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Te concept of the cubic intuitionistic fuzzy set is an efective hybrid model for modeling uncertainties with an intuitionistic fuzzy
set and an interval-valued intuitionistic fuzzy set, simultaneously. Te primary objective of this study is to develop a topological
structure on cubic intuitionistic fuzzy sets with P-order and R-order as well as to defne some fundamental characteristics and
signifcant results with illustrations. Taking advantage of topological data analysis with cubic intuitionistic information, novel
multicriteria group decision-making methods are developed for an uncertain supply chain management. Algorithms 1 and 2 are
proposed for extensions of the weighted product model and the choice value method towards a cubic intuitionistic fuzzy
environment, respectively. A comparative analysis is also given to discuss the validity and advantages of the proposed techniques.

1. Introduction

Topological data analysis (TDA) methods are rapidly
growing approaches to inferring persistent key features from
possibly complex data [1]. We deal with complex issues in
our daily lives due to vague and uncertain information, and
if we do not use the proper modeling techniques for them,
we eventually wind up with vague and unclear reasoning.
For this reason, making rational and logical conclusions in
the face of such imprecise and inexplicit facts is a difcult
task for decision-makers. As a result, dealing with vagueness
and uncertainty is a necessary part of dealing with such
challenges and difculties. Zadeh [2] initiated the notion of
fuzzy set (FS) theory, which is an instantaneous extension of
a crisp set. Various sets of theories and models have been
developed by researchers to manage the complexity of daily
life problems that include vague and uncertain information.
Atanassov [3] presented the idea of an intuitionistic fuzzy set
(IFS), and Atanassov [4] further initiated the notion of
circular intuitionistic fuzzy sets. Yager [5, 6] introduced the
concept of a Pythagorean fuzzy set (PFS), and further Yager
[7] developed the notion of a q-rung orthopair fuzzy set (q-

ROFS). Molodtsov [8] was the frst who proposed the idea of
a soft set (SS), and Zhang [9, 10] originally introduced the
notion of a bipolar fuzzy set (BFS) to address bipolarity and
bipolar information. Smarandache [11, 12] initiated the
concept of a neutrosophic set (NS). Cuong [13] introduced
the idea of a picture fuzzy set (PiFS). Gundogdu and
Kahraman [14], Mahmood et al. [15], and Ashraf et al. [16]
independently introduced the notion of a spherical fuzzy set
(SFS). Tese models have a strong foothold when it comes to
modeling uncertainty in a real-life complex challenges.
Atanassov and Gargov [17] introduced interval-valued
intuitionistic fuzzy sets. Cagman and Enginoglu [18] pro-
posed decision-making applications based on soft-set the-
ory. Karaaslan and Cagman [19] introduce the parameter
trees based on soft set theory and their similarity measures.
Chen [20] proposed m-polar fuzzy sets (mPFS) with m

membership values to address the multipolarity of objects.
Jun et al. [21] developed the cubic set (CS) and its in-

ternal and external environment. But CS has some limita-
tions, as it does not convert membership degree grades into
nonmembership grades. Riaz and Hashmi [22] proposed
cubic m-polar fuzzy sets and cubic m-polar fuzzy averaging
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aggregation operators for MAGDM. So, for this, Kaur and
Garg [23, 24] presented the concept of a cubic intuitionistic
fuzzy set by combining the concepts of IFSs, CFSs, and
IVIFSs. So, CIFS, rather than IFSs or IVIFSs, is a handy
technique to address information more precisely throughout
the DMP. Young et al. [25] proposed cubic interval-valued
intuitionistic fuzzy sets. Senapati et al. [26] introduced a
cubic intuitionistic WASPAS technique. Garg and Kaur [27]
suggested cubic intuitionistic fuzzy Bonferroni mean op-
erators. Garg and Kaur [28] proposed cubic intuitionistic
fuzzy TOPSIS for nonlinear programming.

Classical topology derives its inspiration from classical
analysis and has a wide range of scientifc applications. In
1968, Chang [29] proposed the concept of fuzzy topology.
Coker [30] pioneered intuitionistic fuzzy topology. Olgun
[31] expanded on this concept by introducing Pythagorean
fuzzy topology. Topological structures on fuzzy soft sets [32]
and cubic m-polar fuzzy sets [33] have robust applications in
decision-making. Xu and Yager [34] and Xu [35] originated
the notion of an intuitionistic fuzzy number (IFN) and their
aggregation operators. Zhang and Xu [36] developed an
extension of TOPSIS for Pythagorean fuzzy numbers
(PyFNs). Tey also suggested a domestic airline MCDM
application to examine the service quality of airlines. Feng
et al. [37] proposed the MADM application by using a new
score function for ranking alternatives with generalized
orthopair fuzzy membership grades. Akram [38] initiated
the concept of BFS graphs, and Akram et al. [39] suggested a
hybrid decision-making framework by using aggregation
operators under a complex spherical fuzzy prioritization
approach. Alghamdi et al. [40] proposed some MCDM
methods for bipolar fuzzy environments. Liu andWang [41]
proposed some basic operational laws of q-ROFNs and
q-ROF aggregation operators. Ye [42] proposed MADM
with new similarity measures based on the generalized
distance of neutrosophic Z-number sets. Senapati and Yager
[43] proposed WPM for Fermatean fuzzy numbers. Kah-
raman and Alkan [44] developed the TOPSIS method for
circular intuitionistic fuzzy sets. Sinha and Sarmah [45]
developed supply chain coordination using fuzzy set theory.
Alshurideh et al. [46] proposed supply chain management
with fuzzy-assisted human resource management.

Seikh et al. [47, 48] proposed the solution of matrix
games with rough interval pay-ofs and a defuzzifcation
approach of type-2 fuzzy variables to solving matrix
games. Tey developed applications of matrix games to
the telecom market share problem and the plastic ban
problem. Ruidas et al. [49] developed an EPQ model with
stock and selling price-dependent demand and a variable
production rate in an interval environment. Ruidas et al.
[50] suggested an interval environment with price revi-
sion using a single-period production inventory model.
Ruidas et al. [51] introduced a production-repairing in-
ventory model considering demand and the proportion of
defective items as rough intervals. Seikh and Mandal [52]
proposed q-rung orthopair fuzzy Frank aggregation op-
erators and their application in MADM with unknown
attribute weights. Seikh and Mandal [53] introduced the
MADM method based on 3, 4-quasirung fuzzy sets. Riaz

and Farid [54] proposed the picture fuzzy aggregation
approach and application to third-party logistic provider
selection. Ashraf et al. [55] introduced the Maclaurin
symmetric mean operator with an interval-valued picture
fuzzy model. Baig et al. [56] developed new methods for
enhancing resilience in developing countries for oil
supply chains. Chattopadhyay et al. [57] proposed the idea
of the development of a rough-MABAC-DoE-based
metamodel for iron and steel supplier selection. Karamasa
et al. [58] studied weighting the factors afecting logistics
outsourcing. Bairagi [59] developed a novel MCDM
model for warehouse location selection in supply chain
management. Recently, some applications of fuzzy
modeling have been developed, such as uncertain supply
chains [60], medical tourism supply chains [61], sus-
tainable plastic recycling processes [62], and pattern
recognition [63].

Multicriteria group decision-making (MCGDM) is a
branch of operation research in which the alternatives are
evaluated by the group of decision-makers (DMs) under
multiple criteria to fnd a ranking of alternatives and an
optimal decision. It is an important aspect of MCGDM to
evaluate alternatives based on their characteristics. It is
extremely difcult for an individual to choose an option in a
variety of situations due to inconsistencies in the data caused
by human errors or a lack of knowledge. Dealing with
vagueness and uncertainties in MCGDM problems is very
crucial to dealing with daily life problems. For this purpose, a
variety of strategies have been utilized to evaluate the sta-
bility of human decision-making by weighing a set of op-
tions against a set of criteria. Te weighted product model
and choice value method are well-known methods and are
often utilized to rank the alternatives according to certain
criteria.

Te main objectives of this research work are given as
follows:

(1) To develop a topological structure on cubic intui-
tionistic fuzzy sets (CIFSs) with P-order (P-CIFT) as
well as R-order (R-CIFT) and to validate some
signifcant results and fundamental characteristics
with examples. Te concept of the CIFS is a strong
hybrid model for modeling uncertainties with an IFS
and an interval-valued IFS, simultaneously.

(2) To examine various properties of the cubic intui-
tionistic fuzzy topology (CIFT) under P-order (R-
order), such as open sets of CIFT, closed sets of
CIFT, interior in CIFT, closure in CIFT, subspace of
CIFT, exterior in CIFT, a frontier in CIFT, and a
basis of CIFT.

(3) Taking advantage of topological data analysis with
cubic intuitionistic fuzzy information, we proposed
two multicriteria group decision-making (MCGDM)
methods.

(4) To develop Algorithm 1 for a weighted product
model (WPM) and Algorithm 2 for a choice value
method (CVM). An application of the proposed
techniques is also designed for the uncertain supply
chain management.
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(5) ranking of feasible alternatives is computed, and a
comparative analysis of proposed methods with
existing methods is also given to discuss the validity
and advantage of the proposed techniques.

Te remaining sections of this paper are organized as
follows. In Section 2, we reviewed some fundamental
concepts such as IFS, IVIFS, cubic sets, CIFS, operations on
CIFSs, and some essential results on CIFSs.Te idea of cubic
intuitionistic fuzzy set topology with P-order is introduced
in Section 3. We also investigated some key results on CIFSs
in p-order. In Section 4, we discuss the major results of cubic
intuitionistic fuzzy set topology with R-order. In Section 5,
we discuss a useful application that employs the weighted
product model and choice value method. Te conclusion of
the paper is given in Section 6.

2. Preliminaries

In this section, we study some basic concepts of IFSs, IVIFSs,
CSs, and CIFSs. We also review some fundamental prop-
erties of CIFSs that are necessary to understand the topo-
logical structures of CIFSs.

Defnition 1 (see [3]). An intuitionistic fuzzy set (IFS) in a
set k is described as

I � (ℓ, ζ(ℓ), η(ℓ)): 0≤ ζ(ℓ) + η(ℓ)≤ 1, ℓ ∈ k􏼈 􏼉, (1)

where, ζ: k⟶ [0, 1] represents the membership function,
and the nonmembership function is denoted by
η: k⟶ [0, 1].

Defnition 2 (see [34, 35]). Let I1 � (ζ1, η1) and I2 � (ζ2, η2)
be two IFNs. Ten, we have the following operations on
IFNs.

(i) I1⊆I2 if ζ1 ≤ ζ2 and η1 ≥ η2 for all ℓ ∈ k
(ii) I1 � I2 if I1⊆I2 and I2⊆I1
(iii) Ic1 � (ℓ, η1(ℓ), ζ1(ℓ)); ℓ ∈ k􏼈 􏼉

(iv) I1⋃ I2 � (ℓ,∨ ζ1, ζ2􏼈 􏼉,∧ η1, η2􏼈 􏼉): ℓ ∈ k􏼈 􏼉

(v) I1 ∩ I2 � (ℓ,∧ ζ1, ζ2􏼈 􏼉,∨ η1, η2􏼈 􏼉): ℓ ∈ k􏼈 􏼉

In reality, it is difcult to determine the exact mem-
bership and nonmembership degrees of an element in a set.
In this situation, a range of values may be a better mea-
surement to accommodate the uncertainty. For this, Ata-
nassov and Gargov [17] introduce the idea of an interval-
valued intuitionistic fuzzy set (IVIFS).

Defnition 3 (see [17]). Let k be a nonempty universal set.
An interval-valued intuitionistic fuzzy set (IVIFS) on k is
defned as

I � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (2)

where, [ζL
(ℓ), ζU

(ℓ)] and [ηL(ℓ), ηU(ℓ)] are the closed
subintervals of [0, 1] for every ℓ ∈ k. For simplicity, the pair
I � ([ζL

(ℓ), ζU
(ℓ)], [ηL(ℓ), ηU(ℓ)]) is called interval-valued

intuitionistic fuzzy number (IVIFN).

By fusing the concept of IFS and IVIFS, Jun et al. [21]
defned the cubic intuitionistic set as follows:

Defnition 4 (see [21]). A cubic set ∁ on a universal set k is
expressed as

∁ � ℓ, C(ℓ), σ(ℓ): ℓ ∈ k{ }, (3)

in which C(ℓ) is interval-valued fuzzy set and σ(ℓ) is fuzzy
set on k. For use of ease, this pair is referred as ∁ � 〈C, σ〉

Defnition 5 (see [21]). For any cubic fuzzy sets ∁i � 〈Ci, σi〉,
i ∈ Λ, we have

(i) P-union ∪ p∁i � 〈∨i∈ΛCi,∨i∈Λσi〉

(ii) P-intersection ∩
p
∁i � < ∧

i∈Λ
Ci, ∧

i∈Λ
σi >

(iii) R-union ∪ R∁i � 〈∨i∈ΛCi,∨i∈Λσi〉

(iv) R-intersection ∪ p∁i � 〈∨i∈ΛCi,∨i∈Λσi〉

Defnition 6 (see [23, 24]). Let k be a universal set of dis-
course. A cubic intuitionistic fuzzy set (CIFS) on universal
set k is described as

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (4)

in which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) is an IVIFS and
(ζ, η) is an IFS in k. For ease of use, we denote these pairs as
CI � (C, σ), where C � ([ζL

, ζU
], [ηL, ηU]) and σ � (ζ, η) is

known as cubic intuitionistic fuzzy number (CIFN) with the
condition that [ζL

, ζU
], [ηL, ηU]⊆[0, 1], ζ, η ∈ [0, 1] and

ζ + η≤ 1.
Tat is why the CIFS has the advantage of being capable

to contain a lot more data to represent both the IVIFN and
the IFN at the same time.

2.1. Operations onCIFSs. Now we review some fundamental
operations of CIFSs, which have been explored in [23, 24].

Defnition 7. Te complement of the CIFS CI � (C, σ) is
defned as Cc

I � (Cc, σc) where Cc � ([ηL(ℓ), ηU(ℓ)],
[ζL

(ℓ), ζU
(ℓ)]) be the complement of the IVIFS,

C � ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) and σc � (η, ζ) be the
complement of the IFS, σ � (ζ , η). Tus, the complement of
CIFS is expressed as

C
c
I � ℓ, ηL

(ℓ), ηU
(ℓ)􏽨 􏽩, ζL

(ℓ), ζU
(ℓ)􏽨 􏽩, (η, ζ)􏼐 􏼑; ℓ ∈ k􏽮 􏽯. (5)

Defnition 8. Consider two CIFSs on a universal set k is
given as follow:

C
1
I � ℓ, ζL

1 , ζU
1􏽨 􏽩, ηL

1 , ηU
1􏽨 􏽩, ζ1, η1( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (6)

and

C
2
I � ℓ, ζL

2 , ζU
2􏽨 􏽩, ηL

2 , ηU
2􏽨 􏽩, ζ2, η2( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (7)

we defne
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(i) (P-order) C1
I⊆pC

2
I if [ζL

1 , ζU
1 ]⊆[ζL

2 , ζU
2 ], [ηL

1 , ηU
1 ]⊇

[ηL
2 , ηU

2 ], ζ1 ≤ ζ2 and η1 ≥ η2
(ii) (R-order) C1

I⊆RC
2
I if [ζL

1 , ζU
1 ]⊆[ζL

2 , ζU
2 ], [ηL

1 , ηU
1 ]⊇

[ηL
2 , ηU

2 ], ζ1 ≥ ζ2 and η1 ≤ η2

Step 1. Obtain the decision matrix from the decision-makers, which indicates the alternative’sXj, (j � 1 . . . m) evaluation values on
the basis of criterion Ci, (i � 1, . . . n) by Tji � (Cji, σji), where Cji � ([ζL

ji, ζ
U
ji], [ηL

ji, η
U
ji]) an IVIFN and σji � (ζji, ηji) is known as a

cubic intuitionistic fuzzy number. Te decision-makers provide the decision matrix M � (Tji)m×n of the form.

X1
X2
Xm

C1 C2 . . . . . . Cn

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 2. Ten, the decision matrix M � (Tji)m×n is made normalized by a linear approach. Assume the criteria are categorized into
beneft criteria B and cost criteria K. Te normalization of every i ∈ B is defned as
Tji � Tji/maxjTji,

where maxjTji is defned as
maxjTji � ([(max ζL

ji, max ζU
ji)], ([min ηL

ji, min ηU
ji]), (min ζji, max ηji)).

Similarly, the normalization of every i ∈ K is defned as
Tji � minjTji/Tji,

where minjTji is defned as
minjTji � ([(min ζL

ji, min ζU
ji)], ([max ηL

ji, max ηU
ji]), (max ζji, min ηji)).

Te decision matrix M � (Tji)m×n is then transformed into normalized decision matrix M � (Tji)m×n and is given as

X1
X2
Xm

C1 C2 . . . . . . Cn

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 3. According to CIFS-WPM, the relative importance of j alternatives is denoted as Y j and is defned as
Y j � 􏽑 i � 1n(Tji)

wi,

Here, we use the operation of power rule of CIFNs and also the product operation of CIFNs.
Step 4. Find the score function of all vales Y j.
Step 5. Ranking of alternatives according to the score functions of Y j.

ALGORITHM 1: Weighted product model (WPM).

Step 1. Obtain the decision matrix from the decision-makers, with alternative’s Xj evaluate on the basis of criterion Ci by
Tji � (Cji, σji), where Cji � ([ζL

ji, ζ
U
ji], [ηL

ji, η
U
ji]) an IVIFN and σji � (ζji, ηji) is known as cubic intuitionistic fuzzy number. Te

decision-makers provide the decision matrix M � (Tji)m×n of the form.

X1
X2
Xm

C1 C2 . . . . . . Cn

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 2. Te decision-makers also give weightage to the criteria, with the condition that the sum of the weights must be equal to unity.
We compute the multiplication of the decision matrix with criteria weights.

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W1
W2
Wn

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

Step 3. We fnd the score function of each value.
Step 4. Compute the ranking of the alternatives according to their score function values.

ALGORITHM 2: Choice value method (CVM).
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(iii) (Equality) C1
I � C2

I if [ζL
1 , ζU

1 ] � [ζL
2 , ζU

2 ], [ηL
1 , ηU

1 ] �

[ηL
2 , ηU

2 ], ζ1 � ζ2 and η1 � η2

Defnition 9. For any CIFSs

C
i
I � ζL

i , ζU
i􏽨 􏽩, ηL

i , ηU
i􏽨 􏽩, ζ i, ηi( 􏼁􏽨􏼐 􏼑; ℓ ∈ k􏽯 i ∈ Λ, (8)

the operations listed have been defned as follows:

(i) (P-union) ∪ PC
i
I � ([ ∨

i∈Λ
ζL

i , ∨
i∈Λ

ζU
i ],􏼚 [ ∧

i∈Λ
ηL

i , ∧
i∈Λ

ηU
i ]),

( ∨
i∈Λ

ζ i, ∧
i∈Λ

ηi)}

(ii) (P-intersection) ∩ PC
i
I � ([ ∧

i∈Λ
ζL

i , ∧
i∈Λ

ζU
i ],􏼚 [ ∨

i∈Λ
ηL

i ,

∨
i∈Λ

ηU
i ]), ( ∧

i∈Λ
ζ i, ∨

i∈Λ
ηi)}

(iii) (R-union) ∪ RC
i
I � ([ ∨

i∈Λ
ζL

i , ∨
i∈Λ

ζU
i ],􏼚 [ ∧

i∈Λ
ηL

i , ∧
i∈Λ

ηU
i ]),

( ∧
i∈Λ

ζ i, ∨
i∈Λ

ηi)}

(iv) (R-intersection) ∩ RC
i
I � ([ ∧

i∈Λ
ζL

i , ∧
i∈Λ

ζU
i ],􏼚 [ ∨

i∈Λ
ηL

i ,

∨
i∈Λ

ηU
i ]), ( ∨

i∈Λ
ζ i, ∧

i∈Λ
ηi)}

2.2. Some Results on CIFSs. Now we review some essential
properties and results of CIFSs, which have been explored in
[23, 24].

Defnition 10. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (9)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([0, 0], [1, 1])

and (ζ, η) � (1, 0) for all ℓ ∈ k is denoted by 0CI

Defnition 11. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯,

(10)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([1, 1], [0, 0])

and (ζ, η) � (0, 1) for all ℓ ∈ k is denoted by 1CI

Defnition 12. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯,

(11)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([1, 1], [0, 0])

and (ζ, η) � (0, 1) for all ℓ ∈ k is denoted by 0CI

Defnition 13. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯,

(12)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([1, 1], [0, 0])

and (ζ, η) � (1, 0) for all ℓ ∈ k is denoted by 1CI

Defnition 14. Let CI � (ℓ, [ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)],􏽮

(ζ, η))} be a CIFN. Te score function S(CI) and the ac-
curacy function A(CI) on for CIFNs are defned as

For P-order

S CI( 􏼁 �
ζL

+ ζU
− ηL

− ηU

2
+ ζ − η. (13)

For R-order

S CI( 􏼁 �
ζL

+ ζU
− ηL

− ηU

2
+ η − ζ,

A CI( 􏼁 �
ζL

+ ζU
+ ηL

+ ηU

2
+ ζ + η.

(14)

Te ranking of CIFNs in relation to the proposed scoring
function and accuracy function is determined as.

(i) CI <C1
I if S(CI)<S(C1

I ),
(ii) If S(CI) � S(C1

I ), then CI <C1
I if A(CI)<A(C1

I )

(iii) If S(CI) � S(C1
I ) and A(CI) � A(C1

I ), then
CI � C1

I

Defnition 15. Let CI � (ℓ, [ζL
, ζU

], [ηL, ηU], (ζ, η)); ℓ ∈ k􏽮 􏽯

and

C
i
I � ℓ, ζL

i , ζU
i􏽨 􏽩, ηL

i , ηU
i􏽨 􏽩, ζ i, ηi( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (i � 1, 2), (15)

be the CIFNs and let p> 0 be any real number. Te basic
operations on CIFs are given as

(i) C1
I + C2

I � (([1 − 􏽑
2
i�1(1 − ζL

i ), 1 − 􏽑
2
i�1(1 − ζU

i )],

[􏽑
2
i�1 η

L
i , 􏽑

2
i�1 η

U
i ]), (􏽑

2
i�1 ζ i, 1 − 􏽑

2
i�1 ηi))

(ii) C1
I × C2

I � ([􏽑 i � 12ζL
i , 􏽑 i � 12ζU

i ], [1 − 􏽑 i �

12(1 − ηL
i ), 1 − 􏽑 i � 12(1 − 1 − ηU

i )])t, n(1 − 􏽑 i �

12ζ i, 􏽑 i � 12ηi))

(iii) pCI � (([1 − (1 − ζL
)p, 1 − (1 − ζU

)p], [(ηL)p,

(ηU)p]), ((ζ)p, 1 − (1 − (η)p))

(iv) Cp

I � (([(ζL
)p,(ζU

)p],[1 − (1 − ηL)p,1 − (1 − ηU)p]),

(1 − 1 − (ζ)p,(η)p))􏼈

Defnition 16. Let

C
i
I � ℓ, ζL

i , ζU
i􏽨 􏽩, ηL

i , ηU
i􏽨 􏽩, ζ i, ηi( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (i � 1, 2), (16)

be the CIFNs. Ten, the division operator on CIFN is given
as

C
1
I

C
2
I

� min ζL
1 , ζL

2 , min ζU
1 , ζU

2􏽨 􏽩, max ηL
1 , ηL

2 , max ηU
1 , ηU

2􏽨 􏽩􏼐 􏼑,􏼐

max ζ1, ζ2, min ηU
1 , ηU

2􏼐 􏼑􏼑.

(17)

3. Cubic Intuitionistic Topology under P-Order

In this section, we introduce the concept of a P-cubic
intuitionistic fuzzy topology (P-CIFT) or a cubic intui-
tionistic fuzzy topology with P-order.

Defnition 17. Consider k to be a nonempty universal set,
and let ci(k) to be the accumulation of all CIFSs in k. If the
collection TCIP

containing CIFSs satisfes the following
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conditions, it is termed as a cubic intuitionistic fuzzy to-
pology with a P-order (P-CIFT).

(1) 0CI, 1CI, 0CI and 0CI∈ TCIP

(2) If (CIP)i ∈ TCIP
∀i ∈ Λ then ∪ p(CIP)i ∈ TCIP

(3) If C1
IP,C2

IP ∈ TCIP
then C1

IP ∩ pC
2
IP ∈ TCIP

Ten, the pair (k, TCIP
) is called cubic intuitionistic fuzzy

topological space with a P-order (P-CIFT).

Example 1. Let k be a universal set. Ten, ci(k) be the
assemblage of all P-cubic intuitionistic fuzzy sets PCIFSs in
k. Consider P-order fuzzy subsets of ci(k) given as

C
1
IP � [0.20, 0.31], [0.41, 0.52], (0.32, 0.44){ },

C
2
IP � [0.20, 0.31], [0.41, 0.52], (1, 0){ },

C
3
IP � [0.20, 0.31], [0.41, 0.52], (0, 1){ },

C
4
IP � [1, 1], [0, 0], (0.32, 0.44){ },

C
5
IP � [0, 0], [1, 1], (0.32, 0.44){ }.

(18)

Te union and intersection with a P-order for the above
CIFSs are given in Tables 1 and 2,, respectively.

Clearly,

TC1
IP

�
0
CI,

1
CI,

1CI,
1CI􏽮 􏽯, (19)

and

T
2
CIP

�
0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (20)

are cubic intuitionistic topology with a P-order.

Defnition 18. Let k be a nonempty set and TCIP
� Ck

IP􏽮 􏽯

where Ck
IP represent the cubic intuitionistic fuzzy subsets of

universal set k. Ten, TCIP
is termed as a P-cubic intui-

tionistic fuzzy topology on k and it is the largest P-cubic
intuitionistic fuzzy topology on k and is entitled as P-dis-
crete cubic intuitionistic fuzzy topology.

Defnition 19. Let k be a universal set and
TCIP

� 0CI,
1CI,

0CI,
1CI􏽮 􏽯 be the assemblage of cubic

intuitionistic fuzzy sets. Ten, TCIP
is termed as a P-cubic

intuitionistic fuzzy topology on universal set k and is the
smallest P-cubic intuitionistic fuzzy topology on k and is
entitled as P-indiscrete cubic intuitionistic fuzzy topology.

Defnition 20. Te elements of a P-cubic intuitionistic fuzzy
topology TCIP

is termed as P-cubic intuitionistic fuzzy open
sets PCIFOS in (k, TCIP

).

Theorem 1. If (k, TCIP
) is any P-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1C I are PCIFOSs
(2) Te P-union of any number of PCIFOSs is PCIFOS
(3) Te P-intersection of fnite PCIFOSs is PCIFOS

Proof

(1) By the Defnition 4.2 of a P-cubic intuitionistic fuzzy
topology (P-CIFT), 0CI,

1CI,
0CI and 1CI ∈ TCIP

.
Hence, 0CI,

1CI,
0CI and 1CI are PCIFOSs.

(2) Let (CIP)i|i ∈ Λ􏼈 􏼉 be PCIFOSs. Ten, (CIP)i ∈ TCIP
.

From the defnition of P-CIFT

∪
p

CIP( 􏼁i ∈ TCIP
. (21)

Hence, ∪ p(CIP)i ∈ TCIP
is PCIFOSs.

(3) Let C1
IP,C2

IP, . . . ,Cn
IP be PCIOSs. Ten, from def-

nition of P-CIFT

∩
p

CIP( 􏼁i ∈ TCIP
. (22)

Hence, ∩ p(CIP)i is PCIFOSs. □

Defnition 21. Te complement of elements of P-cubic
intuitionistic fuzzy open sets is termed as P-cubic intui-
tionistic fuzzy closed sets PCIFCSs in (k, TCIP

).

Theorem 2. If (k, TCIP
) is any P-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1CI are PCIFCSs
(2) Te P-intersection of any number of PCIFCSs is

PCIFCS
(3) Te P-union of fnite PCIFCSs is PCIFCS

Proof

(1) 0CI,
1CI,

0CI and 1CI are PCIFOSs. From the def-
nition of P-CIFT

0
CI,

1
CI,

0CI,
1CI ∈ TCIP

. (23)

Since the complement of 0CI � 1CI, 1CI � 0CI, 0CI �
1CI and 1CI � 0CI. So, 0CI,

1CI,
0CI and 1CI are

PCIFCSs.
(2) Let (CIP)i|i ∈ Λ􏼈 􏼉 be PCIFCSs. Ten,

CIP( 􏼁i( 􏼁
c ∈ TCIP

. (24)

From the defnition of P-CIFT,

∪
p

CIP( 􏼁i( 􏼁
c ∈ TCIP

. (25)

Hence, ∪ p((CIP)i)
c is PCIFOSs, but

∪
p

CIP( 􏼁i( 􏼁
c

􏼠 􏼡 � ∩
p

CIP( 􏼁i( 􏼁􏼠 􏼡

c

. (26)

So, ∩ p(CIP)i is PCIFCSs.
(3) Let C1

IP,C2
IP, . . . ,Cn

IP be PCmPCSs. Ten,
(C1

IP)c, (C2
IP)c, . . . , (Cn

IP)c are PCIFOSs. So,
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C
1
IP􏼐 􏼑

c
, C

2
IP􏼐 􏼑

c
, . . . , C

n
IP( 􏼁

c ∈ TCIP
. (27)

From the defnition of P-CIFT,

∩
p

CIP( 􏼁i( 􏼁
c ∈ TCIP

. (28)

Tis gives ∩ p((CIP)i)
c ∈ TCIP

is PCIFOSs, but

􏽜
p

CIP( 􏼁i( 􏼁
c⎛⎝ ⎞⎠ � 􏽛

p

CIP( 􏼁i
⎛⎝ ⎞⎠

c

. (29)

Hence, ∪ p(CIP)i is PCIFCSs. □

Defnition 22. Te P-cubic intuitionistic fuzzy sets PCIFSs,
which are PCIFOSs and PCIFCSs, are entitled as P-cubic
intuitionistic fuzzy clopen sets in (k, TCIP

).

Proposition 1

(1) For every TCIP
, 0CI,

1CI,
0CI and 1CI are P-cubic

intuitionistic fuzzy clopen sets
(2) For discrete P-order cubic intuitionistic fuzzy topol-

ogy, all the cubic intuitionistic subsets of k are P-cubic
intuitionistic fuzzy clopen sets

(3) For in-discrete P-order cubic intuitionistic fuzzy to-
pology, 0CI,

1CI,
0CI and 1CI are only P-cubic intui-

tionistic fuzzy clopen sets

Defnition 23. Let (k, T1
CIP

) and (k, T2
CIP

) be two P-CIFTs in
k. Two P-CIFTs are called comparable if

T
1
CIP
⊆PT

2
CIP

, (30)

or

T
2
CIP
⊆PT

1
CIP

. (31)

If T1
CIP
⊆PT2

CIP
then, T1

CIP
is called P-cubic intuitionistic

fuzzy coarser than T2
CIP

and T2
CIP

is called P-cubic intui-
tionistic fuzzy fner than. T1

CIP

Example 2. Let k be a nonempty set and from Example 1

TC1
IP

�
0
CI,

1
CI,

0CI,
1CI􏽮 􏽯, (32)

and

T
2
CIP

�
0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (33)

are P-cubic intuitionistic fuzzy topologies on universal set.
Ten, TC1

IP
⊆PTC2

IP
. Hence, TC1

IP
is called a P-cubic intui-

tionistic fuzzy coarser then, TC2
IP
.

3.1. Subspace of CIFTp

Defnition 24. Let (k, TCIPk
) be a CIFTp. Let Y⊆k and TCIPY

is a CIFTp on Y and whose PCIFOSs are

CIPY � TCIPk
∩
p
Y , (34)

whereCIPk
are PCIFOSs of TCIPk

, TCIPY
are PCIFOSs of TCIPY

and 􏽥Y is any P-cubic subset of PCIFS on Y . Ten, TCIPY
is

called a P-cubic intuitionistic fuzzy subspace of TCIPk
, i.e.,

Table 1: Union under P-order.

∪ p
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

0CI
0CI

1CI
0CI

1CI C2
IP C2

IP C2
IP

1CI
0CI

1CI
1CI

1CI
1CI

1CI C4
IP

1CI
1CI C4

IP C4
IP

0CI
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

C1
IP C2

IP C4
IP C1

IP
1CI C1

IP C2
IP C1

IP C4
IP C1

IP

C2
IP C2

IP
1CI C2

IP
1CI C2

IP C2
IP C2

IP
1CI C2

IP

C3
IP C2

IP
1CI C3

IP
1CI C1

IP C2
IP C3

IP C4
IP C1

IP

C4
IP

1CI C4
IP C4

IP
1CI C4

IP
1CI C4

IP C4
IP C4

IP

C5
IP

0CI C4
IP C5

IP
1CI C1

IP C2
IP C1

IP C4
IP C5

IP

Table 2: Intersection under P-order.

∩ p
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

0CI
0CI

0CI
0CI

0CI C5
IP

0CI
0CI C5

IP C5
IP

1CI
0CI

1CI
0CI

1CI C3
IP C3

IP C3
IP

1CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

1CI
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

C1
IP C5

IP C3
IP

0CI C1
IP C1

IP C1
IP C3

IP C1
IP C5

IP

C2
IP

0CI C3
IP

0CI C2
IP C1

IP C2
IP C3

IP C1
IP C5

IP

C3
IP

0CI C3
IP

0CI C3
IP C3

IP C3
IP C3

IP C3
IP

0CI

C4
IP C5

IP
1CI

0CI C4
IP C1

IP C1
IP C3

IP C4
IP C5

IP

C5
IP C5

IP
0CI

0CI C5
IP C5

IP C5
IP

0CI C5
IP C5

IP

Mathematical Problems in Engineering 7



TCIPY
� CIPY

: CIPY
� CIPk
∩
p
Y ,CIPk
∈ TCIPk

􏼨 􏼩. (35)

Example 3. Let k be a nonempty set. From Example 1,

TCIP
�

0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (36)

is a P-cubic intuitionistic fuzzy topology on k.
Now, consider any P-cubic fuzzy subset on k such that

Y⊆k is

Y � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }. (37)

Since,

Y ∩
0

p
CI � [0, 0], [1, 1], (0.27, 0.49){ }

� CIP

��→
,

Y ∩
1

p
CI � [0.98, 0.23], [0.46, 0.61], (0, 1){ }

� 􏽥CIP,

Y ∩ p
0
C I � [0, 0], [1, 1], (0, 1){ }

� C IP

′
,

Y ∩ p
1
C I � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

1
IP � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

2
IP � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

3
IP � [0.98, 0.23], [0.46, 0.61], (0, 1){ }

� 􏽥C IP,

Y ∩
p
C

4
IP � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

5
IP � [0, 0], [1, 1], (0.27, 0.49){ }

� C IP

���→
.

(38)

Ten,

TCIPY
� CIP

��→
, 􏽦CIP, ′ CIP,Y􏼚 􏼛, (39)

is a P-cubic intuitionistic fuzzy relative topology of TCIPk

3.2. Interior, Closure, Frontier and Exterior of PCIFSs

Defnition 25. let (k, TCIP
) be CIFTp and CIP ∈ ci(k), the

interior of CIP is expressed as C0
IP and is described as union

of all P-cubic intuitionistic fuzzy open subsets contained in
CIP. It is the greatest P-cubic intuitionistic fuzzy open set
contained in CIP.

Example 4. Consider a P-cubic intuitionistic fuzzy topo-
logical space as constructed in Example 1. Let C6

IP ∈ ci(k)

given as

C
6
IP � [0.23, 0.39], [0.37, 0.48], (0.46, 0.33){ }. (40)

Ten,

C
6
IP􏼐 􏼑

0
� 0CI ∪

p
C

1
IP ∪

p
C
3
IP ∪

p
C
5
IP � C

1
IP. (41)

Theorem  . Let (k, TCIP
) be CIFT p and CIP ∈ ci(k). Ten,

CIP is open CIFS if C0
IP � CIP.

Proof. IfCIP is open CIFS, then we say that the greatest open
CIFS contained in CIP is CIP itself. Tus,

C
0
IP � CIP. (42)

Conversely, if C0
IP � CIP, then C0

IP is open CIFS. Tis
implies CIP is open CIFS.

Theorem 4. Let (k, TCIP
) be CIFTp and C1

IP,C2
IP ∈ ci(k).

Ten,

(i) ((CIP)0)0 � (CIP)0

(ii) C1
IP⊆pC

2
IP⇒(C1

IP)0⊆p(C2
IP)0

(iii) (C1
IP ∩ pC

2
IP)0 � (C1

IP)0⊆p(C2
IP)0

(iv) (C1
IP ∪ pC

2
IP)0⊇p(C1

IP)0 ∪ p(C2
IP)0

Proof. Proof is trivial.

Defnition 26. let (k, TCIP
) be CIFTp and CIP ∈ ci(k), the

closure of CIP is expressed as CIP and is described as the
intersection of all the P-cubic intuitionistic fuzzy closed
supersets ofCIP. It is the smallest P-cubic intuitionistic fuzzy
closed superset of CIP.

Example 5. Let us consider a P-cubic intuitionistic topo-
logical space as constructed in Example 1. Ten, the closed
CIFSs are given as
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0
CI􏼐 􏼑

c
� [1, 1], [0, 0], (0, 1){ },

1
CI􏼐 􏼑

c
� [0, 0], [1, 1], (1, 0){ },

0CI􏼐 􏼑
c

� [1, 1], [0, 0], (1, 0){ },

1CI􏼐 􏼑
c

� [0, 0], [1, 1], (0, 1){ },

C
1
IP􏼐 􏼑

c
� [0.41, 0.52], [0.20, 0.31], (0.44, 0.32){ },

C
2
IP􏼐 􏼑

c
� [0.41, 0.52], [0.20, 0.31], (0, 1){ },

C
3
IP􏼐 􏼑

c
� [0.41, 0.52], [0.20, 0.31], (1, 0){ },

C
4
IP􏼐 􏼑

c
� [0, 0], [1, 1], (0.44, 0.32){ },

C
5
IP􏼐 􏼑

c
� [1, 1], [0, 0], (0.44, 0.32){ }.

(43)

Let C7
IP ∈ ci(k) given as

C
7
IP � [0.34, 0.50], [0.27, 0.38], (0.33, 0.41){ }. (44)

Ten,

C
7
IP � 0CI􏼐 􏼑

c
∩
p

C
1
IP􏼐 􏼑

c
∩
p

C
3
IP􏼐 􏼑

c
∩
p

C
5
IP􏼐 􏼑

c

� C
1
IP􏼐 􏼑

c
.

(45)

Theorem 5. Let (k, TCIP
) be CIFT p and CIP ∈ ci(k). Ten

CIP is closed CIFS if CIP � CIP.

Proof. IfCIP is closed CIFS, then we can say that the smallest
closed CIFS superset of CIP is CIP itself. Tus,

CIP � CIP. (46)

Conversely, if CIP � CIP, then CIP is closed CIFS. Tis
implies CIP is closed CIFS. □ □

Defnition 27. Let CIP be a P-cubic intuitionistic fuzzy
subset of (k, TCIP

), then its boundary or frontier is defned as

Fr CIP( 􏼁 � CIP ∩
p

CIP( 􏼁
c
. (47)

Defnition 28. Let CIP be a P-cubic intuitionistic fuzzy
subset of (k, TCIP

), then the exterior is defned as

Ext CIP( 􏼁 � CIP􏼐 􏼑
c

� C
c
IP( 􏼁

0
. (48)

Example 6. Consider a P-cubic intuitionistic topological
space as constructed in Example 1 and C6

IP and C7
IP from

Examples 4 and 5. Ten,

C
6
IP􏼐 􏼑

0
� C

1
IP,

C
6
IP � C

3
IP􏼐 􏼑

c
,

Fr C
6
IP􏼐 􏼑 � C

1
IP􏼐 􏼑

c
,

Ext C
6
IP􏼐 􏼑 � C

3
IP,

C
7
IP􏼐 􏼑

0
� C

1
IP,

C
7
IP � C

1
IP􏼐 􏼑

c
,

Fr C
7
IP􏼐 􏼑 � C

1
IP􏼐 􏼑

c
,

Ext C
7
IP􏼐 􏼑 � C

1
IP.

(49)

Theorem 6. Let (k, TCIP
) be CIFTp and CIP ∈ ci(k). Ten,

(1) (C0
IP)c � (Cc

IP)

(2) (CIP)c � (Cc
IP)0

(3) Ext(Cc
IP) � C0

IP

(4) Ext(CIP) � (Cc
IP)0

(5) Ext(CIP)∪ pFr(CIP)∪ pC
0
IP ≠ 1CIP

(6) Fr(CIP) � Fr(Cc
IP)

(7) Fr(CIP)∩ pC
0
IP ≠ 0CIP

Proof

(1) Te proof is obvious.
(2) Te proof is obvious.
(3) Ext(Cc

IP) � (Cc
IP)c.

Ext(Cc
IP) � ((Cc

IP)c)0.
Ext(Cc

IP) � C0
IP.

(4) Ext(CIP) � (CIP)c.
Ext(CIP) � (Cc

IP)0.
(5) Ext(CIP)∪ pFr(CIP)∪ pC

0
IP ≠ 1CIP. By Example 13,

we can see that Ext(C6
IP)∪ pFr(C6

IP)∪ pC
0
IP ≠ 1CI.

(6) Fr(Cc
IP) � (Cc

IP)∩ p((Cc
IP)c)Fr(Cc

IP) �

(Cc
IP)∩ p(CIP) � Fr(CIP).

(7) Fr(CIP)∩ pC
0
IP ≠CIP. From Example 13, we can see

that Fr(C6
IP)∩ pC

0
IP ≠ 0CI. □

3.3. P-Cubic Intuitionistic Fuzzy Basis

Defnition 29. Let (k, TCIP
) beCIFTp. Ten, B⊆TCIP

is called
P-cubic intuitionistic fuzzy basis for TCIP

if for every
CIP ∈ TCIP

, ∃B ∈ B such that

CIP � ∪
p
B. (50)

Mathematical Problems in Engineering 9



Example 7. From Example 1,

TCIP
�

0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (51)

is a P-cubic intuitionistic fuzzy topology of k. Ten,

B �
0
CI,

1CI,C
1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (52)

Is a P-cubic intuitionistic fuzzy basis for TCIP
.

4. Cubic Intuitionistic Topology under R-Order

In this section, we introduce the concept of an R-cubic
intuitionistic fuzzy topology (R-CIFT) or a cubic intui-
tionistic fuzzy topology with an R-order.

Defnition 30. Consider k to be a nonempty universal set,
and let ci(k) to be the collection of all CIFSs in k. If the
collection TCIR

containing CIFSs satisfes the following
conditions, it is termed a cubic intuitionistic fuzzy topology
with an R-order (R-CIFT).

(1) 0CI, 1CI, 0CI and 0CI∈ TCIR

(2) If (CIR)i ∈ TCIR
∀i ∈ Λ then ∪ R(CIR)i ∈ TCIR

(3) If C1
IR,C2

IR ∈ TCIR
then C1

IR ∩ RC
2
IR ∈ TCIR

Ten, the pair (k, TCIR
) is termed as a cubic intuitionistic

fuzzy topological space with an R-order (R-CIFT).

Example 8. Let k be a nonempty universal set.Ten, ci(k) be
the accumulation of all R-cubic intuitionistic fuzzy sets
RCIFSs in k. Consider the R-order fuzzy subsets of ci(k)

given as

C
1
IR � [0.31, 0.42], [0.47, 0.56], (0.29, 0.39){ },

C
2
IR � [0.31, 0.42], [0.47, 0.56], (0, 1){ },

C
3
IR � [1, 1], [0, 0], (0.29, 0.39){ },

C
4
IR � [0, 0], [1, 1], (0.29, 0.39){ },

C
5
IR � [0.31, 0.42], [0.47, 0.56], (1, 0){ }.

(53)

Te union and intersection with a P-order for the above
CIFSs are given in Tables 3 and 4,, respectively.

Clearly,

TC1
IR

�
0
CI,

1
CI,

0CI,
1CI􏽮 􏽯, (54)

and

T
2
CIR

�
0
C I,

1
C I,

0
C I,

1
C I,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏼚 􏼛,

(55)

are the cubic intuitionistic topology with an R-order.

Defnition 31. Let k be a nonempty set, and TCIR
� Ck

IR􏽮 􏽯

where Ck
IR represent the cubic intuitionistic fuzzy subsets of

the universal set k. Ten, TCIR
is termed as an R-cubic

intuitionistic fuzzy topology on k and it is the largest R-cubic
intuitionistic fuzzy topology on k and is entitled as an
R-discrete cubic intuitionistic fuzzy topology.

Defnition 32. Let k be a universal set and
TCIR

� 0C I,
1C I,

0C I,
1C I􏽮 􏽯 be the assemblage of cubic

intuitionistic fuzzy sets. Ten, TCIR
is termed as an R-cubic

intuitionistic fuzzy topology on the universal set k and is the
smallest R-cubic intuitionistic fuzzy topology on k and is
entitled as an R-indiscrete cubic intuitionistic fuzzy
topology.

Defnition 33. Te elements of an R-cubic intuitionistic
fuzzy topology TCIR

is termed as the R-cubic intuitionistic
fuzzy open sets RCIFOS in (k, TCIR

).

Theorem 7. If (k, TCIR
) is any R-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1CI are RCIFOSs.
(2) Te R-union of any number of RCIFOSs is RCIFOS.
(3) Te R-intersection of fnite RCIFOSs is RCIFOS.

Proof. Te proof is trivial. □

Defnition 34. Te complement of elements of an R-cubic
intuitionistic fuzzy open sets is termed as the R-cubic
intuitionistic fuzzy closed sets RCIFCSs in (k, TCIR

).

Theorem 8. If (k, TCIR
) is any R-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1CI are RCIFCSs.
(2) Te R-intersection of any number of RCIFCSs is

RCIFCS.
(3) Te R-union of fnite RCIFCSs is RCIFCS.

Proof. Te proof is trivial. □

Defnition 35. Te R-cubic intuitionistic fuzzy sets RCIFSs,
which are RCIFOSs and RCIFCSs, are entitled as the R-cubic
intuitionistic fuzzy clopen sets in (k, TCIR

).

Proposition 2

(1) For every TCIR
, 0CI,

1CI,
0CI and 1CI are R-cubic

intuitionistic fuzzy clopen sets.
(2) For the discrete R-order cubic intuitionistic fuzzy

topology, all the cubic intuitionistic subsets of k are
R-cubic intuitionistic fuzzy clopen sets.

(3) For the in-discrete R-order cubic intuitionistic fuzzy
topology, 0CI,

1CI,
0CI and 1CI are only R-cubic

intuitionistic fuzzy clopen sets.
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Defnition 36. Let (k, T1
CIR

) and (k, T2
CIR

) be two R-CIFTs in
k. Two R-CIFTs are called comparable if

T
1
CIR
⊆RT

2
CIR

, (56)

or

T
2
CIR
⊆RT

1
CIR

. (57)

If T2
CIR
⊆RT2

CIR
then, T1

CIR
is called R-cubic intuitionistic

fuzzy coarser than T2
CIR

and T2
CIR

is called the R-cubic
intuitionistic fuzzy fner than. T1

CIR

Example 9. Let k be a nonempty set and from Example 8,

TC1
IR

�
0
CI,

1
CI,

0CI,
1CI􏽮 􏽯, (58)

and

T
2
CIR

�
0
CI,

1
CI,

0CI,
1CI,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (59)

are R-cubic intuitionistic fuzzy topologies on the universal
set. Ten, TC1

IR
⊆RT2

CIR
. Hence, TC1

IR
is called the R-cubic

intuitionistic fuzzy coarser then, T2
CIR

.

4.1. Subspace of CIFTr

Defnition 37. Let (k, TCIRk
) be a CIFTr. Let Y⊆k and TCIRY

is a CIFTr on Y and whose RCIFOSs are

CIRY � TCIRk
∩
R
Y , (60)

where CIRk
are RCIFOSs of TCIRk

, TCIRY
are RCIFOSs of

TCIRY
and 􏽥Y is any R-cubic subset of RCIFS on Y . Ten,

TCIRY
is called the R-cubic intuitionistic fuzzy subspace of

TCIRk
i.e.,

TCIRY
� CIRY : CIRY � CIRk ∩

R
Y ,CIRk ∈ TCIRk

􏼚 􏼛. (61)

Example 10. Let k be a nonempty set. From Example 8,

TCIR
�

0
CI,

1
CI,

0CI,
1CI,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (62)

is an R-cubic intuitionistic fuzzy topology on k.
Now, consider any R-cubic fuzzy subset on k such that

Y⊆k is

Y � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }. (63)

Also,

Table 3: Union under R-order.

∪ R
0CI

1CI
0CI

1CI C1
IR C2

IR C3
IR C4

IR C5
IR

0CI
0CI

1CI
0CI

1CI C1
IR C2

IR C3
IR C4

IR C5
IR

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

0CI
0CI

1CI
0CI

1CI C2
IR C2

IR
1CI

0CI
0CI

1CI
1CI

1CI
1CI

1CI C3
IR

1CI C3
IR C3

IR
1CI

C1
IR C1

IR
1CI C2

IR C3
IR C1

IR C2
IR C3

IR C1
IR C1

IR

C2
IR C2

IR
1CI C2

IR
1CI C2

IR C2
IR

1CI C2
IR C2

IR

C3
IR C3

IR
1CI

1CI C3
IR C3

IR
1CI C3

IR C3
IR C3

IR

C4
IR C4

IR
1CI

0CI C3
IR C1

IR C2
IR C3

IR C4
IR C1

IR

C5
IR C5

IR
1CI

0CI
1CI C1

IR C2
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CIF decision
matrix
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Figure 1: Flow chart of CIF WPM.
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Y ∩
0

R
CI � [0, 0], [1, 1], (1, 0){ }

� CIR

��→
,

Y ∩
1

R
CI � [0.27, 0.38], [0.52, 0.67], (1, 0){ }

� 􏽦CIR,

Y ∩ R
0
C I � [0, 0], [1, 1], (0.34, 0.28){ }

� C IR

′
,

Y ∩ R
1
C I � [0.27, 0.38], [0.52, 0.67], (1, 0){ }

� 􏽧C IR,

Y ∩
R
C

1
IR � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }

� Y ,

Y ∩
R
C

2
IR � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }

� Y ,

Y ∩
R
C

3
IR � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }

� Y ,

Y ∩
R
C

4
IR � [0, 0], [1, 1], (0.34, 0.28){ }

� C IR

′
,

Y ∩
R
C

5
IR � [0.27, 0.38], [0.52, 0.67], (1, 0){ }

� 􏽧C IR.

(64)

Ten,

TCIRY
� CIR

��→
, 􏽦CIR, ′ CIR, Y􏼚 􏼛, (65)

is an R-cubic intuitionistic fuzzy relative topology of TCIRk

4.2. Interior, Closure, Frontier, and Exterior of RCIFSs

Defnition 38. let (k, TCIR
) be CIFTr and CIR ∈ ci(k), the

interior ofCIR is expressed asC0
IR and is described as a union

of all the R-cubic intuitionistic fuzzy open subsets contained
in CIR. It is the greatest R-cubic intuitionistic fuzzy open set
contained in CIR.

Example 11. Consider an R-cubic intuitionistic fuzzy to-
pological space as constructed in Example 8. Let C6

IR ∈ ci(k)

given as

C
6
IR � [0.38, 0.46], [0.45, 0.51], (0.26, 0.40){ }. (66)

Ten,

C
6
IR􏼐 􏼑

0
�
0
CI ∪

R
C

1
IR ∪

R
C

4
IP ∪

R
C

5
IR

� C
1
IR.

(67)

Theorem 9. Let (k, TCIR
) be CIFT r and CIR ∈ ci(k). Ten,

CIR is open CIFS if C0
IR � CIR.

Proof. Te proof is trivial. □

Theorem 10. Let (k, TCIP
) be CIFTp and C1

IP,C2
IP ∈ ci(k).

Ten,

(i) ((CIR)0)0 � (CIR)0

(ii) C1
IR⊆RC

2
IR⇒(C1

IR)0⊆R(C2
IR)0

(iii) (C1
IR ∩ RC

2
IR)0 � (C1

IR)0⊆R(C2
IR)0

(iv) (C1
IR ∪ RC

2
IR)0⊇R(C1

IR)0 ∪ R(C2
IR)0

Proof. Proof is trivial. □

Defnition 39. let (k, TCIR
) be CIFTr and CIR ∈ ci(k), the

closure of CIR is expressed as CIR and is described as the
intersection of all the R-cubic intuitionistic fuzzy closed
supersets ofCIR. It is the smallest R-cubic intuitionistic fuzzy
closed superset of CIR.

Example 12. Let us consider an R-cubic intuitionistic to-
pological space as constructed in Example 8.Ten, the closed
CIFSs are given as

Table 6: maxjTji and minjTji values.

maxjTji minjTji

X1 ([0.20, 0.37], [0.21, 0.31], (0.50, 0.20)) ([0.17, 0.21], [0.36, 0.43], (0.27, 0.32))

X2 ([0.32, 0.40], [0.19, 0.39], (0.59, 0.20)) ([0.19, 0.22], [0.39, 0.51], (0.43, 0.40))

X3 ([0.31, 0.63], [0.18, 0.40], (0.81, 0.13)) ([0.14, 0.29], [0.42, 0.50], (0.67, 0.18))

X4 ([0.31, 0.74], [0.24, 0.40], (0.50, 0.32)) ([0.08, 0.33], [0.36, 0.52], (0.40, 0.42))

X5 ([0.40, 0.64], [0.30, 0.39], (0.56, 0.29)) ([0.13, 0.41], [0.51, 0.60], (0.48, 0.40))

X6 ([0.42, 0.51], [0.24, 0.42], (0.60, 0.27)) ([0.29, 0.38], [0.41, 0.72], (0.43, 0.38))
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0
CI􏼐 􏼑

c
� [1, 1], [0, 0], (0, 1){ },

1
CI􏼐 􏼑

c
� [0, 0], [1, 1], (1, 0){ },

0CI􏼐 􏼑
c

� [1, 1], [0, 0], (1, 0){ },

1CI􏼐 􏼑
c

� [0, 0], [1, 1], (0, 1){ },

C
1
IP􏼐 􏼑

c
� [0.47, 0.56], [0.31, 0.42], (0.39, 0.29){ },

C
2
IP􏼐 􏼑

c
� [0.47, 0.56], [0.31, 0.42], (1, 0){ },

C
3
IP􏼐 􏼑

c
� [0, 0], [1, 1], (0.39, 0.29){ },

C
4
IP􏼐 􏼑

c
� [1, 1], [0, 0], (0.39, 0.29){ },

C
5
IP􏼐 􏼑

c
� [0.47, 0.56], [0.31, 0.42], (0, 1){ }.

(68)

Let C7
IR ∈ ci(k) given as

C
7
IR � [0.30, 0.37], [0.48, 0.61], (0.38, 0.24){ }. (69)

Ten,

C
7
IR � 0CI􏼐 􏼑

c
∩
R

C
5
IR􏼐 􏼑

c

� C
5
IR􏼐 􏼑

c
.

(70)

Theorem 11. Let (k, TCIR
) be CIFT r andCIR ∈ ci(k). Ten,

CIR is closed CIFS if CIR � CIR..

Proof. Te proof is trivial. □

Defnition 40. Let CIR be an R-cubic intuitionistic fuzzy
subset of (k, TCIR

), then its boundary or frontier is defned as

Fr CIR( 􏼁 � CIR ∩
R

CIR( 􏼁
c
. (71)

Defnition 41. Let CIR be an R-cubic intuitionistic fuzzy
subset of (k, TCIR

), then the exterior is defned as

Ext CIR( 􏼁 � CIR􏼐 􏼑
c

� C
c
IR( 􏼁

0
.

(72)

Example 4.13. Consider an R-cubic intuitionistic topolog-
ical space as constructed in Example 8 andC6

IR andC7
IR from

Examples 11 and 12. Ten,

C
6
IR􏼐 􏼑

0
� C

1
IR,

C
6
IP � C

5
IR􏼐 􏼑

c
,

Fr C
6
IR􏼐 􏼑 � C

5
IR􏼐 􏼑

c
,

Ext C
6
IR􏼐 􏼑 � C

5
IR,

C
7
IR􏼐 􏼑

0
� C

4
IR,

C
7
IR � C

5
IR􏼐 􏼑

c
,

Fr C
7
IR􏼐 􏼑 � C

5
IR􏼐 􏼑

c
,

Ext C
7
IR􏼐 􏼑 � C

5
IR.

(73)

Theorem 12. Let (k, TCIR
) be CIFTr and CIR ∈ ci(k). Ten,

(1) (C0
IR)c � (Cc

IR)

(2) (CIR)c � (Cc
IR)0

(3) Ext(Cc
IR) � C0

IR

(4) Ext(CIR) � (Cc
IR)0

(5) Ext(CIR)∪ RFr(CIR)∪ RC
0
IR ≠ 1CIR

(6) Fr(CIR) � Fr(Cc
IR)

(7) Fr(CIR)∩ RC
0
IR ≠ 0CIR

Proof. Te proof is trivial. □

4.3. R-Cubic Intuitionistic Fuzzy Basis

Defnition 42. Let (k, TCIR
) be CIFTr. Ten B⊆TCIR

is called
an R-cubic intuitionistic fuzzy basis for TCIR

if for every
CIR ∈ TCIR

, ∃B ∈ B such that

CIR � ∪
R
B. (74)

Example 14. From Example 8,

TCIR
�

0
CI,

1
CI,

0CI,
1CI,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (75)

is an R-cubic intuitionistic fuzzy topology of k. Ten,

B �
1
CI,

1CI,C
1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (76)

is an R-cubic intuitionistic fuzzy basis for TCIR
.

Table 8: Relative importance and score function.

Alternatives CIFN-WPM values Score values
X1 ([0.16, 0.20], [0.34, 0.41], (0.9980, 0.00001)) 0.8029
X2 ([0.18, 0.21], [0.38, 0.49], (0.9993, 0.00002)) 0.7592
X3 ([0.21, 0.45], [0.29, 0.46], (0.9999, 0.0000007)) 0.9548
X4 ([0.07, 0.31], [0.34, 0.50], (0.9990, 0.00007)) 0.6294
X5 ([0.25, 0.49], [0.39, 0.50], (0.9996, 0.00002)) 0.9245
X6 ([0.28, 0.34], [0.39, 0.71], (0.9994, 0.00004)) 0.7593
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[0

.3
0,
0.
39

],
(
0.
48

,0
.4
0)

)
(

[0
.4
0,
0.
47

],
[0

.3
8,
0.
60

],
(
0.
56

,0
.2
9)

)
(

[0
.1
3,
0.
64

],
[0

.4
0,
0.
47

],
(
0.
53

,0
.3
7)

)

X
6

(
[0

.2
9,
0.
38

],
[0

.2
7,
0.
42

],
(
0.
60

,0
.2
7)

)
(

[0
.4
0,
0.
51

],
[0

.4
1,
0.
50

],
(
0.
47

,0
.3
8)

)
(

[0
.3
2,
0.
38

],
[0

.2
4,
0.
72

],
(
0.
43

,0
.3
2)

)
(

[0
.4
2,
0.
50

],
[0

.3
7,
0.
53

],
(
0.
53

,0
.2
7)

)
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5. Multicriteria Group Decision-Making

Te weighted product model (WPM) is a renowned and
widely used MCGDM approach for evaluating a set of
choices using a set of criteria. Each choice is contrasted to the
others by calculating a number of ratios, one per choice
criterion. Every ratio is multiplied by the proportional
weight of the criterion in consideration. For the selection of
one or more options from the set of alternatives based on a
number of criteria is a fundamental task in MCGDM
problems. Let us consider m alternatives, n criteria with
weighted vectors, with the condition that the sum of the
weights will be one, for an MCGDM problem in a cubic
intuitionistic fuzzy set domain.

Figure 1 shows the fow chart of WPM.

5.1. Application to Uncertain Supply Chain Management.
Communication and information technologies are afecting
every area of the industrial sector at a rapid pace. In reality, it
would be difcult to pinpoint an organization that does not
use or is not touched by information and communications
technologies in some way. In many cases, if technology is not
employed appropriately, the frm’s survival is jeopardized.
Companies nowadays use technology to boost productivity,
streamline operations, and form electronic conglomerates.
Advanced technologies and electronic systems are radically
altering how businesses operate and stay competitive. Many
businesses are making strategic technology investments to
obtain and maintain a competitive advantage in their in-
dustry. Management teams must use technology throughout
the organization to enhance information fow, reduce cost,
streamline operations, provide product variety, formulate
connections with suppliers, and reduce response times to
customers’ needs to gain a competitive advantage through
the use of information and communications technology.

Administrators and top executives should be associated
with the development of enterprise-wide information sys-
tems (EIS), which should take into account such matters as
computer hardware and software and infrastructure facili-
ties, online systems, digital applications, electronic com-
merce, and alterations to current processes and practices.
Managers can integrate data and telecommunications
technologies throughout the corporation and connect all
business areas by developing an enterprise broad infor-
mation systems plan. Enterprise-wide integration of tech-
nology enables frms to allow consumers to get timely access
to the information they need to make informed decisions.
Recent research has looked at information systems as useful

tools for integrating systems like enterprise resource plan-
ning, knowledge management, e-commerce, electronic
markets, and supply chain management (SCM) to enhance
organizational proft and efciency.

Companies must analyze both internal and external
processes for the production and exchange of products and
services to be more efcient and competitive. Te managers
will be able to evaluate the value of actions for each process
to determine how to boost the value among these operations
that form a supply chain from supplier to business to dealer
to customer through the evaluation of these processes. Te
level of integration among suppliers, business associates, and
buyers, independent of their geographical location, deter-
mines the value chain’s or supply chain’s efectiveness.

Te construction of an integrated organizational system
capable of information sharing, resources, and services in
the supply chain is central to the digital supply chain
management paradigm. To gain and maintain competitive
advantages, companies use digital information and com-
munications networks to standardize manufacturing pro-
cesses, reduce cycle time, increase the efectiveness of
procurement procedures and logistical support, reduce
production costs, and increase customer satisfaction, among
other things. Supply chain management based on the
Internet allows a company to streamline its supply chain,
increase speed, reduce costs, and be more adaptable. It can
also increase consumer and supplier communications as well
as smooth the ongoing fow of goods along the supply chain.

Supplier selection is highly essential in supply chain
management. Te objective is to locate a supplier who can
ofer the best products and services for the lowest price.
Proper supplier selection delivers a high proft and quality
level. In this strategic collaboration, the supplier is viewed as
a signifcant element of the business. Because of the in-
creasing focus on sustainability, identifying these providers
has become more challenging. Environmental studies, often
known as sustainability studies, have become increasingly
popular around the world. Identifying these suppliers has
become increasingly difcult as a result of the rapidly in-
creasing emphasis on sustainability. Many methodologies
for sustainable supply chain selection have been developed.

To determine the most suitable supplier selection,
MCGDM techniques can be used successfully. In this sec-
tion, the suggested model is used to determine the selection
of appropriate suppliers for fast-moving consumer products,
with the goal of selecting the best supplier among various
possibilities. Several criteria have been established based on
expert opinions to evaluate supplier choices. In this study,
X1, X2, X3, X4, X5 and X6 are examined as possible fast-
moving customers goods suppliers using the four criteria
established.

5.2. CIF Weighted Product Model. Te proposed method is
used to choose the best supplier among six alternatives.
Tese alternatives are weighed against four criteria
C1� price, C2� quality, C3� performance, and
C4� delivery, derived from thorough expert opinions. A
group of decision-makers has been assembled to assess the

Table 10: Score values.

Alternatives Score values
X1 0.1125
X2 0.1705
X3 0.5490
X4 0.0725
X5 0.1435
X6 0.204
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suppliers using the recommended methodology. Six deci-
sion-makers D1, D2, D3, D4, D5, and D6 were chosen,
consisting of supplier experts and expert academics on
multicriteria decision-making in a fuzzy environment:,,,

Step 1. Consider the decision matrix M � (T ji)m×n

given by the decision-makers in the form of CIFNs on
the basis of the cubic intuitionistic fuzzy linguistic scale
to evaluate suppliers in accordance with established
objectives and criteria is given in Table 5.
Step 2. With the help of the linear approach, we nor-
malize the matrix M � (T ji)m×n. We divide the criteria
into two subsets, beneft criteria B and cost criteria K.
Here, X3 and X6 belong to beneft criteria B, and the
remaining others belong to cost criteria K. For this,
frst, we fnd maxjT ji and minjT ji, which are given in
Table 5. We normalized the decision matrix by utilizing
the 1st and 2nd equations in Algorithm 1 and this is
given in Table 6.
Normalized decision matrixes from DMs are expressed
in Table 7.
Steps 3 and 4. We fnd the relative importance of all
alternatives by utilizing the 3rd equation in Algorithm
1, and then, we calculate their score function as given in
Table 8.
Step 5. Rank the alternatives according to the score
function, and the fnal ranking is

X3≻X5≻X1≻X6≻X2≻X4. (77)

As we can see that X3 is the most appropriate supplier
among the six alternatives with the best of qualities of
all criteria.

5.3. CIF Choice ValueMethod. Te choice value method is a
renowned and widely used MCGDM basis for evaluating a
set of choices using a set of criteria. Each choice is contrasted
to the others by calculating a number of ratios, one per
choice criterion. Every ratio is multiplied by the propor-
tional weight of the criterion in consideration. A funda-
mental task in MCGDM problems is the selection of one or
more options from the set of alternatives based on a number
of criteria. Let us consider m alternatives, n criteria with
weighted vectors, with the condition that the sum of weights
will be one, for anMCGDMproblem in a cubic intuitionistic
fuzzy set domain.,

5.4. MCDGM Application

Step 1. Consider the decision matrix M � (T ji)m×n

given by the decision-makers in the form of CIFNs
given in Table 9.
Step 2. Decision-makers gives the weights to the four
criteria asW1 � 0.18,W2 � 0.24,W3 � 0.26, andW4 �

0.32 with 􏽐Wi � 1

[0.17, 0.24], [0.36, 0.43],

(0.56, 0.32)
􏼠 􏼡

[0.20, 0.28], [0.29, 0.31],

(0.27, 0.20)
􏼠 􏼡

[0.18, 0.21], [0.21, 0.32],

(0.39, 0.22)
􏼠 􏼡([0.20, 0.37], [0.21, 0.43], (0.54, 0.23))

[0.19, 0.22], [0.39, 0.42],

(0.59, 0.40)
􏼠 􏼡

[0.27, 0.34], [0.33, 0.40]

, (0.43, 0.21)
􏼠 􏼡

([0.24, 0.30], [0.30, 0.39], (0.50, 0.20))([0.32, 0.40], [0.19, 0.51], (0.52, 0.30))

([0.20, 0.29], [0.40, 0.51], (0.81, 0.13))
[0.31, 0.52], [0.42, 0.50],

(0.72, 0.17)
􏼠 􏼡

([0.31, 0.39], [0.18, 0.40], (0.67, 0.14))([0.14, 0.63], [0.24, 0.50], (0.70, 0.18))

[0.31, 0.37], [0.36, 0.49],

(0.50, 0.36)
􏼠 􏼡([0.18, 0.33], [0.28, 0.52], (0.40, 0.32))

([0.23, 0.40], [0.24, 0.51], (0.50, 0.33))

([0.08, 0.74], [0.32, 0.40], (0.46, 0.42))

([0.40, 0.48], [0.51, 0.60], (0.52, 0.30))

([0.29, 0.41], [0.30, 0.39], (0.48, 0.40))([0.40, 0.47], [0.38, 0.60], (0.56, 0.29))

([0.13, 0.64], [0.40, 0.47], (0.53, 0.37))

([0.29, 0.38], [0.27, 0.42], (0.60, 0.27))([0.40, 0.51], [0.41, 0.50], (0.47, 0.38))

([0.32, 0.38], [0.24, 0.72], (0.43, 0.32))([0.42, 0.50], [0.37, 0.53], (0.53, 0.27))
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0.18

0.24

0.26

0.32

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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([0.032, 0.048], [0.832, 0.859], (0.900, 0.067)) +([0.052, 0.075], [0.742, 0.754], (0.730, 0.052))

+([0.050, 0.059], [0.666, 0.743], (0.782, 0.062))

+([0.068, 0.137], [0.606, 0.763], (0.821, 0.080))

([0.037, 0.043], [0.844, 0.855], (0.909, 0.087)) +([0.072, 0.094], [0.766, 0.802], (0.816, 0.055))

+([0.068, 0.088], [0.731, 0.782], (0.835, 0.056)) +([0.116, 0.150], [0.587, 0.806], (0.811, 0.107))

([0.039, 0.059], [[0.847, 0.885]], (0.962, 0.024)) +([0.085, 0.161], [0.812, 0.846], (0.924, 0.043))

+([0.091, 0.120], [0.640, 0.788], (0.901, 0.038)) +([0.047, 0.272], [0.633, 0.801], (0.892, 0.061))

([0.064, 0.079], [0.832, 0.879], (0.882, 0.077)) +([0.046, 0.091], [0.736, 0.854], (0.802, 0.088))

+([0.065, 0.124], [0.690, 0.839], (0.835, 0.098)) +([0.026, 0.350], [0.694, 0.745], (0.779, 0.159))

([0.087, 0.111], [0.885, 0.912], (0.888, 0.062)) +([0.078, 0.118], [0.749, 0.797], (0.888, 0.115))

+([0.124, 0.152], [0.777, 0.875], (0.860, 0.085)) +([0.043, 0.278], [0.745, 0.785], (0.816, 0.137))

([0.059, 0.082], [0.790, 0.855], (0.912, 0.055)) +([0.115, 0.157], [0.807, 0.846], (0.834, 0.108))

+([0.095, 0.116], [0.690, 0.918], (0.802, 0.095)) +([0.159, 0.198], [0.727, 0.816], (0.840, 0.095))
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([0.187, 0.284], [0.249, 0.367], (0.421, 0.236))

([0.263, 0.327], [0.277, 0.432], (0.502, 0.272))

([0.238, 0.494], [0.278, 0.472], (0.714, 0.156))

([0.186, 0.523], [0.293, 0.469], (0.460, 0.361))

([0.294, 0.519], [0.383, 0.499], (0.522, 0.344))

([0.366, 0.451], [0.278, 0.537], (0.512, 0.309))
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.

(78)

Step 3. We compute the score values for each alter-
native. Te score values are expressed in Table 10.
Step 4. Rank the alternatives according to their score
values.

X3≻X6≻X2≻X5≻X1≻X4. (79)

As a result, X3 is best supplier among six alternatives
with qualities of all criteria.

5.5. Comparative Analysis. Tis paper describes techniques
for dealing with the cubic intuitionistic situation. We
compare our two cubic intuitionistic strategies that are

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

X1
0.8029
0.1125

X2
0.7592
0.1705

X3
0.9548
0.549

X4
0.6294
0.0725

X5
0.9245
0.1435

X6
0.7593
0.204

CIF-WPM
CIF-CVM

Figure 2: Ranking of feasible alternatives.
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already in use. If we use CIF-WPM to assemble the alter-
natives, they are ranked as

X3≻X5≻X1≻X6≻X2≻X4. (80)

On the other side, when we use the technique of choice
value method, the ranking of alternatives is

X3≻X6≻X2≻X5≻X1≻X4. (81)

Based on these fndings, it seemed that the ranking of the
X3 alternative was the same as that produced by the sug-
gested cubic intuitionistic procedures. Te rest of the al-
ternatives have been altered, as can be seen. As a result, we
concluded that in the case of only IVIFSs, the best choice
matches with the indicated one; however, the other alter-
natives are altered, resulting in numerous decisions. As a
result, this CIS condition improves the application range of
the membership and nonmembership intervals by consid-
ering IFS membership values in line with it.

Figure 2 shows the bar chart of ranking of feasible al-
ternatives by using the WPM and CVM methods.

Te comparison analysis of the proposed CIF-WPM and
CIF-CVM with other existing techniques is expressed in
Table 11.

6. Conclusion

A cubic intuitionistic fuzzy set is an efective method for
dealing with various uncertainties in multicriteria group
decision-making (MCGDM) settings. A cubic set is a two-
component system that would be used to describe data with
a fuzzy interval and a fuzzy number. Te notion of cubic
intuitionistic fuzzy sets (CIFS) is a strong hybrid model of
IFSs and IVIFSs. A CIFS has two components, one indi-
cating the IVIFS and the other indicating the IFS. A CIFS is
a new fuzzy model for data analysis, computational in-
telligence, neural computing, soft computing, and others.
Te idea of cubic hesitant fuzzy topology defned on CIFS
can be utilized to seek solutions to various problems of
information analysis, information fusion, big data, and
decision analysis.

Main fndings in this manuscript are as follows:

(1) We introduced the concepts of “P-cubic intuition-
istic fuzzy topology” as well as “R-cubic intuitionistic
fuzzy topology.” Topological structures provide ro-
bust approaches for data analysis and decision
analysis under an uncertain environment.

(2) Certain properties of CIF topology under P(R)-order
are explored, and their related results are elaborated
with illustrations.

(3) Te notions of CIF-open set, CIF-closed set, CIF-
closure, CIF-interior, CIF-exterior, as well as CIF-
frontier, CIF-dense set, and CIF-basis are investi-
gated with a corresponding example.

(4) Algorithms 1 and 2 are proposed for extension of the
weighted product model and the choice value
method, respectively.

(5) Te symmetry of optimal decisions is analyzed by
computations with Algorithms 1 and 2. Te nu-
merical values of alternatives are very close by using
Algorithm 1. However, the numerical values of al-
ternatives have a clear diference when using Al-
gorithm 2.

(6) An application of proposed methods named CIF-
WPM and CIF-CVM towards uncertain supply
chain management is presented.

(7) To discuss the advantages, fexibility, and validity of
proposed methods, a comparison analysis is also
expressed.

For forthcoming analysis, due to the fexibility of CIF
topology towards data analysis and information analysis,
one can extend this work to develop newMCDM techniques
with CIF-VIKOR, CIF-AHP, and CIF-aggregation
operators.
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Table 11: Comparative analysis and ranking of alternatives.

Methods Ranking of alternatives Top alternative
CIF-TOPSIS (Garg and Kaur [23]) X3≻X6≻X2≻X5≻X1≻X4 X3
CIF-WASPAS (Senapati et al. [26]) X3≻X6≻X1≻X2≻X5≻X4 X3
Frank AO (Seikh and Mandal [52]) X3≻X6≻X2≻X5≻X1≻X4 X3
CIF-WPM (Algorithm 1) X3≻X6≻X2≻X5≻X1≻X4 X3
CIF-CVM (Algorithm 2) X3≻X5≻X1≻X6≻X2≻X4 X3
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Spherical fuzzy sets (SFSs) are often made up of membership, nonmembership, and hesitancy grades, and also have the advantage
of accurately representing decision makers (DMs) preferences.  is article proposes novel spherical fuzzy aggregation operators
(AOs) based on Aczel–Alsina (AA) operations, which o�er a lot of advantages when tackling real-world situations. We begin by
introducing some new SFS operations, such as the Aczel–Alsina product, the Aczel–Alsina sum, the Aczel–Alsina exponent, and
the Aczel–Alsina scalar multiplication. We developed many AOs namely, the “spherical fuzzy Aczel–Alsina weighted averaging
(SFAAWA) operator,” “spherical fuzzy Aczel–Alsina ordered weighted averaging (SFAAOWA) operator,” “spherical fuzzy
Aczel–Alsina hybrid averaging (SFAAHA) operator,” “spherical fuzzy Aczel–Alsina weighted geometric (SFAAWG) operator,”
“spherical fuzzy Aczel–Alsina ordered weighted geometric (SFAAOWG) operator,” and “spherical fuzzy Aczel–Alsina hybrid
geometric (SFAAHG) operator.” Di�erent attributes of these operators have been de�ned.  e idempotency, boundary,
monotonicity, and commutativity of suggested averaging and geometric operators are demonstrated.  en, based on these
operators, we propose a novel approach for tackling the “multi-criteria decision-making” (MCDM) problems. We use a ag-
riculture land selection scenario to demonstrate the e�cacy of our proposed approach. e outcome con�rms the new technique’s
applicability and viability. Furthermore, sensitivity analysis and a comparison analysis between the existing approaches and the
recommended technique have been provided.

1. Introduction

Decision-making problems are common in a wide range of
�elds, including technology, �nance, and marketing. Tra-
ditionally, it has been assumed that all data on alternate
access is kept as discrete integers. Because managing the
imprecision and uncertainty inherent in data is crucial in
real-world circumstances.  ere are three alternative reac-
tions or attitudes when it comes to selection: yes, no, and
refusal. However, �rst, the most sophisticated response is
“refusal,” which conventional “fuzzy sets” [1] and “intui-
tionistic fuzzy sets” (IFSs) [2] may not accurately represent.
To address such problems, Cuong proposed the idea of
“picture fuzzy set” (PFS) [3, 4]. In PFS, each component in

the universe of discourse set has varying degrees of “positive
membership degree” (PMD), “neutral membership degree”
(NuMD), and “negative membership degree” (Ng MD)with
values ranging from [0, 1].

Fuzzy clustering is a useful technique for pattern detection
and information extraction from databases, and it has been
used to a wide range of practical issues. Son [5] de�ned
“distributed picture fuzzy clustering method” for PFSs. Singh
[6] proposed some “correlation coe�cients.”  e correlation
coe�cient is applied to clustering in PFS in this article.  e
bene�ts of proposed correlation coe�cients as well as the
disadvantages of existing correlation coe�cients have been
examined. Wei [7] proposed some new similarity measures
(SMs) between PFSs, such as set-theoretic SMs, weighted set-
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theoretic cosine SMs, cosine SMs, weighted cosine SMs, grey
SMs, and weighted grey SMs. Wei and Gao [8] introduced
various innovative dice SMs for PFSs and generalized dice
SMs for PFSs, indicating that dice SMs and asymmetric
measures are special cases of generalized dice SMs for certain
parameter values. Wei et al. [9] proposed some results about
“projection model” under the PFSs, the modules of picture
fuzzy number (PFN), and PF-ideal point.

Over the last few decades, there has been a strong
emphasis on information fusion and the development of
new AOs. AO’s effectiveness and limitations have been
entrenched in decision-making. AO obviously includes a
number of operating rules for concatenating a finite set of
fuzzy numbers into a single fuzzy number. Data aggregation
is essential in decision-making, economy, administration,
healthcare, technology, and intelligence areas. In terms of
their functions and operating laws, numerous AOs have
been established for PFSs. Wei et al. [10] proposed “picture
2-tuple linguistic AOs” with MCDM. Garg [11] proposed
some weighted averaging and ordered weighted averaging
operators for the aggregation of PFNs. Wei [12] presented
“Hamacher” AOs for the PFS, and a realistic example of
selecting an enterprise system is provided to validate the
established approach and to illustrate its feasibility and ef-
ficiency. Jana et al. [13] gave the notion of picture fuzzy
Dombi AOs for PFNs with MCDM applications. Tian et al.
[14] defined some “picture fuzzy power Choquet ordered
geometric AOs” and “picture fuzzy power shapley Choquet
ordered geometric AOs” with shapley fuzzy measures-based
MCDM. Wang et al. [15] proposed hotel building energy
efficiency retrofit project selection under PFSs. Wang et al.
[16] introduced “Muirhead mean AOs” for PFNs. Wei
established TODIM method for PFSs [17], “picture 2-tuple
linguistic Bonferroni mean AOs” [18], and “picture un-
certain linguistic Bonferroni mean AOs” [19]. Abdullah et al.
[20] proposed some new AOs based on sine trigonometric
function with application. Qiyas et al. [21] defined some
novel picture fuzzy AOs under the linguistic environment.
Farid and Riaz [22] developed several new Einstein inter-
active geometric AOs for q-rung orthopair fuzzy numbers.
Riaz and Farid [23] proposed some proportional distribu-
tion based spherical AOs. Farid et al. [24] introduced some
AOs for the thermal power equipment supplier selection.
Saha et al. [25] introduced the new hybrid hesitant fuzzy
weighted AOs for MCDM that are based on Archimedean
and Dombi operations. Feng et al. [26] proposed the idea of
score functions related to generalized orthopair fuzzy
membership grades with application. Akram et al. [27]
introduced the idea of prioritized AOs for complex spherical
fuzzy sets. Riaz and Farid [28] developed some fairly AOs for
PFSs. Riaz et al. [29] proposed some Frank AOs for interval-
valued linear Diophantine fuzzy set.

Menger [30] introduced the concept of triangle norms in
his hypothesis of probabilistic metric spaces. It has been
discovered that t-norms and their corresponding t-conorms
are fundamental operations in fuzzy sets and structures, such
as the product t-norm and probabilistic sum t-conorm [31],
Einstein t-norm and t-conorm [32], and the Hamacher
t-norm and t-conorm [33]. Klement et al. [34] carried out a

thorough analysis of the characteristics and associated ele-
ments of triangular norms in recent years. In 1982, Aczél and
Alsina [35] introduced new operations named Aczel–Alsina
t-norm and Aczel–Alsina t-conorm, which place a high
premium on parameter changeability. Based on the
Aczel–Alsina triangular norm (AA t-norm), Wang et al. [36]
devised a score level fusion technique that simultaneously
increases the distance between imposters. Senapati et al.
proposed Aczel–Alsina AOs for IFSs [37] and Aczel–Alsina
AOs for interval-valued IFSs [38].

In everyday life, we might confront a variety of cir-
cumstances that PFS cannot resolve, such as when the sum of
PMD, Nu MD, and Ng MD> 1. PFS is incapable of pro-
ducing an appropriate conclusion in such a case. Mahmood
et al. [39], Gundogdu and Kahraman [40], and Ashraf et al.
[41] separately developed the concept of SFSs in their works.
SFS provides the DM with extra freedom when confronted
with uncertainty in decision-making situations. Gundogdu
and Kahraman developed the SF-TOPSIS [42], SF-WASPAS
[43], and SF-VIKOR methods [44]. Ashraf et al. presented
AOs for SFSs and the GRA method for the SF-linguistic set
[45]. Zeng et al. [46] proposed a TOPSIS-based hybrid
covering-based SF-rough set model. *e cosine similarity
measures for SFSs were proposed by Rafiq et al. [47]. Jin et al.
[48] developed AOs for SFSs based on logarithmic functions.
Additionally, Ashraf et al. [49] presented several Dombi AOs
for SFSs with implementation to group MCDM. Jaller and
Otay used [50] when they suggested SF AHP and TOPSIS for
assessing efficient vehicle technology for cargo handling. Ali
et al. [51] and Ashraf et al. [52] proposed some AOs for
interval-valued picture fuzzy set. Kazemitash et al. [53] and
Bozanic et al. [54] gave some ideas related to some different
extensions of fuzzy set. For other terminologies not dis-
cussed in the paper, the readers are referred to [55–58].

In light of the foregoing, we recognize that decision-
making concerns are becoming increasingly complex in reality.
To select the superior alternatives to the MCDM concerns, it is
significant to communicate the uncertain information in a far
more beneficial approach. Furthermore, it is critical to control
the relationship between input contentions. Taking each of
these characteristics into account, the primary objective of this
informative article is to demonstrate numerous aggregation
operators under SF circumstances, referred as SF Aczel–Alsina
AOs. Despite the established inventive approaches that have
developed previously in this field, we have thoroughly
researched every possibility to demonstrate our provided
strategy, for it to outperform all previous efforts to comprehend
the actual global presented concern.

*e following information is included in the paper: the
next section discusses some fundamental concepts relating
to Aczel–Alsina triangular norms and SFSs. Section 3
summarizes the Aczel–Alsina operation laws for SFNs. In
Section 4, we discuss the “spherical fuzzy Aczel–Alsina
weighted averaging (SFAAWA) operator,” “spherical fuzzy
Aczel–Alsina ordered weighted averaging (SFAAOWA)
operator,” “spherical fuzzy Aczel–Alsina hybrid averaging
(SFAAHA) operator,” “spherical fuzzy Aczel–Alsina
weighted geometric (SFAAWG) operator,” “spherical fuzzy
Aczel–Alsina ordered weighted geometric (SFAAOWG)
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operator,” and “spherical fuzzy Aczel–Alsina hybrid geo-
metric (SFAAHG) operator” as well as a few advantageous
properties. In Section 5, we employ the proposed operators
to develop a set of techniques for resolving MCDM diffi-
culties in which the characteristic values are represented as
SF data. Section 6 illustrates how to choose agriculture land
to showcase the proposed technique. In Section 7, we analyze
the effect of a parameter on the alternate raking order. In
Section 8, we compare the developed method to current
methods to determine the proposed technique’s appropri-
ateness. Finally, Section 9 discusses a few conclusions for
future study.

2. Preliminaries

Several fundamental concepts associated with SFSs have
been addressed in this section of the article.

Definition 1 (see [39–41]). A “spherical fuzzy set” (SFS) in X

is defined as follows:

χ � ⋎
⌣

, κχ(⋎
⌣

), υχ(⋎
⌣

), τχ(⋎
⌣

)|⋎
⌣
∈ X􏽄 􏽅􏽮 􏽯, (1)

where κχ(⋎
⌣

), υχ(⋎
⌣

), τχ(⋎
⌣

) ∈ [0, 1], such that 0≤ κ2χ(⋎
⌣

)+

υ2χ(⋎
⌣

)+ τ2χ(⋎
⌣

)≤ 1 for all ⋎
⌣
∈ X and κχ(⋎

⌣
), υχ(⋎

⌣
), τχ(⋎

⌣
)

denote degree of membership, nonmembership and hesi-
tancy, respectively, for some ⋎

⌣
∈ X.

We denote this pair asRc � (κRc , υRc , τRc ), throughout
this article, and called as SFN with the conditions
κRc , υRc , τRc ∈ [0, 1] and κ2Rc + υ2Rc + τ2Rc ≤ 1.

Definition 2 (see [40]). When implementing SFNs to real-
world situations, it is critical to prioritize them. For this,
“score function” (SF) for SFN Rc � (κRc , υRc , τRc ) can be
defined as follows:

S R
c

( 􏼁 � κRc − τRc( 􏼁
2

− υRc − τRc( 􏼁
2
. (2)

Example 1. Consider two SFNs Rc
1 � 0.236, 0.126, 0.175〈 〉

and R
c
2 � 0.308, 0.228, 0.482〈 〉 then by using equation (2),

we get S(R
c
1) � 0.00119646 and S(R

c
2) � − 0.0341963. As

S(R
c
1)> S(R

c
2) so, we have R

c
1 >R

c
2.

However, because the aforementioned function appears
incapable of classifying the SFNs in a variety of conditions, it
is hard to determine which one is larger S(R

c
1) � S(R

c
2). For

this, an “accuracy function H” of Rc is defined as follows:

H R
c

( 􏼁 � κ2Rc + υ2Rc + τ2Rc . (3)

Based on [40], we presented some operational rules to
aggregate the SFNs.

Definition 3. Let Rc
1 � κ1, υ1, τ1􏼊 􏼋 and R

c
2 � κ1, υ1, τ1􏼊 􏼋 be

two SFNs, then

R
cc

1 � υ1, κ1, τ1􏼊 􏼋,

R
c
1∨R

c
2 �

max κ1, κ2􏼈 􏼉,min υ1, υ2􏼈 􏼉,

min 1 − max κ1, κ2􏼈 􏼉( 􏼁
2

+ min υ1, υ2􏼈 􏼉( 􏼁
2

􏼐 􏼑􏼐 􏼑

1
2,max τ1, τ2􏼈 􏼉

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

R
c
1∧R

c
2 �

min κ1, κ2􏼈 􏼉,max υ1, υ2􏼈 􏼉,

max 1 − min κ1, κ2􏼈 􏼉( 􏼁
2

+ max υ1, υ2􏼈 􏼉( 􏼁
2

􏼐 􏼑􏼐 􏼑

1
2,min τ1, τ2􏼈 􏼉

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

R
c
1⊕R

c
2 �

κ21 + κ22 − κ21κ
2
2􏼐 􏼑

1/2
, υ1υ2,

1 − κ22􏼐 􏼑τ21 + 1 − κ21􏼐 􏼑τ22 − τ21τ
2
2􏼐 􏼑

1/2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

R
c
1 ⊗R

c
2 �

κ1κ2, υ21 + υ22 − υ21υ
2
2􏼐 􏼑

1/2
,

1 − υ22􏼐 􏼑τ21 + 1 − υ21􏼐 􏼑τ22 − τ21τ
2
2􏼐 􏼑

1/2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

R
cσ

1 �

μσ􏽥As

, 1 − 1 − υ21􏼐 􏼑
σ

􏼐 􏼑
1/2

,

1 − υ21􏼐 􏼑
σ

− 1 − υ21 − π2
􏽥As

􏼒 􏼓
σ

􏼒 􏼓
1/2

, σ > 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, and

σ · R
c
1 �

1 − 1 − κ21􏼐 􏼑
σ

􏼐 􏼑
1/2

, υσ1 ,

1 − κ21􏼐 􏼑
σ

− 1 − κ21 − τ21􏼐 􏼑
σ

􏼐 􏼑
1/2

􏼛, σ > 0

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(4)
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Definition 4 (see [40]). Let R
c
1 � κ1, υ1, τ1􏼊 􏼋 and R

c
2 �

κ2, υ2, τ2􏼊 􏼋 be two SFNs and σ, σ1, σ2 > 0 be the real numbers,
then we have,

(1) Rc
1⊕R

c
2 � R

c
2⊕R

c
1

(2) Rc
1 ⊗R

c
2 � R

c
2 ⊗R

c
1

(3) σ(R
c
1⊕R

c
2) � (σRc

1)⊕(σR
c
2)

(4) (R
c
1 ⊗R

c
2)

σ � R
cσ

1 ⊗R
cσ

2

(5) (σ1 + σ2)R
c
1 � (σ1R

c
1)⊕(σ2R

c
2)

(6) Rcσ1+σ2

1 � R
cσ1

1 ⊗R
cσ1

1

2.1.Basics about t-Norm, t-Conorm,andAczel–Alsina t-Norm

Definition 5 (see [34]). A function �
[λ: [0, 1]2⟶ [0, 1] is a

t-norm, if for all g, h, u ∈ [0, 1], the consecutive axioms are
fulfilled.

(1) �
[λ(g, h) �

�
[λ(h, g)

(2) �
[λ(g, h)≤ �

[λ(g, u) if h≤ u

(3) �
[λ(g,

�
[λ(h, u)) �

�
[λ(

�
[λ(g, h), u)

(4) �
[λ(g, 1) � g

*ese axioms are called, symmetry, monotonicity, as-
sociativity, and “1” as identity, respectively.

Definition 6 (see [34]). A function I: [0, 1]2⟶ [0, 1] is a
t-conorm, if for all g, h, u ∈ [0, 1], the consecutive axioms
are fulfilled.

(1) I(g, h) � I(h, g)

(2) I(g, h)≤I(g, u) if h≤ u

(3) I(g,I(h, u)) � I(I(g, h), u)

(4) I(g, 0) � g

*ese axioms are called, symmetry, monotonicity, as-
sociativity, and “0” as identity, respectively.

Example 2. Some famous t-norms are given as follows:

(i) �
[λP(g, h) � g. h (Product t-norm)

(ii) �
[λM(g, h) � min(g, h) (Minimum t-norm)

(iii) �
[λL(g, h) � max(g + h − 1, 0) (Lukasiewicz t-norm)

(iv) �
[λD(g, h) �

f, if h � 1
h, if g � 1
0, otherwise

⎧⎪⎨

⎪⎩
for all g, h ∈ [0, 1]

(Drastic t-norm)

Example 3. Some famous t-conorms are given as follows:

(i) IP(g, h) � g + h − g. h (Probabilistic sum)
(ii) IM(g, h) � max(g, h) (Maximum t-conorm)
(iii) IL(g, h) � min(g + h, 1) (Lukasiewicz t-conorm)

(iv) ID(g, h) �

g, if h � 0
h, if g � 0
1, otherwise

⎧⎪⎨

⎪⎩
for all g, h ∈ [0, 1]

(Drastic t-conorm)

Definition 7 (see [35]). *is class of t-norm is originally
proposed by Aczel–Alsina in mid-1980s under the condition
of functional equations.

*e category (
�

[λ
ℷ

A)ℷ∈[0,∞] of Aczel–Alsina t-norms is
stated by the following equation:

�
[λ
ℷ

A(g, h) �

�
[

λ
D(g, h), if ℷ � 0,

min(g, h), if ℷ �∞,

e
− (− logg)ℷ+(− log h)ℷ( )

1/ℷ

, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

*e category (I
ℷ
A)ℷ∈[0,∞] of Aczel–Alsina t-conorms is

stated by the following equation:

I
ℷ
A(g, h) �

ID(g, h), if ℷ � 0,

max(g, h), if ℷ �∞,

1 − e
− (− log(1− g))ℷ+(− log(1− h))ℷ( )

1/ℷ

, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Limiting Cases: �
[λ

0

A �
�

[λ
D,

�
[λ

1

A �
�

[λ
P,

�
[λ
∞

A � min,

I
0
A � ID,I

1
A � IP, andI∞A � max.

For every ℷ ∈ [0,∞] the t-norm �
[λ
ℷ

A and t-conorm I
ℷ
A

are dual to each other. *e class of Aczel–Alsina t-norms is
strictly increasing and the class of Aczel–Alsina t-conorms is
strictly decreasing.

3. Aczel–Alsina Operations for SFNs

In this section, we will introduce the Aczel–Alsina opera-
tions for SFNs and look at some of their basic properties.

Definition 8. Let Rc � (κRc , υRc , τRc ),R
c
1 � (κRc

1
, υRc

1
,

τRc

1
), and R

c
2 � (κRc

2
, υRc

2
, τRc

2
) be three SFNs, ℵ≥ 1 and

ℷ > 0. *en, the Aczel–Alsina t-norm and t-conorm oper-
ations of SFNs are defined as follows:

(1) Rc
1⊕R

c
2 �

�����������������

1 − e
− ((− log(1− κ2

R
c

1
))ℵ+

􏽱

􏼪

(− log(1 − κ2
R

c

2
))ℵ)1/ℵ ,

�����������

e
− ((− logυ2

R
c

1
)ℵ+

􏽱

(− logυ2
R

c

2
)ℵ)1/ℵ ,

��������������������

e
− ((− logτ2

R
c

1
)ℵ+(− logτ2

R
c

2
)ℵ)1/ℵ

􏽱

􏼫

(2) Rc
1 ⊗R

c
2 �

��������������������

e
− ((− logκ2

R
c

1
)ℵ+(− logκ2

R
c

2
)ℵ)1/ℵ

􏽱

,􏼪�����������������������������

1 − e
− ((− log(1− υ2

R
c

1
))ℵ+(− log(1− υ2

R
c

2
))ℵ)1/ℵ

􏽱

,
�����������������������������

1 − e
− ((− log(1− τ2

R
c

1
))ℵ+(− log(1− τ2

R
c

2
))ℵ)1/ℵ

􏽱

􏼫

(3) ℷRc �

�������������������

1 − e− (ℷ(− log(1− κ2
Rc ))ℵ)1/ℵ

􏽱

,􏼪
�������������

e− (ℷ(− logυ2
Rc )ℵ)1/ℵ

􏽱

,

�������������

e− (ℷ(− logτ2
Rc )ℵ)1/ℵ

􏽱

􏼫

(4) Rcℷ �

�������������

e− (ℷ(− logκ2
Rc )ℵ)1/ℵ

􏽱

,􏼪�������������������

1 − e− (ℷ(− log(1− υ2
Rc ))ℵ)1/ℵ

􏽱

,
�������������������

1 − e− (ℷ(− log(1− τ2
Rc ))ℵ)1/ℵ

􏽱

􏼫

Theorem 1. LetRc � (κRc , υRc , τRc ),R
c
1 � (κRc

1
, υRc

1
, τRc

1
),

and R
c
2 � (κRc

2
, υRc

2
, τRc

2
) be three SFNs, then we have
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(i) Rc
1⊕R

c
2 � R

c
2⊕R

c
1

(ii) Rc
1 ⊗R

c
2 � R

c
2 ⊗R

c
1

(iii) ℷ(Rc
1⊕R

c
2) � ℷRc

1⊕ℷR
c
2, ℷ > 0

(iv) (ℷ1 + ℷ2)R
c � ℷ1R

c⊕ℷ2R
c, ℷ1, ℷ2 > 0

(v) (R
c
1 ⊗R

c
2)
ℷ � R

cℷ

1 ⊗R
cℷ

2 , ℷ > 0

(vi) Rcℷ1 ⊗Rcℷ2 � Rc(ℷ1+ℷ2)

, ℷ1, ℷ2 > 0

Proof. For the three SFNs Rc,R
c
1, and R

c
2, and ℷ, ℷ1, ℷ2 > 0,

we can get the following equations:

(i)

R
c
1⊕R

c
2 �

����������������������������������

1 − e
− − log 1− κ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− κ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

e
− − logυ2

R
c

1
􏼒 􏼓

ℵ

+ − logυ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������������

e
− − logτ2

R
c

1
􏼒 􏼓

ℵ

+ − log τ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

����������������������������������

1 − e
− − log 1− κ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− κ2
R

c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

e
− − logυ2

R
c

2
􏼒 􏼓

ℵ

+ − logυ2
R

c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

e
− − logτ2

R
c

2
􏼒 􏼓

ℵ

+ − logτ2
R

c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

� R
c
2⊕R

c
1

(7)

(ii)

R
c
1 ⊗R

c
2 �

�����������������������

e
− − logκ2

R
c

1
􏼒 􏼓

ℵ

+ − logκ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������������������

1 − e
− − log 1− υ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− υ2
R

c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������������������

1 − e
− − log 1− τ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− τ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

�����������������������

e
− − logκ2

R
c

2
􏼒 􏼓

ℵ

+ − logκ2
R

c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������������������

1 − e
− − log 1− υ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− υ2
R

c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������������������

1 − e
− − log 1− τ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− τ2
R

c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

� R
c
2 ⊗R

c
1

(8)

(iii) Using this, we get

ℷ Rc
1⊕R

c
2( 􏼁 � ℷ

����������������������������������

1 − e
− − log 1− κ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− κ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������������

e
− − logυ2

R
c

1
􏼒 􏼓

ℵ

+ − log υ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

e
− − logτ2

R
c

1
􏼒 􏼓

ℵ

+ − logτ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

�����������������������������������

1 − e
− ℷ − log 1− κ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− κ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������������

e
− ℷ − logυ2

R
c

1
􏼒 􏼓

ℵ

+ − logυ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������������

e
− ℷ − logτ2

R
c

1
􏼒 􏼓

ℵ

+ − logτ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

����������������������

1 − e
− ℷ − log 1− κ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

���������������

e
− ℷ − logυ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

���������������

e
− ℷ − logτ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

⊕

����������������������

1 − e
− ℷ − log 1− κ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

���������������

e
− ℷ − logυ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

���������������

e
− ℷ − logτ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

� ℷRc
1⊕ℷR

c
2

(9)
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(iv)

ℷ1R
c⊕ℷ2R

c
�

���������������������

1 − e
− ℷ1 − log 1− κ2

Rc􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

,

���������������

e
− ℷ1 − log υ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

,

���������������

e
− ℷ1 − log τ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

􏼪 􏼫,

⊕

���������������������

1 − e
− ℷ2 − log 1− κ2

Rc􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

,

���������������

e
− ℷ2 − log υ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

,

���������������

e
− ℷ2 − log τ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

􏼪 􏼫,

�

��������������������������

1 − e
− ℷ1+ℷ2 − log 1− κ2

Rc􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓􏼒 􏼓
1/ℵ

􏽳

,

�������������������

e
− ℷ1+ℷ2( ) − log υ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

,

�������������������

e
− ℷ1+ℷ2( ) − log τ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

􏼪 􏼫,

� ℷ1 + ℷ2( 􏼁R
c

(10)

(v)

R
c
1 ⊗R

c
2( 􏼁
ℷ

�

�����������������������

e
− − logκ2

R
c

1
􏼒 􏼓

ℵ

+ − logκ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������������������

1 − e
− − log 1− υ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− υ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,􏼪

·

����������������������������������

1 − e
− − log 1− τ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− τ2
R

c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

ℷ
􏼫,

�

������������������������

e
− ℷ − logκ2

R
c

1
􏼒 􏼓

ℵ

+ − logκ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������������������

1 − e
− ℷ − log 1− υ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− υ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,􏼪

·

�����������������������������������

1 − e
− ℷ − log 1− τ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ − log 1− τ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼫,

�

���������������

e
− ℷ − logκ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������

1 − e
− ℷ − log 1− υ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������

1 − e
− ℷ − log 1− τ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

⊗

���������������

e
− ℷ − logκ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������

1 − e
− ℷ − log 1− υ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������

1 − e
− ℷ − log 1− τ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

� R
cℷ

1 ⊗R
cℷ

2

(11)
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(vi)

R
cℷ1 ⊗Rcℷ2

�

����������������

e
− ℷ1 − logκ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ1 − log 1− υ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ1 − log 1− τ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

⊗

����������������

e
− ℷ2 − logκ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ2 − log 1− υ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ2 − log 1− τ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

�������������������

e
− ℷ1+ℷ2( ) − logκ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������������

1 − e
− ℷ1+ℷ2( ) − log 1− υ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������������

1 − e
− ℷ1+ℷ2( ) − log 1− τ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

� R
c ℷ1+ℷ2( )

(12)

□
4. Spherical Fuzzy Aczel–Alsina
Aggregation Operators

In this section, we present a few SF aggregation operators by
means of the Aczel–Alsina operations.

4.1. Spherical Fuzzy Aczel–Alsina Averaging AOs

Definition 9. Let Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
), (ϕ � 1, 2, . . . ,ℶ) be

an accumulation of SFNs and ξζ � (ξζ1, ξ
ζ
1, . . . , ξζℶ)

T be the
weight vector (WV) of R

c

ϕ, with ξζϕ > 0 and 􏽐
ℶ
ϕ�1 ξ

ζ
ϕ � 1.

*en, “spherical fuzzy Aczel–Alsina weighted average

(SFAAWA) operator” is a mapping SFAAWA: (L∗)ℶ ⟶
L∗, where

SFAAWA R
c
1,R

c
2 , . . . ,R

c

ℶ( 􏼁 � ξζ1R
c
1⊕ξ

ζ
2R

c
2⊕ . . . ,⊕ξζℶR

c

ℶ􏼐 􏼑.

(13)

*e following theorem is obtained using Aczel–Alsina
operations on SFNs.

Theorem 2. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation of

SFNs, then aggregated value of them utilizing the SFAAWA
operation is also an SFNs, and

SFAAWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊕
ℶ

ϕ�1
ξζϕR

c

ϕ􏼐 􏼑

�

��������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− κ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,

�������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logυ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logτ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

(14)

where ξζ � (ξζ1, ξ
ζ
2, . . . , ξζℶ) is the WV of Rc

ϕ s.t ξζϕ > 0 and
􏽐
ℶ
ϕ�1 ξ

ζ
ϕ � 1.

Proof. We can derive *eorem 2 in the following way using
the mathematical induction technique.

For ℶ � 2, depend on Aczel–Alsina operations of SFNs,
we obtain the following equation:

ξζ1R
c
1 �

�����������������������

1 − e
− ℷ1 − log 1− κ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ1 − logυ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ1 − logτ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫 and

ξζ2R
c
2 �

�����������������������

1 − e
− ℷ2 − log 1− κ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ2 − logυ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ2 − logτ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫.

(15)
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Based on Aczel–Alsina operations of SFNs, we obtain the
following equation:

SFAAWA R
c
1,R

c
2( 􏼁 �

�����������������������

1 − e
− ℷ1 − log 1− κ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ1 − logυ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ1 − logτ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

⊕

�����������������������

1 − e
− ℷ2 − log 1− κ2

R
c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ2 − logυ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������

e
− ℷ2 − logτ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

�������������������������������������

1 − e
− ℷ1 − log 1− κ2

R
c

1
􏼒 􏼓􏼒 􏼓

ℵ

+ℷ2 − log 1− κ2
R

c

2
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

·

��������������������������

e
− ℷ1 − logυ2

R
c

1
􏼒 􏼓

ℵ

+ℷ2 − logυ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������������

e
− ℷ1 − logτ2

R
c

1
􏼒 􏼓

ℵ

+ℷ2 − logτ2
R

c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

, and

�

���������������������������

1 − e

− 􏽘
2

ϕ�1

ξζϕ − log 1− κ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

�������������������

e

− 􏽘
2

ϕ�1

ξζϕ − log υ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�������������������

e

− 􏽘
2

ϕ�1

ξζϕ − log τ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫.

(16)

*us, it is true for ℶ � 2. Consider equation (14) is true for ℶ � k, then we have
the following equation:

SFAAWA R
c
1,R

c
2, . . . ,R

c

k􏼐 􏼑 �
���������������������������

1 − e

− 􏽘
k

ϕ�1

ξζϕ − log 1− κ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

�������������������

e

− 􏽘
k

ϕ�1

ξζϕ − logυ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�������������������

e

− 􏽘
k

ϕ�1

ξζϕ − logτ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

(17)

we will prove that equation (14) holds for ℶ � k + 1.

SFAAWA R
c
1,R

c
2, . . . ,R

c

k,R
c

k+1􏼐 􏼑 � ⊕
k
ξζϕR

c

ϕ􏼐 􏼑⊕ ξζk+1R
c

k+1􏼐 􏼑,

�

���������������������������

1 − e

− 􏽘
k

ϕ�1

ξζϕ − log 1− κ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

�������������������

e

− 􏽘
k

ϕ�1

ξζϕ − logυ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�������������������

e

− 􏽘
k

ϕ�1

ξζϕ − logτ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

⊕

�������������������������

1 − e
− ℷk+1 − log 1− κ2

R
c

k+1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������

e
− ℷk+1 − logυ2

R
c

k+1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������

e
− ℷk+1 − logτ2

R
c

k+1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

���������������������������

1 − e

− 􏽘
k+1

ϕ�1

ξζϕ − log 1− κ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

�������������������

e

− 􏽘
k+1

ϕ�1

ξζϕ − logυ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�������������������

e

− 􏽘
k+1

ϕ�1

ξζϕ − logτ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫.

(18)
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As a result, we can conclude that equation (4.2) stands
true for any ℶ.

By applying the SFAAWA operator, we can illustrate the
following features efficiently. □

Theorem 3. If all Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) are equal, that is,

R
c

ϕ � Rc∀ϕ, then

SFAAWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � R
c
. (19)

Proof. Given that Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
), by equation (4.2)

we get the following equation:

SFAAWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 �

��������������������������

1 − e

− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− κ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − logυ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − logτ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

�

���������������������

1 − e
− − log 1− κ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏼠 􏼡

􏽳

,

��������������

e
− − logυ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

,

��������������

e
− − logτ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

􏼪 􏼫,

�

������������

1 − e
log 1− κ2

Rc􏼐 􏼑
􏽱

,

�����

e
logυ2

Rc

􏽱

,

�����

e
logτ2

Rc

􏽱

􏼪 􏼫,

�

���

κ2Rc

􏽱

,

���

υ2Rc

􏽱

,

���

τ2Rc

􏽱

􏼒 􏼓 � R
c
.

(20)

□
Theorem 4. LetRc � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation of

SFNs. Let
Rc−

� min(R
c
1,R

c
1, . . . ,R

c

ℶ) and
Rc+

� max(R
c
1,R

c
2, . . . ,R

c

ℶ). Hen,

R
c−

≤ SFAAWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤Rc+

. (21)

Proof. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
) be an accumulation of SFNs. Let

Rc−

� min(R
c
1,R

c
2, . . . ,R

c

ℶ) � (κ−
Rc , υ−

Rc , τ−
Rc ) and Rc+

�

max(R
c
1,R

c
2, . . . ,R

c

ℶ) � (κ+
Rc , υ+

Rc , τ+
Rc ). We have,

κ−
Rc � minϕ κRc

ϕ
􏼚 􏼛, υ−

Rc � maxϕ υRc

ϕ
􏼚 􏼛,

τ−
Rc � maxϕ τRc

ϕ
􏼚 􏼛, κ+

Rc � maxϕ κRc

ϕ
􏼚 􏼛,

υ+
Rc � minϕ υRc

ϕ
􏼚 􏼛, and τ+

Rc � minϕ τRc

ϕ
􏼚 􏼛 Hence, here we

have the subsequent inequalities,

�������������������������

1 − e
− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− κ2

Rc−􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏼠 􏼡

􏽳

≤

��������������������������

1 − e

− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− κ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

≤

��������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− κ2
Rc+􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,
�������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logυ2
Rc+􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

≤

�������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logυ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

≤

������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logυ2
Rc−􏼐 􏼑
ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

(22)

������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − logτ2

Rc+􏼒 􏼓
ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

≤

������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − logτ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

≤

������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logτ2
Rc−􏼐 􏼑
ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

.

(23)

*erefore, Rc−

≤ SFAAWA(R
c
1,R

c
2, . . . ,R

c

ℶ)≤R
c+

□ □
Theorem 5. Let R

c

ϕ and R
c′
ϕ be two sets of SFNs, if

R
c

ϕ ≤R
c′
ϕ ∀ϕ, then

Mathematical Problems in Engineering 9



SFAAWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤ SFAAWA R
c′
1 ,R

c′
2 , . . . ,R

c′
ℶ􏼒 􏼓,

(24)

Now, we present “spherical fuzzy Aczel–Alsina ordered
weighted averaging (SFAAOWA) operator.”

Definition 10. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation

of SFNs. SFAAOWA operator is a mapping SFAAOWA:
(L∗)ℶ ⟶ L∗ with the corresponding WV ξζ � (ξζ1, ξ

ζ
2, . . . ,

ξζℶ)
T such that ξζϕ > 0, and 􏽐

ℶ
ϕ�1 ξ

ζ
ϕ � 1, as follows:

SFAAOWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊕
ℶ

ϕ�1
ξζϕR

c

Υ(ϕ)􏼒 􏼓 � ξζ1R
c

Υ(1)⊕ξ
ζ
2R

c

Υ(2)⊕, . . . ,⊕ξζℶR
c

Υ(ℶ), (25)

where (Υ(1),Υ(2), . . . ,Υ(ℶ)) are the permutation of
(ϕ � 1, 2, . . . ,ℶ), including R

c

Υ(ϕ− 1) ≥R
c

Υ(ϕ)∀ϕ � 1, 2,

. . . ,ℶ.
*us, the following theorem is obtained using

Aczel–Alsina operations on SFNs.

Theorem 6. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation of

SFNs. SFAAOWA operator is a mapping SFAAOWA:
(L∗)ℶ ⟶ L∗ with the corresponding vector ξζ � (ξζ1, ξ

ζ
2,

. . . , ξζℶ)
T such that ξζϕ > 0, and 􏽐

ℶ
ϕ�1 ξ

ζ
ϕ � 1. Hen,

SFAAOWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊕
ℶ

ϕ�1
ξζϕR

c

ϕ􏼐 􏼑

�

����������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− κ2
R

c

Υ(ϕ)

􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

��������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logυ2
R

c

Υ(ϕ)

􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logτ2
R

c

Υ(ϕ)

􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫,

(26)

where (Υ(1),Υ(2), . . . ,Υ(ℶ)) are the permutation of
(ϕ � 1, 2, . . . ,ℶ), including R

c

Υ(ϕ− 1) ≥R
c

Υ(ϕ)∀ϕ � 1, 2,

. . . ,ℶ.

Proof. Same as *eorem 2.
By applying the SFAAOWA operator, we can illustrate

the following features efficiently. □

Theorem 7. If all Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) are equal, that is,

R
c

ϕ � Rc∀ϕ, then

SFAAOWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � R
c

(27)

Proof. Same as *eorem 3. □

Theorem 8. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation of

SFNs. LetRc−

� min(R
c
1,R

c
2, . . . ,R

c

ℶ) and Rc+

� min(R
c
1,

R
c
2, . . . ,R

c

ℶ). Hen,

R
c−

≤ SFAAOWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤Rc+

. (28)

Proof. Same as *eorem 4. □

Theorem 9. Let R
c

ϕ and R
c′
ϕ be two sets of SFNs, if

R
c

ϕ ≤R
c′
ϕ ∀ϕ, then

SFAAOWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤ SFAAOWA R
c′
1 ,R

c′
2 , . . . ,R

c′
ℶ􏼒 􏼓.

(29)

It is self-evident that the SFAAWA operator weights only
the SFNs, and that the SFAAOWA operator weights only the
SFN’s ordered locations. Following that, weights are used to
indicate various elements of the SFAAWA and SFAAOWA
operators. Nonetheless, both one and the other operators
consider only one of these. To address this shortcoming, we will
also demonstrate the “spherical fuzzy Aczel–Alsina hybrid
averaging (SFAAHA) operator,” which weights all of the given
SFN and their appropriate ordered position.

Definition 11. Let R
c

ϕ be an accumulation of SFNs.
SFAAHA operator is a mapping SFAAHA: (L∗)ℶ ⟶ L∗,
s.t.

SFAAOWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊕
ℶ

ϕ�1
ξζϕR

c

Υ(ϕ)

..

􏼒 􏼓 � ξζ1R
c

Υ(1)

..

⊕ξζ2R
c

Υ(2)

..

⊕, . . . ,⊕ξζℶR
c

Υ(ℶ)

..

, (30)

where ξζ � (ξζ1, ξ
ζ
2, . . . , ξζℶ)

T is the weighting vector associ-
ated with the SFAAHA operator, with ξζϕ ∈ [0, 1] and

􏽐
ℶ
ϕ�1 ξ

ζ
ϕ � 1;R

c

ϕ

..

� ℶδϕR
c

ϕ, ϕ � 1, 2, . . . ,ℶ,

(R
c

Υ(1)

..

,R
c

Υ(2)

..

, . . . ,R
c

Υ(ℶ)

..

) is any permutation of a col-

lection of the weighted SFNs (R
c
1

..

,R
c
2

..

, . . .R
c

ℶ

..

), s.t.

R
c

Y(ϕ− 1)

..

≥Rc

Y(ϕ)

..

· δ � (δ1, δ2, . . . δℶ)
T is the weight vector
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of Rc

ϕ, with δϕ ∈ [0, 1] and 􏽐
ℶ
ϕ�1 δϕ � 1, and ℶ is the bal-

ancing coefficient, which plays a role of balance.

Theorem 10. Let Rc

ϕ be the collection of SFNs. Heir ag-
gregated value by SFAAHA operator is still an SFN, and

SFAAHA R
c
1 ,R

c
2 , . . . ,R

c

ℶ( 􏼁 � ⊕
ℶ

ϕ�1
ξζϕR

c

ϕ􏼐 􏼑

�

����������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− κ2
R

c

Υ(ϕ)

..􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

��������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logυ2
R

c

Υ(ϕ)

..􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logτ2
R

c

Υ(ϕ)

..􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

􏼪 􏼫.

(31)

Proof. Same as *eorem 2. □

Theorem 11. He SFAAWA and SFAAOWA operators are
special cases of the SFAAHA operator.

Proof. (1) Let ξζ � (1/ℶ, 1/ℶ, . . . , 1/ℶ)T. *en,

SFAAHA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ξζ1R
c

ℶ(1)

.

⊕ξζ2R
c

ℶ(2)

.

⊕ · · ·⊕ξζℶR
c

ℶ(ℶ)

.

,

�
1
ℶ

R
c

ℶ(1)

.

⊕Rc

ℶ(2)

.

⊕ · · ·⊕Rc

ℶ(ℶ)

.

􏼒 􏼓,

� ξζ1R
c
1⊕ξ

ζ
2R

c
2⊕ · · ·⊕ξζℶR

c

ℶ,

� SFAAWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁.

(32)

(2) Let ξζ � (1/ℶ, 1/ℶ, . . . , 1/ℶ)T. *en, Rc

ϕ

.

� R
c

ϕ and

IFAAHAξζ ,ξζ R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ξζ1R
c

ℶ(1)

.

⊕ξζ2R
c

ℶ(2)

.

⊕ · · ·⊕ξζℶR
c

ℶ(ℶ)

.

,

ξζ1R
c

ℶ(1)

.

⊕ξζ2R
c

ℶ(2)

.

⊕ · · ·⊕ξζℶR
c

ℶℶ(ℶ)

.

,

SFAAOWA R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁.

(33)

□
4.2. Spherical Fuzzy Aczel–Alsina Geometric AOs

Definition 12. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation

of SFNs and ξζ � (ξζ1, ξ
ζ
2, . . . , ξζℶ)

T be the weight vector
(WV) of Rc

ϕ, with ξζϕ > 0 and 􏽐
ℶ
ϕ�1 ξ

ζ
ϕ � 1. *en, “spherical

fuzzy Aczel–Alsina weighted geometric (SFAAWG) oper-
ator” is a mapping SFAAWG: (L∗)ℶ ⟶ L∗, where

SFAAWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � R
c
ξζ1

1 ⊗R
c
ξζ2

2 ⊗ . . . , ⊗Rc
ξζℶ

ℶ􏼠 􏼡. (34)

*us, the following theorem is obtained using
Aczel–Alsina operations on SFNs.

Theorem 12. Let Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation

of SFNs, then aggregated value of them utilizing the SFAAWG
operation is also an SFNs, and

SFAAWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊗
ℶ

ϕ�1
ξζϕR

c

ϕ􏼐 􏼑,

�

�������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logκ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− υ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,

��������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− τ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

􏼪 􏼫,

(35)
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where ξζ � (ξζ1, ξ
ζ
2, . . . , ξζℶ)

T be the WV of Rc

ϕ s.t ξζϕ > 0 and

􏽐
ℶ
ϕ�1 ξ

ζ
ϕ � 1.

Proof. We can derive*eorem 12 in the following way using
the mathematical induction technique.

For ℶ � 2, depend on Aczel–Alsina operations of SFNs,
we obtain the following equation:

R
c
ξζ1

1 �

����������������

e
− ℷ1 − logκ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ1 − log 1− υ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,

�����������������������

1 − e
− ℷ1 − log 1− τ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

􏼪 􏼫 and

R
c
ξζ2

2 �

����������������

e
− ℷ2 − logκ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ2 − log 1− υ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

2/ℵ

􏼠 􏼡

􏽶
􏽴

,

�����������������������

1 − e
− ℷ2 − log 1− τ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

􏼪 􏼫,

(36)

Based on Aczel–Alsina operations of SFNs, we obtain the
following equation:

SFAAWG R
c
1,R

c
2( 􏼁 �

����������������

e
− ℷ1 − logκ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ1 − log 1− υ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,

�����������������������

1 − e
− ℷ1 − log 1− τ2

R
c

1
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

􏼪 􏼫,

⊕

����������������

e
− ℷ2 − logκ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

�����������������������

1 − e
− ℷ2 − log 1− υ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

2/ℵ

􏼠 􏼡

􏽶
􏽴

,

�����������������������

1 − e
− ℷ2 − log 1− τ2

R
c

2
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

􏼪 􏼫,

�

�������������������

e

− 􏽘
2

ϕ�1

ξζϕ − logκ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������������

1 − e

− 􏽘
2

ϕ�1

ξζϕ − log 1− υ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,

��������������������������

1 − e

− 􏽘
2

ϕ�1

ξζϕ − log 1− τ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

􏼪 􏼫.

(37)

*us, it is true for ℶ � 2. Consider equation (4.15) is true for ℶ � k, then we have
the following equation:

SFAAWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁

�

�������������������

e

− 􏽘
k

ϕ�1

ξζϕ − logκ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������������

1 − e

− 􏽘
k

ϕ�1

ξζϕ − log 1− υ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,

��������������������������

1 − e

− 􏽘
k

ϕ�1

ξζϕ − log 1− τ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

􏼪 􏼫,

(38)

we will prove that equation (4.15) holds for ℶ � k + 1.
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SFAAWG R
c
1,R

c
2, . . . ,R

c

k,R
c

k+1􏼐 􏼑 � ⊕
k
ξζϕR

c

ϕ􏼐 􏼑⊕ ξζk+1R
c

k+1􏼐 􏼑

�

�������������������

e

− 􏽘
k

ϕ�1

ξζϕ − log κ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1
ℵ

􏽶
􏽵
􏽴

,

���������������������������

1 − e

− 􏽘
k

ϕ�1

ξζϕ − log 1− υ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1
ℵ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽶
􏽵
􏽵
􏽴

,

���������������������������

1 − e

− 􏽘
k

ϕ�1

ξζϕ − log 1− τ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1
ℵ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽶
􏽵
􏽵
􏽴

􏼪 􏼫,

⊕

��������������������

e
− ℷk+1 − log κ2

R
c

k+1
􏼒 􏼓􏼒 􏼓

ℵ

􏼠 􏼡

1
ℵ

􏽶
􏽴

,

��������������������������

1 − e

− ℷk+1 − log 1− υ2
R

c

k+1
􏼒 􏼓

ℵ

􏼠 􏼡

1
ℵ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽶
􏽵
􏽵
􏽴

,

������������������������

1 − e

− ℷk+1 − log 1− τc

k+1( )
ℵ( 􏼁

1
ℵ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

􏽶
􏽴

􏼪 􏼫,

�

�������������������

e

− 􏽘
k+1

ϕ�1

ξζϕ − log κ2
R

c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1
ℵ

􏽶
􏽵
􏽴

,

���������������������������

1 − e

− 􏽘
k+1

ϕ�1

ξζϕ − log 1− υ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1
ℵ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽶
􏽵
􏽵
􏽴

,

���������������������������

1 − e

− 􏽘
k+1

ϕ�1

ξζϕ − log 1− τ
R

c

ϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1
ℵ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽶
􏽵
􏽵
􏽴

􏼪 􏼫.

(39)

As a result, we can conclude that equation (4.15) stands
true for any ℶ.

By applying the SFAAWG operator, we can illustrate the
following features efficiently. □

Theorem 13. If all Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) are equal, that is,

R
c

ϕ � Rc∀ϕ, then

SFAAWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � R
c
. (40)

Proof. Given that Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
), by equation (4.15)

we get the following equation:

SFAAWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 �

������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − logκ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

��������������������������

1 − e

− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− υ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,

��������������������������

1 − e

− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− τ2

R
c

ϕ
􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

􏼪 􏼫,

�

����������������

e
− − log κ2

Rc􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏼠 􏼡

􏽳

,

��������������������

1 − e
− − log 1− υ2

Rc􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏽳

,

��������������������

1 − e
− − log 1− τ2

Rc􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓

1
ℵ

􏽶
􏽴

􏼪 􏼫,

�

�����

e
logκ2

Rc

􏽱 ������������

1 − e
log 1− υ2

Rc􏼐 􏼑

􏽱

,

������������

1 − e
log 1− τ2

Rc􏼐 􏼑

􏽱

􏼪 􏼫,

�

���

κ2Rc

􏽱

,

���

υ2Rc

􏽱

,

���

τ2Rc

􏽱

􏼒 􏼓 � R
c
.

(41)

□
Theorem 14. Let Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation

of SFNs. LetRc−

� min(R
c
1,R

c
2, . . . ,R

c

ℶ) and Rc+

� max
(R

c
1,R

c
2, . . . ,R

c

ℶ). Hen,
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R
c−

≤ SFAAWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤Rc+

. (42)

Proof. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
) be an accumulation of SFNs. Let

Rc−

� min(R
c
1,R

c
2, . . . ,R

c

ℶ) � (κ−
Rc , υ−

Rc , τ−
Rc ) and

Rc+

� max(R
c
1,R

c
2, . . . ,R

c

ℶ) � (κ+
Rc , υ+

Rc , τ+
Rc ). We have,

κ−
Rc � minϕ κRc

ϕ
􏼚 􏼛, υ−

Rc � maxϕ υRc

ϕ
􏼚 􏼛, τ−

Rc � maxϕ τRc

ϕ
􏼚 􏼛,

κ+
Rc � maxϕ κRc

ϕ
􏼚 􏼛, υ+

Rc � minϕ υRc

ϕ
􏼚 􏼛, and τ+

Rc � minϕ τRc

ϕ
􏼚 􏼛

Hence, here, we have the subsequent inequalities,

������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − logκ2

Rc+􏼒 􏼓
ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

≤

�������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − log κ2

Rcϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

≤

������������������

e
− 􏽐
ℶ

ϕ�1
ξζϕ − logκ2

Rc−􏼐 􏼑
ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,
�������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− υ2
Rc−􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏼠 􏼡

􏽶
􏽴

≤

��������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− υ2
Rcϕ

􏼒 􏼓
ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

≤

��������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− υ2
Rc+􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

,

(43)

�������������������������

1 − e
− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− τ2

Rc−􏼐 􏼑
ℵ

􏼒 􏼓
1/ℵ

􏼠 􏼡

􏽳

≤

��������������������������

1 − e
− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− τ2

Rcϕ
􏼒 􏼓

ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

≤

��������������������������

1 − e
− 􏽐
ℶ

ϕ�1
ξζϕ − log 1− τ2

Rc+􏼒 􏼓
ℵ

􏼠 􏼡

1/ℵ

􏼠 􏼡

􏽶
􏽴

.

(44)

*erefore,
Rc−

≤ SFAAWG(R
c
1,R

c
2, . . . ,R

c

ℶ)≤R
c+ □

Theorem 15. Let R
c

ϕ and R
c′
ϕ be two sets of SFNs, if

R
c

ϕ ≤R
c′
ϕ ∀ϕ, then

SFAAWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤ SFAAWG R
c′
1 ,R

c′
2 , . . . ,R

c′
ℶ􏼒 􏼓,

(45)

Now, we present “spherical fuzzy Aczel–Alsina ordered
weighted geometric (SFAAOWG) operator.”

Definition 13. LetRc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation

of SFNs. SFAAOWG operator is a mapping SFAAOWG:
(L∗)ℶ ⟶ L∗ with the corresponding WV ξζ � (ξζ1, ξ

ζ
2,

. . . , ξζℶ)
T such that ξζϕ > 0 and 􏽐

ℶ
ϕ�1 ξ

ζ
ϕ � 1, as follows:

SFAAOWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊗
ℶ

ϕ�1
R

c
ξζ
ϕ

Υ(ϕ)
⎛⎝ ⎞⎠ � R

c
ξζ1

Υ(1)⊕R
c
ξζ2

Υ(2)⊕, . . . ,⊕Rc
ξζℶ

Υ(ℶ), (46)

where (Υ(1),Υ(2), . . . ,Υ(ℶ)) are the permutation of
(ϕ � 1, 2, . . . ,ℶ), including R

c

Υ(ϕ− 1) ≥R
c

Υ(ϕ)∀ϕ � 1, 2,

. . . ,ℶ.
*us, the following theorem is obtained using

Aczel–Alsina operations on SFNs.

Theorem 16. Let Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation

of SFNs. SFAAOWG operator is a mapping SFAAOWG:
(L∗)ℶ ⟶ L∗ with the corresponding vector ξζ � (ξζ1 > 0,

ξζ2 > 0, . . . , ξζℶ)
T such that ξζϕ > 0 and 􏽐

ℶ
ϕ�1 ξ

ζ
ϕ � 1. Hen,

SFAAOWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊗
ℶ

ϕ�1
R

c
ξζ
ϕ

ϕ
⎛⎝ ⎞⎠,

�

��������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logκ2
R

c

Υ(ϕ)

􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− υ2
R

c

Υ(ϕ)

􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

,􏼪
����������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− τ2
R

c

Υ(ϕ)

􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

􏼫,

(47)
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where (Υ(1),Υ(2), . . . ,Υ(ℶ)) are the permutation of
(ϕ � 1, 2, . . . ,ℶ), including R

c

Υ(ϕ− 1) ≥R
c

Υ(ϕ)∀ϕ � 1, 2,

. . . ,ℶ.

Proof. Same as *eorem 12.
By applying the SFAAOWG operator, we can illustrate

the following features efficiently. □

Theorem 17. If all Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) are equal, that is,

R
c

ϕ � Rc∀ϕ, then

SFAAOWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � R
c
. (48)

Proof. Same as *eorem 13. □

Theorem 18. Let Rc

ϕ � (κRc

ϕ
, υRc

ϕ
, τRc

ϕ
) be an accumulation

of SFNs. Let
Rc−

� min(R
c
1,R

c
2, . . . ,R

c

ℶ) and
Rc+

� max(R
c
1,R

c
2, . . . ,R

c

ℶ). Hen,

R
c−

≤ SFAAOWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤Rc+

. (49)

Proof. Same as *eorem 14. □

Theorem 19. Let R
c

ϕ and R
c′
ϕ be two sets of SFNs, if

R
c

ϕ ≤R
c′
ϕ ∀ϕ, then

SFAAOWG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁≤ SFAAOWG R
c′
1 ,R

c′
2 , . . . ,R

c′
ℶ􏼒 􏼓.

(50)

It is self-evident that the SFAAWG operator weights only
the SFNs, and that the SFAAOWG operator weights only the

SFN’s ordered locations. Following that, weights are used to
indicate various elements of the SFAAWG and SFAAOWG
operators. Nonetheless, both one and the other operators
consider only one of these. To address this shortcoming, we will
also demonstrate the “spherical fuzzy Aczel–Alsina hybrid
geometric (SFAAHG) operator,” which weights all of the given
SFN and their appropriate ordered position.

Definition 14. Let R
c

ϕ be an accumulation of SFNs.
SFAAHG operator is a mapping SFAAHG: (L∗)ℶ ⟶ L∗,
s.t.

SFAAHG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊕
ℶ

ϕ�1
Rc

ξζϕ
Υ(ϕ)

..

⎛⎝ ⎞⎠

� ξζ1R
c

Υ(1)

..

⊕ξζ2R
c

Υ(2)

..

⊕, . . . ,⊕ξζℶR
c

Υ(ℶ)

..

(51)

where ξζ � (ξζ1, ξ
ζ
1, . . . , ξζℶ)

T is the weighting vector associ-
ated with the SFAAHG operator, with ξζϕ ∈ [0, 1] and

􏽐
ℶ
ϕ�1 ξ

ζ
ϕ � 1;R

c

ϕ

..

� ℶδϕR
c

ϕ, ϕ � 1, 2, . . . ,ℶ, (R
c

Υ(1)

..

,R
c

Υ(2)

..

,

. . . ,R
c

Υ(ℶ)

..

) is any permutation of a collection of the

weighted SFNs (R
c
1

..

,R
c
2

..

, . . .R
c

ℶ

..

), s.t. Rc

y(ϕ− 1)

..

≥ Rc
y(ϕ)

..

·

δ � (δ1, δ2, . . . δℶ)
T is the weight vector of R

c

ϕ, with
δϕ ∈ [0, 1] and 􏽐

ℶ
ϕ�1 δϕ � 1, and ℶ is the balancing coeffi-

cient, which plays a role of balance.

Theorem 20. Let Rc

ϕ be the collection of SFNs. Heir ag-
gregated value by SFAAHG operator is still an SFN, and

SFAAHG R
c
1,R

c
2, . . . ,R

c

ℶ( 􏼁 � ⊗
ℶ

ϕ�1
R

c
ξζ
ϕ

ϕ
⎛⎝ ⎞⎠,

�

��������������������

e

− 􏽘
ℶ

ϕ�1

ξζϕ − logκ2
R

c

Υ(ϕ)

..􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

􏽶
􏽴

,

����������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− υ2
R

c

Υ(ϕ)

..􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

����������������������������

1 − e

− 􏽘
ℶ

ϕ�1

ξζϕ − log 1− τ2
R

c

Υ(ϕ)

..􏼠 􏼡

ℵ

􏼠 􏼡

1/ℵ

⎛⎝ ⎞⎠

􏽶
􏽴

􏼪 􏼫.

(52)

Proof. Same as *eorem 12. □

Theorem 21. He SFAAWG and SFAAOWG operators are
special cases of the SFAAHG operator.

5. MCDM Approach Based on Proposed
Aczel–Alsina AOs

With the assistance of suggested AOs, we investigate MCDM
problems. Consider the set of possible alternatives
Λδ � Λδ1,Λ

δ
2, . . . ,Λδm􏽮 􏽯 and ℶℷ � ℶℷ1,ℶ

ℷ
2, . . . ,ℶℷn􏼈 􏼉 is the

collection of criterion. DMs gave their opinion matrix
D � (Pij)m×n, where Pij is given for the alternatives
Λδi ∈ Λ

δ with respect to the criteria ℶℷj ∈ ℶ
ℷ in the form of

SFNs. SFN decision matrix denoted by D � (Pij)m×n.*e

proposed operators will be applied to theMCDM, which will
include the points listed in Algorithm 1.

6. Numerical Example

*is section provides an illustration of how to apply the
proposed strategy to the land selection for agriculture
purpose.

6.1. Explanation of the Problem. Due to the COVID-19
pandemic’s consequences, the E-commerce phenomenon is
accelerating, having a huge influence on global supply
chains. *us, logistics management tasks have been elevated
in importance in practically every organization that trans-
ports physical commodities. *ere are several methods for
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businesses to acquire a comparative edge via the out scoured
of logistics management processes in today’s diversified and
incredibly quickly world. Exporters, distributors, and busi-
nesses with distribution networks have all demonstrated that
turning to third-party logistics (3PL) providers benefits them.
3PL is a term that refers to the process through which a
company outsources its warehouse and transportation ac-
tivities. A 3PL organization can provide stock control, cross-
docking, the door of the house distribution, and packaging
material. *e market for third-party logistics services has
accelerated its expansion as a result of the E-commerce boom
and expanded reverse logistics activities. *e E-commerce
trend includes faster, more dependable delivery, increased
inventory turnover, and goods staged in forwarding sites near
clients. *ere has been a large surge of 3PL firms offering a
range of services to assist in maintaining this very sophisti-
cated supply chain. 3PLs are frequently requested for assis-
tance with E-commerce fulfilment, warehousing, and delivery
facilities, and 3PLs invest in technology for both client service
and internal usage. Due to the current worldwide problem,
the COVID-19 pandemic, the function of E-commerce has
been enhanced and expedited.

Due to the features of multidimensional decision-
making difficulties, 3PL selection may well be considered a
complexMCDM challenge, given the presence of statistical,
interpersonal, and numerous factors in the natural deci-
sion-making phase. Given the critical nature of sustainable
third-party logistics providers, there is a dearth of studies
on the 3PL selection challenge in emerging economies. *e
3PL sector is growing at a breakneck pace due to the rise of
the e-commerce sector. Indeed, the requirement for 3PL
services is projected to grow as brands and distributors seek
to focus exclusively on their core industries. As a result,
they frequently outsource logistical services. In a nutshell,
analyzing and choosing optimum third-party logistics
providers is a critical component of any business’s long-
term goals.

Consider a corporation that is looking for the best 3PL
provider. Following prescreening, five 3PLs have been

identified for further consideration Λδη(η � 1, 2, . . . , 5). You
must choose between the following four characteristics: (1)
ℶℷ1 � financial stability, (2) ℶℷ2 � reliability and delivery time,
(3) ℶℷ3 � reputation, and (4) ℶℷ4 � green operation. *e DM
distributes the attribute weight in the following way:
ξζ � (0.20, 0.30, 0.25, 0.25)T. Table 1 evaluates the five
candidates Λδη(η � 1, 2, . . . , 5).

6.2. ProposedMethod Based on SFAAWAOperator. To select
the best agriculture land Λδη(η � 1, 2, . . . , υ), we utilize the
SFAAWA operator to construct an MCDM premise with SF
information, which is usually evaluated as follows:

Step 1: declaration matrix D � (Pij)m×n in the format
of SFNs from the DM given in Table 1.
Step 2: there is no cost type attributes in the four
characteristics: (1) ℶℷ1 � financial stability, (2) ℶℷ2
� reliability and delivery time, (3)ℶℷ3 � reputation, and
(4) ℶℷ4 � green operation. So, there is no need of
normalization in Table 1.
Step 3: consider that ℵ � 4. We take the SFAAWA op-
erator to calculate the alternative values Kη of five appli-
cants Λδη(η � 1, 2, . . . , 5), 5

⌣

1 � (0.23595, 0.0331817,

0.0329636), 5
⌣

2 � (0.27865, 0.214317, 0.234073) 5
⌣

3 �

(0.308017, 0.19699, 0.300857), 5
⌣

4 � (0.352767,

0.189726, 0.152533), and 5
⌣

5 � (0.23513, 0.181907,

0.237248).
Step 4: evaluate the score functions S(5

⌣

η)(η � 1, 2,

. . . , 5) of the SFNs 5
⌣

η(η � 1, 2, . . . , 5) as S(5
⌣

1) �

0.0412034, S(5
⌣

2) � 0.00159675, S(5
⌣

3) � − 0.0107371,

S(5
⌣

4) � 0.0387103, and S(5
⌣

5) � − 0.00305816.
Step 5: classify all five candidates according to the
value of the SFN’s score functions as Λδ1 >Λ

δ
4 >

Λδ2 >Λ
δ
5 >Λ

δ
3. Λ

δ
5 is chosen as the most suitable ag-

riculture land.

Step 1: acquire the declaration matrix D � (Pij)m×n in the format of SFNs from the DM.
Step 2: the declaration matrix’s attributes are classified into two types, such as the cost form parameter (τc) and the benefit form
parameter (τb). If all parameters are of the same form, no normalization is required. However, because the MCDM contains
parameters of multiple forms, the D matrix has been converted to a normalization matrix using the normalization formula, Y(5

⌣

ij).

5
⌣

ij �
P

c
ij; j ∈ τc,

Pij; j ∈ τb.
􏼨

where Pc
ij show the compliment of Pij.

Step 3: using one of the proposed operators to evaluate combined evaluations of the alternatives. One can use geometric operators
also instead of averaging operators.
5
⌣

i � SFAAWA(5
⌣

i1, 5
⌣

i2, . . . , 5
⌣

in),

5
⌣

i � SFAAOWA(5
⌣

i1, 5
⌣

i2, . . . , 5
⌣

in),

or 5
⌣

i � SFAAHA(5
⌣

i1, 5
⌣

i2, . . . , 5
⌣

in).

Step 4: calculate the combined score for all alternative assessments.
Step 5: alternatives are ranked first by their scoring function, and the best one can be chosen.

ALGORITHM 1: A decision making process based on SFAAWA, SFAAOWA, SFAAHA, is proposed in Algorithm 1.
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7. Sensitively Analysis

To highlight the influence of different parameter ℵ mag-
nitudes, we use different parameter ℵ inside our discussed
methodologies to classify the options. *e ordering effects of
the options based on the SFAAWA operator are reported in
Table 2. It is clear that as the magnitude of ℵ for the
SFAAWA operator increases, the score values of the alter-
natives gradually increase, but the optimum alternative
remains constant, implying that the proposed techniques
have the property of isotonicity, and the DMs can choose the
appropriate value based on their preferences.

Additionally, we can observe that even though the value
of ℵ is varied throughout the demonstration, the results
produced from the alternatives appear to be consistent,
confirming the proposed operator’s robustness.

8. Comparative Analysis

*is section compares proposed AOs to several existing
AOs. We equate our findings by solving the data with
preexisting AOs and get a comparable optimum solution.
*is demonstrates the AO’s long-term viability and efficacy.

*e technique outlined here is more practical and superior
to a number of previously published AOs. We validate our
optimal solution by running it through numerous current
operators. We receive the same optimal decision, demon-
strating the validity of our proposed AOs. Comparison of
proposed AOs with some exiting operators is given in
Table 3.

9. Conclusion

*e main contribution of the work is outlined as follows:

(1) *e aim of this paper is to present a novel idea about
the operational laws and the AOs for the aggregation
of SFNs. For this we first extended the Aczel–Alsina
t-norm and t-conorm to SF contexts, then estab-
lished and assessed a number of innovative opera-
tional principles for SFNs. *e fundamental
properties of the proposed laws are discussed in
detail.

(2) Based on the proposed laws, we define several AOs to
aggregate the SF information, namely the “spherical
fuzzy Aczel–Alsina weighted averaging (SFAAWA)
operator,” “spherical fuzzy Aczel–Alsina ordered

Table 1: Spherical fuzzy decision matrix.

ℶℷ1 ℶℷ2 ℶℷ3 ℶℷ4
Λδ1 (0.173, 0.144, 0.108) (0.243, 0.050, 0.203) (0.253, 0.011, 0.113) (0.223, 0.133, 0.009)
Λδ2 (0.333, 0.244, 0.143) (0.143, 0.223, 0.333) (0.228, 0.151, 0.418) (0.233, 0.433, 0.243)
Λδ3 (0.368, 0.263, 0.273) (0.133, 0.208, 0.543) (0.233, 0.150, 0.218) (0.263, 0.223, 0.431)
Λδ4 (0.218, 0.463, 0.133) (0.248, 0.413, 0.243) (0.413, 0.150, 0.138) (0.163, 0.443, 0.133)
Λδ5 (0.141, 0.152, 0.463) (0.268, 0.456, 0.163) (0.118, 0.413, 0.258) (0.213, 0.113, 0.433)

Table 2: Score functions for different values of ℵ.

ℵ S(5
⌣

1) S(5
⌣

2) S(5
⌣

3) S(5
⌣

4) S(5
⌣

5) Ordering

4 0.0412034 0.00159675 -0.0107371 0.0387103 -0.00305816 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

10 0.0508129 0.0142563 0.00071527 0.059049 0.0000415248 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

15 0.053227 0.020284 0.00521721 0.0648227 0.00229417 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

20 0.0545411 0.023817 0.00785135 0.0678921 0.00366547 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

40 0.0568068 0.0296565 0.0124697 0.0727274 0.00595754 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

60 0.0576824 0.0317262 0.0141957 0.0744342 0.00677951 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

80 0.0581399 0.0327826 0.0150882 0.0753273 0.00720298 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

100 0.0584175 0.0334233 0.0156325 0.0758855 0.0074612 Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5

Table 3: Comparison of proposed AOs with some exiting operators.

Authors AOs Ranking of alternatives *e optimal alternative

Ashraf and Abdullah [59] SFEWA Λδ1 >Λ
δ
2 >Λ

δ
5 >Λ

δ
4 >Λ

δ
3 Λδ1

SFEWG Λδ1 >Λ
δ
2 >Λ

δ
5 >Λ

δ
3 >Λ

δ
4 Λδ1

Jin et al. [48] LSFWA Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5 Λδ1

LSFWG Λδ1 >Λ
δ
2 >Λ

δ
3 >Λ

δ
4 >Λ

δ
5 Λδ1

Ashraf et al. [49] SFDWA Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
3 >Λ

δ
5 Λδ1

SFDWG Λδ1 >Λ
δ
4 >Λ

δ
5 >Λ

δ
2 >Λ

δ
3 Λδ1

Ashraf et al. [41] SFNWAA Λδ1 >Λ
δ
2 >Λ

δ
4 >Λ

δ
5 >Λ

δ
3 Λδ1

SFNWGA Λδ1 >Λ
δ
5 >Λ

δ
2 >Λ

δ
4 >Λ

δ
3 Λδ1

Proposed SFAAWA Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
4 >Λ

δ
3 Λδ1

SFAAWG Λδ1 >Λ
δ
4 >Λ

δ
2 >Λ

δ
4 >Λ

δ
3 Λδ1
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weighted averaging (SFAAOWA) operator,”
“spherical fuzzy Aczel–Alsina hybrid averaging
(SFAAHA) operator,” “spherical fuzzy Aczel–Alsina
weighted geometric (SFAAWG) operator,” “spher-
ical fuzzy Aczel–Alsina ordered weighted geometric
(SFAAOWG) operator,” and “spherical fuzzy
Aczel–Alsina hybrid geometric (SFAAHG) opera-
tor.” *e basic axioms of the operators are also
satisfied with the proposed work.

(3) *e proposed operators have been applied to
MCDM approach with SF data, and a numerical
model illustrating the decision-making technique
has been provided.

(4) To highlight the influence of parameter ℵ in the
decision-making process, we also added the sensi-
tivity analysis. Moreover, we equate our findings by
solving the data with preexisting AOs and get a
comparable optimum solution. *is demonstrates
the AO’s long-term viability and efficacy.

We will gradually apply the aforementioned operators
and techniques to a variety of multiple applications, in-
cluding network analysis, risk assessment, cognitive science,
reinforcement learning, signal processing, and many do-
mains in ambiguous contexts. Furthermore, the current
study does not take into account the interrelationships
between the pairs of attributes during the aggregation
process, which we will do in future projects. Furthermore,
we will attempt to develop some more generalized infor-
mation metrics in order to better realize the information in
our everyday lives.
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�e framework of complex T-spherical fuzzy set (CTSFS) deals with unclear and imprecise information with the help of
membership degree (MD), abstinence degree (AD), nonmembership degree (NMD), and refusal degree (RD). Due to this
characteristic, the CTSFSs can be applied to any phenomenon having the involvement of human opinions. �is article aims
to familiarize some Hamacher aggregation operators (HAOs) grounded on CTSFSs. To do so, we de�ne some Hamacher
operational laws in the environment of CTSFS by using Hamacher t-norm (HTNM) and Hamacher t-conorm (HTCNM). A
few numbers of AOs are developed with the help of de�ned operational laws based on HTNM and HTCNM including the
complex T-spherical fuzzy (CTSF), Hamacher weighted averaging (HWA) (CTSFHWA), CTSF Hamacher ordered
weighted averaging (CTSFHOWA) operator, CTSF Hamacher hybrid weighted averaging (CTSFHHWA) operator, CTSF
Hamacher weighted geometric (CTSFHWG) operator, CTSF Hamacher ordered weighted geometric (CTSFHOWG)
operator, and CTSF Hamacher hybrid weighted geometric (CTSFHHWG) operator. Some interesting properties of de-
veloped HAOs are investigated and then these HAOs are applied to the multi-attribute decision making (MADM) problem.
For the signi�cance of these HAOs, the results obtained from these HAOs are compared with existing aggregation
operators (AOs).

1. Introduction

�e phenomenon of uncertainty and imperfect information
has always perturbed mathematicians during the analysis of
data. To rectify this problem, many theories have been
presented. �ese theories strive to correct the inaccuracies
prevalent in real-life problems. All these theories are
composed of certain characteristics. Furthermore, they have
their own merits and demerits but among these Zadeh’s [1]
theory of fuzzy set (FS) has a distinguished place.�is theory
deals with certain conceptions that are a pivotal part of our

everyday lives, such as decision making, clustering, recog-
nition of patterns, and various �elds of computer and en-
gineering. In this remarkable theory, Zadeh presented a
concept of FS, which deals with uncertainties by compre-
hending them in terms ofMD, which range on a scale of zero
to one. �is kind of mathematical representation has en-
abled mathematicians to describe the uncertainty of any
given object or event in a numerical form. But the only
demerit of Zadeh’s theory was the lack of the notion of
nonmembership for an object. To overcome this lack-ness,
Atanassov [2] evolved Zadeh’s concept of fuzzy set and
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presented a proposition of intuitionistic fuzzy set (IFS) by
introducing MD and NMD. )ese concepts described the
vagueness with some restrictions. )is concept imposed a
constraint on the sum value of both MD and NMD that
restricted the value not to exceed 1. Yager [3] strengthen this
concept by infusing an idea of the Pythagorean fuzzy set
(PyFS), which expands the range of assigning values of MD
and NMD. Moreover, another remarkable contribution has
done by Yager [4] by introducing the model of q-rung
Orthopair fuzzy set (q-ROFS). )is unique framework as-
sists to increase the value of the Atanassov intuitionistic
fuzzy set (IFS) to infinity by inculcating the parameter q in
them.

)ese concepts of IFS, PyFS, and q-ROFS work in unison
to cater the real-life problems involving vagueness and
uncertainty. But the only deficiency was their deficiency of
degrees to express the phenomenon of favor and disfavor. As
the human opinion is not simply constricted to a well said
yes or no, rather it consists of multiple variations. A human
opinion has also some sort of abstinence and refusal degree
as well. Cuong and Kreinovich [5] tried to take into account
this phenomenon. He stated that dealing with IFS and its
generalized forms of MD and NMD, AD, and RD get ig-
nored, which resultantly leads to the considerable loss of
information. To resolve this loss, Cuong suggested the idea
of a picture fuzzy set (PFS) in a form of a triplet that in-
corporates MD, NMD, AD, and RD with a restriction that
their subsequent sum should not exceed the value of 1. To
reduce this restriction, Mahmood et al. [6] extended this
concept to a border level by delineating unique spherical
fuzzy set (SFS) and T-spherical fuzzy set (TSFS) sets.

Ramot et al. [7] realized that the generalized frameworks
aforementioned do not cover the information from the
complex plane. Ramot et al. [7] studied to involve the
complex plane FS and gave the idea of complex FS (CFS) by
taking the complex numbers instead of the real numbers.
)is concept of the CFS extended the FS to the complex
plane, but many complex numbers in the unit circle could
not be part of the CFS. Consequently, the idea of complex
IFS (CIFS) was presented by Alkouri and Salleh [8] to
provide a huge platform for decision-makers to extract the
larger information as compared to the CFS. To develop
CIFSs, Alkouri and Salleh [8] used the MD and NMD in the
form of a complex number from the unit circle in a complex
plane. But the sum of the real and imaginary parts of the MD
and NMD of the numbers in the CIFS was restricted within a
unit circle. But the problem occurred when decision-makers
choose the degrees of both real and imaginary parts whose
sum exceeded a unit circle. Ullah et al. [9] covered the larger
information than the CIFSs by extending the sum of degrees
to the sum of their squares by introducing the complex
PyFSs (CPyFSs). Liu et al. [10] improved the concept of
CPyFSs by taking any integer to the power of MD and NMD
and introduced the notion of complex q-ROFS (Cq-ROFS).

)e theory of CIFS and CPyFSs has been used with
applications in different fields of daily life. However, these
frameworks do not entertain the phenomenon when there
are four aspects to describe an object, especially whenever
the human opinion is involved. For an instance, with

0.7e2πi(0.5), 0.3e2πi(0.4), 0.6e2πi(0.5), CIFS, or CPFS fails to
handle such situations because the decision-makers are
restricted. To cope with this problem, Ali et al. [11] intro-
duced the theory of complex spherical fuzzy sets (CSFSs) and
CTSFS with some more flexible restrictions that the degrees
of both real and imaginary parts of MD, NMD, and AD
whose sum of a square and q power up to infinity cannot
exceed from a unit circle.

)e most advanced technique is to find the best alter-
native from a set of some specific alternatives based on the
multiple criteria that often contrast each other. After the
development of the above-mentioned frameworks, the
MADM has become a very popular technique because the
results obtained by MADM are based on the most reliable
aggregation operators (AOs). Xu [12] emphasized AOs on
IFS and applied them in MADM. Wei and Lu [13] used the
PyFSs to develop AOs and then applied these AOs in
MADM. Liu and Wang [14] improved the MADM by de-
veloping AOs for the basis of q-ROFS. Garg [15] applied
some AOs in MADM based on PFSs. Zhou et al. [16] in-
troduced power AOs for the enhancement of MADM by
using the TSFS information. Some interesting work on the
AOs can be found in references [17–20]. Interestingly, some
basic operational laws are involved in the formation of these
AOs. )ese laws are based on some triangular norms [21] to
obtain flexibility. Wu et al. [22] developed Dombi AOs by
using the Dombi t-norm (TNM) and t-conorm (TCNM)
based on IFS and applied in the MADM. Akram et al. [23]
formed the Dombi AOs and applied them to PyFS to solve
the MADM problem. Wang and Liu [24] used the Einstein
TNM and TCNM to develop AOs for the environment of IFS
and applied them in MADM. Riaz et al. [25] presented AOs
by using Einstein TNM and TCNM for the environment of
q-ROFSs and gave a desirable application in supply chain
management. Fahmi et al. [26] applied Einstein TNM and
TCNM for the development of the AOs for application
MADM. Senapati et al. [27] introduced Aczel-Alsina AOs in
the environment of IFSs. In reference [28] Yang et al. de-
veloped some interval-valued PyFS AOs based on Frank
TNM and TCNM. A few of AOs that are based on some
other TNMs and TCNMs are referred to in references
[29, 30].

)e TNMs and TCNMs aforementioned play an im-
portant role in the development of the AOs that have a great
impact on the application in MADM. Among these TNMs
and TCNMs, the HTNM and HTCNM [31] are very im-
pressive and have been used widely by researchers in almost
all of the developed models of the FS theory. Garg [32]
applied HTNM and HTCNM to IFS and formalized AOs.
)e HTNM and HTCNM have also been used by Wu and
Wei [33] in the formalization of the AOs for the PyFS. Darko
and Liang [34] introduced some AOs by using HTNM and
HTCNM for the q-ROFS. Ullah et al. [35] evaluated an
investment by introducing AOs based on HTNM and
HTCNM for the TSFS. Zhao et al. [36] established gener-
alized AOs for IFSs. Wu andWei [33] developed and applied
PyFS AOs based on HTNM and HTCNM in decision
making. )e remarkable literature can be found in reference
[37–39].
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It has been justified above that the CTSFS covers the
huge loss of information while we extract information from
any real-life phenomenon to perform decision making.
Especially it is very effective to extract the most possible
information whenever the human’s opinion is involved.
Hence, the use of CTSFS in MADM has a great chance to
improve the results in the MADM. We also have noted the
significance of HTNM and HTCNM in [40] where Klement
and Navara did a survey on different types of TNs and TCNs
and got different rankings and found the significant results
for the HTNM and HTCNM. )e main motivations for this
article are (i) the significance of the HTNM and HTCNM
while applying in frameworks of FS and (ii) the reduction of
loss of information with the help of CTSFS.)emain aspects
of this article are to introduce some Hamacher operational
laws grounded on CTSFSs and then to apply these opera-
tions to develop CTSFHWA and CTFSHWG AOs.

)ere are 6 further sections as we stated some elementary
notions supportive of this article in Section 2. We stated the
basic definition of CTSFS, the core function for ranking,
HTNM, and HTCNM in this section. In Section 3, we
developed some operations for the complex T-spherical
fuzzy numbers (CTSFNs), which include the Hamacher sum
and product of two CTSFNs, scalar multiplication, and the
power operation for the CTSFNs. We developed some av-
erage AOs based on HTNM and HTCNM, i.e., CTSFHWA,
CTSFOWA, and CTSFHHWA operators, and investigated
their properties in Section 4. In Section 5, we formalized
geometric AOs based on HTNM and HTCNM, i.e.,
CTSFHWG, CTSFHOWG, and CTSFHHWG operators,
and studied some basic properties of these AOs. We stated
the procedure to apply the proposed approach to the
MADMproblem in Section 6, then we applied it to aMADM
problem. We also compared our proposed HAOs with some
existing AOs and gave their graphical representation. In
Section 7, we concluded our study.

2. Preliminaries

In this section, we have defined necessary preliminary
concepts linked to CTSFS introduced over set X, some re-
marks are also explained to clear the concept. HTNM and
HTCNM are also defined in this section.

Definition 1. [11] A CTSFS on a set X is defined by I �

(rm(x).e2πiθm(x), ri(x).e2πiθi(x), rn(x).e2πiθn(x): x ∈ X), where
rm(x).e2πiθm(x), ri(x).e2πiθi(x), and rn(x).e2πiθn(x) are complex
numbers in a unit circle denoting a complex MD, complex
AD, and complex NMD with the conditions 0≤ r

q
m(x) +

r
q
i (x) + r

q
n(x)≤ 1 and 0≤ θq

m(x) + θq
i (x) + θq

n(x)≤ 1 for
q ∈ Z+. )e complex RD is defined by rh(x).e2πiθh(x), where

rh(x) �

������������������������

1 − (r
q
m(x) + r

q

i (x) + r
q
n(x))

q

􏽱

, θh(x) �
������������������������

1 − (θq
m(x) + θq

i (x) + θq
n(x))

q

􏽱

, and triplet (rm(x).e2πiθm(x),

ri(x).e2πiθi(x), rn(x).e2πiθn(x)) is known as CTSFN.

Definition 2. [11] For a CTSF I � (rm(x).e2πiθm(x), ri(x).

e2πiθi(x), rn(x).e2πiθn(x): x ∈ X), the score function is defined
by.

SC(I) �
r

q
m − r

q
i − r

q
n( 􏼁 + θq

m − θq
i − θq

n( 􏼁( 􏼁

2
,

SC(I) ∈ [− 1, 1].

(1)

Definition 3. [31] )e HTNM and HTCNM are defined as

Thn(l,m) �
l.m

L+(1 − L)(l + m − lm)
, L>0,(l, m) ∈ [0, 1]

2
,

Thcn(l, m) �
l + m − lm − (1 − L)lm

1 − (1 − L)lm
, L>0,(l, m) ∈ [0, 1]

2
.

(2)

Further, the Hamacher product and Hamacher sum are
denoted as Thn(l, m) and Thcn(l, m) respectively, which are
given below:

l⊗m �
l.m

L+(1 − L)(l + m − lm)
, L>0(l, m) ∈ [0, 1]

2
,

l⊕m �
l + m − lm − (1 − L)lm

1 − (1 − L)lm
, L>0(l, m) ∈ [0, 1]

2
.

(3)

3. Hamacher Operations based on CTSFNs

In this section, we will define sum, products, scalar multi-
plication, and the power operation for two or more two
CTSFNs based on HTNM and HTCNM.

Definition 4. Let

A � rmA
(x).e

2πiθmA
(x)

, riA
(x).e

2πiθiA
(x)

, rnA
(x).e

2πiθnA
(x)

􏼐 􏼑,

(4)

and

B � rmB
(x).e

2πiθmB
(x)

, riB
(x).e

2πiθiB
(x)

, rnB
(x).e

2πiθnB
(x)

􏼐 􏼑, (5)

be the two CTSFNs, where λ,L> 0. )e Complex
T-spherical fuzzy Hamacher (CTSFH) operations are de-
fined as
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A⊕B,

rmA(x) · rmB(x)
�����������������������������������������

L +(1 − L) r
q

mA(x) + r
q
mB(x) − r

q

mA(x) · r
q
mB(x)( 􏼁

q
􏽱 · e

θq

mA
(x)·θq

mA
(x)/

���������������������������
L+(1− L) θq

mA
(x)+θq

mB
(x)− θq

mA
(x)·θq

mB
(x)( )

q􏽰

riA(x) · riB(x)
��������������������������������������

L +(1 − L) r
q

iA(x) + r
q
iB(x) − r

q

iA(x) · r
q
iB(x)( 􏼁

q
􏽱 e

θq

iA
(x)·θq

iA
(x)/

�����������������
θq

iA
(x)+θq

iA
(x)− θq

iA
(x)·θq

iB
(x)

2πiq√

rnA(x) · rnB(x)
���������������������������������������

L +(1 − L) r
q

nA(x) + r
q
nB(x) − r

q

nA(x) · r
q
nB(x)( 􏼁

q
􏽱 · e

θnA(x)·θnB(x)/
��������������������������
L+(1− L) θq

nA
(x)+θq

nB
(x)− θq

nA
(x)·θq

nB
(x)( )

q􏽰
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,

(6)

A⊗B,

rmA(x) · rmB(x)
�����������������������������������������

L +(1 − L) r
q

mA(x) + r
q
mB(x) − r

q

mA(x) · r
q
mB(x)( 􏼁

q
􏽱 · e

θq

mA
(x)·θq

mA
(x)/

���������������������������
L+(1− L) θq

mA
(x)+θq

mB
(x)− θq

mA
(x)·θq

mB
(x)( )

q􏽰

��������������������������������������������

r
q
iA

(x) + r
q
iB

(x) − r
q
iA

(x) · r
q
iB

− (1 − L) · r
q
iA

(x) · r
q
iB

(x)

1 − (1 − L) · r
q

iA
(x) · r

q

iB
􏼐 􏼑

q

􏽶
􏽴

· e

����������������������������������������������
2θq

iA
(x)+θq

iB
(x)− θq

iA
(x)·θq

iB
− (1− L)·θq

iA
(x)·θq

iB
(x2)/1− (1− L)·θq

iA
(x)·θq

iB
(x)􏼐 􏼑

2πiq
􏽱

������������������������������������������������

r
q
nA

(x) + r
q
nB

(x) − r
q
nA

(x) · r
q
nB

(x) − (1 − L) · r
q
nA

(x) · r
q
nB

(x)

1 − (1 − L) · r
q
nA

(x) · r
q
nB

(x)􏼐 􏼑

q

􏽶
􏽴

· e

�����������������������������������������������
2θq

nA
(x)+θq

nB
(x)− θq

nA
(x)·θq

nB
− (1− L)·θq

nA
(x)·θq

nB
(x)/1− (1− L)·θq

nA
(x)·θq

nB
(x)( 􏼁

2πiq
􏽱
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,

(7)

λA �

���������������������������������������

1 + (L − 1)r
q

mA(x)( 􏼁
λ

− 1 − r
q

mA(x)( 􏼁
λ

1 + (L − 1)r
q

mA(x)( 􏼁
λ

+ (L − 1) 1 − r
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mA(x)( 􏼁
λ

q

􏽶
􏽴
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(x)( )( )

λ
+(L− 1) θq

nA
(x)( )

λ
q

􏽱

􏼒 􏼓
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A
λ

�

��
Lq

√
rmA(x)( 􏼁

λ
�����������������������������������������

1 + (L − 1) 1 − r
q
mA

(x)􏼐 􏼑􏼐 􏼑
λ

+ (L − 1) r
q
mA

(x)􏼐 􏼑
λq

􏽲 .e
2πi

��
L

q√
θmA(x)( )

λ/

���������������������������
1+(L− 1) 1− θq

mA
(x)( )( )

λ
+(L− 1) θq

mA
(x)( )

λ
q

􏽱

􏼒 􏼓
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1 + (L − 1)r
q
iA

(x)􏼐 􏼑
λ

− 1 − r
q
iA

(x)􏼐 􏼑
λ

1 + (L − 1)r
q
iA

(x)􏼐 􏼑
λ

+ (L − 1) 1 − r
q
iA

(x)􏼐 􏼑
λ

q

􏽶
􏽴

.e
2πi

�������������������������������������������������

1+(L− 1)θq

iA
(x)( )

λ
− 1− θq

iA
(x)( )

λ( 􏼁/ 1+(L− 1)θq

iA
(x)􏼐 􏼑

λ
+(L− 1) 1− θq

iA
(x)􏼐 􏼑

λ
􏼒 􏼓

q
􏽲

��������������������������������������

1 + (L − 1)r
q
nA

(x)􏼐 􏼑
λ

− 1 − r
q
nA

(x)􏼐 􏼑
λ

1 + (L − 1)r
q
nA

(x)􏼐 􏼑
λ

+ (L − 1) 1 − r
q
nA

(x)􏼐 􏼑
λ

q

􏽶
􏽴

.e
2πi

�������������������������������������������������
1+(L− 1)θq

nA
(x)( )

λ
− 1− θq

nA
(x)( )

λ( 􏼁/ 1+(L− 1)θq

nA
(x)( )

λ
+(L− 1) 1− θq

nA
(x)( )

λ( 􏼁
q

􏽱
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.

(9)
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It is noted that the developed operations in equations (6)
to (9) based on TNM and TCNM are the generalized form of
the existing operations and they give comparatively better
results.

4. Weighted Average Operator Based on CTSFS

)is section consists of new developed CTSFHWA,
CTSFHOWA, and CTSFHHWA operators and their
properties. Note that we will use only wj for the weight
vector for wj � (w1, w2, . . . , wl )T having wj > 0 and
􏽐

l
1 wj � 1, where j � 1, 2, 3, . . . , l{ }.

Definition 5. Suppose Tj � (rm(x).e2πiθm(x), ri(x).

e2πiθi(x), rn(x).e2πiθn(x)) , ∀ j � 1, 2, 3, . . . l. be some
CTSFNs, then CTSFHWA operator Tl ⟶ T is defined as

CTSFHWA T1, T2, T3, . . . Tl( 􏼁 � 􏽘
l

j�1
wjTj. (10)

In )eorem 1, we give an interesting result by using
Definition 5, as following.

Theorem 1. Let Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)) ∀j � 1, 2, 3, . . . l. be some CTSFNs. :en,
CTSFHWA operator is a CTSFN and given by.

CTSFHWA T1, T2, T3, . . . Tl( 􏼁 �

������������������������������������������

􏽑
l
j�1 1 +(L − 1)r

q
mj

􏼒 􏼓
wj

− 􏽑
l
j�1 1 − r

q
mj

􏼒 􏼓
wj

􏽑
l
j�1 1 +(L − 1)r

q
mj

􏼒 􏼓
wj

+(L − 1) 􏽑
l
j�1 1 − r

q
mj

􏼒 􏼓
wj

q

􏽶
􏽵
􏽴

· e

2πi

�������������������������������������������������������������������������

􏽙

l

j�1
1 +(L − 1)θq

mj
􏼒 􏼓

wj

− 􏽙

l

j�1
1 − θq

mj
􏼒 􏼓

wj

/􏽙

l

j�1
1 +(L − 1)θq

mj
􏼒 􏼓

wj

+(L − 1) 􏽙

l

j�1
1 − θq

mj
􏼒 􏼓

wj
q

􏽶
􏽴
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Lq

√
􏽑

l
j�1 rij

􏼒 􏼓
wj

����������������������������������������������

􏽑
l
j�1 1 +(L − 1) 1 − r

q
ij

􏼒 􏼓􏼒 􏼓
wj

+(L − 1) 􏽑
l
j�1 1 − r

q
ij

􏼒 􏼓
wjq

􏽲 · e

2πi
�
Lq

√
􏽙

l

j�1
θij

􏼒 􏼓
wj

/

������������������������������������������

􏽙

l

j�1
1 +(L − 1) 1 − θq

ij
􏼒 􏼓􏼒 􏼓

wj

+(L − 1) 􏽙
l

j�1
1 − θq

ij
􏼒 􏼓

wj
q

􏽶
􏽴
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Lq

√
􏽑

l
j�1 rnj

􏼒 􏼓
wj
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􏽑
l
j�1 1 +(L − 1) 1 − r

q
nj

􏼒 􏼓􏼒 􏼓
wj

+(L − 1) 􏽑
l
j�1 1 − r

q
nj

􏼒 􏼓
wjq

􏽲 · e

2πi
�
L

q
√

􏽙

l

j�1
θnj

􏼒 􏼓
wj

/
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􏽙

l

j�1
1 +(L − 1) 1 − θq

nj
􏼒 􏼓􏼒 􏼓

wj

+(L − 1) 􏽙
l

j�1
1 − θq

nj
􏼒 􏼓

wj
q

􏽶
􏽴
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Proof. Here we have used mathematical induction method
to prove.

Suppose l � 2.

w1T1⊕w2T2 �

��������������������������������

1 +(L − 1)r
q
m1

􏼐 􏼑
w1

− 1 − r
q
m1

􏼐 􏼑
w1

1 +(L − 1)r
q
m1

􏼐 􏼑
w1

+(L − 1) 1 − r
q
m1

􏼐 􏼑
w1

q

􏽶
􏽴

· e

���������������������������������������
1+(L− 1)θq

m1( )
w1 − 1− θq

m1( )
w1 / 1+(L− 1)θq

m1( )
w1+(L− 1) 1− θq

m1( )
w1

q􏽰
􏼐 􏼑

��
Lq

√
ri1

􏼐 􏼑
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������������������������������������

1 +(L − 1) 1 − r
q

i1
􏼐 􏼑􏼐 􏼑
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+(L − 1) 1 − r

q
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􏼐 􏼑
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q

􏽱 · e
2πi

�
L

q
√

θi1􏼐 􏼑
w1
/
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1+(L− 1) 1− θq
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􏼐 􏼑􏼐 􏼑
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􏼐 􏼑

w1q
􏽱
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√
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q
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q
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􏼐 􏼑
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q
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�
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q
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It is satisfied for l � 2. Now, we have to prove true for l � k⊕1 by assuming
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Table 1: CTSF information (decision matrix).

G1 G2 G3 G4

A1 0.5e
2πi(0.3)

0.6e
2πi(0.5)

, 0.4e
2πi(0.2)􏼠 􏼡

0.4e
2πi(0.3)

0.5e
2πi(0.3)

, 0.3e
2πi(0.2)􏼠 􏼡

0.4e
2πi(0.7)

0.4e
2πi(0.5)

, 0.5e
2πi(0.6)􏼠 􏼡

0.8e
2πi(0.5)

0.1e
2πi(0.2)

, 0.8e
2πi(0.1)􏼠 􏼡

A2 0.6e
2πi(0.6)

0.3e
2πi(0.2)

, 0.5e
2πi(0.5)􏼠 􏼡

0.5e
2πi(0.2)

0.4e
2πi(0.5)

, 0.5e
2πi(0.7)􏼠 􏼡

0.5e
2πi(0.6)

0.3e
2πi(0.5)

, 0.6e
2πi(0.3)􏼠 􏼡

0.4e
2πi(0.6)

0.6e
2πi(0.5)

, 0.5e
2πi(0.4)􏼠 􏼡

A3 0.8e
2πi(0.4)

0.4e
2πi(0.4)

, 0.3e
2πi(0.5)􏼠 􏼡

0.7e
2πi(0.9)

0.3e
2πi(0.2)

, 0.9e
2πi(0.3)􏼠 􏼡

0.3e
2πi(0.4)

0.5e
2πi(0.4)

, 0.4e
2πi(0.4)􏼠 􏼡

0.5e
2πi(0.3)

0.3e
2πi(0.4)

, 0.2e
2πi(0.3)􏼠 􏼡

A4
0.7e

2πi(0.5)

0.3e
2πi(0.5)

, 0.5e
2πi(0.6)􏼠 􏼡

0.5e
2πi(0.4)

0.3e
2πi(0.5)

, 0.4e
2πi(0.3)􏼠 􏼡

0.1e
2πi(0.3)

0.4e
2πi(0.3)

, 0.1e
2πi(0.2)􏼠 􏼡

0.4e
2πi(0.3)

0.5e
2πi(0.1)

, 0.3e
2πi(0.5)􏼠 􏼡
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Table 2: CTSFHWA and CTSFHWG operators.

CTSFHWA operator CTSFHWG operator

A1 0.4808e
2πi(0.5142)

0.4538e
2πi(0.3706)

, 0.3805e
2πi(0.2553)􏼠 􏼡

0.4340e
2πi(0.3828)

0.107e
2πi(0.0543)

, 0.078e
2πi(0.0566)􏼠 􏼡

A2 0.5218e
2πi(0.5066)

0.3589e
2πi(0.4173)

, 0.5236e
2πi(0.5219)􏼠 􏼡

0.5131e
2πi(0.3487)

0.0386e
2πi(0.0846)

, 0.1334e
2πi(0.2301)􏼠 􏼡

A3 0.6781e
2πi(0.7873)

0.3614e
2πi(0.2634)

, 0.568e
2πi(0.3581)􏼠 􏼡

0.5798e
2πi(0.6113)

0.0424e
2πi(0.0155)

, 0.6112e
2πi(0.0393)􏼠 􏼡

A4 0.5341e
2πi(0.4081)

0.3308e
2πi(0.407)

, 0.2922e
2πi(0.3208)􏼠 􏼡

0.3567e
2πi(0.384)

0.0256e
2πi(0.077)

, 0.0433e
2πi(0.0565)􏼠 􏼡

Table 3: Score values.

CTSFHWA operator CTSFHWG operator
A1 0.0184 0.02839
A2 − 0.028 0.04048
A3 0.2266 0.05656
A4 0.0259 0.0189

Table 4: Impact of L.

L Operators Resulting pattern

2 CTSFHWA ρ3≻ρ4≻ρ1≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

4 CTSFHWA ρ3≻ρ4≻ρ1≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

5 CTSFHWA ρ3≻ρ4≻ρ1≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

7 CTSFHWA ρ3≻ρ1≻ρ4≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

8 CTSFHWA ρ1≻ρ3≻ρ4≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

9 CTSFHWA ρ1≻ρ4≻ρ3≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

12 CTSFHWA ρ1≻ρ4≻ρ3≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

Table 5: Variation of q.

q Operators resulting Pattern

4 CTSFHWA ρ3≻ρ4≻ρ1≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

5 CTSFHWA ρ3≻ρ4≻ρ1≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

6 CTSFHWA ρ3≻ρ1≻ρ4≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4

8 CTSFHWA ρ3≻ρ1≻ρ4≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4
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Figure 1: Variation of L.
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Figure 2: Variation of q.

Table 6: Ranking of alternatives.

Method Ranking result
CTSFWA [11] ρ3≻ρ4≻ρ1≻ρ2
CTSFWG [11] ρ4≻ρ1≻ρ2≻ρ3
CTSFHWA ρ3≻ρ4≻ρ1≻ρ2
CTSFHWG ρ3≻ρ2≻ρ1≻ρ4
CIF HAOs [8] Cannot be quantified
CPyFS HAOs [9] Cannot be quantified
Cq-ROFS HAOs [20] Cannot be quantified
CPFS HAOs [40] Cannot be quantified
CTSFS HAOs [35] Cannot be quantified
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CTSFHWA T1, T2, T3, . . . Tk+1( 􏼁 �
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(13)

Hence proved for l � k⊕1.)us, proof is completed. □

Theorem 2. :e HAOs defined for CTSFNs satisfy the
subsequent properties.

(i) iIdempotency If Tj � T � (rm(x). e2πiθm(x), ri(x).

e2πiθi(x), rn(x).e2πiθn(x)) , ∀j � 1, 2, 3, . . . l., then
CTSFHWA(T1, T2, T3, . . . Tl) � T.

(ii) Boundedness If T− � T � (minjrm(x).e2πiθm(x),

maxjri(x).e2πiθi(x),maxjrn(x).e2πiθn(x)) and T+ � T �

(maxjrm(x).e2πiθm(x),minjri(x).e2πiθi(x),minjrn(x).

e2πiθn(x)), then

T
− ≤CTSFHWA T1, T2, T3, . . . , Tl( 􏼁≤T

+
. (14)

(iii) Monotonicity Let Tj and Pj be two CTSFNs, such
that Tj ≤Pj∀j., then

CTSFHWA T1, T2, T3, . . . , Tl( 􏼁

≤CTSFHWA P1, P2, P3, . . . , Pl( 􏼁.
(15)

)e CTSFHWA operator only evaluates CTSFN. In
order to discuss conditions where we have a need to discuss
the ranking orders of CTSFNs in MADM problems,
CTSFHOWA operator is defined as follows:

Definition 6. Suppose Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)), ∀j � 1, 2, 3, . . . l. be CTSFNs. )en, the
complex T-spherical fuzzy Hamacher ordered weighted
average (CTSFHOWA) operator from Tl⟶ T is defined as

CTSFHOWA T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
T

j�1
wjTσ(j), (16)

where Tσ(j− 1) ≥Tσ(j)∀j is satisfied.

Theorem 3. Consider Tj � (rm(x).e2πiθm(x), ri(x).

e2πiθi(x), rn(x).e2πiθn(x)), ∀j � 1, 2, 3, . . . l. to be CTSFNs.
:en, CTSFHOWA operator is a CTSFN and given by.
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Figure 3: Interpretation of the information of Table 6.
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CTSFHHA T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
L

j�1
wjTσ(j). (17)

Definition 7. SupposeTj � (rm(x).e2πiθm(x), ri(x).

e2πiθi(x), rn(x).e2πiθn(x)), ∀j � 1, 2, 3, . . . l. be CTSFNs.
)en, complex T-spherical Hamacher hybrid aggregation
(CTSFHHA) operator from Tl⟶ T is defined as

CTSFHHA T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
L

j�1
wjTσ(j). (18)

Theorem 4. Consider Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)),∀j � 1, 2, 3, . . . , l. be CTSFNs. :en,
CTSFHHA operator is a CTSFN and given by.
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�

���������������������������������������������
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(19)

5. CTSFHWG Aggregation Operator

)is section contains the development of the CTSFHWG
operator and their basic properties based on the operations
defined in equations (6)-(9).

Definition 8. Let Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)),∀j � 1, 2, 3, . . . , l. be some CTSFNs. )en,
CTSFHWG operator from Tl⟶ T is defined as

CTSFHWG T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
T

j�1
T

wj

j . (20)

By the Definition 8, we have

Theorem 5. Consider Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)),∀j � 1, 2, 3, . . . , l be CTSFNs. :en
CTSFHWG operator is a CTSFN and given by.

CTSFHOWG T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
T

j�1
T

wj

σ(j), (21)

Proof. Similar to )eorem 1.
)e CTSFHWG operator also satisfies the boundedness,

idem potency, and monotonicity like other operators. □

Definition 9. Let Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)),∀j � 1, 2, 3, . . . , l be CTSFNs. )en,
CTSFHOWG operator from Tl⟶ T is defined as

CTSFHOWG T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
T

j�1
T

wj

σ(j), (22)

where Tσ(j− 1) ≥Tσ(j)∀j is satisfied.

Theorem 6. Let Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)),∀j � 1, 2, 3, . . . l be some CTSFNs. :en,
CTSFHOWG operator is a CTSFN and given by.

CTSFHHG T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
T

j�1
T

wj

σ(j). (23)

Definition 10. Suppose Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)),∀j � 1, 2, 3, . . . , l be CTSFNs. )en,
CTSFHHG operator from Tl⟶ T is defined as

CTSFHHG T1, T2, T3, . . . , Tl( 􏼁 � 􏽘
T

j�1
T

wj

σ(j). (24)

Theorem 7. Consider Tj � (rm(x).e2πiθm(x), ri(x).e2πiθi(x),

rn(x).e2πiθn(x)),∀j � 1, 2, 3, . . . , l be CTSFNs. :en,
CTSFHHG operator is a CTSFN and given by.

SC(I) �
r

q
m − r

q
i − r

q
n( 􏼁 + θq

m − θq
i − θq

n( 􏼁

2
, SC(I) ∈ [− 1, 1].

(25)

6. Application of CTSFHAOs

In this section, we study the developed AOs in the MADM
with the help of a real-life example. We structure a
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procedure to apply these AOs in MADM first. Secondly, we
study the effects of the variation in the included parameters.
Finally, we studied the comparison of proposed AOs with
the existing AOs and plotted them graphically.

We have to select the best one from the list of a few
alternatives inMADMwith the help of the AOs and then the
score function. In the case of this article, we want to apply
the HAOs to select the best alternative.We can select the best
alternative by the following approach. We use the infor-
mation in the form of CTSFS. Let there be ρ � ρ1,􏼈

ρ2, . . . , ρk} alternatives and G � G1, G2, . . . , Gj􏽮 􏽯 be the at-
tributes with weight vector wj. )e Dk×j �

(T)k×j � (rm(x).e2πiθm(x), ri(x).e2πiθi(x), rn(x).e2πiθn(x)) rep-
resents the decision matrix in the form of CTSFNs. )e
procedure to select the best alternative is as follows.

Step 1: form the decision matrix of the given infor-
mation by taking the CTSFS. Also, investigate the data
for the value of q.
Step 2: use the AOs to aggregate the CTSF information.
Step 3: calculate the score values of CTSFNs with the
help of the following equation:

SC(I) �
r

q
m − r

q

i − r
q
n( 􏼁 + θq

m − θq

i − θq
n( 􏼁( 􏼁

2
,

SC(I) ∈ [− 1, 1].

(26)

Step 4: the greater the score value, the best the alter-
native is.

Example 1. with the help of this example, we apply our
proposed approach to the MADM problem. )e govern-
ment wants to start a pilot health project in one city of a few
major cities. After some basic screening, the department of
health shortlisted fourmajor cities.)e department of health
wants to select one city ρj(1≤ j≤ 4) based on some attri-
butes i.e., the population of the city (G1), number of hos-
pitals in that city (G2), the living standard of people of that
city (G3) and the number of NGOsworking in that city (G4),
which have some weights wj � (0.2, 0.5, 0.25, 0.05)T. )e
information obtained in terms of CTFN is presented in
Table 1. To select the best alternative, we apply for the
proposed work as follows:

Step 1: the data given by the experts are in the form of
CTSFNs to find the best enterprise shown in Table 1 for
the value q � 4.
Step 2: the aggregated values of CTSFHWA and
CTSFHWG operators are given in Table 2. We take
q � 4, L � 2, and w � (0.2, 0.5, 0.25, 0.05)T while
calculating CTSFHWA and CTSFHWG operators.
Step 3: in Table 2, the values obtained by the AOs are
presented. Table 3 represents the score value.
Step 4: by the help of score values obtained, we order
the alternatives in descending order. We obtain
ρ3≻ρ4≻ρ1≻ρ2 and ρ3≻ρ2≻ρ1≻ρ4. Hence, the city ρ3 is
the most suitable city to start the project, while we use

the CTSFHWA operator and ρ4 as the best city to start
the project by using the CTSFHWG operator (Table 3).

6.1. RankingVariation by ″L″. As we note that the results in
the previous sections depend upon the values of parameters q

and L. )is Section contains the study of the effects of the
variation in their values.)e effects of the variation ofL and q

are presented in Tables 4 and 5, respectively.
From Table 4, we do not notice any significant change in

ranking while we use the CTSFHWA operator for various
values of L � 2, 3, . . . , 12. However, a fluctuation can be
seen in the ranking pattern of alternatives using
the CTSFHWG operator for various values ofL. We can see
that the fluctuation occurs at L � 2, 7, 8, 9. However, after
L � 9, the ranking results get stability and there does not
occur any further change in the ranking pattern by varying
the parameterL above 9. Figure 1 shows the whole scenario.

6.2. Ranking Variation by ’′q
’′. In Section 6.1, we

have observed the variation in L and its impact on the
ranking result. Here we want to examine the effect on
ranking results of CTSFHWA and CTSFHWG due to
variation in q . )e problem discussed in Section 6.2; Table 5
represents the variation of the values of ″q″ from 4 onward.

In the case of the CTSFHWA operator, it is clear from
the above table that the ranking results order changed when
q � 6, but in the case of the CTSFHWG operator the final
ranking order does not change. However, when q≥ 6 the
ranking results do not change in both cases. )is result
shows that both operators become consistent when q � 6.
)is phenomenon can be observed in Figure 2.

6.3. Comparative Study. To check the significance of our
developed AOs, we do a comparative analysis with some
existing approaches. )e proposed approach is compared
with AOs developed by Alkouri et al., such as [8] CPyFS
AOs [9], CTSF AOs [11], Cq-ROFS HAOs [20], CTSFS
HAOs [35], and CPFS HAOs [40].)e comparison is given
in Table 6. Some AOs among these could not be applied to
such information. Hence, the proposed approach is sig-
nificantly improved. )e results obtained by these AOs are
stated in Table 6.

From Table 6, we observe that the proposed work is the
comparative significant from the existing AOs. Some of
the AOs fail to give the ranking of the alternatives. It is
cleared from Table 6, except for CTSFWA, CTSFWG,
CTFHWA, and CTSFHWG AOs, all other AOs have failed
to rank the alternatives. In the following, Figure 3 shows
the comparison of the proposed operator with the pre-
existing operators.

7. Conclusion

In this manuscript, we developed some fundamental
operations for CTSFNs by using HTNM and HTCNM,
and then by applying these operations, we develop
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CTSFHWA, CTSFHOWA, CTSFHHWA, CTSFHWG,
CTSFOWG, and CTSFHHWG operators. Secondly, we
inspected the fundamental properties of these operators.
)en, we applied the developed CTSF HAOs in MADM,
studied the variation of results by the changing values of
the parameters involved, and finally compared these AOs
with existing AOs. Some key points of the article are given
as follows:

(1) We considered an example of having the informa-
tion in the form of CTSFNs and applied the HAOs
proposed. We obtained ρ3 as the best alternative for
both CTSFHWA and CTSFHWG operators as the
best alternative.

(2) We obtained different ranking patterns of the score
values by changing the values of parameters q andL.
(See Table 5).

(3) )en, we compared the obtained results with some
existing AOs and obtained interesting results in
Table 6. We found some AOs, which could not
provide the ranking of alternatives.

(4) Lastly, we plotted the comparison in Figure 2.

)e developed approaches with the help of HTNM and
HTCNM are very useful techniques to aggregate the mul-
tiple values and we can obtain the ranking of the alternatives
as done in the example above. However, the HTNM and
HTCNM can be applied to other defined frameworks.
Hence, we aim to apply these operations to the type 2 fuzzy
set [41–43] and trapezoidal intuitionistic fuzzy set [44–46].
We also aim to extend this proposed work to the best-worst
method [47–48].
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 is paper proposed a hybrid approach for the identi�cation of encrypted tra�c based on advanced mathematical modeling and
computational intelligence. Network tra�c identi�cation is the premise and foundation of improving network management,
service quality, and application security. It is also the focus of network behavior analysis, network planning and construction,
network anomaly detection, and network tra�c model research. With the increase in user and service requirements, many
applications use encryption algorithms to encrypt tra�c during data transmission. As a result, traditional tra�c classi�cation
methods classify encrypted tra�c on the network, which brings great di�culties and challenges to network monitoring and data
mining. In our article, a nonlinear modi�ed DBNmethod is proposed and applied to encrypted tra�c identi�cation. Firstly, based
on Deep Belief Networks (DBN), this paper introduces the proposed Eodi�ed Elliott (ME)-DBN model, analyzes the function
image, and presents the ME-DBN learning algorithm. Secondly, this article designs an encrypted tra�c recognition model based
on the ME-DBN model. Feature extraction is carried out by training the ME-DBN model, and �nally, classi�cation and rec-
ognition are carried out by the classi�er.  e experimental results on the ISCX VPN-non-VPN database show that the MEDBN
method proposed in this article can enhance the classi�cation and recognition rate and has better robustness to encrypt tra�c
recognition from di�erent software.

1. Introduction

Network tra�c classi�cation is a basic step for managing and
controlling network resources. Previous tra�c classi�cation
methods, such as the tra�c classi�cation method [1] based
on port number and deep Packet Inspection (DPI), cannot
deal with encrypted tra�c and can hardly adapt to the
current tra�c environment.  e method based on tra�c
statistics and machine learning (ML) is popular in current,
which not only can deal with encrypted tra�c but also
regular tra�c, for example, decision tree (DT) and KNN
algorithm. Nevertheless, the performance based on the ML
depends largely on arti�cially designed features and private
information in tra�c.  erefore, there is a limitation on the
generality and accuracy of the method. In addition, the
method t requires a mass of storage and computing re-
sources, which limits its implementation in resource-con-
strained nodes [2], such as vehicles, home gateways, and

mobile phones. Real-time and accurate network tra�c
classi�cation is the basis of network management tasks and
intrusion detection systems, so a new tra�c identi�cation
method is urgently needed.

 edevelopment ofmobile tra�c identi�cation technology
has experienced three stages based on port, based on payload
and based on tra�c statistical characteristics. Nevertheless, the
advent of port spoo�ng, random ports, and tunneling quickly
rendered thesemodels ine�ective. As users becomemore aware
of privacy protection and security, technologies such as SSL,
SSH,VPN, andTor have becomemorewidely used, resulting in
an increasing proportion of encrypted tra�c in network tra�c.
 e payload-based approach, known as Deep Packet Inspec-
tion (DPI) technology, cannot handle encrypted tra�c because
it requires matching Packet content and is computationally
expensive. erefore, to handle the problemof encrypted tra�c
classi�cation, the method based on data tra�c appears. Its
generality depends on statistical or time series properties and

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 1419804, 10 pages
https://doi.org/10.1155/2022/1419804

mailto:19180100102@stu.xidian.edu.cn
https://orcid.org/0000-0002-1677-8752
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1419804


uses ML algorithms, like some tree-based methods, classical
model as SVM, and KNN, etc. Furthermore, some statistical
methods such as GMM [3] and HMM [4] are also employed to
identify the encrypted traffic. Classical machine learning
methods could handle some problems that port and payload-
based methods cannot solve, but they still have certain limi-
tations: (1) *e characteristics of data traffic need to be
extracted manually, which often depends on expert experience
and is very time-consuming and labor-intensive. (2) *e
characteristics of traffic change rapidly and need to be updated
frequently. (3) For traffic identification tasks, category im-
balance is a major problem. Category imbalance refers to the
fact that the data volume of some samples in the data set is
several times or even higher than that of others. Using such
data set to train the model, a high recognition rate can be
obtained as long as all the small samples are classified into large
samples, which is not meaningful in actual production. *e
method to solve this problem is to expand the data amount of
small samples through different ways, but the current data
expansion method cannot accurately generate samples as close
as possible to the original data. (4) In model training, marked
samples are mostly relied on. How to combine a large number
of easily obtained unlabeled data sets with some difficult-to-
obtain labeled data sets for traffic classification in order to
reduce the need for labeled data is a very key research topic.
Different from most traditional ML algorithms, DL auto-
matically extracts features without human intervention, which
is undoubtedly an ideal traffic classification method, especially
for mobile service encrypted traffic. Recent research work
proves the superiority of the DL method in traffic classification
[5–9]. *erefore, it is of great importance and far-reaching
significance to study the application of DL in traffic classifi-
cation and how to improve the recognition rate of small sample
traffic in unbalance data sets so as to more effectively and
conveniently encrypt traffic and improve the accuracy of ap-
plication identification.

Recently, DL-based methods have been employed in
many fields and achieved good results, such as image rec-
ognition, speech recognition, and natural language pro-
cessing. Owning to the Deep Learning, this article proposes a
frame of classification and detection based on Deep Learning
(DL), which can construct feature space through the deep
structure of multiple hidden layers and discover data fea-
tures through autonomous learning of a large number of
data. It solves the difficulty of feature subset selection and
improves the classification efficiency, which lays a founda-
tion for the real-time classification of network traffic. In the
second part, we summarize the existing research. In the third
part, we introduce the identification model of encrypted
traffic; in the fourth part, we introduce the evaluation
process of themodel in detail; the fifth part describes the data
collection and processing in detail; the sixth part introduces
the detailed process of experiment and simulation; the
summary and discussion are arranged in the last part.

2. Research Overview

As early as 1995, Claffy et al. [10] used the traditional
classification method based on service host attributes to

identify network traffic. Almost all communication protocol
packets, including encrypted packets, have their own unique
traffic characteristics, which can be analyzed and distin-
guished from a large number of traffic samples. *erefore,
Gu et al. [11] made an in-depth analysis of the classification
method of traffic load content characteristics. Yeganeh et al.
[12] summarized the relative positional word set carried in
the session flow payloads of each protocol and then detected
the payloads by the deep packet detection method of word
sequence matching to identify the protocol types as smart
computing continues to evolve.

Due to the quantitative limitations of current technol-
ogies, new methods have been found that rely on the sta-
tistical characteristics of traffic to classify applications. In
recent years, stream classification methods based on sta-
tistical features have attracted extensive attention. Common
statistical features such as packet interval statistics, flow
arrival time statistics, flow duration, packet length, traffic
idle time, packet arrival interval, packet length, and other
statistical characteristics of the network. With the explosive
growth of traffic in the current network environment, the
simple traffic statistics method has been unable to achieve
the ideal classification effect of network traffic, and the
method based on machine learning came into being. Ma-
chine learning mainly includes supervised learning, semi-
supervised learning, and unsupervised learning.

Recognition models based on ML and DL are widely
used. Ibrahim et al. [13] designed a classifier for online traffic
classification (SSPC) that combines three identification
methods: port-based, payload-based, and statistically based.
*e classification results based on payload are preferred for
identification, followed by the same results based on port
and statistical characteristics. Conti et al. [14] used the
method of RF to identify the actions of users on mobile
phones through the IP, packet size, port, direction and other
characteristics of the encrypted traffic generated by marked
users when using the application mobile phone client.
Compared with the ML-based methods, in 2004, literature
[15] used packet length, packet interval, and stream duration
as statistical features and used an expectation maximization
algorithm to classify traffic types by unsupervised learning.
Literature [16] uses an unsupervised machine learning al-
gorithm to carry out unsupervised machine learning
training on long-term and short-term memory recurrent
neural networks so that the network can distinguish a group
of time series and group them. *e results show that the
neural network has a strong time series learning ability and
clustering ability based on multiple features. Literature [17]
proposed a method of malicious traffic detection using
representation learning. *is method does not need to
manually design traffic characteristics but directly classifies
the original data as input data. *is is the first time that the
representation learning method is applied to the detection
and classification of malicious traffic. When the three
classifiers are verified in two cases, the results meet the
requirements of practical application accuracy. *is docu-
ment proves that the efficiency of representation learning in
malicious traffic detection is high, but there are also
shortcomings. *e tuning parameters of the convolutional
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neural network are not studied, and the time factor and
unknown malicious traffic are not considered [18]. Litera-
ture [19] classifies more than 20 kinds of fine-grained
network traffic based on hierarchical learning. *e results of
large data sets show that the average accuracy of traffic
classification of hierarchical classifier can reach 90%, and the
accuracy and recall of commonly used traffic categories are
higher than 95%. Wang et al. used the long-term and short-
term memory recurrent neural network to automatically
learn the timing characteristics in the traffic, solved the
problem of manually designing the characteristics, and
achieved a high detection rate and low false alarm rate. In the
literature, a cyclic neural network is used to learn the timing
characteristics of encrypted traffic to realize the mobile
application type recognition of the Android platform, and a
high recognition rate and recall rate are achieved. Literature
[5] uses the improved RNN and density clusteringmethod to
detect network abnormal traffic, which has achieved better
results than the current method. Document [20] introduces
a deep packet, which is an algorithm that uses deep learning
[21] to automatically extract features from network traffic to
classify traffic.*e deep packet is the first traffic classification
system using a deep learning algorithm, namely SAE and a
one-dimensional convolutional neural network, which can
identify applications and handle traffic characterization
tasks. *e automatic feature extraction process of network
traffic can save the cost of using experts to identify traffic and
extract manual features and reduce the overhead of traffic
classification. *e classification method based on machine
learning has high classification accuracy and can be used for
the identification of encrypted traffic, but the cost is high,
and the data set needs to be understood and preprocessed in
advance. Different business types have different require-
ments for the packet size of data flow. For example, the flow
media data is small, and the packet downloaded from the file
can be the maximum message segment length. *erefore,
there are differences in the distribution of packet sizes for
different business types. *e method based on packet size
distribution is not affected by encryption and has good
applicability. Qin et al. propose a new method based on
packet size distribution signature, which can reduce the
amount of packet processing and realize the accurate
identification of P2P and VolP applications. Renyi cross-
entropy is used to identify by calculating the similarity
between the two-way flow and the message size distribution
of specific applications [22]. Wang et al. [5] simultaneously
used CNN and LSTM to learn and classify data packet
headers and loads, showing good performance in real-time
intrusion detection. Aceto et al. [23, 24] designed and
implemented a recognition model based on MLP in order to
track which APP the data stream came from.*ey used some
features in the first N bytes of payload and original data, and
some features in the first 20 packets before interactive
communication, including source port, payload bytes, size of
TCP slide window, Sequential packet arrival interval, and
direction, which were used as input, and the experiments
were compared with random forest, stack automatic encoder
SAE, CNN, and LSTM. Martin et al. [25] conducted a group
of controlled experiments, respectively, using the

combination of RNN, CNN and recursive neural network
RNN and CNN to identify the traffic of the Internet of
things.*e results showed that the combination of RNN and
CNN had the best effect. Hochst et al. [26] designed and
implemented an autoencoder SAE in order to find out ac-
tions such as web browsing interaction, game download,
online play, and upload in network traffic, which achieved
good results. It can be seen that using deep learning to
classify encrypted traffic is a good research direction.

3. Encrypted Traffic Classification
Model Design

3.1. Restricted Boltzmann Machine. *e constrained Boltz-
mann machine (RBM) is a deformed structure of the
Boltzmann machine (BM). Based on statistical mechanics,
the sample of BM follows the Boltzmann machine distri-
bution. *e probability distribution of the energy-based
probability model is defined by the energy function E(x):

P(x) �
e

−E(x)

Z
, (1)

where x is the input sample, Z � 􏽐xe−E(x) is the normalized
function, the commonly used method to solve P(x) is
gradient descent, and the negative logarithm of the training
set D is its cost function:

l(θ, D) � −L(θ, D) � −
1
N

􏽘

x(i)∈D

log, (2)

where θ is the parameter space of the model, the partial
derivative of θ is obtained through the optimization algo-
rithm so as to get the optimal solution of the cost function:

Δ �
zl(θ, D)

zθ
� −

1
N

z 􏽐 log p x
(i)

􏼐 􏼑

zθ
. (3)

*e boltzmann machine is a random NN defined by the
above energy function, which consists of a visible layer and a
hidden layer, as introduced in Figure 1(a). As can be seen
from the figure, both intralayer nodes and interlayer nodes
have connection weights, and there are only two states of the
output node: activated and inactive. 1 means activated, and 0
means inactive. *erefore, we can see unit vector v � 0, 1{ }D

and implicit unit vector h � 0, 1{ }k, and their learning mode
belongs to unsupervised learning. *e energy function be-
tween the visible layer neuron and hidden layer neuron of
the BM model is defined as follows:

E(v, h; θ) � −v
T
Wh −

1
2
v

T
Lv −

1
2
h

T
Lh − v

T
a − h

T
b, (4)

where θ � W, L, R, c, b{ } is the parameter of the BM model;
W, L, R are the connection weights between nodes respec-
tively, and the diagonal elements of L and R are 0. a and b

represent the bias of v and h. *rough this energy function,
the probability distribution can be obtained by formula (1),
and the solution of the model can be obtained by further
solving. Although BM has a strong self-learning ability and
can learn complex internal features in data, BM has a
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complex structure, resulting in a very long training time. In
addition, it is di�cult to obtain random samples of the
distribution represented by BM, so the practical value is
relatively low.

 e di�erence between RBM and BM lies in that the
neurons at the same layer are independent of each other, that
is, L � 0 and R � 0. Only interlayer neurons are connected,

and their structure is shown in Figure 1(b). Similarly, it
includes a visible layer v and a hidden layer h.  e visible
layer mainly describes the features of the observed data,
while the hidden layer serves as the feature extraction layer.
If v includes n nodes v � v1, . . . vn{ }, and h includesm nodes
h � h1, . . . hm{ }, then the energy function under a given set
of states can be expressed as follows:

E(v, h; θ) � −vTWh − vTa − hTb � −∑
n

i�1
∑
m

j�1
viWijhj −∑

n

i�1
aivi −∑

m

j�1
bjhj, (5)

where θ � Wij, ai, bj{ },Wij is the weight matrix among the
visible layer and the hidden layer.  e purpose of learning
RBM is to �t the distribution of training data by �nding the
appropriate parameter θ. In order to get the optimal value of
θ, we can use the stochastic gradient ascent method.
 erefore, the key step is to �nd the partial derivatives of
each parameter.  e gradient of RBM logarithmic likelihood
function is as follows:

zL(θ)
zθ

�∑
T

t�1
〈
z −E v(t)( )( )

zθ
〉P h|v(t) ,θ( ) −〈

z(−E(v, h; θ))
zθ

〉P(v,h;θ)( ).

(6)

In the above formula, L(θ) is the likelihood function of
the RBM model, and 〈·〉P represents the expectation of
distribution P. For the former term, the probability distri-
bution of h under a given sample can be calculated; for the
latter term, all possible values of v need to be searched before
the joint probability distribution can be calculated.  ere-
fore, a feasible sampling method is needed to obtain the
value of the distribution.

3.2. Gibbs SamplingMethod. Gibbs Sample [1] is a sampling
method based on the Markov Chain Monte Carlo (MCMC)
strategy that constructs random samples of probability
distributions of multiple variables. For example, the joint
distribution of more than two variables is constructed in
order to work out integrals and expectations.  e e�ciency
of the MCMC algorithm is low because the high-dimen-
sional data has a certain reception rate. If the reception rate

can be set to 1, the problem of slow convergence caused by
the frequent rejection of transfer can be avoided, and Gibbs
sampling can sample the joint distribution of high-dimen-
sional random variables.  e speci�c process mainly, as-
suming a kd random vector X � x1, x2, . . . , xM{ }, cannot
obtain the joint probability distribution P(X) of X, but the
rest of the components xk− � x1, x2, . . . , xk−1, xk+1, . . . , xM{ }
of a given X, the conditional probability of the k-th com-
ponent xk is P(xk|xk− ), therefore can from an initial state
ofX (such as [x(0)1 , x(0)2 , . . . , x(0)M ]), using the amount of
conditional probability, iteratively to state the weight of
samples,  e distribution of the random variable
converges geometrically to P(X) as the number of samples
increases.

Gibbs algorithm is employed to get random data con-
forming to the model distribution in the RBM model.  e
sampling process is introduced in Figure 2.

 e speci�c steps of t-step Gibbs sampling in RBM are as
three steps as follows:

Step 1: First, use the input sample to initialize the state
v0 of the visual node;
Step 2:  en, determine the sampling times t. Sampling
is carried out according to the following conditional
probability formula:
h(s− 1) is obtained by sampling with conditional
probability P(h|v(s− 1));
 en the conditional probability P(h|v(s− 1)) is sampled
to get vs;
Among them, s � 1, 2, . . . , t.

Visible layer

W

L

R

Hidden layer

(a)

Visible layer

W

Hidden layer

(b)

Figure 1: Structural comparison of BM and RBM models. (a) Structure of the BM model. (b) Structure of the RBM model.
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Step 3: Step 2 is cyclically sampled for t times, and
�nally, when the sampling times t is large enough, vt
can be obtained.

3.3. Deep Belief Network Classi�cation Method for Nonlinear
Correction

3.3.1. DBN Model Based on Modi�ed Elliott Function.
DBNmodel is composed of multiple RBM stacked on top of
each other, so in the training process of RBM, the activation
function also determines the ability of feature extraction.
RBM performs a step sampling by CD algorithm and Gibbs
sampling. Firstly, the visible layer is mapped to the output of
the hidden layer through the activation function, and then
the output is taken as the input of the visible layer.

According to the analysis of the activation function in
this article, it can be known that the activation function is a
core position in network training. If the activation function
is improperly selected, it is di�cult to improve the accuracy
of training learning no matter how to construct the model
structure. However, if the activation function is properly
selected, the feature extraction ability of the network can be
signi�cantly improved. Based on this, a DBN model based
on the Modi�ed Elliott function (ME-DBN) is proposed in
our article. Elliott function [2] satis�es the generalized
Logistic di�erential equation, so this paper introduces the
Elliott function into the model to improve the traditional
sigmoid activation function, as shown below:

f(x) �
0.5x
1 +|x|

+ 0.5. (7)

In order to ensure that all neurons are saturated in the
pretraining stage, the activation function should have a high
gradient zero value. Based on this analysis, formula (7) is
revised in this paper:

f(x) �
0.5x�����
1 + x2
√ + 0.5. (8)

Figure 3 shows the function graph of the modi�ed Elliott
function and sigmoid function.

As we can �nd from Figure 3, the modi�ed Elliott
function becomes steeper near zero, which causes more
major features to fall into the middle region of the function,
and at the same time, reaches the threshold at the lower value
of its input, closer to the biological neuron than the sigmoid
function.

Next, this paper compares the modi�ed Elliott function
with the sigmoid function, as shown in Figure 4:

As we can �nd from Figure 4 that ReLU has no gradient
at the negative half-axis of input, and the modi�ed function
in this paper has a gradient, so the problem of failing to
update the weight will not occur.

To better �t the distribution of input data in the network
model in the pretraining stage, the activation function in the
pretraining stage is improved in this paper.  erefore, after
introducing the modi�ed Elliott function into RBM, the
conditional probability of the visible layer and hidden layer
can be deduced as follows:

P vi � 1|h, θ( ) �∏
i

P vi|h( )P vi � 1|h( ) �ME ∑
j

Wijhj + ai  �
∑jWijhj + ai

2
����������������
1 + ∑jWijhj + ai( )

2
√ +

1
2
,

P hi � 1|v, θ( ) �∏
i

P hi|v( )P hi � 1|v( ) �ME ∑
j

Wijvj + bi  �
∑jWijvj + bi

2
����������������
1 + ∑jWijvj + bi( )

2
√ +

1
2
.

(9)

In the pretraining stage, the training objective is still the
maximized likelihood function. CD algorithm is used for
sampling, so the parameter update formula is as follows:

h
P (h0 | v0) P (h1 | v1) P (hk | vk)

P (v1 | h0) P (v2 | h1) P (vk | hk–1)
v

Figure 2: Gibbs sampling process.
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zL(θ)
zWij

�∑
T

t�1
P hj � 1|v(t)( )v(t)i −∑

v

P(v)P hj � 1|v( )vi 

�∑
T

t�1

∑jWijv
(t)
i + bj

2
���������������
1 +∑jWijv

(t)
i + b2j

√ +
1
2
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∑jWijvi + bj

2
��������������
1 +∑jWijvi + b

2
j

√ +
1
2
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P hj � 1|v(t)( ) −∑

v

P(v) hj � 1|v( ) 

�∑
T

t�1

∑jWijv
(t)
i + bj

2
���������������
1 +∑jWijv

(t)
i + b2j

√ +
1
2

  −∑
v

P(v)
∑jWijvi + bj

2
��������������
1 +∑jWijvi + b

2
j

√ +
1
2
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(10)
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Figure 3: Comparison of modi�ed Elliott function and sigmoid activation function.
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*e parameters trained in the pretraining stage are used
as the initialization of the fine-tuning stage, and the whole
MEDBN network is fine-tuned by using the gradient descent
method.

4. Evaluation Processing

After the training of these three classification models and
training data, the performance of these models is evaluated
with test data. *e classifier best suited to the current traffic
environment is that it has the most accurate classification
model. Accuracy is represented as follows:

Accuracy �
TP + TN

TP + FP + FN + TN
. (11)

In the formula, TP is a true positive, indicating that the
traffic that belonged to category C is classified in category
C. FP is a false positive, showing that the traffic not be-
longing to category C is classified by mistake; FN is missing
report, indicating that the traffic not belonging to category C
is classified into others; TN is a true negative, indicating that
the traffic of noncategory C that is classified as noncategory
C.

*e precision defined in formula (11) is used to select the
optimal proposed model. At the same time, three indicators
are used to evaluate the performance of the proposed model,
which are Precision, Recall, and F1 score,*e definition is as
follows:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1score �
2 × Precision × Recall
Precision + Recall

.

(12)

5. Data Processing

ISCX VPn-NonVPN Traffic Dataset was selected in the
experiment. As shown in Table 1, this data set consists of 15
applications, such as Facebook, Youtube, Netflix, and so on.
*e selected application uses various security protocols for
encryption, including HTTPS, SSL, SSH, and proprietary
protocols. *e selected data set contains a total of 206,688
packets. Obviously, the data set is unbalanced. Some ap-
plications have a large number of traffic samples, such as
Netflix, which accounts for 25.126% of the total data set.
Meanwhile, some applications have a small number of traffic
samples, such as Aim Chat and ICQ, which only account for
2-3% of the total data set.

6. Experiment and Simulation

To further distinguish the effectiveness of our proposed
model for identifying encrypted traffic, we list a series of
classic benchmark models that have been proven to achieve

excellent prediction and classification results in various
fields. Figure 5 shows the evaluation of classification rec-
ognition results with the benchmark models. *ey include
XGboost algorithm and GBDT algorithm based on number
model, Bayesian classification algorithm and SVM algorithm
based on classical classification algorithm, LSTM model and
RNN model based on the neural grid. At the same time, we
also take a single DBN model as one of the benchmark
models to compare the classification recognition results
between the DBNmodel and ourME-DBNmodel. As can be
seen from the figure above, (1) Among all benchmark
models, the ME-DBN model achieves the best performance
in five indicators, which indicates that our proposedmodel is
effective in the classification of encrypted traffic; (2) com-
pared with all benchmark models, DBN model achieves the
best results in ACC and F1 indicators, and also ranks TOP3
in classification results of other indicators, which indicates
that, on the whole, DBN model can effectively identify
encrypted traffic; (3) although RNN model achieves the best
result in FRrate index, its performance in other indicators is
poor. We could find that classification results based on the
RNN model are unstable. (4) Compared with the DBN
model, the performance of ME-DBN proposed by us is
superior to the DBN model in all five indicators, which
indicates that the method proposed by us can effectively
enhance the basic DBN model; (5) we can also know from
the experimental results that neural grid based models such
as CNN, RNN, and LSTM have significantly higher classi-
fication and identification effects on encrypted traffic than
other benchmark models (including decision tree-based
classification model and classical mathematical classification
model).

Figures 6 and 7 show the comparison of training and
prediction time of different algorithms on the ISCX VPN-
nonVPN dataset. Among them, 70% samples are selected
as training samples and 30% samples are selected as test
samples. It can be seen from the figure that in the ISCX

Table 1: Description of sample dataset.

*e application name
Unbalanced sample

Quantity Ratio (%)
AIM_chat 4869 2.3
SCPdown 15390 7.4
Youtuebe 12738 6.1
Voipbuster 35469 17.1
E-mail 4417 2.1
Vimeo 18755 9
Facebook 5527 2.6
Gmail 7329 3.5
TorTwitter 14654 7
Hangout 7587 3.6
Spotify 14442 6.9
Skype 4607 2.2
ICQ 4243 2
SETPdown 4729 2.2
Netflix 51932 25.1
Total 206688 100
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VPN-NonVPN data set, the CNN model has the longest
training time and the NBN model has the shortest pre-
diction time, but at the same time, the CLASSIFICATION
accuracy of the NBN model is not high. ME-DBN has
more training time on the dataset than the DBN model
because sparse regular terms are added to the likelihood
function and the derivation process a�ects the training
time. For deeper structure, it needs more training time

than the traditional SVM and XGboost model because of
the complicated calculation process, but the classi�cation
results have a certain increase, and the algorithm pro-
posed in our article the ME - DBN and DBN algorithm
forecast time di�ers only 4 s, demonstrate the algorithm
based on sparse model time performance improves the
classi�cation accuracy. It has better classi�cation
performance.

94.33%
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98.92%
9.48%

94.44%

f1
DR
precision

FRrate
Auccracy

94.18%
90.82%

97.80%
8.45%

94.43%

91.76%
88.36%

95.43%
10.53%

92.19%

95.53%
99.42%

91.94%
0.56%

95.63%

94.36%
90.64%

98.40%
8.84%
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93.68%
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95.68%
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Figure 5: Evaluation of classi�cation recognition results with the benchmark models.
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7. Conclusions

At present, the deep neural network has become an im-
portant research content on machine learning. Feature ex-
traction algorithm based on DNNmainly uses a deep neural
network model to carry out feature extraction of data im-
itating the information processing mechanism of the human
brain, so as to screen the important information in data.  e
deep neural network has an excellent performance in
extracting images, sound, text, and other information.
However, with the increasing scale of data sets, the network
structure becomes more and more complex, making net-
work training more di�cult, which requires more e�ective
training methods. Secondly, when the traditional sparse
deep network model learns input data, all hidden layer nodes
may have the same e�ect without completely changing the
feature homogeneity phenomenon. In addition, the tradi-
tional Sigmoid activation function is nonzero mean, which is
di�cult to e�ectively train the network and is prone to the
phenomenon of gradient disappearance. To handle the
above problems, our article studies the feature extraction
algorithm based on DNN, and proposes a DBN tra�c
classi�cation method based on the nonlinear correction. In
view of the phenomenon of gradient disappearance that the
traditional Sigmoid function is prone to, the Elliott function
satisfying the generalized Logistic di�erential equation is
proposed to replace the Sigmoid activation function, and
then the Elliott function is modi�ed to meet the charac-
teristics of RBM. e modi�ed Elliott function can make the
nodes in the saturation state, so it is not easy to cause the
problem of gradient disappearance.
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As the development of smart grids is increasing, accurate electric load demand forecasting is becoming more important for power
systems, because it plays a vital role to improve the performance of power companies in terms of less operating cost and reliable
operation. Short-term load forecasting (STLF), which focuses on the prediction of few hours to one week ahead predictions and is
also bene�cial for unit commitment and cost-e�ective operation of smart power grids, is receiving increasing attention these days.
Development and selection of an accurate forecast model from di�erent arti�cial intelligence (AI)-based techniques and meta-
heuristic algorithms for better accuracy is a challenging task. Deep Neural Network (DNN) is a group of intelligent computational
algorithms which have a viable approach for modeling across multiple hidden layers and complex nonlinear relationships between
variables. In this paper, a model for STLF using deep learning neural network (DNN) with feature selection is proposed. A wide
range of intelligent forecast models was designed and tested based on multiple activation functions, such as hyperbolic tangent
(tanh), di�erent variants of recti�er linear unit (ReLU), and sigmoid. Among the others, DNN with leaky ReLu produced the best
forecast accuracy. Regarding the precision of the methods used in this research work, certain output measures, such as absolute
percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) are used.  ere was also a reliance on
multiple parametric and variable details to determine the capability of the smart load forecasting techniques.

1. Introduction

Load forecasting strengthens utility corporations’ ability to
model and anticipate power loads in order to maintain a
balance between supply and demand, reduces
manufacturing costs, estimates fair energy pricing, and
regulates capacity scheduling and future planning.  ese
forecasts are extremely important for energy suppliers and
other power system stack holders, as well as for power
generation, transmission, and distribution industries.  ere
is also the precise projection of electric load magnitudes and
geographic locations for various times of the planning ho-
rizon [1].  emain criterion is used to test the predictions of
the model on the basis of lead-time horizon. Accurately
predicting future load requirements is critical for proper
generation planning. It additionally improves the

performance of the power system and facilitates managerial
decision making in the future. Inaccurate forecasts can be
the reason for massive economic losses for housing and
power system. Researchers have applied a number of
techniques for electrical load demand forecasting using
numerous statistical, mathematical, and arti�cial intelli-
gence-based approaches to facilitate the supply chain of
electrical load in a smooth manner. It is found that deep
neural networks (DNN) and their hybrid combinations with
other meta-heuristic optimization algorithms provided
wonderful functionality in managing complicated nonlinear
relationships, model complexity, and their prediction per-
formance is found accurate as compared to other conven-
tional methods [2]. emajor objective of this research work
is to enhance electrical load demand forecast accuracy by
implementing the state-of-the-art deep neural networks
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using LSTM and RNN architectures. In particular, the
impact of seasonal variation on forecast error has been
explored and reported.

According to the literature, short-term electrical load
demand forecasts are of considerable interest. +is fore-
casting is important for power system control, unit input,
security assessment, economic calculations, and power
markets [3]. STLF is under high consideration for con-
trolling and optimizing energy systems on a daily energy
efficiency basis, exchange, and security checks. It is also
useful for reliability considerations and mathematical cal-
culations in the power system. However, STLF needs a great
effort to produce reasonable forecast accuracy because of the
lesser lead-time. For immediate and accurate future pre-
dictions on the basis of lesser lead-time, we need more
parametric analysis and complex modeling techniques [4].
Choosing a good technique for STLF is most important for
high accuracy in the results. One of an electric company’s
key jobs is to precisely estimate load demand at all times,
which is especially important in the near term. Observing the
behavior of near-future load demand may be highly useful
for the assessment and operation of power systems in terms
of a noninterrupted supply chain of power [5].

+ere are several load-forecasting techniques that are
classified as parametric and nonparametric techniques in
two major sections. Parametric techniques are based on
mathematical and statistical equations such as time series
and linear regression. Nonparametric techniques are arti-
ficial intelligence and machine learning-based techniques
such as artificial neural networks (ANN), deep neural net-
works (DNN), fuzzy logic, and expert systems. In the cat-
egory of nonlinear techniques, many hybrid combinations of
ANN and DNN with nature inspired meta-heuristic tech-
niques such as genetic algorithm (GA), particle swarm
optimization (PSO), feature selection, and others have been
reported frequently for STLF in the past decade. It is further
reported by many researchers that these hybrid combina-
tions of intelligent forecast methods produced highly effi-
cient models in terms of accuracy and generalization.

+e electric load forecasting is categorized into three
classes including short-term forecasts, that is, from few
minutes to few days ahead, medium-term forecasts from one
week to few months ahead, and long-term forecasts of 1 year
to 10 years ahead [6]. Short-term load forecasting (STLF) is
useful for day-to-day decisions including fuel requirement
and maintenance scheduling systems setup, whereas me-
dium-term load forecasting (MTLF) is important for system
maintenance, purchasing electricity, and pricing plans. +is
maintains the shutdown and maintenance scheduling, as
well as load-switching operations. On the other hand, long-
term load forecasting (LTLF) is highly beneficial for ex-
pansion plans and the development of new power plants.

In this study, intelligent computational models are
designed and developed using a deep neural network in-
tegrated with feature selection and genetic algorithm using
various activation functions, such as sigmoid, tanh, and
ReLU to forecast short-term electrical energy demand. To
make forecasts more trustworthy, all significant factors
impacting future power usage must be included [7]. DNNs

are always difficult to train, test, and validate, particularly
when the dimensions of the input are very large. It is very
critical to pick important features by evaluating a DNN-
trained model’s first-layer activation potential [8]. More-
over, a crucial factor in the DNN-based model for STLF is
the availability of a small number of data samples for the
training phase, which can cause the model to overfit. To
avoid overfitting, we used 2 years of electricity load from
FESCO, a company in Pakistan, to supply the electricity. In
this investigation, there are one year of Australian electricity
load data and other input parameters with feature selection
to train the presented DNN models utilizing a single acti-
vation function. In the literature, [9], Denil et al. demon-
strate that it is possible not only to forecast all the other
weights but also to exclude some of the weights, providing a
few weights to every element. It is shown for neurons with
multiple layers, training 25% with parameters produces the
same error as learning all weights. Sainath et al. [10] use low-
rank matrix factorization to reduce the number of input
parameters in the final layer of a DNN.

Hybrid load demand forecast model by integrating deep
recurrent neural networks and LSTM architectures are
designed, developed, and tested. +eir performance is
compared with the conventional ANN design. +e perfor-
mance of the developed hybrid model in different seasonal
and load demand variations is examined on a day-ahead and
week-ahead basis. +e integration of various meta-heuristic
techniques adds up the individual features of those methods
to produce the summed up benefits. However, the hy-
bridization of multiple methods leads to complexity and
affects the transparency of these models. As the LSTMmodel
keeps a track of the vibrant recent memory states, its
strength in remembering the recent past states is considered
superior as compared to other meta-heuristic methods.

+e remainder of the paper is ordered as, Section 2
explains DNN’s and RNNs importance for load forecasting.
Section 3 explains the data description. Section 4 explains
the methodology behind the hybridization of DNN and the
feature selection-based model for STLF. +e results and
corresponding consequences are seen in Section 5, and fi-
nally, the conclusions regarding the proposed method are
provided in Section 6.

2. Deep Neural Networks and Applications

Deep neural network is an advanced form of conventional
ANN whose learning is typically carried out using the
framework of complex architecture with multiple hidden
layers and neurons.+eword “deep” refers to the topological
structure of NN with a number of layers in the network. A
deep neural network (DNN) is just an ANN with some extra
layers than the three standard layers of multiple-layer
perceptron (MLP). A deep neural network integrates several
nonlinear layers of computation, utilizing basic parallel
operating components biologically inspired nervous sys-
tems. Deep learning is traditionally focused on using back
propagation including gradient descent and a huge number
of neurons and hidden layers [11]. +e deep structure en-
hances the potential of neural networks for abstraction.
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Currently, the advancement of the Internet of things (IoT)
and big data allows the deployment of DNNs in a variety of
ways. Moreover, recent findings for DNN have shown great
promise in other fields, such as computer vision and voice
recognition. However, there is much less work on applying
DNN to short-term load forecasting in STLF is found in the
literature [12]. DNNs allow higher precision to be achieved
by detecting dominant factors that influence electricity
consumption trends and can surely make a major contri-
bution to next-generation energy systems and the recently
launched Smart grid [13]. A typical DNN interconnection
structure with one input and output layer and multiple
hidden layers having neurons is shown in Figure 1. It can be
seen that there are a number of hidden layers which convert
this neural network to deep neural network. +e results will
also be more accurate by more layers.

2.1. DNN with Genetic Algorithm. Genetic algorithm is a
method of programming which derives its foundation from
biological evolution [14]. +e Genetic Algorithm is generally
used as a problem-solving technique to have the optimized
value [15]. A hybrid model designed by integrating a genetic
algorithm (GA) and deep neural network (DNN) is used to
increase performance, cogency, and reduce the error [16].
Specifically, GA is used for selecting features and optimizing
DNN design parameters [17]. A set of possible solutions is
provided to GA as inputs and evaluation of the performance
of each input is carried out with a metric called a fitness
function, which allows each candidate to be quantitatively
evaluated.+e input to the GA is a series of feasible solutions
to the problem, stored in some form, and a metric named as
fitness function that allows every applicant to be concretely
evaluated.+e GA’s functionality was proven by the creation
of a DNN with more than four million parameters; the best
infrastructure ever developed by an evolutionary algorithm
[18].

2.2. DNN with Feature Selection. Selection of features dis-
tinguishes the relevant features from a collection of data and
eliminates unrelated or less-significant features which do not
lead most to our target variable in order to obtain optimal
reliability for our model. It is commonly accepted that the
performance of DNNs is because the relationship between
the target value and the features of the input is very sig-
nificant. It takes gradual and definite transformation to
render useful features [19]. For a DNN, the measurement of
sensitivity does not work far beyond one or two layers.
+erefore, in order to better evaluate an input feature’s
contribution, we review its activation potential (averaged
over all input training values and hidden neurons) relative to
the full activation potential. +e greater the possible acti-
vation involvement of an input factor, the more likely its
inclusion in the hidden layers [20].

2.3. Hybrid LSTM and DNN Recurrent Neural Network.
+e ANN is referred to as recurrent neural networks when
feed forward neural networks are expanded to provide

feedback connections as shown in Figure 2. +e input
neurons are responsible to receive inputs, whereas relational
ends receive the signals modified with an activation function
from the current input layer and from the hidden nodes in
the previous state of the network at each time-step of
sending input through a recurrent network. Long short-term
memory (LSTM) networks are a revamped variant of re-
current neural networks, allowing memory retrieval of
previous data simpler. +e RNN problem of the vanishing
gradient is solved here. Given unpredictable time delays,
LSTM is well suited for categorizing, analyzing, and fore-
casting time series. It trains the model using back-propa-
gation. +e performance is determined by the secret state of
the hidden layers. +e concept behind RNNs is to make use
of the knowledge in sequence. It is generally assumed that in
a typical neural network all inputs and outputs are distinct of
one another.

3. Research Methodology

+e main requirement for an accurate prediction model is
careful analysis of the load data and its dynamics. A big
quantity of data is being gathered with the aid of the in-
telligent meters on every day basis which is called raw data at
initial stage as shown in Figure 3. Big statistics analytics can
be helpful in reaching insights for smart grid energy
management [4]. To achieve the good forecast results,
variation and the behavior of the load data is of high
consideration. Initial steps for treatment of data are data
preprocessing which is also called the data normalization.
+ese methods can be carried out according to simple load
profile analysis. On the basis of traits of input data, it can be
classified into distinctive clusters by which the network
performance can be increased. To preprocess data, the first
stage is the compilation of data from the different infor-
mation systems, for instance, the equipment, customer and
charging details, weather, and electrical load system [21]. As
designing data management and smart electronics increases,
data-oriented applications have been gaining far more in-
terest in both academia and industry through power con-
verters in power grid companies [22, 23]. In addition to the
load demand data other factor are also important including
metrological data and day type information.

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer N

Output
layer

Figure 1: A typical deep neural network architecture.
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Long short-term memory (LSTM) networks are an
improved variation of recurrent neural networks that make
it easier to retrieve earlier data from memory. +e declining
gradient issue is handled here. Given the unpredictable
nature of time delays, LSTM is ideal for categorizing, an-
alyzing, and predicting time series. +e performance of the
LSTM-based intelligent forecast models has been proved in
many smart systems such as smart grids.

3.1. Effect ofTemperature. It is noticed that the electrical load
demand increases with the rise in temperature during the
summer season and it decreases in the cold season.
+erefore, the seasonal variables should be included in the
predicted model input to obtain accurate predictive results.
A review of the literature shows that there is a strong
correlation between seasonal variables and load demand.
+e results of human sensitivity test tell that dew point
between 40 F and 60 F is considered comfortable for the
humans [24]. +e demand for load remains normal in this
range of dew point. +ere is a more need of strength when
the temperature falls below 10°C due to heating require-
ments in a family.

3.2. Working and Nonworking Days. Electricity usage is
higher on weekdays while electricity consumption is low on
Saturday and Sunday, and also on other public holidays. +e
“Working Day feature” is chosen based on these results to
draw this impact.

3.3. Impact of Time. +ere is high impact of time on elec-
tricity usage. Energy usage values reflect an up-and-down
trend, respectively, during bothmiddays. To express the time
dependence as hour and day of week, two functions are
extracted.

3.4. External Factors. +e external factors can also influence
the power load behavior (we define data collected as external
factors outside the energy database) such as season, climate,
and holiday statistics [25].

3.5. Data Preprocessing. +ere is a process called pre-
processing by which the input data is converted into nor-
malized form to facilitate the NN for easy interpretation of
input patterns for better results. +e change between each
input data point interval is between 0 and 1 throughout the
normalization procedure. Each input’s data can be trans-
formed into normalized form independently or in groups.
Preliminary work on entering the input data reduces the size
of input space to DNN, which lowers the training time of the
network. It shortens the input surface measurement and
reduces the variety of parameters that need to be set for the
training process.

3.6. Training and Test of Datasets. +e model is trained
before testing to forecast the input data at high accuracy. We
also separated the input data into training and testing
datasets in this model, utilizing two years of data for training
and one year of data for testing. From the dataset testing, we
used 24 and 168 hours forward records for day and week
ahead prediction, respectively.

3.7. Training and Test of Datasets. In the design and de-
velopment of hybrid forecasting models based on DNN and
multiple meta-heuristic techniques, different activation
functions were used which directly affect the behavior and
ultimate DNN efficiency. DNNs typically need capacities for
nonlinear activation. Because of their simplicity, rectified
linear units (ReLU) are commonly used in modern-day
DNNs. Arunadevi et. al. [26] researched the impact of ac-
tivation function on classification accuracy using DNN.
However, choosing an appropriate activation feature is a
difficult task [27–29]. Some of the commonly employed
activation functions are given in the subsequent sections.

3.8. Sigmoid Function. A sigmoid function is a type of ac-
tivation function, more precisely a squashing function.
Crushing functions, as seen in Figure 4, limit the output to a
range of 0 to 1, making them effective in probability
prediction.

3.9. Linear Rectified Unit (ReLU). +e rectified linear acti-
vation function or ReLU for short is a linear piece-by-piece
function that directly outputs the input if it is positive,
otherwise, it will output zero as shown in Figure 5. For
several forms of neural networks, it has become the default
activation function, since a model that uses it is easier to
train and often achieves better performance. We have, f(x)�

m(o, x).

3.10. Leaky ReLU. Leaky ReLUs are such method to over-
come the “dying ReLU” problem. Rather than making the
feature zero if x < 0. Instead, a leaky ReLU would have a
slight negative slope (of 0.01, or so), as shown in Figure 6. It
can be expressed mathematically:

F(x)� 1 (x< 0) (αx) + 1 (x≥ 0) (x).
Here the α is a constant of computation.

Recurrent network

input layer

x2

x1

hidden layers

output layer

y

Figure 2: Recurrent neural network.
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4. Results and Discussion

+is section presents the electrical load demand prediction
results of benchmark combinational approaches using
conventional ANN, RNN, and LSTM. +e simulation re-
sults, as well as the pertinent discussion of the suggested
prediction model for various forecast scenarios, are also
presented. To guarantee that the model works successfully in
different seasonal fluctuations, its forecast accuracy is vali-
dated using load demand and meteorological data for all
four seasons of the year. Furthermore, to ensure that the
model does not overfit, the forecast performance is validated
under high variable load demand situations one day and one
week ahead, as well as seasonal load changes.

+e model’s performance in the aforementioned varied
situations demonstrates that it is capable of providing strong
prediction results under the vivid and vibrant settings of load

demand. To explore the influence of these tactics, a relative
analysis of the aforesaid methodologies is performed with
respect to the appropriateness of the input variables and
ANN design optimization. On a one-hour sampling fre-
quency, the data are collected at a rate of 24 samples per day
and 168 samples per week, and it contains electrical load as
well as four meteorological variables: dry bulb temperature,
wet bulb temperature, dew point, and humidity. MSE and
MAPE are performance measures employed to analyze and
compare the efficacy of various methods.

+e variations in load demand are analyzed w.r.t. sea-
sons: the load demand in the spring and fall seasons is lesser
than the load demand in the winter and summer seasons.
Furthermore, the summer season’s load is less consistent,
having higher peaks than the winter season’s load. +is
disparity is most likely due to the less frequent usage of air
conditioning during extremely hot summer days, as opposed
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Figure 3: Modelling for load forecasting.
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to the more consistent use of heaters throughout the winter.
Based on this trend, the data have been divided into four
seasons: summer is seen as lasting from November to
January, autumn from February to April, winter from May
to July and spring fromAugust to October. In addition to the
performance indicators, the number of repetitions for the
same training error are also used to evaluate the prediction
accuracy of the presented algorithms.

4.1. Prediction by ANNModel. A three-layer neural network
with an 8-16-1 topology will be used in the tests. +e transfer
function for hidden layer neurons is logistic sigmoid;
however, it is linear for output layer neurons. Figure 6 shows
the projected load demand assessment of the ANNmodel for
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Figure 8: One day-ahead load forecast results of the ANN model
for the winter season.
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Figure 6: One day-ahead load forecast results of the ANN model
for the summer season.
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Figure 7: Leaky ReLU.
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Figure 9: One day-ahead load forecast results of the ANN model
for the autumn season.
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Figure 10: One day-ahead load forecast results of the ANN model
for the spring season.
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twenty-four hours ahead load during the summer. +e
graph’s X-axis indicates hourly time with an interval of one
hour, while the actual and predicted load demand can be
seen on Y-axis. It is apparent that load demand fluctuates
depending on the time of day, starting from modest in the
morning; however, it rises as the day activities are started.
+e results of summer season forecasting of one-day ahead
of ANN model for other seasons including winter, autumn,
and spring are shown in Figures 8–10, respectively. In this
model, the best results are found in winter season, where
MSE remained 0.10015 and MAPE is found 1.31% for day-
ahead predictions.

4.2. Prediction by LSTM Model. +e results of LSTM-based
model are presented in Figures 11–14 for the autumn,

spring, summer, and winter seasons, respectively. +e red
line shows the actual load and the green line shows the
predicted values. +e minimum forecast results for this
model are observed in the summer season, where MSE is
observed as 0.09153 and MAPE is 1.02% for 24 points per
day. +e predicted load is decreasing at the initial, but there
is a difference between both lines giving better prediction
results.

4.3. Prediction by RNN Model. +e results of RNN-based
hybrid model are presented in Figures 15–18 for the sum-
mer, winter, autumn, and spring seasons, respectively. +e
minimum forecast errors for this model are observed in the
summer season, where MSE is observed as 0.09873 and
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Figure 12: One day-ahead load forecast results of the LSTMmodel
for the spring season.
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Figure 13: One day-ahead load forecast results of the LSTMmodel
for the summer season.
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Figure 11: One day-ahead load forecast results of the LSTMmodel
for autumn season.
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Figure 14: One day-ahead load forecast results of the LSTMmodel
for the winter season.
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MAPE is 1.23% for 24 points per day. +e predicted load is
decreasing at the initial, but there is a difference between
both lines giving better prediction results. Figures 15–18
show the forecast error graphs of the RNN-based hybrid
model for summer, winter, autumn, and spring seasons,
respectively. +e load pattern of all four seasons is different
because of the changes in the meteorological parameters,
such as temperature, humidity, and cloud cover. However,
the proposed model shows reasonable forecast accuracy for
all the seasons and demonstrates its generalized prediction
strength throughout the year under different load demand
conditions. +e load forecast results in terms of MAPE are
summarized in Table 1.

Among the three models deployed for the electrical load
demand prediction, it is observed that the hybrid models

based on the combination of LSTM and ANN and RNN
performed better w.r.t. forecast accuracy for one-day ahead
forecasts. Especially, the RNN model predicted the electrical
load demand with an accuracy of 1.01% in terms of MAPE.
+e RNN model is applied for the prediction of one week
ahead forecast, and the results for the summer season are
depicted in Figure 19. +e model predicted the load demand
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Figure 15: One day-ahead load forecast results of the RNN model
for summer season.
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Figure 16: One day-ahead load forecast results of the RNN model
for winter season.
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Figure 17: One day-ahead load forecast results of the RNN model
for the autumn season.
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Figure 18: One day-ahead load forecast results of the RNN model
for the spring season.

Table 1: Forecast error of the deployed models.

Model Forecast error (MAPE) (%)
ANN 1.9
RNN 1.23
LSTM 1.01

8 Mathematical Problems in Engineering



with a reasonable forecast accuracy of 1.09% MAPE on
week ahead bases. All these results show the superiority of
the hybrid models in terms of forecast accuracy and
generalization.

5. Conclusion

+ere are several feature descriptors currently available that
provide high-dimensional features to identify the behavior
in the video, but it takes detailed research to measure the
impact of those features on classification. Although size
reduction techniques are available to reduce the dimensions
of items, their main focus is good reconstruction and the
prejudicial information is lost in low-dimensional space. We
have used the three types of modeling as LSTM modeling,
RNNmodeling, and NNmodeling for one day forecasting of
all the seasons. +ere is more accuracy using the leaky ReLU
activation function with RNN.+ere are also good results for
yearly forecasting data by using the above techniques. +e
training data is undertaking preprocessing step to predict the
new features that will be more important for the use of
electricity. +e proposed hybrid forecast models have shown
high forecast accuracy and generalization that would lead to
less-operating costs and safe operation of the power utility
companies.
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Picture fuzzy set (PFS) is an extension of intuitionistic fuzzy set, and it is capable to analyze the transportation problems that
contain uncertain and vague information. PFSs are applicable in situations where human decisions demand more variety of
responses: yes, abstain, no, and rejection which cannot be addressed in the traditional FSs and IFSs. In this paper, we propose a
technique to solve fully picture fuzzy transportation problems (FPFTPs) which are based on picture fuzzy linear programming
formulation. Fully picture fuzzy transportation problems are developed by considering all the variables and parameters as
nonnegative trapezoidal picture fuzzy numbers. A ranking function is used to transform picture fuzzy numbers into crisp
numbers. A model is presented to explain the suggested scheme. Finally, comparison analysis of fully picture fuzzy transportation
model with fully intuitionistic fuzzy transportation model and fully fuzzy transportation model is presented with
pictorial illustrations.

1. Introduction

Zadeh [1] proposed the notion of fuzzy set (FS) theory to
tackle the problems involving vague information. Atanassov
[2] introduced intuitionistic fuzzy set (IFS), which is
characterized by a membership function as well as a non-
membership function. Although IFSs have vast applications
in many �elds, it cannot provide all the information. In the
voting process, we can vote in favor of someone, abstain,
against someone, and even refuse to cost the vote, which
cannot be handled by IFSs. To tackle such type of situations,
Cuong [3] gave the idea of PFS, which is generalized
structure of FS and IFS and further examined their basic
properties and laws. In PFSs theory, we study about positive,
neutral, and negative membership degrees of each element
belonging to set. In practical life, PFSs theory contribute a
signi�cant role in medical diagnosis, career selection, de-
cision making (DM), engineering, and networking.

Dubois and Prade [4] discussed basic arithmetic oper-
ations related to fuzzy numbers. Bellman and Zadeh [5]
proposed the idea of decision making in fuzzy environment.
Tanaka et al. [6] presented fuzzy linear programming (FLP)
problems. Zimmerman [7] analyzed multiobjective

functions in FLP problems. Ganesan and Veeramani [8]
studied FLP problems by using trapezoidal fuzzy numbers.
Lot� et al. [9] suggested the lexicography method to solve
fully FLP problems and obtained approximate solutions.
Allahviranloo et al. [10] solved fully fuzzy linear system and
achieved the general solutions. Kaur and Kumar [11] pro-
posed Mehar’s method to solve fully FLP problems by using
LR fuzzy numbers. Pérez-Cañedo et al. [12] used lexico-
graphical method and solved fully FLP problems having
inequality constraints. Akram et al. [13] proposed Pythag-
orean FLP problems with equality constraints. Akram et al.
[13] introduced LR-type Pythagorean fuzzy numbers and
introduced a scheme to solve LR-type fully Pythagorean FLP
problems with equality constraints. Mehmood et al. [14, 15]
developed di¤erent techniques to �nd optimal solutions of
fully bipolar FLP problems. Ahmed et al. [16] solved fully
FLP problems in bipolar neutrosophic environment. Akram
et al. [17] presented a scheme and obtained optimal solutions
of fully FLP problems. For more information about FLP, the
reader may study [18–20].

In real life, we have to minimize the transportation cost
in transportation problems (TPs) because the companies
have to deliver the products from di¤erent sources to
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numerous destinations [21]. Gani and Abbas [22] suggested
a new technique to obtain optimal solution of TPs in
intuitionistic fuzzy environment. TPs are being applied in
many areas like networking [23], shipping [24], production
[25], and shortest route problems [26]. Singh and Yadev [27]
solved fuzzy transportation problems (FTPs) and obtained
optimal solution by applying accuracy function. Kumar et al.
[28] have proposed two algorithms to achieve initial basic
solution and optimal cost of FTPs. Nagoorgani and Razak
[29] developed a method to minimize the cost function by
using trapezoidal fuzzy numbers (TrFNs). Kaur and Kumar
[30] solved FTPs and determined optimal solution. Singh
and Yadav [31] proposed a method to solve FTPs by using
intuitionistic fuzzy numbers as supply and demand. Basir-
zadeh [32] worked on FTPs and presented three different
kinds of problems. Kumar and Hussain [33] used a com-
putational approach to tackle fully intuitionistic fuzzy real
life TPs. Abhishekh and Nishad [34] solved LR-intuitionistic
FTPs by using ranking approach. Kaur et al. [35] proposed
different schemes to solve fully FTPs by using TrFNs. Wang
et al. [36] introduced geometric operators in picture fuzzy
environment and studied decision-making problems
(DMPs).

PFSs are applied to handle real life TPs that involve
uncertainty and have been effectively used in communica-
tion, management, and DM. Akram et al. [37] proposed the
idea of complex PFS, which is generalized form of complex
IFS and developed a DM model. Shit et al. [38] used har-
monic operators with TrPFNs and showed its significance in
multicriteria decision-making (MCDM) problems. Akram
et al. [39] investigated shortest route problems by using
trapezoidal picture fuzzy numbers (TrPFNs). Geetha and
Selvakumari [40] solved picture fuzzy transportation
problems and obtained minimum transportation cost.
Mahmoodirad et al. [41] studied the existing shortcomings
and proposed a method to handle TPs involving intui-
tionistic fuzzy numbers. Kane et al. [42] suggested a FLP
scheme to solve TPs by using triangular fuzzy numbers.
Veeramani et al. [43] proposed a technique regarding
multiobjective fractional TP on the basis of NGP approach.
Ali and Ansari [44] presented Fermatean fuzzy bipolar soft
set (FFBSS) model and studied its basic properties. Tchier
et al. [45] combined PFSs and soft expert sets and introduced
a hybrid model which is used to analyze DMPs. Das [46]
defined score function to get IBFS and solved neutrosophic
TPs. Kané et al. [47] proposed two-step scheme to solve fully
FTP by using all parameters as trapezoidal fuzzy numbers.
Ali et al. [48] studied group DMPs and developed a hybrid
model by considering bipolar soft expert sets. Ashraf et al.
[49] explored MSM operator in the form of IVPFS and
interpreted its applications. On the basis of CIVPFSs, Ali

et al. [50] introduced Einstein operational laws by applying
t-norm. Sahu et al. [51] analyzed student’s career selection in
PFS environment. Yildirim and Yıldırım [52] used picture
fuzzy VIKOR technique and evaluated satisfaction level of
people regarding municipality services. 'e motivation of
this manuscript is described as follows:

(1) PFSs manage the problems involving uncertainty
more expeditiously as compared with FSs and IFSs.

(2) No one has yet introduced this particular concept of
FPFTPs which is based on picture fuzzy linear
programming (PFLP) formulation.

'e main contributions of this article are depicted as
follows:

(1) We propose a scheme to solve FPFTPs based upon
PFLP formulation

(2) We apply suggested technique to solve FPFTPs by
considering all the variables as nonnegative TrPFNs

(3) We obtain picture fuzzy transportation cost/optimal
value in the form of TrPFNs

(4) 'e supremacy of the proposed scheme is investigated
by comparative analysis with existing approaches

'e rest of the article is arranged as follows. Introductory
concepts are depicted in Section 2. 'e proposed scheme is
elucidated in Section 3. A model regarding FPFTPs is
considered in Section 4. Comparison analysis is discussed in
Section 5, and conclusion is given in the last section.

2. Preliminaries

In this section, we review some preliminary concepts re-
garding PFSs.

Definition 1 (see [3]). A PFS P on a universal set X is an
object of the form as follows:

P � x, μP(x), ηP(x), ]P(x)( 􏼁|x ∈ X􏼈 􏼉, (1)

where μP(x) ∈ [0, 1], ηP(x) ∈ [0, 1], ]P(x) ∈ [0, 1] denote
positive, neutral, and negative membership degrees, re-
spectively, of element x ∈ P with 0≤ μP(x) + ηP(x) + ]P

(x)≤ 1, ∀x ∈ X, and ΠP(x) � 1 − μP(x) − ηP(x) − ]P(x) is
said to be refusal degree of x in set P.

Definition 2 (see [53]). A TrPFN P � [(u3, u2, u1, s, t, v1,

v2, v3); (ω, ϑ, ζ)] is a PFS defined on R, whose positive (μP),
neutral (ηP), and negative (]P) membership functions are,
respectively, defined as follows:
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μP(x) �

x − u1( 􏼁ω
s − u1

, u1 ≤x≤ s,

ω, s≤x≤ t,

v1 − x( 􏼁ω
v1 − t

, t≤x≤ v1,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηP(x) �

x − u2( 􏼁ϑ
s − u2

, u2 ≤ x≤ s,

ϑ, s≤ x≤ t,

v2 − x( 􏼁ϑ
v2 − t

, t≤x≤ v2,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

]P(x) �

s − x + ζ x − u3( 􏼁

s − u3
, u3 ≤ x≤ s,

ζ, s≤x≤ t,

x − t + ζ v3 − x( 􏼁

v3 − t
, t≤x≤ v3,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where u3 ≤ u2 ≤ u1 ≤ s≤ t≤ v1 ≤ v2 ≤ v3 and the values
ω, ϑ , and ζ indicate maximum degree of (μP), maximum
degree of (ηP), and minimum degree of (]P), respectively,
such that ω, ϑ, ζ ∈ [0, 1], with 0≤ω + ϑ + ζ ≤ 1.

Definition 3 (see [53]). A TrPFN P � [(u3, u2, u1, s, t, v1,

v2, v3); (ω, ϑ, ζ)] is said to be nonnegative (respectively,
nonpositive) if u3 ≥ 0 (respectively, v3 ≤ 0) and P is unre-
stricted TrPFN if u3 is any real number.

Definition 4 (see [53]). Let P1 � [(u3, u2, u1, s, t, v1, v2, v3);

(ω, ϑ, ζ)] and P2 � [(u3′, u2′, u1′, s′, t′, v1′, v2′, v3′); (ω′, ϑ′, ζ′)] be
two TrPFNs and λ be real number, then

(1) P1⊕P2 � [(u3 + u3′, u2 + u2′, u1 + u1′, s + s′, t + t′, v1 +

v1′, v2 + v2′, v3 + v3′); (ω + ω′ − ωω′, ϑϑ′, ζζ′)]
(2) − P1 � [(− v3, − v2, − v1, − t, − s, − u1, − u2, − u3);

(ω, ϑ, ζ)]

(3) P1⊖P2 � [(u3 − v3′, u2 − v2′, u1 − v1′, s − t′, t − s′, v1 −

u1′, v2 − u2′, v3 − u3′); (ω + ω′ − ωω′, ϑϑ′, ζζ′)]
(4) λP1 � [(λu3, λu2, λu1, λs, λt, λv1, λv2, λv3); (ωλ

, ϑλ, 1 − (1 − ζ)
λ
)], λ≥ 0

[(λv3, λv2, λv1, λt, λs, λu1, λu2, λu3); (ω− λ
, ϑ− λ

, 1 − (1 − ζ)
− λ

)], λ< 0
􏼚

(5) P1 ⊗P2 � [(U3, U2, U1, S, T, V1, V2, V3); (ωω′, ϑϑ′,
ζ + ζ′ − ζζ′)]

where

U1 �

min u1u1′, v1u1′􏼈 􏼉, u1 ≥ 0,

min u1v1′, v1u1′􏼈 􏼉, u1 < 0, v1 ≥ 0,

min u1v1′, v1v1′􏼈 􏼉, v1 < 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

U2 �

min u2u2′, v2u2′􏼈 􏼉, u2 ≥ 0,

min u2v2′, v2u2′􏼈 􏼉, u2 < 0, v2 ≥ 0,

min u2v2′, v2v2′􏼈 􏼉, v2 < 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

U3 �

min u3u3′, v3u3′􏼈 􏼉, u3 ≥ 0,

min u3v3′, v3u3′􏼈 􏼉, u3 < 0, v3 ≥ 0,

min u3v3′, v3v3′􏼈 􏼉, v3 < 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

S �

min ss′, ts′􏼈 􏼉, s≥ 0,

min st′, ts′􏼈 􏼉, s< 0, t≥ 0,

min st′, tt′􏼈 􏼉, t< 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

T �

max st′, tt′􏼈 􏼉, s≥ 0,

max ss′, tt′􏼈 􏼉, s< 0, t1 ≥ 0,

max ss′, ts′􏼈 􏼉, t1 < 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

V1 �

max u1v1′, v1v1′􏼈 􏼉, u1 ≥ 0,

max u1u1′, v1v1′􏼈 􏼉, u1 < 0, v1 ≥ 0,

max u1u1′, v1u1′􏼈 􏼉, v1 < 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

V2 �

max u2v2′, v2v2′􏼈 􏼉, u2 ≥ 0,

max u2u2′, v2v2′􏼈 􏼉, u2 < 0, v2 ≥ 0,

max u2u2′, v2u2′􏼈 􏼉, v2 < 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

V3 �

max u3v3′, v3v3′􏼈 􏼉, u3 ≥ 0,

max u3u3′, v3v3′􏼈 􏼉, u3 < 0, v3 ≥ 0,

max u3u3′, v3u3′􏼈 􏼉, v3 < 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Definition 5 (see [53]). Two TrPFNs P1 � [(u3, u2, u1, s, t,

v1, v2, v3); (ω, ϑ, ζ)] and P2 � [(u3′, u2′, u1′, s′, t′, v1′, v2′, v3′)
;(ω′, ϑ′, ζ′)] are said to be equal if u3 � u3′, u2 � u2′,

u1 � u1′, s � s′, t � t′, v1 � v1′, v2 � v2′, v3 � v3′, ω � ω′, ϑ � ϑ′,
and ζ � ζ′.

Definition 6 (see [53]). A TrPFN P1 � [(u3, u2, u1, s, t,

v1, v2, v3); (ω, ϑ, ζ)] is said to be zero if u3 � 0, u2 � 0, u1 � 0,
s � 0, t � 0, v1 � 0, v2 � 0, v3 � 0, ω � 0, ϑ � 0, and ζ � 0.

Definition 7 (see [53]). Let p � [(u3, u2, u1, s, t, v1, v2, v3);

(ω, ϑ, ζ)] be a TrPFN, then ranking of P is symbolized as
R(P) and defined as
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R(P) �
ω s + t + u1 + v1( 􏼁 + ϑ s + t + u2 + v2( 􏼁 +(1 − ζ) s + t + u3 + v3( 􏼁

4
. (4)

3. Fully Picture Fuzzy Transportation Problems

In this section, we present a scheme to solve FPFTPs based
on PFLP formulation. 'e steps are explained as follows.

3.1. Steps to Find Picture Fuzzy Optimal Solution.
Consider a FPFTP containing q sources and r destinations in
which cost, supply, and demand are used as TrPFNs 􏽦CP

kl, 􏽥A
P

k ,
and 􏽥B

P

l , respectively.

MinimizeZ � 􏽘

q

k�1
􏽘

r

l�1

􏽦
C

P
kl ⊗

􏽦
X

P
kl, (5)

subject to

􏽘

r

l�1

􏽦
X

P
kl � 􏽥A

P

k ,∀ k � 1, 2, 3, . . . , q,

􏽘

r

l�1

􏽦
X

P
kl � 􏽥A

P

k ,∀ k � 1, 2, 3, . . . , q,

􏽥X
P

kl ≥ 0,∀ k � 1, 2, 3, . . . , q, ∀ l � 1, 2, 3, . . . , r,

(6)

where 􏽦CP
kl,

􏽦XP
kl,

􏽥A
P

k , and 􏽥B
P

l are all nonnegative TrPFNs.
To solve FPFTP equation (1), we give a criterion for

picture fuzzy optimal solution (PFOS).

Definition 8. A PFOS of the FPFTP equation (1) with
TrPFNs will be TrPFNs 􏽥X

P

kl if

(i) 􏽥X
P

kl are nonnegative TrPFNs.
(ii) R(􏽐

r
l�1

􏽦XP
kl) � R(􏽥A

P

k ), ∀k � 1, 2, 3, . . . , q.
(iii) R(􏽐

q

k�1
􏽦XP

kl) � R(􏽥B
P

l ), ∀l � 1, 2, 3, . . . , r.

(iv) If there exists any TrPFNs 􏽥X
P

kl′ satisfying the above
three conditions, then

R 􏽘

q

k�1
􏽘

r

l�1

􏽦
C

P
kl ⊗

􏽦
X

P
kl

⎛⎝ ⎞⎠<R 􏽘

q

k�1
􏽘

r

l�1

􏽦
C

P
kl ⊗

􏽦
X

P
kl

⎛⎝ ⎞⎠. (7)

Now, we explain the steps to determine the PFOS of
FPFTP as given in equation (2).

Step 1. Calculate total picture fuzzy supply and total picture
fuzzy demand.

If

􏽘

r

l�1

􏽥B
P

l � 􏽘

q

k�1

􏽥A
P

k , (8)

it is a balanced FPFTP.
If

􏽘

r

l�1

􏽥B
P

l ≠ 􏽘

q

k�1

􏽥A
P

k , (9)

it is an unbalanced FPFTP.
'at is,

[(a, b, c, d, e, f, g, h); (α, β, c)]

≠ a′, b′, c′, d′, e′, f′, g′, h′( 􏼁; α′, β′, c′( 􏼁􏼂 􏼃.
(10)

'en, one of the following case arises:

Case (a):

a≤ a′, b − a≤ b′ − a′, c − b≤ c′ − b′, d − c≤d′ − c′, e − d≤ e′ − d′, f − e≤f′ − e′,

g − f≤g′ − f′, h − g≤ h′ − g′.
(11)

Case (b):

a≥ a′, b − a≥ b′ − a′, c − b≥ c′ − b′, d − c≥d′ − c′, e − d≥ e′ − d′, f − e≥f′ − e′,

g − f≥g′ − f′, h − g≥ h′ − g′.
(12)

Case (c): when the above two cases do not hold, then
there may exists infinitely many nonnegative
TrPFNs:

a1, b1, c1, d1, e1, f1, g1, h1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃,

a1′, b1′, c1′, d1′, e1′, f1′, g1′, h1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃,
􏼨 (13)
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such that

[(a, b, c, d, e, f, g, h); (α, β, c)]⊕ a1, b1, c1, d1, e1, f1, g1, h1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃

� a′, b′, c′, d′, e′, f′, g′, h′( 􏼁; α′, β′, c′( 􏼁􏼂 􏼃⊕ a1′, b1′, c1′, d1′, e1′, f1′, g1′, h1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃,
(14)

but we have to determine such nonnegative TrPFNs as

a1, b1, c1, d1, e1, f1, g1, h1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃,

a1′, b1′, c1′, d1′, e1′, f1′, g1′, h1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃,
􏼨 (15)

which satisfy the following conditions.

(i) [(a1, b1, c1, d1, e1, f1, g1, h1); (α1, β1, c1)] and
[(a1′, b1′, c1′, d1′, e1′, f1′, g1′, h1′); (α1′, β1′, c1′)] are non-
negative TrPFNs.

(ii) It satisfies

[(a, b, c, d, e, f, g, h); (α, β, c)]⊕ a1, b1, c1, d1, e1, f1, g1, h1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃

� a′, b′, c′, d′, e′, f′, g′, h′( 􏼁; α′, β′, c′( 􏼁􏼂 􏼃⊕ a1′, b1′, c1′, d1′, e1′, f1′, g1′, h1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃.
(16)

(iii) Further, if there exists two nonnegative TrPFNs,

s1, t1, u1, v1, w1, x1, y1, z1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃,

s1′, t1′, u1′, v1′, w1′, x1′, y1′, z1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃,
(17)

such that

[(a, b, c, d, e, f, g, h); (α, β, c)]⊕ s1, t1, u1, v1, w1, x1, y1, z1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃

� a′, b′, c′, d′, e′, f′, g′, h′( 􏼁; α′, β′, c′( 􏼁􏼂 􏼃⊕ s1′, t1′, u1′, v1′, w1′, x1′, y1′, z1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃,
(18)

then

R s1, t1, u1, v1, w1, x1, y1, z1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃≥R a1, b1, c1, d1, e1, f1, g1, h1( 􏼁; α1, β1, c1( 􏼁􏼂 􏼃,

R s1′, t1′, u1′, v1′, w1′, x1′, y1′, z1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃≥R a1′, b1′, c1′, d1′, e1′, f1′, g1′, h1′( 􏼁; α1′, β1′, c1′( 􏼁􏼂 􏼃.
(19)

Step 2. Suppose
􏽦
C

P
kl � c

1
kl, c

2
kl, c

3
kl, c

4
kl, c

5
kl, c

6
kl, c

7
kl, c

8
kl􏼐 􏼑; ξkl,ψkl,ωkl( 􏼁􏽨 􏽩,

􏽦
X

P
kl � x

1
kl, x

2
kl, x

3
kl, x

4
kl, x

5
kl, x

6
kl, x

7
kl, x

8
kl􏼐 􏼑; σkl, τkl, υkl( 􏼁􏽨 􏽩,

􏽥A
P

k � a
1
k, a

2
k, a

3
k, a

4
k, a

5
k, a

6
k, a

7
k, a

8
k􏼐 􏼑; κk, λk, θk( 􏼁􏽨 􏽩,

􏽥B
P

l � b
1
l , b

2
l , b

3
l , b

4
l , b

5
l , b

6
l , b

7
l , b

8
l􏼐 􏼑; ηl, ϵl, χl( 􏼁􏽨 􏽩,

(20)

then FPFTP equation (1) can be transformed as follows:

Minimize Z � 􏽘

q

k�1
􏽘

r

l�1

c
1
kl, c

2
kl, c

3
kl, c

4
kl, c

5
kl, c

6
kl, c

7
kl, c

8
kl􏼐 􏼑;

ξkl,ψkl,ωkl( 􏼁

⎡⎢⎣ ⎤⎥⎦⊗
x
1
kl, x

2
kl, x

3
kl, x

4
kl, x

5
kl, x

6
kl, x

7
kl, x

8
kl􏼐 􏼑;

σkl, τkl, υkl( 􏼁

⎡⎢⎣ ⎤⎥⎦, (21)
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subject to

􏽘

r

l�1
x
1
kl, x

2
kl, x

3
kl, x

4
kl, x

5
kl, x

6
kl, x

7
kl, x

8
kl􏼐 􏼑; σkl, τkl, υkl( 􏼁􏽨 􏽩 � a

1
k, a

2
k, a

3
k, a

4
k, a

5
k, a

6
k, a

7
k, a

8
k􏼐 􏼑; κk, λk, θk( 􏼁􏽨 􏽩,

􏽘

q

k�1
x
1
kl, x

2
kl, x

3
kl, x

4
kl, x

5
kl, x

6
kl, x

7
kl, x

8
kl􏼐 􏼑; σkl, τkl, υkl( 􏼁􏽨 􏽩 � b

1
l , b

2
l , b

3
l , b

4
l , b

5
l , b

6
l , b

7
l , b

8
l􏼐 􏼑; ηl, ϵl, χl( 􏼁􏽨 􏽩,

(22)

where [(x1
kl, x2

kl, x3
kl, x4

kl, x5
kl, x6

kl, x7
kl, x8

kl); (σkl, τkl, υkl)] are
nonnegative TrPFNs.

Step 3. By applying arithmetic operations as described in
Section 2 and putting

c
1
kl, c

2
kl, c

3
kl, c

4
kl, c

5
kl, c

6
kl, c

7
kl, c

8
kl􏼑􏼑; t ξkl,ψkl,ωkl(􏼐 􏼑􏽨 􏽩⊗ x

1
kl, x

2
kl, x

3
kl, x

4
kl, x

5
kl, x

6
kl, x

7
kl, x

8
kl􏼑; t σkl, τkl, υkl(􏼐 􏼑􏽨 􏽩

� d
1
kl, d

2
kl, d

3
kl, d

4
kl, d

5
kl, d

6
kl, d

7
kl, d

8
kl􏼐 􏼑; μkl, δkl, ηkl( 􏼁􏽨 􏽩,

(23)

then the fully picture fuzzy linear programming problem
(FPFLPP) equation (2) can be transformed as follows:

Minimize Z � 􏽘

q

k�1
􏽘

r

l�1
d
1
kl, d

2
kl, d

3
kl, d

4
kl, d

5
kl, d

6
kl, d

7
kl, d

8
kl􏼐 􏼑; μkl, δkl, ηkl( 􏼁􏽨 􏽩 ,

(24)

subject to

􏽘

r

l�1
x
1
kl, x

2
kl, x

3
kl, x

4
kl, x

5
kl, x

6
kl, x

7
kl, x

8
kl􏼐 􏼑; σkl, τkl, υkl( 􏼁􏽨 􏽩 � a

1
k, a

2
k, a

3
k, a

4
k, a

5
k, a

6
k, a

7
k, a

8
k􏼐 􏼑; κk, λk, θk( 􏼁􏽨 􏽩,

􏽘

q

k�1
x
1
kl, x

2
kl, x

3
kl, x

4
kl, x

5
kl, x

6
kl, x

7
kl, x

8
kl􏼑􏼑; t σkl, τkl, υkl(􏼐 􏼑􏽨 􏽩 � b

1
l , b

2
l , b

3
l , b

4
l , b

5
l , b

6
l , b

7
l , b

8
l 􏼑; t ηl, ϵl, χl(􏼐 􏼑􏽨 􏽩,

(25)

where [(x1
kl, x2

kl, x3
kl, x4

kl, x5
kl, x6

kl, x7
kl, x8

kl); (σkl, τkl, υkl)] are
nonnegative TrPFNs.

Step 4. Now, by applying Definitions 5 and 7, then the
FPFLPP equation (3) can be transformed as follows:

MinimizeZ � 􏽘

q

k�1
􏽘

r

l�1
R d

1
kl, d

2
kl, d

3
kl, d

4
kl, d

5
kl, d

6
kl, d

7
kl, d

8
kl􏼐 􏼑; μkl, δkl, ηkl( 􏼁􏽨 􏽩 , (26)

subject to

􏽘

r

l�1
x
1
kl � a

1
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
2
kl � a

2
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
3
kl � a

3
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
4
kl � a

4
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
5
kl � a

5
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
6
kl � a

6
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
7
kl � a

7
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
8
kl � a

8
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
σkl � κk, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
τkl � λk, ∀k � 1, 2, 3, . . . , q,
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􏽘

r

l�1
υkl � θk, ∀k � 1, 2, 3, . . . , q,

􏽘

q

k�1
x
1
kl � b

1
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
2
kl � b

2
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
3
kl � b

3
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
4
kl � b

4
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
5
kl � b

5
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
6
kl � b

6
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
7
kl � b

7
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
8
kl � b

8
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
σkl � ηl, ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
τkl � ϵl, ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
υkl � χl, ∀l � 1, 2, 3, . . . , r,

(27)

where [((x1
kl, x2

kl, x3
kl, x4

kl, x5
kl, x6

kl, x7
kl, x8

kl)); (σkl, τkl, υkl)] are
nonnegative TrPFNs.

Step 5. To obtain PFOS, solve the following crisp linear/
nonlinear programming problem (LPP):

MinimizeZ � 􏽘

q

k�1
􏽘

r

l�1

1
4

μkl d
3
kl + d

4
kl + d

5
kl + d

6
kl􏼐 􏼑+

δkl d
2
kl + d

4
kl + d

5
kl + d

7
kl􏼐 􏼑+

1 − ηkl( 􏼁 d
1
kl + d

4
kl + d

5
kl + d

8
kl􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(28)

subject to

􏽘
r

l�1
x
1
kl � a

1
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
2
kl � a

2
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
3
kl � a

3
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
4
kl � a

4
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
5
kl � a

5
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
6
kl � a

6
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
7
kl � a

7
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
x
8
kl � a

8
k, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
σkl � κk, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
τkl � λk, ∀k � 1, 2, 3, . . . , q,

􏽘

r

l�1
υkl � θk, ∀k � 1, 2, 3, . . . , q,

􏽘

q

k�1
x
1
kl � b

1
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
2
kl � b

2
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
3
kl � b

3
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
4
kl � b

4
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
5
kl � b

5
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
6
kl � b

6
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
7
kl � b

7
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
x
8
kl � b

8
l , ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
σkl � ηl, ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
τkl � ϵl, ∀l � 1, 2, 3, . . . , r,

􏽘

q

k�1
υkl � χl, ∀l � 1, 2, 3, . . . , r,
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x
1
kl ≥ 0, x

2
kl − x

1
kl ≥ 0, x

3
kl − x

2
kl ≥ 0, x

4
kl − x

3
kl ≥ 0, x

5
kl − x

4
kl

≥ 0, x
6
kl − x

5
kl ≥ 0, x

7
kl − x

6
kl ≥ 0, x

8
kl − x

7
kl ≥ 0, σkl ≥ 0,

τkl ≥ 0, υkl ≥ 0, σkl + τkl + υkl

≤ 1, ∀k � 1, 2, . . . , q, ∀l � 1, 2, . . . , r.

(29)

Step 6. Solve crisp linear/non-LPP equation (28) to get
optimal solution:

x
1∗kl, x

2∗kl, x
3∗kl, x

4∗kl, x
5∗kl, x

6∗kl, x
7∗kl, x

8∗kl, σ
∗
kl, τ
∗
kl, υ
∗
kl􏽮 􏽯.

(30)

Step 7. Find the PFOS 􏽥X
P

kl of the FPFTP (1) by putting values
of x1∗kl, x2∗kl, x3∗kl, x4∗kl, x5∗kl, x6∗kl, x7∗kl, x8∗kl, σ∗kl, τ

∗
kl,

and υ∗kl in 􏽥X
P

kl � [(x1∗kl, x2∗kl, x3∗kl, x4∗kl, x5∗kl, x6∗kl,

x7∗kl, x8∗kl); (σ∗kl, τ
∗
kl, υ
∗
kl)].

Step 8. Find picture fuzzy transportation cost/optimal value
of FPFTP equation (1) by assigning values of 􏽥X

P

kl, as obtained
in Step (7), in 􏽐

q

k�1 􏽐
r
l�1

􏽦CP
kl ⊗

􏽦XP
kl.

4. Numerical Examples

In this section, to explain the proposed methodology, we
present a model related to FPFTPs.

Example 1. (FPFTP based on PFLP formulation). A com-
pany containing two plants produces urea fertilizer with
picture fuzzy availabilities of

Proof. [(15, 35, 45, 60, 75, 95, 110, 200); (0.92, 0.02, 0.01)]

ton and [(10, 25, 50, 70, 90, 120, 130, 190); (0.80, 0.01, 0.02)]

ton, respectively, and supply it to two cities. 'e picture
fuzzy demand at two cities is [(20, 40, 50, 65,

85, 100, 140, 160); (0.92, 0.01, 0.02)]ton and [(30, 35, 40,

50, 100, 110, 150, 170); (0.76, 0.02, 0.01)]ton. 'e price per
ton by delivering the urea fertilizer at the two cities is
presented in Table 1.

Find the minimum picture fuzzy transportation cost.

Minimize

[(110, 150, 190, 210, 270, 300, 350, 390); (0.7, 0.1, 0.1)]⊗ 􏽥x11⊕

[(130, 180, 220, 250, 290, 340, 370, 410); (0.8, 0.1, 0.1)]⊗ 􏽥x12⊕

[(150, 250, 290, 350, 400, 440, 460, 500); (0.6, 0.1, 0.2)]⊗ 􏽥x21⊕

[(190, 210, 250, 270, 310, 330, 380, 430); (0.6, 0.1, 0.2)]⊗ 􏽥x22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (31)

subject to

􏽥x11⊕􏽥x12 � [(15, 35, 45, 60, 75, 95, 110, 200); (0.92, 0.02, 0.01)],

􏽥x21⊕􏽥x22 � [(10, 25, 50, 70, 90, 120, 130, 190); (0.80, 0.01, 0.02)],

􏽥x11⊕􏽥x21 � [(20, 40, 50, 65, 85, 100, 140, 160); (0.92, 0.01, 0.02)],

􏽥x12⊕􏽥x22 � [(30, 35, 40, 50, 100, 110, 150, 170); (0.76, 0.02, 0.01)],

(32)

where 􏽥x11, 􏽥x12, 􏽥x21, and 􏽥x22 are nonnegative TrPFNs.
Now,

Total supply� [(25, 60, 95, 130, 165, 215, 240, 390);

(0.9840, 0.0002, 0.0002)]

Total demand� [(50, 75, 90, 115, 185, 210, 290, 330);

(0.9808, 0.0002, 0.0002)]

For an unbalanced FPFTP, we add dummy row and
dummy column to make a balanced picture fuzzy TP.

Dummy row� [(25, 25, 25, 25, 60, 60, 115, 115);

(0.0000, 0.0000, 0.0000)]

Dummy column� [(0, 10, 30, 40, 40, 65, 65, 175);

(0.1666, 0.0000, 0.0000)]

'erefore, by supposing picture fuzzy transportation cost of
unit quantity of product from dummy source to all destinations
and from all sources to dummy destination to be zero TrPFNs,
then FPFLPP equation (31) can be transformed as follows:
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Minimize

[(110, 150, 190, 210, 270, 300, 350, 390); (0.7, 0.1, 0.1)]⊗ 􏽥x11⊕

[(130, 180, 220, 250, 290, 340, 370, 410); (0.8, 0.1, 0.1)]⊗ 􏽥x12⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ 􏽥x13⊕

[(150, 250, 290, 350, 400, 440, 460, 500); (0.6, 0.1, 0.2)]⊗ 􏽥x21⊕

[(190, 210, 250, 270, 310, 330, 380, 430); (0.6, 0.1, 0.2)]⊗ 􏽥x22⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ 􏽥x23⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ 􏽥x31⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ 􏽥x32⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ 􏽥x33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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􏽥x11⊕􏽥x12 � [(15, 35, 45, 60, 75, 95, 110, 200); (0.92, 0.02, 0.01)],

(33)

subject to

􏽥x11⊕􏽥x12⊕􏽥x13 � [(15, 35, 45, 60, 75, 95, 110, 200); (0.92, 0.02, 0.01)],

􏽥x21⊕􏽥x22⊕􏽥x23 � [(10, 25, 50, 70, 90, 120, 130, 190); (0.80, 0.01, 0.02)],

􏽥x31⊕􏽥x32⊕􏽥x33 � [(25, 25, 25, 25, 60, 60, 115, 115); (0.0000, 0.0000, 0.0000)],

􏽥x11⊕􏽥x21⊕􏽥x31 � [(20, 40, 50, 65, 85, 100, 140, 160); (0.92, 0.01, 0.02)],

􏽥x12⊕􏽥x22⊕􏽥x32 � [(30, 35, 40, 50, 100, 110, 150, 170); (0.76, 0.02, 0.01)],

􏽥x13⊕􏽥x23⊕􏽥x33 � [(0, 10, 30, 40, 40, 65, 65, 175); (0.1666, 0.0000, 0.0000)],

(34)

where 􏽥x11, 􏽥x12, 􏽥x13, 􏽥x21, 􏽥x22, 􏽥x23, 􏽥x31, 􏽥x32, and 􏽥x33, are
nonnegative TrPFNs.

By supposing,

􏽥x11 � χ11, δ11, ϵ11, η11, κ11, ϑ11,ω11, ζ11( 􏼁; α11, β11, c11( 􏼁􏼂 􏼃,

􏽥x12 � χ12, δ12, ϵ12, η12, κ12, ϑ12,ω12, ζ12( 􏼁; α12, β12, c12( 􏼁􏼂 􏼃,

􏽥x13 � χ13, δ13, ϵ13, η13, κ13, ϑ13,ω13, ζ13( 􏼁; α13, β13, c13( 􏼁􏼂 􏼃,

􏽥x21 � χ21, δ21, ϵ21, η21, κ21, ϑ21,ω21, ζ21( 􏼁; α21, β21, c21( 􏼁􏼂 􏼃,

􏽥x22 � χ22, δ22, ϵ22, η22, κ22, ϑ22,ω22, ζ22( 􏼁; α22, β22, c22( 􏼁􏼂 􏼃,

􏽥x23 � χ23, δ23, ϵ23, η23, κ23, ϑ23,ω23, ζ23( 􏼁; α23, β23, c23( 􏼁􏼂 􏼃,

􏽥x31 � χ31, δ31, ϵ31, η31, κ31, ϑ31,ω31, ζ31( 􏼁; α31, β31, c31( 􏼁􏼂 􏼃,

􏽥x32 � χ32, δ32, ϵ32, η32, κ32, ϑ32,ω32, ζ32( 􏼁; α32, β32, c32( 􏼁􏼂 􏼃,

􏽥x33 � χ33, δ33, ϵ33, η33, κ33, ϑ33,ω33, ζ33( 􏼁; α33, β33, c33( 􏼁􏼂 􏼃,

(35)

where 􏽥x11, 􏽥x12, 􏽥x13, 􏽥x21, 􏽥x22, 􏽥x23, 􏽥x31, 􏽥x32, and 􏽥x33 are
nonnegative TrPFNs, then the FPFLPP equation (33) can be
transformed as follows:

Table 1: Input data for FPFTP.

City(T1) City(T2)

Plant(S1) [(110, 150, 190, 210, 270, 300, 350, 390); (0.7, 0.1, 0.1)] [(130, 180, 220, 250, 290, 340, 370, 410); (0.8, 0.1, 0.1)]

Plant(S2) [(150, 250, 290, 350, 400, 440, 460, 500); (0.6, 0.1, 0.2)] [(190, 210, 250, 270, 310, 330, 380, 430); (0.6, 0.1, 0.2)]
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Minimize

[(110, 150, 190, 210, 270, 300, 350, 390); (0.7, 0.1, 0.1)]⊗

χ11, δ11, ϵ11, η11, κ11, ϑ11,ω11, ζ11( 􏼁; α11, β11, c11( 􏼁􏼂 􏼃⊕

[(130, 180, 220, 250, 290, 340, 370, 410); (0.8, 0.1, 0.1)]⊗

χ12, δ12, ϵ12, η12, κ12, ϑ12,ω12, ζ12( 􏼁; α12, β12, c12( 􏼁􏼂 􏼃⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ χ13, δ13, ϵ13, η13, κ13, ϑ13,ω13, ζ13( 􏼁; α13, β13, c13( 􏼁􏼂 􏼃⊕

[(150, 250, 290, 350, 400, 440, 460, 500); (0.6, 0.1, 0.2)]⊗

χ21, δ21, ϵ21, η21, κ21, ϑ21,ω21, ζ21( 􏼁; α21, β21, c21( 􏼁􏼂 􏼃⊕

[(190, 210, 250, 270, 310, 330, 380, 430); (0.6, 0.1, 0.2)]⊗

χ22, δ22, ϵ22, η22, κ22, ϑ22,ω22, ζ22( 􏼁; α22, β22, c22( 􏼁􏼂 􏼃⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ χ23, δ23, ϵ23, η23, κ23, ϑ23,ω23, ζ23( 􏼁; α23, β23, c23( 􏼁􏼂 􏼃⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ χ31, δ31, ϵ31, η31, κ31, ϑ31,ω31, ζ31( 􏼁; α31, β31, c31( 􏼁􏼂 􏼃⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ χ32, δ32, ϵ32, η32, κ32, ϑ32,ω32, ζ32( 􏼁; α32, β32, c32( 􏼁􏼂 􏼃⊕

[(0, 0, 0, 0, 0, 0, 0, 0); (0.0, 0.0, 0.0)]⊗ χ33, δ33, ϵ33, η33, κ33, ϑ33,ω33, ζ33( 􏼁; α33, β33, c33( 􏼁􏼂 􏼃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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, (36)

subject to

χ11, δ11, ϵ11, η11, κ11, ϑ11,ω11, ζ11( 􏼁; α11, β11, c11( 􏼁􏼂 􏼃⊕ χ12, δ12, ϵ12, η12, κ12, ϑ12,ω12, ζ12( 􏼁; α12, β12, c12( 􏼁􏼂 􏼃

⊕ χ13, δ13, ϵ13, η13, κ13, ϑ13,ω13, ζ13( 􏼁; α13, β13, c13( 􏼁􏼂 􏼃 � [(15, 35, 45, 60, 75, 95, 110, 200); (0.92, 0.02, 0.01)]

χ21, δ21, ϵ21, η21, κ21, ϑ21,ω21, ζ21( 􏼁; α21, β21, c21( 􏼁􏼂 􏼃⊕ χ22, δ22, ϵ22, η22, κ22, ϑ22,ω22, ζ22( 􏼁; α22, β22, c22( 􏼁􏼂 􏼃

⊕ χ23, δ23, ϵ23, η23, κ23, ϑ23,ω23, ζ23( 􏼁; α23, β23, c23( 􏼁􏼂 􏼃 � [(10, 25, 50, 70, 90, 120, 130, 190); (0.80, 0.01, 0.02)]

χ31, δ31, ϵ31, η31, κ31, ϑ31,ω31, ζ31( 􏼁; α31, β31, c31( 􏼁􏼂 􏼃⊕ χ32, δ32, ϵ32, η32, κ32, ϑ32,ω32, ζ32( 􏼁; α32, β32, c32( 􏼁􏼂 􏼃

⊕ χ33, δ33, ϵ33, η33, κ33, ϑ33,ω33, ζ33( 􏼁; α33, β33, c33( 􏼁􏼂 􏼃 � [(25, 25, 25, 25, 60, 60, 115, 115); (0.0000, 0.0000, 0.0000)]

χ11, δ11, ϵ11, η11, κ11, ϑ11,ω11, ζ11( 􏼁; α11, β11, c11( 􏼁􏼂 􏼃⊕ χ21, δ21, ϵ21, η21, κ21, ϑ21,ω21, ζ21( 􏼁; α21, β21, c21( 􏼁􏼂 􏼃

⊕ χ31, δ31, ϵ31, η31, κ31, ϑ31,ω31, ζ31( 􏼁; α31, β31, c31( 􏼁􏼂 􏼃 � [(20, 40, 50, 65, 85, 100, 140, 160); (0.92, 0.01, 0.02)]

χ12, δ12, ϵ12, η12, κ12, ϑ12,ω12, ζ12( 􏼁; α12, β12, c12( 􏼁􏼂 􏼃⊕ χ22, δ22, ϵ22, η22, κ22, ϑ22,ω22, ζ22( 􏼁; α22, β22, c22( 􏼁􏼂 􏼃

⊕ χ32, δ32, ϵ32, η32, κ32, ϑ32,ω32, ζ32( 􏼁; α32, β32, c32( 􏼁􏼂 􏼃 � [(30, 35, 40, 50, 100, 110, 150, 170); (0.76, 0.02, 0.01)]

χ13, δ13, ϵ13, η13, κ13, ϑ13,ω13, ζ13( 􏼁; α13, β13, c13( 􏼁􏼂 􏼃⊕ χ23, δ23, ϵ23, η23, κ23, ϑ23,ω23, ζ23( 􏼁; α23, β23, c23( 􏼁􏼂 􏼃

⊕ χ33, δ33, ϵ33, η33, κ33, ϑ33,ω33, ζ33( 􏼁; α33, β33, c33( 􏼁􏼂 􏼃 � [(0, 10, 30, 40, 40, 65, 65, 175); (0.1666, 0.0000, 0.0000)].

(37)

By applying arithmetic operations as described in Sec-
tion 2, the FPFLPP equation (37) can be transformed as
follows:
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Minimize

110χ11, 150δ11, 190ϵ11, 210η11, 270κ11, 300ϑ11, 350ω11, 390ζ11( 􏼁;

0.7α11, 0.1β11, 0.1 + c11 − 0.1c11( 􏼁
􏼠 􏼡􏼢 􏼣⊕

130χ12, 180δ12, 220ϵ12, 250η12, 290κ12, 340ϑ12, 370ω12, 410ζ12( 􏼁;

0.8α12, 0.1β12, 0.1 + c12 − 0.1c12( 􏼁
􏼠 􏼡􏼢 􏼣⊕

0χ13, 0δ13, 0ϵ13, 0η13, 0κ13, 0ϑ13, 0ω13, 0ζ13( 􏼁;

0.0α13, 0.0β13, 0.0 + c13 − 0.0c13( 􏼁
􏼠 􏼡􏼢 􏼣⊕

150χ21, 250δ21, 290ϵ21, 350η21, 400κ21, 440ϑ21, 460ω21, 500ζ21( 􏼁;

0.6α21, 0.1β21, 0.2 + c21 − 0.2c21( 􏼁
􏼠 􏼡􏼢 􏼣⊕

190χ22, 210δ22, 250ϵ22, 270η22, 310κ22, 330ϑ22, 380ω22, 430ζ22( 􏼁;

0.6α22, 0.1β22, 0.2 + c22 − 0.2c22( 􏼁
􏼠 􏼡􏼢 􏼣⊕

0χ23, 0δ23, 0ϵ23, 0η23, 0κ23, 0ϑ23, 0ω23, 0ζ23( 􏼁;

0.0α23, 0.0β23, 0.0 + c23 − 0.0c23( 􏼁
􏼠 􏼡􏼢 􏼣⊕

0χ31, 0δ31, 0ϵ31, 0η31, 0κ31, 0ϑ31, 0ω31, 0ζ31( 􏼁; 0.0α31, 0.0β31, 0.0 + c31 − 0.0c31( 􏼁( 􏼁􏼂 􏼃⊕

0χ32, 0δ32, 0ϵ32, 0η32, 0κ32, 0ϑ32, 0ω32, 0ζ32( 􏼁; 0.0α32, 0.0β32, 0.0 + c32 − 0.0c32( 􏼁( 􏼁􏼂 􏼃⊕

0χ33, 0δ33, 0ϵ33, 0η33, 0κ33, 0ϑ33, 0ω33, 0ζ33( 􏼁; 0.0α33, 0.0β33, 0.0 + c33 − 0.0c33( 􏼁( 􏼁􏼂 􏼃
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, (38)

subject to

χ11 + χ12 + χ13, δ11 + δ12 + δ13, ϵ11 + ϵ12 + ϵ13, η11 + η12 + η13,

κ11 + κ12 + κ13, ϑ11 + ϑ12 + ϑ13,ω11 + ω12 + ω13, ζ11 + ζ12 + ζ13
􏼠 􏼡;

α11 + α12 − α11α12
+α13 − α11α13 − α12α13
+α11α12α13, β11β12β13,

c11c12c13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(15, 35, 45, 60, 75, 95, 110, 200); (0.92, 0.02, 0.01)]

χ21 + χ22 + χ23, δ21 + δ22 + δ23, ϵ21 + ϵ22 + ϵ23, η21 + η22 + η23,

κ21 + κ22 + κ23, ϑ21 + ϑ22 + ϑ23,ω21 + ω22 + ω23, ζ21 + ζ22 + ζ23
􏼠 􏼡;

α21 + α22 − α21α22
+α23 − α21α23 − α22α23
+α21α22α23, β21β22β23,

c21c22c23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(10, 25, 50, 70, 90, 120, 130, 190); (0.80, 0.01, 0.02)]

χ31 + χ32 + χ33, δ31 + δ32 + δ33, ϵ31 + ϵ32 + ϵ33, η31 + η32 + η33,

κ31 + κ32 + κ33, ϑ31 + ϑ32 + ϑ33,ω31 + ω32 + ω33, ζ31 + ζ32 + ζ33
􏼠 􏼡;

α31 + α32 − α31α32
+α33 − α31α33 − α32α33
+α31α32α33, β31β32β33,

c31c32c33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(25, 25, 25, 25, 60, 60, 115, 115); (0.0000, 0.0000, 0.0000)]

χ11 + χ21 + χ31, δ11 + δ21 + δ31, ϵ11 + ϵ21 + ϵ31, η11 + η21 + η31,

κ11 + κ21 + κ31, ϑ11 + ϑ21 + ϑ31,ω11 + ω21 + ω31, ζ11 + ζ21 + ζ31
􏼠 􏼡;

α11 + α21 − α11α21
+α31 − α11α31 − α21α31
+α11α21α31, β11β21β31,

c11c21c31

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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� [(20, 40, 50, 65, 85, 100, 140, 160); (0.92, 0.01, 0.02)]

χ12 + χ22 + χ32, δ12 + δ22 + δ32, ϵ12 + ϵ22 + ϵ32, η12 + η22 + η32,

κ12 + κ22 + κ32, ϑ12 + ϑ22 + ϑ32,ω12 + ω22 + ω32, ζ12 + ζ22 + ζ32
⎛⎝ ⎞⎠;

α12 + α22 − α12α22

+α32 − α12α32 − α22α32

+α12α22α32, β12β22β32,

c12c22c32

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(30, 35, 40, 50, 100, 110, 150, 170); (0.76, 0.02, 0.01)]

χ13 + χ23 + χ33, δ13 + δ23 + δ33, ϵ13 + ϵ23 + ϵ33, η13 + η23 + η33,

κ13 + κ23 + κ33, ϑ13 + ϑ23 + ϑ33,ω13 + ω23 + ω33, ζ13 + ζ23 + ζ33
⎛⎝ ⎞⎠;

α13 + α23 − α13α23

+α33 − α13α33 − α23α33

+α13α23α33, β13β23β33,

c13c23c33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(0, 10, 30, 40, 40, 65, 65, 175); (0.1666, 0.0000, 0.0000)].

(39)

By applying Definition 7, the FPLPP equation (39) can be
transformed as follows:

Minimize R

110χ11 + 130χ12 + 150χ21 + 190χ22, 150δ11 + 180δ12 + 250δ21 + 210δ22,

190ϵ11 + 220ϵ12 + 290ϵ21 + 250ϵ22, 210η11 + 250η12 + 350η21 + 270η22,

270κ11 + 290κ12 + 400κ21 + 310κ22, 300ϑ11 + 340ϑ12 + 440ϑ21 + 330ϑ22,

350ω11 + 370ω12 + 460ω21 + 380ω22, 390ζ11 + 410ζ12 + 500ζ21 + 430ζ22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

0.7α11 + 0.8α12 − 0.56α11α12 + 0.6α21 − 0.42α11α21

− 0.48α12α21 + 0.336α11α12α21 + 0.6α22 − 0.42α11α22 − 0.48α12α22

+0.336α11α12α22 − 0.36α21α22 + 0.252α11α21α22

+0.288α12α21α22 − 0.2016α11α12α21α22, 0.0001β11β12β21β22,

0.1 + c11 − 0.1c11( 􏼁 0.1 + c12 − 0.1c12( 􏼁

0.2 + c21 − 0.2c21( 􏼁 0.2 + c22 − 0.2c22( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (40)
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subject to

χ11 + χ12 + χ13, δ11 + δ12 + δ13, ϵ11 + ϵ12 + ϵ13, η11 + η12 + η13,

κ11 + κ12 + κ13, ϑ11 + ϑ12 + ϑ13,ω11 + ω12 + ω13, ζ11 + ζ12 + ζ13
􏼠 􏼡;

α11 + α12 − α11α12
+α13 − α11α13 − α12α13
+α11α12α13, β11β12β13,

c11c12c13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(15, 35, 45, 60, 75, 95, 110, 200); (0.92, 0.02, 0.01)]

χ21 + χ22 + χ23, δ21 + δ22 + δ23, ϵ21 + ϵ22 + ϵ23, η21 + η22 + η23,

κ21 + κ22 + κ23, ϑ21 + ϑ22 + ϑ23,ω21 + ω22 + ω23, ζ21 + ζ22 + ζ23
􏼠 􏼡;

α21 + α22 − α21α22
+α23 − α21α23 − α22α23
+α21α22α23, β21β22β23,

c21c22c23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(10, 25, 50, 70, 90, 120, 130, 190); (0.80, 0.01, 0.02)]

χ31 + χ32 + χ33, δ31 + δ32 + δ33, ϵ31 + ϵ32 + ϵ33, η31 + η32 + η33,

κ31 + κ32 + κ33, ϑ31 + ϑ32 + ϑ33,ω31 + ω32 + ω33, ζ31 + ζ32 + ζ33
􏼠 􏼡;

α31 + α32 − α31α32
+α33 − α31α33 − α32α33
+α31α32α33, β31β32β33,

c31c32c33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(25, 25, 25, 25, 60, 60, 115, 115); (0.0000, 0.0000, 0.0000)]

χ11 + χ21 + χ31, δ11 + δ21 + δ31, ϵ11 + ϵ21 + ϵ31, η11 + η21 + η31,

κ11 + κ21 + κ31, ϑ11 + ϑ21 + ϑ31,ω11 + ω21 + ω31, ζ11 + ζ21 + ζ31
􏼠 􏼡;

α11 + α21 − α11α21
+α31 − α11α31 − α21α31
+α11α21α31, β11β21β31,

c11c21c31

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(20, 40, 50, 65, 85, 100, 140, 160); (0.92, 0.01, 0.02)]

χ12 + χ22 + χ32, δ12 + δ22 + δ32, ϵ12 + ϵ22 + ϵ32, η12 + η22 + η32,

κ12 + κ22 + κ32, ϑ12 + ϑ22 + ϑ32,ω12 + ω22 + ω32, ζ12 + ζ22 + ζ32
􏼠 􏼡;

α12 + α22 − α12α22
+α32 − α12α32 − α22α32
+α12α22α32, β12β22β32,

c12c22c32

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[(30, 35, 40, 50, 100, 110, 150, 170); (0.76, 0.02, 0.01)]

χ13 + χ23 + χ33, δ13 + δ23 + δ33, ϵ13 + ϵ23 + ϵ33, η13 + η23 + η33,

κ13 + κ23 + κ33, ϑ13 + ϑ23 + ϑ33,ω13 + ω23 + ω33, ζ13 + ζ23 + ζ33
􏼠 􏼡;

α13 + α23 − α13α23
+α33 − α13α33 − α23α33
+α13α23α33, β13β23β33,

c13c23c33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� [(0, 10, 30, 40, 40, 65, 65, 175); (0.1666, 0.0000, 0.0000)].

(41)
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Now, we solve the following crisp LPP:

Minimize
1
4

0.7α11 + 0.8α12 − 0.56α11α12 + 0.6α21 − 0.42α11α21(

− 0.48α12α21 + 0.336α11α12α21 + 0.6α22 − 0.42α11α22 − 0.48α12α22
+0.336α11α12α22 − 0.36α21α22 + 0.252α11α21α22

+0.288α12α21α22 − 0.2016α11α12α21α22􏼁 210η11 + 250η12(

+350η21 + 270η22 + 270κ11 + 290κ12 + 400κ21 + 310κ22􏼁

+ 190ϵ11 + 220ϵ12 + 290ϵ21 + 250ϵ22( 􏼁 + 300ϑ11 + 340ϑ12(

+440ϑ21 + 330ϑ22􏼁 + 0.0001β11β12β21β22( 􏼁

210η11 + 250η12 + 350η21 + 270η22 + 270κ11 + 290κ12 + 400κ21 + 310κ22( 􏼁(

+ 150δ11 + 180δ12 + 250δ21 + 210δ22( 􏼁 + 350ω11 + 370ω12(

+460ω21 + 380ω22􏼁 + 1 − 0.1 + c11 − 0.1c11( 􏼁(

0.1 + c12 − 0.1c12( 􏼁 0.2 + c21 − 0.2c21( 􏼁

0.2 + c22 − 0.2c22( 􏼁􏼁 210η11 + 250η12 + 350η21(

+270η22 + 270κ11 + 290κ12 + 400κ21 + 310κ22􏼁 + 110χ11 + 130χ12(

+150χ21 + 190χ22􏼁 + 390ζ11 + 410ζ12 + 500ζ21 + 430ζ22( 􏼁􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

subject to

χ11 + χ12 + χ13 � 15, χ21 + χ22 + χ23 � 10,

δ11 + δ12 + δ13 � 35, δ21 + δ22 + δ23 � 25,

ϵ11 + ϵ12 + ϵ13 � 45, ϵ21 + ϵ22 + ϵ23 � 50,

η11 + η12 + η13 � 60, η21 + η22 + η23 � 70,

κ11 + κ12 + κ13 � 75, κ21 + κ22 + κ23 � 90,

ϑ11 + ϑ12 + ϑ13 � 95, ϑ21 + ϑ22 + ϑ23 � 120,

ω11 + ω12 + ω13 � 110, ω21 + ω22 + ω23 � 130,

ζ11 + ζ12 + ζ13 � 200, ζ21 + ζ22 + ζ23 � 190,

χ31 + χ32 + χ33 � 25, χ11 + χ21 + χ31 � 20,

δ31 + δ32 + δ33 � 25, δ11 + δ21 + δ31 � 40,

ϵ31 + ϵ32 + ϵ33 � 25, ϵ11 + ϵ21 + ϵ31 � 50,

η31 + η32 + η33 � 25, η11 + η21 + η31 � 65,

κ31 + κ32 + κ33 � 60, κ11 + κ21 + κ31 � 85,

ϑ31 + ϑ32 + ϑ33 � 60, ϑ11 + ϑ21 + ϑ31 � 100,

ω31 + ω32 + ω33 � 115, ω11 + ω21 + ω31 � 140,

ζ31 + ζ32 + ζ33 � 115, ζ11 + ζ21 + ζ31 � 160,

χ12 + χ22 + χ32 � 30, χ13 + χ23 + χ33 � 0,

δ12 + δ22 + δ32 � 35, δ13 + δ23 + δ33 � 10,

ϵ12 + ϵ22 + ϵ32 � 40, ϵ13 + ϵ23 + ϵ33 � 30,
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η12 + η22 + η32 � 50, η13 + η23 + η33 � 40,

κ12 + κ22 + κ32 � 100, κ13 + κ23 + κ33 � 40,

ϑ12 + ϑ22 + ϑ32 � 110, ϑ13 + ϑ23 + ϑ33 � 65,

ω12 + ω22 + ω32 � 150, ω13 + ω23 + ω33 � 65,

ζ12 + ζ22 + ζ32 � 170, ζ13 + ζ23 + ζ33 � 175,

α11 + α12 − α11α12 α31 + α32 − α31α32

+α13 − α11α13 − α12α13 +α33 − α31α33 − α32α33

+α11α12α13 � 0.92, +α31α32α33 � 0.00,

β11β12β13 � 0.02, β31β32β33 � 0.00,

c11c12c13 � 0.01, c31c32c33 � 0.00,

α21 + α22 − α21α22 α11 + α21 − α11α21

+α23 − α21α23 − α22α23 +α31 − α11α31 − α21α31

+α21α22α23 � 0.80, +α11α21α31 � 0.92,

β21β22β23 � 0.01, β11β21β31 � 0.01,

c21c22c23 � 0.02, c11c21c31 � 0.02,

α12 + α22 − α12α22 α13 + α23 − α13α23

+α32 − α12α32 − α22α32 +α33 − α13α33 − α23α33

+α12α22α32 � 0.76, +α13α23α33 � 0.1666,

β12β22β32 � 0.02, β13β23β33 � 0.00,

c12c22c32 � 0.01, c13c23c33 � 0.00,

δ11 − χ11 ≥ 0, ϵ11 − δ11 ≥ 0, η11 − ϵ11 ≥ 0, κ11 − η11 ≥ 0, ϑ11 − κ11 ≥ 0,

ω11 − ϑ11 ≥ 0, ζ11 − ω11 ≥ 0, δ12 − χ12 ≥ 0, ϵ12 − δ12 ≥ 0, η12 − ϵ12 ≥ 0,

κ12 − η12 ≥ 0, ϑ12 − κ12 ≥ 0, ω12 − ϑ12 ≥ 0, ζ12 − ω12 ≥ 0, δ21 − χ21 ≥ 0,

ϵ21 − δ21 ≥ 0, δ13 − χ13 ≥ 0, ϵ13 − δ13 ≥ 0, η13 − ϵ13 ≥ 0, κ13 − η13 ≥ 0,

ϑ13 − κ13 ≥ 0, ω13 − ϑ13 ≥ 0, ζ13 − ω13 ≥ 0, η21 − ϵ21 ≥ 0, κ21 − η21 ≥ 0,

ϑ21 − κ21 ≥ 0, ω21 − ϑ21 ≥ 0, ζ21 − ω21 ≥ 0, δ22 − χ22 ≥ 0, ϵ22 − δ22 ≥ 0,

η22 − ϵ22 ≥ 0, κ22 − η22 ≥ 0, ϑ22 − κ22 ≥ 0, ω22 − ϑ22 ≥ 0, ζ22 − ω22 ≥ 0,

δ23 − χ23 ≥ 0, ϵ23 − δ23 ≥ 0, η23 − ϵ23 ≥ 0, κ23 − η23 ≥ 0, ϑ23 − κ23 ≥ 0,

ω23 − ϑ23 ≥ 0, ζ23 − ω23 ≥ 0, δ31 − χ31 ≥ 0, ϵ31 − δ31 ≥ 0, η31 − ϵ31 ≥ 0,

κ31 − η31 ≥ 0, ϑ31 − κ31 ≥ 0, ω31 − ϑ31 ≥ 0, ζ31 − ω31 ≥ 0, δ32 − χ32 ≥ 0,

ϵ32 − δ32 ≥ 0, η32 − ϵ32 ≥ 0, κ32 − η32 ≥ 0, ϑ32 − κ32 ≥ 0, ω32 − ϑ32 ≥ 0,

ζ32 − ω32 ≥ 0, δ33 − χ33 ≥ 0, ϵ33 − δ33 ≥ 0, η33 − ϵ33 ≥ 0, κ33 − η33 ≥ 0,
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ϑ33 − κ33 ≥ 0, ω33 − ϑ33 ≥ 0, ζ33 − ω33 ≥ 0, χ11 ≥ 0, χ12 ≥ 0, χ13 ≥ 0,

χ21 ≥ 0, χ22 ≥ 0, χ23 ≥ 0, χ31 ≥ 0, χ31 ≥ 0, χ32 ≥ 0, χ33 ≥ 0, α12 ≥ 0,

α13 ≥ 0, α21 ≥ 0, α22 ≥ 0, α23 ≥ 0, β11 ≥ 0, β12 ≥ 0, β21 ≥ 0, β22 ≥ 0,

β23 ≥ 0, β31 ≥ 0, β32 ≥ 0, β33 ≥ 0, c11 ≥ 0, c13 ≥ 0, c21 ≥ 0, c22 ≥ 0,

c23 ≥ 0, c31 ≥ 0, c32 ≥ 0, c33 ≥ 0, α11 ≥ 0, β13 ≥ 0, c12 ≥ 0,

α11 + β11 + c11 ≤ 1, α12 + β12 + c12 ≤ 1, α13 + β13 + c13 ≤ 1,

α21 + β21 + c21 ≤ 1, α22 + β22 + c22 ≤ 1, α23 + β23 + c23 ≤ 1,

α31 + β31 + c31 ≤ 1, α32 + β32 + c32 ≤ 1, α33 + β33 + c33 ≤ 1.

(43)

By using Software Maple, we get optimal solution.

χ11 � 15, δ11 � 35, ε11 � 45, η11 � 60, κ11 � 75, ϑ11 � 90, ω11 � 105, ζ11 � 125, α11 � 0.8000, β11 �

0.1000, c11 � 0.1000, χ12 � 0.0000, δ12 � 0.0000, ε12 � 0.0000, η12 � 0.0000, κ12 � 0.0000, ϑ12 � 0.0000,

ω12 � 0.0000, ζ12 � 20, α12 � 0.6000, β12 � 0.2000, c12 � 0.1000, χ13 � 0.0000, δ12 � 0.0000, ε13 � 0.0000,

η13 � 0.0000, κ13 � 0.0000, ϑ13 � 5, ω13 � 5, ζ13 � 55, α13 � 0.1666, β13 � 0.0000, c13 � 0.1000,

χ21 � 0.0000, δ21 � 0.0000, ε21 � 0.0000, η21 � 0.0000, κ21 � 0.0000, ϑ21 � 0.0000, ω21 � 0.0000

, ζ21 � 0.0000, α21 � 0.6000, β21 � 0.1000, c21 � 0.2000, χ22 � 10, δ22 � 15, ε22 � 20, η22 � 30, κ22 � 50,

ϑ22 � 60, ω22 � 70, ζ22 � 70, α22 � 0.5000, β22 � 0.1000, c22 � 0.1000, χ23 � 0.0000, δ23 � 10, ε23 � 30,

η23 � 40, κ23 � 40, ϑ23 � 60, ω23 � 60, ζ23 � 120, α23 � 0.0000, β23 � 0.0000, c23 � 0.0000, χ31 � 5,

δ31 � 5, ε31 � 5, η31 � 5, κ31 � 10, ϑ31 � 10, ω31 � 35, ζ31 � 35, α31 � 0.0000, β31 � 0.0000, c11 � 0.0000,

χ32 � 20, δ32 � 20, ε32 � 20, η32 � 20, κ32 � 50, ϑ32 � 50, ω32 � 80, ζ32 � 80, α32 � 0.0000, β32 �

0.0000, c32 � 0.0000, χ33 � 0.0000, δ33 � 0.0000, ε33 � 0.0000 η33 � 0.0000, κ33 � 0.0000, ϑ33 � 0.0000,

ω33 � 0.0000, ζ33 � 0.0000, α33 � 0.0000, β33 � 0.0000, c33 � 0.0000.

(44)

'e PFOS is

􏽥x11 � [(15, 35, 45, 60, 75, 90, 105, 125); (0.8000, 0.1000, 0.1000)],

􏽥x12 � [(0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 20); (0.6000, 0.2000, 0.1000)],

􏽥x13 � [(0.00, 0.00, 0.00, 0.00, 0.00, 5, 5, 55); (0.1666, 0.0000, 0.0000)],

􏽥x21 � [(0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00); (0.6000, 0.1000, 0.2000)],

􏽥x22 � [(10, 15, 20, 30, 50, 60, 70, 70); (0.5000, 0.1000, 0.1000)],

􏽥x23 � [(0.00, 10, 30, 40, 40, 60, 60, 120); (0.0000, 0.0000, 0.0000)],

􏽥x31 � [(5, 5, 5, 5, 10, 10, 35, 35); (0.0000, 0.0000, 0.0000)],

􏽥x32 � [(20, 20, 20, 20, 50, 50, 80, 80); (0.0000, 0.0000, 0.0000)],

􏽥x33 � [(0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00); (0.0000, 0.0000, 0.0000)].

(45)

'e picture fuzzy optimal value/transportation cost of
FPFTP is

16 Mathematical Problems in Engineering



[(3550, 8400, 13550, 20700, 35750, 46800, 63350, 87050);

(0.8974976, 0.00000002, 0.00467856)] and is shown graph-
ically in Figure 1. □

Example 2. (fully intuitionistic fuzzy transportation prob-
lem (FIFTP) based on FLP formulation).

Minimize

[(190, 210, 270, 300); (110, 210, 270, 390)]⊗ 􏽥x11⊕

[(220, 250, 290, 340); (130, 250, 290, 410)]⊗ 􏽥x12⊕

[(0, 0, 0, 0); (0, 0, 0, 0)]⊗ 􏽥x13⊕

[(290, 350, 400, 440); (150, 350, 400, 500)]⊗ 􏽥x21⊕

[(250, 270, 310, 330); (190, 270, 310, 430)]⊗ 􏽥x22⊕

[(0, 0, 0, 0); (0, 0, 0, 0)]⊗ 􏽥x23⊕

[(0, 0, 0, 0); (0, 0, 0, 0)]⊗ 􏽥x31⊕

[(0, 0, 0, 0); (0, 0, 0, 0)]⊗ 􏽥x32⊕

[(0, 0, 0, 0); (0, 0, 0, 0)]⊗ 􏽥x33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(46)

subject to

􏽥x11⊕􏽥x12⊕􏽥x13 � [(45, 60, 75, 95); (15, 60, 75, 200)],

􏽥x21⊕􏽥x22⊕􏽥x23 � [(50, 70, 90, 120); (10, 70, 90, 190)],

􏽥x31⊕􏽥x32⊕􏽥x33 � [(25, 25, 60, 60); (25, 25, 60, 115)],

􏽥x11⊕􏽥x21⊕􏽥x31 � [(50, 65, 85, 100); (20, 65, 85, 160)],

􏽥x12⊕􏽥x22⊕􏽥x32 � [(40, 50, 100, 110); (30, 50, 100, 170)],

􏽥x13⊕􏽥x23⊕􏽥x33 � [(30, 40, 40, 65); (0, 40, 40, 175)],

(47)

where 􏽥x11, 􏽥x12, 􏽥x13, 􏽥x21, 􏽥x22, 􏽥x23, 􏽥x31, 􏽥x32, and 􏽥x33, are
nonnegative TrIFNs.

'e intuitionistic fuzzy optimal value/transportation
cost of FIFTP [41] is

[(13550, 20700, 35750, 46800); (3550, 20700, 35750,

87050)] and is shown graphically in Figure 2.

Example 3. (fully fuzzy transportation problem (FFTP)
based on FLP formulation).

Minimize

[(190, 210, 270, 300)]⊗ 􏽥x11⊕[(220, 250, 290, 340)]⊗ 􏽥x12⊕[(0, 0, 0, 0)]⊗ 􏽥x13⊕

[(290, 350, 400, 440)]⊗ 􏽥x21⊕[(250, 270, 310, 330)]⊗ 􏽥x22⊕[(0, 0, 0, 0)]⊗ 􏽥x23⊕

[(0, 0, 0, 0)]⊗ 􏽥x31⊕[(0, 0, 0, 0)]⊗ 􏽥x32⊕[(0, 0, 0, 0)]⊗ 􏽥x33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (48)
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Figure 1: Graphical representation of picture fuzzy transportation cost.
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subject to

􏽥x11⊕􏽥x12⊕􏽥x13 � [(45, 60, 75, 95)]

􏽥x21⊕􏽥x22⊕􏽥x23 � [(50, 70, 90, 120)]

􏽥x31⊕􏽥x32⊕􏽥x33 � [(25, 25, 60, 60)]

􏽥x11⊕􏽥x21⊕􏽥x31 � [(50, 65, 85, 100)]

􏽥x12⊕􏽥x22⊕􏽥x32 � [(40, 50, 100, 110)]

􏽥x13⊕􏽥x23⊕􏽥x33 � [(30, 40, 40, 65)],

(49)

where 􏽥x11, 􏽥x12, 􏽥x13, 􏽥x21, 􏽥x22, 􏽥x23, 􏽥x31, 􏽥x32, and 􏽥x33 are
nonnegative TrFNs.

'e fuzzy optimal value/transportation cost of FFTP [35]
is [(13550, 20700, 35750, 46800)] and is shown graphically in
Figure 3.

5. Discussion

'epicture fuzzy optimal value/transportation cost obtained
in Example 1 by using the proposed method as discussed in
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Figure 2: Graphical representation of intuitionistic fuzzy transportation cost.
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Figure 3: Graphical representation of fuzzy transportation cost.

Table 2: Comparison of optimal values.
FPFTP [(3550, 8400, 13550, 20700, 35750, 46800, 63350, 87050)]

FIFTP [41] [(3550, 13550, 20700, 35750, 46800, 87050)]

FFTP [35] [(13550, 20700, 35750, 46800)]
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Section 3 is [(3550, 8400, 13550, 20700, 35750, 46800,

63350, 87050)] and can be illustrated as follows:

(i) 'e lowest amount of picture fuzzy transportation
cost is 3550 units

(ii) 'e feasible amount of picture fuzzy transportation
cost lies in [20700, 35750]

(iii) 'e highest amount of picture fuzzy transportation
cost is 87050 units

So, the least transportation cost will always be higher
than 3550 units and lower than 87050 units, and the
maximum chances of minimum transportation cost will
belong to [20700, 35750].

Furthermore, Examples 2 and 3 are considered in an
intuitionistic fuzzy environment and fuzzy environment,
respectively. 'e minimum intuitionistic fuzzy trans-
portation cost and minimum fuzzy transportation along
with picture fuzzy transportation cost are shown in Table 2.

Obviously, Table 2 demonstrates that the FPFTP gives
the best optimal value/transportation cost as compared with
FIFTP and FFTP.

6. Conclusion

PFS is the most comprehensive and generalized structure of
FS and IFS because it is characterized by membership
function, neutral membership function, and nonmembership
function. In this paper, we have proposed a new scheme to
discuss the fully picture fuzzy transportation problems. We
have introduced FPFTPs by considering all the variables as
nonnegative TrPFNs.'e FPFTPs have been developed on the
basis of picture fuzzy linear programming formulation. In
order to transform the FPFTPs into crisp linear/non-LPPs, a
ranking function is practised. 'e PFLP formulation tech-
nique has been applied to obtain the PFOSs in the form of
TrPFNs. Further, we have investigated and compared the fully
picture fuzzy transportation model with fully intuitionistic
fuzzy transportation model and fully fuzzy transportation
model to demonstrate that the proposed approach is more
comprehensive and reliable as compared with the existing
FIFTP approach [41] and FFTP approach [35].

In future, this work can be extended to

(1) LR-type fully picture fuzzy transportation problems
(2) LR-type bipolar single-valued neutrosophic trans-

portation problems
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Bipolar fuzzy sets (BFSs) are e�ective tool for dealing with bipolarity and fuzziness. �e sine trigonometric functions having two
signi�cant features, namely, periodicity and symmetry about the origin, are helping in decision analysis and information analysis.
Taking the advantage of sine trigonometric functions and signi�cance of BFSs, innovative sine trigonometric operational laws
(STOLs) are proposed. New aggregation operators (AOs) are developed based on proposed operational laws to aggregate bipolar
fuzzy information. Certain characteristics of these operators are also discussed, such as boundedness, monotonicity, and
idempotency. Moreover, a modi�ed superiority and inferiority ranking (SIR) method is proposed to cope with multicriteria group
decision-making (MCGDM) with bipolar fuzzy (BF) information. To exhibit the relevance and feasibility of this methodology, a
robust application of best medical tourism supply chain is presented. Finally, a comprehensive comparative and sensitivity
analysis is evaluated to validate the e�ciency of suggested methodology.

1. Introduction

Multicriteria group decision-making (MCGDM) is a process
to seek an optimal alternative and ranking of feasible al-
ternatives by a group of decision-experts under several stages
and several criteria. However, this process is desperate with
uncertainty due to data imprecision and vague perception.
As a result, crisp theory is insu�cient for dealing with
MCGDM problems. To deal with these matters, Zadeh [1]
initiated the conception of fuzzy set (FS) and membership
function. Later on, di�erent researchers presented di�erent
extensions of FSs including, intuitionistic fuzzy sets (IFSs)
[2], Pythagorean fuzzy sets (PyFSs) [3, 4], q-rung orthopair
fuzzy sets (q-ROFSs) [5], hesitant fuzzy sets (HFSs) [6],
neutrosophic sets (NSs) [7], single-valued NSs [8], picture
fuzzy sets (PFSs) [9], and spherical fuzzy sets (SFSs) [10–12].

�e fuzzy models are extremely useful in dealing with
uncertain MCGDM problems, and they have been widely
used by decision makers. Nevertheless, they all have one ¤aw
in common: they can only deal with one property and its

not-property at a time. �ey are unable to cope with any
property’s counter property. It is quite common in decision
analysis to have to consider both the positive and negative
aspects of a speci�c object. Some well-known contradictory
features in decision analysis include e�ects and side e�ects,
pro�t and loss, health and sickness, and so on. Zhang [13, 14]
propounded the abstraction of bipolar fuzzy sets (BFSs)
which deal with both a property and its counter property.
Lee [15] studied operations on bipolar-valued fuzzy sets.
Tehrim and Riaz [16] introduced connection numbers of
SPA theory for the decision support system by using the
IVBF linguistic VIKOR method. Jana and Pal [17] proposed
the BF-EDAS method for MCGDM problems. Liu et al. [18]
suggested an integrated bipolar fuzzy SWARA-MABAC
technique and utilized it for the safety risk and occupational
health diagnosis. Jana et al. [19] introduced BF-Dombi AOs
and Wei et al. [20] developed bipolar fuzzy Hamacher AOs.

Han et al. [21] proposed the TOPSIS method for
YinYang bipolar fuzzy cognitive TOPSIS. Wei et al. [22]
established MADM with IVBF information. Hamid et al.
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[23] initiated weighted aggregation operators for q-rung
orthopair m-polar fuzzy set. Akram et al. [24] proposed the
notion of complex fermatean fuzzy N-soft sets. AOs are
crucial in information aggregation and are subject to a
variety of operational laws. Based on algebraic operational
laws, Xu [25] and Xu and Yager [26] propounded weighted
averaging and geometric AOs for IFSs. Garg [27] introduced
interactive operators for IFSs. Huang [28] proposed intui-
tionistic fuzzy Hamacher aggregation operators. Gou and Xu
[29] suggested exponential operational laws (EOLs) for IFSs.

Li and Wei [30] proposed logarithmic operational laws
(LOLs) for IFSs. Peng et al. [31] proposed EOLs for q-ROFSs.
Similarly, the LOLs for PFSs [32] are also defined. Aside
from the exponential and logarithmic functions, sine trig-
onometric function is another suitable choice for infor-
mation fusion. (e two main characteristics are periodicity
and symmetry about the origin which aid in meeting the
decision makers’ expectations during object evaluation.
Abdullah et al. [33] developed STOLs for PFSs. Kabani [34]
studied Pakistan as a medical tourism destination. Muzaffar
and Hussain [35] investigated medical tourism to discuss the
challenge: are we ready to take the challenge. Zhang and Xu
[36] proposed TOPSIS for PFSs and PFNs with MCDM.

Mahmood et al. [37] proposed an innovative MCDM
method with spherical fuzzy soft rough (SFSR) average
aggregation operators. Ihsan et al. [38] presented the
MADM support model based on bijective hypersoft expert
set. Karaaslan and Karamaz [39] introduced an innovative
decision-making approach with HFPHFS. Alcantud [40]
introduced the novel concepts of soft topologies and fuzzy
soft topologies and investigated their relationships. Liu et al.
[41] introduced the idea of mining temporal association
rules based on temporal soft sets. Riaz et al. [42] introduced a
novel TOPSIS approach based on cosine similarity measures
and CBF-information. Zararsiz and Riaz [43] introduced the
notion of bipolar fuzzy metric spaces with application. Riaz
et al. [44] proposed distance and similarity measures for
bipolar fuzzy soft sets with application to pharmaceutical
logistics and supply chain management.

In 2021, Gergin et al. [45] modified the TOPSIS method
to deal the supplier selection for automotive industry.
Karamasa et al. [46] introduced the weighting factors which
affect the logistics out-sourcing decision-making problem.
Ali et al. [47] introduced Einstein geometric AO to deal
complex IVPFS, and its novel principles and its operational
laws are defined.Muhammad et al. [48] and Biswas et al. [49]
propounded multicriteria decision-making techniques to
deal real world problems. Milovanovic et al. [50] developed
uncertainty modeling using intuitionistic fuzzy numbers.

In 2021, Garg [51] introduced some robust STOLs, its
operational laws for PFSs, and AOs and algorithms to in-
terpret MCDM. In 2021, Mahmood et al. [52] interpreted
BCFHWA, BCFHOWA, BCFHHA, BCFHWG,
BCFHOWG, and BCFHHG operators. Palanikumar et al.
[53] proposed some new methods to solve MCDM based on
PNSNIVS. A notion of PNSNIVWA, PNSNIVWG,
GPNSNIVWA, and GPNSNIVWG is also discussed in the
article. In 2021, Jana et al. [54] applied IFDHWA and

IFDHWG AO to evaluate enterprise financial performance.
In 2021, Jana et al. [55] extended Dombi operations towards
single-valued trapezoidal neutrosophic numbers
(SVTrNNs). (ey also presented Dombi operation on
SVTrNNs, and they proposed some new averaging and
geometric averaging operators named as SVTrN Domi
weighted averaging (SVTrNDWA) operator, SVTrN Dombi
ordered weighted averaging (SVTrNDOWA) operator,
SVTrN Dombi hybrid weighted averaging (SVTrNDHWA)
operator, SVTrN Dombi weighted geometric
(SVTrNDWGA) operator, SVTrN Dombi ordered weighted
geometric (SVTrNDOWGA) operator, and SVTrN Dombi
hybrid weighted geometric (SVTrNDHWGA) operator. In
2022, Ajay et al. [56] extended the STOLs for NSs and CNSs
and defined the operational laws and their functionality.
(ey also defined distance measures and ST-AOs. In 2022,
Qiyas et al. [57] defined some reliable STOLs for SFNs and
defined ST-OAs to deal real world problems.

(e superiority and inferiority ranking (SIR) technique
is a generalization of the eminent PROMETHEE method.
(is technique employs superiority and inferiority infor-
mation to represent decision makers’ behavior toward each
criterion and to determine the degrees of domination and
subordination of each alternative, from which superiority
and inferiority flows are derived. It was introduced by Xu
[58]. Chai and Liu [59] proposed the IF-SIR method to deal
with MCGDM problems. Peng and Yang [60] extended the
SIR technique to pythagorean fuzzy data. Zhu et al. [61]
proposed the SIR approach for q-ROFSs.

Keeping in mind the importance of sine trigonometric
function and SIR method, the aims and perks of this
manuscript are as follows:

(1) To address bipolarity and uncertainty, innovative
sine trigonometric operational laws (STOLs) are
proposed for bipolar fuzzy sets (BFSs).

(2) Averaging AOs are developed named as sine trigo-
nometric bipolar fuzzy weighted averaging (ST-
BFWA) operator, sine trigonometric bipolar fuzzy
ordered weighted averaging (ST-BFOWA) operator,
and sine trigonometric bipolar fuzzy hybrid
weighted averaging (ST-BFHWA) operator.

(3) Geometric AOs are proposed including sine trigo-
nometric bipolar fuzzy weighted geometric (ST-
BFWG) operator, sine trigonometric bipolar fuzzy
ordered weighted geometric (ST-BFOWG) operator,
and sine trigonometric bipolar fuzzy hybrid
weighted geometric (ST-BFHWG) operator.

(4) Certain aspects of proposed operators are also dis-
cussed, such as idempotency, boundedness, and
monotonicity.

(5) A modified SIR method by using features of pro-
posed operators is proposed to cope with MCGDM
problems.

(6) A robust application of best medical tourism supply
chain is presented by using a modified SIR technique
involving sine trigonometric AOs.
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(e layout of the remaining manuscript is as follows. In
Section 2, some fundamental concepts about BFSs are
reviewed. In Section 3, we define STOLs for BFSs and discuss
their properties. In Sections 4 and 5, we introduce novel AOs
based on BF-STOLs and explore their characteristics. Sec-
tion 6 provides an extended version of the SIR technique for
dealing with MCGDM problems using bipolar fuzzy data. A
numerical illustration and a comparative analysis are also
proffered to validate the efficaciousness of the propounded
technique. Finally, in Section 7, there are some closing
remarks.

2. Preliminaries

(is section includes some rudimentary abstractions related
to BFSs. (roughout this manuscript, we consider Y as
universe of discourse.

Definition 1 (see [13]). A BFS B on Y can be described as

B � 〈y,ℵ+
B(y),ℵ−

B(y)〉: y ∈ Y􏼈 􏼉, (1)

where ℵ+
B(y) ∈ [0, 1] denotes positive membership degree

and ℵ−
B(y) ∈ [− 1, 0] denotes negative membership degree

of an element y ∈ Y . A bipolar fuzzy number (BFN) can be
expressed as B � 〈ℵ+

B,ℵ−
B〉.

In 2015, Gul proposed operational laws of BFNs in his
M.Phil (esis.

Definition 2 [62]. Let B1 � 〈ℵ+
B1

,ℵ−
B1

〉 and
B2 � 〈ℵ+

B2
,ℵ−

B2
〉 be two BFNs and σ ∈ (0,∞), then op-

erational laws between them can be defined as

(i) B1 ⊕B2 � 〈ℵ+
B1

+ ℵ+
B2

− ℵ+
B1
ℵ+

B2
, − ℵ−

B1
ℵ−

B2
〉

(ii)
B1 ⊗B2 � 〈ℵ+

B1
ℵ+

B2
, − ((− ℵ−

B1
) + (− ℵ−

B2
) − ℵ−

B1
ℵ−

B2
)〉

(iii) σB1 � 〈1 − (1 − ℵ+
B1

)σ , − (− ℵ−
B1

)σ〉

(iv) Bσ
1 � 〈(ℵ+

B1
)σ , − (1 − (1 − (− ℵ−

B1
))σ)〉

(v) Bc
1 � 〈1 − ℵ+

B1
, − 1 − ℵ−

B1
〉

(vi) B1 ≺B2 if ℵ+
B1
≤ℵ+

B2
and ℵ−

B1
≥ℵ−

B2

(vii) B1 � B2 if B1 ≺B2 and B2 ≺B1

Definition 3 (see [20]). For a BFNB � 〈ℵ+
B,ℵ−

B〉, score and
accuracy functions can be expressed as

Scr(B) �
1 + ℵ+

B + ℵ−
B

2
, (2)

Acr(B) �
ℵ+

B − ℵ−
B

2
. (3)

(e values of score and accuracy functions are used to
compare two BFNs. For two BFNs B1 and B2,

(i) If Scr(B1)< Scr(B2), then B1 <B2

(ii) If Scr(B1)> Scr(B2), then B1 >B2

(iii) If Scr(B1) � Scr(B2), then B1 <B2 if
Acr(B1)<Acr(B2)

(iv) If Scr(B1) � Scr(B2), then B1 >B2 if
Acr(B1)>Acr(B2)

(v) If Scr(B1) � Scr(B2), then B1 � B2 if
Acr(B1) � Acr(B2)

Definition 4 (see [21]). If B1 and B2 are two BFSs on
Y � y1, y2, . . . , yn􏼈 􏼉, then the normalized Hamming dis-
tance between them is calculated as

d B1,B2( 􏼁 �
1
2n

􏽘

n

i�1
ℵ+

B1
yi( 􏼁 − ℵ+

B2
yi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ℵ−
B1

yi( 􏼁 − ℵ−
B2

yi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓.

(4)

3. Sine Trigonometric Operational
Laws for BFSs

In this section, we suggest sine trigonometric operational
laws (STOLs) for BFNs and investigate some useful results.

Definition 5. LetB � 〈y,ℵ+
B(y),ℵ−

B(y)〉: y ∈ Y􏼈 􏼉 be a BFS
on Y . A sine trigonometric operator on B can be defined as

sinB � 􏼪y, sin
π
2
ℵ+

B(y)􏼒 􏼓, sin
π
2

1 + ℵ−
B(y)( 􏼁􏼒 􏼓 − 1􏼫: y ∈ Y

⎧⎨

⎩

⎫⎬

⎭.

(5)

Clearly, sinB is again a BFS on Y because
sin((π/2)ℵ+

B(y)) ∈ [0, 1] and sin((π/2)(1 + ℵ−
B(y))) − 1 ∈

[− 1, 0] serve as positive and negative membership degrees,
respectively, for every element y ∈ Y . (e set sinB is called
sine trigonometric-BFS (ST-BFS).

Definition 6. Let B � 〈ℵ+
B,ℵ−

B〉 be a BFN, then

sinB � 􏼪sin
π
2
ℵ+

B􏼒 􏼓, sin
π
2

1 +ℵ−
B( 􏼁􏼒 􏼓 − 1􏼫, (6)

is called ST-BFN.

Definition 7 For two BFNs B1 � 〈ℵ+
B1

,ℵ−
B1

〉 and
B2 � 〈ℵ+

B2
,ℵ−

B2
〉, we propose STOLs as follows:

(i) sin B1 ⊕ sin B2 � 1 − (1 − sin((π/2)ℵ+
B1

))(1 −

sin ((π/2)ℵ+
B1

)), − (sin((π/2)(1 + ℵ−
B1

)) − 1) 〉

〈 (sin((π/2)(1 +ℵ−
B2

)) − 1)

(ii) sin B1 ⊗ sin B2 � 〈sin((π/2)ℵ+
B1

)sin((π/2)ℵ+
B1

),

− (1 − sin((π/2)(1 +ℵ−
B1

))sin((π/2)(1 +ℵ−
B2

)))〉

(iii) σ sin B1 � 〈1 − (1 − sin((π/2)ℵ+
B1

))σ ,

− (− (sin((π/2)(1 + ℵ−
B1

))) − 1)σ〉; σ > 0
(iv) (sin B1)

σ � 〈(sin((π/2)ℵ+
B1

))σ ,

− (1 − (sin((π/2)(1+ ℵ−
B1

)))σ)〉; σ > 0

Theorem 1. LetB1 � 〈ℵ+
B1

,ℵ−
B1

〉 andB2 � 〈ℵ+
B2

,ℵ−
B2

〉 be
two BFNs and σ > 0, σ1 > 0, σ2 > 0 be three real numbers, then

(i) σ(sin B1 ⊕ sin B2) � σ sin B1 ⊕ σ sin B2

(ii) (sin B1 ⊗ sin B2)
σ � (sin B1)

σ ⊗ (sin B2)
σ

(iii) σ1 sin B1 ⊕ σ2 sin B1 � (σ1 + σ2)sin B1
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(iv) (sin B1)
σ1 ⊗ (sin B1)

σ2 � (sin B1)
σ1+σ2 Proof. We substantiate (i) and (iv), and others can be

substantiated similarly.

(i) For σ > 0,

σ sin B1 ⊕ sin B2( 􏼁 � 􏼪1 − 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
1 − sin

π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

σ
,

− − sin
π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ

− sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ
􏼫

� 􏼪1 − 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − − sin

π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ
􏼫

⊕􏼪1 − 1 − sin
π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

σ
, − − sin

π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ
􏼫 � σ sin B1 ⊕ σ sin B2.

(7)

(iv ) For σ1, σ2 > 0,

sin B1( 􏼁
σ1 ⊗ sin B1( 􏼁

σ2 �〈 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ1
, − 1 − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ1

􏼒 􏼓〉

⊗ 〈 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ2
, − 1 − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ2

􏼒 􏼓〉

� sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ1
sin

π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ2
, 〉

〈 − 1 − sin
π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ1

sin
π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ2

􏼒 􏼓〉

�〈 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ1+σ2
, − 1 − sin

π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ1+σ2

􏼒 􏼓〉

� sin B1( 􏼁
σ1+σ2 .

(8)

□
Definition 8. Let B � 〈ℵ+

B,ℵ−
B〉 be a BFN and sinB be the

corresponding ST-BFN, then

(sinB)
c

�〈1 − sin
π
2
ℵ+

B􏼒 􏼓, − sin
π
2

1 + ℵ−
B( 􏼁􏼒 􏼓〉, (9)

is called complement of sinB.

Theorem 2. LetB1 � 〈ℵ+
B1

,ℵ−
B1

〉 andB2 � 〈ℵ+
B2

,ℵ−
B2

〉 be
two BFNs and σ > 0, then

(i )σ(sin B1)
c � ((sin B1)

σ)c

(ii) ((sin B1)
c)σ � (σ sin B1)

c

(iii) (sin B1 ⊕ sin B2)
c � (sin B1)

c ⊗ (sin B2)
c

(iv) (sin B1 ⊗ sin B2)
c � (sin B1)

c ⊕ (sin B2)
c

Proof. We substantiate (i) and (iv), and others can be
substantiated similarly.

(i)

sin B1( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓, − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼫,

σ sin B1( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − − − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓􏼒 􏼓
σ
􏼫.

(10)
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Now,

sin B1( 􏼁
σ

� 􏼪 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − 1 − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ

􏼒 􏼓􏼫,

sin B1( 􏼁
σ

( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − sin

π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ
􏼫

� σ sin B1( 􏼁
c
.

(11)

(iv)

sin B1 ⊗ sin B2( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓sin

π
2
ℵ+

B2
􏼒 􏼓, − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼫,

sin B1( 􏼁
c ⊕ sin B2( 􏼁

c
� 􏼪1 − sin

π
2
ℵ+

B1
􏼒 􏼓, − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼫⊕􏼪1 − sin
π
2
ℵ+

B2
􏼒 􏼓, − sin

π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼫

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓sin

π
2
ℵ+

B2
􏼒 􏼓, − − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓 − sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼒 􏼓􏼫

� sin B1 ⊗ sin B2( 􏼁
c
.

(12)

□
Theorem 3. . LetB1 andB2 be two BFNs withB1 ≺B2, i.e.,
ℵ+

B1
≤ℵ+

B2
and ℵ−

B1
≥ℵ−

B2
, then sin B1 ≺ sin B2.

Proof. Since sine is an increasing function on the interval
[0, (π/2)] so for ℵ+

B1
≤ℵ+

B2
, we have

sin((π/2)ℵ+
B1

)≤ sin((π/2)ℵ+
B2

). Likewise, for ℵ−
B1
≥ℵ−

B2
,

we obtain 1 + ℵ−
B1
≥ 1 +ℵ−

B2
. (is implicates that

sin((π/2)(1 + ℵ−
B1

))≥ sin((π/2)(1 +ℵ−
B2

)) which further
implicates that sin((π/2)(1 + ℵ−

B1
)) − 1≥ sin((π/2)

(1 + ℵ−
B2

)) − 1. Hence, by Definition 2 (part (vi)), we have
sin B1 � 〈sin((π/2)ℵ+

B1
), sin((π/2)(1 + ℵ−

B1
)) − 1〉

≺ 〈sin((π/2)ℵ+
B2

), sin((π/2)(1 +ℵ−
B2

)) − 1〉 � sin B2. □

4. Bipolar Fuzzy Sine Trigonometric Averaging
Aggregation Operators

In this section, some new averaging AOs have been proposed
on the basis of STOLs of BFNs. (ese aggregation operators

include (i) ST-BFWA operator, (ii) ST-BFOWA operator,
and (iii) ST-BFHWA operator.

4.1. ST-BFWA Operator

Definition 9. . Let Bi, i � 1, 2, . . . , n, be a compendium of
BFNs and φ � (φ1,φ2, . . . ,φn) be the weights of Bi,
i � 1, 2, . . . , n, with φi > 0 and 􏽐

n
i�1 φi � 1. (en, ST-BFWA

operator is described as

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � φ1 sin B1 ⊕φ2 sin B2 ⊕ · · · ⊕φn sin Bn.

(13)

Theorem 4. . Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉 be n BFNs, then their
cumulative value acquired by using (13) is again a BFN and is
given by

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
n

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫. (14)
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Proof. To prove the theorem, we employ mathematical
induction on n. For n � 2, we have

ST − BFWA B1,B2( 􏼁 � φ1 sin B1 ⊕φ2 sin B2

� 􏼪1 − 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φ1
, − − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ1

􏼫

⊕􏼪1 − 1 − sin
π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

φ2
, − − sin

π
2

1 +ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ2

􏼫

� 􏼪1 − 􏽙
2

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
2

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(15)

(is shows that our assertion is correct for n � 2. As-
sume that the result holds true for n � k, i.e.,

ST − BFWA B1,B2, . . . ,Bk( 􏼁 � φ1 sin B1 ⊕φ2 sin B2 ⊕ · · · ⊕φk sin Bk

� 􏼪1 − 􏽙
k

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
k

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(16)

Now, for n � k + 1, we have

ST − BFWA B1,B2, . . . ,Bk+1( 􏼁 � φ1 sin B1 ⊕φ2 sin B2 ⊕ · · · ⊕φk sin Bk ⊕φk+1 sin Bk+1

� 􏼪1 − 􏽙
k

i�1
1 − sin

π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
k

i�1
− sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫

⊕􏼪1 − 1 − sin
π
2
ℵ+

Bk+1
􏼒 􏼓􏼒 􏼓

φk+1
, − − sin

π
2

1 +ℵ−
Bk+1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φk+1

􏼫

� 􏼪1 − 􏽙
k+1

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
k+1

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(17)
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Hence, the result holds ∀n. □

Example 1. . Let B1 � (0.41, − 0.39), B2 � (0.66, − 0.21),
B3 � (0.59, − 0.46), and B4 � (0.72, − 0.56) be four BFNs
and φ � (0.23, 0.31, 0.27, 0.19) be the corresponding weight
vector, then

􏽙

4

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

� 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φ1
× 1 − sin

π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

φ2
× 1 − sin

π
2
ℵ+

B3
􏼒 􏼓􏼒 􏼓

φ3
× 1 − sin

π
2
ℵ+

B4
􏼒 􏼓􏼒 􏼓

φ4

� 1 − sin
π
2

(0.41)􏼒 􏼓􏼒 􏼓
0.23

× 1 − sin
π
2

(0.66)􏼒 􏼓􏼒 􏼓
0.31

× 1 − sin
π
2

(0.59)􏼒 􏼓􏼒 􏼓
0.27

× 1 − sin
π
2

(0.72)􏼒 􏼓􏼒 􏼓
0.19

� 0.1821,

􏽙

4

i�1
− sin

π
2

1 +ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

� − sin
π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ1

× − sin
π
2

1 +ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ2

× − sin
π
2

1 +ℵ−
B3

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ3

× − sin
π
2

1 +ℵ−
B4

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ4

� − sin
π
2

(1 − 0.39)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.23

× − sin
π
2

(1 − 0.21)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.31

× − sin
π
2

(1 − 0.46)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.27

× − sin
π
2

(1 − 0.56)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.19

� 0.1550.

(18)

Now,

ST − BFWA B1,B2,B3,B4( 􏼁 � 􏼪1 − 􏽙
4

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

,

− 􏽙
4

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫

� 〈1 − 0.1821, − 0.1550〉

� 〈0.8179, − 0.1550〉.

(19)

Theorem 5. . Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉, i � 1, 2, . . . , n, be a
compendium of BFNs and φ � (φ1,φ2, . . . ,φn) be the weight
vector with φi > 0 and 􏽐

n
i�1 φi � 1, then ST-BFWA operator

holds the properties listed as follows:

(i )Idempotency. If all BFNs are equal, i.e.,
Bi � B � 〈ℵ+

B,ℵ−
B〉, then

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � sinB. (20)

(ii) Monotonicity. Let B∗i � 〈ℵ+
B∗i

,ℵ−
B∗i

〉, i � 1, 2, . . . , n,
be another collection of BFNs such that Bi ≺B

∗
i ,

∀i � 1, 2, . . . , n, then

ST − BFWA B1,B2, . . . ,Bn( 􏼁

≺ ST − BFWA B
∗
1 ,B
∗
2 , . . . ,B

∗
n( 􏼁.

(21)

(iii) Boundedness. LetB � 〈min
i

(ℵ+
Bi

),max
i

(ℵ−
Bi

)〉 and
B � 〈max

i
(ℵ+

Bi
),min

i
(ℵ−

Bi
)〉, then

sinB ≺ ST − BFWA B1,B2, . . . ,Bn( 􏼁≺ sinB. (22)
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Proof
(i) Let Bi � B∀i � 1, 2, . . . , n. (en, by using (13), we

have

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

− 􏽙
n

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫

� 􏼪1 − 1 − sin
π
2
ℵ+

B􏼒 􏼓􏼒 􏼓
􏽐

n

i�1φi

− − sin
π
2

1 +ℵ−
B( 􏼁􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

􏽐
n

i�1φi

􏼫

� 􏼪1 − 1 − sin
π
2
ℵ+

B􏼒 􏼓􏼒 􏼓 − − sin
π
2

1 + ℵ−
B( 􏼁􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓􏼫

� 􏼪sin
π
2
ℵ+

B􏼒 􏼓, sin
π
2

1 + ℵ−
B( 􏼁􏼒 􏼓 − 1􏼫

� sinB.

(23)

(ii) Since Bi ≺B
∗
i , this implies that ℵ+

Bi
≤ℵ+

B∗i
and

ℵ−
Bi
≥ℵ−

B∗i
, ∀i � 1, 2, . . . , n. Suppose that

ST − BFWA(B1,B2, . . . ,Bn) � 〈 􏽥ℵ+
, 􏽥ℵ−

〉 and

ST − BFWA(B∗1 ,B∗2 , . . . ,B∗n ) � 〈 􏽥ℵ∗
+

, 􏽥ℵ∗
−

〉. Due
to the monotonicity of sine function, we get

sin
π
2
ℵ+

Bi
􏼒 􏼓≤ sin

π
2
ℵ+

B∗i
􏼒 􏼓,

⟹1 − sin
π
2
ℵ+

Bi
􏼒 􏼓≥ 1 − sin

π
2
ℵ+

B∗i
􏼒 􏼓,

⟹ 1 − sin
π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

≥ 1 − sin
π
2
ℵ+

B∗i
􏼒 􏼓􏼒 􏼓

φi

,

⟹􏽙
n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

≥􏽙
n

i�1
1 − sin

π
2
ℵ+

B∗i
􏼒 􏼓􏼒 􏼓

φi

,

⟹􏽥ℵ+
� 1 − 􏽙

n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

≤ 1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

B∗i
􏼒 􏼓􏼒 􏼓

φi

� 􏽥ℵ∗
+

.

(24)

Similarly,

sin
π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓≥ sin
π
2

1 +ℵ−
B∗i

􏼒 􏼓􏼒 􏼓,

⟹ sin
π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1≥ sin
π
2

1 + ℵ−
B∗i

􏼒 􏼓􏼒 􏼓 − 1,

⟹ − sin
π
2

1 +ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

≤ − sin
π
2

1 + ℵ−
B∗i

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

,

⟹􏽥ℵ−
� − 􏽙

n

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

≥ − 􏽙

n

i�1
− sin

π
2

1 + ℵ−
B∗i

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

� 􏽥ℵ∗
−

.

(25)

8 Mathematical Problems in Engineering



Since 􏽥ℵ+ ≤ 􏽥ℵ∗
+

and 􏽥ℵ− ≥ 􏽥ℵ∗
−

, we have

ST − BFWA B1,B2, . . . ,Bn( 􏼁⪯ ST − BFWA B
∗
1 ,B
∗
2 , . . . ,B

∗
n( 􏼁.

(26)

(iii) It is similar to the preceding proof, so we exclude
it. □

4.2. ST-BFOWA Operator

Definition 10. Let Bi, i � 1, 2, . . . , n, be a compendium of
BFNs, then ST-BFOWA operator is explicated as

ST − BFOWA B1,B2, . . . ,Bn( 􏼁

� φ1 sin Bη(1) ⊕φ2 sin Bη(2) ⊕ · · · ⊕φn sin Bη(n),
(27)

where (η(1), η(2), . . . , η(n)) is an arrangement of
(1, 2, . . . , n) with the constraint that
Bη(i− 1) ≥Bη(i) ∀i � 2, 3, . . . , n. It is noteworthy that the
weights φi with φi > 0 and 􏽐

n
i�1 φi � 1 are associated with the

ordered positions of BFNs Bi.

Theorem 6. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 acquired by utilizing ST-BFOWA operator

is still a BFN and is given by

ST − BFOWA B1,B2, . . . ,Bn( 􏼁

� 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

Bη(i)
􏼒 􏼓􏼒 􏼓

φi

,

− 􏽙

n

i�1
− sin

π
2

1 + ℵ−
Bη(i)

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(28)

Proof. Straightforward. □

Theorem 7. Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉, i � 1, 2, . . . , n, be a
compendium of BFNs and φ � (φ1,φ2, . . . ,φn) be the weight
vector with φi > 0 and 􏽐

n
i�1 φi � 1, then ST-BFOWA operator

satisfies the following properties:

(i) Idempotency. If Bi � B � 〈ℵ+
B,ℵ−

B〉,
∀i � 1, 2, . . . , n, then

ST − BFOWA B1,B2, . . . ,Bn( 􏼁 � sinB. (29)

(ii) Monotonicity. Let B∗i � 〈ℵ+
B∗i

,ℵ−
B∗i

〉, i � 1, 2, . . . , n,
be another collection of BFNs such that Bi ≺B

∗
i ,

∀i � 1, 2, . . . , n, then

ST − BFOWA B1,B2, . . . ,Bn( 􏼁⪯ ST − BFOWA B
∗
1 ,B
∗
2 , . . . ,B

∗
n( 􏼁.

(30)

(iii) Boundedness. If fi � 〈min
i

(ℵ+
Bi

),max
i

(ℵ−
Bi

)〉 and
B � 〈max

i
(ℵ+

Bi
),min

i
(ℵ−

Bi
)〉, then

sin B ≺ ST − BFOWA B1,B2, . . . ,Bn( 􏼁⪯ sinB. (31)

Proof. It is obvious. □

4.3. ST-BFHWA Operator

Definition 11. Let Bi, i � 1, 2, . . . , n, be a compendium of
BFNs and φ � (φ1,φ2, . . . ,φn) be the weight vector of Bi

with φi > 0 and 􏽐
n
i�1 φi � 1. A ST-BFHWA operator with

associated weight vector c � (c1, c2, . . . , cn) with ci > 0 and
􏽐

n
i�1 ci � 1 can be described as

ST − BFHWA B1,B2, . . . ,Bn( 􏼁

� c1 sin _Bη(1) ⊕ c2 sin _Bη(2) ⊕ · · · ⊕ cn sin _Bη(n),
(32)

where _Bi � nφiBi and (η(1), η(2), . . . , η(n)) is an ar-
rangement of (1, 2, . . . , n) with the stipulation that
_Bη(i− 1) ≥ _Bη(i) ∀i � 2, 3, . . . , n.

Theorem 8. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 acquired by utilizing ST-BFHWA operator

is still a BFN and is given by

ST − BFHWA B1,B2, . . . ,Bn( 􏼁

� 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

_Bη(i)
􏼒 􏼓􏼒 􏼓

ci

,

− 􏽙
n

i�1
− sin

π
2

1 + ℵ−
_Bη(i)

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
ci

􏼫.

(33)

Proof. Straightforward. □

5. Bipolar Fuzzy Sine Trigonometric Geometric
Aggregation Operators

In this section, we propose geometric aggregation operators
including (i) ST-BFWG operator, (ii) ST-BFOWG operator,
and (iii) ST-BFHWG operator.

5.1. ST-BFWG Operator

Definition 12. For n BFNs Bi, a ST-BFWG operator is
explicated as

ST − BFWG B1,B2, . . . ,Bn( 􏼁 � sin B1( 􏼁
φ1

⊗ sin B2( 􏼁
φ2 ⊗ · · · ⊗ sin Bn( 􏼁

φn .
(34)

Theorem 9. Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉 be n BFNs, then their
cumulative value obtained by utilizing ST-BFWG operator is
expressed as

Mathematical Problems in Engineering 9



ST − BFWG B1,B2, . . . ,Bn( 􏼁

� 􏼪 􏽙

n

i�1
sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

,

− 1 − 􏽙
n

i�1
sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φi

⎛⎝ ⎞⎠􏼫.

(35)

Proof. It is obvious. □

Example 2. Let B1 � (0.41, − 0.39), B2 � (0.66, − 0.21),
B3 � (0.59, − 0.46), and B4 � (0.72, − 0.56) be four BFNs
and φ � (0.23, 0.31, 0.27, 0.19) be the corresponding weight
vector, then

􏽙

4

i�1
sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

� sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φ1
× sin

π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

φ2
× sin

π
2
ℵ+

B3
􏼒 􏼓􏼒 􏼓

φ3
× sin

π
2
ℵ+

B4
􏼒 􏼓􏼒 􏼓

φ4

� sin
π
2

(0.41)􏼒 􏼓􏼒 􏼓
0.23

× sin
π
2

(0.66)􏼒 􏼓􏼒 􏼓
0.31

× sin
π
2

(0.59)􏼒 􏼓􏼒 􏼓
0.27

× sin
π
2

(0.72)􏼒 􏼓􏼒 􏼓
0.19

� 0.7841

􏽙

4

i�1
sin

π
2

1 +ℵ−
Bi

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φi

� sin
π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ1

× sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ2

× sin
π
2

1 +ℵ−
B3

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ3

× sin
π
2

1 +ℵ−
B4

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ4

� sin
π
2

(1 − 0.39)􏼒 􏼓􏼒 􏼓
0.23

× sin
π
2

(1 − 0.21)􏼒 􏼓􏼒 􏼓
0.31

􏼠

× sin
π
2

(1 − 0.46)􏼒 􏼓􏼒 􏼓
0.27

× sin
π
2

(1 − 0.56)􏼒 􏼓􏼒 􏼓
0.19

􏼠 � 0.7973.

(36)

Now,

ST − BFWG B1,B2,B3,B4( 􏼁 � 􏼪 􏽙

4

i�1
sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 1 − 􏽙
4

i�1
sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φi

⎛⎝ ⎞⎠〉

� 〈0.7841, − (1 − 0.7973)〉

� 〈0.7841, − 0.2027􏼫.

(37)

(e properties mentioned in (eorem 5, namely,
idempotency, monotonicity, and boundedness, also apply to
the ST-BFWG operator.

5.2. ST-BFOWG Operator

Definition 13. A ST-BFOWG operator is defined as
ST − BFOWG B1,B2, . . . ,Bn( 􏼁

� sin Bη(1)􏼐 􏼑
φ1 ⊗ sin Bη(2)􏼐 􏼑

φ2 ⊗ · · · ⊗ sin Bη(n)􏼐 􏼑
φn

,

(38)

where (η(1), η(2), . . . , η(n)) is an arrangement of
(1, 2, . . . , n) such that Bη(i− 1) ≥Bη(i) ∀i � 2, 3, . . . , n.

Theorem 10. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 acquired by utilizing ST-BFOWG operator

is expressed as

ST − BFOWG B1,B2, . . . ,Bn( 􏼁

� 􏼪 􏽙

n

i�1
sin

π
2
ℵ+

Bη(i)
􏼒 􏼓􏼒 􏼓

φi

,

− 1 − 􏽙
n

i�1
sin

π
2

1 + ℵ−
Bη(i)

􏼒 􏼓􏼒 􏼓􏼒 􏼓
φi

⎛⎝ ⎞⎠􏼫.

(39)

Proof. It is obvious.
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Idempotency, monotonicity, and boundedness are all
satisfied by the ST-BFOWG operator. □

5.3. ST-BFHWG Operator

Definition 14. A ST-BFHWG operator with associated
weight vector c � (c1, c2, . . . , cn) with ci > 0 and 􏽐

n
i�1 ci � 1

can be described as

ST − BFHWG B1,B2, . . . ,Bn( 􏼁

� sin _Bη(1)􏼐 􏼑
c1 ⊗ sin _Bη(2)􏼐 􏼑

c2 ⊗ · · · ⊗ sin _Bη(n)􏼐 􏼑
cn

.

(40)

where _Bi � (Bi)
nφi and (η(1), η(2), . . . , η(n)) is an ar-

rangement of (1, 2, . . . , n) such that
_Bη(i− 1) ≥ _Bη(i) ∀i � 2, 3, . . . , n.

Theorem 11. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 obtained by utilizing ST-BFHWG operator

is expressed as

ST − BFHWG B1,B2, . . . ,Bn( 􏼁

� 􏼪 􏽙

n

i�1
sin

π
2
ℵ+

_Bη(i)
􏼒 􏼓􏼒 􏼓

ci

,

− 1 − 􏽙
n

i�1
sin

π
2

1 + ℵ−
_Bη(i)

􏼒 􏼓􏼒 􏼓􏼒 􏼓
ci

⎛⎝ ⎞⎠􏼫.

(41)

Proof. Straightforward. □

6. Bipolar Fuzzy SIR Method

An MCGDM problem is made up of a finite number of
alternatives, a set of criteria, and a set of decision makers. To

solve an MCGDM problem, the most apposite alternative
must be chosen among those available. Let
A � 􏽢a1, 􏽢a2, . . . , 􏽢am􏼈 􏼉 be a set of alternatives and
C � 􏽢c1, 􏽢c2, . . . , 􏽢cn􏼈 􏼉 be a set of criteria. Suppose that the set of
decisionmakers isE � 􏽢e1, 􏽢e2, . . . , 􏽢el􏼈 􏼉 and their weight vector
is ϑ � ϑ1, ϑ2, . . . , ϑl􏼈 􏼉 where all the weights are BFNs.
Construct the individual decision matrices Hk � (hk

ij)m×n in
which hk

ij denotes the evaluation information of the alter-
native 􏽢ai w.r.t the criterion 􏽢cj provided by the decisionmaker
􏽢ek in the form of BFNs. Assume that φ � (φk

j)l×n is the
criterion weight matrix in which φk

j is the weight of criterion
􏽢cj assigned by the decision maker 􏽢ek in the form of BFNs. In
this section, we set up the BF-SIR technique to address this
MCGDM problem. (e steps in this technique are outlined
as follows:

Step 1. Compute the relative propinquity coefficient of
each ϑk, k � 1, 2, . . . , l, by the equation

δk �
d ϑk, ϑ( 􏼁

d ϑk, ϑ( 􏼁 + d ϑk, ϑ􏼐 􏼑
. (42)

where ϑ � 〈min
k

(ℵ+
ϑk

),max
k

(ℵ−
ϑk

)〉 and
ϑ � 〈max

k
(ℵ+

ϑk
),min

k
(ℵ−

ϑk
)〉. It is evident that if

ϑk⟶ ϑ, then δk⟶ 0, and if ϑk⟶ ϑ, then
δk⟶ 1.
Step 2. Normalize δk, k � 1, 2, . . . , l, by the equation

ζk �
δk

􏽐
l
k�1 δk

. (43)

In this way, we get a normalized vector
ζ � ζ1, ζ2, . . . , ζ l􏼈 􏼉 of relative propinquity coefficients.
Step 3. Acquire the accumulated bipolar fuzzy decision
matrix and the criterion weight vector by utilizing ST-
BFWA operator as follows:

􏽥hij � ST − BFWAζk
h
1
ij, h

2
ij, . . . , h

l
ij􏼐 􏼑

� 􏼪1 − 􏽙
l

k�1
1 − sin

π
2
ℵ+

hk
ij

􏼒 􏼓􏼒 􏼓
ζk

, − 􏽙
l

k�1
− sin

π
2

1 +ℵ−
hk

ij
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

ζk

􏼫.

(44)

􏽥φj � ST − BFWAζk
φ1

j ,φ2
j , . . . ,φl

j􏼐 􏼑

� 􏼪1 − 􏽙
l

k�1
1 − sin

π
2
ℵ+

φk
j

􏼒 􏼓􏼒 􏼓
ζk

, − 􏽙
l

k�1
− sin

π
2

1 +ℵ−
φk

j
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

ζk

􏼫.
(45)

Step 4. Obtain the relative efficiency function fij as
follows:

fij �
d 􏽥hij,

􏽥h􏼐 􏼑

d 􏽥hij,
􏽥h􏼐 􏼑 + d 􏽥hij,

􏽥h􏼒 􏼓

, (46)

where 􏽥h � 〈min
i

(ℵ+

􏽥hij

),max
i

(ℵ−

􏽥hij

)〉 and
􏽥h � 〈max

i
(ℵ+

􏽥hij

), min
i

(ℵ−

􏽥hij

)〉. It follows that if

􏽥hij⟶ 􏽥h , then fij⟶ 0, and if 􏽥hij⟶ 􏽥h, then
fij⟶ 1.
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Step 5. Compute the preference intensity PIj(􏽢ai, 􏽢at)

(i, t � 1, 2, . . . , m, i≠ t) which provides the degree of
preference of alternative 􏽢ai over alternative 􏽢at w.r.t the
criterion 􏽢cj and it can be defined as follows:

PIj 􏽢ai, 􏽢at( 􏼁 � λj fij − ftj􏼐 􏼑, (47)

where λj is a threshold function given by

λj(x) �
0.01, x> 0,

0, x≤ 0.
􏼨 (48)

Step 6. Construct the superiority matrix S � (Sij)m×n

and inferiority matrix I � (Iij)m×n by utilizing the
following equations:

(S − index) Sij � 􏽘

m

t�1
PIj 􏽢ai, 􏽢at( 􏼁

� 􏽘
m

t�1
λj fij − ftj􏼐 􏼑,

(49)

(I − index) Iij � 􏽘
m

t�1
PIj 􏽢at, 􏽢ai( 􏼁

� 􏽘
m

t�1
λj ftj − fij􏼐 􏼑.

(50)

Step 7. Calculate the superiority flow (S-flow) and
inferiority flow (I-flow) as follows:

λ> 􏽢ai( 􏼁 � ST − BFWASij
􏽥φ1, 􏽥φ2, . . . , 􏽥φn( 􏼁

�〈1 − 􏽙
n

j�1
1 − sin

π
2
ℵ+

􏽥φj
􏼒 􏼓􏼒 􏼓

Sij

,

− 􏽙
n

j�1
− sin

π
2

1 + ℵ−

􏽥φj
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

Sij

〉.

(51)

λ< 􏽢ai( 􏼁 � ST − BFWAIij
􏽥φ1, 􏽥φ2, . . . , 􏽥φn( 􏼁

� 􏼪1 − 􏽙
n

j�1
1 − sin

π
2
ℵ+

􏽥φj
􏼒 􏼓􏼒 􏼓

Iij

,

− 􏽙

n

j�1
− sin

π
2

1 + ℵ−

􏽥φj
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

Iij

〉.

(52)

Step 8. Compute the score functions of λ>(􏽢ai) and
λ<(􏽢ai), i � 1, 2, . . . , m, by using (2).
Step 9. Apply the superiority ranking laws (SR-laws)
and inferiority ranking laws (IR-laws) as follows:

SR-Law 1. If λ>(􏽢ai)≻ λ
>(􏽢at) and λ<(􏽢ai)≺λ

<(􏽢at), then
􏽢ai ≻ 􏽢at

SR-Law 2. If λ>(􏽢ai)≻ λ
>(􏽢at) and λ

<(􏽢ai) � λ<(􏽢at), then
􏽢ai ≻ 􏽢at

SR-Law 3. If λ>(􏽢ai) � λ>(􏽢at) and λ<(􏽢ai)≺λ
<(􏽢at), then

􏽢ai ≻ 􏽢at

IR-Law 1. If λ>(􏽢ai)≺λ
>(􏽢at) and λ<(􏽢ai)≻ λ

<(􏽢at), then
􏽢ai≺􏽢at

IR-Law 2. If λ>(􏽢ai)≺λ
>(􏽢at) and λ<(􏽢ai) � λ<(􏽢at), then

􏽢ai≺􏽢at

IR-Law 3. If λ>(􏽢ai) � λ>(􏽢at) and λ
<(􏽢ai)≻ λ

<(􏽢at), then
􏽢ai≺􏽢at

Step 10. Integrate the SR-laws with the IR-laws to
determine the optimal alternative.

6.1. Case Study. (e process of seeking medical treatment
supply chain from a foreign country is known as medical
tourism. In the past, patients from underdeveloped parts of the
world used to travel to Europe andAmerica for diagnostics and
treatment. However, in recent years, this trend has flipped as
medical tourism, in which individuals from developed coun-
tries travel to developing countries for medical treatment.
(ere are a variety of reasons why people from developed
countries prefer less developed countries. (e low cost of
treatment is the main factor. Healthcare prices are dependent
on a country’s per capita gross domestic product (GDP), which
serves as a procurator for income levels. (e low cost of off-
shore medical care is indebted to low medicolegal and ad-
ministrative costs. Second, people seek medical guidance from
outside the country for the procedures for which health in-
surance is not provided, such as cosmetic surgery, fertility
therapy, dental reconstruction, gender reassignment surgeries,
and so on. Patients in countries where access to healthcare is
regulated by the government, such as Canada and the United
Kingdom, desire to avoid the delays that come with extensive
waiting lists. Another factor could be the lack of availability of a
certain operation in their home country, such as stem cell
therapy, which may be inaccessible or limited in developed
countries but widely available in emerging markets. Some
patients believe that their privacy will be better protected in a
remote location. Another motive for offshore treatment is the
recreational aspect. As a result of these factors, medical tourism
is expanding globally. Medical tourism was worth 54.4 billion
US dollars in 2020, and by 2027, it was expected to be worth
more than 200 billion US dollars (https://www.statista.com/
statistics/1084720/medical-tourism-market-size-worldwide/).
Figure 1 depicts the gradual expansion of the medical tourism
industry from 2016 to 2020, with projections for 2027.

(e medical tourism market in Asia-Pacific has a lot of
room for expansion. Due to economic development, this
region is expected to see rapid market expansion. Singapore,
Japan, India, (ailand, and the Philippines are among the
most popular medical tourism destinations. Singapore and
India are well-known for their cardiac and orthopaedic
surgery. (ailand is well-known for its dental procedures
and gender reassignment surgeries. Japan has one of the best
oncology treatment facilities in the world. (e Philippines is
famous for its cosmetic surgery, dentistry, and fertility
treatment. (e Medical Tourism Index (MTI) evaluates a
country’s suitability as a medical tourism destination by
taking into account its overall environment, healthcare costs,
tourist attractions, and the standard of medical amenities
and services. (e higher the MTI, the better the destination.
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Figure 2 depicts the medical tourism index for the afore-
mentioned Asian countries (https://www.medicaltourism.
com/mti/2020-2021/region/asia).

Medical tourism is seen as an unexplored sector in
Pakistan that might be transformed into a lucrative potential
if the government addresses some critical issues such as
security, brain drain, and service quality. According to
Pakistani medical professionals, Pakistan has “huge po-
tential” to become a competitive medical tourism hub in
Asia. In what follows, we will use the BF-SIR method to
determine the best medical tourism destination in Pakistan.

6.2. Numerical Illustration. Suppose that ministry of health
of a Pakistan needs to assess some true potential of medical
tourism supply chain. For this purpose, the ministry hires
three decision makers 􏽢e1, 􏽢e2, and 􏽢e3 and assigns them weights
which are given in Table 1. Let A � 􏽢a1, 􏽢a2, 􏽢a3, 􏽢a4􏼈 􏼉 be the set
of alternatives where 􏽢a1 � Islamabad, 􏽢a2 �Karachi,
􏽢a3 � Lahore, and 􏽢a4 �Peshawar. Table 2 lists the criteria for
determining the best alternative. (e weights of criteria 􏽢cj

given by the decision makers 􏽢ek are given in Table 3. (e
decision makers evaluate each alternative 􏽢ai w.r.t each cri-
terion 􏽢cj and give their assessment via BFNs. (ree decision
matrices are given in Tables 4–6.

Step 1. (e relative propinquity coefficients δk

(k � 1, 2, 3) are computed using (42) as follows:

δ � 0.12, 0.72, 0.52{ }. (53)

Step 2. (e normalized vector is obtained using (43)as
follows:

ζ � 0.0882, 0.5294, 0.3824{ }. (54)

Step 3. (e accumulated bipolar fuzzy decision matrix
is acquired using (44), which is given in Table 7.
Equation (45) is used to determine accumulated
weights of criteria, which are as follows:

􏽥φ1 � 〈0.9357, − 0.1744〉,

􏽥φ2 � 〈0.9423, − 0.0799〉,

􏽥φ3 � 〈0.9183, − 0.0632〉.

(55)

Step 4. (e relative efficiency function is calculated
using (46)as follows:

fij �

0.3427 0.2234 0.4693

0.4320 0.4241 0.5963

1 0.8834 0.4820

0.7463 0.2807 0.0246

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (56)

Step 5, 6. (e superiority and inferiority matrices are
constructed using (49) and (50) as follows:

S �

0 0 0.01

0.01 0.02 0.03

0.03 0.03 0.02

0.02 0.01 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

I �

0.03 0.03 0.02

0.02 0.01 0

0 0 0.01

0.01 0.02 0.03

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(57)

Step 7, 8.(e S-flow and I-flow are computed using (51)
and (52), which are given in Table 8.
Step 9. Applying SR-laws to Table 8 yields the following
ranking order:

􏽢a3 ≻ 􏽢a2 ≻ 􏽢a4 ≻ 􏽢a1. (58)

Applying IR-laws to Table 8 yields the following
ranking order:

􏽢a3 ≻ 􏽢a2 ≻ 􏽢a4 ≻ 􏽢a1. (59)

Step 10.According to both SR and IR-laws, 􏽢a3 is the best
alternative.
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Figure 2: Medical tourism index (2020-2021).

Table 1: Bipolar fuzzy weights of decision makers.

Decision makers Weights
􏽢e1 ϑ1 � 〈0.79, − 0.28〉

􏽢e2 ϑ2 � 〈0.85, − 0.37〉

􏽢e3 ϑ3 � 〈0.92, − 0.25〉
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Table 2: Criteria for the selection of the best medical tourism destination.

Criteria Description
(i) Service quality (􏽢c1) (is includes modern equipment, qualified staff, and variety of medical treatments.
(ii) Security (􏽢c2) (is includes life and fiscal security of the tourists.
(iii) Infrastructure facilities (􏽢c3) (is includes transportation and maintenance of hospitals and equipment.

Table 3: Bipolar fuzzy weights of criteria.

􏽢c1 􏽢c2 􏽢c3

􏽢e1 〈0.73, − 0.26〉 〈0.65, − 0.36〉 〈0.81, − 0.29〉

􏽢e2 〈0.82, − 0.38〉 〈0.76, − 0.19〉 〈0.78, − 0.27〉

􏽢e3 〈0.69, − 0.42〉 〈0.83, − 0.36〉 〈0.65, − 0.17〉

Table 4: BF decision matrix H1.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.82, − 0.21〉 〈0.92, − 0.23〉 〈0.78, − 0.26〉

􏽢a2 〈0.76, − 0.19〉 〈0.52, − 0.41〉 〈0.66, − 0.24〉

􏽢a3 〈0.86, − 0.17〉 〈0.87, − 0.18〉 〈0.79, − 0.34〉

􏽢a4 〈0.67, − 0.31〉 〈0.42, − 0.38〉 〈0.76, − 0.12〉

Table 5: BF decision matrix H2.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.69, − 0.33〉 〈0.82, − 0.19〉 〈0.89, − 0.17〉

􏽢a2 〈0.82, − 0.21〉 〈0.66, − 0.29〉 〈0.77, − 0.32〉

􏽢a3 〈0.91, − 0.36〉 〈0.79, − 0.26〉 〈0.87, − 0.29〉

􏽢a4 〈0.79, − 0.29〉 〈0.56, − 0.21〉 〈0.82, − 0.26〉

Table 6: BF decision matrix H3.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.76, − 0.22〉 〈0.88, − 0.13〉 〈0.96, − 0.41〉

􏽢a2 〈0.89, − 0.16〉 〈0.62, − 0.24〉 〈0.69, − 0.56〉

􏽢a3 〈0.73, − 0.29〉 〈0.92, − 0.26〉 〈0.71, − 0.31〉

􏽢a4 〈0.81, − 0.32〉 〈0.63, − 0.46〉 〈0.56, − 0.21〉

Table 7: Accumulated BF decision matrix.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.9128, − 0.0895〉 〈0.9747, − 0.0342〉 〈0.9922, − 0.0740〉

􏽢a2 〈0.9713, − 0.0431〉 〈0.8396, − 0.0938〉 〈0.9135, − 0.1775〉

􏽢a3 〈0.9751, − 0.1162〉 〈0.9762, − 0.0771〉 〈0.9585, − 0.1102〉

􏽢a4 〈0.9459, − 0.1111〉 〈0.7886, − 0.1074〉 〈0.9183, − 0.0611〉

Table 8: (e BF-SIR flows.

Alternatives λ>(􏽢ai) Scr(λ>(􏽢ai)) λ<(􏽢ai) Scr(λ<(􏽢ai))

􏽢a1 〈0.0469, − 0.9482〉 0.0494 〈0.3425, − 0.7045〉 0.319
􏽢a2 〈0.2641, − 0.7488〉 0.2576 〈0.1483, − 0.8920〉 0.1282
􏽢a3 〈0.3425, − 0.7045〉 0.319 〈0.0469, − 0.9482〉 0.0494
􏽢a4 〈0.1483, − 0.8920〉 0.1282 〈0.2641, − 0.7488〉 0.2576
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6.3. Comparative and Sensitivity Analysis. In this section, we
compare our suggested BF-SIR technique to some existing
approaches in order to evaluate its validity. Table 9 sum-
marizes the comparative study of various techniques. It can
be seen from Table 9 that our suggested approach is com-
patible with the existing techniques.

7. Conclusion

In daily life, we encounter many situations where we must
deal with uncertainty as well as bipolarity when making a
decision. Taking this into consideration, the bipolar fuzzy set
(BFS) is a sophisticated model that can handle bipolarity and
fuzziness at the same time. (e main contributions of this
manuscript are listed as follows:

(1) Since the sine trigonometric function is periodic and
symmetric about the origin, it can accommodate the
decision expert’s choices during object appraisal.
(erefore, we proposed sine trigonometric opera-
tional laws (STOLs) for BFSs. We explored some of
their properties as well.

(2) Based on BF-STOLs, we suggested the following
averaging AOs: bipolar fuzzy sine trigonometric
weighted averaging (BF-STWA) operator; bipolar
fuzzy sine trigonometric ordered weighted averaging
(BF-STOWA) operator; and bipolar fuzzy sine
trigonometric hybrid weighted averaging (BF-
STHWA) operator.

(3) Based on BF-STOLs, we suggested the following
geometric AOs: bipolar fuzzy sine trigonometric
weighted geometric (BF-STWG) operator; bipolar
fuzzy sine trigonometric ordered weighted geometric
(BF-STOWG) operator; and bipolar fuzzy sine
trigonometric hybrid weighted geometric (BF-
STHWG) operator.

(4) We investigated some important characteristics of
these operators, such as idempotency, monotonicity,
and boundedness.

(5) We established an extended superiority and inferi-
ority ranking (SIR) method to handle MCGDM
problems in a bipolar fuzzy environment. We ap-
plied this technique to the selection of the best
medical tourism supply chain.

(6) We compared our suggested model with some
existing ones to exhibit its validity and efficiency.

In the future, we will develop bipolar fuzzy sine trigo-
nometric power aggregation operators, bipolar fuzzy sine
trigonometric Hamy mean operators, bipolar fuzzy sine
trigonometric Bonferroni mean operators, bipolar fuzzy sine
trigonometric prioritized operators, and bipolar fuzzy sine
trigonometric Dombi operators.
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[11] F. K. Gündoğdu and C. Kahraman, “Spherical fuzzy sets and
spherical fuzzy TOPSIS method,” Journal of Intelligent and
Fuzzy Systems, vol. 36, no. 1, pp. 337–352, 2019.

[12] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, and
T. Mahmood, “Spherical fuzzy sets and their applications in

Table 9: Comparative analysis of the suggested and existing methodologies.

Methods Ranking of alternatives Optimal alternative
Algorithm (Jana and Pal [17]) 􏽢a3≻􏽢a2≻􏽢a1≻􏽢a4 􏽢a3
Algorithm (Wei et al. [20]) 􏽢a3≻􏽢a2≻􏽢a4≻􏽢a1 􏽢a3
Algorithm (Hamid et al. [23]) 􏽢a3≻􏽢a4≻􏽢a2≻􏽢a1 􏽢a3
Algorithm (Akram et al. [24]) 􏽢a3≻􏽢a2≻􏽢a4≻􏽢a1 􏽢a3
Algorithm (Peng and Yang [60]) 􏽢a3≻􏽢a2≻􏽢a4≻􏽢a1 􏽢a3
Algorithm (Zhang and Xu [36]) 􏽢a3≻􏽢a1≻􏽢a2≻􏽢a4 􏽢a3
Algorithm (Proposed) 􏽢a3≻􏽢a2≻􏽢a4≻􏽢a1 􏽢a3

Mathematical Problems in Engineering 15



multi-attribute decision making problems,” Journal of Intel-
ligent and Fuzzy Systems, vol. 36, no. 3, pp. 2829–2844, 2019.

[13] W. R. Zhang, “Bipolar fuzzy sets and relations, A computa-
tional framework for cognitive modeling and multiagent
decision analysis,” in Proceedings of the IEEE Conference
Fuzzy Information Processing Society Biannual Conference,
pp. 305–309, San Antonio, TX, USA, December 1994.

[14] W. R. Zhang, “Bipolar fuzzy sets,” in Proceedings of the IEEE
Inrenational Conference on Fuzzy Systems, pp. 835–840,
Anchorage, AK, USA, 1998.

[15] K. M. Lee, “Bipolar-valued fuzzy sets and their basic opera-
tions,” in Proceedings of the Internatinal Conference,
pp. 307–317, Bangkok, (ailand, 2000.

[16] S. T. Tehrim and M. Riaz, “An interval-valued bipolar fuzzy
linguistic VIKOR method using connection numbers of SPA
(eory and its application to decision support system,”
Journal of Intelligent and Fuzzy Systems, vol. 39, no. 3,
pp. 3931–3948, 2020.

[17] C. Jana and M. Pal, “Extended bipolar fuzzy EDAS approach
for multi-criteria group decision-making process,” Compu-
tational and Applied Mathematics, vol. 40, no. 1, p. 9, 2021.

[18] R. Liu, L.-X. Hou, H.-C. Liu, and W. Lin, “Occupational
health and safety risk assessment using an integrated
SWARA-MABAC model under bipolar fuzzy environment,”
Computational and Applied Mathematics, vol. 39, no. 4,
p. 276, 2020.

[19] C. Jana, M. Pal, and J.-q. Wang, “Bipolar fuzzy Dombi ag-
gregation operators and its application in multiple-attribute
decision-making process,” Journal of Ambient Intelligence and
Humanized Computing, vol. 10, no. 9, pp. 3533–3549, 2019.

[20] G. Wei, F. E. Alsaadi, T. Hayat, and A. Alsaedi, “Bipolar fuzzy
Hamacher aggregation operators in multiple attribute deci-
sion making,” International Journal of Fuzzy Systems, vol. 20,
no. 1, pp. 1–12, 2017.

[21] Y. Han, Z. Lu, Z. Du, Q. Luo, and S. Chen, “A YinYang bipolar
fuzzy cognitive TOPSIS method to bipolar disorder diagno-
sis,” Computer Methods and Programs in Biomedicine,
vol. 158, pp. 1–10, 2018.

[22] G. Wei, C. Wei, and H. Gao, “Multiple attribute decision
making with interval-valued bipolar fuzzy information and
their application to emerging technology commercialization
evaluation,” IEEE Access, vol. 6, Article ID 60955, 2018.

[23] M. T. Hamid, M. Riaz, and K. Naeem, “A study on weighted
aggregation operators for q-rung orthopair m-polar fuzzy set
with utility to multistage decision analysis,” International
Journal of Intelligent Systems, 2022.

[24] M. Akram, U. Amjad, J. C. R. Alcantud, and G. Santos-Garcia,
“Complex fermatean fuzzy N-soft sets: a new hybrid model
with applications,” Journal of Ambient Intelligence and Hu-
manized Computing, vol. 4, 2022.

[25] Z. S. Zeshui Xu, “Intuitionistic fuzzy aggregation operators,”
IEEE Transactions on Fuzzy Systems, vol. 15, no. 6,
pp. 1179–1187, 2007.

[26] Z. Xu and R. R. Yager, “Some geometric aggregation operators
based on intuitionistic fuzzy sets,” International Journal of
General Systems, vol. 35, no. 4, pp. 417–433, 2006.

[27] H. Garg, “Some series of intuitionistic fuzzy interactive av-
eraging aggregation operators,” SpringerPlus, vol. 5, no. 1,
p. 999, 2016.

[28] J.-Y. Huang, “Intuitionistic fuzzy Hamacher aggregation
operators and their application to multiple attribute decision
making,” Journal of Intelligent and Fuzzy Systems, vol. 27,
no. 1, pp. 505–513, 2014.

[29] X. Gou and Z. Xu, “Exponential operations for intuitionistic
fuzzy numbers and interval numbers in multi-attribute de-
cision making,” Fuzzy Optimization and Decision Making,
vol. 16, no. 2, pp. 183–204, 2017.

[30] Z. Li and F. Wei, “(e logarithmic operational laws of
intuitionistic fuzzy sets and intuitionistic fuzzy numbers,”
Journal of Intelligent and Fuzzy Systems, vol. 33, no. 6,
pp. 3241–3253, 2017.

[31] X. Peng, J. Dai, and H. Garg, “Exponential operation and
aggregation operator for q-rung orthopair fuzzy set and their
decision-making method with a new score function,” Inter-
national Journal of Intelligent Systems, vol. 33, no. 11,
pp. 2255–2282, 2018.

[32] S. Khan, S. Abdullah, L. Abdullah, and S. Ashraf, “Logarithmic
aggregation operators of picture fuzzy numbers for multi-
attribute decision making problems,” Mathematics, vol. 7,
no. 7, p. 608, 2019.

[33] S. Abdullah, S. Khan, M. Qiyas, and R. Chinram, “A novel
approach based on sine trigonometric picture fuzzy aggre-
gation operators and their application in decision support
system,” Journal of Mathematics, vol. 2021, Article ID
8819517, 19 pages, 2021.

[34] O. Kabani, “Pakistan as a medical tourism destination. Just
wishful thinking?” Zdrowie Publiczne i Zarzadzanie, vol. 13,
no. 1, pp. 109–114, 2015.

[35] F. Muzaffar and I. Hussain, “Medical tourism: are we ready to
take the challenge?” Journal of Pakistan Association of Der-
matologists, vol. 17, pp. 215–218, 2007.

[36] X. Zhang and Z. Xu, “Extension of TOPSIS to multiple criteria
decision making with Pythagorean fuzzy sets,” International
Journal of Intelligent Systems, vol. 29, no. 12, pp. 1061–1078,
2014.

[37] T. Mahmood, Z. Ali, M. Aslam, and R. Chinram, “Spherical
fuzzy soft rough average aggregation operators and their
applications to multi-criteria decision making,” IEEE Access,
vol. 10, Article ID 126748, 2022.

[38] M. Ihsan, M. Saeed, A. U. Rahman, and F. Smarandache,
“Multi-attribute Decision Support Model Based on Bijective
Hypersoft Expert Set,” Punjab University Journal of Math-
matics, vol. 54, 2022.

[39] F. Karaaslan and F. Karamaz, “Hesitant fuzzy parameterized
hesitant fuzzy soft sets and their applications in decision-
making,” International Journal of Computer Mathematics,
pp. 1–22, 2021.

[40] J. C. R. Alcantud, “(e relationship between fuzzy soft and
soft topologies,” International Journal of Fuzzy Systems, 2022.

[41] X. Liu, F. Feng, Q. Wang, R. R. Yager, H. Fujita, and
J. C. R. Alcantud, “Mining temporal association rules with
temporal soft sets,” Journal of Mathematics, vol. 2021, Article
ID 7303720, 17 pages, 2021.

[42] M. Riaz, D. Pamucar, A. Habib, and M. Riaz, “A new TOPSIS
approach using cosine similarity measures and cubic bipolar
fuzzy information for sustainable plastic recycling process,”
Mathematical Problems in Engineering, vol. 2021, Article ID
4309544, 18 pages, 2021.

[43] Z. Zararsız and M. Riaz, “Bipolar fuzzy metric spaces with
application,” Computational and Applied Mathematics,
vol. 41, no. 1, pp. 49–19, 2022.

[44] M. Riaz, M. Riaz, N. Jamil, and Z. Zararsiz, “Distance and
similarity measures for bipolar fuzzy soft sets with application
to pharmaceutical logistics and supply chain management,”
Journal of Intelligent and Fuzzy Systems, vol. 42, no. 4,
pp. 3169–3188, 2022.

16 Mathematical Problems in Engineering



[45] R. E. Gergin, I. Peker, and A. C. G. Kisa, “Supplier Selection by
Integrated IFDEMATEL-IFTOPSIS Method: A Case Study of
Automotive Supply Industry,” Decision Making: Applications
in Management and Engineering, 2021.

[46] C. Karamasa, E. Demir, S. Memis, and S. Korucuk,
“Weighting the Factors Affecting Logistics Outsourcing,”
Infinite Study, vol. 4, 2020.

[47] Z. Ali, T. Mahmood, K. Ullah, and Q. Khan, “Einstein geo-
metric aggregation operators using a novel complex interval-
valued pythagorean fuzzy setting with application in green
supplier chain management,” Reports in Mechanical Engi-
neering, vol. 2, no. 1, pp. 105–134, 2021.

[48] L. J. Muhammad, I. Badi, A. A. Haruna, and I. A. Mohammed,
“Selecting the best municipal solid waste management
techniques in Nigeria using multi criteria decision making
techniques,” Reports in Mechanical Engineering, vol. 2, no. 1,
pp. 180–189, 2021.

[49] T. K. Biswas, M. C. Das, and M. C. Das, “Selection of the
barriers of supply chain management in Indian
manufacturing sectors due to COVID-19 impacts,” Opera-
tional Research in Engineering Sciences: ?eory and Applica-
tions, vol. 3, no. 3, pp. 1–12, 2020.
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Transportation problem (TP) has its uses in real life because it has versatile applications. Real-life problems are often uncertain due
to which it is di�cult to �nd the accurate cost.­e fuzzy set and intuitionistic fuzzy set are useful for handling the uncertainty, but
these also have some limitations. For that reason, in this study, we worked on another set of values called bipolar single-valued
neutrosophic set (BSNS) which is the generalization of crisp sets, fuzzy sets, and intuitionistic fuzzy sets to handle the uncertain,
unpredictable, and insu�cient information in real-life problems. In this study, we develop a new technique for solving
transportation problems based on bipolar single-valued neutrosophic sets having nonnegative triangular bipolar single-valued
neutrosophic numbers (TBSNNs). A score function is used to transform bipolar single-valued neutrosophic numbers (BSNNs)
into crisp numbers. We compare our proposed model with fuzzy transportation and intuitionistic fuzzy transportation models
and proved that bipolar single-valued neutrosophic transportation model is more admirable than the existing models. Fur-
thermore, we apply the proposed technique to fully solve the bipolar single-valued neutrosophic transportation (FBSNT) model.

1. Introduction

Nowadays, there is great competition among organizations
to �nd better methods to create and give better services to
their customers. ­ey need a cost-e�ective method to send
the products to their customers. ­is is a more challenging
task. ­e models for transportation provide an e�ective
framework to encounter this challenge. ­ey guarantee the
e�ective movement of raw materials and �nd products.

1.1. Motivation. In the mathematical programming prob-
lem, the linear programming problem is very well-known
and it has a wide scope to cover various �elds. Among these,
transportation problem is the commonly used �eld. ­e TP
has its own importance in the �eld of logistics, supply chain
management, supplier selection problem, etc. ­e TPs have
great importance in many real-life applications. It works to
maintain the supply from source to destination. It is gen-
erally considered that transversal costs of supply and de-
mand are expressed in terms of crisp numbers. ­ese values

are often not precise. As a result, various researchers have
been working on di�erent TPs in fuzzy [1–3] and intui-
tionistic fuzzy [4, 5] environments, respectively. We pro-
posed a new technique to solve TPs in the bipolar single-
valued neutrosophic environment, which is a more gener-
alized form.

1.2. Literature Review. Zadeh [6, 7] proposed the concept of
fuzzy sets and fuzzy numbers to reduce uncertainty and
incomplete information. Atanassove [8] gave the idea of
intuitionistic fuzzy sets (IFSs), which is a generalization of
fuzzy sets. In an IFS, we consider the problem in both angles’
positive side and negative side to handle uncertainty. In an
IFS, truth membership and falsity membership are inde-
pendent, while indeterminacy-membership depends on
their sum. Smarandache [9] proposed the notion of neu-
trosophic set theory. Smarandache [9] and Wang et al. [10]
de�ned single-valued neutrosophic sets (SNSs), which are an
extension of FSs and IFSs. In an SNS all membership
functions truth, falsity, and indeterminacy are independent.
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Deli et al. [11] suggested the idea of bipolar single-valued
neutrosophic set, which is the generalization of single-valued
neutrosophic sets [10].

,e TPs are related to the transportation of raw ma-
terial from different sources to different destinations in
such a way that the total transportation cost is minimized.
Hitchcock [12] was the first to develop a basic trans-
portation problem. ,e transportation problem can be
elaborated as a standard linear programming problem.,is
can be solved by the simplex method. It was found that the
simplex method when applied to the transportation
problem becomes more effective when evaluating the
simplex method information. Basirzadeh [1] proposed a
method to solve fuzzy transportation problems. Ladji et al.
[13] proposed a two-step method for solving fuzzy
transportation problems where all of the parameters are
represented by triangular fuzzy numbers i.e., two interval
transportation problems. Pratihar et al. [14] have modified
the classical vogel’s approximation method for solving the
fuzzy transportation problem. ,ey also worked on the
interval type 2 fuzzy set and used it in a fuzzy trans-
portation problem to represent the transportation cost,
demand, and supply. Cam et al. [15] worked on the for-
mulation of a linear programming model for the vehicle
routing problem to minimize idle time. In fuzzy linear
programming problems (FLPPs), many scholars have
contributed. By using multiobjective function, Zimmer-
man [16] gave a technique to solve LP problem. After that,
to solve the transportation problems, Zimmerman’s fuzzy
linear programming has developed into several fuzzy op-
timization methods. In a fuzzy environment, Bellman and
Zadeh [6] introduced the different concepts of decision
making. Lotfi et al. [17] considered FFLP problems in
which all parameters and variables are triangular fuzzy
numbers. Allahviranloo et al. [18] solved FFLP problem by
using a kind of defuzzification approach. Behera et al. [19]
suggested two new methods to solve fuzzy linear pro-
gramming (FLP) problems. ,ey solved two types of
problems with two different methods. Kaur and Kumar
[20] gave an introduction to FLP problems. Kaur and
Kumar [21] suggested an approach to find the exact fuzzy
optimal solution to FFLP problems by using unrestricted
fuzzy variables. Kaur and Kumar [22] proposed a new
method for finding the fuzzy optimal solution to fuzzy
transportation problems in which the transportation cost
are represented by generalized fuzzy numbers. Najafi and
Edalatpanah [23] suggested a better technique to solve the
FFLP problem than Kumar et al. [21].

Intuitionistic fuzzy linear programming problem is an
extension of the fuzzy linear programming problem. Many
researchers have worked on different methods to solve LP
problems in an intuitionistic fuzzy environment by using
intuitionistic fuzzy numbers (IFNs) and LR-type IFNs. Singh
and Yadav [4, 5] suggested two different techniques to solve
an intuitionistic fuzzy transportation problem (IFTPs) by
using triangular intuitionistic fuzzy numbers (TIFNs).
Abhishekh and Nishad [24] suggested a novel ranking
function for finding an optimal solution to fully LR-intui-
tionistic fuzzy transportation problem. In an intuitionistic

fuzzy environment, Edalatpanah [25] designed a model of
data envelopment analysis with triangular intuitionistic
fuzzy numbers (TIFNs) and established a strategy to solve it.
Kabiraj et al. [26] solved IFLP problems by using a method
based on a method suggested by Zimmerman [16]. Malathi
and Umadevi [27] worked on IFLP problems in an intui-
tionistic fuzzy environment. Pythagorean fuzzy linear pro-
gramming is an extension of intuitionistic fuzzy linear
programming. Akram et al. [28, 29] suggested a technique to
solve Pythagorean fuzzy linear programming problems by
using Pythagorean fuzzy numbers and LR-type Pythagorean
fuzzy numbers. Akram et al. [30] used two different tech-
niques to solve Pythagorean fuzzy linear programming
problems having mixed constraints.

In daily life routine, we meet a variety of situations
depending on multiple factors like uncertainty in judge-
ments. Often it becomes difficult to get relevant data for
cost parameters. ,e data of this type cannot always be
represented by random variables obtained from the
probability distribution. ,ese data may be represented by
bipolar single-valued neutrosophic numbers. So, a bipolar
single-valued neutrosophic method to make the decision is
needed. Abdel-Basset et al. [31] suggested a technique to
solve the fully neutrosophic linear programming (FNLP)
problems. Hussian et al. [32] suggested a linear pro-
gramming model based on neutrosophic environment.
Bera and Mahapatra [33] developed the Big-M simplex
method to solve the neutrosophic linear programming
(NLP) problem. Das and Chakraborty [34] considered a
pentagonal NLP problem to solve it. Das and Dash [35]
solved NLP problems with mixed constraints. Edalatpanah
[36] presented a direct algorithm to solve the linear pro-
gramming problems. Khalifa et al. [37] solved the NLP
problem with single-valued trapezoidal neutrosophic
numbers. Ahmed [38] suggested a technique to solve LR-
type single-valued neutrosophic linear programming
problems by using unrestricted LR-type single-valued
neutrosophic numbers. He proposed the ranking function
to transform LR-type single-valued neutrosophic problems
into crisp problems. Deli et al. [11] gave the idea of bipolar
single-valued neutrosophic set. Akram et al. [39] suggested
a technique to solve LR-bipolar fuzzy linear system.
Mehmood et al. [40, 41] defined LR-type bipolar fuzzy
numbers and their arithmetic operations. ,ey also in-
troduced the ranking for LR-type bipolar fuzzy numbers
and solved numerical examples. Ahmed et al. [42] sug-
gested a technique to solve bipolar single-valued neu-
trosophic linear programming problems in which all the
coefficients, variables, and right-hand side are presented by
bipolar single-valued neutrosophic numbers. Kumar [43]
presented the cut of single-valued pentagonal neutrosophic
numbers and also introduced the arithmetic operation of
single-valued pentagonal neutrosophic numbers. By using
two different objective functions, Singh et al. [44] for-
mulated the journey of a vaccine from its manufacture to its
delivery using bilevel transportation problems in a neu-
trosophic environment. Veeranani et al. [45] solved the
multiobjective fractional transportation problem by using
the neutrosophic goal programming approach [46–48].
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1.3. Our Contribution. Considering all the available data,
there are no methods in literature for TPs under the bipolar
single-valued neutrosophic environment. So, there is a need
to introduce a technique for BSNTPs. As a result of our facts,
there are no optimization models available for TPs under
bipolar single-valued neutrosophic environment. ,is has
urged us to develop a new technique to solve TP with the
bipolar single-valued neutrosophic environment, which is
solved for the first time with the proposed technique. Bipolar
single-valued neutrosophic set theory is a well-known
technique to deal with uncertainty in the optimization
problem. ,is study has been categorized as follows: In
Section 2, basic concepts of BSNS, BSNN, TBSNNs, and

their arithmetic operations are discussed. In Section 3,
methodology for solving FBSNTproblems are explained. In
Section 4, a mathematical transportation model is solved. In
Section 5, comparative analysis is discussed. In Section 6, the
advantages of the proposed method are discussed. In Section
7, the limitations of the proposed method are given, and the
conclusion is given in Section 8.

2. Preliminaries

Definition 1 (see [11]). Let Y be a nonempty set. A bipolar
single-valued neutrosophic set (BSNS) 􏽥λ in Y is an object
having the form

􏽥λ � ≺y, T
p

􏽥λ
(y), I

p

􏽥λ
(y), F

p

􏽥λ
(y), T

n

􏽥λ
(y), I

n

􏽥λ
(y), F

n

􏽥λ
(y)≻: y ∈ Y􏼚 􏼛, (1)

where T
p

􏽥λ
(y), I

p

􏽥λ
(y), F

p

􏽥λ
(y): Y⟶ [0, 1] and Tn

􏽥λ
(y), In

􏽥λ
(y), Fn

􏽥λ
(y): Y⟶ [−1, 0]. ,e positive membership degree

T
p

􏽥λ
(y), I

p

􏽥λ
(y), F

p

􏽥λ
(y) denotes the truth membership, inde-

terminate membership, and falsity membership of an ele-
ment y ∈ Y corresponding to a bipolar neutrosophic set 􏽥λ
similarly negative membership degree Tn

􏽥λ
(y), In

􏽥λ
(y), Fn

􏽥λ
(y)

denotes the truth membership, indeterminate membership,
and falsity membership of an element y ∈ Y to some implicit
counter-property corresponding to a bipolar neutrosophic
set 􏽥λ.

Definition 2 (see [33]). A BSNN on R is a BSN set such that

􏽥λ � ≺ μ1, ]1, π1, θ1􏼂 􏼃; χp􏼐 􏼑, μ2, ]2, π2, θ2􏼂 􏼃; βp􏼐 􏼑, μ3, ]3, π3, θ3􏼂 􏼃; ζp􏼐 􏼑, c1, η1, ι1, κ1􏼂 􏼃; αn( 􏼁,

c2, η2, ι2, κ2􏼂 􏼃;φn( 􏼁, c3, η3, ι3, κ3􏼂 􏼃; ]n( 􏼁≻
(2)

where χp, βp, ζp ∈ [0, 1] and αn,φn, ]n ∈ [−1, 0] ⊂ R ,e truth membership values are given as

T􏽥λ
p
(y) �

S
L
T(y), μ1 ≤y≤ ]1,

χp, ]1 ≤y≤ π1,

S
R
T(y), π1 ≤y≤ θ1,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T􏽥λ
n
(y) �

U
L
T(y), c1 ≤y≤ η1,

αn, η1 ≤y≤ ι1,

U
R
T(y), ι1 ≤y≤ κ1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

SL
T(y) and UR

T(y) are continuous and increasing func-
tions satisfying the following conditions:
SL

T(μ1) � 0, SL
T(]1) � χp , and UR

T(c1) � αn, UR
T(η1) � 0,

while SR
T(y) and UL

T(v) are continuous and decreasing
functions and satisfying the following condition:

S
R
T π1( 􏼁 � χp, S

R
T θ1( 􏼁 � 0, U

L
T ι1( 􏼁 � 0, U

L
T κ1( 􏼁 � αn, (4)

where χp ∈ [0, 1], αn ∈ [−1, 0].
,e indeterminacy-membership functions are given as

I􏽥λ
p
(y) �

S
L
I (y), μ2 ≤y≤ ]2,

βp, ]2 ≤y≤ π2,

S
R
I (y), π2 ≤y≤ θ2,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I􏽥λ
n
(y) �

U
L
I (y), c2 ≤y≤ η2,

φn, η2 ≤y≤ ι2,

U
R
I (y), ι2 ≤y≤ κ2,

−1, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)
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SR
I (y) and UL

I (y) are continuous and increasing func-
tions satisfying the following conditions:
SR

I (π2) � βp, SR
I (θ2) � 1, UL

I (c2) � −1, UL
I (η2) � φn, while

SL
I (y) and UR

I (y) are continuous and decreasing functions
and are satisfying the following conditions:

S
L
I μ2( 􏼁 � 1, S

L
I ]2( 􏼁 � βp, U

R
I ι2( 􏼁 � φn, U

R
I κ2( 􏼁 � −1, (6)

where βp ∈ [0, 1],φn ∈ [−1, 0].,e falsity membership
functions are given as

F􏽥λ
p
(y) �

S
L
F(y), μ3 ≤y≤ ]3,

ζp, ]3 ≤y≤ π3,

S
R
F(y), π3 ≤y≤ θ3,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨
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F􏽥λ
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U
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U
R
F(y), ι3 ≤y≤ κ3,

−1, otherwise.

⎧⎪⎪⎪⎪⎪⎨
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(7)

SR
F(y) and UL

F(y) are continuous and increasing func-
tions satisfying the following conditions:

S
R
F π3( 􏼁 � ζp, S

R
F θ3( 􏼁 � 1, U

L
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L
F η3( 􏼁 � ]n, (8)

SL
F(y) and UR

F(y) are continuous and decreasing func-
tions and are satisfying the following conditions:

S
L
F μ3( 􏼁 � 1, S

L
F ]3( 􏼁 � ζp, U

R
F ι3( 􏼁 � ]n, U

R
F κ3( 􏼁 � −1, (9)

where ζp ∈ [0, 1], ]n ∈ [−1, 0].
Based on [49], we define some basic definitions.

Definition 3. We define a TBSNN defined on R

􏽥λ � ≺ μi, ]i, πi􏼂 􏼃; χp, βp, ζp􏼐 􏼑, ci, ηi, ιi􏼂 􏼃; αn,φn, ]n( 􏼁≻, (10)

is said to be nonnegative TBSNN if and only if
μi ≥ 0 and ci ≥ 0, where i � 1, 2, 3 such that μi ≤ ]i ≤ πi simi-
larly ci ≤ ηi ≤ ιi also χp, βp, ζp ∈ [0, 1] and
αn,φn, ]n ∈ [−1, 0] ⊂ R .

Definition 4. We define a TrBNN defined on R

􏽥λ � ≺ μi, ]i, πi, θi􏼂 􏼃; χp, βp, ζp􏼐 􏼑,

· ci, ηi, ιi, κi􏼂 􏼃; αn,φn, ]n􏼁≻,(
(11)

is said to be positive TrBSNN if and only if μi ≥ 0 and ci ≥ 0,

where i � 1, 2, 3 and μi ≤ ]i ≤ πi ≤ θi. Similarly,
ci ≤ ηi ≤ ιi ≤ κi,also χp, βp, ζp ∈ [0, 1] and
αn,φn, ]n ∈ [−1, 0] ⊂ R.

Definition 5. A TBSNN
􏽥λ1 � ≺ μ1, ]1, π1􏼂 􏼃; χp, βp, ζp􏼐 􏼑, c1, η1, ι1􏼂 􏼃; αn,φn, ]n( 􏼁≻,

(12)

is said to be zero if μ1 � 0, ]1 � 0, π1 � 0, c1 � 0,

η1 � 0, ι1 � 0, χp � 0, βp � 0, ζp � 0, αn � 0,φn � 0, and
]n � 0.

Definition 6. Two TBSNNs
􏽥λ1 � ≺ μ1, ]1, π1􏼂 􏼃; χp, βp, ζp􏼐 􏼑, c1, η1, ι1􏼂 􏼃; αn,φn, ]n( 􏼁≻,

􏽥λ2 � ≺ μ2, ]2, π2􏼂 􏼃; χp
′, βp
′, ζp
′􏼐 􏼑, c2, η2, ι2􏼂 􏼃; αn

′,φn
′, ]n
′( 􏼁≻,

(13)

are said to be equal if μ1 � μ2, ]1 � ]2, π1 � π2, c1 � c2, η1 �

η2, ι1 � ι2, χp � χp
′, βp � βp

′, ζp � ζp
′, αn � αn

′,φn � φn
′, and

]n � ]n
′.

Definition 7. Based on [50], we define TrBSNN defined R

denoted by
􏽥λ(Y) � ≺ μ1, ]1, π1, θ1􏼂 􏼃; χp􏼐 􏼑, μ2, ]2, π2, θ2􏼂 􏼃; βp􏼐 􏼑,

· μ3, ]3, π3, θ3􏼂 􏼃; ζp􏼐 􏼑, c1, η1, ι1, κ1􏼂 􏼃; αn( 􏼁,

c2, η2, ι2, κ2􏼂 􏼃;φn( 􏼁, c3, η3, ι3, κ3􏼂 􏼃; ]n( 􏼁≻,

(14)

whose truth, indeterminacy, and falsity membership func-
tions are presented by

T􏽥λ
p
(y) �

y − μ1
]1 − μ1

χp, μ1 ≤y≤ ]1,

χp, ]1 ≤y≤ π1,

θ1 − y

θ1 − π1
χp, π1 ≤y≤ θ1,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T􏽥λ
n
(y) �

y − c1

η1 − c1
αn, c1 ≤y≤ η1,

αn, η1 ≤y≤ ι1,

κ1 − y

κ1 − ι1
αn, ι1 ≤y≤ κ1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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I􏽥λ
p

y( 􏼁 �

]2 − y( 􏼁 + βp x − μ2( 􏼁

]2 − μ2
, μ2 ≤y≤ ]2,

βp, ]2 ≤y≤ π2,

y − π2( 􏼁 + βp θ2 − y( 􏼁

θ2 − π2
, π2 ≤y≤ θ2,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I􏽥λ
n
(y) �

η2 − y( 􏼁 + φn y − c2( 􏼁

η2 − c2
, c2 ≤y≤ η2,

φn, η2 ≤y≤ ι2,

y − ι2( 􏼁 + φn κ2 − y( 􏼁

κ2 − ι2
, ι2 ≤y≤ κ2,

−1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F􏽥λ
p
(y) �

]3 − y( 􏼁 + ζp y − μ3( 􏼁

]3 − μ3
, μ3 ≤y≤ ]3,

ζp, ]3 ≤y≤ π3,

y − π3( 􏼁 + ζp θ3 − y( 􏼁

θ3 − π3
, π3 ≤y≤ θ3,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F􏽥λ
n
(y) �

η3 − y( 􏼁 + ]p y − c3( 􏼁

η3 − c3
, c3 ≤y≤ η3,

]n, η3 ≤y≤ ι3,

y − ι3( 􏼁 + ]n κ3 − y( 􏼁

κ3 − ι3
, ι3 ≤y≤ κ3,

−1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where χp, βp, ζp ∈ [0, 1] and αn,φn, ]n ∈ [−1, 0] ⊂ R.

Remark 1. If we set ]i � πi and ηi � ιi in Definition 7, the
triangular bipolar single-valued neutrosophic number
(TBSNN) is obtained, where i � 1, 2, 3.

Definition 8 (see [51]). Let 􏽥λ � ≺(Tp(y), Ip(y), Fp(y),

Tn(y), In(y), Fn(y))≻ be a BSNN then the score function is
presented by

S(􏽥λ) �
T

p
(y) + 1 − I

p
(y) + 1 − F

p
(y) + 1 + T

n
(y) − I

n
(y) − F

n
(y)( 􏼁

6
. (16)

Definition 9. Based on [52], let

􏽥λ1 � ≺ μ1, ]1, π1, θ1􏼂 􏼃; χ1p􏼐 􏼑, μ2, ]2, π2, θ2􏼂 􏼃; β1p􏼐 􏼑, μ3, ]3, π3, θ3􏼂 􏼃; ζ1p􏼐 􏼑, μ4, ]4, π4, θ4􏼂 􏼃; α1n􏼐 􏼑, μ5, ]5, π5, θ5􏼂 􏼃;φ1
n􏼐 􏼑,

μ6, ]6, π6, θ6􏼂 􏼃; ]1n􏼐 􏼑≻ and
􏽥λ2 � ≺ c1, η1, ι1, κ1􏼂 􏼃; χ2p􏼐 􏼑, c2, η2, ι2, κ2􏼂 􏼃; β2p􏼐 􏼑, c3, η3, ι3, κ3􏼂 􏼃; ζ2p􏼐 􏼑, c4, η4, ι4, κ4( 􏼁; α2n􏼐 􏼑, c5, η5, ι5, κ5􏼂 􏼃;φ2

n􏼐 􏼑,

c6, η6, ι6, κ6􏼂 􏼃; ]2n􏼐 􏼑≻

(17)

be two nonnegative TrBSNNs, then,

(1)
􏽥λ1⊕􏽥λ2 � ≺([μ1 + c1, ]1 + η1, π1 + ι1, θ1 + κ1]; χ

1
p∧χ

2
p), ([μ2 + c2, ]2 + η2, π2 + ι2, θ2 + κ2]; β

1
p∨β

2
p),

([μ3 + c3, ]3 + η3, π3 + ι3, θ3 + κ3]; ζ
1
p∨ζ

2
p), ([μ4 + c4, ]4 + η4, π4 + ι4, θ4 + κ4]; α

1
n∨α

2
n),

([μ5 + c5, ]5 + η5, π5 + ι5, θ5 + κ5]; φ
1
n∧φ

2
n), ([μ6 + c6, ]6 + η6, π6 + ι6, θ6 + κ6]; ]

1
n∧]

2
n)≻

.

(2)
􏽥λ1⊖􏽥λ2 � ≺([μ1 − κ1, ]1 − ι1, π1 − η1, θ1 − c1]; χ

1
p∧χ

2
p), ([μ2 − κ2, ]2 − ι2, π2 − η2, θ2 − c2]; β

1
p∨β

2
p),

([μ3 − κ3, ]3 − ι3, π3 − η3, θ3 − c3]; ζ
1
p∨ζ

2
p), ([μ4 − κ4, ]4 − ι4, π4 − η4, θ1 − c1]; α

1
n∨α

2
n),

([μ5 − κ5, ]5 − ι5, π5 − η5, θ5 − c5]; φ
1
n∧φ

2
n), ([μ6 − κ6, ]6 − ι6, π6 − η6, θ6 − c6]; ]

1
n∧]

2
n)≻

(3) 􏽥λ1 ⊗ 􏽥λ2 �
≺([μ1c1, ]1η1, π1ι1, θ1κ1]; χ

1
p∧χ

2
p), ([μ2c2, ]2η2, π2ι2, θ2κ2]; β

1
p∨β

2
p),

([μ3c3, ]3η3, π3ι3, θ3κ3]; ζ
1
p∨ζ

2
p), ([μ4c4, ]4η4, π4ι4, θ4κ4]; α

1
n∨α

2
n),

([μ5c5, ]5η5, π5ι5, θ5κ5];φ
1
n∧φ

2
n), ([μ6c6, ]6η6, π6ι6, θ6κ6]; ]

1
n∧]

2
n)≻

⎧⎨

⎩

3. Methodology to Solve FBSNT Problems

In this section, we present a new method that is based on the
formulation of FBSNLP to solve FBSNT problems. We
discuss the steps to calculate the bipolar single-valued
neutrosophic optimal solution of FBSNT problems with
nonnegative TBSNNs:

Minimize Z � 􏽘
m

i�1
􏽘

n

j�1

􏽦
C

W
ij ⊗

􏽦
X

W
ij , (18)

subject to

􏽘

n

j�1

􏽦
X

W
ij � 􏽥E

W

i � Supply,∀i � 1, 2, 3, . . . , m,

􏽘

m

i�1

􏽦
X

W
ij � 􏽥F

W

j � Demand,∀j � 1, 2, 3, . . . , n,

􏽥X
W

ij ≥ 0,∀i � 1, 2, 3, . . . , m,∀j � 1, 2, 3, . . . , n,

(19)

where 􏽦CW
ij , 􏽦XW

ij , 􏽥E
W

i , and 􏽥F
W

j are all TBSNNs.

Mathematical Problems in Engineering 5



Step 1. Determine total bipolar single-valued neutrosophic
availability and total bipolar single-valued neutrosophic
demand.

If

􏽘
n

j�1

􏽥F
W

j � 􏽘
m

i�1

􏽥E
W

i , (20)

⇒ a balanced bipolar single-valued neutrosophic trans-
portation problem (BSNTP).

If,

􏽘

n

j�1

􏽥F
W

j ≠ 􏽘
m

i�1

􏽥E
W

i . (21)

An unbalanced BSNTP.
,at is,

≺ sk, tk, uk􏼂 􏼃; χp, βp, ζp􏼐 􏼑, vk, wk, xk􏼂 􏼃; αn,φn, ]n( 􏼁≻

≠≺ sk
′, tk
′, uk
′􏼂 􏼃; χp
′, βp
′, ζp
′􏼐 􏼑, vk
′, wk
′, xk
′􏼂 􏼃; αn
′,φn
′, ]n
′( 􏼁≻

k � 1, 2, 3.

(22)

,en one of the following case arise.

Case 1. sk ≤ sk
′, tk − sk ≤ tk

′ − sk
′, uk − tk ≤ uk

′ − tk
′, vk

≤ vk
′, wk − vk ≤wk

′ − vk
′, xk − wk ≤xk

′ − wk
′.

Case 2. sk ≥ sk
′, tk − sk ≥ tk

′ − sk
′, uk − tk ≥ uk

′− tk
′, vk

≥ vk
′, wk − vk ≥wk

′ − vk
′, xk − wk ≥xk

′ − wk
′.

Case 3. When the above two cases do not hold, then there
may exist infinitely many TBSNNs,

≺ s
1
k, t

1
k, u

1
k􏽨 􏽩; χ1p, β1p, ζ1p􏼐 􏼑, v

1
k, w

1
k, x

1
k􏽨 􏽩; α1n,φ1

n, ]1n􏼐 􏼑≻

≺ s
1′
k , t

1′
k , u

1′
k􏼔 􏼕; χ1′p , β1′p , ζ1′p􏼒 􏼓, v

1′
k , w

1′
k , x

1′
k􏼔 􏼕; α1′n ,φ1′

n , ]1′n􏼒 􏼓≻

k � 1, 2, 3,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

(23)

such that

≺ sk, tk, uk􏼂 􏼃; χp, βp, ζp􏼐 􏼑, vk, wk, xk􏼂 􏼃; αn,φn, ]n( 􏼁≻⊕≺ s
1
k, t

1
k, u

1
k􏽨 􏽩; χ1p, β1p, ζ1p􏼐 􏼑, v

1
k, w

1
k, x

1
k􏽨 􏽩; α1n,φ1

n, ]1n􏼐 􏼑≻ �

≺ sk
′, tk
′, uk
′􏼂 􏼃; χp
′, βp
′, ζp
′􏼐 􏼑, vk
′, wk
′, xk
′􏼂 􏼃; αn
′,φn
′, ]n
′( 􏼁≻⊕≺ s

1′
k , t

1′
k , u

1′
k􏼔 􏼕; χ1′p , β1′p , ζ1′p􏼒 􏼓, v

1′
k , w

1′
k , x

1′
k􏼔 􏼕; α1′n ,φ1′

n , ]1′n􏼒 􏼓≻
(24)

But we have to determine such TBSNNs

≺ s
1
k, t

1
k, u

1
k􏽨 􏽩; χ1p, β1p, ζ1p􏼐 􏼑, v

1
k, w

1
k, x

1
k􏽨 􏽩; α1n,φ1

n, ]1n􏼐 􏼑≻

≺ s
1′
k , t

1′
k , u

1′
k􏼔 􏼕; χ1′p , β1′p , ζ1′p􏼒 􏼓, v

1′
k , w

1′
k , x

1′
k􏼔 􏼕; α1′n ,φ1′

n , ]1′n􏼒 􏼓≻

k � 1, 2, 3,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

(25)

which satisfy the following conditions.

(i) ≺([s1k, t1k, u1
k]; χ1p, β1p, ζ1p), ([v1k, w1

k, x1
k]; α1n,φ1

n, ]1n)≻
and ≺([s1′k , t1′k , u1′

k ]; χ1′p , β1′p , ζ1′p ), ([v1′k , w1′
k , x1′

k ]; α1′n ,

φ1′
n , ]1′n )≻ are nonnegative TBSNNs.

(ii) It satisfies

≺ sk, tk, uk􏼂 􏼃; χp, βp, ζp􏼐 􏼑, vk, wk, xk􏼂 􏼃; αn,φn, ]n( 􏼁≻⊕≺ s
1
k, t

1
k, u

1
k􏽨 􏽩; χ1p, β1p, ζ1p􏼐 􏼑, v

1
k, w

1
k, x

1
k􏽨 􏽩; α1n,φ1

n, ]1n􏼐 􏼑≻ �

≺ sk
′, tk
′, uk
′􏼂 􏼃; χp
′, βp
′, ζp
′􏼐 􏼑, vk
′, wk
′, xk
′􏼂 􏼃; αn
′,φn
′, ]n
′( 􏼁≻⊕≺ s

1′
k , t

1′
k , u

1′
k􏼔 􏼕; χ1′p , β1′p , ζ1′p􏼒 􏼓, v

1′
k , w

1′
k , x

1′
k􏼔 􏼕; α1′n ,φ1′

n , ]1′n􏼒 􏼓≻.
(26)

(iii) Further, if there exists two nonnegative TBSNNs
≺([mk, nk, ok]; μp, ]p, πp), ([pk, qk, rk]; ηn, ζn, θn)≻

and ≺([mk
′, nk
′, ok
′]; μp
′, ]p
′, πp
′), ([pk
′, qk
′, rk
′]; ηn
′, ζn
′,

θn
′)≻ such that

≺ sk, tk, uk􏼂 􏼃; χp, βp, ζp􏼐 􏼑, vk, wk, xk􏼂 􏼃; αn,φn, ]n( 􏼁≻⊕≺ mk, nk, ok􏼂 􏼃; μp, ]p, πp􏼐 􏼑, pk, qk, rk􏼂 􏼃; ηn, ζn, θn( 􏼁≻ �

≺ sk
′, tk
′, uk
′􏼂 􏼃; χp
′, βp
′, ζp
′􏼐 􏼑, vk
′, wk
′, xk
′􏼂 􏼃; αn
′,φn
′, ]n
′( 􏼁≻⊕≺ mk

′, nk
′, ok
′􏼂 􏼃; μp
′, ]p
′, πp
′􏼐 􏼑, pk
′, qk
′, rk
′􏼂 􏼃; ηn
′, ζn
′, θn
′( 􏼁≻,

(27)

then
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R≺ mk, nk, ok􏼂 􏼃; μp, ]p, πp􏼐 􏼑, pk, qk, rk􏼂 􏼃; ηn, ζn, θn( 􏼁≻≥R≺ s
1
k, t

1
k, u

1
k􏽨 􏽩; χ1p, β1p, ζ1p􏼐 􏼑, v

1
k, w

1
k, x

1
k􏽨 􏽩; α1n,φ1

n, ]1n􏼐 􏼑≻

R≺ mk
′, nk
′, ok
′􏼂 􏼃; μp
′, ]p
′, πp
′􏼐 􏼑, pk
′, qk
′, rk
′􏼂 􏼃; ηn
′, ζn
′, θn
′( 􏼁≻≥R≺ s

1′
k , t

1′
k , u

1′
k􏼔 􏼕; χ1′p , β1′p , ζ1′p􏼒 􏼓, v

1′
k , w

1′
k , x

1′
k􏼔 􏼕; α1′n ,φ1′

n , ]1′n􏼒 􏼓≻.

(28)

Step 2. Suppose 􏽦Cij

W
� ≺([c1ij, c2ij, c3ij ]; ξij,ψij,ωij),

([c4ij, c5ij, c6ij]; ξij
′,ψij
′,ωij
′)≻,

􏽦
X

W
ij � ≺ x

1
ij, x

2
ij, x

3
ij􏽨 􏽩; σij, τij, υij􏼐 􏼑, x

4
ij, x

5
ij, x

6
ij􏽨 􏽩; σij
′, τij
′, υij
′􏼐 􏼑≻

􏽥E
W

i � ≺ e
1
i , e

2
i , e

3
i􏽨 􏽩; κi, λi, θi􏼐 􏼑, e

4
i , e

5
i , e

6
i􏽨 􏽩; κi
′, λi
′, θi
′􏼐 􏼑≻ and 􏽥F

W

j � ≺ f
1
j , f

2
j , f

3
j􏽨 􏽩; ηj, ϵj, χj􏼐 􏼑, f

4
j , f

5
j , f

6
j􏽨 􏽩; ηj
′, ϵj′, χj
′􏼐 􏼑≻.

(29)

,en FBSNTP (18) can be transformed as

MinZ � 􏽘

m

i�1
􏽘

n

j�1
≺ c

1
ij, c

2
ij, c

3
ij􏽨 􏽩; ξij,ψij,ωij􏼐 􏼑, c

4
ij, c

5
ij, c

6
ij􏽨 􏽩; ξij
′,ψij
′,ωij
′􏼐 􏼑≻⊗≺ x

1
ij, x

2
ij, x

3
ij􏽨 􏽩; σij, τij, υij􏼐 􏼑, x

4
ij, x

5
ij, x

6
ij􏽨 􏽩; σij
′, τij
′, υij
′􏼐 􏼑≻,

(30)

subject to

􏽘

n

j�1
≺ x

1
ij, x

2
ij, x

3
ij􏽨 􏽩; σij, τij, υij􏼐 􏼑, x

4
ij, x

5
ij, x

6
ij􏽨 􏽩; σij
′, τij
′, υij
′􏼐 􏼑≻ � ≺ e

1
i , e

2
i , e

3
i􏽨 􏽩; κi, λi, θi􏼐 􏼑, e

4
i , e

5
i , e

6
i􏽨 􏽩; κi
′, λi
′, θi
′􏼐 􏼑≻,

􏽘

m

i�1
≺ x

1
ij, x

2
ij, x

3
ij􏽨 􏽩; σij, τij, υij􏼐 􏼑, x

4
ij, x

5
ij, x

6
ij􏽨 􏽩; σij
′, τij
′, υij
′􏼐 􏼑≻ � ≺ f

1
j , f

2
j , f

3
j􏽨 􏽩; ηj, ϵj, χj􏼐 􏼑, f

4
j , f

5
j , f

6
j􏽨 􏽩; ηj
′, ϵj′, χj
′􏼐 􏼑≻,

(31)

where ≺([x1
ij, x2

ij, x3
ij]; σij, τij, υij), ([x4

ij, x5
ij, x6

ij]; σij
′, τij
′,

υij
′)≻ are nonnegative TBSNNs.

Step 3. By applying arithmetic operations as described in
Definition 9 and putting
≺([c

1
ij,c

2
ij,c

3
ij];ξij,ψij,ωij),([c

4
ij,c

5
ij, c

6
ij];ξij
′,ψij
′,ωij
′)≻⊗≺([x

1
ij,x

2
ij,x

3
ij];σij,τij,υij),([x

4
ij,x

5
ij,x

6
ij];σij
′,τij
′,υij
′)

≻�≺([d
1
ij,d

2
ij,d

3
ij];μij,δij,ηij),([d

4
ij,d

5
ij,d

6
ij];μij
′,δij
′,ηij
′)≻ ,

then the FBSNTP (30) can be transformed as

MinZ � 􏽘
m

i�1
􏽘

n

j�1
≺ d

1
ij, d

2
ij, d

3
ij􏽨 􏽩; μij, δij, ηij􏼐 􏼑,

d
4
ij, d

5
ij, d

6
ij􏽨 􏽩; μij
′, δij
′, ηij
′􏼐 􏼑≻,

(32)

subject to

􏽘

n

j�1
≺ x

1
ij, x

2
ij, x

3
ij􏽨 􏽩; σij, τij, υij􏼐 􏼑, x

4
ij, x

5
ij, x

6
ij􏽨 􏽩; σij
′, τij
′, υij
′􏼐 􏼑≻ � ≺ e

1
i , e

2
i , e

3
i􏽨 􏽩; κi, λi, θi􏼐 􏼑, e

4
i , e

5
i , e

6
i􏽨 􏽩; κi
′, λi
′, θi
′􏼐 􏼑≻,

􏽘

m

i�1
≺ x

1
ij, x

2
ij, x

3
ij􏽨 􏽩; σij, τij, υij􏼐 􏼑, x

4
ij, x

5
ij, x

6
ij􏽨 􏽩; σij
′, τij
′, υij
′􏼐 􏼑≻ � ≺ f

1
j , f

2
j , f

3
j􏽨 􏽩; ηj, ϵj, χj􏼐 􏼑, f

4
j , f

5
j , f

6
j􏽨 􏽩; ηj
′, ϵj′, χj
′􏼐 􏼑≻,

(33)

where ≺([x1
ij, x2

ij, x3
ij]; σij, τij, υij), ([x4

ij, x5
ij, x6

ij]; σij
′, τij
′,

υij
′)≻ are nonnegative TBSNNs.

Step 4. Now applying the score function, the FBSNTP (32)
can be transformed as

Min Z � 􏽘
m

i�1
􏽘

n

j�1
S≺ d

1
ij, d

2
ij, d

3
ij􏽨 􏽩; μij, δij, ηij􏼐 􏼑,

d
4
ij, d

5
ij, d

6
ij􏽨 􏽩; μij
′, δij
′, ηij
′􏼐 􏼑≻,

(34)

subject to
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􏽘

n

j�1
x
1
ij � e

1
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
2
ij � e

2
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
3
ij � e

3
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
4
ij � e

4
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
5
ij � e

5
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
6
ij � e

6
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
σij∧κi,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
τij∨λi,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
υij∨θi,∀i � 1, 2, 3, . . . , m,

􏽘

m

i�1
x
1
ij � f

1
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
2
ij � f

2
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
3
ij � f

3
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
4
ij � f

4
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
5
ij � f

5
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
6
ij � f

6
j ,∀j � 1, 2, 3, . . . , n,

􏽘

n

j�1
σij
′∨κi
′,∀j � 1, 2, 3, . . . , n,

􏽘

n

j�1
τij
′∧λi
′,∀j � 1, 2, 3, . . . , n,

􏽘

n

j�1
υij
′∧θi
′,∀j � 1, 2, 3, . . . , n, (35)

where ≺([x1
ij, x2

ij, x3
ij]; σij, τij, υij), ([x4

ij, x5
ij, x6

ij]; σij
′,

τij
′, υij
′)≻ are nonnegative TBSNNs.

Step 5. To obtain fuzzy optimal solution, the following crisp
linear/nonlinear programming problem is solved:

Min Z � 􏽘
m

i�1
􏽘

n

j�1

1
6

3 + d
1
ij − d

2
ij − d

3
ij + d

4
ij − d

5
ij − d

6
ij􏼐 􏼑, (36)

subject to

􏽘

n

j�1
x
1
ij � e

1
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
2
ij � e

2
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
3
ij � e

3
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
4
ij � e

4
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
5
ij � e

5
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
x
6
ij � e

6
i ,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
σij∧κi,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
τij∨λi,∀i � 1, 2, 3, . . . , m,

􏽘

n

j�1
υij∨θi,∀i � 1, 2, 3, . . . , m,

􏽘

m

i�1
x
1
ij � f

1
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
2
ij � f

2
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
3
ij � f

3
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
4
ij � f

4
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
5
ij � f

5
j ,∀j � 1, 2, 3, . . . , n,

􏽘

m

i�1
x
6
ij � f

6
j ,∀j � 1, 2, 3, . . . , n,

􏽘

n

j�1
σij
′∨κi
′,∀j � 1, 2, 3, . . . , n,

􏽘

n

j�1
τij
′∧λi
′,∀j � 1, 2, 3, . . . , n,

􏽘

n

j�1
υij
′∧θi
′,∀j � 1, 2, 3, . . . , n,

(37)

8 Mathematical Problems in Engineering



x1
ij ≥ 0, x2

ij − x1
ij ≥ 0, x3

ij − x2
ij ≥ 0, x4

ij ≥ 0, x5
ij − x4

ij ≥ 0,

x6
ij − x5

ij ≥ 0, σij, τij, υij ∈ [0, 1] and σ,ij, τij
′, υij
′ ∈ [−1, 0]

∀i � 1, 2, . . . , m,∀j � 1, 2, . . . , n.

Step 6. An optimal solution is obtained by solving a crisp
linear/nonlinear programming problem: x1

ij, x2
ij, x3

ij, x4
ij,􏽮

x5
ij, x6

ij, σij, τij, υ∗ij, σij
′, τij
′, υij
′}.

Step 7. Find the bipolar single-valued neutrosophic optimal
solution 􏽥X

W

ij of the FBSNTP (18) by putting the values of

x1
ij, x2

ij, x3
ij, x4

ij, x5
ij, x6

ij, σij, τij, υij, σij
′, τij
′ and υij

′ in 􏽥X
W

ij

� ≺([x1
ij, x2

ij, x3
ij]; σij, τij, υij), ([x4

ij, x5
ij, x6

ij]; σij
′, τij
′, υij
′)≻.

Step 8. ,e minimum bipolar single-valued neutrosophic
transportation cost/bipolar single-valued neutrosophic op-
timal value of the FBSNTP (18) are found by setting the
values of 􏽥X

W

ij , as obtained in Step 7, in 􏽐
m
i�1 􏽐

n
j�1

􏽦CW
ij ⊗ 􏽦XW

ij .

4. Numerical Example

Example 1. FFC Transportation Model
Fauji Fertilizer Company (FFC) has two plants in

Gujranwala and Karachi and twomain centers in Lahore and
Peshawar. ,e capacities of producing urea at plants are
≺([70, 100, 130]; 1, 0, 0.4), ([55, 100, 155]; −1, 0, −0.3)≻ and
≺([50, 70, 90]; 1, 0, 0.3), ([35, 70, 115]; −1, 0, −0.2)≻ and the
demands at the two delivery centers of urea for the same
time are ≺([50, 60, 70]; 1, 0, 0.2), ([30, 60, 100]; −1, 0, −0.1)≻
and ≺([40, 70, 100]; 1, 0, 0.1), ([40, 70, 100]; −1, 0, −0.4)≻,
respectively. ,e trucking association in charge of trans-
porting the urea charge ≺([5, 6, 7]; 1, 0, 0), ([3, 6, 10];

−1, 0, −0.1)≻ Rs. per ton urea. ,us, the transporting costs
per ton urea on different routes are given in Table 1.subject
to

􏽥x11⊕􏽥x12 � ≺([70, 100, 130]; 1, 0, 0.4), ([55, 100, 155]; −1, 0, −0.3)≻,

􏽥x21⊕􏽥x22 � ≺([50, 70, 90]; 1, 0, 0.3), ([35, 70, 115]; −1, 0, −0.2)≻,

􏽥x11⊕􏽥x21 � ≺([50, 60, 70]; 1, 0, 0.2), ([30, 60, 100]; −1, 0, −0.1)≻,

􏽥x12⊕􏽥x22 � ≺([40, 70, 100]; 1, 0, 0.1), ([40, 70, 100]; −1, 0, −0.4)≻,

(38)

where 􏽥x11, 􏽥x12, 􏽥x21, and 􏽥x22 are nonnegative TBSNNs.

Minimize

≺([15, 17, 18]; 1, 0, 0.2), ([16, 17, 19]; −1, 0, −0.3)≻⊗ 􏽥x11⊕

≺([20, 22, 24]; 1, 0, 0.3), ([21, 22, 23]; −1, 0, −0.4)≻⊗ 􏽥x12⊕

≺([25, 28, 30]; 1, 0, 0.4), ([27, 28, 29]; −1, 0, −0.5)≻⊗ 􏽥x21⊕

≺([30, 40, 50]; 1, 0, 0.1), ([35, 40, 45]; −1, 0, −0.1)≻⊗ 􏽥x22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

4.1. Step 1. Now as,
total supply � ≺([120, 170, 220]; 1, 0, 0.3), ([

90, 170, 270]; −1, 0, −0.3)≻
Total demand � ≺([90, 130, 170]; 1, 0, 0.2), ([

70, 130, 200]; −1, 0, −0.4)≻
⇒ an unbalanced FBSNTP. So, we add dummy rows and

dummy columns to make a balanced TP.

Dummy row � ≺([10, 30, 30]; 1, 0, 0.1), ([0, 30, 40
]; −1, 0, −0.2)≻

Dummy column � ≺([40, 70, 80]; 1, 0, 0.2), ([20, 70, 110
]; −1, 0, −0.3)≻

So, by assuming bipolar single-valued neutrosophic
transportation cost of unit quantity of product from
dummy source to all destinations and from all sources to
dummy destination to be zero bipolar single-valued neu-
trosophic numbers, then FBSNTP (38) can be transformed
as follows.
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4.2. Step 2.

Minimize

≺([15, 17, 18]; 1, 0, 0.2), ([16, 17, 19]; −1, 0, −0.3)≻⊗ 􏽥x11⊕

≺([20, 22, 24]; 1, 0, 0.3), ([21, 22, 23]; −1, 0, −0.4)≻⊗ 􏽥x12⊕

≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗ 􏽥x13⊕

≺([25, 28, 30]; 1, 0, 0.4), ([27, 28, 29]; −1, 0, −0.5)≻⊗ 􏽥x21⊕

≺([30, 40, 50]; 1, 0, 0.1), ([35, 40, 45]; −1, 0, −0.1)≻⊗ 􏽥x22⊕

≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗ 􏽥x23⊕

≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗ 􏽥x31⊕

≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗ 􏽥x32⊕

≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗ 􏽥x33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

subject to

􏽥x11⊕􏽥x12⊕􏽥x13 � ≺([70, 100, 130]; 1, 0, 0.4), ([55, 100, 155]; −1, 0, −0.3)≻,

􏽥x21⊕􏽥x22⊕􏽥x23 � ≺([50, 70, 90]; 1, 0, 0.3), ([35, 70, 115]; −1, 0, −0.2)≻,

􏽥x31⊕􏽥x32⊕􏽥x33 � ≺([10, 30, 30]; 1, 0, 0.1), ([0, 30, 40]; −1, 0, −0.2)≻,

􏽥x11⊕􏽥x21⊕􏽥x31 � ≺([50, 60, 70]; 1, 0, 0.2), ([30, 60, 100]; −1, 0, −0.1)≻,

􏽥x12⊕􏽥x22⊕􏽥x32 � ≺([40, 70, 100]; 1, 0, 0.1), ([40, 70, 100]; −1, 0, −0.4)≻,

􏽥x13⊕􏽥x23⊕􏽥x33 � ≺([40, 70, 80]; 1, 0, 0.2), ([20, 70, 110]; −1, 0, −0.3)≻,

(41)

where 􏽥x11, 􏽥x12, 􏽥x13, 􏽥x21, 􏽥x22, 􏽥x23, 􏽥x31, 􏽥x32, and 􏽥x33, are
nonnegative TBSNNs.

4.3. Step 3. By assuming

􏽥x11 � ≺ l11, m11, n11􏼂 􏼃; π11, β11,ϕ11( 􏼁, l11′, m11′, n11′􏼂 􏼃; π11′, β11′,ϕ11′( 􏼁≻,

􏽥x12 � ≺ l12, m12, n12􏼂 􏼃; π12, β12,ϕ12( 􏼁, l12′, m12′, n12′􏼂 􏼃; π12′, β12′,ϕ12′( 􏼁≻,

􏽥x13 � ≺ l13, m13, n13􏼂 􏼃; π13, β13,ϕ13( 􏼁, l13′, m13′, n13′􏼂 􏼃; π13′, β13′,ϕ13′( 􏼁≻,

􏽥x21 � ≺ l21, m21, n21􏼂 􏼃; π21, β21,ϕ21( 􏼁, l21′, m21′, n21′􏼂 􏼃; π21′, β21′,ϕ21′( 􏼁≻,

􏽥x22 � ≺ l22, m22, n22􏼂 􏼃; π22, β22,ϕ22( 􏼁, l22′, m22′, n22′􏼂 􏼃; π22′, β22′,ϕ22′( 􏼁≻,

􏽥x23 � ≺ l23, m23, n23􏼂 􏼃; π23, β23,ϕ23( 􏼁, l23′, m23′, n23′􏼂 􏼃; π23′, β23′,ϕ23′( 􏼁≻,

􏽥x31 � ≺ l31, m31, n31􏼂 􏼃; π31, β31,ϕ31( 􏼁, l31′, m31′, n31′􏼂 􏼃; π31′, β31′,ϕ31′( 􏼁≻,

􏽥x32 � ≺ l32, m32, n32􏼂 􏼃; π32, β32,ϕ32( 􏼁, l32′, m32′, n32′􏼂 􏼃; π32′, β32′,ϕ32′( 􏼁≻,

􏽥x33 � ≺ l33, m33, n33􏼂 􏼃; π33, β33,ϕ33( 􏼁, l33′, m33′, n33′􏼂 􏼃; π33′, β33′,ϕ33′( 􏼁≻,

(42)
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where 􏽥x11, 􏽥x12, 􏽥x13, 􏽥x21, 􏽥x22, 􏽥x23, 􏽥x31, 􏽥x32, and 􏽥x33 are
nonnegative TBSNNs, then the FBSNPP (40) can be
transformed as follows.

4.4. Step 4.

Minimize

≺([15, 17, 18]; 1, 0, 0.2), ([16, 17, 19]; −1, 0, −0.3)≻⊗
≺ l11, m11, n11􏼂 􏼃; π11, β11,ϕ11( 􏼁, l11′, m11′, n11′􏼂 􏼃; π11′, β11′,ϕ11′( 􏼁≻⊕
≺([20, 22, 24]; 1, 0, 0.3), ([21, 22, 23]; −1, 0, −0.4)≻⊗

≺ l12, m12, n12􏼂 􏼃; π12, β12,ϕ12( 􏼁, l12′, m12′, n12′􏼂 􏼃; π12′, β12′,ϕ12′( 􏼁≻⊕
≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗

≺ l13, m13, n13􏼂 􏼃; π13, β13,ϕ13( 􏼁, l13′, m13′, n13′􏼂 􏼃; π13′, β13′,ϕ13′( 􏼁≻⊕
≺([25, 28, 30]; 1, 0, 0.4), ([27, 28, 29]; −1, 0, −0.5)≻⊗

≺ l21, m21, n21􏼂 􏼃; π21, β21,ϕ21( 􏼁, l21′, m21′, n21′􏼂 􏼃; π21′, β21′,ϕ21′( 􏼁≻⊕
≺([30, 40, 50]; 1, 0, 0.1), ([35, 40, 45]; −1, 0, −0.1)≻⊗

≺ l22, m22, n22􏼂 􏼃; π22, β22,ϕ22( 􏼁, l22′, m22′, n22′􏼂 􏼃; π22′, β22′,ϕ22′( 􏼁≻⊕
≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗

≺ l23, m23, n23􏼂 􏼃; π23, β23,ϕ23( 􏼁, l23′, m23′, n23′􏼂 􏼃; π23′, β23′,ϕ23′( 􏼁≻⊕
≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗

≺ l31, m31, n31􏼂 􏼃; π31, β31,ϕ31( 􏼁, l31′, m31′, n31′􏼂 􏼃; π31′, β31′,ϕ31′( 􏼁≻⊕
≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗

≺ l32, m32, n32􏼂 􏼃; π32, β32,ϕ32( 􏼁, l32′, m32′, n32′􏼂 􏼃; π32′, β32′,ϕ32′( 􏼁≻⊕
≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻⊗

≺ l33, m33, n33􏼂 􏼃; π33, β33, ϕ33( 􏼁, l33′, m33′, n33′􏼂 􏼃; π33′, β33′, ϕ33′( 􏼁≻
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, (43)

subject to

≺ l11, m11, n11􏼂 􏼃; π11, β11,ϕ11( 􏼁, l11′, m11′, n11′􏼂 􏼃; π11′, β11′,ϕ11′( 􏼁≻⊕≺ l12, m12, n12􏼂 􏼃; π12, β12, ϕ12( 􏼁,

l12′, m12′, n12′􏼂 􏼃; π12′, β12′,ϕ12′( 􏼁≻⊕≺ l13, m13, n13􏼂 􏼃; π13, β13, ϕ13( 􏼁, l13′, m13′, n13′􏼂 􏼃; π13′, β13′, ϕ13′( 􏼁≻

� ≺([70, 100, 130]; 1, 0, 0.4), ([55, 100, 155]; −1, 0, −0.3)≻

≺ l21, m21, n21􏼂 􏼃; π21, β21,ϕ21( 􏼁, l21′, m21′, n21′􏼂 􏼃; π21′, β21′,ϕ21′( 􏼁≻⊕≺ l22, m22, n22􏼂 􏼃; π22, β22, ϕ22( 􏼁,

l22′, m22′, n22′􏼂 􏼃; π22′, β22′,ϕ22′( 􏼁≻⊕≺ l23, m23, n23􏼂 􏼃; π23, β23, ϕ23( 􏼁, l23′, m23′, n23′􏼂 􏼃; π23′, β23′, ϕ23′( 􏼁≻

� ≺([50, 70, 90]; 1, 0, 0.3), ([35, 70, 115]; −1, 0, −0.2)≻

≺ l31, m31, n31􏼂 􏼃; π31, β31,ϕ31( 􏼁, l31′, m31′, n31′􏼂 􏼃; π31′, β31′,ϕ31′( 􏼁≻⊕≺ l32, m32, n32􏼂 􏼃; π32, β32, ϕ32( 􏼁,

l32′, m32′, n32′􏼂 􏼃; π32′, β32′,ϕ32′( 􏼁≻⊕≺ l33, m33, n33􏼂 􏼃; π33, β33, ϕ33( 􏼁, l33′, m33′, n33′􏼂 􏼃; π33′, β33′, ϕ33′( 􏼁≻

� ≺([10, 30, 30]; 1, 0, 0.1), ([0, 30, 40]; −1, 0, −0.2)≻

≺ l11, m11, n11􏼂 􏼃; π11, β11,ϕ11( 􏼁, l11′, m11′, n11′􏼂 􏼃; π11′, β11′,ϕ11′( 􏼁≻⊕≺ l21, m21, n21􏼂 􏼃; π21, β21, ϕ21( 􏼁,

l21′, m21′, n21′􏼂 􏼃; π21′, β21′,ϕ21′( 􏼁≻⊕≺ l31, m31, n31􏼂 􏼃; π31, β31, ϕ31( 􏼁, l31′, m31′, n31′􏼂 􏼃; π31′, β31′, ϕ31′( 􏼁≻

� ≺([50, 60, 70]; 1, 0, 0.2), ([30, 60, 100]; −1, 0, −0.1)≻

≺ l12, m12, n12􏼂 􏼃; π12, β12,ϕ12( 􏼁, l12′, m12′, n12′􏼂 􏼃; π12′, β12′,ϕ12′( 􏼁≻⊕≺ l22, m22, n22􏼂 􏼃; π22, β22, ϕ22( 􏼁,

l22′, m22′, n22′􏼂 􏼃; π22′, β22′,ϕ22′( 􏼁≻⊕≺ l32, m32, n32􏼂 􏼃; π32, β32, ϕ32( 􏼁, l32′, m32′, n32′􏼂 􏼃; π32′, β32′, ϕ32′( 􏼁≻

� ≺([40, 70, 100]; 1, 0, 0.1), ([40, 70, 100]; −1, 0, −0.4)≻

≺ l13, m13, n13􏼂 􏼃; π13, β13,ϕ13( 􏼁, l13′, m13′, n13′􏼂 􏼃; π13′, β13′,ϕ13′( 􏼁≻⊕≺ l23, m23, n23􏼂 􏼃; π23, β23, ϕ23( 􏼁,

l23′, m23′, n23′􏼂 􏼃; π23′, β23′,ϕ23′( 􏼁≻⊕≺ l33, m33, n33􏼂 􏼃; π33, β33, ϕ33( 􏼁, l33′, m33′, n33′􏼂 􏼃; π33′, β33′, ϕ33′( 􏼁≻

� ≺([40, 70, 80]; 1, 0, 0.2), ([20, 70, 110]; −1, 0, −0.3)≻.

(44)
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4.5. Step 5. By applying arithmetic operations, the FBSNTP
(43) can be transformed as

Minimize

≺ 15l11, 17m11, 18n11􏼂 􏼃; 1∧π11, 0∨β11, 0.2∨ϕ11( 􏼁, 16l11′, 17m11′, 19n11′􏼂 􏼃;(

−1∨π11′, 0∧β11′, −0.3∧ϕ11′􏼁≻⊕≺ 20l12, 22m12, 24n12􏼂 􏼃; 1∧π12, 0∨β12, 0.3∨ϕ12( 􏼁,

21l12′, 22m12′, 23n12′􏼂 􏼃; −1∨π12′, 0∧β12′, −0.4∧ϕ12′( 􏼁≻⊕≺
0l13, 0m13, 0n13􏼂 􏼃;

1∧π13, 0∨β13, 0∨ϕ13
􏼠 􏼡, 0l13′, 0m13′, 0n13′􏼂 􏼃; −1∨π13′, 0∧β13′, 0∧ϕ13′( 􏼁≻⊕

≺ 25l21, 28m21, 30n21􏼂 􏼃; 1∧π21, 0∨β21, 0.4∨ϕ21( 􏼁, 27l21′, 28m21′, 29n21′􏼂 􏼃;(

−1∨π21′, 0∧β21′, −0.5∧ϕ21′􏼁≻⊕≺ 30l22, 40m22, 50n22􏼂 􏼃; 1∧π22, 0∨β22, 0.1∨ϕ22( 􏼁,

35l22′, 40m22′, 45n22′􏼂 􏼃; −1∨π22′, 0∧β22′, −0.1∧ϕ22′( 􏼁≻⊕≺ 0l23, 0m23, 0n23􏼂 􏼃;(

1∧π23, 0∨β23, 0∨ϕ23􏼁, 0l23′, 0m23′, 0n23′􏼂 􏼃; −1∨π23′, 0∧β23′, 0∧ϕ23′( 􏼁≻⊕

≺ 0l31, 0m31, 0n31􏼂 􏼃; 1∧π31, 0∨β31, 0∨ϕ31( 􏼁, 0l31′, 0m31′, 0n31′􏼂 􏼃;(

−1∨π31′, 0∧β31′, 0∧ϕ31′􏼁≻⊕≺ 0l32, 0m32, 0n32􏼂 􏼃; 1∧π32, 0∨β32, 0∨ϕ32( 􏼁,

0l32′, 0m32′, 0n32′􏼂 􏼃; −1∨π32′, 0∧β32′, 0∧ϕ32′( 􏼁≻⊕≺ 0l33, 0m33, 0n33􏼂 􏼃;(

1∧π33, 0∨β33, 0∨ϕ33􏼁, 0l33′, 0m33′, 0n33′􏼂 􏼃; −1∨π33′, 0∧β33′, 0∧ϕ33′( 􏼁≻
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,

(45)

subject to

􏽘

3

j�1
l1j � 70, 􏽘

3

j�1
m1j � 100, 􏽘

3

j�1
n1j � 130, 􏽘

3

j�1
l1j
′ � 55, 􏽘

3

j�1
m1j
′ � 100, 􏽘

3

j�1
n1j
′ � 155,⎛⎝ ⎞⎠;

∧ π11∧π12∧π13􏼂 􏼃 � 1

∨ β11∨β12∨β13􏼂 􏼃 � 0

∨ ϕ11∨ϕ12∨ϕ13􏼂 􏼃 � 0.4

∨ π11′∨π12′∨π13′􏼂 􏼃 � −1

∧ β11′∧β12′∧β13′􏼂 􏼃 � 0

∧ ϕ11′∧ϕ12′∧ϕ13′􏼂 􏼃 � −0.3
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􏽘
3

j�1
l2j � 50, 􏽘

3

j�1
m2j � 70, 􏽘

3

j�1
n2j � 90, 􏽘

3

j�1
l2j
′ � 35, 􏽘

3

j�1
m2j
′ � 70, 􏽘

3

j�1
n2j
′ � 115,⎛⎝ ⎞⎠;

∧ π21∧π22∧π23􏼂 􏼃 � 1

∨ β21∨β22∨β23􏼂 􏼃 � 0

∨ ϕ21∨ϕ22∨ϕ23􏼂 􏼃 � 0.3

∨ π21′∨π22′∨π23′􏼂 􏼃 � −1

∧ β21′∧β22′∧β23′􏼂 􏼃 � 0

∧ ϕ21′∧ϕ22′∧ϕ23′􏼂 􏼃 � −0.2
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􏽘
3

j�1
l3j � 10, 􏽘

3

j�1
m3j � 30, 􏽘

3

j�1
n3j � 30, 􏽘

3

j�1
l3j
′ � 0, 􏽘

3

j�1
m3j
′ � 30, 􏽘

3

j�1
n3j
′ � 40,⎛⎝ ⎞⎠;

∧ π31∧π32∧π33􏼂 􏼃 � 1

∨ β31∨β32∨β33􏼂 􏼃 � 0

∨ ϕ31∨ϕ32∨ϕ33􏼂 􏼃 � 0.1

∨ π31′∨π32′∨π33′􏼂 􏼃 � −1

∧ β31′∧β32′∧β33′􏼂 􏼃 � 0

∧ ϕ31′∧ϕ32′∧ϕ33′􏼂 􏼃 � −0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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􏽘

3

k�1
lk1 � 50, 􏽘

3

k�1
mk1 � 60, 􏽘

3

k�1
nk1 � 70, 􏽘

3

k�1
lk1′ � 30, 􏽘

3

k�1
mk1′ � 60, 􏽘

3

k�1
nk1′ � 100,⎛⎝ ⎞⎠;

∧ π11∧π21∧π31􏼂 􏼃 � 1
∨ β11∨β21∨β31􏼂 􏼃 � 0
∨ ϕ11∨ϕ21∨ϕ31􏼂 􏼃 � 0.2
∨ π11′∨π21′∨π31′􏼂 􏼃 � −1
∧ β11′∧β21′∧β31′􏼂 􏼃 � 0
∧ ϕ11′∧ϕ21′∧ϕ31′􏼂 􏼃 � −0.1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

k�1
lk2 � 40, 􏽘

3

k�1
mk2 � 70, 􏽘

3

k�1
nk2 � 100, 􏽘

3

k�1
lk2′ � 40, 􏽘

3

k�1
mk2′ � 70, 􏽘

3

k�1
nk2′ � 100,⎛⎝ ⎞⎠;

∧ π12∧π22∧π32􏼂 􏼃 � 1
∨ β12∨β22∨β32􏼂 􏼃 � 0
∨ ϕ12∨ϕ22∨ϕ32􏼂 􏼃 � 0.1
∨ π12′∨π22′∨π32′􏼂 􏼃 � −1
∧ β12′∧β22′∧β32′􏼂 􏼃 � 0
∧ ϕ12′∧ϕ22′∧ϕ32′􏼂 􏼃 � −0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

k�1
lk3 � 40, 􏽘

3

k�1
mk3 � 70, 􏽘

3

k�1
nk3 � 80, 􏽘

3

k�1
lk3′ � 20, 􏽘

3

k�1
mk3′ � 70, 􏽘

3

k�1
nk3′ � 110,⎛⎝ ⎞⎠;

∧ π13∧π23∧π33􏼂 􏼃 � 1
∨ β13∨β23∨β33􏼂 􏼃 � 0
∨ ϕ13∨ϕ23∨ϕ33􏼂 􏼃 � 0.2
∨ π13′∨π23′∨π33′􏼂 􏼃 � −1
∧ β13′∧β23′∧β33′􏼂 􏼃 � 0
∧ ϕ13′∧ϕ23′∧ϕ33′􏼂 􏼃 � −0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

where πkj, βkj, ϕkj ∈ [0, 1], πkj
′, βkj
′, ϕkj
′ ∈ [−1, 0] and

lkj, mkj − lkj, nkj − mkj ≥ 0, lkj
′

, mkj
′ − lkj
′, nkj
′ − mkj
′ ≥ 0; k � 1, 2, 3; j � 1, 2, 3.

4.6. Step 6. By applying score function Definition 8, the
FBSNTP (45) can be transformed as

Minimize S

15l11 + 20l12 + 0l13 + 25l21 + 30l22 + 0l23 + 0l31 + 0l32 + 0l33

+17m11 + 22m12 + 0m13 + 28m21 + 40m22 + 0m23 + 0m31 + 0m32 + 0m33

+18n11 + 24n12 + 0n13 + 30n21 + 50n22 + 0n23 + 0n31 + 0n32 + 0n33

+16l11′ + 21l12′ + 0l13′ + 27l21′ + 35l22′ + 0l23′ + 0l31′ + 0l32′ + 0l33′+

17m11′ + 22m12′ + 0m13′ + 28m21′ + 40m22′ + 0m23′ + 0m31′ + 0m32′ + 0m33′+

19n11′ + 23n12′ + 0n13′ + 29n21′ + 45n22′ + 0n23′ + 0n31′ + 0n32′ + 0n33′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

subject to

􏽘

3

j�1
l1j � 70, 􏽘

3

j�1
m1j � 100, 􏽘

3

j�1
n1j � 130, 􏽘

3

j�1
l1j
′ � 55, 􏽘

3

j�1
m1j
′ � 100, 􏽘

3

j�1
n1j
′ � 155,⎛⎝ ⎞⎠;

∧ π11∧π12∧π13􏼂 􏼃 � 1

∨ β11∨β12∨β13􏼂 􏼃 � 0

∨ ϕ11∨ϕ12∨ϕ13􏼂 􏼃 � 0.4

∨ π11′∨π12′∨π13′􏼂 􏼃 � −1

∧ β11′∧β12′∧β13′􏼂 􏼃 � 0

∧ ϕ11′∧ϕ12′∧ϕ13′􏼂 􏼃 � −0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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􏽘

3

j�1
l2j � 50, 􏽘

3

j�1
m2j � 70, 􏽘

3

j�1
n2j � 90, 􏽘

3

j�1
l2j
′ � 35, 􏽘

3

j�1
m2j
′ � 70, 􏽘

3

j�1
n2j
′ � 115,⎛⎝ ⎞⎠;

∧ π21∧π22∧π23􏼂 􏼃 � 1
∨ β21∨β22∨β23􏼂 􏼃 � 0
∨ ϕ21∨ϕ22∨ϕ23􏼂 􏼃 � 0.3
∨ π21′∨π22′∨π23′􏼂 􏼃 � −1
∧ β21′∧β22′∧β23′􏼂 􏼃 � 0
∧ ϕ21′∧ϕ22′∧ϕ23′􏼂 􏼃 � −0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

j�1
l3j � 10, 􏽘

3

j�1
m3j � 30, 􏽘

3

j�1
n3j � 30, 􏽘

3

j�1
l3j
′ � 0, 􏽘

3

j�1
m3j
′ � 30, 􏽘

3

j�1
n3j
′ � 40,⎛⎝ ⎞⎠;

∧ π31∧π32∧π33􏼂 􏼃 � 1
∨ β31∨β32∨β33􏼂 􏼃 � 0
∨ ϕ31∨ϕ32∨ϕ33􏼂 􏼃 � 0.1
∨ π31′∨π32′∨π33′􏼂 􏼃 � −1
∧ β31′∧β32′∧β33′􏼂 􏼃 � 0
∧ ϕ31′∧ϕ32′∧ϕ33′􏼂 􏼃 � −0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

k�1
lk1 � 50, 􏽘

3

k�1
mk1 � 60, 􏽘

3

k�1
nk1 � 70, 􏽘

3

k�1
lk1′ � 30, 􏽘

3

k�1
mk1′ � 60, 􏽘

3

k�1
nk1′ � 100,⎛⎝ ⎞⎠;

∧ π11∧π21∧π31􏼂 􏼃 � 1
∨ β11∨β21∨β31􏼂 􏼃 � 0
∨ ϕ11∨ϕ21∨ϕ31􏼂 􏼃 � 0.2
∨ π11′∨π21′∨π31′􏼂 􏼃 � −1
∧ β11′∧β21′∧β31′􏼂 􏼃 � 0
∧ ϕ11′∧ϕ21′∧ϕ31′􏼂 􏼃 � −0.1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

k�1
lk2 � 40, 􏽘

3

k�1
mk2 � 70, 􏽘

3

k�1
nk2 � 100, 􏽘

3

k�1
lk2′ � 40, 􏽘

3

k�1
mk2′ � 70, 􏽘

3

k�1
nk2′ � 100,⎛⎝ ⎞⎠;

∧ π12∧π22∧π32􏼂 􏼃 � 1
∨ β12∨β22∨β32􏼂 􏼃 � 0
∨ ϕ12∨ϕ22∨ϕ32􏼂 􏼃 � 0.1
∨ π12′∨π22′∨π32′􏼂 􏼃 � −1
∧ β12′∧β22′∧β32′􏼂 􏼃 � 0
∧ ϕ12′∧ϕ22′∧ϕ32′􏼂 􏼃 � −0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

k�1
lk3 � 40, 􏽘

3

k�1
mk3 � 70, 􏽘

3

k�1
nk3 � 80, 􏽘

3

k�1
lk3′ � 20, 􏽘

3

k�1
mk3′ � 70, 􏽘

3

k�1
nk3′ � 110,⎛⎝ ⎞⎠;

∧ π13∧π23∧π33􏼂 􏼃 � 1
∨ β13∨β23∨β33􏼂 􏼃 � 0
∨ ϕ13∨ϕ23∨ϕ33􏼂 􏼃 � 0.2
∨ π13′∨π23′∨π33′􏼂 􏼃 � −1
∧ β13′∧β23′∧β33′􏼂 􏼃 � 0
∧ ϕ13′∧ϕ23′∧ϕ33′􏼂 􏼃 � −0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (48)

where πkj, βkj, ϕkj ∈ [0, 1], πkj
′, βkj
′, ϕkj
′ ∈ [−1, 0], and

lkj, mkj − lkj, nkj − mkj ≥ 0, lkj
′, mkj
′−

lkj
′, nkj
′ − mkj
′ ≥ 0; k � 1, 2, 3; j � 1, 2, 3.

4.7. Step 7. Now, we solve the following crisp linear pro-
gramming problem as

Minimize
1
6

15l11 + 20l12 + 0l13 + 25l21 + 30l22 + 0l23 + 0l31 + 0l32 + 0l33

+ 17m11 + 22m12 + 0m13 + 28m21 + 40m22 + 0m23 + 0m31 + 0m32 + 0m33

+ 18n11 + 24n12 + 0n13 + 30n21 + 50n22 + 0n23 + 0n31 + 0n32 + 0n33

+ 16l11′ + 21l12′ + 0l13′ + 27l21′ + 35l22′ + 0l23′ + 0l31′ + 0l32′ + 0l33′+

17m11′ + 22m12′ + 0m13′ + 28m21′ + 40m22′ + 0m23′ + 0m31′ + 0m32′ + 0m33′+

19n11′ + 23n12′ + 0n13′ + 29n21′ + 45n22′ + 0n23′ + 0n31′ + 0n32′ + 0n33′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (49)
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subject to

􏽘

3

j�1
l1j � 70, 􏽘

3

j�1
m1j � 100, 􏽘

3

j�1
n1j � 130, 􏽘

3

j�1
l1j
′ � 55, 􏽘

3

j�1
m1j
′ � 100, 􏽘

3

j�1
n1j
′ � 155,⎛⎝ ⎞⎠;

∧ π11∧π12∧π13􏼂 􏼃 � 1

∨ β11∨β12∨β13􏼂 􏼃 � 0

∨ ϕ11∨ϕ12∨ϕ13􏼂 􏼃 � 0.4

∨ π11′∨π12′∨π13′􏼂 􏼃 � −1

∧ β11′∧β12′∧β13′􏼂 􏼃 � 0

∧ ϕ11′∧ϕ12′∧ϕ13′􏼂 􏼃 � −0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

j�1
l2j � 50, 􏽘

3

j�1
m2j � 70, 􏽘

3

j�1
n2j � 90, 􏽘

3

j�1
l2j
′ � 35, 􏽘

3

j�1
m2j
′ � 70, 􏽘

3

j�1
n2j
′ � 115,⎛⎝ ⎞⎠;

∧ π21∧π22∧π23􏼂 􏼃 � 1

∨ β21∨β22∨β23􏼂 􏼃 � 0

∨ ϕ21∨ϕ22∨ϕ23􏼂 􏼃 � 0.3

∨ π21′∨π22′∨π23′􏼂 􏼃 � −1

∧ β21′∧β22′∧β23′􏼂 􏼃 � 0

∧ ϕ21′∧ϕ22′∧ϕ23′􏼂 􏼃 � −0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

j�1
l3j � 10, 􏽘

3

j�1
m3j � 30, 􏽘

3

j�1
n3j � 30, 􏽘

3

j�1
l3j
′ � 0, 􏽘

3

j�1
m3j
′ � 30, 􏽘

3

j�1
n3j
′ � 40,⎛⎝ ⎞⎠;

∧ π31∧π32∧π33􏼂 􏼃 � 1

∨ β31∨β32∨β33􏼂 􏼃 � 0

∨ ϕ31∨ϕ32∨ϕ33􏼂 􏼃 � 0.1

∨ π31′∨π32′∨π33′􏼂 􏼃 � −1

∧ β31′∧β32′∧β33′􏼂 􏼃 � 0

∧ ϕ31′∧ϕ32′∧ϕ33′􏼂 􏼃 � −0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

k�1
lk1 � 50, 􏽘

3

k�1
mk1 � 60, 􏽘

3

k�1
nk1 � 70, 􏽘

3

k�1
lk1′ � 30, 􏽘

3

k�1
mk1′ � 60, 􏽘

3

k�1
nk1′ � 100,⎛⎝ ⎞⎠;

∧ π11∧π21∧π31􏼂 􏼃 � 1

∨ β11∨β21∨β31􏼂 􏼃 � 0

∨ ϕ11∨ϕ21∨ϕ31􏼂 􏼃 � 0.2

∨ π11′∨π21′∨π31′􏼂 􏼃 � −1

∧ β11′∧β21′∧β31′􏼂 􏼃 � 0

∧ ϕ11′∧ϕ21′∧ϕ31′􏼂 􏼃 � −0.1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽘
3

k�1
lk2 � 40, 􏽘

3

k�1
mk2 � 70, 􏽘

3

k�1
nk2 � 100, 􏽘

3

k�1
lk2′ � 40, 􏽘

3

k�1
mk2′ � 70, 􏽘

3

k�1
nk2′ � 100,⎛⎝ ⎞⎠;

∧ π12∧π22∧π32􏼂 􏼃 � 1

∨ β12∨β22∨β32􏼂 􏼃 � 0

∨ ϕ12∨ϕ22∨ϕ32􏼂 􏼃 � 0.1

∨ π12′∨π22′∨π32′􏼂 􏼃 � −1

∧ β12′∧β22′∧β32′􏼂 􏼃 � 0

∧ ϕ12′∧ϕ22′∧ϕ32′􏼂 􏼃 � −0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽘
3

k�1
lk3 � 40, 􏽘

3

k�1
mk3 � 70, 􏽘

3

k�1
nk3 � 80, 􏽘

3

k�1
lk3′ � 20, 􏽘

3

k�1
mk3′ � 70, 􏽘

3

k�1
nk3′ � 110,⎛⎝ ⎞⎠;

∧ π13∧π23∧π33􏼂 􏼃 � 1

∨ β13∨β23∨β33􏼂 􏼃 � 0

∨ ϕ13∨ϕ23∨ϕ33􏼂 􏼃 � 0.2

∨ π13′∨π23′∨π33′􏼂 􏼃 � −1

∧ β13′∧β23′∧β33′􏼂 􏼃 � 0

∧ ϕ13′∧ϕ23′∧ϕ33′􏼂 􏼃 � −0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)
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Table 2: Comparison of optimal values.

FBSNTP ≺([2050, 3470, 5300]; 1, 0, 0.4), ([1810, 3915, 6490]; −1, 0, −0.5)≻
FIFTP [5] (2050, 3470, 5300); (2050, 3470, 5300)

FFTP [1] (2050, 3470, 5300)

2000 4000 5000 60003000

-1

-0.5

0

0.5

1

Truth membership
Indeterminacy membership
Falsity membership

Figure 1: Graphical representation of bipolar single-valued neutrosophic transportation cost discussed in Example 1.
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Figure 2: Graphical representation of intuitionistic transportation cost [5].
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where πkj, βkj, ϕkj ∈ [0, 1], πkj
′, βkj
′, ϕkj
′ ∈ [−1, 0], and

lkj, mkj − lkj, nkj − mkj ≥ 0, lkj
′, mkj
′ − lkj
′, nkj
′

−mkj
′ ≥ 0; k � 1, 2, 3; j � 1, 2, 3.

4.8. Step 8. By using the software MAPLE, we get optimal
solution

l11 � 0, l12 � 40, l13 � 30, l21 � 50, l22 � 0, l23 � 0, l31 � 0, l32 � 0, l33 � 10, m11 � 10,

m12 � 50, m13 � 40, m21 � 50, m22 � 20, m23 � 0, m31 � 0, m32 � 0, m33 � 30, n11 � 20,

n12 � 60, n13 � 50, n21 � 50, n22 � 40, n23 � 0, n31 � 0, n32 � 0, n33 � 30, l11′ � 30, l12′ � 5,

l13′ � 20, l21′ � 0, l22′ � 35, l23′ � 0, l31′ � 0, l32′ � 0, l33′ � 0, m11′ � 55, m12′ � 5, m13′ � 40,

m21′ � 5, m22′ � 65, m23′ � 0, m31′ � 0, m32′ � 0, m33′ � 30, n11′ � 80, n12′ � 5, n13′ � 70, n21′ � 20,

n22′ � 95, n23′ � 0, n31′ � 0, n32′ � 0, n33′ � 40.

(51)

4.9. Step 9. ,e bipolar single-valued neutrosophic optimal
solution is

􏽥x11 � ≺([0, 10, 20]; 1, 0, 0), ([30, 55, 80]; −1, 0, 0),

􏽥x12 � ≺([40, 50, 60]; 1, 0, 0), ([5, 5, 5]; −1, 0, 0)≻,

􏽥x13 � ≺([30, 40, 50]; 1, 0, 0), ([20, 40, 70]; −1, 0, 0)≻,

􏽥x21 � ≺([50, 50, 50]; 1, 0, 0), ([0, 5, 20]; −1, 0, 0)≻,

􏽥x22 � ≺([0, 20, 40]; 1, 0, 0), ([35, 65, 95]; −1, 0, 0)≻,

􏽥x23 � ≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻,

􏽥x31 � ≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻,

􏽥x32 � ≺([0, 0, 0]; 1, 0, 0), ([0, 0, 0]; −1, 0, 0)≻,

􏽥x33 � ≺([10, 30, 30]; 1, 0, 0), ([0, 30, 40]; −1, 0, 0)≻.

(52)

4.10. Step 10. ,e minimum bipolar single-valued neu-
trosophic optimal value of FBSNTP is

≺([2050, 3470, 5300]; 1, 0, 0.4),

( 1810, 3915, 6490]; −1, 0, −0.5)≻.[
(53)

5. Comparison with Existing
Transportation Model

Singh et al. [5] and Basirzadeh [1] suggested different tech-
niques to solve intuitionistic fuzzy transportation problems and
fuzzy transportation problems, respectively. We have proposed
a method to solve an unbalanced FBSNTP. By using our
proposedmethod to Example 1, which is discussed in Section 3,
we have obtained the minimum total single-valued neu-
trosophic transportation cost ≺([2050, 3470, 5300]; 1, 0, 0.4),

0
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0.4

0.6

0.8

1

3000 3500 4000 4500 50002500

Truth membership

Figure 3: Graphical representation of fuzzy transportation cost [1].
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([1810, 3915, 6490]; − 1, 0, −0.5)≻, which can be interpreted
as follows:

(i) ,e smallest amount of the minimum total trans-
portation cost is 2050 units for positive membership
and 1810 units for negative membership

(ii) ,e achievable amount of the minimum total
transportation cost is 3470 units for positive and
3915 units for negative membership respectively

(iii) ,e largest amount of the minimum total trans-
portation cost is 5300 units for positive membership
and 6490 units for negative membership

,us, the minimum total transportation cost for positive
and negative memberships will always be larger than 2050,
1810 units, and smaller than 5300, 6490 units respectively,
while for both memberships most probably the minimum
total transportation cost will be 3470, 3915 units.

Results of Example 1 and existing models [1, 5] are given
in Table 2 and are shown graphically in Figures 1–3.

From Figures 1–3 it is proved that single-valued neu-
trosophic transportation model is the most generalized model.

6. Advantages of Proposed Method

,e proposed transportation model is based on a bipolar
single-valued neutrosophic environment. ,is method is
comparatively better than other methods in terms of
advantages.

(i) In literature there is no method to solve an unbal-
anced FBSNTP. So, this is a new and helpful ap-
proach for the decision makers.

(ii) A BSNT model is more powerful than an intui-
tionistic fuzzy model [5] and a fuzzy model [1].,us,
this technique is more general than fuzzy and
intuitionistic fuzzy environments respectively.

7. Limitations of the Proposed Method

In this section, the limitations of proposed method 3 are
pointed out.

(i) ,e proposed method 3 can be used to find the
minimum bipolar single-valued neutrosophic opti-
mal value of the balanced and unbalanced FBSNTP
by using nonnegative triangular and trapezoidal
bipolar single-valued neutrosophic numbers

(ii) ,e unbalanced transportation problem 4.1 is given
in Table 3

8. Conclusion

In this study, we have suggested a new technique to solve an
unbalanced FBSNTproblem by using nonnegative triangular
bipolar single-valued neutrosophic numbers. A score
function has been applied to transform TBSNNs into crisp
numbers. We have solved the FBSNTP on the basis of bi-
polar single-valued neutrosophic linear programming for-
mulation. Furthermore, we have compared our method with

the existing fully intutionistic fuzzy transportation models
[5] and fully fuzzy transportation models [1].

We aim to extend our study to include the following
topic:

(1) bipolar single-valued neutrosophic rough trans-
portation models.
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