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Self-driving vehicles are regarded as the future of trans-
portation. In the near future, self-driving vehicles would ferry
passengers from one place to another place, like driverless
taxis, and transport packages and raw materials from city to
city. However, for all the optimism surrounding self-driving
vehicles, there is also an equal amount of scepticism and
concern. Many people believe that self-driving vehicles will be
“no safer” than human-controlled vehicles. #erefore, the
willingness of the public to ride in a fully self-driving vehicle
will be very low due to nonzero accident rates.

A lot more data and testing are required to influence the
public’s beliefs on self-driving vehicles being ready for the road.
Collecting more datasets will help to improve self-driving car
modelling using data analysis; however, an incremental ap-
proach has to be taken for in-depth exploration of data analysis
techniques applied to self-driving vehicles. #is is due to the
lack of sufficient information regarding how rare traffic and
weather events should be modelled in transportation systems.

#is special issue aims to provide a comprehensive
overview of the most recent and promising advancements of
data analysis technologies for self-driving vehicles in in-
telligent transportation systems. Data analysis technologies
for self-driving vehicles are expected to cover the current
state of the art and highlight remaining challenges and
barriers to the development of self-driving vehicles as part of
intelligent transportation systems. 11 papers were submitted
for this issue; 4 of them were accepted for publication.

Below, we provide an overview of the selected articles for
this special issue.

Vehicle Movement Analyses Considering Altitude Based on
Modified Digital Elevation Model and Spherical Bilinear Inter-
polation Model: Evidence from GPS-Equipped Taxi Data in
Sanya, Zhengzhou, and Liaoyang.#emodified digital elevation
(MDE) model and spherical bilinear interpolation (SBI) model
were proposed for vehicle movement analyses considering al-
titude. In addition, the experimental data of 9,990 GPS-enabled
taxis in Sanya, Zhengzhou, and Liaoyang were adopted to
support comparisons. Measurement results showed that the
MDEmodel having over 99% less disparity with direct solution
as compared to the original model and SBI model could further
improve the effects. In conclusion, the contributions of this
study are as follows: (1) the MDE model was built to calculate
vehicle movements by digital elevation data based on mathe-
matical equations and (2) the SBI model was proposed and
applied to improve the preciseness of GPS data with altitude of
collaborative vehicles.

Malware Detection in Self-Driving Vehicles Using Machine
Learning Algorithms. A machine learning-based data analysis
method was proposed to accurately detect abnormal behaviours
due to malware in large-scale network traffic in real time. First,
the authors define a detection architecture, which is required by
the intrusion detection module to detect and block malware
attempting to affect the vehicle via a smartphone. #en, they
propose an efficient algorithm for detectingmalicious behaviours
in a network environment and conduct experiments to verify
algorithm accuracy and cost through comparisons with other
algorithms. Here are themain contributions of this article: (1) the
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machine learning-based detection model was proposed for
detecting adware and malware in a self-driving vehicle envi-
ronment and (2) intrusion detection module architecture was
defined to detect malware and prevent it from affecting the self-
driving vehicles through a smartphone.

Data Analysis for Emotion Classification Based on Bio-Infor-
mation in Self-Driving Vehicles. To classify the electroenceph-
alography (EEG) data into four types of biometric emotion
information (stability, relaxation, tension, and excitement), a
fuzzy control system was designed and the pulse rate and blood
pressure data were composed in single packets separately and
sent to the database.#e authors propose a system for inferring
emotion using EEG, pulse, and blood pressure (systolic and
diastolic blood pressure) of the user and recommending color
andmusic according to the emotional state of the user for a user
service in self-driving vehicle.

An Improved Automatic Traffic Incident Detection Technique
Using a Vehicle to Infrastructure Communication. An ITS
model was proposed to estimate the traffic incident from a
hybrid observer (HO) method and detect the traffic incident
by using an improved automatic incident detection (AID)
technique based on the lane-changing speed mechanism in
the highway traffic environment. Moreover, the authors have
further evaluated the performance of the proposed method
with well-known techniques such as Naive Bayes, KNN, and
SVM using I-880 traffic data. #is study has the following
contributions: (1) the authors developed the connection be-
tween vehicles and roadside units (RSUs) by using a beacon
mechanism and (2) they utilized the probabilistic approach to
collect the traffic information data, by using a vehicle to
infrastructure (V2I) communication.

#e guest editors of this special issue believe that the se-
lected articles contribute in moving the self-driving vehicles
field forward and open new avenues for further research of
smart transportation. Especially, these 4 selected articles pro-
vide key ICT solutions to various challenges faced by the
developers of technologies used for self-driving vehicle safety
and intelligent transportation systems.
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Aggravating energy shortages and increasing labor costs have become global problems and have garnered special importance 
in recent years in the transportation sector, especially in taxi markets. Automatic vehicles have a bright future, however, there is 
an equal amount of skepticism and concern about safety for all the optimism. To unlock the potential of automatic vehicles in 
intelligent transportation systems, a lot more data and testing are required to promote safety level as far as possible and achieve 
the organizational aim of reducing accidents to zero tolerance. And it is vital to provide accurate models for vehicle movement 
analyses. In this study, Modi�ed Digital Elevation (MDE) model and Spherical Bilinear Interpolation (SBI) model were proposed 
for vehicle movement analyses considering altitude. And the experimental data of 9,990 GPS-enabled taxis in Sanya, Zhengzhou, 
and Liaoyang were adopted to support comparisons. Measurement results showed that MDE model had over 99% less disparity 
with direct solution than original model and SBI model could further improve the e�ects. It indicated that the application of MDE 
model and SBI model could improve both accuracy and e�ciency of vehicle movement analyses and it had a bright future in the 
�eld of automatic vehicles. Future directions could be improving models and expanding data.

1. Introduction

Nowadays, there are plenty of urgent social issues in the trans-
portation research �eld. For example, aggravating energy 
shortages and increasing labor costs have become global prob-
lems and have garnered special importance in recent years in 
the transportation sector, especially in taxi markets. With the 
worsening situation of energy shortages and labor costs, taxi 
markets are facing increasing opportunities as well as chal-
lenges. It is essential that appropriate counter measures must 
be taken to suppress or reverse or at least alleviate the wors-
ening situation.

With the rapid progress of self-driving technologies, there 
are more and more advanced applications involved in intelli-
gent tra�c system. For example, automatic vehicles have a 
bright future. Dubai Roads and Transportation Authority 

tested autonomous pods, the world’s �rst automatic taxi, in 
2018. According to the evidence lab of union bank of 
Switzerland, the number of taxis in New York might drop by 
two-thirds if automatic vehicles were promoted completely, 
and the global automatic taxi market may exceed $2 trillion 
by 2030. Tesla Inc published a full self-driving computer called 
Autopilot 3.0 and an automatic taxi plan called Robo Taxi. 
Besides, many companies have already tested their automatic 
taxis or automatic buses along the road, such as Waymo in 
USA, Yandex in Russia, Gateway in UK, Easymile in France, 
Bestmile in Switzerland, Vislab in Italia, ZMP in Japan, KT in 
South Korea, GAC in China, etc.

However, there is an equal amount of skepticism and con-
cern for all the optimism surrounding automatic vehicles. 
Most crucially, many people doubt the safety of automatic 
vehicles because they are not controlled by reliable human 
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drivers but computers. On March 19th in 2018, a terrible acci-
dent took place in Tempe, Arizona that a 49-year-old woman 
with a bicycle on the sidewalk was hit to die by an Uber 
self-driving car at a speed of 65 kilometers per hour. Since 
then, the willingness of the public to ride in a fully self-driving 
vehicle fell in a very low level.

To unlock the potential of automatic vehicles in intelligent 
transportation systems, a lot more data and testing are required 
to promote safety level as far as possible and achieve the 
organizational aim of reducing accidents to zero tolerance. 
And it is vital to provide accurate models for vehicle move-
ment analyses. In this study, modified digital elevation model 
and spherical bilinear interpolation model were proposed for 
vehicle movement analyses considering altitude. And GPS-
enabled taxi data in Sanya, Zhengzhou, and Liaoyang were 
adopted to support comparisons.

�e rest of this paper were organized as follows: Section 2 
reviewed related works; Section 3 introduced formulas, mod-
els, data and tools; Section 4 presented a sample and described 
results in Sanya, Zhengzhou, and Liaoyang; Section 5 made a 
discussion; Section 6 summarized main conclusions, contri-
butions and proposed future directions.

2. Literature Review

In this section, there are several similar problems and some 
related works till date, including Internet of Vehicles problem 
(see Section 2.1), data analysis for automatic vehicles (see 
Section 2.2) and taxi service improving problem (see Section 2.3).

2.1. Internet of Vehicles Problem.  �e Internet is a popular 
network technology all over the world and it has continuous 
developments in recent years. �e evolution of network 
technology has led to a deployment of various access networks 
as introduced by Piamrat et al. [1]. Internet of �ings (IoT) 
is a novel paradigm that is rapidly gaining ground in the 
scenario of modern wireless telecommunications as addressed 
by Atzori et al. [2]. Miorandi et al. proposed an overview of 
IoT technologies and services [3]. Xu et al. reviewed classical 
researches of IoT technologies and major applications in 
industries [4]. Zanella et al. proposed an urban IoT system 
and explored the application of the IoT paradigm to smart 
cities, taking Padova of Italy as an example [5].

Intelligent Transportation Systems (ITS) had significant 
impact on our life as introduced by Wang [6]. Internet of 
Vehicle (IoV) is one of the revolutions mobilized by IoT as 
addressed by Kaiwartya et al. [7]. Lu et al. regarded IoV as the 
next frontier for automotive revolution and the key to the evo-
lution to ITS [8]. Yang et al. proposed an abstract network 
model of the IoV and presented its applications [9]. However, 
IoV also posed new challenges to the communication tech-
nology [10]. �e information security of IoV was a consider-
able challenge. Singh et al. presented the potential of 
transforming vehicle communication in terms of efficiency 
and safety [11]. Chen proposed a trust-based cooperation 
authentication bit-map routing protocol against insider secu-
rity threats in wireless ad-hoc networks [12]. Huang et al. 
proposed a proactive scheme to secure Edge computing-based 
IoV against RSU hotspot attack [13]. Furthermore, IoV has 

rapid developments in recent years. Butt et al. presented a 
scalable Social IoV (SIoV) architecture based on Restful web 
technology [14]. Chen et al. proposed Cognitive IoV (CIoV) 
to enhance transportation safety and network security by com-
munication technologies [15].

Vehicular Ad-hoc Networks (VANET) comprise commu-
nications among vehicles and infrastructures by wireless local 
network technologies as addressed by Hartenstein and 
Laberteaux [16]. With the wide spread of Global Positioning 
System (GPS) and Geographic Information System (GIS), the 
participants in VANET could acquire much more information 
than before. Benefit from that, GPS-Equipped cars could not 
only acquire their real-time locations, but also road directions. 
�us, VANET technologies helped improving road safety and 
providing comfort for passengers [17, 18]. In the field of ITS, 
IoV and VANET technologies created essential conditions for 
automatic vehicles.

2.2. Data Analysis for Automatic Vehicles.  Automatic vehicles 
are regarded as the future of transportation. It has been a 
long-lasting dream of robotics researchers and enthusiasts as 
indicated by Petrovskaya and �run [19]. However, safety is 
the dominant factor in any automatic vehicle control system 
design as proposed by Shladover et al. [20]. Much more work 
was required until autonomous vehicles could participate in 
real-world urban traffic safely and robustly as proposed by 
Luettel et al. [21]. To ensure the safety of autonomous vehicles, 
a holistic fleet deployment scheme from interdisciplinary 
perspectives should be established as proposed by Koopman 
and Wagner [22]. Wang et al. investigated the acceptance of 
intelligent driving vehicles in Guangzhou and indicated that 
consumers focused on not only the developmental prospects 
but also the technological safety of intelligent driving vehicles 
[23]. With the rapid progress of IoV and VANET, there is 
a great deal of technologies involved in data analysis for 
automatic vehicles, which are described as follows.

(i)	� Vehicle communication systems. Machine-to-
Machine (M2M) communication for the IoT sys-
tem was considered to be a key technology in future 
networks as introduced by Chen et al. [24]. Park et 
al. proposed a transmission strategy for use with a 
capillary M2M system under wireless personal area 
networks based on a series of performance analy-
sis for contention adaptation of M2M devices with 
directional antennas [25, 26]. Zhou et al. proposed 
a two-stage access control and resource allocation 
algorithm based on M2M communication and veri-
fied it under various simulation scenarios. With the 
rapid progress of IoV and VANET, M2M communi-
cation has been applied to vehicle communication 
in recent years. �e vehicle communication systems 
include but are not limited to Vehicle-to-Pedestrian 
(V2P), Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I). Rahimian et al. examined the 
feasibility that sending traffic warnings to texting 
pedestrians based on V2P communication when 
they initiate an unsafe road crossing influences their 
decisions and actions [27]. Fan et al. proposed a traf-
fic-aware relay selection based on millimeter-wave 
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V2V communication to overcome the Line-of-sight 
blockage problem [28]. Lyamin et al. proposed a 
data-mining-based method for V2V communica-
tions by random and On-off models [26]. Han et al. 
proposed an optimal signal control algorithm for 
signalized intersections using individual vehicle's 
trajectory data based on V2I communication [30]. 
Jia et al. verified that autonomous vehicles have sig-
nificantly improvements on traffic efficiency via V2V 
and V2I communications [31].

(ii)	� Machine learning methods. Machine learning were 
used to identify objects in images, transcribe speech 
into text, match news items, posts or products 
with users’ interests, and select relevant results 
of search as introduced by Lecun et al. [32]. With 
the rapid progress of IoV and VANET, machine 
learning methods has been applied to vehicle 
simulation, emulation and prediction in recent years. 
Aramrattana et al. proposed a simulation framework 
for cooperative safety assessment and efficiency 
evaluation in ITS [33]. Elwekeil et al. proposed a 
deep learning approach to achieve both reliability 
and spectrum efficiency of V2V communications 
[34]. Lv et al. proposed a modified cyber-physical 
system for automated electric vehicles based on 
unsupervised machine learning algorithms [35]. Li 
et al. proposed a proactively load balancing approach 
for vehicular network traffic control based on V2I 
communication, convolutional neural networks and 
deep learning to enable efficient cooperation among 
mobile edge servers [36].

(iii)	� Big data technologies. In recent years, a significant 
change in ITS was that much more data were col-
lected from a variety of sources and can be processed 
into various forms as proposed by Zhang et al. [37]. 
And numerous advanced multidisciplinary jour-
nals began publishing a special issue of big data, for 
instance, Nature in 2008 [38] and Science in 2011 
[39]. To solve big data, several technologies were 
proposed, including cloud computing, artificial 
intelligence and blockchain technology. Gubbi et al. 
proposed a cloud centric vision for worldwide imple-
mentation of IoT [40]. Whaiduzzaman et al. verified 
that cloud computing was a technologically feasible 
and economically viable paradigm for vehicles [41]. 
Al-Fuqaha et al. explored the relationships between 
IoT and big data analytics [42]. Ning et al. proposed 
a three-layer model based on fog computing to ena-
ble distributed traffic management and verified it by 
trajectory-based performance analysis [43]. As for 
applications, more and more researches focus on 
large scale taxi GPS data [44–46].

2.3. Taxi Service Improving Problem.  Taxi is the main 
constituent of urban transportation. With the rapid progress 
of wireless sensor network [47], vehicle markets meet an 
evolution from intelligent vehicle grid to autonomous, Internet-
connected vehicles and vehicular cloud as discussed by Gerla 

et al. [48]. Automatic taxis have gradually become reality in 
several advanced regions but not fully promoted yet. Just like 
every coin has two sides, automatic taxis have advantages and 
disadvantages. On the one hand, automatic taxis overcome 
some defects of human drivers, including excessive stress [49], 
inadequate sleepiness [50], and negative behaviors [51]. On the 
other hand, automatic taxis need mountains of work to achieve 
functions and ensure security. Taxi automation is one of the 
most promising technologies for the future and it is a challenge 
well worth meeting for taxi companies.

Fast and reliable service that can compete with the single 
occupancy vehicle was one of the demands of transit users as 
proposed by El-Geneidy et al. [52]. And it has become signif-
icant to provide users with a range of security-related and 
user-oriented vehicular applications as proposed by Ning et al. 
[53]. �us, it is necessary for taxi companies improve their 
service to meet the demand of passengers. Yuan et al. proposed 
a price equilibrium model for taxi market to improve the ser-
vice level [54]. Song et al. proposed a planning concept from 
the perspective of supply and demand economic equilibrium 
to optimize the transportation markets [55]. Dou et al. pro-
posed a heuristic line piloting method that a taxi deviating 
from the typical route would raise an alert when malfunction 
took place or even hijacked by criminals [56]. Tang et al. pro-
posed a customer-search model based on route choice behav-
ior analysis to help taxi drivers find next passengers in urban 
road networks [57]. Although taxi companies and govern-
ments have already made great efforts, there are still plenty of 
service improving problems to be settled.

To unlock the potential of IoV in ITS, in the previous study 
[58], Gui and Wu measured taxi efficiency based on 2191 GPS-
equipped taxi data in Sanya and indicated that the application 
of Motorcade-Sharing model could not only alleviate urban 
traffic congestion but also optimize urban taxi markets. 
However, altitude was not considered in that study which 
might reduce the measurement accuracy and result in lower 
safety level when altitude is nonnegligible. �us, Original 
Model need improvements.

To sum up, some helpful works have already been done. 
However, few researches took altitude into consideration and 
proposed accurate models for vehicle movement analyses. 
Besides, autonomous vehicles need assigning continuous 
directives in time while it is difficult for complex algorithms 
to response immediately under the background of big data.

How much the altitude will affect the vehicle movement 
analyses? How to simplify complex algorithms of the Direct 
Solution for automatic vehicles? And how to handle the situ-
ation when some data was missing? In the next section, meth-
ods and data are involved to explore these questions.

3. Methods and Materials

In this section, there are several parts of methods and mate-
rials. First, an analysis procedure was presented as an over-
view (see Section 3.1). Second, traditional methods were 
reviewed, including Direct Solution (see Section 3.2) and 
Original Model (see Section 3.3). �ird, modified models 
were proposed, including MDE model (see Section 3.4) and 
SBI model (see Section 3.5).
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comparisons were raised on the basis of results. ­e notations 
for variables were in the Appendix (see Appendix A).

3.2. Direct Solution. Direct solution is the traditional approach 
and it calculates distances in a direct way (see Figure 2).

­ere are 4 steps in this section.
First, in order to describe the location of vehicles in a 

mathematical way, the Spherical Coordinate System was estab-
lished in Formula (1).

where � ≥ 0, 0 ≤ � ≤ �, and 0 ≤ � < 2�. ­e variable � repre-
sents the radial distance. ­e variable � represents the polar 
angle. ­e variable � represents the azimuthal angle. ­e radial 
distance can be divided into two parts by Formula (2).

where � = 6378137.00 (m), which represents the radius of the 
earth. ­e variable ℎ represents the altitude. Based on Formulas 
(1), (2), the coordinate of vector �⇀�� in Spherical Coordinate 
System can be represented by Formula (3).

Second, in order to calculate the distance between two loca-
tions by Distance Formula, the Rectangular Coordinate 
System was established in Formula (4).

Based on Distance Formula, the distance between points �1
and �2 in Rectangular Coordinate System can be calculated by 
Formula (5).

(1)�(�, �, �),

(2)� = � + ℎ,

(3)
�⇀�� = (� + ℎ, �, �).

(4)�⇀�� = (�, �, �).

3.1. Analysis Procedure. To solve this problem, a series of 
analysis procedure was established (see Figure 1).

In terms of data, GPS data without altitude and digital 
elevation data were collected at the beginning. GPS data with 
altitude was calculated on the basis of them aªerwards (see 
Section 3.6). And the preciseness of GPS data with altitude 
was further improved by Spherical Bilinear Interpolation (SBI) 
Model (see Section 3.5).

In terms of model, three models were adopted for analyz-
ing vehicle movements. ­ey are direct solution (see Section 
3.2), original model (see Section 3.3) and Modi�ed Digital 
Elevation (MDE) model (see Section 3.4) and they have dif-
ferent functions (see Table 1).

(i) Direct solution. It is the traditional approach with 
large computation requirements because of its square 
algorithm, which is one of its drawbacks.

(ii) Original model. It simpli�es the square algorithm 
of Direct Solution by cosine theorems (see Distance 
Formula in the previous study [58]). However, it 
ignores altitude which a�ects the measurement accu-
racy of results when altitude is nonnegligible.

(iii) MDE model. It adopts original model and takes alti-
tude into consideration. In theory, MDE model has 
more accurate results than original model especially 
when altitude is nonnegligible. In addition, MDE 
model adopts SBI model to improve the preciseness 
of GPS data with altitude.

In this study, vehicle movements were analyzed by 3 models 
above mentioned at the same time and then a series of 

Direct solution (D)

Comparisons

GPS data
(with altitude)

Digital elevation data
(with altitude)

GPS data
(without altitude)

Modi�ed digital
elevation model (d’)

Spherical bilinear
interpolation model

Orginal model (d)

Figure 1: Analysis procedure design.

Table 1: Function comparison of direct solution, original model, and MDE model.

Data source Data Direct solution (�) Original model (�) MDE model (��)

GPS data (without altitude)
Longitude √ √ √
Latitude √ √ √

Digital elevation data Altitude √ √



5Journal of Advanced Transportation

Based on Formula (6), the spherical coordinate of point 
�1(� + ℎ1, �1, �1) was converted into �1((� + ℎ1) sin �1 cos�1,
(� + ℎ1) sin �1 sin�1, (� + ℎ1) cos �1) in Rectangular Coordinate 
System, and the spherical coordinate of point �2(� + ℎ2, �2, �2)
was converted into �2((� + ℎ2) sin �2 cos�2,  (� + ℎ2) sin �2 sin�2,
(� + ℎ2) cos �2) in Rectangular Coordinate System.

Based on Formula (5), the distance between points �1 and 
�2 under direct solution can be calculated by Formula (7), 
which was sophisticated to some extent.

­ird, spherical coordinates were converted into rectangular 
coordinates. Based on Formulas (1), (4), the relationship of 
them can be represented by Formula (6).

(5)�����1�2
���� = √(��)2 + (��)2 + (��)2.

(6)
� = � sin � cos�,
� = � sin � sin�,
� = � cos �.

Start

Input I and T

Input P1(R + h1, θ1, φ1) and P2 (R + h2, θ2, φ2)

Formula (7)

Formula (8)

End

Output Di,t

Output TD

Establish Spherical Coordinate System and Rectangular Coordinate System

i = 1 and t = 1

i = I? i = i + 1

t = t + 1 and i = 1
Yes

No

No

Yes
t = T?

Figure 2: Flow chart of direct solution.

� = √[(� + ℎ1) sin �1 cos�1 − (� + ℎ2) sin �2 cos�2]2 + [(� + ℎ1) sin �1 sin�1 − (� + ℎ2) sin �2 sin�2]2 + [(� + ℎ1) cos �1 − (� + ℎ2) cos �2]2.

Fourth, all the distances were summed up. Supposing that the 
variable �� represents total movements of vehicles under 
Direct Solution and it can be calculated by Formula (8).

3.3. Original Model. Original Model simpli�es the square 
algorithm of Direct Solution by cosine theorems and it 
calculates distances in a simple way (see Figure 3).

­ere are 5 steps in this section.
First, the Spherical Coordinate System was established in 

Formula (1).
Second, the Rectangular Coordinate System was estab-

lished in Formula (4).

(8)�� =
�
∑
�=1

�
∑
�=1
��,�.

(7)

­ird, in order to calculate the distance between two loca-
tions, the cosine value of the angle between vectors �⇀��1 and �⇀��2 was calculated by Formula (9).

Formula (9) can be converted into Formula (10) and the der-
ivation process is in the Appendix part (see Appendix B in the 
previous study [58]).

(9)cos ⟨�⇀��1,
�⇀��2⟩ =

�⇀��1 ⋅
�⇀��2�����

�⇀��1
�����
�����
�⇀��2
�����
.

(10)
cos ⟨�⇀��1,

�⇀��2⟩ = sin �1 sin �2 cos (�2 − �1) + cos �1 cos �2.
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Second, the Rectangular Coordinate System was estab-
lished in Formula (4).

­ird, all the unknown altitude values were calculated 
approximately by Spherical Bilinear Interpolation Model.

Fourth, the distance between �1 and �2 was calculated 
approximately by Modi�ed Digital Elevation Model. Based on 
Formula (12), the distance between points �1(� + ℎ1, �1, �1)
and �2(� + ℎ2, �2, �2) can be calculated by Formula (14) when 
� = � + ℎ1.

Based on Formula (12), the distance between points 
�1(� + ℎ1, �1, �1) and �2(� + ℎ2, �2, �2) can be calculated by 
Formula (15) when � = � + ℎ2.

Based on Distance Formula, the distance can be calculated by 
Formula (16).

Based on Formulas (14), (15), Formula (16) can be converted 
into Formula (17).

(14)

�|ρ =�+ℎ1 = (� + ℎ1) arccos (sin �1 sin �2 cos (�2 − �1)
+ cos �1 cos �2).

(15)
�|ρ =�+ℎ2 = (� + ℎ2) arccos (sin �1 sin �2 cos (�2 − �1) + cos �1 cos �2).

(16)�� = √(
�|ρ =�+ℎ1 + �|ρ =�+ℎ2

2 )
2

+ (�ℎ)2.

Fourth, considering the equation of arc length calculation, the 
distance between vectors �⇀��1 and �⇀��2 was calculated by 
Formula (11).

Based on Formula (9), Formula (11) can be converted into 
Formula (12).

In other words, the distance between �1(�, �1, �1) and 
�2(�, �2, �2) can be calculated approximately by the longitudes 
and latitudes of them based on GPS data, and the radius of the 
earth under Original Model.

Fiªh, all the distances were summed up. Supposing that 
the variable �� represents total movements of vehicles under 
Original Model and it can be calculated by Formula (13).

3.4. Modi�ed Digital Elevation Model. MDE adopts Original 
Model and SBI Model to improve the preciseness of results and 
it calculates distances in a comprehensive way (see Figure 4).

­ere are 5 steps in this section.
First, the Spherical Coordinate System was established in 

Formula (1).

(11)� = �⟨�⇀��1,
�⇀��2⟩.

(12)� = � arccos (sin �1 sin �2 cos (�2 − �1) + cos �1 cos �2).

(13)�� =
�
∑
�=1

�
∑
�=1
��,�.

Start

Input I and T

Input P1(R, θ1, φ1) and P2 (R , θ2, φ2)

Formula (12)

Formula (13)

End

Output di,t

Output Td

Establish Spherical Coordinate System and Rectangular Coordinate System

i = 1 and t = 1

i = I? i = i + 1

t = t + 1 and i = 1

Yes

Yes
t = T?

No

No

Figure 3: Flow chart of original model.

(17)�� = √[(� + ℎ1 + ℎ22 ) arccos (sin �1 sin �2 cos (�2 − �1) + cos �1 cos �2)]
2
+ (ℎ2 − ℎ1)

2.
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Start

Input I and T

Input P1(R + h1, θ1, φ1) and P2 (R + h2, θ2, φ2)

Formula (17)

Formula (18)

End

Output d'i,t

Output Td'

Establish Spherical Coordinate System and Rectangular Coordinate System

i = 1 and t = 1

i = I? i = i + 1

t = t + 1 and i = 1
Yes

Yes
t = T?

No

No

Figure 4: Flow chart of Modi�ed Digital Elevation Model.

Start

Input P1(R + h1, θ1, φ1) and P2 (R + h2, θ2, φ2)

Input P1(R, θ1, φ1, φ and P2 (R , θ2, φ2)

Input Q1(R + h1ʹ,θ1ʹ, φ1ʹ), Q2 (R + h2ʹ,θ2ʹ, φ1ʹ),
Q3(R + h3ʹ,θ1ʹ, φ2ʹ) and Q4(R + h4ʹ,θ2ʹ, φ2ʹ),

Formula (22)

Output h1 and h2

Establish Spherical Coordinate System and Rectangular Coordinate System

Which?
Direct solution Orginal model MDE model

Formula (17)Formula (12)Formula (7)

Output diʹ,tOutput di,tOutput Di,t

End End End

Figure 5: Flow chart of Spherical Bilinear Interpolation Model and its applications.
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­e checking process of Formula (21) is in the Appendix (see 
Appendix C). Based on Formula (C.24) in the Appendix C, 
the altitude value of point �(� + ℎ, �, �) can be calculated by 
Formula (22).

­ird, substitute ℎ�1, ℎ�2, ℎ�3, ℎ�4 by the altitude value of points �1, 
�2, �3, �4. Finally, the altitude value of point � can be calcu-
lated approximately by Spherical Bilinear Interpolation Model.

3.6. Data and Tools

 (i)   Data Source. ­e GPS data of taxis in this study was col-
lected from the big data platform, Travel Cloud, which 
was developed by Ministry of Transport of the People’s 
Republic of China (see Data Availability). It was pro-
vided in part by the transportation department of 
Liaoning Province, in part by Henan Province depart-
ment of transportation, in part by Sanya Tra�c and 
Transportation Bureau of Hainan Province. Its major 
data items include anonymous vehicle ID, longitude, 
latitude and recording time. And the digital elevation 
data in this study was collected from Google Map.

 (ii)  Data Processing. In terms of GPS data processing, 
there are 3 steps. First, all the taxi locations were aver-
aged every 60 seconds so as to improve the accuracy 
of data, that is to say, average locations of those taxis 
were recorded every 60 seconds entirely. Second, the 
»aw data was removed so as to ensure the integrity of 

(21)

�⇀�� = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) �⇀��1
+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) �⇀��2
+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) �⇀��3
+ (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) �⇀��4 .

(22)

ℎ = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�1 +
(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1)

× ℎ�2 + (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�3 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4.

Fiªh, all the distances were summed up. Supposing that the 
variable ��� represents total movements of vehicles under 
Modi�ed Digital Elevation Model and it can be calculated by 
Formula (18).

3.5. Spherical Bilinear Interpolation Model. Spherical Bilinear 
Interpolation (SBI) Model helps improving the preciseness of 
GPS data with altitude especially when the data of altitudes is 
not precise enough or missing (see Figure 5).

­ere are 3 steps in this section.
First, �nd out 4 vertexes by positional notation based on 

the spherical coordinate of point �. For any point �(� + ℎ, �, �)
where ��1 ≤ � ≤ ��2 and ��1 ≤ � ≤ ��2, there are 4 points 
�1(� + ℎ�1, ��1, ��1), �2(� + ℎ�2, ��2, ��1), �3(� + ℎ�3, ��1, ��2), 
�4(� + ℎ�4, ��2, ��2) around it (see Figure 6).

Second, �gure out the relationship among the spherical 
coordinates of 5 points �, �1, �2, �3, �4. Supposing that there 
are 4 factors �1, �2, �3, �4 satisfying Formula (19).

As a result, the solution of Formula (19) was settled by Formula 
(20). ­e derivation process of Formula (20) is in the Appendix 
(see Appendix B).

Based on Formula (20), Formula (19) can be converted into 
Formula (21).

(18)��� =
�
∑
� = 1

�
∑
� = 1
���,�.

(19)�⇀�� = �1
�⇀��1 +�2

�⇀��2 +�3
�⇀��3 +�4

�⇀��4 .

(20)

�1 = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) ,
�2 = (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) ,
�3 = (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) ,
�4 = (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) .

θ1ʹ θ θ2ʹ

θ1ʹ θ θ2ʹ

φ

φ2ʹ φ2ʹ

φ

φ1ʹ φ1ʹ

Q1(R + h1ʹ,θ1ʹ, φ1ʹ)

Q3(R + h3ʹ,θ1ʹ, φ2ʹ) Q4(R + h4ʹ,θ2ʹ, φ2ʹ),

Q2 (R + h2ʹ,θ2ʹ, φ1ʹ),

P(R + h, θ, φ)

Figure 6: Schematic diagram of vertexes.

Figure 7: Actual position of the sample.
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point to the right yellow point (see Figure 7). Luhuitou Park 
was on a hill and the taxi was on the road uphill. It indicated 
that the altitude of the taxi in the sample would rise from the 
leª yellow point to the right yellow point.

In Figure 7, Luhuitou Park was surrounded by South of Sea 
Road, also known as Nanbianhai Road in Chinese. Furthermore, 
four red points surrounding yellow points were supplementary 
points drawn for SBI Model. ­eir longitudes and latitudes kept 
only 3 decimal digits. Actual position in Figure 3 can be con-
verted into Schematic diagram (see Figure 8).

In Figure 8, there are 2 yellow points �1(� + ℎ1, 109.4983∘,
18.2274∘), �2(� + ℎ2, 109.4987∘, 18.2272∘) and 4 red points 
�1(� + 152, 109.498∘, 18.227∘), �2(� + 150.81, 109.499∘, 18.227∘), 
�3(� + 139.55, 109.498∘, 18.228∘), �4(� + 132.45, 109.499∘, 18.228∘).

According to the original digital elevation data, the alti-
tude value of points �1 and �2 were 145 (m) and 147 (m) respec-
tively. ­e taxi altitude in the sample changed approximately 
2 (m) from �1 to �2. Based on SBI Model, the altitude value of 
points �1 and �2 can be further calculated by Formula (17). 
And the altitude value of points �1 and �2 adjusted by SBI 
Model were 145.00 (m) and 147.30 (m) respectively. Based on 
Formulas (7), (12), (17), the sample results and comparisons 
of three methods were �gured out (see Table 2). ­e derivation 
process of Table 2 is in the Appendix (see Appendix D).

In Table 2, Value1 adopted original digital elevation data 
while Value2 adopted the digital elevation data adjusted by 
SBI Model. Under Value1, the vehicle movement �⇀�1�2 under 
Direct Solution was 49.267562 (m). ­e deviation between 
Original Model and Direct Solution was 0.041677 (m) while 
the deviation between MDE Model and Direct Solution was 
only 0.000061 (m). Under Value2, the vehicle movement 

�⇀�1�2
under Direct Solution was 49.280653 (m). ­e deviation 
between Original Model and Direct Solution was 0.054768 (m)
while the deviation between MDE Model and Direct Solution 
was only 0.000062 (m). It can be seen that MDE Model had 
much less disparity with Direct Solution than Original Model 
in the sample results. In addition, even if the original digital 
elevation data, the altitude value of points �1 and �2 was 

data. ­ird, the obtained data was checked to avoid 
mistakes. As a result, GPS data without altitude was 
prepared. In terms of digital elevation data process-
ing, there are 4 steps. First, the original digital ele-
vation data was imported by Arcgis. Second, GPS 
data without altitude in a Microsoª Excel �le was 
converted into a XY table of Arcgis geodatabase by 
the conversion tool called Excel to Table. ­ird, the 
XY table was adopted to create a point feature class 
on the basis of its coordinate system, World Geodetic 
System 1984 by the data management tool called Add 
XY Data. Fourth, the altitude data of the point feature 
class was extracted by the spatial analyst tool called 
Extract Values by Points. As a result, GPS data with 
altitude was prepared (see the �le named “Data.xlsx” 
in the Supplementary Material).

(iii)  Implement Tool. Several kinds of soªware were 
adopted in this study as follows. Rivermap X3.1 was 
applied for extracting the altitude from digital elevation 
data. Microsoª Excel 2019 was applied for original data 
processing and result storage. Stata 14.1 was applied for 
statistic analyzing. Matlab R2018a was applied for pro-
gramming. Global Mapper 14.1 was applied for map 
drawing. Arcgis Pro 2.2.0 (trial version) was applied 
for map drawing and spatial analyzing.

4. Results

In this section, a sample (see Section 4.1) was presented for 
better description and vehicle movements were analyzed by 
Direct Solution, Original Model, MDE model at the same time, 
including Sanya (see Section 4.2), Zhengzhou (see Section 4.3), 
Liaoyang (see Section 4.4). And the results of them were com-
pared with each other (see Section 4.5).

4.1. Sample. In the sample, there was a taxi around Luhuitou 
Park in Sanya of Hainan Province moving from the leª yellow 

P1(R + h1, 109.4983°, 18.2274°)

P2(R + h2, 109.4987°, 18.2272°)

Q4(R + 132.45, 109.499°, 18.228°)

Q2(R + 150.81, 109.499°, 18.227°)Q1(R + 149.72, 109.498°, 18.227°)

Q3(R + 139.55, 109.498°, 18.228°)

φ2ʹ = 18.228 °

θ1ʹ = 109.498° θ2ʹ = 109.499°

φ1ʹ = 18.227°φ1ʹ = 18.227°

θ2ʹ = 109.499°θ1ʹ = 109.498°

φ2ʹ = 18.228°

Figure 8: Schematic diagram of the sample.
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­e deviation between Original Model and MDE Model 
may be more obvious when sample size increases.

4.2. Sanya. Sanya is a city in Hainan Province where the 
longitude was in the range of [108.928°, 109.807°] while the 
latitude was in the range of [18.144°, 18.625°]. It located in the 
southern China and its altitudes had di�erences. (see Figure 9).

In Figure 9, colors re»ected the elevation. ­e altitudes of 
blue area were low. ­e altitudes of green area were medium. 
­e altitudes of yellow area were high.

In the origin data of Sanya, the locations of 2,506 taxis were 
recorded every 15 seconds from 9:00 a.m. to 9:59 a.m. on Nov. 
15th in 2016, adding up to 766,042 records (see Figure 10).

In Figure 10, taxi positions of Sanya located minutely at a 
�xed monitor where the longitude was in the range of [109.0°, 
109.8°] while the latitude was in the range of [18.1°, 18.5°]. 
Aªer data processing, there were 2,191 taxis and 131,460 
records leª in the experimental data. And 107,427 movements 
of 2,096 taxis were extracted as a result. Based on Formulas 
(7), (12), (17), the Sanya results and comparisons of three 
methods were �gured out (see Table 3).

In Table 3, Value1 adopted original digital elevation data 
while Value2 adopted the digital elevation data adjusted by SBI 
Model. Under Value1, total vehicle movements under Direct 
Solution was 34, 065, 354.87 (m). ­e deviation between 
Original Model and Direct Solution was 6, 650.88 (m) while the 
deviation between MDE Model and Direct Solution was only 

missing, it could be further calculated by SBI Model. By con-
trast, the deviation between Original Model and Direct 
Solution was 0.013091 (m) while the deviation between MDE 
Model and Direct Solution was only 0.000001 (m). It further 
veri�ed the advantage of MDE Model even though some data 
was missing in the sample results and SBI Model was adopted 
to improve the preciseness of GPS data with altitude.

Figure 9: Elevation map of Sanya.
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Figure 10: Taxi positions of Sanya.

Table 3: Sanya results and comparisons of three methods. Unit: m.

Method Variable Value1 Value2 |Value1 − Value2|
Direct Solution �� 34,065,354.87 34,064,690.71 664.16
Original Model �� 34,058,703.99 34,058,703.99 0
MDE Model ��� 34,065,343.29 34,064,679.28 664.01

(Comparisons)
|�� − ��| 6,650.88 5,986.72 664.16
������� − ��

������ 11.58 11.43 0.15

Figure 11: Elevation map of Zhengzhou.

Table 2: Sample results and comparisons of three methods. Unit: m.

Method Variable Value1 Value2 |Value1 − Value2|
Direct Solution � 49.267562 49.280653 0.013091
Original Model � 49.225885 49.225885 0
MDE Model �� 49.267623 49.280715 0.013092

(Comparisons)
|� − �| 0.041677 0.054768 0.013091
������ − �

������ 0.000061 0.000062 0.000001
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the range of [112.8°, 114.5°] while the latitude was in the 
range of [34.2°, 35.0°]. Aªer data processing, there were 5,774 
taxis and 282,926 records leª in the experimental data. And 
229,370 movements of 5,597 taxis were extracted as a 
result. Based on Formulas (7), (12), (17), the Zhengzhou 
results and comparisons of three methods were �gured out 
(see Table 4).

In Table 4, Value1 adopted original digital elevation data 
while Value2 adopted the digital elevation data adjusted by 
SBI Model. Under Value1, total vehicle movements under 
Direct Solution was 94,767,484.51 (m). ­e deviation 
between Original Model and Direct Solution was 3,388.16 
(m) while the deviation between MDE Model and Direct 

11.58 (m). Under Value2, total vehicle movements under Direct 
Solution was 34, 064, 690.71 (m). ­e deviation between 
Original Model and Direct Solution was 5, 986.72 (m) while the 
deviation between MDE Model and Direct Solution was only 
11.43 (m). It can be seen that the deviation between Original 
Model and MDE Model in Sanya was much more obvious than 
sample. ­e results in Sanya veri�ed that MDE Model had much 
less disparity with Direct Solution than Original Model. In addi-
tion, even if some original digital elevation data of actual posi-
tions in Sanya were missing, it could be further calculated by 
SBI Model. By contrast, the deviation between Original Model 
and Direct Solution was 664.16 (m) while the deviation between 
MDE Model and Direct Solution was only 0.15 (m). It further 
veri�ed the advantage of MDE Model even though some data 
was missing in Sanya and SBI Model was adopted to improve 
the preciseness of GPS data with altitude.

4.3. Zhengzhou. Zhengzhou is a city in Henan Province 
where the longitude was in the range of [112.714°, 114.206°] 
while the latitude was in the range of [34.262°, 34.985°]. It 
located in the midland China and its altitudes had di�erences. 
(see Figure 11).

In Figure 11, colors re»ected the elevation. ­e altitudes 
of blue area were low. ­e altitudes of green area were medium. 
­e altitudes of yellow area were high.

In the origin data of Zhengzhou, the locations of 9,703 
taxis were recorded every 15 seconds from 14:50 p.m. to 15:38 
p.m. on Nov. 15th in 2016, adding up to 1,048,575 records (see 
Figure 12).

In Figure 12, taxi positions of Zhengzhou located 
minutely at a �xed monitor where the longitude was in 
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Figure 12: Taxi positions of Zhengzhou.

Table 4: Zhengzhou results and comparisons of three methods. Unit: m.

Method Variable Value1 Value2 |Value1 − Value2|
Direct Solution �� 94,767,484.51 94,767,008.47 476.04
Original Model �� 94,764,096.35 94,764,096.35 0
MDE Model ��� 94,767,481.20 94,767,005.17 476.03

(Comparisons)
|�� − ��| 3,388.16 2,912.12 476.04
������� − ��

������ 3.31 3.30 0.01

Figure 13: Elevation map of Liaoyang.
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Figure 14: Taxi positions of Liaoyang.
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movements of 1,810 taxis were extracted as a result. Based on 
Formulas (7), (12), (17), the Liaoyang results and comparisons 
of three methods were �gured out (see Table 5).

In Table 5, Value1 adopted original digital elevation data 
while Value2 adopted the digital elevation data adjusted by SBI 
Model. Under Value1, total vehicle movements under Direct 
Solution was 29,796,201.87 (m). ­e deviation between Original 
Model and Direct Solution was 845.68 (m) while the deviation 
between MDE Model and Direct Solution was only 0.76 (m). 
Under Value2, total vehicle movements under Direct Solution 
was 29,796,059.67 (m). ­e deviation between Original Model 
and Direct Solution was 703.48 (m) while the deviation between 
MDE Model and Direct Solution was only 0.76 (m). It can be 
seen that the deviation between Original Model and MDE 
Model in Liaoyang was much more obvious than sample. ­e 
results in Liaoyang veri�ed that MDE Model had much less 

Solution was only 3.31 (m). Under Value2, total vehicle 
movements under Direct Solution was 94,767,008.47 (m). 
­e deviation between Original Model and Direct Solution 
was 2,912.12 (m) while the deviation between MDE Model 
and Direct Solution was only 3.30 (m). It can be seen that the 
deviation between Original Model and MDE Model in 
Zhengzhou was much more obvious than sample. ­e results 
in Zhengzhou veri�ed that MDE Model had much less 
disparity with Direct Solution than Original Model. In 
addition, even if some original digital elevation data of actual 
positions in Zhengzhou were missing, it could be further 
calculated by SBI Model. By contrast, the deviation between 
Original Model and Direct Solution was 476.04 (m) while 
the deviation between MDE Model and Direct Solution was 
only 0.01 (m). It further veri�ed the advantage of MDE Model 
even though some data was missing in Zhengzhou and SBI 
Model was adopted to improve the preciseness of GPS data 
with altitude.

4.4. Liaoyang. Liaoyang is a city in Liaoning Province where 
the longitude was in the range of [112.588°, 123.684°] while 
the latitude was in the range of [40.710°, 41.615°]. It located 
in the northern China and its altitudes had di�erences. (see 
Figure 13).

In Figure 13, colors re»ected the elevation. ­e altitudes 
of blue area were low. ­e altitudes of green area were medium. 
­e altitudes of yellow area were high.

In the origin data of Liaoyang, the locations of 2,237 
taxis were recorded every 30 seconds from 9:59 a.m. to 10:58 
a.m. on Aug. 8th in 2016, adding up to 268,440 records  
(see Figure 14).

In Figure 14, taxi positions of Liaoyang located minutely 
at a �xed monitor where the longitude was in the range of 
[122.7°, 123.6°] while the latitude was in the range of [40.8°, 
41.6°]. Aªer data processing, there were 2,025 taxis and 
121,440 records leª in the experimental data. And 87,879 

Table 5: Liaoyang results and comparisons of three methods. Unit: m.

Method Variable Value1 Value2 |Value1 − Value2|
Direct Solution �� 29,796,201.87 29,796,059.67 142.20
Original Model �� 29,795,356.19 29,795,356.19 0
MDE Model ��� 29,796,201.11 29,796,058.91 142.20

(Comparisons)
|�� − ��| 845.68 703.48 142.20
������� − ��

������ 0.76 0.76 0.00

Table 6: Comprehensive results and comparisons of three methods. 
Unit: m.

Variable Data Sanya Zhengzhou Liaoyang Total

|�� − ��| Value1 6,650.88 3,388.16 845.68 10,884.72
Value2 5,986.72 2,912.12 703.48 9,602.32

������� − ��
������
Value1 11.58 3.31 0.76 15.65
Value2 11.43 3.30 0.76 15.49

|��−���|
|��−��|

Value1 0.17% 0.10% 0.09% 0.14%
Value2 0.19% 0.11% 0.11% 0.16%

Table 7: Notations for variables.

Notation Explanation

� ­e center of coordinate systems/the center of the 
earth

� ­e location
ρ ­e radial distance
� ­e polar angle
� ­e azimuthal angle
� ­e radius of the earth
ℎ ­e altitude
�� ­e location of vehicles
�� ­e location near the location of vehicles
�� ­e longitude of the location of vehicles
�� ­e latitude of the location of vehicles
ℎ� ­e altitude of the location of vehicles
� ­e vehicle ID number
� ­e time
� ­e maximum of vehicle ID number
� ­e maximum of time

� Movements between two locations of vehicles under 
Direct Solution

� Movements between two locations of vehicles under 
Original Model

�� Movements between two locations of vehicles under 
Modi�ed Digital Elevation Model

�� Total movements under Direct Solution
�� Total movements under Original Model

��� Total movements under Modi�ed Digital Elevation 
Model
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data exceeds this limit, we had to divide them into 
several pieces before processing. Otherwise, there 
were other soªware, Snapde for instance, suiting 
for the big data more than 1,048,576 rows. In this 
research, the biggest original data was 1,048,575 
records in Zhengzhou (see Section 4.3). ­erefore, 
we adopted Excel as a result.

(ii)  During spatial analyzing by Arcgis Pro (trial version), 
we found that the function of the spatial analyst tool 
called Extract Values by Points was available in v2.2.0 
but unavailable in v2.3.0. Some errors may exist in 
v2.3.0. ­erefore, we adopted v2.2.0 as a result.

(iii)  In SBI Model, the �rst step was to �nd out 4 vertexes 
by positional notation based on the spherical coor-
dinate of point �. We tried both 3 decimal digits and 
4 decimal digits and found that 3 decimal digits of 
longitudes and latitudes were su�cient for vertexes.

(iv)  In this research, we de�ned that � = 6378137.00 (m),  
which represents the radius of the earth (see  
Section 3.2). However, the radius of the earth has 
di�erences in di�erent places.

5.2. Application Prospects. In the �eld of automatic vehicles, 
vehicle security is always under the spotlight. And elevation 
changes have a signi�cant e�ect on the security of automatic 
vehicles because it is di�cult for them to respond as human 
beings when tra�c changes. Most crucially, the speci�c 
calculations used to vehicle movement analyses must be 
not only accurate but also fast. Otherwise, those automatic 
vehicles will be in danger, especially when they are running 
at high speed. ­us, appropriate counter measures could be 
taken to suppress or reverse or at least alleviate its limitations. 
­e application prospects had not been contemplated within 
former sections, including MDE Model and SBI Model, which 
are described as follows.

(i)  MDE Model. In last section, results veri�ed that alti-
tude was a key element of vehicle movement analy-
ses, and it indicated that MDE Model was much more 
accurate than Original Model in terms of vehicle 
movement analysis (see Section 4.2–4.5). It is techni-
cally feasible to send alerts to the automatic vehicles 

disparity with Direct Solution than Original Model. In addition, 
even if some original digital elevation data of actual positions 
in Liaoyang were missing, it could be further calculated by SBI 
Model. By contrast, the deviation between Original Model and 
Direct Solution was 142.20 (m) while the deviation between 
MDE Model and Direct Solution was less than 0.01 (m). It fur-
ther veri�ed the advantage of MDE Model even though some 
data was missing in Liaoyang and SBI Model was adopted to 
improve the preciseness of GPS data with altitude.

4.5. Comparisons. Based on Tables 3–5, the Comprehensive 
results and comparisons of three methods were �gured out 
(see Table 6).

In Table 6, Value1 adopted original digital elevation data 
while Value2 adopted the digital elevation data adjusted by 
SBI Model. Under Value1, total deviation between Original 
Model and Direct Solution was 10,884.72 (m) while total 
deviation between MDE Model and Direct Solution was only 
15.65 (m). ­e latter is 0.14% that of the former. Under  
Value2, total deviation between Original Model and Direct 
Solution was 9,602.32 (m) while total deviation between 
MDE Model and Direct Solution was only 15.49 (m). ­e 
latter is 0.16% that of the former. Comprehensive results 
veri�ed that MDE Model had over 99% less disparity with 
Direct Solution than Original Model because MDE Model 
took altitude into consideration but Original Model did not. 
In other words, MDE Model was much more accurate than 
Original Model.

5. Discussion

In this section, several operational details over the course of this 
research were presented for fellow colleagues and follow-up stud-
ies (see Section 5.1). In addition, the authors discussed the appli-
cation prospects in the �eld of automatic vehicles (see Section 5.2).

5.1. Operational Details. Over the course of this research, 
there were several operational details that had not been 
contemplated within, including soªware use and data 
processing, which are described as follows.

(i) During processing original data by Microsoª Excel 
2019, we found that Excel had a processing limit that 
its maximum capacity was 1,048,576 rows. If original 

Q1 Q2

O

(a)

Q1 P Q2

O

(b)

Figure 15: Schematic diagram for the derivation process of Formula (B.6). (a) Original condition. (b) Add the point � on the line �1�2.
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accuracy of vehicle movement analyses. SBI Model was for fur-
ther improving the preciseness of GPS data with altitude. Given 
the arguments above mentioned, the major �ndings in this 
article include several contents, which are described as 
follows.

(i) ­e application of MDE Model could improve the 
accuracy of vehicle movement analyses and it resulted 
in over 99% less disparity with Direct Solution than 
Original Model because it took altitude into consid-
eration (see Section 4.2–4.5).

(ii)  ­e application of SBI Model could improve the pre-
ciseness of GPS data with altitude especially when 
some data was missing (see Section 4.2–4.4).

(iii)  ­e application of MDE Model and SBI Model could 
improve e�ects according to statistic results (see 
Section 5.2) and it has a bright future in the �eld of 
automatic vehicles.

­e contributions of this study could be as follows:

(i)  MDE Model was built to calculate vehicle movements 
by digital elevation data based on mathematical 
equations (see Section 3.4).

(ii) SBI Model was proposed and applied to improve the 
preciseness of GPS data with altitude of collaborative 
vehicles (see Section 3.5).

(iii) A sample was presented for better description 
(see Section 4.1).

(iv)  It was veri�ed that MDE Model had higher accuracy 
than the original (see Section 4.2–4.5).

(v)  ­e Derivation Process and Checking Process of SBI 
Model was proposed (see Appendix C, D).

Future directions for research can be in two ways. ­e one is 
improving MDE Model and SBI Model. ­e other is expanding 
the data size.

on the road uphill or downhill in advance so that they 
can adjust their brake systems in time. Compared 
with Direct Solution, MDE Model reduced the 
computational costs by avoiding square algorithms. 
Compared with Original Model, MDE Model raised 
the computational accuracy by taking altitude into 
consideration. ­us, analyzing vehicle movements by 
MDE Model could be faster and more accurate and it 
has a bright future in the �eld of automatic vehicles.

(ii) SBI Model. In last section, results indicated that SBI 
Model could improve the preciseness of GPS data 
with altitude especially when some data was miss-
ing in terms of vehicle movement Analysis (see 
Section 4.2–4.4). It is technically feasible for auto-
matic vehicles to establish an oÂine GIS database 
and evaluate real-time GIS information when com-
plete data is di�cult to acquire, in the boondocks for 
instance, so that they can make vehicle movement 
analyses continuously. SBI Model can be viewed as a 
supplementary for MDE Model. ­us, SBI Model is 
necessary in the �eld of vehicle movement analyses 
and it also has a bright future in the �eld of automatic 
vehicles.

To sum up, the authors discussed that MDE Model and SBI 
Model have great practical prospects and they are suitable 
and useful for autonomous vehicles, especially for automatic 
taxis.

6. Conclusions

In this study, the authors proposed Modi�ed Digital Elevation 
(MDE) Model, Spherical Bilinear Interpolation (SBI) Model 
and adopted the experimental data of 9,990 GPS-enabled taxis 
in Sanya, Zhengzhou and Liaoyang to make movement com-
parisons by three methods, including Direct Solution, Original 
Model and MDE Model. MDE Model was for improving the 

θ1ʹ θ θ2ʹ

φ2ʹ

φ

φ1ʹ φ1ʹ

Q6(R + h6ʹ,θ, φ2ʹ)

Q1(R + h1ʹ,θ1ʹ, φ1ʹ) Q2 (R + h2ʹ,θ2ʹ, φ1ʹ),Q5(R + h5ʹ,θ, φ1ʹ)

P(R + h, θ, φ)

Q3(R + h3ʹ,θ1ʹ, φ2ʹ) Q4(R + h4ʹ,θ2ʹ, φ2ʹ),

φ

θ1ʹ θ θ2ʹ

(a)

θ1ʹ θ θ2ʹ

φ2ʹ

φ
P(R + h, θ, φ)

φ1ʹ φ1ʹ

Q1(R + h1ʹ,θ1ʹ, φ1ʹ) Q2 (R + h2ʹ,θ2ʹ, φ1ʹ),

Q3(R + h3ʹ,θ1ʹ, φ2ʹ)

Q7(R + h7ʹ,θ1ʹ, φ) Q8(R + h8ʹ,θ2ʹ, φ)
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Figure 16: Schematic diagram for the derivation process of Formula (19). (a) Add two green points �5 and �6 where their polar angles are 
equivalent to �. (b) Add two green points �7 and �8 where their azimuthal angles are equivalent to �.



15Journal of Advanced Transportation

  

Based on Formulas (B.7), (B.8), Formula (B.9) can be converted 
into Formula (B.10).

Formula (B.10) can be converted into Formula (B.11).

Considering �����1�2
���� =
�����3�4
���� = �
�
2 − ��1, 
�����1�5
���� =
�����3�6
���� = � − �

�
1�����5�2

���� =
�����6�4
���� = �
�
2 − �, 
�����5�
���� = � − �

�
1, and ������6

���� = �
�
2 − �, 

Formula (B.11) can be converted into Formula (B.12).

Plan B adds two green points �7(� + ℎ�7, ��1, �) and 
�8(� + ℎ�8, ��2, �) on the basis of Figure 1 where their azimuthal 
angles are equivalent to � (see Figure 16(b)). In this way, points 
�1, �7, �3 are collinear, points �2, �8, �4 are collinear, besides, 
points �7, �, �8 are collinear. Based on Formula (B.6), �⇀��7,  �⇀��8, and �⇀�� can be calculated respectively by Formulas 
(B.13), (B.14), (B.15).

  

Based on Formulas (B.13), (B.14), Formula (B.15) can be con-
verted into Formula (B.16).

Formula (B.16) can be converted into Formula (B.17).

(B.9)

�⇀�� =
������6
���������5�6
����
�⇀��5 +
�����5�
���������5�6
����
�⇀��6 .

(B.10)

�⇀�� = ������6���������5�6���� × (
�����5�2���������1�2���� �⇀��1 +

�����1�5���������1�2���� �⇀��2)
+ �����5����������5�6���� × (

�����6�4���������3�4���� �⇀��3 +
�����3�6���������3�4���� �⇀��4).

(B.11)

�⇀�� = ������6���� × �����5�2���������5�6���� × �����1�2���� �⇀��1 +
������6���� × �����1�5���������5�6���� × �����1�2���� �⇀��2

+ �����5����� × �����6�4���������5�6���� × �����3�4���� �⇀��3 +
�����5����� × �����3�6���������5�6���� × �����3�4���� �⇀��4 .

(B.12)

�⇀�� = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) �⇀��1 +
(��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) �⇀��2

+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) �⇀��3 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) �⇀��4 .

(B.13)�⇀��7 =
�����7�3
���������1�3
����
�⇀��1 +
�����1�7
���������1�3
����
�⇀��3,

(B.14)
�⇀��8 =
�����8�4
���������2�4
����
�⇀��2 +
�����2�8
���������2�4
����
�⇀��4,

(B.15)�⇀�� =
������8
���������7�8
����
�⇀��7 +
�����7�
���������7�8
����
�⇀��8 .

(B.16)

�⇀�� = ������8���������7�8���� × (
�����7�3���������1�3���� �⇀��1 +

�����1�7���������1�3���� �⇀��3)
+ �����7����������7�8���� × (

�����8�4���������2�4���� �⇀��2 +
�����2�8���������2�4���� �⇀��4).

Appendix

A. Notations for Variables

In Appendix A, notations for variables are presented (see 
Table 7).

B. Derivation Process of Formula (20)

In Appendix B, a series of formulas are built to �nd out the 
solution of Formula (19) and work out Formula (20).
Supposing that the point � is the center of the coordinate 
system and there are two points �1 and �2 (see Figure 15(a)). 
Supposing that the point � is on the line �1�2, and points  
�1, � and �2 are collinear (see Figure 15(b)).
Based on Vector Addition Formula, the relations between �⇀��1, �⇀��2, and �⇀�1�2 can be expressed by Formula (B.1). In the same 
way, the relations between �⇀��, �⇀��1, and �⇀�1� can be expressed 
by Formula (B.2).

Supposing that � is the proportion of � in the vector 
�⇀�1�2 as 

Formula (B.3).

Based on Vector Proportion Formula, the relations between �⇀�1� and �⇀�1�2 can be expressed by Formula (B.4).

where 0 ≤ � ≤ 1. Based on Formulas (B.2, B.4), �⇀�� can be 
calculated by Formula (B.5).

Formula (B.5) can be simpli�ed into Formula (B.6).

In order to �nd out the solution of Formula (18) based on 
Formula (B.6), there are two plans for the derivation process 
of Formula (19), called Plan A and Plan B.
Plan A adds two green points �5(� + ℎ�5, �, ��1) and 
�6(� + ℎ�6, �, ��2) on the basis of Figure 1 where their azimuthal 
angles are equivalent to � (see Figure 16(a)). In this way, points �1, 
�5, �2 are collinear, points �3, �6, �4 are collinear, besides, points 
�5, �, �6 are collinear. Based on Formula (B.6), �⇀��5, 

�⇀��6, and 
�⇀�� can be calculated respectively by Formulas (B.7), (B.8), (B.9).

(B.1)
�⇀��1 +
�⇀�1�2 =
�⇀��2,

(B.2)�⇀�� = �⇀��1 +
�⇀�1� .

(B.3)� =
�����1�
���������1�2
����
.

(B.4)�⇀�1� = �
�⇀�1�2,

(B.5)�⇀�� = �⇀��1 +�(
�⇀��2 −
�⇀��1).

(B.6)�⇀�� = (1 − �) �⇀��1 +�
�⇀��2 .

(B.7)�⇀��5 =
�����5�2
���������1�2
����
�⇀��1 +
�����1�5
���������1�2
����
�⇀��2,

(B.8)
�⇀��6 =
�����6�4
���������3�4
����
�⇀��3 +
�����3�6
���������3�4
����
�⇀��4,
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Based on Figure 2, Formula (21) can be converted into 
Formula (C.1).

where ��2 − ��1 > 0 and ��2 − ��1 > 0.
Based on Formula (C.1), the radial distance �� can be calcu-
lated by Formula (C.2).
  

Formula (C.2) can be simpli�ed into Formulas (C.3), (C.4), 
(C.5), (C.6), (C.7) in a step-by-step process and converted into 
Formula (C.8) as a result.

(C.1)

�⇀�� = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) (� + ℎ�1, ��1, ��1)
+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) (� + ℎ�2, ��2, ��1)
+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) (� + ℎ�3, ��1, ��2)
+ (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) (� + ℎ�4, ��2, ��2),

(C.2)

�ρ = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) (� + ℎ�1)
+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) (� + ℎ�2)
+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) (� + ℎ�3)
+ (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) (� + ℎ�4).

(C.3)

�� = � × [ (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) +
(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1)

+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1)]

+ (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�1 +
(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1)

× ℎ�2 + (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�3 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4,

Considering �����1�3
���� =
�����2�4
���� = �
�
2 − ��1 , 

�����1�7
���� =
�����2�8
���� = � − �

�
1�����7�3

���� =
�����8�4
���� = �
�
2 − �, 
�����7�
���� = � − �

�
1, and ������8

���� = �
�
2 − �, 

Formula (B.17) can be converted into Formula (B.18).

Compare Formula (B.12) with Formula (B.18), it can be con-
cluded that plan A and plan B have the same result. And then 
�1, �2, �3, and �4 can be calculated respectively by Formulas 
(B.19), (B.20), (B.21), (B.22).

As a result, the solution of Formula (19) was settled by Formula 
(20) on the basis of Formulas (B.19), (B.20), (B.21), (B.22).

C. Checking Process of Formula (21)

In Appendix C, a series of formulas are built to check Formula 
(21).

(B.17)

�⇀�� = ������8���� × �����7�3���������7�8���� × �����1�3���� �⇀��1 +
�����7����� × �����8�4���������7�8���� × �����2�4���� �⇀��2

+ ������8���� × �����1�7���������7�8���� × �����1�3���� �⇀��3 +
�����7����� × �����2�8���������7�8���� × �����2�4���� �⇀��4 .

(B.18)

�⇀�� = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) �⇀��1 +
(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) �⇀��2

+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) �⇀��3 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) �⇀��4 .

(B.19)
�1 = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) ,

(B.20)
�2 = (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) ,

(B.21)�3 = (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) ,
(B.22)�4 = (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) .

(C.4)

�� =� × (��2 − �) × (��2 − �) + (� − ��1) × (��2 − �) + (��2 − �) × (� − ��1) + (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1)
+ (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�1 +

(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�2 +
(��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�3

+ (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4,

(C.5)

�� =� × (��2 − �) × (��2 − � + � − ��1) + (� − ��1) × (��2 − � + � − ��1)(��2 − ��1) × (��2 − ��1) + (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�1
+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�2 +

(��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�3 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4,
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(C.6)

�� = � × (��2 − ��1) × (��2 − � + � − ��1)(��2 − ��1) × (��2 − ��1) +
(��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1)

× ℎ�1 + (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1)
× ℎ�2 + (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1)
× ℎ�3 + (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4,

(C.7)

�� = � × (��2 − ��1) × (��2 − ��1)(��2 − ��1) × (��2 − ��1) +
(��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�1

+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�2 +
(��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1)

× ℎ�3 + (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4,

Based on Formula (C.1), the polar angle �� can be calculated 
by Formula (C.9).

  

Formula (C.9) can be simpli�ed into Formulas (C.10), (C.11), 
(C.12), (C.13), (C.14) in a step-by-step process and converted 
into Formula (C.15) as a result.

(C.8)

�� = � + (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�1 +
(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�2

+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�3 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4.

(C.9)

�� = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ��1 +
(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ��2

+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ��1 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ��2.

(C.10)
�� = (��2 − �) × (��2 − �) × ��1 + (� − ��1) × (��2 − �) × ��2 + (��2 − �) × (� − ��1) × ��1 + (� − ��1) × (� − ��1) × ��2(��2 − ��1) × (��2 − ��1) ,

(C.11)�� = ��1 × (��2 − �) × (��2 − � + � − ��1) + ��2 × (� − ��1) × (��2 − � + � − ��1)(��2 − ��1) × (��2 − ��1) ,

(C.12)

�� = (��2 − ��1) × [��1 × (��2 − �) + ��2 × (� − ��1)](��2 − ��1) × (��2 − ��1) ,

(C.13)

�� = (��2 − ��1) × (��1 × ��2 − ��1 × � + ��2 × � − ��2 × ��1)(��2 − ��1) × (��2 − ��1) ,

(C.14)
�� = (��2 − ��1) × (��2 − ��1) × �(��2 − ��1) × (��2 − ��1) ,

(C.15)�� = �.

Based on Formula (C.1), the azimuthal angle �� can be 
calculated by Formula (C.16).

  

Formula (C.16) can be simpli�ed into Formulas (C.17), 
(C.18), (C.19), (C.20), (C.21) in a step-by-step process and 
converted into Formula (C.22) as a result.

(C.16)

�� = (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ��1 +
(� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ��1

+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ��2 +
(� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ��2.

(C.17)
�� = (��2 − �) × (��2 − �) × ��1 + (� − ��1) × (��2 − �) × ��1 + (��2 − �) × (� − ��1) × ��2 + (� − ��1) × (� − ��1) × ��2(��2 − ��1) × (��2 − ��1) ,

(C.18)�� = ��1 × (��2 − �) × (��2 − � + � − ��1) + ��2 × (� − ��1) × (��2 − � + � − ��1)(��2 − ��1) × (��2 − ��1) ,

(C.19)

�� = (��2 − ��1) × [��1 × (��2 − �) + ��2 × (� − ��1)](��2 − ��1) × (��2 − ��1) ,

(C.20)

�� = (��2 − ��1) × (��1 × ��2 − ��1 × � + ��2 × � − ��2 × ��1)(��2 − ��1) × (��2 − ��1) ,
  

Based on Formulas (C.8), (C.15), (C.22), Formula (C.1) can 
be converted into Formula (C.23).

(C.21)�� = (��2 − ��1) × (��2 − ��1) × �(��2 − ��1) × (��2 − ��1) ,
(C.22)�� = �.
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Based on Formulas (D.1), (D.2), (D.3), the values of �, �, ��
are certain as shown by Formula (D.4).

Now, Spherical Bilinear Interpolation Model is adopted.
Based on Formula (17), ℎ1 can be calculated by Formulas (D.5).

Formula (D.5) can be simpli�ed into Formulas (D.6) and con-
verted into Formula (D.7) as a result.

Based on Formula (17), ℎ2 can be calculated by Formula (D.8).

(D.2)

� = 6378137.00 × arccos(sin(109.4983∘ × �180∘ )× sin(109.4987∘ × �180∘ ) × cos((18.2272∘ × �180∘ )−(18.2274∘ × �180∘ )) + cos(109.4983∘ × �180∘ )× cos(109.4987∘ × �180∘ )),

(D.3)

��2 = [(6378137.00 + 145 + 1472 ) × arccos⋅(sin(109.4983∘ × �180∘ ) × sin(109.4987∘ × �180∘ )× cos((18.2272∘ × �180∘ ) − (18.2274∘ × �180∘ ))+ cos(109.4983∘ × �180∘ )
× cos(109.4987∘ × �180∘ ))]

2 + (145 − 147)2.

(D.4)
� = 49.267562,
� = 49.225885,
�� = 49.267623.

(D.5)

ℎ1 = (109.499∘ − 109.4983∘) × (18.228∘ − 18.2274∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 149.72
+ (109.4983∘ − 109.498∘) × (18.228∘ − 18.2274∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 150.81
+ (109.499∘ − 109.4983∘) × (18.2274∘ − 18.227∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 139.55
+ (109.4983∘ − 109.498∘) × (18.2274∘ − 18.227∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 132.45.

(D.6)
ℎ1 = 0.7 × 0.6 × 149.72 + 0.3 × 0.6 × 150.81+ 0.7 × 0.4 × 139.55 + 0.3 × 0.4 × 132.45,

(D.7)ℎ1 = 144.9962 ≈ 145.00 (�).

(D.8)

ℎ2 = (109.499∘ − 109.4987∘) × (18.228∘ − 18.2272∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 149.72
+ (109.4987∘ − 109.498∘) × (18.228∘ − 18.2272∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 150.81
+ (109.499∘ − 109.4987∘) × (18.2272∘ − 18.227∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 139.55
+ (109.4987∘ − 109.498∘) × (18.2272∘ − 18.227∘)(109.499∘ − 109.498∘) × (18.228∘ − 18.227∘) × 132.45.

Compare Formula (C.23) with the origin coordinate 
�(� + ℎ, �, �), the equational relations can be expressed by 
Formula (C.24).

As a result, Formula (20) is available aªer checking and ℎ can 
be calculated by Formula (21) on the basis of Formula (C.24).

D. Derivation Process of Table 2

In Appendix D, a series of formulas are built to work out Table 2.
It is worth noting that all the � and � in degree measure should 
be converted into radian measure by multiplying �/180∘ before 
calculating.

Now, we calculate the movements.
Based on Formulas (7), (12), (21), the vehicle movement �⇀�1�2 under Direct Solution, Original Model, MDE Model can 

be calculated respectively by Formulas (29), (30), (31).

(C.23)

�⇀�� = (� + (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�1
+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�2
+ (��2 − �) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�3
+ (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4, �, �).

(C.24)

� + (��2 − �) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ
�
1

+ (� − ��1) × (��2 − �)(��2 − ��1) × (��2 − ��1) × ℎ�2+(��2 − �) × (� − ��1)(��2 − ��1)×(��2 − ��1) × ℎ�3+ (� − ��1) × (� − ��1)(��2 − ��1) × (��2 − ��1) × ℎ�4 = � + ℎ,
� = �,
� = �.

(D.1)

�2 = [(6378137.00 + 145) × sin(109.4983∘ × 
180∘ )× cos(18.2274∘ × 
180∘ ) − (6378137.00 + 147)
× sin(109.4987∘ × 
180∘ ) × cos(18.2272∘ × 
180∘ )]

2

+ [(6378137.00 + 145) × sin(109.4983∘ × 
180∘ )× sin(18.2274∘ × 
180∘ ) − (6378137.00 + 147)
× sin(109.4987∘ × 
180∘ ) × sin(18.2272∘ × 
180∘ )]

2

+ [(6378137.00 + 145) × cos(109.4983∘ × 
180∘ )
−(6378137.00 + 147) × cos(109.4987∘ × 
180∘ )]

2
,
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Formula (D.8) can be simpli�ed into Formulas (D.9) and con-
verted into Formula (D.10) as a result.

  

Based on Formula (D.7), (D.10), the coordinates of points 
�1(� + 145.00, 109.4983∘, 18.2274∘), �2(� + 147.30, 109.4987

∘,
18.2272∘) are certain.
Now, we calculate the movements.
Based on Formula (7), (12), (21), the vehicle movement 

�⇀�1�2
under Direct Solution, Original Model, MDE Model can be 
calculated respectively by Formula (D.11), (D.12), (D.13).

  

(D.9)ℎ2 = 0.3 × 0.8 × 149.72 + 0.7 × 0.8 × 150.81+ 0.3 × 0.2 × 139.55 + 0.7 × 0.2 × 132.45,
(D.10)ℎ2 = 147.3024 ≈ 147.30 (�).

(D.11)

�2 = [(6378137.00 + 145.00) × sin(109.4983∘ × 
180∘ )× cos(18.2274∘ × 
180∘ ) − (6378137.00 + 147.30)
× sin(109.4987∘ × 
180∘ ) × cos(18.2272∘ × 
180∘ )]

2

+ [(6378137.00 + 145.00) × sin(109.4983∘ × 
180∘ )× sin(18.2274∘ × 
180∘ ) − (6378137.00 + 147.30)
× sin(109.4987∘ × 
180∘ ) × sin(18.2272∘ × 
180∘ )]

2

+ [(6378137.00 + 145.00) × cos(109.4983∘ × 
180∘ )
−(6378137.00 + 147.30) × cos(109.4987∘ × 
180∘ )]

2
,

(D.12)

� = 6378137.00 × arccos(sin(109.4983∘ × �180∘ )× sin(109.4987∘ × �180∘ ) × cos((18.2272∘ × �180∘ )−(18.2274∘ × �180∘ )) + cos(109.4983∘ × �180∘ )× cos(109.4987∘ × �180∘ )),

(D.13)

��2 = [(6378137.00 + 145.00 + 147.302 ) × arccos
⋅(sin(109.4983∘ × �180∘ ) × sin(109.4987∘ × �180∘ )× cos((18.2272∘ × �180∘ ) − (18.2274∘ × �180∘ ))
+ cos(109.4983∘ × �180∘ ) × cos(109.4987∘ × �180∘ ))]

2

+ (145.00 − 147.30)2,

Based on Formulas (D.11), (D.12), (D.13), the values of �, �, 
�� are certain as shown by Formula (D.14).

  

Based on Formulas (D.4), (D.14), Table 2 was worked out as 
a result. 
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 e recent trend for vehicles to be connected to unspeci�ed devices, vehicles, and infrastructure increases the potential for external 
threats to vehicle cybersecurity.  us, intrusion detection is a key network security function in vehicles with open connectivity, such 
as self-driving and connected cars. Speci�cally, when a vehicle is connected to an external device through a smartphone inside the 
vehicle or when a vehicle communicates with external infrastructure, security technology is required to protect the so�ware network 
inside the vehicle. Existing technology with this function includes vehicle gateways and intrusion detection systems. However, it is 
di�cult to block malicious code based on application behaviors. In this study, we propose a machine learning-based data analysis 
method to accurately detect abnormal behaviors due to malware in large-scale network tra�c in real time. First, we de�ne a detection 
architecture, which is required by the intrusion detection module to detect and block malware attempting to a�ect the vehicle via 
a smartphone.  en, we propose an e�cient algorithm for detecting malicious behaviors in a network environment and conduct 
experiments to verify algorithm accuracy and cost through comparisons with other algorithms.

1. Introduction

As automobiles become more intelligent, so do transportation 
systems [1]. New business requirements in the automotive 
market and advances in automotive communication technol-
ogy are increasing the connectivity of automobiles.  is 
greater connectivity portends the increased likelihood of 
future automobile cyberattacks [2].  erefore, it is necessary 
to prepare countermeasures for various attack vectors to com-
bat threats to vehicle cybersecurity.

For example, in 2015, Miller and Valasek  [3] remotely 
hacked a traveling Jeep Cherokee to control the audio, wind-
shield wipers, steering and braking, revealing that an unpre-
pared cybersecurity system can threaten driver safety. 
Furthermore, in 2016 and 2017, Keen Security Lab [4] hacked 
a Tesla vehicle to demonstrate security threats and potential 
attacks related to connected vehicles. Typically, connected 
vehicles are a closed environment that only accepts remote 
control commands in an authorized communication path, 
such as a server built by the manufacturer or dedicated appli-
cations published by the manufacturer. In a closed 

environment, unauthorized commands are blocked. However, 
recent self-driving vehicles share their control signals and 
internal data with not only the controllers inside the vehicle, 
but also various unspeci�ed vehicles, infrastructures, and 
smart devices outside the vehicle in real time.  us, vehicle 
network protection should be prioritized in open 
environments.

 e security of a self-driving vehicle is directly related to 
passenger safety; therefore, it is necessary to comprehensively 
consider the various attack vectors against vehicles based on 
the integrity, availability, and con�dentiality of their cyberse-
curity [5]. When a connected vehicle’s so�ware is updated, it 
is essential to verify the integrity of the so�ware. Attackers 
may use malicious applications to illegally steal privileges or 
gain access, repackage the so�ware installed in the vehicle by 
injecting malicious code, and induce the installation of mali-
ciously modi�ed applications.  is malicious so�ware looks 
the same as the authorized so�ware, but malicious code con-
tained in the modi�ed applications can collect the user's input 
to steal account information, activate abnormal service ports, 
or retain authorization for the attacker to access later. Such 
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malicious so�ware can be even used as a medium for addi-
tional remote attacks through communication with the com-
mand and control server. �us, it is important to protect 
vehicle so�ware when either the vehicle is connected to an 
external device such as a smartphone via an interface inside 
the vehicle, or a communication channel is opened between 
the vehicle and surrounding infrastructure. Previous research 
has installed vehicle gateways which allow only authorized 
communication to the vehicles and introduced vehicle 
Intrusion Detection Systems (IDSs) to detect abnormal behav-
iors in the Controller Area Network (CAN) [6]. However, it 
is difficult for a gateway or IDS to block these actions in 
advance, as most malware and adware are behavior-based. In 
order to detect unknown threats, it is vital to introduce a tech-
nology that can detect abnormal behaviors and analyze anom-
alous indicators using data analysis technology.

In this study, we review the various security threats to 
self-driving vehicles imposed by malware in Android operat-
ing system (OS) and discuss a method for detecting such mal-
ware. In an embedded environment such as a vehicle, both 
response time and detection accuracy are key factors because 
resources are limited, and real-time responses are required. 
�erefore, we propose a machine learning-based detection 
model that can reduce analysis time and improve detection 
accuracy. �e specific contributions of this research are as 
follows:

 (i)  � We present a method for detecting adware and mal-
ware in a self-driving vehicle environment.

 (ii) � We define the intrusion detection module architec-
ture required to detect malware and prevent it from 
affecting the vehicle through a smartphone.

(iii) � We experimentally compare the detection accuracy 
and cost of different algorithms and present the most 
efficient algorithm.

First, we describe the security technology protecting the inter-
nal and external communication networks of self-driving 
vehicles. We then propose an architecture for an intrusion 
detection module that detects malicious behavior in the vehi-
cle network based on machine learning. �en, we present an 
effective intrusion detection method and compare it with 
existing algorithms in experiments. Finally, we present the 
conclusions and future work.

2. Preliminaries

2.1. Vehicle-to-Device Communication.  In the paradigm 
of vehicle-to-everything communication, communicating 
with a specific device is termed vehicle-to-device (V2D) 
communication [7]. Android-based smartphones are typical 
devices that communicate with a vehicle. Services that 
identify vehicle operational information or diagnose vehicle 
abnormalities via a smartphone are classified as performing 
V2D communication. Initially, to carry out these functions, 
vehicles were directly connected to an external device outside 
the vehicle through a universal serial bus connector or 

Bluetooth, and the data on the device were used. Because a direct 
wired connection from the vehicle to the device occurred only 
if the target vehicle was physically occupied, a hacker could not 
directly control multiple vehicles remotely, even if the vehicles 
were successfully stolen. Since then, vehicle manufacturers 
have installed telematics control units (TCUs) or connectivity 
control units (CCUs) in vehicles and implemented interfaces 
for remote control of vehicles that include communication 
functions. In addition, this service is not limited to the 
original equipment manufacturer. Global telecommunication 
companies or Internet of �ings device manufacturers can 
also install Long-Term Evolution communication modules on 
the on-board diagnostics II terminal to collect and manage 
various data inside the vehicle. When the vehicle is connected 
to a server or smartphone through such a communication 
module, information from the vehicle can be transmitted 
externally. Similarly, it is also possible to control the vehicle 
by injecting commands to the vehicle from the outside. A 
connection to a smartphone or external communication 
device is used not only for convenience services such as music 
playback and navigation, but also for important functions for 
updating the vehicle so�ware. If a connection is unauthorized 
or infected by malicious codes, it can be a serious security 
threat to the vehicle network. �erefore, security technology 
to protect the vehicle so�ware and network is essential in V2D 
communication.

2.2. Android-Based Hacking Attacks.  Malicious code is a 
widely used attack method at the application level that comes 
in various forms [8]. Various security threats such as leakage 
of private information, elevation of application privileges, and 
a denial-of-service (DoS) attack have been reported. �e most 
common attack in the Android OS is the use of an application 
containing malicious code imported when a specific web page 
or email is loaded. Most malicious code is injected into the 
device without the user’s awareness during the attack. When 
an application containing malicious code is executed on an 
Android OS, the code collects device and user information 
and sends it to a remote server. It also configures a backdoor 
by activating the service port to allow the attacker to reenter 
the device and elevate the privileges of available accounts. 
Subsequently, the malicious code can gain entire access to the 
infected device by rooting it. In particular, when an infected 
Android OS is connected to the inside of a self-driving vehicle, 
malicious code can be infiltrated directly into the vehicle to 
take control of the embedded OS or application so�ware 
environment. For this reason, we need to detect malicious 
code from a self-driving vehicle.

2.3. Dataset.  Recently, machine learning algorithms have been 
used to detect malicious code. �is study proposes a machine 
learning-based intrusion detection module using the Android 
Adware and General Malware (AW&GM) dataset [9], which 
was developed by the Canadian Institute for Cybersecurity 
(CIC) in 2017. �is publicly available dataset comprises 
Android sandboxes, Android adware, malware, and normal 
application traffic. It consists of traffic from 1,900 applications 
downloaded from Google Play (Android official application 
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market) and is used to classify normal and malicious code 
based on network traffic. �is dataset is categorized with the 
following three classes (see Table 1).

2.4. Related Work for Protecting Vehicle Communication 
Networks.  Kwon et al. [10] proposed a method for 
reconfiguring the electronic control units (ECUs) in a 
vehicle and deactivating attack packets to defend against 
network intrusion. In the proposed architecture, an IDS is 
introduced to detect cyberattacks in the network inside the 
vehicle, and a control module, called a mitigation manager, 
is applied to mitigate the damage from detected attacks. 
�ey then proposed an architecture to deliver commands 
to reconfigure ECUs, deactivate packets, reconfigure head 
units, delete packets in gateways at each domain, or switch 
domains into a secure mode. However, the framework and 
algorithms for the methodology were only proposed and not 
developed, and performance evaluations of the specific shape 
or architecture were insufficient. �erefore, a testbed and 
simulation environment should be prepared in order to verify 
the architecture appropriateness based on practical data such 
as detection accuracy, detection time, and resource utilization.

Han et al. [11] suggested an anomaly intrusion detection 
method for vehicular networks based on survival analysis. �e 
method is based on an anomaly detection algorithm that 
detects a suspicious pattern within the usual pattern informa-
tion. �e method aims to detect three typical attack scenarios—
flooding attacks, fuzzy attacks, and malfunction attacks—that 
attempt to manipulate and control using malicious packets. 
�e authors noted that the proposed method can detect 
unknown attacks; however, they did not describe how to detect 
scenarios other than the three mentioned.

Zhang et al. [12] presented a cloud-assisted vehicle mal-
ware defense framework to defend vehicles against malware 
attacks. Such a service can help defend resource-constrained 
vehicle systems against malware by detecting new malware 
and updating onboard malware defense capabilities. Although 
the method is a cloud-based malware detection service, in-ve-
hicle devices are also required to perform onboard threat 
defense functions. �e premise of this service is that a single 
gateway should be able to control all external communication 
interfaces in the vehicle. If the vehicle cannot access the secu-
rity cloud, it must find another way to inspect malware, how-
ever, no alternatives were explicitly suggested by the authors.

3. Machine Learning-Based Intrusion 
Detection Module

3.1. Malware Detection in Vehicle Networks.  Study Group 
SG17 of the Telecommunication Standardization Sector, one 
of the International Telecommunication Unions that develops 
telecommunications standards, established the Intelligent 
Transport System (ITS) security investigation branch in order 
to standardize the ITS [13]. Specifically, X.itssec-4, which 
covers methodologies for IDSs for in-vehicle systems, defines 
the system structure and methods. Existing mechanisms for 
detecting unauthorized access into a CAN, injection of a 
malicious control message, and DoS attack include vehicle 
gateways and vehicle IDSs [14]. Attacks using adware and 
malware have various user interaction scenarios that can 
intrude into a vehicle through a smartphone (see Table 2).

Connected or self-driving vehicles are connected to 
external or public networks outside the vehicle via various 
interfaces. TCUs or CCUs are equipped with a modem and 
external communication interfaces to enable receipt of Global 
Positioning System signals and access to mobile networks. 
In-vehicle infotainment systems, which provide entertainment 
and information content, enable various applications by 
applying an embedded OS, such as QNX OS or Android OS. 
If security design is not considered in wired or wireless 
networks, these interfaces can be abused as a path for malware 
or malicious commands to enter the vehicle network (see 
Figure 1). In particular, the embedded OS environment can be 
controlled from the malware or malicious commands when 
these malicious processes bypass OS-level security logic or 
acquire root authority from self-privilege elevation. �erefore, 
in order to prevent malicious commands from gaining control 
of the embedded OS, this paper proposes a CAN gateway 
architecture that includes an intrusion detection module and 
detects malicious behaviors when Android OS-based devices 
are connected to the vehicle.

In this study, a machine learning-based intrusion detec-
tion module is installed in the vehicle IDS, which can detect 
intrusion into the CAN or any abnormalities, so that a head 
unit or ECU can be protected from malicious code. Such 
detection methods are implemented in the form of so�-
ware-based computing modules to monitor malware injection 
or malicious code behaviors in the vehicle. �e so�ware can 
be installed as a component of the vehicle intrusion detection 
module or as an anti-virus agent in a head unit.

T���� 1:  �ree categories of the android adware and general 
malware dataset.

Class Malware family Number of apps

Adware
Airpush, dowgin, 

kemoge, mobidash, 
shuanet

250

General malware
AVpass, fakeAV, 

fakeflash/fakeplayer, 
GGtracker, penetho

150

Benign
Google play market (top 
free popular and top free 

new, 2015-2016)
1,500

T���� 2: User interaction scenarios analyzed in this study.

Category User interaction scenario

Confidentiality
Information leakage (trip/location records, 
camera video/images, contact list, call/SMS 

history)

Integrity
Intentionally manipulated application 

installation (injection of malicious code 
disguised as a modified application)

Availability

Continuous resource consumption  
(large-scale traffic transmission) and system 

termination (intentionally resulting in various 
exception cases)



Journal of Advanced Transportation4

is applied by employing correlation-based feature selection 
(CFS) and an entropy-based information gain (IG) method. 
Constructing a validated dataset for an e�cient experimental 
environment is important in machine learning. In this paper, 
we propose the improved feature selection (IFS) method, 
which combines the higher values derived from correlation 
and IG methods.  

 e proposed learning algorithm uses the selected net-
work tra�c features to detect malware. Unlike existing feature 
selection methods, IFS �nds both greedy features and the 
highest correlation.  ere are two broad categories that can 
be used to measure the correlation between two random var-
iables, one based on classical linear correlation (i.e., CFS) and 
the other based on information theory (i.e., the IG method). 
First, a pair of variables is de�ned for the CFS method and the 
linear correlation coe�cient is derived [16]. In addition, the 
IG method decides how important a given attribute of the 
feature vectors is [17].  ese two vectors are combined in order 
to determine the �nal features from the dataset that are highly 

 e proposed detection so�ware consists of input, analy-
sis, evaluation, and noti�cation modules.  e tra�c injected 
through the CAN is processed through the input module and 
entered into the analysis module, which is equipped with a 
machine learning algorithm (see Figure 2).  e analysis mod-
ule evaluates intrusion or abnormal behaviors based on a 
learned model and provides intrusion behavior information 
to a user or control center in real time.  is machine learn-
ing-based intrusion detection module can improve the model’s 
accuracy by repeatedly learning, verifying, and evaluating 
message patterns. Furthermore, detection rules for malicious 
behaviors can be updated to the vehicle gateway and each con-
troller to accurately detect malicious code.

3.2. Data Preprocessing for Malicious Code Analysis.  e 
characteristics of 79 features included in the CIC AW&GM 
dataset are analyzed using the Waikato Environment for 
Knowledge Analysis [15]. Feature selection is needed to reduce 
the dimensionality of the data. First, ten-fold cross-validation 
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Figure 1: Schematic showing the head unit connected to an Android mobile device.
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have reported that malware can be detected in the network 
tra�c of devices [18, 19].  is paper selected nine features 
using the IFS method and shows that malware can be detected 
from the network tra�c using a machine learning-based IDS 
module.

As the original data has unique characteristics and distri-
butions, learning from these data may be slow or result in 
modeling errors. In the case of network tra�c, it is essential 
to perform scaling because each feature has a uniquely de�ned 
data range and unit. Scaling is a data preprocessing task that 
helps prevent under²ow and over²ow when learning from 
experimental data. It is performed based on the nine selected 
features.  e F1 score results a�er applying the MinMaxScaler 
and StandardScaler are described in Table 4.  e MinMaxScaler 
scales all features to be exactly between zero and one.  e 
StandardScaler, in contrast, does not limit the minimum and 
maximum values, but ensures that all features have an average 
of zero and a variance of one.  us, all features have the same 
size. A comparison of their F1 score results of the two scaling 
methods indicates that MinMaxScaler is more advantageous 
due to the nature of the network tra�c, which comprises a 
wide range of data.  erefore, in this study, the MinMaxScaler 
technique is applied to each algorithm.

Next, we analyzed algorithms that detect adware and mal-
ware typical in Android OS. In this study, these attack detection 
techniques are compared by applying six machine learning 
algorithms to the dataset. Furthermore, we analyzed the results 
of using a general machine learning algorithm, assuming that 
the computing power employed in the vehicle-embedded so�-
ware can analyze tra�c data using a general speci�cation rather 
than a high-performance system.  e dataset used in this study 
consists of three classes: benign, adware, and general malware. 
 ere is a strong imbalance between these classes (see Table 5).

When the data modeling results are evaluated with general 
accuracy, the evaluation result may suggest that its 

Table 3: Feature selection results.

1 e feature of min_�owpktl means minimum length of a ²ow; max_�owpktl means maximum length of a ²ow; max_idle means maximum time a ²ow was idle 
before becoming active; bVarianceDataBytes means variance of total bytes used in backward direction; avgPacketSize means average size of packet; max_fpktl 
means maximum size of packet in forward direction; max_�owiat means maximum inter-arrival time of packet; fPktsPerSecond means number of forward 
packets per second; Init_Win_bytes_forward means the total number of bytes sent in initial window in the forward direction, respectively. Especially the last 
item is included in both CFS and IG results.

Category Selected Features1 from IFS F1 score
CFS (5) min_�owpktl, max_�owpktl, max_idle, bVarianceDataBytes, Init_Win_bytes_forward 0.796
IG (5) avgPacketSize, max_fpktl, max_�owiat, fPktsPerSecond, Init_Win_bytes_forward 0.806

Table 4: Feature scaling results.

Category F1 score
MinMaxScaler 0.813
StandardScaler 0.810

Table 5: Types of applications and their ratio.

Category Count Ratio (%)
Benign 471,597 74.6
Adware 155,613 24.6
General malware 4,745 0.8

Input: � is a universal set with all features.
Output: Ω∗ is a subset with selected feature by IFS 
method.
 1: Initialize ��, ��, �� ∈ �, (1 ≤ � ≤ �).
 2: Get all �(��, ��) by linear correlation coe�cient.
 3: Sort 

�������� ,��
����� values for (1 ≤ � ≤ �).

 4:  Choose � sets for top �� with high value of |�|, for 
relevant variable � and (1 ≤ � ≤ �).

 5:  Get combination ��, �� ∈ ��, where �� ⊂ � and 
�(��) = �.

 6:  Determine ��∗, where the maximum of F1 score 
with ��.

 7:  Get all �(�) by information gain.
 8:  Get � is related to highly ranking variable.
 9:  Choose � sets for top �� with high value of  
�(�), relevant variable � and (1 ≤ � ≤ �).

10:  Get elements �� ∈ ��, where �� ⊂ � and �(��) = �.
11:  Determine ��∗, where maximum of F1 score with ��.
12: Merge Ω∗ = {��∗} ∪ {��∗}.

Algorithm 1: Improved feature selection

correlated and have a strong impact between classes (see 
Algorithm 1).

In the CFS stage, we derive the linear correlation coe�-
cient, �(��, ��). In this paper, we determine the veri�ed features 
xi with high value of |�|.  e number of elements in the set ��
with elements �� is �.  ese elements are selected with a rele-
vant variable from CFS.  e �nal Cj

∗ consists of a set with 
elements �� calculating the highest F1 score (see Table 3 for 
CFS features). In the IG stage, we derive the IG ranking  
�(�).  e IG method �nds the top 20% of �� features, according 
to the �2 statistical distribution, from the 79 features. It �nds 
that the statistic result is saturated at around �.  e �nal �∗�
consists of a set with elements �� calculating the highest F1 
score (see Table 3 for IG features).  e �nal feature selection 
is made by �nding the union of the CFS and IG method feature 
sets. In this paper, each method selected �ve features; in total, 
nine features are used as input features (one feature was 
included in both feature sets). A total of 631,955 elements with 
these features were used for our model.

In-vehicle applications can be infected by Android mal-
ware via wireless or wired communication channels, as illus-
trated in Figure 1. Several studies suggesting IDS architectures 
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gradient boosting classi�er (GB), extra tree classi�er (ET), and 
bagging classi�er (BC) algorithms—are used to analyze the 
data and their results are compared to those of the proposed 
algorithm. In addition, we also present hyperparameters for 
each algorithm for comparative veri�cation of the machine 
learning used to implement the malware detection module in 
a self-driving vehicle gateway. It is important to tune hyper-
parameters for result, performance, and cost optimization 
when analyzing data using a machine learning algorithm. 
Indeed, signi�cant di�erences in the performance and accu-
racy of analysis results can occur depending on the con�gu-
ration of the hyperparameters. We present the hyperparameters 
used in each experiment with the F1 score and elapsed time 
for each algorithm.  ese hyperparameters were derived by 
changing various experimental conditions repeatedly for each 
algorithm.

 e nine input features are de�ned through the feature 
selection process and the output is de�ned using two classi�-
cation scenarios to analyze the experimental results. In the 
�rst scenario (see Figure 4(a)), benign code, adware, and gen-
eral malware are accurately detected, whereas the second sce-
nario (see Figure 4(b)) is a binary classi�cation scenario where 
only benign code and adware are detected because general 
malware accounts for only 0.8% of the dataset. It is meaningful 
to compare the results of the binary classi�cation because its 
impact can be predicted through the �rst scenario.

In this paper, malware detection using machine learning 
is included to develop the IDS module included in self-driving 
vehicles.  e F1 score used in machine learning calculates the 
accuracy, recall, and precision values for all cases to evaluate 
the model’s performance.  is general method, which took 
about 3.570 s to verify the dataset on average, is not suitable 
for real-time detection. We applied a faster F1 score evaluation 

performance is good even when it is not. For example, the 
overall accuracy can be high if the benign category, which has 
high importance in the dataset, is accurately predicted, even 
if general malware, which has low importance, is not accu-
rately predicted.  erefore, the F1 score, which uses the har-
monic mean based on recall and precision, is used to evaluate 
prediction accuracy.

In summary, the proposed machine learning-based intru-
sion detection module detects Android malware for a self-driv-
ing vehicle and labels its type (i.e., adware or general malware). 
 e procedure, which is based on the detection of the network 
tra�c deviation on Android OS, is divided into three phases, 
as shown in Figure 3.  e �rst phase focuses on data preproc-
essing. Feature selection is performed to select the most rele-
vant features from all measuring features in the dataset.  e 
second phase consists of modeling. Using ten-fold cross-vali-
dation, this phase trains the machine learning model using 
75% of the dataset and suggests the most suitable hyperparam-
eters for the retraining model. In addition, this phase uses 25% 
of the dataset for testing and evaluating the proposed intrusion 
detection module.  erefore, a machine learning model tuned 
by hyperparameters is created using the training dataset, and 
a testing dataset is applied to evaluate the model. In the third 
phase, the intrusion detection module can detect malicious 
behaviors in real time when real data ²ows into the self-driving 
vehicle. Speci�cally, the proposed intrusion detection module 
should be included in the vehicle gateway shown in Figure 2.

4. Simulation Results

Six machine learning algorithms—the random forest (RF), 
decision tree (DT), k-nearest neighbors classi�er (KC), 

1.Preprocessing

2.Modeling

In-vehicle network

<Detection result>

Hyperparameter

Benign Malware

Intrusion detection
module

Retraining model

Training & validating

10–fold cross validation

75%

3.Detecting

Scaling

Feature selection

Adware

Real data
(in-vehicle network)

Evaluation

Testing

25%

Datasets

Malicious behavior

Figure 3: Intrusion detection module in a vehicle network.
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the highest F1 score is observed when the random state is 42, 
the number of estimators is 50, the maximum depth is 15, and 
the maximum number of features is 5. Its prediction accuracy 
is generally high, but its learning time is the longest of all 
algorithms, at 2,556,517 ms; for comparison, the learning time 
of the second longest algorithm, KC, is 60,967 ms and that of 
the shortest, ET, is merely 976 ms.  erefore, although GB is 
suitable for binary classi�cation, the learning time costs are 
too large for general classi�cation. For ET, the highest F1 score 
was observed when the random state is 42, the splitter is ran-
dom, and the number of estimators is 100.  is algorithm 
shows the shortest learning time under both scenarios. 
Although the binary classi�cation has high prediction accu-
racy and the shortest learning time (95 ms), making it very 
e�cient, its prediction accuracy is signi�cantly reduced in 
scenario 1. For BC, the highest F1 score is observed when the 
random state is 42 and the number of estimators is 10. Similar 
to ET, BC is e�cient because of its high prediction accuracy 
in the binary classi�cation scenario, but it has signi�cantly 
reduced prediction accuracy under scenario 1.

In summary, the algorithm’s overall prediction accuracy 
was 90% or greater with binary classi�cation for all algorithms 
except GB.  erefore, in this case, an algorithm with a short 
learning time can be selected. In order to detect malware or 
adware in an embedded so�ware environment such as a vehi-
cle, high accuracy and a fast response time are very important. 
 erefore, the ET algorithm, with its learning time of 95 ms 
and prediction accuracy of 90.6% in binary classi�cation sce-
narios, would be suitable. However, considering that the attack 
detection method in the Android OS is classi�cation scenario 
1, the RF algorithm, which has the highest prediction accuracy 
and a learning time of 19,401 ms, would be the most 
suitable.

We use the receiver operating characteristic (ROC) curve 
to evaluate the experimental results of each algorithm.  e 
ROC curve, a widely used tool for binary classi�cation, plots 
the method’s sensitivity against its speci�city.  e area under 

method because malware should be detected in real time on 
autonomous vehicles. In order to generate a class that calcu-
lates and returns a confusion matrix quickly, we proposed a 
new score function.  rough this function, we obtained the 
F1 score directly when the model was training.  e function 
stored the value of the computed confusion matrix and was 
reusable when the F1 score was called for performance eval-
uation. In this case, the elapsed average time was 0.049 s, which 
is acceptable for real-time detection. Abnormal behavior pre-
diction can therefore determine within 0.049 s when new traf-
�c occurred in the self-driving vehicle (see Table 6).

For the RF algorithm, the highest F1 score is obtained 
when the random state is 42, the number of estimators is 85, 
the maximum depth is 24, and the maximum number of fea-
tures is 4. Although the RF’s prediction accuracy is typically 
higher when using binary classi�cation, in this case, it is higher 
under scenario 1. Overall, the RF algorithm had the highest 
prediction accuracy of the machine learning algorithms tested. 
For the DT algorithm, the highest F1 score was observed when 
the random state is 42 and the minimum leaf sample is 2. For 
KC, the highest F1 score was observed under the following 
conditions: uniform weights and 7 estimators. For both DT 
and KC, accuracy may decrease in datasets with large data 
imbalances. Moreover, although the KC algorithm exhibits 
higher prediction accuracy in binary classi�cation scenarios, 
its learning time is more than twice that in scenario 1. For GB, 
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Figure 4: Simulation results. (a) Multiclass classi�cation. (b) Binary classi�cation.

Table 6: Comparison of the proposed score–function model with a 
basic scikit-learn method.

Evaluation factors Basic model Score-function model
Elapsed time (second) 3.570 0.049
Accuracy 0.929 0.929
Precision 0.849 0.849
Recall 0.761 0.761
F1 score 0.796 0.803
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the micro-average and macro-average detection results for GB 
are 0.97 and 0.84, respectively. However, the detection result of 
class 2 is low (0.58) due to class 2’s scarcity in the dataset.  at 
is, GB can perform well for binary classi�cation, but is not suit-
able for multiclass classi�cation. In conclusion, the ROC curve 
and AUC of each classi�er show that the RF algorithm better 
detects malware than the other algorithms.

5. Conclusion

 e increasing connectivity of vehicles has also increased secu-
rity threats. Malicious code can ²ow into a vehicle’s internal 
network when a device infected with malicious code is con-
nected to the vehicle through an external communication 
channel. High accuracy and speed are key for detecting 

the ROC curve (AUC), which represents the surface integral 
under the curve, is an indicator of the detection performance 
of each classi�er. When the curve approaches the graph of 
y = x, the classi�er is purely random and the  AUC is near 0.5; 
likewise, detection performance is better when the curve at 
the top le� area is far from the random classi�er line.  e AUC 
of the perfect classi�er is 1.

We compared the performance of four algorithms: RF, DT, 
KC, and GB (see Figure 5). In the RF algorithm shown in Figure 
5(a), the AUC of the macro-average obtained by calculating the 
measurement of each class is 0.97 and the micro-average for 
integrated classes is 0.99. For the imbalanced (class 2) malware, 
the AUC was 0.93, which is relatively good compared to other 
classi�ers. In Figures 5(b) and 5(c), the DC and KC show similar 
detection results. However, when class 2 malware is detected, 
the DC is slightly better than the KC. Moreover, in Figure 5(d), 
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malicious behaviors in the embedded environment of vehicles, 
where responses must be processed in real time. �is study, 
therefore, analyzed security threats from adware and malware 
in the Android OS within a self-driving vehicle. Network traf-
fic was analyzed to detect malicious behaviors at the network 
in the module. In addition, a machine learning-based intru-
sion detection module for malware detection was proposed. 
Finally, we proposed a machine learning algorithm that can 
detect Android malware for vehicles with high accuracy and 
in a short time. We compared the algorithm’s detection accu-
racy and speed with proposed optimal hyperparameters to six 
machine learning algorithms. In addition, we also found that 
we can significantly reduce the elapsed time by using the novel 
score-function model for real-time detection. Our simulation 
we demonstrated that our algorithm is highly accurate (92.9%) 
and fast (0.049 s), making it suitable for real-time malware 
detection in a self-driving vehicle environment.

Data Availability

�e CIC AW&GM dataset can be found in the official webpage 
of the institute https://www.unb.ca/cic/datasets/android-ad-
ware.html.
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All persons in self-driving vehicle would like to receive each service. To do it, the system has to know the person’s state from emotion 
or stress, and to know the person’s state, it has to catch by analyzing the person’s bio-information. In this paper, we propose a system 
for inferring emotion using EEG, pulse, blood pressure (systolic and diastolic blood pressure) of user, and recommending color and 
music according to emotional state of user for a user service in self-driving vehicle. ­e proposed system is designed to classify the 
four emotional information (stability, relaxation, tension, and excitement) by using EEG data to infer and classify emotional state 
according to user’s stress. SVM algorithm was used to classify bio information according to stress index using brain wave data of 
the fuzzy control system, pulse, and blood pressure data. When 80% of data were learned according to the ratio of training data by 
using the SVM algorithm to classify the EEG, blood pressure, and pulse rate databased on the biometric emotion information, the 
highest performance of 86.1% was shown. ­e bio-information classi�cation system based on the stress index proposed in this paper 
will help to study the interaction between human and computer (HCI) in the 4th Industrial Revolution by classifying emotional 
color and emotional sound according to the emotion of the user it is expected.

1. Introduction

In recent years, a new future technology called emotional arti-
�cial intelligence (AI) has emerged owing to the advancement 
of the fourth industrial revolution era. Particularly, AI-based 
emotional computing technology, which can interpret and 
analyze human emotions, is advancing rapidly owing to a con-
vergence of information and communication technology 
(ICT) and cognitive science areas [1, 2]. Accordingly, the 
human–computer interface (HCI) technology is becoming 
increasingly important, and along with the progress made in 
the studies on HCI, studies are being increasingly conducted 
on computer reactions based on emotion inference or user 
intention rather than computer reactions induced by direct 
inputs of the user [3]. Particularly, the brain–computer inter-
face (BCI) technology analyzes, commands, or controls elec-
troencephalography (EEG) signals in frequency domain, 
which were measured at a human scalp. Various studies are 
conducted to provide interaction between humans and com-
puters by converging the user’s emotion information and 

environment information based on the BCI technology [4, 5]. 
Emotion is a cognitive ability of humans and a reaction for 
external sensory stimulation. Humans react emotionally 
according to various social and cultural factors and feel various 
emotions accordingly. Emotion recognition technology is a 
means of making intelligent decisions that can enable appro-
priate behavior by extracting information such as facial 
expressions or body gestures of a user based on emotion data 
[6]. As such, it is extremely important for computers to have 
emotion recognition capability to process human emotions 
through learning and adaptation in order to process the inter-
action between humans and computers more e¢ciently. In 
modern society, mental stresses such as various work-related 
stresses, con£icts in interpersonal relationships, and �nancial 
problems have emerged as social problems, and e¤orts are 
actively being made to improve the quality of physical and 
psychological life [7]. As such, it is important to measure the 
emotional stress level of users by using EEG and biosignals in 
objective numerical values in terms of psychological state, and 
e¤orts to relieve such stresses by recognizing the subsequent 
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physical changes are necessary. As colors and music are formed 
in a short time and last for a long time in memory, they can 
play vital roles in understanding and analyzing human emo-
tions. �erefore, this study aims to design a system that infers 
emotion by using biometrics of user, such as EEG, pulse rate, 
and blood pressure (systolic and diastolic blood pressure), and 
that recommends colors and music based on the emotional 
state of the user, i.e., the stress index. �e system proposed in 
this paper recognizes the emotion of the user by learning and 
patterning the reactions appearing according to the user’s 
emotional state and classifies the biometric emotional infor-
mation according to the stress index. A fuzzy system was 
designed by using EEG data to classify the biometrics into 
biometric emotion information according to the stress index. 
Furthermore, it was designed to produce the pulse rate and 
blood pressure (systolic and diastolic blood pressure) data in 
single packets separately and to send them to the database. As 
such, a�er acquiring the biometrics, the biometric emotion 
information is classified according to the stress index through 
a support vector machine (SVM) algorithm. In general, vari-
ous learning algorithms are applied to decision-support sys-
tems. However, as the biometric data used in this study consist 
of EEG, pulse rate, and blood pressure (systolic blood pressure 
and diastolic blood pressure) data, which have nonlinear data 
structures, the SVM algorithm was used to solve the nonlinear 
discrimination problem in a multilayer perceptron structure. 
Depending on the classified stress emotion, the data corre-
sponding to the color and music values are classified. �is 
paper is organized as follows. Section 2 discusses related 
research, and Section 3 describes the system configuration and 
design. Subsequently, Section 4 presents the performance eval-
uation and experimental results. Finally, Section 5 discusses 
the study’s conclusions and directions for future research.

2. Related Research

2.1. Cognitive Science.  Cognitive science examines the 
cognitive processes of humans and animals, such as 
perception, language, learning, and emotions. In this field, 
techniques are studied for applying these cognitive processes 
to the development of robots, electronic products, buildings, 
and so on [8, 9]. Recently, as cognitive science has begun to 
attract attention, studies are being conducted on the detection, 
processing, and analyzing of various types of signals that 
are generated by bodily activities. In particular, studies on 
the structure and functions of the brain are being actively 
conducted. �ese studies utilize various biometrics for not 
only medical diagnoses, but also the examination of people’s 
cognitive and emotional states through analysis via certain 
algorithms.

2.2. Emotional Engineering.  Emotions are high-level 
psychological experiences that occur in people via their senses 
and cognition in response to an external physical stimuli. 
�ese are o�en-changing psychological effects that occur in 
people owing to complex feelings, such as comfort, pleasure, 
unease, and discomfort. �ese are the moods and feelings 
that are connected to expressive behavior during emotional 

reactions and physiological changes. Further, they are a 
dynamic aspect of thought. Emotional engineering is a field 
that studies emotions and deals with them in practical terms. 
�is combines areas related to human psychological reactions 
and their applications, such as human factor engineering, 
cognitive science, behavioral science, pragmatic aesthetics, 
and environmental psychology [10]. Changes in people’s 
psychological states are expressed externally in the form of 
feelings or emotions. In the past, people’s psychological states 
and emotions were mostly analyzed and used as clinical data 
for medical diagnoses and treatments. However, they are 
currently used in a variety of fields, such as buildings that 
incorporate psychotherapeutic art and automatic lighting that 
reflects emotions, cars that prevent sleepiness, and robots that 
understand and respond to human feelings. Researchers are 
studying emotionally intelligent computer technology that 
can understand psychological states, feelings, and emotions. 
Emotionally intelligent computing allows computers to 
recognize people’s feelings and emotions and to perform 
actions that are suitable to the circumstances. �is entails 
autonomous systems that are able to perform suitable actions 
based on previous knowledge or the current psychological 
state. Recently, as wearable computing technology has evolved, 
it is able to measure biosignals such as electroencephalography 
(EEG), electrography (EMG), electrocardiogram (ECG), and 
galvanic skin response (GSR) more accurately, and produces 
improved recognition results regarding subjects’ mental states, 
emotions, and physiological states [11].

2.3. Biobased Emotional Cognitive Technology Trend.  In 
general, the emotions felt by people can be distinguished by 
the central nervous system or autonomic nervous system 
reactions, i.e., information such as ECG, EEG, skin temperature 
(SKT), and GSR. �e biosignal emotion recognition 
technology, that has been studied so far, can be divided into 
studies using statistical methods and those using machine 
learning methods. Studies on rule-based techniques analyze 
many biosignals, and extract emotional features that express 
emotions. �en, threshold values that correspond to rules are 
set for each emotion, and emotions are classified according 
to these thresholds. Emotion recognition methods that use 
machine learning are based on techniques such as neural 
network (NN), support vector machine (SVM), k-nearest 
neighbor (kNN), multi-layer perceptron (MLP), Gaussian 
mixture model (GMM), decision tree (DT), and Baysian 
network (BN) [12–14]. For biosignal learning, it is necessary to 
collect a large amount of feature data and perform the training 
required for emotion recognition. �erefore, the amount of 
collected feature data and its reliability have a significant 
effect on the subsequent performance of the recognition 
system. However, most emotion recognition systems that 
have been studied so far use data with staged and exaggerated 
emotions. Because it is easy to artificially acquire learning data 
that includes emotions, this is a major factor that degrades 
the performance of emotion recognition systems in real 
situations. �erefore, the collection of reliable biometric data is 
considered necessary for biosignal-based emotion recognition. 
However, in biosignal collection, a user’s emotional states can 
easily change according to the environmental conditions or the 
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user’s psychological state, and it is very difficult to perfectly 
recognize a user’s emotions based on a single biosignal. 
�erefore, rather than emotion recognition using only one 
biosignal, researchers are investigating methods that use 
several biosignals in conjunction or use additional emotional 
measurement indicators, such as voice and facial expressions. 
Emotion recognition technology using brainwaves is one of 
the most actively studied fields in biotechnology. Unlike other 
biosignals, brainwaves show the state of the central nervous 
system. �e alpha and beta waves that occur according to the 
state of brain activity are known to be related to emotion. 
Alpha waves generally indicate a stable or relaxed state, and 
these increase during positive emotions. On the other hand, 
beta waves increase during negative emotional states [14]. In 
addition to brainwaves, autonomic nervous system reactions 
occur when commands are received from the brain, and 
these indicate bodily changes when a person is surprised or 
encounters danger. �ese reactions include the heart beating 
rapidly, the facial muscles stiffening, the palms and back of 
the neck sweating, and changes in body temperature or the 
temperature at certain parts of the body. �ese bodily changes 
are controlled by the autonomic nervous system, and therefore 
emotional states can be inferred from biosignals by detecting 
autonomic nervous system reactions. Biosignals that can be 
measured following autonomic nervous system reactions 
include ECG, EMG, GSR, and SKT. Studies have used the 
heart rate variability (HRV) and heart rate (HR) to recognize 
emotions. A low heart rate indicates a relaxed state, and a high 
heart rate can indicate stress, frustration, and dissatisfaction. 
As such, the heart rate is o�en used for data analysis. Emotions 
can be classified by calculating the HRV from the heartbeat 
and extracting features. However, it is difficult to accurately 
recognize emotions from the heartbeat alone [15]. Emotion 
recognition via EMG has mainly consisted of studies on the 
recognition of emotions through the movement of facial 
muscles. �e movement of facial muscles can be measured 
through an EMG of the face, and this can be used to measure 
high-stress tension and so on, and recognize emotions. In a 
tense/aroused state, the EMG increases, whereas in a relaxed 
state it decreases. However, the absolute levels of muscle 
tension vary according to the part of the muscle that is 
measured. As such, this signal requires precise measurement. 
GSR essentially refers to skin conductivity, which increases 
when sweat is present on the skin. �is can be used as an 
indicator of stimulation or stress. �e GSR amplitude 
increases during arousal or negative emotions. �e reaction 
speed (latency) is quick during sensitive stimulation. �e 
reaction sensitivity (slope) is large during sudden or sensitive 
stimulation. �erefore, GSR can be used as a good indicator 
for measuring negative emotions. SKT is different from body 
temperature, in that it is a temperature index for certain body 
parts. �is is not a normal core biosignal indicator, but it can 
be used as a slow indicator of changes in emotional states. 
It is significantly affected by external environmental factors. 
In general, when the amplitude of the SKT signal is large, 
this indicates relaxed and pleasant positive emotions. When 
it is small, this indicates tense or uncomfortable negative 
emotions. Recently, there has been a sudden interest in many 
different fields in attempts to monitor image, voice, biometric, 

brainwave, and body data and extract emotions to provide 
emotional application services. Emotional application service 
technology is evolving, and exhibits significant potential for 
use in a variety of fields, such as entertainment, healthcare, 
market analysis, online education, automobiles, customer 
marketing, and general home use.

2.4. Stress and Bio-Information.  Previous studies have 
used biosignals as a method of identifying stress states in 
individuals. Bakker et al. [16], Healey and Picard [17], and 
Jung and Yoon [18] have collected biosignals from workers, 
drivers, and senior citizens, respectively, to evaluate stress 
levels. Setz et al. [19], Melillo et al. [20], and Kurniawan et al. 
[21] administered tests that required learning capabilities to 
create experimental environments, and then identified stress 
states. However, these previous studies have been limited by 
the fact that they considered the identification of a posteriori 
states, and did not consider combinations of features that are 
appropriate for stress relief using emotions. In this chapter, 
previous studies on the identification of stress states using 
biosignals are listed by their purpose, the biosignals that 
they used, and their analysis techniques, as shown in Table 1. 
Previous studies have identified stress states using various 
combinations of biosignals such as HR, GSR, ECG, EMG, and 
brainwaves. Of these, the heartbeat data has been used most 
o�en to identify stress. However, because heartbeat variability 
can occur in a variety of contexts other than stress, this is 
used in combination with other data [22]. Sun et al. [23] used 
the heartbeat data along with GSR and accelerometer data 
to identify stress during physical activities. However, because 
GSR is more sensitive to movement than other biosignals, it 
is difficult to obtain accurate data in situations with a lot of 
movement. Kurniawan et al. performed experiments using 
voice data to analyze the words uttered by subjects and identify 
stress [21]. In studies by Setz et al. and Melillo et al., subjects 
were given tests that required learning capabilities to create 
experimental environments. In this manner, previous studies 
have faced difficulties in adequately measuring and analyzing 
user stress without using a variety of biometrics. In addition, 
the goals of studies on stress that have used biometrics have 
only been focused on measurement and analysis. As such, 
there has been a lack of studies on stress and emotions 
that are measured via biometrics. �is study considers the 
limitations of previous work, and employs user biometrics 
such as brainwaves, pulse, and blood pressure (systolic and 
diastolic blood pressure). In addition, it proposes a system 
that uses biosignals to identify a user’s stress states and infer 
emotions, to suggest colors and sounds according to the user’s 
emotional state, i.e., their stress index.

3. System Configuration and Design

To infer and classify the emotional state of a user according 
to the user’s stress, this study designed a fuzzy system by using 
the EEG data a�er acquiring the EEG, pulse rate, and blood 
pressure from the sensors, and the pulse rate and blood pres-
sure (systolic and diastolic blood pressure) data were produced 
in single packets separately and sent to the database. �e SVM 
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conducted according to the 10–20 International System of 
Electrode Placement [28, 29]. When conducting the measure-
ment, sampling was performed at 256 Hz for only the EEG 
data that passed through a notch �lter of 60 Hz in terms of 
hardware. ­e sampled data were �ltered in the frequency 
band 0.5–50 Hz. To analyze the EEG data, the data for 60 s, 
which is considered the stable-state analysis section for the 
analysis of EEG, were used excluding each 30 s part of starting 
and ending. First, the EEG data, which are the data in time 
domain, were converted into frequency domain by using fast 
Fourier transform, as shown in Equation (1) in order to ana-
lyze them.

To extract an absolute size by each frequency, the data were 
converted into the frequency domain through the Fourier 

(1)�(��) =
�−1∑
�=0
ℎ��−�2���/�.

algorithm was used to classify the biometric emotion infor-
mation according to the stress index by using the acquired 
EEG, pulse rate, and blood pressure data of the fuzzy control 
system. ­e biometric emotion information is classi�ed into 
color values corresponding to the emotion based on 20 color 
emotion models selected through HP’s “the Meaning of Color,” 
and as for the music, the music pieces provided by “Samsung 
Idea” for music therapy were collected, classi�ed, and used 
[27]. Figure 1 shows the con�guration diagram of the system 
proposed in this paper, which performs emotional classi�ca-
tion and recommendation based on biometrics and stress 
index.

­is study designed a fuzzy system to classify the biome-
tric emotion information according to a user’s stress index by 
using the EEG data. ­e stress emotion information expressed 
by the fuzzy control system can be divided into four types: 
stable, relaxed, tensed, and excited. BIOPAC MP 150 was used 
to measure the EEG of the user and the measurement was 

Table 1: Summary of related studies.

Objects (topics) Signals used Analysis methodologies References
Automatic identi�cation of stress causes 
of employees GSR Adaptive windowing Bakker et al. [16]

Detecting real-world driving stress HR, EMG, Respiration Continuous correlations Healey and Picard [17]
Multi-level assessment model for 
monitoring elder’s health condition HR, EEG, ECG SVM, DT, Expectation maximization Jung and Yoon [18]

Personal health system for detecting 
stress GSR Latent dirichlet allocation, SVM Setz et al. [19]

Stress elicitation by examination
HR Latent dirichlet allocation Melillo et al. [20]

Voice, GSR DT, SVM, K-Means Kurniawan [21]
Activity-aware mental stress detection 
(sitting, standing and walking) HR, GSR, Accelemeter DT, SVM, Bayes network Sun et al. [23]

Automatic cry detection in early 
childhood Voice Gentle-boost Ruvolo and Movellan [24]

Automatic classi�cation of infant crying 
for early disease detection Voice Genetic selection of a fuzzy model Rosales-Pérez et al. [25]

Automatic detection of the expiratory 
and inspiratory phases in newborn cry 
signal

Voice Hidden markov model Abou-Abbas et al. [26]

Color/Music DB

Bio DB Bio emotion
classi
cation DB

Fuzzy control system Brain wave (EEG)

Pulse

Systolic blood pressure

Diastolic blood pressure

Sensor
SVM

algorithm

Figure 1: ­e system con�guration diagram.
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To classify the emotion of the user, the fuzzy model should 
be constructed by quantifying the physical information that 
can identify the emotion of the user from the EEG data. To 
this end, the correlation of �, �, �, and � values, i.e., the abso-
lute power values acquired from the user with the user emo-
tion, was investigated to de�ne the rules. ­en, the fuzzy 
model was implemented as shown in Figure 2. In other words, 
the biometric emotion classi�cation (stability, relaxation, ten-
sion, and excitement) was performed by applying the four 
fuzzy rules using the absolute power values �, �, �, and � 
obtained from the EEG data of the user as the input values. 
­e fuzzy control rules are expressed as linguistic control rules 
of “IF Ai THEN Bi” format. To create a set of control rules, 
multiple rules are collected and by making an inference based 
on the rules, an output value is obtained. Table 2 shows the 
fuzzy condition for expressing the output value according to 
the input variable by using the EEG data.

Defuzzi�cation refers to a process of converting a fuzzy 
quantity result, which is obtained from the fuzzy inference, to 
a representative value. In this study, the center of gravity 
method was used for the fuzzy inference [32, 33]. Equation 
(5) shows the inference output function defuzzi�cated by the 
four fuzzy rules.

To measure the pulse rate and blood pressure data of the user, 
this study used the ZigBee wireless sensor network. ZigBee of 
IEEE 802.15.4 refers to a short-range wireless communication 
technology that focuses on applications requiring low power 
consumption, low speed, and low cost [34]. A sensor module 
of integrating pulse rate and blood pressure sensors was used 
to acquire the data. Furthermore, the data were measured by 
using a Telos platform series as the process board, MSP430 
MCU, and CC256XQFNEM. If the pulse rate and blood pres-
sure data are produced in single packets separately and used, 

(5)�� = ∑��� ∫��
�
� (�)

∑� ∫���� (�) .

transform process. Moreover, the power spectrum analysis 
method was used for comparison and analysis [30]. ­e power 
spectrum analysis method is a widely used analysis method 
in many areas including biosignals. Depending on the expres-
sion method, it is divided into one-side and two-side. One-side 
shows 0 and positive frequency domain only, and two-side 
shows the frequency domain of {negative, 0, positive}. ­is 
study obtained the absolute values of power spectrum for the 
band frequencies of �, �, �, and � by using the one-side power 
spectrum analysis method. ­e Fourier inverse transform is 
shown in Eq. (2)

AÀer obtaining the absolute values on both sides of Equation 
(2), if they are squared and added, then Equation (3) is 
induced. Here, it can be con�rmed that the sum of square of 
the signal that was subjected to the Fourier transform is the 
same as the sum of square of the original signal. Here, the 
sum of Fourier transform or the sum of square of the original 
signal is called the total power value. In other words, it indi-
cates that the total power value is identical in both the fre-
quency space and the temporal space. ­is is called Parseval 
theorem [31].

­e one-side spectrum analysis method that satis�es the 
Parseval theorem is shown in

­is study extracted the absolute values of the power spectrum 
of theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz), and 
gamma (30–50 Hz) domains through the one-side power spec-
trum analysis, and used it as an input value of the fuzzy control 
system to classify the emotion.

(2)ℎ� =
1
�
�−1∑
�=0
���−�2���/�.

(3)Total Power =
�−1∑
�=0

����ℎ�����2 = 1�
�−1∑
�=0

����������2.

�(�0) = �(0) =
1
�2
�����0
����
2,

�(�0) =
1
�2
[������
����
2 + ������−�

����
2], � = 1, 2, . . . , (�2 − 1),

�(��/2) = �(��) =
1
�2
�������/2
�����
2.

Fuzzi
cation Inference
mechanism Defuzzi
cation

Rule-base

Bio emotion
classi
cation

EEG data (alpha)

EEG data (beta)

EEG data (theta)

EEG data (gamma) Fuzzy control system

Figure 2: ­e fuzzy control system using EEG data based on bio emotion classi�cation.

Table 2: ­e fuzzy condition using EEG data.

If theta is high and alpha, beta, gamma is low then emotion is 
stability
If alpha is high, and beta, theta, gamma is low then emotion is 
relaxation
If beta is high and alpha, theta, gamma is low then emotion is 
tension
If gamma is high and alpha, beta, theta is low then emotion is 
excitement

(4)
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­e above Equation (8) can be converted to Equations (9) and 
(10) by applying a Lagrangian optimization method.

If the above equations are solved, a decision function can be 
obtained, as shown in Eq. (11) 

­e SVM algorithm developed for binary classi�cation has 
many di¢culties when solving problems having many classes 
in a real environment, one-against-all and one-against-one 
methods have been proposed. Among them, the one-against-
one method consists of �(� − 1)/2 quantity of the SVM algo-
rithm when k classes are inputted. Furthermore, for respective 
learning data that consist of data showing two groups they 
belong to, as the number of learning data used is small when 
performing the learning, the learning speed is fast [35, 36]. 
­erefore, this study conducted experiments by using the one-
against-one method to improve the learning performance and 
composed the SVM algorithm as shown in Table 3.

As various kinds of emotions can be expressed according 
to the external environment, it is e¤ective to prede�ne the 
emotion colors and music to be used. Accordingly, for the 
classi�cation of emotion colors, this study selected 20 color 
emotion models as the representative elements from HP’s “the 
Meaning of Color.” ­rough HP’s color table and the emotion 
vocabulary matching result investigated in this study, the 

(9)minimize : �∑
�=1
�� − 12

�∑
�=1

�∑
�=�
����������� ��,

(10)subject to :
{
{
{

�
∑
�=1
���� = 0,
0 ≤ �� ≤ �, ∀� = 1, . . . , �,

(11)�(�) = sgn( �∑
�=1
����(��� �) + �).

energy is consumed based on additional tra¢c and data trans-
mission. ­erefore, they were bundled in one packet and then 
sent to the database. Figure 3 shows the structure of sensed 
biometric data. MSG shows the type of biometric information 
and enables to isolate the type of pulse rate, i.e., systolic or 
diastolic blood pressure. GroupID shows the sensor informa-
tion and each sensor has a GroupID. Timestamp is the time 
when the sensor measured the data. Reading expresses the 
actually measured data values in hexadecimal 2 bytes.

Various learning algorithms are used to match the biom-
etric emotion information according to the stress index. 
Nevertheless, this study used the SVM algorithm, which can 
solve the nonlinear discrimination problem of multilayer per-
ceptron structure because the EEG, pulse rate, and blood pres-
sure data used in this study consist of nonlinear data structures. 
­e goal of the SVM algorithm is to �nd a classi�cation 
boundary by maximizing the margin between the closest 
observation values (support vectors) in two classes. 
Furthermore, even when linear separation is di¢cult, classi-
�cation is facilitated by using a nonlinear hyperplane through 
a kernel function, and consequently, it is used in diverse areas 
such as biology, and image and text recognition. To optimize 
the performance level of learning data, most traditional pat-
tern recognition methods are based on a risk minimization 
method. In the case of the SVM algorithm, it is based on a 
structural risk method to minimize the probability of incorrect 
classi�cation of the data having �xed but unknown probability 
distribution [35]. When data cannot be linearly separated like 
the data of this study, i.e., when they have a pattern that cannot 
be completely separated because they are overlapped with each 
other at the linear separation boundary, a slack variable �� is 
used considering a case of incorrect classi�cation, as shown 
in eqs. (6) and (7)

However, C is a trade-o¤ parameter and the Lagrangian func-
tion is expressed by 

(6)minimize : �(�, �) = 12 |�|2 + �
�∑
�=1
��,

(7)subject to : { ��(���� + �) ≥ 1 − ��, ∀�,�� ≥ 0, ∀�,

(8)

�(�, �, �) =12��� + �
�∑
�=1
��

− �∑
�=1
��(��(���� + �) − 1 + ��) −

�∑
�=1
����.
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Figure 3: ­e sensed sensor data structure.

Table 3: ­e SVM algorithm con�guration.

Algorithm: SVM
Number of data for learning: �
Inputs: sample � to classify dataset : ����1 : EEG, ��2 : Pulse, ��3 : Systolic BloodPressure,��4 : Diastolic BloodPressure
Output : decision� ∈ {−1, 1}
Classify using SVM Algorithm, get the result in the form of a real 
number.
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relieve stress. �erefore, to recommend music based on the 
biometric emotional state according to the stress index, this 
study composed a music list based on the data collected from 
“Samsung Idea” for musical therapy. Table 5 classifies the 
biometric emotion information according to the stress index 
and shows the classification of the corresponding colors and 
music.

4. Performance Evaluation and Experiment 
Results

In this study, the experiments were conducted by using the 
EEG, pulse rate, and blood pressure as input data to classify 
the biometric emotion information according to the stress 
index. Table 6 classifies the four states (stability, relaxation, 
tension, and excitement) based on the classification standard 
of biometric emotion information according to the stress 
index [38, 39].

�is study used the SVM algorithm to design and evaluate 
the classification of respective emotions. �e SVM algorithm 
is a classification algorithm that determines the discrimination 
boundary in order to have the largest distance between the 
discrimination boundary and each class. �e kernel of the 
SVM algorithm used in this study was the radial basis function 

classification was performed based on the common emotion 
vocabulary, as shown in Table 4.

�is study classified the colors and music corresponding 
to the biometric emotion information according to the stress 
index by using wavelength, which is a common characteristic 
of emotion information, color, and sound. As wavelength and 
frequency have an inversely proportional relationship in phys-
ics and mathematics, they can be converted to each other 
mathematically. Based on C (on the musical scale), the rela-
tionship with the wavelength ratio of D and E is 1 : 4/5 : 2/3. 
�is ratio is consistent with the ratio of the respective wave-
length of three primary colors, i.e., red, green, and blue: 
650 nm, 520 nm, and 433 nm. As such, C, D, and E are similar 
to the three primary colors, which can be used to create count-
less colors through appropriate mixing. �erefore, if the wave-
length ratio of dodecatonic scale based on the equal 
temperament is corresponded sequentially to the frequency 
of colors that can be created with the combination of the three 
primary colors, the colors and sounds can be linked [37].

By analyzing the color measurement values and the 
musical scale of music, the optimal colors and list of music 
corresponding to the biometric emotion information are 
determined according to the stress index. Music, which is an 
important emotion information for understanding and 
analyzing the emotions, can heal the emotion of the user and 

T���� 4: �e common emotional words analysis according to color.

Color Meaning Color Meaning

Bright red

Optimistic, dynamic, energizing, exciting, sexy, intense, 
stimulating, aggressive, powerful, energetic, dangerous

Orange

Ambition, fun, happy, energetic, balance, 
flamboyant, warmth, enthusiasm, generosity, 

vibrant, expansive, organic
International significance: China = good luck; 

India = purity; Eastern cultures = signifies joy when 
combined with white

International significance: Ireland = religious 
significance(protestant)

Burgundy Vigor, elegance, richness, refinement, leadership, maturity, 
expensive Light blue Peace, tranquillity, quiet, cool, clean, so�, pure, 

understanding

Blue

Truth, healing, tranquility, stability, peace, harmony, 
wisdom, trust, calm, confidence, protection, security, 

loyalty
Purple

Spirituality, royalty, mystery, wisdom, 
transformation, independence, enlightenment, 

respect, wealth

International significance: China = immortality; 
Hindus = color of Krishna Navy

Dignity, credibility, strength, authority, 
conservative, trustworthiness, traditional, quiet, 

confident, serene

Green

Nature, envy, healing, fertility, good luck, hope, stability, 
success, generosity Beige Earthy, classic, neutral, warm, so�, bland, 

melancholy
International significance: China & France = negative 

significance for package goods; India = color of Islam; some 
tropical countries = danger

Greenish 
yellow Tart, fruity, acidy, jealousy

Lime Tart, fruity, acidy, refreshing, lively, revitalizing

Brown

Stability, masculinity, reliability, comfort, endurance, 
simplicity, friendship Terracotta Wholesome, earthy, country, welcoming, 

warmth, stability, fall, harvest
International significance: Colombia = discourages sales; 

India = the color of mourning Lavender Enchantment, nostalgia, delicacy, floral, sweet, 
fashion

Light pink Love, romance, so�ness, delicacy, sweetness, friendship, 
tenderness, fidelity, compassion Teal blue Emotional healing, pleasing, rich, protection, 

unique, expensive

Bright 
yellow

Cheeriness, joy, action, optimism, happiness, idealism, 
summer, hope, imagination, sunshine, philosophy, youth, Olive green

Traditional color of peace, camouflage, classic, 
adventure

International significance: Asia = sacred, imperial International significance: Military

Fuchsia Hot, sensual, exciting, bright, fun, energetic, feminine Neural gray Neutral, corporate, classic, practical, cool, 
timeless, quiet, quality
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Furthermore, to evaluate the tracking performance of the 
proposed system that recommends colors and music accord-
ing to the biometric emotion information and stress index, 
10-fold cross validation was conducted, thereby minimizing 
the in£uence of training data and ensuring reliability. ­e 
10-fold cross validation divides the entire data into ten equal 
parts and uses nine parts as training data and the remaining 
part as test data. ­e 10-fold cross validation repeats the train-
ing and testing ten times in total to evaluate the overall per-
formance, and every time, one equal part of data used for the 
test is changed. Figure 5 shows an example of 10-fold cross 
validation.

kernel; the radius of the kernel was set to 1 and the margin of 
the SVM algorithm was set to 1 [40, 41]. Figure 4 shows the 
accuracy result of classifying according to the four types of 
biometric emotion information through the SVM algorithm. 
When 80% of data were learned according to the ratios of 
learning data, the highest performance of 86.1% was shown. 
Furthermore, Table 7 shows the error matrix when 80% of 
data were learned. ­e classi�cation results were 90.4% for 
stable, 83.4% for relaxed, 84.5% for tensed, and 85.7% for 
excited.

Table 5: ­e corresponding emotional colors and corresponding emotional music according to stress index.

Stress index Bio emotion 
information

Corresponding 
emotion colors Corresponding emotion music

Stage 1 (00–30) Stability Yellow, Brown Franz Peter Schubert—10 songs besides the lullabies
Stage 2 (31–60) Relaxation Red Antonio Vivaldi—10 other songs besides the four seasons (spring)
Stage 3 (61–70) Tension Blue Franz Peter Schubert—10 songs besides the Ave Maria
Stage 4 (71–100) Excitement Green Robert Alexander Schumann—10 songs besides the dream

Table 6: ­e classi�cation of bio emotion information according to stress index.

Stress index Bio emotion information
EEG Pulse Blood pressure
Hz Times/Minute Diastolic Systolic

Stage 1 Stability ­eta (4–7) 70–80 80 120
Stage 2 Relaxation Alpha (8–14) 60–70 81–89 121–139
Stage 3 Tension Beta (14–30) 80–90 90–99 140–159
Stage 4 Excitement Gamma (30–50) Under 60, Over 90 Over 100 Over 160

79.3 81.5 82.4 83.7 85.6 86.1 85.7 84.6 
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Figure 4: ­e bio emotion classi�cation accuracy.

Table 7: ­e confusion matrix.

Type
True condition

Stability Relaxation Tension Excitement

Prediction condition

Stability 90.4 11.4 0.0 0.0
Relaxation 9.6 83.4 3.4 0.5

Tension 0.0 5.2 84.5 13.8
Excitement 0.0 0.0 12.1 85.7

Test data 
Training data 

10 times

10 parts

.

.

.

Figure 5: ­e 10-fold cross validation.



9Journal of Advanced Transportation

Table 8 shows the average accuracy of 86.4% in the result of 
validation data obtained through the performance evaluation. 
­erefore, the performance of the recommendation system is 
high.

Figure 6 shows the result of implementing an application 
for the proposed system that recommends the colors and 
music according to the biometric emotion information and 
stress index. ­e emotion colors and the emotion music are 
classi�ed into the corresponding items according to the biom-
etric emotion information and stress index.

5. Conclusion

­is study aimed to classify and recommend the emotion 
colors and the emotion music corresponding to the emotion 
of the user by measuring biometric information. Accordingly, 
aÀer measuring the EEG, pulse rate, and blood pressure data 
(i.e., the biometric information), the emotion colors and 
emotion music are classi�ed according to the current 
biometric emotion information and stress index of the user 
through real-time emotion analysis. To classify the EEG data 
into four types of biometric emotion information (stability, 
relaxation, tension, and excitement), a fuzzy control system 
was designed and the pulse rate and blood pressure data were 
composed in single packets separately and sent to the 
database. When 80% of data were learned according to the 
ratio of the training data by using the SVM algorithm to 
classify the EEG, blood pressure, and pulse rate data based 
on the biometric emotion information, the highest 
performance of 86.1% was shown. Moreover, the error matrix 
classi�cation results obtained were 90.4% for stable, 83.4% 
for relaxed, 84.5% for tensed, and 85.7% for excited, 
con�rming that the e¢ciency was high. Furthermore, when 
the 10-fold cross validation was performed to evaluate the 
tracking performance of the system that recommends the 
emotion colors and emotion music according to the biometric 
emotion information and stress index, an average accuracy 
of 86.4% was demonstrated, con�rming that the performance 
of the recommendation system was high. ­is study proposed 
a biometric emotion information classi�cation system using 
the stress index to classify the emotion colors and emotion 
music intelligently based on the emotion of the user. 
­erefore, it is expected to contribute to studies on HCI in 
the fourth industrial revolution era. In a future study, the 
emotions will be classi�ed based on the situational and 
environmental factors as well as the biometric information 
of the user. Furthermore, the accuracy and e¢ciency of the 
proposed system will be enhanced by using various types of 
biometric information in addition to the EEG, pulse rate, and 
blood pressure used in this study, as measures for determining 
biometric emotions.

Data Availability

­e BIOPAC MP 150 EEG data used to support the �ndings 
of this study have been deposited in the BrainAmp by Brain 
Products, Munich, Germany.

­is study divided the experimental data into evaluation 
data and validation data using the ratio 7 : 3. Furthermore, the 
system was optimized by using the leave-one-out method. 

Table 8: ­e evaluation of data performance for veri�cation.

Fold no. Accuracy (unit: %)
1 84.8
2 87.5
3 88.6
4 86.4
5 87.3
6 83.3
7 89.6
8 87.4
9 83.2
10 85.6

Figure 6:  ­e corresponding emotion color and corresponding 
emotion music recommendation system according to bio emotion 
information and stress index.
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Tra�c incident detection is one of the major research areas of intelligent transportation systems (ITSs). In recent years, many mega-
cities su�er from heavy tra�c �ow and congestion.  erefore, monitoring tra�c scenarios is a challenging issue due to the nature 
and the characteristics of a tra�c incident. Reliable detection of tra�c incidents and congestions provide useful information for 
enhancing tra�c safety and indicate the characteristics of tra�c incidents, tra�c violation, driving pattern, etc.  is paper investigates 
the estimation of tra�c incident from a hybrid observer (HO) method, and detects a tra�c incident by using an improved automatic 
incident detection (AID) technique based on the lane-changing speed mechanism in the highway tra�c environment. First, we 
developed the connection between vehicles and roadside units (RSUs) by using a beacon mechanism.  en, they will exchange 
information once the vehicles get access to a wireless medium. Second, we utilized the probabilistic approach to collect the tra�c 
information data, by using a vehicle to infrastructure (V2I) communication.  ird, we estimated the tra�c incident by using an HO 
method which can provide an accurate estimation of an event occurring. Finally, in order to detect tra�c incident accurately, we 
applied the probabilistic data collected through V2I communication based on lane-changing speed mechanism.  e experimental 
results and analysis obtained from simulations show that the proposed method outperforms other methods in terms of obtaining a 
better estimation of tra�c incident which agrees well with the theoretical incident, around 30% faster detection of tra�c incidents and 
25% faster dissipation of tra�c congestion. With regard to duration of an incident, the proposed system obtained a better Kaplan–
Meier (KM) curve, in�uenced by the shortest duration of time to clear the tra�c incident, in comparison with the other methods.

1. Introduction

In recent years, intelligent transportation systems (ITSs) draw 
a great deal of attention for the researcher of wireless and com-
munication technology background.  is raises concern to 
the transportation authorities because of the large number of 
vehicles on the road causing tra�c incidents, congestions, road 
bottlenecks, etc. ITS integrates wireless communication tech-
nology with the transport networks in order to provide tra�c 
safety, reduce tra�c congestion, and improve tra�c manage-
ment [1, 2]. In addition to the tra�c safety, ITS also provides 
entertainment services on vehicles such as climate informa-
tion, internet access, etc. In many global cities, people are using 
private cars, taxi and bus to commute to their destination. 

Because tra�c conditions on the road can rapidly become 
severe, it can a�ect the transport operations. Speci¥cally, many 
metropolitan cities are su�ering from severe tra�c conges-
tions in the urban and highway tra�c environments, which 
are caused by the tra�c incident [3]. As a consequence, the 
loss and disturbance caused by the tra�c incident, is directly 
associated with the duration of the tra�c incident which, may 
further deteriorate the tra�c �ow. In this context, early detec-
tion of incidents is necessary to investigate and to implement 
the tra�c strategy for an ITS.  ese early incident detections 
can alleviate tra�c congestion and hence improve the tra�c 
�ow for real-time tra�c monitoring system in ITS [4].

 e tra�c incident is referred to as an abrupt change in 
tra�c �ow, which reduces the road capacity  and increases 
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tra�c congestion. In the past, a tra�c accident was very di�-
cult to analyze due to the nature of an incident which is always 
changing and this makes the detection more complex for 
transportation authorities. Such complexity can cause the fail-
ure of the transportation management system.  erefore, there 
is a great need of designing a sophisticated algorithm, which 
is able to estimate and detect tra�c incident.  e challenging 
issue in ITS is to estimate and detect an incident from tra�c 
congestion scenarios [5]. Generally speaking, an incident is 
referred to as an occurrence of an event that creates distur-
bance to the normal tra�c �ow [6]. Surveillance cameras are 
placed on the road to detect the tra�c incident. An incident 
detection and the classi¥cation are a very important aspect in 
tra�c management system.  e tra�c management system 
has the ability to conduct automatic incident classi¥cation 
(AIC) to evaluate di�erent types of incidents [7].

As mentioned, in the past, many methods have been pro-
posed which are used to collect data from the detectors such 
as loop detector, radar detector, video detector, etc. In this 
context, V2I communication system is used to collect data 
from vehicles to detect tra�c incidents. V2I communication 
is a robust system, which is considered as a highly contributive 
in ITS [8, 9].  e collected data are processed by AID algo-
rithms, which can generate incident alerts in case of any tra�c 
incident and violations. Tra�c incidents can be detected by 
using global positioning system (GPS) detector. Asakura et al. 
[10] presented the properties of tra�c �ow dynamics under 
incident by using �oating data gathered from GPS. In this 
scheme, a proposed method is able to predict the time and 
location of tra�c congestion in�uenced by a tra�c incident. 
Surveillance cameras are placed on the road to detect the tra�c 
incident. Incident detection and classi¥cation are a very 
important aspect of the tra�c management system.  e tra�c 
management system has the ability to conduct automatic inci-
dent classi¥cation (AIC) to evaluate di�erent types of incidents 
[7]. Ren et al. [11] presented a video-based technique to mon-
itor and detect the tra�c incident by evaluating the distribu-
tion characteristics of the tra�c states on the road section. An 
incident detection system (IDS) play an important role in ITS 
which gains a lot of attention from the research community 
in recent years.  e IDSs are designed to detect incident or 
unpleasant situation such as tra�c incident, tra�c violation 
and tra�c congestion by using communication technology [5, 
6].  e main challenging issue for an ITS is to obtain an early 
and accurate detection of tra�c incident [12].

In past decades, machine learning techniques have been 
widely utilized to detect tra�c incident. Many arti¥cial neural 
network (ANN) were discussed [7]. Ritchie and Cheu [13] 
introduced an ANN technique which is able to detect the traf-
¥c incident with a better performance. However, the collec-
tion of ANN parameters is very complex and di�cult to 
obtain. A hybrid approach is introduced by combing time 
series analysis and machine learning schemes to detect inci-
dents [14].  is approach may detect tra�c incidents accu-
rately. Jin et al. [15] introduced the constructive probabilistic 
neural network (CPNN) in a highway tra�c environment. 
 is model is tested on I-880 and evaluated by considering 
online and o¬ine tra�c situations. However, this approach is 
able to detect only small tra�c incidents.

To enhance the performance of AID, support vector 
machine (SVM) was introduced to detect tra�c incident 
[4, 16, 17]. In [4], two SVMs were trained and simulated on 
the tra�c incident data.  is method did not produce a robust 
result because the selection criteria of SVM parameters and 
kernels are always very complex during the training process 
in order to construct a sample. Xiao [18] introduced SVM and 
�-Nearest Neighbor (KNN) ensemble learning method to 
detect tra�c incident.  is model trains SVM and KNN learn-
ing, and combine them to obtain better results. Wang et al. [7] 
introduced an incident classi¥cation of tra�c data by using 
SVM method. However, this method cannot support small 
tra�c data and require a much longer time to process the 
tra�c data due to the characteristics of the ST signals. In social 
media such as Twitter, it has become the most famous tool 
used to gather information and have a large user’s account 
database, which can share a portion of data to the public using 
APIs [19]. In recent years, many works have been proposed 
to detect the tra�c incident by analyzing the location and time 
of an incident from tweets. In Ref. [19], Gu et al. introduced 
a real-time tra�c detection from Twitter using the REST API. 
 e proposed method utilizes Semi-Naive Bayes (SNB) 
method to detect ¥ve di�erent incidents and obtain better 
performance. However, the processing of tweets from di�erent 
incident situations o°en required large computational time. 
Schulz et al. [20] introduced a method to detect small incident 
by analyzing microblog.  is method obtains a better detec-
tion of an incident, but only applicable for the low-level 
applications.

Dabiri and Heaslip [21] proposed a framework which is 
able to monitor and detect tra�c incidents based on Tweeter, 
by using deep learning method.  e proposed method utilized 
the numerous amount of Tweets to evaluate the tra�c event 
condition and required a large computational time to process 
these tweets. Zhang et al. [22] introduced a new method to 
detect tra�c incidents from Tweets using a deep learning 
method.  e proposed method utilized millions of Tweets and 
was applied in two megacities. It also achieved better tra�c 
incident detection, while consuming a large amount of time 
to process millions of Tweets. Paule et al. [23] proposed a 
method for geo-localization tweet, by utilizing a weight-voting 
algorithm where the weight of tweets votes depend on the 
user’s reliability.  e proposed method obtains a better detec-
tion of real-time tra�c incident. However, due to an increase 
in the voting users, the proposed method is limited to the 
lower coverage and also limited users.

AID algorithm is used to calculate new parameters values 
from collected data and then compare these values to the 
threshold values to identify the incident detection. Several 
famous methods falls in this category such as McMaster 
Algorithm [24] and California Algorithm [25]. Recently, many 
approaches have been used to enhance the performance of 
existing AID schemes, such as integration of V2I communi-
cations with Bayesian-based scheme [26], which is focused on 
less tra�c �ow to detect an incident. He et al. [27] proposed 
a hybrid tree-based quantile regression method to predict and 
evaluate the incident duration.  e presented method pro-
duced better results as compared to other predictive models. 
Peeta et al. [28] also proposed a variable message sign (VMS) 



3Journal of Advanced Transportation

scheme that only focused on the prediction of incident clear-
ance time because of the delay caused by an accident.

Lu et al. [29] proposed a method to detect traffic incident 
based on nFoil. �is method was implemented on the real 
traffic data and simulated traffic data generated from Singapore 
highway. �e proposed method produced a better detection 
of a traffic incident. However, it required a longer time to pro-
cess traffic data. Wang et al. [30] introduced an efficient mul-
tiple model particle filter (EMMPF) to estimate and detect 
traffic incident. �e main idea is to implement an EMMPF to 
reduce the large computational time, which occurred in tra-
ditional AID techniques during the training of datasets. �e 
proposed system is able to reduce the large computational time 
and the proposed method is only limited to the hybrid system 
which contains a large model. Based on GPS analysis, D’Andrea 
and Marcelloni [5] proposed a method to detect traffic inci-
dent and congestions to obtain a better incident detection rate. 
However, the proposed system was unable to differentiate 
between the traffic incident and congestion event due to the 
correlation of GPS data gathered from the moving or slow 
vehicles. Fogu et al. [31] introduced e-Notify system, which is 
able to detect traffic accident rapidly and also reduce the inci-
dent duration time, by implementing efficient communication 
through the combination of V2I and V2V, respectively. In the 
past, improved nonparametric regression based model was 
proposed to detect traffic incidents [32]. Popescu et al. [33] 
introduced an AID scheme, in which the lane changing dis-
tance and lane changing speed mechanisms were utilized to 
detect the traffic incident based on the collection of traffic-in-
formation data by using V2I communication. However, this 
method required a longer time to process the traffic data in 
terms of vehicle lane changing distance and also this scheme 
cannot distinguish the road bottleneck caused by a traffic 
incident.

�e estimation and detection of traffic incident are one of 
the main challenging issues in the ITS. In the past, previous 
studies revealed that AID is a well-known and robust tech-
nique to detect traffic incident. Also, an AID technique can 
overcome the traffic congestion at the location where the 
occurrence of an incident caused the traffic difficulties such 
as road bottleneck, accident, and disabled vehicles, electronics 
equipment malfunctioning and other issues which can disrupt 
the traffic flow. Significant monitoring, estimation, and detec-
tion of traffic incident provide relevant traffic-related infor-
mation to enhance the traffic safety and driving experiences, 
by providing a driver with real-time traffic information to 
assist decision. In particular, traffic monitoring, traffic incident 
management and traffic safety management are the main pillar 
for enhancing the ITS. �is inspired us to further investigate 
the estimation and detection of the traffic incident. Specifically, 
the estimation of traffic incident and detection is somehow 
related to the pattern recognition problem, in which the inci-
dent and nonincident must be evaluated and classified. A 
sophisticated learning method can be applied to AID a�er 
training the data. So far, the support vector machine, neural 
network and deep learning techniques have been utilized to 
deal with this issue. �ese techniques depend on the propo-
sitional learning systems, which indicates that the data learned 
from these systems are propositional and not reliable. Also, a 

few AID algorithms such a McMaster algorithm [24] and 
California algorithm [25] are used to calculate the new param-
eter values from the collected data and compare these values 
to the threshold values to identify the incident detection. �e 
estimation of traffic incident may not be accurate because of 
the hybrid modeling, in which the traffic incident can occur 
at any location with different traffic conditions. Estimation of 
traffic incident with HO method and incident detection with 
an improved AID technique are not covered well in the above 
studies. Also, the traffic data were not utilized to analyze the 
incident conditions.

In this paper, we presented an efficient ITS system, which 
is able to estimate and detect the traffic incident from the 
hybrid observer and an improved AID technique, respectively. 
�e proposed system significantly utilized the PWSL obser-
vation to estimate the traffic incident and probabilistic collec-
tion of traffic data to detect the traffic incident. First, we 
developed the connection between vehicles and RSUs by using 
beacon mechanism. Once the connection is developed, they 
will exchange traffic-related information. Second, we employ 
the HO method to estimate the traffic incident, these estima-
tions can provide an accurate estimation of an event occurring. 
�ird, in order to detect traffic incident accurately, the pro-
posed method exploits the probabilistic approach to collect 
the traffic information data by using V2I communication 
based on the lane changing speed mechanism.

�e rest of this paper is structured as follows. Section 2 
presents the system modeling in which vehicle signing and 
beacon signal mechanism have been discussed. Section 3 pre-
sents the probabilistic approach to obtain the traffic informa-
tion data. Section 4 presents the proposed estimation of traffic 
incident and detection method. Section 5 discussed the com-
parison of the proposed model with different competent meth-
ods. Simulation results are presented in Section 6. Finally, 
Section 7 concludes this paper.

2. System Model

In this work, we assumed that the vehicles are equipped with 
a wireless module, which is used to communicate with the 
RSUs that are placed on the road to exchange traffic-related 
information with any passing vehicles. In addition, vehicles 
are also assumed equipped with the event data recorder (EDR) 
[34], which is used to monitor fast acceleration, speed, and 
lane information of the vehicles.

Figure 1 shows the system model of highway traffic flow 
on the road with the movement of vehicles in the forward 
direction. �e RSUs are placed on the road apart from each 
other with a distance of nearly 1.5 km. �ese RSUs are able to 
provide equal coverage in its vicinity. Also, the RSUs situated 
in the adjacent and on the opposite side of the road, are used 
to construct infrastructure. Each RSU contains a GPS device 
to obtain the exact location of vehicles, a radio transceiver for 
developing a connection between passing vehicles and a com-
puting device that processed traffic information data gathered 
from vehicles, such as lane changing speed and distance.

As shown in Figure 2, Figure 2(a) illustrates the vehicles 
are moving in the forward direction with the constant speed, 
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Both the vehicle and TA must initialize the counter to the value 
of ���� and increment it by ���� at every message received by the 
vehicle ���.
2.2. Beacon Signal Mechanism. In this section, we discuss the 
beaconing signal process. A°er sign-in, each vehicle sends a 
beacon signal, periodic message, at every time �� second to 
share the detail information such as recent location, pseudo-
identity and type of vehicle to the RSU.

Lets assume a vehicle ��� establishs a beacon and transmits, 
the established beacon is expressed as below.

where PID��� is the pseudo-identity of the vehicle ���, �� is used 
to protect from replay attack, ����(�) is the sign-in process of 
the vehicle. �����[�(�)] is encrypted location and � is the beacon 
signal using hash function �() [35].

(2)���� = [PID��� , ��, �, ����(�), �����[�(�)]],

(3)� = �(PID��� , ��, ����(�), �����[�(�)]).

and Figure 2(b) illustrates an aberrant change in the speed of 
a vehicle �1 during lane changing caused the tra�c incident.

2.1. Vehicle Signing. In the proposed method each vehicle 
needs to sign up and register their details with the transport 
authority (TA). TA is responsible for managing database of 
the vehicles such as, vehicle ID, personal information of the 
drivers, and also providing certi¥cates to the vehicles. It is 
important that all the vehicles must be connected with the TA.

A time-dependent secret ����(�) act on behalf of the TA for 
verifying the identity of the vehicle ��� and when it issued a 
message last time.  e secret can be computed and encrypted 
as below.

Lets assume the vehicle ��� sent a request for sign-up, to 
the TA at time �. First, TA will check the identity, �� of ���, and 
then generate a reply which contains three parameters 
(���� , ���� , ����), where ���� is a symmetric key, ���� and ���� are 
two integer values.

(1)����(�) = �����{���� + �����}.
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Figure 1: Tra�c incident in�uenced by the vehicle aberrant overtaking.
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Figure 2: Tra�c incident scenario. (a) Movement of vehicle in the forward direction, and (b) movement of vehicle with aberrant 
overtaking.
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for successful aggregation. Let � be the random variable which 
traces the number of vehicles that provided tra�c data infor-
mation among the � passing vehicles. So that the equation can 
be written as follows.

Equation (4) observed as a binomial function,
where

Equation (4) can be expressed as below.

Lets assume Φ is the incident target caused by ��. In order to 
detect the event which must satisfy the below condition.

 e transpositions can be yields as below.

A°er applying natural logarithm to the Equation (9) and then 
divide by ln[1 − ��(1 − �)], so the ¥nal equation can be 
expressed as below.

(4)

��[��] =
�
∑
�=0
��[��|� = �]��[� = �]

=
�
∑
�=0
(1 − ��)( �� )�

�
� (1 − ��)�−�

=
�
∑
�=0
( �� )�

�
� (1 − ��)�−� −

�
∑
�=0
( �� )(���)

�(1 − ��)�−�.

(5)
�
∑
�=0
( ��)�

�
� (1 − ��)�−� = 1,

(6)
�
∑
�=0
( ��)(���)

�(1 − ��)�−� = [1 − ��(1 − �)]�.

(7)P
a
[��] = 1 − [1 − ��(1 − �)]�.

(8)Φ ≤ 1 − [1 − ��(1 − �)]�.

(9)1 − [1 − ��(1 − �)]� ≤ 1 −Φ.

Equation (3) is used to calculate the beacon signal, lets assume 
when a witness vehicle �� received a message, it immediately 
checks the time-stamp �� function of the received beacon, and 
then verify the beacon signal �. If both values match, then the 
beacon content is correct.  erefeore, the beacon is considered 
valid within the vicinity of the incident vehicle.

As shown in Figure 3, the total time required to exchange 
the tra�c information between vehicle and RSU is ��, �1 is the 
time when the vehicle are waiting to receive beacon, and at 
the time �2 vehicle and RSU start to develop connection. Once 
the vehicle gets access to the wireless medium, it will exchange 
information such as ID, speed, acceleration, with RSU at time 
��/2, and exchange the information from RSU to vehicle at time 
��/2, respectively.

3. Collection of Traffic Information Data

Due to an enormous amount of tra�c �ow in the urban tra�c 
environment, data from externalities on the road are o°en 
interlinked with other vehicles. Consequently, it is very di�-
cult to collect and manage data from each vehicle passing 
through RSU. In order to obtain the accurate detection of traf-
¥c incident. Firstly, we applied the probabilistic approach to 
collect the data from the passing vehicles [36].

We assumed that the RSUs are active and able to collect 
the tra�c-related information from the vehicles passing 
through the RSU with the probability of ��. In particular, the 
vehicles are capable of maintaining a database of reliable tra�c 
information to identify the tra�c conditions that shows the 
sign of tra�c incidents.  e data collected from � number of 
vehicles with the probability of 1 − �� can lead to provide opti-
mum aggregation. For some application � ranges from 
0 < � < 1 [36].

Lets assume �� is an event caused by incident vehicle, i.e. 
vehicle � (see Figure 4), � number of vehicles passing the road 

Car waiting for beacon Data exchangeDevelop connection I2V data communication

t1 t2 tm/2 tm/2

Communication end

tc

Vehicle coverage area

Figure 3: Developing communication between RSU and passing by vehicle.



Journal of Advanced Transportation6

Figure 4 illustrates the estimation of the tra�c incident, which 
rely on the tra�c-related data and continuous observer. By 
using the continuous observer mechanism, we can obtain the 
accurate estimation of tra�c incidents.

4.2. Tra	c State Estimation. In most of the estimation 
approaches, the utilization of Lyapunov function ensures the 
asymptotic convergence of the estimated error [38]. A multiple 
Lyapunov function introduced a piecewise Lyapunov function 
due to the nature of the piecewise hybrid system to ensure the 
guarantee of error reduction [39].

To solve the HO problem which relies on determining the 
observer gain ��, the estimated tra�c incident ̀�(�) could con-
verge with the theoretical incident �(�).  erefore, the di�er-
ence of possible error between theoretical and estimated 
incident can be expressed as below.

 e convergence of the tra�c incident estimation error is 
required to obtain the gain �� of the hybrid observer of (11), 
which ensure that [�� − ���] is a Hurwitz matrix.

4.3. Detection of Tra	c Incident. To detect tra�c incident 
based on lane changing speed, RSUs ¥rst collect the tra�c 
information related to speed changing between the vehicles 
and then analyze and evaluate the vehicle speed in the incident 
and nonincident conditions. In other words, at the nonincident 
conditions, the average change in speed in shorter average 
time during changing lane as compared with the incident 
conditions. In this method, we used the collected tra�c 
information from the RSU related to vehicle speed changing, 
to evaluate whether or not the incident has occurred when the 
vehicle changing lane speed falls in the critical region of the 
de¥ned threshold values.

Figure 5 shows the vehicle lane-changing process which 
identi¥ed that the three vehicles �, �, and � vehicles are 
travelling along the road. Vehicle � is switching from lane 
2 at “point a” to lane 1 at “point b” to pass and cross the 
vehicle �.  e aberrant change in speed from “a” to “b” 
caused by the driver behavior which creates disturbance to 

(13)��(�) = �(�) − ̀�(�),
(14)��(� + 1) = [�� − ���]��(�).

Equation (10) is used to determine the number of vehicles 
which is necessary for meaningful aggregation at the event ��
caused by the incident vehicle in the highway tra�c 
environment.

4. Proposed Traffic Incident Estimation and 
Detection

4.1. Designing of PWSL Hybrid Observer. A designing observer 
is used to estimate and reconstruct the tra�c states of the 
dedicated system by using measurable variables. As the nature 
and characteristics of tra�c systems are complex, a hybrid 
observer is able to estimate the possibility of occurring an 
event that detects the tra�c incident. In order to obtain the 
accurate estimation of tra�c incident, a PWSL model and 
hybrid observer are combined together to produce a better 
estimation [37].

To estimate the tra�c incident, we have developed the struc-
ture of the hybrid observer with PWSL, which is written as.

where �� is the observer gain with tra�c incident mode ̀�. ��
is linked with the PWSL to ensure the accurate estimation of 
tra�c incident ̀�(�) with the theoretical incident �(�) under 
any tra�c condition.  erefore, the observed gains ensure the 
convergence of estimated error and stablize the matrices 
(�� − ���).

Estimated tra�c incident ̀�(�) of the continuous state con-
verge with the theoretical incident �(�) using the continuous 
tra�c �ow �(�), and the continuous output �̀�(�) can be 
expressed as below.

where � is the matrix with structures that depends on tra�c 
conditions or state.

 e estimation of tra�c incident depends on several fac-
tors such as tra�c scenarios, road conditions, tra�c �ow, etc. 

(10)� = ⌈ ln(1 − Φ)
ln[1 − ��(1 − �)]

⌉.

(11)
̀�(� + 1) = �� ̀�(�) + ���(�) + �� + ��(��(�) − �̀�(�)),

(12)�̀�(�) = � ̀�(�),

RSU RSU

Trusted authority

Tra�c management system

Continuous observer Tra�c incident estimation

Tra�c-related
data

Hybrid observer

Figure 4: Estimation of tra�c incident.
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collected tra�c-related data from the RSU related to vehicle 
speed changing to evaluate whether or not the incident has 
occurred when the changing lane speed falls in the critical 
region of the de¥ned threshold values.

5.2. Estimation of Tra	c Incident. Figure 7 shows the 
comparison of the theoretical incident with the estimated 
incident. In the simulation, we have considered three cases 
such as low, moderate and high tra�c densities. Figure 7(a) 
illustrate the comparison of the theoretical and estimated 
tra�c incident with low tra�c density. From Figure 7(a), it 
can be seen that the detection of tra�c incident takes a longer 
time to detect and clear an incident. However, the estimation 
of tra�c incident is close to the theoretical incident, which 
indicated that the proposed method is able to estimate the 
tra�c incidents in case of low tra�c density.

When the tra�c density is moderate, the performance of 
the proposed method in terms of estimation of tra�c incidents 
shown in Figure 7(b). Clearly improved estimation of tra�c 
incident has been obtained. Also, it has the fastest clearance 

the other vehicles on the road, which may subsequently 
cause tra�c incident. We assumed that the aberrant change 
in speed while changing lane by the vehicle � also causes 
variation and disturbance of the vehicle � speed.  e RSU 
calculates the average speed variation ��� which occurred 
during the lane-changing and the associated average time 
���. Based on these parameters, we have de¥ned the threshold 
level, if the speed variation falls under the incident threshold 
region, then it clearly indicates that an incident has occurred, 
which is caused by the aberrant overspeeding during lane 
change.

5. Model Comparison

In ITS, model validation is considered as an important param-
eter because it is able to evaluate the e�ectiveness of the pre-
sented method.  ough, the study and empirical investigation 
revealed that the detection of tra�c incidents is more compli-
cated and challenging than the other traditional incidents due 
to the nature and characteristics of the tra�c incident.  ese 
characteristics depend on the tra�c structure, pattern, and 
collection of tra�c information data from infrastructure. In 
the past, many traditional AID techniques have been proposed 
which investigates the tra�c incidents in di�erent tra�c sce-
narios [24, 25]. In order to evaluate the performance of the 
proposed method, we have compared the results with tradi-
tional AID techniques. Also, the presented method is further 
validated by KM estimate [40], which is used to evaluate the 
duration and clearance of tra�c incidents with other compe-
tent methods.

5.1. Incident �reshold Region. Figure 6 illustrates the 
average change in speed with the average time for lane 
changing mechanism in incident detection threshold region, 
i.e., incident and nonincident scenarios. It can be seen that, 
when a lane is congested due to road bottleneck, the average 
vehicle speed changes in much shorter average time under 
nonincident conditions as compared with the incident 
conditions. In this method, the proposed method uses the 
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Figure 5: Tra�c incident detection based on lane changing speed.
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the tra�c incident. More speci¥cally, the tra�c congestion 
depends on the number of vehicles which take alternative 
routes when the incident has occurred. From Figure 8, it can 
be observed that the proposed system achieved the fastest 
detection of the tra�c incident. Also, when the incident is 
cleared by the police, the proposed method obtains the fastest 
dissipation of tra�c congestion.

Figure 8(a) shows the comparison of the proposed method 
with the heavy tra�c congestion of 25% of tra�c diverts. It 
can be seen that the improved AID technique is able to detect 
the fastest tra�c incident as compared with the other methods. 
Figure 8(b) shows the comparison of the proposed method 
with 35% of tra�c diverts. At the time, when the incident has 
occurred, 35% of the vehicles take other routes. By means of 
simulation, it can be observed that the proposed method 
obtains better incident detection and the fastest dissipation of 
tra�c congestion. Figure 8(c) shows the comparison of the 
proposed method with 45% of tra�c diverts.  e proposed 

of incident detection. More speci¥cally, the proposed method 
obtained a better estimation of tra�c incident than the low 
tra�c density, and the estimation of tra�c incident has some-
how agreed with the theoretical tra�c incident.

Figure 7(c) illustrates the comparison of the theoretical 
incident with the estimated incident when the tra�c density 
is very high.  e proposed method obtained the most robust 
estimation of the tra�c incident in comparison with the low 
tra�c and moderated tra�c densities. And, the estimated traf-
¥c incident is also very close to the theoretical incident.  is 
indicates that the proposed method agrees well with the the-
oretical incident.

5.3. Tra	c Incident Detection. Figure 8 shows the comparison 
of the proposed method with other methods. In our simulation, 
we assumed that when the incident occurred, it introduces 
tra�c congestion.  e simulation results demonstrated in 
Figure 8 shows that the tra�c congestion is in�uenced by 
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9Journal of Advanced Transportation

vehicles.  e validation results reveal that the proposed 
method has the capability to estimate and detect the tra�c 
incident with the fastest detection rate. With regard to dura-
tion of an incident, it can be seen from Figure 9 that the pro-
posed model obtained a better KM curve by achieving the 
shortest duration of time to clear an incident among all other 
schemes.

6. Simulation Results

6.1. Exchange Communication between Vehicle and RSU. In 
our simulations, we assumed that the average speed of the 
vehicles passing from the RSU was varying from 20 mph to 
80 mph in the highway tra�c environment.  e probability 
of exchange tra�c information between vehicle and RSU 
was determined using the low data rates such as 512 kbps and 

improved AID technique is able to give the fastest incident 
detection and obtains the fastest dissipation of tra�c 
congestion.

From Figure 9, we can evaluate the performance of the 
KM curves between the proposed method and other AID 
techniques. It can be seen that the duration of the incident of 
California algorithm and integrated method are similar to 
each other.  e characteristics of these algorithms required a 
longer time to notify the police for the incident situation and 
also need more time to tow and clear an incident.  e KM 
curve for the incident duration with the AID (CLD/CLS) tech-
nique obtained better performance than the Integrated and 
California methods. A°er receiving complaint, the police 
arrived at the incident location in the shortest time to towing 
the incident vehicles and subsequently clear the incident. By 
using the proposed method, the police were able to clear the 
incident in the shortest time by towing away the incident 
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able to detect the change in vehicle speed which is in�uenced 
by the aberrant overtaking and may lead to causes of the tra�c 
incident.  ese RSUs are able to obtain the tra�c information 
and violence of each vehicle within their range. Four types 
of vehicles such as vehicle �, vehicle �, vehicle �, and other 
vehicles are used in a one-way three-lane tra�c scenario. It can 
be observed that the vehicle � overtaking the other vehicle while 
changing lane at the distance of RSU location about 5 km–10 km. 
From Figure 11, it can be seen that the probability of tra�c 
information increases as the vehicles are heading towards the 
next RSU location.  erefore, the strong connection between 
the vehicle and RSU is developed, which successfully lead to 
exchange of the tra�c information between the passing vehicles 
and each RSU locations.

6.3. Probabilistic Comparison of Tra	c Information 
Data. Figure 12 shows the e�ects of the number of vehicles on 
the probability of data collection. In order to accurately detect 
tra�c incidents, we have assumed several parameters, the 
incident target Φ = 0.9, application parameter which is able 
to detect an incident accurately � = 0.90, and the probability of 

1 Mbps, and the high data rates such as 2 Mbps. As shown in 
Figure 10, the results obtained from the simulation revealed 
that the probability of exchange tra�c information decreases 
with the increase of the average speed of the vehicles passing by 
the RSU. As the vehicle travels at low speed 50 mph and below, 
it will remain in the coverage area of the RSU for a longer time 
and be able to exchange the accurate tra�c information at 
lower data rates such as 512 kbps. When the average vehicle 
speed exceeds 55 mph, the probability of successful exchange 
tra�c information takes place between the passing vehicles 
and RSU at higher data rate such as 2 Mbps, which lead to 
provide the higher probability of exchange tra�c information.

6.2. Vehicle Communication with Each RSU Location.  e 
simulation test is carried out to examine the in�uence of vehicles 
traveling to each RSU on the probability of successful exchange 
information as illustrated in Figure 11. We have placed four 
RSUs with a distance of 1.5 km apart from each other that is 
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where DR is the incident detection rate, �� is the number of 
incident cases detected and � � is the total number of incident 
cases reported.

where CR is the classi¥cation rate, which is used to determine 
the incident detection, �� is the number of events correctly 
classi¥ed and �� is the total number of events.

We further evaluate the performance of the proposed 
method by using performance index (PI), which can be written 
as below.

where ��, ��, and �� are the weight of the DR, FAR, and CR, 
respectively. We assumed that the values of the weight of DR, 

(16)DR = ��� � × 100%,

(17)CR = ���� × 100%,

(18)PI = ��DR + ��(1 − FAR) + ��CR,

a vehicle to communicate with the RSU is �� = 0.7. Substitute 
all these values in equation (10), a°er solving we obtained that 
32 vehicles can communicate with RSU, with the probability 
of 90%.  erefore, it indicates that RSU is able to acquire 
the tra�c information data of 32 vehicles including incident 
vehicle, and it is also used to detect the tra�c incidents caused 
by vehicle � with the higher accuracy of � = 0.90.
6.4. Performance Test Criteria. In this section, we evaluate the 
performance of the proposed method with other well-known 
techniques such as Naive Bayes, SVM, and KNN using three 
criteria i.e. false alarm rate (FAR), detection rate (DR) and 
classi¥cation rate (CR) [41].

where FAR is the false alarm rate, �� is the number of false 
alarm cases, and ��� is the total number of nonincident cases.

(15)FAR = ����� × 100%,
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Figure 13: Comparisons of proposed method with other competent methods (a) FAR, (b) DR, (c) CR, and (d) PI.
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From the observation value, the proposed method obtained 
the FAR, DR, CR, and PI values of 0.018, 0.952, 0.925, and 
0.915, respectively as compared with the KNN 0.1912, 0.937, 
0.909, and 0.905, respectively. Clearly, the improved values 
indicate that the proposed method has obtained the better 
FAR, DR, CR, and PI values as compared with the other well-
known techniques such as Naive Bayes, KNN, and SVM 
methods.

6.5. CPU Timing. Figure 14 shows the CPU comparison of 
the proposed method with KNN and SVM methods. When 
the tra�c �ow is 10, the CPU time of the proposed method 
and other methods were very low. As the tra�c �ow increases, 
the CPU required a longer time to process input dataset. From 
Figure 14, it can be observed that the KNN and SVM methods 
required a longer CPU time due to exploiting more input data, 
which subsequently required a longer time to process dataset. 
 e proposed method obtains the less CPU time to process 
input dataset as compared with other competent methods.

7. Conclusion

 e incident estimation and detection are the important param-
eters in the ITS for reducing the tra�c congestion, improving 
tra�c and road safety. However, the tra�c incident may cause 
road bottlenecks, tra�c congestion and disrupt the normal 
tra�c �ow. In this paper, we proposed an ITS model which is 
able to estimate the tra�c incident from HO method, and then 
detect the tra�c incident from an improved AID technique in 
the highway tra�c environment. First, we present a hybrid 
observer method to estimate the tra�c incident based on the 
combination of the PWSL model and a model estimation tech-
nique. Second, we designed a probabilistic approach to collect 
tra�c information data by using a V2I communication based 
on lane-changing speed mechanism capable of detecting tra�c 
incident accurately.  e analysis shows that the proposed 
method can estimate the tra�c incident more precisely and has 
the potential to estimate the tra�c incident with three di�erent 
tra�c densities. By mean of the simulation, the proposed 
method has obtained a better estimation of the tra�c incident, 
which agrees well with the theoretical incident. Furthermore, 
by comparing the e�ectiveness of the proposed method for 
detecting tra�c incident, the proposed method outperforms 
other methods by obtaining the fastest incident detection rate, 
and the fastest dissipation of tra�c congestion.  e comparison 
with the other methods in terms of duration of an incident, the 
proposed method obtains the shortest duration of time to clear 
an incident. Moreover, we have further evaluated the perfor-
mance of the proposed method with well-known techniques 
such as Naive Bayes, KNN, and SVM using I-880 tra�c data. 
Experimental results show that the proposed method obtained 
a better performance compared with other methods.

In the future, we will enhance the proposed model by using 
joint learning and support vector machine (SVM) techniques 
which can produce the robust detection of tra�c incidents. 
Also, we will utilize the 5G wireless network to obtain the 
robust accuracy of tra�c information data which will be suc-
cessfully applied to estimate the tra�c incident.

FAR, and CR are all 1/2.  e larger value of PI indicates that 
the proposed method has obtained a better detection of tra�c 
incidents. More speci¥cally, the smaller the FAR values, the 
higher the possibility of detecting tra�c incident accurately. 
 e performance of DR indicates that, when the DR values 
approaching 100%. It clearly indicates that the algorithm is 
able to detect the tra�c incident well. However, the higher DR 
values may generate some false alarm.

To evaluate the e�ectiveness of the proposed method, we 
further demonstrate the performance of the proposed method 
on I-880 datasets for evaluating FAR, DR, CR, and PI values, 
and compare these values with the other methods. Figure 13 
shows the comparison of the proposed method with other com-
petent methods in terms of FAR, DR, CR, and PI values. From 
Figure 13(a) it can be observed that the proposed method has 
obtained less FAR values as compared with the SVM method. 
Also, we can observe that the Naive Bayes and KNN methods 
produce worst FAR values as compared with the SVM method.

As shown in Figure 13(b), the proposed method has 
obtained the highest DR values which indicate that the accu-
rate detection of tra�c incident. Also, it can be seen that the 
KNN method has obtained better DR values to accurately 
detect the tra�c incident as compared with the Naives Bayes 
and SVM methods. Due to the nature and characteristics of 
incident, the Naive Bayes and SVM methods are unable to 
detect tra�c incident.

It can be noted from Figure 13(b) and Figure 13(c), the 
results of KNN method in DR and CR is very close to the 
proposed method. Also, from Figure 13(a) the FAR values of 
SVM are very close to the proposed method. Also from Figure 
13(d), it can be observed that the proposed method has 
obtained better PI values as compared with other competent 
methods.  erefore, it clearly demonstrates that the improved 
values of FAR, DR, CR, and PI enhanced the performance of 
the proposed method, thus, the proposed method has an abil-
ity to detect tra�c incident on I-880 datasets.

More speci¥cally, from Figure 13, the observation values 
minimized FAR values when DR value was greater than 0.90. 
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