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Wireless covert communication is an emerging communication technique that prevents eavesdropping. ,is paper considers the
bit error ratio (BER) problem of covert communication based on constellation shaping modulation (CSM).,e impact of carrier-
secret ratio (CSR) on BER is studied and the approximate solution of optimal CSR is obtained. ,en, we extended the conclusion
to typical communication scenarios with one and more relays where the undetectability and reliability were analyzed and
inspected. It is proved that there also exists the optimal CSR in scenarios with relays. Additionally, it is found that the
undetectability under the constraints of constant total power depends on the eavesdropper’s position, and we found an
undetectability deterioration area (UDA) in the scenario of relays. Simulation results show the existence of optimal CSR and its
impact on transmission performance.

1. Introduction

Due to the openness of wireless channels, wireless com-
munication systems are extremely vulnerable to attacks,
counterfeiting, and eavesdropping. With the advent of the
Internet of,ings (IoT) era, a large number of smart devices
are connected and controlled to meet various requirements.
Hence, it is very important to safeguard the information
against security breaches and to ensure the privacy of
communication.

To ensure the security of personal information, some
efficient anonymous authentication schemes have been
proposed to adapt to different scenarios [1–3]. Multiple
technologies are integrated to promote the realization of the
Internet of ,ings (IoT), including wireless sensor networks
(WSNs), radio frequency identification (RFID), machine to
machine (M2M), and low-power personal area networks
(PANs) [4]. To ensure the high efficiency of information
channels from the clients to the cloud server, Ahmad
proposed a new variant of the optimistic concurrency
control protocol to avoid using the upstream

communication channel all the time [5].,emost important
precondition of secure and reliable group communication is
an efficient group key distribution. Azees and Vijayakumar
proposed a computationally efficient group key distribution
scheme for secure group communication based on bilinear
pairing [6]. As the number of devices connected to sup-
porting platforms continues to increase, some proper means
for access control are demanding, such as authentication and
authorization method [7, 8], image watermarking [9], and
cloud computing [10].

However, the challenges of information security and
privacy are not limited to the above. Count on the rapid
growth of telecommunication field new challenges arises
[11]. Eavesdroppers can intercept the wireless communi-
cation signals and try to get the communication contents,
which poses a great threat to the security and privacy of the
communication. In order to ameliorate the undetectability
of private information, information hiding technology
gradually becomes necessary. As a branch of modern in-
formation hiding technology in the field of wireless com-
munication, wireless covert channels hide the transmission
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process of information that needs to be kept secret in the
process of normal wireless communication. Even if an
eavesdropper intercepts the communication signal, it cannot
be distinguished from normal wireless communication.

Based on the ubiquitous channel noise phenomenon,
modulation-type wireless covert communication modulates
the secret information into an artificial noise signal, which is
superimposed on the normal communication signal. It is the
most widely used physical-layer wireless covert communi-
cation at present. ,e basic theory and performance limit of
the covert communication in AWGN channels are discussed
in Reference [12]. It is indicated that at mostΟ(

�
n

√
) bits can

be transmitted to the receiver reliably without being detected
by the detector.

1.1. Motivations. In modulation-type wireless covert com-
munication, the bit error ratio (BER) of covert information
is usually much greater than that of the carrier signal. ,e
problems of BER are always solved by means of coding or
increasing the power of covert signals. Yet, the difficulty of
decryption and the transmission rate of the covert messages
will deteriorate with encoding. By means of increasing the
transmission power, undetectability will deteriorate [13]. In
Reference [14], relays are proposed to increase the power of
covert signal received. But it has not been simulated with
specific modulation methods, and no one has considered
whether the optimal power ratio of covert signal exists. We
plan to research the undetectability and reliability of wireless
covert communication in the scenario of relays based on a
specific modulation method. And consider whether there
exists an optimal carrier-secret ratio (CSR), which can
ameliorate the reliability of covert communication under the
premise of meeting the requirements of undetectability.

1.2. Contributions. ,e contributions of our work are as
follows:

(1) We investigated the relationship between BER, CSR,
and SNR in wireless covert channels with constel-
lation shaping modulation. We obtained the ap-
proximate solution of optimal CSR and extended it
to several scenarios with relays. With the approxi-
mate solution of optimal CSR, the process of
searching for an actual optimal CSR can be
accelerated when some optimization algorithms are
adopted such as gradient descent and conjugate
gradient.

(2) We found an undetectability deterioration area
(UDA) in the scenario of one relay and two relays,
and the undetectability deteriorates when an
eavesdropper is in it. ,e UDA can be used to avoid
the deterioration of undetectability with an improper
set of relays. Otherwise, eavesdroppers can detect in
the UDA to improve detection efficiency.

,e remainder of this paper is organized as follows: in
the next section, some background including wireless covert
channel with dirty constellation and wireless covert channel

with constellation shaping modulation is introduced; in
Section 3, we introduced the basis of our scheme including
the classic system model and binary hypothesis testing; in
Section 4, the relationship between BER, CSR, and SNR in
wireless covert channels with constellation shaping modu-
lation is investigated. ,e approximate solution of optimal
CSR is obtained and extended to several scenarios of relays,
in which undetectability deterioration areas (UDAs) were
found and analyzed; Section 5 gives the experimental results
on undetectability and reliability; and finally, Section 6
concludes the whole paper.

2. Related Works

2.1. Background. Wireless covert communication mainly
involves three factors of inspection: undetectability, reli-
ability, and communication rate. At present, there is no
special detection work to measure undetectability for noisy
wireless covert communication. References [13, 15, 16] take
KL divergence between residual and ambient noise as pa-
rameters to inspect undetectability. Reference [17] inspects
the undetectability with KS distance between residual and
ambient noise.

Reliability refers to the ability of wireless covert com-
munication to resist channel interference. Channel inter-
ference may come from the natural fading of the channel, or
from the jammer. To resist channel interference, multihop
relaying is a frequently used method [18]. Reference [19]
evaluated and optimized the covert communications by
designing the parameters of the multihop network, in-
cluding the coding rates, transmit power, and required
number of hops.

,e researchers further analyzed the covert communi-
cation capacity of multiple scenarios with multiple unfa-
vorable factors to the eavesdropper, including three aspects
of the transmitter [20, 21], receiver [22–24], and additional
nodes [25–28]. ,e methods of covert communication in-
clude artificial additional signal noise, artificial coding do-
main error, insertion of additional signal band, etc. ,e
research results in this field have also been further extended
to other communication scenarios such as relay commu-
nication [14, 29], multiantenna [30, 31], and broadcast
communication [32–34].

2.2. Wireless Covert Channel with Dirty Constellation. In the
wireless covert channel with dirty constellation (WCC-DC),
the secret message bits can be transmitted as the constel-
lation error of the normal signal in order to reduce the
suspicion by all uninformed detectors.

,e framework of a wireless covert channel with dirty
constellation is shown in Figure 1(a). ,e wireless covert
channel is implemented on the wireless communication
physical layer with OFDM structure. ,e transmitter divides
all OFDM subcarriers into secret subcarriers and normal
subcarriers. On the secret subcarrier, the carrier information
is modulated in QPSK to obtain the carrier signal, and then
the covert signal modulated by QPSK is superposed on the
carrier signal. ,e covert constellation points are rotated at a
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certain angle around normal constellation points, as shown
in Figure 1(b). On the normal subcarrier, carrier informa-
tion is modulated in QPSK to obtain the carrier signal, and
then the random noise is superimposed. ,e purpose of the
rotation of signal-loaded signals and the superimposition of
random noise is to remove the regularity of secret signals in
the constellation. ,e subcarrier partition results of the
wireless covert channel should be shared between the
transmitter and the receiver.

However, the wireless covert channel with dirty con-
stellation has a high BER when the power of covert signal is
low. When we increase the power of covert signal, the
undetectability of covert communication deteriorates.
,erefore, Cao et al. [35] proposed a covert communication
method based on constellation shaping modulation (WCC-
CSM).

2.3. Wireless Covert Channel with Constellation Shaping
Modulation. ,e general framework for the wireless com-
munication system with constellation shaping modulation is
demonstrated in Figure 2. We suppose that each subcarrier
mc of the OFDM wireless communication is modulated by
QPSK. In the proposed scheme, we can use all subcarriers to
establish the wireless covert communication. With con-
stellation shaping modulation, the secret information ms is
modulated into an artificial noise signal Ss. ,en, the arti-
ficial noise signal Ss is superimposed on the carrier signal Sc
to generate the secret subcarrier Sct.

To generate the secret artificial noise signal Ss, the cu-
mulative distribution function (CDF) FCDF of noise is es-
timated with the reference channel noise data S0.

,e secret information is denoted by
ms � (ms,1, ms,2, . . . ms,N), and the artificial noise signals Ss

are divided into I/Q vectors, which are denoted by
xI

s + j · xQ
s . Here, xI

s is the I vector of artificial noise signals

denoted by xI
s � [xI

s,1, xI
s,2, xI

s,3, . . . xI
s,N], and xQ

s is the Q
vector denoted byxQ

s � [x
Q
s,1, x

Q
s,2, x

Q
s,3, . . . x

Q
s,N]. ,e con-

stellation shaping modulation function is defined as

FSMF ms(  � Ss � x
I
s + j · x

Q
s . (1)

For shaping modulation, the transmitter firstly trans-
forms the secret informationms into continuous variables di,
and then di are mapping to artificial noise signal Sswith CDF
of the reference channel noise Snormal.

,e transform function of di is defined as follows:

di �
ms,i + r

2
. (2)

We denote r as a random number distributed in the
interval (0, 1). And the mapping function which transforms
ms into Ss is defined as

Ss � F
− 1
CDF di( . (3)

,e mapping function F− 1
CDF is the inverse function of

cumulative distribution function of Snormal. ,en, the arti-
ficial noise signal Ss is superimposed on carrier signal Sc to
generate secret subcarrier Sct.

,e received secret subcarrier is denoted by Sct. ,e I/Q
vectors of secret subcarrier Sct are denoted by xI

ct + j · xQ
ct,

the subcarrier mc can be demodulated with QPSK:

mc � Fde− QPSK x
I
ct + j · x

Q
ct , (4)

and the subcarrier mc will be modulated by QPSK again to
acquire the ideal the subcarrier Sc:

Sc � FQPSK mc(  � x
I
c + j · x

Q
c . (5)

Wedenote xI
c + j · xQ

c as the I/Q vectors of Sc.,e receiver
can obtain the ideal subcarrier xI

c + j · xQ
c , and then the re-

sidual signal (i.e., artificial noise Ss) can be extracted with
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Figure 1: ,e schematic diagram of WCC-DC: (a) the framework of WCC-DC and (b) rotation of covert constellation.
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Ss � Sct − Sc � x
I
ct − x

I
c  + j · x

Q
ct − x

Q
c . (6)

We denote the I/Q vectors of artificial noise Ss as
xI

s + j · xQ
s . ,e artificial noise Ss can be transformed into di

by the cumulative distribution function FCDF with
di � FCDF

Ss . (7)

,e receiver can demodulate the secret information ms

by the covert demodulation constellation (CDC), which is
illustrated in Figure 3.

,e four black points are the ideal constellation points;
the red regions are the distribution areas of secret subcarrier
with artificial noise. ,e function of covert demodulation
constellation is denoted by FCDC(·):

ms � FCDC di( . (8)

3. Basis of Our Scheme

3.1. System Model. Similar to the famous Alice–Bob model
[36], the standard wireless covert channel system model
includes the transmitter (i.e., Alice), the receiver (i.e., Bob),
and the detector (i.e., Willie).

Willie observes the channel to detect whether Alice
transmits or not. Willie’s probability of detection error
consists of two components: the probability of missed de-
tection and the probability of false alarm.

,e literature as seen in the aforementioned works
only mentioned the impact of finite samples (i.e., finite
m[i]) on the detection performance at Willie. It is nu-
merically shown that with noise uncertainty at Willie,
there may exist an optimal number of samples that
maximize the communication rate subject to ξ ≥ 1 − ε,
where ξ is the sum of PF (i.e., false alarm rate) and PM(i.e.,
miss detection rate) at Willie and ε is an arbitrarily small
number. We define 0< ε≤ 1 as the maximum acceptable
detection rate of Willie.

3.2. Binary Hypothesis Testing at Willie. According to the
system model shown in Figure 4, the performance elements
of the wireless covert channel mainly include two aspects:
undetectability and reliability.

In communication, Alice totally transmits n symbols
to Bob. We denote the finite block as m[i](i ∈ [1, n]),
which consists of normal information mc[i] and secret

information ms[i], while Willie is passively collecting
m[i] observations on Alice’s transmission in order to
detect the presence of her secret information (i.e.,
whether Alice is transmitting secret information). We
denote the AWGN at Bob and Willie as r[i]∼CN(0, σ2w).
,e received signal at Willie for each signal symbol is
given by

yw[i] � m[i] + r[i]. (9)

,e main purpose of Willie is to confirm whether Alice
transmits or not. We define two hypotheses, H0 and H1, to
distinguish these two cases:

H0: m[i] � mc[i],

H1: m[i] � mc[i] + ms[i].
 (10)

H0 denotes the null hypothesis, where Alice is not
transmitting secret information. H1 denotes the alter-
native hypothesis, where Alice is transmitting secret in-
formation. In the covert communication, the ultimate
goal of Willie is to minimize the total error rate (i.e.ξ). We
denote T and F as binary decisions that infer whether
Alice is transmitting or not. ,e false alarm rate and miss
detection rate are given by

PF � Pr T|H0( ,

PM � Pr F|H1( .
 (11)

Suppose Willie performs the optimal detect. Following
Pinsker’s inequality [37, 38]

QPSK
Modulation

CSM
Modulation

Wireless
Channel

QPSK
Demodulation

CSM
Demodulation

Ss

SctSc

Snormal

mc

ms

m̂c

m̂s

Ŝct ŜsQPSK
Modulation

–
+

+

+

Figure 2: ,e framework of WCC-CSM wireless covert channel.
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Figure 3: Covert demodulation constellation of WCC-CSM.
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PF + PM ≥ 1 −

����������
1
2

D P0‖P1( ,



(12)

where relative entropy D(P0‖P1) (also called KL divergence)
is defined as follows:

D P0‖P1(  � 
n
p0(x)ln

p0(x)

p1(x)
dx, (13)

where n is the value range of x. We denote p1(x) as the
distribution of a sequence m[i], which detected by Willie,
and p0(x) denotes the distribution of a sequencemc[i], which
detected when Alice is not transmitting.

,e KL divergence is always used to calculate the cor-
relation between distributions. Except KL divergence, we
can also use KS distance (also called Kolmogorov–Smirnov
statistic) to calculate the distance between distributions. ,e
KS distance is defined as follows:

DKS � max F1(x) − F0(x)


. (14)

m1[i] andm0[i] are both divided intoK bins.,e number
of the elements in m1[i] and m0[i] are denoted by h1(j) and
h0(j), j ∈ (1, 2 . . . K). ,e cumulative distribution functions
of m1[i] and m0[i] are defined as follows:

F1(x) �


x
j�1 h1(j)

n
,

F0(x) �


x
j�1 h0(j)

n
.

(15)

Willie always set threshold Γ of KL divergence and KS
distance to judge whether there is communication.

Pr T|D P0‖P1( >Γ‖DKS >Γ( ,

Pr F|D P0‖P1( < Γ‖DKS <Γ( .
 (16)

To measure the reliability of the communication, we
denote BER as follows:

Pe �
nerror

n
, (17)

where nerror is the number of error symbols.

4. Optimal Carrier-Secret Ratio for WCC-CSM

4.1. Classic Scenario. After the secret subcarrier Sct trans-
mitting through the wireless channel, the receiver can get
the output of the slow-fading channel as S � [Sct(1),
Sct(2), . . . S(N)] with

Sct[i] �
��
Pt


·

��
λ0



���

dtr



 
α · hA · Sct[i] + nA[i], (18)

where Pt denotes the transmission energy of transmitter; λ0
denotes the wavelength of the signal; hA denotes the complex
baseband equivalent channel coefficient of the main channel
between the transmitter (i.e., Alice) and receiver (i.e., Bob);
and nA denotes zero-mean circularly symmetric complex
Gaussian noise. And we also have two real variables dtr and
α ∈ R that denote the distance and path-loss exponent of the
channel between Alice and Bob, respectively. ,e path-loss
exponent α takes a value between 2 and 4. In free space,
microwave transmission has path-loss exponentα � 2.

,e detector (i.e., Willie) can receive the output as
ywillie � [ywillie(1), y(2), ...ywillie(N)] with

ywillie[i] �
��
Pt


·

��
λ0



�����

dWillie



 
2 · hW · Sct[i] + nW[i].

(19)

hW denotes the complex baseband equivalent channel
coefficient of the main channel between the transmitter (i.e.,
Alice) and detector(i.e., Willie); dWillie denotes the distance
exponent between Alice and Willie. ,e noise nW also
follows a zero-mean circularly symmetric complex Gaussian
distribution.

Information
Covert

Information
Extraction

Signal
Acquisition

Signal and Data
Analysis

Secret
Message

Normal
Message

Alice

Willie

Bob

Secret
Message

Message with
Covert Message

Detection
Result

Wireless Comunication
Channel

Figure 4: ,e framework of wireless covert communication.
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Theorem 1. 7e undetectability of wireless covert commu-
nication deteriorates with the increase of CSR.

Proof. As is mentioned above, the probability of detection
error must satisfy a lower boundary of

PF + PM ≥ 1 −

����������
1
2

D P0‖P1( 



. (20)

Considering equations (13) and (20) jointly, we can
obtain the lowest boundary is at the lowest “KL divergence,”
We denote p1(x) as the distribution of residual signal Ss,
which detected by Willie, and p0(x) denotes the distribution
of the reference channel noise S0. ,e artificial noise Ss is the
mapping of S0 ∼ N(0, σ2ω); thus, we can obtain the residual
signal Ss ∼ N(0, σ2ω) ∼ (0, P + σ2ω). P denotes the energy of
the signal, which received by Bob or Willie. ,e “KL di-
vergence” of S0 and Ss can be expressed as

D S0‖
Ss  � 

n
p0(x)ln

p0(x)

p1(x)
dx,

� 
n

1
���
2π

√
σω

e
− x2/σ2ω · ln

σs

σω
· e

x2/σ2ω− − x2/σs
 dx

� 
n

1
���
2π

√
σω

e
− x2/σ2ω · ln

������

P + σ2ω


σω
⎛⎜⎜⎝ ⎞⎟⎟⎠ +

x
2

· P

P + σ2ω  · σ2ω
⎛⎜⎜⎝ ⎞⎟⎟⎠dx

�
1
2

ln
P + σ2ω
σ2ω

−
P

P + σ2ω
 

(21)

As is illustrated in equation (21), the “KL divergence”
increases with the increase of P. Even the zero-mean cir-
cularly symmetric complex Gaussian noise with the same
variance has different distributions. In order to calculate the
“KL divergence”, we divide both S0 and Ss into K bins, the
probability in j bins are denoted by PS0(j) and PSres(j),
j ∈ (1, 2 . . . K). ,e expression (21) can be expressed as

D S0‖
Ss  � 

n
PS0(x)ln

PS0(x)

PSres(x)
dx. (22)

With the increase of K, PS0(j) and PSres(j) will approach
p0(x) and p1(x). However, if theK is too great, the PFwill be
great. If the K is too small, the PM will be great. We need to
choose a suitable value of K. In this paper, we set K� 100.

PWillie denotes the signal energy detected by Willie. Pideal
denotes the ideal signal energy. ,e “KL divergence” can be
expressed as

D S0‖
Ss  �

1
2

ln
P + σ2ω
σ2ω

−
P

P + σ2ω
 

�
1
2

ln
PWillie − Pideal

σ2ω
−

PWillie − Pideal − σ2ω
PWillie − Pideal

 .

(23)

ΔP denotes PWillie − Pideal. Taking the partial derivative
with respect toΔP, equation (23) can be expressed as

zD S0‖
Ss 

zΔ P
�
1
2
ΔP − σ2ω
ΔP2 . (24)

ΔP can be expressed as

ΔP ≈ 1 −
1

CSR
  · PWillie + σ2ω. (25)

Analysis: Considering expression equations (24) and
(25) jointly, we can get zD(S0‖

Ss)/zΔP> 0. ,e KL di-
vergence increases with the increase of ΔP. With the
PWillie unchanged, ΔP increases with the increase of CSR.
Hence, the KL divergence increases with the increase of
CSR.

,e KL divergence increases with the increase of
PWillie. When the KL divergence is greater than Γ, Willie
judges there is covert communication. When the KL di-
vergence equals to Γ, the corresponding SNR0 can be
expressed as

SNR0 � P0 ·
λ0 · h

2
0

d
2
0

. (26)

If SNR< SNR0, the covert communication will not be
detected. When the transmission power is constant, the
threshold detection distance d0 can be illustrated in Figure 5.
,e purple dotted circle is the equipower line in which the
covert communication will not be detected with “KL
divergence.”

,e probability of undetected Pud can be expressed as

Pu d � Pr Pt ·
λ0 · h

2
W

d
2
W

< SNR0 . (27)

□

Theorem 2. 7ere exists an optimal ratio between the carrier
signal and secret signal no matter what the value of SNR is.
7e BER minimizes at the optimal ratio.

Proof. ,e reliability of the system is inspected by the BER.
,e BER of QPSK is

PeQPSK �
1
2
erfc(

�
r

√
). (28)

erfc(·) denotes the Gauss error function, r denotes the
signal-noise ratio. ,e BER of covert communication is
denoted as Pecov, which can be expressed as

Pecov � 1 − 1 − Pe,mc  · 1 − Pe,sc 

� 1 − 1 − erfc
�������������
SNR · CSR

SNR + CSR + 1



   1 − erfc
�������
SNR

CSR + 1



  .

(29)

SNR denotes the signal-noise ratio of Sct to S0, CSR
denotes the carrier-secret ratio of Sc to Ss. Considering the
range of SNR and CSR, the expression (29) can be ap-
proximated as
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Pecov � 1 − 1 − Pe,mc  · 1 − Pe,sc  ≈ 1 − erf(
���������
0.75 × CSR

√
) · erf

����
SNR
CSR



 . (30)

Taking the partial derivative with respect to CSR, the
equation (30) can be expressed as

zPecov

zC SR
� −

1
��
π

√ · e
− 0.75CSR

·

����
0.75

√

����
CSR

√ · erf
�������
SNR

0.75CSR



   − erf(
����
CSR

√
) ·

1
��
π

√ · e
− SNR/CSR

·
����
SNR

√
· CSR

− 3/2
  . (31)

Analysis: Let the zPecov/zCSR equals zeros. We can
obtain

1
��
π

√ · e
− 0.75CSR

·

����
0.75

√

����
CSR

√ · erf
�������
SNR

0.75CSR



  � erf(
����
CSR

√
) ·

1
��
π

√ · e
− SNR/CSR

·
����
SNR

√
· CSR− 3/2erf

�������
SNR

0.75CSR



  · e
− 0.75CSR

·
�������
0.75CSR

√
� erf(

����
CSR

√
) · e

− SNR/CSR
·

����
SNR
CSR



.

(32)

,e equality can be established when CSR �
�������
4/3SNR

√
,

which is the optimal CSR. We can obtain the lowest BER at
the optimal CSR. ,e expression (29) can be expressed as
Figure 6.

As can be seen from Figure 6, Pecov minimizes at the
optimal CSR. And the approximate solution we obtained is
consistent with the theoretical Pecov in Figure 6. With the
approximate solution of optimal CSR, the process of
searching for an actual optimal CSR can be accelerated when
some optimization algorithms are adopted such as gradient
descent and conjugate gradient.

As wireless communication is affected by channel fading,
it is often necessary to set one or more relays to extend the
communication distance. ,erefore, the relay communica-
tion scenarios are described in details in the following
subsections. □

4.2. One-Relay Scenario. Covert information is always
transmitted with low power; we can set relays to extend the
transmission distance. Each relay employs the amplify-and-
forward (AF) protocol and has two phases. Alice transmits

signal in one phase; the relay amplifies the signal and for-
wards to Bob in another phase. We can set the positions of
Alice, Bob, Willie, and relay as illustrated in Figure 7(a). dtr
denotes the distance between Alice and Bob; dtrr denotes the
distance between Alice and relay; and drb denotes the dis-
tance between relay and Bob. If we keep the total trans-
mission energy constant, the transmission energy of Alice
and relay are both 0.5Pt, and we can obtain the output of the
covert channel:

yrelay[i] �

��
Pt

2



·

��
λ0



dtrr
· hA · Sct[i] + nA[i],

yBob[i] �

��
Pt

2



·

��
λ0



drb

· hB · yrelay[i] + nB[i].

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(33)

As is illustrated in Figure 7(a),

drb + dtrr � dtr. (34)

We can obtain the signal which is received by Bob:

dW

Willie

Alice Bob
dtr

d0 dW

Willie

dtr

Figure 5: Location diagram of Alice, Bob, and Willie.
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yBob[i] �

��
Pt

2



·

��
λ0



drb

· hB ·

��
Pt

2



·

��
λ0



dtrr
· hA · Sct[i] + nA[i]  + nB[i],

�
Pt

2
·

λ0
drb · dtrr

· hB · hA · Sct[i] + nC[i]

(35)

In free space, the signal which is received by Bob is only
about the energy and distance. So the optimization position
of the relay is in the middle of Alice and Bob (i.e., drb � dtrr),
as can be seen in Figure 7(b).

,e distance betweenWillie, Alice, and relay are denoted
by dW and dWR. ,e probability of undetectability Pud can be
expressed as

Pud � Pr
Pt

2
·
λ0 · h

2
A

d
2
W

< SNR0  · Pr
Pt

2
·
λ0 · h

2
B

d
2
WR

< SNR0 .

(36)

Construct a coordinate system with Alice as the origin of
the coordinate axis. We can obtain the coordinates of Alice
(0, 0), Bob (2dtrr, 0), relay (dtrr, 0), andWillie (XWillie, YWillie).

Willie

Alice
dtrr

dtr
Bob

Willie

ddtrr

Bob

drb

relay

(a)

Willie

Alice
dtrr

dtr Bobrelay
dWR

Willie

ddtrrtrr

bBobrelay
dWRWRdW

(b)

Figure 7: Diagram of relay location: (a) relay at random position and (b) relay in middle.
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Figure 6: BER curve in AWGN channel.
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In the AWGN channel, the power of signal received by
Willie is just related to distance and transmit power. We can
get “equipower lines” in the scenario of no relay and one
relay.

,en, the power detected by Willie can be expressed as

2 XWillie − dtrr( 
2

+ Y
2
Willie  � XWillie( 

2
+ YWillie( 

2
.

(37)

Equation (37) can be expressed as

XWillie − 2dtrr( 
2

+ Y
2
Willie �

�
2

√
dtrr( 

2
. (38)

We denoted the circle expressed in equation (38) as the
undetectability deterioration area (UDA). ,e undetect-
ability deteriorates with setting relay when Willie is in the
UDA. And the eavesdropper can detect in the UDA to
improve detection efficiency.

It is illustrated in Figure 8, the green dotted line is UDA.
If Willie is in the UDA, the Pud will decrease in the scenario

of one relay and the consequent deterioration of unde-
tectability. Correspondingly, the undetectability will ame-
liorate if Willie is outside the green dotted circle. When
William is on the green dotted line, the Pud will be constant.

,e BER of covert communication Pecov.r1 can be
expressed as

Pecov.r1 � 1 − 1 − Pe,mc1  · 1 − Pe,sc1  1 − Pe,mc2  · 1 − Pe,sc2  + o(Δ) ≈ 1

− 1 − erfc
��������������
2SNR · CSR

2SNR + CSR + 1



   1 − erfc
�������
2SNR
CSR + 1



   

2

.

(39)

Referring expression (32), we can obtain the local
minimum of Pecov.r1 at CSR �

�������
4/3SNR

√
, which is the op-

timal CSR.

4.3. Two-Relay Scenario. Based on the above, we discuss the
two-relay scenario. If we keep the total transmission energy
constant, the transmission energy of Alice, relay1, and relay2
are all Pt/3. We can obtain the output of the covert signal:

yrelay1[i] �

��
Pt

3



·

��
λ0



dtrr
· hA · Sct[i] + nA[i],

yrelay2[i] �

��
Pt

3



·

��
λ0



dtrr
· hB · yrelay1[i] + nB[i],

yBob[i] �

��
Pt

3



·

��
λ0



dtrr
· hC · yrelay2[i] + nC[i].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

As can be seen in Figure 9, the distances between Willie
and Alice, relay1, and relay2 are denoted by dWR, dWR1, and
dWR2, respectively.

,e probability of undetected Pud can be expressed as

Pu d � Pr
Pt

3
·
λ0 · h

2
A

d
2
W

< SNR0  · Pr
Pt

3
·
λ0 · h

2
B

d
2
WR1
< SNR0  · Pr

Pt

3
·
λ0 · h

2
C

d
2
WR2
< SNR0 . (41)

Further extension, the probability of undetectability for
n hops can be expressed as

Pu d � 
n

Pr
Pt

n
·
λ0 · h

2
n

d
2
Wn

< SNR0 . (42)

Willie

Alice

(dtrr,0)

y

Bobrelay

Willie

((ddtrrtrr,0),0)

relay

(0,0) (2dtrr,0)

x

(XWillie,YWillie)

Figure 8: Power comparison of classic scenario and one relay
scenario.
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,e UDA of relay1 can be expressed as

3 XWillie − dtrr( 
2

+ Y
2
Willie  � X

2
Willie + Y

2
Willie. (43)

Equation (43) can be converted to

XWillie −
3
2
dtrr 

2
+ Y

2
�

�
3

√

2
dtrr 

2

. (44)

,e UDA of relay2 can be expressed as

3 XWillie − 2dtrr( 
2

+ Y
2
Willie  � X

2
Willie + Y

2
Willie. (45)

Equation (45) can be converted to

XWillie − 3dtrr( 
2

+ Y
2

�
�
3

√
dtrr( 

2
. (46)

As can be seen in Figure 10, the circles expressed in
equations (44) and (46) are UDAs. If Willie is in the blue or
green dotted circle, the undetectability will deteriorate.

Correspondingly, the undetectability will ameliorate if
Willie is outside the blue and green dotted circles.

,e BER of covert communication Pecov.r2 can be
expressed as

Pecov.r2 � 1 − 1 − Pe,mc1  · 1 − Pe,sc1  1 − Pe,mc2  · 1 − Pe,sc2  1 − Pe,mc3  · 1 − Pe,sc3  + o(Δ) ≈ 1

− 1 − erfc
��������������
3SNR · CSR

3SNR + CSR + 1



   1 − erfc
�������
3SNR
CSR + 1



   

3

.

(47)

It has been proved that there exists an optimal CSR,
and we can obtain the minimum of Pecov.r2 at CSR ��������
4/3SNR

√
.

5. Experimental Result

5.1. Experimental Setup. In this section, we inspect the
undetectability and reliability to benchmark the proposed
scheme. We set the wireless communication on an
802.11a/g PHY layer. ,e wireless covert channel is
performed on all 100000 symbols. In transmissions, there
are 48 subcarriers in a symbol. Simulation experiments are
carried out in wireless channel models of AWGN channel
models [39]. In some simulations, the wireless covert
channel with dirty constellation (WCC-DC) is chosen for
comparison. ,e undetectability is inspected by “KL di-
vergence” and “KS distance”. ,e undetectability mea-
sures of I vectors, Q vectors, magnitudes, and phases of
constellation errors are presented in the range of trans-
mission power SNR � 10, . . ., 40 dB. ,e reliability is
measured by BERs.

5.2. Undetectability. Willie (i.e., detector) observes the
channel to judge whether Alice (i.e., transmitter) is trans-
mitting in the covert channel or not. ,ere must be a
threshold Γ to compare the value of “KL divergence” and “KS
distance”. If the Γ is great, the PF will be too great. If the Γ is
small, the PM will be too great. In this paper, we set the Γ of
four measures of “KL divergence” as [0.04, 0.04, 0.055,
0.055], and the Γ of “KS distance” as [0.025, 0.025, 0.025,
0.025].

In this section, we set the number of bins K� 100. Four
samples were chosen for comparison, and the samples are as
follows: WCC-DC with CSR� 5 dB and CSR� 10 dB, WCC-
CSM with CSR� 5 dB, and CSR� 10 dB.

As can be seen in Figure 11, the “KL divergence” of
WCC-CSM with CSR� 5 dB and CSR� 10 dB meet the
threshold Γ [0.04, 0.04, 0.055, 0.055] in the range of
SNR� 10, . . ., 40 dB. ,e resulting KL divergence is lower
than the KL divergence achieved with WCC-DC.

In Figure 11(a), WCC-DC with CSR� 10dB meets the
threshold Γ of I vectors in the range of SNR� 10, . . ., 30 dB.,e
“KL divergence” of WCC-DC with CSR� 10dB exceeds the

Bob

Willie

Alice

dtrr

dtr dWR1dWR

Willie

ddtrr

dWR1dWR

relay1

dWR2

relay2

Figure 9: Diagram of two relays location.

Bob

Willie

Alice

3dtrr

Willie

relay1 relay2

3
2 dtrr 3dtrr

y

x

Figure 10: Power comparison of the classic scenario and two-relay
scenario.
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threshold Γwhen SNR� 40dB, andWCC-DCwithCSR� 5dB
exceeds the threshold in the range of SNR� 10,. . .40dB. In
Figure 11(b), the “KL divergence” of WCC-DC with
CSR� 5dB exceeds the threshold Γ at SNR� 23dB. ,e “KL
divergence” of WCC-DC with CSR� 10dB exceeds the
threshold Γ at SNR� 33dB. In Figures 11(c) and 11(d), WCC-
DC with CSR� 5dB exceeds the threshold Γ at SNR� 23dB
and SNR� 38dB, andWCC-DCwith CSR� 10dB exceeds the
threshold Γ at SNR� 28dB and SNR� 37dB.

As can be seen in Figure 12, WCC-CSM meets the
threshold ΓandWCC-CSM has a smaller “KS distance” than
WCC-DC in the range of SNR� 10, . . ., 40 dB. The “KS

distance” of WCC-CSM changes little with different CSRs.
And we can regulate the CSR without exceeding the
threshold Γ of “KS distance.” In Figures 12(a)–12(c), the “KS
distance” of WCC-DC with CSR� 5 dB exceeds the
threshold at SNR� 10 dB. In Figure 12(c), the “KS distance”
of WCC-DC with CSR� 10 dB exceeds the threshold at
SNR� 13 dB.

We can come to a stage conclusion, WCC-CSM meets
the threshold of “KL divergence” and “KS distance” in the
range of SNR� 10, . . ., 40 dB. Hence, we can regulate the
CSR to reduce the BER without exceeding the threshold of
“KL divergence” or “KS distance.”
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Figure 11: KL divergence of constellation errors with different CSRs: (a) KL divergence of I vectors, (b) KL divergence of Q vectors, (c) KL
divergence of magnitudes, and (d) KL divergence of phase.
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5.3. Reliability. ,e reliability of the system is measured by
the BER. As is illustrated in expression (28), the BER de-
creases with the increase of SNR. In Section 4.1, the optimal
CSRwas proposed. And the approximate solution of optimal
CSR is obtained and extended to several scenarios (one relay,
two relays). ,e BER curves of wireless covert channels in
several scenarios are shown in Figure 13. ,e position of
Alice, Bob, relay1, and relay 2 was shown in Section 4.

In Figure 13(a), the BER of the classic scenario with
different SNRs was presented in the range of CSR� 1, 2, . . .,
20 dB. ,e BER of WCC-CSM with SNR� 15 dB minimizes

at CSR� 7 dB, which is 10% lower than the BER at
CSR� 15 dB. ,e approximate solution of optimal CSR is
5 dB. ,e minimizing BER of WCC-CSM with SNR� 30 dB
is 4% at CSR� 8 dB, and the approximate solution of optimal
CSR is 7 dB. ,e minimizing BER of WCC-CSM with
SNR� 40 dB is 0.05% at CSR� 9 dB. ,e theoretical ap-
proximation of the optimal CSR·with SNR� 40 dB is 7.5 dB.

It is proved that an optimal CSR exists and the BER
minimizes at the optimal CSR.With the increase of SNR, the
optimal CSR gradually increases. But the theoretical ap-
proximate value of optimal CSR is slightly lower than the
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Figure 12: KS distances of constellation errors with different CSRs: (a) KS distances of I vectors, (b) KS distances of Q vectors, (c) KS
distances of magnitudes, and (d) KS distances of phase.
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simulation results. As can be seen in Figures 13(b) and 13(c),
the optimal CSR exists and is slightly higher than the the-
oretical approximation in scenarios of relays. ,e BER
minimizes at the optimal CSR.

Comparing the BER under the constraints of constant
total power, suppose that the SNR in the classic scenario is
20 dB. ,e SNR in the scenario of one relay is 23 dB, and the
SNR in the scenario of two relays is 25 dB. As can be seen in
Figure 13(d), the reliability of classic scenario is optimal and
the BER minimizes at the optimal CSR. No error correction

coding is used in the paper, and the reliability deteriorates in
the scenarios of relays. It is proved that simply setting relays
without increasing the total power, the BER of covert
communication will deteriorate.

Simulation experiments are carried out in wireless
channel models of AWGN channel. As can be seen in
Figure 13, we can obtain minimum Pecov, Pecov.r1, and Pecov.r2
at the optimal CSR in the AWGN channel. And the optimal
CSR achieved in simulation is slightly higher than the
theoretical approximation.
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Figure 13: BER of wireless covert channel in typical scenarios. (a) BER of classic scenario with different SNR. (b) BER of one relay with
different SNR. (c) BER of two relays with different SNR. (d) Comparison of BER of several scenarios.
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6. Conclusions

Reliability and undetectability are the main aspects of
wireless covert communication. We considered the BER
problem of covert communication based onWCC-CSM.We
studied the impact of carrier-secret ratio (CSR) on the BER
and investigated the relationship between SNR, CSR, and
BER. We obtained the approximate solution of optimal CSR
and extended it to the scenario of relays. With the ap-
proximate solution of optimal CSR, the process of searching
for an actual optimal CSR can be accelerated. Furthermore,
we found that the undetectability under the constraints of
constant total power depends on the eavesdropper’s posi-
tion. And we found an undetectability deterioration area
(UDA) in the scenario of relays, and undetectability dete-
riorates with setting relays when an eavesdropper is in the
UDA.

,e simulation proved that there exists an optimal CSR
in the AWGN channel. ,e transmitter can obtain greater
reliability with great undetectability at the optimal CSR.
Additionally, the reliability deteriorates with setting relays
under the constraints of constant total power. Some error
correction coding or other methods must be adopted,
avoiding the deterioration of BER.

To improve the detection capability of Willie, it is
necessary to find a better way to detect the covert com-
munication except “KL divergence” or “KS distance” in our
future work.
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With the extensive application of artificial intelligence technology in 5G and Beyond Fifth Generation (B5G) networks, it has
become a common trend for artificial intelligence to integrate into modern communication networks. Deep learning is a subset of
machine learning and has recently led to significant improvements in many fields. In particular, many 5G-based services use deep
learning technology to provide better services. Although deep learning is powerful, it is still vulnerable when faced with 5G-based
deep learning services. Because of the nonlinearity of deep learning algorithms, slight perturbation input by the attacker will result
in big changes in the output. Although many researchers have proposed methods against adversarial attacks, these methods are
not always effective against powerful attacks such as CW. In this paper, we propose a new two-stream network which includes
RGB stream and spatial rich model (SRM) noise stream to discover the difference between adversarial examples and clean
examples. *e RGB stream uses raw data to capture subtle differences in adversarial samples. *e SRM noise stream uses the SRM
filters to get noise features. We regard the noise features as additional evidence for adversarial detection. *en, we adopt bilinear
pooling to fuse the RGB features and the SRM features. Finally, the final features are input into the decision network to decide
whether the image is adversarial or not. Experimental results show that our proposed method can accurately detect adversarial
examples. Even with powerful attacks, we can still achieve a detection rate of 91.3%. Moreover, our method has good trans-
ferability to generalize to other adversaries.

1. Introduction

Deep learning has recently led to significant improvements
in many fields, such as computer vision [1–3], speech rec-
ognition [4, 5], and natural language processing [6, 7]. With
the continuous development of 5G communication and
artificial intelligence technology, the two have developed
frommutual independence to deep integration.*e artificial
intelligence promotes the intelligent development of the
communication network itself, and the industry widely
believes that 5G and artificial intelligence are general-pur-
pose technologies (GPTs) [8]. Many have explored the ap-
plication of artificial intelligence in 5G communication in
the form of investigation or empirical research [9, 10].
Under this trend, communication artificial intelligence has

developed rapidly and vigorously. For example, Chinese
operators provide services to users and partners by AI center
[11]. *e AI center is based on artificial intelligence algo-
rithms, encapsulates scene-oriented services, and provides
applications and services in customer sales and customer
service.

Although deep learning is powerful, there are security
risks in deep learning services provided by neural network
models. For example, in customer sales services deployed on
5G platforms, the main application of artificial intelligence
technology is image classification. *is service effectively
recognizes the image data through the image classification
model. Although the image classification model provides
great convenience for users, the inherent fragile of deep
learning is a weakness of the service. Recent studies [12, 13]
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have shown that an attacker can create adversarial samples
by adding small disturbances to the original data. *e
disturbances are very small, and they are almost invisible to
the human eye. If the attacker inputs adversarial samples
into the recognition model, the model will not correctly
recognize the samples.

*e deep learning model deployed on the 5G platform
provides intelligent image recognition services. Hackers
attack the deep learning model, causing errors in the
deployed image recognition service. Specifically, the attacker
adds a small disturbance to the original input to cause a huge
change in the output of model. Most adversarial attacks
currently existing are aimed at image classification. To en-
sure the security of 5G-based deep learning services, we
mainly research the detection method of adversarial samples
to protect against image classification models. Although
methods [14–17] are proposed to detect adversarial exam-
ples, these methods always fail when faced with a powerful
attack like the CW. To solve the adversarial attack on the
image classification service based on the 5G platform, we
mainly research the detection method of adversarial sam-
ples. In our method, we regard adversarial disturbances as
special noise features that could provide additional evidence
for adversarial sample detection. Since adversarial distur-
bance and image steganography both modify the picture
directly, destroying the correlation between the original
image pixels, we can apply the method of steganalysis to the
field of adversarial sample detection. In fact, Goodfellow
et al. also proposed that adversarial attacks can be regarded
as accidental steganography [18].

In this paper, we use rich features extracted from the
spatial rich model (SRM) [19] to help the deep learning
model for detecting adversarial examples. *e SRM is a
traditional approach to extract noise features in steganalysis
[20]. *e emergence of steganography promoted the de-
velopment of steganalysis. Steganography is to add secret
information to the original carrier, making the information
hidden in the carrier difficult to detect [21]. *e steg-
anography of the picture changes the pixel value of the
picture, which will destroy the correlation between adjacent
pixels of the original image. *erefore, steganalysis can be
performed according to this. Steganalysis determines
whether the image has steganalysis by modeling the cor-
relation between adjacent pixels of the image. Traditional
steganalysis algorithms are based on manual feature ex-
traction. After continuous research by many scholars, SRM
has been able to extract 30,000 multidimensional features
from the data through improved high-pass filters (HPFs)
[22]. *e design of these high-pass filters is mostly based on
experience. SRM uses 30 different pixel predictors. *e pixel
predictor is linear or nonlinear. Each linear predictor is a
shift-invariant finite-impulse response filter which is de-
scribed by a kernel matrix Kpred. *e residual R is a matrix
which has the same dimension as Y:

R � K
pred ∗Y − Y ≜K∗Y, (1)

where the symbol∗ denotes the convolution with Y mir-
rorpadded. *us, R has the same dimension as Y.

*ere are six types of residuals: first-order, second-order,
third-order, SQUARE, EDGE 3 × 3, and EDGE 5 × 5 [19].
Table 1 shows the calculation methods of first-order, second-
order, and third-order linear residuals. For example, one
simple linear residual is Rh

ij � yij+1 − yij, which is the dif-
ference between a pair of horizontally adjacent pixels. In this
case, the residual kernel is K � (−1, 1), which means that the
pixel value is predicted as its horizontally neighboring pixel.
We can use this method to extract the noise features of other
directions.

SQUARE, EDGE 3 × 3, and EDGE 5 × 5 linear residuals
use more directional neighborhood pixels in their calcula-
tions. Tables 2 and 3 show SQUARE, EDGE 3 × 3, and
EDGE 5 × 5 SRM filter kernels.

Our model consists of a two-stream network and a
decision network. *e RGB stream is used to capture subtle
differences, such as contrast differences of a RGB image. *e
SRM noise stream is used to capture the noise inconsistency
between clean samples and adversarial samples. We use 30
typical SRM filters to extract noise features from adjacent
pixels. *e noise features are used as the SRM noise input of
the two-stream model. *en, we use bilinear pooling [23] to
fuse the features extracted from the two streams. Bilinear
pooling used for it can fuse the features of the two streams
while preserving spatial information. Finally, we use the fully
connected layer as a decision network to detect adversarial
samples.

Our contributions are summarized as follows:

(1) To improve the security of 5G-based deep learning
services, we propose a new two-stream adversarial
example detection model and perform end-to-end
training. *is method can obtain rich feature in-
formation from noise features and provide addi-
tional evidence for adversarial example detection.
Even with a powerful CW attack, we can still achieve
a detection rate of 91.3%.

(2) We choose the spatial rich model (SRM) to generate
linear and nonlinear noise features. *e 30 SRM
filters could amplify the difference in the noise do-
main and get additional rich information to help
detect adversarial samples.

*e rest of this paper is organized as follows. Section 2
describes the related work about adversarial sample attacks
and against deep learning models. Section 3 introduces the
proposed two-stream network. Section 4 analyzes the ex-
perimental results. Finally, Section 5 concludes the paper.

2. Related Work

We briefly review the related work in adversarial attack and
adversarial defense in this section.

2.1. Security Issues of 5G-Based Deep Learning Services.
Due to the inherent vulnerability of neural networks, 5G-
based deep learning services face the same threat of
adversarial attacks. Deep learning (including deep rein-
forcement learning) is vulnerable to adversarial examples
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[24]. *ese modified inputs can trick the model into making
the wrong decision. Hackers may use this vulnerability to
attack services based on deep learning [25]. Adversarial
attacks can be divided into black-box attacks and white-box
attacks. *e black-box attack can only obtain the identifi-
cation result of the inputs through the API interface of the
platform but cannot get the internal parameters of the
model.*e white-box attack can get all the parameters of the
neural network model deployed on the platform. *erefore,
white-box attacks also represent the highest level of attack.

2.2. Deep Learning Attack. *e deep learning algorithm is a
weakness of deep learning services based on 5G. Because of
the inherent vulnerability of neural networks [26], a small
adversarial disturbance can cause a huge change in the
output of the model. In addition, scholars have proposed
attacks on the model optimization process and regulariza-
tion process [27, 28].

Goodfellow et al. [18] proposed fast gradient notation
(FGSM) to generate adversarial examples. *e main idea of
FGSM is to make the disturbance direction consistent with
the gradient direction to maximize the change in the loss
function value and then maximize the change in the clas-
sification result of the classifier.

Moosavi-Dezfooli et al. [28] proposed DeepFool to find
the shortest distance from the clean images to the decision
boundary of the adversarial images. DeepFool is a non-
targeted attack method to generate an adversarial example
by iteratively perturbing an image. Experiments show that
the DeepFool method produces less interference than FGSM
and has similar fool rates.

Carlini and Wagner [27] proposed the CW method to
generate adversarial examples. CW is an adversarial example
attack algorithm based on objective function optimization. It
restricts the L∞, L2, and L0 norms to make the disturbance
undetectable. Experiments show that defensive distillation is
completely unable to defend against these three kinds of
attacks. *e CW method is a strong attack which is difficult
to defend.

2.3. Deep Learning Defense. Recent research [29] has shown
that adversarial examples not only mislead classifiers in
electronic data but also have the same effect in the physical
world. In view of the great harm of adversarial examples,
many scholars have studied the defense of adversarial
examples.

*e adversarial training proposed by GoodFellow et al.
[18] is an earlier measure to defend against samples. *e
main method is to train the adversarial samples and the
normal samples simultaneously in the training stage to
enhance the robustness of the model. However, confron-
tational training requires a large number of adversarial
examples to ensure a high detection rate, which will lead to
huge training costs.

Hinton et al. [15] first introduced the distillation defense
method for small models to imitate large models. Later,
Papernot et al. [30] adopted the distillation method to de-
fend adversarial samples. *is method makes the decision
boundary of the model smoother and can effectively defend
against the adversarial samples generated by FGSM, BIM,
and other algorithms. Compared with adversarial training,
its training cost is lower. However, this method is not ef-
fective against CW attacks.

Dziugaite et al. [16] studied the defensive effect of JPG
feature compression against FGSM attacks.*e limitation of
this defense method is that large-scale compression which
will lead to the decline of the accuracy of legal sample
classification. For the sample with large interference, it is not
enough to eliminate interference.

Due to the difficulty of reclassification of antagonistic
samples, many researchers turn to the detection of adver-
sarial samples.

Liang et al. [17] proposed an adversarial sample de-
tection method based on adaptive denoising. In this
method, antagonistic interference is regarded as artificial
noise, and noise reduction technology is used to reduce
its adversarial effect. Liu et al. [31] proposed to apply
steganalysis to detect adversarial examples. *is work
found a relevant connection between computer vision
and adversarial examples of steganalysis. Feinmanet et al.
[32] proposed a method to detect adversarial examples
using the Bayesian uncertainty of the network and the
method of kernel density estimation.

2.4. ProposedMethod. We designed a two-stream network
to detect adversarial examples. As shown in Figure 1, the
RGB stream directly uses the RGB image for input and the
SRM stream uses the noise features extracted by the SRM
filter as the input. *en, we use bilinear pooling to fuse

Table 1: *e SRM linear residual filters, where Rh
ij denotes the

linear residual of pixel at the position (i, j) in horizontal direction
and yij denotes the pixel at the position (i, j).

Residual type HPF Linear residual
First-order (1, −1) Rh

ij � yij+1 − yij

Second-order (1, −2, 1) Rh
ij � yij−1 − 2yij + yij+1

*ird-order (1, −3, 3, −1) Rh
ij � yij−1 − 3yij + 3yij+1 − yij+2

Table 2: *e SQUARE SRM filter kernels.

−1 2 −1
2 −4 2

−1 2 −1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

−1 2 −2 2 −1
2 −6 8 −6 2

−2 8 −12 8 −2
2 −6 8 −6 2

−1 2 −2 2 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 3: *e EDGE SRM filter kernels.

2 −1
4 2
2 −1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

−2 2 −1
8 −6 2

−12 8 −2
8 −6 2

−2 2 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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the features extracted by the two CNNs. Finally, we input
the final features into the decision network for classifi-
cation. In addition, our trained model maintains a good
detection rate against the adversarial examples generated
by black-box models.

2.5. SRM Feature Extraction. Both adversarial attacks and
steganography on images make perturbations on the pixel
values, which alter the dependence between pixels. However,
steganalysis can effectively detect modifications caused by
steganography via modeling the dependence between ad-
jacent pixels in natural images. So, we can also take ad-
vantage of steganalysis to identify deviations due to
adversarial attacks. Inspired by the work of Liu [31] and
Zhou [33], we decided to use the SRM filter to amplify the
local noise disturbance of the image and use it as additional
evidence to assist the decision-making network.

Although the work of Liu et al. [31] has used the SRM
filter for adversarial sample identification and proved the
effectiveness of the method, these works only consider the
linear SRM noise features. In our work, we simulated the
manual extraction method of SRM linear residuals. *e
linear residuals are obtained by convolving the image with a
high-pass filter with a shift-invariant kernel. Specifically, we
used 30 basic SRM filters and then convolved this convo-
lution kernel with the original image to gather the basic
noise features. *e definition of residual filters is shown in
Tables 1–3. Further, we divided the filters into five categories:
first-order, second-order, third-order, SQUARE 3 × 3
+EDGE 3 × 3, and SQUARE 5 × 5 +EDGE 5 × 5. *e

number of filters for each category is 8, 4, 8, 5, and 5,
according to the different directions of pixel feature ex-
traction. Specifically, for the first- and third-order, we used 8
filters to extract pixel features in eight directions
↑, ↓,←,⟶ ,↗,↙,↖,↘{ }; for the second-order, EDGE
3 × 3, and EDGE 5 × 5, 4 filters were used to extract pixel
features in four directions ↑, ↓,←,⟶{ }; for SQUARE 5 ×

5 and SQUARE 5 × 5, we used 1 filter to extract pixel fea-
tures. Based on the point view of more comprehensive
characteristics of SRM’s nonlinear residual statistical char-
acteristics, we used the linear residual features obtained by
SRM filters in the spatial domain to obtain nonlinear re-
sidual features by nonlinear processing.

We take the features extracted by the second-order
SRM filter as an example to introduce how to obtain
nonlinear residual features. First, we can predict pixel Yi,j

from its horizontal or vertical neighboring pixels, thus
obtaining 2 horizontal and 2 vertical residual. *en, we
get 4 direction residuals: R⟶ij , R←ij , R

↑
ij, andR

↓
ij. Secondly,

we can use these 4 residuals to compute 2 nonlinear
“minmax” residuals as follows:

R
(max)
ij � max R

→
ij , R
←
ij , R
↑
ij, R
↓
ij ,

R
(min)
ij � min R

→
ij , R
←
ij , R
↑
ij, R
↓
ij .

(2)

*e other four types of nonlinear residual features are
calculated in the same way. In this way, the nonlinear re-
sidual features of the 10 channels are obtained. Finally, we
get the linear features of 30 channels and the nonlinear

RGB Stream Input

SRM Stream Input

SRM Conv Layer

RGB Conv Layer

Decision Network

PredictionBilinearPool
SRM Filters

Figure 1: Illustration of our two-stream network (FNet). Color code used is as follows: light green�Conv, light blue� batchnorm+ tanh,
deep blue� batchnorm+ReLU, yellow� avg pooling, orange�max pooling, and purple� fully connected layers. *e RGB stream uses
original images as input and captures subtle difference like contrast difference and unnatural pixels from the RGB features.*e noise stream
first obtains noise feature maps through SRM filter layer and leverages the noise features to provide additional evidence for adversarial image
detection. Bilinear pooling combines the features extracted by the two streams. Finally, passing the combined features through a decision
network, the network generates the predicted label and determines whether the input image is adversarial or not.
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features of 10 channels. *en, we combine the nonlinear and
linear features to get noise features of 40-channel as the
input of the noise stream.

2.6. Two-Stream Network. We adopt a two-stream network
with RGB stream and spatial rich model (SRM) noise stream
to detect adversarial images.*emodel structure designed is
shown in Figure 1. *e role of the RGB input in our network
is to catch significant disturbances. However, for tampered
images that have been carefully processed to hide stitching
boundaries and reduce contrast differences, it will be difficult
to accomplish the task using RGB streams alone. In addition,
when generating adversarial samples, we often use the Lp

norm to restrict adversarial disturbances. *erefore, the
generated adversarial sample disturbances are often invisible
to the human eye. In this case, it is difficult to complete the
detection of antagonistic samples only by relying on the RGB
stream. Inspired by the work of Liu [31] and Zhou [33], we
adopt SRM noise features as additional evidence to deter-
mine whether the input image is adversarial or not.

In our model, we used RGB stream to simulate visual
tampering and detect image disturbance with large distur-
bance; SRM noise stream is used to extract and amplify noise
features by SRM filters, which is used as the additional
evidence for adversarial image detection (see Table 4 for the
specific network structure). In the structure of the SRM
noise stream network, we add an ABS layer to reduce the
influence of symbols on the model decision. *en, we use
bilinear pooling [23] to fuse the SRM noise stream and the
RBG stream. Bilinear pooling is proposed for the fine-
grained classifier. It has two CNN network structures, and
the features extracted by the two CNN networks are fused
through bilinear pooling. After the fused features pass
through a decision network consisting of two fully con-
nected layers, the final predicted result is obtained (see
Figure 1). We use cross-entropy loss that leads to the fol-
lowing objective function:

L � Lcross fD BP fRGB(x), fN fSRM(x)( ( ( , y( , (3)

where x is the input image, y is x’s label, fSRM denotes the
SRM network with fixed weights, fRGB and fN are the RGB
stream network and the noise stream network, BP denotes
the bilinear pooling, fD denotes the decision network, and
Lcross denotes the cross-entropy loss.

*e model accepts 32 ∗ 32 ∗ 3 (width ∗ height
∗ channels) images and inputs two types of labels. *is
model is trained by the SGD optimizer. *e parameters of
the SGD optimizer are set as follows: momentum� 0.9 and
weight_decay� 0. *e hyperparameters of the network are
set as follows: lr� 0.1 and batch_size� 64, and the training is
designed to be 100 epoch, and lr is automatically changed to
0.1 times the original value every 30 epoch.

3. Experiments

In this section, we present an experimental evaluation of our
method and compare it with several detection methods.

3.1. Experimental Setting

3.1.1. Dataset. We evaluate the detection method on the
CIFAR-10 dataset. *e CIFAR-10 dataset contains 60,000
32 × 32 color pictures, of which include 50,000 images for
training and 10,000 images for testing.

For adversarial example datasets, we adopted three at-
tack methods of FGSM, CW, and DeepFool. We used three
methods to attack VGG16 [34], Resnet50 [35], and LeNet
[36] and finally got 9 adversarial example datasets. For
convenience, we named the adversarial example dataset
generated by the VGG16 as “Adv-VGG16-Set.” We used the
Adv-VGG16-Set to train the two-stream network model
(FNet) and baseline models. *e datasets generated by
attacking ResNet50 and LeNet are used for black-box testing
to test the models trained on Adv-VGG16-Set. *e pa-
rameter settings of the three attack methods are shown in
Table 5. Previous work showed that nontargeted attack is
easier to succeed, results in smaller perturbations, and
transfers better to different models. So, we tested ourmethod
by nontargeted adversarial examples.

3.1.2. Classifier. For the CIFAR-10 dataset, we trained three
models: VGG16 [34], ResNet50 [35], and LeNet [36]. *ese
models were trained by the SGD optimizer
(momentum� 0.9; weight_decay� 0), and the hyper-
parameters are set as follows: lr� 0.01, batch_size� 64,
epoch� 30, and set lr to be multiplied by 0.1 times for every
10 epochs.

3.1.3. Baseline Models. We compared our method (FNet)
with other detection methods including RGB-Net, SRM-
Net, and KD+BU [32]. RGB-Net is a single-stream network
that only inputs RGB images for judgment. It has the same
network structure as the RGB stream part of the two-stream
network we designed; similarly, SRM-Net only has the SRM
part of our network. KD+BU [32] uses Bayesian uncertainty
and model kernel density estimation to determine whether
the sample is adversarial. For convenience, we use FNet to
refer to our method.

3.1.4. Attack Methods. We adopted three attack methods
from the Adversarial Robustness Toolbox designed by
Microsoft [37]: FGSM [18], CW [27], and DeepFool [28].
For RGB-NET, SRM-NET, KD+BU, and FNet, we all used
Adv-VGG16-Set for training. In training, we train a new
detector using only one attack method each time.

3.1.5. Evaluation Metric. We use precision score, recall
score, and area under ROC curve (AUC) score as the
evaluation metric of the model [38]. *e closer the AUC
score is to 1, the larger the area under ROC curve and the
better the model.

*e calculation formula of the metric is as follows:
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precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

(4)

where TP denotes true positive rate, FP denotes false positive
rate, and FN denotes false negative rate.

4. Experimental Results

On the CIFAR-10 dataset, Tables 6–8 show the precision
and recall scores of different detection methods on the
normal images and adversarial images. *e bold values in
tables represent the results of experiments conducted by
our method (FNet). We can see that RGBNet and our
method (FNet) have excellent effects in defending against
both white-box attacks and black-box attacks. *e pre-
cision score of FNet reaches 93.2% on adversarial images
generated by DeepFool on VGG16. Experimental results
show that it is difficult to detect adversarial examples
generated by the CW method. SRM-Net is almost invalid
against CW. KD + BU and RGB-Net achieve low scores
when detecting CW. However, FNet improves KD + BU
by more than 30%, and the precision score of FNet
reaches 90.8% on detecting adversarial examples gener-
ated by CW. As we mention above, all detectors are
trained on Adv-VGG16-Set. In addition, we can see that

our method with good transferability can well detect
adversarial samples generated by black models. SRM-Net
and KD + BU are almost invalid against adversarial ex-
amples generated on black models, while the precision
score of FNet reaches 90.1% against CW.

Figure 2 shows ROC curves of detection methods on
CIFAR-10. *e figures in the first row show the detector
performance of the three attack methods of different
detection methods on the adversarial samples generated
by the white-box model (VGG16). We can see that the
AUC score of FNet is from 0.963 to 0.976, and the AUC
score of KD + BU is 0.795 to 0.837. *e figures show that it
is difficult to detect CW attack. *e AUC score of SRM-
Net is 0.525, and the AUC score of KD + BU is 0.795. Our
method achieves the best performance when detecting the
adversarial samples generated by the white-box model.
*e figures in the second and third rows show the de-
tector performance of different methods on the adver-
sarial samples generated by the black-box model.
Experimental results show that the AUC score of FNet
reaches 0.954. KD + BU and SRM-Net achieve low AUC
score when detecting samples generated by the black-box
model. *e best AUC score of KD + BU is 0.715 when
detecting DeepFool attack on ResNet.

Combining precision, recall, and AUC scores, RGB-
Net performs second to our method (FNet) and KD + BU
ranks third. In Figure 2, we can clearly see that the
performance of FNet is better than that of other detection

Table 4: *e detailed two-stream network architecture for CIFAR-10. Conv (d, k, s) denotes the convolutional layer with d as dimension, k
as kernel size, and s as stride.

RGB stream SRM stream
Conv (64, 3, 1) Conv (64, 3, 1)
BatchNorm layer, Tanh ABSLayer
Avg pooling BatchNorm layer, Tanh
Conv (128, 3, 1) Avg pooling
BatchNorm layer, Tanh Conv (128, 3, 1)
Avg pooling BatchNorm layer, Tanh
Conv (256, 3, 1) Avg pooling
BatchNorm layer, ReLU Conv (256, 3, 1)
Conv (256, 3, 1) BatchNorm layer, ReLU
BatchNorm layer, ReLU Conv (256, 3, 1)
MAX pooling BatchNorm layer, ReLU

MAX pooling
Full connected 4096, ReLU, dropout (0.5)
Full connected 4096, ReLU, dropout (0.5)

Softmax 2

Table 5: Parameter setting of three attack methods in adversarial robustness toolbox.

Attack method Parameter
FGSM Norm� 2, eps� 2.0, eps_step� 0.1
DeepFool Eps� 0.1
CW Lr� 0.2, confidence� 0.1
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Table 6: Performance of normal images and their adversarial examples generated by FGSM on CIFAR-10.

Model Method
Normal images Adv images

Precision Recall Precision Recall

White model VGG16

RGB-Net 0.896 0.928 0.864 0.807
SRM-Net 0.748 0.773 0.571 0.538
KDBU [32] 0.902 0.643 0.580 0.876

FNet 0.926 0.926 0.868 0.868

Black model

ResNet

RGB-Net 0.888 0.928 0.874 0.809
SRM-Net 0.692 0.773 0.543 0.440
KDBU [32] 0.648 0.643 0.426 0.431

FNet 0.912 0.926 0.879 0.854

LeNet

RGB-Net 0.919 0.928 0.821 0.801
SRM-Net 0.731 0.773 0.359 0.309
KDBU [32] 0.697 0.643 0.269 0.319

FNet 0.927 0.926 0.819 0.822
*e bold values represent the results of experiments conducted by our method (FNet).

Table 7: Performance of normal images and their adversarial examples generated by CW on CIFAR-10.

Model Method
Normal images Adv images

Precision Recall Precision Recall

White model VGG16

RGB-Net 0.912 0.856 0.843 0.903
SRM-Net 0.539 1.000 0.000 0.000
KDBU [32] 0.852 0.525 0.617 0.893

FNet 0.913 0.922 0.908 0.898

Black model

ResNet

RGB-Net 0.916 0.856 0.840 0.906
SRM-Net 0.544 1.000 0.000 0.000
KDBU [32] 0.545 0.525 0.457 0.478

FNet 0.883 0.922 0.901 0.855

LeNet

RGB-Net 0.943 0.856 0.792 0.914
SRM-Net 0.625 1.000 0.000 0.000
KDBU [32] 0.589 0.525 0.330 0.390

FNet 0.903 0.922 0.865 0.835

Table 8: Performance of normal images and their adversarial examples generated by DeepFool on CIFAR-10.

Model Method
Normal images Adv images

Precision Recall Precision Recall

White model VGG16

RGB-Net 0.913 0.861 0.848 0.905
SRM-Net 0.766 0.776 0.734 0.724
KDBU [32] 0.857 0.526 0.619 0.898

FNet 0.908 0.944 0.932 0.888

Black model

ResNet

RGB-Net 0.917 0.861 0.845 0.907
SRM-Net 0.649 0.776 0.650 0.498
KDBU [32] 0.554 0.526 0.466 0.495

FNet 0.868 0.944 0.926 0.828

LeNet

RGB-Net 0.940 0.861 0.806 0.913
SRM-Net 0.661 0.776 0.510 0.370
KDBU [32] 0.577 0.526 0.341 0.390

FNet 0.881 0.944 0.900 0.798
*e bold values represent the results of experiments conducted by our method (FNet).
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Figure 2: ROC curves of detection methods on CIFAR-10. We choose to display the ROC curves of detection methods on three different
attacks. We can intuitively see that our method (FNet) is better than other methods in all cases.
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methods in all cases. RGB-Net and KD + BU perform well
when defending against white-box attacks, but they do
not perform well against black-box attacks.

5. Conclusion

In this paper, we propose a two-stream model including
RGB stream and SRM residual stream to improve the se-
curity of deep learning services based on 5G.We use 30 SRM
filters to extract linear noise features and perform nonlinear
processing to obtain rich features of 40 channels. We input
these noise features into the network as additional evidence
for detection. Experiments show that our method performs
well against both black-box and white-box attacks. More-
over, our method has good transferability.

Although our method is effective to detect adversarial
examples on images, the method is not effective on all types
of data. *e spatial rich model (SRM) feature extraction
method is suitable for image data. Our two-stream network
adopts SRM steganalysis to obtain features as additional
evidence for adversarial detection, which is only effective for
images. *erefore, our method is only effective for deep
learning services which provide services such as image
recognition. In the future work, we will explore more ef-
fective methods of adversarial sample detection and
recovery.
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Recently, Siamese trackers have attracted extensive attention because of their simplicity and low computational cost. However, for
most Siamese trackers, only a frame of the video sequence is used as the template, and the template is not updated in inference
process, whichmakes the tracking success rate inferior to the trackers that can update the template online. In the current study, we
introduce an enhanced visual attention Siamese network (ESA-Siam). .e method is based on a deep convolutional neural
network, which integrates channel attention and spatial self-attention to improve the discriminative ability of the tracker for
positive and negative samples. Channel attention reflects different targets according to the response value of different channels to
achieve better target representation. Spatial self-attention captures the correlation between two arbitrary positions to help locate
the target. At the same time, a template search attention module is designed to implicitly update the template features online,
which can effectively improve the success rate of the tracker when the target is interfered by the background. .e proposed ESA-
Siam tracker shows superior performance compared with 18 existing state-of-the-art trackers on five benchmark datasets in-
cluding OTB50, OTB100, VOT2016, VOT2018, and LaSOT.

1. Introduction

Visual object tracking is a process of identifying the region of
interest in the video, which can track the target in a given
video. At present, visual object tracking is widely used in
video surveillance [1], automatic driving [2], UAV tracking
[3], and other fields. Although various researchers have done
a lot of work on tracker to improve its performance, target
tracking still faces such practical problems as fast motion,
similar background interference, target scale transforma-
tion, low image resolution, and so on [4, 5].

.e naive correlation filter tracker uses hand-crafted
features, such as KCF [6], SRDCF [7], CACF [8], DSST [9],
and SAMF [10]. Compared with the method of end-to-end
learning using deep convolutional neural networks (CNNs),
it is much inferior.

Recently, deep learning has been widely used in visual
tracking. Trackers use CNNs to extract target features, and
the tracking success rate and robustness are significantly

improved. SiamFC [11] extracts template features and search
features through AlexNet [12], uses the similarity measure
method to perform cross-correlation operation on the
extracted features to obtain the final response graph, and
then predicts the target location according to the score of the
response graph. Because the network model is simple and
uses the offline pretraining networkmodel, there is no online
update and no complex calculation. Compared with the
traditional online update method of correlation filter,
SiamFC is faster and can meet the real-time requirements.
Based on the Siamese network system, lots of trackers with
state-of-the-art performance were proposed, such as
SiamRPN [13], SiamMask [14], SiamRPN++ [15], and
DaSiamRPN [16]..ere are also some additional methods to
build tracker based on different angles, such as thermal
infrared [17], self-supervised [18], and focusing target re-
gression model [19].

Siamese architecture has been applied in various fields
of artificial intelligence, such as one-shot image
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recognition [20], human reidentification [21], sentence
similarity [22], and visual object tracking [23]. For visual
object tracking, Siamese-based trackers train offline
based on a large amount of data but do not update the
target template online. .erefore, in the face of severe
target deformation, scaling, occlusion, and other scenes,
the target will be lost, resulting in the performance and
robustness degradation of the tracker. In addition, the
features extracted by CNN do not distinguish the weight
in channel and space, and we know that different channel
features correspond to different target information. .e
response channels that represent the tracking target
should be given more weight, and not all of them should
be given the same weight. .e visual attention mechanism
[24–26] can pay attention to the channel and location of
interest and screen out the feature information that can
represent the tracking target better. Based on this, we
design a novel visual tracking method which can update
the target online by enhancing the hybrid visual
attention.

Inspired by the application of visual attention mecha-
nism in RASNet [27] and EFCTA [28], we propose an
enhanced visual attention Siamese network referred to as
ESA-Siam. Considering that the information of search
branch and template branch is mutually compensated, the
context information of the search branch is also important.
Combining the target information of the search branch can
help the tracker identify positive and negative samples
better. .erefore, we design a template search collaborative
attention module, called T-SCAttn, which can update the
template features online. It can improve the robustness and
the positive and negative sample discrimination of the
tracker and better deal with the problems of low image
resolution and target occlusion. .e main contributions of
our work are as follows:

(1) We introduce a new twin network visual tracking
algorithm based on the enhanced visual attention
mechanism (including channel attention, spatial
self-attention, and template search collaborative
attention). Channel attention distinguishes back-
ground and targets according to different target
response values, and spatial self-attention aggregates
nonlocal context information to help target location
better.

(2) We design a template search collaborative attention
module which can update the template features
online by recalculating the template images and
search images.

(3) We change the traditional pooling layer. Based on
this, we propose golden threshold stochastic pooling
to activate the target features with a higher proba-
bility and ignore other background features.

(4) Our approach in the benchmark datasets OTB50
[29], OTB100 [30], VOT2016 [31], VOT2018 [32],
and LaSOT [33] has excellent tracking performance,
the tracking of which can reach speeds of up to
60 fps.

2. Related Work

Since MOSSE [34], trackers based on correlation filtering
have been widely used due to the convenience and simplicity
of the hand-crafted features. Such methods can update
targets online and have high accuracy. However, due to its
simple feature, the robustness is poor when the target is
blocked and the appearance is deformed. .e depth features
based on CNNs canmore fully express the target features. As
a result, a number of tracking methods that combine related
filtering and depth features have emerged, such as C-COT
[35], CFNet [36], MDNet [37], DeepSRDCF [38], and ECO
[39], to achieve better tracking performance. CFNet com-
bines correlation filtering with SiamFC to win the VOT2017
real-time challenge and introduces a cyclic displacement
matrix in SiamFC to improve performance. MDNet pro-
poses a multidomain learning model based on CNN to
distinguish multiple different independent targets.

In recent years, the current branch of building trackers is
based on the Siamese network system. Since the SiamFC was
proposed, more tracking methods based on this Siamese
network have been proposed. Li et al. introduced candidate
regions for target detection and proposed SiamRPN to treat
the tracking task as a two-stage task: one is target classifi-
cation and the other is target regression. Wang et al.
combined target tracking with image segmentation; Siam-
Mask segmented the target through a mask and completed
the image segmentation while completing the target ex-
traction. Zhu et al. proposed DaSiamRPN to effectively
control the sampling strategy on the basis of SiamRPN,
balanced the distribution of positive and negative samples,
and improved the tracking performance. SA-Siam [40] uses
two Siamese networks: one is to extract the semantic branch
of high-level features of the target and the other is to extract
the appearance branch of low-level features of the target; the
network branches are trained separately and feature fusion is
performed to improve the robustness of the tracker. Re-
cently, Li et al. proposed SiamRPN++, using the deeper
network ResNet50 [41] as the backbone network, analyzed
the reason the Siamese network system cannot use the deep
network, and further improved the tracking performance.
However, since there is no online update, Siamese-based
trackers are easily interfered by target occlusion and com-
plex background.

Recently, with the widespread application of the visual
attention mechanism in the field of computer vision, Hu
et al. proposed SENet [42], which gives weights to different
channels by squeeze and excitation channels and statistically
the global information of the image at the characteristic
channel level, selecting features in a targeted manner. Shaw
et al. proposed novel self-attention, which pays more at-
tention to the correlation between internal feature elements
and obtains the global dependence of any two positions in
the feature map. Wang et al. proposed a generalized and
simple nonlocal block [43] that can be directly embedded in
the network, which can capture time and space information
for integration. Particularly, Wang et al. combined the visual
attention mechanism to propose RASNet, which separated
feature learning and discriminant analysis and used
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cross-correlation to update the target to enhance the ability
to distinguish between target and background. However,
only using the feature information of the target, the dis-
tinction between the target and the background is not
enough, and it is impossible to face complex scenes.

3. Proposed Method

.e overall framework of the enhanced visual attention
Siamese network is shown in Figure 1. Compared with other
Siamese-based trackers, ESA-Siam uses a template and
search area to coordinate the attention block to update the
target online implicitly to adapt to changes in the target’s
appearance. Second, our network uses a golden threshold
stochastic pooling layer to activate target features with
greater probability. Finally, we use the channel attention
mechanism and spatial self-attention to filter feature maps
and combine the correlation between global context in-
formation and local features to help locate targets and es-
timate target contours. .e following sections describe in
detail the various components of the proposed tracker.

3.1. Siamese-Based Trackers. .e key point of the SiamFC
tracking algorithm is the use of offline training and online
fine-tuning of the network, which can effectively improve
the speed of the algorithm. Its network structure is com-
posed of a template branch and a search branch, and the two
branches extract features through the same shared network
(AlexNet). We perform cross-correlation of the extracted
two branch features to calculate the feature similarity and
locate the target according to the similarity value. .e po-
sition with high similarity is the target position. When a full
convolutional network is used, the size of the search image
does not need to be consistent with the template image,
which can provide a larger search area for the network and
calculate the similarity of more subwindows. .e cross-
correlation function is shown in the following formula:

f(z, x) � φ(z)∗φ(x) + b1, (1)

where x is the input search image, z is the input template
image, φ(·) is the feature extraction network, ∗ represents
the convolution operation, b represents the offset of each
position in the score map, and f (z, x) represents the sim-
ilarity score map between the template feature and the search
feature. .e position with the highest score is the target
position.

3.2. Golden 0reshold Stochastic Pooling. Zeiler and Fergus
combined the advantages and disadvantages of maximum
pooling and average pooling to propose stochastic pooling
[44]. Zeiler believes that the maximum pooling is always to
select the largest activation from the pooling area every time,
completely excluding other activations except the maximum
value. Stochastic pooling applies multinomial distribution
and calculates the score probability of each response position
to randomly select activation. In this way, nonmaximum
activations could also be selected. We calculate the

probability of each position i by normalizing the area ac-
tivation, as shown in the following formula:

Pi �
ai

k∈Rj
ak

, (2)

where ai is the activation value of position i and Rj rep-
resents the area j in the feature map. Multinomial distri-
bution selects a location i within the region:

sj � ai, where l ∼ P p1, . . . , p
Rj




 , (3)

where sj represents the final activation of region j, which is
randomly selected by the probability calculated through each
position of region j. .e activation with the greater prob-
ability is more likely to be selected. Although this can ensure
that the information is not lost to a certain extent, because of
its randomness, it is possible to select a value with a small
activation probability and lose important information. In the
target tracking task, we should try to avoid this uncertainty.
.erefore, we improve on the basis of stochastic pooling,
sort the calculated probabilities, and filter out some acti-
vations with too small probability values by setting a
threshold T (e.g., T � 0.002).

sj � ai, where l ∼ P p1, . . . , p
Rj




 >T. (4)

.e selection of T is set according to the ratio of the
maximum activation part (e.g., T � 0.618Pmax). Meanwhile,
to make reasonable use of the advantages of the maximum
pooling layer to highlight important information, we pay
more attention to the top ranked by the activation value, so
that the random selection can fall in this range with a high
probability, and weaker activations are inhibited. An ex-
ample of golden threshold stochastic pooling is shown in
Figure 2. .e backpropagation process is similar to the
maximum pooling backpropagation, and only the value of
the position of the selected node that has been recorded by
the forward propagation is retained, as shown in the fol-
lowing formula:

zL

zxi

�

0, δ(i, j) � false,

zL

zyj

, δ(i, j) � false,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where xi, yi are the input node and output node and δ(i, j) is
the decision function, which represents whether the input
node i is selected as the maximum output by the output
node j.

3.3. Channel Attention Module. According to the charac-
teristics of the target tracking task, we designed an enhanced
attention mechanism, as shown in Figure 3, which consists
of a spatial self-attention module, a channel attention
module, and a template search collaborative attention
module. .e spatial attention module is based on the cor-
relation dependency structure of the pixels at the same
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location in the feature map to characterize features. Spatial
self-attention mechanism can capture the relationship be-
tween internal data and features to establish a correlation
between any two locations. .e feature of particular location
can be weighted and summed through all location feature
information. Channel attention can distinguish targets by
the response of different channels to different targets. A
channel with a high response value may represent the same
target, and a higher response weight will be given, while a
lower response weight will be given, so as to adjust the
characteristic response adaptively. .e template search
collaborative attention module captures nonlocal semantic
feature information globally and updates template features
through the hourglass network [45].

.e traditional channel attention mechanism uses a
multilayer perceptron (MLP) method to calculate the weight
of each channel. .is method increases a great number of
parameters due to the use of a large number of fully con-
nected layers, reduces the calculation speed, and affects the
real-time performance of the algorithm. We designed and
introduced the ECA module in ECA-Net [46] to avoid the
negative impact of dimensionality reduction using a fully
connected layer, and at the same time, proper cross-channel
interaction can significantly reduce the model parameters.
.is strategy adopts one-dimensional convolution to realize
and uses the feature of convolution operation weight
sharing. .e size of the convolution kernel k in one-di-
mensional convolution is obtained through adaptive cal-
culation. .e specific calculation formula is as follows:

k � ψ(C) �
log2(C)

c
+

b

c




. (6)

In general, the number of channels is always the power of
2. We set r= 2, b= 1. .rough the adaptive convolution
kernel size k to completethe cross-channel information
interaction, so that the layer with a largernumber of channels
can interact more between channels.

Compared with using multilayer perceptrons to connect
to each other, the parameter number is significantly reduced,
to ensure the real-time nature of the algorithm. As shown in
Figure 3, the channel attention module (C-Attn) squeezes
the input feature map F, and after global average pooling, a
feature vector f � (f1, f2, . . . , fc) is obtained as the input
of the one-dimensional convolutional layer, where fi ∈ R.
.en, we get the weight vector P � (p1, p2, . . . pc) from the
sigmoid function, where pi ∈ R. .e input feature F is
elementwise multiplied with the weight vector P. Finally, we
get the features FC

A ∈ R
C×h×w filtered by the channel

attention.

3.4. Spatial Self-Attention Module. .e self-attention space
module is a supplement to channel attention, as shown in
Figure 3. Channel attention and spatial self-attention work
in series. .e output of the channel attention is the input of
the spatial self-attention module. FC

A ∈ R
C×h×w is input to an

independent 1× 1 convolution and passes through three
conversion functions to obtain three feature vectors
Q, K ∈ RC′×HW, V ∈ RC×HW. We transpose vector Q and

then perform matrix multiplication with vector K. We can
generate a spatial self-attention feature map through the
columnwise softmax operation as follows:

βi,j � exp
Q

T
i · Kj 


WH
i�1 exp Q

T
i · Kj 

, (7)

where βi,j represents the weight between the i-th location
region and the j-th location region. .e result βi,j is ele-
mentwise multiplied with vector V. .en, we performed a
7× 7 convolution operation. A sigmoid activation is per-
formed for generating a feature vector with weights
Ω � (ω1,ω2, . . . ,ωc), where ωi ∈ RC×HW. After that, the
input feature is elementwise multiplied with Ω. Finally, we
get the final output feature FS

A ∈ R
C×h×w with high similarity

to the target by the following formula:

X
S
A � αΩF, (8)

where α is a hyperparameter. We initialize it to 0.0001 and
then gradually increase it to give more weight, which can
adapt to simple tasks at the beginning and face more
complex tasks later.

3.5. Template Search Collaborative Attention Module (T-
SCAttn). . We designed a template search collaborative at-
tention (T-SCAttn) module to implicitly update template
features. We combine the context information of the target in
the search image with the template feature and use the context
information to improve the accuracy of target positioning.
Search branch and template branch are complementary.
T-SCAttn is composed of two components, where one is used
to perform multiscale information interaction between tem-
plate features and search features extracted by the backbone
network. We use the stacked hourglass network (as shown in
Figure 4) to generatemultiscale template informationXT−S

t and
multiscale search information XT−S

s . .e hourglass network
does not change the size of the feature map. Another com-
ponent is used to perform attention filtering on features. In-
spired by CBAM, we only use global average pooling and one-
dimensional convolution to get the context information of the
featuremap.We first perform a 1× 1 convolution to reduce the
number of channels to one channel. .en, we apply the ReLU
activation function and one-dimensional convolution to filter
the context information feature map and apply the softmax
layer..e result of the T-SCAttn is elementwise added with the
output of channel attention module and input feature. We can
get it according to the following formula:

X
T−S

� Softmax AvgPool X
T−S
t  + AvgPool X

T−S
s  ,

(9)
where XT−S is the output of the T-SCAttn module.

3.6. Network Structure and Algorithm. .e proposed net-
work is based on the Siamese network and an enhanced
attention mechanism..e proposed network framework can
be described as
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m(T, S) � [η(μ(ψ(Z)) + Δ(Z, X))]∗ [η(μ(ψ(X)))] + b,

(10)

where Z is a template image, X is the search patch, ψ(·)

represents the backbone network, μ(·) denotes the channel
attention module, η(·) denotes the spatial self-attention
module, and Δ(·) represents the template search collaborative
attention module. .e output of ψ(·) is fed to the channel
attentionmodule as μ(ψ(Z)). .en, the output forwards input
to the spatial self-attention module as η(μ(ψ(Z))).

.e backbone network uses ResNet50, and the network
structure and the corresponding operations of each layer are
shown in Table 1. .e network is divided into five blocks,
and the number of residual blocks from the second block to
the fifth block is (3, 4, 6, 3). To avoid the resolution of the
feature map extracted by the network from being too small,
the last three blocks are not downsampled but replaced by
the dilated convolution, which increases the receptive field
while not making the feature map resolution too small. We
train on positive and negative samples to construct a loss
function. We get the optimal model parameters by mini-
mizing the loss function. A positive sample is expressed as a
point that does not exceed a certain pixel distance from the
center. If one sample point exceeds the distance range, it is
treated as a negative sample. .e single point loss function is
defined as shown in the following formula:

l(y, v) � log(1 + exp(−yv)), (11)

where y ∈ (+1, −1) indicates the ground-truth label of the
sample and v represents actual score of the template image
and search image. We use the average loss value of all lo-
cation points to represent the loss during training as shown
in the following formula:

L(y, v) �
1
D


u∈D

l(y[u], v[u]), (12)

where D represents the score map, u is the search position,
and v[u] represents the score for each position. We use
stochastic gradient descent (SGD) during training to find the
global minimum of the loss function as shown in the fol-
lowing formula:

argmin
θ

E(L[y, f(z, x, θ)]), (13)

where θ refers to the network parameters and E represents
the mathematical expectation.

We also describe the training algorithm and testing
algorithm of the proposed network framework, as shown in
Algorithms 1 and 2.

4. Experiments and Results

We evaluate the proposed tracker algorithm ESA-Siam on
five benchmark datasets, including OTB50, OTB100,
VOT2016, VOT2018, and LaSOT.We compared 18 state-of-
the-art tracking methods, including SiamDW [47], DSiam,
HCF [48], CSR-DCF [49], GradNet [50], Staple [51], fDSST
[52], UpdateNet [53], RASNet, SAMF, SiamRPN,
DeepSRDCF, SRDCF, CFNet, MDNet, C-COT, ECO, and
SiamFC.

4.1. Implementation Details. We use ResNet50 trained off-
line on GOT10K [54] as the backbone network. .e
GOT10K dataset contains more than 10,000 video clips of
real moving objects and more than 1.5 million manually
labeled bounding boxes, covering more than 560 categories.
According to SiamFC, we set the search image size during
training and testing to 127×127× 3 and the template image
size to 255× 255× 3. We use stochastic gradient descent
(SGD) optimizer with momentum set to 0.9 to minimize
equation (13). During training, the initial learning rate is set
to 0.01, the L2 penalty item (weight_decay) is set to 5e− 4,
and the learning rate is exponentially decayed until 10− 5..e
batch_size is 8, and the training epochs are 50. We set the
threshold T � 0.618Pmax in equation (4) and use three scale
ratios [0.9638, 1, 1.0375] to scale the search patch. We set the
initial value of the hyperparameter in equation (8) to 0.0001
and then increase it to 10− 1 ∼ 10− 2 exponentially. Our
method is implemented based on Python3.8, Cuda10.2, and
Pytorch1.6. .e experiment was performed on a machine
with a CPU model of Intel(R)Core(TM)i5-9400F CPU
@2.90GHz, a graphics card of NVIDIA GeForce RTX 2070s,
and a memory of 32GB DDR4 RAM. .e average tracking
speed of the proposed tracker was 60 frames per second
(FPS). .e loss change during training is shown in Figure 5.
.e Y-axis is the loss value, and the X-axis is the number of
training batches.
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Figure 4: Structure of stacked hourglass networks. .e size of input feature map is H∗W∗C. /2 represents downsampling, and
∗ 2represents upsampling, using nearest neighbor upsampling. .e upper < > content in the blue box represents the number of input
channels, and the lower < > represents the number of output channels. ⊕ represents elementwise addition..e size of the output feature map
is H∗W∗C. Stacked hourglass network has nothing to do with the input size, and it only needs to provide the number of input and output
channels. Also, it can gradually extract deeper features.
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4.2. Experiments on OTB50 and OTB100. .e proposed
method is evaluated on the OTB50 and OTB100 bench-
mark datasets. OTB50 has 50 video sequences, and
OTB100 has 100 video sequences. .e OTB dataset
evaluation tool evaluates the tracking algorithm through
two indicators: precision plot and success plot. .e
evaluation standard of tracking accuracy is the percentage
of the number of frames with the center position error
within T1 (the experiment is set to 20) pixels to the
number of frames in the entire video sequence. .e
tracking success rate refers to the percentage of the frame
number of the entire video sequence whose intersection

ratio IoU (Intersection over Union) is greater than the
threshold T2 (experimentally set to 0.5) between the target
frame predicted by the algorithm and the real target
frame, as shown in the following equation:

IoU �
Boxt ∩Boxg

Boxt ∪Boxg

, (14)

where Boxt represents the area of the area enclosed by the
target prediction bounding box and Boxg represents the area
enclosed by the target real bounding box.

As shown in Figure 6, the tracking accuracy and tracking
success rate of ESA-Siam on the OTB50 dataset are 0.85 and
63.30, respectively, which are 4% and 4.77% higher than the
state-of-the-art algorithm SiamRPN. Compared with the
reliable channel-based method, CSR-DCF has increased by
11% and 10.04%.

It can be seen from Figure 7 that the tracking accuracy
and tracking success rate of ESA-Siam on the OTB100
dataset are 0.863 and 65.04, respectively. Compared with the
basic algorithm SiamFC, the tracking success rate has in-
creased by 6.72%. It is 9% and 6.65% higher than that of the
CFNet algorithm that combines correlation filtering and
SiamFC, respectively, and 1.8% and 2.13% higher than that
of SiamRPN. Meanwhile, the tracking success rate of ESA-
Siam on the OTB100 dataset is 2.7% higher than that of
SiamDW which also introduced the ResNet50 network. In
addition, the performance of ESA-Siam is also better than
that of CSR-DCF, a reliable channel-based method, and

Table 1: Network structure and operations corresponding to each network block (block represents network block, Gold-SPool represents
golden stochastic pooling, dilation represents dilated convolution, ResNet in Figure 1 includes Block1, Block2, Block3, Block4, and Block5,
and “—” represents no operation).

Block Operation Template size Search size
— — 127×127× 3 255× 255× 3
Block1 7× 7, 64, 3× 3Gold-SPool, s� 2 31× 31× 64 62× 62× 64

Block2 1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

15×15× 256 31× 31× 256

Block3 + dilation 1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

15×15× 512 31× 31× 512

Attention — 15×15× 256 31× 31× 256

Block4 + dilation 1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

15×15×1024 31× 31× 1024

Attention — 15×15× 512 31× 31× 512

Block5 + dilation 1 × 1, 512
3 × 3, 024
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

15×15× 2048 31× 31× 2048

Attention — 15×15×1024 31× 31× 1024
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Figure 5: .e loss changes during training.
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RASNet, a method that integrates attention. ESA-Siam in-
tegrates the hybrid attention mechanism while improving
the downsampling method of ResNet50 and uses the
T-SCAttn module to implicitly update the template features,
which can select features that are more discriminative to the
target, so it can improve the robustness of the algorithm.

To verify the robustness of the ESA-Siam algorithm, we
further carried out experiments on 11 tracking challenges on
the OTB100 dataset, including Background Clutter (BC),
Deformation (DEF), Fast Motion (FM), In-Plane Rotation
(IPR), Illumination Variation (IV), Low Resolution (LR),
Motion Blur (MB), Occlusion (OCC), Out-of-Plane Rota-
tion (OPR), Out-of-View (OV), and Scale Variation (SV). As
shown in Figure 8, we mainly evaluated the success of OPE
on OTB100. We have observed that the ESA-Siam algorithm
has won the championship in IV, IPR, LR, OCC, and so on.
In other challenges such as SV, BC, and so on, ESA-Siam also
has achieved great tracking performance.

Quantitative analysis of the algorithm was done as de-
scribed in the previous section, in order to further verify the
effectiveness of ESA-Siam. At the same time, a challenging
sequence was selected from the OTB dataset for qualitative
testing of the algorithm. Meanwhile, it was compared with
CFNet and the related filtering algorithm DeepSRDCF
combined with deep learning features, SiamFC and CSR-
DCF. In the comparative experiment, six video sequences of
Bird2, Human9, KiteSurf, Matrix, Singer2, and Dancer2

were selected. .ese six video sequences include IPR, OPR,
LR, OCC, IV, DEF, FM, BC, and other challenges. Figure 9
shows the tracking effect comparison of the five algorithms
including ESA-Siam. In these challenging sequences, the
ESA-Siam algorithm has achieved better tracking results.

4.3. Experiments on VOT2016, VOT2018, and LaSOT. We
also tested the methods on the VOT2016, VOT2018, and
LaSOT datasets according to the three indicators expected
average overlap (EAO), accuracy (A), and Robustness (R).
Among them, EAO can be used as an index for compre-
hensive performance evaluation of the algorithm. .e cal-
culation of EAO is related to the accuracy and robustness.
First, the average of per-frame overlapsΦN

s
in the length Ns

of the video sequence is defined as

ΦNs
�

1
Ns



Ns

i�1
Φi, (15)

where Φi is the accuracy rate between the predicted target
frame and the real target frame. EAO is defined as

Φ �
1

Nhi − Nlo



Nhi

Ns�Nlo

ΦNs
. (16)

Table 2 shows the comparison of the test results of each
method on VOT2016. We compared 9 algorithms including
ESA-Siam, HCF, SAMF, SiamFC, SRDCF, MDNet,
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Figure 6: Test results of different trackers on the OTB50 dataset: (a) precision plot of OPE on OTB50; (b) success plot of OPE on OTB50.
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DeepSRDCF, Staple, and C-COT. ESA-Siam has achieved
good results on the indicators of accuracy and robustness.

Table 3 shows the comparison of the tracking results of
each method on the VOT2018 test set. Our proposed method
achieves accuracy of 0.618, robustness of 0.223, and EAO of
0.411. On OVT2018, our method achieved the highest scores
on the three evaluation indicators. Compared with the state-of-
the-art SiamRPN, our method has a significant improvement
of 7.5% and 5.6% in EAO and accuracy, respectively.

Table 4 shows the comparison of the test results of each
algorithm on the LaSOT dataset. Our method achieved the
highest scores in both success rate and standardization accu-
racy. Compared withMDNet, the standardization accuracy has
increased from 0.461 to 0.515 (with 0.413⟶ 0.450).

In addition, we selected three complex challenge sce-
narios (including Deformation, Motion Blur, and Partial
Occlusion) on the LaSOT dataset to evaluate the proposed
method with 9 existing state-of-the-art algorithms as shown
in Figure 10. .e experimental results show that the pro-
posed method has achieved the champion results in tracking
precision and success rate. In terms of success rate, the
proposed method improved by nearly 6 percentage points
over the second place. .e proposed method can better deal
with the challenging scenes in real life, such as Full Oc-
clusion or Partial Occlusion, Target Deformation, and so on.

4.4. Ablation Study. We conducted extensive ablation
studies with ESA-Siam on OTB100 to verify the effec-
tiveness of its various components. Two indicators are
used to evaluate the work of each component: one is
tracking accuracy and the other is tracking success rate.
We name the methods of using different components. .e
component using spatial self-attention is named S-Attn,
the component using channel attention is named C-Attn,
and the component using template search feature is
named T-S-Attn. In addition, we compare the evaluation
results of each component with the benchmark algorithm
SiamFC and CSR-DCF, as shown in Figure 11. Experi-
mental results verify the effectiveness of various com-
ponents of ESA-Siam. Compared with SiamFC, the
performance of the channel attention module C-Attn has
increased by 7.6% on precision (with 58.32⟶ 63.95 on
success). DeletedOn the other hand, the introduction of
the template-searchcollaboration attention module T-S-
Attn is 5.83% higher in success rate and5.9% higher in
accuracy than CSR-DCF, which is also based on channel
weighting.

In addition, we also conducted experiments on the gold
stochastic pooling method and other components in
OVT2016. Table 5 shows the performance changes of the
tracker with the integration of different components. As
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Figure 7: Test results of different trackers on the OTB100 dataset: (a) precision plot of OPE onOTB100; (b) success plot of OPE on OTB100.
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Figure 8: Continued.
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Figure 9: Continued.
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Figure 8: Comparison of the tracking success rate of 11 challenge sequences on the OTB100 dataset by 10 different algorithms.
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shown in Table 5, simply adding single channel attention and
spatial attention to the benchmark SiamFC cannot effec-
tively improve its tracking performance. Integrating channel
attention and spatial attention can increase by 7.8% with
EAO. If combined with the template search attention
module, EAO can increase by 11.8%. In addition, gold

stochastic pooling components can also be effectively ap-
plied to the twin network to improve the tracking perfor-
mance. As shown in Table 6, we conducted a series of
experiments to discuss the impact of different gold stochastic
pooling thresholds on the tracking performance. When
T� 0, it means that gold stochastic pooling degenerates to
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CFNet
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DeepSRDCF
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(c)
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Figure 9: Qualitative comparison of tracking results of various algorithms on challenges, such as (a) Bird2, (b) Human9, (c) KiteSurf, (d)
Matrix, (e) Singer2, and (f) Dancer2.
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normal stochastic pooling. When the value of t is greater, the
probability of selecting the largest activation is higher. We
observe that ESA-Siam can achieve the best performance

when T � 0.618Pmax. Due to the mathematical peculiarity of
0.618 in stochastic pooling, we named it the golden sto-
chastic pooling.

Input: random initialization the network parameters θ, golden threshold stochastic pooling T, spatial self-attention parameters of α.
Template Z and search patch X from GOT10K.
Preprocessing: crop and resize Z and X and set optimizer, loss function, and learning rate adjustment strategy.
While epoch > 0 and input video dataset is not empty do
Get template Z and corresponding bounding box;
Get search patch X and corresponding bounding box;
Compute ψ(Z), ψ(X) by the backbone network;
Compute μ(ψ(Z)), μ(ψ(X)) by the channel attention module;
Compute η(μ(ψ(Z))), η(μ(ψ(X))) by the spatial self-attention module;
Create sample positive and negative labels;
Compute Δ(Z, X) and update template;
Computer response map of Z nad X;
Computer loss and update parameters;
Optimize loss to minimize.

end

ALGORITHM 1: Offline training of the proposed framework.

Table 2: Results on VOT2016 on expected average overlap (EAO), accuracy (A), and robustness (R).

Trackers Accuracy ↑ Robustness ↓ EAO ↑
HCF 0.450 0.396 0.220
SAMF 0.503 0.443 0.226
SiamFC 0.532 0.461 0.235
SRDCF 0.535 0.419 0.247
MDNet 0.541 0.337 0.257
DeepSRDCF 0.528 0.326 0.276
Staple 0.544 0.378 0.295
C-COT 0.539 0.238 0.331
ESA-Siam 0.622 0.231 0.353
.e values in bold highlights the algorithm with the first performance ranking, which can be seen intuitively.

Input: test video; initial frame and bounding box of initial frame;
Compute ψ(Z) by the backbone network;
Compute μ(ψ(Z)) by the channel attention module;
Compute η(μ(ψ(Z))) by the spatial self-attention module;
Preprocessing: crop and resize X and set three different scale patches X1, X2, X3.
While test video is not empty do

Get search patch X and corresponding bounding box;
Compute ψ(X) by the backbone network;
Compute μ(ψ(X)) by the channel attention module;
Compute η(μ(ψ(X))) by the spatial self-attention module;
Upsampling feature map X to 272× 272;
Locate target center in feature map X by finding peak;
Computer the offset of the upsampled map relative to the feature map;
Computer the offset of the feature map relative to original image;
Update target size and corresponding bounding box;

end

ALGORITHM 2: Inference of the proposed framework.
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N Precision plots of OPE - Partial Occlusion (187)

Success plots of OPE - Partial Occlusion (187)
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Figure 10: Continued.
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N Precision plots of OPE - Motion Blur (89)
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Figure 10: .e evaluation results of the proposed method on complex challenge scenarios on the LaSOTdataset. (a) Partial occlusion. (b)
Deformation. (c) Motion Blur.
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Figure 11: Precision and success plots of OPE on OTB100: (a) precision plots of OPE on OTB100; (b) success plots of OPE on OTB100. .e
performance of each component of ESA-Siam (C-Attn, S-Attn, andT-S-Attn) is better than that of the benchmark algorithms SiamFC andCSR-DCF.

Table 3: Results on VOT2018 on expected average overlap (EAO), accuracy (A), and robustness (R).

Trackers Accuracy ↑ Robustness ↓ EAO ↑ Speed
Staple 0.530 0.688 0.169 13.4
SiamFC 0.503 0.585 0.188 84
DSiam 0.512 0.646 0.196 46.6
UpdateNet 0.518 0.454 0.244 10.5
CSR-DCF 0.491 0.356 0.256 12.7
C-COT 0.494 0.318 0.267 14.1
ECO 0.484 0.280 0.280 77.6
DeepSRDCF 0.489 0.293 0.293 20.5
SiamRPN 0.562 0.276 0.336 76.8
ESA-Siam 0.618 0.223 0.411 60
.e values in bold highlights the algorithm with the first performance ranking, which can be seen intuitively.

Table 4: Results on LaSOT with success and normalized precision (Norm.Pr).

Trackers Success Norm.Pr
SiamFC 0.382 0.420
DSiam 0.362 0.405
CFNet 0.258 0.312
CSR-DCF 0.224 0.254
SiamDW 0.397 0.435
ECO 0.329 0.338
SRDCF 0.245 0.248
fDSST 0.196 0.208
MDNet 0.435 0.461
ESA-Siam 0.501 0.495
.e values in bold highlights the algorithm with the first performance ranking, which can be seen intuitively.
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5. Conclusion

Wepropose an enhanced visual attention Siamese network that
can update template features online for visual tracking. We
introduce a template search collaboration attention module
that can implicitly update target features online and combine
the channel attention and spatial self-attention modules in the
computationally efficient ECA module.Based on the Siamese
network, combining with the visual attention mechanism can
ensure that the algorithm is simple and efficient. ESA-Siam can
keep the tracking speed in real-time and make the algorithm
more robust. .e algorithm we proposed can be applied to
scenes disturbed by background, such as video surveillance,
vehicle tracking, and UAV tracking.
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Mobile edge computing as a novel computing paradigm brings remote cloud resource to the edge servers nearby mobile users.
Within one-hop communication range of mobile users, a number of edge servers equipped with enormous computation and
storage resources are deployed.Mobile users can offload their partial or all computation tasks of a workflow application to the edge
servers, thereby significantly reducing the completion time of the workflow application. However, due to the open nature of
mobile edge computing environment, these tasks, offloaded to the edge servers, are susceptible to be intentionally overheard or
tampered bymalicious attackers. In addition, the edge computing environment is dynamical and time-variant, which results in the
fact that the existing quasistatic workflow application scheduling scheme cannot be applied to the workflow scheduling problem in
dynamical mobile edge computing with malicious attacks. To address these two problems, this paper formulates the workflow
scheduling problem with risk probability constraint in the dynamic edge computing environment with malicious attacks to be a
Markov Decision Process (MDP). To solve this problem, this paper designs a reinforcement learning-based security-aware
workflow scheduling (SAWS) scheme. To demonstrate the effectiveness of our proposed SAWS scheme, this paper compares
SAWS with MSAWS, AWM, Greedy, and HEFT baseline algorithms in terms of different performance parameters including risk
probability, security service, and risk coefficient. (e extensive experiments results show that, compared with the four baseline
algorithms in workflows of different scales, the SAWS strategy can achieve better execution efficiency while satisfying the risk
probability constraints.

1. Introduction

In recent years, with the explosive growth of smart devices
(such as smart cameras, smart glasses, smart bracelets, and
smart phones), a large number of advanced mobile appli-
cations (such as real-time navigation systems, interactive
online games, virtual reality, and augmented reality) are
emerging rapidly. In order to efficiently process these mobile
applications, mobile devices need to be equipped with
abundant computing resources and battery capabilities
[1, 2]. However, due to the limited size of mobile devices,
they are usually resource-constrained.(erefore, the conflict
between the ever-increasing resource requirements of

mobile applications and the limited resource capabilities of
mobile devices brings great challenges to execute these
mobile applications.

Mobile Edge Computing (MEC) as a new computing
paradigm brings remote cloud resource to the edge servers
nearby mobile users, enabling mobile users to offload partial
or all computation tasks of mobile applications to edge
servers for collaborative execution, and thereby greatly al-
leviating the conflict between resource supply and demand,
effectively reducing the application completion time and the
mobile devices’ energy consumption [3–5].

Many mobile applications are typical workflow models,
and they consist of a sequence of precedence-constrained
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tasks. For example, a video streaming-based face recognition
application mainly consists of motion detection and face
recognition. (e face recognition further consists of face
detection, image preprocessing, feature extraction, and
classification [3, 6]. In mobile edge computing, workflow
application scheduling has a higher complexity in com-
parison to independent task scheduling [7–9]. In addition, it
also faces two challenges for workflow application sched-
uling in mobile edge computing as follows. One is the edge
environment dynamics, such as the time-varying channel
quality and workload of edge servers, which can impact the
workflow application scheduling decision. (e other is the
security problem of workflow application scheduling. Due to
the open nature of the edge environment, the edge servers
that aggregate an amount of user data frequently suffer from
malicious attacks such as data leakage and tampering, which
pose a serious threat to successfully execute these offloaded
tasks [10–13]. Hence, it needs to employ various types of
security services to effectively defend against the hostile
attacks and protect these offloaded tasks. However,
employing security services inevitably incurs additional
security overhead, which will increase the completion time
of workflow application. (erefore, it is a big challenge to
design an efficient security-aware workflow scheduling
scheme to reduce the completion time of workflow appli-
cation while satisfying its security requirement.

To meet the aforementioned challenges, this paper
formulates the security-aware workflow scheduling problem
in MEC to be a Markov Decision Process (MDP) [14]. (e
environment state, which consists of the task list on each
edge server, the workloads on each edge server, and the
channel states between the mobile device and the edge
servers, can be observed. Based on the environment state, the
task nodes of the workflow are dynamically scheduled to
edge servers. (e deep reinforcement learning algorithm is
suitable to solve decision-making problems with unknown
prior knowledge [15–19]. To solve this problem, this paper
proposes a deep reinforcement learning-based security-
aware workflow scheduling scheme (SAWS). Its main ob-
jective is to optimize the completion time of workflow while
satisfying its security requirement. To evaluate the effec-
tiveness of the SAWS scheme, this paper implements average
workload minimization (AWM), maximum SAWS
(MSAWS), Greedy, and HEFT baseline algorithms. We
compare the SAWS scheme with these four baseline algo-
rithms under different risk probabilities, different security
services, different risk coefficients, different edge server’s
computing capacities, and different number of edge servers.
(e experimental results demonstrate that the SAWS
strategy can optimize the completion time of workflow
application while satisfying the risk probability constraint.
(e main contributions of this paper can be summarized as
follows:

(is paper focuses on the security problem of workflow
scheduling in a dynamic edge computing, which is
more complex than independent task scheduling.
(is paper formulates the security-aware workflow
scheduling problem in mobile edge computing to be a

finiteMarkov decision process, and its main objective is
to minimize the completion time of workflow while
satisfying the risk probability constraint.
(is paper proposes a deep Q-network-based security-
aware workflow scheduling (SAWS) scheme to solve
the workflow scheduling problem in a dynamic edge
computing environment with malicious attacks. Ex-
tensive experimental results demonstrate that the
SAWS scheme can greatly reduce the completion time
of workflow application while satisfying the risk
probability constraint.

(e rest of this paper is organized as follows. In Section
2, the related work is summarized. In Section 3, the system
model and problem formulation for security-aware work-
flow scheduling in MEC are presented. In Section 4, the deep
reinforcement learning-based security-aware workflow
scheduling scheme is described in detail. In Section 5, the
simulation parameters are settled, and the experimental
performance is analyzed. In Section 6, the work of this paper
is concluded.

2. Related Work

(e task offloading problem in the MEC has been studied in
a lot of works. According to different optimization goals,
these works can be classified into three categories. (e first
one is task offloading with the goal of optimizing the mobile
device’s energy consumption. For example, Huang et al. [7]
propose a security and cost-aware task offloading scheme
based on deep reinforcement learning for task offloading in
single-user multiserver scenarios. Its main goal is to mini-
mize the task processing delay and mobile device energy
consumption while satisfying the security requirement for
task. Chen et al. [20] formulate task offloading problem in
single-user single-server scenario to be a stochastic opti-
mization problem and decompose this problem into two
deterministic optimization subproblems. To solve these two
subproblems, a TOFEE algorithm is proposed to optimize
the mobile device’s energy consumption. Wu et al. [21]
propose a Lyapunov optimization-based energy-efficient
task offloading scheme to determine the operating position
of the application, the objective of which is to minimize the
average energy consumption of mobile devices while sat-
isfying the average response time constraint. (e second one
is task offloading with the goal of optimizing the task
processing delay. For example, Chalapathi et al. [22] propose
a task scheduling scheme to solve the task offloading
problem inmultiple cloudlets, aiming at minimizing the task
processing delay. Xu et al. [23] design an adaptive task
offloading scheme, which leverages decomposition-based
multiobjective evolutionary algorithms to generate feasible
solutions, to optimize the task processing latency and re-
source utilization of edge system. (e third one is task
offloading with the goal of optimizing the weighted sum of
the mobile device’s energy consumption and the task pro-
cessing delay. Wu et al. [24] propose a Lyapunov optimi-
zation-based energy-efficient task offloading scheme to
control the computational and communication overheads
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and further choose optimal computational location for the
application to minimize energy consumption and task
processing time. However, all above works mainly focus on
the independent task scheduling in MEC. (e task nodes of
workflow are precedence-constrained. (e above schemes
are not suitable for workflow scheduling.

To further study the workflow scheduling problem in
MEC, Xu et al. [25] construct a multiresource energy
consumption model to solve the unity problem for tradi-
tional energy consumption model and propose a particle
swarm algorithm-based energy-efficient multiresource
workflow scheduling algorithm. Its main objective is to
reduce the energy consumption of mobile devices while
satisfying the completion time constraint for workflow. Wu
et al. [26] construct a weighted resource sum graph based on
resource consumption and further design a novel cost-ef-
ficient partitioning scheme, the objective of which is to find
the optimal partitioning scheme to reduce execution time
and energy consumption. Zhu et al. [27] formulate the
workflow scheduling problem in MEC to be a joint opti-
mization problem of energy consumption and time delay
and adopt the deepQ network algorithm to solve the optimal
scheduling scheme. However, the execution order of the
workflow is assumed in advance, and how to calculate the
execution order of workflow with precedence constraints is
not introduced. In addition, this paper does not pay at-
tention to the security problem of workflow scheduling in
MEC. Liu [28] proposes a novel maximum probability
function and deep Q network-based multiworkflow
scheduling scheme to solve the scheduling problem in
multiuser edge computing environment, which can find a
high-quality workflow scheme in a dynamic environment.
However, this paper does not pay attention to the security
problem of workflow scheduling in dynamic MEC. (ere-
fore, all the above scheduling schemes are not suitable for
security-aware workflow scheduling in dynamic mobile edge
computing.

With the escalation of data security threats in mobile
edge computing [10–12, 29, 30], a lot of related works have
taken some measures to protect security-critical applica-
tions and the large amount of data generated in mobile
devices from malicious attacks. Huang [6] designs a
workflow scheduling scheme based on Genetic Algorithms
to minimize the mobile device’s energy consumption
under the completion time of workflow and risk proba-
bility constraints. Elgendy et al. [11] design a multidevice
and single-server cooperative task offloading scheme to
solve the security-aware multiuser resource allocation and
task offloading problem. (e goal is to minimize the time
delay and energy consumption of the whole system. Jia
et al. [31] design an identity-based anonymous authenti-
cation key agreement protocol to ensure the security of
sensitive data in MEC. He et al. [32] design a security
mechanism based on adaptive algorithms to solve the
security problem of IoT applications in mobile edge
computing. Chen et al. [33] propose a malicious appli-
cation detection method based on deep learning on mobile
devices, which greatly improves the security of mobile
edge computing. Xu et al. [34] design a secure service

offload approach to promote Internet of vehicles service
utility and edge utility while ensuring privacy security in
software-defined networks enabled edge computing. Xu
et al. [35] adopt a location-sensitive-hash (LSH) method to
encrypt the feature information for the offloaded services
and further design s LSH-based offloading scheme, the goal
of which is to minimize the energy consumption and
response time of all services while guaranteeing the service
security. All above researches mainly design security
strategies from different points to ensure the security of
edge computing, and they do not pay attention to the
security problem of workflow scheduling in a dynamic
edge computing with unknown prior knowledge. Aiming
at this problem, this paper mainly focuses on security-
aware workflow scheduling problem in dynamic mobile
edge computing environment with security threats.

3. System Model and Problem Formulation

In this section, we first introduce the mobile edge computing
model, security cost model, communication model, and risk
probability model in mobile edge computing environment,
respectively, and then describe the security-aware workflow
scheduling problem in detail.

3.1. Mobile Edge Computing Model. As illustrated in Fig-
ure 1, we consider a mobile edge computing system,
which consists of a mobile device U and n edge servers
eNB � eNB1, . . . , eNBi, . . . , eNBn . (e mobile device U

can be denoted by a two-tuple U � fu, Nu , where fu

denotes the CPU frequency of the mobile device, and Nu

denotes the number of CPU cores of the mobile device. Due
to the limited computing resources and battery capacity of
mobile device, the workflow applications (such as a video
streaming-based face recognition application) running on
mobile device can be scheduled to edge servers through
wireless network. Each edge server can be denoted by a two-
tuple eNBi � 〈fc,i, Nc,i〉, where fc,i denotes the CPU fre-
quency of the ith edge server, and Nc,i denotes the number of
CPU cores of the i th edge server. Each edge server has an
execution queue Qc,i that is used to store the tasks scheduled
to the i th edge server.

Each mobile application can be abstracted into a
workflow model, which can be denoted by a directed acyclic
graph (DAG) G � 〈V, E〉, in which V � v1, . . . , vk, . . . , vK 

denotes a set of task nodes, and E � ekl|vk ∈ V, vl ∈ V 

denotes a set of edges between task nodes. Each task node vk

can be characterized by a three-tuple vk � 〈Wk, Dtx
k , Drx

k 〉, in
which Wk denotes the workload (CPU Cycles) of task node
vk, Dtx

k denotes the input data size (MB) of task node vk, and
Drx

k denotes the output data size (MB) of task node vk. (e
edge ekl represents the precedence constraint between task
nodes.(is means that task vl can be executed only after task
vk is executed. (e system time is logically divided to equal
length time slots, and the time slot duration is Tslot. (e
index sets of time slots can be denoted by
T � 0, 1, . . . , τ, . . .{ }. At the beginning of each time slot, a
task node in workflow is scheduled to the edge server.
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3.2. Security Cost Model. (e task nodes scheduled to edge
servers are vulnerable to suffer from stealing and tampering
security threats. In order to guard against these security
threats, these task nodes need to employ encryption service
cf and integrity service ig [36–38], respectively. Referring to
the literature [38], encryption services cf mainly include
IDEA, DES, Blowfish, AES, and RC4 algorithms. Each en-
cryption algorithm has its own security level and encryption
speed, which can be found in Table 1. (e different en-
cryption algorithms with different security levels can be
flexibly selected to protect data from being stolen. Integrity
services ig mainly include TIGER, RipeMD160, SHA-1,
RipeMD128, and MD5 hash functions. Each hash function
has its own security level and hash speed, which can be found
in Table 2. (e different hash algorithms with different
security levels can be flexibly selected to protect data from
being tampered. By flexibly selecting different encryption
and hash algorithms with different security levels, an inte-
grated security protection is formed to protect against se-
curity threats.

To ensure the security of task nodes scheduled to edge
servers, the integrated security protection consisting of
encryption and hash algorithms with different security levels
needs to be employed. However, different security protec-
tion leads to different security cost. When the task node in
the workflow is scheduled to the i th edge server, the total
encryption cost on the mobile device can be calculated by [6]

T
E
c,i � 

type∈ cf,ig{ }

φ · D
tx
k 

fu · Nu · sp sltypec,i 
, (1)

where φ � 2.2. When the task node is scheduled to the i th
edge server, slcf

c,i and sligc,i denote the security levels of the

encryption service and integrity service, respectively.
sp(slcf

c,i ) denotes the encryption speed of encryption service
with encryption level slcf

c,i . sp(sligc,i) denotes the hash speed of
integrity service with security level sligc,i. When the edge
server eNBi receives the task vk, it first decrypts the task vk

and the total decryption cost can be calculated by

T
DE
c,i �

fu · Nu · T
E
c,i

fc,i · Nc,i

. (2)

3.3. Communication Model. Due to the user’s mobility, the
channel state between the mobile device and different edge
servers is dynamically changing.We assume that the channel
state between the mobile device and the edge servers is
constant in each time slot τ and is dynamically changing in
different time slots. In each time slot τ, the transmission rate
Ru

c,i(τ) between the mobile device and the i th edge server
can be calculated by

R
u
c,i(τ) � Bc,ilog2 1 +

PuG
u
c,i

σ2
 , (3)

where Bc,i denotes the transmission bandwidth between the
mobile device and the i th edge server, Pu denotes the
transmission power of the mobile device, Gu

c,i denotes the
wireless channel gain between the mobile device and the i th
edge server, and σ2 denotes the Gaussian white noise power.

3.4.RiskProbabilityModel. Tomeasure the risk degree of the
task nodes scheduled to edge servers, it is necessary to es-
tablish a risk probability model to quantify the risk prob-
ability of these tasks.
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Figure 1: (e architecture of workflow scheduling in a dynamic MEC with security threats.
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Without loss of generality, referring to the literatures
[36–38], the malicious attacks of data leakage and data
tampering on the i th edge server are assumed to follow
Poisson’s distribution with parameters λcf

i and λig
i . (ere-

fore, the task node vk in the workflow is scheduled to the
edge server eNBi, and the risk probability of data leakage or
data tampering can be calculated by [6, 38]

P sltypec,i  � 1 − exp −λtypei 1 − sltypec,i  , type ∈ cf, ig .

(4)
Based on the above the description, when the task vk in

the workflow is scheduled to the edge server eNBi, the risk
probability of the task vk suffering from these two malicious
attacks can be calculated by

P vk(  � 1 − 

type∈ cf,ig{ }

1 − P sltypec,i  .
(5)

When the risk probability of each task vk scheduled to
the edge server does not exceed Pmax, the risk probability of
task execution must meet the following risk constraint:

P vk( ≤Pmax. (6)

3.5. Problem Formulation. In this section, we formulate the
security-aware workflow scheduling problem in the mobile
edge computing to be a Markov Decision Process. We first
introduce the sorting strategy of workflow nodes and then
define the state space, action space, and reward function of
this problem. Finally, the objective function and constraints
of this problem are defined.

3.5.1. Sorting of Workflow Nodes. In order to sort all the task
nodes in the workflow, we assign a weight Pr(vk) to each task
node vk [39]. (e value of Pr(vk) can be calculated by

Pr vk(  � ET vk(  + max
vl∈succ vk( )

D
rx
k

Rkl

+ Pr vl(  , (7)

where ET(vk) denotes the average time of the task node vk

executing on all edge services; Rkl denotes the transmission

rate between edge servers, where the task node vk and its
successor node vl are located; succ(vk) denotes the set of all
successor nodes of the task node vk. Since the edge server
each task node vk is scheduled to is not known in advance,
the priority of the task node can be calculated by the
average time of the task node vk executing on all edge
servers. (e priorities of all task nodes in workflow can be
calculated by equation (7). According to the priorities of all
task nodes, these task nodes can be sorted in descending
order.

3.5.2. State Space. In each time slot τ, the sorted task nodes
are scheduled in turn. (e edge server each task node vk is
scheduled to is dependent on the system state. (e system
state s(τ) in time slot τ can be denoted by

s(τ) � Wc(τ), Qc(τ), G
u
c (τ)( , (8)

where Wc(τ) � (Wc,1(τ), . . . , Wc,i(τ), . . . , Wc,n(τ)) is an n-
dimensional vector, denoting the workload states of n edge
server; Qc(τ) � Qc,1(τ), . . . , Qc,i(τ), . . . , Qc,n(τ)  denotes
the state of the scheduled tasks in n edge servers; Gu

c (τ) �

Gu
c,1(τ), . . . , Gu

c,i(τ), . . . , Gu
c,n(τ)  denotes the channel state

between the mobile device and n edge servers. Specifically,
Wc,i(τ) denotes the workload of the edge server eNBi in
time slot τ;Qc,i(τ) denotes a set of all task nodes scheduled to
the edge server eNBi in time slot τ; Gu

c,i(τ) denotes the
channel state between the mobile device and the edge server
eNBi in time slot τ.

3.5.3. Action Space. In each time slot τ, the system action
a(τ) can be denoted by

a(τ) � ac(τ), slcf
c (τ), sligc (τ) , (9)

where a(τ) � (ac,1(τ), . . . , ac,i(τ), . . . , ac,n(τ)) is a n-
dimensional vector, denoting the edge server the current
task node is scheduled to. Specifically, ac,i(τ) denotes
whether the current task node is scheduled to the edge server
eNBi . If the value of ac,i(τ) is 1, it denotes that the current
task node is scheduled to the edge server eNBi ; otherwise, it
is the opposite. Note that, in each time slot τ, the current task
node can only be scheduled to a single edge server. (erefore,
the system action needs to meet the constraint condition


n
i�1 ac,i(τ) � 1. slcf

c (τ) � (slcf
c,1(τ), . . . , slcf

c,i (τ), . . . , slcf
c,n(τ))

denotes the security level of the encryption service employed
by the task nodes scheduled to n edge servers.
slcf

c,i (τ) ∈ 0, 1.0, 0.85, 0.56, 0.53, 0.32{ } denotes the security
level of the encryption service employed by task node
scheduled to the i th edge server. sligc (τ) � (sligc,1(τ), . . . ,

Table 1: (e encryption algorithms for confidential service.

Encryption algorithms slcf: security level V(slcf): processing rate (Mb/s)

IDEA 1.0 11.76
DES 0.85 13.83
Blowfish 0.56 20.87
AES 0.53 22.03
RC4 0.32 37.17

Table 2: (e hash functions for integrity service.

Hash functions slig: security level V(slig): processing
rate (Mb/s)

TIGER 1.0 75.76
RipeMD160 0.75 101.01
SHA-1 0.69 109.89
RipeMD128 0.63 119.05
MD5 0.44 172.41
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sligc,i(τ), . . . , sligc,n(τ)) denotes the security level of the integrity
service employed by the task nodes scheduled to n edge
servers. sligc,i(τ) ∈ 0, 1.0, 0.75, 0.69, 0.63, 0.44{ } denotes the
security level of the integrity service employed by the task
node scheduled to the i th edge server.

3.5.4. Reward Function. In each time slot τ, given the system
state s(τ), after taking an action a(τ), the immediate reward
obtained by system is R(τ). (e immediate reward R(τ) is
defined as

R(τ) �
− maxTend(M(a(τ))) − maxTend(M(a(τ − 1)))( , if τ ≠ 0,

−Tend(M(a(0))), if τ � 0,


(10)

where M(a(τ)) � vk denotes that, in time slot, the task node
scheduled by taking the action a(τ) is vk.
maxTend(M(a(τ))) denotes the execution delay of the
workflow until the τ th time slot, and R(τ) denotes the
increment of the workflow execution delay after scheduling
the task in time slice τ.

When the task node vk is scheduled to the edge server
eNBi, the latest completion time Tend(vk) is needed to be
calculated. In order to calculate Tend(vk), it is necessary to
calculate the start time Tstart(vk) of the task node vk, the
encryption time TE

c,i of the task node vk on the mobile device,
the transmission time Ttrans

c,i of the task node vk transmitted
from the mobile device to the edge server eNBi, the waiting
time Twait

c,i of the task node vk on the edge server eNBi, the
decryption time TDE

c,i of the task node vk on the edge server
eNBi, and the execution time Texec

c,i of the task node vk on the
edge server eNBi. In general, there may be multiple pre-
decessor nodes for a task node vk. (erefore, in order to
calculate the start time Tstart(vk) of task node vk, it needs to
calculate the maximum sum of the completion time Tend(vh)

and the transmission time Ttr
h,k for all the predecessor nodes

vh of the task node vk. Tstart(vk) and Tend(vk) can be cal-
culated by equations (11) and (12), respectively:

Tstart vk(  � max
vh∈pre vk( )

Tend vh(  + T
tr
h,k , (11)

Tend vk(  � Tstart vk(  + T
E
c,i + T

trans
c,i + T

wait
c,i + T

DE
c,i + T

exec
c,i ,

(12)

where pre(vk) denotes the set of all predecessor nodes of the
task node vk; vh is a predecessor node of vk. Tend(vh) is the
completion time of the task node vh; Ttr

h,k is the transmission
time between the scheduled node vk and its predecessor
node vh.

When the task nodes are scheduled to different edge
servers, they will be exposed to different risk probabilities,
thereby incurring different start time and different com-
pletion time. (erefore, this paper needs to find an optimal
scheduling strategy π∗ in a dynamic MEC with security
threats, the main goal of which is to minimize the com-
pletion time of the workflow while satisfying the risk
probability of the task nodes.

Maximize: R(τ), (13)

Subject to: P vk( ≤Pmax, ∀vk
∈ V. (14)

(e objective of this paper can be denoted by equation
(13). (e risk probability constraint of the task node can be
denoted by equation (14).

Due to the fact that the MEC environment is dynamical,
and its state change is unknown (such as the gain state of the
wireless channel), it is difficult for traditional optimization
methods to solve the security-aware workflow scheduling
problem in a dynamic MEC with security threats. However,
the deep reinforcement learning algorithm, as a model-free
machine learning approach, is good at solving such dynamic
stochastic optimization problems. In the next section, the
deep reinforcement learning-based security-aware workflow
scheduling scheme is introduced in detail.

4. Deep Reinforcement Learning-Based
Security-Aware Workflow
Scheduling Scheme

(e security-aware workflow scheduling problem in a dy-
namic MEC with security threats is formulated to be a finite
Markov Decision Process. (e action space of this problem
is discrete. To solve the optimal workflow scheduling
scheme, this paper proposes a SAWS scheme based on deep
Q network (DQN).

As shown in Figure 2, the DQN framework consists of
three main functional components: (1) the evaluated Q
network: the evaluated Q network is consisting of one input
layer, one hidden layer, and one output layer.(e number of
neurons in the input layer is equal to the number of di-
mensions of the state, the number of neurons in the hidden
layer is taken as 2048 in this paper, and the number of
neurons in the output layer is equal to the number of di-
mensions of the action. (2) (e target Q network: the
structure of the target Q network is the same as that of the
evaluated Q network. To continuously approach the Q
function, the parameters of the target Q network are peri-
odically updated by the parameters of the evaluated Q
network. (3) (e replay memory: the function of replay
memory is to store these state transition experiences
〈s(τ), a(τ), R(s(τ), a(τ), s(τ′ + 1))〉. A minibatch of state
transition experiences are randomly chosen from the replay
memory to train the Q network in the direction of mini-
mizing a sequence of the loss function. (e detailed pro-
cesses of deep Q-network-based SAWS scheme are
described in Algorithm 1.

During the training stage, the system state s(τ) in each
time slot τ is first observed and fed into the evaluated Q
network. (en, the evaluated Q network computes the
evaluated Q values Q(s(τ), ·) for all possible actions a(τ)

corresponding to the system state s(τ). (e action with the
largest Q value is chosen with (1 − ε) probability, and the
action is chosen randomly with ε probability, and the im-
mediate reward R(s(τ), a(τ)) can be calculated. Next, the
system state s′(τ + 1) in the next time slot (τ + 1) can be
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observed, and the state transition experience
〈s(τ), a(τ), R(s(τ), a(τ), s′(τ + 1))〉 can be obtained and
stored into the replay memory with size buf size. Finally, a
minibatch of samples are randomly selected from the replay
memory to train the Q network in the direction of

minimizing the loss function L(θτ) and the corresponding
network parameters θτ are saved.

(e loss function L(θτ) is defined as the expectation of
the mean-squared error between the current evaluated Q

value Q(s(τ), a(τ); θτ) and the target Q value
R(s(τ), a(τ)) + cmaxa(τ+1) Q(s(τ + 1), a(τ + 1); θτ+1):

L θτ(  � E R(s(τ), a(τ)) + cmaxa(τ+1)Q s(τ + 1), a(τ + 1); θτ+1(  − Q s(τ), a(τ); θτ(  
2

 . (15)
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Figure 2: Deep Q-network-based security-aware workflow scheduling strategy.

BEGIN
(1) Initialize the replay memory with the size of buf size, and a minibatch of the state transition experiences with the size of

mini batch;
(2) for episode � 1: MAX EPI do
(3) Resetting the system state s(τ);
(4) for step � 1: K do
(5) At the beginning of each time slot τ, the current state s(τ) of the system is observed;
(6) Based on the current state s(τ), randomly select an action with ε probability and select the action a(τ) with the largest Q

value with (1 − ε) probability;
(7) (e immediate reward R(s(τ), a(τ)) can be calculated and the system state s′(τ) in the next time slot (τ + 1) can be

observed;
(8) (e state transition experience 〈s(τ), a(τ), R(s(τ), a(τ), s(τ′ + 1))〉 can be obtained and stored into the replay memory;
(9) (e immediate rewards R(s(τ), a(τ)) at each step are accumulatively summed;
(10) Randomly sample mini batch state transition experiences from the replay memory to train the Q network;
(11) Calculate the expectation of the mean-squared error between the current evaluated Q value Q(s(τ), a(τ); θτ) and the target

Q value R(s(τ), a(τ)) + cmaxa(τ+1)Q(s(τ + 1), a(τ + 1); θτ+1):
(12) end for
(13) end for

ALGORITHM 1: Deep Q network-based security-aware workflow scheduling scheme.
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During the testing stage, the system state is first reset,
and the learned network parameters are loaded. (en, at the
beginning of each time slot, the current system state s(τ) is
observed and fed into the trained neural network. Next, the
neural network selects an optimal action a(τ) for the system
state s(τ) and the corresponding reward is calculated.

5. Experimental Evaluation

To demonstrate the effectiveness of the proposed SAWS
scheme in this paper, a lot of comparative experiments can
be conducted. In this section, the simulation parameters are
first set. (en, MSAWS, AWM, Greedy, and HEFT baseline
algorithms are introduced. Finally, the performance of the
SAWS scheme in comparison with these four baseline al-
gorithms is analyzed under different simulation parameters.

5.1. Parameter Settings. (is paper mainly considers a
mobile edge computing system consisting of a mobile user U

and n edge servers. Different workflow applications gener-
ated on the mobile device need to be scheduled in a dynamic
MEC with security threats. Referring to the literatures [6, 7],
the detailed parameter settings in experiment are introduced
as follows:

(1) (e parameter settings of the mobile device: the CPU
frequency fu and the CPU core number Nu of the
mobile device are set to fu � 2.5GHz and Nu � 4,
respectively.

(2) (e parameter settings of edge servers: the number
of edge servers is set to n � 4.(e CPU frequencies of
five edge servers are set to fc,1 � · · · �

fc,5 � 2.5GHz. (e numbers of CPU cores are
Nc,1 � 6, Nc,2 � 7, Nc,3 � 8 and Nc,4 � 9, respec-
tively. (e risk coefficients of confidentiality service
for these five edge servers are λcf

c,1 � 1.8, λcf
c,2

� 2.1, λcf
c,3 � 2.4 and λcf

c,4 � 2.7, respectively. And the
risk coefficients of integrity service for these five edge
servers are λig

c,1 � 1.2, λig
c,2 � 1.5, λig

c,3 � 1.8 and
λig

c,4 � 2.1, respectively.
(3) (e communication parameter settings: the trans-

mission power of each edge server is Pc,i � 40W, the
maximum bandwidth is Bc,i � 100MHz, the white
Gaussian noise power is σ2 � −174 dBm/Hz , the
path loss constant is z � 2, the path loss exponent is
θ � 4, and the reference distance is do � 1m [6, 7].
(e distance between the mobile device and each
edge server is di ∈ (0, 350]m.

(4) (e parameter settings of workflow: the number of
task nodes in different workflows is set to 50, 100,
and 150, respectively. (e out degree or in degree of
each intermediate task node is less than 5, and every
two task nodes can be connected with 10% proba-
bility to form an edge. (e workload Wk of each task
node vk is in the range of 1GHz · s to 10GHz · s. (e
input data size Dtr

k of each task node vk is in the range
of 10MB to 100MB, and its output data size Drx

k is

set from 1MB to 10MB. (e maximum risk prob-
ability of each task node vk is Pmax � 0.4.

(5) (e parameter settings of the neural network: the
evaluated Q network is consisting of one input layer,
one hidden layer, and one output layer, and the
number of neurons in the hidden layer is 2048. (e
learning rate is 0.003, and the learning discount
factor c is 0.9.(e size buf size of the replay memory
is 3000, and the sizemini batch of the state transition
experiences randomly sampled from the replay
memory is 64. (e maximum value of episodes is set
toMAX EPI � 1000.(emaximum value K of steps
in each episode is equal to the number of task nodes
in workflow.

5.2. Performance Analysis. To demonstrate the effectiveness
of the proposed SAWS scheme, this paper implements
MSAWS, AWM, Greedy, and HEFT baseline algorithms and
compares the SAWS scheme with these four baseline al-
gorithms under different experimental parameters.

Average Workload Minimization (AWM): In each
time slot, the AWM strategy chooses the edge server
with the smallest average workload to schedule the task
node.
SAWS: (is abbreviation represents a security-aware
workflow scheduling scheme. Its main goal is to
minimize the completion time of workflow while sat-
isfying the risk probability constraint.
MSAWS: Based on the SAWS scheme, the security
service with the security level 1 is chosen for these
scheduled task nodes.
Greedy: In each time slot, the Greedy algorithm selects
the edge server that enables each scheduled task node to
complete at the earliest based on the current
environment.
HEFT [40]: (is abbreviation represents heteroge-
neous earliest finish time. (is algorithm is a workflow
scheduling strategy based on list and is widely used in
workflow scheduling. It first needs to calculate the
priority of task nodes based on their computational and
communication costs. (en, the task node is scheduled
to the server that can complete it at the earliest.

5.2.1. @e Convergence Analysis of SAWS. (ree different
types of workflows with 50, 100, and 150 task nodes are
scheduled by the SAWS scheme. Figure 3 shows their
learning curves, respectively. It can be observed that the
completion time gradually decreases and tends to be sta-
bilized with the increasing of learning time (i.e., the number
of Episodes). (is result indicates that the proposed SAWS
scheme can learn an optimal policy to schedule workflow
applications with different task nodes. (e optimal policy
can minimize the completion time of workflow while sat-
isfying risk probability constraint. Moreover, as shown in
Figure 3, it can be further observed that the completion time
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of workflow application with 50 task nodes is smallest, that
of workflow application with 100 task nodes is medium, and
that of workflow application with 150 task nodes is the
largest. (is is because the larger the scale of the workflow
application, the larger the completion time.

5.2.2. @e Impact of Different Risk Probabilities. To examine
the impact of different risk probabilities on the completion
times of different workflows, the risk probability is varied
from 0.2 to 1.0 with the increment of 0.2 for workflows
with 50, 100, and 150 task nodes, respectively. Figure 4
shows the completion time of the SAWS, MSAWS, AWM,
Greedy, and HEFT algorithms under different risk prob-
abilities for workflows with 50, 100, and 150 task nodes. As
shown in Figure 4(a), the completion time of the SAWS
algorithm is less than that of the MSAWS, AWM, Greedy,
and HEFT algorithms. (e main reason is that the SAWS
algorithm can learn a security-aware workflow scheduling
scheme in a dynamic MEC with security threats. (is
scheme can make an optimal scheduling decision
according to different system states, thereby minimizing
the completion time of the workflow while satisfying the
risk probability constraint.(e AWM algorithm selects the
edge server with the least average workload to execute task
node; hence, it is difficult to obtain an optimal solution.
Although the Greedy and HEFTalgorithms select the edge
server that enables the task node to execute the task node at
the earliest completion, it does not consider the after effect
of task scheduling and is difficult to get an optimal so-
lution. (e MSAWS algorithm always selects the security
service with the security level 1 to encrypt these scheduled
task nodes. (e MSAWS algorithm can effectively ensure
the risk probability but significantly increases the com-
pletion time of workflow application. Moreover, we can
observe that the completion time of five algorithms
gradually decreases with the increase of the risk proba-
bility. It is because the greater the risk probability, the
lower the security service level employed by task node to
ensure its risk probability, and thereby the shorter the
completion time of the workflow.

In addition, we can observe from Figure 4 that the
completion time of workflow gradually decreases with the
increase of the number of task nodes in workflow. (e
reason for this is the same as discussed in Section 5.2.1.

5.2.3. @e Impact of Different Security Services. To evaluate
the impact of different security services on the completion
times of different workflows, only encryption service or only
integrity service is employed by task nodes in different
workflows. For simplicity’s sake, only encryption service
and only integrity service are denoted by Confi_Only and
Integ_Only, respectively. Figure 5 shows that the completion
time of Confi_Only and Integ_Only gradually decreases with
the increase of the risk probability. It can be explained that the
higher the risk probability, the lower the security level
employed, the higher the processing rate of the security service,
and thereby the shorter the completion time of the workflow.
Moreover, it can be further observed that the completion time
of Integ_Only is shorter than that ofConfi_Only.(is is because
when the security level of the encryption service is approxi-
mately equal to that of the hash service, the processing rate of
the hash service is higher than that of the encryption service. At
last, it can be observed from Figure 5 that, with the increase of
workflow nodes, the completion times of Confi_Only and
Integ_Only gradually increase.(e reason for this is the same as
that discussed above.

5.2.4. @e Impact of Different Risk Coefficients. Figure 6
shows the impact of different risk coefficients on the com-
pletion times of different workflows. We vary the risk coeffi-
cients of stealing and tampering security threats from 0.3 to 3,
with the increment of 0.3. We can observe from Figure 6 that
the completion time of Confi_Only and Integ_Only gradually
increases with the increase of the risk coefficient. It is due to the
fact that the task nodes are attacked more frequently with the
increase of risk coefficient. In order to satisfy the risk proba-
bility constraint, the security service with a higher level is
employed, which leads to longer task processing delay and the
completion time of workflow. Moreover, we can observe from
Figure 6 that the completion time of Confi_Only is higher than
that of Integ_Only. (e main reason is that when the security
level of the encryption service is approximately equal to that of
the hash service, the processing rate of the encryption service is
lower than that of the hash service, which leads to a longer task
processing delay and the completion time of workflow. Finally,
we can see from Figure 6 that the completion time of Con-
fi_Only and Integ_Only gradually increases with the increase of
the number of the task nodes in workflow.(e reason for this is
the same as that discussed in Section 5.2.1.
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Figure 3: Learning curves with respect to different workflows. (a) (e workflow with 50 nodes. (b) (e workflow with 100 nodes. (c) (e
workflow with 150 nodes.
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5.2.5. @e Impact of Different Edge Server’s Computing
Capacities. Figure 7 shows the impact of different edge
server’s computing capabilities on the completion time of
different workflows. As shown in Figure 7, we can see that
the completion time of the SAWS, MSAWS, AWM, Greedy,
and HEFT algorithms decreases with the increase of the
number of the CPU cores. (e main reason is that the more
the CPU cores, the stronger the edge server’s computing

capacity, and thereby the shorter the task processing delay.
(erefore, the completion time of workflow gradually de-
creases. In addition, we can further observe from Figure 7
that the SAWS algorithm performs better than the MSAWS,
AWM, Greedy, and HEFT algorithms in terms of comple-
tion time of workflow.(e reason for this is the same as that
discussed in Section 5.2.2. Finally, we can observe that the
completion time of the SAWS, MSAWS, AWM, Greedy, and
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Figure 6:(e performance of different risk coefficients. (a)(e workflow with 50 nodes. (b)(e workflow with 100 nodes. (c)(e workflow
with 150 nodes.
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Figure 4:(e impact of different risk probabilities. (a)(eworkflowwith 50 nodes. (b)(e workflowwith 100 nodes. (c)(e workflowwith
150 nodes.
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Figure 5:(e impact of different security services. (a)(e workflow with 50 nodes. (b)(e workflow with 100 nodes. (c)(e workflow with
150 nodes.
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HEFTalgorithms gradually increases with the increase of the
number of task nodes in workflow. (e reason for this is the
same as that discussed in Section 5.2.1.

5.2.6. @e Impact of the Number of Edge Servers.
Figure 8 shows the impact of different number of edge
servers on the completion time of different workflows with
50, 100, and 150 task nodes, respectively. To investigate the
impact of different number of edge servers on performance,
we vary the number of edge servers from 2 to 6 with the
increment of 1. As shown in Figure 8, we can observe that the
completion time of the SAWS, MSAWS, AWM, Greedy, and
HEFTalgorithms gradually decreases with the increase of the
number of edge servers. It can be explained that the greater
the number of edge servers, the stronger the computing
capacity of the whole system, and thereby the shorter the
completion time of workflow. Moreover, we can further
observe that the completion time of the SAWS algorithm is
lower than that of the MSAWS, AWM, Greedy, and HEFT
algorithms. (e reason for this is the same as that discussed
in Section 5.2.5. At last, we can observe that, with the in-
crease of task nodes in workflow, the completion times of the
SAWS, MSAWS, AWM, Greedy, and HEFT algorithms

gradually increase. (e reason for this is the same as that
discussed above.

6. Conclusions and Future Work

(is paper proposes a reinforcement learning-based secu-
rity-aware workflow scheduling (SAWS) scheme to solve the
workflow scheduling problem in a dynamic MEC with se-
curity threats. (is paper first constructs the mobile edge
computing model, security cost model, communication
model, and risk probability model, respectively. (en, this
paper formulates the security-aware workflow scheduling
problem to be a finiteMarkov Decision Process. To solve this
problem, this paper adopts a deep Q network approach to
learn an optimal security-aware workflow scheduling policy.
(e SAWS scheme enables minimization of the completion
time of workflows while satisfying the risk probability. To
verify the effectiveness of the SAWS scheme, this paper
implements the MSAWS, AWM, Greedy, and HEFT base-
line algorithms and compares the SAWS scheme with these
four baseline algorithms under different experimental pa-
rameters such as the risk probability, the security service, the
risk coefficient, the edge server’s computing capacity, and
the number of edge servers. (e extensive experimental
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Figure 7: (e impact of different edge server’s computing capacities. (a) (e workflow with 50 nodes. (b)(e workflow with 100 nodes. (c)
(e workflow with 150 nodes.
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Figure 8: (e impact of the number of edge servers. (a) (e workflow with 50 nodes. (b) (e workflow with 100 nodes. (c) (e workflow
with 150 nodes.
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results demonstrate the effectiveness of the proposed SAWS
scheme.
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