess a wide range of applications, and there are various situations that favor
the FEM over the BEM and vice versa. The FEM has proven to be an efficient and powerful
method for modeling a broad class of problems in structural and solid mechanics (e.g., [6–8]).
In principle, the basis of the FEM is sufficiently general allowing both nonlinearities and inho-
mogeneities present within the domain to be treated. In addition, a final system of discrete
algebraic equations resulting from this method possesses, in general, desirable properties
(e.g., symmetry, sparseness, positive definiteness of the coefficient matrix, etc.). Nevertheless,
the conventional FEM still exhibits some major shortcomings and requires nontrivial
treatments when applied to certain classes of problems. For instance, a standard discretization
procedure cannot directly be applied to boundary value problems involving an infinite
domain. A domain truncation supplied by a set of remote boundary conditions is commonly
employed to establish an approximate domain of finite dimensions prior to the discretization.
It should be noted that defining such suitable truncated surface and corresponding boundary
conditions remains the key issue and it can significantly influence the quality of approximate
solutions. Another limited capability of the method to attain adequately accurate results
with reasonably cheap computational cost is apparent when it is applied to solve fracture
problems. In the analysis, it generally requires substantially fine meshes in a region
surrounding the crack front in order to accurately capture the complex (singular) field and
extract essential local fracture information such as the stress intensity factors (e.g., [9–11]).

The boundary element method (BEM) has been found computationally efficient
and attractive for modeling certain classes of linear boundary value problems since, for
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a homogeneous domain that is free of distributed sources, the key governing equation
involves only integrals on the boundary of the domain (e.g., [12–23]). As a direct
consequence, the discretization effort and cost are significantly reduced, when compared
to the FEM, due to the reduction of spatial dimensions of the governing equation by
one. Another apparent advantage of the method is associated with its simplicity in the
modeling of an infinite media. In such particular situation, the remote boundary of the
domain can basically be discarded without loss via an appropriate treatment of remote
conditions (e.g., [14, 17, 19, 23]). Among various strategies utilized to form the BEM, the
weakly singular symmetric Galerkin boundary element method (SGBEM) has become a well-
established and well-known technique and, during the past two decades, has proven robust
for three-dimensional analysis of linear elasticity problems (e.g., [15, 16]), linearly elastic
infinite media containing isolated cracks (e.g., [14, 19, 23]), and cracks in finite bodies (e.g.,
[16, 18, 20, 21, 23]). Superior features of this particular technique over other types of the
BEM are due mainly to that all kernels appearing in the governing integral equations are
only weakly singular of O(1/r) and that a final system of linear algebraic equations resulting
from the discretization possesses a symmetric coefficient matrix. The weakly singular nature
not only renders all involved integrals to be interpreted in an ordinary sense and evaluated
numerically using standard quadrature but also allows standardC0 interpolation functions to
be employed in the approximation procedure. It has been also demonstrated that the weakly
singular SGBEM along with the proper enrichment of an approximate field near the crack
front yields highly accurate fracture data (e.g., mixed-mode stress intensity factors) even
that relatively coarse meshes are employed in the discretization (e.g., [18, 21, 23]). While the
weakly singular SGBEM has gained significant success in the analysis of linear elasticity and
fracture problems, the method still contains certain unfavorable features leading to its limited
capability to solve various important classes of boundary value problems. For instance, the
method either becomes computationally inefficient or experiences mathematical difficulty
when applied to solve problems involving nonlinearity and nonhomogeneous media. As the
geometry of the domain becomes increasingly complex and its size and surface to volume
ratio are relatively large (requiring a large number of elements to reasonably represent the
entire boundary of the domain), the method tends to consume considerable computational
resources in comparison with the standard FEM. Although the SGBEM yields a symmetric
system of linear equations, the coefficient matrix is fully dense and each of its entries must be
computed by means of a double surface integration.

In the past two decades, various investigators have seriously attempted to develop
efficient and accurate numerical procedures for analysis of elasticity and fracture problems by
exploiting positive features of both the BEM and the FEM. The fundamental idea is to
decompose the entire domain into two regions and then apply the BEM to model a
linearly elastic region with small surface-to-volume ratio and possibly containing the dis-
placement discontinuities (e.g., cracks and dislocations) and the FEM to model the remaining
majority of the domain possibly exhibiting complex behavior (e.g., material nonlinearity and
nonhomogeneous data). The primary objective is to compromise between the requirement
of computational resources and accuracy of predicted results. Within the context of linear
elasticity, there have been several investigations directed towards the coupling of the
conventional BEM and the standard FEM (e.g., [24–26]) and the coupling of the strongly
singular SGBEM and the standard FEM (e.g., [27–30]). It should be emphasized that the
former type of coupling procedure generally destroys the desirable symmetric feature of
the entire system of linear algebraic equations whereas the latter type requires special
numerical treatment of strongly and hyper singular integrals (e.g., [31, 32]). Extensive review
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of various types of coupling between boundary integral equation methods and finite element
techniques can be found in [33]. Among those existing techniques, a particular symmetric
coupling strategy between the weakly singular SGBEM and the standard FEM has been found
computationally efficient and has recently become an attractive alternative for performing
comprehensive stress and fracture analysis. This is due primarily to (i) the symmetry feature
of the SGBEM that leads to the symmetric coupling formulation and (ii) the weakly singular
nature of all involved boundary integrals requiring simpler theoretical and numerical
treatment in comparison with strongly singular and hypersingular integrals. Xiao [16] first
presented such coupling formulation for cracks in isotropic, linearly elastic finite bodies;
more precisely, a pair of weakly singular, weak-form displacement and traction integral
equations was utilized along with the principle of virtual work and the proper enforcement of
continuity conditions on the interface to establish the symmetric coupling formulation. Later,
Frangi and Novati [34] successfully implemented Xiao’s formulation to analyze cracked
bodies subjected to pure traction boundary conditions. Besides its accuracy and robustness,
the technique was still restricted to the conforming discretization of the interface between the
two regions. Springhetti et al. [35] relaxed such limitation by allowing the weak enforcement
of continuity across the interface and also generalized the technique to treat both potential
and elastostatic problems. Nevertheless, their main focus is on uncracked bodies made of
linearly isotropic materials. Recently, Rungamornrat and Mear [36] extended the work of
Xiao [16] to enable the treatment of both material anisotropy and nonmatching interface.
While this particular coupling scheme has been well-established for decades, on the basis of
an extensive literature survey, applications of this technique to model a problem of an infinite
space containing isolated cracks and localized complex zones have not been recognized.

In this paper, a numerical procedure based on the symmetric coupling between the
weakly singular SGBEM and the standard FEM is implemented to perform three-dimensional
stress analysis of an infinite medium containing displacement discontinuities and localized
complex zones. Vast features of the FEM are exploited to allow the treatment of very general
localized zones, for instance, those exhibiting material nonlinearity, material nonuniformity,
and other types of complexity. The weakly singular SGBEM is utilized to readily and
efficiently model the remaining unbounded region. A pair of weakly singular boundary
integral equations proposed by Rungamornrat and Mear [22] is employed as a basis for
the development of SGBEM, and this, therefore, allows the treatment of the unbounded
region that is made of an anisotropic linearly elastic material and contains cracks. It is
worth emphasizing that while the present study is closely related to the work of Frangi and
Novati [34], Springhetti et al. [35], and Rungamornrat and Mear [36], the proposed technique
offers additional crucial capabilities to treat an infinite domain, material nonlinearity
in localized zones, and general material anisotropy. Following sections of this paper
present basic equations and the coupling formulation, essential components for numerical
implementations, numerical results and discussions, and conclusions and useful remarks.

2. Formulation

Consider a three-dimensional infinite medium, denoted by Ω, containing a crack and a
localized complex zone as shown schematically in Figure 1(a). The crack is represented by
two geometrical coincident surfaces S+

C and S−
C with their unit outward normal being denoted

by n+ and n−, respectively, and the localized complex zone is denoted by ΩL. In the present
study, the medium is assumed to be free of a body force and loading on its remote boundary,
and both surfaces of the crack are subjected to prescribed self-equilibrated traction defined by
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tC = t+C = −t−C. Now, let us introduce an imaginary surface SI to decompose the body Ω into
two subdomains, an unbounded “BEM-region” denoted by ΩB and a finite “FEM-region”
denoted by ΩF , as indicated in Figure 1(b). The surface SI is selected such that the localized
complex zone and the crack are embedded entirely in the FEM-region and in the BEM-region,
respectively (i.e., S+

C ∪ S−
C ⊂ ΩB and ΩL ⊂ ΩF), and, in addition, the BEM-region must be

linearly elastic. To clearly demonstrate the role of the interface between the two subregions in
the formulation presented below, we define {SBI, tBI ,uBI} and {SFI, tFI ,uFI} as the interface,
the unknown traction, and the unknown displacement on the interface of the BEM-region ΩB

and the FEM-region ΩF , respectively. It is important to emphasize that the interfaces SBI and
SFI are in fact identical to the imaginary surface SI . While the formulation is presented, for
brevity, only for a domain containing a single crack and a single localized complex zone, it can
readily be extended to treat multiple cracks and multiple complex zones; in such particular
case, multiple FEM-regions are admissible.

2.1. Governing Equations for ΩB

The total boundary of the BEM-region ΩB, denoted by SB, consists of the reduced crack
surface SBC ≡ S+

C on which the traction is fully prescribed and the interface SBI where neither
the traction nor the displacement is known a priori. Note again that the subscript “B” is
added only to emphasize that those surfaces are associated with the BEM-region. To form
a set of governing integral equations for this region, a pair of weakly singular, weak-form
displacement and traction boundary integral equations developed by Rungamornrat and
Mear [22] is employed. These two integral equations were derived from standard boundary
integral relations for the displacement and stress along with a systematic regularization
technique. The final form of completely regularized integral equations is well suited for
establishing the symmetric formulation for the weakly singular SGBEM. Such pair of integral
equations is given here, for convenience in further reference, by

1
2

∫
SBI

t̃k(y)uk(y)dS(y) =
∫
SBI

t̃k(y)
∫
SBI

Uk
i (ξ − y)ti(ξ)dS(ξ)dS(y)

+
∫
SBI

t̃k(y)
∫
SB

Gk
mj(ξ − y)Dmvj(ξ)dS(ξ)dS(y)

−
∫
SBI

t̃k(y)
∫
SB

ni(ξ)Hk
ij(ξ − y)vj(ξ)dS(ξ)dS(y),

(2.1)

−
∫
SB

c(y)ṽk(y)tk(y)dS(y) =
∫
SB

Dtṽk(y)
∫
SBI

G
j

tk(ξ − y)tj(ξ)dS(ξ)dS(y)

+
∫
SB

Dtṽk(y)
∫
SB

Ctk
mj(ξ − y)Dmvj(ξ)dS(ξ)dS(y)

+
∫
SB

ṽk(y)
∫
SBI

nl(y)H
j

lk(ξ − y)tj(ξ)dS(ξ)dS(y),

(2.2)

where t̃k and ṽk are sufficiently smooth test functions; Dm(·) = niεism∂(·)/∂ξs is a surface
differential operator with εism denoting a standard alternating symbol; vj(ξ) = uj(ξ) for
ξ ∈ SBI and Δuj(ξ) for ξ ∈ SBC with Δuj(ξ) = u+j (ξ) − u−j (ξ) denoting the jump in
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Figure 1: (a) Schematic of three-dimensional infinite medium containing crack and localized complex zone
and (b) schematic of BEM-region ΩB and FEM-region ΩF .

the displacement across the crack surface; the geometry-dependent constant c(y) is defined
by c(y) = 1/2 for ξ ∈ SBI and 1 for ξ ∈ SBC. All involved kernels, that is, Hp

ij(ξ − y), Up

i (ξ − y),

G
p

mj(ξ − y), Ctk
mj(ξ − y), are given, for generally anisotropic materials, by

H
p

ij(ξ − y) = −
(
ξi − yi

)
δpj

4πr3
, (2.3)

U
p

i (ξ − y) = Kmi
mp(ξ − y), (2.4)

G
p

mj(ξ − y) = εabmEajdcKbd
cp (ξ − y), (2.5)

Ctk
mj(ξ − y) = Atkoe

mjdnK
oe
dn(ξ − y), (2.6)

where δpj is a standard Kronecker-delta symbol; Eijkl are elastic moduli; Atkoe
mjdn

and Kik
jl
(ξ −y)

are defined by

Atkoe
mjdn = εpamεpbt

(
EbkndEajeo − 1

3
EajkbEdneo

)
, (2.7)

Kik
jl (ξ − y) =

1
8π2r

∮
z·r=0

(z, z)−1
kl zizjds(z), (2.8)

in which r = ξ−y, r = ‖r‖, (z, z)jk = ziEijklzl and the closed contour integral is to be evaluated
over a unit circle ‖z‖ = 1 on a plane defined by z ·r = 0. It is evident that the kernel Hp

ij(ξ−y) is

given in an explicit form independent of material properties and the kernels ni(ξ)H
p

ij(ξ − y),

ni(y)H
p

ij(ξ−y),U
p

i (ξ−y),G
p

mj(ξ−y),Ctk
mj(ξ−y) are singular only at ξ = y of O(1/r) (see details

in Xiao [16] for discussion of the singularity behavior of the kernel Hp

ij(ξ − y)). It should be

remarked that for isotropic materials, the kernels Up

i (ξ − y), Gp

mj(ξ − y), Ctk
mj(ξ − y) possess an

explicit form in terms of elementary functions (see [18, 22]).
Towards obtaining a system of governing integral equations for the BEM-region ΩB,

the weak-form boundary integral equation for the traction (2.2) is applied directly to the
crack surface SBC (with the test function being chosen such that ṽ = 0 on SBI) and to
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the interface SBI (with the test function being chosen such that ṽ = 0 on SBC), and the weak-
form boundary integral equation for the displacement (2.1) is applied only to the interface
SBI . A final set of three integral equations is given concisely by

ACC(ṽ,Δu) + BIC(tBI , ṽ) +ACI(ṽ,uBI) = −2FBC(ṽ, tC),

BIC

(
t̃BI ,Δu

)
+ CII

(
t̃BI , tBI

)
+DII

(
t̃BI ,uBI

)
= 0,

AIC(ũBI ,Δu) +DII(tBI , ũBI) +AII(ũBI ,uBI) = −2FBI(ũBI , tBI),

(2.9)

where {ũBI , t̃BI} are test functions defined on the interface SBI and all involved bilinear
integral operators are defined, with subscripts P,Q ∈ {I, C} being introduced to clearly
indicate the surface of integration, by

APQ(X,Y) =
∫
SBP

DtXk(y)
∫
SBQ

Ctk
mj(ξ − y)DmYj(ξ)dS(ξ)dS(y), (2.10)

BIP (X,Y) =
∫
SBI

Xk(y)
∫
SBP

Gk
mj(ξ − y)DmYj(ξ)dS(ξ)dS(y)

−
∫
SBI

Xk(y)
∫
SBP

nm(ξ)Hk
mj(ξ − y)Yj(ξ)dS(ξ)dS(y),

(2.11)

CII(X,Y) =
∫
SBI

Xk(y)
∫
SBI

Uk
i (ξ − y)Yi(ξ)dS(ξ)dS(y), (2.12)

FBP (X,Y) =
1
2

∫
SBP

Xi(y)Yi(y)dS(y), (2.13)

DII(X,Y) = BII(X,Y) −FBI(X,Y). (2.14)

It should be noted that the linear operator APQ(X,Y) is in a symmetric form satisfying the
condition APQ(X,Y) = AQP (Y,X), and, as a consequence, it renders the left hand side of the
system (2.9) being in a symmetric form. Although such symmetric formulation can readily
be obtained, the right-hand side of (2.9) still contains the unknown traction on the interface
tBI . The treatment of a term FBI(ũBI , tBI) will be addressed once the formulation for the FEM-
region ΩF is established.

2.2. Governing Equations for ΩF

Let us consider, next, the FEM-region ΩF . For generality, the entire boundary of this
particular region can be decomposed into two surfaces: the interface SFI on which both
the traction tFI and the displacement uFI are unknown a priori and the surface SFT on
which the traction tFT is fully prescribed. The existence of the surface SFT is apparent for
the case that the FEM-region contains embedded holes or voids. It is also important to
emphasize that, in the development of a key governing equation for ΩF , the traction tFI
is treated, in a fashion different from that for the BEM-region, as unknown data instead of
the primary unknown variable. In addition, to be capable of modeling a complex localized
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zone embedded within the FEM-region, a constitutive model governing the material behavior
utilized in the present study is assumed to be sufficiently general allowing the treatment
of material nonlinearity, anisotropy, and inhomogeneity. The treatment of such complex
material models has been extensively investigated and well established within the context
of nonlinear finite element methods (e.g., [6, 37, 38]), and those standard procedures also
apply to the current implementation and will not be presented for brevity. Here, we only
outline the key governing equation for the FEM-region and certain unknowns and necessary
data connected to those for the BEM-region.

Following standard formulation of the finite element technique, the weak-form
equation governing the FEM-region can readily be obtained via the principle of virtual work
[6–8] and the final equation can be expressed in a concise form by

KFF(ũ,σ) = 2FFI(ũFI , tFI) + 2FFT (ũFT , tFT ), (2.15)

where σ is a stress tensor; ũ is a suitably well-behaved test function defined over the domain
ΩF ; ũFI and ũFT are the restriction of ũ on the interface SFI and boundary SFT , respectively;
the integral operators are defined, with subscripts P ∈ {I, T}, by

KFF(ũ,σ) =
∫
ΩF

ε̃ij(y)σij(y)dV (y), (2.16)

FFP (X,Y) =
1
2

∫
SFP

Xi(y)Yi(y)dS(y), (2.17)

in which ε̃ij(y) denotes the virtual strain tensor defined by ε̃ij(y) = (∂ũi/∂yj + ∂ũj/∂yi)/2.
Note again that a function form of the stress tensor in terms of the primary unknown depends
primarily on a constitutive model employed. For a special case of the FEM-region being made
of a homogeneous, linearly elastic material, the stress tensor can be expressed directly and
explicitly in terms of elastic constants Eijkl and the strain tensor ε (i.e., σij = Eijklεkl), and,
within the context of an infinitesimal deformation theory (i.e., εij(y) = (∂ui/∂yj+∂uj/∂yi)/2),
the integral operator KFF can be expressed directly in terms of the displacement u as

KFF(ũ,u) =
∫
ΩF

ũi,j(y)Eijkluk,l(y)dV (y). (2.18)

It should be remarked that the factor of one half in the definition (2.17) has been introduced
for convenience to cast this term in a form analogous to that for FBP given by (2.13), and
this, as a result, leads to the factor of two appearing on the right-hand side of (2.15). It is also
worth noting that the first term on the right-hand side of (2.15) still contains the unknown
traction on the interface tFI .

2.3. Governing Equations for Ω

A set of governing equations of the entire domain Ω can directly be obtained by combining
a set of weakly singular, weak-form boundary integral equations (2.9) and the virtual work
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equation (2.15). In particular, the last equations of (2.9) and (2.15) are properly combined,
and this finally leads to

ACC(ṽ,Δu) + BIC(tBI , ṽ) +ACI(ṽ,uBI) = −2FBC(ṽ, tC),

BIC

(
t̃BI ,Δu

)
+ CII

(
t̃BI , tBI

)
+DII

(
t̃BI ,uBI

)
= 0,

AIC(ũBI ,Δu) +DII(tBI , ũBI) +AII(ũBI ,uBI) −KFF(ũ,σ) = E − 2FFT (ũFT , tFT ),

(2.19)

where E is given by

E = −2[FBI(ũBI , tBI) +FFI(ũFI , tFI)]. (2.20)

From the continuity of the traction and displacement across the interface of the BEM-region
and FEM-region (i.e., tBI(y) + tFI(y) = 0 and uBI(y) = uFI(y) for all y ∈ SI = SBI = SFI), the
test functions ũBI and ũ are chosen such that ũBI(y) = ũFI(y) for all y ∈ SI = SBI = SFI and, as
a direct consequence, E identically vanishes. It is therefore evident that the right-hand side of
(2.19) involves only prescribed boundary data, and, in addition, if the integral operator KFF

possesses a symmetric form, (2.19) constitutes a symmetric formulation for the boundary
value problem currently treated.

3. Numerical Implementation

This section briefly summarizes numerical procedures adopted to construct approximate
solutions of a set of governing equations (2.19) and to postprocess certain quantities of
interest. The discretization of the BEM-region and the FEM-region is first discussed. Then,
components essential for numerical evaluation of weakly singular and nearly singular
double-surface integrals, evaluations of kernels, and determination of general mixed-mode
stress intensity factors are addressed. Finally, the key strategy for establishing the coupling
between the in-house weakly singular SGBEM code and the reliable commercial finite
element package is discussed.

3.1. Discretization

Standard Galerkin strategy is adopted to construct an approximate solution of the governing
equation (2.19). For the BEM-region ΩB, only the crack surface SBC and the interface SBI
need to be discretized. In such discretization, standard isoparametric C0 elements (e.g.,
8-node quadrilateral and 6-node triangular elements) are employed throughout except
along the crack front where special 9-node crack-tip elements are employed to accurately
capture the asymptotic field near the singularity zone. Shape functions of these special
elements are properly enriched by square root functions, and, in addition, extra degrees of
freedom are introduced along the element boundary adjacent to the crack front to directly
represent the gradient of the relative crack-face displacement [18, 21, 23]. These positive
features also enable the calculation of the mixed-mode stress intensity factors (i.e., mode-
I, mode-II, and mode-III stress intensity factors) in an accurate and efficient manner with
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use of reasonably coarse meshes. For the FEM-region ΩF , standard three-dimensional,
isoparametric C0 elements (e.g., ten-node tetrahedral elements, fifteen-node prism elements,
and twenty-node brick elements) are utilized throughout in the domain discretization.

It is important to note that the BEM-region and the FEM-region are discretized such
that meshes on the interface of the two regions conform (i.e., the two discretized interfaces
are geometrically identical). A simple means to generate those conforming interfaces is to
mesh the FEM-region first and then use its surface mesh as the interface mesh of the BEM-
region. With this strategy, all nodal points on both discretized interfaces are essentially
coincident. The key advantage of using conforming meshes is that the strong continuity of
the displacement, the traction, and the test functions across the interface can be enforced
exactly, and, as a result, the condition E = 0 is also satisfied in the discretization level.
It should be emphasized also that nodes on the interface of the BEM-region contain six
degrees of freedom (i.e., three displacement degrees of freedom and three traction degrees
of freedom) while nodes on the FEM-region contain only three displacement degrees of
freedom.

3.2. Numerical Integration

For the FEM-region, all integrals arising from the discretization of the weak-form equation
contain only regular integrands, and, as a result, they can be efficiently and accurately
integrated by standard Gaussian quadrature. On the contrary, numerical evaluation of
integrals arising from the discretization of the BEM-region is nontrivial since it involves the
treatment of three types of double surface integrals (i.e., regular integrals, weakly singular
integrals, and nearly singular integrals). The regular double surface integral arises when it
involves a pair of remote outer and inner elements (i.e., the distance between any source and
field points is relatively large when compared to the size of the two elements). This renders its
integrand nonsingular and well-behaved and, as a result, allows the integral to be accurately
and efficiently integrated by standard Gaussian quadrature.

The weakly singular double surface integral arises when the outer surface of
integration is the same as the inner surface. For this particular case, the source and field points
can be identical and this renders the integrand singular of order 1/r. While the integral of this
type exists in an ordinary sense, it was pointed out by Xiao [16] that the numerical integration
by Gaussian quadrature becomes computationally inefficient and such inaccurate evaluation
can significantly pollute the quality of approximate solutions. To circumvent this situation,
a series of transformations such as a well-known triangular polar transformation and a
logarithmic transformation is applied first both to remove the singularity and to regularize
the rapid variation of the integrand. The final integral contains a nonsingular integrand well
suited to be integrated by Gaussian quadrature. Details of this numerical quadrature can be
found in [16, 39, 40].

The most challenging task is to compute nearly singular integrals involving relatively
close or adjacent inner and outer elements. Although the integrand is not singular, it
exhibits rapid variation in the zone where both source and field points are nearly identical.
Such complex behavior of the integrand was found very difficult and inefficient to be
treated by standard Gaussian quadrature [16]. To improve the accuracy of such quadrature,
the triangular polar transformation is applied first and then a series of logarithmic
transformations is adopted for both radial and angular directions to further regularize the
rapid variation integrand. The resulting integral was found well-suited for being integrated
by standard Gaussian quadrature [16, 40–42].
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3.3. Evaluation of Kernels

To further reduce the computational cost required to form the coefficient matrix contributed
from the BEM-region, all involved kernels ni(ξ)H

p

ij(ξ − y), ni(y)H
p

ij(ξ − y), Up

i (ξ − y),

G
p

mj(ξ − y), Ctk
mj(ξ − y) must be evaluated in an efficient manner for any pair of source and

field points {ξ,y}. For the first two kernels ni(ξ)H
p

ij(ξ − y) and ni(y)H
p

ij(ξ − y), they only

involve the calculation of a unit normal vector n and the elementary function H
p

ij . As a
result, this task can readily be achieved via a standard procedure. For the last three kernels,
the computational cost is significantly different for isotropic and anisotropic materials. For
isotropic materials, such kernels only involve elementary functions and can therefore be
evaluated in a straightforward fashion. On the contrary, the kernels Up

i (ξ−y), G
p

mj(ξ−y), and

Ctk
mj(ξ − y) for general anisotropy are expressed in terms of a line integral over a unit circle

(see (2.4)–(2.6), and (2.8)). Direct evaluation of such line integral for every pair of points (ξ,y)
arising from the numerical integration is obviously computationally expensive. To avoid this
massive computation, a well-known interpolation technique (e.g., [21, 23, 36]) is adopted
to approximate values of those kernels. Specifically, the interpolant of each kernel is formed
based on a two-dimensional grid using standard quadratic shape functions. Values of kernels
at all grid points are obtained by performing direct numerical integration of the line integral
(2.8) via Gaussian quadrature and then using the relations (2.4)–(2.6). The accuracy of such
approximation can readily be controlled by refining the interpolation grid.

3.4. Determination of Stress Intensity Factors

Stress intensity factors play an important role in linear elastic fracture mechanics in the
prediction of crack growth initiation and propagation direction and also in the fatigue-life
assessment. This fracture data provides a complete measure of the dominant behavior of the
stress field in a local region surrounding the crack front. To obtain highly accurate stress
intensity factors, we supply the developed coupling technique with two crucial components,
one associated with the use of special crack-tip elements to accurately capture the near-
tip field and the other corresponding to the use of an explicit formula to extract such
fracture data. The latter feature is a direct consequence of the extra degrees of freedom being
introduced along the crack front to represent the gradient of relative crack-face displacement.
Once a discretized system of algebraic equations is solved, nodal quantities along the crack
front are extracted and then postprocessed to obtain the stress intensity factors.

An explicit expression for the mixed-mode stress intensity factors in terms of nodal
data along the crack front, local geometry of the crack front, and material properties can be
found in the work of Li et al. [18] for cracks in isotropic media and Rungamornrat and Mear
[23, 36] for cracks in general anisotropic media. In the current investigation, both formulae
are implemented.

3.5. Coupling of SGBEM and Commercial FE Package

To further enhance the modeling capability, the weakly singular SGBEM can be coupled with
a reliable commercial finite element code that supports user-defined subroutines. The key
objective is to exploit available vast features of such FE package (e.g., mesh generation, user-
defined elements, powerful linear and nonlinear solvers, and various material models, etc.)
to treat a complex, localized FEM-region and utilize the SGBEM in-house code to supply
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information associated with the majority of the domain that is unbounded and possibly
contains isolated discontinuities.

In the coupling procedure, the governing equation for the BEM-region is first
discretized into a system of linear algebraic equations. The corresponding coefficient matrix
and the vector involving the prescribed data are constructed using the in-house code, and
they can be viewed as a stiffness matrix and a load vector of a “super element” containing
all degrees of freedom of the BEM-region. This piece of information is then imported into
the commercial FE package via a user-defined subroutine channel and then assembled with
element stiffness matrices contributed from the discretized FEM-region. Since meshes of
both interfaces (one associated with the BEM-region and the other corresponding to the
FEM-region) are conforming, the assembly procedure can readily be achieved by using
a proper numbering strategy. Specifically, nodes on the interface of the BEM-region are
named identical to nodes on the interface of the FEM-region (associated with the same
displacement degrees of freedom). It is important to emphasize that all interface nodes
of the BEM-region possess six degrees of freedom (i.e., three displacement degrees of
freedom and three traction degrees of freedom) but there are only three (displacement)
degrees of freedom per interface node of the FEM-region. To overcome such situation, each
interface node of the BEM-region is fictitiously treated as double nodes where the first
node is chosen to represent the displacement degrees of freedom and is numbered in the
same way as its coincident interface node of the FEM-region whereas the second node is
chosen with different name to represent the traction degrees of freedom. With this particular
scheme, the assembling procedure follows naturally that for a standard finite element
technique.

Once the coupling analysis is complete, nodal quantities associated with the BEM-
region are extracted from the output file generated by the FE package and then postprocessed
for quantities of interest. For instance, the displacement and stress within the BEM-region
can readily be computed from the standard displacement and stress boundary integral
relations [17, 22], and the stress intensity factors can be calculated using an explicit expression
proposed in [18, 23].

4. Numerical Results and Discussion

As a means to verify both the formulation and the numerical implementations, we first
carry out numerical experiments on boundary value problems in which the analytical
solution exists. In the analysis, a series of meshes is adopted in order to investigate both
the convergence and accuracy of the numerical solutions. Once the method is tested, it is
then applied to solve more complex boundary value problems in order to demonstrate its
capability and robustness. For brevity of the presentation, a selected set of results are reported
and discussed as follows.

4.1. Isolated Spherical Void under Uniform Pressure

Consider an isolated spherical void of radius a embedded in a three-dimensional infinite
medium as shown schematically in Figure 2(a). The void is subjected to uniform pressure σ0.
In the analysis, two constitutive models are investigated: one associated with an isotropic,
linearly elastic material with Young’s modulus E and Poisson ratio ν = 0.3 and the other
chosen to represent an isotropic hardening material obeying J2-flow theory of plasticity [43].
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Figure 2: (a) Schematic of three-dimensional infinite medium containing spherical void and (b) schematic
of BEM-region and FEM-region.

Mesh-1 Mesh-2 Mesh-3

Figure 3: Three meshes adopted in the analysis for FEM-region; meshes for BEM-region are identical to the
interface mesh of FEM-region.

For the latter material, the uniaxial stress-strain relation is assumed in a bilinear form with E1

and E2 denoting the modulus in the elastic regime and the modulus of the hardening zone,
respectively, and σy and εy denoting the initial yielding stress and its corresponding strain,
respectively.

To test the coupling technique, we first decompose the body into two regions by a
fictitious spherical surface of radius 5a and centered at the origin as shown by a dashed
line in Figure 2(b). It is important to remark that such a surface must be chosen relatively
large compared to the void to ensure that the inelastic zone that may exist (for the second
constitutive model) is fully contained in the FEM-region. In the experiments, three different
meshes are adopted as shown in Figure 3. Although meshes for the BEM-region are not
shown, they can simply obtain from the interface meshes of the FEM-region. As clearly
illustrated in the figure, mesh-1, mesh-2, and mesh-3 consist of 12, 32, 144 boundary elements
and 24, 128, 1152 finite elements, respectively.

4.1.1. Results for Isotropic Linearly Elastic Material

For linear elasticity, this particular boundary value problem admits the closed form solution
(e.g., [44]). Since the problem is spherically symmetric, only the radial displacement ur and
the normal stress components {σrr , σθθ, σφφ} are nonzero and they are given explicitly by
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0 1 2 3 4 5 6

u
r
E
/
σ
0a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mesh-1
Mesh-2

Mesh-3

r/a

Figure 4: Normalized radial displacement versus normalized radial coordinate for isotropic, linearly elastic
material with ν = 0.3.

(note that these quantities are referred to a standard spherical coordinate system {r, θ, φ}
with its origin located at the center of the void)

ur(r) =
1 + ν
2E

σ0
a3

r2
, (4.1)

σrr(r) = −2σθθ(r) = −2σφφ(r) = −σ0

(
a

r

)3

. (4.2)

This analytical solution is employed as a means to validate the proposed formulation and the
numerical implementation. Numerical solutions for the radial displacement obtained from
the three meshes are reported and compared with the exact solution in Figure 4. As evident
from this set of results, the radial displacements obtained from the mesh-2 and the mesh-3 are
highly accurate with only slight difference from the exact solution while that obtained from
the mesh-1 is reasonably accurate except in the region very near the surface of the void. The
discrepancy of solutions observed in the mesh-1 is due to that the level of refinement is too
coarse to accurately capture the geometry and responses in the local region near the surface
of the void.

We further investigate the quality of numerical solutions for stresses. Since all nonzero
stress components are related by (4.2), only results for the radial stress component are
reported. Figure 5 shows the normalized radial stress obtained from the three meshes and
the exact solution versus the normalized radial coordinate. It is observed that the mesh-
3 yields results that are almost indistinguishable from the exact solution, whereas the
mesh-1 and mesh-2 give accurate results for relatively large r, and the level of accuracy
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Figure 5: Normalized radial stress versus normalized radial coordinate for isotropic, linearly elastic
material with ν = 0.3.

decreases as the distance r approaches a. It is noted by passing that the degeneracy of the
accuracy in computing stress is common in a standard, displacement-based, finite element
technique.

To demonstrate the important role of the SGBEM in the treatment of an unbounded
part of the domain instead of truncating the body as practically employed in the finite
element modeling, we perform another FE analysis of the FEM-region alone without
coupling with the BEM-region but imposing zero displacement condition at its interface.
The radial displacement and the radial stress obtained for this particular case using the
mesh-3 are reported along with the exact solution and those obtained from the coupling
technique in Figures 6 and 7, respectively. As evident from these results, numerical solutions
obtained from the FEM with a domain truncation strategy deviate from the exact solution
as approaching the truncation surface while the proposed technique yields almost identical
results to the exact solution. The concept of domain truncation to obtain a finite body is
simple, but it still remains to choose a proper truncation surface and boundary conditions
to be imposed on that surface to mimic the original boundary value problem. This coupling
technique provides an alternative to treat the whole domain without any truncation and
difficulty to treat the remote boundary.

4.1.2. Isotropic Hardening Material

For this particular case, we focus attention to the material with no hardening modulus (i.e.,
E2 = 0) since the corresponding boundary value problem admits the closed form solution.
For a sufficiently high applied pressure σ0, a layer close to the boundary of the void becomes
inelastic and the size of such inelastic zone (measured by the radius r0) becomes larger as
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Figure 6: Normalized radial displacement versus normalized radial coordinate for isotropic, linearly elastic
material with ν = 0.3. Results are obtained from mesh-3 for both the coupling technique and the FEM with
domain truncation.
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Figure 8: Normalized radial displacement versus normalized radial coordinate for isotropic hardening
material with E2 = 0.

σ0 increases. By incorporating J2-flow theory of plasticity and spherical symmetry, the radial
displacement and the radial stress can be obtained exactly as given below:

ur(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 2ν
E

{
2σy ln

( r
a

)
− σ0

}
r +

1 − ν
E

σy

(
r3

0

r2

)
, r < r0,

σy(1 + ν)
3E

(
r3

0

r2

)
, r ≥ r0,

σrr(r) =

⎧⎪⎪⎨
⎪⎪⎩

2σy ln
( r
a

)
− σ0, r < r0,
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3

(
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)3

, r ≥ r0,

(4.3)

where the Poisson ratio ν is taken to be 0.3 and r0 = ae((σ0/2σy)−(1/3)) is the radius of an inelastic
zone.

In the analysis, the pressure σ0 = 1.625σy is chosen to ensure that the medium contains
an inelastic zone; in fact, this selected applied pressure corresponds to r0 = 1.615a. Numerical
results obtained from the current technique are reported along with the exact solution in
Figure 8 for the normalized radial displacement and in Figure 9 for the normalized radial
stress. It can be concluded from computed solutions that they finally converge to the exact
solution as the mesh is refined. In particular, results obtained from the mesh-3 are nearly
indistinguishable from the benchmark solution. It should be pointed out that results obtained
from the same level of mesh refinement for this particular case are less accurate than those
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Figure 10: (a) Schematic of infinite medium containing penny-shaped crack, (b) crack under uniform
normal traction σ0, and (c) crack under uniform shear traction τ0.

obtained for the linear elastic case. This is due to the complexity posed by the presence of an
inelastic zone near the surface of the void, and, in order to capture this behavior accurately, it
requires sufficiently fine meshes.

4.2. Isolated Penny-Shaped Crack in Infinite Medium

Consider, next, a penny-shaped crack of radius a which is embedded in a linearly elastic,
infinite medium as shown schematically in Figure 10(a). The body is made of either an
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Figure 11: (a) Schematic of selected FEM-region and the remaining BEM-region and (b) three meshes
adopted in the analysis.

Table 1: Nonzero elastic constants for zinc and graphite-reinforced composite (where axis of material
symmetry is taken to direct along the x3-coordinate direction).

Nonzero elastic constants (×106) psi
Zinc Graphite-reinforced composite

E1111 16.09 14.683
E1122 3.35 6.986
E1133 5.01 5.689
E3333 6.10 144.762
E1313 3.83 4.050

isotropic material with Poisson’s ratio ν = 0.3 or zinc and graphite-reinforced composite.
The last two materials are transversely isotropic with the axis of material symmetry directing
along the x3-axis, and their elastic constants are given in Table 1. The crack is subjected to
two types of traction boundary conditions: the uniform normal traction σ0 (i.e., t1 = t2 =
0, t3 = σ0) as shown in Figure 10(b) and the uniform shear traction τ0 along the x1-axis (i.e.,
t1 = τ0, t2 = t3 = 0) as shown in Figure 10(c).

The first loading condition gives rise to a pure opening-mode problem with the mode-
I stress intensity factor along the crack front being constant and independent of material
properties, while the second loading condition yields nonzero mode-II and mode-III stress
intensity factors that vary along the crack front. The analytical solutions for both cases can
be found in the work of Fabrikant [4]. As a means to verify the coupling formulation and
implementation, we choose the FEM-region to be a cube of dimensions 2a × 2a × 2a centered
at (0, 0, 2a) as illustrated in Figure 11(a). In the analysis, we generate three meshes for both
the crack surface and the FEM-region as shown in Figure 11(b).

For the first loading condition, numerical solutions for the mode-I stress intensity
factor normalized by the exact solution are reported in Table 2 for all three materials. Clearly
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Table 2: Normalized mode-I stress intensity factor for isolated penny-shaped crack subjected to uniform
normal traction.

Mesh
Isotropic material, K1/K1, exact Transversely isotropic material, K1/K1,exact

Zinc Graphite-reinforced composite
θ◦ = 0 θ◦ = 90 θ◦ = 0 θ◦ = 90 θ◦ = 0 θ◦ = 90

1 0.9919 0.9920 0.9890 0.9890 0.9841 0.9841
2 1.0008 1.0008 1.0001 1.0001 1.0053 1.0053
3 1.0002 1.0002 1.0004 1.0004 1.0006 1.0001

from these results, the current technique yields highly accurate stress intensity factors with
error less than 1.6%, 0.6%, and 0.1% for mesh-1, mesh-2, and mesh-3, respectively. The weak
dependence of numerical solutions on the level of mesh refinement is due mainly to the use
of special crack-tip elements to model the near-tip field and directly capture the gradient of
relative crack-face displacement along the crack front. Relatively coarse meshes can therefore
be employed in the analysis to obtain sufficiently accurate stress intensity factors.

For the second loading condition, the normalized mode-II and mode-III stress intensity
factors (K2 and K3) are shown in Figure 12 for isotropic material, zinc and graphite-
reinforced composite. Based on this set of results, it can be concluded again that numerical
solutions obtained from the three meshes are in excellent agreement with the exact solution;
in particular, a coarse mesh also yields results of high accuracy. It should also be remarked
that for this particular loading condition, the material anisotropy plays a significant role on
values of the mixed-mode stress intensity factors.

4.3. Infinite Medium Containing Both Penny-Shaped Crack and
Spherical Void

As a final example, we choose to test the proposed technique by solving a more complex
boundary value problem in order to demonstrate its capability. Let us consider an infinite
medium containing a spherical void of radius a and a penny-shaped crack of the same radius
as shown schematically in Figure 13. The medium is subjected to uniform pressure σ0 on the
surface of the void, whereas the entire surface of the crack is traction-free. In the analysis,
two constitutive models are investigated: one associated with an isotropic, linearly elastic
material with Young’s modulus E and Poisson ratio ν = 0.3 and the other corresponding
to an isotropic hardening material with the bilinear uniaxial stress-strain relation similar to
that employed in Section 4.1. The primary quantity to be sought is the mode-I stress intensity
factor along the crack front induced by the application of the pressure to the void. In addition,
influence of an inelastic zone induced in the high-load-intensity region on such fracture data
is also of interest.

In the modeling, we first decompose the medium into the FEM-region and the BEM-
region using a fictitious spherical surface of radius 4a centered at the same location as that
of the void as shown in Figure 14(a). Three meshes are adopted in numerical experiments
as shown in Figure 14(b). In particular, the FEM-region, the interface, and the crack surface
consist of {24, 12, 8}, {128, 32, 16}, and {1024, 128, 64} elements for mesh-1, mesh-2, and
mesh-3, respectively. It should be noted also that the mesh-1 is obviously very coarse; in
particular, only eight elements are utilized to discretize the entire crack surface and only four
relatively large crack-tip elements are used along the crack front.
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Figure 13: Schematic of infinite medium containing spherical void of radius a and penny-shaped crack of
radius a and subjected to uniform pressure at surface of void.

First, the analysis is carried out for the elastic material with Poisson ratio ν = 0.3, and
the computed mode-I stress intensity factors are normalized and then reported as a function
of angular position along the crack front for all three meshes in Figure 15. This set of results
implies that the obtained numerical solutions exhibit good convergence; in particular, results
obtained from the mesh-2 and mesh-3 are of comparable quality while results obtained from
the mesh-1 still deviate from the converged solution. As confirmed by this convergence study,
only the mesh-3 is used to generate other sets of useful results.

Next, we consider a medium made of an isotropic hardening material. In the analysis,
we choose the modulus E1 = E and Poisson ratio ν = 0.3 for the linear regime and choose
either E2 = E/3 or E2 = 0 for the hardening regime. With this set of material parameters,
the behavior in the linear regime (for a small level of applied pressure) is identical to that
obtained in the previous case. To investigate the influence of the inelastic zone induced near
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of radius 4a and (b) three meshes adopted in analysis.
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Figure 15: Normalized mode-I stress intensity factors of penny-shaped crack embedded within infinite
medium containing spherical void under uniform pressure. Results are reported for isotropic linearly
elastic material with ν = 0.3.

the surface of the void on the stress intensity factor along the crack front, we carry out various
experiments by varying the applied pressure σ0. The distribution of the stress intensity factor
along the crack front is reported in Figure 16 for a hardening material with E1 = E and E2 =
E/3 under five levels of the applied pressure σ0 ∈ {0.25σy, 1.00σy, 1.25σy, 1.50σy, 1.75σy}. The
body is entirely elastic at σ0 = 0.25σy, slightly passes the initial yielding at σ0 = 1.00σy, and
possesses a larger inelastic zone as the pressure increases further. It is obvious from Figure 16
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Figure 16: Normalized mode-I stress intensity factor of penny-shaped crack embedded within infinite
medium containing spherical void under uniform pressure. Results are reported for isotropic hardening
material with E1 = E and E2 = E/3.

that the presence of an elastic zone significantly alters the normalized values of the stress
intensity factor from the linear elastic solution and such discrepancy becomes more apparent
as the level of applied pressure increases. The localized inelastic zone acts as a stress riser,
that is, it produces the stress field of higher intensity around the crack, and this therefore
yields the higher normalized stress intensity factor when compared with the linear elastic
case. Figure 17 shows an additional plot between the maximum normalized stress intensity
factors versus the normalized applied pressure for both an isotropic linearly elastic material
and two isotropic hardening materials (associated with E2 = 0 and E2 = E/3). Results for
both materials are identical for a low level of the applied pressure (since the entire body is still
elastic), and, for a higher level of the applied pressure, the maximum stress intensity factor
for the case of the hardening material is significantly larger than that for the linear elastic
material. In addition, such discrepancy tends to increase as the hardening modulus decreases.

5. Conclusions and Remarks

The coupling procedure between a standard finite element method (FEM) and a weakly
singular, symmetric Galerkin boundary element method (SGBEM) has been successfully
established for stress analysis of a three-dimensional infinite medium. The proposed
technique has exploited the positive features of both the FEM and the SGBEM to enhance
the modeling capability. The vast and very general features of the FEM have been employed
as a basis to treat a localized region that may embed a zone exhibiting complex behavior,
whereas the SGBEM has been used specifically to model the majority of the medium that is
unbounded and possibly contains the surface of displacement discontinuities such as cracks
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void. Results are reported for isotropic linearly elastic material with ν = 0.3 and two isotropic hardening
materials.

and dislocations. The coupling formulation has been based primarily on the domain decom-
position technique along with the proper enforcement of continuity of the displacement and
traction on the interface of the two regions (one modeled by the SGBEM and the other by the
FEM) to form the coupling equations. For the FEM subdomain, the key formulation follows
directly the well-known principle of virtual work, whereas, for the SGBEM subdomain, the
governing equation is formulated based on a pair of weakly singular, weak-form boundary
integral equations for the displacement and traction. The advantage of using the weakly
singular integral equations is associated with the permission to apply a space of continuous
interpolation functions in the discretization of primary unknowns on the SGBEM subdomain.

In the numerical implementation, various aspects have been considered in order to
enhance the accuracy and computational efficiency of the coupling technique. For instance,
special crack-tip elements have been employed to better approximate the near-tip field.
Shape functions of these special elements have properly been enriched by a square root
function such that the resulting interpolation functions can capture the relative crack-face
displacement with sufficiently high level of accuracy. As a direct consequence, it allows
relatively large crack-tip elements to be employed along the crack front while still yielding
very accurate stress intensity factors. Another important consideration is the use of an
interpolation strategy to approximate values of kernels for generally anisotropic materials;
this substantially reduces the computational cost associated with the direct evaluation of the
line integral. Finally, special numerical quadratures have been adopted to efficiently evaluate
both the weakly singular and nearly singular double surface integrals. To demonstrate and
gain an insight into the coupling strategy, the formulation has been implemented first in terms
of an in-house computer code for linear elasticity boundary value problems. Subsequently,
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the weakly singular SGBEM has successfully been coupled with a reliable commercial finite
element package in order to exploit its rich features to model more complex localized region
such as inelastic zones and inhomogeneities. As indicated by results from extensive numeri-
cal experiments, the current technique has been found promising and, in particular, numerical
solutions exhibit good convergence and weak dependence on the level of mesh refinement.

As a final remark, while the developed technique is still restricted to an infinite domain
and to conforming interfaces, it offers insight into the SGBEM-FEM coupling strategy in terms
of the formulation, the implementation procedure, and its performance. This coupling strat-
egy can directly be generalized to solve more practical boundary value problems involving
a half space, for example, cracks and localized complex zone near the free surface. Another
crucial extension is to enhance the feature of the current technique by using the weak enforce-
ment of continuity across the interface. This will supply the flexibility of mesh generation.
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The dam-reservoir system is divided into the near field modeled by the finite element method,
and the far field modeled by the excellent high-order doubly asymptotic open boundary (DAOB).
Direct and partitioned coupled methods are developed for the analysis of dam-reservoir system.
In the direct coupled method, a symmetric monolithic governing equation is formulated by
incorporating the DAOB with the finite element equation and solved using the standard time-
integration methods. In contrast, the near-field finite element equation and the far-field DAOB
condition are separately solved in the partitioned coupled methodm, and coupling is achieved
by applying the interaction force on the truncated boundary. To improve its numerical stability
and accuracy, an iteration strategy is employed to obtain the solution of each step. Both coupled
methods are implemented on the open-source finite element code OpenSees. Numerical examples
are employed to demonstrate the performance of these two proposed methods.

1. Introduction

The coupled analysis of dam-reservoir interaction has great significance for the design
and safety evaluation of concrete dams under earthquakes. The finite element method and
substructure method are often applied for the analysis of dam-reservoir system (Figure 1).
The dam structure as well as the near-field reservoir with irregular geometry is discretized
with finite elements. The remaining part of the reservoir, called the far field, is simplified as
a semi-infinite layer with constant depth. On the truncated boundary, which separates the
near and far field, the equations of motion and continuity should be satisfied simultaneously.
In the early studies, frequency-domain analysis methods [1, 2] are often used for linear
problems. However, for a nonlinear analysis of the dam-reservoir system, it is necessary to
develop a direct time domain analysis. Zienkiewicz and Bettess [3] as well as Küçükarslan
et al. [4] studied fluid-structure interaction in the time domain by imposing the Sommerfeld
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Figure 1: A typical dam-reservoir system.

radiation condition [5]. Tsai and his coworkers [6–8] established the time-domain models
for the dynamic interaction analysis of dam-reservoir system by using the transmitting
boundary. This approach is temporally global; that is, it requires the evaluation of convolution
integrals. Boundary element method is undoubtedly a powerful numerical tool for analysis
of problems involving unbounded domain. When the boundary element method [9–13] is
applied to the direct time-domain analysis of dam-reservoir interaction, the formulation
is temporally and spatially global. As a result, great numerical effort is required to solve
the transient problems. This hinders its application to long-time analysis of large-scale
engineering problems. The scaled boundary finite element method is a semianalytical method
which is efficient for the analysis of dam-reservoir interaction. Details of this approach are
given, for example, by Li et al. [14] and Lin et al. [15].

The high-order open boundaries are promising alternatives for the simulation of semi-
infinite reservoir in the analysis of dam-reservoir system. The high-order open boundaries
[16, 17] are of increasing accuracy as the order of approximation increases. Moreover, the
formulations are temporally local so that they are computationally efficient. As demonstrated
by Prempramote et al. [18], these high-order open boundaries are singly asymptotic at the
high-frequency limit and are appropriate for the radiative fields, where virtually all of the
field energy is propagating out to infinity [19]. However, in some classes of application,
such as a semi-infinite reservoir with constant depth (also known as a wave guide), a cutoff
frequency exists. When the excitation frequency is close to or below the cutoff frequency,
the wave field is largely nonradiative. In such cases, the high-order transmitting boundaries
break down at late times in a time domain analysis [18]. To model an unbounded domain
with the presence of nonradiative wave fields, one advance is the introduction of the
doubly asymptotic boundaries [19–22]. Thus, the dynamic stiffness is exact at both the high-
frequency and the low-frequency limit (i.e., statics), with its formulation spatially global.
However, the highest order denoting the accuracy reported in the literature is three [23].

Recently, a novel high-order doubly asymptotic open boundary for one-dimensional
scalar wave equation is proposed by Prempramote et al. [18] by extending the work in [24].
This high-order doubly asymptotic open boundary is capable of accurately mimicking the
unbounded domain over the entire frequency (i.e., from zero to infinity). This open boundary
condition is constructed by using the continued fraction solution of dynamic stiffness matrix
without explicitly evaluating its solution at discrete frequencies. When applied for a semi-
infinite layer with a constant depth, the constants of the continued fraction solutions with
any order are determined explicitly and recursively. Excellent accuracy and stability for long-
time transient analysis are reported.
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Wang et al. [25] extend the high-order doubly asymptotic open boundary condition
by Prempramote at al. [18] to the analysis of the hydrodynamic pressure of a semi-
infinite reservoir with constant depth. By applying the sequential staggered implicit-implicit
partition algorithm, the high-order doubly asymptotic open boundary is coupled with the
general purpose finite element software ABAQUS to analyze the gravity dam-reservoir
interaction system. Numerical examples demonstrate the high accuracy and long-time
stability of this proposed technique.

Givoli et al. [26] proposed a new finite element scheme for the solution of time-
dependent semi-infinite wave-guide problems by incorporating with a high-order open
boundary. Two versions of finite element formulation, namely, the augmented version and the
split version, are proposed. Good performance of this scheme is demonstrated in numerical
examples, but the global mass and stiffness matrices of the augmented formulation are
nonsymmetric.

In this paper, two coupled numerical methods for dam-reservoir interaction analysis
based on the excellent high-order doubly asymptotic open boundary [25] are proposed. In
the direct coupled method, the high-order doubly asymptotic open boundary is directly
incorporated with the near-field finite element equation. A monolithic governing equation
for the whole dam-reservoir system is formulated with sparse and symmetric coefficients
matrices, which can be solved using the standard time-integration methods. In the partitioned
coupled method, the near-field finite element equation and the far-field high-order doubly
asymptotic boundary condition are separately solved. The high-order doubly asymptotic
open boundary is split into two parts. The first part is proved to be the Sommerfeld radiation
boundary, which can be included in the damping matrix of the near-field finite element equa-
tion. The second part includes all the high-order terms and is governed by a system of first-
order ordinary differential equations. These two sets of equations are solved by a sequential
staggered implicit-implicit partition algorithm. To improve the stability and accuracy of this
partitioned coupled method, an iteration strategy is employed to obtain the solution of each
step. Both of these two coupled methods are numerically implemented on the open-source
finite element code OpenSees to analyze the gravity dam-reservoir and arch dam-reservoir
interaction.

This paper is organized as follows. In Section 2, the finite element formulation of
dam-reservoir system is addressed. In Section 3, the scaled boundary finite element method
is applied to 3-dimensional semi-infinite layer with constant depth. The governing equation
on the truncated boundary is obtained. In Section 4, the scaled boundary finite element
equation is decoupled by modal decomposition. Based on the continued fraction solutions
of the dynamic stiffness, a high-order doubly asymptotic open boundary is constructed by
introducing auxiliary variables. In Section 5, two coupled numerical methods are presented:
the direct coupled method and the partitioned coupled method. Both numerical methods
are implemented on the open source finite element code OpenSees. In Section 6, numerical
examples of a gravity dam and an arch dam are presented. In the final section, conclusions are
stated.

2. Modeling of Dam-Reservoir System

A typical dam-reservoir system is shown in Figure 1. The reservoir is divided into two parts:
the near field with irregular geometry and the far field extending to the infinity with constant
depth. The dam structure and near field reservoir are dicretized with finite elements, and the
far field reservoir is modeled with high-order doubly asymptotic boundary.
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The hydrodynamic pressure is denoted as p = p(x,y, z, t), and the acceleration of
water particle is denoted as {ü} = {ü(x,y, z, t)}. Assuming the water in the reservoir to be
compressible, inviscid, and irrotational with small amplitude movements, the hydrodynamic
pressure p in the reservoir satisfies the scalar wave equation

1
c2

∂2p

∂t2
= Δp, (2.1)

where Δ is the Laplace operator and c is the compression wave velocity

c =

√
K

ρ
, (2.2)

where K is the bulk modulus of water and ρ is the mass density. On the dam-reservoir
interface (S1), p satisfies the following boundary condition

∂p

∂n
= −ρün, (2.3)

where n stands for the outward normal of the boundary. At the reservoir bottom (S2), the
following boundary condition

∂p

∂n
= 0 or ün = 0 (2.4)

applies. Neglecting the effect of surface waves, on the free surface (S3),

p = 0 (2.5)

applies. At infinity (S4), A Sommerfeld-type radiation boundary condition should be
satisfied; namely,

∂p

∂n
= − ṗ

c
. (2.6)

Without considering the material damping, the finite element formulation for dam-
reservoir system can be partitioned as

⎡
⎢⎢⎣

[Ms] 0 0

−[Qfs

] [
Mff

] [
Mfb

]
0

[
Mbf

]
[Mbb]

⎤
⎥⎥⎦
⎧⎨
⎩

{üs}{
p̈f
}

{
p̈b
}
⎫⎬
⎭ +

⎡
⎢⎢⎣
[Ks]

[
Qsf

]
0

0
[
Kff

] [
Kfb

]
0

[
Kbf

]
[Kbb]

⎤
⎥⎥⎦
⎧⎨
⎩

{us}{
pf
}

{
pb
}
⎫⎬
⎭ =

⎧⎨
⎩
{
fs
}

{
ff
}

−{r}

⎫⎬
⎭, (2.7)

where [M], [K], and [Q] are the mass matrix, static stiffness matrix, the coupling matrix
between structure and acoustic fluid, respectively, and {f} is the external force vector.
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Subscript s denotes the degrees of freedom of the dam structure; subscript b denotes the
degrees of freedom on the truncated boundary; subscript f denotes the degrees of freedom of
the near-field water except for those on the truncated boundary. The interaction load applied
to the semi-infinite reservoir (far field) by the near-field reservoir is denoted as {r}, so the
external load applied to the near-field reservoir on the truncated boundary is equal to −{r}.
The mass and stiffness matrices of water treated as acoustic fluid are expressed as

[
Mf

]
=
∫
Vf

1
K
[N]T [N]dV,

[
Kf

]
=
∫
Vf

1
ρ

(
∂[N]T

∂x

∂[N]
∂x

+
∂[N]T

∂y

∂[N]
∂y

+
∂[N]T

∂z

∂[N]
∂z

)
dV,

[
ff
]
=
∫
Sf

1
ρ
[N]

∂[N]
∂n

dS,

(2.8)

where [N] denotes the shape function of finite elements.
To solve (2.7) for the dam-reservoir system, the relationship between the interaction

load {r} and the hydrodynamic pressure {p} of the semi-infinite reservoir is formulated in
the following section.

3. Summary of the Scaled Boundary Finite Element Method for
Semi-Infinite Reservoir with Constant Depth

The scaled boundary finite element method is a semianalytical method developed to
model unbounded domains with arbitrary shape [27]. The scaled boundary finite element
formulation for the two-dimensional semi-infinite reservoir with constant depth was
described in detailed [25]. For the sake of completeness, a brief summary of the equations
necessary for the interpretation of high-order doubly asymptotic open boundary for
hydrodynamic pressure is presented in this section.

To facilitate the coupling with the finite elements of the near-field reservoir, the
truncated boundary is discretized by elements that have the same nodes and shape function
as the finite elements. The derivation is summarized for three-dimensional semi-infinite
reservoir with a vertical boundary (Figure 2). Streamlined expressions are presented as
follows.

For an acoustic fluid, the relationship between acceleration and hydrodynamic
pressure is equivalent to that between stress and displacement in stress analysis and is
expressed as

{L}p + ρ{ü} = 0, (3.1)

where {L} = {∂/∂x ∂/∂y ∂ /∂z} is the differential operator. The equation of continuity
without considering the volumetric stress-strain relationship of compressible water is written
as

{L}T{ü} = − 1
K

∂2p

∂t2
. (3.2)
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Figure 2: Semidiscretization of the truncated boundary.

The vertical truncated boundary of the semi-infinite reservoir is specified by a constant
coordinate xb. It is discretized by two-dimensional elements (Figure 2(a)). A typical element
is shown in Figure 2(b). The geometry of an element is interpolated using the shape functions
[N(η, ζ)] formulated in the local coordinates η and ζ as

yb
(
η, ζ

)
=
[
N
(
η, ζ

)]{
yb
}
, zb

(
η, ζ

)
=
[
N
(
η, ζ

)]{zb}. (3.3)

The Cartesian coordinates of a point (x, y, z) and inside the semi-infinite reservoir
are expressed as

x(ξ) = xb + ξ,

y
(
ξ,η, ζ

)
= yb

(
η, ζ

)
=
[
N
(
η, ζ

)]{
yb
}
,

z
(
ξ,η, ζ

)
= zb

(
η, ζ

)
=
[
N
(
η, ζ

)]{zb},
(3.4)

where the coordinate ξ is equal to 0 on the vertical boundary. The Jacobian matrix for
coordinate transformation from (x,y, z) to (ξ,η, ζ) is expressed as

[
J
(
η, ζ

)]
=

⎡
⎢⎢⎣
x,ξ y,ξ z,ξ

x,η y,η z,η

x,ζ y,ζ z,ζ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 yb,η zb,η

0 yb,ζ zb,ζ

⎤
⎥⎥⎦. (3.5)

For a three-dimensional problem,

dV = |J |dξdηdζ, (3.6)

where |J | is the determinant of the Jacobian matrix. The partial differential operator defined
in (3.1) is expressed as

{L} =
[
J
(
η, ζ

)]−1
[
∂

∂ξ

∂

∂η

∂

∂ζ

]T
=
{
b1
} ∂

∂ξ
+
{
b2
} ∂

∂η
+
{
b3
} ∂

∂ζ
, (3.7)
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with

{
b1
}
=

⎧⎨
⎩

1
0
0

⎫⎬
⎭,

{
b2
}
=

1
|J |

⎧⎨
⎩

0
zb,ζ
−yb,ζ

⎫⎬
⎭,

{
b3
}
=

1
|J |

⎧⎨
⎩

0
−zb,η
yb,η

⎫⎬
⎭. (3.8)

Along horizontal lines passing through a node on the boundary, the nodal
hydrodynamic pressure functions {p} = {p(ξ, t)} are introduced. On the boundary, the
nodal hydrodynamic pressure follows as {pb} = {p(ξ = 0, t)}. One isoparametric element
Se is shown in Figure 2. The hydrodynamic pressure field p = p(ξ,η, ζ, t) is obtained by
interpolating the nodal hydrodynamic pressure functions

p =
[
N
(
η, ζ

)]{
p
}
. (3.9)

Substituting (3.9) and (3.7) into (3.1), the fluid particle acceleration {ü} = {ü(ξ,η, ζ)}
is expressed as

{ü} = −1
ρ

([
B1
]{
p
}
,ξ +

[
B2
]{
p
})

, (3.10)

with

[
B1
]
=
{
b1
}[

N
(
η, ζ

)]
,

[
B2
]
=
{
b2
}[

N
(
η, ζ

)]
,η +

{
b3
}[

N
(
η, ζ

)]
,ζ. (3.11)

Applying Galerkin’s weighted residual technique in the circumferential directions η, ζ
to (3.2), the scaled boundary finite element equation for the three-dimensional semi-infinite
reservoir with constant depth is obtained as

[
E0
]{
p
}
,ξξ −

[
E2
]{
p
} − 1

c2

[
E0
]{
p̈
}
= 0, (3.12)

where [E0], [E2], and [M0] are coefficient matrices

[
E0
]
=
∫
Sξ

[
B1
]T 1

ρ

[
B1
]
|J |dη dζ =

∫
Sξ

[
N
(
η, ζ

)]T 1
ρ

[
N
(
η, ζ

)]|J |dη dζ,
[
E2
]
=
∫
Sξ

[
B2
]T 1

ρ

[
B2
]
|J |dη dζ,

[
M0

]
=
∫
Sξ

[
N
(
η, ζ

)]T 1
K

[
N
(
η, ζ

)]|J |dη dζ = 1
c2

[
E0
]
.

(3.13)

The coefficient matrices of (3.12) are evaluated by standard numerical integration
techniques in the finite element method. Similar to the static stiffness and mass matrices
in the finite element method, both of the coefficients [E0] and [E2] are sparse and positive
definite. This formulation is the same as that of two-dimensional case [25]. It is applicable for
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3-dimensional case with vertical truncated boundary of arbitrary geometry, such as the arch
dam-reservoir system.

The acoustic nodal load vector r = {r(ξ, t)} on a vertical boundary with a constant ξ is
obtained based on virtual work principle and is expressed as

{r} =
[
E0
]
{P},ξ. (3.14)

Assuming the time-harmonic behavior {p(ξ, t)} = {P(ξ, ω)}e+iωt and {r(ξ, t)} =
{R(ξ, ω)}e+iωt (ω is the excitation frequency) with the amplitudes of the hydrodynamic
pressure {P} = {P(ξ, ω)}, (3.12) is transformed into the frequency domain as

[
E0
]
{P},ξξ −

[
E2
]
{P} + ω2

c2

[
E0
]
{P} = 0, (3.15)

and the amplitudes of the acoustic nodal load {R} = {R(ξ, ω)} are expressed as

{R} = −
[
E0
]
{P},ξ. (3.16)

4. High-Order Doubly Asymptotic Open Boundary for
Hydrodynamic Pressure

The derivation of high-order doubly asymptotic open boundary for hydrodynamic pressure
is implemented based on the modal expression of (3.15). The streamlined expressions in [25]
are summarized in this section.

4.1. Modal Decomposition of Scaled Boundary Finite Element Equation

Following the procedure in detailed [25], the system of ordinary differential equations in
(3.15) can be decoupled by a modal transformation. The modes are obtained from the
following generalized eigenvalue problem (〈·〉 stands for a diagonal matrix):

[
E2
]
[Φ] =

[
E0][Φ]

〈
λ2
j

〉
h2

, (4.1)

where 〈λ2
j 〉 is the diagonal matrix of positive eigenvalues, h is a characteristic length (e.g., the

depth of the semi-infinite layer) to nondimensionlize the eigenvalues, and [Φ] are the matrix
of eigenvectors representing the modes, which are normalized as

[Φ]T
[
E0
]
[Φ] = [I]. (4.2)
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As a result, the inverse of the eigenvector matrix can be obtained by the matrix
multiplication

[Φ]−1 = [Φ]T
[
E0
]
. (4.3)

Premultiplying (4.1) with [Φ]T results in

[Φ]T
[
E2
]
[Φ] =

〈
λ2
j

〉
h2

. (4.4)

The relationship between amplitudes of the hydrodynamic pressure and amplitudes
of the modal hydrodynamic pressure {P̃} = {P̃(ξ, ω)} is defined as

{P} = [Φ]
{
P̃
}
. (4.5)

Substituting (4.5) into (3.15) premultiplied with [Φ]T and using (4.2) and (4.3) lead to
a system of decoupled equations

P̃j,ξξ +
1
h2

(
a2

0 − λ2
j

)
P̃j = 0, (4.6)

with the dimensionless frequency

a0 =
ωh

c
, (4.7)

where index j indicates the modal number. Substituting (4.5) into (3.16), the acoustic nodal
force vector is expressed as

{R} = −
[
E0
]
[Φ]

{
P̃
}
,ξ
. (4.8)

The amplitude of the modal nodal force vector {R̃} = {R̃(ξ, ω)} is defined as

{
R̃
}
= −h

{
P̃
}
,ξ

or R̃j = −hP̃j,ξ. (4.9)

Premultiplying (4.8) and using (4.2) and (4.9) yield

{
R̃
}
= h[Φ]T{R}. (4.10)
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This equation transforms the amplitude of the acoustic nodal force vector to the
amplitude of the modal force vector. The modal dynamic stiffness coefficient S̃j(a0) is defined
as

R̃j = S̃j(a0)P̃j . (4.11)

By eliminating R̃j and P̃j from (4.6), (4.9), and (4.11), an equation for the modal
dynamic stiffness coefficient is derived as

(
S̃j(a0)

)2
+ a2

0 − λ2
j = 0. (4.12)

4.2. Doubly Asymptotic Continued Fraction Solution for
Modal Dynamic Stiffness

Based on a doubly asymptotic solution of the modal dynamic stiffness coefficient S̃j(a0), a
temporally local open boundary [18] is constructed for a single mode of wave propagation.
The solution of (4.12) is expressed as a doubly asymptotic continued fraction. An order MH

high-frequency continued fraction is constructed first as

S̃j(a0) = (ia0) − λ2
j

(
Ỹ

(1)
j (a0)

)−1
,

Ỹ
(i)
1 (a0) = (−1)i2(ia0)Ỹ

(i)
1,j − λ2

j

(
Ỹ

(i+1)
j (a0)

)−1
(i = 1, 2, . . . ,MH).

(4.13)

It is demonstrated by Prempramote et al. [18] that the high-frequency continued
fraction solution does not converge when the excitation frequency is below the cutoff
frequency. To determine a valid solution over the whole frequency range, an ML order
low-frequency continued fraction solution is constructed for the residual term Ỹ

(MH+1)
j (a0).

Denoting the residual term for mode j as

ỸL,j(a0) = Ỹ
(MH+1)
j (a0). (4.14)

The continued fraction solution for ỸL,j(a0) at the low frequency limit is expressed as

ỸL,j(a0) = (−1)MH+1λj + (−1)MH+1(ia0) − (ia0)2
(
Ỹ

(1)
L,j (a0)

)−1
,

Ỹ
(i)
L,j(a0) = (−1)MH+i+12λj − (ia0)2

(
Ỹ

(i+1)
L,j (a0)

)−1
(i = 1, 2, . . . ,ML) .

(4.15)
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The doubly asymptotic continued fraction solution is constructed by combining the
high-frequency continued fraction solution in (4.13) with the low-frequency solution in (4.15)
using (4.14).

4.3. High-Order Doubly Asymptotic Open Boundary

Following the procedure developed for the modal space [18], the acoustic force-pressure
relationship in the time domain is formulated by using the continued fraction solution
of the dynamic stiffness coefficient and introducing auxiliary variables. A system of first-
order ordinary differential equations with symmetric coefficient matrices is obtained, which
represents a temporally local open boundary condition.

Substituting the continued fraction solution of the modal dynamic stiffness coefficient
(4.13)–(4.15) into (4.11) and applying the inverse Fourier transform, the time-domain high-
order doubly asymptotic open boundary in the modal space is expressed as

1
h
r̃j =

1
c

˙̃pj −
1
h
λjp̃

(1)
j , (4.16)

0 = − 1
h
λjp̃j − 2

c
˙̃p
(1)
j − 1

h
λjp̃

(2)
j , (4.17)

0 = − 1
h
λjp̃

(i−1)
j + (−1)i

2
c

˙̃p
(i)
j − 1

h
λjp̃

(i+1)
j (i = 2, 3, . . . ,MH), (4.18)

0 = − 1
h
λjp̃

(MH)
j + (−1)MH+1 1

h
λjp̃

(0)
L,j + (−1)MH+1 1

c
˙̃p
(0)
L,j −

1
c

˙̃p
(1)
L,j , (4.19)

0 = −1
c

˙̃p
(i−1)
L,j + (−1)MH+i+1 2

h
λjp̃

(i)
L,j −

1
c

˙̃p
(i+1)
L,j (i = 1, 2, . . . ,ML), (4.20)

where {p̃(i)} (i = 1, 2, . . . ,MH) and {p̃(i)L } (i = 0, 1, 2, . . . ,ML) are the auxiliary variables
defined in modal space.

For an order MH = ML doubly asymptotic continued fraction solution, the residual
term p̃

(ML+1)
L,j = 0 applies. Equations (4.16)–(4.20) constitute a system of first order ordinary

differential equations relating the interaction load {r̃j}, hydrodynamic pressure {p̃j} and the
modal auxiliary variables p̃

(1)
j , . . . , p̃

(MH )
j , p̃

(0)
L,j , p̃

(1)
L,j , . . . , p̃

(ML)
L,j in the modal space. This system

of ordinary differential equations is a temporally local high-order doubly asymptotic open
boundary condition for the semi-infinite reservoir with constant depth, which is directly
established on the nodes of a vertical boundary. This boundary condition can be coupled
seamlessly with finite element method.

5. Coupled Numerical Methods for Dam-Reservoir
Interaction Analysis

Based on the high-order doubly asymptotic open boundary, two coupled numerical methods
will be presented in this section: the direct coupled method and the partitioned coupled
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method. Both coupled numerical methods are implemented on the open-source object-
oriented finite element code OpenSees, that is, the open system for earthquake engineering
simulation.

5.1. The Direct Coupled Method

In the direct coupled method, by incorporating the high-order doubly asymptotic open
boundary with the near-field finite element equation, a monolithic governing equation for the
near-field structure and auxiliary variables representing the far-field reservoir is formulated.

To derive a symmetric monolithic formulation, modal transform is applied to the
auxiliary variables defined in modal space {p̃(i)} and {p̃(i)L } as

{
p(i)

}
= [Φ]

{
p̃(i)

}
(i = 1, 2, . . . ,MH),

{
p
(i)
L

}
= [Φ]

{
p̃
(i)
L

}
(i = 0, 1, 2, . . . ,ML),

(5.1)

where {p(i)} and {p(i)L } are the auxiliary variables defined in real space.
Using (4.5), (4.10), (5.1), and left-multiplying (4.16)–(4.20) by [Φ]−T yield

{r} =
1
c

[
E0
]{
ṗ
} − [A]

{
p(1)

}
, (5.2)

{0} = −[A]
{
p
} − 2

c

[
E0
]{

ṗ(1)
}
− [A]

{
p(2)

}
, (5.3)

{0} = −[A]
{
p(i−1)

}
− (−1)i

2
c

[
E0
]{

ṗ(i)
}
− [A]

{
p(i+1)

}
(i = 2, 3, . . . ,MH), (5.4)

{0} = −[A]
{
p(MH)

}
+ (−1)MH+1[A]

{
p
(0)
L

}
+ (−1)MH+1 1

c

[
E0
]{

ṗ
(0)
L

}
− 1
c

[
E0
]{

ṗ
(1)
L

}
, (5.5)

{0} = −1
c

[
E0
]{

ṗ
(i−1)
L

}
+ (−1)MH+i+12[A]

{
p
(i)
L

}
− 1
c

[
E0
]{

ṗ
(i+1)
L

}
(i = 1, 2, . . . ,ML) (5.6)

with the symmetric and positive definite matrix

[A] =
1
h
[Φ]−T

[
λj
]
[Φ]−1. (5.7)

The residual term [E0]{ṗ(ML+1)
L }/c in (5.6) is setting to zero. Substituting (5.2)–(5.6)

into (2.7) leads to a global linear system of ordinary differential equations in the time-domain

[
Mg

]{
üg

}
+
[
Cg

]{
u̇g

}
+
[
Kg

]{
ug

}
=
{
fg
}
. (5.8)
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Here, subscript g denotes global. [Mg], [Cg], and [Kg] are the global mass matrix,
global damping matrix, and global stiffness matrix, which are expressed as

[
Mg

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ms 0 0
−Qfs Mff Mfb

0 Mbf Mbb 0

0 0
. . .

. . . . . . 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[
Cg

]
=

1
c

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 C∞ 0

0 Y(1)
1

. . .

. . . . . . 0

0 Y(MH )
1 0

0 Y(0)
L1 −C∞

−C∞ 0
. . .

. . . . . . −C∞

−C∞ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
Kg

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ks Qsf 0

0 Kff Kfb

0 Kbf Kbb −A

−A 0
. . .

. . . . . . −A
−A 0 −A

−A Y(0)
L0 0

0 Y(1)
L0

. . .

. . . . . . 0

0 Y(ML)
L0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.9)

with the block matrices

C∞ =
[
E0], Y

(0)
L0 = (−1)MH+1[A], Y

(0)
L1 = (−1)MH+1[E0],

Y
(i)
1 = (−1)i2

[
E0] (i = 1, 2, . . . ,MH),

Y
(i)
L0 = (−1)MH+i+12[A] (i = 1, 2, . . . ,ML).

(5.10)
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The global load vector [fg] and unknowns [ug] are expressed as (the semicolon “;”
stands for the vertical concatenation of vectors)

{
ug

}
=
[
{us}T ;

{
pf
}T ;

{
pb
}T ;

{
p(1)

}T
; · · · ;

{
p
(ML)
L

}T
]T

,

{
fg
}
=
[
{rs}T ;

{
rf
}T ; {0}T ; {0}T ; · · · ; {0}T

]T
.

(5.11)

This system of linear equations describes the complete dam-reservoir system taking
account of the influence of the semi-infinite reservoir. Similar to the near-field finite element
formulation (2.7), the coefficient matrices of this formulation are sparse and symmetric.
This dynamic system can be solved using a standard time-integration method, such as the
Newmark family schemes.

Equation (5.8) is of order Ns +Nf +Nfb +(MH +ML +2)Nfb, where Ns is the number
of degrees of freedom of dam structure, Nf is the number of degrees of freedom of near-
field reservoir except for those of the truncated boundary, and Nfb is the number of degrees
freedom of truncated boundary. Compared with the near-field finite element equation (2.7),
additional auxiliary (MH +ML + 1)Nfb degrees of freedom are introduced in (5.8). From the
point view of numerical implementation, (5.8) can be implemented on existing finite element
code without any special treatment and solved by existing finite element solver. The block
coefficient matrices [E0] and [A] in (5.10) are evaluated only once in the analysis. However,
the formulation of the direct coupled method involves additional auxiliary variables, which
requires more computational effort and memory to solve this dynamic system.

5.2. The Partitioned Coupled Method

In the partitioned coupled method, the near-field finite element equation and the far-field
high-order doubly asymptotic boundary condition are separately solved. They are coupled
by the interaction force on the truncated boundary. The deviation of the partitioned coupled
method is detailed in [25]. Streamlined expressions are presented as follows.

Using (4.3) and (4.10), (4.16) left-multiplied by [Φ]−T is rewritten as

{r} =
1
c

[
E0
]{
ṗ
} − 1

h
[Φ]−T

〈
λj
〉{

p̃(1)
}
. (5.12)

Substituting (5.12) into (2.7), the finite element formulation of the dam-reservoir
system considering the interaction between the near-field and the semi-infinite reservoir is
expressed as

⎡
⎢⎢⎣

[Ms] 0 0

−[Qfs

] [
Mff

] [
Mfb

]
0

[
Mbf

]
[Mbb]

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

{üs}{
p̈f
}

{
p̈b
}

⎫⎪⎪⎬
⎪⎪⎭

+
1
c

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0
[
E0]

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

{u̇s}{
ṗf
}

{
ṗb
}

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣
[Ks]

[
Qsf

]
0

0
[
Kff

] [
Kfb

]
0

[
Kbf

]
[Kbb]

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

{us}{
pf
}

{
pb
}

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
fs
}

{
ff
}

[Φ]−T
〈
λj
〉{
p̃(1)

}
h

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(5.13)
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The high-order doubly asymptotic open boundary is split into two parts. The first
part is the additional damping term on left-hand side of (5.13), which is equivalent to the
Sommerfeld radiation boundary as demonstrated in [25]. The second part is the coupling
term [Φ]−T〈λj〉{p̃(1)}/h on the right-hand side of (5.13) representing the contribution of
the high-order terms of the doubly asymptotic boundary. It can be regard as an external
load acted on the truncated boundary. For efficiency consideration in the numerical
implementation, the coupling term [Φ]−T〈λj〉{p̃(1)}/h is evaluated in the modal space.

Assembling (4.17)–(4.20) multiplied by h/λj , a system of ordinary differential
equation for the modal auxiliary variables is formulated as

[KA]
{
zA,j(t)

}
+

h

cλj
[CA]

{
żA,j(t)

}
=
{
fA,j(t)

}
, (5.14)

where the coefficient matrices are expressed as

[KA] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

1
. . . . . .

. . . 0 1

1 (−1)MH 0

0 (−1)MH+12
. . .

. . . . . . 0

0 (−1)MH+ML2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[CA] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)02 0

0
. . . . . .

. . . (−1)MH−12 0

0 (−1)MH 1

1 0
. . .

. . . . . . 1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.15)

The unknown vector {zA,j(t)} consists of the modal auxiliary variables of mode j (the
semicolon “;” stands for the vertical concatenation of vectors)

{
zA,j(t)

}
=
{
p̃
(1)
j ; · · · ; p̃(MH)

j ; p̃(0)L,j ; p̃
(1)
L,j ; · · · ; p̃(ML)

L,j

}
. (5.16)
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The only nonzero entry on the right-hand side is the modal hydrodynamic pressure p̃j
obtained from (4.5)

{
fA,j(t)

}
=
{−p̃j ; 0; · · · ; 0; 0; 0; · · · ; 0

}
. (5.17)

It is demonstrated by Wang et al. [25] that (5.14) is stable up to the order MH = ML =
100 at least.

Equations (5.13) for the near field and (5.14) for the far field are coupled by the
auxiliary variables {p̃(1)} defined in the modal space. Using the same time integration scheme,
such as the trapezoidal rule, these two sets of equations are solved by a sequential staggered
implicit-implicit partitioned procedure proposed in [28, 29]. The value of the modal auxiliary
variables {p̃(1)} at time station tn+1 is determined by the last-solution extrapolation predictor
[28, 29]

{
p̃(1)

}p

n+1
=
{
p̃(1)

}
n
. (5.18)

The auxiliary variables {p̃(1)} are obtained by integrating (5.14) for prescribed
hydrodynamic pressure {p}. The algorithm proposed in [25] to solve (5.13) and (5.14)
proceeds as follows.

Step 1. Initialize variables {u}0 and {p}0 in (5.13) and {zA,j}0 = 0 for each mode in (5.14).

Step 2. Extract {p̃(1)}n from {zA,j}n = 0 of each mode and assigned to {p̃(1)}pn+1 in (5.18).

Step 3. Form the right-hand term of (5.13), compute {u}n+1 and {p}n+1 by using an implicit
method.

Step 4. Calculate modal hydrodynamic pressure {p̃}n+1 and form the right-hand term of
(5.14).

Step 5. Compute {zA,j}n+1 for each mode by using an implicit method.

Step 6. Increment n to n + 1 and go to Step 2.

Since the predicted vector {p̃(1)}pn+1 has been used rather than {p̃(1)}n+1 in solving (5.13)
and (5.14), this algorithm may lead to a numerical instability or poor accuracy. To avoid
these, the solution algorithm for the partitioned coupled method in this paper is modified.
The solution process within one step given by Step 2 to Step 5 is repeated a number of times
in an iterative manner [26]. In each additional cycle, {p̃(1)}pn+1 in Step 2 is extracted by the last
computed {zA,j}n+1 in Step 5. Numerical experiments demonstrate that stability and accuracy
are improved by performing a few additional iterations.

The order of (5.14) is only MH + ML + 1, and little computational effort is required
to solve (5.14). Consequently, additional memory required for the solution of partitioned
method is less than that of the direct coupled method.

This partitioned coupled method and the sequential staggered implicit-implicit
partition algorithm [25] are both implemented in the open-source finite element code
OpenSees rather than ABAQUS; as a result, the computational efficiency is greatly improved
without any time costing restart analysis in ABAQUS.
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Figure 3: A gravity dam-reservoir system with irregular near field: (a) Geometry; (b) Mesh.

6. Numerical Examples

Two numerical examples are analyzed to evaluate the accuracy and efficiency of the two
present coupled numerical methods. The first example is a gravity dam with an irregular
near field reservoir. The open boundary is employed to represent the regular semi-infinite
reservoir of a constant depth. The time integration for these two coupled numerical methods
is performed by the trapezoidal integration.

It is demonstrated by Wang et al. [25] that an order MH = ML = 10 high-order doubly
asymptotic open boundary condition is of excellent accuracy. So, the order MH = ML = 10
open boundary condition is chosen for these two numerical examples.

6.1. Gravity Dam

A typical gravity dam-reservoir system with an irregular near field is shown in Figure 3(a),
which is the same as the flexible dam example in [25]. The dam body has a modulus
of elasticity E = 35 GPa, Posisson’s ration v = 0.2, and mass density ρ = 2400 kg/m3.
The water in the reservoir has a pressure wave velocity c = 1438.7 m/s and mass density
ρ = 1000 kg/m3.

The finite element mesh is shown in Figure 3(b). The system is divided into three parts:
the dam body, the near-field reservoir, and the far-field semi-infinite reservoir with constant
depth. The dam body is discretized with eight-node solid elements, the near-field reservoir
with 156 eight-node acoustic fluid elements, and the dam-reservoir interface with 13 three-
node interface elements. The far-field reservoir is modeled by 13 three-node quadratic line
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Figure 5: Hydrodynamic pressure at heel of the gravity dam under El Centro ground motion with a time
step of 0.002 s.

elements on the truncated boundary, which share the same nodes and are compatible with
those of the near-field acoustic fluid elements. The total number of nodes of the whole model
is 653.

To verify the results, an extended mesh covering a far-field reservoir region of 7200 m
is analyzed. The size of extended mesh is sufficiently large to avoid the pollution of the
dam response by the waves reflected on the truncated boundary for a time duration of
2 × 7200/1438.7 ≈ 10 s.

The El Centro earthquake ground motion (see Figure 4) is imposed as the horizontal
acceleration at the base of the dam. The time step is chosen as 0.002 s during which the
pressure wave travels about one third of the distance between two adjacent nodes. The
partitioned coupled method is performed without any additional iteration; that is, the
solution process is the same as that in [25]. The responses of hydrodynamic pressure at heel
of the gravity dam of the first 20 s are plotted in Figure 5. Excellent agreement between the
solutions of both coupled numerical methods and the extended mesh solution is observed
during the first 10 s.
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Figure 6: Hydrodynamic pressure at heel of the gravity dam under El Centro ground motion with a time
step of 0.02 s.

Table 1: Computer time for the gravity dam example.

Time step (sec) Extended mesh Direct coupled
method

Partitioned
coupled method Algorithm in [25]

0.002 2980 s 242 s 241 s \
0.02 219 s 25 s 46 s 25 s

To demonstrate the improvement of the modified solution algorithm for partitioned
coupled method, the time step is increased to 0.02 s. The responses of the first 20 s are plotted
in Figure 6. As it is shown, the results of the solution algorithm proposed by Wang et al. [25]
tend to be divergent and inaccurate. However, both the solutions of direct coupled method
and partitioned coupled method agree with the solution of extended mesh very well. The
number of additional iterations within each step for partitioned coupled method recorded is
usually one and no more than four in this example.

The computer time for the gravity dam example list in Table 1 is recorded on a PC
with a 2.93 GHz Intel Core i7 CPU. High computational efficiency of both coupled methods
is observed. The computer time of the direct coupled method is about one tenth of that of
the extended mesh. The computational effort of the partitioned coupled method is directly
associated with the number of additional iterations. When there is no additional iteration, the
computer time of the partitioned coupled method is nearly equal to that of the direct coupled
method.

6.2. Arch Dam

An arch dam-reservoir system is shown in Figure 7. The physical properties of dam body and
water are the same as that in the example of gravity dam. The arch dam is of a height of 22 m
and the near-field reservoir covers a region of the dam height. The dam body is discretized
with 272 twenty-node hexahedron solid elements, the near-field reservoir with 1088 twenty-
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Figure 8: Hydrodynamic pressure at heel of the arch dam under El Centro ground motion with a time step
of 0.02 s.

node hexahedron acoustic fluid elements, and the dam-reservoir interface with 136 eight-
node interface elements. The far-field reservoir is modeled by 136 eight-node quadratic ele-
ments on the truncated boundary, which share the same nodes and are compatible with those
of the near-field acoustic fluid elements. The total number of nodes of the whole model is
6652. To verify the results, a similar extended mesh covering the region of 7200 m is analyzed.

Similar to the gravity dam example, the El Centro earthquake ground motion is
imposed as the horizontal (Y direction) acceleration at the base of the arch dam. The time
step is chosen as 0.02 s. The responses of the hydrodynamic pressure at the heel of the arch
dam are plotted in Figure 8. The solution of the direct coupled method agrees with solution of
the extended mesh and is long time stable. However, as for the partitioned coupled method,
numerical divergence is observed at the early time of the analysis. Numerical instability
of such coupling strategy is also reported in [12]. It can be expected as the partitioned
coupled method is conditional stable; that is, the integration time step is limited by stability
limits. When the time step is greater than the stability limit, numerical instability may occur,
for example, the results of the arch dam example. As the dam-reservoir system is quite
complicated, it is difficult to determine the stability limits of different application cases. When
the partitioned coupled method is applied, smaller time step should be used.
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The computer time of the direct coupled method recorded is 1463 s, which is about
one ninth of that of the extended mesh, that is, 12547 s. It also demonstrates the high
computational efficiency of the direct coupled method.

7. Conclusions

Two coupled numerical methods were developed for the dam-reservoir interaction analysis
by incorporating the finite element method with the excellent high-order doubly asymptotic
open boundary. The dam-reservoir system is divided into the near-field with irregular
geometry and the far-field by the truncated boundary. In the direct coupled method, a global
monolithic equation for the whole dam-reservoir system is formulated with sparse and sym-
metric coefficient matrices, which can be solved by the standard finite element solver. In the
partitioned coupled method, the near-field finite element equation and the high-order open
boundary condition are separately solved. They are coupled by the interaction force applied
on the truncated boundary. The partitioned coupled method is achieved by using a sequential
staggered implicit-implicit procedure. To improve the numerical stability and accuracy of the
algorithm, an iteration strategy was employed to obtain the solution of each step.

Both of the two coupled numerical methods are implemented on the open-source
finite element code OpenSees. Numerical experiments demonstrated the high efficiency and
accuracy of both coupled numerical methods. The memory required for the solution of the
partitioned method is less than that of the direct coupled method. Although the numerical
stability and accuracy of the partitioned coupled method can be improved by additional
iterations within each step, the partitioned coupled method is conditionally stable yet. Its
stability is also related to the predictor. Further research should be carried out to improve
the stability of the partitioned coupled method. In contrast, the direct coupled method is
unconditionally stable if only an unconditionally stable time integration algorithm such as
trapezoidal integration is chosen. Consequently, larger time steps can be used in the direct
coupled method than that in the partitioned coupled method.
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This paper simulates wave propagation in an elastic medium containing elastic, fluid, rigid, and
empty heterogeneities, which may be thin. It uses a coupling formulation between the boundary
element method (BEM)/the traction boundary element method (TBEM) and the method of
fundamental solutions (MFS). The full domain is divided into subdomains, which are handled
separately by the BEM/TBEM or the MFS, to overcome the specific limitations of each of these
methods. The coupling is enforced by applying the prescribed boundary conditions at all medium
interfaces. The accuracy, efficiency, and stability of the proposed algorithms are verified by
comparing the results with reference solutions. The paper illustrates the computational efficiency
of the proposed coupling formulation by computing the CPU time and the error. The transient
analysis of wave propagation in the presence of a borehole driven in a cracked medium is used to
illustrate the potential of the proposed coupling formulation.

1. Introduction

Various numerical methods have been proposed to simulate the propagation of waves
in elastic and acoustic media, since analytical solutions are only known for simple and
regular geometries (e.g., [1–6]). These techniques include the thin-layer method (TLM) [7],
the boundary element method (BEM) [8], the finite element method (FEM) [9, 10], the
finite difference method (FDM) [11], the ray tracing technique [12], and the method of
fundamental solutions (MFS) [13].

Of these techniques, the FEM is the most widely used numerical method used by
researchers and commercial software producers. It can be used to solve complex geometries,
but it requires the full discretization of the media being modelled. This makes the FEM
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computationally unfeasible for very large scale models, such as those involving unbounded
domains, unless substantial shortcuts are implemented. These may entail the use of coarse
elements, low frequency simulations, or the introduction of boundary artefacts.

The BEM is one of the most suitable techniques for modelling wave propagation in
homogeneous unbounded systems containing irregular interfaces and inclusions, because
only the boundaries of the heterogeneities and interfaces need to be discretized and the
far-field conditions are automatically satisfied [14–16]. Despite this, the BEM still needs
prior knowledge of fundamental solutions (Green’s functions) and also requires the correct
integration of the resulting singular and hypersingular integrals to guarantee its efficiency. In
addition, the number of boundary elements depends on the excitation frequency, and many
boundary elements are needed to model high-frequency responses, a situation which leads
to an undesirably high computational cost.

Furthermore, the simulation of wave propagation in the presence of very thin
heterogeneities such as cracks leads to singular boundary element matrix systems, thus
leading to the mathematical degeneration of the numerical formulation [17]. The dual
boundary element method (DBEM) is one of the main boundary element formulations
adopted to overcome this problem. Derivatives of the original BEM displacement formulation
to produce a traction formulation first became necessary when fracture mechanics problems
began to be addressed [18]. But these hybrid BEM formulations do not necessarily have to
be used for solving such problems. Good results have been obtained in 2D examples of both
elastodynamic and coupled-field problems involving stationary cracks when conventional,
displacement-based BEM formulations were used in a transformed domain, with special
treatment of the cracks [19, 20].

Using the DBEM, after the discretization of the inclusion’s surface, dipole loads are
applied to the opposite surface, which is governed by the traction boundary integral equation
[21], while monopole loads are applied to one part of the surface, which corresponds to
applying the displacement boundary integral equation. In the case of a dimensionless empty
crack, only a single line of boundary elements loaded with dipole loads is used to solve the
problem, that is, by using only the traction boundary integral equation method [22–24]. The
appearance of hypersingular integrals is one of the difficulties posed by these formulations.
In the particular case of 2D and 2.5D wave propagation in elastic and acoustic media, the
resulting hypersingular kernels can be computed analytically [25].

Meshless techniques that require neither domain nor boundary discretization have
recently become popular [26, 27]. The origin of the MFS has two sources and lies in the
indirect BEM [28] and the general definition of a Green’s function [29]. The MFS copes with
some of the mathematical complexity of the BEM and provides acceptable solutions for wave
propagation problems at substantially lower computational cost [30, 31]. The MFS solution
is based on a linear combination of fundamental solutions (Green’s functions), generated
by a set of fictitious sources to simulate the scattered and refracted field produced by the
heterogeneities. To avoid singularities, these virtual sources are placed at some distance
from the inclusion’s boundary. The use of fundamental solutions allows the final solution
to verify the unbounded boundary conditions automatically. Still the use of the MFS has its
own limitations when thin inclusions such as cracks and inclusions with twisting (sinuous)
boundaries are involved. The analysis would require the use of domain decompositions
or/and the use of enriched functions, which increases computation costs [32]. The number
of the virtual sources and their positions is another difficulty since the results are highly
dependent on these parameters. Among the strategies that have been proposed to handle
this problem is the verification of the solution’s accuracy by computing the solution at points
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other than the collocation ones, where the boundary and prescribed conditions are known a
priori.

Researchers are currently trying to improve the results by coupling different methods
so as to exploit the advantages of each technique and reduce their disadvantages, thereby
speeding up analysis and ensuring efficiency, stability, accuracy, and flexibility.

BEM/FEM coupling has often been used, with each technique being applied to distinct
subdomains [33–35]. The two approaches most often used are a direct coupling and iterative
coupling [36–38]. Iterative coupling allows the subdomains to be analyzed separately, leading
to smaller and better-conditioned systems of equations with independent discretizations
being considered for each subdomain. Some authors have reported problems related to the
convergence of ill-posed models, however. The coupling of meshless methods and the BEM
is another approach. The coupling of the BEM/TBEM with the MFS to analyse acoustic
wave propagation in the presence of multiple inclusions and thin heterogeneities is one
example proposed by the authors. The full domain is first divided into subdomains which are
modelled using the BEM/TBEM and the MFS. The subdomains are then coupled by imposing
the required boundary conditions [39].

The paper extends that work with a formulation which couples the BEM/TBEM
and the MFS to simulate the propagation of waves involving the fluid-solid interaction, as
in the case of multielastic fluid layer systems, acoustic logging, and cross-hole surveying
geophysical prospecting techniques [40, 41]. It is very often quite helpful to model the
direct problem in order to better understand how waves propagate in the presence of such
structures, particularly in cracked media and damaged zones, when it is not always easy
to interpret the recorded results because of the unforeseen presence of those heterogeneities
[42, 43].

The problem is formulated in the frequency domain. The waves generated by the
virtual sources used by the MFS are seen as incident waves by the BEM/TBEM, while the
BEM sees the collocation points used to impose the boundary conditions at the interfaces
modelled by the MFS, as receivers. The approach is implemented for 2.5D problems in
general. The accuracy of the proposed coupling algorithms, which use different combinations
of BEM/TBEM and MFS formulations, is checked by means of a verification analysis using
reference solutions.

The proposed coupling formulations for simulating wave propagation in the presence
of fluid and elastic inclusions are described in the next section. The coupling formulations
are first verified against solutions obtained using BEM/TBEM, taken as reference solutions.
We then show the computational efficiency of the formulations by measuring the CPU time
taken to compute the numerical responses provided by the different algorithms. Finally,
the applicability of the proposed method is shown by means of a numerical example that
simulates the propagation of waves generated by a line blast load in the vicinity of a fluid-
filled borehole driven in a cracked elastic medium.

2. Boundary Integral Coupling Formulations

Consider two irregular two-dimensional cylindrical inclusions, 1 and 2, embedded in
a homogeneous elastic medium (Medium 1) with density ρ1 (Figure 1) and allowing
longitudinal (P-wave) and shear waves (S-wave) to travel at velocities α1 and β1, respectively.
Medium 2, inside Inclusion 1, is fluid, has density ρ2, and permits pressure waves (P-wave) to
travel at velocity α2. Inclusion 2 is elastic (Medium 3), has density ρ3, and allows longitudinal
and shear waves to travel at velocities α3 and β3, respectively.
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Figure 1: The geometry of the problem.

It is further assumed that this system is subjected to a dilatational line source placed
at (xs, ys) whose amplitude varies sinusoidally in the third dimension (z).

The incident wave field generated by this source can be expressed in the frequency
domain by means of the classic dilatational potential:

φinc
(
x, y,ω, kz

)
=

−iA
2
H0(kα1r), (2.1)

in whichHn(· · · ) are second kind Hankel functions of the order n, i =
√−1, kα1 =

√
ω2/α2

1 − k2
z

with Im(kα1) < 0, r =
√
(x − xs)2 + (y − ys)2 and kz is the wavenumber along z.

Then, the displacement field can be expressed as

uinc
x

(
x, y, xs, ys, ω

)
=

iA
2
kα1H1(kα1r)

∂r

∂x
,

uinc
y

(
x, y, xs, ys, ω

)
=

iA
2
kα1H1(kα1r)

∂r

∂y
,

uinc
z

(
x, y, xs, ys, ω

)
=
A

2
kzH0(kα1r).

(2.2)

2.1. BEM/MFS Coupling Formulation

This section describes the coupling between the BEM and the MFS formulations used to
obtain the wave field generated by the dilatational line source placed in the exterior medium,
Medium 1. The first inclusion is modelled using the BEM while the other is solved with the
MFS (see Figure 2).

Continuity of normal tractions and displacements and null tangential tractions
are prescribed along the boundary of the fluid Inclusion 1. Three different boundary
conditions may be ascribed to Inclusion 2′s surface: continuity of displacements and tractions
(simulating an elastic inclusion); null tractions (an empty inclusion); null displacements (a
rigid inclusion).
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Figure 2: Discretization of the system: position of virtual loads, collocation points and boundary elements.

2.1.1. Fluid Inclusion 1 and Elastic Inclusion 2

Assuming Inclusion 1 to be bounded by a surface S1 and subjected to an incident field
given by uinc, the boundary integral equation can be constructed by applying the reciprocity
theorem (e.g., Manolis and Beskos [44]) leading to the following.

(a) Along the Exterior Domain of Inclusion 1 (Medium 1),

ciju
(1)
i

(
x0, y0, ω

)
=
∫
S1

t
(1)
1

(
x, y,nn1, ω

)
G

(1)
i1

(
x, y, x0, y0, ω

)
ds

−
3∑
j=1

∫
S1

u
(1)
j

(
x, y,ω

)
H

(1)
ij

(
x, y,nn1, x0, y0, ω

)
ds + uinc

i

(
x0, y0, xs, ys, ω

)
.

(2.3)

In this equation, i, j = 1, 2 correspond to the normal and tangential directions relative
to the inclusion surface, while i, j = 3 correspond to the z direction. In these equations,
the superscript 1 represents the exterior domain; nn1 is the unit outward normal along
boundary S1, at (x, y), defined by the vector nn1 = (cos θn1, sin θn1). G

(1)
ij (x, y, x0, y0, ω) and

H
(1)
ij (x, y,nn1, x0, y0, ω) define the fundamental solutions for displacements and tractions

(Green’s functions), in direction j on the boundary S1 at (x, y), caused by a unit point force in
direction i applied at the nodal point, (x0, y0) (see the appendix). u(1)j (x, y,ω) corresponds to

displacements in direction j at (x, y), t(1)j (x, y,nn1, ω) specifies the nodal tractions in direction
j on the boundary at (x, y) and uinc

i (x0, y0, xs, ys, ω) to the displacement incident field at
(x0, y0) along direction i, when the source is located at (xs, ys). The coefficient cij is equal
to δij/2, with δij being the Kronecker delta, when the boundary is smooth.

Green’s functions for displacements along the x, y, and z directions in the solid
medium are listed in the appendix, and their derivation can be found in [45].

Equation (2.3) does not yet take into account the presence of the neighbouring
Inclusion 2, which is modelled using the MFS. The MFS assumes that the response of this
neighbouring inclusion is found as a linear combination of fundamental solutions simulating
the displacement field generated by two sets of NS virtual sources. These virtual loads
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are distributed along the inclusion interface S2 at distances δ from that boundary towards
the interior and exterior of the inclusion (lines Ĉ(1) and Ĉ(2) in Figure 2) in order to avoid
singularities. Sources inside the inclusion have unknown amplitudes a(2)nj,n ext, while those

placed outside the inclusion have unknown amplitudes a(2)nj,n int. In the exterior, and interior
elastic media the scattered displacement fields are given by

u
(1)
i

(
x, y,ω

)
=

NS∑
n=1

3∑
j=1

a
(2)
nj,n ext G

(1)
ji

(
x, y, xn ext, yn ext, ω

)
,

u
(3)
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(
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)
=

NS∑
n=1

3∑
j=1

a
(2)
nj,n int G

(3)
ji

(
x, y, xn int, yn int, ω

)
,

(2.4)

where G
(1)
ji (x, y, xn ext, yn ext, ω) and G

(3)
ji (x, y, xn int, yn int, ω) are the fundamental solutions

which represent the displacements at points (x, y) in Mediums 1 and 3, in direction i, caused
by a unit point force in direction j applied at the positions (xn ext, yn ext) and (xn int, yn int).
n ext and n int are the subscripts that denote the load order number placed along lines Ĉ(1)

and Ĉ(2).
The displacement field generated by this second inclusion can be viewed as an incident

field that strikes the first inclusion. So (2.3) needs to be modified accordingly,
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∫
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H
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(2.5)

(b) In the Interior Domain of Inclusion 1 (Medium 2),

cp(2)
(
x0, y0, ω

)
=
∫
S1

q(2)
(
x, y,−nn1, ω

)
G

(2)
f
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ds
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H
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(
x, y,−nn1, x0, y0, ω

)
ds.

(2.6)

In (2.6), the superscript 2 corresponds to the domain inside Inclusion 1, Medium 2.
G

(2)
f (x, y, x0, y0, ω) and H

(2)
f (x, y,−nn1, x0, y0, ω) are Green’s functions for pressure and the

gradient of pressure on the boundary S1 at (x, y), caused by a unit point pressure at
the nodal point, (x0, y0) (see the appendix). p(2)(x, y,ω) corresponds to the pressure at
(x, y), q(2)(x, y,nn1, ω) specifies the nodal pressure gradients on the boundary at (x, y). The
coefficient c is equal to 1/2 when the boundary is smooth.
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(c) In the Interior and Exterior Domains of Inclusion 2 (Media 1 and 3),

To determine the amplitudes of the unknown virtual point loads a(2)nj,n ext and a(2)nj,n int, it is also
necessary to impose the continuity of displacements and tractions at interface S2, which is
the boundary of Inclusion 2, along NS collocation points (xcol, ycol). This must be done so as
to take into account the scattered field generated at Inclusion 1. The following two equations
are thus defined:

∫
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t
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1
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G
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ds
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∫
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H
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ds
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(2.7)
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(2.8)

Green’s functions H
(1)
ij (x, y,nn1,nn2, xcol, ycol, ω) and G

(1)
ij (x, y,nn2, xcol, ycol, ω) are

defined by applying the traction operator to H
(1)
ij (x, y,nn1, xcol, ycol, ω) and G

(1)
ij (x, y,

xcol, ycol, ω), which can be obtained by combining the derivatives of the former Green’s func-
tions, in order of x, y, and z, so as to obtain the stresses (see the appendix). In these equations,
nn2 is the unit outward normal to the boundary S2 at the collocation points (xcol, ycol).

(d) Final System of Equations.

The global solution is obtained by solving (2.5)–(2.8). This requires the discretization of the
interface S1, which is the boundary of Inclusion 1. For the purposes of this work, this interface
is discretized into N straight boundary elements, with one nodal point in the middle of each
element (see Figure 2).
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The required integrations in (2.5)–(2.8) are evaluated in closed form when the element
to be integrated is the loaded element [45, 46], while a numerical integration that uses a
Gaussian quadrature scheme applies when the element to be integrated is not the loaded one.

The final integral equations are manipulated and combined so as to impose the
continuity of normal tractions and displacements, and null tangential tractions along the
boundary of Inclusion 1, and the continuity of displacements and tractions along the
boundary of Inclusion 2, to establish a system of [(6NS + 4N) × (6NS + 4N)] equations. The
relation u

(1)
1 = −(1/ρ2)(∂p(2)/∂nn1) is used to relate pressure gradients and displacements,

while the normal pressure corresponds to normal tractions.
The solution of this system of equations gives the nodal tractions and displacements

along the boundary S1 and the unknown virtual load amplitudes, a(2)nj,n ext and a
(2)
nj,n int, which

allow the displacement field to be defined inside and outside the inclusions.

2.1.2. Empty Inclusion 2 (Null Tractions Along its Boundary)

In this case, null tractions are prescribed along the boundary S2. Thus, (2.5) and (2.6) are kept
as before and (2.8) is simplified to
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)
= 0.

(2.9)

The solution of the boundary integral along the surface (S1) again requires its
discretization into N straight boundary elements, while the simulation of Inclusion 2 uses
NS collocation points/virtual sources, following a procedure similar to the one described
above. This leads to a system of [(3NS + 4N) × (3NS + 4N)] equations.

2.1.3. Rigid Inclusion 2 (Null Displacements Along its Boundary)

Null displacements on the surface of Inclusion 2 are now prescribed, which leads to (2.5) and
(2.6) and to the following equation:
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(2.10)
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The solution of these equations is once again obtained as described above, with a
system of [(3NS+4N)× (3NS+4N)] equations. Other coupling combinations can be solved
in the same way.

2.2. TBEM/MFS Coupling Formulation

The traction boundary element method (TBEM) can be proposed to simulate the scattered
wave field in the vicinity of thin inclusions, for which the BEM formulation described above
fails [47, 48]. This technique can be formulated by applying dipoles (dynamic doublets)
instead of monopole loads. Replace the former (2.5) and (2.6), to give the following (2.11),
while modelling the first inclusion:
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(2.11)

As noted by Guiggiani [49], the coefficients aij and a are zero for piecewise straight boundary
elements. The factors cij and c are constants, defined as above.

Equations (2.7) and (2.8) can be kept the same for modelling the second inclusion.
The solutions of these equations are defined as before by discretizing the boundary

surface (S1) into N straight boundary elements, with one nodal point in the middle of each
element. The integrations in (2.11) are performed through a Gaussian quadrature scheme
when the element being integrated is not the loaded one. When the element being integrated
is the loaded one, the integrals become hypersingular. An indirect approach is used for the
analytical solution of those hypersingular integrals. This consists of defining the dynamic
equilibrium of an isolated semicylinder, above each boundary element (see [47, 48]).

Manipulating (2.7), (2.8) and (2.11) as described above, the cavity and the rigid
inclusions and their combinations, can also be modelled.
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Figure 3: Two circular inclusions (fluid and elastic) embedded in an unbounded elastic medium.

2.3. Combined (TBEM + BEM)/MFS Coupling Formulation

The displacement and traction formulations can be combined so as to solve the problems
described above. This has the advantage of allowing the solution to be defined when
Inclusions 1 or/and 2 are thin. In these cases, part of the boundary surface of the inclusion
is loaded with monopole loads (formulation in displacements), while the remaining part is
loaded with dipoles (formulation in tractions).

3. Verification of the Coupling Algorithms

The proposed coupling algorithms (MFS/BEM and MFS/TBEM) described are verified
against BEM and MFS solutions by solving the elastic field produced by two circular
inclusions embedded in an unbounded elastic medium, centred at (0.0 m, 20.0 m) and
(22.0 m, 5.0 m), with radii of 5.0 m and 6.0 m (see Figure 3). Three separate problems are
solved by combining different types of Inclusion 2, namely, an elastic inclusion (Case 1), a
cavity (Case 2), and a rigid inclusion (Case 3). Inclusion 1 is always filled with fluid.

The host elastic medium (ρ1 = 2140 kg/m3) is homogeneous, permitting a P-wave
velocity of α1 = 4208 m/s and an S-wave velocity of β1 = 2656 m/s. The fluid in Inclusion
1 exhibits a density equal to ρ2 = 1000 kg/m3 and allows P-wave velocity of α2 = 1500 m/s,
while the elastic Inclusion 2, of density ρ3 = 2250 kg/m3, exhibits a dilatational and an S-wave
of velocities α3 = 2630 m/s, β3 = 1416 m/s, respectively. The excitation source is assumed to
be inside the host medium at point (10.0 m, 17.0 m). It is a harmonic dilatational line load
whose amplitude varies sinusoidally in the third dimension according to kz = 0.2 rad/m.

The responses are computed at receiver R1 and R2, placed at (15.0 m, 10.0 m) and
(1.0 m, 19.0 m), respectively. The computations are performed in the frequency domain from
1 Hz to 200 Hz.



Mathematical Problems in Engineering 11

−0.1

0

0.1

0.2

Frequency (Hz)

D
is

pl
ac

em
en

tu
x

0 50 100 150 200

(a)

Frequency (Hz)
0 50 100 150 200

−0.1

−0.05

0

0.05

0.1

D
is

pl
ac

em
en

tu
y

(b)

Frequency (Hz)
0 50 100 150 200

−0.15

−0.1

−0.05

0

0.05

D
is

pl
ac

em
en

tu
z

BEM

BEM/TBEM

MFS

MFS/BEM

MFS/TBEM

(c)

Frequency (Hz)
0 50 100 150 200

−5

−2.5

0

2.5

5

7.5
× 105

Pr
es

su
re

(P
a)

BEM

BEM/TBEM

MFS

MFS/BEM

MFS/TBEM

(d)

Figure 4: Case 1: BEM, TBEM, MFS, and coupling formulations’ results: displacements at receiver (R1) and
pressure at receiver (R2) when the system is excited by a blast load.

All the illustrated simulations used interior and exterior virtual sources respectively
placed at distances 0.9 × r and 1.1 × r from the centre of the inclusion, with r being radii.

Figures 4, 5, and 6 present the real (solid line) and imaginary (dashed line) parts of
the displacements ux, uy, and uz (receiver R1) and pressure response (receiver R2) for the
three cases. The lines correspond to the BEM responses, that is, when the inclusions are each
modelled with 200 boundary elements. Different BEM/TBEM, MFS, and coupling solutions
are indicated by the marked points and labelled “BEM/TBEM”, “MFS”, “MFS/BEM”, and
“MFS/TBEM”. 200 boundary elements and virtual sources are used in the MFS and coupling
solutions for each inclusion. An analysis of the results shows very good agreement between
the proposed coupling solutions and both the BEM and MFS models’ solutions.

4. Computational Efficiency of the Coupling Algorithms

The computational efficiency of the proposed coupling formulations is illustrated by
calculating at a grid of receivers the displacements caused by an empty crack of null
thickness, placed in the vicinity of a fluid-filled borehole (Figure 7(a)).
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Figure 5: Case 2: BEM, TBEM, MFS, and coupling formulations’ results: displacements at receiver (R1) and
pressure at receiver (R2) when the system is excited by a blast load.

The host medium, with a density of 2250 kg/m3, allows P-wave and S-wave velocities
of 2630 m/s and 1416 m/s, respectively. The fluid-filled borehole is centred at (0.0 m, 0.0 m)
with a radius of 0.05 m. Its fluid has a mass density of 1000 kg/m3 and permits a P-wave
speed of 1500 m/s. A null-thickness arc-shaped crack centred at (0.0 m, 0.0 m) has a radius
of 0.10 m and a length of (1.2π/32)m.

This system is illuminated by a wave field generated by a dilatational line load
placed 0.05 m (kz = 0 rad/m) from the crack at (0.15 m, 0.0 m). The resulting displacement
is obtained over a grid of 10140 receivers arranged along the x and y directions at equal
intervals and placed from x = −0.10 m to x = 0.25 m and from y = −0.15 m to y = 0.15 m.

Computational efficiency was evaluated by determining the CPU time taken to
compute the solution for the full grid of receivers by the BEM/TBEM, the MFS and the
MFS/TBEM, at two specific frequencies: 140 Hz and 9000 Hz.

As there are no known analytical solutions, the BEM/TBEM solution for 770 boundary
elements is used as reference solution. The crack is discretized as an open line and loaded
with dipole loads (210 TBEM boundary elements), while the fluid-filled borehole boundary
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Figure 6: Case 3: BEM, TBEM, MFS, and coupling formulations’ results: displacements at receiver (R1) and
pressure at receiver (R2) when the system is excited by a blast load: BEM.

is discretized using a classical closed surface and loaded with monopole loads (560 BEM
boundary elements) (see Figure 7(b)).

Figures 8 and 9 illustrate the real and imaginary part of the reference solutions for both
excitation frequencies.

The MFS is less efficient at modelling thin inclusions such as cracks when good
accuracy is required. The approach used here to model the displacement around the crack is
based on the decomposition of the inner domain into two different subdomains, as illustrated
in Figure 7(c). The interface between these two subdomains will be circular and contain the
crack, T , and a fictitious interface, F. In order to correctly describe the behaviour of the
null-thickness crack, null tractions are ascribed to both sides of interface T and continuity
of displacements and tractions is imposed along the interface F. The distances between the
virtual sources and the boundary have been defined by computing the errors along the
boundary outside the collocation points, where prescribed conditions are known. The error
along the boundary is computed as the integral of the error surface, which is defined by the
difference between the responses and the prescribed conditions along the boundary. The final
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Figure 7: Numerical application used to illustrate the computational efficiency of the proposed algorithm:
(a) geometry of a fluid-filled borehole with a null-thickness empty crack in its vicinity and position of
the blast load; (b) boundary elements used by the BEM/TBEM model; (c) position of virtual loads and
collocation points used by the MFS model; (d) position of virtual loads, collocation points (MFS), and
boundary elements (TBEM) used by the proposed MFS/TBEM coupling formulation.

positions of the virtual sources were those that led to the slowest boundary errors. This is the
same as the procedure proposed in [31], where a stability analysis is presented.

The MFS/TBEM coupling model discretizes the crack with boundary elements loaded
with dipole loads (TBEM), while the fluid-filled borehole is modelled using a set of virtual
point sources (MFS), whose positions are defined as explained above. The collocation points
are evenly distributed along the wall surfaces.

The errors yielded by the methods within the domain are assessed by comparing
the responses obtained with those provided by the reference solution, the BEM/TBEM
solution, found using 770 boundary elements. A global domain error is defined by computing
the integration of the volume generated by the absolute value of the difference between
the reference and the different model responses at the grid of receivers. To evaluate the
computational efficiency, the CPU time taken by the three computational models to compute
the solutions at the grid of receivers placed in the exterior medium (displacements) and at
the grid of receivers placed within the borehole (pressures) is registered. All solutions were
computed on a laptop computer with an Intel Core Duo CPU E6750.

Figure 10 illustrates the global domain error registered versus CPU time required
by each formulation, for the two frequencies computed above and varying the number
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Figure 8: Displacements and pressures solutions for the excitation frequency 140 Hz.



16 Mathematical Problems in Engineering

0.05

−0.05

0.15

−0.1

0

0.1

−0.1 0.10 0.2

(m)x

(m
)

y
u
x

8

6

4

2

0

−2

−4

−6

−8

m(
×1

03 )
Real part

(a)

0.05

−0.05

0.15

−0.1

0

0.1

−0.1 0.10 0.2

(m)x

(m
)

y

8

6

4

2

0

−2

−4

−6

−8

Imaginary part

(b)

0.05

−0.05

0.15

−0.1

0

0.1

−0.1 0.10 0.2

(m)x

(m
)

y
u
y

8

6

4

2

0

−2

−4

−6

−8

m(
×1

03 )

(c)

0.05

−0.05

0.15

−0.1

0

0.1

−0.1 0.10 0.2

(m)x

(m
)

y

8

6

4

2

0

−2

−4

−6

−8

(d)

0.05

−0.05

0.15

−0.1

0

0.1

−0.1 0.10 0.2

(m)x

(m
)

y

4

3

2

1

0

−1

−2

−3

×108

Pr
es

su
re

(P
a
×1

03 )

(e)

0.05

−0.05

0.15

−0.1

0

0.1

−0.1 0.10 0.2

(m)x

(m
)

y

3

2

1

0

−1

−2

×108

(f)

Figure 9: Displacements and pressures solutions for the excitation frequency 9000 Hz.
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Figure 10: Global domain error versus CPU time for solving the system composed of a fluid-filled borehole
placed in the vicinity of a crack.
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Figure 11: Geometry of a fluid-filled borehole driven in cracked medium: position of virtual loads,
collocation points (MFS), and boundary elements (TBEM) used by the proposed MFS/TBEM coupling
formulation.

of degrees of freedom, that is, changing the number of boundary elements and virtual
sources/collocation points. For each formulation, the number of degrees of freedom varies
according to the value of m = 1 to 20, as follows: the BEM/TBEM solutions were computed
by discretizing the borehole and the crack interfaces with 10m and 4m boundary elements,
respectively; the MFS solutions were obtained by simulating the borehole and the crack
interface with 10m and 20m virtual sources/collocation points, respectively; the coupling
MFS/TBEM solutions were obtained using 10m and 4m virtual sources/collocation points.

The global domain errors shown in Figure 10 are displayed in a logarithmic scale
to allow an easier interpretation of the results. An analysis of the responses shows that
the BEM/TBEM and the MFS/TBEM register smaller errors as the number of degrees of
freedom increases. The MFS does not exhibit a permanent trend and its behaviour fluctuates,
particularly for larger numbers of virtual sources, since the global equation system may
become ill-conditioned. The results show that the coupled MFS/TBEM formulation is the
algorithm that requires the least CPU time for the same accuracy. In both cases, for the same
CPU time, the coupled MFS/TBEM solution has the smallest global domain error, except
when a very small number of degrees of freedom are used.

5. Numerical Application

The applicability of the proposed coupling formulations for solving more complex systems
is illustrated by calculating the wave field in the vicinity of a fluid-filled circular borehole,
with a radius of 0.1016 m, driven in a cracked medium, as illustrated in Figure 11. The
system is subjected to a dilatational line source pulse, modelled as a Ricker wavelet
placed at (0.1 m,−0.3 m), parallel to the borehole axis (two-dimensional application), with
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a characteristic frequency of 30000 Hz and which starts acting at t = 0 ms. A set of snapshots
taken from computer animations is presented in Figure 12 to illustrate the resulting wave
field at different time instants.

The responses in the time domain are computed by applying an inverse (fast) Fourier
transform to the responses in the frequency domain ω. The Ricker pulse modelled is
expressed in the time domain by

u(τ) = A
(

1 − 2τ2
)

e−τ
2
, (5.1)

where A represents the amplitude; τ = (t − ts)/t0, t corresponds to the time, ts is the time
when the wavelet takes its maximum value, and πt0 is the characteristic (dominant) period
of the Ricker wavelet. In the frequency domain, this pulse is written as

U(ω) = A
[
2t0

√
π e−iωts

]
Ω2e−Ω

2
, (5.2)

where Ω = ωt0/2.
The Fourier transformation is computed by adding together a finite number of terms.

The frequency increment, Δω, needs to be small enough to avoid the aliasing phenomena.
These are almost completely eliminated by the introduction of complex frequencies with a
small imaginary part of the form ωc = ω − iη (with η = 0.7Δω). This procedure is later taken
into account by rescaling the responses in the time domain with an exponential factor eηt.

The computations are performed in the frequency domain for frequencies ranging
from 140 Hz to 71680 Hz, with a frequency increment of 140 Hz, which determines a total
time window of 7.14 ms.

The results were computed using the MFS/TBEM coupling model. The empty crack
is discretized using a number of boundary elements defined by the relation between the
wavelength and the length of the boundary elements, which was set at 10. A minimum of 10
boundary elements were used. The inclusion is simulated by the MFS, using a minimum of 40
virtual loads/collocation points. The number of virtual sources/collocation points increases
with the frequency, according to the relation, defined above, between the wavelength and the
distance between collocation points. Figure 11 illustrates the position of the virtual sources,
collocation points, and boundary elements.

The P-wave and S-wave velocities allowed in the host medium and its density remain
constant at 4208 m/s, 2656 m/s, and 2140 kg/m3, respectively. The fluid-filled borehole
is centered at (0.0 m, 0.0 m) with a radius 0.1016 m. Its medium has a mass density of
1000 kg/m3, a P-wave velocity of 1500 m/s. A null-thickness crack is embedded in the vicinity
of this elastic inclusion.

The resulting displacement (in elastic medium) and pressure (into the fluid-filled
borehole) are obtained over a two-dimensional grid of 10120 receivers arranged along the
x and y directions at equal intervals and placed in the vicinity of the inclusion and crack
from x = −0.4 m to x = 0.4 m and from y = −0.4 m to y = 0.4 m.

A set of snapshots taken from computer animations is presented in Figure 12 to
illustrate the resulting wave field in both the fluid inside the borehole and in the vicinity
of the crack, at different time instants. In this figure, the left and the centre columns present
the horizontal displacements (ux) and the vertical displacements (uy) in the elastic medium,
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Figure 12: Snapshots illustrating the displacement, ux and uy , and the pressure generated by a line blast
load, modelled as a Ricker pulse with a characteristic frequency of 30000 Hz.
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while the right column exhibits the pressure inside the borehole. In these plots, a colour
gradient between the red and the blue represents responses from positive to negative values.

In the first plots, at t = 0.01 ms, the pulse excited by the dilatational source can be seen
travelling in the elastic medium without perturbations as it has not yet reached the fluid-
filled borehole. The fluid inside the borehole has not yet suffered any pressure variation. The
differences of the component displacements in the horizontal and vertical direction can be
seen clearly.

At t = 0.04 ms, the incident pulses are partly reflected back as P-waves and S-waves
after hitting the crack, propagating away from the crack on the right in the elastic medium
and creating a shadow zone behind it. This is already perceptible at t = 0.07 ms, but it is not
easy to distinguish the two types of waves since they are almost coincident at this early stage.
At t = 0.10 ms, the reflected P- and S-waves are very well developed as they spread away
from the crack. At t = 0.04 ms, part of incident pulse that has just hit the borehole and been
transmitted as P-waves into the fluid can also be seen in the pressure field generated within
the borehole. Also note the diffracted wave field moving around the crack, once the incident
pulses reach its ends. These waves generate refracted waves that travel along both sides of
the crack as guided waves.

By t = 0.07 ms, the waves have hit the first crack, which is on the left side of the
borehole. The waves that pass through the borehole fluid (pressure) are in their initial
development stages as P-waves and denote a delay in relation to the direct incident field,
because of lower P-wave speed inside the fluid.

The last snapshots (t = 0.10 ms and t = 0.15 ms) show the first reflected waves
continuing to propagate in the unbounded medium. Multiple reflections of waves are visible
as they impinge upon the crack surfaces. The wave energy trapped between cracks and
within the fluid borehole generates a complex wave field due to the multiple reflections
and refractions. It can be seen that the pulses that have travelled around the exterior of the
inclusion appear before those that have propagated through the fluid borehole, since waves
may travel more slowly through this heterogeneity. The multiple reflected and diffracted
pulses on the crack surfaces and within the fluid borehole will continue until the total energy
had dissipated.

6. Conclusions

Coupled formulations between the boundary element method (BEM)/traction boundary
element method (TBEM) and the method of fundamental solutions (MFS) have been
developed and proposed for simulating wave propagation involving solid-fluid interaction
in media containing multiple inclusions. The proposed coupling formulations overcome the
limitations posed by each method individually and require less computational effort, while
maintaining reasonable accuracy.

The formulations have been verified against referenced solutions. The wave field
generated by fluid, rigid, free, and elastic heterogeneities embedded in an unbounded
homogeneous elastic medium and subjected to waves originated by dilatational loads (blast
loads) has been simulated. The results were found to closely match the behaviour of the
conventional direct BEM or TBEM solutions.

The coupling formulation between the MFS and the TBEM was proposed to overcome
the problems posed by thin inclusion, such as cracks. The simulation of the wave propagation
in the vicinity of a fluid-filled borehole driven in a cracked medium has been presented to
illustrate the stability and efficiency of the proposed coupling formulations.



22 Mathematical Problems in Engineering

Appendix

2.5D Green’s Functions for Unbounded Elastic and Fluid Media

Definitions

α : P-wave velocity,

β : S-wave velocity,

kα =
√
ω2/α2 − k2

z, with Im(kα) < 0,

kβ =
√
(ω2/β2 − k2

z), with Im(kβ) < 0,

r =
√
(x − x0)

2 + (y − y0)
2,

Hnα = Hn(kαr),

Hnβ = Hn(kβr) Hankel functions,

Bn = kn
β
Hnβ − knαHnαBn functions,

nn1 = (cos θn1, sin θn1) : unit outward normal at (x, y),

nn2 = (cos θn2, sin θn2) : unit outward normal at (x0, y0), (the collocation point).

Solid Media Green’s Functions

One has

Gxx =
1

4iρω2

[
ω2

β2
H0β − 1

r
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(
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r
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B2

]
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r
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]
,
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1
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z B0

]
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Gxy = Gyx =
1

4iρω2
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)(
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)
B2,

Gxz = Gzx = ikz
1

4iρω2

(
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r

)
B1,

Gyz = Gzy = ikz
1

4iρω2

(
y − y0

r

)
B1.

(A.1)
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The derivatives of the above Green’s functions give the following tractions along the
x, y, and z directions, in the solid medium,

Hrx = 2μ

[
α2

2β2

∂Grx

∂x
+

(
α2

2β2
− 1

)(
∂Gry

∂y
+
∂Grz
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)]
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[
∂Gry

∂x
+
∂Grx

∂y

]
sin θn1,

Hry = 2μ
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∂x
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[
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∂Grz

∂y

]
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(A.2)

with nn1 = (cos θn1, sin θn1), Hrt = Hrt(x, y,nn1, x0, y0, ω), Grt = Grt(x, y, x0, y0, ω), and r,
t = x, y, z. These expressions can be combined to obtain Hij(x, y,nn1, x0, y0, ω) in the normal
and tangential directions. In these equations, μ = ρβ2.

Solid Media Traction Green’s Functions

These Green’s functions can be seen as the combination of the derivatives of the equations
(A.1) and (A.2), in order along x, y, and z, so as to obtain stresses Gij(x, y,nn2, xcol, ycol, ω)
and Hij(x, y,nn1,nn2, xcol, ycol, ω). Along the boundary element, at (x, y), where the unit
outward normal is defined by nn1 = (cos θn1, sin θn1), and after the equilibrium of stresses,
the following equations are expressed for x, y and z generated by loads also applied along x,
y and z directions:

Gxr = 2μ
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with nn2 = (cos θn2, sin θn2) defining the unit outward normal at (x0, y0) (the collocation
point), Gtr = Gtr(x, y,nn2, xcol, ycol, ω), Gtr = Gtr(x, y, x0, y0, ω), Htr = Htr(x, y,nn1,nn2,
xcol, ycol, ω), Htr = Htr(x, y,nn1, x0, y0, ω) and r, t = x, y, z.

Fluid Media Green’s Functions

One has

Gf = − i
4
H0(kαr),

Hf =
i
4
kαH0(kαr)

∂r

∂nn1
,

(A.4)

where Gf = Gf(x, y, x0, y0, ω) and Hf = Hf(x, y,nn1, x0, y0, ω).

Fluid Media Traction Green’s Functions

One has
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i
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(A.5)

where Gf = Gf(x, y,nn2, x0, y0, ω) and Hf = Hf(x, y,nn1,nn2, x0, y0, ω).

Acknowledgment

The research work presented herein was supported by the Portuguese Foundation for Science
and Technology (FCT), under Grant SFRH/BD/37425/2007.

References

[1] M. D. Trifunac, “Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves,”
Bulletin of the Seismological Society of America, vol. 61, pp. 1755–1770, 1971.

[2] Y. H. Pao and C. C. Mow, Diffraction of Elastic Waves and Dynamic Stress Concentrations, Crane and
Russak, 1973.

[3] H. L. Wong and M. D. Trifunac, “Surface motion of semi-elliptical alluvial valley for incident plane
SH-waves,” Bulletin of the Seismological Society of America, vol. 64, pp. 1389–1403, 1974.

[4] V. W. Lee, “Three-dimensional diffraction of elastic waves by a spherical cavity in an elastic half-
space, I: closed-form solutions,” Soil Dynamics and Earthquake Engineering, vol. 7, no. 3, pp. 149–161,
1988.

[5] V. W. Lee and J. Karl, “Diffraction of SV waves by underground, circular, cylindrical cavities,” Soil
Dynamics and Earthquake Engineering, vol. 11, no. 8, pp. 445–456, 1992.



Mathematical Problems in Engineering 25

[6] F. J. Sánchez-Sesma and U. Iturrarán-Viveros, “Scattering and diffraction of SH waves by a finite
crack: an analytical solution,” Geophysical Journal International, vol. 145, no. 3, pp. 749–758, 2001.

[7] G. Kausel, “Thin-layer method: formulation in the time domain,” International Journal for Numerical
Methods in Engineering, vol. 37, no. 6, pp. 927–941, 1994.

[8] M. H. Aliabadi, Ed., The Boundary Element Method: Appl. in Solids and Structures, John Wiley & Sons,
New York, NY, USA, 2002.

[9] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, vol. 132 of Applied Mathematical Sciences,
Springer-Verlag, New York, NY, USA, 1998.

[10] L. L. Thompson, “A review of finite-element methods for time-harmonic acoustics,” Journal of the
Acoustical Society of America, vol. 119, no. 3, pp. 1315–1330, 2006.

[11] L. Savioja, T. Rinne, and T. Takala, “Simulation of room acoustics with a 3-D finite difference mesh,” in
Proceedings of the International Computer Music Conference (ICMC’94), pp. 463–466, Aarhus, Denmark,
1994.

[12] A. Kulowski, “Algorithmic representation of the ray tracing technique,” Applied Acoustics, vol. 18, no.
6, pp. 449–469, 1985.

[13] C. S. Chen, A. Karageorghis, and Y. S. Smyrlis, Eds., The Method of Fundamental Solutions: A Meshless
Method, Dynamic Publishers, 2008.

[14] A. A. Stamos and D. E. Beskos, “3-D seismic response analysis of long lined tunnels in half-space,”
Soil Dynamics and Earthquake Engineering, vol. 15, no. 2, pp. 111–118, 1996.

[15] A. J. B. Tadeu, J. M. P. António, and E. Kausel, “3D scattering of waves by a cylindrical irregular
cavity of infinite length in a homogeneous elastic medium,” Computer Methods in Applied Mechanics
and Engineering, vol. 191, no. 27-28, pp. 3015–3033, 2002.

[16] J. António and A. Tadeu, “3D seismic response of a limited valley via BEM using 2.5D analytical
Green’s functions for an infinite free-rigid layer,” Soil Dynamics and Earthquake Engineering, vol. 22,
no. 8, pp. 659–673, 2002.

[17] D. N. Dell’erba, M. H. Aliabadi, and D. P. Rooke, “Dual boundary element method for three-
dimensional thermoelastic crack problems,” International Journal of Fracture, vol. 94, no. 1, pp. 89–101,
1998.

[18] T. A. Cruse, “Fracture mechanics,” in Boundary Element Methods in Mechanics, D. E. Beskos, Ed., pp.
333–365, North Holland, Amsterdam, The Netherlands, 1987.

[19] P. S. Dineva and G. D. Manolis, “Scattering of seismic waves by cracks in multi-layered geological
regions I. Mechanical model,” Soil Dynamics and Earthquake Engineering, vol. 21, no. 7, pp. 615–625,
2001.

[20] P. S. Dineva and G. D. Manolis, “Scattering of seismic waves by cracks in multi-layered geological
regions II. Numerical results,” Soil Dynamics and Earthquake Engineering, vol. 21, no. 7, pp. 627–641,
2001.

[21] M. H. Aliabadi, “A new generation of boundary element methods in fracture mechanics,” International
Journal of Fracture, vol. 86, no. 1-2, pp. 91–125, 1997.

[22] K. Takakuda, “Diffraction of plane harmonic waves by cracks,” Bulletin of the Japan Society of Me-
chanical Engineers, vol. 26, no. 214, pp. 487–493, 1983.

[23] T. A. Cruse, Boundary Element Analysis in Computational Fracture Mechanics, vol. 1 of Mechanics:
Computational Mechanics, Kluwer Academic, Dodrecht, The Netherlands, 1988.
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Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes
have been studied during past decades. In practice, the effects of soil-structure interaction on the
dynamic response of structures are usually neglected. In this study, the effect of soil-structure
interaction on the dynamic response of structures has been examined. The substructure method
using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based
on finite element method and scaled boundary finite element method is applied. Finite element
method is used to analyze the structure, and scaled boundary finite element method is applied
in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the
radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to
be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in
time domain. A computer program is prepared to analyze the soil-structure system. Comparing
the results with those in literature shows the exactness and competency of the proposed method.

1. Introduction

In a dynamic soil-structure interaction problem, the structure is supported by an unbounded
soil medium subjected to a dynamic load like an earthquake. The dynamic response of the
structure is affected by the interaction between the structure, foundation, and soil.

In dynamic soil-structure interaction analysis, usually the higher modes of the struc-
ture are affected significantly by soil-structure interaction (SSI) effects. As the influence of
higher modes on the seismic response of flexible high structures with small mass remains
small, the SSI effects are negligible for these structures. On the other hand for stiff and mas-
sive structures on relatively soft ground, the effects of SSI are noticeable and lead to an in-
crease in the natural period and a change in the damping ratio of the system [1–3]. Effects of
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interaction can be expressed as inertial interaction and kinematic interaction. The interaction
effect associated with the stiffness of the structure is termed kinematic interaction, and the
corresponding mass-related effect is called inertial interaction [4]. Jennings and Bielak [5],
Veletsos and Nair [6], and Bielak [7] studied effects of inertial interaction, and Todorovska
and Trifunac [8], Aviles and Perez-Rocha [9], Betti et al. [10], and Aviles et al. [11] studied the
effects of kinematic interaction.

In dynamic soil-structure interaction problems, analysis methods can be classified into
three groups [12]: (1) time domain and frequency domain analysis methods, (2) substructure
method and direct method, (3) rigorous methods and approximate simple physical models.

Time domain methods are capable of studying nonlinear behavior of soil medium,
effects of pore water, and nonlinear conditions along the interface between soil and structure.
In frequency domain, the solving procedure is easier than time domain but it can deal only
with linear aspects.

In substructure, method the whole media is represented by an impedance matrix
which could be attached to the dynamic stiffness of the structure. This hypothesis renders the
soil-structure interaction problem simpler and reduces the analysis efforts. In direct method
the soil region near the structure is modeled directly; hence, complex geometry, variations of
soil properties, and nonlinear behavior of the medium could be considered. As mentioned
in this method, the unbounded soil medium is replaced by a bounded region with artificial
boundaries. It should be considered that in the numerical modeling of unbounded media, the
boundaries should be expressed, so that the radiation condition is satisfied exactly, and the
wave energy dissipates in the medium. Several studies have been performed, and methods
to impose a wave-absorbing boundary condition have been proposed [13–17].

Simple physical models can be applied to help the analyst identify the key parameters
of the dynamic system for preliminary design or investigate alternative designs. They are
used to check the results of more rigorous procedures determined with sophisticated comput-
er programs [12].

To solve the soil-structure interaction problems, several analytical and numerical
methods have been developed. Applying analytical methods is limited to simple structures
and uniform soil media, while numerical methods such as finite element method (FEM), in-
finite element method, and boundary element method (BEM) are widely used. The FEM
method is well suited for nonhomogeneous, anisotropic materials of arbitrary-shaped struc-
ture with non-linear behavior [18]. BE methods require a fundamental solution satisfying the
governing differential equations exactly [19–22]. This analytical solution is often complicated,
exhibiting singularities. Certain shortage in modeling nonhomogeneous soil media is exhi-
bited using BE methods. Cone models have been used to determine dynamic stiffness of
foundations and the seismic effective foundation input motion as an alternative to rigorous
boundary-element solutions [23–30]. The concept of infinite element method was introduced
by Ungless [31] and Bettess [32, 33]. The concepts and formulation procedure in this method
are similar to those of FEM methods. The scaled boundary finite element method (SBFEM)
which is a semianalytical computational procedure can be used for modeling bounded and
unbounded medium considering nonhomogeneous and incompressible material properties.
This method has been applied to soil-structure interaction problems both in time and freq-
uency domain by Wolf and Song [34, 35].

Combined models are used in soil-structure interaction analysis. The most widely used
combined model is the coupled finite element and boundary element method in both time
and frequency domain [36–38]. Qian et al. [39] Estorff and Prabucki [40], and Israil and
Banerjee [41] used the coupled FEM-BEM model for analysis of homogeneous media.



Mathematical Problems in Engineering 3

Zhang et al. presented the analysis in time domain for layered soils [42]. Tanikulu et al. ex-
tended BEM formulation for infinite nonhomogeneous media [43]. They could model only
three different layers. Coupled finite element-Infinite element models have been used in dy-
namic soil-structure interaction analysis [44–46]. Coupled finite element/boundary element/
scaled boundary finite element model [47] has been used to solve soil-structure interaction
problems.

Jeremić et al. [48] have studied the effects of nonuniformity of soils in large structures
where they developed various models to simulate wave propagation through soils with ela-
stoplastic behavior.

Ghannad and Mahsuli [49] studied the effect of foundation embedment using a sim-
plified single degree of freedom model with idealized bilinear behavior for the structure and
considered the soil as a homogeneous half-space as a discrete model based on cone model
concepts. The foundation is modeled as a rigid cylinder embedded in the soil.

The scaled boundary finite element method is a boundary-element method based on
finite elements. This method combines the advantages of the boundary and finite element
methods. It also combines the advantages of the numerical and analytical procedures. This
method can be applied in both frequency and time domains [35]. This method is a semianal-
ytical procedure which transforms the partial differential equation to an ordinary differential
equation using a virtual work statement as in finite elements. In this method, no fundamental
solution is required, and no singular integrals occur. Only the boundary is discretized which
results in a reduction of the spatial discretization by one. The analytical solution in the radial
direction permits the boundary condition at infinity to be satisfied exactly [35]. A computer
program named SIMILAR based on SBFEM is presented by Wolf and Song [50]. This program
calculates the dynamic stiffness of the unbounded media in frequency and time domain.

In this study, the dynamic behavior of partially embedded structures is examined. The
substructure method is used, and a coupled finite element, scaled boundary finite element
model is applied. The scaled boundary finite element method is used to calculate the dynamic
stiffness of the soil, and the finite element method is applied to analyze the dynamic behavior
of the structure. In continuation, firstly, the equation of motion of the soil structure system in
total and relative displacements is introduced. The dynamic stiffness matrix of the soil is ob-
tained using SBFEM in the second section. In the third section, an iterative procedure is pre-
sented to calculate dynamic load using dynamic stiffness matrix of the soil. Applying New-
mark method, the equation of motion of the system is solved, and the displacements of the
structure are obtained. It is worth noting that although the formulation in the paper is not
innovative, this is the first time a complete model of structure is studied and the dynamic res-
ponse of the structure is examined. Previous studies have used simplified soil model or
simplified structural model and/or both. Therefore, the present results seem to be the first
ones obtained based on a complete soil-structure model. Moreover, from a practical point of
view, the present results could lead to an interesting conclusion in the important topic of
“choosing base shear level” which is not clearly defined in practice codes

Numerical examples are presented, and the final section is devoted to concluding
remarks.

2. Equation of Motion

The dynamic behavior of the structure could be described by its static stiffness matrix [K] and
the mass matrix [M]. The equation of motion of the structure in total displacements in time



4 Mathematical Problems in Engineering

Soil-structure interface

s

b

Figure 1: Soil-structure system.

domain is formulated as follows [35]:

[
[Mss] [Msb]

[Mbs] [Mbb]

]{{
üts(t)

}
{
üt
b(t)
}
}
+

[
[Kss] [Ksb]

[Kbs] [Kbb]

]{{
uts(t)

}
{
ut
b(t)
}
}

=
{ {0}
−{R(t)}

}
. (2.1)

Considering damping matrix of the structure, [C], the above equation is written as follows:

[
[Mss] [Msb]

[Mbs] [Mbb]

]{{
üts(t)

}
{
üt
b(t)
}
}
+

[
[Css] [Csb]

[Cbs] [Cbb]

]{{
u̇ts(t)

}
{
u̇t
b(t)
}
}
+

[
[Kss] [Ksb]

[Kbs] [Kbb]

]{{
uts(t)

}
{
ut
b(t)
}
}
=
{ {0}
−{R(t)}

}
,

(2.2)

where {üt}, {u̇t}, and {ut} are the acceleration, velocity, and displacement vectors of the struc-
ture. Subscripts are used to denote the nodes of the discretized system. As shown in Figure 1,
nodes on the foundation structure interface are denoted by b, and the remaining nodes related
to the structure are denoted by s. {R(t)} denotes the interaction forces of the unbounded soil
acting on the interface nodes of soil-structure system. The interaction forces of the soil depend
upon the motion relative to the effective foundation input motion{ugb}. The interaction force-
displacement relationship in the time domain is formulated as:

{R(t)} =
∫ t

0
[S∞(t − τ)]{u(τ)}dτ, (2.3)

where [S∞(t)] is called the displacement unit impulse response matrix in time domain. The
interaction force-displacement relationship can alternatively be written as

{R(t)} =
∫ t

0
[M∞(t − τ)]{ü(τ)}dτ, (2.4)

in which [M∞(t)] is the acceleration unit-impulse response matrix in time domain.
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Superscript ∞ denotes the unbounded medium. For an unbounded medium initially
at rest, we have

{u(t = 0)} = 0,

{u̇(t = 0)} = 0.
(2.5)

Substituting (2.6) in (2.1) results the equation of motion in total displacement [35]:

[
[Mss] [Msb]

[Mbs] [Mbb]

]{{
üts(t)

}
{
üt
b(t)
}
}
+

[
[Css] [Csb]

[Cbs] [Cbb]

]{{
u̇ts(t)

}
{
u̇tb(t)

}
}
+

[
[Kss] [Ksb]

[Kbs] [Kbb]

]{{
uts(t)

}
{
ut
b(t)
}
}

=

⎧⎨
⎩

{0}
−
∫ t

0
[M∞(t − τ)]({ütb} − {üg})dτ

⎫⎬
⎭,

(2.6)

in which {üg} is the ground motion acceleration induced to the base of the structure during
an earthquake.

In this paper, the equation of motion of soil-structure system in relative displacement
is used

[
[Mss] [Msb]

[Mbs] [Mbb]

]{{üs(t)}
{üb(t)}

}
+

[
[Css] [Csb]

[Cbs] [Cbb]

]{{u̇s(t)}
{u̇b(t)}

}
+

[
[Kss] [Ksb]

[Kbs] [Kbb]

]{{us(t)}
{ub(t)}

}

=

⎧⎨
⎩

−[Mss]
{
üg
}

−[Msb]
{
üg
} −
∫ t

0
[M∞(t − τ)]({üb})dτ

⎫⎬
⎭.

(2.7)

As can be seen in (2.7), the unit impulse response matrix should be obtained a priori. The dy-
namic load on the right hand side of the equation is calculated a posteriori. In the next section,
the unit impulse response matrix is obtained applying scaled boundary finite element method
[35].

3. Obtaining Acceleration Unit-Impulse Response Matrix

The force displacement relationship in the frequency domain could be written as follows [35]:

{R(ω)} = [M∞(ω)](iω)2{u(ω)}, (3.1)

where {R(ω)} and {u(ω)} are force and displacement in frequency domain. [M∞(ω)] is de-
noted as acceleration dynamic stiffness matrix in the frequency domain. The relationship bet-
ween the acceleration and displacement dynamic stiffness matrices is

[M∞(ω)] =
[S∞(ω)]

(iω)2
. (3.2)
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The scaled boundary finite element equation in dynamic stiffness for the unbounded medium
is formulated as follows [35]:

(
[S∞(ω)]+

[
E1
])[

E0
]−1
(
[S∞(ω)] +

[
E1
]T)−(s−2)[S∞(ω)]−ω[S∞(ω)],ω−

[
E2
]
+ω2
[
M0
]
=0,

(3.3)

in which [E0], [E1], and [E2] are coefficient matrices in the Scaled Boundary Finite Element
method introduced in [35].

Dividing (3.3) by (iω)4 and substituting (3.2) yields [35]

[M∞(ω)]
[
E0]−1[M∞(ω)] +

[
E1][E0]−1 [M∞(ω)]

(iω)2
+
[M∞(ω)]

(iω)2

[
E0]−1[

E1]T − s [M∞(ω)]

(iω)2

+
1
ω
[M∞(ω)],ω − 1

(iω)4

([
E2] − [E1][E0]−1[

E1]T) − 1

(iω)2

[
M0] = 0.

(3.4)

Applying the inverse Fourier transformation to (3.4) results in

∫ t
0
[M∞(t − τ)]

[
E0
]−1

[M∞(τ)]dτ +
([
E1
][
E0
]−1 − s + 1

2

)∫ t
0

∫ τ
0

[
M∞(τ ′)] dτ ′dτ

+
∫ t

0

∫ τ
0

[
M∞(τ ′)]dτ ′dτ

([
E0
]−1[

E1
]T − s + 1

2

)

+ t
∫ t

0
[M∞(τ)]dτ − t3

6

([
E2
]
−
[
E1
][
E0
]−1[

E1
]T)

H(t) − t
[
M0
]
H(t) = 0.

(3.5)

The positive definite coefficient matrix [E0] is decomposed by Cholesky’s method as follows:

[
E0
]
= [U]T [U], (3.6)

where [U] is an upper-triangular matrix. Substituting (3.6) in (3.5) and premultiplying by

([U]−1)
T

and postmultiplying by [U]−1 yields

∫ t
0
[m∞(t − τ)][m∞(τ)]dτ +

[
e1
] ∫ t

0

∫ τ
0

[
m∞(τ ′)]dτ ′dτ +

∫ t
0

∫ τ
0

[
m∞(τ ′)]dτ ′dτ[e1

]T

+ t
∫ t

0
[m∞(τ)]dτ − t3

6

[
e2
]
H(t) − t

[
m0
]
H(t) = 0,

(3.7)

where

[m∞(t)] =
(
[U]−1

)T
[M∞(t)][U]−1. (3.8)
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And the coefficient matrices are

[
e1
]
=
(
[U]−1

)T[
E1
]
[U]−1 − s + 1

2
[I],

[
e2
]
=
(
[U]−1

)T([
E2
]
−
[
E1
][
E0
]−1[

E1
]T)

[U]−1,

[
m0
]
=
(
[U]−1

)T[
M0
]
[U]−1.

(3.9)

Once obtained [m∞(t)] from (3.7), the acceleration unit-impulse response matrix is
obtained as

[M∞(t)] = [U]T [m∞(t)][U]. (3.10)

In this paper, [M∞(t)] is obtained using the program SIMILAR presented by Jeremić et al.
[48].

4. Calculating Dynamic Load

The dynamic load on the right hand side of (2.7) could be written as follows:

{Fr(t)} = {Fsr (t)} +
{ {0}{

Fbr (t)
}
}
,

{Fsr (t)} =

{{Fssr (t)}{
Fsbr (t)

}
}
,

(4.1)

where {Fsr (t)} represents the dynamic load due to ground motion, respectively, and affects
the total nodes of the system, while {Fbr (t)} is the dynamic load related to interaction effects
and affects the nodes on the foundation-structure interface denoted by b in Figure 2. The
dynamic load vector on the right hand side of (2.7) could be written as follows:

⎧⎪⎨
⎪⎩

−[Mss]
{
üg
}

−[Msb]
{
üg
} −
∫ t

0
[M∞(t − τ)]({üb})dτ

⎫⎪⎬
⎪⎭=

{
−[Mss]

{
üg
}

−[Msb]
{
üg
}
}
+

⎧⎨
⎩

{0}
−
∫ t

0
[M∞(t − τ)]({üb})dτ

⎫⎬
⎭.

(4.2)

Comparing (4.1) and (4.2) results

{Fsr (t)} =
{−[M]

{
üg
}}
, (4.3)

{
Fbr (t)

}
=

{
−
∫ t

0
[M∞(t − τ)]({üb})dτ

}
, (4.4)
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where [M] is the total mass matrix of structure, and [M∞(t)] is the acceleration unit-impulse
response matrix.

The dynamic load Fbr (t) could be written in discrete form as follows [51]:

Fbr (tn) =
n∑
j=1

M∞
n−j

∫ jΔt
(j−1)Δt

üb(τ)dτ =
n∑
j=1

M∞
n−j
(
u̇b(j) − u̇b(j−1)

)
, (4.5)

where Fr(tn) is the dynamic load at nth step. ü and u̇ are the acceleration and velocity at the
corresponding time step. In this paper, an iterative method is adopted to calculate Fbr (tn). It is
supposed that the acceleration is constant at each time step, so (4.5) could be written as fol-
lows:

Fbr (tn) =
n∑
j=1

M∞
n−j
(
üb(j)Δt

)
. (4.6)

For the first time step, the dynamic load is calculated assuming that üb = 0 (2.7) is solved
applying Newmark scheme, and acceleration, velocity, and displacement vectors are obtain-
ed. The dynamic load is then calculated using calculated acceleration. Equation (2.7) is solved
again and the magnitudes of acceleration, velocity, and displacements are obtained. This pro-
cedure is iterated until the convergence is achieved. In this study, the tolerance between two
successive iterations is taken as 0.001.

The above procedure is outlined as in Table 1.
According to the above algorithm, an FORTRAN program is prepared to examine the

dynamic behavior of the structure considering interaction effects. Numerical examples are
presented in the next section.

5. Examples

2D frames on soft ground have been analyzed applying a coupled scaled boundary finite
element-Finite element models. The analysis is performed in time domain and the material
behavior of soil and structure is assumed to be linear. The soil-structure system is subjected to
sine excitations, El Centro, and Tabas ground motions. The displacement and base shear are
calculated. Base shear is assumed to be the algebraic summation of horizontal forces induced
in the structure. Results are compared with those obtained by cone model.

Example 5.1. As the first example, the frames shown in Figures 2 and 3 are used in analysis.
The damping ratio of the structure is considered as five percent of the mass matrix.

Structure properties are assumed as:

Frame no. 1: a = b = 6 m, h = 3 m,

Frame no. 2: a = 6 m, h = 3 m.
(5.1)

The soil properties are

ρ = 1600 kg/m3, Vs = 150 m/s, υ = 0.3. (5.2)
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Table 1: The Newmark algorithm and iteration procedure used in the analysis.

(A) Initial conditions
(1) Form stiffness, mass, and damping

matrices of the structure K,M,C

(2) Initial values u0, u̇0, ü0

(3) Select time step and parameters
α = 0.25, δ = 0.5. Calculate integration
constants

a0 =
1

αΔt2
, a1 =

δ

αΔt
, a2 =

1
αΔt

, a3 =
1

2α
− 1

a4 =
δ

α
− 1, a5 =

Δt
2

(
δ

α
− 2
)
, a6 = Δt(1 − δ), a7 = δΔt

(4) Form effective stiffness matrix K̂ K̂ = K + a0M + a1C

(B) For each time step
(1) Use t+Δtüg and calculate dynamic

load due to ground motion (4.2)
t+ΔtFsr

(2) Iterative procedure
(2.1) Consider t+Δtük

b
, k = 1, 2, 3, . . . t+Δtü1

b =
tüb

(2.2) Calculate the interaction load
induced on soil structure interface (4.6)
using t+Δtük

b

t+Δt
Fbr

(2.3) Calculate the dynamic load
t+Δt

R

t+Δt
R =
{ t+ΔtFssr

t+ΔtFsbr + t+ΔtFbr

}

(2.4) Calculate effective load R̂ at
time t + Δt

t+Δt
R̂ = t+Δt

R+ M(a0
tU+a2

t
U̇+a3

t
Ü)

+C(a1
tU +a4

t
U̇ +a5

t
Ü)

(2.5) Applying Gauss reduction
scheme, displacements are calculated at
time t + Δt

K̂ t+ΔtU =
t+Δt

R̂

(2.6) Calculate acceleration and
velocities at time t + Δt

t+Δt
Ük+1 =

{
ük+1
s

üK+1
b

}
= a0( t+ΔtU− tU) − a2

t
U̇−a3

t
Ü

t+Δt
U̇= t

U̇+a6
t
Ü +a7

t+4Δt
Ü

(2.7) Calculate the tolerance
between two successive iterations

TLR =
∥∥∥ t+ΔtüK+1

b − t+Δt
üKb

∥∥∥
(2.8) Check TLR. If TLR < 0.001, the

iterative procedure finishes otherwise
steps 2.2 to 2.8 are repeated using t+Δtük+1

b

Table 2: Properties of structural elements.

Element r (kgf/m3) A (m2) I (m4) E (kgf/m2)

Beam 2400 0.36 1.08E − 2 2.531E9
Column 2400 0.36 1.08E − 2 2.531E9

Firstly, a dynamic analysis is performed (ignoring SSI effects). The natural frequencies and
periods of the structures are calculated and presented in Tables 3 and 4. Then the soil-struc-
ture system is subjected to sine excitations with unit amplitude. The loading frequency is con-
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b

h

a

Figure 2: Frame no. 1 used in analysis.

a a a a

h

Figure 3: Frame no. 2 used in analysis.

Table 3: Natural frequencies and periods of first five modes of frame no. 1.

Modes Natural frequency (Hz) Period (s)

First mode 0.84 1.189
Second mode 2.579 0.388
Third mode 4.474 0.224
Fourth mode 6.594 0.152
Fifth mode 8.959 0.112

Table 4: Natural frequencies and periods of first five modes of frame no. 2.

Modes Natural frequency (Hz) Period (s)

First mode 1.66 0.603
Second mode 5.24 0.191
Third mode 9.41 0.106
Fourth mode 13.93 0.072
Fifth mode 17.64 0.057
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Table 5: Relative reduction of displacement and base shear considering SSI effects for frame no. 1 subjected
to sine excitation.

Maximum of
Relative reduction (%)

First mode Second mode

Displacement 15.3 35.6
Base shear 12.7 60.65

Table 6: Relative reduction of displacement and base shear considering SSI effects for frame no. 2 subjected
to sine excitation.

Maximum of
Relative reduction (%)

First mode Second mode

Displacement 40.9 41.3
Base shear 63.8 82

Table 7: Relative reduction of displacement and base shear considering SSI effects for frame no. 1 subjected
to El Centro ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 10.9 214855
Dynamic analysis considering SSI effect 7.55 109885
Relative reduction (%) 30.73 48.75

Table 8: Relative reduction of displacement and base shear considering SSI effects for frame no. 2 subjected
to El Centro ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 6.61 357693
Dynamic analysis considering SSI effect 2.63 149835
Relative reduction (%) 60.2 58.1

sidered to be variable and selected so that it would be close to natural frequencies of the struc-
ture. The harmonic load used in the analysis could be expressed as follows:

F = sin
(

2π
T
t

)
, (5.3)

where T is the period of sine function. The SSI effect on dynamic response of the structure
is examined. Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 show the results obtained in
analysis. Figures 17, 18, 19, and 20 show the variation of displacement and base shear ver-
sus period of dynamic load. The maximums (peaks) represent the obtained magnitudes with
loading period close to the first and the second natural periods of the structure. As can be seen
considering SSI effects, the maximum displacement and base shear are decreased. In Tables 5
and 6 the percentage of the relative reduction of displacement and base shear due to first and
second modes is presented.

It is observed that considering SSI effect leads to reduction in displacement and base
shear. The reduction in displacement and base shear is more significant when the loading
frequency is close to natural frequencies of the structure. As shown in Tables 5 and 6, the
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Table 9: Relative reduction of displacement and base shear considering SSI effects for frame no. 1 subjected
to Tabas ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 8.58 194230
Dynamic analysis considering SSI effect 4.03 41399
Relative reduction (%) 53 78.6
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Figure 4: Comparison of displacement at the top of frame no. 1 subjected to sine excitation (T = 1.2 s).

Table 10: Relative reduction of displacement and base shear considering SSI effects for frame no. 2 sub-
jected to Tabas ground motion.

Maximum of Displacement (cm) Base shear (Kgf)

Dynamic analysis ignoring SSI effect 5.86 367403
Dynamic analysis considering SSI effect 2.19 102447
Relative reduction (%) 62.6 72.1

percentage of relative reduction in displacement and base shear is more significant for the
second mode than the first one. It could be concluded that SSI effect is more pronounced for
higher modes of the structure. Comparing the results presented in Tables 5 and 6 shows that
the relative reduction is more significant for farme no. 2. It could be concluded that SSI effects
are more significant for stiff structures.

Example 5.2. In the second example, the fames are subjected to El Centro ground motion. It is
worth noting that the predominant period of El Centro ground motion is 0.56 (sec) which is
close to the first natural period of frame no. 2. The results are given in Figures 21, 22, 23, and
24. As can be observed in Tables 7 and 8, the relative reduction in displacement and shear base
is more significant for frame no. 2. It can be concluded that when the predominant period of
the earthquake is close to natural period of the structure, considering SSI effects leads to more
significant reduction, and the dynamic response of the structure is more affected.
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Figure 5: Comparison of displacement at the top of frame no. 1 subjected to sine excitation (T = 1.1 s).
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Figure 6: Comparison of displacement at the top of frame no. 1 subjected to sine excitation (T = 1 s).
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Figure 8: Comparison of base shear of frame on. 1 subjected to sine excitation (T = 1.2 s).
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Figure 9: Comparison of base shear of frame no. 1 subjected to sine excitation (T = 1.1 s).

−150000

−50000

−200000

−100000

0

100000

200000

50000

150000

B
as
e
sh

ea
r
(k
gf
)

Dynamic analysis

Present study

2 4 60

Time (s)

Figure 10: Comparison of base shear of frame no. 1 subjected to sine excitation (T = 0.4 s).



Mathematical Problems in Engineering 15

0

Dynamic analysis
Present study

2 4 60

−0.15

−0.05

−0.1

0.15

0.1

0.05

8

Time (s)

D
is
pl
ac
em

en
t(
m
)

Figure 11: Comparison of displacement at top of frame no. 2 subjected to sine excitation (T = 0.6 s).
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Figure 12: Comparison of displacement at top of frame no. 2 subjected to sine excitation (T = 0.2 s).
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Figure 13: Comparison of displacement at top of frame no. 2 subjected to sine excitation (T = 0.1 s).
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Figure 14: Comparison of base shear of frame no. 2 subjected to sine excitation (T = 0.6 s).
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Figure 15: Comparison of base shear of frame no. 2 subjected to sine excitation (T = 0.2 s).
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Figure 16: Comparison of base shear of frame no. 2 subjected to sine excitation (T = 0.1 s).
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Figure 20: Comparison of base shear of frame no. 2.
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Figure 21: Comparison of displacement at the top of frame no. 1 subjectefd to El Centro ground motion.
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Figure 22: Comparison of base shear of frame no. 1 subjected to El Centro ground motion.
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Figure 23: Comparison of displacement at the top of frame no. 2 subjected to El Centro ground motion.
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Figure 24: Comparison of base shear of frame no. 2 subjected to El Centro ground motion.
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Figure 25: Comparison of displacement at top of frame no. 1 subjected to Tabas ground motion.
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Figure 26: Comparison of base shear of frame no. 1 subjected to Tabas ground motion
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Figure 27: Comparison of displacement at the top of frame no. 2 subjected to Tabas ground motion.
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Figure 28: Comparison of base shear of frame no. 2 subjected to Tabas ground motion.
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Example 5.3. In the third example, the frames are subjected to Tabas ground motion. The pre-
dominant period of Tabas ground motion is 0.2 (sec) which is close to the second natural per-
iod of frame no. 2. The results are given in Figures 25, 26, 27, and 28. As it is observed, con-
sidering SSI effect has a pronounced effect on results (Tables 9 and 10).

6. Conclusion

Analysis and design of structures subjected to arbitrary dynamic loadings especially earth-
quakes have been studied during past decades. In practice, the effects of soil-structure inter-
action on the dynamic response of structures are usually neglected. In this paper, a coupled
scaled boundary finite element-finite element model is presented to examine the dynamic res-
ponse of the structure considering soil-structure interaction. The substructure method is used
to analyze the soil-structure interaction problem. The analysis is performed in time domain.
The material behavior of soil and structure is assumed to be linear. The scaled boundary finite
element method is used to calculate the dynamic stiffness of the soil, and the finite element
method is applied to analyze the dynamic behavior of the structure. 2D frames have been
analyzed using the proposed model. The results are compared with those obtained by cone
model. Considering SSI effect leads to reduction in displacement and base shear. When the
system is subjected to sine excitation, the reduction in displacement and base shear is more
significant when the loading frequency is close to natural frequencies of the structure. The
reduction in displacement and base shear is more significant for the second mode than the
first one, thus considering SSI in dynamic analysis of the structure affects the higher modes
more significantly. It is observed that when the soil-structure system is subjected to
an earthquake whose predominant period is close to natural period of the structure, consider-
ing SSI effects leads to more significant reduction, and the dynamic response of the structure
is more affected. It is obvious that considering SSI effects results in more effective design
without decreasing safety margin.
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A reduced stabilized mixed finite-element (RSMFE) formulation based on proper orthogonal
decomposition (POD) for the transient Navier-Stokes equations is presented. An ensemble of
snapshots is compiled from the transient solutions derived from a stabilized mixed finite-element
(SMFE) method based on two local Gauss integrations for the two-dimensional transient Navier-
Stokes equations by using the lowest equal-order pair of finite elements. Then, the optimal
orthogonal bases are reconstructed by implementing POD techniques for the ensemble snapshots.
Combining POD with the SMFE formulation, a new low-dimensional and highly accurate SMFE
method for the transient Navier-Stokes equations is obtained. The RSMFE formulation could not
only greatly reduce its degrees of freedom but also circumvent the constraint of inf-sup stability
condition. Error estimates between the SMFE solutions and the RSMFE solutions are derived.
Numerical tests confirm that the errors between the RSMFE solutions and the SMFE solutions
are consistent with the the theoretical results. Conclusion can be drawn that RSMFE method is
feasible and efficient for solving the transient Navier-Stokes equations.

1. Introduction

Mixed finite-element (MFE) methods are one of the most important approaches for
solving the nonstationary Navier-Stokes equations [1–3]. However, some fully discrete MFE
formulations for the nonstationary Navier-Stokes equations involve generally many degrees
of freedom. In addition, the importance of ensuring the compatibility of the approximations
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for the velocity and pressure by satisfying the so-called inf-sup condition (LBB condition) is
widely understood. Thus, an important problem is how to avoid the lack of the LBB stability
and simplify the computational load by saving time-consuming calculations and resource
demands in the actual computational process in a way that guarantees a sufficiently accurate
numerical solution.

Proper orthogonal decomposition (POD) is an effective method for approximating a
large amount of data. The method essentially finds a group of orthogonal bases from the
given data to approximately represent them in a least squares optimal sense. In addition,
as the POD is optimal in the least squares sense, it has the property that the model
decomposition is completely dependent on the given data and does not require assuming
any prior knowledge of the process. Combined with a Galerkin projection procedure, POD
provides a powerful method for deriving lower dimensional models of dynamical systems
from a high or even infinite dimensional space. A dynamic system is generally governed
by related structures or the ensemble formed by a large number of different instantaneous
solutions, and the POD method can capture the temporal and spatial structures of dynamic
system by applying a statistical analysis to the ensemble of data. POD provides an adequate
approximation for a large amount of data with a reduced number of degrees of freedom; it
alleviates the computational load and provides substantial savings in memory requirements.
POD has found widespread application in a variety of fields such as signal analysis and
pattern recognition [4, 5], fluid dynamics and coherent structures [6–8], optimal flow control
problems [9, 10], and land surface soil moisture data assimilation [11]. In fluid dynamics,
Lumley first applied the POD method to capture the large eddy coherent structures in
a turbulent boundary layer [12]. This method was further applied to study the relation
between the turbulent structure and a chaotic dynamic system [13]. Sirovich introduced
the method of snapshots and applied it to reduce the order of POD eigenvalue problem
[14]. Kunisch and Volkwein presented Galerkin POD methods for parabolic problems and
a general equation in fluid dynamics [15, 16]. More recently, a finite difference scheme (FDS)
and a MFE formulation for the nonstationary Navier-Stokes equation based on POD were
derived [17, 18], respectively. Finite-element formulation based on POD was also applied
for parabolic equations and the Burgers equation [19, 20]. In other physical applications,
an effective use of POD for a chemical vapor deposition reactor was demonstrated and
some reduced-order FDS and MFE for the upper tropical Pacific Ocean model based on
POD were presented [21–25]. An optimizing reduced FDS based on POD for the chemical
vapor deposit (CVD) equations was also presented in [26]. Except for POD, the empirical
orthogonal function (EOF) analysis is another effective method to extract information from
large datasets in time and space [27, 28].

In order to avoid the lack of LBB stability, some kinds of stabilized techniques for the
lowest-order finite elements appear in [29–44]. Luo et al.[45] has combined the POD method
with a stabilize method [40] to deal with the non-stationary Navier-Stokes equations and
obtained good results. But the stabilized mixed methods in [40, 45] are often developed using
residuals of the momentum equation. These residual terms must be formulated using mesh-
dependent parameters, whose optimal values are usually unknown. Particularly, for the
lowest equal-order pairs of mixed elements such as P1 −P1 and Q1 −Q1, pressure and velocity
derivatives in the residual either vanish or are poorly approximated, causing difficulties in
the application of consistent stabilization.

In this paper, we mainly consider the two-dimensional transient Navier-Stokes
equations by combining a new stabilized finite-element method [29–31] based on two local
Gauss’ integrations with POD method. This new stabilized finite element method has some
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prominent features: parameter-free, avoiding higher-order derivatives or edge-based data
structures, and stabilization being completed locally at the element level. In this manner,
we could not only ensure the stabilization of solutions of fully discrete stabilized mixed
finite-element system but also greatly reduce degrees of freedom and save time-consuming
calculations and resource demands in the actual computational process in a way that
guarantees a sufficiently accurate numerical solution. we also derive the error estimates
between the original SMFE solutions and the RSMFE solutions based on the POD technique.
Numerical experiments show the errors between the original SMFE method and the RSMFE
solutions are consistent with theoretical results.

The remainder of this paper is organized as follows. In Section 2, an abstract functional
setting for the two-dimensional Navier-Stokes equations is given, together with some basic
notations. Section 3 is to state the fully discrete stabilized finite-element method and to
generate snapshots from transient solutions computed from the equation system derived by
the classical SMFE formulation. In Section 4, the optimal orthogonal bases are reconstructed
from the elements of the snapshots with POD method and a reduced SMFE formulation with
lower-dimensional number based on POD method for the transient Navier-Stokes equations
is developed. In Section 5, error estimates between the classical SMFE solutions and the
RSMFE solutions based on the POD method are derived. In Section 6, a series of numerical
experiments are given to illustrate the theoretical results. We conclude with a few remarks in
the final section.

2. Functional Setting of the Navier-Stokes Equations

Let Ω be a bounded domain in R2, assumed to have a Lipschitz continuous boundary Γ and
to satisfy further assumptions below. The transient Navier-Stokes equations are considered
as follows:

ut − νΔu + (u · ∇)u +∇p = f, divu = 0, (x, t) ∈ Ω × (0, T], (2.1)

u(x, 0) = u0(x), x ∈ Ω, u(x, t)|Γ = 0, t ∈ [0, T]. (2.2)

Here u : Ω → R2 and p : Ω → R are the velocity and pressure, ν > 0 is the viscosity, and f
represents the body forces, T > 0 the final time, and ut = ∂u/∂t.

For the mathematical setting of problems (2.1)-(2.2), we introduce the following
Sobolev spaces:

X = H1
0(Ω)2, M = L2

0(Ω) =
{
q ∈ L2(Ω);

∫
Ω
q(x)dx = 0

}
, (2.3)

D(A) = H2(Ω)2 ∩X, V = {v ∈ V : divv = 0}. (2.4)

Furthermore, we make a regularity assumption on the Stokes problem as follows.

Assumption H1. For a given g ∈ Y and the Stokes problem,

−Δv +∇q = g, in Ω,

divv = 0, in Ω,

v|Γ = 0, on ∂Ω,

(2.5)
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satisfying the following regularity result:

‖v‖2 +
∥∥q∥∥1 ≤ κ∥∥g∥∥0, (2.6)

where ‖ · ‖i is the norm of the Sobolev space Hi(Ω) or Hi(Ω)2, i = 0, 1, 2, as appropriate,
and κ is a positive constant depending only on Ω, which may stand for different value at
its different occurrences. Subsequently, the positive constants κ and c (with or without a
subscript) will depend only on the data (ν, T,Ω, u0). Because the norm and seminorm are
equivalent on H1

0(Ω)2, we use the same notation ‖ · ‖1 for them. It is well known that for each
v ∈ X there hold the following inequalities:

‖v‖L4 ≤ 21/4‖v‖1/2
0 ‖v‖1/2

1 . (2.7)

Assumption H2. The initial velocity u0 ∈ D(A) and the body force f(x, t) ∈ L2(0, T ;L2(Ω)2)
are assumed to satisfy

‖u0‖2 +

(∫T
0

(∥∥f∥∥2
0 +
∥∥ft∥∥2

0

)
dt

)1/2

≤ c. (2.8)

Now, the bilinear forms a(·, ·) and d(·, ·), on X ×X and X ×M, are defined, respectively, by

a(u, v) = ν(∇u,∇v), ∀u, v ∈ X, d
(
v, q
)
=
(
q,divv

)
, ∀(v, q) ∈ (X,M). (2.9)

Also, a generalized bilinear form B((·, ·); (·, ·)) on (X,M) × (X,M) is defined by

B
((
u, p
)
;
(
v, q
))

= a(u, v) − d(v, p) + d(u, q). (2.10)

Moreover, we define the trilinear form

b(u, v,w) = ((u · ∇)v,w) +
1
2
((divu)v,w)

=
1
2
((u · ∇)v,w) − 1

2
((u · ∇)w,v), ∀u, v,w ∈ X.

(2.11)

By the above notations and the Hölder inequality, there hold the following estimates:

b(u, v,w) = −b(u,w, v), ∀u ∈ X, v,w ∈ X,

|b(u, v,w)| ≤ 1
2
c0‖u‖1/2

0 ‖u‖1/2
1

(
‖v‖1‖w‖1/2

0 ‖w‖1/2
1 + ‖v‖1/2

0 ‖v‖1/2
1 ‖w‖1

)
, ∀u, v,w ∈ X,

|b(u, v,w)| + |b(v, u,w)| + |b(w,u, v)| ≤ c1‖u‖1‖v‖2‖w‖0, ∀u ∈ X, v ∈ D(A), w ∈ Y.
(2.12)
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Also, the Poincare inequality holds:

‖v‖0 ≤ γ0‖v‖1, (2.13)

where c0, c1, and γ0 are positive constants depending only on Ω.
For a given f ∈ Y , the variational formulation of problem (2.1)-(2.2) reads as follows:

find (u, p) ∈ (X,M), t > 0 such that

(ut, v) + B((u, p); (v, q)) + b(u, u, v) = (f, v), ∀(v, q) ∈ (X,M),

u(0) = u0.
(2.14)

For convenience, we recall the discrete Gronwall Lemma that will be frequently used.

Lemma 2.1 (see [1, 45, 46]). Let {an}, {bn}, and {cn} be three positive sequences, and let {cn} be
monotone and satisfy

an + bn ≤ cn + λ
n−1∑
i=0

ai, λ > 0, a0 + b0 ≤ c0, (2.15)

then

an + bn ≤ cn exp(nλ), n ≥ 0. (2.16)

The following existence and uniqueness result is classical (see [1, 46]).

Theorem 2.2. Assume that (H1) and (H2) hold. Then, for any given T > 0, there exists a unique
solution (u, p) satisfying the following regularities:

sup
0<t≤T

(
‖u(t)‖2

2 +
∥∥p(t)∥∥2

1 + ‖ut(t)‖2
0

)
≤ c,

sup
0<t≤T

τ(t)‖ut‖2
1 +
∫T

0
τ(t)
(
‖ut‖2

2 +
∥∥pt∥∥2

1 + ‖utt‖2
0

)
dt ≤ c,

(2.17)

where τ(t) = min{1, t}.

3. Fully Discrete SMFE Method and Generation of Snapshots

In this section, we focus on the stabilized method proposed by [29] for the Stokes equations.
Let h > 0 be a real positive parameter. Finite-element subspace (Xh,Mh) of (X,M) is
characterized by τh = τh(Ω), a partitioning of Ω into triangles or quadrilaterals K, assumed
to be regular in the usual sense; that is, for some σ and ω with σ > 1 and 0 < ω < 1,

hK ≤ σρK, ∀K ∈ τh,

|cos θiK| ≤ ω, i = 1, 2, 3, 4, ∀K ∈ τh,
(3.1)



6 Mathematical Problems in Engineering

where hK is the diameter of element K, ρK is the diameter of the inscribed circle of element
K, and θiK are the angles of K in the case of a quadrilateral partitioning. The mesh parameter
h is given by h = maxk∈τhhK. The finite-element subspaces of this paper are defined by setting

R1(K) =

⎧⎨
⎩
P1(K), if K is triangular,

Q1(K), if K is the quadrilateral.
(3.2)

Then, the finite-element pairs are coupled as follows:

Xh = {v ∈ X; vi|K ∈ R1(K), i = 1, 2},

Mh =
{
q ∈M : q|K ∈ R1(K), ∀K ∈ τh

}
.

(3.3)

It is well known that this lowest equal-order finite-element pair does not satisfy the inf-
sup condition. We define the following local difference between a consistent and an under-
integrated mass matrices the stabilized formulation [29–31]:

G
(
ph, qh

)
= pTi (Mk −M1)qj = pTi Mkqj − pTi M1qj . (3.4)

Here, we set

pTi =
[
p0, p1, . . . , pN−1

]T
, qj =

[
q0, q1, . . . , qN−1

]
,

Mij =
(
φi, φj

)
, ph =

N−1∑
i=0

piφi,

pi = ph(xi), ∀ph ∈Mh, i, j = 0, . . . ,N − 1,

(3.5)

where φi is the basis function of the pressure on the domain Ω such that its value is one at
node xi and zero at other nodes; the symmetric and positive Mk, k ≥ 2 and M1 are pressure
mass matrix computed by using the k-order and 1-order Gauss integrations in each direction;
respectively, also, pi and qi, i = 0, 1, . . . ,N, are the value of ph and qh at the node xi. pTi is the
transpose of the matrix pi.

Let Πh : M → R0 be the standard L2-projection with the following properties [29–32]:

(
p, qh

)
=
(
Πhp, qh

)
, ∀p ∈M, qh ∈ R0,

∥∥Πhp
∥∥

0 ≤ c∥∥p∥∥0, ∀p ∈M,

∥∥p −Πhp
∥∥

0 ≤ ∥∥p∥∥1, ∀p ∈ H1(Ω) ∩M,

(3.6)

where R0 = {qh ∈ M : qh|K is a constant, ∀K ∈ Kh}. Then we can rewrite the bilinear form
G(·, ·) by

G
(
p, q
)
=
(
p −Πp, q −Πq

)
. (3.7)
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Remark 3.1. The bilinear form G(·, ·) in (3.7) is a symmetric, semipositive definite form
generated on each local set K. The term can alleviate and offset the inf-sup condition [29].
It differs from the stabilized term in [45]. It does not require a selection of mesh-dependent
stabilization parameters or a calculation of higher-order derivatives. Its another valuable
feature is that the action of stabilization operators can be performed locally at the element
level with minimal additional cost.

With the above notation, we begin by choosing an integerN and defining the time step
τ = T/N and discrete times tn = nτ , n = 0, 1, 2, . . . ,N. We obtain the fully discrete scheme
as follows: find functions {un

h
}n≥0 ⊂ Xh and {pn

h
}n≥1 ⊂ Mh as solutions of the recursive linear

algebraic equations,

(
dtu

n
h, vh

)
+ Bh

((
unh, p

n
h

)
;
(
vh, qh

))
+ b
(
un−1
h , uh, vh

)
=
(
f(tn), vh

)
,

u0
h = u0h.

(3.8)

for all (vh, qh) ∈ (Xh,Mh), where

dtu
n
h =

unh − un−1
h

τ
,

Bh

((
uh, ph

)
;
(
vh, qh

))
= a(uh, vh) − d

(
vh, ph

)
+ d
(
uh, qh

)
+G
(
ph, qh

)
,

(3.9)

and u0h is the approximation of u0. The solutions {un
h
}n≥0 and {pnh}n≥1 to (3.8)-(3.9) are

expected to the approximations of {uh(tn)}n≥0 and {ph(tn)}n≥1 with

ph(tn) =
1
τ

∫ tn
tn−1

ph(t)dt. (3.10)

Theorem 3.2 (see [29–32]). Let (Xh,Mh) be defined as above, then there exists a positive constant
β, independent of h, such that

∣∣B((u, p); (v, q))∣∣ ≤ c(‖u‖1 +
∥∥p∥∥0

)(‖v‖1 +
∥∥q∥∥0

)
,
(
u, p
)
,
(
v, q
) ∈ (X,M),

β
(‖uh‖1 +

∥∥ph∥∥0

) ≤ sup
(vh,qh)∈(Xh,Mh)

∣∣Bh

((
uh, ph

)
;
(
vh, qh

))∣∣
‖vh‖1 +

∥∥qh∥∥0

, ∀(uh, ph) ∈ (Xh,Mh),

∣∣G(p, q)∣∣ ≤ c∥∥p −Πhp
∥∥

0

∥∥q −Πhq
∥∥

0, ∀p, q ∈M.

(3.11)

By using the same approaches as those in [45], we can prove the following result.

Theorem 3.3. Under the assumptions of Theorems 2.2 and 3.2, if h and τ are sufficiently small and
h = O(τ), then problem (3.8)-(3.9) has a unique solution (unh, p

n
h) ∈ Xh ×Mh such that

∥∥unh
∥∥2

0 +
n∑
j=1

(
τν
∥∥∥∇ujh

∥∥∥2

0
+ τG

(
p
j

h, p
j

h

))
≤ ‖u0‖2

0 + cτν
−1

n∑
j=1

∥∥fj∥∥2
0. (3.12)



8 Mathematical Problems in Engineering

Theorem 3.4 (see [32]). Under the assumptions of Theorem 3.3, the error (u(tn) − unh, p(tn) − pnh)
satisfies the following bound:

τ
N∑
n=1

∥∥u(tn) − unh
∥∥2

0 + τ(tm)
∥∥u(tm) − umh

∥∥2
0 ≤ c

(
h4 + τ2

)
,

τ
N∑
n=1

∥∥u(tn) − unh
∥∥2

1 + τ(tm)
∥∥u(tm) − umh

∥∥2
1 ≤ c

(
h2 + τ2

)
,

τ
N∑
n=1

τ(tn)
∥∥p(tn) − pnh

∥∥2
0 ≤ c

(
h2 + τ2

)
,

(3.13)

for all tm ∈ (0, T].
If ν, the time step increment τ , and the right-hand side f are given, by solving problem(3.8)-

(3.9), we can obtain solution ensemble {un1h, un2h, pnh}Ln=1. Then we choose L (in general, L ≤ N, e.g.,
L = 20,N = 200) instantaneous solutions Ui(x, y) = (ui1h, u

i
2h, p

i
h
) (i = 1, 2, . . . , L) from the L

group of solutions (un
h
, pn

h
) (1 ≤ n ≤ L) for problems (3.8), which are known as snapshots.

Remark 3.5. When one computes actual problems, one may obtain the ensemble of snapshots
from physical system trajectories by drawing samples from experiments and interpolation (or
data assimilation). For example, when one finds numerical solutions to PDES representing
weather forecast, one can use the previous weather prediction results to construct the
ensemble of snapshots, then restructure the POD optimal basis for the ensemble of snapshots
by the following POD method, next replace finite element space (Xh,Mh) with the subspace
spanned by the optimal POD basis. Numerical weather forecast equation is reduced to a
fully discrete algebra equation with fewer degrees of freedom. Thus, the forecast of future
weather change can be quickly simulated, which is a result of major importance for real-life
applications.

4. Reduced SMFE Formulation Based on POD Method

The POD method has received much attention in recent years as a tool to analyze complex
physical systems. In this section, we use POD technique to deal with the snapshots in
Section 3 and then use the POD basis to develop an RSMFE formulation for the transient
Navier-Stokes equations.

Let X̂ = X ×M, and let Ui(x, y) = (ui1h, u
i
2h, p

i
h
) (i = 1, 2, . . . , L, see Section 3). Set

V = span{U1, U2, . . . , UL}, (4.1)

where V is the ensemble consisting of the snapshots {Ui}Li=1, at least one of which is supposed
to nonzero. Let {Ψj}lj=1 denote an orthogonal basis of V with l = dimV (l ≤ L). Then each
member of the ensemble is expressed as

Ui =
l∑
i=1

(
Ui,Ψj

)
X̂
Ψj , for i = 1, 2, . . . , L, (4.2)

where (Ui,Ψj)X̂ = (uih,Ψuj) + (pih,Ψpj), Ψuj and Ψpj are the orthogonal basis corresponding
to u and p, respectively.
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The method of POD consists in finding the orthogonal basis such that, for every d(1 ≤
d ≤ L), the mean square error between the elements Ui (1 ≤ i ≤ L) and corresponding dth
partial sum of (4.2) is minimized on average

min
{Ψj}dj=1

1
L

L∑
i=1

∥∥∥∥∥∥Ui −
d∑
j=1

(
Ui,Ψj

)
X̂
Ψj

∥∥∥∥∥∥
2

X̂

, (4.3)

subject to
(
Ψi,Ψj

)
X̂
= δij , for 1 ≤ i ≤ d, 1 ≤ j ≤ i, (4.4)

where ‖Ui‖X̂ = (‖ui1h‖
2
1 + ‖ui2h‖

2
1 + ‖pi

h
‖2

0)
1/2

. A solution sequence {Ψj}dj=1 of (4.3) and (4.4) is
known as a POD basis of rank d.

We introduce the correlation matrix E = (Eij)L×L ∈ RL×L corresponding to the
snapshots {Ui}Li=1 by

Eij =
1
L

(
Ui,Uj

)
X̂
. (4.5)

The matrix E is positive semidefinite and has rank l. The solution of (4.3) and (4.4) can be
found in [45].

Proposition 4.1. Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0 denote the positive eigenvalues of E, and let v1, v2, . . . , vl
be the associated eigenvectors. Then a POD basis of rank d ≤ l is given by

Ψi =
1√
λi

L∑
j=1

(vi)j , Uj , i = 1, 2, . . . , d ≤ l, (4.6)

where (vi)j denotes the jth component of the eigenvector vi. Furthermore, the following error formula
holds:

1
L

L∑
i=1

∥∥∥∥∥∥Ui −
d∑
j=1

(
Ui,Ψj

)
X̂
Ψj

∥∥∥∥∥∥
2

X̂

=
l∑

j=d+1

λj . (4.7)

Let V d={Ψ1,Ψ2, . . . ,Ψd}, and letXd×Md=V d withXd ⊂ Xh ⊂ X, and letMd ⊂Mh ⊂M.
Set the Ritz-projection Ph : X → Xh (if Ph is restricted to the Ritz-projection from Xh to Xd, it is
written as Pd) such that Ph|Xh = Pd : Xh → Xd and Ph : X \ Xh → Xh \ Xd and L2-projection
ρd : M → Md denoted by, respectively,

a
(
Phu, vh

)
= a(u, vh), ∀vh ∈ Xh, (4.8)

(
ρdp, qd

)
0
=
(
p, qd

)
0, qd ∈Md, (4.9)

where u ∈ X and p ∈ M. Owing to (4.8)-(4.9) the linear operators Ph and ρd are well defined and
bounded:

∥∥∥Pdu
∥∥∥

1
≤ ‖u‖1,

∥∥∥ρdp
∥∥∥

0
,≤ ∥∥p∥∥0, ∀u ∈ X, p ∈M. (4.10)
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Lemma 4.2 (see [45]). For every d (1 ≤ d ≤ l), the projection operators Pd and ρd satisfy,
respectively,

1
L

L∑
i=1

∥∥∥unih − Pduni
h

∥∥∥2

1
≤

l∑
j=d+1

λj , (4.11)

1
L

L∑
i=1

∥∥∥unih − P dunih

∥∥∥2

0
≤ Ch2

l∑
j=d+1

λj , (4.12)

1
L

L∑
i=1

∥∥∥pnih − ρdpnih
∥∥∥2

0
≤

l∑
j=d+1

λj , (4.13)

where uni
h
= (uni1h, u

ni
2h) and (uni1h, u

ni
2h, p

ni
h
) ∈ V .

Thus, using V d = Xd ×Md, we can obtain the reduced SMFE formulation for problems (3.8)
as follows. Find ûnd = (und, p

n
d) ∈ V d such that

(
dtu

n
d
, vd
)
+ Bh

((
un
d
, pn

d

)
;
(
vd, qd

))
+ b
(
un−1
d
, ud, vd

)
=
(
f(tn), vd

)
, 1 ≤ n ≤N,

u0
d = u0h.

(4.14)

Remark 4.3. Problem (3.8) includes Nh (Nh is the number of triangles or quadrilaterals vertex
in τh) freedom degrees, while problem (4.14) includes d (d � l ≤ L ≤ N) freedom degrees.
For actual science and engineering problems, the number of the vertex in τh are tens of
thousands, even hundreds of millions, but d is the number of the largest eigenvalues of l
snapshots from L transient solutions; it is very small. For numerical example in Section 6,
d = 7, but Nh = 32 × 32 × 3 = 3072. Thus, problem (4.14) is a simplified stabilized finite-
element scheme. In addition, the future development of many natural phenomena is affected
by previous information, such as biological evolution and weather change. Here, we use the
existing data to construct the POD basis, which contains the information on past data. Thus,
this method can not only save computational load, but also make better use of the existing
information to capture the law of the future development of natural phenomena.

5. Existence and Error Analysis of Solution to the Optimizing
RSMFE Formulation

This section is devoted to discussing the existence and error estimates of solutions to problem
(4.14). We see from (4.6) that V d = Xd × Md ⊂ V ⊂ Xh × Mh ⊂ X × M. Using the
same approaches as proving Theorem 3.3, we could prove the following existence result for
solutions of problem (4.14).

Theorem 5.1. Under the assumptions of Theorems 2.2 and 3.3, Problem (4.14) has a unique solution
sequence (und, p

n
d) ∈ Xd ×Md and satisfies, for 1 ≤ n ≤N,

∥∥und
∥∥2

0 +
n∑
j=1

(
τν
∥∥∥ujd
∥∥∥2

1
+ τG

(
p
j

d, p
j

d

))
≤ ‖u0‖2

0 + cτν
−1

n∑
j=1

∥∥∥fj
∥∥∥2

0
. (5.1)

In the following theorem, the errors between the solution (und, p
n
d) to Problem (4.14)-

(4.15) and the solution (un
h
, pn

h
) to Problem (3.8) are derived.
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Theorem 5.2. Under the assumptions of Theorem 5.1, if h and τ are sufficiently small, h = O(τ),
and τ = O(L−2), then the errors between the solutions (un

d
, pn

d
) to Problem (4.14), and the solutions

(un
h
, pn

h
) to Problem (3.8) have the following error estimates, for 1 ≤ n ≤N:

∥∥unh − und
∥∥2

0 + τν
ni∑
j=n1

∥∥∥ujh − ujd
∥∥∥2

1
+ τ

ni∑
j=n1

∥∥∥pjh − pjd
∥∥∥2

0
≤ Cτ1/2

l∑
j=d+1

λj ,

if n = ni ∈ {n1, n2, . . . , nL},
(5.2)

∥∥unh − und
∥∥2

0 + τν

⎡
⎣∥∥unh − und

∥∥2
1 +

ni∑
j=n1

∥∥∥ujh − ujd
∥∥∥2

1

⎤
⎦

+τ

⎡
⎣∥∥pnh − pnd

∥∥2
0 +

ni∑
j=n1

∥∥∥pjh − pjd
∥∥∥2

0

⎤
⎦ ≤ Cτ1/2

l∑
j=d+1

λj + Cτ2,

if n = ni /∈ {n1, n2, . . . , nL}.

(5.3)

Proof. Let wn
d
= Pdun

h
− un

d
, rn

d
= ρdpn

h
− pn

d
. Subtracting (3.8) from (4.14) yields that

1
τ

(
unh − und, vd

) − 1
τ

(
un−1
h − un−1

d , vd
)
+ a
(
unh − und, vd

) − b(pnh − pnd, vd)

+ b
(
un−1
h − un−1

d , unh, vd
)
+ b
(
un−1
d , unh − und, vd

)
+ b
(
unh − und, qd

)
+G
(
pnh − pnd, qd

)
= 0.

(5.4)

Taking (vd, qd) = 2τ(wn
d
, rn
d
) in (5.4), since a(un

h
−Pdun

h
,wn

d
) = 0, b(un

h
−un

d
, rn
d
)+G(pn

h
−pn

d
, rn
d
) =

0, we deduce

2
(
wn
d,w

n
d

) − 2
(
wn−1
d ,wn

d

)
+ 2τa

(
wn
d,w

n
d

)
= 2
(
un−1
h − pdun−1

h ,wn
d

)

+ 2
(
pdunh − unh,wn

d

)
+ 2τb

(
pnh − ρdpnh,wn

d

)
+ 2τb

(
Pdun−1

h − un−1
h , unh,w

n
d

)

− 2τb
(
wn−1
d , unh,w

n
d

)
+ 2τb

(
un−1
d , Pdunh − unh,wn

d

)
.

(5.5)

Using (2.12)-(2.13), the Hölder inequality and the Young inequality, we see that
∣∣∣(un−1

h − pdun−1
h ,wn

d

)
+
(
pdunh − unh,wn

d

)∣∣∣

≤ C1

(∥∥∥un−1
h − pdun−1

h

∥∥∥2

1
+
∥∥∥unh − pdunh

∥∥∥2

1

)
+
ν

10
‖wd‖2

1,

∣∣∣b(pnh − ρdpnh,wn
d

)∣∣∣ ≤ C4

∥∥∥pnh − ρdpnh
∥∥∥2

0
+
ν

10
∥∥wn

d

∥∥2
1,

∣∣∣b(Pdun−1
h − un−1

h , unh,w
n
d

)∣∣∣ ≤ ν

10
∥∥wn

d

∥∥2
1 + C5

∥∥∥(un−1
h − Pdun−1

h

)∥∥∥2

1
,

∣∣∣b(un−1
d , Pdunh − unh,wn

d

)∣∣∣ ≤ ν

10
∥∥wn

d

∥∥2
1 + C6

∥∥∥unh − Pdunh
∥∥∥2

1
,

∣∣∣−b(wn−1
d , unh,w

n
d

)∣∣∣ ≤ C7

∥∥∥wn−1
d

∥∥∥2

0
+
ν

10
∥∥wn

d

∥∥2
1.

(5.6)
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Noting that a(a − b) = [a2 − b2 + (a − b)2]/2 (for (a ≥ 0 and b ≥ 0)), owing to (5.6), we obtain
that

∥∥wn
d

∥∥2
0 −
∥∥∥wn−1

d

∥∥∥2

0
+ ντ‖wd‖2

1 ≤ C7τ
∥∥∥wn−1

d

∥∥∥2

0

+ Cτ

(∥∥∥(unh − Pdunh
)∥∥∥2

1
+
∥∥∥(un−1

h − Pdun−1
h

)∥∥∥2

1
+
∥∥∥pnh − ρdpnh

∥∥∥2

0

)
.

(5.7)

First, we consider the case of n ∈ {n1, n2, . . . , nL}. Summing (5.7) from n1 to ni, i = 1, 2, . . . , L,
and noting that u0

h − u0
d = 0, using Lemma 4.2, we can derive that

∥∥wni
d

∥∥2
0 + ντ

ni∑
j=n1

∥∥∥wj

d

∥∥∥2

1
≤ CτL

l∑
j=d+1

λj + C7τ
ni−1∑
j=n0

∥∥∥wj

d

∥∥∥2

0
. (5.8)

By using the discrete Gronwall inequality, we obtain that

∥∥wni
d

∥∥2
0 + ντ

ni∑
j=n1

∥∥∥wj

d

∥∥∥2

1
≤ CτL

l∑
j=d+1

λj exp(C7τni). (5.9)

If h and τ are sufficiently small, τ = O(L−2), and noting that niτ ≤ niN ≤ T , we find that

∥∥wni
d

∥∥2
0 + ντ

ni∑
j=n1

∥∥∥wj

d

∥∥∥2

1
≤ Cτ1/2

l∑
j=d+1

λj . (5.10)

Thanks to b(unh − und, rnd) +G(pnh − pnd, rnd) = 0, we obtain

∥∥pnh − pnd
∥∥

0 ≤ C∥∥unh − und
∥∥

1. (5.11)

By combining (5.10)-(5.11) with Lemma 4.2, we obtain the error estimate result (5.2).

Next, we consider the case of n /∈ {1, 2, . . . , L}; we assume that tn ∈ (tni−1, tni) and tn is
the nearest point to tni . u

n
h

and pn
h

are expanded into the Taylor series expansion at point tni .

unh = uni
h
− sτ ∂uh(ξ1)

∂t
, ξ1 ∈ [tni , tn], (5.12)

pnh = pnih − sτ ∂ph(ξ2)
∂t

, ξ2 ∈ [tni , tn], (5.13)



Mathematical Problems in Engineering 13

where s is the number of time steps from tn to tni . If the snapshots are equably taken, then
s ≤N/L. Summing (5.7) from n1 to ni, n, and using (5.12), if |∂uh(ξ1)/∂t| and |∂ph(ξ2)/∂t| are
bounded, by discrete Gronwall inequality and Lemma 4.2 and (3.12), we obtain that

∥∥wn
d

∥∥2
0 + ντ

⎡
⎣∥∥wn

d

∥∥2
1 +

ni∑
j=n1

∥∥∥wj

d

∥∥∥2

1

⎤
⎦ ≤ CτL

l∑
j=d+1

λj + Cτ2. (5.14)

If τ = O(L−2), by (5.14) we obtain that

∥∥wn
d

∥∥2
0 + ντ

⎡
⎣∥∥wn

d

∥∥2
1 +

ni∑
j=n1

∥∥∥wj

d

∥∥∥2

1

⎤
⎦ ≤ Cτ1/2

l∑
j=d+1

λj + Cτ2. (5.15)

Hence, combining (5.11), (5.13), and (5.15) with Lemma 4.2 yields (5.3).

Theorem 5.3. Under hypotheses of Theorems 3.4 and 5.2, the error estimates between the solution
(u(t), p(t)) to Problem (2.1)-(2.2) and the solutions (un

d
, pn

d
) to Problem (4.14) are as follows:

∥∥u(tn) − und
∥∥2

0 + τν
n∑
j=1

∥∥∥uj − ujd
∥∥∥2

1
+ τ

n∑
j=1

∥∥∥pj − pjd
∥∥∥2

0

≤ c
(
h2 + τ2

)
+ Cτ1/2

l∑
j=d+1

λj , n = 1, 2, . . . ,N.

(5.16)

6. Numerical Examples

In order to illustrate and verify the theoretical results of Theorem 5.3, we present the results
obtained in a simple test case. We set Ω is the unit square [0, 1] × [0, 1] and viscosity ν = 0.05.
The velocity and pressure are designed on the same uniform triangulation of Ω. The exact
solution is given by

u =
(
u1
(
x, y
)
, u2
(
x, y
))
, p

(
x, y
)
= 10(2x − 1)

(
2y − 1

)
cos(t),

u1
(
x, y
)
= 10x2(1 − x)2y

(
1 − y)(1 − 2y

)
cos(t),

u2
(
x, y
)
= −10x(1 − x)(1 − 2x)y2(1 − y)2 cos(t),

(6.1)

and f is determined by (2.1).
All the numerical experiments have been performed using the conforming Q1 finite

element for both velocity and pressure. The implicit (backward) Euler’s scheme is used for
the time discretization. For simplicity, the unit square is divided into n×n small squares with
side length h = 1/n. In order to make τ = O(h), we take time step increment as τ = 1/n.

We obtain 20 values (i.e., snapshots) outputting at time t = 10τ, 20τ, 30τ, . . . , 200τ by
solving the SMFE formulation. We use 7 optimal POD bases to obtain the solutions of the
reduced formulation problem (4.14) as t = 200τ . In Table 1, we present the velocity and
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Table 1: Numerical results for the SMFE method.

h−1 ‖u − uh‖1

‖u‖1
uH1 rate

‖p − ph‖0

‖p‖0
pL2 rate CPU time (seconds)

24 0.1443070 — 0.0175033 — 1081
32 0.0973051 1.3699 0.0104506 1.7927 2906
40 0.0752875 1.1497 0.0072136 1.6612 11403
48 0.0619347 1.0708 0.0054000 1.5882 25375
56 0.0510066 1.2593 0.0042171 1.6040 42132
64 0.0437541 1.1486 0.0034805 1.4375 61320

Table 2: Numerical results for the RSMFE method.

h−1 ‖u − ud‖1

‖u‖1
uH1 rate

‖p − pd‖0

‖p‖0
pL2 rate CPU time (seconds)

24 0.1486190 — 0.0174335 — 3
32 0.1069230 1.1446 0.0107643 1.6760 14
40 0.079740 1.3146 0.0071930 1.8066 36
48 0.0637586 1.2268 0.0053759 1.5971 83
56 0.0525842 1.2500 0.0041878 1.6202 152
64 0.0445977 1.2337 0.0034562 1.4379 216

pressure relative error estimates, convergence rates, and CPU times using the SMFE method,
and, in Table 2, we give the corresponding results obtained using the RSMFE method. In
particular, as n = 32, the SMFE solutions (u200

hi
, i = 1, 2)(c), the exact solutions (u200

i , i = 1, 2)
(b), and the RSMFE solutions (u200

di , i = 1, 2) (a) are depicted, respectively, in Figures 1 and 3.
Moreover, the difference (u200

i − u200
di , i = 1, 2) (a) between the exact solutions and the RSMFE

solutions and the difference (u200
hi

−u200
di

, i = 1, 2) (b) between the SMFE solutions and RSMFE
solutions are depicted in Figures 2 and 4, respectively. From Tables 1, 2, and Figures 1–4, we
can find that the RSMFE solutions has the same accuracy as the reduced SMFE solutions and
the exact solutions. As n = 32, for the SMFE Problem (3.8)-(3.9), there are 3 × 32 × 32 = 3072
freedom degrees; the performing time required is 2906 seconds, while the reduced SMFE
Problem (4.14) with 7 POD bases only has 7 freedom degrees and the corresponding time is
only 14 seconds, that is, the required implementing time to solve the usual SMFE Problem
(3.8) is as 207 times as that to do the reduced SMFE problem (4.14) with 7 POD bases, while
the errors between their respective solutions do not exceed 3×10−3. As n = 56, Figure 5 shows
the velocityH1 relative errors between solutions with different number of optimal POD bases
and solutions obtained with full bases at t = 100τ and t = 200τ . It is shown that the reduced
SMFE problem (4.14) is very effective and feasible. In addition, the results obtained for the
numerical examples are consistent with the theoretical ones.

7. Conclusions

In this paper, we have combined the POD techniques with a SMFE formulation based on
two local Gauss’ integrations to derive a reduced SMFE method for the transient Navier-
Stokes equations. The discretization uses a pair of spaces of finite elements P1 − P1 over
triangles or Q1 − Q1 over quadrilateral elements. This SMFE method differs from that in
[45]. It has some prominent features: parameter-free, avoiding higher-order derivatives or
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Figure 1: RSMFE solutions (a), the exact solutions (b), and SMFE solutions (c).
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Figure 2: Difference between the RSMFE solutions and the exact solutions (a) and difference between the
SMFE solutions and the RSMFE solutions (b).
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Figure 3: RSMFE solutions (a), the exact solutions (b), and SMFE solutions (c).
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Figure 4: Difference between the RSMFE solutions and the exact solutions (a) and difference between the
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edge-based data structures, and stabilization being completed locally at the element level.
We have also analyzed the errors between the solutions of their usual SMFE formulation
and the solutions of the reduced SMFE based on POD basis and discussed theoretically the
relation of the number of snapshots and the number of solutions at all time instances, which
have shown that our present method has improved and innovated the existing methods. We
have validated the correctness of our theoretical results with numerical examples. Though
snapshots and the POD basis of our numerical examples are constructed with the solutions
of the usual SMFE formulation, when one computes actual problems, one may structure the
snapshots and the POD basis with interpolation or data assimilation by drawing samples
from experiments, then solve Problem (4.14), while it is unnecessary to solve Problem (3.8).
Thus, the time-consuming calculations and resource demands in the computational process
are greatly saved, and the computational efficiency is vastly improved. Therefore, the method
in this paper holds a good prospect of extensive applications.
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Future research work in this area aims at addressing some practical engineering prob-
lems arising in the fluid dynamics and more complicated PDES, extending the optimizing
reduced SMFE formulation, applying it to a realistic atmosphere quality forecast system,
and to a set of more complicated nonlinear PDES, for instance, 3D realistic model equations
coupling strongly nonlinear properties, nonhomogeneous variable flux, and boundary.
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Several numerical and analytical models have been used to study underwater acoustics problems.
The most accurate and realistic models are usually based on the solution of the wave equation
using a variety of methods. Here, a hybrid numerical-analytical model is proposed to address
the problem of underwater sound scattering by an elastic shell structure, which is assumed
to be circular and that is buried in a fluid seabed bellow a water waveguide. The interior of
the shell is filled with a fluid that may have different properties from the host medium. The
analysis is performed by coupling analytical solutions developed both for sound propagation in
the waveguide and in the vicinity of the circular hollow pipeline. The coupling between solutions is
performed using the method of fundamental solutions. This strategy allows a compact description
of the propagation medium while being very accurate and highly efficient from the computational
point of view.

1. Introduction

The detection of buried objects in solid and fluid media has been an active research topic,
making use of different approaches. Techniques based on wave propagation have received
particular interest from researchers, leading to the development of a broad variety of
analytical and numerical models to simulate this propagation and to an intense research on
the interpretation of field results. In fact, the measurement of spatial and temporal variations,
recorded at hydrophones or geophones, resulting from the generation of waves produced by
dynamic sources, placed inside elastic or acoustic media, is frequently used to infer the pres-
ence of buried structures or the geological configuration of a specific site. Some early reference
works on this topic are due to Claerbout [1] or Griffiths and King [2], addressing the specific
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application of such methods to geophysics; in the case of underwater acoustics, reference
works include the now classic book by Jensen et al. [3], which describes a number of for-
mulations that can be used in both shallow water and deep water scattering problems.

In this paper, the authors focus on the scattering of waves in underwater configura-
tions, for which different methods have been used in the past, ranging from the analytical
methods presented by Pao and Mow [4] for studying wave diffraction near cylindrical cir-
cular inclusions to purely numerical methods, such as finite difference (e.g., Stephens [5] or
Wang [6]) and finite elements techniques (e.g., Marfurt [7] or Zampolli et al. [8]), combined
with transmitting boundaries.

Methods relying on the description of the relevant boundaries of the problem have also
been developed and form a very interesting class for this type of applications. An important
early work on acoustic scattering in the open ocean using the boundary element method is
due to Dawson and Fawcett [9], which analyses a waveguide with flat surfaces, except for
a compact area of deformation, where the acoustic scattering takes place. A hybrid model
which combines the standard boundary element method (BEM) in an inner region with
varying bathimetry and an eigenfunction expansion in the outer region of constant depth
was later proposed by Grilli et al. [10]. Works by Santiago and Wrobel [11] described the
implementation of the subregion technique in boundary element formulation for the analysis
of two-dimensional acoustic wave propagation in a shallow water region with irregular
seabed topography, allowing for the analysis of more general underwater systems. In their
approach, the bottom and surface boundaries of the regions are modeled using Neumann
and Dirichlet conditions, allowing for the use of Green’s functions that satisfy either the free
surface boundary condition or both the boundary conditions on the free surface and rigid
bottom.

The use of specific Green’s functions that account for part of the boundaries of the
analysis domain has been an important strategy when dealing with boundary element meth-
ods, since they may allow for smaller discretization schemes, leading to lower computational
effort, and therefore many researchers have focused their attention in their development. A
relevant example are the works of Tadeu and Kausel [12] and of Tadeu and António [13],
who proposed 2.5D Greens’s functions for acoustic and elastic wave propagation in layered
media, built as a superposition of the effects of plane waves with different inclinations;
these functions have, in fact, been extensively used in subsequent works. António et al. [14]
developed a boundary element formulation incorporating Green’s functions to describe 2.5 D
wave propagation for the case of a waveguide with an elastic bottom and used them to study
the scattering of waves by a buried or submerged object. A recent work by Pereira et al. [15]
described a formulation based on the BEM which allows simulating the scattering of sound
in an underwater configuration including a fluid seabed with multiple layers and a bottom
discontinuity.

Recently, meshless methods have also been used for the study of underwater sound
scattering in different types of environments. Different meshless methods are described in
the literature, including Meshless-Local-Petrov-Galerkin (MLPG) methods (see, e.g., Atluri
[16]), RBF collocation methods (see, e.g., Kansa [17, 18]), or the method of fundamental
solutions (MFS) (e.g., Golberg and Chen [19]). Examples of the application of these strategies
to underwater acoustics can be found in recent works by Godinho et al. [20], using RBF base
local interpolation methods formulated in the time domain, or by Costa et al. [21], making
use of the MFS together with the fundamental solutions for a flat waveguide and for a perfect
wedge.
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The scattering by a submerged object located within a fluid medium has also been
investigated by researchers, and works describing the scattering features of submerged
circular cylindrical elastic shell structures have also been published. The wave scattering
by submerged elastic circular cylindrical shells, filled with air, struck by plane harmonic
acoustic waves was analyzed by Veksler et al. [22]. In that work, the standard resonance
scattering theory was used to study the modal resonances, focusing on the generation of
bending waves. More recently, Godinho et al. [23] described an analytical solution for the
scattering of such structures buried in a homogeneous fluid medium. Later, the same authors
[24] used a BEM formulation to analyze the effect of a construction defect in the vibration
of such structures. However, it is important to note that this BEM formulation degenerates
whenever the thickness of the structure is very small, and therefore, alternative methods
should be used.

In the present work, the authors address the case in which a regular circular shell
structure is buried within a fluid seabed under a water-filled flat waveguide. The approach
proposed here is based on a hybrid approach which incorporates the analytical solutions
described in [23] for the submerged circular shell structures, together with the analytical
solution known for a waveguide with a fluid bottom (using the methodology proposed in
[13]). The coupling of these solutions is performed in the fluid medium that describes the
bottom by using the MFS and defining a virtual coupling boundary around the shell struc-
ture, along which the continuity of pressures and normal displacements is imposed. This
formulation can easily incorporate multiple scattering objects, with different properties,
although they are restricted to have a circular shape. More importantly, the method allows
accounting for the full solid-fluid and fluid-fluid interaction that occurs at the physical in-
terfaces of the system in an accurate manner, leading to precise results, since it is based
on analytical solutions of each individual problem. Additionally, since it uses the analytical
solution for a submerged circular shell, it allows modeling thin structures, overcoming the
difficulties identified above for the BEM.

The paper is structured as follows: first, the governing equations of the problem are
described in the frequency domain; then, the frequency domain multiregion MFS strategy
for the coupling of the waveguide with the solid shells is formulated; there follows a
description of the analytical solutions to be used for the submerged shell structures and for
the waveguide with a fluid bottom; then, the proposed model is verified against BEM models;
a procedure for obtaining time responses from the computed frequency-domain results is
then described; finally, a numerical simulation is presented, illustrating the applicability of
the model to a realistic configuration.

2. Governing PDEs

Within the scope of this work, the 2D scattering of waves by cylindrical shell structures
embedded within a fluid medium is analyzed. Thus, the governing equations of the problem
correspond to the vectorial and scalar wave equations, respectively, for the solid and for the
fluid regions of the analysis domain.

Considering a homogeneous, linear isotropic elastic domain with mass density ρs,
shear wave velocity βs, and compressional wave velocity αs, the propagation of elastic waves
can be described by vectorial wave equation

α2
s

(∇∇ · u) − β2
s∇ × ∇ × u = −ω2 u, (2.1)
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where the vector u represents the displacement, ω is the circular frequency, and, for a two-
dimensional problem, ∇ = (∂/∂x)̂i + (∂/∂y)̂j; î and ĵ are the unit vectors along the x and y
directions.

If the propagation medium is a fluid, with mass density ρf , the propagation is gov-
erned by the Helmholtz equation, which can be written as

∇2p + kf
2p = 0, (2.2)

where p is the pressure and kf = ω/αf is the wave number, with αf being the speed of sound
in the fluid medium; for this scalar equation, ∇2 = (∂2/∂x2) + (∂2/∂y2). Within this fluid
medium, the displacements can be defined as a function of the first spatial derivative of p,
and are given by

ux = − 1
ρfω2

∂p

∂x
,

uy = − 1
ρfω2

∂p

∂y
.

(2.3)

3. Formulation of the Hybrid Numerical-Analytical Model

Consider a fluid waveguide, with a fluid bottom simulating a sedimentary seabed. Within
this seabed, consider the presence of an arbitrary number of circular, shell structures, made of
elastic materials, and filled with a fluid material. This configuration is depicted in Figure 1(a).

A hybrid analytical-numerical model based on the method of fundamental solutions
(MFS) is proposed in this paper to calculate the pressure field within the waveguide gener-
ated by an acoustic source in the presence of such configurations. For this purpose, consider
that in the presence of NR shell structures, the problem is divided in NR+1 subregions, one
of them being the outer region, incorporating both the waveguide and the fluid bottom, and
each of the NR subregions is defined around the shell structure, as represented in Figure 1(b).

If the fundamental solutions are known for each of the defined subregions, it becomes
possible to establish a coupled model, which accounts for the full interaction between the
involved fluids and the solids that compose the shell structures, by just establishing the
continuity of pressures and displacements along the boundaries connecting the subregions.
Using the MFS, the acoustic field in the outer subregion, containing the waveguide, can be
defined by considering a number of virtual sources,

∑NR
j=1NVSj placed within the remaining

subregions, and combining their effects in a linear manner as

p(x) =
NR∑
j=1

NVSj∑
l=1

aj,lG
waveguide

(
x, xvsj,l

)
+Gwaveguide(x, x0), (3.1a)
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Figure 1: (a) Schematic representation of the problem to be solved; (b) Detail of the interface around one
of the shell structures, indicating the distribution of virtual sources and the coupling boundary interface.

while for a receiver placed within fluid of the jth inner subregion, we have

p(x) =
NVSj∑
l=1

aj,lG
shell
(
x, xvsj,l

)
, (3.1b)

where x represents a point of coordinates (x, y), x0 is the position of the real source
illuminating the system, xvs

j,l
is the position of each of the NVSj virtual sources placed

within subregion j, Gwaveguide(x, x0) is the fundamental solution for the waveguide with
fluid bottom at a point x originated by a source positioned at x0; Gshell(x, x0) is the
fundamental solution for each interior subregion, incorporating the full interaction between
the shell structures and the outer and inner fluids; the coefficients aj,l are, “a-priori”,
unknown and must be determined by establishing a system of equations, enforcing the
continuity of pressures and displacements along each of the NR boundaries separating the
outer subregion from each internal subregion. Assuming that the boundary conditions are
enforced at NVSj collocation points along the kth boundary (as illustrated in Figure 1(b)),
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the continuity equations along the mth collocation point xc,km of that boundary can be writ-
ten as

NR∑
j=1

NVSj∑
l=1

aj,lG
waveguide

(
xc,km , xvsj,l

)
+Gwaveguide

(
xc,km , x0

)
=

NVSk∑
l=1

bk,lG
shell
(
xc,km , xvs shell

k,l

)
,

NR∑
j=1

NVSj∑
l=1

aj,l
∂

∂�n
Gwaveguide

(
xc,km , xvsj,l

)
+

∂

∂�n
Gwaveguide

(
xc,km , x0

)

=
NVSk∑
l=1

bk,l
∂

∂�n
Gshell

(
xc,km , xvsshell

k,l

)
,

(3.2)

where the coefficients bk,l are, “a-priori”, unknown amplitudes of the fundamental solution
for the region containing the shell structure.

AN×N linear system of equations, withN = 2×∑NR
j=1NVSj , can then be built. Once this

system of equations is solved, one may obtain the pressure at any internal point by applying
equations (3.1a) and (3.1b).

An important point that should be highlighted concerning this formulation is that
the coupling between subregions is enforced in fluid-fluid interfaces at some distance from
the interfaces with the solid media that constitutes the shell structures. This strategy allows
the coupling to be performed in a region with smooth variations of the pressure, which
greatly improves the performance of the MFS. Additionally, since the interface between
subregions is virtual, it can assume a smooth shape, such as that of a circle, which has
been demonstrated in previous works that leads to very accurate results [25]. Finally, if the
fundamental solutions are computed analytically within each subregion, a further step can
be given towards obtaining high accuracy. In what follows, these fundamental solutions are
described.

3.1. Analytical Solution for a Fluid Waveguide with a Fluid Bottom

Green’s function for a flat fluid waveguide bounded bellow by a fluid halfspace (simulating
a seabed) and above by a free surface can be obtained using the definition of displacement
potentials, using the decomposition of the wavefield in terms of plane waves. These solutions
are known for layered systems and can be derived following the methodology presented by
Tadeu et al. [12, 13]. In this technique, the solutions can be expressed as the sum of the source
terms equal to those in full space and of surface terms generated at the free surface and at
the interface between the waveguide and the fluid halfspace. The calculation of the surface
terms requires knowledge of the potentials’ amplitudes. For the definition of these functions,
consider the geometry depicted in Figure 2.

For an infinite fluid space the wavefield produced by a linear pressure load is here
defined by a pressure potential as a superposition of plane waves by means of a discrete
wavenumber representation, obtained by applying a Fourier transform along the x direction.
The integrals of the expressions are transformed into a summation, by assuming an infinite
number of virtual plane sources distributed along the x direction, at equal intervals, Lx. To
avoid the influence of neighboring fictitious sources in the response, complex frequencies of
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Figure 2: System with a fluid waveguide over a fluid seabed.

the form ωc = ω − i × ξ are used here following the methodology described, for example, in
[13]. This procedure allows to obtain the following pressure potential:

φfull = − i
2Lx

(
− 1
ρf1ω2

)
n=+N∑
n=−N

[
Ef1

ν
f1
n

]
Ed, (3.3)

where Ef1 = e−iνf1
n
|y−y0|

, Ed = e−ikn(x−x0), and ν
f1
n =

√
k2
α1 − k2

n with Im(νf1
n ) ≤ 0, kα1 = ω/αf1.

By adequate derivation of this potential, one obtains Green’s function at point x for a infinite
homogeneous fluid medium, when a pressure load is applied at x0, with coordinates (x0, y0),
as follows:

Gfull(x, x0) = − i
2Lx

n=+N∑
n=−N

(
Ef1

ν
f1
n

)
Ed = − i

4
H0(kα1r), (3.4)

where r =
√
(x − x0)

2 + (y − y0)
2 and Hn(· · · ) represent Hankel functions of the second kind

and order n.
The scattered wavefield in the waveguide can be defined in a similar way, by means

of two displacement potentials, one representing the contribution of the top free surface (φ1)
and the other related to the interface with the bottom halfspace (φ2). These potentials are
written as

φ1 = − i
2Lx

(
− 1
ρf1ω2

)
n=+N∑
n=−N

⎡
⎣E

1
f1

ν
f1
n

B1
n

⎤
⎦Ed,

φ2 = − i
2Lx

(
− 1
ρf1ω2

)
n=+N∑
n=−N

⎡
⎣E

2
f1

ν
f1
n

B2
n

⎤
⎦Ed,

(3.5)

with E1
f
= e−iνf1

n
|y−H|

and E2
f
= e−iνf1

n
|y|

.
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To define the wavefield in the bottom halfspace, an additional potential must be de-
fined in a similar manner, and is given by

φ3 = − i
2Lx

(
− 1
ρf2ω2

)
n=+N∑
n=−N

⎡
⎣E

2
f2

ν
f2
n

B3
n

⎤
⎦Ed, (3.6)

with E3
f
= e−iνf2

n
|y|

, νf2
n =

√
k2
α2 − k2

n with Im(νf2
n ) ≤ 0, kα2 = ω/αf2.

In these expressions B1
n, B2

n, and B3
n are unknown coefficients to be determined after

solving a system of equations, built so that the field, produced simultaneously by the source
and the surface terms, should give the appropriate boundary conditions at the interfaces.
The imposition of null pressure at the free surface, and of continuity of pressure and normal
displacements at the fluid-fluid interface for each value of n, yields a system of three
equations in the three unknowns (see the appendix). Once the unknown coefficients have
been calculated, the scattered pressure associated with the surface terms can be obtained.
Green’s functions for the fluid layer are then given by the sum of the source terms and the
surface terms originated in both interfaces.

If a source acts in the top fluid (waveguide), this leads to the following expressions for
the pressure field in the system:

Gwaveguide(x, x0) = Gfull(x, x0) − i
2Lx

n=+N∑
n=−N

⎛
⎝ E1

f

ν
f1
n

B1
n +

E2
f

ν
f1
n

B2
n

⎞
⎠Ed, if y > 0,

Gwaveguide(x, x0) = − i
2Lx

n=+N∑
n=−N

⎛
⎝ E3

f

ν
f2
n

B3
n

⎞
⎠Ed, if y ≤ 0.

(3.7)

If the source is positioned in the seabed, a similar procedure can be used, including the
source term in the pressure field of the bottom halfspace. From these equations, it becomes
straightforward to apply (2.3) in order to obtain the displacements at any field point.

3.2. Analytical Solution for a Circular Cylindrical Shell Embedded in
a Fluid Medium

Consider a circular shell solid structure, defined by the internal and external radii rA and
rB, respectively, and submerged in a homogenous fluid medium, as illustrated in Figure 3. A
harmonic dilatational source, placed in the exterior fluid medium, is assumed to illuminate
the system, generating waves that hit the surface of the submerged structure. Part of the
incident energy is then reflected back to the exterior fluid medium, with the rest being
transmitted into the solid material, where they propagate as body and guided waves. These
waves continue to propagate and may eventually hit the inner surface of the structure, where
similar phenomena occur.

The wavefield generated in the exterior fluid medium (Fluid 2) depends both on the
incident pressure waves and on those coming from the external surface of the shell. The
latter propagate away from the cylindrical shell and can be defined using the following
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Figure 3: Circular cylindrical shell structure submerged in a fluid medium.

displacement potential when a cylindrical coordinate system is centered on the axis of the
circular cylindrical shell,

ϕ̂1 = − 1
ρf2ω2

∞∑
n=0

A1
nHn(kα2r) cos(nθ), (3.8)

Inside the solid material of the shell, two distinct groups of waves exist, corresponding
to inward travelling waves, generated at the external surface, and to outward travelling
waves, generated at the internal surface of the shell. Each of these groups of waves can be
represented using one dilatational and one shear potential

ϕ̂2 =
∞∑
n=0

A2
nJn(kαsr) cos(nθ); ψ̂2 =

∞∑
n=0

A3
nJn
(
kβsr
)

sin(nθ),

ϕ̂3 =
∞∑
n=0

A4
nHn(kαsr) cos(nθ); ψ̂3 =

∞∑
n=0

A5
nHn

(
kβsr
)

sin(nθ),

(3.9)

where kαs = ω/αs, kβs = ω/βs, and αs and βs are, respectively, the dilatational and shear
wave velocities permitted in the solid material Jn(· · · ) correspond to Bessel functions of the
first kind and order n.

In the fluid that fills the shell structure (Fluid 3), only inward propagating waves are
generated. For this case, the relevant dilatational potential is given by

ϕ̂4 = − 1
ρf3ω2

∞∑
n=0

A6
nJn(kα3r) cos(nθ), (3.10)

where kα3 = ω/αf3 and αf3 is the pressure wave velocity in the inner fluid. The terms Aj
n (j =

1, 6) for each potential of (3.8), (3.9), and (3.10) are unknown coefficients to be determined by
imposing the required boundary conditions. For this case, the necessary boundary conditions
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are the continuity of normal displacements and stresses, and null tangential stresses on the
two solid-fluid interfaces.

Consider, now, that the incident field, in terms of displacement potential, generated by
the acoustic source located at (x0, y0) can be defined at a point (x, y) as

ϕ̂inc = − i
4

(
− 1
ρf2ω2

)
H0

(
kα2

√
(x − x0)2 +

(
y − y0

)2
)
. (3.11)

In order to establish the appropriate equation system, this incident field must also be
expressed in terms of waves centered on the axis of the circular cylindrical shell structure.
This can be achieved with the aid of Graf’s addition theorem, leading to the expression (in
cylindrical coordinates)

ϕ̂inc = − i
4

(
− 1
ρf2ω2

) ∞∑
n=0

(−1)nεnHn(kα2r0)Jn(kα2r) cos(nθ), (3.12)

where r0 is the distance from the source to the axis of the circular cylindrical shell and εn is 1
if n = 0 and 2 in the remaining cases.

The solution of the equation system can then be used to compute the stresses in the
solid medium as a summation of solutions obtained for pairs of values of n and kz. The final
equation system can be found in published works, namely, [23, 24].

After the solution of the corresponding equation system is computed, the unknown
values Aj

n (j = 1, 6) can be used to determine the final wavefields. For the outer fluid, the
pressure field at a point (x, y) can be written as

Gshell(x, x0) = − i
4
H0

(
kα2

√
(x − x0)2 +

(
y − y0

)2
)
+

N∑
n=0

A1
n
Hn(kα2r) cos(nθ). (3.13)

The corresponding displacement field can then be easily determined by applying (2.3).

4. Calculation of Responses in the Time Domain

The pressure field in the spatial-temporal domain is obtained by modeling a Ricker wavelet,
whose Fourier transform is

U(ω) = A
[
2π1/2toe−iωts

]
Ω2e−Ω

2
, (4.1)

in which Ω = ωto/2, A is the amplitude, ts is the time when the maximum occurs, and πto is
the characteristic (dominant) period of the wavelet.

This wavelet form has been chosen, because it decays rapidly, both in time and
frequency, reducing computational effort and allowing easier interpretation of the computed
time series and synthetic waveforms.

The analysis uses complex frequencies, where ωc = ω − iζ, with ζ = 0.7Δω, which
further reduces the influence of the neighboring fictitious sources and avoids the aliasing
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phenomena. In the time domain, this shift is later taken into account by applying an expo-
nential window eξt to the response [26].

5. Model Verification

To verify the proposed coupling strategy, its results were compared with those obtained using
alternative methodologies for a number of situations. Since no analytical solution is known
for the complete problem to be solved here, this verification was performed against other
numerical methods, namely, the boundary element method (BEM). In what follows, two
verification examples are described for specific cases, and a brief note on the stability of the
procedure is presented.

5.1. Verification Example 1: A Circular Shell in an Halfspace Fluid Medium

In a first verification example, consider the case of an acoustic water halfspace, allowing a
propagation velocity of 1500 m/s, and exhibiting a density of 1000 kg/m3, hosting a circular
shell structure, made of an elastic material with a density of 1400 kg/m3, and allowing prop-
agation velocities for the P and S waves of 2182.2 m/s and of 1336.6 m/s, respectively. This
structure has an external radius of 1.5 m and an internal radius of 0.75 m, is filled with water,
and is positioned with its centre at coordinates x = 3.0 m and y = −4.0 m. An acoustic source,
located at x = 0.0 m and y = 5.0 m, illuminates this system, as illustrated in Figure 4(a).

The described configuration has been modeled using two different approaches. In the
first, the proposed coupling strategy, making use of the fundamental solutions described
above, is used. To allow the use of the fundamental solution for a waveguide over a fluid
seabed, a virtual interface is considered at y = 0.0 m, and the same properties are ascribed to
the waveguide and to the fluid bottom. A virtual circular interface is also considered around
the shell structure, with a radius of 1.6 m, in order to allow coupling the two fundamental
solutions. 80 collocation points are placed along this boundary, and two sets of 80 virtual
sources are positioned as described in Section 3, at a distance of 0.5 m from the interface. The
second model makes use of the boundary element method, as described in [24], and a total
of 240 elements is used to discretize the structure (160 for the outer boundary and 80 for the
inner boundary). To account for the free surface of the halfspace, proper Green’s functions
are used for the outer medium. These functions are defined making use of the image source
technique, where a single source is placed symmetrically to the real source with respect to the
free surface, and with inverted polarity.

In both cases, the response is computed at a receiver positioned at x = 6.0 m and y =
−3.0 m, for frequencies ranging from 20 Hz to 2500 Hz, with an increment of 20 Hz. Complex
frequencies defined as, ωc = ω − i × 0.7 ×Δω are used in the calculation.

The results computed making use of both methods are depicted in Figure 4(b). As can
be seen in this figure, the two sets of results match perfectly along the full set of frequencies
analyzed.

5.2. Verification Example 2: Two Rigid Circular Inclusions Buried in a Fluid
Seabed under a Fluid Waveguide

A second verification example has been analysed in order to assess the correctness of the
results in the presence of more than two buried inclusions, positioned within a seabed with
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Figure 4: (a) Schematic representation of the first verification example. (b) Responses provided by the BEM
and by the proposed coupled numerical-analytical model.

different properties from the waveguide. For this test, consider the case of an acoustic water
waveguide (medium properties are given in the previous section), with a depth of 20.0 m;
bellow this waveguide, a fluid seabed is considered, allowing sound to travel at 2100 m/s,
and exhibiting a density of 1800 kg/m3. Within the seabed, two circular rigid inclusions, with
a radius of 0.5 m, are modeled. These inclusions are positioned at x = 3.0 m and y = −4.0 m
and at x = 6.0 m and y = −4.0 m. An acoustic source, located at x = 0.0 m and y = 5.0 m,
illuminates this system, as illustrated in Figure 5(a).

The described configuration has been modeled using two different approaches. Once
again, the first corresponds to the proposed coupling strategy. Two virtual circular interfaces
are considered around the circular inclusions, with a radius of 0.75 m, in order to allow
coupling the fundamental solutions for the inner and outer domains. One should note that in
this case, the fundamental solution for the case of a rigid inclusion can easily be obtained from
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Figure 5: (a) Schematic representation of the second verification example. (b) Results provided by the BEM
and by the proposed coupled numerical-analytical model.

Section 3.2, just considering the potential corresponding to the outer fluid and imposing the
necessary null normal displacements at the outer interface. 30 collocation points are placed
along this virtual interface, and two sets of 30 virtual sources are positioned as described in
Section 3, at a distance of 0.5 m from the interface. In a second model, the boundary element
method is used, discretizing each of the two inclusions using 30 elements and the interface
between the waveguide and the seabed using 950 elements. In order to limit the number of
boundary elements used to discretize this interface, complex frequencies with an imaginary
part are used (ζ = 0.7(2π/T)). This considerably attenuates the contribution of the responses
from the boundary elements placed at L = 2αfT , reducing the length of the interface to be
discretized (see, e.g., [15]). In our calculations a value of T = 0.05 s and L = 210 m were
used to define this discretization. The free surface of the halfspace is accounted using Green’s
functions defined by the image source technique.

In both cases, the response is computed at a receiver positioned at x = 6.0 m and
y = −3.0 m, for frequencies ranging from 20 Hz to 1000 Hz, with an increment of 20 Hz. As
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Figure 6: Schematic representation of the system with two buried shell structures.

Table 1: Response at the field point (x = 5 m; y = −2 m) when 30 collocation points are used and for
different positions of the virtual sources.

D/R Real part Imaginary part
0.05 −0.0264173 0.0279363
0.10 −0.0391006 0.0249389
0.20 −0.0393479 0.0235543
0.30 −0.0392936 0.0235595
0.40 −0.0392874 0.0235757
0.50 −0.0392888 0.0235806
0.60 −0.0392900 0.0235815

in the previous case, the results calculated making use of the two strategies are displayed in
Figure 5(b). Again, the results match perfectly along the full set of frequencies analyzed here.

5.3. Behavior of the Coupled Model in the Presence of Two Circular Shell
Structures Buried in a Fluid Seabed

An additional study was performed to better understand the behavior of the proposed model
concerning the variability of its results with the number of collocation points and with the
position of the virtual sources. For this purpose, consider the example illustrated in Figure 6,
in which two buried elastic shell structures are embedded within a seabed with different
properties from the waveguide. The properties of the acoustic water waveguide, 20.0 m deep,
and of the fluid seabed are similar to those used in verification example described in the
Section 5.2. The two circular structures have an external radius of 1.0 m and an internal radius
of 0.5 m and are positioned at x = 3.0 m and y = −4.0 m and at x = 6.0 m and y = −4.0 m. The
elastic properties of the shell structure are defined in Section 5.1. To couple the waveguide
with the two structures, two virtual interfaces with a radius of 1.2 m are defined.

The response has been calculated for a frequency of 2000 Hz, at a receiver placed at
x = 5.0 m and y = −2.0 m, using different numbers of collocation points and positioning the
virtual sources at different distances from the virtual interfaces between the shell regions and
the waveguide region.

Table 1 presents the results at that receiver calculated for 30 collocation points when
the distance between the virtual sources and the interface (D) assumes different values. In
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Table 2: Response at the field point (x = 5 m; y = −2 m) when different numbers of collocation points
are used and the distance from the virtual sources to the interface is 0.4 times the radius of the fictitious
interface.

N Real part Imaginary part
10 −0.0124778 0.0189048
20 −0.0389532 0.0231320
30 −0.0392874 0.0235757
40 −0.0392905 0.0235811
50 −0.0392906 0.0235813
60 −0.0392906 0.0235813
70 −0.0392906 0.0235813

H= 20m

4m

6m

Source(−10; 2)

y

x

Shell structures
with rB = 1m
and rA = 0.95m

4m

ρf2

αf2

ρf1 = 1000 kg/m3

αf1 = 1500m/s

Figure 7: Geometry defined for the numerical applications.

that table, the relation D/R is used to define the distance as a function of the radius of the
coupling interface (R). As can be observed in that table, the response is stable as long as the
virtual sources are not very close to the interface. In fact, for that case, a singularity of the
fundamental solution occurs very close to the boundary, degrading the quality of the result.
When D/R is 0.3 or larger, the variation of the response is very small and indicates a good
behavior of the coupling strategy.

Table 2 presents the results computed when D/R = 0.4, and for varying numbers of
collocation points. Here, the response can be seen to stabilize above 30 collocation points,
corresponding to a relation between the wavelength and the distance between collocation
points of just 5. This relation is relatively small when compared with those required for BEM
discretizations (around 7 to 8).

6. Numerical Application

In order to illustrate the applicability of the proposed numerical approach, consider now a
fluid waveguide, 20.0 m deep, with a sedimentary seabed, as displayed in Figure 7. Assume
that the fluid inside the waveguide is water, with a density ρf1 = 1000.0 kg/m3 and allowing
a dilatational wave velocity αf1 = 1500.0 m/s. The sedimentary seabed is first modeled with a
density ρf2 = 1800.0 kg/m3 and permits the propagation of dilatational waves with a velocity
αf2 = 2100.0 m/s. A second scenario is also considered, in which the seabed assumes a density
ρf2 = 1500.0 kg/m3 and allows a sound velocity of αf2 = 1600.0 m/s, which corresponds to
approaching the properties of the seabed to those of the fluid medium.
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Within the seabed, consider the presence of two similar circular shell structures with
external and internal radii rB = 1.0 m and rA = 0.95 m, respectively, made of an elastic material
with density ρs = 7850.0 kg/m3, and allowing a dilatational wave velocity αs = 6009.0 m/s
and a shear wave velocity βs = 3212.0 m/s; these structures are filled with a fluid material
with the same properties as water. The described scenario is excited by a cylindrical pressure
source placed near the bottom of the waveguide at x = −10.0 m and y = 2.0 m.

To simulate this problem, two virtual circular interfaces with a radius of 1.2 m are
defined to account for the two subdomains containing the buried structures. Each of those
interfaces is defined using 35 collocation points, and two sets of virtual sources are positioned
at a distance of 0.4 times the radius of the virtual interface.

Calculations are then performed over a frequency range between 20.0 Hz and
2560.0 Hz, assuming a frequency step of 20.0 Hz; for the purpose of calculating time
responses, the defined increment allows a total analysis time of T = 50.0 ms. Time domain
signals are computed by means of an inverse Fourier transform, using the methodology
described earlier.

The pressure field in the waveguide was computed over a grid of receivers, equally
spaced at Δx = 0.5 m, Δy = 0.5 m, placed between x = 0.0 m and x = 25.0 m and y = 0.0 m
and y = 20.0 m. A sequence of snapshots displaying the pressure wave field over the grid
of receivers, at different instants, is presented to illustrate the results. Figure 8 displays
snapshots of the pressure response, for different time instants, over the grid of receivers
placed in the waveguide, generated by a source emitting a Ricker pulse with a characteristic
frequency fk = 400 Hz. A grayscale is used to represent the amplitudes of the waves arriving
at the receivers, with lighter colors corresponding to higher values and darker colors rep-
resenting lower values. These responses were computed assuming the waveguide with a
sedimentary seabed which allows the propagation of dilatational waves with a velocity
αf2 = 2100.0 m/s without shell structures buried.

At time t = 0.0 ms, the load creates a cylindrical pressure wave that propagates away
from it. In the snapshot of Figure 8(a), corresponding to t = 14.6 ms, this incident pulse is
visible (identified as P1), followed by a first reflection from the bottom of the waveguide
(identified as P2). At receivers placed near the ground, a third reflection may also be
identified, which is related to the head wave generated in the surface of the seabed (identified
as P3). This wave is originated at the interface between the two media and travels along this
interface with the velocity of the faster medium, which is the seabed, with αf2 = 2100.0 m/s;
therefore, it appears in the plot at receivers placed farther from the source. As time increases,
it is possible to identify the reflections generated at the free surface (identified as P4), with
inverted polarity (see Figure 8(b)). For subsequent instants, a sequence of pulses originated
by multiple reflections in the surface and bottom of the waveguide can be identified (see
Figures 8(c) and 8(d)). These reflections tend to lose energy as time increases, with part of
the energy being transmitted to the seabed, and a stationary field is generated inside the
waveguide by these waves, which travel up and down between the surfaces of the channel
and tend to become flat as time increases.

When the two shell structures are buried in the seabed a different wave pattern
inside the waveguide may be created. In order to assess the presence of these structures
under different conditions, snapshots of the sound propagation within the waveguide were
captured for two different sets of properties of the seabed: αf2 = 2100.0 m/s (see first column
of Figure 9) and αf2 = 1600.0 m/s (see second column of Figure 9), respectively. When the
seabed allows a velocity αf2 = 2100.0 m/s (see first column of Figure 9), a set of additional
pulses appear in the response (labeled as Pshell), which refer to reflections originated by
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Figure 8: Snapshots displaying the pressure wave field over the grid of receivers at different instants, in
the waveguide assuming the seabed with αf2 = 2100.0 m/s, without the shell structures: (a) t = 14.6 ms;
(b) t = 24.4 ms; (c) t = 34.2 ms; (d) t = 39.1 ms.

the presence of the shell structures. These reflections can further be identified in the snapshots
corresponding to subsequent instants (see Figures 9(b1)–9(d1)) although displaying smaller
amplitudes, due to the contrast between media, which tends to hinder energy exchanges. As
expected, when the seabed assumes a dilatational wave velocity which approaches that of the
fluid in the waveguide (see plots provided in the second column of Figure 9), the amplitudes
of the scattered pulses provided by the shell structures are increased, providing a clear
perception of their presence. For later instants, the responses display multiple pulses, related
not only to reflections of waves generated in the waveguide, but also to several reflections
originated at the shell structures, at the top and at the bottom of the waveguide. It is also
interesting to note that for both cases, the reflection pattern originated at the buried structures
is quite complex, revealing multiple reverberation effects that occur not only between the
structures and the sea bottom, but also within the structures themselves and within the fluid
that fills their interior.

With the aim of understanding how the properties of the fluid inside the shell struc-
tures may influence the responses, the time domain response, originated by a source emitting
a Ricker pulse with a characteristic frequency fk = 800 Hz, has been calculated along a line
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Figure 9: Snapshots displaying the pressure wave field over the grid of receivers placed in the waveguide
with a seabed, where shell structures are buried: (a) t = 14.6 ms; (b) t = 24.4 ms; (c) t = 34.2 ms; (d)
t = 39.1 ms.

of receivers placed at y = 0.5 m and between x = 0.0 m and x = 25.0 m (see Figure 10). Three
different cases were analyzed with this purpose: in the first case, the structure is filled with a
fluid with the properties of the water; in a second case, the filling fluid is air (ρf3 = 1.22 kg/m3

and αf3 = 340.0 m/s), simulating empty structures; in a third case, rigid inclusions are
modeled. A first set of simulations was performed for a seabed allowing an acoustic wave



Mathematical Problems in Engineering 19

P1

P2
P3

P4

0

5

10

15

20

25

x
(m

)

0.01 0.02 0.03 0.04 0.05

Time (s)

(a)

P shell

0

5

10

15

20

25

x
(m

)

0.01 0.02 0.03 0.04 0.05

Time (s)

(b)

0

5

10

15

20

25

x
(m

)

0.01 0.02 0.03 0.04 0.05

Time (s)

(c)

0

5

10

15

20

25

x
(m

)

0.01 0.02 0.03 0.04 0.05

Time (s)

(d)

Figure 10: Time domain responses captured along a line of receivers placed at y = 0.50 m, assuming the
waveguide with a seabed allowing a dilatational wave velocity of αf2 = 2100.0 m/s: (a) without any
shell structures; (b) with the two buried shell structures, filled with water; (c) with the two buried shell
structures, filled with air; (d) with two buried rigid inclusions.

velocity of αf2 = 2100.0 m/s. Responses computed for the waveguide without the buried
structures are displayed in Figure 10(a) as a reference. In that first plot, the initial reflections
occurring between the free surface and the fluid-fluid interface can clearly be identified, with
a 180◦ phase change occurring when the incident pulse is reflected at the free surface (P2
and P4). The so-called “head wave” can also be identified in this plot (P3), travelling at
2100 m/s along the interface. When water-filled shell structures are introduced (Figure 10(b))
a clear identification of a sequence of scattered pulses originated by these structures is
also possible. Interestingly, this sequence allows identifying a reverberation effect in which
multiple reflections are occurring within the structure, both on the solid shell and on the
filling fluid. This effect is even clearer in the second series of pulses, originated when the
pulses coming from the free surface hit the buried structure. In fact, as the incident pulse hits
the interface at an almost tangent angle, it is mainly reflected back to the waveguide, and
very little energy penetrates the seabed; this no longer occurs for the second set of pulses,
which reach this surface at larger angles, and thus allow more energy to be transmitted to the
bottom. Some differences are visible when the shell structure is filled with air, for which case
the scattered pulses are captured at these receivers with smaller amplitudes; in fact, the high
contrast between the solid and the interior fluid (air), makes the energy exchanges among



20 Mathematical Problems in Engineering

0

5

10

15

20

25

x
(m

)

0.01 0.02 0.03 0.04 0.05

Time (s)

(a)

0

5

10

15

20

25

x
(m

)

0.01 0.02 0.03 0.04 0.05

Time (s)

(b)

Figure 11: Time domain responses, captured along a line of receivers placed at y = 0.5 m, assuming the
waveguide with a seabed, allowing a dilatational wave velocity of αf2 = 1600.0 m/s and with (a) the shell
structures filled with water and (b) the shell structures filled with air.

materials more difficult to happen. As a consequence, energy tends to dissipate faster, as
time increases, and thus reduces significantly the reverberation effect. In the reference result
of Figure 10(d), considering the external boundary of the inclusions to be rigid, no energy
propagates to the interior of the shell, and, as a result, the response reveals fewer pulses
coming from the buried structures. These results clearly show the importance of accurately
modeling both the solid of the shell and the fluid in its interior and show that the commonly
used approximation of assuming a rigid behavior of the structures neglects important parts
of the propagation phenomena.

To emphasize these findings, two further plots are presented in Figure 11, considering
the water-filled and air-filled structures buried in a seabed which allows a propagation
velocity of 1600 m/s. In Figures 11(a) and 11(b), plots are presented illustrating the time
responses for water-filled shells and air-filled shells. For these cases, the difference between
the scattering patterns is significantly increased, due to the smaller contrast between the
waveguide and the seabed. The reverberation effect is now very clear in the case of water-
filled shells, with rings of pulses being generated due to multiple reflections within the
structure and filling fluid. This effect is much less pronounced when the structure is filled
with air. One additional feature of this response corresponds to the presence of two distinct
sets of pulses, originated at each of the two inclusions; the first arrival of each set occurs
approximately at the receivers placed immediately above the buried structure and allows an
identification of the presence of the two separate shells.

7. Conclusions

In this paper, the coupling between different analytical solutions using the MFS is proposed
to address the problem of scattering of acoustic waves in a waveguide in the presence of
buried structures. The scattering structure is assumed to be buried in the fluid seabed bellow
a water waveguide and is a circular elastic shell filled with a fluid that may have different
properties from the host medium. The proposed strategy was formulated and implemented
and was shown to provide good results when compared with alternative numerical modeling
techniques. Since it performs the coupling between closed-form solutions, the method pro-
vides accurate results, while allowing a compact and simple model description. One major
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advantage of the proposed model is that it allows the simulation of very thin solid structures,
without the problems usually associated with thin bodies when using alternative methods.
A number of applications were presented, revealing that taking into account both the elastic
properties of the buried shell and the properties of a fluid which fills that structure can be
important, leading to marked differences when results are compared with usual simplifica-
tions, such as considering the buried structure to be rigid.

Appendix

This appendix presents the system of equations required to obtain Green’s function for a flat
fluid waveguide bounded bellow by a fluid halfspace and above by a free surface as defined
in Figure 2.

This system can be defined as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 e−iνf1
n H 0

e−iνf1
n H 1 −ν

f1
n

ν
f2
n

−e−iνf1
n H

ρf1

1
ρf1

1
ρf2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
B1
n

B2
n

B3
n

⎤
⎥⎥⎦ = C, (A.1)

with

C =

[
−e−iνf1

n |H−y0| −e−iνf1
n |−y0| e−iνf1

n |−y0|

ρf1

]T
if y0 > 0,

C =

[
0 −e−iνf2

n |−y0| e−iνf2
n |−y0|

ρf2

]T
if y0 ≤ 0.

(A.2)
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We review the fundamental modeling and numerical simulation for a prediction of fiber
orientation during injection molding process of polymer composite. In general, the simulation
of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and
fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the
generalized Newtonian constitutive model has been widely used. The kinematics of a group
of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model
and recent fiber kinematics models such as a slow orientation model are discussed. Also various
closure approximations are reviewed. Therefore, the coupled numerical methods are needed due
to the above complex problems. We review several well-established methods such as a finite-
element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method
for a general three-dimensional flow model.

1. Introduction

Short fiber reinforced polymer composites are widely used in manufacturing industries
due to their light weight and enhanced mechanical properties. The short fiber composite
products are commonly manufactured by injection molding, compression molding, and
extrusion processes. During those processes, the fibers orient themselves due to the flow and
interactions between neighboring fibers and/or cavity wall. This orientation is anisotropic in
general, which results in an anisotropic property of final products. Thus, the prediction of the
fiber orientation during the process has been the subject of considerable amount of research
during past decades.

The injection molding process is a well-established mass-production method for
polymeric materials. In this process, the molten polymer or polymer composite is injected
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into a mold cavity, which is namely a filling stage. After cooling the polymer material inside
the mold, the final product is ejected from the mold. The overall processing time is usually
less than one minute, and a complex three-dimensional shape can be produced quite easily.
In the injection molding of short fiber polymer composites, the fiber orientation develops
during the filling stage of the process. In this paper, we review the modeling and simulation of
fiber orientation during injection molding filling stage. The prediction of fiber orientation in
injection molding involves two subjects of fiber orientation simulation and injection molding
simulation. In this paper, we give more attentions in the first subject of the fiber orientation
while the later one is rather briefly discussed.

2. Fiber Orientation

2.1. Fiber Orientation Kinematics

The orientation state of a group of fibers can be represented by a probability distribution
function ψ(p) where p represents the fiber orientation vector. When the fibers are assumed to
move with the bulk flow of the fluid, the conservation equation of the distribution function
is written as follows [1]:

D

Dt
ψ = − ∂

∂p
· (ψṗ), (2.1)

where ṗ is the angular velocity vector of the fiber and D/Dt is the material time derivative.
For a concentrated fiber suspension where hydrodynamic interactions and direct contacts
take place between neighboring fibers, Folgar and Tucker [2] gave the following model for
the angular velocity:

ṗ = −1
2
ω · p +

1
2
λ(γ̇ · p − γ̇ : p ⊗ p ⊗ p) − Dr

ψ

∂ψ

∂p
, (2.2)

where ω is the vorticity tensor, γ̇ is the rate-of-strain tensor, and λ is a geometrical parameter
of the particle. The last term in the right-hand side of (2.2) with Dr is a rotary diffusivity
term which is an additional term to the original work of Jeffery [3] to take the effect of
the interactions between fibers. For an accurate calculation of the fiber orientation state, one
needs to solve (2.1) and (2.2), which requires huge computational resources for a practical
implementation in injection molding simulation. For the efficiency of the computation,
orientation tensors by Advani and Tucker [1] have been widely accepted, which enables a
compact representation of the orientation state. The second- and the fourth-order orientation
tensors are defined as follows:

a =
∮
ppψ dp,

A =
∮
ppppψ dp.

(2.3)

The orientation tensors satisfy the full symmetric property and the normalization property as
follows:

aij = aji, Aijkl = Ajikl = Aijlk = Aklij ,

aii = 1, Aijkk = aij .
(2.4)
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From (2.1) and (2.2), the evolution equation of the second-order orientation tensor can be
derived as follows:

D

Dt
a = −1

2
(ω · a − a ·ω) +

λ

2
(γ̇ · a + a · γ̇ − 2A : γ̇) + 2Dr(I − 3a). (2.5)

It should be noted that the fourth-order orientation tensor A appears in (2.5). In a similar
manner, the evolution equation of any orientation tensor contains next higher even-order
tensor. Thus, one needs a closure approximation to close the set of the evolution equations of
the orientation tensors. Several closure approximations are discussed in the following.

2.2. Closure Approximations

The closure approximation represents the fourth-order orientation tensor as a function of the
second-order orientation. A hybrid closure approximation is a simple and stable model thus
has been widely used in many numerical simulations [1]. It combines linear and quadratic
closure approximations. The hybrid closure tends to overpredict the fiber orientation tensor
components in comparison with the distribution function results. Also the full symmetric
property of A is not satisfied due to the quadratic closure term (Aqua

ijkl
).

The orthotropic closure approximations had been developed by Cintra and Tucker [4]
and improved further by Chung and Kwon [5]. In the orthotropic closure, three independent
components of A in the eigenspace system, namely A1, A2, and A3, are assumed to depend
on the eigenvalues of a as follows:

AK = C1
K + C2

Ka1 + C3
K(a1)2 + C4

Ka2 + C5
K(a2)2 + C6

Ka1a2, K = 1, 2, 3, (2.6)

where a1 and a2 are two largest eigenvalues of a and Ci
K (i = 1, 2, . . . , 6) are eighteen

fitting parameters. The orthotropic closure satisfies the full symmetry condition. There are
several different versions of the orthotropic closure approximation which were developed to
improve the accuracy and to overcome some nonphysical behaviors of the original model.
The performance of the orthotropic closure approximation is quite successful. However, it
requires additional computation for tensor transformations between the global coordinate
and the principal coordinate, which is its drawback in terms of the computational efficiency.

The invariant-based closure approximation uses the general expression of the fourth-
order tensor in terms of the second-order tensors of a and δ as follows [6]:

Aijkl = β1S
(
δijδkl

)
+ β2S

(
δijakl

)
+ β3S

(
aijakl

)
+ β4S

(
δijakmaml

)
+ β5S

(
aijakmaml

)
+ β6S

(
aimamjaknanl

)
,

(2.7)

where S is the symmetric operator. The six coefficients of βi are assumed to be the function
of the second and third invariants of a. The invariant-based closure is as accurate as the
eigenvalue-based closures, while its computational time is much less (about 30%) than that
of the eigenvalue-based closures since it does not require any coordinate transformations.

The neural-network-based closure approximation was developed recently, which
assumes two-layer neural network between the fourth- and second-order orientation tensors
as follows [7]:

A = f2
(
W2f1(W1a + b1) + b2

)
, (2.8)
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where Wi are weighting coefficients, bi are biases coefficients, and fi are transfer functions.
A linear function and tangent hyperbolic function were used for the transfer function.
The neural network closure is accurate for a wide range of the flow fields, and also its
computational time is much lower than the orthotropic closures. However, it requires huge
numbers of coefficients for Wi and bi, which can be quite troublesome for a practical
application. The quantitative comparison of the computational cost and the accuracy between
different closure approximations could be found in [6–8].

There were attempts to solve the evolution equation for the fourth-order orientation
where one needs the closure approximation for the sixth-order orientation tensor [9].
The invariant-based approach was employed, and more accurate prediction of the fiber
orientation could be achieved. However, there still remains a trade-off between the accuracy
of solution and the additional computational cost to solve more equations.

2.3. Slow Orientation Model

The kinematic equation of (2.5) has been widely accepted in the numerical simulations in
the past decades. However, there are some experimental observations that the actual fiber
orientation kinematics might be two- to ten-times slower than the model predicts [10, 11].
One simple way to describe the slow orientation kinematics was to scale the velocity gradient
with a constant factor [10, 11]. This idea is based on an assumption that the effective velocity
gradient experienced by the group of fibers is less than the bulk velocity gradient due to the
cluster structure of the fibers. A modified model is written as follows:

1
κ

D

Dt
a = −1

2
(ω · a − a ·ω) +

λ

2
(γ̇ · a + a · γ̇ − 2A : γ̇) + 2Dr(I − 3a), (2.9)

where 1/κ is, namely, the strain reduction factor. However, this model is not objective, which
means that it is coordinate dependent, thus cannot be used for a general flow field.

Recently, an objective model for the slow orientation was developed [12]. In this
model, the growth rates of the eigenvalues of a are multiplied by κ and the resulting evolution
equation is as follows:

D

Dt
a = −1

2
(ω · a − a ·ω) +

λ

2

(
γ̇ · a + a · γ̇ − 2ARSC : γ̇

)
+ 2κDr(I − 3a),

ARSC = A + (1 − κ)(L −M : A),
(2.10)

where L and M are defined in terms of eigenvalues and eigenvectors of a. The only difference
with the standard model of (2.5) appears in the fourth-order orientation tensor term and the
fiber interaction term. This model could fit the experimental data of transient shear viscosity,
especially the shear strain where the viscosity has a peak, better than the standard model.
Also the fiber orientation prediction results using the slow orientation model were in a better
agreement with the experimental result [13]. Figure 1 shows the effect of slow orientation on
the fiber orientation result in a center-gated disk geometry [14].

2.4. Fiber Interaction Model

In most of the previous works, the rotary diffusivity (Dr) of the following form has been
widely used [2]:

Dr = CIγ̇ , (2.11)
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Figure 1: Effect of slow orientation (κ) on fiber orientation prediction in a center-gated disk at radial
position of r/b = 12.4 where b is the half-gap thickness of the disk.

where CI is the fiber interaction coefficient and γ̇ is the generalized shear rate. There are
several models regarding CI depending on the fiber concentration. Bay [15] had carried out
extensive experimental works and suggested a fitting curve for CI as a function of φfL/D as
follows:

CI = 0.0184 exp

(
−0.7148

φfL

D

)
. (2.12)

This result shows the screening effect of the fiber interaction in the concentrated suspensions.
Ranganathan and Advani [16] proposed a theoretical model using Doi-Edwards theory as
follows:

CI =
K

ac/L
, (2.13)

where K is a proportionality constant and ac is the average interfiber spacing. In this model,
the fiber interaction depends on the orientation states via ac. Particularly, for fiber suspension
in a viscoelastic media, Ramazani et al. [17] modified (2.13) as follows:

CI =
K

ac/L

1
(a : c)n

, (2.14)

where c is the polymer conformation tensor and n is a constant. According to this model,
the fiber interaction decreases as the polymers are stretched in the direction of the fiber
orientation. Park and Kwon [18] also used (2.14) in developing a rheological model for a
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fiber suspension in a viscoelastic media, and the coupling effect between fiber and polymer
in CI was found to be dominant only at the high shear rate regime.

Also there had been several anisotropic diffusivity models developed in the literature
[19–21]. The anisotropic diffusivity model could fit the experimental data better than the
isotropic model particularly for a long fiber composite [21].

3. Governing Equation

The fiber orientation develops during the filling stage of the injection molding process where
the flow can be assumed to be incompressible. In addition, the inertia is negligible because
of the high viscosity of the polymer melt. As a result, the mass and momentum conservation
equations can be written as follows:

∇ · u = 0,

−∇p +∇ · τ = 0,
(3.1)

where u is velocity vector, p is the pressure, and τ is the stress tensor. The energy conservation
equation is as follows:

ρcp
D

Dt
T = ∇ · (k∇T) + ηγ̇2, (3.2)

where ρ is the density, cp is the heat capacity, η is the viscosity, and k is the heat conductivity.
The last term in the right-hand side comes from the viscous dissipation.

For a thin cavity geometry which is a usual situation in injection molding process,
one can simplify the mass and momentum conservation equations using Hele-Shaw
approximation [22]. Then, one obtains the so-called pressure equation as follows:

∂

∂x

(
S
∂p

∂x

)
+

∂

∂y

(
S
∂p

∂y

)
= 0,

S =
∫b

0

z2

η
dz,

(3.3)

where S is the fluidity and b is the half-gap thickness of the cavity. It might be mentioned
that a generalized Newtonian constitutive relation has been used to derive (3.3) which will
be discussed in Section 4. Also the energy conservation equation is rewritten as

ρcp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
=

∂

∂z

(
k
∂T

∂z

)
+ ηγ̇2. (3.4)

The in-plane velocities of u and v can be written in terms of the pressure gradient as

u = −∂p
∂x

∫b
z

z

η
dz, v = −∂p

∂y

∫b
z

z

η
dz. (3.5)
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Figure 2: Effect of fountain flow on fiber orientation prediction in a center-gated disk at radial position of
r/b = 22.8 where b is the half-gap thickness of the disk.

The Hele-Shaw flow model have been successfully employed in the injection molding
simulation and the fiber orientation prediction in the past decades [23–28].

However, it should be noted that the three-dimensional flow at the melt front region,
namely, the fountain-flow, could not be described by Hele-Shaw approximation, which can
result in an inaccurate prediction of fiber orientation at the melt front region and skin
layer. Figure 2 shows the effect of fountain flow in fiber orientation prediction [8]. Only
a limited number of studies could be found which includes the fountain-flow effect since
one should solve the three-dimensional governing equation to describe the fountain flow,
which requires huge computational costs. Instead of solving the three-dimensional equations,
Bay and Tucker [29] and Han and Im [30] introduced a special treatment particularly at
the melt front region to describe the fountain flow. Ko and Youn [31] studied the details
of gap-wise distributions of the fiber orientation for simple geometries without Hele-Shaw
approximation. Han [32] and Chung and Kwon [33] studied the fountain flow effect using
finite element method in an axisymmetric geometry of center-gated disk. VerWeyst et al. [34]
used a hybrid approach where three-dimensional flow simulation is carried out locally with
the help of Hele-Shaw flow simulation providing the boundary conditions.

4. Constitutive Model

A generalized Newtonian model for polymer melts has been widely accepted for injection
molding simulation, which can be written as follows:

τ = ηγ̇ , η = η
(
γ̇ , T
)
. (4.1)

This model is simple and accurate for injection molding process where the shear deformation
dominates the flow [22]. There are several models for shear thinning viscosity of the polymer
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melt such as the power law model, the Cross-model, and so on. The temperature dependency
of the shear viscosity can be described by means of an Arrhenius model or WLF model.

The generalized Newtonian model has been well adopted for fiber orientation
prediction during injection molding in many literatures. Rigorously speaking, however, the
fiber orientation is coupled with the momentum balance equation via constitutive relation.
This coupling effect can be important depending on the flow regime [27, 28, 33, 35]. The stress
tensor where the fiber anisotropic contribution is taken into account can be written as follows:

τ = ηγ̇ + ηNpγ̇ : A, (4.2)

where Np is a particle number. It should be noted that this model is for slender fibers
where fiber thickness can be ignored and η is the viscosity of the neat polymer matrix.
There are several models for Np depending on the fiber concentration [34–37]. In practical
applications in injection molding simulation, the Dinh and Armstrong model [35] could be
readily employed because of simplicity in spite of its inaccuracy. The effects of coupling on
the fiber orientation and flow have been studied in [26, 27, 31, 33, 38]. In the injection molding
simulation, it was observed that the coupling effect is important particularly at the core and
transition layers near the gate region [27, 33].

There are some models in which both the polymer viscoelasticity and fiber anisotropy
are taken into account in the stress tensor [17, 18, 39, 40]. In this case, the stress tensor is
written as follows:

τ = ηsγ̇ + ηmNpγ̇ : A +
ηp

θ
c, (4.3)

where ηs is the solvent viscosity (which is Newtonian), ηm is the viscosity of matrix (which
is non-Newtonian), ηp is the polymer viscosity, θ is the polymer relaxation time, and c is the
polymer conformation tensor. Generally, the evolution equation of the polymer conformation
tensor has the following form:

D

Dt
c − ∇uT · c − c · ∇u = f(c), (4.4)

where the left-hand side is the upper-convective time derivative of c and the right-hand side
represents the dissipation process of the polymer. As noted in [13], this viscoelastic model
would not be useful practically in predicting the fiber orientation since already simple models
of the generalized Newtonian model (4.1) or fiber suspension model (4.2) can give accurate
predictions of the flow and fiber orientation results. Instead, this model would be useful to
study the viscoelastic deformation or residual stress of the polymer.

5. Numerical Methods

The prediction of fiber orientation during injection molding involves a coupled analysis
of flow, temperature, moving free surface, and fiber orientation evolution. This coupling
between the equations can be treated in an explicit manner at each step of time integration or
melt front advancement. Commonly, the flow field is solved first, then the temperature and
fiber orientation are solved using the flow field solution. Finally, the melt front is advanced
and then the next time step begins. Particularly in the momentum and energy conservation
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equations, there is nonlinearity due to the viscosity which depends on the shear rate (γ̇)
and the temperature (T). The nonlinearity has been solved by the iteration method at each
time step. For the moving free surface problem, there are several different methods in the
literature. When one uses Hele-Shaw flow model, the melt front advancement is simply
carried out based on the nodal value of the pressure. For each node, a scalar quantity, namely,
fill factor, is defined, which is updated for each time step according to the pressure solution.
For three-dimensional flow model, the free surface capturing is carried out by solving
additional problem of convection equation. In this method, an artificial scalar quantity,
namely, pseudo-concentration, is defined for each node so that the fluid region and the air
region can be distinguished depending on the value of pseudo-concentration.

5.1. Hele-Shaw Flow

For the flow and temperature fields simulation, a finite-element/finite-difference coupled
scheme has been successfully employed for injection molding simulations when the Hele-
Shaw flow is assumed with a generalized Newtonian constitutive model [22]. In this method,
the in-plane discretization is achieved by the finite element method while the thickness
discretization is achieved by the finite difference method. For instance, the pressure and
temperature fields can be approximated as follows:

p
(
x, y, t

)
=Ni

(
x, y
)
pi(t),

T
(
x, y, zl, t

)
=Ni

(
x, y
)
Tli (t),

(5.1)

where Ni is the finite element interpolation function of ith node, pi is the pressure at the ith
node, and Tli is the temperature at the ith node of lth finite difference layer. Commonly, a
triangular linear interpolation is used for Ni. Since the thickness directional discretization is
independent of the in-plane discretization in this method, one can have a fine discretization
for the thickness directional distribution of physical quantities such as temperature, viscosity,
and fiber orientation tensor components, which is quite important in the injection molding
simulation. The finite difference method appears where the physical quantity depends on
the in the thickness direction (z) of the cavity. For instance, the conduction term in the
energy conservation equation (when the conductivity is assumed to be constant) can be
approximated by the finite-element/finite-difference scheme as follows:

k
∂2

∂z2
T
(
x, y, zl, t

)
=Nik

1
Δz2

(
Tl+1
i (t) − 2Tli (t) + T

l−1
i (t)

)
. (5.2)

In most previous studies, the orientation tensor is defined only at the centroid of the element
of each finite difference layer. To solve the evolution of the orientation tensor ((2.5) or (2.10)),
the velocity gradient should be calculated at the centroid of each element from the flow field
solution. For the Hele-Shaw flow, the velocity gradient tensor is as follows:

∇u =

⎡
⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
0 0 0

⎤
⎥⎥⎥⎥⎦, (5.3)
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where the velocity can be calculated from (3.5). The velocity gradients in thickness direction,
that is, ∂u/∂z and ∂v/∂z, can be easily defined by the finite difference method. However,
one needs a special treatment to obtain the other components. It should be noted that the
velocity interpolation becomes one order lower than the pressure interpolation by (3.5). For a
triangular linear interpolation of the pressure, which is the most case in practice, the velocity
is constant within an element. Thus, one needs to introduce a special method to calculate the
velocity gradient components, which is usually done using the velocities of the neighboring
elements. Another way to tackle this problem would be to use higher-order interpolation of
the pressure, which has not been reported in the literature yet.

As for the time integration of the energy conservation equation, commonly the first-
order implicit method has been widely employed, while higher integration scheme such as
fourth-order Runge-Kutta method has been used to solved the fiber orientation evolution
[26–28]. For the convective terms in the energy equation and fiber orientation evolution
equation, one should introduce, namely, upwinding scheme to avoid numerical oscillation
or wiggling of the solution. The basic concept of the upwinding scheme is to introduce
different weightings for each node depending on the sign of dot product of the velocity and
the outward normal vector at each node.

The finite-element/finite-difference hybrid method has been quite successful because
very fine refinement is possible in the gap-wise finite difference method independently of
the finite element method. This is the most important advantage of the hybrid method in
the injection molding simulation because of the high shear nature of the flow inside the
cavity.

5.2. Three-Dimensional Flow

The significance of the three-dimensional flow in the fiber orientation prediction has been
discussed in many studies [29–33]. For the three-dimensional flow and temperature fields
model, the finite element method is most widely used in the polymer processing simulation
because of its flexibility for complex geometry problems [41–45]. A mixed velocity and
pressure formulation has been widely used where the incompressibility is treated by a
Lagrange multiplier method. One should be careful about the interpolation functions of the
pressure and the velocity due to the Babuška-Brezzi condition which states that the pressure
interpolation should be one order lower than the velocity interpolation. One can also find
a stabilized formulation which enables equal-order interpolation of the velocity and the
pressure for a convenience of finite element formulations [46]. For the three-dimensional
finite element case, the numerical formulation is rather simple than for that of the finite-
element/finite-difference hybrid scheme. However, one major issue arising with the three-
dimensional flow model is the huge computational cost particularly for a fine discretization
in the thickness direction of the cavity, which limits the practicality of the three-dimensional
model [45].

As mentioned above for convective problems such as energy conservation equation
and fiber orientation evolution equation, one should use a stabilizing method, namely
upwinding scheme, to get a stable and accurate solution without wiggling. In the finite
element formulation, a streamline-upwind/Petrov-Galerkin (SUPG) method has been
adopted widely in the literature [13, 33, 42]. For a convective problem of

R =
∂X

∂t
+ u · ∇X − F(X) = 0, (5.4)
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where R is the residual and X can be either temperature or orientation tensor, the SUPG
formulation can be written as follows:

(R, Y ) +
∑
e

Rζe(u · ∇Y )e = 0, (5.5)

where Y is the weighting function and ζe is a stabilizing parameter which can depend on the
element size and characteristic velocity at the element.

6. Conclusions

This study reviews modeling and simulation of fiber orientation during injection molding of
polymer composites. The prediction of fiber orientation requires coupled analysis between
the flow, temperature, free surface, and fiber orientation. The coupling can be treated in an
explicit manner for each step of time integration or melt front advancement. The nonlinearity
in the equations has been solved using iteration schemes.

For the flow field during injection molding filling stage, it is commonly assumed that
the inertia is negligible and the flow is incompressible. Hele-Shaw approximation is adopted
to simplify the flow equation, which is accurate for most part of the flow in a thin cavity
geometry. For Hele-Shaw flow model, a finite-element/finite-difference hybrid scheme is
widely accepted to solve the pressure equation and the energy conservation equation. Since
the discretization in the thickness direction is independent of the in-plane discretization, one
can achieve a fine solution in the thickness direction which is quite important in the injection
molding simulation. In the Hele-Show flow model, however, the fountain flow at the melt
front could not be described, which could result in a poor prediction of the fiber orientation
near the melt front region particularly in the shell and skin layers. Also Hele-Shaw model is
not suitable for a general three-dimensional geometry with a varying thickness. Several finite
element methods have been developed to solve three-dimensional flow field in injection
molding filling simulation. Because of the computational cost, however, three-dimensional
flow simulation remains as one of the major problems for the accurate prediction of the fiber
orientation.

The orientation state of fibers is commonly described by the orientation tensors for
the efficiency of computation. Using the orientation tensor results in a need for a closure
approximation to close the set of evolution equations of orientation tensors. Various closures
from different bases have been developed to achieve both the accuracy and the computational
efficiency. Invariant-based closure is as accurate as orthotropic closures while its computa-
tional cost is much less than orthotropic closures. Neural network closure might be as good
as invariant-based closure, but it requires a lot of fitting coefficients. As for the kinematics
of the fiber orientation, a modified Jeffery model by Folgar and Tucker has been a basis to
understand the fiber orientation behavior. There are recent progresses in the fiber kinematic
equation such as slow orientation model and anisotropic rotary diffusivity model. The slow
orientation model enables more accurate prediction of the orientation state especially near
the gate region. The anisotropic rotary diffusivity model would be useful particularly for the
long fiber composites. The initial condition of the orientation state also can affect the final
results of the simulation depending on the cavity geometry. Thus, the simulation including
the sprue region could improve the accuracy of the fiber orientation prediction.

The fiber orientation can be solved either in a coupled manner or in a decoupled
manner with the flow field depending on the type of constitutive model. The coupling effect is
significant particularly near the core and transition layers. Most of the commercial simulation
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software use the decoupled analysis because of the convenience in developing each problem
solver independently like a module. The coupled analysis would be more accurate than
the decoupled analysis, but the constitutive model and the numerical scheme become more
complicated.
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The spatial transport process in fractal media is generally anomalous. The space-fractional
advection-diffusion equation can be used to characterize such a process. In this paper, a fully
discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion
equation. In the spatial direction, we use the finite element method, and in the temporal direction,
we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the
Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical
examples are also included which are in line with the theoretical analysis.

1. Introduction

The normal diffusive motion is modeled to describe the standard Brownian motion. The
relation between the flow and the divergence of the particle displacement represents

J(x, t) = −a ∂c
∂x

+ bc, (1.1)

where J is the diffusive flow. Inserting the above equation into the equation of mass
conservation

∂J

∂x
= −∂c

∂t
, (1.2)
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we obtain the standard convection-diffusion equation. From the viewpoint of physics, it
means that during the method of time random walkers, the overall particle displacement
up to time t can be represented as a sum of independent random steps, in the case that both
the mean-squared displacement per step and the mean time needed to perform a step are
finite. The measured variance growth in the direction of flow of tracer plumes is typically at
a Fickian rate, 〈(c − c)2〉 ∼ t.

The transport process in fractal media cannot be described with the normal diffusion.
The process is nonlocal and it does not follow the classical Fickian law. It depicts a particle
in spreading tracer cloud which has a standard deviation, and which grows like t2α for some
0 < α < 1, excluding the Fickian case α = 1/2. The description of anomalous diffusion means
that the measure variance growth in the direction of flow has a deviation from the Fickian
case, it follows the super-Fickian rate 〈(c − c)2〉 ∼ t2α when α > 1/2, or does the subdiffusion
rate 〈(c − c)2〉 ∼ t2α if 0 < α < 1/2. With the help of the continuous time random walk and the
Fourier transform, the governing equation with space fractional derivative can be derived as
follows

∂u

∂t
= D

(
a(u)aD

β
xu
)
+ b(u)Du + f(x, t, u), 0 < β < 1, (1.3)

where D denotes integer derivative respect to x, and Dβ is fractional derivative. There are
some authors studying the spacial anomalous diffusion equation in theoretical analysis and
numerical simulations [1–10]. Now the fractional anomalous diffusion becomes a hot topic
because of its widely applications in the evolution of various dynamical systems under
the influence of stochastic forces. For example, it is a well-suited tool for the description
of anomalous transport processes in both absence and presence of external velocities or
force fields. Since the groundwater velocities span many orders of magnitude and give rise
to diffusion-like dispersion (a term that combines molecular diffusion and hydrodynamic
dispersion), the fractional diffusion is an important process in hydrogeology. It can be used
to describe the systems with reactions and diffusions across a wide range of applications
including nerve cell signaling, animal coat patterns, population dispersal, and chemical
waves. In general, fractional anomalous diffusions have numerous applications in statistical
physics, biophysics, chemistry, hydrogeology, and biology [4, 11–20].

In this paper, we mainly study one kind of typical nonlinear space-fractional partial
differential equations by using the finite element method, which reads in the following form:

∂u

∂t
= D

(
a(u)aD

β
xu
)
+ b(u)Du + f(x, t, u), x ∈ Ω, t ∈ (0, T],

u|t=0 = ϕ(x), x ∈ Ω,

u|∂Ω = g, t ∈ (0, T],

(1.4)

where Ω is a spacial domain with boundary ∂Ω, Dβ is the βth (0 < β < 1) order fractional
derivative with respect to the space variable x in the Caputo sense (which will be introduced
later on), a, b, f are functions of x, t, u, ϕ and g are known functions which satisfy the
conditions requested by the theorem of error estimations.

The rest of this paper is constructed as follows. In Section 2 the fractional integral,
fractional derivative, and the fractional derivative spaces are introduced. The error estimates
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of the finite element approximation for (1.4) are studied in Section 3, and in Section 4,
numerical examples are taken to verify the theoretical results derived in Section 3.

2. Fractional Derivative Space

In this section, we firstly introduce the fractional integral (or Riemann-Liouville integral), the
Caputo fractional derivative, and their corresponding fractional derivative space.

Definition 2.1. The αth order left and right Riemann-Liouville integrals of function u(x) are
defined as follows

aI
α
xu(x) =

1
Γ(α)

∫x
a

(x − s)α−1u(s)ds,

xI
α
b u(x) =

1
Γ(α)

∫b
x

(s − x)α−1u(s)ds,

(2.1)

where α > 0, and Γ(·) is the Gamma function.

Definition 2.2. The αth order Caputo derivative of function u(x) is defined as,

aD
α
xu(x)=aI

n−α
x

dnu(x)
dxn

, n − 1 < α < n ∈ Z+,

xD
α
bu(x) = (−1)nxI

n−α
b

dnu(x)
dxn

, n − 1 < α < n ∈ Z+.

(2.2)

The αth order Riemann-Liouville derivative of function u(x) is defined by changing the order
of integration and differentiation.

Lemma 2.3 (see [8]). If u(0) = u′(0) = · · · = u(n−1)(0) = 0, then the Caputo fractional derivative is
equal to the Riemann-Liouville derivative.

Definition 2.4. The fractional derivative space Jα(Ω) is defined as follows:

Jα(Ω) =
{
u ∈ L2(Ω) : aD

α
xu ∈ L2(Ω), n − 1 ≤ α < n

}
, (2.3)

endowed with the seminorm

|u|Jα = ‖ aDα
xu‖L2(Ω), (2.4)

and the norm

‖u‖Jα =
⎛
⎝|u|2Jα +

∑
k≤[α]

∥∥∥Dku
∥∥∥2

⎞
⎠

1/2

. (2.5)
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Let Jα0 (Ω) denote the closure of C∞
0 (Ω) with respect to the above norm and seminorm.

Definition 2.5. Define the seminorm

|u|Hα =
∥∥|iw|αF(u)∥∥L2(Ω), (2.6)

and the norm

‖u‖Hα =

⎛
⎝|u|2Hα +

∑
k≤[α]

∥∥∥Dku
∥∥∥2

⎞
⎠

1/2

, (2.7)

where i is the imaginary unit, and F is the Fourier transform, and which can define another
fractional derivative space Hα(Ω).

Let Hα
0 (Ω) denote the closure of C∞

0 (Ω) with respect to the norm and seminorm.

Definition 2.6. The fractional space Jαs (Ω) is defined below

Jαs (Ω) =
{
u ∈ L2(Ω) : aD

α
xu ∈ L2(Ω), xD

α
bu ∈ L2(Ω), n − 1 ≤ α < n

}
, (2.8)

endowed with the seminorm

|u|Jαs =
∣∣∣( aDα

xu, xD
α
bu
)1/2

∣∣∣
L2(Ω)

, (2.9)

and the norm

‖u‖Jαs =

⎛
⎝∑

k≤[α]

∥∥∥Dku
∥∥∥2

+ |u|2Jαs

⎞
⎠

1/2

. (2.10)

Theorem 2.7 (see [3, 6]). Jαs , J
α, andHα are equal with equivalent seminorm and norm.

The following are some useful results.

Lemma 2.8 (see [3]). For u ∈ Jα0 (Ω), 0 < β < α, then

aD
α
xu(x) = aD

α−β
x aD

β
xu. (2.11)

Lemma 2.9 (see [2]). For u ∈ Hα
0 (Ω), one has

‖u‖L2(Ω) ≤ c|u|Hα
0
. (2.12)

For 0 < β < α,

|u|
H

β

0 (Ω) ≤ c|u|Hα
0
. (2.13)
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Since Jαs , Jα, and Hα are equal with equivalent seminorm and norm, the norms with
each space which will be used following are without distinction, and the notations are used
seminorm | · |α and norm ‖ · ‖α.

3. Finite Element Approximation

Let Ω = [a, b], and 0 ≤ β < 1. Define α = (1 + β)/2. In this section, we will formulate a fully
discrete Galerkin finite element method for a type of nonlinear anomalous diffusion equation
as follows.

Problem 1 (Nonlinear spacial anomalous diffusion equation). We consider equations of the
form

∂u

∂t
= D

(
a(u)aD

β
xu
)
+ b(u)Du + f(x, t, u), (x, t) ∈ Ω × (0, T],

u(x, t) = φ(x, t), x ∈ ∂Ω × (0, T],

u(x, 0) = g(x), x ∈ Ω.

(3.1)

We always assume that

0 < m < a(u) < M, 0 < m < b(u) < M, 0 < m < f(u) < M. (3.2)

The algorithm and analysis in this paper are applicable for a large class of linear and
nonlinear functions (including polynomials and exponentials) in the unknown variables.
Throughout the paper, we assume the following mild Lipschitz continuity conditions
on a, b, and f : there exist positive constants L and c such that for x ∈ Ω, t ∈ (0, T], and
s, t ∈ R,

|a(x, t, s) − a(x, t, r)| ≤ L|s − r|, (3.3)

|b(x, t, s) − b(x, t, r)| ≤ L|s − r|, (3.4)

∣∣f(x, t, s) − f(x, t, r)∣∣ ≤ L|s − r|. (3.5)

In order to derive a variational form of Problem 1, we suppose that u is a sufficiently
smooth solution of Problem 1. Multiplying an arbitrary v ∈ Hα

0 (Ω) in both sides yields

∫
Ω

∂u

∂t
v dx =

∫
Ω
D
(
a(u)aD

β
xu
)
v dx +

∫
Ω
b(u)Duv dx +

∫
Ω
f(x, t, u)v dx. (3.6)

Rewriting the above expression yields

∫
Ω

∂u

∂t
v dx +

∫
Ω
a(u)aD

β
xuDv dx −

∫
Ω
b(u)Duv dx =

∫
Ω
f(x, t, u)v dx. (3.7)
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We define the associated bilinear form A : Jα0 (Ω) × Jα0 (Ω) → R as

A(u, v) =
(
a(u)aD

β
xu,Dv

)
− (b(u)Du, v), (3.8)

where (·, ·) denotes the inner product on L2(Ω) and Jα0 (Ω).
For given f ∈ J−α(Ω), we define the associated function F : Jα0 (Ω) → R as

F(v) =
〈
f, v

〉
. (3.9)

Definition 3.1. A function u ∈ Jα0 (Ω) is a variational solution of Problem 1 provided that

(
∂u

∂t
, v

)
+A(u, v) = F(v), ∀v ∈ Jα0 (Ω). (3.10)

Now we are ready to describe a fully discrete Galerkin finite element method to solve
nonlinear Problem 1. In our new scheme, the finite element trial and test spaces for Problem
1 are chosen to be same.

For a positive integer N, let
∏t = {tn}Nn=0 be a uniform partition of the time interval

(0, T] such that tn = nτ , where τ = T/N, and let tn−1/2 = tn − τ/2. Throughout the paper, we
use the following notation for a function φ:

φn = φ(tn), ∂tφn =
φn − φn−1

τ
, φ

n
=
φn + φn−1

2
, φ̃n =

3φn−1 − φn−2

2
. (3.11)

Let Kh = {K} be a partition of spatial domain Ω. Define hk as the diameter of the
element K and h = maxK∈KhhK. And let Sh be a finite element space

Sh =
{
v ∈ Hα

0 (Ω) : v|K ∈ Pr−1(K), K ∈ Kh

}
, (3.12)

where Pr−1(K) is the set of polynomials of degree r−1 on a given domainK. And the functions
in Sh are continuous on Ω. Our fully discrete quadrature scheme to solve Problem 1 is to find
uh: for v ∈ Sh such that

(
∂tu

n
h, v
)
+
(
a
(
ũnh
)
a
D
β
xu

n
h,Dv

)
− (b(ũnh)Dunh, v) = 〈f(ũnh), v〉. (3.13)
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The linear systems in the above equation requires selecting the value of u0
h and u1

h.
Given u0

h
depending on the initial data g(x), we select u1

h
by solving the following predictor-

corrector linear systems:

(
u1,0
h − u0

h

τ
, v

)
+

(
a
(
u0
h

)
aD

β
x

u1,0
h + u0

h

2
, Dv

)
−
(
b
(
u0
h

)
D
u1,0
h + u0

h

2
, v

)
=
〈
f
(
u0
h

)
, v
〉
,

(
u1
h − u0

h

τ
, v

)
+

(
a

(
u1,0
h + u0

h

2

)
aD

β
x

u1
h + u

0
h

2
, Dv

)
−
(
b

(
u1,0
h + u0

h

2

)
D
u1
h + u

0
h

2
, v

)

=

〈
f

(
u1,0
h + u0

h

2

)
, v

〉
.

(3.14)

Lemma 3.2. For u, v,w ∈ Jαs,0(Ω), 0 < m ≤ a(u) ≤ M, α = (1 + β)/2, there exist constants γ1, γ2

such that

(
a(u)aD

β
xu,Dv

)
≤ γ1‖u‖α · ‖v‖α,

(
a(w)aD

β
xv,Dv

)
≥ γ2‖v‖2

α. (3.15)

Proof. With the assumption of a(u) in (3.3) and the property of dual space

(
a(w)aD

β
xu,Dv

)
≤
∥∥∥a(w)aD

β
xu
∥∥∥

1−α
· ‖Dv‖−(1−α)

≤Mc‖u‖1−α+β · ‖v‖−(1−α)+1 ≤ γ1‖u‖α · ‖v‖α,
(
a(w)aD

β
xv,Dv

)
= −
(
Da(w)aD

β
xv, v

)

= −
(
aD

(1−β)/2
x a(w)aD

β
xv, xD

(1+β)/2
b

v
)
≥ m|v|2Jαs ≥ γ2‖v‖2

α.

(3.16)

Lemma 3.3 (see [2]). For Ω ⊂ Rn, α > n/4, v,w ∈ Hα
0 (Ω), ε > 0, one has

(vb(w),∇v) ≤ c0

(
qε
)−p/q
p

‖∇b(w)‖p · ‖v‖2 + ε‖v‖2
α, (3.17)

where p = 4α/(4α − n), q = 4α/n.

Theorem 3.4. Let unh be bounded, then for a sufficiently small step τ , there exists a unique solution
un
h
∈ Sh satisfying scheme (3.13).
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Proof. As scheme represents a finite system of problem, the continuity and coercivity
of (unh,ω

n
h)/τ + A(unh,ω

n
h) is the sufficient and essential condition for the existence and

uniqueness of un
h
. Let v = unh, w = ωn

h, then

(v, v)
τ

+A(v, v) =
(v, v)
τ

+
(
a(w)aD

β
xv,Dv

)
− (b(w)Dv, v)

≥ ‖v‖2

τ
+ γ2‖v‖α − c0‖Db(w)‖2‖v‖2 − ε‖v‖2

α

=
(
γ2 − ε

)‖v‖2
α +
(
τ−1 − c0‖Db(w)‖2

)
‖v‖2

≥ c‖v‖2
α.

(3.18)

For the chosen sufficiently small τ , the above inequality holds.

(v,w)
τ

+A(v,w) =
(v,w)
τ

+
(
a(u)aD

β
xv,Dw

)
+ (Db(u)v,Dw)

≤ ‖u‖ · ‖w‖
τ

+ γ1‖v‖α‖w‖α + ‖v‖ · ‖D(b(u)w)‖

≤ ‖u‖ · ‖w‖
τ

+ γ1‖v‖α‖w‖α +M
‖v‖ · ‖w‖

h

≤ c‖v‖α‖w‖α.

(3.19)

Hence, the scheme (3.13) is uniquely solvable for un
h
.

Let ρn = Phun − un, and θn = un
h
− Phun, then

unh − un = unh − Phun + Phun − un = θn + ρn, (3.20)

where Phun is a Rits-Galerkin projection operator defined as follows:

(
a(w)aD

β
x(un − Phun), Dv

)
= 0,

(
a(u0)aD

β
x(un − Phun), Dv

)
= 0.

(3.21)

Lemma 3.5. Let a(u), b(u) be smooth functions on Ω, 0 < m ≤ a(u), b(u) ≤ M, and Phun is
defined as above, then

‖ aDα
x(u

n − Phun)‖ ≤ chk+1−α‖u‖k+1,

‖(Phun − un)‖ ≤ chk+1‖u‖k+1.
(3.22)
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Proof. Using the definition of Phun, one gets

‖ aDα
x(Phu

n − un)‖2 = |( aDα
x(Phu

n − un), aDα
x(Phu

n − un))|
≤ c‖ aDα

x(Phu
n − un)‖ · ∥∥ aD

α
x

(
χ − un)∥∥, (3.23)

where χ ∈ Sh. Utilizing the interpolation of Ihun leads to

‖ aDα
x(Phu

n − un)‖ ≤ inf
χ∈Sh

c
∥∥χ − u∥∥α ≤ c‖Ihun − un‖α ≤ chk+1−α‖u‖k+1. (3.24)

Next we estimate ‖Phun − un‖. For all φ ∈ L2(Ω), w is the solution of the following equation:

−aD2α
x w = φ, w ∈ Ω,

w = 0, w ∈ ∂Ω.
(3.25)

So we have

‖w‖2α ≤ γ3
∥∥φ∥∥. (3.26)

For all χ ∈ Sh, with the help of approximation properties of Sh and the weak form, we can
obtain

(
Phu

n − un, φ) = −
(
Phu

n − un, aD2α
x w

)
= −( xDα

b(Phu
n − un), aDα

xw
)

= −( xDα
b(Phu

n − un), aDα
x

(
w − χ)) ≤ ‖Phun − un‖α

∥∥w − χ∥∥α
≤ ‖Phun − un‖α inf

χ∈Sh

∥∥w − χ∥∥α
≤ chr−α‖u‖rhα‖w‖2α = chr‖u‖r

∥∥φ∥∥,

‖Phun − un‖ = sup
0/=φ∈L2(Ω)

(
Phu

n − un, φ)∥∥φ∥∥ ≤ chr‖u‖r .

(3.27)

Lemma 3.6 (see [21]). Let Th, 0 < h ≤ 1, denote a quasiuniform family of subdivisions of a
polyhedral domain Ω ⊂ Rd. Let (K′, P,N) be a reference finite element such that P ⊂ Wl,p(K′) ∩
Wm,q(K′) is a finite-dimensional space of functions on K′,N is a basis for P ′, where 1 ≤ p ≤ ∞, 1 ≤
p ≤ ∞, and 0 ≤ m ≤ l. For K ∈ Th, let (K,PK,NK) be the affine equivalent element, and Vh = v : v
is measurable and v|K ∈ PK, for all K ∈ Th. Then there exists a constant C = C(l, p, q) such that

[∑
k∈Th

‖v‖2
Wl,p(K)

]1/p

≤ Chm−l+min(0,d/p−d/q) ·
[∑
k∈Th

‖v‖qWm,q(K)

]1/q

. (3.28)

The following Gronwall’s lemma is useful for the error analysis later on.
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Lemma 3.7 (see [2]). Let Δt,H and an, bn, cn, γn (for integer n ≥ 0) be nonnegative numbers
such that

aN + Δt
N∑
n=0

bn ≤ Δt
N∑
n=0

γnan + Δt
N∑
n=0

cn +H, (3.29)

forN ≥ 0. Suppose that Δtγn < 1, for all n, and set σn = (1 −Δtγn)
−1. Then

aN + Δt
N∑
n=0

bn ≤ exp

(
Δt

N∑
n=0

σnγn

){
Δt

N∑
n=0

cn +H

}
, (3.30)

forN ≥ 0.
The following norms are also used in the analysis:

‖|v|‖∞,k = max
0≤n≤N

‖vn‖k,

‖|v|‖0,k =

[
N∑
n=0

τ‖vn‖2
k

]1/2

.

(3.31)

Theorem 3.8. Assume that Problem 1 has a solution u satisfying utt, uttt ∈ L2(0, T, L2(Ω)) with
u, ut ∈ L2(0, T,Hk+1). If Δt ≤ ch, then the finite element approximation is convergent to the solution
of Problem 1 on the interval (0,T], as Δt, h → 0. The approximation uh also satisfies the following
error estimates

‖u − uh‖0,α ≤ C
(
hk+1‖ut‖0,k+1 + h

k+1−α‖u‖0,k+1 + τ
2‖utt‖0,0

+τhk+1−α‖utt‖0,k+1 + τ
2‖uttt‖0,0

)
,

(3.32)

‖u − uh‖∞,0 ≤ C
(
hk+1‖ut‖0,k+1 + h

k+1−α‖u‖0,k+1 + τ
2‖uttt‖0,0

+τhk+1−α‖utt‖0,k+1 + τ
2‖utt‖0,0 + h

k+1‖u‖2
∞,k+1

)
.

(3.33)

Proof. For t = tn − τ/2 = tn−1/2, n = 0, 1, . . . ,N, find un−1/2 such that

(
∂tu

n−1/2, v
)
+
(
a
(
un−1/2

)
aDxu

n−1/2, Dv
)
−
(
b
(
un−1/2

)
Dun−1/2, v

)
=
〈
f
(
un−1/2

)
, v
〉
.

(3.34)
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Subtracting the above equation from the fully discrete scheme (3.13), and substituting unh −
un = (un

h
− Phun) + (Phun − un) = θn + ρn into it, we obtain the following error formulation

relating to θn and ρn:

(
∂tθ

n, v
)
+
(
a
(
ũnh
)

aD
β
xθ

n
,Dv

)
−
(
b
(
ũnh
)
Dθn, v

)

=
(
a
(
ũnh
)
aD

β
xIhu

n
,Dv

)
+
(
b
(
ũnh
)
aD

β
xIhu

n
, v
)
+
(
∂tu

n−1/2, v
)
−
(
∂tIhu

n, v
)

+
(
a
(
un−1/2

)
aD

β
xu

n−1/2, Dv
)
−
(
b
(
un−1/2

)
Dun−1/2, v

)
+
(
f
(
ũnh
)
, v
) − (f(un−1/2

)
, v
)

= −
(
a
(
ũnh
)
aD

β
xρ

n,Dv
)
+
{(
a
(
un−1/2

)
aD

β
xu

n−1/2 − a(ũnh) aDβ
xun,Dv

)}

+
(
b
(
ũnh
)
Dρn, v

)
+
{(
b
(
ũnh
)
Dun −

(
b
(
un−1/2

)
Dun−1/2, Dv

)}

+
{(
f
(
ũnh
) − f(un−1/2

)
, v
)}

+
{(
∂tu

n−1/2 − ∂tIhun, v
)}

= R1(v) + R2(v) + R3(v) + R4(v) + R5(v) + R6(v).
(3.35)

Setting v = θn, we obtain

(
∂tθ

n, θn
)
+
(
a(ũn)aD

β
xθ

n
,Dθ

n) − (b(ũn)Dθn, θn)

= R1

(
θ
n)

+ R2

(
θ
n)

+ R3

(
θ
n)

+ R4

(
θ
n)

+ R5

(
θ
n)

+ R6

(
θ
n)
.

(3.36)

Note that

(
∂tθ

n, θn
)
=

(
θn − θn−1

τ
,
θn + θn−1

2

)
=

1
2τ

(
‖θn‖2 − ∥∥θn−1

∥∥2
)
. (3.37)

According to (3.2) and Lemma 3.2, we have

(
a(ũn)aD

β
xθ

n
,Dθ

n) ≥ m
∣∣∣θn
∣∣∣2
α
≥ c
(
|θn|2α +

∣∣∣θn−1
∣∣∣2
α

)
. (3.38)

From Lemma 3.3, the following inequality can be derived:

(
b(ũn)θ

n
,Dθ

n) ≤ c0ε
−c1
2 ‖Db(ũn)‖c2

∥∥∥θn∥∥∥2
+ ε3

∥∥∥θn∥∥∥2

α

= c0ε
−c1
2 ‖Db(ũn)‖c2

∥∥∥∥∥
θn + θn−1

2

∥∥∥∥∥
2

+ ε3

∥∥∥∥∥
θn + θn−1

2

∥∥∥∥∥
2

α

≤ c3ε
−c1
2 ‖Db(ũn)‖c2

(
‖θn‖2 +

∥∥∥θn−1
∥∥∥2
)
+ c4ε3

(
‖θn‖2

α +
∥∥∥θn−1

∥∥∥2

α

)
.

(3.39)
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Substituting (3.37)–(3.39) into (3.36) then multiplying (3.36) by 2τ , summing from
n = 1 to N, we have

‖θn‖2 −
∥∥∥θ2

∥∥∥2
+ τ

N∑
n=1

(2mc − 2c4ε3)
(
‖θn‖2

α +
∥∥∥θn−1

∥∥∥2

α

)

≤ 2τ
N∑
n=1

c3ε
−c1
2

∥∥Db(ũnh)
∥∥c2

(
‖θn‖2 +

∥∥∥θn−1
∥∥∥2
)

+ 2τ
N∑
n=3

[
R1

(
θ
n)

+ R2

(
θ
n)

+ R3

(
θ
n)

+ R4

(
θ
n)

+ R5

(
θ
n)

+ R6

(
θ
n)]

.

(3.40)

We now estimate R1 to R6 in the right hand of (3.40),

R1

(
θ
n)

=
(
aD

1−α
x

(
a
(
ũnh
)
aD

β
xρ

n
)
, aD

α
xθ

n)

≤M
(
aD

α
xρ

n, aD
α
xθ

n) ≤M∥∥
aD

α
xρ

n∥∥∥∥∥ aD
α
xθ

n
∥∥∥

≤ ε4

∥∥∥θn
∥∥∥2

α
+
c2

5

4ε4

∥∥ρn∥∥2
α

=
ε4

2

∥∥∥ρn + ρn−1
∥∥∥2

α
+

c2
5

16ε4

∥∥∥θn + θn−1
∥∥∥2

α

≤ ε4c6

(
‖θn‖2

α +
∥∥∥θn−1

∥∥∥2

α

)
+
c7

ε4

(∥∥ρn∥∥2
α +
∥∥∥ρn−1

∥∥∥2

α

)
.

(3.41)

Secondly, we deduce the estimation of R2,

R2

(
θ
n)

=
(
−a(ũnh) aDβ

xu
n,Dθ

n)
+
(
a
(
un−1/2

)
aD

β
xu

n−1/2, Dθ
n)

=
((
a
(
un−1/2

)
− a(ũnh)

)
aD

β
xu

n,Dθ
n)

+
(
a
(
un−1/2

)(
aD

β
xu

n−1/2−aDβ
xu

n
))
, Dθ

n)

= R21 + R22,

(3.42)

where

R21 =
([
a
(
un−1/2

)
− a(ũn)

]
aD

β
xũ

n
)
, Dθ

n)

≤ c8

4ε5

∥∥∥[a(un−1/2
)
− a(ũn)

]
aD

β
xũ

n
∥∥∥2

1−α
+ ε5

∥∥∥Dθn
∥∥∥2

α−1

≤ c9

∥∥∥a(un−1/2
)
− a(ũn)

∥∥∥
∥∥∥ aD

β
xũ

n
∥∥∥2

1−α
+ ε5

∥∥∥θn
∥∥∥2

α

≤ c9L
∥∥∥un−1/2 − ũn

∥∥∥ + ε5

∥∥∥θn
∥∥∥2

α
,
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R22 =
(
a
(
un−1/2

)(
aD

β
xu

n−1/2−aDβ
xu

n
)
, Dθ

n)

≤ c10

4ε6

∥∥∥a(un−1/2
)[

aD
β
xu

n−1/2−aDβ
xu

n
]∥∥∥2

1−α
+ ε6

∥∥∥Dθn
∥∥∥2

−1+α

≤ c10

∥∥∥a(un−1/2
)∥∥∥2∥∥∥ aD

β
xu

n−1/2−aDβ
xu

n
∥∥∥2

1−α
+ ε6

∥∥∥θn
∥∥∥2

α

≤ c10M
2
∥∥∥un−1/2 − un

∥∥∥2

α
+ ε6c

(
‖θn‖2

α +
∥∥∥θn−1

∥∥∥2

α

)
.

(3.43)

The estimations of ‖ũn − un−1/2‖ and ‖un − un−1/2‖α can be derived as follows:

∥∥∥ũn − un−1/2
∥∥∥ =

∥∥∥∥∥
3
2

[
un−1/2 − τ

2
un−1/2
t +

un−1/2
tt

2!

(τ
2

)2
+O

(
τ3
)]

−1
2

[
un−1/2 − 3τ

2
un−1/2
t +

un−1/2
tt

2!

(
3τ
2

)2

+O
(
τ3
)]

− un−1/2

∥∥∥∥∥

≤ c11τ
2‖utt(tn−1/2)‖ ≤ c11τ

2
∫ tn
tn−1

‖utt(·, s)‖ds,

∥∥∥un − un−1/2
∥∥∥
α
=

∥∥∥∥∥τ−1

{∫ tn
tn−1/2

(s − tn)2utt(s)ds +
∫ tn−1/2

tn−1

(s − tn−1)2utt(s)ds

}∥∥∥∥∥
α

≤ c12τ

∥∥∥∥∥
∫ tn
tn−1

utt(s)ds

∥∥∥∥∥
α

≤ c12τ

∫ tn
tn−1

‖utt(s)‖αds

≤ c12τh
k+1−α

∫ tn
tn−1

‖utt(s)‖k+1ds.

(3.44)

Thirdly, it is turn to consider R3,

R3

(
θ
n)

=
(
b
(
ũnh
)
Dρn, θ

n) ≤ ∥∥b(ũnh)Dρn
∥∥
−α

∥∥∥θn
∥∥∥
α

≤ c13

4ε7

∥∥b(ũnh)
∥∥2∥∥ρn∥∥2

1−α + ε7

∥∥∥θn
∥∥∥2

α

≤ c14

4ε7

(∥∥ρn∥∥2
1−α +

∥∥∥ρn−1
∥∥∥2

1−α

)
+ ε7c15

(
‖θn‖2

α +
∥∥∥θn−1

∥∥∥2

α

)
.

(3.45)



14 Mathematical Problems in Engineering

Next,

R4

(
θ
n)

=
(
b
(
ũnh
)
Dun, θ

n) − (b(un−1/2
)
Dun−1/2, θ

n)

=
((
b
(
ũnh
)
Dun − b

(
un−1/2

)
Dun

)
, θ

n)
+
(
b
(
un−1/2

)(
Dun −Dun−1/2

)
, θ

n)

= R41 + R42,

(3.46)

where

R41 ≤ c16

4ε8

∥∥∥{b(ũnh) − b
(
un−1/2

)}
Dun

∥∥∥2

1−α
+ ε8

∥∥∥θn
∥∥∥2

α

≤ c16L

4ε8

∥∥∥ũnh − un−1/2
∥∥∥2∥∥Dun∥∥2

1−α + ε8

∥∥∥θn
∥∥∥2

α

=
c16L

4ε8

∥∥∥ũnh − ũn + ũn − un−1/2
∥∥∥2∥∥Dun∥∥2

1−α + ε8

∥∥∥θn
∥∥∥2

α

≤ c17
∥∥ũnh − ũn

∥∥2 + c17

∥∥∥ũn − un−1/2
∥∥∥2

+ ε8

∥∥∥θn
∥∥∥2

α

≤ c17

∥∥∥θ̃n + ρ̃n
∥∥∥2

+ c17

∥∥∥ũn − un−1/2
∥∥∥2

+ ε8

∥∥∥θn
∥∥∥2

α

≤ c18

(∥∥∥θ̃n
∥∥∥2

+
∥∥ρ̃n∥∥2

)
+ c17

∥∥∥ũn − un−1/2
∥∥∥2

+ ε8

∥∥∥θn
∥∥∥2

α
.

(3.47)

Rewriting R42 by the aid of (3.20), we have

R42 ≤ c19

4ε9

∥∥∥un − un−1/2
∥∥∥2

+ ε9

∥∥∥θn
∥∥∥2

α
. (3.48)

The estimation of R5 is deduced as follows:

R5

(
θn
)
≤
∥∥∥f(ũnh) − f

(
un−1/2

)∥∥∥
∥∥∥θn

∥∥∥
≤ L
∥∥∥ũnh − un−1/2

∥∥∥
∥∥∥θn

∥∥∥
≤ Lc20

4ε10

∥∥∥ũnh − un−1/2
∥∥∥2

+ ε10

∥∥∥θn
∥∥∥2

≤ Lc21

(∥∥∥θ̃n + ρ̃n
∥∥∥2

+
∥∥∥ũn − un−1/2

∥∥∥2
)
+ ε10

∥∥∥θn
∥∥∥2

≤ c22

(∥∥∥θ̃n
∥∥∥2

+
∥∥ρ̃n∥∥2

)
+ Lc21

∥∥∥ũn − un−1/2
∥∥∥2

+ ε10

∥∥∥θn
∥∥∥2
.

(3.49)
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Last, we estimate R6,

R6

(
θ
n)

=
(
∂tu

n−1/2, θ
n) − (∂tPhun, θn

)

=
(
∂tu

n−1/2 − ∂un, θn
)
+
(
∂tu

n − ∂tPhun, θ
n)

=
(
∂tu

n−1/2 − ∂tun, θ
n)

+
(
∂tρ

n, θ
n)

≤
∥∥∥∂tun−1/2 − ∂tun

∥∥∥‖θn‖ +
∥∥∥∂tρn

∥∥∥‖θn‖,

(3.50)

where

∥∥∥∂tun−1/2 − ∂un
∥∥∥ = (2τ)−1c23

∥∥∥∥∥
∫ tn
tn−1/2

(s − tn)2uttt(s)ds +
∫ tn−1/2

tn−1

(s − tn−1)2uttt(s)ds

∥∥∥∥∥

≤ c23τ

∥∥∥∥∥
∫ tn
tn−1

uttt(s)ds

∥∥∥∥∥

≤ c23τ

∫ tn
tn−1

‖uttt(s)‖ds,

∥∥∥∂tρn
∥∥∥ =

∥∥∥∥∥
ρn − ρn−1

τ

∥∥∥∥∥ ≤ τ−1

∥∥∥∥∥
∫ tn
tn−1

ρnt (s)ds

∥∥∥∥∥

≤ τ−1
∫ tn
tn−1

‖ut(s)‖ds ≤ τ−1
∫ tn
tn−1

1ds
∫ tn
tn−1

‖ut(s)‖ds

=
∫ tn
tn−1

‖ut(s)‖ ≤ hk+1
∫ tn
tn−1

‖ut(s)‖k+1ds.

(3.51)

The ‖θ2‖ should be estimated with (3.14). Let n = 1 then subtracting (3.34) from the
two equations of (3.14), respectively, one gets

(
∂tθ

1,0, v
)
+
(
a
(
u0
h

)
aD

β
xθ

1,0
, Dv

)
− b
((

u0
h

)
Dθ

1,0
, v

)

= −
(
a
(
u0
h

)
aD

β
xρ

1,0, Dv
)
−
{(
a
(
u1/2

)
aD

β
xu

1/2 − a
(
u0
h

)
aD

β
xu

1,0, Dv
)}

+
(
b
(
u0
h

)
Dρ1,0, v

)
+
{(
b
(
u0
h

)
Du1,0 − b

(
u1/2

)
Du1/2, Dv

)}

+
{(
f
(
u0
h

)
− f
(
u1/2

)
, v
)}

+
{(
∂tu

1/2 − ∂tIhu1,0, v
)}

= R1(v) + R2(v) + R3(v) + R4(v) + R5(v) + R6(v),
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(
∂tθ

1, v
)
+
(
a
(
u0
h

)
a
D
β
xθ

1
, Dv

)
− b
((

u0
h

)
Dθ

1
, v

)

= −
(
a

(
u0
h + u

1,0
h

2

)
aD

β
xρ

1, Dv

)
−
{(

a
(
u1/2

)
aD

β
xu

1/2 − a
(
u0
h + u

1,0
h

2

)
aD

β
xu

1, Dv

)}

+

(
b

(
u0
h + u

1,0
h

2

)
Dρ1, v

)
+

{(
b

(
u0
h + u

1,0
h

2

)
Du1 −

(
b
(
u1/2

)
Du1/2, Dv

)}

+

{(
f

(
u0
h + u

1,0
h

2

)
− f
(
u1/2

)
, v

)}
+
{(
∂tu

1/2 − ∂tIhu1, v
)}

= R1(v) + R2(v) + R3(v) + R4(v) + R5(v) + R6(v).

(3.52)

Setting v = θ1,0, and using the similar estimation (see (3.40)), one has

∥∥∥θ1,0
∥∥∥2 ≤ c

{
τ2
∫ t1
t0

‖utt(s)‖2
αds + h

2(k+1−α)‖u‖2
k+1 + τ

2
∫ t1
t0

‖uttt(s)‖2ds

+ch2(k+1)
∫ t1
t0

‖ut(s)‖2
k+1ds

}
.

(3.53)

Letting v = θ1, applying the above result of θ1,0, and using the similar estimation (see
(3.53)), we get

∥∥∥θ1
∥∥∥2 ≤ c

{
τ2
∫ t1
t0

‖utt(s)‖2
αds + h

2(k+1−α)‖u‖2
k+1 + τ

2
∫ t1
t0

‖uttt(s)‖2ds

+ch2(k+1)
∫ t1
t0

‖ut(s)‖2
k+1ds

}
.

(3.54)

Using T =Nτ and Gronwall’s lemma, we get

‖|θ|‖2
0,α =

N∑
n=0

τ‖θ‖2
α. (3.55)

Hence, using the interpolation property and

‖|u − uh|‖0,α ≤ ‖|θ|‖0,α +
∥∥∣∣ρ∣∣∥∥0,α, (3.56)

the estimate (3.32) holds.
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Also using the interpolation property, Gronwall’s lemma, and the approximation
properties, we get

‖|u − uh|‖∞,0 ≤ ‖|θ|‖∞,0 +
∥∥∣∣ρ∣∣∥∥∞,0

≤ max
0≤n≤N

‖|θn|‖2 + h2k+1‖|u|‖2
∞,k+1,

(3.57)

which is just the estimate (3.33).

4. Numerical Examples

In this section, we present the numerical results which confirm the theoretical analysis in
Section 3.

Let K denote a uniform partition on [0, a], and Sh the space of continuous piecewise
linear functions on K, that is, k = 1.. In order to implement the Galerkin finite element
approximation, we adapt finite element discrete along the space axis, and finite difference
scheme along the time axis. We associate shape function of spaceXh with the standard basis of
hat functions on the uniform grid of size h = 1/n. We have the predicted rates of convergence
if the condition Δt = ch of

‖u − uh‖0,α ∼ O
(
h2−α

)
,

‖u − uh‖∞,0 ∼ O
(
h2−α

)
,

(4.1)

provided that the initial value ϕ(x) is smooth enough.

Example 4.1. The following equation

∂u

∂t
= D

(
u2

0D
0.5
x u(x, t)

)
− 2x(x − 1)

(
2x1.5

Γ(2.5)
− x0.5

Γ(1.5)

)
e−2tDu − u(x, t)

−u2e−t
(

2x0.5

Γ(1.5)
− x−0.5

Γ(0.5)

)
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = x(x − 1), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

(4.2)

has a unique solution u(x, t) = e−tx(x − 1).
If we select Δt = ch and note that the initial value u0 is smooth enough, then we have

‖u − uh‖0,0.75 ∼ O
(
h1.25

)
,

‖u − uh‖∞,0 ∼ O
(
h1.25

)
.

(4.3)
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Table 1: Numerical error result for Example 4.1.

h ‖u − uh‖∞,0 cvge. rate ‖u − uh‖0,0.75 cvge. rate
1/5 2.2216E−003 — 1.0213E−003 —
1/10 1.3551E−003 0.7132 6.0779E−004 0.74875
1/20 5.5865E−004 1.2784 2.3188E−004 1.3901
1/40 3.0515E−004 0.8724 1.0545E−004 1.1367
1/80 1.2423E−004 1.2964 3.9883E−005 1.4027
1/160 5.1033E−005 1.2835 2.1310E−005 0.9042

Table 1 includes numerical calculations over a regular partition of [0, 1]. We can
observe the experimental rates of convergence agree with the theoretical rates for the
numerical solution.

Example 4.2. The function u(x, t) = cos(t)x2(2−x)2 solves the equation in the following form:

∂u

∂t
= 0D

1.7
x u(x, t) + b(u)Du − u[4(1 − x) + tan t] + f(x, t), x ∈ (0, 2), t ∈ [0, 1),

u(x, 0) = x2(2 − x)2, 0 ≤ x ≤ 2,

u(0, t) = 0, u(2, t) = 0, 0 ≤ t ≤ 1,

(4.4)

where

b(u) =
√
u√

cos t
,

f(x, t) =
cos t

cos(0.85π)

⎡
⎢⎣

24
(
x2.3 + (2 − x)2.3

)
Γ(3.3)

−
24
(
x1.3 + (2 − x)1.3

)
Γ(2.3)

−
8
(
x0.3 + (2 − x)0.3

)
Γ(1.3)

⎤
⎥⎦.
(4.5)

If we select Δt = ch, then

‖u − uh‖0,0.85 ∼ O
(
h1.15

)
,

‖u − uh‖∞,0 ∼ O
(
h1.15

)
.

(4.6)

Table 2 shows the error results at different size of space grid. We can observe that the
experimental rates of convergence still support the theoretical rates.
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Table 2: Numerical error result for Example 4.2.

h ‖u − uh‖∞,0 cvge. rate ‖u − uh‖0,0.85 cvge. rate
1/5 1.3010E−001 — 3.2223E−002 —
1/10 4.6402E−002 1.4878 1.4133E−002 1.1890
1/20 1.6843E−002 1.4620 6.2946E−003 1.1669
1/40 6.6019E−003 1.6843 2.8571E−003 1.1395
1/80 2.7979E−003 1.2386 1.3137E−003 1.1209
1/160 1.2665E−003 1.1434 6.0848E−004 1.1103

Table 3: Numerical error result for Example 4.3.

h ‖u − uh‖∞,0 cvge. rate ‖u − uh‖0,0.85 cvge. rate
1/5 8.3052E−002 — 2.8009E−002 —
1/10 3.6038E−002 1.2045 1.0086E−002 1.4735
1/20 1.3839E−002 1.3807 3.2327E−003 1.6414
1/40 5.0631E−003 1.4507 1.1789E−003 1.4554
1/80 1.8920E−003 1.4201 5.9555E−004 0.9851
1/160 9.9899E−004 0.9214 3.0034E−004 0.9876

Example 4.3. Consider the following space-fractional differential equation with the nonhomo-
geneous boundary conditions,

∂u

∂t
= 0D

1.7
x u(x, t) − 3

x

∫x
0
udx − 2x0.3e−t

Γ(1.3)
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = x2, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = e−t, 0 ≤ t ≤ 1,

(4.7)

whose exact solution is u(x, t) = e−tx2.
We still choose Δt = ch, then get the convergence rates

‖u − uh‖0,0.85 ∼ O
(
h1.15

)
,

‖u − uh‖∞,0 ∼ O
(
h1.15

)
.

(4.8)

The numerical results are presented in Table 3 which are in line with the theoretical analysis.

5. Conclusion

In this paper, we propose a fully discrete Galerkin finite element method to solve a type
of fractional advection-diffusion equation numerically. In the temporal direction we use the
modified Crank-Nicolson method, and in the spatial direction we use the finite element
method. The error analysis is derived on the basis of fractional derivative space. The
numerical results agree with the theoretical error estimates, demonstrating that our algorithm
is feasible.
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In this work, coupled numerical analysis of interacting acoustic and dynamic models is focused.
In this context, several numerical methods, such as the finite difference method, the finite element
method, the boundary element method, meshless methods, and so forth, are considered to model
each subdomain of the coupled model, and multidomain decomposition techniques are applied
to deal with the coupling relations. Two basic coupling algorithms are discussed here, namely
the explicit direct coupling approach and the implicit iterative coupling approach, which are
formulated based on explicit/implicit time-marching techniques. Completely independent spatial
and temporal discretizations among the interacting subdomains are permitted, allowing optimal
discretization for each sub-domain of the model to be considered. At the end of the paper,
numerical results are presented, illustrating the performance and potentialities of the discussed
methodologies.

1. Introduction

Usually, an engineer is faced with the analysis of a problem where two or more different
physical systems interact with each other, so that the independent solution of any one
system is impossible without simultaneous solution of the others. Such systems are known
as coupled, and the intensity of such coupling is dependent on the degree of interaction [1].
Numerical algorithms consider that coupled systems may interact by means of common
interfaces and/or overlapped subdomains. The former, usually referred to as interface-
coupling, considers that coupling occurs on domain interfaces via the boundary conditions
imposed there. Generally, distinct domains describe different physical situations, but it is
possible to consider coupling between domains that are physically similar in which different
discretization processes have been used. In the second case (problems in which the various
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domains totally or partially overlap), coupling occurs through the differential governing
equations, describing different physical phenomena. In this work, only interface coupling
problems are considered, and the interactions between acoustic fluids and elastodynamic
solids are focused. In this context, one can mention a number of different applications:
interaction between fluids such as air, water, or lubricants and structural elements such
as buildings, dams, offshore structures, mechanical components, pressure vessels, and so
forth, systems composed of the same medium, with subdomains discretized by different
numerical methods (finite difference, finite elements, boundary elements, etc.) and/or
different refinement levels, and so forth.

In the present work, several numerical methods are considered to discretize the
different subdomains of the global model, taking into account interface coupled analyses.
Although nowadays there are several powerful numerical techniques available, none of them
can be considered most appropriate for all kinds of analysis, and, usually, the coupling
of different numerical methodologies is necessary to analyze complex problems more
effectively. In this context, the coupling of different numerical methods is recommended, in
order to profit from their respective advantages and to evade their disadvantages. Two basic
coupling algorithms are discussed here, considering multidomain decomposition techniques.
In the first algorithm, explicit time-marching procedures are employed for wave propagation
analysis at some subdomains of the model. Since explicit algorithms allow the computation
of the current time-step response as function of only previous time-steps information;
those subdomains can be independently analyzed directly, at each time step, allowing the
development of an explicit direct coupling approach (ExDCA). On the other hand, when
implicit time-marching procedures are considered, the computation of the current time-
step response depends on the current time-step information, and interacting subdomains
modeled by these techniques cannot be independently analyzed directly, being an iterative
procedure necessary to analyze these coupled subdomains, once multidomain decomposition
techniques are regarded. For this case, a second coupling algorithm is discussed here, referred
to as implicit iterative coupling approach (ImICA).

Taking into account an explicit direct or an implicit iterative multidomain decomposi-
tion technique, the coupling of several numerical procedures is carried out here. In this work,
the coupling of the finite difference method (FDM), finite element method (FEM), boundary
element method (BEM), and meshless local Petrov-Galerkin method (MLPG) is focused.
In the last decades, these methodologies have been intensively applied to model acoustic-
dynamic coupled models, taking into account different coupling strategies and time- and
frequency-domain analyses. Considering the FDM, Vireaux [2] employed staggered grids
to analyze acoustic-dynamic models in the 80s; nowadays, several advanced techniques are
available based on the FDM, including those based on coupled methods [3–5]. In fact, it did
not take long to couple numerical methods to analyze interacting acoustic-dynamic models,
and most of these procedures are based on FEM-BEM coupling techniques [6–17] although
there are several other procedures based on different numerical methodologies [18–30].

When time-domain acoustic-dynamic coupled analyses are focused, the coupling of
media with different properties (high properties contrast) and/or the coupling of numerical
procedures with different spatial/temporal behavior may lead to inaccurate results or, even
worse, instabilities. Thus, it is important to develop robust discretization techniques that not
only are able to provide accurate and stable analyses, but also are computationally efficient.
In this work, a multilevel time-step procedure is presented, as well as nonmatching interface
nodes techniques are referred, allowing each subdomain of the model to be independently
and optimally discretized, efficiently improving the accuracy and the stability of the analyses.
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The paper is organized as follows: first, basic equations concerning acoustic and
dynamic models are presented, as well as interface interacting relations; in the sequence,
numerical modeling of the acoustic/dynamic subdomains is briefly addressed taking into
account domain- and boundary-discretization techniques. In Section 4, coupling algorithms
are discussed, focusing on explicit direct and implicit iterative procedures. At the end of the
paper, three numerical applications (taking into account several different configurations) are
presented, illustrating the performance and potentialities of the discussed methodologies.

2. Governing Equations

In this section, acoustic and elastic wave equations are briefly presented. Each one of these
wave propagation models is used to mathematically describe different subdomains of the
global problem. At the end of the section, basic equations concerning the coupling of acoustic
and dynamic subdomains are described.

2.1. Acoustic Subdomains

The scalar wave equation is given by

(
κ p, i

)
, i − ρp̈ − ξṗ + S = 0, (2.1)

where p(X, t) stands for hydrodynamic pressure distribution and S(X, t) for body source
terms. Inferior commas (indicial notation is adopted) and over dots indicate partial space
(p, i = ∂p/∂xi) and time (ṗ = ∂p/∂t) derivatives, respectively. ξ(X) stands for the viscous
damping coeficient; ρ(X) is the mass density, and κ(X) is the bulk modulus of the medium.
In homogeneous media, ρ and κ are constant, and the classical wave equation (disregarding
damping) can be written as

p, ii −
p̈

c2
+ s = 0, (2.2)

where c =
√
κ/ρ is the wave propagation velocity. The boundary and initial conditions of the

problem are given by
(i) boundary conditions (t > 0, X ∈ Γ where Γ = Γ1 ∪ Γ2):

p(X, t) = p(X, t) for X ∈ Γ1, (2.3a)

q(X, t) = p,j(X, t)nj(X) = q(X, t) for X ∈ Γ2, (2.3b)

(ii) initial conditions (t = 0, X ∈ Γ ∪Ω):

p(X, 0) = p0(X), (2.4a)

ṗ(X, 0) = ṗ0(X), (2.4b)
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where the prescribed values are indicated by over bars, and q represents the flux along
the boundary whose unit outward normal vector components are represented by nj . The
boundary of the model is denoted by Γ (Γ1 ∪ Γ2 = Γ and Γ1 ∩ Γ2 = 0) and the domain by Ω.

2.2. Dynamic Subdomains

The elastic wave equation for homogenous media is given by

(
c2
d − c2

s

)
uj,ji + c2

sui,jj − üi − ζu̇i + bi = 0, (2.5)

where ui and bi stand for the displacement and the body force distribution components,
respectively. The notation for time and space derivatives employed in (2.1) is once again
adopted. In (2.5), cd is the dilatational wave velocity and cs is the shear wave velocity; they
are given by c2

d
= (λ + 2μ)/ρ and c2

s = μ/ρ, where ρ is the mass density, and λ and μ are
the Lamé’s constants. ζ stands for viscous damping-related parameters. Equation (2.5) can be
obtained from the combination of the following basic mechanical equations (proper to model
heterogeneous media):

σij,j − ρüi − ρζu̇i + ρbi = 0, (2.6a)

σij = λδijεkk + 2μεij , (2.6b)

εij =
ui,j + uj,i

2
, (2.6c)

where σij and εij are, respectively, stress and strain tensor components, and δij is the
Kronecker delta (δij = 1, for i = j, and δij = 0, for i /= j). Equation (2.6a) is the momentum
equilibrium equation; (2.6b) represents the constitutive law of the linear elastic model,
and (2.6c) stands for kinematical relations. The boundary and initial conditions of the
elastodynamic problem are given by

(i) boundary conditions (t > 0, X ∈ Γ where Γ = Γ1 ∪ Γ2):

ui(X, t) = ui(X, t) for X ∈ Γ1, (2.7a)

τi(X, t) = σij(X, t)nj(X) = τi(X, t) for X ∈ Γ2, (2.7b)

(ii) initial conditions (t = 0, X ∈ Γ ∪Ω):

ui(X, 0) = ui0(X), (2.8a)

u̇i(X, 0) = u̇i0(X), (2.8b)
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where the prescribed values are indicated by over bars, and τi denotes the traction vector
along the boundary (nj , as indicated previously, stands for the components of the unit
outward normal vector).

2.3. Acoustic-Dynamic Interacting Interfaces

On the acoustic-dynamic interface boundaries, the dynamic subdomain normal (normal to
the interface) accelerations (ün) are related to the acoustic subdomain fluxes (q), and the
acoustic subdomain hydrodynamic pressures (p) are related to the dynamic subdomain
normal tractions (τn). These relations are expressed by the following equations:

ün −
(

1
ρ

)
q = 0, (2.9a)

τn + p = 0, (2.9b)

where in (2.9a) and (2.9b) the sign of the different subdomain outward normal directions is
taken into account (outward normal vectors on the same interface point are opposite for each
subdomain). In (2.9a), ρ is the mass density of the interacting acoustic subdomain medium.

3. Numerical Modelling

Several numerical methods can be applied to discretize each subdomain of the coupled
acoustic-dynamic model, according to their properties and advantages/disadvantages. In the
following sub-sections, some numerical methods are briefly discussed, addressing their basic
characteristics.

3.1. Domain-Discretization Methods

In the numerical methods based on domain discretization, the whole domain of the model
is discretized into basic structures (elements, cells, points, etc.), and the spatial treatment of
the governing equations is carried out considering these basic structures. In this case, matrix
system of equations, as indicated in (3.1), is usually obtained, where the mass (M), damping
(C), and stiffness (K) matrices, as well as the load vector (F), are computed according to the
spatial discretization techniques being employed

MẌ(t) + CẊ(t) +KX(t) = F(t). (3.1)

In (3.1), X(t) stands for the pressure/displacement vector (X ≡ P or X ≡ U for acoustic
or dynamic formulations, respectively) at time t (spatial and temporal discretizations are
considered separately). In the present work, the finite difference method (FDM), the finite
element method (FEM), and the meshless local Petrov-Galerkin method (MLPG) are focused,
taking into account domain-discretization techniques.

The FDM was one of the first methods developed to analyze complex problems
governed by differential equations [31, 32]. It is easy to implement and considerably efficient;
however, it may become extremely restricted when complex geometries are considered,
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because it is usually based on a regular distribution of points. The FEM, on the other hand, is
well suited to analyze complex geometries, requiring in counterpart a considerably amount
of input data [1, 33–36]. It is also quite an efficient technique, being the most popular method
available nowadays to analyze intricate engineering problems. It is easy to implement and
can be generalized to analyze complex models quite easily. Its main disadvantages are related
to modelling unbounded domains and high gradient variations, as well as difficulties related
to mesh generation. In the past few years, meshless methods have emerged essentially
stimulated by these difficulties related to mesh generation [37, 38]. Mesh generation is
delicate in many situations, for instance, when the domain has complicated geometry; when
the mesh changes with time, as in crack propagation, and remeshing is required at each time
step; when a Lagrangian formulation is employed, especially with nonlinear PDEs, and so
forth. In addition, the need for flexibility in the selection of approximating functions (e.g.,
the flexibility to use nonpolynomial approximating functions) has played a significant role
in the development of meshless methods (many meshless approximations give continuous
variation of the first- or higher-order derivatives of a primitive function in counterpart to
classical polynomial approximation where secondary fields have a jump on the interface of
elements. Therefore, meshless approximations are leading to more accurate results in many
cases). The main disadvantages of meshless methods are still their high computational costs
and, in some cases, their lack of stability.

Once the spatial treatment of the governing equations is carried out by a domain-
discretization technique and (3.1) is obtained, its time domain analysis must also be
considered. In this case, finite difference techniques are usually applied, rendering an
algebraic system of equations, as described in (3.2), which must be solved at each time step n

AXn = Bm. (3.2)

In (3.2), A and B stand for the effective matrix and vector of the model, respectively,
and the entries of X stand for the unknown variables. One should observe that vector B
accounts for boundary prescribed conditions and domain sources, as well as some other
previous step contributions (previous to m). Taking into account explicit time-marching
techniques, m = n − 1, whereas, for implicit time-marching techniques, m = n. In this work,
several explicit and implicit techniques are considered. The central difference method and
the Green-Newmark method [39–41], for instance, are explicit techniques that are here
considered associated with the FDM and the FEM. Similarly, the Houbolt method [42] and
the Newmark method [43] are implicit techniques that are here considered associated with
the MLPG and the FEM.

3.2. Boundary-Discretization Methods

In boundary-discretization methods, just the boundary of the model is discretized, taking
into account once again some basic structure, such as elements and point distributions. In
this case, transient fundamental solutions are employed, and mixed approaches are focused,
rendering numerical procedures based on more than one field incognita. The matrix system
of equations that arises considering this kind of discretization can be written as

AXn = BYn + Zn, (3.3)
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where the entries of X and Y stand for the unknown and known (i.e., prescribed conditions)
variables at the boundary of the model, respectively. A and B are effective matrices related
to these variables at the current time step, and Z accounts for eventual domain-discretized
terms (body sources, initial conditions etc.) and time convolution contributions.

In the present work, the boundary element method (BEM) is focused as a boundary-
discretization technique [44–47]. As it is well known, the BEM is well suited to analyze
unbounded domains and to model high gradient variations, once it is based on fundamental
solutions that satisfy the Sommerfeld radiation condition and that can properly deal with
singularities in the model. The BEM is also flexible and efficient, allowing the discretization
of complex geometries, as long as homogeneous media are considered. For heterogeneous
media (or other more complex models, such as those considering anisotropy and nonlinear
behavior), the BEM may be considered an inappropriate numerical tool, since, in these cases,
its formulation may become very complex and prohibitive.

There are also some “hybrid” formulations that are difficult to classify as a domain-
or a boundary-discretization technique. This is the case, for instance, for some meshless
techniques that are based on local boundary discretization (see, e.g., the LBIE—local
boundary integral equation method [37]). In these meshless techniques, only boundary
discretization is considered; however, the boundaries in focus are those of fictitious domains
inside the real domain and, as a consequence, the whole real domain is in fact being
discretized. Another hybrid formulation that is focused here is the domain boundary element
method (DBEM) [40, 48, 49]. In this approach, nontransient fundamental solutions are
considered, and the matrix system of equations that arises is a mix of (3.1) and (3.3),
with some matrices being computed based on boundary discretizations and others being
computed based on domain discretizations. Analogously as described in the previous sub-
section, the DBEM also requires time-marching techniques to treat the time domain ordinary
differential matrix equation that arises. Here, the Houbolt method is considered as such
numerical technique.

4. Coupling Procedures

In this work, the global model is divided in different subdomains, and each subdomain
is analysed independently (as an uncoupled model), taking into account the numerical
discretization techniques discussed in Section 3. The interactions between the different sub-
domains of the global model are considered taking into account the accelerations/tractions
and fluxes/pressures at the common interfaces, as well as the continuity equations (2.9a) and
(2.9b). Two coupling procedures are discussed here, namely, (i) an explicit direct coupling
approach (ExDCA); (ii) an implicit iterative coupling approach (ImICA).

In the first procedure (i.e., the ExDCA), explicit time-marching schemes (e.g., the
central difference method, the Green-Newmark method, etc.) are employed in some of the
subdomains that are analyzed by domain-discretization methods. In the second procedure
(ImICA), implicit time-marching schemes are considered within the subdomains. Since the
ImICA is based on implicit algorithms (m = n in (3.2)), successive renewals of variables
at common interfaces are considered in the coupling analysis (iterative coupling process),
until convergence is achieved. On the other hand, the ExDCA is based on explicit algorithms
(m = n − 1 in (3.2)), and, as consequence, a direct coupling procedure can be developed, as it
is described in the subsections that follow.

For both explicit direct and implicit iterative coupling procedures, it is appropriate
to consider different temporal discretizations within each subdomain. This is the case since
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optimal time steps are usually quite different taking into account dynamic and acoustic
models, as well as different discretization techniques (especially taking into account some
time-marching schemes that are conditionally stable). For instance, as it has been extensively
reported in the literature, for small time steps, the time-domain BEM may become unstable,
whereas, for large time-steps, excessive numerical damping may occur [44, 45]. Thus, in
order to ensure stability and/or accuracy, usually a much smaller FEM time-step is required
when coupled BEM-FEM analyses are considered (especially if the central difference method
is employed associated to the FEM, which requires a low critical time-step). This situation
may be amplified if subdomains with considerably different wave propagation velocities are
interacting. In the next subsection, the adoption of different temporal discretizations within
each subdomain of the global model is briefly discussed. In the sequence, the ExDCA and the
ImICA are described.

4.1. Multilevel Time-Step Discretization

In order to consider different time steps in each subdomain, interpolation/extrapolation
procedures along time are performed. Here, several schemes are considered for this temporal
data manipulation, according to the discretization techniques involved. For instance, when
the BEM is considered discretizing an interacting subdomain, temporal interpolation and
extrapolation procedures are carried out based on the BEM time interpolation functions.
In this case, time extrapolation procedures can be applied with confidence since they
are consistent with the time-domain BEM formulation. Once time interpolation and
extrapolation techniques are being employed, coupled implicit subdomains can be easily
independently analysed (ImICA) taking into account different time steps. If explicit
subdomains are considered (ExDCA), a subdomain solution can be computed independently
of the current time step. As a consequence, just time interpolation procedures, associated
with subcycling techniques, may be necessary if different time steps are required. Using these
temporal data manipulations, optimal modelling in each subdomain may be achieved, which
is very important regarding flexibility, efficiency, accuracy, and stability.

4.2. Explicit Direct Coupling

In the explicit direct coupling (as well as in the implicit iterative coupling), natural boundary
conditions are prescribed at the acoustic and at the dynamic subdomains common interfaces.
Two explicit direct coupling approaches are discussed here, the first one considering acoustic
explicit subdomains and the second one considering dynamic explicit subdomains. For both
approaches, the acoustic subdomain time steps are considered larger than the dynamic
subdomain time steps (when different time-steps are regarded), since the wave propagation
velocities in solids are usually higher than in acoustic fluids.

In the first explicit direct coupling algorithm discussed here, the pressures related to
the acoustic subdomains are computed directly, since their evaluation only takes into account
results corresponding to previous time steps (m = n − 1 in (3.2)). Once the acoustic pressures
are evaluated, they are employed to compute tractions which are employed as prescribed
interface boundary conditions (natural boundary condition) for the dynamic subdomains,
and the displacements/velocities/accelerations of the model are computed by analysing
these subdomains. The accelerations are then employed to evaluate the acoustic fluxes which
are applied as prescribed interface boundary conditions (natural boundary condition) for
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Table 1: ExDCA-1 algorithm.

Time-step loop (based on tp)
(1) Acoustic subdomains analyses: evaluation of Ptp .
(2) Subcycling (until tu = tp):

(2.1) pressure temporal interpolation: Ptu =
∑Ju

j=0 βjP
(t−jΔt)p ,

(2.2) force-pressure compatibility (spatial interpolation): Ftu =Nu(Ptu),
(2.3) dynamic subdomains analyses: evaluation of Utu ,
(2.4) evaluation of time derivatives of Utu : U̇tu (if necessary), Ütu .

(3) Flux-acceleration compatibility (spatial interpolation): Qtp =Np(Ütp ).
(4) Evaluation of time derivatives of Ptp : Ṗtp , P̈tp (if necessary).

the acoustic subdomains. If necessary, the time derivatives of the acoustic pressures can be
computed. The next time-step computations are then initiated, repeating the above-described
procedures.

The detailed algorithm for this first ExDCA is presented in Table 1, taking into account
different temporal discretizations for the acoustic and for the dynamic subdomains (tp and
tu, respectively—βj and ζj stand for time interpolation/extrapolation coefficients in the
tables that follow). Space interpolation procedures may also be adopted in order to consider
independent subdomain spatial discretizations (i.e., disconnected interface nodes); this can
be accomplished by considering proper interface interpolating functions Nu(·) and Np(·),
which are based on relations (2.9a) and (2.9b).

In this work, this first algorithm is employed associated to FEM-FEM coupled
procedures in which the acoustic subdomains are modelled considering the Green-Newmark
method (explicit technique), and the dynamic subdomains are modelled considering the
Newmark method (implicit technique), as well as to FEM-FEM, and FEM-FDM coupled
procedures in which all subdomains are modelled considering the central difference method
(explicit technique).

In the second explicit direct coupling algorithm focused here, the displacements
related to the dynamic subdomains are computed directly, since their evaluation only
takes into account results corresponding to previous time steps (m = n − 1 in (3.2)).
Once the displacements are evaluated, they are employed to compute the accelerations
and, as a consequence, the acoustic fluxes, which are employed as prescribed interface
boundary conditions (natural boundary condition) for the acoustic subdomains. The acoustic
subdomains are then analyzed, and the acoustic pressures are computed. The pressures are
then employed to evaluate the normal tractions which are applied as prescribed interface
boundary conditions (natural boundary condition) for the dynamic subdomains. If necessary,
the velocities of the model are computed. The next time-step computations are then initiated,
repeating the above-described procedures.

The detailed algorithm for this second ExDCA is presented in Table 2, taking
into account different temporal and spatial discretizations for the acoustic and for the
dynamic subdomains. In this work, this methodology is considered applied to FEM-BEM
coupled procedures in which acoustic subdomains are modelled by the BEM, and dynamic
subdomains are modelled by the FEM associated to the Green-Newmark method (explicit
technique).
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Table 2: ExDCA-2 algorithm.

Time-step loop (based on tu)
(1) Dynamic subdomains analyses: evaluation of Utu .
(2) Evaluation of time derivatives of Utu : Ütu .
(3) Acceleration temporal extrapolation: Ütp =

∑Jp
j=0 ζjÜ

(t−jΔt)u .

(4) Flux-acceleration compatibility (spatial interpolation): Qtp =Np(Ütp ).
(5) Acoustic subdomains analyses: evaluation of Ptp .
(6) Pressure temporal interpolation: Ptu =

∑Ju
j=0 βjP

(t−jΔt)p .

(7) Force-pressure compatibility (spatial interpolation): Ftu =Nu(Ptu).
(8) Evaluation of time derivatives of Utu : U̇tu (if necessary).
(9) Evaluation of time derivatives of Ptp : Ṗtp , P̈tp (if necessary, when tu = tp).

4.3. Implicit Iterative Coupling

In the implicit iterative approach, each subdomain of the model is analysed independently
(as in the ExDCA), and a successive renewal of the variables at the common interfaces is
performed, until convergence is achieved. In order to maximize the efficiency and robustness
of the iterative coupling algorithm, the evaluation of an optimised relaxation parameter is
introduced, taking into account the minimisation of a square error functional.

Initially, in the ImICA, the dynamic subdomains are analysed and the displacements at
the common interfaces are evaluated, as well as its time derivatives. A relaxation parameter
α is introduced in order to ensure and/or to speed up convergence, such that (superscript k
stands for the iterative step)

(k+1)Xt = (α) (k+α)Xt +(1 − α) (k)Xt, (4.1)

where the relaxation parameter can be introduced associated to the displacement variable
(X ≡ U) or to the acceleration variable (X ≡ Ü). Once the accelerations are computed,
they are employed to calculate the acoustic fluxes, which are prescribed as interface
boundary conditions (natural boundary condition) for the acoustic subdomains. The acoustic
subdomains are then analyzed, and the pressures of the model are computed, which are
employed to evaluate dynamic forces at the common interfaces (natural boundary condition).
The dynamic subdomains are then once again analyzed, repeating the whole process until
convergence is achieved. Once convergence is achieved, the next time-step computations are
initiated, repeating the above-described procedures.

The algorithm representing the ImICA is presented in Table 3, taking into account
different temporal and spatial discretizations within each subdomain of the model. In this
work, this algorithm is employed associated to FEM-BEM, BEM-BEM (as well as DBEM-
BEM), and MLPG-MLPG coupling procedures (for MLPG-MLPG coupled analyses, different
time-steps techniques are not considered here).

The effectiveness of the iterative coupling methodology is intimately related to the
relaxation parameter selection; an inappropriate selection for α can drastically increase the
number of iterations in the analysis or, even worse, make convergence unfeasible. Once
appropriate α values are considered, convergence is usually achieved in quite few iterative
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Table 3: ImICA algorithm.

Time-step loop (based on tu)
(1) Iterative analysis (until convergence):

(1.1) dynamic subdomains analyses: evaluation of (k+α)
Utu ,

(1.2 or 1.3) evaluation of time derivatives of (k+λ)
Utu : (k+λ)

Ütu ,

(1.3 or 1.2) adoption of a relaxation parameter: (k+1)
Xtu = α (k+α)

Xtu +(1 − α) (k)
Xtu ,

(1.4) acceleration temporal extrapolation: (k+1)
Ütp = ζ0

(k+1)
Ütu +

∑Jp
j=1 ζjÜ

(t−jΔt)u ,

(1.5) flux-acceleration compatibility (spatial interpolation): (k+1)
Qtp =Np(

(k+1)
Ütp ),

(1.6) acoustic subdomains analyses: evaluation of (k+1)
Ptp ,

(1.7) pressure temporal interpolation: (k+1)
Ptu = β0

(k+1)
Ptp +

∑Ju
j=1 βjP

(t−jΔt)p ,

(1.8) force-pressure compatibility (spatial interpolation): (k+1)
Ftu =Nu(

(k+1)
Ptu),

(2) Evaluation of time derivatives of Utu : U̇tu (if necessary).
(3) Evaluation of time derivatives of Ptp : Ṗtp , P̈tp (if necessary, when tu = tp).

steps, providing an efficient and robust iterative coupling technique. In order to evaluate an
optimal relaxation parameter, the following square error functional is here minimized:

f(α) =
∥∥∥ (k+1)Xt(α)− (k)Xt(α)

∥∥∥2
. (4.2)

Substituting (4.1) into (4.2) yields

f(α) =
∥∥∥α (k+α)Wt + (1 − α) (k)Wt

∥∥∥2

=
(
α2
∥∥∥ (k+α)Wt

∥∥∥2
+ 2α(1 − α)

(
(k+α)Wt,

(k)Wt
)
+ (1 − α)2

∥∥∥ (k)Wt
∥∥∥2

)
,

(4.3)

where the inner product definition is employed (e.g., (W,W) = ||W||2) and new variables, as
defined in (4.4), are considered

(k+λ)Wt = (k+λ)Xt − (k+λ−1)Xt . (4.4)

To find the optimal α that minimizes the functional f(α), (4.3) is differentiated with
respect to α, and the result is set to zero, yielding

α =

(
(k)Wt,

(k)Wt − (k+α)Wt
)

∥∥∥ (k)Wt − (k+α)Wt
∥∥∥2

, (4.5)

which is an efficient and easy to implement expression that provides an optimal value for the
relaxation parameter α, at each iterative step. It is important to note that the relation 0 < α ≤ 1
must hold. In the present work, the optimal relaxation parameter is evaluated according to
(4.5) and if α /∈ (0.01; 1.00), the previous iterative-step relaxation parameter is adopted. For
the first iterative step, α = 0.5 is selected.
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5. Numerical Aspects and Applications

In the following sub-sections, some numerical applications are presented, illustrating the
performance and potentialities of the discussed coupling methodologies. In the first appli-
cation, a multidomain column is analyzed, considering several geometrical and physical con-
figurations, as well as coupling procedures. In this case, acoustic-acoustic, acoustic-dynamic,
and dynamic-dynamic coupled models are discussed, taking into account axisymmetric,
two-dimensional, and three-dimensional configurations. In the second application, a dam-
reservoir system is analyzed, considering once more several coupling techniques. In this
case, a two-dimensional model is focused, and some advanced analyses are carried out, such
as the modeling of nonlinear behavior and infinite media. In the last application, a tube
of steel, submerged in water, is analyzed. In this case, axisymmetric models are focused,
and, once again, several geometric and numeric configurations are considered. Along the
applications discussed here, a large scope of coupling procedures is presented, namely: (i) for
the ExDCA—FEM-FEM, FEM-BEM and FEM-FDM coupling procedures; (ii) for the ImICA—
FEM-BEM, DBEM-BEM (which is referred to here as BEM-BEM 1), BEM-BEM (which is
referred to here as BEM-BEM 2) and MLPG-MLPG coupling procedures. In this way, the
reader can compare and better visualize some benefits and drawbacks of each methodology,
considering an ample range of configurations.

5.1. Multidomain Column

The first example is that of a prismatic body behaving like a one-dimensional column.
Initially, the column is analysed as an acoustic model [50]. It is fixed at one end (p(t) = 0)
and subjected to a unitary Heaviside type forcing function acting at the opposite end (q(t) =
H(t)). A sketch of the model is shown in Figure 1(a). The material properties of the column
are c = 1.0 m/s and ρ = 1.0 kg/m3. The geometry of the model is defined by L = 1.0 m.
As depicted in Figure 1(a), 28 boundary elements of equal length and 40 quadrilateral finite
elements are employed in the coupled mesh. Regarding time discretization, three different
cases of analysis are considered here, namely, (i) ΔtF = 1.0ΔtB, (ii) ΔtF = 0.2ΔtB, and (iii)
ΔtF = 0.1ΔtB; where ΔtB = 0.06 s, and the subscripts F and B are related to the FEM and to
the BEM, respectively.

In Figure 2, time history results are depicted, at points A and B (see Figure 1(a)),
taking into account the ExDCA and the ImICA. Potential (pressure) and flux results are
presented considering the three different cases of analysis, and they are compared to the
analytical solution [51], plotted as a solid line. As can be seen, a higher level of accuracy is
observed when different time steps are considered within each subdomain, regarding their
optimal temporal discretization. The robustness of the multilevel time-step algorithm must
be highlighted: as illustrated in the present application, the algorithm deals properly with
highly different subdomain temporal discretizations.

In a second approach for the column model, the acoustic-dynamic coupled problem
is focused (fluid-solid column [27, 28]). A sketch of the problem is depicted in Figure 1(b).
The geometry of the model is defined once again by L = 1.0 m, and the column is submitted
to a time Heavisite force acting at one of its ends. The physical properties of the media are (i)
fluid subdomain: κ = 100 N/m2 (bulk modulus) and ρ = 1 kg/m3 (density); (ii) solid subdo-
main: E = 100 N/m2 (Young modulus), ν = 0 (Poisson rate), and ρ = 1 kg/m3 (density).



Mathematical Problems in Engineering 13

A

B
12

61

q (t)

Medium 1
BEM

Medium 2
BEM

p = 0

ABC

L SolidFluid

2L2L

f(t)

FEM BEM

LL

0.4 L A B

Model 1

Model 2

Model 3

FEM
elastodynamic

FEM
elastodynamic

FEM
elastodynamic

FEM FDM
acoustic

FEM
acoustic

FEM
acoustic

FDM
acoustic

Medium 2Medium 1

Medium 2

Medium 1

(a)

(c)

(d) (e)

(b)

Figure 1: Column model: (a) FEM-BEM acoustic-acoustic two-dimensional model; (b) MLPG-MLPG
and FEM-FEM acoustic-dynamic two-dimensional model; (c) FEM-BEM acoustic-acoustic axisymmetric
model; (d) FEM-FEM and FEM-FDM acoustic-acoustic/acoustic-dynamic/dynamic-dynamic three-
dimensional model; (e) sketch of the three-dimensional model spatial discretization.

Two spatial-temporal MLPG discretizations are considered to analyse the model,
namely: (i) discretization 1—153 nodes are employed to spatially discretize each subdomain,
and the time step adopted is Δt = 0.0025 s; (ii) discretization 2—561 nodes are employed
to spatially discretize each subdomain, and the time-step adopted is Δt = 0.00125 s. In
Figure 3, displacement time-history results at points A and B of the solid subdomain and
hydrodynamic pressure time-history results at points B and C of the fluid subdomain are
plotted, considering discretizations 1 and 2 and the MLPG-MLPG ImICA. Analytical time
histories are also depicted in Figure 3, highlighting the good accuracy of the numerical results.

The same fluid-solid column is analysed considering FEM-FEM coupled procedures
based on the Green-Newmark method and on the Newmark method (ExDCA). In this case,
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Figure 2: Time-history results at points A and B taking into account FEM-BEM coupling procedures and
different temporal discretizations for each subdomain: (a) explicit direct coupling analysis; (b) implicit
iterative coupling analysis.

200 square finite elements are employed to discretize each subdomain of the model, and
the time discretization is specified by Δt = 0.002 s. The obtained results are depicted in
Figure 4(a). In this analysis, the same wave propagation velocities are considered within
the solid and fluid subdomains, that is, cd = c = 10 m/s. Taking into account a steel-water
column, the physical properties of the media are (i) fluid subdomain: κ = 2.3175 · 109 N/m2,
ρ = 1030 kg/m3; (ii) solid subdomain: E = 2.1 · 1011 N/m2, ν = 0.3, and ρ = 7700 kg/m3;
in this case, cd = 6059 m/s and c = 1500 m/s. In Figure 4(b), the displacement and
hydrodynamic pressure time-history results at point B are depicted, considering Δtf = Δts
and Δtf = 4Δts, where Δts = 3.33 · 10−6 s, and the subscripts s and f are related to the solid
and fluid subdomains, respectively. As one can observe, good agreement between the results
is observed, in spite of the different time discretizations adopted within each subdomain.

In a third approach for the column model, the propagation of acoustic waves through
a prismatic circular column is analysed (axisymmetric model [16]). A sketch of the problem
is depicted in Figure 1(c). The downside half of the column is modelled by the BEM, and the
upside half is modelled by the FEM. The properties of the media are (i)Medium 1 (BEM)—ρ =
1.0 kg/m3 and c = 1.0 m/s; (ii) Medium 2 (FEM)—ρ = 1.0 kg/m3 and c = 2.0 m/s. The spatial
discretization is considered as follows: 32 linear boundary elements discretize Medium 1,



Mathematical Problems in Engineering 15

−0.02
0

0.02

0.04

0.06

0.08

0.1

Point A

Point B

Point B

D
is
pl
ac
em

en
t(
m
)

Time (s)

−1
−0.5

0
0.5
1

1.5
2

2.5
3

Point C

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

Time (s)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

H
yd

ro
d
yn

am
ic

pr
es
su

re
(N

/
m

2 )

(a)

−0.02
0

0.02

0.04

0.06

0.08

0.1

Point A

Point B

Point B

Analytical
MLPG-MLPG

Analytical
MLPG-MLPG

D
is
pl
ac
em

en
t(
m
)

Time (s)

−1
−0.5

0
0.5
1

1.5
2

2.5
3

Point C

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

Time (s)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

H
yd

ro
d
yn

am
ic

pr
es
su

re
(N

/
m

2 )

(b)

Figure 3: Time-history results at points A, B, and C taking into account MLPG-MLPG coupling procedures
(ImICA) and different refinement levels: (a) discretization 1; (b) discretization 2.

and 64 linear-square finite elements discretize Medium 2. The time steps selected are ΔtB =
0.60 s and ΔtF = 0.15 s. Time history acoustic pressures at points A and B (see Figure 1(c))
are depicted in Figure 5. The numerical results are compared with those of a finite difference
solution (based on the work presented by Cohen and Joly [52]) and, as one may observe, the
time responses are quite similar considering these two different methodologies.

In a fourth approach for the column model, three-dimensional analyses are considered,
taking into account FEM-FEM and FEM-FDM explicit coupling approaches (ExDCA) based
on the central difference time-marching method [24]. A sketch for the three-dimensional
column is depicted in Figure 1(d). The geometrical dimensions of the column are:
10 m × 10 m × 50 m. Two media (of equal length and cross-section) compose the column;
the physical properties of each medium are (null Poisson rate is adopted for elastodynamic
subdomains) (i) Medium 1—ρ = 1.0 kg/m3 and c(d) = 10 m/s; (ii) Medium 2—ρ = 1.0 kg/m3

and c(d) = 5 m/s.
Three different numerical models are considered to simulate this problem, taking

into account different coupling procedure combinations. A sketch of the three models
adopted is presented in Figure 1(e). Details about each numerical model are given by (i)
Model 1: elastodynamic FEM formulations are employed. Two independent FEM meshes
are adopted, the first one with 2600 linear hexahedral elements and the other one with
2500 linear hexahedral elements (100 elements, i.e., one “element layer”, are used for
mesh superposition, as described in [24]); (ii) Model 2: elastodynamic and acoustic FEM
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Figure 4: Time-history results for the solid-fluid column at points A, B, and C taking into account FEM-
FEM coupling procedures (ExDCA) and different physical models: (a) homogeneous wave propagation
velocities; (b) heterogeneous wave propagation velocities.

formulations are employed, as well as acoustic FDM formulation. 2500 linear hexahedral
elements are adopted for the FEM elastodynamic mesh, and 1000 linear hexahedral elements
are adopted for the FEM acoustic mesh. 2178 grid points are employed by the space fourth-
order FDM discretization (grid points for mesh superposition included); (iii) Model 3:
acoustic FEM and FDM formulations are employed. Two independent FEM meshes are
adopted, each one with 2000 linear hexahedral elements. 1815 grid points are employed by
the space fourth-order FDM discretization (grid points for mesh superposition included).

Two numerical analyses are considered, namely: (i) homogeneous analysis, where the
entire column is considered composed by Medium 1; (ii) heterogeneous analysis, where half of
the column is considered composed by Medium 1, and the other half by Medium 2. The results
achieved for the three different numerical models described above are depicted in Figure 6.
The heterogeneous analysis considers two different time steps, namely, Δt1 = 0.05 s (Medium
1) and Δt2 = 0.10 s (Medium 2). For the homogeneous analysis, Δt = 0.05 s is adopted for
the entire domain. In Figure 6, reference results are also depicted; these results correspond
to a standard FEM simulation with 5000 linear hexahedral elements and Δt = 0.05 s
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Figure 5: Time-history results for acoustic pressures taking into account FEM-BEM coupling procedures
(ImICA) applied to a heterogeneous axisymmetric model: (a) results at point A; (b) results at point B.

(homogeneous and heterogeneous analyses). As one can see, results for all simulations are in
good agreement.

Considering this first example, the advantages of the discussed multidomain
decomposition procedures may be highlighted under several aspects: different time steps
are easily adopted for each subdomain and, as a consequence, the algorithm becomes quite
robust even when considering media with high properties contrast; moreover, less systems
of equations need to be solved along the time-marching process; not all subdomains need to
be considered at initial time steps, the activation/initialisation of different subdomains may
be controlled based on the properties of the model (wave propagation velocities, etc.), saving
most of the computational effort of the first time steps, and so forth.

5.2. Dam-Reservoir System

In this second example, a dam-reservoir system, as depicted in Figure 7, is analyzed. The
structure is subjected to a sinusoidal distributed vertical load, acting on its crest with an
angular frequency of ω = 18 rad/s. The material properties of the dam are ν = 0.25; E =
3.437·109 N/m2; ρ = 2000 kg/m3. The adjacent water is characterized by a mass density ρ
= 1000 kg/m3 and a wave velocity c = 1436 m/s. The model is analyzed considering water
levels defined by H = 50 m and H = 35 m.

Several ImICA and ExDCA are employed to analyze the dam-reservoir system. Taking
into account the ImICA, the following discretizations are considered: (i) FEM-BEM—in this
case, 93 quadrilateral finite elements are employed to discretize the dam, and the fluid is dis-
cretized by constant-length boundary elements (� = 5 m). The time-steps adopted are Δtf =
0.00350 s and Δts = 0.00175 s [14]; (ii) MLPG-MLPG—113 nodes are employed to discretize
the dam, and the fluid is discretized by a regular equally spaced (horizontally sufficiently
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Figure 6: Time-history results (displacement/pressure x time) at the interface of the three-dimensional
column taking into account FEM-FEM and FEM-FDM coupling procedures (ExDCA): (a) homogeneous
analysis; (b) heterogeneous analysis.
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Figure 7: Sketch of the dam-reservoir system.

extended) distribution of nodes. The time-step adopted for the analyses is Δt = 0.002 s [27];
(iii) BEM-BEM 1–34 linear boundary elements of equal length and 102 linear triangular cells
are employed to model the dam, and the fluid is discretized by constant-length boundary
elements (� = 5 m). The time-steps adopted are Δtf = 0.003 s and Δts = 0.001 s [23]; (iv) BEM-
BEM 2—same as before, without the domain triangular cell mesh. The time-step adopted for
the analyses is Δt = 0.003 s [25]. Results for these ImICA are depicted in Figure 8, taking into
account H = 50 m and H = 35 m.

Taking into account the ExDCA, the following discretizations are considered: (i)
FEM-BEM—same as in the ImICA. The time-steps adopted are Δtf = 0.00350 s and Δts =
0.000875 s [15]; (ii) FEM-FEM—77 quadrilateral elements are employed to discretize the dam,
and the fluid is discretized by a regular (horizontally sufficiently extended) distribution
of square elements. The time-steps adopted for the analyses are Δtf = 0.0014 s and
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Figure 8: Time-history results for the dam-reservoir system considering the ImICA: (a) H = 35 m; (b) H =
50 m.

Δts = 0.0007 s [28]. Results for these ExDCA are depicted in Figure 9, taking into account
H = 50 m and H = 35 m.

In this example, the advantages of employing different discretization procedures to
analyze different subdomains of the global model can be explored. For instance, for the semi-
infinite fluid domain, the BEM can be regarded as an appropriate discretization technique
(infinite domain analysis), whereas domain-discretization methods can be applied to model
the dam and consider some eventual more complicate behavior. In Figure 10, results are
depicted (H = 50 m) considering linear and nonlinear behavior (elastoplastic analysis,
von Mises yield criterion) for the dam and an FEM-BEM discretization [17] for the model
(ImICA).

The results presented so far are obtained taking into account a closed-domain dam,
(null displacements are prescribed at the base of the dam and null fluxes are prescribed at the
base of the storage lake). As is well known, boundary element formulations are an extremely
elegant tool to model infinite media. As a consequence, in the present BEM-BEM 2 coupling
context, analyses considering an opened-domain dam (acoustic-dynamic coupling also being
carried out at the base of the storage lake) can be provided very easily. For the opened-domain
dam case, time-history results are depicted in Figure 11 (H = 50 m), considering the BEM-
BEM 2 [25]. In Figure 12, some time snap shots are depicted, describing the displacement
evolution of the closed/opened-domain dam.
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Figure 9: Time-history results for the dam-reservoir system considering the ExDCA: (a) H = 35 m; (b) H =
50 m.

5.3. Tube of Steel Submerged in Water

In this application, two analyses of a tube of steel submerged in water (axisymmetric models)
are carried out. A sketch of the first model is depicted in Figure 13(a) [16]. A punctual source
is located at the centre of the tube (axisymmetric axis), and it emits a signal characterized by
three time-sinusoidal cycles (s(t) = sin(wt), where w = 10 kHz). The properties of the media
are (i) water: ρ = 1000 kg/m3 and c = 1500 m/s; (ii) steel: ρ = 7700 kg/m3, E = 2.1·1011 N/m2,
and ν = 0.3. In an FEM-BEM ImICA, the boundary of the tube (water cavity) is discretized
by acoustic linear boundary elements with length � = 0.02 m. The tube itself is discretized
by elastodynamic linear-square finite elements. The time steps selected are Δtf = 8.0 · 10−6 s
and Δts = 2.0 · 10−6 s. In an FEM-FDM ExDCA, analogous discretization is adopted for the
tube, and part of the fluid is discretized by a sufficiently extended FDM mesh. Time-history
hydrodynamic pressures at points A and B and displacements at point C (see Figure 13(a))
are depicted in Figure 14, for the FEM-BEM ImICA and for the FEM-FDM ExDCA. As one
may observe, the time responses of these two different methodologies are quite similar.

A sketch of the second model is depicted in Figure 13(b) [24]. In this case, most of
the domain is modelled by the FDM acoustic formulation (water). The metallic tube (marine
riser) is modelled by the FEM elastodynamic formulation. A thin water layer surrounding the
tube is also modelled by the FEM (acoustic formulation). Two different modelling procedures
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Figure 10: Time-history results considering linear and nonlinear material behavior and FEM-BEM implicit
iterative coupling analyses.
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Figure 11: Time-history results for the opened-domain dam-reservoir system considering a BEM-BEM
implicit iterative coupling analysis.
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Figure 12: Scaled displacement results for the dam (H = 50 m) along time: (a) closed-domain dam; (b)
opened-domain dam.
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Figure 13: Sketch of the tube submerged in water: (a) first case of analysis; (b) second case of analysis; (c)
detail of the FEM mesh adopted to model the neighbourhood of the spherical source.

are adopted to simulate the source: (i) the source is considered punctual, and an excitation
term is introduced in the correspondent grid point of the FDM mesh; (ii) the source is
considered spherical (radius 0.03429 m), and an FEM mesh is introduced to properly model
its neighbourhood (this mesh is depicted in Figure 13(c)). Results obtained from a laboratory
experiment [53], as illustrated in Figure 16, are used to validate the numerical response. The
marine riser is characterized by φ = 410 mm (external diameter), t = 12 mm (thickness), and
h = 4.7 m (height). The source produces a sinusoidal excitation with frequency of 20 kHz and
duration of 3.0 · 10−4 s. The time steps adopted for each subdomain of the numerical model
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Figure 14: Time-history results for the tube of steel submerged in water (first case of analysis): (a) pressures
at point A; (b) pressures at point B; (c) horizontal displacements at point C.

are Δt1 = 2.0 · 10−7 s (FDM mesh and FEM spherical source mesh); Δt2 = 1.0 · 10−7 s (FEM
mesh surrounding the tube); Δt3 = 0.5 · 10−7 s (FEM tube mesh).

The results achieved for the hydrodynamic pressure at the receiver (hydrophone) are
depicted in Figures 15(a) and 15(b), for the punctual and spherical source cases, respectively.
The results obtained by the experimental analysis are depicted in Figure 15(c). As one
may observe, good agreement between experimental and numerical (spherical source case)
simulations is obtained (the scale of the graphics should be ignored, since the source
intensities adopted in each analysis are different). Comparing the results depicted in Figures
15(a) and 15(b), one can clearly observe the energy dissipation in the source-receptor
direction, due to the scattering induced by the spherical source. Figure 17 depicts three
snap shots (FDM mesh) of the numerical analysis (punctual source case) and shows some
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Figure 15: Numerical results (pressure x time) at the receiver (second case of analysis) considering FEM-
FDM explicit direct coupling procedures and (a) punctual and (b) spherical sources. (c) Experimental
results at the receiver.

interesting and important features related to the present wave propagation configuration as,
for instance, wave fronts (head waves) arising from the faster propagation through the tube
(Figure 17(b)) generate a reinforcement of amplitude at the wave front region close to the tube
(Figure 17(c)). If one interprets the phenomenon thinking on rays (ray tracing theory), one
may be led to erroneously interpret this reinforcement of the amplitude at oblique incidence.

6. Conclusions

The present paper discusses multidomain decomposition techniques to model the prop-
agation of interacting acoustic-elastic waves considering several coupling procedures.
Two basic algorithms are presented here, namely, the ExDCA (explicit direct coupling
approach) and the ImICA (implicit iterative coupling approach), which are based on
explicit and implicit time-marching schemes, respectively, and multidomain decomposition
coupling procedures. Within the context of these two basic algorithms, several coupled
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Figure 16: Photos of the experiment: (a) tube installation through the water tank input gate; (b)
tank facilities; (c) tube inside the tank (view through the gate); (d) acoustic transductor ITC 1032
(source/receptor).
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Figure 17: Pressure distribution for the punctual source case (FDM mesh) at three different moments: (a)
begin of propagation; (b) wave fronts due to the faster propagation through the tube wall (head waves);
(c) reinforcement of amplitude.

numerical methods are presented along the paper, such as FEM-FEM, FEM-FDM, FEM-
BEM, BEM-BEM, DBEM-BEM, and MLPG-MLPG. Independent temporal and spatial (i.e.,
no matching nodes in common interfaces) discretizations within interacting subdomains
are also discussed in the paper, being several applications of the discussed multilevel
time-step algorithm presented along Section 5, illustrating its good performance and
potentialities. As a matter of fact, in Section 5, several numerical applications are considered
(e.g., acoustic-acoustic/acoustic-dynamic/dynamic-dynamic wave propagation problems,
two-dimensional/three-dimensional/axisymmetric models, different coupled numerical
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procedures, etc.), illustrating as a whole the good flexibility, accuracy, stability, and robustness
of the discussed methodologies.
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In order to predict the interior noise of the automobile in the low and middle frequency band in
the design and development stage, the hybrid FE-SEA model of an automobile was created using
hybrid FE-SEA method. The modal density was calculated using analytical method and finite
element method; the damping loss factors of the structural and acoustic cavity subsystems were
also calculated with analytical method; the coupling loss factors between structure and structure,
structure and acoustic cavity were both calculated. Four different kinds of excitations including
road excitations, engine mount excitations, sound radiation excitations of the engine, and wind
excitations are exerted on the body of automobile when the automobile is running on the road. All
the excitations were calculated using virtual prototype technology, computational fluid dynamics
(CFD), and experiments realized in the design and development stage. The interior noise of the
automobile was predicted and verified at speed of 120 km/h. The predicted and tested overall
SPLs of the interior noise were 73.79 and 74.44 dB(A) respectively. The comparison results also
show that the prediction precision is satisfied, and the effectiveness and reliability of the hybrid
FE-SEA model of the automobile is verified.

1. Introduction

Statistical Energy Analysis (SEA) method is widely used by many automobile industries
and institutes to model automotive vibroacoustic system at high frequencies [1–4]. The
subsystems with many modes show a short wavelength behavior and suit the application of
the SEA method. At low frequencies, the assumptions of random resonance frequencies and
mode shapes become less useful. The subsystems with few modes display a long wavelength
behavior, and they are usually modeled using Finite Element Method (FEM). In order to deal
with low and middle frequencies, a hybrid modeling method including finite element and
statistical energy analysis (Hybrid FE-SEA) is used to develop the vibroacoustic model of the
automobile system [5–9]. Meanwhile, the finite element method is a deterministic method,
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and the SEA is a statistical method, the hybrid FE-SEA method combines two different
methods to produce noniterative hybrid method which includes equations of dynamic
equilibrium and power balance.

Langley [10–13] has an important contribution to the development of the hybrid FE-
SEA method. And with the development of the hybrid FE-SEA method; it is widely used
in automobile industry gradually. Charpentier et al. [14] predicted the structure-borne noise
transmission in a trimmed automotive vehicle. And then, he also improved the design for
interior noise using a hybrid FE-SEA model of a trimmed vehicle. And the sample prediction
results illustrating the impact of design changes on interior noise level were shown along
with the experimental validation result [15]. Musser and Rodrigues [16] improved the mid-
frequency prediction accuracy for fully trimmed vehicle using hybrid FE-SEA technique.
Shorter et al. [17] predicted and diagnosed component transmission loss using the hybrid
FE-SEA method. Cotoni et al. [18] built a model of aircraft to predict the interior noise using
the hybrid FE-SEA method, and it was demonstrated that the hybrid FE-SEA method can
be successfully used to improve SEA models by including some details to the model that
affect the vibroacoustic performance of the system. Manning [19] explored the hybrid method
to expand SEA to the mid- and low frequency range where the assumption of high modal
density is not valid. Cordioli et al. [20] investigated the acoustic performance of various slits
using fast 3D numerical models based on the hybrid FE-SEA method, and the numerical
investigation of the transmission loss of the seals and slits was performed for airborne SEA
predictions.

In this research, a simplified hybrid FE-SEA model was built to predict the automobile
interior noise. It is not the normal prediction with some experiments, but the interior
noise was predicted at the development and design stage of the automobile. It is based
on the prediction of the parameters and excitations. The parameters include modal density,
damping loss factor, and coupling loss factor, and the excitations incorporate sound excitation
of engine cabin, excitation of engine mounts, excitation of road roughness, and wind
excitations.

2. Principle of Hybrid FE-SEA Method

The degrees of freedom q for one of the subsystems describe the displacement on the
boundary. The relationship between q and a corresponding set of external forces f acting
at the boundary can be written as:

f = Dq, (2.1)

where D is the frequency-dependent dynamic stiffness matrix.
Formula (2.1) can be derived as

frev = Ddirq −Dq, (2.2)

where Ddir is the “direct field” dynamic stiffness matrix and frev is “reverberant” force.
Formula (2.2) is substituted into Formula (2.1), and the new equation can be written

as:

frev + f = Ddirq (2.3)
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The correlation between the response at node j of structure and node k of acoustic
cavity can be written as

Sqq = −
(

4E
πωn

)
Im{Hdir} =⇒ E

[
qjq

∗
k

]
= −

(
4E
πωn

)
Im

{
G
(
rjk
)}
, (2.4)

where Hdir is receptance matrix, and it is also the inverse of Ddir, E is the vibrational energy
of the structural subsystem, G is the Green function, and rij is the distance between the grid
points i and j. ω is the angular frequency, and n is the modal density of subsystem.

The hybrid FE-SEA equation can be written as
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(2.5)

where ηj is the damping loss factor of the subsystem j, Pj is the input power of subsystem
j, P ext

in,j is the power that arises from forces applied to the deterministic system, ηjk is the
coupling loss factor between subsystem j and k, nj is the modal density of subsystem j, and
Sff is the cross-spectrum of the forces applied to the deterministic system.

3. Hybrid FE-SEA Model of the Automobile

The finite element model of the body in white (BIW) of the passenger automobile was created.
The model is shown in Figure 1, and it includes 249481 nodes and 249963 elements. The mesh
was mainly generated using quadrilateral elements, and some triangular elements are also
included in the finite element model.

According to the finite element model of the body in white of the passenger
automobile, a hybrid FE-SEA model was built. The subsystems of the hybrid FE-SEA model
must be divided into FE subsystems or SEA subsystems. The large plate subsystems can
be divided into SEA subsystems due to the high density such as roof, front and rear
windshields, window glasses, and floor, and the beam-type subsystems can be divided into
FE subsystems, such as A-pillar, B-pillar, C-pillar, and subframe. The division and properties
of the subsystems of the hybrid FE-SEA model are shown in Table 1. Then, according to the
nodes and elements of the FE model, the FE subsystems were created in the hybrid FE-SEA
model, such as shock tower and longitudinal beams. Also, the SE subsystems were built based
on the nodes from FE subsystems, such as roof and engine hood. The subsystems must be
connected between FE and SE subsystems, FE and FE subsystems, and SE and SE subsystems
in order to ensure that energy can transfer between connected subsystems. The last step of
the modeling is to apply external excitations to the hybrid FE-SEA model.
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Figure 1: Finite element model of the body in white.

Table 1: Subsystem division and properties of the hybrid FE-SEA model.

Subsystem Property Subsystem Property

Left-front door SE curved plate Right-front door SE curved plate
Left-rear door SE curved plate Right-rear door SE curved plate
Left-front window
glass SE plate Right-front window

glass SE plate

Left-rear window glass SE plate Right-rear window
glass SE plate

Front windshield SE plate Rear windshield SE plate
Front floor SE plate Rear floor SE plate
Left-rear side wall SE curved plate Right-rear side wall SE curved plate
Left A-pillar FE Right A-pillar FE
Left B-pillar FE Right B-pillar FE
Left C-pillar FE Right C-pillar FE
Left-front fender SE curved plate Right-front fender SE curved plate
Left-rear fender SE curved plate Right-rear fender SE curved plate
Left-front mudguard SE curved plate Right-front mudguard SE curved plate
Left-rear mudguard SE curved plate Right-rear mudguard SE curved plate

Left-front shock tower FE Right-front shock
tower FE

Front bumper SE curved plate Rear bumper SE curved plate

Left longitudinal beam FE Right longitudinal
beam FE

Subframe FE Firewall FE
Trunk SE curved plate Engine hood SE plate
Roof SE curved plate Trunk floor SE plate
Passenger
compartment cavity SE cavity Trunk cavity SE cavity

The hybrid FE-SEA model is shown in Figure 2. It contains 89605 nodes. The hybrid
FE-SEA is 159876 nodes less than the body in white of the automobile. Meanwhile, the whole
body of the automobile including windshields, and doors contains 336305 nodes, and the
hybrid FE-SEA model is 246700 nodes less than the whole body of the automobile. The
acoustic cavities in the hybrid FE-SEA model are shown in Figure 3.
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Figure 2: Hybrid FE-SEA model of the automobile.

Figure 3: Acoustic cavities in the hybrid FE-SEA model.

4. Parameters of the Hybrid FE-SEA Model

4.1. Modal Density

In the hybrid FE-SEA model of automobile, FE subsystems and SE subsystems are included
in the model. The SE subsystems can be simplified into regularly shaped plate. The modal
densities of the SE subsystems such as roof, engine hood, trunk, and windows can be
calculated with following equation:

n
(
f
)
=

Ap

2RCl
, (4.1)

where Ap is the area of the two-dimensional flat plate, R is radius of gyration, and Cl is
longitudinal wave velocity. Some flat plates and curved plates were simplified to flat plates,
and the modal densities of the SE subsystems are shown in Table 2.

The modal density is defined as

n
(
f
)
=

N

fu − fd , (4.2)
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Table 2: Modal densities of the subsystems simplified to flat plates.

No. SE subsystem Property Simplified Modal density
(Hz−1)

1 Front windshield SE plate Flat plate 0.0747
2 Rear windshield SE plate Flat plate 0.0781
3 Roof SE curved plate Flat plate 0.8422
4 Left-front window SE plate Flat plate 0.0305
5 Left-rear window SE plate Flat plate 0.0299
6 Right-front window SE plate Flat plate 0.0306
7 Right-rear window SE plate Flat plate 0.0300
8 Trunk SE curved plate Flat plate 0.3699
9 Engine hood SE plate Flat plate 0.4995

a Left-front door)) b) Left-front fender)

Figure 4: Finite element models of the subsystems.

where N is the mode numbers between fu and fd, fu is the upper limit frequency of 1/3
octave band, fd is the lower limit frequency of 1/3 octave band, and f is the center frequency
of 1/3 octave band.

The modal densities of the FE subsystems and complicated SE subsystems can be
calculated by formula (4.2). The modal densities of the FE subsystems can be calculated
through finite element analysis. In order to obtain the modal information of the subsystems,
finite element models of the subsystems in the hybrid FE-SEA model were created, and the
left-front door and left-front fender are shown in Figure 4. Meanwhile, the modal analysis
was performed for the finite element subsystem models. The modal density of the A-pillar is
shown in Figure 5. The maximal modal density of the A-pillar is 0.1370 Hz−1 at 31.5 Hz. Three
zero points of the modal density are at 20, 25, and 50 Hz, respectively. The modal density of
the A-pillar increases from 63 to 1000 Hz in the view of the overall curve.

Taking spatial acoustic field of a cuboid with rigid walls (r1, r2, r3, 0 ≤ xi ≤ ri, i = 1, 2, 3)
into consideration, it is assumed that the energy will not be loss, and the sound pressure can
be written as

p = Pϕ(x1, x2, x3)eiwt, (4.3)
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Figure 5: Modal density of the A-pillar.

where P is the amplitude of the sound pressure and ϕ(x1, x2, x3) is the acoustic mode
function. The sound pressure is satisfied with wave equation and the condition of rigid walls:

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
ϕ + k2ϕ = 0,

∂ϕ

∂xi
= 0,

(4.4)

where k is wave number, and k = ω/c, ω is the circular frequency, and c is the sound speed.
The mode number can be given by

N(k) =
k3V0

6π2
, (4.5)

where V0 is the volume of the acoustic field.
The modal density of the acoustic cavity can be expressed as

n(k) =
k2V0

2π2
,

n(ω) =
ω2V0

2π2c
.

(4.6)

Taking the influence of the surface area and total length of edges of the acoustic field on the
modal density into account, the modal density of the acoustic cavity can be expressed as

n(ω) =
ω2V0

2π2c3
+
ω2As

16πc2
+

ωlr
16πc

, (4.7)

where As is the surface area of the acoustic cavity and lr is the total length of the edges.
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Figure 6: Modal density of the acoustic cavity of the passenger compartment.

The modal density of the acoustic cavity of the passenger compartment is shown in
Figure 6. It increases as the frequency increases. The maximal modal density is 0.0636 Hz−1 at
1000 Hz.

4.2. Damping Loss Factor

Damping loss factor (DLF) is the rate of dissipative losses of subsystem energy. It is composed
of three independent damping mechanisms, and it can be written as

η = ηs + ηr + ηb, (4.8)

where ηs is the structural loss factor consisted of material inner friction of subsystem, and ηr
is the loss factor formed by acoustic radiation of subsystem, ηb is the loss factor formed by
border connection damping among subsystems.

Structural loss factor is relative to material performance. The different subsystems of
vehicle body are mainly composed of steel, glass, and engineering plastics. The structural loss
factors of some common materials are shown in Table 3.

Damping loss factor of acoustic radiation ηr can be expressed as

ηr =
ρ0cσ

ωρs
, (4.9)

where ρ0 is air density, c is sound speed, ρs is area density of structure, and σ is the radiation
ratio of the structure.

Additionally, ηb is extremely small. Thus, it can be ignored. The damping loss factor
of the front floor is shown in Figure 7. The DLF of the front floor decreases as the frequency
increases. The maximum and minimum values of the damping loss factors of the front floor
are 0.0172 and 0.0030, respectively.
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Table 3: Structural loss factors of some common used materials.

Material Structural loss factor ηs
Steel 3 × 10−4

Glass 1 × 10−3

Engineering plastics 0.3
Aluminum 1 × 10−4

Brass 2 × 10−3

Cast iron 1 × 10−3

Plywood 1.5 × 10−2

PVC 0.3
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Figure 7: Damping loss factor of the front floor.

The interior acoustic cavity can be regarded as semifree sound field. Meanwhile,
the sound absorption coefficient of the interior acoustic cavity of the automobile can be
obtained in acoustics handbooks. The relationship between the damping loss factor and
sound absorption coefficient of the interior acoustic cavity of the automobile can be expressed
as

ηac =
αcS

8πfV
, (4.10)

where ηac is damping loss factor, α is sound absorption coefficient, S is the surface area of
sound cavity, c is the velocity of sound, f is the center frequency of 1/3 octave band, and V
is the volume of sound cavity.

The damping loss factor of the acoustic cavity of the passenger compartment is shown
in Figure 8. It fluctuates between 0.0001 and 0.0005. The minimum and maximum damping
loss factors of the acoustic cavity of the passenger compartment are 0.00012 and 0.00042 at
1000 and 80 Hz, respectively.
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Figure 8: Damping loss factor of the acoustic cavity of the passenger compartment.

4.3. Coupling Loss Factor

It is assumed that subsystem i and subsystem j are connected with a line. Meanwhile, the
length of the coupling line is far more than the wave length of the free wave in the subsystems.
Linear connection among the structural subsystems is the most common junction form in
structure-structure coupling of the automobile body, and the coupling loss factor (CLF) of
linear connection between subsystems i and j can be described as:

ηij =
lcg

πωAi

〈
τij

〉
, (4.11)

where l is the length of coupling line, cg is bending wave velocity of subsystem, Ai is surface
area of subsystem i, and τij is the wave transmission coefficient from subsystem i to j. The
CLFs between firewall and front floor are shown in Figure 9.

Structure-cavity coupling is also a kind of common connection form between
structural subsystem and acoustic cavity. The coupling loss factors from structural subsystem
to acoustic cavity can be depicted as:

ηsc =
ρ0cσ

ωρs
, (4.12)

where ρ0 is the density of air, σ is the sound radiation coefficient, c is the sound speed, ρs is
the area density of structure, and ω is the circular frequency.

According to the reciprocity theorem, CFL from cavity to structural subsystem can be
written as

ηcs =
σρ0cns
ωρsnc

, (4.13)
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Figure 10: CLFs between acoustic cavity and front floor.

where ns is the modal density of structural subsystem and nc is the modal density of acoustic
cavity.

The CLFs between acoustic cavity and front floor are shown in Figure 10. The CLFs
from acoustic cavity to front floor are basically larger than the corresponding values from
front floor to acoustic cavity. The CLFs from front floor to acoustic cavity are extremely small,
and their values are smaller than 0.0003. The maximum CLF from acoustic cavity to front
floor is0.0089.
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Figure 11: Rigid-elastic coupling multibody dynamics model.

5. Excitations of Hybrid FE-SEA Model

Vehicle body is excited when it is running on the road. There are four basic excitations
including road excitation, engine mount excitation, sound radiation excitation of engine,
and wind excitation. The excitations can be obtained through different method during the
development and design stage of the automobile.

5.1. Road Excitations

The body of the automobile is excited by road when the automobile is running, and the road
excitation acts through tyre, front and rear suspensions. Physical prototype of an automobile
is not available to measure road excitation during the design and development stage of
automobile. As the development of the virtual prototype technology, the virtual prototype
model of an automobile can be created during the design and development stage. In order to
obtain the road excitation, a multibody system model of the automobile was built according
to the basic parameters of the chassis and body systems. Taking the effect of elastic body
on the precision of the road excitation into consideration, a rigid-elastic coupling multibody
dynamics model was built using mode synthesis method. The rigid-elastic coupling model is
shown in Figure 11.

The rigid-elastic coupling model was driven on B-level road at 120 km/h. The
excitations were measured at front shock towers and rear shock towers of spring and
damping shock absorbers, respectively. A total of six excitation points were included in
the model, and they were left-front shock tower, right-front shock tower, left-rear shock
towers of spring and damping shock absorber, and right-rear shock towers of spring and
damping shock absorber. The road excitations are shown in Figure 12. They fluctuate from
20 to 1000 Hz. The minimum and maximum road excitations are 0.0353 and 0.2006 m/s2 at
400 and 50 Hz, respectively, for right-front shock tower. The first three maximum values are
0.4305, 0.2553, and 0.2006 m/s2 for left-front shock tower, left-rear damping, and right-front
shock tower, respectively.

5.2. Engine Mount Excitations

The excitation of engine mounts to body also cannot be measured during the design
and development stage before prototype manufactured. The layout of automobile must be
confirmed at the beginning of the design and develop stage. Then, the engine and its mounts
of the designed automobile also can be determined. The excitations of engine mounts to body
can be obtained through engine rig test.
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Figure 12: Road excitations.

The running speed of the vehicle was 120 km/h, and it was equal to 3200 r/min of the
engine speed. In order to acquire the excitations at the passive sides of the engine mounts, an
experiment was presented on the test rig in a semianechoic room. The engine was installed
on a dynamometer. Because the engine mount system was comprised of four engine mounts
including front mount, left mount, right mount, and rear mount, four accelerometers were
installed in on the initiative sides of the engine mounts. Finally, the vibration accelerations at
four different mounts were measured at speed of 3200 r/min. The relationship between the
accelerations at initiative and passive sides of the engine mount can be written as

T = 20 log
|au|
|ad| , (5.1)

where T is the transmissibility of the engine mount, au is the vibration acceleration of the
engine mount at initiative side, and ad is the acceleration of the engine mount at passive side.

The acceleration at initiative side au was measured, and the transmissibility of the
mount T was known. The acceleration at passive side ad can be calculated as follows:

|ad| = |au|
10T/20

. (5.2)

The excitations of the engine mounts were calculated according to formula (5.2). The
excitations of the engine mounts are shown in Figure 13. For the front engine mount, it is
nearly horizontal from 20 to 100 Hz; it fluctuates up and down from 125 to 1000 Hz; the
maximum acceleration of the front engine mount is 1.9640 m/s2 at 400 Hz. The values of the
excitation of the left engine mount are extremely small. It is strongly fluctuated from 80 Hz to
800 Hz for right engine mount, the maximum value of which is 10.0879 m/s2 at 400 Hz. Mean-
while, the maximum value of the excitation of the rear engine mount is 1.3984 m/s2 at 500 Hz.
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Figure 13: Excitations of engine mounts.

5.3. Sound Radiation Excitations of the Engine

Sound radiation excitation of engine cabin received by engine cabin panels is one of the
most major excitations to the body of automobile. The measurement of the sound radiation
excitation is not available during the design and development stage of automobile. However,
it can be acquired throughout indoor testing according to ISO 6798: 1995 “Reciprocating inter-
nal combustion engines—Measurement of emitted airborne noise—Engineering method and
survey method.” Emitting sound power of the engine could be measured with engineering
method. Meanwhile, on the basis of point sound source theory, sound radiation excitation of
engine received by engine cabin panels can be calculated by the following equation:

Lse = Le − 20 log
r2

r1
, (5.3)

where Lse is sound pressure level (SPL) of engine cabin inner surface; Le is the measuring
point SPL of engine sound power experiment; r1 is the distance between measuring point
and engine, generally, r1 = 1; r2 is the distance between prediction point and engine.

From formula (5.3), if Le and r2 are known, the sound excitation at every surface of
engine cabin could be calculated.

The layout of the sound power test of the engine was the same as illustrated in
Section 5.2. Nine microphones were placed at different positions according to ISO 6798:
1995 “Reciprocating internal combustion engines—Measurement of emitted airborne noise—
Engineering method and survey method.” The SPLs of the engine were measured at speed
of 3200 r/min. The sound radiation excitation of the engine was calculated by formula (5.3).
The sound excitations of the engine cabin are shown in Figure 14. For the left-front fender,
it goes up gradually and fluctuates up and down from 20 to 1000 Hz; the minimum and
maximum SPLs of the sound excitation of the left-front fender are 38.42 and 91.40 dB(A) at
20 and 500 Hz, respectively. The other four sound excitations were also applied on the right-
front fender, engine hood, front bumper, and firewall, respectively. Meanwhile, these four



Mathematical Problems in Engineering 15

10 100 1000

30

40

50

60

70

80

90

100

So
un

d
ex

ci
ta

ti
on

s
(d

B
(A

))

Left-front fender
Right-front fender
Front bumper

Firewall
Engine hood

1/3 tave frequency bandOc

Figure 14: Sound excitations of the engine cabin.

sound excitations have the same trend, and the amplitudes of these four sound excitations
are fluctuating near the sound excitation values of the left-front fender.

5.4. Wind Excitations

The body of automobile is excited by wind when the automobile is running on the road.
Also, the wind excitation becomes a major noise source at high speeds. Wind excitations can
be measured through wind tunnel test. However, the wind tunnel test is extremely expensive,
and the wind excitations are not available without physical prototype of automobile during
the design and development stage of automobile. For the purpose of acquiring the wind
excitation, the Ffowcs Williams and Hawkings (FW-H) model was used with computational
fluid dynamics (CFD) software of Fluent.

The Ffowcs Williams and Hawkings (FW-H) equation can be written as [21, 22]

1
a2

0

∂2p′

∂t2
− ∇2p′ =

∂2

∂xi∂xj

[
TijH

(
f
)] − ∂

∂xi

{[
Pijnj + ρui(un − vn)

]
δ
(
f
)}

+
∂

∂t

{[
ρ0vn + ρ(un − vn)

]
δ
(
f
)}
,

(5.4)

where ui is the fluid velocity component in the xi direction, vi is the surface velocity
components in the xi direction, un is the fluid velocity component normal to the surface f = 0,
and f = 0 means a mathematical surface introduced to “embed” the exterior flow problem
(f > 0) in an unbounded space, which facilitates the use of generalized function theory and
the free-space Green function to obtain the solution. vn is the surface velocity component
normal to the surface, H(f) is the Heaviside function, δ(f) is the Dirac delta function, p′ is
the sound pressure at the far field (p′ = p − p0), ni is the unit normal vector pointing toward
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Figure 15: CFD model of the automobile.

10 100 1000

30

40

50

60

70

80

90

100

W
in

d
ex

ci
ta

ti
on

s
(d

B
(A

))

Roof
Front windshield
Rear window glass

Front window glass
Rear windshield

1/3 tave frequency band (Hz)Oc

Figure 16: Wind excitations of the subsystems.

the exterior region, a0 is the far-field sound speed, ρ is the density of air, Tij is the Lighthill
stress tensor, and Pij is the compressive stress tensor.

The CFD model of the automobile was created according to the CFD method. The
size of simulation wind tunnel in CFD model was 8 times length, 5 times width, and 5
times height of the automobile. The corresponding length, width, and height were 36400 mm,
9500 mm, and 7000 mm, respectively. TGrid-type grid was used in the CFD model which
was divided into 233280 grids. The CFD model of the automobile is shown in Figure 15.
The sound excitations were calculated at different body panels using large eddy simulation
(LES). Three monitoring points were placed at every different body panel on the left half
of body because of the symmetry of the automobile. The inlet velocity was set as 120 km/h,
and the walls of the wind tunnel and the surfaces of the automobile were both set to walls.
After the simulation, the wind excitations at three monitoring points of every body panel
were averaged, and the averaged SPLs were the wind excitations of the automobile. The
simulation results are validated by Yang’s wind tunnel test [23]. The wind excitations of the
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Figure 17: Hybrid FE-SEA model with parameters and excitations.

Figure 18: Microphone at driver’s right ear position.

subsystems are shown in Figure 16. They go up until 800 Hz. The maximum wind excitation
is front window glass, and the minimum and maximum values are 64.94 and 97.98 dB(A) at
20 and 800 Hz, respectively.

6. Interior Noise Prediction

All the input parameters including modal density, damping loss factors, and coupling loss
factors were added in the hybrid FE-SEA model. Meanwhile, the excitations including
road excitations, engine mount excitations, sound radiation excitations of the engine, and
wind excitations were also excited on the hybrid FE-SEA model. Simultaneously, the sound
absorption and insulation effects of the trimmed body were taken into consideration. The
hybrid FE-SEA model with parameters and excitations is shown in Figure 17.

The interior SPL of the automobile was predicted at driver’s right ear with the hybrid
FE-SEA model. Meanwhile, in order to verify the correctness of the prediction results, the
interior noise of the automobile was measured with a physical prototype vehicle on an
asphalt road at speed of 120 km/h. A microphone shown in Figure 18 was placed at the
side of driver’s right ear. The interior noise signal was recorded using LMS SCADAS data
acquisition front end. After data acquisition, the noise signal was processed by Fast Fourier
Transform (FFT) and A-weighted network.

The comparison between the predicted and measured sound pressure levels of the
automobile is shown in Figure 19. The SPL of the prediction fluctuates up and down around
the corresponding value of the test, and it also shows a good agreement of experimentation
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Figure 19: Comparison between sound pressure levels of prediction and test.

and prediction from 20 to 1000 Hz. The errors from 20 to 100 Hz are basically larger than the
values from 200 to 1000 Hz. The minimum and maximum errors are 0.01 and 2.87 dB(A) at
800 and 160 Hz, respectively. The maximum absolute error is less than 3 dB(A). The overall A-
weighted sound pressure levels of prediction and test are 73.79 and 74.44 dB(A), respectively.
The absolute error is 0.65 dB(A), and the relative error is 0.87%. The overall relative error is
less than 1%, and the absolute error is less than 1.0 dB(A). The comparison results also show
that the prediction precision is satisfied, and the effectiveness and reliability of the hybrid
FE-SEA model of the automobile are verified.

7. Conclusions

The hybrid FE-SEA method was used to predict interior noise of the automobile at the
design and development stage in this paper. The hybrid FE-SEA model of the automobile
was created using hybrid FE-SEA method. The parameters of the hybrid FE-SEA model
including modal density, damping loss factor, and coupling loss factor were calculated using
analytical and finite element methods. The excitations including road excitations, engine
mount excitations, sound radiation excitations of the engine, and wind excitations were
calculated using virtual technology and engine tests. All the parameters and excitations can
be available at the design and development stage. Furthermore, the interior noise of the
automobile was predicted and verified.

It is shown that the predicted SPLs of the interior noise have a good agreement with the
corresponding values of the test. The predicted and tested overall SPLs of the interior noise
were 73.79 and 74.44 dB(A), respectively. The absolute error is 0.65 dB(A), and the relative
error is 0.87%. The overall relative error is less than 1%, and the absolute error is less than
1.0 dB(A). The comparison results also show that the prediction precision is satisfied, and the
effectiveness and reliability of the hybrid FE-SEA model of the automobile is verified. The
prediction of the interior noise of the automobile can be realized through various calculation
methods, presented in this paper in the design and development stage.
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The stream water quality model of water quality assessment problems often involves numerical
methods to solve the equations. The governing equation of the uniform flow model is one-
dimensional advection-dispersion-reaction equations (ADREs). In this paper, a better finite
difference scheme for solving ADRE is focused, and the effect of nonuniform water flows in a
stream is considered. Two mathematical models are used to simulate pollution due to sewage
effluent. The first is a hydrodynamic model that provides the velocity field and elevation of
the water flow. The second is a advection-dispersion-reaction model that gives the pollutant
concentration fields after input of the velocity data from the hydrodynamic model. For numerical
techniques, we used the Crank-Nicolson method for system of a hydrodynamic model and the
explicit schemes to the dispersion model. The revised explicit schemes are modified from two
computation techniques of uniform flow stream problems: forward time central space (FTCS) and
Saulyev schemes for dispersion model. A comparison of both schemes regarding stability aspect is
provided so as to illustrate their applicability to the real-world problem.

1. Introduction

Field measurement and mathematical simulation are methods to detect the amount of
pollutant in water area. For the shallow water mass transport problems that presented in
[1], the method of characteristics has been reported as being applied with success, but it
presents in real cases some difficulties. In [2], the finite element method for solving a steady
water pollution control to achieve a minimum cost is presented. The numerical techniques
for solving the uniform flow of stream water quality model, especially the one-dimensional
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advection-diffusion-reaction equation, are presented in [3–7]. A two-dimensional model for
natural convection in shallow water that reduces to a degenerated elliptic equation for
the pressure, an explicit formula for horizontal components of the velocity and a vertical
diffusion for the vertical component, is derived [8]. In [9], a rigorous nonlinear mathematical
model is used to explain the seasonal variability of plankton in previous shallow coastal
lagoons. The particle trajectories in a constant vorticity shallow water term flow over a flat
bed as periodic waves propagate on the water’s free surface are investigated in [10].

The most of nonuniform flow model requires data concerned with velocity of the
current at any point and any time in the domain. The hydrodynamics model provides the
velocity field and tidal elevation of the water. In [11–13], they used the hydrodynamics model
and convection-diffusion equation to approximate the velocity of the water current in a bay,
a uniform reservoir, and a channel, respectively.

The numerical techniques to solve the nonuniform flow of stream water quality model,
one-dimensional advection-diffusion-reaction equation, is presented in [14] by using the fully
implicit schemes: Crank-Nicolson method system of hydrodynamic model and backward
time central space (BTCS) for dispersion model.

The finite difference methods, including both explicit and implicit schemes, are mostly
used for one-dimensional problems such as in longitudinal river systems [15]. Researches
on finite difference schemes have considered on numerical accuracy and stability. There are
several high quality numerical schemes, such as QUICK/QUICKest schemes, Lax-Wendroff
scheme, Crandall scheme, and Dufort-Frankel scheme have been developed to enhance
model performances. These schemes have outstanding stability and high-order accuracy.
They are requirements for advection-dominated systems. Although these schemes need
boundary and initial conditions that make them difficult to use. They need more computing
effort since iterations for more grids are involved in each computation step. For example,
the QUICKest scheme uses a three-point upstream-weighted quadratic interpolation and
needs the stop criteria controlled iterations for each grid in order to enhance accuracy. The
scheme carries out a heavy computing load. Since it involves two upstream points, the upper
boundary conditions need to be defined carefully before starting computation [4].

The simple finite difference schemes become more inviting for general model use.
The simple explicit schemes include Forward-Time/Centered-Space (FTCS) scheme and the
Saulyev scheme. These schemes are either first-order or second-order accurate [4] and have
the advantages of simplicity in coding and time effectiveness in computing without losing
too much accuracy and thus are preceding for several model applications.

In this paper, we will use more economical computation techniques than the method
in [14]. For numerical techniques, we used the Crank-Nicolson method to the system of
hydrodynamic model and the explicit schemes to the dispersion model. The revised explicit
schemes are modified from two computation techniques of uniform flow stream problems:
forward in time/central in space (FTCS) and Saulyev schemes.

The results from hydrodynamic model are data of the water flow velocity for
advection-diffusion-reaction equation which provides the pollutant concentration field. The
term of friction forces due to the drag of sides of the stream is considered. The theoretical
solution of the model at the end point of the domain that guaranteed the accurate of the
approximate solution is presented in [13, 14].

The stream has a simple one-space dimension as shown in Figure 1. Averaging the
equation over the depth, discarding the term due to Coriolis force, it follows that the one-
dimensional shallow water and advection-diffusion-reaction equations are applicable. We use
the Crank-Nicolson method and the forward in time/central in space (FTCS) and Saulyev
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Figure 1: The shallow water system.

schemes to approximate the velocity and the tidal elevation and the concentration from the
foresaid models, respectively.

2. Mathematical Model

2.1. The Hydrodynamic Model

The continuity and momentum equations are governed by the hydrodynamic behavior of
the stream. If we average the equations over the depth, discarding the term due to Coriolis
parameter, shearing stresses, and surface wind [11, 13, 14, 16], we obtain the one-dimensional
shallow water equations:

∂ζ

∂t
+

∂

∂x
[(h + ζ)u] = 0,

∂u

∂t
+ g

∂ζ

∂x
= 0,

(2.1)

where x is longitudinal distance along the stream (m), t is time (s), h(x) is the depth measured
from the mean water level to the stream bed (m), ζ(x, t) is the elevation from the mean water
level to the temporary water surface or the tidal elevation (m/s), and u(x, t) is the velocity
components (m/s), for all x ∈ [0, l].

Assume that h is a constant and ζ � h. Then (2.1) leads to

∂ζ

∂t
+ h

∂u

∂x
=̇ 0,

∂u

∂t
+ g

∂ζ

∂x
= 0.

(2.2)

We will consider the equation in dimensionless problem by letting U = u/
√
gh, X = x/l,

Z = ζ/h, and T = t
√
gh/l. Substituting them into (2.2) leads to

∂Z

∂T
+
∂U

∂X
= 0,

∂U

∂T
+
∂Z

∂X
= 0.

(2.3)
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We now introduce a damping term into (2.3) to represent frictional forces due to the drag of
sides of the stream, thus

∂Z

∂T
+
∂U

∂X
= 0,

∂U

∂T
+
∂Z

∂X
= −U,

(2.4)

with the initial conditions at t = 0 and 0 ≤ X ≤ 1 being specified: Z = 0 and U = 0. The
boundary conditions for t > 0 are specified: Z = eit at X = 0 and ∂Z/∂X = 0 at X = 1. The
system of (2.4) is called the damped equation. We solve the damped equation by using the
finite difference method. In order to solve (2.4) in [0, 1] × [0, T], for convenient using u,d for
U and Z, respectively,

∂u

∂t
+
∂d

∂x
= −u,

∂d

∂t
+
∂u

∂x
= 0,

(2.5)

with the initial conditions u = 0, d = 0 at t = 0 and the boundary conditions d(0, t) = f(t) and
∂d/∂x = 0 at x = 1.

2.2. Dispersion Model

In a stream water quality model, the governing equations are the dynamic one-dimensional
advection-dispersion-reaction equations (ADREs). A simplified representation by averaging
the equation over the depth is shown in [3–5, 7, 14] as

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
−KC, (2.6)

where C(x, t) is the concentration averaged in depth at the point x and at time t, D is the
diffusion coefficient, K is the mass decay rate, and u(x, t) is the velocity component, for all x ∈
[0, 1]. We will consider the model with following conditions. The initial condition C(x, 0) = 0
at t = 0 for all x > 0. The boundary conditions C(0, t) = C0 at x = 0 and ∂C/∂x = 0 at x = 1,
where C0 is a constant.

3. Numerical Experiment

The hydrodynamic model provides the velocity field and elevation of the water. Then the
calculated results of the model will be input into the dispersion model which provides the
pollutant concentration field.
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3.1. Crank-Nicolson Method for the Hydrodynamic Model

We will follow the numerical techniques of [13]. To find the water velocity and water
elevation from (2.5), we make the following change of variable, v = etu, and substituting
them into (2.5), we have

∂v

∂t
+ e−t

∂d

∂x
= 0,

∂d

∂t
+ e−t

∂v

∂x
= 0.

(3.1)

Equation (3.1) can be written in the matrix form
(
v

d

)

t

+

[
0 et

e−t 0

](
v

d

)

x

=

(
0

0

)
. (3.2)

That is,

Ut +AUx = 0, (3.3)

where

A =

[
0 et

e−t 0

]
,

U =

(
v

d

)
,

(
v

d

)

t

=

⎛
⎜⎝

∂v

∂t
∂d

∂t

⎞
⎟⎠,

(3.4)

with the initial condition d = v = 0 at t = 0. The left boundary conditions for x = 0, t > 0 are
specified: d(0, t) = sin t and ∂v/∂x = −et cos t, and the right boundary conditions for x = 1,
t > 0 are specified: ∂d/∂x = 0 and v(0, t) = 0.

We now discretize (3.3) by dividing the interval [0, 1] into M subintervals such that
MΔx = 1 and the interval [0, T] into N subintervals such that NΔt = T . We can then
approximate d(xi, tn) by dn

i , value of the difference approximation of d(x, t) at point x = iΔx
and t = nΔt, where 0 ≤ i ≤ M and 0 ≤ n ≤ N, and similarly defined for vn

i and Un
i . The

grid points (xn, tn) are defined by xi = iΔx for all i = 0, 1, 2, . . . ,M and tn = nΔt for all
n = 0, 1, 2, . . . ,N in which M and N are positive integers. Using the Crank-Nicolson method
[17] to (3.3), the following finite difference equation can be obtained:

[
I − 1

4
λA(Δx +∇x)

]
Un+1

i =
[
I +

1
4
λA(Δx +∇x)

]
Un

i , (3.5)

where

Un
i =

(
vn
i

dn
i

)
, ΔxU

n
i = Un

i+1 −Un
i , ∇xU

n
i = Un

i −Un
i−1, (3.6)
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I is the unit matrix of order 2 and λ = Δt/Δx. Applying the initial and boundary conditions
given for (3.1), the general form can be obtained

Gn+1U
n+1

= EnU
n
+ Fn, (3.7)

where

Gn+1 =

⎡
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4
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0 0
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4
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2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

En =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −λ
4
an

1 0 0

−λ
4
an

2 1
λ

4
an

2 0 0 0

0 −λ
4
an

1 1 0 0
λ

4
an

1

−λ
4
an

2 0 0 1
λ

4
an

2 0

. . . . . . . . . . . . . . . . . .

0 0 0 −λ
4
an

1 1
λ

4
an

1

0 0 −λ
4
an

2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U
n
=

⎛
⎜⎜⎜⎜⎜⎜⎝

Un+1
1

Un+1
2

...

Un+1
M−1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Fn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ
4
an+1

1 sin(tn+1) − λ

4
an

1 sin(tn)

−λ
4
an+1

2 Δxe−tn+1 cos(tn+1) − λ

4
an

2Δxe
−tn cos(tn)

0

0

...

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.8)
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where an
1 = etn , an

2 = e−tn , and tn = nΔt for all n = 0, 1, 2, . . . ,N. The Crank-Nicolson scheme is
unconditionally stable [15, 17].

3.2. The Explicit Schemes for the Advection-Diffusion-Reaction Equation

We can then approximate C(xi, tn) by Cn
i , the value of the difference approximation of C(x, t)

at point x = iΔx and t = nΔt, where 0 ≤ i ≤ M and 0 ≤ n ≤ N. The grid points (xn, tn) are
defined by xi = iΔx for all i = 0, 1, 2, . . . ,M and tn = nΔt for all n = 0, 1, 2, . . . ,N in which M
and N are positive integers.

3.2.1. Forward Time Central Space Explicit Finite Difference Scheme

Taking the forward time central space technique [17] into (2.6), we get the following
discretization:

C ∼= Cn
i ,

∂C

∂t
∼= Cn+1

i − Cn
i

Δt
,

∂C

∂x
∼=

Cn
i+1 − Cn

i−1

2Δx
,

∂2C

∂x2
∼=

Cn
i+1 − 2Cn

i + Cn
i−1

(Δx)2
,

u ∼= Ûn
i .

(3.9)

Substituting (3.9) into (2.6), we get

Cn+1
i − Cn

i

Δt
+ Ûn

i

(
Cn

i+1 − Cn
i−1

2Δx

)
= D

(
Cn

i+1 − 2Cn
i + Cn

i−1

(Δx)2

)
−KCn

i , (3.10)

for 1 ≤ i ≤ M and 0 ≤ n ≤ N − 1. Leting λ = DΔt/(Δx)2 and γn+1
i = (Δt/Δx)Ûn+1

i , (3.10)
becomes

Cn+1
i =

(
1
2
γni + λ

)
Cn

i−1 + (1 − 2λ −KΔt)Cn
i +
(
λ − 1

2
γni

)
Cn

i+1. (3.11)

For i = 1, plugging the known value of the left boundary Cn
0 = C0 to (3.11) in the right-hand

side, we obtain

Cn+1
1 =

(
1
2
γn1 + λ

)
C0 + (1 − 2λ −KΔt)Cn

1 +
(
λ − 1

2
γn1

)
Cn

2 . (3.12)

For i = M, substituting the approximate unknown value of the right boundary by [4], we can
let Cn

M+1 = 2Cn
M − Cn

M−1 and by rearranging, we obtain

Cn+1
M = (2λ)Cn

M−1 +
(
1 − 4λ −KΔt − γnm

)
Cn

M. (3.13)
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The forward time central space scheme is conditionally stable subject to constraints in (3.10).
The stability requirements for the scheme are [4, 18]

λ =
DΔt

(Δx)2
<

1
2
,

γni =
Un

i Δt
Δx

< 1,

(3.14)

where λ is the diffusion number (dimensionless) and γni is the advection number or Courant
number (dimensionless). It can be obtained that the strictly stability requirements are the
main disadvantage of this scheme.

The finite difference formula (3.11) has been derived in [19] that the truncation error
for this method is O{(Δx2),Δt}.

3.2.2. Saulyev Explicit Finite Difference Scheme

The Saulyev scheme is unconditionally stable [6]. It is clear that the nonstrictly stability
requirement of Saulyev scheme is the main of advantage and economical to use. Taking
Saulyev technique [6] into (2.6), it can be obtained the following discretization:

C ∼= Cn
i ,

∂C

∂t
∼= Cn+1

i − Cn
i

Δt
,

∂C

∂x
∼=

Cn
i+1 − Cn+1

i−1

2Δx
,

∂2C

∂x2
∼=

Cn
i+1 − Cn

i − Cn+1
i + Cn+1

i−1

(Δx)2
,

u ∼= Ûn
i .

(3.15)

Substituting (3.15) into (2.6), we get

Cn+1
i − Cn

i

Δt
+ Ûn

i

(
Cn

i+1 − Cn+1
i−1

2Δx

)
= D

(
Cn

i+1 − Cn
i − Cn+1

i + Cn+1
i−1

(Δx)2

)
− kCn

i , (3.16)

for 1 ≤ i ≤ M and 0 ≤ n ≤ N − 1. Leting λ = DΔt/(Δx)2 and γn+1
i = (Δt/Δx)Ûn+1

i , (3.16)
becomes

Cn+1
i =

(
1

1 + λ

)((
1
2
γni + λ

)
Cn+1

i−1 + (1 − λ −KΔt)Cn
i +
(
λ − 1

2
γni

)
Cn

i+1

)
. (3.17)
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For i = 1, plugging the known value of the left boundary Cn+1
0 = C0 to (3.17) in the right-hand

side, we obtain

Cn+1
1 =

(
1

1 + λ

)((
1
2
γn1 + λ

)
C0 + (1 − λ −KΔt)Cn

1 +
(
λ − 1

2
γn1

)
Cn

2

)
. (3.18)

For i = M, substituting the approximate unknown value of the right boundary by [20], we
can let Cn

M+1 = Cn
M + Cn+1

M − Cn+1
M−1 and by rearranging, we obtain

Cn+1
M =

(
1

1 + (1/2)γnM

)(
γnMCn+1

M−1 +
(

1 −KΔt − 1
2
γnM

)
Cn

M

)
. (3.19)

Using Taylor series expansions on the approximation, [21] has shown that the truncation
error is O{(Δx)2 + (Δt)2 + (Δt/Δx)2} or O{2, 2, (1/1)2}.

From (3.16) to (3.19), it can be obtained that the technique does not generate the system
of linear equations. It follows that the application of the technique is economical computer
implementation.

4. The Accuracy of the Hydrodynamic Approximation

It is not hard to find the analytical solution d(x, t) in (2.5) with f(t) = sin t. By changing of
variables, d(x, t) = eitD(x) and u(x, t) = eitU(x) for some D(x),U(x) ∈ C2

0[0, 1] and substitute
into (2.5). Using a separable variables technique, we can obtain d(1, t) a solution [14]

d(1, t) =
sin t cos β coshα − cos t sin β sinhα

cos2β cosh2α + sin2β sinh2α
, (4.1)

where α = 21/4 cos(3π/8) and β = 21/4 sin(3π/8). Anyhow, it is not easy to find the
analytical solution u(x, t) of (2.5). We use the solution d(1, t) obtained in (4.1) to verify to our
approximate solution obtained by the Crank-Nicolson method (3.7). Actually when using the
Crank-Nicolson method, we get the approximate solution both d(x, t) and u(x, t). We assume
that when we get a good approximation for d(x, t) this implied that the method gives a good
approximation for u(x, t). The verification of the approximate solution d(1, t) is shown in
Table 1 and Figure 2.

Figure 2 shows the comparison between the analytical solutions d(1, t) and the
approximate solutions d(1, t) only at the end of the domain. Table 1 shows that an estimate
of the maximum error is less than 7.0%.

Unfortunately, the analytical solutions of hydrodynamic model could not found over
entire domain. This implies that the analytical solutions of dispersion model could not carry
out at any points on the domain as well.

5. Application to the Stream Water Quality Assessment Problem

Suppose that the measurement of pollutant concentration C (Kg/m3) in a uniform stream
at time t (sec) is considered. A stream is aligned with longitudinal distance, 1.0 km total
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Figure 2: Comparison of analytical solution for height of water elevation with results obtained by
numerical technique at the end point of the domain.

Table 1: The error defined by error(T) = max |d(1, t)−d(1, t)| for all T−π ≤ t ≤ T + π at fixed Δt/Δx = 0.25.

T Δx Δt d(1, t) d(1, t) error(T)

20

0.200 0.05000 1.50158 1.45659 0.04499
0.100 0.02500 0.09392 0.38856 0.29465
0.050 0.01250 −0.25831 −0.40244 0.14413
0.025 0.00625 −0.33323 −0.40433 0.07110

30

0.200 0.05000 1.49666 1.45165 0.04501
0.100 0.02500 −0.09358 −0.38821 0.29463
0.050 0.01250 0.25798 0.40198 0.14401
0.025 0.00625 0.33290 0.40389 0.07099

40

0.200 0.05000 1.50146 1.45644 0.04502
0.100 0.02500 0.09324 0.38787 0.29463
0.050 0.01250 −0.25765 −0.40165 0.14401
0.025 0.00625 −0.33257 −0.40356 0.07099

length, and 1.0 m depth. There is a plant which discharges waste water into the stream,
and the pollutant concentration at discharge point is C(0, t) = C0 = 1 Kg/m3 at x = 0
for all t > 0 and C(x, 0) = 0 Kg/m3 at t = 0. The elevation of water at the discharge
point can be described as a function d(0, t) = f(t) = sin tm for all t > 0, and the
elevation is not changed at x = 1.0 km. The physical parameters of the stream system are
diffusion coefficient D = 0.05 m2/s, and a first-order reaction rate 10−5 s−1. In the analysis
conducted in this study, meshes the stream into 20, 40, 80, and 160 elements with Δx =
0.05, 0.025, 0.0125, 0.00625, respectively, and time increment are 3.2, 1.6, 0.8, 0.4, 0.2, 0.1 s
with Δt = 0.01, 0.005, 0.0025, 0.00125, 0.000625, 0.0003125, respectively. Using (3.7), it can be
obtained the water velocity u(x, t) on Table 2 and Figure 3. Next, the approximate water
velocity can be plugged into the finite difference equations of FTCS and Saulyev schemes
on (3.11)–(3.13) and (3.17)–(3.19), respectively. The comparison of concentration of the FTCS
method and Saulyev method is presented in Figure 5 for two different instants. We then
have the stabilities of both schemes for each Δx and Δt in Table 5 that are consistence
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Table 2: The velocity of water flow u(x, t).

t x = 0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 x = 0.6 x = 0.7 x = 0.8 x = 0.9 x = 1.0
10 −0.5478 −0.5695 −0.5666 −0.5199 −0.4711 −0.4061 −0.3352 −0.2571 −0.1747 −0.0878 0.0000
20 1.3101 1.2213 1.1232 1.0160 0.8931 0.7504 0.6097 0.4595 0.3099 0.1554 0.0000
30 −0.4468 −0.3731 −0.3085 −0.2527 −0.2057 −0.1651 −0.1252 −0.0875 −0.0573 −0.0276 0.0000
40 −1.0361 −0.9898 −0.9258 −0.8459 −0.7513 −0.6439 −0.5258 −0.4004 −0.2711 −0.1367 0.0000
50 1.0939 0.9918 0.8867 0.7791 0.6700 0.5594 0.4479 0.3356 0.2233 0.1114 0.0000
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Figure 3: The water velocity u(x, t).
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Figure 4: The pollutant concentration C(x, t).
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Figure 5: The comparison of concentration at two different time instants of the FTCS and Saulyev methods.

Table 3: The pollutant concentration C(x, t) of FTCS scheme, Δx = 0.0125 (40 m), Δt = 0.0003125 (0.1 s).

t x = 0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 x = 0.6 x = 0.7 x = 0.8 x = 0.9 x = 1.0
10 1.0000 0.3231 0.1154 0.0517 0.0292 0.0194 0.0141 0.0109 0.0090 0.0079 0.0075
20 1.0000 0.9996 0.9971 0.9873 0.9575 0.8873 0.7588 0.5774 0.3828 0.2324 0.1720
30 1.0000 0.9981 0.9956 0.9910 0.9830 0.9706 0.9533 0.9327 0.9122 0.8966 0.8903
40 1.0000 0.9260 0.9166 0.9150 0.9145 0.9141 0.9138 0.9136 0.9135 0.9134 0.9133
50 1.0000 0.9993 0.9966 0.9902 0.9788 0.9633 0.9468 0.9327 0.9231 0.9179 0.9162

Table 4: The pollutant concentration C(x, t) of Saulyev scheme, Δx = 0.0125 (40 m), Δt = 0.005 (1.6 s).

t x = 0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 x = 0.6 x = 0.7 x = 0.8 x = 0.9 x = 1.0

10 1.0000 0.3297 0.1225 0.0570 0.0327 0.0212 0.0144 0.0096 0.0059 0.0028 0.0000

20 1.0000 0.9995 0.9970 0.9878 0.9619 0.9020 0.7908 0.6251 0.4238 0.2136 0.0000

30 1.0000 0.9972 0.9919 0.9798 0.9536 0.9026 0.8136 0.6760 0.4859 0.2530 0.0000

40 1.0000 0.3128 0.2031 0.1624 0.1321 0.1052 0.0807 0.0581 0.0372 0.0179 0.0000

50 1.0000 0.9913 0.9631 0.8991 0.7879 0.6342 0.4610 0.2988 0.1694 0.0753 0.0000

with (3.14). The approximation of pollutant concentration C of both schemes are shown
in Tables 3 and 4 and Figure 4. The concentration along a stream at only 24 min with
varied diffusion coefficients is shown in Figure 6. These imply that the Peclet number was
Pe = (Un

i Δx/D) < 10, which indicated the stream system was advection not dominated [15].
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Figure 6: The pollutant concentration C(x, t) for each diffusion coefficients at t = 24 min.

6. Discussion and Conclusions

The approximation of the pollutant concentrations from the FTCS technique is shown in
Tables 3 and 5; it can be concluded that stability requirements is one of the disadvantages
of the technique. The real-world problems require a small amount of time interval in
obtaining accurate solutions. We can see that the FTCS scheme is not good agreement for
real application. In Table 4, it can be obtained that the Saulyev technique has an advantage
over compared to FTCS. It is unconditionally stable, easy, and economical to implement.

By Figure 6, we can see that the diffusion coefficients of pollutant matter can reduce
the concentration in a nonuniform stream. If sewage effluent with a low diffusion coefficient
has discharged into a nonuniform flow stream, then the water quality will be lower than a
discharging of high diffusion coefficients of other pollutant matters.

In this paper, it can be combined the hydrodynamic model and the convection-
diffusion-reaction equation to approximate the pollutant concentration in a stream when the
current which reflects water in the stream is not uniform. The technique developed in this
paper the response of the stream to the two different external inputs: the elevation of water
and the pollutant concentration at the discharged point. The Saulyev technique can be used
in the dispersion model since the scheme is very simple to implement. By the Saulyev finite
difference formulation, we obtain that the proposed technique is applicable and economical
to be used in the real-world problem as aresult of the simplicity of programming and the
straight forwardness of the implementation. It is also possible to find tentative better locations
and the periods of time of the different discharged points to a stream.
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Table 5: The stability of FTCS and Saulyev schemes, γ = max{γni : 1 ≤ i ≤ M, 0 ≤ n ≤ N − 1}.

Δx Δt λ γ FTCS scheme Saulyev scheme

0.0125

0.010000 3.2 1.0665 Unstable Stable

0.005000 1.6 0.5332 Unstable Stable

0.002500 0.8 0.2667 Unstable Stable

0.001250 0.4 0.1333 Stable Stable

0.000625 0.2 0.0080 Stable Stable

0.0125

0.010000 3.2 1.0665 Unstable Stable

0.005000 1.6 0.5332 Unstable Stable

0.002500 0.8 0.2667 Unstable Stable

0.001250 0.4 0.1333 Stable Stable

0.000625 0.2 0.0080 Stable Stable

0.0125

0.010000 3.2 1.0665 Unstable Stable

0.005000 1.6 0.5332 Unstable Stable

0.002500 0.8 0.2667 Unstable Stable

0.001250 0.4 0.1333 Stable Stable

0.000625 0.2 0.0080 Stable Stable
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A corotational finite element method combined with floating frame method and a numerical
procedure is proposed to investigate large steady-state deformation and infinitesimal-free
vibration around the steady-state deformation of a rotating-inclined Euler beam at constant
angular velocity. The element nodal forces are derived using the consistent second-order
linearization of the nonlinear beam theory, the d’Alembert principle, and the virtual work principle
in a current inertia element coordinates, which is coincident with a rotating element coordinate
system constructed at the current configuration of the beam element. The governing equations for
linear vibration are obtained by the first-order Taylor series expansion of the equation of motion
at the position of steady-state deformation. Numerical examples are studied to demonstrate the
accuracy and efficiency of the proposed method and to investigate the steady-state deformation
and natural frequency of the rotating beam with different inclined angle, angular velocities, radius
of the hub, and slenderness ratios.

1. Introduction

Rotating beams are often used as a simple model for propellers, turbine blades, and satellite
booms. Rotating beam differs from a nonrotating beam in having additional centrifugal
force and Coriolis effects on its dynamics. The vibration analysis of rotating beams has
been extensively studied [1–25]. However, the vibration analysis of rotating beam with
inclination angle, which is considered in the recent computer cooling fan design on the
natural frequencies of rotating beams [21], is rather rare in the literature [10, 19, 21, 22].
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Figure 1: A rotating inclined beam, (a) top view, (b) side view.

In [21, 22], the effect of the steady-state axial deformation and the inclination angle on
the natural frequencies of the rotating beam was investigated. However, the lateral steady-
state deformation and its effects on the natural frequencies of the rotating beam were not
considered in [21, 22]. To the authors’ knowledge, the lateral steady-state deformation and its
effects on the lagwise bending and axial vibration of rotating inclined beams are not reported
in the literature.

It is well known that the spinning elastic bodies sustain a steady-state deformation
(time-independent deformation) induced by constant rotation [26]. For rotating beams
with an inclination angle as shown in Figure 1, the steady-state deformations include axial
deformation and lateral deformation. The linear solution of the steady-state deformation of
rotating-inclined beam induced by constant rotation can be easily obtained using mechanics
of materials. However, the centrifugal stiffening effect on the steady lateral deformation
is significant for slender rotating-inclined beam, and the centrifugal force is configuration
dependent load; thus the linear solution of the steady-state deformation of rotating inclined
beam may be not accurate enough. The lagwise bending and axial vibration of rotating
inclined beams are coupled due to the Coriolis effects [15, 24] and the lateral steady-state
deformation. The accuracy of the frequencies obtained from linearizing about the steady-
state deformation is dependent on the accuracy of the steady-state deformation and the
accuracy of the linearized perturbation [6, 12]. Thus, the geometrical nonlinearities that
arise due to steady-state deformation should be considered. In [6], the rotating beam with
pretwist, precone, and setting angle is studied. The undeformed state of the rotating beam is
chosen to be the reference state to define the deformation parameters of the rotating beam.
The geometric nonlinearities up to the second degree are considered. The Galerkin method,
with vibration modes of nonrotating beam, is employed for the solution of both steady-
state nonlinear equations and linear perturbation equations. In [8], it is reported that for
a cantilever beam with a tip mass, even up to the third degree geometric nonlinearities
are considered, in some cases, very inaccurate eigenvalues for the perturbed linearized
equation of motion are obtained. The formulation used in [6, 8, 12] may be regarded as a
total Lagrangian (TL) formulation combined with the floating frame method. In order to
capture correctly all inertia effects and coupling among bending, twisting, and stretching
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deformations of the rotating beam, the governing equations of the rotating beam might be
derived by the fully geometrically nonlinear beam theory [12, 27, 28]. The exact expressions
for the inertia, deformation forces, and the governing equations of the rotating beam,
which are required in a TL formulation for large displacement/small strain problems, are
highly nonlinear functions of deformation parameters. However, the dominant factors in
the geometrical nonlinearities of beam structures are attributable to finite rotations, with the
strains remaining small. For a beam structures discretized by finite elements, this implies
that the motion of the individual elements to a large extent will consist of rigid body motion.
If the rigid body motion part is eliminated from the total displacements and the element
size is properly chosen, the deformational part of the motion is always small relative to
the local element axes; thus in conjunction with the corotational formulation, the higher-
order terms of nodal deformation parameters in the element deformation and inertia nodal
forces may be neglected by consistent linearization [28, 29]. In [29], Hsiao et al. presented a
corotational finite element formulation and numerical procedure for the dynamic analysis of
planar beam structures. Both the element deformation and inertia forces are systematically
derived by consistent linearization of the fully geometrically nonlinear beam theory using
the d

′
Alembert principle and the virtual work principle. This formulation and numerical

procedure were proven to be very effective by numerical examples studied in [29]. However,
because the nodal displacements and rotations, velocities, accelerations, and the equations of
motion of the system are defined in terms of a fixed global coordinate system, the formulation
proposed in [29] cannot be used for steady-state deformation and free vibration analysis
of a rotating-inclined beam. The absolute nodal coordinate formulation [30, 31] is used to
large rotation and large deformation problems. Numerical results show that the absolute
nodal coordinate formulation can be effectively used in the large deformation problems.
However, the mass matrix of the finite elements in [30, 31] is a constant matrix, and therefore,
the centrifugal and Coriolis forces are equal to zero. Thus, the absolute nodal coordinate
formulation cannot be used for steady-state deformation and free vibration analysis of a
rotating inclined beam.

The objective of this study is to present a corotational finite element method combined
with floating frame method and a numerical procedure for large steady-state deformation
and free vibration analysis of a rotating-inclined beam at constant angular velocity. The nodal
coordinates, displacements and rotations, absolute velocities, absolute accelerations, and the
equations of motion of the system are defined in terms of an inertia global coordinate system
which is coincident with a rotating global coordinate system rigidly tied to the rotating
hub, while the total deformations in the beam element are measured in an inertia element
coordinate system which is coincident with a rotating element coordinate system constructed
at the current configuration of the beam element. The rotating element coordinates rotate
about the hub axis at the angular speed of the hub. The inertia nodal forces and deformation
nodal forces of the beam element are systematically derived by the virtual work principle,
the d

′
Alembert principle, and consistent second-order linearization of the fully geometrically

nonlinear beam theory [27–29] in the element coordinates. Due to the consideration of the
exact kinematics of Euler beam, some coupling terms of axial and flexural deformations are
retained in the element internal nodal forces. The element equations are constructed first in
the inertia element coordinate system and then transformed to the inertia global coordinate
system using standard procedure.

The infinitesimal-free vibrations of rotating beam are measured from the position of
the corresponding steady-state deformation. The governing equations for linear vibration of
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rotating beam are obtained by the first-order Taylor series expansion of the equation of mo-
tion at the position of steady-state deformation.

Dimensionless numerical examples are studied to demonstrate the accuracy and
efficiency of the proposed method and to investigate the effect of inclination angle and
slenderness ratio on the steady-state deformation and the natural frequency for rotating
inclined Euler beams at different angular speeds.

2. Formulation

2.1. Description of Problem

Consider an inclined uniform Euler beam of length LT rigidly mounted with an inclination
angle α on the periphery of rigid hub with radius R rotating about its axis fixed in space at a
constant angular speed Ω as shown in Figure 1. The axis of the rotating hub is perpendicular
to one of the principal directions of the cross section of the beam. The deformation
displacements of the beam are defined in an inertia rectangular Cartesian coordinate system
which is coincident with a rotating rectangular Cartesian coordinate system rigidly tied to
the hub.

Here only axial and lagwise bending vibrations are considered. It is well known
that the beam sustains a steady-state deformations (time-independent deformation displace-
ments) induced by constant rotation [26]. In this study, large displacement and rotation with
small strain are considered in the steady-state deformation. The vibration (time-dependent
deformation displacements) of the beam is measured from the position of the steady-state
deformation, and only infinitesimal-free vibration is considered. Note that the axial and
lagwise vibrations, which are coupled due to the Coriolis effects and the lateral steady-state
deformation, cannot be analyzed independently. Here the engineering strain and stress are
used for the measure of the strain and stress.

2.2. Basic Assumptions

The following assumptions are made in derivation of the beam element behavior.

(1) The beam is prismatic and slender, and the Euler-Bernoulli hypothesis is valid.

(2) The unit extension of the centroid axis of the beam element is uniform.

(3) The deformation displacements and rotations of the beam element are small.

(4) The strains of the beam element are small.

In conjunction with the corotational formulation and rotating frame method, the third
assumption can always be satisfied if the element size is properly chosen. Thus, only the terms
up to the second order of deformation parameters and their spatial derivatives are retained
in element position vector, strain, and deformation nodal forces by consistent second-order
linearization in this study.

2.3. Coordinate Systems

In order to describe the system, we define three sets of right-handed rectangular Cartesian
coordinate systems.
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Figure 2: Coordinate systems.

(1) A rotating global set of coordinates, Xi (i = 1, 2, 3) (see Figures 1 and 2); the
coordinates rotate about the hub axis at a constant angular speed Ω as shown in
Figure 1. The origin of this coordinate system is chosen to be the intersection of
the centroid axes of the hub and the undeformed beam. The X1 axis is chosen to
coincide with the centroid axis of the undeformed beam, and the X2 and X3 axes
are chosen to be the principal directions of the cross section of the beam at the
undeformed state. The direction of the axis of the rotating hub is parallel to the
X3 axis. The nodal coordinates, nodal deformation displacements, absolute nodal
velocity, absolute nodal acceleration, and equations of motion of the system are
defined in terms of an inertia global coordinate system which is coincident with the
rotating global coordinate system.

(2) Element coordinates; xi (i = 1, 2, 3) (see Figure 2), a set of element coordinates is
associated with each element, which is constructed at the current configuration of
the beam element. The coordinates rotate about the hub axis at a constant angular
speed Ω. The origin of this coordinate system is located at the element node 1, the
centroid of the end section. The x1 axis is chosen to pass through two end nodes
of the element; the directions of the x2 and x3 axes are chosen to coincide with
the principal direction of the cross section in the undeformed state. Because only
the displacements in X1X2 plane are considered, the directions of x3 axis and X3

axis are coincident. The position vector, deformations, absolute velocity, absolute
acceleration, internal nodal forces, stiffness matrices, and inertia matrices of the
elements are defined in terms of an inertia element coordinate system which is
coincident with the rotating element coordinate system.

In this study, the direction of the axis of the rotating hub is parallel to the X3 axis and
only the displacements in X1X2 plane are considered. Thus, the angular velocity of the hub
referred to the global coordinates may be given by

ΩG =
{

0 0 Ω
}
, (2.1)

where the symbol { } denotes a column matrix, which is used through the paper.
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Figure 3: Kinematics of Euler beam.

2.4. Kinematics of Beam Element

Let Q (Figure 3) be an arbitrary point in the beam element and P the point corresponding
to Q on the centroid axis. The position vector of point Q in the undeformed configurations
referred to the current element coordinate system may be expressed as

r0 =
{
x,y, z

}
. (2.2)

Using the approximation cos θ ≈ 1 − (1/2)θ2, sin θ ≈ θ, and (1 + εc) ≈ 1, retaining all
terms up to the second order, the position vector of point Q in the deformed configurations
referred to the current element coordinate system may be expressed as

r = {r1, r2, r3} =
{
xp − yθ, y

(
1 − 1

2
θ2
)
+ v, z

}
, (2.3)

θ ≈ sin θ =
∂v(x, t)

∂s
=

∂v(x, t)
∂x

∂x

∂s
=

v′

1 + εc
≈ v′ , (2.4)

εc =
∂s

∂x
− 1, (2.5)

where xp(x, t) and v(x, t) are the x1 and x2 coordinates of point P, respectively, in the
deformed configuration, t is time, θ = θ(x, t) is the angle counterclockwise measured from x1

axis to the tangent of the centroid axis of the deformed beam, εc is the unit extension of the
centroid axis, and s is the arc length of the deformed centroid axis measured from node 1 to
point P . In this paper, ( )′ denotes ( ),x = ∂( )/∂x.
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Here, the lateral deflection of the centroid axis, v(x, t), is assumed to be the Hermitian
polynomials of x and may be expressed by

v(x, t) = {N1,N2,N3,N4}t
{
v1,v

′
1,v2,v

′
2
}
= Nt

bub, (2.6)

where vj = vj(t) and v′
j = v

′
j(t) (j = 1, 2) are nodal values of v and v,x, respectively, at nodes j.

Note that, due to the definition of the element coordinates, the values of vj (j = 1, 2) are zero.
However, their variations and time derivatives are not zero. Ni (i = 1–4) are shape functions
and are given by

N1 =
1
4
(1 − ξ)2(2 + ξ), N2 =

L

8

(
1 − ξ2

)
(1 − ξ),

N3 =
1
4
(1 + ξ)2(2 − ξ), N4 =

L

8

(
−1 + ξ2

)
(1 + ξ),

(2.7)

ξ = −1 +
2x
L
, (2.8)

where L is the length of the undeformed beam element.
Making use of assumptions v,x � 1 and εc � 1, the relationship between xp(x, t),

v(x, t), and x in (2.3) may be approximated by

xp(x, t) = u1 +
∫x

0

(
1 + εc − 1

2
v2
,x

)
dx, (2.9)

where u1 is the displacement of node 1 in the x1 direction. Note that due to the definition of
the element coordinate system, the value of u1 is equal to zero. However, the variation and
time derivatives of u1 are not zero.

The axial displacements of the centroid axis may be determined from the lateral
deflections and the unit extension of the centroid axis using (2.9).

From (2.9), one may obtain

� = L + u2 − u1 = xc(L, t) − xc(0, t) =
∫L

0

(
1 + εc − 1

2
v2
,x

)
dx (2.10)

in which � is the current chord length of the centroid axis of the beam element and u2 is the
displacement of node 2 in the x1 direction. Using the assumption of uniform extension of the
centroid axis and (2.10), εc in (2.10) maybe expressed by

εc =
1
L

(
Gt

aua +
1
2
Gt

bub

)
,

Ga = {−1, 1},
ua = {u1,u2},

Gb =
∫L

0
N′

bv,xdx.

(2.11)
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Substituting (2.11) into (2.9), one may obtain

xp(x, t) = Nt
aua + x +

x
2L

Gt
bub − 1

2

∫x

0
v2
,xdx,

Na =
{

1 − ξ

2
,

1 + ξ

2

}
.

(2.12)

From (2.3) and the definition of engineering strain [32, 33], making use of the
assumption of small strain, and retaining the terms up to the second order of deformation
parameters, the engineering strain in the Euler beam may be approximated by

ε11 = εc − yv′′. (2.13)

The absolute velocity and acceleration vectors of point Q in the beam element may be
expressed as

v = {v1,v2,v3} = vo +Ω × r + ṙ, (2.14)

a = {a1, a2, a3} = ao + Ω̇ × r +Ω × (Ω × r) + 2Ω × ṙ + r̈, (2.15)

vo = Ω × rAo, (2.16)

ao = {ao1, ao2, ao3} = Ω × (Ω × rAo), (2.17)

Ω = At
GEΩG, (2.18)

rAo = At
GErAoG, (2.19)

rAoG = rAO + rOoG = {R cosα +Xo,−R sinα + Yo, 0}, (2.20)

where r is the position vector of point Q given in (2.3) referred to the current moving element
coordinate system, the symbol ˙( ) denotes time derivative, Ω is the vector of angular velocity
referred to the current inertia element coordinates, ΩG is the angular velocity of the hub
referred to the global coordinates given in (2.1), AGE is the transformation matrix between
the current global coordinates and the current element coordinates, vo and ao are the absolute
velocity and absolute acceleration of point o, the origin of the current element coordinates, Xo

and Yo are coordinates of point o referred to the current global coordinates, R is the radius of
the hub, and α is inclination angle of the rotating beam. Ω × (Ω × r)and 2Ω × ṙ are centripetal
acceleration and Coriolis acceleration, respectively. ṙ and r̈ are the velocity and acceleration
of point Q relative to the current moving element coordinates. From (2.3), (2.11) and (2.12), ṙ
and r̈ may be expressed as

ṙ = {ṙ1, ṙ2, ṙ3} =
{
ẋp − yv̇,x, v̇ − yv̇,xv,x, 0

}
,

r̈ = {r̈1, r̈2, r̈3} =
{
ẍp − yv̈,x, v̈ − yv̇2

,x − yv̈,xv,x, 0
}
,

ẋp = Nt
au̇a +

x

L
Gt

bu̇b −
∫x

0
v,xv̇,xdx,
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ε̇c =
1
L

(
Gt

au̇a +Gt
bu̇b

)
,

ẍp = Nt
aüa +

x

L

(
Gt

büb + Ġt
bu̇b

) −
∫x

0
(v,xv̈,x + v̇,xv̇,x)dx,

ε̈c =
1
L

(
Gt

aüa + Ġt
bu̇b +Gt

büb

)
.

(2.21)

Note that the current element coordinates constructed at the current configuration of
the beam element rotate about the hub axis at the angular velocity of the hub. Thus, the
centripetal acceleration and Coriolis acceleration corresponding to the inertia forces of the
rotating beam are unique. For nonrotating beam, Ω = 0 and ṙ and r̈ are the absolute velocity
and acceleration referred to the current element coordinate.

2.5. Element Nodal Force Vector

Let uj ,δvj , and δv′
j (j = 1, 2) denote the virtual displacements in the x1 and x2 directions of the

current inertia element coordinates, and virtual rotations applied at the element nodes j. The
element nodal force corresponding to virtual nodal displacements δuj , δvj , and δv′

j (j = 1, 2)
are fij , the forces in the xi (i = 1, 2) directions, and mj moments about the x3 axis, at element
local nodes j.

The element nodal force vector is obtained from the d
′
Alembert principle and the

virtual work principle in the current inertia element coordinates. The virtual work principle
requires that

δut
afa + δut

bfb =
∫
V

(
δε11σ11 + ρδrta

)
dV, (2.22)

δua = {δu1, δu2}, (2.23)

δub =
{
δv1, δv

′
1, δv2, δv

′
2
}
, (2.24)

fa = fDa + fIa =
{
f11, f12

}
, (2.25)

fb = fDb + fIb =
{
f21, m1, f22, m2

}
, (2.26)

fDa =
{
fD

11, f
D
12

}
, (2.27)

fDb =
{
fD

21, m
D
1 , f

D
22, m

D
2

}
, (2.28)

fIa,=
{
fI

11, f
I
22

}
, (2.29)

fIb,=
{
fI

21, m
I
1, f

I
22, m

I
2

}
, (2.30)

where fi (i = a, b) are the generalized force vectors corresponding to δua and δub,
respectively, fDi and fIi (i = a, b) are element deformation nodal force vector and inertia
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nodal force vector corresponding to fi, respectively, V is the volume of the undeformed beam
element, and δε11 is the variation of ε11 in (2.13) corresponding to δua and δub. σ11 is the
engineering stress. For linear elastic material, σ11 = Eε11, where E is Young’s modulus. ρ is
the density, δr is the variation of r in (2.3) (referred to the current inertia element coordinate
system) corresponding to δua and δub, and a is the absolute acceleration in (2.15).

If the element size is chosen to be sufficiently small, the values of the deformation
parameters of the deformed element defined in the current element coordinate system may
always be much smaller than unity. Thus the higher-order terms of deformation parameters
in the element internal nodal forces may be neglected. However, in order to include the
nonlinear coupling among the bending and stretching deformations, the terms up to the
second order of deformation parameters and their spatial derivatives are retained in element
deformation nodal forces by consistent second-order linearization of δε11σ11 in (2.22). Here,
only infinitesimal-free vibration is considered, thus only the terms up to the first order of time
derivatives of deformation parameters and their spatial derivatives are retained in element
inertia nodal forces by consistent first-order linearization of δrta in (2.22).

From (2.6) and (2.11), the variation of ε11 in (2.13) may be expressed as

δε11 = δεc − yδv,xx,

δεc =
1
L

(
δut

aGa + δut
bGb

)
,

δv,xx = δut
bN

′′
b.

(2.31)

From (2.3), (2.6), and (2.12), δr the variation of r in (2.3) may be expressed as

δr = {δr1, δr2, δr3} =
{
δxp − yδv,x, δv − yv,xδv,x, 0

}
,

δxp = δut
aNa +

x

L
δut

bGb −
∫x

0
v,xδv,xdx,

δv,x = δut
bN

′
b.

(2.32)

Substituting (2.15)–(2.21) and (2.31)–(2.32) into (2.22), using
∫
ydA = 0, neglecting the

higher order terms, we may obtain

fDa = EAεcGa, (2.33)

fDb = EI

∫
N′′

bv,xxdx + fD
12

∫
N′

bv,xdx, (2.34)

fIa = ρA

∫
NaNt

adxüa + Ω2ρAao1

∫
Nadx −Ω2ρA

∫
Na

(
Nt

aua + x
)
dx − 2ΩρA

∫
Nav̇dx,

(2.35)

fIb = ρA

∫
Nbv̈dx + ρI

∫
N′

bv̈,xdx

+ Ω2ρAao2

∫
Nbdx −Ω2ρA

∫
Nbvdx −Ω2ρI

∫
N′

bv
′dx + 2ΩρA

∫
NbNt

adxu̇a.

(2.36)
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where the range of integration for the integral
∫
( )dx in (2.34)–(2.36) is from 0 to L, A is

the cross section area, I is moment of inertia of the cross section, aoi (i = 1, 2) are the xi
components of ao in (2.17). The underlined terms in (2.35) and (2.36) are the inertia nodal
force corresponding to the steady-state deformation induced by the constant rotation.

2.6. Element Matrices

The element matrices considered are element tangent stiffness matrix, mass matrix,
centripetal stiffness matrix, and gyroscopic matrix. The element matrices may be obtained
by differentiating the element nodal force vectors in (2.33)–(2.36) with respect to nodal
parameters and time derivatives of nodal parameters.

Using the direct stiffness method, the element tangent stiffness matrix may be
assembled by the following submatrices:

kaa =
∂fDa
∂ua

=
EA

L
GaGt

a,

kab = kt
ba =

∂fDa
∂ub

= 0,

kbb =
∂fD

b

∂ub
= EI

∫
N′′

bN
′′t
b
dx + fD

12

∫
N′

bN
′t
bdx.

(2.37)

The element mass matrix may be assembled by the following submatrices:

maa =
∂fIa
∂üa

= ρA

∫
NaNt

adx,

mab = mt
ba =

∂fIa
∂üb

= 0,

mbb =
∂fIb
∂üb

= ρA

∫
NbNt

bdx + ρI(1 − εc)2
∫
N′

bN
′t
bdx.

(2.38)

The element centripetal stiffness matrix may be assembled by the following sub-
matrices:

kΩaa =
∂fIa

Ω2∂ua
= −ρA

∫
NaNt

adx,

kΩab = kt
Ωab =

∂fIa
Ω2∂ub

= 0,

kΩbb =
∂fI

b

Ω2∂ub
= −ρA

∫
NbNt

bdx.

(2.39)
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Table 1: Dimensionless variables.

Variables Dimensionless variables

Coordinates x, Xo, Yo x =
x

LT
, Xo =

Xo

LT
, Yo = Yo/LT ,

Time t τ =
t

LT

√
E

ρ

Length of beam
element L L = L/LT

Area moment of
inertia I

I =
I

AL2
T

Radius of hub R R = R/LT

Displacements u, v u = u/LT , v = v/LT

spatial derivatives
of displacement u′, u′′, v′, v′′ u′ =

∂u

∂x
= u′, u′′ =

∂2u

∂x2 = LTu′′, v
′ =

∂v

∂x
= v′, v′′ =

∂2v

∂x2 = LTv′′

Time derivatives of
displacement u̇, ü, v̇, v̈ u̇ =

∂u

∂τ
= u̇

√
ρ

E
, ü =

∂2u

∂τ2
= LT

ρ

E
ü, v̇ =

∂v

∂τ
= v̇

√
ρ

E
, v̈ =

∂2v

∂τ2
= LT

ρ

E
v̈

Force and moment fij ,mj
fij =

fij

EA
, (i = 1, 2; j = 1, 2)

Angular velocity Ω k = ΩLT
√
ρ/E

Natural frequency ω K = ωLT
√
ρ/E

The element gyroscopic matrix may be assembled by the following submatrices:

caa =
∂fIa

Ω∂u̇a
= 0,

cab = −ctba =
∂fIa
Ω∂u̇b

= −2ρA
∫
NaNt

bdx,

cbb =
∂fI

b

Ω∂u̇b
= 0.

(2.40)

2.7. Equations of Motion

For convenience, the dimensionless variables defined in Table 1 are used here.
The dimensionless nonlinear equations of motion for a rotating beam with constant

angular velocity may be expressed by

ϕ = FD
(



Q
)
+ FI

(
k2,



Q,
̇

Q,
̈

Q
)

= 0, (2.41)



Q = Qs +Q(τ), (2.42)

where k and τ are dimensionless time and dimensionless angular speed of rotating beam,
respectively, defined in Table 1. ϕ, FD, and FI are the dimensionless unbalanced force
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vector, the dimensionless deformation nodal force vector, and the dimensionless inertia
nodal force vector of the structural system, respectively. FI and FD are assembled from the
dimensionless element nodal force vectors, which are calculated using (2.33)–(2.36) and the
dimensionless variables defined in Table 1 first in the current element coordinates and then
transformed from element coordinate system to global coordinate system before assemblage

using standard procedure.


Q is the dimensionless nodal displacement vector of the rotating

beam,
̇

Q = ∂


Q/∂τ and
̈

Q = ∂2


Q/∂τ2 are the dimensionless nodal velocity vector and
the dimensionless nodal acceleration vector of the rotating beam, respectively, Qs is the
dimensionless steady-state nodal displacement vector induced by constant dimensionless
rotation speed k, and Q(τ) is the time-dependent dimensionless nodal displacements vector
caused by the free vibration of the rotating beam. Here only infinitesimal vibration is
considered.

2.8. Governing Equations for Steady-state Deformation

For the steady-state deformations, Q(τ) = 0. Thus (2.41) can be reduced to nonlinear
dimensionless steady-state equilibrium equations and expressed by

ϕ = FDs (Qs) + k2FIs(Qs) = 0, (2.43)

where FDs (Qs) and k2FIs(Qs) are the dimensionless deformation nodal force vector and the
dimensionless inertia nodal force (the centrifugal force) vector of the structural system
corresponding to the dimensionless steady-state nodal displacement vector Qs, respectively.
k2FIs(Qs) is corresponding to the underlined terms of (2.35) and (2.36). Note that k2FIs(Qs) is
deformation dependent. Thus k2FIs(Qs) should be updated at each new configuration.

Here, an incremental-iterative method based on the Newton-Raphson method is
employed for the solution of nonlinear dimensionless steady-state equilibrium equations at
different dimensionless rotation speed k. In this paper, a weighted Euclidean norm of the
unbalanced force is employed for the equilibrium iterations and is given by

‖ϕ‖
k2
√
N
∥∥FIs∥∥ ≤ etol, (2.44)

where N is number of the equations of the system and etol is a prescribed value of error
tolerance. Unless otherwise stated, the error tolerance etol is set to 10−5 in this study.

2.9. Governing Equations for Free Vibration Measured from the Position of
Steady-State Deformation

Substituting (2.42) into (2.41) and setting the first-order Taylor series expansion of the
unbalanced force vector ϕ around Qs to zero, one may obtain the dimensionless governing
equations for linear free vibration of the rotating beam measured from the position of the
steady-state deformation as follows.

MQ̈ + CQ̇ +
(
K + k2KΩ

)
Q = 0, (2.45)
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where M, C, K, and KΩ are dimensionless mass matrix, gyroscopic matrix, tangent stiffness
matrix, and centripetal stiffness matrix of the rotating beam, respectively. M, C, K, and KΩ are
assembled from the dimensionless element mass matrix, gyroscopic matrix, tangent stiffness
matrix, and centripetal stiffness matrix, which are calculated using (2.37)–(2.40) and the
dimensionless variables defined in Table 1 first in the current element coordinates and then
transformed from element coordinate system to global coordinate system before assemblage
using standard procedure.

We will seek a solution of (2.45) in the form

Q = (QR + iQI)eiKτ , (2.46)

where i =
√−1, K and τ are dimensionless natural frequency of rotating beam and di-

mensionless time defined in Table 1, and QR and QI are real part and imaginary part of the
vibration mode.

Substituting (2.46) into (2.45), one may obtain a set of homogeneous equations ex-
pressed by

HZ = 0, (2.47)

H = H(K, k) =

[
K + k2KΩ −K2M kKCt

kKC K + k2KΩ −K2M

]
, (2.48)

Z = {QR,QI}, (2.49)

where H(K, k) denotes H being a function of K and k. Note that H is a symmetric matrix.
Equation (2.47) is a quadratic eigenvalue problem. For a nontrivial Z, the determinant

of matrix H in (2.47) must be equal to zero. The values of K which make the determinant
vanishes are called eigenvalues of matrix H. The bisection method is used here to find
the eigenvalues. Note that when k = 0, (2.47) will degenerate to a generalized eigenvalue
problem.

3. Numerical Examples

To verify the accuracy of the present method and to investigate the steady deformation
and the natural frequencies of rotating-inclined beams with different inclination angle α,
dimensionless radius of the hub R, and slenderness ratios η = LT

√
A/I at different di-

mensionless angular velocities k, several dimensionless numerical examples are studied here.
For simplicity, only the uniform beam with rectangular cross section is considered

here. The maximum steady-state axial strain εmax of rotating beam is the sum of the maximum
steady-state membrane strain εmax

c and bending strain εmax
b , which occur at the root of the

rotating beam. In practice, rotating structures are designed to operate in the elastic range
of the materials. Thus, it is considered that εmax ≤ εy (say 0.01) in this study. At the same
dimensionless angular speed k, εmax are different for rotating beams with different η, α, and
R. Thus, the allowable k are different for rotating beams with different η, α, and R in this
study.
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Table 2: Comparison of results for different cases (η = 20, R = 1.5).

α k
εmax
c

(10−3)
εmax
b

(10−3)
vtip/LT
(10−3)

K1 K2 K3(a) K4 K5(a) K6 K7(a)

EA10 0 0 0 .174788 1.05957 1.57241 2.82495 4.75610 5.19546 8.00214
EA50 0 0 0 .174787 1.05953 1.57086 2.82431 4.71413 5.19120 7.86206

0 EA100 0 0 0 .174787 1.05953 1.57081 2.82431 4.71283 5.19119 7.85600
[24] 0 0 0 .17479 1.05953 1.57080 2.82431 4.71239 5.19119 —

0◦ [34] 0 0 0 .17580 1.10172 1.57080 3.08486 4.71239 6.04510 —
EA10 6.93309 0 0 .198616 1.08756 1.57615 2.85333 4.75729 5.22384 8.02928
EA50 7.15492 0 0 .198514 1.08726 1.57616 2.85243 4.71534 5.21931 7.86274

0.06 EA100 7.18210 0 0 .198511 1.08726 1.57457 2.85242 4.71403 5.21930 7.85669
[24] 7.20000 0 0 .19862 1.08760 1.57455 2.85276 4.71360 5.21962 —
LAS 7.20000 0 0 — — — — — — —

EA10 1.72680 1.93098 5.47630 .181049 1.06661 1.57335 2.83206 4.75639 5.20256 8.00889

5◦ 0.03 EA50 1.78195 1.93546 5.47699 .181021 1.06651 1.57180 2.83136 4.71443 5.19823 7.86221
EA100 1.78870 1.93560 5.47701 .181020 1.06651 1.57175 2.83136 4.71312 5.19822 7.85616
LAS 1.79486 2.03794 5.88301 — — — — — — —

EA10 .173298 1.29008 3.72294 .175410 1.06028 1.57252 2.82567 4.75613 5.19619 8.00281

30◦ 0.01 EA50 .178615 1.29224 3.72299 .175407 1.06024 1.57097 2.82503 4.71416 5.19191 7.86207
EA100 .179264 1.29231 3.72300 .175407 1.06024 1.57092 2.82503 4.71285 5.19190 7.85601
LAS .179904 1.29904 3.75000 — — — — — — —

EA10 .0500345 2.59364 7.49504 .174836 1.05978 1.57253 2.82520 4.75612 5.19573 8.00229

90◦ 0.01 EA50 .0500384 2.59784 7.49506 .174835 1.05974 1.57098 2.82456 4.71415 5.19145 7.86205
EA100 .0500216 2.59797 7.49507 .174835 1.05974 1.57093 2.82456 4.71284 5.19144 7.85599
LAS .0500000 2.59807 7.50000 — — — — — — —

To investigate the effect of the lateral deflection on the steady-state deformation and
the natural frequency of rotating Euler beams, here cases with and without considering the
lateral deflection are considered. The corresponding elements are referred to as EA element
and EB element, respectively. For EA element, all terms in (2.33)–(2.40) are considered; for EB
element, all terms in (2.33)–(2.40) are considered except the underlined terms in (2.36), which
are the lateral inertia nodal force corresponding to the steady-state deformation induced by
the constant rotation. In this section, vtip/LT denotes the dimensionless lateral tip deflection
of the steady-state deformation; Ki denotes the ith dimensionless natural frequency of the
rotating beam and denote that the corresponding vibration mode is lateral vibration at k = 0;
in all tables, the entries with “(a)” denotes that the corresponding vibration mode is axial
vibration at k = 0.

The example first considered is the rotating-inclined beams with dimensionless radius
of the hub R = 1.5, inclination angle α = 0◦, 5◦, 30◦, 90◦, and slenderness ratios η = 20, 1000.
The present results are shown in Tables 2 and 3 together with some results available in the
literature. In Tables 2 and 3, EAn, n = 10, 50, 100, denote that n equal EA elements are used for
discretization, and LAS denotes the linear analytical solution of the steady-state deformation.
It can be seen that for higher natural frequencies of lateral vibration, the discrepancy between
the present results and the analytical solutions given in [34], in which the rotary inertia is
not considered, increases with decrease of the slenderness ratio. It seems that the effect of
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Table 3: Comparison of results for different cases (η = 1000, R = 1.5).

α k
εmax
c

(10−3)
εmax
b

(10−3)
vtip/LT

K1
(10−2)

K2
(10−1)

K3
(10−1) K4 K5 K6 K7

EA10 0 0 0 .351601 .220349 .617105 .121008 .200340 .300117 .421052
EA50 0 0 0 .351601 .220341 .616949 .120893 .199838 .298509 .416903

0 EA100 0 0 0 .351601 .220341 .616948 .120893 .199837 .298506 .416896
[24] 0 0 0 .352 .2203 .6169 .12089 .19984 .29851 —

0◦ [34] 0 0 0 .3516 .22034 .616972 .120902 — — —
EA10 6.93309 0 0 9.00457 2.50186 4.13423 .591446 .784725 .992927 1.21760
EA50 7.15492 0 0 8.96239 2.47424 4.06068 .580524 .771309 .976120 1.19365

0.06 EA100 7.18210 0 0 8.96152 2.47312 4.05756 .580088 .770833 .975634 1.19316
[24] 7.20000 0 0 8.952 2.4708 4.0536 .57955 .77017 .97486 —
LAS 7.20000 0 0 — — — — — — —

EA10 1.73113 3.88303 .0835171 4.54714 1.27448 2.17658 .323098 .443024 .577262 .726698

5◦ 0.03 EA50 1.78396 6.00526 .0838194 4.53348 1.26220 2.15028 .319777 .439167 .572464 .719965
EA100 1.78936 6.20203 .0838218 4.53320 1.26179 2.14942 .319678 .439068 .572368 .719873
LAS 1.79486 101.897 14.70753 — — — — — — —

EA10 .117174 8.73588 .429688 1.29068 .405580 .836390 .143462 .221484 .319586 .439110

30◦ 0.008 EA50 .114341 9.36150 .429979 1.28848 .404156 .836065 .143631 .221433 .318254 .434653
EA100 .113410 9.38784 .429986 1.28840 .404108 .836056 .143643 .221458 .318289 .434691
LAS .115138 41.5692 6.00000 — — — — — — —

EA10 00632587 8.11012 .747138 .561367 .232168 .566051 .113317 .190889 .289637 .409722

90◦ 0.003 EA50 00388224 8.15298 .747250 .560585 .232182 .566299 .113204 .190326 .287895 .405359
EA100 .00351740 8.15396 .747254 .560558 .232181 .566306 .113202 .190322 .287886 .405342
LAS .00450000 11.6913 1.68750 — — — — — — —

the rotary inertia on the higher natural frequencies of the Euler beam is not negligible when
the slenderness ratio is small. It can be seen from Tables 2 and 3 that the differences between
the results of EA50 and EA 100 are negligible for all cases studied. Thus, in the rest of the
section, all numerical results are obtained using 50 equal elements. For α = 0, and k /= 0, the
steady-state deformation is axial deformation only as expected. The analytical solution of the
maximum steady-state membrane strain εmax

c = k2(R cosα + 1/2) given in [15] and the linear
solution are identical. It can be seen that at the same dimensionless angular speed k, εmax

c is
independent of the slenderness ratio η. Thus, for α = 0, the allowable k is limited by εmax

c and
is the same for the rotating beam with different slenderness ratio η. Very good agreement is
observed between the natural frequencies obtained by the present study and those given in
[24], which are obtained using the power series method. It can be seen from Table 3 that for
slenderness ratio η = 1000, with increase of the inclination angle α, the values of εmax

b
and

vtip/LT increase significantly and the value of the allowable dimensionless angular speed k
decreases significantly. Comparing εmax

b and vtip/LT of EA with the results of linear analytical
solution, respectively, it is found that the difference between the results of EA and LAS is
insignificant for η = 20 but is remarked for η = 1000. These may be explained as follows. The
centrifugal stiffening effect is significant for slender beam, and the lateral component of the
centrifugal force in the rotating inclined beam decreases with the increase of the steady-state
lateral deflection.
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Table 4: Dimensionless frequencies for rotating beam with different inclination angle (η = 70, R = 1, k =
5/70).

α
εmax
c (10−3) εmax

b
vtip/LT K1 K2

EA EB EA EA EA EB [21] EA EB [21]
0◦ 7.61582 7.61579 0 0 .105565 .105427 .105 .411754 .410792 .418
10◦ 7.53275 7.53893 .021843 .119537 .105513 .104869 .105 .411356 .410001 .417
20◦ 7.28556 7.31066 .043509 .236923 .105359 .103195 .103 .410160 .407642 .414
30◦ 6.88032 6.93792 .064820 .350059 .105101 .100399 .100 .408162 .403758 .410
40◦ 6.32700 6.43205 .085602 .456935 .104737 .0964721 .096 .405357 .398421 .405
50◦ 5.63927 5.80840 .105681 .555686 .104264 .0913941 .091 .401742 .391733 .398
60◦ 4.83425 5.08596 .124890 .644628 .103679 .0851262 .085 .397314 .383830 .390
70◦ 3.93214 4.28663 .143064 .722301 .102976 .0775919 .077 .392079 .374876 .381
80◦ 2.95575 3.43472 .160043 .787503 .102151 .0686418 .068 .386048 .365073 .371
90◦ 1.93010 2.55611 .175673 .839324 .101193 .0579597 .057 .379245 .354659 .361

Table 5: Dimensionless frequencies for rotating beam with different inclination angle (η = 39, R = 1).

α k εmax
c (10−4) εmax

b
(10−3) vtip/LT (10−3) K1 (10−1) K2 K3 K4 K5 K6(a)

0 0 0 0 .900168 .559057 1.54325 1.57086 (a) 2.96396 4.71413
.010 1.48999 0 0 .909817 .560283 1.54452 1.57097 (a) 2.96528 4.71415
.020 5.96060 0 0 .938126 .563945 1.54830 1.57130 (a) 2.96926 4.71421

0◦ .030 13.4138 0 0 .983359 .569996 1.55455 1.57190 (a) 2.97586 4.71432
.040 23.8528 0 0 1.04313 .578359 1.56302 1.57296 (a) 2.98509 4.71449
.050 37.2822 0 0 1.11488 .588935 1.57113 1.57704 (a) 2.99691 4.71472
.060 53.7078 0 0 1.19620 .601604 1.57358 (a) 1.58936 3.01129 4.71502
.005 .371545 .073310 .412011 .902582 .559363 1.54357 1.57089 (a) 2.96429 4.71414
.010 1.48623 .289977 1.62160 .909786 .560280 1.54449 1.57100 (a) 2.96528 4.71415

5◦ .015 3.34417 .640707 3.55360 .921661 .561805 1.54595 1.57126 (a) 2.96693 4.71416
.020 5.94559 1.11150 6.09535 .938019 .563932 1.54784 1.57177 (a) 2.96925 4.71416
.025 9.29075 1.68547 9.11211 .958617 .566654 1.55003 1.57268 (a) 2.97222 4.71415
.030 13.3800 2.34473 12.4630 .983170 .569962 1.55233 1.57416 (a) 2.97585 4.71413
.002 .054292 .067510 .379956 .900509 .559102 1.54330 1.57087 (a) 2.96401 4.71413
.004 .217174 .269614 1.51631 .901534 .559237 1.54341 1.57090 (a) 2.96415 4.71413

30◦.006 .488657 .605041 3.39858 .903243 .559461 1.54355 1.57103 (a) 2.96440 4.71412
.008 .868763 1.07170 6.00953 .905635 .559775 1.54362 1.57132 (a) 2.96474 4.71409
.010 1.35752 1.66673 9.32547 .908710 .560177 1.54351 1.57191 (a) 2.96518 4.71403
.002 .019999 .135091 .760426 .900208 .559076 1.54327 1.57087 (a) 2.96398 4.71413
.004 .080009 .540362 3.04080 .900333 .559132 1.54324 1.57098 (a) 2.96404 4.71412

90◦.006 .180072 1.21579 6.83830 .900554 .559224 1.54295 1.57140 (a) 2.96415 4.71407
.008 .320253 2.16132 12.1478 .900889 .559349 1.54211 1.57246 (a) 2.96431 4.71394
.010 .500631 3.37678 18.9613 .901363 .559506 1.54041 1.57447 (a) 2.96451 4.71365

To investigate the effect of the lateral deflection on the steady-state deformation and
the natural frequency of rotating-inclined beams, the cases with and without considering
the lateral deflection are studied for η = 70, R = 1, and k = 5/70. The present results are
shown in Table 4. The results transcribed from the figure given in [21], in which the steady-
state lateral deflection and the rotary inertia are not considered, are also shown in Table 4 for
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Table 6: Dimensionless frequencies for rotating beam with different inclination angle (η = 50, R = 1).

α k εmax
c (10−4) εmax

b
(10−3) vtip/LT (10−3) K1 (10−1) K2 K3 K4 (a) K5 K6

0 0 0 0 .702550 .437859 1.21530 1.57086 2.35176 3.82646
.010 1.48998 0 0 .714917 .439441 1.21696 1.57096 2.35349 3.82822
.020 5.96058 0 0 .750712 .444154 1.22192 1.57125 2.35868 3.83349

0◦ .030 13.4137 0 0 .806600 .451898 1.23014 1.57173 2.36731 3.84227
.040 23.8527 0 0 .878442 .462516 1.24155 1.57241 2.37932 3.85452
.050 37.2820 0 0 .962316 .475813 1.25605 1.57328 2.39467 3.87021
.060 53.7076 0 0 1.05500 .491563 1.27352 1.57435 2.41329 3.88930
.005 .371544 .093761 .674835 .705653 .438254 1.21571 1.57089 2.35219 3.82689
.010 1.48623 .368279 2.62905 .714878 .439437 1.21695 1.57096 2.35349 3.82821

5◦ .015 3.34418 .804892 5.66932 .729982 .441402 1.21900 1.57111 2.35565 3.83040
.020 5.94560 1.37717 9.52433 .750592 .444136 1.22184 1.57134 2.35869 3.83347
.025 9.29074 2.05594 13.8991 .776240 .447626 1.22547 1.57166 2.36258 3.83740
.030 13.3799 2.81357 18.5209 .806412 .451854 1.22987 1.57208 2.36734 3.84221
.002 .054292 .086522 .624206 .702990 .437917 1.21536 1.57087 2.35182 3.82652
.004 .217177 .345191 2.48734 .704308 .438091 1.21554 1.57088 2.35202 3.82671

30◦ .006 .488671 .773349 5.56121 .706507 .438381 1.21583 1.57093 2.35234 3.82704
.008 .868803 1.36665 9.79986 .709585 .438785 1.21621 1.57103 2.35280 3.82749
.010 1.35760 2.11921 15.1409 .713543 .439301 1.21666 1.57120 2.35340 3.82806
.002 .019999 .173193 1.24980 .702604 .437883 1.21532 1.57087 2.35179 3.82648
.004 .080020 .692767 4.99671 .702772 .437956 1.21539 1.57090 2.35188 3.82657

90◦ .006 .180129 1.55866 11.2327 .703078 .438073 1.21545 1.57103 2.35204 3.82670
.008 .320419 2.77065 19.9428 .703561 .438232 1.21544 1.57135 2.35228 3.82688
.010 .500997 4.32814 31.1020 .704273 .438426 1.21527 1.57200 2.35265 3.82709

comparison. It can be seen from Table 4 that except α = 0, the values of εmax
b are much larger

than the yield strain for most engineering materials at k = 5/70. Thus the results in Table 4
are only displayed for the purpose of comparisons between the results of EB and those given
in [21]. There is a very good agreement between the natural frequencies obtained using the
EB element and those given in [21]. Although the comparisons are beyond the yield point of
most engineering materials, results of EA and EB show that the differences between the cases
with and without considering the lateral deflection become apparent for the rotating-inclined
beam with large inclination angle α at high-dimensionless angular speed. It can be seen from
Table 4 that the difference between the natural frequencies of EA and EB is not significant for
small α, but the first natural frequency of EB is much smaller than that of EA for large α. The
natural frequencies of EA slightly decrease with increase of α, but those of EB significantly
decrease with increase of α for α ≥ 50◦. These may be partially attributed to the fact that
the decrease of the centrifugal stiffening effect of the rotating-inclined beam caused by the
increase of the inclination angle is alleviated by the increase of lateral deflection induced by
the lateral centrifugal force.

To investigate the effect of angular speed on the steady-state deformation and
natural frequency of rotating beams with different slenderness ratios and inclination angles,
the following cases are considered: slenderness ratio η = 39, 50, 100, 1000, inclination angle
α = 0◦, 5◦, 30◦, 90◦, and dimensionless radius of the rotating hub R = 1. Tables 5, 6, 7, and 8
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Table 7: Dimensionless frequencies for rotating beam with different inclination angle (η = 100, R = 1).

α k εmax
c (10−4) εmax

b
(10−3) vtip/LT (10−3) K1 (10−1) K2 K3 K4 (a) K5 K6

0 .000000 0 0 .351520 .219989 .614602 1.20047 1.57086 1.97619

.010 1.48998 0 0 .375696 .223163 .617963 1.20402 1.57096 1.97983

.020 5.96058 0 0 .439855 .232418 .627926 1.21458 1.57124 1.99072

0◦ .030 13.4137 0 0 .528670 .247050 .644140 1.23194 1.57172 2.00872

.040 23.8527 0 0 .630838 .266138 .666082 1.25578 1.57240 2.03361

.050 37.2820 0 0 .740095 .288755 .693127 1.28568 1.57327 2.06512

.060 53.7076 0 0 .853195 .314093 .724614 1.32116 1.57433 2.10288

.005 .371547 .184139 2.62891 .357708 .220785 .615441 1.20136 1.57089 1.97710

.010 1.48624 .688585 9.52242 .375636 .223154 .617940 1.20397 1.57105 1.97985

5◦ .015 3.34416 1.40679 18.5127 .403666 .227045 .622062 1.20826 1.57140 1.98446

.020 5.94540 2.23838 27.6550 .439745 .232381 .627773 1.21419 1.57195 1.99093

.025 9.29010 3.11970 35.8627 .481914 .239066 .635040 1.22176 1.57261 1.99922

.030 13.3786 4.01960 42.7784 .528564 .246988 .643816 1.23096 1.57329 2.00929

.002 .054294 .172596 2.48732 .352403 .220106 .614725 1.20060 1.57087 1.97632

.004 .217197 .683326 9.79956 .355052 .220456 .615081 1.20096 1.57097 1.97675

30◦ .006 .488756 1.51188 21.5060 .359467 .221033 .615636 1.20145 1.57136 1.97753

.008 .869003 2.62713 36.9471 .365637 .221832 .616344 1.20197 1.57227 1.97873

.010 1.35790 3.99065 55.3127 .373528 .222846 .617163 1.20241 1.57395 1.98043

.002 .020005 .346383 4.99669 .351634 .220038 .614651 1.20052 1.57089 1.97625

.004 .080103 1.38532 19.9425 .352038 .220178 .614748 1.20053 1.57127 1.97654

90◦ .006 .180478 3.11497 44.6708 .352915 .220392 .614736 1.20014 1.57288 1.97728

.008 .321226 5.52831 78.7975 .354553 .220651 .614373 1.19878 1.57704 1.97891

.010 .502064 8.60794 121.586 .357326 .220924 .613368 1.19581 1.58523 1.98201

tabulate the maximum steady-state membrane strain and bending strain, dimensionless
lateral tip deflection, and first six dimensionless natural frequencies for different η. It can
be seen from Tables 5–8 that the values of vtip/LT increase significantly with the increase
of the dimensionless angular velocities k and slenderness ratio η. However, the values of
vtip/LT are very small for η = 39 and 50. Because the stiffening effect of the centrifugal force
is significant for slender beam, as expected, it can be seen from Table 8 that the lower natural
frequencies of lateral vibration increase remarked with increase of the dimensionless angular
speed for η = 1000.

Figures 4–6 show the deformed configurations, axial displacements, and lateral
displacements for the steady-state deformation of rotating beams with η = 100, α = 90◦,
and η =1000, α = 5◦, 90◦ at different dimensionless angular speeds. In Figures 4–6, the X1 and
X2 coordinates of the deformed configurations of rotating beam are present at the same scale,
and X0

1 denotes the global Lagrangian coordinate of the beam axis. Very large displacement
and rotation are observed in Figure 6.

Figures 7–10 show the first six vibration modes for rotating beams with = 39, α = 0◦, 5◦,
and η = 1000, α = 5◦, 90◦ at different dimensionless angular speeds. In Figures 7–10, U and V
denote the X1 and X2 components of the vibration mode, respectively. The definitions of U
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Table 8: Dimensionless frequencies for rotating beam with different inclination angle (η = 1000, R = 1).

α k εmax
c (10−5) εmax

b
(10−3) vtip/LT (10−2) K1 (10−2) K2 (10−1) K3 (10−1) K4 K5 K6

0 .000000 0 0 .351601 .220341 .616949 .120893 .199838 .298509
.010 14.8998 0 0 1.32581 .432338 .886010 .151855 .233376 .333736
.020 59.6058 0 0 2.52842 .766172 1.38410 .216189 .309541 .419056

0◦ .030 134.137 0 0 3.73648 1.11402 1.92511 .289167 .400408 .525942
.040 238.527 0 0 4.94495 1.46597 2.47903 .364653 .496007 .640880
.050 372.820 0 0 6.15267 1.81983 3.03912 .441165 .593428 .759068
.060 537.076 0 0 7.35907 2.17482 3.60301 .518237 .691707 .878747
.005 3.71469 .765147 5.97092 .741097 .289190 .695401 .129392 .208701 .307598
.010 14.8600 1.67568 7.33938 1.32573 .432307 .885745 .151766 .233190 .333432

5◦ .015 33.4431 2.57966 7.79173 1.92549 .595911 1.12500 .182037 .268266 .371976
.020 59.4713 3.46977 8.02050 2.52834 .766160 1.38402 .216153 .309441 .418839
.025 92.9513 4.34189 8.15957 3.13220 .939307 1.65211 .252155 .353965 .470793
.030 133.889 5.19316 8.25360 3.73641 1.11401 1.92507 .289150 .400356 .525817
.002 .542410 1.31449 16.2578 .436039 .231506 .625674 .121676 .200527 .299138

30◦ .004 2.15709 3.45499 31.0603 .628044 .264068 .655502 .124160 .202509 .300711
.006 4.84203 5.61881 37.4726 .851755 .312455 .712896 .129772 .207598 .305211
.008 8.61268 7.78502 40.6536 1.08530 .369468 .788930 .138176 .215896 .313013
.0005 .012524 .216407 3.11010 .352489 .220632 .617142 .120911 .199852 .298522
.0010 .050204 .860794 12.1582 .357434 .221288 .616084 .120749 .199640 .298279
.0015 .112068 1.89528 25.7173 .371925 .221920 .610342 .119952 .198654 .297181

90◦ .0020 .194123 3.21653 40.7205 .400095 .222722 .599365 .118425 .196788 .295121
.0025 .290775 4.68879 54.0272 .440751 .224723 .587411 .116669 .194633 .292734
.0030 .398355 6.21301 64.2905 .489485 .228876 .578807 .115177 .192740 .290595
.0035 .516056 7.74385 71.7152 .542488 .235452 .575106 .114128 .191302 .288900

and V are given by

U =
(
U2
R +U2

I

)1/2
sign

(
sinφu

)
, sinφu =

UI(
U2
R +U2

I

)1/2
, −π ≤ φu ≤ π,

V =
(
V 2
R + V 2

I

)1/2
sign

(
sinφv

)
, sinφv =

VI(
V 2
R + V 2

I

)1/2
, −π ≤ φv ≤ π,

sign(x) =

{
1 for x > 0,
−1 for x < 0,

(3.1)

where UR and VR, and UI and VI are the X1 and X2 components of QR and QI , real part
and imaginary part of the vibration mode given in (2.47), respectively. φu and φv are phase
angles. Mode j (j = 1–6) denotes the vibration mode dominated by the vibration mode
corresponding to the jth natural frequency of the nonrotating beam. It can be seen from
Figures 7–10, and Tables 5 and 8 that all vibration modes shown in Figures 7–10 are lateral
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Figure 4: The steady-state deformation of rotating beam, (a) deformed configuration, (b) axial
displacement, and (c) lateral displacement (η = 100, R = 1, α = 90◦).

vibration at k = 0, except the fourth and the sixth vibration modes of η = 39. Mode 3 is
the third bending vibration mode, and mode 4 is the first axial vibration mode for η = 39.
Figure 11 shows the third and the fourth dimensionless natural frequencies for the rotating
beam with η = 39 at different dimensionless angular velocities. Because the third and the
fourth natural frequencies are relatively close, frequency veering phenomenon [24] induced
by the Coriolis force and the centrifugal force is observed in Figure 11. It can be seen from
Figures 7 and 8 that the coupling of the axial and lateral vibration modes is very significant.
Due to the effect of Coriolis force and the lateral steady-state deformation, the axial and lateral
vibrations of rotating beam should be coupled. However, from the numerical results of this
study, it is found that the coupling is negligible for rotating beam with small slenderness
ratio if the corresponding natural frequencies of the axial and lateral vibrations are not close.
Due to the steady-state lateral deformation, it can be seen from Figures 9 and 10 that when
k /= 0, all vibration modes consist of the X1 and X2 components. The difference between the
vibration modes of rotating beam at different k is very significant for η = 1000.
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Figure 5: The steady-state deformation of rotating beam, (a) deformed configuration, (b) axial
displacement, and (c) lateral displacement (η = 1000, R = 1, α = 5◦).

4. Conclusions

In this paper, a corotational finite element formulation combined with the rotating frame
method and numerical procedure are proposed to derive the equations of motion for a
rotating-inclined Euler beam at constant angular velocity. The element deformation and
inertia nodal forces are systematically derived by the virtual work principle, the d

′
Alembert

principle, and consistent second-order linearization of the fully geometrically nonlinear
beam theory in the current element coordinates. The equations of motion of the system are
defined in terms of an inertia global coordinate system which is coincident with a rotating
global coordinate system rigidly tied to the rotating hub, while the total strains in the beam
element are measured in an inertia element coordinate system which is coincident with a
rotating element coordinate system constructed at the current configuration of the beam
element. The rotating element coordinates rotate about the hub axis at the angular speed
of the hub. The steady-state deformation and the natural frequency of infinitesimal-free
vibration measured from the position of the corresponding steady-state deformation are
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Figure 6: The steady-state deformation of rotating beam, (a) deformed configuration, (b) axial
displacement, (c) lateral displacement (η = 1000, R = 1, α = 90◦).

investigated for rotating-inclined Euler beams with different inclination angles, slenderness
ratios, and angular speeds of the hub.

The results of dimensionless numerical examples demonstrate the accuracy and efficie-
ncy of the proposed method. The present results show that the geometrical nonlinearities that
arise due to steady-state lateral and axial deformations should be considered for the natural
frequencies of the inclined-rotating beams. Due to the effect of the centrifugal stiffening,
the lower dimensionless natural frequencies of lateral vibration increase remarked with
increase of the dimensionless angular speed for slender beam. The decrease of the cen-trifugal
stiffening effect of the rotating inclined beam caused by the increase of the inclination angle
is alleviated by the increase of lateral deflection induced by the lateral centrifugal force. Due
to effect of the Coriolis force and centrifugal stiffening, frequency veering phenomenon is
observed when inclination angle α = 0◦, and two natural frequencies corresponding to axial
vibration and lateral vibration are close.

Finally, it may be emphasized that, although the proposed method is only applied
to the two dimensional rotating cantilever beams with inclination angle here, the present
method can be easily extended to three dimensional rotating beams with precone and setting
angle.
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Figure 7: The first six vibration mode shapes of a rotating beam (η = 39, R = 1, α = 0◦).
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Figure 8: The first six vibration mode shapes of a rotating beam (η = 39, R = 1, α = 5◦).
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Figure 9: The first six vibration mode shapes of a rotating beam (η = 1000, R = 1, α = 5◦).
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Figure 10: The first six vibration mode shapes of a rotating beam (η = 1000, R = 1, α = 90◦).
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