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Digital divide has been a major obstacle for mobile health services for the elderly in developing countries; to assess the potential
solution to narrow digital divide among the elderly, we use data from the China Health and Retirement Longitudinal Study
(CHARLS) and test for a causal role of social capital in digital access among elderly individuals in China. To handle endogenous
problems associated with social capital, we introduce instrumental variable (IV) estimates in our models. Our data analysis shows
that social capital facilitates increased digital access. We distinguish between two digital access patterns, an infrastructure pattern
and a personal device pattern, and find that the causal effect of social capital is determined by the personal device pattern.
+erefore, since family members and relatives increase digital access among elderly people, we propose a family-centered mobile
health policy in developing countries.

1. Introduction

Noncommunicable diseases (NCDs) are the leading cause of
death globally, but as the treatment and prevention of NCDs
are worse in developing countries because resources are
insufficient, elderly individuals there face a higher risk [1].
+e characteristics of chronic diseases call for long-term and
persistent self-management intervention, so patients with
chronic disease need to alter their lifestyles. However, due to
the fragmented health systems and insufficient funds in
developing countries, the prevention and treatment for
NCDs are facing more challenges [1, 2].

Mobile health (m-health) offers a potential solution to
increase the efficiency of NCD treatment and prevention.
Technologies such as apps and wearable devices empower
patients self-tracking and self-care, specifically following and
receiving instant feedback on their health, movement, and
diet, improving health outcomes, and they are becoming
increasingly available [3, 4]. Recent empirical research into
m-health reveals that feedback, incentive, and social support
mechanisms inm-health devices have helped improve health
outcomes and self-efficacy among hypertension and diabetes
patients [5–7]. Although mobile health is made possible by

widespread mobile technology, younger, more educated,
wealthier, and healthier people have an advantage in digital
access to m-health; specifically, the affordability, indepen-
dent usage, and ease of use have been considered as obstacles
for elderly users [8, 9]. +is digital divide has therefore
become a main concern in m-health policy [10, 11], and it is
prevalent in the developing world. For instance, in less
developed countries, about 89% of urban households but
only 63% of rural ones have a mobile phone [12]. One out of
five people are online in less developed countries, compared
with four out of five in developed countries [13].

We therefore estimate the role of social capital in the
digital divide among elderly people in China. We focus on
this topic for two reasons: First, although there is a proven
positive relationship between social capital and health
[14–18], the association between social capital and digital
divide is unexamined. More importantly, increasing age
means an increasing probability of chronic disease. Due to
the incomplete social security system in developing coun-
tries, elderly people with chronic diseases generally face
greater inequality, but among those countries with a tra-
dition of collectivism, social capital is expected to increase
digital access by providing resources for the elderly [19, 20].
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Second, quantitative research on m-health policy in devel-
oping countries is lacking. ICT researchers have conducted
small-sample m-health experiments to examine the feasi-
bility of using ICT for chronic diseases. However, as
m-health is a new healthcare service pattern, insufficient
attention has been paid to its policy feasibility. Specifically,
there is no known path of diffusion for m-health technology
among underprivileged populations in developing regions
[21]. +e population of China is aging rapidly and seeing
more NCDs: NCDs caused nearly 80% of deaths among
people aged 60 or older in 2012, and in 2013 over 100 million
people had at least one chronic NCD [22, 23]. Analysis of
data from China will have implications for other developing
countries undergoing aging and the transition of disease.

Additionally, previous studies suggested that the effect of
social capital on dependent variables poses endogeneity
problems, such as the mutually reinforcing relationship
between social capital and local public goods [15, 24] and the
relationship between living preference and wealth [25]. We
measure social capital by reciprocal behavior, which is
influenced by personal characteristics like altruism tendency
and sympathy, latent variables that cannot be observed or
controlled. To avoid the bias of coefficients on social capital
and investigate the causal relationship, we use an instru-
mental variable (IV) approach to test and handle endoge-
neity problems, introducing two IVs,Migration and Siblings.

In our main results, we first find that social capital, as
measured by mutual reciprocity within strong ties (relatives
and friends), does have a causal effect on digital access
among elderly people in China. We find two digital access
patterns: the infrastructure pattern and the personal device
pattern. In the infrastructure pattern, the causal effect of
social capital cannot be determined since infrastructure is
more sensitive to socioeconomic status (SES) indicators,
while in the personal device pattern, the causal role of social
capital is valid and significant in increasing digital access.
Second, SES is significantly negatively associated with digital
access in both patterns, a result consistent with previous
studies. Age and chronic diseases are negatively associated
with digital access and play a similar role to that of SES in the
digital divide. +is result implies that age and chronic
diseases should be considered structural variables in the
digital divide, and m-health in developing countries may
face more difficulties than expected. Lastly, based on our
findings, we propose a family-centered m-health service
system in developing countries. As our results suggest that
social capital has a causal effect on personal equipment,
family and community can play a critical role in m-health
policy to narrow the digital divide for the elderly.

2. Social Capital and Digital Divide

Digital divide refers to the gulf in information and com-
munication technology access (e.g., haves or have-nots),
capability (e.g., computer skills or ability to find information
online), and outcomes (e.g., productivity of IT investment
and use) across a variety of demographic, ethnic, geographic,
and socioeconomic dimensions [26, 27]. As a measure of
social structure, SES is frequently associated with the digital

divide. For some researchers, the digital divide is more than
digital haves or have-nots: it is part of the world of structural
inequalities [28]. For example, Internet use among the
middle-aged and elderly is strongly associated with SES in
China, and community resources are also associated with the
digital divide [10]. In the US, income, education, age, and
family structure are important social determinants of online
access, and older respondents were found to have lower
Internet access than average [29]. However, since studies on
the association between social capital and digital divide are
rare and since social capital is a broad notion, we first define
social capital from the perspective of private goods. +en we
review the literature of social relations and digital access.

2.1. SocialCapital: PrivateGoods orPublicGoods? +enotion
of social capital generally includes both social networks and
resources embedded in those networks [30]. However,
scholars do not agree on how to explain the mechanism and
define the function of social capital [31]. Some researchers
find that social capital motivates the community self-gov-
ernance and the pursuit of collective goals by improving
cohesiveness at the organization or community level
[15, 24, 31, 32]. Studies following this tradition evaluate the
effect of social capital on health or health resources. For
instance, [17] suggests that social capital affects individual
health by influencing access to services and amenities.
Similarly, social capital (as measured by kindness and
greeting) and social cohesion in a community increase
general health [14].

Other studies in developing countries emphasize that
social capital as private goods can play a more direct and
significant role. In this view, resources from external ties
such as relatives and acquaintances play a more critical role
than collective action, and individuals rather than com-
munities benefit; in this way, social capital is similar to
individual investment [31, 33]. For instance, [20] finds that
while social capital measured by organizational membership
is unassociated with health outcomes in rural China, support
from friends and relatives may contribute more to public
goods provision. Using the number of friends as the proxy of
social capital, [34] concludes that themore friends, the better
one’s physical and mental health outcomes. Here, we follow
the private goods view in which social capital refers to actual
and potential resources embedded in an individual’s or
social units’ social networks [35, 36]. +e private goods view
suggests that social capital includes social networks and
embedded resources. We focus on social networks rather
than resources for one important reason: social networks are
embedded into culture context, and collectivism is a deeply
rooted cultural characteristic in developing countries,
shaping individual behavior [19, 37].

2.2. Social Capital and Digital Access. Since studies of the
association between social capital and digital divide are rare,
we review work emphasizing the effect of social networks on
digital access. From the private goods perspective, social
networks provide resources (e.g., information and influence)
that can facilitate digital access. For example, [38] finds a

2 Journal of Healthcare Engineering



positive relationship between Internet use and peer effect:
individuals in the proximity of others who go online will be
influenced to go online themselves. +eoretically, inter-
personal interactions could affect technology adoption
through social learning, pressure, influence, or support (such
as information). A field study in India [39] finds that farmers
obtained information from and were influenced by other
villagers of advice networks, and advice networks were
found to increase the usage of farming information system.
In another field experiment lasting for seven years in India,
mothers’ social networks (both strong and weak ties) were
found to affect their use of ICT intervention and further
reduce infant mortality [40]. In the literature of health in-
formation searching, [41] finds that teen Internet users can
be health information seekers for families with low educa-
tion, suggesting that young members of family may act as a
potential source of digital access. Researchers aiming to
increase digital access among people with low SES have
found that social networks do influence underprivileged
populations in developing nations, and they have also been
found to increase digital access, even in less developed areas.
+erefore, there is a reason to believe that social capital, via
social networks, could help narrow the digital divide.

3. Data and Measurement

We use two databases to test the causal effect of social capital
on digital access: the China Health and Retirement Longi-
tudinal Study (CHARLS 2011) (this data is available at http://
charls.pku.edu.cn/pages/data/2011-charls-wave1/zh-cn.
html) and the Statistical Yearbook of China’s Regional
Economy (2012) (this data are available at http://www.stats.
gov.cn/tjsj/tjcbw/201303/t20130318_451532.html).
CHARLS is a survey of the middle-aged and elderly in
China, based on a sample of households with members aged
45 or older, covering 150 countries/districts and 450 villages/
urban communities, and interviewing 17,708 individuals in
10,257 households; our analysis contains 16,316 samples,
and 1,392 samples were deleted due to missing variables.
+is data shows that, of individuals over 60, only 9.74% have
Internet access and 63.92% have mobile phone access. Of
individuals 45 to 59, only 20.62% have Internet access and
87.86% have mobile phone access. +is low adoption rate
can be considered a proxy of m-health adoption among the
elderly in China today. Digital access could also act as the
foundation to predict m-health access in the future because
m-health services share similar ICT infrastructure for service
providers and similar usage habits for users.

3.1. Social Capital. +e private good perspective empha-
sizes the use of accessible resources from external net-
works to measure social capital in developing countries.
We construct a composite score based on whether the
respondent has received any help (monetary or
nonmonetary) from or provided any help to others (co-
resident parents/parents-in-law/children/grandchildren/
relatives/nonrelatives). +is method is suggested and
applied in previous work using CHARLS to measure social

capital [42]. Figure 1 reports the distribution of social
capital by SES.

3.2. Digital Access. Digital access can be measured by home
computer ownership at the individual level, IT investment at
the organizational level, and national IT expenditure at the
country level [27]. Since smartphones are the current
platform for m-health services, we use Internet and mobile
phone access to measure digital access at the individual level.
For Internet access, we ask, “Does your household have
broadband Internet connection?” +e majority (84%) of
respondents do not. Mobile phone access is measured using
the following question: “Do members of your household
own the following assets?” We find that 21% of respondents
have no mobile phone access at the household level. Dis-
tribution of Internet and mobile phone access by SES ap-
pears in Figures 2 and 3.

3.3. Control Variables

3.3.1. Socioeconomic Status (SES). Prior studies measured
multiple dimensions of SES: education, occupation, access to
goods and services, and household welfare. Because a single
proxy could lead to unstable results [43], we use education,
wealth, and residence to measure respondents’ SES (see
Table 1). Education is categorized into four groups (illiterate,
primary, medium, and high levels). Since farmers in de-
veloping countries have no regular salary and make up a
large proportion of respondents (78% have rural hukou and
only 22% have urban hukou), it is difficult to accurately
measure respondents’ income. Expenditure is a better way to
gauge income when a person’s income is irregular [10, 44].
We therefore used per capita expenditure, which has also
been used in other studies with CHARLS (2011). Given the
urban/rural structural disparity in developing countries, we
use type of hukou (urban or rural) to categorize residence.

3.3.2. Chronic Diseases. +e CHARLS (2011) contains 14
questions to assess chronic diseases. Comorbidity has been
widely observed among chronic disease patients [45]; for
instance, one-half of Chinese people aged 70 or older and
one-half to two-thirds of Spanish adults older than 65 have
two ormore chronic conditions [1]. As suggested in previous
studies [11], we note three or more cooccurring chronic
diseases as an indicator of the severity of chronic disease.

3.3.3. Demographic Variables. +ese include marriage sta-
tus, sex, and age, which is subdivided into three groups
(45–59, 60–74, and 75+).

3.3.4. Living Arrangements. Household size and coresidence
with children and grandchildren can influence digital access,
since younger people are more inclined to purchase digital
devices. Household size is measured by the number of
people living in the same household, with a member being
anyone who lived in the household for over six months in the
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past year. We also track whether respondents live with their
adult children or with grandchildren over 16.

3.3.5. Public Goods. To control for variables that may affect
digital access at community and city level, we introduce
public goods as control variables. Public goods related to
digital access involve power supply, mobile phone base
stations, etc., and we divide them into two levels, community
and city. To assess public goods at the community level we
follow [42, 46] and make a composite measure by asking
respondents, “Does your village/community have the fol-
lowing type of facilities?” Fourteen facility types are listed,
including basketball court, swimming pool, and outside
exercise facilities. At the city level, we measure public goods
by public service budget of local government (100 million
yuan/10,000 people), including education, social safety net,
and employment efforts. We obtain general budget and

population data from the Statistical Yearbook of China’s
Regional Economy (2012).

4. Empirical Strategy

First, we use probit regression to estimate the effect of social
capital. Access to Internet and mobile phone is used to
estimate digital access using the following equation:

DigitalAccess � β0 + β1SES + β2ChronicDisease

+ β3SocialCapital + β4Control + ε.
(1)

+e variable SES is socioeconomic status including
wealth (measured by per capita expenditure), education, and
residence (measured by hukou type). ChronicDisease equals
1 if the respondent has three or more chronic diseases. We
control for demographic characteristics, living arrange-
ments, and public goods, denoted by Control. Additionally,
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Figure 1: Distribution of social capital by residence, education, and wealth. Q25, Q50, Q75, and Q99 represent the respondents’ per capita
expenditure (Log) in the top 25%, top 26% to top 50%, top 50 to top 75%, and top 51% to top 99%, respectively.
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to assess the endogeneity of social capital, we use the Wald
test of exogeneity in IV-probit regression [47].

Second, given the potential endogeneity of social capital,
Maximum Likelihood Estimate (MLE) will not be consistent
[48], so we introduce two-step sequential estimation in

models with instruments. Migration denotes whether the
respondent left his/her birthplace and Siblings represents
number of siblings. Our two-step IV-probit equation is
specified as follows:

SocialCapital � α0 + α1Migration + α2Sibilings + α3SES + α4Control + ε, (2)

DigitalAccess � β0 + β1SES + β2ChronicDisease + β3Social Capital + β4Control + ε. (3)

4.1. Instrumental Variables. Since we require a variable that
associates with social capital but without a direct effect on
digital access, we use Migration (stayers or movers) and
Siblings as instrumental variables (IVs).

4.1.1. Migration. As suggested in recent research [15, 49],
Migration can be a proxy to measure the causal effect of social
capital since it has no direct effect on infrastructure like
healthcare resources. If a respondent moves away from his
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Figure 2: Distribution of Internet access by residence, education, and wealth. Q25, Q50, Q75, and Q99 represent the respondents’ per capita
expenditure (Log) in the top 25%, top 26% to top 50%, top 50 to top 75%, and top 51% to top 99%, respectively.
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birthplace, the respondent is defined as a mover, otherwise as
a stayer. Low population mobility, as is the case overall in
China, increases the importance of interpersonal relationships
and personal networks with relatives [50]. +ese social net-
works in urban communities often involve neighbors who are
also work colleagues, as employees of Chinese state-owned
businesses could get free housing [51]. In rural communities,
people often live with extended family and their neighbors
may also be relatives. Since individuals in China access re-
sources from the social network of their place of birth, as is
common in countries that are not yet totally industrialized or
urbanized, stayers who remain in their birthplace can obtain
more resources from existing social networks, while movers
must build new social networks.

To identify movers and stayers, we ask whether the re-
spondent’s first hukou (usually obtained as an infant or child)
is identical to his/her current hukou. If the respondent
chooses “same as birthplace,” Migration equals 0 and the

respondent will be marked as a migrant. According to Chi-
nese policies, migrants need to update their hukou regis-
tration information or they may encounter some obstacles in
work, education, etc. +is is due to differences in social
welfare policies between cites, and some welfare policies are
only available for people holding local hukou; therefore,
hukou can be a reliable variable to measure migration.

4.1.2. Number of Siblings. Since social networks and re-
sources are the two components of social capital, a bigger
social network should havemore resources for an individual.
In Chinese culture, the sibling relationship is a strong tie; it
involves more obligation and trust than do weaker ties
between siblings in western culture [35]. We therefore use
number of siblings as a proxy for strong-tie social network
size; more siblings indicate a larger social network providing
more social capital. For instance, information and influence
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obtained through social contacts help job-seekers secure
higher-paying work [52, 53]. +e number of siblings is
measured by asking, “How many of your siblings are still

alive?” As shown in Table 1, about 48.7% of respondents
moved from their birthplace (movers), and respondents
have an average of 3.14 Siblings.

Table 1: Description of variables.

Variables Description Mean Std.
Dev. Min Max

Digital access

Dependent
variables

Internet access Dummy variable equals 1 if respondent’s household has
broadband Internet connection 0.162 0.368 0 1

Mobile phone
access

Dummy variable equals 1 if members of respondent’s
household own mobile phones 0.782 0.413 0 1

SES

Independent
variables

PCE Household members’ total per capita expenditure in the past
year is used as the measurement of income 2710.375 6906.97 0 233000

Education

Education is categorized into four groups: illiterate, primary
(home school or elementary school), middle (middle school,
high school, or vocational school), and high (college and

above)
IlliterateEDU Percentage of respondents without formal education 27.29 0.819 0 1
PrimaryEDU Percentage of respondents who completed elementary school 39.304 0.819 0 1
MediumEDU Percentage of respondents who completed middle school 31.025 0.819 0 1
HighEDU Percentage of respondents with higher education 2.378 0.819 0 1
Residence Type of hukou: urban hukou is 1 and rural hukou is 0 0.22 0.414 0 1

Chronic disease Chronic disease Diagnosed with three or more chronic diseases (yes� 1,
no� 0) 0. 186 0.389 0 1

Social capital Social capital

Social capital is measured by a composite score. 12
dichotomous variables are measured by asking whether the
respondent or spouse in the past year received/provided any
economic supports from/to noncoresident parents/parents-
in-law/children/grandchildren/relatives/nonrelatives. +ese
dichotomous values are added to form a composite score

1.008 1.066 0 8

Demographic
variables

Sex Percentage of female respondents (female� 1, male� 0) 0.512 0.500 0 1

Age Aged 45 to 59 is middle-age level, 60 to 74 is presenior level,
and 75+ is senior level

Aged 45–59 Percentage of respondents aged 45 to 59 55.93 0.651
Aged 60–74 Percentage of respondents aged 60 to 74 35.32 0.651

Aged above 75 Percentage of respondents aged over 75 8.75 0.651

Marital Dummy variable equals 1 if married or separated and 0 if
single, divorced, or widowed 0.871 0.335 0 1

Public goods

Community
infrastructure

Community infrastructure is measured by a composite score.
14 dichotomous variables are measured by asking whether the

community has certain infrastructure (e.g., basketball
facilities), organizations (e.g., dance team), and public services

(e.g., employment service center)

3.523 3.568 0 14

Public investment

General budgetary expenditure (education, social safety net
and employment effort, medical and healthcare services,

agriculture forestry, and water conservation) of respondent’s
local government (one hundred million RMB per 10,000

people)

3.799 13.13 0.1 94

Living
arrangement

HouseholdSize Number of family members living in the same household 3.725 1.771 2 16
Coresidence
grandchildren

Percentage of respondents living with grandchildren over
16 years old 0.053 0.223 0 1

Coresidence
children Percentage of respondents living with adult children 0.556 0.497 0 1

Instrumental
variables

Migration Equals 1 if respondent’s first hukou (usually obtained as infant
or child) is not his/her current hukou 0.49 0.500 0 1

Siblings Number of respondents’ living siblings 3.140 1.929 0 11
Observations 16316
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4.2. Strength of IVs. Weak instruments can produce biased
IV estimators and fail to solve the endogeneity of social
capital. We address this issue by checking the results of the
first-stage linear regression. A common rule of thumb
considers an instrument strong if the F-statistic in the first
stage is over 10 and the coefficients of IVs match theoretical
assumption [54]. As shown in Table 2, the F-statistic for
Migration and Siblings is 34.57 (p< 0.01) for social capital in
both models. Additionally, the coefficients forMigration and
Siblings are -0.051 (t� −3.01, p< 0.01) and 0.037 (t� 8.18,
p< 0.01), respectively, indicating that Migration decreases
resources the respondent could obtain through his/her social
networks and that Siblings is positively associated with social
capital. +is result is consistent with the assumption that
more strong ties result in more social capital. Taken together,
we argue that Migration and Siblings are not weak IVs.

5. Results

5.1. Social Capital and Digital Divide. As shown in Table 3,
the coefficient of social capital in model 1 is not significant.
When the IVs are introduced in model 2, the association
between social capital and Internet access is significant at
99% confidence level. +e difference between these models
reveals the possible bias caused by latent variables. In models
with IVs, social capital is positively associated with digital
access. To be specific, resources obtained from social net-
works increase digital access. +e coefficients in models 2
and 4 are 0.79 (t� 3.72, p< 0.01) and 1.29 (t� 5.88, p< 0.01),
respectively.

We turn to the Wald test of exogeneity provided in
Table 3 to test if social capital is endogenous. Inmodels 3 and
6, the chi-square equals 18.41 (p< 0.01) and 53.33 (p< 0.01),
respectively, and the estimated coefficients of athrho are
-0.79 (t� −4.29, p< 0.01) and −1.06 (t� −7.30, p< 0.01),
respectively, indicating a negative relationship between in-
dependent variables and unmeasured variables. Hence, we
reject the null hypothesis that social capital is exogenous in
the 99% confidence intervals and social capital in Internet
access and mobile phone access is endogenous. Compared
with probit estimates for social capital in model 1 (see
Table 3), the two-step IV-probit estimate for social capital is
significant in model 2, suggesting that probit estimates ig-
nore the endogenous effect of unobserved latent variables
and underestimate the true effect of social capital on digital
access. Taken together, we conclude that social capital is an
endogenous variable.

To investigate how social capital increases the digital
divide, our models in Table 3 include living arrangements.
Since our measure of social capital is based on reciprocity
within strong ties, household size and living situation (with
adult children/grandchildren or not) may directly influence
the digital access of elderly people. In the Internet model and
mobile phone model, results indicate that household size
and living with children/grandchildren can help increase
digital access. In model 2, the coefficients of living with
children (0.74, t� 13.46, p< 0.01) are relatively larger than
those of living with grandchildren (0.17, t� 2.15, p< 0.05)
and household size (0.06,t� 4.91, p< 0.01). Similarly, in

model 5, the coefficients are 0.58 (t� 10.10, p< 0.01) vs
0.28(t� 3.27, p< 0.01) and 0.14 (t� 6.72, p< 0.01); the
variance of coefficients implies that living with children can
provide more digital access than living with grandchildren
and the size of household. We conclude that living with
offspring is an important channel by which elderly people
benefit from social capital. Altogether, we conclude that
social capital has a significant effect on older individuals’
digital access, and support from strong ties is a path by which
social capital may increase digital access.

5.2. SES and Digital Divide. In models 2 and 5 (see Table 3),
variables of SES are strongly associated with digital access.
Specifically, Internet and mobile phone access are associated
with wealth and education. Inmodel 2, a higher education level
predicts higher Internet access, with coefficients of primary,
medium, and high educational levels being 0.19 (t� 4.13,
p< 0.01), 0.46 (t� 9.25, p< 0.01), and 0.88 (t� 7.67, p< 0.01),
respectively. In model 5, they are 0.31 (t� 7.38, p< 0.01), 0.51
(t� 10.19, p< 0.01), and 0.24 (t� 1.73, p< 0.01), respectively.
Another significant variable to measure SES in developing
countries is urban residence, which is positively associated with
digital access in bothmodels estimated by IVs. Conversely, lack
of infrastructure and of stable income can result in low access to
ICT in rural areas.

We note that, in models 2 and 5, chronic diseases have a
significant, negative correlation with digital access (−0.22,
t� −4.97, p< 0.01 vs−0.11, t� −2.50, p< 0.05). Since
healthcare costs for chronic disease patients are higher than
for other elderly patients, chronic diseases can decrease the
money that the individual can spend on ICT. In addition,
both Internet and mobile phone access are negatively as-
sociated with age, with older people being more disadvan-
taged than younger people. Empirical results suggest that
chronic diseases and age contribute to the structural in-
equality surrounding digital access for the elderly. In sum,
digital access among the elderly is negatively associated with
SES, which is consistent with prior studies [10, 11], and
digital access is more than the difference between haves and
have-nots; it also represents structural inequality. More
importantly, age and chronic diseases broaden the digital
divide, potentially preventing the elderly from benefiting
from m-health services.

5.3. Robustness Checks: Instrument Validity. To satisfy the
exclusion-restriction condition, Migration and Siblings are
expected to be associated with social capital but to drive
changes in digital access. To prove that IVs are exogenous,
we perform a battery of tests. Since we have two instruments
(Migration and Siblings) and one instrumented (Social
capital), the estimation of an overidentified model can be
performed, we introduce Generalized Method of Moments
(GMM) to compare estimators and variance estimates for
overidentified models (see Table 4). +e results of Hansen’s
test are shown in Table 4. In model 7, because Hansen’s J
chi2 equals 8.04 (p< 0.01), we reject the null hypothesis and
conclude that the overidentifying restriction (specifically, at
least one of the instruments) is not valid. Model 8 supports
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Table 2: First-stage estimates.

Social capital Coef. t-value p-value Sig
Migration −0.05 −3.01 0.000 ∗ ∗ ∗

Siblings 0.04 8.18 0.000 ∗ ∗ ∗

PCE (Log) 0.05 11.04 0.000 ∗ ∗ ∗

PrimaryEDU 0.04 1.98 0.050 ∗

MediumEDU 0.04 1.66 0.100
HighEDU 0.29 4.27 0.000 ∗ ∗ ∗

Residence −0.20 −8.34 0.000 ∗ ∗ ∗

ChronicDisease 0.08 3.52 0.000 ∗ ∗ ∗

Sex 0.04 2.36 0.020 ∗ ∗

Aged 60–74 −0.04 −2.17 0.030 ∗ ∗

Aged above 75 0.11 3.34 0.000 ∗ ∗ ∗

HouseholdSize −0.02 −3.97 0.000 ∗ ∗ ∗

CoresidenceChildren −0.17 −7.17 0.000 ∗ ∗ ∗

CoresidenceGrandchildren 0.16 3.87 0.000 ∗ ∗ ∗

Marital status 0.08 3.27 0.000 ∗ ∗ ∗

Community infrastructure 0.00 1.26 0.210
PublicInvestment(Log) −0.07 −9.35 0.000 ∗ ∗ ∗

Constant 0.67 13.51 0.000 ∗ ∗ ∗

F-test F(17, 16298)� 34.57] prob> F� 0.0000
Observations 16316
R-squared 0.03
t-values are in parentheses. ∗∗∗p< 0.01, ∗∗p< 0.05, ∗p< 0.1.

Table 3: Estimates of effect on digital access.

Internet access Mobile phone access

Probit model (1)
Two-step
IV-probit
model (2)

IV-probit
model (3) Probit model (4)

Two-step
IV-probit
model (5)

IV-probit
model (6)

PCE(Log) 0.10∗∗∗ 0.06∗∗∗ 0.04∗∗∗ 0.12∗∗∗ 0.06∗∗∗ 0.04∗∗∗
(8.72) (4.08) (2.59) (18.14) (4.62) (3.17)

PrimaryEDU 0.23∗∗∗ 0.19∗∗∗ 0.14∗∗∗ 0.36∗∗∗ 0.31∗∗∗ 0.19∗∗∗
(5.41) (4.13) (3.33) (11.74) (7.38) (5.06)

MediumEDU 0.50∗∗∗ 0.46∗∗∗ 0.34∗∗∗ 0.57∗∗∗ 0.51∗∗∗ 0.32∗∗∗
(11.28) (9.25) (5.51) (14.78) (10.19) (6.03)

HighEDU 1.11∗∗∗ 0.88∗∗∗ 0.66∗∗∗ 0.61∗∗∗ 0.24 ∗ 0.15
(12.99) (7.67) (4.28) (5.57) (1.73) (1.43)

Residence 0.64∗∗∗ 0.79∗∗∗ 0.60∗∗∗ 0.03 0.26∗∗∗ 0.16∗∗∗
(18.85) (14.07) (12.29) (0.90) (4.20) (5.49)

ChronicDisease −0.16∗∗∗ −0.22∗∗∗ −0.17∗∗∗ −0.02 −0.11∗∗∗ −0.07∗∗∗
(−4.14) (−4.97) (−5.21) (−0.50) (−2.50) (−2.65)

SocialCapital 0.02 0.79∗∗∗ 0.64∗∗∗ 0.10∗∗∗ 1.29∗∗∗ 0.81∗∗∗
(1.52) (3.72) (6.50) (7.87) (5.88) (17.19)

Sex 0.14∗∗∗ 0.11∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.02 0.01
(4.99) (3.32) (2.73) (2.83) (0.57) (0.55)

Aged 60–74 −0.31∗∗∗ −0.27∗∗∗ −0.20∗∗∗ −0.49∗∗∗ −0.41∗∗∗ −0.26∗∗∗
(−9.19) (−6.68) (−4.33) (−17.78) (−10.54) (−5.77)

Aged above 75 −0.34∗∗∗ −0.38∗∗∗ −0.29∗∗∗ −0.93∗∗∗ −0.99∗∗∗ −0.61∗∗∗
(−5.06) (−5.18) (−4.81) (−20.72) (−15.76) (−8.50)

HouseholdSize 0.04∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.11∗∗∗ 0.14∗∗∗ 0.09∗∗∗
(4.31) (4.91) (5.58) (9.13) (9.72) (8.24)

CoresidenceChildren 0.62∗∗∗ 0.74∗∗∗ 0.56∗∗∗ 0.39∗∗∗ 0.58∗∗∗ 0.36∗∗∗
(15.78) (13.46) (10.99) (10.42) (10.10) (10.28)

Coresidence grand
children

0.28∗∗∗ 0.17∗∗ 0.12∗ 0.45∗∗∗ 0.28∗∗∗ 0.17∗∗∗
(4.17) (2.15) (1.80) (6.96) (3.27) (2.67)

Marital 0.14∗∗∗ 0.07 0.05 0.10∗∗∗ −0.01 −0.00
(2.82) (1.29) (1.15) (2.73) (−0.13) (−0.15)

CommunityInfrastructure 0.09∗∗∗ 0.08∗∗∗ 0.06∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(22.42) (18.93) (7.19) (4.86) (2.87) (2.60)

PublicInvestment(Log) 0.08∗∗∗ 0.14∗∗∗ 0.10∗∗∗ 0.05∗∗∗ 0.13∗∗∗ 0.08∗∗∗
(7.54) (7.13) (10.79) (4.68) (6.40) (9.16)
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the null hypothesis (p> 0.01) and we conclude that IVs are
more valid in model 8 than in model 7. +erefore, the causal
effect of social capital cannot be guaranteed in the Internet
access model as it can in the mobile phone access model.

+e difference could be partly explained by the fact that
Internet access depends more on massive infrastructure invest-
ment at the community and family level than mobile phone
access, which depends on an individual’s capability to purchase
and use personal digital equipment. As shown in Figures 2 and 3,
two SES patterns influence digital access. Internet access indicates
the infrastructure pattern, which is more sensitive to SES indi-
cators than the personal device pattern represented by mobile
phone access. +e pattern can be further revealed by comparing
the coefficients of social capital and SES in models 2 and 5. For
instance, in model 5 predicting mobile phone access, demo-
graphic characteristics such as age of 60–74 and age of 75 and

above have greater coefficients than the residence representing
SES (−0.41, t� −10.54, p< 0.01 and −0.99, t� −15.76, p< 0.01
vs. 0.26, t� 4.20, p< 0.01), while it is the opposite in model 2
(−0.27, t� −0.27, p< 0.01 and −0.38, t� −5.18, p< 0.01 vs. 0.79,
t� 14.07, p< 0.01). Considering the disparity in development
between urban areas and rural areas inChina, residents with high
SES enjoy an advantage in access to ICT in the infrastructure
pattern.+erefore, social influence (e.g., social capital) is expected
to work in personal device pattern in developing countries.

6. Conclusion and Discussion

6.1. Empirical Conclusion. Our study makes several con-
tributions. First, we determined the causal role of social
capital in facilitating increased digital access, but we did not
determine a causal effect of social capital on infrastructure

Table 3: Continued.

Internet access Mobile phone access

Probit model (1)
Two-step
IV-probit
model (2)

IV-probit
model (3) Probit model (4)

Two-step
IV-probit
model (5)

IV-probit
model (6)

Constant −3.22∗∗∗ −3.79∗∗∗ −2.89∗∗∗ −0.92∗∗∗ −1.82∗∗∗ −1.13∗∗∗
(−29.71) (−19.86) (−12.50) (−12.59) (−9.66) (−18.25)

athrho −0.79∗∗∗ −1.06∗∗∗
(−4.29) (−7.30)

lnsigma

0.05∗∗∗ 0.05∗∗∗
(6.28) (6.28)

Wald test of exogeneity:
chi2(1)� 18.41

prob> chi2 � 0.0000

Wald test of exogeneity:
chi2(1) � 53.33 prob >

chi2 � 0.0000
Obs. 16316 16316 16316 16316 16316 16316
Pseudo R2 0.26 .z .z 0.20 .z .z

t-values are in parentheses. ∗∗∗p< 0.01, ∗∗p< 0.05, ∗ p< 0.1.

Table 4: Regression results GMM.

Internet access (model 7) Mobile phone access (model 8)
Coef. t-value Coef. t-value

SocialCapital 0.12∗∗∗ (3.29) 0.32∗∗∗ (5.97)
PCE (Log) 0.01∗∗∗ (3.87) 0.02∗∗∗ (5.51)
PrimaryEDU 0.02 ∗ ∗ (2.32) 0.09∗∗∗ (8.12)
MediumEDU 0.08∗∗∗ (9.32) 0.13∗∗∗ (10.34)
HighEDU 0.29∗∗∗ (10.28) 0.05 ∗ (1.58)
Residence 0.18∗∗∗ (15.47) 0.07∗∗∗ (4.77)
ChronicDisease −0.04∗∗∗ (−5.45) −0.02∗∗ (−2.14)
Sex 0.02∗∗∗ (3.55) 0.00 (0.49)
Aged 60–74 −0.04∗∗∗ (−6.17) −0.11∗∗∗ (−11.35)
Aged above 75 −0.06∗∗∗ (-5.79) −0.31∗∗∗ (−17.73)
HouseholdSize 0.01 ∗ ∗ (2.53) 0.04∗∗∗ (11.43)
CoresidenceChildren 0.14∗∗∗ (13.81) 0.15∗∗∗ (10.99)
CoresidenceGrandchildren 0.02 (1.22) 0.10∗∗∗ (5.25)
Marital 0.01 (0.71) 0.00 (0.33)
Community infrastructure 0.02∗∗∗ (19.52) 0.00∗∗∗ (2.55)
Public investment (Log) 0.02∗∗∗ (7.02) 0.03∗∗∗ (6.47)
Constant −0.26∗∗∗ (−8.11) 0.07 (1.59)
Obs. 16316 16316
R-squared 0.11 .

Test of overidentifying restriction: Hansen’s J chi2 (1)� 8.95
(p � 0.00)

Hansen’s J chi2 (1)� 0.62
(p � 0.43)

t-values are in parentheses. ∗∗∗p< 0.01, ∗∗p< 0.05, ∗ p< 0.1.
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patterns; to put it another way, our findings uncover the
boundary of the social influence on digital divide. In line
with prior studies, we find association between SES and
digital divide among the elderly. However, age and chronic
diseases also contribute to the divide, which poses a chal-
lenge to m-health policymakers in developing countries.
Second, our measure of social capital is built on strong ties
(relatives and friends rather than community members), and
the causal relationship between social capital and digital
access implies that social capital as private goods plays a
critical role in China.+ird, our results have implications for
m-health policy in developing regions. For the elderly in
developing world, despite the underprivileged are con-
fronted with the risk of m-health divide, potential resources
associated with social capital can help increase digital access.
+ese findings remind policy makers of the importance of
unique characteristics of elderly users, and the increase of
access to m-health should be a priority due to the potential
m-health divide.

To sum up, the main idea suggested by our study is that
mobile health is more than adoption of ICT for the elderly;
it is also an issue of digital equality. While prior research in
the medical and IS fields focuses on urban areas and pa-
tients with relatively high SES, the underprivileged in
developing countries deserve more attention. Since social
capital has a positive effect on digital access, we propose
that m-health policy in developing countries should fully
exploit local resources including strong ties and commu-
nity connections.

6.2. M-Health Policy Discussion. +e digital divide is part of
structural disparity, and continuing disparity will decrease
m-health access and potentially cause an m-health divide. To
avoid potential m-health divide, we suggest a family-cen-
tered m-health policy. First, family-centered m-health policy
should take digital access for the elderly as a priority.
Government or NGOs could provide subsidies to family
members living with the elderly to increase m-health
technology access. As our results suggested, social network
resources should be considered to help bury structural
barriers such as the urban-rural disparity and low education
among the elderly. Such a family-centered m-health policy
would be expected to work in developing countries. Second,
family-centered m-health policy should view family as basic
unit to receive m-health services to improve health out-
comes. As suggested by prior research [21], m-health service
implementation depends on both external and internal
resources including communities and families; given the
disadvantaged digital access and digital capability among the
elderly, family members in developing countries are ex-
pected to facilitate the implementation of m-health services;
for instance, family members could facilitate the manage-
ment of chronic diseases with the guidance of general
physicians.

Our findings will benefit healthcare reforms on supply
side in developing countries. Due to the rapid aging and
increasing threat of chronic diseases, programs like Health
China 2020 in China, Family Medicine Program in Turkey

[55], and Family Health Program in Brazil [56] emphasize
the role of general physicians in community hospitals, but it
is still unknown how to combine mobile technology and
primary service. Particularly, chronic disease management
requires a different service pattern compared to infectious
disease services [57]; policies should pay more attention to
m-health in the future for the ICT empowerment role for
elderly patients.

Data Availability
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Due to the serious impact of falls on the autonomy and health of older people, the investigation of wearable alerting systems for the
automatic detection of falls has gained considerable scientific interest in the field of body telemonitoring with wireless sensors.
Because of the difficulties of systematically validating these systems in a real application scenario, Fall Detection Systems (FDSs)
are typically evaluated by studying their response to datasets containing inertial sensor measurements captured during the
execution of labelled nonfall and fall movements. In this context, during the last decade, numerous publicly accessible databases
have been released aiming at offering a common benchmarking tool for the validation of the new proposals on FDSs. 'is work
offers a comparative and updated analysis of these existing repositories. For this purpose, the samples contained in the datasets are
characterized by different statistics that model diverse aspects of the mobility of the human body in the time interval where the
greatest change in the acceleration module is identified. By using one-way analysis of variance (ANOVA) on the series of these
features, the comparison shows the significant differences detected between the datasets, even when comparing activities that
require a similar degree of physical effort. 'is heterogeneity, which may result from the great variability of the sensors, ex-
perimental users, and testbeds employed to generate the datasets, is relevant because it casts doubt on the validity of the
conclusions of many studies on FDSs, since most of the proposals in the literature are only evaluated using a single database.

1. Introduction

Falls, in particular falls among elderly, are a major social
concern in current societies.'eWorld Health Organization
has reported that 646,000 persons die from falls each year
worldwide, so they represent the second cause of uninten-
tional injury deaths after car accidents [1]. In this respect, it
has been shown that a rapid response after a fall can lower
the risk of hospitalization by 26% and the death rate by 80%
[2]. As a consequence, during the past decade, great research
efforts have been devoted to the development of efficient and
low-cost technologies for automatic Fall Detection Systems
(FDSs).

Falls are generically and ambiguously defined as a loss of
balance or accident that causes an individual to rest in-
voluntarily on the ground or other lower level [3]. Most
unintentional falls can be easily distinguished from other

movements by human visual inspection. However, this task
is not so evident when it is carried out by an automatic
system. Accordingly, the problem of fall detection has been
addressed through different approaches, which can be
clustered into two great generic strategies: context-aware
and wearable systems. Under the first strategy, an FDS can
be deployed by placing video cameras and other ambient
sensors, such as pressure sensors and microphones, in the
vicinity of the user to be monitored. However, in most
practical cases, the mobility of the patients can be tracked in
a more adaptive and cost-effective way by employing
lightweight sensors that can be directly transported on the
clothes or as another garment or a piece of jewelry (e.g., as a
pendant).'e decreasing costs and widespread popularity of
electronic wearables and especially those intended for
sporting activities have fostered the adoption of this type of
transportable solutions to investigate and implement FDSs.
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Under a wearable FDS, a detection algorithm is permanently
in charge of analyzing the signals captured by the sensors
worn by the user to identify any anomalous mobility pattern
that can be linked to the occurrence of a fall. As soon as a fall
is presumed, an alerting message (phone call and SMS) to a
remote monitoring point (medical premises and patients’
relative) will be forwarded by the FDS. In the vast majority of
wearable architectures, the detection decision is based on the
measurements provided by an accelerometer and, in some
cases, a gyroscope (integrated in the same Inertial Mea-
surement Unit, IMU), which are attached to a certain part of
the user’s body.

'e general goal of an FDS is to simultaneously mini-
mize both the number of falls that remain unnoticed and the
generation of false alarms, that is to say, conventional
movements or Activities of Daily Living (ADLs) that are
misinterpreted as falls. A crucial element in the investigation
of a wearable FDS is the procedure by which the detection
algorithm will be methodically evaluated to check its actual
capacity to discriminate ADLs from falls.

In almost all works existing in the related literature, FDSs
are tested against a set of labelled movements that include
both ADLs and falls. In order to repeat the analysis by
changing the detection techniques and the parameterization
of the algorithms, the movements are previously prere-
corded in files that contain the corresponding timestamp
and measurements gathered by the inertial sensors. 'e
quality and representativeness of the employed dataset of
movements are a key aspect to assess the validity of the
evaluation. In this regard, it has been estimated that it is
necessary to record between 70,000 and 100,000 days to
collect about 100 actual falls by continuously monitoring
persons aged over 65 [4]. Owing to the obvious practical
difficulties of monitoring actual falls experienced by elderly
people, the general procedure followed by the literature to
evaluate a fall detection algorithm is using datasets of activity
traces thatare intentionally created by experimental users.
For this purpose, the participants in the experiments nor-
mally execute a series of predetermined movements while
they transport the corresponding wearable sensors in one or
several positions of their bodies. 'ese movements typically
incorporate different types of conventional ADLs (sitting,
climbing stairs, picking up objects from the floor, etc.) and
falls, which are mimicked taking into account different
aspects, such as the direction (lateral and backwards) or the
cause of the fall (slipping, stumbling, and tripping).

In almost all initial studies on FDSs, a group of vol-
unteers were recruited to generate a specific dataset which
was employed for the evaluation of the proposed architec-
ture. 'ese datasets were rarely released by the authors to
enable their use by other researchers to validate new algo-
rithms. To tackle this lack of a benchmarking framework, a
nonnegligible number of datasets have recently been pro-
duced and made publicly available on the Web to cross
compare FDSs with a common reference.

'e use of normally young and healthy volunteers that
emulate falling in a systematic way in a ‘controlled’ scenario,
as surrogates for actual falls of older persons, is still a
controversial issue in the field of FDSs. By tracking during

six months two groups of persons totaling 16 older people,
Kangas et al. conducted a study aiming at comparing the
dynamics of real-life falls of older people with those sim-
ulated by middle-aged volunteers [5]. From the results, the
authors concluded that the features of the acceleration data
captured during accidentals falls follow a similar pattern to
those measured from emulated falls, although some sig-
nificant differences were detected (for example, in the timing
of the different phases of the falls or in the acceleration
magnitude measured during the impact against the floor). In
a similar study [6], Klenk et al. compared the actual
backward falls suffered by four elderly people to those
mimicked by 18 young individuals. Results seem to indicate
that the ‘compensation’ strategies to avoid the damages of
the impact followed by the subject during the unintentional
falls introduce relevant differences (e.g., jerkier movements
with higher changes in the acceleration) with respect to the
case of the emulated falls.

Besides, Bagalà et al. [7] have shown that the efficacy of
certain algorithms successfully tested against datasets of
emulated falls may notably decrease when they are evaluated
with traces captured in a real scenario. In other works, such
as that by Sucerquia et al., the ability of the proposed FDS to
avoid false alarms is evaluated by monitoring elderly people
that transport the wearable detection system during their
daily routines. In these cases, the sensitivity of the detector
cannot be computed unless a real fall occurs during the
monitoring period. A similar strategy is described by Aziz
et al. in [8]. 'ese authors report that the number of false
alarms of an FDS, which is based on a Support Vector
Machine classifier, deteriorates when it is employed by a
community of 19 older adults. In this scenario, 2 out of 10
actual falls suffered by the participants were not identified by
the system.

In any case, these studies are based on the analysis of a
very small number of real falls. 'e fact is that, to the best of
our knowledge, the repository provided by the FARSEEING
European project [9] is the only dataset that provides inertial
measurements of real-world falls of elderly patients although
again the number of samples that are publicly available, only
22, is quite limited. 'us, this work mainly focuses on those
datasets grounded on emulated falls and ADLs (although in
some cases, ADLs were captured not by an execution of
predetermined activities on a laboratory but by monitoring
the participants during their daily routines).

On the other hand, although the use of public and well-
known datasets is gaining an increasing acceptance in the
literature, most studies base their validation on the use of
just one or, at most, two repositories. So, a question arises
about the correctness of extrapolating the results obtained
with a particular dataset when another repository is
considered.

'e goal of this study is to recap and compare the
characteristics of the existing public repositories of inertial
measurements intended for the assessment of FDSs.

'e paper is organized as follows. Section 2 revises the
available datasets, synopsizing their basic properties and the
testbeds (employed sensors, characteristics of the experi-
mental users, and typology of the movements) which were
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deployed to generate the data. 'e section also describes the
criteria to select the datasets to be compared. Section 3
presents the statistical features employed to characterize the
mobility of the traces of the datasets, while Section 4
compares the datasets by showing the results of the analysis
of variance (ANOVA) of these characteristics. 'e main
conclusions are summarized in Section 5.

2. Revision and Selection of Public Datasets

As aforementioned, a key problem for the development of an
automatic fall detection architecture is the need of trust-
worthy repositories that can be employed to thoroughly
evaluate the accuracy of the detection decisions, i.e., the
capacity of the system to correctly identify ADLs and falls by
simultaneously avoiding false alarms and undetected falls.

Table 1 presents a comprehensive list of the authors,
references, institutions, and year of publication of the
existing datasets intended for the study of wearable systems.
All these datasets comprise the measurements collected by
the inertial sensors worn by the selected volunteers during
their daily life or while performing a preconfigured set of
movements in a controlled testbed. In this revision we do not
include those available databases of inertial measurements
(such as those presented in [10] or [11]) that are envisioned
for other types of HAR (Human Activity Recognition)
systems but do not incorporate falls among the represented
activities .

In the case of Context-Aware Systems (CAS), different
research groups have also published datasets containing the
measurements captured by fixed video camera, motion and
depth sensors (such as Kinect), and/or other ambient sensors
(vibration detectors, pressure, infrared, and Doppler sen-
sors, and near-field imaging systems), while a set of vol-
unteers emulate falls and ADLs in a predefined testbed.
Among these databases, we canmention the following: CIRL
Fall Recognition [12], Le2i FDD [13], SDUFall [14],
EDF&OCCU [15], eHomeSeniors [16], Multiple Camera Fall
[17] KUL High-Quality Fall Simulation [18], UTA [19],
FUKinect-Fall [20], or MEBIOMEC [21] datasets, as well as
the infrared video clips described by Mastoraky and Makris
in [22] or those sequences provided by Adhikari et al. in [23].
'ese datasets are out of the scope of this paper although we
do consider those databases, such as UR Fall or UP Fall,
which were conceived to test hybrid CAS-type and wearable
FDSs, i.e., systems that make their detection decision from
the joint analysis of video images (and/or magnitudes col-
lected by environmental sensors) and measurements from
inertial sensors transported by the users.

'e number of samples, the considered typologies of the
emulated ADLs and falls, and the duration of the traces (i.e.,
the duration of the recordedmovements), as well as the basic
characteristics of the participants (number, gender, weight,
and age range) of each dataset, are enumerated in Table 2.

Table 2 illustrates the great heterogeneity of criteria used
to define the experimental framework where the samples
were captured, both with regard to the selection of the test
subjects and the number and type of simulated movements.
In some repositories, such as tFall, the ADLs were not

emulated (scheduled and executed in a laboratory) but
obtained by tracking the real-life movements of the subjects
during a certain period of time. As expected, in most cases,
the movements were exclusively carried out by volunteers
under the age of 60. In the few testbeds in which older
subjects participated, almost none of the older participants
simulated any fall, so their samples are limited to examples
of ADLs.

Table 3 summarizes, in turn, the type and basic prop-
erties (sampling rate and range) of the sensors employed to
generate the repositories. 'e table also indicates the cor-
poral position on which the inertial sensors were located or
attached during the experiments. As it can be observed from
the table, although there are cases where up to seven sensing
positions have been considered, most datasets include just a
single measuring point. In all cases, the sensor embeds, at
least, an accelerometer and, less often, a gyroscope, a
magnetometer, and/or an orientation sensor. In any case, the
table shows the variability of the characteristics of the
sensors (e.g., with sampling rates ranging from 10 to 200Hz)
and the body location considered to collect the measure-
ments in the different testbeds again.

In the recent literature about FDSs, the use of some of
these public datasets as benchmarking tools is becoming
more and more common. However, in most studies, just one
or, at most, two repositories are utilized to evaluate the
effectiveness of the proposed detection algorithm. Khojasteh
et al. [24] employed four datasets, although two of them
(DaLiac [25] and Epilepsy [26] databases) do not encompass
falls, which only allows assessing the capability of the system
to avoidmisinterpreting ADLs as falls. As a consequence, the
conclusions of most works are mainly based on the results
obtained when the proposed system is tested against a very
particular set of samples.

Given the huge diversity of the experimental setups in
which the datasets were generated, it is legitimate to question
whether the conclusions achieved with a certain repository
can be extrapolated to scenarios with a different typology of
subjects, movements (simulated or not), or to a different
parameterization of the inertial sensors.

In this context, Medrano et al. utilized three repositories
(tFall, DLR, and MobiFall) in [27] to show that the effec-
tiveness of an FDS based on a supervised machine learning
strategy remarkably diminishes when the discrimination
algorithms are tested against a database different from that
utilized for training. In a more recent work [28], we con-
cluded that even when the algorithm is trained and tested
with traces of the same datasets and users, the quality metrics
of the classification process may differ notably. In particular,
we analyzed the performance of a deep learning classifier
(a convolutional neural network) when it is individually
trained and evaluated as a fall detector with 14 of the re-
positories presented in Table 1. Results clearly indicated that
the performance dramatically varies depending on the
dataset to which the detector is applied.

In the following sections, we thoroughly analyze the
statistical properties of a representative number of these
datasets to get a deeper understanding of the existing di-
vergences between these repositories.
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Table 1: Authors and references of the existing public datasets (∗the check mark indicates those datasets employed in this study).

Dataset Ref. Authors Institution City (country) Year ∗

DLR [29] Frank et al. German Aerospace Center (DLR) Munich (Germany) 2010 √
LDPA [30] Kaluza et al. Jožef Stefan Institute Ljubljana (Slovenia) 2010
MobiFall [31] Vavoulas et al. BMI Lab (Technological Educational

Institute of Crete) Heraklion (Greece) 2013
MobiAct [32] 2016

EvAAL [33] Kozina et al. Department of Intelligent Systems, Jozef
Stefan Institute Ljubljana (Slovenia) 2013

TST fall detection [34] Gasparrini et al. TST Group (Università Politecnica delle
Marche) Ancona (Italy) 2014

tFall [35] Medrano et al. EduQTech (University of Zaragoza) Teruel (Spain) 2014

UR fall detection [36] Kępski et al.
Interdisciplinary Center for

Computational modelling (University of
Rzeszow)

Krakow (Poland) 2014

Erciyes University [37] Özdemir and
Barshan

Department of Electrical and Electronics
Engineering (Erciyes University) Kayseri (Turkey) 2014 √

Cogent Labs [38] Ojetola et al. Labs (Coventry University) Coventry (UK) 2015
Gravity Project [39] Vilarinho et al. SINTEF ICT Trondheim (Norway) 2015
Graz UT OL [40] Wetner et al. Graz University of Technology Graz (Austria) 2015

UMAFall [41] Casilari et al. Dpto. Tecnologı́a Electrónica (University
of Málaga) Málaga (Spain) 2016 √

FARSEEING [42] Klenk et al.
FARSEEING Consortium

(SENSACTION-AAL European
Commission Project)

Five hospital or scholar centers in
Germany and one university in New

Zealand
2016

SisFall [43] Sucerquia et al. SISTEMIC (University of Antioquia) Antioquia (Colombia) 2017 √

UniMiB SHAR [44] Micucci et al. Department of Informatics, Systems and
Communication (University of Milano) Bicocca, Milan (Italy) 2017

SMotion [45] Ahmed et al. Department of Computer Science
(University of Karachi) Karachi (Pakistan) 2017

IMUFD [46] Aziz et al. Injury Prevention and Mobility
Laboratory (Simon Fraser University) Burnaby (BC, Canada) 2017 √

CGU-BES [47] Wang et al. Chang Gung University Taoyuan (Taiwan) 2018

CMDFALL [48] Tran et al.
International Research Institute MICA

(Hanoi University of Science and
Technology)

Hanoi (Vietnam) 2018

DU-MD [49] Saha et al. Department of Electrical and Electronic
Engineering (University of Dhaka) Dhaka (Bangladesh) 2018

SmartFall and
Smartwatch datasets [50] Mauldin et al. Department of Computer Science, Texas

State University San Marcos (TX, USA) 2018

UP-Fall [51] Mart́ınez-
Villaseñor et al.

Facultad de Ingenieŕıa (Universidad
Panamericana) Mexico City (Mexico) 2019 √

DOFDA [52] Cotechini et al. Department of Information Engineering
(Università Politecnica delle Marche) Ancona (Italy) 2019 √

Table 2: Personal characteristics of the volunteers, typology distribution, number, and duration of the executed movements.

Dataset Number of subjects
(females/males)

Age
(years) Weight (kg) Height

(cm)
Number of types
of ADLs/falls

Number of samples
(ADLs/falls)

Duration of the
samples (s)

DLR 19 (8/11) [23–52] n.i. [160–183] 15/1 1017 (961/56) [0.27–864.33]
LDPA 5 (n.i.) n.i. n.i. n.i. 10/1 100/75 Up to 300 s
MobiFall 24 (7/17) [22–47] [50–103] [160–189] 9/4 630 (342/288) [0.27–864.33]
MobiAct 57 (15/42) [20–47] 9/4 2526 (1879/647) [4.89–300.01]
EvAAL 1 (n.i.) n.i. [50–120] [160–193] 7/1 57 (55/2) [0.162–30.172]
TST fall
detection 11 (n.i.) [22–39] n.i. [162–197] 4/4 264 (132/132) [3.84–18.34] s

tFall 10 (3/7) [20–42] [54–98] [161–184] n.i./8 10909 (9883/1026) 6 s (all samples)
UR fall
detection 6 (0/6)3 n.i. (over

26) n.i. n.i. 5/4 70 (40/30) [2.11–13.57]

Erciyes
University 17 (7/10) [19–27] [47–92] [157–184] 16/20 3302(1476/1826) [8.36–37.76]
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Table 2: Continued.

Dataset Number of subjects
(females/males)

Age
(years) Weight (kg) Height

(cm)
Number of types
of ADLs/falls

Number of samples
(ADLs/falls)

Duration of the
samples (s)

Cogent Labs 42 (6/36) [18–51] [43–108] [150–187] 8/6 1968 (1520/448) [0.53–55.73]
Gravity
Project 2 (n.i.)4 [26–32] [63–80] [170–185] 7/12 117 (45/72) [9.00–86.00]

Graz UT OL 5 (n.i.) n.i. n.i. n.i. 10/4 2460 (2240/220) [0.18–961.23]
UMAFall 19 (8/11) [18–68] [50–97] [156–193] 12/3 746 (538/208) 15 s (all samples)
FARSEEING 15 (8/7) [56–86] [51–101] [148–190] 0/22 22 (0/22) 1200
SisFall 38 (19/19) [19–75] [41.5–102] [149–183] 19/15 4505 (2707/1798) [9.99–179.99] s
UniMiB
SHAR 30 (24/6) [18–60] [50–82] [160–190] 9/8 7013 (5314/1699) 1 s (all samples)

SMotion 120 (40/71 + 9 n.i.) [17–79] [35–95] [125–186] 3/1 309 (304/5) [0.52734–27.1875]
IMUFD 10 (n.i.) n.i. n.i. n.i. 8/7 600(390/210) [15–20.01]
CGU-BES 15 (4/11) 21.8± 1.8 63.0± 10.1 kg 167.7± 6.0 8/4 195 (135/60) [11.49–16.73]
CMDFALL 50 (20/30) [21–40] n.i. n.i. 12/8 1000 (600/400) 450 s1

DU-MD 10 (4/6) [16–22] [40–101] [147–185] 8/2 3299 (2309/990) [2.85–11.55]
Smartfall 7 (n.i.) [21–55] n.i. n.i. 4/4 181 (90/91) [0.576–16.8]
Smartwatch 7 (n.i.) [20–35] n.i. n.i. 7/4 2563 (2456/107) [1–3.776]
UP-Fall 17 (8/9) [18–24] [53–99] [157–175] 6/5 559(304/255) [9.409–59.979]
DOFDA 8 (2/6) [22–29] [60–94] [173–187] 5/13 432 (120/312) 1.96–17.262
1. For the CMDFAL dataset, all the 20 programmedmovements are executed in a continuous manner during 7.5minutes. 2. n.i.: not indicated by the authors.

Table 3: Position and characteristics of the sensor used in the different datasets.

Dataset
Number of
sensing
points

Captured signals in
each sensing point

Positions of the sensing
points Type of device Sampling

rate (Hz) Range

DLR 1 3 (A, G, M) Waist (belt) 1 external IMU 100

±5 g (A)
±1200°/s

(G)
±75 μT (M)

LDPA 4 Position (x,y,z
coordinates)

Right ankle, left ankle, waist
(belt), and chest 4 external IMUS (tags) 10 Tens of

meters

MobiFall and
MobiAct 1 3 (A, G, O) 'igh (trouser pocket) 1 smartphone

87 (A) ±2 g (A)

100 (G,O) ±200
°/s (G)

±360° (O)
EvAAL 2 1 (A) Chest and right thigh 2 external IMUs 50 ±16 g (A)
TST fall
detection 2 1 (A) Waist and wrist 2 external IMUs 100 ±8 g (A)

Erciyes
University 6 3(A, G, M) Chest, head, ankle, thigh,

wrist, and waist 6 external IMUs 25

±16 g (A)
±1200°/s

(G)
±150 μT
(M)

tFall 1 1 (A)
Alternatively: thigh (right or
left pocket) and hand bag

(left or right side)
1 smartphone 45 (±12) ±2 g (A)

UR fall
detection 1 1 (A) Waist (near the pelvis) 1 external IMU 256 ±8 g (A)

Cogent Labs 2 2 (A, G) Chest and thigh 2 external IMUs 100
±8 g (A)
±2000°/s

(G)

Gravity Project 2 1 (A)
'igh (smartphone in a

pocket) 1 smartphone 50 (SP) ±16 g (A)

Wrist (smartwatch) 1 smartwatch 157 (SW) ±2 g (A)
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2.1. Election of the Compared Datasets. In order to compare
the properties of the signals provided by different reposi-
tories on equal terms, we only select those datasets that
contain inertial measurements captured on the same posi-
tion. In particular, in a first analysis, we focus on those traces
collected on the waist as several studies [53–57] have shown
that this is one of the most adequate positions to place an
inertial sensor aimed at characterizing the general dynamics
of the body.'is election benefits from the fact that the waist
is near the center of mass of the human body in a standing
posture. When compared to other placements such as a limb
or the chest, the waist also provides better ergonomics as it
may enable the user to transport the wearable sensor almost
in a seamless way (e.g., attached to a belt).

To ensure that the analysis is performed with a minimum
number of samples, we only take into account those datasets

with, at least, 300 samples. Consequently, we discard UR,
FARSEEING, LDPA, and TST datasets, although they in-
clude traces captured with the sensor located on the waist.
For a similar reason, we exclude the SMotion dataset [45],
which is actually aimed at assessing fall risk and not fall
detection systems, as it only contains 5 falls.

Finally, the Graz UTOL dataset is also discarded because
of the small range of the employed accelerometer (±2g),
which can prevent a proper representation of the acceler-
ation peaks caused by falls (typically exceeding 4-5g).

3. Selection of the Characteristics for
the Analysis

As in most works in the literature, the study will be based on
the signals collected by the triaxial accelerometers (AX[i],

Table 3: Continued.

Dataset
Number of
sensing
points

Captured signals in
each sensing point

Positions of the sensing
points Type of device Sampling

rate (Hz) Range

Graz UT OL 1 2 (A, O) Waist (belt bag) 1 smartphone3 5 ±2 g (A)
±360° (O)

UMAFall 5 3(A, G, M)

Ankle, chest, thigh, and waist 1 smartphone4 100 (SP) ±16 g (A)

Wrist 4 external IMUs 20 (IMUs)
±256°/s (G)
±4800 μT

(M)

FARSEEING 1 2 (A,G) Waist or thigh 1 external IMU 100 ±6 g (A)
±100°/s (G)

SisFall 1 3 (A, A, G) Waist
2 accelerometers and a
gyroscope in a single

mode
200

±16 g (A1)
±8 g (A2)
±2000°/s

(G)

UniMiB SHAR 1 1 (A) 'igh (left or right trouser
pocket) 1 smartphone 50 ±2 g (A)

SMotion 1 A, G Waist 1 external IMU 51 ±4 g (A2)
±500°/s (G)

IMUFD 7 3(A, G, M)
Chest, head, left ankle, left
thigh, right ankle, right thigh,

and waist
7 external IMUs 128

±16 g (A)
±2000°/s

(G)
±800 μT
(M)

CGU-BES 1 2 (A, G) Chest
1 sensing mote with a

gyroscope and
accelerometer

200
±3.6 g (A)

±400°/s (G)

CMDFALL1 2 1 (A) Left wrist and left hip 1 external IMU 50 ±16 g (A)
DU-MD 1 1 (A) Wrist 1 external IMU 33 ±4 g (A)
SmartFall 1 1 (A) Wrist 1 external IMU 31.25 ±16 g (A)
Smartwatch 1 1 (A) Wrist (left hand) Smartwatch (MS band) 31.25 ±8 g (A)

UP-Fall 5 2 (A, G)

Ankle, neck, and thigh
(pocket) 5 external IMUs 14

±8 g (A)

Waist and wrist ±2000°/s
(G)

DOFDA 1 4 (A, G, O, M) Waist 1 external IMU 33

±16 g (A)
±2000°/s

(G)
±800 μT
(M)

Note. A : accelerometer, G : gyroscope, O : orientation measurements, M :magnetometer, SP : smartphone. 1. TST, UR, CMDFALL, and UP datasets also
include the measurements (RGB, depth, and skeleton information) of Kinect sensors or video cameras, not considered in this Table 2. n.i.: not indicated by the
authors.
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AY[i], AZ[i] for the i-th measurement), which are provided
by the datasets. Future studies should contemplate the
analysis of the signals collected by the gyroscope and, sec-
ondarily, the magnetometer. Nevertheless, it is still under
discussion that the information provided by the gyroscope
may significantly improve the success rate of methods
merely based on the accelerometry signals (see [58] for a
revision of this issue).

During the free-fall period before the impact, a collapse
typically prompts a sudden drop of the acceleration com-
ponents, which is interrupted by a sharp peak of the ac-
celeration magnitude (sometimes followed by several
secondary peaks) produced by the collision against the floor
[59]. 'erefore, to define a common basis to compare the
traces, which present a wide variety of lengths, we focus on

the interval of every measurement sequence where the
highest difference between the “valleys” (decays) and peaks
of the acceleration components is detected. Once this
analysis interval is extracted, the rest of the trace is ignored.
For this purpose, we set up a sliding observation window of
duration tW � 0.5 s, consisting of NW samples:

NW � tW · fs, (1)

where fs indicates the sampling rate of the sensors.
To find the analysis interval within each trace, we follow

the procedure presented in [60]. 'us, for each possible
observation window within the sequences, we calculate the
magnitude of the maximum variation of the acceleration
components (Awdiff

[m]) as

Awdiff
[m] �

���������������������������������������������������������������

AXmax
[m] − AXmin[m]􏼐 􏼑

2
+ AYmax

[m] − AYmin[m]􏼐 􏼑
2

+ AZmax
[m] − AZmin[m]􏼐 􏼑

2
􏽲

, (2)

where AXmax
[m], AYmax

[m], and AZmax
[m]designate the

maximum values of the components measured by the ac-
celerometer in the x-, y- and z-axis, respectively, in the m-th
sliding observation interval. 'us, for the x-axis, we have

AXmax
[m] � max AX[i]( 􏼁, ∀i ∈ m, m + NW − 1􏼂 􏼃. (3)

'e analysis or observation interval will correspond to
the subset of consecutive samples [ko, ko + NW − 1] where
the maximum Awdiff(max)

of Awdiff
[m] is located:

Awdiff(max)
� Awdiff

ko􏼂 􏼃 � max Awdiff
[m]􏼐 􏼑,

∀m ∈ 1, N − NW + 1􏼂 􏼃􏼁,
(4)

where ko is the index of the first sample of the analysis
interval while N denotes cardinality (number of samples for
each axis) of the trace.

In order to compare the different datasets, we extract the
acceleration components of the signals during the analysis
interval to compute the following twelve statistical features
for all the traces.

All these features have been regularly employed by the
related literature on FDSs and human activity recognition
systems (see, for example, the FDS described in
[37, 43, 54, 61–72] or the comprehensive analyses presented
by Vallabh in [73] or by Xi in [74]).

(1) 'e mean Signal Magnitude Vector (µSMV), which
gives an idea of the average mobility experienced by
the body during the analysis interval. 'is mean can
be calculated as

µSMV �
1

NW

· 􏽘

ko+NW−1

i�ko

SMV[i], (5)

where SMV[i] represents the Signal Magnitude Vector
(SMV) of the acceleration for the i-th sample:

SMV[i] �

�������������������������

AX[i]( 􏼁
2

+ AY[i]( 􏼁
2

+ AZ[i]( 􏼁
2

􏽱

. (6)

(2) 'e standard deviation (σSMV) of SMV[i], which
describes the variability of the acceleration during
the observation window:

σSMV �

��������������������������

1
NW

· 􏽘

ko+NW−1

i�ko

SMV[i] − µSMV( 􏼁
2

􏽶
􏽴

. (7)

(3) 'e mean absolute difference (μSMVdiff
) between two

consecutive samples of the acceleration module,
which is estimated as

μSMVdiff
�

1
NW

· 􏽘

ko+NW−1

i�ko

|SMV[i + 1] − SMV[i]|. (8)

'is parameter is useful as it informs about the
brusque fluctuations of the acceleration during a fall
[75].

(4) 'e mean rotation angle (µθ) may help to detect the
changes of the body orientation of the body caused
by a fall [75]. 'is angle is computable as

Journal of Healthcare Engineering 7



µθ �
1

NW

· 􏽘

ko+NW−1

i�ko

cos− 1 AX[i] · AX[i + 1] + AY[i] · AY[i + 1] + AZ[i] · AZ[i + 1]

SMV[i] · SMV[i + 1]
􏼢 􏼣􏼠 􏼡. (9)

(5) 'e acceleration component in the direction per-
pendicular to the floor plane is strongly determined
by the gravity.'us, the tilt of the body provoked by
the falls usually triggers a noteworthy alteration of
the acceleration components that are parallel to the
floor plane when the individual remains static in an
upright posture. To characterize the alteration of the
body position with respect to the standing position,
we also compute the mean magnitude (µAp) of the
vector formed by these two acceleration
components:

µAp �
1

NW

· 􏽘

ko+NW−1

i�ko

������������������

AH1[i]( 􏼁
2

+ AH2[i]( 􏼁
2

􏽱

, (10)

where the pair (AH1[i],AH2[i]) of acceleration
components may alternatively represent
(AX[i],AY[i]) (AX[i],AZ[i]) or (AY[i],AZ[i])
depending on the placement and orientation of the
accelerometer in each dataset.

(6) 'e aforementioned value of Awdiff(max)
, which gives

an insight of the range of the variability of the three
acceleration components.

(7) 'e peak or maximum (SMVmax)of the SMV, as a
key element to describe the violence of the impact
against the floor:

SMVmax � max(SMV[i]), ∀i ∈ ko, ko + NW − 1􏼂 􏼃.

(11)

(8) 'e “valley” or minimum (SMVmin) of the SMV to
characterize the phase of free-fall:

SMVmin � min(SMV[i]), ∀i ∈ ko, ko + NW − 1􏼂 􏼃.

(12)

(9) 'e skewness of SMV[i] (cSMV), which describes the
symmetry of the distribution of the acceleration:

cSMV �
1

σ3SMV · NW

· 􏽘

ko+NW−1

i�ko

SMV[i] − µSMV( 􏼁
3
.

(13)

(10) 'e Signal Magnitude Area (SMA) [43]. 'is
parameter, which is an extended feature used
to evaluate the physical activity, can be estimated
as

SMA �
1

NW

· 􏽘

ko+NW−1

i�ko

AX[i]
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + AY[i],
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + AZ[i]
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(14)

(11) Energy (E). Since falls are associated to rapid and
energetic movements, we also consider the sum of
the energy (E) estimated in the three axes during the
observation interval [72]:

E �
1

NW

· 􏽘

NW−1

i�0
FFTX[i]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽘

NW−1

i�0
FFTY[i]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2⎛⎝

+ 􏽘

NW−1

i�0
FFTZ[i]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2⎞⎠,

(15)

where FFTX[i], FFTY[i], and FFTY[i], respectively,
indicate the Discrete Fourier Transform of the ac-
celeration components AX[i],AY[i], and AZ[i] in
the analysis interval, straightforwardly computable
(for the x-axis) as

FFTX[i] � 􏽘

NW−1

m�0
AX ko + m􏼂 􏼃 · e

− j2π im/NW( ),

for i � 0, 1, . . . , NW − 1.

(16)

(12) Mean of the autocorrelation function (μR) of the
acceleration magnitude captured during the ob-
servation interval:

μR �
1

NW

· 􏽘

NW−1

l�0
R[m], (17)

where R[m] represents them-th lag value in the series of the
normalized autocorrelation coefficients of SMV[i]:

R[m] �
1

σ2SMV · NW

· 􏽘

ko+NW−m−1

i�ko

SMV[i] − µSMV( 􏼁⎛⎝

· SMV[i + M] − µSMV( 􏼁⎞⎠, form � 0, 1, . . . , NW − 1.

(18)

'is feature μR is taken into account as long as the
acceleration during a conventional activity normally exhibits
a certain degree of self-correlation that could be impacted by
the unexpected movements caused by a fall.

4. Comparison and Discussion of the Datasets

For an initial comparison of the statistical features of the
different datasets, we utilize boxplots (or box-and-whisker
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plots), an extended and intuitive visual tool, to display the
data distribution in a standardized manner.

Figures 1–12 show the boxplots of the twelve statistics
when they are separately calculated for the ADLs and the
fall movements of the seven datasets under study. In the
graphs, for each dataset and type of activity (ADL/fall), the
median of the corresponding statistic is denoted by the
central line in each box while the 25th and 75th percentiles
are indicated by the lower and upper limits of the box. 'e
dotted lines or “whiskers” represent an interval over and
under the box of 1.5 IQR (the height of the box or
Interquartile range between the 25th and 75th percentiles).
All the data outside these margins (box and whiskers) are
considered to be outliers and marked as red crosses in the
figures.

'e graphs show the high inter- and intravariability of
the statistics of the traces. As it refers to the intravariability,
within each repository, the analysis identifies a wide IQR
interval and a high number of outliers for almost all the
characteristics, in particular for the ADLs. Similarly, when
the boxplots of the different databases are compared, a huge
heterogeneity is also present.

'is intravariability among datasets is also noticeable
(both for ADLs and falls) even in the case of a basic feature,
such as the mean acceleration magnitude during the ob-
servation window (which is assumed to be linked to the
period of greatest alteration in the body acceleration). For all
the considered statistics and for both ADLs and falls, we can
observe several pairs of datasets where the IQR intervals
(which concentrate 50% of the samples) do not even overlap,
i.e., the 25% quartile of the corresponding feature of a certain
dataset exhibits a higher value than that of the 75% quartile
for the same feature of a different dataset. In addition, the
magnitude of the IQR interval strongly differs from one
repository to another. In some cases, the estimated mean of
certain statistics in one dataset is several times higher when
compared to others. 'is is more visible for those charac-
teristics associated with the loss of verticality: the mean
rotation angle (µθ) and the mean magnitude of the accel-
eration components (µAp) perpendicular to the vertical
plane while standing.

'e statistical significance of these divergences among
the repositories can be systematically confirmed by an
ANOVA (Analysis of variance) test. Figures 13 and 14
depict the post hoc multiple comparison of the estimated
means of the twelve features based on the results achieved
by a one-way (or single-factor) ANOVA. In the bars of the
figure, the circular marks indicate the mean whereas the
corresponding comparison interval for a 95% confidence
level is represented by the line extending out from the
symbol. 'e group means are considered to be signifi-
cantly different if the intervals determined by the lines are
disjoint.

Each subgraph in these two figures shows, in red, those
datasets that have a characteristic with a significantly
different mean than that of the fall or ADL movements of
another dataset (marked in blue), which is taken as a

reference by way of an example. As can be seen in the figure,
there are very few cross comparisons, indicated in grey, in
which the null hypothesis is not rejected as the differences
between the means of the characteristics are not signifi-
cantly relevant.

'is inconsistency in the characterization of the different
datasets is also appreciated if we consider other duration of
the time observation window in which the maximum var-
iation of the acceleration components is detected. Figures 15
and 16 present the analysis of variance when it is applied to
the features computed for two different observation intervals
(0.5 s and 1 s, respectively). For the sake of simplicity, the
graphs only show the six first characteristics although a
similar disparity can be found if the other six features were
shown.

4.1. Comparison of the Different Types of ADLs. 'e differ-
ences analyzed in the previous section could be partly
justified by the fact that the terms ‘ADL’ and ‘falls’ may
hide a huge variety of different movements. 'is is
particularly true for the groups labelled as ADLs, as they
can encompass activities ranging from those that require
almost no effort, such as standing, to those that are much
more physically demanding (such as running). In spite of
this evident heterogeneity, the authors of the datasets
normally select the typology of the ADLs to be emulated
by the volunteers without previously discussing the
degree of mobility that the selected activities actually
require.

In order to minimize the effects of this heterogeneity in
the ADLs, we propose to individualize the previous ANOVA
study taking into account the nature (physical effort) of the
ADLs. For this purpose, as we also suggested in [76], we split
the ADLs of each repository into three generic subcategories:
basic ordinary movements (such as getting up, sitting,
standing, and lying down), standard routines that entail
some physical effort or a higher degree of mobility or leaning
of the body (walking, climbing up and down stairs, picking
an object from the floor, and tying shoe laces), and finally,
sporting activities (running, jogging, jumping, and
hopping).

By taking into account this taxonomy, Table 4 displays
and catalogues the different types of ADLs and falls con-
tained in the seven datasets under analysis. 'e table shows
that each subcategory in each dataset is basically represented
by the same three or four types of common movements.
'us, a certain homogeneity could be presumed. In two of
the datasets (DOFDA and IMUFD), there are no sporting
activities. As an extra type of ‘nonfall’ movements, the table
also indicates which repository includes the emulation of
near falls, that is to say, missteps, stumbles, trips, or any
other type of accidental movements that involve a loss of
balance but do not result in a fall.

'e individualized ANOVA analyses of the series of the
six statistical features of the datasets are depicted in
Figures 17 and 18 (for basic movements), Figures 19 and 20
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(for standard movements), and Figures 21 and 22 (for
sporting movements).

Despite the categorization and clustering of the traces,
the graphs again reveal the great variability of the datasets
when they are compared to each other. For all three
movement types and for all metrics, the mean of the six
statistical features of each dataset is significantly different
from that calculated for, at least, two other datasets. Figures
evince that in a nonnegligible combination of cases (some of
which are highlighted in blue in the graphs), the null hy-
pothesis can be rejected for the comparison of a certain
mean of a particular dataset with the mean of the same
metric of the rest of datasets. For example, five out of the six
contemplated features in the basic movements of the
UMAFall repository present a mean value significantly
different to those of all the other datasets. A similar behavior
is detected in other repositories and types of movements
(e.g., the sporting activities in the UP dataset).

A similar conclusion can be reached by analyzing the
near-fall movements existing in two datasets (IMUFD and
Erciyes). Figures 23 and 24 confirm that the six statistics with
which these movements have been characterized present
mean values that significantly differ for the two repositories.

4.2. Comparison for the Same Type of Movement: Walking.
'e disparity in the statistical characterization of the traces is
confirmed even when the same type of movement is con-
sidered as the basis for comparing the datasets. Figures 25
and 26 depict the results obtained when the ANOVA is
exclusively applied to those movement samples (measured
on the waist) labelled as “walking”. We select this ADL due
to its importance in real-life scenarios of FDSs as it is the
movement that normally precedes falls and because it is
present in the seven datasets (DLR, DOFDA, Erciyes,
IMUFD, SisFall, UMAFall, and UP-Fall) that employ a
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Figure 1: Boxplots of the mean Signal Magnitude Vector (μSMV) for the ADLs (left column) and falls. (a) ADLs. (b) Falls (right column) of
all datasets.
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Figure 2: Boxplots of the maximum variation of the standard deviation of the Signal Magnitude Vector (σSMV) for the ADLs (left column)
and falls (right column) of all datasets. (a) ADLs. (b) Falls.

10 Journal of Healthcare Engineering



0 0.5 1 1.5 2 2.5

UP-Fall

UMAFall

SisFall

IMUFD

Erciyes

DOFDA

DLR

μSMVdiff

Feature: μSMVdiffADL-position: waist-tw : 1s

(a)

μSMVdiff

0 0.5 1 1.5

UP-Fall

UMAFall

SisFall

IMUFD

Erciyes

DOFDA

DLR

Feature: μSMVdiffFALLS-position: wais-tw : 1s

(b)

Figure 4: Boxplots of the mean absolute difference between consecutive samples (μSMVdiff
) for the ADLs (left column) and falls (right

column) of all datasets. (a) ADLs. (b) Falls.
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Figure 5: Boxplots of the mean module of the not perpendicular acceleration components (µAp) for the ADLs (left column) and falls (right
column) of all datasets. (a) ADLs. (b) Falls.
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Figure 3: Boxplots of the mean rotation angle (µθ) for the ADLs (left column) and falls (right column) of all datasets. (a) ADLs. (b) Falls.
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Figure 6: Boxplots of the maximum variation of the acceleration components (Aωdiff(max)
) for the ADLs (left column) and falls (right column)

of all datasets. (a) ADLs. (b) Falls.
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Figure 7: Boxplots of the maximum (SMVmax) of the SMV for the ADLs (left column) and falls (right column) of all datasets. (a) ADLs. (b)
Falls.
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Figure 8: Boxplots of the minimum (SMVmin) of the SMV for the ADLs (left column) and falls (right column) of all datasets. (a) ADLs. (b)
Falls.
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Figure 10: Boxplots of the Signal Magnitude Area (SMA) for the ADLs (left column) and falls (right column) of all datasets. (a) ADLs. (b)
Falls.
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Figure 9: Boxplots of the skewness of SMV (cSMV) for the ADLs (left column) and falls (right column) of all datasets. (a) ADLs. (b) Falls.
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Figure 11: Boxplots of the sum of the energy (E) estimated in the three axes for the ADLs (left column) and falls (right column) of all
datasets. (a) ADLs. (b) Falls.
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Figure 12: Boxplots of the mean of the autocorrelation function (μR) for the ADLs (left column) and falls (right column) of all datasets. (a)
ADLs. (b) Falls.
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Figure 13: Continued.
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Figure 13: Multiple comparison test of the means of the following statistical characteristics of the datasets: (a) μSMV. (b) σSMV. (c) μθ.
(d) μSMV(diff)
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Figure 14: Continued.
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Figure 14: Multiple comparison test of the means of the following statistical characteristics of the datasets: (a) SMVmax. (b) SMVmin.
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Figure 15: Continued.
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Figure 15: Multiple comparison test of the means of the statistical characteristics of the datasets: (a) μSMV. (b) σSMV. (c) μθ. (d) μSMV(diff)
.

(e) μAp. (f ) Aωdiff(max)
. Observation window of 0.5 s.
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Figure 16: Continued.
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sensor on the waist. As it can be appreciated from the figures,
even for a common physical activity as walking, the char-
acteristics show noteworthy discrepancies among the
datasets. Figures show that there are only three

characteristics (σSMV, Aωdiff(max)
, and SMVmax) for which the

null hypothesis cannot be rejected as long as no dataset
exhibits a mean that can be considered significantly different
from those computed for other databases. For some
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Figure 16: Multiple comparison test of the means of the statistical characteristics of the datasets: (a) μSMV. (b) σSMV. (c) μθ. (d) μSMV(diff)
.

(e) μAp. (f ) Aωdiff(max)
. Observation window of 2 s.

Table 4: Distribution of the activities in the traces among the different considered general types of movements.

Dataset DLR DOFDA Erciyes U. IMUFD SisFall UMAFall UP-fall
Number of types of ADLs/falls 15/1 5/13 16/20 8/7 19/15 12/3 6/5
BASIC MOVEMENTS 4 2 8 4 11 7 3
Standing 1 1 1
Rising/descending from(to) lying/kneeling 1 1 1 1 2 1
Lying 1 1 1 1
Descending to sitting/rising from sitting 1 1 4 2 8 1 1
Bending 1 1
Hand movements (making a call and applauding) 4
Others 1
STANDARD MOVEMENTS 4 3 5 4 4 3 2
Walking 1 1 2 1 2 1 1
Going down 1
Climbing stairs (up and/or down) 2 1 2 2 2
Picking 1 1 1 1
Others 2
SPORTING MOVEMENTS 7 1 3 2 1
Running/Jogging 1 1 2 2
Jumping/Hopping 4 1 1
Others 2
NEAR FALLS 2 1
Stumble 1 1
Trip 1
FALLS 1 13 20 7 15 3 5
Backwards 4 4 2 1 1
Forward/Frontal 4 8 2 1 2
Lateral 4 4 2 1 1
Slipping 1 3
Tripping/hitting/bumping 2 2
Missteps 3
Syncope/Fainting/collapse 1 2 1 4
Others 1 2 1
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Figure 17: Multiple comparison test of the means of the statistical characteristics of the basic movements in the datasets: (a) μSMV. (b) σSMV.
(c) μθ. (d) μSMV(diff)

. (e) μAp. (f ) Aωdiff(max)
. Basic movements.
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Figure 18: Multiple comparison test of the means of the statistical characteristics of the basic movements in the datasets: (a) SMVmax.
(b) SMVmin. (c) cSMV. (d) SMA. (e) E. (f ) μR. Basic movements.
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Figure 19: Multiple comparison test of the means of the statistical characteristics of the standard movements in the datasets: (a) μSMV.
(b) σSMV. (c) μθ. (d) μSMV(diff)

. (e) μAp. (f ) Aωdiff(max)
. Standard movements.
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Figure 20: Multiple comparison test of the means of the statistical characteristics of the standard movements in the datasets: (a) SMVmax.
(b) SMVmin. (c) cSMV. (d) SMA. (e) E. (f ) μR. Standard movements.
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Figure 21: Multiple comparison test of the means of the statistical characteristics of the sporting movements in the datasets: (a) μSMV.
(b) σSMV. (c) μθ. (d) μSMV(diff)

. (e) μAp. (f ) Aωdiff(max)
. Sporting movements.

Journal of Healthcare Engineering 23



2 2.5 3 3.5 4 4.5 5 5.5 6

UP-Fall

UMAFall

SisFall

Erciyes

DLR

4 groups have means significantly different from Erciyes

Feature: SMVmax 
Position: waist-category: sporting

movements-tw : 1s

(a)

Position: waist-category: sporting
movements-tw : 1s

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

UP-Fall

UMAFall

SisFall

Erciyes

DLR

4 groups have means significantly different from DLR

Feature: SMVmin

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

UP-Fall

UMAFall

SisFall

Erciyes

DLR

4 groups have means significantly different from Erciyes

Feature: γSMV
Position: waist-category: sporting

movements-tw : 1s

(c)

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

UP-Fall

UMAFall

SisFall

Erciyes

DLR

4 groups have means significantly different from UP-Fall

Feature: SMA
Position: waist-category: sporting

movements-tw : 1s

(d)

0 100 200 300 400 500 600

UP-Fall

UMAFall

SisFall

Erciyes

DLR

4 groups have means significantly different from DLR

Feature: E
Position: waist-category: sporting

movements-tw : 1s

(e)

0 0.005 0.01 0.015 0.02 0.025 0.03

UP-Fall

UMAFall

SisFall

Erciyes

DLR

4 groups have means significantly different from DLR

Feature: μR
Position: waist-category: sporting

movements-tw : 1s

(f )

Figure 22: Multiple comparison test of the means of the statistical characteristics of the sporting movements in the datasets: (a) SMVmax.
(b) SMVmin. (c) cSMV. (d) SMA. (e) E. (f ) μR. Sporting movements.
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Figure 23: Multiple comparison test of the means of the statistical characteristics of the “near falls” in the two datasets that contain this type
of movement: (a) μSMV. (b) σSMV. (c) μθ. (d) μSMV(diff)

. (e) μAp. (f ) Aωdiff(max)
.
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Figure 24: Multiple comparison test of the means of the statistical characteristics of the “near falls” in the two datasets that contain this type
of movement: (a) SMVmax. (b) SMVmin. (c) cSMV. (d) SMA. (e) E. (f ) μR. Near falls.
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Figure 25: Multiple comparison test of the means of the statistical characteristics of the movements labelled as “walking” in the seven
datasets that contain this type of ADL (sensor located on the waist): (a) μSMV. (b) σSMV. (c) μθ. (d) μSMV(diff)

. (e) μAp. (f ) Aωdiff(max)
.
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Figure 26: Multiple comparison test of the means of the statistical characteristics of the movements labelled as “walking” in the seven
datasets that contain this type of ADL (sensor located on the waist): (a) SMVmax. (b) SMVmin. (c) cSMV. (d) SMA. (e) E. (f ) μR.
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Figure 27: Multiple comparison test of the means of the statistical characteristics of the datasets for the measurements on the wrist and ADL
movements: (a) μSMV. (b) σSMV. (c) μθ. (d) μSMV(diff)

. (e) μAp. (f ) Aωdiff(max)
.
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Figure 28: Multiple comparison test of the means of the statistical characteristics of the datasets for the measurements on the wrist and ADL
movements: (a) SMVmax. (b) SMVmin. (c) cSMV. (d) SMA. (f ) E. (f ) μR.
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Figure 29: Multiple comparison test of the means of the statistical characteristics of the datasets for the measurements on the wrist and fall
movements: (a) μSMV. (b) σSMV. (c) μθ. (d) μSMV(diff)

. (e) μAp. (f ) Aωdiff(max)
.
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Figure 30: Multiple comparison test of the means of the statistical characteristics of the datasets for the measurements on the wrist and ADL
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characteristics (for example, note the absence of overlapping
intervals in the graphs corresponding to μθ or μR) the post
hoc tests show that all or almost all datasets are significantly
different.

4.3. Results for the Measurements on the Wrist. To corrob-
orate the previous results, we apply the previous analysis to
the datasets containing measurements captured on a com-
pletely different body position: the wrist. In spite of the
particular (and independent) mobility of the wrist, this
position has been selected in a significant number of studies
on FDSs as the position to locate the detection sensor. 'e
wrist offers to the user better ergonomics than other typical
placements as humans are already habituated to wear
watches. Moreover, commercial smartwatches (which are
natively provided with inertial measurement units) can be
employed to deploy the FDS without obliging the user to
transport any supplementary device. In some articles that
consider systems with more than one sensing mote, the
wrist-sensor can be used as a backup node to confirm the
detection decision taken from the measurements obtained
on another body area.

To extend the study to the wrist-based measurements, we
repeat the selection process described in Section 3 and select
only those datasets that employed a sensor on that position
in the datasets (see Table 3). 'us, six datasets were selected:
Erciyes, UP-Fall, and UMAFall (already utilized in the
previous analysis of the traces obtained from the waist), as
well as CMDFall, SmartFall, and Smartwatch datasets.

'e results of the ANOVA analysis of the series of the
twelve statistical features of these six datasets (when an
observation window is contemplated) are represented in
Figures 27 and 28 (for ADLs) and Figures 29 and 30 (for the
fall movements).

As expected, the graphs show even a higher disparity
between the datasets than those obtained on the waist.

'e way in which the volunteers are instructed to execute
the ADLs and falls may particularly determine the position
and movements of the hands during the activities. 'us, the
measured dynamics may be extremely dependent on the
testbed, which reduces the suitability of the traces for being
extrapolated to other scenarios.

4.4.Discussion. 'is heterogeneity of the repositories can be
motivated by very different factors, which we could group as
follows:

(i) Technological factors: inertial sensor problems and
limitations (biases, calibration issues, and range)
can affect the measurements

(ii) Ergonomic factors: although we have compared
datasets where the measurements were taken in a
similar body area (the waist), measurements could
be altered by the exact position of the sensor, the
discomfort that the sensing device can cause in the
user (which could influence the naturalness of
the movements), or the firmness with which the
device is adjusted to the body

(iii) Factors determined by the design of the testbed: the
variability of the datasets could be clearly justified not
only by the intrinsic variability (in number and types)
of the performed movements but also by the par-
ticularities of the physical setting in which the
movements take place: the route of the subjects
during the execution of each activity, the external
elements (stairs, chairs, and beds) used in the rou-
tines, or the mechanisms used to cushion the impact
of the falls (mattresses, elbow pads, and helmets)

(iv) Human factors: finally, the data could be affected
not only by the criteria for choosing the subjects
(especially the age) but also by the particular
training (or orders) that the volunteers receive to
carry out the activities (in particular the falls)

5. Conclusions

'is paper has presented a thorough study of the existing
public repositories employed in the validation of Fall De-
tection Systems (FDS) based on wearables. 'e paper
compares and summarizes the main basic characteristics of
up to 25 available datasets used as benchmarking tools in the
evaluation of FDSs.

Due to the difficulties of obtaining inertial measure-
ments of actual falls, all these databases (except one) were
created by groups of volunteers that executed a pre-
determined set of ADLs (Activities of Daily Living) and
mimicked falls in a controlled lab-type environment. In this
regard, most works in the literature evaluate their proposals
by analyzing their behavior when they are applied to just one
(or at most two) of these datasets. In order to indirectly
assess the validity of testing a certain FDS with a single
dataset, we have systematically compared the statistical
characteristics of the series contained in seven of these re-
positories. 'e selection criterion of the analyzed datasets
was founded on the election of a common position (waist) in
which the sensor was located and on the cardinality of the
measurement sets. In any case, by also analyzing the
movements captured on the wrist, we also showed that
conclusions could be extrapolated if other body locations
with a higher degree of movement autonomy are considered.

'e study, which was restricted to the accelerometry
signals (as they are massively employed by the related lit-
erature on FDSs), defined and computed twelve statistical
features to characterize different properties of the human
mobility for each activity during the observation window (of
fixed duration) in which the maximum variation of the
acceleration magnitude is detected. 'e analysis was re-
peated with up to three different observation intervals
without identifying a strong coherence in the characteristics
obtained from the analysis of the different traces.

In particular, by means of an ANOVA analysis, we
compared the means of the different statistics taking into
account the nature (falls or ADLs) of the activity. 'is
comparison was repeated after clustering the ADLs into
three subcategories (basic, standard, and sporting activities)
depending on the physical effort that they demand. In all
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cases, a significant difference of the means was found for
almost all the datasets and features. Same conclusions were
drawn even when a unique and simple type of standard
movement (walking) was selected to compare the databases.

'e divergence of the datasets could be justified by the
complex interaction of a wide set of factors: the typology and
number of activities (even for those in the same subcate-
gory), the method to execute the programmed movements,
the characteristics of the experimental subjects, the range,
quality, and ergonomics of the sensors, the way in which the
sensing device is fastened, and the elements employed to
cushion the falls. In this sense, the study reveals an evident
lack of consensus on the procedure followed to define the
experimental testbeds in which the datasets are generated.
For example, just one of the studied datasets includes (as
nonlabelled ADLs) samples captured while monitoring the
actual daily routines of the volunteers.

In any case, the heterogeneity of the datasets highlighted
by this investigation calls into question the results of all those
studies that test the FDS against a single repository.'anks to
the sophisticated methods currently used by the literature,
normally based on machine learning or deep learning tech-
niques, some studies have achieved quality metrics (sensitivity
and specificity) in the recognition of ADLs and falls very close
to 100%. However, these works do not normally evaluate the
capability of these methods to extrapolate these positive re-
sults when using other datasets than those considered during
the training and initial validation of the FDS.

With this in mind, we should not ignore either that the
credibility of the research on FDS systems is still under-
mined by the lack of datasets with a representative number
of real falls of older people (the target population of these
emergency systems), which could be utilized to benchmark
the detection methods in a more realistic scenario.
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J. Lindblom, and T. Jämsä, “Comparison of real-life accidental
falls in older people with experimental falls in middle-aged
test subjects,” Gait Posture, vol. 35, no. 3, pp. 500–505, 2012.

[6] J. Klenk, C. Becker, F. Lieken et al., “Comparison of accel-
eration signals of simulated and real-world backward falls,”
Medical Engineering & Physics, vol. 33, no. 3, pp. 368–373,
2011.
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Mimarlık Fakültesi Dergisi, vol. 32, no. 4, pp. 1025–1034, 2017.

[21] MEBIOMEC (Universidad Politécnica de Valencia, “Fall
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of the use of gyroscope measurements in wearable fall de-
tection systems,” Symmetry, vol. 12, no. 4, p. 649, 2020.

[59] S.-H. Liu and W.-C. Cheng, “Fall detection with the support
vector machine during scripted and continuous unscripted
activities,” Sensors, vol. 12, no. 9, pp. 12301–12316, 2012.

[60] J. Santoyo-Ramón, E. Casilari, and J. Cano-Garćıa, “Analysis
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In this paper, maximal relevance measure and minimal redundancy maximal relevance (mRMR) algorithm (under D-R and D/R
criteria) have been applied to select features and to compose different features subsets based on observed motion sensor events for
human activity recognition in smart home environments. And then, the selected features subsets have been evaluated and the
activity recognition accuracy rates have been compared with two probabilistic algorithms: näıve Bayes (NB) classifier and hidden
Markov model (HMM). -e experimental results show that not all features are beneficial to human activity recognition and
different features subsets yield different human activity recognition accuracy rates. Furthermore, even the same features subset has
different effect on human activity recognition accuracy rate for different activity classifiers. It is significant for researchers
performing human activity recognition to consider both relevance between features and activities and redundancy among
features. Generally, both maximal relevance measure and mRMR algorithm are feasible for feature selection and positive to
activity recognition.

1. Introduction

-e aging of population and the increasing number of the
elderly who chooses to live on their own [1–3] is an in-
disputable social reality. To implement the goals, smart
home technology can play an important role to detect and
analyze health events [4] and to provide corresponding
medical assistant and caregiver for frail elderly and disabled
people who are unable to live independently for a long
period of time and in their home far away from hospital or
their families, e.g., to remind them of time to take medicine,
to see the doctor, to assist them in cutting off the water,
turning off the oven, etc.

Actually, accurate assessment of human Activities of
Daily Livings (ADLs) is the prerequisite for smart home to
yield the correct service, whether it is for the elders or for the
severe disabilities of health monitoring, or provide them
with other relevant helps. Once the dangerous behavior is

detected, smart home itself can cope with it and eliminate as
much of the inhabitant’s risk as possible. -erefore, the
accurate recognition of human activity in smart home is of
great significance and gives a pattern for the realization of
healthcare for solitary elderly or disabled as well, which is the
most important process in incorporating ambient intelli-
gence into smart environments [5–8].

Recently, human activity discovery and recognition has
gained a lot of interest due to its enormous potential in
context aware computing systems, including smart home
environments. -e primary objective of human activity
recognition in smart home environment is to find the in-
teresting patterns of behavior from gathered sensor data and
to recognize such patterns. Currently, one of the primary
challenges of human activity recognition is the choosing of
machine learning algorithms which perform better in the
same sequence of sensor data collected by smart home
environment during the activity. In the last years, several
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intelligent algorithms applied for human activity recognition
in smart home have been reported. Singla, Crandall, and
Cook et al. described the applications of some probability-
based algorithms that include naı̈ve Bayes (NB) classifier,
Markov model (MM), and hidden Markov model (HMM)
[9, 10] to train the partially labeled motion sensor events
data to obtain the values of the prior parameters and then to
validate the performances of the algorithms by testing the
rest of labeled sensor data. Liu et al. presented a Bayesian
network-based probabilistic generative framework based on
Allen’s temporal relations over primitive events to charac-
terize the structural variabilities of complex activities [11].
Gayathri et al. proposed a statistical relational learning
approach which augments ontology based activity recog-
nition with probabilistic reasoning through Markov Logic
Network (MLN) [12]. Kim et al. proposed a discriminative
and generative probabilistic model, conditional random field
(CRF), as a more flexible alternative to HMM [13]. Zhu et al.
presented a two-layer CRF model to represent the action
segments and activities in a hierarchical manner, which
allows the integration of both motion and various context
features at different levels and automatically learns the
statistics that capture the patterns of the features [14]. Chen
et al. introduced a knowledge-driven approach to contin-
uous activity recognition based on multisensor data streams
in smart homes [15]. Fahim et al. introduced a novel
Evolutionary Ensembles Model (EEM) that values both
minor and major activities by processing each of them in-
dependently, which is based on a Genetic Algorithm (GA) to
handle the nondeterministic nature of activities [16]. Fleury
et al. proposed support vector machine- (SVM-)based
multimodal classification of ADLs in health smart homes
[17]. Wen and Wang combined Latent Dirichlet Allocation
(LDA) and AdaBoost to jointly train a general activity
recognition model with partially labeled data [18]. Hong
et al. composed a hybrid model of Bayesian networks and
support vector machines to accurately recognize human
activity [19].

Besides the suitable choosing of machine learning al-
gorithms, another key point for human activity recognition
in smart home is to select valid features from sensor events
datasets collected in smart home environment. Usually,
sensor events datasets include a large number of observed
sensor events generated by various activities and any activity
annotated in the dataset has various features, even redun-
dant and irrelevant features [20]. However, these features are
selected in one method in all tests, almost, and the influences
of these features on the performance of classifiers are seldom
addressed. Actually, the features which are irrelevant to
activity recognition and redundant between initial features
need to be removed prior to activity recognition. Further-
more, feature selection means to select the features subset
which is the most favorable for activity recognition and
compressing of data successfully.

Recently, minimal redundancy maximal relevance
(mRMR) feature selection algorithm has been widely applied
in many researching fields, which aims to achieve the best
classification performance by reducing redundancy among
the selected features and maximizing their relevance to the

target class. Mohamed et al. implemented the mRMR filter
and a metaheuristic approach as a feature selection process
for drug response microarray classification [21]. Che et al.
presented a novel mutual information feature selection
method based on the normalization of the maximum rel-
evance and minimum common redundancy for nonlinear
classification or regression problems [22]. Xu et al. proposed
a new distributed monitoring scheme which integrates
mRMR, Bayesian inference, and principal component
analysis for plant-wide processes [23]. Li et al. provided a
granular feature selection method with an mRMR criterion
based on mutual information (MI) for multilabel learning
[24]. Escalona-Vargas et al. proposed a method that uses
mRMR as criteria to automatically select references for the
frequency-dependent subtraction method to attenuate
maternal and fetal magnetocardiograms of fetal magneto-
encephalography recordings [25]. Mallik et al. developed a
new framework of identifying statistically significant epi-
genetic biomarkers using mRMR criterion-based feature
(gene) selection for multiomics dataset [26]. Tiwari calcu-
lated the weighted distance to improve the prediction
performance of G-protein coupled receptors families and
their subfamilies by using sequence derived properties, and
the feature selection method based on fusion of mRMR and
other supervised filter were provided [27]. Chen and Yan
developed an optimized multilayer feedforward network by
using mRMR-partial mutual information clustering inte-
grated with least square regression to construct a soft sensor
for controlling naphtha dry point [28]. Wang et al. presented
a multiobjective evolutionary algorithm which employs the
Pareto optimality to evaluate candidate feature subsets and
finds compact feature subsets with both the maximal rele-
vance and the minimal redundancy [29]. Morgado and
Silveira proposed a multivariate procedure capable of
selecting nonredundant subsets of features significantly
faster than other similar methods to the diagnosis of Alz-
heimer’s disease and related disorders which is inspired in
mRMR algorithm [30]. Kamandar and Ghassemian used a
modified mRMR as a criterion for feature extraction for
hyperspectral images classification based on information
theoretic learning [31]. Kandaswamy et al. extracted the best
features using mRMR feature selection algorithm and used
the random forest algorithm to predict extracellular matrix
proteins [32]. Jin et al. proposed a novel method for health
monitoring and anomaly detection for cooling fans in
electronic products based on Mahalanobis distance with
mRMR features [33]. Unler et al. presented a hybrid filter-
wrapper feature subset selection algorithm based on particle
swarm optimization for support vector machine classifica-
tion. -e filter model is based on the mutual information
and is a composite measure of feature relevance and re-
dundancy with respect to the feature subset selected [34].
Zdravevski et al. proposed a generic feature engineering
method for selecting robust features from a variety of
sensors, which is from the originally recorded time series
and some newly generated time series (i.e., magnitudes, first
derivatives, delta series, and fast Fourier transformation-
(FFT-) based series); a variety of time and frequency domain
features are extracted [35, 36].
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Inspired by the ideas mentioned above, in this paper,
maximal relevance measure and mRMR feature selection
algorithm (under D-R and D/R criteria) have been applied to
select features and to compose different features subsets
based on the observed motion sensor events for human
activity recognition in smart home environments. And then,
the selected features subsets have been evaluated, and the
activity recognition accuracy rates have been compared with
two probabilistic algorithms: NB classifier and HMM.

-e rest of the paper is organized as follows: Section 2
describes the smart apartment testbed, the data collection,
and 13 features of observed sensor events for human
activity recognition. Section 3 presents the concepts of
information entropy, mutual information (MI), and
minimal redundancy maximal relevance (mRMR) feature
selection algorithm. Section 4 gives the training and testing
activities, the features subsets selected through analyzing
of maximal relevance measure, and mRMR feature se-
lection algorithm. Finally, we present the comparison
results of activity recognition accuracy rates with the se-
lected features subsets and the performance measures of
NB classifier as well as HMM. Section 5 summarizes the
main contributions.

2. Smart Apartment Testbed and Data
Collection for Human Activity Recognition

2.1. Smart Apartment Testbed and Data Collection. -e smart
apartment testbed for this research is located onWashington
State University campus and is maintained as part of the
Center for Advanced Studies in Adaptive Systems (CASAS)
smart home project, which includes three bedrooms, one
bathroom, a kitchen, and a living/dining room. -e smart
apartment is equipped with motion sensors distributed
approximately 1 meter apart throughout the space on the
ceilings, as shown in Figure 1. In addition, other sensors
installed provide ambient temperature readings and custom-
built analog sensors provide readings for hot water, cold
water, and stove burner use. Sensor data is captured using a
sensor network that was designed in-house and is stored in a
Structured-Query-Language (SQL) database. After collect-
ing data from the smart apartment testbed, the sensor events
are annotated for ADLs, which are used for training and
testing the activity recognition algorithms [3, 4, 7, 9, 10].

-e data gathered by CASAS smart home is represented
by the following parameters, which specify the number of
features that are used to describe the observed sensor events.
-e generalized syntax of the dataset (Cairo Dataset, 2009) is

Date Time SensorID SensorValue <label>
An example of the dataset of Night_wandering activity
is:
{
2009-06-10 03 : 20 : 59.08 M006 ON Night_wandering
begin
2009-06-10 03 : 25 :19.05 M012 ON
2009-06-10 03 : 25 :19.08 M011 ON
2009-06-10 03 : 25 : 24.05 M011 OFF

2009-06-10 03 : 25 : 24.07 M012 OFF Night_wandering
end
}

-is example shows that the observed sensor events
correspond to the Night_wandering activity with concrete
Date, Time, Sensor ID, Sensor Value, and activity label
parameters.

2.2. Features of Observed Sensor Events. Considering the
actual situation, each activity has 13 features of the observed
sensor events:

(1) -e means of logical values of Sensor IDs of each
activity’s sensor events is f1.
Considering that the place where each activity
happens is relatively stable, therefore, selecting the
average of Sensor IDs means the focus area where the
activity occurs. -e equation is

Si �
1
ni

􏽘

ni

k�1
Sik, (1)

where Si is the means of Sensor IDs of activity i, ni is
the number of sensors, and Sik is the kth Sensor ID of
activity i.

(2) -e variance of all Sensor IDs triggered by the
current activity, f2, is

S
2
i �

1
ni

􏽘

ni

k�1
Sik − Si( 􏼁

2
. (2)

(3) Day of the week, which is converted into a value in
the range of 0 to 6, is f3.

Bedroom
Bedroom

Bedroom
Bathroom

Closet Closet

ClosetCloset

Closet

Storage

Kitchen

Living room

Motion sensor

Figure 1: -e smart apartment testbed and sensors in the
apartment to monitor motion.
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(4) Previous activity, which represents the activity that
occurred before the current activity, is f4.

(5) Activity length, which represents the length of the
current activity measured in a number of sensor
events, is f5.

(6) -e logical value of the first Sensor ID triggered by
the current activity is f6.

(7) -e logical value of the last Sensor ID triggered by
the current activity is f7.

(8) -e duration of the current activity, which indi-
cates the time interval between the last sensor and
the first sensor triggered by the current activity,
is f8.

(9) -e beginning time of the current activity is f9.
(10) -e ending time of the current activity is f10.
(11) Next activity, which represents the activity that

occurred after the current activity, is f11.
(12) -e mode value of the Sensor IDs triggered by the

current activity is f12.
(13) -e median value of the Sensor IDs triggered by the

current activity is f13.

Usually, the optimal features subset contains the least
number of dimensions that contribute to higher recognition
accuracy rate. -erefore, it is necessary to remove the
remaining and unimportant features.

3. Minimal Redundancy Maximal Relevance
Feature Selection Algorithm

3.1. Entropy. Information entropy is a more abstract
mathematical concept which can be understood as the
probability of the emergence of some specific information.
Generally, the higher of the probability of a kind of infor-
mation indicates that it is spreadmore widely or more highly
cited.-erefore, information entropy is able to represent the
value of information.-e information source is the source of
the message and the message sequence. For example, the
simplest discrete information source is X � x1, x2, . . . , xn􏼈 􏼉,
and p(xi) is the probability of a given xi; then, the entropy of
X can be defined as

H(X) � − 􏽘
n

i�1
p xi( 􏼁logp xi( 􏼁. (3)

3.2. Conditional Entropy, Joint Entropy, and Mutual
Information

3.2.1. Conditional Entropy. In information theory, the
conditional entropy quantifies the amount of information
needed to describe the outcome of a random variableX given
that the value of another random variable Y is known. If X
and Y are dependent on each other, then, in the condition of
Y � y􏼈 􏼉, the conditional entropy of X is

H(X | Y � y) � 􏽘
x

p(x | y)log
1

p(x | y)
. (4)

If Y is given, then the conditional entropy of X is

H(X | Y) � 􏽘
y

p(y)H(X | Y � y),

� 􏽘
x,y

p(x, y)log
1

p(x | y)
,

(5)

where p(x, y) is the joint probability of x and y.

3.2.2. Joint Entropy. Joint entropy is a measure of the un-
certainty associated with a set of random variables. Sup-
posing two random variables X and Y and each of them is
given a limited value, then, the joint entropy is

H(X, Y) � − 􏽘
x,y

p(x, y)logp(x, y). (6)

-e joint entropy is a measure of the correlation of X and
Y. If X and Y are independent, then, the joint entropy is

H(X, Y) � H(X) + H(Y). (7)

3.2.3. Mutual Information. Mutual information (MI) is a
quantity that measures the level of similarity as well as
correlation of random variables [33, 37]. Supposing two
random variables X and Y and Y contains some information
of X, then MI between X and Y can be defined as

I(X; Y) � 􏽘
x,y

p(x, y)log
p(x, y)

p(x)p(y)
. (8)

MI is typically defined as the measure of the mutual
dependence of two random variables. A larger value of MI
means a closer relationship between the two random vari-
ables which have larger correlation. If the value of MI is zero,
it means that the two random variables are uncorrelated and
independent. -erefore, in this paper, MI can be used to
measure the similarity among features and the correlation
between feature and activity.

3.3. Minimal Redundancy Maximal Relevance (mRMR)
Algorithm. Although MI is widely applied in the feature
selection fields, there still exist some deficiencies. Most of the
feature selection algorithms only consider the relationship
between features and classification categories but ignore the
mutual influence among features. Instead, mRMR feature
selection algorithm applied in this paper considers not only
the amount of information provided by these features for
categorical attributes but also the influence of interaction
among features on classification [37].

MI can weigh the quantity of information between
feature variables X and Y; furthermore, it can measure how
much information quantity that X can provide to Y to

4 Journal of Healthcare Engineering



classify activity as well. -erefore, MI can not only show the
ability of each feature of identifying the activities, but also
measure whether there is redundancy among features.
According to the traits of MI, two different criteria can be
extended to evaluate the features: redundancy and relevance.

3.3.1. Redundancy Measure. Redundancy measure utilizes
the quantity of MI between features. If the value of MI is
large, it means that there is a large amount of information
duplication between the two features; i.e., there are re-
dundancies between the two features. A lower value of
redundancy measure indicates a better feature selection
criterion. Utilizing redundancy measure is to find the
feature which has the minimal value of MI among all
features.

According to the idea that the smaller the value of re-
dundancy of information between features is, the more
beneficial it is to activity classification, which can be
expressed by minimizing the MI among features, the
minimal redundancy condition is

minR(S), R �
1

|s|
2 􏽘

xi,xj∈S
I xi; xj􏼐 􏼑, (9)

where |s| is the number of features in features subset S and
I(xi; xj) is MI between feature i and j.

3.3.2. Relevance Measure. Relevance measure utilizes the
value of MI between the feature and the target activity. If the
value of MI is small, it indicates that there is a weak cor-
relation between the feature and the target activity. On the
contrary, the larger value of MI means that the feature has
greater amount of information to classify the activity.
-erefore, it is necessary to select the maximum value of MI
between the features and the target activity, the maximal
relevance criterion, which can be expressed as

maxD(S, c), D �
1

|S|
􏽘
xi∈S

I xi; c( 􏼁, (10)

where c is the target activity and I(xi; c) is the MI between
the feature i and the target activity c.

Feature selection based on the maximum value of rel-
evance measure is to compose the optimal features subset by
selecting MI to target activity.

3.3.3. Algorithm Designing. mRMR feature selection algo-
rithm is based on the relevance measure and redundancy
measure described above. It combines the relevance between
the features and the target activity as well as the redundancy
among the features [33, 37]. According to (9) and (10), the
influences of relevance measure and redundancy measure
have been taken consideration in feature selection, com-
prehensively. mRMR feature selection algorithm has two
evaluation criteria, which optimizes D and R, simulta-
neously, as

maxΦ1(S, c),Φ1 � D − R, (11)

ormaxΦ2(S, c),Φ2 �
D

R
. (12)

Supposing that there is a features subset Sm which is
composed of m features, the next step is to extract the
optimal (m+1)th feature from the features subset S − Sm􏼈 􏼉

according to (11) or (12), through

max
xi∈S−Sm

I xi; c( 􏼁 −
1
m

􏼒 􏼓 􏽘
xj∈Sm

I xi; xj􏼐 􏼑
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦,

or

(13)

max
xi∈S−Sm

I xi; c( 􏼁

(1/m)􏽐xj∈Sm
I xi; xj􏼐 􏼑

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (14)

-e incremental procedures of mRMR feature selection
algorithm are as follows:

Step 1. In the original features setΩ, the optimal feature
xi can be selected by I(xi; c) and then put into the
optimal features subset S;
Step 2. In the features subset ΩS � Ω − S, the next
optimal feature xj is selected which satisfies (11) or (12);
Step 3. Repeat Step 2 to find the optimal features subset
S which meets the size requirement finally.

4. Experimental Results

4.1. Training and Testing Activities. A total of 10 activities
were performed in the CASAS smart apartment by 2 vol-
unteers to provide physical training data for NB classifier
and HMM. -ese activities include both basic and more
complex ADLs that are found in clinical questionnaires.
-ese activities are the following:

(1) Bed_to_toilet (activity 0): transition happens be-
tween bed and toilet in the night time (30 instances)

(2) Breakfast (activity 1): the resident has breakfast (48
instances)

(3) Bed (activity 2): this is the activity of sleeping in bed
(207 instances)

(4) C_work (activity 3): the resident works in the office
space (46 instances)

(5) Dinner (activity 4): the resident has dinner (42
instances)

(6) Laundry (activity 5): the resident cleans clothes
using the laundry machine (10 instances)

(7) Leave_home (activity 6): the resident leaves smart
home (69 instances)

(8) Lunch (activity 7): the resident has lunch (37
instances)

(9) Night_wandering (activity 8): the resident wanders
during night time (67 instances)
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(10) R_medicine (activity 9): the resident takes medicine
(44 instances)

-e data have been collected in the CASAS smart
apartment testbed for 55 days, resulting in total of 600
instances of these activities and 647, 485 collected motion
sensor events. -e 3-fold cross validation is applied in the
data for NB classifier and HMM under the same conditions
to ensure that the experimental comparison is fair [38].

4.2. Feature Selection with Maximal Relevance Measure.
Firstly, maximal relevance (MR)measure of the 13 features has
been analyzed. Usually, MI is employed as the criterion of
evaluation. Since the feature with larger value of MI has the
closer relationship to the target activity, therefore, the values of
MI between features and activities must be calculated. By
analyzing relevance measure, the ranks of the 13 features
according to the values of MI are listed in Table 1, and then the
13 features have been sorted in a descending order successively,
composed of 13 features subsets, respectively [39].

It can be found that feature f10 has the largest value ofMI,
which means that f10 is the most important feature to activity
recognition and has the closest relationship to the target
activity. On the contrary, f3 has the smallest value of MI,
which means that f3 is not discriminatory to activity rec-
ognition and has the weakest link to the target activity.

-en, the 13 features subsets with MR measure are the
following:

Features subset 1: (f10)
Features subset 2: (f10, f9)
Features subset 3: (f10, f9, f6)
Features subset 4: (f10, f9, f6, f8)
Features subset 5: (f10, f9, f6, f8, f7)
Features subset 6: (f10, f9, f6, f8, f7, f1)
Features subset 7: (f10, f9, f6, f8, f7, f1, f12)
Features subset 8: (f10, f9, f6, f8, f7, f1, f12, f4)
Features subset 9: (f10, f9, f6, f8, f7, f1, f12, f4, f11)
Features subset 10: (f10, f9, f6, f8, f7, f1, f12, f4, f11, f5)
Features subset 11: (f10, f9, f6, f8, f7, f1, f12, f4, f11, f5, f2)
Features subset 12: (f10, f9, f6, f8, f7, f1, f12, f4, f11, f5, f2, f13)
Features subset 13: (f10, f9, f6, f8, f7, f1, f12, f4, f11, f5, f2,
f13, f3)

-e activity recognition accuracy rate can be divided into
two categories: the individual activity recognition accuracy
rate (IARAR) and the total activities recognition accuracy
rate (TARAR). -e definitions are

IARAR �
correct sample number of this activity
the sample number of this activity

,

TARAR �
total correct sample number

total sample number
.

(15)

-e results of activity recognition accuracy rates with the
13 features subsets of NB classifier based on MR measures

are shown in Table 2, and the results of HMM are shown in
Table 3, respectively.

From Tables 2 and 3, the 13 features impact on the
classifiers’ recognition accuracy rate can be found differently.
Similarly, for NB classifier and HMM, TARARs vary from
different features subsets. Generally, with the increasing of
size of features subset, activity recognition accuracy rate in-
creases. TARAR tends to be stable as the size of features subset
becomes larger finally. However, the trend is not monotonic.
Concretely, for NB classifier, TARAR does not improve with
features subset 7 (88.7%) which introduces feature f7 in
features subset 6 (88.8%). It means that not all the features are
positive to activity recognition obviously and different
combination of features has different effect on activity rec-
ognition accuracy rate.

It also can be found that the maximal value of TARAR of
NB classifier is slightly higher than that of HMM. With
features subset 12, the TARAR of NB classifier reaches the
maximal value 90.3%, while, for HMM, the maximal value of
TARAR is 88.0% with features subset 13.

Furthermore, it can be seen that the trends of IARARs of
NB classifier and HMM are similar as well; i.e., with the in-
creasing of the number of features in features subset, IARAR
increases until a specific number. Again, the trends are not
monotonic. For example, for activity 1, IARARs of NB classifier
and HMM have risen along with the sizes of features subset.
For NB classifier, the optimal value of IARAR is 100.0%, with
features subset 8, and then drop down with the increasing of
size of features subset. For HMM, IARAR reaches the optimal
value of 93.8% with features subset 6 and then drop down with
the increasing of size of features subset. Moreover, from
IARARs of activity 1, it can be seen that the performances of
NB classifier and HMM are different by introducing the same
feature, such as feature f4, compared with features subsets 7
(97.9%) and 8 (100.0%); NB generates a positive result with this
feature; however, the recognition performance of HMM does
not improve, from 89.6% decreasing to 83.3%. Even with same
features subset, the recognition accuracy rates may be quite
different from the performances of classifiers, which can be
foundmuchmore from the recognition accuracy rates for each
activity. For example, the performances of NB classifier and
HMM differ greatly for activities 0 with features subset 1 (0.0%
vs. 90.0%) and activity 2 with features subset 3 (88.4% vs.
39.1%).

Furthermore, from Table 2, it is indicated that the rel-
atively better features subset is different for each activity; e.g.,
for activity 3, features subset 10 yields the best result, and the
accuracy rate is 76.1%, while features subset 2 generates the
best result of activity 2, and the accuracy rate is 100.0%, for
NB classifier. With features subset 10, IARARs of activities 3,
4, 5, and 6 are better than or equal to those of the other
features subsets; the proportion is 40% for all activities.
However, with features subsets 12 and 13, the IARARs of
activities 0 through 2, and 4, and 6 through 8 are better than
or equal to those of features subset 10; the proportions are
70%. -erefore, the optimal results of TARARs (90.3%) are
of features subsets 12 and 13. Relatively, features f3 and f13
are not discriminatory to activity recognition with NB
classifier.
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For HMM, it can be found from Table 3 that features
subset 10 generates the highest proportion of optimal
IARARs for all activities, 40%. Concretely, with features
subset 10, IARARs of activities 4, 5, 7, and 9 are better than
or equal to those of the other subsets. However, features
subset 13 yields the optimal TARAR of 88.0%, which is
slightly higher than that of features subset 10, 87.3%. Again,
it also can be concluded that feature f3 is not discriminatory
to activity recognition with HMM.

4.3. Feature SelectionwithmRMRAlgorithm. mRMR feature
selection algorithm can be adopted to sort the 13 features
and reduce the number of dimensions of features subset.
-is is done by analyzing the relevance of the features to the
target activities on the original features set to remove the
irrelevant features and keep the features which have strong
correlations to the target activities and then analyzing the
redundancy of the selected features to reduce the number of
dimensions of features subset.

According to (11) to get the value of information of
different features, the results of iterations are listed in Table 4
with D-R criterion. At the beginning, the MI equation has
been applied to get the first optimal feature and the result is
f10. -e next interaction, still according to (11), feature f6 is
the optimal feature among the other remaining 12 features.
And then, the ranks of each feature have been obtained
successively.

Finally, the order of the sorted features is f10, f6, f5, f12, f11,
f1, f4, f7, f8, f9, f2, f13, and f3. Again, it can be found that feature
f10 is the most important feature and feature f3 is not dis-
criminatory to activity recognition.

Similarly, the information values of different feature
groups can be obtained according to (12), and the results of
iterations are listed in Table 5 under D/R criterion.

-e order of the sorted features is f10, f6, f5, f12, f11, f2, f4, f7,
f13, f8, f1, f9, and f3.

Although the orders of the sorted features with D-R and
D/R criteria are different, the first feature still is f10, the most
important feature, the second feature is f6, and the last

Table 1: -e values of mutual information (MI) and the ranks of the 13 features.

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13
MI 1.1879 0.6885 0.0472 1.1734 0.8628 1.4903 1.2003 1.3213 1.5084 1.5350 1.1675 1.1832 0.5304
Rank 6 11 13 8 10 3 5 4 2 1 9 7 12

Table 2: -e recognition accuracy rates with all features subsets of NB classifier based on maximum relevance selection.

Features subset
Activity 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.000 0.433 0.433 0.300 0.300 0.567 0.600 0.567 0.600 0.600 0.633 0.667 0.667
1 0.792 0.729 0.917 0.938 0.917 0.979 0.979 1.000 0.979 0.979 0.979 0.979 0.979
2 0.700 0.676 0.884 0.918 0.937 0.947 0.952 0.957 0.952 0.957 0.957 0.961 0.966
3 0.000 0.022 0.630 0.587 0.696 0.717 0.717 0.739 0.739 0.761 0.739 0.739 0.739
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.000 0.000 0.300 0.200 0.200 0.300 0.300 0.300 0.200 0.300 0.300 0.300 0.200
6 0.000 0.058 0.072 0.884 0.899 0.899 0.899 0.928 0.971 0.986 0.986 0.986 0.986
7 1.000 0.919 1.000 1.000 1.000 1.000 1.000 0.973 0.973 0.973 0.973 0.973 0.973
8 0.881 0.687 0.687 0.701 0.716 0.851 0.806 0.821 0.806 0.806 0.806 0.821 0.821
9 0.000 0.045 0.136 0.818 0.818 0.886 0.886 0.886 0.909 0.886 0.864 0.864 0.864
Total 0.535 0.528 0.680 0.827 0.843 0.888 0.887 0.893 0.895 0.900 0.898 0.903 0.903

Table 3: -e recognition accuracy rates with all features subsets of HMM based on maximum relevance selection.

Features subset
Activity 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.900 0.900 0.900 0.700 0.700 0.767 0.767 0.767 0.767 0.700 0.733 0.667 0.667
1 0.000 0.000 0.104 0.521 0.896 0.938 0.896 0.833 0.771 0.792 0.750 0.750 0.750
2 0.000 0.005 0.391 0.667 0.797 0.860 0.870 0.884 0.913 0.918 0.928 0.942 0.961
3 0.000 0.174 0.739 0.804 0.804 0.783 0.783 0.804 0.761 0.761 0.761 0.761 0.761
4 0.000 0.000 0.000 0.524 0.929 0.976 0.976 0.976 0.976 1.000 1.000 0.976 0.976
5 0.000 0.000 0.000 0.200 0.300 0.300 0.300 0.300 0.200 0.400 0.400 0.400 0.200
6 1.000 0.928 0.942 0.986 0.986 0.986 1.000 0.986 0.986 0.986 0.986 0.986 0.971
7 0.000 0.000 0.000 0.514 0.973 0.973 0.973 0.946 0.946 0.973 0.919 0.973 0.946
8 0.090 0.149 0.179 0.313 0.313 0.701 0.701 0.701 0.731 0.731 0.776 0.806 0.821
9 0.000 0.386 0.432 0.750 0.932 0.568 0.568 0.659 0.909 0.932 0.864 0.864 0.864
Total 0.170 0.212 0.405 0.643 0.790 0.837 0.838 0.843 0.865 0.873 0.872 0.878 0.880
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feature is f3, which is not discriminatory to activity
recognition.

According to the orders of the sorted features with D-R
andD/R criteria, 13 features subsets can be obtained through
adding one feature to previous features subset each time
successively.

-e 13 features subsets under D-R criterion are the
following:

Features subset 1: (f10)
Features subset 2: (f10, f6)
Features subset 3: (f10, f6, f5)
Features subset 4: (f10, f6, f5, f12)
Features subset 5: (f10, f6, f5, f12, f11)
Features subset 6: (f10, f6, f5, f12, f11, f1)
Features subset 7: (f10, f6, f5, f12, f11, f1, f4)
Features subset 8: (f10, f6, f5, f12, f11, f1, f4, f7)
Features subset 9: (f10, f6, f5, f12, f11, f1, f4, f7, f8)
Features subset 10: (f10, f6, f5, f12, f11, f1, f4, f7, f8, f9)
Features subset 11: (f10, f6, f5, f12, f11, f1, f4, f7, f8, f9, f2)
Features subset 12: (f10, f6, f5, f12, f11, f1, f4, f7, f8, f9, f2, f13)
Features subset 13: (f10, f6, f5, f12, f11, f1, f4, f7, f8, f9, f2, f13,
f3)

And the 13 features subsets under D/R criterion are the
following:
Features subset 1: (f10);
Features subset 2: (f10, f6)
Features subset 3: (f10, f6, f5)
Features subset 4: (f10, f6, f5, f12)
Features subset 5: (f10, f6, f5, f12, f11)
Features subset 6: (f10, f6, f5, f12, f11, f2)
Features subset 7: (f10, f6, f5, f12, f11, f2, f4)
Features subset 8: (f10, f6, f5, f12, f11, f2, f4, f7)
Features subset 9: (f10, f6, f5, f12, f11, f2, f4, f7, f13)
Features subset 10: (f10, f6, f5, f12, f11, f2, f4, f7, f13, f8)
Features subset 11: (f10, f6, f5, f12, f11, f2, f4, f7, f13, f8, f1)
Features subset 12: (f10, f6, f5, f12, f11, f2, f4, f7, f13, f8, f1, f9)
Features subset 13: (f10, f6, f5, f12, f11, f2, f4, f7, f13, f8, f1, f9,
f3)

-e selected features subsets have been validated by NB
classifier and HMM to recognize activities. TARARs of NB
classifier and HMM, with each features subset, are listed in
Table 6, respectively.

It can be found that although D-R and D/R criteria are
different, the features subsets which have the same number

Table 4: -e information values of feature groups under the D-R criterion.

Feature
Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1.188 0.688 0.047 1.173 0.863 1.490 1.200 1.321 1.508 1.535 1.168 1.183 0.530
1 0.476 0.213 −0.160 −0.009 0.441 0.774 0.310 0.146 −1.989 — −0.032 0.607 0.134
2 0.376 0.230 −0.075 0.281 0.434 — 0.306 0.343 −0.594 — 0.261 0.363 0.151
3 0.520 0.288 −0.042 0.430 — — 0.440 0.338 −0.041 — 0.453 0.520 0.195
4 0.425 0.268 −0.030 0.488 — — 0.451 0.428 0.206 — 0.518 — 0.198
5 0.474 0.299 −0.023 0.452 — — 0.456 0.458 0.238 — — — 0.216
6 — 0.173 −0.022 0.486 — — 0.454 0.479 0.330 — — — 0.196
7 — 0.206 −0.019 — — — 0.484 0.482 0.326 — — — 0.207
8 — 0.207 −0.016 — — — — 0.498 0.365 — — — 0.202
9 — 0.196 −0.025 — — — — — 0.364 — — — 0.188
10 — 0.196 −0.040 — — — — — — — — — 0.187
11 — — −0.040 — — — — — — — — — 0.190

Table 5: -e information values of feature groups under the D/R criterion.

Feature
Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1.188 0.688 0.047 1.173 0.863 1.490 1.200 1.321 1.508 1.535 1.168 1.183 0.530
1 1.668 1.449 0.227 0.992 2.047 2.080 1.349 1.124 0.431 — 0.974 2.054 1.339
2 1.463 1.502 0.385 1.314 2.013 — 1.342 1.350 0.717 — 1.288 1.443 1.397
3 1.777 1.719 0.530 1.579 — — 1.578 1.344 0.973 — 1.634 1.784 1.580
4 1.556 1.635 0.613 1.712 — — 1.603 1.479 1.158 — 1.797 — 1.596
5 1.663 1.769 0.674 1.626 — — 1.612 1.531 1.187 — — — 1.686
6 1.510 — 0.659 1.811 — — 1.715 1.620 1.321 — — — 1.689
7 1.588 — 0.695 — — — 1.773 1.619 1.310 — — — 1.733
8 1.586 — 0.732 — — — — 1.644 1.351 — — — 1.694
9 1.664 — 0.753 — — — — 1.727 1.462 — — — —
10 1.659 — 0.667 — — — — — 1.445 — — — —
11 — — 0.671 — — — — — 1.487 — — — —
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of features are similar, even the same, e.g., if the number of
features is little than 6. -erefore, it can be observed that the
results of the same classifier with the same number of
features are very slightly different, under the two criteria. If
the number of features is smaller than 6 or larger than 11, the
results of TARARs are the same.

Moreover, the performances of NB classifier and
HMM are different even with the same features subset.
Generally, with the increasing of size of features subset,
TARAR increases until the size reaches a certain value.
Still, the trend is not monotonic. For example, the optimal
results are with features subsets 9, 12, and 13 under D-R
criterion (90.3%), and the optimal result is with features
subset 13 under D/R criterion (88.0%), for NB classifier.
For HMM, the optimal result is with features subset 13
under D-R (88.0%) and D/R (88.0%) criteria. -e results
show that NB classifier and HMM yield relatively higher
TARARs with features subset 5 through 13 and TARARs
of NB classifier are slightly higher than those of HMM
with features subsets 8 through 13, but much higher with 1
through 7, under the same criterion.

Basically, it can be concluded that both D-R and D/R
criteria can be applied to sort the features and then to
compose features subset effectively.

Tables 7 and 8 (under D-R criterion) show that the
optimal IARARs of activities 0, 3, 5, 6, and 9 of HMM are
higher than those of NB classifier, while the optimal IARARs
of the activities 1, 2, 7, and 8 of NB classifier are higher than
those of HMM. -e optimal IARARs of activity 4 are the
same of the two classifiers. Generally, the trends of the two
classifiers are nearly the same with the increasing of size of
features subset. Again, the trends are not monotonic.
Moreover, it can be observed that different features have
different effects on activity recognition. For example, fea-
tures subset 5 means introducing feature f11 to features
subset 4; then, IARARs have been improved of some ac-
tivities, such as activities 0, 2, 3, 4, and 7 through 9; however,
IARARs of other activities are degraded or not improved, of
NB classifier, as shown in Table 7.

HMM has a similar result. It also can be found that,
according to the different performance traits of NB classifier
and HMM, the adding of the same feature has different
effects on IARARs. For example, by introducing of the
feature f5 to features subset 2 to compose features subset 3,
IARAR of activities 0 has been improved in NB classifier
apparently but degraded in HMM. By introducing of feature
f11 to features subset 4 to compose features subset 5, IARAR
of activity 9 of NB classifier has been degraded but improved
in HMM.

Furthermore, from Table 7, it is also shown that, with
features subset 13, IARARs of activities 0, 1, 2, 4, and 6 are
better than or equal to those of the other subsets; the
proportion is 50% for all activities. With features subset 9,
the proportion is 40% (activities 1, 5, 6, and 9). However,
with features subset 9, IARARs of activities 1, 3, 5, 6, 7, and 9
are better than or equal to those of features subset 13.
-erefore, features subset 9 yields the optimal TARAR of
90.3%, which is the same as that of features subsets 12 and
13. Still, features f3 is not discriminatory to activity recog-
nition with NB classifier.

It also can be found from Table 8 that, with features
subset 13, IARARs of activities 2 and 8 are better than or
equal to those of the other features subsets; the proportion is
20% for all activities, while features subset 13 gives the
optimal TARAR of 88.0%, which is slightly higher than that
of features subset 12. Moreover, with features subset 12,
IARARs of activities 0, 1, and 3 to 7 and 9 are better than or
equal to those of the features subset 13; the proportion is
80%. Again, it also can be concluded that feature f3 is not
discriminatory to activity recognition with HMM.

Under the D/R criterion, Tables 9 and 10 show the
activity recognition accuracy rates with each features subset
of NB classifier and HMM. From the experimental results, it
can be found that the performances of NB classifier and
HMM with the features subsets obtained under D/R crite-
rion are similar to those of D-R criterion, respectively.

For example, for NB classifier, the optimal TARARs are
90.3% with features subsets 9, 12, and 13 under D-R cri-
terion, which are the same to those of features subsets 11, 12,
and 13 under D/R criterion. And for HMM, the optimal
TARAR is 88.0% with features set 13 under D-R criterion,
which is the same as that under D/R criterion.

From Table 9, for NB classifier, it is indicated that, with
features subsets 12 and 13, IARARs of activities 1, 4, 6, and 9
are better than or equal to those of the other features subsets;
the proportion is 40%, for all activities. However, with
features subset 11, IARARs of activities 1, 3, 5, 6, and 9 are
better than or equal to those of features subsets 12 and 13;
the proportion is 50%. Features subsets 11, 12, and 13 yield
the same optimal TARARs of 90.3%. Again, features f3 and
f13 are not discriminatory to activity recognition with NB
classifier.

It also can be found from Table 10, for HMM, that with
features subset 13, IARARs of activities 1, 2, 4, and 8 are
better than or equal to those of the other features subsets.
Features subset 13 yields the optimal TARAR of 88.0%,
which is slightly higher than that of features subset 12.
Actually, with features subset 12, IARARs of activities 0, 1, 3,

Table 6: Comparison results of TARARs under two mRMR evaluation criteria (D-R and D/R).

Features subset
Classifier Criterion 1 2 3 4 5 6 7 8 9 10 11 12 13

NB D-R 0.535 0.695 0.870 0.870 0.870 0.890 0.885 0.902 0.903 0.900 0.898 0.903 0.903
D/R 0.535 0.695 0.870 0.870 0.870 0.880 0.877 0.892 0.888 0.887 0.903 0.903 0.903

HMM D-R 0.170 0.255 0.447 0.523 0.638 0.745 0.770 0.832 0.837 0.873 0.872 0.878 0.880
D/R 0.170 0.255 0.447 0.523 0.638 0.747 0.768 0.817 0.837 0.858 0.853 0.878 0.880
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4, 5, 6, 7, and 9 are better than or equal to those of the
features subset 13; the proportion is 80%. Again, features f3
and f13 are not discriminatory to activity recognition with
HMM.

Table 11 shows the comparison results of the optimal
IARARs and TARARs of NB classifier and HMM under the
three evaluation criteria (MR, D-R, and D/R) and the re-
quired minimal size of features subset, respectively.

It indicates that although the features subsets are dif-
ferent under the three evaluation criteria, however, the
optimal results of IARARs and TARARs are similar to the

same classifier. For example, for NB classifier, the optimal
IARARs of activities 0, 2, 4, 6, 7, and 8 under MR criterion
are the same as those under D-R criterion; furthermore, the
optimal IARARs of activities 2, 4, 6, 7, and 8 are the same
even under the three evaluation criteria, and even the op-
timal TARARs are the same.

Similarly, for HMM, the optimal IARARs of activities 0,
2, and 6 through 8 are the same even under the three
evaluation criteria. Besides, the optimal TARARs are also the
same with the three evaluation criteria. Additionally, it can
be found that the results of the required minimal size of

Table 8: -e recognition accuracy rates with each features subset of HMM under the D-R criterion.

Features subset
Activity 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.900 0.900 0.800 0.800 0.833 0.867 0.833 0.833 0.700 0.700 0.733 0.667 0.667
1 0.000 0.000 0.292 0.271 0.250 0.229 0.083 0.500 0.458 0.792 0.750 0.750 0.750
2 0.000 0.005 0.184 0.256 0.483 0.657 0.768 0.860 0.908 0.918 0.928 0.942 0.961
3 0.000 0.870 0.935 0.957 0.978 0.935 0.891 0.804 0.826 0.761 0.761 0.761 0.761
4 0.000 0.000 0.524 0.524 0.714 0.952 1.000 0.952 0.929 1.000 1.000 0.976 0.976
5 0.000 0.000 0.400 0.700 0.400 0.700 0.500 0.500 0.600 0.400 0.400 0.400 0.200
6 1.000 0.986 1.000 1.000 1.000 0.971 0.971 0.986 0.986 0.986 0.986 0.986 0.971
7 0.000 0.000 0.297 0.703 0.892 0.973 0.892 0.946 0.838 0.973 0.919 0.973 0.946
8 0.090 0.119 0.239 0.373 0.388 0.701 0.701 0.701 0.701 0.731 0.776 0.806 0.821
9 0.000 0.205 0.614 0.705 0.886 0.773 0.886 0.909 0.955 0.932 0.864 0.864 0.864
Total 0.170 0.255 0.447 0.523 0.638 0.745 0.770 0.832 0.837 0.873 0.872 0.878 0.880

Table 9: -e recognition accuracy rates with each features subset of NB classifier under the D/R criterion.

Features subset
Activity 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.000 0.000 0.400 0.400 0.400 0.700 0.700 0.700 0.733 0.600 0.600 0.667 0.667
1 0.792 0.979 0.938 0.958 0.958 0.938 0.958 0.958 0.958 0.958 0.979 0.979 0.979
2 0.700 0.899 0.913 0.913 0.913 0.908 0.903 0.947 0.947 0.961 0.961 0.961 0.966
3 0.000 0.848 0.848 0.761 0.761 0.783 0.783 0.783 0.783 0.804 0.804 0.739 0.739
4 1.000 0.976 1.000 1.000 1.000 0.976 1.000 0.976 0.976 0.952 0.952 1.000 1.000
5 0.000 0.100 0.300 0.600 0.600 0.600 0.400 0.400 0.400 0.500 0.600 0.300 0.200
6 0.000 0.072 0.913 0.928 0.957 0.971 0.942 0.942 0.942 0.971 0.986 0.986 0.986
7 1.000 1.000 0.973 0.973 0.973 0.946 0.946 0.946 0.946 0.946 0.946 0.973 0.973
8 0.881 0.881 0.821 0.806 0.821 0.836 0.851 0.851 0.821 0.791 0.806 0.821 0.821
9 0.000 0.045 0.864 0.864 0.795 0.750 0.750 0.773 0.750 0.727 0.864 0.864 0.864
Total 0.535 0.695 0.870 0.870 0.870 0.880 0.877 0.892 0.888 0.887 0.903 0.903 0.903

Table 7: -e recognition accuracy rates with each features subset of NB classifier under the D-R criterion.

Features subset
Activity 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.000 0.000 0.400 0.400 0.400 0.667 0.667 0.667 0.600 0.600 0.633 0.667 0.667
1 0.792 0.979 0.938 0.958 0.958 0.958 0.958 0.958 0.979 0.979 0.979 0.979 0.979
2 0.700 0.899 0.913 0.913 0.913 0.908 0.899 0.937 0.947 0.957 0.957 0.961 0.966
3 0.000 0.848 0.848 0.761 0.761 0.761 0.783 0.783 0.804 0.761 0.739 0.739 0.739
4 1.000 0.976 1.000 1.000 1.000 1.000 1.000 1.000 0.976 1.000 1.000 1.000 1.000
5 0.000 0.100 0.300 0.600 0.600 0.600 0.400 0.500 0.600 0.300 0.300 0.300 0.200
6 0.000 0.072 0.913 0.928 0.957 0.957 0.957 0.957 0.986 0.986 0.986 0.986 0.986
7 1.000 1.000 0.973 0.973 0.973 0.973 0.946 0.973 0.973 0.973 0.973 0.973 0.973
8 0.881 0.881 0.821 0.806 0.821 0.836 0.851 0.851 0.806 0.806 0.806 0.821 0.821
9 0.000 0.045 0.864 0.864 0.795 0.886 0.886 0.886 0.886 0.886 0.864 0.864 0.864
Total 0.535 0.695 0.870 0.870 0.870 0.890 0.885 0.902 0.903 0.900 0.898 0.903 0.903

10 Journal of Healthcare Engineering



features subset according to the optimal IARAR of each
activity and the optimal TARAR are also similar to the same
classifier. For example, for NB classifier, the required
minimal sizes of features subset of activity 1 to 5 and 7 to 8,
under D-R criterion, are the same as those under D/R
criterion. Moreover, for activities 2, 4, 7, and 8, the required
minimal sizes of features subset are the same under the three
evaluation criteria. For HMM, the required minimal sizes of
features subset of activities 0, 2, 6, and 8 are the same under
the three evaluation criteria; the proportion is 40%. Besides,
the required minimal sizes of features subset of TARARs are
also the same under the three evaluation criteria.

Obviously, maximal relevance measure and mRMR
feature selection algorithm (under D-R and D/R criteria)
are effective to feature selection for human activity
recognition.

5. Conclusions

-is paper has applied maximal relevance measure and
minimal redundancy maximal relevance (mRMR) algo-
rithm (under D-R and D/R criteria) to select features and
to compose different features subsets based on the ob-
served sensor events for human activity recognition in
smart home environments. And then, the selected features
subsets have been validated by NB classifier and HMM to

recognize human activities. -rough the experimental
results, it is shown that not all the features are beneficial to
activity recognition, as estimated. Different combinations
of features lead to different activity recognition results.
Furthermore, even the same features subset has different
effect on the activity recognition accuracy rate for dif-
ferent activity classifiers. It can be found that feature f10
(the ending time of the current activity) is the most
important feature to activity recognition and feature f3
(day of week) is not discriminatory to activity recognition.
-erefore, the suitable features subset must be selected in
advance, and the selection of unsuitable feature sets in-
creases the computational complexity and degrades the
human activity recognition accuracy rate. Moreover, it is
significant for activity recognition to consider both rel-
evance between features and activities and redundancy
between features. Generally, maximal relevance measure
and mRMR algorithm are beneficial to feature selection
and positive to activity recognition of NB classifier and
HMM.

Data Availability

-e data were collected from the smart home testbed located
on Washington State University campus, which can be
downloaded from Dr. Cook’s homepage.

Table 11: Optimal recognition accuracy rates under three evaluation criteria (MR, D-R, and D/R) and the required minimal size of features
subset (in brackets).

Activity
Classifier Criterion 0 1 2 3 4 5 6 7 8 9 Total

NB

MR 0.667 (12) 1.000 (8) 0.966 (13) 0.739 (10) 1.000
(1)

0.300
(3)

0.986
(10)

1.000
(1)

0.881
(1) 0.909 (9) 0.903 (12)

D-R 0.667 (6) 0.979 (2) 0.966 (13) 0.848 (2) 1.000
(1)

0.600
(4)

0.986
(9)

1.000
(1)

0.881
(1) 0.886 (6) 0.903 (9)

D/R 0.733 (9) 0.979 (2) 0.966 (13) 0.848 (2) 1.000
(1)

0.600
(4)

0.986
(11)

1.000
(1)

0.881
(1) 0.864 (3) 0.903 (11)

HMM

MR 0.900 (1) 0.938 (6) 0.961 (13) 0.804 (4) 1.000
(10)

0.400
(10)

1.000
(1)

0.973
(5)

0.821
(13) 0.932 (5) 0.880 (13)

D-R 0.900 (1) 0.792(10) 0.961 (13) 0.978 (5) 1.000
(7)

0.700
(4)

1.000
(1)

0.973
(6)

0.821
(13) 0.955 (9) 0.880 (13)

D/R 0.900 (1) 0.750
(12) 0.961 (13) 0.978 (5) 0.976

(12)
0.700
(4)

1.000
(1)

0.973
(12)

0.821
(13) 0.955 (8) 0.880 (13)

Table 10: -e recognition accuracy rates with each features subset of HMM under the D/R criterion.

Features subset
Activity 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.900 0.900 0.800 0.800 0.833 0.833 0.800 0.800 0.800 0.667 0.600 0.667 0.667
1 0.000 0.000 0.292 0.271 0.250 0.688 0.417 0.625 0.625 0.667 0.500 0.750 0.750
2 0.000 0.005 0.184 0.256 0.483 0.652 0.758 0.865 0.879 0.918 0.937 0.942 0.961
3 0.000 0.870 0.935 0.957 0.978 0.935 0.913 0.804 0.804 0.826 0.826 0.761 0.761
4 0.000 0.000 0.524 0.524 0.714 0.738 0.857 0.857 0.833 0.881 0.952 0.976 0.976
5 0.000 0.000 0.400 0.700 0.400 0.500 0.400 0.500 0.500 0.600 0.600 0.400 0.200
6 1.000 0.986 1.000 1.000 1.000 0.986 0.986 0.986 0.986 1.000 0.986 0.986 0.971
7 0.000 0.000 0.297 0.703 0.892 0.919 0.919 0.919 0.865 0.892 0.811 0.973 0.946
8 0.090 0.119 0.239 0.373 0.388 0.522 0.522 0.522 0.716 0.746 0.806 0.806 0.821
9 0.000 0.205 0.614 0.705 0.886 0.886 0.932 0.955 0.932 0.909 0.909 0.864 0.864
Total 0.170 0.255 0.447 0.523 0.638 0.747 0.768 0.817 0.837 0.858 0.853 0.878 0.880
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