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Driven by the advancements in 5G-enabled Internet of)ings (IoT) technologies, the IoTdevices have shown an explosive growth
trend with massive data generated at the edge of the network. However, IoT systems exhibit inherent vulnerability for diverse
attacks, and Advanced Persistent )reat (APT) is one of the most powerful attack models that could lead to a significant privacy
leakage of systems. Moreover, recent detection technologies can hardly meet the demands of effective security defense against
APTs. To address the above problems, we propose an APT Prediction Method based on Differentially Private Federated Learning
(APTPMFL) to predict the probability of subsequent APTattacks occurring in IoTsystems. It is the first time to apply a federated
learning mechanism for aggregating suspicious activities in the IoT systems, where the APT prediction phase does not need any
correlation rules. Moreover, to achieve privacy-preserving property, we further adopt a differentially private data perturbation
mechanism to add the Laplacian random noises to the IoTdevice training data features, so as to achieve the maximum protection
of privacy data. We also present a 5G-enabled edge computing-based framework to train and deploy the model, which can
alleviate the computing and communication overhead of the typical IoTsystems. Our evaluation results show that APTPMFL can
efficiently predict subsequent APT behaviors in the IoT system accurately and efficiently.

1. Introduction

With the continuous development of 5G-enabled IoT
technologies, numerous mobile applications have emerged
with various requirements in terms of intelligence, latency,
and bandwidth [1]. However, enormous risks and hidden
dangers of information security still exist in the applications
of the 5G-enabled Internet of )ings (IoT). It is mainly
caused by the characteristics of the IoT systems, which are
lacking update, having longer lifetimes, delayed patched, and
facing consequences of compromise [2, 3]. Among the di-
verse attacks, Advanced Persistent)reat (APT) belongs to a
class of advanced multiple-step attacks. Ascribed to its
permeability, concealment, and pertinence, the APT could
bring severe threats to the IoT systems [4]. For the sake of
defending these increasingly complex and potential security
risks, researchers and organizations have put forward

various detection technologies, such as intrusion detection
technology, malicious code detection technology, and vul-
nerability detection technology [5–8]. However, the above-
mentioned methods have difficulty in meeting the higher
requirements of protection for 5G-enabled IoTsystems since
APT attacks usually adopt the way of step-by-step pene-
tration and long-term latency to achieve the final purpose of
confidential data exfiltration [9].

Recently, the technology of Cyber Situation Awareness
(CSA) has been put forward by researchers to solve the above
problems. )e cyber situation comprehension is a phase of
the CSA process that focuses on analyzing the detected
malicious activities semantics and the possible internal re-
lationships among them [10]. )is kind of technology has
the ability to infer the attacker’s intention and predict the
probability of subsequent attacks, which is quite useful for
detecting APT in 5G-enabled IoT systems. Hence, in this
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paper, we aim to propose an effective and robust cyber
situation comprehension method to predict the probability
of subsequent APTattacks occurrence after recognizing APT
attacks in the 5G-enabled IoT system.

However, predicting the APTattack in IoTsystems could
face the following challenges: (1)Unbalanced Datasets. Since
the APT is a multistep attack model, it is difficult for a single
organization to capture the data that can cover the complete
APT stages and sufficient attack patterns [11]. In addition,
since the different organizations will face different APT
attacks, it will contribute to the imbalance of APT data. (2)
Isolated Data Island. As the data generated by a single or-
ganization are not sufficient to describe the complex APT
process, integrating the data from several organizations to
train a sharing model is a promising way to defend against
APT [12, 13]. (3) Limited Resources of IoT Devices. )e IoT
devices are usually resource-constraint where their storage
capacity and computing power are usually limited. It is not
feasible to assign the large-scale data analysis and process to
the IoT devices directly [14]. (4) Arising Privacy Issues.
Conventional APTprediction methods all need to collect the
private information of each device, such as the system logs
and device IDs, which could arise significant privacy chal-
lenges [15].

To meet the problems above, we proposed an APT
Prediction Method based on Differentially Private Federated
Learning (APTPMFL) to predict the probability of subse-
quent APT attacks occurring in IoT scenarios. )e contri-
butions we have made are shown as follows:

(i) We proposed a novel APT prediction method,
named APTPMFL, which utilizes the federated
learning framework to aggregate suspicious activi-
ties in the IoT systems. )e IoT devices can unite
with edge servers to train the prediction model
locally using system logs, just uploading the pa-
rameter updates to the security service cloud.

(ii) To protect IoTdevice data privacy against untrusted
edge servers, we adopt a differentially private data
perturbation mechanism to perturb the Laplacian
random noises to the IoT device training data
features, so as to achieve the privacy-preserving
property of users’ training data.

(iii) We present an edge computing-based framework to
deploy the prediction model in typical IoT systems.
)e edge servers can not only share the computing
overhead for the IoT devices but also alleviate the
communication cost between IoT devices and the
security service cloud.

)e rest of the paper is organized as follows. Section 2
summarizes the related works of attack prediction in
cybersecurity and privacy-preserving deep learning. Section
3 provides an overview of the federated learning-based APT
prediction architecture for IoT systems, which contains a
description of the proposed APTPMFL and the edge
computing framework for deploying the APT prediction
method. Section 4 presents the design details of the
APTPMFL, which consists of the federated learning

approach and the APT attack prediction. Section 5 shows a
view of our experiments and analysis. Section 6 presents
some conclusions.

2. Background and Related Work

In 1999, the US Air Force Communications and Information
Center originally applied the situation awareness technology
to the data fusion analysis of multiple NIDS detection re-
sults. )ey claimed that the multisensor data fusion tech-
nology provides an important functional framework for the
next generation of the intrusion detection system and CSA
[4] system, which can fuse the data of multisource het-
erogeneous IDS, identify the intruders, attack frequency,
threat degree, and so on. )e CSA applies the theory and
method of situation awareness to the field of cybersecurity so
that network security managers can grasp the security status
of the dynamic network environment and acquire defending
decision support. We also give a general functional model of
CSA, as shown in Figure 1. )e model includes the cyber
situation perception phase, cyber situation comprehension
phase, and cyber situation projection phase.)e functions of
each phase are briefly summarized as follows:

(i) )e function of cyber situation perception is to
identify the activities in the system, that is, reduce
the noise of the raw data generated by security
equipment and information management system to
get the valid information and analyze the correla-
tion of them to identify the objects in the system. In
this way, the abnormal activities will stand out.

(ii) Cyber situation comprehension usually focuses on
recognizing the malicious activities and correlating
the semantics of them. In this way, the attacker’s
intention can be inferred and the subsequent attacks
can also be predicted.

(iii) Cyber situation projection can analyze and evaluate
the threat of attack activities to each object in the
information system based on the two steps above.
)is phase focuses on estimating the effects that
attacks have produced and may produce on the
objects. By projecting the results of CSA to a certain
system object, the state of the object can be obtained
in the current situation. Although we want to
recognize and analyze the activities, the final result
of CSA should be expressed as the influence of these
activities on the system objects, not just the iden-
tification of activities. Cyber situation projection is a
process of feedback understanding, fusing the states
of various objects observed from the system to form
a situation and then evaluate the significance of the
situation to each object.

As an important part of cyber situation comprehension,
the attack prediction can analyze the logical relationship
between attack behaviors and infer the possible changing
trends. )e purpose of attack prediction is to infer the
subsequent malicious actions by understanding the inten-
tion of them. At present, the hot topic of attack prediction is
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related to the four topics as follows: attack/intrusion pre-
diction, attack projection, attack intention recognition, and
network security situation forecasting [5].)e tasks of attack
intention recognition and attack projection are tied to in-
trusion detection. )e core task of them is to predict an
adversary’s next step moving and his ultimate goal. )e
attack/intrusion prediction is much more general as it only
focuses on predicting malicious activity occurring. )e
network security situation forecasting is essentially a generic
concept related to CSA. )e output of network security
situation forecasting is a forecast of the number of malicious
activities and vulnerability fluctuation in the network.

For solving the challenge of attack activities prediction,
Polatidis et al. [6] presented a recommender system that can
be applied to defense the cyber threat effectively and
practically by making predictions about the ensuing attack
behaviors in attack graphs. )e Bayesian classier was de-
veloped by Okutan et al. [7], utilized to predict the attack
probability in a given day by processing signals extracted
from social media and overall events. Huang et al. [8]
worked on industrial cyber-physical systems (ICPSs) secu-
rity and proposed a novel risk assessment approach in virtue
of a Bayesian network to model the propagation of malicious
activities and predict the probability of IoT devices being
attacked. Okutan et al. [9] designed an innovative, automatic
attack prediction system called CAPTURE which compre-
hensively uses generated signals to train a Bayesian classifier
used to forecast the cyber threat. Dowling et al. [10]
implemented dynamic and adaptive honeypots to capture
malicious datasets used to analyze attack types and model
temporal attack patterns, and the probability of each attack
type proceeding at a certain slot of the day can be calculated.
A novel attack prediction method based on information
exchange and data mining is presented in [11], which defines
rules to describe the general malicious patterns by extracting
information from numerous alerts. A system based on

machine learning named MLAPT is suggested in [12]. )e
proposed system developed eight modules to detect various
technics of APT and the machine-learning-based prediction
framework takes associated alerts as input to calculate the
probability of alerts to evolve a full APT scenario. A data-
snapshot-based malware prediction approach is described in
[13]. Using recurrent neural networks, this approach can
predict malicious executable files in the early stage of
software execution. )e literature [14] designed a Bayesian
game framework based on game theory to analyze multiple
APTattack stages and deceptive strategies. Behaviors of APT
actors can be predicted by the perfect Bayesian Nash
equilibrium (PBNE) to make a defensive strategy. A targeted
complex attack network model entitled TCAN is developed
in literature [15]. )e model predicts the optimum attack
path by means of constructing a dynamic attack graph and
monitor state change.

Due to the fact that we adopt a differentially private
federated learning mechanism to predict APT attacks, we
have also surveyed the recent researches on privacy-pre-
serving deep learning. To optimize the efficiency of Deep
Neural Networks, the model partition technique [16] has
been proposed, which can assign the loosely coupled hidden
layers [17] to a third party. Meanwhile, in order to prevent
user’s privacy data stolen by malicious servers, some re-
searches have been presented from different perspectives
[18]. A privacy-preserving deep learning approach proposed
by Abadi and Chu [19] provides a Gaussian Perturbation
mechanism [20] for the clipped gradient. It is a very effective
solution to protect the data privacy of users. To prevent each
user’s updates from leaking to untrusted third party by
learning model sharing, Geyer et al. proposed a device-side
differential private federated learning framework [21]. In
addition, a secret sharing-based method has been applied to
a high-dimensional data sum aggregation protocol by
Bonawitz et al. [22]. Unfortunately, all of these privacy
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solutions above have to rely on the existence of trusted
aggregating servers which work on perturbing the global
model parameters and safely assign noise parameters to each
user. It means that the aggregator servers can read the model
parameters of each individual. )erefore, it is necessary to
adopt a practical mechanism to protect the privacy of IoT
devices from untrusted third parties in APT attack predic-
tion based on federated learning.

3. APT Prediction for IoT Systems

3.1. System Architecture. In this work, we provide an edge
computing framework (shown in Figure 2) that can partition
the APTPMFL method across the security service cloud,
edge servers, and IoTdevices. All of the IoTdevices take part
in the differentially private federated learning protocol
provided by a security service cloud, so as to acquire the APT
prediction service. Due to malicious edge servers and
untrusted security service cloud even have possibility of
sneaking into the process of federated learning, to guarantee
the involved IoTdevices will not suffer the threats of training
data breach, we can divide the local learning model into the
device-side part and edge-side part which is called ICP-GRU
model. )e Inception (ICP) models are deployed on IoT
devices to extract features from multiple scales of log data.
)e Gated Recurrent Units (GRU) models are deployed on
the edge servers to learn the evolution of APTscenarios. )e
ultimate goal is not to detect APT attacks but to predict the
probability of the evolution of the APT scenario to the next
stage which can contribute to the cyber situation compre-
hension in IoT scenarios. )e involved entities and their
function are shown in Figure 2.

3.1.1. IoT Devices. )e IoTdevices represent various kinds of
devices (such as industrial personal computers, smart me-
ters, and monitoring equipment). Each IoTdevice is capable
of communication and computing, which can execute the
local log data feature extraction procedure (the device-side
part ICP model) and transfer its extracted features to the
adjoining edge server through 5G base stations.

3.1.2. Edge Server. )e edge servers are equipped with much
stronger computation and storage resources compared to
the IoT devices, usually assigned at the edge of the IoT
systems and working as the computation unit between se-
curity service cloud and IoT devices. )e role of the edge
server is a participant in federated learning with the purpose
of training the APT prediction model (the edge-side part
GRU model). Federated learning is a distributed machine-
learning approach with efficient communication and privacy
protection. )e edge servers receive the features extracted
from IoT devices through 5G base stations to train a model
locally and update the model parameters to the security
service cloud.)e participated edge servers can learn various
APT attack patterns without exchanging datasets and
monitor IoT devices to launch APT attack prediction for
cyber situation comprehension.

3.1.3. Security Service Cloud. Each edge server updates the
model parameters to the security service cloud after training
the model locally; after that, the security service cloud ag-
gregates the parameters into a global model and assigns the
aggregated model to each edge server. Based on that, all
participants only need to interact with the security service
cloud for model parameters without exchanging their own
data, which protects data privacy and improves transmission
efficiency. In such a condition, different edge servers could
belong to different organizations, and the security service
cloud maintains a repository of APT attack patterns for
participants. Meanwhile, the challenge of imbalanced APT
data can also be alleviated thanks to the distributed learning
model.

3.2. reat Model and Assumptions. Generally, a full APT
attack scenario consists of the following attack phases.
Initially, an APT performer gains access to the system il-
legitimately through the point of entry. )en, the attacker
will establish a connection with a C&C. After that, the at-
tacker discovers and collects assets within the organization
for privilege escalation and lateral movement. Eventually,
the adversary will destroy infrastructures or exfiltrate con-
fidential data of the organization to achieve the ultimate
goal. During this process, the APTperformer will persist for
an extended period of time and use numerous technics. )e
proposed APTPMFL focuses on learning the occurring APT
scenarios to acquire its evolution features. Under such
circumstances, once a new APTalert comes, we can measure
the probability of the subsequent malicious activity occur-
ring by inputting the relevant log instances into the ICP-
GRU model.

Among these entities involved in the ICP-GRU model,
the IoT devices are assumed as the trusted entities which
benefit from the security services by collaboratively exe-
cuting the training process with other IoT devices. Unfor-
tunately, the third parties, that is, security service cloud and
edge servers, have the possibility of being honest but curious
[23]. In particular, they can faithfully perform the federated

…

Security service cloud

Global model Global model

Local update 1 Local update 2

GRU

ICP

GRU

ICP

Edge server Edge server

Participant #1 Participant #n

Figure 2: System architecture.
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learning process and correctly calculate and send results.
However, they are curious about the privacy contained in the
log data and try to acquire the privacy data [24]. In addition,
we assume that the model will not be poisoned by attackers
during the model training process. At last, we assume the
integrity of the data collection framework which completely
records the operations of the system, and the data will not be
falsified by attackers.

4. APTPMFL Design

4.1. Federated Learning Approach. In order to realize APT
attack prediction in IoTscenario to achieve security situation
comprehension, we introduce an efficiently differentially
private federated learning model in edge computing IoT
system, named ICP-GRU (the learning procedure is shown
in Figure 3). Considering performance as well as privacy
issues, this machine-learning model is divided into the
device-side part and the edge-side part. )ereby, the com-
putation overhead on the IoT devices is also able to be
reduced [25]. )e ICP-GRU relies on the edge computing
architecture in the IoT scenario and splits the learning
protocol across the participants. Specifically, the local fed-
erated learning training procedure is divided into two
phases: device-side ICP and edge-side GRU. According to
the division mechanism, the inception convolution layers
are assigned to the device-side while the remaining layers
(i.e., Gated Recurrent Units layers) are deployed on the edge
side. In this approach, IoT devices only extract and perturb
the lightweight and simple features of log instances. To
guarantee the system log data in rigorous privacy protection,
we provide a differential privacy mechanism in our ICP-
GRU scheme, where the extracted features from log in-
stances are perturbed by the deliberate Laplace noise before
being transmitted to the edge server through 5G base sta-
tions. )e security service cloud in the ICP-GRU model is
designed to aggregate and average the local updates provided
by the edge servers.

To provide proper data for this APTprediction approach
based on differentially private federated learning, we also
standardize and normalize the original system log. Since the
attributes of some features are character types, such as pname,
q_domain, and referer, all the symbolic features needed to
convert into numerical types before feeding the dataset into
the neural network. At the same time, the value of each
feature dimension is inconsistent, and the range of values is
also obviously different. Some data with high values on high-
magnitude features perhaps have a large weight, thus ignoring
some hidden information on low-level data. )erefore, we
provide a log instance construction module at the beginning
of the ICP-GRU model to preprocess the raw data.

4.1.1. Inception Convolution and Data Perturbation. As
CNN achieved excellent performance in image processing, it
is also constantly being applied to other fields. However,
traditional CNN only focuses on extracting local features
and neglects the aggregation of multiple local features. To
flexibly mitigate this problem, Google proposed a

convolutional neural network architecture in the Goo-
gLeNet network called Inception. )e Inception module
aggregates 1 ∗ 1, 3 ∗ 3, and 5 ∗ 5 convolution kernels and
max-pooling into one layer. Multiple convolution kernels
extract information of different scales of the dataset, and
the fusion of features can obtain a better representation of
the log instance. We adopt the Inception module to
perform convolution operation which extracts features
from multiple scales of the log instances dataset which can
make the neural network much smarter.

After data preprocessing, the dataset arranged according
to timestamp is fed into the inception convolutionmodule in
the form of data flow for training. Considering the con-
textual correlation between data, the data flow is split into
fixed-size vectors, and each vector contains n pieces of data.
After processing each vector, an n∗m feature matrix can be
formed where m represents the number of features of each
data. )e inception convolution module will extract the
features of the dataset through convolution kernels of 1∗1,
2∗2, and 3∗3 and max-pooling of 2∗2, and the same con-
volution should be utilized in order to match the width and
height of the output matrix. Nevertheless, the Inception
module is resource-consuming when performing the con-
volution operation. )erefore, the 1∗1 convolution is
inserted before 2∗2 and 3∗3 convolution to reduce the
feature dimension and increase the computation speed.

As the federated learning approach usually trains the
sensitive data locally, it can provide a basic privacy guarantee
to the involved IoT devices. However, these sensitive device
data such as updated parameters (i.e., features and gradients)
still have probability stolen by the untrusted security service
cloud and edge servers. )erefore, it is urgent to formulate a
robust preserving mechanism to keep the confidentiality of
each IoT device against the untrusted security service cloud
and edge servers. )ereby, we perturb the features extracted
by the ICPmodel, so as to protect the privacy of the IoTdevice
logs. To meet the aforementioned challenge, we formulate a
differentially private data perturbation mechanism to defense
the untrusted entities acquiring the privacy information that
exists in the features extracted by the IoT device-side ICP
model. )e ICP model can be regarded as a deterministic
function: xl � F(xr), where xr is the private device log data
andxl represents the l-th layer output of the ICP model. In
order to achieve privacy protection, the differential privacy
approach is applied to the ICP model and our private fed-
erated learning protocol is constructed in the edge com-
puting-based IoT scenario. As an efficient means to achieve
є-differential privacy, the controlled Laplace noise is added to
the extracted features. )e Laplace noise is sampled from the
Laplace distribution with scale (ΔF/ε) into the output xl.
According to the definition of differential privacy, the global
sensitivity for a query f: D⟶ R can be defined as follows:

Δf �
max
d ∈D,d′ ∈D′�f(d) − f d′( . (1)

4.1.2. GRU Networks. )e GRU is a type of RNN that is
similar to LSTM, which is proposed to address the problems
of long-term memory and gradient in backpropagation. )e
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reason for adopting GRU is that it not only achieves the
effect equivalent to LSTM but also can save more computing
resources, which can greatly improve training performance.

Similar to RNN, the hidden state ht− 1 transmitted from the
previous node and the current input xt constitute the inputs of
GRU. Combining xt and ht− 1, GRU will get the output of the
current node as yt and the hidden state ht transmitted to the
next node. Initially, two gates are obtained by the previous state
ht− 1 and the current node input xt. As shown in formulas (2)
and (3), r indicates the reset gate, z represents the update gate,
and σ represents the Sigmoid function.

r � σ W
r
x

t
+ U

t
h

t− 1
 , (2)

z � σ w
z
x

t
+ U

z
h

t− 1
 . (3)

After getting the gate signal, the reset gate is used to get
the reset data ht− 1 ⊙ r, that is, ht− 1’ . )en input ht− 1’ and xt

into the tanh( ) activation function so as to the output range
will fall in [−1, 1]. h’ here mainly involves the currently
entered data xt, and adding h’ to the current hidden state in a
targeted manner is equivalent to memorizing the state at the
current moment. )e formal description of h′ is shown as
follows:

h′ � tanh W
h
x

t
+ U

h
h

t− 1 ⊙ r  . (4)

Finally, the GRU carries out two operations (forgetting
and memorizing) at the same time. With the acquired
update gate whose value range falls in [0, 1], (1 − z)⊙ ht

defines how much the previous memory is forgotten, and
z⊙ h’ defines how much of the h’ containing the current
node information is to be keep around. )e more close the
update gate to “1” is, the more the memory will be reserved,
and the more close the update gate to “0” is, the more the
memory will be forgotten. )e formal description of ht is
shown as follows:

ht � (1 − z)⊙ h
t

+ z⊙ h′. (5)

Multiscale features hidden in the data flow can be
extracted after the ICP model is processing plenty of log
instances. )e features are subsequently fed into the GRU
network in serialized form to learn the temporal features by
selectively learning and forgetting. )e model parameters
will be continuously updated by means of gradient back-
propagation, and a powerful APT attack prediction model
will be obtained in the wake of multiple rounds of iterations.

4.1.3. Federated Learning Procedure. )e APTPMFL
method proposed in the paper is applied to the IoT edge
computing environment. As shown in Figure 4, the feder-
ated learning process for APT prediction consists of the
following steps:

(1) )e edge servers act as participants in federated
learning and request the ICP-GRU model from the
security service cloud.

(2) )e security service cloud assigns an initialized
model to each edge server once the participants’
requests are received, and the corresponding ICP
model is transmitted to the connected IoT devices
through 5G communication.

(3) Each IoTdevice inputs locally collected data into the
model for training, learning the private log data
independently, and perturbs the features by con-
trolled Laplace noise.

(4) )e edge servers get the features transmitted from
the IoTdevices for further GRU learning and update
the local model parameters to the security service
cloud once achieving model training.

(5) )e security service cloud aggregates the local
updated models into a global model.

(6) )e security service cloud will deliver the aggregated
global model to each edge server again. After mul-
tiple rounds of retraining, the global model is ag-
gregated by the security service cloud, and the APT
attack patterns will be acquired.

Eventually, the security service cloud delivers the global
model to each participant which is employed to predict the
process of APT attackers in the 5G-enabled IoT system. )e
pseudocode of the overall APTPMFLmethod is presented in
Table 1 and the notations used in the pseudocode are listed
in Table 2.

4.2. APT Attack Prediction. APT attackers penetrate the
target 5G-enabled IoTsystem for an extended period of time
and launch attacks slowly making defenders have to monitor
the system behavior incessantly, which brings great chal-
lenges to process data efficiently and detect attacks accu-
rately. However, this low-and-slow attack is a double-edged
sword. )e long span of time between the APTattack phases
leaves enough time for defenders to predict the attacker’s
next move. When an APTattack at a certain stage is detected

Device side Edge side

Feature 
extraction

Perturbed 
featuresPerturbation

Local model 
updates

Loss
SGD

Cloud side

Global model 
updates

Global updatePretrained ICP model
Log instances

System log

Data 
preprocessing

ICP model
GRU model

Model average

Figure 3: ICP-GRU learning process.
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and the corresponding alerts are generated, suspicious logs
can be continuously analyzed to predict the attacker’s be-
havior so that the proper defensive measures can be chosen
before the APT attackers achieve their ultimate goal. In this

section, we first provide the log instance construction
procedure for APT behavior learning and prediction. )en,
we present an APT prediction procedure.

4.2.1. Log Instance Construction. )e log data collected on
the IoT devices infected by APT attacks are used for model
training and APT attack prediction. )e detection system
will generate a series of alerts when a certain APTattack step
is detected in the 5G-enabled IoT systems. Although the
recognized APT attacks have triggered the alerts, there are
still plentiful related unaggressive malicious behaviors that
have not been detected which could be a stepping stone for
the attacker to launch the next step attack activity.

Consequently, alert attribute values will be analyzed to
discover the threatened IoT devices after some alerts have
emerged. )e log data generated in the targeted IoT devices
will be constructed into log instances. )e types of log in-
stances depend on the data providers and the operating
system installed in IoT devices. On the assumption that all
log data derive from Windows Embedded Compact
(Windows CE) IoTdevices, various types of logs provided by
different application programs or record facilities are shown
in Table 3. )e log data are supposed to transform into a
uniform format for the purpose of processing data effec-
tively. As shown in Table 4, 14 features are selected from the
log data to construct the log instance. Due to the fact that
different log data sources and not all features are contained
in each log instance, each log instance can be described as a
14-tuple: A(I(log)m) � (a1, a2 . . . a13, a14). If a log instance
only has features a1, a3, and a5, the other feature values are
set to zero.

4.2.2. APT Prediction Procedure. Once the ICP-GRU model
has accomplished learning the APTattack activity behaviors
in the target 5G-enabled IoT system, it can be used for
predicting the probability of later APT attack activities. We
abstract 4 APT stages under the IoT environment, that is,

Table 1: )e APTPMFL pseudo-code.

APTPMFL algorithm
(1) procedure IoT DEVICE SIDE
(2) Nullification operation: xr

′ � xr ⊙ In

(3) Features extraction: xl � F(xr
′)

(4) Norm bounding: xl
′ � xl/max(1, xl∞/B)

(5) Adding perturbation: xl � xl
′ + Lap(B/δI)

(6) Upload xi←xl to the edge server
(7) end procedure
(8) procedure EDGE SERVER SIDE
(9) EVENT: Receive perturbed features xi

(10) Initialize: w
(i)
t ←w

(global)
t

(11) for each Ek ∈ (1, . . . , E) do
(12) for batch b ∈ B do
(13) g

(i)
t � ∇wt

L(wt, xi)

(14) w
(i)
t+1 � w

(i)
t − σ · g

(i)
t

(15) end for
(16) w

(i)
t+1 � w

(i)
t+1 − w

(i)
t

(17) end for
(18) Upload Δw(i)

t+1 to the SECURITY SERVICE CLOUD
(19) end procedure
(20) procedure SECURITY SERVICE CLOUD SIDE
(21) EVENT: Receive local model updates Δw(i)

t+1
(22) Initialize global parameters w

(global)
t

(23) for all i ∈ [1, n] do
(24) w

(global)
t+1 � w

(global)
t + (1/n) 

n
i�1 Δw

(i)
t+1

(25) end for
(26) Send w

(global)
t+1 to the edge server

(27) end procedure

Table 2: )e notations used in the pseudocode.

Notation Definition
xr IoT device sensitive raw data
xr
′ Nullification result for xr

xi Perturbed features
In Nullification matrix
xl l-th layer output of DNN
xl
′ Nullification result for xl

l Partitioned layer
F(xr) Deep neural network
L(wt, xi) Objective loss function
B Norm bounding
E Local epoch
δ Local learning rate
w

(i)
t Parameters for IoT device i at t

g
(i)
t Gradient for IoT device i at t

Δw(i)
t Local model update at t

w
(global)
t Global model parameters at t

σ Noisy scale

Security service
cloud

Edge server

IoT device

5

1 2

3

4 6

Figure 4: Federated learning process.
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point of entry, C&C communication, asset/data discovery,
and data exfiltration. )e log instances can be classified into
benign and suspicious through the Log Instance Community
Detection algorithm proposed in our previous work [13],
and only suspicious instances can be collected to train the
model. )e overall APT prediction process is presented in
Figure 5.

Suppose that the APTstages i and i + 1 are detected at the
time of T1 and T2, respectively; all of the suspicious log
instances within the time window [T1 − τ, T2] should be fed
to the ICP-GRU model to learn attack behavior features. It
means that when the IoTdevices suffer from these suspicious
activities, the APTattacker will conduct the i + 1 stage attack
with a high probability. In case a certain APT stage is de-
tected at time T1 and corresponding alerts are triggered, log
instances of threatened devices are recorded starting at
T1 − τ. )e suspicious log instances are fed into the pre-
diction model in real time, and the output of the model is a
probability value in the range of [0, 1] which indicates the
probability of the system suffering the next stage APTattack.
Once the output value surpasses the prediction threshold λ,
the 5G-enabled IoTsystem will be in danger of the next stage
of an APT attack scenario with high probability.

5. Experimental Evaluation

For the sake of carrying on a detailed and objective eval-
uation of our proposed APT prediction method
(APTPMFL), we implement a federated learning prototype

on the system log data which are generated within the typical
seven APT attack scenarios (Op-Clandestine Fox, Hacking
Team, APTon Taiwan, Tibetan and HK, Op-Tropic Trooper,
Russian Campaign, and Attack on Aerospace) [26].

5.1. Datasets and Experimental Setup

5.1.1. Datasets. It is unfortunate that the appropriate system
log dataset and attack alert dataset associated with typical
APTattacks are not acquirable. However, our previous work
[26] has accomplished the construction of the APT scenario
and log instance correlation. )erefore, we adopt the labeled
log instances and recognized APTscenarios generated in this
work as simulated data to evaluate the effectiveness of
APTPMFL. Table 5 presents the details about these datasets.
Each dataset is generated by reconstructing a kind of typical
APT scenario. )ese APT scenarios are designed and
launched by different APTattack teams; the attackers exploit
various vulnerabilities and adopt different attack strategies.
We provide these various datasets that can adequately verify
the predicting effect of our method for different APT
scenarios.

5.1.2. Experimental Settings. In order to make the laboratory
environment reflect the characteristics of the real IoTsystem
as similar as possible, we link four identical hosts (a Red Hat
Linux operating system running on a host with an Intel Core
i7-8550u 2.53GHz CPU, 16GB RAM) to deploy an edge
computing network based on federated learning. )e lab-
oratory environment is shown in Figure 6. )e first host
works as the security service cloud, and the other three hosts
work as the edge servers. )e reason for deploying the
identical computing resource on the three hosts is that we,
respectively, set eight virtual machines in the victim edge
servers as virtual IoT devices. Half of the edge servers’
computing resource is shared by the virtual IoT devices. It
means that an edge server owns 8GB RAM, and each virtual
IoT device occupies 1GB RAM. )is resource allocation
scheme is very consistent with the real IoT system. )e
APTPMFL is proposed to meet the challenge of the IoT
device’s resource limitation. Even though we do not im-
plement the real IoT operation flow, each virtual IoT device
just has 1GB RAM resource and without any updated
patches can competently simulate and testify the efficiency of
our method in the IoT system.

To accomplish the federate learning training process of
APTPMFL, we allocate the labeled log instances to each
virtual machine (simulates the IoT devices) and allocate the
recognized APT scenarios to the edge servers. )en, the
virtual machines will transmit part of the logs to the edge
servers for training the ICP-GRUmodels and keep the other
logs for testifying the prediction performance. As the
baseline of the experiments, we adopt the standard federated
learning approach presented in the literature [27]. )e local
training configurations are that the prediction train for
E� 20 local epochs with the initial learning rate δ � 0.1. Each
module of APTPMFL works on the corresponding locations
based on the proposed edge computing-based framework.

Table 4: Log instance features extracted from log records.

Type Logs Features Annotation
1 Log3 h_ip Host IP address
2 Log3 d_ip Destination IP address
3 Log3 h_port Host port number
4 Log3 d_port Destition port number
5 Log3 Type Request/response
6 Log5 q_domain D queried domain name
7 Log5 r_ip DNS resolved IP address

8 Log2 Ppid Base-16 parent process
ID

9 Log1 Log2 Log3 Pid Base-16 process ID

10 Log1 Log2 Log3
Log6 Pname Process

11 Log1 Objname Object name
12 Log4 res_code Response code
13 Log4 Referer Refer of requested URI
14 Log1-Log6 Timestamp Event timestamp

Table 3: Log types from different recorders.

Type Logs Recorders
1 Object access logs Audit
2 Process create logs Audit
3 WFP connect logs Audit
4 HTTP logs Internet explorer
5 DNS logs Tshark
6 Authentication logs Syslogd
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Finally, we verify the performance of our method based on
some evaluation indicators.

)e essence of proposing the APTPMFL is to predict
the probability of subsequent APT attacks occurring in
IoT scenarios. We implemented the algorithm and fed-
erated learning framework on the laboratory edge servers
and security service cloud. For the sake of verifying
whether the proposed method can effectively predict the
probability of subsequent APT attacks occurring in the
laboratory environment, we select the F1 score and false-
positive rate (FPR) to indicate the performance of
APTPMFL. )e reason for adopting the F1 score instead
of the common indicators Recall � TP/(FN + TP) and
Precision � TP/(TP + FP) is that the two indicators above
are mutually exclusive in some cases, needing a harmonic
mean to balance respective defects. )e parameters TP,
FN, and FP, respectively, count the number of true-
positive prediction probabilities, the number of false-
negative prediction probabilities, and the number of
false-positive prediction probabilities. )ereby, the for-
mal description of the F1-score is shown in formula (5).
)e FPR focuses on representing the proportion of false
alert of the organization that is in danger of the next APT
attack stage. )e formal description of FPR is shown in
formula (6).

F1 �
2Recall · Precision
Recall + Precision

, (6)

FPR �
FP

FP + TN
. (7)

5.2. Evaluation of APTPMFL

5.2.1. APT Prediction Performance. We will evaluate the
prediction performance of the APTPMFL by analyzing the
results of the FPR and F1-scores. )e prediction threshold λ
can influence the prediction result as more next step APT
attack alerts will generate with its value higher. We have
evaluated the prediction performance of APTPMFL on the 7
typical APT attack scenarios, such as Op-Clandestine Fox,
Hacking Team, APTon Taiwan, Tibetan and HK, Op-Tropic
Trooper, Russian Campaign, and Attack on Aerospace. )e
corresponding system logs are reconstructed by one of our
previous works [26].

)e performances of APTPMFL predicting the 7 typical
APTattacks are shown in Figures 7 and 8. It is easy to get the
result that both the FPR and F1 will reduce with the value of
prediction threshold λ increasing. It is due to the fact that the
lower λ will make more log instances detected as prestep of
APTattack activities and the benign log instances will have a
higher possibility to be incorrectly detected. We work hard
for getting a proper threshold to make our method achieve
preferable prediction performance on the 7 typical APT
attack scenarios. Fortunately, when the value of the pre-
diction threshold λ is 0.75, the F1-scores are not too low (at
around 80%) and the FPR can drop to an acceptable level
(not exceeding 5%).

5.2.2. Efficiency of Federated Learning. We have conducted a
set of experiments to evaluate the federated learning per-
formance with varying the quantity of IoTdevices (from 3 to
24). )e number of epochs that each IoTdevice collaborates

Table 5: Datasets used in our experiments.

Dataset Input
size

Training
samples

Testing
samples

Op-Clandestine
Fox 14 × 1 5600 1200

Hacking Team 14 × 1 5800 1240
APT on Taiwan 14 × 1 5750 1232
Tibetan and HK 14 × 1 6300 1350
Op-Tropic Trooper 14 × 1 6100 1307
Russian Campaign 14 × 1 7800 1671
Attack on
Aerospace 14 × 1 4900 1050

Point of entry C&C communication Asset/data discovery Data exfiltration

Time

Alert 1

Alert 1 Alert 2

Alert 2 Alert 2

Alert 3 Alert 4Alert 2

Log 1

Log 1

Log 2 Log n

Log 2 Log n

Log 1 Log 2 Log n

Figure 5: APT prediction process.
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with edge server training the ICP-GRU local model is set
as 20 and the number of communication rounds between
edge server and security service cloud is set as 5. )ereby,
each local model has been trained in a total of 100 epochs.
It is a sufficient number of training epochs due to the fact
that we have accomplished training the ICP-GRU model
in a centralized learning scenario and got convergence
after 98 epochs. We allocated a randomized subset of
training IoT device logs from the constructed dataset to
each virtual IoT device and the proposed APTPMFL
method performance has been evaluated with the number
of devices involved in the federated learning model
varying. We repeated this experiment seven times for each
APT scenario, with random resampling of the training

datasets. )e value of prediction threshold λ is set as 0.75
to balance the F1-score and FPR. )e evaluation results of
seven APT scenarios are shown in Figure 9 which dem-
onstrates that the APTPMFL method with more par-
ticipating IoT devices can acquire better FPR and the
F1-score deteriorates only slightly. Besides, we also find
another feature of APTPMFL which is that the time
complexity will approximately linearly increase with the
quantity of log instance increasing.

)e proposed APTPMFL method can provide better
privacy for IoTdevices contributing to without training data
sharing during the training procedure. However, the ICP-
GRU model still has some limitations. Comparing with
training this model in a centralized framework, it will
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Figure 9: Continued.

Security and Communication Networks 11



inevitably lose some accuracy of APT prediction. To com-
pare this inevitable loss in accuracy, we set another exper-
iment to retrain four ICP-GRU models using the entire
training dataset by dividing it among 6, 12, 18, or 24 IoT
devices and comparing these to an ICP-GRU trained in a

centralized framework. )e evaluation values of F1-scores
and FPR are the average of their effectiveness on 7 APT
scenarios when the threshold λ is set as 0.75. Table 6 shows a
small decrease in F1-scores as we increase the number of IoT
devices, and the FPR does not fluctuate evidently. )is small
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Figure 9: Evolution of F1 and FPR as we increase the number of IoTdevices. (a) Attack on Aerospace. (b) Hacking Team. (c) Tibetan and
HK. (d) Russian Campaign. (e) Op-Tropic Trooper. (f ) APT on Taiwan. (g) Op-Clandestine Fox.

Table 6: Effect of using federated learning compared to centralizing approach.

Metric Centralized learning (%)
Federated learning

6 participants (%) 12 participants (%) 18 participants (%) 24 participants (%)
F1-score 89.8 88.7 86.5 84.5 81.4
FPR 4.85 4.87 4.89 4.94 4.96
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drop in F1-scores will not be concerned, because we can fix
the threshold λ to amend it to an appropriate level.

6. Conclusions

We present APTPMFL, a federated learning-based APT
prediction method deployed on the 5G-enabled IoT sce-
nario. A model containing multiple APT attack patterns is
trained in a distributed learning manner and the well-
trained model will be implemented to predict the probability
of subsequent APT attacks occurring in 5G-enabled IoT
scenarios. As a result, the experiments show that APTPMFL
successfully predicts the probability of subsequent APT
activities with acceptable accuracy and low false rates.
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5G communications proposed significant improvements over 4G in terms of efficiency and security. Among these
novelties, the 5G network slicing seems to have a prominent role: deploy multiple virtual network slices, each providing a
different service with different needs and features. Like this, a Slice Operator (SO) ruling a specific slice may want to offer a
service for users meeting some requirements. It is of paramount importance to provide a robust authentication protocol,
able to ensure that users meet the requirements, providing at the same time a privacy-by-design architecture. -is makes
even more sense having a growing density of Internet of -ings (IoT) devices exchanging private information over the
network. In this paper, we improve the 5G network slicing authentication using a Self-Sovereign Identity (SSI) scheme:
granting users full control over their data. We introduce an approach to allow a user to prove his right to access a specific
service without leaking any information about him. Such an approach is SANS, a protocol that provides nonlinkable
protection for any issued information, preventing an SO or an eavesdropper from tracking users’ activity and relating it to
their real identities. Furthermore, our protocol is scalable and can be taken as a framework for improving related
technologies in similar scenarios, like authentication in the 5G Radio Access Network (RAN) or other wireless networks
and services. Such features can be achieved using cryptographic primitives called Zero-Knowledge Proofs (ZKPs). Upon
implementing our solution using a state-of-the-art ZKP library and performing several experiments, we provide
benchmarks demonstrating that our approach is affordable in speed and memory consumption.

1. Introduction

5G communications enhanced the way how mobile de-
vices are connected to cellular networks. -ey not solely
improved the 4G Radio Access Network (RAN) but also
introduced a new paradigm where devices with different
specifications are routed through different physical and
logical networks, called network slices. -is opened new
business models, for instance, creating network slices for
specific services offered by third parties. Like this, a Slice
Operator (SO) ruling a network slice may want to offer a
service to users meeting some requirements (e.g., users
enrolled in a governmental program and users who have
paid for using such a service). Among the growing density
of Internet of -ings (IoT) devices using 5G

communications, we can find examples of devices sharing
sensitive data over the network: medical devices ex-
changing private information or autonomous cars
sharing their location with a network slice. Needless to
say, this data should not be traced by any SO or eaves-
dropper. In such a scenario, traditional authentication
schemes leak all this data to the SO. As such, Self-Sov-
ereign Identity (SSI) [1] becomes an important feature to
implement: systems where users can control, access, and
transparently consent their identities, preventing entities
from tracking and gathering their personal data. Like-
wise, the main idea behind SSI systems is to provide a
unique mechanism for users to authenticate into different
services, providing only the required information, in-
formation which shall be nontraceable.
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1.1. Contributions. We introduce SANS, a novel self-sov-
ereign authentication approach where a user demonstrates
his right to access a service, without leaking any information
about him. Our approach is an underlying protocol to be
integrated into existing SSI systems, avoiding any user ac-
tivity to be linked with any other activity done in the past or
the future. Moreover, it also prevents the SO or an attacker
impersonating him from tracking users’ activity. Our pro-
tocol grants the user with these main features:

(i) Anonymity: the SO has no way to relate any digital
identity to a real identity.

(ii) Proof of requirements: the user can prove that he
meets the requirements needed for using a specific
service.

(iii) Nonlinkable activity: the SO has no way to relate any
user activity to another activity done in the network.

To achieve the aforesaid key features, we use Zero-
Knowledge Proofs (ZKPs), cryptographic primitives gaining
a lot of momentum in the last years. Since the seminal paper
in [2], demonstrating how ZKPs can prove knowledge of a
secret without leaking any information about it, several
applications have been envisioned. However, during de-
cades, they were far from being used in real-life applications
due to nonexistent efficient implementations. Nevertheless,
recently, many efficient ZKPs have broken into the scene,
revolutionizing not only the state-of-the-art in the area but
also the market in scenarios like cryptocurrencies (e.g.,
Zcash [3]) or smart-contracts (e.g., Ethereum [4]). Using
ZKPs, we can ensure self-sovereign authentication in 5G
network slices, as a user would be able to prove his right to
access a specific service, requested by an SO, without leaking
any information about him.

1.2. Roadmap. In Section 2, we expose the background
required to understand the context of the problem and also
our solution. In Section 3, we introduce the relevant work
done concerning our topic. In Section 4, we present our
protocol with all details, including the security analysis, the
implementation, and the performed experiments. Conclu-
sions are provided in Section 5.

2. Background

In this section, we first introduce the basics of 5G network
slicing, and later, for the sake of completeness, we provide an
overview of what ZKPs are and how they could be applied to
our protocol.

2.1. 5G Network Slicing. 5G is the fifth generation of mobile
communications [5], which achieves faster speeds than LTE
networks and more reliable service. -e 5G network is split
into different network slices, which are independent net-
works dedicated and optimized for specific services. -is
new architecture is built employing Software-Defined
Networking (SDN) and Network Functions Virtualization
(NFV), along with the physical infrastructure. All these

changes lead to higher performance: higher speeds, lower
delays, and much less network latency. As depicted in
Figure 1, different kinds of User Equipment (UE) are part of
different slices, depending on their specifications or the
services they are willing to use. In a nutshell, the main
network slices are as follows:

(i) eMBB slice: -e enhanced Mobile Broadband
(eMBB) slice is meant for services that require high
bandwidth, like Internet browsing, high definition
video streaming, virtual reality, and so on.

(ii) mMTC slice: -e massive Machine Type Com-
munications (mMTC) slice aims to group a high
density of devices, which do not have other essential
requirements like a low latency or a high bandwidth.
Examples of this are IoT devices, specifically in the
context of smart cities.

(iii) uRLLC slice: -e ultra-Reliable and Low-Latency
Communications (uRLLC) slice aims to provide
very low network latency, a crucial requirement for
services like autonomous driving or remote
management.

As depicted in Figure 1, users connect their UE to the
small 5G cells of the 5G RAN, which forward the connec-
tions to the 5G core network, split into different software-
defined networks (i.e., eMBB, mMTC, and uRLLC).

Furthermore, access to the 5G core network is allowed
not solely from the new 5G RAN but also from other
networks like the 4G RAN or optical fiber connections,
depending on the requirements of the service. As such, we
understand 5G as a heterogeneous network (HetNet), a
network interconnecting devices with different specifica-
tions and protocols, where a common and trustworthy
authentication scheme would be a desirable feature.

2.2. Zero-Knowledge Proofs. A Zero-Knowledge Proof
(ZKP) [2] is a cryptographic primitive which allows a prover
P to convince a verifier V that a statement is true, without
leaking any secret information. In particular, ZKPs must
satisfy 3 properties:

(i) Completeness: if the statement is true, P must be
able to convince V.

(ii) Soundness: if the statement is false, P must not be
able to convince V that the statement is true, except
with negligible probability.

(iii) Zero-knowledge: V must not learn any information
from the proof beyond the fact that the statement is
true.

Moreover, V may also be interested in an additional
property, the proof of knowledge, which guarantees that P

knows the secret information about the statement. -is
secret information that the prover knows is usually called
witness w. In other words, P wants to prove knowledge of a
secret witness w for which a set of operations hold. Such
operations are defined by a circuit, a graph composed of
different wires and gates, which leads to a set of equations
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relating to the inputs and the outputs of these gates. Each of
these equations is called a constraint.

To achieve their goal, both P and V need to interact
several times. However, as iterating is not always a desirable
property, another kind of ZKPs called Noninteractive ZKP
(NIZKP) [6] arose. In this case, P proves a statement to V by
sending him a single message, without interaction. First
NIZKP schemes were far from being implemented, due to
their impractical computing requirements. Here is where
one of the most popular ZKPs arose, zk-SNARKs, which are
Zero-Knowledge Succinct and Noninteractive ARguments
of Knowledge [7]. -is kind of proof is short and succinct: it
can be verified in a few milliseconds. In this scheme, a
trusted setup is required, in order to get some public pa-
rameters used by either P or V as a reference to generate and
verify proofs. -ese parameters are called the Common
Reference String (CRS). If an attacker was able to get the
secret random values τ used to generate the CRS, he would
be able to generate false proofs. For this reason, the initial
setup is commonly made through a secure Multiparty
Computation (MPC) [8], which generates the required
parameters using a distributed computation protocol.
-erefore, zk-SNARKs are composed of three algorithms:
setup, prove, and verify. -e computing complexity of some
of these elements depends on the number of gates n, which is
the number of operations that we do for proving a specific
statement.

-ere are also other interesting kinds of ZKPs rather
than zk-SNARKs, like Bulletproofs [9]. As shown in Table 1,
Bulletproofs are constructions whose proof size is larger
than zk-SNARKs, where the complexity is O(log n) versus
the constant proof size complexity of zk-SNARKs. More-
over, zk-SNARKs are also faster in verifying time com-
plexity. Even when Bulletproofs have linear proving time
complexity, the large number of operations required for
every constraint leads to a high proving time in practice. As
such, the main advantage of Bulletproofs is that they do not
require a trusted setup.

Another interesting kind of ZKPs is zk-STARKs (Zero-
Knowledge Succinct Transparent ARgument of Knowledge)

[10], whose size is much higher than zk-SNARKs and
Bulletproofs (O(log2 n)). One of their main advantages is
that like Bulletproofs; they do not require a trusted setup.
Another advantage of zk-STARKs is that they are supposed
to be postquantum secure, which is not the case of zk-
SNARKs and Bulletproofs.

Regarding the security of the schemes described above,
the soundness property of each scheme relies on different
security assumptions [11]. As shown in Table 1, zk-SNARKs
use a strong assumption, the q-Power Knowledge of Ex-
ponent (q − PKE) assumption, while Bulletproofs or zk-
STARKs use better approaches: the Discrete Logarithm
Problem (DLP) and Collision Resistant Hash Functions
(CRHF), respectively.

However, one of the most important improvements
regarding ZKPs is the zk-SNARK construction introduced
in [12], which introduces the most efficient zk-SNARK
designed so far. One of its main improvements is that the
verifier has to evaluate a single equation, using only three
pairings, instead of five equations and twelve pairings, as
done in [7]. Such improvements led to a huge usage of this
construction in different applications like Zcash.

Another critical research topic is resilience against
quantum attacks. An essential contribution regarding this
topic has been done in [13, 14], where a new zk-SNARK
construction believed to be postquantum secure is
introduced.

Regarding the scalability of the implementations, a
significant contribution has been done in [15]. -ey propose
Sonic, a zk-SNARK construction which requires a trusted
setup, but with the difference that such a setup supports
different circuits and is also updatable, meaning that the
scheme can be continuously improved. As during the setup,
a CRS is made public, by using an updatable CRSmodel [16],
any user can update the CRS, and he can also prove that it
was done correctly, employing a proof of correctness. If this
proof is verified, the new CRS can be trusted as long as either
the old CRS or the user who did the update was honest.
Moreover, zk-SNARK constructions without the need for a
trusted setup have also been designed, like the one in [17].

eMBB slice

UE

UE

UE

mMTC slice

uRLLc slice

...
...

uRLLc SDN

mMTC SDN

eMBB SDN5G RAN
5G core

Figure 1: General 5G architecture overview.
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Having in mind the schemes described above, the ZKP
construction that best fits our solution (at the moment of
writing this) is zk-SNARKs. We need proofs to be succinctly
verifiable to not overload the verifier and at the same time, it
is also preferred to have proofs with a constant size. In that
regard, the Groth’16 construction [12] provides a reasonably
efficient prover, so it could be the preferred option for SANS,
as having a construction with efficient proving and verifying
algorithms is of paramount importance in our scenario. In
Section 4.4, we show the results of several experiments we
have done in this regard. However, we recall the fact that our
solution could be used with other ZKP constructions if
better options arise.

3. Related Work

Self-Sovereign Identity (SSI) has gained a lot of interest in
the last years. -e author in [18] envisioned an SSI system
where users can control, consent, and widely use their
identities among different services, along with other prop-
erties. -ese properties were redefined in [1] by the Sovrin
Foundation (https://sovrin.org/). -ey introduced the
guidelines on how SSI systems can be implemented along
with blockchain technologies, providing a distributed ar-
chitecture of trust without central authorities managing
users’ data. In this regard, SSI authentication schemes like
the one proposed in [19] make use of blockchain technol-
ogies for deploying a decentralized and private authenti-
cation system.

A good review of the state-of-the-art regarding this topic
is done in [20]. As they state, ZKPs allow a user to prove
ownership of an identity, that is, proving knowledge of a
secret key related to a public key stored in a blockchain.

As stated previously, the core of network slicing relies on
an SDN-based architecture. In this regard, interesting re-
search is addressed in [21], where a novel authentication
scheme preventing multiple types of SDN authentication
attacks is introduced. -is makes even more sense in the
context of a medical cloud sharing sensitive information, a
fact that has led to schemes [22] guaranteeing a secure
authentication in this scenario.

A more specific use case related to our approach is
introduced in [23]. -ey state some of the benefits of SSI for
IoT devices, like the fact that the identities of the owners of
different devices are stored locally in the devices, rather than
on a centralized entity (i.e., the SO in our scenario). As
explained by the authors, SSI provides a layered authenti-
cation system separating application authentication from
channel authentication, where the former handles the trust
requirements. -is grants a more reliable end-to-end se-
curity, where secure communication is established among
different protocols.

Among the aforesaid studies regarding SSI, to the best of
our knowledge, there are no solutions applied to 5G network
slices. In this regard, we propose a solution to integrate SSI
into network slices in the next section.

4. Our Solution: SANS

In this section, we first explain our approach with all the
required details. Later, we analyze the security of our pro-
tocol, its computing constraints, and its benchmarks.

4.1. Protocol Description. We start with a high-level de-
scription of SANS and later move to a more detailed one: a
user willing to join a network slice to use its service may be
required to meet some requirements, like having paid a
subscription fee. As such, the user is a prover P willing to
prove to a verifierV, the SO, that he has paid such an amount
(the statement). Our protocol accomplishes this purpose. To
do so, an important requirement of our protocol is being
able to prove knowledge of contracts signed using a given
secret key: P must convince V that he knows a contract and
its signature, which is verified using a public key. -e
contract can be a secret value, and still, V must be convinced.
In order to be efficient, the used signing algorithms have to
be ZKP-friendly, and this means that its operations can be
reduced to a low number of constraints. For instance, the
Edwards-curve Digital Signature Algorithm (EdDSA) [24] is
a fast signing algorithm widely used with zk-SNARKs.
Moreover, signature algorithms in zk-SNARKs must be
combined with efficient hashing functions as well. One of the
most efficient zk-SNARK-friendly hashes to the date is
Poseidon [25], which needs 8 times fewer constraints for its
circuit than the widely used Pedersen hash.

Our authentication scheme is divided into two protocols,
depicted altogether in Figure 2. -e first one is the service
registration protocol, to be performed for each issued
payment. Its steps are as follows.

Protocol 1. Service registration

(1) P provides V some requested information req (e.g., a
statement from the bank stating that a payment has
been issued).

(2) After verifying req, V generates a unique byte-array
token identifying the user and sends it to him along
with a timestamp texp representing the contract
expiration date. Moreover, V provides a signature
S � sign(token, texp) and its public key pkSO.

After having registered into the service, the user can use
the provided parameters to authenticate into the service each
time it needs to use it and thus create a new session into the

Table 1: Comparison of different ZKP constructions, where n is the number of gates of the circuit.

Trusted setup Prove Verify Proof size Assumption
zk-SNARKs [7] Yes O(n log n) O(1) O(1) q − PKE
Bulletproofs [9] No O(n) O(n) O(log n) DLP
zk-STARKs [10] No O(n log2 n) O(log2 n) O(log2 n) CRHF
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service. Moreover, in order to avoid replay attacks [26] (i.e.,
an eavesdropper taking the proof and replying it to the SO),
every proof must include the hash of the secret token
concatenated to a variable public parameter c. Further de-
tails of such an approach are discussed in Section 4.2. -e
session authentication protocol is performed as follows.

Protocol 2. Session authentication

(1) P computes a proof π whose circuit inputs are

c (public input);
token (private input);
S (private input);
pkSO (public input);
texp (public input).

(2) V verifies the proof π and grants the service.

-e generated proof π proves knowledge of the secret
inputs of the circuit depicted in Figure 3. As shown, we prove
knowledge of the hash of a secret token concatenated to its
expiration date texp. -is is our contract, and we also prove
that we know its secret signature (signed by V) using the
public key pkSO. -is outputs 0/1 if the signature is verified
or not, respectively, and this value is multiplied by the output
of hash(c, token). If all is correct, the circuit will output a
hash; otherwise, the output will be 0.

4.2. SecurityAnalysis. In this section, we analyze the security
of our solution. We also detail how to overcome some
possible attacks.

4.2.1. False Proofs Generation. -e main drawback of some
ZKP constructions like zk-SNARKs is the need for a trusted

setup. In many scenarios, like in Zcash, an untrusty setup
could lead to huge losses of money if a malicious party gets
the trapdoor τ and starts to create false transactions.
However, this is not a problem in our solution: a different
setup can be generated by each SO. If the SO keeps and
spreads the trapdoor τ, anyone knowing τ will be able to
access the service by generating false proofs. As such, the
protocol is secure as long as the setup is generated only by
the SO and he destroys τ. Furthermore, as stated previously,
the ZKP construction that best fits our solution at the
moment of writing this is the Groth’16 zk-SNARK. As such,
the security of SANS depends on a q − PKE assumption.

4.2.2. Elliptic Curve Attacks. -e security of our solution
also relies on the security of elliptic curves. One of the most
used curves in ZKPs is a Barreto-Naehrig curve [27] called
BN128, of which the security level in practice is estimated to
be 110 bits [28]. -is means that an attacker willing to break
BN128 shall perform 2110 operations. Other curves like
BLS12-381 [3] estimate around 128 bits of security, with the
drawback of heavier group operations. Breaking the security
of the used elliptic curve would lead to being able to generate
false proofs.

4.2.3. Account Sharing. Every computed proof is different
since it is generated using random parameters, allowing the
user to generate different proofs with the same inputs. As
such, the user could generate multiple proofs for other users,
which would access the service with a single subscription. To
overcome this issue, a simple solution is integrated into our
protocol: every proof must include the hash of the secret
token concatenated to a variable public parameter c. Ideally,
this parameter could be a timestamp with a specific accuracy,
for instance, the date in format yyyy/mm/dd plus the time in
format hh :mm without seconds. Such a hash should be
multiplied by the output of the verification of the signature
(1 or 0, if verified or not, resp.), and if everything is correct,
the circuit should output a hash. Like this, an SO receiving
the same hash more than once could identify that those
proofs have been computed using the same token. As such, if
two users are trying to use the service at the very same time,
the SO can relate and reject both connections.

4.2.4. 5G RAN Authentication. One of the main concerns
about our solution is to provide a fully private authenti-
cation, where the SO cannot learn the identity of the user. In
this scenario, we still have another party, the Internet Service
Provider (ISP), who acts as an SDN controller providing the
architecture and the workflows for optimal network slicing.
As such, the ISP learns the identities of the users from the
moment that the UE accesses the 5G RAN. To overcome this,
we envision the usage of SANS when the UE is required to
authenticate for accessing the 5G RAN. In other words, the
UE would be proving his right to access the 5G RAN, for
instance, by proving that the user has paid the last month bill
to the ISP.

Service registration

User (P) SO (V)

If not (checkReq(req)):
exit

If not (verifyProof(π)):
exit

Session authentication

Pub.

Proving
algorithm

π

OK

c

Priv.

Pub.

Pub.

Priv.

req

token, texp, S, pkso

token

texp

S

pkso

Figure 2: Overview of the service registration and session
authentication.
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4.3. Efficiency Analysis. -is section describes several effi-
ciency considerations of SANS.

4.3.1. Computational Complexity. As we saw in Section 2,
the setup protocol depends only on the number of gates, so
this protocol has a linear computing complexity O(n). -e
most consuming operation done by the prover is to compute
the coefficients of a polynomial H(x), which can be com-
puted more efficiently employing Fast Fourier Transform
(FFT) techniques [29], leading to a computing complexity of
O(n log n). -e verifier has to do a constant computation of
group exponentiations and an equation composed of three
pairings.

4.3.2. Prover Optimizations. -ere are different operations
performed by the zk-SNARK prover which can be paral-
lelized in order to improve its efficiency. -is means that
CPU and GPUmultiprocessing techniques can be applied to
speed up the implementations. Even so, the usage of external
computing resources as done in [30] can be taken into
account. For instance, in the case of a prover being a
smartwatch with low computing resources, the heaviest
computations could be precomputed by the user’s phone,
whose computing power should be higher.

4.3.3. Circuit Size. Our circuit contains a single EdDSA
signature combined with two hashes (to the date of writing
this, Poseidon seems to be the best option). -e authors of
circomlib (https://github.com/iden3/circomlib/) developed
optimal EdDSA and Poseidon circuits, which leads our
solution to a total size of 7565 constraints and affordable
computing times as shown in the next subsection.

4.4. Implementation and Benchmarks. We implemented
(https://github.com/xevisalle/sans) our solution using
snarkjs, a JavaScript and WASM framework for

implementing zk-SNARK applications. -e reason for
choosing this option is its simplicity for implementing
circuits and its portability in web environments. In this
regard, we deployed our implementation in a web server, to
be executed by different devices using different web
browsers. Overall, the number of constraints of this
implementation is 7565, and as depicted in the chart of
Figure 4, our solution outperforms in high-performance
CPUs (i7-8750H), using either Mozilla Firefox or Google
Chrome. As such, our solution could be used in desktop
applications with no problems with regard to performance.

On the other hand, the proving time increases notably in
low-performance processors (Intel Atom x7-Z8750),
achieving timings higher than 2 seconds in both Firefox and
Chrome. An interesting fact is how Chrome performs
slightly better than Firefox in its desktop version, which does
not apply to mobile CPUs (Snapdragon 845). Regarding
Snapdragon 845, even when it is a top mobile processor, we
can see that the results are not as good as i7-8750H.
However, the achieved results prove that our solution is
feasible in performance, especially when the portability is a
priority. Moreover, the memory consumption has been in all
tests between 150 and 200MB (not taking into account what
is consumed by default by the browsers).

Furthermore, we also tested libsnark (https://github.
com/scipr-lab/libsnark), a well-optimized C++ zk-
SNARKs library achieving excellent benchmarks, but with
the drawback of not being as portable as other solutions like
snarkjs. For instance, as the authors of libsnark state, the
library is not well-optimized for ARM architectures (e.g.
Snapdragon 845), and the BN128 curve is not supported in
this architecture.

We implemented a circuit with the same amount of
constraints that our solution has, and we executed the prover
in multicore mode using Groth’16 and the BN128 curve.-e
obtained results are shown in the chart of Figure 5. As can be
seen, libsnark achieves much better results than snarkjs, so
implementing SANS using this library would be even more

c

Pub.

Byte-array
(pub.)

Byte-array/0
(pub.)

Byte-array

0/1 (pub.)

Priv.
hash()

Priv.

Priv. Priv.

Pub.

Pub.

hash()

verifySignature()

token texp S pkso

Figure 3: Overview of the circuit used by the session authentication protocol.
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feasible. Regarding the memory consumption, libsnark
performs better as well: around 20MB in both tested devices.
Furthermore, optimized libraries for mobiles and embedded
systems would lead to additional performance improve-
ment, so future work in this regard would be an exciting
research topic.

5. Conclusions

In this paper, we have introduced SANS, a protocol for
proving the right of a user to access a specific 5G network
slice, without leaking any information about him beyond the
fact that he possesses such a right. Our solution is an un-
derlying protocol to be integrated into existing SSI schemes.
Moreover, it could be easily extended to other scenarios, like
5G RAN authentication, other kinds of wireless commu-
nications, or distributed applications. Even when some ZKP

schemes like zk-SNARKs require costly computing opera-
tions, we have proved our solution to be affordable in terms
of efficiency and memory consumption by implementing
SANS using existing libraries. Furthermore, we proved the
portability of our implementation by testing it on several
devices. Nevertheless, future work on optimized ZKP li-
braries for embedded systems would be interesting, to
spread the usage of this protocol.
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