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The presence of robotics and its application is becoming
widespread. It is a reality that in the past few years robots
have been revolutionizing themanufacturing and production
as indicated by the International Federation of Robotics
(IFR) in World Robotics Statistics. But also, robots are being
successfully used in other fields, outside industry. Therefore,
service robots are conquering various areas such as the
domestic environment, transport, agriculture, security, edu-
cation, medical and health care, and personal or professional
assistance, among others. In these contexts, the sensing
techniques are essential to enable robots to perform tasks
autonomously. The sensorial perception from visual/tactile
sensors is vital to develop autonomous robots with abilities
for specific applications. On the one hand, visual sensors are
widely used in mobile robots for mapping and exploration
by land, sea, or air. But also, visual sensors are useful to
recognize and locate objects in an environment. On the other
hand, tactile sensors provide data for intelligent manipu-
lation of located objects and to add semantic information
such as hardness, flexibility, elasticity, roughness, or shape.
Consequently, both sensors working together or separately
allow researchers to implement new approaches, methods,
and algorithms to achieve a robust sensing of dynamic and
complex environments, improving the robot’s abilities for
specific applications in which there is interaction between a
robot and its surrounding area.

This special issue consists of eight articles on various
topics about robotics perception from six countries: China,
Croatia, Germany, Korea, Mexico, and Spain. The aim of
this special issue is an attempt to gather and cover recent

advances in robotic perception. In particular, the editors wish
to explore the challenges and solutions to improve robot
perception in both indoor and outdoor environments.

The location and navigation problem has traditionally
been addressed for land mobile robots in indoors and more
recently for robots and autonomous vehicles in outdoors. In
this line of work, the paper by J. Duque et al. presents a
new indoor positioning system based on the combination
of data obtained from a Wi-Fi signal and RGB-D images
acquired from cameras based on Time of Flight technology
to estimate people location in indoor environments. The
proposed system is able to detect more than one person in
the same room using a nonintrusive method and low cost
and easy installation technology. Besides, the paper by L.
Fernández et al. presents a comparison among five known
image descriptors such as SURF with Harris corner detector,
HOG,DFT, Fourier signature, and gist-Gabor descriptor.The
authors assess these descriptors using spherical panorama
images obtained from the services of Google Street View.
The goal is to use the proposed descriptors to build outdoor
visual maps from Google images which are applied to both
autonomous navigation and localization processes of mobile
robots. The descriptors goodness to achieve that goal is
measured using the relationship between precision and recall
for each descriptor as well as the computational cost.

Recently, the research which proposes solutions for navi-
gation problems has been applied to other contexts, resulting
in marine robots and underwater vehicles. In this field, F.
Mandic et al. propose a method for navigation by tracking
an underwater target with a robot marine named BUDDY
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AUV which uses data fusion between USBL measurements
and sonar images in real scenarios. The proposed algorithm
obtains precise and reliable underwater object tracking at
steady rate, even in cases when either sonar or USBL
measurements are faulty or are not available. Moreover, the
paper by R. Pérez-Alcocer et al. addresses the underwater
navigation problem in poor visibility conditions. The under-
water image tends to be blurred and/or colour depleted. The
authors have developed a visual system based on l𝛼𝛽 space
colour for detection of artificial landmarks underwater in
poor visibility conditions without requiring the adjustment
of parameters when marine environmental conditions are
changed. This visual system has been integrated in a nav-
igation control system. Furthermore, in the same line as
these aforementioned works, A. Maldonado-Ramı́rez and
L. A. Torres-Méndez present a method of detection and
tracking of visual targets which can be relevant for ocean
bed exploration. Authors have demonstrated the method’s
effectiveness with experiments applied to explorations of
natural underwater structures like coral reefs carried out by
a marine robot guided by visual features but with no human
intervention.

Service robots tend to be autonomous robots with intel-
ligence to perform behaviours in the real world. Probabilistic
methods and algorithms are a growing area in the field of
robotics. Accordingly, probabilistic robotics is widely used
to estimate the robot pose and location as well as planning
and controlling their trajectory andmovements. Probabilistic
robotics uses statistics and mathematical tools of artificial
intelligence such as Bayes/Kalman/Particle filters as well as
other Markov and Monte Carlo techniques. In this way, the
paper by C. Rink et al. is focused onMonte Carlo registration
methods. They present techniques for object modelling and
pose estimations for furthermanipulation by a robot. Authors
show various experiments with depth images acquired from
Time-of-Flight camera and laser striper in real-time.

J.-H. Kim et al. show a detection method based on visual
feature selection for autonomous firefighting robot. In that
work, authors use FLIR cameras to classify fire, smoke, and
both thermal reflections in indoor fire environments where
there is dense smoke with bad visibility. The cameras were
mounted in SAFFiR robot to extract motion information
and texture features. Additionally, a Bayesian classification is
carried out to probabilistically identify multiple instances of
each target in real-time.

Robotic applications as intelligent manipulation often
require not only sense of sight but also sense of touch. In
these cases, the robots mount grippers and hands at the
effector which is equipped with a tactile sensing system.
Design, performance, and fabrication of tactile systems are
usually based on a conductive material and/or a circuit of
networked resistive sensor arrays. The wire features and the
connections among electronic components cause problems
such as crosstalk. J. Wu and L. Wang’s paper introduces the
design of a new S-NSDE-EP circuit using two wires for every
driving-electrode and every sampling-electrode to reduce the
crosstalk caused by the connected cables in the 2D networked
resistive sensor array.
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A comparative analysis between several methods to describe outdoor panoramic images is presented.Themain objective consists in
studying the performance of thesemethods in the localization process of amobile robot (vehicle) in an outdoor environment, when
a visual map that contains images acquired from different positions of the environment is available. With this aim, we make use
of the database provided by Google Street View, which contains spherical panoramic images captured in urban environments and
their GPS position.Themain benefit of using these images resides in the fact that it permits testing any novel localization algorithm
in countless outdoor environments anywhere in the world and under realistic capture conditions. The main contribution of this
work consists in performing a comparative evaluation of different methods to describe images to solve the localization problem
in an outdoor dense map using only visual information. We have tested our algorithms using several sets of panoramic images
captured in different outdoor environments. The results obtained in the work can be useful to select an appropriate description
method for visual navigation tasks in outdoor environments using the Google Street View database and taking into consideration
both the accuracy in localization and the computational efficiency of the algorithm.

1. Introduction

Designing vehicles capable of navigating autonomously, in
a previously unknown environment and with no human
intervention, is a fundamental objective in mobile robotics.
To achieve this objective, the vehicle must be able to build
a model (or map) of the environment and to estimate its
position within this model. A great variety of localization
approaches can be found in the literature. In general, the
position and orientation of the robot can be obtained from
proprioceptive (odometer) or exteroceptive (laser, camera, or
sonar) sensors, as presented in the works of Thrun et al. [1]
and Gil et al. [2].

With the exteroceptive approach, the use of computer
vision to create a representation of the environment is very
extended due to the good relationship quantity of infor-
mation/cost that the cameras offer. The research developed
during the last years in the topic of map creation using
visual information is enormous, and new algorithms are
presented continuously. Usually, one of the key points of these

algorithms is the description of the visual information to
extract relevant information which is useful for the robot to
estimate its position and orientation. In general, the problem
can be approached from two points of view: local features
extraction and global-appearance approaches. In the first one,
a number of landmarks (distinctive points or regions) are
extracted from each scene and each landmark is described to
obtain a descriptor which is invariant against changes in the
robot position and orientation. Murillo et al. [3] presented
an algorithm that made use of the SURF (Speeded Up Robust
Features) descriptionmethod [4] to improve the performance
of appearance-based localization methods using omnidirec-
tional images in large data sets. On the other hand, global-
appearance approaches consist in representing each scene
by a single descriptor which is computed working with the
scene as a whole, with no local feature extraction. This
approach has recently become popular and some examples
can be found. Rossi et al. [5] present a metric to compute
the image similarity using the Fourier Transform of spherical
omnidirectional images in order to carry out the localization
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of a mobile robot. Payá et al. [6] present a framework to
carry out multirobot route following using an appearance-
based approach with omnidirectional images to represent
the environment and a probabilistic method to estimate the
localization of the robot. Finally, Fernández et al. [7] deal with
the problemof robot localization using the visual information
provided by a single omnidirectional cameramounted on the
robot, using techniques based on the global appearance of
panoramic images and a Monte Carlo Localization (MCL)
algorithm [8].

The availability of spherical images that represent outdoor
environments is nowadays almost unlimited, thanks to the
services of Google Street View. Furthermore, these images
provide a complete 360-degree view of the scenery in the
ground plane and 180-degree view vertically. Thanks to this
great amount of information, these images can be used to
carry out autonomous navigation tasks robustly. Using a set
of these previously available spherical images as a dense
visual map of an environment, it is possible to develop an
autonomous localization and navigation system employing
the images captured by a mobile robot or vehicle and
comparing themwith themap information in order to resolve
the localization problem.This way, in this paper, we consider
the use of the images provided by Google Street View as
a visual map of the environment in which a mobile robot
must be localized using the image acquired from an unknown
position.

The literature regarding the navigation problem using
Google Street View information is somewhat sparse but
growing in recent years. For example, Gamallo et al. [9] pro-
posed the combination of a low cost GPS with a particle filter
to implement a vision based localization system that com-
pares traversable regions detected by a camera with regions
previously labeled in a map (composed of Google Maps
images).Themain contribution of this work is that a synthetic
image of what the robot should see from the predicted
position is generated and compared with the real observation
to calculate the weight of each particle. Torii et al. [10] tried to
predict the GPS location of a query image given the Google
Street View database.This work presents a design of a match-
ing procedure that considers linear combinations of bag-of-
feature vectors of database images. With respect to indoor
pose estimation, Aly and Bouguet [11] present an algorithm
that takes as input spherical Google Street View images and as
output their relative pose up to a global scale. Finally, Taneja
et al. [12] proposed a method to refine the calibration of the
Google Street View images leveraging cadastral 3D informa-
tion.

The localization of the vehicle/robot can be formulated
as the problem of matching the currently captured image
with the images previously stored in the dense map (images
in the database). Nowadays, a great variety of detection and
description methods have been proposed in the context of
visual navigation but, in our opinion, there exists no consen-
sus on this matter when we use outdoor images.

Amorós et al. [13] carried out a review and comparison
of different global-appearance methods to create descriptors
of panoramic scenes in order to extract the most relevant
information. The authors of this work developed a set of

experiments with panoramic images captured in indoor envi-
ronments to demonstrate the applicability of some appear-
ance descriptors to robotic navigation tasks and to measure
their quality in position and orientation estimation.However,
as far as outdoor scenarios are concerned, there is no revision
of methods that offer good results. This situation, combined
with the fact that using Google Street View images has barely
been tested in autonomous navigation systems, hasmotivated
the work presented here. Following this philosophy, we made
a comparison between different descriptors of panoramic
images but, in this case, we used Google Street View images
captured in outdoor environments.This is amore challenging
problem due to several features: the openness of the images
(i.e., the degree of dominance of some structures such as
the sky and the road which do not add distinctiveness to
the image), their changing lighting conditions, and the large
geometrical distance between the points where the images
were captured.

Taking these features into account, we consider that it is
worth carrying out a comparative evaluation of the perfor-
mance of different image descriptors under real conditions of
autonomous outdoor localization, since it would be a nec-
essary step prior to the implementation of a visual nav-
igation framework. In this paper, we evaluate two differ-
ent approaches: approaches based on local features and
approaches based on global appearance. In both cases we test
the performance of the descriptor depending on the main
parameters that configure it and we make a graphical repre-
sentation of the precision of eachmethod versus the recall [14].

When a robot has to navigate autonomously outdoors,
very often a rough estimation of the area where the robot
moves is available, and the robot must be able to estimate its
position in this wide zone. This work focus on this task; we
assume the zone where the robot navigates is approximately
known and it must estimate its position more accurately in
this area. With this aim, two different wide areas have been
chosen to evaluate the performance of the localization algo-
rithms, and a set of images per area has been obtained from
the Google Street View database.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the description methods evaluated in this
work. In Section 3, the experimental setup and the databases
we have used are described. Section 4 describes the method
we have followed to evaluate the descriptors in a localization
process. Section 5 presents the experimental results. Finally,
in Section 6, we outline the conclusions and the future works.

2. Image Descriptors

In this section, we present five different image descriptors that
are suitable to build a compact description of the appearance
of each scene [13–15].One of themethods, previously denoted
as a feature-based approach, consists in representing the
image as a set of landmarks extracted from the scene along
with the description of such landmarks.Themethod selected
for this landmarks description is SURF (Speeded Up Robust
Features).Theothermethods chosen to carry out the compar-
ative analysis are the following appearance-based methods:
the two-dimensional Discrete Fourier Transform (DFT), the
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Fourier Signature (FS), gist, and the Histogram of Oriented
Gradients (HOG). Each method uses a different mechanism
to express the global information of the scene. First, DFT
and FS are based on the analysis in the frequency domain
in two dimensions and one dimension, respectively. Second,
the approach of gist we use is built from edges information,
obtained through Gabor filtering and analyzed in several
scales. Finally, HOG gathers systematic information from the
orientation of the gradient in local areas of the image. The
choice of these description methods will permit analyzing
the influence of each kind of information in the localization
process.

The initial objective of this study was to compare some
global-appearance methods. However, we have decided to
include in this comparative evaluation a local features descri-
ption method to make a more complete study. With this aim,
we have chosen SURF due to its relatively low computa-
tional cost comparing with other classical feature-based
approaches.

The next subsections present briefly the description
methods included in the comparative evaluation.

2.1. SURF and Harris Corner Detector. The Speeded Up
Robust Features (SURF) were introduced by Bay et al. [4].
This study showed that SURF outperform existing methods
with respect to repeatability, robustness, and distinctiveness
of the descriptors.The detectionmethod uses integral images
to reduce the computational time and is based on the Hessian
matrix. On the other hand, the descriptor represents a
distribution of Haar-wavelet responses within the interest
point neighborhood and makes an efficient use of integral
images. In this work we only include the standard SURF
descriptor, which has a dimension of 64 components per
landmark, but there are two more versions: the extended
version (E-SURF) with 128 elements and the upright version
(U-SURF), that is not invariant to rotation and has a length
of 64 elements. On the other hand, we perform the detection
of the features using the Harris corner detector (based on the
eigenvalues of the second moment matrix [16]) because our
experiments showed that this method extracted most robust
points in outdoor images comparing to the SURF extraction
method.

This way themethod we use in this work is a combination
of these two algorithms. More specifically, the Harris corner
detector is used to extract the features from the image, and the
standard SURFdescriptor is used to characterize anddescribe
each one of the landmarks previously detected.

2.2. Two-Dimensional Discrete Fourier Transform. From an
image𝑓(𝑥, 𝑦)with𝑁𝑥 rows and𝑁𝑦 columns, the 2DDiscrete
Fourier Transform (DFT) can be defined as follows:𝐹 [𝑓 (𝑥, 𝑦)] = 𝐹 (𝑢, V)

= 1𝑁𝑦𝑁𝑥 𝑁𝑥−1∑𝑥=0
𝑁𝑦−1∑
𝑦=0

𝑓 (𝑥, 𝑦) ⋅ 𝑒−2𝜋𝑗(𝑢𝑥/𝑁𝑥+V𝑦/𝑁𝑦),
𝑢 = 0, . . . , 𝑁𝑥 − 1, V = 0, . . . , 𝑁𝑦 − 1,

(1)

where (𝑢, V) are the frequency variables and the transformed
function 𝐹(𝑢, V) is a complex function which can be decom-
posed into a magnitudes matrix and an arguments matrix.
This transformation presents some interesting properties
which are helpful in robot localization tasks. First, the most
relevant information in the Fourier domain concentrates in
the low frequency components, so it is possible to reduce
the amount of memory and to optimize the computational
cost by retaining only the first 𝑘𝑥 rows and 𝑘𝑦 columns in
the transform. Second, when 𝑓(𝑥, 𝑦) is a panoramic scene, a
translation in the rows and/or columns of the original image
produces a change only in the arguments matrix [15]. This
way, the magnitudes matrix contains information which is
invariant to rotations of the robot in the groundplane, and the
arguments matrix contains information that can be useful to
estimate the orientation of the robot in this plane with respect
to a reference image (using the DFT shift theorem).

Taking these facts into account, the global description of
the image 𝑓(𝑥, 𝑦) consists of the magnitudes matrix 𝐴(𝑢, V)
and the arguments matrix Φ(𝑢, V) of its two-dimensional
DFT. The dimensions of both matrices are 𝑘𝑥 < 𝑁𝑥 rows
and 𝑘𝑦 < 𝑁𝑦 columns. On the one hand, 𝐴(𝑢, V) is useful to
estimate the robot position and, on the other hand, the infor-
mation in Φ(𝑢, V) can be used to estimate the robot orienta-
tion.

2.3. Fourier Signature. The third image description method
used in this comparative analysis is the Fourier Signature
(FS), described initially by Menegatti et al. [17]. From an
image 𝑓(𝑥, 𝑦) with𝑁𝑥 rows and𝑁𝑦 columns, the FS consists
in obtaining the one-dimensional DFT of each row. This
method presents some advantages, such as its simplicity, its
low computational cost, and the fact that it exploits better the
invariance against rotations of the robot in the ground plane
when we work with panoramic views.

More specifically, the process to compute the FS consists
in transforming each row 𝑥 of the original panoramic image{𝑓𝑥} = {𝑓𝑥,0, 𝑓𝑥,1, . . . , 𝑓𝑥,𝑁𝑦−1}, 𝑥 = 0, . . . , 𝑁𝑥 − 1, into the
sequence of complex numbers {𝐹𝑥} = {𝐹𝑥,0, 𝐹𝑥,1, . . . , 𝐹𝑥,𝑁𝑦−1},𝑥 = 0, . . . , 𝑁𝑥 − 1, according to the 1D-DFT expression:

𝐹𝑥,𝑘 = 𝑁𝑦−1∑
𝑛=0

𝑓𝑥,𝑛 ⋅ 𝑒−𝑗(2𝜋/𝑁𝑦)𝑘𝑛,
𝑘 = 0, . . . , 𝑁𝑦 − 1, 𝑥 = 0, . . . , 𝑁𝑥 − 1. (2)

The result is a complex matrix 𝐹(𝑥, V), where V is a fre-
quency variable, which can be decomposed into amagnitudes
matrix and an arguments matrix.

Thanks to the 1D-DFT properties it is possible to repre-
sent each row of 𝐹(𝑥, V) with the first coefficients since the
most relevant information is concentrated in the low fre-
quency components of each row in the descriptor, so it is
possible to reduce the amount of memory by retaining only𝑘𝑦 first columns in signature 𝐹(𝑥, V). Also, when 𝑓(𝑥, 𝑦) is
a panoramic scene, the modules matrix is invariant against
robot rotations in the ground plane and the magnitudes
matrix permits estimating the change in the robot orientation
using the DFT shift theorem [15, 17, 18].
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Taking these facts into account, the global description of
the image 𝑓(𝑥, 𝑦) consists of the magnitudes matrix 𝐴(𝑥, V)
and the arguments matrix Φ(𝑥, V) of the Fourier Signature.
The dimensions of both matrices are 𝑁𝑥 rows and 𝑘𝑦 < 𝑁𝑦
columns. First, the position of the robot can be estimated
using the information in 𝐴(𝑥, V), since it is invariant to
changes in robot orientation and second Φ(𝑥, V) can be used
to estimate the robot orientation.

2.4. Gist. Theconcept of the gist of an image can be defined as
an abstract representation that activates the memory of scene
categories [19].The gist-based descriptors try to represent the
image by obtaining its essential information simulating the
human perception system and its ability to recognize a scene
through the identification of color saliency or remarkable
structures. Torralba [20] presents a model to obtain global
scene features, working in several spatial frequencies and
using different scales based onGabor filtering.They use these
features in a scene recognition and classification task. In
previous works [13] we employed a gist-Gabor descriptor in
order to obtain frequency and orientation information. Due
to the good results obtained in indoor environments when
themobile robot presents 3 DOF (degrees of freedom)move-
ments on the ground plane, the fourth method employed in
the comparative analysis presented in this paper is the gist
descriptor of panoramic images.

The method starts with two versions of the initial
panoramic image 𝑓(𝑥, 𝑦): the original one, with𝑁𝑥 rows and𝑁𝑦 columns, and a new version after applying a Gaussian
low-pass filter and subsampling to a new size equal to 0.5 ⋅𝑁𝑥 × 0.5 ⋅ 𝑁𝑦. After that, both images are filtered with a bank
of 𝑛𝑓 Gabor filters whose orientations are evenly distributed
to cover the whole circle. Then, to reduce the amount of
information, the pixels into both images are grouped into 𝑘1
horizontal blocks per image,whosewidth is equal to𝑁𝑦 in the
first image and 0.5⋅𝑁𝑦 in the second one.The average value of
the pixels in each group is calculated and all this information
is arranged into a final descriptor, which is a column vector𝑔⃗ with 2 ⋅ 𝑘1 ⋅ 𝑛𝑓 components. This descriptor is invariant
against rotations of the vehicle on the ground plane. More
information about the method can be found in [13].

2.5. Histogram of Oriented Gradients. The Histogram of
Oriented Gradients (HOG) descriptors are based on the
orientation of the gradient in local areas of an image. It was
described initially by Dalal and Triggs [21]. More concisely,
it consists first in obtaining the magnitude and orientation
of the gradient of each pixel of the original image. This
image is divided then into a set of cells and a histogram of
gradient orientation is compiled for each cell, aggregating the
information of the gradient orientation of each pixel within
the cell, weighting with the magnitude of the pixel.

The omnidirectional images captured from a specific
position of the ground plane contain the same pixels in a row,
independently on the orientation of the robot in this plane,
but in a different order. Taking this fact into account, if we
calculate the histogram of cells that have the same width of

the original image, we obtain a descriptor which is invariant
against rotations of the robot.

The method we use is described in depth in [22] and
can be summarized as follows. The initial panoramic image𝑓(𝑥, 𝑦) with 𝑁𝑥 rows and 𝑁𝑦 columns is first filtered to
obtain two images with the information of the horizontal and
vertical edges, 𝑓𝑥(𝑥, 𝑦) and 𝑓𝑦(𝑥, 𝑦). From these two images,
the magnitude of the gradient and its orientation is obtained,
pixel by pixel, and the results are stored in matrices𝑀(𝑥, 𝑦)
and Θ(𝑥, 𝑦), respectively. Matrix Θ(𝑥, 𝑦) is then divided into𝑘2 horizontal cells, whose width is equal to𝑁𝑦. For each cell,
an orientation histogramwith 𝑏 bins is compiled. During this
process, each pixel inΘ(𝑥, 𝑦) is weighted with the magnitude
of the corresponding pixel in 𝑀(𝑥, 𝑦). At the end of the
process, the set of histograms constitutes the final descriptorℎ⃗ which is a column vector with 𝑘2 ⋅ 𝑏 components.

3. Experiments Setup

The main objective of this work consists in carrying out an
exhaustive evaluation of the performance of the description
methods presented in the previous section. All thesemethods
will be included in a localization algorithm and their per-
formance will be evaluated and compared both in terms of
computational cost and localization accuracy. The results of
this comparative evaluation will give us an idea of which is
the description method that offers the best results in outdoor
environments when using Google Street View images.

With this aim, two different regions in the city of Elche
(Spain) have been selected and the Google Maps images of
these two areas have been obtained and stored in two data
sets. Each one of these data sets will constitute a map and
will be used subsequently to estimate the position of the
vehicle within the map by comparing the image captured
by the vehicle from the unknown position with the images
previously stored in each map.

Themain features of the two sets of images are as follows.

Set 1. Set 1 consists of 177 full spherical panorama imageswith
resolution generally up to 3328 × 1664 pixels. Each image
covers a field of view of 360 degrees in the ground plane and
180 degrees vertically. Figure 1 shows the GPS position where
each image was captured (blue dots) and two examples of
the panoramic images after a preprocessing process. This set
corresponds with a mesh topography database that contains
images of various streets and open areas.The images cover an
area of approximately 700m × 300m.

Set 2. Set 2 consists of 144 full spherical panorama images.
The images have been captured along the same street with a
linear topology covering approximately 1700m. The appear-
ance of these images is more urban. Figure 2 shows the GPS
position where each image was captured (blue dots) and
three examples of the panoramic images after a preprocessing
process.

3.1. Image Preprocessing and Map Creation. Due to the wide
vertical field of view of the acquisition system, the sky is
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Figure 1: Bird eye’s view of the region chosen as map 1 prior to the localization experiment. The blue dots represent the coordinates where
the images of the Set 1 were captured. Two examples of Google Street View images after a preprocessing step are also shown.

Figure 2: Bird eye’s view of the region chosen as map 2 prior to the localization experiment. The blue dots represent the coordinates where
the images of Set 2 were captured. Three examples of Google Street View images after a preprocessing step are also shown.

often a big portion of the Google Street View images. The
appearance of this area will be very prone to changes when
the localization process is carried out in a different time of day
with respect to the time of day when the map was captured.
Taking this fact into account, a preprocessing step has been
carried out to remove part of the sky in the scenes.

Once part of the sky has been removed fromall the scenes,
the images are converted into grayscale and their resolution
is reduced to 512 × 128 pixels, to ensure the computational
viability of the algorithms.

After that, each image will be described using the five
description methods presented in Section 2. At the end,
one map will be available per image set and per description

method. Each map will be composed of the set of descriptors
of each panoramic scene.

3.2. Localization Process. Once the maps are available, in
order to evaluate the different visual descriptors introduced
in Section 2 to solve the localization problem, we also make
use of Google Street View images.

To carry out the localization process, first we choose one
of the images of the database (named as test image). In this
moment, this image is removed from the map. Second, we
compute the descriptor of the test image (using one of the
methods presented in Section 2) and obtain the distance
between this descriptor and the descriptors of the rest of
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the images stored in the corresponding map. As a result,
the images of the map are arranged from the nearest to the
farthest using the image distance as arranging criterion.

The result of the localization algorithm is considered
correct if the first image it returns was captured on the map
point which is geometrically the closest to the test image
capture point (the GPS coordinates are used with this aim).
We will refer to this case as a correct localization in zone 1.
However, since this is a quite challenging and restrictive prob-
lem, it is also interesting to know if the first image that the
algorithm returns was captured on one of the two geometri-
cally closest points to the test image capture point (zone 2) or
even on one of the three geometrically closest points (zone 3).
The first case is the ideal one, but we are also interested in the
other cases as they will indicate if the algorithm is returning
an image in the surroundings of the actual position of the test
image (i.e., the localization algorithm detects that the robot is
in a zone close around its actual position).

This process is repeated for each description method,
using all the images of Sets 1 and 2 as test images. In brief,
the procedure to test the localization methods previously
explained consists in the following steps, for each image and
description method:

(1) Extracting one image of the set (denoted as test
image); then, this test image is eliminated from the
map

(2) Calculating the descriptor of the test image
(3) Calculating the distance between this descriptor and

all the map descriptors, which we named image
distance

(4) Retaining the most similar descriptor and studying if
it corresponds to one image that has been captured in
the surroundings of the test image capture point (zone
1, 2, or 3)

As a result, the next data are retained for an individual test
image: the image distance between the test image descriptor
and the most similar map descriptor,𝐷𝑡, and the localization
results in zone 1 (correct or wrong match), 𝑚𝑡1, in zone 2,𝑚t
2, and in zone 3, 𝑚𝑡3. After repeating this process with all

the test images, the results will consist of four vectors, whose
dimension is equal to the number of test images. The first
vector, 𝐷⃗, contains the distances,𝐷𝑡, and the other three, 𝑚⃗1,𝑚⃗2, and 𝑚⃗3, contain, respectively, the information of correct
or incorrect matches in zones 1, 2, and 3.

4. Evaluation Methods

In this work, the localization results are expressed by means
of recall and precision curves [14]. To build them, the com-
ponents of the vectors 𝐷⃗, 𝑚⃗1, 𝑚⃗2, and 𝑚⃗3 are equally sorted in
ascending order of the distances that appear in the first vector.
The resulting sorted vectors of correct andwrongmatches are
then used to calculate the values of recall and precision. Let
us focus on the sorted vector of matches in zone 1, 𝑚⃗𝑠1. First,
for each component in this vector, the recall is calculated as
the number of correct matches obtained so far with respect to
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Figure 3: Two sample recall-precision graphs obtained after carrying
out the localization experiments with two different description
methods.

the total number of test images. Second, for each component
in the same vector, the precision is obtained as the number of
correct matches obtained so far with respect to the number
of test images considered so far. Then, with the information
contained in these vectors, a precision versus recall curve is
built, corresponding to the localization in zone 1. This is
repeated with the sorted vectors 𝑚⃗𝑠2 and 𝑚⃗𝑠3 to obtain the
localization results in zone 2 and zone 3.

In our experiments, the most important piece of infor-
mation of this type of graphs is the final point because it
shows the global result of the experiment (final precision after
considering all the test images). However, additional relevant
information can be extracted from them, because the graph
also shows the ability of the localization algorithm to find
the correct match while considering a specific image distance
threshold. As explained in the previous paragraph, the results
have been arranged considering the ascending value of dis-
tances. Taking it into account, as the recall increases, the
threshold also does. For this reason, the evolution of the
recall-precision curves contains information about the robust-
ness of the algorithm with respect to a specific image distance
threshold. If the precision values stay high, independently
of the recall, this shows the presence of a lower number of
wrong results under this distance threshold. Figure 3 shows
two sample recall-precision curves obtained after running the
localization algorithm with all the test images and two dif-
ferent description methods, considering zone 1. Both curves
show a similar final precision value, between 0.6 and 0.65.
However, the evolutions present a different behavior. As an
example, if we consider as threshold the distance associated
to recall = 0.25, according to the graph, the precision of
descriptor 1 is 100%, but the precision of descriptor 2 is
90%.Thismeans that, considering the selected image distance
threshold, 25% of correct localizations are achieved with
100% of probability using descriptor 1 and with a 90% of
probability using descriptor 2. This study can be carried out
considering any value for the image distance threshold.
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Before running the algorithm, it is necessary to define
the image distance. We use two different distance measures
depending on the kind of descriptor used.

First, in the case of the feature-based method (SURF-
Harris), it is necessary to extract the interest points prior to
describing the appearance of the image. We propose using
the Harris corner detector [16] to extract visual landmarks
from the panoramic images. After that, each interest point is
described using standard SURF. To compare the test image
with themap images, first we extract and describe the interest
points from all the images. After that, a matching process is
carried out with these points. The points detected in the test
image, captured with a particular position and orientation of
the vehicle, are searched in themap images.The performance
of the matching method is not the scope of this paper; we
only employ it as a tool. Once the matching process has been
carried out, we evaluate the performance of the descriptor
taking into account the number of matched points, so that
we will consider as closest image the one that presents more
matching points with the test image. More concisely, we
compute the distance between the test image 𝑡 and any other
image of the map 𝑗 as

𝐷𝑡𝑗fea = 1 −( 𝑁𝑀𝑡𝑗
max𝑗 (󳨀󳨀󳨀󳨀→𝑁𝑀𝑡)) , (3)

where𝑁𝑀𝑡𝑗 is the number of matches between the images 𝑡
and 𝑗, 󳨀󳨀󳨀󳨀→𝑁𝑀𝑡 = [𝑁𝑀𝑡1, . . . , 𝑁𝑀𝑡𝑛map] is a vector that contains
the number of matches between the image 𝑡 and every image
of the map, and 𝑛map is the number of images in the map.

Second, in the case of appearance-based methods (2D
DFT, FS, gist, and HOG), no local information needs to be
extracted from the images. Instead, the appearance of the
whole images is compared. This way, the global descriptor of
the test image is calculated and the distances between it and
the descriptors of themap images are obtained.TheEuclidean
distance is used in this case, defined as

𝐷𝑡𝑗𝐸 = √ 𝑀∑
𝑚=1

(𝑑⃗𝑚𝑡 − 𝑑⃗𝑚𝑗 )2, (4)

where 𝑑⃗𝑡 is the descriptor of the test image 𝑡, 𝑑⃗𝑗 is the
descriptor of the map image 𝑗, and 𝑀 is the size of the
descriptors. This distance is normalized to obtain the final
distance between the images 𝑡 and 𝑗, according to the next
expression:

𝐷𝑡𝑗app = 𝐷𝑡𝑗𝐸
max𝑗 (𝐷⃗𝑡𝐸) , (5)

where𝐷𝑡𝑗𝐸 is the Euclidean distance between the descriptor of
the test image 𝑡 and the map image 𝑗, 𝐷⃗𝑡𝐸 = [𝐷𝑡1𝐸 , . . . , 𝐷𝑡𝑛map

𝐸 ]
is a vector that contains the Euclidean distance between the
descriptor of the image 𝑡 and all the images in the map, and𝑛map is the number of images in the map.

It is important to note that the algorithm must be able
to estimate the position of the robot with accuracy, but it is
also important that the computational cost is adequate, to
knowwhether it would be feasible to solve the problem in real
time. To estimate the computational cost, we have computed,
considering bothmaps in the experiments, the necessary time
to calculate the descriptor of each test image, to compute the
distance to themap descriptors and to detect themost similar
descriptor. We must take into account that the descriptors of
all the map images can be computed prior to the localization,
in an off-line process. Apart from the time, we have also
estimated the amount of memory needed to store each image
descriptor.

To finish, we also propose to study the relationship dis-
tance between two image descriptors versus geometric distance
between the capture points of these two images. Ideally, the dis-
tance between the descriptors must increase as the geometric
distance between capture points does (i.e., it must not present
any local minima). This information is very interesting in
applications such as map building, where the robot must
be able to build a map using as input information only the
distance between image descriptors. It is also important when
it is necessary to estimate the position of the vehicle at halfway
points within the gridmap. Additionally, it may help to detect
if the problem of visual aliasing is present in the environment
(i.e., two zones which are geometrically far may present a
similar visual appearance, which might lead to errors in the
mapping and localization process).

5. Experimental Results

As stated in the previous section, with the purpose of estab-
lishing the capacity of each descriptor to correctly localize
the robot (or vehicle), we have built recall-precision curves
to reflect the results of each experiment. Figure 4 shows this
graphical representation using (a) the first and (b) the second
set of images (denoted as Sets 1 and 2 in previous sections). To
build this figure, we consider the localization results in zone 1.
This way, the figure shows the ability of the localization algo-
rithm to correctly detect which image of the map was cap-
tured closer to the test image.This is themost restrictive case.

Apart from it, the performance of the localization algo-
rithm in zones 2 and 3 has also been studied. This way,
Figure 5 shows the results of the localization process in zone
2 using (a) Set 1 and (b) Set 2. Finally, Figure 6 shows the
localization results in zone 3 using (a) Set 1 and (b) Set 2.This
is the least restrictive case among the three studied.

In all cases, the results show that the SURF-Harris des-
criptor presents a relatively better performance comparing to
the other descriptors, in terms of accuracy and using both
image sets. As far as the methods based on global appearance
are concerned, the good behavior ofHOG can be highlighted.
In the case of the localization in zone 2 it reaches 60%and 50%
of precision in Sets 1 and 2, respectively. These results can be
considered relatively good, taking into account the fact that
the localization process is solved in an absolute way (i.e., we
consider that no information about the previous position of
the robot is available and the test image is compared with all
the images stored in the data sets). In a real application, it
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Figure 4: Results of the localization algorithm considering the correct matches in zone 1 using (a) Set 1 and (b) Set 2. The results of each
description method are shown as different recall-precision curves.
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Figure 5: Results of the localization algorithm considering the correct matches in zone 2 using (a) Set 1 and (b) Set 2. The results of each
description method are shown as different recall-precision curves.

is usual to make use of any kind of probabilistic algorithm
to estimate the position of the robot taking into account its
previous estimated position. This is expected to provide a
higher accuracy.We expect to develop this type of algorithms
and tests in a future work.

Some additional conclusions can be reached by compar-
ing the performance of the methods in open areas (Set 1) and
urban areas (Set 2). In open areas, the performance of SURF-
Harris, HOG, and gist is quite similar and relatively good
in all cases, and the methods based on the Discrete Fourier
Transform tend to present worse results. However, in the case

of urban areas, SURF-Harris outperforms the other methods,
and gist is the one that presents the worst results.

Apart from the localization accuracy, it is also important
to study the computational cost of the process, since in a real
application it would have to run in real time, as the robot
is navigating through the environment. This way, we have
obtained in all cases the necessary time to calculate the
descriptor of the test image on the one hand and to compare it
with the descriptors stored in themap, to detect themost sim-
ilar descriptor and to analyze the results on the other hand.
The average computational time of the localization process
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Figure 6: Results of the localization algorithm considering the correct matches in zone 3 using (a) Set 1 and (b) Set 2. The results of each
description method are shown as different recall-precision curves.

Table 1: Average computational cost of the description algorithms studied, per test image. For each descriptionmethod and data set, the table
shows first the necessary time to obtain the test image descriptor and second the time to compare it with the descriptors of the map and to
obtain the final localization result.

2D Fourier Fourier Signature Gist HOG SURF-Harris
Data Set 1 Descriptor 0.0087 s 0.0080 s 0.4886 s 0.0608 s 0.5542 s
Data Set 1 Match 0.0015 s 0.0058 s 0.0006 s 0.0008 s 25.8085 s
Data Set 2 Descriptor 0.0085 s 0.0079 s 0.4828 s 0.0621 s 0.5389 s
Data Set 2 Match 0.0012 s 0.0047 s 0.0005 s 0.0006 s 19.3931 s

after considering all the test images is shown in Table 1. To
obtain the results of this table, the algorithms have been
implemented using Matlab.

With respect to the computational cost, the methods
based on the Fourier Transform are significantly faster than
the rest, while SURF-Harris presents a considerably high
computational cost. About the necessary time to compare two
descriptors, gist andHOG are the fastest methods. In the case
of SURF-Harris, the brute force match method implemented
results in a relatively high computational cost. This method
has been chosen to make a homogeneous comparison with
the other global-appearance methods. However, in a real
implementation, a bag-of-words based approach [23] would
improve the computational efficiency of the algorithm.

At last, we have obtained the averagememory size needed
to store each descriptor.The results are shown in Table 2.Gist
is the most compact descriptor (it is able to compress the
information in each scene significantly) while SURF-Harris
needs more memory size.

Considering these results jointly with the precision in
localization, we could say that the SURF-Harris descriptor
shows very good results in location accuracy but its compu-
tational cost makes it unfeasible to solve a real application.
HOG, which is the second in terms of accuracy, also has a
very good computational cost, so we consider it interesting to

study more thoroughly this descriptor as future work and to
implement more advanced versions of this method to try to
optimize the accuracy. Likewise, other types of distances to
compare images could also be studied, apart from the Euc-
lidean distance. For the same reasons, we also consider it
appropriate to examine more thoroughly the gist descriptors,
as well as using other methods to extract the gist of a scene
apart from the orientation information (e.g., from the color
information).

As a final experiment, we have studied the relationship
distance between two image descriptors versus geometric dista-
nce between the capture points of these two images. As stated
at the beginning of the section, this information is very inter-
esting in some applications such as the construction of maps
from the images, with geometric precision, or the localization
of the vehicle at halfway points of the grid of the map. It is
important that the distance between descriptors grows as the
geometric distance does. Figure 7 shows the results obtained
using (a) Set 1 and (b) Set 2. To obtain these figures, an image
has been set as a reference image, and the distance between
the reference image descriptor and the other descriptors has
been calculated.Thefigure shows this distance versus the geo-
metric distance between the capture points of each image and
the capture point of the reference image. In both cases, this
relationship is monotonically increasing up to a geometric
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Table 2: Necessary memory to store each descriptor.

2D Fourier Fourier Signature Gist HOG SURF-Harris
Descriptor 16384 bytes 32768 bytes 4096 bytes 8192 bytes 110400 bytes
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Figure 7: Relationship distance between two image descriptors versus geometric distance between the capture points of these two images using
(a) Set 1 and (b) Set 2.

distance of approximately 100meters. From this point it tends
to stabilize with a relatively high variance. The exception
is the local features descriptor, which stabilizes at the final
value from a very small geometric distance. However, the
appearance-based descriptors exhibit a more linear behavior
around each image.

6. Conclusions and Future Works

In this paper, we have carried out a comparative evaluation
of several description methods of scenes, considering the
performance of these methods to accurately solve an absolute
localization problem in a large real outdoor environment.We
evaluated two different approaches of visual descriptors, local
features descriptors (SURF-Harris), and global-appearance
descriptors (2D Discrete Fourier Transform, Fourier Signa-
ture, HOG, and gist).

All the tests have been carried out with images of
Google Street View, captured under realistic conditions. Two
different areas of a city have been considered, an open area
and a purely urban area with narrower streets. The capture
points of each area present different topography.The first one
is a grid map that covers several streets and avenues and the
second one a linear map (i.e., the images were captured when
the mobile traversed a linear path on a narrow street).

Some different studies have been performed. First, we
have evaluated the accuracy of the localization process. To

do this, recall and precision curves have been computed to
compare the performance of each description method. We
plot the recall and precision curves for both areas, taking
into account different levels of accuracy to consider that
the localization result is correct. In these experiments, the
computational cost of the localization process has also been
analyzed.

We have also studied each descriptor in terms of behavior
of the descriptor distance comparing to geometrical distance
between image capture points. To do this, we plot a curve
that represents the descriptor distance versus the geometrical
distance between capture points. This measure is very useful
for performing navigation tasks, since thanks to it we can
estimate the range of use of the descriptor.

It is noticeable that the SURF-Harris descriptor is the
most suitable descriptor in terms of precision in localization,
but it presents a smaller zone of work in terms of Euclidean
distance between descriptors.TheHOGdescriptor has shown
a relatively good performance to solve the localization prob-
lem and presents a good response of the descriptors distance
versus geometrical distance between capture points. If we
analyze jointly the results of both experiments and take into
account the computational cost (Tables 1 and 2) we conclude
that, although the SURF-Harris descriptor presents the best
results in terms of recall and precision curves, it does not
allow us to work in real time. Therefore, taking into account
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that HOG is the descriptor that presents the second best
results in terms of recall and precision curves and allows us to
work in real time, we can conclude that the HOG is the most
suitable descriptor.

We plan to extend this work to (a) capture a real out-
door trajectory traveling along several streets and capturing
omnidirectional images using a catadioptric vision system,
(b) combine the information provided by this vision system
and the images of the Google Street View, and (c) evaluate
the performance of the best descriptors in a probabilistic
localization process.
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Locating a fire inside of a structure that is not in the direct field of view of the robot has been researched for intelligent firefighting
robots. By classifying fire, smoke, and their thermal reflections, firefighting robots can assess local conditions, decide a proper
heading, and autonomously navigate toward a fire. Long-wavelength infrared camera images were used to capture the scene
due to the camera’s ability to image through zero visibility smoke. This paper analyzes motion and statistical texture features
acquired from thermal images to discover the suitable features for accurate classification. Bayesian classifier is implemented to
probabilistically classify multiple classes, and a multiobjective genetic algorithm optimization is performed to investigate the
appropriate combination of the features that have the lowest errors and the highest performance. The distributions of multiple
feature combinations that have 6.70% or less error were analyzed and the best solution for the classification of fire and smoke was
identified.

1. Introduction

Intelligent firefighting humanoid robots are actively being
researched to reduce firefighter injuries and deaths as well
as increase their effectiveness on performing tasks [1–5].
One task is locating a fire inside of a structure outside the
robot field of view (FOV). Fire, smoke, and their thermal
reflections can be clues to determine a heading that will
ultimately lead the robot to the fire so that it can suppress it.
However, research for accurately classifying these clues has
been incomplete.

2. Previous Features

In conventional fire (and/or smoke) detection systems [6, 7]
in Table 1, temperature, ionization, and ultraviolet light were
mainly used to indicate the presence of a fire and/or smoke
inside the structure, but they can have a long response time
in large spaces [8] and do not provide sufficient data for the
location of fire and/or smoke. Recently using vision systems,

color [9–12], motion [13, 14], both [8, 15–17], and texture fea-
tures [12, 18, 19] have been researched to characterize fire
or smoke in Table 1. However, color features from RGB
camera are not applicable to firefighting robots due to the
fact that RGB cameras may operate in the visible to short
wavelength infrared (IR) (less than 1 micron) and are not
usable in smoke-filled environments where the visibility has
sufficiently decreased [2, 14].Motion (e.g., dynamicalmotion,
shape changing, etc.) of the feature can be another clue to
detect fire and smoke by characterizing flickering flames and
smoke flow from a stationary vision system. However, the
vision system onboard a robot is moving due to the dynamics
of the robot itself, and this causes a large amount of noise that
results in extensive computation for motion compensation.
Texture features researched in [12, 18, 19] were used to identify
fire or smoke. The spatial characteristics of textures can be
useful to recognize patterns of fire and smoke by remote
sensing and are less influenced by rotation/motion [18].

Long-wavelength infrared cameras, similar to the hand-
held thermal infrared cameras (TICs) that are typically used

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 8410731, 13 pages
http://dx.doi.org/10.1155/2016/8410731

http://dx.doi.org/10.1155/2016/8410731


2 Journal of Sensors

Table 1: Conventional and vision-based features.

Type Feature Advantages Disadvantages

Conventional features
[6, 7]

Temperature
Ionization
UV light

(i) Detect presence of fire
and smoke [8]

(i) Long response time [8]
(ii) Unable to provide
sufficient data for fire
locating

Model-based
features

Fourier transform [20]
Wavelet transform [9]

(i) Frequency content
analysis
(ii) Flexible analysis of both
space and frequency [25]

(i) Unable to be spatially
localized [25]

Vision-based features

Color (RGB) [9–12, 26] (i) Fire (red)
(ii) Smoke (gray)

(i) RGB camera cannot
function in smoke-filled
environments [2, 14]

Dynamics [13, 14] (motion,
shape change, etc.)

(i) Flickering flames
recognition
(ii) Smoke flow detection

(i) Can be influenced by
dynamical robot motion
(ii) Expensive computation
for motion compensation

Texture [12, 18, 19, 27]

(i) Spatial characteristics
for pattern recognition
(ii) Less influenced by
rotation and motion [18]

(i) The higher the order
texture features, the more
the computation

Feature maps [28] (CNN
deep learning)

(i) Superior performance in
pattern recognition [29]
(ii) Once trained,
applicable in real-time

(i) Slow learning speed
(ii) GPUs required due to
expensive computation

to aid in firefighting tasks within smoke-filled environments
[20–22] as well as fire-front and burned-area recognition in
remote sensing [23], are used in this research. Due to the fact
that TICs absorb infrared radiation in the long-wavelength
IR (7–14 microns), they are able to image surfaces even in
dense smoke and zero visibility environments [2, 14]. In
addition, TIC can provide proper information under local
or global darkness, for example, shadows or darkness caused
by damaged lighting. Recently, thermal images from TIC are
studied to recognize pattern and motion remotely [24]. The
cameras will detect hot objects as well as thermal reflections
off of surfaces. As a result, image processing on detected
objects must be sufficiently robust to discern between desired
objects and their thermal reflections.

This study ultimately leads the shipboard autonomous
firefighting robot (SAFFiR), whose prototype is displayed in
Figure 1, to autonomously navigate toward fire outside FOV
in indoor fire environments. For this, the robot needs to
identify clues such as smoke and smoke andfire-reflections by
itself to correctly navigate toward the fire.However, the recog-
nition of key features has not been fully studied. This paper
analyzes appropriate combination of features to accurately
classify fire, smoke, their thermal reflections, and other hot
objects using thermal infrared images. Large-scale fire tests
were conducted to create actual fire environments having
various ranges of both temperature and smoke conditions.
A long-wavelength IR camera was installed to produce 14-
bit thermal images of the fire environment. These images
were used to extract motion and statistical texture features
in regions of interest (ROI). Bayesian classification was
performed to probabilistically identify multiple classes in
real-time. To identify the best combination of features for

Figure 1: A prototype of the shipboard autonomous firefighting
robot (SAFFiR). Note that the data used in this paper were not
acquired from this platform.

accurate classification, the multiobjective optimization was
implemented using two objective functions: resubstitution
and cross-validation errors.

3. Motion and Texture Features

In pattern recognition system, the choice of features plays
an important role in the performance of classification. Both



Journal of Sensors 3

(a) RGB images

(b) Thermal images

Figure 2: (a) RGB images of fire scenes and (b) extracted objects
from thermal images with optical flow vectors overlaid.

motion and texture features were selected because they
were crucial in the previous study of fire and/or smoke
detection and also best suitable for the thermal image analysis
that is major information the firefighting robot can acquire
under fire environments. Optical flow, a popular motion
measurement, was used for the motion features, while the
first- and second-statistical texture features were applied for
the texture measurement.

A FLIR A35 long-wavelength IR camera, which is capable
of imaging through zero visibility environments, was used
to produce images. All images were from a 320 × 256-pixel
focal plane array, 60Hz frame rate that produces 14-bit images
with an intensity range of −16384 for −40∘C to −1 for 550∘C.
Fifteen features from optical flow and the statistical texture
features are evaluated to find the best feature combination.
Optical flow shows temporal variations due tomoving objects
in the FOV or motion of the robot. The first- and second-
order statistical texture features display spatial characteristics
of objects in the scene.

3.1. Motion Features by Optical Flow. Optical flow is a useful
tool to recognize motion of an object in sequential images
[30]. It consists of local and global methods. Lucas-Kanade
(LK) is a local method that is relatively robust with a less
dense flowfield, whileHorn-Schunck (HS) is a globalmethod
with a dense flow field and high sensitivity to noise [31].
Because the intensities in the thermal image change due to
the varying fire environment, LK method that has higher
robustness compared with HS was selected in this research
to measure motion features of the objects. Two features
of optical flow vector number (OFVN) and optical flow
meanmagnitude (OFVMM)were computed to quantitatively
characterize motions of fire, smoke, and their reflections.
Figure 2 contains RGB and thermal images of dense smoke
in a hallway and a wood crib fire in a room. Red arrows in the

thermal images indicate the direction and magnitude of the
optical flow vectors with red boxes that show smoke, fire, and
thermal reflections.

3.2. First- and Second-Order Statistical Texture Features. The
first- and second-order statistical features were considered in
this study for object classification. The first-order statistical
features estimate individual property of pixels, not character-
izing any relationship between neighboring pixels, and can
be computed using the intensity histogram of the candidate
region of interest (ROI) in the image. As described in [32],
mean (MNI), variance (VAR), standard deviation (STD),
skewness (SKE), and kurtosis (KUR) were calculated by

MNI = 1
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where 𝐼
𝑖,𝑗

refers to the intensity of a pixel at 𝑖 and 𝑗 and
𝑁
𝑃
denotes the number of pixels (NOP) of the object in the

image. The second-order statistical features represent spatial
relationships between a pixel and its neighbors. Gray-level
cooccurrence matrix (GLCM) [33] is used to account for
adjacent pixel relationships in four directions (horizontal,
vertical, left, and right diagonals) by quantizing the spatial
cooccurrence of neighboring pixels. A total of seven second-
order statistics features were used including dissimilarity
(DIS), entropy (ENT), contrast (CON), inverse difference
(INV), correlation (COR), uniformity (UNI), and inverse dif-
ferencemoment (IDM). Tomeasure these features, a normal-
ized cooccurrence matrix 𝐶

𝑖𝑗
is used which can be defined as

𝐶
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=

𝑃
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where 𝑃
𝑖𝑗
refers to the frequency of occurrences of the gray-

level of adjacent pixels at 𝑖 and 𝑗 within the four directions
and 𝑁

𝐺
denotes the number of the gray-levels in the

quantized image. The denominator of (2) normalizes 𝑃
𝑖𝑗
to

be estimates of the cooccurrence probabilities. After building
the normalized cooccurrence matrix 𝐶

𝑖𝑗
, seven features of

the second-order statistics features were computed by
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4. Object Extraction and
Bayesian Classification

One of the main characteristics of fire, smoke, and their
thermal reflections in thermal images is that they are higher
in intensity than the background. With intensity related to
temperature in the thermal image, higher temperature objects
appear brighter than the background. Hence, intensity is a
primary factor for object extraction from the background.
Assuming that the thermal image histogram has a bimodal
distribution for foreground (i.e., object) and background,
the clustering-based image autothresholding method [34],
called Otsumethod, can calculate an optimum threshold that
separates objects and background creating a binary image
with 0 being the background and 1 being the objects. The
binary images were filtered to remove small regions and holes
inside objects through morphological filtering techniques.
After convoluting the original 14-bit image with the filtered-
binary image, a final image was obtained that includes the
original 14-bit intensities in objects as well as zeroes in the
background.

There are several classification methods commonly used
in supervised machine learning; 𝑘-nearest neighbors (𝑘NN),
decision tree (DT), neural networks (NN), support vector
machine (SVM), and Naı̈ve Bayesian. For this study, these
classification methods were analyzed by considering three
points: capability to classify multiple classes such as fire,
smoke, and their thermal reflections; less chance of overfit-
ting problem because, under fire environments, there could
be a number of situations that are not learned or trained;
real-time implementation because firefighting robot needs to
make a decision in real-time; otherwise it cannot operate its
task. 𝑘NN is insensitive to outliers but it needs a large amount
of memory and expensive computation [35]. DT has low
computation burden but, for the multiclasses classification,
it may generate a complicated tree structure and may cause
overfitting problem [35, 36]. NN shows high performance
when processing with multidimensions and continuous fea-
tures but cannot overcome overfitting problem. SVM pro-
vides fast computation and the highest accuracy but it cannot
be used for the multilabel classification because it produces
binary results [37]. Naı̈ve Bayesian classification is Bayes’
theorem-based probabilistic classification and is popular for

pattern recognition applications. Although this method has
lower accuracy compared with other classifiers and assumes
that each feature is independent, it has fast computation,
robustness to untrained cases, and less chance of overfitting
[35]. In addition, this classification has the capability of
probabilistic decision making over multiple classes with fast
computation for real-time implementation. In this study,
Bayesian classification is used for evaluation of each feature.

With several given features 𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑞
, (motion and

texture features) we can calculate the probability that one
class 𝐶

ℎ
(fire, smoke, thermal reflections, etc.) corresponds

to the candidate 𝑘 by using a conditional probability, 𝑘𝑝(𝐶
ℎ
|

𝐹
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𝐹
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), also known as the posterior probability. By using

Bayes’ theorem, it can be written with prior, likelihood, and
evidence as shown in
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where 𝑘𝑝(𝐶
ℎ
) is the prior probability, meaning it represents

candidate 𝑘 probability to be 𝐶
ℎ
and can be calculated by

number of samples of class 𝐶
ℎ
divided by the total number

of samples. 𝑘𝑓(𝐹
1
𝐹
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) is the likelihood function

and the denominator of (4) is the evidence that plays as
a normalizing constant by the summation of production
between the prior and likelihood at each class. By applying the
conditional independence assumption, the likelihood func-
tion can be rewritten by
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As shown in Table 2, Gaussian parameters for fifteen features
with respect to smoke, smoke thermal reflection, fire, and
fire thermal reflection were estimated by using the maximum
likelihood estimation [38]. Probability density distributions
for the entire features are illustrated in Figure 3. With (5), the
evidence and then the posterior probability of each class were
calculated. By applying the maximum priority decision rule
in (8), the Bayesian classification was used to predict the class
and probability of each candidate in the scene:

class = argmax
𝐶ℎ

(𝑝 (𝐶
ℎ
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2
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)) .

(8)
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Table 2: Gaussian parameters.

Smoke Smoke-reflection Fire Fire-reflection
𝜇 Σ 𝜇 Σ 𝜇 Σ 𝜇 Σ

MNI −1.2665𝐸 + 04 6.9008𝐸 + 02 −1.3383𝐸 + 04 3.5543𝐸 + 02 −5.9714𝐸 + 03 1.6050𝐸 + 03 −7.1399𝐸 + 03 4.6070𝐸 + 02

VAR 4.7578𝐸 + 05 4.4154𝐸 + 05 4.4012𝐸 + 04 4.1227𝐸 + 04 1.0501𝐸 + 07 2.2343𝐸 + 06 1.3300𝐸 + 06 8.8178𝐸 + 05

NOP 1.0733𝐸 + 03 4.2287𝐸 + 03 3.2220𝐸 + 01 1.3676𝐸 + 02 2.2174𝐸 + 02 1.7105𝐸 + 03 5.9575𝐸 + 01 2.3911𝐸 + 02

STD 6.2146𝐸 + 02 2.9931𝐸 + 02 1.8314𝐸 + 02 1.0236𝐸 + 02 3.2170𝐸 + 03 3.8930𝐸 + 02 1.0534𝐸 + 03 4.6992𝐸 + 02

SKE 1.1672𝐸 − 01 5.8208𝐸 − 01 −9.4009𝐸 − 02 6.2857𝐸 − 01 2.2230𝐸 − 02 5.2287𝐸 − 01 2.2385𝐸 − 01 7.1380𝐸 − 01

KUR 3.0045𝐸 + 00 2.0213𝐸 + 00 3.6553𝐸 + 00 1.6131𝐸 + 00 2.2283𝐸 + 00 1.1517𝐸 + 00 3.4848𝐸 + 00 1.1912𝐸 + 00

OFVN 2.8832𝐸 + 04 1.4156𝐸 + 04 1.1848𝐸 + 03 8.7345𝐸 + 02 1.1257𝐸 + 04 1.3722𝐸 + 04 2.9978𝐸 + 03 2.2034𝐸 + 03

OFVMM 8.6830𝐸 + 01 5.6259𝐸 + 01 1.1687𝐸 + 02 7.9444𝐸 + 01 1.7598𝐸 + 02 2.9308𝐸 + 02 1.2641𝐸 + 02 6.7234𝐸 + 01

DIS 7.1791𝐸 − 02 1.7966𝐸 − 02 2.8045𝐸 − 02 1.2245𝐸 − 02 1.0937𝐸 − 01 8.6515𝐸 − 02 4.7308𝐸 − 02 2.8550𝐸 − 02

ENT 4.1949𝐸 − 01 9.3683𝐸 − 02 1.9576𝐸 − 01 8.6106𝐸 − 02 3.3681𝐸 − 01 1.9107𝐸 − 01 1.7115𝐸 − 01 9.9702𝐸 − 02

CON 8.9384𝐸 − 01 3.6871𝐸 − 01 1.2402𝐸 − 01 6.5921𝐸 − 02 9.2956𝐸 − 01 6.9179𝐸 − 01 3.9683𝐸 − 01 2.6996𝐸 − 01

IND 9.8588𝐸 − 01 6.3845𝐸 − 03 9.9646𝐸 − 01 1.5141𝐸 − 03 9.6334𝐸 − 01 3.7231𝐸 − 02 9.8771𝐸 − 01 7.9275𝐸 − 03

COR 9.6636𝐸 − 01 3.1625𝐸 − 02 8.8533𝐸 − 01 4.3467𝐸 − 02 8.9406𝐸 − 01 3.0935𝐸 − 02 8.8417𝐸 − 01 5.7861𝐸 − 02

UNI 5.1044𝐸 − 01 2.0109𝐸 − 01 9.5222𝐸 − 01 3.1669𝐸 − 02 6.7906𝐸 − 01 2.6718𝐸 − 01 8.5305𝐸 − 01 1.0599𝐸 − 01

IDM 6.0061𝐸 − 01 1.9160𝐸 − 01 9.7533𝐸 − 01 1.6844𝐸 − 02 7.7850𝐸 − 01 2.4321𝐸 − 01 9.2043𝐸 − 01 5.8631𝐸 − 02

Table 3: The object numbers of smoke, smoke-reflection, fire, fire-reflection, and other hot objects classes.

Type Total Smoke Smoke-reflection Fire Fire-reflection Other hot objects
Number of objects 10,775 5190 1445 1464 489 2187

Figure 3 shows probability density distribution of each
class using the Gaussian parameters of Table 2. Gaussian
distribution for classes in Figure 3 shows how fire, fire-
reflection, smoke, and smoke-reflection are distributed by the
fifteen features. Some features split out the distribution of the
four classes while others cause overlap. For example, MNI
best describes a well split out case of the classes, although
smoke and its reflection and fire and its reflection do overlap.
SKE shows the worst case in which all classes overlap making
it impossible to distinguish any of the four classes.

5. Result and Discussion

The accuracy in classifying fire objects was analyzed using
data from a series of large-scale tests in the facility [1]
using actual fires up to 75 kW. Fires included latex foam,
wood cribs, and propane gas fires from a sand burner. These
different types of fires produced a range of temperature and
smoke conditions. Latex foam fires produced lower tempera-
ture conditions but dense, low visibility smoke. Conversely,
propane gas fires produced higher gas temperatures and
light smoke. Wood crib fires resulted in smoke and gas
temperatures between those of latex foam and propane gas
fires; however, these fires resulted in sparks created from the
burning wood. Thermal images were collected by driving a
wheeled mobile robot through the setup during a fire test. A
total of 10,775 objects were collected from the experiments
and categorized as either smoke, smoke-reflection, fire, fire-
reflection, or other hot objects in order to be served as clues
to lead the firefighting robot to navigate toward the fire source

outside the FOV. In addition, as each object has sixteen cor-
responding data points (fifteen features and a class), the total
number of data points used in this paper is 172,400.The num-
bers of each object in this experiment are shown in Table 3.

Two types of error criterions (resubstitution and 𝑘-fold
cross-validation errors [39]) were used to measure how
each feature accurately performs in the classification. Resub-
stitution error takes the entire dataset to compare the actual
classes with the predicted classes by the Bayesian classifica-
tion in order to examine how well the actual and predicted
classes match each other. When this criterion is used alone
to enhance accuracy, the classification can be overfitted to
the training dataset. Cross-validation error is advantageous
to detect and prevent from overfitting. Instead of using the
entire dataset, cross-validation randomly selects and splits
the dataset into 𝑘 partitions of approximately equal size
(𝑘 = 10) to estimate a mean error by comparing between
the randomly selected partition and trained results of the
remaining partitions.

5.1. Single Feature Performance. The performance results of
each feature are shown in Table 4. The first-order statistical
texture features MNI, VAR, and STD produced the lowest
errors while NOP, SKE, and KUR show the highest. These
results show that MNI and VAR are beneficial to distinguish
fire, smoke, and thermal reflections while motion features are
not. As NOP shows the highest error, OFVMM, one of the
motion features, shows the second highest errors compared
with the other features. This is in part attributed to the
dynamic motion of the robot. ENT and COR second-order
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Figure 3: Probability density distributions of each feature.

statistical texture features show42∼45%error, which is higher
than the other second-order features.

5.2. Multiple Feature Combination Performance. The error
results in Table 4 demonstrate that a single feature cannot
accurately classify fire, smoke, and thermal reflections. Thus,
possible combination ofmultiple features was considered and
analyzed to find the best combination of the features.The total
number of all possible combinations that have two or more
features is

𝑁total =
𝑚

∑

𝑧=2

(

𝑚

𝑧

) , (9)

where 𝑚 refers to the total number of features (i.e., 𝑚 = 15)
and 𝑧 is the number of features in the combination. Based
on all possible combination, the multiobjective genetic algo-
rithm optimization [40] in the global optimization toolbox of
MATLAB was used to find the best combination of features
that has the highest performance in the classification. The
objective functions in the optimization, resubstitution and
𝑘-fold cross-validation errors [39], were used to measure
how accurately different feature combinations perform in the
classification.

Figure 4 contains a plot of the error associated with the
most promising feature combinations. The behavioral solu-
tion set is defined as feature combinations with less than 7%
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Table 4: Performance of each feature.

Resubstitution error (%) Cross-validation error (%)
MNI 23.7 23.8
VAR 24.3 24.3
NOP 72.1 72.0
STD 23.2 23.2
SKE 52.7 52.8
KUR 50.6 50.6
OFVN 39.5 40.0
OFVMM 58.6 58.6
DIS 29.0 29.0
ENT 44.6 44.6
CON 28.5 28.5
IND 30.1 30.1
COR 41.2 41.1
UNI 34.5 34.5
IDM 37.7 37.7

Behavioral region

Behavioral solution set
General set
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Figure 4:Multiobjective optimization result showing the general set
and behavioral solution set (colored region).

error for both objective functions while the general set refers
to all other possible feature combinations. The behavioral
solution set contains 0.0061% of all possible feature combi-
nations.

The occurrence probability of features in the behavioral
solution set is illustrated in Figure 5. In the behavioral
solution set, the first-order statistic texture features MNI and
SKE always exist while OFVN, NOP, and OFVMM features
do not. Both the first-order statistical texture features STD
and VAR and the second-order statistical texture features
COR, ENT, andDIS showahigher occurrence comparedwith
the other first- and second-order texture features while KUR,
IDM,UNI, IND, andCON show lower occurrence. Note that,
due to the robot’s dynamical motion, motion features were
not successful and even not included in the top 10 feature
combinations of the behavioral set.
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Figure 5: Occurrence analysis of the features in the behavioral
region.

The top features based on the probability occurrence in
Figure 5 are COR, ENT, DIS, SKE, STD, VAR, and MNI.
However, the combination of these seven features does not
result in the best solution for classification. Table 5 contains
the classification performance of the combination of features
in the behavioral solution set. In order to evaluate the per-
formance of each feature combination, various performance
measures have been used such as precision, sensitivity, F-
measure, and accuracy. Precision measures the fraction of
positive instances from the group that the classifier predicted
to be positive, and recall measures the fraction of positive
examples from the positive group of the actual class and [35].
F-measure is the harmonic mean, and accuracy is the pro-
portion of true results.Thesemeasures can bemathematically
defined as

Precision = TP
TP + FP

,

Sensitivity = TP
TP + FN

,

𝐹-Measure =
2 (Sensitivity ⋅ Precision)
Sensitivity + Precision

,

Accuracy = TP
TP + FP + FN

,

(10)

where TP is correctly classified positive cases, FP is incor-
rectly classified negative cases, and FN is incorrectly classified
positive cases. For the performance measurement, confusion
matrixes were created as described in Appendix and applied
into (10). In the precision, index number 1 combination
shows the highest performance in the behavioral solution
set while index number 7 combination shows the lowest.
In the sensitivity, index number 7 combination records the
highest results while index number 4 does the lowest. In the
F-measure and accuracy, index number 2 combination shows
the highest record while index number 4 does the lowest.
Based on the confusion matrixes, most of misclassification
occurs in the classification of smoke, smoke-reflection, and
other hot objects, because, during small fire, texture patterns
of these classes were diminished and the intensity was too low
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Table 5: Results of error, case, and performance at each feature combination in the behavioral solution set (Resu. means resubstitution and
Cros. refers to cross-validation).

Index Combination of features Error (%) Case Performance (%)
Resu. Cros. TP FP FN Precision Sensitivity 𝐹-measure Accuracy

1 MNI, VAR, ENT, COR, SKE 6.90 6.89 10049 402 324 96.15 96.88 96.51 93.26
2 MNI, DIS, COR, SKE, STD 6.68 6.70 10069 459 247 95.64 97.61 96.62 93.45
3 MNI, ENT, COR, SKE, STD 6.76 6.75 10061 447 267 95.75 97.41 96.57 93.37

4 MNI, VAR, DIS, ENT, CON, COR,
SKE, STD 6.98 6.90 9980 454 341 95.65 96.70 96.17 92.62

5 MNI, VAR, DIS, ENT, COR, UNI,
SKE, STD 6.89 6.90 10037 453 285 95.68 97.24 96.45 93.15

6 MNI, VAR, DIS, ENT, COR, IDM,
SKE, STD 6.77 6.79 10047 461 267 95.61 97.41 96.50 93.24

7 MNI, VAR, DIS, ENT, IDM, SKE,
KUR, STD 6.96 6.94 10033 505 237 95.21 97.69 96.43 93.11

8 MNI, VAR, DIS, ENT, IND, COR,
UNI, SKE, STD 6.95 6.99 10029 451 295 95.70 97.14 96.41 93.08

9 MNI, VAR, DIS, ENT, IND, COR,
IDM, SKE, STD 6.88 6.90 10035 457 283 95.64 97.26 96.44 93.13

10 MNI, VAR, DIS, ENT, COR, IDM,
SKE, KUR, STD 6.89 6.91 10036 478 261 95.45 97.47 96.45 93.14
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Figure 6: Results of performance at each feature combination in the
behavioral solution set.

to distinguish. The best solution was determined to be index
number 2 combination of MNI, DIS, COR, SKE, and STD,
which has the lowest of resubstitution and cross-validation
errors, 6.68% and 6.70%, respectively. This combination
includes all of the top features based on the probability occur-
rence except ENT and VAR. The four performance results at
each feature combination in the behavioral solution set are
shown in Figure 6 where the highest results aremarked in red
circles and the lowest in green-dot circles. Sensitivity appears
higher than precision at each feature combination because
FPs are larger than FNs in the confusion matrix. Particularly,
index number 7 has the biggest difference between FP and FN
resulting in the highest sensitivity and lowest precision. The
summation of FP and FN in index number 4 is the highest
in the behavioral solution set resulting in the lowest accuracy
while index number 2 has the lowest summation of FP and
FN providing the highest accuracy.

This study investigated a wide range of features from
long-wavelength infrared camera images, analyzed normal
distributions of fifteen features with respect to the classes of
smoke, fire, and their thermal reflections, and discovered the
highest performing feature combination by examining single
features and multiple feature combinations. As a result, the
proposed feature combination of MNI, DIS, COR, SKE, and
STD increases the performance compared with the previous
study [1] which used MNI, VAR, ENT, and IDM. As shown
in Figure 7, the errors are reduced by 2.86% and 2.68% resub-
stitution and cross-validation errors and performances are
increased by 2.90%, 1.58%, 0.20%, and 2.85%, accuracy, F-
measure, sensitivity, and precision, respectively.

Figure 8 shows original visual and thermal images with
the robot at three different locations: start point, hallway
entrance, and room entrance described in the experimental
facility. Each row relates to a series of images from the robot
at three locations. The first row contains visible images of
the robot view. As seen in the visible image at start point,
further information regarding the hallway is limited due to
shadowing of the light. The image at hallway entrance shows
a smoke layer in the upper portion of the hallway due to a
fire inside the room.The image at the room entrance displays
a wood crib fire with sparks. Because of soot and relative
difference in brightness, the background is shown darker and
thus limiting information on the background around the fire.

Thermal infrared images are displayed in the second row
to show information that RGB camera cannot provide in
fire environments. Unlike visual image at start point that
is obscured due to shadowing, the presence of smoke and
its thermal reflections on the ventilation hood can be obvi-
ously perceived. The red boxes on thermal images indicate
objects extracted through the adaptive object extraction with
optical flows and identification numbers. In spite of dense
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Figure 8: Original visible and IR images with image analysis and classification results at different locations in the test setup of actual fires.

smoke-filled and low visibility environments, thermal images
can generate the images of smoke and fire, as well as back-
ground information that is otherwise not visible through
visual imaging.

On the third row, class labels and posterior probabilities
of each candidate are displayed at the center of candidate
ROI as a result of Bayesian classification. Using enhanced
image processing techniques, the thermal images can bemore
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Figure 9: Continued.
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Figure 9: Results of confusion matrix at each feature combination.

refined and clearer than the thermal images on the second
row. Smoke, fire, and their thermal reflections are identified
and marked in red or orange ellipses.

6. Conclusion

The appropriate combination of features was investigated to
accurately classify fire, smoke, and their thermal reflections
using thermal images. Gray-scale 14-bit images from a single
infrared camera were used to extract motion and texture fea-
tures by applying a clustering-based, autothresholding tech-
nique. Bayesian classification is performed to probabilisti-
cally identify multiple classes during real-time implemen-
tation. To find the best combination of features, a multi-
objective genetic algorithm optimization was implemented
using resubstitution and cross-validation errors as objective
functions. Large-scale fire tests with different fire sources

were conducted to create a range of temperature and smoke
conditions to evaluate the feature combinations.

Fifteenmotion and texture features were analyzed and the
probability density functions of the features were computed
by the maximum likelihood estimation. The combination
of multiple features was determined to more accurately
classify fire, smoke, and thermal reflections compared with
a single feature. In the behavioral solution set where feature
combinations produce less than 7% resubstitution and cross-
validation errors, COR, ENT, DIS, SKE, STD, VAR, andMNI
had 80.0% or more occurrence while other features had
40.0% or less occurrence. The feature combination of MNI,
DIS, COR, SKE, and STD produced the highest performance
in the classification resulting in 6.68% and 6.70%, resubstitu-
tion and cross-validation errors, and 95.64%, 97.61%, 96.62%,
and 93.45%, precision, sensitivity, F-measure, and accuracy,
respectively.
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In the near future, the classification of fire, smoke, and
their thermal reflections will be evaluated on any classifiers
and features to increase performance.The convolution neural
network of deep learning which has recently shown high
performance could be explored as a classifier; also model-
based image features such as discrete wavelet transform will
be further studied.

Appendix

See Figure 9.
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This work focuses on Monte Carlo registration methods and their application with autonomous robots. A streaming and an offline
variant are developed, both based on a particle filter. The streaming registration is performed in real-time during data acquisition
with a laser striper allowing for on-the-fly pose estimation.Thus, the acquired data can be instantly utilized, for example, for object
modeling or robot manipulation, and the laser scan can be aborted after convergence. Curvature features are calculated online and
the estimated poses are optimized in the particle weighting step. For sampling the pose particles, uniform, normal, and Bingham
distributions are compared. The methods are evaluated with a high-precision laser striper attached to an industrial robot and with
a noisy Time-of-Flight camera attached to service robots. The shown applications range from robot assisted teleoperation, over
autonomous object modeling, to mobile robot localization.

1. Introduction

Pose estimation is needed in a lot of different robotic
applications, such as object pose estimation for grasping or
manipulating objects, mobile robot localization, or registra-
tion of submodels in 3Dmodeling. Inmany cases a streaming
pose estimation is beneficial or mandatory. One example
is autonomous object modeling: if an object is placed on
a table or other objects are in the proximity, the bottom
or occluded part cannot be modeled without repositioning
the object. However, if the object is repositioned and a
registration is performed with newly acquired data, the
autonomous 3Dmodeling could continue in order to acquire
a complete object model. A streaming pose estimation after
object repositioning has various positive impacts on the
entire approach. First, time is saved as the pose estimation
is readily available after data acquisition. Second, streaming
pose estimation has the potential of reporting convergence
or failure during data acquisition, enabling an autonomous
reaction of the robot, for example, switching to modeling
or rescanning. Third, after convergence, acquired data can
be passed on-the-fly to modeling modules, resulting in a
seamless transition from pose estimation to modeling.

Existing methods do not satisfy the requirements for on-
the-fly global pose estimation. On the one hand, particle
filters for mobile robot localization are able to keep pace with
data acquisition. Unfortunately, they typically work either
locally, are specialized to a certain sensor type, or cope
only with 2D pose estimation. On the other hand, many
global pose estimation methods cannot be adopted to work
streamingly. Recently, we tried to fill this gap by introducing a
particle filter registration [1] and adapting it to streaming pose
estimation [2]. The work is aimed at applying in autonomous
3D modeling of unknown objects with laser stripers [3].

In this paper, we review these Monte Carlo methods
and their performance. We focus especially on streaming
registration, meaning that the pose is estimated on-the-fly
during data acquisition. For autonomous object modeling,
we propose to combine the registration method with the
approach presented in [4] for creating complete object
models. Further, we show various use cases, such as in robot
assisted teleoperation, allowing for partial autonomy when
grasping a power screwdriver as can be seen in Figure 1.

Compared to our previousworks [1–3], new and extended
experiments especially in autonomous 3D modeling and
mobile robot localization are shown (Sections 8.3 and 8.4).
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(a) (b)

(c) (d) (e)

Figure 1: A humanoid robot (a) acquires a depth image of an object scene with a Time-of-Flight camera and registers the model of a power
screwdriver ((c), (d), (e)) which allows for grasping the object (b). (c)–(e) depth values are color coded from red (close) to green (far), and
the located model is shown in blue (points) and gray (CAD).

We enhance the streaming registration by providing a con-
vergence criterion. Moreover, the influence of the sampling
distribution, the introduced pose optimization during parti-
cle weighting, and the convergence criterion are investigated
in detail. The main contributions in contrast to our previous
works are

(i) investigation of the influence of the proposed opti-
mization step frequency on the robustness, reliability,
and accuracy of results;

(ii) investigation of the convergence behavior of the opti-
mization frequency in comparison to the previous
variants;

(iii) definition of a convergence criterion;
(iv) investigation of its influence on the robustness, relia-

bility, and accuracy of results;
(v) application in mobile robotics and comparison to a

standard particle filter.

The remainder of this work is organized as follows.
In Section 2, the related work concerning pose estima-
tion and autonomous object modeling is reviewed. Then,
in Section 3, the scalar features utilized in this work are
introduced. Afterwards, particle filters are shortly reviewed
and their application to registration is derived (Section 4).
In the subsequent two sections, the sampling (Section 5) and
scoring (Section 6) of particles are detailed. In Section 7, a
feasibility studywith the basicMonteCarlomethod for global
registration is performed. In Section 8, real experiments with

the streaming Monte Carlo registration and its results in the
autonomous object modeling and mobile robot localization
scenario are presented.Thework is completed by a conclusion
and a perspective on future work (Section 9).

2. Related Work

Registration is a crucial part of many technical applications
such as reverse engineering, rapid prototyping, or manip-
ulation tasks in manufacturing processes. It denotes the
estimation of an unknown rigid motion between two 3D
models of the same object.

Registration methods can be partitioned into fine (or
local) and coarse (or global) ones. Fine methods require a
good initial guess of the sought-after transformation. Coarse
methods try to estimate the true rigid motion within a global
search space. Both are reviewed in the following. For fine
methods only a short overview including its application to
mobile robot localization is given, as coarsemethods aremore
closely related. Further, related work on real systems which
autonomously model unknown objects is provided.

2.1. Fine Registration Methods. The iterative closest point
(ICP) algorithm [5] is notably the most important represen-
tative of local methods (see [6] for an overview or [7] for
a generalization). However, specialized methods have been
proposed recently for RGB-D cameras [8–10] and image
features [11, 12]. A further local technique related to our work
is tracking with particle filters [13, 14], which is specialized for
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fast local object movement estimation. Choi and Christensen
[10] contribute a RGB-D object tracking approach imple-
mented on a GPU and give an excellent general overview
of particle filters in tracking problems, including edge based
tracking, contour tracking, SLAM, and RGB-D based pose
estimation. Therefore, the reader is referred to that work and
the references cited therein for related tracking methods.

Localization and SLAMofmobile systems are also closely
related but often specialized for local methods or methods
restricted to 2D and could be categorized in between regis-
tration and tracking. A comprehensive overview of mobile
robotics approaches is given by Sturm et al. [6]. Often particle
filters based on pure depth images are used [15] which are
not suitable for the stated problem, as the weighting is time
consuming. Moreover, our estimation problem is not in 2D,
and thus we need a much larger number of particles than
classic mobile robotics particle filters. Additionally, we have
to cope with higher update rates.

2.2. Coarse Registration Methods. In a large number of pub-
lications, contour and shape matching techniques are used,
for which we refer the reader to the work of Ferrari et al. [16]
and the literature cited therein. Note that we consider these
techniques inappropriate for streaming pose estimation with
laser stripers as they are slow and the contour or shape given
by a few laser stripes is not very meaningful.

One of the most common methods in pose estimation is
the random sampling consensus (RANSAC) introduced by
Fischler and Bolles [17]. Its application to registration has
been shown by Chen and Hung [18]. Commonly, subsets of
points, point-normal pairs, or higher-dimensional features
are sampled in the data sets to calculate unique rigidmotions.
Winkelbach [19] contributes an efficient way to sample point-
normal pairs in order to build transformations. Drost et al.
[20] also use point-normal pairs and a variant of the Gener-
alized Hough Transform as voting scheme. Hillenbrand [21]
contributes a robust cluster search in a set of transformations
which are calculated from samples of either point-triples
or point-normal pairs. Rusu et al. [22] use the Fast Point
Feature Histogram in order to assign correspondences and
use a sample consensus method in order to maximize the
3D overlap. Unfortunately, adapting these RANSAC-based
methods to work with streaming data is not possible because
a uniform sampling of points cannot be achieved before all
data is acquired.

Another group of algorithms tries to group correspon-
dences [23] or exploit salient points [24]. Aldoma et al.
[23] evaluate various high-dimensional features for object
recognition with a correspondence grouping method based
on geometric consistency. A “center-star” variant of [24],
followed by RANSAC-based filtering, yields a matching of
similarly spaced point sets. In contrast to Rusu et al. [24]
who search for salient points, points are sampled uniformly.
The reduction to significant points is common. Gelfand et
al. [25] reduce the data to a very small point set and apply
a branch-and-bound algorithm to assign correspondences.
The transformation is calculated by a least squares estimation.
Cheng et al. [26] use a region growing algorithm to calculate

feature areas. In order to find correct correspondences, they
use a relaxation labeling method. Both last methods rely on
finding the unique and correct correspondences of feature
points or areas. Again, this class of algorithms cannot be
adapted to work with streaming data, since global data sets
are needed, especially for feature calculation.

Barequet and Sharir [27] introduce amethod that is based
on the unique decomposability of rigid motions into a rota-
tion and a translation.They iteratively search a discrete space
of rotations by clustering the corresponding translations and
finding the most definite cluster as the best rotation. In a later
paper [28], they modify the method to work with directed
features, that is, feature points with surface normals. They
build ⟨feature point, normal⟩ pairs to directly get possible
rotations (with 1 free DOF).

A similar approach has been proposed by Tombari andDi
Stefano [29]. The features they use yield a complete reference
frame, not only a sole surface normal (as in [28]). Therefore,
a correspondence pair defines a rigid motion, in contrast to
a set of pure rotations. However, the scoring/voting table is
the same (up to a constant translation) as in [28]. In order
to calculate the best translation, Tombari and Di Stefano
apply an ICP iteration to the correspondence pairs after
voting. Barequet and Sharir use the found transformation
directly (ICP can be applied to the whole data set afterwards).
Tombari and Di Stefano also use their method for object
detection and prove that it is more robust and reliable than
other standard methods that use a pose space clustering or
geometric consistency.

Glover et al. [30] use a Bayes filter for pose estimation,
where the rotational part of the transformations is repre-
sented by a Bingham distribution and extend their approach
for multiple object detection in cluttered scenes [31].

Rink et al. [1] reformulate Barequet and Sharir’s approach
as a particle filter and show that, in applications with very
noisy data, relying on accurate surface normals or repro-
ducible reference frames (as in [29]) can fail. Thus, scalar
feature descriptors are proposed. Furthermore, a comparison
to similar strategies [22, 23, 27, 29] is given and the advantages
of explicit integration of prior knowledge about the searched
transformation are presented. In a subsequent paper Rink
et al. [2] advance the idea of particle filtering with scalar
features to streaming pose estimation, adapting the search
space to the space of rigid body transformations and giving
a theoretically sound weighting of particles. The streaming
feature calculation in that approach is based on a streaming
principal component analysis used for tangential plane esti-
mation in streaming mesh construction, proposed originally
by Bodenmüller [32]. In a recent paper, Rink and Kriegel
[3] optimize their method for the application in autonomous
3D modeling. An optimization in the particle weighting
step is introduced and sampling pose particles according
to a truncated Bingham/normal distribution is compared to
uniform sampling. Further, they integrate the streaming pose
estimation into an autonomous 3D modeling approach.

2.3. Autonomous Object Modeling. In autonomous object
modeling, usually a robot-sensor system is utilized to plan
a Next-Best-View (NBV) in order to acquire a 3D model of
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an unknown object. Although the area of NBV planning has
been widely explored [33, 34], there is little research on real
systems for autonomous object modeling.

For the purpose of modeling cultural heritage objects,
Karaszewski et al. [35] present a measurement system
comprising a turntable and a vertically moveable pedestal.
First, they select areas in the boundary area as viewpoint
candidates. Then, low point density areas are selected. The
digitization time is several hours, even for small objects.
Khalfaoui et al. [36] combine an industrial robot, a turntable,
and a very large and expensive fringe projection system. In
order to plan NBVs, they define barely visible surfaces as
viewpoint candidates. They perform a mean shift clustering
for NBV selection. In order to avoid viewpoints being very
close to each other, they use a minimal distance criterion. In
the resulting model, several holes remain. Torabi and Gupta
[37] use a smaller robot with 2D range sensor and focus on
the exploration, not on the object modeling. Vasquez-Gomez
et al. [38] autonomously reconstruct unknown objects with a
mobile manipulator and a Kinect sensor. In order to avoid
collisions, NBVs are sampled in configuration space and
evaluated in Cartesian space.

Kriegel et al. [4] combine an industrial robot with a
laser striper and focus on high quality model acquisition.
Therefore, they define a quality criterion and consider the
surface quality duringNext-Best-Scan (NBS) planning. None
of these approaches are able to obtain the bottom part of
an object. In [39] the last approach [4] is used to create a
pose estimation data set. There, initially occluded parts are
also modeled. However, the objects have to be repositioned
manually about a defined axis quite perfectly because an ICP
is used for registration.

2.4. Distinction. In this work, we present Monte Carlo reg-
istration methods and apply it to different scenarios. The
streaming registration works with pure depth measurements
and is thus not specialized for a particular sensor. Notably
it also works with laser stripers. It is a global method and
works streamingly. To the best of our knowledge, there is
so far no method satisfying these requirements. In addition
to the results presented in [1–3], we perform a more in-
depth analysis of the theoretical basis for the presented
method. Further, we review the Monte Carlo registration
approaches with more details concerning the used sampling
methods. We improve the original methods, especially by
equipping the streaming pose estimation method with a
convergence criterion and perform extended experiments.
Moreover, we combine the registration method with the
approach presented in [4] which focuses on themodeling and
plans NBSs for a laser striper for creating complete object
models. Thus, we extend the autonomous modeling system
by enabling the acquisition of complete object models by
arbitrary repositioning of objects, which has not been done
so far.

3. Features

For a streaming calculation only local features can be used,
since regional or global features are computationally too

expensive. In the literature, various multidimensional fea-
tures exist [22] that work well with a low or moderate level
of noise. In this work scalar features are used for two reasons.
On the one hand, if a small neighborhood radius is used for
feature calculation, a high level of noise increases the number
of false matches [23]. This limits the advantage of the higher
expressiveness over scalar features. On the other hand, with a
large neighborhood radius, an iterative calculation is difficult
to achieve because an exhaustive neighborhood search has to
be performed. Moreover, the scalar curvature features used
in this work already proved to be suitable for an iterative
streaming calculation; see [32] for an application of some of
the features as a qualitymeasure for streaming surface normal
estimation.

Point clouds and triangle meshes are common represen-
tations for 3D sensor data and can be directly computed from
range images or from streams [32]. Examples for angular
features working on different data types are given by Barequet
and Sharir [27]. However, as special data structures are
presumed there, the proposedmean angles formeshes cannot
be used for the situation considered here. In the following we
present some applicable features for homogeneous triangle
meshes and point clouds and show how to compute them
streamingly. Note that every feature point 𝑝 = (𝑐𝑝, 𝑛𝑝, V𝑝) ∈
R3 × S2 × R comprises coordinates 𝑐𝑝, a surface normal 𝑛𝑝
(S2 being the unit sphere), and a feature value V𝑝.

3.1. Normal Cosines in Polygon Meshes and Point Clouds. Let
in the following 𝑝 be a point with surface normal 𝑛𝑝 and
neighborhood𝑁(𝑝). For a 𝑞 ∈ 𝑁(𝑝) \ {𝑝} we define

𝑐 (𝑝, 𝑞) fl cos(𝑛𝑝,
𝑞 − 𝑝
󵄩󵄩󵄩󵄩𝑞 − 𝑝

󵄩󵄩󵄩󵄩
) (1)

and call it normal cosine of 𝑝 and 𝑞. Accordingly, the mean,
maximum, and minimum of {𝑐(𝑝, 𝑞) | 𝑞 ∈ 𝑁(𝑝) \ {𝑝}} are
called the mean normal cosine (MNC), maximum normal
cosine (MaNC), and minimum normal cosine (MiNC) in 𝑝

with neighborhood𝑁(𝑝), respectively.
In this work we use two types of neighborhoods for the

calculation of features, depending on the data structure that
is used. A polygon mesh contains a set of verticesV, a set of
edges E, and a set of polygons. Each edge 𝑒 ∈ E is defined
by two vertices V1, V2 ∈ V, denoted by ⟨V1, V2⟩. When dealing
with homogeneous polygonmeshes, it is reasonable to define
the neighborhood of a vertex 𝑝 ∈ V as all points that are
connected with 𝑝 via 𝑙 edges. It can be defined recursively by
𝑁0(𝑝) = {𝑝} and

𝑁𝑙 (𝑝) fl 𝑁𝑙−1

∪ {𝑞 ∈ V : ∃𝑝̃ ∈ 𝑁𝑙−1 (𝑝) : ⟨𝑝̃, 𝑞⟩ ∈ E} .
(2)

Figure 2 shows the MNC, the MaNC, and the MiNC of a
triangle mesh of a wooden workpiece and their histograms.
Note that points containing border vertices in their neighbor-
hood are excluded from the feature calculation (depicted in
white) because a robust feature calculation is not possible for
this case. Since holes especially arise in high curvature areas,
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Figure 2: (a)–(d) The MNC, MaNC, MiNC, and EVQ13 of a wooden workpiece (high values are light red and low values are blue). (e)–(h)
The corresponding histograms (most frequent value cut-off).

significant features could be incorrectly computed there.Note
that in this case synthetic point data is used for mesh and
feature generation. In nontechnical data sets, the distribution
of the features is often closer to a normal distribution than in
this example.

If point clouds are used or the polygon meshes are not
homogeneous (i.e., edge lengths vary strongly), we use ball
neighborhoods. For a point cloud 𝑃 and a point 𝑝 ∈ 𝑃 let

𝑁𝑟 (𝑝) fl {𝑞 ∈ 𝑃 :
󵄩󵄩󵄩󵄩𝑝 − 𝑞

󵄩󵄩󵄩󵄩 ≤ 𝑟} . (3)

The normal cosine used in practice depends on the objects
that are expected. Our experience is that convex regions in
objects can be extracted with MNC and MiNC and concave
regions with MNC and MaNC. For the general case we
propose the MNC. If mainly convex regions are expected to
be more discriminative we propose the MiNC and if mainly
concave regions are expected we propose the MaNC.

3.2. Point Clouds and Eigenvalues. If no homogeneous poly-
gon mesh or reliable normal estimation is given in advance,
alternative features can be calculated. Let 𝜆1 ≤ 𝜆2 ≤ 𝜆3 be
the eigenvalues of a point neighborhood covariance matrix.
Then 𝜆1/𝜆3 defines a curvature measure and can be used as
geometric feature, denoted as eigenvalue quotient of eigenval-
ues 1 and 3 (EVQ13). The literature on similar features exists
[40–43]. Figures 2(d) and 2(h) show the example features of a
woodenworkpiece. Note thatmissing features do not emerge,
but ambiguity between convex and concave regions arises.

Flat objects like metal sheets do not yield relevant cur-
vature features, disabling a robust pose estimation. In such
cases we use the feature value 𝜆2/𝜆3, denoted as EVQ23.This
feature characterizes border points of the object (see Figure 13
for an example).

3.3. Streaming Feature Calculation. Feature-based streaming
pose estimation requires streaming feature calculation which
is implemented by a processing pipeline comprising three
stages: the density limitation, the normal estimation, and the
feature generation step. The depth points coming from a real-
time data stream have to pass a limitation test in order to
be inserted into the model: each newly acquired point that
is closer than a distance 𝑟𝑟 to any point already inserted into
the model is rejected. Thus, the computational effort can be
controlled because the entire Euclidean point density of the
model is limited. For each point passing the density limitation,
a surface normal is estimated using principal component
analysis for all points within a ball neighborhood with radius
𝑟𝑛. Only points with a robust normal estimation (see [32] for
details) are transferred to the subsequent feature generation
step.

3.3.1. Eigenvalues. At the end of the normal estimation
stage, the eigenvalues of the point neighborhood covari-
ance matrix are readily available from the principal com-
ponent analysis. Thus, the streaming feature calculation
for EVQ13 and EVQ23 is straightforward: if a stable nor-
mal is ready, the corresponding feature point is calculated
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Figure 3:The reduction types (from left to right): removal of biggest bins, removal of leftmost bins, removal of rightmost bins, and randomized
removal in biggest bins.

from the eigenvalues and inserted into the feature point
stream.

3.3.2. Normal Cosines. The proposed angle features are cal-
culated from the point surface normal and the neighborhood
points in the model. Consequently, if a stable normal is
ready and the new point is inserted into the module, the
MNC, MaNC, or MiNC is calculated in the neighborhood of
radius 𝑟𝑛 (immediately available from the normal estimation
stage). Also, all the points in the neighborhood are updated
correspondingly.

3.3.3. Automatic Feature Type Selection. Theoretically, the
most appropriate feature can be automatically selected by
calculating the MNC and evaluating the histogram. For
unimodal symmetric distributions, the MNC should then
be used. If the distribution is skewed, the MiNC could
be used for a heavy left tail and the MaNC for a heavy
right tail. In practice, however, the automatic choice of the
other parameters (like the neighborhood radius or meshing
parameters) used for feature calculation poses a problem,
especially if computation time is an issue.

3.4. Feature Point Reduction, Classification, and Correspon-
dences. Besides the correspondence assignment features can
be used to reduce the data to significant points. On the
one hand this leads to lower computational costs. On the
other hand correspondence assignment is concentrated on

characteristic areas of the object, reducing the number of false
positive correspondences.

Therefore, the feature values are first summarized in a his-
togram.Then the histogram’s bins can be removed iteratively.
Either the biggest bin (see Figure 3) or the leftmost/rightmost
bin is removed until only a given percentage of the original
data remains. Alternatively, it can be useful to keep some
points from the biggest histogram bins, for example, when
dealing with great flat areas. Then, the smallest bins are kept
and from the remaining bins a certain fraction is sampled
so that the desired overall fraction remains in the end.
Figure 3 shows the differences in these reduction strategies
for the MNC. In ((a), (b), (c), (d)), the remaining feature
points are depicted. In ((e), (f), (g), (h)), the corresponding
histograms of feature values are shown. Clearly, the removal
of the biggest bins results in remaining convex and concave
extrema. The removal of the leftmost/rightmost bins results
in remaining convex/concave extrema. In this case, weighted
random reduction in the biggest bins results in evenly sized
bins for the most frequent feature values.

In order to assign correspondences, we use discretized
feature values, so-called feature classes, conferring some
robustness to noisy sensor data. Given a number 𝑛 of feature
classes, the classes are defined uniquely by the maximum
feature 𝑓max, the minimum feature 𝑓min, and an equal bin
width 𝑏 = (𝑓max−𝑓min)/𝑛. In this work, values of 𝑛 = 7, 𝑛 = 5,
or 𝑛 = 3 are used. Then, every feature point of one data set
corresponds to every feature point with a feature of the same
class in the other data set.This implicates a normalization and
allows the data sets to be measured with different sensors.
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Figure 4: The noise in a ToF cam depth image prevents reliable
geometric feature calculation.Thepower screwdriver is colored light
blue.

3.5. Features in Time-of-Flight Camera Data. Robust feature
calculation from noisy Time-of-Flight camera (ToF cam)
data is a special challenge. Figure 4 illustrates the noise with
an exemplary depth image of a power screwdriver. In such
cases, the selection of key points relying purely on geometry
fails. Though, we take advantage of the additional intensity
image provided by ToF cams because optical and geometric
edges often coincide in the data of technical products. In
this particular use case, we search features on the handle
of the screwdriver. On the CAD data template, the fine
geometric features can easily be detected; see Figure 5. In
the real ToF cam depth image, these geometric edges cannot
be found. However, the intensity gradients in the intensity
image include the searched edge at the handle of the power
screwdriver. As they also include the transition between
the shape of the screwdriver and the background, edges in
the range image must be subtracted. Therefore, we use an
image filter combination consisting of dilation, blurring, and
a Canny edge detector on the intensity image as well as
on the depth image to acquire the edges (for filtering the
software OpenCV 2.4 is used). Finally, the depth edge image
is subtracted from the intensity edge image, as shown in
Figure 6. In total, exactly the geometric edges we sought for
are extracted. Section 7.2.2 shows an application and more
details.

4. Monte Carlo Registration

In this section, we introduce the basic Monte Carlo regis-
tration methods. First, we review the general particle filter
and its specialization for registration. Then, the proposed
methods are derived.

4.1. Particle Filter. For a detailed description of particle filters
and their applications the reader is referred to the literature
[10, 13–15]. Here, just the notations used in subsequent sec-
tions are given and the most important points are reviewed.

Let 𝑋 be a random variable and let 𝑓(𝑋 | 𝜃) be the
probability density function (pdf) of𝑋 conditioned on some
parameter 𝜃. Let further 𝑝(𝜃) be the a priori pdf of the
parameter 𝜃.According to Bayes’ rule, after some observation
𝑥 of𝑋, the posterior of 𝜃 is given by

𝑝 (𝜃 | 𝑥) ∝ 𝑓 (𝑥 | 𝜃) 𝑝 (𝜃) , (4)

with ∝ being the symbol for proportionality. If repeated
measurements of𝑋 are carried out, Bayes’ rule can be applied
iteratively (if themeasurements are statistically independent).
Suppose that the state of the parameter 𝜃 changes between
the observations 𝑥𝑖 and 𝑥𝑖+1 of 𝑋 according to a transition
function 𝐴 𝑖:

𝜃𝑖+1 = 𝐴 𝑖 (𝜃𝑖) + 𝜀𝐴𝑖 , (5)

where 𝐴 𝑖(⋅) describes a systematic change with an error
𝜀𝐴𝑖 that follows the pdf 𝑔𝐴𝑖 . The transition 𝐴 𝑖 is changing
over time in many applications. Moreover, 𝜀𝐴𝑖 often depends
on 𝐴 𝑖. Therefore, the pdf 𝑔𝐴𝑖 is changing, too. In the case
of registration, 𝐴 𝑖 as well as 𝜀𝐴𝑖 can be assumed to be
constant. The assumption of first-order Markov chains and
the independence of 𝜃𝑖+1 from 𝑥𝑖 yields

𝑝 (𝜃𝑖+1 | 𝑥𝑖+1, . . . , 𝑥1, 𝜃𝑖, . . . , 𝜃1, 𝐴 𝑖)

= 𝑝 (𝜃𝑖+1 | 𝑥𝑖+1, 𝜃𝑖, 𝐴 𝑖)

∝ 𝑓 (𝑥𝑖+1 | 𝜃𝑖+1, 𝜃𝑖) 𝑝 (𝜃𝑖+1 | 𝜃𝑖, 𝐴 𝑖)

= 𝑓 (𝑥𝑖+1 | 𝜃𝑖+1) 𝑝 (𝜃𝑖+1 | 𝜃𝑖, 𝐴 𝑖) .

(6)

Now let the pdf of 𝜃𝑖 be represented by𝑚𝑖 particles:

(𝜃
𝑗

𝑖
, 𝑤
𝑗

𝑖
)
𝑗=1,...,𝑚𝑖

(7)

with sampled states 𝜃𝑗
𝑖
and corresponding weights𝑤𝑗

𝑖
.After a

transition according to 𝐴 𝑖 and a new observation of 𝑋, new
particles are sampled according to (5). Note that sampling
from the pdf 𝑔(𝜀𝐴𝑖) has to be possible, which is not generally
the case. Therefore, 𝜀𝐴𝑖 is typically assumed to be distributed
normally or uniformly. The new particles are each weighted
with

𝑤
𝑗

𝑖+1
= 𝑓 (𝑥𝑖+1 | 𝜃

𝑗

𝑖+1
) , 𝑗 = 1, . . . , 𝑚𝑖. (8)

Finally, 𝑚𝑖+1 particles are resampled according to these
weights. Thus, particle filtering can be summarized as fol-
lows:

(1) Initialize (𝑖 = 0) the𝑚0 particles 𝜃
𝑗

0
.

(2) Collect data 𝑥𝑖 and weight the particles with

𝑤
𝑗

𝑖
fl 𝑓 (𝑥

𝑗

𝑖
| 𝜃
𝑗

𝑖
) . (9)

(3) Resample𝑚𝑖+1 particles with the weights 𝑤𝑗
𝑖
.

(4) Apply the transition by 𝜃𝑗
𝑖+1

= 𝐴 𝑖(𝜃
𝑗

𝑖
).

(5) Set 𝑖 fl 𝑖 + 1 and return to Step (2).

4.2. Monte Carlo Registration. In the case of Monte Carlo
registration, the particles can either be sampled in the space
of rotations [1] or rigid body transformations [2]. Let T be
the corresponding state space in either case. Further, 𝑇𝑖 ∈ T
denotes the unknown transformation between two models 𝑃
and 𝑄 of the same object at time step 𝑖. Then, every particle
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(a) (b)

Figure 5: Point cloudmodels describing a screwdriver: (a) shows the template point cloudmodel (light blue) and the calculated feature points
(red). (b) shows the cropped depth image with emphasized feature points (red) extracted from the ToF data (before plane deletion).

(a) (b) (c) (d)

Figure 6: Edges detected in croppedToFdata. From (a) to (d) intensity, intensity edges, range edges, and edge difference image. In the intensity
image the color gradient of the handle of the power screwdriver being used as a feature is conspicuous. This gradient can be recognized in
the (d) difference image again.

comprises a transformation 𝑇 ∈ T and a weight 𝑤. The
state transition between two time steps is the identity in the
case of registration because the observed object is notmoving
(𝐴 𝑖 = id). The distribution of the error 𝜀𝐴𝑖 can be assumed
to be a uniform or normal distribution. In each time step 𝑖,
all particles (𝑇, 𝑤) are weighted by the pdf 𝑓(𝑄𝑖 | 𝑇, 𝑃) of
observed data 𝑄𝑖 conditional on the state 𝑇 and the template
model 𝑃. Then, particle filter registration can be summarized
as follows:

(1) sample pose particles initially;

(2) weigh particles by 𝑓(𝑄𝑖 | 𝑇, 𝑃);

(3) resample particles according to their weights;

(4) optionally: adapt some parameters;

(5) sample particles in neighborhoods of existing parti-
cles; return to Step (2) if not converged.

4.3. MCR and SMCR. TheMonte Carlo registration method
presented in [1] is denoted by MCR in this paper. It works
offline and uses all feature points in every weighting step and
the particles are rotations. The particle weighting is done by
a heuristic cluster evaluation.

The streaming Monte Carlo registration method pre-
sented in [2] is denoted by SMCR in this paper. It works
streamingly and can use either new incoming feature points
or all accumulated feature points in the weighting steps. The
particles are rigid body transformations.The particle weight-
ing is done with respect to a truncated normal distribution.
For SMCR, the number of particles, the sampling radii, and
the radius for the score function from Section 6 are adapted
in each Step (4) of Section 4.2. Each of these parameters has a
maximum value and is reduced by a factor of 0.8 in Step (4),
until a minimum value is reached.

5. Sampling Pose Particles

Initially the particles are sampled uniformly in a region
according to the prior knowledge. In the subsequent itera-
tions only neighborhood sampling is performed.This is done
either with truncated uniform distributions or truncated
normal/Bingham distributions. The radius of the truncated
neighborhood can be adapted with convergence over time.

As sampling of translations uniformly or normally in
neighborhoods is trivial, only the sampling of rotations is
detailed here. Rigid body transformations are sampled by
sampling the rotational and translational parts separately.

5.1. Sampling Unit Vectors Uniformly. A prerequisite for
our approach to sample rotations uniformly is to sample
uniformly distributed points in neighborhoods on the unit
sphere S2 in R3. Sampling a point on the unit sphere can be
achieved by the following steps:

(1) Sample V uniformly distributed in [−1; 1].
(2) Sample 𝑢 uniformly distributed in [−𝜋; 𝜋].
(3) Calculate c fl cos(arcsin(V)).
(4) Build 𝑝 = (c ⋅ cos(𝑢), c ⋅ sin(𝑢), V)𝑇.

According to the transformation theorem for densities, 𝑝will
be uniformly distributed on the unit sphere [44].

Let the 𝛼-neighborhood 𝑁𝛼(𝑎) of a vector 𝑎 ∈ S2 be
defined as

𝑁𝛼 (𝑎) fl {𝑎̃ ∈ S
2
| ∠ (𝑎, 𝑎̃) ≤ 𝛼} ,

where 𝛼 ∈ [0, 𝜋] .

(10)

Then, the above approach can be adapted to sample unit
vectors in an 𝛼-neighborhood of the first standard basis
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vector 𝑒1 with 𝛼 ≤ 𝜋/2. Just modify steps one and two as
follows:

(1) Sample V uniformly distributed in [− sin(𝛼); sin(𝛼)].
(2) Sample 𝑢 uniformly distributed in [−𝛼; 𝛼].

This specialization is biased for 𝛼 > 𝜋/2. In this case simple
rejection sampling can be used.

5.2. Sampling Rotations in Neighborhoods Uniformly. In
statistics, various strategies are common to choose priors that
express ignorance about a parameter. In this work, uniform
distributions are used for the initial sampling of transfor-
mations. The most common way to achieve a deterministic
uniform sampling in a space is to build a homogeneous grid
in that space.However, this leads to biased gridswhen dealing
with the common representations of rotations. Sampling
matrices straightforward in this manner is not even possible.
There are sophisticated algorithms for deterministic uniform
sampling of rotations [45–47], but unbiased deterministic
sampling is not possible.

However, uniform sampling in a statistical sense can be
achieved [48, 49] and is advantageous compared to simple
grid sampling on Euler angles [1]. In the remainder of this
section we detail our variant of Shoemake’s method [49] to
sample rotations uniformly in neighborhoods. Let R be the
space of rotations in the remainder. The 𝛼-neighborhood
𝑁𝛼(𝑅) of a rotation 𝑅 is defined as

𝑁𝛼 (𝑅) fl {𝑅̃ ∈ R | 𝑑 (𝑅, 𝑅̃) ≤ 𝛼} ,

where 𝛼 ∈ [0, 𝜋]

(11)

with 𝑑(𝑅, 𝑅̃) being the rotational difference between two
rotations 𝑅, 𝑅̃, that is, the absolute value of the angle of the
axis-angle representation of 𝑅 ∘ 𝑅̃

−1. Let 𝑒1, 𝑒2, 𝑒3 be the basis
vectors of the base coordinate system. In order to sample
rotations on 𝛼-neighborhoods, we represent a rotation by the
transformed coordinate system 𝑒̃1, 𝑒̃2, 𝑒̃3, that is, the columns
of the rotation matrix. Sampling rotations in a neighborhood
𝑁𝛼(𝑅) of 𝑅 is done by sampling a rotation 𝑅𝛼 in 𝑁𝛼(id) and
calculating 𝑅̃ = 𝑅 ∘ 𝑅𝛼. In order to sample in 𝑁𝛼(id), we
propose the following procedure (see Figure 7):

(1) Sample 𝑒̃1 in the 𝛼-neighborhood of 𝑒1.
(2) Calculate the vector

V3 =
{

{

{

𝑒3, if 𝑒̃1 = ±𝑒2,

𝑒̃1 × 𝑒2, else.
(12)

(3) Calculate the vector V2 = V3 × 𝑒̃1.
(4) Rotate vectors V2, V3 around 𝑒̃1 with a random angle

𝜑 onto 𝑒̃2 and 𝑒̃3. If 𝛼 < 𝜋/2 sample 𝜑 in [−𝛼; 𝛼].
Otherwise, sample 𝜑 in ] − 𝜋; 𝜋].

(5) Build the rotation matrix 𝑅 fl (𝑒̃1, 𝑒̃2, 𝑒̃3). If the
rotation angle holds 𝑑(𝑅, id) ≤ 𝛼 accept it; else return
to Step (1).

ẽ1 × e2 =: �3 e3
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Figure 7: Uniform neighborhood sampling of rotations: 𝑒̃1 is
sampled uniformly in the 𝛼-neighborhood of 𝑒1.Then V2 is chosen
perpendicular to 𝑒̃1 and in the plane spanned by 𝑒̃1 and 𝑒2. Rotating
around 𝑒̃1 with a random angle smaller than𝛼makes V2 independent
of 𝑒̃1.

Figure 7 illustrates these relations: V2 is perpendicular to
V3, which in turn is perpendicular to 𝑒̃1 and 𝑒2. Therefore, V2
lies in the plane spanned by 𝑒̃1 and 𝑒2 and thus V2 is as close
as possible to 𝑒2 conditioned on a fixed 𝑒̃1. This assures an
overall rotation angle as small as possible before applying the
random rotation around 𝑒̃1 in Step (4). Rotating around 𝑒̃1
moves V2 onto 𝑒̃2. For 𝛼 < 𝜋/2, rotations around 𝑒̃1 by an
angle greater than 𝛼 cause V2 to leave the 𝛼-neighborhood of
𝑒2. For 𝛼 ≥ 𝜋/2, this is not necessarily the case. Together, this
motivates Step (4) because each transformed basis vector 𝑒̃𝑖
must not lie outside the 𝛼-neighborhood of the basis vector
𝑒𝑖 if the resulting rotation is to lie in the 𝛼-neighborhood of
the identity. Rotations that lie outside the neighborhood are
removed by Step (5). Figure 8(a) shows uniformly sampled
rotations in an 𝛼-neighborhood with 𝛼 = 90

∘. The rotations
are represented by the transformed unit vectors 𝑒̃1 and 𝑒̃3, that
is, the first and last columns of the corresponding rotation
matrix. For better visibility, 𝑒2 was left out.

5.3. Truncated Bingham Sampling. On the space of rotations,
no normal distribution exists, though so-called projected
Gaussians have been proposed [50]. Most similar are special
cases of Bingham distributions, which have already been
used for pose estimation [30]. We propose to sample from
a truncated special case of a Bingham distribution, with
rejection sampling. Shortly, after sampling a rotation 𝑅

uniformly in an 𝛼-neighborhood of a rotation 𝑅̃, we do
rejection sampling with the weight exp(𝑑(𝑅, 𝑅̃)2/2𝜎2). This
sampling strategy is easy to implement and if 𝜎2 is chosen
appropriately (independent of 𝛼), the computation time is
negligible compared to the weighting step of the particles.
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Figure 8: Uniformly (a) and truncated Bingham (b) distributed rotations: 105 images 𝑅(𝑒1) (red), 𝑅(𝑒2) (green, removed in (a) for better
visibility), and 𝑅(𝑒3) (blue) with neighborhood radius 𝛼 = 90

∘ from different views. Variance of the normal is 𝜎2 = (18
∘
)
2
.

Figure 8(b) shows truncated Bingham sampled rotations in a
neighborhood of radius 90∘. For better visibility, the normal
distribution’s variance is chosen as 18∘ in this example. In
practice, we choose the standard deviation to be half the
neighborhood radius.

6. Scoring Pose Particles

In this section, the scoring methods for rotations and rigid
body transformations are presented. Scoring of a rotation
is done by a cluster evaluation on the set of corresponding
possible translations. This voting scheme is very similar to
the generalized Hough transform. Scoring of a rigid body
transformation is done by evaluating a truncated normal pdf.
The former voting scheme is used in MCR and the latter in
SMCR.

6.1. Scoring Rotations. In order to score a rotation, it is first
applied to the corresponding data set. Then, all translational
differences between all corresponding points are calculated
(correspondences between the data sets are defined by equal
feature classes). These differences define the set of all pos-
sible translations for the considered rotation. In order to
find the one rotation with the most clustered set of such
translations, two strategies are considered in this work. The
first is to store the translations in a three-dimensional voting
table and use the maximum number of elements in one
bin as score. This method will be denoted in table in the
remainder and is detailed in [27–29]. The second is to store
the translations in a voxel space and use the maximum
number of neighbors in a ball neighborhood as score; see
Figure 9. This scoring method will be denoted as nb and
was originally presented in [1]. The pdf 𝑓(𝑄𝑖 | 𝑅, 𝑃) (see
Section 4.2) cannot be used as score function, since it is
not known and there is no reasonable assumption about
it.

Figure 9: Scoring rotations: the maximum number of translations
in a ball neighborhood in the set of translations defines a score for
the clusteredness.

6.2. Scoring Rigid Body Transformations. The scores of the
particles representing rigid body transformations are calcu-
lated according to a truncated normal distribution of the
feature point coordinates, conditional on the pose. Let𝑃,𝑄 be
the feature point sets of the template and the incoming data,
correspondingly. Further, let the features be classified; that is,
V𝑝 is a discrete category for every 𝑝 ∈ 𝑃 (and correspondingly
for 𝑄). Every particle describes a rigid body transformation
𝑇 = (𝑅, 𝑡), defined by a rotation 𝑅 and a translation 𝑡. In
the following, 𝑞 ∈ 𝑄 is corresponding to 𝑝 ∈ 𝑃. For a
known transformation 𝑇 between data and template, it is
reasonable to assume that 𝑐𝑞 follows a normal distribution
with expectation 𝑇(𝑐𝑝) and a covariance matrix Σ = 𝜎

2
⋅ id.

If the errors are identically and independently distributed
and a set of feature points p = {𝑝1, . . . , 𝑝𝑛} and a set of
correspondences q = {𝑞1, . . . , 𝑞𝑛} are given, the conditional
pdf of all feature point locations is

𝑓 (q | 𝑇, p) ∝ exp(− 1

2𝜎2

𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑐𝑝𝑖) − 𝑐𝑞𝑖

󵄩󵄩󵄩󵄩󵄩

2

) . (13)

The corresponding𝑝𝑖 are approximated by the nearest feature
point to 𝑞𝑖 with the same feature class:

𝑝𝑖 fl arg min
𝑝∈𝑃,V𝑝=V𝑞𝑖

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑐𝑝) , 𝑐𝑞𝑖

󵄩󵄩󵄩󵄩󵄩
. (14)
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For a 𝑞with erroneous feature class, no correct corresponding
𝑝 will be found in the template. The best we can do in this
case is to assume a uniform distribution of the feature point
location, conditional on a wrong corresponding 𝑝. For some
distance threshold 𝑟max we define

𝑑𝑖 fl min {󵄩󵄩󵄩󵄩󵄩𝑇 (𝑐𝑝𝑖) − 𝑐𝑞𝑖
󵄩󵄩󵄩󵄩󵄩
, 𝑟max} (15)

and adopt (13) to

𝑓 (q | 𝑇, p) ∝ exp(− 1

2𝜎2

𝑛

∑
𝑖=1

𝑑
2

𝑖
) (16)

which corresponds to (truncated) normally distributed errors
if the correspondences are found within a radius 𝑟max and
uniformly distributed errors if not (with the density equal to
that of the truncated normal at its boundary). This is actually
an improper pdf because its integral is unbounded. Neverthe-
less, sampling importance resampling [51] is possible with it.
Thus, each transformation 𝑇 is scored with feature points 𝑄
as follows. First, each point 𝑞𝑖 ∈ 𝑄 is classified according to
the class borders of the template. It is transformed to 𝑐𝑞

𝑖

fl
𝑇
−1
(𝑐𝑞𝑖) and the template model is searched for the nearest

feature point 𝑝𝑖 of the same feature class. The corresponding
distance is denoted as 𝑑𝑖 fl ‖𝑐𝑞

𝑖

−𝑐𝑝𝑖‖. If no such point is found
within the search radius 𝑟max, the distance is set to this radius
(𝑑𝑖 fl 𝑟max). Based on the distances 𝑑𝑖 of all available feature
points 𝑝𝑖, the particle weight is defined by

𝑤 (𝑇) fl exp(− 1

2𝜎2

𝑛

∑
𝑖=1

𝑑
2

𝑖
) . (17)

6.2.1. Scoring Variants. Theoretically, a particle filter uses
only statistically independent measurements for each update;
that is, only new incoming feature points are utilized for 𝑄.
Let therefore 𝑄𝑗 be the incoming set of feature points at time
step 𝑗. The results in Section 8.2 will show that 𝑄 = 𝑄𝑗
leads to poor convergence behavior. The convergence can
be improved by using all previously measured feature points
for 𝑄; that is, 𝑄 fl ⋃

𝑗

𝑘=0
𝑄𝑘. In order to distinguish the

two scoring variants, we call the former streaming particle
filter registration (SPFR) and the latter streaming Monte Carlo
registration (SMCR) in the remainder. As shown in [2, 3]
and reviewed in Section 8.2, SMCR has a better convergence
behavior. Note that the offline variant MCR for global
registration always uses all feature points.

6.2.2. Optimization. If a 𝑝𝑖 with 𝑑𝑖 ≤ 𝑟max according to (14)
and (15) is found, it defines a correspondence to 𝑞𝑖.Thus, each
particle yields a set of correspondences in the weighting step.
In order to correct the pose particle, these correspondences
can be used for an ICP iteration. If such an optimization
step is applied, the method is denoted by SMCRO in the
remainder. An additional subscript defines the frequency
of such an optimization; for example, SMCRO5 denotes an
optimization in every fifth update.

Figure 10: The two data sets obtained by selecting parts of the
Stanford Bunny.

6.2.3. Convergence Criterion. One advantage of streaming
pose estimation is the possibility of stopping data acquisition
as soon as the estimation converged. For this purpose a
convergence criterion for SMCR is introduced. In every
update step we calculate the rotational and translational
difference of the highest rated transformation to the highest
rated transformation from the last step. If the differences are
below some thresholds 𝑐𝑟 and 𝑐𝑡 in five consecutive steps, the
calculation is aborted. We combine the optimization in every
step with this criterion and denote the method by SMCRC.

7. Feasibility Study with MCR

In this section, we briefly summarize the most important
results that are obtained with MCR. For a more detailed
review, the reader is referred to [1]. The results serve as feasi-
bility study on the question, whether this kind of particle filter
can compete with the state-of-the-art registration methods.
Otherwise, the effort of developing a streaming variant would
not be justified.

7.1. Validation with Artificial Data. For the validation with
artificial data, two submeshes of the well-known Stanford
Bunny are extracted; see Figure 10.The computing time 𝑡, the
mean rotational error 𝜌, and the percentage of successful esti-
mations sr are investigated. A successful estimation is defined
by a rotational error less than 20

∘ and reflects robustness as
such errors can be equalized by ICP. All experiments in this
sectionwere performed by 1000 test runs. In each of these test
runs, the underlying rotation was chosen randomly.

First, three different sampling strategies are examined.
The first is the original one [27], denoted by det in the
following. There, rotations are represented by Euler angles
and sampled initially on a homogeneous grid with resolution
𝜌0. In each further step only the best rotation is kept and
neighboring rotations are resampled on a local grid with 27
grid points, including the currently best rotation as center
point. Subsequently, two stages are carried out: a coarse
neighborhood search and a fine neighborhood search. The
initial grid resolutions of the coarse and fine search are
denoted by 𝜌1 and 𝜌2 in the following. Both in the coarse and
in the fine search the grid resolution is adapted depending on
whether a better rotation has been found in the last step or
not. If a better rotation has been found in the coarse search,
the local grid sampling is repeated around that rotation with
the initial coarse resolution 𝜌1; otherwise the local search
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Table 1: Mean computing time 𝑡, mean rotational error 𝜌 in degree,
and number of successful estimations in percent 𝑛(𝜌). Entries are for
sampling types det/randdet/rand.

(𝜌0, 𝜌1, 𝜌2) (5, 3, 1) (20, 10, 5) (50, 20, 10)
𝑡 [s] 102/134/179 10/9/11 1.7/1.8/0.5
𝜌 [deg] 77/43/11 15/13/7 73/63/88
sr [%] 45/54/95 93/95.4/98.6 60/64.5/20

is repeated with with a doubled resolution. If a maximum
resolution is exceeded, the coarse search is aborted. Then,
the fine search is started with the initial resolution 𝜌2. If
a better rotation can be found, the local grid sampling is
repeated around that rotation with the initial fine resolution
𝜌2; otherwise the current resolution is cut in half and the local
search is repeated. If the resolution falls below a minimum,
the search is finished.

The second sampling strategy (denoted by randdet) is a
mixture of discrete and random sampling: the initial samples
are drawn as before. The neighborhood search is performed
by randomly sampling 27 new rotations in the neighborhood
(with adapted radius as before) of the best rotation of the
previous step.

The third method is denoted by rand and is an important
resampling approach: in every step samples are drawn ran-
domly and resampled according to the scores. Therefore, not
only in the neighborhood of the best rotation new samples are
drawn, but in the neighborhood of all rotations. In order to
assure comparability, initially the same number of rotations
is sampled as in the first method. This number is defined by
the initial resolution 𝜌0. In each further step, the number of
samples and the neighborhood radius are reduced by a factor
of 0.5.

As convergence to the correct rotation is assumed, the
resolution in the scoring (the bin width of table or the
ball radius of nb in Section 6.1) is also adapted for each
sampling stage. Sampling with det comprises three stages: an
initial, a coarse, and a fine search. The bin widths of table
in these stages are denoted as 𝜏0, 𝜏1, 𝜏2, respectively, and are
decreasing: 𝜏0 > 𝜏1 > 𝜏2.

The results concerning sampling and scoring strategies
are depicted in Tables 1 and 2 and can be summarized
as follows: if the particle number is chosen properly, the
proposed sampling randoutperforms the originalmethoddet
concerning robustness and accuracy. The proposed scoring
method nb yields slightly better results in accuracy and
robustness compared to the original table. Though a com-
putationally expensive neighborhood search in an octree has
to be performed and thus computation time is much higher
compared to computing a discretized 3D vote. Therefore, nb
can only be recommended if computation time is irrelevant.
Therefore, table and rand are used in the remainder.

Finally, a comparison of MCR to alternative approaches
implemented in PCL was performed. These are the Hough
voting method of Tombari and Di Stefano [29], the Geomet-
ric Consistency (GC) approach used by Aldoma et al. [23],
and the SAC-IA method of Rusu et al. [22]. Figure 11 shows

Table 2: Mean computing time 𝑡, mean rotational error 𝜌 in degree,
and number of successful estimations in percent. Entries are for
scoring methods table and nb.

(𝜏0, 𝜏1, 𝜏2) (1, 0.8, 0.5) (3, 2, 1) (5, 3, 1)
𝑡 [s] 10/60 5/41 5/69
𝜌 [deg] 53/56 47/35 39/36
sr [%] 61/63 65/73 69/73

GC Hough SAC-IA_1k SAC-IA_3k MCR
0

20

40

60

80

100

120

140

160

180

Figure 11:The rotational errors for the Stanford Bunny, comparison
with methods available in PCL. A standard boxplot from python’s
matplotlib-package is overlaidwith a density plot, in order to capture
the multimodal distribution of the errors.

violin plots [52] of the results, including two versions of SAC-
IA, first with the default 1000 (1k) iterations, then with an
increased number of 3000 (3k) iterations. Notably, SAC-IA
always runs up to the maximum allowed number (1000 or
3000 in this test). It maximizes the overlap quality directly
and therefore performs well with low-dimensional features
that are not as descriptive. Typically an increased number of
iterations is needed to outperform MCR. MCR and SAC-IA
clearly outperformed both GC and Hough when using the
scalar features.

7.2. Experiments with Real Data. In the following, selected
results with real data from different 3D sensors are presented,
showing the effectiveness of MCR under hard conditions like
small overlap areas and noisy data.

7.2.1. Registration with Laser Striper. In the first experiments,
we use theDLRMultisensory 3DModeler [53] that comprises
a laser-line projector and a stereocamera system, implement-
ing a laser-stripe range sensor. It is attached to a 6 DOF
industrial robot, the KUKA KR16-2.

Registration of a Wooden Workpiece. Figures 12(a), 12(b),
12(c), and 12(d) show the feature points and the reduced fea-
ture points used to match two scans of a wooden workpiece.
Figures 12(e) and 12(f) show the result: the complete surface
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Modeling a wooden workpiece. Two sets of feature points ((a) and (b)), the reduced feature points ((c) and (d)), and the result
after registration ((e) and (f)): the remeshed model (e) and the whole model with textures (f).

(a) (b) (c)

(d)

(e) (f) (g)

Figure 13: Modeling a steel sheet. ((a), (b), (c)) Reference triangle mesh, feature points, and reduced feature points (from left to right). ((d)
and (e)) Partial scans of the object—feature points (d) and reduced feature points (e). ((f) and (g)) Photo/texture of the object and remeshed
and texture-mapped (from left to right).

model after registration and remeshing on (e), with mapped
textures on (f).

Registration of Steel Sheets. In this case, the problem is to
map texture to a high quality 3D surface model. In order
to overcome the sensor’s problems with reflecting materials
the object is sprayed with developer, losing the original
texture information but gaining a high quality surface model.
Afterwards a low quality surface model with correct texture
(gained from the unsprayed object) is registered to the
first model. Figure 13 shows (from (a) to (g)) the complete
reference surface model, the feature points calculated from
the point cloud (EVQ23, Section 3.2), and the reduced feature
points (rightmost bins have been removed). In the middle
the feature points before (d) and after (e) reduction of the
second measurement are depicted. The texture information

(belonging to the second measurement) from a monocamera
shot and the result, that is, the reference model with mapped
texture, are shown in Figures 13(f) and 13(g).

7.2.2. CAD Model Registration with ToF Camera Images.
Operators in telepresence systems (as in [54]) profit from
semiautonomous functions, like grasping tools for manip-
ulation. Here, we depict a use case where our method is
employed to help the humanoid robot “Justin” grasp a power
screwdriver, as shown in Figure 1. The pose estimation of the
screwdriver is based on one frame of a SwissRanger SR4000
ToF cam fixed on one side of the torso. As the mounting is
known, the screwdriver’s position on a table is assumed to
be known up to 10 cm. Further, two rotational degrees of
freedom (DOF) are known up to a tolerance of 40∘ and 120∘,
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respectively. In this setup themajor challenge is the high noise
of the ToF cam (Figure 4), which additionally produces an
inaccurate extrinsic calibration.

The template feature points for global registration are
calculated from CAD data. As the features we want to
extract define a gap at the handle, concave regions have
to be extracted. Therefore, points on the surface polygons
of the CAD data are sampled and remeshed initially. On
the resulting homogeneous triangle mesh, the MaNC(3) is
calculated and the leftmost bins of the feature histogram are
removed according to Section 3.4, until 30% of the feature
points remain. Figure 5 shows the template point cloudmodel
and the calculated feature points.

From the incoming data, that is, one frame of the
ToF cam, the feature points are extracted as outlined in
Section 3.5. Prior to that, the following strategy is used to
handle the camera data. Considering the roughly known
pose, the acquired depth image of the whole scene and
its corresponding intensity image are 3D-cropped to the
surrounding of the table first. Then, the table top is removed
from the depth image with the help of a plane detection.
Finally, the edges described in Section 3.5 are extracted to be
used as features; see Figure 6.

As feature values do not correspond between template
and measured data, only one feature class comprising all
points is used. This works well as long as two conditions are
met. First, visual and geometric features have to coincide,
which is often the case with technical products. Second, in
order to keep the number of false matches low, there should
be not too many different edges.

Due to the possible incorporation of prior knowledge into
MCR, the initial sample consists of 549 rotations on a grid,
where the two rotational DOFs are sampled in steps of 2∘
and 5

∘, respectively. The pose estimation with MCR is fine
adjusted with a subsequent ICP. The robot fulfills its task
fluently, as the overall computing time is between 1 and 5
seconds. An example of a successfully fitted template in the
original depth image is shown in Figure 1.

In order to prove the methods competitiveness it is
tested against alternative methods as in Section 7.1. Here,
1000 random poses are tested using MCR and the methods
from PCL. Obtaining 1000 real scans with ground truth pose
is problematic. Therefore, the model is aligned to a scan
manually. In order to get 1000 different poses, 1000 random
rotations are applied to it. Figure 14 shows violin plots of the
resulting rotational errors. Summarizing, MCR outperforms
the other methods clearly. Note that the seemingly good
results of SAC-IA are only due to rejected estimations outside
the prior knowledge region. Only in 1% of the cases an
acceptable estimation is obtained. The mean computation
times for SAC-IA, SAC-IA full, and MCR are 0.47 s, 3.54 s,
and 0.14 s, respectively, with under 0.01 s added forMCR ICP
(if ICP correctly converged).

8. Experiments with SMCR

In this section, the main experiments with SMCR are carried
out on an industrial robot and the method is applied to
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Figure 14: Violin plots of the rotational errors for the screwdriver
compared to methods from PCL. Note that the Hough voting
method never finds a solution, GC only in around 66% of the cases,
and SAC-IA in around 1% of the cases (or less, when all points are
used). MCR gives a result in all 1000 runs.

autonomous object modeling. In the following, the utilized
hardware and experimental setup are described. Then, the
results for SMCR are discussed, followed by the integration of
SMCR with autonomous object modeling and an evaluation
of its performance. Further, the application in mobile robot
localization is depicted.

8.1. System Setup. Here, the utilized hardware, test objects,
evaluation criteria, and parameters are described.

8.1.1. Hardware. For the experiments a 6 DOF industrial
robot, the KUKA KR16-2, with mounted laser striper is uti-
lized (see Figure 15). For the KR16-2, the absolute positioning
error is in millimeter range. The streaming Monte Carlo
registration and the autonomous object modeling are run
on an external computer with Quad Xeon W3520 2.67GHz
CPUs and 6GB RAM as the KUKA Robot Control 4 (KRC4)
is not designed for additional modules. The communication
between KRC4 and the external PC is performed at 250Hz
using the KUKA Robot-Sensor Interface. The laser striper is
aMicro-Epsilon ScanControl 2700-100which obtains a stripe
of 640 depth points in a range of 0.3m to 0.6m at 50Hz with
a maximummeasuring error of approx. 0.5mm.

8.1.2. Test Objects and Data. All experiments in Sections 8.1–
8.3 are performed for three objects: a Zeus bust, a bunny, and a
wooden chevron (see Figure 16(a)). These represent different
application domains, namely, cultural heritage, household,
and manufacturing. The approximate height of the Zeus
bust is 22 cm and that of the bunny and chevron 18 cm.
Figure 16(b) shows the calculated features for these objects
and Figure 16(c) the autonomously acquired 3d models (see
Section 8.3).

8.1.3. Evaluation Criteria and Parameters. Similar to Sec-
tion 7, the evaluations are done with respect to the median
of rotational and translational error, denoted by 𝑚𝑡 and 𝑚𝑅,
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Figure 15: An industrial robot with attached laser striper performs a scan of an object placed onto a pedestal. The features are calculated in
a real-time stream and are used to estimate the object’s pose.

(a) The test objects (b) The template models

(c) The autonomously acquired surface models

Figure 16: Zeus bust, bunny, and wooden chevron object (from left to right): the test objects (a) with corresponding template models (b) used
for the experiments and surface models (c) acquired during autonomous object modeling (see Section 8.3.5). Colors in the template model
describe the different feature classes: light/dark red occur in convex regions, blue/purple in concave regions (plane regions are removed).

respectively, and the success rate sr. Here, a success is defined,
if the final error in translation and rotation is below 8mmand
8
∘, which are tighter bounds than in Section 7.

As stated in Section 4, some parameters are adapted (by a
factor of 0.8) in the iterative process. If not stated otherwise,
we use a maximum number of 200 and a minimum number
of 20 particles. The maximum scoring radius 𝑟max starts with
40mm and is bounded from below by 4mm. Neighborhood
sampling of translations starts with a radius of 10mm and is
bounded by 1mm.

8.2. Pose Estimation with SMCR. In this section, first an
overview of the different modules of SMCR and its inte-
gration are given. Then, the influence of prior knowledge
is investigated. Finally, the concept of SMCR is verified by
comparison to offline global methods. Details on the results
can also be found in [2].

8.2.1. Overview. The proposed SMCR method integrates
three modules: the 3D Data Acquisition, the Depth Image
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Figure 17:The SMCRworkflow is divided into three mainmodules:
the 3D Data Acquisition, theDepth Image Stream Processing, and the
Particle Filter. Each module contains different components.

Stream Processing, and the Particle Filter module, as depicted
in Figure 17.

The 3D Data Acquisitionmodule synchronizes the depth
images from the laser scannerwith the pose information from
the robot [55]. Therefore, the resulting depth images contain
the sensor pose in robot coordinates, so that they need not be
aligned to each other.

The depth image stream is handled to the Depth Image
Stream Processing module. Here, the Depth Image Stream
Switch component is dividing the stream again into a pose
stream and a depth image stream. The pose stream is ending
in the SensorMovementDetection component, where the pose
information is evaluated. If the translational or rotational
difference to the last pose used for an update exceeds some
predefined thresholds th𝑡 and th𝑅, respectively, the sensor
has moved significantly, and the particle filter is triggered to
perform an update.

The depth image stream serves for feature point cal-
culation. The depth images are converted to depth points
and passed to the Stream Feature Estimator component (see

Section 3). The resulting feature point stream is handled
to the Stream Feature Classifier component, which classifies
the features according to the class borders of the template.
Finally, the feature point stream is collected in the Feature
Point Collector component from which the Particle Weighter
component acquires the latest feature points on demand.

The Particle Filter module itself contains the Particle
Sampler, the Particle Weighter, and the Particle Resampler
components and works as described in Section 4.The Particle
Sampler component starts sampling the particles when it is
notified by the Sensor Movement Detection component. It
performs a neighborhood sampling of the transformation
particles (see Section 5).When finished, the ParticleWeighter
component acquires the latest feature points from the Feature
Point Collector component. The particle weighting is carried
out according to Section 6. After weighting, the particles are
resampledwith an importance resampling step by the Particle
Resampler.

8.2.2. Data and Parameters. The method is evaluated with
10 different scan paths of the Zeus bust, 8 scan paths of the
bunny, and 5 scan paths of the chevron.The difference in scan
path numbers is due to the different object shapes and the
chevron’s symmetry. In order to ensure independent results,
the scan paths are placed all around the objects. Each test
is repeated 100 times to achieve a meaningful number of
test runs. The tests are performed once on the real robot
and the scan data is saved, as it is not feasible to repeat the
whole scanning process so often. Then, the repeated tests are
performed on the saved data.

The scans are registered to surface models, which are
generatedwith a commercial 3Dmodeling system in advance.
Feature points calculated from these models are depicted in
Figure 16(b). Each feature point set is classified with 5 classes
and the middle class is removed. The reduced feature point
sets serve as template models and are used for registration
during the laser scans.The template models of the bunny, the
chevron, and the Zeus bust consist of 6714, 13075, and 8771
feature points, respectively.

The robot’s pose error during a scan is usually negligible,
concerning the quality of the acquired 3D models. Never-
theless, between two different scans, significant differences of
robot configurations lead to considerable pose errors between
the acquired 3D scan data. In between different scans, there
typically occur gaps of up to 3mm. Therefore, for each scan,
a ground truth estimation is necessary because the resulting
pose estimation accuracy is in the range of millimeters.

The ground truth estimations are calculated by utilizing
MCR, followed by an ICPworking on all acquired raw points.
Correct results are assured by a visual inspection by a human
operator. Moreover, the coordinate root mean square error
after the ICP is checked to be lower than 0.2mm.

8.2.3. Influence of Prior Knowledge. The prior knowledge
about the searched transformation is separated into a transla-
tional and a rotational part.The translational part is expressed
in terms of a cuboid. The volume of that cuboid is denoted
by 𝑉(𝑡) in this section. The rotational part is explained by a
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Table 3: sr,𝑚𝑡, and𝑚𝑅 for different initial a priori knowledge. Fifth
row: only rotations about the 𝑧-axis are sampled.

𝑉(𝑡) 𝑟𝜌 sr 𝑚𝑡/𝑚𝑅

0.48 L 10∘ 0.69 3.8/4.6
0.48 L 20∘ 0.71 3.9/4.0
0.48 L 45∘ 0.68 4.0/4.2
0.48 L 90∘ 0.74 3.2/4.0
0.48 L 90∘ (𝑧) 0.93 0.7/1.0
1.22 L 10∘ 0.69 4.1/4.4
1.22 L 20∘ 0.64 4.3/5.9
1.22 L 45∘ 0.63 4.0/5.5
1.22 L 90∘ 0.71 3.5/4.1
4.00 L 45∘ 0.48 7.2/8.1

mean rotation and a maximum rotational deviation from it.
Additionally, the rotation axis can be assumed to be fixed in
some cases, for example, if the object has been turned around
the 𝑧-axis. The maximal difference from the mean rotation is
denoted 𝑟𝜌. If not stated otherwise, the initial translations are
sampled in a cuboid with an extension of 16 cm × 10 cm ×

3 cm, which corresponds to the approximate position on the
scanning pedestal.

In order to examine the influence of the prior knowledge,
one scan of the bunny is registered to a ground truth surface
model, which was acquired with a commercial scanning
system. Table 3 shows the results. The initial sampling radius
for the rotation seems to have little effect on the success
rate and on 𝑚𝑡/𝑚𝑅: for both fixed 𝑉(𝑡) of 0.48 L and 1.22 L
neither the success rate nor the errors are clearly increasing
or decreasing with increasing radius. The volume of the
cuboid for the initial translation has a clear influence if
increased, as the last row shows. Both the success rate and
the errors are significantly worse for a translational volume
of 4.00 L compared to that of 0.48 L and 1.22 L.This confirms
the suitability in autonomous 3D modeling because there
is often good a priori knowledge about the position of the
object, whereas the rotation cannot be told beforehand. In our
scenario the rotation axis is known approximately, and often
the rotation angle is restricted within a known range.

8.2.4. Comparisons with Offline Methods. This section shows
the comparison of SMCR to MCR and SAC-IA. We chose
SAC-IA as reference because it performs best in the previous
experiments in Section 7. In these experiments high quality
scans are used. Therefore, SAC-IA yields the best results
when applied to the complete point cloud (downsampled to a
density of 3mm) with the FPFH feature, a multidimensional
feature [22], which has been used in these experiments. As
SAC-IA is not taking any prior information into account, it
needs to perform many trials, resulting in long computation
times. Introducing prior information is possible, but the
method slows down a lot by this, as discussed in Section 7.2.2.
Table 4 shows the result for 100 runs with all scans. Again,
SAC-IA works well with 3000 iterations (results can be
improved by using even more trials, but we do not find that
feasible). 𝑍𝑖, 𝐵𝑖, 𝐶𝑖 denote the scans of the Zeus bust, the

bunny, and the chevron, respectively.The highest success rate
and lowest translational and rotational error are highlighted
for each scan.Overall,MCR resulted in the lowest pose errors.
However,MCR took up to 30 seconds and SAC-IA up to a few
minutes in the worst case whereas SMCR did not require any
additional computation time.

Figure 18 highlights one of the cases where both SMCR
and MCR perform poorly but SAC-IA performs relatively
well, in a violin plot in (a). The 𝑍6 scan captures a smooth
surface at the back of the statue’s head (on Figure 18(b)),
which contains relatively few feature points. This results in
larger errors of MCR and SMCR because they rely on local
features. Contrary, SAC-IA uses all the points and FPFH and
manages to find a good transformation in 44% of the cases.
However, the distribution of the errors shows that while SAC-
IA performs better, it fails completely in many cases, which
influences the median not too much. In order to increase
the performance of MCR and SMCR in such cases, more
points could be considered. Though, more points lead to an
increased computation time and introducesmore uncertainty
(due to a higher number of false matches).

8.3. SMCR in Autonomous Object Modeling. In this section,
first an overview is given on how the SMCR workflow (see
Figure 17) is integrated into autonomous object modeling.
Then, the convergence behavior and the performance of
the different streaming registration variants and ICP are
compared. Finally, the accuracy of autonomous modeling
with integrated SMCR and repositioning is compared with
the previous method.

Similar investigations can be found in [2, 3]. In contrast
to those, here the particle optimization and the convergence
behavior and the convergence criterion are investigated in
detail. Basically, only the investigations of the uniform and
Gaussian/Bingham sampling are covered by the previous
publications. But for the sake of comparability with our new
methods, we recomputed these tests as well in this work.

8.3.1. Overview. In this section, the integration of SMCR into
the autonomous 3Dmodeling approach (see [4]) is presented.
As the SMCR workflow has been described in detail in
Section 8.2.1, here we concentrate on the modeling part as
can be seen in the overview in Figure 19. Initially, an arbitrary
laser scan of the unknownobject is performedwith the robot-
sensor system (see Figure 15).The corresponding depth image
stream contains the robot’s pose information and is handled
to three modules: Mesh Update, Probabilistic Space Update,
and Feature Calculation. The features are calculated in real-
time but will be used later for registration after the object
has been repositioned. After updating the mesh and the
probabilistic space, it is checked if the triangle mesh (surface
model) has reached the desired quality, that is, if there are no
holes except for not scannable parts. Then, Next-Best-Scan
Planning, collision-free Motion Planning, and further laser
scans are performed repeatedly, until the quality is reached.
The mesh enables planning possible scan path candidates
and selecting a Next-Best-Scan, in order to reach the desired
surface model quality. The probabilistic space is a volumetric
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Table 4: 100 runs: sr,𝑚𝑡, and𝑚𝑅 and the mean computation time 𝑡 for SMCR, MCR, and SAC-IA.

Data SMCR MCR SAC-IA
sr 𝑚𝑡/𝑚𝑅 sr 𝑚𝑡/𝑚𝑅 𝑡 sr 𝑚𝑡/𝑚𝑅 𝑡

𝑍1 0.51 5.7/5.8 0.60 5.9/6.0 8.6 0.04 11.3/15.6 120.4
𝑍2 0.59 6.0/5.7 0.92 3.8/3.3 14.1 0.26 7.9/11.1 113.1
𝑍3 0.49 7.1/7.8 0.58 4.5/6.9 14.4 0.24 9.1/9.2 109.0
𝑍4 0.50 7.0/7.0 0.80 2.7/4.2 14.1 0.47 5.5/7.8 131.7
𝑍5 0.25 9.4/13.5 0.22 17.8/52.4 10.4 0.92 2.5/3.4 125.8
𝑍6 0.00 16.5/27.1 0.00 19.2/176.9 7.5 0.44 5.6/8.2 114.1
𝑍7 0.34 9.3/9.5 0.00 20.6/169.5 7.6 0.58 5.2/6.0 114.8
𝑍8 0.00 28.3/22.0 0.82 6.2/3.8 8.9 0.11 9.3/12.8 143.2
𝑍9 0.41 7.6/7.6 0.69 4.1/4.8 10.3 0.05 21.5/24.8 80.4
𝑍10 0.04 27.3/11.8 0.00 23.7/124.3 6.9 0.06 14.3/143.3 79.0
𝐵1 0.77 3.7/4.4 0.90 2.9/2.3 6.1 0.02 9.8/18.0 28.4
𝐵2 0.71 3.9/4.0 0.57 2.2/7.4 7.4 0.06 8.2/13.0 30.3
𝐵3 0.61 4.6/5.8 0.93 2.4/2.5 6.8 0.42 5.4/8.4 28.5
𝐵4 0.44 3.9/9.2 0.78 2.7/6.1 4.3 0.22 6.8/11.9 23.0
𝐵5 0.26 6.7/10.5 0.22 5.3/9.0 4.1 0.70 4.1/5.8 28.8
𝐵6 0.15 13.9/10.1 0.58 4.6/4.9 4.4 0.20 7.5/10.4 27.7
𝐵7 0.69 3.8/5.6 0.37 4.2/11.2 4.4 0.17 7.5/12.3 27.6
𝐵8 0.43 6.0/8.5 0.45 4.6/8.7 4.7 0.02 11.0/28.0 23.4
𝐶1 0.15 14.8/10.5 0.66 3.2/4.1 30.8 0.15 13.9/8.1 82.5
𝐶2 0.33 11.8/7.6 0.96 1.4/1.7 23.7 0.14 13.3/9.7 77.0
𝐶3 0.22 14.7/6.6 0.99 1.6/3.9 16.4 0.04 19.2/13.2 63.5
𝐶4 0.17 18.7/8.6 0.52 7.5/4.3 15.9 0.01 39.7/170.0 59.2
𝐶5 0.06 21.8/11.0 0.32 11.8/6.0 15.1 0.00 43.0/26.8 54.5
Units mm/deg mm/deg s mm/deg s
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Figure 18: (a) Violin plots of exemplary translational errors in mm and rotational errors in degree for SMCR (left) and SAC-IA (right) for
scan 𝑧6. (b) Scan 𝑧6 (green) on ground truth model of Zeus.

model considering sensor uncertainties and giving a proba-
bility of occupancy for each voxel. It is used for exploration
by Next-Best Scan Planning and collision avoidance during
Motion Planning. For more details regarding the autonomous
modeling and its modules we refer to [4].

As soon as the desiredmesh quality has been reached, the
object is repositioned in order to model previously occluded
object parts. This is done by rotating it onto one of its
sides. Then, a laser scan is performed along the region of
interest. Again, the Feature Calculation is carried out on-the-
fly. Synchronously, the Particle Filter component iteratively

performs a neighborhood sampling and weighting of the
particles with the incoming feature points. After the laser
scan has finished the pose estimation is instantly available.
Finally, an ICP is used for fine registration, which results
in a precise transformation between the original object
position and the object position after repositioning.Then, the
autonomous modeling is continued until a complete model
is generated. In order to be able to model the object within
the same coordinate system, all further generated laser scans
are transformed by the resulting transformation from the
registration.
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Figure 19: Overview of the integration of autonomous object
modeling with streaming Monte Carlo registration. Gray boxes
represent modules, white ovals robot-sensor system actions, and
blue diamond boxes decisions.

8.3.2. SMCR and ICP with Partially Overlapping Submodels.
In order to show that local methods like ICP cannot be
applied, we register two partially overlapping scans of the
Zeus bust to each other, which poses a higher challenge
than registering a submodel to a complete object model with
low noise. For this purpose, we record 20 different pairs
of overlapping scans (see Figure 20 for an example). To
one of the scans in each pair we apply 10 different random
transformations with translational and rotational variations.
The translation vectors have a maximal norm of 20mm and
the rotations a maximum rotation angle of 45∘, 90∘, 120∘,
or 180∘ around the 𝑧-axis. The prior knowledge in SMCR is
set accordingly, denoted with 𝑍45𝑋,𝑍90𝑋,𝑍120𝑋,𝑍180𝑋,
respectively in Table 5. 𝑍 stands for the object Zeus and 𝑋

presents the different methods described below. After the
SMCR, we apply an ICP with a small search radius (20mm)
and few iterations for fine fitting, denoted by SMCR-ICP.
We compare the results to a pure ICP with a bigger search
radius (50mm), simply denoted by ICP. For each rotation
range we test the original Uniform neighborhood sampling
𝑈, the proposed Gaussian sampling 𝐺, and the Gaussian
sampling with Optimization step 𝑂, denoted by a capital
𝑈, 𝐺, or 𝑂𝑖 in the data names, respectively. For instance,
𝑍90𝑁 denotes the case of uniformly sampled rotations with
a maximal rotation angle of 90∘ for the Zeus bust, and
𝐵120𝑂5 denotes the case of optimization in every 5th step
(normal/Bingham sampling) and amaximal rotation angle of
120
∘ for the bunny. In the table, the highest success rate and

lowest translational and rotational error are highlighted for
each rotation angle over all methods. Overall, the accuracy in
translation and the success rate are increased for SMCRwhen
applying the optimization step.The rotational accuracy is not
generally increased. The effects appear in all rotation ranges.
Concerning pure ICP, it becomes clear that, with increas-
ing rotation range, its performance significantly decreases,
both in accuracy and reliability. SMCR-ICP outperforms
pure ICP clearly, both in reliability and accuracy. Further,

the performance of pure SMCR is also significantly better
than ICP. The frequency of the optimization steps has no
clear effect on the results, neither on pure SMCR nor on
the combination with ICP. Uniform sampling yields slightly
better results than Bingham/Gaussian sampling.

Success rates of about 0.6 of pure SMCR appear to be
pretty small for two reasons: on the one hand, the parameters
are not tuned for the data sets.On the other hand, the partially
overlapping scans are harder to register as it seems at first
glance.Themost descriptive features are not easy to scan and
very similar features are spread over the object. Moreover,
the descriptive features appear more or less randomly in the
data sets because the scan paths are chosen arbitrarily. The
results in the preceding sections show that with this kind of
data other state-of-the-artmethods perform evenworse, even
when registering to a complete high-precision ground truth
surface model.

8.3.3. Convergence Behavior for SPFR, SMCR, and SMCRO.
In this section, the convergence of SMCRO, SMCR, and SPFR
is investigated. In order to account for the application in
autonomous 3D modeling, we first autonomously acquire a
more or less complete model of the bunny and the Zeus
bust (without bottom part). Then, we reposition them on the
scanning pedestal and acquire one scan manually. With this
scan, 1000 repetitions for pose estimation are performed.

The ground truth estimation is calculated by utilizing
MCR, followed by an ICP working on all acquired raw
points of the ten subscans. Correctness is assured by visual
inspection of a human operator.

Therefore, we repeat estimations for one scan path of
the bunny and the Zeus bust 1000 times and calculate the
medians of the translational and rotational errors in each
update step, as depicted in Figure 21. In the case of SMCRO,
the optimization is carried out in every step and every 2nd,
every 5th, or every 10th step. Clearly, SMCR yields better
convergence behavior than SPFR, which does not reach the
success criterion at all. SMCRO in turn converges faster
than SMCR, and the faster the more optimization steps are
performed. Note that, at the update steps, the error medians
often visibly drop down.

However, the optimization needs to be carried out with
caution as, in individual cases, for too early or too many
optimization steps the method may tend to converge to
the wrong transformation, especially for objects with many
symmetries.Therefore we started optimization not before the
5th step in any case.

8.3.4. SMCR and ICP in Autonomous Modeling. In this
section, an extensive evaluation of SPFR, SMCR, and SMCRO
and comparison to ICP are performed. Therefore, a more
or less complete model (without bottom part) of the object
is autonomously acquired initially. Then, the object is repo-
sitioned on the scanning pedestal and 10 different single
scans are performed manually. Each of the manual scans is
transformed by ten different random transformations, giving
a total of 100 different test scans for each object. These are
registered to the corresponding previously acquired complete
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Table 5:𝑚𝑡,𝑚𝑅, and 𝑡 for SMCR with Gaussian (𝐺)/uniform (𝑈) sampling and with optimization (𝑂) step and ICP for 200 tests of partially
overlapping scans of the Zeus bust and 45∘, 90∘, 120∘, and 180∘ rotations.

Data SMCR SMCR-ICP ICP
𝑚𝑡/𝑚𝑅 sr 𝑚𝑡/𝑚𝑅 sr 𝑡 𝑚𝑡/𝑚𝑅 sr 𝑡

𝑍45𝐺 6.3/5.0 0.5 1.7/2.5 0.7 2.1
𝑍45𝑈 6.3/6.3 0.5 1.5/2.7 0.7 2.0
𝑍45𝑂1 2.7/3.4 0.6 1.5/2.3 0.8 1.6 2.8/6.6 0.5 7.1
𝑍45𝑂2 2.9/3.1 0.6 1.6/2.4 0.7 1.8
𝑍45𝑂5 2.7/3.2 0.6 1.4/2.4 0.8 1.7
𝑍45𝑂10 2.5/2.9 0.6 1.4/2.3 0.8 1.8
𝑍90𝐺 7.1/7.8 0.4 1.5/2.7 0.7 2.0
𝑍90𝑈 5.7/7.1 0.5 1.7/3.0 0.7 2.3
𝑍90𝑂1 3.1/3.8 0.6 1.7/2.5 0.7 1.7 12.6/41.9 0.3 7.2
𝑍90𝑂2 3.2/4.7 0.5 1.6/2.4 0.7 2.0
𝑍90𝑂5 3.7/4.2 0.6 1.5/2.4 0.7 1.8
𝑍90𝑂10 3.8/4.5 0.5 1.4/2.3 0.8 1.9
𝑍120𝐺 6.0/5.3 0.5 1.6/2.8 0.7 2.2
𝑍120𝑈 5.7/6.9 0.5 1.6/2.7 0.7 1.9
𝑍120𝑂1 3.7/3.7 0.6 1.5/2.7 0.7 1.8 12.6/53.5 0.2 6.9
𝑍120𝑂2 2.6/4.8 0.6 1.3/2.5 0.8 1.7
𝑍120𝑂5 2.7/2.7 0.6 1.3/2.3 0.8 1.6
𝑍120𝑂10 2.7/4.0 0.6 1.5/2.6 0.7 1.8
𝑍180𝐺 5.3/5.6 0.5 1.6/2.6 0.7 2.1
𝑍180𝑈 4.1/4.9 0.6 1.6/2.3 0.8 1.6
𝑍180𝑂1 2.9/4.0 0.6 1.7/2.2 0.7 1.8 15.2/71.6 0.2 3.7
𝑍180𝑂2 4.0/5.6 0.5 1.6/2.5 0.7 1.9
𝑍180𝑂5 2.7/3.0 0.6 1.5/2.4 0.7 1.6
𝑍180𝑂10 1.8/3.4 0.6 1.4/2.4 0.7 1.7
Units mm/deg mm/deg s mm/deg s

(a) (b) (c)

Figure 20: Two typical scans of Zeus bust before ((a) and (b)) and after alignment (c).

model.Theground truth estimation is calculated byMCRand
an ICP working on the raw points of the ten subscans. Visual
inspection of a human operator assures the correctness.

Goodness of Fit and Success Rates. Table 6 shows the results of
the experiments concerning rotational and translational error
as well as the success rate. In contrast to the experiments in

Section 8.3.2, the registration is performed based on the 3D
model. Additionallywe perform them for the bunny (denoted
by a capital 𝐵) and the chevron (𝐶) objects.

The results of the bunny and the Zeus bust clearly show
that the proposed optimization step yields a higher accuracy
and success rate. Moreover, in many cases, results get better
with increasing optimization frequency. Finally, the errors
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Table 6:𝑚𝑡,𝑚𝑅, and 𝑡 for SMCR with Gaussian (𝐺)/uniform sampling (𝑈), with optimization step (𝑂), with aborting after convergence (𝐶)
and ICP for the Zeus bust (𝑍), the Bunny (𝐵), and the Chevron (𝐶) and 45∘, 90∘, 120∘, and 180∘ rotations.

Data SMCR SMCR-ICP ICP
𝑚𝑡/𝑚𝑅 sr 𝑚𝑡/𝑚𝑅 sr 𝑡 𝑚𝑡/𝑚𝑅 sr 𝑡

𝑍45𝐺 3.1/2.3 0.7 0.4/0.4 0.9 1.6
𝑍45𝑈 2.8/1.8 0.7 0.3/0.4 0.9 1.4
𝑍45𝑂1 0.9/0.4 0.8 0.4/0.4 0.9 2.6 0.9/1.8 0.6 10.9
𝑍45𝑂2 1.1/0.6 0.8 0.4/0.3 1.0 2.9
𝑍45𝑂5 1.3/1.3 0.8 0.4/0.4 1.0 3.4
𝑍45𝑂10 1.3/1.1 0.8 0.4/0.3 0.9 3.5
𝑍45𝐶 1.3/0.9 0.9 0.3/0.4 1.0 1.3 0.6 10.6
𝑍90𝐺 5.3/4.3 0.6 0.5/0.5 0.8 1.7
𝑍90𝑈 2.7/1.8 0.6 0.4/0.4 0.9 1.7
𝑍90𝑂1 0.9/0.4 0.8 0.4/0.4 0.9 2.9 2.0/11.3 0.4 9.7
𝑍90𝑂2 1.1/0.5 0.8 0.4/0.4 0.9 3.2
𝑍90𝑂5 1.5/1.4 0.8 0.4/0.4 0.8 3.5
𝑍90𝑂10 2.6/1.7 0.7 0.4/0.4 0.8 4.4
𝑍90𝐶 1.1/0.8 0.8 0.4/0.4 0.9 1.3 0.4 10.4
𝑍120𝐺 5.3/4.6 0.5 0.5/0.5 0.8 1.8
𝑍120𝑈 4.5/3.0 0.6 0.6/0.4 0.8 1.4
𝑍120𝑂1 0.8/0.3 0.8 0.4/0.4 0.9 2.7 7.2/41.5 0.4 10.6
𝑍120𝑂2 1.2/0.6 0.8 0.4/0.4 0.9 2.5
𝑍120𝑂5 1.3/1.4 0.7 0.4/0.4 0.9 2.4
𝑍120𝑂10 2.2/1.9 0.6 0.4/0.4 0.8 2.7
𝑍120𝐶 1.3/1.0 0.7 0.4/0.4 0.8 1.4
𝑍180𝐺 8.8/6.2 0.5 0.7/0.5 0.8 1.8
𝑍180𝑈 6.1/6.4 0.5 0.7/0.5 0.7 1.7
𝑍180𝑂1 1.0/0.5 0.7 0.4/0.5 0.8 2.4 10.8/51.9 0.3 10.3
𝑍180𝑂2 1.3/0.9 0.7 0.4/0.5 0.8 2.4
𝑍180𝑂5 1.5/2.0 0.7 0.4/0.5 0.8 2.5
𝑍180𝑂10 2.6/2.0 0.6 0.4/0.5 0.8 2.7
𝑍180𝐶 1.6/1.1 0.6 0.5/0.4 0.8 1.5
𝐵45𝐺 7.1/8.3 0.3 0.7/0.2 0.9 1.0
𝐵45𝑈 6.7/7.0 0.6 0.7/0.2 1.0 0.9
𝐵45𝑂1 0.7/0.3 0.9 0.7/0.2 1.0 2.0 0.6/0.3 1.0 2.6
𝐵45𝑂2 0.7/0.5 0.9 0.7/0.2 0.9 0.9
𝐵45𝑂5 1.0/1.3 0.9 0.7/0.2 0.9 0.9
𝐵45𝑂10 3.1/4.4 0.7 0.7/0.2 1.0 0.9
𝐵45𝐶 0.8/0.8 0.9 0.7/0.2 0.9 1.0
𝐵90𝐺 7.4/8.9 0.3 0.7/0.2 0.9 1.0
𝐵90𝑈 6.7/8.5 0.4 0.7/0.3 0.9 0.9
𝐵90𝑂1 0.7/0.4 0.9 0.7/0.2 0.9 2.3 0.7/0.3 0.8 2.9
𝐵90𝑂2 0.7/0.8 0.8 0.7/0.2 0.9 2.6
𝐵90𝑂5 1.4/2.3 0.8 0.7/0.2 0.9 2.7
𝐵90𝑂10 4.2/6.5 0.6 0.7/0.2 0.9 3.0
𝐵90𝐶 0.8/0.8 0.8 0.7/0.2 0.9 1.1
𝐵120𝐺 8.3/10.3 0.3 0.7/0.2 0.9 1.1
𝐵120𝑈 6.9/7.6 0.4 0.7/0.2 0.9 1.0
𝐵120𝑂1 0.7/0.4 0.9 0.7/0.2 0.9 2.4 0.8/0.3 0.7 3.0
𝐵120𝑂2 0.8/0.7 0.8 0.7/0.2 0.9 2.4
𝐵120𝑂5 1.9/2.7 0.8 0.7/0.2 0.9 2.9
𝐵120𝑂10 4.2/6.1 0.6 0.7/0.2 0.9 3.3
𝐵120𝐶 0.8/0.8 0.9 0.7/0.2 0.9 1.2
𝐵180𝐺 9.3/11.9 0.2 0.7/0.2 0.9 1.2
𝐵180𝑈 8.1/11.7 0.3 0.7/0.2 0.9 1.1
𝐵180𝑂1 0.7/0.4 0.8 0.7/0.2 0.9 2.5 12.3/128.5 0.4 3.1
𝐵180𝑂2 0.8/0.7 0.8 0.7/0.2 0.9 2.6
𝐵180𝑂5 1.6/2.2 0.7 0.7/0.2 0.8 2.7
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Table 6: Continued.

Data SMCR SMCR-ICP ICP
𝑚𝑡/𝑚𝑅 sr 𝑚𝑡/𝑚𝑅 sr 𝑡 𝑚𝑡/𝑚𝑅 sr 𝑡

𝐵180𝑂10 5.4/9.0 0.4 0.7/0.2 0.9 3.4
𝐵180𝐶 0.8/0.9 0.8 0.7/0.3 0.9 1.2
𝐶45𝐺 12.3/0.9 0.4 2.2/0.9 0.6 1.9
𝐶45𝑈 9.5/0.8 0.5 1.9/1.1 0.7 1.9
𝐶45𝑂1 5.8/1.1 0.5 2.3/1.2 0.6 2.2 1.7/0.8 0.9 7.1
𝐶45𝑂2 5.1/1.3 0.5 2.2/1.2 0.6 2.3
𝐶45𝑂5 8.9/1.8 0.5 2.2/1.2 0.6 2.5
𝐶45𝑂10 5.8/1.5 0.6 1.8/1.1 0.8 2.6
𝐶45𝐶 13.0/2.3 0.4 4.8/1.3 0.5 1.9
𝐶90𝐺 11.4/1.0 0.4 2.2/1.0 0.6 1.9
𝐶90𝑈 15.5/1.1 0.3 2.2/1.3 0.6 1.9
𝐶90𝑂1 4.0/1.2 0.6 2.2/1.2 0.7 2.2 1.7/0.9 0.9 8.0
𝐶90𝑂2 4.9/1.1 0.6 2.2/1.2 0.6 2.3
𝐶90𝑂5 7.0/1.9 0.5 2.6/1.3 0.6 2.5
𝐶90𝑂10 9.8/1.4 0.5 2.2/1.1 0.6 2.7
𝐶90𝐶 15.4/2.7 0.3 9.6/1.4 0.5 1.9
𝐶120𝐺 15.3/1.1 0.3 7.4/1.3 0.5 1.7
𝐶120𝑈 13.8/1.2 0.4 2.2/1.3 0.6 1.8
𝐶120𝑂1 10.8/1.1 0.5 2.5/1.3 0.6 2.2 2.4/1.0 0.7 7.0
𝐶120𝑂2 6.4/1.2 0.5 2.2/1.2 0.6 2.2
𝐶120𝑂5 11.8/1.8 0.4 3.9/1.3 0.5 2.3
𝐶120𝑂10 14.2/1.4 0.4 2.6/1.0 0.5 2.5
𝐶120𝐶 14.1/2.8 0.4 8.3/1.3 0.5 1.9
𝐶180𝐺 18.4/5.2 0.1 12.3/2.1 0.4 1.7
𝐶180𝑈 17.0/3.0 0.2 11.2/2.1 0.4 1.6
𝐶180𝑂1 14.0/1.1 0.3 11.6/2.1 0.4 2.1 6.0/1.5 0.6 7.3
𝐶180𝑂2 13.5/1.5 0.4 9.5/1.3 0.5 2.3
𝐶180𝑂5 16.5/2.3 0.2 12.0/2.0 0.4 2.5
𝐶180𝑂10 13.6/1.9 0.3 2.5/1.3 0.6 2.6
𝐶180𝐶 15.3/3.6 0.2 12.3/2.1 0.4 1.8
Units mm/deg mm/deg s mm/deg s

with SMCR-ICP are only slightly smaller than with the
optimization in every step.

SMCR itself performs good, but accuracy is not compara-
ble to the ICP (if both are successful).The proposed Gaussian
sampling does not lead to higher accuracy or success rates.
The accuracy aswell as the success rate is notmuch influenced
in the example of the bunny.The opposite is true for the Zeus
bust. The pure ICP is working surprisingly good, especially
with the chevron, though it gets unusable for rotation angles
over 45∘ for the bust. SMCR-ICP works extremely good, even
in cases when SMCR yields problematic results.

Concerning the chevron, the rotation is estimated pretty
good by all methods and the translation very bad espcially
when allowing for large rotations. Note that the low median
in the ICP results is misleading, as the success rates are
pretty low, compared to the results with the Zeus bust and
the bunny. An explanation could be that on the one hand
the chevron has big flat surface areas which allow a robust
estimation of rotations. On the other hand, this seems to
allow the translation to slide along these areas, especially
vertically along the triangular part. Additionally, there are
a lot of spurious measurements, including the pedestal the
object is placed on.

Convergence Criterion. The results obtained with the appli-
cation of the convergence criterion (SMCRC) are denoted
with a capital 𝐶 as last letter in the table rows of Table 6; for
example, 𝑍45𝐶 denotes the experiments with the Zeus bust
for an angle of 45∘ and with abortion due to convergence.
In the tests, we used convergence thresholds of 𝑐𝑡 = 2mm
and 𝑐𝑟 = 2

∘ (see Section 6.2.3). Concerning the Zeus
bust and the bunny, Table 6 shows that the results with
SMCRC are comparable with those of SMCRO2, and after
application of ICP comparable to SMCRO1. Further, SMCRC
clearly outperforms the variants with few optimization steps
(SMCRO5 and SMCRO10). Concerning the chevron, SMCRC
yields clearly worse results than SMCRO. Probably this is
due to the geometry of the chevron, where initially a large
translational error still allows for a very good matching of
wrong correspondences.

8.3.5. Autonomous Object Modeling. Here, we compare the
autonomous modeling results without repositioning the
object as in [4] with the integration of the SMCR and repo-
sitioning of the object as presented in Figure 19. Therefore,
the complete object modeling is performed 10 times each for
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Figure 21: Exemplary error convergence of SPFR (red), SMCR (green), and SMCRO (blue) for 1000 runs on a bunny (top) and a Zeus
(bottom) scan. Optimization is performed in every (solid) step and every 5th (dashed) and every 10th (dotted) step. Left: translational error
in mm. Right: rotational error in degree. 𝑥-axis: step number.The black horizontal line represents the success threshold of 8 degrees or 8mm.

the bunny, the Zeus bust, and the wooden chevron. For a
comparison of the autonomous modeling method [4] with
the other state-of-the-artmethods concerning the algorithms
for NBV planning, we refer to [56]. It has been shown that the
NBV approach which plans NBVs based on the boundaries
of the surface models and considers information gain and
surface quality for the NBV selection outperforms the other
methods.

During these experiments, the object is manually placed
onto its side after the desired quality for the visible object
parts has been reached. For the 10 runs, different arbitrary
initial scans and variations in the repositioning object ori-
entation are chosen. The average model completeness and
coordinate root mean square (CRMS) error when compar-
ing with ground truth models are given in Table 7. The
completeness is evaluated by comparing a ground truth
model with the generated triangle mesh. The CRMS gives
a measure for the model error which is influenced by the
fact that details in the object are not modeled perfectly as
can be seen in Figure 16(c). The error is mainly a result of
sensor noise, sensor calibration, and robot accuracywhich for

the KUKA KR16-2 is in millimeter range. The completeness
after repositioning is larger as the bottom parts have been
filled. Figure 22 shows exemplarily for the Zeus bust how
the bottom part is filled accurately with no major deviations
due to the different object positions. The completeness still
does not reach 100% which is due to the NBS planning which
aborts based on a coverage estimation utilizing the current
surface model which sometimes is noisy. However, these are
just small holes which can easily be filled by a postprocessing
technique. For the bunny and chevron, 100% is reached for
some runs whereas for the Zeus bust a small part in the
chin area below the beard could never be filled due to sensor
restrictions as this area is very narrow. The CRMS shows
that, due to object repositioning and SMCR, the model error
does not increase. The CRMS is even slightly lower when
the object is repositioned. One reason for this is probably
due to the fact that along borders in the mesh larger errors
occur due to incorrect matching (see Figure 22(a)). Further,
the objects do not have many details on the bottom and
thus the error is lower which influences the average error
positively.
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(a) (b)

Figure 22: 3D model of Zeus bust from bottom view without (a) and with repositioning the object and performing SMCR (b).

Table 7: Comparison of modeling results without and with reposi-
tioning using SMCR (average of 10 runs).

Object Repositioning Completeness CRMS

Zeus No 88.0% 1.56mm
Yes 97.3% 1.46mm

Bunny No 91.7% 1.56mm
Yes 99.7% 1.37mm

Chevron No 97.7% 1.44mm
Yes 99.9% 1.34mm

Figure 23: Kidnapped robot problem: a robot is randomly placed
in a predefined area (green) in a known map. After self-localization
the robot plans a path (yellow) to its goal.

8.4. SMCRO in Mobile Robot Localization. In order to com-
pare SMCRO with a standard particle filter based on 3D
depth images (see [15]), we set up a simulated kidnapped
robot scenario, where a mobile robot is randomly placed in a
predefined area at an unknown pose (𝑥, 𝑦, 𝜃) ∈ R2 × [−𝜋, 𝜋)

in a given global 3D map as shown in Figure 23. The particle
filter weights the particles with a likelihood representing
independently and identically normally distributed errors for

the depth values. Note that the map is 3D and the depth
image simulation (for expected depth images in theweighting
step) is also done in 3D, whereas the pose estimation is
only in 2D. Our robot is moving omnidirectional on four
wheels and is equipped with eight ToF cameras, each having
a field of view of about 35∘ × 45∘ and a resolution of 48 × 64
pixels. This setup is chosen such to represent the KUKA
OmniRob, equipped with eight O3D100 ToF cameras of
ifm.

The robot’s task is to get “home” immediately, which can
be divided into three subtasks: at first the robot actively local-
izes itself using the ToF cameras and a particle filter to get its
current pose in the global map. After a successful localization
the robot plans a piecewise linear path to reach the goal,
containing about 20 waypoints. Finally the robot moves to
the goal along the calculated path. For the odometry as well
as the ToF data artificial noise is added. At every waypoint the
robot corrects its odometrical pose using the ToF cameras to
reduce the dead reckoning error. For correcting the pose, the
standard particle filter is used. SMCRO is running in parallel,
enabling a comparison of pose estimates, starting with the
initial localization.

In order to achieve a better comparison the whole task
has been repeated 40 times, resulting in a total number of
866 pose estimation steps. Figure 24(b) shows the errors of
all these steps, starting with the first run. Clearly a periodic
behavior is seen, which resembles the strong dependency
of the pose estimation quality from the real pose in the
environment. Note that the histograms (see Figure 24(a))
have been cut off on the right for better visibility. Both
histograms and plots show that the accuracy of SMCRO
outperforms that of the standard particle filter. The medians
of translational and rotational errors are 76.4mm and 0.94∘
for the standard particle filter and 47.6mm and 0.26

∘ for
SMCRO.Themaximum of translational and rotational errors
are 637.5mm and 13.8

∘ for the standard particle filter and
340.5mm and 4.4∘ for SMCRO.

Note that the mean computation times are 1.59 s for the
standard particle filter and 2.1 s for SMCRO. In contrast
to SMCRO, the standard particle filter has already been
optimized for the mobile robot application. The number
of beams from the depth images used for the updates are
dependent on the number of particles in order to assure
acceptable computation times.
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Figure 24: Comparison between SMCRO (blue) and a standard particle (red) based on depth images. In the plots the errors are sorted by
runs, resulting in periodic effects.

8.5. Discussion. The comparison with offline global methods
yields no definite best method. But they clearly show that
the method is competitive in accuracy and robustness with
available state-of-the-art methods in many cases. The advan-
tage of no extra computation time is clear, as even for these
simple objects the offline methods need up to 2.5 minutes for
getting similar results, whereas ourmethod does not need any
extra computation time.This effect will dramatically increase

with larger objects, which could not be investigated with the
hardware setup in this paper, due to kinematic constraints.

The comparison between uniform and normal/Bingham
sampling show that normal/Bingham sampling does nei-
ther improve accuracy nor robustness. The investigation of
the different scoring variants (SPFR, SMCR, SMCRO, and
SMCRC) shows that SMCR has a clearly better convergence
behavior than SPFR. The optimization in SMCRO yields
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faster convergence, higher accuracy, and higher success rate.
In many cases, it is advantageous and poses no problem to
optimize in everyweighting step.However, this has to be done
carefully, as convergence to false transformations can occur.
In the data sets of this paper, no delay in updating occurred
when updating in every step. However, in bigger data sets,
it could lead to problems concerning computation time.
The given convergence criterion proved to work efficiently
when combined with optimization, with only slightly lower
accuracy and robustness.

For autonomous modeling with SMCR, the results show
that almost complete 3Dmodels including object parts which
are not visible in the initial pose can be created. Further, the
average model error when comparing to ground truth is not
increased by the object repositioning and SMCRwhich shows
that the pose estimation is performed accurately for all runs.

First experiments in mobile robot localization show that
SMCR is able to achieve a significantly higher pose accuracy
than a tuned standard particle filter with only slightly higher
computation time which can easily be optimized.

9. Conclusion and Future Work

In this work, Monte Carlo registration methods have been
presented and advanced. The offline particle filter variant
searching in the space of rotations outperformed the state-of-
the-art algorithms, especially when prior knowledge is avail-
able. The proposed curvature features proved to be robust
under sensor noise. For streaming application, the scoring of
rotations is too time consuming.Thus, the space of rigid body
transformations is searched in this case. Various real data
experiments showed the competitiveness of the streaming
variant.Thereby, convergence behavior and influence of prior
knowledge have been investigated. The streaming variant
has been enhanced with pose optimization and convergence
criterion. The applicability in autonomous 3D modeling has
been proven by various experiments with an industrial robot
and a laser striper. The integration of the streaming regis-
tration into autonomous object modeling worked robustly
and allowed for obtaining complete high quality 3D surface
models of initially unknown objects. Finally, experiments in
mobile robot localization showed that the straightforward
application without any tuning yielded a higher accuracy
than a standard particle filter (with comparable computation
time).

Future work will focus on autonomous feedback of fail-
ure, in order to enable rescanning and detailed investigation
of other convergence criteria. Furthermore, we want to apply
the method during modeling of object scenes as presented
in [56] where the template models contain less data as
objects are occluded by others. Moreover, we want to apply
the method to real mobile robots for localization and for
modeling of larger indoor areas of buildings with big data
sets. If data becomes too big to keep all feature points in
memory, probably the most demanding challenge will be the
combinationwith and the development of data structures that
enable reloading and unloading afforded feature points for
the weighting.
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In the scenario where an underwater vehicle tracks an underwater target, reliable estimation of the target position is required.While
USBL measurements provide target position measurements at low but regular update rate, multibeam sonar imagery gives high
precision measurements but in a limited field of view. This paper describes the development of the tracking filter that fuses USBL
and processed sonar image measurements for tracking underwater targets for the purpose of obtaining reliable tracking estimates
at steady rate, even in cases when either sonar or USBL measurements are not available or are faulty. The proposed algorithms
significantly increase safety in scenarios where underwater vehicle has to maneuver in close vicinity to human diver who emits air
bubbles that can deteriorate tracking performance. In addition to the tracking filter development, special attention is devoted to
adaptation of the region of interest within the sonar image by using tracking filter covariance transformation for the purpose of
improving detection and avoiding false sonar measurements. Developed algorithms are tested on real experimental data obtained
in field conditions. Statistical analysis shows superior performance of the proposed filter compared to conventional tracking using
pure USBL or sonar measurements.

1. Introduction

Tracking underwater targets presents a great challenge in
marine robotics due to absence of global positioning signals
that are usually available in areas reachable by satellites.
In order to tackle this problem, acoustic based sensors
such as LBL (long-baseline), SBL (short-baseline), and USBL
(ultrashort-baseline) are used for underwater localization
and navigation, by triangulating responses obtained from
acoustic beacons. While LBLs require inconvenient deploy-
ing of underwater beacons around the operational area,
USBLs that enable relative underwater localization using
acoustic propagation are most often used for tracking under-
water objects. The greatest advantage of USBL systems is
their easy deployment (the system consists only of two nodes,
a transmitter and a transducer) and relatively long range.
On the other hand, the precision of USBLs deteriorates
with distance and multipath issues may arise. In addition to
that, due to acoustic wave propagation, measurements are
sparse (arriving at intervals measured in seconds) and time

is delayed depending on the distance between the receiving
and the transmitting node.

Besides using USBL devices, multibeam sonar devices
(also known as acoustic cameras) are commonly used under-
water in order to get relative position measurements. While
state-of-the-art multibeam sonars provide almost real-time
acoustic image at high frequency with high precision, they
are characterized with limited field of view and usually
lower range.UnlikeUSBLs, sonars require additional acoustic
image processing in order to obtain position of an object
within the field of view, which can often result in false
measurements due to noise.

The objective of work presented in this paper is to exploit
the advantages of both USBL and sonar devices by fusing
their measurements for the purpose of achieving precise and
reliable underwater object tracking. The main contributions
of this paper are

(i) development of the tracking filter that fusesUSBL and
processed sonar image measurements with diverse
characteristics, for the purpose of obtaining reliable
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tracking estimates at steady rate, even in cases when
either sonar or USBL measurements are not available
or are faulty;

(ii) adaptation of the region of interest within the sonar
image by using tracking filter covariance transfor-
mation for the purpose of improving detection and
avoiding false sonar measurements;

(iii) experimental validation (in field conditions) of the
developed tracking algorithms together with com-
parative analysis that demonstrates the quality of the
obtained results.

The main motivation for the presented work arises from
the FP7 “CADDY-Cognitive Autonomous Diving Buddy”
project that has the main objective to develop a multicom-
ponent marine robotic system comprising of an autonomous
underwater vehicle (AUV) and an autonomous surface
marine platform that will enable cooperation between robots
and human divers. Three main functionalities of the envi-
sioned system include “buddy slave” that assists divers during
underwater activities, “buddy guide” that guides the diver to
the point of interest, and “buddy observer” that monitors the
diver at all times by keeping at a safe distance from the diver
and anticipating any problems that the diver may experience.

In the context of the CADDY project one of the main
prerequisites for executing envisioned control algorithms
and ensuring diver safety during human-robot interaction
is precise diver position estimation. In order to achieve this
requirement, multibeam sonar imaging is used. However,
the main problem that arises when using multibeam sonars
is limited field of view. If the observed target (diver or an
underwater vehicle) would leave the sonar’s field of view,
it would be impossible to track it or even distinguish the
tracked object from another target that might enter the field
of view. To cope with this problem, fusion between USBL
and sonar measurements is incorporated. The low precision
USBL measurements are used by the estimator to provide
target position, albeit with higher variance. This information
is used by the sonar target detector to set the region of interest
in which the target is located. Finally, if the sonar detector
finds the target in this region of interest, estimator is updated
with the high precision (low variance) sonar measurement.
The combination of the two sources ofmeasurements ensures
reliable target tracking.

The USBL is usually used in vehicle localization and
navigation, with a very limited number of papers dealingwith
target tracking. Fusion of USBL measurements with inertial
sensors data and/or vehicle dynamics, used for accurate
vehicle localization, is shown in [1, 2]. In [3] the authors
have used USBL to track white sharks with an autonomous
underwater vehicle, and in [4] USBL tracking was used to
track the diver with an autonomous surface vehicle.

Several papers have been published on the use of imaging
sonars for object detection and tracking. A method based on
the particle filter, shown in [5], was proposed to resolve the
problem of target tracking in forward-looking sonar image
sequences. In [6] image processing algorithms as well as the
tracking algorithms used to take the imaging sonar data and
track a nonstationary underwater object are presented. In [7]

the real-time sonar data flow collected by multibeam sonar
is expressed as an image and preprocessed by the system.
According to the characteristics of sonar images, an improved
method has been carried out to detect the object com-
bining with the contour detection algorithm, with which
the foreground object can be separated from background
successfully. Then the object is tracked by a particle filter
trackingmethod based onmultifeature adaptive fusion. In [8]
the authors explore the use of such a sonar to detect and track
obstacles. In [9] authors provide algorithms for detection of
man-made objects on sea floor, where they mostly focus on
target-seabed separation issue. The most similar attempt to
our work was done in [10], where the sonar was used to detect
a human diver. The authors used a similar image processing
approach as us, followed by a hidden Markov model-based
algorithm for candidate classification.

The papers mentioned above are also mostly focused on
the use of image processing and contour based algorithms
to detect object. However, they are not directly comparable
to our approach as they focus more on the detection part
inside the sonar image. Our approach differs from all of the
above as it is based on fusion of sonar and USBL. This allows
target tracking even when the target is outside of the sonar’s
very narrow field of view. It also helps eliminate false positive
detections which would cause tracking of the wrong object if
multiple objects are present.

The rest of the paper is organized as follows: Section 2
describes deployed sonar image processing algorithms. In
Section 3 tracking filter kinematic model is defined. Section 4
gives insight into region of interest adaptation by using trans-
formed position covariance matrix. Experimental results are
given in Section 5. The paper is concluded with Section 6.

2. Sonar Image Processing

In order to determine target position within the sonar field
of view, the sonar image has to be processed. This section
is devoted to the description of algorithms used to detect
the object in the multibeam sonar image and determine its
position within the sonar image.

2.1. Multibeam Sonars. Multibeam sonars are also known as
acoustic cameras because they, like a video camera, produce
a two-dimensional image, although with very different geo-
metric principle. They emit a number of acoustic beams,
each one formed to cover a certain horizontal and vertical
angle.

2.2. Target Detection. Some of the most widely usedmethods
and algorithms for object detection and recognition in images
are Haar cascades [11], histograms of oriented gradients [12],
and, especially recently, artificial neural networks [13, 14].
Even though these are commonly used in video imagery,
they have limited application in sonar-based target detection
mostly due to the fact that sonar imagery is usually of very low
quality, with incomplete target visualization, preventing even
a human observer to reliably detect or recognize the target.
In addition to that, our tests with OpenCV implementations
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(a) (b) (c)

Figure 1: First step in sonar image processing demonstrated on an image with a diver in the field of view. (a) Original sonar image; (b) image
after blurring; and (c) image after binarization.

of feature descriptors have shown that conventional image
descriptors are highly susceptible to noise in sonar image,
thus giving poor results.

Due to these reasons, the implemented target detection
algorithm relies on clustering contours and finding the ones
that are most likely to belong to the target. In order to
increase reliability of object detection in sonar image, only
the region of interest (ROI) obtained by USBLmeasurements
is searched.

The tracking algorithm implemented can be split into
three steps. The first step involves basic image processing,
blurring, and binarization of the image. The second step is
finding the contours in the obtained binarized image and
clustering them together.The final step includes searching for
the best candidate inside the region of interest.

2.2.1. Step 1: Image Processing. In the first step, a Gaussian
blur filter is applied to the image to remove the noise in the
image. Often the image is very noisy and has many very little
white contours consisting of only a few pixels which we want
to ignore. Gaussian blurring is performed by convolving the
image with a 2-dimensional Gaussian function:

𝐺 (𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−(𝑥
2
+𝑦
2
)/2𝜎
2

. (1)

A similar result could be obtained by eroding and dilating
the white areas after binarization, as performed in [10].
After blurring, binarization of the image is performed with
adaptive thresholding. Each pixel is compared to the mean
value of its neighbouring pixels and is set to white if it is
above that value, or black otherwise. Equation (2) describes
the binarization algorithm, where Vbefore is the pixel value

between 0 and 255 before applying binarization and Vafter
takes the value of either 0 or 255 after binarization:

Vafter (𝑥, 𝑦) =
{

{

{

255 if Vbefore > 𝑇 (𝑥, 𝑦)

0 otherwise,
(2)

where

𝑇 (𝑥, 𝑦) =
1

4𝑀 + 2

𝑀

∑

𝑖=−𝑀

𝑀

∑

𝑗=−𝑀

Vbefore (𝑥 + 𝑖, 𝑦 + 𝑗) . (3)

The results of image blurring and binarization are dis-
played in Figure 1.

2.2.2. Step 2: Contour Detection and Clustering. In the second
step, all white contours in the image are clustered together if
they are closer than some predefined distance. This distance
is chosen depending on the target tracked. For example, if a
human diver is tracked, we can expect that the diver’s head or
limbs appear disjoint from the torso. To cluster them together,
it is reasonable to allow contours that are closer than half a
meter to be clustered together.

To achieve the clustering, a graph approach could be
taken by using Kruskal’s minimum spanning tree algorithm
with early termination. However, simple union find algo-
rithm with disjoint set data structure can achieve the same
with even lower complexity: while Kruskal’s algorithm runs
in 𝑂(𝐸 log V), where 𝐸 is the number of edges in the graph
and𝑉 is the number of vertices, union find runs in𝑂(𝑛𝛼(𝑛)),
where 𝑛 is the number of items and𝛼(𝑛) is the extremely slow-
growing inverse of the Ackermann function [15].

The results of the implemented clustering algorithm are
displayed in Figure 2. The diver’s body is disconnected, but
with the clustering algorithm the pieces are merged together
into the same cluster and marked with the same color.
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(a) (b) (c)

Figure 2: (a) Original sonar image; (b) image after binarization; and (c) contours clustered into three clusters.

2.2.3. Step 3: Finding Target inside the ROI. The final steps
assumes that the approximate area where the target should be
already familiar; that is, it is estimated by an extendedKalman
filter that uses USBLmeasurements and sonar measurements
from the previous step, as explained in the following chapter.
This assumption is required due to the fact that accurate
tracking using only sonar image is difficult, especially if there
are other similar objects present in the image, for example
multiple divers or autonomous underwater vehicles.

All the clusters that are inside the ROI are given a quality
score based on a criterion that consists of two parts:

(1) Distance from the ROI center: the closer the cluster to
the ROI center is, the higher its score is.

(2) Visual similarity of each cluster and the target: even
though very little training data is available, similarity
of the cluster is compared with known target’s prop-
erties (by comparing the size and shape and applying
a simple template-based object detector or a small
neural network).

The object with the highest score above the (empirically
set) threshold is then selected as the most likely target. This
allows us to score multiple objects and reliably choose the
one that fits best both the current estimated position of the
target (obtained from the tracking filter) and the known
characteristics of the target.

3. Tracking Filter

Once the target position within the sonar field of view is
known, it can be used as ameasurement for the tracking filter.
In order to estimate underwater target position fromavailable
measurements, extended Kalman filter (EKF) is deployed.
Only kinematic model is used for target position estimation
since target dynamics are usually unknown. Equations for

the vehicle’s translatory motion are given with (4) where p =
[𝑥 𝑦 𝑧]

𝑇 is the position vector and 𝜓 is the orientation of
the vehicle in the earth-fixed coordinate frame. Input k =

[𝑢 V 𝑤]
𝑇 is speed vector and input 𝑟 is orientation rate in

body-fixed coordinate frame:

ṗ = R (𝜓) k,

𝜓̇ = 𝑟.

(4)

Rotation matrix R(𝜓) is given with

R (𝜓) = [[
[

cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1

]
]

]

. (5)

The vehicle tracking the underwater target and carrying the
imaging sonar is modeled as an overactuated marine surface
vehicle; that is, it can move in any direction by modifying
the surge, sway, and heave speed, while attaining arbitrary
orientation in the horizontal plane. Kinematic model of the
target is given with the following set of equations:

ṗ
𝐵
=
[
[

[

𝑥̇
𝐵

𝑦̇
𝐵

𝑧̇
𝐵

]
]

]

=
[
[

[

𝑢
𝐵
cos𝛼
𝐵

𝑢
𝐵
sin𝛼
𝐵

𝑤
𝐵

]
]

]

+ 𝜉
𝑝𝑏
,

k̇
𝐵
= [

𝑢̇
𝐵

𝑤̇
𝐵

] = [
0

0
] + 𝜉V𝑏,

𝛼̇
𝐵
= 𝑟
𝐵
+ 𝜉
𝛼
,

̇𝑟
𝐵
= 𝜉
𝑟𝑏
,

(6)

where p
𝐵
is target position vector and k

𝐵
is speed vector

consisting of surge speed 𝑢
𝐵
and heave speed 𝑤

𝐵
. State 𝛼

𝐵
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denotes target course and 𝑟
𝐵
course rate. Process noise for

respective states is denoted by 𝜉. Finally, state vector of target
absolute position tracking filter is

x = [p𝑇 𝜓 k𝑇
𝐵

p𝑇
𝐵
𝑟
𝐵
𝛼
𝐵
]
𝑇

, (7)

where subscript 𝐵 denotes target related states. Measurement
vector is given with

y = [p𝑇
𝑚
𝜓
𝑚
𝑧
𝐵𝑚

𝑟
𝑚USBL Θ

𝑚USBL 𝑟
𝑚𝑠

Θ
𝑚𝑠
]
𝑇

. (8)

Vectorp
𝑚
denotes vehicle positionmeasurement,𝜓

𝑚
heading

measurement, and 𝑧
𝐵𝑚

target depth measurement, while
𝑟
𝑚(⋅)

and Θ
𝑚(⋅)

denote USBL and sonar range and bearing
measurements, where respective measurement equations are

𝑟
𝑚
= √Δ𝑥2 + Δ𝑦2 + Δ𝑧2 + ]

𝑟
, (9)

Θ
𝑚
= arctan (Δ𝑦, Δ𝑥) − 𝜓 + ]

Θ
. (10)

Parameter ] denotes measurement noise which is, in this
case,modeled as zeromeanGaussian noise. Note that bearing
measurement is relative; therefore, there is a heading state 𝜓
included in (10).

The target depth measurement 𝑧
𝐵𝑚

can be acquired using
elevation angle and range measurements between two units
provided by the USBL device. Also, acoustic communication
can be used to transmit depth measurements taken directly
on board the target if they are available.

It was already noted that sonar measurements arrive with
high frequency and small delay while USBL measurements
are low frequency and delayed; therefore, Kalman filter
measurement matrixH is changed every time step, according
to availablemeasurements. Also, to account formeasurement
delays methods of backward recalculation can be applied.

4. Region of Interest Adaptation

In order to improve detection and avoid false sonar measure-
ments, region of interest (ROI) is defined by using tracking
filter estimates covariance. Sonar image processing can be
performed in relative Cartesian or polar coordinates; there-
fore, it is necessary to transform absolute position covariance
accordingly.

4.1. Covariance Transformation. By definition, covariance
matrix of vehicle and target relative position can be written
as

Σ = E [(p
𝑝
− E (p

𝑝
)) (p
𝑝
− E (p

𝑝
))
𝑇

] , (11)

where p
𝑝
= [Δ𝑥 Δ𝑦]

𝑇.The assumption is that the position of
the vehicle carrying the sonar is known without uncertainty
and that all uncertainty stems from unknown target position.
The assumption is made that the vehicle and the target are at
the same depth when the target is visible in the sonar image,
since sonar vertical field of view is quite small. For this reason,
target depth is considered to be known and is omitted from
p
𝑝
.

4.1.1. Covariance Transformation between Two Cartesian
Coordinate Systems. Covariance transformation between rel-
ative position in earth-fixed NED coordinate frame and
relative position in body-fixed frame is given with (12) where
Σ is NED coordinate covariancematrix andR

𝑝
is the rotation

matrix given with (13) [16]:

Σrel = R
𝑝
ΣR𝑇
𝑝
, (12)

R
𝑝
= [

cos𝜓 sin𝜓
− sin𝜓 cos𝜓

] . (13)

4.1.2. Covariance Transformation betweenCartesian and Polar
Coordinate Systems. Relationship between relative Cartesian
and polar coordinate system is given with the nonlinear
equation expression:

[
𝑟

Θ
] = [

[

√Δ𝑥
2

rel + Δ𝑦
2

rel

arctan (Δ𝑦rel, Δ𝑥rel)
]

]

. (14)

In order to transform the covariance matrix, Jacobian of
Cartesian-to-polar covariance transformation is written as
[17]

J =
[
[
[

[

𝜕𝑟

𝜕Δ𝑥rel

𝜕𝑟

𝜕Δ𝑦rel
𝜕Θ

𝜕Δ𝑥rel

𝜕Θ

𝜕Δ𝑦rel

]
]
]

]

=
[
[
[

[

Δ𝑥rel
𝑟

Δ𝑦rel
𝑟

−
Δ𝑦rel
𝑟2

Δ𝑥rel
𝑟2

]
]
]

]

. (15)

Finally, covariance matrix in relative polar coordinates Σpol is
calculated as

Σpol = JΣrelJ
𝑇
. (16)

4.2. Using the Tracking Filter Covariance for Region of Interest.
After transforming the filter covariance in relative coordinate
frames (Cartesian or polar), it is used to define a region of
interest used in sonar tracking as described in Section 2.
More specifically, given covariances 𝐷

𝑥
and 𝐷

𝑦
in relative

coordinate frames, estimated object size along these axes 𝑆
𝑥

and 𝑆
𝑦
, and tracking filter estimate position (𝑇

𝑥
, 𝑇
𝑦
), region

of interest is defined as follows:

ROI
𝑥
= [𝑇
𝑥
−
𝑆
𝑥

2
− 3√𝐷

𝑥
, 𝑇
𝑥
+
𝑆
𝑥

2
+ 3√𝐷

𝑥
] ,

ROI
𝑦
= [𝑇
𝑦
− 𝑆
𝑦
− 3√𝐷𝑦, 𝑇𝑦 +

𝑆
𝑦

2
+ 3√𝐷𝑦] ,

ROI = ROI
𝑥
× ROI

𝑦
,

(17)

where covariances 𝐷
𝑥
and 𝐷

𝑦
are members Σrel1,1 and Σrel2,2

from relative covariancematrix (12). Similarly, in case of polar
coordinates, line segments are defined for radius 𝑟 and angle
𝜙, and the region of interest is the Cartesian product between
the two.

Figure 3 illustrates the size of the region of interest and
the estimated location of the target (center of the ROI).
Figure 3(a) shows the case when only USBL measurements
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(a) Target outside sonar FOV (b) Target inside sonar FOV

Figure 3: Sonar image with region of interest (ROI).

are available, while Figure 3(b) shows results with both USBL
and sonar measurements. The ROI (covariance) is much
smaller when sonar measurements are available. However, it
is worth noting that tracking is possible even when the target
is outside of sonar field of view, due to the fact that USBL
measurements are fused within the tracking filter.

Minimum area of the ROI can be set by adjusting
measurement noise variance ], while the rate of ROI growth
when there are no measurements available can be defined by
adjusting process noise parameters, especially 𝜉

𝑝𝑏
.

5. Experimental Results

5.1. Experimental Setup. Experiments related to target track-
ing using sonar and USBL data were conducted in Octo-
ber 2015 in Biograd na Moru, Croatia, during CADDY
project validation trials. The experimental setup consisted of
an autonomous underwater vehicle BUDDY AUV and an
autonomous overactuated marine surface platform PlaDy-
Pos, both developed in the Laboratory for Underwater Sys-
tems and Technologies [4, 18]. Multibeam sonar was installed
horizontally and forward-looking on the BUDDY AUV here
referred to as the vehicle, while PlaDyPos vehicle played
the role of the target to be tracked. Buddy AUV, shown in
Figure 6, has been developed in the scope of CADDY project.
It is equipped with six thrusters that allow omnidirectional
motion in the horizontal plane, thus ensuring decoupled
heading and position control. Among other sensors, it is
equipped with a multibeam sonar and a USBL used for
positioning and communication. Overall dimensions of the
BUDDY AUV are 1220 × 700 × 750mm and the weight is
about 70 kg. PlaDyPos vehicle, used as a target, is a small scale
overactuated unmanned surface marine vehicle capable of
omnidirectional motion. It is equipped with four thrusters in
“X” configuration. This configuration enables motion in the
horizontal plane under any orientation. The vehicle is 0.35m
high and 0.707m wide and long and weighs approximately
25 kg.

The sonar used for experiments reported in this paper is
Soundmetrics ARIS 3000 [19], with 128 beams, covering 30∘

angle in horizontal and 14∘ in vertical plane. It supports two
operatingmodes: high frequency at 3MHz for higher detail at
ranges up to 5meters and low frequency at 1.8MHz for ranges
up to 15 meters. Also, during experiments, Seatrec X150
and X110 USBL modem pair was used [20]. The combined
modem/USBL units are designed as a very compact assembly.
They operate in the frequency band 24–32 kHz and the
communication rate of 100 bps can be achieved.

USBL modems were installed on both the vehicle and
the target object. During experiments, it was assumed that
the vehicle and the target are in the same horizontal plane
when the target is visible in the sonar image; that is, the
vehicle and the target have the same depth. Filtered GPS
measurements, from the measurement units installed aboard
the vehicle and the target, are taken as ground truth. It
should be noted that errors in ground truth measurements
are present due to inherent GPS measurement covariance
and the fact that different GPS modules were installed on the
vehicle and the target, which induced small variable drift. By
visual inspection of sonar images it was observed that when
image processing algorithm detects correct target, acquired
relative sonar measurements are more accurate and precise
than relative distance calculated from GPS measurements.

5.2. Results. During validation trials, a large number of
target tracking experiments were conducted. In this paper,
the analysis of results is performed on two datasets, each
describing one experimental scenario. In Scenario 1, the
vehicle is moving while the target is static or slowly drifting
(Figure 4). In Scenario 2, the vehicle is static while the
target is moving (Figure 5). In both scenarios, three different
filter configurations are investigated, defined by available
measurements: (i) “Sonar” configuration where only sonar
measurements are available, (ii) “USBL” configuration where
only USBL measurements are used, and, finally, (iii) “Sonar
+ USBL” configurationwhere both sonar and USBLmeasure-
ments are available.

The dataset corresponding to Scenario 1 is shown in
Figure 4, while Figure 5 shows the dataset of Scenario 2.
In both figures, first two subplots show north and east
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Figure 4: Scenario 1: vehicle moving, stationary target.

Table 1: Distance error comparison.

Scenario Sonar availability
[%]

USBL availability
[%]

(1) Vehicle moving, target
static 31.7 4.5

(2) Vehicle static, target
moving 28.0 5.7

coordinates, while the third subplot shows the errors
(Euclidean distance) between the estimated positions and the
ground truth obtained via GPS measurements from both the
vehicle and the target. Red line shows the results obtained
from the tracking filter that uses only sonar measurements
(filter configuration “Sonar”), green line is obtained from
tracking filter that uses only USBL measurements (filter
configuration “USBL”), and the blue line is the results
obtained from the tracking filter that utilizes both sources of
measurements as they become available (filter configuration
“Sonar +USBL”). Black line shows the ground truth position.

5.2.1. Frequency of Measurements. In the third subplot of
both Figures 4 and 5, one can appreciate magenta and
yellow circles that mark the time instances in which sonar
and USBL measurements were available. Table 1 gives a
comprehensive analysis on the amount of time when sonar
and USBLmeasurements were available. Taking into account
that the tracking filter provides estimates at 10Hz sampling
frequency, it can be seen that, in both scenarios, sonar
measurements were available at around 30% of sampling
instances, whether due to lower running frequency of
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Figure 5: Scenario 2: stationary vehicle, moving target.

Figure 6: BUDDY AUV in water seen from above. The front end
has a waterproof casing with a tablet.

the sonar image processing algorithms or due to the fact that
someof the time the targetwas not present in the sonar image.
On the other hand, USBL measurements are available at only
5% of time instances. It can be seen from Figures 4 and 5
that USBL measurement availability is consistent during the
whole duration of both scenarios; however, the update rate
of USBL measurements is around 2 s which corresponds to
approximately 5% availability taking into consideration the
10Hz tracking filter sampling frequency.

5.2.2. Comparison of Filter Configurations. Datasets shown
in Figures 4 and 5 instantly show the disadvantage of filter
configuration “Sonar”—whenever sonar measurements are
not available, the position estimate drifts from the true value.
One can appreciate this more clearly in Figure 7(a) which
shows a 45-second segment of the full-time response. The
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Figure 7: Tracking filter data inset.

fact that position estimates quickly drift when the target is
not in the sonar field of view can have serious consequences,
especially in situations where a human diver is the target to
be tracked and the position estimate is used to control the
vehicle position relative to the diver.

On the other, using only USBL measurements (as in
filter configuration “USBL”) enables tracking even when the
target is outside field of view, as long as there is a clear
path between the target and the vehicle, ensuring obstruc-
tion-free propagation of the acoustic wave. However, USBL
measurements arrive at a low update frequency.

Fusion of sonar and USBL measurements combines the
best features of both types ofmeasurements: high precision of
sonar measurements and availability of USBLmeasurements.
This is also clear from Figure 7(b) which shows tracking filter
position variance for each filter configuration. Using both
USBL and sonar measurements, filter estimated variance is
more stable regardless of which measurements are available.
In the case when only USBLmeasurements are used, variance
grows between two measurements. In the case when only
sonar measurements are used, variance grows unboundedly
when measurements are not available.

5.2.3. Statistical Analysis of Results. In order to quantify
the result that the sonar and USBL fusion approach gives,
the most reliable results metrics is defined based on the
localization error obtained as Euclidean distance between the
ground truth position (obtained using GPS on board both
the vehicle and the target) and position estimates using all
three filter configurations. These errors are shown in the
form of a boxplot, where Figure 8(a) gives the analysis for
Scenario 1 (shown in Figure 4), and Figure 8(b) gives analysis
for Scenario 2 (shown in Figure 5). Both boxplots show
results for filter configurations “Sonar,” “USBL,” and “Sonar

+ USBL.” In addition to that, the results are shown for the
filter configuration “Sonar”, taking only into account position
estimates when sonar measurements were available, that is,
when the target was within the sonar field of view—this is
labeled with “Sonar (available).”

As expected, the “Sonar (available)” data gives the most
precise results for both scenarios. However, this measure
does not represent the real situation, since it was shown that
the target was available within the sonar field of view only
around 30% of time in both scenarios. This measure should
be regarded as the best possible results that can be obtained
using the measuring devices available in the setup.

Localization error boxplot for filter configuration “Sonar”
over the whole dataset shows that the results are the least
precise as it can be seen in Figures 8(a) and 8(b). This is a
result of the fact that all the data is included, even the data
when target is lost from the sonar FOV and there is no way to
estimate target position since the filter presumes that target
continues in the direction it was going before leaving sonar
FOV.

In both scenarios, filter configuration “USBL” provides
the least accurate mean position error, but the variance
over the whole dataset is much lower than in the filter
configuration “Sonar.”

As it can be seen from Figures 8(a) and 8(b), in both
scenarios, filter configuration “Sonar + USBL” gives mean
localization error lower than filter configurations “Sonar” and
“USBL.” The same can be said for position error variance.
It should be noticed that this filter configuration provides
results which are very close to our “ideal” situation where the
target is always present in the sonar image, that is, the “Sonar
(available)” case.

In Scenario 2 (the case of the static target), all the obtained
localization error statistical results are smaller but the same
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pattern can be observed as in Scenario 1 (the case of the
moving target).

5.2.4. Video. Video representing the results with target posi-
tion estimate obtained by fusing sonar and USBL measure-
ments can be found in [21].

6. Conclusions

The paper addresses the issue of underwater target tracking
by using sonar andUSBLmeasurements.The results thatwere
used to analyze the tracking quality were obtained from data
gathered using BUDDY AUV, an autonomous underwater
vehicle developed for diver-robot interaction that served
as the tracking vehicle in the experiments, and PlaDyPos
autonomous surface marine platform that played the role of
the target to be tracked.

The experiments have shown that sonar measurements,
when available, are very accurate and precise, but there
is always a possibility of detecting false targets especially
in cluttered environments. Also, when tracking divers false
measurements due to bubbles are common. Using USBL
measurements evenwhen the target is in the sonar FOVhelps
reduce number of false detection incidents. For example, in
Figure 4we can see false detection at time instants 280 s, 360 s,
and 450 s. Using USBL and sonar sensor fusion discards such
measurements since they are out of ROI, and there are no
abrupt changes of position estimate. As a consequence, mean
localization error is the lowest as seen in Figure 4. Finally, the
developed tracking filter that fuses USBLmeasurements with
position measurements obtained from the processed sonar
image shows superior performance.

Future work will focus on exploiting knowledge gained
through these experiments for designing algorithms in which
underwater vehicle actively tracks the underwater target
while trying to keep it in the sonar FOV as often as possible.
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Mandić is financed by the Croatian Science Foundation
through the project for the young researcher career develop-
ment.

References

[1] M. Morgado, P. Oliveira, C. Silvestre, and J. F. Vasconcelos,
“Embedded vehicle dynamics aiding for USBL/INS underwater
navigation system,” IEEE Transactions on Control Systems Tech-
nology, vol. 22, no. 1, pp. 322–330, 2014.

[2] A. Jayasiri, R. G. Gosine, G. K. I. Mann, and P. McGuire, “AUV-
based plume tracking: a simulation study,” Journal of Control
Science and Engineering, vol. 2016, Article ID 1764527, 15 pages,
2016.

[3] G. E. Packard, A. Kukulya, T. Austin et al., “Continuous
autonomous tracking and imaging of white sharks and basking
sharks using a remus-100 auv,” in Proceedings of the IEEE
OCEANS, pp. 1–5, San Diego, Calif, USA, September 2013.

[4] N. Stilinovic, D. Nad, and N.Miskovic, “Auv for diver assistance
and safety—design and implementation,” in Proceedings of the
OCEANS, pp. 1–4, Geneva, Switzerland, May 2015.

[5] T. Zhang, W. Zeng, L. Wan, and S. Ma, “Underwater target
tracking based on Gaussian particle filter in looking forward
sonar images,” Journal of Computational Information Systems,
vol. 6, no. 14, pp. 4801–4810, 2010.



10 Journal of Sensors

[6] D. W. Krout, W. Kooiman, G. Okopal, and E. Hanusa, “Object
tracking with imaging sonar,” in Proceedings of the 15th Inter-
national Conference on Information Fusion (FUSION ’12), pp.
2400–2405, IEEE, Singapore, September 2012.

[7] M. Li, H. Ji, X. Wang, L. Weng, and Z. Gong, “Underwater
object detection and tracking based on multi-beam sonar
image processing,” in Proceedings of the IEEE International
Conference on Robotics and Biomimetics (ROBIO ’13), pp. 1071–
1076, Shenzhen, China, December 2013.

[8] Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle
obstacle avoidance and path planning using a multi-beam
forward looking sonar,” IEEE Journal of Oceanic Engineering,
vol. 26, no. 2, pp. 240–251, 2001.

[9] E. Galceran, V. Djapic, M. Carreras, and D. P. Williams, “A real-
time underwater object detection algorithm for multi-beam
forward looking sonar,” IFAC Proceedings, vol. 45, pp. 306–311,
2012.

[10] K. J. DeMarco, M. E. West, and A. M. Howard, “Sonar-based
detection and tracking of a diver for underwater human-robot
interaction scenarios,” in Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC ’13), pp.
2378–2383, IEEE, Manchester, UK, October 2013.

[11] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR ’01), vol. 1, pp. I-511–I-518, IEEE, Kauai, Hawaii, USA,
December 2001.

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
’05), pp. 886–893, San Diego, Calif, USA, June 2005.

[13] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-
based face detection,” IEEETransactions on PatternAnalysis and
Machine Intelligence, vol. 20, no. 1, pp. 23–38, 1998.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Pro-
ceedings of the 26th Annual Conference on Neural Information
Processing Systems (NIPS ’12), pp. 1097–1105, December 2012.

[15] R. E. Tarjan, “Efficiency of a good but not linear set union
algorithm,” Journal of the Association for Computing Machinery,
vol. 22, pp. 215–225, 1975.

[16] T. Soler and M. Chin, “On transformation of covariance matri-
ces between local cartesian coordinate systems and commuta-
tive diagrams,” in Proceedings of the ASP-ACSMConvention, pp.
393–406, 1985.

[17] A. J. Haug, Bayesian Estimation and Tracking: A Practical Guide,
John Wiley & Sons, New York, NY, USA, 2012.
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Using visual sensors for detecting regions of interest in underwater environments is fundamental for many robotic applications.
Particularly, for an autonomous exploration task, an underwater vehicle must be guided towards features that are of interest. If the
relevant features can be seen from the distance, then smooth control movements of the vehicle are feasible in order to position
itself close enough with the final goal of gathering visual quality images. However, it is a challenging task for a robotic system
to achieve stable tracking of the same regions since marine environments are unstructured and highly dynamic and usually have
poor visibility. In this paper, a framework that robustly detects and tracks regions of interest in real time is presented. We use the
chromatic channels of a perceptual uniform color space to detect relevant regions and adapt a visual attention scheme to underwater
scenes. For the tracking, we associate with each relevant point superpixel descriptors which are invariant to changes in illumination
and shape.The field experiment results have demonstrated that our approach is robust when tested on different visibility conditions
and depths in underwater explorations.

1. Introduction

Visual tracking of relevant regions in scenes with poor visi-
bility is an important problem in robotic vision research. In
particular, for the autonomous robotic exploration of natural
underwater structures (e.g., coral reefs), it is fundamental
to perform a closer, cautious, and a noninvasive analysis
of the changes that occur in the structure of interest to
assist in the research of marine biologists. Usually, human
intervention is required to indicate which regions are of
interest formonitoring by remotely operating the underwater
vehicle. As this can be quite demanding, the need of using an
Autonomous Underwater Vehicle (AUV) is very appealing.
Moreover, the visual and control algorithms need to be quite
robust and run in real time in order to be effective. In recent
years, several systems capable of collecting information,
dynamically or statically, in underwater environments have
been developed. In the case of AUVs, great efforts have been
made to provide them with sufficient autonomy to perform
specific tasks. Thus, the main challenge is to transfer to

the robotic agent the ability of recognizing what regions
are of interest for monitoring and to keep those regions
on view for a certain period of time to be able to obtain
useful visual data for its posterior analysis. However, as these
targets or regions of interest may be located far from the
vehicle, they need to be detected from the distance. The
rapid attenuation of electromagnetic radiation in water limits
the range of optical sensors. Also, the existence of variable
lighting and the presence of suspended particles (also known
as marine snow) cause geometrical and color distortions
that result in poor visibility. Furthermore, the structure (in
terms of geometric shape) of coral reefs is practically null.
Since underwater environments are highly unstructured and
constantly changing environments, one of themain problems
that still remains open is the accurate estimation of the
robot’s position and orientation.Thismakes the detection and
tracking of visual cues difficult. Considering the mentioned
problems, if the goal is to cautiously explore the fragilemarine
life that exists in coral reefs, it is necessary to first detect
visual targets that are relevant for the exploration and then
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robustly track them so that the robot movements are not
erratic or abrupt. In other words, the tracking must be stable
enough to allow for smooth controlmovements in the robotic
system.

We are interested in allowing an AUV to conduct an
exploration of coral reefs according to how a human diver
would do it: that is, the route to follow is guided by the
features in the environment that catch her attention. It
turns out that for underwater environments using this type
of exploration there exists limited research work in the
literature. For example, in [1], a method is presented to
classify the captured images by the robot according to the
degree of novelty contained in the features. The novelty
parameter is an indicator used to control the speed of the
robot along a predefined path. An extension of this work
is presented in [2], where the movement of the robot is
controlled to be directed to areas in the image with more
visual content, causing the robot to move to areas containing
coral reef and ignore the areas where only sand is present.
One important thing to note is that, in an exploration mode,
it is crucial not to limit the movements of the robot to a
previous specified path; instead, the approach used should
allow for a more natural scanning. In this sense, a diver
(sufficiently curious and fearless) exploring a coral reef for
the first time will be guided by what catches her attention,
despite not having prior information about what she could
find.

In this research work, we present a real-time visual-based
framework to robustly detect and track relevant features from
the distance with the aim of exploring coral reefs. The real-
time performance in robotics applications is fundamental
since the tracked features will help to direct the exploration
trajectories in subsequent captured images while estimating
the relative pose of the robot. We build upon our previous
work [3, 4]. In [4], a visual attention model, adapted to
underwater scenes, was presented for the first time. The
inputs were a set of videos taken underwater. Although the
visually relevant cueswere likely to be detected on subsequent
frames, it was not enough to keep track of a particular relevant
cue for long.Moreover, it only workedwhenwater conditions
were optimal, thus failing when poor visibility conditions
were present. In [3], we characterized the colors of relevant
features by using a perceptually uniform color space. We
compared theCIE𝐿𝑎𝑏 and the𝐿𝛼𝛽, whichwere able to define
a super-color-pixel descriptor to describe a relevant region
by using its chromatic channels only. The color opponent
processing (blue-yellow and green-red) makes the recovering
of color underwater easy, in particular red and yellow tones,
by enhancing their contrast wrt the blue/green tonalities of
sea waters.

In this paper, we have extended our previous work in
many aspects. First, we give a detailed description of each of
the stages involved in our Aquatic Visual Attention (AVA)
model as well as improvements to have a better saliency
map in terms of the compactness of the relevant regions.
Second, we have compared the performance of the proposed
framework. On one hand, we compare the quality in the
detection of regions of interest of ourAVAmodel in underwa-
ter scenes at different depths with the classic Neuromorphic

Vision Toolkit method. On the other hand, we compare
the robustness of superpixels descriptors for tracking the
most relevant region of interest with other methods of object
tracking.

The contribution of this paper is a novel computational
visual attention model built to work on underwater envi-
ronments, namely, coral reefs. The proposed visual attention
model focuses on detecting as well as tracking relevant
regions. The purpose of having a tracker is to lead the
motion of an Autonomous Underwater Vehicle (AUV) in
an exploration task. This way the AUV should be able to
detect, without human intervention or any kind of precise
information of a particular region, which part of the coral reef
could draw the attention for a human and move towards it.

The outline of the paper is as follows. Section 2 presents
background on the perception of color in underwater scenes
and also on visual attention models. Section 3 describes
our model and its implementation. The experimental results,
comparison of the performance of the proposed framework,
and discussion are presented in Section 4. Finally, in Sec-
tion 5, the conclusions and future work are given.

2. Background

2.1. Underwater Perception of Color. Poor visibility condi-
tions underwater affect the perception of color. This is due to
the attenuation of light, water conditions, distance to objects,
depth, and other factors [5]. Visibility in foggy days is very
similar to that of underwater images. The effect is that near
objects are clearer while distant objects gradually disappear.
This effect is illustrated in Figure 1 by comparing images of the
same natural scene under foggy and normal day conditions.
The mountains in the back of Figure 1(a) cannot be seen in
Figure 1(b).

Color perception in common sea water diminishes
according to the distance or depthwhere the object of interest
is located. In most cases, the color in objects that are more
than 10 meters of distance are almost indistinguishable (see
Figure 2). As for depth, the first color to disappear is red;
beginning as soon as 3m of depth there is almost not red
light left from the sun. From 5m to 10m, the range from
orange to yellow lights is lost. By 25m, only blue light remains
[5]. Figure 3 shows an example of an image of our AUV at
different depth and water conditions. We know that the color
of our robot is red by the sides. By verifying the color of the
intensity pixels in a small window (zoomed in), we see that
the color is very different from red, ranging from dark red
to dark blue. However, the processes carries out in our brain
adjust the colors up to certain grade.

2.2. Perceptually Uniform Color Spaces for Color Discrimina-
tion. Natural structures underwater, such as the formations
of coral reef, are rich in color and texture. They may have
certain shapes, but they do not always follow a specific pattern
or geometry. Thus, if we want to have a descriptor for a
given feature, the only cue to detect and recognize would
be color. In this trend, the discrimination of color is the
problem we want to solve. This is different to the color
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(a) Image in a sunny day

(b) Image in a foggy day

Figure 1: The same outdoor natural scene under different weather
conditions. In (b), the effects of fog clearly show how objects in the
distance gradually disappear (e.g., mountains in the back, clearly
seen in (a), are gone).This effect is similar in underwater scenes (see
Figure 2). Taken from [3].

restoration problem, in which a good result is basically that
with a natural look of color appearance, but there is not
guarantee that the true original color has been recovered
whatsoever.

To discriminate color, one needs to measure the dif-
ferences among the entire range of visible colors in a way
that matches perceptual similarity as good as possible. This
task can be simplified by the use of perceptually uniform
color spaces, in which a small change of a color will pro-
duce the same change in perception anywhere in the color
space. This is due to the fact the chromatic channels are
spaced further apart. Examples of perceptual uniform color
spaces are the CIE 𝐿𝑎𝑏 and the 𝐿𝛼𝛽. On one hand, the
CIE 𝐿𝑎𝑏 model was specifically developed to describe all
the color that the human eye can perceive [6] and it was
designed to preserve the perceptual color distance. Thus,
the Euclidean distance is an accurate representation of the
perceptual color difference. The 𝑎 channel values represent
the relative light purplish red (magenta) or greenness of each
pixel. Shifting the curve upwards builds up magentas and
weakens greens. The 𝑏 channel does the same for yellow
versus blue. Altering the slope of these curves changes color
contrast, while adjusting parts of the curve selectively changes
different ranges of colors. On the other hand, the 𝐿𝛼𝛽 is
a decorrelated principal component color space. This color
space was derived from a large ensemble of hyperspectral
images of natural scenes using the first-order statistics of
the images. Because of its decorrelation property of three

(a)

(b)

Figure 2: Examples showing the effect of distance perception
in underwater. Same as in foggy days, distant objects gradually
disappear. However, an additional effect is that near objects appear
bigger than they actually are.

Figure 3: Example of color perception at different depth and water
conditions.

channels, the 𝐿𝛼𝛽 space has been used for color mapping in
terrestrial applications [7, 8] and just recently it was used for
underwater applications for color correction [9] with good
results.

2.3. Experiments: Underwater Color Discrimination. We
carried out experiments to visually compare how color can
be discriminated when using the RGB, HSV, CIE 𝐿𝑎𝑏, and
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Blue Green Red

Hue Saturation Value

L a b

L 𝛼 𝛽

(A) Input image

(B) The channels of the RGB, HSV, CIE Lab and L𝛼𝛽 color spaces

Figure 4: Chromatic channels of different color spaces applied to an outdoor scene. Note that the red channel of RGB and the 𝑎 channel of
CIE 𝐿𝑎𝑏 are in the last column in order to visually facilitate the comparison. Taken from [3].

the 𝐿𝛼𝛽 color spaces. It is important to remind that our goal
is to see how red and yellow tonalities are detected. We are
neither doing a restoration of the color nor enhancing the
color in images. The underwater images were taken on three
different sea waters, from the Caribbean and the Yucatan
peninsula. As it was previously mentioned, the advantage of
using opponent color spaces is because for this type of images;

one of the opponent colors is basically the color of water,
that is, a bluish or greenish tone. Since colors are usually
defined in terms of human observation, the evaluation of the
performance of an algorithm that involves color information
is a more qualitative aspect than a quantitative one. Figures
4 and 5 show examples of using different color spaces in
an outdoor and underwater images under poor visibility
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Blue Green Red

Hue Saturation Value

L a b

L 𝛼 𝛽

(A) Input image

(B) The channels of the RGB, HSV, CIE Lab and L𝛼𝛽 color spaces

Figure 5: Chromatic channels of different color spaces applied to an underwater scene. Note that the red channel of RGB and the 𝑎 channel
of CIE 𝐿𝑎𝑏 are in the last column in order to visually facilitate the comparison. Taken from [3].
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conditions which are illustrated. Figure 4 depicts in the first
row the input image taken outside water; then in the next
rows, the three channels of the RGB, HSV, CIE 𝐿𝑎𝑏, and 𝐿𝛼𝛽
color spaces, respectively, are shown. In similar arrangement
of images, Figure 5 shows the three channels of each color
space when applying to underwater images in poor visibility
conditions.

It can be observed that all color spaces discriminate red
and yellow colors in the images.However, in underwater, only
the CIE 𝐿𝑎𝑏 and 𝐿𝛼𝛽 color spaces were able to discriminate
the red color of the ball.This conclusion arises from a visually
qualitative comparison.

2.4. Visual Attention Models. Visual attention is a selective
process that allows us to determine what draws our atten-
tion according to the visual stimuli we receive from our
environment. Several works have been done in the area of
neuropsychology to understand how humans pay attention
to what we see. Even today, there are several theories about
how the human visual attention system works. Based on
those theories, various computermodels have been proposed.
Studies about visual attention originally emerged in the area
of psychology and neurophysiology over a century ago [10],
when scientists began to develop theories and models to
explain it. But it was not until 1987, in the work presented by
Koch and Ullman [11], when the first model of a biologically
inspired computational attention was published. After this
work many more were proposed, being the work by Itti et
al. [12] the most relevant to date. A comprehensive survey of
visual attention and its implementation in computer systems
can be found in [13].

One of the motivations for incorporating attention capa-
bilities in systems that process huge amount of information
is to reduce the amount of the data to be processed. This
can be achieved by taking only the information. In the area
of computer vision it is particularly noticeable, as images
contain thousands, even millions of pixels. The problem of
reducing image information has been addressed in various
ways. To mention a few, there exist methods that are based
on the detection of points of interest, such as the Harris’
corner detector [14], SURF [15], or the well-known SIFT [16].
Also, there are detectors of lines, ellipses, and circles [17, 18].
Another approach that has also been applied involves the
predictivemethods, which use information regarding the task
to be performed to limit the amount of information to be
processed.

Two of the more popular attention models, due to their
easy implementation, flexibility, and fast computation, are the
Neuromorphic Vision Toolkit (NVT) proposed by Itti et al.
[12] and the attention system called Visual Object detection
with a computational attention system (VOCUS) by Frintrop
et al. [19]. The Focus of Attention (FoA) is the place in the
image that draws the attention of the system. Itti et al. [12]
searched for the FoA by using a Winner-Take-All neural
network. Frintrop et al. [19] find the point with the highest
saliency value by scanning every point, and the most salient
region is determined by seed region growing.

Recently, visual attention models have been used in
robotic applications [20], and in underwater applications to
primarily assist marine biologists in their review of underwa-
ter videos. For example, Walther et al. [21] and Edgington et
al. [22] detect objects and potentially interesting visual events
for humans in order to label the frames of a video stream as
interesting or boring. In both research works, the NVT [12]
model is used.The videos used in those works were recorded
by a Remotely Operated Vehicle (ROV).

Barat and Rendas [23] present a visual attention system
for detection of manufactured objects. Their model is based
on the minimum description length test for detecting the
motion of contrasting neighboring regions. After that, a
statistical technique is adapted to determine the boundary of
the object. Correia et al. [24] use intensity, motion, and edge
maps as features for their visual attention model to detect the
Norway lobsters and help scientist to quantify them.

In all these works, the visual attention models are used
for aiding humans in the task of analyzing video streams. In
our case, we want the visual attention model to direct the
robot motion through the automatic detection and tracking
of features that could be of interest for a human during an
exploration. Particularly, we are interested in transferring
abilities to an AUV in order to detect regions of interest
without human supervision while successfully navigating
the environment. For the case of autonomous underwater
exploration the visual attention algorithm requires real-time
performance.Moreover, as hardware limitations in underwa-
ter robots are still an issue, the algorithms should have a low
computational cost.

3. The Proposed Method

In this section, the method we propose for detecting and
tracking relevant features in underwater scenes is described.
Our approach for detection of relevant features uses some key
ideas of Itti’s and Frintop’s visual attention models [12, 19].
A computational visual attention algorithm detects relevant
regions in an image emulating the human visual attention.

Traditionally, the detection of relevant features relies on
a saliency map—a gray-scale image in which the brightest
part is the most relevant in terms of features such as intensity,
color, and orientation. Given that the existing natural objects
in underwater scenes lack specific orientation and shape,
our attention model strongly relies on color information.
However, the inherent poor visibility and color degradation
of sea water are critical at distances and depths greater
than 10 meters. For that reason, it is important to select an
appropriate color space to achieve an effortlessly underwater
image enhancement. We use the CIE 𝐿𝑎𝑏 color space.

The most relevant regions can be found by selecting
the location with the highest value in the saliency map. In
a sequence of underwater images of the same scene, it is
common that the location associatedwith the highest value of
saliency changes drastically from one frame to the next. This
is due to the variations in the illumination and/or local water
conditions. Thus, if the location of the region of interest in
the image domain is going to lead the motion of the vehicle
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Figure 6: A general overview of the proposed method for detecting relevant regions.

in the space domain, then a robust tracking of the same or
very similar region (in position and appearance) is crucial to
minimize the erratic motion of the vehicle.

In the following sections, we describe in more detail
each of the steps involved in our visual attention model. In
Figure 6, a general overview of the proposed method for
detecting relevant regions is depicted.

3.1. Preprocessing of the Image. The input image is scaled to
a proper size (typically 0.25 of the original size). Then, the
image is converted to the CIELab color space. In Section 2.3
some advantages of this color space as well as some examples
can be found.

3.2. Getting the Features Maps. We use intensity and color
(red, yellow, green, and blue) as features. The intensity map
corresponds to 𝐿-channel of the CIELab image. The colors

are extracted from 𝑎 and 𝑏 channels, as described in [25], as
follows:

F
𝑖
(𝑥, 𝑦) = 𝑉max −

󵄩󵄩󵄩󵄩𝑎𝑏 (𝑥, 𝑦) − 𝑝
󵄩󵄩󵄩󵄩 , (1)

where 𝐹
𝑖
(𝑥, 𝑦) is ith feature map, 𝑉max = 255 in 8-bit depth

images, 𝑝 = (𝑎
𝑑
, 𝑏
𝑑
) is the desired color to extract in terms

of the chromatic channels, and 𝑎𝑏(𝑥, 𝑦) is the 𝑎𝑏-channel of
the image. The color feature maps are gray-scale images in
which the intensity indicates how near is the desired color to
the original color of the pixel. We do not use the orientation
feature in our model, as it mainly works well in structured
environments (e.g., man-made environments).

3.3. Getting the Conspicuity Maps. The conspicuity map is a
gray-scale image where themost relevant regions (in terms of
a feature) appear brighter than other regions.The first step to
calculate these maps is to build a Gaussian pyramid for each
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Figure 7: Example of the saliency map obtained from an underwater image.

feature. A Gaussian pyramid is built by applying a Gaussian
filter and then downsampling the image in half. If we apply
this process again to the resulting image, we can construct the
other levels of the pyramid. The number of levels used in the
pyramid depends on the size of the input image and the size of
the relevant regions to be found. Bigger regions require more
level in the pyramid to be effectively detected.We use a 5-level
pyramid: that is, five scales 𝑠

𝑚
= {1, 0.5, 0.25, 0.125, 0.0625}.

An important aspect to consider in any computational
visual attention system is highlighting the relevant part for
each feature map. This is usually done by using a center-
surroundmechanism (also called center-surround difference),
which is inspired in cells of the human visual receptive field
[26]. In our approach, these differences are implemented
as convolution. Let P(𝑑) be the image in the level 𝑑 of
the pyramid for a given feature, then the center-surround
differences are applied as follows:

P󸀠 (𝑑, 𝜎) = P (𝑑) − K (𝜎) ∗ P (𝑑) ,

K (𝜎) = 1

(2𝜎 + 1)
2
− 1

[
[
[
[

[

1 ⋅ ⋅ ⋅ 1

.

.

. 0
.
.
.

1 ⋅ ⋅ ⋅ 1

]
]
]
]

](2𝜎+1)×(2𝜎+1)

,

(2)

where 𝜎 defines the size of the mask and ∗ is the convolution
operator between an image and the mask. For each level of
the pyramid two maps are obtained, P󸀠(𝑑, 3) and P󸀠(𝑑, 4).

The resulting images from the application of the center-
surround differences are resized to 0.25 of the size of the
original image. After that, all the images from the same
feature pyramid are added to a single image C, called
conspicuity map.

It is important to note that, contrary to [12, 25], in which
the created conspicuity map involves all colors, we calculate
a conspicuity map for each of the color features. This allows

us, in the posterior stages, to indicate which colors have more
relevance during the exploration.

3.4. Getting the Saliency Map. The saliency map is a gray-
scale image, in which the most relevant parts appear brighter.
To obtain this map, a Difference of Gaussians (DoG) is
applied to each conspicuity map. After that, a weighted sum
of the resulting maps (normalized in the range [0, 1]) is
computed. Formally, the saliencymap is calculated as follows:

S = ∑
𝑖

𝑤
𝑖
⋅ DoG (C

𝑖
) , (3)

where index 𝑖 represents each of the conspicuity maps
obtained from each feature. By assigning different weight
values𝑤

𝑖
to eachmap, we can give a preference to a particular

color tonality. The weighted sum can be seen as a simple
way to incorporate a top-down attention. Unlike VOCUS, in
which a training image containing the object to search is used,
our model does not need images of a particular object. In
any case, we just need to have some information about the
possible dominant color of an object of interest. An example
of a saliency map can be seen in Figure 7.

3.5. Searching of Relevant Points. Once the saliency map is
calculated, a search for 𝑞 more relevant points or regions
of interest (RoI) is carried on. As in VOCUS, a sequential
search of the highest values over all image pixels is done.
Also, to avoid repeating the location of points, we apply an
inhibition of return approach.This way, the area surrounding
each of the relevant points is inhibited and the next relevant
point will be far from the previous one, allowing for a sparse
distribution of relevant regions. Figure 8 shows an example
of the RoIs detected in an image. Unlike our previous work
[3, 4] where a fixed area around a given point is inhibited, in
this work a Seeded Region Growing method [27] is used over
the saliency map to determine a circle that encloses the area
to be inhibited.
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Figure 8: Example of relevant regions detected (enclosed by red circles) in an underwater scene.

3.6. Superpixel-Based Descriptors for Tracking of Relevant
Regions. From the set of regions of interest detected with the
AVA algorithm, the Focus of Attention (FoA) is the one with
the highest value. Thus, the FoA represents the region that
caught the attention the most in an underwater scene.

For some applications, once a FoA is selected, it is
important to keep track of it in the following images in
a sequence. As our purpose is to explore an underwater
environment, our AVAmodelmust keep track of the same (or
very similar) FoA in subsequent frames as much as possible,
if and only if this region is still among the most relevant ones.
We are interested in this behavior because it will lead the
actions of a robot during an exploration task. Having abrupt
changes of the FoA’s location from one frame to the next one
may cause an erratic motion.

To track a region or a point in an image, a descriptor is
needed. We propose to use a superpixel-based descriptor. A
particular advantage that superpixels offer is that they adapt
their shape to enclose similar characteristics of a region, in
terms of color and position. Thus, if we associate with each
relevant region to be tracked the superpixel characteristics
they belong to, we are assuring a local robust description.

The procedure is as follows.The input image is segmented
in 𝑀 superpixels using the SLIC algorithm [28] with𝑀 ≪

𝑁, where 𝑁 the number of pixels in the input image.
Each superpixel is a set of pixels with similar features and
it is characterized by a 5-dimensional vector of the form
[𝐿
𝑠
, 𝑎
𝑠
, 𝑏
𝑠
, 𝑥
𝑠
, 𝑦
𝑠
], where 𝐿, 𝑎, 𝑏 are the mean color values of

the pixels belonging to a given superpixel in the CIELab
color space and (𝑥

𝑠
, 𝑦
𝑠
) is the centroid of the superpixel.

A relevant region is described by the vector s composed
from the components 𝑎

𝑠
, 𝑏
𝑠
, 𝑥
𝑠
, and 𝑦

𝑠
from the superpixels

it belongs to. It can be noted that 𝐿
𝑠
component is not

taken into account because the illumination in this kind of
environments can change from frame to frame.

Once we have the descriptors for each of 𝑞most relevant
regions, we choose the closest one (the most similar) to
the descriptor of the FoA from the previous frame. The
chosen region becomes the FoA of the current frame. The
distance (similarity) measure between two superpixel-based
descriptors, s

𝑗
and s
𝑘
, is based on the SSD metric as in [28],

without the luminance part:

𝐷(s
𝑗
, s
𝑘
) = √(

𝑑
𝑐

𝑁
𝑐

)

2

+ (
𝑑
𝑠

𝑁
𝑠

)

2

, (4)

where

𝑑
𝑐
= √(𝑎

𝑗
− 𝑎
𝑘
)
2

+ (𝑏
𝑗
− 𝑏
𝑘
)
2

,

𝑑
𝑠
= √(𝑥

𝑗
− 𝑥
𝑘
)
2

+ (𝑦
𝑗
− 𝑦
𝑘
)
2

,

(5)

where𝑁
𝑐
and𝑁

𝑠
are normalization factors for the distance in

the color and image space, respectively. These values were set
as described in [29].

Figure 9 illustrates the use of superpixels to achieve a
stable tracking of similar FoAs in a region of interest. If the
distance from the closest saliency descriptor to the previous
FoA descriptor is greater than a defined threshold 𝜇, the
distances are ignored and the point with the highest saliency
value is chosen as the new FoA.

4. Experimental Results

In this section, we present the experimental results to val-
idated the parts of the proposed approach. First, we show
the outcome of the comparison of detected relevant regions
by humans and the proposed system. Then we compare
the relevant regions detected by our approach (AVA) and
the Neuromorphic Visual Toolkit (NVT) [12]. After that, a
comparison in terms of tracking is shown. Finally, we present
the outcome of using the proposed approach to guide the
motion of an underwater robot in an exploration task.

4.1. Relevant Regions Detected by Humans. A comparison
between the regions considered as relevant by a group of
people and by the proposed approach is presented. The
purpose of this experiment is to show that our visual attention
algorithm is able to detect regions that have the potential
to draw the attention of a human. Thus, the AUV can
autonomously explore the underwater environment in terms
of what a human could consider relevant.

We asked 32 people (16 men and 16 women between
20 and 30 years of age with no experience in coral reefs) to
select (by clicking on the screen) the region that attracts their
attention the most in a set of underwater images containing
various scenes of coral reef. Then, we applied our algorithm
on the same set of images. Two regions are considered
coincident if their circles of radius 𝑟 centered at the relevant
region present an overlapping greater than 80%. Figure 10
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Figure 9: Finding the next Focus of Attention. The descriptor for each detected relevant region is obtained. The next Focus of Attention is
the closest descriptor to the previous FoA’s descriptor s∗. For a descriptor s

𝑗
to be considered as a FoA candidate its distance to s∗ should be

less than a given threshold 𝜇 (represented as the circle around s∗).
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Figure 10: Regions of interest (RoI) detected by our method and
the percentage of coincidence made by a group of 32 people. Each
column shows patches containing the five most relevant regions
detected by our system in the corresponding image. More than half
of the group choose as relevant at least one of the areas detected with
our visual attention system.

depicts the obtained results. Each row of the array of images
in the figure contains the five most relevant regions detected
by AVA and the percentage of people that considered the
same region as relevant.

In the presented results, more than half of the group
choose as relevant at least one of the areas detected with our
visual attention system. This study shows us that our model
approximates the way a person will select regions of interest
in coral reefs environments. This is important since we want
our robot to explore the coral reef as a diver visiting it for the
first time.

4.2. Comparison of Detected Regions. In order to measure the
performance of our method in terms of detecting relevant
regions on underwater scenes, we carried on an analytical

comparison of our results with those obtained using the
NVT method [12]. This method was used as implemented
in the Saliency Tool Box (STB) (the STB can be found
in http://www.saliencytoolbox.net/) [30]. For the STB, the
default configuration was used. The features used by our
algorithm are the intensity and color (red, green, yellow,
and blue). For our method, we set the weights of all the
conspicuity maps equal to 1.

For this study,weneed to determine if the relevant regions
detected by the computational attention methods can be
considered of interest for a human. This can be done by
using a person’s judgement. However, this criterion can be
very subjective and time consuming for a large set of images.
We decided to simplify the evaluation and assumed that the
interesting regions should appear on parts of the coral reef:
that is, the areas that visually correspond only to water are
not considered of interest. First, to divide the image intowater
and nonwater regions, we applied an adapted version of the
robust superpixel-based classifier proposed in [31].

This classifier is used to segment the floor in indoor
environments for mobile robot reactive navigation. We have
adapted this classifier so it can segment water instead. One of
the advantages is that it can be trained online with the current
water conditions, and once it is running, it can automatically
adapt to possible changes in tonality. All this makes the
classifier quite robust. A classification example is depicted in
Figure 11.

To perform the comparison test, both algorithms were
set to detect the five most relevant regions on each of the
1550 frames in six video sequences. The videos contain a
great variety of water conditions, depths, and scenarios of
the coral reef of Costa Maya, Mexico. It is important to
mention that many of the images in the sequence present
challenging situations, for example, high brightness from the
sun, bluish and greenish tonalities in case of images taken
at deeper locations, and blurriness due to camera motion.
All the detected regions that fell into the nonwater area were
counted as relevant. In Table 1, the results obtained are shown.
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Figure 11: Example of a classification of water (blue dots superpixels) and nonwater (red dots superpixels) regions. Also in this image, five
relevant regions detected by our visual attention algorithm are shown. The most relevant region is enclosed in a cyan circle whereas the rest
are enclosed in yellow circles.

It can be seen that the percentage of regions detected as
interesting by our method is greater than the percentage
when using NVT. Let us not forget that these results are over
the five most relevant regions detected by both algorithms.
We carried on another test, in which only the first most
relevant regions were considered. If this relevant region was
considered as interesting then it was counted as correct.
Table 2 shows the percentages of the interesting regions for
the two algorithms for comparison purposes. Although the
proposed algorithm percentage is higher than the NVT, the
difference is minimal. For this case, however, we have noted
(by visually inspecting the detected regions) that many of the
relevant points detected by the NVT method were on areas
containing only sand or rock formations of brown or black
color, which are not considered of interest in an exploration
task.

In Figure 12, some images from the video sequences with
the relevant regions detected by the algorithms are shown.
Qualitatively, in terms of relevance, it can be seen that some
of the regions detected by the NVT algorithm are on water or
on irrelevant parts like sand or shadows. Also, it can be noted,
in the sixth row of both figures, that the regions detected by
our algorithm tend to be in the coral reef despite of the abrupt
illumination changes due to the sun.

As was shown in Tables 1 and 2, the detected regions
by our algorithm tend to be part of the coral reef in more
occasions than the detected regions by the NVT algorithm.
The difference is notorious when the five most relevant
regions were counted. This fact could be useful when we
want to lead an autonomous robotic exploration to gather
video-observations of this kind of environments (coral reefs),
because if more regions are detected in the coral reef then the
autonomous agent will go to that place instead of moving to
a zone where there is only water.

Table 1: Comparison of the five most relevant regions detected as
relevant or interesting (nonwater regions) by using the NVT and the
proposedmethod. In the last row the total number of images and the
average of the percentage of detected relevant regions are specified.

Seq. Frames Depth [m]
% of

interesting
regions
(NVT)

% of
interesting
regions
(AVA)

1 168 7.7 75.20 95.85
2 243 7.8 66.91 95.80
3 153 7.8 83.00 99.60
4 181 11.8 57.79 92.15
5 163 7.1 74.47 98.28
6 242 11.3 59.92 90.76

1150 69.04 94.90

4.3. Tracking of Relevant Regions. In this section, a compar-
ison between the tracking of a region by using the super-
pixel descriptors and a keypoint-based descriptor is done.
As keypoint detector and descriptor we have used SURF
[15], SIFT [16], and ORB [32]. The implementation of the
descriptors is the one available on OpenCV. To find the
correspondence between keypoints we have use a robust
matcher which is available in [33]. The keypoint descriptors
and detectors are used with default configuration. For AVA,
the yellow and red features have preference through the
weights.

For this test, we evaluate the length of tracking, that
is, the number of consecutive frames that a given region is
tracked in a sequence of images. The region to be tracked
is the most relevant as considered by the proposed visual
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Figure 12: Some of regions detected as interesting by our visual attention algorithm and the NVT. The videos sequences were taken
approximately between 7.5m and 11m of depth.
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Table 2: Comparison of the most relevant region detected as
relevant (nonwater regions) by using the NVT and the proposed
method. In the last row the total number of images and the average
of the percentage of detected relevant regions are specified.

Seq. Frames Depth [m] % of relevant
region (NVT)

% of relevant
region (AVA)

1 168 7.7 90.47 91.07
2 243 7.8 94.23 95.06
3 153 7.8 99.34 100
4 181 11.8 88.39 95.5
5 163 7.1 95.02 98.15
6 242 11.3 87.02 91.60

1150 92.41 95.23

Table 3: Tracking length comparison of SURF, SIFT, and ORB
against the proposed approach.

Tracker
Processing
time per
frame

Tracking
length

SURF 227.8ms 64.67%
SIFT 258.6ms 74.35%
ORB 13.6ms 32.65%

attention algorithm. The image sequences are taken from
different videos recorded by a diver while exploring a coral
reef.

It is important to remark that the complexity of the AVA
algorithm is 𝑂(𝑁), where 𝑁 is the total number of pixels
in the image. The average processing time, in a 2.1 GHz
dual-core processor, for an image of 480 × 270 is 122ms. A
total of 8545 images comprises the sequences used in this
test.

In Table 3, the average percentages of length of track-
ing between the proposed method and the keypoint-based
trackers and the average processing times are shown. The
percentage indicates how a long keypoint-based method’s
tracking length is in comparison with the AVA tracking
length. For example, the tracking length of the SIFT-based
tracker is 74.3% of the AVA tracking length. We have nor-
malized all the percentages with respect to the AVA tracking
length because it was themethod that gets the longer tracking
length.

Although the SIFT-based tracker is the one with almost
the same tracking length as AVA, it is approximately twice
slower. The faster tracker is the one based on ORB; how-
ever, it is also the one with the smallest tracking length.
From the results of Table 3, it can be noted that the pro-
posed approach outperforms the other methods when track-
ing regions in underwater environments, particularly coral
reefs.

With respect to the processing time, our method can
process in average 8 frames of size 480 × 270 per second. It is
important to consider that the current implementation of our

method is not yet optimized in terms of software. However,
we have found that the current processing frame rate can
be good enough to work when exploring an underwater
environment because this task tends to be executed with slow
motions of the AUV.

From the presented results, it can be remarked that the
proposed method can detect and track regions that are likely
to draw the attention of humans in coral reefs.Thismakes our
approach suitable for using it to guide an exploration in terms
of regions of potential interest for humans.

4.4. Field Trials. For experimental tests we use an amphibi-
ous robot namedMexibot of the AQUA family [34]. In water,
the robot’s propulsion is based on six fins that can provide
motion in 5 degrees of freedom up to depths near 35 meters.
Mexibot’s medium size (60 × 45 × 12 cm) allows for easy
maneuverability, which is important in the time response
on the robot’s control, when navigating with the purpose of
closely monitoring an unstructured environment.

All the trials were performed in an area that belongs to
the second largest coral reef system, located in Costa Maya,
Mexico. The coral reef ecosystem in this zone has a wide
diversity of living organisms (flora and fauna) with a great
variety in colors. It also has variable conditions in terms of
depth and visibility.Weperformed the experiments in a depth
range from 5 to 18m.

During the field trials several exploration tests were per-
formed. Most of the tests were set to a two-minute duration
as we needed to verify their performance under different
conditions. In Figure 13, the results from an exploration are
shown.During this test theAUVwas programmed to turn 90∘
around its 𝑍 axis every certain time. This had two purposes:
the first one is for safety, to avoid a possible collision between
the robot and the coral reef. In the moment of the tests
the AUV did not have an implemented method for collision
avoidance. The second purpose is for testing the capabilities
of the proposed approach to detect and track new regions.
This way the AUV should detect and track a different region
every certain time.

It can be seen in Figure 13 that the AUV effectively
changes its yaw angle in order to track the region detected
by the visual attention algorithm. The boxes in Figures 13(a)
and 13(b) enclose the period during which the same RoI was
tracked by the AUV. It can be seen that these regions were
followed during several seconds by the AUV until before
the 90∘ turn. These results show that the proposed approach
can be used to guide the motion of a AUV for exploring an
unknown environment.

5. Conclusions and Future Work

We have presented ongoing research on the detection and
tracking of invariant features that are considered relevant
during the exploration of a coral reef habitat. The main
goal is to perform an autonomous cautious exploration and
gather high quality image data with a robotic system that
could be directly deployed into the environment, with few or
no prior information of it. It is important to highlight that
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Figure 13: Obtained results during a field trial in a coral reef. In (a) and (b) we can observe the𝑋-coordinate of the region of interest as well
as the yaw angle of the AUV, respectively. In (c) images from the tracked RoI can be seen.

the system is trained to adapt itself to the local water and
illumination conditions in an online manner. The integrated
framework is fast enough to perform the exploration while
fitting to the control navigation requirements of the system.
Future research will focus on the incorporation of a notion
of forward movement to estimate how far the robot is from
a certain region as well as adding texture information on the

detection of regions of interest in order to reduce errors in the
selection of relevant regions (e.g., sand or rock regions are not
of interest for exploration).
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This paper presents a vision-based navigation system for an autonomous underwater vehicle in semistructured environments with
poor visibility. In terrestrial and aerial applications, the use of visual systems mounted in robotic platforms as a control sensor
feedback is commonplace. However, robotic vision-based tasks for underwater applications are still not widely considered as the
images captured in this type of environments tend to be blurred and/or color depleted. To tackle this problem, we have adapted the
𝑙𝛼𝛽 color space to identify features of interest in underwater images even in extreme visibility conditions. To guarantee the stability
of the vehicle at all times, a model-free robust control is used. We have validated the performance of our visual navigation system
in real environments showing the feasibility of our approach.

1. Introduction

The development of research in autonomous underwater
vehicles (AUVs) began approximately four decades ago. Since
then, a considerable amount of research has been presented.
In particular, the localization and navigation problems rep-
resent a challenge in the AUVs development due to the
unstructured and hazardous conditions of the environment
and the complexity of determining the global position of the
vehicle. An extensive review of the research related to this
topic is presented in [1–4].

Sensor systems play a relevant role in the development
of AUV navigation systems as they provide information
about the system status and/or environmental conditions.
There exist several sensors that provide relevant and accurate
information [5–7]. However, global or local pose estimation
of underwater vehicles is still an open problem, specially
when a single sensor is used. Typically, underwater vehicles
use multisensor systems with the intention of estimating
their position and determining the location of objects in
their workspace. Usually, inertial measurement units (IMUs),

pressure sensors, compasses, and global positioning systems
(GPS) are commonly used [8]. Note that even though GPS
devices arewidely used for localization, they show lowperfor-
mance in an underwater environment.Therefore, data fusion
is needed to increase the accuracy of the pose estimation (for
a review of sensor fusion techniques see [9].)

Vision-based systems are a good choice because they
provide high resolution images with high speed acquisition
at low cost [10]. However, in aquatic environments the
color attenuation produces poor visibility when the distance
increases. In contrast, at short distances the visibility may
be good enough and the measurement accuracy higher than
other sensors. Therefore, tasks in which visual information
is used are limited to object recognition and manipulation,
docking vehicle [11], reconstruction of the ocean floor struc-
ture [12], and underwater inspection and maintenance [13].
In [14], the authors discuss how visual systems can be used
in underwater vehicles, and they present a vision system
which obtains depth estimations based on a camera data.
In [10], a visual system was introduced. This visual system,
called Fugu-f, was designed to provide visual information in
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submarine tasks such as navigation, surveying, andmapping.
The system is robust in mechanical structure and software
components. Localization has been also addressed with
vision systems. In [15] a vision-based localization system
for an AUV with limited sensing and computation capabil-
ities was presented. The vehicle pose is estimated using an
Extended Kalman Filter (EKF) and a visual odometer. The
work in [16] presents a vision-based underwater localization
technique in a structured underwater environment. Artificial
landmarks are placed in the environment and a visual
system is used to identify the known objects. Additionally
a Monte Carlo localization algorithm estimates the vehicle
position.

Several works for visual feedback control in underwater
vehicles have been developed [17–28]. In [17], the authors
present a Boosting algorithm which was used to identify
features based on color.This method uses, as input, images in
the RGB color space, and a set of classifiers are trained offline
in order to segment the target object to the background and
the visual error is defined as an input signal for the PID con-
troller. In a similar way, a color-based classification algorithm
is presented in [18].This classifier was implemented using the
JBoost software package in order to identify buoys of different
color. Bothmethods require an offline training process which
is a disadvantage when the environment changes. In [19], an
adaptive neural network image-based visual servo controller
is proposed; this control scheme allows placing the under-
water vehicle in the desired position with respect to a fixed
target. In [20], a self-triggered position based visual servo
scheme for the motion control of an underwater vehicle was
presented. The visual controller is used to keep the target in
the center of imagewith the premise that the targetwill always
remain inside the camera field of view. In [21], the authors
present an evolved stereo-SLAM procedure implemented in
two underwater vehicles. They computed the pose of the
vehicle using a stereo visual system and the navigation was
performed following a dynamic graph. A visual guidance and
control methodology for a docking task is presented in [22].
Only one high-power LED light was used for AUV visual
guidancewithout distance estimation.The visual information
and a PID controller were employed in order to regulate
the AUV attitude. In [23], a robust visual controller for an
underwater vehicle is presented. The authors implemented
genetic algorithms in a stereo visual system for real-time
pose estimation, which was tested in environments under
air bubble disturbance. In [24], the development and testing
process of a visual system for buoys detection is presented.
This system used the HSV color space and the Hough trans-
formation in the detection process. These algorithms require
the internal parameters adjusting depending on the work
environment, which is a disadvantage. In general, the visual
systems used in these papers were configured for a particular
environment and when the environmental characteristics
change, it is necessary to readjust some parameters. In addi-
tion, robust control schemes were not proposed for attitude
regulation.

In this work, a novel navigation system for autonomous
underwater vehicle is presented. The navigation system
combines a visual controller with an inertial controller in

order to define the AUV behavior in a semistructured
environment. The AUV dynamic model is described and a
robust control scheme is experimentally validated for attitude
and depth regulation tasks. An important controller feature
is that it can be easily implemented in the experimental
platform.Themain characteristics affecting the images taken
underwater are described, and an adapted version of the
perceptually uniform color space 𝑙𝛼𝛽 is used to find the
artificial marks in a poor visibility environment. The exact
positions of the landmarks in the vehicle workspace are not
known, but an approximate knowledge of their localization is
available.

The main contributions of this work include (1) the
development of a novel visual system for detection of artificial
landmarks in poor visibility conditions underwater, which
does not require the adjustment of internal parameters when
environmental conditions change, and a new simple visual
navigation approach which does not require keeping the
objects of interest in the field of viewof the camera at all times,
considering that only their approximate localization is given.
In addition, a robust controller guarantees the stability of the
AUV.

The remaining part of this paper is organized as follows.
In Section 2 the visual system is introduced. The visual
navigation system and details of the controller are presented
in Section 3. Implementation details and the validated exper-
imental results are presented in Section 4. Finally, Section 5
concludes this work.

2. The Visual System

Underwater visibility is poor due to the optical properties of
light propagation, namely, absorption and scattering, which
are involved in the image formation process. Although a
big amount of research has focused on using mathematical
models for image enhancement and restoration [25, 26],
it is clear that the main challenge is the highly dynamic
environment; that is, the limited number of parameters that
are typically considered could not represent all the actual
variables involved in the process. Furthermore, for effective
robot navigation, the enhanced images are needed in real
time,which is not always possible to achieve in all approaches.
For that reason, we decided to explore directly the use of
perceptually uniform color spaces, in particular the 𝑙𝛼𝛽 color
space. In the following sections, we describe the integrated
visual framework proposed for detecting artificial marks in
aquatic environments, in which the 𝑙𝛼𝛽 color space was
adapted for underwater imagery.

2.1. Color Discrimination for Underwater Images Using the
𝑙𝛼𝛽 Color Space. Three main problems are observed in
underwater image formation [26]. The first is known as
disturbing noise, which is due to suspended matter in water,
such as bubbles, small particles of sand, and small fish or
plants that inhabit the aquatic ecosystem. These particles
block light and generate noisy images with distorted colors.
The second problem is related with the refraction of light.
When a camera set and objects are placed in two different
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Figure 1: Photographs with multicolored objects taken underwater and in air.

environments with different refractive index, the objects in
the picture have different distortion for each environment,
and therefore the position estimation is not the same in both
environments.The third problem in underwater images is the
light attenuation.The light intensity decreases as the distance
to the objects increases; this is due to the attenuation of the
light in function of its wavelength.The effect of this is that the
colors of the observed underwater objects look different from
those perceived in the air. Figure 1 shows two images with the
same set of different color objects taken underwater and in
air. In these images, it is possible to see the characteristics of
the underwater images mentioned above.

A color space is a mathematical model through which the
perceptions of color are represented.The color space selection
is an important decision in the development of the image
processing algorithm, because it can dramatically affect the
performance of the vision system. We selected the 𝑙𝛼𝛽 color
space [27], because it has features that simplify the analysis of
the data coming from the underwater images. In underwater
images, the background color (sea color) is usually blue or
green; these colors correspond to the limits of the 𝛼 and 𝛽

channels, respectively, and, therefore, to identify objects with
contrasting colors to the blue or green colors results much
easier. A modification of the original transformation method
form the RGB to the 𝑙𝛼𝛽 space color wasmade.The logarithm
operationwas removed from the transformation reducing the
processing time while keeping the color distribution. Thus,
the mapping between RGB and the modified 𝑙𝛼𝛽 color space
is expressed as a linear transformation:

[
[

[

𝑙

𝛼

𝛽

]
]

]

=
[
[

[

0.3475 0.8265 0.5559

0.2162 0.4267 −0.6411

0.1304 −0.1033 −0.0269

]
]

]

[
[

[

R
G
B

]
]

]

, (1)

where 𝑙 ∈ [0.0, 1.73] is the achromatic channel which
determines the luminance value, 𝛼 ∈ [−0.6411, 0.6429] is the
yellow-blue opposite channel, and 𝛽 ∈ [−0.1304, 0.1304], is
the red-cyan with a significant influence of green. The data
in these channels include a wide variety of colors; however,
the information in aquatic images is contained in a very
narrow interval. Figure 2 shows an underwater image and the
frequency histogram for each channel of the 𝑙𝛼𝛽 color space.

In this image, the data of the objects are concentrated in a
small interval.

Therefore, in order to increase the robustness of the iden-
tificationmethod, new limits for each channel are established.
These values help to increase the contrast between objects and
the background in the image. The new limits are calculated
using the frequency histogram for each of the channels,
and, with this, the extreme values in the histogram with a
higher frequency than a threshold value are computed. The
difference between using the frequency histogram, and not
only the minimum and maximum values, is that the first
method eliminates outliers.

Finally, a data normalization procedure is performed
using the new interval in each channel of the 𝑙𝛼𝛽 color space.
After this, it is possible to obtain a clear segmentation of the
objects with colors located at the end values of the channels.
Figure 3 shows the result of applying the proposed algorithm
in the 𝑙, 𝛼, 𝛽 channels. It can be observed that some objects
are significantly highlighted from the greenish background;
particularly, the red circle in the beta channel presents a high
contrast.

2.2. Detection of Artificial Marks in Aquatic Environments.
The localization problem for underwater vehicles requires
identifying specific objects in the environment. Our naviga-
tion system relies on a robust detection of the artificial marks
in the environment. Artificial red balls were selected as the
known marks in the aquatic environment. Moreover, circles
tags with different color were attached to the sphere in order
to determine the section on the sphere that is being observed.

Detection of circles in images is an important and
frequent problem in image processing and computer vision.
A wide variety of applications such as quality control, classi-
fication of manufactured products, and iris recognition use
circle detection algorithms. The most popular techniques for
detecting circles are based on the Circle Hough Transform
(CHT) [28]. However, this method is slow, demands a
considerable amount of memory, and identifies many false
positives, especially in the presence of noise. Furthermore,
it has many parameters that must be previously selected by
the user. This last characteristic limits their use in under-
water environments since ambient conditions are constantly
changing. For this reason, it is desirable a circle detection
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(a) Input image (b) 𝑙

(c) 𝛼 (d) 𝛽

Figure 2: Frequency histograms for each channel of 𝑙𝛼𝛽 color space.

algorithmwith a fixed set of internal parameters that does not
require adjustment even if small or large circle identification
is required or if the ambient light changes.The circle detection
algorithm presented by Akinlar and Tobal [29] provides the
desired properties. We have evaluated its performance in
aquatic images with good results. Specifically, we applied
the algorithm to the 𝛽 channel image which is the resulting
image from the procedure described in the previous section.
As it was mentioned, the 𝛽 channel presents the highest
contrast between red color objects and the background color
of underwater images.This enables the detection algorithm to
find circular shapes in the field of view with more precision.
This is an important discover to the best of our knowledge,
this is the first time that this color space model is used in
underwater images for this purpose.

Figure 4 shows the obtained results. The images are
organized as follows: the first column shows the original
input image; the second column corresponds to the graphical
representation of the 𝛽 channel; and finally the third column

displays the circles detected in the original image. The rows
in the figure present the obtained results under different
conditions. The first experiment analyzes a picture taken in
a pool with clear water. Although the spheres are not close
to the camera, they can be easily detected by our visual
system. The second row is also a photograph taken in the
pool, but in this case the visibility was poor; however, the
method works appropriately and detects the circle. Finally,
the last row shows the results obtained from a scene taken
in the marine environment, in which visibility is poor. In
this case, the presence of the red object in the image is
almost imperceptible to the human eye; however the detector
identifies the circle successfully.

The navigation system proposed in this work is the
integration of the visual system, described above, with a novel
control scheme that defines the behavior of the vehicle based
on the available visual information. The block diagram in
Figure 5 shows the components of the navigation system and
the interaction between them.
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(a) Input image (b) 𝑙

(c) 𝛼 (d) 𝛽

Figure 3: Result of conversion of the input image to color space 𝑙𝛼𝛽 after adjusting the range of values.

3. Visual Navigation System

In this section the navigation system and its implementation
in our robotic system are presented. The autonomous under-
water vehicle, called Mexibot (see Figure 6), is part of the
Aqua robot family [30] and an evolution of theRHex platform
[31].The Aqua robots are amphibious with the ability to work
in both land andwater environments.The underwater vehicle
has a pair of embedded computers; one computer is used for
the visual system and for other phases such as registration of
data; the second computer is used for the low-level control.
An important feature is that both computers are connected
via Ethernet, so they are able to exchange data or instructions.
The control loop of the robot runs on a real-time constraint;
for this reason, QNX operating system is installed in the
control computer. On the other hand, the vision computer
has Ubuntu 12.04 as the operating system. On this computer,
high-level applications are developed which use the Robot
Operating System (ROS). In addition, the vehicle has an IMU,
which provides attitude and angular velocity of the vehicle. A
pressure sensor is used to estimate the depth of the robot, and
a set of three cameras are used, two in front of the robot and
one in the back.

3.1. Model-Free Robust Control. The visual navigation system
requires a control scheme to regulate the depth and attitude
of the underwater vehicle. In this subsection, the under-
water vehicle dynamics is analyzed and the controller used

to achieve the navigation objective is presented. Knowing
the dynamics of underwater vehicles and their interaction
with the environment plays a vital role for the vehicles
performance. The underwater vehicles dynamics include
hydrodynamic parametric uncertainties, which are highly
nonlinear, coupled, and time varying. The AUV is a rigid
body moving in 3D space. Consequently, the AUV dynamics
can be represented with respect to the inertial reference
denoted by 𝐼 = {𝑒𝑥 𝑒𝑦 𝑒𝑧} or with respect to the body
reference frame 𝐵 = {𝑒

𝑏

𝑥
𝑒
𝑏

𝑦
𝑒
𝑏

𝑧
}. Figure 7 presents the AUV

reference frames and their movements.
In [32], Fossen describes the method to obtain the

underwater vehicle dynamics using Kirchhoff ’s laws. Fluid
damping, gravity-buoyancy, and all external forces are also
included and the following representation is obtained:

𝑀 ̇^ + 𝐶V (^) ^ + 𝐷V (^𝑅) ^ + gV (q) = F𝑢 + 𝜂V (⋅) (2)

^ = 𝐽 (q) q̇, (3)

where q = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]
𝑇

∈ R6 is the pose of the
vehicle, ^ = [k𝑇,𝜔𝑇]𝑇 ∈ R6 is the twist of the vehicle,
k = [V𝑥 V𝑦 V𝑧]

𝑇
∈ R3 is the linear velocity, and 𝜔 =

[𝜔𝑥 𝜔𝑦 𝜔𝑧]
𝑇
∈ R3 is the angular velocity expressed in the

body reference frame.𝑀 ∈ R6×6 is the positive constant and
symmetric inertia matrix which includes the inertial mass
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(a) Inpute image (b) 𝛽 channel (c) Detected circles

Figure 4: Example results of applying the circle detection algorithm using the 𝑙𝛼𝛽 color space in underwater images with different visibility
conditions.
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Figure 5: Block diagram of the proposed navigation system for autonomous underwater vehicle.
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Figure 6: Our underwater vehicle Mexibot.
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and the added mass matrix. 𝐶V(^) ∈ R6×6 is the skew-
symmetric Coriolis matrix and 𝐷V(^𝑅) > 0 ∈ R6×6 is the
positive definite dissipative matrix, which depends on the
magnitude of the relative fluid velocity ^𝑅 ∈ R6. 𝜁 ∈ R6 is
the fluid velocity in the inertial reference and gV(q) ∈ R6

is the potential wrench vector which includes gravitational
and buoyancy effects. F𝑢 ∈ R6 is the vector of external
forces, expressed in the vehicle frame and produced by the
vehicle thrusters, 𝐽(q) ∈ R6×6 is the operator that maps the
generalized velocity q̇ to the vehicle twist ^, and 𝜂V(⋅) is the
external disturbance wrench produced by the fluid currents.

Consider the following control law [33]:

F𝑢 = 𝑀̂ ̇^𝑟 + 𝐷̂V^𝑟

− 𝐽
−𝑇

(q) (𝐾𝑠s + 𝐾𝑖 ∫ s 𝑑𝑡 + 𝛽 ‖s‖2 s) ,
(4)

where 𝑀̂, 𝐷̂V, 𝐾𝑠, 𝐾𝑖, and Λ are constant positive definite
matrices, 𝛽 is a positive scalar, and q̃ is the pose error:

q̃ = q − q𝑑, (5)

after which the extended (tracking) error s is defined as

s = ̇̃q + Λq̃. (6)

Expressing this extended error as a velocity error

s = q̇ − q̇
𝑟 (7)

for an artificial reference velocity q̇
𝑟
= q̇
𝑑
− Λq̃, it raises the

vehicle’s twist reference as

^𝑟 ≜ 𝐽 (q) q̇𝑟 = 𝐽 (q) (q̇𝑑 − Λq̃) = ^𝑑 − 𝐽 (q) Λq̃. (8)

This control scheme ensures stability for tracking tasks
despite any inaccuracies in the dynamic parameters of the
vehicle and the perturbations in the environment, [33].
Therefore, this control law can be used to define the behavior
of both the inertial and the visual servoing mode of the
underwater vehicle.

It is also important to highlight that this control law can
be implemented easily, because it only requires measure-
ments of q, q̇ and rough estimates of𝑀 and𝐷].

3.1.1. Stability Analysis. Model (2)-(3) is also known as the
quasi-Lagrangian formulation since the velocity vector ^
defines a quasi-Lagrangian velocity vector. The Lagrangian
formulation upon which the stability analysis relies is found
by using (3) and its time derivative on (2) and premultiply the
resulting equation by the transpose of the velocity operator
𝐽
𝑇
(q) [34]:

𝐻(q) q̈ + 𝐶 (q, q̇) q̇ + 𝐷 (q, q̇, ^𝑅) q̇ + g (q)

= 𝜏 + 𝜂 (⋅) ,

(9)

where 𝐻(q) = 𝐽
𝑇
(q)𝑀𝐽(q) = 𝐻

𝑇
(q) > 0; 𝐶(q, q̇) =

𝐽
𝑇
(q)𝑀𝐽̇(q) + 𝐽

𝑇
(q)𝐶V𝐽(q), which implies that 𝐶− (1/2)𝐻̇ =

𝑄;𝑄+𝑄
𝑇
= 0; and all the terms are bounded, for nonnegative

constants 𝑏𝑖 ≥ 0 as follows:

‖𝐻 (q)‖ ≤ 𝑏1 = 𝜆𝑀 {𝐻 (q)}

‖𝐶 (q, q̇)‖ ≤ 𝑏2 ‖q̇‖
󵄩󵄩󵄩󵄩𝐷 (q, q̇, ^𝑅)

󵄩󵄩󵄩󵄩 ≤ 𝑏3 ‖q̇‖ + 𝑏4 ‖𝜁‖

󵄩󵄩󵄩󵄩g (q)
󵄩󵄩󵄩󵄩 ≤ 𝑏5

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩 ≤ 𝑏6

󵄩󵄩󵄩󵄩󵄩
𝜁̇
󵄩󵄩󵄩󵄩󵄩
+ 𝑏7 ‖q̇‖ ‖𝜁‖ + 𝑏8 ‖𝜁‖

2
.

(10)

Then, control law (4) adopts the following shape in the
Lagrangian space:

𝜏 = 𝐽
𝑇
(q) F𝑢

= 𝐻̂ (q) q̈𝑟 + 𝐶̂ (q, q̇) q̇𝑟 + 𝐷̂ (q) q̇𝑟 − 𝐾𝑠s

− 𝐾𝑖 ∫ s𝑑𝑡 − 𝛽 ‖s‖2 s,

(11)

with the following relationships:

𝐻̂ (q) ≜ 𝐽
𝑇
(q) 𝑀̂𝐽 (q) > 0,

𝐶̂ (q, q̇) ≜ 𝐽
𝑇
(q) 𝑀̂𝐽̇ (q) ,

𝐷̂ (q) ≜ 𝐽
𝑇
(q) 𝐷̂V𝐽 (q) > 0,

(12)

fromwhich it raises 𝐶̂+𝐶̂
𝑇

=
̇̂

𝐻 or equivalently the following
property:

x𝑇 [1
2

̇̂
𝐻 (q) − 𝐶̂ (q, q̇)] x = 0, ∀x ̸= 0. (13)
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Now consider that the left-hand side of Lagrangian
formulation (9) can be expressed in the following regression-
like expression:

𝐻(q) q̈ + 𝐶 (q, q̇) q̇ + 𝐷 (q, q̇, ^𝑅) q̇ + g (q)

= 𝑌 (q, q̇, q̈) 𝜃,
(14)

where 𝑌(q, q̇, q̈) : −R𝑝 󳨃→ R𝑛 is the regressor constructed
by known nonlinear functions of the generalized coordinates
and its first and second time derivatives and 𝜃 ∈ R𝑝 is the
vector of 𝑝 unknown parameters.

Then for an arbitrary smooth (at least once differentiable)
signal q̇

𝑟
∈ R𝑛, there should exist a modified regressor

𝑌𝑟(q, q̇, q̇𝑟, q̈𝑟) : R
𝑝
󳨃→ R𝑛 such that

𝐻(q) q̈𝑟 + 𝐶 (⋅) q̇𝑟 + 𝐷 (⋅) q̇𝑟 + g (q)

= 𝑌𝑟 (q, q̇, q̇𝑟, q̈𝑟) 𝜃.
(15)

The difference between the estimate version and the real
parameters 𝜃̃ = 𝜃 − 𝜃̂ produces an estimate system error:

𝑌𝑟 (q, q̇, q̇𝑟, q̈𝑟) 𝜃̃ = [𝐻 (q) − 𝐻̂ (q)] q̈𝑟

+ [𝐶 (q, q̇) − 𝐶̂ (q, q̇)] q̇𝑟

+ [𝐷 (q, q̇, ^𝑅) − 𝐷̂ (q)] q̇𝑟,

(16)

which after the above equivalence is properly bounded:
󵄩󵄩󵄩󵄩󵄩
𝑌𝑟 (q, q̇, q̇𝑟, q̈𝑟) 𝜃̃

󵄩󵄩󵄩󵄩󵄩
≤ 𝑏9

󵄩󵄩󵄩󵄩q̇𝑟
󵄩󵄩󵄩󵄩 + 𝑏10

󵄩󵄩󵄩󵄩q̇𝑟
󵄩󵄩󵄩󵄩
2
+ 𝑏11

󵄩󵄩󵄩󵄩q̈𝑟
󵄩󵄩󵄩󵄩 . (17)

Then the closed-loop dynamics is found using control law (11)
in the open-loop Lagrangian expression (9):

𝐻̂ (q) ̇s + 𝐶̂ (q, q̇) s + 𝐷̂ (q) s + 𝐾𝑠s + 𝐾𝑖 ∫ s 𝑑𝑡

= −𝛽 ‖s‖2 s − 𝑌𝑟 (q, q̇, q̇𝑟, q̈𝑟) 𝜃̃ − g (q) + 𝜂 (⋅) .
(18)

Now consider the following Lyapunov candidate func-
tion:

𝑉 (s) = 1

2
s𝑇𝐻̂ (q) s + 1

2
ã𝑇𝐾−1
𝑖
ã > 0, (19)

with ã ≜ a0 − 𝐾𝑖 ∫ s 𝑑𝑡 for some constant vector a0 ∈ R𝑛. The
time derivative of the Lyapunov candidate function along the
trajectories of the closed-loop system (18), after property (13)
and proper simplifications, becomes

𝑉̇ (s) = −s𝑇 [𝐻̂ (q) + 𝐾𝑠] s − 𝛽s𝑇 ‖s‖2 s − s𝑇a0

+ s𝑇 (𝜂 (⋅) − 𝑌𝑟 (q, q̇, q̇𝑟, q̈𝑟) 𝜃̃ − g (q)) .
(20)

Assuming that ̇^𝑟 is bounded implies that both q̇
𝑟
and q̈

𝑟
are

also bounded. Then, assuming that 𝜁 and 𝜁̇ are also bounded
it yields ‖𝜂(⋅)‖ + ‖𝑌𝑟(q, q̇, q̇𝑟, q̈𝑟)𝜃̃‖ ≤ 𝑘1 + 𝑘1‖q̇𝑟‖ + 𝑘2‖q̇𝑟‖

2,
which can be expressed in terms of the extended error as

󵄩󵄩󵄩󵄩𝜂 (⋅)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝑌𝑟 (q, q̇, q̇𝑟, q̈𝑟) 𝜃̃

󵄩󵄩󵄩󵄩󵄩
≤ 𝜇0 + 𝜇1 ‖s‖ + 𝜇2 ‖s‖

2
. (21)

Then the last term in (20) is bounded as follows:

󵄩󵄩󵄩󵄩󵄩
𝜂 (⋅) − 𝑌𝑟 (⋅) 𝜃̃ − g (q)󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜂 (⋅)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑌𝑟 (⋅) 𝜃̃

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩g (q)

󵄩󵄩󵄩󵄩

≤ 𝜇0 + 𝑏5 + 𝜇1 ‖s‖ + 𝜇2 ‖s‖
2
.

(22)

Also, let a0 ≜ (𝜇0 + 𝑏5)e6, where e6 ∈ R6 is a vector of ones,
such that ‖a0‖ = (𝜇0 + 𝑏5) > 0. Then, after these bounding
expressions, (20) is bounded as follows:

𝑉̇ (s) ≤ −𝜆𝐷𝐾 ‖s‖
2
− 𝛽 ‖s‖4 + 𝜇2 ‖s‖

3
+ 𝜇1 ‖s‖

2
, (23)

where 𝜆𝐷𝐾 is the largest eigenvalue of matrix 𝐷̂(q) + 𝐾𝑠. The
conditions to satisfy 𝑉̇(s) < 0 are summarized as

𝜆𝐷𝐾 > 𝜇1 + 𝜇2,

𝛽 > 𝜇2,

(24)

which are conditions in the control law gains choice.
Under these conditions 𝑉̇(s) is negative definite and the

extended error is asymptotically stable:

lim
𝑡→∞

‖s‖ 󳨀→ 0. (25)

Finally, after definition (6) whenever s = 0 it follows
that ̇̃q = −Λq̃ which means that q reaches the set point q𝑑.
Therefore, the stability for the system is proved. A detailed
explanation and analysis of the controller can be found in
[33].

The implementation of the control does not require
knowledge of the dynamic model parameters; hence it is
a robust control with respect to the fluid disturbances and
dynamic parametric knowledge. However it is necessary to
know the relationship between the control input and the
actuators.

3.2. Thrusters Force Distribution. The propulsion forces of
Mexibot are generated by a set of six fins which move along a
sinusoidal path defined as

𝛾 (𝑡) =
𝐴

2
sen(2𝜋

𝑃
𝑡 + 𝛿) + 𝜆, (26)

where 𝛾 is the angle of the position of the flip, 𝐴 is the
amplitude of motion, 𝑃 is the period of each cycle, 𝜆 is the
central angle of the oscillation, and 𝛿 is the phase offset
between different fins of the robot.
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Both Georgiades in [35] and Plamondon in [36] show
models for the thrust generated by the symmetric oscillation
of the fins used in theAqua robot family. Plamondon presents
a relationship between the thrust generated by the fins and
the parameters describing the motion in (26). Thus, the
magnitude of force generated by each flip with the sinusoidal
movement (26) is determined by the following equation:

𝑇 = 0.1963
(𝑤1 + 2𝑤2) 𝑙

2

3
𝜌
𝐴

𝑃
− 0.1554, (27)

where 𝑙,𝑤1, and𝑤2 correspond to the dimensions of the fins,
𝜌 represents the density of water, 𝐴 is the amplitude, and 𝑃

is the period of oscillation. Thus, the magnitude of the force
generated by the robot fins can be established in function of
the period and the amplitude of the fin oscillation movement
at runtime. Figure 8 shows the force produced by the fins,
where 𝜆 defines the direction and 𝑇 the magnitude of the
force vector expressed in the body reference frame as

F𝑝 =
[
[
[

[

𝐹𝑝𝑥

𝐹𝑝𝑦

𝐹𝑝𝑧

]
]
]

]

. (28)

In addition, due to the kinematic characteristics of the
vehicle, 𝐹𝑝𝑦 = 0. Therefore, the vector of forces and moments
generated by the actuators is defined as follows:

F𝑢 =

[
[
[
[
[
[
[
[
[
[
[

[

𝐹𝑥

𝐹𝑦

𝐹𝑧

𝑀𝑥

𝑀𝑦

𝑀𝑧

]
]
]
]
]
]
]
]
]
]
]

]

. (29)

Consider the fins numeration as shown in Figure 9; then
the following equations state the relationship between the
coordinates 𝐹𝑝𝑥𝑗 and 𝐹𝑝𝑧𝑗

of F𝑝𝑗 and the vector F𝑢 as

𝐹𝑥 = 𝐹𝑝𝑥1
+ 𝐹𝑝𝑥2

+ 𝐹𝑝𝑥3
+ 𝐹𝑝𝑥4

+ 𝐹𝑝𝑥5
+ 𝐹𝑝𝑥6 (30a)

𝐹𝑦 = 0 (30b)

𝐹𝑧 = 𝐹𝑝𝑧1
+ 𝐹𝑝𝑧2

+ 𝐹𝑝𝑧3
+ 𝐹𝑝𝑧4

+ 𝐹𝑝𝑧5
+ 𝐹𝑝𝑧6 (30c)

𝑀𝑥 = 𝑙𝑦1
𝐹𝑝𝑧1

+ 𝑙𝑦2
𝐹𝑝𝑧2

+ 𝑙𝑦3
𝐹𝑝𝑧3

+ 𝑙𝑦4
𝐹𝑝𝑧4

+ 𝑙𝑦5
𝐹𝑝𝑧5

+ 𝑙𝑦6
𝐹𝑝𝑧6

(30d)

𝑀𝑦 = 𝑙𝑥1
𝐹𝑝𝑧1

+ 𝑙𝑥2
𝐹𝑝𝑧2

+ 𝑙𝑥3
𝐹𝑝𝑧3

+ 𝑙𝑥4
𝐹𝑝𝑧4

+ 𝑙𝑥5
𝐹𝑝𝑧5

+ 𝑙𝑥6
𝐹𝑝𝑧6

(30e)

𝑀𝑧 = 𝑙𝑦1
𝐹𝑝𝑥1

+ 𝑙𝑦2
𝐹𝑝𝑥2

+ 𝑙𝑦3
𝐹𝑝𝑥3

+ 𝑙𝑦4
𝐹𝑝𝑥4

+ 𝑙𝑦5
𝐹𝑝𝑥5

+ 𝑙𝑦6
𝐹𝑝𝑥6

,

(30f)

where 𝑙𝑥𝑗 and 𝑙𝑦𝑗
are the distance coordinates of the 𝑗th fin

joint with respect to to the vehicle’s center of mass as shown

Trust line

Fin
Joint Fpx

Fpz

Fp

𝜆

Figure 8: Diagram of forces generated by the finsmovements where
the angle 𝜆 establishes the direction of the force.
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Figure 9: Fins distribution in the underwater vehicle.

in Figure 9. Note that the symmetry of the vehicle establishes
that 𝑙𝑦1 = 𝑙𝑦3

= −𝑙𝑦4
= −𝑙𝑦6

, 𝑙𝑦2 = −𝑙𝑦5
, 𝑙𝑥1 = −𝑙𝑥3

= 𝑙𝑥4
= −𝑙𝑥6

,
and 𝑙𝑥2

= 𝑙𝑥5
= 0.

System (30a), (30b), (30c), (30d), (30e), and (30f) has
five equations with twelve independent variables. Among all
possible solutions the one presented in this work arises after
the imposition of the following constraints:

C1: 𝐹𝑝𝑥1 = 𝐹𝑝𝑥2
= 𝐹𝑝𝑥3

,

C2: 𝐹𝑝𝑥4 = 𝐹𝑝𝑥5
= 𝐹𝑝𝑥6

,

C3: 𝐹𝑝𝑧1 + 𝐹𝑝𝑧3
= −𝐹𝑝𝑧4

− 𝐹𝑝𝑧6
,

C4: 𝐹𝑝𝑧1 − 𝐹𝑝𝑧3
= 𝐹𝑝𝑧4

− 𝐹𝑝𝑧6
,

C5: 𝐹𝑝𝑧2 = −𝐹𝑝𝑧5
,

C6: 𝐹𝑧 = 0.

(31)
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Then one system solution is found to be

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐹𝑝𝑥1

𝐹𝑝𝑥4

𝐹𝑝𝑦1

𝐹𝑝𝑦2

𝐹𝑝𝑦3

𝐹𝑝𝑦4

𝐹𝑝𝑦5

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
0 0 𝜎1

1

2
0 0 −𝜎1

0 𝜎1 𝜎2 0

0 𝜎1 0 0

0 𝜎1 −𝜎2 0

0 −𝜎1 𝜎2 0

0 −𝜎1 −𝜎2 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[

[

𝐹𝑥

𝑀𝑥

𝑀𝑦

𝑀𝑧

]
]
]
]
]

]

, (32)

where

𝜎1 =
1

2 (2𝑙𝑦1
+ 𝑙𝑦2

)
,

𝜎2 =
1

4𝑙𝑥1

.

(33)

Now, the oscillation amplitude 𝐴𝑗 of the 𝑗th fin is
computed after (27) using an oscillation period of 0.4 [s], and
the corresponding thrust is defined as

𝑇𝑖 = √𝐹2
𝑝𝑥𝑗

+ 𝐹2
𝑝𝑧𝑗

. (34)

Finally, the central angle of oscillation is computed as

𝜆𝑗 = tan−1(
𝐹𝑝𝑥𝑗

𝐹𝑝𝑧𝑗

) . (35)

3.3. Desired Signals Computation. In this navigation system
the controller performs a set-point task. The desired values
are computed based on the visual information. Due to the
under-actuated nature of the vehicle and sensor limitations,
only the attitude and depth of the vehicle can be controlled.
The desired depth value 𝑧𝑑 is a constant and the roll desired
angle is always 𝜙𝑑 = 0. As the constraint C6: 𝐹𝑧 = 0 has been
considered, the depth is controlled indirectly by modifying
the desired pitch angle 𝜃𝑑. This desired orientation angle is
calculated in terms of the depth error as

𝜃𝑑 = 𝑘𝑧 (𝑧 − 𝑧𝑑) , (36)

where 𝑘𝑧 is a positive constant.
The visual system defines the desired yaw angle 𝜓𝑑.

Images from the left camera are processed in a ROSnodewith
the algorithms described in Section 2.1 in order to determine
the presence of the sphere in the field of view. When visual
information is not available, this angle remains constant with
the initial value or with the last computed value. However, if
a single circle with a radius bigger than a certain threshold
is found, the new desired yaw angle is computed based on
the visual error. This error is defined as the distance in pixels
between the center of the image and the position in the 𝑥-
axis of the detected circle. So, the new desired yaw angle is
computed as

𝜓𝑑 = 𝜙 + Ṽ𝑥
300𝑟

(columns × rows)
, (37)

where 𝜓 is the actual yaw angle, Ṽ𝑥 is the visual error in
horizontal axis, rows and columns are the image dimensions,
and 𝑟 is the radius of the circle. This desired yaw angle is
proportional to the visual error, but it also depends on the
radius of the circle found. When the object is close to the
camera, the sphere radius is larger, and therefore the change
of 𝜓𝑑 also increases. Note that the resolution of the image
given by the vehicle’s camera is 320 × 240 pixels; with this,
the gain used to define the reference yaw angle in (37) was
established as 300. This value was obtained experimentally,
with a trial error procedure, and produces a correction of
approximately 1∘, with a visual error Ṽ𝑥 = 10 and radius of the
observed sphere 𝑟 = 25. This update of the desired yaw angle
modifies the vehicle attitude and reduces the position error
of the sphere in the image. We note that the update of the
desired yaw angle was necessary only when the visual error
was bigger than 7 pixels; by this reason when V𝑥 is smaller
than this threshold the reference signal keeps the previous
value.

Finally, when a circle inside of other circle is found, that
means the underwater vehicle is close to the mark and a
direction change is performed.The desired yaw angle is set to
the actual yaw value plus an increment related to the location
of the next sphere. This integration of the visual system and
the controller results in the autonomous navigation system
for underwater vehicle which is able to track themarks placed
in a semistructured environment.

4. Experimental Results

In order to evaluate the performance of the visual navigation
system, a couple of experimental results are presented in this
section. Two red spheres were placed in a pool with turbid
water. An example of the type of view in this environment
is shown in Figure 10. This environment is semistructured
because the floor is not natural and also because of the lack
of currents; however, the system is subjected to disturbances
produced by themovement of swimmerswhich closely follow
the robot. As it was mentioned before, the exact position of
the spheres is unknown; only the approximate angle which
relates the position between the marks is available. Figure 11
shows a diagram with the artificial marks distribution. The
underwater vehicle starts swimming towards one of the
spheres. Although the circle detection algorithm includes
functions for selecting the circle of interest when more than
one are detected, for this first experiment, no more than one
visual mark is in front of the visual field of the camera at the
same time.

The implementation of the attitude and depth control
was performed in a computer with QNX real-time operating
system and the sample time of the controller is 1ms. This
controller accesses the inertial sensors in order to regulate
the depth and orientation of the vehicle. The reference signal
of the yaw angle was set with the initial orientation of the
robot and updated by the visual system when a sphere is
detected. This visual system was implemented in a computer
with Ubuntu and ROS, having an approximate sample time
of 33ms when a visual mark is present. The parameters
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Table 1: Parameters of our AUV used in the experimental test.

Notation Description Value Units
𝑚̂ Mexibot mass 1.79 [kg]

𝐼̂𝑥𝑥
Inertia moment with
respect to 𝑥-axis 0.001 [kgm2]

𝐼̂𝑦𝑦
Inertia moment with
respect to 𝑦-axis 0.001 [kgm2]

𝐼̂𝑧𝑧
Inertia moment with
respect to 𝑧-axis 0.001 [kgm2]

𝑙𝑥1

Distance between the AUV
center of mass and the
position of the fin 1 in axis 𝑥

0.263 [m]

𝑙𝑦1

Distance between the AUV
center of mass and the
position of the fin 1 in axis 𝑦

0.149 [m]

𝑙
𝑦2

Distance between the AUV
center of mass and the
position of the fin 2 in axis
𝑦

0.199 [m]

𝑙 Fin length 0.190 [m]
𝑤
1 Fin width 1 0.049 [m]

𝑤2 Fin width 2 0.068 [m]
𝜌 Water density 1000 [kg/m3]

Figure 10: Diagram to illustrate the approximate location of visual
marks.

≈0∘

≈45∘

Figure 11: Diagram to illustrate the approximate location of visual
marks.

used in the implementation are presented in Table 1 and
were obtained from the manufacturer. Water density value
has been used with a nominal value assuming that the
controller is able to handle the inaccuracy with respect to real
values.

The control gains in (4) and (36) were established after a
trial and error process. The nonlinear and strongly coupled

nature of the vehicle dynamics causes the fact that small
variations in the control gains affect considerably the per-
formance of the controller. For the experimental validation,
we first tuned the gains of the attitude controller, following
this sequence: 𝐾𝑠, Λ, 𝛽, and 𝐾𝑖. Then, the parameter 𝑘𝑧 of
the depth controller was selected. With this, the control gains
were set as follows:

𝛽 = 0.7,

𝑘𝑧 = 17,

𝐾𝑠 = diag {0.30, 0.20, 1.50} ,

𝐾𝑖 = diag {0.10, 0.07, 0.20} ,

Λ = diag {0.50, 0.50, 0.50} .

(38)

In the first experiment, the navigation task considers
the following scenario. A single red sphere is placed in
front of the vehicle approximately at 8 meters of distance.
The time evolution of the depth coordinate 𝑧(𝑡) and the
attitude signals 𝜙(𝑡), 𝜃(𝑡), 𝜓(𝑡) are shown in Figure 12,
where the corresponding depth and attitude reference signals
are also plotted. The first 20 seconds corresponds to the
start-up period of the navigation system. After that, the
inertial controller ensures that the vehicle moves in the same
direction until the navigation system receives visual feedback.
This feedback occurs past thirty seconds and the desired
value for the angle yaw 𝜓(𝑡) starts to change in order to
follow the red sphere. Notice that the reference signal for
the pitch angle 𝜃𝑑(𝑡) presents continuous changes after the
initialization period. This is because the depth control is
performed indirectly by modifying the value of 𝜃𝑑 with (36).
In addition the initial value for 𝜓𝑑(𝑡) is not relevant because
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Figure 12: Navigation experiment when tracking one sphere. Desired values in red and actual values in black. (a) Depth 𝑧(𝑡); (b) roll 𝜙(𝑡);
(c) pitch 𝜃(𝑡); (d) yaw 𝜓(𝑡).

this value is updated after the inertial navigation system
starts. The corresponding depth and attitude error signals
are depicted in Figure 13, where all of these errors have
considerably small magnitude, bounded by a value around
0.2m for the depth error and 10

∘ for attitude error.
The time evolution of the visual error in the horizontal

axis is depicted in Figure 14. Again, the first thirty seconds
does not show relevant information because no visual feed-
back is obtained. Later, the visual error is reduced to a value
in an acceptable interval represented by the red lines. This
interval represents the values where the desired yaw angle
does not change, even when the visual system is not detecting
the sphere. As mentioned before, the experiments show that
when V𝑥 ≤ 7 pixels, the AUV can achieve the assigned
navigation task. Finally, a disturbance, generated by nearby
swimmers when they displace water, moves the vehicle and
the error increases, but the visual controller acts to reduce this
error.

The previous results show that the proposed controller
(4) under the thruster force distribution (32) provides a good
behavior in the set-point control of the underwater vehicle,
with small depth and attitude error values. This performance
enables the visual navigation system to track the artificial
marks placed in the environment.

The navigation task assigned to the underwater vehicle
in the second experiment includes the two spheres with

the distribution showed in Figure 11. For this experiment
the exact position of the spheres is unknown; only the
approximate relative orientation and distance between them
are known. The first sphere was positioned in front of
the AUV at an approximated distance of 8m. When the
robot detects that the first ball was close enough, it should
change the yaw angle to 45

∘ in order to find the second
sphere. Figure 16 shows the time evolution of the depth
coordinate 𝑧(𝑡), the attitude signals 𝜙(𝑡), 𝜃(𝑡), 𝜓(𝑡), and
the corresponding reference signals during the experiment.
Similarly to the previous experiment, the actual depth, roll
angle, and pitch angle are close to the desired value, even
when small ambient disturbances are present. The yaw angle
plot shows the different stages of the system. The desired
value at the starting period is an arbitrary value that does not
have any relationwith the vehicle state. After the initialization
period, a new desired value for the yaw angle is set and this
angle remains constant as long as the visual system does
not provide information. When the visual system detects a
sphere, the navigation system generates a smooth desired
signal allowing the underwater vehicle to track the artificial
mark. When the circle inside of the other circle was detected,
the change in direction of 45∘ was applied. This reference
value was fixed until the second sphere was detected and a
new desired signal was generated with small changes. Finally,
the second circle inside of the sphere was detected and a new
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Figure 13: Navigation tracking errors of one sphere when using controller (4). (a) Depth 𝑧(𝑡); (b) roll 𝜙(𝑡); (c) pitch 𝜃(𝑡); (d) yaw 𝜓(𝑡).

0 10 20 30 40
−40

−20

0

20

40

Time (s)

c
(p

ix
el

s)

Figure 14: Navigation tracking of one sphere. Visual error obtained from the AUV navigation experiment.

change of 45∘ was performed and the desired value remained
constant until the end of the experiment.

Figure 17 shows the depth and attitude error signals.
Similar to the first experiment, the magnitude of this error
is bounded by a value around 0.2m for the depth error and
10
∘ for the attitude error, except for the yaw angle, which

presents higher values produced by the direction changes.
Note that, in this experiment, significant amount of the error
was produced by environmental disturbances.

Finally, the graph of the time evolution of the visual
error is depicted in Figure 15. It can be observed that, at
the beginning, while the robot was moving forward, the
error remained constant because the system was unable
to determine the presence of the artificial mark in the
environment. At a given time 𝑡𝑖, the visual system detected
the first sphere, with an estimated radius 𝑟𝑡𝑖 of about 30 pixels.
Then, as the robot gets closer to the target, the visual error
begins to decrease due to the improvement in visibility and



14 Journal of Sensors

0 10 20 30 40 50 60
−50

0

50

100

Time (s)
c

(p
ix

el
s)

Figure 15: Navigation tracking of two spheres. Visual error obtained from the AUV navigation experiment.
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Figure 16: Navigation tracking of two spheres. Desired values in red and actual values in black. (a) Depth 𝑧(𝑡); (b) roll 𝜙(𝑡); (c) pitch 𝜃(𝑡); (d)
yaw 𝜓(𝑡).

the radius of the sphere increases. When the radius is bigger
than a given threshold, a change-of-direction action is fired in
order to avoid collision and to search for the second sphere.
Then, all variables are reset. Once again the error remains
constant at the beginning due to the lack of visual feedback.
In this experiment, when the second mark was identified,
the visual error was bigger than 100 pixels, but rapidly this
error decreased to the desired interval. At the end of the
experiment, another change of direction was generated and
the error remained constant, because no other sphere in the
environment was detected.

5. Conclusion

In this paper, a visual-based controller to guide the navigation
of an AUV in a semistructured environment using artificial
marks was presented. The main objective of this work is to
provide to an aquatic robot the capability of moving in an
environment when visibility conditions are far from ideal
and artificial landmarks are placed with an approximately
known distribution. A robust control scheme applied under
a given thruster force distribution combined with a visual
servoing control was implemented. Experimental evaluations
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Figure 17: Navigation error when tracking two spheres when using controller (4). (a) Depth 𝑧(𝑡); (b) roll 𝜙(𝑡); (c) pitch 𝜃(𝑡); (d) yaw 𝜓(𝑡).

for the navigation system were carried out in an aquatic
environment with poor visibility. The results show that our
approach was able to detect the visual marks and perform
the navigation satisfactorily. Future work includes the use of
natural landmarks and to lose some restrictions, for example,
that more than one visual mark can be present in the field of
view of the robot.
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This work presents a new Indoor Positioning System (IPS) based on the combination of WiFi Positioning System (WPS) and depth
maps, for estimating the location of people. The combination of both technologies improves the efficiency of existing methods,
based uniquely on wireless positioning techniques. While other positioning systems force users to wear special devices, the
system proposed in this paper just requires the use of smartphones, besides the installation of RGB-D sensors in the sensing area.
Furthermore, the system is not intrusive, being not necessary to know people’s identity. The paper exposes the method developed
for putting together and exploiting both types of sensory information with positioning purposes: the measurements of the level of
the signal received from different access points (APs) of the wireless network and the depth maps provided by the RGB-D cameras.
The obtained results show a significant improvement in terms of positioning with respect to commonWiFi-based systems.

1. Introduction

Indoor Positioning Systems (IPS) are techniques used to obtain
the position of people or objects inside a building [1]. Among
these, WiFi Positioning Systems (WPS) [2] are those based
on portable devices, such as cell phones, to locate people or
objects by means of the measurements of the level of the
signal received from different access points (APs), that is,
WiFi routers.

In the field of people and objects detection, other tech-
nologies, such as those based on artificial vision, have been
increasingly used. In fact, object recognition can be consid-
ered as a part of the core research area of artificial vision,
and an important number of authors have reported methods
and applications for people detection and positioning. More
recent and therefore less abundant are those works involving
the use of modern technologies such as RGB-D sensors,
which provide 3D information in form of depth maps of
scenes. For example, Saputra et al. [3] present an indoor
human tracking application using 2 depth cameras. Although
some effort has been made in applications using the above-
mentioned technologies, there is a lack of research on the

combined use of both types of technologies for positioning
purposes.

This paper presents a new IPS approach based on the
combination of these two different technologies: WPS and
depth maps, in an active manner. By active combination,
these authors mean that the developed method puts together
and exploits coordinately both types of sensory information:
strength of measured wireless signals and depth maps.

This approach is particularly advantageous when several
users are simultaneously in a room. In this case, the system
is able to detect each user with the help of the coordinates
of the people located in a depth map. WPS approximates
the position of the users, but when they are really close, the
proposed method is able to deliver a more precise location.
This is carried out with the help of user trajectories, which
are considered in two ways: WPS trajectory and trajectory
of the people in the depth map. As demonstrated in the
following sections, this combination improves the efficiency
of the existing approaches used in WPS.

The paper is structured as follows: Section 2 explores
existing solutions concerning the positioning, based onWPS
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and RGB-D sensors, and using both technologies in a joint
manner. Section 3 is devoted to describing in detail the basis
of the proposed system and how it works. Section 4 presents
the performed experiments and analyzes the obtained results.
Finally, Section 5 remarks the main advantages of the pre-
sented system and shows future developments based on this
method.

2. Overview of the Related Work

Recently, Subbu et al. [4] established three types of IPS: finger-
printing, which uses the signals obtained fromportable device
such as WiFi, sound, light, or magnetic fields; crowdsensing,
an extension of fingerprinting that continuously updates the
positioning database; and finally Dead Reckoning Systems,
using the accelerometer sensor of portable devices to obtain
the inertial movement and the magnetometer to obtain the
direction of the magnetic field.

WPS is founded on the fingerprinting technique [5], in
which a map of the environment is created recording various
values of Received Signal Strength Indication (RSSI) in each
point. RSSI is a reference scale used to measure the power
level of signals received from a device on a wireless network
(usually WiFi or mobile telephony). This map is used to
obtain the position of a user in real time, comparing the
values received from the user’s portable device to those stored
in the map.

Quan et al. [6] show howWPS based on fingerprint maps
works better than those techniques based on triangulation,
like RADAR [7]. This technique [7] records and processes
signal strength information at multiple base stations and
combines empirical measurements with signal propagation
modeling to determine users location by means of the tri-
angulation.

The positioning with fingerprint map is carried out in two
ways: considering the nearest neighbor, where the Euclidean
distances between the live RSSI reading and each reference
point fingerprint is calculated for determining the position,
and the probabilistic location with Markov, where statistical
data of the fingerprint are used to guess the most likely
position.The results shown indicate that the nearest neighbor
approach works better than the Markov-based one. The tri-
angulation method provides worse results because equations
do not transform properly RSSI values into distance, due to
the presence of walls and obstacles. Other works have tried
to obtain that distance through the use of fuzzy logic [8] or
particle filters [9].

Regarding approaches based on fingerprinting, Martin
et al. [10] study the accuracy of different techniques: Closest
Point, Nearest Neighbor in Signal, Average Smallest Polygon,
and Nearest Neighbor in Signal and Access Point averages.
Depending on the room or cell size where the user is
situated, the positioning results are different. The successes
are between 78% and 87% determining the room where the
user is. If the user is in a room and 2× 2meters cells have been
created, the successes are between 39% and 48% determining
the cell where the user is. When 1 × 1 meter cells are used, the
successes are between 18% and 32%.

Considering the distance between APs and receivers,
Kornuta et al. [11] analyze the attenuation of the signal pro-
duced when the APs are far from the receiver or there are
walls or obstacles along the way. Some filters are studied in
[12] for attenuating the noise of RSSI. The work [13] studies
the combination of WiFi and Inertial Navigation Systems
(INS) in order to obtain the trajectory of the user. Three
sensors are used: gyroscope, accelerometer, and an atmo-
spheric pressure sensor. Husen and Lee [14] propose how to
obtain the user orientation with a fingerprint map.

In the field of people and objects detection, other tech-
nologies, such as those based on artificial vision (e.g., RGB-D
sensors), have been increasingly used. Ye et al. [15] propose to
use three Kinect sensors for detecting and identifying several
people that are occluded by others in a scene. In [16], authors
propose a smart-cane for the visually impaired that, with
the help of a Kinect sensor, allows for locating objects. The
method Kinect Positioning System (KPS) is analyzed in [17]
aiming to obtain the user position.

These positioning techniques have also been used in
Robotics. A noteworthy example can be found in [18], where
several Simultaneous Localization andMapping (SLAM) algo-
rithms are proposed for building maps using robots with
continuous positioning. Mirowski et al. [19] analyze how to
generate a fingerprint map with an RGB-D sensor mounted
on a robot. By means of SLAM, the environment is built
recording the measurements RSSI in each point. Also, in this
field of research, the use of distinct technologies allows for
improving the positioning systems. In [20], a robot is located
using three different systems: a laser rangefinder, a depth
camera, and the RSSI values. Each system is used indepen-
dently according to the zone where the robot is located.

RFID techniques have been proposed for location and
tracking of users inside buildings as presented in [21], where
authors propose to combine identification and positioning
based on RFID with the Kinect sensor for obtaining the
precise position of a person inside an environment. In this
case, one fix RFID reader is located in the room. Each user
carries their own RFID tag while the Kinect sensor obtains
the skeletons of two people. Each skeleton is composed of the
coordinates of the different joints of a person: neck, shoulders,
elbows, knees, and so forth. Other methods use RFID tags on
the floor where the users can know their positions thanks to
a RFID reader they carry with them [22].

However, RFID techniques present several disadvantages,
such as interferences with materials and devices, and do not
provide too precise location results. These inconveniences,
among others, have encouraged these authors to find an
alternative solution that delivers better results in terms of
accuracy.

3. Analysis of the System

The aim of the proposed system is to increase the accuracy of
people positioning inside a room. To do that, let us consider
a scenario like that depicted in Figure 1, which represents the
generic framework of the system. One or several persons are
assumed to be freely moving around a rectangular working
area, carrying their own portable device. Each device receives
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Figure 1: Components of the system.

its corresponding wireless signal from one or more APs
strategically located in the working area. One RGB-D sensor
is placed in such a way that most of the working area is
covered. This device delivers a depth map and a color image
of the scene that are used to identify the 3D skeletons of
users. The skeletons are obtained by means of the techniques
presented in [23, 24], where authors propose new algorithms
to quickly and accurately predict 3D positions of body joints
from depth images. Those methods form a core component
of the Kinect gaming platform. From these skeletons, neck
coordinates are extracted aiming to position people in the
environment.This part of the body is chosen because it is less
prone to be occluded by elements in the scenario. Finally, a
server computer is used for controlling the overall process.

3.1. System Working Description. The developed system is
divided into two main stages: learning and running.

3.1.1. Learning Stage. The main purpose of this stage is to
create, for the selected working area, a new database with the
processed information coming from the two technologies:
WPS and RGB-D. During this stage, the fingerprintmap asso-
ciated with one user is created by registering simultaneously
the RSSI values obtained by their portable device and the
coordinates of their skeleton. The user moves alone around
the room in order tomatch each RSSI scan with each skeleton
position. This task is performed in three different steps:WiFi
Scan, RGB-D Scan, and Save data.

During the WiFi Scan, the portable device obtains RSSI
values for each AP and sends them to the server. When RSSI
values are received, the RGB-D Scan is started. This process
returns the skeleton of the person detected in the room. The
system automatically saves the RSSI data and, additionally,
the user coordinates of the skeleton are obtained from the
depth map. Figure 2 shows the system diagram.

To simplify the positioning process without significant
loss of precision, other essential tasks are carried out at the
end of this stage:The floor of the working area is divided into
rectangular cells and RSSI data are grouped in each cell, using
the cell position of the skeleton.

The division in cells is produced when the maximum
and minimum coordinates of 𝑋 and 𝑌 (see Figure 1) have

WiFi scan RGB-D
scan

Save
data

Positioning
process

“1”

“0”

“1”

“0”

“0”, “1”

Figure 2: System diagram during learning/running stage where
values 1 and 0 represent successful or unsuccessful state execution,
respectively. “Save data” is the third step during learning stage while
“positioning process” is the step during running stage.

been obtained. The coordinates of the skeleton (𝑥, 𝑦) deliver
the cell where the user is located (𝑐

𝑥
, 𝑐
𝑦
), according to the

following:

𝑐
𝑥
= 𝑛
𝑥
⋅

𝑥 −min
𝑥

max
𝑥
−min

𝑥

,

𝑐
𝑦
= 𝑛
𝑦
⋅

𝑦 −min
𝑦

max
𝑦
−min

𝑦

,

(1)

where 𝑛
𝑥
and 𝑛

𝑦
represent the number of cells in each axis

while the variables max
𝑥
, min
𝑥
, max

𝑦
, and min

𝑦
represent

the highest and lowest values of each axis (obtained from the
depthmap). Note that𝑍 coordinates are not considered as the
user position is estimated in 2D.

An RSSI vector is created for each cell, pairing each
component to the centroid for all of the RSSI measurements
for a certain AP (see Figure 3). This allows reducing RSSI
variability.

3.1.2. Running Stage. This stage represents the normal way
of working of the system. It is performed by using the three
different steps shown in Figure 2 and considers that several
users are moving around the room.

While theWiFi Scan is running, each user synchronously
sends its RSSI values to the web server. When these data are
received, the RGB-D Scan starts aiming to obtain the skele-
tons of people detected in the room. Finally, the positioning
process estimates the position of each user by combining both
data sets in such a way that each skeleton is linked to each
RSSI scan.

In the positioning process, different algorithms are exe-
cuted depending on the system’s running mode, going from
the simplest Basic Mode, in which only WPS method is
applied, to more sophisticated ones, where both types of
sensors are combined so that each skeleton is linked to each
RSSI scan.

The system stores the different RSSI measurements
received from the WiFi Scan in a table (see Table 1) and
the skeleton coordinates obtained from the RGB-D Scan in a
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Figure 3: Obtaining RSSI vector for one cell (example with 4APs).

Table 1: Example of RSSI table.

Time
stamp User BSSID SSID RSSI

1 (8:31:57) A dc:53:7c:25:2c:36 Router 1 −53
1 (8:31:57) A 84:9c:a6:fe:0e:34 Router 2 −46
1 (8:31:57) A 4c:54:99:df:9e:ec Router 3 −93
1 (8:31:57) B dc:53:7c:25:2c:36 Router 1 −74
1 (8:31:57) B 84:9c:a6:fe:0e:34 Router 2 −40
1 (8:31:57) B 4c:54:99:df:9e:ec Router 3 −73
2 (8:31:58) A dc:53:7c:25:2c:36 Router 1 −52
2 (8:31:58) A 84:9c:a6:fe:0e:34 Router 2 −51
2 (8:31:58) A 4c:54:99:df:9e:ec Router 3 −89
2 (8:31:58) B dc:53:7c:25:2c:36 Router 1 −73
2 (8:31:58) B 84:9c:a6:fe:0e:34 Router 2 −41
2 (8:31:58) B 4c:54:99:df:9e:ec Router 3 −72

Table 2: Example of skeleton coordinates (neck coordinates).

Time stamp User 𝑋 𝑌 𝑍

1 (8:31:57) M −0,298601 0,035828 1,237208
2 (8:31:58) N 0,229597 −0,025246 1,738968

different one (Table 2). Note that users A and B in Table 1 are
not related to usersMandN inTable 2. During the positioning
process, the system will be able to decide if A corresponds to
M or N and, in the same manner, if B corresponds to M or
N. Skeleton coordinates and RSSI data are linked by a time
stamp.

The structure of the recorded RSSI data contains the
Basic Service Set Identifier (BSSID), the Service Set Identifier
(SSID), RSSI, and the time stamp. BSSID is formed by the
Media Access Control (MAC) of each AP. SSID corresponds
to the name used by the APs.

BSSID is used instead of SSID. SSID is informative and
can be repeated in WLAN since different APs may have the
samenetwork name. RSSI data, SSID, andBSSID are collected
by the portable devices using the 802.11 layer. At the same
time, the portable devices must establish a connection to
some accessible network. This can be a WiFi network or a
wireless data network of telephony (3G, 4G, etc.).The devices
send data, via SOAP protocol through the application layer,
to a web server. This web server must be connected to the
RGB-D camera but it might not be in the same network as the
devices since the web services are available on the Internet.

Different RSSI data entries, as well as different skeletons
data entries, can be synchronously produced at the same time
stamp, as can be observed in Tables 1 and 2.

As mentioned before, three different running modes
are considered in this work: Basic Mode, Improved Mode
without Trajectory, and ImprovedMode with Trajectory. Their
respective features are discussed in next paragraphs.

Basic Mode:WPS Only. In this mode, RSSI measurements are
obtained from portable devices and compared to the values
stored in the fingerprint database. During the learning stage,
the RSSI values of the fingerprint were grouped using the
centroid of the cells, which reduces RSSI variability.

An error, based on the Euclidean distance between the
measured RSSI vector and the RSSI vectors of the centroid of
each cell, is calculated.The estimatedWPS cell is the one with
the lowest error. Equation (2) shows how this error is obtained
from two RSSI vectors: the first one read by the portable
device and the second one corresponding to the centroid of
each cell. Each vector has 𝑛 components corresponding to
each AP. V

𝑝,new represents the component of the vector for an
AP 𝑝 where the user is located, while V

𝑝,𝑐
𝑥
,𝑐
𝑦

represents the
component of the centroid vector for that AP 𝑝 in each cell
(𝑐
𝑥
, 𝑐
𝑦
):

𝑒
𝑐
𝑥
,𝑐
𝑦

=

1

𝑛

⋅ √ ∑

𝑝∈AP set
(V
𝑝,new − V𝑝,𝑐

𝑥
,𝑐
𝑦

)

2

. (2)
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Figure 4: Scheme of two people in the room.

Improved Mode without Trajectory: Combining WPS with
DepthMaps. In this mode, the information provided by depth
maps helps determine in which cell the user is located. Fur-
thermore, it is useful for clarifying their exact position. The
combination of both methods improves indoor positioning
in a simple manner.

Two different cases are studied depending on the number
of users inside the room: if there is only one user in the room,
the depth map allows for obtaining the exact position. The
portable device provides the right identification of the user.

When there are two or more users, as shown in Figure 4,
several skeletons are obtained. At the same time, each user
sends a group of RSSI measurements to the server. The
system initially does not know what skeleton is linked to
any particular RSSI data. The proposed method calculates
the Euclidean distance between the RSSI data, sent by the
smartphones (namedWPS cell), and the RSSI centroid of the
cell where each skeleton is.Then, the system looks for the best
combination between each skeleton and the RSSI measures
obtained from each smartphone. This occurs when the sum
of the Euclidean distances reaches the minimum:

min ∑
𝑖,𝑗

𝑠
𝑖𝑗
⋅ 𝑑
𝐸
𝑖𝑗

∧ 𝑠
𝑖𝑗
∈ {0, 1} ∧∑

𝑥

𝑠
𝑥𝑗
= 1 ∧∑

𝑦

𝑠
𝑖𝑦
= 1, (3)

where 𝑠
𝑖𝑗
represents the links between each skeleton and its

WPS cell and can take the values 0 and 1. 𝑑
𝐸
𝑖𝑗

represents the
Euclidean distance between the skeleton 𝑖 and the position 𝑗,
where one user has been detected according to WPS.

Improved Mode with Trajectory: Considering the Trajectory
of the User with WPS and Depth Maps. In this mode, the
combination of depthmaps andWPS also allows for obtaining
two different trajectories. The trajectory of the user with
WPS represents the cells that the user has previously visited,
according to data from WPS. The trajectory of the user in
the depth map is a group of skeletons obtained for each
time stamp. Both trajectories (WPS and skeletons) are syn-
chronized with their time stamps, so when skeletons are
received, RSSI values are obtained for all users.

When two or more users are simultaneously in the room
and each one has a different trajectory of WPS and skeleton,
the system initially does not know what skeleton is linked

WPS trajectory of user 1 represented by P1(t)

Skeleton trajectory of user 1 represented by P
󳰀
1(t)

WPS trajectory of user 2 represented by P2(t)

Skeleton trajectory of user 2 represented by P
󳰀
2(t)

Figure 5: Example of trajectories of 𝑛 = 2 users in 𝑚 = 4 time
stamps, including Euclidean distances between the combination of
𝑃
𝑖
(𝑡) and 𝑃󸀠

𝑗
(𝑡).

to each user. However, it can calculate it according to an
extension of expression (3), as explained in the following.

As mentioned in [25], synchronized Euclidean distance
measures the distance between two points at identical time
stamps. If two trajectories with different points are obtained
at the same time (for each pair), the total error is measured
as the sum of the distances between all points (points inWPS
trajectory and points in skeleton trajectory) at synchronized
time stamps.

Figure 5 shows the WPS and skeleton trajectories of 2
users at 4 time stamps. 𝑃

𝑖
(𝑡) represents the WPS position of

the user 𝑖 at the time stamp 𝑡. 𝑃󸀠
𝑗
(𝑡) represents the skeleton

position of the user 𝑗 at the time stamp 𝑡. Although Figure 5
represents the trajectory of user 1 (𝑃

1
(𝑡), 𝑃
󸀠

1
(𝑡)) and the

trajectory of user 2 (𝑃
2
(𝑡), 𝑃
󸀠

2
(𝑡)), the trajectories of each user

are not linked. The system initially does not know if 𝑃
1
(𝑡)

is associated with 𝑃󸀠
1
(𝑡) or 𝑃󸀠

2
(𝑡) and in the same way if

𝑃
2
(𝑡) is associated with 𝑃󸀠

1
(𝑡) or 𝑃󸀠

2
(𝑡). To solve this problem,

Expression (4) is used:

min ∑
𝑖,𝑗

𝑠
𝑖𝑗
⋅

𝑚

∑

𝑡=1

𝑑
𝐸
(𝑃
𝑖
(𝑡) , 𝑃
󸀠

𝑗
(𝑡)) ∧ 𝑠

𝑖𝑗
∈ {0, 1} ∧∑

𝑥

𝑠
𝑥𝑗

= 1 ∧∑

𝑦

𝑠
𝑖𝑦

= 1.

(4)

This expression takes into account the synchronized
Euclidean distance computing the sum of distances between
each pair of points (WPS and skeleton trajectory) and looking
for the best combination between WPS trajectories and
skeleton trajectories to obtain the minimum sum of all
distances of all trajectories. Figure 5 shows all of the different
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synchronized Euclidean distances that are computed for 4 time
stamps, where there are two users with two different skeleton
trajectories and two different WPS trajectories, respectively.

4. Experimentation and Results

Several experiments have been developed in a 4.5× 4.5meters
roomwhere variousAPs are available (see Figure 6). AnRGB-
D sensor was located in one of the corners. In this case, eight
APs have been located at different positions of the building.
Four of themwere situated at less than 6meters from the user.
Various users have participated in the process using portable
devices, smartphones running Android.

One RGB-D sensor based on time-of-flight technology
(ToF), Kinect v2, has been employed in these experiments.
This device delivers up to 2MPx images (1920× 1080) at 30Hz
and 0.2MPx depth mapswith a resolution of 512 × 424 pixels.
This Kinect camera is connected to a web server where data
is saved and processed.

The horizontal field of view of the RGB-D sensor is 70∘
so, as shown in Figure 6, it is only able to detect people in a
section of the room (in yellow).This section has a size of 3.71×
3.71 meters.

During the learning stage, one user has generated the
fingerprint map and the matching with the skeletons. The
user has moved around the room to produce 1000 different
measurements. They have been obtained periodically, send-
ing the RSSI values to a web service hosted on the server.
Each time this web service was called, a skeleton scan was
performed and the coordinates of the neckwere saved, aiming
to represent the position of the user.

At the end of the learning stage, the floor has been divided
into 25 cells (5 × 5 square cells of 0.74 meters side) and the
RSSI centroids for each cell have been calculated. RSSI scans
have been grouped according to the distance between their
original associated skeleton and the center of each cell.

Table 3: Results of different experiments.

Use of trajectory Successes (2 users) Successes (3 users)
No 73% 46%
Yes 89% 71%

4.1. Positioning Experiments. The results obtained in Basic
Mode show that theWPS error of positioning a person inside
a room is higher than 2meters.This high error does not allow
for distinguishing between different users. For this reason,
different experiments have been carried out, with one, two,
and three users simultaneously to prove the efficiency of the
Improved Mode.

In the case of one user, the positioning succeeded in 100%
of cases because RGB-D sensor detects just one skeleton.
When there are several users simultaneously, RSSI values are
synchronously sent to a positioning web service at the same
time stamp. The server obtains a skeleton capture of all users
present in the room and finally calculates and returns their
positions. One result is satisfactory when the system is able
to correctly detect the cells where the users are. If each user
is situated in a different cell, the system also determines their
right positions according to the skeletons.

250 tests have been done, considering 2 or 3 users in the
room. The results show that when trajectory is not used, two
users are properly detected in 73% of cases and three users
in 46% of cases. Most of the errors are produced when the
users are in the same cell. When the trajectories of the users
are taken into account, the results improve considerately. As
shown in Table 3, a comparison of the results has been done
at four different time stamps.

The results show that the best performance is obtained
when the users are initially in different cells. When the
number of users increases, the performance is lower because
there are more skeleton trajectories for each WPS trajectory.
But considering that the results are above 71% for three users
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Figure 7: System configuration in larger environments.

in a small room (4.5 meters × 4.5 meters), the system delivers
an accurate position of the users in most of the cases.

5. Conclusions

This work presents a new method for indoor positioning
based on the combination of WPS with fingerprinting and
the use of depth maps. One RGB-D sensor has been used to
obtain the depth maps and, subsequently, the skeletons. The
combination of both technologies is a simple and economical
system that increases the performance of WPS in interiors.
The accuracy of WPS detecting users in cells of 2 × 2 meters
in a room is lower than 50%. The proposed method allows
improving the results until reaching more than 89% for two
users and 70% for three.

The combination of WPS and depth maps presents some
advantages such as low cost, the use of simple devices (i.e.,
smartphones), and easy installation. Furthermore, the system
is not intrusive since the identity of users is not required.

The method proposed is open to use crowdsensing [4],
because it is possible to add knowledge without doing new
learning. If there is just one user in the environment, the
system would be able to recalculate the RSSI centroids
for each cell, using the new data obtained from the user
(RSSI values and skeleton). This technique would adjust the
parameters continuously during system operation.

Besides the number of users, the system is scalable
to bigger environments. However, the Kinect sensor has a
limited range of a few meters. For this reason, it would be
necessary to use more than one device. Figure 7 shows a
configuration for a room of 9 meters side. RGB-D sensors
are placed aiming to cover the wider angle possible. In this
manner, eight cameras would scan the whole room. This
figure shows in red the area that would be covered by the
top-left sensor. Some sensors cover an overlapped area, which
would improve the system accuracy.

Other non-low-cost commercial devices allow obtaining
depthmaps in wider ranges. For example, Peregrine 3D Flash

LIDAR Vision System [26] is a lightweight camera able to
capture a depthmap in 5 nanoseconds with the help of a Class
I laser. It can operate with lenses of 60∘ and a range over 1 Km.

Despite the fact that this work just estimates the current
position of the users, it would be possible to predict their
forthcoming path by means of their last trajectories, con-
sidering the simultaneous evaluation of WPS and skeleton
trajectories.
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With long flexible cables connected to the 1-wire setting non-scanned-driving-electrode equipotential (S-NSDE-EP) circuit, the
resistive sensor arraymodules got flexibility in robotic operations but suffered from the crosstalk problem caused bywire resistances
and contacted resistances of the cables. Firstly, we designed a new S-NSDE-EP circuit using two wires for every driving-electrode
and every sampling-electrode to reduce the crosstalk caused by the connected cables in the 2D networked resistive sensor array.
Then, an equivalent resistance expression of the element being tested (EBT) for this circuit was analytically derived.Then, the 1-wire
S-NSDE-EP circuit and the 2-wire S-NSDE-EP circuit were evaluated by simulations. The simulation results show that the 2-wire
S-NSDE-EP circuit, though it requires a large number of wires, can greatly reduce the crosstalk error caused by wire resistances
and contacted resistances of the cables in the 2D networked resistive sensor array.

1. Introduction

Resistive sensor arrays were widely used in tactile sensing
[1–8], light sensing [9], infrared sensing [10], and so forth.
In robotic applications, long flexible cables were preferred
for flexibility and limited space of the sensitive areas. With
tested cables of lengths from 55mm to 500mm (as shown
in Table 1), different modules of resistive sensor arrays were
connected to the test circuits through the plugs and the
sockets. Vidal-Verdú et al. [1, 3] designed and compared
circuits of networked piezoresistive sensor arrays. Speeter
[2] designed a flexible sensing system with 16 × 16 resistive
taxels. Yang et al. [4] designed a 32 × 32 flexible array within
a 160mm × 160mm temperature and tactile sensing area.
Zhang et al. [5] reported a 3 × 3 thin tactile force sensor
array based on conductive rubber. Castellanos-Ramos et al.
[6] reported a 16 × 16 tactile sensor array based on conductive
polymers with screen-printing technology. Kim et al. [7]
reported a flexible tactile sensor array with high performance
in sensing contact force. Lazzarini et al. [8] reported a 16 × 16
tactile sensor array for practical applications inmanipulation.

But cables had different wire resistances which increased
with the increase of their lengths. Between the plugs of the
connected cables and the sockets of the test circuits, there
existed contacted resistances of tens of milliohms to several
ohms varying with the variation of mechanical vibration and
time. But newmethods are still lacking, which can be used to
suppress crosstalk caused by long cables.

For this purpose, we present a novel cable crosstalk
suppression circuit based on a 2-wire method for the 2D
networked resistive sensor arrays in the row-column fashion.
This paper begins with an overview of the application fields
of the 2D networked resistive sensor arrays. Secondly, a
novel cable crosstalk suppression method will be proposed
and its equivalent resistance expression of the element being
tested (EBT) will be analytically derived. Then simulations
will be implemented to evaluate this method with different
parameters such as wire resistances and contacted resistances
of the cables, the array size, the measurement range of the
EBT, and the adjacent elements’ resistances of 2D networked
resistive sensor arrays. Finally, the results of experiments will
be analyzed and conclusions for the method will be given.
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Table 1: Resistive sensor arrays with cables of different lengths.

Literature Sensor Array size of sensing elements Cable length (mm) Cable crosstalk
[1] Polymer based FSR 16 × 9 >55 Yes
[2] FSR 16 × 16 >60 Yes
[3] FSR 16 × 16 >70 Yes
[4] Conductive rubber 32 × 32 >70 Yes
[5] Conductive rubber 3 × 3 >95 Yes
[6] Conductive polymer 16 × 16 >100 Yes
[7] Semiconductor strain gage 5 × 5 >100 Yes
[8] FSR 16 × 16 500 Yes
[9] Light dependent resistor 16 × 16 — Yes

2. Principle Analyses

In the row-column fashion, 2D resistive sensor arrays needed
few wires but suffered from crosstalk caused by parasitic
parallel paths. For suppressing crosstalk, manymethods have
been proposed and analyzed in literatures, such as the passive
integrators method [3], the inserting diode method [11],
the resistive matrix array method [12], the voltage feedback
methods [2, 13–17], and the zero potential methods (ZPMs)
[1, 3–10, 16–20]. Wu et al. have suppressed the crosstalk
caused by the adjacent column elements and the adjacent row
elements with the Improved Isolated Drive Feedback Circuit
(IIDFC) [13] and the Improved Isolated Drive Feedback
Circuit with Compensation (IIDFCC) [14]. Wu et al. have
also proposed a general voltage feedback circuit model
[15] for fast analyzing the performances of different voltage
feedback circuits. D’Alessio has analyzedmeasurement errors
in the scanning circuits of piezoresistive sensors arrays [16].
Saxena et al. [18, 19] have suppressed the crosstalk caused
by the adjacent column elements with large number of op-
amps using the zero potential method. Roohollah et al. [20]
have suppressed the crosstalk error caused by the input
offset voltage and input bias current of the op-amp with
a novel double-sampling technique. In these methods, the
measurement accuracy of the EBT still suffered from cable
crosstalk.

Liu et al. [17] defined the setting non-scanned-electrode
zero potential (S-NSE-ZP) method, the setting non-scanned-
sampling-electrode zero potential (S-NSSE-ZP) method, and
the setting non-scanned-driving-electrode zero potential (S-
NSDE-ZP) method for the zero potential methods, in which
bipolar power sources were necessary for op-amps and
analog digital converters (ADCs). In some circuits [1, 3], the
reference voltages were not zero, so op-amps and ADCs with
unipolar power sources, which were of less cost and were
more convenient for use, could be used. So we defined those
equipotential methods as the setting non-scanned-electrode-
equipotential (S-NSE-EP) method, the setting non-scanned-
sampling-electrode-equipotential (S-NSSE-EP) method, and
the setting non-scanned-driving-electrode-equipotential (S-
NSDE-EP) method. In this analysis, the S-NSDE-EP circuit
was taken for example. Traditional S-NSDE-EP circuit of
resistive networked sensor array in shared row-column fash-
ion was shown as Circuit A in Figure 1(a). In Circuit A, the
row electrodes and the column electrodes were used as the

sampling electrodes and the driving electrodes, respectively.
In Circuit A, 𝑅

11
in the𝑀×𝑁 resistive array was the element

being tested (EBT); only one connected wire was used for
every column and row electrode between the sensor array
and the circuit; only one equal current𝑀 : 1 multiplexer was
used between the current setting resistor (𝑅set1) and the row
electrodes of the sensormodule. On column electrodes of the
circuit, 2 : 1 multiplexers had multiplexer switch resistances
(𝑅
𝑠𝑐
s); columnwires had column resistances (𝑅

𝐿𝑐
s) including

column wire resistances and column contacted resistances.
On row electrodes of the circuit, the equal current𝑀 : 1 mul-
tiplexers had multiplexer switch resistances (𝑅

𝑠𝑟
s); row wires

had row resistances (𝑅
𝐿𝑟
s) including row wire resistances

and row contacted resistances. Thus Circuit A had one row
sampling op-amp, one𝑀 : 1 multiplexer,𝑁 2 : 1 multiplexers,
and𝑀+𝑁 wires.

Under an ideal condition, all 𝑅
𝑠𝑐
s and all 𝑅

𝐿𝑐
s were

omitted. Thus the voltage (𝑉
𝑐𝑦1

) on the column electrode of
the EBT was equal to the feedback voltage (𝑉

𝑥𝑦1
), and the

voltages on the nonscanned column electrodes were equal to
the reference voltage (𝑉ref1). At the same time, all 𝑅

𝑠𝑟
s and

all 𝑅
𝐿𝑟
s were omitted. Thus the voltage (𝑉

𝑒1
) on the inverting

input of the row sampling op-amp was equal to the voltage
(𝑉
𝑟𝑥1

) on the row electrode of EBT. Under the effect of the
ideal op-amp, 𝑉

𝑒1
was equal to 𝑉ref1 and the current (𝐼

𝑥𝑦1
)

on the EBT was following the change of the current (𝐼set1) on
𝑅set1. As the voltages on the nonscanned column electrodes
were equal to𝑉ref1, the currents on the adjacent row elements
of EBT were equal to zero. At the same time, the current on
the inverting input of the ideal op-amp was omitted for its
infinite input impedance, the current (𝐼

𝑥𝑦1
) on the EBT was

equal to the current (𝐼set1 = (𝑉𝑥𝑦1 − 𝑉ref1)/𝑅𝑥𝑦1 = 𝑉ref1/𝑅set1)
on𝑅set1.Thus, 𝐼set1 and 𝐼𝑥𝑦1 were equal. As𝑉ref1 and𝑅set1 were
known, 𝑉

𝑥𝑦1
could be measured by ADC, so the equivalent

resistance value (𝑅
𝑥𝑦1

) of the EBT in Circuit A could be
calculated with the following:

𝑅
𝑥𝑦1
=

(𝑉
𝑥𝑦1
− 𝑉ref1) × 𝑅set1

𝑉ref1
. (1)

But under the real condition as shown in Figure 1(b),𝑉
𝑐𝑦1

was not equal to 𝑉
𝑥𝑦1

for 𝑅
𝑠𝑐
and 𝑅

𝐿𝑐
, and 𝑉

𝑒1
was not equal

to 𝑉
𝑟𝑥1

for 𝑅
𝑠𝑟

and 𝑅
𝐿𝑟
. The ideal feedback condition was

destroyed by the row wires and the column wires, so extra
measurement errors of the EBT existed.
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Figure 1: (a) 1-wire S-NSDE-EP circuit (Circuit A). (b) Simplified measurement circuit of 1-wire S-NSDE-EP circuit (Circuit B). (c) 2-wire
S-NSDE-EP circuit (Circuit C). (d) Simplified measurement circuit of 2-wire S-NSDE-EP circuit (Circuit D).

For suppression cable crosstalk in the 2D networked
resistive arrays, we proposed a 2-wire equipotential method
(Circuit C, as shown in Figure 1(c)). In Circuit C, we used
twowires for every row electrode and every column electrode
between the sensor module and the test circuit; also we used
one column driving op-amp for every column electrode and
one more equipotential 𝑀 : 1 multiplexer between the row
electrodes and the row sampling op-amp.Thus Circuit C had
one row sampling op-amp,𝑁 columndriving op-amps,𝑁 2 : 1
multiplexers, two𝑀 : 1 multiplexers, and 2(𝑀+𝑁) connected
wires.

Every column electrode in the sensor module was con-
nected with the output of its column driving op-amp by one
driving wire and it was also connected with the inverting

input of its column driving op-amp by one driving sampling
wire. The noninverting input of every column driving op-
amp was connected with the common port of its column 2 : 1
multiplexer; thus every noninverting input was connected
with 𝑉

𝑥𝑦
or 𝑉ref . The noninverting input of EBT’s column

driving op-ampwas connectedwith𝑉
𝑥𝑦
and the noninverting

inputs of other column driving op-amps were connected with
𝑉ref .

As the input impedance of every column driving op-
amp was much bigger than 𝑅

𝑠𝑐
, the effect of 𝑅

𝑠𝑐
could be

omitted. So the voltage on the noninverting input of every
column driving op-amp was equal to the input voltage (𝑉

𝑥𝑦

or 𝑉ref ) of its 2 : 1 multiplexer. If the column driving op-amps
had sufficient driving ability, the voltage on every column
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electrode was following the change of the voltage on the
noninverting input of its column driving op-amp. So 𝑉

𝑐𝑦

was equal to 𝑉
𝑥𝑦
, and the voltages on nonscanned column

electrodes were equal to 𝑉ref . Thus the crosstalk effect of 𝑅
𝐿𝑐

and 𝑅
𝑠𝑐
was suppressed.

By one equal current wire, every row electrode in the
sensor module was connected with one channel of the equal
current 𝑀 : 1 multiplexer with its common port connected
with 𝑅set. In the equal current 𝑀 : 1 multiplexer, only the
row electrode of EBT was gated and all other nonscanned
electrodes were suspended. So only the row electrode of the
EBT was connected with 𝑅set.

By one equipotential wire, every row electrode in the
sensor module was also connected with one channel of
the equipotential 𝑀 : 1 multiplexer with its common port
connected with the inverting input of the row sampling
op-amp. In the equipotential 𝑀 : 1 multiplexer, only the
row electrode of EBT was gated and all other nonscanned
electrodes were suspended. So only the EBT’s row electrode
was connected with the inverting input of the row sampling
op-amp. From the output port of the EBT’s column driving
op-amp, the test current firstly flowed through the EBT, then
it flowed through the row equal current wire, then it flowed
through the equal current 𝑀 : 1 multiplexer, and finally it
flowed through 𝑅set to ground.

As the input impedance of the row sampling op-amp
was much bigger than its series resistances such as the
switch resistance of the equipotential 𝑀 : 1 multiplexer, the
wire resistance of the equipotential wire, and the contacted
resistance, the voltage on the inverting input of the row
sampling op-amp was equal to the voltage (𝑉

𝑟𝑥
) of the EBT’s

row electrode.
Under the effect of the row sampling op-amp, the current

(𝐼
𝑥𝑦
) on the EBT followed the change of the current (𝐼set)

on 𝑅set. As the input impedance of the row sampling op-
amp was much bigger than its parallel resistances such as 𝑅

𝑠
,

𝑅
𝑠𝑟
, and 𝑅

𝐿𝑟
, the leak current on the inverting input of the

voltage feedback op-amp could be ommited. And the voltage
on every nonscanned column electrode was equal to 𝑉ref ,
which was also equal to 𝑉

𝑟𝑥
. Thus the currents on the EBT’s

(𝑁 − 1) row adjacent elements were zero. So 𝐼set was equal to
𝐼
𝑥𝑦
. The current with equal value also flowed through 𝑅

𝑠𝑟
and

𝑅
𝐿𝑟
. As 𝑅set was known and 𝐼set was equal to 𝐼𝑥𝑦, we could

know 𝐼
𝑥𝑦

if the voltage (𝑉
𝑒
) on 𝑅set and the voltage (𝑉

𝑥𝑦
) on

the EBT were known. Thus we could get 𝑅
𝑥𝑦

of the EBT.
But 𝑉

𝑒
was not equal to 𝑉

𝑟𝑥
for 𝑅

𝑒𝑟
(as shown in

Figure 1(d)) which was the crosstalk caused by the row wire.
Thus extra measurement error of the EBT was caused by it.
From the above discussion, we could know that the currents
on 𝑅
𝑥𝑦
, 𝑅set, and 𝑅𝑒𝑟 had equal values. So we could use (2) to

calculate 𝑅
𝑥𝑦

in Circuit C. We found that 𝑅
𝑒𝑟
did not exist in

(2). As𝑉ref and𝑅𝑠 were known,𝑉𝑥𝑦 and𝑉𝑒 could bemeasured
by ADC, so the equivalent resistance value (𝑅

𝑥𝑦
) of the EBT

in Circuit C could be calculated with (2). Thus the crosstalk
caused by the row wire was suppressed:

𝑅
𝑥𝑦
=

(𝑉
𝑥𝑦
− 𝑉ref) × 𝑅set

𝑉
𝑒

. (2)
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circuit and the 2-wire S-NSDE-EP circuit where𝑀 = 𝑁 = 8.

From the above discussion, the 2-wire S-NSDE-EP
method can depress the crosstalk caused by the rowwires and
the column wires such as 𝑅

𝑠𝑟
s, 𝑅
𝐿𝑟
s, 𝑅
𝑠𝑐
s, and 𝑅

𝐿𝑐
s.

3. Simulation Experiments and Discussion

To emulate the performance of our method, OP07 was
selected as the macromodel of the op-amp (from the
datasheet, the offset voltage, the bias current, the gain-
bandwidth, and the gain are equal to 75𝜇V, 2.8 nA, 0.60MHz,
and 126 dB, resp.) in the simulations of National Instrument
(NI) Multisim 12. In simulations,𝑉ref was set at 0.1 V, 𝑅set was
set at 1 kΩ, the positive voltage source of the op-amps was set
at 9V, and the negative voltage source of the op-amps was set
at −6V.

3.1. 𝑅
0
Effect Simulation in NI Multisim. Cable resistance

(𝑅
0
, 𝑅
0
= 𝑅
𝑒𝑟
= 𝑅
𝑒𝑐
) including the wire resistance and

the contacted resistance affected the performance of the 2D
networked resistive circuits. We investigated the effect of 𝑅

0

including wire resistance and contacted resistance on the 1-
wire S-NSDE-EP circuit and the 2-wire S-NSDE-EP circuit
in NI Multisim. In simulations, we fixed some parameters
including all elements in the resistive sensor array at 10 kΩ
and𝑀 and𝑁 at 8, and 𝑅

0
= 𝑅
𝑒𝑟
= 𝑅
𝑒𝑐
in sensor arrays varied

synchronously with the same resistance value in 0.1Ω–100Ω.
The simulation results of the two circuits in NI Multisim 12
were shown in Figure 2. In the results, as shown in Figure 2,
the deviation effect of 𝑉

𝑒
caused by the row line and the row

multiplexer was also considered.
From Figure 2, with 𝑅

0
varied from 0.1Ω to 100Ω, 𝑅

𝑥𝑦

errors in the 1-wire S-NSDE-EP circuit showed a significant
change (from 0.025% to 9.017%) with an obvious positive
increase coefficient, while 𝑅

𝑥𝑦
errors in the 2-wire S-NSDE-

EP circuit eliminating the deviation effect of 𝑉
𝑒
showed a

tiny change (from −0.000% to −0.003%). But if the deviation
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effect of 𝑉
𝑒
was ignored, 𝑅

𝑥𝑦
errors in the 2-wire S-NSDE-

EP circuit with 𝑉
𝑒
would be significant (from −0.002% to

−9.083%) as shown in Figure 2. Thus, the 2-wire S-NSDE-
EP circuit eliminating the deviation effect of 𝑉

𝑒
has a better

performance than the 1-wire S-NSDE-EP circuit when 𝑅
0
is

varied from 0.1Ω to 100Ω; the absolute 𝑅
𝑥𝑦

errors of the 2-
wire S-NSDE-EP circuit eliminating the deviation effect of𝑉

𝑒

are small enough to be negligible when 𝑅
0
is less than 100Ω.

In the data of the simulation results, we also found the
offset value of 𝑉

𝑒
from 𝑉ref was varied from 0.19mV to

9.08mV with 𝑅
0
changing from 2Ω to 100Ω.

3.2. Array Size Effect Simulation Experiment. Parameters of
the array size such as the row number (𝑀) and the column
number (𝑁) were proved to have effect on the performance
of the 2D networked resistive sensor arrays [9–19]. We
investigated the effect of𝑀 and𝑁 on the 1-wire S-NSDE-EP
circuit and the 2-wire S-NSDE-EP circuit in NI Multisim. In
simulations, we fixed some parameters including all elements
in the resistive sensor array at 10 kΩ,𝑀 or 𝑁 at 8, and 𝑅

0
at

2Ω, and𝑁or𝑀was onenumber in (8, 15, 29, 57, 113, and 225).
The results of the array size effect on the 1-wire S-NSDE-EP
circuit and the 2-wire S-NSDE-EP circuit were simulated in
NI Multisim and the results were shown in Figure 3. In the
results, as shown in Figure 3, the deviation effect of𝑉

𝑒
caused

by the row line and the row multiplexer was also considered.
From Figure 3, with the increase of the column number,

the 𝑅
𝑥𝑦

errors in the 1-wire S-NSDE-EP circuit had a positive
coefficient (from 0.196% to 4.722%) while the 𝑅

𝑥𝑦
errors in

the 2-wire S-NSDE-EP circuit eliminating the deviation effect
of 𝑉
𝑒
had a negative coefficient (from −0.000% to −0.044%).

But if the deviation effect of 𝑉
𝑒
was ignored, we found a

deviation of 𝑅
𝑥𝑦

errors (from −0.191% to −0.235%) in the 2-
wire S-NSDE-EP circuit with 𝑉

𝑒
in Figure 3. The absolute

𝑅
𝑥𝑦

errors in the 2-wire S-NSDE-EP circuit eliminating
the deviation effect of 𝑉

𝑒
had been reduced significantly

comparingwith the absolute𝑅
𝑥𝑦
errors in the 1-wire S-NSDE-

EP circuit.
FromFigure 3, with the row number changed in the range

from 8 to 113, the 𝑅
𝑥𝑦

errors in both circuits changed little
(from 0.196% to 0.194% for the 1-wire S-NSDE-EP circuit,
about 0.000% for the 2-wire S-NSDE-EP circuit eliminating
the deviation effect of 𝑉

𝑒
, about −0.191% for the 2-wire S-

NSDE-EP circuit with𝑉
𝑒
); butwhen the rownumber changed

in the range from 113 to 225, the 𝑅
𝑥𝑦

errors in both circuits
changed clearly (from 0.194% to −0.067% for the 1-wire S-
NSDE-EP circuit, from 0.000% to 0.032% for the 2-wire S-
NSDE-EP circuit eliminating the deviation effect of 𝑉

𝑒
, from

−0.191% to −0.159% for the 2-wire S-NSDE-EP circuit with
𝑉
𝑒
). If every column driving op-amp had a sufficient current

driving ability, the row number had less influence on the 𝑅
𝑥𝑦

errors in both circuits. In the data of the simulation results, we
also found the offset value of 𝑉

𝑒
from 𝑉ref was about 0.19mV

with array size changed.
Thus, in the 2-wire S-NSDE-EP circuit eliminating the

deviation effect of 𝑉
𝑒
, the influence of array size on the 𝑅

𝑥𝑦

error has been decreased greatly.

3.3. The Adjacent Elements Effect Simulation. In literatures
[9–19], the adjacent elements played a significant role in
affecting the measurement accuracy of the EBT. In simu-
lations, we fixed some parameters including the resistance
value of nonadjacent elements and all other adjacent elements
at 10 kΩ,𝑀 and𝑁 at 8, and 𝑅

0
at 2Ω. The resistance value of

an adjacent element varied in the range from 0.1 kΩ to 1MΩ.
The adjacent element could be an adjacent row element (𝑅adjr)
or an adjacent column element (𝑅adjc).The simulation results
of the 1-wire S-NSDE-EP circuit and the 2-wire S-NSDE-EP
circuit in NI Multisim were shown in Figures 4–7.

From Figures 4–7, the 𝑅
𝑥𝑦

errors of the EBT of both
circuits had negative coefficient when the resistance value of
the EBT increased; the𝑅

𝑥𝑦
errors of the EBT showed irregular

variations when the resistances of the EBT was bigger than
a certain value (≥30 kΩ for the 1-wire S-NSDE-EP circuit,
≥50 kΩ for the 2-wire S-NSDE-EP circuit).We found that the
output voltages of the row sampling op-amp in both circuits
were saturated for a bigger resistance value of the EBT. Under
the same power source voltage, themeasurement range of the
2-wire S-NSDE-EP circuit was bigger than that of the 1-wire
S-NSDE-EP circuit.

From Figures 4–7, the 𝑅
𝑥𝑦

errors of the EBT with a bigger
resistance value were susceptible to interference from by one
𝑅adjr or one 𝑅adjc with a smaller resistance value. In both
circuits, the changes of the 𝑅

𝑥𝑦
errors for the change of one

𝑅adjr were bigger than the changes of the 𝑅
𝑥𝑦

errors for the
change of one 𝑅adjc. With one 𝑅adjr or one 𝑅adjc varied from
0.1 kΩ to 1MΩ, the changes of the 𝑅

𝑥𝑦
errors (with 𝑅

𝑥𝑦
at

30 kΩ, from −0.307% to −0.048% for one 𝑅adjc and from
−3.022% to −0.051% for one 𝑅adjr) in the 1-wire S-NSDE-
EP circuit were significant, while those (with 𝑅

𝑥𝑦
at 50 kΩ,
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Figure 4: The 𝑅adjc effect on 𝑅𝑥𝑦 errors in the 1-wire S-NSDE-EP
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Figure 5: The 𝑅adjr effect on 𝑅𝑥𝑦 errors in the 1-wire S-NSDE-EP
circuit.

from −0.006% to −0.006% for one 𝑅adjc and from −0.106%
to −0.005% for one 𝑅adjr) in 2-wire S-NSDE-EP circuit were
small. Thus, in the 2-wire S-NSDE-EP circuit, the influence
of the adjacent elements on the 𝑅

𝑥𝑦
error has been decreased

greatly.

3.4. The Op-Amp’s Offset Voltage Effect Simulation. As many
op-amps were used in the 2-wire S-NSDE-EP circuit, the
offset voltages of the op-amps would affect the performance
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Figure 6: The 𝑅adjc effect on 𝑅𝑥𝑦 errors in the 2-wire S-NSDE-EP
circuit.
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Figure 7: The 𝑅adjr effect on 𝑅𝑥𝑦 errors in the 2-wire S-NSDE-EP
circuit.

of the proposed circuit. In simulations, we fixed some
parameters including the resistance value of all other row
elements at 10 kΩ,𝑀 and 𝑁 at 8, 𝑅

0
at 2Ω, and all 𝑅ajcrs at

the same resistance value in (100Ω, 300Ω, 1 kΩ, and 10 kΩ).
The offset voltages of the nonscanned column driving op-
amps varied synchronously with the same value in (−75 𝜇V–
75 𝜇V), and the 2-wire S-NSDE-EP circuit was simulated in
NI Multisim and the results were shown in Figure 8.
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Figure 8: The op-amp’s offset voltage effect on 𝑅
𝑥𝑦

errors in the 2-
wire S-NSDE-EP circuit.

From Figure 8, we found that the offset voltages of the op-
amps and the resistances of the row adjacent elements affected
the 2-wire S-NSDE-EP circuit. The smaller these resistances
were and the larger the offset voltage was, the larger the 𝑅

𝑥𝑦

error in the proposed circuit was.

3.5. The Op-Amp’s Driving Capability Effect Simulation. The
op-amp’s driving capability affected the performance of the
2-wire S-NSDE-EP circuit.The nonscanned elements’ bypass
effect on the EBT in the 2D resistive sensor array was obvious
when the EBT had large resistance and all nonscanned
elements had the small resistances. In the worst case, the EBT
had the maximum resistance and all nonscanned elements
had the minimum resistances [17]. In the experiments, we
were about to simulate the op-amp’s driving capability with
all nonscanned elements of different fixed small resistances
and the EBT of a large resistance. In simulations, we fixed
some parameters including𝑀 and𝑁 at 8 and𝑅

0
at 2Ω and all

non-scanned elements at the same resistance value in (100Ω,
300Ω, 500Ω, 1 kΩ, and 3 kΩ). The resistance value of the
EBT varied in the range from 0.1 kΩ to 60 kΩ. The 2-wire
S-NSDE-EP circuit with the op-amp of OP07 was simulated
in NI Multisim and the results were shown in Figure 9 and
Table 2. Also the op-amps ofOP07 (𝐼short-circuit = 30mA)were
replaced by the op-amps of AD797 (𝐼driving = 50mA), and the
2-wire S-NSDE-EP circuit was simulated.

From Figure 9 and Table 2, with the resistances of all non-
scanned elements fixed, the 2-wire S-NSDE-EP circuit failed
to work normally when the EBT’s resistance exceeded certain
values; with the minimum resistances of all nonscanned
elements increased, the maximum resistance which could
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Figure 9:The op-amp’s driving capability effect on 𝑅
𝑥𝑦
errors in the

2-wire S-NSDE-EP circuit.

Table 2: The EBT’s maximum resistance of the 2-wire S-NSDE-EP
circuit with its op-amp of OP07.

𝑅non-scanned (kΩ) The maximum resistance (kΩ)
0.10 3.2
0.30 9.6
0.50 16.0
1.00 32.0
3.00 60.0

be tested in the 2-wire S-NSDE-EP circuit increased; with
a larger op-amp’s driving capability, the 2-wire S-NSDE-EP
circuit with its op-amp of AD797 had a larger measurement
range.

3.6. Discussion. From the results in Figure 1, the 1-wire S-
NSDE-EP circuit had one voltage feedback op-amp, 𝑁 2 : 1
multiplexers, one𝑀 : 1 multiplexers, and𝑀+𝑁 wires; the 2-
wire S-NSDE-EP circuit had one voltage feedback op-amp,
N column driving op-amps, 𝑁 2 : 1 multiplexers, two 𝑀 : 1
multiplexers, and 2(𝑀 + 𝑁) wires. Thus more components
and more wires were used in the 2-wire S-NSDE-EP circuit.

From the results in Figure 2, the 2-wire S-NSDE-EP
method was verified to be efficient in depressing the crosstalk
caused by the rowwires and the columnwires such as𝑅

𝑠𝑟
,𝑅
𝐿𝑟
,

𝑅
𝑠𝑐
, and 𝑅

𝐿𝑐
. It should be noticed that all conductions were

right under the assumption that the column driving op-amps
had sufficient driving ability and the row sampling op-amp
had very big input impedance on its inverting input.

From the results in Figures 3, 6, and 7, the 2-wire
equipotential circuit was failed to work normally with too
much big resistance value of the EBT. If the resistance of the
adjacent elements in resistive sensor array was too small, the
absolute 𝑅

𝑥𝑦
errors of the EBT would increase significantly.

At the same time, if the row sampling op-amp did not have
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very big input impedance or the elements in resistive sensor
array had very big resistance values for the row sampling op-
amp’s input impedance, 𝐼

𝑥𝑦
would be not equal to 𝐼set. Thus

the ideal work conditions were destroyed for the 2-wire S-
NSDE-EP circuit and the 𝑅

𝑥𝑦
error would be significant.

From the results in Figures 2, 3, and 8, 𝑉
𝑒
in the 2-

wire S-NSDE-EP circuit had a significant effect on the 𝑅
𝑥𝑦

error when the resistances such as the wire resistance, the
contacted resistance, and the switch-on resistance of the equal
current𝑀 : 1 multiplexer were large.Thus the deviation value
of 𝑉
𝑒
, mainly caused by the connected cable and the equal

current𝑀 : 1 multiplexers should be carefully considered in
the 2-wire S-NSDE-EP circuit. In the proposed method, the
deviation effect of 𝑉

𝑒
had been eliminated and the 2-wire S-

NSDE-EP circuit with good performance was obtained. As
the offset value of 𝑉

𝑒
from 𝑉ref was varied from 0.19mV to

9.08mV with 𝑅
0
changing from 2Ω to 100Ω, one more op-

amp was necessary for amplifying the signal of 𝑉
𝑒
in the case

of using an analog-digital converter with limited resolution
in the 2-wire S-NSDE-EP circuit.

From the results in Figure 8, the offset voltages of the
column driving op-amps had an obvious influence on the
performance of the 2-wire S-NSDE-EP circuit, and the offset
voltage’s effect would be more obvious for the element being
tested with its row adjacent elements of smaller resistance
values. With the increase of the offset voltage, the 𝑅

𝑥𝑦
error

increased. As the column number of the sensor array had
accumulation influence on the conductance values of the row
adjacent elements, it would enhance the effect of the offset
voltage. Obviously, the offset voltage of the row sampling op-
amp had similar influence on the performance of the 2-wire
S-NSDE-EP circuit.Thus in the practical circuit, the op-amps
with smaller offset voltages were preferred. In the op-amp’s
offset voltage effect simulation experiments, the offset volt-
ages of all nonscanned driving op-amps varied synchronously
with the same value and their effect was obvious. But, in a
practical circuit, the op-amps’ offset voltages would be the
uncertain values less than the offset voltage given in their
datasheets and their effect would be weaker. In the 2-wire
S-NSDE-EP circuit, the double-sampling technique [20] was
also useful for eliminating the effect of those nonidealities of
the op-amps such as the input offset voltage and the input bias
current.

From the results in Figure 9 and Table 2, the op-amp’s
driving capability affected the measurement range of the 2-
wire S-NSDE-EP circuit; with the op-amp fixed, there was an
approximate linear relation between the minimum resistance
and the maximum resistance in the 2-wire S-NSDE-EP
circuit. But the maximum resistance which could be tested
in the 2-wire S-NSDE-EP circuit was also limited by the test
current and the power source voltage.Thus the op-amps with
large driving capability were preferred in the 2-wire S-NSDE-
EP circuit. But the op-amps with large driving capability
always had a large offset voltage. So the contradiction between
the driving capability affecting itsmeasurement range and the
offset voltage affecting its measurement accuracy should be
balanced according to the test requirement.

For good performance of the IIDFC [13] and the IIDFCC
[14], special compensated resistors with their resistances

equal to their multiplexers’ switch-on resistances are neces-
sary. But the multiplexers’ switch-on resistances may vary
in the practical circuits, and the ideal performances of the
IIDFC and the IIDFCC are difficult to realize. In the 2-wire
S-NSDE-EP method, two wires for every row electrode and
every column electrode between the sensor module and the
test circuit, though it requires a large number of wires, are
easier to achieve. The 2-wire S-NSDE-EP method’s perfor-
mance and its limitation have been verified by simulation
experiments. Similar methods can also be used in the S-
NSSE-EP circuit and the S-NSE-EP circuit. But these should
be verified in future practical application.

4. Conclusion

Firstly, a 2-wire S-NSDE-EP method of the 2D networked
resistive sensor array was proposed. Secondly, the formula
was given for the equivalent resistance expression of the
element being tested in the networked sensor array by
principle analyses. Then, the effects of some parameters
on the measurement accuracy of the EBT were simulated
with the National Instrument Multisim 12, the parameters
including thewire resistances and the contacted resistances of
long cables, the array size and the adjacent elements of the 2D
resistive sensor array, and the offset voltages of the op-amps.
The simulation results show that the 2-wire equipotential
method was verified to be efficient in depressing the crosstalk
caused by the row wires and the column wires such as 𝑅

𝑠𝑟
,

𝑅
𝐿𝑟
, 𝑅
𝑠𝑐
, and 𝑅

𝐿𝑐
; in the 2D networked resistive sensor array

with the 2-wire S-NSDE-EP circuit, the influence of the
adjacent column elements and the adjacent row elements
on the measurement error of the element being tested has
been reduced greatly. Finally, the factors which affected the
performance of the 2-wire S-NSDE-EP circuit were discussed
and the conclusion was given.
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Sikora, E. Ochoteco, and F. Vidal-Verdú, “Tactile sensors based
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