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Objectives. Hyponatremia is a common complication of diabetes. However, the relationship between serum sodium level and
diabetic peripheral neuropathy (DPN) is unknown. This study was aimed at investigating the relationship between low serum
sodium level and DPN in Chinese patients with type 2 diabetes mellitus. Methods. A retrospective study was performed on 1928
patients with type 2 diabetes between 2010 and 2018. The multivariate test was used to analyze the relationship between the
serum sodium level and the nerve conduction function. A restricted cubic spline was used to flexibly model and visualize the
relationship between the serum sodium level and DPN, followed by logistic regression with adjustment. Results. As the serum
sodium level increased, the prevalence of DPN had a reverse J-curve distribution with the serum sodium levels (69.6%, 53.7%,
49.6%, 43.9%, and 49.7%; P = 0:001). Significant differences existed between the serum sodium level and the motor nerve
conduction velocity, sensory nerve conduction velocity, part of compound muscle action potential, and sensory nerve action
potential of the participants. Compared with hyponatremia, the higher serum sodium level was a relative lower risk factor for
DPN after adjusting for several potential confounders (OR = 0:430, 95%CI = 0:220 – 0:841; OR = 0:386, 95%CI = 0:198 – 0:755;
OR = 0:297, 95%CI = 0:152 – 0:580; OR = 0:376, 95%CI = 0:190 – 0:743; all P < 0:05). Compared with low-normal serum sodium
groups, the high-normal serum sodium level was also a risk factor for DPN (OR = 0:690, 95%CI = 0:526 – 0:905, P = 0:007).
This relationship was particularly apparent in male participants, those aged <65 years, those with a duration of diabetes of <10
years, and those with a urinary albumin − to − creatinine ratio ðUACRÞ < 30mg/g. Conclusions. Low serum sodium levels were
independently associated with DPN, even within the normal range of the serum sodium. We should pay more attention to avoid
the low serum sodium level in patients with type 2 diabetes mellitus.

1. Introduction

Diabetic peripheral neuropathy (DPN), one of the most com-
mon chronic complications of diabetes, occurs in as many as
50% of patients with diabetes [1]. The most common form of
DPN is distal symmetric polyneuropathy. Currently, very few

drugs can alter the progression of peripheral neuropathy.
Even with frequent visits to medical professionals and use
of prescription medications, it turns out that the clinical
treatment of DPN is often unsatisfactory. Therefore, early
diagnosis and prevention are considered to be far more effec-
tive than treatment. Nerve conduction velocity (NCV)
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studies are used to diagnose and determine the distribution
and severity of DPN, as well as identify possible subclinical
lesions [2]. In the late stage, diabetic neuropathy is character-
ized by axonal degeneration, demyelination, and fiber loss
[3]. In early diabetes, a modest decrease in NCV is seen.

Additionally, the potential risk factors for DPN need to
be elucidated, although it is complex and difficult. Several
common risk factors, including elevated blood glucose and
glycosylated hemoglobin levels, age, extended disease dura-
tion, reduced estimated glomerular filtration rate (eGFR),
obesity, hyperlipidemia [4, 5], elevated urinary albumin-to-
creatinine ratio (UACR) [6], low serum albumin level, and
hyperuricemia [7, 8], have been postulated. However, the
more comprehensive cause of DPN remains to be elucidated.
Patients with diabetes, especially elderly patients, often expe-
rience electrolyte disorders, such as hyponatremia [9].
Sodium is a vital component of the human body. The exter-
nal sodium ion concentration is approximately nine times
that of the inside of the neuron. The constant gradient of
membrane concentration maintained by the sodium-
potassium pump plays a crucial role in physiological perme-
ation, potential transfer, and neurotransmission [10]. Early
studies with small sample populations showed a highly sig-
nificant relationship between serum sodium and NCV [11].
Low extracellular sodium had an adverse effect on nerve cells,
such as osmotic demyelination [12], and was associated with
dyskinesia in patients with Parkinson’s [13]. In addition,
excessive sodium intake highly correlated with macular
edema in patients with type 1 diabetes [14]. However, reports
on the relationship between DPN and the serum sodium level
are limited. Therefore, this study was aimed at investigating
the relationship between the serum sodium level and DPN
to provide clues for the early screening of DPN.

2. Materials and Methods

2.1. Study Population. In this study, 1928 patients with type 2
diabetes and an average age of 60.10 years were recruited
from the Endocrinology and Neurology Department at the
First Affiliated Hospital of Fujian Medical University
(FMU) from November 1, 2010, to January 1, 2018; the pop-
ulation included 1053 male and 875 female patients. No
patients enrolled in the study had used neurotrophic drugs
such as mecobalamin, lipoic acid, and epalrestat earlier.
Patients with the following conditions were excluded:

(i) Type 1 diabetes, gestational diabetes, and other spe-
cific types of diabetes

(ii) Severe and acute complications, including diabetic
ketoacidosis; hyperosmolar nonketotic syndrome;
gastrointestinal disturbances, such as severe vomit-
ing and diarrhea; infection; fever with diaphoresis;
eating disorders; anorexia; acute or chronic heart
failure; and an eGFR of <60mL/(min·1.73m2)

(iii) Other neurological lesions, such as chronic inflam-
matory response neuropathy, single neuropathy,
demyelinating neuropathy, and neuropathy caused
by hypothyroidism

(iv) Taking drugs that can cause neurotoxicity, such as
hormones and chemotherapy drugs

(v) Accompanying diseases that affect serum and/or
urine sodium levels, such as primary aldosteronism,
Cushing syndrome, Addison’s disease, syndrome of
inappropriate antidiuretic hormone secretion, and
cerebral infarction

(vi) Patients with a recent history of sodium
supplementation

(vii) Patients with corrected blood sodium less than
130.00mmol/L or more than 150.00mmol/L
(Figure 1). The study was approved by the ethics
committee of the First Affiliated Hospital of FMU,
MRCTA, and ECFAH of FMU [2017]131, and writ-
ten informed consent was obtained from the
patients

2.2. Diagnostic Criteria. The participants were diagnosed with
diabetes mellitus according to the criteria provided by the
World Health Organization in 1999 [8]. The corrected blood
sodium level of each patient was also calculated according to
the blood glucose level: corrected serum sodium = serum
sodium + 0:024ðblood glucose × 18 – 100Þ [15]. The corrected
serum sodium level was used instead of the directly measured
blood sodium level. The normal blood sodium level was defined
as 135.00–145.00mmol/L, while hyponatremia and hypernatre-
mia were defined as the level of <135.00mmol/L and
>145.00mmol/L, respectively [16, 17]. Hypertension was
defined as a systolic blood pressure ≥ 140mmHg or diastolic
blood pressure ≥ 90mmHg. Patients actively taking antihyper-
tensive drugs were also classified as hypertensive [18]. Athero-
sclerosis was defined as the protrusion of plaques into the
lumen of the echo structure, protrusion of plaques into the
lumen of a vessel with abnormal blood flow, or an intimal −
medial thickness ≥ 1:3mm [19]. The ischemic cardiovascular
disease (ICVD)% was estimated based on the 10-year ICVD
risk assessment method for Chinese people [20].

2.3. Clinical Measurements. Information regarding patient
demographic characteristics, disease duration, lifestyle,
medical history, and drug use history was obtained from
medical records. All patients underwent a physical exami-
nation that included height, weight, blood pressure, and a
neurological examination. Blood pressure was measured
after 15min rest. Body weight and height were measured
with the patient barefoot and wearing light clothes. The
body mass index of each patient was also calculated as
BMI = weight ðkgÞ/height2 ðm2Þ.
2.4. Biochemical Indices. Blood was obtained from the ante-
cubital vein in all participants between 8.30 and 10.00 a.m.
Laboratory tests were done to evaluate the concentration
of electrolytes, including sodium, potassium (selective elec-
trode method, Roche), and other biochemical parameters
of each patient. All patients completed the electrolyte
detection in 10 h of fasting to reduce the impacts of med-
ications and foods. The interassay coefficient of variation
for serum sodium was 1%. The estimated glomerular
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filtration rate ðeGFRÞ = 186 serum creatinine−1:154 × age−0:203
ð× 0:742 femaleÞ [21] of each patient was also calculated.
Furthermore, the UACR of each patient was determined
in mg/g [22].

2.5. Evaluation of Neuropathy

2.5.1. Neurological Examination. Symptoms of somatic neu-
ropathy were documented, including numbness, burning,
deep aching, and unsteadiness in walking. Neurological
examinations were completed by the same experienced doc-
tor using age-related evaluation criteria according to stan-
dard operations. During the neurological examination,
touch sensation was tested using a 10 g monofilament, pain
sensation was tested using a pin, reflexes were tested using
a tendon hammer, and vibration sensation was tested using
a standard 128Hz tuning fork. Neurological score, neurolog-
ical reflex score, and sensory function score were recorded
using a 2002 Toronto Clinical Scoring System (TCSS) [23].

2.5.2. Nerve Conduction Study. The nerve conduction study
of each participant was determined using EMG (Danish
Weidi Company, Keypoint). The body temperature of the

participants ranged from 30 to 32°C. The patients were sub-
jected to unilateral limb nerve conduction function tests.
Then, the median-nerve and ulnar-nerve motor nerve con-
duction velocity (MCV), sensory nerve conduction velocity
(SCV), tibial-nerve and peroneal-nerve MCV, and superficial
peroneal-nerve and sural-nerve SCV of each patient were
recorded. The corresponding amplitudes of these variables
(compound muscle action potential (CMAP)/sensory nerve
action potential (SNAP)) were also determined. According
to the reference provided by Tang et al. [2, 24] in 1984, nerve
conduction slowing was defined as nerve conduction 20%
slower than that of the normal average reference value or the
occurrence of two or more nerve conduction abnormalities.

2.5.3. DPN Diagnosis. The diagnosis of DPN was based on
the criteria proposed by an International European and
North American Expert Committee. DPN was defined as
patients with diabetes (having or not having clinical symp-
toms and signs) who had abnormal NCV, including both
diagnosis and subclinical DPN [25].

2.5.4. Statistical Analysis. Continuous variables were
expressed as mean ± standard deviation (SD) or median

Vomiting and diarrhea (N=9)

Screened for eligibility
(N=2305)

Participants excluded
(N=377)

Participants assigned
cross-sectional study

(N=1928)

Hyponatremia
group

(N=56)

Hyponatremia
group

(N=342)

Low-normal
serum sodium group

(N=510)

Medium-normal
serum sodium group

(N=510)

High-normal
serum sodium group

(N=510)

Anorexia (N=3)

Chronic heart failure (N=62)

eGFR<60ml/min/1.73m (N=149)

Hypothyroidism (N=15)

Taking hormones (N=7)

Primary aldosteronism (N=18)

SIADH(N=3)

Cerebral infarction (N=19)

En
ro

llm
en

t

Taking neurotrophic drug in the
rcent 6 months (N=58)
Less than 130.00 mmol/L or more
than 150.00 mmol/L (N=34, 8/26)

Figure 1: Details of excluded patients.
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(interquartile range). A chi-square test for comparing distri-
bution was performed. Analysis of variance and Kruskal-
Wallis tests were performed to determine the differences in
Gaussian variables and non-Gaussian variables. Post hoc least
significant difference test and Nemenyi test were alternative
methods for further pairwise multiple comparisons to locate
the source of significance. A multivariate test was used to
analyze the relationship between the serum sodium level
and the nerve conduction function. Furthermore, logistic
regression and forest maps were used to analyze the relation-
ship between DPN and the serum sodium level. Receiver
operating characteristic (ROC) curves were configured to
establish the cutoff points of the serum sodium level that
optimally predicted DPN. Restricted cubic spline was used
to flexibly model and visualize the relationship between the
serum sodium level and DPN, and an average serum sodium
level of 140mmol/L [26] served as a reference without adjust-
ment. Statistical significance was determined with P < 0:05.
Statistical analyses were performed using the R software, ver-
sion 4.0.4.

3. Results

3.1. Study Population Characteristics. Of the 1928 partici-
pants with type 2 diabetes mellitus, 56 presented with hypo-
natremia, 1530 presented with normal serum sodium levels,
and 342 presented with hypernatremia. In addition, 960 of
the 1928 participants were diagnosed with DPN. The patients
were divided into three groups based on the diagnostic cri-
teria, including hyponatremia, hypernatremia, and normal
serum sodium groups. The normal serum sodium group
was further divided into three groups (tertile 1: 135.0–141.5
(n = 510); tertile 2: 141.5–143.0 (n = 510); tertile 3: 143.0–
145.00 (n = 510)) (Table 1). Significant changes were
observed in sex, BMI, smoking, drinking history, diuretic
use, oral hypoglycemic drug use, FPG, eGFR, Cr level,
UACR, and TCSS. Within the normal serum sodium group,
the low-normal subgroup exhibited a relatively high DPN
detection rate (low-normal subgroup: 53.7%; medium-
normal subgroup: 49.6%; and high-normal subgroup:
43.9%; P < 0:01). In addition, the hyponatremia group exhib-
ited a higher DPN detection rate compared with the low-
normal group (P < 0:05). Details of pairwise multiple com-
parisons are shown in Table 1.

3.2. Changes in Nerve Conduction Function by Varying the
Serum Sodium Level. As shown in Table 2, the motor and
sensory nerve CV and ulnar and sural-nerve SNAP increased
with the increase in the serum sodium level, with some statis-
tically significant differences among different groups.

Tibial and peroneal-nerve CMAP and superficial
peroneal-nerve SNAP increased and then decreased. In the
normal serum sodium group, the low-normal group exhib-
ited a lower MCV, ulnar-nerve SCV, and superficial
peroneal-nerve SCV compared with the high-normal group
(P < 0:05). However, no significant differences were observed
in CMAP and SNAP of the normal serum sodium groups.
The NCV, peroneal-nerve CMAP, tibial-nerve CMAP,
ulnar-nerve SNAP, superficial peroneal-nerve SNAP, and

sural-nerve SNAP were lower in the hyponatremia group
than in the low-normal group (P < 0:05). Meanwhile, a trend
analysis was performed, as shown in Table 2.

3.3. Relationship between Serum Sodium Level and DPN. As
shown in Figure 2, we used restricted cubic splines to flexibly
model and visualize the relationship between the serum
sodium level and DPN. The risk of DPN was relatively flat
until around 140mmol/L of the serum sodium level and then
started to increase rapidly forward and afterward (P for non-
linearity <0.05) in all serum sodium groups, especially in
male participants, those aged <65 years, and those with
UACR < 30mg/g. However, a nonlinear trend was not
observed in the normal serum sodium group and its sub-
groups. It suggested that both hyponatremia and hypernatre-
mia might increase the risk of DPN. A reverse J-curve
distribution was observed between the risk of DPN and the
serum sodium concentration.

In the whole-group analysis, patients were divided into
five groups according to the serum sodium level. Multiple
logistic regression analyses showed that, compared with
other higher serum sodium levels, hyponatremia was associ-
ated with DPN after adjusting for age, sex, duration of diabe-
tes, BMI, systolic blood pressure, diastolic blood pressure,
HbA1c, eGFR, serum kalemia, hypotensive drugs (β-blocker,
CCB, ACEI, and ARB), statins, hypoglycemic drugs, insulin
use, smoking, drinking, and hypertension (OR = 0:430, 95%
CI = 0:220 – 0:841, P = 0:014; OR = 0:386, 95%CI = 0:198 –
0:755, P = 0:005; OR = 0:297, 95%CI = 0:152 – 0:580, P <
0:001; OR = 0:376, 95%CI = 0:190 – 0:743, P = 0:005, respec-
tively) (Figure 3(a)). In all serum sodium groups, no signifi-
cant relationship was detected between the subgroups of
patients with diabetes aged ≥65 years or those with UACR
≥ 30mg/g.

In the normal serum sodium group analysis, a fully
adjusted logistic regression demonstrated that compared
with the low-normal serum sodium level, the high-normal
serum sodium level was a relatively lower risk factor of
DPN (OR = 0:690, 95%CI = 0:526 – 0:905, P = 0:007)
(Figure 3(a)). This relationship was particularly apparent in
male participants (OR = 0:609, P = 0:004), those aged <65
years (OR = 0:599, P = 0:002), those with the duration of
diabetes < 10 years (OR = 0:632, P = 0:008), and those with
UACR < 30mg/g (OR = 0:689, P = 0:023) (Figure 3(b)).
The optimal serum sodium cutoff points (142.6mmol/L)
were obtained from the ROC curves.

4. Discussion

The present study demonstrated that patients with hypona-
tremia and those with low-normal serum sodium levels
exhibited relatively high rates of DPN detection and rela-
tively low NCV and amplitude. In addition, the serum
sodium level was independently associated with the DPN
detection rate after adjusting for several potential con-
founders. This relationship was particularly apparent in
patients with the duration of diabetes < 10 years and UACR
< 30mg/g. This trend was also apparent within the normal
serum sodium groups.
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Table 1: Demographic and clinical characteristics of study participants.

Corrected serum sodium (mmol/L)

P
Hyponatremia
130.0–135.0
(n = 56)

Low-normal sodium
135.0–141.5
(n = 510)

Medium-normal
sodium 141.5–143.0

(n = 510)

High-normal sodium
143.0–145.00
(n = 510)

Hypernatremia
145.0–150.0
(n = 342)

Corrected serum
sodium (mmol/L)

133:7 ± 1:5 140 ± 1:2 142:3 ± 0:4 143:9 ± 0:5 146:3 ± 1:3 <0.001

Serum sodium
(mmol/L)

132:6 ± 1:5 138:6 ± 1:9 140:9 ± 1:6 142:5 ± 1:6 144:6 ± 2:0 <0.001

Age (year) 61:7 ± 12:7 59:6 ± 12:7 59:3 ± 11:7 60:5 ± 11:6 60:9 ± 11:2 0.186

Male, n (%) 35 (62.5) 303 (59.4) 292 (57.3) 273 (53.5) 150 (43.9)d <0.001
Duration of diabetes
(year)

9 (3.3–11.8) 7 (2–10) 7 (3–10) 8 (3–12) 8 (3–12) 0.105

BMI (kg/m2) 22:7 ± 4:8 24.6± 3.7a 24:7 ± 3:6 24:5 ± 3:5 24:3 ± 3:7 0.004

Smoking, n (%) 18 (32.1) 141 (27.6) 139 (27.3) 124 (24.3) 63 (18.4)d 0.013

Drinking, n (%) 6 (10.7) 59 (11.6) 70 (13.7) 49 (9.6)c 23 (6.7) 0.021

Hypertension, n (%) 28 (50) 255 (50) 244 (47.8) 259 (50.8) 185 (54.1) 0.514

RASS-blocker, n (%) 16 (28.6) 135 (26.5) 105 (20.6) 115 (22.5) 71 (20.8) 0.128

β-Blocker, n (%) 3 (5.4) 34 (6.7) 34 (6.7) 41 (8) 21 (6.1) 0.803

CCB, n (%) 13 (23.2) 128 (25.1) 114 (22.4) 137 (26.9) 97 (28.4) 0.305

Diuretic, n (%) 8 (14.3) 35 (6.9)a 25 (4.9) 23 (4.5) 17 (5) 0.022

Statins, n (%) 7 (12.5) 45 (8.8) 40 (7.8) 58 (11.4) 38 (11.1) 0.255

OAD, n (%) 47 (83.9) 384 (75.3) 419 (82.2)b 420 (82.4) b 280 (81.9) 0.021

Insulin use, n (%) 25 (44.6) 187 (36.7) 202 (39.6) 191 (37.5) 136 (39.8) 0.672

SBP (mmHg) 138:5 ± 22:2 136:8 ± 20:5 136:9 ± 19:1 136:7 ± 20:6 139:9 ± 20:6 0.140

DBP (mmHg) 75:9 ± 9:4 78:9 ± 11:3 78:5 ± 11:1 78:8 ± 11:9 77:9 ± 10:4 0.275

HbAlc (%) 9 ± 2:9 9:3 ± 2:6 9:1 ± 2:3 9:2 ± 2:4 9:1 ± 2:4 0.443

FPG (mmol/L) 8:1 ± 3:6 8:8 ± 3:5 8:8 ± 3:6 8:7 ± 3:5 9:4 ± 4:2d 0.045

TCH (mmol/L) 4:33 ± 1:56 4:75 ± 1:54 4:63 ± 1:26 4:67 ± 1:11 4:67 ± 1:3 0.206

TG (mmol/L) 1.2 (0.8–1.6) 1.4 (0.9–2.1) 1.4 (1–2.1) 1.4 (1–2.1) 1.4 (1–2.1) 0.050

HDL-C (mmol/L) 1:17 ± 0:44 1:11 ± 0:36 1:1 ± 0:33 1:12 ± 0:31 1:15 ± 0:35 0.270

LDL-C (mmol/L) 2:64 ± 1:42 2:88 ± 1:14 2:89 ± 1:06 2:87 ± 0:93 2:91 ± 1:03 0.538

Serum kalium
(mmol/L)

4:01 ± 0:48 4:04 ± 0:46 4:02 ± 0:44 4:01 ± 0:46 3:98 ± 0:52 0.420

eGFR
(mL/(min·1.73m2))

96:6 ± 33:3 105 ± 32a 109:1 ± 35:7 105:4 ± 28:7 103:2 ± 28:4 0.034

Cr (mmol/L) 71:6 ± 28:8 64:4 ± 27a 61:7 ± 20:2 62 ± 19:6 64:1 ± 26:8 0.017

UACR (mg/g) 34.8 (8.5–187) 12.8 (6.2–63.2)a 11.7 (6.2–72.6) 12.7 (6.2–38.5) 14.5 (7.3–58)d 0.017

Atherosclerosis, n (%) 23 (41.1) 137 (26.9) 149 (29.2) 151 (29.6) 102 (29.8) 0.260

Left ABI 1:06 ± 0:16 1:05 ± 0:13 1:07 ± 0:13 1:06 ± 0:11 1:09 ± 0:42 0.302

Right ABI 1:05 ± 0:14 1:09 ± 0:43 1:11 ± 0:6 1:07 ± 0:1 1:09 ± 0:27 0.577

ICVD % 10 (3.3–19) 10 (3–16) 8 (2–16) 8 (3–16) 8 (3–14) 0.222

Toronto Clinical
Scoring System Score
(TCSS)

2.5 (0–7) 1.0 (0–5.5)a 2.0 (0–6) 1.0 (0–5.0)c 2 (0–6)d 0.025

DPN, n (%) 39 (69.6) 274 (53.7)a 253 (49.6)a 224 (43.9)ab 170 (49.7)a 0.001

ABI: ankle brachial index; BMI: body mass index; CCB: calcium channel blockers; Cr: serum creatinine; eGFR: estimated glomerular filtration rate; FPG: fasting
plasma glucose; HbAlc: glycosylated hemoglobin; HDL-C: high-density lipoprotein cholesterol; ICVD: 10-year risk of ischemic cardiovascular disease; LDL-C:
low-density lipoprotein cholesterol; OAD: oral antidiabetic agents; TCH: cholesterol; TG: triglyceride; UACR: urinary albumin-to-creatinine ratio. Post hoc
analysis: acompared with the hyponatremia group, P < 0:05; bcompared with the low-normal sodium group, P < 0:05; ccompared with the medium-normal
sodium group, P < 0:05; dcompared with the high-normal sodium group, P < 0:05.
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We demonstrated that patients with lower serum sodium
levels were more likely to have DPN. Hospitalized patients
often experience electrolyte disorders [27]. Hyponatremia
and hypernatremia are the most common electrolyte disor-
ders [28]. Sodium is a vital component of the human body.
Serum sodium is closely related to hypertension [29], renal
function [30, 31], fractures [32], and insomnia [33]. Hypona-
tremia is an independent risk factor for diabetes mellitus
[28]. Otherwise, low extracellular sodium causes adverse
effects in neuronal cells. Osmotic edema can also increase
neuronal excitability through the activation of N-methyl-d-
aspartate receptors [34], which may accelerate the develop-
ment of dyskinesia [35]. Another study clarified that the
serum sodium level was inversely associated with dyskinesia
in patients with Parkinson’s disease [13]. Currently, no stud-
ies correlating the serum sodium level with DPN in patients
with type 2 diabetes mellitus are available. However, consid-

ering the important role of sodium in the central nervous sys-
tem and diabetes mellitus, we do believe that the relationship
exists between abnormal serum sodium levels and DPN. An
early study with small sample populations demonstrated that
serum sodium, but not acute blood glucose, levels had a
highly significant relationship with NCV [11]. In our study,
we demonstrated that hyponatremia was associated with a
higher incidence of DPN and decreased NCV and amplitude.
This trend, except for amplitude, was also apparent within
the normal serum sodium groups, implying that hyponatre-
mia might be a biomarker, rather than a cofounder. Further-
more, this relationship was particularly apparent in male
patients with diabetes, those with duration of diabetes < 10
years, and those with UACR < 30mg/g. In our opinion, this
might be due to fewer effects of other complicated factors
in these groups, which made this relationship much more
obvious.
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Figure 2: Relationship between serum sodium level and diabetic peripheral neuropathy. Restricted cubic splines were used to flexibly model
and visualize the relationship between the serum sodium level and DPN. The risk of DPN was relatively flat until around 140mmol/L of the
serum sodium level and then started to increase rapidly forward and afterward (P for nonlinearity <0.05) in all serum sodium groups,
especially in male patients, those aged <65 years, and those with UACR < 30mg/g. However, a nonlinear trend was not observed in
normal serum sodium group and its subgroups. The average serum sodium level of 140mmol/L serves as a reference.
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Several mechanisms might explain the relationship
between DPN and hyponatremia. Sodium is a vital osmotic
active solute in the extracellular compartment [36]. The
sodium concentration was regulated by many factors, and it
was important to maintain permeation and electrochemical
gradient across cell membranes. The constant concentration
gradient across the membrane played a crucial role in cell
volume control, glucose transport and membrane potential,
pH regulation, and neurotransmission [37]. Low extracellu-
lar sodium had an adverse effect on nerve cells, leading to
osmotic demyelinating syndrome (ODS) [12]. Another
explanation might be that hyponatremia could lead to a loss
of excitatory neurotransmitters and transmission delays in
the action potential of motor neurons [38]. The movement
of sodium ions into the axon was responsible for generating
the action potential [11]. The pathogenesis of DPN signifi-
cantly correlated with cell electrophysiology changes, Na-K
ATP enzyme dysfunction, nerve cell membrane hypoxia, cell
swelling and rupture, and neuronal apoptosis [39, 40]. It was
not surprising that the changes in extracellular sodium could
modify nerve conduction. Otherwise, low serum sodium
could lead to the functional decline of islet cells, increase
blood glucose [41], and eventually cause neuropathy. We
proposed the hypothesis that a relationship existed between
DPN and serum sodium levels. Nevertheless, the finding of

a relationship between serum sodium and DPN still needs
confirmation from further studies.

Both hyponatremia and hypernatremia were associated
with increased mortality [42]. Slight increases or decreases
in serum sodium levels may be related to impaired neuro-
motor function [43]. However, the relationship between
the serum sodium level and the DPN detection rate in
the high-normal serum sodium group did not vary signif-
icantly from that in the hypernatremia group. Hence, a
reverse J-curve distribution was observed between the risk
of DPN and the serum sodium level. Previous studies
showed that patients with hypernatremia presented with
elevated plasma osmotic pressure, cell dehydration, and
vascular endothelial injury, which could induce an inflam-
matory response and further exacerbate the progression of
diabetes [44]. Excessive sodium also led to axonal degener-
ation in inflammatory demyelinating disease [45]. Patients
with severe comorbidity and those with the highest
recorded serum sodium and severe hyponatremia
(>150mmol/L or <130mmol/L) [46] were excluded from
this study, limiting the degree of nerve damage exhibited
by the participants. We also excluded some complex dis-
eases that might cause hypernatremia and hyponatremia.
The abnormal serum sodium level might be attributed to
diabetes mellitus and diuretics [28].
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Figure 3: Plot of diabetic peripheral neuropathy and serum sodium level. (a) All serum sodium group and normal serum sodium group.
Adjusted for age, sex, duration of diabetes, BMI, systolic blood pressure, diastolic blood pressure, HbA1c, eGFR, serum kalemia,
hypotensive drugs (β-blocker, CCB, ACEI, and ARB), statins, hypoglycemic drugs, insulin use, smoking, drinking, and hypertension. (b)
Subgroup analysis of all serum sodium group and normal serum sodium group. Adjusted for hypotensive drugs (β-blocker, CCB, ACEI,
and ARB), statins, hypoglycemic drugs, insulin using, smoking, and drinking.
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This study had several limitations. First, relatively few
patients presented with hyponatremia. Also, patients’
sodium intake and VitB levels were not recorded, which
might affect the development of DPN. Second, our study
design did not allow us to evaluate the causes of hyponatre-
mia. In addition, as previously stated, the study was not
designed to evaluate factors leading to this relationship.
Although a role for hyponatremia in DPN is biologically
plausible, we could not determine from our data whether
the relationship between hyponatremia and DPN reflected
a direct effect of hyponatremia, a surrogate marker for under-
lying comorbidities or reason for DPN, or both. Moreover,
only one single measurement of fasting electrolytes was
taken, which might not be an accurate estimation of the
serum sodium level. The present study reported that a rela-
tive protective effect of higher-normal serum sodium con-
centrations was observed in patients with diabetes.
However, the discrepancy in the DPN detection rate was
not observed in the high-normal serum sodium group and
the hypernatremia group. No survival advantage was noted
once the serum sodium reached 145mmol/L [47], and hyper-
natremia might cause other chronic diseases and more seri-
ous public health problems [48].

5. Conclusions

We must acknowledge that hyponatremia and low-normal
serum sodium levels may serve as surrogate markers of
DPN, treatment, or case mix. However, we believe that the
mild abnormal serum sodium level should not be neglected.
Since even minor serum sodium disturbances are associated
with mortality, patient outcomes can be significantly
improved by frequently monitoring electrolytes and disconti-
nuing drugs with adverse effects when necessary [28].
Patients with lower sodium levels require particular care.
Further studies are needed to understand the factors leading
to this prognostic relationship and the potential benefit from
therapeutic strategies aimed at this metabolic disturbance.
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Background. The incidence of diabetes mellitus (DM) was increasing in recent years, and it is important to screen those nondiabetic
populations through health examination to detect the potential risk factors for DM. We aimed to find the predictive effect of
health examination on DM. Methods. We used the public database from Rich Healthcare Group of China to evaluate the
potential predictive effect of health examination in the onset of DM. The colinear regression was used for estimating the
relationship between the dynamics of the health examination index and the incident year of DM. The time-dependent
ROC was used to calculate the best cutoff in predicting DM in the follow-up year. The Kaplan-Meier method and Cox
regression were used to evaluate the HR of related health examination. Results. A total of 211,833 participant medical
records were included in our study, with 4,172 participants diagnosing as DM in the following years (among 2-7 years).
All the initial health examination was significantly different in participants’ final diagnosing as DM to those without DM.
We found a negative correlation between the incidence of years of DM and the average initial FPG (r = −0:1862, P < 0:001
). Moreover, the initial FPG had a strong predictive effect in predicting the future incidence of DM (AUC = 0:961), and
the cutoff was 5.21mmol/L. Participants with a higher initial FPG (>5.21mmol/L) had a 2.73-fold chance to develop as
DM in follow-up (95%CI = 2:65 – 2:81, P < 0:001). Conclusion. Initial FPG had a good predictive effect for detecting DM.
The FPG should be controlled less than 5.21mmol/L.
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1. Introduction

Diabetes mellitus (DM) is caused by various pathogenic fac-
tors such as genetic factors, immune dysfunction, microbial
infections and their toxins, free radical toxins, and mental
factors, leading to hypofunction of pancreatic islets and insu-
lin resistance, which could result in a series of metabolic dis-
order syndromes, such as electrolytes, and electrolytes are
clinically characterized by high blood glucose [1]. In diabetic
patients, the proportion of type 2 DM is about 95%, which is
more common in middle-aged and elderly people after the
age of 30 [2]. In those type 2 DM patients, the secretion of
insulin is not low or even higher than the healthy population
and the main cause is that the body is not sensitive to insulin,
that is, insulin resistance [3].

In recent years, the incidence rate of DM has been
increasing. The complications are the biggest cause of death
in diabetic patients [4]. Because the cells are incapable to
absorb glucose, it remains in the serum. Prolonged high
blood glucose can damage the capillaries in the kidneys,
heart, eyes, or nervous system, eventually leading to infec-
tions, heart diseases, cerebrovascular diseases, renal failure,
blindness, lower limb gangrene, and other diseases [5]. The
International Diabetes Federation (IDF) estimates that 8.3%
of adults (approximately 382 million people) have DM.
There are currently 175 million undiagnosed cases, a large
amount of whose complications are not noticed [6].

It is not only cost-effective but also a very convenient
predicting method to use the health examination indica-
tors of a large population reasonably to provide certain
prediction efficiency for potential diabetic patients [7, 8].
Although previous studies reported on the use of health
examination indicators to predict DM, most of the models
did not analyze the probability of DM during the follow-
up period. There was a deviation in estimating the best
cutoff [3, 4, 7]. In this study, we aimed to discuss the rela-
tionship between the dynamic change of health examina-
tion in follow-up years and the incidence of DM. We
adopted the time-dependent ROC methods to calculate
the best cutoff to discuss the predictive effect of the health
examination indicators in the incidence of DM. Therefore,
we wished to find the predictive value of health examina-
tion in the future incidence of DM.

2. Methods

2.1. Data Resources. This study was designed based on a pop-
ulation cohort in China. The data were downloaded from the
public database which was established by Rich Healthcare
Group. The data included the health examination and the
incidence of DM which was sorted by Chen et al. [7]. The
data included the medical records of the Chinese population
from 2010 to 2016. All the participants were at least 20 years
old. The inclusion and exclusion criteria were referred from
the study of Chen et al. [7]. Briefly, this study included
patients with available data of body mass index (BMI) and
fasting plasma glucose (FPG) value. All the participants were
followed up for at least 2 years. Other health examination
indexes included total cholesterol, triglyceride, high-density

lipoprotein (HDL), low-density lipoprotein (LDL), alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
blood urea nitrogen (BUN), and endogenous creatinine
clearance rate (CCR). Finally, all the participants with
follow-up FPG were included in the study and a total of
211,833 participants were included.

As the acquisition and analysis standard, FPG was col-
lected with at least 10-hour fasting at each visit. The diagnosis
standard of DM was defined as FPG > 7:00mmol/L.

2.2. Study Design and Statistical Analysis. This study is aimed
at analyzing the predictive effect of the health examination
index in the future diagnosis of DM. Firstly, we compared
the difference in health examination index between DM
patients and those undiagnosed participants. Secondly, we
compared the dynamics of health examination based on
the visit intervals. Subgroups were divided based on the
visit intervals (2-3 years, 3-4 years, 4-5 years, and above
5 years). Next, we tried to find a health examination index
to predict the future incidence of DM. We used the colin-
ear regression to find the dynamic change of those indexes
based on visit intervals. Due to the incidence of DM col-
lected by follow-up year, we used the time-dependent
ROC methods to search for the best cutoff of different
health examination indexes. The area under the curve
(AUC) was used to estimate the accuracy of the index
[9]. Finally, we used the Kaplan-Meier methods to calcu-
late the incidence of DM and used the Cox regression to
calculate the HR for incidence of DM and described with
95% confidence intervals (95% CIs). All the statistical sig-
nificance was defined as P value less than 0.05. The data
were analyzed by STATA 15.0 (StataCorp, College Station,
TX, USA) and R software (version 3.51).

3. Results

3.1. The Comparison of Health Examination Index between
DM Patients and Nondiabetic Participants. As previously
mentioned, a total of 211,833 participants were included in
our study. During the follow-up years, there were 4,172 par-
ticipants that were diagnosed with DM in the following year.
All the health examination indexes were significantly differ-
ent (Table 1, all P < 0:001). Those patients were older (54.7
years) and have a larger BMI (26.17 kg/m2) compared to
the nondiabetic cohort (41.8 years and 23.17 kg/m2). The ini-
tial FPG was higher in the DM group (5.90mmol/L) com-
pared to nondiabetic participants (4.90mmol/L). Both
cholesterol and triglyceride were greater in DM patients
(5.05mmol/L and 2.09mmol/L) compared to nondiabetic
participants (4.70mmol/L and 1.32mmol/L). The trend was
also found in AST and ALT (29.1U/L and 35.2U/L com-
pared to 23.9U/L and 23.7U/L, respectively). Despite the sig-
nificance shown in statistics, the difference of HDL, LDL,
BUN, and CCR between the two groups was not shown.
71.87% of the patients were male, and 4.1% of the diabetic
patients had a family history. The percentage of the current
smoker was greater in DM cohort patients (35.41%) com-
pared to those without DM (19.74%).
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3.2. The Comparison of Health Examination Indexes between
DM Patients and Nondiabetic Participants in terms of
Different Visit Intervals.Next, we compared the health exam-
ination indexes according to different visit intervals
(Table 2). The difference was similar to the total cohort.
However, we found that the gap of difference was changed
dynamically. Also, we found a negative correlation between
the incidence of years of DM and the average initial FPG
(Figure 1, r = −0:1862, P < 0:001).

3.3. The Best Cutoff and AUC of Health Examination in
Predicting Future DM. The best cutoff and AUC were ana-
lyzed by time-dependent ROC which had counted the time
into the incidence of DM. All the indexes were calculated
for the 5-year incidence of DM. The AUCs are shown in
Figure 2, Supplement Figure 1, and Table 3. Among all the
continuous data, age, BMI, initial FPG, and triglyceride had
a good predictive effect in the future incidence of DM
(AUC > 0:700). Among these, the initial FPG had a strong
predictive effect in predicting the future incidence of DM

(AUC = 0:961) with a cutoff of 5.21mmol/L. For further
understanding the predictive effect of initial FPG, we used
the index to predict 3-year and 4-year incidence of DM.
Both AUCs were larger than 0.94 with a cutoff of
5.49mmol/L and 5.3mmol/L, respectively, which means the
higher cutoff may have an accurate predictive effect for the
shorter period of the incidence of DM (Supplement Figure 2).

3.4. The Hazard Ratio for the Incidence of DM. According to
the accurate predictive effect of the health examination
indexes reported previously, we used age, BMI, initial FPG,
and triglyceride as the factors to calculate the HR for the inci-
dence of DM (Table 4). Due to the better control of the FPG
in the population, we adopted the 5.21mmol/L of FPG as the
cutoff for calculating HR. In terms of FPG, we found that the
incidence rate of DM was 0.21% in 3 years, 0.67% in 4 years,
and 2% in 5 years, if initial FPG was less than 5.21mmol/L,
compared to 3.88%, 10.22%, and 24.35% if FPG was larger
than 5.21mmol/L (Figure 3).

In terms of HR of the DM incidence, participants older
than 48 years old had a 1.699-fold chance to have DM
(95%CI = 1:635 – 1:765, P < 0:001) compared to younger
participants. Participants who have a larger BMI
(>24.49 kg/m2) may have a higher chance to have DM
(HR = 1:499, 95%CI = 1:432 – 1:566, P < 0:001). Similarly,
participants who have a higher triglyceride (>1.09mmol/L)
had a higher chance to have DM (HR = 1:48, 95%CI = 1:41
– 1:56, P < 0:001). Most importantly, participants who have
a higher initial FPG (>5.21mmol/L) had a 2.73-fold chance
to have DM (95%CI = 2:65 – 2:81, P < 0:001).

4. Discussion

In our study, we found that the health examination indexes
were significantly different between those patients who
would have DM in the follow-up year and those who are
nondiabetic participants. We found that the initial FPG in
the health examination of healthy participants could have a
certain predictive effect on the future incidence of DM. We
used the colinear regression method to suggest that the
greater initial FPG could predict a shorter incidence of DM
and those participants who have an initial FPG of more than
5.2mmol/L would have a 2.73-fold risk to be diagnosed as
DM in the follow-up years.

In the difference of the initial health examination
between DM patients and nondiabetic participants, we found
that greater age, BMI, initial FPG, cholesterol and triglycer-
ide, AST, and ALT were described in the DM cohort. In
terms of BMI and age, Chen et al. had discussed previously
[7]. They suggested that young age itself is a remarkable pro-
tective factor for developing DM since the prevalence of DM
was more common in the middle-aged and elderly popula-
tion. Several studies showed that BMI was a strong risk asso-
ciated with the development of metabolic disorders, which
includes type 2 DM and cardiovascular diseases [10, 11]. In
terms of AST and ALT, which might be related to the liver
function, they showed the potential relationship between
liver function and the incidence of DM [12]. The liver is
the metabolism center of the three major materials of sugar,

Table 1: The comparison of physical examination index between
diabetes patients and nondiabetic participants.

Variables
Diabetes

(N = 4,172)
Nondiabetes
(N = 207,659) P

Age (year) 54.7 (13.20) 41.8 (12.50) <0.001
Male (%) 3,000 (71.87) 113,123 (54.48) 0.002

Current smoker
(%)

415 (35.41)∗ 11,660 (19.74)∗ <0.001

Current drinker
(%)

49 (4.18)∗ 1,302 (2.20)∗ <0.001

Family history
(%)

171 (4.10) 4173 (2.01) <0.001

BMI (kg/m2) 26.17 (3.48) 23.17 (3.31) <0.001
Initial FPG
(mmol/L)

5.90 (0.71) 4.90 (0.59) <0.001

Cholesterol
(mmol/L)

5.05 (0.94) 4.70 (0.90) <0.001

Triglyceride
(mmol/L)

2.09 (1.50) 1.32 (1.01) <0.001

HDL (mmol/L) 1.29 (0.34) 1.37 (0.31) <0.001
LDL (mmol/L) 2.90 (0.70) 2.76 (0.68) <0.001
ALT (U/L) 26 (18-41) 18 (13-27) <0.001
AST (U/L) 25 (21-32) 22 (18-26) <0.001
BUN (mmol/L) 5.01 (1.28) 4.65 (1.18) <0.001
CCR (μmol/L) 72.7 (15.2) 70.0 (15.8) <0.001
Final FPG
(mmol/L)

7.84 (1.90) 5.08 (0.51) <0.001
∗There were missing data. Age, BMI, FPG, cholesterol, triglyceride, HDL,
LDL, BUN, and CCR were described as mean and standard deviation; ALT
and AST were described as medians (interquartile ranges (IQR)). Male,
current smoker, current drinker, and family history were described as
number and percentage. Abbreviation: BMI: body mass index; FPG: fasting
plasma glucose; HDL: high-density lipoprotein; LDL: low-density
lipoprotein; ALT: alanine aminotransferase; AST: aspartate
aminotransferase; BUN: blood urea nitrogen; CCR: endogenous creatinine
clearance rate.
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lipids, and amino acids. It is also an important organ for
insulin clearance and the production of inflammatory fac-
tors. Insufficiency of insulin secretion and/or function defect
characteristic of diabetic patients are mainly manifested as
glucose and lipid metabolism disorders [13]. Dysregulation
of sugar metabolism may induce hyperglycemia, resulting
in the accumulation of glycogen in the liver, thereby causing
liver microvascular disease [14]. Lipid metabolism disorder
leads to the increased amount of fat that cannot be catabo-
lized and metabolized to accumulate in the liver, forming
fatty liver, which impairs liver function. AST and ALT are
important indicators that reflect the basic status of liver func-
tion, whose changes can sensitively indicate liver cell damage
and its degree, as well as liver excretion function [15]. There-
fore, continuous monitoring of liver enzyme changes reflects
the degree of diabetic liver damage. Oka et al. [16] conducted
an epidemiological study on the relationship between ele-
vated liver enzymes and prediabetes. The subjects were 594
patients with normal baseline blood glucose levels, non-B
viral hepatitis, or type C Japanese men who are patients or
carriers of hepatitis virus. After 3.1 years of follow-up, 141
(23.7%) study subjects progressed to impaired glucose toler-
ance (IGT), 68 (11.4%) progressed to impaired fasting glu-
cose (IFG), and 23 patients combined IGT and IFG. They
also found that elevated ALT may be one of the early changes
in the natural course of DM, which not only reflects the state
of insulin resistance but also reflects the dysfunction of the
gut-insulin axis.

In terms of cholesterol and triglyceride, changes in blood
lipid levels in the body cause serious diseases in the body,
mainly leading to coronary heart disease and atherosclerosis,
and are also related to chronic diseases such as stroke and
hypertension [17]. DM patients often have a higher rate of
dyslipidemia. The survey results show that the prevalence
of dyslipidemia in diabetic populations has reached more
than 50% [18]. Although there is no consensus on the mech-
anism of the mutual influence between blood glucose and
blood lipids, researchers in various countries have recognized
that there is a certain correlation between blood lipid levels
and blood glucose levels [19]. In addition to affecting the
prevalence of DM, dyslipidemia is also significantly associ-
ated with several complications in diabetic patients. The level
of triglycerides also has a significant impact on the develop-
ment of many complications in diabetic patients. Hypertri-
glyceridemia can increase the risk of cardiovascular and
cerebrovascular remnants in diabetic patients [20]. The
transport form of triglyceride in the body is mainly lipopro-
teins, among which chylomicrons and very-low-density lipo-
proteins are the main carriers of triglyceride. When diabetic
patients have hypertriglyceridemia, the above two lipopro-
teins can be decomposed into remnant lipoproteins, which
accelerate the formation of arteriosclerotic plaques in the
body; and as the plaques rupture, platelets accumulate in
the body in large numbers, forming thrombi and occluding
blood vessels, which ultimately leads to myocardial cell
necrosis [21]. Abnormal blood triglycerides also have a cer-
tain impact on diabetic nephropathy. Studies have compared
blood lipid levels in patients with three types of DM, without
nephropathy, early nephropathy, and clinical nephropathy.
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Figure 1: The colinear relationship between initial FPG and the
follow-up year in diabetes patients.
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Figure 2: The time-dependent ROC evaluates the best cutoff and
AUC of initial FPG (5.2mmol/L) in predicting the further
diagnosis of diabetes.

Table 3: The best cutoff and AUC of physical examination in
predicting future diabetes.

Variables Best cutoff AUC

Age (years) 48.00 0.73

BMI (kg/m2) 24.29 0.74

Initial FPG (mmol/L) 5.21 0.96

Cholesterol (mmol/L) 4.89 0.61

Triglyceride (mmol/L) 1.09 0.73

HDL (mmol/L) 0.51 0.42

LDL (mmol/L) 2.80 0.59

ALT (U/L) 17.30 0.67

AST (U/L) 23.80 0.66

BUN (mmol/L) 4.96 0.58

CCR (μmol/L) 61.90 0.55
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The results indicate that the occurrence of diabetic nephrop-
athy is related to elevated triglycerides [22].

In the time-dependent ROC, we confirmed that the par-
ticipants’ age, BMI, initial FPG, and triglyceride have higher
predictive accuracy in the incidence of DM, in which AUCs
were larger than 0.70. Among these, the initial FPG was the
significant risk factor associating with the further incidence
of DM. Not only in different predictive follow-up years, the
FPG had a higher predictive AUC (>0.94), but also, we found
that in the Cox regression the initial FPG had a significant
impact on the incidence of DM. The incidence rate of DM
was 0.21% in 3 years, 0.67% in 4 years, and 2% in 5 years if
the initial FPG was less than 5.21mmol/L, compared to
3.88%, 10.22%, and 24.35% if FPG was larger than
5.21mmol/L. In 1997, the American Diabetes Association
(ADA) and, in 1998, WHO set the critical value of impaired
fasting blood glucose as 6.1mmol/L [23]. Subsequently, in
2003, ADA lowered the threshold to 5.6mmol/L [24]. In
China’s 2017 edition of the DM prevention and control
guidelines, 6:1mmol/L ≤ FPG < 7:0mmol/L is defined as
impaired fasting blood glucose [25]. Impaired fasting blood
glucose and impaired glucose tolerance are collectively
referred to as prediabetes, which are high-risk factors for
the onset of DM and can also increase the risk of chronic kid-
ney disease and Alzheimer’s disease [26]. During this period,
individuals can still be reversible to normal blood glucose. A
large prospective cohort study in China shows that daily lei-
sure sports activities (LTPA) are a protective factor for
impaired fasting blood glucose and progression to DM,
which could reverse the incidence of DM. Reaching the
LTPA level recommended by the WHO can effectively

reduce the risk of DM (population attributable risk: 19.2%,
95% CI: 5.6%~30.6%) [27].

There were some limitations in our study. Firstly, we only
adopted FPG > 7:0mmol/L as DM, but we did not distin-
guish the type of DM, including type 1, type 2, and gesta-
tional DM. Secondly, we only had the health examination
indexes from the database; we did not contain other indexes
which may influence the incidence of DM, HbA1c, for exam-
ple, which might have a higher predictive effect in DM.
Finally, we only have an initial experiment, instead of a
dynamic test for one participant, which may have a good pre-
dictive value for predicting DM.

5. Conclusion

In conclusion, we suggested that there were differences in
health examinations between participants who had the onset
of the DM and those who are nondiabetic participants. Age,
BMI, initial FPG, and triglyceride had a better predictive
accuracy of DM. Patients who had a higher FPG have a high
risk to develop DM; thus, blood glucose should be controlled
no matter the circumstance.
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Background and Objective. Atherosclerotic extent was proved to be associated with adverse cardiac events. Risk scores derived by
coronary computed tomography angiography (CCTA) could identify high-risk group among patients with nonobstructive
coronary artery disease (CAD), but the ability is still uncertain in the presence of diabetes mellitus (DM). The purpose of this
study was to investigate the prognostic value of the atherosclerotic extent shown by CCTA in diabetic patients with
nonobstructive CAD. Methods and Results. 813 DM patients (mean age 58:9 ± 9:9 years, 48.1% male) referred for CCTA due to
suspected CAD in 2015-2017 were consecutively included. During a median follow-up of 31.77 months, 50 major adverse
cardiovascular events (MACEs) (6.15%) were experienced, including 2 cardiovascular deaths, 14 nonfatal myocardial infarctions,
27 unstable anginas requiring hospitalization, and 7 strokes. Three groups were defined based on coronary stenosis combined
with Leiden score as normal, nonobstructive Leiden < 5, and nonobstructive Leiden ≥ 5. Cox models were used to assess the
prognosis of plaque burden within these groups. An incremental incidence of MACE rates was observed. After adjustment for
age, gender, and presence of high-risk plaque, the group of Leiden ≥ 5 showed a higher risk than Leiden < 5 (HR: 1.88, 95% CI:
1.03-3.42, p = 0:039). Similar results were observed when segment involvement score (SIS) was used for sensitivity analysis.
Conclusion. Atherosclerotic extent was associated with the prognosis of DM patients with nonobstructive coronary artery
disease, highlighting the importance of better risk stratification and management.

1. Introduction

It is well established that diabetes mellitus (DM) is associated
with coronary artery disease (CAD) and a higher rate of mor-
tality [1]. In turn, the rising prevalence of coronary artery dis-
ease, along with increased ischemic events, represents an
important cardiac threat to DM patients. Early detection of
CAD in this population has been an urgent requirement for
the primary and secondary prevention of both fatal and non-
fatal cardiac events [2–4].

Although there is no clear evidence suggesting the imaging
evaluation of CAD in DM patients [5], the current practice
guideline stands that coronary computed tomography angiog-
raphy should be an access to cardiac risk assessment in the
presence of DM with its high accuracy and acceptance [6].

Previous studies have shown that atherosclerotic extent
derived by coronary computed tomography angiography
(CCTA) has an extraordinary ability in risk stratification
among nonobstructive CAD patients, to which little attention
was paid due to the moderate stenosis [7]. However, few
researches have been conducted on DM patients, despite the
higher risk of major adverse cardiovascular events among
them. Using comprehensive risk scores as a quantitative index,
we aimed to investigate the stratification capability of athero-
sclerotic extent in DM patients with nonobstructive CAD.

2. Materials and Methods

2.1. Patients. This study was approved by the local ethics
committee, and informed consent was obtained from all
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participants. Between Jan 1, 2015, and Dec 31, 2017, 2135
DM patients who had undergone CCTA for suspected
CAD in our institution were prospectively enrolled. Patients
with known CAD, a history of percutaneous coronary inter-
vention or coronary bypass surgery, a history of myocardial
infarction or myocarditis, or revascularization driven by
CCTA results within 3 months were excluded. Those with
incomplete baseline data or uninterpretable CCTA results
were ruled out of further analysis. In addition, only mild
lesion was our concern, so the obstructive CAD was excluded
according to CCTA definition mentioned below.

Basic demographic data were obtained by a review of
medical records or patient interviews. DM was defined as
fasting blood glucose ≥ 7:0mmol/L or 2 h plasma glucose ≥
11:1mmol/L during oral glucose tolerance test or A1C ≥ 6:5
% (48mmol/mol) or the use of oral hypoglycemic agents/in-
sulin. The following cardiac risk factors were recorded: (1)
hypertension (a systolic blood pressure ≥ 140mmHg or a
diastolic blood pressure ≥ 90mmHg or administration of
antihypertensive therapy), (2) hypercholesterolemia (known
but untreated dyslipidaemia or current treatment with
lipid-lowering medications), (3) positive family history of
CAD (presence of CAD in first-degree relatives at <55 years
in men and <65 years in women), and (4) smoking (current
smoking or cessation of smoking within 3 months of CCTA).

2.2. Image Acquisition and Analysis. Multidetector CCTA
scans were performed on a dual-source CT scanner (Soma-
tom Definition Flash CT, Siemens Medical Solutions, For-
chheim, Germany). All scans were analysed using a
dedicated workstation (Syngo.via, Siemens) by two experi-
enced cardiologists. When disagreements existed on diagno-

sis, the final decision would be made through consultation or
the intervention of a third experienced researcher.

According to the modified American Heart Association
classification, coronary lesions were assessed on the basis of
the 17-segment model visually [8]. All segments were coded
for the presence, composition, and severity of coronary pla-
que and were classified as normal, nonobstructive (1% to
49% luminal stenosis), or obstructive (>50% luminal steno-
sis). Calcified plaque was defined as having a density of
>130HU and further specified as “spotty” if its maximum
diameter is <3mm in any direction. Noncalcified plaque
was defined as having an attenuation value lower than that
of the contrasted vessel lumen. When both types existed,
mixed plaque was defined. “Low CT attenuation plaques”
were the presence of a central focal area within the plaque
which has a low CT attenuation which is usually defined as
at least 1 voxel with <30HU. If the outer vessel diameter is
>10% greater than the mean of the diameter of the normal
adjoining segments, “positive remodelling” was recognized.
“Napkin ring sign” was the presence of circumferential
necrotic core. With at least two characteristics of “spotty cal-
cification,” “low CT attenuation plaques,” “positive remodel-
ling,” and “napkin ring sign”, high-risk plaque (HRP) was
recorded [9, 10].

2.3. Comprehensive Risk Scores. Leiden score, a comprehen-
sive risk score, was introduced as a quantitative index of ath-
erosclerotic burden, containing information of plaque
quantity, location, stenosis, and composition as shown in
Figure 1. The segment involvement score (SIS) was obtained
to quantify the atherosclerotic extent for sensitivity analysis,
calculated as the total number of coronary artery segments

Leiden score calculation
Location weight factor Plaque weight factor

Stenosis weight factor

Segment score =
Plaque weight factor x

Stenosis weight factor x
Location weight factor

Leiden risk score = ∑ segment (1-17) score

No-plaque 0
1.1
1.2
1.3

Calcified

Mixed

< 50% 1
1.4≥ 50%

Non-calcified

Segment Right dominant Left dominant
LM 5

3.5
2.5
1
1

0.5
1.5
1
1
1

0.5
0
1
1
1

0.5
1

6
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2.5
1
1
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1
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1
0
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0
0
0

Prox LAD
Mid LAD
Dist LAD

D1
D2

Prox LCX
Dist LCX

AL/IM
OM
L-PL
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Mid RCA
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Figure 1: Schematic overview of the computed tomography angiography-derived risk score. Leiden score is calculated by the summation of
segment score quantified as plaqueweight factor × stenosis weight factor × locationweight factor, i.e., a right dominant system with a
noncalcified plaque with >50% stenosis in the left main segment (5 × 1:2 × 1:4) + a noncalcified plaque with <50% stenosis in the proximal
left circumflex artery (1:5 × 1:2 × 1) + a calcified plaque with >50% stenosis in the right posterior descending artery (1 × 1:1 × 1:4), so the
Leiden score is 11.74. Segment involvement score (SIS) was calculated by the summation of the segments exhibiting plaque; in the case
above, SIS is 3. CTA= computed tomography angiography; AL = anterolateral segment; D1 = diagonal 1; D2 = diagonal 2; IM=
intermediate segment; LAD= left anterior descending coronary artery; LCA= left coronary artery; LCX= left circumflex coronary artery;
LM= left main segment; L-PDA= left posterior descending artery; L-PL = left posterolateral segment; OM=obtuse marginal segment;
RCA= right coronary artery; R-PDA= right posterior descending artery; R-PL = right posterolateral segment.
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that exhibits plaque without consideration of stenosis (rang-
ing from 0 to 16).

2.4. Follow-Up and Study Endpoint. Follow-up information
was obtained by phone contact or the electronic medical
record system. The primary endpoint was cardiovascular
death, nonfatal myocardial infarction, stroke, or unstable
angina requiring hospitalization that occurred >90 days after
the CCTA examination from Jan 1, 2015, to Aug 31, 2020.
Each event was identified by two physicians independently.
In the case of divergence, consultation would be brought in.

2.5. Statistical Analysis. Analyses were performed with SPSS
version 26.0 (SPSS, IL, USA) and R version 3.6.3. Baseline
characteristics were presented as mean ± standard deviation
or median (interquartile range (IQR)) for continuous vari-
ables and as proportions for categorical variables. Prevalence
of no or nonobstructive CAD was calculated and stratified by
the comprehensive risk score as normal group (no CAD),
nonobstructive CAD with Leiden < 5, and nonobstructive
CAD with Leiden ≥ 5. Sensitivity analysis was conducted
with SIS, stratifying patients as the normal group (no
CAD), nonobstructive CADwith SIS < 3, and nonobstructive
CAD with SIS ≥ 3. Cumulative event rates were estimated
using the Kaplan-Meier method and compared using the
log-rank test. Cox proportional regression model was used
to investigate multivariable-adjusted hazard ratios for
increasing CAD severity mentioned above. A p value less
than 0.05 was considered as statistically significant.

3. Results

3.1. Baseline Characteristics.A total of 2135 DM patients who
underwent CCTA for suspected CAD were enrolled, among
which 51 were lost during follow-up. 1271 patients were
excluded because of known CAD, revascularization, incom-
plete data, or other criteria. A cohort of 813 diabetic patients
(mean age 58:9 ± 9:9 years; 48.1% male; median follow-up
31.77 months) was included with full demographic charac-
teristic and CCTA information. The prevalence of hyperten-
sion, hypercholesterolemia, current smoking, and a family
history of CAD was 64.8%, 54.4%, 24.2%, and 23.6%, respec-
tively (Table 1). For glucose control, 19.7% of the patients
solely had a diet, 80.9% had oral hypoglycemic medication,
and insulin was used in 14.3% of the patients. Overall, 190
(23.4%) of the 813 patients had no evidence of CAD on cor-
onary CTA. In addition, high-risk plaques were found in 18
(2.2%) patients.

3.2. Cox Regression Analysis. In univariate analysis, age (HR:
1.04, 95% CI: 1.01-1.07) and the presence of HRP (HR: 11.66,
95% CI: 5.45-24.95) were associated with MACEs. Compared
with the normal group, HR was 1.86 (95% CI: 0.70-5.00, p
= 0:216) for the group of nonobstructive Leiden < 5 and
4.06 (95% CI: 1.56-10.56, p = 0:004) for nonobstructive
Leiden ≥ 5, respectively.

In multivariate models, age (HR: 1.03, 95% CI: 1.00-1.07)
and HRP (HR: 10.94, 95% CI: 5.00-23.92) remained signifi-
cant in predicting outcome events (Table 2). Patients with
nonobstructive Leiden ≥ 5 had an unadjusted hazard ratio

of 4.06 (95% CI: 1.56 to 10.56, p = 0:004; log-rank test: p =
0:0015) (Table 2). After adjustment for age, gender, and pres-
ence of HRP, the hazard ratio remained significantly higher,
which was 2.94 (95% CI: 1.11 to 7.79, p = 0:031) and 1.88
(95% CI: 1.03 to 3.42, p = 0:039), in comparison to the nor-
mal group and nonobstructive Leiden < 5, respectively.

3.3. Survival Analysis. Of the included 813 patients, 50
MACEs (6.15%) were experienced, including 2 cardiovascu-
lar deaths, 14 nonfatal myocardial infarctions, 27 unstable
anginas requiring hospitalization, and 7 strokes (Figure 2).
The annual MACE rate among patients in the normal group
was 0.98 events per100 person-years, and the annual MACE
rate among nonobstructive Leiden < 5 was 1.86 per 100 per-
son-years, while the rate for nonobstructive Leiden ≥ 5 was
4.06 per 100 person-years (p < 0:01).

3.4. Sensitivity Analysis. For further sensitivity analysis, seg-
ment involvement score (SIS) was used to quantify the ath-
erosclerotic extent instead. A comparable distribution of

Table 1: Baseline characteristics.

Characteristic Value (N = 813)
Age (years) 58:9 ± 9:9
Male 391 (48.1%)

Body mass index (kg/m2) 26:2 ± 3:6
Cardiac risk factors

Hypertension 527 (64.8%)

Hypercholesterolemia 442 (54.4%)

Current smoking 197 (24.2%)

Family history of CAD 192 (23.6%)

CCTA findings

High-risk plaque 18 (2.2%)

CAD-RADS score

0 190 (23.4%)

1 121 (14.9%)

2 502 (61.7%)

Segment involvement score 1 (1-1)

Segment stenosis score 1 (1-2)

Leiden risk score 2.8 (1.2-4.6)

Medication

Antiplatelet 245 (30.1%)

Beta blocker 295 (36.3%)

ACEI/ARB 256 (31.4%)

Statin 245 (30.1%)

Calcium channel blocker 145 (17.8%)

Diabetic treatment

Diet only 160 (19.7%)

Oral hypoglycemic agent 658 (80.9%)

Insulin 116 (14.3%)

Values are mean ± SD or n (%). CAD: coronary artery disease; CCTA:
coronary computed tomography angiography; ACEI: angiotensin-
converting enzyme inhibitor; ARB: angiotensin receptor blocker; CAD-
RADS: Coronary Artery Disease-Reporting and Data System.
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event rate has been noticed (Figure 3), of which the normal
group, the nonobstructive SIS < 3 group, and the nonob-
structive SIS ≥ 3 group were 2.63%, 5.54%, and 12.34%,
respectively. In the adjusted Coxmodel, patients with nonob-
structive SIS ≥ 3 conferred a significantly higher risk than
those in both the normal group (HR: 3.49, 95% CI: 1.28-
9.52, p = 0:015) and the nonobstructive SIS < 3 group (HR:
2.14, 95% CI: 1.17-3.91, p = 0:013).

4. Discussion

The main finding of this study was that in DM patients with
nonobstructive CAD, higher atherosclerotic extent on CCTA
provided incremental prognostic information and was asso-
ciated with long-term cardiovascular outcome, even after
adjustment for traditional risk factors including age, gender,
and high-risk plaque profiles. Our results reinforced the
notion that greater efforts are needed to promote risk strati-
fication with nonobstructive CAD, especially in the presence
of DM. Leiden risk score represented an effective and reliable
tool for quantifying atherosclerotic extent, which had a sub-
stantial impact on clinical outcome in diabetic patients. The
robustness of the conclusion was further evaluated with the
sensitivity analysis using SIS, with similar main results
observed.

Our findings concur with a previous cohort study [11],
which demonstrated that it is possible to identify high-risk
diabetic patients based on assessment of CAD through
CCTA. However, several disparities must be noted. A slightly
higher MACE rate was presented, compared with an annual
event rate ranging from 1.5% to 16.9% as a meta-analysis
showed [1], in which diabetes examined by CCTA was inves-
tigated. One possibility is that we broadened enrollment to

Table 2: Univariate and multivariate analyses of clinical profile and CCTA findings for major cardiovascular events.

Univariable HR (95% CI) p value
Leiden × CAD

Multivariable HR (95% CI) p value

Age (years) 1.04 (1.01-1.07) 0.009 1.03 (1.00-1.07) 0.027

Male 0.75 (0.43-1.32) 0.325 0.84 (0.47-1.51) 0.556

BMI (kg/m2) 1.03 (0.96-1.11) 0.388

Cardiac risk factors

Hypertension 1.23 (0.67-2.25) 0.505

Hypercholesterolemia 1.42 (0.80-2.54) 0.231

Current smoker 0.95 (0.50-1.82) 0.876

Family history of CAD 0.69 (0.33-1.42) 0.310

CCTA findings

High-risk plaque 11.66 (5.45-24.95) <0.001 10.94 (5.00-23.92) <0.001
Leiden risk score 1.06 (1.00-1.13) 0.055

Segment involvement score 1.17 (1.00-1.36) 0.048

CAD severity (Leiden × CAD)
Normal Reference Reference

Nonobstructive Leiden < 5 1.86 (0.70-5.00) 0.216 1.56 (0.58-4.22) 0.379

Nonobstructive Leiden ≥ 5 4.06 (1.56-10.56) 0.004 2.94 (1.11-7.79) 0.031

Data in parentheses are 95% confidence intervals. In this analysis, gender and variables with significant (p < 0:05) impact on survival at a univariable level
entered the multivariable model. HR: hazard rate; CAD: coronary artery disease; CCTA: coronary computed tomography angiography; BMI: body mass index.
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Figure 2: Cumulative risk of the composite endpoint on the basis of
CAD severity with Leiden risk score (no CAD, nonobstructive CAD
with Leiden < 5, and nonobstructive CAD with Leiden ≥ 5). CAD:
coronary artery disease.
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MACEs with strokes and an extended follow-up to a
median of 31 months, which was a sufficient duration to
capture more events. Moreover, up to 80% of the patients
received hypoglycemic therapy in baseline, indicating a
potentially long duration of diabetes and higher vascular
risk. Another important observation from our study is that
in risk-adjusted hazard analysis, the presence of HRP was
found an independent predictor with a high HR of 3.15
(95% CI: 1.97-5.04). This corresponds with the result from
the ICONIC study [12] that stressed the importance of
HRP+ lesions in nonobstructive CAD, exhibiting a compa-
rable risk of becoming a culprit lesion to obstructive HRP-
lesions. In view of this, we bring it into analysis, which has
rarely been studied before. However, after adjustment for
HRP, extensive nonobstructive CAD was still found a sig-
nificant indicator. This finding may inform future trials of
the potential role of nonobstructive CAD in the setting of
diabetes.

In the PROMISE (Prospective Multicenter Imaging
Study for Evaluation of Chest Pain) trial, most cardiovascular
deaths or myocardial infarctions (67%) occurred in patients
with a normal stress test result at baseline, most of whom
were found to have nonobstructive atherosclerotic disease
by cardiac CT [13]. This suggests that we miss the opportu-
nity to implement comprehensive preventive measures in
most patients, especially in diabetic patients, by relying on
stress test results. The SCOT-HEART (Scottish Computed

Tomography of the Heart) trial revealed a reduction of 41%
in the hazard of CAD-related death or nonfatal myocardial
infarction for patients who were assigned to an anatomic ver-
sus functional strategy (2.4% vs. 3.9%) [14]. This was attrib-
uted to detection of nonobstructive coronary atherosclerosis
and the initiation of directed preventive treatment. Our study
was partly in line with the results above and further stressed
the importance of medical management in diabetic patients
with extensive nonobstructive coronary artery disease. The
ability of noninvasively detecting nonobstructive atheroscle-
rotic disease by CT, thus, should be rendered as a necessary
opportunity to initiate earlier prevention or intensive treat-
ment in the process of disease, a strategy proven effective in
reducing MACEs [15].

Some previous studies have evaluated the extent and
distribution of atherosclerosis with semiquantitative CCTA
risk score in diabetes, mainly based on the SIS or the seg-
ment stenosis score (SSS) [16]. However, neither SIS nor
SSS reflects the importance of relevant segment in coronary
artery, because the proximal segment in the artery holds
accountability for myocardial perfusion of larger territory.
In this circumstance, the Leiden comprehensive risk score,
being reported more strongly predictive than the SIS, inte-
grates stenosis severity with the number and location of ste-
nosis. A recent research from van den Hoogen et al. [17]
evaluated the per-segment and per-patient weight scores
to determine the contribution of the stenosis, composition,
and location of CAD to the total score. As a result, all the
per-patient weight scores were significantly higher in the
setting of DM, while the per-segment location weight score
was lower, which might be explained by the multisegment
disease in DM patients. We also used SIS for sensitivity
analysis to stratify the extent of atherosclerotic plaque,
which demonstrated the similar result and further sup-
ported our hypothesis.

5. Study Limitation

First, as a retrospective single center study, referral decision
for CCTAwas made by physicians independently and certain
patients were excluded finally due to various reasons, which
may introduce selection bias. Second, diabetes is a dynamic
risk factor; lack of the diabetes duration and treatment infor-
mation on baseline may cause the misinterpretation of the
subsequent data analysis. Third, although downstream treat-
ment and management were recorded, relative treatments
were not included in the final multivariate analysis, which
may lead to potential confounders and over- or underestima-
tion of the effect size of target variables.

6. Conclusion

In diabetic patients with nonobstructive CAD, atheroscle-
rotic extent was associated with incremental risk of MACEs
during a follow-up of about 3 years. Efforts should be made
to determine risk stratification for the management of DM
patients with nonobstructive CAD.
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Background. Gestational diabetes mellitus (GDM) is a type of glucose intolerance disorder that first occurs during women’s
pregnancy. The main diagnostic method for GDM is based on the midpregnancy oral glucose tolerance test. The rise of
metabolomics has expanded the opportunity to better identify early diagnostic biomarkers and explore possible pathogenesis.
Methods. We collected blood serum from 34 GDM patients and 34 normal controls for a LC-MS-based metabolomics study.
Results. 184 metabolites were increased and 86 metabolites were decreased in the positive ion mode, and 65 metabolites were
increased and 71 were decreased in the negative ion mode. Also, it was found that the unsaturated fatty acid metabolism was
disordered in GDM. Ten metabolites with the most significant differences were selected for follow-up studies. Since the
diagnostic specificity and sensitivity of a single differential metabolite are not definitive, we combined these metabolites to
prepare a ROC curve. We found a set of metabolite combination with the highest sensitivity and specificity, which included
eicosapentaenoic acid, docosahexaenoic acid, docosapentaenoic acid, arachidonic acid, citric acid, α-ketoglutaric acid, and
genistein. The area under the curves (AUC) value of those metabolites was 0.984 between the GDM and control group.
Conclusions. Our results provide a direction for the mechanism of GDM research and demonstrate the feasibility of developing
a diagnostic test that can distinguish between GDM and normal controls clearly. Our findings were helpful to develop novel
biomarkers for precision or personalized diagnosis for GDM. In addition, we provide a critical insight into the pathological and
biological mechanisms for GDM.

1. Introduction

Gestational diabetes mellitus (GDM) is a glucose intolerance
disorder that first emerges during women’s pregnancy [1].
The prevalence of GDM ranges from 0.6% to 15% across dif-
ferent countries depending on the race and socioeconomic
conditions of individuals [2]. It is considered that the increas-
ing incidence of GDM worldwide is due to the growing prev-
alence of obesity in women of reproductive age and advanced
maternal age [3]. GDM poses many health-related concerns
with maternal and fetal complications, such as an increased

risk for spontaneous preterm birth [4], neonatal hyperbiliru-
binemia, hypoglycemia [5], shoulder dystocia, stillbirth,
acute hospitalization in the neonatal intensive care unit,
and respiratory complications [6–9]. More notably, GDM
may also lead to a significant increase in long-term incidence
of type 2 diabetes and cardiovascular disease in pregnant
women [10–18]. In view of these complications, it is
important to detect women with GDM as early as possible.
In addition, it is critical to utilize and implement current
GDM risk-reduction strategies with the aim of minimizing
the detrimental gestational complications for mother and
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offspring. Currently, the accepted GDM diagnostic methods
are both time consuming and laborious, which leads to low
patient participation. Therefore, it is of utmost importance
to find an alternative solution. The advent of advanced tech-
nology has made it possible to find more sensitive and
specific molecules to distinguish between people with or
without GDM. The emergence and development of metabo-
lomics provide deeper insights into the discovery of new
biomarkers for metabolic diseases, including GDM. More
importantly, metabolomics can offer a noninvasive assess-
ment using maternal biofluids and is a less expensive alterna-
tive to other approaches. Based on these advantages,
metabolic profiling has the potential to meet the requirement
for clinical application and provide critical insight into the
pathological and biological mechanisms for GDM. Several
studies have already identified early diagnostic markers and
explored the pathophysiology of GDM using metabolomics.
It has been reported that circulating fatty acids levels,
including palmitic acid, stearic acid, and palmitoleic acid, were
increased in GDM patients as compared with normal preg-
nancy groups [19–23]. Additional metabolites were also found
to be significantly increased in womenwithGDM, such as pros-
tanoic acid, sesaminol 2-O-triglucoside, tricin 7-neohesperido-
side, dihydro-12-oxo-15-phytoenoic acid [24], acetylcarnitines
[21, 22], bile acids [25], ketones [21, 26], creatinine, carbohy-
drate (primary glucose) [26], and other lipids and organic acids.
Reduction of levels in phospholipids, (2E)-14-hydroxytetra-
dec-2-enoic acid (or its isomer), (2E,13R)-13-hydroxytetra-
dec-2-enoic acid, 2,15-dihydroxy-pentadecanoic acid (or its
isomers), (7R,8S,9Z,12Z,15Z)-7,8-dihydroxy-9,12,15-octade-
catrienoic acid, 11α,20,26-trihydroxyecdysone [24], glycero-
phospholipids [21, 22, 27], 1,5-anhydroglucitol [26], and
gluconic acids [21, 27] was also reported. Moreover, decreases
in amino acids [21, 22, 27, 28] and fatty acids have been shown
[21, 22, 27]. However, some groups have reported that there
were no significant changes in metabolite profiles between
diagnosed GDM women and healthy controls [29–31]. These
discrepancies may be due to differences in sample sizes,
variations in study population composition, and statistical
methods used.

Considering the promising diagnostic values of metabo-
lomics in GDM, we subjected the serum from 34 normal con-
trols and 34 GDM patients to metabolomics analysis in this
study. The main objective of this study is to identify novel
biomarkers for precision and personalized diagnosis for
GDM and provide a critical insight into the pathological
and biological mechanisms for GDM.

2. Materials and Methods

2.1. Study Population and Sample Collection. Clinical infor-
mation was collected from 34 pregnant women with GDM
and 34 healthy pregnant women with same the gestational
weeks who gave birth in Women’s Hospital School of
Medicine Zhejiang University, Zhejiang, China, between 1
December 2018 and 31 March 2019. Inclusion criteria of preg-
nant women were as follows: (1) maternal ages at delivery ≥ 20
years; (2) gestational weeks at delivery ≥ 28weeks; (3) detailed

medical records; (4) singleton pregnancy; and (5) no presence
of nonhereditary disease.

Exclusion criteria of pregnant women were as follows: (1)
multiple pregnancies; (2) stillbirth; (3) in vitro fertilization-
embryo transfer; and (4) had chronic diseases. Participants’
blood samples were venously collected after 8-14 hours of fast-
ing during their second trimester of pregnancy (24–28 gesta-
tional weeks). Sample transfer centrifugation (3500 rpm for
10min at 4°C) and separation of serumwere completed within
1 hour. Final samples were stored at -80°C until retrieval for
metabolomics analysis.

2.2. The Diagnostic Criteria of GDM. The diagnosis of GDM
cases were identified using the oral glucose tolerance test
(OGTT) conducted between 24 and 28 gestational weeks.
According to the International Association of Diabetes and
Pregnancy Study Groups (IADPSG) criteria [32], pregnant
women were considered to have GDM if one of the following
plasma glucose values was met or exceeded: 0 h, 5.1mmol/L;
1 h, 10.0mmol/L; or 2 h, 8.5mmol/L, after a 75 g glucose load.

3. Metabolomics Analysis

3.1. Metabolites Extraction. The serum samples had been
thawed once prior to use for our study. The serum samples
(100μl) were resuspended with prechilled 80% methanol
and 0.1% formic acid and vortex oscillation mix. Samples were
placed in an ice bath for 5min and then centrifuged at
15,000 rpm, 4°C for 10min. A calculated amount of superna-
tant was diluted to a final concentration containing 60%
methanol by LC-MS grade water and subsequently transferred
to a fresh Eppendorf tube with 0.22μm filter (Millipore,
Bedford, MA, USA). Samples were then centrifugated at
15,000 g, 4°C for 10min. Finally, the filtrate was injected into
the LC-MS/MS system for analysis. Equal volume samples
from each experimental sample were mixed as quality control
(QC) samples. Blank sample is the blank matrix of the exper-
imental sample, and the pretreatment process of the sample is
the same as that of the experimental sample.

3.2. LC-MS Analysis (Liquid Chromatography-Mass
Spectrometry). LC-MS/MS analyses were performed using a
Vanquish UHPLC system (Thermo Fisher Scientific,Waltham,
MA, USA) coupled with an Orbitrap Q Exactive series mass
spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA). Samples were injected into a Hypersil Gold column
(C18) (Thermo Fisher Scientific, Waltham, MA, USA) using
a 16min linear gradient at a flow rate of 0.2ml/min. The elu-
ents for the positive polarity mode were eluent A (0.1% formic
acid inwater) and eluent B (methanol). The eluents for the neg-
ative polarity mode were eluent A (5mM ammonium acetate,
pH9.0) and eluent B (methanol). The solvent gradient was
set as follows: 2% B, 1.5min; 100% B, 12.0min; 100% B,
14.0min; 2% B, 14.1min; and 2% B, 16min. The Q Exactive
mass series spectrometer was operated in positive/negative
polarity mode with spray voltage of 3.2kV, capillary tempera-
ture of 320°C, sheath gas flow rate of 35 arb, and aux gas flow
rate of 10arb.
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3.3. Identification of Metabolites. The raw data files generated
by UHPLC-MS/MS were processed using the Compound
Discoverer 3.0 (CD3.0, Thermo Fisher Scientific, Waltham,
MA, USA) to perform peak alignment, peak picking, and
quantitation for each metabolite. The main parameters were
set as follows: retention time deviation of 0.1min; quality
deviation of 5 ppm; signal strength deviation of 30%; signal-
to-noise ratio of 3; and minimum signal strength of
100,000. Peak intensities were normalized to the total spec-
tral intensity. The normalized data was then used to predict
the molecular formula based on additive ions, molecular
ion peaks, and fragment ions. Lastly, peaks were matched
with the mzCloud (https://www.mzcloud.org/) and Chem-
Spider (http://www.chemspider.com/) databases to obtain
the accurate qualitative and relative quantitative results.

4. Data Analysis

After the serummetabolites assessment, the metabolites were
annotated using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.jp/kegg/),
Human Metabolome Database (HMDB) database (http://
www.hmdb.ca/), and Lipidmaps database (http://www
.lipidmaps.org/). Principal components analysis (PCA), partial
least squares discriminant analysis (PLS-DA), and fold change
(FC) analysis were performed at metaX (a flexible and com-
prehensive software for processing metabolomics data). A
univariate analysis (t-test) was applied to calculate the statisti-
cal significance (p-value). In this study, the Bonferroni method
was used to reduce the false discovery rate (FDR). The
metabolites with variable importance in the projection ðVIPÞ
> 1, p − value < 0:05, and fold change ≥ 2 or FC ≤ 0:5 were
considered differential metabolites. Volcano plots were
used to filter metabolites of interest, which were based
on Log2ðFCÞ and −Log10ðp − valueÞ of metabolites.

The data used for clustering heat maps was normalized
using z-scores of the intensity areas of differential metabo-
lites and was plotted by the Pheatmap package in R language
(version 3.5.1). The correlation between differential metabo-
lites was analyzed by cor() in R language (method: Pearson).
Statistically significant values of correlation between differen-
tial metabolites were calculated by cor.mtest in R language.
p − value < 0:05 was considered statistically significant, and
correlation plots were plotted by corrplot package in R lan-
guage. The functions of these metabolites and metabolic
pathways were studied using the KEGG database. The meta-
bolic pathway enrichment of differential metabolites was per-
formed when ratio was satisfied by x/n > y/N . Metabolic
pathway enrichments were considered statistically significant
when p-value of metabolic pathway is <0.05.

5. Statistical Analysis

The SPSS software version 20 (SPSS Inc., Chicago, IL, USA)
was used for statistical analysis and receiver operating char-
acteristic (ROC) curve preparation. The modeling methods
were selected on the basis of the logistic regression to increase
the diagnostic accuracy. When the data was not normally dis-
tributed, normal transformations were attempted using of

area normalization method. For the data processing portion,
Log2 conversion and standardization was completed; then,
we performed UV scale and a two-tailed t-test to calculate
the p-value. In this study, we used the Log2 conversion to
make the data meet the normality of the distribution. Chi-
square test was used for categorical data and the Student’s
t-test for measurement data between two groups. All col-
lected data was expressed as the mean ± standard error of
themean (SEM), and the statistical significance level was set
at p < 0:05.

6. Results

6.1. Comparison of Clinical Data. A total of 68 individuals, 34
normal pregnant women, and 34 pregnant women with
GDM were included in this study. Detailed clinical data were
recorded for all participants. The mean maternal age of two
groups was 28:35 ± 3:03 and 31:78 ± 4:61 years, respectively.
A comparison of height, weight, age for marriage, gravidity,
systolic blood pressure, diastolic blood pressure, weight gain,
alanine aminotransferase (ALT), and aspartate aminotrans-
ferase (AST) was listed in Table 1. In addition, other labora-
tory data (Table S1) showed no significant differences between
the GDM and control groups. Body mass index (BMI), fasting
glucose and insulin, 1h glucose, 2h glucose and insulin,
hemoglobin A1 (HbA1C), homeostasis model of assessment-
insulin resistance (HOMA-IR), and triacylglycerides (TG)
were significantly higher in the GDM group than in the
control group (p < 0:05, Table 1). Gestational weeks and high-
density lipoprotein- (HDL-) cholesterol were significantly
lower in the GDM group compared with the control group
(p < 0:05, Table 1). No differences between the two groups
(p > 0:05, Table 1) were observed in the following parameters:
age for marriage, height, weight, weight gain, gravidity, parity,
systolic blood pressure, diastolic blood pressure, 1h insulin,
and total cholesterol (TCH).

6.2. Metabolic Results. To maximize the identification of dif-
ferent metabolites, we tested the samples in both the positive
ion mode and negative ion mode. QC samples were included
to determine the state of the instrument and to evaluate the
stability of the system during the whole experiment. The cor-
relations of QC samples were all close to 1, indicating that the
method used has high stability and good data quality
(Figures S2(a) and S2 (b)). The peak obtained from all
experimental samples and QC samples were extracted and
Pareto scaling was applied for PCA analysis. In the PCA
analysis diagram, the distribution of QC samples, GDM
samples, and control samples is clustered together. These
results further indicate that the model we employed is
reliable (Figures S2(c)–S2(f)).

Next, we analyzed the differential metabolites. PCA anal-
ysis was used as an unsupervised method, and PLS-DA was
used as a supervised method to get an overview of the data
and to detect trends within the experiment. A clear separa-
tion can be observed between GDM and control groups from
the LC-MS data, indicating metabolic changes are inherent to
GDM (Figures 1(a)–1(f)).
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Based on the compounds identified by LC-MS, we gener-
ated a metabolite heat map and volcano map that revealed
considerable differences between healthy controls and preg-
nant women with GDM (Figure 2). It can be seen that under
the positive ion mode, a total of 2022 metabolites were
detected with 184 increased metabolites and 86 decreased
metabolites (Figures 2(a) and 2(c)). In the negative ion mode,
a total of 1299 metabolites were detected with 65 increased
metabolites and 71 decreased metabolites (Figures 2(b) and
2(d)). To better identify the potential biomarkers for GDM,
we selected the top 40 differential changed metabolites
between GDM patients and the normal pregnancy controls
(20 for positive ion mode, and 20 for negative ion modes,
respectively) (Table S3).

Next, correlation analysis of differential metabolites and
KEGG pathway enrichment prediction were performed,
and a KEGG enrichment bubble map was generated. The

biosynthesis of unsaturated fatty acids, biosynthesis of
phenylpropanoids, carbon fixation pathways in prokaryotes,
biosynthesis of terpenoids and steroids, two-component
system, ascorbate and aldarate metabolism, furfural degra-
dation, isoflavonoid biosynthesis, biosynthesis of alkaloids
derived from shikimate pathway, and biosynthesis of secondary
metabolites were all found to be statistically different between
the control group and the GDM group (Figures 3(a)–3(d);
Table S4). In these pathways, docosahexaenoic acid,
docosapentaenoic acid, arachidonic acid, citric acid, α-
ketoglutaric acid, phosphoric acid, dehydroascorbic acid,
2-furoic acid, cephaeline, and methyl jasmonate were
upregulated, and isoliquiritigenin, genistein, daidzein, and
typhasterol were downregulated. In the positive ion mode,
the only pathway with statistical differences was the
biosynthesis of unsaturated fatty acids (Table S4). From these
results, we selected the differential metabolites in this pathway

Table 1: General characteristics of study subjects.

Characteristic No GDM GDM p-value

Age, years 28:35 ± 3:03 31:78 ± 4:61 0.001

Age for marriage, years 26:12 ± 2:56 27:2 ± 3:04 0.115

Height, cm 161 ± 5:26 159 ± 4:67 0.138

Weight, kg 57:85 ± 6:36 62:13 ± 7:77 0.016

BMI, kg/m2 22:33 ± 2:6 24:45 ± 2:45 0.001

Weight gain, kg 6:26 ± 2:83 6:33 ± 3:91 0.930

BMI before pregnant, kg/m2 19:91 ± 2:3 21:96 ± 2:4 0.001

Gravidity 1:53 ± 0:75 1:88 ± 1:00 0.149

Parity

Nulliparous 22 16

Multiparous 12 18 0.147

Gestational weeks 39:24 ± 1:07 38:44 ± 1:30 0.008

Systolic blood pressure (mm Hg) 113:6 ± 9:13 118:3 ± 10:6 0.055

Diastolic blood pressure (mm Hg) 66:6 ± 8:9 68:5 ± 10:4 0.420

Fasting glucose (mmol/l) 4:37 ± 0:34 5:07 ± 0:68 p ≤ 0:001
1 h glucose, OGTT (mmol/l) 7:44 ± 1:21 10:70 ± 1:33 p ≤ 0:001
2 h glucose, OGTT (mmol/l) 6:32 ± 0:75 9:43 ± 1:51 p ≤ 0:001
HbA1C (%) 4:8 ± 0:21 5:3 ± 0:39 p ≤ 0:001
Insulin (μU/ml) 7:21 ± 2:95 10:29 ± 4:35 p ≤ 0:001
1 h insulin (μU/ml) 61:69 ± 24:55 68:73 ± 38:49 0.372

2 h insulin (μU/ml) 54:12 ± 25:81 86:26 ± 47:29 0.001

HOMA-IR 1:42 ± 0:64 2:33 ± 0:18 p ≤ 0:001
Triacylglycerides (mmol/l) 1:95 ± 0:57 2:86 ± 1:44 0.001

Total cholesterol (mmol/l) 6:04 ± 0:79 5:65 ± 1:05 0.083

LDL-cholesterol (mmol/l) 3:08 ± 0:63 2:63 ± 0:70 0.007

HDL-cholesterol (mmol/l) 2:09 ± 0:42 1:78 ± 0:41 0.003

ALT, median(range), U/l 20:29 ± 9:43 18:26 ± 14:08 0.500

AST, median(range), U/l 19:71 ± 5:33 17:65 ± 7:28 0.188

GDM, gestational diabetes mellitus; HbA1c, hemoglobin A1; HOMA-IR, homeostasis model of assessment-insulin resistance; ALT, alanine aminotransferase;
AST, aspartate aminotransferase. Data are mean ± SEM. t-test in continuous variables and chi-square test in categorical data were performed as appropriate.
Results were considered significant when p < 0:05, compared with control group.
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for further analysis: eicosapentaenoic acid, docosahexaenoic
acid, docosapentaenoic acid, and arachidonic acid. In the
negative ion mode, differential metabolites were selected

based on the following principles: (1) VIP values > 3; (2)
KEGG metabolic pathway; and (3) 20 metabolites with the
smallest p-value (Tables S4 and S5). The overlapping
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Figure 2: Analysis of differential metabolites between control and GDM through LC-MS. (a, b) Hierarchical clustering analysis was performed
on each group of differential metabolites obtained, and the relative quantitative values of the differential metabolites were converted into z values
(z = ðx – μÞ/σ: x is a specific fraction, μ is average Number, and σ is the standard deviation) and clustering; different color regions represent
different clustering group information, similar to the metabolic expression patterns in the same group, and may have similar functions or
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the p-value to the absolute value of the logarithm of 10 to make the volcano map. (a, c) Positive ion mode. (b, d) Negative ion mode.

6 Journal of Diabetes Research



metabolites that fell within criteria of these three conditions
were selected for subsequent analysis. These metabolites
include citric acid, α-ketoglutaric acid, genistein, daidzein,
phosphoric acid, and 2-furoic acid, which can be screened in
both positive ion mode and negative ion modes. The FC,
VIP, and AUC of these ten metabolites are listed in Table 2.

6.3. Validation and Diagnostic Performance of Selected
Metabolite. The levels of the selected metabolites in a group
of participants comprising of 34 normal women and 34
women with GDM were measured using LC-MS and ana-
lyzed by the Student’s t-test. Figures 4 and 5 depict the box-
plots of their concentration levels in the GDM and control.
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Figure 3: Differential metabolite KEGG pathway enrichment map. (a, b) When the linear relationship of the two metabolites is enhanced, the
correlation coefficient tends to 1 or -1; when positive correlation, it tends to 1, and when it is negatively correlated, it tends to -1. The
correlation is a maximum of 1, a complete positive correlation (red), a correlation of -1, and a complete negative correlation (blue). (c, d)
KEGG analysis was used to identify the pathways which were significantly enriched by differential metabolites compared to all identified
metabolite backgrounds. (a, c) Positive ion mode. (b, d) Negative ion mode.
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Table 3 shows the group AUC values of targeted metabolites
obtained through multiple comparison analysis. The AUC
values indicate the diagnostic potentials of the metabolites
as unique biomarkers for identification of GDM and control.

The area under the curve for the individual differential
metabolites we selected was less than 0.882 (Table 2). How-
ever, we hope to find a combination of metabolites which
has higher sensitivity and specific to distinguish between
GDM and controls. We decided to combine the metabolites
into various sets and subjected them to AUC analysis to eval-
uate their diagnostic performances as combined biomarkers
for GDM. Based on the principle of selecting the least metab-
olites and the highest area under the curve, we have selected

the following combination: eicosapentaenoic acid, docosa-
hexaenoic acid, docosapentaenoic acid, arachidonic acid,
citric acid, α-ketoglutaric acid, and genistein. The AUC value
of the combined metabolites was 0.984 between the GDM
and control groups (Table 3; Figure S6).

7. Discussion

Alteration in metabolites, like bile acid metabolism, amino
acid metabolism, and fatty acid metabolism, has all been
involved with the development of metabolic diseases and
is characterized as a hallmark of metabolic diseases, such
as GDM [31–33]. The emergence and development of

Table 2: Ten major differential metabolites for future analysis.

ID Name_des Formula Molecular weight RT (min) FC p-value VIP Up/down

ESI+

Com_962_pos Eicosapentaenoic acid C20 H30 O2 302.22 14.10 0.58 4.95E-03 2.28 Down

Com_384_pos Docosahexaenoic acid C22 H32 O2 328.24 15.07 1.77 1.62E-06 1.60 Up

Com_2412_pos Docosapentaenoic acid C22 H34 O2 330.26 15.24 2.36 6.97E-09 2.23 Up

Com_1075_pos Arachidonic acid C20 H32 O2 304.24 15.13 1.50 3.85E-06 1.06 Up

Com_7642_pos α-Ketoglutaric acid C5 H6 O5 146.02 1.40 1.18 1.22E-03 0.44 Up

Com_332_pos Phosphoric acid H3 O4 P 97.98 1.68 1.65 9.31E-07 1.80 Up

ESI-

Com_108_neg Citric acid C6 H8 O7 192.03 1.49 2.11 1.02E-09 3.43 Up

Com_5332_neg α-Ketoglutaric acid C5 H6 O5 146.02 1.72 1.78 2.17E-09 2.00 Up

Com_7586_neg Genistein C15 H10 O5 270.05 9.61 0.63 6.15E-03 1.17 Down

Com_8251_neg Daidzein C15 H10 O4 254.06 9.10 0.52 4.12E-02 1.50 Down

Com_740_neg Phosphoric acid H3 O4 P 97.98 1.55 2.33 1.42E-08 4.31 Up

Com_783_neg 2-Furoic acid C5 H4 O3 112.02 1.50 2.25 1.97E-06 3.15 Up

FC, fold change (GDM case/control). VIP, variable importance in the projection. ESI+, positive ion mode; ESI-, negative ion mode.
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Figure 4: Boxplots of metabolites between control and GDM under positive ion mode. Student’s t-test for measurement data between two
groups was performed for significant difference. All data are expressed as the mean ± SEM, and the statistical significance level was set at
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metabolomics provide deeper insights in the discovery of
new biomarkers of these diseases [34]. More importantly,
metabolomics can offer a noninvasive assessment by using
maternal biofluids and is a less expensive alternative to other
approaches [35]. GDM can be diagnosed using the OGTT
method, which is a cheap “golden diagnostic standard”.
Unfortunately, it may be not the ideal biomarker to predict
the potential mechanism related to GDM [36]. In this study,
we identified several differential metabolites, such as eicosa-
pentaenoic acid, docosahexaenoic acid, docosapentaenoic
acid, and arachidonic acid, that were closely correlated to
the disease process of GDM. Thus, the metabolomic bio-
markers have the potential to serve as an innovative
approach for the predictive, preventive, and personalized
medicine in the future.

Our analysis of clinical data shows that triacylglycerides
were significantly increased in the GDM group, while HDL-
cholesterol and low-density lipoprotein- (LDL-) cholesterol
decreased significantly in the GDM group (Table 2). This
finding suggests there is a change in lipid metabolism during
women’s pregnancy. Our study identified four molecules in
the pathway of unsaturated fatty acid metabolism, which
includes eicosapentaenoic acid, docosahexaenoic acid, doco-
sapentaenoic acid, and arachidonic acid.

Pregnancy is a complicated physiological process, and
pregnant women need sufficient nutrition to support the
growth and development of themselves and their fetus. It
has been found that arachidonic acid (AA) and docosahexae-
noic acid (DHA) play important roles in fetal growth and
development [37, 38]. However, these enzyme expressions
to synthesize long-chain polyunsaturated fatty acids
(LC-PUFA) are quite low in the fetus. This shows that AA
and DHA, which is necessary for fetal growth and develop-
ment, are supplied by the placental transport [39]. Therefore,

alterations in maternal polyunsaturated fatty acid (PUFA)
metabolism during gestation would significantly impact the
growth and development of the fetus. In addition, research
has been reported that in placental transfer of AA in vitro
in perfused placentas of women with insulin-dependent dia-
betes mellitus was impaired [40].

Williams et al. found that linoleic acid, oleic acid, myristic
acid, D-galactose, D-sorbitol, O-phosphocolamine, L-ala-
nine, L-valine, 5-hydroxy-l-tryptophan, L-serine, sarcosine,
L-pyroglutamic acid, L-mimosine, L-lactic acid, glycolic acid,
fumaric acid, and urea differentiated GDM cases from con-
trols using GC-MS technology in early pregnancy and identi-
fied combinations of metabolites in early pregnancy that are
associated with subsequent risk of GDM [41].

In this study, we also found some additional branched-
chain amino acids that can be used to distinguish GDM from
the control group using untargeted metabolomics. It was
found that DL-β-leucine, L-threonine, L-(+)-alanine, DL-
serine, valine, L-tyrosine, α-linolenic acid, oleic acid, trypto-
phan, and glutamine have no significant change between
controls and GDM; L-isoleucine, L-theanine, L-aspartic acid,
L-phenylalanine, cystine, L-glutamic acid, and DL-lysine
have significant changes. Among the 17 metabolites discov-
ered by Williams et al., most of them were not detected in
our study. Based on these results, it is reasonable to infer that
metabolism is different in the early and middle trimesters of
pregnancy.

Although we find α-linolenic acid (ALA) has no signifi-
cant change between controls and GDM in our study, our
results show that DHA was increased in GDM. DHA can
be converted from ALA [42, 43]. Circulating levels of DHA
can reflect the ability of synthesize by the liver and the
amount of dietary intake. Previously, White et al. performed
to compare obese women with GDM with obese non-GDM
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Figure 5: Boxplots of metabolites between control and GDM under negative ion mode. Student’s t-test for measurement data between two
groups was performed for significant difference. All data are expressed as the mean ± SEM, and the statistical significance level was set at ∗
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Table 3: Area under the curves among GDM and control.

Group AUC 95% CIs

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid 0.909 0.840-0.979

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid

0.959 0.921-0.998

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
α-ketoglutaric acid

0.981 0.957-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
genistein

0.913 0.846-0.981

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
daidzein

0.920 0.858-0.983

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
phosphoric acid

0.952 0.906-0.997

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
2-furoic acid

0.957 0.916-0.997

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid

0.984 0.962-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; genistein

0.960 0.922-0.998

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; daidzein

0.958 0.918-0.997

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; phosphoric acid

0.958 0.917-0.998

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid, 2-furoic acid

0.960 0.922-0.998

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
α-ketoglutaric acid; genistein

0.982 0.959-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
α-ketoglutaric acid; daidzein

0.981 0.957-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
α-ketoglutaric acid; phosphoric acid

0.982 0.959-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
α-ketoglutaric acid; 2-furoic acid

0.981 0.957-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
genistein; daidzein

0.922 0.860-0.984

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
genistein; phosphoric acid

0.951 0.905-0.997

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
genistein; 2-furoic acid

0.958 0.919-0.998

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
daidzein; phosphoric acid

0.956 0.913-0.999

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
daidzein; 2-furoic acid

0.956 0.915-0.997

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
phosphoric acid; 2-furoic acid

0.958 0.915-0.997

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; genistein

0.984 0.962-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; daidzein

0.984 0.962-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; phosphoric acid

0.984 0.962-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; 2-furoic acid

0.984 0.962-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; genistein; daidzein

0.957 0.916-0.997
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women at time point 1 (mean gestational weeks 17 weeks 0
days) and time point 2 (mean gestational weeks 27 weeks 5
days) using a targeted NMR metabolome [44]. The results
showed that total fatty acids were higher at time point 1
and were marginally increased at time point 2. Additionally,
monounsaturated fatty acid and saturated fatty acid concen-
trations were greater at both time points. At time point 2, a
decreased proportion of DHA and increased proportion of
saturated fatty acids both reached significance in GDM
women. On the contrary, our results show that DHA was
increased in GDM. The difference in DHA findings may be
attributed to the choice of different groups of people.
Furthermore, White et al.’s research found that tricarbox-
ylic acid (TCA) cycle intermediate citrate concentrations
were also higher but lactate had no notable difference
between the two groups at either time [44]. This is basi-
cally consistent with our findings that citric acid was
increased in GDM, while ethyl lactate and n-butyl lactate
do not change significantly.

Findings from metabolomics of GDM have generally
been inconsistent in the past. Alterations in branched-chain
amino acids, free fatty acids, fatty acid oxidation products,
and gluconeogenic precursors have been reported by several
studies [41, 45–47]. Yet, Graça et al. and Sachse et al. found
no significant changes in metabolite profiles between women
with GDM and controls [30, 31]. Surprisingly, our results are
not consistent with the findings of others. The reasons for the
different results may be as follows: utilization of metabolome
profiling platforms, differences in specimen collections,
GDM diagnostic criteria, intrinsic biological characteristics
of individual participants, methods in data processing, and
statistical analysis. The implementation of strict study guide-
lines and consistent recommendations across studies are
needed to improve replication of findings [48].

Based on our results, we can see that under the positive
ion mode, a total of 2022 metabolites were detected and a
total of 1299 metabolites were detected in the negative ion

mode. Through more rigorous selection, we selected the most
obvious metabolites to prepare an ROC curve. Moreover, the
results of eicosapentaenoic acids, docosahexaenoic acid, doc-
osapentaenoic acid, and arachidonic acid are inconsistent
[49–51]. Wheeler’s experimental results are relatively similar
to ours; they found that eicosapentaenoic acid, docosahexae-
noic acid, docosapentaenoic acid, and arachidonic acid were
all upregulated [23]. The only difference in our study is that
eicosapentaenoic acid was reduced. Also, his research found
another furan fatty acid metabolite 3-carboxy-4-methyl-5-
propyl-2-furanpropanoic acid (CMPF) can impair β cell
function by inhibiting insulin biosynthesis and secretion
through organic anion transporters-3 (OAT3). This can
cause abnormal glucose metabolism and increased oxidative
stress [23]. This may be further explained by glucolipotoxi-
city, which means hyperglycemia and hyperlipidemia arise
and may exert additional damaging effects on the β cell.
Many studies have associated glucolipotoxicity with β cell
dysfunction in type 2 diabetes, suggesting that metabolites
are likely causally related to diabetes development [52]. This
proposition may offer some insight on the results of
Wheeler’s and ours. Fatty acids have been proven to induce
β cell apoptosis under high glucose conditions [53]. Pancre-
atic β cells exposed to fatty acids for a long period can lead
to increased oxidative stress products like ROS. High levels
of ROS can increase cell membrane permeability through
oxidation of lipid, leading to calcium influx, and phospholi-
pase activation, which may further induce β cell apoptosis
[54]. Busch et al. have also found that the expression of the
enzyme, stearoyl coenzyme A desaturase, correlates with
the resistance of β cells to the proapoptotic by the effect of
palmitate. This may indicate that the capability of cell to
desaturate fatty acids serves as some form of protection
against glucolipotoxicity [55]. These results suggest that
unsaturated fatty acids are at least partially involved in the
development of GDM. Under normal physiological condi-
tions, eicosapentaenoic acid, docosahexaenoic acid, and

Table 3: Continued.

Group AUC 95% CIs

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; genistein; phosphoric acid

0.958 0.919-0.998

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; genistein; 2-furoic acid

0.960 0.922-0.998

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; genistein; daidzein

0.983 0.960-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
α-ketoglutaric acid; genistein; daidzein; phosphoric acid

0.981 0.957-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
α-ketoglutaric acid; genistein; daidzein; 2-furoic acid

0.981 0.957-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; genistein; daidzein; phosphoric acid

0.984 0.962-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; genistein; daidzein; 2-furoic acid

0.984 0.962-1.000

Eicosapentaenoic acid; docosahexaenoic acid; docosapentaenoic acid; arachidonic acid;
citric acid; α-ketoglutaric acid; genistein; daidzein; phosphoric acid; 2-furoic acid

0.984 0.962-1.000

ROC curves were prepared for different metabolite combinations. AUC, area under the curves.
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arachidonic acid can be synthesized from essential fatty acid
precursors that might otherwise be inadequate during
periods of rapid intrauterine growth, which are considered
essential for intrauterine development and specific functions
such as retinal and cerebral development [38, 56–58].

Ultimately, we want to develop an effective discriminant
model based on a ten-metabolite panel that can predict
GDM early. We screened only one pathway in positive ion
mode where eicosapentaenoic acid, docosahexaenoic acid,
docosapentaenoic acid, and arachidonic acid were included
in this pathway. We combined those four molecules with
other metabolites into various sets and subjected them to
AUC analysis in order to evaluate their diagnostic perfor-
mances as combined biomarkers for controls and GDM.
Based on the principle of selecting the least metabolites and
the highest area under the curve, we have selected the follow-
ing combinations: eicosapentaenoic acid, docosahexaenoic
acid, docosapentaenoic acid, arachidonic acid, citric acid, α-
ketoglutaric acid, and genistein. The AUC value of those
metabolites was 0.984 between the GDM and control groups.
This result shows that these metabolite combinations can
clearly distinguish between GDM and normal controls. How-
ever, this would require a larger sample size for subsequent
verification. In continuation from our initial findings, we will
work on verifying these results with hopes of using them clin-
ically in the near future.

Overall, our study had several limitations. First, the num-
ber of patients included might not be of a substantial amount
and could have affected the robustness of our statistical
analysis. Therefore, the conclusions of this study need to be
verified using a larger group of participants. Another limita-
tion of our study is that some external factors outside of the
controlled screening parameters may have affected the
metabolome outcomes. These factors include some lifestyle
elements, such as dietary habits, previous macrosomia, and
previous GDM. Similarly, glycemic control for all women
included in the present study was not able to be characterized
because these data was not available. Lastly, the LC-MS anal-
ysis we performed might not be a feasible screening tech-
nique for large populations because of its high cost. In this
study, we found several differential factors, such as gesta-
tional weeks and BMI, and these factors may be related
to the differences in metabolites. As a metabolic disease,
GDM may be related to the dysfunctional lipid metabo-
lism, obesity, and glucose metabolism. In this study, we
mainly focus on the differential metabolites between the
controls and GDM groups, and these metabolites may be
the candidates or biomarkers for GDM diagnosis. We will
further our studies to explore the potential mechanism
and correlation between these differential metabolites and
other factors in the future.

In this study, we found that unsaturated fatty acid metab-
olism was impaired in GDM by identifying key metabolites
differences between the controls and GDM groups. In addi-
tion, we discovered a set of metabolite combination that
can clearly distinguish between GDM and normal controls.
These results demonstrate the possibility of developing a
diagnostic test that can distinguish between GDM and nor-
mal controls clearly.
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Table S1: other general characteristics of study subjects. We
included some clinical data other than Table 1 in the article
in this part, including FIB, APTT, PT, TT, HGB, LY#, LY%,
MCH, MCHC, MCV, NE#, NE%, P-LCR, PDW, PLT, RBC,
WBC, FT3, FT4, TT3, TT4, TSH, A-G, ALB, and albumin;
D-BIL, GGT, ID-BIL, T-BIL, TBA, TP, and URIC may be
better for us to understand the basic situation of patients.
Figure S2: evaluation of system stability throughout the
experiment. QC samples are used to determine the status of
the instrument and balance chromatography-mass spec-
trometry system before the sample and to evaluate the
stability of the system throughout the experiment. The
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correlation of QC samples was all close to 1, indicating that
the method used has high stability and good data quality.
In the PCA analysis diagram, the distribution of QC samples,
GDM samples, and control samples is clustered together.
These results further indicate that the model we employed
is also reliable. Table S3: twenty metabolite molecules with
the most significant differences. In this part of the supple-
mentary materials, we selected 20 metabolites with the lowest
p-value under different models. p-value, area under ROC
curve, VIP value, and trends are list in the table to make more
clearer to the readers. Table S3: the most obvious metabolite
on the KEGG pathway. In this part of the supplementary
materials, we list the most obvious metabolite on the KEGG
pathway, including p-value, area under ROC curve, VIP
value, and trends. Table S5: the largest metabolites of VIP.
In this part of the supplementary materials, we list the largest
metabolites of VIP, including p-value, area under ROC curve,
VIP value, and trends. Figure S6: area under the curves
among GDM and controls. This part of the result is the same
as that of Table 3. Table 3 shows area under the curves among
GDM and controls in a form mode, while Figure S6 shows
the picture format. (Supplementary Materials)
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Background. Previous studies have shown that the ratio of triglyceride to high-density lipoprotein cholesterol level (TG/HDL-C) is a risk
factor for type 2 diabetes mellitus (T2DM). The aim of this study was to investigate the nonlinear relationship between TG/HDL-C and
the incidence of T2DM in a Chinese population.Methods. We used logistic regression models to estimate odds ratios (ORs) and 95%
confidence intervals (CIs) for the incidence of T2DM among 7,791 participants from the Risk Evaluation of cAncers in Chinese
diabeTic Individuals: a lONgitudinal (REACTION) cohort study at baseline. Results. After adjusting for age, sex, body mass index,
smoking status, alcohol intake, low-density lipoprotein cholesterol level, strenuous activity, education level, family histories of T2DM
and tumors, and the presence of hypertension, tumor, stroke, and coronary heart disease, we showed that TG/HDL-C was positively
associated with the incidence of T2DM at the 4-year follow-up (OR = 1:49, 95%CI = 1:26 – 1:78). TG/HDL-C and incidence of
T2DM showed a nonlinear relationship; the inflection point of TG/HDL-C was 1.50. The ORs (95% CI) on the left and right sides of
the inflection point were 2.50 (1.70–3.67) and 0.96 (0.67–1.37), respectively. After adjusting for age, sex, and body mass index (BMI)
in the linear relationship, the OR of the incidence of T2DM was 1.60 (95%CI = 1:37 – 1:87). When the TG/HDL-C was less than
1.50 or greater than 1.76, the ORs (95% CI) were 2.41 (1.82–3.18) or 0.81 (0.53–1.25), respectively. Subgroup analysis showed no
relationships of T2DM incidence with sex, BMI, family history of T2DM, or TG/HDL-C. Conclusion. TG/HDL-C is positively
associated with diabetes risk. In our study, with each increasing quintile, the risk of T2DM after 4 years was 1.60 or 1.49 depending
on the variables adjusted. In addition, our cohort study showed a nonlinear relationship between TG/HDL-C and T2DM
incidence, with an inflection point of 1.76 or 1.50, depending on the variables adjusted. When the TG/HDL was less than
1.50, the ORs (95% CI) were 2.41 (1.82–3.18) and 2.50 (1.70–3.67). When the TG/HDL-C was greater than 1.76 or 1.50, there
was no significant difference in the change in OR.

1. Introduction

Approximately 463 million adults (20–79 years) were living
with diabetes in 2019, and this figure will increase to 700

million by 2045 [1]. Of these cases, 90% are type 2 diabetes
mellitus (T2DM) [2], which can lead to complications if
untreated. Acute complications include diabetic ketoacidosis,
hyperosmolar hyperglycemic state, and even death [3].
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Serious long-term complications include cardiovascular
disease, stroke, chronic kidney disease, foot ulcers, damage
to the nerves, damage to the eyes, and cognitive impairment
[4]. Given the global burden of diabetes, it is important to
understand the impact of modifiable risk factors on
prevention.

The main cause of T2DM is insulin resistance (IR), which
drives a series of metabolic processes leading to a proathero-
genic lipid profile and T2DM [5, 6]. This is characterized by
the decreased ability of insulin to stimulate muscle and adi-
pose tissues to use glucose and inhibit liver glucose produc-
tion and output [7]. The glucose clamp technique, which
was first reported by DeFronzo et al. [8], is a classic method
for assessing IR. However, it is a complex, time-consuming,
and invasive method that is not feasible for routine clinical
applications. Therefore, numerous indicators of IR have been
evaluated, among which the ratio of triglyceride to high-
density lipoprotein cholesterol levels (TG/HDL-C) was
shown to be associated with IR [9–16]. However, those stud-
ies were mainly cross-sectional and did not reveal a nonlinear
relationship between TG/HDL-C and T2DM incidence.

Therefore, the purpose of this retrospective cohort study
was to evaluate the associations of clinical parameters related
to lipid profiles with the incidence of T2DM in Chinese
participants from the Risk Evaluation of cAncers in Chinese
diabeTic Individuals: a lONgitudinal (REACTION) cohort
study. To the best of our knowledge, few studies have
assessed this nonlinear relationship among Chinese individ-
uals with different glycemic statuses.

2. Methods

2.1. Study Participants. We used data from the REACTION
cohort study, which was designed to investigate the associa-
tions of T2DM and prediabetes with the risk of cancer in a
Chinese population [17]. All permanent residents aged 40
years or older of the Jingding, Laoshan, and Gucheng com-
munities of Beijing (China) were invited to complete baseline
questionnaires and medical examinations between March
2011 and December 2011.

A total of 10,216 individuals participated in the study.
The diagnosis of T2DM was considered according to the
American Diabetes Association criteria of 2003 [18]. People
who have been diagnosed with T2DM or treated with hypo-
glycemic drugs were considered to be diabetic patients. The
exclusion criteria were as follows: participants with missing
information, participants with a history of liver cancer or
related diseases, and pregnant women. The remaining 7,791
people participated in the study, of whom 394 people were
diagnosed with T2DM in 2015 as shown in Figure 1.

2.2. Clinical Evaluation and Laboratory Measurements.
TG/HDL-C was divided into five quintiles: <20%, 20–39%,
40–59%, 60–79%, and ≥80%. The participants underwent
standardized questionnaires, body measurements, and blood
collection. Trained clinicians conducted the standardized
questionnaires assessing histories of tumors, stroke, coronary
heart disease, hypertension, and dyslipidemia; marital status;
strenuous activity; walking; education level; levels of alanine

aminotransferase, aspartate aminotransferase, creatinine,
fasting plasma glucose, and hemoglobin A1c; and family
histories of T2DM and tumors. All data were collected
according to standardized methods by the same highly
trained clinicians. Physical examination included measure-
ments of height, weight, waist circumference, hip circumfer-
ence, blood pressure, and heart rate. Height was measured
with bare feet to the nearest 0.01m. Weight was measured
in light clothes to the nearest 0.1 kg. Waist and hip circumfer-
ences were measured to the nearest 0.01m by the same staff.
Body mass index (BMI) was calculated as weight (kg)/height
(m2). After resting for at least 5min, blood pressure was mea-
sured in the seated position three times at 1min intervals
using an OMRON electronic blood pressure monitor; the
average value was used for the analysis. Smoking frequency
was divided into three categories: never or previous smoker,
occasionally (smoking less than once a week or less than 7
cigarettes weekly), and frequently (smoking one or more
cigarettes daily for at least a half year). Similarly, alcohol
intake frequency was divided into three categories: never or
previous drinker, occasionally (less than once a week), and
frequently (more than once a week for at least a half year).
Stroke, including all subtypes, was determined based on self-
report, including a history of language or physical dysfunction
and a history of ischemic or hemorrhagic stroke by imagologi-
cal diagnosis over 24 hours. Coronary heart disease events
were defined as any self-reported history of myocardial infarc-
tion, angina pectoris, or coronary revascularization.

2.3. Statistical Analysis. Normal distribution data were
expressed as themean ± standard deviation. Skewed distribu-
tion data were expressed as median (P25, P75). Categorical
variables data were expressed as frequency or percentage.
The Kolmogorov-Smirnov test was utilized for normal distri-
bution and homogeneity test for a variance. The Kruskal-
Wallis test was used in skewed distribution data to compare
the differences among multiple groups of measurement data.
The chi-square test was used for categorical variables.
Proportional hazards models were used to calculate odds
ratios (ORs) and 95% confidence intervals (95% CIs) for
T2DM according to serum TG/HDL-C. Both nonadjusted
and multivariate-adjusted models were used. Binary logistic
models were adjusted for age, sex, BMI, smoking status,
alcohol intake, low-density lipoprotein cholesterol (LDL-C),
strenuous activity, education level, family histories of
T2DM and tumors, and the presence of hypertension,
tumors, stroke, and coronary heart disease. Trend tests were
conducted using linear regression by entering the medians
for each TG/HDL-C quintile in the models as continuous
variables. A generalized additive model was used to evaluate
the nonlinear relationship between TG/HDL-C and the
incidence of T2DM. Based on the smooth curve, we further
developed a two-piecewise linear regression model to deter-
mine the threshold effect, adjusting for potential confounding
factors. The threshold level of TG/HDL-C was determined
using a recurrence method, including selecting the turning
points along predetermined intervals and selecting the turning
point that produces the maximum likelihood model. The log-
likelihood ratio test was used to compare the two-piecewise
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linear regression model with the one-line linear model. A
stratified logistic regression model was used to perform sub-
group analyses based on sex, BMI, and family history of
T2DM. The likelihood ratio test was used to test the interac-
tions among subgroups. For all statistical analyses, we used R
version 3.4.3 (The R Foundation, Vienna, Austria). A two-
way P value < 0.05 was considered significant.

3. Results

3.1. Baseline Characteristics of the Study Participants
according to Serum TG/HDL-C. Of the 7,791 participants,
394 were diagnosed with T2DM at 4 years of follow-up.
The changing tendency of blood lipids and TG/HDL-C
through 4 years between T2DM patients and non-T2DM
controls is shown in Supplementary Table 1. Table 1 lists
the baseline characteristics of all participants. The mean age
was 56:03 ± 7:82 years, and one-third (2,613, 33.54%) of the
participants were male. The mean TG/HDL-C was 1:10 ±
0:62. Participants with higher TG/HDL-C values were more
likely to be male and smokers and to have hypertension,
stroke, hyperlipidemia, lower walking frequency, and a
family history of T2DM. In addition, serum TG/HDL-C was
directly proportional to systolic and diastolic blood pressure,
BMI, waist circumference, hip circumference, presence of
fatty liver, and the levels of alanine aminotransferase,
creatinine, total cholesterol, TGs, LDL-C, fasting plasma
glucose, and hemoglobin A1c, but inversely proportional to
the HDL-C level.

3.2. Association between Serum TG/HDL-C and T2DM
Incidence. Table 2 shows the ORs and 95% CIs for developing
T2DM according to TG/HDL-C quintile. In the nonadjusted
model, the risk of T2DM increased as the TG/HDL-C
increased by 20% (P for trend <0.01). Participants whose

TG/HDL-C was between the highest and lowest quintile
had a nearly fourfold increased risk of developing T2DM
(OR = 3:71, 95%CI = 2:51 – 5:51). After adjusting for age,
sex, BMI, histories of hypertension, tumors, stroke, and coro-
nary heart disease, smoking status, alcohol intake, LDL-C,
strenuous activity, education level, and family histories of
T2DM and tumors, the ORs (95% CI) were 1.34 (0.82–2.20)
(P = 0:24), 1.55 (0.96–2.51) (P = 0:07), 2.23 (1.41–3.53)
(P < 0:01), and 2.42 (1.53–3.84) (P < 0:01) for TG/HDL-C
quintiles 2–5, respectively (P for trend <0.01).

3.3. Threshold Effect Analysis of TG/HDL-C on the Incidence
of T2DM. To evaluate whether a dose-response relationship
exists between TG/HDL-C and the incidence of T2DM, we
used a smooth function analysis. After adjusting for age,
sex, and BMI, a nonlinear relationship between TG/HDL-C
and T2DM was observed (Figure 2(a)). The risk of develop-
ing T2DM was positively correlated with TG/HDL-C until
the ratio reached 1.76 (OR = 2:41, 95%CI = 1:82 – 3:18,
P < 0:01). However, at TG/HDL − C > 1:76, the OR for
T2DMwas 0.81 (95%CI = 0:53 – 1:25), indicating that the risk
of T2DM did not increase significantly with increasing
TG/HDL-C (P = 0:35) (Table 3).

After adjusting for age, sex, body mass index, histories of
hypertension, tumors, stroke, and coronary heart disease,
smoking status, alcohol intake, LDL-C level, strenuous activ-
ity, education level, and family histories of T2DM and
tumors, a nonlinear relationship between TG/HDL-C and
T2DM incidence was observed (Figure 2(b)). The risk of
T2DMwas positively correlated with serum TG/HDL-C until
the ratio reached 1.50 (OR = 2:50, 95%CI = 1:70 – 3:67,
P < 0:01). However, when TG/HDL-C exceeded 1.50, the
OR for developing T2DM was 0.96 (95%CI = 0:67 – 1:37),
indicating that the risk of T2DM did not increase significantly
as TG/HDL-C increased (P = 0:82) (Table 4).

A total of 10,216 participants from three
Beijing communities (Jingding, Laoshan,
Gucheng) were recruited

Excluded participants:
1.1,497 with diabetes in 2011
2.43 participants with missing information 
3.885 participants with a history of liver cancer
or related diseases or being pregnant women

7,791 people participated in the study

394 people had
diabetes in 2015

7,397 people did
not have diabetes in
2015

Figure 1: Flow chart of the study participant selection process.
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Table 1: Baseline characteristics of the participants in the REACTION study according to serum TG/HDL-C.

Variable All participants
TG/HDL-C P

valueQ1 (1558) Q2 (1557) Q3 (1560) Q4 (1557) Q5 (1559)

Age (years) 56:03 ± 7:82 55:15 ± 7:88 56:22 ± 8:10 56:36 ± 7:64 56:21 ± 7:80 56:24 ± 7:60 <0:01
Male 2613 (33.54%) 419 (26.89%) 493 (31.66%) 504 (32.31%) 591 (37.96%) 606 (38.87%) <0.01
TG/HDL-C 1:10 ± 0:62 0:46 ± 0:07 0:68 ± 0:07 0:94 ± 0:08 1:31 ± 0:14 2:12 ± 0:44 <0:01

SBP (mmHg) 131:22 ± 16:24 127:98 ± 16:67 129:42 ± 15:86 131:95 ± 16:20 132:76 ± 16:02 134:02 ± 15:68 <0:01

DBP (mmHg) 75:84 ± 9:52 73:47 ± 9:13 74:74 ± 9:5 76:21 ± 9:43 76:99 ± 9:56 77:78 ± 9:35 <0:01

Heart rate 78:65 ± 11:29 77:93 ± 11:25 78:06 ± 11:26 78:72 ± 11:41 79:22 ± 11:38 79:32 ± 11:07 <0:01

Height (kg) 161:12 ± 7:76 160:52 ± 7:36 160:61 ± 7:67 160:81 ± 7:64 161:8 ± 7:98 161:87 ± 8:04 <0:01

Weight (cm) 66:96 ± 10:84 62:15 ± 9:64 65:23 ± 10:17 67:26 ± 10:29 69:60 ± 10:95 70:55 ± 10:96 0:31

BMI (kg/m2) 25:74 ± 3:41 24:09 ± 3:16 25:26 ± 3:32 25:97 ± 3:30 26:53 ± 3:30 26:86 ± 3:25 <0:01

WC (cm) 83:77 ± 17:14 78:81 ± 8:15 82:12 ± 8:47 84:44 ± 24:72 86:01 ± 8:30 87:46 ± 24:59 <0:01

HC (cm) 94:71 ± 16:07 92:06 ± 6:44 93:68 ± 6:54 95:46 ± 23:93 95:69 ± 7:04 96:66 ± 23:91 <0:01
ALT (U/L) 18.30 (14.20-24.70) 15.90 (12.80, 20.70) 17.10 (13.30, 22.60) 18.50 (14.60, 24.40) 19.50 (15.20, 27.10) 21.00 (16.30, 28.70) <0.01
AST (U/L) 19.60 (16.70-23.20) 19.50 (16.90-22.40) 19.30 (16.50-22.80) 19.80 (16.90-23.40) 19.70 (16.80-23.70) 19.80 (16.80-23.60) 0.051

Cr (mmol/L) 67:18 ± 13:97 64:77 ± 12:82 66:00 ± 13:55 67:27 ± 14:15 68:74 ± 14:58 69:13 ± 14:24 <0:01

TC (mmol/L) 5:28 ± 1:53 5:10 ± 1:44 5:23 ± 1:84 5:29 ± 0:95 5:32 ± 1:54 5:43 ± 1:71 <0:01

TG (mmol/L) 1:45 ± 0:63 0:80 ± 0:15 1:06 ± 0:19 1:32 ± 0:22 1:66 ± 0:28 2:39 ± 0:54 <0:01

HDL-C (mmol/L) 1:43 ± 0:32 1:76 ± 0:29 1:56 ± 0:26 1:41 ± 0:22 1:28 ± 0:20 1:13 ± 0:18 <0:01

LDL-C (mmol/L) 3:26 ± 0:80 2:96 ± 0:71 3:19 ± 0:78 3:34 ± 0:77 3:39 ± 0:77 3:44 ± 0:86 <0:01

FPG 5:43 ± 0:53 5:31 ± 0:49 5:41 ± 0:53 5:42 ± 0:53 5:46 ± 0:54 5:53 ± 0:56 <0:01

HbA1C (%) 5:87 ± 0:62 5:73 ± 0:52 5:83 ± 0:55 5:86 ± 0:57 5:90 ± 0:63 6:02 ± 0:77 <0:01
Hypertension 2167 (27.82%) 307 (19.72%) 401 (25.75%) 432 (27.69%) 494 (31.73%) 533 (34.19%) <0.01
Tumor 156 (2.00%) 22 (1.41%) 34 (2.18%) 34 (2.18%) 26 (1.67%) 40 (2.57%) 0.15

Stroke 189 (2.43%) 23 (1.48%) 34 (2.18%) 43 (2.76%) 39 (2.50%) 50 (3.21%) 0.03

CHD 474 (6.08%) 82 (5.27%) 91 (5.84%) 94 (6.03%) 97 (6.23%) 110 (7.06%) 0.33

Hyperlipidemia 1067 (13.70%) 107 (6.87%) 152 (9.76%) 204 (13.08%) 234 (15.03%) 370 (23.73%) <0.01
Marital status 0.67

Married 7316 (93.92%) 1445 (92.81%) 1465 (94.09%) 1469 (94.17%) 1455 (93.45%) 1482 (95.06%)

Unmarried 29 (0.37%) 5 (0.32%) 6 (0.39%) 6 (0.38%) 6 (0.39%) 6 (0.38%)

Widowed 262 (3.36%) 65 (4.17%) 48 (3.08%) 53 (3.40%) 54 (3.47%) 42 (2.69%)

Divorced 179 (2.30%) 40 (2.57%) 38 (2.44%) 31 (1.99%) 41 (2.63%) 29 (1.86%)

Else 4 (0.05%) 2 (0.13%) 0 (0.00%) 1 (0.06%) 1 (0.06%) 0 (0.00%)

Education level 0.048

Illiteracy 77 (0.99%) 17 (1.09%) 17 (1.09%) 12 (0.77%) 16 (1.03%) 15 (0.96%)

Primary school 370 (4.75%) 68 (4.37%) 94 (6.05%) 79 (5.07%) 72 (4.63%) 57 (3.66%)

Junior high
school

2547 (32.73%) 456 (29.31%) 496 (31.90%) 535 (34.32%) 525 (33.74%) 535 (34.36%)

High school
or technical
secondary
school

3460 (44.46%) 729 (46.85%) 687 (44.18%) 682 (43.75%) 689 (44.28%) 673 (43.22%)

College or
above

1329 (17.08%) 286 (18.38%) 261 (16.78%) 251 (16.10%) 254 (16.32%) 277 (17.79%)

Smoking (%) <0.01
Never 6370 (81.88%) 1358 (87.22%) 1291 (83.18%) 1293 (83.04%) 1226 (78.79%) 1202 (77.15%)

Occasionally 169 (2.17%) 27 (1.73%) 32 (2.06%) 33 (2.12%) 40 (2.57%) 37 (2.37%)

Frequently 1241 (15.95%) 172 (11.05%) 229 (14.76%) 231 (14.84%) 290 (18.64%) 319 (20.47%)

Alcohol intake 0.78

Never 5515 (70.85%) 1120 (71.89%) 1095 (70.46%) 1129 (72.37%) 1083 (69.65%) 1088 (69.88%)

Occasionally 1470 (18.88%) 285 (18.29%) 302 (19.43%) 277 (17.76%) 304 (19.55%) 302 (19.40%)

Frequently 799 (10.26%) 153 (9.82%) 157 (10.10%) 154 (9.87%) 168 (10.80%) 167 (10.73%)
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3.4. Subgroup Analyses. To explore whether the correlation
between TG/HDL-C and T2DM incidence exists among dif-
ferent subgroups, we conducted stratified analyses and inter-
active analyses (Table 5). The data showed that age played an

important role in the association between TG/HDL-C and
incidence of T2DM (P for interaction <0.01). The associa-
tions in the top four quintiles of TG/HDL-C were stronger
for participants aged <60 years (quintile 2, 1.67 (0.91–0.67);

Table 1: Continued.

Variable All participants
TG/HDL-C P

valueQ1 (1558) Q2 (1557) Q3 (1560) Q4 (1557) Q5 (1559)

Strenuous activity 0.24

Yes 222 (2.86%) 51 (3.28%) 32 (2.07%) 47 (3.02%) 50 (3.22%) 42 (2.70%)

No 7543 (97.14%) 1502 (96.72%) 1517 (97.93%) 1510 (96.98%) 1502 (96.78%) 1512 (97.30%)

Walking <0.01
Yes 6742 (86.80%) 1369 (88.15%) 1376 (88.83%) 1336 (85.81%) 1349 (86.92%) 1312 (84.32%)

No 1025 (13.20%) 184 (11.85%) 173 (11.17%) 221 (14.19%) 203 (13.08%) 244 (15.68%)

Family history
of T2DM

1916 (24.61%) 363 (23.30%) 381 (24.49%) 373 (23.96%) 374 (24.04%) 425 (27.28%) 0.09

Family history
of tumors

1655 (21.26%) 340 (21.82%) 319 (20.50%) 325 (20.87%) 340 (21.85%) 331 (21.25%) 0.86

TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index; WC: waist
circumference; HC: hip circumference; ALT: alanine aminotransferase; AST: aspartate aminotransferase; Cr: creatinine; TC: total cholesterol; TG: triglyceride;
HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; FPG: fasting plasma glucose; HbA1c: hemoglobin A1c; CHD:
coronary heart disease.

Table 2: Association between serum TG/HDL-C and the incidence of T2DM in the REACTION study.

Crude Model I Model II

TG/HDL-C 1.78 (1.53–2.06) <0.01 1.60 (1.37–1.87) <0.01 1.49 (1.26–1.78) <0.01
TG/HDL-C quintile

Q1 1 1 1

Q2 1.53 (0.98–2.39) 0.06 1.36 (0.87–2.13) 0.17 1.34 (0.82–2.20) 0.24

Q3 1.98 (1.29–3.03) <0.01 1.66 (1.08–2.55) 0.02 1.55 (0.96–2.51) 0.07

Q4 2.94 (1.96–4.39) <0.01 2.32 (1.53–3.50) <0.01 2.23 (1.41–3.53) <0.01
Q5 3.71 (2.51–5.51) <0.01 2.88 (1.92–4.31) <0.01 2.42 (1.53–3.84) <0.01

P for trend <0.01 <0.01 <0.01
Data are ORs (95%CI). Model I was adjusted for age, sex, and bodymass index. Model II was adjusted for the variables in model I plus histories of hypertension,
tumors, stroke, and coronary heart disease, smoking status, alcohol intake, low-density lipoprotein cholesterol level, strenuous activity, education level, and
family histories of T2DM and tumors.
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Figure 2: (a) Threshold effect analysis of TG/HDL-C on the incidence of T2DM in the REACTION study. Notes: adjusted for age, sex, and
body mass index. (b) Threshold effect analysis of TG/HDL-C on the incidence of T2DM in the REACTION study. Notes: adjusted for age, sex,
body mass index, histories of hypertension, tumor, stroke, and coronary heart disease, smoking status, alcohol intake, low-density lipoprotein
cholesterol level, strenuous activity, education level, and family histories of T2DM and tumors.
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quintile 3, 2.59 (1.47–4.56); quintile 4, 3.28 (1.88–5.70); and
quintile 5, 4.50 (2.61–7.75) vs. quartile 1, 1.00; P for trend
<0.01). No significant associations were observed among
the other subgroups.

4. Discussion

In this cohort study, TG/HDL-C was shown to be associated
with an elevated risk of T2DM, independent of age, sex, body
mass index, histories of hypertension, tumor, stroke, and cor-
onary heart disease, smoking status, alcohol intake, LDL-C,
strenuous activity, education level, and family histories of
T2DM and tumors. We showed a nonlinear relationship
between serum TG/HDL-C and risk of T2DM; in that, the
risk of T2DM after 4 years increased significantly with an
increase in TG/HDL-C when the ratio was less than 1.76 or
1.50, depending on the variables adjusted.

The diagnosis of IR is based on simultaneous measure-
ments of glucose and insulin. The classic method for IR mea-
surement is the metabolic euglycemic clamp, but this method
is laborious and expensive and thus is used mainly for
research purposes. IR affects the metabolism of TGs, HDL-C,
and LDL-C [6]. High TG and low HDL-C levels are associated
with IR and T2DM [19], but TG and HDL-C levels alone are
weaker risk factors compared with the TG/HDL-C [9, 20].
McLaughlin et al. [21] were the first to demonstrate the clinical
utility of TG/HDL-C for identifying healthy Caucasians with
IR, including 258 healthy nondiabetic individuals. The results
showed that TG/HDL-C was closely related to specific indica-
tors of insulin-mediated glucose disposal and the fasting
plasma insulin concentration. This ratio has been widely used
to assess the associations between IR and various clinical syn-

dromes. Most previous studies on the relationship between
TG/HDL-C and the incidence of T2DM reported a positive
association [10, 16, 22], and similar results can be found for
type 1 diabetes mellitus [23]. Our findings on TG/HDL-C are
consistent with those studies. As shown in Table 2, the inci-
dence of T2DM increased with increasing TG/HDL-C. In the
lowest TG/HDL-C quintile, the OR (95% CI) for developing
T2DM after 4 years of follow-up was 2.88 (1.92–4.31) or 2.42
(1.53–3.84) depending on the variables adjusted. Previous stud-
ies have also explored the relationship between TG/HDL-C
and the incidence of T2DM. Cheng et al. [24] also showed a
nonlinear relationship between TG/HDL-C and the overall risk
of T2DM (P < 0:01). The risk of T2DM continued to increase
with increasing TG/HDL-C, with a gradual increase as
TG/HDL-C exceeded 2.5 in males. Our study showed that
when TG/HDL was <1.76 or <1.50, depending on the variables
adjusted, the OR (95% CI) was 2.41 (1.82–3.18) or 2.50 (1.70–
3.67), respectively. When TG/HDL was >1.76 or >1.50, there
was no statistical difference in the change in OR.

Lipid and glucose metabolism is affected by many factors.
We analyzed whether there were differences in the relation-
ship according to different subgroups. The associations
between TG/HDL-C and risk of T2DM were significant only
with age < 60 years, which was similar with the result of
Zhang et al. [11]. As compared with young people, the anab-
olism of older people is significantly lower [25]. Pramfalk
et al. [26] reported that despite no significant sex difference
in the plasma total cholesterol (TC) level, men had signifi-
cantly higher fasting plasma TG levels, while women had
lower plasma LDL-C and higher HDL-C. However, the P
value for interaction was 0.53 in our subgroup analysis, and
there was no effect of sex on TG/HDL-C or T2DM incidence,
suggesting that the association between TG/HDL-C and
T2DM incidence after 4 years is similar between the sexes.
The effect of sex on blood lipid metabolism is still controver-
sial, and we will further explore the influence of gender on
the relationship between TG/HDL-C and the incidence of
diabetes in the next follow-up study. Iwani et al. [27] showed
that TG/HDL-C is significantly associated with IR. TG/HDL-
C is an inexpensive predictor of IR and may be a useful tool
to identify high-risk individuals for early intervention,
thereby preventing or delaying the development of IR-
associated diseases such as T2DM. The interaction of this
study showed that in people with BMI less than 25 kg/m2

and BMI greater than 25 kg/m2, the incidence of T2DM
increased as the TG/HDL-Co increased. This indicated that
at different BMIs, the ability of TG/HDL-C to predict the
incidence of diabetes is the same. As they share genetic and
environmental factors with T2DM patients, the first-degree
relatives of T2DM patients show early signs of metabolic
abnormalities [28]. In our model, there was no interaction
between family history of T2DM and TG/HDL-C; that is,
the relationship between T2DM incidence and TG/HDL-C
was independent of a family history of T2DM. We have only
been followed up for 4 years, and the incidence of T2DM is
only 5%. So it may lead to the influence of the family history
of diabetes on the incidence of T2DM. We will continue to
analyze the impact of family history of T2DM on the inci-
dence of diabetes after the next follow-up.

Table 3: Threshold effect analysis of TG/HDL-C on the incidence
of type 2 diabetes mellitus in the REACTION study.

Outcomes OR (95% CI) P value

One-line linear regression model 1.60 (1.37–1.87) <0.01
Two-piecewise linear regression model

<1.76 2.41 (1.82–3.18) <0.01
>1.76 0.81 (0.53–1.25) 0.35

Log-likelihood ratio test <0.01
Adjusted for age, sex, and body mass index.

Table 4: Threshold effect analysis of TG/HDL-C on the incidence
of type 2 diabetes mellitus in the REACTION study.

Outcome OR (95% CI) P value

One-line linear regression model 1.49 (1.26–1.78) <0.01
Two-piecewise linear regression model

<1.50 2.50 (1.70–3.67) <0.01
>1.50 0.96 (0.67–1.37) 0.82

Log-likelihood ratio test <0.01
Adjusted for age, sex, body mass index, histories of hypertension, tumor,
stroke, and coronary heart disease, smoking status, alcohol intake, low-
density lipoprotein cholesterol level, strenuous activity, education level,
and family histories of T2DM and tumors.
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5. Limitations

There are potential limitations of this study to note. First,
T2DM is associated with region and ethnicity. As this cohort
study was conducted in Beijing, our findings may not be
applicable to other regions, ethnicities, or special groups such
as children and pregnant women. Second, the presence of
T2DM was reported only at the 4-year follow-up, while the
specific date of diagnosis was not recorded; thus, we could
only perform logistic regression, which is weaker than Cox
regression. The date of T2DM diagnosis during the next
follow-up needs to be determined to obtain more informa-
tion for analysis.

6. Conclusions

TG/HDL-C was positively associated with diabetes risk. In
our study, for every increase in TG/HDL-C quintile, the risk
of T2DM after 4 years was 1.60 or 1.49 depending on the var-
iables adjusted. In addition, a nonlinear relationship between
TG/HDL-C and T2DM incidence was found in our cohort
study. The inflection point of TG/HDL-C was 1.76 or 1.50,
depending on the variables adjusted. When the TG/HDL-C
was less than 1.76 or 1.50, the ORs (95% CI) were 2.41
(1.82–3.18) and 2.50 (1.70–3.67), respectively. When the
TG/HDL-C was greater than 1.76 or 1.50, there was no statis-
tical difference in the change in OR.

Data Availability

The data and analytical methods of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

All authors declare that there is no conflict of interest associ-
ated with this research.

Authors’ Contributions

Hongzhou Liu and Shuangtong Yan were responsible for
data curation. Zhaohui Lyu and Junping Wen were responsi-
ble for funding acquisition and supervision. Hongzhou Liu,
Shuangtong Yan, Gang Chen, Bing Li, and Ling Zhao con-
tributed in writing the original draft. YajingWang, Xiaodong
Hu, Xiaomeng Jia, Jingtao Dou, and Yiming Mu contributed
in writing, review, and editing. Hongzhou Liu and Shuang-
tong Yan contributed equally to the study.

Acknowledgments

This work was supported by the National Key R&D Program
of China (2018YFC1314100). We thank the Department of
Endocrinology, The First Medical Center, Chinese PLA
General Hospital, for providing the space and resources for
this study.

Table 5: Subgroup analyses of the association between TG/HDL-C and incidence of type 2 diabetes mellitus in the REACTION study.

Confounding factor
Serum TG/HDL-C quintile P for

trend
P for

interactionQ1 Q2 Q3 Q4 Q5

Age 0.01

<60 years 1
1.67 (0.91, 3.07)

0.10
2.59 (1.47, 4.56)

<0.01
3.28 (1.88, 5.70)

<0.01
4.50 (2.61, 7.75)

<0.01 <0.01

>60 years 1
0.96 (0.48, 1.92)

0.90
0.74 (0.36, 1.54)

0.43
1.30 (0.67, 2.54)

0.44
1.08 (0.55, 2.12) 0.82 0.50

Sex 0.53

Male 1
1.51 (0.69–3.31)

0.30
1.48 (0.68–3.22)

0.33
1.65 (0.78–3.50)

0.19
2.19 (1.05–4.57) 0.04 0.03

Female 1
1.21 (0.69–2.11)

0.50
1.75 (1.04–2.96)

0.03
2.61 (1.58–4.31)

<0.01
2.97 (1.81–4.88)

<0.01 <0.01

BMI 0.83

<25 1
1.43 (0.73–2.79)

0.30
1.85 (0.95–3.60)

0.07
2.39 (1.22–4.67)

0.01
3.71 (1.97–6.99)

<0.01 <0.01

≥25 1
1.26 (0.68–2.35)

0.46
1.55 (0.86–2.79)

0.14
2.19 (1.25–3.83)

0.01
2.40 (1.38–4.18)

<0.01 <0.01

Family history of
T2DM

0.20

Yes 1
1.09 (0.50–2.34)

0.8309
1.76 (0.87–3.6)

0.1155
2.79 (1.42–5.47)

0.0029
2.18 (1.09–4.34)

0.0267
0.01

No 1
1.55 (0.88–2.73)

0.1281
1.69 (0.97–2.93)

0.0639
2.18 (1.28–3.72)

0.0041
3.31 (1.98–5.55)

<0.0001 <0.01

Adjusted for age, sex, body mass index, histories of hypertension, tumors, stroke, and coronary heart disease, smoking status, alcohol intake, low-density
lipoprotein cholesterol level, strenuous activity, education level, and family histories of T2DM and tumors.
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Supplementary Materials

During the 4 years, the level of blood lipid and TG/HDL-C
changed significantly (P < 0:05). (Supplementary Table 1)
We are all grouped according to the data of the first time.
(Supplementary Materials)
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